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Chapter 1

Introduction

1.1 Overview

The topic at hand is a rather recent one. To be fair, already mathematicians
like Nicolaus Bernoulli were interested in the investigation of maxima, the key
subject of extreme value theory. Specifically, he wanted to figure out the mean
duration of the last survivor’s life from a population of n people. In the 19th
century, scientists were interested in detecting outliers (e.g., Peirce’s criterion)
and generally large observations coming from a normal distribution. Some
time later, other distributions were considered, too, but it was not until mid
20th century that the asymptotic univariate types of extreme value distribu-
tions were discovered: the crucial theorem is by Gnedenko (1943), building on
earlier work by Fisher and Tippett (1928) and Fréchet (1927). Gumbel (1958)
compiled lots of this knowledge in his book and more on this history can be
found there as well.

We still have to wait some more years, until, in the 1970ies, the attention
of the extreme value community shifted towards multivariate extremes. This
step is important to us as now we have to deal with dependence structures
between the different components of the limiting distribution. In fact, quite a
few views how to characterize this dependence developed over the next years,
e.g., the spectral or angular measure (Einmahl et al. (1997)), Pickands de-
pendence function (Pickands (1981)) or the stable tail dependence function
(Huang (1992)). Interpreting the latter as D-norms, we can gather lots of
interesting insights. This is why we make this view the key element of this
thesis.

1



2 CHAPTER 1. INTRODUCTION

In the next section of this introductory chapter, we first establish some
notation and other preliminaries needed throughout the remaining chapters.
Each chapter itself will introduce the respective setup and more theory that
is needed for that part, but not for the others.

The following three chapters are adapted versions of existing articles. They
are unified in the sense that common topics were compiled together in this
introduction and contain some remarks that did not make it into the final
version of the published papers.

The second chapter, based on Falk and Wisheckel (2017), is an investiga-
tion of the asymptotic dependence behavior of the components of bivariate
order statistics. We find that the two components of the order statistics be-
come asymptotically independent for certain combinations of (sequences of)
indices that are selected, and it turns out that no further assumptions on the
dependence of the two components in the underlying sample are necessary.
To establish this, an explicit representation of the conditional distribution of
bivariate order statistics is derived.

Chapter 3 is from Falk et al. (2019a) and deals with the conditional distri-
bution of an Archimedean copula, conditioned on one of its components. We
show that its tails are independent under minor conditions on the generator
function, even if the unconditional tails were dependent. The theoretical find-
ings are underlined by a simulation study and can be generalized to Archimax
copulas.

Falk et al. (2019b) lead to Chapter 4 where we introduce a nonparametric
approach to estimate the probability that a random vector exceeds a fixed
threshold if it follows a Generalized Pareto copula. To this end, some theory
underlying the concept of Generalized Pareto distributions is presented first,
the estimation procedure is tested using a simulation and finally applied to a
dataset of air pollution parameters in Milan, Italy, from 2002 until 2017.

While the previous three chapters are adaptations of already completed
and published papers, the fifth chapter collects several additional results and
considerations.

Finally, the sixth chapter provides a short review of the whole thesis as
well as an outlook to possible further work.
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1.2 Preliminaries

General Notation

As announced, we want to clarify some notations first: random vectors like X
that take values in Rd, d > 1, will be printed in bold face and using upper case
letters to indicate that we are in a multivariate context. Non-random vectors
like a ∈ Rd also appear in bold face, but are lower case.

If x,y ∈ Rd are two d-dimensional vectors, we define operations and rela-
tions between them component-wise. In particular we have

xy := (x1y1, . . . , xdyd)
T

x

y
:=

(︃
x1
y1
, . . . ,

xd
yd

)︃T

max (x,y) := (max (xi, yi))
d
i=1

x ≤ y :⇔ x1 ≤ y1, . . . , xd ≤ yd

and so on. The same goes for random vectors X and Y as long as they
are defined on the same probability space. We assume that this is the case
for random vectors in a common context. Furthermore 1 = (1, . . . , 1)T , 0 =
(0, . . . , 0)T ∈ Rd denote the vector of constant ones or zeros of the appropriate
dimension for the given context. As a notational shorthand we sometimes use
scalars c ∈ R to mean c1. Note however that we still have xTy =

∑︁d
i=1 xiyi

as usual.
Matrices are denoted by upper case letters. Their components are accessed

by double-subscripts like Σ = (σij) with i, j = 1, . . . , d. For some vector
c ∈ Rd, C = diag(c) ∈ Rd×d is a diagonal matrix with the entries of c on the
main diagonal and 0 elsewhere.

When we have a collection of (random) vectors, we sometimes put the
index as a superscript to leave the subscript for the components, i.e.,

X(i) =
(︂
X

(i)
1 , . . . , X

(i)
d

)︂T
.

As long as there is no risk of confusion with exponents, we may leave out the
parentheses and just write X i instead of X(i).

Convergence of x to x0 is denoted by x → x0, the one-sided limit from
above or from the right, i.e., for x > x0, is written as x ↓ x0. Likewise, x ↑ x0
is the limit from below or from the left.
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Order Statistics and Extreme Value Distributions

Consider a sample X1, . . . , Xn of n ∈ N random variables (rv). Most of the
time, we will require them to be an independent and identically distributed
(iid) sample, but this is not necessary for a general definition of order statis-
tics. Let Xm:n for m = 1, . . . , n denote the m-th order statistic (os) of our
sample, which is the m-th smallest observation. This means that we can
sort the random variables in ascending order by X1:n ≤ X2:n ≤ · · · ≤ Xn:n

(for fixed ω in the sample space Ω, which means the order statistics are
rvs, too). Therefore, Xn:n = Mn := max(X1, ..., Xn) is the maximum and
X1:n = mn := min(X1, ..., Xn) is the minimum. X⌈n

2
⌉:n is the median where

⌈n
2
⌉ is the ceiling function, i.e., the smallest integer greater than or equal to

n
2
. Finally, Xn−k+1:n is the k-th largest order statistic, so k = 1 leads back to

the maximum.
For the multivariate case, let X(1), . . . ,X(n) ∈ Rd be a sample of n d-

variate random vectors (rv). We define Xm:n with m ∈ {1, . . . , n}d as the
vector of component-wise order statistics, i.e., Xm:n = (Xm1:n,1, . . . , Xmd:n,d)

T

where Xmi:n,i is the mith order statistic of X
(1)
i , . . . , X

(n)
i . Note that in most

cases Xm:n is not an element of the sample as its components typicallycome
from different observations.

Order statistics themselves are mainly investigated in Chapters 2 and 5, but
a special one - the maximum - is the key subject of extreme value theory: let
us assume that the sample X1, . . . ,Xn ∈ Rd is iid with common distribution
function (df) F . Then the distribution of Mn is given by

P (Mn ≤ x) = P (Xi ≤ x, i = 1, . . . , n) = P (X1 ≤ xn)
n = F n(x).

If n→ ∞, this can only converge to 0 or 1. To have a chance for convergence to
a non-degenerate df, we consider an affine transformation. We use sequences
an > 0, bn ∈ Rd and get

P

(︃
Mn − bn

an

≤ x

)︃
= F n (anx+ b) .

We say that the df F is in the domain of attraction of a multivariate, non-
degenerate df G, denoted by F ∈ D(G), if and only if (iff) there exist vectors
an > 0 ∈ Rd, bn ∈ Rd, n ∈ N, such that

F n(anx+ bn) →n→∞ G(x), x ∈ Rd. (1.1)
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The limit df G is necessarily max-stable, see, e.g., Resnick (1987, Proposi-
tion 5.9). This means that there exist vectors an > 0 ∈ Rd, bn ∈ Rd, n ∈ N,
such that

Gn(anx+ bn) = G(x), x ∈ Rd.

A characterization of multivariate max-stable df was established by de Haan
and Resnick (1977) and Vatan (1985); for an introduction to multivariate
extreme value theory see, e.g., Falk et al. (2011, Chapter 4).

The univariate margins Gi, 1 ≤ i ≤ d, of a multivariate max-stable df
G belong necessarily to the family of univariate max-stable df, which is a
parametric family {Gα : α ∈ R} with

Gα(x) =

{︄
exp

(︁
− (−x)α

)︁
, x ≤ 0,

1, x > 0,
for α > 0,

Gα(x) =

{︄
0, x ≤ 0,

exp(−xα), x > 0,
for α < 0,

and
G0(x) := exp(−e−x), x ∈ R, (1.2)

being the family of reverse Weibull, Fréchet and Gumbel distributions. Note
that G1(x) = exp(x), x ≤ 0, is the standard negative exponential df. We refer
e.g., to Galambos (1987, Section 2.3) or Resnick (1987, Chapter 1).

Copulas

By Sklar’s theorem (Sklar (1959, 1996)), there exists a rv U = (U1, . . . , Ud)
with the property that each component Ui follows the uniform distribution on
(0, 1), such that

X =D

(︁
F−1
1 (U1), . . . , F

−1
d (Ud)

)︁
,

where Fi is the df of Xi and F−1
i (u) = inf {t ∈ R : Fi(t) ≥ u}, u ∈ (0, 1), is

the common generalized inverse or quantile function of Fi, 1 ≤ i ≤ d. By =D

we denote equality in distribution.
The rv U , therefore, follows a copula, say CF . If F is continuous, then

the copula CF is uniquely determined by CF (u) = F
(︁
F−1
1 (u1), . . . , F

−1
d (ud)

)︁
,

u = (u1, . . . , ud) ∈ (0, 1)d.
For a general introduction to copulas, we refer to Nelsen (2006). The sig-

nificance of copulas to extreme value theory can be seen as follows: Deheuvels
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(1984) and Galambos (1987) showed that F ∈ D(G) iff this is true for each
univariate margin Fi and for the copula CF . Precisely, they established the
following result.

Theorem 1.1 (Deheuvels (1984), Galambos (1987)). The df F satisfies F ∈
D(G) iff this is true for the univariate margins of F together with the conver-
gence of the copulas:

Cn
F

(︁
u1/n

)︁
→n→∞ CG(u) = G

(︂(︁
G−1

i (ui)
)︁d
i=1

)︂
, (1.3)

u = (u1, . . . , ud) ∈ (0, 1)d, where Gi denotes the i-th margin of G, 1 ≤ i ≤ d.

Let U (1),U (2), . . . be independent copies of the rv U , which follows the
copula CF . Then the copula CMn of

Mn := max
1≤i≤n

U (i)

is Cn
F

(︁
u1/n

)︁
, where the maximum is also taken componentwise. The df of Mn

is Cn
F and, thus, we have

Cn
F

(︁
u1/n

)︁
= CMn(u) = CCn

F
(u), u ∈ [0, 1]d.

Therefore, condition (1.3) actually means pointwise convergence of the copulas

CMn(u) →n→∞ CG(u),

where CG(u) = G
(︂(︁
G−1

i (ui)
)︁d
i=1

)︂
, u ∈ (0, 1)d, is the copula of G. This is an

extreme value copula. Note that each margin Gi of G is continuous, which is
equivalent with the continuity of G (see, e.g., Reiss (1989, Lemma 2.2.6)).

Elementary arguments imply that condition (1.3) is equivalent with the
condition

Cn
F

(︂
1+

y

n

)︂
→n→∞ G∗(y) := CG(exp(y)), y ≤ 0 ∈ Rd, (1.4)

where 1 = (1, . . . , 1) ∈ Rd andG∗(y), y ≤ 0 ∈ Rd, defines a max-stable df with
standard negative exponential marginsG∗

i (y) = exp(y), y ≤ 0, 1 ≤ i ≤ d. Such
a max-stable df will be called a standard one, abbreviated by SMS (standard
max-stable).

While the condition on the univariate margins Fi in Theorem 1.1 addresses
univariate extreme value theory, condition (1.3) on the copula CF means by
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the equivalent condition (1.4) that the copula CF is in the domain of attraction
of a multivariate SMS df:

Cn
F

(︂
1+

y

n

)︂
= P (n(Mn − 1) ≤ y) →n→∞ G∗(y), y ≤ 0 ∈ Rd.

Let C be an arbitrary copula on Rd. Then condition (1.1) becomes

C ∈ D(G) ⇐⇒ Cn(anx+ bn) →n→∞ G(x), x ∈ Rd,

where the norming constants an, bn are determined by the univariate margins
Ci of C, i.e., the uniform distribution on (0, 1): With an = 1/n, bn = 1 we
obtain for large n

Ci(anx+ bn)
n =

(︂
1 +

x

n

)︂n
→n→∞ exp(x), x ≤ 0.

We therefore obtain the conclusion: If a copula C satisfies C ∈ D(G), then
the limiting df G has necessarily standard negative exponential margins:

Gi(x) = exp(x), x ≤ 0, 1 ≤ i ≤ d,

i.e., the limiting df G is necessarily a SMS df.
As a consequence we obtain thatmultivariate extreme value theory actually

means extreme value theory for copulas.

D-Norms

A crucial characterization of SMS df due to Balkema and Resnick (1977),
de Haan and Resnick (1977), Pickands (1981) and Vatan (1985) can be for-
mulated as follows; see Falk (2019, Theorem 2.3.3).

Theorem 1.2 (Balkema and Resnick (1977), de Haan and Resnick (1977),
Pickands (1981), Vatan (1985)). A df G on Rd is an SMS df iff there exists a
norm ∥·∥ on Rd such that

G(x) = exp(−∥x∥), x ≤ 0 ∈ Rd. (1.5)

Elementary arguments imply the following consequence.

Corollary 1.3. A copula C satisfies C ∈ D(G) iff there exists a norm ∥·∥ on
Rd such that

C(u) = 1− ∥1− u∥+ o(∥1− u∥) (1.6)

as u → 1 ∈ Rd, uniformly for u ∈ [0, 1]d.
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Those norms, which can appear in the preceding result, can be character-
ized. Any norm ∥·∥ in equation (1.5) or (1.6) is necessarily of the following
kind: There exists a rv Z = (Z1, . . . , Zd), whose components satisfy

Zi ≥ 0, E(Zi) = 1, 1 ≤ i ≤ d,

with

∥x∥ = E

(︃
max
1≤i≤d

(|xi|Zi)

)︃
=: ∥x∥D ,

x = (x1, . . . , xd) ∈ Rd.
Such a norm ∥·∥D is called D-norm, with generator Z. The additional in-

dex D means dependence. D-norms were first mentioned in Falk et al. (2004,
equation (4.25)) and more elaborated in Falk et al. (2011, Section 4.4). Ex-
amples are:

� ∥x∥∞ = max1≤i≤d |xi|, with generator Z = (1, . . . , 1) ∈ Rd,

� ∥x∥1 =
∑︁d

i=1 |xi|, with generator Z being a random permutation of the
vector (d, 0, . . . , 0) ∈ Rd,

� each logistic norm ∥x∥p =
(︂∑︁d

i=1 |xi|
p
)︂1/p

, p ∈ (1,∞), with generator

Z = (Z1, . . . , Zd) = (Y
1/p
1 , . . . , Y

1/p
d )/Γ(1 − 1/p), where Y1, . . . , Yd are

iid Fréchet-distributed rvs, i.e., P (Yi < y) = exp(−1/y) for y > 0 and
j = 1, . . . , d, and Γ denotes the usual gamma function.

� Let the rv X = (X1, . . . , Xd) follow a multivariate normal distribution
with mean vector zero, i.e., E(Xi) = 0, 1 ≤ i ≤ d, and covariance matrix
Σ = (σij)1≤i,j≤d = (E(XiXj))1≤i,j≤d. Then exp(Xi) follows a log-normal
distribution with mean exp(σii/2), 1 ≤ i ≤ d, and, thus,

Z = (Z1, . . . , Zd) :=
(︂
exp

(︂
X1 −

σ11
2

)︂
, . . . , exp

(︂
Xd −

σdd
2

)︂)︂
is the generator of a D-norm, called Hüsler-Reiss D-norm. This norm
only depends on the covariance matrix Σ and, therefore, it is denoted by
∥·∥HRΣ

.

Note that ∥·∥∞ is the smallest D-norm and ∥·∥1 is the largest in the sense
that we have ∥x∥∞ ≤ ∥x∥D ≤ ∥x∥1 for all x ∈ Rd and arbitrary D-norm ∥·∥D.
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The generator of a D-norm is in general not uniquely determined, even its
distribution is not. Take, for example, a rv X > 0 with E(X) = 1. Then
Z = (Z1, . . . , Zd) = (X, . . . , X) generates the sup-norm ∥·∥∞. But this is also
generated by the constant 1 = (1, . . . , 1) ∈ Rd. An account of the theory of
D-norms is provided by Falk (2019).

Generalized Pareto Copulas

Corollary 1.3 stimulates the following idea. Choose an arbitrary D-norm ∥·∥D
on Rd and put

C(u) := max (1− ∥1− u∥D , 0) , u ∈ [0, 1]d.

Each univariate margin Ci of C, defined this way, satisfies for u ∈ [0, 1]

Ci(u) = C(1, . . . , 1, u⏞⏟⏟⏞
i-th component

, 1 . . . , 1)

= 1− ∥(0, . . . , 0, 1− u, 0, . . . , 0)∥D
= 1− (1− u)E(Zi)⏞ ⏟⏟ ⏞

= 1

= u,

i.e., each Ci is the uniform df on (0, 1). But C does in general not define a
df, see, e.g., Falk et al. (2011, Proposition 5.1.3). We require, therefore, the
expansion

C(u) = 1− ∥1− u∥D
only for u close to 1 ∈ Rd, i.e., for u ∈ [u0,1] ⊂ Rd with some 0 < u0 <
1 ∈ Rd. A copula C with this property will be called a generalized Pareto
copula (GPC). These copulas were introduced in Aulbach et al. (2012); tests,
whether data are generated by a copula in a δ-neighborhood of a GPC were
derived in Aulbach et al. (2018), see Section 4.3 for the precise definition of
this neighborhood. The multivariate generalized Pareto distributions defined
in Section 4.2 show that GPC actually exist for any D-norm ∥·∥D. The cor-
responding construction of a generalized Pareto distributed rv also provides a
way to simulate data from an arbitrary GPC.

As a consequence, an arbitrary copula C satisfies the following equivalences:

C ∈ D(G)

⇐⇒ C(u) = 1− ∥1− u∥D + o(∥1− u∥) for some D-norm ∥·∥D
⇐⇒ C is in its upper tail close to that of a GPC.

In this case we have G(x) = exp(−∥x∥D), x ≤ 0 ∈ Rd.
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Archimedean Copulas

Take an arbitrary Archimedean copula on Rd

Cϕ(u) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)),

where ϕ is a continuous and strictly decreasing function from (0, 1] to [0,∞)
such that ϕ(1) = 0 (see, e.g., McNeil and Nešlehová (2009, Theorem 2.2)).
As we focus on extreme value analysis, we can relax this condition a bit and
require this representation only for u in a (left) neighborhood of 1. Suppose
that

p := − lim
s↓0

sϕ′(1− s)

ϕ(1− s)
exists in [1,∞). (1.7)

It follows from Charpentier and Segers (2009, Theorem 4.1) that C is in its
upper tail close to the GPC with corresponding logistic D-norm ∥·∥p.

Suppose that the generator function ϕ : (0, 1] → [0,∞) satisfies with some
s0 ∈ (0, 1)

− sϕ′(1− s)

ϕ(1− s)
= p, s ∈ (0, s0], (1.8)

with p ∈ [1,∞). Then Cϕ is a GPC, precisely,

Cϕ(u) = 1− ∥1− u∥p = 1−

(︄
d∑︂

i=1

|1− ui|p
)︄1/p

, u ∈ [1− s0, 1]
d.

This is readily seen as follows. Condition (1.8) is equivalent with the equa-
tion

(log(ϕ(1− s)))′ =
p

s
, s ∈ (0, s0].

Integrating both sides implies

log(ϕ(1− s))− log(ϕ(1− s0)) = p log(s)− p log(s0)

or

log

(︃
ϕ(1− s)

ϕ(1− s0)

)︃
= log

(︃(︃
s

s0

)︃p)︃
, s ∈ (0, s0],

which implies

ϕ(1− s) =
ϕ(1− s0)

sp0
sp, s ∈ [0, s0],
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i.e.,
ϕ(s) = c(1− s)p, s ∈ [1− s0, 1],

with c := ϕ(1− s0)/s
p
0. But this yields

Cϕ(u) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud))

= 1−

(︄
d∑︂

i=1

(1− ui)
p

)︄1/p

, u ∈ [1− s0, 1]
d.

This should be enough to dive deeper into the topics of the individual chapters.
Anything further will be introduced there.
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Chapter 2

Asymptotic Independence of
Bivariate Order Statistics

2.1 Introduction

Let U1, . . . , Un be independent copies of a univariate rv U and denote by
U1:n ≤ U2:n ≤ · · · ≤ Un:n the pertaining os. It follows from Theorem 1.3
in Falk and Reiss (1988) that there exists a universal constant such that for
1 ≤ r ≤ n− k + 1 ≤ n and n ∈ N

sup
x,y∈R

|P (Ur:n ≤ x, Un−k+1:n ≤ y)− P (Ur:n ≤ x)P (Un−k+1:n ≤ y)| (2.1)

≤ const

(︃
rk

n(n− r − k + 1)

)︃1/2

.

This upper bound converges to 0 if we consider a sequence r = r(n) that
satisfies r/n→n→∞ λ ∈ (0, 1) together with k = k(n) →n→∞ ∞, k/n→n→∞ 0.
Then (Ur:n) is a sequence of central os, (Un−k+1:n) a sequence of intermediate
os and the limiting 0 shows that they become asymptotically independent.
The same holds for an intermediate sequence r = r(n) together with fixed k,
i.e., extreme os.

Starting with the work by Gumbel (1946) on extremes, the asymptotic
independence of order statistics has been investigated in quite a few articles.
For detailed references we refer to Galambos (1987, p. 150) and to Falk and
Kohne (1986).

By the quantile transformation theorem (see, e.g. Reiss (1989, Lemma

13
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1.2.4)) we can assume without loss of generality in the preceding result (2.1)
that U follows the uniform distribution on (0, 1).

Let (U1, V1), . . . , (Un, Vn) be independent copies of the bivariate rv (U, V )
that follows a copula C. Choose r, k ∈ {1, . . . , n} and consider the bivari-
ate vector (Ur:n, Vk:n) of componentwise os. In this chapter we investigate
the problem, whether asymptotic independence also holds for (Ur:n, Vk:n) with
proper sequences r = r(n), k = k(n).

Note that, for example, Ur:n and Un−r+1:n with r fixed get by inequality
(2.1) asymptotically independent, but Ur:n and Vn−r+1:n might not. Consider
(U, V ) := (U, 1− U). Then the joint distribution of (U, V ) is a copula as well
but Vn−r+1:n = 1− Ur:n.

For r = k = n, the asymptotic joint distribution of (Un:n, Vn:n) is provided
by multivariate extreme value theory. Precisely, if n(Un:n − 1, Vn:n − 1) has a
non-degenerate limit distribution G, then this limit has the representation

G(x, y) = exp (−∥(x, y)∥D) , x, y ≤ 0,

where ∥·∥D is a suitable D-norm on R2, see Theorem 1.2 and Falk (2019,
Theorem 2.3.3).

The limit distribution of n(Un−i+1:n − 1, Vn−j+1:n − 1) with fixed i, j was
established by Galambos (1975). The set of limiting distributions in the in-
termediate case (Un−k:n, Vn−r:n) with k = k(n), r = r(n) both converging
to infinity as n increases, but (k + r)/n →n→∞ 0, was identified by Cheng
et al. (1997). If in particular n(Un:n − 1, Vn:n − 1) converges in distribution to
G as above, then (n/

√
k) (Un−k:n − (n− k)/(n+ 1), Vn−k:n − (n− k)/(n+ 1))

follows asymptotically the bivariate normal distribution with mean vector

0 ∈ R2 and covariance matrix
(︂

1 2−∥(1,1)∥D
2−∥(1,1)∥D 1

)︂
as shown by Falk and

Wisheckel (2018). Asymptotic normality of (Ur:n, Vk:n) in the central case,
where r/n →n→∞ λ1, k/n →n→∞ λ2, 0 < λ1, λ2 < 1, is established in Reiss
(1989).

In what follows we will establish

sup
x,y∈R

|P (Ur:n ≤ x, Vk:n ≤ y)− P (Ur:n ≤ x)P (Vk:n ≤ y)| →n→∞ 0,

for various choices of r = r(n) and k = k(n). It turns out that for such se-
quences asymptotic independence holds with no further assumptions on the
copula C. The main tool will be Lemma 2.2, in which the conditional distribu-
tion function P (Ur:n ≤ x | Vk:n = y) is derived for arbitrary r, k ∈ {1, . . . , n}.
This powerful tool should be of interest of its own.
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2.2 Conditional Expectation of Bivariate OS

In this section we compute the conditional probability P (Um:n ≤ x | Vk:n = y)
for arbitrary m, k ∈ {1, . . . , n} as a major tool. For the formulation of Lemma
2.2 and its proof it is quite convenient to explicitly quote Theorem 2.2.7 in
Nelsen (2006).

Theorem 2.1 (Nelsen (2006)). Let C be an arbitrary bivariate copula. For
any x ∈ [0, 1], the partial derivative ∂

∂y
C(x, y) exists for almost all y, and for

such x and y

0 ≤ ∂

∂y
C(x, y) ≤ 1. (2.2)

Furthermore, the function x ↦→ ∂
∂y
C(x, y) is defined and nondecreasing almost

everywhere on [0, 1].

Now we are ready to state our major tool: we show that the conditional
probability P (Um:n ≤ x | Vk:n = y) is the linear combination of two prob-
abilities concerning sums of independent Bernoulli rv. We set, as usual,
U0:n = V0:n = 0 and Un+1:n = Vn+1:n = 1

Lemma 2.2. Let (U1, V1), . . . , (Un, Vn), n ∈ N, be independent copies of a rv
(U, V ) that follows a copula C. Then we obtain for 1 ≤ k,m ≤ n and for
almost every x, y ∈ [0, 1]

P (Um:n ≤ x | Vk:n = y)

= P

(︄
k−1∑︂
i=1

1[0,x]

(︂
U

(1)
i

)︂
+

n−k∑︂
i=1

1[0,x]

(︂
U

(2)
i

)︂
≥ m

)︄

+
∂

∂y
C(x, y)P

(︄
k−1∑︂
i=1

1[0,x]

(︂
U

(1)
i

)︂
+

n−k∑︂
i=1

1[0,x]

(︂
U

(2)
i

)︂
= m− 1

)︄
(2.3)

where U
(1)
1 , . . . , U

(1)
k−1, U

(2)
1 , . . . , U

(2)
n−k are independent rv with

P
(︂
U

(1)
i ≤ u

)︂
= P (U ≤ u | V ≤ y) =

C(u, y)

y

and

P
(︂
U

(2)
i ≤ u

)︂
= P (U ≤ u | V > y) =

u− C(u, y)

1− y
, 0 ≤ u ≤ 1.
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If we choose, for example, m = k = n, then we obtain from the preceding
result the representation

P (Un:n ≤ x | Vn:n = y) =
∂

∂y
C(x, y)P

(︄
n−1∑︂
i=1

1[0,x]

(︂
U

(1)
i

)︂
= n− 1

)︄

=
∂

∂y
C(x, y)

C(x, y)n−1

yn−1
.

Proof of Lemma 2.2. We have

P (Um:n ≤ x | Vk:n = y)

= lim
ε↓0

P (Um:n ≤ x, Vk:n ∈ [y, y + ε])

P (Vk:n ∈ [y, y + ε])

= lim
ε↓0

P (Um:n ≤ x, Vk:n ≤ y + ε)− P (Um:n ≤ x, Vk:n ≤ y)

ε

ε

P (Vk:n ∈ [y, y + ε])
,

where the second term on the right hand side above converges to 1/gk,n(y)
as ε ↓ 0, where gk,n(·) is the Lebesgue-density of Vk:n, see, e.g., Reiss (1989,
Theorem 1.3.2).

In the next step we will break the set {Um:n ≤ x, Vk:n ≤ y} into disjoint
subsets. By T , S we denote arbitrary subsets of {1, . . . , n} and by |T |, |S|
their cardinalities, i.e., the numbers of their elements. Precisely, we have

P (Um:n ≤ x, Vk:n ≤ y)

= P

(︄
n∑︂

i=1

1[0,x](Ui) ≥ m,
n∑︂

i=1

1[0,y](Vi) ≥ k

)︄

= P

(︄(︂∑︂
|T |≥m

{︂
Ui ≤ x, i ∈ T ; Ui > x, i ∈ T {

}︂)︂

∩
(︂∑︂
|S|≥k

{︂
Vi ≤ y, i ∈ S; Vi > y, i ∈ S{

}︂)︂)︄

=
∑︂
|T |≥m

∑︂
|S|≥k

P

(︄{︂
Ui ≤ x, i ∈ T ; Ui > x, i ∈ T {

}︂

∩
{︂
Vi ≤ y, i ∈ S; Vi > y, i ∈ S{

}︂)︄
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=
∑︂
|T |≥m

∑︂
|S|≥k

P (Ui ≤ x, Vi ≤ y, i ∈ T ∩ S)P
(︂
Ui ≤ x, Vi > y, i ∈ T ∩ S{

)︂
× P

(︂
Ui > x, Vi ≤ y, i ∈ T { ∩ S

)︂
P
(︂
Ui > x, Vi > y, i ∈ T { ∩ S{

)︂
=
∑︂
|T |≥m

∑︂
|S|≥k

P (U ≤ x, V ≤ y)|T∩S|P (U ≤ x, V > y)|T∩S{|

× P (U > x, V ≤ y)|T {∩S|P (U > x, V > y)|T {∩S{|.

As a consequence and by writing x = exp(log(x)) for x ≥ 0 we obtain

P (Um:n ≤ x, Vk:n ≤ y + ε)− P (Um:n ≤ x, Vk:n ≤ y)

=
∑︂
|T |≥m

∑︂
|S|≥k

{︄
exp

(︄
|T ∩ S| log(P (U ≤ x, V ≤ y + ε))

+
⃓⃓⃓
T ∩ S{

⃓⃓⃓
log(P (U ≤ x, V > y + ε))

+
⃓⃓⃓
T { ∩ S

⃓⃓⃓
log(P (U > x, V ≤ y + ε))

+
⃓⃓⃓
T { ∩ S{

⃓⃓⃓
log(P (U > x, V > y + ε))

)︄

− exp

(︄
|T ∩ S| log(P (U ≤ x, V ≤ y)

+
⃓⃓⃓
T ∩ S{

⃓⃓⃓
log(P (U ≤ x, V > y))

+
⃓⃓⃓
T { ∩ S

⃓⃓⃓
log(P (U > x, V ≤ y))

+
⃓⃓⃓
T { ∩ S{

⃓⃓⃓
log(P (U > x, V > y))

}︄

=
∑︂
|T |≥m

∑︂
|S|≥k

{︄
exp

(︄
|T ∩ S| log

(︃
1 +

P (U≤x, V ≤y + ε)− P (U≤x, V ≤y)
P (U ≤ x, V ≤ y)

)︃

+
⃓⃓⃓
T ∩ S{

⃓⃓⃓
log

(︃
1 +

P (U ≤ x, V > y + ε)− P (U ≤ x, V > y)

P (U ≤ x, V > y)

)︃
+
⃓⃓⃓
T { ∩ S

⃓⃓⃓
log

(︃
1 +

P (U > x, V ≤ y + ε)− P (U > x, V ≤ y)

P (U > x, V ≤ y)

)︃
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+
⃓⃓⃓
T { ∩ S{

⃓⃓⃓
log

(︃
1 +

P (U >x, V >y + ε)− P (U >x, V >y)

P (U > x, V > y)

)︃)︄

− 1

}︄
× P (U ≤ x, V ≤ y)|T∩S|P (U ≤ x, V > y)|T∩S{|

× P (U > x, V ≤ y)|T {∩S|P (U > x, V > y)|T {∩S{|

For ε ↓ 0 we have the expansions

P (U ≤ x, V ≤ y + ε)− P (U ≤ x, V ≤ y) =
∂

∂y
C(x, y)ε+ o(ε),

P (U ≤ x, V > y + ε)− P (U ≤ x, V > y) = − ∂

∂y
C(x, y)ε+ o(ε),

P (U > x, V ≤ y + ε)− P (U > x, V ≤ y) =

(︃
1− ∂

∂y
C(x, y)

)︃
ε+ o(ε),

P (U > x, V > y + ε)− P (U > x, V > y) =

(︃
∂

∂y
C(x, y)− 1

)︃
ε+ o(ε).

From the Taylor expansions log(1+x) = x+o(x) and exp(x)−1 = x+o(x)
as x→ 0 we, thus, obtain from the preceding equations

P (Um:n ≤ x, Vk:n ≤ y + ε)− P (Um:n ≤ x, Vk:n ≤ y)

ε

→ε↓0
∑︂
|T |≥m

∑︂
|S|≥k

{︄
|T ∩ S|

∂
∂y
C(x, y)

p1

−
⃓⃓⃓
T ∩ S{

⃓⃓⃓ ∂
∂y
C(x, y)

p2

+
⃓⃓⃓
T { ∩ S

⃓⃓⃓ 1− ∂
∂y
C(x, y)

p3

+
⃓⃓⃓
T { ∩ S{

⃓⃓⃓ ∂
∂y
C(x, y)− 1

p4

}︄
× p

|T∩S|
1 p

|T∩S{|
2 p

|T {∩S|
3 p

|T {∩S{|
4

=: f(x, y)
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with

p1 := P ((U, V ) ∈ A1) := P (U ≤ x, V ≤ y),

p2 := P ((U, V ) ∈ A2) := P (U ≤ x, V > y),

p3 := P ((U, V ) ∈ A3) := P (U > x, V ≤ y),

p4 := P ((U, V ) ∈ A4) := P (U > x, V > y).

Note that p1 + p2 + p3 + p4 = 1. Set

nj :=
n∑︂

i=1

1Aj
(Ui, Vi), 1 ≤ j ≤ 4.

Then we obtain

f(x, y) = E

(︄{︄
∂
∂y
C(x, y)

p1
n1 −

∂
∂y
C(x, y)

p2
n2

+
1− ∂

∂y
C(x, y)

p3
n3 +

∂
∂y
C(x, y)− 1

p4
n4

}︄

× 1(n1 + n2 ≥ m,n1 + n3 ≥ k)

)︄
.

Put, for notational convenience, ξj := (Uj, Vj), 1 ≤ j ≤ n. We have

E(n11(n1 + n2 ≥ m,n1 + n3 ≥ k))

=
n∑︂

j=1

P

(︄
{ξj ∈ A1} ∩

{︄
n∑︂

i=1

1A1∪A2(ξi) ≥ m,
n∑︂

i=1

1A1∪A3(ξi) ≥ k

}︄)︄

= np1P

(︄
n−1∑︂
i=1

1A1∪A2(ξi) ≥ m− 1,
n−1∑︂
i=1

1A1∪A3(ξi) ≥ k − 1

)︄

= np1P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m− 1,
n−1∑︂
i=1

1[0,y](Vi) ≥ k − 1

)︄
,

as well as

E(n21(n1 + n2 ≥ m,n1 + n3 ≥ k))
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= np2P

(︄
n−1∑︂
i=1

1A1∪A2(ξi) ≥ m− 1,
n−1∑︂
i=1

1A1∪A3(ξi) ≥ k

)︄

= np2P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m− 1,
n−1∑︂
i=1

1[0,y](Vi) ≥ k

)︄
,

E(n31(n1 + n2 ≥ m,n1 + n3 ≥ k))

= np3P

(︄
n−1∑︂
i=1

1A1∪A2(ξi) ≥ m,

n−1∑︂
i=1

1A1∪A3(ξi) ≥ k − 1

)︄

= np3P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m,
n−1∑︂
i=1

1[0,y](Vi) ≥ k − 1

)︄
,

and, finally,

E(n41(n1 + n2 ≥ m,n1 + n3 ≥ k))

= np4P

(︄
n−1∑︂
i=1

1A1∪A2(ξi) ≥ m,
n−1∑︂
i=1

1A1∪A3(ξi) ≥ k

)︄

= np4P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m,
n−1∑︂
i=1

1[0,y](Vi) ≥ k

)︄
.

Altogether we obtain from the preceding equations

f(x, y) = n
∂

∂y
C(x, y)P (Um−1:n−1 ≤ x, Vk−1:n−1 ≤ y)

− n
∂

∂y
C(x, y)P (Um−1:n−1 ≤ x, Vk:n−1 ≤ y)

+ n

(︃
1− ∂

∂y
C(x, y)

)︃
P (Um:n−1 ≤ x, Vk−1:n−1 ≤ y)

− n

(︃
1− ∂

∂y
C(x, y)

)︃
P (Um:n−1 ≤ x, Vk:n−1 ≤ y)

= n
∂

∂y
C(x, y)

(︂
P (Um−1:n−1 ≤ x, Vk−1:n−1 ≤ y)

− P (Um−1:n−1 ≤ x, Vk:n−1 ≤ y)
)︂
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+ n

(︃
1− ∂

∂y
C(x, y)

)︃(︂
P (Um:n−1 ≤ x, Vk−1:n−1 ≤ y)

− P (Um:n−1 ≤ x, Vk:n−1 ≤ y)
)︂
,

We, thus, have established so far

P (Um:n ≤ x | Vk:n = y)

=
n

gk,n(y)

{︄
∂

∂y
C(x, y)P

(︄
Um−1:n−1 ≤ x,

n−1∑︂
i=1

1(0,y](Vi) = k − 1

)︄

+

(︃
1− ∂

∂y
C(x, y)

)︃
P

(︄
Um:n−1 ≤ x,

n−1∑︂
i=1

1(0,y](Vi) = k − 1

)︄}︄

=
n

gk,n(y)

{︄
P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m,
n−1∑︂
i=1

1(0,y](Vi) = k − 1

)︄

+
∂

∂y
C(x, y)P

(︄
n−1∑︂
i=1

1[0,x](Ui) = m− 1,
n−1∑︂
i=1

1(0,y](Vi) = k − 1

)︄}︄
.

From the fact that

P

(︄
n−1∑︂
i=1

1[0,y](Vi) = k − 1

)︄
=
gk,n(y)

n

we, thus, obtain the representation

P (Um:n ≤ x | Vk:n = y)

= P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m
⃓⃓⃓ n−1∑︂

i=1

1[0,y](Vi) = k − 1

)︄

+
∂

∂y
C(x, y)P

(︄
n−1∑︂
i=1

1[0,x](Ui) = m− 1
⃓⃓⃓ n−1∑︂

i=1

1[0,y](Vi) = k − 1

)︄
.

We know from the theory of point processes (see, e.g. Reiss (1993, E.18))
that

P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m
⃓⃓⃓ n−1∑︂

i=1

1[0,y](Vi) = k − 1

)︄
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= P

(︄
n−1∑︂
i=1

1[0,x](Ui) ≥ m
⃓⃓⃓ n−1∑︂

i=1

1[0,y](Vi) = k − 1,
n−1∑︂
i=1

1(y,1](Vi) = n− k

)︄

= P

(︄
k−1∑︂
i=1

1[0,x]

(︂
U

(1)
i

)︂
+

n−k∑︂
i=1

1[0,x]

(︂
U

(2)
i

)︂
≥ m

)︄
,

where U
(1)
1 , . . . , U

(1)
k−1, U

(2)
1 , . . . , U

(2)
n−k are independent rv with

P
(︂
U

(1)
i ≤ u

)︂
= P (U ≤ u | V ≤ y) =

C(u, y)

y

and

P
(︂
U

(2)
i ≤ u

)︂
= P (U ≤ u | V > y) =

u− C(u, y)

1− y
, 0 ≤ u ≤ 1,

which completes the proof of Lemma 2.2.

2.3 Asymptotic Independence of Order Statis-

tics

Throughout this section, (Ur:n, Vk:n) denotes a rv of componentwise os per-
taining to independent copies (U1, V1), . . . , (Un, Vn) of a rv (U, V ), which fol-
lows a copula C. Note that the dependence between the two components
does not matter for the next theorem. By X, Y, ηj we denote independent
rv, where X and Y are standard normal distributed and ηj has df Gj(x) =
exp(x)

∑︁j−1
i=0 (−x)i/i!, x ≤ 0. The following main result establishes asymptotic

independence of Ur:n and Vk:n for various sequences r = r(n), k = k(n), n ∈ N.

Theorem 2.3. Let k = k(n), j = j(n) ∈ {1, . . . , n}, n ∈ N.

(i) If k satisfies k →n→∞ ∞, k/n→n→∞ 0, then, for fixed j ∈ N,(︃
n√
k

(︃
Un−k+1:n −

n− k + 1

n+ 1

)︃
, n(Vn−j+1:n − 1)

)︃
→D (X, ηj).

(ii) With k and j as in (i),(︃
n√
k

(︃
Uk:n −

k

n+ 1

)︃
, n(Vn−j+1:n − 1)

)︃
→D (X, ηj).
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(iii) If k satisfies k/n→n→∞ λ ∈ (0, 1) and j ∈ N is fixed, then(︃√
n

(︃
Uk:n −

k

n+ 1

)︃
, n(Vn−j+1:n − 1)

)︃
→D

(︁
(λ(1− λ))1/2X, ηj

)︁
.

(iv) With k is chosen as in (iii) and j →n→∞ ∞, j/n→n→∞ 0(︃√
n

(︃
Uk:n −

k

n+ 1

)︃
,
n√
j

(︃
Vn−j+1:n −

n− j + 1

n+ 1

)︃)︃
→D

(︁
(λ(1− λ))1/2X, Y

)︁
.

(v) With k as chosen in (i), j chosen as in (iv) and, in addition, j/
√
k →n→∞

0,(︃
n√
k

(︃
Un−k+1:n −

n− k + 1

n+ 1

)︃
,
n√
j

(︃
Vn−j+1:n −

n− j + 1

n+ 1

)︃)︃
→D (X, Y ).

More results can immediately be deduced from the preceding result by
noting that (1−Ur:n, 1−Vk:n) =

(︁
Ūn−r+1:n, V̄ n−k+1:n

)︁
, which are os pertaining

to the iid sequence (Ū1, V̄ 1), . . . , (Ūn, V̄ n) = (1−U1, 1−V1), . . . , (1−Un, 1−Vn)
with copula C̄(u, v) = P (1− U ≤ u, 1− V ≤ v).

Proof. We prove only assertion (i). The remaining parts can be shown in
complete analogy. By P ∗X we denote in what follows the distribution of a rv
X, i.e., (P ∗X)(B) = P (X ∈ B) for any B in the Borel-σ-field of R. We have
with µn := (n− k + 1)/(n+ 1) and x ∈ R, y < 0 by (2.3) the representation

P

(︃
n√
k
(Un−k+1:n − µn) ≤ x, n(Vn−j+1:n − 1) ≤ y

)︃
=

∫︂ y

−n

P

(︃
n√
k
(Un−k+1:n − µn) ≤ x | n(Vn−j+1:n − 1) = z

)︃
(P ∗ n(Vn−j+1:n − 1))(dz)

=

∫︂ y

−n

P

(︄
Un−k+1:n ≤

√
k

n
x+ µn | Vn−j+1:n = 1 +

z

n

)︄
(P ∗ n(Vn−j+1:n − 1))(dz)

=

∫︂ y

−n

P

(︄
n−j∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (1)
i

)︂
+

j−1∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (2)
i

)︂
≥ n− k + 1

)︄



24 CHAPTER 2. INDEPENDENCE OF ORDER STATISTICS

+
∂

∂y
C(x, 1 +

z

n
)

× P

(︄
n−j∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (1)
i

)︂
+

j−1∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (2)
i

)︂
= n− k

)︄
(P ∗ n(Vn−j+1:n − 1))(dz). (2.4)

It is well known that n(Vn−j+1:n − 1) →D Gj, see, e.g. equation (5.1.28) in
Reiss (1989).

We claim that

P

(︄
n−j∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (1)
i

)︂
+

j−1∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (2)
i

)︂
≥ n− k + 1

)︄
→n→∞ Φ(x),

where Φ(·) denotes the df of the standard normal distribution.
Note that

pn := P

(︄
U

(1)
i ≤

√
k

n
x+ µn

)︄
=
C
(︂√

k
n
x+ µn, 1 +

z
n

)︂
1 + z

n

→n→∞ 1

and

1− pn =
1 + z

n
− C

(︂√
k
n
x+ µn, 1 +

z
n

)︂
1 + z

n

=
1 + z

n
−

√
k
n
x− µn +

(︂√
k
n
x+ µn − C

(︂√
k
n
x+ µn, 1 +

z
n

)︂)︂
1 + z

n

=

z
n
−

√
k
n
x+ k

n+1
+
∫︁ 1

1+z/n
∂
∂v
C
(︂√

k
n
x+ µn, v

)︂
dv

1 + z
n

=
−

√
k
n
x+ k

n+1
+O

(︁
z
n

)︁
1 + z

n

by Theorem 2.1. We obtain that (n− j)pn(1− pn) is of order k(n) as n→ ∞
and, thus, the central limit theorem for arrays of binomial distributions implies∑︁n−j

i=1

(︃
1[︂

0,
√
k

n
x+µn

]︂ (︂U (1)
i

)︂
− pn

)︃
((n− j)pn(1− pn))

1/2
→D N(0, 1).
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As a consequence we obtain

P

(︄
n−j∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (1)
i

)︂
+

j−1∑︂
i=1

1[︂
0,

√
k

n
x+µn

]︂ (︂U (2)
i

)︂
≥ n− k + 1

)︄

= P

⎛⎜⎜⎝
∑︁n−j

i=1

(︃
1[︂

0,
√
k

n
x+µn

]︂ (︂U (1)
i

)︂
− pn

)︃
((n− j)pn(1− pn))

1/2
+ o(1) ≥ n− k + 1− (n− j)pn

((n− j)pn(1− pn))
1/2

⎞⎟⎟⎠
→n→∞ 1− Φ(−x) = Φ(x),

since

n− k + 1− (n− j)pn

((n− j)pn(1− pn))
1/2

=
n(1− pn)− k +O(1)√

k(1 + o(1))
= −x+ o(1).

This implies that the integrand in representation (2.4) converges to Φ(x). The
assertion now follows from the dominated convergence theorem.
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Chapter 3

Conditional Tail Independence

3.1 Introduction

Let U = (U1, . . . , Ud) be a rv, whose df F is in the domain of attraction
of a multivariate extreme value df G, denoted by F ∈ D(G), i.e., there are
constants an = (an1, . . . , and) > 0 ∈ Rd, bn = (bn1, . . . , bnd) ∈ Rd, n ∈ N, such
that for each x = (x1, . . . , xd) ∈ Rd

F n(anx+ bn) →n→∞ G(x).

The rv U , or, equivalently, the df F , is said to have asymptotically inde-
pendent (upper) tails, if

G(x) =
d∏︂

i=1

Gi(xi),

where Gi, 1 ≤ i ≤ d, denote the univariate margins of G.
We require that the df F of U coincides in its upper tail with a copula, say

C, i.e., there exists u0 = (u01, . . . , u0d) ∈ (0, 1)d such that

F (u) = C(u), u ∈ [u0,1] ⊂ Rd.

Each univariate margin of a copula is the uniform distribution H(u) = u for
0 ≤ u ≤ 1 and, thus, each univariate margin of F equals H(u) for u ∈ [v0, 1],
where v0 := max1≤i≤d u0i.

More specifically, we require in this chapter that the upper tail of C is that
of an Archimedean copula Cϕ that was introduced in Section 1.2. This means

27
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that there exists a convex and strictly decreasing function ϕ : (0, 1] → [0,∞)
with ϕ(1) = 0, such that

Cϕ(u) = ϕ−1 (ϕ(u1) + · · ·+ ϕ(ud))

for u ∈ [u0,1] ⊂ Rd, where u0 = (u01, . . . , u0d) ∈ (0, 1)d.
A prominent example is ϕp(s) := (1− s)p, s ∈ [0, 1], where p ≥ 1. In this

case we obtain

Cϕp(u) = 1−

(︄
d∑︂

i=1

(1− ui)
p

)︄1/p

, u ∈ [u0,1]. (3.1)

Note that

Cϕp(u) := max

⎛⎝0, 1−

(︄
d∑︂

i=1

(1− ui)
p

)︄1/p
⎞⎠ , u ∈ [0, 1]d,

defines a multivariate df only in dimension d = 2, see, e.g., McNeil and
Nešlehová (2009, Examples 2.1, 2.2). But one can find for arbitrary dimension
d ≥ 2 a rv, whose df satisfies equation (3.1), see, e.g., Falk (2019, (2.15)). This
is the reason, why we require the Archimedean structure of Cϕ only on some
upper interval [u0,1] and we do not speak of Cϕ as a copula, but rather of a
distribution function.

The behavior of Cϕ(u) for u close to 1 ∈ Rd determines the upper tail
behavior of the components of U . Precisely, suppose that Cϕ ∈ D(G), i.e.,[︂

Cϕ

(︂
1+

x

n

)︂]︂n
→n→∞ G(x), x ≤ 0 ∈ Rd,

where the norming constants are prescribed by the univariate margins of Cϕ,
which is the df H(u) = u, u ∈ [v0, 1]. We obviously have for arbitrary x ≤ 0
and n large enough [︂

H
(︂
1 +

x

n

)︂]︂n
=
(︂
1 +

x

n

)︂n
→ exp(x).

The multivariate max-stable df G, consequently, has standard negative expo-
nential margins Gi(x) = exp(x), x ≤ 0.

Moreover, there exists a norm ∥·∥D on Rd, such that G(x) = exp(−∥x∥D)
for x ≤ 0 ∈ Rd; see Section 1.2. This norm ∥·∥D describes the asymptotic
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tail dependence of the margins of Cϕ. In particular ∥·∥D = ∥·∥1 is the case of
(asymptotic) independence of the margins, whereas ∥·∥D = ∥·∥∞ yields their
total dependence. For the df Cϕp in (3.1) we obtain, for example, for n large,

[︂
Cϕp

(︂
1+

x

n

)︂]︂n
=

⎛⎝1− 1

n

(︄
d∑︂

i=1

|xi|p
)︄1/p

⎞⎠n

→n→∞ exp
(︂
−∥x∥p

)︂
, x = (x1, . . . , xd) ≤ 0 ∈ Rd,

where ∥x∥p =
(︂∑︁d

i=1 |xi|
p
)︂1/p

, p ≥ 1, is the logistic norm on Rd. In this case

we have tail independence only for p = 1.
We will investigate the problem, if conditioning on a margin Uj = u has an

influence on the tail dependence of the left margins U1, . . . , Uj−1, Uj+1, . . . , Ud.
Actually, we will show that the rv (U1, . . . , Uj−1, Uj+1, . . . , Ud), conditional on
Uj = u, has in general independent tails, for each choice of j, no matter what
the unconditional tail behavior is; see Section 3.3. This is achieved under a
mild condition on the generator function ϕ, which is introduced in Section 3.2.

3.2 Condition on the generator function

Our results are achieved under the following condition on the generator func-
tion ϕ. There exists a number p ≥ 1 such that

lim
s↓0

ϕ(1− sx)

ϕ(1− s)
= xp, x > 0. (C0)

Remark 3.1. The exponent p in condition (C0) is necessarily greater than
one by the convexity of ϕ, which can easily be seen as follows. We have for
arbitrary λ, x, y ∈ (0, 1]

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y).

Setting x = 1− s and y = 1, we obtain

ϕ(λ(1− s) + 1− λ) = ϕ(1− λs) ≤ λϕ(1− s)

and, thus,

lim
s↓0

ϕ(1− λs)

ϕ(1− s)
= λp ≤ λ.

But this requires p ≥ 1.
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A df Cϕ, whose generator satisfies condition (C0), is in the domain of
attraction of a multivariate extreme value distribution. Precisely, we have the
following result.

Proposition 3.2. Suppose that the generator ϕ satisfies condition (C0). Then

we have Cϕ ∈ D(G), where G(x) = exp
(︂
−∥x∥p

)︂
, x ≤ 0 ∈ Rd.

Proof. First we show that condition (C0) implies for x > 0

lim
s↓0

1− ϕ−1(sx)

1− ϕ−1(s)
= x1/p. (3.2)

Choose δsx, δs ∈ (0, 1) such that

ϕ(1− δsx) = sx, ϕ(1− δs) = s,

i.e.,
ϕ−1(sx) = 1− δsx, ϕ−1(s) = 1− δs.

Condition (C0) implies for s ↓ 0

x =
ϕ(1− δsx)

ϕ(1− δs)
=
ϕ
(︂
1− δs

δsx
δs

)︂
ϕ(1− δs)

∼
(︃
δsx
δs

)︃p

,

where ∼ means that the ratio of the left hand side and the right hand side
converges to one as s converges to zero. But this is

lim
s↓0

1− ϕ−1(sx)

1− ϕ−1(s)
= x1/p.

Next we show that for x = (x1, . . . , xd) ≤ 0 ∈ Rd

lim
n→∞

Cn
ϕ

(︂
1+

x

n

)︂
= lim

n→∞

[︄
ϕ−1

(︄
d∑︂

i=1

ϕ
(︂
1 +

xi
n

)︂)︄]︄n
= exp

(︂
−∥x∥p

)︂
.

Taking logarithms on both sides, this is equivalent with

lim
n→∞

n

[︄
1− ϕ−1

(︄
d∑︂

i=1

ϕ
(︂
1 +

xi
n

)︂)︄]︄
= ∥x∥p .
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Write
1

n
= 1− ϕ−1

(︃
ϕ

(︃
1− 1

n

)︃)︃
.

Then

n

[︄
1− ϕ−1

(︄
d∑︂

i=1

ϕ
(︂
1 +

xi
n

)︂)︄]︄
=

1− ϕ−1
(︂∑︁d

i=1 ϕ
(︁
1 + xi

n

)︁)︂
1− ϕ−1

(︁
ϕ
(︁
1− 1

n

)︁)︁
=

1− ϕ−1

(︃
ϕ
(︁
1− 1

n

)︁∑︁d
i=1

ϕ(1+xi
n )

ϕ(1− 1
n)

)︃
1− ϕ−1

(︁
ϕ
(︁
1− 1

n

)︁)︁
→n→∞

(︄
d∑︂

i=1

(−xi)p
)︄1/p

by condition (C0) and equation (3.2), which is the assertion.

Condition (C0) on ϕ is, for example, implied by the condition

lim
s↓0

ϕ(1− s)

sp
= A (C1)

for some constant A > 0 and p ≥ 1, which is obviously satisfied by the
generator ϕp(s) = (1− s)p.

Condition (C1) is by l’Hopital’s rule implied by

− lim
s↓0

ϕ′(1− s)

sp−1
= pA. (C2)

As a consequence, (C2) implies the condition

− lim
s↓0

sϕ′(1− s)

ϕ(1− s)
= p. (C3)

Charpentier and Segers (2009, Theorem 4.1) showed, among others, that a
copula Cϕ, whose generator satisfies (C3), is in the domain of attraction of
G(x) = exp(−∥x∥p), x ≤ 0 ∈ Rd; see also Falk (2019, Corollary 3.1.15). In
this case we have tail independence only if p = 1.

The Clayton family, for instance, with generator ϕϑ(t) :=
(︁
t−ϑ − 1

)︁
/ϑ and

ϑ > 0, satisfies condition (C2) with p = 1 and A = 1. As a consequence, we
have independent tails for each ϑ > 0.
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The Frank family has the generator

ϕϑ(t) := − log

(︃
e−ϑt − 1

e−ϑ − 1

)︃
, ϑ > 0.

It satisfies condition (C0) with p = 1, i.e., we have again independent tails for
each ϑ > 0.

Consider, on the other hand, the generator ϕϑ(t) := (− log(t))ϑ, ϑ ≥ 1, of
the Gumbel-Hougaard family of Archimedean copulas. This generator satisfies
condition (C0) with p = ϑ and, thus, we have tail independence only for ϑ = 1.

3.3 Main Theorem

In this section we establish the conditional tail independence of the margins
of Cϕ, if the generator ϕ satisfies condition (C0). However, the following
lemma does not require that condition: first we compute the conditional df of
(U1, . . . , Uj−1, Uj+1, . . . , Ud), given that Uj = u.

Lemma 3.3. For j ∈ {1, . . . , d} and u = (u1, . . . , uj−1, u, uj+1, . . . , ud) ∈
[u0,1) we have

Hj,u(u1, . . . , uj−1, uj+1, . . . , ud) := P (Ui ≤ ui, 1 ≤ i ≤ d, i ̸= j | Uj = u)

=
ϕ′(u)

ϕ′(C(u))

=
ϕ′(u)

ϕ′
(︂
ϕ−1

(︂
ϕ(u) +

∑︁
1≤i≤d, i ̸=j ϕ(ui)

)︂)︂ ,
provided the derivative ϕ′(v) exists in a neighborhood of u, that ϕ′ is continuous
at u with ϕ′(u) ̸= 0, and that C(u) ̸= 0 as well.

Proof. For notational simplicity we establish the result for the choice j = d.
We have for for u = (u1, . . . , ud) ∈ [u0,1)

P (Ui ≤ ui, 1 ≤ i ≤ d− 1 | Ud = ud)

= lim
ε↓0

P (Ui ≤ ui, 1 ≤ i ≤ d− 1, Ud ∈ [ud, ud + ε])

P (Ud ∈ [ud, ud + ε])

= lim
ε↓0

(︃
P (Ui ≤ ui, 1 ≤ i ≤ d− 1, Ud ≤ ud + ε)

ε
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− P (Ui ≤ ui, 1 ≤ i ≤ d− 1, Ud ≤ ud)

ε

)︃

= lim
ε↓0

ϕ−1
(︂∑︁d−1

i=1 ϕ(ui) + ϕ(ud + ε)
)︂
− ϕ−1

(︂∑︁d
i=1 ϕ(ui)

)︂
ε

=
(︁
ϕ−1

)︁′(︄ d∑︂
i=1

ϕ(ui)

)︄
ϕ′(ud)

=
ϕ′(ud)

ϕ′
(︂
ϕ−1

(︂∑︁d
i=1 ϕ(ui)

)︂)︂
=

ϕ′(ud)

ϕ′(Cϕ(u))
,

which is the assertion.

Note that the univariate margins of the df Hj,u, 1 ≤ j ≤ d, coincide in
their upper tails, where they are equal to

Hu(v) :=
ϕ′(u)

ϕ′
(︂
ϕ−1 (ϕ(u) + ϕ(v))

)︂ , v0 ≤ v ≤ 1,

with v0 = max1≤i≤d u0i.
The upper endpoint of Hu is one. Therefore, if the df Hu is in the domain

of attraction of a univariate extreme value df G, then the family of negative
Weibull distributions Gα(x) := exp (− |x|α), x ≤ 0, with α > 0, is the first
choice, see, e.g., the Gnedenko–de Haan Theorem Falk et al. (2011, Theorem
2.1.1) which says that this is the family with an upper endpoint. Note that
α = 1 yields the standard negative exponential distribution.

The univariate df Hu is in the domain of attraction of Gα for some α > 0
if and only

lim
s↓0

1−Hu(1− sx)

1−Hu(1− s)
= xα, x > 0,

see, e.g., Galambos (1987, Theorem 2.1.2).

Lemma 3.4. Suppose that the second derivative of ϕ exists in a neighborhood
of u > v0, and that it is continuous in u with ϕ′′(u) ̸= 0 ̸= ϕ′(u). The
univariate df Hu satisfies Hu ∈ D(Gp) for some p ≥ 1 iff ϕ satisfies condition
(C0).
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Proof. Applying Taylor’s formula twice shows that

1−Hu(1− s) =
ϕ′
(︂
ϕ−1

(︁
ϕ(u) + ϕ(1− s)

)︁)︂
− ϕ′(u)

ϕ′
(︂
ϕ−1

(︁
ϕ(u) + ϕ(1− s)

)︁)︂
∼ ϕ′′(u)

ϕ′(u)2
ϕ(1− s)

as s ↓ 0, which is the assertion.

The next result is this chapter’s main theorem:

Theorem 3.5. Suppose the generator ϕ of Cϕ satisfies condition (C0). Then,
if u > u0j, and ϕ satisfies the differentiability conditions in Lemma 3.4, we
obtain for x = (x1, . . . , xd) ≤ 0 ∈ Rd−1

[Hj,u (1+ canx)]
n →n→∞ exp

(︄
−

d−1∑︂
i=1

(−xi)p
)︄
,

with c :=
(︁
ϕ′(u)2/ϕ′′(u)

)︁1/p
and an := 1− ϕ−1(1/n), n ≥ n0.

Note that the convexity of ϕ implies that ϕ′′(u) ≥ 0.

Remark 3.6. The preceding result shows tail independence of Hj,u, as the
limiting df is the product of its margins.

Lemma 3.4 implies, moreover, that also the reverse implication in the pre-
vious result holds, i.e., if Hj,u is in the domain of attraction of a multivariate
max-stable df G with negative Weibull margins having parameter at least one,
then condition (C0) is satisfied by Lemma 3.4, and G has by the preceding
result identical independent margins.

Finally, by the preceding arguments, we have Hj,u ∈ D(G), where G has
negative Weibull margins, iff just one univariate margin ofHj,u is in the domain
of attraction of a univariate extreme value distribution, and in this case G has
identical and independent margins.

Proof. For notational simplicity we establish this result for j = d. It is suffi-
cient to establish for x = (x1, . . . , xd) ≤ 0 ∈ Rd−1

n
(︁
1−Hd,u (1+ canx)

)︁
→n→∞

d−1∑︂
i=1

(−xi)p. (3.3)
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We know from Lemma 3.3 that for (u1, . . . , ud−1, u) ∈ [u0,1],

Hd,u(u1, . . . , ud−1) =
ϕ′(u)

ϕ′
(︂
ϕ−1

(︂
ϕ(u) +

∑︁d−1
i=1 ϕ(ui)

)︂)︂ . (3.4)

As a consequence we obtain, with (u1, . . . , ud−1) = 1+ canx,

n
(︁
1−Hd,u (1+ canx)

)︁
= n

⎛⎝1− ϕ′(u)

ϕ′
(︂
ϕ−1

(︂
ϕ(u) +

∑︁d−1
i=1 ϕ (1 + canxi)

)︂)︂
⎞⎠

= n
ϕ′
(︂
ϕ−1

(︂
ϕ(u) +

∑︁d−1
i=1 ϕ (1 + canxi)

)︂)︂
− ϕ′(u)

ϕ′
(︂
ϕ−1

(︂
ϕ(u) +

∑︁d−1
i=1 ϕ (1 + canxi)

)︂)︂ ,

where the denominator converges to ϕ′(u) as n increases, because an ↓ 0.
Taylor’s formula yields that the nominator equals

ϕ′′(ϑn)

(︄
ϕ−1

(︄
ϕ(u) +

d−1∑︂
i=1

ϕ (1 + canxi)

)︄
− u

)︄
,

where ϕ′′(ϑn) converges to ϕ′′(u) as n increases. Applying Taylor’s formula
again yields

ϕ−1

(︄
ϕ(u) +

d−1∑︂
i=1

ϕ (1 + canxi)

)︄
− u =

1

ϕ′ (ϕ−1(ξn))

d−1∑︂
i=1

ϕ (1 + canxi) ,

where ξn converges to ϕ(u) as n increases. But

n

d−1∑︂
i=1

ϕ (1 + canxi) =
d−1∑︂
i=1

ϕ (1 + canxi)

ϕ(1− an)
→n→∞

d−1∑︂
i=1

(−cxi)p.

by condition (C0). This yields the assertion.

Remark 3.7. The preceding result shows tail independence of Hj,u, as the
limiting df is the product of its margins.

Lemma 3.4 implies, moreover, that also the reverse implication in the pre-
vious result holds, i.e., if Hj,u is in the domain of attraction of a multivariate
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max-stable df G with negative Weibull margins having parameter at least one,
then condition (C0) is satisfied by Lemma 3.4, and G has by the preceding
result identical independent margins.

Finally, by the preceding arguments, we have Hj,u ∈ D(G), where G has
negative Weibull margins, iff just one univariate margin ofHj,u is in the domain
of attraction of a univariate extreme value distribution, and in this case G has
identical and independent margins.

Remark 3.8. Theorem 3.5 enables the simulation of an Archimedean copula
from an extreme area. In particular from equation (3.3) we have the approxi-
mation (︁

1−Hd,u (1+ canx)
)︁
≈

d−1∑︂
i=1

(−xi/n1/p)p, n→ ∞.

A random vector of dimension d − 1 that has the survival probability on the
right hand side above, together with an independent and on (0, 1) uniformly
distributed random variable, then provides the simulation of an Archimedean
copula in its extreme region. Whether this is an efficient way of simulation
requires, however, further work. A first and quite promising attempt was made
by Kloss (2020).

3.4 Archimax Copulas

Let ϕ : (0, 1] → [0,∞) be the generator of an Archimedean copula Cϕ(u) =

ϕ−1
(︂∑︁d

i=1 ϕ(ui)
)︂
, u = (u1, . . . , ud) ∈ (0, 1]d, and let ∥·∥D be an arbitrary

D-norm. Put

C(u) := ϕ−1 (∥(ϕ(u1), . . . , ϕ(ud))∥D) , u ∈ (0, 1]d. (3.5)

It was established by Charpentier et al. (2014) that C actually defines a cop-
ula on Rd, called Archimax copula. Choosing ∥·∥D = ∥·∥1 yields C(u) =
Cϕ(u) and, therefore, the concept of Archimax copulas generalizes that of
Archimedean copulas considerably.

To include also the generator family ϕp(s) = (1− s)p, s ∈ [0, 1], p ≥ 1, we
require the representation of C in equation (3.5) only for u ∈ [u0,1] ⊂ (0, 1]d.
There actually exists a rv, whose copula satisfies

C(u) = ϕ−1
(︂
∥(ϕ(u1), . . . , ϕ(ud))∥p

)︂
, u ∈ [u0,1]
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with some u0 ∈ (0, 1)d. This follows from the fact that ∥(|x1|p , . . . , |xd|p)∥1/pD

is again a D-norm, with an arbitrary D-norm ∥·∥D and p ≥ 1, see Proposition
2.6.1 and equations (2.14), (2.15) in Falk (2019).

An Archimax copula is in the domain of attraction of a multivariate ex-
treme value distribution, if the generator satisfies condition (C0). Precisely,
we have the following result.

Proposition 3.9. Suppose the generator ϕ satisfies condition (C0). Then
the corresponding Archimax copula C, with arbitrary D-norm ∥·∥D, satisfies
C ∈ D(G), where G(x) = exp

(︂
−∥(|x1|p , . . . , |xd|p)∥1/pD

)︂
, x ≤ 0 ∈ Rd.

Proof. We have for x = (x1, . . . , xd) ≤ 0 ∈ Rd

n
[︂
1− ϕ−1

(︂⃦⃦⃦(︂
ϕ
(︂
1 +

x1
n

)︂
, . . . , ϕ

(︂
1 +

xd
n

)︂)︂⃦⃦⃦
D

)︂]︂

=

1− ϕ−1

(︃
ϕ
(︁
1− 1

n

)︁ ⃦⃦⃦⃦(︃ϕ(1+x1
n )

ϕ(1− 1
n)
, . . . ,

ϕ(1+xd
n )

ϕ(1− 1
n)

)︃⃦⃦⃦⃦
D

)︃
1− ϕ−1

(︁
ϕ
(︁
1− 1

n

)︁)︁
→n→∞ ∥(|x1|p , . . . , |xd|p)∥1/pD

by condition (C0) and equation (3.2). Repeating the arguments in the proof
of Proposition 3.2 yields the assertion.

Let the rv U = (U1, . . . , Ud) follow an Archimax copula with generator
function ϕ and D-norm ∥·∥D. Does it also have independent tails, conditional
on one of its components? We give a partial answer to this question.

Suppose the underlying ∥·∥D is a logistic one ∥·∥q, with q ≥ 1. Then

ϕ−1
(︂
∥(ϕ(u1), . . . , ϕ(ud))∥q

)︂
= ϕ−1

⎛⎝(︄ d∑︂
i=1

ϕ(ui)
q

)︄1/q
⎞⎠

= ψ−1

(︄
d∑︂

i=1

ψ(ui)

)︄
,

where

ψ(s) := ϕ(s)q, s ∈ [0, 1].
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If the generator ϕ satisfies condition (C0), then the generator ψ clearly satisfies
condition (C0) as well:

lim
s↓0

ψ(1− sx)

ψ(1− s)
= xpq, x > 0.

If ϕ satisfies the differentiability conditions in Lemma 3.4, then the conclusion
of Theorem 3.5 applies, i.e., with the choice ∥·∥D = ∥·∥q, q ≥ 1, the rv U has
again independent tails, conditional on one of its components.

Set, on the other handU = (U, . . . , U), where U is a rv that follows the uni-
form distribution on (0, 1). Choose ∥·∥D = ∥·∥∞ with ∥x∥∞ = max1≤i≤d(|xi|).
Then we have for every function ϕ : (0, 1] → [0,∞), which is continuous and
strictly decreasing,

C(u) = P (U ≤ u1, . . . , U ≤ ud)

= min
1≤i≤d

ui

= ϕ−1 (∥(ϕ(u1), . . . , ϕ(ud))∥∞) , u ∈ (0, 1]d.

The copula C is, therefore, an Archimax copula, but it has completely depen-
dent conditional margins.

3.5 Simulation Study

We conducted a simulation study to illustrate our findings on the conditional
tail independence of the Archimedean Gumbel-Hougaard copula family with
dimension d > 2 and dependence parameter ϑ > 1. The condition on ϑ implies
that copula’s tails are asymptotically dependent. There are several statistical
tests to verify whether the tails of a multivariate distribution are asymptot-
ically independent, provided that the latter is in the domain of attraction of
a multivariate extreme value df. In the bivariate case, some tests have been
suggested by Draisma et al. (2004), Hüsler and Li (2009), Chapter 6.5 in Falk
et al. (2011). However, to extend them into higher dimensions than two is
not straightforward. Therefore, we rely on the hypothesis testing proposed
by Guillou et al. (2018), which is based on the componentwise maximum ap-
proach and is suitable for an arbitrary dimension d ≥ 2. Such a test is based
on a system of hypotheses where under the null hypothesis it is assumed that
A(t) = 1 for all t ∈ Sd, i.e., the tails are asymptotically independent, while
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under the alternative hypothesis it is assumed that A(t) < 1 for at least one
t ∈ Sd, i.e., some tails are asymptotically dependent. Here, A is the Pickands
dependence function and Sd is d-dimensional unit simplex (e.g., Falk et al.,
2011, Ch. 4). In Guillou et al. (2018) the authors proposed to use the test

statistic ˆ︁Sn = supt∈Sd

√
n| ˆ︁An(t)−1| to decide whether or not to reject the null

hypothesis, where ˆ︁An is an appropriate estimator of the Pickands dependence
function and n is the sample size of the componentwise maxima. Under the
null hypothesis, the asymptotic behavior of the test statistic is known. The
corresponding quantiles can be used for rejection of the null hypothesis and
while there is no closed form available to compute them, they can be approx-
imated by Monte Carlo methods. The 1% and 5% quantiles can be found
in Table 1 of Guillou et al. (2018) together with some investigation into the
finite-sample power for the test.

We performed the following simulation study. In the first step we simu-
lated a sample of size n = 110K of independent observations from a Gumbel-
Hougaard copula with d = 3 and ϑ = 3. Then, we computed the vector of
normalized componentwise maxima mn,j = maxi=1,...,n(ui,j − bn,j)/an,j with
an,j = n, bn,j = 1 and j = 1, . . . , d. In the second step, for u = 0.99 and
ε = 0.0005 we selected the observations (ui,1, . . . , ui,j−1, ui,j+1, . . . , ui,d) such
that ui,j ∈ [u − ε, u + ε], i = 1, . . . , n. To work with a sample with fixed size
we considered only k = 1000 of such observations. Then, we computed the
vector of normalized componentwise maxima m∗

k,s = maxi=1,...,k ui,s/(cak,s),

where c =
(︁
ϕ′(u)2/ϕ′′(u)

)︁1/ϑ
and ak,s := 1−ϕ−1(1/k) with ϕ(t) := (− log(t))ϑ

and s = 1, . . . , j − 1, j − 1, . . . , d. We repeated the first and second steps
N = 100 times obtaining two samples of componentwise maxima, one from
the d-dimensional copula and one from the corresponding d−1 conditional dis-
tribution. The top-left and top-right panel of Figure 3.1 display an example of
maxima obtained from the Gumbel-Hougaard and the associated estimate of
the Pickands dependence function, respectively. A strong dependence among
the variables is evident. To see this better in the middle panels the maxima
of a pair of variables and the relative estimate of the Pickands dependence
function are reported. Indeed, the latter is close to lower bound max(1− t, t),
i.e. the case of complete dependence. The bottom panels of Figure 3.1 display
the maxima obtained with the second step of the simulation experiment and
the associated estimate of the Pickands dependence function. These maxima,
in contrast to the previous ones, seem to be independent and indeed the es-
timated Pickands dependence function is close to the upper bound (i.e. the
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Table 3.1: Rejection rate (in percentage) of the null hypothesis (asymptotic
independent tails) based on M = 1000 simulations.

Dimension Dependence parameter
d ϑ : 2 3 4 5 6
3 5.414 4.877 5.438 5.352 5.725
4 5.216 5.783 5.491 4.841 4.591
5 5.353 4.396 5.791 4.685 4.454

case of independence). Then, we applied the hypothesis test with the sample
of maxima obtained in the first and second step of the simulation experiment,
leading to the observed values of test statistic of 3.843 and 0.348, respectively.
Since the 0.95-quantiles of the distribution of S are 1.300 and 0.960 for d = 3
and d = 2, respectively (Guillou et al., 2018), we conclude that we reject the
hypothesis of tails independence with the first sample of maxima whereas we
do not reject it with the second sample. These results are consistent with our
theoretical finding.

We repeated this simulation experiment M = 1000 times and with the
maxima obtained with the second step of the simulation experiment we com-
puted the rejection rate of the null hypothesis. Since we simulated data under
the null hypothesis we expect that the rejection rate is close the nominal value
of the first type error, i.e. 5%. We did this for different dimension d and
values of the parameter ϑ. The results are collected in Table 3.1. Again the
simulation results support our theoretical findings.
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Figure 3.1: Top-left panel displays the maxima obtained with the data simulated
from a trivariate Gumbel-Hougaard copula with ϑ = 4. The middle one shows
the maxima corresponding to two components. Finally, the one below shows
the maxima obtained with the simulated data where one component is set to
be a high value. The right-column reports the respective estimated Pickands
dependence functions.
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Chapter 4

Generalized Pareto
Distributions

This chapter is organized as follows: using D-norms, we investigate the gen-
eralized Pareto copulas from Section 1.2 in more detail. The characteristic
property of a GPC is its excursion or exceedance stability which is established
in Theorem 4.1. The family of GPC together with the well-known set of uni-
variate generalized Pareto distributions enables the definition of multivariate
GPD in Section 4.2. As the set of univariate GPD equals the set of univariate
non-degenerate exceedance stable distributions, its extension to higher dimen-
sions via a GPC and GPD margins is an obvious idea. δ-neighborhoods of a
GPC are introduced in Section 4.3. The normal copula is a prominent exam-
ple. Among others we show how to simulate data, which follow a copula from
such a δ-neighborhood. In Section 4.4 we show how our findings on GPC can
be used to estimate exceedance probabilities above high thresholds, including
confidence intervals. Finally, we conduct a case study in Section 4.5 on joint
exceedance probabilities for air pollutants such as ozone, nitrogen dioxide,
nitrogen oxide, sulphur dioxide and particulate matter.

4.1 Characterization of a GPC

Building on the introduction of Generalized Pareto copulas in the first chapter,
we derive a characteristic property of a GPC. Suppose the rv U follows a GPC
C. Then its survival function equals

P (U ≥ u) = ≀≀ 1− u ≀≀D, u ∈ [u0,1] ⊂ Rd,

43
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where

≀≀ x ≀≀D := E

(︃
min
1≤i≤d

(|xi|Zi)

)︃
, x ∈ Rd,

is called the dual D-norm function pertaining to ∥·∥D with generator Z =
(Z1, . . . , Zd), see the proof of Theorem 4.1. Using the equations (4.2) below
it is straightforward to prove that ≀≀ · ≀≀D does not depend on the particular
choice of the generator Z of ∥·∥D. We have, for example,

≀≀ x ≀≀1 = 0, ≀≀ x ≀≀∞ = min
1≤i≤d

|xi| , x = (x1, . . . , xd) ∈ Rd.

Note that the mapping ∥·∥D ↦→ ≀≀ · ≀≀D is not one-to-one, i.e., two different
D-norms can have identical dual D-norm functions.

The function ≀≀ · ≀≀D is obviously homogeneous of order one:

≀≀ tx ≀≀D = t ≀≀x ≀≀D, t ≥ 0.

As a consequence, a GPC is excursion stable:

P (U ≥ 1− tu | U ≥ 1− u) =
≀≀ tu ≀≀D
≀≀ u ≀≀D

= t, t ∈ [0, 1],

for u close to 0 ∈ Rd, provided ≀≀ u ≀≀D > 0.
Note that each marginal distribution of a GPC C is a lower dimensional

GPC as well: If the rv U = (U1, . . . , Ud) follows the GPC C on Rd, then
the rv UT := (Ui1 , . . . , Uim) follows a GPC on Rm, for each nonempty subset
T = {i1, . . . , im} ⊂ {1, . . . , d}. We have

P ((Ui1 , . . . , Uim) ≤ v) = 1−

⃦⃦⃦⃦
⃦

m∑︂
j=1

(1− vj)eij

⃦⃦⃦⃦
⃦
D

,

for v = (v1, . . . , vm) ∈ [0, 1]m close to 1 ∈ Rm. Recall that ei denotes the i-th
unit vector in Rd, 1 ≤ i ≤ d.

The characteristic property of a GPC is its excursion stability, as formu-
lated in the next result.

Theorem 4.1. Let the rv U = (U1, . . . , Ud) follow a copula C. Then C is
a GPC iff for each nonempty subset T = {i1, . . . , im} of {1, . . . , d} the rv
UT = (Ui1 , . . . , Uim) is exceedance stable, i.e.,

P (UT ≥ 1− tu) = tP (UT ≥ 1− u), t ∈ [0, 1], (4.1)

for u close to 0 ∈ Rm.
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Proof. The implication “⇐” in the preceding result is just a reformulation of
Falk and Guillou (2008, Proposition 6). The conclusion “⇒” can be seen as
follows. We can assume without loss of generality that T = {1, . . . , d}.

Using induction, it is easy to see that arbitrary numbers a1, . . . , ad ∈ R
satisfy the equations

max(a1, . . . , ad) =
∑︂

∅̸=T⊂{1,...,d}

(−1)|T |−1min
i∈T

ai,

min(a1, . . . , ad) =
∑︂

∅≠T⊂{1,...,d}

(−1)|T |−1max
i∈T

ai. (4.2)

By choosing a1 = · · · = ad = 1, the preceding equations imply in particular

1 =
∑︂

∅≠T⊂{1,...,d}

(−1)|T |−1. (4.3)

The inclusion-exclusion principle implies for v ∈ [0, 1]d close to 0 ∈ Rd

P (U ≥ 1− v) = 1− P

(︄
d⋃︂

i=1

{Ui ≤ 1− vi}

)︄
= 1−

∑︂
∅≠T⊂{1,...,d}

(−1)|T |−1P (Ui ≤ 1− vi, i ∈ T )

= 1−
∑︂

∅≠T⊂{1,...,d}

(−1)|T |−1

(︄
1−

⃦⃦⃦⃦
⃦∑︂
i∈T

viei

⃦⃦⃦⃦
⃦
D

)︄

=
∑︂

∅≠T⊂{1,...,d}

(−1)|T |−1

⃦⃦⃦⃦
⃦∑︂
i∈T

viei

⃦⃦⃦⃦
⃦
D

.

Choose a generator Z = (Z1, . . . , Zd) of ∥·∥D. From equation (4.2) we
obtain

∑︂
∅≠T⊂{1,...,d}

(−1)|T |−1

⃦⃦⃦⃦
⃦∑︂
i∈T

viei

⃦⃦⃦⃦
⃦
D

=
∑︂

∅≠T⊂{1,...,d}

(−1)|T |−1E

(︃
max
i∈T

(viZi)

)︃
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= E

⎛⎝ ∑︂
∅≠T⊂{1,...,d}

(−1)|T |−1max
i∈T

(viZi)

⎞⎠
= E

(︃
min
1≤i≤d

(viZi)

)︃
= ≀≀ v ≀≀D.

Replacing v by tu yields the assertion.

If P (UT ≥ 1− u) > 0, then (4.1) clearly becomes

P (UT ≥ 1− tu | UT ≥ 1− u) = t, t ∈ [0, 1].

But P (UT ≥ 1−u) can be equal to zero for all u close to 1 ∈ Rm. This is for
example the case, when the underlying D-norm ∥·∥D is ∥·∥1. Then ≀≀ · ≀≀D = 0,
and, thus, P (UT ≥ 1− u) = 0 for all u close to 0 ∈ Rm, unless m = 1.

While the characteristic property of a GPC is its excursion stability, an
extreme value copula CG(u) = G

(︁
G−1

1 (u1), . . . , G
−1
d (ud)

)︁
, u ∈ (0, 1)d, which

corresponds to a max-stable df G, has its max-stability as the characteristic
property, which is defined below. By transforming the univariate margins to
the standard negative distribution, we can assume without loss of generality
that G is a SMS df. In this case we have G−1

i (u) = log(u), u ∈ (0, 1], and,
thus, we obtain the representation of the copula of an arbitrary max-stable df

CG(u) = exp (−∥(log(u1), . . . , log(ud))∥D) , u ∈ (0, 1]d, (4.4)

with some D-norm ∥·∥D. For a discussion of parametric families of extreme
value copulas and their statistical analysis we refer to Genest and Nešlehová
(2012).

Equation (4.4) obviously implies the max-stability of an extreme value cop-
ula CG:

Cn
G

(︁
u1/n

)︁
= CG(u), u ∈ (0, 1]d, n ∈ N. (4.5)

If, on the other hand, an arbitrary copula C satisfies equation (4.5), then it is
clearly the copula CG of a SMS df G. As a consequence, we have two stabilities
of copulas: max-stability and exceedance stability.

Let C be an arbitrary copula on Rd. The considerations in this section
show that the copula CCn of Cn converges point-wise to a max-stable copula
if, and only if, C is in its upper tail close to that of an excursion stable copula,
i.e., to that of a GPC.

The message of the considerations in this section is: If one wants to model
the copula of multivariate exceedances above high thresholds, then a GPC is
a first option.
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4.2 Multivariate Generalized Pareto Distribu-

tions

Let {Gα : α ∈ R} be the set of univariate max-stable df as defined by the
equations above and in (1.2). The family of univariate generalized Pareto
distributions (GPD) is the family of univariate excursion stable distributions:

Hα(x) := 1 + log(Gα(x)), Gα(x) > exp(−1),

=

⎧⎪⎨⎪⎩
1− (−x)α, −1 ≤ x ≤ 0, if α > 0,

1− xα, x ≥ 1, if α < 0,

1− exp(−x), x ≥ 0, if α = 0.

Suppose the rv V follows the df Hα. Then

P (V > tx | V > x) = tα for

{︄
t ∈ [0, 1], −1 ≤ x < 0, if α > 0,

t ≥ 1, x ≥ 1, if α < 0,

P (V > x+ t | V > x) = exp(−t), for t ≥ 0, x ≥ 0, if α = 0.

For a threshold s and an x > s, the univariate GPD takes the form of the
following scale and shape family of distributions

H1/ξ((x− s)/σ) = 1− (1 + ξ(x− s)/σ)−1/ξ , (4.6)

where ξ = 1/α and σ > 0 (e.g. Falk et al., 2011, page 35).
The definition of a multivariate GPD is, however, not unique in the litera-

ture. There are different approaches (Rootzén and Tajvidi (2006), Falk et al.
(2011)), each one trying to catch the excursion stability of a multivariate rv.
The following suggestion might conclude this debate. Clearly, the excursion
stability of a rv X should be satisfied by its margins and its copula. This is
reflected in the following definition.

Definition 4.2. A rv X = (X1, . . . , Xd) follows a multivariate GPD, if each
component Xi follows a univariate GPD (at least in its upper tail), and if the
copula C corresponding to X is a GPC, i.e., there exists a D-norm ∥·∥D on
Rd and u0 ∈ [0, 1)d such that

C(u) = 1− ∥1− u∥D , u ∈ [u0,1].
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As a consequence, each such rv X, which follows a multivariate GPD, is
exceedance stable and vice versa.

Example 4.3. The following construction extends the bivariate approach
proposed by Buishand et al. (2008) to arbitrary dimension. It provides a
rv, which follows an arbitrary multivariate GPD as in Definition 4.2. Let
Z = (Z1, . . . , Zd) be the generator of a D-norm ∥·∥D, with the additional
property that each Zi ≤ c, for some c ≥ 1. Note that such a generator ex-
ists for an arbitrary D-norm according to the normed generators theorem for
D-norms (Falk (2019)). Let the rv U be uniformly on (0, 1) distributed and
independent of Z. Put

V = (V1, . . . , Vd) :=
1

U
(Z1, . . . , Zd) :=

1

U
Z. (4.7)

Then, for each i ∈ {1, . . . , d},

P

(︃
1

U
Zi ≤ x

)︃
= 1− 1

x
, x large,

i.e., Vi follows in its upper tail a univariate standard Pareto distribution, and,
by elementary computation, we have

P (V ≤ x) = 1−
⃦⃦⃦⃦
1

x

⃦⃦⃦⃦
D

, x large.

The preceding equation implies that the copula of V is a GPC with corre-
sponding D-norm ∥·∥D. The rv V can be seen as a prototype of a rv, which
follows a multivariate GPD. This GPD is commonly called simple.

Choose V = (V1, . . . , Vd) as in equation (4.7) and numbers α1, . . . , αd ∈ R.
Then

Y := (Y1, . . . , Yd)

:=

(︃
H−1

α1

(︃
1− 1

V1

)︃
, . . . , H−1

αd

(︃
1− 1

Vd

)︃)︃
=

(︃
H−1

α1

(︃
1− U

Z1

)︃
, . . . , H−1

αd

(︃
1− U

Zd

)︃)︃
(4.8)

follows a general multivariate GPD with marginsHα1 , . . . , Hαd
in its univariate

upper tails.
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With the particular choice α1 = · · · = αd = 1 we obtain a standard multi-
variate GPD

Y = −U
(︃

1

Z1

, . . . ,
1

Zd

)︃
or

Y =

(︃
max

(︃
− U

Z1

, K

)︃
, . . . ,max

(︃
− U

Zd

, K

)︃)︃
where K < 0 is an arbitrary number to avoid division by zero. Its df is

P (Y ≤ x) = 1− ∥x∥D

for x ≤ 0 ∈ Rd close enough to zero.
With the particular choice α1 = · · · = αd = 0, we obtain a multivariate

GPD with Gumbel margins in the upper tails

Y = (log(Z1)− log(U), . . . , log(Zd)− log(U)) ,

where − log(U) follows the standard exponential distribution on (0,∞), or, to
avoid the logarithm of zero,

Y =

(︃
max

(︃
log

(︃
U

Z1

)︃
, 0

)︃
, . . . ,max

(︃
log

(︃
U

Zd

)︃
, 0

)︃)︃
.

Up to a possible location and scale shift, each rv X = (X1, . . . , Xd), which
follows a multivariate GPD as defined in Definition 4.2, can in its upper tail
be modelled by the rv Y = (Y1, . . . , Yd) in equation (4.8). This makes such rv
Y in particular natural candidates for simulations of multivariate exceedances
above high thresholds.

4.3 δ-Neighborhoods of GPC

A major problem with the construction in (4.7) is the additional boundedness
condition on the generator Z. This is, for example, not given in case of the
logistic D-norm ∥·∥p with p ∈ (1,∞) or the Hüsler-Reiss D-norm. From the
normed generators theorem in Falk (2019) we know that bounded generators
exist, but, to the best of our knowledge, they are unknown in both cases.

In this section we drop this boundedness condition and show that the
construction (4.7) provides a copula, which is in a particular neighborhood of
a GPC, called δ-neighborhood. We are going to define this neighborhood next.



50 CHAPTER 4. GENERALIZED PARETO DISTRIBUTIONS

Denote by R :=
{︁
t ∈ [0, 1]d : ∥t∥1 = 1

}︁
the unit sphere in [0,∞)d with

respect to the norm ∥x∥1 =
∑︁d

i=1 |xi| = 1, x ∈ Rd. Choose an arbitrary
copula C on Rd and put for t ∈ R

Ct := C(1+ st), s ≤ 0.

Then Ct is a univariate df on (−∞, 0], and the copula C is obviously deter-
mined by the family

P(C) := {Ct : t ∈ R}
of univariate spectral df Ct. The family P(C) is the spectral decomposition of
C; cf Falk et al. (2011, Section 5.4). A copula C is, consequently, in D(G) iff
its spectral decomposition satisfies

Ct(s) = 1 + s ∥t∥D + o(s), t ∈ R,

as s ↑ 0. The copula C is by definition in the δ-neighborhood of the GPC CD

with D-norm ∥·∥D if their upper tails are close to one another, precisely, if

1− Ct(s) = (1− CD,t(s))
(︂
1 +O

(︂
|s|δ
)︂)︂

= |s| ∥t∥D
(︂
1 +O

(︂
|s|δ
)︂)︂

(4.9)

as s ↑ 0, uniformly for t ∈ R. In this case we know from Falk et al. (2011,
Theorem 5.5.5) that

sup
x∈(−∞,0]d

⃓⃓⃓⃓
Cn

(︃
1+

1

n
x

)︃
− exp(−∥x∥D)

⃓⃓⃓⃓
= O

(︁
n−δ
)︁
. (4.10)

Under additional differentiability conditions on Ct(s) with respect to s,
also the reverse implication (4.10) =⇒ (4.9) holds; cf. Falk et al. (2011,
Theorem 5.5.5). Therefore, the δ-neighborhood of a GPC, roughly, collects
those copula with a polynomial rate of convergence for maxima.

Condition (4.9) can also be formulated in the following way:

1− C(u) = (1− CD(u))
(︂
1 +O

(︂
∥1− u∥δ

)︂)︂
= ∥1− u∥D

(︂
1 +O

(︂
∥1− u∥δ

)︂)︂
as u → 1 ∈ Rd, uniformly for u ∈ [0, 1]d, where ∥·∥ is an arbitrary norm on
Rd.
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Example 4.4. Choose u ∈ (0, 1)d and put for t ∈ [0, 1]

FI (t,u) := E

(︄
d∑︂

i=1

1(Ui>1−tui)

⃓⃓⃓ d∑︂
i=1

1(Ui>1−ui) > 0

)︄
.

With t = 1, this is the fragility index, introduced by Geluk et al. (2007) to
measure the stability of the stochastic system U1, . . . , Ud. The system is called
stable if FI (1,u) is close to one, otherwise it is called fragile. The asymptotic
distribution of Nu =

∑︁d
i=1 1(Ui>1−tui), given Nu > 0, was investigated in Falk

and Tichy (2011, 2012).
If U follows a GPC with corresponding D-norm ∥·∥D, we obtain for u close

enough to zero

FI (t,u) =
d∑︂

i=1

P (Ui > 1− tui)

P
(︂∑︁d

j=1 1(Uj>1−uj) > 0
)︂

=
d∑︂

i=1

tui
1− P (U ≤ 1− u)

= t
∥u∥1
∥u∥D

.

Writing
∥u∥1
∥u∥D

=
1⃦⃦⃦
u

∥u∥1

⃦⃦⃦
D

implies that there is a least favourable direction r0 ∈ R with

∥r0∥D = min
r∈R

∥r∥D .

A vector u with u = sr0, s > 0, maximizes the fragility index. For arbitrary
d ≥ 2 and ∥·∥D = ∥·∥p, p ∈ (1,∞), one obtains for example r0 with constant
entry 1/d and

FI (t,u) = t
d

d1/p
.

If U follows a copula, which is in a δ-neighborhood of a GPC with D-norm
∥·∥D, then we obtain the representation

FI (t,u) = t
∥u1∥
∥u∥D

(︂
1 +O

(︂
∥u∥δ

)︂)︂
, for u → 0 ∈ Rd.
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If we replaceU for example byX = (F−1(U1), . . . , F
−1(Ud)), where F (x) =

1−1/x, x ≥ 1, is the standard Pareto df, then we obtain for the fragility index

FI (t,x) = E

(︄
d∑︂

i=1

1(Xi>txi)

⃓⃓⃓ d∑︂
i=1

1(Xi>xi) > 0

)︄
, x ≥ 1 ∈ Rd, t ≥ 1,

the equality

FI (t,x) =
1

t

∥1/x∥1
∥1/x∥D

(︂
1 +O

(︂
∥1/x∥δ

)︂)︂
for xi → ∞, 1 ≤ i ≤ d.

Let Z = (Z1, . . . , Zd) be a generator of the D-norm ∥·∥D and let U be a
rv, which is independent of Z and which follows the uniform distribution on
(0, 1). If Z is bounded, then the copula of Z/U is a GPC CD as established
in Section 4.2. If we drop the boundedness of Z and require that E(Z2

i ) <∞,
then, roughly, the copula of Z/U is in a δ-neighborhood of CD with δ = 1.
This is the content of our next result.

Theorem 4.5. Let Z = (Z1, . . . , Zd) generate the D-norm ∥·∥D. Suppose that
E(Z2

i ) < ∞ and that the df of Zi is continuous, 1 ≤ i ≤ d. Then the copula
CV of

V :=
1

U
Z =

1

U
(Z1, . . . , Zd)

is in the δ-neighborhood of the GPC CD with δ = 1.

Proof. The df Fi of Zi/U satisfies for large x

Fi(x) = P (Zi/x ≤ U)

=

∫︂ x

0

P (U ≥ z/x) (P ∗ Zi)(dz)

=

∫︂ x

0

1− z

x
(P ∗ Zi)(dz)

= P (Zi ≤ x)− 1

x
E
(︁
Zi1(Zi≤x)

)︁
= 1− P (Zi > x)− 1

x

(︁
1− E

(︁
Zi1(Zi>x)

)︁)︁
= 1− 1

x
−
(︃
P (Zi > x)− 1

x
E
(︁
Zi1(Zi>x)

)︁)︃
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=

(︃
1− 1

x

)︃(︄
1−

P (Zi > x)− 1
x
E
(︁
Zi1(Zi>x)

)︁
1− 1

x

)︄
,

where by Markov’s inequality

P (Zi > x) ≤ 1

x2
E(Z2

i )

and, using also Hölder’s inequality

E
(︁
Zi1(Zi>x)

)︁
≤ E(Z2

i )
1/2P (Zi > x)1/2 ≤ E(Z2

i )
1/2E(Z

2
i )

1/2

x
=

1

x
E(Z2

i ).

As a consequence we obtain

Fi(x) =

(︃
1− 1

x

)︃(︃
1 +O

(︃
1

x2

)︃)︃
as x→ ∞

and, thus,

1− Fi(x) =
1

x

(︃
1 +O

(︃
1

x

)︃)︃
as x→ ∞.

Therefore, the df Fi of Zi/U is in the δ-neighborhood of the standard Pareto
distribution with δ = 1.

From Falk et al. (2011, Proposition 2.2.1) we obtain as a consequence

F−1
i (1− q) =

1

q
(1 +O(q))

for q ∈ (0, 1) as q → 0.
Note that each df Fi is continuous, 1 ≤ i ≤ d. Choose t = (t1, . . . , td) ∈ R.

We have for s < 0 close enough to zero

Ct(s)

= P (Fi(Zi/U) ≤ 1 + sti, 1 ≤ i ≤ d)

= P (Zi/U ≤ F−1
i (1 + sti), 1 ≤ i ≤ d)

= P

(︃
Zi

U
≤ 1

|s| ti
(1 +O(s)), 1 ≤ i ≤ d

)︃
= P (U ≥ |s| ti(1 +O(s))Zi, 1 ≤ i ≤ d)

= P

(︃
U ≥ |s| max

1≤i≤d
(ti(1 +O(s))Zi)

)︃
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=

∫︂
{max1≤i≤d(ti(1+O(s))zi)≤1/|s|}

P

(︃
U ≥ |s| max

1≤i≤d
(ti(1 +O(s))zi)

)︃
(P ∗Z)(dz)

=

∫︂
{max1≤i≤d(ti(1+O(s))zi)≤1/|s|}

1− |s| max
1≤i≤d

(ti(1 +O(s))zi) (P ∗Z)(dz)

= P

(︃
max
1≤i≤d

(ti(1 +O(s))Zi) ≤
1

|s|

)︃
− |s|E

(︃
max
1≤i≤d

(ti(1 +O(s))Zi) 1(max1≤i≤d(ti(1+O(s))Zi)≤ 1
|s|)

)︃
= 1− P

(︃
max
1≤i≤d

(ti(1 +O(s))Zi) >
1

|s|

)︃
− |s|E

(︃
max
1≤i≤d

(ti(1 +O(s))Zi)

)︃
+ |s|E

(︃
max
1≤i≤d

(ti(1 +O(s))Zi) 1(max1≤i≤d(ti(1+O(s))Zi)>
1
|s|)

)︃
.

We have

E

(︃
max
1≤i≤d

(ti(1 +O(s))Zi)

)︃
= E

(︃
max
1≤i≤d

(tiZi)

)︃
(1 +O(s)) = ∥t∥D (1 +O(s))

and, thus, applying Markov’s inequality and Hölder’s inequality again,

1− Ct(s)

= P

(︃
max
1≤i≤d

(ti(1 +O(s))Zi) >
1

|s|

)︃
+ |s| ∥t∥D (1 +O(s))

− |s|E
(︃
max
1≤i≤d

(ti(1 +O(s))Zi) 1(max1≤i≤d(ti(1+O(s))Zi)>
1
|s|)

)︃
= |s| ∥t∥D (1 +O(s))

= (1− CD,t(s)) (1 +O(s))

as s ↑ 0, uniformly for t ∈ R. Note that there exist constants K1, K2 > 0 such
that K1 ≤ ∥t∥D ≤ K2 for each t ∈ R. This completes the proof of Theorem
4.5.

An obvious example is the generator of a Hüsler-Reiss D-norm

Z(1) =
(︂
exp

(︂
X1 −

σ11
2

)︂
, . . . , exp

(︂
Xd −

σdd
2

)︂)︂
,

where X = (X1, . . . , Xd) is multivariate normal N(0,Σ), Σ = (σij)1≤i,j≤d.
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Another example is the generator of the logistic norm ∥·∥p, p ∈ (2,∞),

Z(2) = (Y1, . . . , Yd)/Γ(1− 1/p),

where Y1, . . . , Yp are iid Fréchet distributed with df F (x) = exp(x−p), x > 0,
with parameter p > 2.

Both generators are unbounded, but they have square integrable compo-
nents with continuous df. It is known that bounded generators actually exist
in both cases, but to the best of our knowledge, they are unknown.

Aulbach et al. (2018) propose and extensively discuss a χ2-goodness-of-fit
test for testing, whether the underlying copula of iid rv in arbitrary dimension
is in the δ-neighborhood of a GPC with an arbitrary δ > 0. This test might
also used to test for a GPC.

4.4 Estimation of Exceedance Probability

In this section we apply the preceding results to derive estimates of the proba-
bility that a rv U = (U1, . . . , Ud), which follows a copula, realizes in an interval
[x0,1] ⊂ [0, 1]d, where x0 is close to 1 ∈ Rd and, thus, there are typically no
observations available to estimate this probability by its empirical counterpart.
This is a typical applied problem in extreme value analysis.

Suppose that the copula of U , say C, is in the domain of attraction of a
max-stable df. In this case, its upper tail is by Corollary 1.3 close to that of a
GPC.

We assume that the copula C is a GPC (or very close to one in its upper
tail). Being a GPC is by Theorem 4.1 characterized by the equation

P (U ≥ 1− tu) = tP (U ≥ 1− u), (4.11)

t ∈ [0, 1], for u ≥ 0 ∈ Rd close enough to zero.
We want to estimate

q := P (U ≥ x0)

for some x0 close to one, based on independent copies U (1), . . . ,U (n) of U .
Even more, we want to derive confidence interval pertaining to our estimators
of q.

Choose u0 close to zero, such that equation (4.11) is satisfied for each
t ∈ [0, 1], and put

x0 = 1− t0u0
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with some t0 ∈ (0, 1). Then the unknown probability q satisfies the equation

q = P (U ≥ 1− t0u0) = t0P (U ≥ 1− u0) =: t0p. (4.12)

The threshold 1 − u0 should be much smaller than the initial threshold
x0 = 1− t0u0, in which case the the unknown probability p can be estimated
from the data by

p̂n :=
1

n

n∑︂
i=1

1
(︁
U (i) ≥ 1− u0

)︁
.

Note that np̂n is binomially distributed B(n, p); a confidence interval for p
can be obtained by Clopper-Pearson, for example. A popular approach is due
to Agresti and Coull (1998); see also Brown et al. (2001).

A confidence interval for p, say I = (a, b), can by equation (4.12) be turned
into a confidence interval I∗ for q (with the same confidence level) by putting

I∗ := t0I = (t0a, t0b).

4.4.1 Determination of u0

It is clear that one would like to choose u0 as large as possible, so that one has
more observations in [1 − u0,1]. But, on the other hand, the GPC property
equation (4.11) needs to be satisfied as well. In what follows we describe a
proper way how to choose u0.

A possible solution to check whether our condition (4.11) is satisfied for
u0 = (u01, . . . , u0d) is as follows: if the condition is satisfied, then we obtain
for the conditional distribution

P (U ≥ 1− tu0 | U ≥ 1− u0) = t, t ∈ [0, 1],

or

P

(︃
max
1≤j≤d

(︃
1− Uj

u0j

)︃
≤ t
⃓⃓
max
1≤j≤d

(︃
1− Uj

u0j

)︃
≤ 1

)︃
= t, t ∈ [0, 1].

This means that those observations in the data max1≤j≤d

(︂(︂
1− U

(i)
j

)︂
/u0j

)︂
,

1 ≤ i ≤ n, which are not greater than one, actually follow the uniform distri-
bution on (0, 1), no matter what the underlying D-norm is. We denote these
by M1, . . . ,Mm, where their number m is a random variable:

m =
n∑︂

i=1

1

(︃
max
1≤j≤d

(︂(︂
1− U

(i)
j

)︂
/u0j

)︂
≤ 1

)︃
.
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It is easy to check, if M1, . . . ,Mm are independent and on (0, 1) uniformly dis-
tributed random variables, conditional on m. Standard goodness-of-fit tests
like the Kolmogorov–Smirnov test or the Cramér–von Mises test can be ap-
plied. Alternatively, M1, . . . ,Mm can be transformed to independent standard
normal random variables by considering Φ−1(Mi), and standard tests for nor-
mality such as the Shapiro-Wilk test can be applied. The preceding problem
was already discussed in Falk et al. (2011, Section 5.8).

Put for t ∈ [0, 1]

u(t) :=
1− x0

t
.

Then, clearly,

x0 = (x01, . . . , x0d) = 1− tu(t), t ∈ [0, 1].

But as u(t) needs to be in [0, 1]d, we obtain the restriction for i ∈ {1, . . . , d}

0 ≤ 1− x0j
t

≤ 1,

or
1− x0j ≤ t ≤ 1,

i.e.,
tlow := max

1≤j≤d
(1− x0j) ≤ t ≤ 1.

Choosing u0 as large as possible now becomes choosing t ≥ tlow as small as
possible.

Put for t ∈ [tlow, 1]

q̂n(t) := tp̂n(t) :=
t

n

n∑︂
i=1

1
(︁
U (i) ≥ 1− u(t)

)︁
. (4.13)

For each t ∈ [tlow, 1] we obtain observationsM1(t), . . . ,Mm(t)(t) in the data

max1≤j≤d

(︂(︂
1− U

(i)
j

)︂
/uj(t)

)︂
, 1 ≤ i ≤ n, which are not greater than one. We

check for each t, whether M1(t), . . . ,Mm(t)(t) follow the uniform distribution
on (0, 1) by plotting corresponding p-value functions:

(t, p1(t)), (t, p2(t)), t ∈ [tl, 1].

Precisely, we plot the minimum of p1(t) and p2(t) that are obtained from the
Kolmogorov–Smirnov test and the Cramer-Von Mises test.
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A candidate for t0 is the lowest possible value that leads to a minimum
p-value of at least 50%. This is done in Figure 4.1. Note that the preceding
approach for determining a proper threshold t should be viewed as a sensitivity
analysis; it is not meant as a proper test, where a p-value less than 5% would
usually lead to a rejection of the null hypothesis that the sample follows a
uniform distribution.
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Figure 4.1: Plot of p-value of the test for uniform distribution on (0, 1) depend-
ing on the factor t. The red line marks the 5% rejection level, the horizontal
dashed green line is at the 50% level and the vertical one marks our selected
value t0.

4.4.2 Confidence Interval

Now that we have chosen u0, we can estimate p = P (U ≥ u0) as described
before by

p̂n :=
1

n

n∑︂
i=1

1
(︁
U (i) ≥ 1− u0

)︁
.

Under our model assumptions, the random variable np̂n is binomial dis-
tributed B(n, p) and a confidence interval for p can be obtained, for example,
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Figure 4.2: Plot of the function q̂n(t) := tp̂n(t), i.e, of the estimated exceedance
probability depending on the factor t. The blue lines are the corresponding
confidence limits. The dashed green lines mark our selected value of t0 and the
corresponding estimated exceedance probability q̂ = q̂n(t0).

by Clopper–Pearson or the Agresti and Coull (1998) approach.

Figure 4.2 shows q̂n(t) together with the upper and lower limits of the
corresponding confidence interval at the 95% level.

4.4.3 Asymmetric Case

While in theory it does not matter whether all components of x0 are the same,
there is a big advantage in that case: it permits the choice of u(t) = 1 for
the smallest value of t. That value most likely is not the correct one, meaning
that our model assumptions do not hold for that particular value of t. But it
leads to m = n in the sample M1, . . . ,Mm for the value of t = tlow. More to
the point, it guarantees m > 0 for at least some permissible values of t. This
is important as we need the sample of Mi to be able to even check our model
assumptions and determine our final value of t.

However, if x0 is too asymmetric in the sense that max1≤j≤d x0j differs too
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much from min1≤j≤d x0j, then m might be zero for all possible choices of t.
In that case, zero is still the obvious point estimate for our probability q, but
we cannot derive a confidence interval as above because there is no data in
theM -sample we could check for uniform distribution to verify our model and
pick t.

What we can do now is consider the symmetrized version with x̃0 :=
(min1≤j≤d x0j)1. As explained, in this case there will be non-empty samples
M(t)1, . . . ,M(t)m(t) and we can check them for their uniform distribution to
support our model assumption of a GPC. If we find a suitable value t0 fol-
lowing our procedure, we can be confident that the GPC model holds for
U ≥ 1 − ũ(t0) = 1 − (1 − x̃0)/t0. But considering the definition of x̃0, the
GPC model holds for U ≥ 1−u(t0) = 1−(1−x0)/t0 with the same t0 because
x̃0 ≤ x0 and, therefore, 1− u(t0) ≥ 1− ũ(t0).

So the detour through the symmetrized version can justify the use of p̂n = 0
in the asymmetric case (recall that we only do this if m = 0 for all possible t).
Using the same value of t0, we arrive at q̂n = 0 and a corresponding confidence
interval, stemming from a Binomial distribution with zero successes out of the
n trials.

4.4.4 Simulation Study

We illustrate the performance of our nonparametric way to estimate tail prob-
abilities through a simulation study.
First experiment: Initially, we show that our proposal provides accurate es-
timates of the joint tail probabilities and that there is not a sparsity issue
as the dimension of the rv U increases. We consider the Gumbel-Hougaard
family of copulas with dependence parameter 1 ≤ τ <∞ that was introduced
in Section 3.2 and which we already used for the simulation in Section 3.5.
Recall that τ = 1 represents independence, for τ > 1 there is dependence and
the dependence increases for increasing value of τ . We simulated a sample of
n = 1500 and n = 2000 observations from a Gumbel-Hougaard copula with
dimension d from 2 to 5 and a certain dependence level. Then, for a given
large threshold we apply our estimation method to infer the joint tail (or ex-
ceedance) probability. We repeat this task m = 1000 times and we compute
a Monte Carlo approximation of the bias term and the standard deviation of
our proposed estimator. We repeat this experiment for different dependence
levels and thresholds. Table 4.1 collects the results. The first column reports
the value of the extremal coefficient 1 ≤ θ ≤ d, which summarizes the strength



4.4. ESTIMATION OF EXCEEDANCE PROBABILITY 61

of the tail dependence. The upper and lower bounds represent the cases of
asymptotic independence and complete dependence, respectively. In particu-
lar, the extremal coefficient for a d-dimensional Gumbel-Hougaard is θ = d1/τ .
Hence, the first four, second four and third four raws of the table report the
results concerning weak, mild and strong dependence levels, respectively, for
such aforementioned copula. From the second to the fifth column the dimen-
sion of the copula, the high threshold, the True Exceedance Probability (TEP)
and the sample size for each data generation, are reported. The sixth, seventh
and eighth column show the Average of the Exceedance Probability Estimates
(AEPE), the Standard Deviation (SD) and the bias terms (in absolute value)
computed through the m = 1000 simulations. The AEPE is close to the TEP
for the different dependence levels, thresholds and copula dimensions and the
SD and Bias terms are relatively small. In conclusion this study highlights the
good performance of our nonparametric estimator for estimating tail proba-
bilities for small and moderately large dimensions.
Second experiment: We compare the performance of our nonparametric estima-
tor with other competitors. There are several results available in the literature
for estimating the joint tail dependence in arbitrary dimension Klüppelberg
et al. (2008); Einmahl et al. (2012); Beirlant et al. (2016); Einmahl et al. (2018),
to name a few, but then their use to estimating the joint tail (or exceedance)
probabilities is not straightforward. Recently, in the article Krupskii and Joe
(2019) three estimation methods to infer the joint tail probabilities have been
proposed. For simplicity, we focus on these proposals as they are simple so-
lutions which are easy to work with. Once again we simulate a sample of n
observations from a five-dimensional Gumbel-Hougaard with a certain depen-
dence level. For a large threshold, we use our proposal and those introduced
in Krupskii and Joe (2019) to estimate the exceedance (joint tail) probability.
We focus only on dimension d = 5 to show that our estimator and those pro-
posed in Krupskii and Joe (2019) provide accurate estimates with relatively
high dimensions. We repeat this task m = 1000 times and we compute a
Monte Carlo approximation of the bias term and the standard deviation for
the four estimators.

We repeat this experiment for different dependence levels and thresholds
and summarize the results in Table 4.2. Its format is similar to that of Table
4.1: TEP is the true exceedance probability over the given threshold. EM is
the estimation method where KJ1, KJ2 and KJ3 are methods 1, 2 and 3 from
Krupskii–Joe and GPC is the method presented in this paper. AEPE, SD and
Bias are the average over the exceedance probability estimates together with
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standard deviation and bias. Results (third, fifth–seventh column) are given
in percentage format. The values θ = 4.92, 3.00, 1.11 represent the cases of
weak, mild and strong dependence, respectively, among the 5 variables. To
be concise, Table 4.2 reports only the three best estimation results for each
simulation setting. The lines highlighted in gray concern the best estimation
results, i.e. the value of AEPE closest to EM and with the smallest SD and
Bias. For most of the cases our nonparametric estimator outperforms the
estimators introduced in Krupskii and Joe (2019). We point out that the
second estimation method proposed in Krupskii and Joe (2019) outperforms
our method in some cases of strong dependence. The preceding simulation
study shows that there are situations where our method performs better than
competing methods; a further investigation would be desirable, but this is
outside the scope of this thesis.

4.5 A Case Study

Air pollution is an important social issue. It is well-recognized that high emis-
sions of air pollutants have a negative impact on the environment, climate
and living beings, e.g., Rossi et al. (1999); Brunekreef and Holgate (2002);
World Health Organization (2006); Guerreiro et al. (2016, and the references
therein). According to Guerreiro et al. (2016), over a number of decades the
European policy on air-quality standards has assisted in reducing emissions
of air pollutants. The European air pollution directives regulate emissions of
certain pollutants as ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO),
sulphur dioxide (SO2) and particulate matter (PM10), with the aim of reduc-
ing the risk of the negative effects on human health and the environment that
these might cause. The last three pollutants are mainly produced by fuel motor
vehicles, industry and house-heating, while the first two are produced by some
reactions in the atmosphere. On the basis of the World Health Organization
(WHO) guidelines World Health Organization (2006), the European emission
regulation for air quality standard provides some pollutant concentrations that
should not be exceeded. The WHO survey refers how air pollution is linked to
adverse health effects by examining appropriate literature. Table 4.3 reports
the short-term guideline values, (see World Health Organization (2006, Chap-
ters 10–13) and Guerreiro et al. (2016, Chapters 4–6,8)). For NO the same
thresholds than those for NO2 can be considered. Meeting the short-term
concentrations protects against air pollution peaks which can be dangerous
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to health. The Limit threshold is a high percentile of the pollutant concen-
tration (e.g. hourly, daily mean) in a year. It is recommended not to exceed
this threshold with the objective to minimize health effects. Similarly, Target
thresholds are proposed for the reduction of air pollution when the pollutant
concentrations are still considered very high. Finally, in a country where the
Information threshold is exceeded the authorities need to notify their citizens
by a public information notice. When even the Alert threshold is exceeded for
three consecutive hours, the authorities need to draw up a shortterm action
plan in accordance with specific provisions established in European Directive.
The threshold values are set for each individual pollutant without taking into
account the dependence among pollutants. However, it is well understood
that certain pollutants can be dependent on each other; see, e.g., Dahlhaus
(2000); Clapp and Jenkin (2001); Heffernan and Tawn (2004); World Health
Organization (2006).

Here, we investigate which combinations of thresholds in Table 4.3 are
likely to be jointly exceeded and which ones are not. Exceedances of indi-
vidual thresholds are scarce when these are indeed high pollutant concen-
trations. This implies in this case that joint exceedances are even more
rare. Although the latter event may be very rare by the same token it is
a very severe pollution episode. Therefore, accurate estimation of joint ex-
ceedance probabilities is an important task. We show how to perform this
ambitious mission using the method described in the previous section. We
do so analyzing the concentration of O3, NO2, NO, SO2 and PM10, mea-
sured at the ground level in µg/m3 in the Milan city center, Italy, during the
years 2002–2017. Data are collected and made available by the Italian govern-
ment agency Agenzia Regionale per la Protezione dell’Ambiente (ARPA), see
http://www.arpalombardia.it/sites/QAria. The first four pollutants are
recorded in the average hourly format while the fifth in the daily average. To
reveal the dependence among the pollutants we focus on two seasons: sum-
mer (May–August) and winter (November–February) (Heffernan and Tawn
(2004)). Since the thresholds in Table 4.3 are designed for different averaging
periods, for comparison purposes we focus on the daily maximum (of hourly
averages) for all the pollutants except for PM10 where we are forced to consider
the daily average. Figure 4.3 displays in the left and right parts the pairwise
scatter plot for the summer and winter datasets, respectively, together with
histograms of the individual pollutants levels. SO2 and O3 have been removed
from the summer and winter datasets, respectively, because they seem inde-
pendent from the other pollutants. In each dataset the pollutants seem to
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Figure 4.3: Histograms and pairwise plots of pollutants levels in µg/m3. Left
and right panels concern the summer and winter data, respectively.

be highly dependent and this is especially true for NO2, NO and PM10. In
summer, O3 is moderately dependent to NO2 and PM10. Finally, we found
that in the winter season NO2, NO and PM10 reach much higher pollution
concentrations than in summer.

Before applying our approach to estimate the probabilities of joint ex-
ceedances (based on the exceedance stability property), we verify whether the
assumption of tail dependence is supported by the data. To check whether the
tails of a multivariate distribution are asymptotically independent one can use
the hypothesis testing proposed by Guillou et al. (2018). Such a test is based
on the componentwise maximum approach and works in arbitrary dimensions
(greater than or equal to two). We refer to Draisma et al. (2004); Hüsler and
Li (2009) and (Falk et al., 2011, Chapter 6.5) for alternative tests that work
in the bivariate case. Guillou et al. (2018) proposed using the test statisticˆ︁Sn = supt∈Sd

√
n| ˆ︁An(t) − 1| to determine whether or not to reject the null

hypothesis A(t) = 1 for all t ∈ Sd, i.e., the tails are asymptotically indepen-
dent, against the alternative hypothesis A(t) < 1 for at least one t ∈ Sd, i.e.,
some tails are asymptotically dependent (see Guillou et al. (2018) for details).
Specifically, A is the Pickands dependence function and Sd is the d-dimensional
unit simplex (see, e.g., (Falk et al., 2011, Ch. 4)). Under the null hypothesis,
the asymptotic distribution of th test statistic is known and can be used to
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provide evidence against the null hypothesis. The quantiles of this distribu-
tion are reported in Table 1 of Guillou et al. (2018). We have applied this
hypothesis test to the annual summer maxima of (O3, NO2, NO, PM10) and
annual winter maxima of (SO2, NO2, NO, PM10) and we have obtained the
following observed values of the test statistics 1.881 and 2.034, respectively.
Because the 0.95- and 0.99-quantiles of the distribution of S are 1.480 and
1.740, respectively (see dimension four of Table 1 in Guillou et al. (2018)) we
conclude that we reject the hypothesis of the tails’ independence and then
the assumption of tail dependence is reasonable and we can carry on with our
approach for estimating tail probabilities.

Table 4.4 reports 7 possible combinations of the thresholds listed in Ta-
ble 4.3. In summer, with O3 approximately 40% of observations exceed the
Limit threshold (120 µg/m3). Similarly, in winter, with NO approximately
78% and 32% of the observations exceed the Limit and Alert thresholds (200
and 400 µg/m3). Also, with PM approximately 59% of the observations ex-
ceed the Limit threshold (50 µg/m3). Therefore, these thresholds can not be
considered extreme values. On the other hand, all the remaining thresholds
can be considered extreme values, since only a few observations exceed such
pollutants concentrations. In particular, with NO we found that an extreme
concentration is 800 µg/m3, i.e. 2 times the Alert threshold. We estimate the
probability of joint exceedances.

We use our approach to estimate the probabilities of joint exceedances that
are concerning extreme thresholds. For this purpose, first we estimate for each
pollutant the probability, say p0, of being below an extreme threshold, say y.
We do this using the piecing together approach (Falk et al., 2011, Chapter
2.7). In short, we find a high-threshold, say s, with which we can use the
survival function of the univariate GPD to approximate the exceeding proba-
bility of y, given that the latter is greater than s. We multiply an estimate of
such a probability for the probability of exceeding s (which we estimate by the
empirical survival function) obtaining an estimate for the unconditional prob-
ability of exceeding y (which allows to estimate the unconditional probability
of being below than y). The threshold s is selected through the commonly
used exploratory graphical methods that are described in (Coles, 2001, Chap-
ters 4.3.1, 4.3.4). The parameters of the generalized Pareto distribution are
estimated using the maximum likelihood method (Coles, 2001, Chapter 4.3.2).

Estimates of the variances for the parameters estimates are obtained using
the asymptotic variance, see Smith (1984). An estimate of the variance for
the estimate of the probability x0 is obtained using the delta method (Van der
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Vaart, 2000, Chapter 3).
Table 4.5 shows the estimation results. Specifically, the column named

Threshold reports the extreme thresholds of the scenarios in Table 4.4 with
small percentages of exceedances. s indicates the threshold used for estimating
the univariate GPD parameters. NE is the number of exceedances of s and
EEP is the relative empirical exceedance probability (in percentage format).
The values σ̂ and ξ̂ are the estimates of the scale and shape parameters of
the univariate GPD, see equation (4.6). The value p̂0 is an estimate of the
unconditional probability (in percentage) to be below the extreme threshold
reported in the third column (from the left). The standard errors are reported
in parentheses. The variance of EEP is obtained using the fact that NE follows
a binomial distribution with unknown exceedance probability (estimated by
EEP) and sample size n (see Table 4.4).

Once the extreme thresholds were transformed to values in (0,1), we apply
the estimation method introduced in Section 4.4 for estimating the probabil-
ities of their exceedances on the copula level, using the empirical copula of
the data. Estimation of joint exceedance probabilities on the copula level can
be based on on the transformation of the margins if their df are known. It
was, however, shown in Bücher (2012) that it is more efficient if the additional
knowledge of the margins is ignored and estimators are based on ranks, i.e., if
the empirical copula of the initial data is used.

Table 4.6 reports, in the column labeled by q̂n, the estimates of exceedances
probabilities (in percentage) for the scenarios listed in Table 4.4. The lower
and upper bounds of their 95% confidence interval are reported in the columns
LB-CI and UB-CI, respectively. The factors t0 are given in percentage format
as well. Furthermore, estimates for some combinations of three and two ex-
treme thresholds are also reported. The lines highlighted in grey concern the
higher estimated probabilities. Scenarios 1 and 4 are not considered because
the thresholds for O3 (in summer) and NO2 and NO (in winter) are not ex-
treme. However, upper bounds for those probabilities are given by the results
listed in the second and twentieth line. Some interpretations are as follows.
In summer, we expect that the Information and Limit thresholds for O3 and
PM10, respectively, are simultaneously exceeded on average approximately be-
tween two and four times every three years (with the latter that also means
once per year). In winter, we expect that the Limit, 2 times the Alert and
the Alert thresholds for NO2, NO and PM10, respectively, are simultaneously
exceeded on average approximately between once every two years and once
per year. Finally, we expect that 2 times the Alert and the Alert thresh-
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olds for NO2 and NO, respectively, are simultaneously exceeded on average
approximately between once and twice per year. Although joint thresholds
exceedances do not happen very often, they should not happen at all since the
involved thresholds mean indeed very extreme pollution concentrations.

To conclude this chapter, we want to briefly recall what we did: in the
setup of a Generalized Pareto model, we were able to derive an estimator for
the exceedance probability over some threshold and to justify that the model
assumptions hold. Comparing our new approach to some existing ones, we
found that our estimator outperforms the competitors when the dependence
in the data is not too high and still does well when the dependence increases.
Finally, we applied our procedure to air pollution data in Milan, Italy. As the
pollution levels were higher in winter than in the summer, we analyzed the
two seasons separately. We found that some of the supposedly problematic
levels, specifically those for ozone in the summer and NO in the winter, are
not actually extreme thresholds, i.e., are exceeded quite often. Even joint
exceedances of multiple pollutants at the same time are not quite as uncommon
as one might hope.
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θ d Threshold TEP n AEPE SD Bias

1.80 2 (0.99, 0.99) 0.208 1500 0.250 0.072 0.042
2000 0.242 0.067 0.035

2.54 3 (0.99, 0.99, 0.995) 0.106 1500 0.126 0.038 0.019
2000 0.127 0.034 0.021

3.24 4 (0.99, 0.99, 0.995, 0.999) 0.033 1500 0.037 0.013 0.004
2000 0.037 0.012 0.004

3.91 5 (0.99, 0.99, 0.995, 0.999, 0.9995) 0.012 1500 0.016 0.009 0.003
2000 0.015 0.007 0.002

1.50 2 (0.99, 0.99) 0.502 1500 0.550 0.084 0.048
2000 0.541 0.084 0.039

1.90 3 (0.99, 0.99, 0.995) 0.293 1500 0.316 0.054 0.023
2000 0.324 0.050 0.031

2.25 4 (0.99, 0.99, 0.995, 0.999) 0.080 1500 0.083 0.019 0.003
2000 0.082 0.017 0.002

2.57 5 (0.99, 0.99, 0.995, 0.999, 0.9995) 0.033 1500 0.035 0.012 0.002
2000 0.034 0.008 0.001

1.20 2 (0.99, 0.99) 0.801 1500 0.838 0.073 0.037
2000 0.830 0.070 0.029

1.34 3 (0.99, 0.99, 0.995) 0.475 1500 0.477 0.041 0.003
2000 0.490 0.030 0.016

1.44 4 (0.99, 0.99, 0.995, 0.999) 0.100 1500 0.101 0.014 0.001
2000 0.100 0.013 0.000

1.53 5 (0.99, 0.99, 0.995, 0.999, 0.9995) 0.048 1500 0.048 0.010 0.000
2000 0.049 0.010 0.001

Table 4.1: Performance of the nonparametric estimator (4.13) for the estimation
of the joint tail probabilities based on Gumbel-Hougaard family of copulas.
Results (fourth, sixth–eighth column) are given in percentage format. TEP
is the true exceedance probability over the given threshold. AEPE, SD and
Bias are the average over the exceedance probability estimates together with
standard deviation and bias over 1000 iterations.
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θ Threshold TEP EM AEPE SD Bias

4.92 (0.95,0.95,0.95,0.95,0.95) 0.031 KJ2 0.331 0.195 0.300
KJ3 0.349 0.188 0.318
GPC 0.072 0.046 0.041

3.00 1.594 KJ2 2.398 0.573 0.803
KJ3 2.443 0.584 0.849
GPC 1.790 0.434 0.196

1.11 3.662 KJ2 3.967 0.671 0.305
KJ3 4.032 0.650 0.371
GPC 3.880 0.497 0.218

4.92 (0.99,0.99,0.99,0.99,0.99) 0.006 KJ2 0.028 0.035 0.022
KJ3 0.032 0.035 0.027
GPC 0.014 0.009 0.008

3.00 0.310 KJ1 0.474 0.162 0.164
KJ2 0.435 0.152 0.125
GPC 0.359 0.096 0.048

1.11 0.727 KJ1 0.789 0.174 0.062
KJ2 0.751 0.172 0.024
GPC 0.770 0.111 0.044

4.92 (0.995,0.995,0.995,0.995,0.995) 0.003 KJ2 0.012 0.018 0.009
KJ3 0.014 0.017 0.011
GPC 0.007 0.007 0.004

3.00 0.155 KJ1 0.235 0.086 0.080
KJ2 0.214 0.081 0.059
GPC 0.183 0.044 0.028

1.11 0.363 KJ1 0.398 0.094 0.035
KJ2 0.379 0.093 0.016
GPC 0.393 0.063 0.030

4.92 (0.999,0.999,0.999,0.999,0.999) 0.001 KJ2 0.002 0.003 0.001
KJ3 0.002 0.004 0.002
GPC 0.001 0.001 0.001

3.00 0.031 KJ1 0.045 0.019 0.014
KJ2 0.041 0.019 0.010
GPC 0.036 0.010 0.005

1.11 0.073 KJ1 0.077 0.022 0.004
KJ2 0.073 0.021 0.001
GPC 0.078 0.011 0.005

Table 4.2: Comparison of our nonparametric estimator with other competitors.
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Pollutant Threshold Period Value in µg/m3 Recommendation

O3 Limit Daily 120 no more than
max 25 exceedances

per year
Information 180

Alert 240

NO2 Limit 1-hour 200 no more than
mean 18 exceedances

per year
Alert 400

SO2 Limit 24-hour 125 no more than
mean 3 exceedances

per year

PM10 Limit 24-hour 50 no more than
mean 35 exceedances

per year
Target 150

Table 4.3: Pollutant concentrations (thresholds) that should not be exceeded
according the European emission regulation for air quality standard.
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Scenario Pollutant JEEP

Summer (n = 1655) O3 NO2 NO PM10

1 Threshold 120 200 200 50 0

MEEP 40.181 0 2.961 3.444

2 Threshold 180 200 200 50 0

MEEP 3.263 0 2.961 3.444

3 Threshold 240 400 400 150 0

MEEP 0 0 0 0

Pollutant

Winter (n = 1713) SO2 NO2 NO PM10

4 Threshold 125 200 200 50 0.0584

MEEP 0.350 1.459 78.167 58.785

5 Threshold 125 200 400 150 0.0584

MEEP 0.350 1.459 32.399 1.926

6 Threshold 125 200 800 150 0.0584

MEEP 0.350 1.459 3.853 1.926

7 Threshold 125 400 800 150 0

MEEP 0.350 0 3.853 1.926

Table 4.4: Marginal and joint empirical probability of threshold exceedances for
different combinations of thresholds. The first 3 scenarios concern the summer
season (with n = 1655 observations) and the last four (with n = 1713 obser-
vations) the winter season. For each scenario the Joint Empirical Exceedance
Probability (JEEP) and for each individual pollutant the Marginal Empirical
Exceedance Probability (MEEP) over the given threshold is reported (in per-
centage format).
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P
ol
lu
ta
n
t

T
h
re
sh
ol
d GPD Estimates

s NE EEP σ̂ ξ̂ p̂0

S
u
m
m
er

O3 180 150 226 13.656 21.860 -0.114 96.93 0
(0.844) (1.936) (0.058) (0.804)

240 99.947
(0.091)

NO2 200 96 136 8.218 14.870 0.067 99.973
(0.675) (1.862) (0.091) (0.048)

400 99.999
(0.0001)

NO 200 150 176 10.634 36.401 0.047 97.191
(0.758) (3.970) (0.079) (0.822)

400 99.972
(0.048)

PM10 50 47 89 5.378 6.387 0.041 96.623
(0.554) (0.977) (0.110) (2.391)

150 99.999
(0.0002)

W
in
te
r

SO2 125 40 233 13.602 24.131 -0.026 99.662
(0.843) (2.206) (0.064) (0.258)

NO2 200 130 240 14.011 24.376 0.192 98.576
(0.853) (0.077) (0.517)

400 99.963
(0.046)

NO 800 600 206 12.026 195.61 -0.029 95.741
(0.800) (18.991) (0.068) (0.978)

PM10 150 100 238 13.894 28.222 -0.023 97.722
(0.850) (2.558) (0.063) (0.684)

Table 4.5: Estimate of the GPD parameters and the unconditional probability
that the amount of the pollutant is below the individual extreme threshold. s
is the threshold used for estimating the univariate GPD parameters, NE the
number of exceedances of s and EEP is the relative empirical exceedance prob-
ability (in percentage format). σ̂ and ξ̂ are the estimates of the scale and shape
parameters of the univariate GPD, see equation (4.6). p̂0 is an estimate of the
unconditional probability (in percentage) to be below the respective extreme
threshold reported. The standard errors are reported in parentheses.
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Scn. (O3, NO2, NO, PM10) t0 p̂n q̂n LB-CI UB-CI

2 (180, 200, 200, 50) 4.6606 0.6042 0.0282 0.0135 0.0517
( , 200, 200, 50) 3.3894 0.8459 0.0287 0.0157 0.0480
(180, , 200, 50) 44.561 0.4834 0.2154 0.0931 0.4234
(180, 200, , 50) 4.7789 0.5438 0.0260 0.0119 0.0492
(180, 200, 200, ) 3.3901 0.7855 0.0266 0.0142 0.0454
(180, 200, , ) 4.0065 0.6647 0.0266 0.0133 0.0475
(180, , 200, ) 39.4044 0.7251 0.2857 0.1478 0.4977
(180, , , 50) 26.1881 3.6858 0.9652 0.7413 1.2334
( , 200, 200, ) 2.9383 0.9063 0.0266 0.0149 0.0438
( , 200, , 50) 3.3901 0.7855 0.0266 0.0142 0.0454
( , , 200, 50) 37.2618 1.5710 0.5854 0.3833 0.8546

3 (240, 400, 400, 150) 0.3435 0 0 0 0.0008

Scn. (SO2, NO2, NO, PM10) t0 p̂n q̂n LB-CI UB-CI

5 (125, 200, 400, 150) 76.2093 0.1751 0.1335 0.0275 0.3894
6 (125, 200, 800, 150) 7.6186 1.5178 0.1156 0.0757 0.1688

( , 200, 800, 150) 51.3463 1.3427 0.6894 0.4380 1.0310
(125, , 800, 150) 24.0850 0.7589 0.1828 0.0975 0.3117
(125, 200, , 150) 22.0570 0.5838 0.1288 0.0618 0.2362
(125, 200, 800, ) 38.6023 0.3503 0.1352 0.0497 0.2937
(125, 200, , ) 7.3745 1.9848 0.1464 0.1016 0.2037
(125, , 800, ) 4.2888 7.8809 0.3380 0.2852 0.3971
(125, , , 150) 7.0823 2.7437 0.1943 0.1433 0.2572
( , 200, 800, ) 4.2635 33.3917 1.4236 1.3285 1.5213
( , 200, , 150) 14.5064 5.5458 0.8045 0.6542 0.9773
( , , 800, 150) 22.4274 5.6042 1.2569 1.0233 1.5253

7 (125, 400, 800, 150) 4.8869 0.1751 0.0086 0.0018 0.0250

Table 4.6: The probability estimates of joint exceedances of extreme thresholds
for the scenarios listed in Table 4.4 are in the column labeled q̂n. Estimates
for some combinations of three and two extreme thresholds are also reported.
The columns LB-CI and UB-CI are the lower and upper bounds of their 95%
confidence intervals, respectively. The selected factors t0 and the intermediate
probabilities p0 are included as well. Results are given in percentage format.



74 CHAPTER 4. GENERALIZED PARETO DISTRIBUTIONS



Chapter 5

Miscellaneous results

5.1 Derivatives of D-norms

An elementary concept of calculus is the derivative of a univariate function
f : R ↦→ R at some point x, defined by the limit f ′(x) := limh→0

f(x+h)−f(x)
h

if it exists. One way to generalize this to scalar functions f : Rd ↦→ R is to
consider the derivative in some direction y ∈ Rd as

∂

∂y
f(x) := lim

ε→0

f(x+ εy)− f(x)

ε

if the limit exits at the point x. A special case of these directional derivatives
are the partial derivatives where y = ei is a unit vector and we use the
shorthand ∂

∂i
f(x) = ∂

∂ei
f(x) for that. Note that y = 0 is not excluded in the

definition, but in this case we have trivially ∂
∂0
f(x) = 0.

Sometimes, the limit does not exist but its one-sided counterpart does. We
denote these one-sided directional derivatves as

∂+

∂y
f(x) := lim

ε↓0

f(x+ εy)− f(x)

ε

or
∂−

∂y
f(x) := lim

ε↑0

f(x+ εy)− f(x)

ε
= lim

ε↓0

f(x)− f(x− εy)

ε

respectively. Obviously, the directional derivative exists if both one-sided
derivatives exist and have the same value.

75
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Remark 5.1. The derivatives of D-norms have already been considered in
the literature. As an example, Einmahl et al. (2012) uses them in terms of
the stable tail dependence function and noted that the one-sided partial deriva-
tives always exist. Aulbach et al. (2015) addressed the topic for functional
D-norms. However, they all just use the fact that a norm is convex, hence dif-
ferentiable almost everywhere and formulate their results for the points where
differentiability holds. We will give a condition that ensures the existence of
the derivative for a specific point and direction and work out a representation
from there.

We define the (random) set

MX :=

{︃
i

⃓⃓⃓⃓
Xi = max

1≤j≤d
Xj

}︃
of indices of a maximal component of some d-variate rv X and put

MX := minMX .

So MX is the (random) minimal element of MX ; note that MX cannot be
empty because there always is a maximal component. In general, we have
{MX = i} ⊆ {max1≤j≤dXj = Xi} for all i = 1, . . . , d. Equality holds if the
maximal components are unique and equality holds almost surely if the unique-
ness holds almost surely.

While being somewhat more complicated, this construction has an ad-
vantage: the sets {MX = i} for i = 1, . . . , d are a partition of Ω. The sets
{max1≤j≤dXj = Xi}, i = 1, . . . , d, on the other hand are not disjoint in gen-
eral. This partitioning is used in the following lemma:

Lemma 5.2. Consider x,y ∈ Rd and a d-variate rv Z with finite expectation.
Then we have for ε > 0

E

(︃
max
1≤j≤d

(x+ εy)jZj

)︃
− E

(︃
max
1≤j≤d

(xjZj)

)︃
= ε

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
+ o(ε)

if P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
→ε↓0 0 for i, k = 1, . . . , d with k ̸= i.

Proof. We have for ε > 0

E

(︃
max
1≤j≤d

(x+ εy)jZj

)︃
− E

(︃
max
1≤j≤d

(xjZj)

)︃
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= E

(︃
max
1≤j≤d

(x+ εy)jZj − max
1≤j≤d

(xjZj)

)︃
= E

(︄(︃
max
1≤j≤d

(x+ εy)jZj − max
1≤j≤d

(xjZj)

)︃ d∑︂
i=1

1{MxZ=i}

d∑︂
k=1

1{M(x+εy)Z=k}

)︄

=
d∑︂

i=1

d∑︂
k=1

E

(︃(︃
max
1≤j≤d

(x+ εy)jZj − max
1≤j≤d

(xjZj)

)︃
1{MxZ=i,M(x+εy)Z=k}

)︃

=
d∑︂

i=1

d∑︂
k=1

E
(︂
(xk + εyk)Zk − xiZi) 1{MxZ=i,M(x+εy)Z=k}

)︂
= ε

d∑︂
i=1

E
(︂
yiZi1{MxZ=i,M(x+εy)Z=i}

)︂
+ ε

d∑︂
i=1

d∑︂
k=1
k ̸=i

E
(︂
ykZk1{MxZ=i,M(x+εy)Z=k}

)︂

+
d∑︂

i=1

d∑︂
k=1
k ̸=i

E
(︂
(xkZk − xiZi) 1{MxZ=i,M(x+εy)Z=k}

)︂

= ε
d∑︂

i=1

yiE
(︁
Zi1{MxZ=i}

)︁
+ o(ε)

under the condition on the sets
{︁
MxZ = i, M(x+εy)Z = k

}︁
. To see this, we

compute

ε
d∑︂

i=1

E
(︂
yiZi1{MxZ=i,M(x+εy)Z=i}

)︂

= ε

d∑︂
i=1

E

⎛⎜⎝yiZi

⎛⎜⎝1{MxZ=i} −
d∑︂

k=1
k ̸=i

1{MxZ=i,M(x+εy)Z=k}

⎞⎟⎠
⎞⎟⎠

= ε
d∑︂

i=1

E
(︁
yiZi1{MxZ=i}

)︁
− ε

d∑︂
i=1

d∑︂
k=1
k ̸=i

E
(︂
yiZi1{MxZ=i,M(x+εy)Z=k}

)︂
.
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and observe that{︁
MxZ = i, M(x+εy)Z = k

}︁
⊆ {xiZi ≥ xkZk, (xk + εyk)Zk ≥ (xi + εyi)Zi}
= {0 ≥ xkZk − xiZi ≥ εyiZi − εykZk}.

Therefore, we have for the error term

2ε
d∑︂

i=1

d∑︂
k=1
k ̸=i

E
(︂
(ykZk − yiZi) 1{MxZ=i,M(x+εy)Z=k}

)︂
= o(ε)

by the dominated convergence theorem because Z has finite expectation and
the condition

P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
→ε↓0 0

implies that ((ykZk − yiZi) 1{MxZ=i,M(x+εy)Z=k} converges to 0 in probability

as ε converges to zero. Note that it already is equal to 0 if both yi and yk are
0.

Remark 5.3. If we have P (xiZi = xkZk) = 0 for fixed x ∈ Rd and some
i, k ∈ {1, . . . , d} with k ̸= i, then the condition

P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
→ε→0 0

is fulfilled for all y ∈ Rd. This can be seen as follows:

P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
≤ P

(︄
d⋂︂

j=1

{xiZi ≥ xjZj} ∩
d⋂︂

j=1

{xkZk + εykZk ≥ xjZj + εyjZj}

)︄
≤ P ({xiZi ≥ xkZk} ∩ {xkZk + εykZk ≥ xiZi + εyiZi})
= P ({ε(ykZk − yiZi) ≥ xiZi − xkZk ≥ 0})

= P

(︃{︃
ε ≥ xiZi − xkZk

ykZk − yiZi

≥ 0, ykZk ̸= yiZi

}︃)︃
+ P (ε · 0 ≥ xiZi − xkZk ≥ 0, ykZk = yiZi)

→ε→0 P

(︃{︃
0 ≥ xiZi − xkZk

ykZk − yiZi

≥ 0, ykZk ̸= yiZi

}︃)︃
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+ P (xiZi − xkZk = 0, ykZk = yiZi)

≤ P (xiZi = xkZk) = 0

In particular, if Z1, . . . , Zd are pairwise independent rvs with continuous dis-
tributions, this is true for arbitrary x > 0 or even x ∈ Rd where at most one
component xi is equal to zero.

Examples where the condition does not hold will be considered after we
apply the result to D-norms:

Lemma 5.4. Let Z = (Z1, . . . , Zd) be a generator of the (d-variate) D-norm
∥·∥D. The one-sided directional derivatives are for x > 0 ∈ Rd and y ∈ Rd

∂+

∂y
∥x∥D =

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
,

if P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
→ε↓0 0 for i, k = 1, . . . , d with k ̸= i.

Proof. We have ∥x∥D = E (max1≤i≤d |xi|Zi) = E (max1≤i≤d xiZi) because x >
0 ∈ Rd and, for small enough ε > 0,

∥x+ εy∥D = E

(︃
max
1≤i≤d

|xi + εyi|Zi

)︃
= E

(︃
max
1≤i≤d

(xi + εyi)Zi

)︃
holds as well. As a consequence, we can apply the previous lemma to obtain
for small enough ε > 0

∥x+ εy∥D − ∥x∥D
ε

=
E (max1≤j≤d(xj + εyj)Zj)− E (max1≤j≤d(xjZj))

ε

→ε↓0

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
as the one-sided limit.

If we make the condition a bit stronger by requiring the limit of zero not
only for ε ↓ 0 but for ε→ 0, we get the result for directional derivatives:

Lemma 5.5. Let Z = (Z1, . . . , Zd) be a generator of the (d-variate) D-norm
∥·∥D. Then the directional derivatives are for x > 0 ∈ Rd and y ∈ Rd

∂

∂y
∥x∥D =

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
,

if P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
→ε→0 0 for i, k = 1, . . . , d with k ̸= i.
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Proof. We already know that ∂+

∂y
∥x∥D =

∑︁d
i=1 yiE

(︁
Zi1{MxZ=i}

)︁
. For ε < 0,

we can switch to ε̃ := −ε and ỹ := −y to compute

∥x+ εy∥D − ∥x∥D
ε

= −∥x+ ε̃ỹ∥D − ∥x∥D
ε̃

→ε↓0 −
d∑︂

i=1

yĩE
(︁
Zi1{MxZ=i}

)︁
=

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
.

So both one-sided limits are the same, hence this is the directional derivative
at x.

Remark 5.6. Note that the derivatives do not depend on the scale of x as we
have McxZ =MxZ for c > 0. Therefore, the expectation does not change. We
do not have a problem with the condition either because

P
(︁{︁
McxZ = i, M(cx+εy)Z = k

}︁)︁
= P

(︂{︂
MxZ = i, Mc(x+ ε

c
y)Z = k

}︂)︂
= P

(︁{︁
MxZ = i, M(x+ε̃y)Z = k

}︁)︁
and ε̃ := ε/c → 0 iff ε → 0. The same considerations apply to the one-sided
derivatives.

In the next examples we use our result to compute some derivatives of D-
norms, but also take a closer look at the meaning of the additional condition
and its relation to the differentiability of the norm.

Example 5.7. We first look at ∥·∥∞ with constant generator Z = 1 ∈ Rd

and some x > 0. Recall that Mx is the (deterministic) index-set of the
maximal components of x and m :=Mx is the minimum of those indices. Let
ym+ := maxi∈Mx yi and ym− := mini∈Mx yi be the maximal and minimal of
those components of y that correspond to the maximal entries of x.

Now there are two cases to consider: if ym− = ym+ , then ym = yi for all
i ∈ Mx. We have MxZ = Mx = m and, for |ε| small enough, Mx+εy = m as
well. Therefore P

(︁{︁
MxZ = i, M(x+εy)Z = j

}︁)︁
= 0 for i ̸= j, the condition of

Lemma 5.5 is fulfilled and it turns out that

∂

∂y
∥x∥∞ = ym

as E
(︁
Zi1{MxZ=i}

)︁
= 0 for i ̸= m and only E

(︁
Zi1{MxZ=m}

)︁
= E(1 · 1) = 1.

Note that we are trivially in this case if the maximal component of x is unique.
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On the other hand, we could have ym− < ym+ . As before, Mx = m, yet
Mx+εy = m+ for ε > 0 and Mx+εy = m− for ε < 0 with small enough |ε|. But
this means that the condition of Lemma 5.5 is violated for at least one of the
pairs i = m, j = m+ or i = m, j = m− as m+ ̸= m−. We can check directly
that ∥·∥∞ is not differentiable in direction y in this case:

lim
ε↓0

∥x+ εy∥∞ − ∥x∥∞
ε

= lim
ε↓0

(xm+ + εym+)− xm
ε

= lim
ε↓0

εym+

ε
= ym+

and

lim
ε↓0

∥x∥∞ − ∥x− εy∥∞
ε

= lim
ε↓0

xm − (xm− − εym−)

ε
= lim

ε↓0

εym−

ε
= ym−

but ym+ ̸= ym− . So the points of non-differentiability correspond perfectly to
the violation of our condition.

This is no longer true if we consider the one-sided directional derivatives: by
the considerations above, they exist in all points x > 0 and directions y, but if
ym+ > ym, the one-sided condition is still violated. Even more, ∂+

∂y
∥x∥∞ = ym+

and if Lemma 5.4 were applicable, its result would be ∂+

∂y
∥x∥∞ = ym ̸= ym+ .

Therefore it is not just a case where the condition is unnecessarily strong, but
the result is slightly different as well.

For our specific example, an idea to fix that might be to factor in the
direction y to pick Mx = MxZ instead of just picking the minimum entry of
Mx. If we hadMx = m+, everything would work out. But it is highly unclear,
how exactly and whether at all this would work for non-trival cases of other
D-norms with non-constant generators.

Example 5.8. Now we want to investigate an instance where the condition of
Lemma 5.5 is violated by a non-constant generator. Consider a rvZ = (Z1, Z2)
with P (Z1 = 1

2
) = 1

2
= P (Z1 = 3

2
) and Z2 = 2 − Z1. Then Z generates the

D-norm where we have for x > 0 ∈ R2

∥x∥D = E (max {x1Z1, x2Z2})

=
1

2

(︃
max

{︃
x1
2
,
3x2
2

}︃
+max

{︃
3x1
2
,
x2
2

}︃)︃
=

1

8
(x1 + 3x2 + |x1 − 3x2|+ 3x1 + x2 + |3x1 − x2|)

=
x1 + x2

2
+

|x1 − 3x2|+ |3x1 − x2|
8

.
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This is not differentiable for all x > 0. Specifically, if x1 = 3x2, then the part

|(x1 + εy1)− 3(x2 + εy2)|
ε

=
|εy1 − 3εy2|

ε
=

|ε|
ε

|y1 − 3y2|

leads to different limits for ε ↓ 0 and ε ↑ 0 unless y1 = 3y2. For the remaining
parts, left- and right-sided limits coincide. Hence, at these points x, the norm
is only differentiable in direction y = (3, 1)T c for any factor c ∈ R.
The same arguments applied to |3x1 − x2| lead to the conclusion that for
3x1 = x2, it is only differentiable in direction y = (1, 3)T c with c ∈ R. But in
all other points x, it is differentiable in arbitrary direction y.
These critical combinations are precisely the ones where the condition of
Lemma 5.5 is violated: for x1 = 3x2 and ε > 0 we have

P
(︁{︁
MxZ = 1, M(x+εy)Z = 2

}︁)︁
= P

(︃{︃
MxZ = 1, M(x+εy)Z = 2, Z1 =

1

2

}︃)︃
+ P

(︃{︃
MxZ = 1, M(x+εy)Z = 2, Z1 =

3

2

}︃)︃
= P

(︃{︃
3x2
2

+
3

2
εy2 >

x1
2

+
1

2
εy1, Z1 =

1

2

}︃)︃
+ P

(︃{︃
x2
2

+
1

2
εy2 >

3x1
2

+
3

2
εy1, Z1 =

3

2

}︃)︃
= P

(︃{︃
3y2 > y1, Z1 =

1

2

}︃)︃
=

{︄
1
2

if 3y2 > y1

0 otherwise

and similarly

P
(︁{︁
MxZ = 1, M(x+εy)Z = 2

}︁)︁
=

{︄
1
2

if 3y2 < y1

0 otherwise

for ε < 0. Therefore, the lemma is applicable only for y1 = 3y2 and this is
the only direction of differentiability. The analogous result can be deduced
for 3x1 = x2. For all other x > 0, we have differentiability in all direc-
tions according to remark 5.3 as P (x1Z1 = x2Z2) = P

(︁
x1 = 3x2, Z1 =

1
2

)︁
+

P
(︁
3x1 = x2, Z1 =

3
2

)︁
= 0 in those cases.

So the points where our condition is violated correspond exactly to the
points of non-differentiability again. The question whether this is always the
case, however, requires further work.
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Finally we come to the other p-norms, where the condition is always ful-
filled:

Example 5.9. The case p = 1 is very easy: we know that a generator Z
of ∥·∥1 is given by the random permutation of (d, 0, . . . , 0)T ∈ Rd. In this
case we have {MxZ = i} = {Zi = d, Zj = 0, j ̸= i} for x > 0. Therefore,
P
(︁{︁
MxZ = i, M(x+εy)Z = k

}︁)︁
= 0 for i, k = 1, . . . , d with k ̸= i, arbitrary

y ∈ Rd and |ε| small enough and we can apply our lemma to derive

∂

∂y
∥x∥1 =

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
=

d∑︂
i=1

yiE
(︁
Zi1{Zi=d}

)︁
=

d∑︂
i=1

yi.

For p ∈ (1,∞) we have seen in Section 1.2 that each logistic norm ∥x∥p =(︂∑︁d
i=1 |xi|

p
)︂1/p

, can be obtained from the generator Z = (Z1, . . . , Zd) =

(Y1, . . . , Yd)/Γ(1 − 1/p), where Y
1/p
1 , . . . , Y

1/p
d are iid Fréchet-distributed rvs.

Remark 5.3 shows that the condition of Lemma 5.5 is always fulfilled, hence
the directional derivatives exist for all points x > 0 and arbitrary direction.

For the actual computation, we want to evaluate the expectation using the
joint density of Y . As the components Yi are independent, this is the product
density

fY (y) =
d∏︂

i=1

fYi
(yi) =

d∏︂
i=1

[︃
1

y2i
exp

(︃
− 1

yi

)︃]︃
, y > 0 ∈ Rd.

We have {MxZ = 1} = {x1Z1 ≥ xjZj, 2 ≤ j ≤ d} almost surely because the
distributions are continuous, too. Specifically, the df of each Yi is FYi

(yi) =
exp(−1/yi) for yi > 0, therefore

∫︁ z

0
fYi

(yi) dyi = exp(−1/z) for z > 0. These
observations allow us to compute

E
(︁
Z1 1{MxZ=1}

)︁
· Γ(1− 1/p)

= E
(︁
Z1 1{x1Z1≥xjZj , 2≤j≤d}

)︁
· Γ(1− 1/p)

= E

(︃
Y

1/p
1 1{︂

x1Y
1/p
1 ≥xjY

1/p
j , 2≤j≤d

}︂)︃
= E

(︄
Y

1/p
1 1{︃(︃

x1
xj

)︃p

Yi≥Yj , 2≤j≤d

}︃
)︄

=

∫︂ ∞

0

∫︂ (︂
x1
x2

)︂p
y1

0

· · ·
∫︂ (︂

x1
xd

)︂p
y1

0

y
1/p
1

d∏︂
i=1

[︃
1

y2i
exp

(︃
− 1

yi

)︃]︃
dyd . . . dy1
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=

∫︂ ∞

0

y
1/p
1

1

y21
exp

(︃
− 1

y1

)︃ d∏︂
i=2

⎡⎣∫︂ (︃
x1
xj

)︃p

y1

0

1

y2i
exp

(︃
− 1

yi

)︃
dyi

⎤⎦ dy1

=

∫︂ ∞

0

y
1/p−2
1 exp

(︃
− 1

y1

)︃ d∏︂
i=2

exp

(︃
−

xpj
xp1 y1

)︃
dy1

=

∫︂ ∞

0

y
1/p−2
1 exp

(︄
−

d∑︂
j=1

xpj
xp1 y1

)︄
dy1

=

∫︂ ∞

0

(︄
d∑︂

j=1

xpj
xp1

1

y1

)︄ 1
p
−2

exp (−y1)

(︄
d∑︂

j=1

xpj
xp1

)︄
· 1

y21
dy1

=

(︄
d∑︂

j=1

xpj
xp1

)︄ 1
p
−1 ∫︂ ∞

0

y
−1/p
1 exp (−y1) dy1

where we used the substitution y1 ↦→
∑︁d

j=1

xp
j

xp
1

1
y1

in the second-to-last step.

Obviously, −1/p = (1− 1/p)− 1, so the integral evaluates to Γ(1− 1/p) and
our expectation is equal to the factor in front of the integral. That quantity
can be written a bit nicer as(︄

xp1∑︁d
j=1 x

p
j

)︄1− 1
p

=
xp−1
1(︂

∥x∥pp
)︂1−1/p

=

(︄
x1

∥x∥p

)︄p−1

.

Of course, the same holds for all the other expectations and the final answer
for our derivative at x > 0 in direction y ∈ Rd is

∂

∂y
∥x∥p =

d∑︂
i=1

yiE
(︁
Zi1{MxZ=i}

)︁
=

d∑︂
i=1

yi

(︄
xi

∥x∥p

)︄p−1

.

Example 5.10. The last thing we want to look at in this section is the dif-
ferentiation of convex combinations of D-norms. We know that that for two
D-norms ∥·∥D1

and ∥·∥D2
with generators Z(1) and Z(2) their convex combi-

nation
∥x∥λD1+(1−λ)D2

:= ∥x∥D1
+ (1− λ) ∥x∥D2

, λ ∈ [0, 1],

is a D-norm itself and can be generated, e.g., by Z(ξ) where ξ is a rv with
P (ξ = 1) = λ = 1 − P (ξ = 2) that randomly picks between the generators
Z(1) and Z(2) and is independent of the two, see Falk (2019, Section 1.4).
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The condition of Lemma 5.5 is fulfilled for x > 0 and y ∈ Rd, if it is
fulfilled for both D-norms separately because we have

P
(︁{︁
MxZ(ξ) = i, M(x+εy)Z(ξ) = k

}︁)︁
=

2∑︂
j=1

P
(︁{︁
MxZ(j) = i, M(x+εy)Z(j) = k, ξ = j

}︁)︁
=

2∑︂
j=1

P
(︁{︁
MxZ(j) = i, M(x+εy)Z(j) = k

}︁)︁
P ({ξ = j})

which converges to zero for ε→ 0 if both summands converge to zero.

If that is the case, then the directional derivative of the convex combination
turns out to be

∂

∂y
∥x∥λD1+(1−λ)D2

=
d∑︂

i=1

yiE
(︂
Zi1{MxZ(ξ)=i}

)︂
=

d∑︂
i=1

yiE
(︂
Zi1{MxZ(ξ)=i}

(︁
1(ξ=1) + 1(ξ=2)

)︁)︂
=

d∑︂
i=1

2∑︂
j=1

yiE
(︂
Zi1{MxZ(j)=i}1(ξ=j)

)︂
=

2∑︂
j=1

E
(︁
1(ξ=j)

)︁ d∑︂
i=1

yiE
(︂
Zi1{MxZ(j)=i}

)︂
=

2∑︂
j=1

P (ξ = j)
∂

∂y
∥x∥Dj

= λ
∂

∂y
∥x∥D1

+ (1− λ)
∂

∂y
∥x∥D2

where we used the independence of Z(1), Z(2) and ξ. The result is exactly the
convex combination of the two derivatives and the same holds for the one-sided
derivatives in Lemma 5.4.
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5.2 Multivariate Spacings

By the inclusion-exclusion-formula (see Billingsley (1995), p. 24, equation 2.9)
we have for arbitrary sets A, B =

⋂︁d
i=1Bi from the underlying sigma-algebra

P (A ∩B) = P (A)− P
(︂
A ∩B{

)︂
= P (A)− P

(︄
d⋃︂

i=1

A ∩B{
i

)︄

= P (A)−
∑︂

∅≠I⊆{1,...,d}

(−1)|I|−1P

(︄
A ∩

⋂︂
i∈I

B{
i

)︄

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︄
A ∩

⋂︂
i∈I

B{
i

)︄
.

This allows us to express the (joint) survival function S(x) = P (X > x) in
terms of the distribution function F (x) = P (X ≤ x) for a d-variate random
vector X and x ∈ Rd according to the following formula:

P (X > x) = 1− P

(︄
d⋃︂

i=1

{Xi ≤ xi}

)︄

= 1−
∑︂

∅≠I⊆{1,...,d}

(−1)|I|−1P

(︄⋂︂
i∈I

{Xi ≤ xi}

)︄

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︄⋂︂
i∈I

{Xi ≤ xi}

)︄
=

∑︂
I⊆{1,...,d}

(−1)|I|P (eIX ≤ eIx)

where the last equality holds by putting eI as the vector that has ones in the
entries specified by the set I, i.e., eI =

∑︁
i∈I ei, and entry-wise multiplication

of vectors. If the underlying distribution is continuous at all points xI := eIx,
then it does not matter whether we put the inequalities with or without the
equals.

In the univariate case, the stochastic behavior of the spacings Ui:n−Ui−1:n,
1 ≤ i ≤ n, with U0:n := 0, Un+1:n := 1, follows from the representation

(Ui:n)
n
i=1 =D

(︄∑︁i
j=1 ηj∑︁n+1
i=1 ηj

)︄n

i=1

,
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where the η1, . . . , ηn+1 are independent copies of a rv η that follows the stan-
dard exponential distribution, see Reiss (1989, Corollary 1.6.9). This gives
us

(Ui:n − Ui−1:n)
n+1
i=1 =D

(︄
ηi∑︁n+1
i=1 ηj

)︄n+1

i=1

and multiplication with n+ 1 yields

(n+ 1)(Ui:n − Ui−1:n)
n+1
i=1 =D

(︄
ηi∑︁n+1

i=1 ηj/(n+ 1)

)︄n

i=1

≈ (−ηi)n+1
i=1

by the law of large numbers. But what happens in the multivariate case?

For simplicity, we suppose that U (1),U (2), . . . are independent copies of a
random vector U that follows a d-variate GPC, i.e., there exists a D-norm
such that

P (U ≤ u) = 1− ∥1− u∥D
for all u ∈ [u0, 1]

d with some lower bound u0 < 1. As Um:n is defined as one
for m > n (in general: as the upper endpoint of the underlying distribution),
the final spacing Un+1:n −Un:n = 1−Un:n is no problem: for x ≥ 0 and large
enough n such that we can use the representation for P (U ≤ u) from above,
we have

P ((n+ 1) (1−Un:n) ≤ x) = P

(︃
Un:n ≥ 1− x

n+ 1

)︃
= P

(︃
Un:n > 1− x

n+ 1

)︃
=

∑︂
I⊆{1,...,d}

(−1)|I|P

(︄⋂︂
i∈I

{︃
Un:n,i ≤ 1− xi

n+ 1

}︃)︄

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︄⋂︂
i∈I

{︃
Un:n,i ≤ 1− xi

n+ 1

}︃
∩
⋂︂
i/∈I

{Un:n,i ≤ 1}

)︄

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︄
Un:n ≤ 1−

∑︂
i∈I

xi
n+ 1

ei

)︄
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=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︃
Un:n ≤ 1− xI

n+ 1

)︃

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︃
U ≤ 1− xI

n+ 1

)︃n

=
∑︂

I⊆{1,...,d}

(−1)|I|
(︃
1− ∥xI∥D

n+ 1

)︃n

→n→∞
∑︂

I⊆{1,...,d}

(−1)|I| exp (−∥xI∥D) . (5.1)

The first spacing U1:n − U0:n = U1:n is, in general, not related to the
D-norm. To see this, we compute in a similar way

P ((n+ 1)U1:n ≤ x) = P

(︃
U1:n ≤ x

n+ 1

)︃
= P

(︄
d⋂︂

i=1

{︃
U1:n,i ≤

x

n+ 1

}︃)︄

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︄⋂︂
i∈I

{︃
U1:n,i >

x

n+ 1

}︃)︄

=
∑︂

I⊆{1,...,d}

(−1)|I|P

(︃
U >

xI

n+ 1

)︃n

and as xI

n+1
̸≥ u0 for sufficiently large n (unless (u0)I = 0), it is clear that we

leave the upper tail where the dependence of our GPC is determined by the
D-norm.

To deduce a result for the second-to-last spacing, we unfortunately need
to limit ourselves to the bivariate case as the higher dimensions come with a
few problems. Therefore, we consider the sequence (U1, V1), (U1, V1), . . . of iid
copies of (U, V ) that follows a bivariate GPC as in the general case above and
have for x > 0 ∈ R2

H̄n(x1, x2) = P
(︂
Un:n −

x1
n
> Un−1:n, Vn:n −

x2
n
> Vn−1:n

)︂
=

∑︂
1≤i,j≤n

P
(︂
Un:n −

x1
n
> Un−1:n, Vn:n −

x2
n
> Vn−1:n, Ui = Un:n, Vj = Vn:n

)︂
=

∑︂
1≤i,j≤n

P
(︂
Ui −

x1
n
> Un−1:n, Vj −

x2
n
> Vn−1:n, Ui = Un:n, Vj = Vn:n

)︂
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=
∑︂

1≤i≤n

P
(︂
Ui −

x1
n
> Un−1:n, Vi −

x2
n
> Vn−1:n

)︂
+

∑︂
1≤i,j≤n

i ̸=j

P
(︂
Ui −

x1
n
> Un−1:n, Vj −

x2
n
> Vn−1:n

)︂

=
∑︂

1≤i≤n

P
(︂
U1 −

x1
n
> Un−1:n, V1 −

x2
n
> Vn−1:n

)︂
+

∑︂
1≤i,j≤n

i ̸=j

P
(︂
U1 −

x1
n
> Un−1:n, V2 −

x2
n
> Vn−1:n

)︂

= nP

(︃
U1 −

x1
n
> max

1<i≤n
Ui, V1 −

x2
n
> max

1<i≤n
Vi

)︃
+ n(n− 1)P

(︃
U1 −

x1
n
> U2, U1 −

x1
n
> max

2<i≤n
Ui,

V2 −
x2
n
> V1, V2 −

x2
n
> max

2<i≤n
Vi

)︃
=: nAn + n(n− 1)Bn

Our next steps are to figure out the behavior of An and Bn separately. For
both, we will write the probability as an integral, and split that up into a
part where our GPC model holds and a remainder term that turns out to be
asymptotically negligible.

Specifically, put Mn,k = n (max1≤j≤n−k Uj − 1, max1≤j≤n−k Vj − 1). Inde-
pendent of the value for k, we know that Mn,k →D η where η has the df
G(x̃) = exp(−∥x̃∥D) for x̃ ≤ 0. The D-norm is the one from the GPC.
As maxi<j≤n Uj and max1≤j≤n−i Uj are equal in distribution, conditioning on
Mn,1 = z yields

An = P

(︃
U1 >

(︃
max
1<i≤n

Ui − 1

)︃
+ 1 +

x1
n
, V1 >

(︃
max
1<i≤n

Vi − 1

)︃
+ 1 +

x2
n

)︃
=

∫︂
(−∞,0]×(−∞,0]

P
(︂
U >

z1
n

+ 1 +
x1
n
, V >

z2
n

+ 1 +
x2
n

)︂
(P ∗Mn,1) (dz)

=

∫︂
[−n,−x]

P

(︃
U >

z1 + x1
n

+ 1, V >
z2 + x2
n

+ 1

)︃
(P ∗Mn,1) (dz)

as Mn,1 always realizes in [−n,0] and the probability in the integral is zero if
z ≮ x. The remark after lemma 3.1.13 in Falk (2019) states that we have for
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large enough n such that z+x
n

+ 1 ∈ [u0,1] ⇐⇒ z + x ∈ [n(u0 − 1),0] ⇐⇒
z ∈ [n(u0 − 1)− x,−x] the identity

P

(︃
U >

z1 + x1
n

+ 1, V >
z2 + x2
n

+ 1

)︃
= ≀≀ 1− z + x

n
− 1 ≀≀D =

1

n
≀≀z +x ≀≀D

and therefore

nAn = n

∫︂
[n(u0−1)−x,−x]

≀≀ z + x

n
≀≀D (P ∗Mn,1) (dz) + nRn

=

∫︂
[n(u0−1)−x,−x]

≀≀ z + x ≀≀D (P ∗Mn,1) (dz) + nRn

→n→∞

∫︂
(−∞,−x]

≀≀ z + x ≀≀D (P ∗ η) (dz) = E
(︁
≀≀ η + x ≀≀D 1(η+x≤0)

)︁
if we can show that nRn →n→∞ 0. This is the case because⃓⃓⃓⃓∫︂

[−n,−x]\[n(u0−1)−x,−x]

P

(︃
U >

z1 + x1
n

+ 1, V >
z2 + x2
n

+ 1

)︃
(P ∗Mn,1) (dz)

⃓⃓⃓⃓
≤
∫︂
[−n,−x]\[n(u0−1)−x,−x]

1 (P ∗Mn,1) (dz)

= P (Mn,1 ∈ [−n,−x] \ [n(u0 − 1)− x,−x])

≤ P (Mn,1 ∈ [−n,0] \ [n(u0 − 1)− x,0])

≤ P

(︃
Mn,1

n
+ 1 ∈ [0,1] \ [u0 − x/n,1]

)︃
= P

(︃
max

1≤j≤n−1
Uj < u0,1 −

x1
n

or max
1≤j≤n−1

Vj < u0,1 −
x2
n

)︃
≤ P

(︃
max

1≤j≤n−1
Uj < u0,2

)︃
+ P

(︃
max

1≤j≤n−1
Vj < u0,1

)︃
≤ P (U < u0,1)

n−1 + P (V < u0,2)
n−1

≤ [u0,1]
n−1 + [u0,2]

n−1

and n · [u0,i]n−1 →n→∞ 0 for i = 1 and i = 2 as u0 < 1.
To find an expression for Bn, we will employ similar arguments, but have to

establish a certain conditional probability first. We use the fact that (U1, V1)
and (U2, V2) are independent to compute for u0,1 < a, u < 1 and u0,2 < b, v < 1
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P (U2 ≤ a, V1 ≤ b | U1 = u, V2 = v)

= lim
ε↓0

P (U2 ≤ a, V1 ≤ b, U1 ∈ [u, u+ ε], V2 ∈ [v, v + ε])

P (U1 ∈ [u, u+ ε], V2 ∈ [v, v + ε])

= lim
ε↓0

P (V1 ≤ b, U1 ∈ [u, u+ ε])

P (U1 ∈ [u, u+ ε])
× P (U2 ≤ a, V2 ∈ [v, v + ε])

P (V2 ∈ [v, v + ε])

= lim
ε↓0

P (V1 ≤ b, U1 ≤ u+ ε)− P (V1 ≤ b, U1 < u)

ε

× P (U2 ≤ a, V2 ≤ v + ε)− P (U2 ≤ a, V2 < v)

ε

= lim
ε↓0

∥(1− (u+ ε), 1− b)∥D − ∥(1− b, 1− u)∥D
ε

× ∥(1− a, 1− (v + ε))∥D − ∥(1− a, 1− v)∥D
ε

=
∂+

∂1

⃦⃦⃦⃦(︃
1− u
1− b

)︃⃦⃦⃦⃦
D

∂+

∂2

⃦⃦⃦⃦(︃
1− a
1− v

)︃⃦⃦⃦⃦
D

.

Similar to what we did with An, we first condition on Mn,2 = z to find that

Bn = P

(︃
U1 −

x1
n
> U2, U1 −

x1
n

− 1 > max
2<i≤n

Ui − 1,

V2 −
x2
n
> V1, V2 −

x2
n

− 1 > max
2<i≤n

Vi − 1

)︃
=

∫︂
[−n,−x]

P
(︂
U1 −

x1
n
> U2, U1 >

z1
n

+ 1 +
x1
n
,

V2 −
x2
n
> V1, V2 >

z2
n

+ 1 +
x2
n

)︂
(P ∗Mn,2)(dz).

To compute the integrand by conditioning on U1 = u and V2 = v, we have to
make sure that u and v as well as u − x1/n and v − x2/n stay in the correct
boundaries for our formula above. This will be the case for u > u0,1, v > u0,2
and large enough n, therefore we can cover the part of the integration area
where z ∈ (n(u0 − 1),−x). There, the probability is equal to∫︂ 1

1+
z1+x1

n

∫︂ 1

1+
z2+x2

n

P
(︂
U2 < u− x1

n
, V1 < v − x2

n
| U1 = u, V2 = v

)︂
dv du
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=

∫︂ 1

1+
z1+x1

n

∫︂ 1

1+
z2+x2

n

∂+

∂1

⃦⃦⃦⃦(︃
1− u

1−
(︁
v − x2

n

)︁)︃⃦⃦⃦⃦
D

∂+

∂2

⃦⃦⃦⃦(︃
1−

(︁
u− x1

n

)︁
1− v

)︃⃦⃦⃦⃦
D

dv du

=
1

n2

∫︂ −(z1+x1)

0

∫︂ −(z2+x2)

0

∂+

∂1

⃦⃦⃦⃦
1

n

(︃
u

v + x2

)︃⃦⃦⃦⃦
D

∂+

∂2

⃦⃦⃦⃦
1

n

(︃
u+ x1
v

)︃⃦⃦⃦⃦
D

dv du

where we obtained the last equality by substituting both u → 1 − u/n and
v → 1− v/n. As a final piece of notation, we define

D(u, v, x1, x2) :=
∂+

∂1

⃦⃦⃦⃦(︃
u

v + x2

)︃⃦⃦⃦⃦
D

∂+

∂2

⃦⃦⃦⃦(︃
u+ x1
v

)︃⃦⃦⃦⃦
D

.

and recall that

∂+

∂1

⃦⃦⃦⃦(︃
u/n

(v + x2) /n

)︃⃦⃦⃦⃦
D

=
∂+

∂1

⃦⃦⃦⃦(︃
u

v + x2

)︃⃦⃦⃦⃦
D

by Remark 5.6. Hence, it is equal to our last integrand for all values of n.
In total, this leads to

n2Bn =

∫︂
(n(u0−1),−x)

∫︂ −(z1+x1)

0

∫︂ −(z2+x2)

0

D(u, v, x1, x2) dv du (P ∗Mn,2) (dz)

+ n2 R̃n

→n→∞

∫︂
[−∞,−x]

∫︂ −(z1+x1)

0

∫︂ −(z2+x2)

0

D(u, v, x1, x2) dv du (P ∗ η) (dz)

= E

(︃∫︂ ∞

0

∫︂ ∞

0

D(u, v, x1, x2)1(u≤−η1−x1, v≤−η2−x2)1(η≤−x) dv du

)︃
= E

(︃∫︂ ∞

0

∫︂ ∞

0

D(u, v, x1, x2)1(η1≤−u−x1, η2≤−v−x2) dv du

)︃
=

∫︂ ∞

0

∫︂ ∞

0

D(u, v, x1, x2)E
(︁
1(η1≤−u−x1, η2≤−v−x2)

)︁
dv du

=

∫︂ ∞

0

∫︂ ∞

0

D(u, v, x1, x2)P (η1 ≤ −u− x1, η2 ≤ −v − x2) dv du

=

∫︂ ∞

0

∫︂ ∞

0

D(u, v, x1, x2) exp

(︃
−
⃦⃦⃦⃦(︃

u+ x1
v + x2

)︃⃦⃦⃦⃦
D

)︃
dv du.

R̃n covers the remaining integration area and n2 R̃n → 0 for n→ ∞ by exactly
the same arguments as we had nRn → 0 earlier for the remainder term of An.
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Obviously, n2Bn has the same limit as n(n−1)Bn and, putting everything
together, we can plug our findings into H̄n(x, y) = nAn+n(n−1)Bn and have
proven the following bivariate result:

Theorem 5.11. Consider the bivariate spacings Un:n−Un−1:n for a sequence
U (1),U (2), . . . of iid copies of U which follows a bivariate GPC, i.e., u has the
distribution C(u, v) = 1−∥(1− u, 1− v)∥D for u0 ≤ u ≤ 1, v0 ≤ v ≤ 1. Then
the limiting distribution for n→ ∞ can be described by its survival probability
for x, y > 0

H̄n(x, y) = P (n(Un:n −Un−1:n) > (x, y))

→ H̄(x, y) = E
(︁
≀≀ (η1 + x, η2 + y) ≀≀D 1(η1+x≤0, η2+y≤0)

)︁
+

∫︂ ∞

0

∫︂ ∞

0

∂+

∂1

⃦⃦⃦⃦(︃
u

v + y

)︃⃦⃦⃦⃦
D

∂+

∂2

⃦⃦⃦⃦(︃
u+ x
v

)︃⃦⃦⃦⃦
D

exp

(︃
−
⃦⃦⃦⃦(︃

u+ x
v + y

)︃⃦⃦⃦⃦
D

)︃
dv du

where the bivariate rv η has df G(x̃) = exp(−∥x̃∥D) for x̃ ≤ 0.

Example 5.12. We want to compute the limit above for some simple cases
first. For p = 1 we have ≀≀ · ≀≀1 = 0 and ∂

∂i
∥·∥D = 1. Therefore, for all x, y > 0

H̄(x, y) = 0 +

∫︂ ∞

0

∫︂ ∞

0

1× exp

(︃
−
⃦⃦⃦⃦(︃

u+ x
v + y

)︃⃦⃦⃦⃦
1

)︃
dv du

=

∫︂ ∞

0

∫︂ ∞

0

exp (− (u+ x+ v + y)) dv du

= exp (− (x+ y))

∫︂ ∞

0

∫︂ ∞

0

exp (− (u+ v)) dv du

= exp (−(x+ y))

because
∫︁∞
0

exp(−u) du = 1.
For p = ∞, we first observe that the double integral turns out to be zero:

the partial derivatives are for general z ≥ 0 ∈ Rd and i = 1, . . . , d

∂+

∂i
∥z∥∞ =

{︄
1 if zi = max1≤j≤d zj

0 otherwise,

therefore we have for x, y > 0

∂+

∂1

⃦⃦⃦⃦(︃
u

v + y

)︃⃦⃦⃦⃦
∞

∂+

∂2

⃦⃦⃦⃦(︃
u+ x
v

)︃⃦⃦⃦⃦
∞

= 1(u≥v+y) · 1(v≥u+x) = 0
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because the two conditions cannot be fulfilled simultaneously. Further, we have
≀≀ (x, y) ≀≀∞ = min(|x| , |y|). We can use the fact that E(X) =

∫︁∞
0
P (X > t) dt

for any non-negative rv X to compute the expectation for x, y > 0 and get

H̄(x, y) = E
(︁
≀≀ (η1 + x, η2 + y) ≀≀∞ 1(η1+x≤0, η2+y≤0)

)︁
+ 0

= E
(︁
min(|η1 + x| , |η2 + y|) 1(η1+x≤0, η2+y≤0)

)︁
=

∫︂ ∞

0

P
(︁
min(−η1 − x,−η2 − y) 1(η1+x≤0, η2+y≤0) > t

)︁
dt

=

∫︂ ∞

0

P (−max(η1 + x, η2 + y) > t, η1 + x ≤ 0, η2 + y ≤ 0) dt

=

∫︂ ∞

0

P (max(η1 + x, η2 + y) < −t) dt

=

∫︂ ∞

0

P (η1 < −t− x, η2 < −t− y) dt

=

∫︂ ∞

0

exp (−∥(−t− x,−t− y)∥∞) dt

= [− exp (−∥(t+ x, t+ y)∥∞)]∞0
= exp (−∥(x, y)∥∞) .

Example 5.13. So we have just the expectation-part of the formula for ∥·∥∞
and just the integral-part for ∥·∥1. For their combination in terms of the
Marshall–Olkin D-norm ∥·∥Dλ

with parameter λ ∈ (0, 1), we end up some-
where in between. It is a special case of a convex combination we mentioned
in Example 5.10, so ∥z∥Dλ

= λ ∥z∥∞ + (1− λ) ∥z∥1 for general z ∈ Rd. This
example also tells us that its partial derivatives are

∂+

∂i
∥z∥Dλ

= λ
∂+

∂i
∥z∥∞ + (1− λ)

∂+

∂i
∥z∥1 = λ1{zi=max1≤j≤d zj} + (1− λ)

and we know that ≀≀ z ≀≀Dλ
= λmin1≤i≤d |zi| from Falk (2019, Example 1.6.4).

Similar to our computations above, the expectation is

E
(︁
≀≀ (η1 + x, η2 + y) ≀≀Dλ

1(η1+x≤0, η2+y≤0)

)︁
= E

(︁
λmin(|η1 + x| , |η2 + y|) 1(η1+x≤0, η2+y≤0)

)︁
=

∫︂ ∞

0

P

(︃
max(η1 + x, η2 + y) < − t

λ

)︃
dt

= λ

∫︂ ∞

0

P (η1 < −t− x, η2 < −t− y) dt
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= λ

[︃
− 1

2− λ
exp

(︁
−∥(t+ x, t+ y)∥Dλ

)︁]︃∞
0

=
λ

2− λ
exp

(︁
−∥(x, y)∥Dλ

)︁
where we used the substitution t ↦→ λt and the fact that 2−λ is the derivative
of ∥(t+ x, t+ y)∥Dλ

with respect to t.
For the integral-part of our formula, we observe that the product of the

partial derivatives is

∂+

∂1

⃦⃦⃦⃦(︃
u

v + y

)︃⃦⃦⃦⃦
Dλ

∂+

∂2

⃦⃦⃦⃦(︃
u+ x
v

)︃⃦⃦⃦⃦
Dλ

=
[︁
λ1{u≥v+y} + (1− λ)

]︁ [︁
λ1{v≥u+x} + (1− λ)

]︁
= λ21{u≥v+y}1{v≥u+x} + λ(1− λ)(1{u≥v+y} + 1{v≥u+x}) + (1− λ)2

= λ(1− λ)(1{u≥v+y} + 1{v≥u+x}) + (1− λ)2,

therefore we split up the integration accordingly. For the (1 − λ)2 part, we
first look at

C :=

∫︂ ∞

0

∫︂ ∞

0

1× exp

(︄
−
⃦⃦⃦⃦(︃

u+ x
v + y

)︃⃦⃦⃦⃦
Dλ

)︄
dv du

= e−(1−λ)(x+y)

∫︂ ∞

0

∫︂ ∞

0

exp (−λmax (u+ x, v + y)− (1− λ) (u+ v)) dv du.

We assume for now that x ≥ y and split up the inner integral at v = u+x− y
to obtain ∫︂ u+x−y

0

exp (−λ (u+ x)− (1− λ) (u+ v)) dv

= exp (−λx− u)

∫︂ u+x−y

0

exp (− (1− λ) v) dv

=
exp (−λx− u)

1− λ
[1− exp (−(1− λ) (u+ x− y))]

and ∫︂ ∞

u+x−y

exp (−λ (v + y)− (1− λ) (u+ v)) dv
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= exp (−λy − (1− λ)u)

∫︂ ∞

u+x−y

exp (−v) dv

= exp (−λy − (1− λ)u− (u+ x− y)) ,

leading to the three parts of the outer integral of∫︂ ∞

0

exp (−λx− u)

1− λ
du =

exp (−λx)
1− λ

∫︂ ∞

0

exp (−u) du =
exp (−λx)

1− λ
,

−
∫︂ ∞

0

exp (−λx− u)

1− λ
exp (−(1− λ) (u+ x− y)) du

= −exp (−x+ (1− λ)y)

1− λ

∫︂ ∞

0

exp (−(2− λ)u) du

= −exp (−x+ (1− λ)y)

(1− λ)(2− λ)

and ∫︂ ∞

0

exp (−λy − (1− λ)u− (u+ x− y)) du

= exp (−x+ (1− λ)y)

∫︂ ∞

0

exp (−(2− λ)u) du

=
exp (−x+ (1− λ)y)

2− λ
.

Combining those yields

C = e−(1−λ)(x+y)

[︃
exp (−λx)

1− λ
− exp (−x+ (1− λ)y)

(1− λ)(2− λ)
+

exp (−x+ (1− λ)y)

2− λ

]︃
= e−λx−(1−λ)(x+y)

[︃
1

1− λ
− λ exp (−x+ λx+ (1− λ)y)

(1− λ)(2− λ)

]︃
= exp

(︁
−∥(x, y)∥Dλ

)︁ [︃ 1

1− λ
− λ exp (−(1− λ)(x− y))

(1− λ)(2− λ)

]︃
for the double integral without the indicator function and for x ≥ y. Clearly,
the result for y ≥ x is the almost the same, just with switched roles of x
and y. We can unify the two cases by putting |x− y| instead of x − y in the
exponential function.
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Computing the double integrals with the indicator function is quite a bit easier
as we do not have to split up the integration:

B :=

∫︂ ∞

0

∫︂ ∞

0

1{v≥u+x} × exp

(︄
−
⃦⃦⃦⃦(︃

u+ x
v + y

)︃⃦⃦⃦⃦
Dλ

)︄
dv du

= e−(1−λ)(x+y)

∫︂ ∞

0

∫︂ ∞

u+x

exp (−λmax (u+ x, v + y)− (1− λ) (u+ v)) dv du

= e−(1−λ)(x+y)−λy

∫︂ ∞

0

exp (− (1− λ)u)

∫︂ ∞

u+x

exp (−v) dv du

= e−(1−λ)x−y

∫︂ ∞

0

exp (− (1− λ)u) exp (−u− x) du

= e−(2−λ)x−y

∫︂ ∞

0

exp (− (2− λ)u) du

=
exp (− (2− λ)x− y)

2− λ

= exp
(︁
−∥(x, y)∥Dλ

)︁
exp (−x− λy + λmax(x, y)) /(2− λ)

and in complete analogy, by switching the integration order,

A :=

∫︂ ∞

0

∫︂ ∞

0

1{u≥v+y} × exp

(︄
−
⃦⃦⃦⃦(︃

u+ x
v + y

)︃⃦⃦⃦⃦
Dλ

)︄
dv du

= e−(1−λ)(x+y)

∫︂ ∞

0

∫︂ ∞

v+y

exp (−λmax (u+ x, v + y)− (1− λ) (u+ v)) du dv

= exp
(︁
−∥(x, y)∥Dλ

)︁
exp (−y − λx+ λmax(x, y)) /(2− λ).

Finally, we obtain our result with∫︂ ∞

0

∫︂ ∞

0

∂+

∂1

⃦⃦⃦⃦(︃
u

v + y

)︃⃦⃦⃦⃦
Dλ

∂+

∂2

⃦⃦⃦⃦(︃
u+ x
v

)︃⃦⃦⃦⃦
Dλ

exp

(︄
−
⃦⃦⃦⃦(︃

u+ x
v + y

)︃⃦⃦⃦⃦
Dλ

)︄
dv du

= λ(1− λ)(A+B) + (1− λ)2C,

as

H(x, y) = exp
(︁
−∥(x, y)∥Dλ

)︁ [︃ λ

2− λ
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+
λ(1− λ)

2− λ
(exp (−x− λy + λmax(x, y)) + exp (−y − λx+ λmax(x, y)))

+ (1− λ)− λ(1− λ)

2− λ
exp (−(1− λ) |x− y|)

]︃
. (5.2)

Notice that the special cases H(x, y) = exp (−∥(x, y)∥1) for λ = 0 and
H(x, y) = exp (−∥(x, y)∥∞) for λ = 1 are included here. Some contour plots
and further comments are part of the next and final example.

Example 5.14. For further p-norms, unfortunately, the formula seems very
hard to evaluate analytically, even for specific values of p. However, numerical
evaluation is possible. Computing precision is something to keep an eye out for
if p is large or close to 1, but can be dealt with and is no issue for intermediate
values of p. The expectation part can be evaluated by noting that the dual
D-norm is always ≀≀ (x, y) ≀≀D = x + y − ∥(x, y)∥D in the bivariate case and
using the bivariate density of η which exists for p ∈ (1,∞).

Figure 5.1 shows the result for some selected values of p and also for several
parameters λ of the Marshall–Olkin D-norm. We see that we have a smooth
transition from the case of total independence to total dependence as p moves
from 1 to ∞ and as λ takes its way from 0 to 1.

The values on the axes are not affected by the parameters. This is expected
since they correspond to the marginal probabilities which are independent of
the dependence modeled by λ or p. The symmetry is no surprise, either.

In the middle panel, we plotted the relative deviation between Hn(x, y)
from the Marshall–Olkin case (Equation 5.2) and exp

(︁
−∥(x, y)∥Dλ

)︁
against

the parameter λ. To be specific, the black lines are the maximum and minimum
of Hn(x, y)/ exp

(︁
−∥(x, y)∥Dλ

)︁
over all x, y ≥ 0. We see that the numerator is

always smaller than or equal to the denominator and the maximum of 1 can
obviously be achieved on the boundary whereas the minimum is attained away
from the boundaries and, in particular, the origin. To get a better impression,
the dashed red line is the maximum bounded away from the axes (x, y > 1 to
be exact) and the dotted red line is the minimum close to the origin (x, y < 1).
We know from Equation 5.1 that exp

(︁
−∥(x, y)∥Dλ

)︁
is the asymptotic survival

function of the last spacing. Therefore, what we observe is the close connection
between the survival functions of the last and second-to-last spacing under the
Marshall–Olkin model, especially close to the origin.
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Figure 5.1: Top left panel is the bivariate survival function for the second to
last spacing for ∥·∥1 as the underlying D-norm. Bottom right panel is for ∥·∥∞,
clockwise is the transition through the Marshall–Olkin norms with parameters
λ = 0.5, 0.75 and 0.9 and counterclockwise the transition through the p-norms
with parameters p = 2, 4 and 10. The middle panel shows the relative maximum

and minimum deviation from the survival function to just exp
(︂
−∥·∥Dλ

)︂
for λ

ranging from 0 to 1.
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Chapter 6

Summary and Outlook

After introducing a bit of background, we looked into bivariate order statistics
in Chapter 2. We found that the two components become asymptotically
independent for certain combinations of indices and used an explicit formula
for a conditional probability from Lemma 2.2 to deduce this result. It might
be interesting to see if that formula can help in other situations as well.

In Chapter 3, we detected conditional independence in Archimedean copula
models and we already started to extend this finding to the more general class
of Archimax copulas. This was successful for some elements of the larger
family, but more work is needed to check whether the result holds for arbitrary
Archimax models as well. Furthermore, the idea of a simulation as sketched
in Remark 3.8 deserves a closer look.

Generalized Pareto models were the subject of Chapter 4. We were able
to derive an estimator for the exceedance probability over a given threshold.
We could provide the corresponding confidence intervals and give a criterion
to check the model assumption. The procedure was first backed up by means
of a simulation study and then applied to real pollution data in Milan, Italy.
Further work could go into the optimal choice of the parameter t0 and extended
comparison with existing algorithms.

We went on to compute derivatives of D-norms in the last chapter. We
saw a way to compute the directional derivative as a suitable expectation in
terms of its generator. Considering higher order derivatives would be a natural
extension. A closer look at the condition that guaranteed the existence of the
derivative could be interesting as well: our examples showed that it is not
always a necessary condition. Finally, we concluded with some analysis of
multivariate spacings. The last spacing turned out to be very simple and we
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were able to give an explicit formula for the survival function of the second-to-
last spacing, but we had to limit ourselves to the bivariate case. It would be
desirable to have the result for general dimension d > 2, though the formula
might be quite complex there. The behavior of general multivariate spacings
remains an open problem as well.
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Genest, C., and Nešlehová, J. (2012). Copula modeling for extremes. In
Encyclopedia of Environmetrics (A. El-Shaarawi and W. Piegorsch, eds.),
vol. 2, 530–541. Wiley, Chichester. doi:10.1002/9780470057339.vnn018.

Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une
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