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Abstract

In this dissertation, we develop and analyze novel optimizing feedback laws for control-affine
systems with real-valued state-dependent output (or objective) functions. Given a control-
affine system, our goal is to derive an output-feedback law that asymptotically stabilizes
the closed-loop system around states at which the output function attains a minimum
value. The control strategy has to be designed in such a way that an implementation
only requires real-time measurements of the output value. Additional information, like the
current system state or the gradient vector of the output function, is not assumed to be
known. A method that meets all these criteria is called an extremum seeking control law.
We follow a recently established approach to extremum seeking control, which is based on
approximations of Lie brackets. For this purpose, the measured output is modulated by
suitable highly oscillatory signals and is then fed back into the system. Averaging techniques
for control-affine systems with highly oscillatory inputs reveal that the closed-loop system
is driven, at least approximately, into the directions of certain Lie brackets. A suitable
design of the control law ensures that these Lie brackets point into descent directions of the
output function. Under suitable assumptions, this method leads to the effect that minima
of the output function are practically uniformly asymptotically stable for the closed-loop
system. The present document extends and improves this approach in various ways.

One of the novelties is a control strategy that does not only lead to practical asymptotic
stability, but in fact to asymptotic and even exponential stability. In this context, we focus
on the application of distance-based formation control in autonomous multi-agent system
in which only distance measurements are available. This means that the target formations
as well as the sensed variables are determined by distances. We propose a fully distributed
control law, which only involves distance measurements for each individual agent to stabilize
a desired formation shape, while a storage of measured data is not required. The approach is
applicable to point agents in the Euclidean space of arbitrary (but finite) dimension. Under
the assumption of infinitesimal rigidity of the target formations, we show that the proposed
control law induces local uniform asymptotic (and even exponential) stability. A similar
statement is also derived for nonholonomic unicycle agents with all-to-all communication.
We also show how the findings can be used to solve extremum seeking control problems.

Another contribution is an extremum seeking control law with an adaptive dither sig-
nal. We present an output-feedback law that steers a fully actuated control-affine system
with general drift vector field to a minimum of the output function. A key novelty of the
approach is an adaptive choice of the frequency parameter. In this way, the task of deter-
mining a sufficiently large frequency parameter becomes obsolete. The adaptive choice of
the frequency parameter also prevents finite escape times in the presence of a drift. The
proposed control law does not only lead to convergence into a neighborhood of a minimum,
but leads to exact convergence. For the case of an output function with a global minimum
and no other critical point, we prove global convergence.

Finally, we present an extremum seeking control law for a class of nonholonomic systems.
A detailed averaging analysis reveals that the closed-loop system is driven approximately
into descent directions of the output function along Lie brackets of the control vector
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fields. Those descent directions also originate from an approximation of suitably chosen Lie
brackets. This requires a two-fold approximation of Lie brackets on different time scales.
The proposed method can lead to practical asymptotic stability even if the control vector
fields do not span the entire tangent space. It suffices instead that the tangent space is
spanned by the elements in the Lie algebra generated by the control vector fields. This
novel feature extends extremum seeking by Lie bracket approximations from the class of
fully actuated systems to a larger class of nonholonomic systems.
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1 Introduction

1.1 Some general remarks on extremum seeking control

In many applications it is desired to stabilize a dynamical system about a reference trajec-
tory or a set point that is optimal with respect to a certain performance criterion. This
task is especially challenging if the optimization problem is complicated by uncertainties
and a limited amount of available information. Take, for example, an anti-lock braking
system in an automobile [6, 120]. In this case the objective is to maximize the friction
force coefficient between the wheel and the ground in order to stop the vehicle as fast as
possible while preventing the wheels from locking up. The braking system has to provide
the optimal breaking torque. Clearly, if the breaking torque is too weak, then the fric-
tion force coefficient is below its optimal value. On the other hand, if the breaking torque
is too strong, then the wheels start to lock and the friction force coefficient suffers due
to dangerous slipping. Under suitable assumptions, the friction force coefficient can be
characterized by the vehicle’s current linear acceleration, which can be measured with an
accelerometer. Based on these real-time measurements, the breaking system has to provide
a breaking torque such that the linear acceleration attains an extreme value. Note that a
functional dependence of the linear acceleration on the breaking torque is, in general, not
known due to uncertainties like the road conditions and humidity. This situation requires
a suitable feedback law that regulates the breaking torque in such a way that the measured
performance function attains its (unknown) extreme value. Any solution to this real-time
optimization problem can be considered as an example of an extremum seeking control law.

A mathematically rigid definition of extremum seeking control is difficult to state. In
particular, it is not always possible to make a clear distinction between extremum seeking
control and other optimization approaches. A common feature of extremum seeking control
laws is the intention to steer a control system in such a way that a certain performance-
evaluating function (or objective function) attains an extreme value. Methods have been
proposed for discrete-time system [23, 42, 66] and continuous-time system [55, 44, 31].
In general, the objective function may depend on the time parameter, the system state,
and the controls. It is usually assumed that the objective function only depends on the
current values of the system state and the controls, but not on their prehistory. However,
in some studies, such as [44], an additional cost functional takes past system states and
control values into account. Moreover, it is frequently required that an extremum seeking
control law only relies on real-time measurements of certain quantities and that it adapts
to changing conditions. For this reason, extremum seeking control is associated with the
fields of real-time optimization [6] and adaptive control [9, 10]. The description gets more
difficult when it comes to the question what kind of information about the system and the
performance function may be used to design and implement an extremum seeking control
law. In the most ideal form, an extremum seeking control law would be a universally
applicable control strategy that requires no other information than the current value of the
performance function. It is clear that such a universal strategy does not exist. All known
control laws rely on very specific assumptions on the system and its performance function.
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1 Introduction

The same is true for the results in the present document. There is no generally valid rule
in the literature on what kind of assumptions may (or may not) be made. Sometimes, a
method is referred to as an extremum seeking control law even if its implementation requires
more information than just the current value of the performance function, such as partial
information about the system state and the system dynamics [44] or the current gradient
vector of the objective function [119]. As a general rule, one can say that the notion of
extremum seeking control involves the desire to rely on a minimum amount of information
about the system and the objective function. The goal is to provide real-time optimization
for dynamic systems in the presence of uncertainties.

Over the past decades many different approaches to extremum seeking control have been
proposed in the literature. Most of the studies are motivated by particular real-world prob-
lems. For example, one of the earliest papers [61] from the year 1922 addresses the elec-
trification of railways by means of alternating currents of high frequency. Other examples
are maximum power point tracking [63, 16], PID tuning [53], cam timing [89], electrome-
chanical valve actuation [88]. Also, from a theoretical point of view, many directions have
been pursued to design extremum seeking control. For example, there are methods based
on sliding mode control [87, 118], parameter estimation techniques [44, 2, 43], or methods
from numerical optimization [117, 52]. The existing strategies and applications are doc-
umented in various survey articles [12, 102, 115] and textbooks [6, 65, 98, 120]. Every
approach requires certain assumptions on the control system and the performance func-
tion. A frequently studied extremum seeking control problem is described by the following
continuous-time input-output model [6, 115]:

ẋ = f(x, u), (1.1)

y = ψ(x). (1.2)

It consists of a control system (1.1) and a performance-evaluating output (1.2). The right-
hand side of (1.1) is assumed to be given by a vector field f that depends smoothly on
the system state x ∈ Rn and a vector u ∈ Rm of input channels for a control law. In
the following sections and chapters of this document, we will also impose the additional
assumption that (1.1) has a control-affine structure. For the moment, however, we consider
the more general nonlinear control system (1.1). The performance output (1.2) is assumed
to be given by a smooth real-valued function ψ on the system state, which will be referred
to as the output function. This contains the assumption that the performance of the system
does not depend on the time parameter or the input vector. The assumption that ψ does
not depend on the inputs will be important for the method that we apply in this document.
Extensions to moderately time-dependent output functions are possible, see [39], but not
further addressed here. To get a well-defined optimization problem, we assume that ψ
attains a local (or even global) extreme value y∗ ∈ R at a certain system state x∗ ∈ Rn;
without loss of generality we always consider the case of a minimum. The current system
state, the vector field f as well as the gradient of ψ are treated as unknown quantities.
Moreover, the optimal state x∗ and the optimal value y∗ are not assumed to be known.
Only real-time measurements of the current output value (1.2) are available. The ambitious
goal is to find an output-feedback control law such that the unknown state x∗ becomes
asymptotically stable for the closed-loop system. Before we start to explain the method
that is used in the present document, we briefly indicate one of the other existing approaches
that can be used to obtain extremum seeking control for (1.1), (1.2). This will also highlight
some of the conceptual differences of the method that is used here compared to other
approaches.
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1.1 Some general remarks on extremum seeking control

A natural approach to derive extremum seeking control for (1.1), (1.2) is to determine
descent directions of the output function. For this reason, many extremum seeking strate-
gies involve suitable perturbation signals in order to extract gradient information from
the response of the output signal [6]. The approach in the present document also be-
longs to this class of methods, but there is the following important difference. In contrast
to the approach that we use here, the stability of many perturbation-based extremum
seeking control schemes relies on the existence of a so-called steady-state input-output
map [55, 90, 23, 44, 116, 118]. To be more precise, it is assumed that, for each constant
input vector u ∈ Rm, a certain point l(u) ∈ Rn is asymptotically stable for (1.1). This
is usually referred to as a steady-state assumption. In particular, whenever the input u is
kept (at least approximately) constant, then the system state will converge to the unknown
point l(u). The so-defined map l : Rm → Rn does not need to be known but should be
at least sufficiently smooth. Moreover, to obtain a well-defined optimization problem, it
is assumed that the composition ψ ◦ l attains a strict minimum value at some u∗ ∈ Rm.
Note that l(u∗) is not necessarily a point at which ψ attains a minimum value. Since, for
each u ∈ Rm, the point l(u) is a steady state of the system, the function ψ ◦ l is called the
steady-state input-output map. For an approximately constant input u, the output will con-
verge to some approximately constant output value ψ(l(u)). Consequently, one can probe
the response of the steady-state input-output map by inducing sufficiently slow variation
of the input vector. This can be done in a systematic way by feeding in certain sinusoidal
perturbation signals with sufficiently small amplitudes and low frequencies. As a result,
the input u slowly moves into a descent direction of ψ ◦ l. A suitable averaging analysis
reveals [55, 116] that such an extremum seeking controller causes the input vector u to con-
verge to some neighborhood of the optimal input vector u∗. The attracting neighborhood
around u∗ shrinks with decreasing amplitudes and frequencies of the perturbation signals.
On the other hand, small amplitudes and frequencies also lead to the effect that the speed
of convergence of u towards u∗ decreases. Therefore, small amplitudes and frequencies lead
to a trade off between accuracy and speed of convergence.

While the accuracy of the approach in the previous paragraph improves in the small-
amplitude, low-frequency limit, the method that we study in the present document requires
exactly the opposite limit. It also involves suitable perturbation signals for the inputs, but
the amplitudes and frequencies need to be sufficiently large. The method does not rely
on a steady-state assumption but can be applied to potentially unstable system. The
strategy is to overpower unstable dynamics of the system and to force the system into a
descent direction of the output function. Clearly, large amplitudes and high frequencies
are not suitable for certain applications. However, the method does not lead to the trade
off between accuracy and speed of convergence as in the previous paragraph. In fact,
any prescribed accuracy and speed of convergence can be achieved by using sufficiently
strong perturbations signals. An additional advantage of the method is that the underlying
formalism for the analysis and the design of extremum seeking controllers is very general
and rather easy to apply. We explain this method in the following two sections. The
employed perturbation signals have the purpose to steer the control system into directions
of certain Lie brackets. This property can be revealed by a suitable averaging analysis,
which is indicated in Section 1.2. The Lie brackets can be chosen in such a way that they
point into descent directions of the output function. Under suitable assumptions, this leads
to the effect that the closed-loop system is asymptotically stable around states at which the
output functions attains a minimum value. The design of such an extremum seeking control
law is explained in Section 1.3. We also give references to related works and approaches.
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1 Introduction

The ideas and concepts in Sections 1.2 and 1.3 will be used in all subsequent chapters, which
is outlined in Section 1.4. For later references, we collect basic definitions and notation at
the end of the chapter in Section 1.5.

1.2 Lie brackets and averaging

In this section, we introduce the averaging method that is used in the entire document.
The strategy in each of the subsequent Chapters 2-4 is to approximate the directions of
certain Lie brackets in order to solve a particular optimization problem. For this reason,
we now briefly recall the differential geometric definition of Lie brackets and explain how
this is related to the averaging approach that we use to obtain approximations of Lie
brackets. Suitable textbook reference on Lie brackets and their role in control theory are,
for example, [3, 18, 50]. To provide an easy-to-understand introduction, the subsequent
considerations are kept on a very elementary level. We only need the notion of flow maps,
which are recalled in the next paragraph.

Let f be a smooth vector field on Rn. Then, for each point x0 of Rn, there exists a unique
maximal solution of the ordinary differential equation ẋ = f(x) that passes through the

initial value x0 at initial time 0. This maximal solution is denoted by t 7→ Φf
t (x0). Since

t 7→ Φf
t (x0) originates from integrating ẋ = f(x), such a maximal solution is also called a

maximal integral curve of f . The domain of t 7→ Φf
t (x0) is not necessarily equal to R but

at least an open interval containing the initial time 0. Since f is assumed to be smooth,
it is known from ordinary differential equations that the solutions of ẋ = f(x) depend
smoothly on the initial value x0 and the time parameter t. Let D(f) denote the set of all

(t, x) ∈ R × Rn at which Φf
t (x) exists. This set is an open subset of R × Rn. The smooth

map D(f)→ Rn that assigns to each (t, x) ∈ D(f) the point Φf
t (x) ∈ Rn is called the flow

of f . Using the uniqueness of solutions, one can easily prove that, for each x0 ∈ Rn, there
exists an open neighborhood U of x0 in Rn and a sufficiently small ε > 0 such that, for
each t ∈ (−ε, ε), the map U → Rn, x 7→ Φf

t (x) is a well-defined diffeomorphism onto its
image. In the next paragraph we will use a suitable composition of flow maps to define the
Lie bracket of two smooth vector fields.

For the rest of this section, let f1 and f2 be two smooth vector fields on Rn. As in the
previous paragraph, we denote their flows by Φf1 and Φf2 , respectively. For the moment,
fix an arbitrary point x0 of Rn. Then, there exists some sufficiently small ε > 0 such that,
for each t ∈ (−ε, ε), the following construction can be carried out. First, we start at x0 and

follow the integral curve of f1 that passes through x0 at time 0 to the point x1 := Φf1
t (x0).

Next, we follow the integral curve of f2 that passes through x1 at time 0 to the point
x2 := Φf2

t (x1). Then, we repeat the procedure but along the reverse directions of −f1 and

−f2; i.e., we go from x2 along −f1 to x3 := Φ−f1t (x2), and finally from x3 along −f2 to

x4 := Φ−f2t (x3). In other words, x4 is obtained by applying the composition of Φf1
t , Φf2

t ,

Φ−f1t , and Φ−f2t to x0. This composition can be applied to x0 for each t ∈ (−ε, ε), which
leads to the curve t 7→ x4(t) in Rn. Since the flows of f1 and f2 are smooth, also t 7→ x4(t)
is smooth. Consequently, we obtain a tangent vector to Rn at x0 if we take the derivative
ẋ4(0) of t 7→ x4(t) at t = 0. Note that the linearization of an integral curve t 7→ Φf

t (x)
reads Φj

t (x) = x + tf(x) + O(t2), where O(t2) is the usual Landau symbol for remainders
that tend to zero like t2 as t→ 0. The particular combination of ±f1 and ±f2 in x4 leads
to a cancellation of the linear terms, and therefore x4(t) = x0 + O(t2). Thus, we have
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1.2 Lie brackets and averaging

x1 = Φf1
1 (x0)

x2 = Φf2
1 (x1)

x3 = Φ−f1
1 (x2)

x4 = Φ−f2
1 (x3)

t

x

1/4 1/2 3/4 1

−1/2

1/2

x0 = 1

3/2

Υ(t)

[f1, f2](x0)

Figure 1.1: Illustration of the curve Υ in (1.3) with initial value x0 = 1 for the partic-
ular choice of the one-dimensional vector fields f1, f2 that are given by (1.35). The flow
maps Φf1 ,Φf2 also appear in Figure 1.6 in the context of extremum seeking control.

ẋ4(0) = 0. This means that t 7→ x4(t) runs through the point x0 with zero velocity. To get
a possibly nonzero velocity, we accelerate the curve around t = 0 by choosing a different
parametrization. For this purpose, we define a continuous transformation σ : R→ R of the
time parameter t by σ(t) := −

√
|t| for t ≤ 0 and by σ(t) := +

√
|t| for t > 0. Note that

small changes of the time parameter t around 0 lead to infinitely large changes of the new
time parameter σ(t). If we consider t 7→ x4(t) in the new time scale σ, then

Υ(t) :=
(

Φ−f2σ(t) ◦ Φ−f1σ(t) ◦ Φf2
σ(t) ◦ Φf1

σ(t)

)
(x0) (1.3)

defines a continuous curve in Rn with domain (−ε2, ε2) that passes through the point x0

at time 0. The definition of the curve Υ is illustrated in Figure 1.1. Since t 7→ x4(t) is
a smooth map with vanishing derivative at t = 0, it follows that Υ = x4 ◦ σ is at least
differentiable. Thus a tangent vector to Rn at x0 is given by the derivative

[f1, f2](x0) := Υ̇(0) (1.4)

of Υ at 0, which is called the Lie bracket of f1 and f2 at x0. The velocity vector of Υ
at 0 is also shown in Figure 1.1. A direct computation of the Lie bracket from its definition
in (1.4) is, in general, not possible since the flow maps Φf1 and Φf2 are usually not explicitly
known. However, there is a much easier and direct formula to compute the Lie bracket; see
equation (1.18) below. At this point, we could simply state this formula without proof by
giving a reference to a textbook on differential geometry, such as [1]. Indeed, the formula can
be easily proved using a suitable expansion of Υ around t = 0. However, in the following, we
present an alternative proof in the next paragraphs. This procedure is certainly more labor
intense than the traditional way to prove the Lie bracket formula, but, on the other hand, it
provides an alternative interpretation of the Lie bracket in terms of dynamical systems. In
particular, we will see that the Lie bracket (1.4) arises naturally from a suitable averaging
analysis. Moreover, the subsequent procedure can be seen as the simplest possible example
of the method that is used in the entire document. All results in the remaining chapters
can be interpreted as generalizations of this strategy.

We continue to study the Lie bracket [f1, f2](x0) of the smooth vector fields f1, f2 at
some point x0 of Rn. We have introduced the Lie bracket in (1.4) as the velocity vector of
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Figure 1.2: Graphical definition of the 4/j-
periodic functions uji in (1.5).
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Figure 1.3: Graphical definition of the 4/j-

periodic functions ŨV j
i in (1.8).

the curve Υ given by (1.3). Note that, for every smooth vector field f , every time t, and

every point x, at which the flow Φf
t (x) exists, the scaling property Φf

t (x) = Φλf
t/λ(x) holds

for every nonzero real number λ. Thus, if we evaluate Υ at t = 4/j for some sufficiently
large positive real number j, then we have

Υ(4/j) =
(

Φ
−√4jf2
1/j ◦ Φ

−√4jf1
1/j ◦ Φ

√
4jf2

1/j ◦ Φ
√

4jf1
1/j

)
(x0).

To obtain the point Υ(4/j), we start at x0 and then we move on time intervals of length 1/j
along integral curves of the vector fields

√
4jf1,

√
4jf2, −√4jf1, and −√4jf2. This tra-

jectory can also be generated by a dynamical system. For this purpose, we introduce the
4/j-periodic time-varying functions uj1, u

j
2 in Figure 1.2. Now consider the time-varying

system
ẋ = uj1(t) f1(x) + uj2(t) f2(x) (1.5)

on Rn. For every j > 0, let γj be the maximal solution of (1.5) with γj(0) = x0. It is easy
to see that the particular choice of the functions uj1, u

j
2 ensures that the vector fields f1, f2

on the right-hand side of (1.5) are “turned on and off” in such way that γj(4/j) = Υ(4/j)
for sufficiently large j > 0. Thus, we obtain from (1.4) that the Lie bracket of f1 and f2

at x0 is given by

[f1, f2](x0) = lim
j→∞

γj(4/j)− x0

4/j − 0
. (1.6)

This formula establishes a first connection between the Lie bracket (1.4) and the trajecto-
ries of the dynamical system (1.5). In the next two paragraphs, we present an averaging
technique that can be applied to extract the behavior of system (1.5) in the large-amplitude,
high-frequency limit j →∞. As an immediate consequence, this will lead us to a well-known
formula for the Lie bracket.

For the moment, let γ be any solution of (1.5) for some j > 0, and fix arbitrary t1, t2 in
the domain of γ. Let ϕ be a smooth real-valued function on Rn. Using the fundamental
theorem of calculus for the composition of γ and ϕ, we obtain that

ϕ(γ(t2)) = ϕ(γ(t1)) +
∑

i=1,2

∫ t2

t1

uji (t) (fiϕ)(γ(t)) dt, (1.7)

where fiϕ denotes the Lie derivative of ϕ along fi for i = 1, 2; i.e., for every x ∈ R, we
let (fiϕ)(x) denote the real number that originates from applying the derivative of ϕ at x
to the vector fi(x). In other words, we interpret the vector fields fi as linear differential
operators ϕ 7→ fiϕ. Next, we use integration by parts in the above integral to average

6
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Figure 1.4: Illustration of the 4/j-periodic functions uji1ŨV
j
i2

in (1.8b).

the 4/j-periodic functions uji . For this purpose, suitable 4/j-periodic antiderivatives ŨV j
i

of the functions −uji are defined in Figure 1.3. The notation ŨV j
i is taken from [68, 69].

Moreover, for all i1, i2 ∈ {1, 2}, we denote the Lie derivative of the smooth function fi2ϕ
along the vector field fi1 by fi1(fi2ϕ). Since γ is a solution of (1.5), integration by parts
in (1.7) leads to

ϕ(γ(t2)) = ϕ(γ(t1))−
∑

i=1,2

[
ŨV j

i (t) (fiϕ)(γ(t))
]t=t2
t=t1

(1.8a)

+
∑

i1,i2=1,2

∫ t2

t1

uji1(t) ŨV j
i2

(t) (fi1(fi2ϕ))(γ(t)) dt, (1.8b)

where we use a notation of the form [α(t)]t=t2t=t1
to denote the difference α(t2) − α(t1). The

integrals in (1.8b) contain the products uji1 ŨV
j
i2

with i1, i2 ∈ {1, 2}. It can be seen in

Figure 1.4 that the products uj1 ŨV
j
1 and uj2 ŨV

j
2 are 4/j-periodic functions with zero

averages v1,1 := 0 and v2,2 := 0, respectively. The products uj1 ŨV
j
2 and uj2 ŨV

j
1 are also

4/j-periodic functions but with nonzero averages v1,2 := 1 and v2,1 := −1, respectively. If

we add and subtract the averages vi1,i2 to the products uji1 ŨV
j
i2

in (1.8b), then we obtain

ϕ(γ(t2)) = ϕ(γ(t1))−
∑

i=1,2

[
ŨV j

i (t) (fiϕ)(γ(t))
]t=t2
t=t1

(1.9a)

+
∑

i1,i2=1,2

∫ t2

t1

vi1,i2 (fi1(fi2ϕ))(γ(t)) dt (1.9b)

−
∑

i1,i2=1,2

∫ t2

t1

(
vi1,i2 − uji1(t) ŨV j

i2
(t)
)

(fi1(fi2ϕ))(γ(t)) dt. (1.9c)

The terms in (1.9b) represent the averaged contribution of (1.5), while the terms in (1.9a)
and (1.9c) are remainders, which will be shown to become small with increasing j. To obtain
an easy estimate for the contribution in (1.9c), we apply integration by parts a second

time. For this purpose, suitable antiderivatives ŨV j
i1,i2

of the functions (vi1,i2 − uji1ŨV
j
i2

)
are defined in Figure 1.5. Moreover, for all i1, i2, i3 ∈ {1, 2}, we denote the Lie derivative
of the smooth function fi2(fi3ϕ) along the vector field fi1 by fi1(fi2(fi3ϕ)). Since γ is a
solution of (1.5), integration by parts in (1.9c) leads to

ϕ(γ(t2)) = ϕ(γ(t1))−
[
(Dj

1ϕ)(t, γ(t))
]t=t2
t=t1

(1.10a)
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ŨV j
2,2(t)

t

− 1
j

1
j

2
j

1
j

2
j

3
j

4
j

Figure 1.5: Graphical definition of the 4/j-periodic functions ŨV j
i1,i2

in (1.10).

+
∑

i1,i2=1,2

∫ t2

t1

vi1,i2 (fi1(fi2ϕ))(γ(t)) dt+

∫ t2

t1

(Dj
2ϕ)(t, γ(t)) dt, (1.10b)

where the time-varying functions Dj
1ϕ,D

j
2ϕ : R× Rn → R are defined by

(Dj
1ϕ)(t, x) :=

∑

i=1,2

ŨV j
i (t) (fiϕ)(x) +

∑

i1,i2=1,2

ŨV j
i1,i2

(t) (fi1(fi2ϕ))(x), (1.11)

(Dj
2ϕ)(t, x) :=

∑

i1,i2,i3=1,2

uji1(t) ŨV j
i2,i3

(t) (fi1(fi1(fi2ϕ)))(x). (1.12)

On a more abstract level, one can interpret (1.11) and (1.12) as the definitions of two
time-varying differential operators Dj

1 and Dj
2 that act on smooth real-valued functions.

The notation Dj
1 and Dj

2 and the interpretation as differential operators can also be found
in [80].

Now we derive estimates for the remainders (1.11) and (1.12) in the integral expan-
sion (1.10). From Figures 1.2, 1.3 and 1.5, we obtain that there exists a positive constant a
such that

∣∣uji (t)
∣∣ ≤ a j

1
2 ,

∣∣ŨV j
i (t)
∣∣ ≤ a j−

1
2 ,

∣∣ŨV j
i1,i2

(t)
∣∣ ≤ a j−1 (1.13)

for every j > 0, all i, i1, i2 ∈ {1, 2}, and every t ∈ R. Moreover, since the vector fields f1

and f2 are assumed to be smooth, for every smooth real-valued function ϕ on Rn and every
compact subset K of Rn, there exists a positive constant b such that

∣∣(fi1ϕ)(x)
∣∣ ≤ b,

∣∣(fi1(fi2ϕ))(x)
∣∣ ≤ b,

∣∣(fi1(fi2(fi3ϕ)))(x)
∣∣ ≤ b (1.14)

for all i1, i2, i3 ∈ {1, 2} and every x ∈ K. Using the definitions in (1.11) and (1.12), it
follows that, for every smooth real-valued function ϕ on Rn and every compact subset K
of Rn, there exist positive constants c1, c2 such that

∣∣(Dj
1ϕ)(t, x)

∣∣ ≤ c1 j
− 1

2 and
∣∣(Dj

2ϕ)(t, x)
∣∣ ≤ c2 j

− 1
2 (1.15)

for every j > 0, every t ∈ R, and every x ∈ K. The above estimates ensure that the remain-
ders in (1.10) converge locally uniformly to zero as j tends to infinity. If we interpret Dj

1

and Dj
2 as time-varying differential operators, then estimates (1.15) are closely related to

the concept of “DO-convergence” in [80], where DO abbreviates differential operator.
Now we return to our initial objective to derive a simple formula for the Lie bracket (1.4)

via averaging. From Figures 1.3 and 1.5, we obtain that the functions ŨV j
i and ŨV j

i1,i2
van-

ish at integer multiples of 4/j. By (1.11), this implies (Dj
1ϕ)(0, x) = 0 and (Dj

1ϕ)(4/j, x) = 0

8



1.2 Lie brackets and averaging

for every j > 0, every smooth real-valued function ϕ on Rn, and every x ∈ Rn. As in (1.6),
let γj be the maximal solution of (1.5) with γj(0) = x0. Using (1.10) with t1 = 0 and
t2 = 4/j as well as (1.15), we conclude that

lim
j→∞

ϕ(γj(4/j))− ϕ(x0)

4/j − 0
=

∑

i1,i2=1,2

vi1,i2 (fi1(fi2ϕ))(x0) (1.16)

for every smooth real-valued function ϕ on Rn. Recall that the averaged coefficients vi1,i2
in (1.16) are given by

v1,1 = 0, v1,2 = 1, v2,1 = −1, v2,2 = 0. (1.17)

Moreover, note that (1.16) is in particular true if ϕ is any of the component functions of
the identity map on Rn. Therefore, we obtain from (1.6), (1.16), and (1.17) the well-known
formula

[f1, f2](x0) = Df2(x0)f1(x0)−Df1(x0)f2(x0) (1.18)

for the Lie bracket of f1 and f2, where Dfi denotes the derivative of fi for i = 1, 2. In
particular, we have shown that the Lie bracket arises naturally as the averaged vector field
of the right-hand side of (1.5) in the large-amplitude, high-frequency limit. Thus, in the
limit j →∞, we may consider

ẋ = f∞(x) := [f1, f2](x) (1.19)

as the averaged system of (1.5). Using (1.10), (1.15), (1.18), and the Gronwall inequality, it
is now easy to prove the following approximation result (see, e.g., Proposition 8.3 in [68]).

Proposition 1.1. For every compact subset K of Rn and every time span T > 0, there
exist c, j0 > 0 such that, for every initial time t0 ∈ R and every maximal solution γ∞

of (1.19), the following implication holds: if γ∞ exists on [t0, t0 + T ] with γ∞(t) ∈ K for
every t ∈ [t0, t0 + T ], then, for every j ≥ j0, also the maximal solution γj of (1.5) with
initial condition γj(t0) = γ∞(t0) exists on [t0, t0 + T ] and the estimate

‖γ∞(t)− γj(t)‖ ≤ c j−
1
2

holds for every t ∈ [t0, t0 + T ], where ‖ · ‖ denotes the Euclidean norm on Rn.

Note that we have shown much more than just formula (1.18) for the Lie bracket. Propo-
sition 1.1 states that the trajectories of (1.5) approximate the trajectories of (1.19) locally
with increasing parameter value j. This approximation property can be extended to a much
more general situation and can be explained by a well-established averaging theory. The
notation and the approach that we have used in the preceding paragraphs is taken from
one of the mile stones [69] of this averaging theory. A short review of some of the known
results is given in the remaining paragraphs of this section.

One of the earliest results on the connection between Lie brackets and averaging of
dynamical systems can be found in [57]. Therein, the authors consider a time-varying
system of the form

ẋ =

m∑

i=1

uji (t) fi(x) (1.20)

9



1 Introduction

on Rn, where the fi are smooth vector fields and the time-varying functions uji are given
by

uji (t) :=
√

2j cos(jt+ ϑi), (1.21)

where j is a positive real parameter and the phase shifts ϑi are arbitrary real numbers.
Note that if m = 2, ϑ1 = 0, and ϑ2 = π/2, then the sinusoids uj1(t) =

√
2j cos(jt) and

uj2(t) =
√

2j sin(jt) can be interpreted as smoothed versions of the rectangular shaped
functions in Figure 1.2. It is natural to expect that a similar approximation property holds
as in Proposition 1.1. Indeed, it is shown in [57] that the trajectories of (1.20) with the uji
as in (1.21) approximate the trajectories of the averaged system

ẋ =
∑

i<k

sin(ϑk − ϑi) [fi, fk](x) (1.22)

with increasing parameter value j. Again, if m = 2, ϑ1 = 0, and ϑ2 = π/2, then (1.22)
coincides with (1.19). In particular, this shows that the geometric shape of the functions uji
provides a certain degree of freedom. It is also possible to obtain the same result with
square waves or triangular waves (see [99]). A further extension of the theory was done
in [56]. Instead of (1.21), the functions uji are now assumed to be of the form

uji (t) :=
∑

k<i

λi,k
√

2j sin(jωk,it+ ϑi,k) +
∑

k>i

λi,k
√

2j sin(jωi,kt+ ϑi,k), (1.23)

where the amplitudes λi,k and phase shifts ϑi,k are real numbers, and the frequency coef-
ficients ωi,k, i < k, are pairwise distinct positive real numbers. It turns out that, in the
limit j → ∞, only sinusoids with the same frequency coefficients give rise to Lie brackets
in the averaged system. Conversely, sinusoids with different frequency coefficients do not
resonate and therefore do not contribute to the averaged system. It is shown in [56] that the
trajectories of (1.20) with the uji as in (1.23) approximate the trajectories of the averaged
system

ẋ =
∑

i<k

λi,k λk,i sin(ϑk − ϑi) [fi, fk](x) (1.24)

with increasing parameter value j. We will use a similar choice of sinusoids as in (1.23) in
Chapters 2 and 3. The content of Chapter 4 requires an even more general approach, which
is indicated in the next paragraph.

The above methods for approximations of Lie brackets can be extended even further. It
is not only possible to approximate Lie brackets of pairs of vector fields as in (1.24), but also
iterated Lie brackets of arbitrary order. This was mainly done in the papers [58, 107, 68, 69]
and in the Ph.D. thesis [67] by Wensheng Liu. To approximate iterated Lie brackets, the
functions uji in (1.20) have to satisfy certain averaging conditions in the limit j → ∞. To

be more precise, it is required that certain iterated integrals of the uji converge uniformly to
zero as j tends to infinity. For example, if we consider the rectangular waves in Figure 1.2,
then the iterated integrals are represented by the functions ŨV j

i and ŨV j
i1,i2

in Figures 1.3
and 1.5, respectively. We have seen in (1.13) that the iterated integrals converge uniformly
to zero as j tends to infinity. General definitions of suitable iterated integrals can be found
in [58, 69] and also in Subsection 4.6.2 of the present document. If the functions uji satisfy
those averaging conditions in the limit j → ∞, then one can prove that the trajectories
of (1.20) approximate the trajectories of an averaged system of the form

ẋ =
r∑

k=1

m∑

i1,...,ik=1

vi1,...,ik [fi1 , · · · [fik−1
, fik ] · · · ](x), (1.25)
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where the vi1,...,ik are certain real numbers that depend on the choice of the uji . A system
of the form (1.25) is also called an extended system of (1.20) because its right-hand side
does not only contain the initial vector fields f1, . . . , fm but also their iterated Lie brackets.
It is shown in [69] that the approximation of an extended system can be explained on a
purely algebraic level in terms of the so-called Chen-Fliess series determined by the uji .
Note that Chen-Fliess series techniques have been widely used in control theory, e.g., by
Chen [22], Fliess [36], and Sussmann [105]. Reference [68] provides an explicit recipe on
how to choose the function uji in (1.20) such that the extended system (1.25) contains
prescribed coefficients vi1,...,ik . We will use the results from [68] in Chapter 4 to design
extremum seeking control for nonholonomic systems. It is worth to mention that the
approximation property also holds if (1.20) contains an additional drift vector field and if
the control vector fields display a moderate time-dependence. We will encounter such a
situation in Chapter 3.

1.3 Lie brackets and extremum seeking control

In the previous section, we have seen that directions of Lie brackets can be approximated
by a dynamical system with a suitable highly oscillatory right-hand side. Now we explain
how this approximation property can be used for the purpose of extremum seeking control.
First, we describe the idea by a very simple toy example. Then, we indicate the general
approach and give an overview on some of the existing results on extremum seeking control
by Lie bracket approximations.

As an introductory example, we consider the one-dimensional single-input single-output
system

ẋ = u, (1.26)

y = ψ(x), (1.27)

where u is a real-valued input channel, x is the scalar system state, and y is a real-valued
output channel. We suppose that the output is given by a smooth real-valued function ψ
on the system space R. We also assume that the output can be measured constantly while
the system state x and an analytic expression for the function ψ are not known. Our
goal is to find an output-feedback control law that asymptotically stabilizes the closed-loop
system around states at which ψ attains a minimum value. It is clear that for the simple toy
model (1.26), (1.27) the problem could be solved by an easier method than what we describe
in the following. However, in order to explain the underlying principles of extremum seeking
control by Lie bracket approximations, this toy model serves as a good prototype for more
general problems.

To solve above extremum seeking control problem, we return to system (1.5). Recall
that the periodically time-varying functions uj1, u

j
2 on the right-side of (1.5) are defined

in Figure 1.2. The parameter j determines the amplitudes and frequencies of uj1, u
j
2. The

right-hand side of (1.5) also involves the not further specified smooth vector fields f1, f2

on Rn. With respect to our one-dimension toy example (1.26), (1.27), we will make a
particular choice of the vector fields f1, f2 in dimension n = 1 below. It is already known
from Proposition 1.1 that the trajectories of the highly oscillatory system (1.5) approximate
the trajectories of the averaged system (1.19) for sufficiently large values of j. The averaged
system is driven into the direction of the Lie bracket [f1, f2]. For our objective to steer the
control system (1.26) towards a state at which the output (1.27) attains a minimum value,

11
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it is certainly helpful to know descent directions of the output function ψ. This information
is provided by the negative gradient of ψ, which is denoted by −∇ψ. Note that, in our one-
dimensional toy model, the gradient of ψ is just a real-valued function. However, we do not
have direct access to the gradient of ψ. We can only measure the value of ψ at the current
system state and this system state is also not known. To circumvent the problem, we use
the approximation property from Proposition 1.1. We will choose the vector fields f1, f2 in
such a way that their Lie bracket [f1, f2] coincides with the negative gradient of ψ. Then,
the averaged system (1.19) is constantly driven into a descent direction of ψ, which in turn
implies that the same is also true (at least approximately) for the oscillatory system (1.5).
To carry out this plan, we first need to know how to choose f1, f2, and secondly, we also
need a time-varying output-feedback control law for (1.26) such that the closed-loop system
coincides with (1.5).

The above idea to obtain extremum seeking control by Lie bracket approximations can
be realized as follows. We introduce two smooth design functions h1, h2 : R → R, which
are not rather specified at the moment. In order to obtain a closed-loop system of the
form (1.5), we choose the parameter-dependent, time-varying output-feedback control law

u = uj1(t)h1(y) + uj2(t)h2(y) (1.28)

for (1.26), where uj1, u
j
2 are given by Figure 1.2, and y denotes the output (1.27). Note

that an implementation of (1.28) does not require any other information than real-time
measurements of the output signal. Moreover, the closed-loop system can be written in the
form (1.5) if we define the two vector fields f1, f2 on R by

f1(x) := h1(ψ(x)), (1.29a)

f2(x) := h2(ψ(x)). (1.29b)

Using equation (1.18), we can compute the Lie bracket of f1 and f2 at any x ∈ R, which
leads to

[f1, f2](x) = [h1, h2](ψ(x))∇ψ(x), (1.30)

where the function [h1, h2] : R→ R is defined by

[h1, h2](y) := h′2(y)h1(y)− h′1(y)h2(y). (1.31)

Thus, if we want to ensure that [f1, f2] = −∇ψ, then we have to choose the design functions
h1, h2 in such a way that [h1, h2] is identically equal to −1. There are infinitely many
different ways to satisfy this property. For example, we can define

h1(y) := y, h2(y) := 1, or (1.32)

h1(y) := sin(y), h2(y) := cos(y), or (1.33)

h1(y) := ey/
√

2, h2(y) := e−y/
√

2. (1.34)

Definitions (1.32), (1.33), and (1.34) appeared for the first time in [31], [96], and [41],
respectively. We will discuss the choice of h1, h2 again when we study a more general
problem. For our introductory example, we choose the design functions as in (1.33). Def-
inition (1.33) of h1, h2 is also used with certain variations in the subsequent chapters. In
contrast to (1.32) and (1.34), the definition in (1.33) ensures that control law (1.28) leads to
bounded input signals even if y attains large values, which might be preferable for practical
implementations.
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x1 = Φf1
1 (x0)

x2 = Φf2
1 (x1)

x3 = Φ−f1
1 (x2)

x4 = Φ−f2
1 (x3)

t

x

1/4 1/2 3/4 1 5/4 3/2 7/4 2

−1/2

1/2

x0 = 1

3/2

Figure 1.6: The trajectory of control system (1.26) with output y = x2 under the j-
dependent control law (1.28) with initial condition x(0) = 1 is drawn in blue for j = 4,
in cyan for j = 16, and in green for j = 128. In the limit j → ∞, the trajectories of the
closed-loop system converge locally uniformly to the trajectories of (1.36). The trajectory
of (1.36) with initial condition x(0) = 1 is drawn in red.

We conclude the introductory example by discussing the behavior of the closed-loop sys-
tem in some more detail. For the sake of simplicity, we suppose that the output function ψ
is simply given by ψ(x) := x2. Then, the optimal point x∗ is the origin. Following the
construction of control law (1.28), the closed loop-system (1.5) consists of the time-varying
functions uj1, u

j
2 in Figure 1.2 and, according to (1.29) and (1.33), contains the vector fields

f1, f2 given by

f1(x) = cos(x2), (1.35a)

f2(x) = sin(x2). (1.35b)

The averaged system (1.19) simply reads

ẋ = f∞(x) = −∇ψ(x) = −2x. (1.36)

It is clear that the optimal point x∗ = 0 is asymptotically stable for (1.36). Using the
approximation property in Proposition 1.1, this implies (see [78] for a proof) that x∗ is
practically uniformly asymptotically stable for the closed-loop system, where the word uni-
formly means that the stability property is uniform with respect to the time parameter,
and the word practically indicates the dependence on the parameter j. Figure 1.6 shows
how the solutions of the closed-loop system approximate the solutions of the averaged sys-
tem with increasing value of the parameter j. Note that the trajectories of the closed-loop
system only converge into a certain neighborhood of x∗. Such a behavior of solutions is
usually studied in the context of practical stability theory; see, e.g., [60]. However, the
approximation property improves with increasing parameter j. Therefore, the attracting
neighborhood of x∗ can be made arbitrary small by choosing j sufficiently large. Since x∗

is in fact globally asymptotically stable for (1.36), one can also ensure that the domain
of attraction for the closed-loop system is an arbitrary large compact neighborhood of x∗

by choosing j sufficiently large. Consequently, the output-feedback law (1.28) is indeed
an extremum seeking control law, at least for the toy example (1.26), (1.27). The prac-
tical stability result can be also derived directly from the integral equation (1.10) for the
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1 Introduction

trajectories of (1.5), which becomes

ψ(γ(t2)) = ψ(γ(t1))−
[
(Dj

1ψ)(t, γ(t))
]t=t2
t=t1

+

∫ t2

t1

(f∞ψ)(γ(t)) dt+

∫ t2

t1

(Dj
2ψ)(t, γ(t)) dt

(1.37)
for ϕ = ψ, where the Lie derivative of ψ along f∞ is given by

(f∞ψ)(x) = −4x2. (1.38)

We know from (1.15) that the remainders Dj
1ψ,D

j
2ψ converge uniformly to zero as j tends

to infinity. Thus, outside x∗ the negative averaged term (1.38) dominates the right-hand
side of (1.37). This leads to a decay of the value of ψ along trajectories of (1.5). In the
next paragraphs we will see that this strategy can be also applied to more complex control
systems.

The idea of using Lie bracket approximations for the purpose of extremum seeking control
appeared for the first time in the Master Thesis [26] by Hans-Bernd Dürr. Since then, the
approach has been extended into various directions. An overview on some of the existing
literature is given at the end of this section. The results in the present document also
contribute to this field of research. To explain the method for a more general situation
than for the toy example (1.26), (1.27), we consider a control-affine system of the form

ẋ =
m∑

i=1

uk gk(x), (1.39)

where the uk are real-valued input channels for a control law, and the gk are smooth control
vector fields on Rn. All of the control systems that we study in the present document are
assumed to have a control-affine structure (possibly with an additional drift vector field,
which is omitted in (1.39) for the sake of simplicity). However, it is worth to mention that
the Lie bracket approach can be also extended to certain systems that are not affine in
control; see [100]. As in the introductory example, we assume that the only information
about the current system state is provided by a real-valued output channel

y = ψ(x), (1.40)

where ψ is a smooth real-valued function on the state space Rn, called the output function.
Again, the goal is to derive an output-feedback control law for (1.39) that asymptoti-
cally stabilizes the closed-loop system around states at which the output (1.40) attains a
minimum value. It turns out that we can use basically the same strategy as for the toy
model (1.26), (1.27), which is described in the following paragraphs.

To obtain an extremum seeking control law for the more general problem (1.39), (1.40),
we return to the design function h1, h2 for the toy model (1.26), (1.27). Recall that the
functions h1, h2 have to be chosen in such a way that the Lie bracket vector in (1.30) points
into a descent direction of the output function. This can be easily extended to (1.39), (1.40)
as follows. For every k ∈ {1, . . . ,m}, define two smooth vector fields f(k,1), f(k,2) on Rn by

f(k,1)(x) := h1(ψ(x)) gk(x), (1.41a)

f(k,2)(x) := h2(ψ(x)) gk(x). (1.41b)

Note that (1.41) reduces in dimension n = 1 to (1.29) if gk(x) = 1 as in (1.26). As in (1.30),
we compute the Lie bracket of f(k,1) and f(k,2) using (1.18). For every k ∈ {1, . . . ,m}, we
obtain

[f(k,1), f(k,2)](x) = [h1, h2](ψ(x)) (gkψ)(x) gk(x), (1.42)
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1.3 Lie brackets and extremum seeking control

where the function [h1, h2] is defined by (1.31), and gkψ denotes the Lie derivative of ψ
along gk (i.e., (gkψ)(x) is the derivative of ψ at x applied to gk(x); cf. Section 1.2). Note
that the product (gkψ)gk of the real-valued function gkψ and the vector field gk on the
right-hand side of (1.42) is again a vector field on Rn. If we take the Lie derivative of ψ
along (gkψ)gk, then we obtain the nonnegative function (gkψ)2 on Rn. For the purpose of
extremum seeking control, we are interested in descent directions of ψ. To ensure that the
Lie bracket vector in (1.42) points into a descent directions of ψ, we need that the factor
[h1, h2](ψ(x)) is always negative; i.e., we have to choose the design functions h1, h2 such
that

[h1, h2](y) < 0 (1.43)

for every y ∈ R. For example, we can define h1, h2 by (1.32), (1.33), or (1.34). A general
study on suitable choices of h1, h2 can be found in [41]. Next, we explain how the Lie
brackets in (1.42) can be approximated by time-varying output feedback.

As explained in the previous paragraph, we are interested in the directions of the Lie
brackets in (1.42) because they contain valuable information about descent directions of ψ.
For the toy model (1.26), (1.27), this can be done by choosing a control law of the form (1.28)
with suitable highly oscillatory functions uj1, u

j
2. Then, the closed-loop system (1.5) ap-

proximates the averaged system (1.19) with increasing parameter value j. We know from
Section 1.2 that this approximation property is not restricted to a single pair of vector
fields but can be extended to several pairs of vector fields by choosing suitable highly os-
cillatory functions with distinct frequency coefficients as, for example, in (1.23). For each
k ∈ {1, . . . ,m}, we choose two suitable time-varying functions uj(k,1), u

j
(k,2) to approximate

the Lie bracket of f(k,1), f(k,2). For example, one can choose the sinusoids

uj(k,1)(t) :=
√

2 j ωk cos(j ωk t), (1.44a)

uj(k,2)(t) :=
√

2 j ωk sin(j ωk t), (1.44b)

where ω1, . . . , ωk are pairwise distinct positive real frequency coefficients. Differently shaped
highly oscillatory functions can be found, for example, in [99, 111]. For each k ∈ {1, . . . ,m},
we propose the parameter-dependent, time-varying output-feedback control law

uk = uj(k,1)(t)h1(y) + uj(k,2)(t)h2(y) (1.45)

for (1.39), where y denotes the output (1.40). Then, the closed-loop system reads

ẋ =

m∑

k=1

(
uj(k,1)(t) f(k,1)(x) + uj(k,2)(t) f(k,1)(x)

)
, (1.46)

which is of the form (1.20). The same averaging methods as in Section 1.2 shows that the
trajectories of (1.46) approximate the trajectories of the averaged system

ẋ =
m∑

k=1

[f(k,1), f(k,2)](x) (1.47)

with increasing frequency parameter j. Let ψ̇ denote the derivative of the output function ψ
along solutions of (1.47). Using (1.42) for the Lie brackets in (1.47), we obtain that

ψ̇(x) = [h1, h2](ψ(x))
m∑

k=1

(gkψ)(x)2.
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Recall that the design functions h1, h2 are chosen to satisfy (1.43). Consequently, we obtain
the estimate

ψ̇(x) ≤ −
m∑

k=1

(gkψ)(x)2 ≤ 0

for the derivative of ψ along solutions of (1.47). Under suitable assumptions on the con-
trol vector fields gk and the output function ψ, one can use ψ as a Lyapunov function
and prove that a minimum point x∗ ∈ Rn of ψ is asymptotically stable for (1.47). Be-
cause of the approximation property, this in turn implies that x∗ is practically uniformly
asymptotically stable for (1.46) as explained earlier for the toy model (1.26). Therefore, the
proposed output feedback (1.45) has the desired properties of an extremum seeking control
law for (1.39).

The first journal paper that introduces the above approach to extremum seeking control
by Lie bracket approximations is [31]. This paper provides local and semi-global practical
stability results for a more general situation than what we discussed in the preceding para-
graphs. As mentioned earlier, the approach can be also extended to time-varying control-
affine systems with a possible drift. Also the choice of the highly-oscillatory functions
can be relaxed from sinusoids as in (1.44) to a larger class of time-varying functions that
can be characterized by suitable averaging conditions. All these extensions are addressed
in [31]. In some earlier conference paper, the method is applied to various problems, such
as distributed positioning of autonomous mobile sensors [33], source seeking [32], distance-
based synchronization [30], and obstacle avoidance [29]. Inspired by the results in [31],
also other research groups started to investigate Lie bracket approach to extremum seeking
control. For example, in [95] the output function plays the role of a control Lyapunov
function for the purpose of practical stabilization. This allows practical stabilization of lin-
ear time-varying system without explicit knowledge of the system’s matrices or the system
state [93], and applications to the problem of tracking [94]. In the present document, we
will also consider the output function as a Lyapunov function to prove stability properties of
closed-loop systems. A real-world implementation of a Lie bracket-based extremum seeking
algorithm, which optimizes the rise time of the output voltage of a high voltage converter
modulator, is documented in [92]. As explained earlier, an extremum seeking control law of
the form (1.45) provides a certain degree of freedom in the choice of the highly-oscillatory
functions and the design functions h1, h2. For example, non-sinusoidal oscillations are ap-
plied in [99, 111]. The smooth design functions in (1.32) and (1.33) were introduced in [31]
and [96], respectively. A first non-smooth definition of h1, h2 appears in [97]. Under certain
additional assumptions, such non-smooth design functions do not only lead to practical sta-
bility but to asymptotic stability [41, 113] or even exponential stability [111]. We will study
such control laws in Chapter 2. A completely different choice of the oscillatory inputs and
the design functions is proposed in [109]. The approach in [109] provides the first extremum
seeking control law with an adaptive frequency parameter. While all other studies involve
the uncertainty of a sufficiently large value of j in (1.45), the method in [109] chooses j
adaptively and leads to guaranteed convergence to an optimal state. We will study this
control law in Chapter 3.

There are many other extensions and applications of the Lie bracket approach to ex-
tremum seeking control from [31]. For example, extensions to control systems on sub-
manifolds of the Euclidean space are studied in [34, 75, 76]. We will see throughout the
document that the Lie bracket approach allows a coordinate-free description of extremum
seeking control on arbitrary smooth manifolds. A frequently studied application of the
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1.3 Lie brackets and extremum seeking control

Lie bracket approach is the problem of source seeking, both theoretically [91] and exper-
imentally [40]. Other applications include iterative learning [21], numerical optimization
methods [35], and distributed optimization over graphs [72, 73], where the latter requires an
approximation of iterated Lie brackets as in (1.25). We will use approximations of iterated
Lie brackets in Chapter 4 to derive extremum seeking control for nonholonomic systems.
Lie brackets of higher order are also approximated in [59] for the purpose of Newton-based
extremum seeking. Interestingly, it is also possible to establish a connection between the Lie
bracket averaging theory and singular perturbation theory, which is used to analyze classi-
cal extremum controllers as in [55] under a steady state assumption; see [27, 28]. A suitable
rescaling of the time parameter reveals that the large-amplitude, high-frequency sinusoids
in (1.44) are related to the small-amplitude, low-frequency sinusoids in other extremum
seeking control schemes.

All of the above references consider first-order control system; i.e., the first derivative of
the system state is controlled directly through the input channels. In the present document,
we also restrict our studies to such first-order (or kinematic) models. Extensions of the Lie
bracket approach to second-order control systems, like mechanical systems, or higher-order
control systems can be found in [70, 71]. However, this results into even larger amplitudes
and frequencies of the employed oscillatory signals than for first-order control systems,
which might be undesirable for practical implementations. However, for some applications
to second-order mechanical system, there is a suitable alternative. Instead of approximating
Lie brackets, one can also approximate so-called symmetric products of vector fields by
using the class of vibrational signals from [17]. Recent studies [108, 114, 112] show that an
approximation of symmetric products can be used to design extremum seeking control for
mechanical systems, which causes smaller amplitudes and frequencies than the Lie bracket
approach.

Finally, it is worth to mention that the Lie bracket approach to extremum seeking control
can be viewed as a particular case of a stabilization method that was already pursued in
earlier references than [31]. Instead of using output feedback of the form (1.45), it is also
possible to apply a state feedback control law of the form

uk =
∑

ν

uj(k,ν)(t)H(k,ν)(x) (1.48)

to a control-affine system of the form (1.39), where the uj(k,ν) are suitable highly oscillatory
inputs, and the H(k,ν) are smooth real-valued design functions on the state space. Note
that (1.48) reduces to (1.45) if the summation index ν is restricted to ν ∈ {1, 2} and if
H(k,ν)(x) = hν(ψ(x)). If we apply (1.48) to (1.39), then the closed-loop system is of the
form (1.20), where the vector fields fi in (1.20) originate from the products of the func-
tions H(k,ν) and the control vector fields gk in (1.39). By choosing suitable highly oscillatory

inputs uj(k,ν), we can induce that the trajectories of the closed-loop system approximate the

trajectories of an extended system of the form (1.25). This in turn implies that if the ex-
tended system is asymptotically stable, then the closed-loop system is at least practically
asymptotically stable. Thus, a control-affine system of the form (1.39) can be stabilized
around a given point x∗ if we can find suitable highly oscillatory inputs uj(k,ν) and design

functions H(k,ν) in (1.25) such that x∗ is asymptotically stable for the extended system of
the closed-loop system. Such a procedure is described, for example, in [68]. The particular
notion of practical asymptotic stability, which is used in this context, can be traced back
to [77, 78]. For example, the same arguments as in [78] to conclude practical asymptotic
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stability for the closed-loop system from asymptotic stability for the averaged system are
also used in [31] in the context of extremum seeking control. Stabilizing state feedback by
Lie bracket approximation is intensively studied for homogeneous systems [80, 81, 79]. For
homogeneous systems, the approach does not only lead to practical asymptotic stability,
but in fact to asymptotic stability or even exponential stability. In particular, the approach
in [80] to design state feedback for nonholonomic control systems is closely related to the
extremum seeking control law in Chapter 4. A more recent study on exponential stabiliza-
tion of nonholonomic systems by means of Lie bracket approximations can be also found
in [121]. All of these stabilization methods are based on the Lie bracket averaging theory
from [58, 68, 69]; cf. Section 1.2. This is in particular true for the findings and the results
in the present document.

1.4 Outline

The considerations in the preceding Sections 1.2 and 1.3 have shown that the Lie bracket
approach provides a general tool to design extremum seeking control. In many cases,
stability properties of the closed-loop system can be proved in a systematic way. Indeed,
the procedures in the subsequent chapters follow basically the same pattern as for the
toy example (1.26), (1.27) in Section 1.3. The main steps are summarized in Figure 1.7.
To allow an easy comparison, the table in Figure 1.7 lists the most relevant equations,
definitions, and statements in each of the chapters.

The subsequent Section 1.5 summarizes basic definitions and notations that are used in
all later chapters. The rest of the document is organized as follows.

Chapter 2 addresses an optimization problem which is usually not associated with ex-
tremum seeking control, namely formation shape control. In this case the control system is
a team of autonomous point agents with the common goal to establish a certain formation
shape. The formation shape is defined by prescribed distances between the agents. The
standard way to solve this problem is a gradient-based control law. For this purpose, each
agent is assigned with a suitable local potential function. An implementation of the control
law assumes that each agent knows the gradient direction of its local potential function.
A computation of the gradient requires measurements of relative positions. However, this
means that much more variables need to be sensed (relative positions) than the variables
that are actively controlled (relative distances). It is therefore natural to ask whether the
formation shape control problem can be also solved if only distance measurements are avail-
able. We will see in Chapter 2 that this can be done by using ideas from extremum seeking
control. Measurements of inter-agent distances provide already enough information so that
each agent can compute the current value of its local potential function. Therefore, we can
apply the Lie bracket approach to extract the gradient directions from the current values
of the local potential functions. In this case, the Lie bracket approach does not only lead
to practical stability but to the novel feature of asymptotic stability and even exponential
stability. Additionally, we extend the distance-only formation control law for point agents
to a team of nonholonomic unicycles under the assumption of all-to-all communication. As
for point agents, we show that the proposed control law induces exponential stability. We
also explain how this method can be extended to other optimization problems. We improve
the existing extremum seeking methods, which only lead to practical asymptotic stability,
by presenting the first extremum seeking control law that can lead to exponential stability.

A common feature of all the existing Lie bracket-based extremum seeking control laws
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1.4 Outline

In each chapter, the optimization problem
is described by

(1) a control-affine system

on a certain state manifold together with

(2) a smooth real-valued output function.

The time-varying output-feedback control
law is composed of

(3) highly oscillatory functions

and also suitable

(4) design functions

to modulate the measured output signal.
These two components determine

(5) the output-feedback control law.

Then, we analyze

(6) the closed-loop system.

This requires a suitable averaging analysis
in order to extract

(7) the averaged system.

The closed-loop system can be interpreted
as a control-affine system under highly os-
cillatory open-loop controls. The first task
is to derive

(8) estimates for iterated Lie derivatives

along the control vector fields. Then, a suit-
able averaging analysis for the highly oscil-
latory functions leads to

(9) estimates for sinusoidal remainders

and an

(10) extraction of the averaged coefficients.

This allows us to derive an

(11) integral expansion for the trajectories
of the closed-loop system.

The integral expansion consists of an aver-
aged term and remainder terms. We derive

(12) estimates for the averaged term

as well as

(13) estimates for the remainder terms.

Finally, we use the above preparations to
prove the

(14) main stability result

for the closed-loop system.
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Figure 1.7: Overview on the repeating structures in the document. The numbers (1)-(14)
in the table refer to the list in the text on the left-hand side.
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1 Introduction

is that they require the choice of a sufficiently large frequency parameter for the employed
perturbation signals. Otherwise no stability property can be guaranteed and even finite
escape times can occur. This is certainly a problem in practical implementations. All of the
existing studies do not provide explicit information on how large the frequency parameter
has to be chosen for a successful implementation. The proposed method in Chapter 3
provides the first solution to this problem. The idea is to choose the amplitudes and
frequencies of the oscillatory signals in an adaptive fashion. An increase of the measured
output value automatically leads to larger amplitudes and frequencies. This way, the control
law itself chooses a suitable frequency parameter. Under suitable assumptions, the proposed
control strategy does not only lead to convergence of the system state into a neighborhood
of the optimal state but to exact convergence. Moreover, the control law has the ability
to compensate the influence of an arbitrary drift vector field. In particular, finite escape
times cannot occur.

As explained in Section 1.3, the Lie bracket approach to extremum seeking control gives
access to descent directions of the output function along the control vector fields of a system.
A proof of (practical) asymptotic stability for the closed-loop system usually requires that
the averaged Lie bracket system is asymptotically stable. For this reason, many studies
implicitly assume that the linear span of the control vector field contains a proper descent
direction of the output function. The same is true for the results in Chapters 2 and 3.
In general, however, this condition requires that the control system is fully actuated; i.e.,
the control vector fields span the entire tangent space. Otherwise, the averaged system
might have undesired equilibrium points at which all Lie derivatives of the output function
along the control vector fields vanish. In this case, the existing results cannot guarantee
stability properties of the closed-loop system. This problem motivates the investigations on
extremum seeking control for nonholonomic system in Chapter 4. There are many examples
of control-affine systems which are not fully actuated, but have at least the property that
the Lie brackets of their control vector fields span the entire tangent space (also known as
the Lie algebra rank condition). This feature can be used to design an extremum seeking
control law that leads to the same practical asymptotic stability results as for fully actuated
systems. The idea is to induce a two-fold approximation of Lie brackets. In the first step, we
approximate Lie brackets of the control vector fields. For a suitable class of nonholonomic
systems, this gives access to all directions of the tangent space. In the second step, we
use the ideas from Section 1.3 and approximate descent directions of the output function
along Lie brackets of the control vector fields. Under standard assumptions on the output
function, this approach leads to practical asymptotic stability for the closed-loop system.

1.5 Global definitions and notation for the entire document

By a smooth manifold we mean a second-countable Hausdorff space endowed with a real
finite-dimensional smooth structure; see [62]. The word smooth always means of class C∞.
The word function will be only used for maps whose codomain is the set of real numbers.
The notion of a smooth manifold allows the definitions of basic objects like tangent spaces1,

1Let C∞(M) denote the algebra of smooth functions on a smooth manifold M . For the objectives in the
present document it is convenient to treat a tangent vector to M at a point x of M as a derivation
on C∞(M) at x; i.e., a linear function vx on C∞(M) such that vx(ϕψ) = (vxϕ)ψ(x) + ϕ(x)(vxψ) for
all ϕ,ψ ∈ C∞(M)
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1.5 Global definitions and notation for the entire document

vector fields2, smooth maps3, and so on, which are not recalled here. Instead we refer the
reader to standard textbooks like [1], [18], and [62].

Let ψ be a function on a smooth manifold M . For every real number y, we denote the
fiber of ψ over y by ψ−1(y); i.e., the set of all x ∈ M with ψ(x) = y. Let r be either a
real number or the symbol +∞. We denote the r-sublevel set of ψ by ψ−1(≤ r); i.e., the
(possibly empty) set of all x ∈M with ψ(x) ≤ r. Let x∗ ∈M . We define a set ψ−1(≤ r, x∗)
as follows. If x∗ is not contained in ψ−1(≤ r), then ψ−1(≤ r, x∗) denotes the empty set,
and otherwise, it denotes the connected component of ψ−1(≤ r) containing x∗. We say
that ψ attains a local minimum at x∗ if there exists a neighborhood V of x∗ in M such
that ψ(x∗) ≤ ψ(x) for every x ∈ V .

Let vx be a tangent vector at some point x of M . If there exists a real number, denoted
by vxψ, such that, for every smooth curve γ from an open interval around 0 into M
with γ(0) = x and γ̇(0) = vx, the derivative of ψ ◦ γ exists at 0 and coincides with vxψ,
then vxψ is called the directional derivative of ψ along vx. Let f be a vector field on M .
If the directional derivative of ψ along the tangent vector f(x) exists, then we denote it
by (fψ)(x) := f(x)ψ and call it the Lie derivative of ψ along f at x. If the Lie derivative
of ψ along f exists at every point of M , then the resulting function fψ on M is called the
Lie derivative of ψ along f . Suppose that ψ is differentiable at x. Then, the derivative of ψ
at x is the linear function Dψ(x) on the tangent space to M at x such that Dψ(x)vx = vxψ
for every tangent vector vx at x. Moreover, the Lie derivative of f along ψ at x is then
given by the well-known formula

(fψ)(x) = Dψ(x)f(x).

If Dψ(x) = 0, then x is said to be a critical point of ψ, and otherwise it is said to be a
regular point of ψ. Let g be another vector field on M . Suppose that, for every smooth
function ϕ on M , both the Lie derivative of gϕ along f and the Lie derivative of fϕ along g
exist at x. Then, there exists a unique tangent vector [f, g](x) to M at x, called the Lie
bracket of f and g at x such that

[f, g](x)ϕ = (f(gϕ))(x)− (g(fϕ))(x)

for every smooth function ϕ on M . For example, if f, g are locally Lipschitz continuous and
if f, g vanish at x, then their Lie bracket exists at x and vanishes there. If f, g are smooth,
then one can show that the above algebraic definition of the Lie bracket coincides with the
geometric definition of the Lie bracket in Section 1.2.

Suppose that ψ is smooth and that x ∈M is a critical point of ψ. Then, ([f, g]ψ)(x) = 0
and therefore (f(gψ))(x) = (g(fψ))(x) for all smooth vector fields f, g on M . It is now
easy to show that there exists a unique symmetric bilinear function D2ψ(x) of the tangent
space to M at x, called the second derivative of ψ at x, such that

D2ψ(x)(f(x), g(x)) = (f(gψ))(x) = (g(fψ))(x)

for all smooth vector fields f, g on M ; see, e.g., [74]. The second derivative of ψ at x is said
to be positive definite if D2ψ(x)(vx, vx) > 0 for every nonzero tangent vector vx to M at x.
The following statements are known from real analysis; see, e.g., [18].

2For the objectives in the present document it is convenient to treat a vector field on a smooth manifold M
as a derivation on the algebra C∞(M) of smooth functions on M ; i.e., a linear map f from C∞(M) into
the algebra of functions on M such that f(ϕψ) = (fϕ)ψ + ϕ(fψ) for all ϕ,ψ ∈ C∞(M).

3For instance, a vector field f on a smooth manifold M is smooth if and only if, for every smooth function ϕ
on M , an application of the derivation f to ϕ results into a smooth function fϕ on M .
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Remark 1.2. Let ψ be a smooth function on a smooth manifold M . Suppose that ψ
attains a local minimum value y∗ ∈ R at some x∗ ∈M and that the second derivative of ψ
at x∗ is positive definite. Then the following statements hold.

(i) The function ψ attains a strict local minimum at x∗; i.e., there exists a neighborhood V
of x∗ in M such that ψ(x) > y∗ for every x ∈ V with x 6= x∗.

(ii) There exists a neighborhood V of x∗ in M such that every x ∈ V with x 6= x∗ is a
regular point of ψ.

(iii) For every neighborhood V of x∗, there exists ỹ > y∗ such that ψ−1(≤ ỹ, x∗) is a
compact subset of V . ♦

If a is function on an interval I and if t1, t2 ∈ I, then we use the notation

[
a(t)

]t=t2
t=t1

:= a(t2)− a(t1).

Additionally, if a is locally integrable4, then we use the standard convention

∫ t2

t1

a(t) dt := −
∫ t1

t2

a(t) dt

for the integral if t1 > t2. If A,B are locally absolutely continuous functions5 on an
interval I, and if t1, t2 ∈ I, then, using the above notation, integration by parts can be
written as ∫ t2

t1

A(t) Ḃ(t) dt =
[
A(t)B(t)

]t=t2
t=t1
−
∫ t2

t1

Ȧ(t)B(t) dt.

For multiple later references, we state the well-known trigonometric identity

sin(α+ β) = cos(α) sin(β) + sin(α) cos(β) (1.49)

for all α, β ∈ R.

4Every integral in the present document is meant as the standard Lebesgue integral. Recall that a function a
on an interval I is said to be locally integrable if, for all real numbers t1 ≤ t2 in I, the integral of a over
the compact interval [t1, t2], denoted by

∫ t2
t1
a(t) dt, exists as a real number.

5Recall that a function A on an interval I is said to be locally absolutely continuous if its derivative Ȧ exists
almost everywhere on I as a locally integrable function and

∫ t2
t1
Ȧ(t) dt =

[
A(t)

]t=t2
t=t1

for all t1, t2 ∈ I.
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2 Distance-based formation control

The content of this chapter is an extended version of [111] and [113].

2.1 Introduction and motivation

Distance-based formation control is an extensively studied subject in the field of autonomous
multi-agent systems. The wish to achieve and maintain prescribed distances among au-
tonomous agents in a distributed way arises in various applications such as leader-follower
systems or in the context of formation shape control [86]. This task becomes especially
difficult if the agents can measure only distances to other members of the team but not
their relative positions.

In this chapter, we focus on the model of kinematic points in the Euclidean space of
arbitrary dimension. The interaction topology is described by an undirected graph, where
each node represents one of the agents. When we connect the current positions of the agents
by line segments according to the edges of the graph, we obtain a graph in the Euclidean
space, which is also referred to as a formation. We study the problem of distance-based
formation control; i.e., the target formations are defined by distances. To be more precise,
a target formation is reached if, for each edge of the graph, the distance between the
corresponding pair of agents is equal to a desired value. These distances are the actively
controlled variables. The aim is to find a distributed control law that steers the agents into
one of the target formations. The agents have to accomplish this goal without any shared
information like a global coordinate system or a common clock to synchronize their motion.

A well-established approach to solve the above problem is a gradient descent control
law [54, 24, 85, 82, 103]. For this purpose, every agent is assigned with a local potential
function. These functions penalize deviations of the distances to the prescribed values.
Each local potential function is defined in such a way that it attains its global minimum
value if and only if the distances to the neighbors are equal to the desired values. Thus, a
target formation is reached if all agents have minimized the values of their local potential
functions. To reach the minimum, every agent follows the negative gradient direction of
its local potential function. It is shown in [54, 24, 85] that this approach can lead to local
asymptotic stability with respect to the set of desired states. In fact, by imposing suitable
rigidity assumptions on the target formations, one can prove local exponential stability;
see, e.g., [82, 103].

An implementation of the gradient descent control law requires that all agents should
be able to measure the relative positions to their neighbors in the underlying graph. It is
clear that relative positions contain much more information than distances. In other words,
the amount of sensed variables exceeds the amount of actively controlled variables. It is
therefore natural to ask whether distance-based formation control is still possible even if the
sensed variables coincide with the controlled variables. This means that each agent can only
use its own real-time distance measurements to steer itself into a target formation. We also
remark that distance sensing and measurement has emerged as a mature technique through
the development of many low-cost, high precision sensors, such as ultrasonic sensors or
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2 Distance-based formation control

laser scanners (see, e.g., the survey in [46]). Therefore, it motivates us to explore feasible
solutions to formation control with distance-only measurement, which also finds significant
applications in relevant areas, e.g., multi-robotic coordination in practice.

To our best knowledge, there are just a few studies on formation control by distance-
only measurements. The idea in [4] is to compute relative positions directly from distance
measurements. However, in order to do so, the agents need more information than just
the distances to their neighbors in the underlying graph. It is shown in [4] that if the
target frameworks are rigid, and if each agent also has access to the distances to its two-hop
neighbors, then they can compute the relative positions by means of a Cholesky factorization
of a suitable matrix, which is obtained from distance measurements. Since this factorization
is only unique up to an orthogonal transformation, each agent also has to harmonize these
relative positions with its individual coordinate system. This requires a certain ability to
sense bearing. Thus, it is not sufficient to sense only the actively controlled distances.

Another approach is presented in [19]. In contrast to the above strategy, it suffices that
each agent measures the distances to its neighbors in the underlying graph. The multi-
agent system is divided into subgroups. Following a prescribed schedule, only one of these
subgroups is active at a time while the other agents remain at their positions. This requires
that the agents share a common clock. It is assumed that the agents of the currently
active group have the ability to first localize the resting neighbors of the team by means
of distance measurements, and then move into the best possible position. Note that the
strategy requires that each agent can map and memorize its own motion within its own local
coordinate system. For a minimally rigid graph in the plane, this algorithm leads locally to
the desired convergence. However, a generalization to higher dimensions is limited, since the
strategy requires a minimally rigid graph that can be constructed by means of a so-called
Henneberg sequence [5], which is, in general, possible only in two dimensions.

A recent attempt to control formation shapes by distance-only measurements can be
found in [51]. In this case, the agents perform suitable circular motions with commensurate
frequencies. Using collected data from distance measurements during a prescribed time
interval, each agent can extract relative positions and relative velocities of its neighbors
by means of Fourier analysis. As in [19], the approach in [51] relies on the assumption
that the agents share a precise common clock to synchronize their motions. The proposed
strategy leads to convergence if certain control parameters are chosen sufficiently small.
However, only existence of these parameters can be ensured but there is no explicit rule
how to obtain them. Moreover, the control law only induces convergence to the set of
desired formations but not convergence to a single static formation. In general, a common
drift of the multi-agent system remains. An extension to higher dimensions is not obvious,
since the extraction of relative positions and velocities relies on the geometry of the plane.

A common feature of all of the above strategies is that the agents should be able to
compute or infer relative positions from distance measurements. In this chapter, we use
a different approach. To explain the idea, we return to the gradient descent control law.
In this case, each agent tries to minimize its own local potential function by moving into
the negative gradient direction. A computation of the gradient requires measurements of
relative positions. However, the value of each local potential function can be computed
from individual distance measurements, and is therefore accessible to every agent. This
leads to the question of whether an agent can find the minimum of its local potential
function when only the values of the function are available. To solve this problem, we use
an approach that was recently introduced in the context of extremum seeking control, see,
e.g., [31, 34, 27, 95, 97, 96]. The reader is referred to Chapter 1 for an introduction to
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2.1 Introduction and motivation

this method. By feeding in suitable sinusoidal perturbations, we induce that the agents are
driven, at least approximately, into descent directions of their local potential functions. On
average, this leads to a decay of all local potential functions, and therefore convergence to a
target formation. The proposed control law for each agent needs no other information than
the current value of the local potential function. Under the assumption that the target
formations are infinitesimally rigid (see Section 2.2 for the definition), we can ensure local
uniform asymptotic stability. Our control strategy is fully distributed, and can be applied
to point agents in any finite dimension.

An earlier attempt to apply Lie bracket approximations to the problem of formation
shape control can be found in [111]. The control law therein requires a permanent all-to-all
communication between the agents for an exchange of distance information. The control
law in this chapter is based on individual distance measurements and works without any
exchange of measured data. Moreover, the results in [111] contain an unknown frequency
parameter for the sinusoidal perturbations. It is assumed that the frequency parameter is
chosen sufficiently large; otherwise convergence to a desired formation cannot be guaranteed.
The results in the above paper provides only the existence of a sufficiently large frequency
parameter, but there is no explicit rule on how to find that value. The control law in
this chapter can lead to local uniform asymptotic stability even if the frequency parameter
is chosen arbitrarily small. We discuss the influence of the frequency parameter on the
performance of our control law in the main part.

The idea of using Lie bracket approximations to extract directional information from dis-
tance measurements can also be found in several other studies. The range of applications
includes, among others, multi-agent source seeking [32], synchronization [30], and obstacle
avoidance [29]. A common feature of the above papers and the content of this chapter is
that the desired states are characterized by minima of (artificial) potential functions. An-
other similarity is that a purely distance-based control law is derived by using Lie bracket
approximations in order to get access to the direction of steepest decent. However, the
above studies only guarantee practical asymptotic stability, and depend on the unknown
frequency parameter that we mentioned in the previous paragraph. Our results for forma-
tion shape control are stronger because they can lead to local asymptotic stability without
the dependence on the frequency parameter. Thus, our findings might also be of interest
to the above fields of applications.

The chapter is organized as follows. In Section 2.2, we introduce basic definitions and
notations, which we use throughout the chapter. As indicated above, our approach involves
the notion of infinitesimal rigidity, which is recalled in Section 2.3. We also derive suitable
estimates for the derivatives of the potential functions in this section. The distance-only
control law and the main stability results are presented in Section 2.4, which are supported
by numerical simulations in the same section. A detailed analysis of the closed-loop system
and the proofs of the main theorems are carried out in Section 2.5. In addition to forma-
tion control for point agents, we show in Section 2.6 that the Lie bracket approach can be
extended to nonholonomic unicycles under the additional assumption of all-to-all commu-
nication among the agents. Again, we present a stability result under the proposed control
strategy and then prove the theorem in Section 2.7. Finally, in Section 2.8, we indicate
how the approach can be extended for the purpose of extremum seeking control. If the
minimum value of the output function is known, then basically the same control strategy
as for point agents can be applied to a more general type of control-affine system. Under
suitable assumptions, this approach leads to asymptotic (and even exponential) stability
for the closed-loop system.
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2 Distance-based formation control

2.2 Local definitions and notation for the chapter

To emphasize the difference between points and tangent vectors in the notation, we use the
notion of a Euclidean space P ∼= Rn of (finite and nonzero) dimension n with underlying
translation space T ∼= Rn (see [84]). The elements of P are called points and the elements
of T are called translations. The Euclidean inner product on T is denoted by 〈〈·, ·〉〉 and the
induced norm is denoted by ‖ · ‖. Let φ be a map from an open subset U of P into Rm.
If φ is k-times differentiable at some point x of U , then we denote its kth derivative at x
by Dkφ(x), which is a k-linear map of T into Rm. The induced operator norm of Dkφ(x) is
denoted by ‖Dkφ(x)‖. As usual, for any subset S of U , we say that φ is Lipschitz continuous
on S if there exists a Lipschitz constant L > 0 such that ‖φ(x2)− φ(x1)‖ ≤ L‖x2 − x1‖ for
all x1, x2 in S, where we use the same symbol for the norm on Rm and the norm on T . If
each point of U has a neighborhood on which φ is Lipschitz continuous, then φ is said to be
locally Lipschitz continuous. Equivalently, φ is locally Lipschitz continuous if and only if φ
is Lipschitz continuous on every compact subset of U . If a function ϕ on U is differentiable
at some point x of U , then the gradient of ϕ at x is the unique translation vector ∇ϕ(x) ∈ T
that satisfies Dϕ(x)(v) = 〈〈∇ϕ(x), v〉〉 for every v ∈ T . For later references, we collect the
following statements on nonnegative smooth functions.

Lemma 2.1. Let ϕ be a nonnegative smooth function on an open subset U of a Euclidean
space P . Then the following statements hold.

(a) The square root of ϕ is locally Lipschitz continuous.

(b) For every compact subset K of U , there exists c1 > 0 such that ‖∇ϕ(x)‖2 ≤ c1 ϕ(x)
for every x ∈ K.

(c) Suppose that, for some x∗ ∈ U , we have ϕ(x∗) = 0 and the second derivative of ϕ
at x∗ is positive definite. Then, there exist c0 > 0 and a neighborhood V of x∗ in U
such that ‖∇ϕ(x)‖2 ≥ c0 ϕ(x) for every x ∈ V .

Proof. Statement (a) is a particular case of the more general result that every nonnegative
definite matrix-valued smooth map has a locally Lipschitz continuous square root. The
proof can be found in [37]. A proof of statements (b) and (c) for nonnegative smooth
functions on Riemannian manifolds can be found in [18].

Since we restrict our considerations to a Euclidean space P with translation space T ,
each tangent space to P can be identified with T . Therefore, a vector field on P can be
simply considered as a map from P into T . For example, the gradient of a differentiable
function on P is a vector field on P . If f, g are vector fields on P and if g is differentiable
at some x ∈ P , then the (“covariant”) derivative Dg(x)f(x) of g with respect to f at x is
denoted by ∇fg(x).

2.3 Infinitesimal rigidity and gradient estimates

2.3.1 Infinitesimal rigidity

In this subsection, we recall several definitions and statements from [7, 8].
An (undirected) graph G = (V,E) is a set V = {1, . . . , N} together with a nonempty

set E of two-element subsets1 of V . Each element of V is referred to as a vertex of G and
1Note that self-loops are excluded by requiring that E consists of two-element subsets of V .
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2.3 Infinitesimal rigidity and gradient estimates

each element of E is called an edge of G. As an abbreviation, we denote an edge {i1, i2} ∈ E
simply by i1i2. A framework G(p) in P consists of a graph G with N vertices and a point

p = (p1, . . . , pN ) ∈ P × · · · × P =: PN .

Note that for a framework G(p) in P , we may have pi1 = pi2 for i1 6= i2.
Consider a graph G = (V,E) with N vertices and M edges, that is, V = {1, . . . , N},

and E has M elements. Order the M edges of G in some way and define the edge map
eG : PN → RM of G by

eG(p) := (. . . , ‖pi2 − pi1‖2, . . .)i1i2∈E

for every p = (p1, . . . , pN ) ∈ PN . Thus, the value of eG at any (p1, . . . , pN ) ∈ PN is a vector
that collects the squared distances ‖pi2 − pi1‖2 for all edges i1i2 ∈ E. A point p ∈ PN is
said to be a regular point of eG if the rank of DeG attains its global maximum value at p.
For later references, we state the following result from [7], which is an easy consequence of
the Inverse Function Theorem.

Proposition 2.2. Let G be a graph with N vertices and M edges. If p ∈ PN is a regular
point of eG, then there exists an open neighborhood U of p in PN such that the image of U
under eG is a smooth submanifold of RM of dimension rank DeG(p).

The complete graph with N vertices is the graph with N vertices that has each two-
element subset of {1, . . . , N} as an edge.

Definition 2.3. Let G be a graph with N vertices, let C be the complete graph with N
vertices, and let p ∈ PN . The framework G(p) in P is said to be rigid if there exists a
neighborhood U of p in PN such that

e−1
G (eG(p)) ∩ U = e−1

C (eC(p)) ∩ U,

where e−1
G (eG(p)) denotes the fiber of eG over eG(p) and e−1

C (eC(p)) denotes the fiber of eC
over eC(p). ♦

Thus, a framework G(p) is rigid if and only if, whenever q sufficiently close to p with
‖qi2 − qi1‖ = ‖pi2 − pi1‖ for every edge i1i2 of G, we have in fact ‖qi2 − qi1‖ = ‖pi2 − pi1‖
for all vertices i1, i2 of G. Another result from [7] is the following.

Proposition 2.4. Let C be the complete graph with N vertices. For every p ∈ PN , the set
e−1
C (eC(p)) is a smooth submanifold of PN .

The manifold e−1
C (eC(p)) is actually analytic and one can derive an explicit formula for its

dimension; see again [7]. As in [8], we use the manifold structure of e−1
C (eC(p)) to introduce

the notion of infinitesimal rigidity.

Definition 2.5. A framework G(p) in P is said to be infinitesimally rigid if the tangent
space to the smooth submanifold e−1

C (eC(p)) at p coincides with the kernel of DeG(p). ♦

To make the notion of infinitesimal rigidity more intuitive, we recall a geometric inter-
pretation from [38]. For this purpose, we consider smooth isometric deformations of a
given framework G(p); i.e., smooth curves from an open time interval around 0 into the set
e−1
G (eG(p)) passing through p at time 0. By definition, each such curve γ = (γ1, . . . , γN )
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2 Distance-based formation control

preserves the squared distances ‖γi2(t) − γi1(t)‖2 for all edges i1i2 of G, and we have
eG(γ(t)) = eG(p) for every t in the domain of γ. By the chain rule, this implies that the
velocity vector γ̇(0) of γ at time 0 is an element of the kernel of DeG(p) (which is termed
rigidity matrix in the literature of graph rigidity; see, e.g., [8]). This explains why vectors
in the kernel of DeG(p) are referred to as infinitesimal isometric perturbations of G(p).
On the other hand, for the complete graph C, the tangent space to the smooth mani-
fold e−1

C (eC(p)) at p consists of the velocities of all smooth curves in e−1
C (eC(p)) passing

through p. By definition, the curves in e−1
C (eC(p)) preserve the squared distances for all

vertices of G. Thus, infinitesimal rigidity of G(p) means that, for every smooth curve γ of
the form γ(t) = p+tv with v being an infinitesimal isometric perturbations of G(p), changes
of the squared distances ‖γi2(t) − γi1(t)‖2 are not detectable around t = 0 in first-order
terms for all vertices i1, i2 of G.

For our purposes, it is more convenient to characterize the notion of infinitesimal rigidity
by the following result from [8].

Theorem 2.6. A framework G(p) in P is infinitesimally rigid if and only if p is a regular
point of eG and if G(p) is rigid.

It follows that the notions of rigidity and infinitesimal rigidity coincide at regular points
of the edge map. Finally, we note that it is also possible to characterize infinitesimal rigidity
of G(p) in P by means of an explicit formula for rank DeG(p); see again [8].

2.3.2 Gradient estimates

In this subsection, G = (V,E) is a graph with N vertices and M edges. Let eG : PN → RM
be the edge map of G. For each edge i1i2 ∈ E, let di1i2 be a nonnegative real number.
Define d := (d2

i1i2
)i1i2∈E ∈ RM , where the components of d are ordered in the same way as

the components of eG. Define a nonnegative smooth function ψG,d on PN by

ψG,d(p) :=
1

4
‖eG(p)− d‖2 =

1

4

∑

i1i2∈E

(
‖pi2 − pi1‖2 − d2

i1i2

)2
(2.1)

for every p = (p1, . . . , pN ) ∈ PN . This type of function will appear again in the subsequent
sections as local and global potential function of a system of N agents in P . Our aim is
to derive boundedness properties for the gradient of ψG,d. As in Section 1.5, we denote
the r-sublevel set of ψG,d by ψ−1

G,d(≤ r).

Proposition 2.7. For the function ψG,d on PN in (2.1), the following statements hold.

(a) For every r > 0, the square root of ψG,d is Lipschitz continuous on ψ−1
G,d(≤ r).

(b) For every r > 0, there exists c1 > 0 such that

‖∇ψG,d(p)‖2 ≤ c1 ψG,d(p) (2.2)

for every p ∈ ψ−1
G,d(≤ r).

(c) For every r > 0 and every integer k ≥ 2, there exists c2 > 0 such that

‖DkψG,d(p)‖ ≤ c2 (2.3)

for every p ∈ ψ−1
G,d(≤ r).
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2.3 Infinitesimal rigidity and gradient estimates

(d) Suppose that, for each p ∈ ψ−1
G,d(0), the framework G(p) is infinitesimally rigid. Then,

there exist r0, c0 > 0 such that

‖∇ψG,d(p)‖2 ≥ c0 ψG,d(p) (2.4)

for every p ∈ ψ−1
G,d(≤ r0).

Proof. For the proof of Proposition 2.7, we need some additional facts from differential
geometry, which can be found in [62]. An isometry of P is a map α : P → P such that
‖α(x2) − α(x1)‖ = ‖x2 − x1‖ for all x1, x2 ∈ P . It is known that the set E(n) of all
isometries of P forms a Lie group, called the Euclidean group. For each α ∈ E(n), we define
αN : PN → PN by αN (p) := (α(p1), . . . , α(pN )) for every p = (p1, . . . , pN ) ∈ PN . It is
known that the map E(n) × PN → PN , (α, p) 7→ αN (p) is a smooth group action of E(n)
on PN . For every subset S of PN , we let SE(n) denote the set of all αN (p) with p ∈ S
and α ∈ E(n). In particular, for a single point p ∈ PN , the set {p}E(n) is called the orbit
of p under the action of E(n). The set PN/E(n) of all orbits endowed with the quotient
topology is called the orbit space. Note that ψG,d is invariant under the action of E(n);
i.e., we have ψG,d ◦ αN = ψG,d for every α ∈ E(n). It is easy to check that every sublevel
set of ψG,d can be reduced to a compact set by isometries; i.e., for every r > 0, there exists
a compact subset K of PN such that ψ−1

G,d(≤ r) = KE(n).

To prove parts (a), (b), and (c), fix an arbitrary r > 0. Then, there exists a compact
subset K of PN such that ψ−1

G,d(≤ r) = KE(n). Suppose for the sake of contradiction

that ψG,d is not Lipschitz continuous on ψ−1
G,d(≤ r). Then, using the invariance of ψG,d

under the action of E(n) and the compactness of K, it follows that there exist sequences
of points pj , qj in ψ−1

G,d(≤ r) with pj 6= qj that converge to a common point p∞ ∈ K and

such that |ψ1/2
G,d(q

j)− ψ1/2
G,d(p

j)|/‖qj − pj‖ tends to infinity as j →∞. However, this would
contradict Lemma 2.1 (a), which states that the square root of ψG,d is at least locally
Lipschitz continuous. Next, we prove part (b). By Lemma 2.1 (b), there exists c1 > 0 such
that (2.2) holds for every p ∈ K. Note that the derivative of any α ∈ E(n) is identically
equal to an orthogonal map of T and therefore leaves the norm on T invariant. By the
chain rule, we obtain that ‖(∇ψG,d) ◦ αN‖ = ‖∇ψG,d‖ for every α ∈ E(n), which implies
that (2.2) holds in fact for every p ∈ KE(n). Let k ≥ 2 be an integer. Since ψG,d is smooth,
there exists c2 > 0 such that (2.3) holds for every p ∈ K. As for the gradient, it follows
from the invariance of ψG,d under the action of E(n), the chain rule, and the invariance of
the norm under orthogonal transformations that (2.3) holds for every p ∈ KE(n).

It remains to prove part (d). For the rest of the proof, we suppose that G(p) is infinites-
imally rigid for every p ∈ ψ−1

G,d(0). Note that ψ−1
G,d(0) = e−1

G (d), where eG is the edge map

from Subsection 2.3.1. For the moment, fix an arbitrary q ∈ e−1
G (d). We will show that there

exist a neighborhood W of q in PN and some constant c0 > 0 such that (2.4) holds for every
p ∈ W . By Proposition 2.2 and Theorem 2.6, there exists an open neighborhood U of q
in PN such that the image eG(U) of U under eG is a smooth submanifold of RM of dimen-
sion k := rank DeG(q). After possibly shrinking U around q, we can find a parametrization
φ : V → eG(U) for the entire manifold eG(U). Then, ēG := (φ−1◦eG)|U : U → V is a smooth
map with rank DēG(q) = k. Define a smooth function gd on V by gd(x) := ‖φ(x) − d‖2/4
for every x ∈ V . Then, the restriction of ψG,d to U equals gd ◦ ēG, and by the chain rule,
we obtain

∇ψG,d(p) = DēG(p)>∇gd(ēG(p))
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for every p ∈ U , where DēG(p)> : Rk → TN denotes the adjoint2 of DēG(p) : TN → Rk with
respect to the inner products on Rk and TN . Since p 7→ DēG(p)> is continuous and has
maximum rank k at q, there exist3 a neighborhood W of q in U and a constant c′0 > 0 such
that ‖DēG(p)>v‖ ≥ c′0‖v‖ for every p ∈W and every v ∈ Rk. In particular, this implies

‖∇ψG,d(p)‖ ≥ c′0 ‖∇gd(ēG(p))‖

for every p ∈ W . Using φ(z) = d at z := ēG(q) ∈ V , a direct computation shows that
D2gd(z)(v, v) = ‖Dφ(z)v‖2/2 for every v ∈ Rk. Since rank Dφ(z) = k, it follows that the
second derivative of gd at z is positive definite. Because of Lemma 2.1 (c), we can shrink W
sufficiently around q and find some c′′0 > 0 such that

‖∇gd(ēG(p))‖2 ≥ c′′0 gd(ēG(p)) = c′′0 ψG,d(p)

for every p ∈W . Thus, (2.4) holds for every p ∈W with c0 := (c′0)2 c′′0.

Let π : PN → PN/E(n) be the projection onto the orbit space. Let C be the complete
graph with N vertices. For the edge map ec of C, it is known (see [84]) that e−1

C (eC(p)) =
{p}E(n) for every p ∈ PN . Note that both eC and eG are continuous, and also invariant
under the action of E(n); i.e., we have eC ◦ αN = eC and eG ◦ αN = eG for every α ∈ E(n).
Thus, there exist unique continuous maps ẽC , ẽG : PN/E(n)→ RM such that eC = ẽC ◦ π
and eG = ẽG ◦ π (see [62]). The assumption of rigidity means in the orbit space that,
for every orbit p̃ ∈ ẽ−1

G (d), there exists a neighborhood Ũ of p̃ in PN/E(n) such that
ẽ−1
G (d) ∩ Ũ = ẽ−1

C (ẽC(p̃)) ∩ Ũ . Since ẽ−1
G (d) is compact, and since ẽ−1

C (ẽC(p̃)) = {p̃}, it
follows that ẽ−1

G (d) only consists of finitely many orbits. Thus, there exists a finite set
F ⊆ e−1

G (d) such that e−1
G (d) = FE(n). Since F is finite, we obtain from the previous

paragraph that there exist a neighborhood W of F in PN and some constant c0 > 0 such
that (2.4) holds for every p ∈ W . Since both ψG,d and ‖∇ψG,d‖ are invariant under the
action of E(n), we conclude that (2.4) holds for every p ∈WE(n). The proof is complete, if
we can show that there exists r0 > 0 such that ψ−1

G,d(≤ r0) ⊆WE(n). Since ψG,d : PN → R is
continuous and invariant under the action of E(n), there exists a unique continuous function
ψ̃G,d on PN/E(n) such that ψG,d = ψ̃G,d ◦π. Since the projection map π is open (see [62]),
the set W̃ := π(W ) is a neighborhood of P̃ := π(P ) = ψ̃−1

G,d(0) in PN/E(n). Since ψ̃G,d is
continuous and has compact sublevel sets, there exists a sufficiently small r0 > 0 such that
ψ̃−1
G,d(≤ r0) ⊆ W̃ . Thus, ψ−1

G,d(≤ r0) ⊆WE(n), which completes the proof.

Remark 2.8. In general, the noncompact set ψ−1
G,d(0) of global minima of ψG,d might have

a complicated structure. However, the proof of Proposition 2.7 reveals that under the
assumption of infinitesimal rigidity, the set ψ−1

G,d(0) is simply the union of orbits of finitely

many points in PN under action of the Euclidean group. It therefore suffices to consider ψG,d
in a small neighborhood of a single point of each orbit. A similar strategy is also applied
in several other studies on formation shape control (see, e.g., [48, 82]). The assumption of
infinitesimal rigidity allows us to derive the lower bound (2.4) for the gradient of ψG,d on
a noncompact sublevel set. This estimate will play an important role in the proofs of our
main results. ♦

2By the adjoint of DēG(p) : TN → Rk, we mean the unique linear map DēG(p)> : Rk → TN that satisfies
the property 〈〈DēG(p)v, w〉〉 = 〈〈v,DēG(p)>w〉〉 for every v ∈ TN and every w ∈ Rk, where 〈〈·, ·〉〉 denotes
the inner product on TN and on Rk.

3Note that the dimension k is less than or equal to the dimension of TN .
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p1

b1,1
b1,2

p2

b2,1b2,2

p3

b3,2

b3,1

‖p2 − p1‖
‖p3 − p1‖

‖p3 − p2‖

Figure 2.1: A system of N = 3 point agents in n = 2 dimensions. Their current dis-
tances ‖pi2 − pi1‖ are indicated by dotted lines. The agents do not share information about
a global coordinate system. Instead, each agent navigates with respect to its individual body
frame, which is defined by the orthonormal velocity directions bi,k.

2.4 Formation control for point agents

2.4.1 Problem description

We consider a system of N point agents in the n-dimensional Euclidean space P . For
each i ∈ {1, . . . , N}, let bi,1, . . . , bi,n be an orthonormal basis of the underlying translation
space T . We assume that the motion of agent i ∈ {1, . . . , N} is determined by the kinematic
equation

ṗi =
n∑

k=1

ui,k bi,k, (2.5)

where each ui,k is a real-valued input channel to control the velocity into direction bi,k. The
situation is depicted in Figure 2.1. It is worth to mention that the directions bi,k do not
need to be known for an implementation of the control law that is presented in the next
subsection.

Suppose that the agents are equipped with very primitive sensors so that they can only
measure distances to certain other members of the team. These measurements are described
by an (undirected) graph G = (V,E); see Subsection 2.3.1 for the definition. If there is
an edge i1i2 ∈ E between agents i1, i2 ∈ V , then it means that agent i1 can measure the
Euclidean distance ‖pi2 − pi1‖ to agent i2 and vice versa. Note that the agents cannot
measure relative positions pi2 − pi1 but only distances. For each edge i1i2 ∈ E, let di1i2 ≥ 0
be a nonnegative real number, which is the desired distance between agents i1 and i2. We
assume that these distances are realizable in P ; i.e., there exists p = (p1, . . . , pN ) ∈ PN such
that ‖pi2 − pi1‖ = di1i2 for every i1i2 ∈ E. We are interested in a distributed and distance-
only control law that steers the multi-agent system into such a target formation. The
control law that we propose in Subsection 2.4.2 requires only distance measurements and
can be implemented directly in each agent’s local coordinate frame, which is independent
of any global coordinate frame.

We remark that, throughout the chapter, we consider an undirected graph for modeling
a multi-agent formation system, as it is commonly assumed in the literature on multi-
agent coordination control (see the surveys [86, 20]). This assumption is motivated by
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2 Distance-based formation control

various application scenarios. In practice, agents are often equipped with homogeneous
sensors that have the same sensing ability, e.g., same sensing ranges for range sensors.
Therefore, it is justifiable to assume bidirectional sensing (described by an undirected graph)
in modeling a multi-agent system. Undirected graphs also enable a gradient-based control
law for stabilizing formation shapes, which may not be possible for general directed graphs.
Extensions of the current results to directed graphs will be a content of future research.

2.4.2 Control law and main statement

The control law will be composed of the following constituents.

(1) For each i ∈ {1, . . . , N}, define a local potential function ψi on PN by

ψi(p) :=
1

4

∑

i′∈V : ii′∈E

(
‖pi′ − pi‖2 − d2

ii′
)2

(2.6)

for every p = (p1, . . . , pN ) ∈ PN with distances dii′ ≥ 0 as in Subsection 2.4.1.

(2) Let a be a smooth and bounded function on R such that a(0) = 0 and a′(0) 6= 0.
Define two functions h1, h2 on R by h1(y) := h2(y) := 0 for y ≤ 0 and by

h1(y) := a(y) sin(log y), (2.7a)

h2(y) := a(y) cos(log y) (2.7b)

for y > 0.

(3) Choose nN pairwise distinct positive real frequency coefficients ωi,k for i ∈ {1, . . . , N}
and k ∈ {1, . . . , n}. Moreover, for every j > 0, every i ∈ {1, . . . , N}, and every
k ∈ {1, . . . , n}, define two sinusoids uj(i,k,1), u

j
(i,k,2) : R→ R by

uj(i,k,1)(t) :=
√

2 j ωi,k cos(j ωi,kt+ ϕi,k), (2.8a)

uj(i,k,2)(t) :=
√

2 j ωi,k sin(j ωi,kt+ ϕi,k) (2.8b)

with arbitrary shifts ϕi,k ∈ R.

Remark 2.9. We briefly give some preliminary comments on the above functions without
going into details here.

(1) Note that agent i only needs to measure the distances ‖pi′−pi‖ to its neighbors i′ ∈ V
with ii′ ∈ E in order to compute the current value of its local potential function ψi.
In particular, the requirements of a distributed distance-only control law are met if
each agent only uses the current value

yi := ψi(p) (2.9)

of its local potential function (2.6) in the feedback loop. In the context of extremum
seeking control, one can interpret (2.9) as an output channel for agent i. A computa-
tion of the current value of the local potential function corresponds to a measurement
of (2.9). For this reason, the local potential function ψi plays the role of an output
function for agent i. We are interested in a control law that asymptotically stabilizes
the agents at states at which the output functions attain their minimum value 0.
Moreover, note that, for each i ∈ {1, . . . , N}, the local potential function ψi is of the
form (2.1) if we consider the graph that originates from G by keeping only the edges
to the neighbors of the vertex i in G.
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2.4 Formation control for point agents

(2) An admissible choice of the function a in (2.7) is, for example, given by a := tanh.
The particular combination of sine and cosine in (2.7) leads to the Lie bracket

[h1, h2](y) := h′2(y)h1(y)− h′1(y)h2(y) = −a(y)2/y (2.10)

for every y > 0. This Lie bracket can be extended to a locally Lipschitz continuous
function on R if we let [h1, h2](y) := 0 for every y ≤ 0.

(3) The choice of pairwise distinct frequency coefficients ωi,k for the sinusoids uj(i,k,ν)

in (2.8) has the purpose to excite certain Lie brackets of vector fields, which are
directly linked to the Lie bracket of h1, h2 in (2.10). This fact is revealed by a suitable
averaging analysis in Section 2.5. ♦

Given real numbers κ ≥ 1/2 and j > 0, we propose the control law

ui,k = uj(i,k,1)(t)h1(yκi ) + uj(i,k,2)(t)h2(yκi ) (2.11)

for every i ∈ {1, . . . , N} and every k ∈ {1, . . . , n}, where yκi denotes the κth power of the
current value (2.9) of the local potential function ψi. Whenever yi > 0, we can write control
law (2.11) also as

ui,k =
√

2 j ωi,k a(yκi ) sin(j ωi,k t+ ϕi,k + log yκi ), (2.12)

where we have used the trigonometric identity (1.49).

Remark 2.10. An implementation of control law (2.11) requires that each agent knows
the desired inter-agent distances to its neighbors, and its own pairwise distinct frequencies
(and arbitrary shifts). Such information can be embedded into the memory of each agent
prior to an implementation of the control law. Also, each agent needs to measure the
current inter-agent distances (in contrast to relative positions, as assumed in most papers
on formation shape control) relative to its neighbors in order to compute the value of its local
potential (2.6). The setting of such a control scenario is common in most distributed control
laws, which is acknowledged by the term ‘centralized design, distributed implementation’,
which does not contradict with the principle of distributed control (see, e.g., the surveys [20,
86]). Therefore, the proposed control law is fully distributed.

It is also important to note that we allow arbitrary phase shifts ϕi,k in the sinusoids (2.8).
The phase shifts for one agent are not assumed to be known to the other members of the
team. In particular, this means that the control law (2.11) requires no time synchronization
among the agents. Moreover, since we merely assume that the frequency coefficients ωi,k
are pairwise distinct, it is not necessary that the sinusoids have a common period. ♦

It is shown later in Lemma 2.18 (a) that, for every i ∈ {1, . . . , N} and every ν ∈ {1, 2},
the function hν ◦ ψκi is locally Lipschitz continuous. It therefore follows from standard
theorems for ordinary differential equations that system (2.5) under the control law (2.11)
has a unique maximal solution for any initial condition. These solutions do not have a finite
escape time because (2.11) is bounded. In summary, we have the following result.

Proposition 2.11. For any initial condition, system (2.5) under control law (2.11) has a
unique global solution, which we call a trajectory of (2.5) under (2.11).
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To state our main result, we introduce the global potential function ψ = ψG,d on PN

with ψG,d as in (2.1); i.e., we define

ψ(p) :=
1

4

∑

i1i2∈E

(
‖pi2 − pi1‖2 − d2

i1i2

)2
. (2.13)

Note that the fiber of ψ over 0,

ψ−1(0) = {(p1, . . . , pN ) ∈ PN | ∀i1i2 ∈ E : ‖pi2 − pi1‖ = di1i2}, (2.14)

is the set of desired formations. Since we assume that the distances di1i2 are realizable in P ,
the set (2.14) is not empty.

Theorem 2.12. Suppose that, for every point p of (2.14), the framework G(p) is infinites-
imally rigid. Let κ = 1/2. Then, there exist µ, r > 0 such that, for every λ > 1, there exists
j0 > 0 such that, for every j ≥ j0, every t0 ∈ R, and every p0 ∈ ψ−1(≤ r), the trajectory p
of system (2.5) under control law (2.11) with initial condition p(t0) = p0 has the following
two properties: p(t) converges to some point of (2.14) as t→∞, and the estimate

ψ(p(t)) ≤ λψ(p0) e−µ(t−t0) (2.15)

holds for every t ≥ t0.

Theorem 2.12 states that, under the assumption of infinitesimal rigidity, control law (2.11)
with κ = 1/2 leads to local exponential stability if the frequency parameter j is sufficiently
large. If we increase the exponent κ in (2.11) to a value > 1/2, then this has the following
two effects. On the one hand, an increase of κ reduces the speed of convergence to a desired
state, and therefore we only get asymptotic stability instead of exponential stability. On the
other hand, this also leads to the effect that the quality of approximation of the averaged
system (which is presented below) improves the closer the agents are to a desired formation.
This phenomenon allows us to circumvent the assumption that the frequency parameter j
is chosen sufficiently large. The averaging analysis in Section 2.5 will reveal why an increase
of κ changes the speed of convergence and the quality of approximation. We will discuss
this in more detail at the end of the averaging analysis in Remark 2.27. For κ > 1/2, the
following statement holds.

Theorem 2.13. Suppose that, for every point p of (2.14), the framework G(p) is infinitesi-
mally rigid. Let κ > 1/2 and let j ≥ 1. Then, there exists µ > 0 such that, for every λ > 1,
there exists r > 0 such that, for every t0 ∈ R and every p0 ∈ ψ−1(≤ r), the trajectory p of
system (2.5) under control law (2.11) with initial condition p(t0) = p0 has the following two
properties: p(t) converges to some point of (2.14) as t→∞, and the estimate

ψ(p(t)) ≤ λψ(p0)
(
1 + (2κ− 1)ψ(p0)2κ−1 µ (t− t0)

) 1
2κ−1

(2.16)

holds for every t ≥ t0.

Detailed proofs of Theorems 2.12 and 2.13 are presented in Section 2.5. At this point, we
only indicate the reason why the set (2.14) becomes locally uniformly asymptotically stable
for system (2.5) under control law (2.11). Note that the closed-loop system is an ordinary
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Figure 2.2: Simulation on stabilization control of a four-agent rectangular formation
shape. We denote the positions by pi = (xi, yi) for i = 1, . . . , 4. The initial formation
is indicated by dotted lines, and the finial formation is indicated by dashed lines.

differential equation in the product space PN , which consists of the coupled differential
equations

ṗi =
n∑

k=1

2∑

ν=1

uj(i,k,ν)(t)hν(ψκi (p)) bi,k (2.17)

on P for i = 1, . . . , N . One can interpret the right-hand side of (2.17) as a time-varying
linear combination of the state dependent maps p 7→ hν(ψκi (p)) bi,k with highly oscillatory

functions uj(i,k,ν). When we consider the closed-loop system in the product space, each of

the maps p 7→ hν(ψκi (p)) bi,k defines a vector field f(i,k,ν) on PN . The analysis in Section 2.5
will show that the trajectories of (2.17) are driven into directions of certain Lie brackets of
the vector fields f(i,k,ν). To be more precise, the particular choice of the sinusoids uj(i,k,ν)

with pairwise distinct frequencies ωi,k causes the trajectories of (2.17) to follow Lie brackets
of the form [f(i,k,1), f(i,k,2)]. The ordinary differential equation on PN with the sum of all

Lie brackets 1
2 [f(i,k,1), f(i,k,2)] on the right-hand side is referred to as the corresponding Lie

bracket system; cf. Section 1.2. A direct computation shows that the Lie bracket system is
given by the coupled differential equations

ṗi = −κh(ψκi (p))ψi(p)
2κ−1∇piψ(p) (2.18)

on P for i = 1, . . . , N , where ∇piψ : PN → T is the gradient of the global potential func-
tion ψ with respect to the ith position variable, and h(ψκi (p)) denotes a certain positive
factor for ψi(p) > 0 sufficiently close to 0. Thus, in a neighborhood of (2.14), the system
state of (2.18) is constantly driven into a descent direction of ψ. The assumption of in-
finitesimal rigidity ensures that the decay of ψ along trajectories of (2.18) is sufficiently
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Figure 2.3: Exponential decay of the global potential function (2.13) for the multi-agent
system in Figure 2.2 on the time interval [0, 10].

fast. Since the trajectories of (2.17) approximate the behavior of (2.18) in a neighborhood
of (2.14), this in turn implies that also the value of ψ along trajectories of (2.5) under (2.11)
decays on average.

Remark 2.14. We emphasize that both Theorem 2.12 and Theorem 2.13 are local but
not global stability results. Both theorems ensure convergence to a desired formation for
initial points from a certain neighborhood of the set (2.14) if j is sufficiently large. The
size of the domain of attraction ψ−1(≤ r) is characterized by the sublevel r > 0. The
value of r depends on the choice of the frequency parameter j. An increase of j leads to
an increase of r. An upper bound for r is naturally given by the domain of attraction
of the averaged system (2.18). Note that a gradient-based control law can lead to unde-
sired equilibria at critical points of the potential function. Therefore we cannot expect
global asymptotic stability for (2.18), and also not semi-global uniform asymptotic stability
for (2.5) under (2.11). ♦

2.4.3 Simulation examples

In this subsection, we provide two simulation results to demonstrate the behavior of (2.5)
under (2.11). We consider a rectangular formation shape in two dimensions and a double
tetrahedron formation shape in three dimensions. One can check that the corresponding
frameworks are infinitesimally rigid by means of the rank condition in [8] for the derivative
of the edge map. The same formations are also considered in [103] for system (2.5) under
the well-established negative gradient control law. Note that in contrast to the method in
this chapter, relative position measurements are required in [103] to stabilize the desired
formation shapes.

Our first example is a system of N = 4 point agents in the Euclidean space of dimension
n = 2. For each i ∈ {1, . . . , N}, the orthonormal velocity vectors of agent i in (2.5) are
given by bi,1 = (cosφi, sinφi)

> and bi,2 = (− sinφi, cosφi)
>, where φi = iπ/3.4 We let G

be the complete graph of N nodes. This means that each agent can measure the distances
to all other members of the team. The common goal of the agents is to reach a rectangular
formation with desired distances d12 = d34 = 0.3, d23 = d14 = 0.4, and d13 = d24 = 0.5.
The initial conditions are given by p1(0) = (0.0, 0.0), p2(0) = (−0.1, 0.4), p3(0) = (0.5, 0.3),
and p4(0) = (0.3, 0.0). The amplitude a of the functions hν in (2.7) is chosen as a := tanh.

4To distinguish points and tangent vectors in the notation we write points as row vectors and tangent
vectors as column vectors.
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Figure 2.4: Simulation on stabilization control of a double tetrahedron formation. We
denote the positions by pi = (xi, yi, zi) for i = 1, . . . , 5. The initial formation is indicated
by dotted lines, and the finial formation is indicated by dashed lines.

The frequency coefficients ωi,k for the sinusoids uj(i,k,ν) in (2.8) are chosen as the pairwise

distinct integers ωi,k = (i − 1)n + k for i = 1, . . . , N and k = 1, . . . , n. For the sake of
simplicity, the phase shifts ϕi,k are all set equal to zero. To obtain local exponential stability
as in Theorem 2.12, the exponent κ in (2.11) is chosen to be κ = 1/2. It turns out that
the initial positions are not in the domain of attraction if we choose j = 1. As indicated in
Remark 2.14, the domain of attraction becomes larger when we increase j. The trajectories
for j = 10 are shown in Figure 2.2. An exponential decay of the global potential function
can be observed in Figure 2.3.

In the second example, we consider a system of N = 5 point agents in the Euclidean space
of dimension n = 3. For each i ∈ {1, . . . , N}, the orthonormal velocity vectors of agent i
in (2.5) are given by bi,1 = (sin θi cosφi, sin θi sinφi, cos θi)

>, bi,2 = (− sinφi, cosφi, 0)>, and
bi,3 = (− cos θi cosφi,− cos θi, sin θi)

>, where φi = iπ/3 and θi = iπ/6. We let G be the
graph that originates from the complete graph of N nodes by removing the edge between
the nodes 4 and 5. The common goal of the agents is to reach a formation shape of a double
tetrahedron with desired distances di1i2 = 0.2 for every edge i1i2 of G. The initial conditions
are given by p1(0) = (0,−0.1, 0.05), p2(0) = (0.18, 0.16,−0.01), p3(0) = (−0.02, 0.18, 0.005),
p4(0) = (0.12, 0.19, 0.17) and p5(0) = (−0.1,−0.15,−0.12). The functions hν , the frequency
coefficients ωi,k, the phase shifts ϕi,k, and the exponent κ are chosen as in the first example.
Again, the initial positions are not within the domain of attraction of (2.5) under (2.11) for
j = 1. However, for j = 10, one can see in Figure 2.4 that the trajectories converge to the
desired formation shape.

One may interpret the oscillatory trajectories in the simulations as follows. Each agent
constantly explores how small changes of its current position influences the value of its local
potential function ψi. This way an agent obtains gradient information. On average this
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leads to a decay of all local potential functions. Sufficiently fast oscillations are necessary in
our approach to ensure that every agent can explore its neighborhood properly. If the value
of ψi is small, then the terms sin(logψκi ) and cos(logψκi ) in (2.11) induce sufficiently fast
oscillations. When ψi is not small, then an increase of the global frequency parameter j can
compensate the lack of oscillations. It is clear that the energy effort to implement (2.11) is
much larger than for a gradient-based control law. This is in some sense the price that we
have to pay when we reduce the amount of utilized information from the gradient of ψi to
the values of ψi.

2.5 Local asymptotic stability analysis for point agents

The aim of this section is to prove Theorems 2.12 and 2.13. In the first step, we rewrite
system (2.5) under control law (2.11) as a control-affine system under open-loop controls.
For this purpose, we have to introduce a suitable notation. Recall that, for every i ∈
{1, . . . , n}, the velocity directions bi,1, . . . , bi,n ∈ T in (2.5) are assumed to be an orthonormal
basis of T . For every i ∈ {1, . . . , N} and every k ∈ {1, . . . , n}, let gi,k(p) ∈ TN be the vector
with bi,k ∈ T as its kth component and all other (N − 1) components are equal to 0 ∈ T .
Then, we can write the multi-agent control system (2.5) equivalently as the control-affine
system

ṗ =
N∑

i=1

n∑

k=1

ui,k gi,k(p) (2.19)

on PN . It is clear that the vectors gi,k(p) form an orthonormal basis of TN at any p ∈ PN .
Moreover, it follows directly from the definitions that, for every i ∈ {1, . . . , N} and every
k ∈ {1, . . . , n}, the Lie derivatives of the local potential function ψi and global potential
function ψ along gi,k coincide; i.e., gi,kψ = gi,kψi. As an abbreviation, we define an indexing
set Λ to be the set of all triples (i, k, ν) with i ∈ {1, . . . , N}, k ∈ {1, . . . , n}, and ν ∈ {1, 2}.
For each ` = (i, k, ν) ∈ Λ, define a vector field f` on PN by

f`(p) := hν(ψκi (p)) gi,k(p). (2.20)

When we insert (2.11) into (2.5), the closed-loop system can be written as

ṗ = f j(t, p) :=
∑

`∈Λ

uj`(t) f`(p), (2.21)

which may be interpreted as a control-affine system with control vector fields f` under
open-loop controls uj` .

2.5.1 Estimates for the Lie derivatives

In this subsection, we derive suitable boundedness properties of (iterated) Lie derivatives
of the global potential function ψ along the control vector fields f` in (2.20). These bound-
edness properties will ensure later in Subsection 2.5.4 that certain remainder terms become
small when the agents are close to the set (2.14) of target formations.

For later references, we collect the following properties of the functions hν in (2.7), which
easily follow from their definitions.

Lemma 2.15. For every ν ∈ {1, 2}, the following statements hold:
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2.5 Local asymptotic stability analysis for point agents

(a) hν is smooth on (0,∞),

(b) hν is locally Lipschitz continuous on R,

(c) lim supy↓0 |h′′ν(y)y| <∞.

Let W1,W2 be subsets of a Euclidean space, and let W be a subset of the (possibly
empty) intersection of W1,W2. Let b be a nonnegative function on W1. For the sake of
convenience, we introduce the following terminology. We say that a function α on W2 is
bounded by a multiple of b on W if there exists c > 0 such that |α(x)| ≤ c b(x) for every
x ∈ W . We say that a vector field f on W2 is bounded by a multiple of b on W if there
exists c > 0 such that ‖f(x)‖ ≤ c b(x) for every x ∈W .

Note that the vector fields f` in (2.20) are, in general, not differentiable at every point
of PN . However, we will show that the f` are at least locally Lipschitz continuous. For this
purpose, it turns out to be convenient to use the notion of a pointwise Lipschitz constant. In
non-smooth calculus [47], this quantity provides an upper bound for the difference quotient
of a function. It is known from [25] that local Lipschitz continuity can be characterized as
follows.

Lemma 2.16. A function α on an open subset U of a Euclidean space is locally Lipschitz
continuous if and only if, for each x ∈ U , the pointwise Lipschitz constant

L(α)(x) := lim sup
x 6=x′→x

|α(x′)− α(x)|
‖x′ − x‖

of α at x exists as a nonnegative real number5 and if, for each compact subset K of U ,
the function L(α) is bounded by a constant on K. The same statement holds for a vector
field f on U with respect to the pointwise Lipschitz constant

L(f)(x) := lim sup
x 6=x′→x

‖f(x′)− f(x)‖
‖x′ − x‖

of f at x.

The following rules help in estimating the pointwise Lipschitz constant for a function
constructed from other functions with known pointwise Lipschitz constants.

Lemma 2.17. Let α, α1, α2 be locally Lipschitz continuous functions on an open subset U
of a Euclidean space and let β be a locally Lipschitz continuous function on R. Then, the
following inequalities hold on U :

(a) L(α1 + α2) ≤ L(α1) + L(α2) (sum rule),

(b) L(α1 · α2) ≤ L(α1) · |α2|+ |α1| · L(α2) (product rule),

(c) L(β ◦ α) ≤ (L(β) ◦ α) · L(α) (chain rule).

Moreover, if α is differentiable at some x ∈ U , then

L(α)(x) = ‖∇α(x)‖.
5By its definition, the upper limit lim sup

x 6=x′→x

|α(x′)−α(x)|
‖x′−x‖ = lim

r↓0
sup

{ |α(x′)−α(x)|
‖x′−x‖

∣∣ x 6= x′ ∈ U : ‖x′ − x‖ ≤ r
}

is either a nonnegative real number or the symbol +∞.
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2 Distance-based formation control

We leave a verification of the above rules to the reader. Next, we use Lemmas 2.16
and 2.17 to prove the following technical result.

Lemma 2.18. Let ` = (i, k, ν) ∈ Λ, let κ ≥ 1/2, and let r > 0.

(a) The function hν ◦ ψκi is locally Lipschitz continuous and the following boundedness
properties hold:

(i) hν ◦ ψκi is bounded by a multiple of ψκi on ψ−1
i (≤ r);

(ii) L(hν ◦ ψκi ) is bounded by a multiple of ψ
κ−1/2
i on ψ−1

i (≤ r).

(b) The Lie derivative f`ψ of ψ along f` is differentiable with locally Lipschitz continuous
derivative and the following boundedness properties hold:

(i) f`ψ is bounded by a multiple of ψ
κ+1/2
i on ψ−1

i (≤ r);
(ii) ∇(f`ψ) is bounded by a multiple of ψκi on ψ−1

i (≤ r);
(iii) L(∇(f`ψ)) is bounded by a multiple of ψ

κ−1/2
i on ψ−1

i (≤ r).

(c) If κ > 1/2, then hν ◦ ψκi is differentiable and ∇(hν ◦ ψκi ) is bounded by a multiple

of ψ
κ−1/2
i on ψ−1

i (≤ r).

Proof. It follows from Lemma 2.15 (b) and hν(0) = 0 that hν is bounded by a multiple of
the identity y 7→ y on [0, rκ], which implies part (i) of statement (a). We already know from
Proposition 2.7 (a) that the square root of ψi is Lipschitz continuous on its sublevel sets.

Therefore, L(ψ
1/2
i ) is bounded by constant on ψ−1

i (≤ r). Note that ψκi is the composition

of the functions ψ
1/2
i and y 7→ y2κ. By the chain rule in Lemma 2.17, we conclude that

L(ψκi ) is bounded by a multiple of ψ
κ−1/2
i on ψ−1

i (≤ r). Because of Lemma 2.15 (b), L(hν)
is bounded by a constant on [0, rκ]. Again, by the chain rule, it follows that L(hν ◦ ψκi ) is

bounded by a multiple of ψ
κ−1/2
i on ψ−1

i (≤ r). In particular, hν ◦ ψκi is locally Lipschitz
continuous. If κ > 1/2, then part (i) of statement (a) implies that hν◦ψκi is also differentiable
at every p ∈ ψ−1

i (0) with ∇(hν ◦ ψκi )(p) = 0. It now follows from part (ii) of statement (a)

and Lemma 2.17 that ∇(hν ◦ ψκi ) is bounded by a multiple of ψ
κ−1/2
i on ψ−1

i (≤ r). This
completes the proofs of statements (a) and (c). Next, we prove statement (b).

It follows from Proposition 2.7 (b) that gi,kψ = gi,kψi is bounded by a multiple of ψ
1/2
i

on ψ−1
i (≤ r). Using Lemma 2.18 (a), we conclude that f`ψ = (hν ◦ ψκi )(gi,kψ) is bounded

by a multiple of ψ
κ+1/2
i on ψ−1

i (≤ r). Since κ ≥ 1/2, this in turn implies that f`ψ is differ-
entiable at every p ∈ ψ−1

i (0) with ∇(f`ψ)(p) = 0. Outside of ψ−1
i (0), f`ψ is a composition

of differentiable functions and therefore we may compute

∇(f`ψ) = (h′ν ◦ ψκi ) (gi,kψ)∇ψκi + (hν ◦ ψκi )∇(gi,kψ).

It follows from Lemma 2.15 (b) that h′ν is bounded by a constant on (0, rκ]. Thus, h′ν ◦ψκi is
also bounded by a constant on ψ−1

i (≤ r) \ ψ−1
i (0). We already know that gi,kψ is bounded

by a multiple of ψ
1/2
i on ψ−1

i (≤ r). Moreover, it follows from Proposition 2.7 (b) that ∇ψκi
is bounded by a multiple of ψ

κ−1/2
i on ψ−1

i (≤ r) \ ψ−1
i (0). By Lemma 2.18 (a), hν ◦ ψκi

is bounded by a multiple of ψκi on ψ−1
i (≤ r). Finally, it follows from Proposition 2.7 (c)

that ∇(gi,kψ) = ∇(gi,kψi) is bounded by a constant on ψ−1
i (≤ r). Consequently, ∇(f`ψ)

is bounded by a multiple of ψκi on ψ−1
i (≤ r) \ ψ−1

i (0). Since ∇(f`ψ) = 0 on ψ−1
i (0), this

implies part (ii) of statement (b).
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It is left to prove part (iii) of statement (b). Because of previous part (ii), there exists
c > 0 such that

‖∇(f`ψ)(p)−∇(f`ψ)(p∗)‖ ≤ c |ψκi (p)− ψκi (p∗)| (2.22)

for every p∗ ∈ ψ−1(0) and every p ∈ ψ−1
i (≤ r). We have already argued that ψκi is locally

Lipschitz continuous and that L(ψκi ) is bounded by a multiple of ψ
κ−1/2
i on ψ−1

i (≤ r).

Because of (2.22), we conclude that L(∇(f`ψ)) is bounded by a multiple of ψ
κ−1/2
i on

ψ−1(0). Outside of ψ−1
i (0), we know that ∇(f`ψ) is composition of differentiable maps and

therefore, using Lemma 2.17, we obtain

L(∇(f`ψ)) ≤ L(h′ν ◦ ψκi ) |gi,kψ| ‖∇ψκi ‖+ |h′ν ◦ ψκi |L(gi,kψ) ‖∇ψκi ‖
+ |h′ν ◦ ψκi | |gi,kψ|L(∇ψκi ) + L(hν ◦ ψκi ) ‖∇(gi,kψ)‖+ |hν ◦ ψκi |L(∇(gi,kψ))

outside of ψ−1
i (0). It follows from Lemma 2.15 (c) that h′′ν is bounded by a multiple of

y 7→ y−1 on (0, rκ]. We already know that L(ψκi ) is bounded by a multiple of ψ
κ−1/2
i on

ψ−1
i (≤ r). By the chain rule, we conclude that L(h′ν ◦ψκi ) is bounded by a multiple of ψ

−1/2
i

on ψ−1
i (≤ r) \ ψ−1

i (0). It follows from Proposition 2.7 (c) that L(gi,kψ) and L(∇(gi,kψ))
are bounded by constants on ψ−1

i (≤ r) and that L(∇ψκi ) is bounded by a multiple of ψκ−1
i

on ψ−1
i (≤ r) \ ψ−1

i (0). For the remaining constituents on the right-hand side of the above
estimate for L(∇(f`ψ)), we have already derived suitable upper bounds. This allows us to

conclude that L(∇(f`ψ)) is bounded by a multiple of ψ
κ−1/2
i on ψ−1

i (≤ r) \ ψ−1
i (0), which

completes the proof.

Note that, for every i ∈ {1, . . . , N}, we have ψi ≤ ψ on PN . This implies that ψ−1(≤ r)
is a subset of ψ−1

i (≤ r) for every r > 0 and every i ∈ {1, . . . , N}. In the next step, we use
Lemma 2.18 to derive the following result.

Lemma 2.19. Let `m = (im, km, νm) ∈ Λ for m = 1, 2, let κ ≥ 1/2, and let r > 0.

(a) (i) f`1 is locally Lipschitz continuous and bounded by a multiple of ψκ on ψ−1(≤ r).
(ii) L(f`1) is bounded by a multiple of ψκ−1/2 on ψ−1(≤ r).

(b) (i) f`1ψ is differentiable, has a locally Lipschitz continuous gradient, and is bounded
by a multiple of ψκ+1/2 on ψ−1(≤ r).

(ii) f`2(f`1ψ) is locally Lipschitz continuous and bounded by a multiple of ψ2κ on
ψ−1(≤ r).

(iii) L(f`2(f`1ψ)) is bounded by a multiple of ψ2κ−1/2 on ψ−1(≤ r).

(c) If κ > 1/2, then f`1 is differentiable and ∇f`2f`1 is bounded by a multiple of ψ2κ−1/2

on ψ−1(≤ r).

Proof. By definition, we have f`1 = (hν1 ◦ ψκi1)gi1,k1 . Since gi1,k1 is constant, statement (a)
is an immediate consequence of Lemma 2.18 (a). Moreover, part (i) of statement (b) follows
immediately from Lemma 2.18 (b). Since f`1ψ is differentiable, we may compute

f`2(f`1ψ) = 〈〈∇(f`1ψ), f`2〉〉.

Using Lemma 2.18 (b) and Lemma 2.19 (a), we obtain part (ii) of statement (b). We
obtain from Lemma 2.18 (b) that ∇(f`1ψ) is bounded by a multiple of ψκ on ψ−1(≤ r)
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and that L(∇(f`1ψ)) is bounded by a multiple of ψκ−1/2 on ψ−1(≤ r). We also know
from statement (a) that f`2 is bounded by a multiple of ψκ on ψ−1(≤ r) and that L(f`2)
is bounded by a multiple of ψκ−1/2 on ψ−1(≤ r). Using the sum and the product rule
in Lemma 2.17, this implies the remaining part (iii) of statement (b). If κ > 1/2, then
we know from Lemma 2.18 (c) that (hν1 ◦ ψκi1) is differentiable and therefore also f`1 is
differentiable and we may compute

∇f`2f`1 = 〈〈∇(hν1 ◦ ψκi1), f`2〉〉 gi1,k1 .

Finally, it follows from Lemma 2.18 (c) and part (i) of Lemma 2.19 (a) that the inner
product of ∇(hν1 ◦ ψκi1) and f`2 is bounded by a multiple of ψ2κ−1/2, which completes the
proof.

Lemma 2.20. For every, i ∈ {1, . . . , N} and every k ∈ {1, . . . , n}, the Lie bracket of f(i,k,1)

and f(i,k,2) exists as a locally Lipschitz continuous vector field on PN with

[f(i,k,1), f(i,k,2)] = −κ (h ◦ ψκi )ψ2κ−1
i (gi,kψi) gi,k, (2.23)

where h : R→ R is defined by

h(y) :=

{
a′(0)2 for y ≤ 0,
a(y)2/y2 for y > 0.

Proof. Since the vector fields f(i,k,1) and f(i,k,2) are locally Lipschitz continuous and since

both vector fields vanish on ψ−1
i (0), also their Lie bracket vanishes on ψ−1

i (0). Since also
(gi,kψi) vanishes on ψ−1

i (0), we conclude that (2.23) holds on ψ−1
i (0). A direct computation,

using (2.10), shows that (2.23) also holds outside ψ−1
i (0).

It is left to show that [f(i,k,1), f(i,k,2)] is locally Lipschitz continuous. By Lemma 2.16, this
follows if we can show that the pointwise Lipschitz constant of [f(i,k,1), f(i,k,2)] is bounded
by a constant on each sublevel set of ψi. Fix an arbitrary r > 0. Since a is assumed to
be smooth with a(0) = 0, we may conclude that h is bounded by a constant on [0, rκ].

We also conclude from Proposition 2.7 (b) that gi,kψi is bounded by a multiple of ψ
1/2
i

on ψ−1
i (≤ r). Because of (2.23), we obtain that [f(i,k,1), f(i,k,2)] is bounded by a multiple

of ψ
2κ−1/2
i on ψ−1

i (≤ r). Thus, there exists c > 0 such that

‖[f(i,k,1), f(i,k,2)](p)− [f(i,k,1), f(i,k,2)](p
∗)‖ ≤ c |ψ2κ−1/2

i (p)− ψ2κ−1/2
i (p∗)|

for every p∗ ∈ ψ−1(0) and every p ∈ ψ−1
i (≤ r). Since κ ≥ 1/2, we conclude from Propo-

sition 2.7 (b) and Lemma 2.17 that L(ψ
2κ−1/2
i ) is bounded by a multiple of ψ2κ−1

i on
ψ−1
i (≤ r). Therefore, L([f(i,k,1), f(i,k,2)]) is bounded by a multiple of ψ2κ−1

i on ψ−1
i (0).

Outside of ψ−1
i (0), we conclude from (2.23) and Lemma 2.17 that

L([f(i,k,1), f(i,k,2)]) ≤ κ |h′ ◦ ψκi | ‖∇(ψκi )‖ψ2κ−1
i |gi,kψi|

+ κ |h ◦ ψκi | ‖∇ψ2κ−1
i ‖ |gi,kψi|+ κ |h ◦ ψκi |ψ2κ−1

i ‖∇(gi,kψi)‖,

where we have used that gi,k is identically equal to a constant vector of length 1. We already
know that h is bounded by a constant on (0, rκ]. Since a is assumed to be smooth with
a(0) = 0, it is easy to check that h′ is bounded by a multiple of y 7→ y−1 on (0, rκ]. It

follows from Proposition 2.7 (b) that∇ψκi and∇ψ2κ−1
i are bounded by a multiples of ψ

κ−1/2
i
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and ψ
2κ−3/2
i on ψ−1

i (≤ r) \ ψ−1
i (0), respectively, and that gi,kψi is bounded by a multiple

of ψ
1/2
i on ψ−1

i (≤ r). We also conclude from Proposition 2.7 (c) that ∇(gi,kψi) is bounded
by a constant on ψ−1

i (≤ r). Consequently, L([f(i,k,1), f(i,k,2)]) is bounded by a multiple of

ψ2κ−1
i on ψ−1

i (≤ r) \ ψ−1
i (0). Thus, the same is true on ψ−1

i (≤ r), and, since κ ≥ 1/2, it
follows from Lemma 2.16 that [f(i,k,1), f(i,k,2)] is locally Lipschitz continuous.

Because of Lemma 2.20, a well-defined locally Lipschitz continuous vector field f∞ on PN

is given by

f∞ :=

N∑

i=1

n∑

k=1

[f(i,k,1), f(i,k,2)]. (2.24)

Using (2.23) and gi,kψi = gi,kψ, we can write f∞ also as

f∞ = −κ
N∑

i=1

(h ◦ ψκi )ψ2κ−1
i

n∑

k=1

(gi,kψ) gi,k (2.25)

with the function h defined in Lemma 2.20. Using that the vector fields gi,k form an
orthonormal frame of TN , it is now easy to see that the differential equation ṗ = f∞(p)
on PN coincides with the N coupled differential equations (2.18) on P . As indicated earlier,
in a neighborhood of the set (2.14), the system state of (2.18) is constantly driven into a
descent direction of ψ. We make this statement more precise by providing an estimate for
the Lie derivative of ψ along f∞:

Lemma 2.21. There exist c, r > 0 such that

(f∞ψ)(p) ≤ −c ‖∇ψ(p)‖4κ

for every p ∈ ψ−1(≤ r).
Proof. Since a is assumed to be smooth with a(0) = 0 and a′(0) 6= 0, there exist ch, r > 0
such that h(y) ≥ chy for every y ∈ [0, rκ]. Because of (2.25), this implies

f∞ψ ≤ −ch
N∑

i=1

ψ2κ−1
i

n∑

k=1

(gi,kψ)2

on ψ−1(≤ r). We obtain from Proposition 2.7 (b) that, for every i ∈ {1, . . . , N}, there
exists ci > 0 such that, for every k ∈ {1, . . . , n}, we have

ψi ≥ ci ‖∇ψi‖2 ≥ ci (gi,kψi)
2 = ci (gi,kψ)2

on ψ−1(≤ r). Thus, there exists c̃ > 0 such that

f∞ψ ≤ −c̃
N∑

i=1

n∑

k=1

(gi,kψ)4κ (2.26)

on ψ−1(≤ r). For each α ≥ 1 and each v ∈ RnN , the α-norm of v is defined as usual to
be the αth root of the sum of the αth powers of the components of v. Note that the sum
on the right-hand side of (2.26) is equal to the (4κ)th power of the 4κ-norm of the vector
in RnN with components gi,kψ. On the other hand, we have ‖∇ψ‖2 =

∑N
i=1

∑n
k=1(gi,kψ)2

since the vector fields gi,k form an orthonormal frame of TN . Using that all norms on RnN
are equivalent, we obtain the asserted estimate.
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2.5.2 Averaging of the sinusoids

The next step in the analysis of the closed-loop system (2.21) addresses the sinusoids uj`
therein. Instead of the differential equation (2.21), it is more convenient to consider the
corresponding integral equation. Repeated integration by parts on the right-hand side of
this integral equation will reveal that the functions uj` give rise to an averaged vector field,
which is given by the sum (2.24) of Lie brackets of the f`. A much more general treatment
of this averaging procedure can be found in [58, 68, 69]. In the following, we introduce the
notation from [68, 69]. For every ` = (i, k, ν) ∈ Λ, define two complex-valued constants
η±ωi,k,` as follows. If ν = 1, let η±ωi,k,` :=

√
2ωi,k e±iϕi,k/2, and otherwise, i.e., if ν = 2, let

η±ωi,k,` := ±√2ωi,k e±iϕi,k/(2i), where i denotes the imaginary unit and e denotes Euler’s
number. Moreover, let Ω(`) := {±ωi,k}.

Let ` ∈ Λ. Using the above notation, we can write uj`(t) in (2.8) as

uj`(t) = j
1
2

∑

ω∈Ω(`)

ηω,` eijωt (2.27)

for every t ∈ R. When we integrate −uj` , we get

−
∫ t2

t1

uj`(t) dt =
[
ŨV j

`(t)
]t=t2
t=t1

, (2.28)

where

ŨV j
`(t) := −j− 1

2

∑

ω∈Ω(`)

ηω,`
iω

eijωt. (2.29)

Let `1, `2 ∈ Λ. When we multiply uj`1(t) by ŨV j
`2

(t), we get

uj`1(t) ŨV j
`2

(t) = v`1,`2 − ũvj`1,`2(t), (2.30)

where

v`1,`2 := −
∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2=0

ηω1,`1 ηω2,`2

iω2
, (2.31)

ũvj`1,`2(t) :=
∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2 6=0

ηω1,`1 ηω2,`2

iω2
eij(ω1+ω2)t (2.32)

for every t ∈ R. When we integrate ũvj`1,`2 , we get

∫ t2

t1

ũvj`1,`2(t) dt =
[
ŨV j

`1,`2
(t)
]t=t2
t=t1

, (2.33)

where

ŨV j
`1,`2

(t) := j−1
∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2 6=0

ηω1,`1 ηω2,`2

i2 ω2(ω2 + ω1)
eij(ω1+ω2)t. (2.34)

It is easy to see that the functions in (2.27), (2.29) and (2.34) satisfy the following
estimates.
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Lemma 2.22. There exists c > 0 such that
∣∣uj`(t)

∣∣ ≤ c j
1
2 ,

∣∣ŨV j
`(t)
∣∣ ≤ c j−

1
2 ,

∣∣ŨV j
`1,`2

(t)
∣∣ ≤ c j−1

for every j ≥ 1, all `, `1, `2 ∈ Λ, and every t ∈ R.

This means that the functions ŨV j
` and ŨV j

`1,`2
converge uniformly to 0 as the global

frequency parameter j tends to ∞. Moreover, a direct computation shows that the v`1,`2
in (2.31) are given as follows.

Lemma 2.23. For all `1 = (i1, k1, ν1), `2 = (i2, k2, ν2) ∈ Λ, we have

v`1,`2 =





+1 if (i1, k1) = (i2, k2) and ν1 = 1 and ν2 = 2,
−1 if (i1, k1) = (i2, k2) and ν1 = 2 and ν2 = 1,

0 otherwise.

Because of Lemma 2.23, we have

∑

`1,`2∈Λ

v`1,`2 f`1(f`2ϕ) =

N∑

i=1

n∑

k=1

[f(i,k,1), f(i,k,2)]ϕ = f∞ϕ (2.35)

for every smooth function ϕ on PN , where the vector field f∞ on PN is given by (2.24).

2.5.3 Integral expansion

For the moment, fix an arbitrary j > 0, let γ : R → PN be a trajectory of (2.21), and let
t1, t2 ∈ R. The fundamental theorem of calculus applied to the composition of γ and ψ
implies that

ψ(γ(t2)) = ψ(γ(t1)) +
∑

`∈Λ

∫ t2

t1

uj`(t) (f`ψ)(γ(t)) dt.

We know from Lemma 2.19 (b) that each of the Lie derivatives f`ψ is differentiable. Thus,
we may apply integration by parts, which leads to

ψ(γ(t2)) = ψ(γ(t1))−
∑

`∈Λ

[
ŨV j

`(t) (f`ψ)(γ(t))
]t=t2
t=t1

+
∑

`1,`2∈Λ

∫ t2

t1

uj`1(t) ŨV j
`2

(t) (f`1(f`2ψ))(γ(t)) dt,

where we have used (2.28) and that γ is a solution of (2.21). We know from Lemma 2.19 (b)
that each of the Lie derivatives f`1(f`2ψ) is locally Lipschitz continuous. Since γ is con-
tinuously differentiable, the composition of γ and f`1(f`2ψ) is locally Lipschitz continuous,
and therefore, in particular, locally absolutely continuous. Consequently, f`1(f`2ψ) ◦ γ is
differentiable almost everywhere on R with a locally integrable derivative, which will be
denoted by (f`1(f`2ψ) ◦ γ)̇. This justifies that we may apply again integration by parts,
which leads to

ψ(γ(t2)) = ψ(γ(t1))−
[
(Dj

1ψ)(t, γ(t))
]t=t2
t=t1

+
∑

`1,`2∈Λ

∫ t2

t1

v`1,`2 (f`1(f`2ψ))(γ(t)) dt

45



2 Distance-based formation control

+
∑

`1,`2∈Λ

∫ t2

t1

ŨV j
`1,`2

(t) (f`1(f`2ψ) ◦ γ)̇(t) dt,

where we have used first (2.30) and then (2.33) as well as that γ is a solution of (2.21). The
function Dj

1ψ on R× PN is defined by

(Dj
1ψ)(t, p) :=

∑

`1∈Λ

ŨV j
`1

(t) (f`1ψ)(p) +
∑

`1,`2∈Λ

ŨV j
`2,`1

(t) (f`2(f`1ψ))(p). (2.36)

If f`1(f`2ψ)◦γ is differentiable at some t ∈ R, then the local Lipschitz continuity of f`1(f`2ψ)
implies that

(f`1(f`2ψ) ◦ γ)̇(t) = lim
s→0

1

s

(
(f`1(f`2ψ))

(
γ(t) + sγ̇(t)

)
− (f`1(f`2ψ))(γ(t))

)
.

Let f j be the time-varying vector field on PN defined by (2.21). Then γ̇(t) = f j(t, γ(t)) for
every t ∈ R. The above equation, for the derivative of f`1(f`2ψ) ◦ γ motivates us to define
the (fixed-time) Lie derivative of f`1(f`2ψ) along f j by

(f j(f`1(f`2ψ)))(t, p) := lim
s→0

1

s

(
(f`1(f`2ψ))

(
p+ sf j(t, p)

)
− (f`1(f`2ψ))(p)

)
(2.37)

for every t ∈ R and every p ∈ PN at which the limit on the right-hand side of (2.37) exists.
Then, obviously, we have

(f`1(f`2ψ) ◦ γ)̇(t) = (f j(f`1(f`2ψ)))(t, γ(t))

for almost every t ∈ R. Therefore, we define

(Dj
2ψ)(t, p) :=

∑

`1,`2∈Λ

ŨV j
`1,`2

(t) (f j(f`1(f`2ψ)))(t, p) (2.38)

for every t ∈ R and every p ∈ PN at which the finitely many (fixed-time) Lie derivatives
f j(f`1(f`2ψ)) exist. Consequently, we have

∑

`1,`2∈Λ

∫ t2

t1

ŨV j
`1,`2

(t) (f`1(f`2ψ) ◦ γ)̇(t) dt =

∫ t2

t1

(Dj
2ψ)(t, γ(t)) dt.

Because of (2.35), we have derived the following integral expansion for the propagation of ψ
along trajectories of (2.21); cf. equation (1.37) in Chapter 1.

Proposition 2.24. For every j > 0, every trajectory γ : R→ PN of (2.21), and all t1, t2 ∈
R, we have

ψ(γ(t2)) = ψ(γ(t1))−
[
(Dj

1ψ)(t, γ(t))
]t=t2
t=t1

+

∫ t2

t1

(f∞ψ)(γ(t)) dt+

∫ t2

t1

(Dj
2ψ)(t, γ(t)) dt,

where f∞ψ, Dj
1ψ, and Dj

2ψ are given by (2.35), (2.36), and (2.38), respectively.

Proposition 2.24 implies that the propagation of ψ along trajectories of (2.21) is domi-
nated by the averaged term f∞ψ if the contributions of the remainder terms Dj

1ψ and Dj
2ψ

are small compared to f∞ψ. A lower bound for the magnitude of f∞ψ is given in the
following result.
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2.5 Local asymptotic stability analysis for point agents

Proposition 2.25. Suppose that, for every point p of (2.14), the framework G(p) is in-
finitesimally rigid. Then, there exist r0, c0 > 0 such that

(f∞ψ)(p) ≤ −c0 ψ(p)2κ

for every p ∈ ψ−1(≤ r0).

Proof. The result is an immediate consequence of Lemma 2.21 and Proposition 2.7 (d).

For the proofs of Theorems 2.12 and 2.13, we also need the subsequent estimates for the
remainders Dj

1ψ and Dj
2ψ in Proposition 2.24.

Proposition 2.26. (a) For every r > 0, there exists c1 > 0 such that

|Dj
1ψ(t, p)| ≤ c1 j

− 1
2 ψ(p)κ+1/2

for every j ≥ 1, every t ∈ R, and every p ∈ ψ−1(≤ r).

(b) For every r > 0, there exists c2 > 0 such that

|Dj
2ψ(t, p)| ≤ c2 j

− 1
2 ψ(p)3κ−1/2

for every j ≥ 1, every t ∈ R, and every p ∈ ψ−1(≤ r) at which (2.38) exists.

Proof. We already know estimates for the Lie derivatives f`1ψ, f`1(f`2ψ) and the sinusoids

ŨV j
`1

, ŨV j
`1,`2

from Lemma 2.19 (b) and Lemma 2.22, respectively. If we apply those

estimates to the constituents of Dj
1ψ in (2.36), then we immediately obtain part (a) of

Proposition 2.26. Moreover, from Lemma 2.22 and (2.38), we derive that there exists c > 0
such that

|Dj
2ψ(t, p)| ≤ c j−1

∑

`1,`2∈Λ

∣∣(f j(f`1(f`2ψ)))(t, p)
∣∣

for every j ≥ 1, every t ∈ R, and every p ∈ PN at which (2.38) exists. We know from
Lemma 2.19 (b) that each of the functions f`1(f`2ψ) is locally Lipschitz continuous. Using
Lemma 2.17, it is easy to check that, for all `1, `2 ∈ Λ, every j ≥ 1, every t ∈ R, and every
p ∈ PN at which (2.37) exists, we have

|(f j(f`1(f`2ψ)))(t, p)| ≤ L(f`1(f`2ψ))(p) ‖f j(t, p)‖,

where L(f`1(f`2ψ))(p) is the pointwise Lipschitz constant of f`1(f`2ψ) at p from Lemma 2.16.
We know from Lemma 2.19 (b) that L(f`1(f`2ψ)) is bounded by a multiple of ψ2κ−1/2 on
ψ−1(≤ r). Using the definition of f j in (2.21), Lemma 2.22, and Lemma 2.19 (a), it is easy
to see that there exists c′ > 0 such that ‖f j(t, p)‖ ≤ c′ j1/2 ψκ for every j ≥ 1, every t ∈ R,
and every p ∈ ψ−1(≤ r). This implies statement (b) and completes the proof.

Remark 2.27. The above Propositions 2.25 and 2.26 give a detailed description on how the
frequency parameter j and the exponent κ influence the remainders Dj

1ψ and Dj
2ψ compared

to the averaged term f∞ψ in the integral expansion of Proposition 2.24. To induce a decay
of the potential function ψ along solutions of the closed-loop system, we need that the
negative contribution of f∞ψ is sufficiently large compared to the contributions of Dj

1ψ

and Dj
2ψ. We distinguish the following two cases, which correspond to Theorem 2.12 and

Theorem 2.13, respectively.
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2 Distance-based formation control

Suppose that κ = 1/2. Then, the exponents of ψ(p) in the estimates of Propositions 2.25
and 2.26 are all equal to 1. This means that contribution of both the averaged term f∞ψ
and the remainders Dj

1ψ and Dj
2ψ vanish with the same speed as the value of ψ tends

to the optimal value 0. To ensure that the contribution of f∞ψ is much larger than the
contribution of Dj

1ψ and Dj
2ψ, we have to choose a sufficiently large value of j. If we apply

the estimates in Propositions 2.25 and 2.26 to the integral expansion in Proposition 2.24
and take the limit j →∞, then we obtain an estimate of the form

ψ(γ(t2)) ≤ ψ(γ(t1))−
∫ t2

t1

c0 ψ(γ(t)) dt.

This indicates why Theorem 2.12 ensures an exponential decay of ψ under the assump-
tion of a sufficiently large frequency parameter j. A more precise argument is given in
Subsection 2.5.4.

Suppose that κ > 1/2. Then, the exponents of ψ(p) in the estimates of Propositions 2.25
and 2.26 are all greater than 1. Moreover, the exponent 3κ − 1/2 of ψ(p) in the estimate
for Dj

2ψ is greater than the exponent 2κ in the estimate for f∞ψ. Thus, even if j is not

large, the contribution of the Dj
2ψ becomes arbitrary small compared to f∞ψ when ψ

is sufficiently close to the optimal value 0. This explains why Theorem 2.13 ensures a
decay of ψ for an arbitrary value of j, but under the assumption that the initial value
of ψ is already sufficiently close to 0. If we increase the frequency parameter j, then the
remainders become smaller and therefore a decay of ψ also occurs for larger initial values
of ψ. If we apply the estimates in Propositions 2.25 and 2.26 to the integral expansion in
Proposition 2.24 and take the limit j →∞, then we obtain an estimate of the form

ψ(γ(t2)) ≤ ψ(γ(t1))−
∫ t2

t1

c0 ψ(γ(t))2κ dt,

where 2κ > 1. This indicates why Theorem 2.13 does not ensure an exponential decay of ψ
but only a power law decay. A more precise argument is given below. ♦

2.5.4 Proofs of Theorems 2.12 and 2.13

Suppose that, for every point p of (2.14), the framework G(p) is infinitesimally rigid. Then,
there exist r0, c0 > 0 as in Proposition 2.25. For this sublevel r0, there exist c1, c2 > 0 as
in Proposition 2.26 (a) and (b). From Proposition 2.24, we conclude that, for every j ≥ 1,
every trajectory γ : R→ PN of (2.21), and all t1 < t2 in R, the following implication holds:
if γ(t) ∈ ψ−1(≤ r0) for every t ∈ [t1, t2], then

ψ(γ(t2)) ≤ ψ(γ(t1)) + c1 j
− 1

2 ψ(γ(t2))κ+1/2 + c1 j
− 1

2 ψ(γ(t1))κ+1/2 (2.39a)

−
∫ t2

t1

(
c0 − c2 j

− 1
2 ψ(γ(t))κ−1/2

)
ψ(γ(t))2κ dt. (2.39b)

Next, we distinguish two cases.

Theorem 2.12

Suppose that κ = 1/2. If j > 1/c2
1, then inequality (2.39) can be written as

ψ(γ(t2)) ≤ 1 + c1j
− 1

2

1− c1j
− 1

2

ψ(γ(t1))− c0 − c2 j
− 1

2

1− c1j
− 1

2

∫ t2

t1

ψ(γ(t)) dt.
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2.5 Local asymptotic stability analysis for point agents

Let r := r0/2, µ ∈ (0, c0/2) and λ ∈ (1, 2). It is now clear that we can find a sufficiently
large j0 > 0 such that, for every j ≥ j0, every trajectory γ : R → PN of (2.21), and all
t1 < t2 in R, the following implication holds: if γ(t) ∈ ψ−1(≤ 2r) for every t ∈ [t1, t2], then

ψ(γ(t2)) ≤ λψ(γ(t1))− λµ
∫ t2

t1

ψ(γ(t)) dt.

Now a standard comparison argument for integral inequalities implies that inequality (2.15)
holds.6 Moreover, the exponential decay of ψ along γ implies that γ(t) converges to some
element of ψ−1(0) as t→∞.

Theorem 2.13

Suppose that κ > 1/2 and that j ≥ 1. If ψ(γ(t2))κ−1/2 < j1/2/c1, then inequality (2.39)
can be written as

ψ(γ(t2)) ≤ 1 + c1j
− 1

2ψ(γ(t1))κ−1/2

1− c1j
− 1

2ψ(γ(t2))κ−1/2
ψ(γ(t1))−

∫ t2

t1

c0 − c2j
− 1

2ψ(γ(t))κ−1/2

1− c1j
− 1

2ψ(γ(t2))κ−1/2
ψ(γ(t))2κ dt.

Let µ ∈ (0, c0/2) and λ ∈ (1, 2). It is now clear that we can find a sufficiently small r > 0
such that, for every trajectory γ : R → PN of (2.21), and all t1 < t2 in R, the following
implication holds: if γ(t) ∈ ψ−1(≤ 2r) for every t ∈ [t1, t2], then

ψ(γ(t2)) ≤ λψ(γ(t1))− λµ
∫ t2

t1

ψ(γ(t))2κ dt.

Now a standard comparison argument for integral inequalities implies that inequality (2.16)
holds.7 It is left to prove that the trajectories of (2.21) with initial values in ψ−1(≤ r) con-
verge to some point of (2.14). For this purpose, fix a trajectory γ of (2.21) with ψ(γ(t0)) ≤ r
for some t0 ∈ R. We already know from (2.16) that ψ(γ(t)) ≤ 2r for every t ≥ t0. By inte-
grating (2.21), we obtain that

γ(t2)− γ(t1) =
∑

`∈Λ

∫ t2

t1

uj`(t) f`(γ(t)) dt

for all t2 ≥ t1 ≥ t0. Note that the above equation is understood as an equation on the
translation space TN of PN . We know from Lemma 2.19 (c) that each of the vector fields f`
is differentiable. This justifies that we may apply integration by parts in the above integral.
Using (2.28) and that γ is a solution of (2.21), we obtain

γ(t2)− γ(t1) = −
∑

`∈Λ

ŨV j
`(t2) f`(γ(t2)) +

∑

`∈Λ

ŨV j
`(t1) f`(γ(t1))

+
∑

`1,`2∈Λ

∫ t2

t1

uj`1(t)ŨV j
`2

(t)∇f`1f`2(γ(t)) dt

6To see this, use the fact that y(t) := ψ(γ(t0)) e−µ(t−t0) defines a function y : [t0,∞)→ R that satisfies the
integral equation y(t2) = y(t1)− µ

∫ t2
t1
y(t) dt for all t2 ≥ t1 ≥ t0.

7To see this, use the fact that y(t) := ψ(γ(t0))
(
1 + (2κ−1)ψ(γ(t0))2κ−1 µ (t− t0)

)− 1
2κ−1 defines a function

y : [t0,∞)→ R that satisfies the integral equation y(t2) = y(t1)− µ
∫ t2
t1
y(t)2κ dt for all t2 ≥ t1 ≥ t0.
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2 Distance-based formation control

for all t2 ≥ t1 ≥ t0. It now follows from Lemmas 2.19 and 2.22 that there exist c′1, c
′
2 > 0

such that

‖γ(t2)− γ(t1)‖ ≤ c′1 ψ(γ(t2))κ + c′1 ψ(γ(t1))κ +

∫ t2

t1

c′2 ψ(γ(t))2κ−1/2 dt

for all t2 ≥ t1 ≥ t0. Now we apply estimate (2.16) and obtain that

‖γ(t2)− γ(t1)‖ ≤ 2 c′1 λ
κ
0(

1 + µ0 (t1 − t0)
) κ

2κ−1

+

∫ t2

t1

c′2 λ
2κ−1/2
0

(
1 + µ0 (t− t0)

) 2κ−1/2
2κ−1

dt

for all t2 ≥ t1 ≥ t0, where λ0 := λψ(γ(t0)) and µ0 := (2κ− 1)ψ(γ(t0))2κ−1 µ. Note that for

the exponent of the denominator in the above integral, we have 2κ−1/2
2κ−1 > 1. This allows us

to conclude that, for every ε > 0, there exists T > t0 such that
∥∥γ(t2)− γ(t1)

∥∥ ≤ ε for all
t2 ≥ t1 ≥ T . It follows that γ(t) converges to some p∗ ∈ PN as t→∞. Since ψ(γ(t))→ 0
as t→∞, we conclude that p∗ is an element of (2.14).

2.6 Extension to formation control for unicycles with all-to-all
communication

In this section, we propose an extension of the control strategy in Section 2.4 for point
agents to the case of nonholonomic unicycles.

2.6.1 Problem description

We consider a system of N unicycles in the Euclidean plane. In local coordinates with,
a vector pi ∈ R2 for the position and an angle θi ∈ R for the orientation, the kinematic
equations for the ith unicycle read

ṗi = ui,q

(
cos θi
sin θi

)
, (2.40a)

θ̇i = ui,^, (2.40b)

where ui,q and ui,^ are real-valued input channels for the translational and the rotational
velocity, respectively. As in Subsection 2.4.1, we suppose that the agents are equipped with
sensors so that they can measure the distances to other members of the team according
to an (undirected) graph G = (V,E) of N vertices. For each edge i1i2 ∈ E, let di1i2 ≥ 0
be a nonnegative real number, which is the desired distance between agents i1 and i2. We
assume again that these distances are realizable in the two-dimensional space. In contrast
to the situation described in Subsection 2.4.1, we additionally require that the agents have
the ability to exchange measured data so that each agent knows the values of all current
distances ‖pi2 − pi1‖ with i1i2 ∈ E at any given time. This means that we require all-to-all
communication. For this situation, we are interested in a distance-only control law that
steers the multi-agent system into a target formation with ‖pi2−pi1‖ = di1i2 for all i1i2 ∈ E.
Note that a target formation does not impose any constraints on the orientations of the
unicycles. In particular, a target formation does not exclude time-varying orientations.
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2.6 Extension to formation control for unicycles with all-to-all communication

The entire multi-agent system of N unicycles is a system on the N -fold product SE(2)N

of the special Euclidean Group8 SE(2) of dimension 2. For each i ∈ {1, . . . , N}, let Gi,q
and Gi,^ denote the smooth vector fields on SE(2)N that describe the direction of the
translational and the directional velocity of the ith unicycle, respectively; i.e., in the local
coordinates of (2.40), we have

pi,2

pi,1

θi

Gi,q

Gi,⊥

Gi,^

Gi,q = cos(θi)
∂

∂pi,1
+ sin(θi)

∂

∂pi,2
, (2.41)

Gi,^ =
∂

∂θi
. (2.42)

Now, the N equations in (2.40) can be combined to the control-affine system

ẋ =
N∑

i=1

(
ui,qGi,q(x) + ui,^Gi,^(x)

)
(2.43)

on SE(2)N . For the rest of this section, we proceed in the coordinate-free description (2.43).

2.6.2 Control law and main statement

The control law for (2.43) will be composed of the following constituents.

(1) Let ψ : PN → R be the global potential function defined by (2.13). Since we assume
all-to-all communication, each agent knows the current value

y = ψ(p) (2.44)

of ψ at any given time.

(2) Let a : R → R be a smooth function and bounded such that a(0) = 0 and a′(0) 6= 0.
Let the functions h1, h2 on R be defined as in (2.7).

(3) Let n1, n2, . . . denote the prime numbers in increasing order; i.e., n1 = 2, n2 = 3, . . ..
For every i ∈ {1, . . . , N} and every j > 0, define three sinusoids uj(i,1), u

j
(i,2), u

j
(i,3) by

uj(i,1)(t) := (j ω(i,1))
3
4 cos(j ω(i,1)t+ ϕi), (2.45a)

uj(i,2)(t) := (j ω(i,2))
3
4 sin(j ω(i,2)t+ ϕi), (2.45b)

uj(i,3)(t) := 213/8 (j ω(i,3))
3
4 cos(j ω(i,3)t+ ϕi) (2.45c)

with arbitrary shifts ϕi ∈ R and frequency coefficients

ω(i,1) := 3
√
ni+1 + 2

√
2ni+1, (2.46a)

ω(i,2) :=
√
ni+1, (2.46b)

ω(i,3) := 2
√
ni+1 +

√
2ni+1. (2.46c)

Remark 2.28. We briefly give some preliminary comments on the above functions without
going into details here.

8For the objectives in this section it is convenient to treat the three-dimensional smooth manifold SE(2)
as the Cartesian product of the two-dimensional Euclidean space (to describe the position) and the unit
circle (to describe the orientation).
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2 Distance-based formation control

(1) In contrast to Subsection 2.4.2, we do not use local potential functions but the global
potential function ψ for the distance-only control law. A computation of the current
value of ψ by the agents requires all-to-all communication. The reason for using a
global potential function instead of local potential functions is of rather “technical
nature”. The stability analysis of the proposed control method in Section 2.7 requires
an extension of Lemma 2.19 to iterated Lie derivatives of ψ along more than just two
vector fields. However, due to non-smoothness, those higher-order Lie derivatives do
not necessarily exist if the vector fields depend on the values of the local potential
functions. Lemma 2.19 (b) already indicates that iterated Lie derivatives of ψ along
two vector fields are locally Lipschitz continuous but, in general, not differentiable.
It turns out that this problem can be circumvented by using the global potential
function for each agent. A suitable stability analysis for a fully distributed control
law with local potential functions is left to future research.

(2) To obtain a global potential function on the state manifold SE(2)N , we introduce the
canonical projection

π : SE(2)N → PN

of SE(2)N onto PN , where P ∼= R2 is the underlying Euclidean space of dimension 2.
Now we can define the global potential function

Ψ := ψ ◦ π : SE(2)N → R. (2.47)

It follows from Lemma 2.18 (a) that, for each ν ∈ {1, 2}, the composition

hν ◦Ψ1/2 : SE(2)N → R

is locally Lipschitz continuous, where Ψ1/2 denotes the square root of Ψ.

(3) As for point agents, the choice of the sinusoids has the purpose to approximate certain
Lie brackets. While the approach for point agents is based on an approximation of Lie
brackets of two vector fields, the approach for unicycles will involve approximations
of (iterated) Lie brackets of four vector fields. This strategy is further explained in
the text after Theorem 2.30. ♦

Given a real number j > 0, we propose the control law

ui,q = uj(i,1)(t)h1(y1/2) + uj(i,2)(t)h2(y1/2), (2.48a)

ui,^ = uj(i,3)(t) (2.48b)

for every i ∈ {1, . . . , N}, where y1/2 denotes the square root of the value y as in (2.44). Note
that a computation of y = Ψ(π(x)) only requires measurements of inter-agent distances at
the current system state x ∈ SE(2)N . Whenever y > 0, we can write control law (2.48) also
as

ui,k =
√

2 j ω(i,k) a(y1/2) sin(j ω(i,k) t+ ϕi + log y1/2), (2.49)

where we have used the trigonometric identity (1.49). Because of Remark 2.28 and the
boundedness of h1, h2, we obtain the following result from standard existence and unique-
ness properties for ordinary differential equations.

Proposition 2.29. For any initial condition, system (2.40) under control law (2.48) has a
unique global solution, which we call a trajectory of (2.40) under (2.48).
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2.6 Extension to formation control for unicycles with all-to-all communication

For unicycles, the set of desired states is the preimage of the set (2.14) for point agents
under the projection map π; i.e., the set Ψ−1(0). Similar to Theorem 2.12, we will prove
exponential stability under the assumption of infinitesimal rigidity:

Theorem 2.30. Suppose that, for every point p of (2.14), the framework G(p) is infinites-
imally rigid. Then, there exist µ, r > 0 such that, for every λ > 1, there exists j0 > 0
such that, for every j ≥ j0, every t0 ∈ R, and every x0 ∈ Ψ−1(≤ r), the trajectory x of
system (2.40) under control law (2.48) with initial condition x(t0) = x0 has the following
two properties: π(x(t)) converges to some point of (2.14) as t→∞, and the estimate

Ψ(x(t)) ≤ λΨ(x0) e−µ(t−t0) (2.50)

holds for every t ≥ t0.

At this point, we only indicate why control law (2.48) leads to local exponential stability.
A detailed proof of Theorem 2.30 is given in Section 2.7. Recall that the team of unicycles is
described by the control system (2.43) on the state manifold SE(2)N with the control vector
fields Gi,q, Gi,^ given by (2.41), (2.42) for every i ∈ {1, . . . , N}. Each of the Gi,^ describes
the rotation of a unicycle around its axis. Such rotations do not influence the value of the
global potential function Ψ. This means that the Lie derivative of Ψ along each of the Gi,^ is
identically equal to zero. Changes of Ψ are induced by motions along the current alignment
of the unicycles, which are described by the vector fields Gi,q. However, the vector fields Gi,q
do not give immediate access to all directions on the underlying space PN . In particular,
the steepest descent direction of Ψ at some x ∈ SE(2)N is not necessarily in the span of the
vectors G1,q(x), . . . , GN,q(x). Therefore, a gradient-based strategy as in Section 2.4 for point
agents cannot be applied directly. An approximation of the steepest descent direction of Ψ
would require that the unicycles can also move perpendicular to their current alignments.
These directions are described by the Lie brackets

Gi,⊥ := [Gi,^, Gi,q] = − sin(θi)
∂

∂pi,1
+ cos(θi)

∂

∂pi,2
(2.51)

for i = 1, . . . , N , where the expression on the right-hand side uses the same local coordinates
as in (2.41) and (2.42). The averaging analysis in Section 2.7 will reveal that the particular
choice of the sinusoids in (2.45) allows the unicycles to move (approximately) along the
directions of the iterated Lie brackets

[
(h1 ◦Ψ1/2)Gi,q,

[
Gi,^,

[
(h2 ◦Ψ1/2)Gi,q, Gi,^

]]]
= −1

2
(h ◦Ψ1/2) (Gi,qΨ)Gi,q, (2.52)

[[
Gi,^, (h1 ◦Ψ1/2)Gi,q

]
,
[
Gi,^, (h2 ◦Ψ1/2)Gi,q

]]
= −1

2
(h ◦Ψ1/2) (Gi,⊥Ψ)Gi,⊥ (2.53)

for i = 1, . . . , N , where the function h on R is defined in Lemma 2.20. To be more pre-
cise, one can prove that, in the limit j → ∞, the trajectories of the closed-loop system
approximate the trajectories of the averaged system

ẋ = F∞(x), (2.54)

where the averaged vector field

F∞ := −1

2
(h ◦Ψ1/2)

N∑

i=1

(
(Gi,qΨ)Gi,q + (Gi,⊥Ψ)Gi,⊥

)
(2.55)
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Figure 2.5: Simulation result for a team of four unicycle agents under control law (2.48).
The initial positions and the desired distances are the same as for the team of point agents
in Figure 2.2.

on SE(2)N is the sum of the Lie brackets in (2.52) and (2.53). It is easy to check that, in
local coordinates, system (2.54) reads

ṗi = −1

2
h(ψ1/2(p))∇piψ(p), (2.56a)

θ̇i = 0 (2.56b)

for i = 1, . . . , N , where ∇piψ is coordinate representation of the gradient of ψ with respect
to the ith position variable. Thus, in the limit j →∞, the nonholonomic unicycles approx-
imate the behavior of fully actuated kinematic points under a gradient-based control law.
For this reason, we get the same local exponential stability for unicycles as in Section 2.4
for point agents.

Remark 2.31. It is also possible to derive a control law that leads to asymptotic stability
without the dependence on the frequency parameter j as in Theorem 2.13 for point agents.
For this purpose, the exponent 1/2 in control law (2.48) has to be replaced by an exponent
κ > 1/2. In this case, the proof of asymptotic stability is a suitable combination of the
arguments in Sections 2.5 and 2.7. ♦

Before we begin with the stability analysis, we present some numerical results. We
consider a team of N = 4 nonholonomic unicycles with all-to-all communication. The
communication graph G, the desired distances dii′ , and the initial positions pi(0) are the
same as in Subsection 2.4.3 for the team of non-communicating point agents. The initial
orientations are given by θi(0) = φi with the same angles φi as in Subsection 2.4.3 for
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2.7 Local asymptotic stability analysis for unicycles
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Figure 2.6: Exponential decay of the global potential function (2.47) for the multi-agent
system in Figure 2.5 on the time interval [0, 10].

i = 1, . . . , N . The simulation results are generated for the frequency parameter j = 10.
It can be seen in Figures 2.5 and 2.6 that the unicycles converge exponentially fast to a
desired formation. The speed of convergence is approximately the same as for point agents
in Figures 2.2 and 2.3.

2.7 Local asymptotic stability analysis for unicycles

For the moment, fix an arbitrary trajectory γ : R→ SE(2)N of (2.40) under (2.48) for some
initial value γ(t0) ∈ SE(2)N at some initial time t0 ∈ R. If γ(t0) is an element of Ψ−1(0),
then (2.48a) and the uniqueness of solutions imply that π ◦ γ is identically equal to some
point of (2.14). Thus, there is nothing to show for initial values in Ψ−1(0). Conversely,
if γ(t0) is outside Ψ−1(0), then γ will never enter Ψ−1(0) at any time. For this reason, it
suffices to study the closed-loop system on the open submanifold

M := {x ∈ SE(2)N | Ψ(x) > 0}

of SE(2)N . For the rest of the section, we restrict Ψ to the submanifold M and denote
the restriction again by the symbol Ψ. Thus, in particular, for any r > 0, the sublevel set
Ψ−1(≤ r) only contains the points x ∈M with Ψ(x) ≤ r.

For every i ∈ {1, . . . , N}, define three smooth vector fields F(i,1), F(i,2), F(i,3) on M by

F(i,1)(x) := h1(Ψ1/2(x))Gi,q(x), (2.57a)

F(i,2)(x) := h2(Ψ1/2(x))Gi,q(x), (2.57b)

F(i,3)(x) := Gi,^(x). (2.57c)

As an abbreviation, we define an indexing set Λ to be the set of all pairs (i, ν) with i ∈
{1, . . . , N} and ν ∈ {1, 2, 3}. It is now easy to see that the restriction of system (2.40) under
the control law (2.48) to the submanifold M can be written as the closed-loop system

ẋ =
∑

`∈Λ

uj`(t)F`(x) (2.58)

on M , which may be interpreted as a control-affine system with control vector fields F`
under open-loop controls uj` . For every r > 0, let Ψ−1(≤ r) denote the set of all x ∈ M
with Ψ(x) ≤ r. The statement of Theorem 2.30 follows immediately if we can show the
subsequent result.
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2 Distance-based formation control

Proposition 2.32. Suppose that, for every point p of (2.14), the framework G(p) is in-
finitesimally rigid. Then, there exist µ, r > 0 such that, for every λ > 1, there exists
j0 > 0 such that, for every j ≥ j0, every t0 ∈ R, every x0 ∈ Ψ−1(≤ r), and every trajec-
tory γ : R→M of (2.58) with initial condition γ(t0) = x0, we have

Ψ(γ(t)) ≤ λΨ(x0) e−µ(t−t0)

holds for every t ≥ t0.

2.7.1 Estimates for the Lie derivatives

Since the vector fields F` in (2.57) are smooth, for every positive integer k, all `1, · · · , `k ∈ Λ,
and every smooth function ϕ on M , we may define the iterated Lie derivative

F`1,...,`kϕ := F`1(· · · (F`kϕ) · · · )

of ϕ along F`1 , . . . , F`k , which is again a smooth function on M . As in Subsection 2.5.1,
for a subset S of M , a function ϕ on M , and a nonnegative function b on M , we say
that ϕ is bounded by a multiple of b on S if there exists some positive constant c such that
|ϕ(x)| ≤ c b(x) for every x ∈ S .

Lemma 2.33. For every r > 0, every k ∈ {1, . . . , 5}, and all `1, . . . , `k ∈ Λ, the iterated
Lie derivative F`1,...,`kΨ is bounded by a multiple of Ψ on Ψ−1(≤ r).

Proof. We only indicate the proof for k = 1 and k = 2. A similar strategy, which requires
considerably more computational effort, can be applied for k = 3, 4, 5.

Let r > 0 and `1 = (i1, ν1), `2 = (i2, ν2) ∈ Λ. If ν2 = 3, then F`2Ψ is identically equal to
zero. It therefore suffices to consider the case in which ν2 ∈ {1, 2}. Then,

F`2Ψ = (hν2 ◦Ψ1/2) (Gi2,qΨ).

If follows from Lemma 2.15 (b) and hν2(0) = 0 that hν2 is bounded by a multiple of the
identity y 7→ y on [0, r1/2]. Therefore, hν2 ◦ Ψ1/2 is bounded by a multiple of Ψ1/2 on
Ψ−1(≤ r). It follows from Proposition 2.7 (b) that Gi2,qΨ is bounded by a multiple of Ψ1/2

on Ψ−1(≤ r). Thus, F`2Ψ is bounded by a multiple of Ψ on Ψ−1(≤ r).
For the Lie derivative of F`2Ψ along F`1 , we distinguish three cases. Again, we only

consider the nontrivial case with ν2 ∈ {1, 2}. First, suppose that ν1 = 3 and i1 = i2. Then,
we have

F`1(F`2Ψ) = (hν2 ◦Ψ1/2) (Gi2,^(Gi2,qΨ)).

A direct computation leads to Gi2,^(Gi2,qΨ) = Gi2,⊥Ψ. It follows from Proposition 2.7 (b)
that Gi2,⊥Ψ is bounded by a multiple of Ψ1/2 on Ψ−1(≤ r). Therefore, F`1(F`2Ψ) is bounded
by a multiple of Ψ on Ψ−1(≤ r). Second, suppose that ν1 = 3 and i1 6= i2. Then, F`1(F`2Ψ)
is identically equal to zero. It remains to consider the case in which ν1 6= 3. Then,

F`1(F`2Ψ) = (hν1 ◦Ψ1/2) (h′ν2 ◦Ψ1/2) (Gi1,qΨ
1/2) (Gi2,qΨ)

+ (hν1 ◦Ψ1/2) (hν2 ◦Ψ1/2) (Gi1,q(Gi2,qΨ)).

We already know that hν1 ◦Ψ1/2, hν2 ◦Ψ1/2, and Gi2,qΨ are bounded by multiples of Ψ1/2

on Ψ−1(≤ r). By the chain rule, we conclude that Gi1,qΨ
1/2 is bounded by a constant on

Ψ−1(≤ r). It follows from Lemma 2.15 (b) that h′ν2 ◦Ψ1/2 is also bounded by a constant on
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2.7 Local asymptotic stability analysis for unicycles

Ψ−1(≤ r). Finally, we obtain from Proposition 2.7 (c) that Gi1,q(Gi2,qΨ) is again bounded
by a constant on Ψ−1(≤ r). We conclude that F`1(F`2Ψ) is bounded by a multiple of Ψ on
Ψ−1(≤ r).

For k = 3, 4, 5, the asserted boundedness properties can be derived from explicit com-
putations of F`1,...,`kΨ as above. This requires suitable estimates for derivatives of higher
order. For instance, it is easy to check that, for every ν ∈ {1, 2} and every integer k ≥ 2,
the kth derivative of hν is bounded by a multiple of y 7→ yk−1 on (0, r1/2]. Moreover,
boundedness statement for iterated Lie derivatives of Ψ and Ψ1/2 along more than one
vector fields can be derived from Proposition 2.7 (c) and the chain rule.

2.7.2 Averaging of the sinusoids

An averaging analysis for the sinusoids uj` in (2.45) requires the following two technical
lemmas on integer linear combinations of the frequency coefficients ω`, ` ∈ Λ, in (2.46).

Lemma 2.34. Let n1, n2, . . . denote the prime numbers in increasing order; i.e., n1 =
2, n2 = 3, . . .. Then, the real numbers

√
n2,
√

2n2,
√
n3,
√

2n3, . . . are linearly independent
over the ring of integers.

Proof. The statement is an immediate consequence of the main result in [11].

Lemma 2.35. The frequency coefficients ω` in (2.46) with ` ranging over Λ are pairwise
distinct. Moreover, for all ω1, . . . , ω4 ∈ {±ω` | ` ∈ Λ}, the following statements hold:

(1) we always have ω1 6= 0;

(2) if ω1 + ω2 = 0, then there exists ` ∈ Λ such that {ω1, ω2} = {±ω`};

(3) we always have ω1 + ω2 + ω3 6= 0;

(4) if ω1 + · · ·+ ω4 = 0, then there exists a permutation σ of 1, . . . , 4 such that either

(i) ωσ(1) + ωσ(2) = 0 and ωσ(3) + ωσ(4) = 0, or

(ii) there exists i ∈ {1, . . . , N} and s ∈ {±1} such that ωσ(1) = sω(i,1), ωσ(2) = sω(i,2),
ωσ(3) = ωσ(4) = −sω(i,3).

Proof. For the proof, let Γ denote the set of the six integer pairs±(3, 2), ±(1, 0), and±(2, 1).
Note that, by Lemma 2.34, for each k ∈ {1, . . . , 4}, there exist unique ik ∈ {1, . . . , N} and
(xk, yk) ∈ Γ such that

ωk = xk
√
nik+1 + yk

√
2nik+1. (2.59)

Statement (1) is obvious. Statement (2) follows immediately from the unique representa-
tion (2.59) and Lemma 2.34. To prove statement (3), suppose for the sake of contradiction
that ω1 + ω2 + ω3 = 0. Then, Lemma 2.34 implies that the numbers i1, i2, i3 are all equal
and that the sum of the vectors (x1, y1), (x2, y3), (x3, y3) is equal to (0, 0). However, this is a
contradiction since one can easily check that the sum of three vectors from the set Γ is never
equal to zero. Finally, to prove statement (4), suppose that ω1 + · · · + ω4 = 0. It is easy
to see that cases (i) and (ii) cannot be satisfied simultaneously. If the numbers i1, . . . , i4
in (2.59) are not equal to some i ∈ {1, . . . , N}, then Lemma 2.34 and statements (1) and (3)
imply that the canceling comes from pairs of the ωk as in case (i). It is left to consider the
case in which the numbers i1, . . . , i4 in (2.59) are all equal to some i ∈ {1, . . . , N}. Then,
because of Lemma 2.34, the sum of the vectors (x1, y1), . . . , (x4, y4) is equal to (0, 0). It
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2 Distance-based formation control

is now easy to check that there are only the following two cases in which the sum of four
vectors from the set Γ is equal to zero: either, each of the (xk, yk) is canceled by its neg-
ative, which corresponds again to case (i), or, there exists s ∈ {±1} such that the (xk, yk)
are a permutation of the vectors s(3, 2), s(1, 0), −s(2, 1), −s(2, 1) which corresponds to
case (ii).

In the following, we introduce the notation from [68, 69]. For every ` ∈ Λ, define Ω(`) :=
{±ω`} with ω` > 0 as in (2.46). It follows from Lemma 2.35 that the sets Ω(`) are pairwise
disjoint. For every i ∈ {1, . . . , N}, we define the six complex-valued constants

η±ω(i,1)
:=

1

2
ω

3
4

(i,1) e±iϕi , η±ω(i,2)
:= ± 1

2i
ω

3
4

(i,2) e±iϕi , η±ω(i,3)
:=

213/8

2
ω

3
4

(i,3) e±iϕi ,

where i denotes the imaginary unit and e denotes Euler’s number.
Let ` ∈ Λ. Using the above notation, we can write uj`(t) in (2.45) as

uj`(t) = j
3
4

∑

ω∈Ω(`)

ηω eijωt (2.60)

for every t ∈ R. Note that ω 6= 0 for every ω ∈ Ω(`) by Lemma 2.35 (1). Thus, when we
integrate −uj` , we get

−
∫ t2

t1

uj`(t) dt =
[
ŨV j

`(t)
]t=t2
t=t1

, (2.61)

where
ŨV j

`(t) := −j− 1
4

∑

ω∈Ω(`)

ηω
iω

eijωt. (2.62)

Let `1, `2 ∈ Λ. When we multiply uj`1(t) by ŨV j
`2

(t), we get

uj`1(t)ŨV j
`2

(t) = −ũvj`1,`2(t), (2.63)

where
ũvj`1,`2(t) := j

2
4

∑

(ω1,ω2)∈Ω(`1)×Ω(`2)

ηω1 ηω2

iω2
eij(ω1+ω2)t (2.64)

for every t ∈ R. Note that, for each pair (ω1, ω2) in Ω(`1) × Ω(`2), also (−ω1,−ω2) is in
Ω(`1)× Ω(`2). By definition of the ηω, we then have

ηω1 η−ω1

i(−ω1)
+
η−ω1 ηω1

iω1
= 0.

Because of this pairwise canceling, the summation in (2.64) reduces to the elements of the
set

Ω(`1, `2) := {(ω1, ω2) ∈ Ω(`1)× Ω(`2) | ω1 + ω2 6= 0}.
Thus, when we integrate ũvj`1,`2 , we get

∫ t2

t1

ũvj`1,`2(t) dt =
[
ŨV j

`1,`2
(t)
]t=t2
t=t1

, (2.65)

where
ŨV j

`1,`2
(t) := j−

2
4

∑

(ω1,ω2)∈Ω(`1,`2)

ηω1 ηω2

i2ω2(ω1 + ω2)
eij(ω1+ω2)t. (2.66)
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Let `1, `2, `3 ∈ Λ. When we multiply uj`1(t) by ŨV j
`2,`3

(t), we obtain

uj`1(t)ŨV j
`2,`3

(t) = −ũvj`1,`2,`3(t), (2.67)

where
ũvj`1,`2,`3(t) := j

1
4

∑

(ω1,ω2,ω3)∈Ω(`1,`2,`3)

ηω1 ηω2 ηω3

i2ω2(ω1 + ω2)
eij(ω1+ω2+ω3)t (2.68)

and
Ω(`1, `2, `3) := {(ω1, ω2, ω3) | ω1 ∈ Ω(`1), (ω2, ω3) ∈ Ω(`2, `3)}.

Because of Lemma 2.35 (3), we have ω1 + ω2 + ω3 6= 0 for every (ω1, ω2, ω3) ∈ Ω(`1, `2, `3).
Thus, when we integrate ũvj`1,`2,`3 , we get

∫ t2

t1

ũvj`1,`2,`3(t) dt =
[
ŨV j

`1,`2,`3
(t)
]t=t2
t=t1

, (2.69)

where
ŨV j

`1,`2,`3
(t) := −j− 3

4

∑

ω̂∈Ω(`1,`2,`3)

ηω̂
i3Π(ω̂)

eijΣ(ω̂)t (2.70)

with the abbreviations

ηω̂ := ηω1 ηω2 ηω3 ,

Π(ω̂) := ω3(ω2 + ω3)(ω1 + ω2 + ω3),

Σ(ω̂) := ω1 + ω2 + ω3

for every ω̂ := (ω1, ω2, ω3) ∈ Ω(`1, `2, `3).

Let `1, `2, `3, `4 ∈ Λ. When we multiply uj`1(t) by ŨV j
`2,`3,`4

(t), we obtain

uj`1(t)ŨV j
`2,`3,`4

(t) = v`1,`2,`3,`4 − ũvj`1,`2,`3,`4(t), (2.71)

where

v`1,`2,`3,`4 := −
∑

(ω1,ω̂)∈Ω(`1)×Ω(`2,`3,`4)
ω1+Σ(ω̂)=0

ηω1ηω̂
i3Π(ω̂)

, (2.72)

ũvj`1,`2,`3,`4(t) :=
∑

(ω1,ω̂)∈Ω(`1)×Ω(`2,`3,`4)

ηω1ηω̂
i3Π(ω̂)

eij(ω1+Σ(ω̂))t. (2.73)

When we integrate ũvj`1,`2,`3,`4 , we get

∫ t2

t1

ũvj`1,`2,`3,`4(t) dt =
[
ŨV j

`1,`2,`3,`4
(t)
]t=t2
t=t1

, (2.74)

where

ŨV j
`1,`2,`3,`4

(t) := j−1
∑

(ω1,ω̂)∈Ω(`1)×Ω(`2,`3,`4)
ω1+Σ(ω̂) 6=0

ηω1ηω̂
i4Π(ω̂)(ω1 + Σ(ω̂))

eij(ω1+Σ(ω̂))t. (2.75)

The functions in (2.60), (2.62), (2.66), (2.70) and (2.75) satisfy the following estimates.
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Lemma 2.36. There exists c > 0 such that

∣∣uj`(t)
∣∣ ≤ c j

3
4 ,

∣∣ŨV j
`1,...,`k

(t)
∣∣ ≤ c j−

k
4

for every j ≥ 1, every k ∈ {1, . . . , 4}, all `, `1, . . . , `k ∈ Λ, and every t ∈ R.

The coefficients v`1,`2,`3,`4 in (2.72) can be computed explicitly as follows.

Lemma 2.37. For all `1, . . . , `4 ∈ Λ, we have v`1,...,`4 = 0 except for the coefficients

v(1,2,3,3)i = −1

2
+

1√
2
, v(1,3,2,3)i = +2−

√
2,

v(1,3,3,2)i = −2, v(2,1,3,3)i = +
1

2
+

1√
2
,

v(2,3,1,3)i = −2−
√

2, v(2,3,3,1)i = +2,

v(3,1,2,3)i = −1, v(3,1,3,2)i = +2 +
√

2,

v(3,2,1,3)i = +1, v(3,2,3,1)i = −2 +
√

2,

v(3,3,1,2)i = −1

2
− 1√

2
, v(3,3,2,1)i = +

1

2
− 1√

2

for every i ∈ {1, . . . , N}, where we have used the abbreviation

(ν1, ν2, ν3, ν4)i := (i, ν1), (i, ν2), (i, ν3), (i, ν4)

for all ν1, ν2, ν3, ν4 ∈ {1, 2, 3}.

Proof. Let `1, . . . , `4 ∈ Λ. Suppose that ω1 ∈ Ω(`1) and ω̂ := (ω2, ω3, ω4) ∈ Ω(`2, `3, `4)
satisfy ω1 +· · ·+ω4 = 0. Then, there exists a permutation of 1, . . . , 4 such that we are either
in the situation of case (i) or in the situation of case (ii) of Lemma 2.35 (4). Suppose that
we are in the situation of case (i). Note that also −ω1 ∈ Ω(`1) and −ω̂ ∈ Ω(`2, `3, `4) satisfy
−ω1 + Σ(−ω̂) = 0. Then, by definition of the coefficients ηω, we have ηω1ηω̂ = η−ω1η−ω̂.
Moreover, we have Π(ω̂) = −Π(−ω̂), and therefore

ηω1ηω̂
i3Π(ω̂)

+
η−ω1η−ω̂
i3Π(−ω̂)

= 0.

Thus, a necessary condition for a nonvanishing contribution by (ω1, ω̂) is that we are in the
situation of case (ii) in Lemma 2.35 (4). This implies that there exist i ∈ {1, . . . , 4} such
that (`1, `2, `3, `4) = (ν1, ν2, ν3, ν4)i, where (ν1, ν2, ν3, ν4) is one of the 12 permutations of
(1, 2, 3, 3). A direct computations shows that those 12 coefficients coincide with the ones in
the list of Lemma 2.37.

Remark 2.38. There are at least two different ways to identify the vector fields F` in (2.57)
and the coefficients v`1 , . . .`4 in Lemma 2.37 with the vector field F∞ in (2.55). The first
option is a long but direct computation that leads to

∑

`1,...,`4∈Λ

v`1,...,`4 F`1,...,`4ϕ = F∞ϕ (2.76)
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for every smooth function ϕ on M , where, by a slight abuse of notation, the symbol F∞

denotes restriction of the vector field in (2.55) from SE(2)N to M . The second option is
less labor intense but requires a result from [69] that is also used later in Lemma 4.14.
In the terminology of [69], the estimates in Lemma 2.36 imply that the functions uji sat-
isfy the property of so-called GD(4)-convergence with respect to the coefficients v`1,...,`4 in
Lemma 2.37. The same algebraic argument as in [69], see also Lemma 4.14, implies that

∑

`1,...,`4∈Λ

v`1,...,`4 F`1,...,`4ϕ =
1

4

∑

`1,...,`4∈Λ

v`1,...,`4 [F`1,...,`4 ]ϕ

for every smooth function ϕ on M , where [F`1,...,`4 ] abbreviates the iterated Lie bracket

[F`1,...,`4 ] = [F`1 , [F`2 , [F`3 , F`4 ]]]

for all `1, . . . , `4 ∈ Λ. The Lie brackets [F`1,...,`4 ] are easier to compute than the Lie deriva-
tives F`1,...,`4ϕ. This leads to

[F(1,2,3,3)i ] = −[F(2,1,3,3)i ] = 0,

[F(1,3,3,2)i ] = −[F(1,3,2,3)i ] = −(h ◦Ψ1/2) (Gi,qΨ)Gi,q,

[F(2,3,1,3)i ] = −[F(2,3,3,1)i ] = −(h ◦Ψ1/2)(Gi,qΨ)Gi,q,

[F(3,1,2,3)i ] = −[F(3,1,3,2)i ] = +(h ◦Ψ1/2)(Gi,qΨ)Gi,q − (h ◦Ψ1/2)(Gi,⊥Ψ)Gi,⊥,

[F(3,2,1,3)i ] = −[F(3,2,3,1)i ] = −(h ◦Ψ1/2)(Gi,qΨ)Gi,q + (h ◦Ψ1/2)(Gi,⊥Ψ)Gi,⊥,

[F(3,3,1,2)i ] = −[F(3,3,2,1)i ] = −2 (h ◦Ψ1/2)(Gi,qΨ)Gi,q + 2 (h ◦Ψ1/2)(Gi,⊥Ψ)Gi,⊥

on M for every i ∈ {1, . . . , N} in the notation of Lemma 2.37. Now, we easily obtain from
Lemma 2.37 and (2.55) that

1

4

∑

`1,...,`4∈Λ

v`1,...,`4 [F`1,...,`4 ] = F∞

holds on M . ♦

Using (2.55) and (2.76) with ϕ = Ψ, we obtain that

(F∞Ψ)(x) = −1

2
h(Ψ1/2(x))

N∑

i=1

(
(Gi,qΨ)(x)2 − (Gi,⊥Ψ)(x)2

)

for every x ∈M . Since the vector fields Gi,q, Gi,⊥ in (2.41), (2.51) generate an orthonormal
frame of the underlying space PN , and because of the definition of Ψ in (2.47), this implies

(F∞Ψ)(x) = −1

2
h((ψ1/2 ◦ π)(x)) ‖((∇ψ) ◦ π)(x)‖2 (2.77)

for every x ∈M .

2.7.3 Integral expansion

For the moment, fix an arbitrary j > 0, let γ : R → M be a trajectory of (2.58), and let
t1, t2 ∈ R. The fundamental theorem of calculus applied to the composition of γ and Ψ
implies that

Ψ(γ(t2)) = Ψ(γ(t1)) +
∑

`∈Λ

∫ t2

t1

uj`(t) (F`Ψ)(γ(t)) dt.
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2 Distance-based formation control

We apply integration by parts, which leads to

Ψ(γ(t2)) = Ψ(γ(t1))−
∑

`∈Λ

[
ŨV j

`(t) (F`Ψ)(γ(t))
]t=t2
t=t1

+
∑

`1,`2∈Λ

∫ t2

t1

uj`1(t) ŨV j
`2

(t) (F`1(F`2Ψ))(γ(t)) dt,

where we have used first (2.63) and then (2.65) as well as that γ is a solution of (2.58).
Next, we apply integration by parts three more times. In this context, we also use (2.63),
(2.65), (2.67), (2.69), (2.71) and (2.74) as well as that γ is a solution of (2.58). This leads
to

Ψ(γ(t2)) = Ψ(γ(t1))−
[
(Dj

1Ψ)(t, γ(t))
]t=t2
t=t1

+

∫ t2

t1

(Dj
2Ψ)(t, γ(t)) dt

+
∑

`1,...,`4∈Λ

∫ t2

t1

v`1,...,`4 (F`1,...,`4Ψ)(γ(t)) dt,

where the functions Dj
1Ψ, Dj

2Ψ on R×M are defined by

(Dj
1Ψ)(t, x) :=

4∑

k=1

∑

`1,...,`k∈Λ

ŨV j
`1,...,`k

(t) (F`1,...,`kΨ)(x), (2.78)

(Dj
2Ψ)(t, x) :=

∑

`1,...,`5∈Λ

uj`1(t) ŨV j
`2,...,`5

(t) (F`1,...,`5Ψ)(x). (2.79)

Thus, we are basically in the same situation as in Proposition 2.24 but with different
functions Dj

1Ψ and Dj
2Ψ. Because of (2.76) with ϕ = Ψ, we have derived the following

integral expansion for the propagation of Ψ along trajectories of (2.58).

Proposition 2.39. For every j > 0, every trajectory γ : R→M of (2.58), and all t1, t2 ∈
R, we have

Ψ(γ(t2)) = Ψ(γ(t1))−
[
(Dj

1Ψ)(t, γ(t))
]t=t2
t=t1

+

∫ t2

t1

(F∞Ψ)(γ(t)) dt+

∫ t2

t1

(Dj
2Ψ)(t, γ(t)) dt,

where F∞Ψ, Dj
1Ψ, and Dj

2Ψ are given by (2.77), (2.78), and (2.79), respectively.

As in Proposition 2.25, we need an estimate for the Lie derivative of Ψ along F∞ under
the assumption of infinitesimal rigidity.

Proposition 2.40. Suppose that, for every point p of (2.14), the framework G(p) is in-
finitesimally rigid. Then, there exist r0, c0 > 0 such that

(F∞Ψ)(x) ≤ −c0 Ψ(x)

for every x ∈ Ψ−1(≤ r0).

Proof. Since the potential function ψ in (2.13) is of the form (2.1), we know from Proposi-
tion 2.7 (d) that there exist cψ, r0 > 0 such that ‖∇ψ(p)‖2 ≥ cψψ(p) for every p ∈ ψ−1(≤
r0). Recall that the function h is defined in Lemma 2.20. Since a is assumed to be smooth

with a(0) = 0 and a′(0) 6= 0, there exist ch > 0 such that h(y) ≥ chy for every y ∈ [0, r
1/2
0 ].

The asserted estimate with c0 := chcy/2 now follows from the definition of Ψ in (2.47) and
equation (2.77).
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2.8 Extension to extremum seeking control

The remainders Dj
1Ψ and Dj

2Ψ in Proposition 2.39 satisfy the following estimates.

Proposition 2.41. For every r > 0, there exist c1, c2 > 0 such that

∣∣(Dj
1Ψ)(t, x)

∣∣ ≤ j−1/4 c1 Ψ(x),
∣∣(Dj

2Ψ)(t, x)
∣∣ ≤ j−1/4 c2 Ψ(x)

for every t ∈ R and every x ∈ Ψ−1(≤ r).

Proof. From Lemma 2.33 and Lemma 2.36, we already know estimates for the (iterated) Lie

derivatives F`1,...,`kΨ and the sinusoids uj` , ŨV
j
`1,...,`k

, respectively. The asserted estimates

therefore follow immediately from the definitions of Dj
1Ψ and Dj

2Ψ in (2.78) and (2.79),
respectively.

2.7.4 Proof of Proposition 2.32

Suppose that, for every point p of (2.14), the framework G(p) is infinitesimally rigid. Then,
there exist r0, c0 > 0 as in Proposition 2.40. For this sublevel r0, there exist c1, c2 > 0
as in Proposition 2.41. From Proposition 2.39, we conclude that, for every j ≥ 1, every
trajectory γ : R → PN of (2.58), and all t1 < t2 in R, the following implication holds: if
γ(t) ∈ Ψ−1(≤ r0) for every t ∈ [t1, t2], then

Ψ(γ(t2)) ≤ Ψ(γ(t1)) + c1 j
− 1

4 Ψ(γ(t2)) + c1 j
− 1

4 Ψ(γ(t1))−
∫ t2

t1

(
c0 − c2 j

− 1
4
)

Ψ(γ(t)) dt.

Thus, we are in the same situation as in the proof of Theorem 2.12 in Subsection 2.5.4, and
the same argument as therein proves Proposition 2.32.

2.8 Extension to extremum seeking control

So far, we have restricted our considerations to the problem of formation control. However,
control law (2.11) for point agents can be also useful in the context of extremum seeking
control. To see this, we return to the control-affine system (1.39) with output (1.40) in
Section 1.3. This means, we consider

ẋ =
m∑

i=1

uk gk(x), (2.80)

y = ψ(x), (2.81)

where u1, . . . , um are real-valued input channels for a control law, g1, . . . , gm are smooth
vector fields on a smooth manifold M , and the output channel y is given by a smooth
function ψ on M . Note that (2.80) reduces to the kinematic equation (2.5) of a single point
agent if the control vector fields gk form an orthonormal basis of the Euclidean space. In the
same way, the output function ψ can be considered as the individual potential function of an
agent. We already know from Section 1.3 that an extremum seeking control law for (2.80) is
given by (1.45). Note that the extremum seeking control law (1.45) is almost the same as the
formation control law (2.11) for point agents. The only notational difference is that (1.45)
contains the design functions y 7→ hν(y) while (2.11) contains the functions y 7→ hν(yκ)
with some additional exponent κ ≥ 1/2. Clearly, this is just a matter of notation: It is,
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2 Distance-based formation control

of course, also possible to write hν(y) instead of hν(yκ) in (2.11) if we replace y by yκ on
the right-hand side in the definition of the hν in (2.7). Consequently, control laws (1.45)
and (2.11) have the same structure. It is therefore natural to ask whether it makes sense
to apply the formation control law (2.11) to the more general input-output system (2.80),
(2.81). This is indeed a suitable control strategy if the following additional assumption is
satisfied, which is, at least for some applications, quite restrictive.

Assumption 2.42. The output function ψ attains a known minimum value y∗ at some
(not necessarily known) point x∗ of M . ♦

There are two reasons why we need Assumption 2.42. Firstly, the definition of h1, h2

in (2.7) involves the logarithm, which is only defined for positive values. Secondly, the
functions h1, h2 are designed in such a way that their amplitude a(y) in (2.7) vanishes if
y = 0. These two properties are crucial to obtain the full notion of asymptotic stability
and not only practical asymptotic stability as in Section 1.3. If we know the minimum
value y∗ as in Assumption 2.42, then it makes sense to consider the parameter-dependent
time-varying output-feedback control law

uk = uj(k,1)(t)h1

(
(y − y∗)κ

)
+ uj(k,2)(t)h2

(
(y − y∗)κ

)
, (2.82)

where the sinusoids uj(k,1), u
j
(k,2) are defined in (1.44), the design functions h1, h2 are defined

in (2.7), and the constant κ is ≥ 1/2.

In the situation of Assumption 2.42, we can apply exactly the same local asymptotic
stability analysis as in Section 2.5 to system (2.80) under control law (2.82). At the end,
this analysis leads to the same statements as in Propositions 2.24 and 2.26, where the
averaged vector field f∞ on M is now given by

f∞(x) := −κh
(
ψ(x)κ

)
ψ(x)2κ−1

m∑

k=1

(gkψ)(x) gk(x) (2.83)

with the function h defined in Lemma 2.20. Note that the right-hand side of (2.83) coincides
with the right-hand side of (2.18) if the gk form an orthonormal basis of the Euclidean space.
To apply the same argument as in the proofs of Theorems 2.12 and 2.13, we also need a
suitable replacement for Proposition 2.25. This requires two additional assumptions. The
first assumption concerns the control vector fields gk. Note that point agents can be steered
instantaneously into any direction of the space. To get the same for control system (2.80),
we need the following property.

Assumption 2.43. The vectors g1(x∗), . . . , gm(x∗) span the tangent space to M at x∗. ♦

If Assumption 2.43 is satisfied, then, by continuity, for every x from a sufficiently small
neighborhood of x∗ in M , the vectors g1(x), . . . , gm(x) also span the tangent space at x. The
second assumption concerns the output function ψ. In the context of formation control,
the assumption of infinitesimal rigidity ensures that the gradient of the global potential
function satisfies the estimate in Proposition 2.7 (d); cf. also Remark 2.8. It turns out
that we can apply basically the same argument as in the proof of Proposition 2.7 (d) if we
assume the following.

Assumption 2.44. The second derivative of ψ at x∗ is positive definite. ♦
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Recall from Section 1.5 that the existence of a well-defined second derivative of ψ at x∗

requires that x∗ is a critical point of ψ, which is ensured by Assumption 2.42. Using
Remark 1.2, we obtain the following replacement for Proposition 2.25: If Assumptions 2.42-
2.44 are satisfied, then there exist y0 > y∗ and c0 > 0 such that

(f∞ψ)(x) ≤ −c0 ψ(x)2κ

for every x ∈ ψ−1(≤ y0, x
∗). Now the same reasoning as in Subsection 2.5.4 leads to the

following versions of Theorems 2.12 and 2.13 for the purpose of extremum seeking control.

Theorem 2.45. Suppose that Assumptions 2.42-2.44 are satisfied. Let κ = 1/2. Then,
there exist µ > 0 and y+ > y∗ such that, for every λ > 1, there exists j0 > 0 such that,
for every j ≥ j0, every t0 ∈ R, and every x0 ∈ ψ−1(≤ y+, x∗), the maximal solution x of
system (2.80) under control law (2.82) with initial condition x(t0) = x0 has the following
two properties: x(t) converges to x∗ as t→∞, and the estimate

ψ(x(t)) ≤ λψ(x0) e−µ(t−t0)

holds for every t ≥ t0.

Theorem 2.46. Suppose that Assumptions 2.42-2.44 are satisfied. Let κ > 1/2 and let
j ≥ 1. Then, there exists µ > 0 such that, for every λ > 1, there exists y+ > y∗ such that,
for every t0 ∈ R and every x0 ∈ ψ−1(≤ y+, x∗), the maximal solution x of system (2.80)
under control law (2.82) with initial condition x(t0) = x0 has the following two properties:
x(t) converges to x∗ as t→∞, and the estimate

ψ(x(t)) ≤ λψ(x0)
(
1 + (2κ− 1)ψ(x0)2κ−1 µ (t− t0)

) 1
2κ−1

holds for every t ≥ t0.

As explained in Remark 2.27, the magnitude of the sublevel y+ > y∗ for the domain of
attraction ψ−1(≤ y+, x∗) in Theorems 2.45 and 2.46 depends on the choice of the frequency
parameter j. An increase of j, will lead to the existence of a larger value of y+. In general,
however, we cannot expect that y+ grows unbounded with increasing j. We can merely
expect that y+ tends to some upper bound > y∗ in the limit j → ∞. This is due to
the fact that Assumptions 2.42-2.44 only contain local conditions at the optimal point x∗.
Therefore, we only get local stability results. Under suitable additional global assumptions
on the control vector fields g1, . . . , gm and the output function ψ, it is also possible to extend
Theorems 2.45 and 2.46 to semi-global stability results.

Example 2.47. To allow a visual comparison with the extremum seeking method in Fig-
ure 1.6, we provide numerical results for the following situation. As in Section 1.3, we
consider control system (1.26) with output (1.27) given by y = ψ(x) := x2. Then, As-
sumptions 2.42-2.44 are satisfied with y∗ = x∗ = 0. Thus, if we apply a control law of the
form (2.82) with κ = 1/2, then Theorem 2.45 ensures that x∗ locally uniformly exponen-
tially stable for the closed loop system. As explained in Section 1.2, the choice of highly
oscillatory inputs is not restricted to the sinusoids (1.44). It is also possible to employ
the rectangular inputs uj1, u

j
2 in Figure 1.2. To ensure that the averaged vector field (2.83)

65



2 Distance-based formation control

x1 = Φf1
1 (x0)

x2 = Φf2
1 (x1)

x3 = Φ−f1
1 (x2)

x4 = Φ−f2
1 (x3)

t

x

1/4 1/2 3/4 1 5/4 3/2 7/4 2

1/2

x0 = 1

3/2

3/2

Figure 2.7: Control system (1.26) with output y = x2 under the j-dependent control
law (2.85) with uj1, u

j
2 as in Figure 1.2 and h1, h2 as in (2.84). The trajectory of the closed-

loop system with initial condition x(0) = 1 is drawn in blue for j = 4, in cyan for j = 16,

and in green for j = 128. As in Figure 1.6, the flow maps Φ±fνt are indicated for j = 4,
where fν(x) := hν(|x|) for ν = 1, 2. In the limit j → ∞, the trajectories of the closed-loop
system converge locally uniformly to the trajectories of (1.36). The trajectory of (1.36) with
initial condition x(0) = 1 is drawn in red.

coincides precisely with the right-hand side of (1.19), we choose slightly different design
functions h1, h2 compared to (2.7). We define h1(y) := h2(y) := 0 for y ≤ 0 and

h1(y) := y sin(2 log y), (2.84a)

h2(y) := y cos(2 log y) (2.84b)

for y > 0. This corresponds to (2.7) with amplitude a defined by a(y) := y. The additional
factor 2 in the arguments of sine and cosine leads to an additional factor 2 on the right-
hand side of (2.83). For the simple case of a single input channel u in control system (1.26),
control law (2.82) reduces to

u = uj1(t)h1(y1/2) + uj2(t)h2(y1/2). (2.85)

Then, the averaged system of (1.26) under control law (2.85) is given by (1.36). In contrast
to the practical asymptotic stability in Figure 1.6, we can now observe exponential stability
in Figure 2.7. ♦

An extremum seeking control law like (2.82) that can lead to exponential stability was
proposed for the first time in [111]. Later versions of this approach can be found in [41]
and [113]. A common assumption in all of these papers is that the minimum value y∗ needs
to be known to ensure exact convergence to the optimal state x∗. Moreover, the uncertainty
in the choice of a sufficiently large parameter j for the dither signals causes difficulties in
practical implementations. These questions are addressed in the next chapter.
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3 Extremum seeking control with an
adaptive dither signal

The content of this chapter is an extended version of [109].

3.1 Introduction and motivation

For the sake of simplicity, we restrict our introductory discussion to a control-affine sys-
tem on Rn with a smooth drift vector field g0 : Rn → Rn, smooth control vector fields
g1, . . . , gm : Rn → Rn, and a smooth output function ψ : Rn → R. Thus, we consider the
following control-affine system with output:

ẋ = g0(x) +
m∑

k=1

uk gk(x), (3.1)

y = ψ(x), (3.2)

where u1, . . . , um are real-valued input channels for a control law, and y is a real-valued
output channel given by ψ. Again, to simplify the discussion, we assume for the moment
that ψ is a quadratic function of the form ψ(x) = y∗ + ‖x − x∗‖2, where ‖ · ‖ denotes
the Euclidean norm. Our goal is to derive (time-varying) output-feedback that steers (3.1)
to x∗. The optimal point x∗ ∈ Rn, the optimal value y∗ ∈ Rn, as well as the current system
state of (3.1) and the vector fields g0, g1, . . . , gm are treated as unknown quantities. Only
real-time measurements of the output value (3.2) are available.

Note that the above extremum seeking control problem is more challenging than the one
in Section 1.3 because, in contrast to (1.39), there is also a possibly nonvanishing drift
involved in (3.1). For example, the drift could be of the form g0(x) = x−x∗, which leads to
the undesired effect that the system is driven into an ascent direction of ψ if the influence
of the control vector fields is too weak. One possible way to overcome this problem, is
to modify control law (1.45) in Section 1.3 as follows. Instead of using the j-dependent
sinusoids uj(k,1), u

j
(k,2) in (1.44), we introduce an additional parameter λ > 0 and then, for

every k ∈ {1, . . . ,m}, we define uλ,j(k,1), u
λ,j
(k,2) : R→ R by

uλ,j(k,1)(t) :=
√
λ j ωk cos(j ωk t), (3.3a)

uλ,j(k,2)(t) :=
√
λ j ωk sin(j ωk t), (3.3b)

where ω1, . . . ωk are again pairwise distinct positive real constants. Thus, the parameter λ
provides an additional degree of freedom to enlarge the amplitudes of the sinusoids. If we
use this slight modification of the sinusoids, then control law (1.45) becomes

uk = uλ,j(k,1)(t)h1(y) + uλ,j(k,2)(t)h2(y) (3.4)
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3 Extremum seeking control with an adaptive dither signal

for k = 1, . . . ,m, where y is the measured output signal (3.2) and the design functions
h1, h2 are chosen as in Section 1.3. By applying control law (3.4) to control system (3.1),
we obtain the closed loop system

ẋ = g0(x) +
m∑

k=1

(
uλ,j(k,1)(t) f(k,1)(x) + uλ,j(k,2)(t) f(k,2)(x)

)
, (3.5)

where the vector fields f(k,1), f(k,2) on Rn are defined by (1.41). If the drift g0 vanishes
and if λ = 2, then (3.5) reduces to (1.46). We already know that the trajectories of the
closed-loop system (1.46) approximate the trajectories of the averaged system (1.47) if the
parameter j is sufficiently large. A similar statement also holds for (3.5). Because of the
additional drift g0 and the parameter λ, the averaged system of (3.5) reads

ẋ = g0(x) +
λ

2

m∑

k=1

[f(k,1), f(k,2)](x). (3.6)

For the sake of simplicity, we assume for our further discussion that the design functions
h1, h2 are given by (1.32), (1.33), or (1.34). Then, using (1.42), the averaged system can
be also written as

ẋ = g0(x)− λ

2

m∑

k=1

(gkψ)(x) gk(x). (3.7)

In the subsequent paragraphs, we explain how the parameter λ in (3.7) can be used to
compensate the possibly negative influence of the drift g0.

For the purpose of extremum seeking control, we are interested in the case in which
the averaged system (3.7) is driven into a descent direction of ψ. Then the approximation
property ensures that the closed-loop system (3.5) displays a similar behavior for sufficiently
large j. To analyze the behavior of the averaged system, we consider the derivative ψ̇ along
solutions of (3.7), which is given by

ψ̇(x) = (g0ψ)(x)− λ

2

m∑

k=1

(gkψ)(x)2.

Now assume that the vectors g1(x), . . . , gm(x) span Rn at every x ∈ Rn. Recall that ψ is
assumed to be of the form ψ(x) = y∗ + ‖x− x∗‖2. For the moment, let K be the spherical
shell of all x ∈ Rn with r ≤ ‖x−x∗‖ ≤ R for certain radii R > r > 0. Since g0ψ is continuous
and since K is compact, there exists c > 0 such that (g0ψ)(x) < c for every x ∈ K. Using
the assumptions on g1, . . . , gm and ψ, a similar argument leads to the existence of some
d > 0 such that

∑m
k=1(gkψ)(x)2 > d for every x ∈ K. Thus, if λ ≥ λ0 := 2c/d, then ψ̇ only

takes negative values on K. In other words, for λ ≥ λ0, the solutions of (3.7) are driven into
a descent direction of ψ within K. It is now easy to see that if λ is sufficiently large, then
a neighborhood of x∗ becomes locally asymptotically stable for (3.7). In the limit λ→∞,
the attracting set shrinks to x∗ and the domain of attraction expands to Rn. To be more
precise: For all compact neighborhoods K∗ ⊆ K0 ⊆ Rn of x∗ and every T > 0, there exists
a sufficiently large λ0 > 0 such that, for every λ ≥ λ0 the solutions of (3.7) with initial
values in K0 enter K∗ at latest after the time span T and then stay in K∗. Next, we return
to the closed-loop system (3.5).

As argued in the previous paragraph, a large amplitude λ is needed to ensure desirable
stability properties of the averaged system (3.7) with respect to the optimal point x∗.
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On the other hand, the approximation of trajectories of (3.7) by of trajectories of (3.5)
suffers with increasing λ. To compensate this effect, one has to increase the frequency
parameter j sufficiently. This leads to the following result, which can be found, for example,
in [95, 96, 76]: For all compact neighborhoods K∗ ⊆ K0 ⊆ Rn of x∗ and every T > 0, there
exist sufficiently large λ > 0, j > 0 (where the choice of j also depends on the choice of λ)
such that the solutions of (3.5) with initial values in K0 enter K∗ at latest after the time
span T and then stay in K∗. However, there is no known rule so far on how large λ, j have
to be chosen for given K0,K

∗, T . Just the existence of certain lower bounds is ensured.
Moreover, finite escape times can occur if λ, j are too small, or if the initial state is too
far away from x∗. It is certainly difficult to implement (3.4) successfully without knowing
suitable values for the parameters λ, j.

The intention of this chapter is to propose a solution to the above problems. The idea
is to choose the amplitude λ and the frequency j in an adaptive way. This means that λ
and j increase automatically so that the system state x(t) of (3.5) converges to the desired
state x∗ as t→∞. We prevent finite escape times by introducing a dynamic funnel for the
output value. In this way, the system state is always contained in a prescribed sublevel set
of the output function ψ. Under the assumptions of our introductory discussion, we can
ensure global convergence to the optimal state without the obstacle of unknown control
parameters. We will see that this convergence result also holds in a more general situation
than for the introductory example.

The rest of the chapter is organized as follows. In Section 3.2, we recall some basic defi-
nitions, which are related to time-varying control-affine systems with drift. The extremum
seeking control law and the corresponding convergence result are presented in Section 3.3.
We apply the main result to a nontrivial example in Section 3.4 and also provide numerical
data. The proof of the convergence result is presented in Section 3.5.

3.2 Local definitions and notation for the chapter

We briefly introduce some of the terminology from [18, 101, 106], which is used throughout
the chapter. Let M be a smooth manifold. A time-varying function on M is a function
whose domain is R×M . A Carathéodory function on M is a time-varying function α on M
with the property that, for each t ∈ R, the function x 7→ α(t, x) on M is continuous, and
that, for each x ∈ M , the function t 7→ α(t, x) on R is (Lebesgue) measurable. Let α be a
time-varying function on M . We say that α is uniformly bounded on a subset V of M if
there exists a constant c > 0 such that |α(t, x)| ≤ c for every t ∈ R and every x ∈ V . We
say that α is locally uniformly bounded if every point of M has a neighborhood V in M such
that α is uniformly bounded on V . We say that α is locally integrally Lipschitz continuous
if, for every x ∈M , there exist a smooth chart (U, φ) for M around x and a positive locally
integrable function L on R such that |α(t, x′′) − α(t, x′)| ≤ L(t) ‖φ(x′′) − φ(x′)‖ for every
t ∈ R and all x′, x′′ ∈ U . We say that the time-varying function α on M is smooth if α
is smooth as a function on the product manifold R ×M . If α is smooth, then, for each
x ∈ M , we denote the derivative of s 7→ α(s, x) at t ∈ R by (∂tα)(t, x). This defines a
smooth time-varying function ∂tα on M , which we refer to as the time derivative of α. It
is clear that any given function ψ on M can be considered as the time-varying function
(t, x) 7→ ψ(x) on M .

A time-varying vector field on M is a map f with domain R×M such that, for each t ∈ R,
the map x 7→ f(t, x) is a vector field on M . Suppose that α is a time-varying function on M ,
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and f, g are time-varying vector fields on M . If, for each t ∈ R, the function ξ 7→ α(t, ξ) is
smooth, then we denote the fixed-time Lie derivative of ξ 7→ α(t, ξ) along the vector field
ξ 7→ f(t, ξ) at x ∈ M by (fα)(t, x). This defines another time-varying function fα on M .
If, for each t ∈ R, the vector fields ξ 7→ f(t, ξ), ξ 7→ g(t, ξ) are smooth, then we denote their
fixed-time Lie bracket at x ∈ M by [f, g](t, x). This defines another time-varying vector
field [f, g] on M . We say that f is locally uniformly bounded if, for every smooth function ϕ
on M , the time-varying function fϕ is locally uniformly bounded. In the same way, we
define the notions of a Carathéodory vector field, local integrally Lipschitz continuity, and
the property of being smooth for a time-varying vector field. It follows from Carathéodory’s
existence and uniqueness theorems for ordinary differential equations (see, e.g., [101]) that
a locally uniformly bounded, locally integrally Lipschitz continuous Carathéodory vector
field has a unique maximal integral curve for any initial condition. As for functions, we
identify each vector field on M with its corresponding time-varying extension.

3.3 Main result

We consider a control-affine system

ẋ = g0(t, x) +

m∑

k=1

uk gk(t, x) (3.8)

with output

y = ψ(x) (3.9)

on M under the following assumptions (in the terminology of Section 3.2).

Assumption 3.1. Suppose that

(1) M is a smooth manifold,

(2) ψ is a smooth function on M ,

(3) (a) g0 is a locally uniformly bounded and locally integrally Lipschitz continuous
Carathéodory vector field on M ,

(b) g1, . . . , gm are smooth time-varying vector fields on M

such that, for all k1, k2, k3 ∈ {1, . . . ,m}, the time-varying functions gk1ψ, ∂t(gk1ψ),
g0(gk1ψ), gk2(gk1ψ), ∂t(gk2(gk1ψ)), g0(gk2(gk1ψ)), gk3(gk2(gk1ψ)) on M are locally
uniformly bounded. ♦

Remark 3.2. If g0 is a locally Lipschitz continuous vector field on M , and if g1, . . . , gm are
smooth vector fields on M (all of them not time-varying), then property (3) in Assump-
tion 3.1 is satisfied for every smooth function ψ on M . ♦

In (3.8) and (3.9), we call x the system state, t the time parameter, g0 the drift vector
field, g1, . . . , gm the control vector fields, and u1, . . . , um the real-valued input channels for
a control law. The output function ψ converts the current state into an output value y. In
the context of extremum seeking control, only real-time measurements of y are available.
We are interested in an output-feedback law for (3.8) so that y converges to a minimum
value of ψ.
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Let ω1, . . . , ωm be pairwise distinct positive real constants. We propose the control law

uk =

√
ωk

(z − y)2
sin
(
ωk J +

1

z − y
)
, k = 1, . . . ,m, (3.10)

for system (3.8) with output (3.9), where the functions z, J are determined by the differential
equations

ż = −(z − y), (3.11)

J̇ =
1

(z − y)5
. (3.12)

The following results gives sufficient conditions under which (3.10)-(3.12) minimizes the
output (3.9) of (3.8). We use the terminology and notation from Sections 1.5 and 3.2.

Theorem 3.3. Suppose that Assumption 3.1 is satisfied. Suppose that ψ attains a local
minimum value y∗ at some point x∗ of M . Assume that there exist y+ with y∗ < y+ ≤ ∞
and a continuous function b on ψ−1(≤ y+, x∗) such that

m∑

k=1

(gkψ)(t, x)2 ≥ b(x) > 0 (3.13)

for every t ∈ R and every x ∈ ψ−1(≤ y+, x∗) with x 6= x∗. Assume that ψ−1(≤ ỹ, x∗) is
compact for every ỹ < y+. Then, for every t0 ∈ R, every x0 ∈ ψ−1(≤ y+, x∗), and all
z0, J0 ∈ R with ψ(x0) < z0 < y+, there exist unique solutions x, z, J of system (3.8), (3.9)
under control law (3.10)-(3.12) on the interval [t0,∞) with initial values x0, z0, J0 at t0, and
the following holds:

(a) for every t ≥ t0, we have y∗ ≤ y(t) = ψ(x(t)) < z(t),

(b) t 7→ z(t) is strictly decreasing with z(t)→ y∗ as t→∞.

In particular, statements (a) and (b) of Theorem 3.3 imply y(t)→ y∗ as t→∞.

Remark 3.4. Suppose that the vector fields g1, . . . , gm are time-invariant. Moreover, sup-
pose that there exists y+ with y∗ < y+ ≤ ∞ such that, for every x ∈ ψ−1(≤ y+, x∗)
with x 6= x∗, we have (gkψ)(x) 6= 0 for some k ∈ {1, . . . ,m}. Then, the nonnegative
smooth function b :=

∑m
k=1(gkψ)2 on M satisfies (3.13) for every x ∈ ψ−1(≤ y+, x∗) with

x 6= x∗. ♦

Because of Remarks 1.2 and 3.4, a local version1 of Theorem 3.3 can be stated as follows.

Corollary 3.5. Suppose that Assumption 3.1 is satisfied and that the vector fields g1, . . . , gm
are time-invariant. Assume that

1. the function ψ attains a local minimum value y∗ at some point x∗ of M ,

2. the second derivative of ψ at x∗ is positive definite,

3. the vectors g1(x∗), . . . , gm(x∗) span the tangent space to M at x∗.

1By local version, we mean sufficient conditions to ensure the existence of some (possibly small) sublevel
y+ > y∗ as in Theorem 3.3.

71



3 Extremum seeking control with an adaptive dither signal

Then, there exists y+ > y∗ such that the conclusions of Theorem 3.3 hold.

Remark 3.6. Assume that we are in the situation of Theorem 3.3. Suppose that we are
not interested in exact convergence to the optimal output value y∗ but only in reaching a
prescribed z∗-sublevel set of ψ for some z∗ ∈ (y∗, y+). Then, one can modify the control
law (3.10)-(3.12) as follows. As soon as the value of the function z reaches the desired
value z∗ one can replace (3.11) by ż = 0 to keep z at the constant value z∗. Then, the
system state of (3.8) remains in ψ−1(≤ z∗, x∗), and the right-hand side of (3.12) remains
bounded. We illustrate this modification by an example in the next section. ♦

Remark 3.7. Control law (3.10)-(3.12) bears a certain resemblance to the idea of funnel
control (see, e.g., [45, 49]). By Theorem 3.3, the function z acts as an upper bound for
the output y. The condition ψ(x) = y < z defines a performance funnel for the system
state x of (3.8). The boundary of the funnel is described by z. The width of the funnel is
described by the positive function z − y∗, where y∗ is the minimum value of ψ. Under the
assumptions of Theorem 3.3, the so-called “ultimate width”; i.e., the width of the funnel
in the limit t→∞, is equal to zero. The modification in Remark 3.6 leads to the positive
“ultimate width” z∗ − y∗. ♦

3.4 A numerical Example

As an example, we consider the following particular case of (3.8) and (3.9) on the state
manifold M := R2. The control-affine system (3.8) consists of the drift vector field g0,
given by

g0(t, (x1, x2)) :=
(

sin(2 t), cos(t)
)>
,

and m := 2 time-invariant control vector fields g1, g2, given by

g1(x1, x2) :=
(

cos(x1 + x2), sin(x1 + x2)
)>
,

g2(x1, x2) :=
(
− sin(x1 + x2), cos(x1 + x2)

)>
.

The output function ψ on R2 is given by

ψ(x1, x2) := (x1 − 1)2 + (x2 − 1)2 + 2018.

It follows from Remark 3.4 that the assumptions of Theorem 3.3 are satisfied with y+ :=∞.
This means that control law (3.10)-(3.12) will steer the system to the optimal state x∗ :=
(1, 1) at which ψ attains its global minimum value y∗ = 2018. The numerical simulations in
Figure 3.1 confirm this statement. All results are generated with the frequency coefficients
ω1 := 1, ω2 := 2 in (3.10), and for the initial conditions x(0) = (0, 0), z(0) = ψ(x(0)) + 1,
J(0) = 0. The three plots in the left column of Figure 3.1 show the trajectory x, the
output y, and the right-hand side j := 1/(z−y)5 of (3.12) on the time interval [0, 4.5]. One
can observe that with increasing time parameter t, the trajectory x(t) converges to x∗, the
output y(t) converges to y∗, and the adaptive frequency parameter j(t) tends to infinity.
We also provide numerical data under the modification of Remark 3.6 in the right column
of Figure 3.1. The frequency coefficients and the initial conditions are the same as before.
Following Remark 3.6, equation (3.11) is replaced by ż = 0 as soon as z(t) reaches a desired
value z∗. The results are generated for the choice z∗ := 2018.5. The function z reaches the
value z∗ at t∗ ≈ 2.55. This causes the output y(t) to stay below the value ≈ 2018.2 for
t ≥ t∗. The adaptive frequency parameter j(t) remains below the value 400 for t ≥ t∗.
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Figure 3.1: Simulation results for the example in Section 3.4. Left column: implemen-
tation of control law (3.10)-(3.12) to enforce convergence to the optimal value y∗ = 2018.
Right column: control law (3.10)-(3.12) with the modification in Remark 3.6 for z∗ = 2018.2.
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3.5 Convergence analysis

Throughout this section, we suppose that the assumptions of Theorem 3.3 are satisfied.
We are interested in solutions of system (3.8), (3.9) under control law (3.10)-(3.12) for
which the condition ψ(x) < z is always satisfied. For this reason, we introduce the open
submanifold

P :=
{

(x, z) ∈ ψ−1(≤ y+, x∗)× R
∣∣ ψ(x) < z < y+

}

of the product manifold M × R. For the proof of Theorem 3.3, we study the closed-loop
system

ẋ = g0(t, x) +
m∑

k=1

√
ωk

(z − ψ(x))2
sin
(
ωk J +

1

z − ψ(x)

)
gk(t, x), (3.14)

ż = −(z − ψ(x)), (3.15)

J̇ =
1

(z − ψ(x))5
(3.16)

on the state space P × R. It follows from standard existence and uniqueness theorems for
ordinary differential equations that system (3.14)-(3.16) on P × R has a unique maximal
solution for any initial value in P × R at any initial time in R. At this point, we collect
several properties of the closed-loop system (3.14)-(3.16), which are easy to check.

Remark 3.8. Suppose that ((x, z), J) : I → P × R is a maximal solution of (3.14)-(3.16).
Then, the following statements hold.

(i) The function z is strictly decreasing (meaning that z(t1) > z(t2) for all t1 < t2 in I).

(ii) The function J is strictly increasing (meaning that J(t1) < J(t2) for all t1 < t2 in I).

(iii) For every t ∈ I, we have y+ > z(t) > ψ(x(t)) ≥ y∗.

(iv) If there is a finite escape time sup I < ∞, then there exists z∞ > y∗ such that
z(t) ≥ z∞ for every t ∈ I. ♦

In the next step, we rewrite equations (3.14) and (3.15) in a more suitable form. For this
purpose, we define two smooth design functions h1, h2 on (0,∞) by

h1(s) := s sin(1/s), (3.17a)

h2(s) := s cos(1/s). (3.17b)

Note that the functions h1, h2 satisfy the property

[h1, h2](s) := h′2(s)h1(s)− h′1(s)h2(s) = +1 (3.18)

for every s ∈ (0,∞), which is (up to the sign) the same as for the functions h1, h2

in (1.32), (1.33), and (1.34). Define a positive smooth function ϕ on P by

ϕ(p) := z − ψ(x) (3.19)

for every p = (x, z) ∈ P . Next, we extend the time-varying vector fields g0, g1, . . . , gm in
the canonical way from M to the product manifold M × R, and then we restrict them to
the submanifold P . This results in time-varying vector fields ĝ0, ĝ1, . . . , ĝm on P . In the
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same way, we extended the standard vector field on R to M ×R, and denote its restriction
to P by ∂

∂z . Define a time-varying vector field f0 on P by

f0(t, p) := ĝ0(t, p)− ϕ(p)
∂

∂z
(p). (3.20)

Then, we can combine (3.8) and (3.11) to the control-affine system

ṗ = f0(t, p) +
m∑

k=1

uk ĝk(t, p) (3.21)

on P . For every k ∈ {1, . . . ,m} and every ν ∈ {1, 2}, define a time-varying vector field f(k,ν)

on P by

f(k,ν)(t, p) := hν(ϕ(p)) ĝk(t, p). (3.22)

Now, using the trigonometric identity (1.49), we can combine (3.14) and (3.15) to a single
equation so that the closed-loop system (3.14)-(3.16) can be written as the time-varying
system

ṗ = f0(t, p) +
m∑

k=1

√
ωk

ϕ(p)3

(
cos(ωk J) f(k,1)(t, p) + sin(ωk J) f(k,2)(t, p)

)
, (3.23)

J̇ =
1

ϕ(p)5
(3.24)

on P × R. By a (maximal) solution of (3.23), we mean a curve p : I → P for which there
exists a function J : I → R such that (p, J) : I → P × R is a (maximal) solution of (3.23),
(3.24).

Let γ : I → P be a solution of (3.23). We define two functions λ and j on I by

λ(t) :=
1

ϕ(γ(t))
and j(t) := J̇(t) =

1

ϕ(γ(t))5
,

which will play the role of an adaptive amplitude and an adaptive frequency parameter,
respectively. Similar to (3.3), for every k ∈ {1, . . . ,m}, we define two functions uj(k,1), u

j
(k,2)

on I by

uj(k,1)(t) :=
√
λ(t) j(t)ωk cos

(
ωk J(t)

)
, (3.25a)

uj(k,2)(t) :=
√
λ(t) j(t)ωk sin

(
ωk J(t)

)
. (3.25b)

Note that, in first order approximation, the frequency of cosine and sine in (3.25) is ωkj(t).
Using (3.17), (3.25), and the trigonometric identity (1.49), we can write control law (3.10)
also as

uk = uj(k,1)(t)h1(ϕ(p)) + uj(k,2)(t)h2(ϕ(p)), (3.26)

which is basically of the same form as (3.4). If we apply (3.26) to control system (3.21),
then we obtain the closed-loop system

ṗ = f0(t, p) +
m∑

k=1

(
uj(k,1)(t)f(k,1)(t, p) + uj(k,2)(t)f(k,2)(t, p)

)
, (3.27)
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which has the same structure as the closed-loop system (3.5). Note that, in contrast to (3.5),
the amplitude λ and the frequency parameter j are not constant but depend on the curve γ.
Both λ(t) and j(t) tend to +∞ when ϕ(γ(t)) approaches the value 0. As explained in
Section 3.1, the trajectories of (3.5) approximate the trajectories of (3.7) in the large-
amplitude, high-frequency limit. It turns out that a similar statement also holds for (3.27)
when j(t) becomes large. A detailed averaging analysis will reveal that the Lie bracket
system for (3.27) reads

ṗ = f0(t, p) +
λ(t)

2

m∑

k=1

[f(k,1), f(k,2)](t, p), (3.28)

which is the counterpart to equation (3.6). Note that the time-varying amplitude λ in (3.28)
still depends on the solution γ of (3.23). A direct computation of the Lie brackets in (3.28)
shows that if we write the system state of (3.28) component-wise as p = (x, z), then the
differential equation for the component x on M can be written as

ẋ = g0(t, x)− λ(t)

2

m∑

k=1

(gkψ)(t, x) gk(t, x),

which is the counterpart to equation (3.7). Thus, a sufficiently small value of ϕ ◦ γ causes
a large value of the amplitude λ for the descent vector field −(gkψ)gk of ψ.

As an abbreviation, we introduce the indexing set Λ of all pairs (k, ν) with k ∈ {1, . . . ,m}
and ν ∈ {1, 2}. Then, the closed-loop system (3.27) can be written more compactly as

ṗ = f0(t, p) +
∑

`∈Λ

uj`(t) f`(t, p), (3.29)

which may be interpreted as a control-affine system with drift f0 and control vector fields f`
under open-loop controls uj` . In the following, we will frequently use the property that

every solution γ of (3.23) is also a solution of (3.29) if the (state-dependent) functions uj`
are defined as in (3.25).

3.5.1 Estimates for the Lie derivatives

Note that the function ϕ on P in (3.19) is smooth. Moreover, the time-varying vector
fields f` on P in (3.22) are smooth. Recall that the drift vector field f0 on P is defined
in (3.20). This allows us to compute the following (iterated) Lie derivatives along ϕ explic-
itly. For every t ∈ R, every p = (x, z) ∈ P , and all `i = (ki, νi) ∈ Λ with i = 1, 2, 3, we
have

(f0ϕ)(t, p) = −(g0ψ)(t, x)− ϕ(p),

(f`1ϕ)(t, p) = −hν1(ϕ(p)) (gk1ψ)(t, x),

(∂t(f`1ϕ))(t, p) = −hν1(ϕ(p)) (∂t(gk1ψ))(t, x),

(f0(f`1ϕ))(t, p) = +h′ν1(ϕ(p)) (g0ψ)(t, x) (gk1ψ)(t, x)

− hν1(ϕ(p)) (g0(gk1ψ))(t, x)

+ h′ν1(ϕ(p)) (gk1ψ)(t, x)ϕ(p),

(f`2(f`1ϕ))(t, p) = +hν2(ϕ(p))h′ν1(ϕ(p)) (gk2ψ)(t, x) (gk1ψ)(t, x)

− hν2(ϕ(p))hν1(ϕ(p)) (gk2(gk1ψ))(t, x),
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(∂t(f`2(f`1ϕ)))(t, p) = +hν2(ϕ(p))h′ν1(ϕ(p)) (gk2ψ)(t, x) (∂t(gk1ψ))(t, x)

+ hν2(ϕ(p))h′ν1(ϕ(p)) (∂t(gk2ψ))(t, x) (gk1ψ)(t, x)

− hν2(ϕ(p))hν1(ϕ(p)) (∂t(gk2(gk1ψ)))(t, x),

(f0(f`2(f`1ϕ)))(t, p) = −hν2(ϕ(p))h′′ν1(ϕ(p)) (g0ψ)(t, x) (gk2ψ)(t, x) (gk1ψ)(t, x)

− h′ν2(ϕ(p))h′ν1(ϕ(p)) (g0ψ)(t, x) (gk2ψ)(t, x) (gk1ψ)(t, x)

+ hν2(ϕ(p))h′ν1(ϕ(p)) (gk2ψ)(t, x) (g0(gk1ψ))(t, x)

+ hν2(ϕ(p))h′ν1(ϕ(p)) (g0(gk2ψ))(t, x) (gk1ψ)(t, x)

+ hν2(ϕ(p))h′ν1(ϕ(p)) (g0ψ)(t, x) (gk2(gk1ψ))(t, x)

+ h′ν2(ϕ(p))hν1(ϕ(p)) (g0ψ)(t, x) (gk2(gk1ψ))(t, x)

− hν2(ϕ(p))hν1(ϕ(p)) (g0(gk2(gk1ψ)))(t, x),

− hν2(ϕ(p))h′′ν1(ϕ(p)) (gk2ψ)(t, x) (gk1ψ)(t, x)ϕ(p)

− h′ν2(ϕ(p))h′ν1(ϕ(p)) (gk2ψ)(t, x) (gk1ψ)(t, x)ϕ(p)

+ hν2(ϕ(p))h′ν1(ϕ(p)) (gk2(gk1ψ))(t, x)ϕ(p)

+ h′ν2(ϕ(p))hν1(ϕ(p)) (gk2(gk1ψ))(t, x)ϕ(p),

(f`3(f`2(f`1ϕ)))(t, p) = −hν3(ϕ(p))hν2(ϕ(p))h′′ν1(ϕ(p)) (gk3ψ)(t, x) (gk2ψ)(t, x) (gk1ψ)(t, x)

− hν3(ϕ(p))h′ν2(ϕ(p))h′ν1(ϕ(p)) (gk3ψ)(t, x) (gk2ψ)(t, x) (gk1ψ)(t, x)

+ hν3(ϕ(p))hν2(ϕ(p))h′ν1(ϕ(p)) (gk2ψ)(t, x) (gk3(gk1ψ))(t, x)

+ hν3(ϕ(p))hν2(ϕ(p))h′ν1(ϕ(p)) (gk3(gk2ψ))(t, x) (gk1ψ)(t, x)

+ hν3(ϕ(p))hν2(ϕ(p))h′ν1(ϕ(p)) (gk3ψ)(t, x) (gk2(gk1ψ))(t, x)

+ hν3(ϕ(p))h′ν2(ϕ(p))hν1(ϕ(p)) (gk3ψ)(t, x) (gk2(gk1ψ))(t, x)

− hν3(ϕ(p))hν2(ϕ(p))hν1(ϕ(p)) (gk3(gk2(gk1ψ)))(t, x).

The functions hν in (3.17) and their derivatives can be easily computed. By doing so, one
can verify that, for every ỹ ∈ (y∗, y+), there exists ch > 0 such that

|hν(s)| ≤ ch s,

|h′ν(s)| ≤ ch/s,

|h′′ν(s)| ≤ ch/s
3

for every s ∈ (0, ỹ−y∗). Moreover, by Assumption 3.1 and the assumptions of Theorem 3.3,
for every ỹ ∈ (y∗, y+), there exists cg > 0 such that

|(g0ψ)(t, x)| ≤ cg,

|(gk1ψ)(t, x)| ≤ cg,

|(∂t(gk1ψ))(t, x)| ≤ cg,

|(g0(gk1ψ))(t, x)| ≤ cg,

|(gk2(gk1ψ))(t, x)| ≤ cg,

|(∂t(gk2(gk1ψ)))(t, x)| ≤ cg,

|(g0(gk2(gk1ψ)))(t, x)| ≤ cg,

|(gk3(gk2(gk1ψ)))(t, x)| ≤ cg

for every t ∈ R, every x ∈ ψ−1(≤ ỹ, x∗), and all k1, k2, k3 ∈ {1, . . . ,m}. Now it is straight
forward to derive the following estimates for the above Lie derivatives of ϕ.
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Lemma 3.9. For every ỹ ∈ (y∗, y+), there exists c > 0 such that

|(f0ϕ)(t, p)| ≤ c,

|(f`ϕ)(t, p)| ≤ c ϕ(p),

|(∂t(f`ϕ))(t, p)| ≤ c ϕ(p),

|(f0(f`ϕ))(t, p)| ≤ c/ϕ(p),

|(f`1(f`2ϕ))(t, p)| ≤ c,

|(∂t(f`1(f`2ϕ)))(t, p)| ≤ c,

|(f0(f`1(f`2ϕ)))(t, p)| ≤ c/ϕ(p)2,

|(f`1(f`2(f`3ϕ)))(t, p)| ≤ c/ϕ(p)

for all `, `1, `2, `3 ∈ Λ, every t ∈ R, and every p = (x, z) ∈ P with z ≤ ỹ.

The sum of Lie brackets on the right-hand side of (3.28) motivates us to define the
time-varying vector field

f∞ :=
1

2

m∑

k=1

[f(k,1), f(k,2)] (3.30)

on P . A direct computation, using (3.18), (3.19) and (3.22), shows that the Lie derivative
of ϕ along f∞ is given by

(f∞ϕ)(t, p) =
1

2

m∑

k=1

(gkψ)(t, x)2 (3.31)

for every t ∈ R, every p = (x, z) ∈ P .

3.5.2 Averaging of the sinusoids

Let γ : I → P be a solution of (3.23). Define two functions j and ι on I by

j(t) :=
1

ϕ(γ(t))5
(3.32)

and

ι(t) := −5 j(t)
6
5

(
(f0ϕ)(t, γ(t)) +

∑

`∈Λ

uj`(t) (f`ϕ)(t, γ(t))
)
, (3.33)

respectively. Since γ is a solution of (3.23), the function j is at least locally absolutely
continuous and therefore its derivative exists almost everywhere. Using that γ is also a
solution of (3.29), we obtain by the chain rule that the derivative of j coincides with ι
almost everywhere on I. In the following, we introduce the notation from [68, 69]. For
every ` = (k, ν) ∈ Λ, define two complex-valued constants η±ωk,` as follows. If ν = 1, let
η±ωk,` :=

√
ωk/2, and otherwise, i.e., if ν = 2, let η±ωk,` :=

√
ωk/(2i), where i denotes the

imaginary unit. Moreover, let Ω(`) := {±ωk}.
Let ` ∈ Λ. Using the above notation, we can write uj`(t) in (3.25) as

uj`(t) = j(t)
3
5

∑

ω∈Ω(`)

ηω,` eiωJ(t) =: −Ũvj`(t) (3.34)
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for every t ∈ I, where e denotes Euler’s number. Using integration by parts and J̇ = j, we
get ∫ t2

t1

Ũvj`(t) dt =
[
ŨV j

`(t)
]t=t2
t=t1
−
∫ t2

t1

ũV j
`(t) dt,

where

ŨV j
`(t) := −j(t)− 2

5

∑

ω∈Ω(`)

ηω,`
iω

eiωJ(t), (3.35)

ũV j
`(t) :=

2

5
ι(t) j(t)−

7
5

∑

ω∈Ω(`)

ηω,`
iω

eiωJ(t).

Finally, we let

rj`(t) := ũV j
`(t), (3.36)

ũvj`(t) := ũV j
`(t) + Ũvj`(t).

Then we have

uj`(t) = vj` (t) + rj`(t)− ũv
j
`(t), (3.37)

∫ t2

t1

ũvj`(t) dt =
[
ŨV j

`(t)
]t=t2
t=t1

. (3.38)

This completes the definitions for a single index `.
Let `1, `2 ∈ Λ. When we multiply uj`1(t) by ŨV j

`2
(t), we get

uj`1(t) ŨV j
`2

(t) = vj`1,`2(t)− Ũvj`1,`2(t),

where

vj`1,`2(t) := −j(t) 1
5

∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2=0

ηω1,`1 ηω2,`2

iω2
, (3.39)

Ũvj`1,`2(t) := j(t)
1
5

∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2 6=0

ηω1,`1 ηω2,`2

iω2
ei(ω1+ω2)J(t).

Using integration by parts and J̇ = j, we get

∫ t2

t1

Ũvj`1,`2(t) dt =
[
ŨV j

`1,`2
(t)
]t=t2
t=t1
−
∫ t2

t1

ũV j
`1,`2

(t) dt,

where

ŨV j
`1,`2

(t) := j(t)−
4
5

∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2 6=0

ηω1,`1 ηω2,`2

i2ω2(ω2 + ω1)
ei(ω1+ω2)J(t), (3.40)

ũV j
`1,`2

(t) := −4

5
ι(t) j(t)−

9
5

∑

(ω1,ω2)∈Ω(`1)×Ω(`2)
ω1+ω2 6=0

ηω1,`1 ηω2,`2

i2ω2(ω2 + ω1)
ei(ω1+ω2)J(t).
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Finally, we let

rj`1,`2(t) := ũV j
`1,`2

(t), (3.41)

ũvj`1,`2(t) := ũV j
`1,`2

(t) + Ũvj`1,`2(t).

Then we have

uj`1(t) ŨV j
`2

(t) = vj`1,`2(t) + rj`1,`2(t)− ũvj`1,`2(t), (3.42)
∫ t2

t1

ũvj`1,`2(t) dt =
[
ŨV j

`1,`2
(t)
]t=t2
t=t1

. (3.43)

This completes the definitions for two indices `1, `2.

The functions in (3.33)-(3.36), (3.40) and (3.41) satisfy the following estimates.

Lemma 3.10. For every ỹ ∈ (y∗, y+), there exists c > 0 such that

|uj`(t)| ≤ c/ϕ(γ(t))3,

|ι(t)| ≤ c/ϕ(γ(t))8,

|ŨV j
`(t)| ≤ c ϕ(γ(t))2,

|rj`(t)| ≤ c/ϕ(γ(t)),

|ŨV j
`1,`2

(t)| ≤ c ϕ(γ(t))4,

|rj`1,`2(t)| ≤ c ϕ(γ(t))

for all `, `1, `2 ∈ Λ, every t0 ∈ R, every p0 = (x0, z0) ∈ P with z0 ≤ ỹ, every solution
γ : I → P of (3.23) with γ(t0) = p0, and every t ≥ t0 in I.

Proof. The estimates for uj` , ŨV
j
` , and ŨV j

`1,`2
follow from their definitions and the defi-

nition of j in (3.32). We know that the Lie derivatives f0ϕ and f`ϕ satisfy the estimates
in Lemma 3.9. Using the estimate for uj` , we easily obtain the estimate for ι. This in turn

implies the estimates for ũV j
` and ũV j

`1,`2
.

A direct computation shows that the vj`1,`2 in (3.39) are given as follows.

Lemma 3.11. For all `1 = (k1, ν1), `2 = (k2, ν2) ∈ Λ, we have

vj`1,`2 =
1

2
j

1
5 ·





+1 if k1 = k2 and ν1 = 1 and ν2 = 2,
−1 if k1 = k2 and ν1 = 2 and ν2 = 1,
0 otherwise.

Because of Lemma 3.11, we have

j
1
5 f∞ϕ =

1

2
j

1
5

m∑

k=1

[f(k,1), f(k,2)]ϕ =
∑

`1,`2∈Λ

vj`1,`2 f`1(f`2ϕ) (3.44)

on I × P , where the time-varying vector field f∞ is defined in (3.30).
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3.5.3 Integral expansion

For the moment, fix an arbitrary j > 0, let γ : R → P be a solution of (3.23), and let
t1, t2 ∈ R. Then, the curve γ is locally absolutely continuous and solves (3.29). The
fundamental theorem of calculus applied to the composition of γ and ϕ implies that

ϕ(γ(t2)) = ϕ(γ(t1)) +

∫ t2

t1

(f0ϕ)(t, γ(t)) dt+
∑

`∈Λ

∫ t2

t1

uj`(t) (f`ϕ)(t, γ(t)) dt.

Note that each of the functions t 7→ (f`ϕ)(t, γ(t)) is locally absolutely continuous. Thus,
we may apply integration by parts, which leads to

ϕ(γ(t2)) = ϕ(γ(t1)) +

∫ t2

t1

(f0ϕ)(t, γ(t)) dt+
∑

`∈Λ

∫ t2

t1

rj`(t) (f`ϕ)(t, γ(t)) dt

−
∑

`∈Λ

[
ŨV j

`(t) (f`ϕ)(t, γ(t))
]t=t2
t=t1

+
∑

`∈Λ

∫ t2

t1

ŨV j
`(t) (∂t(f`ϕ))(t, γ(t)) dt

+
∑

`∈Λ

∫ t2

t1

ŨV j
`(t) (f0(f`ϕ))(t, γ(t)) dt+

∑

`1,`2∈Λ

∫ t2

t1

uj`1(t) ŨV j
`2

(t) (f`1(f`2ϕ))(t, γ(t)) dt,

where we have used first (3.37) and then (3.38) as well as that γ is a solution of (3.29). Note
that each of the functions t 7→ (f`1(f`2ϕ))(t, γ(t)) is locally absolutely continuous. Next,

we replace the product of uj`1(t) and ŨV j
`2

(t) in the last integral of the above equation
by (3.42), and then we apply integration by parts. Using (3.43) and the property that γ is
a solution of (3.29), this leads to

ϕ(γ(t2)) = ϕ(γ(t1))−
[
(Dj

1ϕ)(t, γ(t))
]t=t2
t=t1

+

∫ t2

t1

(Dj
2ϕ)(t, γ(t)) dt

+
∑

`1,`2∈Λ

∫ t2

t1

vj`1,`2(t) (f`1(f`2ϕ))(t, γ(t)) dt,

where the functions Dj
1ϕ, Dj

2ϕ on I × P are defined by

(Dj
1ϕ)(t, p) :=

∑

`∈Λ

ŨV j
`(t) (f`ϕ)(t, p) +

∑

`1,`2∈Λ

ŨV j
`1,`2

(t) (f`1(f`2ϕ))(t, p), (3.45)

(Dj
2ϕ)(t, p) := (f0ϕ)(t, p) +

∑

`∈Λ

rj`(t)(t) (f`ϕ)(t, p) +
∑

`1,`2∈Λ

rj`1,`2(t) (f`1(f`2ϕ))(t, p)

+
∑

`∈Λ

ŨV j
`(t) (∂t(f`ϕ))(t, p) +

∑

`1,`2∈Λ

ŨV j
`1,`2

(t) (∂t(f`1(f`2ϕ)))(t, p)

+
∑

`∈Λ

ŨV j
`(t) (f0(f`ϕ))(t, p) +

∑

`1,`2∈Λ

ŨV j
`1,`2

(t) (f0(f`1(f`2ϕ)))(t, p)

+
∑

`1,`2,`3∈Λ

uj`1(t) ŨV j
`2,`3

(t) (f`1(f`2(f`3ϕ)))(t, p). (3.46)

Because of (3.44), we have derived the following integral expansion for the propagation of ϕ
along solutions of (3.23).
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Proposition 3.12. For every solution γ : I → P of (3.23) and all t1, t2 ∈ I, we have

ϕ(γ(t2)) = ϕ(γ(t1))−
[
(Dj

1ϕ)(t, γ(t))
]t=t2
t=t1

+

∫ t2

t1

1

ϕ(γ(t))
(f∞ϕ)(t, γ(t)) dt+

∫ t2

t1

(Dj
2ϕ)(t, γ(t)) dt,

where f∞ϕ, Dj
1ϕ and Dj

2ϕ are given by (3.31), (3.45), and (3.46), respectively.

Since we assume that estimate (3.13) holds for the sum on the right-hand side of (3.31)
with some continuous function b on ψ−1(≤ y+, x∗), we obtain the following result.

Proposition 3.13. For all y∞, ỹ ∈ (y∗, y+) with y∞ < ỹ, there exists c0 > 0 such that

(f∞ϕ)(t, p) ≥ c0

for every t ∈ R and every p = (x, z) ∈ P with y∞ ≤ ψ(x) ≤ ỹ.

Next, we derive estimates for the remainders Dj
1ϕ and Dj

2ϕ in Proposition 3.12.

Proposition 3.14. For every ỹ ∈ (y∗, y+), there exist c1, c2 > 0 such that

|(Dj
1ϕ)(t, γ(t))| ≤ c1 ϕ(γ(t))2,

|(Dj
2ϕ)(t, γ(t))| ≤ c2

for every t0 ∈ R, every p0 = (x0, z0) ∈ P with z0 ≤ ỹ, every solution γ : I → P of (3.23)
with γ(t0) = p0, and every t ≥ t0 in I.

Proof. It follows from Lemmas 3.9 and 3.10 that there exists c > 0 such that

|ŨV j
`(t) (f`ϕ)(t, γ(t))| ≤ c ϕ(γ(t))3,

|ŨV j
`1,`2

(t) (f`1(f`2ϕ))(t, γ(t))| ≤ c ϕ(γ(t))4,

|rj`(t) (f`ϕ)(t, γ(t))| ≤ c,

|rj`1,`2(t) (f`1(f`2ϕ))(t, γ(t))| ≤ c ϕ(γ(t)),

|ŨV j
`(t) (∂t(f`ϕ))(t, γ(t))| ≤ c ϕ(γ(t))3,

|ŨV j
`1,`2

(t) (∂t(f`1(f`2ϕ)))(t, γ(t))| ≤ c ϕ(γ(t))4,

|ŨV j
`(t) (f0(f`ϕ))(t, γ(t))| ≤ c ϕ(γ(t)),

|ŨV j
`1,`2

(t) (f0(f`1(f`2ϕ)))(t, γ(t))| ≤ c ϕ(γ(t))2,

|uj`1(t) ŨV j
`2,`3

(t)(f`1(f`2(f`3ϕ)))(t, γ(t))| ≤ c

for every t0 ∈ R, every p0 = (x0, z0) ∈ P with z0 ≤ ỹ, every solution γ : I → P of (3.23)
with γ(t0) = p0, and every t ≥ t0 in I. The asserted estimates follow by applying the above
estimates to the terms in the definitions of Dj

1ϕ and Dj
2ϕ in (3.45) and (3.46), respectively.

(Note that we could get a slightly stronger estimate for Dj
1ϕ involving the third power of ϕ

instead of the second, but we do not need this in the following.)
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tt0 t1 t2

ỹ

z∞

y∞

y∗

φ(t1) = 2ε

ε = φ(t2)

≥ 2ε

2ε ≤ φ(t0)
z(t)

φ(t)

ψ(p(t)) = y(t)

Figure 3.2: Illustration of the parameters and functions in Subsection 3.5.4.

3.5.4 Proof of Theorem 3.3

The proof of Theorem 3.3 is complete if we can show that, for every maximal solution
p = (x, z) : I → P of (3.23), we have sup I = ∞ and z(t) → y∗ as t → ∞. Assume for
the sake of contradiction that this is not satisfied. Then, by Remark 3.8, there exists a
maximal solution p = (x, z) : I → P of (3.23) and some z∞ > y∗ such that z(t) ≥ z∞
for every t ∈ I. Fix an arbitrary t0 ∈ I and define ỹ := z(t0) > z∞. Moreover, let
y∞ := y∗ + (z∞ − y∗)/2 < z∞. Then, there exists a constant c0 > 0 as in Proposition 3.13
and there exist constants c1, c2 > 0 as in Proposition 3.14. Define φ := ϕ ◦ p : I → (0,∞).
From Proposition 3.12, we conclude that, for all t2 > t1 ≥ t0 in I, the following implication
holds: if ψ(x(t)) ≥ y∞ for every t ∈ [t1, t2], then

φ(t2) ≥ 1− c1 φ(t1)

1 + c1 φ(t2)
φ(t1) +

∫ t2

t1

c0/φ(t)− c2

1 + c1 φ(t2)
dt. (3.47)

Define

ε :=
1

2
min

{ 1

3c1
, φ(t0),

c0

c2
, z∞ − y∞

}
> 0.

Now we show that φ(t) ≥ ε for every t ≥ t0 in I. Assume for the sake of contradiction that
this is not true. Then, since φ is continuous with φ(t0) ≥ 2ε, there exist t2 > t1 ≥ t0 in I
such that φ(t1) = 2ε, φ(t2) = ε, and ε < φ(t) < 2ε for every t ∈ (t1, t2). In particular,
it follows that φ(t) ≤ 2ε ≤ z∞ − y∞, and therefore ψ(x(t)) = z(t) − φ(t) ≥ y∞ for every
t ∈ [t1, t2]. Now (3.47) and the definition of ε, lead to the contradiction φ(t2) > ε. Thus,
φ(t) ≥ ε for every t ≥ t′0 in I. This in turn implies that the curve p stays in a compact
subset of P on I ∩ [t0,∞). It follows that sup I = ∞. Now φ(t) ≥ ε for every t ≥ t0
and (3.15) lead to the contradiction z(t)→ −∞ as t→∞.
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4 Extremum seeking control for a class of
nonholonomic systems

The content of this chapter is an extended version of [110].

4.1 Introduction and motivation

We return to the extremum seeking control problem (1.39), (1.40) in Section 1.3. This
means that we consider again a multiple-input single-output system of the form

ẋ =
m∑

i=1

uifi(x), (4.1)

y = ψ(x), (4.2)

where the ui are real-valued input channels and y is a real-valued output channel. The
control vector fields fi and the output function ψ are assumed to be smooth. We have seen
in Section 1.3 that a suitable output feedback law for (4.1), which involves highly oscillatory
time-varying functions, leads to the effect that the trajectories of the closed-loop system,
denoted by Σj , approximate the trajectories of an averaged system of the form

ẋ = −
m∑

i=1

(fiψ)(x) fi(x) (4.3)

if the frequency parameter j in Σj is sufficiently large. The approximation property can
be explained by the well-developed Lie bracket averaging theory from [58, 69, 68]; cf. Sec-
tion 1.2. A consequence of the approximation property is that if a point x∗ of the state
manifold is asymptotically stable for (4.3), then one can achieve that an arbitrary small
neighborhood of x∗ is asymptotically stable for Σj by choosing the frequency parameter j
sufficiently large. Thus, asymptotic stability for the averaged system implies practical
asymptotic stability for the closed-loop system. For the purpose of extremum seeking con-
trol it is therefore important to ensure that a minimum point x∗ of ψ is asymptotically
stable for the averaged system (4.3).

Suppose that the output function ψ attains a local minimum value at some point x∗

of the state manifold, and assume that ψ has no other critical point than x∗ in a certain
neighborhood of x∗. As explained in the preceding paragraph, we may conclude that x∗ is
practically asymptotically stable for (4.1) under the Lie bracket-based extremum seeking
control law if x∗ is asymptotically stable for the averaged system (4.3). This is indeed the
case if (4.1) is fully actuated at x∗; i.e., if the control vector fields span the entire tangent
space at x∗. Then, ψ is in fact (up to an additive constant) a local Lyapunov function
for (4.3) around x∗. The situation changes if (4.1) is underactuated ; i.e., not fully actuated.
Then, it might happen that there are undesired equilibria of (4.3) arbitrary close to x∗,
and therefore x∗ is not asymptotically stable for (4.3). In this case stabilization cannot
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be guaranteed by the existing results. Many underactuated systems of the form (4.1) are
nonholonomic; i.e., the distribution generated by the control vector fields is regular but not
closed under Lie bracketing. We refer to [64, 83] for examples of nonholonomic systems. To
the best of our knowledge, there is no universal approach to extremum seeking control for
nonholonomic control-affine systems in the literature so far. The intention of the chapter
is to propose a solution to the problem, at least for a certain subclass of control systems of
the form (4.1). Many nonholonomic systems have the additional property that their control
vector fields satisfy the Lie algebra rank condition. This means that the tangent space is
spanned by Lie brackets of the control vector fields (see again [64, 83] for examples of such
systems). Under the assumption that the Lie algebra rank condition is satisfied at the
optimal point x∗, the proposed method can ensure that an arbitrary small neighborhood
of x∗ becomes locally asymptotically stable for the closed-loop system. In contrast to the
existing methods for extremum seeking by Lie bracket approximations, the novel control
law does not only steer the system into descent directions of the output function along the
control vector fields but also along Lie brackets of the control vector fields. The approach
uses a suitable combination of the approximation algorithm from [68] (to generate Lie
brackets of the control vector fields) and the Lie bracket-based extremum seeking strategies
from [31, 95] (to get access to descent directions of the output function). This leads to
the first extremum seeking control law that gives access to descent directions of the output
function along Lie brackets of any desired degree.

The chapter is organized as follows. The subsequent Section 4.2 contains some algebraic
concepts which are required to state the approximation algorithm from [68]. In Section 4.3
we describe the control objective and outline the proposed strategy. The extremum seeking
control law is presented in Section 4.4. The main results on approximation and stability are
stated in Section 4.5. We also illustrate the stability result by a numerical simulation. Since
the proof of the approximation result requires some lengthy computations, it is carried out
at the end in Sections 4.6 and 4.7.

4.2 Local definitions and notation for the chapter

We begin by recalling several algebraic concepts from [13, 14, 104]. Let X = {X1, . . . , Xm}
be a nonempty finite set of m pairwise distinct objects X1, . . . , Xm, called indeterminates.
A sequence of sets M`(X) is defined by induction on ` = 1, 2, . . . as follows. For ` = 1,
we let M1(X) := X. For ` = 2, 3, . . ., the set M`(X) is defined as the disjoint union of
Mk(X)×M`−k(X) with k = 1, . . . , `−1. The disjoint union of all the sets M`(X) is denoted
by M(X). Each of the sets M`(X) is identified with its canonical image in M(X). To give
an example: if m ≥ 2, then ((X1, X1), X2) is considered to be an element of both M3(X)
and M(X). The set M(X) is called the free magma generated by X. However, for our
purposes, it is more suitable to refer to M(X) as the set of formal brackets generated by X.
For every B ∈ M(X), there exists a unique positive integer, denoted by δ(B), such that
B ∈ Mδ(B)(X), called the degree of B. For every i ∈ {1, . . . ,m} and every B ∈ M(X), the
degree of B in Xi, denoted by δi(B), is the nonnegative integer that counts the number of
appearances of Xi in B. To give an example: if B = ((X1, X1), X2), then we have δ(B) = 3,
δ1(B) = 2, and δ2(B) = 1. For all B,B′ ∈ M(X), the image of (B,B′) under the canonical
injection of Mδ(B)(X)×Mδ(B′)(X) into M(X) is denoted by the same symbol and is called
the formal bracket of B and B′. Conversely, for every B ∈ M(X) with δ(B) > 1, there exist
unique B1, B2 ∈ M(X) such that B = (B1, B2), where B1 and B2 are called the left and
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4.2 Local definitions and notation for the chapter

right factors of B, respectively. To give an example: if B = ((X1, X1), X2), then the left
factor of B is (X1, X1) and the right factor of B is X2. A P. Hall set of M(X) is a subset B
of M(X), endowed with a total order1 �, that satisfies the following properties:

PH1. if B1 ∈ B, B2 ∈ B, and δ(B1) < δ(B2), then B1 ≺ B2;

PH2. every indeterminate Xi ∈ M1(X) belongs to B, and a pair (Xi1 , Xi2) ∈ M2(X) belongs
to B if and only if Xi1 ≺ Xi2 ;

PH3. an element B ∈ Mk(X) of degree k ≥ 3 belongs to B if and only if there exist
B1, B2, B3 ∈ B such that B = (B1, (B2, B3)), (B2, B3) ∈ B, B2 � B1 ≺ (B2, B3), and
B2 ≺ B3.

As in [68], we will additionally require the convenient property that

PH4. for all i1, i2 ∈ {1, . . . ,m} with i1 < i2, we have Xi1 ≺ Xi2 .

Note that PH4. can always be established by simply relabeling the indeterminates.

Proposition 4.1 (Proposition II.2.11 in [14]). For every finite set X of indeterminates,
there exists a P. Hall set of M(X).

The free non-unital associative algebra generated by X over R, denoted by A0(X), is the
non-unital associative algebra2 of all linear combinations of monomials

XI := Xi1 · · ·Xik , (4.4)

where I = (i1, . . . , ik) is any multi-index of length k > 0 with i1, . . . , ik ∈ {1, . . . ,m}.
As usual, for all p, q ∈ A0(X), the Lie bracket of p and q is defined by [p, q] := pq − qp.
It is well-known that the Lie bracket turns A0(X) into a Lie algebra3. Let L(X) be the
Lie subalgebra of A0(X) generated by X; i.e., the smallest Lie subalgebra of A0(X) that
contains X. This Lie algebra is called the free Lie algebra generated by X over R. Let
µ : M(X)→ L(X) denote the canonical map that replaces round brackets “(”, “)” by square
brackets “[”, “]”. For instance, µ((X1, X1)) = [X1, X1] = 0 = [X2, X2] = µ((X2, X2)), but,
of course, (X1, X1) 6= (X2, X2).

Theorem 4.2 (Theorem II.2.1 in [14]). Let (B,�) be a P. Hall set of M(X). Then, the
above map µ is injective on B and the image of B under µ is a basis of the vector space L(X).

Let M be a smooth manifold. The commutative algebra of smooth functions on M is
denoted by C∞(M). The set of smooth vector fields on M is denoted by X(M). If we apply
a smooth vector field f to a smooth function ϕ, then the Lie derivative fϕ of ϕ along f
is again a smooth function. In this sense, every smooth vector field can be considered as
a vector space endomorphism on C∞(M), which gives X(M) the structure of a non-unital
associative algebra. It is well-known that the Lie bracket (cf. Section 1.5) turns X(M)

1A partial order on B is a relation � on B with the following properties for all B1, B2, B3 ∈ B: (i) B1 � B1;
(ii) if B1 � B2 and B2 � B1, then B1 = B2; (iii) if B1 � B2 and B2 � B3, then B1 � B3. A total order
on B is a partial order � on B such that B1 � B2 or B2 � B1 for all B1, B2 ∈ B. If we have B1 � B2

and B1 6= B2 for B1, B2 ∈ B, then we write B1 ≺ B2.
2A non-unital associative algebra over R is a vector space A0 over R endowed with an associative bilinear

map A0 ×A0 → A0, (p, q) 7→ pq, which is called the multiplication on A0.
3A Lie algebra over R is a vector space L over R endowed with a bilinear map L× L→ L, (x, y) 7→ [x, y]

such that [x, x] = 0 and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L
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4 Extremum seeking control for a class of nonholonomic systems

into a Lie algebra. Let f be a nonempty finite subset of X(M). We denote by L(f) the
Lie subalgebra of X(M) generated by f ; i.e. the smallest Lie subalgebra of X(M) that
contains f . For every positive integer r, we define a subspace Lr(f) of X(M) as follows.
For r = 1, let L1(f) be the R-span of f . By induction on r, define Lr+1(f) to be the
span of all elements in Lr(f) and all Lie brackets [g1, g2] with g1 ∈ Lr1(f), g2 ∈ Lr2(f),
and r1 + r2 = r + 1. Clearly, the sets L1(f) ⊆ L2(f) ⊆ · · · form an increasing sequence of
subspaces of L(f).

4.3 Problem statement and motivation of the proposed control
strategy

Throughout the chapter, we consider a control-affine system of the form

ẋ =
m∑

i=1

ui fi(x) (4.5)

on a smooth state manifold M with smooth control vector fields f1, . . . , fm ∈ X(M), real-
valued input channels u1, . . . , um, and a real-valued output channel

y = ψ(x), (4.6)

where ψ ∈ C∞(M) is called the output function. We assume that the current value of (4.6)
can be measured constantly while the system state of (4.5) is an unknown quantity. More-
over, information about descent directions of ψ are not assumed to be known. The goal is
to derive an output-feedback control law for (4.5) that asymptotically stabilizes the closed-
loop system around states at which the output function attains a local minimum value.
In the following paragraphs, we explain how the problem can be solved under suitable as-
sumptions on the control vector fields and the output function. We use the notation and
definitions from Sections 1.5 and 4.2.

Suppose that the output function ψ attains a local minimum value y∗ ∈ R at some point
x∗ ∈ M . For each x ∈ M , a descent direction of ψ at x is any tangent vector vx to M
at x such that dϕ(x)vx < 0. For our goal to asymptotically stabilize (4.5) around x∗,
it is certainly desirable to steer the control system (at least approximately) into descent
directions of ψ. In order to do so, we need two additional assumptions. First, to ensure
the existence of descent directions around x∗, we assume that ψ has no other critical point
than x∗ in a certain neighborhood of x∗. Second, to get access to those descent directions,
we assume that the control vector fields of (4.5) satisfy the Lie algebra rank condition at x∗;
i.e., the elements of the Lie algebra generated by the vector fields in f := {f1, . . . , fm} span
the entire tangent space to M at x∗. The latter assumption ensures that there exist a
sufficiently large positive integer r and vector fields g` ∈ Lr(f), ` ∈ Λr, indexed by some
finite set Λr such that, for every x in some neighborhood of x∗, the vectors g`(x) with ` ∈ Λr

span the tangent space to M at x. Because of the first assumption on ψ, it follows that
there exists some y+ > y∗ such that ψ−1(≤ y+, x∗) is compact and such that, for every
x ∈ ψ−1(≤ y+, x∗) with x 6= x∗, there exists ` ∈ Λr such that (g`ψ)(x) 6= 0. Note that if
(g`ψ)(x) 6= 0, then −(g`ψ)(x)2 < 0, and therefore the tangent vector −(g`ψ)(x) g`(x) is a
descent direction of ψ at x. Using a standard Lyapunov argument, it is now easy to verify
that x∗ is locally asymptotically stable for the system

ẋ = −
∑

`∈Λr

(g`ψ)(x) g`(x). (4.7)
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Thus, if we can find an output-feedback control law for (4.5) such that the trajectories of
the closed-loop system approximate the trajectories of (4.7) sufficiently well, then we can
expect that this closed-loop system has similar desirable stability properties as (4.7). This
is exactly the intention of the control law that we present Section 4.4. An outline of the
approximation approach is given in the subsequent paragraphs.

As motivated above, we are interested in an output-feedback control law for (4.5) such
that the trajectories of the closed-loop system approximate the trajectories of (4.7). Note
that information about the Lie derivatives g`ψ on the right-hand side of (4.7) is not directly
accessible from measurements of current value of ψ. To circumvent this problem, we use the
extremum seeking control approach from Section 1.3. For the sake of completeness and for
later references, we recall the steps in the following. As in (1.42), we write each of the vector
fields −(g`ψ) g` as the Lie bracket of two vector fields f̄(`,1), f̄(`,2) that only depend on g`
and the current value of ψ. As in (1.41), for every ` ∈ Λr, we define f̄(`,1), f̄(`,2) ∈ X(M) by

f̄(`,1)(x) := h1

(
ψ(x)

)
g`(x), (4.8a)

f̄(`,2)(x) := h2

(
ψ(x)

)
g`(x), (4.8b)

where the smooth design functions h1, h2 on R are given by (1.33); i.e.,

h1(y) := sin(y), (4.9a)

h2(y) := cos(y). (4.9b)

A direct computation shows that

[f̄(`,1), f̄(`,2)](x) = −(g`ψ)(x) g`(x) (4.10)

for every x ∈ M . Next, choose pairwise distinct positive real frequency coefficients ω̄`,
` ∈ Λr, and, as in (1.44), for every j > 0, define sinusoids ūj(`,1), ū

j
(`,2) : R→ R by

ūj(`,1)(t) := (2 j̄ ω̄`)
1
2 cos(j̄ ω̄`t), (4.11a)

ūj(`,2)(t) := (2 j̄ ω̄`)
1
2 sin(j̄ ω̄`t), (4.11b)

where the precise dependence of j̄ on j will be defined later in (4.16). The amplitudes and
frequencies of the sinusoids ūj(`,1), ū

j
(`,2) grow with increasing parameter j. Then, we know

from Section 1.3 that the trajectories of

ẋ =
∑

`∈Λr

(
ūj(`,1)(t) f̄(`,1)(x) + ūj(`,2)(t) f̄(`,2)(x)

)
(4.12)

approximate the trajectories of (4.7) if j is sufficiently large. One can interpret (4.12) as
the closed-loop system that originates from the fictitious control-affine system

ẋ =
∑

`∈Λr

u` g`(x) (4.13)

under the control law

u` = ūj(`,1)(t)h1(y) + ūj(`,2)(t)h2(y) =
(
2j̄ω̄`

) 1
2 sin(j̄ω̄`t+ y) (4.14)

with y = ψ(x), where we have used the trigonometric identity (1.49) in the last equality.
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4 Extremum seeking control for a class of nonholonomic systems

As indicated in the preceding paragraph, a suitable choice of vector fields f̄(`,ν) and highly

oscillatory signals ūj(`,ν) ensures that the trajectories of (4.12) approximate the trajectories

of (4.7) if the parameter j is sufficiently large. Note that system (4.12) has the beneficial
feature that its right-hand side does not depend on Lie derivatives of ψ but only on the
current value of ψ, which is a first step toward an output-feedback law for (4.5). However,
the vector fields in (4.8) involve the elements g` from the Lie algebra generated by the control
vector fields fi, which are not necessarily in the linear span of the fi. To circumvent this
problem, we can use again highly oscillatory signals to approximate the vector fields g`.
Based on the approximation algorithm in [68], we will construct a time-varying output-
feedback control law ui = uji (t; y) for (4.5) such that the trajectories of the closed-loop
system

ẋ =

m∑

i=1

uji (t; y) fi(x) (4.15)

approximate the trajectories of (4.12) if the parameter j is sufficiently large. In summary,
our approach to extremum seeking control involves the following two approximation prop-
erties for sufficiently large values of the parameter j:

AP1. system (4.15) approximates the behavior of system (4.12), and

AP2. system (4.12) approximates the behavior of system (4.7).

At this point we merely note that the parameter j̄ will be defined in such a way that it au-
tomatically increases with increasing j. This is made precise later in (4.16). A consequence
of AP1 and AP2 is that (4.15) approximates the behavior of system (4.7) for sufficiently
large j. Thus, if a point x∗ ∈ M is asymptotically stable for (4.7), we can expect that x∗

is at least practically asymptotically stable for (4.15), where the word practically indicate
the dependence on the parameter j.

The above approximation properties AP1 and AP2 require oscillating signals with suf-
ficiently large amplitudes and frequencies. However, an approximation of the vector fields
in (4.8) also requires that the output value varies sufficiently slow compared to oscillations
that lead to AP1. Otherwise, the approach would lead to an approximation of vector fields
which involve undesired Lie derivatives of ψ. On the other hand, an approximation of the
Lie brackets in (4.10) requires that the output value varies sufficiently fast compared to the
oscillations that lead to AP2. To avoid undesired resonances, the control law in Section 4.4
is designed in such a way that it induces a certain separation of time scales. With increasing
parameter j, the amplitudes and frequencies that lead to AP1 grow faster than the ampli-
tudes and frequencies that lead to AP2. For this reason, the signals associated with AP1
will be called “fast oscillations” and the signals associated with AP2 will be called “slow
oscillations”. It is clear that this is a slightly misleading terminology because the ampli-
tudes and frequencies of both types of signals grow with increasing parameter j. In order
to “slow down” the variations of the output value sufficiently, we introduce a first-order
hold of the output signal with a suitable sampling rate. With increasing parameter j, the
sampling rate becomes slow compared to the fast oscillations and fast compared to the slow
oscillations. The precise definitions are given in the next section.

4.4 Control law

Let m be the number of input channels in (4.5) and let r be the maximum degree of Lie
brackets of the control vector fields in (4.5) that shall be approximated. As explained in
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Section 4.3, the approximation approach involves slow and fast oscillations as well as a
first-order hold of the output signal.

4.4.1 Definition of the slow oscillations and the first-order hold

As in Section 4.2, let X = {X1, . . . , Xm} be a finite set of m indeterminates, and let (B,�)
be a P. Hall set of M(X). For every positive integer n, let Bn denote the elements of B of
degree n. Divide each Bn into equivalence classes by declaring two of its members B1, B2

equivalent if, for every i ∈ {1, . . . ,m}, we have δi(B1) = δi(B2). Let En be the set of
all equivalence classes of Bn. For every E ∈ En and every i ∈ {1, . . . ,m}, we can define
δ(E), δi(E) to be δ(B), δi(B) for an arbitrary representative B of E. Note that E1 consists
precisely of the singletons {Xi} with i ∈ {1, . . . ,m}. Because of PH4., the set E2 consists
precisely of the singletons {(Xi1 , Xi2)} with i1, i2 ∈ {1, . . . ,m} and i1 < i2. The set

Λr :=
{
` = (E, ρ)

∣∣ E ∈ E1 ∪ · · · ∪ Er, ρ ∈ {1, . . . , |E|}
}

will play the role of the indexing set for the vector fields g` in the averaged system (4.7),
where the g` are specified later in Section 4.5.

The time scale of the fast oscillations will be defined by a parameter j > 0, and

j̄ := j
1
r+1 (4.16)

will define the time scale of the slow oscillations. Choose a positive real constant ∆. Let Y
denote the set of all functions on half-open intervals of the form [0, T ), where T is either a
positive real number and otherwise +∞. For every such function y : [0, T ) → R and every
j > 0, we define a function ȳj : [0, T ) → R, called the first-order hold of y with sampling
time ∆/j̄2, by

ȳj(t) := y(τ jk−1) +
t− τ jk
∆/j̄2

(
y(τ jk)− y(τ jk−1)

)
(4.17)

for every integer k ≥ 0 and every t ∈ [τ jk , τ
j
k+1) with t < T , where τ j−1 := 0 and

τ jk := k∆/j̄2.

This means that ȳj is just a linear interpolation of the values of y at τ j0 , τ
j
1 , . . .. For large j,

we have the separation of time scales 1� j̄ � j̄2/∆� j̄r+1 = j of the control-vector fields,
the slow oscillations, the first-order hold, and the fast oscillations.4

Choose pairwise distinct positive real frequency coefficients ω̄` with ` ∈ Λr. For every
` = (E, ρ) ∈ Λr, every k ∈ {1, . . . , δ(E)}, every j > 0, and every y ∈ Y, define a function
ζjE,ρ,k(·; y) on the domain of y by

ζjE,ρ,k(t; y) := 2
δ(E)−1
δ(E) (2 j̄ ω̄`)

1
2 δ(E) sin

( j̄ ω̄` t+ ȳj(t) + (k − 1)π

δ(E)

)
. (4.18)

Using standard trigonometric identities5, one easily obtains that

ζj` (t; y) :=

δ(E)∏

k=1

ζjE,ρ,k(t; y) = ūj(`,1)(t)h1(ȳj(t)) + ūj(`,2)(t)h2(ȳj(t)), (4.19)

4In the “trivial” case r = 1, we do not need fast oscillations to generate the vector fields g`, and therefore
we only have the three time scales 1� j̄ � j̄2/∆.

5To be more precise, we use the trigonometric identities (1.49) and sin(α) = 2n−1∏n
k=1 sin

(α+(k−1)π
n

)
with n = δ(E) and α = j̄ ω̄` t+ ȳj(t).
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where h1, h2 are defined by (4.9) and the ūj(`,1), ū
j
(`,2) are defined by (4.11). The sinusoids

ūj(`,1), ū
j
(`,2) serve as the slow oscillations to induce the approximation property AP2 in Sec-

tion 4.3. The first-order hold ȳj in (4.19) has the purpose to “slow down” the variations of
the output signal sufficiently. It is left to specify the fast oscillations to induce the approx-
imation property AP1. For this purpose, we use the approximation algorithm from [68],
which is summarized in the following subsection.

4.4.2 Definition of the fast oscillations

The cardinality of a finite set F is denoted by |F |. Let F be a finite subset of R \ {0}.
The set F is said to be canceling if the sum of all the members of F is equal to 0. The
set F is said to be properly noncanceling (PNC) if every proper nonempty subset of F is
not canceling. The set F is said to be minimally canceling (MC) if, for all integers aω with∑

ω∈F |aω| ≤ |F |, the following equivalence holds:
∑

ω∈F aωω = 0 if and only if the aω are
all equal (in which case, of course, they all have to be equal to 0, 1, or −1). It is clear that
MC implies PNC. Finally, F is said to be symmetrically minimally canceling (SMC) if it is
symmetric, i.e. F = −F , and if it contains an MC subset of cardinality |F |/2.

For every i ∈ {1, . . . ,m} and every ω ∈ R \ {0}, define ĝXi(ω) := 1. For a formal bracket
B ∈ B of degree ≥ 2, we define ĝB inductively as follows. Since (B,�) is a P. Hall set,
there exists a unique positive integer κ and unique B1, B2 ∈ B such that B = adκB1

(B2),
where B1 ≺ B2 and either δ(B2) = 1 or the left factor B3 ∈ B of B2 satisfies B3 � B1

(here adκB1
denotes the κ-fold application of the map adB1 : M(X) → M(X) defined by

adB1(Z) := (B,Z))6. Then, for all pairwise distinct ω1, . . . , ωδ(B) ∈ R \ {0} that form a
PNC set, the assignment

ĝB(ω1, . . . , ωδ(B)) := ĝB2(ωκδ(B1)+1, . . . , ωδ(B))
1

κ!

κ∏

q=1

ĝB1(ω(q−1)δ(B1)+1, . . . , ωqδ(B1))

ω(q−1)δ(B1)+1 + · · ·+ ωqδ(B1)

gives a well-defined real number. For every B ∈ B, we also define a map gB as fol-
lows. Let ΣB denote the list of δ(B) indeterminates that originates from B by deleting
all round brackets. For each i ∈ {1, . . . ,m}, let θB,i be the (possibly empty) set of those
k ∈ {1, . . . , δ(B)} for which the indeterminate Xi is at the kth position of ΣB. For each i ∈
{1, . . . ,m}, let IB,i denote the (possibly empty) set of integers from δ1(B)+· · ·+δi−1(B)+1
to δ1(B) + · · ·+ δi(B). Let PB be the set of all permutations of {1, . . . , δ(B)} that map θB,i
to IB,i for every i ∈ {1, . . . ,m}. Let S1, . . . , Sm be (possibly empty) pairwise disjoint sub-
sets of R \ {0} such that |Si| = δi(B) for every i ∈ {1, . . . ,m} and such that S1 ∪ · · · ∪ Sm
is PNC. Then, the assignment

gB(S1, . . . , Sm) :=
∑

π∈PB
ĝB(ωπ(1), . . . , ωπ(δ(B))) (4.20)

gives a well-defined real number, where ω1, . . . , ωδ(B) is any listing of the elements of S1 ∪
· · · ∪ Sm such that Si = {ωk, k ∈ IB,i} for every i ∈ {1, . . . ,m}.
6To obtain the unique decomposition B = adκB1

(B2), one can use the following procedure from [104]. Let
L1 and R1 denote the left and the right factor of B, respectively. If δ(R1) = 1, then the procedure stops
with κ := 1, B1 := L1, and B2 := R1. Otherwise, i.e. if δ(R1) > 1, then we may define Li+1 and Ri+1

inductively to be the left and the right factor of Ri, respectively, for i = 1, 2, . . . as long as the conditions
δ(Ri) > 1 and Li = Li+1 are satisfied. The number κ is the smallest positive integer for which δ(Rκ) = 1
or Lκ 6= Lκ+1. Then, we define B1 := L1 = · · · = Lκ and B2 := Rκ.
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Let Λr+ denote the set of (E, ρ) ∈ Λr with δ(E) ≥ 2. For every (E, ρ) ∈ Λr+ and every
i ∈ {1, . . . ,m}, let ΩE,ρ,i be a symmetric subset of R \ {0} of cardinality 2δi(E) such that

FC1. for each fixed (E, ρ) ∈ Λr+, the following holds:

(a) if δ(E) = 2; i.e., E = {(Xi1 , Xi2)} for some i1, i2 ∈ {1, . . . ,m} with i1 < i2, then
ΩE,ρ,i1 = ΩE,ρ,i2 ;

(b) if δ(E) > 2, then the sets ΩE,ρ,1, . . . ,ΩE,ρ,m are pairwise disjoint.

For every (n, i) ∈ {2, . . . , r} × {1, . . . ,m}, define Ω(n, i) :=
⋃
E∈En

⋃|E|
ρ=1 ΩE,ρ,i, which is a

finite symmetric subset of R \ {0}. We require that
FC2. the sets Ω(n, i) with (n, i) ∈ {3, . . . , r} × {1, . . . ,m} are pairwise disjoint.

For every (E, ρ) ∈ Λr+, define ΩE,ρ :=
⋃m
i=1 ΩE,ρ,i, which is a finite symmetric subset

of R \ {0}. Note that |ΩE,ρ| = 2 for δ(E) = 2 and that |ΩE,ρ| = 2δ(E) for δ(E) > 2. We
require that

FC3. for every (E, ρ) ∈ Λr+ with δ(E) > 2, the set ΩE,ρ is SMC.
It is also required that the sets ΩE,ρ with (E, ρ) ∈ Λr+ are independent with respect to r in
the following sense.

FC4. The sets ΩE,ρ with (E, ρ) ∈ Λr+ are pairwise disjoint and the following implication
holds: if

∑
(E,ρ)∈Λr+

∑
ω∈ΩE,ρ

|aω| ≤ r and
∑

(E,ρ)∈Λr+

∑
ω∈ΩE,ρ

aωω = 0 for any integers aω,

then
∑

ω∈ΩE,ρ
aωω = 0 for every (E, ρ) ∈ Λr+.

For every E ∈ ⋃r
n=1 En, every B ∈ E, and every ρ ∈ {1, . . . , |E|}, we define real con-

stants ξ̂B,ρ as follows. If δ(E) = 1; i.e., E = {B} and B = Xi for some i ∈ {1, . . . ,m}, then

we let ξ̂B,ρ := 1. If δ(E) = 2; i.e., E = {B} and B = (Xi1 , Xi2) for some i1, i2 ∈ {1, . . . ,m}
with i1 < i2, then there exists ωE > 0 such that ΩE,ρ = {±ωE}, and we let ξ̂B,ρ := 1

ωE
. Fi-

nally suppose that δ(E) > 2. Because of FC3, there exists an MC subset FE,ρ of ΩE,ρ of car-
dinality |ΩE,ρ|/2 = δ(E). Because of FC1, the intersections FE,ρ∩ΩE,ρ,1, . . . , FE,ρ∩ΩE,ρ,m

are pairwise disjoint subsets of R \ {0} with |FE,ρ ∩ΩE,ρ,i| = δi(E) for every i ∈ {1, . . . ,m}
and their union coincides with FE,ρ. Thus, for every B ∈ E, we can define

ξ̂B,ρ := gB(FE,ρ ∩ ΩE,ρ,1, . . . , FE,ρ ∩ ΩE,ρ,m),

where the right-hand side is given by (4.20). We require that
FC5. for every E ∈ ⋃r

n=3 En, the square matrix (ξ̂B,ρ)B∈E,1≤ρ≤|E| is invertible7.

Theorem 4.3 ([68]). It is always possible to satisfy FC1-FC5.

Let i =
√
−1 denote the imaginary unit. For every E ∈ ⋃r

n=1 En, every j > 0, and every

y ∈ Y, we use the real-valued functions ζjE,ρ,k(·; y) from (4.18) to define complex-valued
functions on the domain of y according to the subsequent choices CH1-CH3.

CH1. If δ(E) = 1; i.e., E = {Xi} for some i ∈ {1, . . . ,m}, then we define

ηji,0(t; y) := ζjE,1,1(t; y).

CH2. If δ(E) = 2; i.e., E = {(Xi1 , Xi2)} for some i1, i2 ∈ {1, . . . ,m} with i1 < i2, then
we define

ηjωE ,i1(t; y) := (−1)δ(E)−1ηj−ωE ,i1(t; y) := iδ(E)−1 2
− 1
δ(E) ζjE,1,1(t; y),

7A natural order of the rows of the matrix (ξ̂B,ρ)B∈E,1≤ρ≤|E| is given by the total order � on B.
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ηjωE ,i2(t; y) := ηj−ωE ,i2(t; y) := 2
− 1
δ(E) ζjE,1,2(t; y).

CH3. If δ(E) > 2, then, for every ρ ∈ {1, . . . , |E|}, we let ωE,ρ,1, . . . , ωE,ρ,δ(E) denote the
δ(E) elements of FE,ρ (in an arbitrary order), and define

ηjωE,ρ,1(t; y) := (−1)δ(E)−1ηj−ωE,ρ,1(t; y) := iδ(E)−1 2
− 1
δ(E) ζjE,ρ,1(t; y),

ηjωE,ρ,k(t; y) := ηj−ωE,ρ,k(t; y) := 2
− 1
δ(E) ζjE,ρ,k(t; y)

for every k ∈ {2, . . . , δ(E)}.

4.4.3 Control law and closed-loop system

For the moment, fix arbitrary i ∈ {1, . . . ,m} and j > 0. Note that by CH2, for every
ω ∈ Ω(2, i), the complex conjugate of ηjω,i is given by ηj−ω,i. Moreover, by CH3, for every

n ∈ {3, . . . , r} and every ω ∈ Ω(n, i), the complex conjugate of ηjω is given by ηj−ω. Thus,

for every y ∈ Y, a purely real-valued function uji (·; y) on the domain of y is given by

uji (t; y) := ηji,0(t; y) + j
1
2

∑

ω∈Ω(2,i)

ηjω,i(t; y) eijωt +

r∑

n=3

j
n−1
n

∑

ω∈Ω(n,i)

ηjω(t; y) eijωt, (4.21)

where e denotes Euler’s number. For the ith input channel ui of (4.5), we propose the j-
dependent time-varying output-feedback control law

ui = uji (t; y) with y = ψ(x), (4.22)

where y ∈ Y is the measured output signal (4.6).
It follows from standard existence and uniqueness theorems for ordinary differential equa-

tions that, for every frequency parameter j > 0 and every initial state x0 ∈M , there exists
a unique maximal solution of the initial value problem

ẋ =

m∑

i=1

uji (t; y) fi(x), x(0) = x0 (4.23)

with y = ψ(x). We denote this maximal solution by

γjx0 : [0, T jx0)→M, t 7→ γjx0(t), (4.24)

where the maximum time of existence T jx0 is either a positive real number and otherwise +∞.
The output signal associated with (4.24) is denoted by

yjx0 : [0, T jx0)→ R, t 7→ ψ(γjx0(t)), (4.25)

which is an element of Y.

4.5 Main results

For the rest of the chapter, we fix constants and functions as described in Section 4.4. The
only control parameter that remains variable is the frequency parameter j. For every formal
bracket B ∈ M(X), let [fB] denote the smooth vector field on M that originates from B by
replacing the round brackets “(”, “)” by square brackets “[”, “]” and by “plugging in” the fi
for the Xi. For instance, if B = (X1, (X1, X2)), then [fB] = [f1, [f1, f2]]. An immediate
consequence of Theorem 4.2 is the following statement.
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Corollary 4.4. The vector fields [fB] with B ∈ ⋃r
n=1 Bn span Lr(f).

In the notation of Section 4.4, for every ` = (E, ρ) ∈ Λr, define g` ∈ X(M) by

g`(x) :=
∑

B∈E
ξ̂B,ρ [fB](x). (4.26)

Since, for each E ∈ ⋃r
n=1 En, the matrix (ξ̂B,ρ)B∈E,1≤ρ≤|E| is assumed to be invertible, we

can also state Corollary 4.4 as follows.

Corollary 4.5. The vector fields g` with ` ∈ Λr span Lr(f).

Our first main result states that the trajectories of (4.5) under control law (4.22) ap-
proximate the trajectories of (4.7) with the g` given by (4.26). As an abbreviation, let f∞

denote the vector field on the right-hand side of (4.7); i.e.,

f∞(x) := −
∑

`∈Λr

(g`ψ)(x) g`(x) (4.27)

for every x ∈M . Using the notation (4.24) for the maximal solutions of (4.23), the following
holds.

Theorem 4.6. Let ϕ ∈ C∞(M) and ε1, ε2 > 0. Suppose that f1, . . . , fm are compactly
supported.8 Then, there exists j0 > 0 such that, for every j ≥ j0, every x0 ∈ M , and all
t2 ≥ t1 ≥ 0, we have

∣∣∣ϕ(γjx0(t2))− ϕ(γjx0(t1))−
∫ t2

t1

(f∞ϕ)(γjx0(t))
∣∣∣ ≤ ε1 + ε2(t2 − t1).

The proof of Theorem 4.6 is given in Sections 4.6 and 4.7. A consequence of Theorem 4.6
is the subsequent Theorem 4.7 that addresses stability properties of the closed-loop system.
Since we are interested in minimizing the output value, we do not state the result in terms
of a distance function on the state manifold but in terms of the sublevel sets of the output
function (using the notation of Sections 1.5 and 4.2).

Theorem 4.7. Suppose that ψ attains a local minimum value y∗ ∈ R at some point x∗∈M .
Assume that there exists y+ with y∗ < y+ ≤ +∞ such that, for every x ∈ ψ−1(≤ y+, x∗)
with x 6= x∗, we have (gψ)(x) 6= 0 for some g ∈ Lr(f). Moreover, assume that ψ−1(≤ ỹ, x∗)
is compact for every ỹ < y+. Then, the point x∗ is practically asymptotically stable for (4.5)
under (4.22), meaning that, for all ε, δ > 0 and every ỹ ∈ (y∗, y+), there exist j0, σ > 0
such that, for every j ≥ j0 and every x0 ∈ ψ−1(≤ ỹ, x∗), we have

� γjx0(t) ∈ ψ−1(≤ ψ(x0) + ε, x∗) for every t ≥ 0 (stability and boundedness),

� γjx0(t) ∈ ψ−1(≤ y∗ + δ, x∗) for every t ≥ σ (attraction).

The proof is given in Subsection 4.7.4.

Remark 4.8. Suppose that ψ attains a local minimum value at x∗∈M . From Theorem 4.7
we can conclude that x∗ is (locally) practically asymptotically stable for (4.5) under (4.22)
if the following condition is satisfied: for each x 6= x∗ in a neighborhood of x∗, we have

8A vector field on M is said to be compactly supported if it vanishes outside a compact subset of M .
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(gψ)(x) 6= 0 for some g ∈ Lr(f). A similar statement can be found in [95] for a closely
related control law under the above condition for r = 1. In general, however, the above
condition is not satisfied for r = 1 if (4.5) is nonholonomic; for instance, in the situation
of Example 4.10. In this case, Lie brackets of higher order (i.e. r > 1) are needed to get
access to descent directions of ψ. ♦

A local version9 of Theorem 4.7 can be given as follows.

Corollary 4.9. Assume that

1. the function ψ attains a local minimum value y∗ at some point x∗ of M ,

2. the second derivative of ψ at x∗ is positive definite,

3. the vectors g(x∗) with g ∈ Lr(f) span the tangent space to M at x∗.

Then, there exists y+ > y∗ such that the conclusions of Theorem 4.7 hold.

Example 4.10. As a toy example, we consider Brockett’s integrator from [15]; i.e.,

ẋ1 = u1, ẋ2 = u2, ẋ3 = u1 x2 − u2 x1 (4.28)

on M := R3. Note that (4.28) is of the form (4.5) if we define m := 2 control vector
fields f1 and f2 by f1(x) := (1, 0, x2)> and f2(x) := (0, 1,−x1)>, respectively. Since we
have [f1, f2](x) = (0, 0,−2)> for every x ∈ R3, the Lie brackets of degree ≤ r := 2 span R3.
Let x∗ ∈ R3 and y∗ ∈ R. Suppose that the output function ψ is given by

ψ(x) := y∗ +
1

2
‖x− x∗‖2, (4.29)

where ‖·‖ denotes the Euclidean norm. Clearly, ψ has no other critical point than x∗ and all
sublevel sets of ψ are connected and compact. Therefore, the assumptions of Theorem 4.7
are satisfied with y+ := +∞. In the terminology of Theorem 4.7, we conclude that the
optimal point x∗ is practically asymptotically stable for (4.28) under (4.22).

To generate numerical data, we choose the following control parameters. For the slow os-
cillations we choose the frequency coefficients ω̄({X1},1) := 1, ω̄({X2},1) := 2, ω̄({(X1,X2)},1) :=
3. The only frequency coefficient for the fast oscillations is chosen as ω{(X1,X2)} := 1. For
the simulation, we choose the optimal value y∗ := 0, the optimal point x∗ := (1, 1, 1), the
frequency parameter j := 103, the sampling time 2π/j, and the initial state x0 := −x∗.
The result is shown in Figure 4.1. ♦

4.6 Averaging of the fast oscillations

4.6.1 Iterated Lie derivatives and Lie brackets

Recall from Section 4.2 that M(X) denotes the free magma generated by the set of inde-
terminates X = {X1, . . . , Xm} over R. As in Theorem 4.2, we denote by µ the canonical
map from M(X) into free Lie algebra L(X) generated by X over R. The surrounding free
non-unital associative algebra generated by X is denoted by A0(X). On the other hand,

9By local version, we mean sufficient conditions to ensure the existence of some (possibly small) sublevel
y+ > y∗ as in Theorem 4.7.
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Figure 4.1: Numerical simulations for the particular situation in Example 4.10. Left:
decay of the output y(t) = ψ(x(t)) as a function of the time parameter t. Right: image of
the trajectory t 7→ x(t) on the time interval [0, 1].

also the set X(M) of smooth vector fields on M is a non-unital associative algebra if we
consider each f ∈ X(M) as the differential operator on the algebra C∞(M) of smooth
functions on M that assigns to each ϕ ∈ C∞(M) to the Lie derivative fϕ ∈ C∞(M) of ϕ
along f . For every ϕ ∈ C∞(M) and every multi-index I = (i1, . . . , ik) of length |I| := k > 0
with i1, . . . , ik ∈ {1, . . . ,m}, we use the notation

fIϕ := fi1 · · · fikϕ := fi1(· · · (fikϕ) · · · ) (4.30)

for the iterated Lie derivative of ϕ along the control vector fields fi1 , . . . , fik . Since A0(X)
has the universal property, there exists a unique algebra homomorphism Ev: A0(X) →
X(M), called evaluation map, such that Ev(Xi) = fi for every i ∈ {1, . . . ,m}. In other
words, for every v ∈ A0(X), the differential operator Ev(v) is obtained from v by “plugging
in the fi for the Xi”. For example, if ϕ ∈ C∞(M) and if vI ∈ R for every multi-index
I = (i1, . . . , ik) of length |I| = k ∈ {1, . . . , r} with i1, . . . , ik ∈ {1, . . . ,m}, then we have

(
Ev

( ∑

0<|I|≤r
vIXI

))
ϕ =

∑

0<|I|≤r
vI (fIϕ). (4.31)

Recall from Section 4.5 that, for every formal bracket B ∈ M(X), we denote by [fB] the
(iterated) Lie bracket that originates from B by replacing the round brackets “(”, “)” by
square brackets “[”, “]” and by “plugging in” the fi for the Xi. By composing the canonical
map µ : M(X)→ L(X) ⊂ A0(X) and the evaluation map Ev: A0(X)→ X(M), we can write

[fB] = (Ev ◦µ)(B) (4.32)

for every B ∈ M(X).

Since the control vector fields f1, . . . , fm are assumed to be smooth, we can give estimates
for iterated Lie derivatives as follows.
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Lemma 4.11. Suppose that f1, . . . , fm are compactly supported. Then, for every ϕ ∈
C∞(M) and every multi-index I = (i1, . . . , ik) of length k > 0 with i1, . . . , ik ∈ {1, . . . ,m},
there exists c > 0 such that

|(fIϕ)(x)| ≤ c

for every x ∈M .

Since the vector fields g`, ` ∈ Λr, in (4.26) are R-linear combinations of Lie brackets of
the vector fields f1, . . . , fm, we immediately conclude the following estimates.

Lemma 4.12. Suppose that f1, . . . , fm are compactly supported. Then, for every ϕ ∈
C∞(M), there exists c > 0 such that

|(g`ϕ)(x)| ≤ c

for every ` ∈ Λr and every x ∈M .

4.6.2 Averaging of the sinusoids

Let y : [0, T ) → R be an element of Y. For every j > 0, the first-order hold ȳj of y
is piecewise continuously differentiable. It is clear that we can extend its derivative to
a function on [0, T ) by taking the right-handed limit of the difference quotient at every
τ jk ∈ [0, T ) with k ∈ {0, 1, . . .}. The resultant piecewise constant derivative of ȳj on [0, T )
is denoted by ˙̄yj . We also use the notation dom(y) for the domain [0, T ) of y.

In this subsection, let j > 0 and y ∈ Y. For every multi-index I = (i1, . . . , ik) of length

k ∈ {1, . . . , r} with i1, . . . , ik ∈ {1, . . . ,m}, we define certain functions vjI(·; y), ŨV j
I(·; y),

rjI(·; y) on dom(y) that will appear again in Subsection 4.6.3 in the integral expansion for
the solutions of (4.5) under (4.22). As in [68], the functions will be chosen in such a way
that they satisfy

[
ŨV j

i1
(t; y)

]t=t2
t=t1

=

∫ t2

t1

(
vji1(t; y) dt+ rji1(t; y) dt− uji1(t; y)

)
dt,

[
ŨV j

i1,...,ik
(t; y)

]t=t2
t=t1

=

∫ t2

t1

(
vji1,...,ik(t; y) + rji1,...,ik(t; y)− uji1(t; y) ŨV j

i2,...,ik
(t; y)

)
dt

for all t1, t2 ∈ dom(y). The definitions coincide in large parts with the ones in [68] up to

some slight modifications of the ŨV j
I(·; y) and rjI(·; y) in order to derive suitable estimates

at the end in Lemma 4.13. We begin with the definitions for indices I of length k = 1.
Let i ∈ {1, . . . ,m}. We write (4.21) as

uji (t; y) = vji (t; y)− Ũvji (t; y),

where

vji (t; y) := ηji,0(t; y), (4.33)

Ũvji (t; y) := −j 1
2

∑

ω∈Ω(2,i)

ηjω,i(t; y) eijωt −
r∑

n=3

j
n−1
n

∑

ω∈Ω(n,i)

ηjω(t; y) eijωt. (4.34)

Since ω 6= 0 for all of the terms in (4.34), integration by parts leads to

∫ t2

t1

Ũvji (t; y) dt =
[
ŨV j

i (t; y)
]t=t2
t=t1
−
∫ t2

t1

ũV j
i (t; y) dt,
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where

ŨV j
i (t; y) := −j− 1

2

∑

ω∈Ω(2,i)

ηjω,i(t; y)

iω
eijωt −

r∑

n=3

j−
1
n

∑

ω∈Ω(n,i)

ηjω(t; y)

iω
eijωt, (4.35)

ũV j
i (t; y) := −j− 1

2

∑

ω∈Ω(2,i)

η̇jω,i(t; y)

iω
eijωt −

r∑

n=3

j−
1
n

∑

ω∈Ω(n,i)

η̇jω(t; y)

iω
eijωt. (4.36)

In (4.36), the symbols η̇jω,i(t; y) and η̇jω(t; y) denote the derivatives of the functions ηjω,i(·; y)

and ηjω(·; y) at t, respectively. Finally, we let

rji (t; y) := ũV j
i (t; y), (4.37)

ũvji (t; y) := ũV j
i (t; y) + Ũvji (t; y). (4.38)

Then we have

uji (t; y) = vji (t; y) + rji (t; y)− ũvji (t; y), (4.39)
∫ t2

t1

ũvji (t; y) dt =
[
ŨV j

i (t; y)
]t=t2
t=t1

. (4.40)

This completes the definitions for a single index i.

Now in order to show the idea how the general vjI , r
j
I , and ŨV j

I are defined, let us proceed

one more step and construct vji1,i2 and ŨV j
i1,i2

explicitly for two indices i1, i2 ∈ {1, . . . ,m}.
When we multiply uji1(t; y) by ŨV j

i2
(t; y), we get

uji1(t; y) ŨV j
i2

(t; y) = ηji1,0(t; y) ŨV j
i2

(t; y) + bji1,i2 + cji1,i2 ,

where

bji1,i2 := −
∑

(ω1,ω2)∈Ω(2,i1)×Ω(2,i2)

(ηjω1,i1
ηjω2,i2

)(t; y)

iω2
eij(ω1+ω2)t,

cji1,i2 := −
r∑

n=3

j1− 1
2
− 1
n

∑

(ω1,ω2)∈Ω(2,i1)×Ω(n,i2)

(ηjω1,i1
ηjω2)(t; y)

iω2
eij(ω1+ω2)t

−
r∑

n=3

j1− 1
n
− 1

2

∑

(ω1,ω2)∈Ω(n,i1)×Ω(2,i2)

(ηjω1η
j
ω2,i2

)(t; y)

iω2
eij(ω1+ω2)t

−
r∑

n1,n2=3

j
1− 1

n1
− 1
n2

∑

(ω1,ω2)∈Ω(n1,i1)×Ω(n2,i2)

(ηjω1η
j
ω2)(t; y)

iω2
eij(ω1+ω2)t.

The terms in bji1,i2 that correspond to ω1 + ω2 = 0 are denoted by

vji1,i2(t; y) := −
∑

(ω1,ω2)∈Ω(2,i1)×Ω(2,i2)
ω1+ω2=0

(ηjω1,i1
ηjω2,i2

)(t; y)

iω2
eij(ω1+ω2)t. (4.41)
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Note that, for the first two summations in the right-hand side of cji1,i2 , we always have

ω1 + ω2 6= 0. The third summation in the right-hand side of cji1,i2 can contain terms with
ω1 + ω2 = 0. However, we will show that they add up to 0, that is

r∑

n1,n2=3

j
1− 1

n1
− 1
n2

∑

(ω1,ω2)∈Ω(n1,i1)×Ω(n2,i2)
ω1+ω2=0

(ηjω1η
j
ω2)(t; y)

iω2
eij(ω1+ω2)t = 0.

To see this, we use the following symmetry argument: If
ηjω1η

j
−ω1

iω1
=
|ηjω1 |2

iω1
is in the summa-

tion, then, by the symmetry of the sets Ω(n, i), also
ηj−ω1

ηjω1
−iω1

= − |η
j
ω1
|2

iω1
is in the summation.

So they add up to 0. Thus, we have

bji1,i2 + cji1,i2 = vji1,i2(t; y)− Ũvji1,i2(t; y),

where

Ũvji1,i2(t; y) :=

r∑

n=3

j1− 1
2
− 1
n

∑

(ω1,ω2)∈Ω(2,i1)×Ω(n,i2)

(ηjω1,i1
ηjω2)(t; y)

iω2
eij(ω1+ω2)t

+
r∑

n=3

j1− 1
n
− 1

2

∑

(ω1,ω2)∈Ω(n,i1)×Ω(2,i2)

(ηjω1η
j
ω2,i2

)(t; y)

iω2
eij(ω1+ω2)t

+

r∑

n1,n2=3

j
1− 1

n1
− 1
n2

∑

(ω1,ω2)∈Ω(n1,i1)×Ω(n2,i2)
ω1+ω2 6=0

(ηjω1η
j
ω2)(t; y)

iω2
eij(ω1+ω2)t

+ Ũwji1,i2(t; y) (4.42)

with the additional contribution

Ũwji1,i2(t; y) :=
∑

(ω1,ω2)∈Ω(2,i1)×Ω(2,i2)
ω1+ω2 6=0

(ηjω1,i1
ηjω2,i2

)(t; y)

iω2
eij(ω1+ω2)t (4.43)

compared to [68]. Since ω1 + ω2 6= 0 for all of the terms in (4.42) and (4.43), integration
by parts leads to

∫ t2

t1

Ũvji1,i2(t; y) dt =
[
ŨV j

i1,i2
(t; y)

]t=t2
t=t1
−
∫ t2

t1

ũV j
i1,i2

(t; y) dt,

where

ŨV j
i1,i2

(t; y) :=

r∑

n=3

j−
1
2
− 1
n

∑

(ω1,ω2)∈Ω(2,i1)×Ω(n,i2)

(ηjω1,i1
ηjω2)(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t

+
r∑

n=3

j−
1
n
− 1

2

∑

(ω1,ω2)∈Ω(n,i1)×Ω(2,i2)

(ηjω1η
j
ω2,i2

)(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t

+
r∑

n1,n2=3

j
− 1
n1
− 1
n2

∑

(ω1,ω2)∈Ω(n1,i1)×Ω(n2,i2)
ω1+ω2 6=0

(ηjω1η
j
ω2)(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t
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+ ŨW j
i1,i2

(t; y), (4.44)

ũV j
i1,i2

(t; y) :=
r∑

n=3

j−
1
2
− 1
n

∑

(ω1,ω2)∈Ω(2,i1)×Ω(n,i2)

(ηjω1,i1
ηjω2 )̇(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t

+

r∑

n=3

j−
1
n
− 1

2

∑

(ω1,ω2)∈Ω(n,i1)×Ω(2,i2)

(ηjω1η
j
ω2,i2

)̇(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t

+
r∑

n1,n2=3

j
− 1
n1
− 1
n2

∑

(ω1,ω2)∈Ω(n1,i1)×Ω(n2,i2)
ω1+ω2 6=0

(ηjω1η
j
ω2 )̇(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t

+ ũW j
i1,i2

(t; y) (4.45)

with the additional contributions

ŨW j
i1,i2

(t; y) := j−1
∑

(ω1,ω2)∈Ω(2,i1)×Ω(2,i2)
ω1+ω2 6=0

(ηjω1,i1
ηjω2,i2

)(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t, (4.46)

ũW j
i1,i2

(t; y) := j−1
∑

(ω1,ω2)∈Ω(2,i1)×Ω(2,i2)
ω1+ω2 6=0

(ηjω1,i1
ηjω2,i2

)̇(t; y)

i2(ω1 + ω2)ω2
eij(ω1+ω2)t (4.47)

compared to [68]. In the above definitions, the expression (ηjω1,i1
ηjω2 )̇(t; y) denotes the

derivative of the product of ηjω1,i1
(·; y) and ηjω2(·; y) at t. The expressions (ηjω1η

j
ω2,i2

)̇(t; y)

and (ηjω1η
j
ω2 )̇(t; y) are defined correspondingly. Finally, we let

rji1,i2(t; y) := ηji1,0(t; y) ŨV j
i2

(t; y) + ũV j
i1,i2

(t; y), (4.48)

ũvji1,i2(t; y) := ũV j
i1,i2

(t; y) + Ũvji1,i2(t; y). (4.49)

Then, we have

uji1(t; y) ŨV j
i2

(t; y) = vji1,i2(t; y) + rji1,i2(t; y)− ũvji1,i2(t; y), (4.50)
∫ t2

t1

ũvji1,i2(t; y) dt =
[
ŨV j

i1,i2
(t; y)

]t=t2
t=t1

. (4.51)

This completes the definitions for two indices i1, i2.
To the state the definitions for multi-indices of length > 2, we introduce the following

notation from [68] for each k ∈ {2, . . . , r}.
(1) For every n̂ = (n1, . . . , nk) ∈ {2, . . . , r}k and every ω̂ = (ω1, . . . , ωk) ∈ Rk, we write

αn̂ :=
1

n1
+ · · ·+ 1

nk
,

Σ(ω̂) := ω1 + · · ·+ ωk,

Π(ω̂) := (ω1 + · · ·+ ωk) · · · (ωk−1 + ωk)ωk.

(2) We define the sets

Ω1(k) :=
{
n̂ ∈ {2, . . . , r}k | αn̂ < 1 and precisely one entry of n̂ is equal to 2

}
,

Ω2(k) :=
{
n̂ ∈ {3, . . . , r}k | αn̂ < 1

}
.
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(3) For every n̂ = (n1, . . . , nk) ∈ {2, . . . , r}k, every I = (i1, . . . , ik) ∈ {1, . . . ,m}k, let

Ω(n̂, I) :=
{

(ω1, . . . , ωk) ∈ Ω(n1, i1)× · · · × Ω(nk, ik)
∣∣ Π(ω̂) 6= 0

}
.

(4) For every n̂ = (n1, . . . , nk) ∈ Ω1(k), every I = (i1, . . . , ik) ∈ {1, . . . ,m}k, and every
ω̂ = (ω1, . . . , ωk) ∈ Ω(n̂, I), we write

ηjω̂(t; y) := ηjω1
(t; y) · · · ηjωτ−1

(t; y) ηjωτ ,iτ (t; y) ηjωτ+1
(t; y) · · · ηjωk(t; y),

where τ is the unique element of {1, . . . , k} for which nτ = 2. For every n̂ ∈ Ω2(k), every
I ∈ {1, . . . ,m}k, and every ω̂ = (ω1, . . . , ωk) ∈ Ω(n̂, I), we write

ηjω̂(t; y) := ηjω1
(t; y) · · · ηjωk(t; y).

(5) If k > 2, then, for every multi-index I = (i1, . . . , ik) with i1, . . . , ik ∈ {1, . . . ,m}, define

ŨV j
I(t; y) := (−1)k

∑

n̂∈Ω1(k)

j−αn̂
∑

ω̂∈Ω(n̂,I)

ηjω̂(t; y)

ik Π(ω̂)
eijΣ(ω̂)t (4.52a)

+ (−1)k
∑

n̂∈Ω2(k)

j−αn̂
∑

ω̂∈Ω(n̂,I)

ηjω̂(t; y)

ik Π(ω̂)
eijΣ(ω̂)t + ŨW j

I(t; y) (4.52b)

with an additional contribution ŨW j
I(t; y) (compared to [68]) that will be specified later

in (4.60).

Note that ŨV j
I(t; y) in (4.52) is well-defined since the denominators Π(ω̂) are nonzero by

definition of the sets Ω(n̂, I). Moreover, for k = 2, we have already defined ŨV j
i1,i2

(t; y) of

the form (4.52) in (4.44) with the additional contribution ŨW j
i1,i2

(t; y) given by (4.46).
We proceed with the definitions by induction on the length k of multi-indices. The

base case k = 2 was already carried out. For the induction step, let k ∈ {3, . . . , r} and
I = (i1, . . . , ik) with i1, . . . , ik ∈ {1, . . . ,m}. Define the multi-index Ī := (i2, . . . , ik) of

length k − 1. When we multiply uji1(t; y) by ŨV j
Ī
(t; y) we get

uji1(t; y) ŨV j
Ī
(t; y) = ηji1,0(t; y) ŨV j

Ī
(t; y) + ajI + bjI + cjI + djI

+
(
uji1(t; y)− ηji1,0(t; y)

)
ŨW j

Ī
(t; y),

where

ajI := (−1)k−1
∑

n̂∈Ω1(k−1)

j1− 1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

(ηjω1,i1
ηjω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t, (4.53)

bjI := (−1)k−1
∑

n̂∈Ω2(k−1)

j1− 1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

(ηjω1,i1
ηjω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t,

cjI := (−1)k−1
r∑

n1=3

∑

n̂∈Ω1(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t,

djI := (−1)k−1
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t.
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The definition of the set Ω1(k − 1) implies that

1− 1

2
− αn̂ ≤ −

1

r
(4.54)

for every n̂ ∈ Ω1(k − 1). In particular, all j-powers in ajI are negative. Because of the

independence of the sets ΩE,ρ in FC4, for all the terms in bjI and cjI , we know that ω1 +

Σ(ω̂) 6= 0. The terms in djI that correspond to ω1+Σ(ω̂) = 0 can be written as the sum of the
following three contributions. The first contribution originates from terms with j-powers
1− 1

n1
− αn̂ = 0, which is denoted by

vjI(t; y) := (−1)k−1
r∑

n1=3

∑

n̂∈Ω2(k−1)

∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂)=0

1− 1
n1
−αn̂=0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
. (4.55)

The remaining two contributions

d̄jI := (−1)k−1
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂)=0

1− 1
n1
−αn̂>0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
,

d̂jI := (−1)k−1
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂)=0

1− 1
n1
−αn̂<0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
(4.56)

contain the positive and the negative j-powers, respectively.
In order to take care of the terms d̄jI and d̂jI , we notice the following fact. Let (ω1, . . . , ωk)

be a k-tuple of real numbers such that {ω1, . . . , ωk} is a subset of ∪mi=1∪rn=2 Ω(n, i). Because
of the minimal cancellation requirement in FC3 of each F ∈ QE,ρ := {±FE,ρ} and the linear
independence of the sets ΩE,ρ in FC4, a cancellation ω1 + · · · + ωk = 0 is possible only in
the following three cases (cf. [68]):

(a) k is even and each ωi is canceled out by its negative −ωi. This case will be referred
to as pure cancellation by pairs;

(b) there exist E ∈ ∪rn=3En, ρ ∈ {1, . . . , |E|}, and F ∈ QE,ρ such that F = {ω1, . . . , ωk};
this case will be referred to as pure cancellation by F ;

(c) mixed cancellation; i.e., some of the ωi are canceled out by −ωi, and some others are
canceled out because the set of them is equal to some F ∈ QE,ρ.

Suppose that n1 ∈ {3, . . . , r}, n̂ ∈ Ω2(k − 1), ω1 ∈ Ω(n1, i1), and ω̂ ∈ Ω(n̂, Ī) such that
ω1+Σ(ω̂) = 0. If we have pure cancellation by some F ∈ QE,ρ, then this implies 1

n1
+αn̂ = 1.

Thus, pure cancellation cannot happen in d̄jI or in d̂jI . Next, suppose that we have pure
cancellation by pairs. Then, in particular the length k of I has to be even. But now, by

the symmetry of the Ω(n1, i1) and the Ω(n̂, Ī), we know that if
ηjω1η

j
ω̂

ik−1 Π(ω̂)
is in d̄jI , then since

η−ω1η−ω̂ = ηω1ηω̂ and Π(−ω̂) = −Π(ω̂), also

ηj−ω1
ηj−ω̂

ik−1 Π(−ω̂)
= − ηjω1η

j
ω̂

ik−1 Π(ω̂)
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is in d̄jI . So they add up 0; i.e., the contribution of each term and that of its negative

cancel. The same argument also can be applied to d̂jI . Thus, only mixed cancellation can

give a possibly non-vanishing contribution in d̄jI or in d̂jI . So finally, suppose that we have a
mixed cancellation. Then, there exists an ωi that is canceled out by −ωi, and there exists
a set of some others that is canceled by some F ∈ QE,ρ. Thus, |F | ≤ k − 2, which implies

that 1
n1

+αn̂ ≥ 2
r + 1. Thus, mixed cancellation cannot occur in d̄jI , and therefore, we have

d̄jI = 0. Moreover, we have

1− 1

n1
− αn̂ ≤ −

2

r
(4.57)

for the j-powers of the noncanceling contributions in d̂jI .
In summary, we have

bjI + cjI + djI = ŨvjI(t; y) + vjI(t; y) + d̂jI ,

where

ŨvjI(t; y) := (−1)k
∑

n̂∈Ω2(k−1)

j1− 1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

1− 1
2
−αn̂>0

(ηjω1,i1
ηjω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω1(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

1− 1
n1
−αn̂>0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂)6=0

1− 1
n1
−αn̂>0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t

+ ŨwjI(t; y) (4.58)

with the additional contribution

ŨwjI(t; y) := (−1)k
∑

n̂∈Ω2(k−1)

j1− 1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

1− 1
2
−αn̂≤0

(ηjω1,i1
ηjω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω1(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

1− 1
n1
−αn̂≤0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
1− 1

n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂) 6=0

1− 1
n1
−αn̂≤0

(ηjω1η
j
ω̂)(t; y)

ik−1 Π(ω̂)
eij(ω1+Σ(ω̂))t (4.59)

compared to [68]. Since ω1 + Σ(ω̂) 6= 0 for all terms in (4.59), integration by parts leads to

∫ t2

t1

Ũwji1,i2(t; y) dt =
[
ŨW j

i1,i2
(t; y)

]t=t2
t=t1
−
∫ t2

t1

ũW j
i1,i2

(t; y) dt,

104



4.6 Averaging of the fast oscillations

where

ŨW j
I(t; y) := (−1)k

∑

n̂∈Ω2(k−1)

j−
1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

1− 1
2
−αn̂≤0

(ηjω1,i1
ηjω̂)(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω1(k−1)

j
− 1
n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

1− 1
n1
−αn̂≤0

(ηjω1η
j
ω̂)(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
− 1
n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂) 6=0

1− 1
n1
−αn̂≤0

(ηjω1η
j
ω̂)(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

(4.60)

is the additional contribution to (4.52) compared to [68] and

ũW j
I(t; y) := (−1)k

∑

n̂∈Ω2(k−1)

j−
1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

1− 1
2
−αn̂≤0

(ηjω1,i1
ηjω̂ )̇(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω1(k−1)

j
− 1
n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

1− 1
n1
−αn̂≤0

(ηjω1η
j
ω̂ )̇(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
− 1
n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂)6=0

1− 1
n1
−αn̂≤0

(ηjω1η
j
ω̂ )̇(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t.

(4.61)

In the above definition, the expression (ηjω1,i1
ηjω̂ )̇(t; y) denotes the derivative of the product

of ηjω1,i1
(·; y) and ηjω̂(·; y) at t. The expression (ηjω1η

j
ω̂ )̇(t; y) is defined correspondingly. By

definition of the sets Ω1(k) and Ω2(k), we can write (4.52) also as

ŨV j
I(t; y) = (−1)k

∑

n̂∈Ω2(k−1)

j−
1
2
−αn̂

∑

(ω1,ω̂)∈Ω(2,i1)×Ω(n̂,Ī)

1− 1
2
−αn̂>0

(ηjω1,i1
ηjω̂)(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω1(k−1)

j
− 1
n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)

1− 1
n1
−αn̂>0

(ηjω1η
j
ω̂)(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ (−1)k
r∑

n1=3

∑

n̂∈Ω2(k−1)

j
− 1
n1
−αn̂ ∑

(ω1,ω̂)∈Ω(n1,i1)×Ω(n̂,Ī)
ω1+Σ(ω̂)6=0

1− 1
n1
−αn̂>0

(ηjω1η
j
ω̂)(t; y)

ik (ω1 + Σ(ω̂)) Π(ω̂)
eij(ω1+Σ(ω̂))t

+ ŨW j
I(t; y).
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Thus, integration by parts leads to

∫ t2

t1

Ũvji1,i2(t; y) dt =
[
ŨV j

i1,i2
(t; y)

]t=t2
t=t1
−
∫ t2

t1

ũV j
i1,i2

(t; y) dt,

where

ũV j
I(t; y) := (−1)k

∑

n̂∈Ω1(k)

j−αn̂
∑

ω̂∈Ω(n̂,I)

η̇jω̂(t; y)

ik Π(ω̂)
eijΣ(ω̂)t (4.62a)

+ (−1)k
∑

n̂∈Ω2(k)

j−αn̂
∑

ω̂∈Ω(n̂,I)

η̇jω̂(t; y)

ik Π(ω̂)
eijΣ(ω̂)t + ũW j

I(t; y) (4.62b)

with the additional contribution ũW j
I(t; y) in (4.61) compared to [68]. Finally, we let

rjI(t; y) := ηji1,0(t; y) ŨV j
Ī
(t; y) + ajI + ũV j

I(t; y) + d̂jI +
(
uji1(t; y)− ηji1,0(t; y)

)
ŨW j

Ī
(t; y),

(4.63)

ũvjI(t; y) := ũV j
I(t; y) + ŨvjI(t; y). (4.64)

Then, we have

uji1(t; y) ŨV j
Ī
(t; y) = vjI(t; y) + rjI(t; y)− ũvjI(t; y), (4.65)

∫ t2

t1

ũvjI(t; y) dt =
[
ŨV j

I(t; y)
]t=t2
t=t1

. (4.66)

This completes the definitions for multi-indices of length 3, . . . , r.
We will need the following estimates for the above functions in the next subsection.

Lemma 4.13. There exists c > 0 such that

∣∣uji (t; y)
∣∣ ≤ c j

r−1
r j̄

1
2r ,

∣∣ŨV j
I(t; y)

∣∣ ≤ c j−
k
r j̄

k
2r ,

∣∣rjI(t; y)
∣∣ ≤ c j̄−1− 1

2r max
{
j̄, ˙̄yj(t)

}

for every i ∈ {1, . . . ,m}, k ∈ {1, . . . , r}, every I ∈ {1, . . . ,m}k, every j ≥ 1, every y ∈ Y,
and every t ∈ dom(y).

Proof. It follows from the definitions of the functions ηji,0(·; y), ηjω,i(·; y), and ηjω(·; y) in
Subsection 4.4.2 that there exists some sufficiently large cη > 0 such that

∣∣ηji,0(t; y)
∣∣ ≤ cη j̄

1
2 and

∣∣η̇ji,0(t; y)
∣∣ ≤ cη j̄

1
2 max

{
j̄, ˙̄yj(t)

}

for every i ∈ {1, . . . ,m}, every j ≥ 1, every y ∈ Y, and every t ∈ dom(y);

∣∣ηjω,i(t; y)
∣∣ ≤ cη j̄

1
4 and

∣∣η̇jω,i(t; y)
∣∣ ≤ cη j̄

1
4 max

{
j̄, ˙̄yj(t)

}

for every i ∈ {1, . . . ,m}, every ω ∈ Ω(2, i), every j ≥ 1, every y ∈ Y, and every t ∈ dom(y);

∣∣ηjω(t; y)
∣∣ ≤ cη j̄

1
2n and

∣∣η̇jω(t; y)
∣∣ ≤ cη j̄

1
2n max

{
j̄, ˙̄yj(t)

}

106



4.6 Averaging of the fast oscillations

for every n ∈ {3, . . . , r}, every ω ∈ ∪mi=1Ω(n, i), every j ≥ 1, every y ∈ Y, and every
t ∈ dom(y). Using the above estimates, we conclude from the definition of the functions
ηjω̂(·; y) that there exists cη̂ > 0 such that

∣∣ ηjω̂(t; y)
∣∣ ≤ cη̂ j̄

αn̂/2 and
∣∣η̇jω̂(t; y)

∣∣ ≤ cη̂ j̄
αn̂/2 max

{
j̄, ˙̄yj(t)

}

for every k ∈ {2, . . . , r}, every I ∈ {1, . . . ,m}k, every n̂ ∈ Ω1(k)∪Ω2(k), every ω̂ ∈ Ω(n̂, I),
every j ≥ 1, every y ∈ Y, and every t ∈ dom(y).

Because of (4.16), we obtain for the functions in (4.21) that there exists cu > 0 such that

∣∣uji (t; y)
∣∣ ≤ cu j

r−1
r j̄

1
2r = cu j̄

r− 1
2r

for every i ∈ {1, . . . ,m}, every j ≥ 1, every y ∈ Y, and every t ∈ dom(y). Similarly, for the
functions in (4.46), (4.47), (4.60) and (4.61), we obtain that there exist cUW , cuW > 0 such
that

∣∣ŨW j
I(t; y)

∣∣ ≤ cUW j̄−r and
∣∣ũW j

I(t; y)
∣∣ ≤ cuW j̄−r max

{
j̄, ˙̄yj(t)

}

for every k ∈ {2, . . . , r}, every I ∈ {1, . . . ,m}k, every j ≥ 1, every y ∈ Y, and every
t ∈ dom(y). Since αn̂ ≥ k/r for every n̂ ∈ {2, . . . , r}k, we obtain for the functions in (4.35),
(4.36), (4.44), (4.45), (4.52) and (4.62) that there exist cUV , cuV > 0 such that

∣∣ŨV j
I(t; y)

∣∣ ≤ cUV j̄
−k r+1

r
+ k

2r and
∣∣ũV j

I(t; y)
∣∣ ≤ cuV j̄

−k r+1
r

+ k
2r max

{
j̄, ˙̄yj(t)

}

for every k ∈ {1, . . . , r}, every I ∈ {1, . . . ,m}k, every j ≥ 1, every y ∈ Y, and every
t ∈ dom(y). This in turn implies that

∣∣ηji1,0(t; y) ŨV j
Ī
(t; y)

∣∣ ≤ cη cUV j̄
1
2
−(k−1) r+1

r
+ k−1

2r ≤ cη cUV j̄
− 1

2
− 1

2r ,
(
uji1(t; y)− ηji1,0(t; y)

)
ŨW j

Ī
(t; y) ≤ (cu + cη) cUW j̄−

1
2r

for every k ∈ {2, . . . , r}, every I = (i1, . . . , ik), every i1, . . . , ik ∈ {1, . . . ,m}, every j ≥ 1,
every y ∈ Y, and every t ∈ dom(y). Now the asserted estimates for (4.21), (4.35), (4.37),
(4.44), (4.48) and (4.52) are clear. To complete the proof, we have to show the asserted
estimate for (4.63). For this purpose, it is left to derive suitable estimates for the terms ajI
and d̂jI in the right-hand side of (4.63), which are given by (4.53) and (4.56), respectively.
To this end, we use the above estimates and also the estimates (4.54) and (4.57) for the j-
powers in (4.53) and (4.56), respectively. This leads to the existence of ca, cd > 0 such
that

|ajI | ≤ ca j̄
− 1

2
− 1

2r and
∣∣d̂jI
∣∣ ≤ cd j̄

− 3
2
− 1

2r ,

for every k ∈ {3, . . . , r}, every I = (i1, . . . , ik), every i1, . . . , ik ∈ {1, . . . ,m}, every j ≥ 1,
every y ∈ Y, and every t ∈ dom(y), where the dependence on t and y is suppressed in the
notation. Now the asserted estimate for (4.63) follows and the proof is complete.

As in [68], for every j > 0, every E ∈ ⋃r
n=1 En, every B ∈ E, and every y ∈ Y, we define

a function vjB(·; y) on the domain of y as follows:

If δ(E) = 1; i.e., E = {B}, B = Xi for some i ∈ {1, . . . ,m}, then

vjB(t; y) := ηji,0(t; y).
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4 Extremum seeking control for a class of nonholonomic systems

If δ(E) = 2; i.e., E = {B}, B = (Xi1 , Xi2) for i1, i2 ∈ {1, . . . ,m} with i1 < i2, then

vjB(t; y) := i1−δ(E) 1

ωE

(
ηjωE ,i1(t; y) ηj−ωE ,i2(t; y)− ηj−ωE ,i1(t; y) ηjωE ,i2(t; y)

)
.

If δ(E) > 2, then

vjB(t; y) :=

|E|∑

ρ=1

∑

σ=±
(σi)1−δ(E) ξ̂B,ρ

∏

ω∈σFE,ρ
ηjω(t; y).

In any case, the above definitions lead to

vjB(t; y) =

|E|∑

ρ=1

ξ̂B,ρ ζ
j
(E,ρ)(t; y), (4.67)

where ζj(E,ρ)(t; y) is given by (4.19).

Since the above functions vjB(·; y) and the functions vjI(·; y) in (4.33), (4.41) and (4.55)
are defined in the same way as in [68], one can apply the same argument as therein to
conclude that following algebraic identity holds on A0(X).

Lemma 4.14. For every j > 0, every y ∈ Y, every t ∈ dom(Y), we have

∑

0<|I|≤r
vjI(t; y)XI =

r∑

n=1

∑

B∈Bn
vjB(t; y)µ(B),

where the sum on the left-hand side ranges over all multi-indices I = (i1, . . . , ik) of length
k ∈ {1, . . . , r} with i1, . . . , ik ∈ {1, . . . ,m}, and the XI are given by (4.4).

4.6.3 Integral expansion

For the moment, fix a frequency parameter j > 0 and an initial state x0 ∈M . Recall that we
use the notation in (4.24) and (4.25) for the maximal solution of (4.23) and the associated
output signal, respectively. Let ϕ ∈ C∞(M) and let t1, t2 ∈ [0, T jx0). The fundamental
theorem of calculus applied to the composition of γjx0 and ϕ implies that

ϕ(γjx0(t2)) = ϕ(γjx0(t1)) +

m∑

i=1

∫ t2

t1

uji (t; y
j
x0) (fiϕ)(γjx0(t)) dt.

Note that each of the functions t 7→ (fiϕ)(γjx0(t)) is differentiable. Thus, we may apply
integration by parts, which leads to

ϕ(γjx0(t2)) = ϕ(γjx0(t1))−
m∑

i=1

[
ŨV j

i (t; y
j
x0) (fiϕ)(γjx0(t))

]t=t2
t=t1

+
m∑

i=1

∫ t2

t1

vji (t; y
j
x0) (fiϕ)(γjx0(t)) dt+

m∑

i=1

∫ t2

t1

rji (t; y
j
x0) (fiϕ)(γjx0(t)) dt

+
m∑

i1,i2=1

∫ t2

t1

uji1(t; yjx0) ŨV j
i2

(t; yjx0) (fi1fi2ϕ)(γjx0(t)) dt,
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4.6 Averaging of the fast oscillations

where we have used first (4.39) and then (4.40) as well as that γjx0 is a solution of (4.23).
Note that each of the functions t 7→ (fi1fi2ϕ)(γjx0(t)) in the last integral of the above
equation is differentiable. Thus, we may apply again integration by parts, which leads to

ϕ(γjx0(t2)) = ϕ(γjx0(t1))−
m∑

i=1

[
ŨV j

i (t; y
j
x0) (fiϕ)(γjx0(t))

]t=t2
t=t1

−
m∑

i1,i2=1

[
ŨV j

i1,i2
(t; yjx0) (fi1fi2ϕ)(γjx0(t))

]t=t2
t=t1

+

m∑

i=1

∫ t2

t1

vji (t; y
j
x0) (fiϕ)(γjx0(t)) dt+

m∑

i1,i2=1

∫ t2

t1

vji1,i2(t; yjx0) (fi1fi2ϕ)(γjx0(t)) dt

+

m∑

i=1

∫ t2

t1

rji (t; y
j
x0) (fiϕ)(γjx0(t)) dt+

m∑

i1,i2=1

∫ t2

t1

rji1,i2(t; yjx0) (fi1fi2ϕ)(γjx0(t)) dt

+

m∑

i1,i2,i3=1

∫ t2

t1

uji1(t; yjx0) ŨV j
i2,i3

(t; yjx0) (fi1fi2fi3ϕ)(γjx0(t)) dt,

where we have used first (4.50) and then (4.51) as well as that γjx0 is a solution of (4.23).
We repeat this procedure (r−2) times. First we insert (4.65) and then we apply integration
by parts using (4.66) and that γjx0 is a solution of (4.23). This leads to

ϕ(γjx0(t2)) = ϕ(γjx0(t1)) +
∑

0<|I|≤r

∫ t2

t1

vjI(t; y
j
x0) (fIϕ)(γjx0(t)) dt (4.68a)

−
[
(Dj

1ϕ)(t, γjx0(t); yjx0)
]t=t2
t=t1

+

∫ t2

t1

(Dj
2ϕ)(t, γjx0(t); yjx0) dt, (4.68b)

where the time-varying differential operators Dj
1, D

j
2 on C∞(M) are defined by

(Dj
1ϕ)(t, x; y) :=

∑

0<|I|≤r
ŨV j

I(t; y) (fIϕ)(x), (4.69)

(Dj
2ϕ)(t, x; y) :=

∑

0<|I|≤r
rjI(t; y) (fIϕ)(x) +

∑

|iI|=r+1

uji (t; y) ŨV j
I(t; y) (fifIϕ)(x) (4.70)

for every y ∈ Y, every t ∈ dom(y), and every x ∈ M . As in [69], by “plugging in the fi
for the Xi”, we obtain from Lemma 4.14 and (4.31), (4.32) that the sum of the integrals
in (4.68a) can be written as

∑

0<|I|≤r

∫ t2

t1

vjI(t; y
j
x0) (fIϕ)(γjx0(t)) dt =

r∑

n=1

∑

B∈Bn

∫ t2

t1

vjB(t; yjx0) ([fB]ϕ)(γjx0(t)) dt.

This motivates us to define a time-varying vector field Gj(·, ·; y) on M by

Gj(t, x; y) :=

r∑

n=1

∑

B∈Bn
vjB(t; y) [fB](x) (4.71)

for every y ∈ Y, every t ∈ dom(y), and every x ∈ M . Naturally, Gj(·, ·; y) acts as a time-
varying differential operator on C∞(M) by taking (fixed-time) Lie derivatives. Using (4.26)
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4 Extremum seeking control for a class of nonholonomic systems

and (4.67), we obtain that

Gj(t, x; y) =
∑

`∈Λr

ζj` (t; y) g`(x). (4.72)

In summary, we have derived the following integral expansion for the propagation of smooth
functions along solutions of (4.23).

Proposition 4.15. For every j > 0, every x0 ∈M , and all t1, t2 ∈ [0, T jx0), we have

ϕ(γjx0(t2)) = ϕ(γjx0(t1))−
[
(Dj

1ϕ)(t, γjx0(t); yjx0)
]t=t2
t=t1

+

∫ t2

t1

(Dj
2ϕ)(t, γjx0(t); yjx0) dt

+

∫ t2

t1

(Gjϕ)(t, γjx0(t); yjx0) dt,

where Dj
1, Dj

2, and Gj are given by (4.69), (4.70), and (4.72), respectively.

The subsequent estimates for the remainder terms (4.69) and (4.70) follow immediately
from Lemmas 4.11 and 4.13.

Proposition 4.16. Let ϕ ∈ C∞(M). Suppose that f1, . . . , fm are compactly supported.
Then, there exist c1, c2 > 0 such that

∣∣(Dj
1ϕ)(t, x; y)

∣∣ ≤ c1 j̄
−1− 1

2r ,
∣∣(Dj

2ϕ)(t, x; y)
∣∣ ≤ c2 j̄

−1− 1
2r max{j̄, ˙̄yj(t)}

for every j ≥ 1, every y ∈ Y, every t ∈ dom(y), and every x ∈M .

The averaged term (4.72) is analyzed in the next section.

4.7 Averaging of the slow oscillations

In this section, we apply a similar procedure as in Section 4.6 to the time-varying vector
field defined in (4.72), which arises in Proposition 4.15 as the averaged contribution of the
fast oscillations. Because of (4.19), we can write (4.72) as

Gj(t, x; y) =
∑

(`,ν)∈Jr
ūj(`,ν)(t)hν(ȳj(t)) g`(x) (4.73)

for every j > 0, every y ∈ Y, every t ∈ dom(y), and every x ∈M , where

� the indexing set Jr consists of all pairs (`, ν) with ` ∈ Λr and ν ∈ {1, 2},

� the sinusoids ūj(`,ν) : R→ R are defined in (4.11),

� the functions hν : R→ R are defined in (4.9),

� the first-order hold ȳj : dom(y)→ R of y is defined in (4.17),

� the vector fields g` on M are defined in (4.26).

Note that (4.73) does not depend on any of the fast oscillations on the time scale j but
only on the slow oscillations ūj(`,ν) on the time scale j̄, where j̄ is given by (4.16).
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4.7 Averaging of the slow oscillations

4.7.1 Averaging of the sinusoids

We repeat the procedure from Subsection 2.5.2 in a slightly different notation. Recall that
the sinusoids ūj(`,ν) in (4.11) are determined by the pairwise distinct frequency coefficients

ω̄` > 0. For every ι = (`, ν) ∈ Jr, define two complex-valued constants η̄±ω`,ι as follows. If
ν = 1, let η̄±ω`,ι :=

√
2ω̄`/2, and otherwise, i.e., if ν = 2, let η̄±ω`,ι := ±√2ω̄`/(2i), where i

denotes the imaginary unit. Moreover, let Ω̄(ι) := {±ω̄`}.
Let ι ∈ Jr. Using the above notation, we can write ūjι (t) in (4.11) as

ūjι (t) = j̄
1
2

∑

ω̄∈Ω̄(ι)

η̄ω̄,ι eij̄ω̄t (4.74)

for every t ∈ R. When we integrate −ūjι , we get

−
∫ t2

t1

ūjι (t) dt =
[
ŨV j

ι (t)
]t=t2
t=t1

, (4.75)

where

ŨV j
ι (t) := −j̄− 1

2

∑

ω̄∈Ω̄(ι)

η̄ω̄,ι
iω̄

eij̄ω̄t. (4.76)

Let ι1, ι2 ∈ Jr. When we multiply ūjι1(t) by ŨV j
ι2(t), we get

ūjι1(t) ŨV j
ι2(t) = v̄ι1,ι2 − ũvjι1,ι2(t), (4.77)

where

v̄ι1,ι2 := −
∑

(ω̄1,ω̄2)∈Ω̄(ι1)×Ω̄(ι2)
ω̄1+ω̄2=0

η̄ω̄1,ι1 η̄ω̄2,ι2

i ω̄2
, (4.78)

ũvjι1,ι2(t) :=
∑

(ω̄1,ω̄2)∈Ω̄(ι1)×Ω̄(ι2)
ω̄1+ω̄2 6=0

η̄ω̄1,ι1 η̄ω̄2,ι2

i ω̄2
eij̄(ω̄1+ω̄2)t (4.79)

for every t ∈ R. When we integrate ũvjι1,ι2 , we get

∫ t2

t1

ũvjι1,ι2(t) dt =
[
ŨV j

ι1,ι2(t)
]t=t2
t=t1

, (4.80)

where

ŨV j
ι1,ι2(t) := j̄−1

∑

(ω̄1,ω̄2)∈Ω̄(ι1)×Ω̄(ι2)
ω̄1+ω̄2 6=0

η̄ω̄1,ι1 η̄ω̄2,ι2

i2 ω̄2(ω̄2 + ω̄1)
eij̄(ω̄1+ω̄2)t. (4.81)

The functions in (4.74), (4.76) and (4.81) satisfy the following estimates.

Lemma 4.17. There exists c > 0 such that
∣∣ūjι (t)

∣∣ ≤ c j̄
1
2 ,

∣∣ŨV j
ι (t)
∣∣ ≤ c j̄−

1
2 ,

∣∣ŨV j
ι1,ι2(t)

∣∣ ≤ c j̄−1

for every j ≥ 1, all ι, ι1, ι2 ∈ Jr, and every t ∈ R.
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4 Extremum seeking control for a class of nonholonomic systems

This means that the functions ŨV j
ι and ŨV j

ι1,ι2 converge uniformly to 0 as the global
frequency parameter j tends to ∞. Moreover, a direct computation shows that the v̄ι1,ι2
in (4.78) are given as follows.

Lemma 4.18. For all ι1 = (`1, ν1), ι2 = (`2, ν2) ∈ Jr, we have

v̄ι1,ι2 =





+1 if `1 = `2 and ν1 = 1 and ν2 = 2,
−1 if `1 = `2 and ν1 = 2 and ν2 = 1,

0 otherwise.

Because of Lemma 4.18 and equation (4.10), we have

∑

ι1,ι2∈Jr
v̄ι1,ι2 f̄ι1(f̄ι2ϕ) =

∑

`∈Λr

([f̄(`,1), f̄(`,2)]ϕ) = f∞ϕ (4.82)

for every ϕ ∈ C∞(M), where the vector field f∞ on M is given by (4.27).

4.7.2 Estimate for the output variations

Recall from Section 4.4 that measurements of the output (4.6) are conducted at the time
instances τ jk = k∆/j̄2 for k = 0, 1, . . ., where j̄ is given by (4.16) and ∆ is a positive

constant. Our next goal is to derive an estimate for the variation of the output signal yjx0
in (4.25) on time intervals between two subsequent output measurements. For this purpose,
we first need the following estimate for the Lie derivative of a smooth function along the
time-varying vector field given in (4.73).

Lemma 4.19. Suppose that f1, . . . , fm are compactly supported. Then, for every ϕ ∈
C∞(M), there exists c3 > 0 such that

|(Gjϕ)(t, x; y)| ≤ c3 j̄
1
2

for every y ∈ Y, every t ∈ dom(y), and every x ∈M .

Proof. By the definitions in (4.9), the functions hν are bounded by a constant. Therefore,
the asserted estimate follows immediately from equation (4.73) and Lemmas 4.12 and 4.17.

Lemma 4.20. Suppose that f1, . . . , fm are compactly supported. Then, there exists j0 ≥ 1
such that

1

∆/j̄2

∣∣yjx0(t)− yjx0(τ jk)
∣∣ ≤ j̄

for every j ≥ j0, every x0 ∈M , every nonnegative integer k, and every t ∈ [τ jk , τ
j
k+1].

Proof. Let c1, c2 > 0 and c3 > 0 be the constants from Proposition 4.16 and Lemma 4.19
for ϕ = ψ, respectively. Choose a sufficiently large j0 ≥ 1 such that

2 c1

∆
j̄1− 1

2r + c2 j̄
− 1

2r + c3 j̄
1
2 ≤ j̄

for every j ≥ j0. To verify the asserted estimate for the output, fix arbitrary j ≥ j0,
x0 ∈M , and write y = yjx0 . From Proposition 4.15 with ϕ = ψ, we conclude that

1

∆/j̄2
|y(t2)− y(t1)| ≤ 2 c1

∆
j̄1− 1

2r +
(
c2 j̄
−1− 1

2r max{j̄, ˙̄yj(t)}+ c3 j̄
1
2
) t2 − t1

∆/j̄2
(4.83)
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for all t2 ≥ t1 ≥ 0. By definition of the first-order hold, we have ˙̄yj(t) = 0 for t ∈ [τ j0 , τ
j
1 ].

Using (4.83) and the choice of j0, this implies that the asserted estimate holds for every
t ∈ [τ j0 , τ

j
1 ]. Now we proceed by induction on k. Suppose that the asserted estimate is true

for every t ∈ [τ jk , τ
j
k+1] with some nonnegative integer k. Then, in particular, the estimate

is true for t = τ jk+1. By definition of the first-order hold, this implies ˙̄yj(t) ≤ j̄ for every

t ∈ [τ jk+1, τ
j
k+2]. Now it follows again from (4.83) and the choice of j0 that the asserted

estimate also holds for every t ∈ [τ jk+1, τ
j
k+2].

For every j > 0, the right-hand side of (4.12) defines a time-varying vector field F̄ j on M ,
which is given by

F̄ j(t, x) :=
∑

ι∈Jr
ūjι (t) f̄ι(x) =

∑

(`,ν)∈Jr
ūj(`,ν)(t)hν(ψ(x)) g`(x), (4.84)

where we have used the definition of the vector fields f̄ι in (4.8). Our next goal is to replace
the averaged term (Gjϕ)(t, γjx0(t); yjx0) in Proposition 4.15 by (F̄ jϕ)(t, γjx0(t)). This requires
a suitable estimate for their difference. For this reason, we define a time-varying differential
operator D̂j

2 on C∞(M) by

(D̂j
2ϕ)(t, x; y) := (Dj

2ϕ)(t, x; y) + (Gjϕ)(t, x; y)− (F̄ jϕ)(t, x) (4.85)

for every y ∈ Y, every t ∈ dom(y), and every x ∈M , where Dj
2 is given by (4.70).

Lemma 4.21. Suppose that f1, . . . , fm are compactly supported. Then, there exists j0 ≥ 1
such that, for every ϕ ∈ C∞(M), there exists ĉ2 > 0 such that

∣∣(D̂j
2ϕ)(t, γjx0(t); yjx0)

∣∣ ≤ ĉ2 j̄
− 1

2r

for every j ≥ j0, every x0 ∈M , and every t ≥ 0.

Proof. Choose j0 ≥ 1 as in Lemma 4.20. Then, in particular, by definition of the first-order
hold, we have | ˙̄yj(t)| ≤ j̄ for every j ≥ j0, every x0 ∈ M , and every t ≥ 0, where y abbre-
viates yjx0 . Fix an arbitrary ϕ ∈ C∞(M). Then, by the choice of j0 and Proposition 4.16,
there exists c2 > 0 such that

∣∣(Dj
2ϕ)(t, γjx0(t); yjx0)

∣∣ ≤ c2 j̄
− 1

2r

for every j ≥ j0, every x0 ∈M , and every t ≥ 0. To complete the proof, it suffices to show
that there exists c′2 > 0 such that

∣∣(Gjϕ)(t, γjx0(t); yjx0)− (F̄ jϕ)(t, γjx0(t))
∣∣ ≤ c′2 j̄

− 1
2r

for every j ≥ j0, every x0 ∈M , and every t ≥ 0. By (4.73) and (4.84), we have

∣∣(Gjϕ)(t, x; y)− (F̄ jϕ)(t, x)
∣∣ ≤

∑

(`,ν)∈Jr

∣∣ūj(`,ν)(t)
∣∣ ∣∣hν(ȳj(t))− hν(ψ(x))

∣∣ ∣∣(g`ϕ)(x)
∣∣

for every j > 0, every y : [0,∞) → R, every t ≥ 0, and every x ∈ M . The functions
hν : R → R in (4.9) are globally Lipschitz continuous with Lipschitz constant 1. From the
definition of the first-order hold and Lemma 4.20, it is easy to derive that |ȳj(t)− y(t)| ≤
2∆/j̄ for every j ≥ j0, every x0 ∈ M , and every t ≥ 0, where y abbreviates yjx0 . Since

j̄−
1
2 ≤ j̄− 1

2r for j ≥ 1, the asserted estimate for the difference of Gjϕ and F̄ jϕ now follows
from Lemma 4.12 and Lemma 4.17.
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Using (4.85), we obtain from Proposition 4.15 the equation

ϕ(γjx0(t2)) = ϕ(γjx0(t1)) +
∑

ι∈Jr

∫ t2

t1

ūjι (t) (f̄ιϕ)(γjx0(t)) dt (4.86a)

−
[
(Dj

1ϕ)(t, γjx0(t); yjx0)
]t=t2
t=t1

+

∫ t2

t1

(D̂j
2ϕ)(t, γjx0(t); yjx0) dt (4.86b)

for every j > 0, every x0 ∈M , and all t1, t2 ∈ [0, T jx0).

Remark 4.22. We already know from Proposition 4.16 and Lemma 4.21 that the contri-
bution in (4.86b) becomes small with increasing j. Thus, only the contribution in (4.86a)
remains for large values of j. Note that an integral equation of the form (4.86a) (without
the contribution in (4.86b)) describes the propagation of ϕ along a solution of (4.12). This
implies the approximation properties AP1 in Section 4.3. It is left to extract the averaged
contribution of (4.86a). This is done in Subsection 4.7.3. ♦

4.7.3 Integral expansion

Define two time-varying differential operators Dj , Dj
0 on C∞(M) by

(Djϕ)(t, x; y) := ϕ(x) + (Dj
1ϕ)(t, x; y), (4.87)

(Dj
0ϕ)(t, x; y) := (D̂j

2ϕ)(t, x; y)−
∑

ι∈Jr
ūjι (t) (Dj

1(f̄ιϕ))(t, x; y) (4.88)

for every y ∈ Y, every t ∈ dom(y), and every x ∈M . Then, equation (4.86) can be written
as

(Djϕ)(t2, γ
j
x0(t2); yjx0) = (Djϕ)(t1, γ

j
x0(t1); yjx0) +

∫ t2

t1

(Dj
0ϕ)(t, γjx0(t); yjx0) dt (4.89a)

+
∑

ι∈Jr

∫ t2

t1

ūjι (t) (Dj(f̄ιϕ))(t, γjx0(t); yjx0) dt (4.89b)

for every j > 0, every ϕ ∈ C∞(M), every x0 ∈ M , and all t1, t2 ∈ [0, T jx0). By the
fundamental theorem of calculus, (4.89) means that the locally absolutely function

t 7→ (Djϕ)(t, γjx0(t); yjx0) (4.90)

is an antiderivative of the locally integrable function

t 7→ (Dj
0ϕ)(t, γjx0(t); yjx0) +

∑

ι∈Jr
ūjι (t) (Dj(f̄ιϕ))(t, γjx0(t); yjx0). (4.91)

Thus, if we apply integration by parts in (4.89b), then we obtain

(Djϕ)(t2, γ
j
x0(t2); yjx0) = (Djϕ)(t1, γ

j
x0(t1); yjx0) +

∫ t2

t1

(Dj
0ϕ)(t, γjx0(t); yjx0) dt

−
∑

ι∈Jr

[
ŨV j

ι (t) (Dj(f̄ιϕ))(t, γjx0(t); yjx0)
]t=t2
t=t1
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+
∑

ι∈Jr

∫ t2

t1

ŨV j
ι (t)(D

j
0(f̄ιϕ))(t, γjx0(t); yjx0) dt

+
∑

ι1,ι2∈Jr

∫ t2

t1

ūjι1(t) ŨV j
ι2(t) (Dj(f̄ι1 f̄ι2ϕ))(t, γjx0(t); yjx0) dt,

where we have used (4.75) and that (4.90) is an antiderivative of (4.91). Next, we in-
sert (4.77) in the last integral of the above equation. Then, we apply integration by parts
using (4.80) and that (4.90) is an antiderivative of (4.91). This leads to

ϕ(γjx0(t2)) = ϕ(γjx0(t1)) +
∑

ι1,ι2∈Jr

∫ t2

t1

v̄ι1,ι2 (f̄ι1 f̄ι2ϕ)(γjx0(t)) dt

−
[
(D̄j

1ϕ)(t, γjx0(t); yjx0)
]t=t2
t=t1

+

∫ t2

t1

(D̄j
2ϕ)(t, γjx0(t); yjx0) dt,

where the time-varying differential operators D̄j
1 and D̄j

2 on C∞(M) are defined by

(D̄j
1ϕ)(t, x; y) := (Dj

1ϕ)(t, x; y) +
∑

ι∈Jr
ŨV j

ι (t) (Dj(f̄ιϕ))(t, x; y) (4.92a)

+
∑

ι1,ι2∈Jr
ŨV j

ι1,ι2(t) (Dj(f̄ι1 f̄ι2ϕ))(t, x; y) (4.92b)

and

(D̄j
2ϕ)(t, x; y) := (Dj

0ϕ)(t, x; y) +
∑

ι1,ι2∈Jr
v̄ι1,ι2 (Dj

1(f̄ι1 f̄ι2ϕ))(t, x; y) (4.93a)

+
∑

ι∈Jr
ŨV j

ι (t)(D
j
0(f̄ιϕ))(t, x; y) +

∑

ι1,ι2∈Jr
ŨV j

ι1,ι2(t)(Dj
0(f̄ι1 f̄ι2ϕ))(t, x; y) (4.93b)

+
∑

ι1,ι2,ι3∈Jr
ūjι1(t) ŨV j

ι2,ι3(t) (Dj(f̄ι1 f̄ι2 f̄ι3ϕ))(t, x; y) (4.93c)

for every y ∈ Y, every t ∈ dom(y), and every x ∈ M . Because of (4.82), we have derived
the following integral expansion for the propagation of smooth functions along trajectories
of (4.23).

Proposition 4.23. For every j > 0, every x0 ∈M , and all t1, t2 ∈ [0, T jx0), we have

ϕ(γjx0(t2)) = ϕ(γjx0(t1))−
[
(D̄j

1ϕ)(t, γjx0(t); yjx0)
]t=t2
t=t1

+

∫ t2

t1

(f∞ϕ)(γjx0(t)) dt+

∫ t2

t1

(D̄j
2ϕ)(t, γjx0(t); yjx0) dt,

where f∞, Dj
1, and Dj

2 are given by (4.27), (4.92), and (4.93), respectively.

Proposition 4.24. Suppose that the assumptions of Theorem 4.7 are satisfied. Then, for
all ỹ−, ỹ+ ∈ (y∗, y+) with ỹ− < ỹ+, there exists c0 > 0 such that

(f∞ψ)(x) ≤ −c0

for every x ∈ ψ−1(≤ ỹ+, x∗) with ψ(x) ≥ ỹ−.
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Proof. Suppose that the assumptions of Theorem 4.7 are satisfied, and fix arbitrary ỹ−, ỹ+ ∈
(y∗, y+) with ỹ− < ỹ+. Then, the setK of all x ∈ ψ−1(≤ ỹ+, x∗) with ψ(x) ≥ ỹ− is compact.
Moreover, Corollary 4.5 implies that f∞ψ only takes negative values on K. Since f∞ψ is
continuous, we can choose c0 > 0 as the maximum of −f∞ψ on K.

The remainders D̄j
1ϕ and D̄j

2ϕ in Proposition 4.23 satisfy the subsequent estimates.

Proposition 4.25. Let ϕ ∈ C∞(M). Suppose that f1, . . . , fm are compactly supported.
Then, there exist j0, c̄1, c̄2 > 0 such that

∣∣(D̄j
1ϕ)(t, γjx0(t); yjx0)

∣∣ ≤ c̄1 j̄
− 1

2 ,
∣∣(D̄j

2ϕ)(t, γjx0(t); yjx0)
∣∣ ≤ c̄2 j̄

− 1
2r

for every j ≥ j0, every x0 ∈M , and every t ≥ 0.

Proof. Let F be the finite set of all the functions ϕ, f̄ι1ϕ, f̄ι1 f̄ι2ϕ, and f̄ι1 f̄ι2 f̄ι3ϕ with
ι1, ι2, ι3 ∈ Jr. We already know that the differential operators Dj

1 and D̂j
2 satisfy the

estimates in Proposition 4.16 and Lemma 4.21 for every smooth function on M . Thus, we
can find sufficiently large j0, c1, ĉ2 > 0 such that

∣∣(Dj
1φ)(t, γjx0(t); yjx0)

∣∣ ≤ c1 j̄
−1− 1

2r and
∣∣(D̂j

2φ)(t, γjx0(t); yjx0)
∣∣ ≤ ĉ2 j̄

− 1
2r

for every φ ∈ F , every j ≥ j0, every x0 ∈ M , and every t ≥ 0. Since the vector fields
f1, . . . , fm are assumed to be compactly supported, also the vector fields f̄ι, ι ∈ Jr, are
compactly supported. Using the definition of Dj in (4.87) it follows that there exists c > 0
such that ∣∣(Djφ)(t, γjx0(t); yjx0)

∣∣ ≤ c

for every φ ∈ F \ {ϕ}, every j ≥ j0, every x0 ∈ M , and every t ≥ 0. Using Lemma 4.17
and the definition of Dj

0 in (4.88) it follows that there exists c0 > 0 such that

∣∣(Dj
0φ)(t, γjx0(t); yjx0)

∣∣ ≤ c0 j̄
− 1

2r

for every φ ∈ F , every j ≥ j0, every x0 ∈M , and every t ≥ 0. From Lemma 4.17, we know

estimates for the sinusoids ūjι , ŨV
j
ι , and ŨV j

ι1,ι2 in (4.92) and (4.93). Now we have suitable
estimates for all constituents of D̄j

1ϕ and D̄j
2ϕ to conclude that the statement is true.

The two-step averaging procedure is complete. Theorem 4.6 follows immediately from
Propositions 4.23 and 4.25.

4.7.4 Proof of Theorem 4.7

Suppose that the assumptions of Theorem 4.7 are satisfied with certain x∗ ∈ M and y∗ <
y+ ≤ +∞ as therein. Fix arbitrary small ε, δ > 0 and an arbitrary large ỹ ∈ (y∗, y+).
After possibly shrinking ε, we may assume that ỹ+ := ỹ + ε < y+. Then, the set K :=
ψ−1(≤ ỹ+, x∗) is compact. After multiplication by a suitable smooth bump function10,
we may suppose that the vector fields f1, . . . , fm are compactly supported and that they

10It is known from differential geometry [62] that, for every compact subset K of a smooth manifold M ,
there exists a compactly supported smooth function on M that is identically equal to 1 on K. Such a
function is usually referred to as a bump function.
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t

ỹ + ε

ỹ + ε1

ψ(x0) + ε1

ỹ

ψ(x0)

y∗ + δ

y∗ + ε1

y∗

0 σ

≥ ε1

≥ ε1

yjx0
(t) = ψ(γjx0

(t))

Figure 4.2: Illustration of the parameters and functions in Subsection 4.7.4.

coincide with the initially given control vector fields on K. After possibly shrinking δ, we
may assume that y∗ + δ < ỹ. Let ε1 := min{ε, δ/2} and ỹ− := y∗ + ε1. Let K ′ denote the
compact set of all x ∈ K with ψ(x) ≥ ỹ−. Then, there exists c0 > 0 as in Proposition 4.24.
Let ε2 := c0/2. We conclude from Theorem 4.6 with ϕ = ψ that there exists j0 > 0 such
that, for every j ≥ j0, every x0 ∈ K, and all t2 > t1 ≥ 0, the following implication holds: if
γjx0(t) ∈ K ′ for every t ∈ [t1, t2], then

ψ(γjx0(t2)) ≤ ψ(γjx0(t1)) + ε1 − ε2 (t2 − t1).

It is now easy to see that the above inequality and the choice of ε1, ε2 imply the asserted
statements on stability, boundedness, and attraction in Theorem 4.7 with σ := (ỹ− y∗)/ε2.
In particular, every solution of (4.23) that starts in ψ−1(≤ ỹ, x∗) stays in the compact set K
on which the vector fields f1, . . . , fm coincide with the initially given control vector fields.
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Possible directions for future research

Over the past years, approximations of Lie brackets have been successfully used to solve
a variety of optimization problems. However, there are still many promising directions
that should be investigated in the future. The following paragraphs collect some of these
directions.

Nowadays, modern control systems are highly interconnected and involve analog and
digital components. This goes along with a range of novel challenges such as sampled
measurements, quantized inputs, discrete-time systems or local information. However, a
major limitation of many extremum seeking control schemes, including the Lie bracket
approach, is that they are not capable of dealing with these situations in an integrative
manner. By further developing the Lie bracket approach, a long-term vision would be
a general framework for analyzing and designing extremum seeking algorithms for such
modern interconnected control systems consisting of digital and analog components. This
would allow completely novel areas of application, which are not feasible with the existing
state of the art extremum seeking schemes.

Closely related to the directions in the previous paragraph is the study of robustness
against disturbances. Most of the existing theoretical studies on extremum seeking control
assume that the output signal can be sensed accurately at any given time and that the
control law is fed into the system without any disturbances. In particular, this is required
for the existing extremum seeking results obtained by Lie bracket approximations. How-
ever, in many real-world applications, such ideal conditions are not satisfied. The question
of robustness arises naturally, for example, when the output measurements are corrupted
by noise. Moreover, any deviation from a prescribed continuous-time control law due to
a digital implementation can be interpreted as a disturbance. An investigation of robust-
ness properties of the Lie bracket approach could lead to helpful guidelines in practical
implementations of such a control strategy.

The majority of the existing extremum seeking strategies by means of Lie bracket approx-
imations require a first-order kinematic control system, meaning that the first-order time
derivative of the system state can be directly controlled through the input channels. How-
ever, many extremum seeking control problems involve higher-order control systems such
as mechanical systems or integrator chains. For example, in applications to source seeking
with an acceleration-controlled robot. It is therefore desirable to extend the Lie bracket
approach to a larger class of non-kinematic models. The known Lie bracket-based meth-
ods lead to rapidly increasing velocities with increasing frequency parameter. A promising
goal would be a less invasive control strategy, which ensures bounded velocities even in the
high-frequency limit. This in turn can lead to a reduced vulnerability to disturbances and
to an improved performance in case of digital implementations.

Another promising (but very challenging) direction would be an extension to non-smooth
and infinite-dimensional optimization problems. This includes extremum seeking control
for systems modeled by partial differential equations. The existing Lie bracket-based meth-
ods only give access to finite-dimensional subspaces of descent directions and their stability
analysis heavily relies on a certain degree of smoothness. As a first step, one could in-
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vestigate the behavior of closed-loop systems with a certain class of non-smooth output
functions on finite dimensional state spaces. This probably requires suitable mathematical
tools, like the subdifferential, from non-smooth optimization.
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[53] N. J. Killingsworth and M. Krstić. PID tuning using extremum seeking: Online,
model-free performance optimization. IEEE Control Systems, 26(1):70–79, 2006.

[54] L. Krick, M. E. Broucke, and B. A. Francis. Stabilization of infinitesimally rigid
formations of multi-robot networks. International Journal of Control, 82(3):423–439,
2009.
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[58] J. Kurzweil and J. Jarńık. Iterated Lie brackets in limit processes in ordinary differ-
ential equations. Results in Mathematics, 14(1-2):125–137, 1988.

[59] C. Labar, E. Garone, M. Kinnaert, and C. Ebenbauer. Newton-based extremum
seeking: A second-order Lie bracket approximation approach. Automatica, 105:356–
367, 2019.

124



Bibliography

[60] V. Lakshmikantham, S. Leela, and A. A. Martynyuk. Practical Stability of Nonlinear
Systems. World Scientific, Signapore, 1990.
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[92] A. Scheinker, M. Bland, M. Krstić, and J. Audia. Extremum seeking-based optimiza-
tion of high voltage converter modulator rise-time. IEEE Transactions on Control
Systems Technology, 22(1):34–43, 2014.
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