Screening of plant suspension cultures for antimicrobial activities and characterization of antimicrobial proteins from Arabidopsis thaliana

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades
der Bayerischen Julius-Maximilians-Universität Würzburg

Vorgelegt von
Walid Wahid Ali
Aus
Ägypten

Würzburg 2007
Summary IV
Zusammenfassung VI

1. Introduction 1
1.1 Overview of Production of antimicrobial compounds by plants. 1
1.2 Overview of Production of new pharmaceutical compounds by plant tissue cultures. 2
1.3 Overview of production of antimicrobial peptides by different organisms. 4
1.3.1 Antimicrobial peptides and their mode of action. 4
1.3.1.1 Antimicrobial peptides. 4
1.3.1.2 Mechanism of action of cationic peptides 8
1.3.2. Antimicrobial proteins and peptides from plants. 11
1.4 Induction of antimicrobial compounds by plant cells. 12
1.4.1 Inducible defense. 12
1.4.2 Elicitor treatment. 15
1.4.3 Signal transduction. 17
1.5 Thaumatin like proteins. 20
1.5.1 Thaumatin-like proteins from plants. 20
1.5.2 Thaumatins from Arabidopsis. 23
1.6 Objective of this thesis. 25
2. Results 27
2.1 Screening the antimicrobial activity of plant cell Cultures. 27
2.2 Purification of antimicrobial activity from Arabidopsis thaliana. 41
2.2.1 Ammonium sulphate precipitation. 41
2.2.2 High speed centrifugation 43
2.2.3 Bioautography. 46
2.2.4 Gel filtration 47
2.2.5 Mass spectrometry and identification of the active protein 48
2.2.6 Antimicrobial activity of AtPDP1 49
2.2.7 Homology with other known proteins and sequence analysis 49
2.3 Cloning of genes for AtPDP1 and AtPDP2 56
2.4 Expression of AtPDP1 and AtPDP2 under different stimuli (Digital Northern) 56
2.5 Cloning of wound-inducible promoter. 58
2.6 Cloning of thaumatin genes from Arabidopsis thaliana 59
2.7 Expression of different thaumatin genes under different stimuli (Digital Northern) 61
3. Discussion 63
3.1 Production of antimicrobial compounds by plant cell culture 63
3.2 Isolation and characterization of an antimicrobial protein (AtPDP1) 65
3.3 Cloning of genes for AtPDP1 and AtPDP2 and their expression pattern under different stimuli (Digital Northern) 71
3.4 Cloning and expression of thaumatin genes from Arabidopsis thaliana. 72
4. Materials and Methods 74
4.1 Materials 74
4.1.1 Suspension cell cultures 74
4.1.2 Tester isolates 77
4.1.3 Medium 79
4.1.4 Buffers 80
4.2 Methods. 84
4.2.1 Antimicrobial Measurements. 84
4.2.1.1 Treatment with various elicitors. 84
4.2.1.2 Preparation of different fractions for screening. 85
4.2.1.3 Antimicrobial activity assay. 86
4.2.2 Molecular Biological Methods. 87
4.2.2.1 DNA-Agarose gel electrophoresis. 87
4.2.2.2 Competent E. coli cells 87
4.2.2.3 Extraction of RNA. 88
4.2.2.4 Extraction of genomic DNA 88
4.2.2.5 Polymerase chain reaction 89
4.2.2.6 Reverse Transcription-PCR. 90
4.2.2.7 Elution and purification of DNA fragments. 90
4.2.2.8.....Ligation 91
4.2.2.9 Transformation of E. coli cells 91
4.2.2.10 Mini Prep and restriction analysis. 91
4.2.2.11 Sequencing 92
4.2.3 Biochemical Methods. 92
4.2.3.1 SDS PAGE (Polyacrylamide gel electrophoresis) 92
4.2.3.2 Commassie brilliant blue staining 93
4.2.3.3 Silver staining 93
4.2.3.4 Bioautography 93
4.2.3.5 Purification of antimicrobial activity. 94
4.2.3.6 Bradford-Protein estimation. 97
4.3 Instruments. 98
4.4 Chemicals and Enzymes. 98
5. References 99
6. Appendix 122
6.1 Abbreviations 122
6.2 Oligo Nucleotide Primers 124
6.3 Vectors (PGEM -T Easy Vector) 125
6.4 Blasts for AtPDP1 and AtPDP2 126
6.5 Blasts for Win promoter region 128
6.6 Genomic sequences for cloned thaumatin genes 132
6.7 cDNA sequence alignments for thaumatin genes 141
6.8 Blasts for thaumatins. 151
7.Acknowledgments. 161

Summary

The continuously increase in resistance of human pathogenic microorganisms to the known antibiotics leads to the necessity for searching new sources for production of new active antimicrobial compounds from different natural sources especially plants, since many plants have been found to be able to produce antimicrobial compounds as a defense phenomenon against invading microorganisms. The aim of this work is to screen cultures for production of antimicrobial activity against representative of human pathogenic microorganisms and selection the most active cell culture producing antimicrobial protein(s) which are active against these pathogenic microorganisms and also isolation ,purification of the active protein(s) and cloning of its/their genes.
Ten different plant suspension cultures have been screened in presence of nine elicitors for their antimicrobial activity against five selected human pathogenic microorganisms, and it has been found that the heterotrophic cultures are more active against the tester isolates than the autotrophic ones. The intracellular fraction of the mixotrophic Arabidopsis thaliana culture elicited with salicylic acid showed the highest antimicrobial activity against the tester isolates.
The presence of proteinous antimicrobial activity has been elucidated by testing the activity of ammonium sulphate precipitate against Candida maltosa. High speed centrifugation technique has been used for partial purification of the active protein. The proteinous nature of the isolated compound has been confirmed by using bioautography technique and its molecular weight could be estimated to be around 26 KDa . The active protein has been purified using gel filtration, and using mass spectrometry technique, for microsequencing of the active protein, it has been found that the function of the protein is unknown and we have termed it as AtPDP1 according to Arabidopsis thaliana Plat-Domain Protein $\underline{1}$, since it contains a plant stress domain termed PLAT domain. It has been found that a second protein from the same plant with high homology level to AtPDP1 with the same domain, we termed it as AtPDP2. Genes for AtPDP1 and AtPDP2 have been cloned in E. coli using PGEM-T easy vector. The expression of both genes have been tested using Digital Northern program, and it has been observed that both genes are induced by different pathogens, chemicals known to induce defense in plant cells and also different hormones. We tried to clone the gene for AtPDP1 in PBI121
binary vector under the control of an elicitor inducible promoter of a proteinase inhibitor gene, to test its function in plant by overexpression, but we did not succeeded.
Also the work aims to cloning the different known thaumatin genes from Arabidopsis thaliana for future work which represented by testing their expression under different stimuli, since most thaumatins have antimicrobial activity and some of them are active against Candida spp..Thirteen genes of known thaumatins from Arabidopsis thaliana have been cloned in PGEM-Teasy vector in DH5 α E. coli cells. The expression of the thirteen genes has been done using Digital Northern program and it has been found that different genes show different expressions under different stimuli and the expression of At1g75800 gene was the maximum under all stimuli. The minimum expression of genes was for At1g75050. The rest of thaumatin genes showed moderate expressions under different stimuli.

Zusammenfassung

Die zunehmende Resistenz humanpathogener Mikroorganismen gegen bekannte Antibiotika bedingt die Notwendigkeit, nach neuen Quellen für die Produktion antimikrobieller Stoffe zu suchen. Als eine solche Quelle gelten besonders Pflanzen, da viele antimikrobielle Stoffe bei der Abwehr gegen invasierende Mikroorganismen bilden. Das Ziel der vorliegenden Arbeit besteht in der Charakterisierung von pflanzlichen Zellkulturen im Hinblick auf ihre Fähigkeit, anitimkrobielle Aktivität gegen humanpathogene Mikroorganismen zu entwickeln. Dabei sollen aktive Proteine aufgereinigt und die kodierenden Gene isoliert werden.

Dazu wurden zehn verschiede pflanzliche Suspensionskulturen in Anwesenheit von neun Elicitoren auf ihre antimikrobielle Aktivität gegen fünf humanpathogene Mikroorganismen getestet. Dabei erwiesen sich die heterotrophen Kulturen im Vergleich zu den autotrophen als aktiver. Die höchste antimikrobielle Aktivität wurde bei der intrazellulären Fraktion der mixotrophen Kultur von Arabidopsis thaliana nach Elicitierung mit Salicylsäure nachgewiesen. Da in einem Präzipitat mit Ammoniumsulfat Aktivität gegen Candida maltosa nachgewiesen wurde, konnte angenommen werden, dass es sich bei der aktiven Komponente um ein Protein handelt. Durch Hochgeschwindigkeitszentrifugation wurde eine partielle Aufreinigung dieser aktiven Komponente erreicht. Die proteinoide Natur wurde durch Bioautographie bestätigt und das Molekulargewicht auf ca. 26kDa geschätzt. Mittels Gelfiltration und Massenspektrometrie wurde das Protein aufgereinigt. Die Mikrosequenzierung ergab ein Protein mit bisher unbekannter Funktion, das eine pflanzliche Stressdomäne (PLAT) enthält. Das Protein wurde daraufhin als AtPDP1 (Arabidopsis thaliana Plat-Domain Protein 1) bezeichnet. Das Gen und ein zweites mit hochgradiger Homologie (AtPDP2) wurden in E. coli kloniert. Der Digital Northern zeigt an, das beide Gene durch verschiedene Pathogene induziert werden, sowie von Chemikalien, die pflanzliche Abwehr hervorrufen und weiterhin von Phytohormonen. Der Versuch, AtPDP1
unter die Kontrolle eines Promors einer Proteinase zu stellen, der Induzierbarkeit durch Elicitoren vermittelt, blieb erfolglos.

Weiterhin wurden 13 Thaumatingene aus Arabidopsis thaliana in E. coli kloniert, da ihre antimikrobielle Aktivität bekannt ist, und ihre Expression durch verschiedene Stimuli induziert wird. Von diesen Genen zeigt der Digital Northern bei allen Stimuli eine maximale Expression für At1g75800, während At1g75050 minimal induziert ist. Diese Gene stehen für zukünftige Studien zur Verfügung.

1.Introduction

1.1 Overview of production of antimicrobial compounds by plants

The continuous use of antibiotics has resulted in multiresistant microbial strains allover the world and as expected, hospitals have become breeding grounds for human associated microorganisms (Mainous and Pomeroy, 2001). Among fungi associated with human diseases, the Candida spp. were, for many years, the most frequently isolated from clinical specimens (Ainsworth, 1986). Also the emerging of AIDS disease increased the risk of infections in the immunocompromised patients, caused by pathogenic yeast (known or emerging) which cause cutaneous or systemic infections (Anaissie and Bodey, 1989; Cimolai et al., 1987). Another serious risk is caused by increasing development of fungal resistance to currently available antimycotic agents (Masiá Canuta and Gutiérrez Rodero, 2002). This phenomenon, firstly described in bacteria, is becoming a looming threat also for yeast, occasionally developing resistance also towards azoles and polyenes, which represent the two major classes of known antimycotic drugs (Sanglard and Odds, 2002; Nguyen et al., 1996; Pfaller et al., 2001; Rex et al., 2000; Powderly et al., 1988). Also for bacterial strains, they have genetic ability to transmit and acquire resistance to drugs which are utilized as therapeutic agents (Cohen, 1992). The knowledge acquired in the past two decades and the discovering of new groups of antimicrobial proteins make natural antibiotics the basic element of bacterial and fungal infections (De Lucca, 2000; Hancock, 2000; Welling et al., 2000; Selitrennikoff, 2001). Among eukaryotes producing antimicrobial compounds, plants synthesize a vast array of secondary metabolites as defense mechanisms for protecting themselves against pathogen infections [bacteria, fungi and viruses (Osbourn, 1996; Mendoza et al., 1997; Skadhange et al., 1997; Tereschuk et al.,1997; Bois et al., 1999; Hou and Forman, 2000; Rauha et al., 2000)]. The use of plant extracts and phytochemicals can be of great
significance in therapeutic treatments. In the last years, a number of studies have been conducted in different countries to prove such efficiency (Almagboul et al., 1985,1988; Artizzu et al., 1995; Ikram and Inamul, 1984; Izzo et al., 1995; Kubo et al., 1993; Shapoval et al., 1994). Many plants have been used because of their antimicrobial traits, which are due to compounds synthesized in secondary metabolism of the plant. Hence, more studies pertaining to use of plants as therapeutic agents should be emphasized, especially those related to control of antibiotic resistant microbes.

1.2 Overview of production of new pharmaceutical compounds by plant tissue cultures

Many higher plants are major sources of natural products used as pharmaceuticals, agrochemicals, flavor and fragrance ingredients, food additives, and pesticides (Balandrin and Klocke, 1988). The search for new plant-derived chemicals should thus be a priority in current and future efforts toward sustainable conservation and rational utilization of biodiversity (Phillipson, 1990). In the search for alternatives to production of desirable medicinal compounds from plants, biotechnological approaches, specifically, plant tissue cultures, are found to have potential as a supplement to traditional agriculture in the industrial production of bioactive plant metabolites (Ramachandra Roa and Ravishankar, 2002). Cell suspension culture systems could be used for large scale culturing of plant cells from which secondary metabolites could be extracted.

Plant tissue cultures were first established in 1939-1940. However, it was only in 1956 that the first patent for the production of metabolites by mass cell cultures was filed by the American pharmaceutical company, Pfizer Inc. (Pétiard and Bariaud-Fontanel, 1987). The potential of plant cell cultures to produce useful compounds, especially for drug development, was perceived in the late 1960s. Thus Kaul and Staba (1967) and Heble et al. (1968) isolated visnagin and diosgenin respectively from cell cultures
in larger quantities than from the whole plant. However, a large number of cultures failed to synthesize products characteristic of the parent plant. For instance, morphinan, tropane and quinoline alkaloids are synthesized only at extremely low levels in cell cultures (Berlin, 1986). That is why, after a surge of interest, the trend of research declined.

In 1976, at an international congress held in Munich, Zenk and his coworkers demonstrated the outstanding metabolic capacities of plant cells and highlighted the spontaneous variability of plant cell biosynthetic capacity, which could explain the contradictory results obtained earlier. This natural variability is exploited to identify high-yielding cultures for use on an industrial scale (Tabata et al., 1976; Zenk et al., 1977; Zieg et al., 1983; Yamada, 1984; Benjamin et al., 1986). Since the late 1970s, research and development in this area has seen a high increase in the number of patent applications field, especially by the scientific and corporate filed, and by the scientific and corporate sectors in the Federal Republic of Germany and Japan. In 1983, for the first time, a dye, shikonin, with anti-inflammatory and anti-bacterial properties, was produced by plant cell cultures on an industrial scale by Mitsui Petrochemical Industries Ltd (Fujita et al., 1982). However, although this was thought to be a major breakthrough, shikonin production is still the only plant product to be produced on a commercial scale by cell cultures. Discoveries of cell cultures capable of producing specific medicinal compounds at a rate similar or superior to that of intact plants have accelerated in the last few years. New physiologically active compounds of medicinal interest have been found by bioassay. It has been demonstrated that the biosynthetic activity of cultured cells can be enhanced by regulating environmental factors, as well as by artificial selection or the induction of variant clones. Some of the medicinal compounds localized in morphologically specialized tissues or organs of native plants have been produced in culture system not only by inducing specific organized cultures, but also by undifferentiated cell cultures. The possible use of plant cell cultures for the specific biotransformation of natural compounds
has been demonstrated (Cheethama, 1995; Scragg, 1997; Krings and Berger, 1998; Ravishankar and Ramachandra Rao, 2000). Due to these advances, research in the area of tissue culture technology for production of plant chemicals has bloomed beyond expectations.
The major advantage of cell culture system over the conventional cultivation of whole plants are:
(1) Useful compounds can produced under controlled conditions independent of climatic changes or soil conditions.
(2) Cultured cells would be free of microbes and insects.
(3) The cells of any plant, tropical or alpine, could easily be multiplied to yield their specific metabolites.
(4) Automated control of cell growth and rational regulation of metabolite processes would reduce of labor costs and improve productivity.
(5) Organic substances are extractable from callus cultures.

1.3 Overview of production of antimicrobial peptides by different organisms

1.3.1 Antimicrobial peptides and their mode of action

1.3.1.1 Antimicrobial peptides

Members of the major groups of antimicrobial peptides have been classified mainly on the basis of their biochemical (net charge) and/or structural features (linear/circular/amino acid composition), looking for common patterns that might help to distinguish them (Tossi and Sandri, 2002; Zasloff, 2002). The resulting most important groups are the following:

From eukaryotes

Cationic peptides: This is the largest group and the first to be reported, being widely distributed in animals and plants. So far, more than a thousand of such peptides have been characterized and over 50% of them have been isolated from insects (Bulet et al., 1999; Andreu and Rivas,
1998). On the basis of their structural features, cationic peptides can be divided into the following:

1- Cecropins: This is a family of 3-4 kDa linear amphpatic peptides described in haemolymph of insects in the early 1980s (Hultmark et al., 1980; Andreu and Rivas, 1998; Boman 1998; Zheng and Zheng, 2002). These molecules are devoid of cysteine residues and contain two distinctive helical segments: a strongly basic N-terminal domain and a long hydrophobic C-terminal helix, linked by a short hinge. Shortly there after, other linear amphipatic peptides such as the magainins isolated from Xenopus skin, were isolated from vertebrate sand included in the same group (Zasloff, 1987; Bechinger et al. 1993; Simmaco et al. 1998). These were the first molecules used to evaluate their biochemical applications (Hancock, 2000).

2- Defensins: This is a highly complex group of 4 kDa open-ended cysteine-rich peptides arranged with different structural motifs. They have been mostly isolated from mollusk, acari, arachnids, insects, mammals and plants. Defensins are arranged in families, based on their structural differences. Invertebrates (Hubert et al 1996; Andreu and Rivas, 1998; Dimarcq et al 1998; Bulet et al 1999; Mitta et al 1999; Silva et al. 2000; Nakajima et al. 2001) and plant (Broekaert et al. 1997; Garcia-Olmedo et al 1998; Segura et al. 1998; Liu et al. 2000). Defensins are characterized by three and four disulfide bridges, respectively. They show a common structure comprising and α-helix linked to a β-sheet by two disulfide bridges, distinctive structure known as CSab motif. In mammals, α - and β defensins are characterized by an antiparallel β-sheet structure, stabilized by three disulfide bridges (Zasloff, 2002). Some of them naturally exist as cyclic molecules such as the theta-defensins (Tang et al. 1999; Lehrer and Ganz, 2002). It has been difficult to determine whether all molecules are homologous or have
independently evolved similar features, but evidences are in favor of a distant relationship. The best evidence of this relationship is structural, particularly from their overall three-dimensional structure and from the spacing of helf-cystine residues involved in intra-chain disulfide bonds.
3-Thionins: These are antimicrobial, and generally basic, plant peptides with a molecular weight of 5 Da , which contain 6 or 8 conserved cysteine residues. Their in vitro toxicity against plant pathothogenic bacteria and fungi indicates a role in the resistance of plants (Bohlmann, 1999). Ligatoxin B, a new basic thionin containing 46 amino acid residues has been recently isolated from the mistletoe Phoradendron liga (Li et al., 2002). Similarities observed by structural comparison of the helix-turn-helix (HTH) motifs of the thionins and HTH DNA-binding proteins, lead the authers to propose that thionins meight represent a new group of DNA-binding proteins.
4- Amino acid-enriched class: This is a distinctive class of antibacterial and antifungal cationic peptides, enriched in specific amino acids, with distinctive features depending on organism from which they are isolated. Those proline-glycine-rich are mostly from insects and active against Gram-negative bacteria (Bulet et al 1999; Otros, 2000); while cystein-rich peptides, not related to defensins, represent the most diverse family among arthropods (Dimarcq et al 1998). On the other hand those enriched in histidine are particularly basic, mostly from mammals (Pollock et al 1984). Among them, histatin recovered from saliva from humans and primates and primarily directed against fungal pathogens, outstands for its distinctive mechanism of action which does not involve channel formation in the fungal cytoplasmic membrane but rather translocates efficiently into the cell and targets the mitochondrion (Tsai and Bobek, 1998). Those enriched in histidine and glycine are quiet large, also affecting fungal pathogens and a distinctive feature
is that their residues are arranged in approximately regular but different structural repeats (Tossi and Sandri, 2002). Finally, only two peptides enriched in tryptophan residues have been described both drived from porcine cathelicidin precursors (Schibli et al. 2002). The outstanding feature through, is broad spectrum of activity including hundreds of Gram-positive and negative clinical isolates in addition of fungi and even the enveloped HIV virus (Gennano and Zanetti, 2000).
5-Histone derived compounds: This is a family of cationic helical peptides corresponding to cleaved forms of histones originally isolated from toad-(buforin) (Park et al 1996) and fish epithelia (Parasin) (Park,1998). These molecules are structurally similar to cecropins and quite active against bacteria and fungi. In the case of buforin II, at least, it was demonstrated that this molecule penetrates bacterial membranes and bind to nucleic acids thus interfering with cell metabolism and leading to rapid cell death (Park et al. 1998). AMPs are important factors in fish innate immunity (Iwanaga et al. 1994; Lemaitre et al. 1996; Zhou et al. 2002) and new contributions tend to demonstrate it. Recently, an active peptide was identified both in coho salmon mucus and blood, which display full indentity with the N-terminus of trout H 1 histone (Patrzykat et al 2001). This is an indication that histone proteins may be a relatively ubiquitous component of host defenses (Hirsh, 1958). This assumption has been strengthened in recent years by the isolation of histone-like proteins in the cytoplasm of murine macrophages (Hiemstra et al 1993) and the characterization of histone H2B fragments in human wound fluids (Frohm et al. 1996)
6- Beta-hairpin: This class of cationic peptides includes a wide range of 2 to 8 kDa compounds containing beta-hairpin cross-linked by disulphide bridge(s). The smallest members of this class with one disulfide bridge, is represented by thanatin and brevinin. Those containing two disulfide bridges are represented by androctonin
(Mandard et al. 1999) tachyplesin and protegrin I (Mandard et al. 2002). Members of this latter group are 2-kDa hairpin-structured peptides, isolated from both invertebrates and vertebrates and show preferential antibacterial and antifungal activities (Dimarcq et al. 1998)

1.3.1.2 Mechanism of action of cationic peptides

In spite of the fact that the mechanism of action is not satisfactory established for all cationic peptides, the structural model established by Shai-Matzusaki-Huang (Matzuski,1999) provides a reasonable explanation for most antimicrobial activities of these compounds (Zasloff, 2002). The model proposes that these linear amphipatichelical peptides interact with bacterial membranes and increase their permeability, either by the effect of their positive charges with anionic lipids of the target membrane or by membrane destabilization through lipid displacements due to drastic changes in the net charge of the composed system. A similar mechanism has been proposed for the cysteine-rich peptides such as defensins, which are suggested to form ion-permeable channels in the lipid bilayer. In contrast, some peptides penetrate into cells to exert their action over target molecules (Kragol et al. 2001). Several additional hypotheses have been proposed to explain the mechanisms by which peptides kill target; such hypotheses include induction of hydrolases which degrade the cell wall, disturbance of membrane functions and damage to crucial intracellular targets after internalization of the peptide (Zasloff, 2002).

Anionic peptides: This is a smaller noval group of molecules displaying antimicrobial activity which up to now, have been mostly isolated from mammals.

1- Neuropeptide derived molecules: This is the first class of anionic compounds recently found in infectious exudates of cattle and humans. They mostly include peptides derived from processing of
neuropeptide precursors such as pro-enkephalin-A, to yield active peptide B and enkelytin; some of them are phosphorylated (Salzet and Tasiemsky, 2001). These peptides are mainly active against Gram-positive bacteria at micromolar concentrations, like cationic peptides, and similar products have been reported in some invertebrate species (Salzet, 2001).

2- Aspartic-acid-rich molecules: Peptides of this class have isolated and characterized primarily from cattle pulmonary surfactants (Brogden et al. 1996; Bals, 2000; Fales et al 2002). They have a structure similar to the charge-neutralizing pro-peptides of group I serine proteases and have been proposed to regulate the activity of pulmonary enzyme systems in these animals. Recently, a novel anionic 47-amino acid peptide, named dermicidin, has been identified in human sweat, in response to a variety of pathogenic Gram-positive bacteria and ascribed to this class of molecules (Schittek et al 2001).
3- Aromatic dipeptides: The aromatic dipeptides comprise low molecular might antibacterial compounds primarily isolated from dipteran larvae. There are only two well characterized members: the N -alanyl-5-glutathionyl-3,4-dihyroxy-phenylalanine (573 Da), identified in flesh fly sarcophagi peregrine (Leem, 1999; Akiyama et al. 2000), and the P-hydroxycinnamaldehyde, isolated from the saw fly Acantholyda parki (Leem et al. 1999). The mode of action of these molecules is, at present, unknown.
4- Oxygen-binding proteins: Peptides derived from oxygen-binding proteins, or hemocyanin derivatives (Destoumieux-Garzon et al. 2001; Muñoz et al 2002; Muñoz et al. 2003), are the first representatives of the group of peptides derived from oxygenbinding proteins recently isolated from the hemolymph of arthropods and annelids species. Another molecule, detected in tick hemolmph, is a cleaved form of vertebrate hemoglobin, processed by the parasite after blood meal ingestion (Fogaca et al. 1999).

These proteins have been reported as bactericidal compounds and meight be considered as a reservoir of defense molecules to be used as integrative weapons to fight pathogens (Vizioli and Salzet, 2002). Bactericidal activity of anionic peptides, oxygen-binding protein derivatives and aromatic dipeptides are not as potent as cationic peptides, and their physiological relevance remains to be established in order to define their importance as components of innate response (Decker et al. 2001). These molecules, whose mode of action could differ from that of cationic peptides and other antibiotics, could complement the activity of other comounds and constitutive a useful base to develop noval synthetic derivatives.

From prokaryotes

The antimicrobial peptides produced by bacteria have been grouped into different classes based upon the producer organisms, molecular size, chemical structure and mode of action, which resulted in different names for putative compounds which turned out to be identical: (thiolbiotics, lantibiotic microcin, colicin, bacteriocin, to name a few) (Kolter and Moreno, 1992). The most relevant active-membrane peptides among them are produced by Gram-positive bacteria and classified taxonomically as bacteriocins (Oscáriz and Pisabarro, 2001). Some of them have been the center of attention because of their application as food preservatives (Schillinger et al. 1996). Bacteriocins, cationic, neutral and anionic in chemical nature, are all in the range of 1.9 (Actagardine) and 5.8 (Lactococcin B) kDa in molecular mass (Jack et al. 1995), cationic, neutral and anionic in chemical nature (Oscáriz and Pisabarro, 2001). The most thoroughly studied bacteriocins are those produced by lactic-acid bacteria, of which sakacins seem to be most unique (Jack et al. 1995; Simon et al. 2002), and the lantibiotics, which contain modified amino acid residues (Oscáriz and Pisabarro, 2001). Another representative, pediocins, are usually co-transcribed
with a gene encoding a cognate-immunity protein (Fimland et al. 2002). The 44-amino acid pediocin produced by Pediococcus acidilactici strains is encoded in an 8.9 kb plasmid.

1.3.2. Antimicrobial proteins and peptides from plants

Activation of signal transduction network after pathogen recognition results in reprogramming of cellular metabolism, involving large changes in gene activity. Plants contain many defense related proteins. In addition to resistance R genes and genes encoding signal transduction proteins, they possess downstream defense genes, such as pathogenesis-related proteins (PRs), enzymes of oxidative stress protection, tissue repair, lignification and others. It should be stressed that many of these genes are involved in secondary metabolism, such as shikimate and phenylpropanoids pathway (Somssich and Hahlbrock, 1998). Induction of defense gene transcripts is observed sometimes in the attached cells, but mostly in surrounding plant tissues (Scheel,1998). Accumulation of pathogenesis-related proteins represents the major quantitative change in protein composition that occurs in noninoculated plant parts that, upon challenge, exhibit acquired resistance (Van Loon,1997). Seventeen pathogenesis-related protein families from different plant species have been characterized and classified according to sequence similarities (Fritig et al.,1998), although additional pathogen-induced proteins with potential antipathogenic action keep being described (Table 1.1). Within one family several members may share similar biological activities but differ substantially in other properties such as substrate specificity, physicochemical properties or subcellular localization. The inducible pathogenesis-related proteins are mostly acidic proteins that are secreted into the intracellular space (Van Loon,1997). In addition, basic pathogenrelated protein occur at relatively low levels in the vacuole.

Most pathogen-related proteins have a damaging action on the structure of the parasite: PR1 and PR5 interact with the plasma membrane, whereas $ß-1,3$ glucanases (PR2) and chitinases (PR3, PR4,

PR8 and PR11) attack B-1,3 glucans and chitin, which are components of the cell walls in most higher fungi. PR5 proteins are thought to create transmembrane pores, and therefore been named permatins.

Chitinases can also display lysosyme activity and hydrolyze bacterial peptidoglycan. Microbial proteinases involved in pathogenesis are completely inhibited by a tobacco proteinase inhibitor. Plants also synthesize inhibitors of fungal polygalacturonases considered as pathogenicity factors. The PR10 family has sequence similarity to ribonucleases and is the only family consisting of cytoplasmic proteins.

In addition to pathogenesis related proteins, small peptides with antimicrobial activity, such as thionins, defensins and lipid transfer proteins also accumulate in infected plants and probably components of the induced defense system (Bergey et al., 1996; Broekaert et al., 1997; Fritig et al., 1998). Eight families of antimicrobial peptides, ranging in size from 2 to 9 kD have been identified in plants. These are thionins, defensins, so-called lipid transfer proteins, hevein- and Knottin-like peptides, MBP1, IbAMP and the recently reported snakins (Francisco Garcia-Olmedo et al., 1998).

1.4. Induction of antimicrobial compounds by plant cells

1.4.1 Inducible defense

Activation of inducible defenses are triggered by specific recognition of pathogen invasion by plants (Fig 1.1). Perception in host specific resistance involves receptors with high degree of specificity for pathogen strains, which are encoded by constitutively expressed defense resistance (R) genes, located either on the plasma membrane or in the cytosol (Edreva,1991; Martin, 1999; McDowell and Dangl, 2000). Large repertoires of distantly related individual R genes with diverse recognitional specificities are found within a single plant species (Ellis et al., 2000). Individual R genes have narrow recognition capabilities and they trigger resistance when the invading pathogen expresses a corresponding (Avr) gene. Avr genes from different pathogen classes are

Table(1.1): Antimicrobial pathogenesis-related proteins in plants.

PR protein family	Activity	Pathogen target
PR1	?	Membrane
PR-2	1,3- β-glucanase	Cell wall glucan
PR-3	Endochitinase	Cell wall chitin
PR-4	Endochitinase	Cell wall chitin
PR-5	?	Membrane
PR-6	Proteinase inhibitor	Proteinase
PR-7	Proteinase	?
PR-8	Endochitinase	Cell wall chitin
PR-9	Peroxidase	*
PR-10	RNAase	?
PR-11	Endochitinase	Cell wall chitin
Unclassified	α-Amylase	Cell wall α-glucan
	Polygalacturonase inhibitor protein (PGIP)	Polygalacturonase
PR-12	Defensin	Membrane
PR-13	Thionin	Membrane
PR-14	Lipid-transfer protein	Membrane
PR-15	Oxalate oxidase	?
PR-16	Oxalate oxidase-like	?
PR-17	Unknown protein	?

* Peroxidase has indirect antimicrobial activity by catalyzing oxidative crosslinking of proteins and phenolics in the plant cell wall, and thus protects the host from degradation by pathogen's hydrolytic enzymes.
structurally very diverse and have different primary functions in the biology of these organisms.

Fig (1.1): Schematic representation of defense responses induced in plant-pathogen interaction

Specific recognition of the aggressor by the plant requires the presence of matching Avr and R genes in the two species and is thought to be mediated by ligand receptor binding (Glazebrook, 1999). Over 20 R genes with recognition-specificity for defined Avr genes have been isolated from seven plant species, including both monocots and dicots (Milligan et al., 1998; Rossi et al., 1998; Martin, 1999). These genes are effective against bacterial, viral and fungal pathogens and against both nematodes and aphides species (Martin, 1999). Plant R genes encode proteins that both determine recognition of specific Avr proteins and initiate signal transduction pathway leading to complex defense responses (Zhou et al., 1998; del Pozo and Estelle, 1999; Martin, 1999). In addition to gene for gene recognition mediated by R and Avr genes, non-host resistance is achieved through the recognition of specific pathogen or plant cell wall derived signal molecules, termed exogenous or endogenous elicitors, respectively. These elicitors are often low-molecular weight compounds that are either synthesized as such or are liberated from polymeric
precursors during infection (Somssich and Hahlbrodk, 1998). The chemical structure of different elicitors is of great variety, such as glycoproteins, peptides and oligosaccharides. Some proteinaceous elicitors are directly produced by bacterial or fungal pathogens, whereas biologically active oligosaccharides are released from pathogen and plant cell walls by hydrolases secreted by the two organisms. Complex and largely unresolved perception systems exist for elicitors on the plant cell surface that activate multiple intracellular defense signaling pathways. In general the multicomponent response of plants to pathogens in host and nonhost resistance appears to be activated by ligand/receptor interactions, in which Avr gene and pathogen or plant surface-derived elicitors serve as ligands for plasma membrane located or cytosolic receptors.

1.4.2 Elicitor treatment

Microbial infections of intact plants often elicit the synthesis of specific secondary metabolites. The best understood systems are those of fungal pathogens in which case the regulatory molecules have been identified as glucan polymers, glycoproteins and low molecular weight organic acids (DiCosmo and Tallevi, 1985). The possible correlations between stress and secondary metabolism in cultured cells has been demonstrated (DiCosmo and Towers, 1984). Biosynthesis of flavonoids is induced by light via phytochrome or/and UV-photoreceptors and by infection with phytopathogenic organisms or compounds which induce the synthesis of antimicrobial compounds in plants. The addition of an extract of Verticillium, a parasitic fungus of plants, has induced the synthesis of gossypol by cell suspensions of Gossypium arboreum (Pétiard and Bariaud-Fontanel, 1987).
Examples also of microbial elicitor induction include psoralen production in parsley (Tietjen , 1983), Diosgenin production in the Mexican yam (Rokem , 1984). Tyler, (1989) described that a cell line of Papaver somniferm synthesizes and accumulates sanguinarine when exposed to homogenate of the fungus Botrytis.

Effect of elicitors on secondary metabolism have been investigated at the enzymatic levels to determine their mode of action. Eilert and Eolters (1989) added autoclaved culture homogenate of yeast, Rhodotorula rubra into the suspension culture of Ruta graveolens and found that S-adenosyl-L-methionine:anthranilic acid N-methyltransferase was elicited. Also a yeast polysaccharide preparation induced L-tyrosine decarboxylase in suspension cultures of Thalictrum rugosum and Eschscholtzia californica, the enzyme was induced after 5 hours after addition of the elicitor at a concentration of 30 to $40 \mathrm{ug} / \mathrm{g}$-cell fresh weight (Marques and Brodelius, 1992).

Mazukami et al. (1992), reported a transient increase in rosmarinic acid content in cultured cells of L. erythrorhizon after addition of yeast extract to the suspension cultures and the maximum was reached in 24 hr . Also they found that when plant cells were treated with yeast extract on the $6^{\text {th }}$ day of cultivation, the level of rosmarinic acid increased 2.5 times and the activity of phenylalanine ammonia-lyase in cells rapidly increased before synthesis of rosmarinic acid.
Conrath, 1989, found that chitosan elicits a rapid deposition of the 1,3-ßglucan, callose in suspension cultured cells of parsley, Petroselinum crispum.
Developments in phytochemical elicitation have shown that simple inorganic and organic molecules can induce product accumulation. Sodium orthovanadate (Hattori and Ohta, 1985) and vanadyl sulphate induced the accumulation of isoflavone glucosides in Vigna angularis cultures and indole alkaloid accumulation in Catharanthus roseus cultures, respectively. Other substances found to stimulate alkaloid accumulation in C. roseus include sodium chloride, potassium chloride and sorbitol (Smith et al, 1987a) as well as abscisic acid (Smith et al, 1987b). Processes such as these, employing simple and cheap elicitors have much promise in industrial scale plant cell cultures.
Davis et al. (1992), recognized that addition of oxalate to medium of Gossypium hirsutum suspension culture could reduce the amount of

Verticillium dahliae elicitor to be employed to stimulate metabolite synthesis. Addition of a fungal elicitor often inhibits the growth of plant cells but a combination of the elicitor and oxalate did not reduce the cell mass of the plant, therefore secondary metabolite synthesis was increased up to ten fold.

Dunlop and Curtis. (1991) reported that a combination of phosphate limitation and fungal elicitation synergistically increased production of secondary metabolites. They found that either phosphate limitation or elicitation with a mycelial extract of the fungus, Rhizocotonia solani alone results in increased production of the sesquiterpene solavetivone by Agrobacterium rhizogenes - transformed hairy root cultures of Hyoscyamus muticus . However, when phosphate limitation is coupled with fungal elicitation, the productivity increase is considerably greater than that obtained with either method alone.

Although the mechanism by which many elicitors increase the productivity of secondary plant metabolites has not been elucidated, their stimulating activity is quite significant if an appropriate elicitor is chosen to stimulate synthesis of a particular product. However, the use of microbial elicitors may not be economical since an elicitor-producing microorganism should be cultivated in a fermentor separately from cultivation of plant cells using another fermentor. The fermentation cost for an elicitor-producing microorganism is not always inexpensive. In this sense, a simple and cheap compound should be employed as an elicitor.

1.4.3 Signal transduction

Receptor-mediated recognition at the site of infection initiates cellular and systemic signaling processes that activate multi-component defense responses at local and systemic levels, resulting in rapid establishment of local resistance and delayed development of systemic acquired resistance (Scheel, 1988). The earliest reaction of plant cells include changes in plasma membrane permeability, (Fig 1.2), leading to
calcium and proton influx and potassium and chloride efflux (McDowell and Dangl, 2000).

Fig (1.2):Major components of signal-transduction chain from elicitor perception to gene activation in plant cell.

Ion fluxes subsequently induce extracellular production of reactive oxygen intermediates, such as superoxide $\left(\mathrm{O}_{2}^{-}\right)$, hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and hydroxyl free radical $\left(\mathrm{OH}^{*}\right)$, catalyzed by a plasma membrane-located NADPH oxidase and/or apoplastic-localized peroxidases (Somssich and Hahlbrock, 1998). The initial transient reactions are, at least in part, prerequisites for further signal transduction events resulting in a complex, highly integrated signaling network that triggers the overall defense response. The role of calcium is shown in experiments with calcium channel inhibitors, which, preventing increases of cytosolic calcium concentrations, delay the development of hypersensitive response. Heterortimeric GTP-binding proteins and protein phosophrylation/dephosophrylation are probably involved in transferring signals from the receptor (Legendre et al, 1992). The changes in ion fluxes trigger localized production of reactive oxygen intermediates and nitric oxide, which act as second messengers for hypersensitive response induction and defense gene expression (Piffanelli et al., 1999). Synergistic interaction between reactive oxygen intermediates, nitric oxide and
salicylic acid have been postulated (McDowell and Dangl, 2000). Other components of signal network are specifically induced phospholipases which act on lipid-bound unsaturated fatty acids within the membrane, resulting in the release of linolenic acid which serves as a substrate for the production of jasmonate, methyl jasmonate and related molecules via a series of enzymatic steps. Oxidative burst is a central component of machinery defense of plants (Lamb and Dixon, 1997; Alvarez et al., 1998). The brust of $\mathrm{H}_{2} \mathrm{O}_{2}$ production at the plant cell surface drives rapid peroxidase-mediated oxidative cross-linking of structural proteins in the cell wall, thereby reinforcing this physical barrier against pathogen ingress (Schell,1998). Additionally, low doses of reactive oxygen metabolites act as signals for the induction of detoxification mechanisms involving superoxide dismutases and glutathione-S-transferase, and activation of other defense reactions in neighboring cells.

Most of the inducible, defense-related genes are regulated by signal pathways involving one or more of the three regulators jasmonate, ethylene and salicylic acid (Delaney et al., 1994; Sticher et al., 1997; Van Loon, 1997; Reymond and Farmer, 1998; Knoester et al., 1998; Ananieva and Ananiev, 1999). The exact role of ethylene as a defense regulator is not clear, but it has been shown that this hormone preferentially induces basic pathogenesis-related proteins. Jasmonate is essential for the defense of tomato against tobacco hornworm larvae and for defense of Arabidopsis against fungal pathogens as Phytum mastophorum and the fly Bradysia (Reymond and Farmer, 1998). Jasmonate and ethylene cooperate to regulate the expression of many genes and at least some jasmonate- inducible genes are not inducible in plants unable to produce or sense ethylene (Reymond and Farmer; 1998). During systemic acquired response, salicylic acid level rise throughout the plant. Defense genes such as pathogenesis-related genes are expressed, and plant becomes more resistant to pathogen attack. Plants that cannot accumulate salicylic acid due to the presence of transgene that encodes salisylic acid- degrading enzyme develop hypersensitive response after
challenge to avirulent pathogens, but do not exhibit systemic expression of defense genes and do not develop resistance to subsequent pathogen attack (Glazebrook; 1999). Arabidopsis mutants, compromised in their ability to respond to jasmonate or to produce salicylic acid, have been used to demonstrate that the two pathways are utilized differentially against contrasting modes of attack (McDowell and Dangl, 2000). The ethylene-jasmonate dependent pathway is activated by pathogen that kill plant cells to obtain nutrients. In contrast salicylic acid-dependent response is triggered by pathogen that obtain nutrients from living plant tissue. It has been also suggested that ethylene-jasmonate and salicylic acid pathways are mutually inhibitory. Such cross-talk probably implies a capacity for a selective defense against specific types of parasites.

1.5 Thaumatin like proteins

1.5.1 Thaumatin-like proteins from plants

Seventeen PR protein groups have been isolated and characterized from various plants till now (Van Loon and Van Strien, 1999), and most of them are induced by phytopathogens or abiotic stresses and have antifungal activity in in vitro assays (Vigers et al., 1991). Among them, the PR5 proteins which are known as thaumatin-like proteins (TLPs) because their sequences are similar to thaumatin, a sweet-tasting protein isolated from the tropical plant Thaumatococcus daniellii (Cornelissen et al., 1986). They are divided into 3 subgroups: acidic (PR-S), basic (Osmotin) and neutral proteins (Osmotin-Like-Protein, OLP). PR-S is acidic extracellular form of thaumatin isolated from tobacco plants infected with tobacco mosaic virus, and it shows antifungal activity against some plant pathogenic fungi like Cercospora beticola (Vigers et al., 1992). Osmotin protein was first isolated from salt-adapted tobacco cell cultures (Singh et al., 1985 and 1989). It also shows antifungal activity against several phytopathogenic fungi in in vitro assays (Woloshuk et al., 1991). For example zeamatin, an osmotin isolated from Zea mays, shows antifungal activity against Candida albicans, Neurospora crassa and Trichoderma reesei, and causes leakage of cytoplasmic material from the fungi and
cause haphal rupture. It appears that high concentrations of TLPs can actively lyse fungal membrane, but at low concentrations they may cause membrane permeability changes that cause leakage of cell constituents (Roberts and Selitrennikoff, 1990). Osmotin overexpression in transgenic plants increases the plant resistance to several pathogens (Liu et al., 1994). OLP, the neutral isoform, has been identified in several plants like tobacco, potato and Arabidopsis (King et al., 1988, Melchers et al.,1993, Zhu et al.,1993, Hu and Reddy, 1997, Chen et al., 1996, Capelli et al., 1997). They respond to a variety of abiotic stimuli and to pathogenic fungi (Zhu et al., 1993). Arabidopsis ATosm3 and tomato Tomf21, showed tissue specific expression (Chen et al., 1996 and Capelli et al., 1997).

Thaumatin like proteins (TLPs) have been purified from several plant sources especially from leaves of infected tobacco, tomato and soybean, grains of barley, maize and wheat, fruits of Cherries and Diospyros texana and floral buds of Brassica napus.

TLPs are generally highly soluble proteins that accumulate to high levels (1 to 12%) in selective tissues or subcellular compartments under appropriate conditions or are secreted into the medium or extracellular space. They remain soluble even under acidic conditions and are quite resistant to proteolysis. The molecular weights of mature TLPs fall into two size ranges. One group of proteins has a size range of 22 to 26 kDa (201 to 299 amino acids), while the members of the other group have sizes around 16 kDa (148 to 151 amino acids). The second group of TLPs has an internal deletion of 58 amino acids.

TLPs have pI values ranging from very acidic to very basic (range 3.4 to 12). Thus there are the acidic, neutral and basic TLPs. Generally, the extracellular TLPs tend to be acidic, while the vacuolar (or other vesicular) TLPs tend to be basic, but it is not clear whether there is any biological significance to this observation.

TLPs are generally resistant to proteases and pH - or heat- induced denaturation, and this may due to the presence of 16 cysteines, which
have been shown to be involved in formation of 8 disulfide bonds in thaumatin and zeamatin (Roberts and Selitrennikoff, 1990).

The three-dimensional structure of thaumatin I has been determined using X-ray crystallography (De Vos et al., 1985 and Ogata et al., 1992), and it has been found that 2 building motifs are utilized in thaumatin structure: a folded β-sheet (which forms an identifiable domain I) and the B-ribbons and small loops stabilized by disulfide bonds which form two separate domains II and III. The positions of the 8 disulfide bonds in thaumatin have been assigned. It has been proposed that domains II and III may be important for binding to the sweetness receptors on membranes of taste buds. Disruption of the disulfide bonds results in loss of the unique tertiary structure of the thaumatin molecule and loss of sweetness (Van der Wel and Loeve, 1972). The locations of the cysteines are highly conserved between thaumatin and the members of the class of larger TLPs. Interestingly; the low-molecular-weight TLPs are missing most of domain and several half cysteines which stabilize this domain. The crystal structure of zeamatin has also been determined (Batalia et al., 1996). Zeamatin, whose tertiary structure closely resembles that of thaumatin, has a β-sandwich with 11 B-strands from which an arm-like structure extends to form a large cleft lined by several acidic residues. This arm has a short a-helix and three disulfide bonds. The amino acid sequences constituting the acidic cleft are highly basic residues.
The crystal structure of zeamatin indicates that this protein associates to form a homodiner, but does not suggest the formation of a cyclic aggregate that is characteristic of channel forming proteins. It has been suggested that (Batalia et al., 1996) electrostatic interactions between zeamatin and some membrane channel proteins are responsible for destabilization of pressure gradients that maintain the hyphal tip in the extended state.

1.5.2 Thaumatins from Arabidopsis

It has been observed that Arabidopsis plants infected with tobacco mosaic virus (TMV), Pseudomonas syringae pv. Tomato (pst) DC3000 or treated with 2,6 dichloroisomicotinic acid (INA) or salicylic acid (SA) accumulate several PR proteins resulting in induction of systemic acquired resistance (Uknes et al., 1992 and Ward et al., 1991). Among these proteins PR5 mRNA and encoded extracellular protein (acidic PR5) are induced when Arabidopsis plants are challenged by pathogens or systemic acquired resistance-inducing compounds (Uknes et al., 1992). Also 2 cDNA clones for Arabidopsis thaumatin like proteins (ATLP-1 and ATLP-2) were isolated and sequenced (Hu and Reddy, 1995). The nucleotide sequence of ATLP-1 cDNA shows limited similarity with those of other thaumatin- like proteins from plants including Arabidopsis. The predicted amino acid sequence of ATLP-1 shows 52% identity to the above mentioned thaumatin-like protein PR5 from Arabidopsis and it shows significant homology (about 40-47\% amino acid identity) to maize thaumatin-like antifungal protein and osmotin (King et al., 1988, Singh et al., 1989, Huynh et al., 1992). As mentioned above the known thaumatinlike protein from Arabidopsis is an acidic extracellular protein. However, ATLP-1 has been found (Hu and Reddy, 1995) to be basic protein with predicted pI value of 9.6 . In this respect it is more similar to osmotins which are basic intracellular thaumatin-like proteins. The second cDNA, ATLP-2, was found to be identical to ATLP-1 except that it lacks 109 nucleotides in 3^{\prime} untranslated region in front of the poly (A) tail (Hu and Reddy, 1995). Hence, it is likely that ATLP-1 and ATLP-2 are derived from the same gene by differential processing of transcript but it has been reported that it is not known if the expression of ATLP-1 is induced by infection with pathogen or SAR-inducing compounds. It is also not known if the ATLP-1 gene product has antifungal activity or not. In addition, a receptor protein kinase (PR5K) with amino acid-terminal domain closely related to PR5 family of antifungal proteins has also been isolated from

Arabidopsis (Wang et al., 1996). The PR5K gene codes for predicted 665amino acid polypeptide that comprises an extracellular domain related to the PR5 proteins, a central transmembranespanning domain, and an intracellular protein-serine/threonine kinase. The extracellular domain of PR5K (PR5-like receptor kinase) is most highly related to acidic PR5 proteins that accumulate extracellularly in plants challenged with pathogenic microorganisms. The kinase domain of PR5K is related to a family of protein-serine/threonine kinases that are involved in expression of self-incompatibility and disease resistance. It has been observed that PR5K transcripts accumulate at low levels in all tissues examined, although particularly high levels are present in roots and inflorescence stems, and also treatments that induce authentic PR5 proteins had no effect on the level of PR5K transcript, suggesting that the receptor forms part of pre-existing surveillance system. From the structural similarity between extracellular domain of PR5K and the antimicrobial PR5 proteins it is suggested that a possible interaction with common related microbial targets. Recently, a cDNA for Arabidopsis thaumatuin-like proteins 3 (ATLP-3) with antifungal activity has been isolated (Hu and Reddy, 1997), and it has been observed that it shares significant sequence similarity with acidic PR5 proteins from the same plant and other plants. It has been found that its expression is induced by SA and different pathogens. Lack of C-terminal extension and the presence of a signal sequence at the amino-terminus in ATLP-3 suggests that it can be secreted to the extracellular space. ATLP-3 shows strong antifungal activity against several fungal strains like Fusarium oxysporium, Alternaria solani, Trichoderma reesei and Candida albicans. It appears to inhibit the growth by inhibiting the germination of fungal spores. Boiling of ATLP-3 for 5 min results in complete loss of its antifungal activity. ATLP-3 cross react with antibodies for other thaumatin-like antifungal proteins like anti-osmotin and anti-zeamatin antibodies.

Recent studies on ATLP-1 (Hu and Reddy, 1997) indicate that it can be induced with SA and different pathogens and it also shows strong cross
reactivity with both anti-osmotin and anti-zeamatin antibodies, but it shows little or no effect on fungal growth.
Results from different published reports suggest that there are at least 4 (possibly more) related thaumatin-like proteins in Arabidopsis (Hu and Reddy, 1997).

1.6 Objective of this thesis

The objectives of this thesis are:
1- Screening different plant cell cultures for production of antimicrobial protein(s) in presence of different common elicitors. This point includes testing some heterotrophic and autotrophic plant cell cultures with and without addition of nine different elicitors for testing the presence and induction of antimicrobial proteins. Five human pathogenic isolates will be used for testing the presence of antimicrobial proteins produced by the different plant cell cultures.

2- Select the high producing cell culture and purification of the antimicrobial protein(s). In this point the most active plant cell culture elicited with different elicitors will be selected for further experimentation and testing the presence of antimicrobial proteins and not low molecular weight compounds will be done. In this point also the active antimicrobial protein(s) will be purified and the pure protein will be identified using microsequencing technique.

3- Cloning of the gene(s) for the active protein(s) for further biotechnological applications. In this point, after identification of the active protein(s), the genes coding for the active protein(s) will be cloned for further applications like testing the expression under
different stimuli and overexpression of the genes in plants or plant cell cultures for maximization of the protein productivity.

4- Cloning of thaumatin genes from Arabidopsis thaliana. Thaumatins are antimicrobial proteins most of them are active against fungi and some of them are active against the used tester isolate in this work which is Candida spp., so the cloning aims to testing the expression of different thaumatin genes under different stimuli for maximization of their production by Arabidopsis.

2.Results

2.3 Screening the antimicrobial activity of plant cell Cultures.

Ten different plant cell cultures were tested for their antimicrobial activity against five different human pathogenic isolates. Most of the used plant cell cultures are known to produce antimicrobial pathogenesis related proteins or peptides as a defense mechanism against plant pathogenic microorganisms. Three groups of plant cell cultures were used in the study, the first group includes a collection of plant cell cultures used in Prof Zenk lab which include (BY2, Ps, Lycopersicon esculentum [heterotrophic], Nico, and Arabidopsis cultures). The second group includes model cultures used in Prof Müller lab, which include (AST, ECO, and Gypsophila arabia cultures), and the third group includes model plant cell cultures used in Prof Roitsch lab, which include (Chenopodium rubrum and Lycopersicon esculentum [autotrophic] cultures). In the current study we have tested the difference in antimicrobial activity between the heterotrophic and autotrophic cultures against the five tested human pathogenic isolates. All plant cell cultures have been tested in absence (control) or in presence of nine different elicitors. Four types of elicitors were selected for testing their elicitation for all different plant cell cultures. The first type represents different fungal components and includes chitosan (fungal cell wall preparation), Alt elicitor (fungal spore suspension of boiled spores of Alternaria brassiciola) and fol-elicitor (mycelial suspension of Fusarium oxysporium lycopersici). The second type represents different plant components which includes MeJ (a signal molecule), PGA (plant cell wall preparation), SA (signal molecule) and ASA (analogue for SA). The third type represents different bacterial components which includes PRM1 (boiled bacterial suspension of avirulent strain of Pseudomonas syringae) and DC3000 (boiled bacterial suspension of virulent strain of Pseudomonas syringae). All screening experiments were done using five human pathogenic isolates which
include, Candida maltosa (a kerationlytic fungus), Staphylococcus aurus and Bacillus subtilis (Gram positive isolates) and Escherichia coli and Pseudomonas aeruginosa (Gram negative isolates).

Protein content was measured in all different elicited plant cell culture fractions as an indicator for induction of antimicrobial proteins and not low molecular weight ones.

Results of antimicrobial activity of aqueous extracts of ten plant cell cultures are presented in Table (2.1). Intracellular fraction of heterotrophic Nicotinana tabacum (BY2) cells treated with different elicitors was more active than extracellular and cell wall bound fractions for the same plant treated with the same elicitors. Different elicitor treatments induce different antimicrobial activity for the three aqueous plant cell culture fractions. Intracellular fraction treated with chitosan and Fol showed the highest antimicrobial activity against all tester isolates. Protein content of intracellular fraction was higher (moderate) than those for extracellular and cell wall bound fractions (low).

For heterotrophic Petroselium crispum (Ps) cell culture, all plant fractions could not inhibit all tester isolates and for example, the extracellular fraction treated with different elicitors has no activity at all on B. subtilis and C. maltose and the same for the intracellular fraction against S. aureus. Also for the cell wall bound fraction since no activity could be observed against C. maltose, E. coli and B. subtilis.

For the two autotrophic plant cell cultures used in the study; fractions of Chenopodium rubrum could not show high inhibitory activity against the tester isolates and the protein content for the intracellular fraction was higher than those for extracellular and cell wall bound fractions. The same was for the second autotrophic Lycopersicon esculentum culture, since the three fractions showed low activity against all tester isolates and slight changes in activity and protein content due to the treatment with elicitors observed in the three plant aqueous fraction extracts.
Table（2．1）：Summary of sereening of 10 different plant species against 5 human pathogenic isolates in presence of 9 different elicitors．

	들 咅立	ごココココココゴ	
	\bigcirc	$\therefore 7: 377$ ：自：	：ラきヨコこコラフヨ
	\equiv ¢	：：：：或：：：完	
	은） 0		
	－		ヨミコニヨきさこきミ
	ミ	：罗：目引：：：寻：	
	砏岩		
	－		
	$=\infty$		
	$=0$		
	ご		
Extracellular fraction		むコ」コ	
	\square		
	＝ω_{0}		
	－		
	E	ごきマコ：ニコヨコ	
		әеээвиего 	

	튼 E		Эココココココゴ
	\bigcirc		
	$=0$	7フミヨファ： 27	7777777
	엳 4		
	¢		
	E		
	든		F 픈
	¢	¥ ヲ \％ミ \％\％\％	
	$=0$		75： 77757
	의 는		
	．		
	ご		$\therefore 7777777$
	든른		
	－	こヲ：ミ引 \＃：\＃	ここう県ここここそき
	$=0$ \％	：ロ：	
	엔） 0		
	¢	$: \therefore: 2: 8: 7$	
	E		〒ラ ヲ ヲ \％\％\％
告			
		วยวงセuะן v！！ofiu！ธivqu！$n d$ vuท！！oगN	จะวขгu®！os

	트ㄴㅡㅡㅊ		
	9		
	을 0		
	5	ミここここここうご	
	U		
	드ㅊㅡㅡㅊ		
		こココンゴ	
		こミこここここつここ	
		ここここここここぎ	
		きこここうここきここ	
	드ㄹㅡㅡㄹ		
	\bigcirc	コこここここここここ	
	－ 0		
	을） 0		
	¢		
	E		： $3: 3 ; \quad ; \quad$ ；
告			
		```(ञ!पđопогэ๖ञH) D!qv.d v!!Ydosd\o```	

Abbreviations:
$(-)$ : Negative, (I): Diameter of inhibition zone from 0.6 to 0.8 cm , (II): Diameter of inhibition zone greater than 0.8 or equal to 1 cm , (III): Diameter of inhibition zone greater than 1 or equal to 1.2 cm , (IIII): Diameter of inhibition zone greater than 1.2 cm .
$(\mathrm{L})$ : Soluble proteins greater than 0 or equal to 0.2 ug/ul, (M): Soluble proteins greater than 0.2 or equal to $0.4 \mathrm{ug} / \mathrm{ul},(\mathrm{H})$ : Soluble proteins greater
than 0.4 or equal to $0.6 \mathrm{ug} / \mathrm{ul},(\mathrm{VH})$ : Soluble proteins greater than $0.6 \mathrm{ug} / \mathrm{ul}$.

* Screening done for one time.
" (,-$)$ Values for two separated screening experiments.

Intracellular fraction of the heterotrophic Nicotiana pulmbaginfolia culture treated with different elicitors showed different antimicrobial activities against tester isolates and fraction treated with Pseudomonas syringae (PRM1) elicitor showed the highest antimicrobial activity against all tester isolates and the antimicrobial activity varied considerably in this fraction after treatment with different elicitors, and the same was for both extracellular and cell wall bound fractions, but the protein contents were low for the three plant fractions.

All fractions for the heterotrophic Lycopersicon esculentum cultures showed low response in presence of different elicitors and the protein content was higher for the intracellular fraction comparable to the extracellular and cell wall bound fractions.

Extracellular fraction of heterotrophic Eschscholtiza californica (AST) culture treated with different elicitors showed high antifungal activity against C. maltosa comparable to the intracellular and cell wall bound fractions, but intracellular fraction treated with all elicitors showed high activity against B. subtilis and also the cell wall bound fraction showed high antimicrobial activity against E. coli.
Eschscholtiza californica (ECO) heterotrophic culture showed different antimicrobial activity against all tester isolates comparable to Eschscholtiza californica (AST) culture and the extracellulr fraction treated with ASA showed antimicrobial activity against all tester isolates but the intracellular fraction did not show any antifungal activity in presence of different elicitors. Control for cell wall bound fraction for the same plant and fraction treated with SA, Alt and ASA showed low to moderate activity against all tester isolates.
The control of the three fractions of the heterotrophic Gypsophila arabia and all fractions treated with different elicitors showed nearly the same low to moderate activity against all tester isolates and also the protein content for all fractions was moderate to very high.

The intracellular fraction of the mexotrophic Arabidopsis thaliana culture treated with different elicitors was the most active fraction against all
tester isolates comparable to all tested fractions of all plant cell cultures used in the study and fraction elicited with the elicitors DC3000, PRM1, SA, ASA, Mej, Fol and chitosan (Fig 2.1,Fig 2.2,Fig 2.3 and Fig 2.4) was highly active against all tester isolates and also the protein content was varying from high to moderate in presence of all elicitors.

This fraction is followed by the cell wall bound fraction and ASA showed the highest antimicrobial activity against all tester isolates. Also for extracelllular fraction, the fraction elicited with chitosan showed high antimicrobial activity against all tester isolates.

For reference standards, results in [Table 2.2] show that chloromephenicol inhibits both Saphylococcus aureus and Escherichia coli at high concentrations (50ug/ml) but has no effect on both Bacillus subtilis and Pseudomonas aerryginosa. In case of Nystatin, increased concentrations of the antibiotic lead to increasing of its inhibition of candida maltosa growth.

Table (2.2): Antimicrobial reference standards

Microorganism	Concentration of antibiotic ( $\mathbf{u g} / \mathbf{m l})^{\text {a }}$   / Inhibition zone (cm)					
	Control ${ }^{\text {b }}$	5	10	25	50	100
C. maltosa	-	0.9	1.1	1.5	1.6	2.5
S. aureus	0.7	0.7	0.7	0.8	1.0	1.4
E. coli	-	-	-	-	1.2	1.3
B. subtilis	-	-	-	-	-	-
P. aerryginosa	-	-	-	-	-	-

[^0]

Fig (2.1):Antimicrobial activity of intracellular fraction of Arabidopsis thaliana elicited with different elicitors against C. maltosa:
(a) Control (no treatment)
(b)SA
(c)ASA
(d) Mej

$\operatorname{Fig}(2.2)$ : Antimicrobial activity of intracellular fraction of Arabidopsis thaliana elicited with different elicitors against $\boldsymbol{P}$. aerryginosa:
(a) SA
(b) Chitosan
(c)ASA
(d) PRM1


Fig (2.3): Antimicrobial activity of intracellular fraction of Arabidopsis thaliana elicited with different elicitors against $\boldsymbol{S}$. aureus:
(a) ASA
(b) PRM1
(c) SA
(d) Mej


Fig (2.4):Antimicrobial activity of intracellular fraction of Arabidopsis thaliana elicited with different elicitors against other strains:
(a) B. subtilis, DC3000
(b) B. subtilis, ASA
(c) E.coli, PRM1

### 2.4 Purification of antimicrobial activity from <br> Arabidopsis thaliana

### 2.4.1 Ammonium sulphate precipitation

The intracellular fraction of Arabidopsis thaliana elicited with SA was selected for testing the presence of antimicrobial protein(s) responsible for its high antimicrobial activity against all used tester isolates and it was selected rather other elicited fractions because the high intensity of the inhibition zone of this fraction against all tester isolates. Definite volumes ( 5 ml ) of intracellular Arabidopsis thaliana fraction (control and SA elicited fraction) were precipitated with ammonium sulphate (80\% saturation) and precipitate was dissolved in 1 ml of Na-phosphate buffer after dialysis. Table (2.3) shows the antimicrobial activity of the precipitate for both the control (intracellular fraction without elicitation) and the SA elicited fraction, and from this experiment it could be noticed the presence of proteinous compound(s) responsible for the

Table (2.3): Antimicrobial activity [ Inhibition zone (cm)] of ammonium sulfate precipitate of intracellular fraction of Arabidopsis thaliana.

Isolate	Elicitor*	
	Control	SA
C. maltosa	0.70	1.15
P. aerryginosa	0.83	0.86
E. coli	-	0.73
S. aureus	0.75	0.75
B. subtilis	0.93	0.80

*Experiment repeated twice with the same results
antimicrobial activity. Table(2.3) also indicates that SA-elicited fraction is more active against tester isolates than the control fraction and that the antifungal activity [against C. maltosa (Fig 2.5a)] is the highest value of activity followed by the activity against $P$. aerryginosa (Fig 2.5 b ), B. subtilis (Fig 2.5c) and $S$. aureus. Also this fraction shows activity against


Fig (2.5):Antimicrobial activity of ammonium sulphate precipitate of intracellular fraction elicited with SA of Arabidopsis thaliana against tester isolates.
(a): C.maltosa.
(b): P. aerryginosa
(c): B. subtilis
E. coli comparable to the control (negative). This experiment confirmed the presence of antimicrobial protein(s) in the intracellular fraction which is/are responsible for the antimicrobial activity and also indicate the activation of induction of this activity with SA elicitor.

### 2.4.2 High speed centrifugation

During the preparation of intracellular fraction of Arabidopsis thaliana it could be observed that the antimicrobial activity can be precipitated at high speed centrifugation (14000rpm) for 20 min , so this phenomenon was used for isolation of the antimicrobial activity from the elicited intracellular fraction of Arabidopsis thaliana, since ammonium sulphate precipitation has the disadvantage of denaturation of part of the precipitated proteins. For the high speed precipitation of the antimicrobial activity, 60 ml of SA-elicited fraction were exposed to centrifugation at 14000 rpm for 20 min and pellet was dissolved in 3 ml of 8 M urea and both the supernatant and urea solution were used for testing the antimicrobial activity against C. maltosa, since it was the most sensitive organism, among the used isolates, against the antimicrobial protein(s). Also to compare this method with the precipitation with ammonium sulphate, the same volume of the fraction (60ml) were precipitated with ammonium sulphate ( $80 \%$ saturation) and after dialysis the precipitate was collected and dissolved in the same volume (3ml) of 8 M urea solution. Table (2.4) shows the antimicrobial activity of active proteins isolated by high speed centrifugation and ammonium sulphate precipitation against C. maltosa as a tester isolate, and from this table it could be observed that high speed centrifugation is more effective for isolation of the active protein than the ammonium sulphate precipitation since the inhibition zone diameter was higher [2cm for SA treated fraction and 1.35 cm for control (Fig 2.6c)] comparable to ammonium sulphate precipitation [1.2cm for SA treated fraction and 1.1 cm for control (Fig 2.6b)]. These

Table (2.4): Antimicrobial activity [Inhibition zone (cm)] of both high speed centrifugation precipitate and ammonium sulphate precipitate dissolved in 8M urea.

Fraction	Elicitor *	
	Control	SA
Supernatent	0.7	0.7
High S. Precipitate dissolved in $8 M$ Urea	1.35	2.0
Ammonium S. Precipitate dissolved in 8 M Urea	1.1	1.2

## * Experiment repeated twice with the same results

results indicate the denaturation of part of the activity due to the use of ammonium sulphate precipitation and support the use of high speed centrifugation instead of salt precipitation. Slight activity of the supernatant after ammonium sulphate precipitation, (Fig 2.6a), of active protein was observed for both control and SA treated fraction which indicates the precipitation of not all of the activity by ammonium sulphate precipitation. Fig (2.7) shows that both high speed centrifugation (for control and SA-elicited fraction) and ammonium sulphate precipitate the same proteins from intracellular fraction of Arabidopsis thaliana as indicated from the similarity of protein bands on $15 \%$ SDS polyacrylamide gel, but by comparing the intensity of different protein bands for high antimicrobial activity after high speed centrifugation with the lower (moderate) after the ammonium sulphate precipitation it could be observed that one band (about 30 kDa ) is more strong, on gel, in case of high speed centrifugation comparable to ammonium sulphate. This band may be responsible for the antimicrobial activity of the intracellular Arabidopsis fraction. High speed centrifugation was selected for all further isolation
(a): Candida maltosa + Supernatant after ammonium sulphate precipitation


Control


SA
(b): Candida maltosa + Precipitate of ammonium sulphate dissolved in 8M Urea


Control


SA
(c): Candida maltosa + precipitate after high speed centrifugation dissolved in 8M Urea


Control


SA

Fig(2.6): Antimicrobial activity of both ammonium sulphate precipitate and high speed precipitation dissolved in 8 M urea.
and purification experiments for the active protein(s) instead of ammonium sulphate precipitation.


Fig (2.7): Comparison for protein content for both high speed centrifugation (High antimicrobial activity) and ammonium sulphate precipitate (Moderate antimicrobial activity) for control (c) and SA (sa) samples.

### 2.4.3 Bioautography

This experiment was done to confirm the presence of antimicrobial protein(s) in the crude extract of SA-elicited Arabidopsis intracellular fraction and also to calculate the molecular weight of the protein of interest to select a suitable purification method. Fig (2.8) shows that a clear zone of antimicrobial activity against $C$. maltosa could be observed after covering a gel (12.5\%) with low strength LB medium (20\%) seeded with cells of the tester fungus and incubation for overnight. By comparing the protein bands on a lane of gel running simultaneously with the tested gel in the petridish, it could be observed that the area on the gel responsible for the activity is between 26 and 36 kDa .


clear zone

Fig(2.8): Bioautography of Arabidopsis thaliana intracellular proteins

### 2.4.4 Gel filtration

Sephacryl S-200 gel filtration column was selected for the purification of the active antimicrobial protein. Fig (2.9a) shows the calibration of the used column with 4 standard proteins; ribonuclease $A$ (13.7kDa), chymotrypsinogen (25kDa), ovalbumin (43kDa) and Bovine serum albumin in presence also of Dextran 2000 (2000kDa) and the elution volume ( $\mathrm{V}_{0}$ ) was calculated and then 5 beaks (corresponding to the 5 used standards) were selected using ÄKTAprime protein purification system. 4 ml of plant sample dissolved in 8 M urea were injected to the top of the same column connected to ÄKTAprime and 1 ml fractions were collected. The antimicrobial activity of all fractions were tested using the most sensitive isolate, C. maltosa, and two active fractions eluted in the area of 25kDa (chymotrypsinogen) were observed and their purity were confirmed by SDS-Polyacralymide gel stained with silver staining (Fig 2.9b).


Fig (2.9): Gel filtration (Sephacryl S-200) for standard and plant intracellular proteins

### 2.2.5 Mass spectrometry and identification of the active protein

The protein band was excised from silver-stained gel and subjected (by Dr. Joerg Reinders) to trypsin digestion and the obtained peptides mixture was subjected to nano-LC- MS/MS analysis using Dionex Ultimate 3000 nano-LC-System directly coupled with ThermoElectron LCQDecaXP ion trap mass spectrometer. Fig (2.10) shows the mass spectrum for 12 -long peptide of the digested protein with sequence (IYDKDGDYIGIK). By searching this results against the NCBInr database using the Mascot algorithm (Version 2.1; MatrixScience, London, GB), an unknown protein with accession number NP_195683 (GI:15236014) could be found and this protein has a calculated molecular weight of 20.005 kDa and characterized by the presence of plant specific domain which is termed PLAT- Plant Stress domain. This protein represent an endomembrane system with unknown function,
but it is considered as a lipid-associated family protein and it has the following sequence. The protein will referred to as AtPDP1,accrording to (Arabidopsis thaliana- Plat Domain Protein 1).
1 marrdvllpfllllatvsavafaeddpdcvytfylrtgsiwkagtdsiisa riydkdgdyigiknlqawaglmgpdynyfergnldifsgrapclpspicalnl tsdgsgdhhgwyvnyveittagvhaqcstqdfeieqwlatdtspyeltavrnn cpvklrdsvsrvgseirkklswvv 181

### 2.2.6 Antimicrobial activity of AtPDP1

Purified protein was tested for its antimicrobial activity against the five tester isolates used in the study and results in Table (2.5) show that the AtPDP1 is active against all tester isolates especially $C$. maltosa [Fig (2.11)] followed by the Gram negative bacteria E. coli and P. aerryginosa and lower activity against the Gram positive bacteria S. aureus and $B$. subtilis.

### 2.4.6 Homology with other known proteins and sequence analysis

To compare the sequence of AtPDP1 from intracellular fraction of $A$. thaliana elicited with SA with the other known proteins from other organisms, Blast-Aligorithms (Altschul et al.,1997) were used. Table (2.6) conclude the homology of AtPDP1 with known proteins from other organisms. The highest homology (100\% identity, 100\% similarity) was to the dehydration stress induced protein from Arabidopsis thaliana (GI_21593926) followed by the unknown protein (80\% identity, 91\% similarity) from Arabidopsis thaliana (GI_27754389), which will referred to as AtPDP2, and Lipoxygenase,LH2 (70\% identity, 82\% similarity) from Medicago truncatula (GI_92898164). Lower homology level was observed for other proteins. Fig (2.12) shows an alignment [done by Clustal X program (Thompson et al.,1997) of the isolated unknown protein from


Fig (2.10): Mass spectrum for a peptide with 12 amino acids from the trypsin digested active protein from Arabidopsis thaliana.

Table (2.5): Antimicrobial activity [Inhibition zone(cm)] of purified AtPDP1

Isolate	AtPDP1*
C. maltosa	1.2
P. aerryginosa	1.0
E. coli	1.1
S. aureus	0.9
B. subtilis	0.9

*Experiment repeated twice with the same results


Fig (2.11): Antimicrobial activity of purified AtPDP1 against, C. maltosa, comparable to control (Buffer).
alignment [done by Clustal X program (Thompson et al.,1997) of the isolated AtPDP1 with other known proteins, from other plants, with PLAT-plant-stress domain and from the alignment it could be observed that the PLAT domain is the most homologous domain among all proteins. Fig (2.13) shows a cladiogram representing the relationship of sequences of proteins used in the alignment. From Fig (2.12)and Fig (13.2) it could be observed that sequence of AtPDP1 is more related to the dehydration stress induced protein from Arabidopsis followed by Lipoxygenase, LH2 from Medicago truncatula. It also has been observed that AtPDP1 has calculated molecular weight of 20.005 kDa which is different from the observed molecular weight on the gel (about 30kDa). Using PROSITE program (Hofmann et al., 1999) it could be found the presence of a glycosylation sit (NLTS) which may be responsible for the post-translation modifications of AtPDP1 that lead to change in its final molecular weight.

## Table(2.6): Homology of isolated unknown protein with other proteins.

Protein	Organism	GI	Homology	
			Identity \%	Similarity \%
- Unknown protein of lipid associated family proteins (AtPDP1)	Arabidopsis thaliana	15236014	100	100
- Putative protein	Arabidopsis thaliana	7270957	100	100
- Putative protein	Arabidopsis thaliana	3080442	100	100
$\begin{array}{r} -\mathrm{AT} 4 \mathrm{~g} 39730 / \\ \text { T19P19_120 } \end{array}$	Arabidopsis thaliana	20147335	100	100
$\begin{array}{r} \text { - AT4g39730/ } \\ \text { T19P19_120 } \end{array}$	Arabidopsis thaliana	19310489	100	100
-Dehydration stressinduced protein	Arabidopsis thaliana	21593926	100	100
- Unknown protein (AtPDP2)	Arabidopsis thaliana	18399899	80	91
- Lipoxygenas, LH2	Medicago truncatula	92898164	70	82



```
GI_15236014
GI 21593926
GI 92898164
GI_40287496
GI_51457948
GI_7542598
GI 51535090
GI 37533440
GI_47419897
GI_15236014
GI 21593926
GI 92898164
GI_40287496
GI_51457948
GI_7542598
GI 51535090
GI 37533440
GI 47419897
GI_15236014
GI 21593926
GI 92898164
GI_40287496
GI_51457948
GI_7542598
GI 51535090
GI 37533440
GI_47419897
GI_15236014
GI_21593926
GI_92898164
GI 40287496
GI 51457948
GI_7542598
GI_51535090
GI_37533440
GI 47419897
```



Fig (2.12): Alignment of isolated AtPDP1 (GI_15236014) with other known proteins containing PLAT-plant stress domain: GI_21593926: Dehydration stress-induced protein [Arabidopsis thaliana], GI_92898164: Lipoxygenase,LH2 [Medicago truncatula], GI_40287496: Elicitor-inducible protein EIG-J7 [Capsicm annuum], GI_51457948: Wound/Stress protein [Lycopersicon esculentum], GI_7542598: TMV-Induced protein I [Capsicm annuum], GI_51535090: Putative dehydration stress-induced protein [ Oryza sativa (japonica cultivar-group], GI_37533440: Putative elicitor inducible protein [Oryza sativa (japonica cultivar-group)], GI_47419897: tuber-specific elicitor- inducibleprotein [Zantedeschia hybrid cultivar]


Fig (2.13): Cladiogram showing the relationship of sequences used in the alignment: GI_15236014: AtPDP1.
GI_21593926: Dehydration stress-induced protein [Arabidopsis thaliana]
GI_92898164: Lipoxygenase,LH2 [Medicago truncatula]
GI_40287496: Elicitor-inducible protein EIG-J7 [Capsicm annuum]
GI_51457948: Wound/Stress protein [Lycopersicon esculentum]
GI_7542598: TMV-Induced protein I [Capsicm annuum]
GI_51535090: Putative dehydration stress-induced protein [Oryza sativa (japonica cultivar- group)]
GI_37533440: Putative elicitor inducible protein [Oryza sativa (japonica cultivar-group)] GI_47419897: tuber-specific elicitor- inducible- protein [Zantedeschia hybrid cultivar ]

### 2.5 Cloning of genes for AtPDP1 and AtPDP2.

cDNAs of AtPDP1 and AtPDP2 with PLAT-plant-stress domain were synthesized from RNA isolated from plant materials treated with SA using reverse transcriptase. PCRs were carried out at $57^{\circ} \mathrm{C}$ and $59^{\circ} \mathrm{C}$ annealing temperatures for AtPDP1 gene (At4g39730) and AtPDP2 gene (At2g22170) respectively. Fig (2.14a and $2.14 b$ ) show the (546 bp and 552 bp) PCR products for both genes respectively. PCR products were excised from gels and after cleaning, they were ligated in PGEM-T Easy vector (Appendix 6.3) and used for transformation of DH5 $\alpha$ strain of $E$. coli. Blasts for both genes are shown in Appendix (6.4)


Fig (2.14): RT-PCR for both unknown protein genes:
(a): At4g39730 (for the isolated AtPDP1)
(b): At2g22170 (for AtPDP2)

### 2.6 Expression of AtPDP1 and AtPDP2 under different stimuli (Digital Northern).

The expression of the gene for AtPDP1 (At4g39730) and also for AtPDP2 (At2g22170) with the same PLAT domain was tested using Digital Northern (WWW.genevestigator.ethz.ch). Table (2.7) shows that At4g39730 is constitutively expressed by plant in shoot system more than roots and the reverse for At2g22170. Both genes are induced by different pathogens, chemicals known to induce defense in plant cells and different hormones. The maximum induction for At4g39730 was by pathogens followed by the effect of SAR (Systemic Acquired

Resistance), ABA and P. syringae (avr). For At2g22170 the maximum induction was by mycotoxins followed by Zeatin, GA3 and ABA.

Table(2.7): Expression of the unknown proteins under different stimuli (Digital Northern).

Experiment	Signal	
	$\begin{gathered} \text { At4g39730 } \\ \text { (for the isolated AtPDP1) } \end{gathered}$	At2g22170 (for AtPDP2)
Shoot apex	7019	3159
Roots	4346	7900
Chitin	10922.84	16355.4
Mej	9336.314	13506.13
DC3000	9845.152	263.4071
Psyr-avr	12755.76	1031.456
SA	11562.82	17973
Alt	8023.2	5204.1
Pathogen	22570.5	3336.5
Mycotoxin	13053	18433
SAR	14641.14	3120.424
Auxin (IAA)	11455.99	13497.2
ABA	12456.01	16896.91
GA3	11642	16993.18
Zeatin	11717.49	17062.93

### 2.5 Cloning of wound-inducible promoter

Genomic DNA from popular plant (Populus trichocarpa hybride) was used for isolation of proteinase-inhibitor-like gene win 3.12 (GenBank accession Nr L11233) in presence of pair of primers (Appendix 6.2) with 2 engineered [HindIII (forward primer) and XbaI (reverse primer)] restriction sites. PCR was performed at 55C annealing temperature for 40 cycles. After running $1 \%$ agarose gel, a 846-bp product (Fig 2.15) was excised and purified. PCR product then was ligated in PGEM-T easy vector


Fig (2.15): PCR for proteinase-inhibitor-like gene
and used for transformation of $\mathrm{DH} 5 \alpha$ strain of $E$. coli. After plasmid minipreparation, plasmids were digested with HindIII and XbaI restriction enzymes. Two positive colonies for the same gene were sequenced and new sequences were compared with the already known entries Blast-Algorthms of NCBI (http://www.ncb/.nih.gov/BLAST) and 2 different results were obtained for the 2 sequenced gene plasmids (Appendix $6.5 .1 \& 6.5 .2$ ) but both were identical for Populus trichocarpa wound responsive gwin3 gene and not to win 3.12 gene. Effort was done to test the expression of the cloned genes (the 2 different sequenced clones) in PBI121 plasmid after removal of 35S promoter from the binary vector, but unfortunately we could not obtain transformants (colonies) of E. coli with the new engineered PBI121 plasmid

### 2.6 Cloning of thaumatin genes from Arabidopsis thaliana

The objective for cloning of the thaumatin genes is for additional work which include testing the expression of different genes under different stimuli since thaumatin genes have defense role, in plants, against pathogens and also some of them are active against Candida spp.

Genomic DNA was isolated from Arabidopsis thaliana materials and was used as template for cloning of 13 genes of thaumatin. Pair of primers for every thaumatin gene was designed (Appendix 6.2) for cloning coding region of genomic DNA greater than 500 bp [(Table 2.8),(Appendix 6.6 \& 6.7)] Table(2.8): Selected coding regions of genomic DNA and cDNA for thaumatin genes
Gene Name
1-At1g200030
Coding region (genomic DNA) cDNA

coding_region	426-1123	AGI-TIGR	2004-09-08
coding_region	$1392-1593$	AGI-TIGR 2004-09-08	


coding_region	108-162	AGI-TIGR	$2004-09-08$
coding_region	$244-946$	AGI-TIGR	$2004-09-08$
coding_region	$1432-1666$	AGI-TIGR	$2004-09-08$

$\left.\begin{array}{llllll}\text { 3-Atlg75050 } & \text { coding_region 29-77 } & \text { AGI-TIGR } & \text { 2004-09-08 } & 48-772=724 \\ & \text { coding_region } & \text { 251-975 } & \text { AGI-TIGR } & \text { 2004-09-08 }\end{array}\right]$

5-At5g02140	coding_region coding_region coding_region		AGI-TIGR AGI-TIGR AGI-TIGR	2004-09-08 2004-09-08 2004-09-08	$56-727=67$
	coding_region	151-908	AGI-TIGR	2004-09-08	$1-757=757$
	coding_region	1018-1522	AGI-TIGR	2004-09-08	



PCRs for all 13 thaumatin genes were done in 30ul volume each at different annealing temperatures ( $45.1,47.7,51.4,55.3$ and 59.7 C ). After running gel, the optimal annealing temperature for every gene was selected and another PCR was carried out in 50ul volume the following expected sizes of PCR products were observed on gels:
At1g20030 : 322bp, At1g75800:425bp, At1g75050:507bp,

At1g75030: 448bp, At5g02140:470bp, At5g24620:504bp, At4g38660: 468bp, At4g24180: 503bp, At1g19320:568bp, At4g36010: 430bp, At2g17860:403bp, At4g38670:522bp, At1g70250:451bp.

PCR product for every gene was excised from gel and after cleaning they were ligated in PGEM-Teasy vector and used for transformation of $\mathrm{DH} 5 \alpha$ strain of $E$. coli. After plasmid mini preparation for every gene, plasmids were digested with the suitable restriction enzymes for selecting the positive colonies as following:

At1g20030:PstI\&NcoI,	At1g75800:ApaI\&SacI,	At1g75050:ApaI\&SacI,
At1g75030:PstI\&NcoI,	At5g02140:PstI\&NcoI,	At5g24620:PstI\&NcoI,
At4g38660:EcoRI,	At4g24180:PstI\&NcoI,	At1g19320:PstI\&NcoI,
At4g36010:PstI\&NcoI,	At2g17860:PstI\&NcoI,	At4g38670:EcoRI and
At1g70250:EcoRI.		

One positive colony for every gene was sequenced and new sequences were compared with the already known entries Blast-Algorthms of NCBI (http://www.ncb/.nih.gov/BLAST) and different Blast results for the 13 thaumatin genes are represented in Appendix (6.8.1-6.8.13).

### 2.7. Expression of different thaumatin genes under different stimuli (Digital Northern).

The expression of thirteen thaumatin genes under different stimuli (Digital Northern) (WWW.genevestigator.ethz.ch), is shown in (Table 2.9). Expression of At1g75800 gene was the maximum under all stimuli, than other genes, followed by At4g36010 and At4g38660. The minimum expression of genes was for At1g75050, At4g24180 and At2g17860. The rest of genes showed moderate expression under different stimuli.

Table (2.9): Expression of different thaumatin genes under different stimuli (Digital Northern):

Stimuli/Signal						
Gene	SA	Mej	DC3000	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { (Seed) } \end{gathered}$	ABA	$\mathbf{G A}_{3}$
At1g20030	181	226	1244.5	4.8	6.8	22.1
At1g75800	1919	2072	4246	10151	10327	8192
At1g75050	8	13.5	43	42.6	58	53
At1g75030	216	261	220	19.6	69.8	80.3
At5g02140	122	136.5	77.2	175	169	38
At5g24620	626	1907	1633	1432	1169	282
At4g38660	1062	1149	566	1775	1443	790
At4g24180	37	37	15.5	23	25	7
At1g19320	66	152.5	170.7	80.7	156	196
At4g36010	238	524.5	7589	2059	2908	3096
At2g17860	90	31	63	27	96	98.7
At4g38670	329	393	320	659	787	665
At1g70250	249.5	200	142.1	33	63	37

## 3. Discussion

### 3.1 Production of antimicrobial compounds by plant cell cultures

The antimicrobial activity of plant extracts against bacteria and fungi have been reported by other workers (Heisey and Gorham,1992; Caceres et al.,1991). In this study aqueous extracts of ten different plant cell cultures showed different antimicrobial spectra against five human pathogenic microorganisms, namely Candida maltosa, Staphylococcus aureus, Escherichia coli and Pseudomonas aerryginosa. Most plant fractions observed to exhibit different spectra against the tester isolates in presence of different elicitors. Elicitors may be responsible for induction of antimicrobial compounds, as a natural defense, in plant cell cultures. Velazhahan et al. (2000) reported the induction of elicitor-inducible antifungal chitinase in rice suspension cultured cells when treated with a fungal elicitor isolated from Rhizoctonia solani. Also Thorsten et al., (1997) reported the phytoalexins synthesis and accumulation in elicitor stimulated parsley cell cultures. In general, accumulation of different antimicrobial PR proteins in infected plants are thought to be component of induced defense system in these plants (Broekaert et al., 1997; Stintzi et al., 1993; VanLoon, 1997), and use of different chemicals for induction of defense in plants have been reported by many workers (Gullino et al., 2000; Kessmann et al.,1994; Uknes et al., 1996). In the present study the heterotrophic cultures were more active against tester isolates than the autotrophic ones. The intracellular fraction of the mexotrophic Arabidopsis thaliana elicited with different elicitors was the most active fraction against all tester isolates especially those elicited with bacterial elicitors for Pseudomonas syringae strains DC3000 and PRM1 and also those treated with SA and ASA. The antifungal activity of all these fractions was higher than the effect of $10 \mathrm{ug} / \mathrm{ml}$ of Nystatin solution which have been used as antifungal positive control. The antimicrobial activity of this fraction is followed by that of the intracellular fraction of the
heterotrophic Nicotiana tobacum (BY2), since not all elicitors induce the same antifungal activity but the most active fraction was that elicited with chitosan, PGA and PRM1 also, the activity was higher than that of $10 \mathrm{ug} / \mathrm{ml}$ of Nystatin, and the same was observed for the extracellular fraction of the heterotrophic culture Eschscholiza californica (AST) elicited with chitosan, Alt and ASA. All the remaining plant cell culture fractions showed lower activity against the tested fungus. The susceptibility of this yeast to different plant extracts has been documented in the literature (Alonso-paz el al.,1995; Lemos et al., 1992; Martinez et al.,1994; Nascimento et al., 1990; Saxena et al., 1994).

For bacterial strains, also the intracellular fraction of the mexotrophic Arabidopsis thaliana elicited with different elicitors was the most active one followed by the cell wall bound fraction of the same plant and the intracellular fraction of Nicotiana tobacum (BY2). Using chloromephenicol as a positive antibacterial control, this antibiotic showed increased activity only against Staphylococcus aureus at different concentrations, but it inhibited Escherichia coli cells only at high concentrations and did not show any antibacterial activity against both Pseudomonas aeruginosa and Bacillus subtilis even at very high concentration ( $100 \mathrm{ug} / \mathrm{ml}$ ). So the antibacterial activity of som elicited fractions like Arabidopsis thaliana intracellular fraction elicited with Mej, DC3000, PRM1, ASA or SA was higher, against all tester bacterial strains than chloromephenicol. The antimicrobial properties of plants have been investigated by a number of researchers world wide, especially in Latin America. In Argentina, 122 known plant species were tested for therapeutic treatments (Anesini and Perez, 1993). It was documented that among the compounds extracted from these plants, twelve inhibited the growth of Staphylococcus aureus and ten inhibited Escherichia coli. A more detailed study on antimicrobial compounds was done evaluating extracts from 120 plant species from 28 different families (Santos Filho et al., 1990). It was documented that 81 extracts obtained from 58 plants were active against S. aureus and five extracts from four other plants inhibited the growth of $P$. aeruginosa.

Another study (Lemos et al., 1992) detected the antibacterial and antifungal (C. albicans) activities of essential oils obtained from Croton triangularis leaves. The antimicrobial activity from Mikania triangularis was tested against five genera of bacteria and three genera of yeast, and results showed that it had activity against S. aureus, E.coli, P. aeruginosa and B. cereus (Cruz et al.1996). Since few studies considering the production of antimicrobial proteins by plant cell cultures, the protein content for different elicited plant cell cultures, in the present study, was measured as an indicator for induction of antimicrobial protins or peptides. Among the screened plant cell cultures, the intracellular fraction of the mixotrophic Arabidopsis thaliana culture elicited with different elicitors showed the highest antimicrobial activity coincided with high protein content which may be responsible for the high antimicrobial activity of the fraction. Fraction elicited with SA have been selected for testing the presence of antimicrobial protein(s) and further work.

### 3.2. Isolation and characterization of an antimicrobial protein (AtPDP1)

Intracellular fraction of Arabidopsis thaliana elicited with different elicitors was the most active fraction comparable to other plants fractions elicited with the same elicitors, and the fraction elicited with SA showed the strongest and more intense inhibition zones against most of tester isolates especially Candida maltosa. So this fraction was selected for further experimentation for testing the presence of antimicrobial proteins responsible for the inhibition zones. Ammonium sulphate precipitation of proteins in this fraction indicated the presence of antimicrobial proteins responsible for the antimicrobial activity since the precipitated proteins were active against C. maltosa. The isolation of antimicrobial proteins or peptides from plant materials have been reported by many workers (Verburg and Khai Huynh, 1991; Khai Huynh et al., 1996; Yasnetskaya et al., 2003; Last and Llewellyn., 1997; Khai Huynh et al., 1992; Feng et al.,

2003; Chen et al., 2002; Lee et al., 1999; Tailor et al., 1997; Diz et al., 2003; Segura et al., 1998).

High speed centrifugation was selected instead of ammonium sulphate precipitation since it was more efficient for isolation of the antimicrobial activity. By testing the identity of protein profiles for both methods they were identical but the intensity of protein bands were more strong for high speed centrifugation isolation method than those for the ammonium sulphate precipitation. This indicated the insolubility of the active protein in the usual buffers, since it may be bound to other cellular components like different cellular membranes. Wang et al., (1996) have isolated an Arabidopsis thaliana gene that codes for a receptor related to antifungal pathogenesis related (PR) proteins. The PR5K gene codes for a predicted 665-amino acid polypeptide that comprises an extracellular domain related to PR5 proteins, a central transmembrane-spanning domain and an intracellular protein-serine/theronine kinase. The structural similarity between the extracellular domain of PR5k and the antimicrobial PR5-proteins suggested a possible interaction with common or related microbial targets.

Using bioautography method, the proteinsous nature of the antimicrobial compound was confirmed and its molecular weight could be estimated to be between 26 and 36 kDa . This was confirmed also by gel filtration since after calibration of the used column with 5 different standards, it could be isolated the active protein as a single band of 30 kDa molecular weight. Protein band was subjected to Mass Spectrometry after digestion with trypsin into small peptides. Spectrum for a peptide with 12 -amino acids was compared with protein database [NCBInr database using the Mascot algorithm (Version 2.1; MatrixScience, London, GB)], and from the search it could be found that the active protein is similar to an unknown protein, (shows $100 \%$ identity to dehydration-stress indused protein from Arabidopsis thaliana), with a plantstress induced PLAT (Polysystin- Lypoxygenase- Alpha toxin- Triacyal glycerol lipase domain). So the isolated protein will be referred to as Arabidopsis
thaliana Plat-Domain-Protein $\underline{1}$ (AtPDP1). The role of some pathogenesis-related (PR) proteins as stress proteins with functions that exceed their involvement in plant-pathogen interaction have been described by other workers. It has been reported that thaumatin-like PR5 family is expressed not only in response to pathogens, but also during osmotic stress. Thus, osmotin (tobacco PR-5c) and its homology (NP24 PR5a) in tomato were independently identified as being induced by salt stress (Singh et al., 1987) and infection (Stintzi et al., 1991). Also lipid transfer proteins can be induced by infection, have antifungal activity, and are expressed during drought stress (Kader, 1997) so, AtPDP1 (with 100\% identity to dehydration-stress-induced protein from the same plant) may be similar to thaumatins and lipid transfer proteins from other plants, since it has antimicrobial activity.

By testing the antimicrobial activity of the AtPDP1 against the five tester isolates, it was active against all of them with different magnitude, since the highest activity was against C. maltosa followed by the Gram negative (E. coli and $P$. aerryginosa) and the least activity against Gram positive ones (S. aureus and B. subtilis).

Using Blast-Aligorithms program (Altschul et al., 1997) the isolated AtPDP1 showed different homology levels to other proteins from other organisms as shown in Table (6.2), the highest homology level (100\% identity, 100\% similarity) was to dehydration- stress- induced protein from Arabidopsis thaliana followed by an unknown protein ( $80 \%$ identity, $91 \%$ similarity) from the same plant [will be referred to as AtPDP2] and Lipoxygenase, LH2 (70\% identity, $82 \%$ similarity) from Medicago truncatula. Lower homology level to other proteins from other organisms was found; elicitor inducible protein EIG-J7 (67\% identity, 79\% similarity) from Capsicum annuum, wound/stress protein (66\% identity, $77 \%$ similarity) from Lycopersicon esculentum, TMV- induced protein ( $48 \%$ identity, $69 \%$ similarity) from Capsicum annuum, Elicitor inducible protein (55\% identity, $68 \%$ similarity) from Nicotaina tabacum and TMVinduced protein 1-2 (53\% identity, 71\% similarity) from Capsicum annuum. All of
these proteins have the same PLAT- plant stress domain (PLAT/LH2 domain) and using Clustal X program (Thompson et al., 1997) it could be observed from the alignment that this PLAT-domain is the conserved region in all of these proteins. In general PLAT/LH2 domain consists of eight stranded beta-barrel and its proposed function is to mediate interaction with lipids or membrane bound proteins and it termed PLAT/ LH2 after (Polycystin-1, Lipoxygenase, Alpha toxin and Triacylglycerol lipase)/ (Lipoxygenase homology 2). The three dimensional structure of the PLAT domain of human pancreatic lipase (Van Tilbeurgh et al, 1993), rabbit-15 Lipoxygenase (Gillmor et al., 1997) and alpha toxin from Clostridium perfringes (Naylor et al., 1998) is characterized. Leyen et al. (1998) demonstrated a new structural fraction of 15-Lipoxygenase with PLAT domain since they found that 15 -Lox integrates into membrane of various organelles and permeabilizes them by forming pores of 7-17 nm which are sufficient to release proteins with relative molecular masses as large as 400 kDa. This activity of 15 -Lox is reminiscent of the ability of several bacterial toxins to form pores in membranes of eukaryotes. They also proposed that 15-Lox initiates organelle degradation by pore formation in all cellular organelle membranes, allowing their subsequent degradation. The same also was observed (May et al.,2000) for lipid body lipoxygenase (LBLOX) from cucumber seedlings, since they reported that a few isoforms of LOX bind or integrate into membranes of various organelles and in such case the function of LOX may be directed towards modification of the respective membrane. In case of LBLOX, both phospholipid monolayer and the bulk of triacylglycerols of lipid body structures were modified in the fat degrading cotyledons of cucumber, and they also found that LBLOX contains a B-barrel-forming N-terminal domain (PLAT domain) which represents a membrane binding domain that is functionally comparable with the C2 domain of mammalian phospholipases. Within this domain a unique arrangement of glutamyl residues which could be used for co-ordination of $\mathrm{Ca}^{2+}$, and this indicates a relationship between the LBLOX $\beta$-barrel and the members of $\mathrm{Ca}^{2+}$
dependent membrane-binding domains. For Alpha toxin, the protein composed of 2 domain; the $N$-terminal domain contains the phospholipase $C$ active site and the C-terminal domain which is putative phospholipid recognition domain (the PLAT domain) which shows structural homology with phospholipids-binding C2-like domain from a renge of eukaryotic proteins. Jepson and Titball, (2000) found that the ability to bind membrane phospholipids in $\mathrm{Ca}^{2+}$ dependent manner and toxicity is conferred by this PLAT domain (C-terminal domain) which also contributes to the sphingomyelinase activity. It has been reported (Lichtenheld et al., 1988; Liu et al., 1995) that a protein with 70 kDa found in secretory granules of cytotoxic $T$ cells called perforin binds phosphorylcholine in $\mathrm{Ca}^{2+}$ dependent manner and inserts into cellular membranes to form pores that result in lysis of target cells. This protein has C2 domain similar to PLAT domain, which may be responsible for activity.

In plants, the PLAT domain may interact directly with membrane in $\mathrm{Ca}^{2+}$ dependent manner or the PLAT domain may be involved in protein-protein and/or protein-lipid interaction (Bateman and Sanford., 1998)

An ethylene-induced cDNA encodes a lipase that contains the PLAT domain was expressed at the onset of senescence in Dianthus caryophyllus (Hong et al.,2000), since there is evidence that the hydrolytic release of free linoleic and linolenic acids from membrane phospholipids results in enhanced lipoxygenase activity and an accumulation of peroxidized lipids in bilayers, leading to further destabilization of membrane structure that terminates by loss of cell function.

Shin et al., (2004) reported that overexpression of CaTin1 [Capsicum annuum tobacco mosaic virus (TMV)-induced clone1] (contains the PLAT domain) in tobacco plants in sense- or antisense orientation showed interesting characteristics such as the accelerated growth and the enhanced resistance to biotic (virus infection) as well as abiotic (drought and salt treatments) stresses and they suggested that this tolerance may caused by the elevated level of ethylene and H2O2 in transgenic plants,
but they did not refer to testing the antimicrobial action for the protein product of the gene. Thus the function of the isolated AtPDP1, isolated in the current work, may be the defense against some pathogens, tolerance against abiotic stress like osmotic stress and drought and it may be also responsible for protein-protein and/or protein lipid interaction in the plant.

The suggested action of the isolated AtPDP1 on tester isolates is by binding of the PLAT domain to the membrane of target cell and forming pores in these membrane which leads to leakage of the cellular contents and subsequent cell death. Using ProtParam program (www.expasy.org) it has been found that the protein is acidic ( $p \mathrm{I}=4.97$ ) but contains both acidic residues $[(\mathrm{Asp}+\mathrm{Glu})=22$ ] and basic residues [(Arg+Lys)=16]. The basic residues are able to bind to the negatively charged phospholipids head groups of target cell leading to neutralization of net charge of membrane that leads to membrane fusion and aggregation. Chapman and Davis (1998) reported that the positively charged residues of synaptotagmin ( $\mathrm{Ca}^{2+}$ binding synaptic vesicle protein essential for rapid release of neurotransmitters) may mediate interaction with nearby anionic lipid head groups. In addition an NMR study of C2A of the compound demonstrated that Arg-233 and Lys-236 in loop 3, along with Arg-199 in loop 2, made contacts with a recombinant fragment of Syntaxin 1A ( an essential component of the putative membrane fusion machinery) corresponding to residues 1-177.

Also the residues (Asp and Glu) are able to bind to negatively charged phospholipids and neutralize their charge but in presence of $\mathrm{Ca}^{2+}$ since $\mathrm{Ca}^{2+}$ bind first to the phospholipids and then to the negatively charged residues in the PLAT domain. In case of perforin, it is able to bind to membranes of target cell in a $\mathrm{Ca}^{2+}$-dependent manner via its C 2 -domain Once bound, perforin inserts into membranes where it polymerizes to form large pores (Chapman and Davis, 1998).

Using PROSITE program (Hofmann et al., 1999) it has been observed that the calculated molecular weight for the isolated AtPDP1 is about 20.005 kDa which is different from that observed during purification
steps of the protein (about 30 KDa ). This difference may be due to the presence of glycosylation sites (NLTS) in the protein which may be responsible for post-translation modifications of the protein or this difference may be due to binding of protein to different cellular membranes in the plant cell.

### 3.3.Cloning of genes for AtPDP1 and AtPDP2 and their expression pattern under different stimuli (Digital Northern)

Gene for the active isolated AtPDP1 (At4g39730) and also for AtPDP2 (At2g22170) were isolated using RT-PCR using RNA samples isolated from Arabidopsis materials treated with SA. PCR products were 546 and 552bp respectively. PCR products were cloned in DH5 $\alpha$ E. coli cells using PGEM-T easy vector and sequenced.

Further molecular biology work for cloning the two genes in Agrobacterium tumefaciens using PBI121 plasmid for overexpression of the two genes in Arabidopsis thaliana cell cultures under the control of both constitutive (CaMV 35S) or inducible (win $3.12 T$ ) promoter was tried but we did not succeeded to get transformants of $E$. coli cells with the new PBI121 plasmid. Work should be continued on this point to maximize the productivity of plant cells for the active protein, and the overexpression also will aid to understanding the function of the considered protein(s) in the plant.

The expression of the gene for the isolated AtPDP1 (At4g39730) and also the expression for a second gene, for AtPDP2, (At2g22170) was tested using Digital Northern (www.genevestigator.ethz.ch). From results it could be noticed that both genes are constitutively expressed in Arabidopsis tissues, but the first gene (for AtPDP1) was found to be expressed mainly in plant shoot system more than roots and the reverse was observed in case of the second gene since it was expressed mainly in roots. Shin et al (2004) reported that CaTin1 (Capsicum annuum tobacco mosaic virus (TMV)-induced clone 1), with the same PLAT domain, is expressed only in roots and not in other parts of the plant. Both genes
were induced by different pathogens which reflect their role in defense against different pathogens like different other PR (Pathogenesis-related) proteins.
Also both genes were found to be induced by different chemicals and hormones which are known to induce defense and induction of different PR proteins in plants. PR proteins have been described to be induced by numerous conditions and chemical compounds, including senescence, callus culture, UV, light, wounding, plasmolysis, polyacrylic acid, Auxin, cytokinin, heavy metal salts, mannitol, amino acids, thiamine, arachidonic acid, ozone, hydrogen peroxide, etc (Van Loon, 1983; Kessmann et al., 1994; Ryals et al., 1996).

For At4g 39730 gene, the maximum induction was by pathogens followed by the effect of SAR (Systemic Acquired Resistance), ABA and P. syringae (avr). For At2g22170 gene, the maximum induction was by mycotoxins followed by zeatin, GA3 and ABA. High expression of both genes under different selected stimuli support their suggested roles in defense of Arabidopsis against different pathogens, and for At4g 39730 (gene for AtPDP1) the results of digital northern agree to high extent with results of screening of the intracellular fraction elicited with different elicitors, which support the antimicrobial activity of the isolated protein.

### 3.4. Cloning and expression of thaumatin genes from Arabidopsis thaliana

Most of thaumatins play role in defense of Arabidopsis against invading microorganisms and also some of them have antimicrobial activity against Candida spp, so they are further candidates for antimicrobial genes. Thirteen thaumatin genes were isolated using PCR using genomic DNA, as template, isolated from A. thaliana materials. PCR products were ligated in PGEM-Teasy vector and cloned in DH5 2 E. coli cells. Additional future work will be carried out in the lab which includes
testing the expression of different cloned thaumatin genes under different stimuli.

The expression of the thirteen cloned thaumatin genes was tested using Digital Northern (www.genevestigator.ethz.ch), and from the results (Table 9.2) it could be noticed that different thaumatin genes show different expressions under different stimuli. The maximum expression was for At1g75800 gene in presence of SA, Mej, DC3000, imbibition of water (seeds), $A B A$ and $G A_{3}$, followed by At4g36010 and At4g 38660. Hu and Reddy, 1997 reported that a thaumatin like protein from Arabidopsis (ATLP-3) is induced by pathogen infection and by compounds that are known to elicit systemic aquired resistance like DC3000 and SA. The minimum expression of genes was for At1g75050, At 4 g 24180 and At2g17860. The rest of thaumatin genes showed moderate expression under different stimuli. The variation in the expression of genes under different stimuli represents different roles of these genes against invading microorganisms and suggests that At1g75800, At 4 g 36010 and At 4 g 38660 play an essential role for defense of Arabidopsis against pathogens. The objective of this study is to select the most active genes against pathogenic microorganisms especially fungi since many authors have reported that most members of thaumatins have antifungal activity against broad spectrum of fungal pathogens (Huynh et al., 1992; Vigers et al., 1991, 1992; Woloshuk et al., 1991).

## 4. Materials and Methods

### 4.1 Materials

### 4.1.1 Suspension cell cultures

For antimicrobial screening, all cultures were elicited after 2 or 10 days incubation period (for heterotrophic and autotrophic cultures respectively) and harvested after another 2 days incubation period.

## Arabidopsis thaliana

The mixotrophic suspension culture of Arabidopsis thaliana was used for different biochemical experiments in the study. The cell line was maintained by transferring 10 ml of suspension culture to 50 ml of B5 medium at interval of one week. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For antimicrobial screening, the subculture was done by transferring 10 ml of one week old cultures to 50 ml of the fresh B5 medium.

## Chenopodium rubrum

The autotrophic suspension culture of Chenopodium rubrum was used for different biochemical experiments in the study. The cell line was maintained by transferring 12 ml of suspension culture to 16 ml of MS medium at intervals of 2 weeks. The cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For antimicrobial screening, the subculture was done by transferring 12 ml of 2 week old cultures to 16 ml of fresh MS medium .

## Eschscholzia californica (AST)

The heterotrophic suspension culture of Eschscholzia californica (AST) was used for different biochemical experiments in the study. The cell line was kind gift from Prof Mueller (Pharmaceutical Biology, university
of wuerzburg). The cell line was maintained by transferring 20 ml of suspension cultures to 50 ml of LS medium at the interval of one week. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For the antimicrobial screening, the subculture was done by transferring of 20 ml of one week old cultures to 50 ml of fresh LS medium.

## Eschscholzia californica (ECO)

The heterotrophic suspension culture of Eschscholzia californica (ECO) was used for different biochemical experiments in the study. The cell culture was kind gift from Prof Mueller (Pharmaceutical Biology, university of wuerzburg), and cell line was obtained by incubation of pant calli in 40 ml of LS medium for 2 weeks with continues shaking in light, then cell were transferred to 50 ml of LS medium and subcultured every one week by transferring of 10 ml of suspension culture to 50 ml of fresh LS medium. For antimicrobial screening the subculture was done by transferring of 10 ml of one week old culture to 50 ml of LS medium.

## Gypsophila arabia

The heterotrophic suspension culture of Gypsophila arabia was used for different biochemical experiments in the study. The cell culture was kind gift from Prof Mueller (Pharmaceutical Biology, university of wuerzburg), and cell line was obtained by incubation of plant calli in 40 ml of LS medium for 2 weeks with continues shaking in light, then cells were transferred to 50 ml of LS medium and subcultured every one week by transferring of 10 ml of suspension culture to 50 ml of fresh LS medium. For antimicrobial screening, the subculture was done by transferring of 10 ml of one week old culture to 50 ml of LS medium.

## Lycopersicon esculentum

The autotrophic suspension culture of Lycopersicon esculentum was used for different biochemical experiments in this study. The cell line was maintained by transferring 15 ml of suspension culture to 15 ml of MST medium at intervals of 2 weeks. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For antimicrobial screening the subculture was done by transferring 15 ml of 2 weeks old cultures to 15 ml of fresh MST medium.

## Lycopersicon esculentum

The heterotrophic suspension culture of Lycopersicon esculentum was used for different biochemical experiments in the study. The cell line was maintained by transferring 10 ml of suspension cultures to 50 ml of C 3 medium at the intervals of one week. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For the antimicrobial screening, the subculture was done by transferring of 10 ml of one week old culture to 50 ml of fresh C 3 medium.

## Nicotiana plumbaginifolia

The heterotrophic suspension culture of Nicotiana plumbaginifolia was used for different biochemical experiments in the study. The cell culture was kind gift from Prof Mueller (Pharmaceutical Biology, university of wuerzburg). The cell line was maintained by transferring 10 ml of suspension cultures to 50 ml of LS medium at intervals of one week. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For the antimicrobial screening, the subculture was done by transferring of 10 ml of one week old cultures to 50 ml of the fresh LS medium.

## Nicotiana tobacum

The heterotrophic suspension culture of Nicotiana tobacum was used for different biochemical experiments in the study. The cell line was maintained by transferring 5 ml of suspension cultures to 50 ml of BY2 medium at intervals of one week. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For the antimicrobial screening, the subculture was done by transferring of 5 ml of one week old cultures to 50 ml of the fresh BY2 medium.

## Petroselium crispum

The heterotrophic suspension culture of Petroselium crispum was used for different biochemical experiments in the study. The cell line was maintained by transferring 10 ml of suspension cultures to 50 ml of B 5 medium at intervals of one week. The cell cultures were maintained by shaking at $26^{\circ} \mathrm{C}$ in light. For the antimicrobial screening, the subculture was done by transferring of 10 ml of one week old cultures to 50 ml of the fresh B5 medium.

### 4.1.2 Tester isolates

## Candida maltosa

The isolate Candida maltosa (SBUG 700) was used as a fungal tester isolate in the screening experiments. The culture was maintained on LB agar medium (PH7) at $30^{\circ} \mathrm{C}$ incubation temperature, and subcultured every one month and stored at $4^{\circ} \mathrm{C}$. For antimicrobial screening experiments, C. maltosa was subcultured overnight in LB medium, then
diluted fungal cell suspension of $\mathrm{OD}_{600}=0.2$ was used for inoculating the screening plates.

## Staphylococcus aureus

The isolate Staphylococcus aureus (ATCC 6538) was used as a gram positive bacterial tester isolate in the screening experiments. The culture was maintained on LB agar medium (PH7) at $37^{\circ} \mathrm{C}$ incubation temperature, and subcultured every two weeks and stored at $4^{\circ} \mathrm{C}$. For antimicrobial screening experiments, S. aurus was subcultured overnight in LB medium, then diluted bacterial cell suspension of $\mathrm{OD}_{600}=0.2$ was used for inoculating the screening plates.

## Escherichia coli

The isolate Escherichia coli (ATCC 11229) was used as a gram negative bacterial tester isolate in the screening experiments. The culture was maintained on LB agar medium (PH7) at $37^{\circ} \mathrm{C}$ incubation temperature, and subcultured every two weeks and stored at $4^{\circ} \mathrm{C}$. For antimicrobial screening experiments, $E$. coli was subcultured overnight in LB medium, then diluted bacterial cell suspension of $\mathrm{OD}_{600}=0.2$ was used for inoculating the screening plates.

## Bacillus subtilis

The isolate Bacillus subtilis (ATCC 6051) was used as a gram positive bacterial tester isolate in the screening experiments. The culture was maintained on LB agar medium (PH7) at $37^{\circ} \mathrm{C}$ incubation temperature, and subcultured every two weeks and stored at $4^{\circ} \mathrm{C}$. For antimicrobial screening experiments, $B$. subtilis was subcultured overnight
in LB medium, then diluted bacterial cell suspension of $\mathrm{OD}_{600}=0.2$ was used for inoculating the screening plates.

## Pseudomonas aeruginosa

The isolate Pseudomonas aeruginosa (ATCC 22853) was used as a gram negative bacterial tester isolate in the screening experiments. The culture was maintained on LB agar medium (PH7) at $37^{\circ} \mathrm{C}$ incubation temperature, and subcultured every two weeks and stored at $4^{\circ} \mathrm{C}$. For antimicrobial screening experiments, $P$. aeruginosa was subcultured overnight in LB medium, then diluted bacterial cell suspension of $\mathrm{OD}_{600}=0.2$ was used for inoculating the screening plates.

### 4.1.3 Medium

BY2 Medium (for one liter)	
MS-Medium	4.3 g
MES buffer	2 g
Inosit	100 mg
Sucrose	30 g
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	200 mg
Thiamin	1 ml
1mg/ml $2,4 \mathrm{D}$ in	200 ul
ethylalcohol	
PH was adjusted to 5.8 with conc. KOH	


C3 Medium (for one liter)	
MSIT-Medium	4.41 g
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	200 mg
$1 \mathrm{mg} / \mathrm{ml} 2,4 \mathrm{D}$ in $_{\text {ethylalcohol }}$	100 ul
$0.40 \mathrm{mg} / \mathrm{ml}$ Kinetin in $\mathrm{dH}_{2} \mathrm{O}$   Sucrose	50 ul
	30 g

PH was adjusted to 6 with $2 \% \mathrm{KOH}$

MST Medium (for one liter)	
Murashige and Skoog   Medium (with Vitamins)   $0.2 \mathrm{mg} / \mathrm{ml} \mathrm{2,4} \mathrm{D} \mathrm{in}$   ethylalcohol	4.41 g
PH was adjusted to 5.7 with 1 N NaOH	
LS Medium (for one liter)	
Linsmaier, Bednar\& Skoog	
Medium   Sucrose	4.60 g
PH was adjusted to 6 with conc. KOH	


MS Medium (for one liter)	
MS-Medium	4.30 g
Bas adjusted to $5.7-5.8$ with $<1 \mathrm{~N} \mathrm{NaOH}$	
B5 Medium (for one liter)	
Gambory's B5 Basal   Medium with animal   organics   $1 \mathrm{mg} / \mathrm{ml} 2,4 \mathrm{D}$ in ethyl   alcohol   Sucrose	3.20 g

$\overline{P H}$ was adjusted to 5.5 with $<1 \mathrm{~N} \mathrm{NaOH}$

LB Medium*	
Bacto- Tryptone	$1 \%$
Yeast- Extract	$0.5 \%$
NaCl	$1 \%$

PH was adjusted to 7.0 with $<1 \mathrm{~N} \mathrm{NaOH}$
*1.5\% agar added for solid medium.
*100ug/ml Ampecillin for plating.

### 4.1.4 Buffers

## Autotrophic cultures

Potassium carbonate buffer   (For 1 liter)	
$\mathrm{K}_{2} \mathrm{CO}_{3}$	55.3 g
$\mathrm{KHCO}_{3}$	160.2 g

## Mini Preps

Resuspension buffer	
Glucose	
Tysis buffer *	50 mM
EDTA	25 mM
Neutralization buffer	
(For 100ml)	
NaOH	0.2 mM
SDS	$1 \%$
* Freshly prepared	60 ml
5M KAc	
Glacial AcOH	11.5 ml
Water	28.5 ml

## Agarose gel electrophoresis

5X TBE-buffer	
Tris HCl pH 8.0	890 mM
$\mathrm{H}_{3} \mathrm{BO}_{4}$	890 mM
EDTA	20 mM

## 10X DNA loading buffer

Glycerin	$50 \%$
EDTA	100 mM
Bromophenol blue	$0.25 \%$
Xylen Cyanol	$0.15 \%$

## RNA Isolation

RNA-denaturing solution	For 50ml
Guanidium - thiocyanat 4M	23.66 ml
(Tri)-Na-citrate 25 mM	0.37 ml
Sarcosyl (N-Lauryl Sarcosine) (0.5\%)	0.25 ml
Add 7ul of $\beta$-ME freshly before use/ml	


Na-Acetate solution	
$\mathrm{Na}-$ Acetate $\mathrm{PH}=4$	2 M


CIA	
Chloroform/Isoamylalcohol	$24: 1$


5X RNA gel running buffer	
MOPS	$41.86 \mathrm{~g} / \mathrm{L}$
NaAc	$6.8 \mathrm{~g} / \mathrm{L}$
NaOH	7 pellets $/ \mathrm{L}$
EDTA	$10 \mathrm{ml} / \mathrm{L}$
DEPC	$1 \mathrm{ml} / \mathrm{L}$

RNA Loading dye

RNA Loading dye	
5X RNA-loading buffer	76 ul
Formaldehyde	126 ul
Formamide	378 ul
10X DNA-loading dye	76 ul
Ethidium bromide $(5 \mathrm{mg} / \mathrm{ml})$	5 ul


Formaldehyde gel		
Agarose (heat to dissolve	62.2 ml	
Water (harose)		
aganning buffer	20 ml	
5X RNA runnide	17.8 ml	

## DNA Isolation

## Extraction buffer

Tris-HCL pH 8	100 mM
EDTA	50 mM
Nacl	500 mM
SDS	$1.5 \%$
$\beta-$ ME freshly before use	$1 \%$

## SDS-PAGE

## Separating gel

	$12 \%$	$15 \%$
Acrylamide/Bis (30:0.8)	2.5 ml	3 ml
1.5 M Tris pH 8.8/0.4\% SDS	1.5 ml	1.5 ml
Water	2 ml	1.5 ml
10\% APS	60 ul	60 ul
TEMED	10 ul	10 ul

Stacking gel

Acrylamide/Bis (30:0.8)	400 ul
1M Tris pH 6.8/0.4\% SDS	750 ul
Water	1.85 ml
$10 \%$ APS	25 ul
TEMED	7.5 ul

## Running buffer

Tris	25 mM
Glycin	192 mM
SDS	$0.1 \%$

10X SDS loading dye
Tris-HCl pH 6.8
Glycerin
160 mM
28\%
SDS
DTT
3\%
10 mM

Gel Staining with Commassie brilliant blue

Commassie brilliant blue	
Commassie blue R 250	$0.25 \%$
AcOH	$10 \%$
MeOH	$50 \%$


Destaining solution(100ml)	
AcOH	10 ml
MeOH	45 ml
Water	45 ml

## Bradford-Protein estimation

Bradford Reagent (6X)	
Serva blue G	95 mg
$85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$	100 ml

### 4.2 Methods

### 4.2.1 Antimicrobial Measurements

### 4.2.1.1 Treatment with various elicitors:

## Control treatment

For control treatments of different plant cell cultures, no addition of any materials or solvents to the control flasks was done in all experiments.

## Chitosan treatment

$0.5 \%(\mathrm{w} / \mathrm{v})$ chitosan preparation was made by dissolving in 1 M acetic acid and dialyzed for 18 hours. A final concentration of $0.05 \%$ was used for experiments.

## Methyl jasmonate

500mM stock solution was prepared by mixing methyl jasmonate in ethanol. $1 \mathrm{ul} / \mathrm{ml}$ of culture medium was the final concentration used in different experiments.

## Polygaracturonic acid (PGA)

$1 \%(w / v)$ polygalacturonic acid preparation was made by dissolving in ddH2O. A final concentration of $0.05 \%$ was used for experiments.

## Pseudomonas syringae (DC3000)

Pseudomonas syringae elicitor was prepared by boiling a suspension of the virulent strain of Pseudomonas syringae (DC3000) of OD600 $=0.2$ for 10 min at $100^{\circ} \mathrm{C}$. The boiled suspension was stored at -20 C . The elicitor used in concentration of $2 \mathrm{ul} / \mathrm{ml}$ of culture medium.

## Pseudomonas syringae (APRM1)

The same as (DC3000) elicitor but the averulant isolate of Pseudomonas syringae (APRM1) was used instead of P. syringae (DC3000). The elicitor used in concentration of $2 \mathrm{ul} / \mathrm{ml}$ of culture medium.

## Salicylic acid

500 mM stock solution was prepared by dissolving salicylic acid in ddH2O. $1 \mathrm{ul} / \mathrm{ml}$ of culture medium was the final concentration used in different experiments.

## Alternaria brassiciola

Alternaria brassiciola elicitor was prepared by boiling a suspension of $A$. brassiciola conidia with spore concentration of $5 \times 10^{5}$ (spores/ml) for 10 min at $100^{\circ} \mathrm{C}$. The boiled spore suspension was stored at -20 C . The elicitor used in a concentration of $1 \mathrm{ul} / \mathrm{ml}$ of culture medium.

## E-Fol (Fusarium oxysporium Iycopersici)

E-Fol elicitor was prepared by suspending mycelial homogenate of the fungus Fusarium oxysporium lycopersici in ddH2O with concentration 1:1000 (w/v). $1 \mathrm{ul} / \mathrm{ml}$ of culture medium was the used concentration for different experiments.

## AcetyIsalicylic acid (ASA)

50mM stock solution was prepared by dissolving Acetylsalicylic acid in ddH2O. $1 \mathrm{ul} / \mathrm{ml}$ of culture medium was the final concentration used in different experiments.

### 4.2.1.2 Preparation of different fractions for screening

Different plant cell cultures were elicited using different elicitors and cells were collected, after 2 days (for heterotrophic) or 10 days (for
autotrophic) incubation period, by centrifugation and the supernatant was used as the extracellular fraction for testing the antimicrobial activity and protein content. Cells were immediately frozen in liquid nitrogen. 5 gm amounts of cells were ground under liquid nitrogen and powder was suspended in 10 ml of extraction buffer (10mM Na2HPO4, 15mM NaH2PO4 PH=7) and stirred overnight at $4^{\circ} \mathrm{C}$. After centrifugation the supernatant was used as the intracellular fraction for testing the antimicrobial activity and the protein content. Pellets were resuspended in 10 ml of another extraction buffer $(10 \mathrm{mM}$ Na2HPO4, 15mM NaH2PO4, 1M Nacl, 15mM EDTA PH=7) and stirred overnight at $4^{\circ} \mathrm{C}$. After centrifugation the pellets were discarded and the supernatant was dialyzed overnight, using dialysis tube of cut off=14 KDa, against 5 liter dialysis buffer ( 10 mM Na2HPO4, $15 \mathrm{mM} \mathrm{NaH} 2 \mathrm{PO} 4 \mathrm{PH}=7$ ) with 3 times change of buffer during the period of dialysis. The dialyzed fraction was used as the cell wall bound fraction for testing the antimicrobial activity and the protein content.

### 4.2.1.3 Antimicrobial activity assay

This assay was done according to a method modified from the that described by Vivanco et al (1999) as follows: The fungal and bacterial isolates were grown overnight at $30^{\circ} \mathrm{C}$ (for the fungus) or at $37^{\circ} \mathrm{C}$ (for the bacterial strains), with shaking, in LB broth medium. All the cultures were diluted to an optical density reading $\mathrm{OD}_{600}=0.2$ and spread on 100 mm -plates containing solid LB-agar medium. Sterile Whattman filter paper discs with a diameter of 0.5 cm were saturated with different plant extracts and lied on the top of the inoculated plates. The plates were incubated for 24 houres at $30^{\circ} \mathrm{C}$ for the fungal culture and $37^{\circ} \mathrm{C}$ for the bacterial ones, and inhibition was defined as bacteria- or fungus- free zone surrounding the filter discs after inoculation. Two replicates per treatment were included, and each experiment was done twice. [one time in case of Eschscholtzia californica (ECO)].

Two synthetic antibiotics [Nystatin (antifungal) and Chloromephenicol (antibacterial)] were tested dissolved in DMSO and MeOH respectively, at different concentrations, as references to compare their antimicrobial activities with those of plant cell culture fractions.

### 4.2.2 Molecular Biological Methods

### 4.2.2.1 DNA-Agarose gel electrophoresis

DNA was electrophorsed in $0.8 \%$ to $1.5 \%$ agarose gel made in TBE buffer with 3.5 ug of ethidium bromide in 100 ml total volume. The DNA sample was mixed with appropriate amount of loading buffer and subjected to electrophoresis performed in 1 X TBE buffer at a voltage of 5 to $10 \mathrm{~V} / \mathrm{cm}$. As a DNA molecular weight marker either $\lambda$ DNA restricted with HindIII and EcoRI or PUC 19 restricted with HinfI was used.

### 4.2.2.2 Competent $E$. coli cells

500ul of overnight grown preculture of $E$. coli strain in LB (5ml) were used to inoculate 50 ml LB medium. The cells were incubated until the absorbance at $\mathrm{OD}_{600}$ reached between 0.5-0.6 units. Cells were harvested at 2500 rpm for 10 min at 4 C and then the pellets were resuspended in 15 ml of cold $\mathrm{CaCl}_{2}$ ( 100 mM ) and were incubated on ice for 40 min . The cells were then harvested at 2500 rpm for 5 min at $4^{\circ} \mathrm{C}$. The pellets were resuspended in 5 ml of $\mathrm{CaCl}_{2}$ ( 100 mM ) and incubated on ice for $1-3$ hours. 1 ml of ice cold glycerol ( $87 \%$ ) was added to cells and after mixing 200 ul of cells were added to ice-cold tube and tubes were snap frozen in liquid $\mathrm{N}_{2}$. The competent cells are stored at $-80^{\circ} \mathrm{C}$.

### 4.2.2.3 Extraction of RNA

Total RNA isolation was done according to the following method: For RNA isolation care was taken that all buffers, glassware, pipette tips and
eppendorf tubes were free of any RNAse contamination. The plant cells were harvested by centrifugation and snap frozen in liquid nitrogen. The cells were ground in presence of liquid nitrogen. Total RNA was extracted from the ground material in a precooled eppendorf tube (2 replicates are prepared for each sample). To a 100 mg of tissue powder, 500ul RNA denaturing solution, 50ul sodium acetate solution and 500ul acid phenol was added. The eppendorf tubes were immediately vortexed until the cells were completely thawed. Cells were incubated at RT for next 10 min . The upper phase was taken out carefully in a new eppendorf tube following centrifugation at $13,000 \mathrm{rpm}$ for 10 min . The upper phase is once again extracted with 500ul of CIA and centrifugation at $10,000 \mathrm{rpm}$ for 5 min . To the upper phase, 500 ul of isopropanol was added and incubated overnight for RNA precipitation in $-20^{\circ} \mathrm{C}$. RNA was precipitated after centrifugation at $13,000 \mathrm{rpm}$ for 30 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded and pellet was washed with 500 ul of $85 \%$ ethanol. The pellets were dried at 37 ${ }^{\circ} \mathrm{C}$ for 10 min . The RNA pellets were resuspended in DEPC treated water by shaking at $66^{\circ} \mathrm{C}$ for 10 min . The RNA were pooled from the replicate samples and the concentration was determined by measuring the absorbance in DNA/RNA calculator from Pharmacia ( $1 \mathrm{OD}=40 \mathrm{ug} \mathrm{ml}{ }^{-1}$ of RNA).

### 4.2.2.4 Extraction of genomic DNA

100 mg of homogenized plant material were mixed with 1 ml of extraction buffer with vortex till all the material was suspended in the solution. The suspension then is incubated at $65^{\circ} \mathrm{C}$ for 10 min , then 2 ul of $\mathrm{KAc}(5 \mathrm{M})$ is added to the mixture. Then tubes on ice for $10-60 \mathrm{~min}$. After centrifugation at 14000 rpm for 10 min at $4^{\circ} \mathrm{C}$ the liquid phase in every tube is mixed with phenol, Chloroform and Isoamylalchol (400ul:400ul:7ul per sample) with mixing followed by centrifugation for 5 min at room temperature. Upper phase is mixed with 500ul isopropanol and incubated at $-20{ }^{\circ} \mathrm{C}$ for overnight. DNA is precipitated by centrifugation for 10 min at

14000 rpm at $4^{\circ} \mathrm{C}$. Pellets are washed with $70 \%$ ethanol and dried at room temperature. DNA is then suspended in 50 ul Tris buffer containing RNase (100:1 v/v) and incubated at $37^{\circ} \mathrm{C}$ for 1 hour to obtain RNA-free DNA.

### 4.2.2.5 Polymerase chain reaction

Polymerase chain reaction was carried out in a volume of 50ul. 5ul of complementary DNA (cDNA) was used as template for each PCR reaction along with, 10 uM of primer solutions (5ul of forward and reverse primers), 1 ul of 10 mM dNTPs, 1 ul (1U) of Taq polymerase and 5ul of 10 x PCR buffer. The volume was completed to 50 ul by addition of 28 ul of ddH2O. The PCR reaction was carried out with a 3 min of denaturation at $94^{\circ} \mathrm{C}$ for one cycle, followed by 40 cycles of 30 sec of denaturation at $94^{\circ} \mathrm{C}$, 30 sec of annealing at $57^{\circ} \mathrm{C}$ or $59^{\circ} \mathrm{C}$ (see the results section) and extension of 1 min at $72^{\circ} \mathrm{C}$. A final 10 min extension cycle was carried at $72^{\circ} \mathrm{C}$ prior to halting the reaction at $4^{\circ} \mathrm{C}$. All the reaction was loaded on agarose gel for further work.

PCR for proteinase inhibitor-like gene (win 3.12) was carried out using 5ul of genomic DNA ( 250 ng ) from popular plant as template along with, 10 uM of primer solutions (6ul of forward and reverse primers), 1.7 ul of 10 mM dNTPs, 2 ul (2U) of Taq polymerase, 5 ul of $10 x$ PCR buffer and $5 u l$ of 5 mM Mgcl . The volume was completed to 50 ul by addition of 19.3 ul of ddH2O.genomic. The same program mentioned above was used but the used annealing temperature was $55^{\circ} \mathrm{C}$.

PCRs for thaumatin genes were carried out using genomic DNA (250ng) from Arabidopsis thaliana materials using the same reaction mixture as for win 3.12 gene. The same program mentioned above but with different annealing temperatures for every gene, ranging from 45 to $60^{\circ} \mathrm{C}$ for every gene was used, then another PCR was carried out for every thaumatin gene at the optimal annealing temperature.

### 4.2.2.6 Reverse Transcription-PCR

Reverse transcription was carried out using a kit for first strand cDNA synthesis from Fermentas (RevertAid ${ }^{\text {TM }}$ ) on total RNA. 2ug RNA was used for reverse transcription. To the RNA, $2 u l$ of antisense primer (1:10 diluted) was added and volume was adjusted up to 12 ul with ddH2O. The mixture was incubated at $70^{\circ} \mathrm{C}$ for 5 min and immediately transferred on ice. To this, 4 ul of $5 \times 1^{\text {st }}$ strand buffer, 2 ul of 10 mM dNTPs and 1 ul of Ribonuclease inhibitor was added and incubated after mixing for 5 min at $37^{\circ} \mathrm{C}$. The reverse transcription reaction was then carried out at $42^{\circ} \mathrm{C}$ for 60 min after adding 1 ul of reverse transcriptase (200U/ul). Then the reaction was incubated at $70{ }^{\circ} \mathrm{C}$ for 10 min then immediately on ice to stop the reaction. cDNA formed was used for regular PCR using 5ul of the product.

### 4.2.2.7 Elution and purification of DNA fragments

The DNA band from $1 \%$ agarose gel was cut out under UV light and DNA was eluted and purified using a NucleoSpin Extraction Kit (Clontech). 500ul of NT buffer was added to the cut piece and agarose was melted at $65^{\circ} \mathrm{C}$ for 10 min . Solution was added to purification column and column was centrifuged at 11000 g for 1 min , and the eluted solution was discarded. 600ul of NT3 buffer was added to the column to wash the membrane followed by centrifugation of the column at 11000 g for 1 min . The membrane was dried by centrifugation of empty column for 2 min at 11000 g . For elution of the purified DNA from the column, 20-25ul of NE buffer was added to the membrane and after incubation for 1 min at room temperature, the column was centrifuged for 1 min at 11000 g , the eluted buffer contains the purified DNA. 5ul of purified DNA was loaded on agarose gel for estimating DNA amount.

### 4.2.2.8 Ligation

Ligation was carried out in pGEM-T Easy Vector using pGEM-T Easy Vector kit from Promega. Ligation mixture consisted of 1 ul ( 50 ng ) of vector DNA, $1 u l$ of purified DNA, 5ul of $2 x$ ligation buffer, $1 u l$ of T4 ligase and $2 u l$ of water, in total volume of 10 ul . Ligation reaction was run at $21^{\circ} \mathrm{C}$ for $2-3$ houres or overnight at $14^{\circ} \mathrm{C}$.

### 4.2.2.9 Transformation of $E$. coli cells

The competent cells were thawed on ice, one vial (200 ul) for each transformation was taken. 4ul of ligation mixture were added and cells incubated on ice for $15-20 \mathrm{~min}$. The cells were given heat shock at $24^{\circ} \mathrm{C}$ for 90 min then were chilled on ice for another 90min. 800ul of LB medium was added to cells and incubated them at $37^{\circ} \mathrm{C}$ for 1 hour. After centrifugation for 3 min at $12000 \mathrm{rpm}, 870 \mathrm{ul}$ of cell suspension were plated on LB medium with specific selection marker and incubated at $37^{\circ} \mathrm{C}$ for overnight.

### 4.2.2.10 Mini Prep and restriction analysis

The bacteria were grown in $2-3 \mathrm{ml}$ of LB medium with antibiotic (Amp., $100 \mathrm{ug} / \mathrm{ml}$ ) overnight at $37^{\circ} \mathrm{C}$. E. coli cells were harvested by centrifugation at 12000 g for 3 min . The residual medium was removed and cells were resuspended in 100ul of ice-cold resuspension buffer by vortexing. 200ul of lysis buffer was added on the resuspended cells and incubated on ice for 3min. 150ul of neutralizing buffer was added and again incubated on ice for 3 min . Following this the cells were centrifuged at 12000 g for 5 min at $4^{\circ} \mathrm{C}$. The supernatant was transferred into a new tube and an equal volume of Phenol: Chloroform was added followed by vortexing. After centrifugation at 12000 g for 8 min at $4^{\circ} \mathrm{C}$, the supernatant was transferred into a fresh tube and double-stranded DNA was
precipitated with 2 volumes ( 800 ul ) of ice cold ethanol (100\%). Tubes were kept at $-20^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$, then centrifugation at 12000 g for 10 min at $4^{\circ} \mathrm{C}$. Supernatant was discarded and pellets were washed with 70\% ethanol (500ul) and after vortex and centrifugation, ethanol was removed and pellets were dried at $37^{\circ} \mathrm{C}$ and resuspended in 25 ul sterile water. For restriction analysis, 4 ul of miniprep DNA was restricted in an end volume of 18 ul using 2 ul of appropriate buffer, 1 ul RNase and 1 ul of enzyme (10U). The reaction was incubated at $37^{\circ} \mathrm{C}$ for 3houres or overnight. The restriction digest was then analyzed by agarose gel electrophoresis.

### 4.2.2.11 Sequencing

Sequence information was obtained by Sanger-Coulson method using the Thermo sequence fluorescent primer cycle sequencing kit with 7-deaza-dGTP (Amersam Pharmacia Biotech, Freiburg, Germany). Software for the sequencing was Base Imagir 4.0 (L1-COR, MWG-Biotech GmbH, Ebersberg, Germany). To compare the new sequences with already known entries BLAST-Algorithms (Altschul et al. 1997) of NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) were used.

### 4.2.3 Biochemical Methods

### 4.2.3.1 SDS PAGE (Polyacrylamide gel electrophoresis)

$12 \%$ or $15 \%$ SDS- Polyacrylamide gel were prepared according to Laemmli (1970). SDS loading dye with $1 / 10$ volume of protein sample was boiled at $95^{\circ} \mathrm{C}$ for 5 min and all the sample (50ul) was loaded on gel. Gels were run in 1 X running buffer at 20 mM for 15 min , then at 35 mM until the blue band is just leaving the gel. As protein standard, the 14.4 KDa protein molecular weight marker (Fermentas) was used.

### 4.2.3.2 Commassie brilliant blue staining

Gels were immersed in Commassie brilliant blue staining solution for overnight with continues shaking. Gels were destained by using destaing solution with continues changes of the solution till the appearance of protein bands with clear background of the gel.

### 4.2.3.3 Silver staining

Silver staining of gels was done according to the following meathod: Gels were fixed for 1 hour in 300 ml of a fixative solution composed of $50 \%$ methanol, $12 \%$ glacial acetic acid and 0.5 ml of $37 \%$ formaldehyde. Gels were pretreated with 300 ml of $0.2 \mathrm{~g} / \mathrm{l} \mathrm{Na} \mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3.5} \mathrm{H}_{2} \mathrm{O}$ after washing with $50 \%$ ethyl alcohol 3 times for 20 min each. Then gels were washed with water for 20 seconds for 3 times before impregnation in 300 ml mixture of $2 \mathrm{~g} / \mathrm{l} \mathrm{AgNO}_{3}$ and $0.75 \mathrm{ml} / \mathrm{l}$ of $37 \%$ acetic acid for another 20 min . Gels were developed for (2-10) min in 300 ml of a developer solution composed of $60 \mathrm{~g} / \mathrm{l} \mathrm{NaCO} 3,0.5 \mathrm{ml} / \mathrm{l}, 37 \%$ acetic acid and $4 \mathrm{mg} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ after brief washing (for 20 sec ) in water for 2 times. The developer is removed and gels were washed twice with water for 2 min each. The staining was stopped by immersing the gels in 300 ml of a mixture of $50 \%$ methanol and $12 \%$ acetic acid. Gels were washed for 20 min in $50 \%$ methanol then with $30 \%$ methanol solution for 30 min and finally with $4 \%$ glycerin solution for 30min.

### 4.2.3.4 Bioautography

Bioautograghy method was performed according to the method of Vigers et al (1991) as follows: SDS-PAGE was performed following the method of Laemmli (1970) using 12\% polacrylamide gel (100X140X0.75mm) with 5\% stacking gel. Samples were boiled for 5 min
in sample buffer (15\% (w/v) sucrose, 2.5 (w/v) SDS, 125mM Tris, PH=6.8). Electrophoresis was done for 90 min at room temperature at 35 mA . The resulting gel was then incubated, with shaking, in 250 ml of $1 \%$ ( $\mathrm{v} / \mathrm{v}$ ) Triton X100 in water for 20 min at room temperature. After brief washing in water, gel was incubated in 100 ml of $20 \%$ LB broth medium and gently shaken for 30 min at room temperature. Finally, gel was placed in 100 mm -diameter Petri dish and 20 ml of warm agar ( $1.5 \%$ (w/v) agar, $20 \%$ LB medium and $4-6 \times 10^{5}$ Candida maltosa cells per milliliter of final concentration) was poured over the gel and allowed to solidify. After overnight incubation at $30^{\circ} \mathrm{C}$, the position of antimicrobial (antifungal) activity on the gel was detected as a clear band of growth inhibition against a background of fungal growth. For calculating the molecular weight value for the compound (protein) responsible for the antimicrobial activity, prestained MW marker was run in one lane of the gel, and in a second lane, 50ul of crude plant extract was also run simultaneously. After electrophoresis, these 2 lanes were cut and stained with Coomassie Brilliant Blue R-250 (overnight). By comparing, after destaining, the stained part of the gel with the gel in Petri dish, the band from the plant extract responsible for the activity can be detected, and also in presence of MW marker, the molecular weight of the active protein can be determined.

### 4.2.3.5 Purification of antimicrobial activity

## Ammonium sulphate precipitation

5 ml of intracellular fraction of Arabidopsis were treated with 4 gm of ammonium sulphate ( $80 \%$ saturation). Salt was added gradually with continuous stirring at $4^{\circ} \mathrm{C}$. The precipitate was collected at 14000 rpm after keeping at $4^{\circ} \mathrm{C}$ for overnight and it was resuspended in 1 ml of Na-phosphate buffer ( $10 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{HPO}_{4}, 15 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4} \mathrm{PH}=7$ ) containing 2 mM PMSF and 1 mM Benzamidine hydrochloride as proteinase inhibitors and
dialyzed extensively against the same Na-phosphate buffer. The dialyzed suspension was centrifuged at 14000 rpm for 20 min and the pellets ware dissolved in 1 m of 8 M urea solution. Supernatant and urea solutions ware used for testing the antimicrobial activity of the intracellular proteins from mixotrophic Arabidopsis culture against the tester isolates.

## High speed centrifugation

30 gm of Arabidopsis materials were extracted with Na -phosphate buffer ( $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 15 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4} \mathrm{PH}=7$ ) containing 2 mM PMSF and 1 mM Benzamidine hydrochloride for overnight at $4^{\circ} \mathrm{C}$ with shaking. After low speed centrifugation, the supernatant was exposed to high speed centrifugation (14000rpm) for 20 min and pellet was dissolved in 3 ml of 8 M urea. Both the supernatant and urea-extract were used for testing the presence of antimicrobial activity.

## Gel filtration

## Calibration of Sephacryl S-100 HR column

HiPrep Sephacryl S-100 HR column (Amersham Bioscience) was calibrated using molecular weight gel filtration calibration kit (Pharmacia) composed of four pure standard proteins; ribonuclease A (13.7KDa), Chymotrypsinogen ( 25 KDa ), Ovalbumin (43KDa) and Bovine serum albumin ( 67 KDa ) and the kit contains also Blue Dextran 2000 (2000KDa) marker. 1mg of each standard protein and 2 mg of blue Dextran 2000 was dissolved separately in 1 ml of 4 M urea solution, and 200ul of each standard were mixed together and injected to the top of the Sephacryl S-100 column (connected to ÄKTAprime protein purification system) after washing the column with the running buffer (10mM $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 15 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, 0.15 \mathrm{M} \mathrm{NaCl}$ and 4 M Urea $\mathrm{PH}=7$ ). 1 ml fractions were collected at a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$ and $\mathrm{V}_{\mathbf{o}}$ (the volume of mobile phase before
elution of blue Dextran 2000 standard) was calculated. 100 fractions were collected and the protein content of each fraction was measured using UV spectrophotometer and $V_{\mathbf{e}}$ (elution volume) was calculated for the five different standard markers. The calibration of the column was used for calculation of molecular weight of the protein of interest in the crude plant extract.

## Purification of active protein from Arabidopsis

50 gm of Arabidopsis materials were extracted with Na-phosphate buffer ( $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 15 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4} \mathrm{PH}=7$ ) containing 2 mM PMSF and 1 mM Benzamidine hydrochloride for overnight at $4^{\circ} \mathrm{C}$ with shaking. After low speed centrifugation, the supernatant was exposed to high speed centrifugation (14000rpm) for 20 min and after discarding the supernatant, the pellet was dissolved in 5 ml 8M urea and after another centrifugation at 14000 rpm for 30 min , the supernatant ( 4 ml ) was injected to the top of HiPrep Sephacryl S-100 HR column using 10 ml -volume injection loop connected to ÄKTAprime protein purification system. The column was washed with the running buffer ( 10 mM $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 15 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 0.15 \mathrm{M} \mathrm{NaCl}$ and 4M Urea $\mathrm{PH}=7$ ) before starting purification. After loading the protein sample, the instrument was run according to the following program:


Set Fraction Size $\xrightarrow{\text { select }(1 \mathrm{ml})}$ Set Pressure Limit $\xrightarrow{(0.15 \mathrm{MPa})}$
Set Buffer Valve Pos Pos $1 \longrightarrow$ Set Inject Valve Pos $\xrightarrow{(\text { Load })}$

Inject your sample using syringe


Press End (when the run is complete) $\longrightarrow$ Press OK

Repeat washing the system

1 ml fractions were collected at room temperature and protein concentration of every fraction was tested using UV spectrophotometer. The antimicrobial activity was tested for different fractions. The purity of different active fractions was tested using $15 \%$ SDS-PAGE and gels were stained with silver staining.

## Mass spectrometry

The gel bands were excised, washed and subjected to in-gel-digestion with trypsin according to the method of Sickmann et al., 2000. Resulting peptides were eluted by incubation with $20 \mu \mathrm{~L} 5 \%$ formic acid for 15 min . The obtained peptide mixture was used for nano-LC-MS/MS analysis using a Dionex Ultimate 3000 nano-LC-system (Dionex GmbH, Idstein, Germany) directly coupled to a ThermoElectron LCQ DecaXP ion trap mass spectrometer (ThermoElectron, Dreieich, Germany) according to the method of Wilm et al., 1996).Tandem mass spectra were searched against the NCBInr database using the Mascot algorithm (Version 2.1; Matrixscience, London, GB). Significant protein identification with at least two different, significantly scored peptides were verified manually. $75 \mu \mathrm{~m}$ I.D., 15 cm length C18-column (LCPackings, Amsterdam, NL) with preconcentration (300 $\mu \mathrm{m}$ I.D., 1 mm length, C18 Pepmap-column, LCPackings, Amsterdam, NL).

### 4.2.3.6 Bradford-Protein estimation

Protein content was estimated according to Bradford (1976), 100ul of sample was mixed with 900 ul of Bradford reagent and was incubated at RT for 10 minutes. OD was measured at 578 nm and standard was made with $0-10 \mathrm{ug}$ of BSA (Bovine albumin serum

4.3 Instruments	
Protein purification system:	Äktaprime, Amersham Pharmacia Biotech
Gel documentation system:	LTF M/WL 312nm, camera: CCD XCST50 Mitsubishi video copy processor P67E
SDS-Minigel-Apparatus:	Biometra
PCR-machine:	Hybaid: PCRSprint and PCRExpress
pH-Meter:	WTW pH525 with electrode Ingold 40557
Spectrophotometer:	Kontron Uvikon 860 with Plotter 800 Pharmacia Gene Quant II
Centrifuge:	Eppendorf 5415-C and 5417R, Heraeus Megafuge 1.0, Sorvall centrifuge RC-2B SS34, GSA and HB4
4.4 Chemicals and Enz	zymes
AppliChem, Darmstadt:	Dithiothreitol (DTT)
Biomers, Ulm:	Oligonucleotides
BioRad, Richmond:	Ammoniun persulphate, TEMED
Biozym, Hameln:	Agarose
Gibco BRL:	Ribonuclease Inhibitor
Fermentas, Germany:	Protein molecular weight marker
New England Biolabs:	Restrictionenzymes
Promega, Madison:	Reverse Transcriptase MMLV H(-)
Roth, Karlsruhe:	EDTA, Glycerin, Glycin, Chloroform p.a., Ethanol p.a., Phenol, RNAse, SDS, Tris
Serva, Heidelberg:	Acrylamid, Bisacrylamid
Sigma, Deisenhofen:	Ammonium-Persulfat, Ampicillin, DEPC, Formamid, HEPES, MOPS
USB, Cleveland	Ethidiumbromide

## References

Ainsworth, D. G. (1986) History of medical and veterinary mycology. Cambridge university Press, Cambridge: 43-47
Akiyama, N., Hijikata, M., Kobayashi, A., Yamori, T., Tsuruo, T. and Natori, S. (2000) Anti-tumor effect of $N$-beta-alanyl-5-S-glutathionyl dihydroxyphenylalanine (5-S-GAD), a noval antibacterial substance from an insect. Anticancer Research 20: 357-362

Almagboul, A.Z., Bashir, A.K., Farouk, A. and, Salih, A.K.M. (1985) Antimicrobial activity of certain sudanese plants used in folkloric medicine,screening for antibacterial activity. Fitoterapia 56: 331-337
Almagboul, A.Z., Bashir, A.K.,Farouk, A. and Salih, A.K.M., (1988) Antimicrobial activity of certain sudanese plants used in folkloric medicine,screening for antifungal activity. Fitoterapia 59: 393-396
Alonso-Paz, E., Cerdeiras, M.P., Fernandez, J., Ferreira, F., Moyna, P., Soubes, M., Vazquez, A., Veros, S. and Zunno, L. (1995) Screening of Uruguayan medicinal plants for antimicrobial activity. J. Ethanopharmacol 45: 67-70

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402

Alvarez, M.E., Pennel, R.I., Meijer,P.J., Ishikawa, A., Dixon,R.A. and Lamb, C. (1998) Reactive oxygen intermediates mediate a system signal network in the establishment of plant immunity. Cell 92: 773-784

Anaieva, K.I. and Ananiev, E.D. (1999) Effect of methyl ester of jasmonic acid and benzylaminopurine on growth and protein profile of exicsed cotyledons of cucurbita pepo (Zucchini). Biol. Plant 42: 549-557

Anaissie, E. and, Bodey,G.P. (1989) Nonsccomial fungal infection:Old problems and new challenges. infect. Dis.Clin. North. Am 3: 867-882
Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides:an overview. Biopolymers 47: 415-433

Anesini, N. and Perez, C. (1993) Screening of plants used in Argentine folk medicine for antimicrobial activity. J. Ethanopharmacol 39: 119-128
Artizzu, N., Bonsignore,L., Cottiglia, F. and Loy, G. (1995) Studies of diuretic and antimicrobial activity of Cynodon dactylon essential oil. Fitoterapia 66: 174-175
Balandrin, M.J. and, Klocke. J.A. (1988) Medicinal, aromatic and industrial materials from plants. In Y.P.S. Bajaj (ed.),Biotechnology in Agriculture and Fotestry. Medicinal and Aromatic plant, 4: 1-36
Bals, R. (2000) Epithelial antimicrobial peptides in host defense gainst infection (Review). Respiratory Research 1: 141-150
Batalia, M.A., Monzingo, A.F., Ernst, S., Roberts, W. and Robertus, J.D. (1996) The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nature Structural Biol. 3: 19
Bateman, A. and Sanford, R. (1998) The PLAT domain: a new piece in PKD1 puzzle. Curr. Biol 9: 588-590
Bechinger, B., Zasloff, M. and Opella, S.J. (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sciences 2: 2077-2084
Benjamin, B.D., Sipahimalani,A.T., Heble, M.R. and chadha, M.S. (1986) In:Proc.VI International congress on plant tissue and cell culture. 249 University of Minneapolis, Minnesota. USA

Berlin, J. (1986) Secodary products from plant cell cultures. In: Rehm, H.J.,Reed,G. (eds) Biotechnology 4: 630-658

Bohlmann, H. (1999) The role of thionins in the resistance of plants. In:Datta, S.K.,Muthukrishnan, S. eds. Pathogenesis-related proteins in plants, CRC Press: 207-234

Bois, E., Lientier, F. and Yart,A. (1999) Bioassays on Leptographium wingfieldii, a bark beetle associated fungus, with phenolic compounds of Scots pin phloem. European Journal of Plant Pathology 105: 51-60
Boman, H. (1998) Gene-encoded peptide antibiotics and the concept of innate immunity:an update review. Scandinavian Journal Immunology 48: 15-25

Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254
Broekaert, W., Cammue, B.,de Bolle, M.,Thevissen, K.,De Samblanx, G. and Osborn, R. (1997) Antimicrobial peptides from plants. Critical Reviews in Plant Science 16: 297-323

Brogden, K., De Lucca, A. and Elliott, S. (1996) Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for pasteurella haemolytica. Proc. Natl. Acad. Sci USA 93: 412-416

Bulet, P., Hetru, C., Dimarcq,J. and Hoffmann,D. (1999) Antimicrobial peptides in insects: structure and function. Developmental comparative Immunology 23: 329-344
Capelli, N., Diogon, T., Greppin, H. and Simon, P. (1997) Isolation and characterization of cDNA clone encoding an osmotin-like protein from Arabidopsis. Gene 191: 51-56
Chapman, E.R. and Davis, A.F. (1998) Direct interaction of Ca2+- binding loop of synaptotagmin with lipid bilayers. The Journal of Biological Chemistry 273: 13995-14001

Cheetham, P.S.J. (1995) Biotransformation:new routes to food ingredients. Chem Ind.: 265-268

Chen, K., Lin, C., Chung, M., kuan, C., Sung, H., Tsou, S.C.S., Kuo, C.G. and Chen, C. (2002) Cloning and charactrization of a cDNA
encoding an antimicrobial protein from mung bean seeds. Bot.Bull.Acad.Sin. 43: 251-259
Chen, R., Wang, F. and Smith, A.G. (1996) A flower-specific gene encoding an osmotin-like protein from Lycopersicon esculentum. Gene 179: 302310
Cimolai, N., Gill,M.J. and Church, D. (1987) Saccharomyces cerevisiae fungemia:case report and review of the literature. Diagn. Microbiol. Infect. Dis 8: 1987

Cohen, M.L. (1992) Epidemiology of drug resistance: implicaions for post antimicrobial era. Science 257: 1050-1055
Conrath, U. (1989) Plant Cell Rep. 81: 52-55
Cornelissen, B.J.C., Huijsduijnen, R.A.M. and Bol, J.F. (1986) A tobacco mosaic virus-induced protein is homologous to sweet-tasting protein thaumatin. Nature 321: 531-532

Cruz, F.G., Roque, N.F., Giesbrecht, A.M. and Davino, S.C. (1996) Antibiotic activity of diterpenes from Mikania triangularis. Fitoterapia 67: 189-190

Davis, D.A. (1992) Phytochem. 31: 160-163
DE Lucca, A.J. (2000) Antifungal peptides:potential candidates for the teratment of fungal infections. Expert opinion of Investigational Drugs 9: 273-299
De Vos, A., Hatada, M., Van der Wel, H., Krabbendam, H., Peerdeman, A.F. and Kim, S.H. (1985) Three dimensional structure of thaumatin I, an intesely sweet protein. Proc. Natl. Acad. Sci USA 82: 1406
Decker, H., Ryan, M., Jaenicke, E. and Terwilliger, N. (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurpelma californicum, and cancer magister. Journal of Biological Chemistry 276: 17796-17799
Del Pozo, J.C. and Estelle,M. (1999) Function of the ubiqutin-proteosome pathway in auxin response. Trends Plant Sci. 4: 107-112

Delaney,T.P., Uknes,S.,Vernoij,B.,Friedrich,L.,Weyman,K.,Negrotto, D.,Gaffney, T., Gut-Rella,M.,Kessmann,H.,Wand, E. and Ryals,I. (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247-1250

Destoumieux-Garzon, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P. and Bachére, E (2001) Crustacean immunity.Antifungal peptides are generated from the $C$ terminus of shrimp hemocyanin in response to microbial challenge. Journal of Biological Chemistry 276: 47070-47077

DiCosmo, F. and Towers, G.H.N. (1984) Phytochemical adapatation to stress. Plenum Publ. Crop: 91-175

DiCosmo, F. and Tallevi, G.S. (1985) Tibtech 3: 110-111
Dimarcq, J.L., Bulet, P., Hebru, C.H. and Hoffmann, J. (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47: 465-477
Diz, M.S.S., Carvalho, A.O. and Gomes, V.M. (2003) Purification and molecular mass determination of a lipid transfer protein exuded from Vigna unguiculata seeds. Braz. J. Plant Physiol 15: 171-175

Dunlop, D.S. and Curtis, W.R. (1991) Biotechnol.Prog 74: 34
Edreva, M. (1991) Plant stress proteins PRPs. Fiziologia Rastenii 38: 788-800
Eilert, U. and Eolters, B. (1989) plant cell Technol and Organ Culture 18: 118

Ellis, J., Dodds, P. and Pryor, T. (2000) Structure,function and evolution of plant disease resistance genes. Curr.Opin.Plant Biol. 3: 278-284
Fales-Williams, A.J., Gallup, J. M., Ramirez-Romero, R., Brogden, K.A. and Ackerman, M. R. (2002) Icreased anionic peptide distribution and intensity during progression and resolution of bacterial pneumonia. Clinical Diagnostic Laboratory Immunology 9: 28-32

Feng, J., Yuan, F., Gao, Y.,Liang, C. ,Xu, J., Zhang, C. and He, L. (2003) A noval antimicrobial protein isolated from potato (Solanium tuberosum) shares homology with an acid phosphatase. Biochem. J. 376: 481-487
Fimland, G., Eijsink, V. G. and Nissen-Meyer, J. (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148: 3661-3670
Fogaca, A.C., Da Silva, P.I. JR., Miranda, M. T., Bianchi, A.G., Miranda, A., Ribolla, P.E.M. and Daffre, S. (1999) Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microp. Journal of Biological Chemistry 274: 25330-25334
Francisco, G., Molina, A., Alamillo, J.M. and Rodriguez-Palenzuela, P. (1998) Plant defense peptides. Biopolymers 47: 479-491

Fritig, B., Heitz, T. and Legrand, M. (1998) Antimicrobial proteins in induced plant defense. Curr.Opin.Immunol. 10: 16-22
Frohm, M., Gunne, H., Bergman, A.C., Agerberth, B., Bergman, T., Boman, A., Liden, S., Jornuall, H. and Boman, H.G. (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Euopean Journal of Biochemistry 237: 86-92

Fujsta, Y., Tabata, M., Nishi, A. and Yamada, Y. (1982) New medium and production of secondary compounds with two-staged culture method. In:Fujiwara, A (ed). Plant tissue culture: 399-400 Tokyo. The Japanase Association for Plant Tissue Culture, Maruzen co.Ltd
Gaceres, A., Lopez, B. R., Giron, M. A. and Logemann, H. (1991) Plants used in Guatemala for treatment of dermatophytic infections. 1. Screening for antimycotic activity of 44 plant extracts. J. Ethanopharmacol 31: 263276

Garcia-Olmedo, F., Molina,A. and Alamilo,J.M. (1998) Plant defense peptides. Biopolymers 47: 479-491
Gennaro, R. and Zanetti, M. (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55: 31-49

Gillmor, S.A., Villasenor, A., Fletterick, R., Sigal, E. and Browner, M.F. (1998) The structure of mammalian 15-lipoxygenase reveals similarity to lipases and the determinants of substrate specificity. Nat. Struct. Biol 4: 1003-1009

Glazenbrook, J. (1999) Genes controlling expression of defense responses in Arabidopsis. Curr.Opin.Plant Biol. 2: 280-286
Gullino, M.L., Leroux, P. and Smith, C.M. (2000) Uses and challenges of noval comounds for plant disease control. Crop. Protection 19: 1-11
Hancock, R.E.W. (2000) Catioinc antimicrobial peptides:towards clinical applications. Expert opinion of Investigational Drugs 9: 1723-1729
Hattori, T. and Ohta, Y. (1985) Plant Cell Physiol. 26: 1101-1110
Heble, M.R., Narayanaswamy,S. and Chadha,M.S (1968) Diosgenin and sitosterol isolation from Solanum xanthocarpum tissue cultures. Science 161: 1145

Heisey, R.M. and Gorham, A.B.K. (1992) Antimicrobial effect of plant extracts on Streptococcus mutans, Candida albicans, Trichophyton rubrum and otther microorganisms. Letter Appl. Microbiology 14: 136-139

Hiemstra, P.S., Eisenhauer, P.B., Harwig, S.S., Van Der Barselaar, M.T, Van Burth, R. and Lehrer, R.I. (1993) Antimicrobial proteins of murine macrophages. Infection and Immunity 61: 3038-3046

Hirsh, J. (1958) Bactericidal action of histone. The Journal of Experimental Medicine 108: 925-944

Hofmann, K., Bucher, P., Falquet, L. and Bairoch, A. (1999) The PROSITE database, its status in 1999. Nucleic Acids Res. 27: 215-219

Hong, Y., Wang, T., Hudak, K., Schade, F., Froese, C.D. and Thompson, J.E. (2000) An ethylene-Induced cDNA encoding a lipase expressed at the onset of senescence. PNAS 97: 8717-8722

Hou, C.T. and Forman, R.J. (2000) Growth inhibition of plant pathogenic fungi by hydroxi fatty acids. Journal of industry, Microbiology and Biotechnology 24: 275-276

Hu, X. and Reddy, A.S.N. (1995) Nucleotide sequence of cDNA clone encoding a thaumatin -like protein from Arabidopsis. Plant Physiol. 107: 305-306
Hu, X. and Reddy, A.S.N. (1997) Cloning and expression of PR5-like protein from Arabidopsis: Inhibition of fungal growth by bacterial expressed protein. Plant Mol. Biol. 34: 949-959

Hubert, F., Nel, T. and Roch, P. (1996) A member of the arthropod defensin family from edible mediterranean mussels (Mytilus galloprovincialis). European Journal of Biochemistry 240: 302-306
Hultmark, D., Steiner, H.,Rasmuson, T. and Boman, H.G (1980) Insect immunity. Purification and properties of three inducible bacterial proteins from hymolymph of immunized pupae of Hyalophora cecropia. European Journal of Biochemistry 106: 7-16
Huynh, Q.K., Borgmeyer, J.R. and Zobel, J.F. (1992) Isolation and characterization of 22 KDa protein with antifungal properties from maize seeds. Biochem.Biophys. Res. Commun. 182: 1-5

Ikram, M. and Inamul, H. (1984) Screening of medicinal plants for antimicrobial activities. Fitoterapia 55: 62-64
Iwanaga, S., Muta, T., Shigenaga, T., Miura, Y., Seki, N., Saito, T. and Kawabata, S. (1994) Role of hemocyte-derived granular components in invertebrate defense. Annals of the New York Academy of Science 712: 102-116
Izzo, A.A., DiCarlo,G.,Biscardi, D., Fusco, R.,Mascolo, N.,Borreli, F., Capasso, F., Fasulo, M.P. and Autroe, G. (1995) Biological screening of Italian medicinal plants for antibacterial activity. Phyother.Res 9: 281-286
Jack, R.W., Tagg, J. R. and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiology Review 59: 171-200

Jepson, M. and Titball, R. (2000) Structure and function of clostridial phospholipases C. Microbes Infect 2: 1277-1284
Kader, J.C. (1997) Lipid-transfer proteins:a pazzling family of plant proteins. Trends in Plant Science 2: 66-70

Kaul, B. and Staba, E.J. (1967) Ammi visnaga L. Lam. tissue cultures: mutiliter suspension growth and examination for furanochromones. Planta Medica, Journal of Medicinal plant Research (Georg Thieme Verlag (Stuttgart) 15: 145-156
Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., Ryals, J. and Cook, R.J. (1994) Induction of systemic aquired disease resistance in plants by chemicals. Ann. Rev. Phytopathol 32: 439-459
Khai Huynh, Q., Borgmeyer, J.R., Smith, C.E., Bell, L.D. and Shah, D.M. (1996) Isolation and characterization of a 30 KDa protein with antifungal activity from leaves of Engelmannia pinnatifida. Biochem.J 316: 723-727
Khai Huynh, Q., Mironaka, C. M., Levine, E. B., Smith, C.E., Borgmeyer, J.R. and Shah, D.M. (1992) Antifungal proteins from plants. The Journal of Biological Chemistry 267: 6635-6640
King, G.J., Turner, V.A., Hussey, C.E., Wurtele, E.S.Jr. and Lee, S.M. (1988) Isolation and characterization of a tomato cDNA clone which codes for salt-induced protein. Plant Mol. Biol. 10: 401-412

Knoester, M., Van Loon, L.C.,Van der Henvel,J., Bol,J.F. and Linthorst, H.V.M. (1998) Ethylene insensitive tobacco lacks non-host resistance against soil-borne fungi. Proc. Natl. Acad. Sci USA 95: 1933-1937
Kolter, R., and Moreno, F. (1992) Genetics of ribosomally synthesized peptide antibiotics. Annual Review of Microbiology 46: 141-163
Kragol, G., Lovas, S., Varadi, G., Condie, B. A.,Hoffmann, R. and Otvos, L. Jr. (2001) The antibacterial pyrrhocoricin inhibits the ATPase action of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40: 3016-3026

Krings, U. and Berger,R.G. (1998) Biotechnological production of flavours and fragrances. Appl.Microb.Biotechnol 49: 1-8
Kubo, L., Muroi, H. and Himajima, M. (1993) Structure-antibacterial activity relationship of anacardic acids. J.Agri.Food Chem 41: 1016-1019

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685
Lamb, C. and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Ann. Rev. Plant Physiol.Plant Mol.Biol. 48: 251-275

Last, D.J. and Llewellyn , D.J. (1997) Antifungal proteins from seeds of Australian native plants and isolation of an antifungal peptide from Atriplex nummularia. New Zealand Journal of Botany 35: 385-394
Lee, D., Shin, S., Kim, D., Seo, M., Kang, J., Lee, Y.,Kin, K. and Hahm, K. (1999) Antifungal mechanism of cysteine-rich antimicrobial peptide, IbAMP1, from Impatines balsamina against Candida albicans. Biotechnology Letters 21: 1047-1050

Leem, J.Y., Jeorg, I. L., Park, K. T. and Park, H. Y. (1999) Isolation of phydroxycinnamaldehyde as an antibacterial substance from the saw fly, Acantholda parki S. FEBS Letters 442: 53-56

Legendre, L., Heinstein, P.F. and Low,P.S. (1992) Evidence for participatation of GTP-binding proteins in elicitiation of rapid oxidative burst cultured soybean. J.Biol.Chem. 267: 20140-20147

Lehrer, R.I. and Ganz, T. (2002) Defensin of vertebrate animals. Current Opinion in Immunology 14: 96-102
Lemaitre, C., Orange, N., Saglio, P., Saint, N., Gagnon, J. and Molle, G. (1996) Characterization and ion channal activities of noval antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Euopean Journal of Biochemistry 240: 143-149

Lemos, T.L.G., Monte, F.J.Q, Matos, F.J.A., Alencar, J.W., Craveiro, A.A., Barbosa, R.C.S.B. and Lima, E.D. (1992) Chemical
composition and antimicrobial activity of essential oils from Brazilian plants. Fitoterapia 63: 266-268
Li, S.S., Gullbo, J., Lindholn, P., Larsson, R., Thunberg, E., Samuelsson, G., Bohlin, L. and Claeson.,P. (2002) Ligatoxin B, anew cytotoxic protein with a noval helix-turnOhelix DNA-binding domain from the mistletoe Phoradendron liga. Biochemistry Journal 366: 405-413
Lichtenheld, M.G., Olsen, K.J., Lu, P., Lowrey, D.M.,Hameed, A., Hengartner, H. and Podack, E.R. (1988) Structure and function of human perforin. Nature 335: 448-451

Liu, C.-C., Walsh, C.M. and Young, J. D-E (1995) Perforin: Structure and function. Immunol Today 16: 194-201
Liu, D., Raghothama, K. G., Hasegawa, P.M. and Bressan, R.A. (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci USA 91: 1888-1892
Liu, L., Roberts, A. A. and Ganz, T (2003) By IL-1 signaling, monocytederived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. Journal of Immunology 170: 575-580
Mainous III, A. and Pomeroy, C. (2001) Management of antimicrobials in infectious diseases. Humana Press 349 P. ISBN 0-89603-821-1

Mandard, N., Bulet, P., Caille, A., Daffre, S. and Vovelle, F (2002) The solution structure of gomesin an antimicrobial cysteine-rich peptide from spider. Euopean Journal of Biochemistry 269: 1190-1198

Mandard, N., SY, D.,Maufrais, C., Bonmatin, J.M.,Bulet, P., Hetru, C. and Vovelle, F. (1999) Androctonin, a noval antimicrobial peptide from scorpion Androctonus australis: solution structure and molecular dynamics stimulations in presence of a liquid monolayer. Journal of Biomolecular Structure and Dynamics 17: 367-380
Marques, I.A. and Brodelius, P.E. (1992) Plant Physiol. 88: 46-51

Martin, G.B. (1999) Functional analysis of plant disease genes and their down stream effectors. Curr.Opin.Plant Biol. 2: 273-279
Martinez, M.J., Vasquez, S.M., Espinosa-Perez, C., Dias, M. and HerreraSanchez, M. (1994) Antimicrobial properties of argentatine A isolated from Parthenium argentatum. Fitoterapia 65: 371-372

Masià canuto, M. and Gutiérrez Rodero,F. (2002) Antifungal drug resistance to azoles and polyenes. Lancet.Infect.Dis 2: 550-563
Matsuzaki, K. (1999) Why and how peptide-lipid interaction utilized for self defense? Magainins and tachyplesins as archetypes. Biochimica et Biophysca Acta 1462: 1-10
May, C., Höhne,M., Gnau, P., Schwennesen, K. and Kindl, H. (2000) The N-terminal $\beta$ - barrel structure of lipid body lipoxygenase mediates its binding to liposomes and lipid bodies. Euopean Journal of Biochemistry 267: 1100-1109

Mazukami, H. (1992) Plant Cell Rep. 11: 480-483
McDowell, J.M. and Dangl, J.L. (2000) Signal transduction in plant immune response. Trends Biochem.Sci 25: 79-82
Melchers, L.S., Sela-Buurlage, M. B., and Vloemans, S.A., Woloshuk, C.P., Roekel, J.S. C, Van den Elzen, P.J.M. and Cornelissen, B.J.C. (1993) Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and B-1,3-glucanase in transgenic plants. Plant Mol. Biol. 21: 583-593

Mendoza, L., Wilkens, M. and Urzúa, A. (1997) Antimicrobial study of the resinous exudate and of diterpenoids and flavonoids isolated from some Chilean pseudognaphalium (Asteraceae). Journal of Ethanopharmacology 58: 85-88

Milligan, S.B., Bodean,J., Yaghoobi,J.,Kaloshian, I.,Zabel, P. and Williamson, V.M. (1998) The root knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucinerich family of plant genes. Plant Cell 10: 1307-1319

Mitta, G., Vandenbulcke, F., Hubert,F. and Roch, P. (1999) Mussel defensins are synthesised and processed in granulocytes then released into plasma after bacterial challenge. Journal of Cell Sciences 112: 42334242

Muñoz, M., Vandenbulcke, F., Gueguen, Y. and Bachere, E. (2003) Expression of penaeidin antimicrobial peptides in early larval stages of the shrimp Penaus vannamei. Developmental comparative Immunology 27: 283-289

Muñoz, M., Vandenbulcke, F., Saulnier, D. and Bachére, E. (2002) Expression and distribueion of peraeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Euopean Journal of Biochemistry 269: 2678-2689

Nakajima, Y., Van Der Goes van Nateryasui, A.,Taylor,D. and Yamakawa,M. (2001) Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochemistry and Molecular Biology 31: 747-751
Nascimento, S.C., Chiappeta, A. and Lima, R.M.O.C. (1990) Antimicrobial and cytotoxic activities in plants from Pernambuco, Barazil. Fitoterapia 61: 353-355

Naylor, C.E., Eaton, J.J., Howells, A., Justin, N., Moss, D.S., Titball, R.W. and Basak, A.K. (1998) Structure of the key toxin in gas gangrene. Nat. Struct. Biol 5: 738-746

Nguyen, M.H., Peacock, J.E., Morris, A.J., Tanner, D.C., Nguyen, M.L.,Syndman, D. R.,Wagener,M.M., Rinaldi, M.G. and Yu, V.L. (1996) The changing face of candidemia. emergence of non-candida albicans species and antifungal resistance. Am.J.Med 100: 617-623

Ogata, C.M., Gordon, P.F., De Vos ,A. and Kim, S.H. (1992) Crystal structure of a sweet tasting protein thaumatin I, at 1.65 A . J. Mol. Biol. 228: 893

Osbourn, A.E. (1996) Preformed antimicrobial compounds and plant defense against fungal attack. The plant cell 8: 1821-1831

Oscáriz, J.C. and Pisabarro, A.G. (2001) Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. International Microbiology 4: 13-19
Otvos, L.J. (2000) Antibacterial peptides isolated from insects. Journal of Peptide Science 6: 497-511

Park, C.B., Kim, M.S. and Kim, S.C. (1996) A noval antimicrobial peptide from Bufo bufo garagarzans. Biochemical Biophysical Research Communications 218: 408-413

Park, C.B., Kim, M.S. and Kim, S.C. (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical Biophysical Research Communications 244: 523-527

Park, I.Y. (1998) Parasin I, an antimicrobial peptide derived from histone H2A in the catfish Parasilurus asotus. FEBS Letters 437: 258-262
Patrzykat, A., Zhang, L., Mendoza, V., Iwama, G. K. and Hancock, R.E.W. (2001) Synergy of histone-derived peptides of coho salmon with lysozyme and flourder pleurodicin. Antimicrobial Agents Chemotherapy 45: 13371342

Pétiard, V. and Bariud-Fontanel, A. (1987) La culture des cellules vegetales. La Recherche (Paris) 18: 602-610
Pétriard, V. and Bariaud-Fontanel, A. (1987) La culture des cellules vegetales. La Recherche (Paris) 18: 602-610

Pfaller, M.A., Diekema, D.J., Jones, R.N., Sander, H.S.,Fluit, A.C., Hallis, R.J., Messer, S.A. and SENTRY praticipant group (2001) International sureillance of blood-stream infectious due to Candida species: Frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole and voriconazol of isolates collected from 1997 through 1999 in the SENTRY antimicrobial sureillance program. J.Clin. Microbiol. 39: 3254-3259
Phillipson, J.D. (1990) Plants as source of valuable products. In B.V. charlwood, and M.J.C. Rhodes (eds.), Secondary products from plant Tissue culture. Oxford: clarendon press.: 1-21

Piffanelli, P., Devoto,A. and Schulze-Lefert, P. (1999) Defense signalling pathways in cereals. Curr.Opin.Plant Biol. 2: 295-300
Pollock, J.J., Denpitiya, L., Mackay, B.J. and Iacono, V. J. (1984) Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infection and Immunity 40: 702-707
Powderly, W.G., Kobayashig, G.S.,Herzig,G.P. and Medoff,G. (1988) Anphotericin B-resistant yeast infection in severely immunocompromised patients. Am.J.Med 84: 826-832

Ramachandra Rao, S. and Ravishankar, G.A. (2002) Plant cell cultures:Chemical factories of secondary metabolites. Biotechnol.Adv. 20: 101-153
Rauha, J.P., Remes, S., Heinonen, M.,Hopia, A., Kahkonen, M., Kujala, T.,Pihlaja, K. and Vuorela,H. (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology 56: 3-12
Ravishankar, G.A. and Ramachandra Rao,S. (2000) Biotechnological production of phyto-pharmaceuticals. J.Biochem.Mol.Biol.Biophys. 4: 73102

Rex, J.H., Walsh, T.J. and Sobel, D.J. (2000) Practical guidelines for the treatment of cadidiasis. Clin.infect.Dis 30: 662-678
Reymond, P. and Farmer,E.E. (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr.Opin.Plant Biol. 1: 404-411
Roberts, W.K. and Selitrennikoff, C.P. (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol. 136: 1771

Rokem, J.S. (1984) Plant Cell Rep. 3: 159-160
Rossi, M., Goggin, F.L.,Milligan,S.B.,Kaloshian,I.,Ullman, D.E. and Williamson, V.M. (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci USA 95: 9750-9754

Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y. and Hunt, M.D. (1996) Systemic acquired resistance. The plant cell 8: 1809-1819

Salzet, M. (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends in Immunology 22: 285-288
Salzet, M. and Tasiemski, A. (2001) Involvement of pro-enkephalin-derived peptides in immunity. Developmental comparative Immunology 25: 177185

Sangland, D. and Odds, F.C. (2002) Resistance of Candida species to fungal agents:Molecular mechanisms and clinical consequences. Lancet.Infect.Dis 2: 73-85

Santos Filho, D., Sarti, S.J.,Bastos, J.K., Leitão Filho, H.F., Machado, J.O., Araujo, M.L.C., Lopes, W.D. and Abreu, J.E. (1990) Ativiade antibacteriana de extratos vegetais. Rev. Cien. Farm 12: 39-46
Saxena, G., McCutcheon, A.R., Farmer, S., Towers, G.H.N. and Hancock, R.E.W. (1994) Antimicrobial constituents of Rhus glabra. J. Ethanopharmacol 42: 95-99
Scheel, D. (1998) Resistance response physiology and signal transduction. Curr.Opin.Plant Biol. 1: 305-310
Schibli, D.J., Epand, R.F., Vogel, A.J. and Epand, R.M. (2002) Tryptophanrich antimicrobial peptides: comparative properties and membrane interactions. Biochemistry and Cellular Biology 80: 667-677

Schillinger, U., Geisen, R. and Holzapfel, W.H. (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of food. Trends in Food Sciences and Technology 7: 158-164

Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G. and Garbe, C. (2001) Dermcidin: a noval human
antibiotic peptide secreted by sweat glands. Nature Immunology 2: 1133-1137
Scragg, A.H. (1997) The production of aromas by plant cell cultures. In:T. Schepier (ed.), Adv Biochem Erg. Biotechnol 55: 239-263

Segura, A., Moreno,M., Bolina,A. and García-Olmedo,F. (1998) Noval defensin subfamily from Spinach (Spinacia oleracea). FEBS Letters 435: 159-162

Shapoval, E.E.S., Silveria, S.M.,Miranda, M.L., Alice, C.B. and Henriques, A.T. (1994) Evaluation of some pharmacological activities of Eugenia uniflora. J.Ethnopharmacol 44: 136-142
Shin, R., An, J., Park, C., Kim, Y., Joo, S., Kim, W. and Paek, K. (2004) Capsicum annuum Tobacco mosaic virus-Induced clone1 expression perturbation alters the plant's response to ethylene and interferes with the redox homeostasis. Plant Physiol. 135: 561-573
Sickmann, A., Dormeyer, W., Wortalkamp, S., Kuhn, W. and Meyer, H.E. (2000) Identification of proteins from human cerebrospinal fluid, separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 21: 2721-2728
Silva, P.I., Daffrs, S. and Bulet, P. (2000) Isolation and characterization of gomesin, a 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hymocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. Journal of Biological Chemistry 275: 33464-33470
Simmaco, M., Mignogra, G. and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47: 435-450
Simon, L., Fremaux, C., Cenatiempo, Y. and Berjeand, J. M. (2002) Sakacin G, a new type of antilisterial bacteriocin. Applied and Environmental Microbiology 68: 6416-6420

Singh, N.K., Bracker, C.A., Hasegawa, P.M., Handa, A.K., Buckel, S., Hermodson, M.A., Pfankoch, E., Regnier, F.E. and Bressan,
R.A. (1987) Characterization of osmotin, a thaumatin-like protein associated with osmotic adapatation in plant cells. Plant Physiol. 85: 529536

Singh, N.K., Handa, A. K., Hasegawa, P.M. and Bressan, R.A. (1985) Proteins associated with adaptation of cultured tobacco cells to NaCl . Plant Physiol. 79: 126-137
Singh, N.K., Nelson, D.E., Kuhn, D., Hasegawa, P.M. and Bressan, R.A. (1989) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol. 90: 1096-1101

Skadharge, B., Thomsen, K.K. and Von Wettstein, D. (1997) The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126: 147-160

Smith, J.I., Smart, N.J., Kurz, W.G.W. and Misawa, M. (1987a) Exp.Bot. 38: 1501-1506

Smith, J.I., Smart, N.J., Kurz, W.G.W. and Misawa, M. (1987b) Planta Medica 53: 470-474

Somssich, I. and Hahlbrock, K. (1998) Pathogen defense in plants:a paradigm of biological complexity. Trends Plant Sci. 3: 86-90

Sticher, L., Mauch-Mani,B. and Metraux,J.P. (1997) Systemic aquired resistance. Ann. Rev. Phytopathol 35: 235-270
Stintzi, A., Heitz, T., Kauffmann, S., Legrand, M. and Fritig, B. (1991) Identification of a basic pathogenesis-related, thaumatin-like protein of virus-induced tobacco as osmotin. Physiol. Mol. Plant Pathol. 38: 137-146

Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdiogla, S., Kauffmann, S., Geoffroy, P., Legrand, M. and Fritig, B. (1993) Plant pathogenesisrelated proteins and their role in defense against pathogens. Biochimie 75: 687-706

Tabata, M., Mizukami, H., Hiraoka, N. and Konochima, M. (1976) The production and regulation of shikonin derivatives in cultured cells. In.12th Phtochem symp.(Kyoto, Japan): 1-8

Tailor, R.H., Acland, D.P.,Attenborough, S., Cammue, B. P.A., Evans, I.J., Osborn, R.W., Ray, J.A., Rees, S.B. and Broekaert, W.F. (1997) A noval family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. The Journal of Biological Chemistry 272: 24480-24487
Tang, Y.Q., Yuang, J., Osapay, G. D.,Osapay,K., Tran, D.,Miller, C.J., Ouellette, A. J. and Selsted, M. E. (1999) A cyclic antimicrobial peptide produces in primate leukocytes by the ligation of two truncated alphadefensins. Science 286: 498-502

Tereschuk, M.L., Riena, M.V.Q., Castro, G. R. and Abdala, L.R. (1997) Antimicrobial activity of flavonoids from Tagetes minuta. Journal of Ethanopharmacology 56: 227-233

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL-X windoms interface: Flexible strategies for multiple sequence alignment aided by qulity analysis tools. Nucleic Acids Res. 15: 4876-4882

Thorsten, J., Markus, T., Christiane, C., Klaus, H. and Dierk, S. (1997) Elicitor -stimulated ion fluxes and $\mathrm{O}_{2}^{-}$from the oxidative burust are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci USA 94: 4800-4805
Tietjen, K.J. (1983) Euopean Journal of Biochemistry 131: 401-407
Tossi, A. and Sandri, L. (2002) Molecular diversity in gene-encoded, cationic antimicrobials polypeptides. Current Pharmaceutical Design 8: 743-761
Tsai, H. and Bobek, L.A. (1998) Human salivary histatins: promising antifungal therapeutic agents. Critical Reviews in Oral Biology and Medicine 9: 480-497

Tyler, T. (1989) Primary and secondary metabolism of plant and cell cultures. Springer Verlag: 200-207

Uknes, S., Mauch-Mani, B., Moyer,M, Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell 4: 645-656
Uknes, S., Vernooij, B., Morris, S., Chandler, D., Steiner, H.Y., Specker, N., Hunt, M., Neuenschwander, U., Lawton, K., Starrett, M., Friedrich, L., Weymann, K., Negrotto, D., Corlach, J., Lanahan, M., Salmeron, J., Ward, E., Kessmann, H. and Ryals, J. (1996) Reduction of risk for growers: Methods for the development of disease-resistant crop. New Physiologist 133: 3-10
Van der Wel, H. and Loeve, K. (1972) Isolation and characterization of thaumatin I and II, a sweet tasting proteins from Thaumatococcus danielli Benth. Euopean Journal of Biochemistry 31: 221
Van Loon, L.C. (1997) Induced resistance in plants and role of pathogenesisrelated proteins. Eur.J.Plant Pathol. 103: 753-765
Van Loon, L.C. and Van Strien, E. A. (1999) The families of pathogenesisrelated proteins, their activities and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97

Van Loon, L.C., Pierpoint, W.S., Boller, T. and Conejero, V. (1994) Recommendation for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 12: 245-264
Van Tilbeurgh, H., Egloff, M.P., Martinez, C., Rugani, N., Verger, R. and Cambillau, C. (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362: 814-820
Velazhahan, R., Samiyappan, R. and Vidhyasekaron, P. (2000) Purification of an elicitor-inducible antifungal chitinase from suspension cultured rice cells. Phytoparasitica 28: 1-9
Verburg, J.G. and Khai Huynh, Q. (1991) Purification and characterization of an antifungal chitinase from Arabidopsis thaliana. Plant Physiol. 95: 450455

Vigers, A.J., Roberts, W. K. and Selitrennikoff, C.P. (1991) A new family of plant antifungal proteins. Mol. Plant Microbe Interact. 4: 315-323
Vigers, A.J., Wiedemann, S., Roberts, W.K., Legrand, M. and Selitrennikoff, C.P. (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci. 83: 155
Vivanco, J.M., Savary, B.J. and Flores, H.E. (1999) Characterization of two noval type I ribosome-inactivating proteins from the storage roots of the Andean crop Mirabilis expansa. Plant Physiol. 119: 1447-1456

Vizioli, J. and Salzet, M. (2002) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol.Sci 23: 494-496

Wang, X., Zafian, P., Choudhary, M. and Lawton, M. (1996) The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defease proteins. Proc. Natl. Acad. Sci USA 93: 25982602

Ward, E.R., Uknes, S. J., Williams, S.C.,Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Metraux, J.P. and Ryals, J.A. (1991) Coordinate gene activity in response to agents that induce systemic aquired resistance. Plant Cell 3: 1085-1094

Welling, M.M., Paulusma-Annema,A.,Balter,H.S., Panwels, E.K. and Nibbering, P.H. (2000) Tenehtium-99m labeled antimicrobial peptide discriminate. European Journal of Nuclear Medicine 27: 292-301

Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T. and Mann, M. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466-469

Woloshuk, C.P., Meulenhoff, J. S., Sela-Buurlage, M., Van den Elzen, P.J.M. and Conelissen, B.J.C. (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619-628

Yamada, Y. (1984) Selection of cell lines for high yields of secondary metabolites. In:cell culture and somatic cell genetics of plants 1: 629-636
Yasnetskaya, E.G., Bulgakov, V.P., Gorbach, V.I., Shevchenko, N.M., Fedoreyeva, L.I., Zhuravlev, Yu.N. and Kiselev, K.V. (2003) Ethephon-and Jasmonate- elicited pathogenesis related ribonucleases in cultured Ginseng cells. Russian Journal of Plant Physiology 50: 492-497
Zasloff, M. (1987) A class of antimicrobial peptides from xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci USA 84: 5449-5453
Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395

Zenk, M.H., El-Shagi,H., Arens,H., Stockigt, J., Weiler,E.W. and Dens B. (1977) Formation of indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharabthus rosues. In.Barz,W.,Reinhard,E., Zenk, M.H.(eds). Plant tissue culture and its biotechnological applications: 27-43

Zheng, X.L. and Zheng, A.L. (2002) Genomic organization and regulation of three cecropin genes in Anopheles gambiae. Insect Molecular Biology 11: 517-525

Zhou, J., Tang, X.,Frederick, R. and Martin G. (1998) Pathogen recognition and signal transduction by the Pto kinase. J.Plant Sci.Res. 111: 353-356
Zhou, Q.J., Sho, J.Z. and Xiang, L.X. (2002) Progress in fish antibacterial peptide reasearch. Progress in Biochemistery and Biophysics 29: 682-685
Zhu, B., Chen, T.H.H. and Li, P.H. (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol. Biol. 21: 729-735

Zieg, R.G., Zito, S.W. and Staba, E.J. (1983) Selection of high pyrethrin producing tissue cultures. Planta Medica, Journal of Medicinal plant Research (Georg Thieme Verlag (Stuttgart) 48: 88-91

### 6.1 Abbreviations

\%	Percent
A	Adinine
ATP	Adenosine triphosphate
AtPDP	Arabidopsis thaliana Plate Domain Protein
APS	Ammonium per sulphate
bP	base pair
Bis	Bisacylamide
BSA	bovine serum albumin
C	Cytosine
Ca MV 35S	Cauliflower mosaic virus 35s promoter
cDNA	complementary DNA
cm	centimeter
ddH2O	double distilled water
DEPC	Diethyl pyrocarbonate
DNA	deoxyribonucleic acid
dNTP	2'-deoxyribonucleosid-5'-triphosphate
DTT	1,4-dithiothreitol
EDTA	ethylenediamine tetraacetic acid
G	Guanine
Ug	microgram
gm	gram
h	hour
kDa	kilo dalton
ul	microliter
LB	Lauria-Bertani
M	molar
mA	milli Ampere
$\beta-\mathrm{ME}$	bete mercaptoethanol
min	minute
mL	milliliter


mM	millimolar
MOPS	4-morpholinic-propansulfonic acid
mRNA	messenger RNA
ng	nanogram
O.D.	optical density
PAGE	polyacrylamide-gel electrophoresis
PCR	polymerase chain reaction
pH	potential of Hydrogen, pH scale is logarithmic
rpm	revolution per minute
RNA	ribonucleic acid
RAase	ribonuclease
RT	room temperature
RT-PCR	reverse transcriptase-polymerase chain reaction
SDS	sodium dodecyl sulphate
T	Thymine
Taq	Thermus aquaticus
TEMED	N,N,N,N,-tetramethylaminomethane
Tm	annealing temperature
Tris	Tris-(hydroxymethyl)-aminomethane
U	unit
UV	ultraviolet
V	volt
Ve	elution volume
v/v	volume/volume
w/v	weight/volume
win	

### 6.2 Oligo Nucleotide Primers

Name	Nucleotide Sequence (5' to 3')	$\mathrm{T}_{\mathrm{m}}$
At4G39730(5')	GATTGGATCCATGGCTCGTCGCGATGTTCT	72
At4G39730(3')	GATGAGCTCTTAAACGACCCAAGAAAGC	62
At2g22170(5')	ATAGGATCCATGATGCCTCGCCGTGACGTC	72
At2g22170(3')	TCAGAGCTCTCACACGATCCAAGAGAGAGT	64
Win(5')	ACTGCAGAAGCTTCCAACATCAATGAT	61
Win(3')	CGGGATCCTCTAGAATTTGTTGAATATGAG	61
At1g20030(5')	CTATCTAACGCCGGAGTTTCT	50
At1g20030(3')	ATTCTGACCGGAGCCGCCTTGA	64
At1g75800(5')	TTTTATCAAACGCCGGAGTTCCA	59
At1g75800(3')	TTGTTTACCTCTGCCGTCTAAAC	52
At1g75050(5')	TTGCTGTTTCCGCCGCCACCGT	69
At1g75050(3')	TCAGAATTAAACGCCGCACAAG	57
At1g75030(5')	CTCTCTCCGGCAACAGCATCAC	58
At1g75030(3')	TTCCGGCGAACTAAACGCCGCGC	71
At5g02140(5')	GGAGCTCAGCTTATAATAGTGAA	47
At5g02140(3')	ACAACCAACCACTTTCCCATCTC	56
At5g24620(5')	CCACTACCCACCACAGGGTTCA	58
At5g24620(3')	AAGAGTATAAAGACGGTCGGCATG	56
At4g38660(5')	CGAATGCTGGCTCACCTACT	52
At4g38660(3')	CAACTAGAAGGTGTAGCATA	39
At4g24180(5')	CAACTCCGGAAGCGGCGATATA	60
At4g24180(3')	ATCGATGGTTTACACTCGGTG	52
At1g19320(5')	CGGTACAACCTTCACCTTAACA	51
At1g19320(3')	TCTTCGAGTAATTCGTGGGCGG	60
At4g36010(5')	GGAACCTCTCCTTTACCTACAA	49
At4g36010(3')	GCTTTTGCAAGCTACTCCTTCA	53
At2g17860(5')	CACCGCTCCATTACCCACCACT	60
At2g17860(3')	TTCCAGCCGCTTCAACCGTTAC	60
At4g38670(5')	GCTCTCTGGTGCTAACTCA	45
At4g38670(3')	GAAGAGCGAGTAAACCGAAG	49
At1g70250(5')	CTGCAACCTACGGCTATAGGA	52
At1g70250(3')	AAGCTCTGGCAACTGGTATC	49

### 6.3 Vectors (PGEM -T Easy Vector)


pGEM®-T Easy Vector sequence reference points:

T7 RNA polymerase transcription initiation site multiple cloning region SP6 RNA polymerase promoter (-17 to +3 )
SP6 RNA polymerase transcription initiation site
pUC/M13 Reverse Sequencing Primer binding site
lacZ start codon lac operator
$\beta$-lactamase coding region
phage fl region
lac operon sequences
pUC/M13 Forward Sequencing $\quad$ 2836-2996, 166-395
binding site 2949-2972
T7 RNA polymerase promoter ( -17 to +3 )
2999-3

### 6.4 Blasts for AtPDP1 and AtPDP2

6.4.1 AT4g39730.1: Lipid-associated family protein, contains PLAT/LH2 domain from [Arabidopsis thaliana] (AtPDP1)

Identities: 547/548 (99\%)

Query: 68 cttaaacgacccaagaaagcttttcccgaatctcagacccgacccgactaacactatccc 127 |||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 598 cttaaacgacccaagaaagctttttccgaatctcagacccgacccgactaacactatccc 539
Query: 128 taagcttgaccggacaattgttccgtacggcggtgagctcataaggagaagtatcagtag 187
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 538 taagcttgaccggacaattgttccgtacggcggtgagctcataaggagaagtatcagtag 479

Query: 188 cgagccattgctcaatctcaaaatcctgcgtcgagcactgtgcgtgaacaccagccgtcg 247
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 478 cgagccattgctcaatctcaaaatcctgcgtcgagcactgtgcgtgaacaccagccgtcg 419
Query: 248 tgatctcaacgtaattaacgtaccaaccatggtgatcgccggagccatcggaggttaggt 307 |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 418 tgatctcaacgtaattaacgtaccaaccatggtgatcgccggagccatcggaggttaggt 359
Query: 308 ttaaggcacagatcggactaggtaaacacggtgctcttccactgaaaatgtcgagattac 367

Sbjct: 358 ttaaggcacagatcggactaggtaaacacggtgctcttccactgaaaatgtcgagattac 299

Query: 368 ccctctcgaagtaattgtaatcaggtcccattaatccagcccaagcttgaaggtttttga 427
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 298 ccctctcgaagtaattgtaatcaggtcccattaatccagcccaagcttgaaggtttttga 239
Query: 428 ttccgatgtagtcaccgtccttatcgtagattcttgcgctgatgatcgaatcggttccgg 487

Sbjct: 238 ttccgatgtagtcaccgtccttatcgtagattcttgcgctgatgatcgaatcggttccgg 179
Query: 488 ctttccagatcgatccggttctgaggtagaatgtgtatacacagtctggatcatcttcgg 547
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 178 ctttccagatcgatccggttctgaggtagaatgtgtatacacagtctggatcatcttcgg 119
Query: 548 cgaaagctacggcggagacggtggcgagaaggaggaggaaagggaggagaacatcgcgac 607
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 118 cgaaagctacggcggagacggtggcgagaaggaggaggaaagggaggagaacatcgcgac 59
Query: 608 gagccatt 615
||||||||
Sbjct: 58 gagccatt 51

# 6.4.2 AT2g22170.1: Lipid-associated family protein, contains PLAT/LH2 domain from[Arabidopsis thaliana] (AtPDP2) 

Identities: 554/555 (99\%)
Query: 66 atgatgcctcgccgtgacgtcctcttcctctcactcctcctcgtcatcgccaccgtctcc ..... 125

Sbjct: 70 atgatgcctcgccgtgacgtcctcttcctctcactcctcctcgtcatcgccaccgtctcc ..... 129
Query: 126 gctgtcgcattagccgacgatgaagcagattgtgtctacacattcttccttagaaccgga ..... 185

Sbjct: 130 gctgtcgcattagccgacgatgaagcagattgtgtctacacattcttccttagaaccgga 189
Query: 186 tcaaccttcaaagccggtacagattcgatcataagcgctagagtctacgacaaatacgga ..... 245
Sbjct: 190 tcaaccttcaaagccggtacagattcgatcataagcgctagagtctacgacaaatacgga ..... 249
Query: 246 gactacatcgggatccgaaacctagaagcatggggtggtttaatgggaccaggttacaac ..... 305

Sbjct: 250 gactacatcgggatccgaaacctagaagcatggggtggtttaatgggaccaggttacaac ..... 309
Query: 306 tactacgagaggggtaatctcgacattttcagtgggaaagcaccatgtcttccgagccca ..... 365
Sbjct: 310 tactacgagaggggtaatctcgacattttcagtgggaaagcaccatgtcttccgagccca ..... 369
Query: 366 gtctgttcattaaatctgacctctgacggctccggtgaccaccacggttggtatgttaac ..... 425
Sbjct: 370 gtctgttcattaaatctgacctctgacggctccggtgaccaccacggttggtatgttaac ..... 429
Query: 426 tacgtggaagtcacgacagccggagttcatgcgaagtgctcgtaccaaagctttgatgtt ..... 485

Sbjct: 430 tacgtggaagtcacgacagccggagttcatgcaaagtgctcgtaccaaagctttgatgtt ..... 489
Query: 486 gagcaatggcttgcgtccgatacatcgccgtatgagctcagtgctgttcggaataactgt ..... 545

Sbjct: 490Query: 546 ccagtttcgcttagggaaagtgtcggtcgggtcgggtctgagatccggaagactctctct 605
Sbjct: 550 ccagtttcgcttagggaaagtgtcggtcgggtcgggtctgagatccggaagactctctct 609
Query: 606 tggatcgtgtgagag ..... 620
|।|।|।|।||।|।|
Sbjct: 610 tggatcgtgtgagag ..... 624

### 6.5 Blasts for Win promoter region

\author{
6.5.1.A gi20946|emb|X15516.1|PTGWIN3 Populus trichocarpa wound responsive gwin3 gene <br> ```
Identities: 718/735 (97%)

```
}
Query 73 ATTTGTTGAATATGAGTATTAGTTATCTCAATATTGTGTCTTGTTGATCTTGTGTTGAAG 132
Sbjct 732 ATTTGTTGAATATGAGTATTAGTTATCTCAATATTGTGTCTTGTTGATCTTGTGTTGAAA673
Query 133 CAACGCATGGAGAGCGTATATTTATATGGAGCAAGCATTTGGATTATTTGGAATACAAAT 192

Sbjct 672 CAACGCATGGAGAGCGTATATTTATATGGAGCAAGCATTTGGATTATTTGGAATACAAAT 613
Query 193 TGGAGTGTTTTACTCGTGCTGATTTCCGACAAAACTAGAAATTATAGTCCTAGGGCGACG 252
 Sbjct 612 TGGAGTGTTTTACTCGTGCTGATTTCCGACAAAACTAGAAATTATAGTCCTAGGGCGACG 553
Query 253 AGTTGTCATATAGGTTTTGAGCTCTTGCCGCTTCCACCACTTGCTTACTTGATTTATCCC 312Sbjct 552 AGTTGTCATATAGGTTTTGAGCTCTTGCCGCTTCCACCACTTGCTTACTTGATTTATCCC493
Query 313 ACAAAAGTGTTTTAATTACTCGTGCTTAAAATTGATCTGATCAATGAAATTGAAATTTTA 372

Sbjct 492 ACAAAAGTGTTTTAATTACTCGTGCTTAAAATTGATCTGATCAATGAAATTAAAATTTTA 433
Query 373 AATATCTTAAATTTAAATAAATAAACTATACTTTTTTGAAACGACTATCATTTTATTCAT 432
 Sbjct 432 AATATCTTAAATTTAAATAAATAAACTATACTTTTTTGAAACGACTATCATTTTATTCAT 373
Query 433 TTATCGTGTAATGATTGGTGAACTTGATAACTCAAAAATAAACATCATGTATAAAATTGA 492
相Sbjct 372TTATCGTGTAATGATTGGTGAACTTGACAACTCAAAAATAAACACCATGTATAAAATTGA313
Query 493 ACAAAACCCACTCAAATAGTCTACTTTATAAATAAGTTCAATTAAAACTACTAATTACAC 552
sbjct 312 ACAAAACCCACTCAAATAGTCTACTTTATAAATAAGTTCAATTAAAACTACTAATTACAC 253
Query 553 CTTCAAATCAAATTTAAGCTGTCAAGCTCATAATCAGTCATTTAAAATGAGATTACACGT 612
 Sbjet 252 CTTCAAATCAAATTTAAGCTGTCAAGCTCATAATCAGTCATTTAAAATGAGATTACACGT 193
Query 613 TCAAGTATTCTAAAAACGTTTTGGTCCATTTATTTGCTCTGGACACTTCGGGAGACCTGA 672
Sbjct 192 TCAAGTATTCTAAAAACGTTTTGGTCCATTTATTTGCTCTGGACACTTCGGGAGACCTGA 133
Query 673 TTAATCAATAATATAGGTTAGTTTGCTTCAATAACTGGTTTTTCTTAGTTTTAATTCTAG 732
Sbjct 132 TTAATCAATAATATAGGTTAGTTTGCTTCAATAACTGGTTTTTCTTAGTTTTAATTCTAA73
Query 733 AGTTTTGTTTTTGCACCGAAACCTATTCTAATCAAATTGTGATTATTAAGTGATAATCAT 792
Sbjct 72 AG-TTTGTTTTTGCACAGAAA-CTATTTTGACCAAATCATGGTTATTGAGAGATAATCAT 15
Query 793 TGATGTTGGAAGCTT 807
| |l|।।|।|।|।|
Sbjct 14 T-ATGTTGGAAGCTT 1
6.5.1.B gil69460|gb|L11233.1|POPPROINH Populus x generosa isolate H11-11 serine proteiase inhibitor (win 3.12) gene Identities: 718/735 (98\%)
\begin{tabular}{|c|c|c|c|}
\hline uery & 73 & \begin{tabular}{l}
ATTTGTTGAATATGAGTATTAGTTATCTCAATATTGTGTCTTGTTGATCTTGTGTTGAAG \\

\end{tabular} & \\
\hline Sbjct & 823 & ATtTGTTGAATATGAGTATTAGTTATCTCAATATTGTATCTTGTTGATCTTGTGTTGAAA & \\
\hline Query & 133 & CAACGCATGGAGAGCGTATATTTATATGGAGCAAGCATTTGGATTATTTGGAATACAAAT & \\
\hline Sbjct & 763 & CAACGCATGGAGAGCGTATATTTATATGGAGCAAGCATTTGGATTATTTGGAATACAAAT & 70 \\
\hline Query & 193 & TG & \\
\hline Sbjc & 703 & TGGAGTGTTTTACTCGTGCAGATTTCCGA & \\
\hline Query & 253 & & \\
\hline & & M11||l| & \\
\hline Sbjct & 643 & AGTTGTCATATAGGTTTTGAGCTCTTGCCGCTTCCACCACTTGCTTAC & \\
\hline Sbjct & 313 & ACAAAAGTGTtTTAATTACTCGTGCTTAAAATTGATCTGATCAATGAAATTGAAATTTTA & \\
\hline & & & \\
\hline Query & 583 & ACAAAACTGTTTTAATTACGCGTGCTTAAAATTGATCTGATCAATGAAATTAA & \\
\hline Sbjct & 373 & AATATCTTAAATTTAAATAAATAAACTATACTTTTTTGAAACGACTATCATTTTATTCAT & 43 \\
\hline & & & \\
\hline Query & 523 & AАТАТСТTAAATTTAAATAAATAAACTATACTTTTTTGAAACGACTATCATTTTATTCAT & \\
\hline Sbjct & 433 & TTATCGTGTAATGATTGGTGAACTTGATAACTCAAAAATAAACATCATGTATAAAATTGA & \\
\hline & & & \\
\hline Query & 463 & TTATCGTGTAATGATTGGTGAACTTGACAACTCAAAAATAAACACCATGTATAAAATTGA & \\
\hline Sbjct & 493 & ACAAAACCCACTCAAATAGTCTAC & \\
\hline & & & \\
\hline Query & 403 & ACAAAACCCACTCAAATAGTСТАСТTTATAAATAACTTCAATTAAAACTACTAATTACAC & \\
\hline Sbjct & 553 & 595 & \\
\hline & & & \\
\hline Quer & 43 & CTTCAAATCAAATTTAAGCTGTCAAGCTCATAACCAGTCATTT 301 & \\
\hline
\end{tabular}

\subsection*{6.5.2.A gi20946|emb|X15516.1|PTGWIN3 Populus trichocarpa wound responsive gwin3 gene \\ Identities: 470/526 (89\%)}

Query 168 GTTATTGAAGCAAACCAACCTAGATTAGTGATTAATCAAGCCTCTCAAAGTGTCTAGTGC 227

Sbjct 98 GTTATTGAAGCAAACTAACCTATATTATTGATTAATCAGGTCTCCCGAAGTGTCCAGAGC 157
Query 228 AAAGAAA-GGACCAAAACtttttttAGAATACTTGGACATGTAATCTCATTTTAAATGAC 286

Sbjct 158 AAATAAATGGACCAAAACGTTTTTAGAATACTTGAACGTGTAATCTCATTTTAAATGAC 216
Query 287 TGCTT-TGGGCTTGACAACTTGAATTTGATTTCGAAGATTTAATTAGTAGTTTTAATTGG 345

Sbjct 217 TGATTATGAGCTTGACAGCTTAAATTTGATTT-GAAGGTGTAATTAGTAGTTTTAATTGA 275
Query 346 AGTTATTAATAGAGTAGACTATTTGTGTGCGTTTTGTTCAATTTTATACATGGTGTTTAT 405
| ||||| ||| |||||||||||| ||| ||||||||||||||||||||||||||
Sbjct 276 ACTTATTTATAAAGTAGACTATTTGAGTGGGTTTTGTTCAATTTTATACATGGTGTTTAT 335
Query 406 TTTCAAGTTGTCAAGTTCACCAATTATTACACGATAAATGAATACAATGATAGTCGTTTC 465

Sbjct 336 TTTTGAGTTGTCAAGTTCACCAATCATTACACGATAAATGAATAAAATGATAGTCGTTTC 395
Query 466 AAAAAAGTATAGTTTATTTATTTAAATTTAAGATATTTAAAATTTTAAGTTCATTGATCA 525

Sbjct 396 AAAAAAGTATAGTTTATTTATTTAAATTTAAGATATTTAAAATTTTAATTTCATTGATCA 455
Query 526 GATCAATTTTAAGCACGAG---TAAAACACTTTTGTGGGATAAATCAAGTAGGCAAGAG 581

Sbjct 456 GATCAATTTTAAGCACGAGTAATTAAAACACTTTTGTGGGATAAATCAAGTAAGCAAGTG 515
Query 582 ---------GCAAGAGCTCAAAACCTATACGACAACACGTCGCCACAGGGCTATAATTTC 632

Sbjct 516 GTGGAAGCGGCAAGAGCTCAAAACCTATATGACAACTCGTCGCCCTAGGACTATAATTTC 575
Query 633 TAGTTTTGTCGGAAATCAGCACGAGTAAAACACTACAATTTATATT 678

Sbjct 576 TAGTTTTGTCGGAAATCAGCACGAGTAAAACACTCCAATTTGTATT 621
6.5.2.B gi169460|gb|L11233.1|POPPROINH Populus x generosa isolate H11-11 serine proteiase inhibitor (win 3.12) gene
Identities: 357/397 (89\%)
Query 295 GCTTGACAACTTGAATTTGATTTCGAAGATTTAATTAGTAGTTTTAATTGGAGTTATTAA 354

Sbjct 317 GCTTGACAGCTTAAATTTGATTT-GAAGGTGTAATTAGTAGTTTTAATTGAAGTTATTTA 375
Query 355 TAGAGTAGACTATtTGTGTGCGTTTTGTTCAATTTTATACATGGTGTTTATtTTCAAGTT 414

Sbjct 376 TAAAGTAGACTATtTGAGTGGGTTTTGTTCAATTTTATACATGGTGTTTATtTTTGAGTT 435
Query 415 GTCAAGTTCACCAATTATTACACGATAAATGAATACAATGATAGTCGTTTCAAAAAAGTA 474Sbjct 436 GTCAAGTTCACCAATCATTACACGATAAATGAATAAAATGATAGTCGTTTCAAAAAGTA 495
Query 475 TAGTTTATTTATTTAAATTTAAGATATTTAAAATTTTAAGTTCATTGATCAGATCAATTT 534

Query 535 TAAGCACG----AGTAAAACACTTTTGTGGGATAAATCAAGTAGGCAAGAG--------- 581

Sbjct 556 TAAGCACGCGTAATTAAAACAGTTTTGTGGGATAAATCAAGTAAGCAAGTGGTGGAAGCG 615
Query 582 GCAAGAGCTCAAAACCTATACGACAACACGTCGCCACAGGGCTATAATTTCTAGTTTTGT 641

Sbjct 616 GCAAGAGCTCAAAACCTATATGACAACTCGTCGCCCTAGGACTATAATTTCTAGTTTTGT 675
Query 642 CGGAAATCAGCACGAGTAAAACACTACAATTTATATT 678
||||||| |||||||||||||||| ||||| ||||
Sbjct 676 CGGAAATCTGCACGAGTAAAACACTCCAATTTGTATT 712

\subsection*{6.6 Genomic sequences for cloned thaumatin genes}
(Red-shaded sequences used for design of forward primers and the green-shaded ones for the reverse primers)
```

>Atlg20030
1 TTGAGATTTTTTCTTGAAGCCGACCAAAAAAAGGAGAAATCTAGCAGGCT
51 AATGTTTATTCTCTCTTTTCTTTTTGTCAGAGGCTCATTTGTCAGTAACC
101 ATTTGATCAACGGCTAAATCCTATATCCACTAAAATTCAACCACGTCATC
151 AGACATACCAATATACAGCAACACTTGATTGTAGCTAATAAAAAGATCGT
201 CAACAGAATTAACTCTTTAAATCACTTCTCTGTTATACCTCTCTGTTTCG
251 CTCCCTGAAGAAGAAGAAACAGAGCGTTCAGATTTCTCTTCAACATAATC
301 ATGGCATTGACCTTCTTCTTCTTGTTATCGAATTTGTTCTTCTCCGGTAA
351 GAATCTGCCTGATCTCACATATTTAAAGACTCTAATTATTTTTAAATTTC
401 TTCATTTTTTTCAATCTTAGGAGTTATGTCAAGGAGCTTCACATTTTCAA
451 ACAAATGCGATTACACAGTGTGGCCGGGAATTCTATCTAACGCCGGAGTT
501 TCTCCATTACCAACCACCGGCTTCGTCCTCCTGAAAGGCGAGACGCGTAC
551 AATCAACGCACCGTCATCATGGGGGGGTCGTTTCTGGGGAAGAACACTCT
601 GCTCAACCGATTCCGATGGAAAATTCTCGTGTGCCACCGGAGATTGCGGC
651 TCCGGAAAAATCGAATGCTCCGGCGCTGGAGCTGCTCCTCCTGCGACTTT
7 0 1 ~ A G C T G A A T T C A C T C T C G A T G G C T C C G G A G G A C T C G A T T T C T A C G A T G T C A ~
751 GTCTCGTCGACGGCTACAATGTCCAGATGCTGGTGGTTCCTCAAGGCGGC
801 TCCGGTCAGAATTGCAGCAGCACCGGCTGCGTCGTCGATTTAAACGGATC
851TTGCCCGTCGGAGCTAAGGGTGAATAGCGTCGACGGGAAGGAGGCGGTG
901CGATGGCGTGTAAAAGTGCGTGCGAGGCGTTTCGGCAGCCGGAGTATTGC
951 TGCAGCGGCGCGTTTGGATCGCCTGACACGTGTAAGCCGTCTACGTACTC
1001GCGGATCTTCAAGAGCGCGTGTCCACGCGCCTATAGCTACGCGTATGAG
1051 ATAAGTCTAGTACATTTACGTGCGCGAAATCTCCCAACTACGTCATCACT
1101 TTCTGTCCTTCTCCCAACACCAGGTAAAATTCCTTTAATACCCTTCTTCT
1151 ATTTACTTTCACCCATTTCGTTAAAAGGTGATTAGGAAATATTTACTCTT
1201 TCATAAGTAGGATTTTTTTGCTTGTTGTATAATCGAAGTTACTAGATACT
1251 CAATTCCATTGATAATCATTAATTTTGCTATACAAGTTTTGTTTTTCTTT
1301CAAGAGTTTTATGATAGACATTGTTTGTCAGGCTCCTATAAAAGAGAGAC
1351 ACGTGGGAACTAACTTCATTCACTTATTCCTTTATTTGCAGCCTAAAATC
1401 AGCTGAGGAACACAGCACAGAGACAATGACGACGACAAGTCCAAGTTCG
1451 GCAGTACGACGTCGTCGCAGATGGTCTACGAAGGTGCTCTGGACGAAAGC
1501 AGTGGTTCACCATCTACGTATCACGGCGTATCACGAGCAATCACAGTCGT
1551 TCTTCTCTCGCTTGCTTTTTGTCGTATGTGGTGGTTCTTCTGACCAGAGA
1601 TTATTTGTCTTAGTGTCTGCCACGTATGCGCAGAAACAAGAACGTATGGG
1651 CСTTTAGAAGGCCTTTTCTCACTATAGTAAAAATATTTCTAAAGTTTTTC
1701 CACATAATGTCAACTTTTTACTCCACATGACCAAACGTTGAATGATTAAA
1751 CCATTCTTAAGGAAAATCAAGAAAGTAGGCTATATTAAAGCATTAATATT
1801 GGTAGTATTTTAGATTAGTCTTAAGTCTAAACATAGTTTTTAGGAATAAT
1851 TTTATAATTAATTTTAAAAATTTTGATGTTAAAAAACTAAAATTTTGGCA
1901 ATATACAATGGTGGTTTTTA

```
>Atlg75800 (S.for cDNA only, s. for DNA is not avilible)

1 CGCTCTCAGAATCCTCTTTTAAGTCTCTGTTTCATAAATAAAACTAATAA
51 AGAAGAAGAAGAAAACAGAGCAATTAAAGTCCTTAAATCTTCTTCTTCTC
```

101 CAATTCAATGGCTCTTCCGTTGCCATTGATCTTCCTTATCTTCTCTCATT 151 TGTTCGTTTCTGGAGTTAGATCAACGAGCTTCATTATGGTGAACAAATGC 201 GAATACACAGTCTGGCCTGGACTTTTATCAAACGCCGGAGTTCCACCACT 251 TCCGACGACCGGATTCGTTCTCCAAAAAGGCGAAGAACGAACAATCAGCG 301 CTCCAACTTCATGGGGAGGAAGATTCTGGGGGAGAACTCAATGTTCCACC 351 GACACCGACGGAAAATTCACTTGTCTCACCGGAGATTGCGGATCTGGTAC 401 CCTCGAATGCTCCGGATCCGGAGCAACACCACCAGCAACACTAGCGGAAT 451 TCACACTAGACGGATCTAACGGACTCGATTTCTACGACGTTAGTCTCGTC 501 GACGGTTACAACGTCCCGATGCTAGTGGCTCCACAAGGAGGCTCGGGTTT 551 AAACTGTAGCAGCACCGGATGCGTTGTAGATCTGAACGGTTCGTGTCCGT 601 CGGAGCTTAAAGTGACGAGTTTAGACGGCAGAGGTAAACAATCCATGGGA 651 TGTAAAAGCGGTTGTGAAGCTTTTCGTACGCCGGAGTATTGTTGCAGCGG 701 CGCCCACGGTACACCTGACACGTGTAAACCGTCGTCGTACTCGTTGATGT 751 TTAAAACTGCGTGTCCACGTGCTTACAGCTACGCTTACGATGATCAGAGT 801 AGTACCTTCACATGTGCTGAATCTCCTAATTACGTTATCACGTTTTGCCC 851 TACTCCTAACACCAGTCAAAAATCATCTCAAGATCAGAGCCCAGATCCCA 901 AACCGACGACACCAACCGGGACGTCGTCGACAACTCCTGCCGGAGATAGT 951 AGTACGACGTGGTCACCGGTAGATACATCAATGATATACGAAGGAGCTTT 1001 GGATCAAAACAAAGGATCACCGTCCACGTGTCATCTTTCGTTATGTGGAA 1051 TCACAGTCACACTTGCGCTGGCCTTTTGTCGGATGTGGCGGCTCTTTTGA 1101 CACCTAACTTTGTCTCCCGCGTAAAACACTGAAGAATGTGGGCCCTCACT 1151 GACGAAAGCCTTATCTCGTTCCGGCCCATGTGAACCGGTTATTCCCGAAC 1201 GACGTCGGATTGGGTCAGAGTTGAGAAAAAAAGTTAACAACACCCTACAG 1251 TTACGAAAAT ATCCTTCATT CATGTTCATG GGAGAATTCT TAATTTGGGT 1301 GAGGAACACG TGGGCAAGAA AGTGGGCTGC TGGTGGAGTT CATAAAAGT 1351 GGGAATGTTT AATTGTAAGG TCAGAATATT TATTTGATTT ATAATGTAAC 1401 TAGGATTAGA AGAATATTAT GTACACTATA TAAAGCAGTA ATCTATTTAG 1451 TTTAAAGCTA TATATTGGAA ACTATTGGTG GGAATATTTC ATTTAATTGT 1501 TATCTGC

```
```

>Atlg75050
1 CACACACACA AAACTCGTTA AAACAAAGAT GGCGAATTAC TCAAGTATTC
51 ACATTCTCTT CTTGGTCTTC ATCACAAGTA AAGAGCAATC ACACTCTGTT
101 TCTGTTTCTG TTTCTCCTCT GTTTTATCTG TTTCTAAATG AGAATAATTT
151 CGATACTATT TCTTAAAACT ATATTTTTTT ATGTTCATTC GTCTTCAAAT
201 CACAACATAA TTCTCCAAAA CATATCGTGT TTTTTCTTCG GATTTAACAG
251 TTTTTATTGT TGTTGTTTGT TTTGAAATTG CAGGCGGCATTGCTGTTTCC
301 GCCGCCACCG TCTTCACTTT ACAGAACAGT TGTCCTTACA CCGTTTGGCC
351 TGGAATTCTC TCCGGCAACG ACAACACCCT CGGCGACGGC GGATTTCCCT
401 TAACACCAGG CGCTTCCGTA CAGCTCACGG CTCCTGCAGG ATGGTCAGGA
451 CGGTTCTGGG CTCGTACCGG CTGCAACTTC GACGCCTCCG GCCACGGTAA
501 CTGCGGCACC GGAGACTGCG GCGGTGTTCT TAAATGTAAC GGCGGCGGAG
5 5 1 ~ T T C C A C C A G T ~ C A C T C T G G C T ~ G A A T T C A C A C ~ T T G T A G G C G A ~ C G G C G G C A A G ~
601 GATTTCTACG ACGTGAGTCT CGTCGACGGT TACAATGTCG AGATGGGGAT
6 5 1 ~ T A A A C C T C A A ~ G G A G G T T C C G ~ G T G A T T G C C A ~ T T A C G C C G G C ~ T G C G T C G C C G ~
7 0 1 ~ A C G T C A A C G C ~ G G T T T G C C C T ~ A A C G A G C T T C ~ G G C T C A T G G A ~ T C C A C A T A C A ~
751 GGAATCATCG CGGCGTGTAA AAGCGCTTGTGCGGCGTTTAATTCTGAGGA
801 GTTCTGTTGT ACCGGTGCTC ACGCGACGCC GCAAACTTGT TCTCCGACGC
851 ATTACTCGGC GATGTTTAAA AGCGCTTGCC CTGGTGCTTA CAGTTACGCC

```

901 TACGACGACG CCACGAGCAC CTTCACTTGT ACCGGCTCTA ACTACTTGAT 951 CTCTTTCTGC CCCACCCGGA ACTAAAAAAC AGGAGCTCCG GTTCAGATTT 1001 CACGTTTCTT TTGCTTAA
>At1g75030
1 CATAAACACAAAATCCGGTTTTTAATAATGGCGAAAATCTCCAGTATTCA 51 CATTCTCTTCTTCGTCTTCATCACAAGTAACCAACAACAAAGCACACTCT 101 GTTTTTGTTTCTTCTCTGTTTCACTTATGCATTTAGGTTTTTTGGTTGTA 151 TTTAACTGTTTTTGAAATTGCAGGTGGCATTGCTGATTCCGCCACCGTAT 201 TCACTTTACAAAACAGTTGTGCGTACACCGTTTGGCCGGGAACTCTCTCC 251 GGCAACAGCATCACCCTCGGCGACGGCGGATTTCCCTTAACTCCAGGCGC 301 TTCCGTGCAGCTCACGGCTCCTACCGGTTGGTCAGGCCGGTTCTGGGCTC 351 GTACCGGCTGCAACTTTGACGCCTCCGGTCACGGTACCTGCGTCACCGGA 401 GACTGCGGCGGCGTTTTAAAATGTACCGGCGGCGGAGTTCCTCCAGCGAC 451 TCTAGCGGAATTCACCGTGGGATCAAGCAATGCCGGCATGGATTTCTACG 501 ACGTGAGCCTCGTCGACGGTTACAATGTAAAGATGGGGATAAAACCACAG 551 GGAGGATTCGGAAATTGCAAATACGCAGGCTGCGTCTCGGACATCAACGA 601 GATTTGCCCTAGCGAGCTTAGGATCATGGATCCGAATTCGGGAAGTGTCG 651 CGGCGTGTAAGAGCGCTTGCGCGGCGTTTAGTTCGCCGGAATTTTGCTGT 701 ACTGGTGCTCACGCGACGCCGCAAACTTGTTCTCCGACGTATTACTCGTC 751 CATGTTTAAGAACGCTTGTCCTAGCGCTTATAGTTACGCTTACGACGACG 801 CATCGAGCACTTTCACTTGTACCGGATCTAACTACTTGATCACTTTCTGC 851 CCTACCCAGTCTTAAAACCGGAGCTCCGGTTTAGATTTGGGTTGGGTTTC 901 TCTCTCTCACGTTTCTTTTGCTTGTTATGTACGGAAAGAGAAATAAAGAA 951 AGATATGATAAGGAAAAGCGACTATGATCCATTTTTAAAGATT
\(>\) At5g02140
1 ATGACGAAATCTGCAACTCTATTCCTTCTCTTTCTCACTATCTCAGCCTT 51 CACTGGTACGATATCTCTTCTCCTTCTCGATAATTTATGAAATGGGTTTT 101 GTTTCTCGTTTTGATTCCTCTCAATAATAGTGACTTTGTTCTTTTGCAGA 151 TGGAGCTCAGCTTATAATAGTGAATAACTGCCAGGAGAGCATTTGGCCGG 201 GAATTCTCGGCGGCGGAGGCCAAATCACACCAAGAAACGGCGGATTCCAC 251 ATGGGAAGCGGCGAAGAAACCATCATAGACGTACCGGATAAATGGTCCGG 301 TCGAATCTGGGGTAGACAAGGCTGCACCTTTAACCAAAACGGTAAAGGCT 351 CATGCCAAACCGGAGACTGCAACGACGGCTCTATCAACTGCCAAGGAACC 401 GGCGGTGTACCACCAGCAACCGTAGTAGAAATGACATTAGGCTCATCTTC 451 CTCTCCGCTTCATTTCTACGACGTAAGTCTCGTCGACGGTTTCAATCTTC 501 CGGTGTCGATGAAACCAATCGGCGGTGGAGTTGGATGTGGCGTTGCGGCT 551 TGTGAAGTGAATTTGAACATTTGTTGTCCATCAGCTTTGGAAGTTAAGAG 601 AGATGGGAAAGTGGTTGGTTGTAAAAGTGCTTGCTTGGCGATGCAATCGG 651 CTAAGTATTGTTGCACCGGTGAATATGCGAATCCTCAGGCGTGTAAGCCG 701 ACTCTGTTCGCGAATCTGTTTAAAGCGATTTGTCCTAAAGCTTATAGTTA 751 TGCGTTTGATGATTCTAGTAGTTTGAATAAGTGTAGAGCTTCTCGTTATG 801 TTATCACTTTCTGTCCTCCAAAGTGAGAGGCTTCTGATTTTTATGTTATG 851 TTTATCATGCAGTAGCTTGATTTGGTACTTGTACGGTCTGTTTTTAGGTC 901 ATTGAATGAGAAACTGAGAAAATTTGAACTCAAAATAGAATCAAAATTTG 951 GTCATTATACAGTGGTTACCATCCTTTTAACTAGTGTTCTAAAGACACAA

\section*{1001 GCTTTAGCTGGTGGGTCCAAAGACATAAAAGACGGTTTTAGTGCTTACTC} 1051 ATGA
>At5g24620
1 ATATTGTCTTGGGGCTTGAAGCTCTCTAAAGCAACTTCACCGCTTAAACA 51TTGCATCCTTCTCTCCCTCTACATTTTATTTGTTATAAACCCTGGTCCAT 101 GGACTTCCCAGCAAATCCATATTTCAGAAATCTTAAACGTTTATACGATA 151 ATGGGAAGATCACCAATGGTTCCTATGGCTGTTCTTGTTTATGTTTCTCT 201 ACTGTTCTCTGTTTCTTATTCCTCCACGTTCGTCATCACAAATAACTGTC 251 ССТTTACTATATGGCCTGGAACTCTTGCAGGCTCTGGCACCCAGCCACTA
301 CCCACCACAGGGTTCAGGCTTGATGTGGGACAGTCTGTTAGAATTCCCAC
351 GGCTCTAGGCTGGTCAGGTCGTATTTGGGCTAGGACTGGCTGCAACTTTG
401 ATGCTAACGGCGCGGGAAAATGTATGACTGGAGACTGCGGCGGAAAGCTG
451 GAGTGTGCTGGTAATGGCGCTGCTCCGCCGACATCTCTTTTCGAGATCAC
501 ACTCGGTCACGGTTCTGATGACAAAGATTTCTATGATGTCAGTCTCGTTG
551 ATGGGTATAACCTTCCCATAGTTGCTCTCCCGACGGGTGGTGGACTGGTT
601 GGCGCTTGTAATGCTACAGGATGTGTTGCTGATATCAATATTAGCTGTCC
651 AAAGGAGCTTCAAGTGATGGGAGAGGAAGAGGCTGAAAGAGGAGGGGTG
701 TTGCATGCAAGAGCGCTTGTGAGGCCTTTGGGTTGGACCAGTACTGTTGC
751 AGCGGTCAGTTTGCTAACCCGACCACATGCCGACCGTCTTTATACTCTTC
801 CATCTTCAAGAGAGCTTGTCCCAGAGCTTATAGCTATGCCTTCGATGATG
851 GAACCAGTACTTTCACCTGCAAGGCTTCTGAATATGCAATTATCTTCTGC
901 CCTGGCAGGTATATATGATATGCCCTTTCTCATTTTAATTTGTTACAATG
951 CTCTCTGCAACCTTTCAAAAACTGTCTGCATATTCTGATTGATTATCTTT 1001 CCCCGTATTGAATCCAGGGTAAAAAGACCAGACAGTCTGAACTCGGATCC 1051 TCCCAGCCCACCTCAGAATCAGTTAGGGCAACCTATGGCTCCCCCAACTC 1101 AAAATCAGTATGGTCAACCTATGGCTCCTGCACCTCAGTATCAGTACGGT 1151 CAACCTATGGCTCCACCGACTCAAAATCAGTATGGTCAACCTCTGGCTCC 1201 TCCGACTCAAAATCAATACGATCAACCTCTGGCTCCTCCGACTCAAAATC 1251 AATATGGTCAACCTATGGCTCCACCAACTCCGCCCCCACCCGGACCAAAC 1301 GAGGATTCAATGACTCCCCCACCTCAGAATCAGAATGGGGATGGGCAGTT 1351 CATGCCTCCTCCCACTTTGGACCAAGATCCAAACGACCAGTATATGAATC 1401 CCCCAATTCAGGATCAGAGTCAAAGAGAGACTCAATCTTCATCCGATCTT 1451 CTTCGACCTTACCCTGTCTTGTTGCTTCTTGGCTTTAGTCTAACTGCTTT 1501 GAGGCAATCTGGCACGACATGAAACATAATCATTCTACTTTTTAATTAGA 1551 AATGCTACATAACTGTGTAGAGGAATCAAACAGACCATGTTTAATGTCTT 1601 CTCAGAGATTTTTTATACTCCAATAATCAATGTCCTTAGATTTACCT
>At4g38660
1 ATTTCAACTCAAATAGCTTCACAGTTTTACTAATCTCTCTCATCTTCTTC
51 CCAACATCAAAGAAGACCTTTACTTCTGGTTAGAATAGACCAAGAACACT 101 GAGTACGACAAAGAACCATGATGAATCTTTCTTCTCGTCGCGCCTCTTCC
151 ACTCTCACATTGAGCTTCACTGTTCTCCTTTTAGCTTCCACAGGTATAAC
201 CAGAAGAAGAAGAAGAGTCTCTCACTCACTTACTTCAAAGTCTATCACAT
251 CTACTTACACTCGTTTCAAAGTTTCATTTTTTTTAGTGATTTGTTTCTTT
301 ATCTTTTGGATGTTAAAAGGTTCGTATGGCTCAACATTCACATTCGCTAA
351 TCGGTGCGGCTACACCGTATGGCCTGGAATCCTATCGAATGCTGGCTCAC
```

401 CTACTCTCTCCACCACCGGATTTGAGCTCCCTAAAGGCACCTCTCGCTCT 451 CTCCAAGCTCCCACCGGTTGGTCCGGTCGATTCTGGGCTCGTACCGGTTG 501 CAAGTTCGACAGTTCTGGCTCCGGTACATGCAAAACCGGTGACTGCGGCT 551 CCAACGCTGTCGAATGCGCCGGGCTTGGTGCCGCACCGCCTGTAACTCTC 601 GCGGAGTTCACTCTAGGCACTGGCGGCGATGATTTCTACGACGTTAGTCT 651 CGTCGACGGTTACAACATTCCGATGATAGTTGAAGTCGCCGGTGGATCTG 701 GGCAGTGCGCTTCTACCGGATGCACTACGGATCTTAACATTCAGTGCCCT 751 GCTGAGCTGCGTTTCGGCGACGGAGACGCTTGCAAAAGCGCGTGTTTAGC 801 GTTTCGGAGTCCTGAATACTGTTGCAGCGGCGCGTATGCTACACCTTCTA 851 GTTGTCGGCCTTCCGTGTATTCGGAGATGTTTAAAGCCGCGTGTCCTCGC 901 TCCTATAGCTACGCTTACGACGATGCTACGAGCACTTTCACTTGCGCCGG 951 TGGAGATTATACGGTGACGTTTTGCCCTTCTTCCCCTAGGTAAATACTTA 1001 CTGATTATAATATTATCCATTTTTTAAGTTCCACAATTGCTGCGTTGCTT 1051 TGGCTTTGAAAAATTGAAACTTTTAGTATGTGTTAATGGGTTTCGTAATA 1101 ATTAATCTTAAGATTTTGGGTTTGTGTTTTTTGTCGTTGGAAAAGCCAAA 1151 GTTTGTGTTTATCTTCTTTTCATAAACCATCATTTTATAGAGTCAAAAGA 1201 TTCTCTTTGTTTTGTCAATAACGAGTAATTTAATCGAGAAAGTTTGTAGC 1251 AATTTTGTTTCAAGAATGACAAAAAATACCAAACTAGTTTGAAAACGCAA 1301 GTTGAAAGATTTGACATTGCAGTCATTTTGATTAGTGTTTGAATCATTTT 1351 GTGTATATACAGTCAAAAATCGACTAGCTACTCCCCTCCAGTGACAGACT 1401 CGTCGTCGACCTCACAAGGTTCCGATCCTGTGCCTGGTTCTGATACTGGT 1451 TACGCTGGTCAGGGTCAACAGACTCCAGGTCAAGGTAATGTGTACGGGTC 1501 ACAGGGGACTGGGTCGGAGATGGGTACGGGTGAGACCATGTTACAAGAG 1551 GATCATGGATGGCTGGTTTGGCCATGGGAGAGGCAAGCAGACCAGCCGC 1601 GTTTCATTGACAGTGCTGCTTGCTGCATTTACTTTTCCGTTTATTTTCTC 1651 GTAGCATCATCGTCTTTAGATTTGGTAGTCGTTTTGTTAGCATTGCCTTT 1701 GTTTAGTTTTTGTTGATACTCGATGATTATCGCTTAAGACTGCGACAATT 1751 TGGGTTTTAGGCTTTTAGGGTTTTGCATTGTAGCTTTGTCGTGTACGCGC 1801 GTGTTTGCTTGTATCATCTGTCATTGAAGATTGTTTATCATGTTCGAAAT 1851 TGTGAGATATGCTTTGTGATTTAAAGAAAGATCTTTTGTGGCTTTAGATC 1901 TACCAAAGTGATGATTAGGCCACTA

```
\(>A t 4 g 24180\)

1 ATGATCATAACAGTCCTTCATTCTCATGTCTCATTCTATTTCATCATCCT 51 TAGCTTCCTCTTCTTCCATGGTACGTAATATTCATATCTATCATACTTTC 101 ATATCAGTATGAATATTTCTATATAAAATGTAAATATTAACATATAGCTA 151 AAGCATTGCATTTGGTAGGAAGTGATGGTGCTACAATAACCATCGTAAAT 201 CGATGCAGCTTCACCGTGTGGCCGGGAATTTTGTCCAACTCCGGAAGCGG 251 CGATATAGGCACCACCGGCTTCGAGCTCGTTCCCGGTGGTTCACGTTCGT 301 TCCAAGCTCCAGCTAGCTGGTCAGGTCGGTTTTGGGCACGAACCGGTTGC 351 AACTTCAACTCAGACACAGGACAAGGCACCTGCCTAACCGGGGACTGCGG 401 CTCTAACCAGGTCGAATGTAACGGTGCAGGAGCAAAACCGCCCGCTACAC 451 TCGCCGAATTCACAATCGGGTCAGGTCCAGCAGACCCGGCCCGTAAACAA 501 GACTTCTACGACGTAAGCCTCGTGGACGGTTACAACGTTCCCATGTTGGT 551 GGAAGCAAGTGGCGGGTCAGAAGGTACTTGCTTAACCACGGGATGCGTAA 601 CGGATCTAAACCAAAAATGTCCAACGGAGCTCCGGTTCGGGTCCGGGTCA 651 GCATGCAAAAGCGCGTGTGAGGCTTTTGGTAGTCCAGAATATTGTTGTAG 701 TGGCGCGTACGCCTCACCCACCGAGTGTAAACCATCGATGTACTCGGAGA

751 TATTCAAATCTGCGTGTCCAAGATCATATAGCTACGCGTTCGACGATGCT 801 ACAAGTACGTTCACATGCACTGATGCTGATTACACCATCACTTTTTGCCC 851 TTCCTTGCCTAGGTAG
\(>\) Atlg 19320
1 ACTCATCATCATTCACAGCTTCAAATTTTCAATACTCAAATTAACAATGG 51 CGATTTTCTCCACATCACATCTTCTCTTCATCTCCTTCATCATAGCCACA 101 TGTATACATAAACCATTTCCAACATTTTCTGATTACTACTTTGATTCAAT
151 AATTTATCTTCATAAAATATCTTCGTTTATAATTAATTAATTTTGAATTG 201 TATTGCAAGGTACAATTTCTGTCTCCGGTACAACCTTCACCTTAACAAAC 251 CATTGCGGCTCCACAATCTGGCCTGGAATCCTCACCGCAAACGGCGCACA 301 ACTCGGCGACGGCGGATTTGCCTTAGCTTCAGGATCTTCCGTAACCTTCA 351 CCGTTTCTCCAGGTTGGTCCGGTCGATTTTGGGCTCGAACGTATTGTAAC 401 TTCGACGCCTCAGGCTCAGGTAAATGCGGTACCGGGGACTGCGGCAGCAA 451 GTTAAAATGCGCCGGCGCAGGAGGAGCTCCACCAGCCACACTCGCCGAAT 501 TCACAATCGGCTCCTCCGGAAAGAAAAACGCCGTGCAAGATTTTTACGAC 551 GTGAGCCTCGTAGATGGTTATAACGTTCAGATGAAAATCACACCGCAAGG 601 TGGCTCAGGGGATTGTAAAACCGCGGGATGCGTTTCGGACGTGAACGCGA
651 TTTGTCCAAAAGAGCTACAAGTTACGGGCCCATCGGGTGTTGCAGCGTGT 701 AAGAGTGCTTGTGAGGCTTTTAACAAGCCGGAGTATTGTTGCACCGGCGC 751 GTATAGTACACCGGCGACTTGTCCGCCCACGAATTACTCGAAGATATTTA 801 AACAAGCTTGTCCGAGTGCGTATAGCTATGCATACGATGATGCTTCCAGT 851 ACTTTTACTTGTACTAATGCTAATTATGAGATCAGTTTCTGTTCTTAGGC 901 AAAAATCGCCTTTATTATTCATTAATTATTATTATTTATCAATGAATAAA 951 AAGATTGATCATTTTTAACAT
\(>A t 4 g 36010\)
1 СТСТСАСТССААТТТСТТТСАТТАССАТАТАААТАСААСGССТТСАСАТТ 51 TGCACTCTTTATACATTTCTCTCGAGAGCAGAAACAGAGTCACCGGTAAA 101 CTCATCTCCGGCGACATAAAAACACAAAAGTTCATATATTTAGATTCTGG 151 TGACTCTCTGCTCTAATGGGTCAATCTCAAGTTTCTCTCTTTCTTCTTCT 201 AATTCTTGTTTTCATCTATGGAGTTTCCTCCACCACTTTCACCATCGTTA 251 ACCAGTGTAGCTACACCGTCTGGCCTGGACTTCTCTCCGGCGCCGGAACC
301 TCTCCTTTACCTACAACCGGATTCTCCTTAAACCCTACCGAGACACGAGT
351 TATCCCGATCCCCGCAGCTTGGTCCGGTCGTATTTGGGGTCGTACTCTCT 401 GCACACAAGACGCAACCACCGGAAGATTCACTTGCATCACCGGGGACTGT 451 GGTTCTTCCACCGTAGAATGCTCCGGATCCGGTGCTGCACCTCCGGCTAC 501 ACTCGCTGAATTCACCTTAAACGGAGCTAATGGTCTCGATTTCTACGACG 551 TCAGTCTCGTCGACGGTTACAACATCCCGATGACCATCGTCCCTCAGGGT 601 GGAGGAGATGCCGGAGGCGTCGCCGGAAACTGTACGACAACCGGCTGCGT 651 TGCGGAGCTCAACGGTCCATGTCCTGCTCAGCTGAAAGTGGCGACGACGG 701 GAGCTGAAGGAGTAGCTTGCAAAAGCGCGTGTGAAGCGTTTGGAACGCCG 751 GAGTACTGCTGTAGCGGCGCGTTTGGAACGCCGGACACGTGTAAGCCAAG 801 CGAGTACTCACAGTTTTTCAAAAACGCGTGCCCGAGAGCTTATAGTTACG 851 CTTACGACGACGGAACTAGTACCTTCACTTGTGGCGGAGCTGATTACGTC 901 ATCACTTTCTGTCCTTCTCCTAACCCAAGGTAAAAAAATTTCTATTTCCA 951 TTATTCACCAAAAAGTACAAAAATCGAGTTAGAATTTTTTTCAAAAAAAT

1001 TGGTATATTTTTTGCTAATTAGAAAAGGTTGGTTCCGATGATCTGATCAA 1051 ATCATATTGAAAAAGGAAAAAAGTTTGGTTCTGATTCCTTTAGAAGAAGT 1101 CCGGTTTCGATTTTTTTATCACATTCAAAAGTTTGATAATGTTGGTTGGA 1151 GATGAATTATTCACCTTTTTGTTTTGTTTGTGTAACGTTTTGAATTTGAG 1201 GTCAATCACCGAATAAAAATCATGGAACATACTTTTTCATAATGGTCCGT 1251 GTTCTTTTGTCAATTTGTGAAATCATATGACAAGACGACATTCACATTTT 1301 CACCCGTTGGCATAATTATATCAACCAAAATAAATGAAAATAGAAAAAAT 1351 ATCTAATGTTCTCTGTTGTATGCATTTAGATTTTTATTCATTCAAACGTC 1401 GGTGAACCGTGGTCCAACACGGCTCTTTTGTTCACATTGCAAAATAGTTC 1451 AAATATATTTTATAGAAAACGTTACTTTAATAAATTGGTGATACTAAAAT 1501 TTGTTTTCTTGTGTAATTTGTCTTTCAGTGTGAAGAGTGCAACGAAGGGA 1551 GTCCAACCCGTAGCTGTTAGCTACTCTAAGGCATCTCCAAACGCGTCGCC 1601 AACTCTTTCTGCCGTGTTTTCGATTGGCGTTTTGGCTGTCGCGTCTTGGG 1651 TGATGCAACGCGTTTTGTGATTCATGTACGGCTGCGTTTGAAGTTTTTAA 1701 TAACATCAATCTCAATCATTCGACGAGAAAGAAAAGATCATTGAAGAGA 1751 GATTTTAGTTAGTCGAGGAGTGATTTATTCTAGGTGATAATTTGTAGAAG 1801 AACAACTTATTTTAGATTGGATTAGTTCTAGTATTACTATTAGTTTCTAC 1851 GTAATTTTTTAGACAAATGTTCAGTCTTTATGGTGTCTCTGTAAGATATA 1901 TAACAGTTTTGCTTGCACAACTAATTGATTGGTAATGCGTTTTAAAATTT
\(>A t 2 g 17860\)

> 1 ATGGATTTGGCTAAAGTCTCTTGCTTTCTCTTAGCGATTATGTTTTTCAT 51CAATGGTGGTTCCTCCACCACGTTCACCATCGTTAACCAGTGTAACTACA 101CCGTCTGGCCGGGACTTCTCTCCGGCGCCGGCACCGCTCCATTACCCACC 151ACTGGTTTCTCCCTCAACTCCTTTGAGTCACGACTCATCTCCATACCCGC 201CGCTTGGTCCGGCCGCATATGGGGACGCACGCTCTGCAACCAAAACGAAA 251TCACCGGAATATTCACTTGCGTCACCGGCGACTGCGGCTCATCCCAAATC 301GAATGCTCTGGCGCAGGAGCAATCCCTCCAGCTACACTAGCCGAATTCAC 351ACTCAACGGCGCCGAAAATCTAGATTTCTACGACGTTAGCCTCGTCGATG 401GTTACAACATCCCAATGACGATCGTTCCTTACGGCGGAGCTATCGGAGTC 451GGTAAGTGTAACGCAACGGGTTGCGCGGCGGATCTCAACGGCTTATGTCC 501GGAGCAGCTGAAAGTAACGGTTGAAGCGGCTGGAACGGGTGCTGTGGCGT 551GCAAGAGCGCTTGTGAGGCGTTTGGAACGCCGGAGTTTTGTTGTAACGGC 601GCGTTTGGAACGCCGGACACGTGTCAGCCGAGTGAGTACTCTGTTTTCTT 651TAAGAAAACTTGTCCGACGGCTTATAGTTACGCTTATGACGACGGCACAA 701GCACTTTTACTTGCTCCGGTGCTGATTACGTCATCACTTTCTGTCCTTCT 751CCTTCAAGGTAA
>At4g38670
1 GACTACTCTCACTCTCTTTCTATTCTCTCTTCCGCCGCTTTTTCCATCGT 51 TCGAAAGTAAAGTTGCTCGCTTTACTCGTTCAAGCATTCAACTTTAGAAT 101 CCGATCGAATCCTCCTGTAACAGCAATGATGAATCGGATCCTCTTGTTTA
151 TGATCCTGGCTTTTGTCTCATCTCTTTCAGGTCAATAATCGCTGTCTAAT
201 TCCTTGCTTCTTTATTGCTTGACTATCGAGTTTAACAATCTTTACACGAT
251 TTTGATTGAATTGGTTTCACATGGCAGAAGTTGAGCCAATTTCGTTCAAG
301 ATCACGAATCGTTGCCGGAACACGATATGGCCCGGTTTGCTCTCTGGTGC
351 TAACTCAGCGCCGCTCCCCACAACTGGCTTTCGTCTCTCTAGAGGAAAAT

401 CTAAAACCGTCGCAATACCAGAGTCGTGGTCCGGTCGTCTCTGGGCACGA 451 ACCTTGTGTTCACAAGATCGGAGTTCCGGTTCTTTCGTCTGCTTAACCGG 501 AGATTGCGGCTCGGGAAAAGTCGAATGTTCAGGCTCCGGAGCTAAACCTC 551 CAGCAACTCTCGCCGAGTTTACTCTCAACGGCACAGGAGGACTAGATTTT 601 TACGACGTTAGCCTCGTCGACGGTTACAATCTCCCGATGCTAATCTTGCC 651 CAAGAAAATCGTCATTGGAGGATGCGGAGCCACCGGGTGTCTCGTGGACT 701 TGAACGGCGCGTGTCCCAGAGACCTAAAGCTGGTGACGCGTGGGAATGGG 751 AACGGTGTTGCTTGCCGTAGCGCGTGCGAGGCATTCGGAGACCCAAGGTA 801 TTGCTGCAGCGATGCGTACGCCACGCCGGACACGTGTCAGCCTTCGGTTT 851 ACTCGCTCTTCTTTAAGCATGCGTGCCCACGAGCATACAGCTACGCCTAT 901 GACGATAAGACGAGCACTTACACTTGCGCCACCGGAGCCGATTACTTCAT 951 CATCTTCTGTCCGCCACCGTATACAAGGTGAGATATTGACCGTTTTGCCC 1001 CTCTGTTCGCTTTGGAATATGCTAGGGATGTTTCTTGTTATTTAGTATAT 1051 GAGCAGGAATCTAATCTGAGCCACACTGTTGATTATTATGGACTTTAGCT 1101 AACGTAGTTACTCGTTATGATTTGTAGTCTTTTAGATCATATGATCATCT 1151 TCTATAAGCATTTGATTAAGATTGTAGTGTCTACTAGAAGCATTTGGTAT 1201 GATTATAAATGATTGTAAAGGTCTACTATAAGCATTTGGTATGAGAAAGT 1251 AGTGTTGATTAAAAGGGTTTTGTTTTAATGGTTGGAAAAGCGGGTAGCAA 1301 CAGTTGGATTGAGTTCGACAAATATAGATTGAAGTGCTCCATTGTTATAA 1351 ATGTACTTAGGTGTAATGAGCTTAGTAAGTTGTTGACTATGAGTTTTGTT 1401 TTGCAGCGAGAAGCTTTTAGGATCGAGGAAAGATGGTGCAACACTGCCAC 1451 TAGTAAACAAGAGCATGATTCATTTGCCGCATCCGCACAGCAGCTGAGCC 1501 ATCTTCTTATTATATGTCTTAAGTCCTTCTTACATCAGGTCCGTCTTACA 1551 TGGGTACTCGCATTGTCTGTTGAGGTTACTATACTGTTTTCATTTCCTCT 1601 TTCTTGTTGCAGGCAGATAGAAAATTCATGTGTAGAAAAATGTCATTACG 1651 GTTAATACCAAGGTAGAATTACTTCTTTACTTGATAGAAAAATTCATGTG 1701 TAAATCTTTACTTGTTTTACACTTGTTACTTCTTTCG
>At1g70250
1 AGAAAGAAAAATGACAACGGCGATGATGATATTCGCGGTTTTGGTTACAG 51TGGTGGAGGTGGAAGCACAGACTGAGTGCGTGAGCAAGATAGTTCCCTGC 101TTCAGGTTCTTGAACACGACAACAAAGCCGTCGACGGATTGTTGCAACTC 151GATCAAGGAAGCGATGGAGAAAGATTTTAGCTGTCTCTGCACCATCTACA 201ACACTCCTGGTTTACTCGCTCAGTTCAACATCACTACAGATCAAGCTCTC 251GGTCTCAACCTTCGATGTGGAGTCAACACTGATCTATCCGCTTGTTCCGG 301TACTTTAATTCTCCAAGATCTTCGACCGTTGCAATTATGAATCTGAGATT 351TGCAATATGATAGGTGTTTTGTTTAATTTACAGGTTCTGGTGCTCCACCA 401CCACCACCTGATCTATTTCCTCCACCTTCAGCTCAAATGCTCCCTCCACC 451TCCAGGTATATAAACCAAACTCTTCACCTACGTACTCCTTGCTAGTTTAT 501AATTGAGTTTGGTAATATGTTATTTAATTATTAAGTTTCTGTGTTATAGC 551AAAAGGTGCTTGTAAGAGTCGTAACTTTAGTTTGGGCAGTTTTCAACAGT 601CACAACATTTAGTTTGGTCAGATATGTACTTAAGATCAGTATGTAAGTGT 651GTGTGTCTTGTCTTAATAAAACAACAAGTTTCAGATTCAATAAAGAGTTC 701TTTCGTTTACTTTGTTTTGTTATAGGCTTCTCTTTGTGCTTCCCACTAGG 751CCCTAGAATCAATAAAGCTCTGATATATATATATATTCATTATTAGTAAT 801GTTTTGTTTAATTATCAGCTTCGTCACCTGCACCTCCATCGCCACCTTCT 851TCATCCCGACCACGTCCATTGCCACGTCCATGTATAAACCAAACTCTTCA

\begin{abstract}
901CCTACTCTTTATATTATACGTTTAAAATCTCTGCAATATATCTTGAATTT 951TTTTTTGTTATATGTAGCAATGTCAAGGAGCTTTACGATAGAAAACAAAT 1001GCCAATACACCATATGGCCTGCAACCTACGGCTATAGGAGATCACTAGAA 1051ACAACCGGTTTTGTTCTTGAGAAAGGAGAGACGCGTACCATCAAAGCGCC 1101GTCATCATGGATAGGTCGTTTCTGGGGTAGGACACTCTGCTCCACCAACT 1151CAACAGGGGGTTTCTCATGTGCCACGGGAGACTGCACCTCCGGAAAAATC 1201AAGTGCCTCGGTATCCCCATAGATCCAACAACAGTGGTCGAGTTTAACCT 1251CGCTTCTTACGGTGTCGACTATTATGTCGTCAACGTCTTCAATGGTTACA 1301ACCTCCCTTTGCTTGTGACCCCCGAGAACAAAAACTGCAGAAGCATTGAA 1351TGCGTTATTGACATGAACGAGACATGTCCCTCGGAGCTAATGGTGAACAG 1401TAGTGGCCTTGGATCGCACCATCCAATAGCCTGCATGACCACTTGTCAGA 1451GATACCAGTTGCCAGAGCTTTGCTGTATCGGACTCTCTTCTGGGGTGGTC 1501GTACCACCGGGAATATGCAAGCGGACGATCTACTCGCGGACATTCAATAA 1551CGTGTGCCCAAGCGCTTATAGTTACGCCTACGACGTTGATAACAGCAGTT 1601TCACTTGTCCAAACTTCTCCAACTTTGTCATCACGTTTTGTCCGTCTAGC 1651TCAACGGTCCCAGAGGCAGGAAACATCAATAGCTCAACGGTCCCAGAGC 1701AGGAAACATCAAAACTGGAACAGAAGCAAAAGGTAAGTTTTTCTTTTCTT 1751TGACCTACGGGAGAATGTATCATTTTATTTTTTGTTAATCGAAATAATTT 1801CTGTAATACATTTGCAGGAAATATTCCATTGAGGTTAAAACTCATACTTG 1851GTACACTTTAGAAGAAACCTGGTGAAATTACTCTCAACTATCTTACTCAT 1901TTTTGATGTATATAACACCTAAGTTTTAAGGCTTATTCTCTTGTAGGAGT 1951TTCATCAGTATTGGCTACAATGATCATTATTGTGATTGTGGGAAAGGTTA 2001GAGCAAATAATATGAGAAAGAGTGATTTGAATGAGAAGAACATGGAAGA 2051GTGGTAATGTTGAAACGATTTAGTTATGTACAAGTCAAGAAGATGACAAA 2101ATCATTTGAGAATGTTCTTGGGAAAGGGGGATTTGGAACTGTCTATAAAG 2151GGAAGTTACCTGATGGCAGCCGAGATGTTGCAGTGAAGATCTTGAAGGAG 2201TCAAACGAGGATGGAGAAGACTTCATCAATGAAATAGCTAGCATGAGTG 2251GACATCTCATGCTAATATCGTTTCTCTACTTGGATTCTGTTATGAAGGGA 2301GGAAGAAAGCTATAATTTACGAGTTGATGCCGAATGGATCCCTCGACAAG 2351TTCATCTCCAAGAATATGTCGGCGAAGATGGAATGGAAAACGTTATACAA 2401CATTGCGGTAGGTGTGTCTCATGGCCTAGAATACTTGCATAGCCATTGTG 2451TATCAAGGATTGTACATTTCGATATAAAGCCACAGAACATACTCATAGAT 2501GGAGACTTATGCCCTAAGATTTCGGATTTCGGTCTTGCTAAGCTTTGCAA 2551AAATAATGAAAGCATCATTTCAATGCTACATGCAAGAGGCACCATAGGGT 2601ACATTGCTCCAGAAGTGTTCTCCCAGAATTTTGGAGGAGTTTCTCATAAG 2651TCTGATGTGTATAGTTATGGAATGGTGGTTCTTGAGATGATTGGAGCAAG 2701GAACATAGGAAGAGCTCAAAATGCTGGATCCAGTAATACTTCAATGTACT 2751TTCCAGATTGGATTTATAAAGATCTTGAGAAAGGAGAAATCATGAGTTTT 2801TTGGCAGATCAAATAACCGAAGAAGAAGATGAGAAGATAGTAAAGAAAT 2851GGTATTGGTGGGTCTGTGGTGTATTCAGACCAATCCATATGATCGTCCAC 2901CAATGAGCAAAGTTGTTGAAATGTTAGAGGGAAGTCTAGAGGCTCTCCAG 2951ATTCCACCTAAGCCTCTTTTATGTTTACCCGCAATAACAGCTCCAATAAC 3001AGTTGATGAAGACATTCAAGAGACTTCAAGCTTCTTGAAACCAAGTCAAG 3051ATACTTCATATTATTCCGAACAAATAGTTCAAGATATTGTAGAAGAGAAT 3101CAAGATAGCTCAAGATCTTCCTAA
\end{abstract}

\section*{6.7 cDNA sequence alignments for thaumatin genes \\ (Red-shaded sequences used for design of forward primers and the green-shaded ones for the reverse primers)}

At \(1 g 200030\)
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At4g24180
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050 At1g75030 At5g02140 At5g24620 At 4 g 38660 At 4 g 24180 At1g19320 At 4g36010 At2g17860 At4g38670 At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

ATGACAACGGCGATGATGATATTCGCGGTTTTGGTTACAGTGGTGGAGGTGGAAGCACAG

 ACTGAGTGCGTGAGCAAGATAGTTCCCTGCTTCAGGTTCTTGAACACGACAACAAAGCCG

TCGACGGATTGTTGCAACTCGATCAAGGAAGCGATGGAGAAAGATTTTAGCTGTCTCTGC

 23
\(\qquad\)

ACCATCTACAACACTCCTGGTTTACTCGCTCAGTTCAACATCACTACAGATCAAGCTCTC 240

At1g75800
At1g75050
At1g75030 At5g02140 At5g24620 At 4 g 38660 At 4 g 24180 At1g19320
At4g36010 At2g17860
At 4 g 38670
At1g70250

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At4g38660 At4g24180 At1g19320 At4g36010 At2g17860 At4g38670 At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250
------ATGGCTCTTCCGTTGCCATTGATCTTCCTTATCTTCTCTCATTTGTTCGTTTCT 54
TTGGTCTTCATCACAATTTTTATTGTTGTTGTTTGTTTTGAAATTGCAGGCGGCATTGCT 93
TTCGTCTTCATCACAA------------------------------------GTGGCATTGCT 60
CT---CACTATCTCAG--CTTCACT 54

ССТСТTССАСТСТСАСАTTGAG-----------СTTCACTGTTCTCCTTTTAGCTTCCACA 193
TCTCATTCTATTTCAT----------------CATCCTTAGCTTCCTCTT--CTTCCATG 70
TCTTCTC----TTCAT----------------CTCCTTCATCATAGCCACATGTACAATT 63
CTAATTCTTGTTTT---CATCTAT 54
GCGATTATGTTTTT--CATCAAT 54
--ATGATGAATCGGATCCTCTTGTTTATGATCCTGGCTTTTGTCTCATCTCTTTCAGAA- 57
GCTTCGTCACCTGCACCTCCATCGCCACCTTCTTCATCCCGACCACGTCCATTGCCACGT 420

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At4g24180
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

At1g200030
At1g75800
At1g75050 At1g75030
At5g02140
At5g24620
At4g38660
At4g24180
\(\begin{array}{ll}\text {------ATGTCAAGGAGCTTCACATTTTCAAACAAATGCGATTACACAGTGTGGCCGGGA } & 54 \\ \text { GGAGTTAGATCAACGAGCTTCATTATGGTGAACAAATGCGAATACACAGTCTGGCCTGGA } & 114 \\ \text { GTTTCCGCCGCCACCGTCTTCACTTTACAGAACAGTTGTCCTTACACCGTTTGGCCTGGA } & 153 \\ \text { GATTCCGCC---ACCGTATTCACTTTACAAAACAGTTGTGCGTACACCGTTTGGCCGGGA } & 117 \\ \text { GATGGAGCT-----CAGCTT-ATAATAGTGAATAACTGCCAGGAGAGCATTTGGCCGGGA } & 108 \\ \text { GTTTCTTATTCCTCCACGTTCGTCATCACAAATAACTGTCCCTTTACTATATGGCCTGGA } & 120 \\ \text { GGTTCGTATGGCTCAACATTCACATTCGCTAATCGGTGCGGCTACACCGTATGGCCTGGA } & 253 \\ \text { GAAGTG-ATGGTGCTACAATAACCATCGTAAATCGATGCAGCTTCACCGTGTGGCCGGGA } & 129 \\ \text { TCTGTCTCCGGTACAACCTTCACCTTAACAAACCATTGCGGCTCCACAATCTGGCCTGGA } & 123 \\ \text { GGAGTTTCCTCCACCACTTTCACCATCGTTAACCAGTGTAGCTACACCGTCTGGCCTGGA } & 114 \\ \text { GGTGGTTCCTCCACCACGTTCACCATCGTTAACCAGTGTAACTACACCGTCTGGCCGGGA } & 114 \\ \text {--GTTGA-GCCAATTTCGTTCAAGATCACGAATCGTTGCCGGAACACGATATGGCCCGGT } & 114 \\ \text { CCATCAATGTCAAGGAGCTTTACGATAGAAAACAAATGCCAATACACCATATGGCC----- }\end{array}\)
\begin{tabular}{llll}
ATTCTATCTAACGCCGGAGTTTCTCCATTACCAACCACCGGCTTCGTCCTCCTGAAAGGC & 114 \\
CTTTTATCAAACGCCGGAGTTCCACCACTTCCGACGACCGGATTCGTTCTCCAAAAAGGC & 174 \\
ATTCTCTCCGGCAACGAC---AACACCCTCGGCGACGGCGGATTTCCCTTAACACCAGGC & 210 \\
ACTCTCTCCGGCAACAGC---ATCACCCTCGGCGACGGCGGATTTCCCTTAACTCCAGGC & 174 \\
ATTCTCGGCGGCGGAGGCCAAATCACACCAAGAAACGGCGGATTCCACATGGGAAGCGGC & 168 \\
ACTCTTGCAGGCTCTGGCACCCAGCCACTACCCACCACAGGGTTCAGGCTTGATGTGGGA & 180 \\
ATCCTATCGAATGCTGGCTCACCTACTCTCTCCACCACCGGATTCGAGCTCCCTAAAGGC & 313 \\
ATTTTGTCCAACTCCGGAAGCGGCGATATAGGCACCACCGGCTTCGAGCTCGTTCCCGGT & 189
\end{tabular}

At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At 4 g 38660 At4g24180 At1g19320 At4g36010 At2g17860 At4g38670 At1g70250

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At4g38660 At4g24180 At1g19320 At 4g36010 At2g17860 At 4 g 38670 At1g70250

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At4g38660 At4g24180 At1g19320 At4g36010 At2g17860 At4g38670
At1g70250

ATCCTCACCGCAAACGGCGCAC---AACTCGGCGACGGCGGATTTGCCTTAGCTTCAGGA 180 СTTCTCTCCGGCGCCGGAACCTCTCCTTTACCTACAACCGGATTCTCCTTAAACCCTACC 174 CTTCTCTCCGGCGCCGGCACCGCTCCATTACCCACCACTGGTTTCTCCCTCAACTCCTTT 174 TTGCTCTCTGGTGCTAACTCAGCGCCGCTCCCCACAACTGGCTTTCGTCTCTCTAGAGGA 174 \(\begin{array}{ll}\text { GCGCCGCTCCCCACAACTGGCTTTCGTCTCTCTAGAGGA } & 174 \\ \text { G-ATCACTAGAAACAACCGGTTTTGTTCTTGAGAAAGGA } & 534\end{array}\)

\section*{** **}

GAGACGCGTACAATCAACGCACCGTCATCATGGGGGGGTCGTTTCTGGGGAAGAACACTC 174 GAAGAACGAACAATCAGCGCTCCAACTTCATGGGGAGGAAGATTCTGGGGGAGAACTCAA 234 GCTTCCGTACAGCTCACGGCTCCTGCAGGATGGTCAGGACGGTTCTGGGCTCGTACCGGC 270 GCTTCCGTGCAGCTCACGGCTCCTACCGGTTGGTCAGGCCGGTTCTGGGCTCGTACCGGC 234 GAAGAAACCATCATAGACGTACCGGATAAATGGTCCGGTCGAATCTGGGGTAGACAAGGC 228 CAGTCTGTTAGAATTCCCACGGCTCTAGGCTGGTCAGGTCGTATTTGGGCTAGGACTGGC 240 ACCTCTCGCTCTCTCCAAGCTCCCACCGGTTGGTCCGGTCGATTCTGGGCTCGTACCGGT 373 GGTTCACGTTCGTTCCAAGCTCCAGCTAGCTGGTCAGGTCGGTTTTGGGCACGAACCGGT 249 TCTTCCGTAACCTTCACCGTTTCTCCAGGTTGGTCCGGTCGATTTTGGGCTCGAACGTAT 240 GAGACACGAGTTATCCCGATCCCCGCAGCTTGGTCCGGTCGTATTTGGGGTCGTACTCTC 234 GAGTCACGACTCATCTCCATACCCGCCGCTTGGTCCGGCCGCATATGGGGACGCACGCTC 234 AAATCTAAAACCGTCGCAATACCAGAGTCGTGGTCCGGTCGTCTCTGGGCACGAACCTTG 234 GAGACGCGTACCATCAAAGCGCCGTCATCATGGATAGGTCGTTTCTGGGGTAGGACACTC 594

TGCTCAACCGAT---TCCGATGGAAAATTCTCGTGTGCCACCGGAGATTGCGGCTCCGGA 231 TGTTCCACCGAC---ACCGACGGAAAATTCACTTGTCTCACCGGAGATTGCGGATCTGGT 291 TGCAACTTCGAC---GCCTCCGGCCACGGTAACTGCGGCACCGGAGACTGCGGCGGTG-- 325 TGCAACTTTGAC---GCCTCCGGTCACGGTACCTGCGTCACCGGAGACTGCGGCGGCG-- 289 TGCACCTTTAAC---CAAAACGGTAAAGGCTCATGCCAAACCGGAGACTGCAACGACGGC 285 TGCAACTTTGAT---GCTAACGGCGCGGGAAAATGTATGACTGGAGACTGCGGCGGAA-- 295 TGCAAGTTCGAC---AGTTCTGGCTCCGGTACATGCAAAACCGGTGACTGCGGCTCCAAC 430 TGCAACTTCAACTCAGACACAGGACAAGGCACCTGCCTAACCGGGGACTGCGGCTCTAAC 309 TGTAACTTCGAC---GCCTCAGGCTCAGGTAAATGCGGTACCGGGGACTGCGGCAGCAAG 297 TGCACACAAGACGCAACCACCGGAAGATTCACTTGCATCACCGGGGACTGTGGTTCTTCC 294 TGCAACCAAAACGAAATCACCGGAATATTCACTTGCGTCACCGGCGACTGCGGCTCATCC 294 TGTTCACAAGATCGGAGTTCCGGTTCTTTCGTCTGCTTAACCGGAGATTGCGGCTCGGGA 294 TGCTC-CACCAACTCAACAGGGGGTTTCTCATGTGCC--ACGGGAGACTGCACCTCCGGA 651 ** * ** ** ** ** ** **

AAAATCGAATGCTCCGGCGCTGGAGCTGCTCCTCCTGCGACTTTAGCTGAATTCACTCTC 291 ACCCTCGAATGCTCCGGATCCGGAGCAACACCACCAGCAACACTAGCGGAATTCACACTA 351 -TTCTTAAATGTAACGG---CGGCGGAGTTCCACCAGTCACTCTGGCTGAATTCACACTT 381 -TTTTAAAATGTACCGG---CGGCGGAGTTCCTCCAGCGACTCTAGCGGAATTCACCGTG 345 TCTATCAACTGCCAAGGAACCGGCGGTGTACCACCAGCAACCGTAGTAGAAATGACATTA 345 -AGCTGGAGTGTGCTGGTAATGGCGCTGCTCCGCCGACATCTCTTTTCGAGATCACACTC 354 TCTGTCGAATGCGCCGGGCTTGGTGCCGCACCGCCTGTAACTCTCGCGGAGTTCACTCTA 490 CAGGTCGAATGTAACGGTGCAGGAGCAAAACCGCCCGCTACACTCGCCGAATTCACAATC 369 T---TAAAATGCGCCGGCGCAGGAGGAGCTCCACCAGCCACACTCGCCGAATTCACAATC 354 ACCGTAGAATGCTCCGGATCCGGTGCTGCACCTCCGGCTACACTCGCTGAATTCACCTTA 354 CAAATCGAATGCTCTGGCGCAGGAGCAATCCCTCCAGCTACACTAGCCGAATTCACACTC 354 AAAGTCGAATGTTCAGGCTCCGGAGCTAAACCTCCAGCAACTCTCGCCGAGTTTACTCTC 354 AAAATCAAGTGCCTCGGTATCC---CCATAGATCCAACAACAGTGGTCGAGTTTAACCTC 708

GATGGCTCCGGAGGAC----------------TCGATTTCTACGATGTCAGTCTCGTCGAC 336 GACGGATCTAACGGAC----------------TCGATTTCTACGACGTTAGTCTCGTCGAC 396 G---TAGGCGACGGCGGCA------------AGGATTTCTACGACGTGAGTCTCGTCGAC 426 GGATCAAGCAATGCCGGCA------------TGGATTTCTACGACGTGAGCCTCGTCGAC 393 GGCTCATCTTCCTCTCCGC------------TTCATTTCTACGACGTAAGTCTCGTCGAC 393 GGTCACGGTTCTGATGACA------------AAGATTTCTATGATGTCAGTCTCGTTGAT 402 GGCACTGG--CGGCG----------------ATGATTTCTACGACGTTAGTCTCGTCGAC 532 GGGTCAGGTCCAGCAGACCCGGCCCGTAAACAAGACTTCTACGACGTAAGCCTCGTGGAC 429 GGCTCCTC--CGGAAAGAAAAACGC-CGTGCAAGATTTTTACGACGTGAGCCTCGTAGAT 411 AACGGAGCTAATGGTC---------------TCGATTTCTACGACGTCAGTCTCGTCGAC 399 AACGGCGCCGAAAATC---------------TAGATTTCTACGACGTTAGCCTCGTCGAT 399 AACGGCACAGGAGGAC----------------TAGATTTTTACGACGTTAGCCTCGTCGAC 399 ---GCTTCTTACGGTG---------------TCGACTATTATGTCGTCAACGTCTTCAAT 750

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At4g24180
At1g19320
At 4 g 36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At 4 g 36010
At2g17860
At 4 g 38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At4g24180
At1g19320
At 4 g 36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At4g24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

GGCTACAATGTCCAGATGCTGGTGGTTCCTCAAGGCGGCTCCG--------------------- 381
GGTTACAACGTCCCGATGCTAGTGGCTCCACAAGGAGGCTCGG-------------------GT 441
GGTTACAATGTCGAGATGGGGATTAAACCTCAAGGAGGTTCC------------------------468 46
GGTTACAATGTAAAGATGGGGATAAAACCACAGGGAGGATTC-----------------------435
GGTTTCAATCTTCCGGTGTCGATGAAACCAATCGGCGGTGGA-----------------------435 435
GGGTATAACCTTCCCATAGTTGCTCTCCCGACGGGTGGTGGAC----TGGTT---------- 450
GGTTACAACATTCCGATGATAGTTGAAGTCGCCGGTGGATCT-------GGG----------- 577
GGTTACAACGTTCCCATGTTGGTGGAAGCAAGTGGCGGGTCA-------GAA---------- 474
GGTTATAACGTTCAGATGAAAATCACACCGCAAGGTGGCTCA-------GGG-----------456
GGTTACAACATCCCGATGACCATCGTCCCTCAGGGTGGAGGAGATGCCGGAGGCGTCGCC 459 GGTTACAACATCCCAATGACGATCGTTCCTTACGGCGGAGC---TATCGGAG------TC 450 GGTTACAATCTCCCGATGCTAATCTTGCCCAAGAAAATCGTCA----------------TT 444 GGTTACAACCTCCCTTTGCTTGTGACCCCCGAGAACA----------------------------187 ** * ** * *

CAGAATTGCAGCAGCACCGGCTGCGTCGTCGATTTAAACGGATCTTGCCCGTCGGAGCTA 441 TTAAACTGTAGCAGCACCGGATGCGTTGTAGATCTGAACGGTTCGTGTCCGTCGGAGCTT 501 GGTGATTGCCATTACGCCGGCTGCGTCGCCGACGTCAACGCGGTTTGCCCTAACGAGCTT 528 GGAAATTGCAAATACGCAGGCTGCGTCTCGGACATCAACGAGATTTGCCCTAGCGAGCTT 495 GTTGGATGTGGCGTTGCGGCTTGTGAAGTGAATTTGAACATTTGTTGTCC--ATCAGCTT 493 GGCGCTTGTAATGCTACAGGATGTGTTGCTGATATCAATATTAGCTGTCCAAAGGAGCTT 510 CA-GTGCGCTT--CTACCGGATGCACTACGGATCTTAACATTCAGTGCCCTGCTGAGCTG 634 GGTACTTGCTTAACCACGGGATGCGTAACGGATCTAAACCAAAAATGTCCAACGGAGCTC 534 GA---TTGTAAAACCGCGGGATGCGTTTCGGACGTGAACGCGATTTGTCCAAAAGAGCTA 513 GGAAACTGTACGACAACCGGCTGCGTTGCGGAGCTCAACGGTCCATGTCCTGCTCAGCTG 519 GGTAAGTGTAACGCAACGGGTTGCGCGGCGGATCTCAACGGCTTATGTCCGGAGCAGCTG 510 GGAGGATGCGGAGCCACCGGGTGTCTCGTGGACTTGAACGGCGCGTGTCCCAGAGACCTA 504 -AAAACTGCAGAAGCATTGAATGCGTTATTGACATGAACGAGACATGTCCCTCGGAGCTA 846

AGGGTGAATAGCGTCGACGGG---AAGGAGGCGGTGGCGATGGCGTGTAAAAGTGCGTGC 498 AAAGTGACGAGTTTAGACGGC---AGAGGTAAACAATCCATGGGATGTAAAAGCGCGTGT 558 CGGCTCATGGATCCACAT---------ACAGGAATCATCGCGGCGTGTAAAAGCGCTTGT 579 AGGATCATGGATCCGAAT---------TCGGGAAGTGTCGCGGCGTGTAAGAGCGCTTGC 546 TGGAAGTTAAG---AGAG---------ATGGGAAA-GTGGTTGGTTGTAAAAGTGCTTGC 540 CAAGTGATGGGAGAGGAAGAGGCTGAAAGAGGAGGGGTTGTTGCATGCAAGAGCGCTTGT 570 C--GTTTCGG------------------CGACGGA----GACGCTTGCAAAAGCGCGTGT 670 C--GGTTCGG-------------------GTCCGGG----TCAGCATGCAAAAGCGCGTGT 570 CAAGTTACGGGC---------------CCATCGGGTGTTGCAGCGTGTAAGAGTGCTTGT 558 AAAGTGGCGA------CGACG------GGAGCTGAAGGAGTAGCTTGCAAAAGCGCGTGT 567 AAAGTAACGGTTGAAGCGGCT------GGAACGGGTGCTGTGGCGTGCAAGAGCGCTTGT 564 AAGCTGGTGACGCGTGGGAATGG------GAACGGT---GTTGCTTGCCGTAGCGCGTGC 555 ATGGTGAACAGTAGTGGCCTTGGA---TCGCACCATCCAATAGCCTGCATGACCACTTGT 903

GAGGCGTTTCGGCAGCCGGAGTATTGCTGCAGCGGC--------------GCGTTTGGATCG 546 GAAGCTTTTCGTACGCCGGAGTATTGTTGCAGCGGC----------------GCCCACGGTACA 606
 GCGGCGTTTAGTTCGCCGGAATTTTGCTGTACTGGT-------------GCTCACGCGACG 594 TTGGCGATGCAATCGGCTAAGTATTGTTGCACCGGT---------------GAATATGCGAAT 588 GAGGCCTTTGGGTTGGACCAGTACTGTTGCAGCGGT-----------------AGTTTGCTAAC 618 TTAGCGTTTCGGAGTCCTGAATACTGTTGCAGCGGC----------------GCGTATGCTACA 718 GAGGCTTTTGGTAGTCCAGAATATTGTTGTAGTGGC-------------GCGTACGCCTCA 618 GAGGCTTTTAACAAGCCGGAGTATTGTTGCACCGGC---------------GCGTATAGTACA 606 GAAGCGTTTGGAACGCCGGAGTACTGCTGTAGCGGC--------------GCGTTTGGAACG 615 GAGGCGTTTGGAACGCCGGAGTTTTGTTGTAACGGC----------------GCGTTTGGAACG 612
 CAGAGATACCAGTTGCCAGAGCTTTGCTGTATCGGACTCTCTTCTGGGGTGGTCGTACCA 963 ** ** * * CCTGACACGTGTAAACCGTCGTCGTACTCGTTGATGTTTAAAACTGCGTGTCCACGTGCT 666 CCGCAAACTTGTTCTCCGACGCATTACTCGGCGATGTTTAAAAGCGCTTGCCCTGGTGCT 687 CCGCAAACTTGTTCTCCGACGTATTACTCGTCCATGTTTAAGAACGCTTGTCCTAGCGCT 654 CCTCAGGCGTGTAAGCCGACTCTGTTCGCGAATCTGTTTAAAGCGATTTGTCCTAAAGCT 648 CCGACCACATGCCGACCGTCTTTATACTCTTCCATCTTCAAGAGAGCTTGTCCCAGAGCT 678 CCTTCTAGTTGTCGGCCTTCCGTGTATTCGGAGATGTTTAAAGCCGCGTGTCCTCGCTCC 778

CCCACCGAGTGTAAACCATCGATGTACTCGGAGATATTCAAATCTGCGTGTCCAAGATCA 678
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

At1g200030 At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At 4 g24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At4g24180
At1g19320
At 4 g 36010
At2g17860
At 4938670
At1g70250 CCGGCGACTTGTCCGCCCACGAATTACTCGAAGATATTTAAACAAGCTTGTCCGAGTGCG 666 CCGGACACGTGTAAGCCAAGCGAGTACTCACAGTTTTTCAAAAACGCGTGCCCGAGAGCT 675 CCGGACACGTGTCAGCCGAGTGAGTACTCTGTTTTCTTTAAGAAAACTTGTCCGACGGCT 672 CCGGACACGTGTCAGCCTTCGGTTTACTCGCTCTTCTTTAAGCATGCGTGCCCACGAGCA 663 CCGGGAATATGCAAGCGGACGATCTACTCGCGGACATTCAATAACGTGTGCCCAAGCGCT 1023 **

TATAGCTACGCGTATGACGATAAGTCTAGTACATTTACGTGCGCGAAATCTCCCAACTAC 666 TACAGCTACGCTTACGATGATCAGAGTAGTACCTTCACATGTGCTGAATCTCCTAATTAC 726 TACAGTTACGCCTACGACGACGCCACGAGCACCTTCACTTGTACCGG---CTCTAACTAC 744 TATAGTTACGCTTACGACGACGCATCGAGCACTTTCACTTGTACCGG---ATCTAACTAC 711 TATAGTTATGCGTTTGATGATTCTAGTAGTTTGAATAAGTGTAGAGC---TTCTCGTTAT 705 TATAGCTATGCCTTCGATGATGGAACCAGTACTTTCACCTGCAAGGC---TTCTGAATAT 735 TATAGCTACGCTTACGACGATGCTACGAGCACTTTCACTTGCGCCGG---TGGAGATTAT 835 TATAGCTACGCGTTCGACGATGCTACAAGTACGTTCACATGCACTGA---TGCTGATTAC 735 TATAGCTATGCATACGATGATGCTTCCAGTACTTTTACTTGTACTAA---TGCTAATTAT 723 TATAGTTACGCTTACGACGACGGAACTAGTACCTTCACTTGTGGCGG---AGCTGATTAC 732 TATAGTTACGCTTATGACGACGGCACAAGCACTTTTACTTGCTCCGG---TGCTGATTAC 729 TACAGCTACGCCTATGACGATAAGACGAGCACTTACACTTGCGCCACCGGAGCCGATTAC 723 TATAGTTACGCCTACGACGTTGATAACAGCAGTTTCACTTGTCCAAACTTCTCCAACTTT 1083

GTCATCACTTTCTGTCCTTC-------TCCCAACACCAGCCTAAAATCAGCTGAGGAACA 719 GTTATCACGTTTTGCCCTAC-------TCCTAACACCAGTCAAAAATCATCTCAAGATCA 779 TTGATCTCTTTCTGCCCCA--------CCCGGA-ACTAA------------------------- 774 TTGATCACTTTCTGCCCTA--------CCCAGT-CTTAA-------------------------- 741 GTTATCACTTTCTGTCCTC--------CAAAGTCATTGAATGAGAAACTGAGAAAATTTG 757 GCAATTATCTTCTGCCCTGG-------CAGGGTAAAAAGACCAGACAGTCTGAACTCGGA 788 ACGGTGACGTTTTGCCCTT----------CTTCCCCTAGTCAAAAATCGACTAGCTACTC 885
ACCATCACTTTTTGCCCTT-----------CCTTGCCTAGGTAG--------------------7 768
GAGATCAGTTTCTGTTCTT-----------AG----------------------------------- 744
GTCATCACTTTCTGTCCTT---------CTCCTAACCCAAGTGTGAAGAGTGCAACGAAGG 784
GTCATCACTTTCTGTCCTT---------CTCCT---TCAAG-GTAA----------------- 762
TTCATCATCTTCTGTCCGCC-------ACCGTAT-ACAAGCGAGAAGC--------TTTT 767
GTCATCACGTTTTGTCCGTCTAGCTCAACGGTCCCAGAGGCAGGAAACATCAATAGCTCA 1143

CAGCACAGAGACAATGACGACGACAA----------GTC-----CAAGTTCCG--------- 757
GAGCCCAGATCCCAAACCGACGACACCAACCGGGACGTCGTCGACAACTCCTGCCGGAGA 839

AACTCAAAATAGAATCAAAATTTGGTCATTATACA-GTGGTTACCATCCTTTTAACTAGT 816 TCCTCCCAGCCCACCTCAGAATCAGTTAGGGCA-----ACCTATGGCTCCCCCAACTCAA 843 CССTCCAGTGACAGACTCGTCGTCGACCTCCCAAG-GTTCCGATCCTGTGCCTGGTTCTG 944
--
GAGTCCAACCCGTAGCTGTTAGCTACTCTAAGGCA-TCTCCAAACGCGTCGCCAACTCTT 843
AGGATC---GAGGAAAGATGGTGCAACACTGCCACTAGTAAACAAGAGCATGATTCATTT 824 ACGGTCCCAGAGGCAGGAAACATCAAAACTGGAACAGAAGCAAAAGGAAATATTCCATTG 1203

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At 4 g 36010
At2g17860
At 4 g 38670
At1g70250
--GCAGTACGACGTCGTCGCAG------------ATGGTCTACGAAGGTGCTCTGGACGA 803 TAGTAGTACGACGTGGTCACCGGTAGATACATCAATGATATACGAAGGAGCTTTGGATCA 899

GTTCTAAAGACACAAGCTTTAGCTGGTGGGTCCAAAGACATAAAAGACGGTTTTAGTGCT 876 AATCAGTATGGTCAACCTATGGCTCCTGCACCTCAGTATCAGTACGGTCAACCTATGGCT 903 ATACTGGTTACGCTGGTCAGGGTCAACAGACTCCAGGTCAAGGTAATGTGTACGGGTCAC 1004

TCTGCCGTGTTTTCGATTGGCGTTTTGGCTGTCGCGTCTTGGGTGATGCAACGCGTTTTG 903
-GCCGCATCCGCACAGCAGCTGA-- 846
AGGTTAAAACTCATACTTGGAGTTTCATCAGTATTGGCTACAATGATCATTATTGTGATT 1263

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At 4938670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At4g24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At 4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At4g24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

AAGCAGTGGTTCACCATCTACGTATCACGGCGTATCACGAGCAATCACAGTCGTTCTTCT
863 AAACAAAGGATCACCGTCCACGTGTCATCTTTCGTTATGTGGAATCACAGTCACACTT-957 ---

TACTCATGA 885
CCACCGACTCAAAATCAGTATGGTCAACCTCTGGCTCCTCCGACTCAAAATCAATACGAT 963 AGGGGACTGGGTCGGAGATGGGTACGGGTGAGACCATGTTACAAGACGGATCATGGATGG 1064

 906

GTGGGAAAGGTTAGAGCAAATAATATGAGAAAGAGTGATTTGAATGAGAAGAACATGGAA
1323

At4g38660 At4g24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At4g24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At4g36010
At2g17860
At4g38670
At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At 4 g 38660
At4g24180
At1g19320
At4g36010
At2g17860
At 4 g 38670
At1g70250

CGACAATTTGGGTTTTAGGCTTTTAGGGTTTTGCATTGTAGCTTTGTCGTGTACGCGCGT
1304

 AATGAAATAGCTAGCATGAGTAGGACATCTCATGCTAATATCGTTTCTCTACTTGGATTC 1563
```

---------------------------------------------------------------------

```


ACCCTGTCTTGTTGCTTCTTGGCTTTAGTCTAACTGCTTTGAGGCAATCTGGCACGACAT 1261GTGTGCTTGTATCATCTGTCATTGAAGATTGTTTATCATGTTCGAAATTGTGAGATATGC 1364

TGTTATGAAGGGAGGAAGAAAGCTATAATTTACGAGTTGATGCCGAATGGATCCCTCGAC1623

GA--- 1263

TTTGTGATTTAAAGAAAGATCTTTTGTGGCTTT 1397

 AAGTTCATCTCCAAGAATATGTCGGCGAAGATGGAATGGAAAACGTTATACAACATTGCG 1683

```

----------------------------------------------------------------
O
----
------------------------------------------------------------------
----------------------------------------------------------------
------------------------------------------------------------------
-----------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------
-------------------------------------------------------------------
TTCGATATAAAGCCACAGAACATACTCATAGATGGAGACTTATGCCCTAAGATTTCGGAT

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At 4 g 36010
At2g17860
At 4 g 38670
At1g70250
GGCACCATAGGGTACATTGCTCCAGAAGTGTTCTCCCAGAATTTTGGAGGAGTTTCTCAT

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At4g38660 At4g24180 At1g19320 At4g36010 At2g17860 At4g38670 At1g70250

AAGTCTGATGTGTATAGTTATGGAATGGTGGTTCTTGAGATGATTGGAGCAAGGAACATA

## 1983

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g24180
At1g19320
At4g36010
At2g17860
At 4938670
At1g70250
GGAAGAGCTCAAAATGCTGGATCCAGTAATACTTCAATGTACTTTCCAGATTGGATmTAT

At5g24620 At4g38660 At 4 g 24180 At1g19320 At4g36010 At2g17860 At4g38670 At1g70250

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At 4 g 38660 At4g24180 At1g19320 At4g36010 At2g17860 At4g38670 At1g70250

At1g200030
At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320
At 4 g 36010
At2g17860
At 4 g 38670
At1g70250

At1g200030 At1g75800 At1g75050 At1g75030 At5g02140 At5g24620 At 4 g 38660 At 4 g 24180 At1g19320 At4g36010 At2g17860 At4g38670 At1g70250
------




 AAAGATCTTGAGAAAGGAGAAATCATGAGTTTTTTGGCAGATCAAATAACCGAAGAAGAA 2103









GATGAGAAGATAGTAAAGAAAATGGTATTGGTGGGTCTGTGGTGTATTCAGACCAATCCA











TATGATCGTCCACCAATGAGCAAAGTTGTTGAAATGTTAGAGGGAAGTCTAGAGGCTCTC











At1g75800
At1g75050
At1g75030
At5g02140
At5g24620
At4g38660
At 4 g 24180
At1g19320

### 6.8. Blasts for thaumatins

6.8.1 AT1G20030.1 Pathogenesis related thaumatin family protein,similar to receptor Serine/threonine kinase (PR5) [Arabidopsisthaliana]
Identities $=25 / 25(100 \%)$
Query: 61 attctgaccggagccgccttgagga 85
||||||||||||||||||||||||
Sbjct: 542 attctgaccggagccgccttgagga 518
6.8.2 AT1G75800 Arabidopsis thaliana unknown protein

```
Identities = 419/419 (100%)
```

Query 58 TTTTATCAAACGCCGGAGTTCCACCACTTCCGACGACCGGATTCGTTCTCCAAAAAGGCG 117

Sbjet 223 TTTTATCAAACGCCGGAGTTCCACCACTTCCGACGACCGGATTCGTTCTCCAAAAAGGCG 282
Query 118 AAGAACGAACAATCAGCGCTCCAACTTCATGGGGAGGAAGATTCTGGGGGAGAACTCAAT 177

Sbjct 283 AAGAACGAACAATCAGCGCTCCAACTTCATGGGGAGGAAGATTCTGGGGGAGAACTCAAT 342
Query 178 GTTCCACCGACACCGACGGAAAATTCACTTGTCTCACCGGAGATTGCGGATCTGGTACCC237

Sbjct 343 GTTCCACCGACACCGACGGAAAATTCACTTGTCTCACCGGAGATTGCGGATCTGGTACCC402
Query 238 TCGAATGCTCCGGATCCGGAGCAACACCACCAGCAACACTAGCGGAATTCACACTAGACG297

Sbjet 403 TCGAATGCTCCGGATCCGGAGCAACACCACCAGCAACACTAGCGGAATTCACACTAGACG462
Query 298 GATCTAACGGACTCGATTTCTACGACGTTAGTCTCGTCGACGGTTACAACGTCCCGATGC 357
Sbjet 463 GATCTAACGGACTCGATTTCTACGACGTTAGTCTCGTCGACGGTTACAACGTCCCGATGC 522
Query 358 TAGTGGCTCCACAAGGAGGCTCGGGTTTAAACTGTAGCAGCACCGGATGCGTTGTAGATC 417

Sbjet 523 TAGTGGCTCCACAAGGAGGCTCGGGTTTAAACTGTAGCAGCACCGGATGCGTTGTAGATC 582
Query 418 TGAACGGTTCGTGTCCGTCGGAGCTTAAAGTGACGAGTTTAGACGGCAGAGGTAAACAA 476

Sbjet 583 TGAACGGTTCGTGTCCGTCGGAGCTTAAAGTGACGAGTTTAGACGGCAGAGGTAAACAA 641
6.8.3 AT1G75050.1 thaumatin like protein, putative/ pathogenesis related protein, putative, similar to thaumatin like protein [Arabidopsis thaliana]

Identities $=403 / 407$ (99\%)

Query: 60 ttgctgtttccgccgccaccgtcttcactttacagaacagttgtccttacaccgtttggc 119

Sbjct: 117 ttgctgtttccgccgccaccgtcttcactttacagaacagttgtccttacaccgtttggc 176
Query: 120 ctggaattctctccggcaacgacaacaccctcggcgacggcggatttcctttaacaccag 179

Sbjct: 177 ctggaattctctccggcaacgacaacaccctcggcgacggcggatttcccttaacaccag 236
Query: 180 gcgcttccgtacagctcacggctcctgcaggatggtctggacggttctgggctcgtaccg 239

Sbjct: 237 gcgcttccgtacagctcacggctcctgcaggatggtcaggacggttctgggctcgtaccg 296
Query: 240 gctgcaacttcgacgcctccggccacggtaactgcggcaccggagactgcggcggtgttc 299

Sbjct: 297 gctgcaacttcgacgcctccggccacggtaactgcggcaccggagactgcggcggtgttc 356
Query: 300 ttaaatgtaacggcggcggagttccaccagtcactctggctgaattcacacttgtaggcg 359

Sbjct: 357 ttaaatgtaacggcggcggagttccaccagtcactctggctgaattcacacttgtaggcg 416
Query: 360 acggcggcagggatttctacgacgtgagtctcgtcgacggttacaatgtcgagatgggga 419

Sbjct: 417 acggcggcaaggatttctacgacgtgagtctcgtcgacggttacaatgtcgagatgggga 476
Query: 420 ttaaaccccaaggaggttccggtgattgccattacgccggctgcgtc 466

Sbjct: 477 ttaaacctcaaggaggttccggtgattgccattacgccggctgcgtc 523
6.8.4 AT1G75030.1 Pathogenesis related thaumatin family protein, identical to thaumatin like protein [Arabidopsis thaliana]

Identities $=364 / 371$ (98\%)

Query: 59 ctctctccggcaacagcatcaccctcggcgacggcggatttcccttaactccaggcgctt 118

Sbjct: 146 ctctctccggcaacagcatcaccctcggcgacggcggatttcccttaactccaggcgctt 205
Query: 119 ccgtgcagctcacggctcctaccggttggtcaggccggttctgggctcgtaccggctgca 178

Sbjct: 206 ccgtgcagctcacggctcctaccggttggtcaggccggttctgggctcgtaccggctgca 265

Query: 179 actttgacgcctccggtcacggtacctgcgtcaccggagactgcggcggcgttttaaaat 238

Sbjct: 266 actttgacgcctccggtcacggtacctgcgtcaccggagactgcggcggcgttttaaaat 325
Query: 239 gtaccggcggcggagttcctccagcgactctagcggaattcacccgtgggatcaagcaat 298

Sbjct: 326 gtaccggcggcggagttcctccagcgactctagcggaattca-ccgtgggatcaagcaat 384
Query: 299 gccggcatggatttctacgacgtgagcctcgtcgacggttac-atgtaaagatggggat- 356

Sbjct: 385 gccggcatggatttctacgacgtgagcctcgtcgacggttacaatgtaaagatggggata 444
Query: 357 aaaccacagggaggattcggaaattgcaaatacgcagcctgcgtctcgaacat-aacgaa 415

Sbjct: 445 aaaccacagggaggattcggaaattgcaaatacgcaggctgcgtctcggacatcaacg-a 503
Query: 416 gatttgcccta 426
|||||||||||
Sbjct: 504 gatttgcccta 514
6.8.5 AT5G02140.1 thaumatin like protein, putative, similar to SP: P50699 thaumatin like protein precursor [Arabidopsis thaliana]

Identities $=474 / 474$ (100\%)

Query: 57 tggagctcagcttataatagtgaataactgccaggagagcatttggccgggaattctcgg 116

Sbjct: 57 tggagctcagcttataatagtgaataactgccaggagagcatttggccgggaattctcgg 116
Query: 117 cggcggaggccaaatcacaccaagaaacggcggattccacatgggaagcggcgaagaaac 176

Sbjct: 117 cggcggaggccaaatcacaccaagaaacggcggattccacatgggaagcggcgaagaaac 176
Query: 177 catcatagacgtaccggataaatggtccggtcgaatctggggtagacaaggctgcacctt 236

Sbjct: 177 catcatagacgtaccggataaatggtccggtcgaatctggggtagacaaggctgcacctt 236
Query: 237 taaccaaaacggtaaaggctcatgccaaaccggagactgcaacgacggctctatcaactg 296

Sbjct: 237 taaccaaaacggtaaaggctcatgccaaaccggagactgcaacgacggctctatcaactg 296
Query: 297 ccaaggaaccggcggtgtaccaccagcaaccgtagtagaaatgacattaggctcatcttc 356

Sbjct: 297 ccaaggaaccggcggtgtaccaccagcaaccgtagtagaaatgacattaggctcatcttc 356
Query: 357 ctctccgcttcatttctacgacgtaagtctcgtcgacggtttcaatcttccggtgtcgat 416

Sbjct: 357 ctctccgcttcatttctacgacgtaagtctcgtcgacggtttcaatcttccggtgtcgat 416

Query: 417 gaaaccaatcggcggtggagttggatgtggcgttgcggcttgtgaagtgaatttgaacat 476

Sbjct: 417 gaaaccaatcggcggtggagttggatgtggcgttgcggcttgtgaagtgaatttgaacat 476
Query: 477 ttgttgtccatcagctttggaagttaagagagatgggaaagtggttggttgtaa 530

Sbjct: 477 ttgttgtccatcagctttggaagttaagagagatgggaaagtggttggttgtaa 530
6.8.6 AT5G24620.1 thaumatin like protein, putative, similar to thaumatin like protein [Arabidopsis thaliana]

Identities $=502 / 505$ (99\%)

Query: 60 ccactacccaccacagggttcaggcttgatgtgggacagtctgttagaattcccacggct 119

Sbjct: 295 ccactacccaccacagggttcaggcttgatgtgggacagtctgttagaattcccacggct 354
Query: 120 ctaggctggtcaggtcgtatttgggctaggactggctgcaactttgatgctaacggcgcg 179

Sbjct: 355 ctaggctggtcaggtcgtatttgggctaggactggctgcaactttgatgctaacggcgcg 414
Query: 180 ggaaagtgtatgactggagactgcggcggaaagctggagtgtgctggtaatggcgctgct 239

Sbjct: 415 ggaaaatgtatgactggagactgcggcggaaagctggagtgtgctggtaatggcgctgct 474
Query: 240 ccgccgacatctcttttcgagatcacactcggtcacggttctgatgacaaagatttctat 299

Sbjct: 475 ccgccgacatctcttttcgagatcacactcggtcacggttctgatgacaaagatttctat 534
Query: 300 gatgtcagtctcgttgatgggtataaccttcccatagttgctctcccgacgggtggtgga 359

Sbjct: 535 gatgtcagtctcgttgatgggtataaccttcccatagttgctctcccgacgggtggtgga 594
Query: 360 ctggttggcgcttgtaatgctacaggatgtgttgctgatatcaatattagctgtccaaag 419

Sbjct: 595 ctggttggcgcttgtaatgctacaggatgtgttgctgatatcaatattagctgtccaaag 654
Query: 420 gagcttcaagtgatgggagaggaagtggctgaaagaggaggggttgttgcatgcaagagc 479

Sbjct: 655 gagcttcaagtgatgggagaggaagaggctgaaagaggaggggttgttgcatgcaagagc 714
Query: 480 gcttgtgaggcctttgggttggaccagtgctgttgcagcggtcagtttgctaacccgacc 539 \|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\| \|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|
Sbjct: 715 gcttgtgaggcctttgggttggaccagtactgttgcagcggtcagtttgctaacccgacc 774
Query: 540 acatgccgaccgtctttatactctt 564

Sbjct: 775 acatgccgaccgtctttatactctt 799
6.8.7 AT4G38660.2: Similar to pathogenesis-related thaumatin family protein [Arabidopsis thaliana]

Identities: 447/451 (99\%)

```
Query: 58 tcgaatgctggctcacctactctctccaccaccggatttgagctccctaaaggcacctct 117
 |||
Sbjct: 157 tcgaatgctggctcacctactctctccaccaccggatttgagctccctaaaggcacctct 216
Query: 118 cgctctctccaagctcccaccggttggtccggtcgattctgggctcgtaccggttgcaag 177
 |||
Sbjct: 217 cgctctctccaagctcccaccggttggtccggtcgattctgggctcgtaccggttgcaag 276
Query: 178 ttcgacagttctggctccggtacatgcaaaaccggtgactgcggctccaacgctgtcgaa 237
 ||
Sbjct: 277 ttcgacagttctggctccggtacatgcaaaaccggtgactgcggctccaacgctgtcgaa 336
Query: 238 tgcgccgggcttggtgccgcaccgcctgtaactctcgcggagttcactctaggcactggc 297
 |||
Sbjct: 337 tgcgccgggcttggtgccgcaccgcctgtaactctcgcggagttcactctaggcactggc 396
Query: 298 ggcgatgatttctacgacgttagtctcgtcgacggttacaacattccgatgatagttgaa 357
 |||
Sbjct: 397 ggcgatgatttctacgacgttagtctcgtcgacggttacaacattccgatgatagttgaa 456
Query: 358 gtcgccggtggatctgggcagtgcgcttctaccggatgcactacggatcttaacattcag 417
 ||
Sbjct: 457 gtcgccggtggatctgggcagtgcgcttctaccggatgcactacggatcttaacattcag 516
Query: 418 tgccctgctgagctgcgtttcggcgac-gagacgcttgcaaaagcgcgttgtttagcgtt 476
 ||||||||||||||||||||||||| |||||||||||||||||| ||||||||||
Sbjct: 517 tgccctgctgagctgcgtttcggcgacggagacgcttgcaaaagcgcg-tgtttagcgtt 575
Query: 477 tc-gaatcctgaatactgttgcagcggcgcg 506
 || || ||||||||||||||||||||||||
Sbjct: 576 tcggagtcctgaatactgttgcagcggcgcg 606
```

6.8.8 AT4G24180.1 Similar to thaumatin, putative [Arabidopsis thaliana]

Identities $=445 / 469$ (94\%)

Query: 58 atcgatggtttacactcggtgggtgaggcgtacgcgccactacaacaatattctggacta 117

Sbjct: 734 atcgatggtttacactcggtgggtgaggcgtacgcgccactacaacaatattctggacta 675

Query: 118 ccaaaagcctcacacgcgcttttgcatgctgacccggacccgaaccggagctccgttgga 177

Sbjct: 674 ccaaaagcctcacacgcgcttttgcatgctgacccggacccgaaccggagctccgttgga 615
Query: 178 catttttggtttagatccgttacgcatcccgtggttaagcaagtaccttctgacccgcca 237

Sbjct: 614 catttttggtttagatccgttacgcatcccgtggttaagcaagtaccttctgacccgcca 555

Query: 238 cttgcttccaccaacatgggaacgttgtaaccgtccacgaggcttacgtcgtagaagtct 297

Sbjct: 554 cttgcttccaccaacatgggaacgttgtaaccgtccacgaggcttacgtcgtagaagtct 495

Query: 298 tgtttacgggccgggtctgctggacctgacccgattgtgaattcggcgagtgtagcgggc 357

Sbjct: 494 tgtttacgggccgggtctgctggacctgacccgattgtgaattcggcgagtgtagcgggc 435
Query: 358 ggttttgctcctgcaccgtttacatttcgacctgg-tagagccgcagtccccggtttagg 416

Sbjct: 434 ggttttgctcctgcaccg-ttaca-ttcgacctggttagagccgcagtccccgg-ttagg 378
Query: 417 caggtgcccttgtccctgtgtctgatttgaaagtttgcaccggtttctggccaaaaaccg 476
|||||| ||||| |||||||||| ||||| ||||| | ||| ||| ||||||
Sbjct: 377 caggtg-ccttgt-cctgtgtctgagttgaa-gttgcaaccggttcgtgcccaaaaccg 322
Query: 477 cccttaccaactatccctgaagcttggaaccaacgtgaaccaccgggaa 525
||| |||| ||| ||| ||||||||| |||||||||||||||
Sbjct: 321 acctgaccagcta--gctggagcttggaacgaacgtgaaccaccgggaa 275
6.8.9 AT1G19320.1 Pathogenesis related thaumatin family protein, similar to SP: P28493 pathogenesis related protein 5 precursor (PR5) from [Arabidopsis thaliana]

Identities $=566 / 569$ (99\%)

Query: 60 tcttcgagtaattcgtgggcggacaagtcgccggtgtactatacgcgccggtgcaacaat 119

Sbjct: 686 tcttcgagtaattcgtgggcggacaagtcgccggtgtactatacgcgccggtgcaacaat 627
Query: 120 actccggcttgttaaaagcctcacaagcactcttacacgctgcaacacccgatgggcccg 179

Sbjct: 626 actccggcttgttaaaagcctcacaagcactcttacacgctgcaacacccgatgggcccg 567
Query: 180 taacttgtagctcttttggacaaatcgcgttcacgtccgaaacgcatcccgcggttttac 239

Sbjct: 566 taacttgtagctcttttggacaaatcgcgttcacgtccgaaacgcatcccgcggttttac 507
Query: 240 aatcccctgagccaccttgcggtgtgattttcatctgaacgttataaccatctacgaggc 299

Sbjct: 506 aatcccctgagccaccttgcggtgtgattttcatctgaacgttataaccatctacgaggc 447
Query: 300 tcacgtcgtaaaaatcttgcacggcgtttttctttccggaggagccgattgtgaattcgg ..... 359
Sbjct: 446 tcacgtcgtaaaaatcttgcacggcgtttttctttccggaggagccgattgtgaattcgg ..... 387
Query: 360 cgagtgtggctggtggagctcctcctgcgccggcgcattttaacttgctgccgcagtccc ..... 419

Sbjct: 386 cgagtgtggctggtggagctcctcctgcgccggcgcattttaacttgctgccgcagtccc ..... 327
Query: 420 cggtaccgcatttacctgagcctgaggcgtcgaagttacaatacgttcgagcccaaaatc ..... 479

Sbjct: 326 cggtaccgcatttacctgagcctgaggcgtcgaagttacaatacgttcgagcccaaaatc ..... 267
Query: 480 gaccggaccaacctggagaaacggtgaaggttacggaagatcctgaagctaa-gcaaatc ..... 538

Sbjct: 266 gaccggaccaacctggagaaacggtgaaggttacggaagatcctgaagctaaggcaaatc 207
Query: 539 cgccgtcgccgagttgtgcgccgtttgc-gtgaggattccaggccagattgtggagccgc ..... 597

Sbjct: 206 cgccgtcgccgagttgtgcgccgtttgcggtgaggattccaggccagattgtggagccgc ..... 147
Query: 598 aatggtttgtt-aggtgaaggttgtaccg ..... 625
|||||||||| |||||||||||||||
Sbjct: 146 aatggtttgttaaggtgaaggttgtaccg ..... 118
6.8.10 AT4G36010.2 Similar to pathogenesis related thaumatinfamily protein [Arabidopsis thaliana]
Identities = 426/432 (98\%)
Query: 61 ggaacctctcctttacctacaaccggattctccttaaaccctaccgagacacgagttatc ..... 120

Sbjct: 285 ggaacctctcctttacctacaaccggattctccttaaaccctaccgagacacgagttatc ..... 344
Query: 121 ccgatccccgcagcttggtccggtcgtatttggggtcgtactctctgcacacaagacgca ..... 180
Sbjct: 345 ccgatccccgcagcttggtccggtcgtatttggggtcgtactctctgcacacaagacgca ..... 404
Query: 181 accaccggaagattcacttgcatcaccggggactgtggttcttccaccgtagaatgctcc ..... 240

Sbjct: 405 accaccggaagattcacttgcatcaccggggactgtggttcttccaccgtagaatgctcc ..... 464
Query: 241 ggatccggtgctgcacctccggctacactcgctgaattcaccttaaacggagctaatggt ..... 300
Sbjct: 465 ggatccggtgctgcacctccggctacactcgctgaattcaccttaaacggagctaatggt ..... 524
Query: 301 ctcgatttctacgacgtcagtctcgtcgacggttacaacatcccgatgaccatcgtccct ..... 360

Sbjct: 525 ctcgatttctacgacgtcagtctcgtcgacggttacaacatcccgatgaccatcgtccct ..... 584
Query: 361 cagggtggaggagatgccggaggcgtcgccggaaactgtacgacaaccggctgcgttgcg ..... 420

Sbjct: 585 cagggtggaggagatgccggaggcgtcgccggaaactgtacgacaaccggctgcgttgcg 644

Query: 421 gagctcaacggtccatgtcctgctcagctgaaagtggccacaac-ggagctgaaaggata 479

Sbjct: 645 gagctcaacggtccatgtcctgctcagctgaaagtggcgacgacgggagctgaaggagta 704
Query: 480 gcttgcaaaagc 491
|||||||||||
Sbjct: 705 gcttgcaaaagc 716
6.8.11 ${ }_{\text {AT2G17860.1 }}$ Pathogenesis related thaumatin family protein, similar to receptor Serine/threonine kinase (PR5) [Arabidopsis thaliana]

Identities $=230 / 231$ (99\%)

Query: 58 caccgctccattacccaccactggtttctccctcaactcctttgagtcacgactcatctc 117 \|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|
Sbjct: 132 caccgctccattacccaccactggtttctccctcaactcctttgagtcacgactcatctc 191
Query: 118 catacccgccgcttggtccggccgcatatggggacgcacgctctgcaaccaaaacgaagt 177

Sbjct: 192 catacccgccgcttggtccggccgcatatggggacgcacgctctgcaaccaaaacgaaat 251
Query: 178 caccggaatattcacttgcgtcaccggcgactgcggctcatcccaaatcgaatgctctgg 237 ||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 252 caccggaatattcacttgcgtcaccggcgactgcggctcatcccaaatcgaatgctctgg 311
Query: 238 cgcaggagcaatccctccagctacactagccgaattcacactcaacggcgc 288

Sbjct: 312 cgcaggagcaatccctccagctacactagccgaattcacactcaacggcgc 362
6.8.12 AT4G38670 Arabidopsis thaliana unknown protein

```
Identities = 525/525 (100%)
```

Query 59 GAAGAGCGAGTAAACCGAAGGCTGACACGTGTCCGGCGTGGCGTACGCATCGCTGCAGCA 118

Sbjct764 GAAGAGCGAGTAAACCGAAGGCTGACACGTGTCCGGCGTGGCGTACGCATCGCTGCAGCA 705
Query 119 ATACCTTGGGTCTCCGAATGCCTCGCACGCGCTACGGCAAGCAACACCGTTCCCATTCCC 178

Sbjet 704 ATACCTTGGGTCTCCGAATGCCTCGCACGCGCTACGGCAAGCAACACCGTTCCCATTCCC 645
Query 179 ACGCGTCACCAGCTTTAGGTCTCTGGGACACGCGCCGTTCAAGTCCACGAGACACCCGGT 238

SbjCt 644 ACGCGTCACCAGCTTTAGGTCTCTGGGACACGCGCCGTTCAAGTCCACGAGACACCCGGT 585
Query 239 GGCTCCGCATCCTCCAATGACGATTTTCTTGGGCAAGATTAGCATCGGGAGATTGTAACC 298

Sbjct 584 GGCTCCGCATCCTCCAATGACGATTTTCTTGGGCAAGATTAGCATCGGGAGATTGTAACC 525
Query 299 GTCGACGAGGCTAACGTCGTAAAAATCTAGTCCTCCTGTGCCGTTGAGAGTAAACTCGGC 358

Sbjet 524 GTCGACGAGGCTAACGTCGTAAAAATCTAGTCCTCCTGTGCCGTTGAGAGTAAACTCGGC 465
Query 359 GAGAGTTGCTGGAGGTTTAGCTCCGGAGCCTGAACATTCGACTTTTCCCGAGCCGCAATC 418
 Sbjct 464 GAGAGTTGCTGGAGGTTTAGCTCCGGAGCCTGAACATTCGACTTTTCCCGAGCCGCAATC 405
Query 419 TCCGGTTAAGCAGACGAAAGAACCGGAACTCCGATCTTGTGAACACAAGGTTCGTGCCCA 478
 Sbjct 404 TCCGGTTAAGCAGACGAAAGAACCGGAACTCCGATCTTGTGAACACAAGGTTCGTGCCCA 345 Query 479 GAGACGACCGGACCACGACTCTGGTATTGCGACGGTTTTAGATTTTCCTCTAGAGAGACG 538
 Sbjct 344 GAGACGACCGGACCACGACTCTGGTATTGCGACGGTTTTAGATTTTCCTCTAGAGAGACG 285
Query 539 AAAGCCAGTTGTGGGGAGCGGCGCTGAGTTAGCACCAGAGAGCAA 58

Sbjct 284 AAAGCCAGTTGTGGGGAGCGGCGCTGAGTTAGCACCAGAGAGCAA 328
6.8.13 AT1G70250 Arabidopsis thaliana ATP binding/ protein kinase/ protein serine/threonine kinase/ protein-tyrosine kinase/ transmembrane receptor protein
serine.
Identities $=452 / 452$ (100\%)

Query 59		CTGCAACCTACGGCTATAGGAGATCACTAGAAACAACCGGTTTTGTTCTTGAGAAAGGAG 118
Sbjct	486	CTGCAACCTACGGCTATAGGAGATCACTAGAAACAACCGGTTTTGTTCTTGAGAAAGGAG 545
Query	119	AgACGCGTACCATCAAAGCGCCGTCATCATGGATAGGTCGTTTCTGGGGTAGGACACTCT 178  
Sbjet	546	AGACGCGTACCATCAAAGCGCCGTCATCATGGATAGGTCGTTTCTGGGGTAGGACACTCT 605
Query	179	GCTCCACCAACTCAACAGGGGGTTTCTCATGTGCCACGGGAGACTGCACCTCCGGAAAAA 238
Sbjet	606	GCTCCACCAACTCAACAGGGGGTTTCTCATGTGCCACGGGAGACTGCACCTCCGGAAAAA 665
Query	239	TCAAGTGCCTCGGTATCCCCATAGATCCAACAACAGTGGTCGAGTTTAACCTCGCTTCT 298  
Sbjct	666	TCAAGTGCCTCGGTATCCCCATAGATCCAACAACAGTGGTCGAGTTTAACCTCGCTTCT 725
Query	299	ACGGTGTCGACTATTATGTCGTCAACGTCTTCAATGGTTACAACCTCCCTTTGCTTGTGA 358  
Sbjct	726	ACGGTGTCGACTATTATGTCGTCAACGTCTTCAATGGTTACAACCTCCCTTTGCTTGTGA 785
Query	359	CCCCCGAGAACAAAAACTGCAGAAGCATTGAATGCGTTATTGACATGAACGAGACATGTC 418
Sbjct	786	CCCCCGAGAACAAAAACTGCAGAAGCATTGAATGCGTTATTGACATGAACGAGACATGTC 845
Query	419	CCTCGGAGCTAATGGTGAACAGTAGTGGCCTTGGATCGCACCATCCAATAGCCTGCATGA 478
Sbjct	846	CCTCGGAGCTAATGGTGAACAGTAGTGGCCTTGGATCGCACCATCCAATAGCCTGCATGA 905

Query 479 CCACTTGTCAGAGATACCAGTTGCCAGAGCTT 510
||||||||||||||||||||||||||||
CCACTTGTCAGAGATACCAGTTGCCAGAGCTT 937

## Acknowledgements

It is with great reverence that, I wish to express my gratitude and appreciation to my supervisor, Prof. Dr. Thomas Roitsch, Lehrstuhl für Pharmazeutisch Biology, for providing the subject of the thesis, his inspiring guidance during my studies in the area of Plant Molecular Biology, constant encouragement, meticulous help and critical scruitinisation during the present search study. His total dedication to science and pursuit knowledge will forever remain a source of inspiration to me.

My sincere thanks are also due to Dr. Susanne Berger and Dr. Thomas Engelke for their help given to me through-out the PH.D. thesis work, especially during the initial stages of the practical research work. The last is also acknowledged for his careful reviewing of the manuscript and his most valuable comments that helped me to improve it.

My special thanks to Dr. Joerg Reinders for his help in mass spectrometry work.

I would like also to thank Seung Hee for her help in screening part of the thesis.

My special thanks are also due to my colleagues in the lab; Joerg, Katarina, Tae kyung, Nassem and Barbara who helped me in many ways in the lab.

I would like also to thank the Egyptian government, since without its financial support all would not be possible.

The staying in Germany has come into being through the great help of a number of people. I wish to express my appreciation to all of you, whether or not I have remembered you here.

Lastly, but not the least, I thank my mother, wife and sisters for their support and encouragement in completing the present course of study.

## Curriculum Vitae

## Personal Data

Name: Walid Wahid Nazir Ali
Nationality: Egyptian
Birthday: 24.10.1970
Marital status: Married

## Education

2003-2007	Ph.D. student at University of Würzburg, Germany   Research project: Screening of plant suspension   cultures for antimicrobial activities and   characterization of antimicrobial proteins from   Arabidopsis thaliana.   Supervisor: Prof. Dr. Thomas Roitsch
1994-2000	Master of Science   Botany Department, Faculty of Science, El-Minia, Egypt   Research project: Biodegradation of chicken feather by   some keratinolytic fungi.   Supervisors: Prof. Dr. M.A. Elnaghy   Prof. Dr. E. M. Fadl-Allah   Dr. M. S. Elkatatny
1993-1994	Postgraduate studies for the partial fulfillment of the   M.Sc. degree in the department of Botany, Faculty of   Science, Minia University, El-Minia, Egypt.
$1988-1992$	Bachelor of Science
Department of Botany, Faculty of Science, Minia   University, El-Minia, Egypt.	
Mallawi Secondary School	

## Scholarship

2002 Received the Ph.D. scholarship from the Egyptian government

## Language

German Grundstufe III (Schwäbisch Hall, 2003)

## ERKLÄRUNG

Hiermit erkläre ich, dass ich die vorliegende Dissertation in allen Teilen selbst angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ich habe die Dissertation weder in gleicher noch in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Ich erkäre weiterhin, dass ich bislang noch keine weiteren akademischen Grade erworben oder zu erwerben versucht habe.

Würzburg, Mai 2007


[^0]:    ${ }^{a}$ : Nystatin and Chloromephenicol antibiotics were used as antifungal and antibacterial standards respectively.
    ${ }^{\mathrm{b}}$ : Antimicrobial activity of solvents used in dissolving the standard antibiotics (DMSO for Nystatin and MeOH for Chloromephenicol).

