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Summary

The AdS/CFT correspondence is an explicit realization of the holographic principle.
It describes a field theory living on the boundary of a volume by a gravitational
theory living in the interior and vice-versa. With its origins in string theory, the
correspondence incorporates an explicit relationship between the degrees of freedom
of both theories: the AdS/CFT dictionary. One astonishing aspect of the AdS/CFT
correspondence is the emergence of geometry from field theory.

On the gravity side, a natural way to probe the geometry is to study boundary-
anchored extremal surfaces of different dimensionality. While there is no unified
way to determine the field theory dual for such non-local quantities, the AdS/CFT
dictionary contains entries for surfaces of certain dimensionality: it relates two-
point functions to geodesics, the Wilson loop expectation value to two-dimensional
surfaces and the entanglement entropy, i.e. a measure for entanglement between
states in a region and in its complement, to co-dimension two surfaces in the bulk.

In this dissertation, we calculate these observables for gravity setups dual to
thermal states in the field theory. The geometric dual is given by AdS Schwarzschild
black holes in general dimensions. We find analytic results for minimal areas in this
setup. One focus of our analysis is the high-temperature limit. The leading and
subleading term in this limit have diverse interpretation for the different observables.
For example, the subleading term of the entanglement entropy satisfies a c-theorem
for renormalization flows and gives insights into the number of effective degrees of
freedom.

The entanglement entropy emerged as the favorable way to probe the geometric
dual. In addition to the extremal bulk surface, the holographic entanglement entropy
associates a bulk region to the considered boundary region. The volume of this region
is conjectured to be a measure of complexity, i.e. a measure of how difficult it is to
obtain the corresponding field-theory state. Building on our aforementioned results
for the entanglement entropy, we study this complexity for AdS Schwarzschild black
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holes in general dimensions. In particular, we draw conclusions on how efficient
holography encodes the field theory and compare these results to MERA tensor
networks, a numerical tool to study quantum many-body systems.

Moreover, we holographically study the complexity of pure states. This sheds
light on the notion of complexity in field theories. We calculate the complexity for
a simple, calculable example: states obtained by conformal transformations of the
vacuum state in AdS3/CFT2. In this lower-dimensional realization of AdS/CFT,
the conformal group is infinite dimensional. We construct a continuous space of
states with the same complexity as the vacuum state. Furthermore, we determine
the change of complexity caused by small conformal transformation. The field-
theory operator implementing this transformation is known and allows to compare
the holographic results to field theory expectations.
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Zusammenfassung

Die AdS/CFT Korrespondenz ist ein explizites Beispiel für das holographische Prin-
zip. Es beschreibt eine Feldtheorie auf dem Rand eines Volumens durch eine Theorie
mit Gravitation im Inneren und vice-versa. Aus dem Ursprung in der Stringtheorie
folgt ein expliziter Zusammenhang zwischen den Freiheitsgraden beider Theorien:
das AdS/CFT Lexikon. Ein verblüffender Aspekt der AdS/CFT Korrespondenz ist
die Entstehung der Geometrie aus der Feldtheorie.

Ein natürlicher Weg um die Geometrie auf der Gravitationsseite zu untersuchen
sind extremale Flächen, die am Rand verankert sind. Es gibt keinen einheitlichen
Weg um die duale Größe in der Feldtheorie für solche nichtlokalen Größen zu be-
stimmen, jedoch gibt es für Flächen bestimmer Dimension Einträge im AdS/CFT
Lexikon: es bringt Zweipunktfunktionen mit Geodäten, Wilson loops mit zweidi-
mensionalen Flächen und die Verschränkungsentropie, ein Maß für Verschränkung
zwischen einer Region und ihrem Komplement, mit Flächen der Kodimension zwei
in Verbindung.

In dieser Dissertation untersuchen wir diese Observablen für Geometrien dual zu
thermischen Zuständen in der Feldtheorien. Die duale Geometrien sind AdS Schwarz-
schild schwarze Löcher in allgemeiner Raumzeitdimension. Wir erhalten analytische
Ergebnisse. Ein Fokus liegt auf das Verhalten bei hoher Temperatur. Die in diesem
Limit dominanten Terme haben vielfältige Interpretationen für die unterschiedlichen
Observablen. Der Term zweiter Ordnung für die Verschränkungsentropie erfüllt zum
Beispiel ein c-Theorem für Renormalizisierungsgruppen und gibt daher Aufschlüsse
über die Anzahl der effektiven Freiheitsgrade.

Die Verschränkungsentropie stellt sich als erfolgreicher Weg heraus um die dua-
le Geometrie zu untersuchen. Neben der extremalen Fläche bringt die holographi-
sche Verschränkungsentropie auch eine Raumregion zu der gegebenen Randregion
in Verbindung. Das Volumen dieser Raumregion wird als Maß für die Komplexität,
ein Maß für den Schwierigkeitsgrad den entsprechenden Zustand in der Feldtheorie
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zu konstruieren, angesehen. Wir berechnen dieses Volumen für AdS Schwarzschild
aufbauend auf unseren oben erwähnten Ergebnissen zu der Verschränkungsentropie.
Wir ziehen Rückschlüsse wie effektiv Holographie die Feldtheorie beschreibt und ver-
gleichen diese Ergebnisse zu MERA Tensornetzwerken, einer numerische Methode
um Vielteilchensysteme zu beschreiben.

Anschließend betrachten wir die Komplexität von reinen Zuständen hologra-
phisch. Dies gibt Einblicke in das Konzept von Komplexität in Feldtheorien. Wir
untersuchen die Komplexität für ein einfaches, berechenbares Beispiel: Zustände er-
zeugt von konformen Transformationen des Vakuumzustandes in AdS3/CFT2. Die
konforme Gruppe hat unendlich viele Dimensionen in diesem niedrig dimensionalen
Beispiel von AdS/CFT. Wir konstruieren ein kontinuierliches Raum von Zuständen
mit gleicher Komplexität wie der Vakuumzustand. Außerdem bestimmen wir die
Änderung der Komplexität für kleine konforme Transformationen. Der Operator in
der Feldtheorie ist bekannt und erlaubt uns unsere Ergebnisse zu Feldtheorieerwar-
tungen zu vergleichen.
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Chapter 1

Introduction

In this year, we gained insights into two of physics’ most striking phenomena. In
April [1,2], the EHT1 collaboration reported that they captured an image of a black
hole for the first time. They used eight telescopes around the globe and observed
the supermassive black hole in the galaxy M87 for several days in April 2017. This
object has an enormous mass of 6.5 billion solar masses. Only three years prior, the
LIGO2 and Virgo collaborations announced the direct observation of gravitational
waves [3,4]. The observed event GW150914 was caused by a merger of binary black
holes into a black hole of 62 solar masses. This is a novel confirmation of Einstein’s
theory of general relativity.

Black hole physics is not the only currently exciting area of physics. In July of this
year, scientists published the first picture of entanglement between two particles [5].
Entanglement is a crucial difference between classical and quantum systems. While
it was first thought to be an unphysical behavior and tried to be explained away by
hidden variables [6], it was shown that entanglement cannot be described by classical
states [7]. Even more striking, it was discovered that any non-classical theory has to
incorporate entanglement [8]. The image of entangled photons is a demonstration
that the world is quantum in nature.

However, there is enormous trouble finding a quantum theory of gravity. The
usual method of describing forces in the framework of quantum field theory is un-
successful when applied to gravity and fundamentally different approaches are being
developed. One of these approaches is string theory [9,10]. The fundamental objects
of this theory are extended one-dimensional objects, so-called strings, and fields are
vibrations of these. A metric and gauge bosons automatically emerge as massless

1Event Horizon Telescope
2Laser Interferometer Gravitational-Wave Observatory
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1 Introduction

excitations, which establishes string theory as a candidate to describe all forces of
nature. One development of string theory is the AdS/CFT correspondence [11–13],
which is a correspondence between gravitational theories and quantum field theories.
The striking feature of this duality is that these field theories live in one spacetime
dimension less then the gravitational theories.

Clues on how this is possible arise from studies of black holes in classical gravity.
Black holes cause contradiction with thermodynamics: if a matter system with en-
tropy falls into a black hole, the only object which remains is a black hole and naively
the entropy would be lost. For black holes to be consistent with the laws of ther-
modynamics, they necessarily have an entropy, the so called Bekenstein–Hawking
entropy [14, 15]. Inspired by Hawking’s area theorem that the area of the horizon
always increases [16] and the analogy to the second law of thermodynamics

dSMatter ≥ 0 ←→ dAreaHorizon ≥ 0,

Bekenstein conjectured the black hole entropy as

SBH =
kBc

3

4GN~
· AreaHorizon.

Furthermore, he postulated that throwing matter into a black hole transforms con-
ventional entropy into horizon area. This resulted in the formulation of the general-
ized second law [17,18], which demands that not the thermodynamical entropy, but
the total entropy

S = SMatter + SBH,

dS ≥ 0

always increases. As a consequence, black holes satisfy laws analogous to the laws
of thermodynamics [19].

Black holes are extreme objects. However, the Bekenstein-Hawking entropy has
tremendous consequences for any matter: if the entropy of a matter system becomes
too large, a black hole is formed. Therefore, the entropy is bounded by

SMatter ≤
2πkB
~c

ER,
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where E is the energy of the system and R the characteristic size of the system3.
This is the so called Bekenstein entropy bound [20]. A weaker form of the entropy
bound is the spherical entropy bound [21, 22]

SMatter ≤
kBc

3

4GN~
· AreaBoundary,

where the entropy is bounded by the area of a sphere which can enclose the system.
In thermodynamics, entropy is an extensive quantity and scales with the volume.
Therefore, gravity places strict constraint on the entropy and on the degrees of
freedom contained in a volume.

This sparked the idea of the holographic principle4: it claims that in a theory
with gravity the information contained in a volume of space can be encoded on
the boundary surface, on which the information scales extensively as familiar from
thermodynamics. The gravitational theory has to emerge from the information on
the boundary surface.

The AdS/CFT correspondence is an explicit realization of the holographic prin-
ciple. By considering a particular low-energy limit in string theory, Maldacena
conjectured that a gravitational theory in Anti-de Sitter space is dual to a confor-
mal field theory living on the boundary [11]. The best examined case is the duality
between type IIB supergravity on AdS5 × S5, which reduces to a theory on AdS5

by dimensional reduction, and N = 4 supersymmetric Yang-Mills theory on its
boundary.

One fundamental question is how the geometry emerges from the field theory.
An interesting setup to study is the two sided AdS-Schwarzschild black hole [24].
This geometry has two exterior regions with disconnected boundaries, on which field
theory states live. Both sides are connected by the interior of the black hole, i.e. by
a wormhole as shown in Figure 1.1. The dual field theory state is the thermofield
double state, an entangled state of the form

|TFD〉 =
1√
Z

∑

n

e−βEn/2|n〉L ⊗ |n〉R,

where |n〉L/R describe the energy eigenstates on left and right boundary respectively.

3This applies for weakly gravitating systems in asymptotically flat space. The entropy bound
in this form is difficult to rephrase in a covariant form.

4See [23] for a review.
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CFTR
CFTL

Figure 1.1: Two-Sided Black Hole in AdS.
The two CFTs live on the vertical boundary. The horizontal wavy lines are the
singularities and the diagonal lines are the black hole horizon.

This state is pure, but reducing it to only one boundary results in a mixed thermal
state

ρR =
1

Z

∑

n

e−βEn/2|n〉R〈n|R, ρL =
1

Z

∑

n

e−βEn/2|n〉L〈n|L.

Therefore, while the boundaries are spacelike separated, they are entangled. The
measure to quantify the entanglement between left and right boundary is the en-
tanglement entropy

SEE = −TrR ρR ln ρR.

The entanglement entropy between the two boundaries reduces to the thermal en-
tropy of the reduced state. The AdS/CFT correspondence maps this entropy to the
entropy of the black hole.

The notion of entanglement entropy applies to arbitrary regions. Motivated by
the Bekenstein entropy bound, the holographic entanglement entropy for a state
reduced to a region A is proportional to the bulk surface γ homologous to the
boundary region [25,26], i.e.

SEE(A) =
kBc

3

4GN~
· min
∂γ=∂A

Area(γ).

Therefore, the geometry is related to the entanglement structure of the field the-
ory. To stretch the importance of entanglement, it was shown that known quantum
information properties of the entanglement entropy have consequences for the grav-
itational theory. For example, the change of entanglement entropy under small per-
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B

A

B

A

B

Figure 1.2: Removing Entanglement between two Regions.

turbations is described by entanglement thermodynamics, which relates the change
of entanglement entropy to the change of energy

TE δSEE = δE

via a entanglement temperature TE, which does not depend on the perturbation. It is
shown that entanglement thermodynamics implies the linearized Einstein equations
around AdS on the gravity side [27–29]. Furthermore, properties such as subaddi-
tivity and strong subadditivity imply energy conditions for the gravitational theory.
Therefore, fundamental properties of the gravitational theory arise from quantum
information properties of entanglement.

The importance of entanglement for the emergence of gravity and spacetime
was further developed by van Raamsdonk [30, 31]. He considers a state with a
holographic dual and removes entanglement between two regions A and B. This
reduces the entangled state to a product state, for which the mutual information

I(A : B) = S(A) + S(B)− S(A ∪B) (1.1)

vanishes. The mutual information places an upper bound on the connected correla-
tion functions

I(A : B) ≥ 1

2|OA|2|OB|2
(〈OAOB〉)2

for any operator on A and B. For some operators, there is a geometric way to
calculate these correlation functions: the correlation function between two points is
related to the length L of the connecting bulk geodesic

〈OAOB〉 = exp (−∆ · L) , (1.2)

where ∆ is the scaling dimension of the operator. Therefore, reducing the entangle-
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1 Introduction

ment between two regions corresponds to pulling these regions apart (i.e. L → ∞)
and pinching them off from each other. A disentangled product state corresponds
to two disconnected spacetimes. This is shown in Figure 1.2. Therefore, the role
of entanglement is significant in holography: it is the glue which holds everything
together.

While entanglement entropy is difficult to calculate in field theories, calculating
the extremal area is a feasible task in classical gravity. In Chapter 3, I calculate
the entanglement entropy in a highly symmetry setup: strip regions in field theory
states dual to AdS Schwarzschild black holes in general dimension. Since the ex-
tremal surfaces are anchored on only one boundary, they do not probe the interior
of the black hole, but reach arbitrary close to the horizon. Furthermore, I calculate
additional field theory observables dual to extremal surfaces on the gravity side: the
two-point correlation function which is dual to geodesics and the Wilson loop expec-
tation value which is dual to two-dimensional surfaces. While all of these non-local
observables probe the bulk, it is known that the entanglement entropy is highly
effective as it probes deepest into the bulk and therefore closest to the horizon. I
am able to derive analytic results for the entanglement and the other observables in
this setup.

While the low-temperature behavior of these observables can be treated pertur-
batively, the high-temperature behavior is highly non-trivial as it depends on the
entire spacetime geometry. The qualitative behavior of the extremal surfaces in this
limit is known: the horizon creates an effective potential which pushes the extremal
surfaces away. The surfaces in this limit approach a rectangle consisting of to pieces
connecting the horizon with the boundary and a vertical piece along the horizon.
This approximation captures the leading order behavior correctly. In particular, this
results in an extensive behavior for the entanglement entropy due to the thermal
entropy and an exponential decay of the two-point function due to a thermally in-
duced mass. My analytic results show that the subleading term deviates from this
approximation.

For the entanglement entropy, this subleading term is proportional to the area
of the entangling surface, i.e. the boundary of the considered region, and a so-called
area term [32–34]. For renormalization flows, the area term is larger at the UV
fixed point than at the IR fixed point [35, 36]. Therefore, the area term satisfies a
c-theorem [37]5. This assigns the interpretation of the number of effective degrees

5It satisfies a weak c-theorem, since the area term does not have to decrease monotonically
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Figure 1.3: Extremal Slice in Two-Sided Black Hole.

of freedom to the area term. My results show an interesting behavior for the en-
tanglement entropy. While the area term is negative for CFT dimension d ≤ 6, it
is positive for higher-dimensional theories. From the field theory perspective, we
expect that turning on a temperature decreases the number of effective degrees of
freedom: fields obtain a thermally induced mass and can be integrated out at high-
temperature. This is reflected in the negativity of the area term for small spacetime
dimension. However, my results show that this is not the case for large spacetime
dimensions: the area term is positive for d ≥ 7. This is also reflected in the be-
havior of the entanglement negativity, a measure for entanglement in mixed states
which is related to the entanglement entropy in holography. For this observable,
the area term shows increased entanglement in the high-temperature limit, where
the field theory is supposed to behave classically. This gives us insights into the
dual field theory: asymptotically AdS geometries are expected to be dual to states
in superconformal field theories. However, these theories only exists for spacetime
dimensions d < 7. Furthermore, for larger dimensions there are also no string theory
models, which would provide us with well-defined map between two theories. Our
results show that the IR fixed points of the dual field theories are not described by
d dimensional CFT for d ≥ 7.

When studying the two-sided AdS black hole, Susskind [38–42] noticed that while
the entanglement entropy does not allow to probe deep into the interior of the black
hole, there is a construction on the gravity side which does: extremal hypersurfaces
anchored on the boundary as shown in Figure 1.3. These define a ‘nice’6, unique
time slicing even if the spacetime is not static and there is no unique way do extend

when going into the IR.
6The slices avoid singularities and regions of high curvature.
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a boundary time slice into the bulk. This construction associates the volume of
the hypersurface to the state living on the boundary equal-time slice. The late time
behavior of the volume for the two-sided black hole motivates the complexity=volume
proposal : the volume is conjectured to be dual to the complexity, a measure of how
difficult it is to construct a state using unitary operators. The complexity depends
implicitly on the reference state |R〉 from which we start and on the gate set µi used
to construct the unitary operator

|ψ〉 = U |R〉 , (1.3a)

U ≈ µ1 . . . µC. (1.3b)

While this concept arises naturally from theoretical computer science and (quantum)
computers, there is no well-defined notion of field theory complexity.

In particular, holographic complexity can easily be applied to subregions: the
volume reduces to the volume inside the Ryu-Takayanagi surface. This is even of
interest without considering it to be a dual to a field theory complexity: the holo-
graphic entanglement entropy automatically associates a bulk region to a boundary
region. Measuring the size of this region therefore loosely speaking gives a measure
on how efficient the field theory is encoded in the dual geometry. Based on the
aforementioned studies on entanglement entropy, I study this subregion complexity
in AdS Schwarzschild. Using a similar treatment as before, I derive analytic results
for the volume in Chapter 4.

The subregion complexity shows an interesting behavior in this setup: while it is
extensive at high-temperatures, the leading order correction at small temperatures
is negative. Therefore, for strips with a width smaller than a certain critical value,
temperature reduces the subregion complexity. However, there is a transition at `crit
and for larger strips the temperature increases the complexity of the reduced state.
Qualitatively speaking, the near-boundary region reduces the subregion complexity
for small strips and contribution arising from the horizon increase the subregion
complexity for large strips.

We compare these results to predictions from tensor networks [43–46], a numer-
ical tool to study states in quantum many-body theory. A special kind of tensor
networks, the so-called multi-scale entanglement renormalization ansatz (MERA),
shares many structural features of the AdS/CFT correspondence. In particular, an
additional dimension emerges from the entanglement structure of the state. Fur-
thermore, entanglement entropy is measured analogously to the holographic Ryu-
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Figure 1.4: Wheeler-DeWitt patch for Two-Sided Black Hole.

Takayanagi formula. There is a model describing thermal states, however it might
not be optimized, i.e. it is more complex then necessary. We use this MERA model
and calculate the subregion complexity in the analogous gravity model: vacuum AdS
with a hard wall. Also in this geometry the subregion complexity exhibits an inter-
esting transition: while at low-temperatures the subregion complexity is identical to
the vacuum complexity, we have an increased complexity at high temperature. Our
results show that the subregion complexity in this setup is always larger than AdS
Schwarzschild. This tells us that AdS/CFT encodes thermal states more efficiently
then tensor networks.

The considered reduced states are mixed, which makes the definition of a proper
definition of complexity a delicate topic. States obtained by applying unitary op-
erators to a pure reference state as shown in (1.3a) are pure. For mixed states,
the definition of complexity has to be extended. However, even the complexity for
pure states is not well-defined in field theory and an active area of research. It is
not clear whether holographic complexity=volume proposal corresponds to a well-
defined field theory prescription, if it does to which one and what implicit choices
are involved. Furthermore, there are competing proposals for a holographic dual of
the complexity, most notably the complexity=action proposal [47, 48] which relates
the complexity to the gravitational action evaluated on a spacetime region known
as Wheeler-DeWitt patch, see Figure 1.4. Therefore, it is of particular interest to
study holographic complexity, put constraints on possible dual field theory notions
and determine differences between the different proposals.

In Chapter 5, I present my approach in doing this by studying complexity in re-
lationship with conformal transformations in AdS3/CFT2. In this lower-dimension
example of an AdS/CFT correspondence, the conformal group is local and infi-
nite dimensional. This allows to construct various states by applying conformal

9
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|R〉

|ψ〉

Figure 1.5: Curved Space of States.

transformations to the vacuum state. These transformations exist for any CFT.
Complexity can be interpreted as a distance measure between state and reference
state. The result is a induced geometry on the space of states as shown in Fig-
ure 1.5. We construct conformal transformations, which have the same complexity
as the vacuum state. Furthermore, we calculate the change of complexity for small
conformal transformations perturbatively. Our results show that the change of com-
plexity for a small conformal transformation is always non-negative. Consequently,
the vacuum state locally minimizes complexity. Moreover, it is known how the en-
ergy momentum tensor of the field theory transforms under such a transformation,
which allows to construct the corresponding operator. Therefore, the complexity
of this operator can also be studied in field theory proposals for complexity and is
an upper bound for the complexity of the resulting state. Our results comply with
field theory predictions, whereas the competing complexity=action proposal yields
contradictions [49]. Furthermore, a field theory calculation using a method inspired
by holography verifies our results [50].

This dissertation is based on my research under the supervision of Prof. Dr.
Johanna Erdmenger first at the Max Planck Institute for Physics in Munich and
later at the Julius-Maximilians-Universität in Würzburg. Chapter 3 presents my
work published in [P1]. The results presented in Chapter 4 are a continuation of
this project and are soon going to be published in [P2]. Furthermore, Chapter 5
presents results from a project done in collaboration with M. Flory and published
in [P3].
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Chapter 2

Foundations

The AdSd+1/CFTd correspondence is a duality between a conformal field theory
(CFT) in d spacetime dimensions and a gravitational theory in Anti-de Sitter (AdS)
space in d+ 1 spacetime dimensions. The theory on the field theory side is a gauge
theory and the correspondence is therefore an example of a gauge/gravity duality.
Furthermore, AdS/CFT is an explicit realization of the holographic principle: the
dual gauge theory lives on the boundary of the AdS space. The correspondence and
its dictionary, i.e. its one-to-one mapping between field theory and gravity quantities,
arise from string theory.

This chapter reviews the basic ingredients of AdS/CFT, its origins in string
theory and insights into the holographic principle learned from it. The outline is as
follows. To understand what the duality is about, we first take a look at the theories
on both sides. In particular, Section 2.1 reviews Anti-de Sitter space and Section 2.2
conformal field theory. Therefore, these section review the theories on both sides of
the duality. Afterwards, Section 2.3 takes a short look at string theory, with special
emphasis on supergravity and branes. With these ingredients on hand, Section 2.4
sketches the derivation of the duality for AdS5/CFT4, i.e. for a four-dimensional field
theory, and reviews the general AdS/CFT correspondence. More information can be
found in the standard literature for CFTs (e.g. [51]), for string theory (e.g. [9, 10])
and in the standard reviews of AdS/CFT (see [52–55]). Afterwards, Section 2.5
takes a more general look at holography and discusses what AdS/CFT can teach us
about holography.
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2 Foundations

2.1 Gravity and Anti-de Sitter Space

The dynamics of gravity is determined from the Einstein-Hilbert action

SEH [g] =
1

16πGN

∫
dDx

√
− det g · (R− 2Λ), (2.1)

where GN is the gravitational constant in D dimensions and Λ is the cosmological
constant1. R is the scalar curvature2. The associated equation of motions for the
metric g are the vacuum Einstein equations

RMN −
1

2
R · gMN + Λ · gMN = 0, (2.2)

where the spacetime indices M,N run over 0, . . . , D− 1. Equivalently, the equation
of motion can be written as

RMN =
2Λ

D − 2
· gMN . (2.3)

In case we have matter coupled to gravity, the matter action Smatter depends of the
metric. Einstein equations are then sourced by the energy momentum tensor T , i.e.
the right-hand side of Equation (2.2) changes to

8πGNTMN = −16πGN√
det g

· δSmatter

δgMN
. (2.4)

Anti-de Sitter (AdS) space is a solution to the vacuum Einstein Equation (2.2)
for negative cosmological constant Λ < 0. More specifically, it is the maximally
symmetric solution3. The AdS metric in Poincaré coordinates is

ds2 =
L2

z2

(
dz2 + ηνµdxνdxµ

)
=
L2

z2

(
dz2 − dt2 + d~x2

)
, (2.5)

1We consider the metric with mostly positive signature.
2The scalar curvature is the trace of the Ricci curvature tensor, i.e. it can be written as

R = gMN (ΓPMN,P − ΓPMP,N + ΓQMNΓP PQ − ΓQMPΓPNQ),

ΓMNP = 1
2g
MQ(gQP,N + gQN,P − gNP,Q).

3In gravity, symmetries are expressed as diffeomorphisms which preserve the metric. A maxi-
mally symmetric spacetime has the maximal number of independent metric preserving diffeomor-
phisms.
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where η is the (D − 1)-dimensional Minkowski metric. This geometry has a con-
formally flat4 boundary at z = 0. In spacetimes with boundaries, boundary terms
have to be added to the action to keep the variational principle well defined. These
boundary terms do not influence the equation of motions. The appropriate bound-
ary term for a timelike boundary is the Gibbons-Hawking-York boundary term. For
the AdS case, this yields

SGHY =
1

8π

∫

∂AdS

dD−1x
√
− deth ·K, (2.6)

where h is the induced metric on the boundary and K is its extrinsic curvature.
Instead of considering pure AdS, one can also consider geometries which are only

asymptotically AdS. One example is to consider a black hole solution such as the
AdS Schwarzschild black hole

ds2 =

(
L

z

)2 (
−b(z)dt2 + d~x2 + b(z)−1dz2

)
, (2.7a)

b(z) = 1−
(
z

zh

)D−1

. (2.7b)

Due to the blackening factor b(z), this spacetime has a horizon at radial position
zh. To make black holes consistent with thermodynamics, black holes have to have
an entropy. In particular, the AdS Schwarzschild black hole has an entropy

S =
1

4GN

Area(Horizon),

=
1

4GN

(
L

zh

)D−2

Vol(RD−2) (2.8)

and an associated temperature

T =
D − 1

4πzh
. (2.9)

4For completeness, let us mention that there also exist AdS solutions with spherical and hyper-
bolic boundary.
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2.2 Field Theory and Symmetries

Field theory in flat space is invariant under translations and Lorentz transforma-
tions. These transformations form the Poincaré group ISO(d−, 1), where d is the
spacetime dimension of the field theory group. This symmetry group can be fur-
ther extended. To maintain causality of the theory, these transformations should
not change whether two points are spacelike, timelike or lightlike separated. The
condition can be written as

xµ → fµ(x), (2.10a)

gµν(x)→ e2σ(x)gµν(x) (2.10b)

for a finite transformation f(x). Therefore, the transformation rescales the metric by
a positive factor. Transformations of these type are called conformal transformations
and form the conformal group SO(d, 2). A theory which is invariant under these
conformal transformations does not have a preferred length-scale. In particular, it is
massless and all coupling constants are dimensionless. Furthermore, this symmetry
can be broken by quantum corrections. In particular, all beta-functions have to
vanish for quantum field theory invariant under this symmetry.

For an infinite transformation, this yields

xµ → xµ + εµ(x), (2.11a)

gµν(x)→ (1 + 2σ(x)) · gµν(x) (2.11b)

For flat space, i.e. the metric is the flat Minkowski metric gµν = ηµν , this is satisfied
for diffeomorphisms ε which satisfy the conformal killing equation

∂µεν + ∂νεµ = 2σ(x)ηµν . (2.12)

In two dimensions, this conformal killing equation reduces to the Cauchy-Riemann
differential equation and the conformal group becomes infinite dimensional. There-
fore, we first focus on spacetime dimension larger than two and look at the special
case afterwards.
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Table 2.1: Infinitesimal Conformal Transformations.

εµ(x) Number Generator

=

aµ Translations d P µ

+

w[µν]xν Lorentz Transformations 1
2
d(d− 1) Jµν

+
λxµ Dilatation 1 D
+

bµx2 − 2bνx
νxµ Special conformal transformations d Kµ

2.2.1 Conformal Field Theory for Higher Dimensions

For d > 2, there is a finite number of transformations satisfying the conformal
killing equations: additionally to translations and Lorentz transformations, these
are dilatations and special conformal transformations. These are shown in Table 2.1
with their corresponding generator. From Equation (2.12), the change of the metric
is determined by

σ(x) =
1

d
∂ · ε = λ− 2(b · x).

Dilatations correspond to a rescaling of the coordinates. The effect of the special
conformal transformation is more subtle since it is non-linear. The transformation
for a finite special conformal transformation is

xµ → xµ + bµx2

1 + 2b · x+ b2x2
. (2.13)

It can be directly seen that this maps the (d− 1)-sphere at infinity to a point bµ/b2

and the point −bµ/b2 to infinity. Furthermore, lines are mapped the circles and vice
versa.

Conformal transformations rescale the metric by a positive factor. In particular,
the action in a conformal theory is invariant under a rescaling of the metric. For
the energy momentum tensor

〈Tµν〉 = − 2√− det g

δS

δgµν
, (2.14)
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this implies that its trace vanishes

〈T µµ〉 ∝ δσS =
δS

δgµν
gµν = 0. (2.15)

However, this is only true for the classical theory. In a quantum theory, the action
contains counter terms, which in general to not respect these symmetries and cause
anomalies. It can be shown that a conformal anomaly, i.e. 〈T µµ〉 6= 0, can only appear
in even spacetime dimensions.

The generators presented in Table 2.1 form an algebra. This conformal algebra
is an extension of the Poincaré algebra

[Jµν , Pρ] = i (ηµρPν − ηνρPµ) , [Pµ, Pν ] = 0, (2.16a)

[Jµν , Jρσ] = i (ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ) . (2.16b)

The additional non-vanishing commutation relations are

[D,Kµ] = −iKµ , [D,Pµ] = iPµ , (2.17a)

[Kµ, Lνρ] = i(ηµνKρ − ηµρKν) , [Kµ, Pν ] = 2i(ηµνD − Lµν) . (2.17b)

It can be shown that this is the Lorentz algebra in one dimension more, i.e. in
dimension (d + 1). Therefore, the conformal group and its algebra are denoted as
SO(d, 2) and so(d, 2) respectively.

Different representations of the group are labeled by their eigenvalue −i∆ with
respect to the generator of scale transformations D. ∆ is called the scaling dimen-
sion. As can be seen from Equation (2.17a), the scaling dimension can be raised by
Pµ and lowered by Kµ.

An operator of scaling dimension ∆ transforms as

x→ x′ = λx, (2.18a)

φ(x)→ φ′(x′) = λ∆φ(λx). (2.18b)

The two-point function for two operators is highly constrained by the conformal
symmetry. In particular, it has to vanish for operators of different scaling dimension
and is

〈O(x)O(y)〉 ∝ 1

|x− y|2∆
. (2.19)
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for two operators of the same scaling dimension ∆.

2.2.2 Conformal Field Theory for two Dimensions

What is different in two dimensions? To discuss this, let us go to Euclidean signature,
i.e. we use x0 = −ix2. The conformal Killing Equation (2.12) reduces to

∂2ε
1 = −∂1ε

2, ∂2ε
2 = ∂1ε

1,

which is the Cauchy-Riemann differential equation. We can define complex coordi-
nates5 z = x2 + ix1.In these coordinates, a conformal transformation has the form

z → z + ε. (2.22)

The constrain put on ε is that it only depends on z, i.e. it is holomorphic. Analo-
gously, ε̄ is anti-holomorphic. Therefore, the symmetry group in two-dimensions is
infinite-dimensional with an infinite number of generators

ln = −zn+1 ∂

∂z
, l̄n = −z̄n+1 ∂

∂z̄
, n ∈ Z.

The corresponding algebra is build buy two copies of the Witt algebra

[ln, lm] = (m− n)lm+n, [l̄n, l̄m] = (m− n)l̄m+n, [ln, l̄m] = 0.

However, these commutation relations are only valid for the classical theory and
receive quantum corrections. The resulting algebra is the direct sum of two copies
of the Virasoro algebra

[ln, lm] = (m− n)lm+n +
c

12
m(m2 − 1)δm+n,0, (2.23a)

[l̄n, l̄m] = (m− n)l̄m+n +
c

12
m(m2 − 1)δm+n,0, (2.23b)

[ln, l̄m] = 0, (2.23c)

where c is the central charge and commutes with all generators. Therefore, The
Virasoro algebra is a central extension of the Witt algebra and it can be shown to
be unique. The central charge is related to the conformal anomaly, which in two

5Going back to Euclidean signature, we obtain independent variables z = ix+, z̄ = ix−, where
x± = t± x are the light-cone coordinates of the field theory.
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dimensions is

〈T µµ〉 =
c

24π
R,

where R is the Ricci scalar. The value of c depends on the specific theory considered.

A subset of these generators, to be concrete the three generators {l−1, l0, l1} and
their complex conjugate ones, form a subalgebra whose commutation relations do
not contain the central charge. These six generators correspond to D,Kµ, P µ, J01

and generate so-called global conformal transformations6. The remaining generators
generate local conformal transformations and have no equivalent in higher dimen-
sions.

2.2.3 Supersymmetry

In the previous section, we discussed how we can extend the Poincaré group to the
conformal group. The additional generators are bosonic. Another way to extend
the Poincaré group is to use fermionic generators Qi

α, where i = 1, . . . ,N labels the
different generators added and α is the spinor index.

Dirac fermions are introduced by first defining Gamma matrices, i.e. matrices
which satisfy the Clifford algebra

{γM , γN} = −2ηMN .

It can be shown that these matrices have dimension 2n × 2n, where n is given by
D = 2n for even and D = 2n + 1 in odd spacetime dimension. In even spacetime
dimension, we can define an additional Gamma matrix

γD+1 = iD/2−1γ0 · · · γD with (γD+1)
2

= 1, {γD+1, γM} = 0.

It can be shown that SMN = 1
4
[γM , γN ] satisfy the Lorentz algebra (2.16b). There-

fore, they define a different representation of the Lorentz group. The objects trans-
forming in this representations are spinors with n components, i.e. they have 2n real
degrees of freedom. However, these representations are not in general irreducible.
For example, left- and right-handed Weyl fermions are fermions with eigenvalue +1

and −1 with respect to γ̄ respectively. Another possibility is to consider Majorana

6l0+ l̄0 generate dilatations, i(l0− l̄0) rotations, l−1, l̄−1 translations and l1, l̄1 special conformal
transformations.
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Table 2.2: Number of Spinor Degrees of Freedoms.

D = 4 : 8 real components −→ Majorana or Weyl fermions
with 4 real components

D = 10 : 64 real components −→ Majorana-Weyl fermions
with 16 real components

fermions, which are fermions which are their own charge conjugate

ψ∗ = Cψ, with γ∗M = ∓CγMC−1. (2.24)

These are defined for dimension D = 0, 1, 2, 3, 4 mod 8 and reduce the number of
degrees of freedom by two. Furthermore, in dimension D = 2 mod 8 it is possible
to construct Majorana-Weyl spinors. Table 2.2 shows how this reduces the number
of degrees of freedom for D = 4 and D = 10 as an example.

In the following, let us focus on D = 4. For notation, we switch from from Latin
indices to Greek ones. A convenient choice for the Gamma matrices is

γµ =

(
0 σµ

σ̄µ 0

)
with σµ = (−1, ~σ), σ̄µ = (−1,−~σ),

where ~σ are the Pauli matrices. With this choice, the fifth Gamma matrix is

γ̄ =

(
1 0

0 −1

)
(2.25)

and a four component Dirac spinor splits into two-component Weyl spinors as

Ψ =

(
ΨL

ΨR

)
=

(
ψα

ψ̄α̇

)
. (2.26)

Left- and right-handed spinor transform in different representations of the Lorentz
group, as can be seen from

Sµν =

(
σµν 0

0 σ̄µν

)
, (2.27a)

σµν =
i

4
(σµσ̄ν − σν σ̄µ) , (2.27b)

σ̄µν =
i

4
(σ̄µσν − σ̄νσµ) . (2.27c)
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The way the fermionic supercharges Qi extend the Poincaré algebra is highly con-
strained by symmetry. In particular, we have

[
Jµν , Qi

α

]
= −(σµν) β

α Q
i
β, (2.28a)

[
Jµν , Q̄i

α̇

]
= −εα̇β̇(σ̄µν)β̇α̇Q̄

i
β̇
, (2.28b)

{
Qi
α, Q̄

j

β̇

}
= 2δij(σµ)αβ̇Pµ. (2.28c)

This is the most general supersymmetry algebra. The theory has a SU(N )R sym-
metry with respect to special unitary transformations acting on i, j. P 2 is a Casimir
operator of the algebra, i.e. representations can be labeled by their eigenvalue with
respect to it.

In particular, we are interested in massless representations, i.e. P 2 = 0. We may
consider P µ = (E, 0, 0, E). With this choice, the supersymmetry algebra simplifies,
in particular

{
Qi
α, Q̄

j

β̇

}
= 4Eδij

(
1 0

0 0

)

αβ̇

Pµ.

This implies that acting with Qi
2 on physical states results in zero and does not

create a new state. Furthermore, we can define creation and annihilation operators
proportional to Qi

1 and Q̄i
1̇
respectively. The little group, i.e. the subgroup of the

Poincaré group leaving this choice invariant is J12. We can label the states in this
representation with their eigenvalue to respect to J12. This eigenvalue is called the
helicity λ. These supersymmetry generators raise or increase the helicity

[
Qi

1, J12

]
=

1

2
Qi

1,
[
Q̄i

1̇
, J12

]
= −1

2
Q̄i

1̇
. (2.29)

Therefore, they create a fermionic state from a bosonic one and vice-versa. Con-
sequently, a supersymmetric theory has the same number of bosonic and fermionic
degrees of freedom.

We can construct the massless multiplet by starting with a state of maximal
helicity |λ〉 and acting with Q̄i on it to obtain all possible states of lower helicity.
Each of these supercharges can be applied at most one time since (Q̄i)

2
= 0. To have

a representation invariant under CPT conjugation, one also has to add the states
with negative helicity. Table 2.3 shows different multiplets. Supersymmetry with
N = 4 is special, since it has the maximal number of supersymmetries to obtain
a multiplet without gravity. Furthermore, the representation is automatically CPT
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Table 2.3: Massless Supersymmetric Multiplets in D = 4.

λ N = 1 N = 2 N = 4

1 vector boson Aµ • •
1
2

Weyl spinor ψ • • • • • •
0 scalar field φ • • • • • • • •
−1

2
Weyl spinor ψ̄ • • • • • •

−1 vector boson Aµ • •

invariant. Let us focus in this highly symmetric theory in the following.

2.2.4 N = 4 Supersymmetric Yang-Mills Theory in D = 4

The above discussed multiplet for N = 4 is described by the following fields, which
transform in different representations in the SU(4)R symmetry group:

• a gauge field Aµ transforming as a singlet,

• four Weyl fermions λa transforming in the fundamental representation,

• six real scalars φi transforming in the two-index anti-symmetric representation.

It is possible to construct a supersymmetric Yang-Mills theory, i.e. a gauge theory
where all these fields transform in the adjoint representation of SU(N). The CP-
invariant Lagrangian for this theory is78

L = Tr

[
− 1

2g2
YM

FµνF
µν +

θ

16π2
FµνF̃

µν − iλaσ̄µDµλa −Dµφ
iDµφi

+gYMC
ab
i λa[φ

i, λb] + C̄iabλ
a[φi, λ̄b] +

g2
YM

2
[φi, φj]

2
]
. (2.30)

The Yang-Mills coupling gYM is dimensionless, which results in the theory being
scale invariant on a classical level. Interestingly, quantization does not break the
scale invariance. Therefore, the beta function vanishes and the theory does not have
a preferred length-scale.

7Cabi are Clebsch-Gordan coefficients.
8Used conventions: Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], Dµ· = ∂µ + i[Aµ, · ]
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2.3 String Theory

The fundamental objects of string theory are strings, i.e. two-dimensional objects
embedded into a D-dimensional target spacetime. Table 2.4 shows how the descrip-
tion of a relativistic point particle can be generalized to a string. In the following,
we first review the quantization of strings. Afterwards, I take a closer look at two
concepts important for the AdS/CFT duality: the low-energy limit known as su-
pergravity and Dp-branes, which are non-perturbative objects arising from open
strings.

Table 2.4: Transition from Point-Particle to String.

point-particle −→ string

world-line XM(τ) world-sheet XM(τ, σ)

mass m tension T =
1

2πl2s

S = −m
∫

dτ
√
−∂τXM∂τXM S = −T

∫
dτ dσ

√
− det(∂αXM∂βXM)

The action arising from the analogue to the relativistic point-particle is the
Nambu-Goto action

SNG = −T
∫

dτ dσ
√
− det(∂αXM∂βXNηMN), (2.31)

where the metric η is the metric of the target spacetime, which in the following
will be the Minkowski metric. XM is the target space embedding of the string
and σα = {τ, σ} are the worldsheet coordinates9. T is the tension of the string
T = (2πl2s)

−1 and ls is the string length l2s = α′.
For quantization, it is more convenient to work with the classically equivalent

Polyakov action10

SP = −T
2

∫

Σ

dτ dσ ∂αX · ∂βX ηαβ, (2.32a)

9The conventions used in this thesis are summarized in Section A.3.
10The dot implies contraction with the D-dimensional Minkowski metric.
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with the additional constraint11

Tαβ = ∂αX · ∂βX −
1

2
ηαβη

γδ∂γX · ∂δX. (2.32b)

ηαβ is the two-dimensional Minkowski metric.

Convenient coordinates are light-cone coordinates for the worldsheet coordinates,
i.e. σ± = τ ± σ. In these coordinates, the equations of motions arising from the
Polyakov action (2.32a) are

∂+∂−X
M = 0. (2.33)

This allows to split the excitations into left- and right-moving ones

XM(τ, σ) = XM
(L)(σ

+) +XM
(R)(σ

−). (2.34)

The equation of motion allows the following mode expansion

XM
(L)(σ

+) =
xM0
2

+
ls√
2
α̃M0 σ

+ + i
ls√
2

∑

n∈Z
n6=0

α̃Mn
n

exp
(
−inσ+

)
, (2.35a)

XM
(R)(σ

−) =
xM0
2

+
ls√
2
αM0 σ

− + i
ls√
2

∑

n∈Z
n6=0

αMn
n

exp
(
−inσ−

)
. (2.35b)

SinceXM have to be real, the coefficients have to satisfy αM−n = (αMn )
∗, α̃M−n = (α̃Mn )

∗.
Using canonical quantization for XM and their conjugate momenta, the coefficients
αn and α̃n are proportional to ladder operators of an harmonic oscillator

[αMm , α
N
n ] = mηMNδm+n,0, (2.36a)

[α̃Mm , α̃
N
n ] = mηMNδm+n,0. (2.36b)

There is one subtlety: to make the variational principle well defined, bound-

11Exactly speaking, the Nambu-Goto action is equivalent to

SP = −T
2

∫

Σ

dτ dσ
√
−hhαβ∂αXM∂βX

NηMN .

This action contains an auxiliary, non-dynamical field h, which has the interpretation of a world-
sheet metric. It is gauged in Equation (2.32a) and its equation of motion remains as constraint.
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ary terms have to vanish. The Polyakov action Equation (2.32a) gives rise to the
boundary term

[
∂σX

MδXM

]σmax

0
(2.37)

The trivial case for this term to vanish is to consider a closed string, i.e. the embed-
ding is periodic σ ∼ σ + 2π and we have α0 = α̃0. The other case are open strings,
where we have σ ∈ [0, σmax]12. There are two possibilities for the boundary terms to
vanish at the endpoints σ0 ∈ {0, σmax}:

• Neumann boundary condition: ∂σXM(τ, σ0) = 0,
These boundary condition ensures that there is no momentum flow at the
endpoint.

• Dirichlet boundary condition: ∂τXM(τ, σ0) = 0.
This boundary condition fixes the endpoint of the string.

By choosing the boundary conditions on both ends independently, NN, DD, ND and
DN boundary conditions are possible13.

Additionally to the equations of motions, we have to impose the constraint Equa-
tion (2.32b): the vanishing of the stress-energy tensor. In the coordinates σ±, these
are

T++ = ∂+X · ∂+X T−− = ∂−X · ∂−X, (2.38)

= l2s
∑

m=Z

L̃me
−imσ+

, = l2s
∑

m=Z

Lme
−imσ− .

In a classical theory, these modes have to vanish. However, things are more subtle
for a quantum theory: these modes become operators. The conditions for physical
states |φ〉 are

L̃m|φ〉 = Lm|φ〉 = 0, (2.39a)

(L̃0 − a)|φ〉 = (L0 − a) |φ〉 = 0, (2.39b)

12It is possible to keep the mode-expansion (2.35b) the same for all boundary conditions by
choosing σmax appropriately.

13Imposing Dirichlet or Neumann boundary conditions at σ = 0 results in αn = α̃n and αn =
−α̃n respectively. Imposing the same boundary condition at σmax is achieved automatically by
σmax = π, whereas imposing the opposite boundary condition is achieved by σmax = π/2.
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where a is a constant arising from normal ordering. For the modes L̃0, L0, one
obtains

L̃0 =
1

2
α̃0 · α̃0 + Ñ , L0 =

1

2
α0 · α0 +N, (2.39c)

Ñ =
∑

n∈N

α̃−n · α̃n, N =
∑

n∈N

α−n · αn, (2.39d)

where N and Ñ are number operator. It can be shown that N = Ñ for all boundary
conditions, which is called level-matching.

The mass of the string can be derived from P 2 = −M2 where P is the canonical
momentum. This yields

M2 =
1

l2s
(N − a) ·





1 open string with NN boundary conditions,

4 closed string.
(2.40)

To evaluate the mass, a has to be determined. One has to be careful to avoid over-
counting: the commutation relations Equation (2.36) show that there are negative
norm states in the theory, which have to be removed by gauge fixing. Considering
this yields

a =
1

2
(D − 2)

∞∑

n=1

n = −D − 2

24
, (2.41)

where D is the dimension of the target spacetime.

For open strings, the excitation of lowest mass is a vector boson αi1|0, ~k〉 and
transforms under SO(D − 2). To avoid anomalies of the Lorentz symmetry, these
states have to be massless. Therefore, we have the restriction a = 1, forcing the
dimension of the target space to be D = 26. The zero-mass excitation of the closed
string is αi1α̃

j
1|0, ~k〉, i.e. a rank-two tensor which can be decomposed into a symmetric

traceless tensor, an antisymmetric tensor and a scalar.

This emphasizes why string theory is a candidate for unifying gauge theory and
gravity: the lowest excitations of open strings describe gauge bosons, whereas the
lowest excitations of closed strings contain a symmetric rank-2 tensor which describes
a graviton.

The previous discussion only considers bosonic strings. A straight forward way
to achieve fermionic degrees of freedom is to impose worldsheet supersymmetry.

Every bosonic field XM obtains a fermionic superpartner ΨM =
(
ψM− ψM+

)T
. The
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action receives the additional contribution14

Sf =
1

4πl2s

∫
d2σΨ̄Mρα∂αΨM ,

=
−i

2πl2s

∫
d2σ

(
ψ̄+∂−ψ+ + ψ̄−∂+ψ−

)
. (2.42)

The quantization and the calculation of the spectrum is then analogous to bosonic
string theory. The equation of motion for the fermions allows to split the result in
terms of left- and right-moving excitations

ψ+ =
1√
2

∑

n

dn exp(−inσ+), ψ− =
1√
2

∑

n

d̃n exp(−inσ−). (2.43)

These Grassmann-valued coefficients satisfy anti-commutation relations

{dMm , dNn } = ηNMδm+n,0. (2.44)

To keep the variational principle well-defined, the boundary term

[ψ+δψ+ − ψ−δψ−]σmax

0 = 0 (2.45)

has to vanish for open strings. This yields the boundary conditions

• at σ = 0: ψ+(τ, 0) = ψ−(τ, 0),

• Ramond boundary condition: ψ+(τ, π) = ψ−(τ, π),

• Neveu Schwarz boundary condition: ψ+(τ, π) = −ψ−(τ, π).

The NS boundary conditions describes bosons, whereas the R sector contains fermions.
For closed strings, the left- and right-moving excitations can be either periodic (R)
or antiperiodic (NS). This can be chosen for both type of excitations independently,
resulting in four different boundary conditions labeled as R-R, NS-NS, R-NS and
NS-R15.

14Used conventions:

ρ0 =

(
0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
, Ψ =

(
ψ−
ψ+

)

15These boundary conditions for both types of strings are named the same because they have
the same effect: NS boundary conditions cause n + 1

2 ∈ Z, wheres R boundary conditions cause
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Repeating the same procedure as in the bosonic case, the same mass formula as
in equation (2.40) is obtained where know the number operator N is

N =
∞∑

n=1

α−n · αn +
∞∑

n=1

d−n · dnn (2.46)

and a is changed. For superstrings, Lorentz invariance now requires spacetime di-
mension D = 10, resulting in

a =





1
2

NS,

0 R.
(2.47)

There are problems with the spectrum. It contains tachyons. Furthermore,
consistency requires spacetime supersymmetry, resulting in an equal number of
fermionic and bosonic degrees of freedom for each mass. This is obtained by trun-
cating the spectrum. For the Neveu-Schwarz sector, only states with odd fermion
number

∑
n>0 d−ndn are considered to avoid the tachyon. For the Ramon sector, one

can choose to consider either states with even or with odd fermion number. We will
go with the first choice. The resulting massless spectrum for open strings consists
of

• a gauge boson: dM−1/2|0〉NS,

• its superpartner, the gaugino: |0〉R.

For the closed string spectrum, one can pick left- and right-movers from these states,
resulting in the combinations

• dM−1/2|0〉NS ⊗ dN−1/2|0〉NS

• |0〉R ⊗ |0〉R

• |0〉R ⊗ dN−1/2|0〉NS, dM−1/2|0〉NS ⊗ |0〉R

These states split into irreducible representations as shown in Table 2.5.
In string theory, one can either consider a theory with only closed strings or a

theory with open and closed strings.

n ∈ Z. Therefore, the Ramond sector contains d0 modes, whose anti-commutation relations are
the Clifford algebra and who hence create fermionic degrees of freedom, while the Neveu-Schwarz
sector only contains bosons.
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Table 2.5: Particle Content of Massless Closed IIB String Theory.

Sector Field Particle

NS-NS φ scalar (dilaton)
B(2) antisymmetric two-form gauge field

(Kalb-Ramond field)
gMN metric (graviton)

R-R C(n), n ∈ {0, 2} n-form gauge field
C(4) self-dual 4-form gauge field

NS-R λI , I ∈ {1, 2} spin 1/2 dilatinos
ΨM
I , I ∈ {1, 2} spin 3/2 gravitinos with same chirality

2.3.1 Supergravity

The only length-scale of string theory (in Minkowskian background) is the string
length ls. Therefore, the low energy limit of the theory corresponds to E · ls small
and can be considered by taking ls → 0. In this limit, all modes except the zero-
mass modes become infinitely heavy (see Equation (2.40)) and can be integrated
out. Only the massless modes shown in Table 2.5 survive. Furthermore, the strings
become pointlike. This results in being able to describe the theory by an effective
theory living in the ten-dimensional target space. As discussed above, the theory has
(spacetime) supersymmetry and contains gravity. The effective low-energy action is
the so-called supergravity (SUGRA) action. It is a theory where supersymmetry is
promoted to a gauge theory. The resulting gauge fields are the gravitinos ΨM

I . Since
two supersymmetric transformations result in a translation, gauging supersymmetry
automatically produces diffeomorphism invariance and consequently gravity.

The bosonic action of type IIB supergravity is

SIIB =
1

2κ̃2
10

[∫
d10X

√−g
(
e−2φ(R + 4∂Mφ∂

Mφ− 1

2
|H(3)|2)

−1

2
|F(1)|2 −

1

2
|F̃(3)|2 −

1

4
|F̃(5)|2

)
+

1

2

∫
C(4) ∧H(3) ∧ F(3)

]
. (2.48)

The field-strength tensors in this action are F(p) = dC(p−1) and H(3) = dB(2), as well
as

F̃(3) = F(3) − C(0)H(3),

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3).
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This action correctly produces the equation of motions for the massless spectrum
of closed type IIB string theory. However, the action does not automatically incor-
porate the self-duality constraint on the five-form. Instead, it has to be imposed
separately. The complete action also contains the fermionic terms. We will not
present them here. Later on, we consider classical solutions of this action, for which
fermionic fields vanish.

To conclude this section, the gravitational constant can be expressed in terms of
the string length

2κ̃2
10 = (2π)7l8s . (2.49)

Furthermore, one can expand the dilaton around its classical solution φ0, which is
related to the string coupling gs

gs = eφ0 . (2.50)

Identifying the Einstein-Hilbert term of the action yields for the 10-dimensional
Newton constant G10

2κ̃2
10e

2φ0 = 2κ2
10 = 16πG10. (2.51)

2.3.2 D-branes

For open strings, there are two type of boundary conditions: Neumann boundary
condition and Dirichlet boundary condition. The physical interpretation of Dirichlet
boundary conditions is that the endpoint is fixed. This breaks translational invari-
ance and momentum is no longer conserved. The reason is that there is momentum
flow at the endpoints. Consequently, these strings have to end on physical objects
which can absorb this momentum flow. For a string with Neumann boundary con-
ditions for (p + 1) spacetime directions and Dirichlet boundary conditions for the
remaining spatial directions, this physical object is a (p + 1) dimensional surface
called Dp-brane. These objects are stable if they couple to one of the gauge fields of
the theory and have a conserved charge. In type IIB string theory, we have n-form
gauge fields with n = 0, 2, 416. Therefore, the theory allows for stable Dp branes
with odd p.

These Dp branes are not rigid objects, but in fact dynamical [56]. The massless

16These couple electrically to D(n− 1) branes and magnetically to D(7− n) branes.
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spectrum contains a worldvolume gauge field Aµ from the open-strings excitations
and 9− p massless scalar fields, which arise as goldstone modes from broken trans-
lational symmetry and describe transverse excitations of the brane. The interaction
between these fields and the NS-NS sector of the closed strings is described by the
Dirac-Born Infeld (DBI) action17

SDBI = −τp
∫

dp+1ξ e−φ
√
− det (gµν +Bµν + 2πα′Fµν). (2.52)

The indices µ, ν = 0, . . . p are for the coordinates parallel to the branes and
gµν , Bµν are the pull-back of the metric and the Kalb-Ramond field respectively. The
coupling between R-R sector and the brane-fields is described by a Chern-Simons
term SCS and yields to the brane being charged. If only the metric is fluctuating,
the DBI-action reduces to

B = F = 0, φ = ln gs : SDBI = −τp
gs

∫
dp+1ξ

√
− det gµν . (2.53)

This is the higher-dimensional generalization of the Nambu-Goto action (2.31) (see
also Table 2.4). The tension of the brane is determined by examining a closed string
colliding with the brane and matching this process to the analog open string process
(see [56]), yielding

τp = (2π)−p · l−(p+1)
s . (2.54)

If we in contrast focus on the field-strength F in flat space, we obtain

B = 0, g = η, α� 1 : SDBI = const.− τp(2πα
′)2

4gs

∫
dp+1ξ FµνF

µν . (2.55)

This is the Yang-Mills action with coupling constant

g2
YM = (2π)p−2ls

p−3gs. (2.56)

The DBI action can therefore be understood as non-linear generalization of the
Yang-Mills action.

Instead of considering a single Dp-brane, one can also consider a stack of N

17For a small field strength, the DBI action reduces to Yang-Mills action in flat spacetimes.
Consequently, it can be understood as a non-linear generalization of Yang-Mills theory. The
corresponding coupling is g2

YM = (2π)
p−2

gsl
p−3
s .
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N

(a) Open String Perspec-
tive

N

(b) Closed String Perspec-
tive

Figure 2.1: Dp-Branes

coinciding Dp branes. This promotes the fields to N×N matrices, where the indices
label the branes the open strings ends on. In particular, the gauge field Aµ becomes
a U(N) gauge field. All open strings states transform in the adjoint representation
of this gauge group. The DBI-action now involves taking the trace

SDBI = −τp
∫

dp+1ξ e−φ Tr
√
− det (gαβ +Bαβ + 2πα′Fαβ). (2.57)

From Equation (2.53), we see that the tension of Dp-branes is given by τp/gs.
Therefore, these branes are non-perturbative objects. Therefore, they are treated
as rigid objects and strings as perturbations. For this picture to work, the coupling
between open and closed strings has to be small, i.e. gsN � 1.

Interestingly, it was shown in [57] that Dp-branes are equivalent to massive (p+

1)-dimensional surfaces in closed string theory. In the low-energy limit, these p-
branes are solitonic solutions of SUGRA. The ansatz for the metric preserving the
Rp+1 × SO(p, 1)× SO(9− p) symmetry is

ds2 =Hp(r)
−1/2ηµνdx

µdxν +Hp(r)
1/2dyidyi, (2.58a)

where xµ are the coordinates parallel to the surface and yi are the transverse direc-
tions. The functionHp only depends on the distance from the surface r =

√∑
i (y

i)2.
The only other non-vanishing SUGRA fields are the dilaton and the gauge field under
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which couples to the brane

eφ =gsHp(r)
(3−p)/4, (2.58b)

C(p+1) =
(
Hp(r)

−1 − 1
)

dx0 ∧ dx1 ∧ · · · ∧ dxp. (2.58c)

This solves the SUGRA equations for motions if

�Hp(r) = 0,

Hp(r) = 1 +

(
Lp
r

)7−p

, (2.59)

where Lp is an integration constant at this point. To ensure that the SUGRA
descriptions can be applied, Lp should be large.

To understand what these objects are, two limits are interesting:

• Asymptotically (i.e. for r →∞), the metric reduces to flat Minkowski space.

• In contrast, the metric diverges as we approach the surface, i.e. r → 0. The
spacetime has a (p+ 1)-dimensional singularity at r = 0.

These p-branes are therefore higher-dimensional generalizations of black holes.
Therefore, there are two perspective of Dp-branes are shown in Figure 2.1: in the

open strings picture, they are dynamical objects where strings can end and which
effectively give rise to a non-abelian gauge theory. In the closed string picture,
they are massive objects which curve the space around them and correspond to
higher-dimensional generalizations of black holes. How are these two perspectives
related? In both perspectives, these objects are charged under the p-form gauge
field. Matching the charge yields

L7−p
p = (4π)(5−p)/2Γ

(
7− p

2

)
gsNα

′(7−p)/2, (2.60)

where N is the number of considered branes18.

18Therefore, the limit Lp large corresponds to gsN � 1. This implies that these two perspectives
only work in opposite limits.
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2.4 The AdS/CFT Correspondence

There are several realizations of AdS/CFT arising from considering branes in string
theory. In the following, we first review the most prominent example: the duality be-
tween a four-dimensional CFT and AdS space in five dimensions (i.e. AdS5/CFT4) as
conjectured by Maldacena [11]. Afterwards, we take a look at the general AdS/CFT
correspondence and review aspects relevant for it. This also introduces the conven-
tions used in the remaining chapters.

2.4.1 Derivation of AdS5/CFT4

In 1997, Maldacena considered the low-energy limit of D3-branes [11]. As discussed
in Section 2.3.2, these objects are described by two perspectives: as surfaces where
open strings end (open string perspective) or as heavy objects, which deform the
space around them and form a black hole (closed string perspective).

Open string perspective

In the open-string perspective, the action splits into three parts:

S = Sbulk + Sbrane + Sint, (2.61)

where Sbulk describes the closed string sector, Sbrane describes the open string sector
and Sint captures the interactions between both sectors. In the low energy limit,
Sbulk reduces to the type IIB SUGRA action. The bosonic part of the remaining
terms arises from the DBI action SDBI and the Chern-Simons term. For a stack of
N D3 branes, the DBI action (see (2.57)) is

SDBI = −τp
∫

dp+1ξ e−φ Tr
√
− det (gµν + 2πα′Fµν), (2.62)

where B is set to zero for simplicity. The Greek indices µ, ν label the (p + 1)

directions parallel to the brane, ξ are the coordinates parameterizing the brane and
gµν is the pull-back of the metric. The DBI action describes the interaction of the
metric and the dilaton field with the bosonic fields living on the brane: the SU(N)

gauge field Aµ with the associated field strength Fµν and six Goldstone modes X i
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for the broken translational invariance in six directions19.
As discussed previously, the DBI action reduces to the Yang-Mills action for

small α′, see Equation (2.55). The corresponding Yang-Mills coupling is (see Equa-
tion (2.56))

2πgs = g2
YM . (2.63)

Considering also the remaining terms contributing to Sbrane yields for the Lagrangian
describing the open string excitations

Lbrane = Tr

[
− 1

2g2
YM

FµνF
µν +

θ

16π2
FµνF̃

µν − iλaσ̄µDµλa −DµX
iDµX i

+gYMC
ab
i λa[X

i, λb] + Ciabλ
a[X i, λb] +

g2
YM

2
[X i, Xj]

2
]
, (2.64)

where Fµν is the field strength tensor of Aµ and Cab
i are Clebsch-Gordan coeffi-

cients20.
The only parameter of the Lagrangian is the dimensionless coupling constant

gYM . Therefore, the theory is conformal on the classical level. A special feature of
this theory is that it also has conformal invariance as a quantum theory. This implies
that the beta function for the coupling vanishes. Furthermore, this is a theory with
N = 4 supersymmetry in d = 4 dimensions. This corresponds to 8 supercharges.
They arise since we started with a supersymmetric theory in D = 10, which has 16

supercharges. However, half of the supersymmetries are broken due to the brane.
The fields on the brane arrange in a N = 4 gauge multiplet in four dimensions. This
theory is N = 4 supersymmetric Yang-Mills (SYM) theory on R3,1.

The remaining part of the action is Sint. When taking the small α limit, one has to
be careful with normalizing all fields appropriately. If done correctly, the interaction
term vanishes. Therefore, the closed and the open string modes decouple and we
obtain

N = 4 SYM theory on R3,1 + type IIB SUGRA on R9,1.

19In the DBI action above, these are hidden in the pull-back.
20Used conventions: Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], Dµ· = ∂µ + i[Aµ, · ], σ̄µ =

(
−12,−σi

)
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Closed string perspective

For 3-branes, the corresponding soliton-like solution of SUGRA has the metric

ds2 =H(r)−1/2ηµνdx
µdxν +H(r)1/2dyidyi, (2.65a)

H(r) =1 +

(
L

r

)4

. (2.65b)

xµ are the coordinates parallel to the brane and yi the transverse ones. A special
feature of the p = 3 case is that dilaton field is constant

eφ = gs = const, (2.66)

corresponding to a vanishing beta function for the coupling. The function H(r)

appearing in the metric contains an integration constant L, which is related to the
number of branes

L4 = 4πgsNl
4
s . (2.67)

In the flat-space limit r →∞, the geometry reduces to flat Minkowski space. In
the opposite limit r → 0, one obtains

ds2 ≈
(
L

r

)−2

ηµνdx
µdxν +

(
L

r

)2

dr2 + L2dΩ2
5,

where we wrote dy2 = dr2 + dΩ5. Therefore, the transverse S5 has a constant size.
Combining these two limits, the geometry is shown in Figure 2.2.

When taking the low-energy limit in a theory with gravity, one has to specify
with respect to which observer one is measuring the energy. The dual field theory
lives at r = ∞, hence the low-energy limit has to be taken there. Considering the
energy Er measured at radial position r, the energy for an observer at infinity is

E∞ = H(r)−1/4Er. (2.68)

Therefore, there are two types of low-energy excitations: massless bulk excitations
with Er = 0 and near horizon excitations located at r/L → 0 with finite energy
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Figure 2.2: p-brane in SUGRA.
The six transverse directions are shown. The position of the brane is represented by
the dashed line.

Er
21. In this limit, the metric reduces to the AdS metric22 times a five-sphere of

constant size. The metric can be written as

ds2
AdS5×S5 =

(
L

z

)2 (
ηµνdx

µdxν + dz2
)

+ L2dΩ2
5, (2.69)

where we used the coordinate transformation z = L2/r. The cross-section between
these different excitations goes to zero and the bulk excitations decouple from the
near horizon excitations. Therefore, we obtain

type IIB SUGRA on AdS5 × S5 + type IIB SUGRA on R9,1

in the closed string perspective.

21This limit has to be taken carefully. One has to fix lsEr to obtain arbitrary excitations in the
r → 0 region. The energy measured at infinity is the field theory energy E∞ ∼ r

l2s
· lsEr, which

also has to be kept fixed. This is achieved by the coordinate transformation r̂ = r/l2s . r̂ is kept
constant while ls is taken to infinity. This yields an additional factors of ls in front of the metric,
which cancels with factors of ls in front of the action.

22See the review in Section 2.1
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Combining both perspectives

Combining these two perspectives, one notices that both sides contain type IIB
SUGRA on R9,1, which does not couple to the other sector. Therefore, the remaining
two sectors have to be correspond to each other. This yields

N = 4 SU(Nc) SYM theory on R3,1 ←→ type IIB SUGRA on AdS5 × S5.

Maldacena used the argument above and conjectured that both sides are equivalent
for arbitrary coupling [11]. The parameter of the field theory are the Yang-Mills
coupling gYM and the rank of the gauge group N , which can be combined to the ’t
Hooft coupling λ = g2

YMN . It is related to the string theory quantities by

λ =
1

2

(
L

ls

)4

, (2.70)

where L is the radius of the AdS space and ls is the string length. The field theory
is only well-understood in the perturbative regime, i.e. λ � 1, whereas SUGRA is
only well-understood for weak gravity, i.e. λ� 1. This empathizes the power of the
duality: one can work with a weakly curved gravitational theory to understand a
strongly coupled field theory or one can work with a weakly coupled field theory to
understand a strongly curved gravitational theory.

Both sides of the correspondence are highly symmetric theories. Focusing on the
bosonic symmetries, the CFT has the conformal symmetry SO(4, 2) and the SU(4)R
R-symmetry from rotating the supercharges. These correspond to the symmetries
of AdS5 and S5 respectively.

2.4.2 General Correspondence and Field-Operator-Map

The limits used to derive the AdS5/CFT4 correspondence are the large N and large
λ limit. The duality in its strongest form is far more general: it conjectures that
N = 4 SU(N) Super Yang-Mills theory with arbitrary N and coupling is dual to
type IIB string theory on AdS5×S5. This statement is then weakened by performing
the limits mentioned above. The three forms of the correspondence obtained in this
way are presented in Table 2.6.

Besides AdS5/CFT4, similar dualities for different dimensions can be derived by
considering other brane-setups23. Formulating the correspondence in a general way,

23For example, AdS3/CFT2, AdS4/CFT3 and AdS7/CFT6 can be derived this way [58–60].
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Table 2.6: Different Forms of the AdS/CFT Correspondence.

Strongest general N = 4 SYM theory Quantum string theory on AdS5×S5

y ’t Hooft limit
N→∞, λ=const.

y gs → 0, ls/L = const.

Strong Large N N = 4 SYM theory Classical string theory on AdS5×S5

y strong coupling limit
λ→∞

y point-particle limit
s→∞

Weak Strongly coupled large N Classical SUGRA on AdS5×S5

N = 4 SYM theory

one considers

CFTd ←→ massless theory on AdSd+1 ×K,

where K is a compact space. Using Kaluza-Klein reduction, the theory on the
gravity side can be written as a massive theory on AdSd+1, i.e. the statement is

CFTd ←→ massive theory on AdSd+1,

where the mass-spectrum depends on the compact space. The gravitational the-
ory has three length-scales: the string-length ls, the AdS radius L and the Planck
length determined by the gravitational constant G(d+1)

N . The field theory is param-
eterized by an effective coupling λ and the central charge c, which is proportional
to the number of fields and for a SU(N) gauge theory therefore proportional to N2.
Qualitatively, both sides are related by

c ∝ Ld−1

G
(d+1)
N

(2.71a)

λ ∝
(
L

ls

)γ
(2.71b)

with positive γ. This is known as AdS/CFT dictionary. The action on the gravity
side is of the form

S =
1

16πG
(d+1)
N

∫
ddx

√
− det g

(
R +

d(d− 1)

L2
+ matter terms

)
, (2.72)

where the second term arises from the cosmological constant Λ = −d(d−1)
2L2 . The

(d+1)-dimensional Newton constantG(d+1)
N is related to the string length asG(d+1)

N ∝
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ld−1
s .

The AdS metric has the scale invariance of the conformal theory. A rescaling of
the CFT coordinates xµ → λxµ leaves the metric invariant if the radial coordinate
is rescaled appropriately, i.e. z → λz. This has an interesting interpretation when
associating high energies with short distances and vice-versa. The radial coordinate
z can be interpreted as an energy scale with z → 0 corresponding to the UV and
z → ∞ to the IR. In particular, a UV cutoff in the field theory corresponds to a
cutoff at z = ε� 1.

How exactly does it work to reduce the theory on AdSd+ 1×K to an effective
theory on AdSd+ 1? Since we consider a product space, the d’Alembert operator
reduces to

�AdSd+1×K = �AdSd+1
+ �K .

Therefore, we can compactify the compact space K using Kaluza-Klein reduction.
The ansatz is assume

φ(z, x, y) = φ(z, x) · Y (y),

where Y is an eigenfunction of the d’Alembert operator on K. Therefore, the equa-
tions of motion reduce to

�AdSd+1
φ(z, x) = m2φ(z, x),

where the mass m is determined by the eigenvalue of Y . Therefore, SUGRA of
massless fields φ on AdSd+1 ×K can be understood as a theory with massive fields
φl on AdSd+1. For a sphere K = SD−d−1, the fields can be decomposed into spherical
harmonics, e.g. for a scalar field φ

φ(z, x, y) =
∑

l

φl(z, x)Yl(y), with �KYl(y) =− 1

L2
l(l +D − d− 2)Yl(y), (2.73)

where y are the coordinates of K. Therefore, the exact form of the compact space
determines the possible eigenvalues of �K and consequently the mass spectrum.

The mapping between degrees of freedom on both sides can be understood by
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considering the near boundary expansion of the equation of motions

�AdSd+1
φ(z, x) =

1

L2

(
z2∂z − (d− 1)z∂z + z2ηµν∂µ∂ν

)
φ(z, x), (2.74a)

≈ 1

L2

(
z2∂z − (d− 1)z∂z

)
φ(z, x), (2.74b)

= m2φ(z, x) (2.74c)

The asymptotic solution has the form

φ(z, x) ≈ φ(0)(x) · z∆− + φ(+)(x) · z∆+ (2.75)

where the powers ∆± depend on the mass m of the scalar field

∆± =
d

2
±
√
d2

4
+m2L2. (2.76)

Therefore, the differential equation (2.74) has two solutions: a normalizable one
proportional to z∆+ and a non-normalizable one proportional to z∆− [61]24.

Dimensional analysis helps to understand what the normalizable and the non-
normalizable solution correspond to on the field theory side. A scaling transforma-
tion can be performed on the gravity side by considering xµ → λxµ, z → λz. Looking
at the solution Equation (2.75) and the scaling behavior of φ(0)(x), φ(+)(x), one can
identify φ(+)(x) with the expectation value of an operator of conformal dimension
∆ = ∆+ and φ(0)(x) with its source. This identification is known as field-operator
map, which for scalar operators states

O∆ ←→ φ(z, x),

∆ ←→ m2 = ∆(∆− d).

For field of different spin, the relation between mass and scaling dimension ∆ is
changed, but the fundamental statement is the same: there is a one-to-one map
between operators of a certain scaling dimension ∆ and fields of a certain mass m.

In [12,13], the partition function on both sides of the correspondence are identi-

24The action evaluated for a normalizable solution is finite, whereas the action evaluated for a
non-normalizable solution is infinite. The non-normalizable solution exists independent of the sig-
nature of the spacetime. In contrast, the differential equation (2.74) only allows for a normalizable
solution in Lorentzian signature.
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fied. For classical SUGRA this implies

ZCFT [φ0(x)] = ZIIB[φ(z, x)]
∣∣∣

lim
z→0

φ(z,x)z−∆−=φ0(x)
, (2.77a)

〈
exp

(∫
φ0O

)〉

CFT

= exp (iSSUGRA(φ))
∣∣∣

lim
z→0

φ(z,x)z−∆−=φ0(x)
, (2.77b)

where the sources φ0 and the fields φ are related as discussed above. This relation is
called GKP-Witten relation after the authors of the aforementioned papers. While
the saddle-point approximation in the second line is only valid for the weak form of
the duality, the identification of the generation functionals in the first line applies
also to the strong form. This relation allows to calculate correlation functions by
considering derivatives with respect to the sources.

There are two approaches to obtain a duality of the form

CFTd ←→ massive theory on AdSd+1.

In the top-down approach the duality is derived by starting with an explicit string
theory setup and compactifying the compact spaceK. These models have an explicit
mapping between field theory parameters and string theory parameters. Further-
more, the explicit theories on both sides are known. In contrast, it is also possible
to follow a bottom-up approach by modeling the gravitational theory corresponding
to the properties of the CFT. In this approach, the relation between parameters on
both sides has to be read of from observables.

2.4.3 Special Aspects of AdS3/CFT2

Section 2.4.1 reviews the near-horizon limit to obtain AdS5/CFT4 from the low-
energy limit of D3 branes. The same procedure can be applied to other brane
setups resulting in other examples of AdSd+1/CFTd. In particular, Maldacena [11]
published cases resulting in AdS3/CFT2 already in his first paper conjecturing the
AdS/CFT correspondence.

Symmetries of the metric are formulated in terms of Killing vector, i.e. infinites-
imal diffeomorphisms which leave the metric invariant. The number of Killing vec-
tors is finite. However, one can also consider asymptotic symmetries. Therefore,
we consider diffeomorphism which leave the boundary behavior of the metric to be
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asymptotically AdS, as was done in [62,63]. For a metric

ds2 = gMNdxMdxN (2.78)

with xM = (t, x, z) to be considered asymptotically AdS, the required boundary
behavior is

gµν =
L2

z2
ηµν +O(z0), gzµ = O(z), gzz =

L2

z2
ηµν +O(z0). (2.79)

If we consider now an infinitesimal diffeomorphism of the form xM → xM + ξM

which leaves this asymptotic form invariant, the solutions are of the form

ξ+ = σg+(x+) +
1

2
σg′′−(x−)z2 +O(z4) (2.80a)

ξ− = σg−(x−) +
1

2
σg′′+(x+)z2 +O(z4) (2.80b)

ξz = −σz
2

(
g+
′(x+) + g−

′′(x−)
)

+O(z3), (2.80c)

where g± are arbitrary functions and σ is a small expansion parameter. On the
boundary, the diffeomorphisms reduce to x± → x± + g±(x±), i.e. the asymptotic
symmetry reduces to the local conformal symmetry on the boundary. The algebra
for the generators may be derived using Hamiltonian analysis on the gravity side,
see [62]. This results in two copies of the Virasoro algebra with central charge

c =
3L

2GN

. (2.81)

Therefore, it was already discovered before AdS/CFT that the asymptotic symmetry
of AdS3 agrees with the conformal symmetry in CFT2. Furthermore, the mapping
between central charge c and AdS-radius L is universal.

What happens if we do not consider the vacuum state of the CFT, i.e. T µν = 0,
but a state with

8πGNT++ =
1

4
L(x+), (2.82a)

8πGNT−− =
1

4
L̄(x−)? (2.82b)

The energy momentum tensor on the boundary is dual to the metric on the gravity
side. This however only fixes the asymptotic behavior of the metric, see Equa-
tion (2.75). To determine the whole metric, one has to solve the Einstein equations
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for the metric order by order in z2. This expansion is not guaranteed to converge in
general. For AdS3 however, it was shown in [64] that this expansion yields

ds2 =
1

z2

(
dz2 − dx+dx−

)
− z2

16
dx+dx− +

1

4

(
L(x+)(dx+)2 + L(x−)(dx−)2

)
.

This metric is singularity at the horizon at radial position

z0 =
2

(
L(x+)L̄(x−)

)1/4

The coordinates used in Equation (2.83) only cover the outside region and not the
interior.

2.5 Holography and Quantum Information

This chapter takes a look at quantum information and its importance in holography.

2.5.1 Quantum Information and Entanglement

This short review of quantum information is based on [65,66].
One crucial ingredient when considering quantum systems is entanglement. It

is no longer enough to understand each part of the system, but one also has to
understand the entanglement between different parts [6,67,68]. This has interesting
effects: subsystems can no longer described independently from each other.

More formally, let us consider a bipartite system H = HA⊗HB. The composite
state is described by a density matrix ρ. The entropy of the state is given by the
von Neumann entropy

S(ρ) = −Tr ρ ln ρ. (2.83)

It can be understood as the missing information about the state. In particular, it is
non-negative and only vanishes for pure states,

S(ρ) ≥ 0 with S(ρ) = 0 ⇐⇒ ρ = |φ〉〈φ|, i.e. ρ is a pure state. (2.84)

The subsystems are described by reduced density matrices

ρA = TrB ρ, ρB = TrA ρ, (2.85)
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where we integrate out the degrees of freedom living in the complement. Let us turn
to the difference between classical states and quantum states. Classical pure states
are of the form

|ψ〉 = |ψA〉 ⊗ |ψB〉 with |ψA,B〉 ∈ HA,B, (2.86a)

ρ = |ψ〉 〈ψ|. (2.86b)

For these states, the reduced states of the pure state

ρA = |ψA〉 〈ψA|, ρB = |ψB〉 〈ψB|

are also pure. Mixed classical states are of the form

ρ =
∑

i

pi|ψi〉 〈ψi|. (2.87)

gg lIn contrast, a quantum state can be any normalized states in the Hilbert state
HA ⊗HB. Therefore, quantum states are of the form

|ψ〉 =
∑

i

ai|ψi〉 with 〈ψ|ψ〉 = 1. (2.88)

Any pure state in H can be written as

|ψ〉 =
∑

i

ci |ei〉 ⊗ |fi〉, (2.89)

where |ei〉 and |fi〉 are appropriately chosen orthonormal bases of HA and HB re-
spectively. This decomposition is called Schmidt decomposition. For these states,
the reduced states are

ρA =
∑

i

|ci|2 |ei〉〈ei|, ρB =
∑

i

|ci|2 |fi〉〈fi|

and are in general mixed. This mixture is caused by entanglement between A and
B. It shows that complete knowledge of the state |ρ〉 does not imply complete
knowledge of the reduced states |ρ〉A and |ρ〉B and vice-versa.

How can this entanglement be quantified? First, we consider pure states. As we
discussed above, entanglement creates missing information about the reduced states
even with full knowledge of the state. This missing information can be quantified
using the entropy of the reduced state. This entropy is called the entanglement
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entropy

SEE(ρA) = −TrA ρA ln ρA. (2.90)

If we consider a pure state |ρ〉, the entanglement entropies for both subsystems agree,
which can be seen from the Schmidt decomposition (2.89). However, the problem
is more subtle for mixed states. For these, the entanglement entropy also receives
contributions from classical correlations. How can we see whether a mixed states is
entangled? A mixed state without entanglement between A and B can be written
as

ρ =
∑

i

piρ
i
A ⊗ ρiB. (2.91)

Such states are called separable. These states can be created by so called Local
Operations and Classical Communication (LOCC), which allows operators which
only act on one subsystem as well as classical communication between both sub-
systems. Unfortunately, there is no definite answer on what is a good measure for
entanglement for mixed states. Necessary conditions on such a measure E(ρ) are
the following:

• They are positive, i.e. E(ρ) ≥ 0 ∀ρ ∈ H.
• They only vanish for separable states.

• They do not increase under LOCC, as these transformations do not create
entanglement.

Any function E satisfying these conditions is called an entanglement monotone. For
an entanglement monotone to be a measure of entanglement, it has to reduce to the
entanglement entropy for any pure state.

There are many different proposals for measures of entanglement. One com-
putable measure is the entanglement negativity [69]. It is based on the Pere’s crite-
rion [70] for separable states, which considers the eigenvalues of the partial transpose
ρTA of the density matrix. The partial transpose is defined as

〈fj| ⊗ 〈ei| ρTA |ek〉 ⊗ |fl〉 = 〈fj| ⊗ 〈ek| ρ |ei〉 ⊗ |fl〉. (2.92)

While the eigenvalues of the density matrix ρ are positive, the eigenvalues of ρTA can
become negative. The Pere’s criterion states that ρTA has no negative eigenvalues
if the state is separable. These can be measured by the trace norm of the partial
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transpose

||ρTA|| = Tr

√
(ρTA)†ρTA =

∑

i

|λi|,

||ρTA|| − 1 = 2
∑

i, λi<0

|λi|,

where λi are the eigenvalues of ρTA . The second line follows from Tr ρTA = Tr ρ = 1.
It is however more convenient to consider

ε(A) = ln ||ρTA||, (2.93)

which is called entanglement negativity. While the entanglement negativity is an
entanglement monotone, it is strictly speaking not an entanglement measure since
it does not reduce to the entanglement entropy for all pure states.

Let us empathize that there exist numerous other entanglement measures. We
focus on the entanglement negativity because it is calculable and, as we later see,
has a holographic dual.

2.5.2 Holographic Entanglement Entropy

When considering entanglement in AdS/CFT, one considers the entanglement in a
field theory. Here, the Hilbert space can be written as a tensor product

H = ⊗
~x∈Rd−1

H~x.

Therefore, it is natural to split the system into parts by considering a region A and
split the Hilbert space into degrees of freedom living on A and degrees of freedom
living on the complement Ac 25

H = HA ⊗HAc .

The surface splitting this regions is called entangling surface ∂A. This decomposition
is shown in Figure 2.3. We can now restrict our attention to the degrees of freedom

25Splitting degrees of freedom in this way is problematic in gauge theories. There is no gauge-
invariant way to perform this decomposition.
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Ac

A

∂A

Figure 2.3: Decomposition of Space into Region A and Complement Ac.

living in A by considering the reduced density matrix

ρA = TrAc ρ. (2.94)

This reduces density matrix has an intuitive physical interpretation: it describes the
state for an observer in A without access to the complement. In this interpretation,
the entanglement entropy measures the missing information for an observer in A,
who has no access to the complement Ac.

The entanglement entropy gives insights into the entanglement structure of the
state. Therefore, it is an interesting observable to study. In particular, it can be
used as an order parameter for quantum phase transition. Calculating the entangle-
ment entropy requires knowledge of the eigenvalues of the reduced density matrix.
For systems with a finite number of freedoms, this is often a feasible problem. How-
ever, in quantum field theories we have an infinite number of freedoms the problem
becomes drastically more complex, even for free field theories. The exception from
this are two-dimensional CFTs, where the problem can be rephrased into evaluat-
ing the partition function on an n-sheeted Riemann surface [71–73] and reduces to
evaluating two-point correlation functions of particular twist fields. There do not
exist numerous results for higher-dimensional field theories, making it particularly
interesting to study the entanglement holographically.

In [25, 26], a dual for static time-independent states was conjectured, which
was later generalized to time-dependent setups [74]. An extensive review of these
holographic proposals can be found in [75]. Let us follow an heuristic argument to
derive the holographic entanglement entropy. In this discussion, we restrict ourselves
to time-independent setups. They have the special feature that the timelike killing
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z = 0 z = z?

Figure 2.4: Bulk Surface anchored on Entangling Surface.

vector uniquely extends the boundary time-slicing into the bulk. Therefore, we can
restrict ourselves to considering a constant bulk time-slice. Let us return to the
setup shown in Figure 2.3. We consider a reduced state ρA, i.e. the state for an
observer who only has access to A. This state should be dual to the gravitational
theory in an attached region of space. The entanglement entropy is the entropy of
this reduced state, i.e. it measures the number of degrees of freedom. The duality
is a one-to-one map, i.e. this number of degrees of freedom has to agree with the
number of degrees of freedom living in the dual bulk region. However, this number
is bounded in a theory with gravity: the Bekenstein entropy bound tells us that
it is bounded by area of the surrounding surface. This construction is shown in
Figure 2.4. To obtain the strictest bound, one selects the region with the minimal
boundary area. It was conjectured in [25, 26] that this bound is saturated, i.e. the
entanglement entropy can be calculated via26

SEE(B) =
A

4Gd+1
N

, (2.95a)

A = min
γA|∂γA=∂A

Area(γB). (2.95b)

This considers only surfaces γA which are homologous to A, i.e. which can be
smoothly retracted to the boundary region A. This proposal for the holographic

26 [74] generalizes this to time-dependent states. For these, one has to minimize over extremal
co-dimension two surfaces.
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entanglement entropy relates the entanglement entropy to the area of the minimal
co-dimension one surface anchored on the entangling surface ∂A. One further moti-
vation for this conjecture was that it correctly reproduces field-theory calculations
for d = 2. An explicit proof for spherical regions in CFTs was later found in [76].
For a more general setup, it was proven in [77]27.

Let us briefly discuss how this works. Our surfaces γA can be parameterized by
(d− 2) coordinates w. The embedding is xm(w). The surface area is

A =

∫
dd−1w

√
γ, (2.96a)

γαβ = gµν∂αx
µ
m∂βx

ν
m, (2.96b)

where γ is the induced metric on the surface. Therefore, finding the minimal surface
reduces to solving the variational problem with respect to the embedding xm. The
boundary conditions are given by anchoring the surface on ∂A.

Already before the proofs of the conjecture, there was already confidence in
its validity since it satisfied several properties of the entanglement entropy28. Two
prominent inequalities for the entanglement entropy are the subadditivity and strong
subadditivity. They arise when considering a region A split into two or three regions
Ai respectively and state

SEE(A) ≤ SEE(A1) + SEE(A2), (2.97a)

SEE(A) + SEE(A2) ≤ SEE(A1 + A2) + SEE(A2 + A3). (2.97b)

Holographically, these inequalities can be proven geometrically: by cutting and glu-
ing the different surfaces on the right-hand side yields non-minimal surfaces an-
chored on the regions on the left-hand side [81, 82]. Interestingly, the holographic
entanglement entropy satisfies an infinite set of inequalities, which are not neces-
sarily satisfied by the field theory entanglement entropy [83]. They carve out the
so called holographic entropy cone in the space of entropies, i.e. a subset of entropy
combinations allowing a holographic dual.

Further supporting evidence is the agreement with the UV-behavior of the en-
tanglement entropy. Due to UV-correlations across the entangling surface, the en-
tanglement entropy is UV divergent, which requires to introduce a UV cutoff ε� 1.

27See [78] for the covariant proof.
28More properties are discussed in [79,80].
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z = 0 z = z? ≈ zh

Figure 2.5: Bulk Surface for Finite Temperature.

The divergent term scales with the area of the entangling surface ∂A. On the bulk
side, this is reproduced by introducing a bulk cutoff. The AdS metric diverges at
the boundary, yielding the correct area term. For conformal theories, there is no
length-scale. Therefore, the UV-divergent term is SEE ∼ Area(∂A)/εd−2. Further-
more, let us have a look at finite temperature states in CFTs, i.e. states dual to
AdS Schwarzschild black holes. The radial component of the metric diverges at the
horizon. This results in a repulsive for the minimal surface. For a large boundary
region A, the minimal surface can be approximated by a part falling straight into
the bulk and a part along the horizon as shown in Figure 2.5. In this limit, the lead-
ing contribution to the entanglement entropy is the thermal entropy of A, which is
obtained by the part of the surface along the horizon.

As discussed previously, the entanglement entropy is only a measure for entangle-
ment for a pure state. Therefore, it in particular does not apply to thermal states.
One measure suggested for CFT states at finite temperature is the entanglement
negativity [84–88]. A holographic dual for the entanglement negativity is proposed
in [89,90]. Starting from the result for a two-dimensional CFT reduces to

ε(A) =
3

2

(
SEE(A)− Sth(A)

)
+ f

(
e−2π`T

)
, (2.98)

where f is a non-universal function which depends on the particle content. In
general, f is non-vanishing and the entanglement negativity is more than just a

50



2.5 Holography and Quantum Information

combination of entropies29. Fortunately, this non-universal contribution is sublead-
ing in the large central charge limit considered in AdS/CFT and can be neglected.
Therefore, the entanglement negativity for a two-dimensional field theory

ε(A) =
3

2

(
SEE(A)− Sth(A)

)
. (2.99)

The authors of [89, 90] conjecture that this result is as it is also valid for strip
entangling regions in higher dimensions. The entanglement negativity may also be
expressed in terms of the mutual information, which is defined as

I(A : B) = SEE(A) + SEE(B)− SEE(A ∪B). (2.100)

The complement for a strip can be split into two parts as shown in Figure 2.6. Using
this, the holographic entanglement negativity can be expressed as

ε(A) =
3

4
(I(A : B1) + I(A : B2)) =

3

2
I(A : Bi) for i = 1, 2. (2.101)

The mutual information is an upper bound on the correlations between two regions.
The connected correlation function for two observables OA, OB acting on A and B
respectively is bounded by [91,92]

I(A : B) ≥ 1

2|OA|2|OB|2
(〈OAOB〉)2.

Holographically, the mutual information between two regions can vanish. However,
one has to keep in mind that the Ryu-Takayanagi proposal works applies to classical
gravity, i.e. it only captures the leadingN contribution. Considering quantum effects
on the gravity side, one obtains subleading terms in N which result in a positive
mutual information [93]30.

Let us empathize that this proposal for the entanglement negativity is a purely
holographic proposal. In general, the entanglement negativity is not simply given
in terms of mutual information or entanglement entropies. In particular, we saw

29This non-universal part arises from four-point functions in the theory and depends on the
detailed field content of the CFT.

30In quantum information, it can be shown that I = 0 only happens for product states
ρA∪B = ρA ⊗ ρB . If these states have a holographic duals, they are disconnected. One way to see
this is to consider correlation functions of operators with large scaling dimension in the geodesic
approximation, where the bulk-distance have to become infinite when the mutual information goes
to zero, see Section 3.1.1.
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A

B1

B2

`

L

L

z = 0

Figure 2.6: Construction for Entanglement Negativity.
Consider a strip A with width `. The complement can be split into two strips
B1 and B2 with width L → ∞. The mutual information I(A,Bi) is calculated
holographically using minimal surfaces.

that in two-dimensional CFTs the entanglement negativity contains a non-universal
term [84–86]. Such a term depends on the detail field content. Therefore, such a
term could not depend solely on the geometric of the gravity dual. Fortunately, this
term is subleading in the large central charge limit, which is exactly the limit we
consider in AdS/CFT.

2.5.3 Complexity

The success of the holographic entanglement entropy sparked the interest in consid-
ering holography from a quantum information point of view [38,41,94]. In particular,
it was noted that not everything is captured by the entanglement entropy. When
considering a reduced density matrix ρA, the entanglement entropy

SEE = −Tr ρA ln ρA = −
∑

λi lnλi

only depends on its eigenvalues λi. Therefore, also other quantum information
measures are of interest.
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2.5 Holography and Quantum Information

One interesting measure is the notion of complexity, which measures how difficult
it is to construct a state. To define such a measure, we first have to fix some implicit
assumptions. The first one is the state we are starting from: the reference state |R〉.
To this we apply unitary operators to construct the desired state. Therefore, we can
write our state as

|ψ〉 = U |R〉 . (2.102)

Furthermore, one has to assign a notion of difficulty to operators. This is done by
considering a gate-set {µi} of universal gates and counting how many of these we
need to construct an operator. This cannot be achieved exactly, but in a certain
error tolerance ε. Therefore, the complexity C of an operator is the minimal number
of gates in the circuit constructing it

U ≈ µ1 . . . µC.

After assigning this notion of difficulty to an operator, it is straight-forward to define
a notion of difficulty for states: the complexity of a state is defined as the minimal
number of gates to construct it from the reference state

|Ψ〉 ≈ µ1 . . . µC|R〉.

Equivalently speaking, it is the minimal complexity of operators U satisfying (2.102).
Nielsen formulated the problem in a different way [95–97]. Instead of applying

discrete gates step by step, the unitary operator is implemented continuously

dU(s)

ds
= −iH(s)U(s),

where s parameterizes the path in the space of unitaries which begins at U(0) = 1

and ends at U(1) = U . This removes the necessity of an error tolerance. Assigning
a difficulty to the infinitesimal steps is done by imposing a Finsler geometry on the
tangent space where H(s) lives. For this, a cost function F (H) with the following
properties is assigned:

• It is subadditiv: F (H1 +H2) ≤ F (H1) + F (H2).

• It is positive homogeneous: F (λH) = λH for λ ≥ 0.

• It is positive definite.
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Therefore, the length of the path U(s) is

1∫

0

dsF [U ].

In this framework, finding the optimal circuit reduces to finding the optimal geodesic.
Therefore, the complexity of an operator U is

C = min
U(0)=1,
U(1)=U

1∫

0

ds F [U ] (2.103)

While complexity is a natural measures for quantum computers and discrete
qubits, the field theory definition is not that straight forward. The group of unitary
operators in this case is infinite dimensional. Furthermore, it is not know what cost
functions and reference state are appropriate.

What does this has to do with holography? Susskind studied extremal volume
slices to probe inside the black hole. He found that their volume change linearly for
late times in the two-sided AdS black holes, This linear increase in time is known
for complexity, which provoked Susskind to conjecture that volume of the extremal
slice is proportional to the circuit complexity [40,42,98]

C =
V

GNL
, (2.104)

where GN is the Newton constant and L the AdS radius31. V is the maximal volume
of a spacelike slice anchored on the boundary time slice. The proposal is known as
complexity = volume proposal. The reasoning behind using extremal spatial slices is
that for spacetimes without timelike killing vector, there is no unique way to extend
the boundary equal time-slice into the bulk. Considering maximal volume grands a
unique covariant way to do this.

For completeness, let us mention that there is also a competing proposal: it
relates the complexity to the gravitational action evaluated on the Wheeler-DeWitt

31For the cases we consider, the length-scale in the denominator will be the AdS radius. However,
that is not the case in general.
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(a) Isometries. (b) Disentanglers. (c) Combination.

Figure 2.7: Building Blocks of Tensor Networks. Isometries implement coarse
graining by mapping two spins to one effective one. To correctly coarse-grain all
short-range correlations, one has to apply disentangler on neighboring spins which
go into different isometries.

patch [47,48]

C =
I

π~
, (2.105)

This is known ad complexity=actions proposal. At first, this expression was not well
defined since it requires additional boundary terms to be added to the action, but
the form of these boundary was is known by now [99]. Both holographic proposals
are only conjectures: it is not known whether they really correspond to circuit
complexity as known from quantum information. Even if they do, the corresponding
cost function and reference state are unknown. In this thesis, we focus at the volume
proposal for the holographic complexity. As discussed in the next section, this is
analogous to the notion of complexity in tensor networks.

2.5.4 Tensor Networks

As discussed in Section 2.5.3, there are various open question about the realization
of field theory complexity. There is the question of finding an appropriate set of
gates, an appropriate cost function and an appropriate reference state. Furthermore,
considering complexity for mixed states and particular for reduced states is not well
defined.

Therefore, let us approach complexity from a different perspective: tensor net-
works [43–46]. Tensor networks are a method in many-body physics to approximate
quantum states. They allow efficient computational treatment and a pictorial rep-
resentation of states in terms of a quantum circuit. We focus on a special type of
tensor network: multi-scale renormalization ansatz (MERA). Considering a discrete
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lattice width n lattice points, a quantum state is of the form

|T 〉 =
∑

µ1,...,µn

Tµ1,...,µn|µ1〉 ⊗ · · · ⊗ |µn〉. (2.106)

The basis of the Hilbert space at the kth point is written as |µk〉 with µk =

1, . . . , dim(Hk). The idea is to start with this UV state and coarse-grain the tensor.
This coarse graining operation is implemented by isometries. The lattice points
are grouped in blocks of size two on which the isometries act to describe them by
one effective degree of freedom, see Figure 2.7a. The idea is to start with a lattice
of size n and apply a layer of isometries. This reduces the number of points by a
factor of two. This is done repeatedly until one ends with one point. The full UV
state then is encoded in the used isometries. This results in a tree-like structure as
shown in Figure 2.8a. However, a tensor network like this does not appropriately
simplify the state, as it does not remove all short range correlations. This makes
describing the quantum state in terms of the isometries inefficient. The reason is
short-range entanglement between different blocks. It has to be removed by acting
with disentanglers on neighboring points which are not contained in the same coarse
graining block, see Figure 2.7b and Figure 2.7c. For simplicity, the disentanglers are
not drawn explicitly in the following.

The tensor network approach has similarities with AdS/CFT. One starts with
a field theory state and constructs a structure in an additional direction. In both
pictures, this additional direction has the interpretation of an energy scale. It is
shown that MERA can be understood as a discrete version of AdS/CFT and repro-
duces the pure AdS geometry [100, 101]. The layer number in MERA is related to
the radial coordinate in AdS by

u ∝ log
(z
ε

)
.

The approach to obtain MERA for a continuous system is called continuous MERA
(cMERA). It can be used for more general setups as AdS/CFT to obtain a geometric
dual, see [102]. Entanglement entropy in tensor networks is determined by the
minimal cut-surface. This is the discrete analogue of the Ryu-Takayanagi surface.
The area of the surface is replaced by the number of lines one has to cut.

Such a tensor network can be interpreted as a circuit constructing the vacuum
wave-function. For this, ancillary spins are added to promote the isometries to
unitaries. Therefore, the network is the circuit constructing the vacuum state from
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2.5 Holography and Quantum Information

(a) TN with Isometries. (b) TN as Constructive Circuit.

Figure 2.8: Tensor Network.

an unentangled reference state, This gives tensor network an intuitive notion of
complexity: they represent a circuit synthesizing the wave function from a simple
(i.e. unentangled) reference state. The complexity of the circuit is measured by
the minimal number of tensors required. Therefore, every network gives an upper
bound on the complexity of the state. An optimized circuit then should reproduce
the complexity of the state. Therefore, MERA does us also give some intuition about
subregion complexity. The minimal-cut surface used to determine the entanglement
entropy splits the circuit into two parts. The subregion complexity measures the
complexity of the part connected to the subregion.

Connecting this to field theory, a quantum state is constructed using the Eu-
clidean path integral. For the vacuum state, this is shown in Figure 2.9a. Optimiz-
ing this circuit yields MERA as shown in [103]. This approach can also be applied
to finite temperature state. For finite temperature, the Euclidean time-direction
is finite and we have two open boundaries. Using MERA to optimize this circuit
starting from both boundaries results in two MERA networks being ‘glued together’
by bridge tensors. In particular, the tensor layers in the UV are identical to the
vacuum tensor network. The bridge tensor entangle both sides and are responsible
for the thermal spectrum of the state. There is diverse discussion on the exact form
of these bridge tensors [100,101,104,105], but it is not important to gain qualitative
intuition. This network can be understood as the MERA network dual to a spatial
slice of the two-sided AdS Schwarzschild black hole. The bridge corresponds to the
horizon. The intuition is that the bridge layers growth over time, see Figure 2.10a.
This corresponds to the linear growth of the wormhole over time.
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(b) Thermofield Double State.

Figure 2.9: Discretized Path-Integral.
The round dots represent the open indices. The rectangular ones the fixed-point
tensors.

(a) Growing Bridge Layer.

Figure 2.10: MERA Network for a Thermal State.
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Chapter 3

Non-Local Observables
at finite Temperature

One approach to study the emergent geometry and make contact with field the-
ory observables is using the field-operator-map (see Equation (2.75) and Equa-
tion (2.76)) and study the operator dual to the metric, which is the stress energy
tensor of the CFT. The expectation value of the field theory stress energy tensor
determines the asymptotic behavior of the dual geometry. This is the most intuitive
approach from the field theory perspective: expectation values are natural observ-
ables in the field theory and the GKP-Witten relation (2.77) allows for an explicit
mapping to gravity quantities. In this work, I follow a different approach motivated
from a quantity that is natural to consider on the gravity side: extremal surfaces
anchored on the boundary. These assign a unique minimal1 area to given boundary
conditions in the CFT in a covariant manner. These extremal surfaces probe the
geometry of the gravitational dual along their support. The derivation of the dual
field theory quantities does not follow systematically from the partition functions
for these non-local objects. We already get to know one observable corresponding
to minimal surfaces: in Section 2.5.2 we saw that the holographic dual of the entan-
glement entropy is a co-dimension one surface in a constant time-slice. This is not
the only entry of the AdS/CFT dictionary referring to extremal surfaces. A second
example is the Wilson loop expectation value. This gauge-invariant observable is as-
sociated with the phase factor arising for a probe quark which is parallel transported
along a closed loop. Holographically, the Wilson loop expectation value is related
to the minimal area of dimension two surfaces anchored on the closed loop [106]. A
third observable related to extremal surfaces is the two-point correlation function

1There are potentially several extremal surfaces, but the minimal area of these is unique.
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3 Non-Local Observables at finite Temperature

Table 3.1: AdS/CFT Dictionary for non-local Observables.

two-point function ←→ one-dimensional minimal surface,
i.e. a geodesic

Wilson loop ←→ two-dimensional minimal surface

Entanglement entropy ←→ (d− 1)-dimensional surface

for operators in the limit of large scaling dimension. Holography relates them to
the length of the bulk geodesic connecting both boundary points [107]. These three
observables are so-called non-local observables2.

In this work, I study these observables in AdS Schwarzschild geometries in general
dimension. These black hole geometries correspond to finite temperature states
of the dual field theory. In Section 3.1 the additional non-local observables are
reviewed: the two-point correlation function and the Wilson loop. Since there is
no constructive way to obtain the field theory dual of non-local objects such as
these minimal surfaces, the origins of these entries to the holographic dictionary
are diverse. Afterwards, Section 3.2 discusses the considered geometric setup. In
particular, the problem is phrased in a general fashion: I consider minimal surfaces
anchored on a strip on the boundary. The dimension of these surfaces is arbitrary
and the restriction to the cases relevant for the non-local observables is done later.
I derive closed, analytic expressions for the width of the strip and the area of the
attached minimal surface for arbitrary surface dimension. In Section 3.3, I use the
aforementioned results to obtain results for the non-local observables.

3.1 Non-Local Observables in AdS/CFT

In this section, we review the new non-local observables considered here, i.e. the
two-point correlation function and the Wilson loop expectation value. The third
observable, the entanglement entropy, is already introduced in Section 2.5.1 and
its holographic dual is presented in Section 2.5.2. These observables all correspond
to boundary-anchored minimal surfaces of different dimension on the gravity side.
Table 3.1 shows the relationship between observables and dimension.

2There has to be some caution using the terms ‘observable’ and ‘non-local’ here. The entangle-
ment entropy is not an observable in the sense of a linear operator acting on states. Furthermore,
the two-point correlation is bi-local, but since it also correspond to extremal surfaces holographic-
ally, it is often considered as non-local in this context.
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3.1.1 Two-Point Function

The first observable is the two-point correlation function

〈O(x)O(y)〉

for an operator O3. Correlation functions give insights into how different points in
space are correlated. This can be seen by understanding the two-point correlation
function as the overlap of two states: the state obtained by acting with O(x) on the
vacuum state and the state obtained by acting with O(y) on the vacuum state.

Holography relates the generating functional of the correlation functions to the
classical gravity action Equation (2.77). This relates the two-point correlation func-
tion for an operator O to the correlation function of the dual field ϕ. The exact
prescription is [108]

〈O(t, ~x)O(t′, ~y)〉 = lim
ε→0

ε−2∆〈ϕ(bx(ε))ϕ(by(ε))〉, (3.1)

where the bulk-points bx(ε) and by(ε) approach the boundary points (t, ~x) and (t′, ~y)

respectively in the limit ε → 0 (see also [108]). For a general operator O one
therefore has to calculate the two-point correlation function on the gravity side.
As conjectured in [107], the two-point correlation function can also be obtained by
evaluating the path integral

〈ϕ(x)ϕ(y)〉 =

∫
DP exp

(
i∆ · L(P)

L

)
, (3.2)

where x,y are bulk-points and the integral is over all paths P connecting these
points4. L is the proper length of the path in the given geometry. Here, the con-
ventions are in a way that spacelike geodesics have positive imaginary length. This
alternative expression for the two-point correlation function is obtained by demand-
ing that it is a Green’s function to the equation of motion and solving this dif-

3What we consider here is the connected two-point correlation function 〈O(x)O(y)〉conn.. It is
obtained from the ordinary one via

〈O(x)O(y)〉conn. = 〈O(x)O(y)〉 − 〈O(x)〉〈O(y)〉.

The appropriate generating functional is the effective action. In AdS/CFT, the GKP-Witten
relation tells us that the effective action of the field theory is given by the classical gravity action.

4The path-integral measure is not specified as this expression is only used in the saddle-point
approximation.
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ferential equation in the WKB approximation, i.e. in the semi-classical limit [109].
Furthermore, if one considers an operator with large scaling dimension ∆, we can ap-
proximate the path-integral by evaluating the integrand at the saddle-point, i.e. we
only have to find the minimal path connecting x and y. In this limit, the two-point
correlation function of the field ϕ reduces to

〈ϕ(x)ϕ(y)〉 = exp

(
−∆ · A

L

)
, (3.3)

where A is the length of the connecting geodesic. Combining these expressions yields

〈O(t, ~x)O(t, ~y)〉 = lim
ε→0

ε−2∆ exp

(
−∆ · A(ε)

L

)
(3.4)

for the CFT two-point correlation function.

Hence, the two-point correlation function for an operator O with large scaling di-
mension ∆ is related to the length of the bulk-geodesic connection the two boundary
points.

3.1.2 Wilson Loop

The second observable considered in this work is the Wilson loop expectation value
(see [110] for a review). The theories we consider in AdS/CFT are gauge theories,
therefore we in particular have a gauge field Aµ and a gauge symmetry. For the
fields transforming in the fundamental representation of this symmetry, there is a
well-defined notion of parallel transport along a path C

W (C) = P exp

∫

C
dxµAµ, (3.5)

where P is the path-ordering operator. This acts on fields Ψ in the fundamental
representation of the gauge group, i.e. which source the gauge field. A field Ψ(x)

being parallel transported from x to y transforms as a field at y,

Ψ(x)→ U(x)Ψ(x),

W (C)Ψ(x)→ U(y)W (C)Ψ(x).

Therefore, the phase factor W (C) transforms in the adjoint representation for a
closed loop C. A gauge-invariant observable is obtained by considering the trace of
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∆x

∆t
x

t

Figure 3.1: Rectangular Wilson loop corresponding to a Quark-Antiquark Pair.

this expression, i.e.

W(C) =
1

N
Tr

(
P exp

∮

C
dxµAµ

)
. (3.6)

Therefore, this Wilson loop expectation value is proportional to the phase factor
associated to the parallel transport of a particle in the fundamental representation
(e.g. a quark) along a closed path. The particle is a probe particle and does not
backreact on the gauge-field, i.e. it is assumed to have infinite mass.

The Wilson loop expectation value can be used an order parameter e.g. for
confinement. Of particular interest for this is to consider a path describing a quark-
antiquark pair. The corresponding path is shown in Figure 3.1: a rectangle with
width ∆x in one spatial direction and width ∆t → ∞ in the time direction. This
corresponds to a quark-antiquark pair of constant distance ∆x being created at
t = −∞ and being annihilated at t = ∞. Using this configuration, the quark-
antiquark potential for a probe quarks in distance ∆x is

Vqq̄ = − lim
∆t→∞

ln 〈W〉
∆t

. (3.7)

The behavior for large separation, i.e. for large ∆x, determines whether the potential
is confining or not. In a non-confining theory, the potential converges as

lim
∆x→∞

Vqq̄ ∝ ∆x0 + subleading terms .

In contrast, a confining theory has a potential grows with separation ∆x as

lim
∆x→∞

Vqq̄ ∝ ∆xa with a ≥ 1 .
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Let us consider examples if this. For a confining theory with a constant force between
quark and anti-quark, the potential is linear in the distance, i.e.

Vqq̄ ∼ σ∆x,

where ∆x is the tension. This tension introduces a length-scale. In contrast, a scale
invariant theory only allows

Vqq̄ =
α

∆x
,

where α is a dimensionless constant. In four dimensions, this is the Coulomb po-
tential.

In AdS/CFT, the relevant Wilson loops are the supersymmetric version of Equa-
tion (3.6). For these, also the compact space comes into play. How can we calculate
Wilson loops expectation values holographically? To consider Wilson loops, one has
to introduce probe quarks. However, the standard fields considered in AdS/CFT
arise from a stack of branes deep in the bulk. Therefore, all of the field theory
fields arise from open strings between these branes and transform in the adjoint
representation of the gauge group. To obtain fundamental degrees of freedom, one
has to have a different brane where strings can end as shown in Figure 3.2. The
fundamental degrees of freedom arise from strings with one end on the stack of
branes and one end on the probe brane. The distance between the stack of branes
and the additional brane is related to the quark mass. If we consider probe quarks,
i.e. infinitely heavy quarks, the distance is infinite and the probe brane is at the
boundary. The action of these strings is given by the Nambu-Goto action

SNG =
1

2πα′

∫
dτdσ

√
| det gµν∂χxµ∂βxν |,

=
1

2πα′
A, (3.8)

and consequently proportional to the volume spanned by these branes. As shown
in [106], the holographic dual of the Wilson loop expectation value is

〈W(C)〉 = exp (−SNG) . (3.9)

Of particular interest is to consider the rectangular temporal Wilson loop corre-
sponding to a quark-antiquark pair. Using the holographic proposal, the potential
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N

Figure 3.2: Flavor Branes in AdS/CFT.

is

Vqq̄ = − lim
∆t→∞

ln 〈W〉
∆t

= − lim
∆t→∞

SNG
∆t

. (3.10)

The result is UV-divergent, i.e. it diverges as we take the bulk cutoff ε to zero. This
divergent term is due to the infinite mass of the quark. After deducing the mass
terms from the potential [111], the renormalized quark-antiquark potential is

Vqq̄ =
SNG

˜̀
− L2

πα′ε
,

=
A

2πα′ ˜̀
− L2

πα′ε
(3.11)

where A is the minimal area of the attached two-dimensional surface.

3.2 Results for extremal surfaces at finite temperature

I derive the minimal area of boundary anchored extremal surfaces in this section.
Since the non-local observables reviewed in the previous section are dual to minimal
surfaces of different dimension, this allows a combined treatment of all three of
them. First, I follow the usual method to determine extremal surfaces in geometry.
The results are integral expressions. These can be expressed as power series, as
was done for minimal surfaces of specific dimensionality already in [112]. Using this
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groundwork, I write these power series as generalized hypergeometric functions and
find closed, analytic expressions.

We consider a CFT state in d dimensions at finite temperature. The geometric
dual is described by planar AdS Schwarzschild [113, 114] with a horizon at radial
position zh (see Equation (2.7))

ds2 =

(
L

z

)2 (
−b(z)dt2 + d~x2 + b(z)−1dz2

)
, (3.12a)

b(z) = 1−
(
z

zh

)d
. (3.12b)

The temperature of the dual field theory is

T =
d

4πzh
(3.13)

and density of the thermal entropy is

s =
1

4GN

(
L

zh

)d−1

=
Ld−1

4GN

(
4π

d

)d−1

· T d−1. (3.14)

Furthermore, the energy density is

〈Ttt〉 =
(d− 1)Ld−1

16πGzhd
, (3.15)

which follows from the asymptotic falloff of the metric [115].

As reviewed in the previous section, the AdS/CFT dictionary relates the two-
point correlation function, the Wilson loop expectation value and the entanglement
entropy to one-, two- and (d − 1)-dimensional surfaces on the gravity side respec-
tively. For the entanglement entropy, the considered surfaces are extremal surfaces
are anchored on an equal time slice. The metric of AdS Schwarzschild is static,
which allows to restrict the attention to a constant time slice and calculate the min-
imal surface. Motivated by this, my work focuses on non-local observables dual to
minimal surfaces in this constant time-slice, as these can be calculated using a simi-
lar procedure as for the entanglement entropy. Therefore, we consider the two-point
correlation function for two spacelike separated points and the spatial Wilson loop
expectation value.

After having specified the gravity dual we consider, I still have to specify how
the minimal surfaces are anchored on the boundary. For the two-point correlation
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A`

z = 0

Figure 3.3: Boundary Region and associated Bulk Surface.
The strip has the width ` in direction x1 and length ˜̀� ` in the directions xi with
i = 2, . . . , n. The remaining directions (i.e. xj with j = n + 1, . . . , d − 1) are not
shown.

function this is trivial: it depends on two-points, i.e. the boundary of a line. The
Wilson loop expectation value depends on the closed path (i.e. the boundary of a
closed two-dimensional surface) considered, whereas the entanglement entropy on
the entangling surface (or equivalently on the entanglement region). In this work,
I consider a strip on the boundary. The width in one spatial direction, which is
without loss of generality x1 = x in the following, is `. The length ˜̀ in the remaining
spatial directions is much larger. Figure 3.3 shows this configuration. The advantage
of this setup that the metric is independent of the spatial coordinates. The transverse
directions only yield the transverse volume as an overall factor. The whole problem
can be phrased as finding geodesics in a conformally equivalent metric, as discussed
in [116, 117]. Furthermore, the metric does not depend on the coordinate x, which
results in a conserved quantity along the geodesic.

To summarize, I consider the two-point correlation function for two points of
distance `, the Wilson loop expectation value for a rectangular path and the entan-
glement entropy for a spatial region bounded by two parallel hyperplanes of distance
`. In the considered limit `� ˜̀, the length of the strip appears as an factor of ˜̀ or
˜̀d−2 for Wilson loop and entanglement entropy respectively.

Qualitative aspects of extremal surfaces anchored on strip geometries are studied
in [118]. In particular, it is shown that for fixed spacetime dimension d, higher-
dimensional surfaces reach deeper into the bulk. This implies that the holographic
entanglement entropy is the non-local observable probing deepest into the bulk.
Furthermore, these extremal surfaces cannot cross the horizon, but can reach arbi-
trarily close. This happens because the horizon acts as a potential wall pushing the
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0 `
2

− `
2

x

z

z?

x(z)

Figure 3.4: Minimal Bulk Surface.
The strip has the width ` in the spatial direction x. The (n− 1) remaining spatial
directions are not shown, since the shape of the surface is independent of these
coordinates.

minimal surfaces away. Therefore, the radial position of the turning point of the
minimal surface lies in the range

0 ≤ z? < zh.

In the following, I present my results for the area of a minimal surface of general
dimension. It is obtained in a closed form involving generalized hypergeometric
functions. While the results do not simplify further, various well-known properties of
these functions (such as known derivatives, indefinite integrals and transformations)
make properties of the result easier accessible. I use one of these properties to
examine the high-temperature/large-width limit closer and derive a closed form for
the leading subleading contribution. Since this term depends on the whole bulk
metric, it can not be derived from a simple approximation as is possible for the
leading contribution.

3.2.1 General Formulation of Problem

In this section, I derive the minimal area of bulk surfaces attached to strips on the
boundary of (d+1)-dimensional AdS Schwarzschild. Figure 3.3 shows the boundary
region: a strip with width ` and infinite extend in the (n− 1) transverse direction.
For a geodesic, i.e. the case n = 1, some subtleties related to logarithmic divergences
arise.

The embedding of the bulk minimal surface is shown in Figure 3.4. The trans-
verse directions are not shown, since the surface is translational invariant in these
directions. Consequently, the only relevant spatial direction is x1 = x. Following
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3.2 Results for extremal surfaces

standard procedure, the minimal surface is parameterized by the radial direction z
and the (n− 1) transverse direction. The integration in these transverse directions
yield an overall factor of ˜̀n−1. The turning point of the minimal surface is at radial
position z?. The area of the surface can therefore be written as a one-dimensional
integral

A = 2Ln ˜̀n−1

z?∫

ε

dz z−n

√
1

b(z)
+ x′(z)2, (3.16)

where x(z) is the embedding of the surface. The factor of two arises because we
obtain the same length for the left (x′ > 0, x < 0) and the right (x′ < 0, x >

0) branch. As empathized by [116, 117], the minimal surfaces can be treated as
geodesics in an auxiliary spacetime

ds2 =

(
L

z

)2n(
1

b(z)
dz2 + dx2

)
.

At this point, the advantage of considering a strip emerges: the metric is inde-
pendent of the spatial coordinates. This implies that along the minimal surface, the
quantity

x′(t)

zn
1√

1
b(z)

+ x′(z)2
= ± 1

z?n
(3.17)

is conserved. The sign is for the left and the right branch respectively. This con-
served quantity is expressed in terms of the radial position of the turning point by
considering the limit z → 0. Therefore, the extremal embedding is determined by
the differential equation

x′(t) = ±
(
z

z?

)n
1√
b(z)

1√
1− (z/z?)

2n
. (3.18)

The sign depends on whether the left or the right branch of the surface is considered.
This is equivalent to

(
∂z

∂x

)2

= b(z)

((z?
z

)d
− 1

)
= −Veff

with the effective potential Veff. This helps to understand why these extremal sur-
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faces cannot cross the horizon, as discussed in [118]: assuming that the turning point
of the minimal surface is inside the horizon at radial position z? > zh, there is a
range zh < z < z? where the potential becomes positive and there exists no solution
to this differential equation. Therefore, extremal surfaces cannot cross the horizon
and we have z? < zh. The whole spacetime outside the horizon is accessible, i.e. we
can reach arbitrary close to the horizon with minimal surfaces.

Since we are not interested in the explicit embedding, this differential equation
does not have to be solved explicitly. Instead, it can be used to obtain an integral
expression for the minimal Area A. The resulting expression for the minimal area
is

A = 2Ln ˜̀n−1

z?∫

ε

dz z−n
1√

1− (z/zh)
d

1√
1− (z/z?)

2n
. (3.19a)

This expresses the minimal area in terms of the turning point z?. The relevant field
theory parameter is the width of the strip `. It can be expressed as

` = 2

z?∫

0

dz |x′(z)| = 2

z?∫

0

dz

(
z

z?

)n
1√

1− (z/zh)
d

1√
1− (z/z?)

2n
. (3.19b)

The difficulty integrating these expressions arises from the appearing square roots5.
This expression shows that higher-dimensional surfaces reach deeper into the bulk:
increasing n while keeping the turning point z? fixed increases the denominator and
hence decreases the integrand and the width6. Therefore, the same turning point
corresponds to a smaller width for a higher-dimensional surface.

These integrals can be written as power series as derived by [112]. First, both
square roots are expressed as power series as follows from their representation as

5A closer analysis shows that these terms are of the form

√
1− σ−1

, σ ≤ 1

These can be expressed as hypergeometric functions 1F0 (1/2; ;σ) (see Equation (B.12a)) and may
be expressed as a power series in σ.

6This can be seen by writing the integral as

` = 2

z?∫

0

dz
1√

1− (z/zh)
d

1√
(z?/z)

2n − 1
.
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hypergeometric functions, see (B.1a) in the appendix. These power series are abso-
lutely convergent and it is possible to exchange summation and integration. After
simplification, the area can be written as power series7

A =
2Ln

n− 1

˜̀n−1

εn−1
+

√
πLn

n

˜̀n−1

z?n−1

∞∑

m=0

1

m!

(
1

2

)

m

(
z?
zh

)mdΓ
(
md−n+1

2n

)

Γ
(
md+1

2n

) (3.20a)

for n 6= 1 and as

A = 2L ln

(
2z?
ε

)
+
√
πL

∞∑

m=1

1

m!

(
1

2

)

m

(
z?
zh

)md Γ
(
md
2

)

Γ
(
md+1

2

) (3.20b)

for n = 1 The analogous procedure can be applied to the width of the strip, resulting
in

` =
z?
√
π

n

∞∑

m=0

1

m!

(
1

2

)

m

(
z?
zh

)md Γ
(

1
2n

(md+ n+ 1)
)

Γ
(

1
2n

(md+ 2n+ 1)
) . (3.20c)

A review of hypergeometric functions and Pochhammer functions (a)p can be found
in Section B.1 of the appendix. The results in [112] focused on the cases n =

1, 2, d − 2, which my calculation generalizes to general n, i.e. general dimension of
the extremal surface.

How can these power series be simplified? In a generalized hypergeometric func-
tion or rather their power series representation, the ratio of consecutive coefficients
cm and cm+1 have a certain form: they have to be a rational function of m, i.e.

cm+1

cm
= u · P (−m)

Q(−m)

1

m
,

where P and Q are polynomial functions. As discussed in Equation (B.4), the roots
of P and Q correspond to numerator and denominator parameter of the resulting
hypergeometric function respectively and u is the argument of the hypergeometric
function. It is directly obvious that the coefficients of the power series derived
in (3.20) do not have correct form. The problem lies in the denominator 2n appearing
in the Gamma functions. However, the ratio between the coefficients cm and cm+2n

has the correct form for generalized hypergeometric functions. Therefore, I am able

7The result is in terms of a double sum. One of the sums simplifies to a hypergeometric function
at unit argument8. This hypergeometric function is finite at unit argument and simplifies in terms
of Gamma functions, see Equation (B.7).
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3 Non-Local Observables at finite Temperature

to construct generalized hypergeometric functions from the power series derived
in (3.20) by reordering them. This is allowed because these series are absolutely
convergent for z? < zh. The reordering is done by redefining the index of summation

m = ∆m+ 2n · δm, δm = 0, . . . ,∞, ∆m = 0, . . . , 2n− 1.

δm is the quotient with respect to 2n and ∆m is the remainder. Using this, I split
the series into (2n) series which in the following are expressed as hypergeometric
functions. ∆m labels the different series, whereas δm becomes the new index of
summation. However, it is not always necessary to split the original series into (2n)

ones. If the greatest common denominator between 2n and d is larger than one,
less hypergeometric series are required to express the result. Incorporating possible
simplifications, the redefinition of the index of summation reads

m = ∆m+
2n

χ
δm, χ = gcd(2n, d) ∈ N, (3.21a)

δm = 0, . . . ,∞, ∆m = 0, . . . ,
2n

χ
− 1. (3.21b)

This performs the replacement

∞∑

m=0

(· · · ) −→
2n
χ
−1∑

∆m=0

[
∞∑

δm=0

(· · · )
]
.

Since all of these sums are absolutely convergent in the argument range considered,
this reordering is allowed and does not change the result.

For the area, the coefficients of the series are

ĉδm = cm
∣∣
∆m+ 2n

χ
δm

with cm =
1

m!

(
1

2

)

m

(
z?
zh

)mdΓ
(
md−n+1

2n

)

Γ
(
md+1

2n

) .

The ratio we are interested in is

ĉδm+1

ĉδm
=

(
z?
zh

) 2nd
χ
δm Γ

(
1
2

+ ∆m+ 2n
χ
δm+ 2n

χ

)

Γ
(

1
2

+ ∆m+ 2n
χ
δm
)

Γ
(

1 + ∆m+ 2n
χ
δm
)

Γ
(

1 + ∆m+ 2n
χ
δm+ 2n

χ

)

×
Γ
(

∆md−n+1
2n

+ d
χ
(δm+ 1)

)

Γ
(

∆md−n+1
2n

+ d
χ
δm
)

Γ
(

∆md+1
2n

+ d
χ
δm
)

Γ
(

∆md+1
2n

+ d
χ
(δm+ 1)

) . (3.22)
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χ is the greatest common denominator of d and 2n, hence both 2n/χ and d/χ are
integer numbers. As we see, the trick of summing over δm instead of m results in
these the arguments of the numerator and denominator Gamma functions differing
by integer values. Consequently, the Gamma function can be rewritten as products

ĉδm+1

ĉδm
=

(
z?
zh

) 2nd
χ
δm 2n/χ−1∏

j=0

(
(1

2
+ ∆m+ 2n

χ
δm+ j)

(1 + ∆m+ 2n
χ
δm+ j)

)
d/χ−1∏

k=0

(
∆md−n+1

2n
+ d

χ
δm+ k

∆md+1
2n

+ d
χ
δm+ k

)
.

Therefore, the ratio has the desired form

ĉδm+1

ĉδm
=

(
z?
zh

) 2nd
χ
δm 2n/χ−1∏

j=0

(
δm+ bj+ 1

2

δm+ bj+1

)
d/χ−1∏

k=0

(
δm+ ak− 1

2

δm+ ak

)
, (3.23)

where the parameters are

ai =
χ

2nd
(∆md+ 1 + 2ni) , bj =

χ

2n
(∆m+ j) . (3.24)

Furthermore, hypergeometric functions are normalized such that ĉ0 = 1. Careful
analysis of the coefficients therefore yields

A =
2Ln

n− 1

(
˜̀

ε

)n−1

+

√
πLn

n

˜̀n−1

z?n−1

2n
χ
−1∑

∆m=0

1

∆m!

(
1

2

)

∆m

(
z?
zh

)∆mdΓ
(
d
χ
a−1/2

)

Γ
(
d
χ
a0

)

× 2n+d
χ

+1F 2n+d
χ




1, a− 1
2
, . . . , a d

χ
− 3

2
, b 1

2
, . . . , b 2n

χ
− 1

2

a0, . . . , a d
χ
−1, b1, . . . , b 2n

χ
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(
z?
zh

) 2nd
χ


 (3.25)

for the area of the surface.

Following the same procedure, the coefficients for the width are

ĉδm = cm
∣∣
∆m+ 2n

χ
δm

with cm =
1

m!

(
1

2

)

m

(
z?
zh

)md Γ
(
md+n+1

2n

)

Γ
(
md+2n+1

2n

) .

The difference to the analog calculation for the area is the shift in the argument of
the Gamma functions. This results in

ĉδm+1

ĉδm
=

(
z?
zh

) 2nd
χ
δm 2n/χ−1∏

j=0

(
δm+ bj+ 1

2

δm+ bj+1

)
d/χ−1∏

k=0

(
δm+ ak+ 1

2

δm+ ak+1

)
. (3.26)
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Consequently, the width of the strip can be expressed as

` =

√
πz?
n

2n
χ
−1∑

∆m=0

1

∆m!

(
1

2

)
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(
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)∆mdΓ
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a1, . . . , a d
χ
, b1, . . . , b 2n
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(
z?
zh

) 2nd
χ


 . (3.27)

for the minimal area of the surface. Therefore, the results can be written in term of
2n/χ hypergeometric functions.

As mentioned above, the case n = 1 requires some subtlety when calculating the
area. The power series result in Equation (3.20a) applies for m 6= 0 and only the
m = 0 term has to be modified by using the correct logarithmic term. Therefore, the
construction above remains valid for part of the result if ∆m is shifted. Combining
this with the correct treatment of the lowest order term yields

A = 2L ln

(
2z?
ε

)
+
√
πL

2
χ∑

∆m=1

1

∆m!

(
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) (3.28)

× 2+d
χ

+1F 2+d
χ


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
 , n = 1.

3.2.2 Low-Temperature/Small-Strip Limit

The above discussed calculations started with the result as power series in the di-
mensionless parameter (z?/zh) in (3.20), as was discussed in [112]. I generalize this
discussion to general values for n. Therefore, a low-temperature/small-strip expan-
sion can be directly derived from (3.20). First, the width ` is

` =
z?
√
π

n

Γ
(
n+1
2n

)

Γ
(

2n+1
2n

)
(
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Γ
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(
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)
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)d
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(
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)2d
)
, (3.29)

which allows to express the turning point as

z? =
n`√
π

Γ
(

2n+1
2n

)

Γ
(
n+1
2n

)
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1− Γ
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) Γ
(
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)
. (3.30)
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The behavior of the area reduces to

A =
2Ln

n− 1

˜̀n−1

εn−1
+

√
πLn
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˜̀n−1

z?n−1

(
Γ
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2
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)dΓ
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Γ
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) + . . .

)
. (3.31)

Since the turning point can be expressed in terms of the width `, also the area A
can be expressed in terms of it. Keep in mind that the width is the quantity of
interest in the field theory, whereas there is no physical meaning attached to the
turning point z?. Combining the correction of the turning point with the leading
order change of A yields

A ≈ 2Ln

n− 1

(
˜̀

ε

)n−1

− Ln

n− 1

(
2
√
πΓ
(
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)
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(
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(3.32)

+
2Ln
√
πΓ
(
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(d+ 1)Γ
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2n

)
(

2
√
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)

Γ
(

1
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)
)n−1−d

· `
d+1−n ˜̀n−1

zhd
+O(T · `)1−n+2d.

The terms in first line are the result for zero-temperature. The term in the sec-
ond line yields a positive leading-order change. We postpone the discussion of the
physical interpretation of this term to a later point.

For the geodesic, one has to start with the power series result in 3.20b, which
results in

A = 2L ln

(
2z?
ε

)
+

√
πL

2

(
z?
zh

)d Γ
(
d
2

)

Γ
(
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(
z?
zh

)2d

. (3.33)

In particular, only the O(T · `)0 term differs from the n > 1 result. It can also be
obtained by taking the limit n→ 1 of (3.31) under consideration of

1

n− 1
xn−1 −→ log x.

This yields

A ≈ 2L ln

(
`

ε

)
+

2L
√
πΓ
(
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2

)

(d+ 1)Γ
(
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2

) ·
(

`

2zh

)d
+O(T · `)2d (3.34)

for the low-temperature/small-width limit of the area.
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3.2.3 High-Temperature/Large-Strip Limit

It is interesting to examine the high-temperature/large-width limit more closely.
In this limit, the arguments of the hypergeometric functions approach unity. To
understand how the hypergeometric functions behave in this limit, the difference
between the sum of the denominator parameter and the sum of numerator parameter
is relevant. Both for the area and the width, this difference vanishes, result in a
logarithmic behavior of the hypergeometric functions, see Equation (B.8) in the
appendix. Therefore, the high-temperature/large-strip limit is

A, ` ∝ ln

(
1− z?

zh

)
(3.35)

and the minimal area becomes proportional to the width in this limit.

The reason is that the minimal surface reaches far into the bulk and wraps along
the horizon as shown in Figure 3.5. This already shows the structure of the result
we can expect. The leading-order term of the area is proportional to the width of
the strip and arises from the horizontal piece along the horizon. Additional, the
vertical pieces yield a constant contribution as subleading term. The leading-order
term is already derived correctly from this approximation and only depends on the
geometry at the horizon. Following this approximation, the area of this piecewise-
smooth surface is

Adisc. = ˜̀n−1
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)
, n > 1,
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(3.36)

The authors of [112] derived an expression for the subleading term in terms of a
power series for the considered observables, i.e. for n = 1, 2, d− 1. I generalize their
calculation to general dimension n, which yields
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`
z = ε

z = zh

Figure 3.5: Rectangular Approximation of the Minimal Surface.

for n > 1. For the geodesic with n = 1 the result is
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The subleading term depends on the whole bulk geometry and is not captured
correctly by the naive approximation analyzed above.

The same method to construct hypergeometric functions may be applied to the
power series in Equation (3.37). More intuitively, I derive them using the so called
contiguous relations of hypergeometric functions, see Equation (B.11) in the ap-
pendix. The relevant property is that only two parameters appearing in the hyper-
geometric functions in the result for the minimal area differ by integer values from
parameters for the width. The relevant parameters in (3.25) and (3.27) are

a− 1
2

= a d
χ
− 1

2
− 1, a0 = a d

χ
− 1,

where the parameter on the left-hand side applies to the area and the one on the
right-hand side to the width. This allows to express part of the minimal area in
terms of the width
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While the last term has the same structure as before, there is one important dif-
ference: one parameter is shifted. Due to this shift, these hypergeometric functions
converge at unit argument, which allows for an asymptotic expansion.

As seen from the asymptotic behavior of the width (3.35), the radial position of
the turning point is identical to the radial position of the horizon up to exponentially
decaying corrections in the large ` limit. Therefore, the leading terms are
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The dots represent subleading contributions. We discussed above, that the leading
order correction at low temperature is positive. In contrast, the sign of the first
sub-leading term at high temperature is ambiguous as the parameter a− 1

2
can be

negative. Therefore, this has to be studied case-by-case.

The case n = 1 is similar. The rewritten result for the area is

A = 2L ln
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Therefore, the high-temperature/large-width behavior is described by

A = 2L ln
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In this case, the subleading term is always positive. The reason is that the parameter
a−1/2 is always positive for the considered values of ∆m.

To summarize, my results allow to derive the high-temperature/large-width limit.
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3.2 Results for extremal surfaces

In particular, it yields a closed form for the subleading term, which differs from the
naive approximation in (3.36).

3.2.4 Result in terms of Meijer G-Functions

In the last section, I presented the result in terms of hypergeometric functions
(c.f. (3.25) and (3.27)). Comparing these to Meijer G-functions (B.15) yields

` =
2πzh√

2nd
G

2n
χ
, d
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, 2n+d
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(
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(
z?
zh

) 2nd
χ

)
(3.42a)

for the width of the strip. Analogously, the minimal area can be written as
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2Ln
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â3/2, . . . , âd/χ+1/2, b̂1/2, . . . , b̂2n/χ−1/2

b̂0, . . . , b̂2n/χ−1, â1, . . . , âd/χ
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The new parameters are

âi =
χ

d
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χ

2n

(
j +

1

d

)
. (3.43a)

The convergence criterion for Meijer G-functions (B.16) shows that both expressions
diverge in the limit z? → zh, which matches our earlier observation.

Furthermore, the properties of Meijer G-functions can also be used to derive the
alternative expression which simplifies the limit z? → zh. The analog expression to
the contiguous relations for hypergeometric functions are recurrence relations (B.17)
for Meijer G-functions. These allow to write the area as

A =
2Ln

n− 1

(
˜̀

ε

)n−1

+
˜̀n−1`Ln
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â3/2, . . . , âd/χ+1/2, b̂1/2, . . . , b̂2n/χ−1/2

b̂0, . . . , b̂2n/χ−1, â0, . . . , âd/χ−1
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zh

) 2nd
χ

)
.

Expressing the result in terms of Meijer G-functions is in particular useful when
generalizing the construction of hypergeometric functions from power series expres-
sions. The whole procedure presented above depends on being allowed to reorder
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3 Non-Local Observables at finite Temperature

the original power series. Therefore, it has to be absolutely converging. In our case,
that was given for z? < zh. However, for general problems of this type that is not
always possible. If the series is no absolutely convergent, reordering changes the
result. The Meijer G-function is the analytic continuation for the hypergeometric
functions. Therefore, these Meijer G-functions are a powerful tool to tackle far more
general integral expressions. First one solves the problem in terms of hypergeomet-
ric functions for arguments where reordering is allowed. If the result is expressed
in terms of a Meijer G-function, this result as the analytic continuation also ap-
plies to arguments where the result in hypergeometric functions does not apply. In
some case, there is an alternative expression in terms of hypergeometric functions
applying for these parameters.

3.3 Results for non-local observables at finite temper-

ature AdSd+1/CFTd

After deriving the general result for minimal surfaces anchored on strips on the
boundary, it is now evaluated for a one-dimensional surface corresponding to the
two-point correlation function, a two-dimensional surface corresponding to the three-
point function and the (d−1)-dimensional surface corresponding to the entanglement
entropy.

3.3.1 Results for the Two-Point Function

As reviewed, the two-point function of an operator O of large scaling dimension ∆

is holographically dual to a bulk geodesic. Following Equation (3.4), the field theory
two-point function is given by

〈O(t, ~x)O(t, ~y)〉 = lim
ε→0

ε−2∆ exp

(
−∆ · A(ε)

L

)
, (3.45)

where ∆ is the scaling dimension and A the length of the geodesic. The UV-
divergent term of the length is completely removed and the result hence UV finite.
Furthermore, by length is divided by the AdS radius L which thereby drops out.
Therefore, the holographic results are of zeroth order of both the central charge c
and the ’t Hooft coupling λ. We are applying AdS/CFT to the large c, large λ limit
and only determine the leading term. Subleading corrections to the observables
require to consider quantum gravity and stringy corrections respectively.
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3.3 Results for non-local observables

My results for the length of the geodesic (i.e. the case n = 1) are derived in (3.27)
and (3.28). For the two sets of parameters, we can write out one set explicitly. The
remaining appearing parameters are related to9

ai =
1

2d
(∆md+ 1 + 2i) . (3.46)

For the area of the geodesic, i.e. the geodesic length, the result is
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In even spacetime dimension d, the two hypergeometric functions simplify to
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The width in terms of the turning point is

` =

√
πz?
2

Γ
(
d+2

2

)

Γ
(
d+3

2

)
(
z?
zh

)d
d+2Fd+1


a 1

2
, ... , ad− 1

2
, 3

4
, 5

4

a1, ... , ad,
3
2

∣∣∣∣∣∣

(
z?
zh

)2d


∣∣∣∣∣
∆m=1

+ 2z? d+2Fd+1


a 1

2
, ... , ad− 1

2
, 1

4
, 3

4

a1, ... , ad,
1
2

∣∣∣∣∣∣

(
z?
zh

)2d


∣∣∣∣∣
∆m=0

. (3.48a)

This can be further simplified for even spacetime dimension d to10

` = 2z? d
2

+1F d
2




2a 1
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, ... , 2a d−1
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2a1, ... , 2a d
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(
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)d

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. (3.48b)

As can be seen, some hypergeometric functions have one numerator and one denom-

9For better readability, we removed the factor χ in the definition of the parameter.
10I incorporated this simplification in the general calculation with the greatest common devisor

χ. This can also be derived from properties of hypergeometric functions.
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Figure 3.6: Result for two-point Function at Finite Temperature.

inator parameter less than the ones describing the area, while the one appearing in
the general result all had the same number of parameter. The reason behind this
is that in some cases the unit numerator parameter is identical to a denominator
parameter and cancels out.

The finite part of the geodesic length is shown in Figure 3.6 It is obtained by
removing the log ε · T term. Keep in mind that zh does not have a field theory
interpretation on its own and only the temperature T = d/4πzh is relevant. The
dashed line in the plot represent the zero temperature result

Afinite|T=0 = 2L ln

(
`

ε

)
,

which is independent of the spacetime dimension considered. It corresponds to the
power-law behavior of the correlation function

〈O(t, ~x)O(t, ~y)〉 = `−2∆ .

Let us focus on the low- and high-temperature limits. Considering the low-
temperature/small strip limit, my results in (3.48) and (3.47) easily reproduce the
known behavior in this limit known from the result in terms of a power series (3.20).
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The hypergeometric functions behave as

pFq


 . . .

. . .

∣∣∣∣∣∣
u


 = 1 +O(u),

Therefore, in this limit my results simplify to the low-temperature expansion dis-
cussed in [112]
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+O (` · T )2d

]
. (3.49)

The strong feature of my result is that it also captures the high-temperature/large
strip limit. As discussed in [112], the geodesic length in this limit takes the form

A ≈ −LAd − 2L ln (ε · T ) +
L`

zh
. (3.50)

For the two-point function, this implies

〈O(t, x)O(t, y)〉 ≈ T 2∆ exp(∆ · Ad) exp (−4π∆ · T |x− y|/d) . (3.51)

My result yields a closed analytic expression for Ad. The high-temperature limit cor-
responds to z? → zh. The hypergeometric functions appearing in (3.47) all diverge
logarithmically. However, this consideration only yields the well-known leading be-
havior. It is not possible to perform a Taylor expansion around z? = zh. Taking
derivatives of hypergeometric functions yields

dn

dun
p+1Fp


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


Since this increased the difference

Ψ =
∑

bi −
∑

ai → Ψ− n

and hypergeometric functions diverge as (1− u)Ψ, taking derivatives worsens the
divergence. Therefore, it is a non-trivial problem to perform a systematic high-
temperature expansion to high orders. In particular, the geodesic length also receives
exponentially decaying corrections, see [112]. For the subleading term however, it is
useful to consider the alternative result for the geodesic length I derived in (3.40).
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It yields
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for general spacetime dimension and simplifies to
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in even spacetime dimension. In principle, this has the same form as in (3.47) with
an additional extensive term. There is one crucial difference: one denominator pa-
rameter is shifted by +1. Therefore, Ψ is no longer zero, which was the reason for
the logarithmic divergence previously. It is now larger than zero and the hypergeo-
metric functions converge for a finite value as z? → zh. This allows to evaluate the
subleading term of A explicitely. Since the width ` diverges logarithmically in this
limit, correction to the turning point z? decay exponentially fast. The subleading
term Ad therefore reduces to
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For even spacetime dimension d, this simplifies to
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2 3 4 5 6 7 8 9 10 11

d

1

2

3

A
d

d Ad

2 3.6758
3 3.1248
4 2.6659
5 2.2836
6 1.9585
7 1.6767
8 1.4284
9 1.2067
10 1.0065
11 0.8242

Figure 3.7 & Table 3.2: Subleading Term for two-point Function at High-
Temperature.

These expressions can be evaluated using computer algebra systems. The values for
Ad for d = 2, ... , 11 are presented in Figure 3.7 and Table 3.2.

3.3.2 Comparison to the AdS3/CFT2 Two-Point Function

For two-dimensional CFTs, a closed expression for the two-point function is known
both from CFT considerations and from holographic calculations. Therefore, my
general result derived above simplifies to this expressions. Evaluation the distance
Equation (3.48b) for d = 2 yields

` = |~x− ~y| = 2z? 2F1


1, 1

2

3
2
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(
z?
zh

)2

 . (3.55)

Therefore, the hypergeometric functions only has three parameter. This hypergeo-
metric function can be expressed as areatangens hyperbolicus (see Equation (B.12b)
in the appendix)

|~x− ~y| = 2zh artanh
(
z?
zh

)
. (3.56)

In contrast to the general result, we are able to express the turning point as a
function of the distance

z? = zh tanh

( |~x− ~y|
2zh

)
. (3.57)
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Similarly, the expression for the geodesic length (3.47b) simplifies to
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As for the distance, the hypergeometric function can be expressed in terms of a
known function, in this case the logarithm (B.12c). Therefore, the geodesic length
simplifies to

A = 2L ln

(
2z?
ε

)
− L ln

(
1−

(
z?
zh

)2
)
. (3.59)

Combining these two simplifications allows to express the geodesic length in the
(field theory) distance

A = 2L ln

(
β

πε
sinh

( |~x− ~y|π
β

))
. (3.60)

Using this result to evaluate the two-point function holographically yields

〈O(t, ~x)O(t, ~y)〉 = lim
ε→0

ε−2∆ exp

(
−∆ · A

L

)
,

=

(
β

π
sinh

(
π|~x− ~y|

β

))−2∆

, (3.61)

where β = T−1. This results also applies for the holographic entanglement entropy
in in two dimensions. Therefore, this shows how my general result in Equation (3.48)
and Equation (3.47) simplifies to the known closed form expression [25,26].

3.3.3 Results for Wilson Loop

Let us turn to Wilson loops. They correspond holographically to two-dimensional
surfaces in the bulk. My result applies to spatial Wilson loops. However, the tem-
poral Wilson loop is the one related to the quark-antiquark potential and interesting
for confinement11. Considering the quark-antiquark potential can be achieved by a
double-Wick rotation: this transforms the AdS Schwarzschild into the AdS-Soliton

11Similarly to the temporal Wilson loop, the spatial Wilson loop expectation value is an order
parameter for confinement. At finite temperature, a better order parameter is the temporal Wilson-
Polyakov loop: a loop with constant spatial coordinate, which is closed in the imaginary time
direction

[
0, 1

T

]
.
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solution [119–121]

ds2 =

(
L

z

)2
(
−dt2 + b(z)dy2 +

d−2∑

i=1

dx2
i + b(z)−1dz2

)
, (3.62a)

b(z) = 1− (zΛ)d. (3.62b)

The dual CFT lives on R1,d−1 × S1, i.e. one spacetime direction is compact. The
size of the compact direction is 4πΛ/d, where Λ plays the rule of the QCD scale.
The geometry ends smoothly at radial position z = Λ−1. In particular, the theory
is confining [122]. In the IR, the compact direction can be integrated out and most
fields acquire a mass of order Λ. The resulting effective theory is a (d−1)-dimensional
pure gauge theory. The interpretation of the results in this setting is in particular
helpful for the Wilson loop: my results derived for the spatial Wilson loop apply to
the temporal Wilson loop in this geometry. The quark-antiquark potential (3.11) is
related by the area by

Vq =
A

2πα′ ˜̀
− L2

πl2sε
.

The UV-term is subtracted to remove the (infinite) mass of the quark-antiquark
pair.

Let us turn to my result for the Wilson loop, i.e. for the case n = 2. As discussed
during the calculation, the result simplifies for certain spacetime dimensions. For
the Wilson loop, this happens for spacetime divisible by two and even more for
spacetime dimension divisible by four. I define χ as the greatest common divisor
between d and 4

χ =





4 for d divisible by four,

2 for d even,

1 else

(3.63)

to incorporate these simplifications in the result. The parameters of the hypergeo-
metric functions (see Equation (3.24) for the general result) are in this case

ai =
χ

4d
(∆md+ 1 + 4i) , (3.64a)

bj =
χ

4
(∆m+ j) . (3.64b)
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Evaluating my result in Equation (3.25) for n = 2 results into
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for the potential of the potential of a quark-antiquark pair. The factor (L/ls)
2 is

proportional to λ2/γ, where λ is the ’t Hooft coupling of the field theory and γ > 0.
The distance between the quark-antiquark pair is (3.27)
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Therefore, the result can be written in terms of four hypergeometric functions, which
simplifies to two terms in even spacetime dimension and to one term in spacetime
dimension divisible by four. The results for different spacetime dimensions are shown
in Figure 3.8. The results are shown in comparison to the zero-temperature result,
which is independent of the spacetime dimension.

Again, we analyze the low- and high-temperature limit similar to the discussion
for the two-point function. For the low-temperature limit, the leading term yields
the low-temperature result

Vq = − 4π2L2

l2sΓ
(

1
4

)4

1

`

[
1 +O(`Λ)d

]
. (3.67)

The result is UV-finite since the term containing the bulk-cut off is removed. In prin-
ciple, the temperature introduces an additional length-scale in the theory and one
could also remove a finite term proportional to ˜̀T . However, the regularization has
to be chosen in such a way that the UV-behavior is temperature-independent [111].
Therefore, this renormalized potential is unique.

Since my result applies to any value for the width, it allows to examine the
high-temperature limit. The hypergeometric functions appearing in (3.65) diverge
in this limit, which results in a potential proportional to the distance. While a
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Figure 3.8: Result for Quark-Antiquark Potential at finite Temperature.

systematic expansion in inverse temperature is not possible, the properties of the
hypergeometric functions allow an alternative form of my result, which expresses
the potential as
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In this result, the divergent is contained in the width and the remaining hyperge-
ometric functions converge in the high-temperature/large-distance limit. Since the
distance diverges logarithmically in the high-temperature limit

` ∝ − ln

(
1− z?

zh

)
,

corrections to the turning point z? decay exponentially. Therefore, the high-temperature
limit can be written as

Vq =
L2Λ2

2πl2s
· `− 2κ+ · · · , (3.69)

89



3 Non-Local Observables at finite Temperature

3 4 5 6 7 8 9 10 11

d

0.14

0.16

0.18

0.20

κ

d
(
ls
L

)2 1
Λ
· κ

3 0.14010
4 0.15915

= (2π)−1

5 0.16854
6 0.17401
7 0.17753
8 0.17996
9 0.18172
10 0.18305
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Figure 3.9 & Table 3.3: Subleading Term for the Quark-Antiquark Potential.

where the leading term scales with the quark-antiquark distance `. This is the
expected behavior for the potential in a confining background. The first subleading
term is a constant and of the same form as the subtracted UV-term. Therefore, κ
can be interpreted as a (UV-finite) shift of the mass of the quark. The result for κ
is can be derived from (3.68) and yields
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The results for κ for different spacetime dimension are presented in Table 3.3 and
Figure 3.9. The results show that κ is positive12. In particular, this shows that wall
induces an increase of the effective IR quark-mass. Keep in mind that L/ls ∝ λγ

with γ > 0 and that Λ is the analog of the QCD length. For the Wilson loop
expectation value itself, the high-temperature limit is Figure 3.9 and Table 3.3.

12The results show this for specific spacetime dimensions and there is no indication of anything
drastically changing at some point.
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3.3.4 Results for Entanglement Entropy

Let us turn to our final observable: the entanglement entropy and observables related
to it. In the following, we restrict ourselves to spacetime dimension larger than
two, i.e. to the case d > 2. For the two-dimensional case, the Ryu-Takayanagi
corresponds to the geodesic considered for the two-point function. The closed form
of this results is well-known and as showed earlier a simplification of my result for
general dimension.

We saw that the entanglement entropy is proportional to the minimal area of
a (d − 1)-dimensional bulk surface. This corresponds to n = (d − 1) in our nota-
tion. Since the results simplify for even spacetime dimension, let us introduce the
parameter

χ =





2 for even dimension d,

1 else,
(3.71)

to be able to phrase the results in a general fashion.

This allows to write the width of the strip and the minimal area of the attached
surface as functions of the turning point z?. In terms of hypergeometric functions,
the width is
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and the entanglement entropy is
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Figure 3.10: Result for Entanglement Entropy at finite Temperature.

The parameters used are introduced in Equations (3.24) and reduce to

ai =
χ

2(d− 1)d

(
∆md+ 1 + 2(d− 1)i

)
, (3.73a)

bj =
χ

2(d− 1)

(
∆m+ j

)
. (3.73b)

The results for different spacetime dimensions are shown Figure 3.10. The zero-
temperature result depends on the spacetime dimension and not shown. The pref-
actor Ld−1/GN is proportional to the central charge of the theory.

If we study the low-temperature limit as discussed in Section 3.2.2, the leading
correction has the following form
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where ∆E is the energy contained in the strip region. This limit is related to entan-
glement thermodynamics [123,124]. This first law of entanglement thermodynamics
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3.3 Results for non-local observables

applies when we consider a small temperature. It yields a law analogous to the
second law of thermodynamics

TentδSEE = δE, (3.75)

which applies to any perturbation of the state. In particular, the entanglement
temperature Tent only depends on the geometry of the entangling surface and not
on the excitation, i.e. on our case, it does not depend on the temperature. From
our result, this limit can be obtained by expanding the hypergeometric functions in
terms of power series.

Taking the high-temperature limit is more involved. The generalized hypergeo-
metric functions appearing in the result (3.72) are diverging in the high-temperature
limit z? → zh. It is more convenient to work with the alternative form of the result
for the entanglement entropy as derived in (3.38)
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This can be brought to the form
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where the function C is defined as
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The divergent part of the entanglement entropy is completely contained in the term
containing the width ` explicitly. The remaining hypergeometric functions have one
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Figure 3.11 & Table 3.4: Subleading Term of the Entanglement Entropy.

denominator parameter shifted. In particular, this shift causes the hypergeometric
functions to converge to a finite value at unit argument. Furthermore, corrections
to the turning point decay exponentially in this limit.

The high-temperature limit therefore reduces to

SEE =
Ld−1 ˜̀d−2

2(d− 2)GNεd−2
+
Ld−1

4GN

˜̀d−2

zhd−2
· `
zh

+
Ld−1

2GN

˜̀d−2

zhd−2
C(1). (3.78)

The results for C(1) are shown in Figure 3.11 and Table 3.4. In contrast to the
previous observables, the subleading term in the high-temperature limit changes
sign. We see that the term is negative for field theory dimension d < 7 and positive
for d ≥ 7. To study this more closely, let us look at other measures derived from
the entanglement entropy.

Entanglement Negativity

The problem with the entanglement entropy as a measure for entanglement is that
it also measures classical correlations. In the thermal state we consider, we observed
that the entanglement entropy becomes extensive for high-temperature/large-width.
Therefore, the entanglement entropy approaches the thermal entropy and is governed
by classical correlations. A proper measure for entanglement of mixed states is the
entanglement negativity. In general, it cannot be expressed in terms of entanglement
entropies, but for holographical theories it can. For the setup considered, it reduces
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to

ε(A) =
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SEE(A)− Sth(A)

)
=

3

2
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SEE(A)− Ld−1
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˜̀d−2`

zhd−1

)
,

i.e. we subtract the thermal entropy and therefore classical correlations arising from
it. If we write our result for the entanglement entropy as expressed in Equa-
tion (3.76), the entanglement negativity is

ε = · · ·+ 3Ld−1 ˜̀d−2`
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)
, (3.79)

where the dots represent the usual UV-divergent term. We discussed previously that
the low-temperature correction to the entanglement entropy is positive and of order
O(` · T )2. This term is subleading to the extensive subtracted term of the order
O(` · T ). Consequently, the low-temperature result of the entanglement negativity
reduces to

ε =
3Ld−1

4(d− 2)GN
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(3.80)

and the leading correction is related to the thermal entropy of the considered strip.
Therefore, turning on the temperature reduces short-range entanglement. Since the
entanglement negativity is related to the mutual information (see (2.101))

ε =
3

2
I(A : Bi).

A is the strip and the regions B1 and B2 are the regions to the left (x < −`/2)
and to the right (x > `/2) of the it. The mutual information implies an upper
bound on correlations between the A and Bi. The leading temperature correction is
positive and places therefore a stricter upper bound on the correlations. The results
for the two-point functions showed a similar behavior: The leading order correction
is negative and reduces correlation (3.49). There are however to points to keep in
mind: the result for the two point function is of order O(c)0 and therefore satisfies
any bound of order O(c)1 in the large c limit. Furthermore, the result for the two-
point function applies exclusively to special operators: the one with large scaling
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dimension. The upper bound from the mutual information applies to any operator.
Let us turn to the high-temperature limit. The entanglement negativity reduces

to

ε =
3Ld−1

4(d− 2)GN

·
˜̀d−2
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3Ld−1 ˜̀d−2

4GNzhd−2
C(1), (3.81)

where C(1) is a temperature-independent constant obtained by evaluating the func-
tion defined in (3.77) at z? = zh. Therefore, an area remains as leading order term
after removing the extensive, thermal contribution from the entanglement entropy.
Keep in mind that at zero temperature, the entanglement negativity is

ε =
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,

i.e. C(1) is a temperature depending shift of the area term at finite temperature
compared to the zero temperature result. This area term arises from short-range
correlation across the entangling surface [32–34], i.e. the boundary of the strip. As
we already saw in Table 3.4, the constant C(1) changes sign depending on the space-
time dimension. For spacetime dimension d < 7, the shift is negative. Therefore,
even for large strips the entanglement entropy (and hence entanglement and cor-
relations) are reduced due to the temperature. In contrast, C(1) is positive for
d ≥ 7. Consequently, long-range entanglement is increased due to the temperature.
In particular, there has to be a transition between the ε < ε|T=0 behavior at small-
temperature/small-width and the ε > ε|T=0 behavior for high-temperature/large-
width. The size of the strip ` can also be interpreted as an inverse energy scale.
Therefore, the low-temperature limit T � `−1 corresponds to the UV where the
theory is effectively massless and the area term is given by the UV cutoff. The
high-temperature limit T � `−1 corresponds to the IR. Since the fields obtain a
thermally induced mass, this theory has a mass-gap. My result show that there is a
shift of the area term. Intuition tells us that at low-temperature, there are effectively
less degrees of freedom which should reduce short-range correlations. However, my
analytic result show an increase in short-range correlations for d ≥ 7.

The result for the entanglement negativity is shown in Figure 3.12. The results
for spacetime dimension d < 7 is always smaller than the corresponding finite tem-
perature result. In contrast, there is a transition for higher dimensions as discussed
above.
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Figure 3.12: Result for the Entanglement Negativity at finite Temperature.

Entanglement Density

Another measure derived from the entanglement entropy is the entanglement density
σ as defined by [125]. It is defined as the change of entanglement entropy per strip
volume, i.e.

σ =
1

˜̀d−2`
[SEE(`)− SEE(`)|T=0] . (3.82)

It can be understood as a generalization of the entanglement temperature (3.75) to
general states. With the previously presented result for the entanglement entropy,
the entanglement density can be written as
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Figure 3.13: Entanglement Negativity for different Dimensions.
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Since the zero-temperature result is subtracted, the result is UV-finite. Considering
the low-temperature limit, the entanglement entropy behaves as (see (3.74))

SEE =SEE|T=0 + 〈Ttt〉 `˜̀d−2 · T−1
ent︸︷︷︸

2π
d+1

`

.

Consequently, the entanglement negativity behaves as

σ =〈Ttt〉 · T−1
ent︸︷︷︸

2π
d+1

`

.

Therefore, it is linear in the width of the strip for a small entangling region. In
contrast, the entanglement density in the high-temperature limit behaves as

σ =
Ld−1

4GN

1

zhd−1
+
Ld−1

2GN

1

zhd−2`
C(1), (3.84)

where the first term is the density of the thermal entropy. Therefore, the entangle-
ment density approaches the thermal entropy. The sign of C(1) determines whether
this asymptotic value is approached from below C(1) < 1 or from above C(1) > 1.

This shows how the sign of the subleading area term determines the behavior
of the entanglement density: for low spacetime dimension the entanglement density
can approach the thermal entropy density monotonically from below, whereas for
large spacetime dimension the entanglement density reaches a maximum and then
approaches the thermal entropy from above. Therefore, the entanglement density is
a useful tool to study the area term. This area term is related to a variant of the
c-theorem [37], the so called area theorem. This theorem states that for an RG-flow
from a UV to an IR fixed point, the coefficient of the area law term has to be lower
in the IR than in the UV13. For field theories, there exist proofs for spherical regions,
for d = 3 using strong subadditivity [35] and for d ≥ 3 using the positivity of the
relative entropy [36]. The high-temperature behavior of the entanglement density
captures the area term as subleading term

σ = s−∆α
Boundary-Area

Volume︸ ︷︷ ︸
`−1

+ · · · , . (3.85)

13This is a weak c-theorem, where the term does not have to decrease monotonically along the
RG-flow.
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Figure 3.14: Result for the Entanglement Density at finite Temperature.

It is useful to look at the dimensionless quantity

∆α̂ =
T

s
∆α = −2C(1). (3.86)

Therefore, for small spacetime dimension d < 7, ∆α̂ is positive and the area term
complies with the area theorem. In contrast, for d ≥ 7, ∆α̂ becomes negative, which
results in a violation of the area theorem.

Having the coefficient ∆α̂ satisfying a c-theorem for RG-flows suggest to interpret
this quantity as a measure for the number of effective degrees of freedom at an
energy scale E ∝ `−1. Therefore, our results hint to the appearance of new degrees
of freedom in the IR for CFTs with an AdS dual for dimension d ≥ 7. Interestingly,
there is also something happening on the CFT side: there exist no superconformal
field theories in spacetime dimensions d ≥ 7 [126–128]. There also does not exist
a string theory embedding of AdS/CFT in these dimensions. Therefore, we do not
know what the dual field theory would be for these geometries. These new degrees
of freedom could also be related to the fact that non-extremal black hole approach
a two-dimensional black hole in the near-horizon limit [129, 130]. This gives rise to
an additional conformal symmetry.
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3.3 Results for non-local observables

3.3.5 Summary and Discussion

In AdS/CFT, AdS Schwarzschild black holes are dual to finite temperature states
on the CFT side. We examined boundary anchored surfaces anchored on strips of
various dimensionality. From the gravity side, these covariantly assign an area to
the considered boundary strip. The AdS/CFT dictionary relates the area of such
surfaces to different non-local observables on the field theory side: the spatial two-
point correlation function, the spatial Wilson loop and the entanglement entropy.

The previous sections present my analytic results for the area of such boundary
anchored surfaces in terms of generalized hypergeometric functions. Properties of
hypergeometric functions allow to analyze the behavior of the result. Furthermore,
the results can be evaluated using conventional computer algebra systems.

Special focus is put on the high-temperature/large-width limit. The leading
term follows trivially from the geometry at the behavior and the area is becomes
extensive. Since the hypergeometric functions diverge in this limit, it is not possible
to perform a systematic expansion in (`T )−1. However, the properties of the specific
hypergeometric functions allow to determine a closed result for the subleading term,
which is proportional to the boundary of the strip. This term is highly non-trivial
and depends on the entire spacetime geometry.

The interpretation for this subleading term various depending on which observ-
able is considered. For the two-point correlation function, this subleading constant
produced a rescaling of the two-point correlation function and therefore an increase
in long-distance correlations.

Of particular interest is studying the subleading term for the entanglement en-
tropy. For this observable, we have an unexpected behavior: the subleading term
changes sign between d = 6 and d = 7. Studying this in terms of the entanglement
negativity and entanglement density, this shows unexpected behavior for field the-
ory dimension d ≥ 7: finite temperature produces additional IR degrees of freedom
and increases long-range entanglement. This contradicts the behavior of field the-
ories. However, it is well-known that there are no superconformal field theories in
these dimension. Therefore, a potential field theory dual has to be described by a
different theory. A similar behavior was found numerically in [125] also for Reissner-
Nordström solutions as well as further examples. In particular, they found that this
phenomenon occurs when the near-horizon geometry approaches AdS2× . . . in some
limit and hence an additional conformal symmetry emerges in the IR. These addi-
tionally appearing degrees of freedom may therefore be related to massless degrees
of freedom appearing when approaching these limiting cases.
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3 Non-Local Observables at finite Temperature

For theWilson loop, my results apply to spatial Wilson loops in AdS Schwarzschild.
A double-Wick rotation transforms them into temporal Wilson loops of a different
geometry: AdS-Soliton. This geometry has a compact spatial direction which shrinks
to zero at radial position z = zh. This introduces an analog of the QCD length scale
and makes the theory confining. In this theory, the Wilson loop is related to the
quark-antiquark potential. The subleading term corresponds to a renormalization
of the mass of the probe quark.

Furthermore, the method I applied to AdS Schwarzschild can be easily general-
ized. The main part is expressing a power series in terms of hypergeometric functions
by reordering it, splitting it and summing it up separately. This is possible when
the series obtained after splitting in a certain way are rational functions of the index
of summation. The reordering is only allowed when the original series converges
absolutely. The analytic continuation of hypergeometric function is known: Meijer
G-functions. While I did not phrase the result for the considered observables in
terms of these functions, the result for the area of surfaces of arbitrary dimension in
terms of these functions is discussed in Section 3.2.4. Therefore, the condition that
the power series has to be absolutely convergent can be bypassed.
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Chapter 4

Subregion Complexity
at finite Temperature

In the previous chapter, we studied non-local observables in AdS/CFT. For static
spacetimes, they are related to minimal surfaces in a constant time slice. In partic-
ular, the entanglement entropy is proportional to the area of the Ryu-Takayanagi
surface, i.e. the minimal co-dimension one surface in this slice. This associates a
unique bulk region to the given boundary region. This motivates studying the vol-
ume enclosed by the Ryu-Takayanagi surface [131]. In analogy to the holographic
complexity, the holographic subregion complexity is defined as

CA =
1

GNL
VA, (4.1)

where V is the volume inside the Ryu-Takayanagi surface anchored on ∂A, GN the
Newton constant and L the AdS-radius1. Motivated by previous work which con-
sidered the entire spacetime [39,41] and reviewed in Section 2.5.3, this quantity has
the interpretation of complexity, a measure of the difficulty of constructing a state
ρ. The volume inside the Ryu-Takayanagi surface is the generalization complexity
to reduced states ρA.

In particular, I consider the volume inside the subregion complexity in AdS
Schwarzschild. The authors of [132] showed that the complexity of formation, i.e.
the additional complexity required to construct the thermal state, is proportional
to the thermal entropy. This can be motivated by considering the dual tensor
network picture, see Section 2.5.4. In the following, I extend this discussion to
subregion complexity. While the complexity of the state only allows us to study

1The proportionality factor in this expression is a mater of convention.
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4 Subregion Complexity at finite Temperature

the complexity of the whole network, studying the subregion complexity also allows
drawing conclusions about how the complexity is distributed in the network.

The structure of this chapter is as follows. In Section 4.1 we take a look at reduced
states. The treatment in the field theory as well as the holographic realization is
reviewed. Afterwards, I present my analytic results using the methods applied in
Chapter 3. To gain some intuition, I take a look at the corresponding MERA network
in Section 4.3, use a hard wall gravity model corresponding to this and compare
results in this setup to the one for AdS Schwarzschild derived above. Afterwards,
the chapter concludes with a summary and outlook.

4.1 Reduced States in AdS/CFT

This section reviews reduced states and their treatment in AdS/CFT. It is based
on [75,80,133].

In a field theory, the degrees of freedom on a constant time-slice2 can be split into
the degrees of freedom living on a region A and the one living on the complement Ac.
Therefore, the Hilbert space is a product space HA ⊗HAc . The degrees of freedom
are described by the reduced density matrix (2.94)

ρA = TrAc ρ.

Knowledge of ρA is sufficient to calculate observables in the region A. In fact,
knowledge of ρA and the Hamiltonian acting on A allows to calculate observables in
a larger spacetime region using unitary time evolution. The region in which this is
possible is the so-called domain of dependence, which is defined as

D[A] =
{
p ∈ R1,d−1| ∀ causal curves through p intersect A exactly once

}
, (4.2)

where we consider the spacetime to be d-dimensional Minkowski space R1,d−1. A
given region A defines a splitting of the spacetime into four regions

boundary = D[A] ∪D[Ac] ∪ J+[∂A] ∪ J−[∂A],

where J∓ are the causal past and causal future respectively. These regions do not
intersect except at ∂A = J+[∂A] ∩ J−[∂A]. This splitting is shown in Figure 4.1.

2More exactly, a Cauchy slice, i.e. a slice which is intersected by any causal curve exactly once.
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t
D[A]

J+[∂A]

J−[∂A]

Figure 4.1: Causal Splitting of Boundary Spacetime.

In particular, if two regions A and A′ have the same domain of dependence, the
reduced states can be obtained by a unitary transformation from each other. Since
the entanglement entropy (2.90)

SEE = −Tr ρA ln ρA

is not changed by unitary transformations, it strictly speaking only depends onD[A].
Therefore, it is a so-called wedge observable3.

To understand the emergence of geometry, it is of interest what gravity region
corresponds to the reduces state. In particular this requires that ρA can be uniquely
determined from this gravity region and vice-versa. If we consider different states
ρ and ρ̂ which have the same reduced state, i.e. they are different purifications of
the same reduced state, their gravity duals (if existent) shares this region. The first
guess would be the causal wedge WC[A], which is defined as the spacetime region
which can send signals and receive signals from D[A]. This region can be written as

WC[A] := J +[D[A]] ∩ J −[D[A]],

where J ∓ are the bulk causal past and causal future. In AdS/CFT, this gravity

3Even if it is not an observable in the usual sense.
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4 Subregion Complexity at finite Temperature

region can be constructed from knowing correlation functions on D[A]. Therefore,
this is the minimal region has to be covered by the region dual of the reduced state.

However, it was shown in [118] that the Ryu-Takayanagi surface is a better
observable to probe the geometry. Let us donate its covariant generalization, i.e. the
minimal extremal surface anchored on the entangling surface ∂A, as E . In general,
this surface lies outside of the causal wedge WC. For the Ryu-Takayanagi proposal,
it is important that the minimal surface is homologous to A. In the covariant case,
this translates to the existence of a so called homology surfaceRA, which is a Cauchy
surface interpolating between A and E . The entanglement wedge is defined as the
bulk domain of dependence of the homology surface, i.e. as

W [A] := D [RA] . (4.3)

An alternative definition is that the causal wedge consists of the points which are
spacelike separated from E and connected to D[A]. This definition does not require
to consider a homology surface. This entanglement wedgeW [A] is conjectured to be
the correct holographic dual for the reduced state. In particular, the entanglement
wedge is its own domain of dependence, i.e. the region where we can construct
the state by knowledge of the reduced state. This is not in general the cause for
the causal wedge, but a necessary condition to obtain the correct bulk dual of
the reduced state: the region is the one being constructible from knowledge of
ρA. Complete knowledge of a region implies complete knowledge of its domain of
dependence. Therefore, the region dual to a reduced state should be its own domain
of dependence.

Analog to the causal splitting of the boundary by ∂A, the extremal surface E
defines a causal splitting of the bulk spacetime into four parts:

bulk =W [A] ∪ J + [EA] ∪ J − [EA] ∪ C

where the region C are the points spacelike separated from E but not connected to
D[A]. The region C is in general larger thanW [Ac], e.g. when considering geometries
with a horizon. This causal splitting corresponds to the causal splitting of the
boundary (4.3) . In particular, we have

W [A] ∩ boundary = D[A],

J ± [EA] ∩ boundary = J±[∂A].
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4.1 Reduced States in AdS/CFT

t

z = 0

(a) Causal Wedge.
Constructed by sending lightrays from
∂D[A] into the bulk.

t

z = 0

(b) Entanglement Wedge.
Constructed by sending lightrays from
εA to the boundary.

Figure 4.2: Bulk Regions associated to a Reduced State.

The naive intuition would be that since the extremal surface lies outside of the causal
wedge WC[A], the intersection between the entanglement wedge and the boundary
W [A] could contain more of the boundary spacetime than the domain of dependence
D[A]. A detailed study on null-congruences, i.e. the set of null curves starting
on a general spatial co-dimension two surface anchored on ∂A, shows why this
cannot be the case. In the case that the surface lies inside the causal wedge, the
congruence intersects the boundary inside D[A]. If the surface lies at the boundary
ofWC[A], the congruence exactly intersects the boundary at the boundary of ∂D[A],
as one would intuitively expect. If one now considers a surface outside of the causal
wedge, the intersection does not move outside of the domain of dependence. Rather,
nearby curves start intersecting, which results in caustics outside the boundary
and a termination of the congruence. Therefore, the kind of construction used for
the entanglement wedge for any spacelike surface anchored on ∂A does not yield
an intersection with the boundary larger than D[A]. This causal wedge and the
entanglement wedge are shown in Figure 4.2.
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0 `
2

− `
2

x

z

z?

x(z)

Figure 4.3: Entangling Region and Ryu-Takayanagi Surface.
The strip has the width ` in the spatial direction x. The (d− 2) remaining spatial
directions are not shown, since the shape of the surface is independent of these
coordinates.

4.2 Subregion Complexity in AdS Schwarzschild

The bulk dual to a reduced state is the entanglement wedge. Therefore, holography
automatically assigns a unique volume to the reduced state: the volume of the
maximal extremal slice in this wedge. For static spacetimes, this reduces to the
volume inside the Ryu-Takayanagi surface on the constant time slice. The volume
is proportional to the holographic subregion complexity (4.1).

Based on my study of the entanglement entropy in the previous Chapter 3,
I study the subregion complexity for strips at finite temperature. Therefore, the
considered bulk geometry is AdS Schwarzschild

ds2 =

(
L

z

)2 (
−b(z)dt2 + d~x2 + b(z)−1dz2

)
, (4.4a)

b(z) = 1−
(
z

zh

)d
. (4.4b)

In the previous chapter, I calculated the area of the Ryu-Takayanagi surface, i.e.
the co-dimension one surface anchored on the boundary in a constant time slice as
shown in Figure 4.3. In the following, I derive an analytic expression for the volume
inside this surface. For the AdS Schwarzschild metric (4.4), the integral expression
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4.2 Subregion Complexity in AdS Schwarzschild

for the volume is

V = Ld ˜̀d−2

z?∫

ε

dz

−x(z)∫

x(z)

dx z−d
√
b(z)

−1
,

= −2Ld ˜̀d−2

z?∫

ε

dz x(z)z−d
√
b(z)

−1
, (4.5)

where x(t) is the embedding (3.18) of the Ryu-Takayanagi surface. Since the metric
is independent of the spatial coordinates, the volume reduces to a one-dimensional
integral. The volume is divergent and has to be regulated by considering the bulk
cutoff ε. The conventions in this expression are that the left branch of the minimal
surface is considered, i.e. where x < 0 and x′(z) > 0. As derived in (4.6), the
differential expression for the embedding of the (d− 1)-dimensional surface is

x′(t) =

(
z

z?

)d−1
1√
b(z)

1√
1− (z/z?)

2(d−1)
. (4.6)

In my previous study of the entanglement entropy, I did not solve the embedding
explicitly. This is also not necessary to determine the volume. In order to obtain
an integrand which only depends on the derivative of the embedding, I partially
integrate the expression obtained in (4.5). For this, I define κ via the differential
equation

κ′(z) = z−d
√
b(z)

−1
, (4.7a)

which has the solution

κ(z) = − z1−d

d− 1
2F1




1
2
, 1
d
− 1

1
d

∣∣∣∣∣∣

(
z

zh

)d

 . (4.7b)

Therefore, the volume inside the Ryu-Takayanagi surface is

V = −2Ld ˜̀d−2

z?∫

ε

dz x(z)κ′(z),

= 2Ld ˜̀d−2

z?∫

ε

dz x′(z)κ(z)− 2Ld ˜̀d−2[x(z)κ(z)]z?ε . (4.8)
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4 Subregion Complexity at finite Temperature

This formulates the volume in a way which enables us to directly use the differential
equation for the embedding (4.6).

The boundary term depends on the near-boundary behavior of κ and x(z). Ex-
panding both expressions as a power series yields

κ(z) = − z1−d

d− 1

(
1 +O

(
z

zh

)d)
, (4.9a)

x(z) = −`+ z? · O
(
z

z?

)d
. (4.9b)

These limits are obtained by expanding the hypergeometric function in (4.7) and
expanding the differential equation for the embedding (4.6). The boundary term
reduces to

V = 2Ld ˜̀d−2

z?∫

ε

dz x′(z)κ(z) +
Ld

d− 1
·

Volume of strip︷ ︸︸ ︷
`˜̀d−2

εd−1
. (4.10)

Therefore, the UV-divergent term for the volume arises from the boundary term.
The term agrees with the UV-divergent term of the vacuum result [134]. The addi-
tional integral expression if UV-finite and allows to take the bulk cutoff to zero. The
integrand can be simplified using the Euler transform of the hypergeometric function
(see (B.10) of the appendix) in order to simplify the integrand by absorbing one of
the square roots. This results in

Vfinite = − 2Ld ˜̀d−2

(d− 1)z?d−1

z?∫

0

dz 2F1


1, 1

d
− 1

2

1
d

∣∣∣∣∣∣

(
z

zh

)d


√

1−
(
z

z?

)2(d−1)
−1

. (4.11)

Therefore, I reduces the calculation of the volume to solving this integral. The
integral can be solved using the same method as I used to derive a result for the
minimal area: it can be written as an absolutely converging power series, which
I integrate term by term and reconstruct in terms of generalized hypergeometric
functions.
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4.2.1 Analytic Result for the Subregion Complexity

The integral of interest is

I =

z?∫

0

dz 2F1


1, 1

d
− 1

2

1
d

∣∣∣∣∣∣

(
z

zh

)d


√

1−
(
z

z?

)2(d−1)
−1

. (4.12)

Both the hypergeometric function and the square-root can be written as absolutely
convergent power series in (z/zh)

d and (z/z?)
2(d−1) respectively. Integrating this

power series yields

I = z?

∞∑

m1,m2=0

(
1
2

)
m1

(
1
d
− 1

2

)
m2

m1!
(

1
d

)
m2

1

dm2 + 2(d− 1)m1 + 1

(
z?
zh

)dm2

,

=
z?
√
π

2(d− 1)

∞∑

m=0

(
1
d
− 1

2

)
m(

1
d

)
m

Γ
(
dm+1
2(d−1)

)

Γ
(
dm+1
2(d−1)

+ 1
2

)
(
z?
zh

)dm
, (4.13)

where the sum over m2 reduces to a hypergeometric function 2F1, which is evaluated
at unit argument and simplifies in terms of Gamma functions as described in (B.7).

Let us take a short detour and consider the case d = 2 separately. The integral
reduces to

I =
πz?
2
. (4.14)

Therefore, the two-dimensional case is trivial as the volume is constant

V = −πL
d ˜̀d−2

d− 1
+

Ld

d− 1
· `

˜̀d−2

εd−1
. (4.15)

It was shown in [135] that this arises because in three dimensional gravity the Gauss-
Bonnet theorem applies and renders the complexity a topological quantity. There-
fore, the following discussion only treats d > 2.

The problem with constructing hypergeometric functions from Equation (4.13)
is that subsequent coefficients do not have to correct form. As before, I first have
to reorder the series. This is done by redefining the index. Analog to the case for a
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minimal surface of general dimension discussed in Equation (3.21), I define

m = ∆m+
2(d− 1)

χ
δm, (4.16a)

δm = 0, . . . ,∞, ∆m = 0, . . . ,
2(d− 1)

χ
− 1, (4.16b)

where the parameter χ

χ = gcd(2(d− 1), d) =





1 d odd

2 d even

incorporates possible simplification for even spacetime dimension d. This splits the
series into 2(d− 1)/χ ones which are labeled by ∆m. The coefficients of these are

ĉδm = cm
∣∣
∆m+

2(d−1)
χ

δm
cm =

1(
1
d

)
m

(
1

d
− 1

2

)

m

(
z?
zh

)mdΓ
(
md+1
2(d−1)

)

Γ
(
md+d

2n

) .

In order to construct hypergeometric functions, the ratio between successive coeffi-
cients has to have the form

ĉδm+1

ĉδm
= u · P (−δm)

Q(−δm)

1

δm
,

where P and Q are polynomial functions (see (B.4)). Careful analysis shows that
the ratio for I can be written as

ĉδm+1

ĉδm
=

Γ
(

1
d
− 1

2
+ ∆m+ 2(d−1)

χ
δm+ 2(d−1)

χ

)

Γ
(

1
d
− 1

2
+ ∆m+ 2(d−1)

χ
δm
)

Γ
(

1
d

+ ∆m+ 2(d−1)
χ

δm
)

Γ
(

1
d

+ ∆m+ 2(d−1)
χ

δm+ 2(d−1)
χ

)

×
Γ
(

∆md+1
2(d−1)

+ d
χ
(δm+ 1)

)

Γ
(

∆md+1
2(d−1)

+ d
χ
δm
)

Γ
(

∆md+d
2(d−1)

+ d
χ
δm
)

Γ
(

∆md+d
2(d−1)

+ d
χ
(δm+ 1)

)
(
z?
zh

) 2(d−1)d
χ

δm

. (4.17)

The redefinition of the index of summation guarantees that the arguments of the
numerator Gamma functions differ by integer values from the denominator Gamma
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functions. Therefore, the ratio can be written as products

ĉδm+1

ĉδm
=

(
z?
zh

) 2(d−1)d
χ

δm

×
2(d−1)/χ−1∏

j=0

(
1
d
− 1

2
+ ∆m+ 2(d−1)

χ
δm+ j

1
d

+ ∆m+ 2(d−1)
χ

δm+ j

)

×
d/χ−1∏

k=0

(
∆md+1
2(d−1)

+ d
χ
δm+ k

∆md+d
2(d−1)

+ d
χ
δm+ k

)
.

This simplifies to

ĉδm+1

ĉδm
=

(
z?
zh

) 2nd
χ
δm

×
2n/χ−1∏

j=0

(
δm+ cj− 1

2

δm+ cj

)
·
d/χ−1∏

k=0

(
δm+ ak+ 1

2

δm+ ak+1

)
. (4.18)

where the parameters are defined as

ai =
χ

2(d− 1)d

(
∆md+ 1 + 2(d− 1)i

)
, (4.19a)

cj =
χ

2(d− 1)

(
∆m+ j

)
+

χ

2d(d− 1)
. (4.19b)

The parameters ai are already relevant for the minimal surface. The new param-
eters cj are up to a constant shift identical to the parameters bj defined for the
minimal surface calculation. Therefore, I simplified the power series I as 2(d−1)

χ

hypergeometric functions

I =
z?
√
π

2(d− 1)

2(d−1)
χ
−1∑

∆m=0

(
1
d
− 1

2

)
∆m(

1
d

)
∆m

Γ
(
d
χ
a0

)

Γ
(
d
χ
a 1

2

)
(
z?
zh

)d∆m

× 3d−2
χ

+1F 3d−2
χ




1, a0, . . . , a d
χ
−1, c− 1

2
, . . . , c 2(d−1)

χ
− 3

2

a 1
2
, . . . , a d

χ
− 1

2
, c0, . . . , c 2(d−1)

χ
−1

∣∣∣∣∣∣

(
z?
zh

) 2(d−1)d
χ


 . (4.20)

The finite part of the volume simplifies to

Vfinite =−
√
πLd

(d− 1)2

˜̀d−2

z?d−2

2(d−1)
χ
−1∑

∆m=0

(
1
d
− 1

2

)
∆m(

1
d

)
∆m

Γ
(
d
χ
a0

)

Γ
(
d
χ
a1/2

)
(
z?
zh

)∆md

× 3d−2
χ

+1F 3d−2
χ




1, a0, ... , a d
χ
−1, c− 1

2
, ... , c 2(d−1)

χ
− 3

2

a 1
2
, ... , a d

χ
− 3

2
, c0, ... , c 2(d−1)

χ
−1

∣∣∣∣∣∣

(
z?
zh

) 2(d−1)d
χ


 . (4.21)
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I derived the corresponding width of the strip in the previous section (3.72a) as

` =

√
πz?

d− 1

2(d−1)
χ
−1∑

∆m=0

1

∆m!

(
1

2

)

∆m

(
z?
zh

)∆mdΓ
(
d
χ
a1/2

)

Γ
(
d
χ
a1

)

× 3d−2
χ

+1F 3d−2
χ




1, a 1
2
, ... , a d

χ
− 1

2
, b 1

2
, ... , b 2(d−1)

χ
− 1

2

a1, ... , a d
χ
, b1, ... , b 2(d−1)

χ
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(
z?
zh

) 2(d−1)d
χ


 , (4.22)

where the parameter bi is defined as

bj =
χ

2(d− 1)

(
∆m+ j

)
. (4.23)

Figure 4.4 shows the results for different spacetime dimensions in comparison to the
zero-temperature result.

4.2.2 High-Temperature/Large-Strip Limit and Comparison to Area

In Equation (3.72b) of chapter 3, I presented my analytic result for the entanglement
entropy or equivalently for the area of the Ryu-Takayanagi surface as

A =
2Ld−1

d− 2

(
˜̀

ε

)d−2

+

√
πLd−1

d− 1

˜̀d−2

z?d−2

2(d−1)
χ
−1∑

∆m=0

(1/2)∆m

∆m!

Γ
(
d
χ
a−1/2

)

Γ
(
d
χ
a0

)
(
z?
zh

)∆md

× 3d−2
χ

+1F 3d−2
χ




1, a− 1
2
, ... , a d

χ
− 3

2
, b 1

2
, ... , b 2(d−1)

χ
− 1

2

a0, ... , a d
χ
−1, b1, ... , b 2(d−1)

χ

∣∣∣∣∣∣

(
z?
zh

) 2(d−1)d
χ


 . (4.24)

Let us compare the result for the area to the result for the volume inside the Ryu-
Takayanagi surface. The UV-divergent part of the minimal area and the one of the
volume inside it are different: it is proportional to the area of the boundary of the
strip for the area whereas for it is proportional to the volume of the strip for the
volume. However, the structure of the power series for the UV-finite part is the
same4, but the coefficients are different. This similarity between the power series is
discussed in [134].

Similarly as before, I put special focus on the high-temperature limit. In Chap-
ter 3, I showed how the width and the area both diverge logarithmically. Hence, the

4The hypergeometric functions can be expressed as power series in (z?/zh)
2(d−1)d/χ.
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Figure 4.4: Subregion Complexity for different Dimensions.
We subtracted the cutoff term. The dotted grey line is the zero-temperature result.
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4 Subregion Complexity at finite Temperature

`

z = ε

z = zh

Figure 4.5: Rectangular approximation of the Ryu-Takayanagi surface.

area becomes extensive and the entanglement entropy is in leading order the ther-
mal entropy of the region. While the hypergeometric functions for the volume have
different parameters then the one for the volume (4.21), the divergent behavior (c.f.
(B.8)) is the same. Therefore, the volume diverges logarithmically as the turning
point approaches the horizon and has the same divergent behavior as the width of
the strip. The leading contribution in the high-temperature limit is a therefore a
volume behavior. The coefficient can be obtained by careful analysis of the divergent
behavior described in Equation (B.8) in the appendix.

I take an alternative approach in the following: I obtain it by considering the
rectangular approximation as discussed for the area in Section 3.2.3. The Ryu-
Takayanagi surface in the high-temperature/large-width limit is approximated by a
rectangular surface with two vertical pieces falling from a boundary to the horizon
and a horizontal piece along the horizon. Figure 4.5 shows this construction. The
volume inside this rectangular surface is

Vdisc. = `˜̀d−2

zh∫

ε

Ld

zd

√
b(z)

−1
,

= Ld`˜̀d−2

( √
πΓ
(

1
d
− 1
)

dΓ
(

1
d
− 1

2

)
zhd−1

+
ε1−d

d− 1

)
. (4.25)

Therefore, the high-temperature/large-volume limit is in leading order

Vdisc. ≈
(

Ld

d− 1
· 1

εd−1
+

Ld

zd−1
h

√
πΓ
(

1
d
− 1
)

d · Γ
(

1
d
− 1

2

)
)
`˜̀d−2. (4.26)

This extensive behavior is also observed for the complexity of formation for the whole
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4.2 Subregion Complexity in AdS Schwarzschild

system [132]. The authors introduced the complexity of formation as difference to
the vacuum AdS result, i.e.

∆C = C − C|T=0. (4.27)

In particular, the extensive behavior also observed above implies that the complexity
of formation is proportional to the thermal entropy5. Written out, the authors found

∆C = kdStherm., kd = 4
√
π
d− 2

d− 1

Γ
(
1 + 1

d

)

Γ
(

1
2

+ 1
d

) (4.28)

for AdS Schwarzschild, which agrees with the extensive behavior discussed above.

For the entanglement entropy, I was able to write the result in an alternative
form (3.76): the divergent behavior is completely expressed in terms of the width
and the remaining part is finite in the large-width/high-temperature limit. This
was possible because the parameter of the hypergeometric functions appearing in
the area result only differ by integer values from the result for the width. Properties
of hypergeometric functions then give a linear relationship between these. This is
not possible for the volume. Since the parameter appearing in the hypergeometric
functions is cj instead of bj, there is an additional shift of 1

d
, which prohibits to use

the same procedure as for the area.

As shown above, the high-temperature behavior of area and volume is the same:
both are extensive and therefore proportional to the thermal entropy. Furthermore,
we discussed how the structure of area and volume as power series are the same,
but have different coefficient. This gives rise to one crucial difference: the leading
correction to the area is positive, whereas the leading correction to the volume is
negative. Explicitly, the leading order corrections are both of the same form

A = A|T=0 + cA · (`T )2 +O(`T )d+2, (4.29a)

V = V|T=0 + cV · (`T )2 +O(`T )d+2. (4.29b)

As discussed in Equation (3.74), the coefficient cA is positive and related to the
entanglement temperature (see [124]). The corresponding coefficient for the volume
cV is negative. Furthermore, we discussed in Section 3.3.4 that the entanglement en-
tropy is increased due to the temperature. This is not the case for the volume inside

5For other geometries, this is only valid in the high-temperature limit [132].
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Figure 4.6: Result for Subregion Complexity of Formation at finite Temperature.

the Ryu-Takayanagi surface. Since the leading order correction at low-temperature
is negative and the leading order behavior at high-temperature is extensive and
positive, there is a transition between reduced complexity due to temperature at
low-temperature/small-width and increased complexity at high-temperature/large-
strip. This was already discovered qualitatively in [136]. This difference can be
studied by looking at the complexity of formation, i.e.

∆C = C − C|T=0. (4.30)

for the reduced states. Figure 4.6 shows the complexity of formation for my result
presented in Equation (4.21).

Therefore, there is a critical width at which the subregion complexity at finite
temperature agrees with the subregion complexity at zero temperature. At this
critical width the sign of ∆C changes. Using my analytic result, I determined it
numerically for different spacetime dimension d. The result is shown in Figure 4.7.
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Figure 4.7: Critical Length.
For AdS Schwarzschild, the subregion complexity becomes larger at the critical
length than the subregion complexity for the vacuum solution.

4.3 MERA Approximation

To gain some intuition, let us take a look at the corresponding MERA network.
Tensor networks and MERA in particular are reviewed in Section 2.5.4. In par-
ticular, MERA can be understood as reproducing a discrete version of AdS/CFT.
The tensor network model dual to a thermal state is proposed in [100,101,137] and
shown in Figure 4.8. The network corresponds to a spatial slice in the two-sided
AdS black hole. The open indices at the top and at the bottom correspond to the
two CFTs of the TFD state. The discrete spins are grouped into blocks of two, on
which then a coarse graining operation is applied. These are the isometries in the
network. Additionally, disentanglers act on neighboring spins in separate blocks to
remove short-range correlations appropriately. These are not shown explicitly here.
In the UV, the tensors in the MERA network for the finite temperature state are
the same as for the ground state. They coarse-grain the state layer by layer. The
obtained reduced states become more and more mixed. At some point, the effec-
tive temperature becomes infinite and the state infinitely mixed. At this point, the
tensor network ends in fixed point tensors, which are responsible for the thermal
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4 Subregion Complexity at finite Temperature

Figure 4.8: MERA Network for a Thermal State.

correlations and glue the two networks starting from the different boundaries to-
gether. These fixed point tensors form the bridge layer. The comparison between
the MERA network and the gravity dual is summarized in Table 4.1.

The advantage of tensor network is that they give some intuition about complex-
ity. The analog of the Ryu-Takayanagi surface, i.e. the minimal surface anchored on
the boundary is the minimal-cut surface. Complexity in tensor networks is measured
by the number of tensors (i.e. isometries and disentanglers). Therefore, there is also
a notion of subregion complexity as the number of tensors inside the minimal-cut
surface. Instead of doing numerical calculations in MERA, I use the tensor network
picture to obtain a gravity setup corresponding to it: a AdS hard wall model. Af-
terwards, I calculate the subregion complexity in this setup and compare it to my
previous results.

Table 4.1: Comparison between MERA and AdS Picture.

open indices at top and bottom ←→ two entangled CFTs

tensor network ←→ spacelike cross-section of black hole

coarse graining direction ←→ radial direction

bridge layer of fixed point tensors ←→ Einstein-Rosen bridge, horizon at zh
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4.3 MERA Approximation

4.3.1 Dual Gravity Picture

The tensor network for the thermal states consists of two truncated vacuum networks
glued together along a bridge layer. This can be translated into a gravity picture.
The transition is shown in Table 4.2. The corresponding metric is

ds2 =
L2

z2

(
−dt2 + dz2 + d~x2

)
, (4.31a)

z ≤ zh (4.31b)

and describes vacuum AdS with a hard wall at radial position zh. In the following, I
use this hard wall model to calculate the subregion complexity. Later, the result is
compared to the previous results for AdS Schwarzschild. In particular, I empathize
how the bridge tensors influence the complexity and how this fixes the sign change
of ∆C.

To analyze the Ryu-Takayanagi surfaces and the complexity in this setup, we
first take a look at the vacuum results. These are valid as long as the (vacuum)
minimal surface does not reach past zh. If the vacuum turning point lies deeper
in the bulk, the minimal surface in this geometry is truncated at the horizon and
connected along the horizon. This truncated surface is shown in Figure 4.9.

In the following, I fist consider the vacuum AdS calculation which applies to small
boundary regions. Afterwards, I calculate the minimal area and enclosed volume of
the truncated surface discussed above. Furthermore, there is a competing surface:
the rectangular one. I show how this surface is always larger than the truncated one
and there is no phase transition.

Table 4.2: Inspiration for Gravity Dual from MERA.

UV part identical to vacuum → geometry unchanged for 0 < z < zh

IR part removed → hard IR wall at zh
fixed point tensors of bridge → additional contribution to complexity
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boundary z = ε

zh

Ab

Ac

Figure 4.9: Ryu-Takayanagi Surface in hard wall Geometry.
The discussed MERA network for the TFD state inspires to consider the following
setup: we consider pure AdS with a hard-wall at z = zh (dashed line). The minimal
surfaces consists of two parts: the minimal surface for the zero-temperature case
which is cut off at zh (orange) and a piece along zh (green). These correspond to Ac

and Ab.

4.3.2 Ryu-Takayanagi Surface in pure AdS

In the following, we rederive the vacuum result which applies to the hard wall
geometry as long as the surface stays outside the wall. I start with the integral
expressions for the width of the strip and the area of the minimal surface derived in
Chapter 3. The results (3.19) reduce to

` = 2

z?∫

0

dz

(
z

z?

)d−1
1√

1− (z/z?)
2(d−1)

= 2z?
√
π ·

Γ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

) (4.32a)

when we integrate over the whole range. The indefinite integral evaluates to

` =

[
2

d
z?

(
z

z?

)d
2F1

(
1

2
,

d

2(d− 1)
;

d

2(d− 1)
+ 1;

(
z

z?

)2(d−1)
)]z?

0

, (4.32b)

and will be useful later. For the minimal area, we obtain

A =

z?∫

ε

dz z1−d 2Ld−1 ˜̀d−2

√
1− (z/z?)

2(d−1)
= · · ·+

√
πLd−1 ˜̀d−2

(d− 1)z?d−2

Γ
(

2−d
2(d−1)

)

Γ
(

2−d
2(d−1)

+ 1
2

) , (4.33a)
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4.3 MERA Approximation

where the dots represent the usual UV-divergent term. Before evaluating the ex-
pression on the boundary points, the indefinite integral reduces to6

A = − 2Ld−1 ˜̀d−2

(d− 2)z?d−2

[(
z

z?

)2−d

2F1

(
1

2
,

2− d
2(d− 2)

;
d

2(d− 1)
;

(
z

z?

)2(d−1)
)]z?

ε

. (4.33b)

For the volume calculation, κ reduces to κ = −z1−d/(d− 1). Using our previous
results (4.8), the volume can be written as

V = −2Ld ˜̀d−2[x(z)κ(z)]z?ε −
2Ld ˜̀d−2

(d− 1)zd−1
?

∫ z?

0

dz

√
1−

(
z

z?

)2(d−1)
−1

,

= UV term−
2
√
πLd ˜̀d−2Γ

(
1 + 1

2(d−1)

)

(d− 1)Γ
(

1
2

+ 1
2(d−1)

)
z?d−2

, (4.34a)

where the UV-divergent term is the usual power-law dependent term. If we consider
the intermediate step after determining the indefinite integral and before plugging
in the boundary values, we obtain

V =
2Ld ˜̀d−2

d− 1

[
x(z)z1−d

]z?
ε
−


 2Ld ˜̀d−2 z

(d− 1)z?d−1 2F1




1
2
, 1

2(d−1)

1 + 1
2(d−1)

∣∣∣∣∣∣

(
z

z?

)2(d−1)




z?

0

(4.34b)

At zero temperature, we can invert the result for the width (4.32a). This has the
consequence that both the area and the enclosed volume can be expressed directly
in terms of the width `. While these results are only valid for z? < zh in the wall
geometry, we can still use z? as a parameter for larger regions. Therefore, if we use
the parameter z? in the following, we consider a strip with the width `(z?) as given
in the vacuum result (4.32a).

6Notice the alternative notation for hypergeometric functions

pFq (a1, . . . , ap; b1, . . . , bq;u) = pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣u
)
,

which is sometimes used to save space.
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4 Subregion Complexity at finite Temperature

4.3.3 Ryu-Takayanagi Surface in Wall Geometry

The zero-temperature result is valid for minimal surfaces with vacuum turning point
z? < zh, i.e. for

` < `crit = 2zh
√
π ·

Γ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

) . (4.35)

Therefore, we have to consider a different result for the strips wider than a critical
width `crit: the truncated Ryu-Takayanagi surface. This is shown in Figure 4.9.
There are two contributions to the area of this surface. First, I calculate the area
arising from parts connecting the boundary to the wall. Using the indefinite integral
in (4.33b) and only integrating up to the wall yields

Ac = UV term− 2Ld−1 ˜̀d−2

(d− 2)zhd−2 2F1

(
1

2
,

2− d
2(d− 1)

;
d
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;
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)
. (4.36)

Furthermore, I have to determine the width along the wall we still have to close.
Using (4.32b) and integrating from zh to z? yields

[
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for the width along the wall. Using the geometry of the wall, this piece has the area
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Combining these results, the area of the surface is given by

A = − 2Ld−1 ˜̀d−2
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+ UV term. (4.38)
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Figure 4.10: Area of Ryu-Takayanagi Surface in hard-wall Geometry.

For these surfaces the width of the strip is given by (4.32a). However, the parameter
z? does no longer have the interpretation of the turning point, but is only the com-
parable vacuum turning point. The large-strip/high-temperature limit corresponds
to z?/zh → ∞. In this limit, the first term containing a hypergeometric function
approaches a constant, whereas the second one goes to zero because of the prefactor.
The area therefore behaves as

A ≈ UV term− 2Ld−1 ˜̀d−2

(d− 2)zhd−2
+
`˜̀d−2Ld−1

zhd−1
(4.39)

and becomes extensive. The extensive term arises from the piece along the bridge.
This is in particular important because it produces the contribution from the thermal
entropy. The results of the area of th Ryu-Takayanagi surface in the hard-wall
geometry are shown in Figure 4.10.
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boundary z = ε

zh

Figure 4.11: Rectangular Surface in hard wall Geometry.

4.3.4 Potential Phase Transition

In principle, there is a competing piecewise-smooth surface: the rectangular one.
Figure 4.11 shows how this surface consists of three surfaces: two falling from the
boundary to the wall and one along the wall. The area can be calculated as

Arec = 2˜̀d−2

zh∫

ε

dz

(
L

z

)d−1

+
Ld−1 ˜̀d−2`
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,
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)
+
Ld−1 ˜̀d−2`

zhd−2
. (4.40)

Therefore, I obtain the usual UV-divergent term, an extensive term and a constant
shift. This rectangular surface therefore agrees to the high-temperature behavior of
the one obtained by truncating the vacuum Ryu-Takayanagi surface.

The difference between the truncated of minimal surface and the rectangular one
is

∆A = A−Arec

= − 2Ld−1 ˜̀d−2
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,
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and approaches zero in the large-strip limit z? → ∞. Taking the derivative with
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respect to the length yields

d
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where we defined

u =

(
zh
z?

)2(d−1)

< 1.

We used the known derivatives of hypergeometric functions, see (B.5) in the ap-
pendix. Therefore, the truncated surface approaches the rectangular one monoton-
ically from below and is always the smaller surface. This proves that there is no
phase transition for any dimension.

It is interesting to see that ∆A approaches zero in this MERA inspired hard
wall model for the finite temperature state. In Section 3.2.3 I examined the analog
rectangular surface in AdS Schwarzschild and found a constant shift to the area of
the real minimal surface.

4.3.5 Volume in the Wall Geometry

Now that I have determined minimal surface, I calculate the volume inside it. Using
the intermediate result in (4.34b) and integrating up to the wall yields

Vcupped = UV term− 2Ld ˜̀d−2x(zh)
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)
.

The second term arises from the boundary term after partially integrating. Using
that 2x(zh) is the size of the horizontal piece along the horizon, I write the second
term in terms of Ab. This results in

V = UV term− Ab

d− 1
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 . (4.42)
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Without restricting the form of the fixed-term tensors, the complexity contribution
arising from the bridge layer has to be proportional to the vertical piece along the
bridge

Vb =

(
α +

1

d− 1

)
Ab, (4.43)

with a not determined constant α. This follows from the picture of having a constant
density of the same fixed point tensor forming the bridge. Combining these two
results, the analog of the subregion complexity in this MERA approximation is
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To be in compliance with [132], the extensive term in the large-width limit should
be related to the complexity of formation of the whole state. Therefore, I fix the
constant α appropriately and obtain

V = · · ·+
√
πΓ
(

1
d
− 1
)

dΓ
(

1
d
− 1

2

) Ab −
2Ld ˜̀d−2zh

(d− 1)z?d−1 2F1




1
2
, 1

2(d−1)

2d−1
2(d−1)

∣∣∣∣∣∣

(
zh
z?

)2(d−1)

 , (4.45)

where the dots are the usual UV-term. The result is shown in Figure 4.12.

4.4 Summary and Discussion

To summarize this chapter, I first reviewed the tensor network for a thermal state
and considered the analogue model on the gravity side: vacuum AdS with a hard
wall at radial position z = zh. In particular, the structure in the UV is unchanged,
the IR is removed and the wormhole connecting two CFTs of the thermofield double
state is encoded as a bridge layer. This layer gives an additional contribution to the
complexity. This tensor networks corresponds to a hard wall model in pure AdS.

As shown above, the complexity obtained by considering the hard wall model
yields a higher subregion complexity than AdS Schwarzschild, see Figure 4.12. For
a small strip, this is obvious: the Ryu-Takayanagi surface does not reach the wall
and only probes the pure AdS spacetime. Therefore, the result agrees to the zero
temperature result, which is larger than the one obtained for AdS Schwarzschild.
This shows that the MERA network for a thermal state is more complex than the
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Figure 4.12: Subregion Complexity for hard wall Model.
We subtracted the cutoff term. The dashed line is the AdS Schwarzschild result.
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holographic description. Considering larger strips, the minimal surfaces start prob-
ing the wall. The subregion complexity for such strips obtains contributions from
the bridge. This contribution is in particular responsible for the extensive behavior
in the large-strip/high-temperature limit. The comparison presented in Figure 4.12
shows that due to this contribution, the result from the hard wall geometry is larger
than the one obtained for AdS Schwarzschild.

In particular, my results show where the tensor network is not optimally efficient
in encoding the state. The model was obtained by considering two copies of the
MERA network optimized for the vacuum state, truncating them and gluing them
together. In particular, the tensors are not changed in the UV. Therefore, further
optimization might be possible. This can be seen in the results, where the subregion
complexity for the hard wall model is always larger. However, the tremendous
difference arises when the minimal surface reaches the wall.

As remarked previously, there is a critical width `crit. at which the subregion
complexity at finite temperature becomes larger than the zero temperature result.
As discussed above, it is more meaningful to compare our result to the one for the
hard wall model then to compare it to the vacuum result. For this MERA inspired
model, there is also a critical width, under which the result is given by the vacuum
result and above which the bridge layer comes into play. Figure 4.13 compares the
values for different spacetime dimension. It shows in particular that the transition
from the vacuum minimal surface to the truncated surface always takes place before
the critical width of AdS Schwarzschild is reached.
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Figure 4.13: Critical Length.
For AdS Schwarzschild, the subregion complexity becomes larger at the critical
length than the subregion complexity for the vacuum solution.
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Chapter 5

Conformal Transformations
and Complexity in AdS3/CFT2

In the previous chapter, we examined subregion complexity. It arises as a natural
quantity since the Ryu-Takayanagi surface automatically associates a unique bulk
volume to a boundary region. However, considering complexity in AdS/CFT is
tricky since the field theory definition is not known. To make the problem less
involved, we consider the complexity of the pure total state, rather than restricting
ourselves to mixed reduced states.

For pure states, quantum information theory defines complexity as difficulty to
construct a state from a given reference state. The considered state |ψU〉 is obtained
from the reference state |R〉 via

|ψU〉 = U |R〉 , (5.1)

where U is a unitary operator. The complexity of an operator is the minimal number
of required gates to construct it, i.e.

U = µ1 . . . µC, (5.2)

where the gates µi are from the set of allowed gates. Consequently, the complexity
of a state |Ψ〉 is defined as the minimal complexity of operators synthesizing it

C = min
U with |Ψ〉=U |R〉

C(U). (5.3)

Every definition of complexity depends implicitly on the chosen reference state and
gate set.

The success of the holographic entanglement entropy spiked interest into other
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|R〉

|ψ〉

Figure 5.1: Curved Space of States.

quantum information measures such as the complexity [38,41,94]. In the following,
we follow the holographic complexity=volume proposal [38–42]. For the total state,
the considered volume is the volume of the maximal co-dimension one slice anchored
on the boundary equal time slice. The complexity is conjectured to be

C ∝ V
LGN

. (5.4)

The AdS radius L is included for dimensional reasons [39, 40, 47, 48]. In particular,
this makes the complexity proportional to the central charge of the field theory.

However, it is an open question whether the maximal volume is an appropri-
ate measure for complexity and what the implicit choices for reference state and
gate set are. Therefore, it is of interest to study states for which we know how
to construct them. This work focuses on states obtained by conformal transfor-
mations in AdS3/CFT2. In this lower dimensional example, the conformal group
is infinite dimensional and the corresponding operators are known. Considering
such a transformation can be done for any CFT without restriction on the par-
ticle content. Thus, studying these a state gives insights into the validity of the
complexity=volume proposal.

Furthermore, complexity defines a distance to the reference state and hence
induces a geometry in the space of states. States obtained by conformal transfor-
mations applied to the vacuum state are a submanifold in this geometry. Studying
small conformal transformations helps to locally map out the geometry of the sub-
manifold. In particular, it is interesting to study whether the vacuum state is in any
way exceptional and whether complexity is a good tool to characterize states.
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5.1 Conformal Transformations in AdS3/CFT2

5.1 Conformal Transformations in AdS3/CFT2

In this chapter, we focus on AdS3/CFT2. The metric dual to the vacuum state of
the CFT is

ds2 =
1

z2

(
dz2 − dx+ · dx−

)
=

1

z2

(
dz2 − dt2 + dx2

)
. (5.5)

In two dimensions, it is convenient to use light-cone coordinates on the boundary,
i.e. x± = t ± x. The advantage of considering this lower-dimensional example is
that the asymptotic symmetry group is infinitely dimensional. In particular, we
can consider conformal transformations x± = G±(x̃±) with arbitrary functions G±.
As discussed in Section 2.4.3, these can be realized as a coordinate transformation.
Following the conventions of [138,139], we consider the coordinate transformation

x+ = G+(x̃+), (5.6a)

x− = G−(x̃−) (5.6b)

for the light-cone coordinates and

z = z̃ ·
√
|G+

′(x̃+)G−′(x̃−)| (5.6c)

for the radial coordinate. The transformation of the radial coordinate is such that a
UV cutoff in the field theory corresponds to a cutoff surface z̃ = ε in the new, tilted
coordinates. The resulting metric is

ds2 =
dz̃2

z̃2
− dx̃+dx̃−

z̃2
+
(
A+ dx̃+ + A− dx̃−

)2 − 2dz̃

z̃
·
(
A+ dx̃+ + A− dx̃−

)
, (5.7a)

with

A± = −1

2

G±
′′(x̃±)

G±′(x̃±)
. (5.7b)

This type of geometry is known as Bañados geometries. With the metric in this
form, it is not directly obvious why the metric is asymptotically AdS as defined
by Brown and Henneaux in [62]. It can be checked that the metric has the right
boundary behavior when going to coordinates x̂± = x̃+∓A∓ · z2. The metric in the
used form has the advantage that we avoid a change of the radial component δgzz.

The special feature of three-dimensional gravity is that is has no propagating
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5 Conformal Transformations and Complexity in AdS3/CFT2

degrees of freedom. Thus, all solutions are locally equivalent up to coordinate
transformations. However, there are subtleties when considering spacetimes with
boundaries. The transformations we consider here act non-trivially on the bound-
ary. Furthermore, while we see from the transformed metric (5.7) that the boundary
metric is not changed, the asymptotic fall-off of the metric is changed. These deter-
mine the stress-energy tensor. In the transformed state, we have

8πG3T++ =
1

4G+
′(x̃+)2

(
3G+

′′(x̃+)2 − 2G+
′(x̃+)G+

′′′(x̃+)
)
, (5.8a)

8πG3T−− =
1

4G−′(x̃−)2

(
3G−

′′(x̃−)2 − 2G−
′(x̃−)G−

′′′(x̃−)
)
, (5.8b)

8πG3T+− = 0. (5.8c)

As can be seen from Equation (5.8), the resulting states violate the null energy
condition (NEC). However, that is not surprising in a quantum field theory [140]:
the energy density at a point can be arbitrarily negative, i.e. it is not bounded
from below. However, for quantum theories the quantum NEC [141] (QNEC) holds,
which bounds the energy density using expressions involving entanglement entropy.
Following [142], Bañados geometries in fact saturate the QNEC. The energy of the
transformed state is

E =

∞∫

−∞

dx̃ Ttt =

∞∫

−∞

dx̃ [T++ + T−− + 2T+−] , (5.9)

=
1

32πG3

∞∫

−∞

dx

[(
G−
′′(x̃−)

G−′(x̃−)

)2

+

(
G+
′′(x̃+)

G+
′(x̃+)

)2
]
> 0.

Therefore, we obtain states with positive energy,

The conformal transformation changes the holographic calculation of the com-
plexity in two aspects. Firstly, due to the conformal transformation on the boundary
we have to consider a different equal-time slice. Expressing the old time coordinate
t in terms of the new coordinates yields a space-dependence

t =
1

2

(
G+(t̃+ x̃) +G−(t̃− x̃)

)
.

It follows that we have different boundary condition for the extremal surface. Sec-
ondly, the transformation changes the cutoff surface. Since the complexity is a
UV-divergent quantity, a UV cutoff has to be used to regularize it. The conformal
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t

(a) Vacuum State.

t̃ = t0

z̃ = ε

x

t

(b) Excited State.

Figure 5.2: Bulk Picture of Conformal Transformation.
The excited state can be shown in the original Poincare diagram. The boundary
equal time-slice is now curved, i.e. the extremal volume slice is anchored differently
on the boundary. Additionally, the radial cutoff is changed.

transformation changes the cutoff to

z̃ = ε, ⇐⇒ z = ε
√
G+
′(x̃+)G−′(x̃−). (5.10)

These effects are shown in Figure 5.2.

The general problem is highly non-trivial. I considered the simplified case of a
small conformal transformation

x+ = G+(x̃+) = x̃+ + σ g+(x̃+), (5.11a)

x− = G−(x̃−) = x̃− + σ g−(x̃−), (5.11b)

where the expansion parameter is σ � 1. The metric simplifies to

ds2 =
1

z̃2
dz̃2 − 1

z̃2
dt̃2 +

1

z̃2
dx̃2 (5.12)

+
σ

z̃

[(
g+
′′ (x̃+

)
+ g−

′′ (x̃−
) )

dt̃+
(
g+
′′ (x̃+

)
− g−′′

(
x̃−
) )

dx̃
]
dz̃

+
σ2

4

(
g−
′′ (x̃−

)
+ g+

′′ (x̃+
))

dt̃2 +
σ2

4

(
g+
′′ (x̃+

)
− g−′′

(
x̃−
))

dx̃2 + . . . .

The dots contain off-diagonal terms of order σ2 and diagonal terms of order σ3. Ad-
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ditionally, the energy momentum tensor is of first order in the expansion parameter

8πG3T++ = −σ
2
g+
′′′(x̃+) +

σ2

4

(
3g+

′′(x̃+)2 + 2g+
′(x̃+)g+

′′′(x̃+)
)

+O(σ3), (5.13a)

8πG3T−− = −σ
2
g−
′′′(x̃−) +

σ2

4

(
3g−

′′(x̃+)2 + 2g−
′(x̃+)g+

′′′(x̃−)
)

+O(σ3). (5.13b)

The leading order term is an energy fluctuation, which does not contribute to the
total energy. In contrast, the second order term produces

E =
σ2

32πG3

∞∫

−∞

dx
[
g−
′′(x̃−)

2
+ g+

′′(x̃+)
2
]
> 0. (5.14)

To summarize this section, we reviewed how the conformal transformation on the
gravity side is realized by a coordinate transformation acting non-trivially on the
boundary. Furthermore, we looked more closely on small conformal transformations.

5.2 Operator for Conformal Transformation

In this section, we take a look at the operator corresponding to the conformal trans-
formation. We start by considering a compact spatial direction, i.e. x ∈ [0, `]. In
this setup, it is more convenient to go to complex coordinates

w = exp

(
i
2π

`
· x+

)
, w̄ = exp

(
i
2π

`
· x−

)
. (5.15)

In Minkowski signature, these satisfy

|w| = 1, w† = w−1

to ensure x± ∈ R. The holomorphic component of the stress-energy tensor can be
expanded as a power series

Tww = T (w) =
∑

n

Lnw
−n−2. (5.16a)

Going back to light-cone coordinates x±, the corresponding stress-energy tensor is

T++ = −4π2

`2

(
w2T (w) + const.

)
(5.16b)
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and the analog expression for T−−. The off-diagonal components vanish. Since T++

is real, the conditions on Ln are

L†n = L−n.

These coefficients are called Virasoro generators and satisfy the Virasoro algebra,
i.e.

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0. (5.17)

A small1 conformal transformation is a transformation of the form

w → w′ = w + ε(w). (5.18)

The Fourier decomposition of ε is

ε =
∑

n

εnw
−n+1. (5.19)

The light-cone coordinate x′+ is real, hence we have

ε∗n = −ε−n +
∞∑

n1=−∞

ε−n1 · εn1−n +O(ε)3. (5.20)

The stress energy tensor is changed by the conformal transformation. The trans-
formation behavior is

T̃ (w′) =

(
∂w′

∂w

)−2 (
T (w)− c

12
S(w′, w)

)
, (5.21a)

where the Schwarzian derivative is

S(w′, w) =

(
∂3w′

∂w3

)(
∂w′

∂w

)−1

− 3

2

(
∂2w′

∂w2

)2(
∂w′

∂w

)−2

. (5.21b)

In [P3], we calculate the change of the stress energy tensor for a small conformal

1We talk about a small infinitesimal transformation and not an infinitesimal one since we also
consider subleading terms. In particular, we will keep the transformation behavior of x± exact.
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transformation

δT (w) ≡T̃ (w)− T (w)

=− ε(w)T ′(w)− 2T (w)ε′(w)− 1

12
cε(3)(w)

+
1

12
cε(4)(w)ε(w) +

1

8
cε′′(w)2 +

1

4
cε(3)(w)ε′(w) +

1

2
ε(w)2T ′′(w)

+ 3ε(w)T ′(w)ε′(w) + 2T (w)ε(w)ε′′(w) + 3T (w)ε′(w)2. (5.22)

This extends the already known first order result [138] to second order in ε. We want
to express the change of the energy momentum tensor as unitary transformations of
its Fourier modes. The corresponding condition is

δT (w) =
∑

n

δLnw
−n−2

δLk,
!

= U †LkU − Lk.

The operator implementing this transformation is

U = eL+B. (5.24)

The leading order term ε was already known [138] and my collaborator determined
the subleading term [P3], resulting in

L =
∑

n

εnL−n, (5.25a)

B =
∑

m,n

m+ n− 2

4
εmεnL−n−m. (5.25b)

This expands the CFT operator implementing the conformal transformation up to
second order in epsilon. The spatial direction is compact and the result is expressed
in terms of the Fourier coefficients.

Let me transform this back into our previous notation. First, we leave the spatial
direction compact and express everything in terms of g±. The considered conformal
transformation is

x+ = G+(x̃+) = x̃+ + σ g+(x̃+). (5.26)
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The function g+ is related to the previously defined ε via (see (5.15) and (5.18))

exp
(
−σ 2πi

`
· g+

)
= 1 + ε

w
. (5.27)

Using the Fourier decomposition of g+

g+ =
∑

n

g+,nw
′−n, g∗+,n = g+,−n, (5.28)

the relationship between εn and g+,n is

εn ≈ −σ
2πi

`
g+,n + σ2 2(n− 1)π2

`2

∑

n1

g+,n1g+,n−n1 +O(σ)3. (5.29)

One has to keep in mind the Fourier decomposition of ε is with respect to w, whereas
the Fourier decomposition of g+ is with respect to w′. This is relevant for obtaining
the correct second order term.

The unitary operator can consequently be written as

U(g+) = 1− σ 2πi

`

∑

n

g+,nL−n − σ2 2π2

`2

∑

ni

g+,n1g+,n2L−n1L−n2

+ σ2 π
2

`2

∑

ni

(n1 + n2)g+,n1g+,n2L−n1−n2 +O(σ)3. (5.30)

The last step is to decompactify the spatial direction, i.e. taking the limit `→∞.
This is done by defining

ξ =
n

`
, dξ =

1

`
. (5.31)

The expansions in w and w′ turn into Fourier transformations for g±

g+(x̃+) =

∫
dξ ` · g+,`ξ︸ ︷︷ ︸

ĝ+(ξ)

exp
(
−2πi · x̃+ · ξ

)
(5.32a)

and for the stress energy tensor

T++(x+) =− 4π2

∫
dξ

1

`2
` · L`ξ

︸ ︷︷ ︸
L̂(ξ)

exp
(
−2πi · x+ · ξ

)
. (5.32b)

141



5 Conformal Transformations and Complexity in AdS3/CFT2

It follows that the operator can be written as

U(g+) = exp

(
−σ 2πi

∫
dξ ĝ+(ξ)L̂(−ξ) (5.33a)

+σ2 π2

∫∫
dξ1dξ2 (ξ1 + ξ2)ĝ+(ξ1)ĝ+(ξ2)L̂(−ξ1 − ξ2)

)
+O(σ)3

or equivalently

U(g+) = exp

(
σ

i

2π

∫
dx g+(x) · T++(x) (5.33b)

−σ2 i

8π

∫∫
dx1dx2 g

′
+(x1)g+(x2) · T++(x1 + x2)

)
+O(σ)3

The analog expression is obtained for U(g−). This differs from the usual CFT
approach: usually U = eL is taken as exact, i.e. higher order corrections do not
appear in U but in the transformation behavior of x±. We approached this differently
to keep the transformation behavior of x± and hence the diffeomorphism applied on
the gravity side exact.

5.3 Change of Holographic Complexity

In this section, I calculate the change of the volume perturbatively for a small
conformal transformation. The expansion parameter is σ. The integral expression
for the volume is

V =

∞∫

ε

dz̃

∞∫

∞

dx̃
√
γ, (5.34)

where γ is the induced metric on the slice and depends on the embedding t̃(x̃, λ̃)

implicitly. In lowest order in σ, we obtain the vacuum result

V|σ=0 =

∫
dz̃

∫
dx̃

1

z̃2

√
1− t̃(0,1)(x̃, z̃)2 − t̃(1,0)(x̃, z̃)2,

=

∫
dz̃

∫
dx̃

1

z̃2
=

Vol(R)

ε
, (5.35)
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where the embedding is given by the constant time slice t̃ = t0. The embedding can
be expanded as

t̃(x̃, z̃) =t0 + σ t1(x̃, z̃) + σ2 t2(x̃, z̃) +O(σ)3. (5.36)

I now expand the volume in powers of σ, i.e.

V = V(0) + σV(1) + σ2V(2) +O(σ3) (5.37)

where V(0) = V|σ=0. The first order correction is

V(1) =
δV
δt

∣∣∣∣
δ=0

δt+
δV
δγµν

∣∣∣∣
δ=0

δγµν ,

=

∫
dz(
√
γ γµν)

∣∣
δ=0

δγµν ,

= 0. (5.38)

The variation with respect of the embedding t vanishes automatically since we con-
sider an extremal embedding. The variation with respect with the induced metric
does not vanish, however since γ is diagonal and δγ only has off-diagonal contribu-
tions at leading order, this term also vanishes for the considered metric. Therefore,
the term of interest is the term of order σ2. Calculating it yields

V(2) =
δ2V
δ2t

∣∣∣∣
δ=0

δt2 + 2
δ2V
δγµνδt

∣∣∣∣
δ=0

δγµν δt+
δ2V

δγµνδγηω

∣∣∣∣
δ=0

δγµν δγηω,

=

∞∫

0

dz̃

∞∫

−∞

dx̃

[
1

4z̃
t̃1

(0,1) (x̃, z̃)
(
g′′−
(
t̃0 − x̃

)
+ g′′+

(
t̃0 + x̃

))

− 1

4z̃2
t̃1

(0,1)
(
x̃, z̃
)

2 − 1

4z̃2
t̃1

(1,0)
(
x̃, z̃
)

2

]
. (5.39)

I obtain contributions arising from varying with respect to the embedding twice
and from varying with respect to the embedding and the induced metric. There is
no contribution arising from varying with respect of the metric twice. This is due
to the form of the metric and its perturbation. Having a metric γ with a small
perturbation δγ, the integrand can be written as

√
det(γ + δγ) =

√
det(γ)

(
1 +

Tr (γ−1δγ)

2
+

Tr (γ−1δγ)
2

8
− Tr ((γ−1δγ)2)

4

)
+ . . . .
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For the metric I consider (5.13a), the leading order correction is off-diagonal, whereas
γ is diagonal. Consequently, the second term only yields a subleading contribution
i.e. Tr γ−1δγ = O(σ)2. The leading order term of δγ contributes to Tr((γ−1δγ)2),
but this term is exactly canceled from the trace of the second order term arising
from γ−1δγ.

5.3.1 Embedding of Extremal Slice

The differential equation for t1 arising from extremizing the volume (5.39) is

2t1
(0,2) (x̃, z̃)− 4

z̃
t1

(0,1) (x̃, z̃) + 2t1
(2,0) (x̃, z̃) = −g′′+ (x̃+ t0)− g′′− (t0 − x̃) . (5.40)

Since I consider a spacetime with a boundary, the variational principle is only well
defined if no boundary term arises. For the integral expression I consider, this
requires

lim
z̃→0

1

2z̃

(
− 4

z̃4
t1

(0,1)(x̃, z̃)− g′′− (t0 − x̃)− g′′+ (t0 + x̃)

)
= 0. (5.41)

This constrains the near boundary behavior of t1. Additionally, I have the boundary
condition from demanding that the extremal surface is anchored at t̃(x̃, 0) = t0.

To avoid having to solve this partial differential equation, I use the Fourier
transform

t1(x̃, z̃) =

∞∫

−∞

dξ t̂(ξ, z̃) exp(2πiξx̃). (5.42)

Furthermore, for the infinitesimal transformation we define

g±(x̃±) =

∞∫

−∞

dξ ĝ±(ξ) exp
(
−2πi · x̃± · ξ

)
. (5.43a)

=

∞∫

−∞

dξ ĝ±(−ξ)e2πiξt̃ exp(±2πiξ · x̃). (5.43b)

The Fourier modes ĝ± and t̂ have to satisfy

ĝ±(ξ)∗ = ĝ±(−ξ), t̂(ξ)∗ = t̂(−ξ) (5.44)
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for g± and t1 to be real. To keep the expansion in σ well defined, I assume that g±
and ĝ are bounded.

This reduces the partial differential equation to an ordinary differential equation

2t̂(0,2) (ξ, z̃)− 4

z̃
t̂(0,1) (ξ, z̃)− 8π2ξ2t̂ (ξ, z̃) = 4π2ξ2

(
ĝ+(−ξ)e2iπξt0 + ĝ−(ξ)e−2iπξt0

)
.

(5.45)

Thus, we have a second order differential equation and need two boundary con-
ditions. These are given by having the surface anchored at t0 and the appropriate
boundary behavior to make the variational principle well defined. In this differential
equation, ξ reduces to a parameter. I have to consider ξ > 0 and ξ < 0 separately
when fixing the constants of integration. This results in

t̂(ξ, λ̃) =





(
1
2

(
1− e2πξz̃

)
+ πξz̃

) (
ĝ−(ξ)e−2iπξt0 + ĝ+(−ξ)e2iπξt0

)
e−2πξz̃ ξ > 0,

−
(

1
2

(
1− e2πξz̃

)
+ πξz̃e2πξz̃

) (
ĝ−(ξ)e−2iπξt0 + ĝ+(−ξ)e2iπξt0

)
ξ < 0.

The change of the embedding can be written in the compact form

t̂(ξ, z̃) =

(
1

2

(
e−2π|ξ|z̃ − 1

)
+ π|ξ|z̃e−2π|ξ|z̃

)(
ĝ−(ξ)e−2iπξt0 + ĝ+(−ξ)e2iπξt0

)
. (5.46)

The embedding is not smooth at χ = 0, but itself as well as its first and second
derivative with respect to z̃ are continuous at this point. Therefore, the piecewise
definition does not cause problems with the differential equation (5.45). We see that
the part depending on the radial coordinate is bounded. For z̃ ∈ (0,∞), it lies in
the range

−1

2
≤ 1

2

(
e−2π|ξ|z̃ − 1

)
+ π|ξ|z̃e−2π|ξ|z̃ ≤ 0,

where the lower bound is reached at the Poincaré horizon at z̃ =∞ and the upper
bound at the boundary z̃ = 0. This boundedness is necessary to keep the expansion
in σ well-defined. The change of embedding can be transformed back to determine
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the leading order shift of the embedding

t1(x̃, z̃) = −1

2

(
g+(t0 + x̃) + g−(t0 − x̃)

)

+
1

π

∞∫

−∞

dt̃
z̃3

(t̃2 + z̃2)2

(
g+(t0 + t̃+ x̃) + g−(t0 + t̃− x̃)

)
. (5.47)

One may wonder how the boundary condition t1(x, 0) = 0 is incorporated in this
expression. The integral is an integral transform of the function

g+(·+ t0 + x) + g−(·+ t0 − x).

The integral kernel approaches πδ(t)/2 in the near-boundary limit. Therefore both
terms cancel each other and we have the desired boundary condition.

5.3.2 Volume of Extremal Slice

Let us return to the volume. As I derived in (5.39), the volume can be written as

V(2) =

∞∫

0

dz̃

∞∫

−∞

dx̃

[
1

4z̃
t̃1

(0,1) (x̃, z̃)
(
g′′−
(
t̃0 − x̃

)
+ g′′+

(
t̃0 + x̃

))

− 1

4z̃2
t̃1

(0,1)
(
x̃, z̃
)

2 − 1

4z̃2
t̃1

(1,0)
(
x̃, z̃
)

2

]
. (5.48)

I get rid of the last two terms by integration by parts. This allows to express them
in terms of ĝ±′′ using (5.40)

V(2) =

∞∫

0

dz̃

∞∫

−∞

dx̃

[
1

4z̃
t̃1

(0,1) (x̃, z̃)− t̃1 (x̃, z̃)

8z2

] (
g′′−
(
t̃0 − x̃

)
+ g′′+

(
t̃0 + x̃

))
,

=

∞∫

0

dz̃

∞∫

−∞

dx̃
1

8z2
t̃1 (x̃, z̃)

(
g′′−
(
t̃0 − x̃

)
+ g′′+

(
t̃0 + x̃

))
. (5.49)

At this point, we can plug in our solution for the embedding t̃1 (5.46). After ex-
pressing the integrand in terms of the Fourier transform for g± (5.43) and t̃1 (5.42),
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the integral reduces to

V(2) = π3

∞∫

−∞

dξ |ξ|3
(
ĝ+(ξ)e−2iπξt0 + ĝ−(−ξ)e2iπξt0

) (
ĝ−(ξ)e−2iπξt0 + ĝ+(−ξ)e2iπξt0

)
.

Since the functions g± are real, their Fourier transforms satisfy ĝ±(−ξ) = ĝ±(ξ)∗.
Hence, the change of volume reduces to

V(2) = π3

∞∫

−∞

dξ |ξ|3
∣∣ĝ−(ξ)e−2iπξt0 + ĝ+(−ξ)e2iπξt0

∣∣2 . (5.50)

As noted by [50], this can be transformed back into g±. For a general boundary
time t0, this yields

V(2) =
3

4π

∫
dxdy

1

(x− y)4

(
g+(t0 + x) + g−(t0 − x)

)(
g+(t0 + y) + g−(t0 − y)

)
.

The sum (g++g−) has a physical interpretation. Expressing the new time coordinate
t̃ in terms of the old one, we obtain

t̃ = t− σ

2

(
g+(x̃+) + g−(x̃−)

)
. (5.51)

Consequently, (g+ + g−) is proportional to the shift of the embedding in the old
coordinates.

5.3.3 Properties of Volume Change

In the following, I analyze the obtained expression more closely. In the form given
in Equation (5.50), one property is already obvious: the change of volume is always
non-negative and does not depend on the sign of σ. To have a vanishing change of
volume at a certain time t0, the transformation has to satisfy

ĝ−(ξ) = −ĝ+(−ξ) exp(4iπt0ξ) ∀ξ ∈ (−∞,∞). (5.52a)

In this case, the change of volume is positive for any other time. In particular, it
follows

g−(t0 − x) = −g+(t0 + x), (5.52b)
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i.e. for the timeslice is unchanged and only the spatial direction is transformed.
This implies the following: the extremal volume slice stays the same, only the cutoff
changes. Therefore, it is also possible to use the vacuum result for the embed-
ding (5.35) but a different regularization (see (5.10)). In this case, one does not
have to solve a complicated embedding and can also consider this setup for finite
conformal transformation. The conditions translate to

t0 =
1

2

(
G+(x̃+) +G−(x̃−)

)
|t̃=t0 , (5.53)

x =
1

2

(
G+(x̃+)−G−(x̃−)

)
|t̃=t0 = G+(x̃+)|t̃=t0 − t0. (5.54)

Starting with the vacuum result (5.35), the volume for the transformed state is

V(t0) =

∫
dx

1

zε
,

where the cutoff is spacetime dependent zε = z(z̃ = ε, x̃) (5.10). Furthermore, it is
more convenient to integrate over x̃. These transformations result in

dx = |G+
′(x̃+)|dx (5.55a)

zε = ε
√
|G+

′(x̃+)G−′(x̃+)||t̃=t0 = ε|G+
′(x̃+)| (5.55b)

Both contributions cancel each other. The volume is consequently does not change,
i.e.

V(t0) =

∫
dx̃

1

ε

|G+
′(x̃+)|

|G+
′(x̃+)| = V(0)(t0). (5.56)

This is interesting. It implies that there are excited states with the same complexity
as the vacuum state. In particular, their energy can be arbitrary high. However,
the complexity for these states is time-dependent and only vanishes at a fixed time
t0.

Let us return to the result for an infinitesimal conformal transformation. The
volume change can be split into three parts: one term only depending on g+, one
term only depending on g− and one mixed term

V(2) = V(2),pure(ĝ+) + V(2),pure(ĝ−) + V(2),mixed(ĝ+, ĝ−), (5.57a)
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where the different terms are defined as

V(2),pure(ĝ) = π3

∞∫

−∞

dξ |ξ|3 · ĝ(−ξ)ĝ(ξ), (5.57b)

V(2),mixed(ĝ+, ĝ−) = 2π3

∞∫

−∞

dξ |ξ|3 · ĝ+(ξ)ĝ−(ξ)e−4iπξt0 . (5.57c)

In particular, the change of complexity is time-independent if only one light-cone
coordinate is transformed. The reason for that is that such a transformation pre-
serves the translational invariance in the untransformed light-cone coordinate. This
translates into the time-independence of the result. The result in this form shows
an interesting behavior: there is a positive, time-independent part arising from the
pure terms and a time-dependent fluctuation arising from the mixed term. The
fluctuation changes sign if the sign of ĝ+ or ĝ− is changed, whereas the pure term is
invariant. Since the complexity change is always non-negative, this implies

∣∣V(2),mixed(ĝ+, ĝ−)
∣∣ ≤ V(2),pure(ĝ+) + V(2),pure(ĝ−) (5.58)

for any transformation. From the definitions of both terms (5.57), it can be seen
that the bound is only saturated for

ĝ−(ξ) = ±ĝ+(−ξ) exp(4iπt0) ∀ξ ∈ (−∞,∞), (5.59a)

g−(t0 − x) = ±g+(t0 + x). (5.59b)

Furthermore, it is interesting to observe how V(2) (5.57) changes under manip-
ulation of g±. One interesting case is a rescaling of the argument of g±. It follows
directly from my result that the change of complexity behaves as

g±(x)→g±(λx), ĝ±(ξ)→ 1

|λ| ĝ±(ξ/λ) (5.60a)

V(2) →λ2V(2)|t0→λt0 . (5.60b)

This can be understood by performing the replacement

x± = x̃± + σg±(x̃±),

→ λx± = λx̃± + σλ g±(λx̃±).
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Therefore, we can consider it as the initial transformation from old coordinates λx
with new coordinates λx̃. Since the vacuum state is invariant under dilatation, this
factor λ on the left does not change the complexity. The Weyl rescaling on the
right-hand side only translates into a rescaling of t0. Additionally, the expansion
parameter is multiplied with λ.

Another interesting transformation are coordinate shifts

g±(x±)→ g±(x± + δ±). (5.61)

These transformations add a local phase to the Fourier transforms

ĝ±(ξ)→ ĝ±(ξ)e−2πiξδ± . (5.62)

In particular, this leaves the pure terms invariant since they only depend on the
absolute values. For the mixed term, this complex phases result in a shift of t0

⇒ V(2)(ĝ+(ξ)e−2πiξδ+ , ĝ+(ξ)e−2πiξδ−) = V(2)(ĝ+(ξ), ĝ−(ξ))
∣∣
t0→t0+(δ++δ−)/2

. (5.63)

This transformation is special when δ± are identical up to the sign. In these cases,
the transformation describe time-shifts and translations

time-shift: translation:

g±(x±)→ g±(x± + δ), g±(x±)→ g±(x± ± δ), (5.64a)

ĝ±(ξ)→ ĝ±(ξ)e−2πiξδ, ĝ±(ξ)→ ĝ±(ξ)e∓2πiξδ, (5.64b)

V(2) → V(2)

∣∣
t0→t0+δ

, V(2) → V(2). (5.64c)

Translations leave as expected the complexity invariant, while time-shifts only result
in a shift of t0.

5.4 Examples

In the following my result is applied to calculable examples. In particular, the
transformations are chosen to have a power law behavior at infinity, which makes
them approximately localized. Therefore, they can be interpreted as localized wave
packages.

To keep the notation simple, the tildes over the new coordinates are skipped in
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this section.

Example 1

First, I consider

g+

(
x+
)

=
a+c+

a2
+ + (x+)2 ⇐⇒ ĝ+(ξ)=c+e

−2a+π|ξ|π, (5.65a)

g−
(
x−
)

=
a−c−

a2
− + (x−)2 ⇐⇒ ĝ−(ξ)=c−e−2a−π|ξ|π. (5.65b)

The convention is that a± are positive and the sign is encoded in c±. Therefore, the
Fourier transforms are exponentially decaying. The leading order contribution to
the energy density (see (5.14)) is shown in Figure 5.3.
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Figure 5.3: First order term of the Energy Density for Example 1.
Here, I consider a± = c+ = 1 and c− = ∓1.

The embedding of the extremal surface can be derived from (5.36) and is

t1(x, z) =c−
2z−1

(
(t0 − x)2 − a2

−
)
− z−2a−

(
a2
− − 3(t0 − x)2

)
− a−

2 (a2
− + (t0 − x)2) (2a−z−1 + z−2 (a2

− + (t0 − x)2) + 1) 2

+ c+

2z−1
(
(t0 + x)2 − a2

+

)
− z−2a+

(
a2

+ − 3(t0 + x)2
)
− a+

2 (a2
+ + (t0 + x)2) (2a+z−1 + z−2 (a2

+ + (t0 + x)2) + 1) 2
. (5.66)

The correction to the volume is given by

V(2) =c2
+ ·

3π

64a4
+

+ c2
− ·

3π

64a4
−

+
c−c+

(a+ + a−)4
· 3π (16t4a − 24t2a + 1)

2 (4t2a + 1) 4
, (5.67)
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Figure 5.4: Change of Complexity for Example 1 and Example 2.
The mixed, time-dependent term of the change of volume is plotted. The volume is
is related to the complexity by δC = V/GNL.

where ta is defined as ta = t0
a++a−

. The result nicely displays the structure derived
in (5.57a). The mixed term V(2),mixed is shown in figure 5.4.

This transformation yields V(2) = 0 at time t0 = 0 for a+ = a− and c+ = −c−.
This can be seen from checking the conditions on the Fourier transforms ĝ± (5.52).

Example 2

As a second example, I consider

g+

(
x+
)

= − c+x
+

a2
+ + (x+)2 ⇔ ĝ+(ξ)=− ic+e

−2a+π|ξ|πsgn(ξ), (5.68a)

g−
(
x−
)

= − c−x
−

a2
− + (x−)2 ⇔ ĝ−(ξ)=− ic−e−2a−π|ξ|πsgn(ξ). (5.68b)

The embedding of the new extremal surface is

t1(x, λ) =− c−
(t0 − x)

(
−4a−z

−1 + z−2
(
−3a2

− + (t0 − x)2
)
− 1
)

2 (a2
− + (t0 − x)2) (2a−z−1 + z−2 (a2

− + (t0 − x)2) + 1) 2

− c+

(t0 + x)
(
−4a+z

−1 + z−2
(
−3a2

+ + (t0 + x)2
)
− 1
)

2 (a2
+ + (t0 + x)2) (2a+z−1 + z−2 (a2

+ + (t0 + x)2) + 1) 2
. (5.69)
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The volume change caused by the transformation is

V(2) =c2
+ ·

3π

64a4
+

+ c2
− ·

3π

64a4
−
− c−c+

(a+ + a−)4
· 3π (16t4a − 24t2a + 1)

2 (4t2a + 1) 4
(5.70)

with time ta = t0
a++a−

. The change of volume and hence complexity is identical to
the result in example 1 (5.67) up to a sign change in the mixed term. See figure 5.4
for a plot of this quantity. However, the transformed state itself is quite different.
In particular, the energy density is shown in Figure 5.5.
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Figure 5.5: First order term of the Energy Density for Example 2.
Here, I consider a± = c+ = 1 and c− = ∓1.

Example 3

As a final example, I consider a combination of the previous two examples

g+

(
x+
)

=
c+x

+

a2
+ + (x+)2 ⇔ ĝ+(ξ)=ic+e

−2a+π|ξ|πsgn(ξ), (5.71a)

g−
(
x−
)

=
a−c−

a2
− + (x−)2 ⇔ ĝ−(ξ)=c−e−2a−π|ξ|π. (5.71b)

The change of complexity is

V(2) =c2
+ ·

3π

64a4
+

+ c2
− ·

3π

64a4
−
− c−c+

(a+ + a−)4
· 12πta (1− 4t2a)

(4t2a + 1) 4
(5.72)
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Figure 5.6: Change of Complexity for Example 3.
The mixed, time-dependent term of the change of volume is plotted. The volume is
is related to the complexity by δC = V/GNL.

with ta = t0
a++a−

. The time-dependent part of the mixed term is shown in Figure 5.6.
In this example, the metric perturbation does not satisfy the condition (5.52) for the
change of complexity to vanish at a certain time t0. Taking a closer look at (5.52),
a necessary condition for V(2) = 0 is that the absolute value of the mixed term has
a unique maximum. We derived in (5.59a) the condition on the functions ĝ± for

V(2),mixed = ±
(
V(2),pure(ĝ+) + V(2),pure(ĝ−)

)
.

However, this condition can at most be satisfied for a particular time t0. Conse-
quently, the result for V(2),mixed as shown in Figure 5.6 directly forbids V(2) = 0.

The energy density of this example is presented in Figure 5.7.

5.5 Summary and Discussion

The complexity of a state induces a notion of distance on the space of states. Let
us denote

C
(
|Ψ〉, |Ψ̂〉

)
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Figure 5.7: First order term of the Energy Density for Example 3.
Here, I consider a± = c+ = 1 and c− = ∓1.

as complexity of the state |Ψ〉 with respect to the reference state |Ψ̂〉. In this chapter,
we study conformal transformation of the form

x+ = G+(x̃+), t =
1

2

(
G+(x̃+) +G−(x̃−)

)
,

x− = G−(x̃−), x =
1

2

(
G+(x̃+)−G−(x̃−)

)
.

They correspond to local conformal transformation and are generating new states.
The corresponding operator are denoted as U± in the following. There is a well-
defined notion how this transformation is described by a diffeomorphism on the
gravity side. For the calculation following the complexity=volume proposal, the
transformation changes two aspects:

• The volume slices are anchored on a different equal timeslice t̃ = t0.

• The bulk cutoff used to regularize the volume is different.

For a general conformal transformation, it is a non-trivial problem to solve the
embedding of the extremal surface. For the special case where the conformal trans-
formation does not change the considered equal time slice, i.e. for

t(t̃, x̃) = t0|t̃=t0 , =⇒ G−(y) = t0 −G+(2t0 − y), (5.73)
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UU−1

|0〉

|R〉

(a) Vacuum State and adjoint Minima.

UU−1

|R〉

|0〉

(b) Vacuum State as Minimum.

Figure 5.8: Geometry of Space of States for Different Transformations.
Conformal transformations satisfying (5.73) do not change the distance to the refer-
ence state. Infinitesimally, conformal transformations not satisfying this condition
cause a positive, symmetric complexity change.

we avoid this problem. For these transformations, the only complexity change arises
from the change of the bulk cutoff. I showed in (5.56) that this contribution also
vanishes. Therefore, there is a continuous set of states

U+U−|0〉 with G−(y) = t0 −G+(2t0 − y)

parameterized by G+ which have the same distance to the reference state |R〉 as the
vacuum state. This situation is shown in Figure 5.8a.

For any conformal transformation not satisfying (5.73), we calculated the change
of complexity perturbatively by considering

x+ = x̃+ + σg+(x̃+),

x− = x̃− + σg−(x̃−),

where the functions g± are bounded and σ is a small expansion parameter. For
such transformations, we found that the change of complexity is of second order and
positive, i.e. it is of the form

δC = σ2C(2) +O(σ3) with C(2) > 0.

Therefore, the vacuum state is a local minimum in the direction corresponding to
these transformations. In particular, the change of complexity is invariant under
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U± → (U±)−1

and the structure of the space of states is reflection invariant. This is shown in
Figure 5.8b.

After discussing what our results tell us about the geometry of the space of
states, let us take a look what the corresponding operator applied to the vacuum
state tells us. We calculated the change of complexity with respect to the reference
state |R〉

C
(
U(g+)U(g−) |0〉 , |R〉

)
≈ C

(
|0〉 , |R〉

)
+ δC. (5.74)

For δC ≥ 0 this results in the inequality

C
(
|0〉 , |R〉

)
≤ C

(
U(g+)U(g−) |0〉 , |R〉

)
. (5.75)

Furthermore, the complexity is expected to satisfy a triangle inequality [95, 97],
which results in

C
(
U(g+)U(g−) |0〉 , |R〉

)
≤ C

(
U(g+)U(g−) |0〉 , |0〉

)
+ C
(
|0〉 , |R〉

)
. (5.76)

Therefore, the triangle inequality yields a bound on the complexity of the trans-
formed state with respect to the vacuum state

δC =
σ2

LGN

V(2) ≤ C
(
U(g+)U(g−) |0〉 , |0〉

)
. (5.77)

The complexity of a state is defined as the minimal complexity of an operator
transforming the reference state into the desired one. Since we know the exact form
of U±, we know one operator performing this transformation. The complexity of the
operator U+U− is bounded by the the complexity change, since it does not have to
be the most efficient one. As shown, U can be expanded as a power series in σ, i.e.

U ≈ 1+ σU1 + σ2U2.

Definitions of complexity in accordance with Nielsen’s approach [95, 97] ought to
give a complexity of the form

C(U) ≈ σκ+ . . . (5.78)
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for small operators. Therefore, our results are compatible with field theory proposals
following this approach. If the lowest order term for the complexity of the opera-
tor is non-vanishing, this inequality is automatically satisfied since the expansion
parameter σ is small. For conformal transformations with κ = 0, our results place
necessary conditions on the field theory results for this definition of field theory be
compatible with the complexity=volume proposal.

On another note, my co-author calculated the complexity change also for the
competing complexity=action proposal [49]. Interestingly, the lowest order term
has the form

δC ∝ σ lnσ.

While this still vanishes in the limit σ → 0, it goes to zero slower to than σ. As
a consequence, the complexity=action proposal is not compatible with Nielsen’s
approach. The complexity of the operator has the form (5.78) and the triangle
inequality (5.77) would be violated for small σ. Therefore, the complexity=volume
proposal is favored as a potential dual to field theory complexity.

Furthermore, our result gives an explicit result which can be compared to field
theory results. There exists field theory results for the complexity of the transformed
state with respect to the vacuum state [50]. They developed a boundary notion of
complexity. When applied to conformal transformations, they found the exact same
result as we found for the complexity change. Since we considered the complexity
with respect to the reference state |R〉, it is related to their result via the triangle
inequality (5.76). This suggest that this bound is saturated. This is a powerful
confirmation and our results and the complexity=volume proposal.
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Chapter 6

Summary and Outlook

We elaborated in the introduction how the AdS/CFT correspondence, as a holo-
graphic duality, sheds light on the emergence of gravity from field theory degrees
of freedom. In particular, a good way to probe the geometry is to anchor extremal
surfaces at the boundary. These correspond to non-local observables in the field
theory: the two-point function of certain operators to the geodesic, the Wilson loop
expectation value to a two-dimensional surface and the entanglement entropy to the
co-dimension two surface, which reduces to a co-dimension one surface in a constant
time slice.

These observables were studied in Chapter 3. The examined geometries are
AdS Schwarzschild black holes in general spacetime dimensions and correspond to
thermal states in the AdSd+1/CFTd duality. We derived analytic solutions for the
considered observables in terms of generalized hypergeometric function. In partic-
ular the high-temperature limit shows an interesting behavior. In this limit, the
extremal surfaces reach deep into the bulk. The leading order contribution only de-
pends on the geometry at the horizon, but the subleading term depends non-trivially
on the entire bulk geometry. Our analytic results determine this subleading term in
a closed form. Especially the resulting term for the entanglement entropy showed an
interesting behavior: the subleading term is an area term and expected to satisfy a
variant of the c-theorem, the so-called area theorem. Therefore, it can be interpreted
as a measure for the number of degrees of freedom. Our result show that this area
term becomes positive for spacetime dimension larger than six. This hints to addi-
tional IR degrees of freedom which increase entanglement. Independent numerical
studies have shown a similar behavior for various geometries such as AdS Reissner-
Nordström black holes [125]. This shows that the high-temperature behavior is an
interesting diagnostic tool to examine the dual field theory. Our analytic methods
developed can also be applied for more general setups to extend the study of this
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area term. One example are semi-local quantum liquids [143], a theory with a finite
correlation length and a near-horizon region with a non-relativistic scale invariance.
It was suspected in [125] that this might be the origin of the appearing area theorem
violation. Additionally to further analytic studies, our results can serve as a testing
ground for numerical methods.

Recently, an interpretation of entanglement in terms of bit threads was pro-
posed [144, 145]. They reformulated the problem of finding the minimal surface in
terms of finding the bulk vector field which maximizes the flux through the corre-
sponding boundary region. This flux has to be divergenceless and has a maximal
density determined by the Planck scale. This allows to visualize the flow by its flow
lines going from the region to the complement. The bit thread picture suggest new
ways to think about the relationship between geometry and quantum information.
Our analytic results for the entanglement entropy can be used to construct such vec-
tor flow configurations explicitly [146]. While these configurations are not unique
and have a priori no physical interpretation, constructing them for examples helps
to gain intuition and learn more about how they are related to the emergence of
geometry.

The holographic construction for the entanglement entropy associates a bulk re-
gion to the boundary region. This is also an interesting observable to study since it
encodes ‘how much’ geometry is associated to a reduced state. Therefore, a natural
next step to study the emergence of geometry is to study this volume. We calculate
it for AdS Schwarzschild in Chapter 4. The volume has an interesting interpretation
when comparing AdS/CFT to MERA tensor networks. Tensor networks are a nu-
merical tool in many-body physics to describe a quantum state by tensors. MERA
in particular has an emergent geometry of tensors encoding the entanglement pat-
tern of the state. In analogy to holography, entanglement entropy is determined by
minimal cut surfaces in these networks. The volume inside this minimal cut surfaces
gives a measure on how optimized the network is to describe the quantum state. A
MERA network for the thermal state can be constructed from the vacuum MERA
network. We approximated this network by a gravitational dual described by vac-
uum AdS with a hard IR wall. We calculate the volume inside the Ryu-Takayanagi
surface both for AdS Schwarzschild and this hard wall model. In particular, we
find that the volume obtained in AdS Schwarzschild is smaller, hinting that thermal
MERA could be further optimized. Further MERA calculations would give more
insights into the connection between AdS/CFT and MERA.

AdS/CFT relates volume to complexity C, a measure of how difficult it is to
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construct a state |ψ〉. Any definition of complexity encodes implicitly the choice of
reference state |R〉 from which the state is constructed and the choice of gate set
used to construct the corresponding operation {µi}, i.e.

|ψ〉 = U |R〉 ,
U ≈ µ1 . . . µC.

For the volume considered above, the states are to reduced states which are in gen-
eral mixed. A proper quantum information definition of such a subregion complexity
is lacking. Even for pure states, the notion of complexity of field theory is not well
defined. In particular, it is not obvious what the preferred choices for gate set and
reference state are. The reference state is usually assumed to be a simple, unen-
tangled state, i.e. a state without gravitational dual. Furthermore, the discussion
about a proper holographic dual to complexity are still ongoing: besides the used
complexity=volume proposal there also exists a complexity=action proposal, relat-
ing the complexity to the gravitational action evaluated on a certain bulk region,
and a modified complexity=volume proposal. Recently, also discussions on what
complexity these proposals correspond to intensified. Motivated by this, Chapter 5
considers the holographic complexity for states obtained by conformal transforma-
tions in AdS3/CFT2. We used the complexity=volume proposal and subsequent
work by my collaborator [49] examined the complexity=action proposal. The ad-
vantage of such states is that we know how to write them as a unitary operator
acting on the vacuum state. This allows to identify differences between the different
proposals and to compare these holographic result to field theory calculations. In
particular, the holographic results for the complexity of the state give a lower bound
on the complexity of the operator corresponding to the conformal transformations.
Our results show that the complexity=volume proposal yields a result compatible
with this. As shown in [49], the complexity=action proposal yields a different
result which is incompatible with usual field theory prescriptions of complexity.
Furthermore, our results where confirmed by holography inspired field theory calcu-
lations [50]. The study of a proper field theory definition of complexity is ongoing,
both using Nielsen’s approach [147–149] as well as alternative approaches [150,151].
Therefore, determining the complexity for well-defined states in the field theories
helps to compare them explicitly to the holographic proposal.

While these studies allow us compare the holographic complexity=volume pro-
posals to field theory proposals, there is also a more abstract interpretation of com-
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plexity: the complexity of a state |Ψ1〉 with respect to a reference state |Ψ2〉 gives
an abstract notion of distance

C (|Ψ1〉, |Ψ2〉) .

This distance measure does not even have to be symmetric, but it is expected to
satisfy the triangle inequality

C (|Ψ1〉, |Ψ3〉) ≤ C (|Ψ1〉, |Ψ2〉) + C (|Ψ2〉, |Ψ3〉) .

Our studies on the change of complexity due to conformal transformations allows us
insight in the local structure of this space of states. In particular, we constructed a
continuous set of states with the same complexity as the ground state. In contrast
to the vacuum state these states are time-dependent. Motivated by the behavior of
complexity close to the vacuum state and also the second law of quantum complex-
ity [152], we expect that the complexity of these states growth with time. Therefore,
the moment of minimal complexity is achieved by meticulous fine tuning but not
stable. It would be interesting to study finite conformal transformations in this
setup. In particular, we are wondering whether there are additional states with the
same complexity and how they are related to the states discussed previously. Fur-
thermore, it would be interesting to find the state with minimal complexity. These
would bring us closer to the choice of reference state involved in the holographic
complexity.

The holographic entanglement entropy was one of the first clues how geometry
emerges in AdS/CFT. But it alone was just the tip of the iceberg. After entan-
glement being identified as the ingredient to build spacetime, it opened the door
to study quantum information aspects in holography. The topics discussed in this
dissertation are only the starting point to fully understand the interconnections
between gravity, field theory and quantum information theory.
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Chapter A

Conventions

A.1 Metric

cosmological constant Λ = −d(d− 1)

L2

AdS-radius L

planar AdSd+1 ds2 =

(
L

z

)2 (
−dt2 + d~x2 + dz2

)
, ~x ∈ Rd−1,

boundary at z = 0,UV cutoff z = ε

planar AdS
Schwarzschild

ds2 =

(
L

z

)2 (
−b(z)dt2 + d~x2 + b(z)−1dz2

)
,

b(z) = 1−
(
z

zh

)d
, horizon at z = zh

gravitational action S =
1

16πG
(d+1)
N

∫
dd+1x

√−g
(
R +

d(d− 1)

L2
+ matter terms

)

for AdSd+1/CFTd

Newton constant G
(d+1)
N ∝ ld−1

p

Planck constant lp

string length ls ∝
√
α′

I



A Conventions

A.2 AdS/CFT Dictionary

central charge c ∝ Ld−1

G
(d+1)
N

∝
(
L

lp

)d−1

’t Hooft coupling λ ∝
(
L

ls

)γ
, γ > 0

Field-Operator-Map Operator O∆ of dimension ∆

l

Field φ(z, x) of mass m =
√

∆(∆− d)

A.3 Indices

M,N, . . . 0, . . . , D target space coordinates
D=26 for bosonic string theory,
D=10 for superstring theory

α, β 0, 1 worldsheet coordinates of the string
µ, ν 0, . . . , p coordinates parallel to brane
i, j 1, . . . , D − p− 1 coordinates transverse to brane
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Chapter B

Mathematical Functions

B.1 Generalized Hypergeometric Functions

The results for the extremal surfaces can be expressed in terms of generalized hy-
pergeometric functions. In the following, we review these functions and their prop-
erties [153–155].

A generalized hypergeometric function is the power series

pFq


a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


 =

∞∑

n=0

1

n!

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn, (B.1a)

=
∞∑

n=0

cn, (B.1b)

where (a)n is the (rising) Pochhammer symbol

(a)n =





1 if n = 0,

a · (a+ 1) · · · · · (a+ n− 1) if n ∈ N.
(B.2)

The parameters ai and bi are the numerator and denominator parameters respec-
tively, whereas z is the variable or argument of the hypergeometric function. Another
common notation is

pFq (a1, . . . , ap; b1, . . . , bq; z) , (B.3)

which we will use occasionally to avoid lengthy expressions. In this work, we con-
struct hypergeometric functions from a known power series, i.e. for known cn (c.f.
Equation (B.1b)) normalized such that c0 = 1. This can be done by calculating the
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ratio between successive coefficients

cn+1

cn
= z ·

∏p
m=1 (am + n)∏q
m=1 (bm + n)

1

n+ 1
. (B.4)

It can be shown easily that differentiating with respect to the argument results in

d

dz
pFq


a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


 =

p∏
i=1

ai

q∏
j=1

bj

pFq


a1 + 1, . . . , ap + 1

b1 + 1, . . . , bq + 1

∣∣∣∣∣∣
z


 , (B.5a)

d

dz
za1

pFq


a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


 = a1z

a1−1
pFq


a1 + 1, a2, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


 . (B.5b)

For a power series, the radius of convergence is important. A generalized hyper-
geometric function converges absolutely

• for all values of |z| if p ≤ q,

• for |z| < 1 if p = q + 1,

• for |z| = 1 if p = q + 1 under the condition that

Ψ =

p∑

i=1

bi −
p+1∑

i=1

ai > 0. (B.6)

Let us look closer at the case p = q + 1. For 2F1, the result at unit argument is
known in the case that it is finite

2F1


a, b

c

∣∣∣∣∣∣
1


 =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , for Ψ > 0. (B.7)

Unfortunately, this is not the case for general p+1Fp. However, we can examine the
divergent behavior, which is

p+1Fp


a1, . . . , ap+1

b1, . . . , bp

∣∣∣∣∣∣
z


 = Γ (−Ψ)

∏p
i=1 Γ (bi)∏p+1
i=1 Γ (ai)

· (1− z)Ψ (B.8a)
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B.2 Meijer G-Function

for Re(Ψ) < 0 and

p+1Fp


a1, . . . , ap+1

b1, . . . , bp

∣∣∣∣∣∣
z


 = −

∏p
i=1 Γ (bi)∏p+1
i=1 Γ (ai)

· ln(1− z) for Ψ = 0. (B.8b)

Let us finish this section with possible simplifications. From the series rep-
resentation Equation (B.1a) we notice the trivial one: coinciding numerator and
denominator parameter cancel each other

p+1Fq+1


a1, . . . , ap, ap+1

b1, . . . , bq, ap+1

∣∣∣∣∣∣
z


 = pFq


a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


 . (B.9)

In some cases, it is possible to absorb a square root in 2F1

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z). (B.10)

Another interesting simplification is possible if two hypergeometric functions are
associated or contiguous to each other, i.e. their parameters differ by integer values.
One can find a linear relationship between them, so called contiguous relations. One
simple case is

a1 · pFq


a1 + 1, a2, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


− (b1 − 1) · pFq


 a1, . . . , ap

b1 − 1, b2, . . . , bq

∣∣∣∣∣∣
z


 (B.11)

+(b1 − a1 − 1) · pFq


a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣
z


 = 0.

Finally, for some parameters a closed form for the hypergeometric function or the
value at unit argument is known. Examples are presented in Table B.1.

B.2 Meijer G-Function

Another interesting function is the Meijer G-Function

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
1

2πi

∫

L

ds

m∏
j=1

Γ(bj − s)
n∏
j=1

Γ(1− aj + s)

q∏
j=m+1

Γ(1− bj + s)
p∏

j=n+1

Γ(aj − s)
zs (B.13)
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1F0 (a; ; z) = (1− z)−a, (B.12a)

2F1

(
1, 1

2
; 3

2
; z
)

=
1√
z

artanh
(√

z
)
, (B.12b)

2F1 (1, 1; 2; z) = −1

z
log(1− z), (B.12c)

3F2

(
1, 1, 3

2
; 2, 5

2
; z
)

= −6 tanh−1 (
√
z)

z3/2
+

6

z
− 3 log(1− z)

z
, (B.12d)

3F2

(
1, 1, 3

2
; 2, 2; 1

)
= 4 ln 2, (B.12e)

3F2

(
1, 1, 3

2
; 2, 5

2
; 1
)

= 3(2− ln 4). (B.12f)

Table B.1: Examples of Hypergeometric Functions.

which is well defined for

0 ≤ m ≤ q, 0 ≤ n ≤ p , (B.14a)

ak − bj /∈ N ∀k = 1, . . . , n and j = 1, . . . ,m, (B.14b)

z 6= 0. (B.14c)

The path of integration L splits the poles of Γ(bj− s) from the ones of Γ(1−aj + s).
For real argument z, there are three possibilities:

• L going from −i∞ to +i∞,

• L going from +∞ to +∞ for |z| < 1 and q ≥ p,

• L going from −∞ to −∞ for |z| > 1 and q ≤ p.

There is a convenient relationship to hypergeometric functions: if we can begin and
end the path at +∞, Meijer G-Functions can be expressed in terms of hypergeo-
metric functions

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
m∑

h=1

n∏
j=1

Γ(1 + bh − aj)
m∏

j=1, j 6=h
Γ(bj − bh)

q∏
j=m+1

Γ(1 + bh − bj)
p∏

j=n+1

Γ(aj − bh)
zbh (B.15)

× pFq−1




1 + bh − a1, . . . , 1 + bh − ap
1 + bh − b1, . . . , 1 + bh − bq︸ ︷︷ ︸

without bh

∣∣∣∣∣∣∣∣
(−1)p−m−n z


 .
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B.2 Meijer G-Function

Meijer G-functions are analytic continuation of hypergeometric functions. This al-
lows to consider them in a range where the hypergeometric functions do not converge.
In particular for p = q, the integral for z > 1 can be closed at −∞ and there exist an
analogous relationship to hypergeometric functions evaluated at argument z−1. This
is not relevant for the work presented in this thesis, but useful when generalizing
the used methods.

Meijer G-functions have similar properties as hypergeometric functions. For
example, in the case

ν =

q∑

j=1

bj −
p∑

j=1

aj < −1, (B.16)

they converge at unit argument, which corresponds to (B.6) for hypergeometric func-
tions. Furthermore, the contiguous relations for hypergeometric functions (B.11)
correspond to recurrence relations

(a1 − bq − 1) Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

= Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq−1, bq + 1

∣∣∣∣∣ z
)

(B.17)

−Gm,n
p,q

(
a1 − 1, . . . , ap−1, ap

b1, . . . , bq

∣∣∣∣∣ z
)

for n < p, m < q.
Useful transformations which transformMeijerG-functions into MeijerG-functions

are

zρ ·Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

= Gm,n
p,q

(
a1 + ρ, . . . , ap + ρ

b1 + ρ, . . . , bq + ρ

∣∣∣∣∣ z
)

(B.18)

and for h ∈ Z

zh
dh

dzh
Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

= Gm,n+1
p+1, q+1

(
0, a1, . . . , ap

b1, . . . , bq, h

∣∣∣∣∣ z
)
, (B.19a)

= (−1)h Gm+1, n
p+1, q+1

(
a1, . . . , ap, 0

h, b1, . . . , bq

∣∣∣∣∣ z
)
. (B.19b)
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functions. We show that they reproduce known numerical results to great
accuracy. Our results allow to identify new physical behaviour: for instance,
we consider the entanglement density, i.e. the difference of entanglement
entropies at finite and vanishing temperature divided by the volume of the
entangling region. For field theories of dimension seven or higher, we find that
the entanglement density displays non-monotonic behaviour as function of
` · T , with ` the strip width and T the temperature. This implies that the area
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of holographic states caused by a small conformal transformation in
AdS3/CFT2. This computation is done perturbatively to second order. We give
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such conformal transformations can be explicitly constructed in CFT terms,
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