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Abstract

Optical Character Recognition (OCR) on historical printings is a challenging task mainly
due to the complexity of the layout and the highly variant typography. Nevertheless, in
the last few years great progress has been made in the area of historical OCR resulting
in several powerful open-source tools for preprocessing, layout analysis and segmentation,
Automatic Text Recognition (ATR) and postcorrection. Their major drawback is that
they only offer limited applicability by non-technical users like humanist scholars, in
particular when it comes to the combined use of several tools in a workflow. Furthermore,
depending on the material, these tools are usually not able to fully automatically achieve
sufficiently low error rates, let alone perfect results, creating a demand for an interactive
postcorrection functionality which, however, is generally not incorporated.
This thesis addresses these issues by presenting an open-source OCR software called
OCR4all which combines state-of-the-art OCR components and continuous model training
into a comprehensive workflow. While a variety of materials can already be processed
fully automatically, books with more complex layouts require manual intervention by the
users. This is mostly due to the fact that the required Ground Truth (GT) for training
stronger mixed models (for segmentation as well as text recognition) is not available, yet,
neither in the desired quantity nor quality.
To deal with this issue in the short run, OCR4all offers better recognition capabilities in
combination with a very comfortable Graphical User Interface (GUI) that allows error
corrections not only in the final output, but already in early stages to minimize error
propagation. In the long run this constant manual correction produces large quantities
of valuable, high quality training material which can be used to improve fully automatic
approaches. Further on, extensive configuration capabilities are provided to set the degree
of automation of the workflow and to make adaptations to the carefully selected default
parameters for specific printings, if necessary. The architecture of OCR4all allows for
an easy integration (or substitution) of newly developed tools for its main components
by supporting standardized interfaces like PageXML, thus aiming at continual higher
automation for historical printings.
In addition to OCR4all, several methodical extensions in the form of accuracy improving
techniques for training and recognition are presented. Most notably an effective, sophis-
ticated, and adaptable voting methodology using a single ATR engine, a pretraining
procedure, and an Active Learning (AL) component are proposed. Experiments showed
that combining pretraining and voting significantly improves the effectiveness of book-
specific training, reducing the obtained Character Error Rates (CERs) by more than
50%.
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The proposed extensions were further evaluated during two real world case studies: First,
the voting and pretraining techniques are transferred to the task of constructing so-called
mixed models which are trained on a variety of different fonts. This was done by using
19th century Fraktur script as an example, resulting in a considerable improvement over a
variety of existing open-source and commercial engines and models. Second, the extension
from ATR on raw text to the adjacent topic of typography recognition was successfully
addressed by thoroughly indexing a historical lexicon that heavily relies on different font
types in order to encode its complex semantic structure.

During the main experiments on very complex early printed books even users with
minimal or no experience were able to not only comfortably deal with the challenges
presented by the complex layout, but also to recognize the text with manageable effort and
great quality, achieving excellent CERs below 0.5%. Furthermore, the fully automated
application on 19th century novels showed that OCR4all (average CER of 0.85%) can
considerably outperform the commercial state-of-the-art tool ABBYY Finereader (5.3%)
on moderate layouts if suitably pretrained mixed ATR models are available.
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1 Introduction

Over 550 years after Gutenberg’s groundbreaking invention of printing with movable
types in 1453 a milestone on the road to preserving our cultural heritage on a long-term
basis is about to be reached in the foreseeable future: The majority of all books that have
ever been printed will have been digitized and made publicly available online [278]. This
important development can mainly be attributed to large-scale digitization projects like
for example the forerunner Project Gutenberg [121] initiated already during the 1970’s,
the Hathi Trust Digital Library [124], the Million Book Collection [185], and of course
Google Books [109].

Despite these developments being without a doubt very positive, the digitization of
printed material can only be considered the starting point when it comes to preserving
the knowledge comprised within it. While it is nice to be able to look up pretty much
any given book online and scroll through its pages, one major thing is missing: machine-
actionable text. Obviously, it makes a big difference if a text can be gathered by a human
brain combined with human eyes page by page or if a machine can read, process, and
analyze heaps of texts in a matter of seconds without any human intervention. There
is a wide variety of approaches, methods, and algorithms which can be allocated to
research fields like distant reading [186] or text mining [126], including topic modelling
[35], sentiment analysis [217], or stylometry [61], just to name a few.

Naturally, manually transcribing millions of books is neither sensible nor even remotely
possible. Consequently, the challenge of turning scanned pages into machine-actionable
text is passed on to one of the oldest computer vision and machine learning tasks namely
OCR. As we1 will show in the following, this cannot always be considered a trivial task
at all, since the challenges considerably vary with the material at hand. Still, making
the masses of digitized cultural heritage available as text was and is widely considered a
necessity. This is particularly stressed by a report issued by the European Commision
in 2011 [195] which warns that Europe is in danger of “entering a new Dark Age” if no
sufficient means of preservation and discovery of cultural heritage material are created
[71]. As a consequence, several large-scale projects dealing with the OCR of historical

1By definition, a thesis like the one at hand has to mainly focus on the contributions of an individual
person. Nevertheless, many aspects of this work, especially the main outcome OCR4all, which
has grown to be a very comprehensive project, resulted from the various contributions of several
helping hands providing ideas, implementations, discussions, and feedback. This is also shown by the
multitude of different co-authors who contributed to the individual publications leading up to this
thesis. Hence, the author sticks to the “we” narrative throughout this thesis just like we did in the
papers and articles before.
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1 Introduction

printings in a mass digitization context were funded, most importantly Improving Access
to Text (IMPACT) [32, 131] and the early Modern OCR Project (eMOP) [87, 173].
While great progress has been made during these and other projects, the quality of the
resulting text is often not considered sufficient, especially when dealing with early printed
books [278, 287] and/or texts printed in Fraktur types [92]. This is very problematic
since, naturally, noisy OCR has a negative effect on many, if not all, research tasks [301]
and a very recent report even states that the progress in digital scholarship is hindered by
insufficient OCR quality [272]. Naturally, it depends on the individual task how good an
OCR result has to be in order to be considered “sufficient”. Moreover, the difficulty and
consequently the amount of manual effort necessary to achieve such a result is equally
dependent on the properties of the material at hand, as we will discuss in the following.

1.1 Challenges of Historical OCR

While OCR on contemporary material is regularly considered to be a solved problem [85],
gathering the content of historical printings using OCR can still be a very challenging
and cumbersome task, due to various reasons. First, the pages of historical books are
often in bad condition and heavily degraded which manifests in incomplete or partially
faded letters, various types of soiling, bad contrast, or bleed-through of the ink from the
back page. Referring to a more content-related/textual level, among the problems that
need to be addressed for early printings is the often intricate layout containing images,
artistic border elements and ornaments, marginal notes, and swash capitals at section
beginnings whose positioning is often highly irregular. Another of course appears in
view of typical early modern layout arrangements and varying, non-standardized printing
conventions. These can lead to a highly complex order of text regions on single print
sheets that is determined by a variety of columns, shifting text blocks, and drastically
reduced distances/spaces between various layout and text components. Taking this into
account, accurate layout segmentations and text recognition are complicated. This is
especially true for very early printed books continuing the richly illustrated manuscript
tradition after Gutenberg invented modern printing in 1453, where typesetters were
especially keen on an artistic rendition of the page image, resulting in headings which
conclude the page or swash capitals which severely overlap the adjacent text.
Also, the non-standardized typography represents a big challenge for OCR approaches.
While modern fonts can be recognized with excellent accuracy by so-called omnifont
or polyfont models, that means models pretrained on a large variety of customarily
used fonts, the lack of computerized historical fonts prevents the easy construction of
such polyfont or mixed font models for old printing material and one needs to resort to
individual model training instead.
Therefore, very early printings like incunabula2 but also handwritten texts usually
require book-specific training in order to reach CERs well below 10% or even 5% as

2Books printed before 1501.
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shown by Springmann et al. [279, 280] (printings) and Fischer et al. [95] (handwritten
documents). For a successful supervised training process GT in form of line images and
their corresponding transcriptions has to be manually prepared as training examples.

Additionally, the highly variant historical spelling, including a frequent use of abbrevia-
tions, severely hinders automatic lexical correction, since sometimes identical words are
spelled differently not only among different books of the same period but even within
the same book.

Character recognition rates in the high nineties are now routinely possible for even the
earliest printings. However, this can only be achieved by training specific recognition
models for each individual book, or at least for books coming from the same print shop
and printed with the same font. This does not scale up very well for conversion of the
already available substantial amount of scanned book pages from the 15th to 18th century
[284]. Ideally one would construct models resembling the mixed recognition models
employed by standard OCR engines such as Tesseract [274] or ABBYY Finereader3.
They achieve very good overall recognition rates to more recent printings from the 19th

century onwards, often with CERs of 1% and below.

The prime factor preventing the construction of effective models for earlier printings
is the scarcity of GT training material, i.e. diplomatic4 transcriptions of real printings.
The production of GT is a costly and slow manual process, which in the case of early
printings often entails specialized knowledge to decode the meaning of palaeographic
glyphs into Unicode [299] characters.

This barrier can be overcome for modern printings by the creation of synthetic training
material, starting from available electronic text, which gets rendered into synthetic images
using available computer fonts, often with some noise added to make the model more
robust.5 For early printings we lack the pertinent fonts containing the specific shapes and
glyphs used by individual printing shops. In the incunabula period from ca. 1450-1500, as
many as 2,000 individual print shops employing 6,000 different fonts have been identified
and collected in printed tables accompanying Haebler’s monumental Typenrepertorium
der Wiegendrucke [302]. Furthermore, a recognition model for early printings does not
just depend on specific fonts but also on the interword distance, as printers meticulously
cared for justified right margins and ran words closely together to make this happen if no
convenient break point was possible. The difficulty of getting tokens correctly recognized
becomes apparent when trained individual models have wrongly split or merged words as
their most frequent error. The next more frequent error types are insertions, deletions,
and substitutions such as e Ø c.

3www.abbyy.com/Finereader
4A diplomatic transcription is one that records only the characters as they appear on the support, with
minimal or no editorial intervention or interpretation.

5The new Tesseract neural network models for Latin scripts have been constructed using synthetic images
with 4,500 fonts: https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00
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1 Introduction

1.2 Steps of a Typical OCR Workflow

The actual text recognition in itself only represents one subtask within an OCR workflow
usually consisting of four main steps (see Figure 1.1) which often can be split up into
further sub steps. To avoid confusion, we use the term “OCR” when referring to the
complete workflow and the term “Automatic Text Recognition” (ATR) when dealing
with the sub step that focuses on the actual text recognition functionality. We avoid
notations like “recognition” since they would be misleading as the step comprises more
sub tasks than the text recognition alone. The steps of the workflow defined in Figure 1.1
as well as the sub tasks listed in the following will be discussed in greater detail during
the upcoming Background and Related Work chapter.

Figure 1.1: Main steps of a typical OCR workflow. From left to right: original image,
preprocessing, segmentation, ATR, postcorrection. Adopted from [229].

1. Preprocessing: First of all, the input images usually have to be prepared for
further processing. Generally, this includes a step which simplifies the representation
of the original color image by converting it into binary and sometimes grayscale,
enabling further image processing operations later on, as well as a deskewing
operation in order to get the pages into an upright position, which simplifies the
upcoming steps. Additional routines like dewarping to rectify a distorted scan or
denoising or despeckling to clean up the scan may be performed. Beforehand, it
can be worthwhile to crop the printing area in order to remove unwanted scan
periphery. It is worth mentioning that the usage of different image display formats
can vary considerably during the upcoming steps, dependent on the individual
workflow and its comprising tools. For example, it is well possible to perform the
segmentation on a result of the preprocessing step, e.g. the binarized image, but
then return to using the grayscale or even the original color image during the ATR.

2. Segmentation: Next, one or several layout analysis steps have to be conducted,
mostly depending on the material at hand and the requirements of the user. After
separating the text regions from non-text areas individual text lines have to be
identified and, if required by the used ATR approach, split up even further into
single glyphs. Optionally, non-text elements can be further classified (images,
ornaments, ...), while text regions can be broken down into more or less fine-grained
semantic classes (running text, headings, marginalia, ...), already on layout level.
Another important sub task is the determination of the reading order which defines
the succession of text elements (regions and/or lines) on a page. Naturally, the
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option to manually correct the results achieved during these sub tasks is highly
desired, preferably via a comfortably-to-use GUI.

3. ATR: The recognition of the segmented lines (or single glyphs) leads to a textual
representation of the printed input. Depending on the material at hand and the
user requirements this can either be performed by making use of existing mixed
models and/or by training models which are specifically geared to recognize the
font it was trained on. Again, for a comfortable correction of the textual ATR
output and for producing good examples to be used for book-specific training, a
GUI is mandatory.

4. Postcorrection: The raw ATR output can be further improved during a postpro-
cessing step, for example by incorporating dictionaries or language models. This
step can support or replace the manual final correction phase depending on the
accuracy requirements of the user.

As for the final output, plain text, that is the (postprocessed) ATR output, has to be
considered the minimal solution. Apart from that, almost all of the information acquired
during the entire workflow can be incorporated into the final output: region coordinates
and their types, line coordinates, character positions and information about how sure
the ATR is about its predictions, and others. Several formats which can incorporate
most or all of the aforementioned information have been proposed, for example Analyzed
Layout and Text Object (ALTO)6, HTML OCR (hOCR) [55], or Page Analysis and
Ground-Truth Elements (PAGE) [223].

Regarding the text recognition step it is worth mentioning that the models used for the
recognition can be obtained in different ways with highly varying degrees of effort based
on the material at hand. As quoted above modern fonts can usually be recognized by
applying an existing standard model which has been trained on a variety of similar fonts,
for example 19th century Fraktur, due to the comparatively high degree of homogeneity of
the typography. On the contrary, (very) early prints often require type-specific training
to reach character recognition rates in the high nineties.

1.3 Challenges for the Users

To produce training data for the ATR one has to manually transcribe text lines (con-
sidering a line-based approach), which is a highly non-trivial task when dealing with
very old fonts which are often difficult to decipher and contain numerous ligatures and
abbreviations whose transcription and/or decomposition requires knowledge about the
historical language and the content of the texts. In fact, this step and often also several
other steps of the OCR workflow cannot be performed fully automatically and require
the user to interact and to invest manual work. The combination of all steps represents a
highly interdisciplinary task and therefore requires both domain expertise regarding the

6https://www.loc.gov/standards/alto
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1 Introduction

content as well as technical expertise, a combination which is difficult to come by in a
single person. Since it is not possible to simplify the content related part of the problem,
we have to focus on the technical aspect. Fortunately, large parts of these steps can be
covered by open-source tools such as OCRopus [206], Tesseract [295], or Calamari [63]
which have been made available.

While these tools are highly functional and very powerful their usage can be quite
complicated, as they

• in most cases lack a comfortable GUI which leaves the users with the often unfamiliar
command line usage.

• usually rely on different input/output formats which requires the users to invest
additional effort in order to put together an end-to-end OCR workflow.

• sometimes require complicated and error prone installation and configuration
procedures where, for example, the users have to deal with missing dependencies.

• have a steep learning curve (at least for non-technical users).

These aspects are particularly problematic for inexperienced users with limited technical
background. Unfortunately, this often includes humanities scholars as one of the main
target audiences for all tools which allow to produce machine-actionable text from scans
of historical printings. Making an entire workflow available to and usable by non-technical
users is a challenging task, since most tools usually do not cover the entire workflow
described above, at least not in a satisfactory manner, but rather excel on smaller
sub tasks. Combined with the shortage of (user-friendly and GUI-supported) ways to
manually interfere with the process and turn it into a semi-automatic approach, this
considerably reduces the applicability of existing open-source tools.

1.4 Proposed Workflow Solution: OCR4all7

To deal with these issues, we present our open-source [196] tool OCR4all8 [229] which aims
to encapsulate a comprehensive OCR workflow into a single Docker [183] or VirtualBox
[311] application, ensuring easy installation and platform independency. The goal is to
make the capabilities of state-of-the-art tools like OCRopus or Calamari available within
a comprehensible and applicable semi-automatic workflow to basically any given user
with the option to decide on different compromises between the resulting accuracy and

7This section as well as considerable parts of the entire thesis, most importantly chapters Introduction
(Chapter 1), Background and Related Work, (Chapter 2), OCR4all (Chapter 5), Evaluations (Chapter
6), and Future Work (Chapter 8) are based on a previously published article [229]: C. Reul, D. Christ,
A. Hartelt, N. Balbach, M. Wehner, U. Springmann, C. Wick, C. Grundig, A. Büttner, and F. Puppe,
“OCR4all—An Open-Source Tool Providing a (Semi-) Automatic OCR Workflow for Historical
Printings,” Applied Sciences, vol. 9, no. 22, p. 4853, 2019. [Online]. Available: https://doi.org/
10.3390/app9224853

8https://www.uni-wuerzburg.de/en/zpd/ocr4all
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manual effort. This is achieved by supplying the users with a comfortable and easy to use
GUI and a modular approach, allowing for an efficient correction process in between the
various workflow steps in order to minimize the negative effects of consequential errors.
Another important aspect is the option to iteratively reduce the CER by constantly
retraining the recognition models on additional training data which has been created
during the processing of a given book. During development the primary goal was to
identify a workflow and tool composition which enables the users to deal with even the
earliest printed books on their own and extract their textual content with great quality.
Due to the challenges concerning condition, layout, and typography described above, this
is far from a trivial task and often requires the users to invest a substantial amount of
manual effort into correcting segmentation results and transcribing line images in order to
produce training data for the book-specific models. However, in our experience, humanist
scholars who are dealing with early printed books are usually perfectly fine with investing
the required effort to obtain high quality OCR results which had been considered almost
impossible to achieve on this material only a decade ago [247]. This is especially true
since the alternatives are either to manually transcribe everything or to not get to the
text at all. Naturally, we did not want to restrict the users to the processing of very
early printed books and therefore added further functionality to ensure a fluent passage
towards a fully automated approach when dealing with later and more uniform works.

Despite our focus on user friendliness, operating OCR4all is still not an entirely trivial
task (and will not be for the foreseeable future), especially when dealing with very early
prints with a complex and irregular layout as well as a non standard typeface that makes
a thorough book-specific training indispensable. Consequently, there is an obvious need
for detailed, comprehensible, and descriptive operating instructions. To start things off
we provide both, a setup guide and a comprehensive step by step user manual together
with some example data at GitHub [197] and set up a mailing list9 where we inform
about latest developments and new version releases.

1.5 Contributions

OCR4all represents the main outcome of this thesis. To arrive at the fully functional tool
which is still under active development and used by an extensive and always growing
user community, several challenges had to be mastered: First, a workflow able to deal
with all the peculiarities of early printings had to be designed. Next, for each step of
the workflow suitable approaches and tools had to be identified and combined into a
flexible and ergonomic open-source end-to-end OCR workflow. On the one hand this
included the integration of existing tools by implementing common interfaces and defining
sensible default parameter configurations. On the other hand the workflow had to be
complemented with several in-house developments including the means for extensive
segmentation and correction capabilities as well as the encapsulating OCR4all tool.

9https://lists.uni-wuerzburg.de/mailman/listinfo/ocr4all
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Moreover, an important additional contribution of this thesis is that the extensive
interactive post correction functionalities provided by OCR4all not only allow to optimize
the result for the current book but also to produce large quantities of valuable training
materials, both for layout analysis and text recognition, to support a process model
towards continuously higher automation.

Apart from the main goal of enabling non-technical users to perform OCR even on the
earliest printed books completely on their own, several methodical extension in the form
of accuracy improving techniques for training and recognition were implemented and
evaluated. Most notably an effective voting methodology was proposed, allowing to train
several ATR models using just a single ATR engine and combining their outputs not
only by a simple majority voting but by taking the intrinsic confidence information of
the neural network into account. Combined with a pretraining procedure, that allows
the training to profit considerably from already existing models, and an Active Learning
component, the effectiveness and efficiency of the training and recognition step was
considerably improved.

The effectiveness and efficiency of OCR4all is thoroughly examined during two in-detail
core evaluations on historical books. First, experiments on very challenging material
from the 15th and 16th century led to results of previously unprecedented quality, despite
being mostly performed by inexperienced users with (next to) no technical background.
In addition, several user-centered studies are provided, dealing with the influence of user
experience and quality requirements, to gain a better understanding of the interaction
of human and computer. Second, the capabilities of the fully automatic approach are
evaluated using 19th century novels with moderate layout, showing excellent error rates
and outperforming the commercial state-of-the-art tool ABBYY Finereader.

Finally, two real-world case studies are provided. The first one deals with the transfer
of the aforementioned accuracy-improving techniques from book-specific training to the
area of mixed models using 19th century Fraktur script as an example. In the second case
study we extend our focus from raw ATR to the adjacent topic of typography recognition
by thoroughly indexing a historical lexicon that comprises a complex semantic structure
encoded by different font types.

1.6 Structure of this Work

The remainder of this work is divided in eight chapters: In Chapter 2 we provide a
comprehensive overview about previous work related to this thesis focusing on the
general OCR workflow consisting of the four main steps introduced above: preprocessing,
segmentation, ATR, and postcorrection.

Next, Chapter 3 introduces the data and resources we used for our evaluations including
entire books to process with OCR4all, line-based GT for training and recognition tasks,
and a variety of mixed models, either publicly available or self-trained ones.
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1.6 Structure of this Work

The methodical contributions, namely accuracy-improving ATR techniques like cross fold
training and subsequent confidence voting, pretraining, and AL, are described, evaluated,
and discussed in Chapter 4.

In Chapter 5 we thoroughly describe OCR4all including the overall workflow and the
single sub modules. Additionally, we provide deeper insight on the technical background
of tools and methods we included from external sources.

While the partial evaluations in Chapter 4 exclusively deal with specific ATR sub tasks,
Chapter 6 mainly focuses on the evaluation of the complete OCR workflow by describing
several experiments performed on a variety of historical printings. Furthermore, Human
Computer Interaction (HCI) aspects like the influence of the experience of the users are
examined as well as the significance of the material at hand and the output complexity
and quality desired by the users.

Chapter 7 contains two real-world case studies covering 19th century Fraktur mixed
model training and typography recognition.

Finally, Chapter 8 concludes the thesis by summing up the results and their implications
and pointing out our goals for the future of OCR4all and our work in the area of
(historical) OCR in general.
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2 Background and Related Work

This chapter gives a comprehensive overview over OCR related tools, methods, and topics
oriented towards the following guidelines:

• We address all steps of the OCR workflow in chronological order (as defined in
Figure 1.1) but to varying levels of detail.

• The main focus lies on steps which we either directly and considerably contributed
to over the course of this thesis (region segmentation and OCR workflows) or which
we consider to be very important or especially interesting for our past, present, and
future work (line segmentation).

• In general, we aim to first provide an overview over important fundamentals, basic
concepts, and methods for each step and then discuss selected state-of-the-art
approaches.

• For the main part, the focus lies on applications related to historical OCR but de-
pending on the task and the transferability of existing solutions, we also incorporate
solutions for adjacent topics like modern printings or handwritten texts.

• Fitting stand-alone tools are given and discussed for each step. Due to our general
goal of an end-to-end open-source workflow, we focus on solutions that are freely
available. We discuss several OCR workflow tools as a whole but also briefly address
their capabilities regarding individual steps during the respective sections. Because
of ABBYY Finereader’s proprietary and closed-source nature and the resulting lack
of backed information about the workflow, Kraken’s proximity to OCRopus 1, and
the black box nature of OCRopus 3, we focus on OCRopus 1 and Tesseract 3/4 for
these parts (cf. Section 2.6 for an in detail description of the individual workflow
tools). To the best of our knowledge, published evaluations dealing with OCR
workflow tools either assess the achieved results as a whole or focus on the actual
training and recognition step. Therefore, in most cases, we refrain from providing
results achieved by OCRopus 1 or Tesseract for the individual workflow steps.

• Specialized related work dealing with our methodical contributions like voting and
pretraining for book-specific and mixed models, their combination and the inclusion
of AL, as well as typography recognition, will be presented in the corresponding
subsections in the methods and case study chapters (Chapter 4 and Chapter 7,
respectively).
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2.1 Data Sets

Before focusing on the individual steps of the workflow we briefly introduce some data
sets (see Table 2.1) which we will refer to throughout the remainder of the chapter. This
list is not intended to be exhaustive but only lists selected data sets which are used by
several approaches we address. For example, non-public data sets or those without any
usable description or documentation are ignored altogether. Moreover, we skip data
sets that are used extensively during our own evaluations or that have been created by
ourselves as they are covered in detail during Chapter 3.

Table 2.1: Notable data sets applicable to the tasks of page frame detection (PFD),
layout analysis or region segmentation (RS), line segmentation (LS), and ATR.

Name Source Task(s) Material

UW3 [222] PFD, RS, ATR various scientific printings
from the 20th century

DIVA-HisDB [268] RS, LS three handwritten documents written
from the 11th to 14th century

cBAD [269] RS, LS various handwritten documents written
from the 15th to 20th century

PageNet [293] PFD cf. cBAD

The University of Washington 3 (UW3) database [222] consists of ca. 1,600 pages from
late 20th century English speaking sources. As GT it contains bounding boxes enclosing
text and non-text regions, text lines, and words as well as the corresponding textual
contents. For page frame detection tasks the required GT can be derived from the region
GT by detecting the enclosing rectangle of all text regions. Furthermore, the UW3
data set is frequently used for evaluating the performance of ATR engines which will be
addressed in greater detail in Section 3.2.3.

The DIVA-HisDB (Document, Image, and Voice Analysis (DIVA) Historical Document
Image Database (HisDB)) [268] is a precisely annotated data set containing three chal-
lenging medieval handwritten documents, that have been written between the 11th and
14th century in Switzerland and Italy. The annotations consist of tightly fitting (mostly
line) polygons that distinguish between three categories: the main text, decorations
(mostly swash capitals), and comments (marginalia and glosses as well as corrections
and explanations). After the initial annotation and a subsequent correction iteration, all
pages have been checked and scrutinized by an expert, assuring high quality annotations.
Overall, 150 pages have been annotated, 50 for each of the three works, and are publicly
available [127].

An important resource frequently used in recent International Conference on Document
Analysis and Recognition (ICDAR) competitions on layout analysis and baseline detection
(see for example [84]) is the Competition on Baseline Detection (cBAD) data set [116]. It
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is publicly available [67] and comprises 2,035 images of handwritten documents produced
between 1470 and 1930 and collected from nine different European archives. According to
its authors it is the first text line segmentation data set that exclusively relies on baselines
(cf. Figure 2.1 for an explanation of text line components, including the baseline) as
annotated GT. Apart from line segmentation tasks cBAD can also be used in region
segmentation tasks, since, while there is no explicit markup of non-text layout parts like
images or ornaments, columns and marginalia are naturally identified as different text
blocks, by splitting their baselines. Consequently, the data set is further divided into two
tracks: The first one solely contains pages with simple layouts and is therefore intended
for evaluating baseline detection methods only. The second track is considerably more
difficult as it contains multi column layouts and rotated text lines, and extensive tables,
adding the additional challenge of correctly splitting the baselines.

The PageNet data set [293] for page frame detection is derived from the cBAD data set
introduced above. Both tracks of the competition data were used and the comprised
images were divided into training, validation and test sub sets containing 1,635, 200, and
200 images, respectively. In the original publication several other, sometimes non-public
or insufficiently specified collections were added to the data set which consequently were
not used for comparison by other approaches and are therefore ignored.

2.2 Preprocessing

The main purpose of the preprocessing step is to prepare the scanned images for the
remainder of the OCR workflow. This includes enabling the application of the upcoming
algorithms, for example by providing simplified image formats like binary color (black
and white), as well as cleaning up the image. In the following we first address the different
sub steps before introducing several tools that cover one or several of those sub steps.

2.2.1 Sub Steps

We treat the preprocessing step as combination of three sub steps, namely binarization,
skew orientation detection and correction, as well as page frame detection and noise
removal, which we discuss separately in the upcoming sections. Further special cases
like the splitting of double pages that have been scanned at once [286] or the dewarping
of curled pages [258] are not addressed since they are either rather trivial to solve or,
judging from our experience, do not occur very regularly, at least not to a degree that
leads to a notable negative influence on the segmentation or ATR steps.

2.2.1.1 Binarization

While the actual ATR can also be performed on grayscale or color images, sometimes even
resulting in superior results compared to using binary inputs [326], converting an image
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into binary is usually an indispensable step in an OCR workflow since it simplifies the
description of an image considerably and consequently represents a prerequisite for the
efficient application of many image processing operations. In general, existing approaches
can mainly be divided into two groups, global and local thresholding techniques which
we will briefly explain in the following. For further reference, we refer to a very recent
and comprehensive survey by Sulaiman et al. [288].

Global Thresholding Techniques The first group consists of methods that determine
a global threshold, in most cases simply a grayscale value, and that afterwards assign
0 (black) to all pixels whose grayscale value is lower than this threshold and 1 (white)
to all others. The most prominent and still widely used representative of this group is
Otsu’s Method [213] which finds a statistically optimal global threshold by searching for
an allocation of pixels into two classes (foreground and background) that optimizes a
function that takes the inter- and intra-class variances into account.

The drawback of Otsu and similar methods that operate on a global level is that they can
suffer considerably from effects like uneven illumination or soiled document parts. For
example, if the left half of a page is significantly brighter than the right half, applying a
global binarization operation may well lead to background pixels (for example paper)
on the right being treated as foreground in the binary image, as they are as dark as the
actual foreground pixels (for example ink) on the left.

Local Thresholding Techniques To deal with these issues, the second group of methods,
so-called adaptive ones, were developed which try to determine local thresholds instead.
A noteworthy approach of this group was introduced by Sauvola and Pietikäinen [250]
who consider a page as a collection of subcomponents like text, images, and background.
In a first step a hybrid switch takes small, resolution adapted windows on the page into
account and assigns one of the aforementioned subcomponent classes using simple features
derived from the input grayscale image. Based on this initial classification two different
methods are applied: the soft decision method uses noise filtering and signal tracking
capabilites to deal with background and images and the text binarization method uses a
modified version of Niblack’s algorithm [193] to binarize textual components. In a final
step, the outcomes of both algorithms are combined.

Evaluation Challenges Many performance metrics for the evaluation and comparison
of binarization techniques have been proposed over the years. Since binarization does not
represent a core topic of this thesis, we refrain from an in-detail discussion but instead
refer to the comprehensive overview given in [288].

However, it is worth mentioning that, despite the simplicity of many performance measures
like the F-measure which is directly computed from a pixel-based binarization result
and the corresponding GT, obtaining a meaningful comparison can be a challenging
task. This is explained by the fact that determining the GT, i.e. which pixels belong
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to the foreground and which to the background, usually contains a certain degree of
arbitrariness, especially when dealing with challenging historical images.

To circumvent this issue and the need to create explicit binarization GT altogether,
sometimes the result of a subsequent step of the workflow, namely the text recognition,
is utilized to indirectly judge the quality of the binarization output (see for example [6]).
Concretely, this could mean to binarize a given image with different techniques, then use
the results as input for identical segmentation and ATR processes, and finally compare
the ATR error rates, which only requires a comparatively easy to produce and rather
unambiguous textual GT. While this simplifies the evaluation process considerably there
are apparent drawbacks: First, the ATR in itself represents an element of uncertainty
since the chosen engine and especially the utilized model naturally considerably influence
the outcome and there is no guarantee that a “better” binarization result will lead to a
better ATR result.

For example, if a model has been trained on flawed binary line images it might well
perform better on other, equally flawed ones than on “perfectly” binarized ones. Hence, a
fair comparison would require two models to be trained and evaluated on the respective
binarization results. While this procedure might determine the “better” binarization
result for this specific use case, its implications regarding the practical use remain unclear
as existing mixed models might show a completely different behaviour. Unfortunately,
these models have often been constructed using comprehensive training data which may
not be available at all or only as individual line images, which most of the times have
already been converted to binary. Consequently, these models cannot be reproduced using
the “better” binarization method. Second, relatively small failures or rather changes
during the binarization step may have a significant effect on the segmentation and
consequently the text recognition step, falsifying the results and leading to incorrect
conclusions regarding the quality of the binarization. For example, during our experiments
for [230] we encountered a related problem where slightly different and completely
inconspicuous region segmentation results, which could well have occurred because of
different binarization outcomes, led to the merging of two vertically adjacent text lines,
resulting in a completely useless ATR result.

While to the best of our knowledge there currently is no entirely satisfactorily solution
available for the problems described above, it has to be said that their impact on real
world applications is rather small. When dealing with historical printings, especially with
(very) early printed books, visual inspection and comparison of different binarization
results is highly recommended when more than one fitting approach is available.

2.2.1.2 Skew and Orientation Detection

Similar to binarization, skew detection and correction is an important preprocessing
step in OCR workflows since subsequent steps like segmentation and ATR can suffer
considerably from skewed images. The same is especially true for the related but less
challenging task of orientation detection, which focuses on deciding whether a page is
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in a (somewhat) upright position or rotated by (approximately) 90, 180, or 270 degrees
[310].
In the following we describe a selected approach for skew and orientation detection
because it builds from several previously released methods and achieved state-of-the-art
results. For a broader overview we refer to the comprehensive survey by Cattoni et al.
[66].
Van Beusekom et al. [310] use a geometric model based on text line properties for one-step
skew and orientation detection as well as text line extraction, if necessary. The text line
model [51] relies on a branch-and-bound approach [54] to find a globally optimal solution
for text lines with respect to a least square error model. To achieve this the baseline and
descender line1 are modeled by parameterizing the baseline using polar coordinates and
its distance to the descender line which is assumed to always be constant for an entire
text line. The Recognition by Adaptive Subdivision of Transformation Space (RAST)
algorithm [50] is utilized to find these parameters for all lines in a page image efficiently.
The key idea of the proposed approach is to calculate the descender model for a page
for orientations of 0, 90, 180, and 270 degrees and then choose the one with the highest
quality. Since the method also detects text lines and the angle for the individual lines
is known, the skew angle of the entire page can be easily derived by simply choosing
the skew of the line with the highest quality value as page angle which has proven to
be very accurate [51]. Evaluations on two public data sets, including UW3, showed the
superiority of the approach compared to the methods incorporated in Tesseract and
Leptonica [36, 162].

2.2.1.3 Page Frame Detection and Noise Removal

The page frame of a scanned document is defined as the smallest enclosing rectangle of
all foreground elements of the page [266]. Scanned book pages often contain considerable
amounts of periphery like scan background, (textual) noise from adjacent pages, or scan
artifacts like fingers and tools of the processor or black borders caused by the binarization
of page boundaries. Identifying, the actual page area in a scanned image considerably
simplifies the subsequent steps of an OCR workflow as especially the page segmentation
step can suffer from noise [260, 264]. To the best of our knowledge there are no surveys
available that exclusively or at least extensively deal with the problem of page frame
detection or noise removal.
Because of this and the fact that there are three perfectly fitting and powerful open-source
solutions available (dhSegment, ScanTailor, and Unpaper) which will be discussed in
detail in the following, we just provide a very brief survey based on the contributions in
[266] and [259].
Early approaches for noise removal focused on filtering out Connected Components (CCs)
based on simple features like their size and aspect ratio [29, 53]. Of course, this does not

1Fictitious lines supporting the main character bodies (baseline) or descenders (descender or lower line)
of a text line. We refer to Section 2.3.2.1 for a more in-detail description of the line components.
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work for textual noise. Fan et al. [91] detect marginal noise by utilizing a region growing
method and remove it using a local thresholding technique in grayscale images.

Many methods rely on projection profiles to detect the page frame. Projection profiles
are usually created by summing up pixel values along an image’s rows or columns and
can thereby provide information about the structure of the document. For example Le et
al. [158] propose a rule-based algorithm utilizing heuristics to classify rows and columns
within the page into blank, text, and non-text. Cinque et al. [72] rely on image statistics
like difference vectors and row luminosities. Peetawit et al. [221] use projection profiles
of edges to detect non-textual marginal noise under the assumption that these areas
have a much higher density of edges than normal text. Another projection profile-based
approach was presented by Stamatopoulos et al. [285] who analyze the profiles of the
smeared image combined with a CC labeling techniques, again based on rules. A method
especially geared towards the splitting of two pages that have been scanned at once is
presented by Stamatopoulos et al. in [286] and uses vertical white run projections.

All the approaches introduced above rely on rules designed to identify noise regions near
the page border which cannot be expected to work on a large variety of documents which
were scanned under very different conditions [266]. Two more robust approaches that
have also been evaluated on a public data set will be briefly described in the following.

Shafait et al. [266] detect the page frame of documents by exploiting their text alignment
properties in two steps: After producing a geometric model for the page frame of a
scanned image, a globally optimal frame is determined by geometric matching utilizing
a quality function. Evaluations on the UW3 data set showed error rates below 4% for
three different performance measures and the subsequent CER achieved by a commercial
ATR system was reduced from 4.3 to 1.7%.

A quite simple and very comprehensible method of Shafait and Breuel introduced in
[259] consists of three successive steps: First, a black filter detects large black areas at
the page border. Next, the detected CCs near the border of the image are removed.
Finally a white filter finds big white blocks near the borders and, starting from there,
removes everything until the border, to deal with page transitions. Experiments showed
a reduction of the noise ratio from 70% to 20% while losing less than 1% of the actual
page contents. Despite the simplicity of the approach evaluations on the UW3 data set
yielded comparable results to the approach introduced above [266].

dhSegment A very interesting and promising approach for various tasks within the
OCR workflow, including page frame detection, is dhSegment [212], an open-source
[83] and well documented [211] generic deep learning framework for document-related
segmentation tasks. The system aims to provide a flexible and adaptable solution for
pixel-wise segmentation related tasks on historical documents by following a general
approach of two successive steps: In a first step a Convolutional Neural Network (CNN)
predicts a map of probabilities of labels, e.g. page content or periphery, for each pixel
using the original document image as input. The probability map is then transformed
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into the desired output of a specific task, e.g. a binary mask marking the page content
page frame detection, by utilizing a selection of standard image processing techniques in
a second postprocessing step.

dhSegment was used to tackle several task which are addressed during this chapter,
namely page frame detection, layout analysis, and detecting the baseline of text lines.
Since this is the first occurrence we will briefly discuss technical aspects like the network
architecture and the training process before providing details regarding postprocessing
and discussing the task of page frame detection. For the other tasks, we refer to the
upcoming sections dealing with region and text line segmentation.

dhSegment relies on adaptions of the ResNet-50 [125] architecture and uses its pretrained
weights in order to increase generalization and robustness. It profits from already
learned high level features obtained from training for the general image classification
task ImageNet [77]. The training procedure is rather straight forward since the default
parameters fit most areas of application and consequently only the desired dimension of
the resized input image has to be specified. Basically, the required GT consists of masks
of the same size as the input images providing a pixel-based labeling of the desired output
classes, for example page frames, regions, or baselines depending on the specific sub task.
During the actual training, rather standard techniques like the Adam optimizer [144],
Xavier [108], and batch (re)normalization [134] are incorporated. In addition, on-the-fly
data augmentation is utilized to ensure an efficient use of the training material.

Only a few basic image processing techniques are needed for postprocessing showing the
effectiveness and genericity of the approach:

1. Thresholding, either using a fixed value or relying on Otsus’s method (cf. Section
2.2.1.1), allows to turn the prediction map into a binary map for each class.

2. Morphological operations [253] like erosion and dilation or their combinations
opening and closing can be applied to binary images for example to perform clean
up operations.

3. Connected component analysis to filter out small CCs.

4. Shape vectorization perform a path reduction in order to transform detected regions
into a set of coordinates like polygons, their bounding rectangles, or baselines.

To evaluate the performance of dhSegment in the area of page frame detection the
PageNet data set (cf. Section 2.1) was used to compare against the eponymous deep
learning system [293] as well as against standard approaches, most prominently GrabCut
[245]. The dhSegment network was trained on 1,635 pairs of page images and binary
masks marking the page content to predict for every pixel of a document image whether
it belongs to the fore- or background of the page. Contrary to other tasks, the input
image was not cut into patches but passed into the network at once after being resized
to a certain size while retaining its aspect ratio. After applying Otsu’s method to the
probability output and cleaning the binary image using opening and closing operations,
the final result is extracted by finding the bounding rectangle of the page CC. With
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a mean Intersection over Union (IoU) score (cf. Section 2.3.1.1) of 0.980 dhSegment
outperformed GrabCut (0.916) considerably, the task-specific PageNet approach (0.974)
slightly, and got very close to the score achieved by human annotator agreement (0.983).

2.2.2 Tools

To conclude the preprocessing step we present several tools which tackle the various
sub tasks described above. While image processing libraries like OpenCV [44] and
ImageMagick [130] definitely provide powerful tools for a multitude of different tasks,
adaptations of them more geared towards document analysis are quite rare [100]. Hence,
we will focus on dedicated OCR solutions here as well as in the tool subsections of the
upcoming steps. Unfortunately, it has to be said that, despite considerable research
efforts in the area of preprocessing of document images and many publication resulting
from it, the achieved results often do not find their way into practical applications [323].

2.2.2.1 ScanTailor

ScanTailor [21] is an interactive open-source [20] postprocessing software for scanned
pages which offers a variety of tools and routines allowing to prepare scans for further
processing. Among others this includes:

• Rotating scans that are available in landscape format into an upright position.

• Splitting pages that have been scanned together into two single pages.

• Deskewing.

• Removing the scan periphery and cutting out the print space.

• Converting the images into binary.

• Several smaller preprocessing techniques like despeckling and dewarping.

Most of the steps can be performed manually or by fully automatic routines whose
effectiveness highly depends on the specific task and the material at hand. For example,
while the deskewing works very reliably, cutting out the print space produces severe
errors on complicated layouts on a regular basis. Nevertheless, the majority of steps can
usually be performed with limited manual interaction and manageable human effort.

Unfortunately, the development of the project appears to be dormant and to the best of
our knowledge the basic strategies and technical details of the mentioned routines were
never published, neither were suitable evaluations. Consequently, we have to rely on the
verdict of the community as well as our own experiences and conclude that ScanTailor is
a powerful open-source tool that provides many helpful semi-automatic features for the
preparation and preprocessing of scans but whose fully automatic routines sometimes
lack the desired reliability.
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2.2.2.2 Unpaper

Unpaper [306] is another open-source [307] tool that can be used to clean up scanned
pages by applying several useful postprocessing tools:

• A variety of filters to reduce different kinds of noise.

• Skew and orientation detection and correction.

• Page splitting and merging.

• Several mask operations allowing to relocate the page content and to manipulate
borders.

While Unpaper is missing the comfortable GUI of ScanTailor and its tools, its advantage
is the easy integration into fully automatic workflows. Similar to ScanTailor there are no
related publications or extensive evaluations available. A common opinion within the
community states that compared to ScanTailor Unpaper overall is less powerful and not
as reliable. Very brief evaluations in [80, 259] concluded that Unpaper regularly fails
to distinguish text from textual noise if more than one column is present but does well
when it comes to removing black clutter noise even if it is located in close proximity to
the text regions.

2.2.2.3 Implementation in OCR Workflow Tools

OCRopus 1 relies on an adaptive binarization technique using percentile filters [6] and
on a robust brute force approach utilizing projection profiles for skew detection and
correction. Since both methods are incorporated into OCR4all they will be explained
in detail during the introduction of the OCR4all workflow in Chapter 5 (cf. Sections
5.4.2 and 5.4.3). The same holds for certain denoising techniques that are part of the
OCRopus 1 line segmentation algorithm. An explicit page frame detection is not part
of the OCRopus 1 tool set. To the best of our knowledge, no evaluation results for the
OCRopus 3 preprocessing have been reported, yet.

In [6] a brief comparison between the percentile filter binarization and Sauvola’s algorithm
is presented. While Sauvola performed slightly better in terms of F-measure on the
utilized low quality scans, it was considerably outperformed when taking the resulting
ATR accuracy into account.

Tesseract 3/4 uses Otsu’s method as its binarization techniques and relies on the
open-source library Leptonica [162] to internally perform other preprocessing sub steps.
However, as indicated by a Tesseract wiki page dealing with ways to improve the ATR
quality [296], Tesseract is not guaranteed to be able to deal with uneven illumination, large
skewing angles, and some kinds of noise including very prominent page borders. Hence,
in these cases the usage of external preprocessing methods and tools is recommended.
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2.3 Segmentation

The segmentation step aims to use the preprocessed images as input and extract structural
information which is then utilized to enable and improve the subsequent text recognition
task. As stated during the first chapter, this step is multifaceted and the applied sub
steps and techniques heavily depend on the task and material at hand as well as the
demands of the user. This thesis treats the segmentation step as a combination of two
consecutive and sometimes overlapping2 sub steps, namely region and line segmentation,
which we discuss separately in the following.

2.3.1 Region Segmentation

In general, we agree with the definition given in [261] that formulates the goal of page or
region segmentation as “to divide the document image into homogeneous zones, each
consisting of only one physical layout structure (text, graphics, pictures, ...)”. However,
the definition of a “physical layout structure” is blurred, up for debate, and, again,
highly material, task, and user-dependent. While the minimal solution simply consists
of separating text from non-text regions the other end of the spectrum is considerably
more complex and includes explicit markup and distinction of non-text elements, like
images or decoration, as well as a fine-grained semantic distinction of text regions into
sub types like running text, headings, or marginalia. In the following, we cover many
approaches dealing with different manifestations and varying degrees of complexity of
region segmentation. Again, we first introduce some fundamentals before discussing basic
approaches, the state-of-the-art, and available tools.

2.3.1.1 Fundamentals

Many comprehensive surveys dealing with the task of page segmentation have been
published over the last decades [66, 178, 189] but also quite recently [90]. Before selected
examples of the proposed approaches are discussed in detail over the next three sections,
the remainder of this section briefly introduces some basic definitions before focusing on
the non-trivial topics of performance metrics and implicitly also the task of result and
GT representation in the area of region segmentation.

Definitions In general, region segmentation approaches can be divided into two groups:
bottom-up and top-down.

Bottom-up approaches start with local information, for example CCs or even individual
foreground pixels, before they perform iterative grouping operations in order to progres-
sively form higher-level descriptions like words, text lines, and regions. While iterating

2Some approaches first detect text lines and then combine them into text blocks or even skip an explicit
region segmentation altogether.
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through the different layout levels of a document can provide valuable intermediate results
like identified text lines, typical drawbacks of bottom-up methods are computationally
complex operations during early iterations and their vulnerability to error propagation.
[161]
In contrast, top-down approaches rely on global information instead, for example by using
black or white stripes as a starting point to then recursively split the page into regions,
the regions into lines, and maybe even the lines into words and the words into individual
characters. Top-down approaches tend to be faster than bottom-up ones but usually
struggle with more complex layouts comprising non-rectangular regions and different font
sizes. [161]
Finally, the term “Manhattan layouts” frequently occurs in the area of region segmentation
and refers to layouts where different regions are separable by horizontal and vertical
line segments [289]. Naturally, this property usually simplifies the segmentation task
considerably.

Performance Metrics Several metrics assume each region in the segmentation result
and in the GT to be represented as a closed contour like a rectangle or a polygon,
containing a set of pixels. A simple way to measure the similarity between two sets is the
so-called IoU score [163] stemming from the Jaccard coefficient [135] which is calculated
by dividing the intersection of the two sets, in our case the number of pixels that occur
in both of them, by their union.
Mao and Kanungo [176] proposed a method based on evaluating all text lines of a page,
distinguishing between three types of errors: Text lines which were defined in the GT
can be missed, split, or merged. The advantage of this approach is its independence
from the shape of a text block and the fact that GT only has to be present at text line
level. However, this method does not support a semantic distinction of text types and
completely ignores non-text elements, for example images. The proposed approach was
made publicly available within the Page Segmentation and Evaluation Toolkit (PSET)
[177].
Shafait et al. [263] presented a methodology to represent and evaluate page segmentation
results by assigning each foreground pixel the value of the label of the segment it belongs
to. To tackle the problems discussed above, they use a distinct label for every individual
segment independent of its semantic type. To achieve this, a 24-bit RGB can be applied
enabling the use of 224-1 labels. When both the GT as well as the proposed segmentation
are encoded in this way the evaluation is performed by computing and analyzing a
weighted bipartite graph called the pixel-correspondence graph [52]. In the graph, nodes
represent segments in the GT and the proposed segmentation and edges describe their
relation, including an edge weight that scales with the degree of overlap of the connected
regions. The graph then allows to easily and precisely derive six performance measures
for page segmentation similar to the true positives, true negatives, etc. metrics.
The most direct way to assess a segmentation result is to count the correctly and
incorrectly classified pixels and compute the so-called Pixel Accuracy (PA). Prerequisite
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for this method is GT on pixel level. The strengths of this approach is its simplicity and
presentiveness. However, the obvious drawback is that the effect of small regions can
become almost negligible especially in the presence of very large regions like periphery
or the page background. Furthermore, there is a high chance for a certain arbitrariness
regarding the exact positioning of the outline of GT regions. For example, when a
predicted region tightly fits a text block but the GT region was determined to be
slightly bigger, this can heavily influence the evaluation result despite having no effect on
subsequent tasks like line segmentation and ATR. To deal with this issue, the so-called
Foreground Pixel Accuracy (FgPA) [317] only takes pixel into account that have previously
been determined to be foreground, for example during a preceding binarization step.
Naturally, this metric also has its drawbacks since, despite the fact that it is dependent on
the applied binarization method, it does not measure if whole regions have been correctly
identified but rather only if single pixels or CCs have been assigned the correct type
which, depending on the task at hand, might not be sufficient, e.g. if two text columns are
merged into one text region. These problems could be mitigated by assigning different
labels not only to regions belonging to semantic classes like running text and marginalia,
but also to a different region of the same semantic class, for example to two columns of
running text. Of course, a more sophisticated evaluation scheme would then have to be
applied.

Clausner et al. developed a very comprehensive framework for evaluating layout analysis
methods [75] which has already been deployed in several challenges [17, 18]. In order to
guarantee an efficient calculation of the results, the polygons, stored in the PageXML
format (cf. [223] and Section 2.7.1), are first transformed into an interval representation.
From the hereby obtained overlap information several types of errors can be derived:
merge (a region overlaps more than one GT region), split (GT region is overlapped by
more than one region), miss/partial miss (GT region does not or not entirely overlap a
region), failed detection (region does not overlap a GT region) and misclassification (GT
region is overlapped by a region of a different type). For every type of error different
metrics like precision, recall, and F-measure are computed based on the degree of overlap.
Furthermore, it is possible to create application-oriented scenarios by assigning varying
weights to different types of errors. The framework is very flexible and can be configured
thoroughly. However, the free of charge version does not support batch evaluation which
limits the practical utility tremendously.

In conclusion, evaluating page segmentation results remains a challenging task, since
even the most widely used pixel-based methods have clear drawbacks. The best way to
evaluate results highly depends on the task at hand. Furthermore, combining several
metrics, for example the method proposed by Clausner et al. and a PA-based metric,
seems to be a sensible choice, which might, however, often not be easily feasible due to
the various GT requirements of the different approaches.
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2.3.1.2 Basic Approaches

There is a variety of approaches for the segmentation of scanned documents. First, some
fundamental methods are introduced which served as a foundation for the development
of several further approaches. The selection and description is based on [262] where a
comprehensive performance evaluation of these approaches is provided that we summarize
after the introduction of the individual methods.
The recursive X-Y-Cut Algorithm [190] is a top-down approach based on a tree represen-
tation of the document. The root of the tree represents the entire page and the leaves the
resulting segmentation. Through a number of subsequent horizontal and vertical cuts the
documents gets recursively divided into smaller, rectangular blocks, which correspond
to the leaves of the tree. Each decision if and where to perform a cut is based on the
horizontal and vertical projection profile of the background pixels computed for each node.
To identify the cutting candidates, i.e. the valleys in the projection profile histograms,
two thresholds for noise removal are defined and scaled on the size of the currently active
segment. Then, after setting all bins with values below these thresholds to zero, the
resulting valleys in x- and y-direction are evaluated against previously defined thresholds
determining the minimum width of a valley necessary to justify a split. Finally, the
widest eligible candidate is chosen and the node is split at the center of the valley. The
algorithm terminates when no leaf node can be further divided.
The so-called Run Length Smoothing Algorithm (RLSA) [320] considers pixel sequences in
a binary image (background: 0, foreground: 1) and changes zeros to ones, if the number
of adjacent zeros is under or equal to a given threshold C. This step merges nearby black
areas that are separated by C pixels or less and is performed independently for rows
and columns using two different thresholds. The resulting images are then combined by
applying a simple logical AND operation. After performing another horizontal smearing
operation with a smaller threshold for smoothing purposes, CC analysis is performed to
extract the foreground blocks from the obtained image.
Kise et al. [146] applied Voronoi Diagrams [25] to the task of page segmentation. These
diagrams are calculated from an initial set of so-called center points and consist of a
number of regions each one stretched around a center point. The regions are defined
by the property that all points within a region are closer to the center point of their
region than to any other center point. In order to utilize Voronoi diagrams for the
decomposition of a document into regions, the aforementioned set of center points has
to be determined. This is achieved by extracting sample points from the boundaries of
the CCs in the page image and performing noise removal by applying several heuristics.
Next, a Voronoi diagram is calculated from the sample points. After removing Voronoi
edges that cut through CCs the final segmentation is obtained by removing surplus
Voronoi edges. These are mainly located between characters, words, and lines and can
be identified by simple rules based on the distances to other edges and the resulting area
rations.
The DocStrum method [209] clusters CCs by applying a K-Nearest Neighbours (KNN)
approach. After a noise removal step the remaining CCs are classified either as belonging
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to the dominant font size or to headings based on a character size ratio factor. Then,
for each CC, the K nearest neighbours are detected and a histogram containing the
distances and angles between each CC and its corresponding neighbours is computed.
Next, the dominant skew in the document can be derived from the histogram by selecting
the peak of the angle histogram. Next, the skew value is used to search for nearest
neighbour pairs within suspected text lines. Finally, these pairs are combined to text
lines by calculating their transitive closure and merged into text blocks by considering
their vertical distances.
A variety of approaches is based on a simple description of the background of a page,
also known as Whitespace Analysis. Initial appealing results were achieved by Baird
[29]. In a first step maximal white rectangles (so-called covers) are detected whose
union provide a complete cover for the background of the document image. For the
comparison described below this step was performed by applying the refined method
proposed by Breuel [53] that allows for an efficient calculation of a complete coverage of
the background of a document. In the process not only the alleged optimal solution is
returned but also a list of rectangles sorted by quality in descending order. The obtained
covers are sorted according to a sort key using a weighting function that takes the covers’
area, height, and width into account in order to assign higher weights to rectangles that
are likely to be meaningful separators of text blocks. During the second step a sequence of
segmentations, i.e. the remaining uncovered area to this point, is generated by combining
the identified covers one by one using several heuristics including a trimming rule to
prevent narrow blocks from being segmented too early and a stopping rule. The final
segmentation is obtained by extracting the CCs within the remaining uncovered segments
of the document.
The so-called Constrained Text Line Detection was proposed in [51] and also utilized in
the skew and orientation detection approach presented in [310] and described above. It
operates in three steps: First, a complete cover of the page background is calculated as
described for the whitespace analysis approach. Second, column separators and gutters
are identified by the evaluating the whitespace rectangles according to their width, aspect
ratio, and proximity to CCs that are considered to be text according to their size. Third,
a globally optimal solution for text lines is calculated respecting the gutters as obstacles
and using the least square method described in [51].

Comparison The approaches introduced above were compared in [262] on the UW3
data set. As an initial error metric the aforementioned text line accuracy (see [176]) was
used but then replaced by the pixel-based approach introduced in [263] and described
above (cf. Section 2.3.1.1). After optimizing the required parameters on a separate
training set, generally speaking, the Voronoi and Docstrum methods yielded the best
results, followed by the constrained text line detection and whitespace approaches, while
X-Y-Cut and RLSA performed worst. However, it was noted that the number of columns
and the condition of the pages had a major impact on the quality of the segmentation.
Furthermore, it was shown that the different methods revealed different strengths and
weaknesses, leading to the conclusion that a combined approach might be promising.
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After performing further extensive evaluation the authors arrived at the the following
conclusions and recommendations:

• The X-Y-Cut algorithm represents a good choice when dealing with clean documents
with next to no skew due to its simplicity and speed.

• When a parameter optimization is feasible, for example when dealing with large
collections of similar documents with respect to resolution, layouts, font size, etc.
but with a varying degree of noise, the Docstrum and Voronoi approaches are
promising.

• For heterogeneous collections consisting of documents with different resolutions
and font sizes the constrained text line finding algorithm is recommended since it
is virtually parameter-free.

• To deal with non-Manhatten layouts the Voronoi algorithm can be a good choice
or at least serve as a valid starting point.

2.3.1.3 State-of-the-Art

Connected Component Grouping In 2013, two competitions on layout analysis on
historical newspapers [18] and books [17] led to the insight that the proposed methods
all leaned towards a certain methodology where CCs (mostly letters) are combined
bottom-up utilizing information about the page background. The approach that yielded
the best results in both categories is described by Wei et al. [314]. After extracting the
foreground CCs very large ones are filtered out and the remaining ones are assembled
into horizontal chains (mostly text lines). Then, column separators are detected by
calculating and filtering background rectangles between each CC and its right neighbor.
The initially excluded large CCs are then classified as graphic, border or text, by mostly
taking their shape and relative position to the detected text lines into consideration.
Based on this classification the CCs are then either deleted or incorporated into the text.
Finally, the detected lines are merged into text blocks by utilizing their own vertical and
horizontal position as well as the one of their neighbors.
The Tab-Stop-Algorithm developed by Smith [275] relies on the whitespace boxes that
serve as margins, column separators, and indentations. In more modern material these
marks used during the formatting of a document are referred to as tab-stops giving the
algorithm its name. First, very large and very small CCs are filtered out as they might
hinder the upcoming operations. Then, CCs get extracted which were classified as left
or right tab-stop candidates based on their neighborhood. Afterwards, these are first
combined to lines, then to columns or regions. Finally, the detected regions are sorted
into a reading order by using a top-down approach. Furthermore, each region can be
assigned a type based on their horizontal overlapping with columns. For example, regions
which entirely cover several columns are marked as heading.
The algorithm participated in the 2009 edition of the ICDAR competition on page
segmentation [19] and was evaluated on a data set comprising contemporary material
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with a focus on magazines and technical journals [15]. With a pixel-based F-measure
result of 91.04% the method achieved comparable results to various other participating
approaches, including ABBYY Finereader 8.1 (91.90%) which was used for comparison.
Unfortunately, to the best of our knowledge no more up to date results have been
published.

Fine-grained Semantic Distinction Thus far, the proposed methods mainly settle for
a text/non-text separation and refrain from a fine-grained semantic distinction. This
far more challenging task gets considerably less attention in the literature despite the
semantic markup of regions being essential for many applications. The following two
approaches were applied to already optimally segmented text blocks, consequently only
allowing the evaluation of the type classification.

Wang et al. [313] introduced a statistical approach using a 25-dimensional feature vector
to represent a text block. Among others, features like the background structure of
the document, geometrical information about the text block itself, and the number
and properties of its comprised glyphs were utilized. A decision tree classifier allowed
distinguishing between nine segment classes: text with font size ď 18pt, text with font
size ě 19pt, equations, tables, halftones, drawings, borders, logos, and others. On the
UW3 data set the correct type was predicted for 98.45% of the regions.

A slightly better result of 98.56% was obtained by the method introduced by Keysers et al.
[141] who mainly used histograms in order to describe the text blocks. These histograms
stored information about the run length of the fore- and background pixels, the width
and height of the CCs and distance of a CC to its next neighbor. For classification a
KNN classifier with K “ 1 was used. Additionally, a slightly worse (2.1% error rate) but
significantly faster maximum entropy [34] classifier was tested. For the most part, the
same classes as defined by [313] were used. However, there was no distinction between
font sizes and an additional noise class was introduced.

Naturally, a combined approach which first detects regions and performs a semantic
classification afterwards poses a considerably harder challenge.

Pixel Classifiers often with deep learning components, present an approach which differs
significantly from the methods described above. To evaluate the following approaches
the PA or FgPA (cf. Section 2.3.1.1) were used.

An unsupervised method to learn features using convolutional autoencoders was proposed
by Chen et al. [69]. The learning process can be divided into three steps: First, small
image sections (5x5 pixels) are used to learn a feature mapping. Next, the obtained
mapping serves as a basis to learn a feature representation of higher order from bigger
sections (15x15 pixels). The third step is analogous to step 2 but introduces an overlap of
5 pixels. The method was applied to three handwritten documents [70] and distinguished
between four classes: periphery, background, text, and decoration. Based on the learned
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representation a Support Vector Machine (SVM) [43] was trained resulting in a PA of up
to 97.66%.

In [68] Chen and Seuret combined feature learning and classifier training into a single
step resulting in an end-to-end method. The utilization of superpixels, i.e. an arbitrary
shaped but fully connected group of pixels that share common characteristics [228], led
to improved results and a significant speedup.

Wick and Puppe [317] proposed a Fully Convolutional Network (FCN) adapted from the
U-Net [244] consisting of several convolution, pooling, and deconvolution layers but refrains
from using skip connections. The main advantage of processing the entire input image in
one step is that the network can profit from all the available information, for example the
absolute position of marginalia with respect to the whole page, allowing the approach
to not only deal with a comparatively simple task of distinguishing between periphery,
background, text, and decoration but perform a fine-grained semantic distinction between
a wide variety of layout types, if properly trained beforehand. No preprocessing steps
such as superpixels were used, resulting in an significant speedup of a factor of up to 10
and comparable or improved results compared to the approaches introduced above.

dhSegment The dhSegment framework (cf. Section 2.2.1.3) compared its approach on
the DIVA-HisDB data set (cf. Section 2.1) in the context of the ICDAR2017 competition
on layout analysis for challenging medieval handwritten documents [269], i.e. the pixel-
precise labeling of scanned pages using four classes: text, decoration, comments, and
background. The original images were not resized. Patches of 400x400 pixels were used
for two of the three books, rising to 600x600 for the third one because of a higher initial
resolution. In the postprocessing step binary masks for all predicted classes were obtained
and cleaned by removing small CCs. In addition, the output of the page detection task
described above was incorporated in order to remove false positive text region detection
in the border area of the image. Despite only slightly adapting their generic method to
the peculiarities of the task, the proposed approach achieved very competitive results
compared to the highly specified systems participating in the challenge, beating six out
of the seven submissions with an IoU score of 0.9435 only slightly behind the winning
system (0.9490).

2.3.1.4 Tools

Compared to the variety of proposed approaches, only a small number of methods is
available as ready to use tools which can be directly applied by the user, preferably via a
comfortable to use GUI.

Aletheia [74] is a highly functional proprietary tool developed by the Pattern Recognition
& Image Analysis (PRImA) research group [224] of the University of Salford. It offers a
variety of tools for the supported manual distinction and adjustment of regions within a
document. However, it simply applies the Tesseract page segmentation functionality (cf.
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the Tab-Stop algorithm in Section 2.3.1.3) in order to obtain an automatically generated
segmentation result. Its manual editing features are very extensive, but due to its
closed-source nature there is no community contribution except by feature request, no
guarantee of long term availability and it comes with a fee.

Garz et al. [104, 105] propose an interesting semi-automatic system to segment very
challenging ancient handwritten documents by utilizing document graphs and pen-based
scribbling interaction by the user. The initial graph for a page is created by first
producing a sparse graph representation of the foreground by extracting nodes along
gradient changes [103] and determining edges by triangulating these nodes. Then, a
Minimum Spanning Tree (MST) is calculated using Kruskal’s algorithm [152]. As for
the user interaction, the general idea is to allow the users rather imprecise but natural
interactions and retrieve a precise segmentation from the graph. Interactions such as the
insertion of edges between CCs of the same layout element and the deletion of edges that
connect two different layout element are strokes drawn with a pen-based input device.
Experiments showed that, despite being evaluated on very challenging documents, the
initial graph representation already offers promising results and usually only a few user
interactions are required to arrive at the desired output. Drawbacks of the method are
the need for a suitable input device and the expensive computation of the MST which
was reported to take up to 25 seconds for a single page.

The open-source software Agora [226] was developed as part of the PARADIIT project
[227] of the University of Tours. The proposed approach utilizes information about the
CCs, in order to construct a map for foreground and background respectively. Based on
these maps, the user can interactively define so-called scenarios which are based on rules
and allow to adapt to a given document. The software is Windows-only and the project
appears to be currently dormant.

The SCRIBO module [157] of the OLENA platform [86] is an open-source layout analysis
framework which finished second at the 2011 competition on historical book recognition
[16]. While it clearly has its strengths because of its modularity and flexibility, it does
not seem to be suited for the needs of the average user who is looking for a stand-alone
tool which can be used right away.

N-Light-N [257] is a highly adaptable Java framework which allows the comfortable
application of deep neural networks, especially convolutional auto encoders. It has
already been used for the segmentation of historical prints by applying a pixel classifier.
However, the necessary time expenditure for high resolution documents seems to be too
high for practical use.

Implementation in OCR Workflow Tools OCRopus 1 offers no explicit region segmenta-
tion but the highly performant line segmentation incorporates some implicit text/non-text
distinction capabilities as well as a decent column segmentation which will be explained
in greater detail during the introduction of the OCR4all workflow in Section 5.3.
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Tesseract’s page segmentation approach relies on the Tab-Stop-Algorithm developed by
Smith [275] (cf. Section 2.3.1.3). Furthermore, the integrated table detection based on
the algorithm of Shafait und Smith [265] is worth mentioning.

2.3.2 Line Segmentation

Not only because of the fact that modern text recognition systems operate on line-
level, a precise and dependable line segmentation is a key ingredient for every OCR
system. While the segmentation of modern printed documents like newspapers, journals,
magazines and business letters has been tackled and mostly solved several decades ago
[96, 209, 320] and modern commercial tools can be expected to yield almost perfect results
on most contemporary printed material [16], the processing of historical printings or even
handwritten documents presents a far more difficult challenge. Again, as discussed during
the Introduction, this is mostly in consequence of aging effects like degradation including
bleed-through, holes, and spots as well as the much more irregular layouts suffering from
varying inter line distances and font sizes, marginalia, ornaments, swash capitals, and
decorations [10, 167]. However, dealing with this demanding task represents an active field
of research as shown by the publication of public data sets like the IAM-database [181]
or DIVA-HisDB (cf. Section 2.1) and regularly organized challenges allowing researches
to evaluate and compare their newly developed methods [269].

In this section we present and discuss different approaches proposed to deal with the
task of line segmentation. Of course, our main focus lies on the processing of historical
printings, but since the task of line segmentation on handwritten historical documents
is quite similar, is tackled by a very comprehensive and active community, and can be
considered even more challenging, we also include methods developed for the application
on handwritten documents. Because the OCR4all workflow stops at line level, we mostly
take methods specifically geared towards line segmentation into account. However, some
of the mentioned approaches also provide word segmentations by default or can easily be
extended to do so. We ignore methods that aim towards character segmentation since
they are beyond the scope of this work (we refer to [65] for a very comprehensive survey).

In the following, we first provide a brief summary of important terms and concepts before
we focus on different groups of text segmentation approaches. While doing so we mostly
follow the concepts and grouping suggested within the highly recommended survey by
Likforman-Sulem et al. [167] and build from there.

2.3.2.1 Fundamentals

Before dealing with different segmentation approaches we want to lay the groundwork by
introducing some important definitions and ways to represent text lines.
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Definitions According to [167] the following text line components can be defined (also
cf. Figure 2.1):

• Baseline: A fictitious line touching the bottom of the character bodies (without
descenders).

• Median line: A fictitious line on top of the character bodies (without ascenders).
• Lower line: A fictitious line touching the bottom of the descenders.
• Upper line: A fictitious line lying on top of the ascenders.
• Overlapping components: Descenders or ascenders of an adjacent line which overlap

with the region of the current line.
• Touching components: Descenders or ascenders that connect consecutive lines.

Figure 2.1: Visualization of text line components.

Furthermore, they define the process of text line segmentation as a labeling process that
allocates spatially aligned units, e.g. pixels, CCs, or other characteristic points to a text
line by assigning the same label.

Text Line Representations Not only identifying a text line and/or its components is
a challenging task but also the representation. There are several ways with varying
complexity and accuracy (altered and extended from [167]):

• Separating paths, delimited strip, and polygons: A separating path is a continuous
line which separates the area of a text line from the vertically adjacent one. Two
consecutive paths, one at the top and one at the bottom of a text line comprises
the so-called delimited strip which represents the text line. When text lines span
the entire page or previously defined segment horizontally this representation is
sufficient and a polygon representation can trivially obtained. If the left and right
borders are required as well, the two separating paths are completed by two further
paths resulting in a text line polygon.

• Clusters consist of units that were assigned to the same text line. Units may be
individual pixels, CCs, or even blocks (rectangles, polygons, ...) that contain various
amount of writing. Each cluster represents a text line encoded by the same label
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assigned to each unit of the cluster/line. Again, deriving a polygon or bounding
box representation is a straight forward task.

• Baselines only store information about the position of the lower parts of the
character bodies of a text line as defined above. Naturally, these lines are easier to
detect than for example entire polygons which fully surround the entire line but
consequently also lack some information.

Since an OCR workflow does not stop after identifying the text lines, some representations
require further processing before they can be passed into the component of the workflow,
most likely an ATR engine. Modern character recognition approaches require a rectangular
line image as their input which can quite easily be created from a polygon or cluster-based
representation by simply copying the parts considered relevant into a blank rectangle of a
fitting size. When a baseline representation was used, it is apparent that the extraction is
not as trivial and cannot be as precise. This problematic and especially its effects on the
ATR quality were examined in [243]. The experiment was performed on the C5 Hattem
Manuscript [249], a 15th century single writer document with a relatively simple one
column layout but also with small distances between adjacent text lines and consequently
overlapping or even touching ascenders and descenders of consecutive lines on a regular
basis.
Three different segmentation techniques resulting in three different line representations
were applied:

• A tightly fitting polygon, representing the most informative approach, was created
by applying the algorithm introduced in [170].

• The so-called poly-baseline was obtained by applying the method presented in [41].
Simply adding a few pixels above and below the localized baselines allowed for a
straight forward extraction of the text lines.

• Analogously, the most simplistic representation, a (straight) rectangle was used to
extract the text line again by just adding some pixels to the top and bottom of the
detected straight-baseline as proposed by [40] and [37].

To ensure a fair comparison all results were manually corrected which of course is far more
time consuming when dealing with polygons instead of baselines, especially straight ones.
In this case, the authors estimated the required manual effort as one hour per page for the
polygon solution, while correcting the poly-baseline (15 minutes) and straight-baseline (5
minutes) representations is significantly faster.
In order to determine the influence of different text line representations on the recognition
accuracy a Hidden Markov Model (HMM) based approach was chosen and trained on the
material at hand (for details we refer to the original paper [243]). Several cross-validation
experiments resulted in quite similar CERs for the approaches polygon (15.8%), poly-
baseline (17.3%), and straight-baseline (18.1%) with overlapping 95% confidence intervals.
Combined with the vastly differing amount of human interaction required to obtain a
perfect segmentation result, this led the authors of the study to the conclusion that the
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poly-baseline method represents a good trade-off between effort and accuracy and that
only a slight gain in ATR accuracy can be obtained if a tightly fitting polygon is used to
represent the text lines. While this is mostly true for the experiment at hand further
studies are required in order to allow a more general conclusion mainly because of two
reasons: First, while, due to the overall high CER, the differences in recognition accuracy
may be considered irrelevant or at least justifiable, it has to be seen how the different
representations influence the results when dealing with material, for example historical
printings, that allows to reach CERs below 5% or even 1%. Second, the influence of the
manual correction step is not clear. Maybe a considerable portion of the time invested in
optimizing the tightly fitting polygon had next to no influence on the recognition results
despite being very costly.

We conclude that the described experiment does not provide enough insights to consider
the modalities of the representation of text lines to be negligible. Consequently, we start
from the premise that, especially when aiming for extremely low error rates, text lines
should be represented as accurate as possible, namely as a pixel-based labeling or a
tight-fitting polygon.

2.3.2.2 Basic Approaches

Before focusing on selected state-of-the-art methods we provide a brief overview over
typical approaches [167] that have shown to be useful in the past and regularly provide a
starting point for new methods.

Projection profiles techniques [175, 179, 327] sum up the pixel values from each column
along the horizontal axis obtaining clues for gaps between text lines. Naturally, this
works best with lines with next to no overlap or even none at all.

Smearing methods [159, 160, 267] rely on the RLSA proposed by [320] and introduced in
Section 2.3.1.2. After smearing black pixels along the horizontal direction by flipping the
white pixels in between them according to predefined thresholds the text lines can be
extracted according to the resulting CCs.

Grouping-based techniques [93, 165] aim to create alignments of units (pixels, CCs, etc.)
by following a bottom-up strategy. Usually this requires a quality measure to master the
challenges of planting sensible seeds, define rules for the addition of further units, and to
solve conflicts in the case that a unit may well fit several alignments.

As always when the detection of lines is required, the Hough transformation [129]
represents a valid choice. Of course, this also holds true for the task of text line detection
[166] and has even been successfully applied to the detection of considerably fluctuating
lines [225]. In general, the Hough transformation is used to detect imperfect arbitrary
shapes in a binary image resulting from an edge detection. The main idea is to perform
a voting procedure to extract maxima from the so-called parameter space which marks
parameter values that explain the evidence (an edge pixel) in the binary image.
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The Seam Carving algorithm [26] was originally developed to enable a content-aware
resizing of images and was successfully adapted to the task of text line detection. Basically
the idea is to compute seams that separate two consecutive text lines with minimal
cutting through the components of the two lines, or optimally even no intersections
at all. To achieve this, an initial energy map has to be calculated treating the line
components as high-energy regions and the space between the line as low-energy regions.
After determining suitable starting spots for the seams, for example by using projection
profiles, the separating seams can be calculated. The initial approach [248] performed a
distance transform [39] operation on a binary image to generate energy maps. However,
it has been extended to grayscale and color images since [23, 24].

2.3.2.3 State-of-the-Art

As expected, all three approaches selected for this section incorporate a substantial
amount of deep learning. The first two have just been presented at ICDAR2019 and the
third one is the already introduced dhSegment.

ARU-Net Grüning et al. [118] propose a two-stage method. First, a pixel labeling into
three classes (baseline, separator marking the beginning and end of lines, and other) is
performed by an extension from the U-Net [244] called ARU-Net which, due to data
augmentation techniques, can be trained with a manageable number of GT images and
whose training framework is open-source [22]. The second step uses the labeling from
the first step as input and performs a bottom-up clustering to build baselines using
superpixels3 in the process. Extensive evaluations showed the capabilities of the system as
it considerably outperformed all submissions of the two latest ICDAR2017 competitions
on layout analysis [269] and baseline detection [84]. Further evaluations proved the
effectiveness of the data augmentation techniques and its applicability to curved and
arbitrarily oriented text lines.

Labeling, Cutting, Grouping Alberti et al. [10] integrated deep-learning based pre-
classification into their open-source [155] workflow and combined it with state-of-the-art
segmentation methods. In a first intermediate step a precise segmentation of the RGB
input images at pixel-level is performed which mainly acts as a denoising tool. The
vanilla ResNet-18 [9] architecture was chosen and run within the DeepDIVA deep-learning
framework [8]. After cleaning the output using simple postprocessing techniques like
removing small CCs, all pixels labeled as non-text, for example pixels belonging to
decorations, are discarded for further processing. Next, an optimized seam carving based
algorithm is applied and a simple postprocessing step allows to extract the detected text
lines represented by their enclosing polygons. Evaluations on the DIVA-HisDB data set
(cf. Section 2.1) showed a nearly perfect IoU score of 99.42%, reducing the error of the

3Cf. the pixel classifier-based region segmentation approach of Chen and Seuret [68] introduced in
Section 2.3.1.3.
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earlier state-of-the-art system (97.86% [269]) by over 80%. Since closer investigation
revealed that all of the few remaining errors were caused by misclassifications during
the semantic labeling check, another experiment was performed using the pixel-level
GT instead of the prediction, resulting in a perfect score of 100%. Further experiments
showed a high parameter robustness and indicated the applicability to other data sets.
Despite the very promising results the authors of the proposed approach pointed out some
restrictions that have to be addressed: First, some assumptions on the to-be-processed
documents have to be made including that the text lines on a page do not change their
direction and the general structure is a standard one or two column layout. Otherwise
a preceding text block segmentation would have to be performed. Finally, the method
relies on a close to perfect pixel-level semantic segmentation which is expensive, both in
terms of computational and also human effort, since books-specific training is most likely
required.

dhSegment To evaluate the performance of dhSegment (cf. Section 2.2.1.3) in the area
of line segmentation the method was compared to the submissions of the ICDAR2017
competition on base line detection using the cBAD data set (cf. Section 2.1). For this
task the network was trained to label all pixels within a radius of five pixels of the
GT baselines. The postprocessing step consisted of applying a Gaussian filter to the
probability map produced as output and a subsequent hysteresis thresholding, before
extracting the CCs from the binary mask and converting them into line polygons. For
the two tracks treated in the competition the generic dhSegment approach once again
achieved very competitive results placing second and first respectively among the six
proposed methods [84].

2.3.2.4 Implementation in OCR Workflow Tools

OCRopus 1 incorporates a CC-based approach incorporating grouping and smearing
techniques while applying the y-derivative of a Gaussian kernel while relying on several
heuristics. A slightly extended version of it is utilized by OCR4all and consequently will
be explained in detail during the introduction of the OCR4all workflow in Chapter 5 (cf.
Section 5.5.2).

Tesseract 3/4 relies on a grouping-based technique introduced in [273] whose key steps
consist of CC filtering and line construction [274]. Similar to OCRopus 1 it first uses
a simple percentile filter that removes CCs that are considerably bigger (for example
swash capitals or vertically connected characters of adjacent text lines) or smaller (for
example punctuation, diacritica, or noise) than the median height within a text region.
The filtering step then allows for a much easier assignment of the remaining CCs into
unique text lines. After the baselines have been estimated by applying a least median
of squares fit [246] the previously removed CCs are fitted back into the detected lines.
Finally, a clean-up step deals with the optimization of the assignment of diacritical marks
and the association of parts of broken characters.
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2.4 Automatic Text Recognition

After introducing the historical development in the area of character recognition tech-
niques, we briefly discuss advantages and disadvantages of mixed models compared to
book-specific training and finally highlight the recognition capabilities of several available
ATR engines.

2.4.1 Historical Development and State-of-the-Art

Text recognition can be considered as one of the earliest computer vision tasks [251].
Therefore, we begin our survey of related work with a short sketch and the historical
development of the general recognition approaches.

2.4.1.1 Glyph-based Recognition

For a long time segmenting printed texts into single glyphs which are then classified
individually was considered the go-to ATR approach. After identifying a glyph a feature
extraction step takes place before the gathered information is utilized to assign a character
class. This approach was used by all available ATR engines until very recently, for example
by the open-source [295] ATR engine Tesseract [274] before version 4.0.
The main drawback of this method is the need to precisely identify every single glyph.
This can be a very challenging task especially when dealing with older printings where
the segmentation step leads to either splits or merges of glyphs on a regular basis due
to various reasons: The glyph contours have lost their uniform ink impression and get
segmented as individual pieces, or contours of neighboring glyphs have become fuzzy
and tend to touch each other leading to segments containing several individual glyphs
that cannot subsequently be classified. Furthermore, creating GT data for training a
recognition model based on real printings (as opposed to train on synthetical images from
existing computer fonts) is a cumbersome and time consuming task. Still, Kirchner et al.
[145] showed that it is basically possible to train book- or rather type-specific models with
Tesseract 3 using Aletheia [74] and Franken+ [99]. After manually identifying examples
for each glyph class Franken+ supported the creation of the required Tesseract 3 training
format. A model trained on an incunabulum was then applied to other books of the
same print shop using the exact same type and resulted in CERs between 4% and 8%.
However, due to the high amount of manual work required to produce such a model, this
approach seemed only practicable if one desires to OCR a variety of works printed with
the same letter types.

2.4.1.2 Line-based Recognition using LSTM Networks

In 2013 Breuel et al. introduced a segmentation-free approach (no segmentation beyond
the line level) in their ground-breaking paper [46] which is capable to recognize entire text
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line images at once. This is possible by utilizing recurrent neural networks with an Long
Short-Term Memory (LSTM) architecture trained using the Connectionist Temporal
Classification (CTC) algorithm. After resizing a line image to a fixed height, the image
is cut into vertical stripes with a width of one pixel. The pixel values of these stripes
(usually binary or grayscale) are fed into the neural network which produces a probability
distribution over the entire glyph alphabet for each stripe, usually by processing the
input sequence two times: from left to right and from right to left (bidirectional LSTM).
Finally, the output sequence is generated by applying a CTC decoder.

The line-based ATR approach not only outperformed the glyph-based approach consider-
ably, but also offers the advantage of a much easier GT production and training process.
Lines chosen for training can simply be transcribed as a whole since a line image and the
corresponding transcription completely suffice to serve as a training example without
the need for any further information about glyph positions or bounding boxes. Those
improvements also enabled an efficient high quality processing of even the earliest printed
books as shown by Springmann et al. with individually trained models achieving CERs
around 2% [279, 280].

2.4.1.3 Line-based Recognition using CNN/LSTM-Hybrid Networks

A further refinement of the LSTM approach was introduced in 2017 by Breuel [58] who
added CNNs, which showed to be very effective in a variety of image processing task
[174], as additional layers in front of the LSTM. Each CNN performs a convolution of the
original line image using different filters whose parameters are learned during the training
process producing a feature map that highlights the most descriptive parts of the input
image. After a pooling operation the resulting images are then either passed into another
CNN or vertically concatenated and passed into the LSTM layer. This CNN/LSTM-
hybrid method has shown to be very successful in various application scenarios and
therefore also represents the current state-of-the-art of modern ATR engines like Calamari,
Tesseract (since version 4.0) and OCRopus 3. Since Calamari, as we will show below,
is the most successful of the currently available open-source engines we introduce it in
the following in greater detail before we discuss evaluations and comparisons in the next
section.

2.4.1.4 Calamari

Calamari [318, 319] is still under active development [63]. Apart from its superior
recognition capabilities compared to other open-source engines it offers a clean Application
Programming Interface (API) and Graphical Processing Unit (GPU) support for rapid
training.

Furthermore, Calamari natively supports three techniques developed or adapted during
the course of this thesis, resulting in higher recognition rates which we will briefly explain
in the following before discussing them in detail in Chapter 4: First, a cross fold training
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procedure with subsequent confidence voting in order to reduce the CER on early printed
books was implemented (see [234] and Section 4.1). By dividing the GT in N different
folds and aligning them in a certain way, it is possible to train N strong but also diverse
models which act as voters in a newly created confidence voting scheme. Second, the
so-called pretraining functionality allows to build from an already available Calamari
model instead of starting training from scratch which not only speeds up the training
process considerably but also improves the recognition accuracy (see [236] and Section
4.2). In addition, data augmentation is supported using the routines of ocrodeg [203] for
generating noisy variations of training material.

Moreover, Calamari provides several interfaces for more complex data representations
than image/text pairs on line level, most notably PageXML (cf. [223] and Section 2.7.1).
Combined with the highly modular structure, this ensures a straight forward integration
into existing and future OCR workflows. Consequently, we decided to use Calamari as
our primary ATR engine to implement and evaluate further developments and also rely
on it as one of the core submodules in OCR4all.

Before discussing the performance of Calamari in comparison to several other open-source
ATR engines we now go into detail regarding technical specifications and the provided
helpful features for the end user.

Technical Specifications and Network Architecture The Calamari ATR engine is
implemented in Python 3 and relies on the open-source machine learning library Tensorflow
[1] for the underlying deep learning tasks. In the following, we briefly discuss its default
network structure and core ATR functionalities.

Calamari implements CNN/LSTM hybrid networks whose exact topology can be easily
specified by the user via a custom model description language. However, in our experience
the default network architecture represents a reasonable choice for the vast majority of
use cases and consequently was never changed during the experiments presented in this
work. Figure 2.2 shows the default network and explains the task of the individual layers
as well as their input-output relations.

Preprocessing For both applications, training and recognition, the networks expects
the input to fulfill certain criteria whose adherence are ensured during the preprocessing
step. Line images (color, grayscale, or binary) are automatically rescaled to a fixed
height to fit the input layer of the network. The default height of 48 pixels proved to
represent a sensible trade-off between simplicity (allowing the network to generalize well)
and complexity (conserving all the important information) and therefore was always kept
during our experiments.

As for the textual preprocessing of the GT before the training, Calamari performs some
optional standard steps like the collapsing of whitespace chains and the removal of leading
and trailing whitespaces. Additional regularizations like the splitting of ligatures can be
applied by choosing from several predefined rule sets or by defining a customized one.
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Figure 2.2: Calamari’s default network architecture: To begin with, the input image
with width W, height H, and C color channels is passed into the first convolutional layer.
Applying 40 filter operations with a kernel size of 3ˆ 3 results in 40 feature maps which
are then reduced by a max pooling operation with a pool size of 2ˆ 2. The two steps
are then repeated but this time 60 features are used during the convolution. Next, the
feature maps are vertically concatenated and passed into a bidirectional LSTM with 200
hidden nodes. A dropout layer with a dropout rate of 0.5 is introduced to reduce the
effect of overfitting. Finally, for every horizontal position a fully connected layer with
softmax leads to the final output probability matrix with W

4 columns (the original width
of the input image is reduced by factor 4 because of the two pooling operations) and L
rows, with L representing the number of labels, which is the alphabet size plus the blank
label. Adopted from [229].
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Training Calamari expects training examples, in the form of pairs of line images and
their corresponding transcription, which can either be provided as raw image and text
files on line level or as a combination of the preprocessed page images and an additional
XML file, like PAGE or ABBYY XML [5], containing the required coordinate and textual
GT information. After loading and preprocessing the data, which can be done at once
before the training commences (preloading) or continuously during the training process
(on-the-fly) the data can be divided into a training and a validation set. The latter is used
to measure the recognition accuracy on unseen data, enabling Calamari to determine the
best model and the correct moment to stop the training. This early stopping functionality
as well as the optional data augmentation procedure are discussed in greater detail in
context with the implementation in OCR4all in Section 5.6.2.
The actual training process uses the CTC loss function [112] which maximizes the
probability of the given GT label sequence based on the probability output of the
network. As a default the Adam solver [144] is used with the learning rate set to 0.001.
Further standard techniques like dropout [283], to prevent the network from overfitting,
and gradient clipping [218], to deal with the exploding gradient problem, are implemented.

Prediction To perform the recognition, Calamari requires line images, again provided
either as raw line image files or as a combination of a page image and an XML file, as
well as one or several models as input. If more than one model is used, confidence voting
is automatically activated and the individual outputs are combined. Depending on the
data input the ATR result is then output as a text file or placed at the corresponding
position within the input XML file. Apart from the raw ATR result Calamari also allows
the optional output of extended prediction data which we will make use of throughout
this thesis: This data includes the position of each character which are identified solely
based on the output of the network. Additionally, confidence values for the most likely
character as well as for all noteworthy alternatives are provided.

2.4.2 Evaluation of ATR Engines

In the following, we compare existing ATR engines and identify missing features which
we later address with our own solution based upon Calamari (recognition accuracy and
speed), mixed models, training on historical data, and the necessary tooling for a complete
workflow.

2.4.2.1 Book-specific Training on Early Printed Books

A thorough comparison of a shallow LSTM (OCRopus 1) and a deep CNN/LSTM hybrid
(Calamari) is given in [319]. Three early printed books, printed between 1476 and 1505
in German and Latin, were used as training and evaluation data. Book-specific models
were trained using 60, 100, 150, 250, 500 and 1,000 training lines. The results showed, as
anticipated, that the advantage of the deep network grew with an increasing number of
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lines used for training, yielding an average improvement in CER of 29% for 60 lines and
43% for 1,000 lines. As for the training and prediction times the deep network, despite
having a considerably more complex network structure and more trainable parameters
resulting in a higher number of necessary operations, outperformed the shallow one when
using four CPU threads or more. The reason for this are the pooling layers which reduce
the dimensions of the image by a factor of 4 leading to a considerably speedup during
the expensive LSTM and CTC operations. Running the training and prediction on a
GPU led to further speedups by a factor of at least six and four, respectively.

2.4.2.2 Modern English and 19th Century Fraktur

In [318] Wick et al. compared Calamari, OCRopus 1, OCRopus 3, and Tesseract 4 on
two public data sets: First, the UW3 data set consisting of lines from the late 20th

century printed in Antiqua [308]. Second, the DTA19 data set which is a part of the
GT4HistOCR corpus4 [119, 282] containing 39 German novels printed in Fraktur during
the 19th century.

Again, book- or rather corpus-specific training was performed with each engine using the
respective default parameters. On the UW3 data set Calamari achieved a CER of 0.155%,
considerably outperforming OCRopus 1 (0.870%), OCRopus 3 (0.436%), and Tesseract
4 (0.397%). The inclusion of cross fold training and confidence voting (cf. Section 4.1)
improved Calamari’s result by another 26% to a CER of just 0.114%.

Evaluations on the DTA19 data set led to similar observations with Calamari reaching
a CER of 0.221% (0.184% with voting) compared to the significantly higher 1.59% of
OCRopus 1 and 0.907% of OCRopus 3. On this data set no Tesseract 4 results were
reported.

Regarding speed the average time needed to train or to predict a single line of the UW3
data set was measured and compared. When using a GPU Calamari required 8 ms to
train and 3 ms to predict a line which proved to be considerably faster than OCRopus 3
(10 ms and 7 ms), while OCRopus 1 (850 ms and 330 ms), and Tesseract 4 (1,200 ms
and 550 ms) are far behind due to their lack of GPU support.

2.4.2.3 Conclusion

Based on the results presented above and our personal experience Table 2.2 sums up and
rates the capabilities of the most important available ATR engines in terms of historical
ATR. For a more in-detail comparison also taking model design options and hyper
parameters into account we refer to [28].

As for the recognition the main criteria are accuracy and speed. Since we consider
postprocessing using dictionaries and language models to be an individual step in the

4For futher information please see Section 3.2.1
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Table 2.2: Comparison and rating of the capabilities of four modern ATR engines. More
ticks (3, to a maximum of three) denote a higher ability/applicability of an ATR engine
in the respective step. A cross (7) shows that an ATR engine does not support a step at
all.

Step ABBYY OCRopus 3 Tesseract 4 Calamari
Recognition 33 33 33 333

Training 3 33 33 333

Manual Correction 333 7 7 7

workflow, we rate the raw recognition capabilities of the engines. Due to the results
presented above, the best rating goes to Calamari.

Regarding the training, we rate the engines mainly based on their speed and effectiveness
but also take into account the user friendliness when it comes to training on real data.
OCRopus 3, Tesseract 4, and Calamari in general allow pairs of line images and their
transcriptions as training input which is very comfortable and straight forward for the
user. While Calamari can deal with the image/text pairs directly, just like OCRopus
1, OCRopus 3 requires to create a .tar file comprising the data. As for Tesseract 4, the
training of models on real historical data has been considered at least impracticable
for several years until recently a solution was discovered and made publicly available
[298]. However, this required an extension to the standard training tools. While it is
basically possible to train single glyphs and consequently a book-specific model using
ABBYY, this is a tedious and ineffective task which seems to be mainly geared towards
the recognition of quite specific ornament letters. This effectively limits the recognition
capability to the expensive existing historical models one has to licence from ABBYY.

ABBYY offers a comprehensive set of support tools for the manual postcorrection
including a synoptic image/text view, markers for possible errors based on recognition
confidence and dictionaries, and a selection of possible alternatives. While OCRopus
1 at least allows to create a browser based synoptic view, OCRopus 3, Calamari, and
Tesseract 4 do not offer any form of user interaction regarding the correction of the ATR
output.

2.4.3 Mixed Models

While the best results can usually only be achieved by training book-specific models,
the out of the box application of existing mixed models represents a baseline option
that may already be good enough and can be done automatically. However, even a fully
automated approach becomes unattractive if it cannot yield satisfactory ATR results.
Consequently, the applicability of mixed models considerably depends on two factors:
the use case and the material at hand. In fact, the quality of an ATR result directly
influences the possible areas of application, for example while critical editions aim for
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perfection, tasks like key word search and word spotting can usually deal with (severely)
flawed texts. Regarding the to-be-processed material it is apparent that mixed models
can deal best with works which are printed in a similar type as the training material on
which the models have been trained.

Before we take a closer look at related work concerning mixed models Table 2.3 provides
an overview over the results achieved by various ATR engines on different material using
mixed and sometimes also book-specific models. The results indicate that the difficulty
level rises the older the material at hand gets, consequently increasing the importance of
book-specific training.

Table 2.3: Summary of the results achieved by mixed and book-specific models sorted
with respect to the used Material from older to newer. The early printings are selections
from several sub corpora of the GT4HistOCR corpus (cf. Section 3.2.1), the 19th century
material comes from different sources including the DTA19 corpus (cf. Section 3.2.1.5)
and various works introduced in Section 7.1.2, and the 20th century data is the UW3
database (cf. Section 3.2.3). Apart from the Source, we provide the the ATR Engine
utilized for training and testing as well as the obtained CER values.
Material Source Engine Models CERmin CERavg CERmax

1476-1686 [279] OCRopus 1 mixed
book-specific

<1%
<1%

8.3%
2.2%

21%
5.3%

1476-1505 [319] Calamari book-specific 1.0% 1.2% 1.5%

1476-1572 [233] OCRopus 1 book-specific 1.0% 2.1% 2.9%

1487-1870 [280] OCRopus 1 mixed
book-specific

<1%
<1%

5.0%
2.1%

17%
5.4%

19th cent. [46] OCRopus 1 mixed 0.15% 0.83% 1.5%

19th cent. [235]
ABBYY
Calamari

OCRopus 1
mixed

0.01%
0.01%
0.17%

2.8%
0.61%
1.9%

26%
4.8%
11%

19th cent. [318]
Calamari

OCRopus 1
OCRopus 3

mixed
-
-
-

0.184%
1.59%

0.907%

-
-
-

20th cent. [46] OCRopus 1 mixed - 0.6% -

20th cent. [58] OCRopus 3 mixed - 0.25% -

20th cent. [318]

Calamari
OCRopus 1
OCRopus 3
Tesseract 4

mixed
-
-
-

0.114%
0.870%
0.436%
0.397%

-
-
-
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2.4.3.1 Focus on Early Printed Books

Since the variance between printing types started off very high in the incunabula age
and decreased over the centuries, it is clear that training wide applicable mixed models
becomes the more challenging the older the target material gets. This effect as well as a
general comparison of the effectiveness of mixed and book-specific models was investigated
by Springmann et al. [279, 280] who relied on OCRopus 1 as their ATR engine:

First, they performed experiments on a corpus consisting of twelve books printed with
Antiqua types between 1471 and 1686 with a focus (ten out of twelve) on early works
produced before 1600. After dividing the corpus into two distinct sets of six books
each a mixed model was trained on both of them. The evaluation of each model on the
respective held-out books yielded an average CER of 8.3% with the individual CERs
ranging from 21% to below 2%. Only two books scored a CER higher than 10%, both
of them incunabula. As expected, training book-specific models and evaluating them
on held-out data of the same book resulted in considerably better recognition results
ranging from 5.3% to below 1% and an average of 2.2%.

Second, a similar experiment was conducted as part of a case study on the RIDGES
corpus (cf. [207, 242] and Section 3.2.1.4) consisting of 20 German books printed between
1487 and 1870 in Fraktur. After applying the same methodology as mentioned above the
mixed models scored an impressive average CER of 5.0% with individual results ranging
from 17% to below 1%. Similar to the first case study the two oldest books performed
worst with CERs over 10%. As a matter of fact, the individually trained models again
performed considerably better, reaching an average CER of around 2.1% with the worst
book still achieving 5.4%.

In both case studies the oldest printings proved to be the most difficult ones for the
mixed models to recognize, as expected. This highlights the general difficulty of using
mixed models: To yield high quality results the types at hand have to match (parts of)
the material the model was trained on as much as possible. While this becomes more
likely when adding more works to the training set, a perfect fit can never be guaranteed.

2.4.3.2 Modern English and 19th Century Fraktur

Breuel et al. [46] trained two OCRopus 1 mixed models to recognize modern English
text and German Fraktur from the 19th century. The English model was trained on the
UW3 data set and yielded a CER of 0.6% when applied to 1,020 previously unseen lines
from the same data set. The training data for the Fraktur model comprised around
20,000 mostly synthetically generated text lines which led to a model achieving CERs of
0.15% and 1.37%, respectively on two books of different scan qualities. To the best of
our knowledge the Fraktur (FRK) model is widely considered as the default OCRopus
1 model for Fraktur recognition and therefore, we will use it for comparison in our
evaluations (cf. Section 7.1).
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2.4.3.3 Multilingual Mixed Models

An approach not only mixing different types but also various languages was promoted
by [305]. They generated synthetic data for English, German, and French and used it
for training language-specific models as well as a mixed one. As expected, the language-
specific models performed best when applied to test data of the same language yielding
CERs of 0.5% (English), 0.85% (German), and 1.1% (French). However, recognizing
a mixed set of text data with the mixed models also led to a very low CER of 1.1%.
Despite being carried out exclusively on synthetic data this experiment indicates a
certain robustness of OCRopus 1 (and arguably also of other LSTM-based ATR engines)
regarding varying languages in mixed models.

2.5 Postcorrection

In this final main step of the workflow the goal is to further optimize the raw ATR output
by identifying and correcting errors preferably without introducing additional errors by
doing so. Since we did not deal with this step at all during the work leading up to this
thesis, we only provide a very brief overview over the general related work and instead
focus on two particularly interesting state-of-the-art approaches including an interactive
one. Apart from that exception we only consider fully automatic methods and ignore
raw transcription interfaces and crowd-sourcing [187] approaches.

2.5.1 Overview

There is a vast amount of related work available for the field of postcorrection of ATR
output. Among others, extensive surveys are presented by Kukich [153] and Dengel
et al. [78]. Kukich describes approaches which can be summarized into three main
categories: non-word error detection (mostly approaches using n-grams), isolated word
error correction (mostly techniques based on rules, dictionaries, or transition and confusion
probabilities), and context-dependent word correction (mostly natural language processing
related techniques). Dengel et al. treat voting techniques, lexical postprocessing as well
as techniques that take the context of a word or even document into consideration.
Naturally, the applicability and effectiveness of an approach highly depends on the
material at hand and the quality of the underlying ATR result. For example, methods
that heavily rely on the surroundings of a correction candidate or even take the documents
context into consideration can be expected to suffer considerably more from a severely
flawed ATR result than an approach based on a combination of dictionaries and confusion
probabilities. Another important factor is the degree of standardization regarding
language and orthography within the document. Of course, a successful postcorrection
of e.g. early German, where the lack of any standard can lead to the same word being
spelled differently even within the same document, represents a particular challenging
task [281].
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As shown in Table 2.3 modern ATR engines can achieve results with very low error rates
even on historical materials. On the contrary, the selected solutions presented in the
upcoming section build from considerably worse ATR results. Unfortunately, to the best
our knowledge, there are no evaluations available dealing with very low CERs (À 2%) on
historical material. However, we think that the described approaches could well work in
combination with considerably better base results.

2.5.2 State-of-the-Art

As mentioned above, an in-detail review of the state-of-the-art in the area of postcorrection
would go beyond the scope of this thesis and consequently we focus on the Post Correction
Tool (PoCoTo) and a language model-based method because they represents especially
interesting approaches for our purposes.

PoCoTo The original PoCoTo introduced by Vobl et al. [312] is a system developed
to support the efficient interactive postcorrection of historical texts by offering several
advanced features: Suspicious tokens of the ATR result are identified by a special language
technology which is aware of historical language variations represented by rewrite rules
like tÑ th (modern spelling vs. historical spelling) and can be corrected by choosing a
word from a list of generated plausible correction candidates. The user does not have
to perform this for every single word but can batch correct entire error series which
for example can consist of identically misrecognized words or words that suffer from
the same ATR error, for example the confusion of “e” and “c”. In the batch correction
view the system shows all suspicious tokens of an error series in a list of concordances,
displaying their neighbourhood in the text and individual correction suggestions which
can be applied to all list items in one shot. At any time it is possible to view the
corresponding words within the scanned image. Evaluations performed in three major
European libraries covering historical German, Spanish, and Dutch showed that even
without the batch correction PoCoTo already helps to efficiently correct texts: In a first
settings the users were only allowed to use the GUI which highlighted non dictionary
words but could not access the batch mode. The full mode was enabled as a second
setting. While the users on average were able to correct 3.8 errors per minute in the first
setting this number almost doubled to 7.5 in the second setting. The real potential of
the software became apparent when a user took advantage of some very productive error
patterns, resulting in about 500 corrections in ten minutes.

The continuous development of the system resulted in several improvements on the
original approach. In [94] Fink et al. added three major extensions: First, the system was
made more adaptive to manual interventions of the user, which are used to simultaneously
improve background lexica and estimate the probability of ATR errors and historical
patterns. This refinement notably increased the precision with respect to identifying
erroneous ATR tokens. Second, the linguistic background resources were extended by
new historical patterns which led to a more successful discrimination of historical spelling
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from real ATR errors. Third, tokens that could not be interpreted by the model were
added to a list of conjectured errors and shown to the user despite no suggested correction
being available, naturally resulting in a better error detection recall but also a better
precision.
A fully automated extension of PoCoTo was proposed by Englmeier et al. [88]: A-PoCoTo
is more geared towards the deployment in large-scale digitization projects, can take the
ATR results of multiple engines into account, and uses sentence context for its decisions.
This fully automatic first step is extended by an interactive postcorrection (resulting in
A-I-PoCoTo) as a second, optional step in which the user can efficiently confirm, reject,
or improve decisions made by the system. For evaluation purposes a postcorrection model
was trained on a small corpus comprising 574 pages from 90 documents. Then, only two
OCRopus 1 models, i.e. the ones produced in [279] (cf. Section 2.4.3.1), were used to
recognize two previously unseen documents from the 16th and 19th century, resulting in
quite high Word Error Rates (WERs) of 34.97% and 22.43%, respectively. Despite the
manageable amount of training data, the challenging material, and the use of just two
comparatively weak ATR models resulting in a low base recognition accuracy, the fully
automated application resulted in improved WERs of 30.19% and 19.37%, respectively.
Unfortunately, as next to no further results regarding these variables have been reported
in the related publication, their influence remains unclear, at least for the moment.
Whereas the original PoCoTo client was a stand-alone Java application it has now been
rewritten as a web-based tool5 which together with the interactive aspect and the focus
on historical texts makes it a very interesting candidate for the integration into the
OCR4all workflow.

Integration of Language Models Another interesting approach based on probabilistic
n-grams was proposed by Wüthrich et al. in [324] who performed experiments on a
manuscript from the 13th century, training not only a HMM recognizer but also a
language model. While for modern languages it is possible and sensible to extract the
required language information and statistics from comprehensive corpora like the Brown
Corpus [98], considerably older language models have to be constructed from significantly
smaller amounts of data. In this example, only 4,478 lines of GT were available and were
distributed over three distinct sets for training (ca. 50%), validation (ca. 20%), and
testing (ca. 30%). All sets combined contained close to 5,000 distinct word classes, of
which almost 4,000 were covered within the training and validation set.
Since we want to focus on the language modelling aspect of the experiment, we refrain
from describing the actual recognition system in detail and instead refer to the original
paper [324] and the therein recommended supplementary material [180]. The used HMM-
based recognition system allowed for an integration of the to-be-described language
models during the decoding step.
In general, the usage of language information is considered very important in the context
of OCR systems since, among other advantages, they allow to resolve errors that were

5https://github.com/cisocrgroup/pocoweb
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inevitable for the actual optical recognition step, for example when dealing with highly
degraded or even missing glyphs. The goal of language models is to imitate a human’s
capability to easily predict a word while reading a text. The described approach relied
on n-gram language models which store statistical information about word sequences
and whose task is to predict the nth word based on the known n´ 1 preceding words. As
mentioned above, language models are usually built from large corpora, often by simply
extracting word sequences and estimating their probability based on their occurrence.
However, this straight forward approach yields a probability of 0 for word sequences that
are not present in a corpus, making it impossible for the language model to recognize
them later on. Since this problem is especially grave when dealing with small text corpora,
like in this example, the authors of [324] incorporated a smoothing method [147] to deal
with this problem.
For the experiments three initial systems were evaluated, using the language model and
vocabulary created from the training set (System A), from the training and validation
set (B), from the training, validation, and test set (C) to provide an upper limit for the
recognition rate. Later on another system (B*) was introduced which shares the model
and vocabulary with B but uses the optimized parameters from A to prevent overfitting.
The result showed that A (word accuracy of 69.94% on the test set when using the most
frequent 3,000 words from the training set as vocabulary) and B (68.59%) perform very
similarly, while C (73.89%) performs best, as expected. Unfortunately, the recognition
accuracy of the raw system without using any language modeling is not provided.
Interestingly, B* performs significantly better (73.00% when using the entire vocabulary
from the training set) than B (70.73%) showing that overfitting represents an actual issue
and can be overcome by the proposed approach of using the vocabulary and language
model from the training and validation set but the parameters optimized just on the
training set.
Since the described procedure has shown that it can deal with a comparatively small
amount of training data, it might be well suited to the current main area of application
of OCR4all, that is iterative book-specific training using and creating medium amounts
of GT either for a single book or a group of books with similar language properties.

2.5.3 Implementation in OCR Workflow Tools

ABBYY Finereader Since ABBYY’s postcorrection functionality is said to be highly
effective and since some actual details about the used method are available [2], we make
an exception to our rule of ignoring ABBYY in this section due to its proprietary nature
and the consequential lack of publicly available information. ABBYY provides language-
specific dictionaries for over 50 languages, including six historical ones (English, French,
German, Italian, Slavonic, and Spanish) [4]. The incorporation of custom dictionaries is
supported as well.
After the ATR step the raw recognition result is combined with the dictionary information
by calculating the full confidence which simply is the sum of the recognition confidence

48



2.6 Tools and Projects Providing an OCR Workflow

and the dictionary bonus where the latter is the product of the word length, the dictionary
weight, and the word weight within the dictionary. No further definitions of the terms are
given but it is likely that a priori probabilities and n-grams based on word frequencies
are used. The final comparison of two (or more) hypotheses then becomes relatively
straight forward:

1. If both hypotheses do not occur in the dictionary, the raw recognition confidences
are compared.

2. If both hypotheses do occur in the dictionary, the raw recognition confidences are
compared

3. If one hypotheses does occur in the dictionary and the other one does not the
calculated, full confidences are compared. If the confidences are very low, additional
not further specified heuristics are applied.

OCRopus 1 While the original OCRopus 1 paper [56] introduced language modelling
as a major component of the workflow the actual version does not incorporate an
explicit language modelling step at all. In earlier versions OCRopus 1 relied on the
open-source OpenFST library [11] which utilizes weighted finite state transducers to
represent statistical language models. Advantages of this approach are that it allows to
separate the recognition from the language modelling step and its modularity allowing
for example to extend a model providing a general approximation of English grammar by
combining it with domain-specific dictionaries [56].

Tesseract 3/4 Before the switch from a glyph-based to a line-based recognition approach,
i.e. before version 4.0, Tesseract relied on a linguistic module that is called into action every
time the preceding word segmentation module looks at a new possible word segmentation.
For the segmentation at hand the best available word candidate is determined for five
categories, among others based on an underlying dictionary which can be adapted and
provided during training: top frequent word, top dictionary word, top lower case word,
and top classifier choice word [274]. The final output is then calculated by multiplying
the probability for each of the five word candidates determined by the recognition step
with a constant factor and choosing the best fitting one.
Since version 4.0 Tesseract does not support an explicit postcorrection step. However,
several efforts to restore some of the lost functionality are currently underway6.

2.6 Tools and Projects Providing an OCR Workflow

Before discussing the various OCR workflow tools in detail, we first give an overview
of their respective capabilities in Table 2.4. For our survey, we refer to the main steps

6No explicit source available. The assertion is based on information collected from the Tesseract GitHub
repository [295] and from personal communications with developers related to the project.
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defined during the introduction and for the most part only state whether a functionality
exists or not. Regarding the ATR step, we mostly incorporated the ratings from Table 2.2
since, as shown above, there are several detailed comparative evaluations available which
the other steps are lacking. As Calamari represents our main ATR engine, we adopted its
ratings. There is a single exception: since OCR4all offers a line-based synoptic correction
view including some user conveniences like a customizable virtual keyboard but currently
lacking a dictionary or confidence based error detector, we adjusted the rating for manual
correction accordingly.
In the following, we discuss the four tools from Table 2.4 but also briefly introduce other
workflow tools as well as projects that deal with the OCR workflow.

Table 2.4: Comparison of existing tools providing an OCR workflow with OCR4all.
In the Historical ATR row more ticks (3, to a maximum of three) denote a higher
ability/applicability of an ATR engine in the respective sub task. A cross (7) shows that
an ATR engine does not support a sub task at all. In all other rows we simply indicate
whether a tool supports (3) a sub task or not (7).

Step Sub Task ABBYY OCRopus 3 Tesseract 4 OCR4all

Preprocessing Deskewing 3 3 3 3

Binarization 3 3 3 3

Segmentation

Image/Text 3 7 3 3

Semantic Distinction 7 7 3 3

Line Segmentation 3 3 3 3

Reading Order 3 3 3 3

Manual Correction 3 7 7 3

Historical ATR
Recognition 33 33 33 333

Training 3 33 33 333

Manual Correction7 333 7 7 33

Postprocessing Dictionaries 3 7 7 7

Language Modelling 3 7 7 7

Open-Source - 7 3 3 3

2.6.1 ABBYY

At least on contemporary material the proprietary ABBYY Finereader OCR engine8

clearly defines the state-of-the-art for preprocessing, layout analysis, ATR, and postcorrec-
tion. A wide variety of documents with considerably differing layouts can be processed by
the fully automated segmentation functionality whose results can be manually corrected,
if necessary.

7Of course it is always possible to manually correct results in some way if they are available in standard
textual output formats (which all tools provide) but to get a tick here at least some kind of correction
GUI within the tool is required.

8https://www.abbyy.com/Finereader
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Especially regarding the character recognition ABBYY’s focus clearly lies on modern
printings since this represents their bulk business. Currently (December 2019), their
products support close to 200 recognition languages offering strong language models and
dictionary assistance for about a quarter of them. Despite the focus on modern prints
the repertoire also includes the recognition of historical European documents and books
printed in six languages.

Apart from its closed-source and proprietary nature ABBYY’s shortcomings in the area
of ATR of (very) early printings lead to the conclusion that it does not fit the bill despite
its comprehensive and powerful preprocessing, segmentation, and recognition capabilities
(on later material) as well as its easy setup and comfortable GUI.

2.6.2 Tesseract

Just like ABBYY the open-source OCR engine Tesseract [295] provides a full OCR
workflow including built-in routines for preprocessing like deskewing and binarization as
well as for layout analysis9.

Tesseract’s ATR training and recognition capability recently (version 4.0+) have improved
considerably due to the addition of a new ATR engine based on LSTM neural networks
which clearly outperformed the character-based approach during project internal exper-
iments. The old glyph-based recognition method is still supported and mixed models
trained for both recognition approaches and a wide variety of languages and scripts are
openly available at the project’s GitHub repository. Similar to ABBYY and contrary to
OCRopus 1/2/3 and Calamari, Tesseract supported the use of dictionaries and language
modelling until version 4, but this functionality has not been adopted to the line-based
recognition approach, yet.

Tesseract has comprehensive strengths in the fully automatic out of the box processing
of modern texts, its full support of right-to-left writing and vertical scripts, as well as
the unmatched (at least by non-commercial tools) repository of freely available mixed
models for a wide variety of (modern) languages and scripts. However, there are some
drawbacks when it comes to historical material, e.g. the usage of Otsu binarization (cf.
Section 2.2.1.1; although only for segmentation, not necessarily for ATR) and especially
the lack of GPU support for training and recognition which considerably hinders the
frequent use of book-specific training in an iterative training approach (cf. Section 5.6.2).

2.6.3 OCRopus

The open-source [206] toolbox OCRopus 1 [47, 56] comprises several Python 2-based
tools for document analysis and recognition. This includes highly performant algorithms
for deskewing and binarization as well as a segmentation module which extracts text lines

9For a comprehensive overview over the Tesseract OCR system cf. a relatively recent tutorial [297] by
Tesseract’s main developer Ray Smith.
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from a page in reading order. While the segmentation can quite comfortably deal with
modern standard layouts, that means text-only pages with clearly separable columns,
it tends to struggle with typical historical layouts with marginalia, swash capitals, etc.
When a page has already been split up into regions however, the line segmentation usually
identifies the single lines very reliably and accurately at least when working with Latin
script. This is not a trivial task since in historical printings the letters of adjacent lines
can severely overlap vertically or even touch each other.

OCRopus 1 was the first OCR engine to implement the pioneering line-based approach for
character recognition introduced by Breuel et al. [46] using bidirectional LSTM networks
which allowed for considerably superior recognition capabilities compared to glyph-based
approaches. Furthermore, this method significantly simplified the process of training new
models since the user just has to provide image/text pairs on line level, which can be
created by using a html-based transcription interface in a browser.

While the general line-based recognition still defines the state-of-the-art, the shallow
network structure consisting of just a single hidden layer has to be considered outdated
by now. The superiority of deeper architectures relying on a combination of CNN and
LSTM layers has been shown well enough on different materials. Nevertheless, OCRopus
1 still proves to be a cornerstone for OCR workflows dealing with historical printings
mainly for two reasons: First, the preprocessing usually achieves excellent results due
to its robust deskewing approach (cf. Section 5.4.3) as well as its adaptive thresholding
technique used for binarization (cf. [6] and Section 5.4.2) which can comfortably deal
with pages even if they are in questionable condition. Second, due to the robust line
segmentation (cf. Section 5.5.2).

After the comparatively disregarded OCRopus 2 [204], the third edition OCRopus 3 [205]
was released in May 2018. It introduced a PyTorch [219]-backend which enabled the
utilization of deep network structures and GPU support, resulting in better recognition
rates and faster training and prediction. In the comparative study mentioned earlier [319],
OCRopus 3 achieved recognition results similar to Tesseract 4 while being significantly
faster but was nevertheless considerably outperformed by Calamari. Concerning the other
steps in the OCR workflow like binarization, deskewing, and segmentation, OCRopus 3
almost exclusively relies on deep learning techniques. To the best of our knowledge, there
no comparisons between the traditional methods of OCRopus 1 and the new approach
by OCRopus 3 available, yet.

2.6.4 Kraken

The open-source [148] OCR software Kraken (see [143] for the initial paper) is originally
based on an OCRopus 1 fork and has been significantly cleaned up as well as extended
since. For example, Kraken seems to focus on the processing of Arabic text, resulting in an
optimized line segmentation procedure which can deal with the specifics of Arabic script
and a right-to-left text recognition support. The underlying OCRopus 1 architecture was
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extended by a PyTorch backend enabling the training of deep networks consisting of a
combination of CNN and LSTM layers.
In a very recent (July 2019) second publication [142] the present state of the software
is briefly introduced. Apart from extensive recognition features like the support of
right-to-left, bidirectional, and vertical writing, combined script detection and multiscript
recognition are addressed. Moreover, a trainable deep learning line extractor is currently
being implemented to allow dealing with the highly variant challenges of different scripts
when it comes to line segmentation. Finally, results achieved on several publicly available
data sets including historical ones are presented, mostly achieving above 98% or even
99% character accuracy. Unfortunately, neither details about the training and evaluation
procedure nor a comparison with other open-source ATR engines are provided.
Despite the application to historical data the focus of the engine seems to lie on more
recent printings. This is indicated by the fact that the results of the line segmentation
are output as JSON files simply containing the line bounding boxes as straight rectangles.
As mentioned above, this can be quite problematic when working on earlier printings,
especially when considering that Kraken also got rid of OCRopus 1’s deskewing func-
tionality. Because of these shortcomings or rather these intended simplifications, Kraken
does not seem ideally suited for an end-to-end application to historical printings.

2.6.5 Transkribus

A very comprehensive platform specialized on Handwritten Text Recognition (HTR) was
developed within the Transkribus project10 [138] which provides a web service to store and
share documents or perform layout analysis, recognition, and training tasks on the server.
The main user interface is available as an open-source Java desktop application which
allows the user to perform manual segmentation tasks or produce GT by transcribing
lines. Unfortunately, large parts of the software are not open-source, preventing the users
from adapting or extending the code and from running the advanced recognition tools on
their own hardware. On the 1st of July 2019 a fee-based cooperative was founded that
“serves as the basis for sustaining and further developing the Transkribus platform and
related services and tools”.11

The technical partner for the development of the layout analysis and training and
recognition software is the CITlab12 team at the University of Rostock whose approach
performed best on the sub task of the detection of baselines at a competition layout
analysis for challenging medieval handwritten documents at ICDAR2017 [269]. Several
related publications are available (see for example [117, 118] for layout analysis and [184]
for HTR) but to the best of our knowledge, the exact state of the software actually
incorporated in Transkribus is not publicly known. Therefore, the best source for results
seems to be a recently (May 2019) published talk [188] which briefly sums up some
10https://transkribus.eu
11https://read.transkribus.eu/coop
12https://www.mathematik.uni-rostock.de/forschung/projekte/CITlab
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evaluations: After training on close to 36,000 words corresponding to 182 pages a CER of
3.1% and a WER of 13.1% was achieved on a data set from the 18th century written by
a single writer in German. For Latin and French medieval material from many different
writers the system scored a CER of 6.4% and a WER of 22.1% after being thoroughly
trained on over half a million words corresponding to close to 1,200 pages of GT. The
application to printed text, more precisely to newspapers from the 18th century, led to
a CER of 0.81% and a WER of 3.02% was achieved after training on 180,000 words
corresponding to 345 pages.

2.6.6 DivaServices

With DivaServices [321], Würsch et al. presented a fully open-source framework that
allows to share and access document image analysis methods as a RESTful web service
[241]. The idea is to allow the research community to simply provide access to newly
developed methods via an unified API, independently from the used programming
language, and therefore freeing the interested users from the burden of setting up and run
a local instance after downloading the source code. DivaServices supports various tools of
different complexity, starting from smaller modules like binarization or line segmentation
to more comprehensive tools like Divannotation [256] which again can call other services
themselves.
A recent publication [322] gives the latest updates concerning the execution environment
(now using Docker just like OCR4all), the asynchronous execution of services, the output
definition, and a planned workflow system that should allow the users to create their
own workflows by specifying which modules, tools, and processes should be called in
which order and with which parameters. Furthermore, there is a focus on building an
ecosystem of tools and services providing further functionality to improve the usability
of the system without being part of the core framework. This includes tools and services
supporting experimentation, data and method management, programming libraries, and
optimization.
While DivaServices is a promising approach it cannot be considered a real workflow tool
and is not meant to be one, yet. However, the available online collection of the document
image analysis tool DivaServices Spotlight13 represents a very helpful option to perform
exemplary tests of existing methods on one’s projects without the need for complicated
setup operations. Unfortunately, to the best of our knowledge, not all showcased methods
are available as open-source.

2.6.7 OCR-D

The OCR-D project14 [192] is funded by the Deutsche Forschungsgemeinschaft - German
Research Foundation (DFG), initially for a period from 2015 to 2020. Its main goal
13http://wuersch.pillo-srv.ch
14http://ocr-d.de/eng
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is to provide an OCR workflow for historical printings starting from the 16th century.
The workflow defines a number of modules which are executed sequentially and whose
development by different German research facilities is also funded by the DFG since
2018. Since the focus lies on mass digitization the aim is to keep the amount of manual
user interaction to a minimum, ideally reducing it to zero resulting in a fully automatic
workflow. Therefore, book-specific training or any kind of manual postcorrection, be it
on layout or textual level, are currently neither envisaged nor desired. However, just as
with Kraken, the high degree of modularity makes OCR-D an interesting project whose
further developments should be closely followed. This is especially true since OCR-D
also relies on PAGE and therefore has publicly released several wrappers for tools like
Tesseract 4 to fully integrate them into their workflow. Since the project and therefore the
developments of the submodules are still ongoing no evaluations of the overall workflow
have been published, yet (December 2019).

Additionally to the efforts described above, OCR-D also aims to provide a GT reference
corpus for German texts printed between 1500 and 1900. A description of the necessary
formats and guidelines is given by Boenig et al. [38].

2.6.8 Nashi

The open-source [191] transcription environment Nashi [62] was created as a platform for
the digitisation of the Arabic and Latin Corpus (ALC)15 at the University of Würzburg.
Its main focus was to provide a group consisting of researchers and students with the
opportunity to collaboratively segment, transcribe, and comment on scans of historical
and modern printed editions in Latin, Arabic, and Greek language. Since the main goal is
the creation of accurate citable digital editions, the web user interface for postcorrection
provides the users with means to check and, if necessary, correct the ATR output for
every single text line while also allowing to alter the coordinates of the line polygons.
The transcription workflow is based on PAGE and can be considerably supported by
ATR processes running in the background. Apart from Nashi the current ALC setup
at the University of Würzburg relies on LAREX (cf. Section 5.5.1.1) for segmentation,
Kraken for line segmentation, and has recently switched from Kraken to Calamari for
ATR tasks.

Temporarily, Nashi served as the manual postcorrection module within the OCR4all
workflow but meanwhile was replaced by an in-house development based on LAREX which
we will discuss later on. However, some code snippets, for example for the PAGE-based
line segmentation, have initially been taken over to OCR4all and have been considerably
extended since.

15http://arabic-latin-corpus.philosophie.uni-wuerzburg.de
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2.7 Data Standards and Formats

The storage of obtained results, both intermediate and final ones as well as physical
and logical ones, represents an important and challenging task in the area of document
analysis and specifically for OCR workflows [33]. In this section we introduce three widely
used open formats and standards and briefly discuss their advantages and disadvantages
with respect to our intended application scenario. We will focus on solutions specifically
geared towards OCR workflows and ignore formats usable for deferred tasks, like for
example TEI [292].

2.7.1 PAGE

The Page Analysis and Ground-Truth Elements (PAGE) format framework [216, 223]
was developed at the PRImA Research Lab [224]. It is an open XML format16 that was
and still is applied in numerous projects and institutions dealing with layout and text
mark-up in the area of OCR workflows [192], including OCR4all.
PAGE requires one XML file per page, is very expressive, and can store a wide variety
of information, most importantly concerning layout structure, ATR, references to and
additional information about alternative images (for example deskewed binary images),
and metadata, both bibliographical (author, title, ...) but also technical (processing steps,
used software, ...). In this work we mainly focus on the layout and ATR functionality
which consequently is described in greater detail in the following:

• A page can comprise an arbitrary number of regions whose reading order can be
specified.

• Among others a region can store its enclosing polygon and its type.
• There are main types like image, text, or music. Text regions can be further

classified into sub types like running text, heading, page number, marginalia, etc.
• A region can contain an arbitrary number of text lines whose reading order within

a region can be specified.
• Each line stores its enclosing polygon as well as an arbitrary number of text elements

which may contain GT, various ATR outputs, normalized texts, etc.
• Lines consist of words and words are made up of symbols.
• For each word and symbol the same attributes as for lines can be stored. In addition

confidence information about the ATR output can be provided.

Due to its expressiveness and the ability to store and provide high quality GT for every
step of the workflow, PAGE is regularly deployed in a variety of competitions dealing
with layout analysis in general, including region and line segmentation, but also with
textual recognition tasks.
16In the following we will rely on the term PageXML when refering to the actual files.
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2.7.2 ALTO

While PAGE is widely used in the academic realm, institutions like libraries and archives
mostly rely on ALTO [12, 14] which has to be considered the standard for data repre-
sentation in document image analysis and is also recommended by the DFG [81] as the
de-facto standard for digitization projects in Germany [82].
Developed during the the Metadata Engine (METAe) project [290], ALTO is usually
used in combination with the Metadata Encoding and Transmission Standard (METS)
to describe the digital object as a whole and also provide references within the ALTO
file, for example to determine the reading order.
In general, again with focus on the layout and ATR functionality, an ALTO file is
structured as follows (for more information we refer to the documentation [13]):

• An ALTO file consists of a list of top-level ALTO elements, like styles and layout,
as well as their related attributes.

• Properties of layout elements are defined by style elements like text style (font
properties) and paragraph style (formatting properties of text blocks).

• Pages are layout elements and divided in different areas, including the print space
and various margins which may contain text or other elements not belonging to
the main text body.

• Each area on the page may contain an arbitrary number of further elements,
most importantly text and images blocks which are described by an ID and their
respective bounding boxes and polygons.

• ALTO does not encode the reading order of elements on the page explicitly like
PAGE does but instead relies on an implicit representation by the order within the
XML document.

• Text blocks can refer to style elements and comprise text lines who can store their
content and their enclosing polygon.

• Lines contain words and explicitly encoded whitespaces. Words store their position,
content, confidence, and their contained symbols.

• Symbols can store the same information as words and in addition can provide
alternative variants for the symbol and respective confidence values.

Overall, ALTO’s main focus lies on storing the final results of digitization and document
analysis pipelines, instead of describing and evaluating individual steps of the workflow
in-detail.

2.7.3 hOCR

Another format geared towards representing both intermediate and final OCR result
is the hOCR microformat. hOCR was initially created to be used within OCRopus
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which specifically aimed to serve as an OCR system for all major languages and scripts.
Therefore, OCRopus did not build from an a OCR-specific format but started with a
format that already provided sufficient markup option. As suggested by the name, the
format of choice was HTML which was then extended by several tags in order to represent
some OCR-specific information. The resulting format uses a two-level typesetting model
where the first one focuses on logical markup, while the second one represents the page
layout using floats and boxes.

Since Tesseract version 3.0 introduced an option to output hOCR it can be considered a
widely used format in the open-source OCR community, mainly due to its simplicity and
flexibility. However, for our purposes PAGE still represents the go-to format, due to its
expressiveness.

2.7.4 Converters

Naturally, it is possible to convert the formats introduced above, but also related ones
like TEI [292] or ABBYY XML [5] into one another. However, due to the sometimes
considerably different approaches a lossless conversion is not always feasible. Still, a wide
variety of converters is freely available online (see [199] for a very comprehensive list) but
many appear to be dormant and only support outdated versions. Notable exceptions are
OCR Fileformat [202] which mainly focuses on the conversion from various formats into
hOCR, the PRImA PAGE Converter [215] which supports a variety of transformations
into PAGE, and the quite recently developed and active PAGE 2 TEI [214].
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In this chapter the data and resources used throughout the upcoming experiments are
introduced. Table 3.1 gives an overview over the data used in course of this thesis.

Table 3.1: Summary of the data used during this thesis. Apart from the names of the
(sub) corpora and the respective number of comprised works and lines, the use cases of
the data are given.
(Sub) Corpus (Partly) Used For

Complete Books #Works #Lines

Early Printed Books Evaluation: OCR4all workflow
• Narrenschiff 5 12k
• Camerarius 17 17k
• Miscellaneous 3 2.6k

19th Fraktur Novels 10 2.6k Evaluation: OCR4all workflow

Sander’s Dictionary 1 1.4k Training/Evaluation: case study typography
recognition

Line-based GT only # Works # Lines

GT4HistOCR Training/Evaluation: voting, pretraining, AL
• ENHG 9 25k Training: mixed models for 19th century Fraktur
• Kallimachos 9 21k
• EML 12 10k
• RIDGES 20 13k
• DTA19 39 244k

Further 19th Century Fraktur Training/Evaluation:
• Archiscribe 112 4k mixed models for 19th century Fraktur
• CIS OCR Testset 2 0.5k
• Newspaper Daheim 4 0.6k

Modern Antiqua: UW3 ? 90k Training: mixed models for 19th century Fraktur

19th Fraktur Novels 13 3.5k Evaluation: mixed models for 19th century Frak-
tur

The data can be divided into two groups: First, there are full books which we mostly
utilize to evaluate the complete OCR workflow comprised in OCR4all. Apart from
various works from different centuries which were OCRed using standard ATR this
category also contains a historical lexicon that we thoroughly indexed by making use of
its comprised semantic information encoded using typographical attributes. Second, we
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also require line-based GT, which is exclusively used to evaluate the ATR steps, including
the proposed methodical extension to the training and recognition tasks (cf. Chapters 4
and 7).

3.1 Complete Books for the Evaluation of the Entire Workflow

Our corpus of complete books can mainly be divided into (very) early printings from the
15th and 16th as well as German Fraktur novels from the 19th century. Additionally, we
worked with a German dictionary from the 19th century.

3.1.1 Early Printed Books

Due to the focus of OCR4all on early printed books a large portion of our evaluation
corpus consists of books printed before 1600, which are listed in Table 3.2 and can be
further subdivided into three groups.

3.1.1.1 The Ship of Fools

The first group consists of editions of the Narrenschiff (Ship of Fools, see Figure 3.1 for
some example pages), the second most popular book after the bible in the early modern
period, and was digitized as part of an effort to support the Narragonien digital project
[60] at the University of Würzburg. Despite their similar content these books are very
different from an OCR point of view since their layout varies considerably and they were
printed in different print shops using different typefaces and languages (Latin, German,
French, and Dutch).

Figure 3.1: Example pages from different Narrenschiff editions.
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Table 3.2: Books of the early modern age used for our experiments including their Full
Title and the Languages used within them. The Identifier encodes the group (Camerarius,
Narrenschiff, Practical course) and the year of publication.
Identifier Full Title Languages

N1494 Das Narrenschiff German
N1498 La nef des folz du monde French
N1499 La grant nef des folz du monde French
N1506 Nauis stultifera Latin
N1549 Der Narren Spiegel German

C1532a Astrologica Latin, Greek
C1532b Ioachimi Camerarii Norica sive de ostentis libri duo Latin, Greek
C1533 De theriacis et mithrateis commentariolus Latin, Greek
C1535 Erratum Latin, Greek
C1541 Elementa rhetoricae Latin, Greek
C1552 Historia synodi nicenae Latin, Greek
C1554 Versus senarii de analogiis Latin, Greek

C1557 Libellus alter, epistolas complectens Eobani et aliorum
quorundam doctissimorum virorum Latin, Greek

C1558 De eorum qui cometae appellantur Latin, Greek
C1561 Tertius libellus epistolarum H. Eobani Hessi Latin, Greek
C1563 Dialogus de vita decente aetatem puerilem Latin, Greek
C1566a De Philippi Melanchthonis ortu, totius vitae curriculo et morte Latin, Greek

C1566b Historiae Iesu Christi Filii Dei Nati In Terra Matre
Sanctiss. sempervirgine Maria summatim relata expositio Latin, Greek

C1568 Libellus novus epistolas et alia quaedam monumenta doctorum Latin, Greek
C1583 Epistolarum familiarum libri VI Latin, Greek

C1594 Decuriae XXI symmikton problematon
seu variarum et diversarum quaestionum de natura, moribus, sermone Latin, Greek

C1598 De rebus turcicis commentarii Latin, Greek

P1474 Das abenteürlich buch beweyset vns von einer frawen genandt Melusina German
P1484 Histori von herren Tristrant German
P1509 Fortunatus Eyne hystorye German
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3.1.1.2 Camerarius

In the second group we deal with printings related to the influential early modern universal
scholar Joachim Camerarius the Elder whose numerous works have been identified and
collected during the Opera Camerarii project [27] at the University of Würzburg (Figure
3.2 shows some example images).

Figure 3.2: Top: Example images from different Camerarius works. Bottom: Lines
showing the frequent change between Antiqua upright and italics (first line) and embedded
parts of Greek (lines 2 and 3) as well as the corresponding transcription (green).

These works, which are now intended to be OCRed, are mostly written in Latin but
frequently contain embedded parts of Greek, mostly scientific technical terms regarding
the treated topics like astrology, medicine, and many more. A special feature of these
books is that they often utilize two main fonts, i.e. Antiqua upright and italics, and
also contain Greek sections directly within the Latin text. We focus on the ATR of
the Latin parts and just ensure to mark Greek text for later processing by encoding
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each letter using the character “@” (also shown in Figure 3.2). While this might seem
counter-intuitive at first, ATR engines have been shown to be able to learn abstract
representations of various scripts [304] or even different but very similar fonts (cf. our
case study on typography recognition in Section 7.2).

3.1.1.3 Miscellaneous

Finally, the third group consists of various early modern printings that have been
processed by students during a practical course on OCR4all for humanities scholars at
the University of Würzburg (some examples can be seen in Figure 3.3). Camerarius
and Narrenschiff books that have been processed during the practical courses are listed
among the first two groups.

Figure 3.3: Example pages from various works processed by students during a practical
course.

3.1.2 Corpus of 19th Century Fraktur Novels

The second part of our evaluation corpus consists of 19th century German novels (with
one exception from the late 18th century) which are currently collected and OCRed by
the Chair for Literary Computing and German Literary History of the University of
Würzburg (see Table 3.3).

Most of the books were scanned in 300 dpi and were provided by the Bayerische Staats-
bibliothek1. The overall quality of the material varies considerably as shown in Figure
3.4. This task requires a completely different OCR approach for various reasons: The

1https://www.bsb-muenchen.de
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resulting corpus is intended to be used for experiments with quantitative methods which
are usually quite robust with respect to OCR/ATR errors. Furthermore, from an OCR
point of view, the material is considerably less complex compared to the early printed
books we discussed before, due to its rather trivial layout, more standardized typography,
and its superior state of preservation. The corpus is very extensive, currently comprising
around 1,800 novels, and the project’s goal is to OCR all novels of this period (probably
10,000 to 15,000). These aspects make it neither necessary nor feasible to invest an
extensive amount of manual work, which is why a highly automated workflow is intended
instead.

Figure 3.4: Example images from the German novel corpus. From left to right: F1870,
F1781, F1818 (page in decent condition), F1818 (page in bad condition), F1803. Adopted
from [229].

Table 3.3: German Fraktur novels used for our experiments given by their Authors and
their Titles. The Identifier encodes the group (Fraktur) and the year of publication.

Identifier Author Title
F1781 Friedel, Johann Eleonore
F1803 von La Roche, Sophie Liebe-Hütten
F1810 Fouqué, Friedrich de la Motte Der Held des Nordens
F1818 Lafontaine, August Heinrich Julius Reinhold
F1826 Pichler, Caroline Frauenwürde
F1848 Hahn-Hahn, Ida Levin
F1851 Müller, Otto Georg Volker
F1865 Hiltl, Georg Gefahrvolle Wege
F1869 von Hillern, Wilhelmine Der Arzt der Seele
F1870 Hiltl, Georg Die Bank des Verderbens
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3.1.3 Historical Lexicon: Sanders’ Wörterbuch der Deutschen Sprache

The German dictionary of Daniel Sanders is one of the most important and most
comprehensive historical German dictionaries and can still be considered an extraordinary
linguistic “œuvre” of 19th century lexicography. Consisting of three part-volumes written
between 1859 and 1865 it is a dictionary “completely rounded”. In comparison to our
other evaluation data it stands out due to its particularly complex content consisting
of lemmas as well as their definitions and references which are all encoded by the use
of different typography classes (see Figure 3.5). The high quality scans at hand were
provided by the University Library of Würzburg, whereas the text was gathered in
cooperation with the Berlin-Brandenburg Academy of Sciences and Humanities2.

Figure 3.5: Example page from Sanders’ dictionary (left) and an article extract demon-
strating the complex use of typography to encode different semantic entities (color
encoded on the right).

2http://www.bbaw.de
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3.2 Line-based Ground Truth for the Evaluation of Individual
ATR Tasks3

Line-based GT is a valuable resource needed to train and evaluate modern ATR engines.
Since line-based GT is cumbersome to create we made use of freely available resources
as much as possible. While some data has already been present in the required format,
i.e. a line image together with the corresponding transcription, most resources had to be
transformed first. By doing this we constructed the very comprehensive GT4HistOCR
(Ground Truth for Historical OCR) corpus which we describe in the following. Apart
from the data added to the corpus we collected further Fraktur data from the 19th century
which we are going to introduce afterwards.

3.2.1 GT4HistOCR Corpus

In this section we describe and provide training material of historical GT which has been
collected and produced by us over the course of several years and give information on its
provenance. We specifically focus on early printings for which diplomatically transcribed
text accurately matched against printed text lines is very scarce. As a result, we offer
our combined GT resources to the scientific community for further training, research,
and experimentation. The GT4HistOCR corpus comprises 313,173 lines of GT covering
the incunabula period (German printings from the 15th century), Early Modern Latin
printings (15th to 17th century), and German Fraktur printings (15th to 19th century).
The corpus has been made available under a CC-BY 4.0 license in Zenodo [119]. Apart
from the compressed corpora the repository contains various mixed models4 and a Perl
script, which can be adapted to harmonize transcriptions using different guidelines in
order to have a common pool of training data for mixed models.

In the following we introduce the five subcorpora of our GT4HistOCR corpus (see
Table 3.4). As the transcription guidelines differ for each subcorpus in the amount
of typographical detail that has been transcribed, we chose not to construct corpora
according to language or period by mixing material from these subcorpora. However, the
directory structure of our corpora encodes the metadata down to the publishing year
and book containing the individual line images and transcriptions, allowing any users
to construct new corpora according to their needs after an appropriate harmonization
of the transcription. The transcription of these corpora was done manually (partly by

3This section contains a previously published article [282]: U. Springmann, C. Reul, S. Dipper, and
J. Baiter, “Ground Truth for training OCR engines on historical documents in German Fraktur
and Early Modern Latin,” JLCL: Special Issue on Automatic Text and Layout Recognition, 2019.
[Online]. Available: https://jlcl.org/content/2-allissues/1-heft1-2018/jlcl_2018-1_5.pdf.
The article was published under the Creative Commons Attribution-ShareAlike 4.0 International
(CC BY-SA 4.0) License (https://creativecommons.org/licenses/by-sa/4.0), minor changes have
been made. Permission to re-use content including text, figures, tables, and their respective captions
has been given by the first author of the publication Dr. Uwe Springmann.

4All our models have been trained using OCRopus 1.
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students) and later checked and corrected by trained philologists within projects in which
we participated. The text line images corresponding to the transcribed lines have been
prepared and matched by us using OCRopus 1 segmentations routines or, in the case
of 19th Century DTA Fraktur Corpus (DTA19), the resulting segmentation of ABBYY
Finereader.

Table 3.4: Overview of the subcorpora of GT4HistOCR. For each subcorpus we indicate
the number of books (# Books), the printing Period, the number of lines (# Lines) and
the Language.

Subcorpus # Books Period # Lines Language
Reference Corpus ENHG 9 1476-1499 24,766 German
Kallimachos Corpus 9 1487-1509 20,929 German, Latin
EML 12 1471-1686 10,288 Latin
RIDGES Fraktur 20 1487-18705 13,248 German
DTA19 39 1797-1898 243,942 German

Sum: 89 313,173

3.2.1.1 Reference Corpus Early New High German

The Reference Corpus Early New High German (ENHG) [89] is being created in an
ongoing project which is part of a larger initiative with the goal of creating a diachronic
reference corpus of German, starting with the earliest existing documents from Old
High German and Old Saxon (750–1050), and including documents from Middle High
German (1050–1350) and Middle Low German and Low Rhenish (1200-1650) up to
Early New High German (1350–1650). The Reference Corpus Early New High German
contains texts published between 1350 and 1650. From 1450 on prints are included in the
corpus besides manuscripts. The last part, 1550–1650, consists of prints only. The texts
have been selected in a way as to represent a broad and balanced selection of available
language data. The corpus contains texts from different time periods, language areas,
and document genres (e.g. administrative texts, religious texts, chronicles). From the
Reference Corpus ENHG we received diplomatically transcribed GT for the incunabula
printings in Table 3.5. Specimen of line images which give an impression of the fonts are
shown in Figure 3.6. Full bibliographic details for these documents can be retrieved from
the Gesamtkatalog der Wiegendrucke [106] via the GW number.

In principle we would like to have as large of a corpus as possible and reuse all transcrip-
tions from 1450 up to 1650. However, the process of generating accurately segmented
printed lines from scanned book pages and matching them to their corresponding tran-
scriptions is still laborious. Since GT for periods later than 1500 is provided in other
subcorpora, we just used the incunabula printings of the reference corpus.

550% of the books have been printed before 1650.

67



3 Data and Resources

Table 3.5: The Early New High German incunabulum corpus. Given are the printing
Year, the GW number, the ((Short) Title), and the number of GT lines (# Lines) for
training and evaluation.

Year GW (Short) Title # Lines
1476 M51549 Historij 3,160
1478 04307 Biblia 2,745
1485 M09766 Gart der Gesuntheit 2,520
1486 M45593 Eunuchus 3,403
1486 5077 Jherusalem 2,232
1490 10289 Pfarrer vom Kalenberg 2,503
1490 5793 Leben und Sitten 3,099
1497 5593 Cirurgia 3,476
1499 6688 Cronica Coellen 1,628

Sum: 24,766

Figure 3.6: Example lines from the Early New High German incunabulum corpus in
chronological order (see Table 3.5). Adopted from [282].

3.2.1.2 Kallimachos Corpus

The Kallimachos corpus (see Table 3.6) comprises data from the identically named BMBF
funded project [139, 252] including the 1488 printing of Der Heiligen Leben, which was
gathered during a case study of highly automated layout analysis [230], and eight books
from the Narragonien digital subproject [60] dealing with the Narrenschiff (ship of fools)
by Sebastian Brant. There are four Latin printings (Stultifera nauis) translated by Locher
and Badius, two Early New High German printings, one Early Low German work (Der
narrenscip), and one Latin/English document (Barclay), which we just provide the Latin
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part of. Whereas the German documents use a broken script, some Latin works are
printed with Antiqua types similar to our modern types (see Figure 3.7).

Table 3.6: The Kallimachos corpus.
Year GW (Short) Title # Lines
1488 M11407 Der Heiligen Leben (Winterteil) 4,178
1495 5049 Das neu narrenschiff 2,114
1497 5051 Das nuw schiff von narragonia 1,197
1497 5056 Stultifera nauis 1,424
1497 5061 Stultifera Nauis 1,092
1499 5064 Stultifera nauis 721
1500 5066 Der narrenscip 2,500
1505 Nauis stultifera (Badius) 4,713
1509 The Shyp of Folys (Barclay) 2,990

Sum: 20,929

Figure 3.7: Example lines from the Kallimachos corpus in chronological order (see
Table 3.6). Both Antiqua fonts (Latin) and broken fonts (German) are present. Adopted
from [282].

3.2.1.3 Early Modern Latin Corpus

In [279] Springmann et al. introduced a Latin data set of manual transcriptions from
books produced during projects on ATR postcorrection funded by Common Language
Resources and Technology Infrastructure (CLARIN) and DFG [277]. The Early Modern
Latin (EML) corpus is essentially the same, but leaves out the 1497 Stultifera Nauis
(belonging to the Kallimachos corpus) and adds the 1543 Psalterium of Folengo (see
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Table 3.7). With exception of the Speculum Naturale of Beauvais the books are mostly
printed in Antiqua types (see Figure 3.8).

Table 3.7: The Early Modern Latin corpus.
Year (Short) Title Author # Lines
1471 Orthographia Tortellius 417
1476 Speculum Naturale Beauvais 2,012
1483 Decades Biondo 915
1522 De Septem Secundadeis Trithemius 201
1543 De Bello Alexandrino Caesar 830
1543 Psalterium Folengo 314
1553 Carmina Pigna 297
1557 Methodus Clenardus 350
1564 Thucydides Valla 1,948
1591 Progymnasmata vol. I Pontanus 710
1668 Leviathan Hobbes 1,078
1686 Lexicon Atriale Comenius 1,216

Sum: 10,288

Figure 3.8: Example lines from the Early Modern Latin corpus in chronological order
(see Table 3.7). Adopted from [282].
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3.2.1.4 RIDGES Corpus

The use of broken scripts dates back to the 12th century and was once customary all over
Europe. It is therefore of considerable interest to be able to recognize this script in order
to OCR the large amount of works printed in a variety of Fraktur. This data set collects
Fraktur material from 20 documents of the RIDGES (Register in Diachronic German
Science) corpus of herbals [208], which has been proofread for diplomatic accuracy and
matched against the best available scanned line images (see Figure 3.9). ATR experiments
on this corpus were reported in [280]. Note that the author of the 1543 printing was
erroneously attributed to Hieronymous Bock and has been corrected to Leonhart Fuchs
in Table 3.8.

Table 3.8: The RIDGES Fraktur corpus.
Year (Short) Title Author # Lines
1487 Garten der Gesunthait Cuba 747
1532 Artzney Buchlein der Kreutter Tallat 504
1532 Contrafayt Kreüterbuch Brunfels 366
1543 New Kreüterbuch Fuchs 483
1557 Wie sich meniglich Bodenstein 995
1588 Paradeißgärtlein Rosbach 795
1603 Alchymistische Practic Libavius 473
1609 Hortulus Sanitatis Durante 696
1609 Kräutterbuch Carrichter 677
1639 Pflantz-Gart Rhagor 1,091
1652 Wund-Artzney Fabricius 601
1673 Thesaurus Sanitatis Nasser 733
1675 Curioser Botanicus Anonymous 567
1687 Der Schweitzerische Botanicus Roll 520
1722 Flora Saturnizans Henckel 562
1735 Mysterium Sigillorvm Hiebner 470
1764 Einleitung zu der Kräuterkenntniß Oeder 916
1774 Unterricht Eisen 562
1828 Die Eigenschaften aller Heilpflanzen Anonymous 658
1870 Deutsche Pflanzennamen Grassmann 868

Sum: 13,248

3.2.1.5 DTA19 Corpus

The use of broken scripts in the 19th century and later was mostly restricted to Germany
and some neighboring countries. What distinguishes the 19th century is the large amount
of available scans and the variety of the printed material (newspapers, long-running
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Figure 3.9: Example lines from the RIDGES Fraktur corpus in chronological order (see
Table 3.8). Adopted from [282].

journals such as Die Grenzboten [113] or Daheim, encyclopedias [328], dictionaries, novels,
and reprints of classical works from previous centuries) to philologists and historians.

Because of this high interest, some prominent works have been converted into electronic
form by manual transcription (keyboarding, double-entry transcription). Given the sheer
amount of available material, faster and less costly alternatives are sought after and both
commercial (ABBYY Finereader with a special Fraktur licence [3]) and open-source ATR
engines (Tesseract and OCRopus 1) are capable of recognizing Fraktur printings. What
motivated us to look at 19th century Fraktur separately were the questions whether we
could beat the general recognition models of available ATR engines, which we address in
Section 7.1.

It is tempting to use synthetic training materials, as a variety of Fraktur computer fonts
is readily available on the internet. However, closer inspection shows that many are
either lacking some essential characteristics of real Fraktur types (such as ſ, or ch and tz
ligatures) or have obviously been constructed for calligraphic use and do not reflect the
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most frequently used historical types. For the best ATR results we again have to rely on
transcriptions of real data.

In the following, we describe a collection of transcriptions from the Deutsches Textarchiv
(DTA) [79, 107] for which line segmentations from ABBYY Finereader are available. The
corresponding scans of these transcriptions are held by Staatsbibliothek zu Berlin6. One
of the authors of [282] (Johannes Baiter) produced line images by cutting page scans
into lines using the line coordinates contained in the ABBYY XML output. In this way
a corpus of 63 books, some belonging to multi-volume works, could be assembled fully
automatically. From these we selected just one volume of each multi-volume edition to
provide a balanced multi-font corpus and did some quality checks on correct segmentations
by hand.

The resulting DTA19 corpus of 39 works is detailed in Table 3.9 and example line images
are shown in Figure 3.10. To our knowledge a similar extensive collection of GT for
German 19th century Fraktur does not exist.

Figure 3.10: A selection of lines from the DTA19 corpus. From top to bottom: 1815,
1817, 1819, 1826, 1835, 1853, 1861, 1879, 1891, 1897. Adopted from [282].

3.2.2 Further 19th Century Fraktur Data

In the following we briefly describe some smaller corpora which are not part of the DTA19
corpus but also comprise Fraktur data from the 19th century.

3.2.2.1 Archiscribe Corpus

A prime obstacle for generating GT for ATR training purposes consists in the segmentation
of textual elements on a printed page into text lines. To circumvent this problem one of
the authors of [282] (Johannes Baiter) proposed a crowd sourcing approach by making

6http://staatsbibliothek-berlin.de
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Table 3.9: The DTA19 Fraktur corpus.
Year (Short) Title Author # Lines

1797 Herzensergießungen Wackenroder 5,150
1802 Ofterdingen Novalis 6,198
1804 Flegeljahre vol. 1 Paul 5,332
1815 Elixiere vol. 1 Hoffmann 8,008
1816 Buchhandel Perthes 861
1817 Nachtstücke vol. 1 Hoffmann 6,578
1819 Revolution Görres 6,178
1821 Waldhornist Müller 2,343
1826 Taugenichts Eichendorff 7,662
1827 Liebe Clauren 6,724
1827 Reisebilder vol. 2 Heine 5,980
1827 Lieder Heine 5,873
1828 Gedichte Platen 5,103
1828 Literatur vol. 1 Menzel 8,124
1832 Gedichte Lenau 4,446
1832 Paris vol. 1 Börne 5,329
1834 Feldzüge Wienbarg 7,805
1835 Wally Gutzkow 5,728
1852 Ruhe vol. 1 Alexis 9,314
1852 Gedichte Storm 2038
1853 Ästhetik Rosenkranz 14,062
1854 Heinrich vol. 1 Keller 9,343
1854 Christus Candidus 2,095
1861 Problematische Naturen vol. 2 Spielhagen 6,445
1863 Menschengeschlecht Schleiden 1,788
1871 Bühnenleben Bauer 12,008
1877 Novellen Saar 6,354
1879 Auch Einer vol. 2 Vischer 10,492
1880 Hochbau Raschdorff 661
1880 Heidi Spyri 6,210
1882 Sinngedicht Keller 11,209
1882 Gedichte Meyer 6,262
1886 Katz Eschstruth 6,601
1887 Künstlerische Tätigkeit Fiedler 4,983
1888 Irrungen Fontane 7,079
1891 Bittersüß Frapan 7,008
1897 Gewerkschaftsbewegung Poersch 1,476
1898 Fenitschka Andreas-Salomé 4,753
1898 Erinnerungen vol. 2 Bismarck 10,339

Sum: 243,942
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use of several open APIs of the Internet Archive [132, 133] to directly retrieve line images
from historical books that can be used as the image source for creating GT. The Internet
Archive hosts a collection of over 15 million texts sourced mainly from Google Books and
a growing number of volumes scanned by volunteers and cooperating institutions. For
every scanned book an automated process creates OCR results with ABBYY FineReader
which can then be downloaded by users. While the actual ATR output of this engine
for text with Fraktur typefaces is of very low quality (presumably the default Antiqua
model is used), the resulting line segmentation is usually fairly accurate.

To create GT from the Internet Archive corpus, a simple web application, Archiscribe
[31], is provided. First-time users of the application have to read through a simplified
version of the transcription guidelines of the DTA. Then they are offered the option
to pick a certain year between 1800 and 1900 and set a number of lines they want to
transcribe. In order to retrieve these lines from a suitable book, Archiscribe uses the
publicly available search API of the Internet Archive to retrieve a list of 19th century
German language texts and randomly picks a volume that has not yet been transcribed.
To determine whether a given text is actually set in Fraktur a heuristic is used: The ATR
text is downloaded and searched for the token ift, a common misinterpretation by ATR
engines trained on Antiqua fonts of the actual word iſt (is), which has a high frequency
in any German text (of course, real books also contain quotations and other material
in Antiqua). If this heuristic results in a false positive (there are some books printed
in Antiqua employing a ſ), one can just start over. Once a suitable book is found, the
desired number of line regions7 are picked at random from the OCR result.

To serve the images to the user Archiscribe uses the publicly available International Image
Interoperability Framework (IIIF) [276] Image API endpoint of the Internet Archive8.
Since the API allows the cropping of regions out of a given page image (hosted by the
archive.org server), the application can directly use it for rendering the line images in
the user’s browser, without the necessity of processing the image on the Archiscribe
server. Once a suitable volume has been picked and the lines to be transcribed have
been determined, the user is presented with a minimal transcription interface consisting
of the line to be transcribed, a text box to enter the transcription and an on-screen
keyboard with a number of commonly occurring special characters not available on
modern keyboards. To offer more context in difficult cases the user may opt to display the
lines above and below the line to be transcribed. When all lines have been transcribed,
they are submitted to the Archiscribe server, where they are stored alongside with their
corresponding line images in a Git repository that is published to the corpus repository
on GitHub on every change.

Currently, the application is restricted to 19th century German language books from the
Internet Archive, but it is planned to add support for the transcription of books sourced
from any repository that offers an IIIF API.

7user-defined, by default 50
8https://iiif.archivelab.org/iiif/documentation
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The Archiscribe corpus [30] of GT generated by crowdsourcing with the Archiscribe tool
currently (August 2019) consists of 4,255 lines from 112 works published across 73 years,
evenly distributed across the whole 19th century. All of the data is available under a
CC-BY-NC-SA license.

3.2.2.2 JZE Corpus

As another source for Fraktur data from the 19th century we used the data made available
by Jesper Zedlitz at GitHub [329]. It provides eight books comprising around 1,600 lines,
an already trained OCRopus 1 Fraktur model, and a list of words which start with rarely
occurring capital letters (ÄÖÜQY), which we use for the creation of synthetic GT later
on.

3.2.2.3 Material from the CIS OCR Testset

The Center for Information and Language Processing (CIS) OCR test set [73] contains
data of Latin, Greek, and historical German works. Apart from the high quality scans
which have been binarized and despeckled using ScanTailor [20], it provides example
outputs of several ATR engines as well as transcriptions on a page to page basis that
had to be matched to obtain GT on line-level. For our purposes, we used the novel “Die
Wahlverwandtschaften” and the journal “Die Grenzboten” that represent the German
Fraktur part of the data set.

3.2.2.4 Newspaper Daheim

Daheim is a German journal published between 1864 and 1943. During a project of
the Chair for Literary Computing and German Literary History of the University of
Würzburg many issues have been scanned and OCRed using ABBYY Finereader by the
University Library of Würzburg. The original printing quality is excellent as are the
state of preservation and the scan quality (600 dpi). For our evaluation we randomly
chose some sample pages from the volumes 1865, 1875, 1882, and 1892, segmented them
into lines and corrected the ABBYY output.

3.2.3 Modern Antiqua Data: The University of Washington 3 Database

The youngest data we used for our experiments comes from the UW3 database [222]
which contains scans and transcriptions of 1,600 pages from late 20th century English
speaking sources, mainly scientific publications, all printed in Antiqua. Extracting the
GT on line-level [309] led to a comprehensive data set consisting of over 90,000 lines which
have been made publicly available [308]. Some clean-up was performed, for example
text lines containing mathematical equations were omitted from the data. Due to the
comparatively low variance of the typography and the overall high quality of the line
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images corpus-specific experiments on the UW3 corpus are clearly the least challenging
ones and consequently yield by far the best results.

3.3 Mixed Models

For some of our evaluations mixed models play an integral role. In the following we
briefly describe the models we trained utilizing the GT introduced above and the two
ATR engines OCRopus 1 and Calamari.

3.3.1 OCRopus 1

Our first model LH was trained on all twelve historical books from the EML corpus. The
books are printed in Latin and with Antiqua types. The training was performed on 8,684
lines and was stopped after 109,000 iterations. We evaluated all resulting models on
2,432 previously unseen test lines in order to determine the best model which occurred
after 98,000 training steps achieving a CER of 2.92% .

Additionally, we use the freely available OCRopus1 standard models for English (ENG)
[48] trained on the UW3 data set and German Fraktur (FRK) [49] introduced in [46]
and described in Section 2.4.3.2.

3.3.2 Calamari

After switching to Calamari as our first-choice ATR engine we produced several new
default voting ensembles consisting of five individual models and made them publicly
available [64]: The models “antiqua historical” (AH) and “fraktur historical” (FH) resulted
from training on the works from the Early New High German (ENHG), Kallimachos, EML,
and RIDGES printed in Antiqua or Fraktur (or more generally broken script), respectively.
Since AH and FH were trained on the regularized data from the GT4HistOCR corpus
they cannot output ligatures as single characters but will produce the resolved version
instead. Since some projects aim for a highly diplomatic transcription we enabled the
models to output ligatures and other previously regularized characters by “correcting”
the GT of 100 lines per book according to the new transcription. Training these new
lines, starting from the original AH and FH models, and using a high degree of data
augmentation resulted in “antiqua historical ligs” and “fraktur historical ligs”.9 Finally,
the “antiqua modern” model (AM) was trained on the UW3 data set.

During the processing of various works related to the Opera Camerarii project it became
apparent that even the best fitting existing mixed model (in most cases AH) was not

9In the following we use the abbreviations AH and FH for both versions, with and without ligatures,
since it never makes sense to use both versions at the same time as the choice of models depends on
the user demands.
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ideally suited to the special challenges of the material at hand. Primarily, the frequent
occurrence of Greek passages and words embedded in Latin sentences as well as the
widespread usage of italic Antiqua fonts led to a rise of the error rate and also lessened the
effect of using the mixed model as a starting point for book-specific training. To deal with
this issue we bundled the GT produced during the OCR of Camerarius works and trained
a model that is specialized on these type of printings and is able to comfortably deal
with Antiqua upright and italics as well as capable of recognizing/marking a multitude
of Greek glyphs as the character “@”.
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As discussed in previous chapters recent progress on ATR methods using recurrent
neural networks with LSTM architecture [128] enabled effective training of recognition
models for both modern (20th century and later) and historical (19th century and earlier)
handwritten and printed documents [46, 95, 280, 281]. Individually trained models
regularly reach CERs below 2% for even the earliest printed books. The need to train
individual models in order to reach this level of recognition accuracy for early printings
sets the field of historical ATR apart from readily available (commercial and open-source)
general (also called polyfont or omnifont) models trained on thousands of modern fonts
which yield CERs lower than 2% on 19th century printings and lower than 1% on modern
documents. Training historical recognition models on a variety of typesets results in
mixed models which may be seen as a first approximation to modern polyfont models,
but their predictive power is considerably lower than that of individual models.
In view of the mass of available scans of historical printings we clearly need automatic
methods for ATR which in turn require good historical polyfont models. As long as
these models are not available and at present cannot be easily constructed (we lack the
necessary historical fonts to be able to synthesize large amounts of training material
automatically), our next best approach is to maximize the recognition rate of a small
amount of manually prepared GT. Therefore, in the following we propose and evaluate
several improvements regarding the training and recognition process that enable us to
maximize the efficiency of the book-specific training and consequently minimize the
required manual effort for the user.
First, we introduce cross fold training and confidence voting in Section 4.1 which enables
the user to train several models at once and combine their outputs. Second, a so-called
pretraining approach is proposed in Section 4.2 where the training process starts from an
existing, not necessarily matching, mixed model instead of from scratch, i.e. a random
parameter configuration. Third, we combine the voting and pretraining functionality and
also add Active Learning in Section 4.3 which allows the user to purposefully select those
lines for GT production and subsequent training, where the model is expected to learn
the most from.
The proposed methods work with any given ATR engine that can be trained on real
historical data, provides usable confidence information, and can be adapted to allow
building from existing models. Still, for the actual experiments we used OCRopus 1 since,
at the time, Calamari, OCRopus 2/3, and Tesseract 4 were not available, yet, Kraken
still was very similar to OCRopus 1 and while it was possible to train individual models
for early printed books using Tesseract 3 [145], the GT production and training process
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was considerably more time consuming and led to less accurate results compared to using
OCRopus 1.

4.1 Cross Fold Training and Confidence Voting1

This subchapter introduces a method that significantly reduces the CERs for ATR results
obtained from models trained on early printed books. Our goal is to improve the ATR
accuracy with a given amount of GT by training different models and then apply a voting
procedure to combine them. Most approaches use voting with outputs generated by
different ATR engines like OCRopus, Tesseract, or ABBYY Finereader but due to the
shortage of capable ATR engines, the absence of suitable mixed models for early printings,
and consequently the need for book-specific training, the usage of several engines becomes
impractical and therefore undesirable.

With the goal in mind to only use a single ATR engine, we still need to be able to
generate variance between the trained models since the voters not only need to be strong
individually but also have to be diverse enough to make the voting profitable. Hence,
we propose a cross fold training approach on a given GT pool which leads to several
models with different characteristics. To improve the voting result further we utilize the
intrinsic confidence values produced by the engine. This enables the voting not only to
take the top-1 output character into account but the top-n alternatives weighted by their
confidences. In addition and for comparison, we use the Information Science Research
Institute (ISRI) analytic tools [240] for alignment and majority voting.

The rest of the sub chapter is structured as follows: Section 4.1.1 introduces and discusses
related work on voting in the context of ATR. The methods applied are described in
detail in Section 4.1.2. In Section 4.1.3 the results achieved on seven early printed books
are evaluated. These results are discussed in Section 4.1.4 before Section 4.1.5 concludes
the subchapter.

4.1.1 Related Work

An overview regarding topics concerning the improvement of ATR accuracy through
combination is given in [122]. Apart from different methods to combine classifiers string
alignment approaches are discussed.

The voting method to improve ATR results obtained from a variety of commercial ATR
engines is introduced in [238]. As early as 1996 Rice et al. [240] released a collection of
command line scripts for the evaluation of ATR results called the ISRI analytic tools.
These tools contain a voting procedure which first aligns several outputs using the Longest

1This section is based on a previously published article [234]: C. Reul, U. Springmann, C. Wick, and
F. Puppe, “Improving OCR Accuracy on Early Printed Books by utilizing Cross Fold Training and
Voting,” in 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). IEEE,
2018, pp. 423–428. [Online]. Available: https://doi.org/10.1109/DAS.2018.30
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Common Substring (LCS) algorithm [239] and then applies a majority vote including
heuristics to break ties. The tools were used to evaluate the results of various commercial
OCR engines in several competitions on modern prints (see [237], e.g.). This voting
procedure was able to improve the CER of five engines on English business letters from
between 9.90% and 1.17% to 0.85%.

A different approach to achieve variance among OCR outputs was proposed by Lopresti
and Zhou [169], who simply scanned each page three times and ran a single OCR engine
on them. Their consensus sequence voting procedure led to a reduction of error rates
between 20% and 50% on modern prints resulting in a CER as low as 0.2%.

Boschetti et al. [42] achieved an average absolute gain of 2.59% compared to the best
single engine (ABBYY, as low as 3% CER) by combining the outputs of three different
engines on ancient Greek editions from the 19th and 20th century. They applied a
progressive alignment which starts with the two most similar sequences and extends the
alignment by adding sequences. Then, the character selection is performed by a Naive
Bayes classifier.

In [172] Lund et al. trained maximum entropy models on synthetic data using voting
and dictionary features. On a collection of typewritten documents from World War II
their method achieved 24.6% relative improvement over the WER of the best of the five
employed OCR engines.

Wemhoener et al. [315] proposed an approach for aligning and combining different OCR
outputs which can be applied to entire books and even different editions of the same
book. First, a pivot is chosen among the outputs. Then, all other outputs are aligned
pairwise with the pivot by first finding unique matching words in the text pairs to align
them using a LCS algorithm. By repeating this procedure recursively two texts can be
matched in an efficient way. Finally, all pairs are aligned along the pivot and a majority
vote determines the final result.

Liwicki et al. [168] tackled the task of Handwritten Text Recognition (HTR) acquired
from a whiteboard by combining several individual classifiers of diverse nature. They
used two base recognizers which incorporated HMMs and bidirectional LSTM networks
and trained them on different feature sets. Moreover, two commercial recognition systems
were added to the voting. The multiple classifier system reached a WER of 13.84% and
therefore outperformed even the best individual system (18.74%) significantly.

Azawi et al. [7] used weighted finite-state transducers based on edit rules to align the
output of two different ATR engines. Neural LSTM networks trained on the aligned
outputs are used to return a best voting. Since the network has used plenty of training
data similar to the test set, it is able to predict correct characters even in cases, where
both engines failed. During tests on German Fraktur printings and the UW3 data set the
LSTM approach led to CERs around 0.40%, while the ISRI voting tool and the method
presented in [315] achieved between 1.26% and 2.31%. A principal drawback of this
method is its reliance on fixed input-output relationships, i.e. each ATR token is mapped
to a single “correct” token. But historical spelling patterns are much more variable than
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modern ones and the same word is often spelled and printed in more than one form even
in the same document. This method therefore not only corrects ATR errors but also
normalizes historical spellings which may not be desired.

Our method shows considerable differences compared to the work presented above. Not
only is it applicable to some of the earliest printed books, but it also works with only a
single open-source ATR engine. Furthermore, it can be easily adapted to practically any
given book using even a small amount of GT without the need for excessive data to train
on (60 to 150 lines of GT corresponding to just a few pages will suffice for most cases).

4.1.2 Materials and Methods

The general idea of the proposed approach is to significantly improve the accuracy that
can be achieved by using only a single ATR engine. There is a trade-off between adding
more GT to the training pool (a costly manual process) and a considerable increase in
the required computational effort. Here we take the second route with a given amount of
GT, keeping the manual effort to a minimum. In the following, we briefly introduce the
data and the workflow2 before describing the confidence based voting and the needed
adaptations in the OCRopus 1 engine in detail. The standard majority voting without
confidence can be carried out by using any given ATR engine and the ISRI tools in their
default configuration.

4.1.2.1 Data

The experiments were performed on seven early printed books (see Table 4.1 and cf.
Section 3.2.1 for further details). Besides three editions of the Ship of Fools (1495,
1500 and 1505), 1476 from the ENHG Corpus and 1488 and 1572 from the Kallimachos
Corpus, 1675 was specifically chosen from the RIDGES Corpus for its low quality and
the resulting high error rate. To avoid unwanted side effects only lines from running text
parts were used and headings, marginalia, page numbers etc. were excluded. Figure 4.1
shows some example lines.

2The corresponding code is available at https://github.com/chreul/mptv
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Figure 4.1: Different example lines from the seven used books. From top to bottom:
1476, 1488, 1495, 1500, 1505, 1572, 1675. Adopted from [234].

Table 4.1: Books used for Evaluation including their Year of publication and Language
as well as the available lines for Training and Testing.

ID/Year Language GT Train GT Test
1476 German 1,000 2,000
1488 German 1,000 3,178
1495 German 1,000 1,114
1500 Dutch 1,000 1,500
1505 Latin 1,000 2,289
1572 Latin 1,000 541
1675 German 250 317

4.1.2.2 Workflow

The general workflow can be described as follows:
Input: Line-based GT consisting of line images and the corresponding transcription.
Output: Recognized text lines.

1. Divide the available GT in N distinct folds and set aside some held out data for
evaluation.

2. Train N ATR models.

a) Declare one of the folds as test data and allocate the rest for training.

b) Run a training using N -1 folds as training data.

c) Choose the best model by testing on the remaining fold.

3. Apply the N trained models to previously unseen lines (the held out evaluation
data) and determine the result by voting.
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4.1.2.3 GT Allocation and Model Training

For example, if the number of folds N is 5 and there are 150 lines of GT available, each
fold contains 30 lines. For the first training, fold 1 is used for testing and folds 2 through
5 for training. For the second training, fold 2 for testing and folds 1, 3, 4, 5 for training,
and so on. So in this example each OCRopus 1 training is carried out on 120 lines, which
represent 80% of the GT pool. The entire training process closely follows the approach
described in [277] and is depicted in Figure 4.2.

Figure 4.2: Schematic model training of a single fold (left) and the basic idea of the
cross fold training (right). Please note that the allocation of lines to the training and test
sets is visualized in a schematic way. In practise, an optimal distribution of lines, ideally
stemming from different partitions of the book, is ensured to avoid unwanted side effects.

After the training process is finished, the best of the resulting models for each fold is
determined by recognizing the test lines with each model and select the one with the
lowest CER. These five best models are then used to recognize the unseen lines of the
held-out data resulting in five text outputs for each line, which then serve as input for
the voting tool.

4.1.2.4 Alignment

As an example we use the text line from Figure 4.3. The corresponding GT and the
recognition results of five best models M1-M5 look like this:

Figure 4.3: Example line containing a strongly degraded “e”. Adopted from [234].
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GT: inde marien namen
----------------------
M1: inide maricn namen
M2: inde maricn namen
M3: inde marien namen
M4: iade marien namen
M5: inde maricn namen

The alignment tool produces the following output using M1-M5 as inputs:

Aligned: i{1}de mari{2}n namen
---------------------------------------
{1}: M1{ni}, M2{n}, M3{n}, M4{a}, M5{n}
{2}: M1{c}, M2{c}, M3{e}, M4{e}, M5{c}

The first line shows the aligned output. Curled parenthesis mark disagreements between
two or more inputs. Afterwards, the different recognition results of the models are listed
for each disagreement. Figure 4.4 shows a more descriptive and human-readable depiction
of the alignment

Figure 4.4: Alignment result of the individual output of the five voters.

4.1.2.5 Additional Information about the Recognition Confidence Values

During the recognition process the OCRopus 1 network determines the probabilities
(represented by confidence values) of the output characters at each position in the text
line as a distribution over the complete character set. The size of this set depends on
the individual model and gets fixed at the start of the training process. To access this
additional information some changes within the OCRopus 1 code had to be made. The
confidence values are collected and stored for each line in an extended so-called LSTM
Location Of Characters (lloc) file. See Table 4.2 for the first few llocs of M4.
From left to right the columns show the most likely character, the pixel coordinates of
its start and end position, and its confidence. The rightmost column contains a list of
alternatives with their respective confidences.
Two things are worth mentioning: First, the pixel positions of a character never exactly
match the position of the actual CC in the line image as they are calculated directly
from the network output. A character is only recognized if the probability of the epsilon
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Table 4.2: Example llocs output from M4 for the word “inde” recognized as “iade”
including the most likely character (Char), its start/end position (xS , xE), confidence
(Conf ) and its Alternatives including their respective confidences.

Char xS xE Conf Alternatives
i 120 123 87.54% b=8.66%, f=2.94%

a 126 136 96.65% n=45.78%, r= 23.65%,
m=9.24%, k=8.32%, [...]

d 142 149 99.93% ã=4.83%, V=4.17%, O=1.13%

e 155 160 99.15% all alternatives ă 1%

class (no character at this position) is below a certain threshold (OCRopus 1 default =
0.7). The start of a character is defined as the first pixel position after an epsilon where
a character is recognized. The end of a character is the last pixel position a character
was recognized before an epsilon is predicted. Usually the output positions are offset by
a few pixels from the borders of the actual letter.

Second, the sum of all confidence values (representing a posterior probability distribution
over all output nodes, i.e. all possible characters) per pixel position adds up to 100%.
Because each glyph representing a character is several pixels wide, an alternative n-best
recognition might occur at a different pixel position and the combined confidences of all
alternatives will in general add up to values above 100%. For example, see the second row
in Table 4.2: The recognized a has its confidence maximum of 96.65% somewhere between
the start and end positions at 126 and 136 pixels, leaving only 3.35% to be distributed
among all remaining characters. However, it is quite common that an alternative (in
this example the n) is recognized at a different position than the top-1 character (a)
between the start and end positions with a confidence lower than the maximum (96.65%)
but significantly higher than the left over percentages at the position of the maximum.
Naturally, the higher confidence at a different position is much more relevant to a
confidence based voting.

4.1.2.6 Confidence Voting

After the alignment the confidence voting takes place. The aligned output is processed
from left to right. Characters which could be matched for all inputs are accepted right
away. To solve the disagreements between two or more inputs the corresponding llocs are
identified and loaded. Since the disagreements can vary in length, first a majority vote
takes place to determine the most likely length. Longer or shorter inputs are discarded
(e.g. the output of M1 ni in the first disagreement shown in Figure 4.4). Of course, these
inputs could still hold some valuable information, and therefore an alignment of these
disagreements might make sense. But, preliminary tests showed that aligning the inputs
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varying in length by applying a k-Means clustering on the recognition position led to
a decline in accuracy for the voting result. There are two likely reasons for this: First,
as explained above, the recognition position for a character can vary considerably along
the glyph in the input image, and therefore lead to mismatches. Second, if a model
already confused a single character as two or vice versa, the output information on the
recognition output and the alternatives could be heavily flawed. For the unlikely case of
a tie during the length voting, for example if the outputs have the lengths 1, 2, 2, 3, 3,
the shorter option (2) is chosen to break the tie. This heuristic was implemented since it
counters a common OCRopus 1 problem where the network outputs the same character
twice because a blank (no character) is recognized within a glyph, and consequently
enables the network to perform another output. During the final voting, the confidences
for the actually recognized character and all relevant (confidence ą 1%) alternatives are
summed up and the most likely ones are accepted.
In our example (see Table 4.3) the heavily degraded e at disagreement position {2} got
wrongfully recognized as a c by three out of the five models. Therefore, the simple majority
vote leads to a c in the final output as does the confidence voting when only considering
the actually recognized character. However, when incorporating the alternatives and
their respective confidence values, the correct solution e is chosen.

Table 4.3: Confidences of the model outputs for the two characters in question (c and
e) including the most likely character and its alternative as well as the confidence sum
without (Rec) and with (+ Alt) including the alternatives.

c e
M1 66.83% 38.40%
M2 93.27% 19.77%
M3 - 99.91%
M4 7.56% 98.02%
M5 90.31% 50.07%

ř

Rec 250.41% 197.93%
`

ř

Alt 257.97% 306.17%

4.1.3 Experiments

In this section we describe the experiments and report the obtained results. Each model
training was carried out until the recognition accuracy on the test set just showed
variation due to statistical noise and no further improvement was expected.

4.1.3.1 Default Application (5 folds, 150 lines)

As a first experiment the number of folds N was set to 5 and 150 lines were used since
this represents a magnitude which usually already yields good results without hitting the
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point of diminishing return. Moreover, most modern PCs with multiple cores should be
able to comfortably handle five parallel OCRopus 1 training processes. The experiment
was conducted by following the workflow and example described in Section 4.1.2. Table
4.4 shows the CER achieved on a fixed evaluation set of previously unseen lines from the
held-out data of each individual best model (1-5 ) and the combined results without (ISRI
Voting) and with (Confidence Voting) confidence information. Furthermore, the relative
improvement of the combined result with respect to the best/average/worst model is
indicated.

The results clearly show that the cross fold training and voting process considerably
reduced the CER for all books. The amount of errors corrected by combining the
outputs varies from 16% for the best individual models to 62% for the worst ones. All
improvements are highly significant on a better than 0.001 level with the χ2 test [220].
Incorporating the confidence information approximately reduces the amount of errors by
another 5% to 10%. This additional improvement is also highly significant except for
1572 and 1675 due to their relatively small number of lines used for evaluation (541 and
317 respectively).

4.1.3.2 Influence of the Number of Lines

In the next experiment the influence of the number of lines on voting was studied by
varying them in six steps between 60 and 1,000 (see Table 4.5). Because of the previous
results only confidence voting is considered. Furthermore, since in a real world scenario
lacking held-out GT data there is no way to determine the best or worst of the five
individual models, only average improvement is noted.

Cross fold training and confidence voting on 60 to 1,000 lines shows similar improvements
as the previous experiments using 150 lines. Good outputs benefit more from voting
than worse ones. However, the by far worst recognition result (1675, 60 lines) still
shows a considerable improvement. For most books a medium amount of GT (150 to
250 lines) leads to the biggest decreases of the CER compared to the average of the
individually trained models. It is especially noteworthy that voting is still very effective
when combining the output of very high performance models: On all three books that
surpassed a CER of 1% the average amount of remaining errors was reduced by at least
one third.

4.1.3.3 Influence of the Number of Folds

To increase the degree of variety among the models even more the number of folds was
set to 10. The size of the testing sets is given by the number of lines divided by the
number folds. Consequently, a higher number of folds leads to less lines being used for
testing and more for training. For example, when training five folds using 250 lines
the train/test ratio is 200/50 for each model training. This ratio rises to 225/25 when
increasing the number of folds to 10. Therefore, another experiment (5+) using five folds
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Table 4.5: CERs (top) and improvement rates (bottom) of confidence voting over the
average result of single models when varying the number of lines.

60 100 150 250 500 1,000

1476 7.55%
41%

2.66%
50%

1.82%
50%

1.46%
44%

1.20%
42%

0.93%
35%

1488 4.76%
32%

2.07%
53%

1.42%
51%

0.90%
45%

0.74%
39%

0.65%
34%

1495 8.05%
37%

4.01%
47%

2.89%
44%

1.99%
42%

1.57%
39%

1.34%
37%

1500 2.81%
41%

1.87%
43%

1.54%
45%

1.23%
39%

1.06%
35%

0.97%
33%

1505 5.82%
24%

4.24%
27%

3.70%
29%

3.49%
28%

2.63%
29%

2.46%
27%

1572 1.90%
35%

1.49%
29%

1.38%
26%

1.22%
22%

0.98%
24%

0.73%
31%

1675 14.48%
19%

10.03%
27%

8.80%
24%

5.77%
32% - -

was conducted where fewer lines were added to the test sets in order to match the number
of training lines during training with ten folds without altering the overall amount of GT
lines. For practical reasons and since all books clearly showed the same tendencies, this
final experiment was conducted using a subset of two books with comprehensive GT and
varying CERs: 1476 and 1505. Table 4.6 shows the results.

Table 4.6: CERs when using 5 or 10 folds with different size of the training set (5+).
1476 1505

5 5+ 10 5 5+ 10
150 1.82% 1.98% 1.78% 3.70% 3.71% 3.51%
250 1.46% 1.57% 1.24% 3.49% 3.31% 3.15%
1,000 0.93% 0.94% 0.86% 2.46% 2.34% 2.16%

Doubling the number of folds led to a decrease of the CER in all scenarios. This effect
was smaller when using 150 lines. Adjusting the number of lines when using five folds
always led to worse results compared to ten folds.

90



4.1 Cross Fold Training and Confidence Voting

4.1.3.4 Time Expenditure

Table 4.7 shows the necessary computational time expenditure for different scenarios
with a varying number of folds and a maximum number of training steps depending on
the number of lines. All measurements were performed on a laptop with a quad core
i5-6300HQ CPU @ 2.3 GHz and 8 GB RAM using multi-threading whenever possible.
The speed of the OCRopus 1 training and prediction process depends on the length of
the lines. Therefore, these measurements were performed on the book 1500, since its
line lengths are closest to the average of all used books. The time expenditure for the
training setup, alignment, and voting is negligible. The results show that the benefits of
reduced error rates of our method can be reached by doing the necessary model training
overnight.

Table 4.7: Required time expenditure in minutes for the processing (Training, Recogni-
tion, and Sum) of book 1500 (4,651 lines) using different scenarios in terms of training
(Fold x Lines) and number of training iterations (It.).

5x150
10k It.

5x250
20k It.

5x1,000
30k It.

10x1,000
30k It.

Training 177min 238min 381min 782min
Recognition 26min 26min 26min 52min

Sum 203min 264min 407min 834min

4.1.4 Discussion

Our experiments show that the proposed approach significantly improves the obtainable
CER on early printed books. As expected, ATR results with a lower CER gain an even
bigger boost compared to the more erroneous results. However, while not reaching the
same improvement rates of up to over 50% even the worst ATR results still benefited
greatly from gains of close to 30%.

The amount of available GT did not show a notable influence on the improvements
achievable by confidence voting. Yet, a very high number of lines leads to a drop in voting
gains for most books. This has to be expected for models that get closer to perfection
as most of the remaining errors are unavoidable ones such as rare characters that could
not be recognized because their corresponding glyphs were absent from the training set
or highly degraded glyphs leading to misrecognition by any model. Both of these cases
cannot be restored by voting.

Our first experiments on increasing the number of folds showed promising signs, especially
when training with a large pool of GT. Adjusting the train/test ratio towards more
training lines led to varying results depending on the number of GT lines. For small to
medium amounts the CER stayed the same or even went up compared to the standard
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80%/20% ratio. This indicates that choosing the best model based on a small number of
lines can lead to models that perform well on the test data, but do not generalize well.
Moreover, our approach allows for a considerably more efficient use of the available GT.
For example, in almost all cases the cross fold training and confidence voting based on
100 lines of GT significantly outperformed the default single model approach even when
using 50% more lines.
Furthermore, it is worth mentioning that the CERs of the individually trained models
vary strongly, producing up to 80% more errors. This kind of variance represents a big
problem for the standard approach. Of course, in a real world scenario there is no way
to determine if the training of a single model went well in terms of variance. Our robust
approach does not suffer noticeably from a single flawed model, as is shown by e.g. 1488
in Table 4.4.
Finally, the experiment regarding time expenditure showed that even very comprehensive
multi-fold training tasks can be performed by a standard system within a reasonable
amount of time, e.g. overnight.

4.1.5 Conclusion and Future Work

In this sub chapter a method to significantly improve the CER on early printed books
by utilizing cross fold training and confidence based voting was proposed. The results
showed that our method works with any amount of GT which is typically used for training
during the different stages of the ATR process on an early printed book.
Despite the very encouraging results there is still some work to be done: First, the
alignment process of the llocs prior to confidence voting should be further optimized
in order to allow an improved matching of disagreements with varying lenghts. This
is especially important since these variations happen due to insertions and deletions
which are very common when dealing with historical printings. An initial solution
approach would be to also consider blank outputs, i.e. positions where no character was
predicted due to the lack of a likely candidate. Naturally, at these positions there are
also alternatives available whose confidence information should be helpful for the voting.
However, due to the particularities of blanks compared to real characters this integration
is far from trivial.
Second, there are several parameters to be optimized during the cross fold training
process like the optimal number of folds and the train/test split within a fold. The best
choice mainly depends on the amount of available GT, but can also vary because of
the accessible hardware or the overall ATR quality of the individual book. To be able
to provide reliable recommendations for different scenarios further extensive tests are
required.
Another promising option is to benefit from the diversity of the models obtained during
cross fold training even further by implementing an AL approach. If additional training
is required, the resulting outputs allow an informed instead of random selection of new
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GT lines, e.g. by choosing the lines whose outputs differ the most, indicating a high
degree of uncertainty across the models. We will follow up on this idea in Section 4.3.
Despite the focus on early printed books in this section the presented ideas can be applied
to any given print. However, several adaptions might be needed since the ATR on newer
books is usually not based on individual training but on highly performant so-called
omnifont models. To investigate this area of application in greater detail, we perform a
case study on 19th century Fraktur in Section 7.1, extending the proposed concept to the
training and application of mixed models.

4.2 Transfer Learning Utilizing Pretrained ATR Models3

In this subchapter we present another method that significantly reduces the CERs for
ATR results obtained from models trained on early printed books when only small
amounts of diplomatic transcriptions are available. This is achieved by building from
already existing models during training instead of starting from scratch. While the
previous subchapter tackled the task of maximizing the quality of an ATR result by
training several models and apply them as a voting ensemble, we now focus on the
challenge of improving the effectiveness of individual models. Because real GT is both
scarce and expensive to produce, it seems natural to look for other means to build
workable models. As modern and historical font shapes (glyphs) are not totally different
from modern ones, a simple idea is to reuse the models trained on modern fonts and use
them as a starting point for continued training on some historical GT. Thus, one could
hope to reach a certain level of CERs with less historical GT than if we trained a model
from scratch. In the following we explore this idea and report some experiments that
show if and to what extent this expectation is justified.
A note on terminology and a reminder regarding mixed and book-specific models: The
alphabet on which a recurrent neural network is trained is also called codec, as the
alphabet is internally represented by numbers to which the alphabet gets encoded and
which at the end gets again decoded to alphabet characters. An individual or book-specific
model is trained on a single book (which might contain different typesets, e.g. upright
and italics) and is contrasted with a mixed model trained on GT relating to different
books, which mostly also means different typographies (different fonts, different inter
word distances). Models trained on synthetic material in different languages are also
called mixed models by us even when all languages are represented by the Latin script
using Antiqua fonts, as there are specific national typographic idiocracies leading to
different codecs (e.g. the usage of accents in French texts, or different punctuation marks).
Section 4.2.1 describes related work, Section 4.2.2 gives details of the pretrained models
and their respective GT used as well as our modifications of the OCRopus 1 code, Section

3This section is based on a previously published article [236]: C. Reul, C. Wick, U. Springmann, and
F. Puppe, “Transfer learning for OCRopus model training on early printed books,” 027.7 Journal
for Library Culture, vol. 5, no. 1, pp. 38–51, 2017. [Online]. Available: http://dx.doi.org/10.12685/
027.7-5-1-169

93

http://dx.doi.org/10.12685/027.7-5-1-169
http://dx.doi.org/10.12685/027.7-5-1-169


4 Methods

4.2.3 relates our experiments and their outcomes which are then discussed in Section
4.2.4. At the end follows Section 4.2.5 with the conclusions and ideas for future work.

4.2.1 Related Work

For a discussion of mixed models which are relevant to the application of pretraining an
transfer learning in the area of historical ATR we refer to the corresponding section in
the data chapter (cf. Section 3.3).
While to the best of our knowledge there is no suitable related work regarding transfer
learning in the field of ATR available, it was applied successfully to a variety of other
tasks. Yosinski et al. [325] performed experiments on the transferability of features in
deep neural networks. They used the ImageNet data set [77], which at the time of the
described experiments consisted of close to 1.3 million labeled training images and 50,000
test images, with each image labeled with one of 1,000 classes. After randomly splitting
the classes in half they first performed a pretraining on one half before training and
finally testing on the remainder. This approach yielded lower error rates compared to
the default method, i.e. only training and testing on data with matching classes. So even
after an extensive period of fine-tuning on suitable data, the features learned during the
first steps still lingered and led to notably improved recognition accuracies.
Wick and Puppe [316] applied the same method using even more diverse data sets. In
order to assign the correct species to images of leafs they first performed a pretraining on
the Caltech-256 data set [114], consisting of over 30,000 images assigned to 256 classes
like animals, tools, vehicles, or fictional characters. Afterwards, they built from the
obtained network by training on real leaf images. Despite the diversity of the two sets of
training data, the pretraining showed a significant positive effect on the classification
accuracy.
Of course, these examples of transfer learning used far deeper networks than for example
OCRopus 1 with only a single hidden layer, resulting in a dramatically increased number
of parameters and consequently, more opportunities to learn and maintain useful low-level
features. Nonetheless, we still expect a noteworthy impact of pretraining, since scripts in
general should be expected to show a higher degree of similarity than for example oak
leafs and Homer Simpson.

4.2.2 Materials and Methods

We first very briefly introduce our evaluation corpus consisting of books from various
corpora. Our approach is expected to work best with models trained on data as similar
as possible to these books. Hence, we use a fitting model trained on fitting historical data
but distinct from the evaluation corpus. In addition, two less similar mixed standard
models trained on newer types are utilized. Finally, some necessary changes regarding
the OCRopus 1 code are described, which enable us to extend and reduce the codec
available to a model in a flexible way.
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4.2.2.1 Books

The experiments are performed on seven early printed books (see Table 4.8 and cf. Section
3.2.1 for further details). To avoid unwanted side effects only lines from running text
parts are used and headings, marginalia, page numbers, etc. are excluded. Figure 4.5
shows some example lines. The books 1495, 1500, 1505, and 1509 are editions of the
Ship of Fools. Despite their similar content, these books differ considerably from an ATR
point of view since they have been printed in different print shops using varying typefaces
and languages (Latin, German, and Dutch). 1488 and 1572 are part of the Kallimachos
Corpus and 1476 belongs to the ENHG Corpus. All books above the horizontal line
in Table 4.8 were printed in broken scripts (Fraktur in the wider sense), the rest used
Antiqua types.

Table 4.8: Books used for Evaluation.
ID/Year Language GT Train GT Test

1476 German 1,000 2,000
1488 German 1,500 2,678
1495 German 1,000 1,114
1500 Dutch 1,250 1,250
1505 Latin 1,500 1,789

1509 Latin 1,500 1,500
1572 Latin 791 750

Figure 4.5: Different example lines from the seven books used for evaluation. From top
to bottom: excerpts from books 1476, 1488, 1495, 1500, 1505, 1509, and 1572. Adopted
from [236].
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4.2.2.2 Mixed Models

As our first model we used LH which was trained on historical books printed in Latin.
Additionally, we applied the freely available OCRopus 1 standard models FRK and ENG
introduced in [46]. For further information we refer to Section 3.3

4.2.2.3 Utilizing Arbitrary Pretrained Models in OCRopus 1

OCRopus 1 in its original form already allows to load existing models and continue
training from there. However, the default functionality only covers the case where a
training is stopped (deliberately or not) and restarted using the exact same alphabet.
While this suffices to ensure that the training process does not get lost, it cannot be
applied to material with additional characters. Therefore, the following adjustments on
code level had to be made. The corresponding source code is available at GitHub4.

4.2.2.4 Extending the Codec

While mixed models are usually trained on a variety of different books and therefore
comprise a rather comprehensive alphabet it still is likely for them to sooner or later
encounter previously unknown characters. For any (mixed) model it is impossible to
recognize these glyphs it has never seen during training, so these glyphs constitute blind
spots for the recognition process. Even worse, if a character is not part of the codec it
can never be learned even if fitting training examples are available. Consequently, the
model must be able to grow.

Figure 4.6 illustrates the extension and reduction (see next section) of the codec. The
bidirectional LSTM-based network, among others used by OCRopus 1, consists of two
layers. A single LSTM layer processes each pixel-wide slice of the text line, thus its
input dimension equals the line height in pixel. The number of time steps T equates
the line length. The LSTM layer produces a vector h for each time step. Its size H
remains fixed for each model and is given by the number of states in the single hidden
layer of the network (OCRopus 1 default = 100). The last layer represents a matrix
multiplication where the weight matrix M is multiplied with the current h producing an
output o for each character in the codec. Each character is represented in M by a vector
of size H, containing the weights determined during the training process. Consequently,
the dimensions of M are H times C, with C being the codec size. The predictions with
probability P(c) for each character c in the codec is generated by applying a softmax [59]
function to o. Since each single character in the codec is given by a row in M, a codec
extension can be achieved by adding additional rows to M. For each attached row, an
additional entry in the output is appended. Yet, the application of the softmax function
ensures that the output remains a valid probability distribution P(c). The new weights
in M are initialized randomly and have to be trained to produce meaningful results.

4https://github.com/ChWick/ocropy/tree/codec_resize
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Figure 4.6: Schematic view of extensions (left) or reductions (right) of the output matrix
of the network whose rows correspond to the codec. Adopted from [236].

4.2.2.5 Reducing the Codec

The just described problem regarding characters missing from the codec could of course be
bypassed by simply bloating the codec. However, this is impractical for two reasons. First,
the bigger the codec the slower the training and recognition process becomes. Second,
when refining a mixed model towards an individual one for a single book the goal is to
minimize the number of recognizable characters without risking blind spots. Naturally, a
large codec also makes misrecognitions more likely, especially if it contains several very
similar characters. For example, LH contains several e characters with various diacritica
on top, e.g. éèêë, which are customarily employed in early printings. However, in books
that do not contain these diacritics they only add potential for confusions.

The right sketch of Figure 4.6 shows the process of removing single characters from the
output matrix M. By deleting a complete row the corresponding output probabilities
P(c) is removed, too. Retraining the network is not necessary since the softmax ensures
that the output still is a valid probability distribution.

4.2.2.6 Defining a Whitelist Containing Immune Characters

Especially when working with small amounts of GT it is likely that these transcribed
lines do not comprise all characters that occur throughout the entire book. In this
case applying the approach described above will lead to blind spots. Therefore, we
implemented a so-called Whitelist (WL) containing characters that will not be removed
from the codec even if they do not occur in the GT used for training: a-z, A-Z, 0-9.
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4.2.3 Experiments

In order to examine our hypothesis that building from an existing model holds clear
advantages compared to training from scratch (from now on also referred to as the
“default” model/approach/training/...) we perform several experiments whose outcomes
are reported in this section. After explaining the general methodology of our training and
evaluation procedure, we conduct the first experiment comparing the default approach
with a training starting from the LH model. Next, since suitable models in terms of
printing type, age, and language are often not available, we test the OCRopus 1 standard
models ENG and FRK and still hope for improvements compared to the default training.
Furthermore, we expect the gains of our pretraining approach to correlate with the
number of lines used for training. Since more lines lead to stronger models, the room for
improvement gets smaller and we therefore await smaller gains. In our final experiment
we replace the mixed LH model by a model trained on a single similar book with the
expectation to achieve even bigger improvements.

4.2.3.1 Setup and Methodology

The initial setup consisted of two main steps. First, for each book about half of the
available GT was set aside for evaluation. The remaining individual GT was split up in
five different training/test sets on which models were trained and their results averaged
to reduce the impact of variance. To ensure maximal comparability, both, the initial
training/test/evaluation split as well as the individual training sets were kept fixed for
all experiments.

Analogously to the procedure mentioned in Section 4.1, the actual model training using
OCRopus 1 was always carried out for a fixed number of iterations until no further
notable improvements were observed. A number of 10% to 15% of the training lines were
set aside before training to act as a test set in order to determine the best model, i.e. the
one that produced the lowest CER on the test set. Finally, the best models are used to
recognize the held out evaluation data to determine the final result.

4.2.3.2 Building from the Latin Mixed Model

In this first experiment we compare a training starting from the LH model with one
starting from scratch. When using the LH model all trainings were performed twice,
once with building the codec from the available GT and once with adding the WL as
described in Section 4.2.2.6. All experiments were carried out for 60 and 150 lines of GT
since usually 60 lines are a good starting point and 150 lines represent just enough lines
to already train relatively strong individual models (150) without reaching the point of
diminishing return. Table 4.9 sums up the results.

The achieved CERs show that building from a mixed model leads to superior individual
models compared to using the available GT by itself. As expected, the improvement rates
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Table 4.9: Resulting CERs when using the raw Latin Hist model (LH only), models
trained from scratch (Def ) and by building from the LH model without (LH ) and with
(+WL) utilizing the WL. The last row shows the average (AVG) for training with 60 (52
Training, 8 Test) respectively 150 (130 Training, 20 Test) lines of GT. The books above
the horizontal line between 1505 and 1509 are printed using broken script (basically
Fraktur), the ones below utilized Antiqua types. All CERs and improvement rates are
given in %.

LH
only

60 Lines of GT
Book Def LH +WL

CER CER CER Gain CER Gain
1476 31.12 8.21 5.35 35 5.17 37
1488 35.28 7.60 3.53 54 3.49 54
1495 42.79 12.67 6.26 51 6.14 52
1500 37.61 5.03 3.58 29 3.42 32
1505 17.23 6.19 5.32 14 4.79 23

1509 5.05 6.31 2.85 50 2.06 67
1572 10.40 2.43 1.58 35 1.61 34

AVG 25.64 6.92 4.07 38 3.81 43

LH
only

150 Lines of GT
Book Def LH +WL

CER CER CER Gain CER Gain
1476 31.12 4.00 3.11 22 3.04 24
1488 35.28 2.88 2.22 23 2.22 23
1495 42.79 5.83 4.03 31 4.04 31
1500 37.61 2.95 2.42 18 2.29 22
1505 17.23 3.70. 3.43 7 3.40 8
1509 5.05 2.81 2.24 20 1.44 49
1572 10.40 1.72 1.27 26 1.26 27
AVG 25.64 3.41 2.67 21 2.53 26

decrease with more GT for training and increase with adding a WL of basic characters.
The average gain when utilizing 60 lines of GT is 43%, from a CER of 6.92% without
pretraining to 3.81%. This is nearly as good as using a considerable more expensive GT
of 150 lines without pretraining, having a CER of 3.41%. With pretraining (including the
WL), a CER of 2.53% is achieved using 150 lines of GT, with an average gain of still 26%
over the default approach. Interestingly, the improvements do not necessarily correlate
with the performance of the LH model on its own. For example, the book where the LH
model did worst on (1495) still experiences one of the highest boosts among all books.
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Since adding the WL shows a clearly positive effect (average gain of 5%) all remaining
experiments were performed by including the WL.

The gained accuracies vary considerably. For example, book 1505 shows the least
improvement over the default approach (but still 23% and 8%, respectively). Most likely
this is caused by the fact that the distances between two characters in book 1505 are
considerably smaller compared to all other books used for training and testing (see Figure
4.5, line 5). Another interesting result is that 1509 profits considerably from the inclusion
of the WL, resulting in a CER drop from 2.24% to 1.44% when using 150 lines of GT.
Apparently, in this case the training GT was missing characters that frequently occurred
in the evaluation data.

4.2.3.3 Utilizing the OCRopus 1 Standard Models

The creation of high quality historical mixed models is a cumbersome task and there
are not many publicly available. Therefore, we investigated the effect of pretraining
on a mixed model trained on different but easily available data, in this case using the
OCRopus 1 standard models ENG and FRK introduced in section 4.2.1. Table 4.10 sums
up the results.

Although the gains of the ENG und FRK models are slightly lower than for the more
similar LH model, they are still impressive: 33% on average for training with 60 lines
of GT and 19% (ENG) and 17% (FRK), respectively for training with 150 lines of GT
compared to the default approach. As expected, ENG outperforms FRK on the books
using Antiqua types (books 1509 and 1572), while FRK has higher gains for Fraktur
types (books 1476, 1488, 1495, 1500, and 1505).

4.2.3.4 Varying the Number of Lines

To further test the applicability of our approach, we repeated some of the experiments
by varying the amount of GT in five steps from 30 to 60, 100, 150, and 250 lines. For
reasons of clarity the results of only three representative books (1476, 1495, and 1572)
are displayed in Figure 4.7. The remaining books showed the same tendencies.

As expected and in line with previous experiments, the achievable improvements decrease
when increasing the amount of available GT. While for a small number of lines (30 and
60) the CER is reduced by at least one third and up to two thirds, this effect almost
vanishes for most books when approaching 250 lines.

4.2.3.5 Incorporating Individual Models

Next, we want to examine if building from a model trained on an individual book similar
to the new data can yield even better results than the mixed model approach we utilized
thus far. We measured similarity by determining the CER obtained by models trained
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Table 4.10: Resulting CERs from models trained by following the default approach
(Def ) compared (Gain) to building from the Latin Hist model (LH ) and the Standard
OCRopus 1 models ENG and FRK. The books above the horizontal line between 1505
and 1509 are printed using broken script (basically Fraktur), the ones below utilized
Antiqua types. All CERs and improvement rates (Gain) are given in %.

60 Lines of GT (52 Training, 8 Test)
Book Def LH ENG FRK

CER CER Gain CER Gain CER Gain
1476 8.21 5.17 37 5.21 37 4.49 45
1488 7.60 3.49 54 4.32 43 4.12 46
1495 12.67 6.14 52 6.89 46 6.31 50
1500 5.03 3.42 32 4.11 18 3.49 31
1505 6.19 4.79 23 5.44 12 5.09 18

1509 6.31 2.06 67 2.94 53 4.09 35
1572 2.43 1.61 34 1.91 21 2.25 8

AVG 6.92 3.81 43 4.40 33 4.26 33

150 Lines of GT (130 Training, 20 Test)
Book Def LH ENG FRK

CER CER Gain CER Gain CER Gain
1476 4.00 3.04 24 3.21 20 3.12 22
1488 2.88 2.22 23 2.68 7 2.38 17
1495 5.83 4.04 31 4.12 29 3.89 33
1500 2.95 2.29 22 2.50 15 2.47 16
1505 3.70 3.43 7 3.45 7 3.53 7

1509 2.81 1.44 49 1.93 31 2.40 15
1572 1.72 1.26 27 1.25 27 1.57 8

AVG 3.41 2.53 26 2.73 19 2.77 17

on individual books and by the mixed models LH, ENG, and FRK on the GT data of
the new book. For books 1476, 1505, 1509, and 1572 the LH model performed best and
they were therefore excluded from further experiments. The 1488 model achieved the
lowest CER on 1495 and vice versa and 1500 got recognized best by the individual model
of 1476. Consequently, we trained new models for 1488, 1495, and 1500 by building from
the models of 1495, 1488, and 1476, respectively. Of course, each individual model was
excluded from the pool when processing the book it was trained on. Table 4.11 shows
the obtained results.

The results do not show a clear tendency: in three cases, pretraining with the mixed LH
model showed higher gains, and in the other three cases, pretraining with the best fitting
individual model led to better results. Neither approach shows a significant gain over
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Figure 4.7: Effects of building from the LH model compared to the default approach for
a varying number of lines showing the improvement rates for three different books (top
left) and the resulting CERs for 1476 (top right), 1495 (bottom left), and 1572 (bottom
right). Adopted from [236].

the other. From this experiment we cannot infer that it is worthwhile to incorporate
individual models compared to the robust mixed model for pretraining. However, it has
to be said that even the best fitting models only achieved CERs of around 16% or even
worse. Therefore, higher gains should be expected when building from individual models,
which already fit even better to the new data.

4.2.4 Discussion

Our experiments showed that building from a pretrained model can significantly reduce
the obtainable CER compared to starting the training from scratch. The achievable
improvement rates decrease with an increasing number of GT lines available for training.
The effect of a WL used to prevent blind spots is reduced when adding more lines since
the likelihood for missing characters in the training data goes down.
The evidence that even completely unrelated mixed models also lead to considerable
improvement indicates that a pretrained model offers much more than an accurate
description of the type(s) it was trained on. Despite the shallow structure of the
OCRopus 1 network with only one hidden layer the training seems to benefit a lot from
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Table 4.11: Resulting CERs from models trained by following the default approach
(Def ) compared (Gain) to building from the Latin Hist model (LH ) and the best fitting
individual model. All CERs and improvement rates given in %.

60 Lines of GT (52 Training, 8 Test)
Book Mixel Model (LH) Best Fitting Individual Model

Def Raw Trained Gain Model Raw Trained Gain
1488 7.60 34.56 3.49 54 1495 15.58 3.23 58
1495 12.67 43.26 6.14 52 1488 16.26 5.82 54
1500 5.03 37.23 3.42 32 1476 27.67 4.58 9

150 Lines of GT (130 Training, 20 Test)
Book Mixel Model (LH) Best Fitting Individual Model

Def Raw Trained Gain Model Raw Trained Gain
1488 2.88 35.42 2.22 23 1495 16.07 2.35 19
1495 5.83 42.95 4.04 31 1488 16.49 3.58 36
1500 2.95 37.60 2.29 22 1476 27.52 2.66 10

low level features that generalize well like general character shapes, different forms and
severity of glyph degradation as well as an improved robustness against noise.

Not a single case occured in our experiments where the proposed approach had a
noteworthy negative impact on the recognition result. This seems sensible, since the
weights of the network are initialized randomly when training from scratch causing
the network to be unable to output anything during the beginning of training before
slowly learning the most frequent characters like whitespaces, e and a. It seems that a
pretrained model, which might not match the types at all but at the very least partly
fits the required codec and is able to distinguish between character and non-character,
benefits the training process more than a random initialization. Since the additional
required effort when building from a model is negligible, our results imply that it is
sensible to prefer the pretrained approach over training from scratch, especially when
only a low to medium amount of GT is available.

4.2.5 Conclusion and Future Work

A method to significantly improve the CER on early printed books by building from
pretrained models instead of training from scratch was proposed. Our experiments
showed that adding fresh GT to an existing model outperforms the default training
approach even if GT and model differ considerably, in particular if only a small number
of transcribed lines is available. Despite our focus on very early prints using Latin script
the experiments suggest that the proposed method should work with a wide variety of
prints with diverse scripts and languages and different periods.
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An obvious and very promising task is the combination of the proposed pretraining
approach with the cross fold training and voting procedure introduced in Section 4.1.
For the voting to be successful the participating models are not only required to be
precise but also diverse. We have shown that a wide variety of mixed models is likely
to have a positive effect on the training outcome. This makes the training of individual
models by building from completely different mixed models a very attractive option to
gather several powerful, yet highly variant models. A thorough evaluation of a combined
approach is given in the upcoming sub chapter.

Furthermore, additional models would be very useful for real world application scenarios,
since a suitable model to start training from can save hours of transcription effort.
This includes several types: mixed models like LH which are created by collecting and
combining real life data, as well as synthetically trained mixed models like ENG or FRK,
but also book-specific models. Of course, it is also possible to combine several approaches,
for example by taking a small subset of the LH data and train a new model building from
ENG or FRK. With a growing repository of available models, it makes sense to narrow
down the selection before testing on the available GT to find the best fitting model. This
can be done by taking attributes like age, the printing type (Antiqua or Fraktur) or, if
applicable, specifics like very small inter character distances into consideration. Thus,
the gain of building from pretrained models can be further optimized.

4.3 Combining Pretraining, Voting, and Active Learning5

After showing the effectiveness of cross fold training and confidence voting in Section
4.1 as well as proving the apparent superiority of utilizing pretrained models instead of
starting from scratch in Section 4.2, it stands to reason to combine both approaches. As
suggested in Section 4.1, we suspect that voting ensembles can also be used in order to
identify possible training lines the existing models can learn the most from. Therefore, we
experiment with an Active Learning (AL) approach, ensuring that lines showing maximal
disagreement among the available voters are included in the training set to maximize the
learning effect.

Section 4.3.1 briefly summarizes the results obtained during the preceding voting and
pretraining experiments and discusses related work regarding AL. In Section 4.3.2 we
describe the printing material which the experiments of Section 4.3.3 are based on.
Section 4.3.4 contains the discussion of our results and we conclude the subchapter with
Section 4.3.5.

5This section is based on a previously published article [233]: C. Reul, U. Springmann, C. Wick, and
F. Puppe, “Improving OCR Accuracy on Early Printed Books by combining Pretraining, Voting,
and Active Learning,” JLCL: Special Issue on Automatic Text and Layout Recognition, vol. 33,
no. 1, pp. 3–24, 2018. [Online]. Available: https://jlcl.org/content/2-allissues/1-heft1-2018/
jlcl_2018-1_1.pdf
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4.3 Combining Pretraining, Voting, and Active Learning

4.3.1 Related Work

In this section we first very briefly sum up the findings obtained during the previous
experiments dealing with the application of cross fold training and confidence voting as
well as transfer learning or pretraining in the area of historical ATR. Second, we give an
overview over some basic AL concepts.

4.3.1.1 Voting

In Section 4.1 we implemented a cross fold training procedure with subsequent confidence
voting in order to reduce the CER on early printed books. Our experiments led to the
following observations:

1. For all experiments the cross fold training and voting approach led to significantly
lower CERs compared to performing only a single training. Gains between 19%
and 53% were reported for several books and different number of lines of GT.

2. ATR results with a lower CER benefitted even more than more erroneous results.

3. The amount of available GT did not show a notable influence on the improvements
achievable by confidence voting. Yet, a very high number of lines leads to a drop
in voting gains for most books.

4. Increasing the number of folds can bring down the CER even further, especially
when training on a large set of lines. However, five folds appeared to be a sensible
default choice.

5. The confidence voting always outperformed the standard sequence voting approach
by reducing the amount of errors by another 5% to 10%.

4.3.1.2 Pretraining and Transfer Learning

In Section 4.2 we used existing mixed models as starting points for the book-specific
training of seven early printed books. From our experiments we arrived at the following
conclusions:

1. Building from a pretrained model significantly reduced the obtainable CER com-
pared to starting the training from scratch.

2. Improvement rates decrease with an increasing number of GT lines available for
training. While models trained on only 60 lines of GT gained over 40% on average
over starting from scratch, this number went down to around 15% for 250 lines.

3. The incorporation of a WL for standard letters and digits which cannot be deleted
from the codec even if they do not occur in the training GT showed an additional
average gain of 5%.

105



4 Methods

4. Even the mixed models for modern English and 19th century Fraktur, which were
completely unrelated to the individual books in terms of printing type and age of
the training material, led to significant improvements compared to training from
scratch.

4.3.1.3 Active Learning

Settles [254] gives a very comprehensive overview over the literature dealing with AL.
Apart from introducing different usage scenarios and discussing theoretical and empirical
evidence for the application of AL techniques they define a typical AL scenario as follows:
A learner starts out with access to a (possibly very small) pool of labeled examples to
learn from. In order to improve performance it is possible to send queries consisting of
one or several carefully selected unlabeled examples to a so-called oracle (teacher/human
annotator) who then returns a label for each example in the query. Afterwards, the
learner can utilize the obtained additional data. Naturally, the progress of the learner
heavily depends on the examples selected to be labeled. Furthermore, the goal is to learn
as much as possible from as few as possible queried examples, keeping the oracle’s effort
to a minimum.

One of the most successful query techniques is called query by committee and was intro-
duced by Seung et al. [255]. The basic idea is that a committee of learners/models/voters
is trained on the current labeled set. Each member of the committee is allowed to cast a
vote on a set of query candidates, i.e. unlabeled examples. The assumption is that the
candidate the voters disagree most on is also the one which offers the biggest information
gain when being added to the training set. This is called the principle of maximal
disagreement.

Among others, the effect of this approach was demonstrated by Krogh and Vedelsby
[150] who trained five neural networks to approximate the square-wave-function. They
performed 2x40 independent test runs starting from a single example and using passive
and active learning. While the next example was chosen randomly during the passive tests
the networks always got handed the example with the largest ambiguity among the five
voters out of 800 random ones. Evaluation showed that AL led to a significantly better
generalization error and that the individual additional training examples on average
contributed much more to the training process when chosen according to the principle of
maximal disagreement.

As for ATR, Springmann et al. [279] performed some initial experiments on selecting
additional training lines in an active way. After recognizing lines with a mixed model
they tested several strategies according to which they chose lines for further transcription.
The best result was obtained when using a mixture of randomly selected lines combined
with lines with low confidence values. It is worth mentioning that after transcribing these
lines they started their training from scratch since the pretraining approach introduced
above had not been developed, yet.
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4.3.2 Materials and Methods

In this section we first introduce the early printed books and mixed models we used
for our experiments. Then, we show how the principle of maximal disagreement can be
utilized in order to choose additional training lines in an informed way within an iterative
AL approach.

4.3.2.1 Books

The experiments were performed on six early printed books (see Table 4.12 and cf. Section
3.2.1 for further details). The AL experiments were carried out on the three books above
the horizontal line. We focused on these books as they provided a large amount of GT
which is needed to perform the procedure. In a real world application scenario it would
be sensible to choose the additional training lines by recognizing all lines without GT
and choose the worst ones. Therefore, as many lines as possible are required to be able
to evaluate this scenario. To avoid unwanted side effects resulting from different types or
varying line lengths only lines from running text were used and headings, marginalia,
page numbers, etc. were excluded. 1505 represents an exception to that rule as we chose
the extensive commentary lines instead, as they presented a bigger challenge due to very
small inter character distances and a higher degree of degradation. Figure 4.8 shows
some example lines.

Table 4.12: Books given by their respective ID/Year used during the experiments as
well as the number of GT lines set aside for Training, Evaluation, and Active Learning.

ID/Year Language Training Evaluation Active Learning
1476 German 1,000 1,000 750
1488 German 1,000 1,000 1,928
1505 Latin 1,000 1,000 1,039

1495 German 1,000 1,114 -
1500 Dutch 1,000 1,250 -
1572 Latin 1,000 1,098 -

It is worth mentioning that all the books, which will be used for evaluation, were disjoint
with the training materials of the mixed models.

4.3.2.2 Active Learning

As explained in Section 4.3.1.3 the basic idea behind AL is to allow the learners, i.e. the
different voters, to decide which training examples they benefit the most from instead
of selecting additional lines randomly. Since in a real world application scenario there
usually is no GT available for potential new training lines, we cannot just use the ones
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Figure 4.8: Different example lines from the six books used for evaluation. From top
to bottom: excerpts from books 1476, 1488, 1495, 1500, 1505, and 1572. Adopted from
[233].

for which our current models give the worst results, i.e. the ones with the highest CER.
However, we can still identify the lines we expect to be most suitable for further training
by following the principle of maximal disagreement.

After recognizing a line with each model of an ensemble consisting of n voters, all outputs
are compared to each other in pairs. As a measure for the difference between two ATR
output strings a, b, we define the Levenshtein Distance Ratio (LDR) LDRpa, bq as the
Levenshtein distance [164] between a and b, divided by the maximum string length of
a and b. These ratios are then summed up between all pairs of different ATR output
strings and divided by the number of pairs npn´ 1q{2 to yield the average LDRø. The
pseudo-code in Algorithm 1 details our calculations.

Algorithm 1: The calculation of a line’s average LDR (LDRø). Levpa, bq denotes
the Levenshtein distance between two outputs a and b. The length (= the number of
characters) of an output a is given by |a|.
Data: line image without GT, ensemble of n voters (n ą 1)
Result: the LDRø of the line
outputsÐ recognizeWithAllV otersplineq
sum “ 0
foreach ai, aj with pi ă jq P outputs do

LDRpa, bq Ð Levpa,bq
maxt|a|,|b|u

sumÐ sum` LDRpa, bq
end
LDRø “

sum
npn´1q{2

Finally, after processing various lines, they are sorted in descending order according
to their LDRøs. In a real world application scenario the lines are handed to a human
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annotator who then produces GT by transcribing them or by correcting one of the
individual ATR results or the output of the confidence voting, if available. While the
idea of the whole process is to give the committee the lines it requested, it is still up
to the human annotator to decide whether a line is suitable for further training or not.
For example, a line might have been badly recognized due to a severe segmentation
error or due to an unusually high degree of degradation making recognition pretty much
impossible. These lines cannot be expected to make a noteworthy contribution to the
training process and are therefore discarded.

4.3.3 Experiments

In order to evaluate the effectiveness of the methods described above we performed
two main experiments: First, the voting and pretraining approaches were combined by
performing the voting procedure with models which were not trained from scratch but
started from one or several pretrained mixed models. Second, the voters resulting from
the first experiment served as a committee during an AL approach following the principle
of maximal disagreement.

Since the train/test/evaluation distribution of the GT lines has changed, the results can
differ from the ones obtained from earlier experiments in sections 4.1 and 4.2. Based
on the previous results we chose to implement the following guidelines for all of the
upcoming experiments.

1. The number of folds during cross fold training and consequently the number of
voters is set to 5.

2. ATR results are always combined by enforcing the confidence voting approach.

3. Whenever pretraining is used a generic minimal WL consisting of the letters a-z,
A-Z and the digits 0-9 is added to the codec.

4. Each model training is carried out until no further improvement is expected (e.g.
30,000 iterations for 1,000 lines of training GT; analogously to sections 4.1 and
4.2).

4.3.3.1 Combining Pretraining and Voting

Naturally, the combination of voting and pretraining seems attractive and should be
evaluated. The number of lines used for training was varied in six steps from 60 to 1,000.
Each set of lines was divided into five folds and the allocation was kept fixed for all
experiments. We used two different approaches for pretraining. First, we trained the
five voters by always building from LH since it yielded the best results during previous
experiments. Second, we varied the models used for pretraining. We kept voters 1 and 2
from the first setup (trained from LH). For voters 3 and 4 FRK was utilized as a starting
point since it was trained on German Fraktur fonts which are somewhat similar to the
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broken script of the books at hand. Only one voter (5) was built from ENG as it was the
least similar one out of the available mixed models regarding both age and printing type
of the training data. This setup was slightly adapted for book 1572 as it was printed
using Antiqua types. Therefore, in this case one of the two FRK folds was pretrained
with ENG instead.

The idea was to still train strong individual models while increasing diversity among
them, hoping for a positive effect on the final voting output. The results are summed
up in Table 4.13. For reasons of clarity, detailed numbers are only provided for three
books, i.e. the ones which will be used for further experiments. The general behaviour
averaged over all books can be seen in Figure 4.9 and an overview over the progress made
by adding more training lines is presented in Figure 4.10.

Figure 4.9: Comparison of the CERs (averaged over all books for each set of lines) of
four different approaches: Baseline (no pretraining, no voting), NoP (no pretraining,
voted), LH (all five folds trained from the LH model, voted), and Mix (mixed pretraining,
voted). Adopted from [233].

In the majority of cases the combination of pretraining and voting considerably out-
performs both the default voting approach showing gains of 14% (LH) and 26% (Mix)
as well as the default pretraining approach showing gains of 29% (LH) and 39% (Mix)
when averaging over all six books and lines. As expected, the best improvements can be
achieved when using a small number of GT lines, resulting in gains ranging from 40%
(LH) and 51% (Mix) for 60 lines to 2% (LH) and 14% (Mix) for 1,000 lines.
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Table 4.13: CER in % of combining pretraining (Single Folds) and voting (Voting Result).
Single Folds contain the baseline without pretraining (Base), pretraining with LH model
(LH), and with a mixture of models (LH, LH, FRK, FRK/ENG, ENG) (Mix). Voting
Result shows the results of different voters based on no pretraining (NoP), pretraining
with LH, and and Mix. The Improvement columns show the voting gains of LH over
NoP (NL), Mix over NoP (NM ), Mix over LH (LM ), and Mix over the base (BM ). The
underlined CERs represent the starting points for the upcoming AL experiment.

1476 Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM
60 8.12 5.58 4.96 4.72 4.10 2.79 13% 41% 32% 66%
100 6.82 3.99 3.92 3.49 2.67 2.23 23% 36% 16% 67%
150 4.10 3.15 3.03 2.47 2.14 1.66 13% 33% 22% 60%
250 3.24 2.40 2.37 1.70 1.63 1.47 4% 14% 10% 55%
500 2.11 1.73 1.75 1.17 1.13 1.03 3% 12% 9% 51%
1000 1.55 1.30 1.22 0.97 0.88 0.75 9% 23% 15% 52%

1488 Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 7.28 3.97 4.28 4.38 3.05 2.50 30% 43% 18% 66%
100 4.19 2.85 3.20 2.73 2.06 1.84 25% 33% 11% 56%
150 2.96 2.26 2.33 1.81 1.51 1.24 17% 31% 18% 58%
250 2.59 1.82 1.89 1.29 1.21 1.07 6% 17% 12% 59%
500 1.50 1.40 1.38 0.91 0.95 0.79 -4% 13% 17% 47%
1000 1.17 1.06 1.13 0.71 0.72 0.61 -1% 14% 15% 48%

1505 Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 6.54 5.00 5.27 4.58 3.70 3.45 19% 25% 7% 47%
100 4.54 3.96 4.15 3.16 2.82 2.68 11% 15% 5% 41%
150 3.54 3.16 3.16 2.34 2.27 2.02 3% 14% 11% 43%
250 2.85 2.66 2.18 1.98 1.77 1.60 11% 19% 10% 44%
500 2.24 2.18 2.11 1.59 1.60 1.43 -1% 10% 11% 36%
1000 1.84 1.85 1.82 1.35 1.40 1.26 -4% 7% 10% 32%

All Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 7.98 4.42 4.49 5.34 3.22 2.64 40% 51% 18% 67%
100 4.97 3.38 3.49 2.97 2.41 2.12 19% 29% 12% 57%
150 3.46 2.78 2.87 2.15 1.96 1.67 9% 23% 15% 52%
250 3.06 2.28 2.20 1.79 1.59 1.42 11% 21% 11% 54%
500 2.05 1.86 1.77 1.34 1.27 1.12 5% 16% 12% 45%
1,000 1.59 1.46 1.42 1.08 1.07 0.93 2% 14% 13% 42%

Avg. 3.85 2.70 2.69 2.45 1.92 1.65 14% 26% 13% 53%
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Figure 4.10: Influence of the number of GT training lines compared for the approaches
Baseline (no pretraining, no voting), NoP Voted (no pretraining, voted), and Mix Voted
(pretrained with different mixed models, voted) on a logarithmic scale for CER. Adopted
from [233].

Overall, the average CER on individual folds pretrained with LH (2.70%) is effectively
identical to the one achieved by building from a variety of mixed models (2.69%). However,
in the case of applying the voting procedure over all five folds, the Mix approach yields
considerably better results than just using LH as a pretrained model, leading to an
additional reduction of recognition errors by over 13% without an apparent correlation
regarding the amount of training GT.

Comparing the best method (Mix + Voting) with the baseline, i.e. the default OCRopus
1 approach (training a single model without any pretraining or voting), shows the
superiority of the proposed approach yet more clearly. Even the error rates of strong
individual models trained on a 1,000 lines of GT are reduced by more than 40% on
average. In general, a substantial amount of GT (>250 lines) is required in the standard
OCRopus 1 training (see “baseline” in Figure 4.9) to match the result achieved by a mere
60 lines when incorporating mixed pretraining and voting, indicating a GT saving factor
of 4 or more. A similar factor can be derived when considering the average baseline CER
for 1,000 lines of GT.
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4.3.3.2 Incorporating Active Learning

To select additional training lines we utilized the models (voters) obtained from the
previous experiment. Each model recognized the GT lines set aside for AL and the best
candidates were determined by choosing the ones with the highest LDRø as explained
in Section 4.3.2.2. Next, the candidates underwent a quick visual inspection in order
to sort out lines where a positive impact on the training was considered highly unlikely
due to very rare segmentation errors or extreme degradations. Indeed, this adds a bit of
subjectivity to the task but we expected the decision whether to keep or drop a line to be
trivial in most cases. However, in our experiments we never skipped a line proposed by
the AL approach despite coming across several borderline cases which will be discussed
below.

We performed two experiments starting with different numbers of (base) GT lines
(100/250) which we kept from the previous experiment. For the passive learning approach
we added an additional 50% (50/125) of randomly selected lines. This was performed
five times and the results were averaged. As for AL we chose the lines by following
the principle of maximal disagreement incorporating the LDRø. Since the number of
characters per line may vary we made an effort to select only as many lines as necessary
to match the average number of characters in the passive learning approach.

After selecting the lines the base fold setup was kept and we distributed the additional
GT evenly over the five folds to ensure an effect on the training itself but also on the
selection of the best model. Afterwards, the training was started from scratch/from the
default mixed models while the voters were discarded.

Since the previous experiment showed the superiority of the mixed pretraining approach
we decided to omit the pretraining using LH during the upcoming experiments. Table
4.14 shows the results.

Incorporating AL leads to lower CERs for four out of six tested scenarios. While important
improvements with an average gain of almost 27% can be reported for 1476 and 1488,
1505 does not improve at all (see the discussion in the next section).

Moreover, it is worth mentioning that no clear influence of the number of the GT lines
available for training can be inferred on the basis of these results. Even when starting
from an already quite comprehensive GT pool of 250 lines AL yielded an average gain of
16% compared to randomly chosen lines.

Finally, Figure 4.11 sums up the results by comparing the baseline to the best pretraining
(Mix) approach combined with confidence voting with and without AL.

4.3.4 Discussion

The experiments show that the combination of pretrained models and confidence voting is
an effective way to further improve the achievable CER on early printed books. While the
obtainable gain is highest when the number of available GT lines is small, a substantial
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Table 4.14: Results of comparing active to passive learning. Base Lines is the number
of lines used to train the voters of the previous iteration. The lines added (Add. Lines)
randomly (Rdm) or by maximizing the LDRø (AL) correspond to 50% of the base lines.
Compared are the resulting error rates (CER) after performing a confidence vote and
(in case of Rdm) an averaging calculation. Finally, (Avg. Gain) shows the average
improvement of the voters trained by AL.

Book Base Add. Lines
Rdm/AL

CER Average
GainLines CER Rdm AL

1476 100 2.23 50 1.80 1.31 26%
250 1.47 125 1.18 0.90 24%

1488 100 1.84 50 1.54 1.05 32%
250 1.07 125 0.86 0.65 24%

1505 100 2.68 50 2.17 2.21 -2%
250 1.81 125 1.60 1.57 2%

Figure 4.11: Results of the AL experiments for three books at two different sets of lines
comparing the Baseline (no pretraining, no voting), Mix Voted (pretrained with different
mixed models, voted) and Mix Voted + AL (Mix with additional lines chosen by AL).
Adopted from [233].

reduction of ATR errors can still be expected even when training with several hundreds
of lines.

An interesting result of our experiments is that the variability of the voters has a clear
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influence on the voting result and can even outweigh a superior individual quality of the
single voters. This explains why using a variety of models for pretraining considerably
outperformed N -fold training from the LH model (as clearly shown by the last line of
Table 4.13) even though it represented the best fitting one of the available mixed models.
Since training from an available model skips the random initialization of values in the
weight matrix for pre-existing characters an important chance of introducing diversity to
the training process is skipped, resulting in quite similar models even when trained on
different but still heavily overlapping folds of training GT.
Following the proposed approach of combining a mixed pretraining with confidence voting
allows for a substantially more efficient use of the available GT. On average we were
able to achieve the same results as the standard OCRopus 1 approach requiring less
than one fourth of the number of GT lines to do so. Moreover, a tiny amount of GT –
only 60 lines – was enough to reach an average CER of close to 2.5%. Only two out of
six books showed a CER greater than 3% but comfortably surpassed this value when
adding another 40 lines of GT, raising the average to almost 2% CER, which is already
considered good enough for many areas of application.
Despite these improvements, there are opportunities for optimizing the achieved results
even further, e.g. in applications where the goal is to manually check and correct an
entire book in order to obtain a CER of close to 0%. The experiments showed that our
method also significantly outperforms the standard approach when training on a very
comprehensive GT pool of 1,000 lines, resulting in an average CER of less than 1%. As
an example, Figure 4.12 gives an impression of input (scanned page image) and ATR
output for the 1488 printing with a CER of 0.60% reached by training on 1,000 lines
combining pretraining using a variety of mixed models and confidence voting.
Even if the transcription of an entire book is intended, the goal still should be to
minimize the CER by investing the least possible manual correction effort. Therefore,
an iterative training approach makes sense and an efficient selection of further training
lines is important. Our experiments on AL showed that choosing additional lines in an
informed manner can offer an even more efficient way to use the available GT. Despite
one of the books not responding at all to the proposed method, the three evaluated
books still showed an improvement of 17% compared to the mixed voting approach when
selecting additional training lines randomly for transcription. It is worth mentioning that
during our experiments the number of lines presented to the committee of voters was
considerably smaller than in a real world application scenario where it might be sensible
to take as many as possible, if not all, yet unknown lines into consideration in order to
choose the most promising ones in terms of information gain. This might have a positive
effect on the achievable results of the AL approach.
A likely explanation for the lack of improvements of the 1505 book by AL is the degree
and type of degradations of the lines queried for training by the voting committee which
is illustrated by some example lines shown in Figure 4.13. The lines on the left are
examples the voters fully agreed on and, as expected, got recognized correctly by the
base models trained with 100 lines of GT. On the right some of the lines for which the
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Figure 4.12: Snippet of a scanned page for 1488 and its best ATR output by combining
mixed pretraining and voting. The resulting CER of 0.60% was achieved by training on
1,000 GT lines. The remaining four recognition errors are marked in red and underlined.
Adopted from [233].

committee disagreed the most are shown, i.e. the ones with highest LDRø. For 1476
(top) the lines shown had a ratio of 0.45 and CER of 9.44%. There are some signs of
degradation, mostly moderately faded glyphs. The worst lines selected from 1488 (middle,
0.72 LDRø, 33.68% CER) mostly suffered from noise while the glyphs of 1505 (bottom,
0.64 LDRø, 30.77% CER) frequently show severe deformations. This might be a sensible
explanation why AL works very well for 1476 and 1488 but not at all for 1505. Despite
the fading and the noise the glyphs of 1476 and 1488 look much more regular than the
deformed ones of 1505, at least to the human eye. Therefore, the models trained for 1476
and 1488 using AL learned to see through the effects of fading and noise and earned
additional robustness, resulting in a considerable gain in CER. In the case of 1505 the
AL models were fed many lines showing severe but very irregular degradations which
may have led to an increased robustness but probably did not improve the recognition
capability of regular lines as much as the passive learning lines did.

4.3.5 Conclusion and Future Work

This section proposed a combination of pretraining, confidence voting, and AL in order
to significantly improve the achievable CER on early printed books. The methods were
shown to be very effective for different amounts of GT lines typically available from
several hours’ transcription work of early printings.
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Figure 4.13: Example lines of the three books 1476 (top), 1488 (middle), and 1505
(bottom) which were presented to the committee. The left column shows perfectly
recognized lines (LDRø of 0.0). On the right some of the most erroneous lines are
presented (LDRø of 0.45 (1476), 0.72 (1488), and 0.64 (1505)). Adopted from [233].

In the future we aim to utilize the positive effect of more diverse voters even further. In
general, a higher degree of diversity can be achieved in two ways:

1. By the inclusion of more mixed models for pretraining. Since there are only a few
good mixed models freely available to date, there is a great need and sharing is key.
To lead by example we made part of our GT data and models available online6.

2. By varying the network structure used for training representing a viable leverage
point to increase diversity even further.

Clearly, the combination of both intended improvements also represents a very promising
approach.

To optimize the achievable results, extensive experiments regarding parameter optimiza-
tion are required. This includes the number of folds/voters, the kind of network they have
been trained on, and the method of combination of mixed models used for pretraining,
as well as the number of lines the training is performed on.

As for AL an important additional approach is to not only utilize it in order to choose
new training lines before the actual training process but also to get involved during the
training itself. The standard approach is to randomly select lines and feed them to the
network. A more efficient method might be to decrease the chance to get picked for lines
which already got perfectly recognized and consequently increase it for lines which still
cause the current model a lot of problems.

Concerning the maximal disagreement approach for line selection, it would be interesting
to experiment with other ways to determine those lines that offer a maximal information

6https://github.com/chreul/OCR_Testdata_EarlyPrintedBooks
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gain. Utilizing the ATR engine’s intrinsic confidence values that we already use during
our voting approach comes to mind but also measures like the Kullback-Leibler-Divergence
[154].

Finally, despite our focus on early printed books the proposed methods are applicable
to newer works as well. Especially 19th century Fraktur presents an interesting area of
application. Since the typically used Fraktur typesets are more regular than those of the
books used during our experiments the goal is to produce a mixed model with excellent
predictive power and to avoid book-specific training at all. This topic will be addressed
in greater detail during the corresponding case study in Section 7.1.
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This chapter focuses on the OCR4all software. After explaining its general idea, we
first introduce the data structure, describe the workflow and its individual modules,
including their input/output relations, in detail before looking at the encapsulating web
GUI which offers various possibilities to influence the workflow by manual corrections or
configurations.

5.1 Goals, General Idea, and Historical Development

As discussed during the introduction the main goal of OCR4all is to enable non-technical
users to perform OCR on even the earliest printed books completely on their own while
still meeting the highest standards regarding layout markup and ATR quality. To
facilitate this, the entire workflow, starting from the scanned images and ending with
machine-actionable text, had to be made available to the users in a comprehensible
and controllable way. As the goal was to utilize and build from existing state-of-the-art
open-source solutions as much as possible, a suitable method to run and distribute the
software had to be found which is discussed in detail in Section 5.8.1. Since fitting
open-source tools often rely on the usage of the command line, which is unfamiliar and
error prone for non-technical users, a GUI had to be provided allowing the users to
comfortably operate each of the incorporated tools via a uniform interface and without
having to deal with their individual particularities. In addition, powerful interactive
correction tools allowing to interfere at basically any stage of the workflow in order to
minimize consequential errors.

In addition, OCR4all was initially designed to support the OCR of (very) early printed
books and was geared towards the production of quotable text, that can be used in
digital editions and aims to be free of errors. Furthermore, the goal was to allow the
users to pursue their very own ideas regarding the analysis and markup of complicated
layouts, often including a fine-grained semantic distinction already on layout level in
order to allow a complete reconstruction of the scan based on the collected information
later on, if desired (see Figure 5.1 for an example). Combined with the, due to the highly
variant typography and the desired perfectionism regarding ATR accuracy, imperative
book-specific model training the processing of a book requires a certain amount of manual
effort. However, we of course neither wanted to restrict the users to the processing
of very early printed books nor wanted to force them to always invest manual effort
into interactive layout markup and book-specific training, and therefore added further
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functionality to ensure a fluent passage towards a fully automated approach when dealing
with later and more uniform works.

Figure 5.1: Example segmentation result of a early printed books in line with very
specific user requirements regarding the fine-grained semantic distinction of layout regions
(indicated by different polygon colours) and the reading order (pink numbers and their
connecting line).
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5.2 Data Structure

Regarding our data structure, apart from different representations of page images we
focus on PageXML (cf. Section 2.7) as the main carrier of information. This allows for
a modular integration of the main submodules of OCR4all and sets up easy to fulfill
requirements regarding interfaces, ensuring a reasonably straightforward addition of new
submodules or replacement of existing ones. Additionally, defining a unified interface for
all tools and modules enables the usage of a comprehensive post processing functionality.
Another positive side effect of this approach is that submodules developed by us for
OCR4all can be integrated analogously into other OCR workflows that use PageXML.

During the setup procedure a database containing two folders, data and models, is
mounted from the host system into the docker container. While the first one allows to
directly add new input files into the system and provides access to the final output as well
as the interim results, the second one enables the user to import external ATR models or
to extract trained models, for example in order to share them with fellow OCR4all or
Calamari users. To add a new book the user simply has to create a new project folder
within the data folder including an input folder containing the scans as single images or
as one or several PDF files. During the processing of a step the resulting images and
PageXML files (see the individual modules below for a detailed description) are kept in a
processing folder before the final results can be generated as output. Figure 5.2 shows an
example of the folder and data structure in OCR4all.
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Figure 5.2: Example of the OCR4all folder and data structure. The data folder contains
three books: cirurgia, ehrenstein, and nebucadnezar. In the models folder several book-
specific (e.g. cirurgia) and mixed (e.g. antiqua_historical) models are stored. Each book
comprises an input folder that contains the original images. All intermediary results
are kept in the processing folder, including a binary (.bin.png) and grayscale (.nrm.png)
image as well as a PageXML (.xml) file for each page. All relevant intermediary and
final results are stored within the PageXML: the ImageRegions and TextRegions with
their semantic types, ReadingOrder, orientation, coordinates, and lines including their
coordinates, ATR result, and GT (TextEquiv 1 and 0, respectively).
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5.3 Workflow

Figure 5.3 shows the steps of the workflow implemented in OCR4all. After acquiring
the scans and an optional preparation step the original images can be placed into the
workspace. Next, image preprocessing is applied to the scans before several steps, like
region segmentation and extraction as well as line segmentation, produce line images
required as input for the ATR or GT production. The output of the character recognition
can either directly serve as the final result or can be corrected by the user which enables
a training of more accurate book-specific models, yielding better recognition results.

Figure 5.3: The main steps of the OCR4all workflow as well as the optional image
preparation and post correction steps which are not part of the main tool (yet). Adopted
from [229].

In the following we discuss a typical workflow by going through the first three main steps
from Figure 1.1 (preprocessing, segmentation, and ATR) and discuss the corresponding
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modules in OCR4all as shown in Figure 5.3. Furthermore, we always state the input
and output relation of each module by describing the actual data each module works
on, which is often produced by combining the information stored as PageXML with the
preprocessed grayscale or binary image.

5.4 Preprocessing

In the preprocessing step the input images are prepared for further processing. Before
the two standard sub tasks binarization and deskewing take place, an optional external
preparation step can be performed.

5.4.1 Image Preparation

Input: unprepared image (image containing two scanned pages, a page rotated in an
undesired orientation, ...)
Output: prepared image (single page in an upright position)
OCR4all expects the input images to be in an upright position and already segmented
into single pages which can easily be achieved by using ScanTailor (cf. Section 2.2.2.1).
Furthermore, it is recommended to remove excessive amounts of scan background,
although this is not mandatory. Figure 5.4 shows an example of a valid and an invalid
input, which also represents a possible input and output of ScanTailor, as well as the
outcome of the upcoming binarization and deskewing sub steps. In fact, ScanTailor is not
a true OCR4all submodule since it cannot be integrated due to the lack of a web-based
user interface. However, we still decided to list it as a module since this step belongs to
the workflow and the input images have to be added from external sources anyway. It is
possible to deal with unprepared images like the ones described in the input completely
within OCR4all but it certainly is not the recommended course of action. Incorrectly
oriented scans generate additional effort during the upcoming deskewing step (cf. Section
5.4.3) and scans with a lot of periphery or containing two pages are harder to display
and to work with in the interactive steps like region segmentation using LAREX and
manual corrections (cf. Sections 5.5.1.1 and 5.8.2, respectively).

5.4.2 Binarization

Input: original image (color, grayscale, or binary)
Output: binary (and flattened grayscale) image(s)
During the binarization sub step the input image gets converted into a binary and
(optionally) a flattened grayscale image. We use the OCRopus 1 nlbin script which we
explain over the next two sections since it also performs the deskewing operation. The
binary/grayscale conversion is performed by applying an adaptive technique proposed by
Afzal et al. [6] which is explained in the following and depicted in Figure 5.5.
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Figure 5.4: An example input and output of the image preparation and preprocessing
steps. The image on the left represents an workable but undesirable input for OCR4all
while the ScanTailor output in the middle is completely sufficient. During the preprocess-
ing step the skewed color image in the middle is transformed into the deskewed binary
image on the right. Adopted from [229].

Algorithm First the original image is converted to grayscale using a standard operation.
After ensuring that it is neither completely black nor white, a normalization step is
applied to ensure values between 0 and 1. In the subsequent so-called flattening step the
local whitelevels are estimated for each pixel by first running a percentage filter with a
vertically stretched kernel on the grayscale image and then processing the outcome with
a horizontally stretched kernel. In both cases the local background intensity for a pixel is
estimated by calculating the 80th percentile value (default) from the filter pixels which
works as follows: First, all pixels under the kernel (default size 2x20 or 20x2; applied in
an overlapping way) are sorted according to their grayscale values in ascending order.
Then, the value representing the 80th percentile, that is the value below which 80% of the
grayscale values may be found, is assigned to all pixels covered by the current filter kernel.
After inverting the result and adding it to the normalized grayscale image, leading to
a suppression of the background, another percentile-based operation is performed: Per
default pixels with grayscale values lower than the 5th percentile of all values are set to
0, and pixels with grayscale values higher than the 90th percentile are set to 1. Next,
clipping the pixel values to [0, 1] results in the flattened grayscale image which represents
the first of the two final outputs of the algorithm. The second one is the binary image
that is produced by binarizing the flattened image with a global threshold of 0.5 (default
value).

Conclusion The approach described above is able to reliably produce high quality results
even when facing difficult conditions, such as heavily degraded scans with considerable
brightness variations and bleed through. In addition, it is reasonably fast and due to the
local estimation very robust against scan periphery. The high degree of parametrization
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Figure 5.5: Steps of the OCRopus 1 nlbin binarization algorithm: Top: original image
(left), standard grayscale image (middle), result of the local whitelevel estimation using
the vertically stretched percentile filter (right). Bottom: result of the local whitelevel
estimation using the horizontally stretched percentile filter (left), flattened grayscale
image (middle), resulting binary image (right).
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theoretically allows for a precise adaptation to the material at hand, however, in our
experience many parameters, and consequently the effects when changing them, are
rather obscure.

5.4.3 Deskewing

Input: skewed image
Output: deskewed image

While the binarization substep is mandatory to enable and facilitate the upcoming image
processing applications, the deskewing on page level is optional since its main purpose is
to support the line segmentation process (see below) that operates on segmented regions
which are individually deskewed beforehand anyway. Yet, depending on the degree of
skewness of the original scans, it can be very beneficial to perform deskewing already on
page level as it can considerably simplify the region segmentation.

Algorithm The deskewing algorithm implemented in OCRopus 1’s nlbin script is a
simple, yet effective brute force approach. Its general idea is that the CCs, i.e. mostly
letters, within straight text lines form a certain pattern where the top and bottom end
of characters and, if present, their ascenders and descenders as well as the inter line
spacings are horizontally aligned. Naturally, this is not or at least much less the case for
skewed lines. In other words, when looking at the row sums of pixel values in a deskewed
image, there will be several sharp peaks where lots of black pixels line up, especially
at the top and bottom of characters without any ascenders or descender. Additionally,
there will be areas with next to no black pixel, i.e. the white areas between the lines.
Apparently, these peaks will be much weaker or even non-existent when the image is
skewed. To quantify this observation the variance is utilized since it is expected to be
maximized when the image is perfectly straight. Figure 5.6 demonstrates this effect.

In practise the algorithm determines a suitable rotational angle by evaluating several
solutions and picking the best one: First, a list of to be tested angles is defined using two
parameters: the maximum angle and the step size. The respective default parameters
2 and 8 indicate that angles between -2 to +2 degrees are evaluated using eight steps
per degree, so -2, -1.875, -1.75, ... , 1.875, 2. Then, for each angle in the list, the binary
image is rotated by that angle, the algorithm counts the black pixels in each row of the
resulting image, and calculates the variance among the collected values. The angle that
yielded the highest variance is chosen and the corresponding grayscale and binary images
are kept as output.

Conclusion Despite its simplicity the deskewing algorithm is very effective, robust, and
reliably produces great results for the vast majority of pages. However, there are several
drawbacks: First, due to its brute force nature, the required computational effort can
be quite substantial. Second, the to be tested angle range has to be specified. While
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Figure 5.6: A skewed (top) and deskewed (bottom) version of the same region image.
On the right the number of black pixels within the corresponding row of the image is
visualized: the more black pixels present in a row, the darker the color.

the optimal deskewing angle cannot be found if a too low value is chosen, higher values
directly increase the runtime considerably. A possible solution for this problem could be a
two-stage approach that first performs a coarse computation to determine an approximate
range where the “optimal” angle is located, before a subsequent more fine-grained search
refines the result.

5.5 Segmentation

During the segmentation main step the preprocessed images are first segmented into
regions. Then, after extracting the ones containing text the line segmentation is performed.

5.5.1 Region Segmentation

Input: preprocessed image
Output: structural information about regions (position and type) and their reading
order

The general goal of this step is to identify and optionally classify regions in the scan.
There are different manifestations which considerably impact the complexity of the task
and entirely depend on the material at hand, the use case, and the individual requirements
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of the user. For example, when the goal is to OCR a book for editorial purposes it is
mandatory to obtain a flawless text and consequently a (close to) flawless segmentation
result is advisable. Additionally, in these cases it is often desired to perform a semantic
classification of text regions already on layout level. Therefore, a considerable amount of
human effort has to be expended. On the contrary, the most simplistic approach would
be to only distinguish between text and non-text regions in order to obtain a good ATR
result, for example to be used in different Natural Language Processing (NLP) tasks
which do not require flawless texts. Naturally, this is a considerably less costly process
and can even be a trivial task, depending on the input material. For both scenarios
OCR4all offers viable solutions which will be briefly explained in the following.

Figure 5.7: Left: a LAREX segmentation output consisting of an image (green), running
text (red), marginalia (yellow), image caption (blue), and the page number or folio
identifier (cyan), as well as the reading order. Right: output of the Dummy Segmentation
for a standard 19th century novel layout. Adopted from [229].

5.5.1.1 LAREX

For complex layouts and especially when a fine-grained semantic distinction is desired
(see for example Figure 5.7, left), the open-source [156] tool LAREX (Layout Analysis
and Region Extraction) [232] is a good choice. It offers the user a variety of automatic,
assisted, and fully manual tools which allow to gather a complex page layout with
reasonable effort. The segmentation procedure is user-driven and relies on a simple
CC approach for the fully automatic part of the workflow. It is based on two main
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assumptions: First, it starts from the premise that related characters, words and text
lines usually are closer to each other than unrelated ones. Second, it expects most pages
within the same book to have similar layouts or at least to belong to one of only a few
layout categories which is almost always the case, even when dealing with early printed
books.

LAREX is not designed to be able to automatically segment any given document to
perfection. In contrast, it aims to provide the user with a quick and easily comprehensible
way to adapt to a given layout, get a segmentation suggestion, and then to manually
correct it if necessary. Therefore, the correction operations should be as simple as possible
and deliver an immediate feedback. The tool is programmed in Java. All required image
processing operations were performed by using the OpenCV library [44].

The general workflow LAREX follows to deal with a single page is depicted in Figure 5.8
and explained step by step in the following.

1. Preprocessing: input Ñ resized binary ([A] in Figure 5.8).

a) Conversion to binary1.

b) Definition of a region of interest (optional).

c) Resizing the image.

2. Image detection ([A] Ñ [B]).

a) Region Growing: many small regions Ñ fewer large regions (optional).

b) Region Classification: image ÐÑ no image.

3. Coarse text region detection.

a) Region Growing: many small regions Ñ fewer large regions ([C]).

b) Region Classification using constraints on attributes of regions:
regions Ñ region types ([C] Ñ [D][E]).

4. Manual amendments and optional text sub region classification ([E] Ñ [F]).

5. Conversion to output format.

Preprocessing LAREX accepts color, grayscale, and binary images as input. However,
the upcoming region growing and contour detection operations require the binary format.
Therefore, a conversion is performed if necessary. Of course, the resulting segmentation
still corresponds to the original input image. The user can work on the entire binary
image or specify a region of interest by drawing a rectangle, e.g. to exclude artifacts of
the input image due to scanning. Everything outside the specified area is ignored and

1Of course, this step is not necessary if the input is already a binary image but first, LAREX also allows
to operate on the flattened grayscale image produced during the binarization step (cf. Section 5.4.2)
and second, LAREX can also be used as a stand-alone tool allowing the usage of arbitrary color and
grayscale images.
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Figure 5.8: Typical LAREX workflow for a single image. A: binary, B: after image
detection, C: after image removal and region growing, D: after text region classification
(P: paragraph, M: marginalia, PN: page number), E: raw algorithm output, F: after user
amendment. Adopted from [232].
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will not have any effect on the rest of the segmentation process. A region of interest
can either be specified for a single page or be applied for the entire book. It can be
adjusted at any time. The image is resized to a given resolution (default: 1,600 pixels in
height) in order to speed up the segmentation process and to normalize parameters like
the upcoming dilation catchment areas or the required minimum size of the regions.

Image Detection Images are expected to have a certain minimum size and ideally
to possess a border. First, a dilation operation is applied using small kernel values to
prevent letters and words from merging as well. It may be imagined as a growing process
during which black foreground pixels within a defined kernel grow together. All CCs
bigger than the given image size threshold (default: 3,000 pixels) are marked as image
components which, if desired, can represent the final output of this step. However, in
most cases a postprocessing step is sensible: If the bounding rectangles of several image
components overlap, they are merged and the resulting (straight or rotated) bounding
rectangle is calculated. This step is repeated until no further merges are possible. For
further processing either only the contours themselves or the bounding rectangles around
them are removed from the image.

Coarse Text Region Detection Afterwards, another dilation process with a bigger
kernel than before takes place (step 3a). Then in step 3b, the newly emerged regions are
assigned a type by enforcing several constraints. The constraints for type classification use
region attributes like size and position. Both can comfortably be specified and adapted
by the user via the GUI. The position constraints are visualized as rectangles of different
colors, indicated the region type (running text, marginalia, ...) they belong to. For all
types it is checked if the area of the region is bigger than the type-specific minimal area.
If this is the case and if the bounding rectangle of the region is completely covered by
one of the rectangle positions of the type, the region is assigned that type.

Conversion to output format When the user is satisfied, the segmentation result can
be stored as an XML file using the PageXML format. Thus, the segmentation result is
recalculated to the true size of the input image.

Manual Adaptations In many cases the default parameters will not lead to a satisfying
segmentation result. In the following, global and local operations to improve the results
are shown.

Figure 5.9 shows an example outcome of the default setup compared to using adjusted
parameters as well as the means necessary to derive a mask that precisely describes the
individual layout of this individual page but also of almost all other pages within this
book. The settings can be saved and applied to the rest of the book as well as to other
books with similar layouts resulting in significant speedups with regard to the region
segmentation process.
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Figure 5.9: Example outcome of the LAREX segmentation when using the default
(left) and slightly adjusted (right) parameters. The default setup consists of four regions
(image: green, can occur anywhere on the page; paragraph: red, anywhere; marginalia:
yellow, left and right 25%; page number: cyan, top and bottom 25%). Naturally, the
obtained result is far from optimal and there is still some work to be done. The swash
capital was correctly detected as was the page number. However, the marginalia regions
got classified as paragraph, as their outer contour was not located entirely within the
marginalia regions. Furthermore, there is a signature mark at the very bottom of the
page. Lastly, the vertical spacing between text lines is relatively big, leading to the
unwanted separation of text blocks. The default setup can be easily adapted by only a
few clicks. First, the page number position at the bottom is deleted and the upper one is
slightly adjusted, as in this book page numbers always occur at the top center of the
page. Furthermore, the marginalia regions have to be expanded towards the middle of
the image. The dilation parameters are slightly increased. Finally, another region of the
type signature-mark (maroon) is added and located at the bottom center of the page.
Adopted from [232].
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For special cases the user can make amendments like adjustment of region parameters or
the manual adaption of the obtained segmentation result by deleting segments, changing
their type and splitting or merging them. For example, in Figure 5.9 the signature mark
is connected to the bottom text block which is difficult to correct with global parameter
optimization. There are several ways to deal with such problems which will be discussed
in-detail during the Manual Corrections section (cf. Section 5.8.2). It is worth mentioning,
that it is also possible to load existing segmentation results into LAREX and mostly use
it as an editor by comfortably correcting the results, if necessary.

Conclusion The primary goal of LAREX is not to fully automatically achieve a decent
standardized result but to enable the users to obtain their personal 100% result with
manageable effort. This is particularly true for the desired complexity of the segmentation,
that is the degree of semantic distinction within the result. Therefore, LAREX relies on
a simple, yet effective rule-based approach which is very fast, easily comprehensible, and
consequently easily adaptable for basically any given user.
Initially LAREX was developed to support the Narragonien digital project (cf. Section
3.1.1.1) where many editions had similar properties the ones shown in Figures 5.7, 5.8,
or 5.9, i.e. relatively complex but regular layouts which can be projected to layout masks
relatively well. Preliminary evaluations showed that LAREX provides an efficient and
flexible way to segment pages of these early printed books: In a case study [232] on an
edition of the Narrenschiff with complex layout it took a human processor with some prior
experience using LAREX 2 hours and 18 minutes to segment the entire book including a
fine-grained semantic distinction of layout elements. For comparison, a processor with
extensive experience using Aletheia (cf. Section 2.3.1.4) only managed 160 pages (28% of
the entire book) during the same time frame.
Naturally, the relatively straight forward region growing-based segmentation approach
has its shortcomings when the regions are not clearly spatially separated. For example, a
quite common problem is that the marginalia are directly attached to the main text and
the user has to manually interfere to obtain a precise segmentation. However, this can
be done very efficiently due to the comprehensive manual tools and due to the fact that
the automatic algorithm takes manual corrections into account and adapts the results
accordingly, in this example by labeling all cut off regions as marginalia. The main
drawback of LAREX is that, at least as of now, it expects the user to have a look at every
single page and approve each result individually. Naturally, while checking each page
is almost imperative for very complex layouts and high user expectations, it cannot be
considered the preferred solution for considerably more moderate or even trivial layouts.

5.5.1.2 Dummy Segmentation

For this other end of the spectrum, OCR4all offers the so-called Dummy Segmentation
which for the most part simply considers the entire page as a single running text segment
(see Figure 5.7, right). Optionally, the user can activate a straight forward image detection
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routine that operates analogously to the LAREX approach. While admittedly the Dummy
Segmentation represents a highly simplified approach, which initially was only introduced
due to technical reasons in order to basically skip the interactive region segmentation
using LAREX without having to alter the general workflow, our experiences working
with it have been very positive for several reasons: Most importantly, the upcoming
line segmentation step actually comprises several additional segmentation capabilities
which allow to process more complex inputs than already separated regions. For example,
there is a rudimentary implicit text/non-text segmentation available as well as a highly
performant column detection functionality. Furthermore, because of the additional
capabilities of the line segmentation (cf. Section 5.5.2), the Dummy Segmentation can
actually be applied to an unexpectedly wide variety of historical printings and, in fact,
runs fully automatically and basically at no cost. On the downside, this approach does
not perform any kind of meaningful semantic distinction of text parts.

Of course, we have been experimenting with more sophisticated approaches like pixel
classifiers, but the lack of fitting GT, both in terms of quantity, but also quality, led to
unsatisfying results, at least when targeting a mixed model as a generic solution. This
topic will be addressed in greater detail during the Conclusion in Chapter 8.

Naturally, the user can decide on a page by page basis which segmentation approach to
apply. For example, if a book starts with a quite complicated title page and a complex
register, both in terms of layout, but apart from that consists of pages with a trivial
one column layout, the user can easily segment the first few pages using LAREX and
then switch to the dummy segmentation for the remainder of the book. Due to the well
defined interfaces all preceding and subsequent steps can be applied to all pages in the
exact same manner and without any further differentiations.

5.5.2 Line Segmentation

Input: text regions
Output: extracted text lines

The actual line segmentation operates on individual region images instead of the entire
page. Therefore, the text regions identified during the segmentation step need to be
extracted from the page images which is done by a region extraction sub step. We
cut out the polygons stored in the PageXML file from the corresponding binary image.
By extracting the exact polygon instead of just the bounding rectangle it is ensured
that even complex alignments of several regions can be processed without any overlap
of other regions. After the extraction, the region images are separately deskewed by
applying the OCRopus 1 nlbin script. Processing the regions one by one can lead to
considerably better results than the standard deskewing on page level. Especially pages
from very old printings frequently contain areas/regions which are skewed independently
from each other, either because of inaccuracies during the printing process or due to
physical degradation leading to deformed pages. Clearly, a “globally optimal” skewing
angle on page level cannot deal with these situations. Since the deskewing operation can
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be computationally expensive, the detected angle is stored in the PageXML and reused
if the line segmentation is run again, for example with different parameters. Of course,
the angle loses its validity and is consequently deleted, if the region outline is changed.

Since first impressions indicated that the performance of the OCRopus 1 approach and
the one of OCRopus 3 are very similar, we focus on the traditional method since it is less
of a black box approach and offers comprehensive parametrization capabilities. Hence,
the actual line segmentation is performed by applying the OCRopus 1 line segmentation
algorithm to the extracted and deskewed region images.

Algorithm In the following we describe the line segmentation algorithm implemented in
OCRopus 1’s gpageseg script. Figure 5.10 shows intermediate results from the individual
sub steps using an example image.

After inverting the binary image the so-called scale value, which basically represents
the x-height, i.e. the height of characters without ascenders and descenders (cf. Section
2.3.2.1 and Figure 2.1), is determined by calculating the median value of the y sizes
of all CCs. Next, CCs that are considered unlikely to be characters, because they are
too big or too small according to scale, are removed in order to eliminate noise and
other unwanted elements like separator lines. Then, the algorithm optionally looks for
columns by searching for vertical background separators of a certain length and width.
In our example some candidates are found at positions where the inter word distances
are relatively big but are then discarded due to insufficient size properties. Just like the
rest of the line segmentation algorithm the column detection is highly parameterized and
incorporates plenty of heuristics. For all parameters sensible default settings are available
that do not have to be altered in the vast majority of cases. The column separation
represents an exception to the rule as it requires the number of column separators to
look for. For example, a standard two column layout has three separators: left and
right border as well as in between the columns. Next, small CCs, mostly punctuation
and diacritica, are temporarily removed to perform the next step: The top and bottom
borders of the bounding boxes around the remaining CCs are horizontally blurred with
some postprocessing including maximum filters returning the top and bottom boundaries
of the so-called seeds. Expanding these seeds, again based on the scale value, then yields
the final labeling by assigning the CCs to their respective text lines based on their overlap.
CCs are mostly allocated as a whole but can also be split, if necessary, by again making
use of heuristics.

Finally, a smearing algorithm is used to connect the CCs or their respective parts to a
tight-fitting polygon in order to produce an optimal line segmentation result, exclusively
containing the desired letters.

Conclusion Our adapted version of the OCRopus 1 gpageseg script has proven to be
able to comfortably deal with the vast majority of line segmentation task. One of the
main reasons for this is the fact that the output produced by the applied algorithm is

136



5.5 Segmentation

Figure 5.10: An example of the OCRopus 1 gpageseg functionality. First row: input
binary (left); inverted image (right). Second row: cleaned image (left); column separator
candidates (white, right). Third row: blurred tops (green) and bottoms (red) of the
remaining CCs (blue, left); generated seeds (pink, right). Fourth row: spreaded seeds
(left); resulting labeling of the CCs (right). Fifth row: generated line polygons (left, not
part of gpageseg); magnification of the input and final output of the two touching glyphs
on the bottom right of the text block.
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Figure 5.11: Example of the line segmentation step. Top: input image of a very
challenging text snippet. Bottom: high quality line segmentation result showing the
individual line polygons. For reasons of clarity, altering lines are depicted in different
colors. Adopted from [229].

considerably more complex than just the bounding rectangle of a text line: Analogously
to the region segmentation step the usage of exact polygons even allows to segment lines
whose bounding rectangles considerably overlap. An extreme example of the segmentation
capabilities is shown on the bottom of Figure 5.11. The subsequent ATR step had no
difficulty with the recognition of each separate line. Other positives include the reasonable
speed of the approach, and its basic text/non-text segmentation and column detection
capabilities.

A major drawback of the method is its overdependence on and overreliance to the scale
value which becomes especially apparent when dealing with pages or text blocks where
the font size varies considerably, leading to lines split in half or merged together. An
example of a quite common problem is shown in Figure 5.12. The scale value is oriented
towards the size of the many smaller running text lines which leads to two seeds being
planted within the running head line, resulting in a split. It is important to note that
these effects can be heavily influenced in a positive way by either performing a region
segmentation first and then run the line segmentation for each region, as it is done in
OCR4all, or by manually adjusting the scale parameter.

Figure 5.12: Example for a failed line segmentation due to varying font sizes. Left: Top
snippet of a page with a large sized running head and several running text lines about
half as high. Right: Severely flawed line segmentation result with the running head line
mostly cut in half (detected lines indicated by red rectangles).
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5.6 Automatic Text Recognition

After obtaining the text lines the ATR main step can be performed including the character
recognition either by applying available mixed models or the results of a book-specific
training. Furthermore, an error analysis of produced outputs is provided which, just
like the training, requires GT that can be produced by manual correction which we will
discuss later on.

5.6.1 Character Recognition

Input: text line images and one or several ATR models
Output: textual ATR output on line level

After segmenting the pages into lines it is now possible to perform ATR on the results.
As of now, Calamari is the only ATR engine which is integrated into OCR4all by default.
However, due to the well defined interfaces additional engines can be added and operated
with manageable effort.

For the application in OCR4all we make use of Calamari’s PageXML interface which
cuts out the text lines from the corresponding binary or grayscale images according
to their coordinates and passes them into the recognizer. In general, the recognition
module allows to either apply self trained book-specific models, which we will address in
the next section, or to resort to mixed models. These models have been trained on a
wide variety of books and typesets and, depending on the material at hand, can usually
provide at least a valid starting point to start off the manual GT production or even
already provide a satisfactory final result. OCR4all comes with four single standard
models [198] which are automatically incorporated and made available when building the
Docker image: antiqua_modern (introduced as AM in Section 3.3.2), antiqua_historical
(AH), fraktur_historical (FH), and fraktur_19th_century (outcome of the case study
described in Section 7.1). Since voting ensembles have proven to be very effective (cf.
Section 4.1), we additionally provide a full set of model ensembles [64] consisting of five
models for each of the four single model areas mentioned above, which can be downloaded
and directly added into OCR4all. As shown in Figure 5.13 the to be applied models can
be comfortably selected.

Calamari supports the utilization of an arbitrary number of models. If only one model is
applied, its output is directly considered as the final result and is consequently added to
the corresponding line element in the PageXML file. The application of several models
automatically triggers the confidence voting procedure where the final result is calculated
from the single outputs of all the voters. Apart from the standard textual output it is
also possible to enable an additional, extended output that includes information like
the intrinsic ATR confidence values calculated by Calamari or the pixel positions of the
detected characters within the line. Parts of this data could also be stored by using
PageXML but since we want to keep as much information as possible, including detailed
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Figure 5.13: Example model selection process in OCR4all with the goal to select the
19th century Fraktur model ensemble for recognition. Top: Initial situation with a list of
all available mixed and book-specific models (left) and currently no models selected for
recognition (right). Bottom: Filtering result showing only models containing the search
term “19” (left). Final model selection (right).

and comprehensive lists with character alternatives and their respective confidences, an
additional storage format (JSON [45]) is required.

After transcribing lines or by correcting an existing ATR output, which we will cover in
detail in the section on manual corrections below, the model training can take place.

5.6.2 Model Training

Input: line images with corresponding GT, optionally already existing models to build
upon and a corresponding Whitelist (cf. Section 4.2.2.6)
Output: one or several ATR models

The model training which allows to train book-specific Calamari models is not only one
of the most central modules of the entire workflow but also probably the most complex
and challenging one when it comes to enabling non-technical users to utilize all available
features. The training algorithm possesses a variety of hyper-parameters which can
impact the procedure considerably [57] and therefore has to be treated with great care.
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To begin with, one crucial aspect when dealing with the training of neural networks is the
omnipresent challenge of determining when to stop the training process and choosing the
best model, which is the one with the “optimal” weight configuration. To avoid overfitting
we follow the established approach of setting aside a small chunk of the training material
as a test set (cf. Section 4.1.2.3) which is realized by passing appropriate parameter
settings into Calamari. Then, after a certain number of training iterations the current
model is applied to and evaluated on this test set. The model which performed best is
denoted as the best model and stored for further processing. Regarding the termination
of the training we make use of the so-called early stopping provided by Calamari that
basically observes the training progress and aborts as soon as no significant improvement
can be expected anymore. This procedure requires several parameters which determine
the stopping criterion and how frequently to evaluate the current model. To guard
the users from having to deal with the underlying theoretical concept but still ensure
sensible parameters, we developed a routine, that derives fitting values for all required
settings from the available amount of training data, and was incorporated into Calamari.
Naturally, experienced users are free to adjust the parameters directly at will.

Our main goal for the training module was to enable a non-technical user to comfort-
ably make use of accuracy improving techniques like cross fold training (cf. Section
4.1), pretraining (Section 4.2), and data augmentation [203] (see Figure 5.14 for the
implementation within the OCR4all web GUI):

• Cross Fold Training: A sensible arrangement of the available data into training
and validation sets, in order to obtain diverse voters with different strengths and
weaknesses, is carried out automatically by Calamari. All the user has to do is to
determine the number of desired voters.

• Pretraining: Naturally, the usage of already existing models can and should be
combined with the cross fold training. Consequently, the user can choose between
three training approaches: training all models from scratch, training all models
starting from the same existing models, or freely assigning arbitrary models to each
fold. All this can be done by comfortably selecting the desired models from a list
displaying all available options.

• Data Augmentation: To activate the generation of synthetically altered additional
training data in OCR4all, the user simply has to determine the extent of desired
augmentations, i.e. the number of augmented lines to be derived from each real
line. Since nothing compares to real data the default training allows for a two step
approach in which the models resulting from training on both real and augmented
data are further refined by training exclusively on real data.
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Figure 5.14: The main part of the training settings which can be directly and com-
fortably controlled by the user. In this example, a five-fold voting ensemble will be
trained with each individual training starting from a different existing mixed model, all
comfortably selectable from a dropdown (models 1 and 2 rely on two voters from the
“fraktur_historical” ensemble as a starting point, 3 and 4 use the respective counterparts
from the 19th century, and model 5 builds from an Antiqua model). In addition, one of
the default WLs, in this case the one for historical Latin, is used to protect the most
important characters. Finally, each training line will be augmented five times.
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Iterative Training Approach To keep the manual effort to a minimum, we introduced
an iterative training approach which is fully supported by OCR4all. The general idea is to
minimize the required human workload by increasing the computational load. Correcting
an existing ATR output with a (very) good recognition accuracy is (considerably) faster
than transcribing from scratch or correcting a more erroneous result. Consequently, we
aim to quickly get to a reasonable recognition accuracy which allows for an efficient
GT production process. Therefore, we integrated an iterative training approach whose
procedure is listed and explained in the following:

1. Transcribe a small number of lines from scratch or correct the output of a suitable
mixed model, if available.

2. Train a book-specific model/voting ensemble using all available GT that has been
transcribed up to this point, including earlier iterations.

3. Apply the model/voting ensemble to further lines.

4. Correct the output.

5. Repeat steps 2-4.

For example, let’s assume that around 200 lines of GT are needed to reach a satisfactory
ATR accuracy (e.g. a CER of 2% or less) for a given task and on a given book. Of course,
the exact number of lines required is never known, which is another reason to not simply
transcribe 200 lines from scratch before training the first model. Instead, we start out by
recognizing a small number of lines, for example two pages comprising 60 lines, with a
somewhat suitable available mixed model, resulting in a more or less helpful ATR output
with a CER of, let’s say 8%. While the recognition quality is not perfect, correcting this
output is still faster than transcribing from scratch and it only needs to be done for 60
lines anyways. Next, a first book-specific model is trained by using the produced GT.
The resulting model is then applied to four more page, resulting in a considerably lower
CER of 3.5%. In fact, correcting this output can be done much more efficiently than
before since the error rate was reduced dramatically by more than 50%. The resulting
four pages of GT are added to the GT pool (now containing close to 200 lines) and used
for another training process, resulting in a strong model yielding a CER of just below
2% on previously unseen pages. Since this final model fulfills the requirements set for
this example, the iterative training process stops here. Naturally, the described steps can
easily be repeated until a higher desired accuracy is reached or even until the entire book
has been recognized and corrected.

Since the iterative training approach, especially when combined with cross fold training,
can quickly produce plenty of ATR models, a certain amount of bookkeeping is required
to stay on top of things. Therefore, OCR4all provides an intuitive automatic naming
convention for the trained models. First, a separate folder is created in the models
folder for each book. Then, each training iteration produces a folder in the books folder
numbered incrementally according to the current iteration, starting with 0, 1, and so on.
The resulting voting ensembles are then stored in the corresponding folders by simply
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labeling the single models 0, 1, ..., allowing each ensemble to comfortably get selected by
filtering for the desired book and iteration.

5.6.3 Error Analysis

Input: line-based ATR predictions and the corresponding GT
Output: CER and confusion statistics
To enable an objective assessment of the recognition quality achieved by the models at
hand, we incorporated the Calamari evaluation script into OCR4all. For a given selection
of pages it compares the ATR results to the corresponding GT and calculates the CER
using the Levenshtein distance. Additionally, a confusion table (see Figure 5.1 for an
example) displaying the most common ATR errors and their frequency of occurrence is
provided.

Table 5.1: Example confusion table showing the desired output (GT ), the actual output
(ATR), the absolute number of occurrences (CNT ), and the corresponding percentage
with respect to all errors (PERC ). Given are the five most frequent errors including
substitutions (4), deletions (2,5), and insertions (1,3).

ID GT ATR CNT PERC
1 ␣ 16 6.69
2 ␣ 10 4.18
3 i 10 4.18
4 e c 3 1.26
5 l 2 0.84

5.7 Result Generation

Input: GT and ATR results
Output: final output as text files
For the average OCR4all user PageXML most likely does not represent the desired output
format that is needed for further processing with other tools. Consequently, we also offer
a simple textual output where the line-based ATR results are concatenated in reading
order and stored as a text file in two variants, one for each individual page and one for
the entire book. If there is GT available for a line its ATR result is replaced by the
corrected text in the final output.
Naturally, the conversion into raw text leads to the loss of all acquired additional
information obtained during the complete workflow like semantic labels and coordinates
of segments and lines. To preserve this data it is of course also possible to keep the
PageXML files containing all information acquired during the workflow. Additional
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output formats, for example TEI [292], can be added which will be discussed in greater
detail in Section 8.2.

5.8 Web Application

One of the main goals of OCR4all is to allow anyone to perform OCR on their own on a
wide variety of historical printings and obtain high quality results with reasonable time
expenditure. Therefore, the tool has to be easily comprehensible even for users with no
technical background. In fact, this includes the ability to comfortably control the entire
process via a GUI. By making all submodules accessible from clearly structured and
unified interfaces it ensures that the user for the most part has to learn only a single
system. Furthermore, OCR4all equips the user with powerful tools to perform manual
corrections on the produced output after most steps of the workflow and allows for a
precise configuration, not only of the workflow in total but also of the sub modules.
Before we discuss these options we briefly introduce some general aspects about the tool’s
architecture.

5.8.1 General Software Design

We chose to implement the workflow as a server application accessible by a web app
because this allows a deployment as a true web app (using a web browser as a local
client interacting with a remote server) as well as using OCR4all completely locally (both
browser and server are locally installed). Because currently neither user administration
nor resource management have been implemented and some steps in the workflow require
a considerable amount of computational power, we only consider the local option in the
following.

The core OCR4all web application is programmed in Java [110] and relies on the Java EE
[136] compliant framework Spring [137]. It is then deployed on an Apache Tomcat [300]
server. The user interface implements the Materialize CSS framework [182] to deliver
a feature rich user experience. While most of the image processing tasks are delegated
to the respective sub modules, the core application also requires some functionality and
thereto uses the OpenCV library [44].

We rely on Docker [183] and VirtualBox [311] since both solutions ensure an easy
installation process and keep the problems caused by dependency requirements of the
sub modules to a minimum. Furthermore, the incorporation of Docker and VirtualBox
effectively assures platform independency as they can be installed and run on basically
all modern operating systems including Windows, Mac, and Linux.
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5.8.2 Manual Corrections

Input: page images and their corresponding PageXML files
Output: corrected PageXML files

As emphasized before, a fully automated workflow is often not reasonable or at least
cannot be expected to yield sufficient (depending on the use case) or even perfect
results especially when dealing with early printings. Consequently, a potent, flexible,
comprehensible, and easy to use option for manual correction is a must-have for every
OCR workflow tool which relies on user intervention. In OCR4all this core task is covered
by LAREX, initially introduced as a region segmentation tool in Section 5.5.1.1 and in
its original release [232]. However, its functionality has been considerably extended since
and will be explained in the following (see Figure 5.15 for an overview of the LAREX
correction GUI).

LAREX works directly on PageXML files and the corresponding images. After loading a
page the information is displayed using additional layers over the image in three different
views which are all interconnected with each other.

5.8.2.1 Regions

LAREX offers a wide variety of tools and procedures to create new and edit existing
regions. Regions identified during the earlier region segmentation step can be deleted
and their type or sub type can be changed. If a region has not been found, the user
can correct this by either manually drawing a rectangle or a polygon or by selecting
the CCs belonging to the region and then activate an iterative smearing algorithm to
automatically create the region outline. Additionally, the reading order can be freely
adjusted by dragging and dropping regions in an additional view. Furthermore, it is
possible to perform sophisticated polygon manipulation operations including deleting,
adding, and moving points. Each operation can always be performed on an arbitrary
number of points at once. Combined with the progressive zooming functionality this
even allows for an pixel perfect segmentation, if desired. Figure 5.16 shows some example
functionality.

5.8.2.2 Lines

The second view focuses on text lines. From an editing point of view lines are treated
exactly like regions and therefore allow the same comprehensive set of operations with
minor adaptions, for example that newly created lines are assigned to the active regions
and not to the page and the reading order functionality is available for lines within a
selected region.
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Figure 5.15: Compressed overview over the LAREX correction GUI with the actual
page and its current data in the middle, the page selector on the left, the three correction
tabs to switch between the segment, line, and text correction functionality as well as
several tools on the top and the settings on the right.

5.8.2.3 Text

The text view (see Figure 5.17) is divided into two further sub views. In the first one
the page image is still presented to the user with all text lines color-coded indicating the
availability of corresponding GT. When selecting a text line, an input field is displayed
directly below the line, showing the corresponding ATR result or GT if available. Like the
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Figure 5.16: Example applications of the labelling and segmentation functionality on
layout level in LAREX. Top: Semi-automatic segmentation of a complex layout (from
top to bottom): (1) excerpt from the starting situation showing four lines belonging to
four different segments with three different semantic types (see the top of Figure 5.17
for more context). (2) Manual selection of the CCs belonging to the subheading. (3)
Marked depiction of the selected CCs which serve as input for the iterative smearing
algorithm. (4) Output region of the smearing algorithm. (5) Adjustment of the region
type; adjacent the remaining regions which have been automatically detected (remaining
lines). Bottom: correction of a line polygon which wrongfully includes parts of a swash
capital by moving two points.

rest of the visualization the displayed text line is zoomable and can be moved horizontally
or resized separately to obtain a perfect alignment with the line image, since this cannot
always be achieved automatically due to the narrow and often irregular typesetting. The
user can then produce or edit GT by simply typing into the input field or by selecting
characters from a customizable virtual keyboard which allows to define a set of non-
standard characters, for example ligatures, which cannot be found on regular keyboards

148



5.8 Web Application

but can easily be inserted this way by a single mouse click. The content and structure of
the virtual keyboard can be customized directly in the web GUI and existing setups can
be exported and imported. Keyboard shortcuts allow to temporarily fade out the input
field so the users can get contextual information from the subsequent line if desired and
they may quickly cycle through the lines in reading order.

While this view is a suitable solution for users that aim for a perfect text and consequently
have to take a thorough look at each line anyway, it is not optimal for use cases where
users just want to quickly scan the pages and lines for obvious mistakes. For this use case
we introduced a second sub view which optimizes the correction process by providing a
line-based view where an editable text field is placed directly under each line image. If
there is already GT available for a line the corresponding text field is colored in green and
the GT text is displayed. Analogously, if there is no GT but an ATR result available, it
is shown in the text field. Otherwise, the transcription has to be performed from scratch.
When a line is selected by clicking into the corresponding text field it is marked as active
and can again comfortably be edited by typing regularly or via the virtual keyboard.
When a line gets deselected, for example by activating the next line, its current content
is automatically saved as GT.

Since all pairs are ordered one below the other in reading order it is possible to display
the line image and the corresponding transcription for all lines at once allowing the user
to get a quick overview. Despite the completely different arrangement of the lines the
interconnection with the other views still exists. So if the users noticed a line which
suffers from a serious segmentation fault they can simply switch to the line-based view,
quickly identify the line since it is still marked as active, perform the necessary correction,
and switch back to the text correction view to continue from where they left off.

5.8.2.4 Practical Integration into the Workflow

In theory, manual correction phases can of course be introduced at basically any step
during the workflow. While it is clear that ensuring optimal results after each processing
step minimizes the chance for and the effect of consequential errors, a comprehensive
manual inspection and correction after each step is neither required nor sensible. For
example, checking and correcting thousands of text lines one by one after the line
segmentation step may well increase the achievable ATR accuracy during the subsequent
recognition step. However, a much more efficient solution is to subject a few representative
pages to a quick visual check and if any systematic errors are recognized, one may use
the comprehensive set of parameters to optimize the output on a global level. In our
experience with the currently available setup manual correction should only be applied
directly after the region segmentation, which takes place in LAREX anyway if not
performed fully automatically, or at the very end when all information including line
coordinates and ATR results is available.
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Figure 5.17: Two text correction views in LAREX. Top: page based view where a
selection of lines can be corrected. Bottom: corresponding line-based view (left) and
virtual keyboard (left, available in both views). Adopted from [229].
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5.8.3 Configurations

To be able to deal with the wide variety of printings and the distinct challenges proposed
by them, as well as to satisfy the individual needs of each user, OCR4all offers plenty of
ways to influence not only the workflow in itself but also the parameters of the single sub
modules. All configurations are entirely accessible from the web GUI in an intuitive way
and do not require any kind of knowledge regarding the usage of the command line.

5.8.3.1 Process Flow

Most of the steps and modules introduced above give the user the chance to manually
check the results and apply corrections, if necessary. However, there are certainly plenty
of use cases where this is neither desired nor necessary, for example when dealing with
relatively simple layouts. In order to enable the user to minimize the degree of manual
intervention, we introduced the process flow functionality which allows to configure and
execute several modules at once. For example, when dealing with a typical 19th century
Fraktur novel as shown on the right in Figure 5.7, it may well be sufficient to fully
automatically run the preprocessing, region segmentation (dummy), region extraction,
line segmentation, and recognition (standard 19th century Fraktur model) steps, to obtain
a high quality ATR result. Analogously, when a segmentation using LAREX is needed,
which requires user intervention, the subsequent steps can still be run at once and fully
automatically.

5.8.3.2 Settings

The open-source OCR tools we utilize in our workflow often allow influencing the results
by passing parameters, usually via command line options. Optimizing the usage of these
tools represented one of the bigger challenges during the implementation of OCR4all.
On the one hand, it is imperative not to overwhelm inexperienced users by confronting
them with a plethora of confusing options, settings, and parameters. On the other hand,
it is equally vital to provide more experienced users to adapt selected settings in order
to optimize the results. As a solution, our web GUI provides interfaces to set almost
all parameters of the OCRopus 1 and Calamari submodules. Furthermore, we carefully
split the available options for each submodule into general and advanced settings. Apart
from the number of threads used for execution, which are by default set to the available
maximum, the general settings usually only contain one or two parameters whose default
settings normally completely suffice for the average user. The advanced settings comprise
all remaining parameters and allow experienced users to maintain full control. Figure
5.18 shows an example.
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5 OCR4all

Figure 5.18: Overview over the settings and parameters view using the line segmentation
step that relies on the corresponding OCRopus 1 script (cf. Section 5.5.2) as an example.
The default view only displays indispensable parameters to the user, like the number of
CPUs to use and, in this case, the number of whitespace separators to look for in order
to control the column segmentation. If desired, the advanced settings can be expanded
to take full control over each aspect of the respective step.
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To evaluate the effectiveness and usability of OCR4all we performed several experiments
on various books using different evaluation settings which we will discuss in the following.
After introducing the data we focus on evaluating the main area of application of OCR4all,
namely the precise text recognition of early printed books. Then, we take a closer look at
the effects of the iterative training approach. Afterwards, we experiment with a reduced
degree of manual intervention by the user by first evaluating a less costly but also less
precise segmentation approach and then evaluate a fully automatic process on newer
works.

The main goals of our experiments are to evaluate the

• manual effort required to OCR a book using a precise segmentation and aiming for
a very low error rate (ď 1% CER) dependent on the complexity of the material
and the experience of the user

• speedup when incorporating the iterative training approach

• potential speedup when considerably lowering the requirements regarding seg-
mentation, especially considering the fine-grained semantic distinction of layout
elements

• performance of OCR4all when applied to newer works with simpler layouts

6.1 Data

This section briefly introduces the books we used for our experiments comprising a variety
of early printed books and 19th century Fraktur novels.

6.1.1 Early Printed Books

The first part of our evaluation corpus comprises all works introduced in Section 3.1.1
resulting in a selection of 25 books printed before 1600 (cf. Table 3.2 for an overview)
including five editions of the Narrenschiff (used languages: Latin, German, French,
and Dutch), 17 works related to the influential early modern universal scholar Joachim
Camerarius the Elder (Latin and Greek), where we focused on the ATR of the Latin
parts and just marked Greek text (embedded parts of Greek, mostly scientific technical
terms) with a placeholder for later processing, and three further German early modern
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printings worked on during a practical course. In the following, we refer to the individual
books with a shortcut (N, C, or P) combined with the year of publication, for example
C1566 for a Camerarius book printed in 1566. Figure 6.1 shows representative example
images of some of the books used, as well as some desired segmentations. For reasons of
clarity, we refrained from depicting the reading order.

6.1.2 Fully Automated Processing of 19th Century German Novels printed
in Fraktur

The second part of our evaluation corpus consists of 19th Century German novels (with
one exception from the late 18th century) as introduced in Section 3.1.2. The overall
quality of the material varies considerably as shown in Figure 3.4. The less complex
layout, the more regular typography, and the desired use for quantitative experiments
make it neither necessary, nor feasible to invest an extensive amount of manual work. A
highly automated workflow is intended instead.
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Figure 6.1: Example images of early printed books we used for evaluations. Top (from
left to right): four Camerarius works C1566, C1541, C1563, and C1563 segmented; middle
left: two works from the practical course: P1484 and P1509; and six editions of the
Narrenschiff, right: N1506 and N1506 segmented and bottom: N1549, N1494, N1499,
and N1499 segmented. Adopted from [229].

155



6 Evaluations

6.2 Precise Segmentation and Trained ATR of Early Printed
Books

In this first evaluation we will examine the performance of OCR4all on the task which
represents its main area of focus: the OCR of early printed books with the aspiration
to obtain a (close to) perfect result, both regarding segmentation and ATR, even if this
means a substantial amount of manual work for the user.

6.2.1 General Processing Approach

Each book is always processed by a single user with the exception of 1494 which was
divided into two halves and assigned to two users to be handled independently. Clear
guidelines for the processing of any book had been specified beforehand. The most
important ones can be seen in the following:

• The entire book is segmented by the user and the required time is recorded.

• A fine-grained semantic classification of layout elements level is required, includ-
ing the distinction of images, running text, headings, page numbers, marginalia,
signature marks, catchwords, and swash capitals.

• After segmenting down to line level the GT production and iterative training
approach starts. For evaluation purposes only the transcription of whole pages was
viable.

• To get notable improvements during the iterative training approach the amount of
added GT should rise considerably during each step. The suggested approach was
to start out with two to four pages, then add three to five pages during the next
iteration and so on.

• Ideally, representative pages with respect to their state of preservation, print quality,
and used fonts should be selected for training and evaluation. Especially for the
Camerarius project the font aspect is particularly important, since many books
comprise large sections printed in italics while the bulk of the text is printed in an
upright font.

• Since most of the books are meant to be transcribed in full later on in their
respective projects, a very comprehensive training was performed in most cases
with the iterative training process stopping only when a CER of 1% or below was
reached.

6.2.2 Overall Time Expenditure and ATR Accuracy

In this first experiment we evaluate the two main criteria for a workflow with considerable
human interaction: the time that had to be invested both for obtaining a sufficient result
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regarding segmentation and ATR as well as the achieved ATR accuracy. These criteria
are heavily influenced by several factors which have to be taken into consideration:

First, the experience of the user: An experienced user can be expected to be more
efficient, both during the segmentation and the GT production phase. In our experiments
we differentiated between two groups of users: On the one hand, there were several
first time users with no experience with OCR4all and no or next to no experience with
other OCR-related tools and processes. On the other hand, we had users with a solid
general OCR background and an extensive history of using OCR4all, LAREX, and
various transcription tools. In the following we assign the labels 1 and 2 to the users
of the respective groups, with a higher number indicating a more experienced user. To
distinguish the individual users from each group we assign additional labels (A, B, ...).
With the exception of one experienced user (Digital Humanities) all users are classical
humanities scholars. Before starting to work on their respective books on their own, all
participants were introduced to the tool by one of the experienced users.

Second, challenges due to the book: Different books can vary considerably, mainly
regarding the number of pages, the complexity of the layout, but also the print or scan
quality and overall state of preservation. Since the books utilized during our experiments
did not show large discrepancies concerning the latter criteria we just provide the number
of pages and distinct semantic layout classes. Table 6.1 sums up the results.

6.2.2.1 Results

For the less experienced users an average segmentation expense of slightly more than
one minute per page was recorded with considerable variations among different users.
Fortunately, more experienced users can speed up the process considerably, resulting in
about 36 seconds per page on average again with considerable variations depending on the
layout complexity of the book. Regarding the time expenditure required for correcting
ATR results for GT production, the vast majority of users invest less than ten seconds
per line on average. Both user groups achieved almost identical CERs (0.47% and 0.49%)
by utilizing a very similar amount of GT (988 and 927 lines). These results enable us to
compare the time expenditure of the users on a more general level by taking the achieved
ATR quality out of the equation. Calculating the time required to process a book, both
segmenting it and creating enough GT to obtain an average CER of below 0.5% resulted
in just 0.7 minutes per page for the experienced users. Compared to the 2.3 minutes
achieved by the unexperienced users this represents a speedup of more than factor 3.

6.2.2.2 Interpretations

The times accounted for segmentation clearly show that performing a precise and fine-
grained semantic segmentation of early printed books, even when using a comfortable
and versatile tool like LAREX, can still amount to several hours of work for a single
book. On top comes the time to generate GT (either from scratch or by correcting an
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Table 6.1: Results of the precise segmentation and trained ATR of early printed books.
The Books are grouped by the experience of the processing Users, first the unexperienced
(1 ), then the experienced ones (2 ). Regarding the Segmentation we provide the number
of pages (#P) and semantic region types (#R) that had to be distinguished as well as
the time required for the entire book (tSeg.) and per page (tSeg.{P ) on average. For the
ATR we indicate the maximum number of GT lines #L which was used to train the final
ATR model along with the achieved CER. Furthermore, the time required to correct all
lines required to train the final model and one line on average is shown (tCorr.). Finally,
some Key Figures are derived to ensure comparability of the works. The overall manual
time expenditure is calculated for the entire book (tAll) by adding up the overall time
required for segmentation and ATR and for an average single page (tAll{P ) by dividing
by the number of pages. For both user groups averaged values of all books (Mean) and
the corresponding standard deviation (StdDev.) are provided if sensible.

Book User Segmentation ATR Key Figures
Short Exp. #P #R tSeg. tSeg./P #L CER tCorr. tCorr.{L tAll tAll{P

[min] [min] [%] [min] [s] [min] [min]

C1532a 1A 55 7 90 1.6 829 0.47 280 20 370 6.7
C1532b 1A 130 7 110 0.8 611 0.73 146 14 256 2.0
C1533 1A 57 5 82 1.4 806 0.20 129 10 211 3.7
C1535 1A 96 7 104 1.1 723 0.39 176 15 280 2.9
C1552 1A 180 6 110 0.6 384 0.20 44 7 154 0.9
C1554 1B 81 6 66 0.8 487 0.36 76 9 142 1.8
C1557 1B 168 5 194 1.2 1,342 0.34 187 8 381 2.3
C1558 1A 94 8 139 1.5 751 0.25 183 15 322 3.4
C1561 1B 344 5 275 0.8 395 0.40 48 7 323 0.9
C1563 1C 158 5 140 0.9 1,175 0.60 95 5 235 1.5
C1566 1D 471 7 370 0.8 596 0.61 48 5 418 0.9
C1568 1B 342 5 223 0.7 406 0.24 36 5 259 0.8
N1494 1E 156 7 210 1.3 2,302 0.69 315 8 525 3.4
N1494 1F 157 7 360 2.3 969 0.82 97 6 457 2.9
N1549 1G 328 7 210 0.6 2,824 0.45 155 3 365 1.1
P1474 1H 198 4 29 0.1 700 0.90 230 20 259 1.3
P1509 1I 218 5 390 1.8 1,501 0.42 310 12 700 3.2

Mean 190 6.1 1.1 988 0.47 10 2.3
StdDev. 0.5 0.22 5.2 1.5

C1541 2B 439 8 345 0.8 847 0.92 82 6 447 1.0
C1566 2A 240 7 80 0.3 599 0.57 45 4 118 0.5
C1583 2A 606 7 200 0.3 1,647 1.00 123 5 323 0.5
C1594 2A 420 8 200 0.5 352 0.50 26 4 226 0.5
C1598 2B 344 8 245 0.7 256 0.45 28 7 273 0.8
N1498 2A 161 6 130 0.8 622 0.30 22 2 152 0.9
N1499 2A 166 7 105 0.6 632 0.12 110 10 215 1.3
N1506 2A 215 8 180 0.8 3,161 0.20 - - - -
P1484 2B 372 3 65 0.2 226 0.34 22 6 80 0.2

Mean 329 6.9 0.6 927 0.49 5.5 0.7
StdDev. 0.2 0.30 2.4 0.4
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ATR result) and to train an ATR model. Our experiments show that the total processing
time from beginning (image processing, page segmentation) to end (ATR result with less
than 0.5% CER on average) is less than a day for books containing a few hundred pages.

While this is still a far cry from an expectation of “press a button, wait a few seconds,
receive the results”, a meaningful comparison would be to look at the current practice
of manual transcription as a baseline. This is usually done either by a person sitting
in front of two displays, one of which shows the page image of a book and the other a
word processor. The scholar alternately looks at the image, tries to decipher its text and
enters it into the word processor on the other display. The process is cumbersome, error
prone (hence the practice of double keyboarding with two teams entering the same texts
which will later be compared to spot transcription errors), and very time consuming.
The transcription of a whole book of several hundred pages can easily consume a few
weeks. We did not thoroughly evaluate the manual transcription from scratch but to get
a rough impression, the users 2A and 2B transcribed a small number of pages from their
respective books (C1541, P1484, and 1499). Extrapolating the effort for the entire book
led to an overall time expenditure of 44 hours for C1541, 47 hours for P1484, and 130
hours for N1499. Our method therefore reduces the working time from a few weeks to a
day, plus the additional effort to weed out the remaining ATR errors.

Next, the results indicate a high fluctuation of efficiency even within the two user groups,
especially among the unexperienced users. Out of the eight books which took longer than
one minute per page, four were processed by the same user (1A). The results of N1494
are especially eye-catching since the segmentation took the second user (1F) over 75%
longer than the first one (1E) despite both of them working on almost identical material.

Extremely complex layouts like the ones of N1498, N1499, and especially N1506 can
be very challenging and not trivial to process even for very experienced users. Having
said that, in our experience these three examples are about as complex as it gets for
early printed books, especially combined with our very strict and detailed segmentation
guidelines. Almost on the other end of the spectrum are books like P1484 where most
pages are almost trivial to segment and therefore only take a minimal amount of time
(around 10 seconds when processed by an experienced user).

Regarding the correction of the ATR result it is noteworthy, that four out of six books
which required more than ten seconds per line, were processed by a single user, the same
that also achieved most of the slow segmentation results (1A). Since there are no obvious
reasons for this effect regarding the material we assume that some users simply require
more time during the correction process maybe because they are too frightened to miss
something. This is also reflected by the general correction strategy of the two groups:
While the experienced users tend to simply scan the results by hopping between the line
image and the ATR result on a word to word basis, the unexperienced users often first
read the entire text in the line image and the ATR result separately, before performing a
third check where smaller junks of the line are compared. It is worth mentioning that
cross checks of the produced GT showed no noteworthy effects regarding the quality of
the transcriptions among different users.
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Not only because of the fact that it was the most experienced user (2A) who achieved
the worst ATR results of all books, we have no reason to believe that the user has
a noteworthy influence on the ATR accuracy. Most importantly, the reachable CER
depends on the book and the contained typography as well as the amount of GT used
for training. The obtained results underline this assumption almost perfectly.

While the discussed key figures are very helpful to obtain an overall impression of the
amount of manual effort required to process early printed books with OCR4all, further
experiments have to be conducted to get a deeper understanding of the effects of the
iterative training approach and the influence of segmentation guidelines.

6.2.3 Evaluating the Iterative Training Approach

The manual correction effort not only scales with the number of lines that have to be
corrected but also with their recognition quality. To be able to thoroughly evaluate
the effects and benefits of the iterative training, many different values and results were
recorded. Since their evaluation and interpretation is a quite complex task we first
introduce and describe them in detail in Figure 6.2 before we list the results of selected
works in Table 6.2.

6.2.3.1 Results

There are several interesting things to be taken away from the results summarized in
Table 6.2. First of all, it is shown that the iterative training approach yields a significant
speedup regarding the correction time. On average the manual effort is almost cut in
half (average speedup factor 1.9, last column) with the experienced users benefitting
considerably more compared to the unexperienced ones (factor 2.3 and 1.3).

Another eye-catching abnormality are the discrepancies between the performances of the
same models on the new and the eval data. While some deviations had to be expected
and can be considered negligible others seem to be too substantial to be disregarded as
variance. For example, when processing C1557 the mixed model achieves a good CER
of 2% on the new data but at the same time struggles severely with the eval data (10%
CER). An explanation is given in the next section.

6.2.3.2 Interpretations

Admittedly, the projection of the speedup achieved by the iterative training approach is
quite rough since the factor depends a lot on the pages the mixed model was applied
to, which is also shown by the high fluctuations among the speedup factors. Moreover,
in a real-world application scenario there has to be some kind of training and testing
during the correction phase in order to know when to stop as the results from Table 6.1
have shown that the number of lines needed to reach a certain CER varies considerably.
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Table 6.2: Evaluation of the iterative training approach. For each Book processed by a
User we provide all values and results necessary to reconstruct and evaluate the progress
of the GT production and training. In the New Data column the number of the newly
added pages (#P) and the corresponding number of lines (#L) is listed, as well as the
time required to produce the transcription. Furthermore, the CER is given which is
calculated from the ATR result achieved by the model from the previous iteration and
the newly created GT. For comparison, the CER achieved on the separate and constant
evaluation set (Eval) is recorded. All Data shows the number of available GT pages and
lines at this point which then serve as training data for the new model which is used for
the next iteration. In the Correction columns we compare the actual required correction
time when applying the iterative training approach (ITA) with the projected time when
only using the output of the mixed model (MM ) to get to the point where the final (and
in case of MM the first) model is trained. The speedup factor (SU ) is calculated for each
book for the two user groups separately and for both groups combined.

Book User It. New Data Eval All Data Correction
Short Exp. #P #L tCorr. tCorr. CER CER #P #L ITA MM SU

[min] [s/L] [%] [%] [min] [min]

C1541 2B 1 3 88 18 12 4.80 5.51 3 88
2 5 146 23 9.5 2.52 3.09 8 234
3 20 613 41 4.0 0.90 1.29 28 847
4 - - - - - 0.92 - - 82 169 2.1

P1484 2B 1 5 110 14 7.6 3.53 3.95 5 110
2 6 116 8 4.1 0.89 1.48 11 226
3 - - - - - 0.34 - - 22 29 1.3

N1499 2A 1 2 105 65 37 25.22 23.59 2 105
2 3 138 20 8.7 0.54 2.23 5 243
3 5 389 25 3.9 1.24 1.63 10 632
4 - - - - - 0.20 - - 110 474 3.6

Mean(2): 2.3

C1557 2B 1 4 104 16 9.2 2.00 10.00 4 104
2 11 307 70 14 6.06 8.64 15 411
3 15 407 56 8.3 1.60 1.17 30 818
4 20 524 45 5.2 0.26 0.65 50 1,342
5 - - - - - 0.34 - - 187 206 1.1

C1558 1A 1 4 125 38 18 15.31 16.86 4 125
2 8 251 60 14 1.28 0.65 12 376
3 12 375 85 14 0.58 0.34 24 751
4 - - - - - 0.25 - - 183 225 1.2

C1566 1D 1 5 122 15 7.4 3.85 4.27 5 122
2 6 126 18 8.6 3.15 1.45 11 248
3 12 348 15 2.6 0.22 0.99 23 596
4 - - - - - 0.61 - - 48 74 1.5

Mean(1): 1.3

Mean: 1.9
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Figure 6.2: Schematic representation of the iterative training approach and its evaluation.
As an example we used book C1541 processed by an experienced user. For comparison
we refer to the first row of Table 6.2. To begin with, the user selects a few pages (here 3
pages comprising 88 lines) and applies a suitable Mixed Model to it. After investing 18
minutes to correct the results a first evaluation shows that the Mixed Model achieved a
CER of 4.80% on the first batch of lines. Next, the produced GT can be used to train a
first book-specific model (Model 1 ) which required 16 minutes, using the initial Mixed
Model as a starting point. Model 1 is then applied to the next batch (5 pages / 146 lines).
After correcting the erroneous results (23 minutes, 2.52% CER) a second book-specific
model is trained (Model 2, 42 minutes) using all available GT (8 pages / 234 lines) and
again building from the initial Mixed Model. This process is repeated until a satisfactory
CER is reached or the entire book is transcribed. For evaluation purposes a separate Eval
dataset can be utilized which was not part of any training set. By applying the Mixed
Model and the models produced during each iteration to this dataset and evaluating the
results we can compare the models objectively. Adopted from [229].

Figure 6.3 depicts this problem and graphically explains the gain obtained by the iterative
training approach.

Determining the ideal training route is no trivial task and depends on several factors. To
begin with, the user has to estimate how many lines are necessary to reach the desired
CER. Due to the variety of the material this is very challenging, even for experienced
users, resulting in over and under estimations of the required amount. The smaller the
chosen steps are the more accurate the convergence to the optimal value P (Figure 6.3)
becomes. One (theoretical) approach is training a model each time a new line of GT is
added (red curve, left), however this is not sensible. The other end of the spectrum is
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Figure 6.3: Left: Analysis of the iterative training approach using C1541. The goal is
to reach point P which represents the (unkown) number of lines necessary to achieve a
CER of below 1%. In theory, the red curve describes the unknown relation between GT
lines used for training and the achieved CER and therefore represents the theoretical
ideal iterative training approach that produces and applies a new ATR model after the
transcription of a single new line of GT. The real route chosen by user 2B is shown by
the blue stair case function. Green depicts a single training approach using the same
final number of line of GT as user 2B (C ` C 1) and the perfect but unknown number of
lines (C).
Right: This time the tcorr-coordinate shows the manual effort necessary to correct a single
(which highly depends on the CER). The time saved by the iterative training approach
(in case of user 2B and theoretically ideal) is represented by the green area minus the
blue area. In this case this represents a reduction of the manual effort by ca. 52% which
equates to an approximate speedup of 2.1. Adopted from [229].

represented by correcting the output of the mixed model until the presumably required
number of GT lines is reached (green), which discards the gain of correcting lines with an
improving CER (area ratio on the right). Consequently, the optimal or rather a sufficient
real world solution has to lie somewhere in between these two extremes. Naturally, the
available hardware plays an important role as it directly influences the training duration.
For example, most training processes can be completed within a couple of minutes when
using several GPUs, allowing the user to continue the transcription almost instantly.
When no GPU support is available a training can take several hours, requiring the user
to perform different tasks.
Despite the complexity of optimizing the iterative training approach, its general benefits
are clear and the results confirm the expectations. This speedup is due to the fact that
the average correction time per line clearly correlates with the quality (CER) of the
underlying ATR result. The only exception can be seen in the iterations 1 and 2 of book
C1566 where it took the user even a little longer to correct a line, despite starting from a
somewhat better recognition result. Naturally, comparisons like this are only viable for a
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single user and within the same book. Since a visual inspection of the concerned pages
did not lead to new insights it stands to reason that human factors like tiredness, form
on the day, etc. play a non-negligible role. Furthermore, it is worth mentioning that the
correction time of course will not decrease linearly since the user will always require a
certain amount of time for grasping the line image and reading the ATR result even with
a theoretical CER of 0.0%.

In case of C1557 the reason for the striking difference between the CER on the new and
the eval data is that most of the Camerarius books incorporate a frequent change of two
completely different Antiqua fonts: upright and italics. Of course, other books make use
of different fonts as well but mostly in less frequent layout parts like headings while in
case of Camerarius they are used for the main text and therefore often fill entire pages.
So when the ratio of pages/lines printed in upright and in italics varies considerably
between the new and the eval data, this of course also effects the obtainable CER. With
respect to C1557 the new data in the first iteration did not contain any italics lines so the
mixed model, which was mainly trained on Antiqua upright performed quite well. On the
contrary, the eval data had a significant portion of italics lines the default model could
not handle. After creating some GT of italics lines during the first iteration, which is
indicated by the relatively high CER (6%), the newly trained model can deal with both
fonts, resulting in a considerably better CER on the eval set. To counter this problem we
trained a new mixed model after several Camerarius books had been processed, which
was not only able to deal considerably better with the upright/italics problem but also
with the Greek characters.

N1499 is another interesting case. First, despite being printed in a rather normal
looking Bastarda font and being among the best books in the corpus in terms of image
quality, the ATR result obtained by the mixed model is by far the worst that occurred
during our experiments, yielding a CER of around 25%. Naturally, this also explains
the unusually high time expenditure necessary for correction we mentioned during the
discussion of Table 6.1, since the correction of an ATR result flawed to that degree is
a very cumbersome task and barely faster than transcribing the line from scratch, if
at all. Second, while the recognition quality on the new data in the second iteration
is great (0.54%) the resulting model performs significantly worse on the new data of
the next iteration (1.24%). While the processing user (2A, the most experienced user
participating in our experiments) could neither explain this by the scan quality nor the
use of different fonts, a look at the confusion tables quickly identified the problem: In
iteration 2, the error distribution looked like the ones produced by a well converged
model, mainly consisting of the misrecognition of rare capital letters or typical ATR
errors like the confusion of c and e. However, in iteration 3 the most frequent errors were
dominated by previously negligible errors which all related to the characters x, v, and j.
It turned out that the printer decided to use printing types with considerably different
looking glyphs for different kinds of marginalia.

While some marginalia serve as reminders for the reader or simply repeat some keywords
from the main text, others are referencing related books using Roman numerals which
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are numbered and therefore rely on the affected characters a lot. The effect was further
fortified as during the third iteration the pages added by the user contained plenty of
marginalia containing references. This phenomenon did not only affect the recognition
quality but also the correction time. Despite the considerably higher CER in iteration 3
the user handled these lines more than twice as fast on average as the lines from iteration
2. While the effect can partially be explained by the accumulation of very short lines
(mainly marginalia), another reason, according to the processing user, clearly was the
shift in the error distribution. As explained before, the main cause of error are the highly
flawed reference numberings while the remainder of the text was recognized with very
high accuracy. Understandably, this effects the amount of effort required for correction
heavily since the errors are often clumped and can usually be corrected very efficiently,
for example by deleting an entire number and simply typing in xxviij without even having
to use the virtual keyboard once.

Concerning the training duration (machine time without human intervention) we do
not want to go into detail as the required times considerably depend on many factors
including the available hardware, the amount of GT, many training parameters, especially
the use of data augmentation, and the activation of early stopping. In our experience a
modern PC or laptop is enough to quickly perform standard training runs within one to
two hours while even extensive book-specific training processes can be completed over
night. During the course of our experiments we set up an instance of OCR4all on a server
where the data could also be accessed by a highly performant GPU cluster allowing to
complete most of the training processes in a couple of minutes.

6.2.4 Segmentation Without Semantic Classification

As our first experiment has shown, the segmentation step can be considerably more
time consuming than the ATR, even when aiming for very low CERs. Of course this
is especially true for voluminous books since the effort necessary to obtain a certain
recognition accuracy does not scale with the size of the book, but the segmentation
effort does. However, the required manual work to segment a book can be severely cut
down when the aspirations regarding semantic classification are less strict. Therefore, we
conducted another experiment where the single goal of the segmentation is to provide the
subsequent ATR with the means sufficient to produce the required output. Apart from
a clean text/non-text separation this also includes ensuring the correct reading order.
Figure 6.4 shows the desired results for example pages of the three books we used for
this experiment: P1484, C1541, and N1506.

We selected these books due to their widely differing layout properties: While P1484’s
very simple layout apart from images and running text only uses a single additional
semantic element (chapter headings), C1541 and N1506 both make use of a wide variety.
Still, also these two books differ considerably since C1541’s layout elements for the
most part are simply arranged from top to bottom in a one column layout, with the
comparatively rarely used marginalia being the only exception. N1506 however not only
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Figure 6.4: Representative example image of three books showing the difference between
the basic (top row) and exact (bottom row) segmentation approach. From left to right:
P1484, C1541, and N1506 (three images). Adopted from [229].

has plenty of marginalia but also incorporates a complex two column sub layout on every
other page.

For our experiment the users 1C and 2B both segmented 20 representative pages of each
the books twice, first using the basic approach (text/non-text and reading order only) and
then the complex approach from the first experiments including a fine-grained semantic
classification. For all sub task we recorded the required times which are presented in
Table 6.3.

6.2.4.1 Results

As expected the basic segmentation approach requires considerably less time than the
exact one, leading to an average savings of 38% for the experienced and 45% for the
unexperienced user. Regarding the comparison of two users with a different degree of
experience the results in general show the expected tendency, namely a much faster
processing by the more experienced user. On average it takes the novice user 2.65 times
longer to perform the basic segmentation on the three books. This factor even rises
slightly to 2.95 when an exact segmentation is required.
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Table 6.3: Comparison of two users (1C and 2B) and two different segmentation
approaches regarding the segmentation with LAREX. Apart from the processed Book
and the experience of the User we differentiate between the two segmentation Modes (see
Figure 6.4) basic (B) and exact (E). We give the Times required for the segmentation of
20 representative pages and for a single page on average. Finally, we calculate the ratio
of the basic approach to the exact one (B / E) and between the less experienced user
and the more experienced one (1C / 2B).

Book User Mode Time B / E 1C / 2B
[s] [s / P]

P1484 2B B 120 6 0.75 3.04
2B E 160 8 3.84
1C B 365 18 0.59
1C E 615 31

C1541 2B B 255 13 0.46 3.43
2B E 560 28 3.41
1C B 875 44 0.46
1C E 1,920 96

N1506 2B B 805 40 0.66 1.49
2B E 1,220 61 1.61
1C B 1,200 60 0.61
1C E 1,965 98
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6.2.4.2 Interpretations

When taking a closer look at the individual books it is eye-catching that the most time
can be saved using the basic segmentation approach with C1541. This makes sense since
dropping the requirement of semantic classification reduces the complexity of C1541 and
thereby the typical Camerarius books significantly, especially because the reading order
in the single column layout is always automatically correct, as soon as the marginalia, if
present, have been cut off. In comparison P1484 does not allow to save as much time
since the required manual effort remains the same for many pages as they simply contain
running text only or running text with images which both are either segmented correctly
automatically or have to be manually corrected, regardless of the segmentation mode.
Consequently, there is a difference in the results from the (semi-)manual segmentation
of the headings. As for N1506, bigger savings were not reached because the complex
layout requires most of the manual interventions in order to ensure the reading order and
not because of a correct semantic segmentation. For example, when the marginalia are
correctly separated from the main text LAREX automatically assigns the correct type.
In the two column sections the user can save some time by not separating the headings
but the main matter of expense, that is the column separation in itself, remains.
It is worth mentioning the discrepancy between the two users, while being very similar
for P1484 and C1541, is comparatively low for N1506, which at first seems odd, since
N1506 is the book with the most challenging layout not only in this experiment but
in the entire corpus. This effect can be explained when looking at the advantages an
experienced has over an unexperienced one. The three main aspects are:

• Mental understanding of the layout.
• Optimized application of advanced segmentation techniques.
• Raw technical ability.

We think that experienced users can understand a layout considerably faster and then
act accordingly right away. Furthermore, they can use LAREX much more efficiently by
putting its automatic features to work in an optimized way. However, when dealing with
extremely complex layouts that require lots of manual interventions, the overall degree of
advantage is dominated by the effect of raw technical ability, which we consider to be
significant but not as high as the one of the other advantages.

6.3 Fully Automated Processing

Next, we reduce the manual effort to a minimum by choosing a fully automated approach.
Since the Dummy Segmentation (cf. Section 5.5.1.2) of OCR4all relies on the layout
analysis functionality comprised in the OCRopus 1 line segmentation script (cf. Section
5.5.2), more complex layouts cannot expected to be solved without human intervention.
Consequently, we first focus our in-detail evaluation on the 19th century Fraktur models
whose layout is usually rather trivial, before we turn to more challenging material.
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6.3.1 19th Century Fraktur Novels

This experiment was performed on ten German Fraktur novels from the corpus described
in Section 3.1.2 using the Calamari Fraktur 19th century ensemble which was trained on
a wide variety of data also derived from 19th century Fraktur novels (cf. the case study
described in Section 7.1 for details).

We randomly selected ten pages from each novel and processed them fully automatically
with OCR4all as well as with ABBYY Finereader Engine CLI for Linux1 version 11
together with ABBYY’s historical Fraktur (Gothic) module and Old German language
settings. The results were compared by calculating the CER on a page to page basis.
To ensure a fair comparison several regularizations, for example the normalization of
the long and short version of the s, were performed beforehand. Table 6.4 sums up the
results.

6.3.1.1 Results

The values show that OCR4all considerably outperforms ABBYY Finereader on every
single book resulting in an average improvement of over 84% and an improvement factor
of almost 8 with respect to the error rate. On eight of the ten books CERs of below 1%
are achieved while six books even yielded error rates below 0.5%. Wild fluctuations in
CER can be observed for ABBYY Finereader (best: 0.48%, worst: 27%) but also for
OCR4all (best: 0.06%, worst: 4.89%) caused by the highly variant quality of the scans
as shown in Figure 3.4.

6.3.1.2 Interpretations

ABBYY struggles noticeably with substantially soiled pages, recognizing lines in regions
showing dirt or bleed through on a regular basis, resulting in gibberish OCR output.
OCR4all shows only few segmentation errors, with the main problem being left out page
numbers, which happens due to a heuristic in the OCRopus 1 line segmentation script
that ignores lines that contain less than three CCs.

First of all it is apparent that the error distribution of the results produced by OCR4all
is more top heavy, with the top ten making up for almost 30% of the total errors,
compared to the one of ABBYY (less than 20%). However, a closer look shows that
the distributions are actually quite similar to each other, apart from the top error of
OCR4all, namely the deletion of whitespaces, which is responsible for almost 12% of the
errors alone. Interestingly, while insertions and deletions of whitespaces represent the
top two errors for ABBYY and OCR4all also fails to predict them on a regular basis,
insertions of whitespaces do not occur in the top ten of OCR4all at all. The remainder
of the most frequent OCR4all errors looks as expected, containing well-known errors

1https://www.ocr4linux.com/en
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Table 6.4: CERs achieved by ABBYY Finereader and OCR4all when being applied
fully automatically to different Books. The final two columns indicate the percentual
error reduction ErrRed. and the improvement factor Impr. yielded by OCR4all over
ABBYY. Furthermore, we provide the average (Avg.) over all books for each value.

Book ABBYY OCR4all ErrRed. Impr.
F1781 2.9 0.60 79.3 4.8
F1803 27 4.89 81.9 5.5
F1810 3.8 0.61 84.0 6.2
F1818 10 1.35 86.6 7.5
F1826 1.1 0.06 94.4 18
F1848 0.93 0.20 78.5 4.7
F1851 1.0 0.16 84.0 6.3
F1855 4.0 0.33 91.8 12
F1865 1.6 0.18 88.8 8.9
F1870 0.48 0.13 72.9 3.7

Avg. 5.3 0.85 84.2 7.8

Table 6.5: The ten most common confusions over all ten books for ABBYY Finereader
and OCR4all, consisting of the GT, the prediction (ATR), the counted number of
occurrences (CNT ) and the percent contribution (%) of a given confusion to the overall
number of errors. Whitespaces are shown as ␣ and empty cells denote no prediction.

ABBYY OCR4all
GT ATR CNT % GT ATR CNT %
␣ 64 2.6 ␣ 63 11.9

␣ 57 2.3 n u 14 2.7
s S 57 2.3 f s 12 2.3

, 50 2.0 i l 12 2.3
e c 40 1.6 r t 12 2.3
e " 40 1.6 " , 9 1.7
s r 40 1.6 , 9 1.7
- " 39 1.6 i 8 1.5

. 36 1.5 c e 8 1.5
x " 35 1.4 , 6 1.1

Remaining 81.6 Remaining 71.1

like the confusion of similar looking (at least in 19th Fraktur script) characters like n
and u, f and s (originally predicted as the long s and then regularized), or c and e as
well as the insertions and deletions of tiny elements like commata, sometimes also as
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part of quotation marks. ABBYY seems to struggle with quotations marks as well but
mostly by confusing seemingly random glyphs like e, -, and x with them. Even when
considering that the original recognition mostly showed french quotation marks (»«)
which might explain some of the confusions, the notable accumulation of these errors
remains inexplicable. Furthermore, some of the aforementioned typical ATR errors like
the confusions of e and c and s and S still are surprising since one would expect the
powerful dictionary and language modelling capabilities of ABBYY to deal with these
errors quite comfortable. A possible explanation is that these postcorrection operations
do not change characters that have been recognized with a certain degree of confidence to
prevent the introduction of errors when “improving” out of dictionary words like unusual
proper names. It is noticeable that 27 of the 57 s/S errors appear in a single book
(F1851) but closer inspection did not lead to any new insights as the used glyphs differ
considerably, are often recognized correctly, and no pattern regarding the misrecognitions
could be observed.

Again, it has to be emphasized that these very low CERs can only be achieved when a
highly performant mixed model is available. In this case we were able to rely on a strong
voting ensemble perfectly matching the evaluation material. Unfortunately, comparable
ensembles are not available for other scripts and languages, yet, maybe with the exception
of AM for modern English (cf. Section 3.3.2).

6.3.2 Early Printed Books

As expected, the fully automatic processing of early printed books is a tricky task and
its applicability highly depends on the layout and typography of the book at hand. The
results presented above as well as some additional experiments led to the following, mostly
qualitative observations:

• The current setup can deal with moderate layouts consisting of a single or several
well separated columns quite reliably. When several columns have to be identified
the user as of now needs to specify the maximum number of columns occurring on
a page.

• Despite the lack of an explicit text/non-text segmentation, the combination of
OCRopus 1 line segmentation and Calamari’s recognition module is surprisingly
robust against non-text elements like noise, artistic border elements, images, and
swash capitals. Even if parts of these elements make it into a text line they often
do not deteriorate the text recognition result since Calamari will ignore them due
to the lack of a confident recognition of available characters.

• Marginalia which are located very close to the main text often cannot get separated
correctly, leading to significant errors in the reading order.

• Treating a page that comprises highly varying font sizes, for example a very
prominent heading line and many running text lines whose characters are not even
half as high, as a single text segment can lead to wrongly segmented lines (cf.
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Section 5.5.2). This happens because the line segmentation estimates the most
likely height of a line on page level and then tries to find fitting lines. A preceding
region segmentation prevents this problem from occurring.

• The available mixed models work reasonably well on the majority of books achieving
an average CER of 7.7% on the corpus we used for our evaluations (see Table 3.2).
However, since this is probably not good enough for most use cases, book-specific
training is necessary. Additionally, the CERs vary considerably, ranging from below
2% to over 25% on the new GT of the first iteration of each book.
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This chapter builds from the methodical contributions introduced in Chapter 4 and
applies them in two real-world case studies: First, in Section 7.1 the proposed techniques
from book-specific training are transferred to the task of training mixed models, using
19th Fraktur scripts as a test case. Second, in Section 7.2 we tackle the challenge of
font identification in a case study with the goal to fully index a historical lexicon by
combining ATR and typography recognition.

7.1 Application of Pretraining and Voting to Mixed Models:
Case Study on 19th Century Fraktur Scripts1

In this subchapter we evaluate OCR on 19th century Fraktur scripts without book-specific
training using mixed models, i.e. models trained to recognize a variety of fonts and typesets
from previously unseen sources. As we have shown during the core evaluations in Chapter
6, early prints suffer from a high variability in terms of printing types and therefore
usually require book-specific training in order to reach desirable error rates below 1%. On
the contrary, modern typography is much more regular and mixed models comfortably
achieve error rates well below 1%, without book-specific training. Printings from the 19th

century represent a middle ground between the two classes introduced above, considering
both the variability of typesets and the state of preservation of the scans. Mixed models
have achieved encouraging results without the need for book-specific training but the
expectable recognition accuracy still is considerably lower than for prints from the 21st

century [46]. Just as for modern prints, there is a great need for highly performant
mixed models for 19th Fraktur scripts since there are masses of scanned data available
online, consisting of a variety of materials including novels, newspapers, journals, and
even dictionaries. To satisfy this need, we used two open-source engines, OCRopus 1 and
Calamari, to train these models. In the progress we also investigate the transferability
of the pretraining and voting techniques introduced in Chapter 4 from the application
in book-specific training, usually dealing with a very manageable number of tediously
created GT lines, to the production of mixed models utilizing several hundred thousand
of lines.

1This section is based on a previously published article [235]: C. Reul, U. Springmann, C. Wick, and
F. Puppe, “State of the Art Optical Character Recognition of 19th Century Fraktur Scripts using
Open Source Engines,” DHd 2019 Digital Humanities: multimedial & multimodal, 2019. [Online].
Available: https://doi.org/10.5281/zenodo.2596095
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The rest of this subchapter is structured as follows: After discussing related work in
Section 7.1.1, we briefly introduce the comprehensive data sets available to use for training
and evaluation in Section 7.1.2. The training procedure is explained in Section 7.1.3.
Sections 7.1.4 and 7.1.5 evaluate the trained models and discuss the results, before Section
7.1.6 concludes the subchapter.

7.1.1 Related Work

Only few evaluation results are available on 19th century Fraktur ATR data. A rare
exception is the evaluation of the Fraktur model of OCRopus 1 trained on around 20,000
mostly synthetically generated text lines [46]. Evaluation on two books of different scan
qualities yielded impressive CERs of 0.15% and 1.37%, respectively. An evaluation of
ATR data on a wider range of Fraktur texts of different quality is missing. For an
overview over the results achieved by mixed models on various materials we refer to
Section 2.4.3

7.1.2 Data

In this section we first briefly introduce the data we used for training our models and the
evaluation data which is entirely distinct from the training data on line but also on book
level. For further information we refer to the corresponding Sections 3.2.1 and 3.2.2 in
the Data Chapter. In addition, a brief overview over our transcription guidelines and the
resulting codec is given.

7.1.2.1 Training Data

By far the largest part of our training corpus is the DTA19 Corpus (cf. Section 3.2.1.5)
provides a very high number of lines (250,000) but “only” covers 39 books. To increase
the variety of books and consequently fonts we incorporated the Archiscribe Corpus (cf.
Section 3.2.2.1) containing 103 books and comprising close to 3,500 lines and the JZE
Corpus (eight books comprising around 1,600 lines; cf. Section 3.2.2.2).
Moreover, we utilized data from foreign domains, i.e. not Fraktur data from the 19th

century, in order to perform a pretraining to increase robustness against noise and
train abstract features. This data consists of the historical corpora EML, Kallimachos,
RIDGES, and ENHG (all introduced in Section 3.2.1) as well as the UW3 data set (cf.
Section 3.2.3) which comprises modern Antiqua fonts.

7.1.2.2 Evaluation Data

To enable the proper utilization of language models, if available within the respective
engine, we used entire pages as recognition input instead of randomly mixed lines. Addi-
tionally, our aim was to evaluate the engines and models on divergent data regarding age,
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typeset, quality of the original printing, state of preservation, and source of digitization.
The subsets we used for evaluation are:

• “Novels” (N): 19th century novels (cf. Section 3.1.2).

• “OCR-Testset” (O): The novel “Die Wahlverwandtschaften” and the journal “Die
Grenzboten” from the CIS OCR Testset (cf. Section 3.2.2.3)

• “Daheim” (D): German journal published between 1864 and 1943 (cf. Section
3.2.2.4).

• “Sanders” (S): Daniel Sanders’ Wörterbuch der Deutschen Sprache (cf. Section
3.1.3).

Figure 7.1 shows a representative selection of example lines and Table 7.1 provides some
additional information about the evaluation data.

For N and O we randomly selected ten pages for each work. Due to the vastly higher
number of lines per page and the occasionally considerably longer lines we settled for
one page per volume for D. As for S we decided to keep all available evaluation data,
i.e. six columns transcribed during another project, resulting in a significantly higher
amount of GT compared to the other subsets, which will be further addressed during the
experiments section.

7.1.2.3 Transcription Guidelines and Resulting Codec

Before starting the training, we had to make several decisions regarding the codec, i.e. the
set of characters known to the final model. During a first check of the present GT data we
noticed several very rare characters, e.g. Greek letters, which only occurred in an almost
negligible number of lines and seemed to be pretty uncommon for 19th century Fraktur
data. In order to keep the codec rather small and therefore minimize the possibility of
confusion, we decided to remove the lines containing these unwanted characters. Some
French characters like é and á were kept since they appeared comparatively frequently.

Furthermore, we determined the following set of rules regarding regularizations:

• The ſ was kept as it represents the embodiment of 19th century Fraktur.

• All ligatures were resolved with the exception of sz since it can be transcribed as a
single standard unicode character.

• Different depictions of Umlauts are regularized to the more modern spelling ä, ö,
and ü. Since both variants are semantically equivalent they can easily be regularized
after the recognition if desired.

• For the same reasons we refrained from the depiction of different forms of quotation
marks and opted to use the simple double quotes for opening as well as closing.

• The r rotunda was regularized to r since it does not carry semantic information.
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Figure 7.1: Example line images of the 20 evaluation works in the order given in Table
7.1. The horizontal lines mark the subsets introduced above (from top to bottom: N, O,
D, and S). For practical reasons, all lines have been vertically normalized and some line
have been shortened. Adopted from [235].

• We mapped the capital letters I and J to J since the vast majority of 19th century
Fraktur typesets use the same glyph to depict both characters.

• Different length hyphens can carry semantic information but we still decided to
regularize all of them to -. The reason for this was their variant transcriptions in
the GT data combined with their susceptibility for confusion.

Applying these rules resulted in a codec consisting of 93 characters.
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Table 7.1: Details on the evaluation data including the ID of the single works, consisting
of the abbreviation of the subset and the printing year, the Title, and the number of
transcribed lines (# Lines).

ID (Short) Title # Lines
N-1781 Eleonore 305
N-1803 Liebe-Hütten 184
N-1810 Der Held des Nordens 264
N-1818 Reinhold 253
N-1826 Frauenwürde 268
N-1836 Die Ruinen im Schwarzwalde 318
N-1848 Levin 269
N-1851 Georg Volker 264
N-1859 Der beseelte Schatten 260
N-1865 Gefahrvolle Wege 333
N-1869 Der Arzt der Seele 250
N-1870 Die Bank des Verderbens 273
N-1873 Natürliche Magie 242

O-1809 Wahlverwandtschaften 223
O-1841 Grenzboten 242

D-1865 Daheim volume 1865 134
D-1875 Daheim volume 1875 144
D-1882 Daheim volume 1882 142
D-1892 Daheim volume 1892 163

S-1865 Sanders Dictionary 630

7.1.3 Training Procedure

Next, we describe the training procedure in detail. After giving a brief overview over the
general workflow and our goals we explain the preprocessing of the available GT lines
and the different stages of the model training.

7.1.3.1 Overview and Goals

The training procedure consists of three basic steps: pretraining on various, non 19th

century data (enhancing robustness and improving voting capabilities), training with
synthetic data (targeted improvement of weak spots), and finally, the training on real
19th century data to finish off the model(s).
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If possible and sensible we perform several trainings per step in order to achieve the
following goals. We aimed to train

• models for OCRopus 1 because it is widely used as well as for Calamari since
it has shown excellent recognition capabilities and natively supports cross fold
training, voting and pretraining.

• models which are optimized to recognize binary line images but also models that
can make use of the additional information provided by grayscale line images.

• very capable single models as well as an ensemble of models whose outputs
can be combined via voting to considerably increase recognition accuracy even
further. Note that the ensemble approach is not applied to OCRopus 1 since it
does not support voting in its default configuration.

7.1.3.2 Preprocessing

Before starting with the training, we have to perform some preprocessing in order to
convert the lines into a format compatible with the OCRopus 1 and Calamari networks
as well as to ensure data consistency. The line images comprised by the DTA19 and
Archiscribe dataset have been obtained by cutting out along the line bounding boxes
detected by ABBYY Finereader (cf. Section 2.6.1). These boxes are usually tightly fitted
around the letters of the line. As opposed to this, OCRopus 1 by default adds a 3 pixel
padding, i.e. three rows of white pixels, to the top and bottom of each detected line
during the line segmentation step. Considering the methodology of processing vertical
slices applied by OCRopus 1 and Calamari during the training and recognition steps, it is
apparent that the presence or absence of padding can have a big impact on the outcome.
Consequently, we also added a 3 pixel padding to the lines which were obtained from
ABBYY Finereader segmentation results. Finally, we convert the line images to binary
and normalized grayscale images by applying the OCRopus 1 binarization algorithm to
all lines.

7.1.3.3 Pretraining

As shown in Section 4.2, building from one or several existing models is almost always
preferable to starting from scratch even when the models do not really fit the training
data. Hence, we tried to utilize as much available GT as possible to let our models
gain robustness against noise and learn meaningful high level features such as edges,
corners, and curves. Different starting points also showed to be very effective in terms
of increasing the diversity between voters, improving their voting performance in the
process (cf. Section 4.3). Consequently, we laid the groundwork for the voting ensemble
by training five models, one on each of the corpora described above: EML, Kallimachos,
RIDGES, UW3, and ENHG. Apart from the voting ensemble we also trained a model
on all five corpora combined to obtain a starting point for the single model approach.
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7.1.3.4 Adding Synthetic Data

Training on synthetic data can be very effective when dealing with 19th century Fraktur.
The standard OCRopus 1 Fraktur model was trained on 20,000 mostly synthetical lines
and showed to be very capable when applied to real world data [46]. Furthermore,
training with artificially generated data allowed us to deal with known weaknesses like
numbers or rare capital letters in a purposeful way.
We used the OCRopus 1 linegen script to generate the data. Apart from the the desired
GT text suitable true type fonts are required as input. Therefore, we collected 66 freely
available fonts and used close to 244,000 text lines already available to us in the form of
line-based GT. However, we did not include text from the evaluation data.
Since the codecs of the fonts differ some of them are not able to render all required
characters. For example, almost one third of the fonts cannot display the ſ. Of course,
we could have regularized the available GT to the common denominator of all fonts to
circumvent rendering problems. However, our goal was to cover as many characters of our
desired codec as possible during the training with synthetic data in order to maximize
robustness and performance. Therefore, we adapted the GT on a font to font basis by
checking the codec of the font and regularizing accordingly by enforcing some simple
rules. For example, if a font could not render the ſ we replaced all occurrences by s in the
font specific GT. Similar rules applied for hyphens of different length, umlauts, or vowels
with accents. During a last step, we focused on known weak points of existing polyfont
models which usually can be attributed to a lack of training data: numbers and rare
capital letters. We tackled the first problem by adding lines either containing just a single
number between 0 and 999 or lines with a number and frequently occurring markups
which are typical for page numbers, e.g. “- 123 -”. Additionally, we randomly added
numbers to the existing GT lines to prevent the network from jumping to unwanted
conclusions regarding the position and surroundings of numbers. In order to cover rarely
occurring capital letters (e.g. “ÄÖÜQY”) we used a freely available list of suitable words2

and inserted them into the existing GT.
After the described preparations we finally generated around 1,500 lines for each font
resulting in a total of close to 100,000 lines of synthetic GT. In addition to the afore-
mentioned inclusion of numbers and words with rare characters, random distortions were
added by generating 80% of the lines using the low degradation model provided within
the linegen script, 15% with the medium and 5% with the high one. Figure 7.2 shows
some examples of generated lines.
Finally, we trained on the synthetic data, starting from the pretrained models. In case
of the ensemble approach we applied a standard five fold cross fold training approach.
The single model resulted from using 80% of the generated lines for training and the
remaining 20% for selecting the best model. Since the linegen script only allows for the
creation of binary images we did not differentiate between binary and grayscale images
until the upcoming training steps.

2https://github.com/jze/ocropus-model_fraktur/blob/master/words.txt
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Figure 7.2: Examples of synthetically generated lines: three standard lines generated
with different fonts and varying degrees of degradation (lines 1-3), page number lines
(line 4), and a line with a number (539 ) and a word containing a rare character (Äpfel)
embedded in real text (line 5). Adopted from [235].

7.1.3.5 Adding Real Fraktur Data

While pretraining on diverse data and synthetic data can offer a lot of robustness, nothing
compares to training on real data. Therefore, the last training steps are exclusively
performed on real lines containing 19th century Fraktur fonts.

The number of available lines varies considerably from book to book. While some books
of the DTA19 dataset contain thousands of lines, most of the works transcribed by using
Archiscribe only comprise 50 lines or even less. Naturally, we want our models to be
trained on as much appropriate real data as possible but we also want to prevent the
models from overfitting towards the typesets of the books with the most available lines.
Therefore, we divided the training with real data in two steps: After running the first
training on all available lines (ca. 285,000) we chose a maximum of 50 lines of every
available book. During the final training we use this selected data (5,634 lines from
148 books) to refine and consequently balance the mixed models and force them into
performing well on a wide variety of fonts. The training procedures were performed
analogously to the approach described during the previous section.

7.1.4 Experiments

In this section we first sum up the engines, models, and evaluation data before we
thoroughly evaluate the trained models. For practical reason, we first identify the best
performing trained model for the three general approaches – OCRopus 1, Calamari single,
and Calamari voted – and then perform the rest of the evaluations with this identified
subset of models. Before finally comparing the performance of our models to existing
approaches, we investigate the influence of the single training steps.

7.1.4.1 Engines, Models, and Data

During the upcoming sections we evaluate the following open-source and commercial
ATR engines and models:
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• Calamari: We trained a voting ensemble as well as a single model on both binary
and grayscale line images, respectively.

• OCRopus 1: Apart from training a single binary and grayscale model we also
incorporate the standard OCRopus 1 Fraktur model (FRK; cf. Section 3.3.1) into
our evaluations.

• ABBYY: For comparison we use the commercial state-of-the-art system ABBYY
Recognition Server 4 using the Gothic recognition mode and setting the dictionaries
to German and Old German.

• Tesseract 4: As another out of the box open-source alternative we also used
Tesseract’s Fraktur script recognition model. There are other suitable mixed models
available, for example deu-frk but we chose the one which performed best during
preliminary tests.

For evaluation we utilize the data introduced above. Apart from the predefined single
subsets of N, O, D, and S we also always accumulate the results for all subsets (All).
Additionally, we give the overall results for all subsets except “Sanders” – NOD – as the
material has to be considered very special and does not necessarily represent the usual
field of application for generic 19th century Fraktur ATR models.

7.1.4.2 Evaluating the Trained Models

For reasons of clarity, we first want to identify the best performing models and use only
them for further evaluations. Furthermore, for the moment we refrain from listing the
results for each individual book and instead only show the pooled results for the four
evaluation sets. Thereto, we recognized the evaluation data with the final single models
and voting ensembles and measured the CER. Table 7.2 shows the results.

There are several things to be taken away from these results: First of all, the superior
recognition capabilities of the deep network structure of Calamari become apparent as
even the single models considerably outperform their OCRopus 1 counterparts reducing
the CER by close to 60%. As expected, the application of voting ensembles pushes
down the CER even further, leading to additional improvements between 30 and 40%
for NOD, All, and the four subsets. Contrary to our initial expectations, the binary
models outperformed the grayscale ones on every single subset, with the exception of
D where both OCRopus 1 models perform equally well. Most likely, this behaviour can
be attributed to the line segmentation methodology. When OCRopus 1 splits a page
or segment into lines it identifies the characters of a line, extracts the related CCs, and
finally copies them into a clean line image. However, for our experiments, we decided to
cut out the line rectangles detected by ABBYY instead, to ensure that we provide equal
starting points and focus entirely on the recognition performance of the various engines.
Admittedly, the extraction of the line rectangles has some drawbacks as it may include
parts of characters from adjacent lines or, in the case of grayscale images, background noise.
During previous experiments, unwanted inclusions have proven to be negligible in the
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Table 7.2: ATR results achieved by the final OCRopus 1 and Calamari models. bin/gray
indicates whether the models have been trained and evaluated on binary or grayscale
line images. single denotes results achieved by a single ATR model, whereas the voted
results were provided by an ensemble of five models/voters whose outputs were combined
by confidence voting. Since the OCR-TS only offers binary images, we put the results
achieved by the grayscale models into parenthesis.

Eval Sets OCRopus 1 Calamari
bin gray bin gray

single single single voted single voted

N 1.69 2.28 0.75 0.47 0.98 0.61
O 1.01 (2.07) 0.19 0.11 (0.50) (0.24)
D 0.47 0.47 0.16 0.09 0.24 0.13
S 5.55 6.12 3.00 2.14 4.20 2.76

NOD 1.39 (1.96) 0.59 0.37 (0.80) (0.49)

All 1.95 (2.52) 0.91 0.61 (1.25) (0.79)

vast majority of cases, especially when the models used for recognition have been properly
trained on similar data, like it is the case here. Nevertheless, the background noise in
grayscale images seems to have a noteworthy impact on the recognition accuracy even
when the utilized models have been thoroughly trained. Furthermore, the synthetically
created data exclusively consisted of binary images which might well contribute to the
superiority of the binary models. Based on the obtained results, we decide to use the
binary models for the remaining experiments of this case study.

7.1.4.3 Influence of the Training Steps

Next, we examined the influence of the different training steps on the performance of the
best models. For practical reason we refrain from performing an exhaustive evaluation
of all possible combinations of training steps. Instead, we focus on the contribution of
the early training steps to the overall performance as well as the relevance of the last
training step – the refinement with a maximum number of 50 lines per book – which is
of particular interest to us. Table 7.3 summarizes the results.
Interestingly, the behaviour shown by the three evaluated approaches varies considerably.
The OCRopus 1 model achieves the best results when the first two training steps are
skipped and only real fraktur data is used. As for the single Calamari model, the same
model and the model trained over all four training stadiums show almost no difference in
their performance. However, the fully trained voting ensemble considerably outperforms
the models which skipped one or several training steps. In contrast to our previous
findings, where we performed book-specific training using pretrained mixed models and
only a few lines of GT, the extensive pretraining on only partly fitting or synthetic data
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Table 7.3: Results for the models emerging from different Training Steps for the single
subsets (N, O, D, and S), NOD, and All. Each step that was performed during the
training pipeline is marked by an “x”. For example, the first line for each model indicates
that the pretraining (pt), training on synthetic data (synth), and training on all available
real Fraktur data (real) steps were performed but the refinement step (refine) was skipped.
The optimum value for each data set is marked bold. The Err. Red. column shows the
proportion of errors the fully trained models (second row for each approach) get rid of in
comparison to the reduced models of that row. For example, the fully trained OCRopus
1 model commits 19% less errors on NOD and 21% on All compared to the OCRopus 1
model which skipped the refinement step. A negative value therefore indicates that the
respective reduced model performed better than the corresponding fully trained one.

OCRopus 1 binary single

Training Steps CER Err. Red.
pt synth real refine N O D S NOD All NOD All

x x x 2.16 0.91 0.38 7.43 1.72 2.48 19% 21%
x x x x 1.69 1.01 0.38 5.55 1.39 1.95 - -

x x x 1.61 0.82 0.33 6.22 1.31 1.96 -6% 1%
x x 1.58 0.77 0.38 5.91 1.29 1.90 -8% -3%

x 1.72 1.21 0.58 5.95 1.47 2.07 5% 6%

Calamari binary single

Training Steps CER Err. Red.
pt synth real refine N O D S NOD All NOD All

x x x 0.92 0.24 0.11 2.72 0.70 0.94 21% 11%
x x x x 0.71 0.17 0.14 2.74 0.55 0.84 - -

x x x 0.79 0.22 0.12 3.18 0.62 0.96 11% 13%
x x 0.75 0.23 0.17 3.37 0.59 0.96 7% 13%

x 0.89 0.36 0.24 4.08 0.72 1.17 24% 28%

Calamari binary voted

Training Steps CER Err. Red.
pt synth real refine N O D S NOD All NOD All

x x x 0.67 0.14 0.08 2.14 0.51 0.73 27% 16%
x x x x 0.47 0.11 0.09 2.14 0.37 0.61 - -

x x x 0.55 0.13 0.10 2.49 0.43 0.70 14% 13%
x x 0.55 0.14 0.14 2.82 0.43 0.75 14% 19%

x 0.63 0.23 0.18 3.74 0.51 0.94 27% 35%

slightly hurts the performance of our single models. It seems natural pretraining loses
its effect as, in this application, we have a huge number of real GT lines available to us.
Nonetheless, it seems odd that the resulting models even perform slightly worse than the
ones trained from scratch. Fortunately, the voting ensemble benefits significantly from the
earlier training steps which can be attributed to the fact, that the extensive pretraining
and especially the first step, led to to a considerable increase of diversity between the
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voters. Finally, all three approaches gain considerably from the final refinement step
since the models are forced to generalize better onto a large variety of fonts.

7.1.4.4 Comparison with other Engines and Models

Finally, the identified best self-trained models are compared against the engines and
polyfont models introduced above. As for OCRopus 1 and the single Calamari model
we use the models that skipped the first two training steps while the best Calamari
voting ensemble passed through all four training steps. For a more in-detail analysis we
measured the CER for every single work of the dataset. The results are shown in Table
7.4.

The error rates for the individual books confirm the results gathered from evaluating the
different sets. Despite achieving impressive recognition results, below 1% CER for about
two thirds of the single works, the OCRopus 1 model gets considerably outperformed by
the single Calamari model on every single occasion. The same applies to the Calamari
ensemble compared to the single model, with exception of D-1875, where the voting
approach leads to no improvement. Compared to FRK, our OCRopus 1 model reduces
the CER by more than 50% for NOD, the single Calamari model by close to 80%, and
the voted approach by over 85%. The discrepancy rises with increasing printing quality
of the subsets from N over O to D. As for ABBYY, our models lead to improvement
rates for NOD of 46% (OCRopus 1), 77% (Calamari single), and 84% (voted). While the
models significantly outperform ABBYY on N and O, they cannot match the almost
perfect results on D. Another eye-catching result is the great variation among the CERs,
e.g. by a factor of more than 2,500 from 26.54% to 0.01% for ABBYY and more than
400 from 4.75% to 0.01% for Calamari voted, which apparently depends on the quality of
the scans as well as the similarity of each font to the training data.

To get a better impression of the results and probably also the strengths and weaknesses
of the evaluated approaches, we summed up the confusion statistics for NOD in Table
7.5.

One thing that immediately stands out is that all four approaches share a common most
frequent error: the deletion of whitespaces. This represents a common problem with
historical prints, as the inter word distances vary heavily. Another eye-catching property
is the overall distribution of errors. While ABBYY’s and OCRopus 1’s distribution
is relatively flat, the two Calamari approaches show a considerably more top heavy
accumulation of errors which is also indicated by the amount of remaining errors outside
of the top ten. Interestingly, the Calamari models seem to struggle with the recognition
of quotation marks and confuse them with single primes. It is worth mentioning, that
OCRopus 1 struggles with umlauts and frequently recognizes äöü with their vocal
counterparts aou, whereas the other approaches comfortably deal with these cases.
Naturally, the confusion of f (small F) and s stem from the miss-recognition of a ſ (long
s) which for evaluation purposes got then normalized to s.
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Table 7.4: In detail comparison of our trained models using OCRopus 1 and Calamari
with the standard Fraktur models of Tesseract (Tess), OCRopus 1 (FRK ) and ABBYY
Finereader. The CERs for all single works are given as well as the accumulation for
the four individual subsets, NOD, and All. The three rightmost columns indicate the
percentual improvement of our models compared to ABBYY.
Data Tess FRK OCRopus 1 ABBYY Calamari Impr. over ABBYY

trained trained
bin bin bin original bin OCRopus 1 Calamari

single single single default single voted single single voted

N-1781 6.61 4.08 2.48 2.79 0.81 0.56 11 71 80
N-1803 17.17 18.21 11.30 26.54 6.38 4.75 57 76 82
N-1810 5.26 5.30 1.92 3.22 0.45 0.21 40 86 93
N-1818 7.90 7.73 3.85 9.30 1.85 0.96 59 80 90
N-1826 2.77 1.00 0.40 1.04 0.08 0.01 62 92 99
N-1836 6.88 4.68 2.01 2.70 0.70 0.56 26 74 79
N-1848 1.58 1.17 0.33 0.57 0.08 0.02 42 86 96
N-1851 1.93 0.63 0.24 0.70 0.09 0.04 66 87 94
N-1855 4.58 4.42 1.38 3.83 0.80 0.58 64 79 85
N-1859 2.19 1.42 0.31 0.38 0.17 0.08 18 55 79
N-1865 2.44 1.31 0.62 1.23 0.19 0.13 50 85 89
N-1870 2.09 1.97 0.43 0.47 0.26 0.10 9 45 79
N-1873 2.53 1.14 0.32 0.34 0.22 0.14 6 35 59

N-all 4.39 3.42 1.58 3.13 0.71 0.47 50 77 85

O-1809 3.04 2.22 1.13 1.62 0.26 0.20 30 84 88
O-1841 2.09 1.06 0.60 0.79 0.13 0.07 24 84 91

O-all 2.40 1.44 0.77 1.06 0.17 0.11 27 84 90

D-1865 2.10 1.85 0.71 0.16 0.26 0.17 -344 -63 -6
D-1875 1.50 0.85 0.17 0.04 0.09 0.09 -325 -125 -125
D-1882 1.53 1.17 0.43 0.09 0.20 0.12 -378 -122 -33
D-1892 0.90 0.45 0.23 0.01 0.02 0.01 -2,200 -100 0

D-all 1.48 1.05 0.38 0.07 0.17 0.09 -443 -100 -29

S-1865 5.12 10.02 5.91 5.47 2.74 2.14 -8 50 61

NOD 3.68 2.80 1.29 2.38 0.55 0.37 46 77 84
All 3.87 3.76 1.90 2.80 0.84 0.61 32 70 78
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Table 7.5: The ten most common confusions on NOD for ABBYY, Tesseract, and
our self trained models (OCRopus 1 and Calamari voted), consisting of the GT, the
prediction ATR, and the percentual contribution (PERC ) of a given confusion to the
overall number of errors. Whitespaces are shown as ␣ and empty cells denote blanks, i.e.
no prediction.

ABBYY OCRopus 1 Tesseract Calamari voted
GT ATR PERC GT ATR PERC GT ATR PERC GT ATR PERC
␣ 1.63 ␣ 3.97 ␣ 7.06 ␣ 8.99

␣ 1.53 u n 2.47 ch < 6.58 " ’ 5.82
e c 1.42 i t 2.17 . , 2.42 . 1.39
s S 1.38 ü u 1.94 - 2.37 , 1.39

, 1.25 ö o 1.90 . 2.20 ␣ 1.27
. 1.12 ␣ 1.87 c 1.95 f s 1.14

e " 0.88 n 1.54 h < 1.48 n u 1.14
- " 0.86 i l 1.34 : 1.41 , 1.14
s r 0.77 ä a 1.27 d v 1.15 u n 0.89

- 0.69 t e 1.27 s f 1.14 i t 0.89

Remaining 88.47 Remaining 80.27 Remaining 72.24 Remaining 71.94

7.1.5 Discussion

First of all, we showed that our trained 19th century Fraktur mixed models can significantly
outperform the commercial state-of-the-art system ABBYY on most evaluated materials.
The specific training on a very extensive amount of GT combined with the impressive
recognition capabilities of OCRopus 1 and especially Calamari led to more precise and
particulary more flexible and robust models than the more generic ABBYY approach.
However, ABBYY performed almost flawlessly on the Daheim subset which apparently
has not only been printed in a font very similar to one ABBYY was trained on but also
provided by far the best state of preservation and scan quality compared to the other
subsets. Of course, the other engines also profit from this, which can be deducted from
the Daheim subset having by far the lowest average CER of all subsets, but even the
Calamari voting ensemble still performs considerably worse than ABBYY. It is standing
to reason that the availability of a seemingly very performant language modeling and
dictionary functionality gives ABBYY the edge. Of course, these postprocessing methods
also come in handy when the raw recognition accuracy is (considerably) lower but it
makes sense that they perform best when already provided with an ATR output which
comprises at most 1-2 errors per sentence.
As expected, the deep network structure of Calamari is undeniably better suited to the
given task than the shallow OCRopus 1 LSTM. The considerably higher number of
trainable parameters in the CNN-LSTM combination of Calamari allows the network
to almost perfectly learn the different typesets from hundred of thousands of lines.
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Moreover, Calamari profits massively from the ability of recognizing text with several
models and combine their outputs in an ensemble approach utilizing confidence voting.
This underlines the efficiency of the cross fold training and voting approach and proves
that it is not only applicable to book-specific training with a small amount of GT but
also to the training of mixed models with an immense number of lines available.

The same can be said about the pretraining approach which benefitted the different
trainings in three ways: First, the training on only remotely related data, i.e. text lines
printed in Latin script but otherwise very different in terms of typography or age, is
thought to lead to a higher robustness against noise and supports the learning of abstract
features. The OCRopus 1 model was not able to improve with this additional training
step as its shallow network cannot be expected to offer enough learning capacity in order
to profit from this kind of extra data. This holds especially true, when there are close
to 250,000 lines of fitting GT available for the model training. Second, the effect of
pretraining on different data in the very first training step still seems to linger until the
end and leads to more diverse voters in the ensemble approach, resulting in a better
voting performance. Third, the final refinement step proved to be very effective for all
three approaches. Overall, the method to train the models step by step and even reuse
the already trained data in an adjusted way appeared to be the way to go when training
very comprehensive mixed models.

Unfortunately, the inclusion of synthetic training material did not yield the desired
results as its addition barely improved or even slightly worsened the results compared
to only performing the final to training steps on real Fraktur data. Since the FRK was
trained almost exclusively on synthetic data there had been high hopes for this approach.
However, as mentioned above, nothing compares to real data. When reconsidering, our
training situation is way different to the one on the FRK model as we have plenty of real
data available to us which lessens the effect of incorporating synthetic data up to a point
where it becomes irrelevant. Additionally, we have to take the overall recognition quality
into consideration. Synthetic data did a good job to get the CER down to around 3%
but our approaches reduced it by a further factor of about two to six.

Finally, it has to be said that our experiments were performed on well segmented line
images. The segmentation process is a very challenging task which has not been solved
in a generic and satisfactory way, yet. It is standing to reason to utilize the very robust
ABBYY segmentation and combine it with the (for the most part) superior recognition
Calamari capabilities. Consequently, this CalamABBYY functionality was directly
integrated into the Calamari prediction script and allows to provide page images and
corresponding ABBYY XML files as an input. The script then extracts the lines according
to the coordinates stored in the XML output, applies the necessary preprocessing steps,
recognizes the lines using standard Calamari models, e.g. the strong polyfont models
trained during this case study, and finally outputs the results in another ABBYY XML
file.
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7.1.6 Conclusion and Future Work

Our evaluations have shown that, depending on the material at hand, open-source
engines and mixed models are capable of matching or even considerably outperforming
the commercial state-of-the-art system ABBYY. The resulting models have been made
publicly available3 as has the data required to adjust the model’s codec, if desired.

There are some viable ideas to improve the recognition accuracy even further. First of
all, the incorporation of even deeper networks comes to mind as we are dealing with tons
of training data. First experiments on the UW3 data set, comprising almost 100,000 GT
lines, showed positive effects when utilizing deeper network structures. Another idea is
the usage of data augmentation. On a first look this does not seem like a particulary
promising approach, as it is standing to reason that augmented data comes with similar
problems as synthetic data, when a lot of real GT is available and already leads to very
performant models. Because of that, augmenting the pretraining data, or even all of
the available real Fraktur data, cannot necessarily be expected to yield significantly
better results. However, the refinement steps might offer an interesting opportunity
to incorporate data augmentation by splitting the training in two stages4: First, the
refinement data, i.e. at most 50 lines per source, is augmented and used to train a single
model or a voting ensemble. Then, further refinement can be achieved by only training
the real selected lines, just as we did before, but starting from the model(s) obtained
during the first stage. Maybe, this way we would be able to reinforce the effect of the
refinement step while keeping the robustness obtained during the earlier training steps.

Naturally, adding further training data always represents a valid approach in order to
improve the recognition accuracy. While any amount of additional valid real data is
always welcomed, the obtained results indicate that, at this stage, the trained models
would benefit more from a wide variety of works, and consequently a multiplicity of fonts
and typefaces, even if only a few lines are available, than from some selected complete
works providing thousands or even tens of thousands of lines.

Furthermore, while ABBYY already has strong postprocessing techniques available, this
represents an opportunity to improve the results achieved by Calamari and OCRopus 1
even further, in particular the inclusion of dictionaries and language models.

3https://github.com/chreul/19th-century-fraktur-OCR
4By now this proposed two-staged procedure has been incorporated into Calamari as the default approach
when using data augmentation.
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7.2 Automatic Semantic Text Tagging on Historical Lexica by
Combining ATR and Typography Classification5

Despite the recent progress in the area of historical OCR the thorough indexing of a
lexicon remains a challenging task. To fully exploit the content, it does not suffice to
just gather the text by performing ATR or by transcribing it, since most lexica contain a
complex structure within the text consisting not only of the lemmata themselves, but also
definitions, grammatical information, or possible word formations. Usually, to encode
this information, printed lexica rely on typographical variations of the text (compare
Figure 7.3). Therefore, if the typography within a dictionary article changes, e.g. from
Fraktur to Antiqua, it carries semantic meaning.

Gathering this information is not a trivial task, since manual tagging is cumbersome and
machine learning approaches like GROBID dictionaries [115], while being promising, are
usually not flexible enough to smoothly adapt to new material or user requirements.

The approach proposed in this subchapter treats the gathering of the information stored
in historical lexica as two separate sequence classification tasks: ATR and typography
recognition. To ensure flexibility and adaptability, we rely on the application of an
open-source ATR engine which can easily be trained and geared towards recognizing
different text and typography classes. Analogously to the ATR, we also produce line-
based typography GT by assigning a distinct label to each of the typography classes.
After training two separate models (one for text and one for typography) using the
respective GT, each model recognizes the line images and the outputs are aligned on word
level. Our case study on Daniel Sanders’ Wörterbuch der Deutschen Sprache showed
very promising results leading to low CERs, both for ATR and typography recognition.

The remainder of the subchapter is structured as follows: after discussing related work in
Section 7.2.1, we introduce the used material in Section 7.2.2 and describe our approach
in Section 7.2.3. The outcome of the experiments performed in Section 7.2.4 are discussed
in Section 7.2.5 before Section 7.2.6 concludes the subchapter.

7.2.1 Related Work

In this section we first give an overview over the related work regarding font identification
and then briefly discuss the adjacent topic of script identification. Finally, we discuss the
differences between our method and previous approaches.

5This section is based on a previously published article [231]: C. Reul, S. Göttel, U. Springmann, C. Wick,
K.-M. Würzner, and F. Puppe, “Automatic Semantic Text Tagging on Historical Lexica by Combining
OCR and Typography Classification: A Case Study on Daniel Sander’s Wörterbuch der Deutschen
Sprache,” in Proceedings of the 3rd International Conference on Digital Access to Textual Cultural
Heritage. ACM, 2019, pp. 33–38. [Online]. Available: https://doi.org/10.1145/3322905.3322910
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7.2.1.1 Font Identification

Zramdini and Ingold [331] extracted features from the horizontal and vertical projection
profiles of text lines and applied a Bayesian classifier to discriminate the font weight,
slope, and size. Experiments on 100 French text lines each printed in 48 fonts (three
standard font families with four sizes, two slopes, and two weights) showed encouraging
results.

In [332] the same authors gathered typographical features while searching for global
aspects of the text which allow a human reader to distinguish visually between font
weights, slopes, sizes, and typefaces. First, in order to delimit the feature extraction
area, CCs are classified into six typographical and six morphological classes using the
text lines vertical projection profile. Then, descriptive features like black pixel density,
x-height, and the presence of serifs were extracted from the CCs and their bounding
rectangles. 280 font models representing ten typefaces, seven sizes, and four styles were
trained on on about 100 English text lines and then evaluated on a test set consisting of
at least 100 French text lines for each font. During the evaluation almost 97% of the
fonts were correctly classified as a whole. This number even rose to over 99.9% when
only considering the more practical problem of identifying the style of a given typeface.

Other approaches consider font identification as a global texture analysis problem. e.g.
Zhu et al. [330] first normalize an input document in order to obtain a uniform block
of text. Afterwards, they extract font features by applying multichannel Gabor filters
[102] to the text blocks and utilize a simple weighted Euclidian distance classifier for
font recognition. Experiments on computer-generated images using 56 (14 typefaces, 4
styles) Chinese and English fonts resulted in an average recognition accuracy of 99.1%.
Furthermore, the method was shown to be very robust as the recognition dropped only
slightly even when heavily contaminating the text block images with salt and pepper
noise.

Nicoulaou et al. [194] also considered font recognition as a texture classification problem.
They used Local Binary Patterns [210] extracted from text blocks as features and a simple
Nearest Neighbour classifier to distinguish 100 fonts (10 font families and 10 distinct font
sizes). For training and evaluation the wide-spread APTI database6 consisting of over
100,000 arabic words was used. During evaluation, the Local Binary Pattern approach
achieved comparable results to the Gaussian Mixture Models approach [271] which is
considered the state-of-the-art in Arabic optical font recognition.

Of course, the topic of font identification has also been addressed by many (deep) neural
network based techniques. Tao et al. [291] interpreted the task of classifying the font of
single Chinese characters as a sequence classification problem. Therefore, they rearranged
the input ordering of the points on a stroke and applied a 2-D LSTM network to it.
Additionally, they added a principal component layer for preprocessing purposes. For
evaluation they created a synthetic dataset combining seven typefaces with four font styles

6https://diuf.unifr.ch/diva/APTI
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and added different levels of noise. Their system outperformed five other approaches and
showed a high robustness against noise due to the added principal component layer.

In [294] Tensmeyer et al. compared the performance of two CNN architectures (AlexNet
[149] and ResNet-50 [125]) on an Arabic font dataset containing 40 typefaces in four
styles and ten different sizes. While the training of the CNNs in performed on single
patches of script the classification works by predicting several patches individually and
then averaging the class probability distribution. The ResNet-50 outperformed AlexNet
in all evaluation scenarios with the highest accuracy of 99.2% being achieved by training
and testing on segmented line images.

The winners of the most recent third edition of the ICDAR competition on multi-font
and multi-size digitally represented Arabic text [270] also applied a CNN-based approach.
They used ResNet-18 as their base model and only adjusted it by replacing the final
layer with fully connected layers which fitted the individual sub tasks of font recognition,
font-size recognition, and joint font and font-size recognition.

7.2.1.2 Script Identification

A very comprehensive and up to date overview over the various methods of script
identification is given in [303]. First, the authors discuss script detection methods
categorized in different domains (e.g. printed and handwritten documents). Then, a vast
amount of local and global features is described and the performance of the corresponding
systems is evaluated and discussed.

An especially noteworthy approach was recently proposed by Fujii et al. [101] who
performed sequence-to-label script identification for multilingual ATR on 232 languages
and 20 scripts. Their system consisted of two components which are trained end-to-end:
The encoder converts a line image into a feature sequence and the summarizer then
aggregates the obtained sequence in order to classify the line. After training their system
on over 1.1 million lines evaluation on over 180,000 lines showed a script identification
error rate of 3.1%.

Despite our focus on font identification the sequence learning method for script identifica-
tion proposed by Ul-Hasan et al. [304] represents an important piece of preparatory work
for our purposes. The authors used OCRopus 1 and its underlying LSTM implementation
[46] to separate English and Greek script. First, they generated close to 100,000 synthetic
text lines in a variety of fonts using the OCRopus 1 linegen script and freely available
English-Greek text. In the process, character-based GT was produced by putting the
label 0 for English characters and label 1 for Greek ones. After training an OCRopus
1 model on the GT they were able to not only differentiate English from Greek script
but also to identify the corresponding patches in the images by making use of the llocs
output by OCRopus 1. The proposed method achieved a CER of 1.81% on an evaluation
set consisting of 9,500 synthetically generated text lines.
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7.2.1.3 Our Method

The approach proposed in this section differs from all methods described above in one or
several of the following aspects:

• While many approaches deal with synthetically generated images, we are working
on real data. We therefore do not only present a theoretical proof-of-concept but
give a fully realistic example of our method.

• Due to the age of the material, we are not dealing with modern standard fonts but
with historical non-uniform fonts.

• The frequent change of typography even within lines presents an additional
challenge since each word has to be classified by only using a small amount of
information.

• In consequence of the usage of an open-source ATR engine, our approach is easily
adaptable to other works.

7.2.2 Material: Sanders’ Dictionary

In this case study we worked with Daniel Sanders’ “Wörterbuch der Deutschen Sprache”.
While we refer to Section 3.1.3 for a general overview over the dictionary, we now focus
on the semantic function of typography it comprises (see Figure 7.3) being explained in
the following (see also Figure 7.4, 7.5 for the typographical class labels).

As mentioned above, if the typography within a dictionary article changes this represents
semantic meaning. Such a syntax within a dictionary article or an entire dictionary is
nothing unusual, but it is particularly complex in Sanders’ dictionary. The lemmatization
is usually based on the elementary words of the German vocabulary. The word family
oriented arrangement is a lexicographical challenge, but makes it possible to systematically
develop and find the countless derivatives and compounds. The macrostructure of the
dictionary is highly dense and therefore complex. The semantic function of typography
in Sanders’ dictionary is explained in the following using a few examples. Due to the
complexity only the most important use-cases can be shown here.

The main lemmata at the beginning of each dictionary-article are always in bold and
indented. The corresponding GT representation we are aiming to reproduce with our
method is shown below with lemmata color-coded in red (assigned label of typographical
class l). Their typographic appearance is unique. In this case, as with most dictionary
articles, the lemma is just followed by grammatical properties, regarding this example for
verbs, such as “tr.” (transitive), printed in Antiqua (green, a). The semantic paraphrases
are annotated as a simple Fraktur type (black, f ). The typeface of the quotations is
divided into two types consisting of the author’s name (yellow, n) and the page number
(again Antiqua). At the end of a reading possible word formations may be listed. The
typeface again uses Fraktur but in letter-spacing (blue, F) followed by a meaning.
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Figure 7.3: Input (top) and color-coded output (middle) of our method for an example
article depicting the five typography labels. The raw ATR output together with its
aligned typography label determines the color code as described in Figure 7.5. This
output can then be further transformed into a (reduced) TEI representation (bottom),
explicitly encoding not only the lemma (orth) but also all additional information about
grammatical properties (gram), sources (bibl), and compositions (re). Adopted from
[231].

7.2.3 Methods

In this section, we describe our approach in detail. After a brief look at the required
preprocessing and segmentation steps, we first discuss the ATR and the typography
recognition as separate subtasks and afterwards combine them in order to obtain the
final result.
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7.2.3.1 Preprocessing and Segmentation

To be able to work with Calamari, some segmentation steps had to be performed. First,
the scans are preprocessed by applying the ocropus-nlbin script (cf. Section 5.4.2) resulting
in a deskewed binary image for each page. Next, the columns have to be detected and
segmented into lines. For the first step, we used a rule-based implementation7 based
on the detection of whitespace separators. Before the line segmentation is performed
by applying ocropous-gpageseg (cf. Section 5.5.2), the columns are once again deskewed
separately. For every extracted line, the coordinates of its enclosing rectangle are stored
for later use.

7.2.3.2 Automatic Text Recognition

To maximize the ATR accuracy while keeping the computational effort reasonable, we
trained an ensemble of five book-specific models using the voting ensemble for the
recognition of 19th century Fraktur trained during the case study described in Section 7.1
as a starting point. The required GT was produced by transcribing a selection of lines
which gave a good representation of the occurring characters and typography classes
within the book.

During the recognition step, the start and end positions of the recognized characters
and the voted probabilities both for the most likely character as well as for the top
alternatives are stored.

Due to the complexity of the material at hand, we had to handle a significantly bigger
alphabet compared to average 19th century Fraktur printing. 150 distinct characters
occurred in the training and evaluation set. For comparison, the mixed models we used
as a starting point were trained on GT comprising only 93 characters (cf. Section 7.1.2.3).

7.2.3.3 Typography Recognition

In general, the typography recognition sub task is very similar to the ATR one. The main
difference lies in the GT production, as manually assigning abstract typography labels to
each character is even more cumbersome and error prone than producing textual GT.
Therefore, we first introduce a method that considerably simplifies this task. Additionally,
we describe the training and recognition process including data augmentation.

Ground Truth Production Regarding the typography GT, we followed the approach
proposed by Ul-Hasan et al. ([304], cf. Section 7.2.1.2) and assigned a distinct label to
each of the five classes (f, F, n, l, a). Since the typography never changes during the
course of a word, we developed a GUI (see Figure 7.4) which uses the ATR GT as input
and consequently allows for an efficient typography GT production on word level. After

7https://github.com/wrznr/column-detect
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the transcription of the ATR GT, it is first split into words according to the occurring
whitespaces. Then, the words are processed from left to right. The currently active
word is highlighted within an additional label. Next, the user can assign one of the
predefined classes to each of the characters of the active word by performing a single
mouse click. After the insertion of a whitespace, the next word of the line becomes active
and is processed in the same way. Moreover, it is possible to assign a specific label to the
remainder of the line at once. Figure 7.4 demonstrates this process.
To ensure native compatibility to OCRopus 1 and Calamari our labeling procedure works
on raw line images and produces textual GT files. Naturally, the input and output could
also easily be imported from or exported to other (e.g. XML-based) representations.

Figure 7.4: Typography GT production process of a single line. The ATR GT (green
border) and the line image are shown at the very top. The remaining steps demonstrate
the word-wise typography labelling: 1) The first word is highlighted as active and a
single mouse click assigns the selected class label (here: f ) to each letter. 2) The step is
repeated for the following words with the to-be-labeled word always being highlighted in
red. 3) Final ATR and typography GT result after assigning the f label to the last four
words at once. Adopted from [231].

Training and Recognition With the obtained typography GT, we performed another
training run. In order to add robustness to the models, some data augmentation techniques
from the OCRopus 3 ocrodeg module [203] were utilized. For every line in the training
data set, we created augmented lines by artificially degrading the original image using
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random distortion and blurring operations. With the obtained data, we performed a
pretraining and refined the resulting models by training on real lines exclusively.

7.2.3.4 Combining the Outputs

Whitespace Pruning To combine the output of the two recognition steps for ATR and
typography, we first prune the results by removing leading and trailing whitespaces from
the lines. Furthermore, chains of whitespaces are combined into a single one by updating
the start and end positions accordingly and setting the confidence to 1.

Alignment Next, we perform an alignment on word level by iterating over the whites-
paces recognized by the ATR. For each word in the ATR result, we compute the
corresponding word in the typography output by checking the typography labels which
got recognized since the last whitespace in the ATR. If the bounds of a label end before
the next whitespace it is added to the current word. Otherwise, the label is dropped, the
current word is concluded, and the next one is started. Additional whitespaces in the
typography are also dropped. Figure 7.5 explains the alignment step and the upcoming
typography voting.

Figure 7.5: Typography alignment for an example line: 1) Line image with whitespace
positions (red). 2) ATR output. 3) Typography output with whitespace and character
positions (green). 4) Raw (and slightly flawed) textual typography output. 5) Final
combined output with voted typography classes assigned on word level. Adopted from
[231].

Typography Voting Since the typography does not change during a word, each word
is assigned a unified label by selecting the most likely one from the labels matched to
the characters of the word. Therefore, we iterate over all recognized characters and sum
up the confidence values for all classes. Finally, the label with the highest confidence
sum is assigned to the word as a whole. With respect to our example this approach not
only covers up the misclassification of the last two characters in the fifth word “Frauen”
but also shows its robustness against the insertion or deletion of characters: Despite the
typography model only recognizing three characters of type n in the four letter word
“Sch.”, the method provides the correct end result of class n.
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Final Output The final output of the recognition process is a JSON file which stores a
list of words for each line. Each word is represented by the ATR result and the assigned
typography label. Additionally, the minimal character confidence which occurred during
the ATR of the word is stored. If needed, this allows for an efficient correction of
suspicious semantic key words, e.g. lemmata. Finally, the bounding box of each word
is determined from the y-coordinates of its containing line and the x-coordinates of its
preceding and subsequent whitespaces. Reversing the cutting and rotational operations
during the column segmentation and deskewing steps allows to map the word bounding
boxes to the original scan image, e.g. for presentation purposes.

7.2.4 Experiments

The proposed approach is thoroughly evaluated in this section. After a brief explanation
of the used data, we first take a look at the ATR performance before evaluating the
typography recognition, both with and without the inclusion of data augmentation.

7.2.4.1 Data

To examine the influence of the number of GT lines on the ATR and typography
recognition accuracy, we performed the upcoming experiments not only with all available
GT (765 lines) but also with subsets of 400, 200, 100, and 50 lines respectively. The lines
of each subset were randomly picked from the next bigger set of lines. For evaluation
purposes, we selected six columns consisting of 630 lines and created the corresponding
GT. Table 7.6 provides additional information about the evaluation data.

Table 7.6: Statistics of the evaluation data including the distribution of the number
of words (W ) and characters (C ) as well as the average word length (L) for the five
typography classes.

a f F n l All

W 1,007 4,378 105 314 53 5,857
17.2% 74.7% 1.8% 5.4% 0.9% 100%

C 2,580 21,936 747 1,768 333 27,364
9.4% 80.2% 2.7% 6.5% 1.2% 100%

L 2.56 5.01 7.11 5.63 6.28 4.67

7.2.4.2 Automatic Text Recognition

In this section, we briefly evaluate the ATR performance. Apart from varying the number
of training lines, the results are compared to the ones achieved by ABBYY FineReader
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(cf. Section 2.6.1) and the freely available raw Fraktur 19th century polyfont model we
used for pretraining. For evaluation, we apply the built-in Calamari evaluation script
which first computes the Levenshtein distance [164] between the ATR result and the GT
and then divides it by the number of GT characters in order to obtain the CER. Table
7.7 sums up the results.

Table 7.7: CER of the line-based ATR dependent on the number of lines used for training
(# Lines). The first row shows the results achieved without book-specific training.

# Lines Calamari ABBYY
- 3.69 10.28
50 1.83 -
100 1.05 -
200 0.67 -
400 0.43 -
765 0.35 -

Unsurprisingly, the CER decreases considerably with a growing number of training lines.
It is worth mentioning that, despite the very challenging material at hand, a quite
manageable number of 100 lines of GT is already enough to get close to a very low CER
of 1%. Furthermore, the familiar saturation effect becomes visible as almost doubling the
number of training lines from 400 to 765 only results in a smaller relative reduction in
CER compared to previous steps. The mixed model performs reasonably well, especially
when considering that over 20% of the errors occur due to different representations of
hyphens and can mostly be attributed to diverging transcription guidelines. Yet, these
results demonstrate that a book-specific training is reasonable. This is underlined even
further by the mediocre recognition accuracy achieved by ABBYY, which struggled
with the diversity of the alphabet as well as with the peculiarities of the material,
differing considerably from other historical sources such as novels, where ABBYY’s strong
dictionary and language modelling features are much more useful.

7.2.4.3 Typography Recognition

After showing the ATR capabilities of Calamari and the pretrained Fraktur models,
the next step is to evaluate the performance of the typography recognition. Therefore,
we first train exclusively on real data and investigate the influence of a postprocessing
step, i.e. the confidence voting in order to unify the labels within a word. Then, we
perform data augmentation to synthetically enrich the training corpus. Analogously to
the ATR evaluation, we examine the influence of the number of training lines for every
step. We use the Levenshtein distance [164] as a performance measure for the typography
classification task. Since the typography does not change within a word it makes sense
to utilize the WER: After determining the most likely label by confidence voting we
collapse each word to a single character and remove all whitespaces, e.g. a voted output
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of “lllllll aaaa ffffffffff fff ffff” becomes “lafff”. Subsequently, we simply calculate the CER
by applying Calamari’s eval script using an analogously preprocessed GT.

Training Exclusively on Real Data For the first typography experiment, we used the
same set of lines as for the ATR training. After the recognition we first measured the raw
CER and then performed the postprocessing described above to obtain the voted CER
and the WER. The results are shown in Table 7.8. There are many interesting things to
take away from these results: First, as expected and analogous to the ATR results, a
strong negative correlation between the number of lines and the CER can be observed.

Table 7.8: Performance of the line-based typography recognition dependent on the
number of GT lines (# Lines).

Raw Voted
# Lines CER CER WER

50 8.48 8.53 9.82
100 3.16 3.12 4.08
200 2.46 2.40 2.66
400 1.39 1.38 1.72
765 1.17 1.18 1.47

Interestingly, the postprocessing does not lead to noteworthy improvements which is at
first surprising since intuitively one expects a regular occurrence of single wrong characters
within an otherwise correct word, which should easily be fixed by the postprocessing, e.g.
“ffffnff” Ñ “fffffff”. However, in reality the dominating errors are insertions and deletion
of single characters which, naturally, cannot be eradicated by our postprocessing.

To come along on top, the postprocessing can even worsen the results because of deleted
whitespaces between two words with different labels. For example, two words “aaaa ffff”
apart from a single error, i.e. the missed whitespace, got correctly recognized as “aaaaffff”,
but the confidence voting turned the recognized string into “aaaaaaaa” introducing four
additional errors.

Concerning the WER the same tendencies can be observed as for the CER. Incorporating
all available training lines results in a model which is capable of assigning the correct
typography label to over 98.5% of the words.

Incorporating Data Augmentation In this last experiment, we investigate the influence
of adding synthetically altered data to our training set. Therefore, we augmented each
line 5, 20, and 100 times for a small (50) and medium (200) set of real lines, as well as
for the complete set. Table 7.9 sums up the results. Unsurprisingly, the effectiveness of
data augmentation highly depends on the number of available real lines. While for 50
and 200 lines significant improvements in recognition accuracy can be observed, only a

199



7 Case Studies

moderate reduction in WER of 6% can be achieved when using all available real training
lines. Apart from the apparent diminishing return another drawback of excessive data
augmentation is the runtime of the training. While in our case the most comprehenaive
training, that is using 765 real lines and augmenting them 100 times, could be completed
within a few hours due to the parallel utilization of five suitable GPUs, it would take at
least several days to complete this task without GPU support even on a modern PC.

Table 7.9: Effect of data augmentation on the line-based typography recognition. Each
cell shows the resulting WER as well as the improvement in percent compared to training
exclusively on real lines. For example, augmenting 200 lines 5 times leads to a WER of
1.89 which represents an improvement of 29% over the real-line-only WER (2.66 ).

# Real # Augmentations
Lines - 5 20 100

50 9.82 6.37 5.34 4.90
- 35% 46% 50%

200 2.66 1.89 1.67 1.66
- 29% 37% 38%

765 1.47 1.45 1.43 1.38
- 1% 3% 6%

7.2.5 Discussion

During our experiments, we showed that typography recognition using the open-source
ATR engine Calamari is not only possible but very precise. Naturally, a high quality
recognition of several very similar typography classes, just like the ones used in Sanders’
dictionary, can only be achieved by performing a thorough book-specific training. However,
the results showed that even a manageable number of GT lines (200) results in an excellent
WER of 1.7% when utilizing data augmentation. Due to the proposed approach to semi-
automatically produce the typography GT by building from the available ATR GT, the
required manual effort compared to a fully manual transcription is considerably reduced
as is the susceptibility to errors.

While the ATR was not the main focus of this case study, the achieved recognition
results are still worth mentioning, getting very close to 1% CER with a mere 100 training
lines and on a particularly demanding material. This also demonstrates the impressive
recognition capabilities of Calamari and underlines the usefulness of the established
approach of combining pretraining and confidence voting with a combined CNN/LSTM
network. The unequal distribution of typography types in the GT, which is typical for
historical lexica, caused a problem, as the ATR model overfits the very frequent classes
and underfits the rare ones. This problem can be addressed during the GT selection but
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only to a certain degree, since lines which contain a less frequent type are still pretty
much always dominated by the main types a and f.
The high quality ATR result combined with the reliable typography based tagging lays
the foundation for methods to fully automatically transform comprehensive (in Sanders’
case ca. 800,000 text lines) scanned lexica with reasonable effort into a fine-structured
output, e.g. TEI (see bottom of Figure 7.3 for an example). Appropriate rule-based
algorithms have been developed at the Berlin-Brandenburg Academy of Sciences and
Humanities8, laying the groundwork not only for a fully searchable and semantically
marked up online version of the dictionary9 but also for future complex search queries
like “find all lemmata which include Goethe as a source”.

7.2.6 Conclusion and Future Work

This subchapter proposed an approach to apply typography recognition to a real world
dictionary comprising a particularly complex semantic function of typography. While we
only performed a case study on a single lexicon, both the high quality results for ATR
and typography tagging as well as the heavily assisted method for producing typography
GT imply that our method can serve as a generic workflow together with a specific
typographic model geared towards a complete electronic representation of historical
lexica.

There are several promising ideas to further improve the proposed method: For example,
the errors caused by misrecognized whitespaces could be reduced by introducing a meta
learner which exclusively deals with accepting or rejecting whitespaces proposed by the
textual and typographical outputs. Moreover, training type-specific ATR models and
applying them on word instead of line level would allow the models to specialize on
recognizing a single type, and therefore improving the accuracy even further. Naturally,
this approach is most effective when being applied to font or even script types which
differ considerably. Despite most of the five typography classes occurring in Sanders’
dictionary being very similar to each other, first experiments yielded very encouraging
results.

It is worth mentioning, that the proposed methodology is not yet part of OCR4all, yet
but an integration is definitively planned for the future. While the typography-driven
indexing of historical lexica cannot be considered the main area of application of OCR4all
by any means, a font or script detection approach could also provide great benefit to the
“standard” ATR of historical printings. An obvious example are the Camerarius works
(cf. Section 3.1.1.2), not only because of the Greek embeddings but also the frequent
use of two quite different standard fonts: Antiqua upright and italics. This topic will be
addressed in greater detail during the Conclusion chapter (cf. Chapter 8)

8http://www.bbaw.de/en
9The final dictionary will soon (early 2020) be available at http://sanders.bbaw.de.
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8 Conclusion

This final chapter concludes the thesis by first summing up the results and their implica-
tions before pointing out our goals for the future of OCR4all and our work in the area of
(historical) OCR in general.

8.1 Summary

This section sums up the results and their meanings, mainly focusing on the OCR workflow
implemented in OCR4all (cf. Chapter 5) as a whole and the respective evaluations
(cf. Chapter 6), while also incorporating the results regarding the ATR training and
recognition steps obtained during the Methods and Case Studies chapters (cf. Chapter 4
and Chapter 7, respectively). To begin with, we list the main findings of our experiments
(for a more detailed description of the techniques, evaluations, and findings we refer to
the respective sections; a concise overview of the results related to OCR4all is given in
Table 8.1):

• The experiments with 19th century Fraktur novels (cf. Section 6.3) showed that
a fully automated application of OCR4all is not only possible but can be highly
precise on material with moderate layouts and if a suitable ATR model is available.
OCR4all achieved an average CER of 0.85% compared to ABBYY’s 5.3%. It is
worth mentioning, that the printing quality and the consequential ATR quality
varies considerably, indicated by the high standard deviation of the CER as shown
in Table 8.1 and also the fact, that when taking only the best 50% of the books
into consideration, the average CER drops to a very low 0.15%.

• When using OCR4all and dealing with challenging early printed books, inexperi-
enced users, on average, had to invest 2.3 minutes per page to perform a precise
segmentation and to reach a CER of below 0.5% which highlights the effectiveness
of the proposed approach (cf. Section 6.2.2). Experienced users can perform much
more efficiently, with 0.7 minutes per page on average, reaching a speedup factor
of more than 3. From the obtained results a rule of thumb for the total manual
effort necessary to segment a book using a fine-grained semantic distinction and
to produce the necessary GT to reach a CER of below 0.5% can be approximated:
The estimated effort for an unexperienced user is roughly 150 minutes for the GT
production plus 1.1 minutes per page for the segmentation. For experienced users
these numbers drop to 57 minutes plus 0.6 minutes per page, respectively.
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• To reach a CER below 0.5% the iterative training approach yielded significant
speedups (factor 1.9) compared to the naive correction of the output of the mixed
model (cf. Section 6.2.3).

• On early printed books with partial complicated layout, a basic segmentation
approach, which only ensures a sufficient text/non-text separation and a correct
reading order, reduced the manual effort required for segmentation considerably by
a factor of more than 2.5 (cf. Section 6.2.4).

• Combining the cross fold training and confidence voting procedures discussed in
Section 4.1 with the pretraining method introduced in Section 4.2 and applying
them to the book-specific training of early printed books, reduced the CER by
53% compared to the baseline, which is training a single model from scratch.
Incorporating Active Learning improved the results by another 16% on average (cf.
Section 4.3).

• The first case study on 19th century Fraktur script (cf. Section 7.1) showed the
transferability of the proposed voting and pretraining techniques from book-specific
models to the task of training mixed models. The resulting models significantly
outperform existing open-source and commercial engines and models.

• The second case study dealt with the fine-grained semantic text tagging of historical
lexica (cf. Section 7.2) and successfully combined ATR and typography recognition.

The obtained results show that OCR4all fulfills its purpose to OCR even the earliest
printed books with great quality despite the challenges provided by complex layout and
irregular typography. Due to our strict demands regarding the semantic classification
of layout elements and our goal of high ATR quality, a considerable amount of manual
work was required and accepted. While the experiments showed that even non-technical
users without any background or previous experience in OCR were comfortably able to
successfully work with OCR4all, the results also showed that there is a learning curve
and experience is key. This holds true for both the segmentation as well as the ATR,
with experienced users being almost twice as fast when it comes to segmenting a page
or transcribing a text line compared to unexperienced users on average. However, the
quality of the result was not influenced by the experience of the user, with both groups
achieving an excellent average CER of slightly below 0.5%.

Regarding the two main steps, segmentation and ATR, which require manual intervention,
the first one in general seems to show more room for improvement since the ATR of
historical printings made great progress over the last few years which could also be
observed during our experiments. Having said that, this of course depends heavily
on the material at hand and the aspirations of the user. For example, if the goal is
to fully automatically process books with trivial layout but written in Cyrillic script,
the ATR becomes a problem as no suitable Calamari model is available, yet. Still,
Calamari’s training and recognition capabilities combined with the easy to use iterative
training approach provided by OCR4all allow the users to utilize state-of-the-art deep
learning software and accuracy improving techniques like pretraining, voting, and data
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Table 8.1: Results (achievable CER and thereto necessary manual effort) obtained when
using OCR4all categorized by the type of the Material, the experience of the processing
User, and whether the processing is done fully automatically or in an interactive way.
In addition to the mean values the standard deviation is given whenever sensible. The
roughly estimated Total Manual Effort is composed of the average correction effort
necessary to produce enough GT needed to obtain the given CER and the segmentation
effort which scales with the number of pages within a book.

Material Books Printed Before 1600 19th Century
Fraktur Novels

General Processing Approach interactive fully automatic
Segmentation fine-grained semantic distinction no semantic markup

ATR book-specific training application of
existing mixed models

Users unexperienced experienced any

Achieved CER (OCR4all) 0.47% ˘ 0.22% 0.49% ˘ 0.30% 0.85% ˘ 1.47%
Achieved CER (ABBYY) not applicable 5.28% ˘ 8.13%

Segmentation Effort per Page 1.1 min˘ 0.5 min 0.6 min˘ 0.2 min -
Correction Effort per Line 10 s˘ 5.2 s 5.5 s˘ 2.4 s -
Total Correction Effort 150 min˘ 92 min 57 min˘ 42 min -

Total Manual Effort 150 min`
1.1 min ¨NPages

57 min`
0.6 min ¨NPages

-

augmentation without ever being forced to acquire a deeper understanding of the technical
concepts behind them. As shown by the evaluations, CERs below 1% or even 0.5% should
almost be considered the norm after a thorough book-specific training was performed.
The segmentation using LAREX proved to be intuitive and highly accurate.

While the usage of OCR4all reduces the manual effort necessary to transcribe early
printed books tremendously, especially compared to the fully manual approach which
often requires several weeks of full-time transcribing to process a single book, we still
think that there is room for improvement as detailed in the remainder of this chapter.
Regarding the accuracy-improving and time-saving techniques incorporated into the
OCR4all workflow, the following guidelines can be derived from our evaluations and
experiences:

• Cross fold training and confidence voting should be used whenever feasible from
a hardware and time management point of view as it boosts the recognition
accuracy considerably regardless of whether dealing with book-specific training or
the application of mixed models.

• Relying on existing models and using them for pretraining should be considered
almost mandatory, especially if somewhat appropriate (in terms of the codec)
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models are available, since it speeds up the training process and results in more
robust models.

• Data augmentation is most effective when only a limited amount of GT is available
for book-specific training and is therefore highly recommended during the first few
iterations of the iterative training approach. Although, since it can slow down the
training considerably, an eye has to be kept on time management and hardware
aspects.

8.2 Outlook

In this section we first discuss possible features and extensions we would like to incorporate
into OCR4all or its submodules before concluding the thesis by reflecting on the general
future of OCR4all. To begin with, Table 8.2 provides an overview over planned features
and upcoming steps, which we discuss in-detail in the following.

8.2.1 Generic Interfaces for and Extensions of Core Components within the
Workflow

Wrapper for the Integration of New Tools The main motto and goal for future
developments of OCR4all is to maximize the benefit from sophisticated external open-
source OCR solutions provided by the community. Hence, we aim to make the integration
of further external tools as easy as possible by providing clean interfaces and various
helper routines, for example to automatically generate the settings GUI (cf. Section
5.8.3.2), including the differentiation between general and advanced settings, from a list
of given parameters.
Of course, an integration of the developments achieved during the OCR-D project (cf.
Section 2.6.7) is an especially promising use-case. Most importantly, the data format has
to be adjusted, since OCR-D relies on a METS container for each book which then refers
to the individual PageXML files. Naturally, existing databases could be converted to the
new format almost trivially, for example by automatically generating a Dummy METS
file. However, this would require some changes to the OCR4all core software and LAREX
since they currently operate on pure PageXML files. In addition, smaller adaptations
have to be performed, for example concerning the passing of parameters.

Further Output and Input Formats In order to allow non-technical users to keep all
semantic annotations without having to deal with the peculiarities of the PageXML
format, additional alternatives to the two existing output formats are imperative. Since
TEI is considered the go-to format for textual markup applications, a comfortable and
attractive solution would be to allow the user to simply specify at least some basic
mappings between PageXML types and TEI tags, for example defining that the text
between two “heading” elements forms a “chapter”, and then let OCR4all export the
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Table 8.2: Planned features for OCR4all divided into five groups.
Functionality Options for Implementation

Generic Interfaces for and Extensions of Core Components within the Workflow

Wrapper for the Integration of New Tools adopting OCR-D interfaces
Extension of the Workflow full integration of scan preparation, full integra-

tion of postcorrection, feedback loop between seg-
mentation and ATR

Automatic Quality Control ATR confidence values
Further Output and input formats TEI, ALTO, PDF, ABBYY XML

Extending the OCR Functionality

Preprocessing
• incorporating external tools OCR-D tools
• improving existing tools -
• new development -

Segmentation
• incorporating external tools dhSegment, ARU-Net
• improving existing tools use line segmentation results for region segmenta-

tion
• new development trainable pixel classifier, rule-based detection of

the reading order

ATR
• incorporating external tools Tesseract 4, Kraken
• improving existing tools font/script-specific ATR, voting blanks (Cala-

mari)
• new development -

Postcorrection
• incorporating external tools PoCoTo, OCR-D tools
• improving existing tools -
• new development ATR confidences, book-specific dictionaries

Intelligent Interactive Tools

Extending the LAREX Functionality using confidences for interactive postcorrection,
AL

Usability ongoing user-driven refinements, ongoing opti-
mization of guides for user and developers, public
repository for GT and models

Miscellaneous extension towards HTR tasks, upgrade to a full-
featured server application including resource
management and user administration
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result as a valid TEI file. Furthermore, conversions to ALTO or maybe PDF should be
considered. There are suitable tools available for each task (cf. Section 2.7.4) which have
to be evaluated and at least offer some of the required functionality and could be used as
a starting point.
It is worth mentioning that, analogously to the output formats, OCR4all could also
profit considerably from the option to build from existing results provided from external
software. For example, if an ABBYY output is available it might be sensible to build from
the segmentation result and just redo the ATR step (cf. the CalamABBYY functionality
described in Section 7.1.5). For the main part, this would simply require suitable
converters and some adaptations of the core software.
The adoption of the OCR-D interfaces described above would allow the integration of
various helpful tools and methods for most steps of the workflow. Most notably this
includes solutions for page frame detection, binarization, line segmentation, wrappers for
all noteworthy open-source ATR engines, and fully automatic postcorrection techniques.

Extension of Workflow: Full Integration of Scan Preparation and Postcorrection
The scan preparation, including steps like splitting double pages as well as page frame
detection (cf. Section 2.2.1.3) and orientation correction (cf. Section 2.2.1.2), which as of
now is either skipped or performed externally by using ScanTailor (cf. Section 2.2.2.1),
should be integrated directly into the web GUI.
A most desirable issue is the incorporation of a fully automatic postcorrection step,
for example using (book-specific) dictionaries or language modelling. Especially the
latter could well be implemented directly within the ATR engines. Calamari has taken
first steps in that direction. However, especially for (very) early printed books this is
not a trivial task due to the lack of consistent spelling rules and the frequent use of
abbreviations.

Automatic Quality Estimation An admittedly quite visionary extension would be an
automatic quality estimation module that checks the results obtained by a fully automatic
workflow and provides hints about possible errors. On the one hand, this would enable
the user to identify and purposefully target the main source of error. On the other hand,
the system might be able to improve itself by, for example, adjusting certain parameters
and performing the respective step again.

Feedback Loop between Segmentation and ATR The automatic quality estimation
could well be combined with an equally visionary functionality, namely the integration
of a feedback loop between different workflow steps and their respective modules. This
could enable the system to use information obtained from later steps in order to optimize
preceding steps. The most obvious example would be a feedback loop between the segmen-
tation and the ATR which, among others things, would allow to detect missegmentations
on region level, e.g. non-text regions classified as text regions, or line level, e.g. double
lines or lines vertically cut in half (cf. Section 5.5.2).
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8.2.2 Extending the OCR Functionality

In the following we present possible solutions for the four main steps of the OCR workflow.

8.2.2.1 Preprocessing

Regarding the preprocessing step we plan to fully rely on already existing external
solutions and also to use them in their original state. Apart from the already integrated
binarization and deskewing functionality (cf. Sections 5.4.2 and 5.4.3), we will focus on
OCR-D solutions. Most importantly this includes the OCR-D-CIS package [200], which
offers a variety of helpful preprocessing tools applicable not only on page but also on
region and line level, but also the OCR-D compliant bundle [201] of the Olena platform
[86], among others providing additional means for binarization

8.2.2.2 Segmentation

One of the main goals to address is the obvious lack of a more potent segmentation
method that can deal with (more) complex layouts in a highly automized way. While
approaches based on deep learning, that mostly aim to assign a layout class label to each
individual pixel, carry some promise, they are usually geared towards the training on and
application to a single book (cf. Section 2.3.1.3). However, when a basic segmentation
(text/non-text separation and maybe a correct reading order) is considered sufficient,
a mixed model approach for segmentation similar to the ATR one represents a very
promising idea. Unfortunately, as of now we are missing the required GT (page images
and pixel labeling) to train these models. Admittedly, there is some useful data more or
less openly available, but usually it shows considerably shortcomings in terms of quality
and accuracy, or only offers a manageable amount of data from a small number of books
and/or a very specific time period. A comprehensive and versatile data set of high quality
segmentation GT is missing, especially for early printed books.

The current semi-automatic and precise segmentation approach of OCR4all allows to
produce a large amount of GT with manageable effort. During the evaluations for the
OCR4all workflow alone, more than 6,000 pages of GT have been created. Naturally, the
manual part of the segmentation represents a non-negligible extra effort and expense,
yet it also offers a double benefit as it not only leads to higher ATR results for the
(humanist) users but it also allows the developers to utilize the new GT to train strong
mixed models for the segmentation task. Of course, the next step would be to introduce
an iterative training approach for the segmentation task to OCR4all, allowing the users
to build from a reasonable result produced by a mixed model and then gear it towards
the book at hand. This could be achieved by correcting a few pages (hopefully) with
minimal effort and then train a new model which might then even be able to provide a
more sophisticated semantic distinction of layout elements if desired by the user and if
properly trained.
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Of course, depending on the material and the use case, a fully automated approach, that
does not require the user to look at every single page, seems to be currently out of reach.
That is not only due to the complexity of the layouts but also due to the very high
demands of the users regarding the quality of the segmentation and degree of semantic
distinction. However, we think that the efficiency of this part of the workflow can be
further increased.

Incorporating External Tools Regarding the region segmentation we monitor generic
solutions like dhSegment (cf. Section 2.2.1.3) but do not expect an existing solution to fit
our specific demands in the near future.

The line segmentation, despite mostly performing admirably, also definitely offers a lot
of room for improvement, especially because of its overreliance on the scale value derived
from the occurring CCs as discussed in Section 5.5.2. Our preferred course of action will
most likely be to switch towards a baseline-based methodology, allowing us, for example,
to rely on dhSegment or solutions developed by the HTR community like ARU-Net (cf.
Section 2.3.2.3). On the downside, this would require an additional processing step when
passing the lines into most ATR engines, which is not a trivial task and might lead to
accuracy drops (cf. Section 2.3.2.1).

Improving Existing Tools Especially the segmentation of the Camerarius books ap-
peared to be a quite frustrating task since the one-column layout in itself is rather
trivial but the repeated manual classification of semantic sub regions can be exhausting.
Pushing the labeling part to a later stage in the workflow, and for example perform it
after the line segmentation or even after the ATR, seems to be a viable solution, but the
realization is not trivial. While it is possible to first OCR the entire text and then add
semantic labels later, for example by encoding them using TEI, the fine-grained positional
information with regards to the scan would get lost, considerably limiting the options
regarding the presentation of the result. Having said that, the region coordinates do
not necessarily have to be recorded during the region segmentation step. An alternative
could be to first perform a less time consuming text/image separation similar to the
basic segmentation approach we evaluated earlier (cf. Section 6.2.4). Next, the user could
perform the line segmentation and apply the iterative training approach. Finally, the
semantic classification of layout elements would take place at the very end of the workflow
by making use of the line coordinates. For example, when dealing with a sub heading
with adjacent running text above and below, the user could simply select the line and
apply the new type, resulting in three new regions. This could easily be integrated into
the manual postcorrection step since, at least in the Camerarius use case, the user has
to look at all pages and lines anyway. Especially when processing works with similar
layout properties like the Camerarius books from our experiments, this approach would
significantly speed up the segmentation and labeling process without noteworthy affecting
the rest of the workflow. In addition, this would allow to incorporate textual information
into a (semi-)automatic classification approach. Our evaluations showed that a basic
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segmentation approach that simply ensures a proper text/non-text separation and a
correct reading order can save around 40% of the time required for segmentation. While
this represents a substantial speedup, the required manual effort is probably still too
high for some areas of application. Yet, we have seen that the segmentation approaches
currently available in OCR4all cannot deal with more complex layouts in a (close to)
fully automatic manner.

New Developments We aim to include a trainable pixel classifier in order to either
provide a valid starting point for other segmentation approaches by classifying pixels
and consequently CCs as text, image, and noise or even perform a fine-grained semantic
markup [317]. Of course, a more powerful segmentation approach must also comprise a
more sophisticated method for the determination of the reading order which also has to
be integrated into LAREX. To generate the reading order, the idea is to allow the user
to comfortably specify rules based on the detected region types as well as their absolute
and relative position.

8.2.2.3 Automatic Text Recognition

Incorporating External Tools Regarding additional ATR engines, the obvious candi-
dates to integrate are Kraken and especially Tesseract 4 since they offer a wide variety of
pretrained mixed models, something that Calamari is still lacking. As mentioned above,
the integration of the respective OCR-D wrappers would be rather straight forward after
adopting the related interfaces.

Improving Existing Tools Regarding training and recognition we want to provide the
user with the option to comfortably train several type/font/script-specific models for a
single work. This can be very helpful when the book comprises a few, possibly highly
different fonts or even scripts, e.g. Latin and Greek. However, the suitable approach
and the associated effort highly depends on the specific task at hand: For example,
when a suitable semantic distinction has been performed during the region segmentation
step, training a book-specific model for running text and one specialized on paratext
is almost a trivial task, since training and recognition could always operate on entire
lines. However, if the font (cf. the case study dealing with the Sanders’ lexicon described
in Section 7.2) or script (cf. the Camerarius use case Section 3.1.1.2) changes within a
line, the task becomes significantly harder since a two-step approach has to be applied.
Still, a relatively straight forward implementation using just a single ATR engine is
possible as successfully demonstrated by Kraken: After applying a model trained to
recognize various scripts and storing the coordinates as well as the assigned script label
of the line sections, a previously assigned ATR model is applied to the respective sections
before combining the outputs back to line level. This approach could be transferred to
Calamari, and most likely also to other ATR engines, with manageable effort. Naturally,
the described solution is perfectly capable and ideally suited to deal with the two related
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task treated in this thesis: typography recognition in dictionaries and script detection in
Camerarius’ works. However, when aiming for a fully generic solution, that allows a free
combination of engines and models for both steps, the complexity of the task of course
rises considerably.

Regarding the confidence-based voting functionality introduced in Section 4.1, the
incorporation of blank labels and their respective confidence values represent an apparent
improvement. As of now, blanks are ignored during the alignment process, leading to
forced simplifications during the alignment process of different ATR results as described
in Section 4.1.2.6. Consequently, the voting algorithm misses valuable information. For
example, the confidence of an alternative, that was recognized at a position, where a
blank represents the top choice of the recognizer, naturally is an important indicator
for a possible deletion of a character. Analogously, a high blank probability at a
position where the top choice is a non-blank character, could indicate a possible insertion.
Apparently, this information could not only be used to improve the effectiveness of the
voting procedure but would also be very helpful for the confidence-based interactive
postcorrection functionality discussed above. Unfortunately, incorporating this feature is
far from trivial, due to the particularities of blanks within the CTC decoding compared
to “normal” characters.

New Developments Due to the vast progress regarding ATR engines over the last
couple of years, new developments in this area are currently not a priority.

8.2.2.4 Postcorrection

Incorporating External Tools As described in Section 2.5.2 the interactive postcor-
rection tool PoCoTo represents an interesting option for the integration into OCR4all.
Its drawback is that it requires word coordinates for its visualizations. Consequently,
this output would have to be enabled in the respective ATR engines, by interpreting
the LSTM coordinates of the whitepaces, which should for the most part be a straight
forward task.

In addition, we are closely monitoring the progress made in OCR-D related tools like
KerasLM [140] (character-based language modelling using the Viterbi algorithm [97])
and Cor-ASV-ANN [76] (character-based sequence-to-sequence-LSTM relying on an
encoder-attention-decoder schema and an A* beam search [123, 171]).

New Developments Apart from the interactive postcorrection we also plan to work
on a fully automatic solution which, among others, relies on the intrinsic confidences
provided by ATR engines and on dictionaries. Due to the highly variant historical spelling
these dictionaries might have to be generated, extended, and altered based on the current
book at hand, which would probably require manual intervention by the user.
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8.2.3 Intelligent Interactive Tools

Other than the core software, LAREX currently contains all of the interactive functionality.
Consequently, we will focus on extending the LAREX functionality to improve in this
aspect.

Apart from the voting, there are several other use cases in which we want to profit
from the character confidences provided by Calamari and possibly other ATR engines:
First, the correction process can be supported by highlighting suspicious characters.
Second, by averaging the confidence values over several lines it is possible to identify
segments or pages which contain a worse recognition result compared to the rest of the
book. This could help to identify text parts that suffer from an increased amount of
degradation, contain segmentation errors, use a different type of font, etc. Third, the
average confidence calculated over a representative number of recognized lines can serve
as a form of quality estimation. We know that the confidence values correlate with
the recognition rate and that neural networks tend to overestimate their performance
[111, 120]. Therefore, we hope that it is possible to use a lot of existing measurements
to derive a model which is able to estimate the true recognition accuracy based on the
average confidence [279]. In addition to the automatic selection of the best fitting model
for given data, this would be particularly helpful when the goal of a ATR process is to
reach a certain recognition quality (for example 2% CER are considered to be sufficient
for most NLP tasks) and it is unclear whether the output of a mixed model suffices or if
book-specific training is required.

Furthermore, in order to train more robust models, a more flexible selection of lines for
training, recognition, and correction is desirable as this allows to train models using GT
that is widely spread over the course of the entire book. This would help to further
optimize the iterative training approach by integrating AL, i.e. adding lines to the existing
GT pool that the current models had problems recognizing, instead of random ones. In
Section 4.3.3.2 we showed the effectiveness of this approach by purposefully adding lines
to the training set, that showed the largest disagreement between the separate outputs
of the voters. It stands to reason that the confidence values returned by the ATR engine
would also be a valuable indicator for suitable training lines. Since the aforementioned
confidence-based interactive postcorrecting functionality could easily allow to sort lines
according to their average recognition confidence, the integration of an AL component
would be straight forward.

8.2.4 Usability

Of course, a probably never-ending task will be the constant refinement of OCR4all
and its related components in an user-driven fashion, i.e. dealing with bug reports and
feature requests. Furthermore, a key aspect remains the optimization of the teaching
material associated with the tool. In the future we want to build from the already existing
written guides not only by adding screencasts or even tutorial videos but by setting up
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a knowledge base, most likely in the form of a Semantic MediaWiki (SMW) [151], that
not only contains the guides mentioned above in a more modular form but also extends
them with and crosslinks them to the theoretical concepts behind each individual step
of the OCR4all workflow. Combined with a public repository for GT and models, best
practices as well as an assembly of frequently occurring difficulties and proven ways to
successfully deal with them, the described SMW would provide the community with a
place to share material, knowledge, problems, and solutions.

8.2.5 Miscellaneous

A particularly interesting and challenging goal is to overcome the additional difficulties
of HTR. Despite the general workflow being very similar, there are several steps that
might require adaptations. For example, handwritten text often does not consist of single
characters, which the current line segmentation approach heavily relies on, but features
cursive handwriting. Yet, there are already a few pertinent open-source algorithms
available (see for example the ARU-Net approach proposed by [118] and described in
Section 2.3.2.3), which can at least serve as a valid starting point. Actually, OCR4all
has already been successfully applied to a Greek manuscript (Aëtius Amidenus - Libri
medicinales, 16th century), achieving character recognition rates in the mid nineties
when using only a few hundred lines of GT. However, to examine the capabilities and
shortcomings of the current workflow and its components in greater detail, thorough
evaluations using comprehensive corpora are required.

As mentioned above OCR4all’s primary field of application was planned to be the local
setup at a single users desktop PC or laptop. However, with some manageable extensions
regarding a project and user administration system as well as an interface to a resource
scheduling manager, OCR4all can be deployed and run as a full-featured web service.
This would be especially helpful for institutions or working groups who want to share
their resources among themselves in order to work collaboratively. Even without further
extensions a shared approach is already possible: During our experiments we set up an
instance for several users to cooperate in a somewhat coordinated way which proved to
be highly effective.

8.3 Concluding Remarks

To sum up, despite the open questions and challenges demonstrated above, OCR4all can
become a cornerstone when it comes to the high quality OCR of historical printings. By
reducing the required technical know-how to a minimum it is now possible for humanities
scholars to take the acquisition of their much desired and needed textual research data
into their own hands.

Despite these comprehensive plans for the future, we already reached our main goal of
creating a tool which provides non-technical users with access to a powerful and easy to
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use OCR workflow. This is not only shown by the evaluations but also by the successful
application in numerous real-world projects where OCR4all leads to significant speedups
of the OCR of our precious cultural heritage.
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