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1 Introduction 

1.1 Clinical transplantation and the immunology of allograft rejection 

Transplantation of organs, tissues and cells represents a life saving procedure 

for patients suffering from incurable diseases. Despite advances in surgical 

techniques and medical therapies over the past few decades, allograft rejection 

remains the major obstacle to long-term survival of the allograft (Starzl, 2000). 

 

After transplantation, the recipient’s immune system recognises donor-derived 

proteins as foreign resulting in a strong immunological reaction where donor 

cells are specifically killed and thus, the graft destroyed (Denton et al., 1999). 

This phenomenon can be explained by a set of specific antigens, termed major 

histocompatibility complex (MHC) antigens, which are expressed on all somatic 

cells and which normally differ greatly between non-related individuals 

(Benichou, 1999; Sekine et al., 1997). 

 

Host T cells that recognize foreign (allogeneic) MHC molecules on donor cells 

via the direct and indirect pathway are the mediators of allograft rejection 

(Batchelor and Lechler, 1982; Benichou, 1999). The direct pathway involves the 

activation of naïve T cells by contact of the T cell receptor (TCR) with the 

allogeneic MHC/peptipes molecules expressed on the surface of donor antigen-

presenting cells (APC) together with costimulatory signals provided by B7 

molecules on APC (Bingaman and Farber, 2004; Chandok and Farber, 2004). 

 

In contrast, recipient T cells involved in the indirect pathway recognise peptides 

of allogeneic MHC molecules that were processed and then presented by self 

(recipient) APC. Afterwards, the T cells proliferate and differentiate into effector 

cytotoxic or helper T cells that secrete cytokines such as IFN-γ and IL-2 

(Benichou, 1999). As a consequence, further immune cells, for example 

cytoxotxic T lymphocytes, B lymphocytes for antibody production and 

macrophages for antigen clearance are recruited and activated (Bingaman and 

Farber, 2004; Chandok and Farber, 2004; Pandiyan et al., 2007; Sekine et al., 
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1997). If the recipient possesses a fully functional immune system, the 

transplantation almost unavoidably ends in allograft rejection. 

 

The strategies used to avoid or delay allograft rejection are pre-operative MHC 

matching between donor and host and general immunosuppression (Hariharan 

et al., 2000). MHC matching can only partly contribute to a successful 

acceptance of the graft. Therefore, allograft recipients have to undergo life-long 

immunosuppression to minimise the possibility of a rejection (Buckley, 2003). 

However, even with enormous progress in the development of 

immunosuppressive strategies over the last years, a non-specific down-

regulation of the patients’ immune system is still inevitable bearing strong side 

effects: the host’s capacity to respond appropriately to infectious, fungal and 

carcinogenic threats is restricted to a large extent (Buckley, 2003). Therefore, 

an important goal in transplantation medicine would be to induce donor-specific 

tolerance, which would allow recipients to live without pharmacological 

immunosuppression. 

 

1.2 The tolerogenic potential of APC 

T lymphocytes are mediators of allograft rejection but their activation is under 

control of APC (Heeger, 2003). However, besides their role in T cell immunity, 

APC, namely dendritic cells and macrophages, present regulatory and 

tolerogenic properties because they are also involved in the induction and 

maintenance of T cell tolerance, respectively (Hoves et al., 2006; Morelli and 

Thomson, 2003). 

 

The ability of DC to induce T cell tolerance is related to their state of maturation 

(Banchereau et al., 2000; Lutz and Schuler, 2002; Morelli and Thomson, 2003; 

Nouri-Shirazi and Guinet, 2002). Mature DC with high expression levels of MHC 

class II molecules and the costimulatory molecules CD80 and CD86 represent 

potent APC in activating naïve T cells. In contrast, immature DC with only a 

moderate expression of MHC class II molecules and a low level of costimulatory 

molecules are attributed tolerogenic properties (Nouri-Shirazi and Guinet, 2002; 
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Li et al., 2005; Vanclee et al., 2006). Without costimulatory signals, antigen-

presentation leads to anergy in antigen-specific T cells (Li et al., 2005; Morelli 

and Thomson, 2003; Nouri-Shirazi and Guinet, 2002). Furthermore, immature 

DC have been shown to induce tolerance by activating regulatory T cells 

(Jonuleit et al., 2000). Lutz and Schuler reviewed a new subset of DC, which is 

distinguished as mature by their surface expression, however, they do not 

release elevated levels of proinflammatory cytokines, such as IL-1β or IL-12p40 

(Lutz and Schuler, 2002). 

 

As shown for DC, tolerance-inducing subpopulations also exist within the 

macrophages. For this group of APC, derived from the same haematopoietic 

precursors as DC, the type of activation seems to be responsible for the 

development of a tolerogenic or immunogenic phenotype (Gordon, 2003; 

Schebesch et al., 1997). Classical activation by IFN-γ and lipopolysaccharides 

leads to immunostimulatory and proinflammatory properties of macrophages, 

whereas so-called alternative activation by agents such as IL-4, IL-10 or 

glucocorticoids produces an immunosuppressive phenotype (Goerdt and 

Orfanos, 1999; Mosser, 2003). In vitro assays have shown that alternatively 

activated macrophages are able to inhibit proliferation of peripheral blood 

lymphocytes and CD4+ T lymphocytes in an active manner (Schebesch et al., 

1997). The anti-inflammatory IL-4 induces the development of macrophages 

with the alternatively activated phenotype (Schebesch et al., 1997). In this study 

macrophages from bone marrow precursor cells of the Lewis rat are generated 

with the macrophage colony-stimulating factor (M-CSF) alone and in 

combination with IL-4. 

 

1.3 Experimental settings 

Previous studies of the group focused on the generation of immunomodulatory 

DC from haematopoietic bone marrow precursor cells isolated from Lewis rats. 

The cultivation of haematopoietic precursors with the granulocyte-macrophage 

colony stimulating factor (GM-CSF) and IL-4 leads to the development of so-

called IL-4 DC. These cells showed an immature phenotype and 
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immunomodulatory properties (Tiurbe GC, 2006). For the present study, 

macrophage colony stimulating factor (M-CSF) was used to stimulate the 

differentiation of haematopoietic precursors into monocytes/macrophages (M-

CSF MФ); an additional stimulation with IL-4 generated so-called IL-4 MФ. The 

study focused on the characterisation of the effect of bone marrow derived M-

CSF MФ and IL-4 MФ on naïve, allogeneic T lymphocytes, whether they act as 

activators or inhibitors of T cell activation. 

 

To evaluate the stimulatory or suppressive capacities of APC on naïve T 

lymphocytes, the allogeneic mixed leukocyte culture (MLC) is used in this study 

(Fig. 1.1). In addition, MLC serves as a predictive test of T cell-mediated graft 

rejection, since the T cell receptor (TCR) of the alloreactive T lymphocytes 

recognises allogeneic MHC molecules on the surface of allogeneic (foreign) 

APC. 

 

According to the “two-signal” hypothesis of T cell activation, naïve T cells need 

two signals for complete activation. The first signal needed is the engagement 

of the TCR with the peptide antigen presented by self major histocompatibility 

complex (MHC) molecules. This first signal must be accompanied by a second 

stimulus mediated via coreceptors (signal two), namely the transmembrane 

protein CD28 on T cells with its ligands B7-1 (CD80) and B7-2 (CD86) on APC 

(Schwartz, 1992). Consequently, APC presenting both signals will be strong T 

cell activators in MLC (Fig. 1.1 A). 

 

A high rate of T cell proliferation in the MLC is characterised by a strong 

incorporation of [3H]-thymidine resulting in elevated radioactive signals (Fig. 1.1 

E). In addition, activated T lymphocytes are visible under the light microscope 

as cell clusters of proliferating T lymphocytes. Both costimulator- and MHC-

deficient APC are unable to activate T cell proliferation. These T lymphocytes 

demonstrate a normal cell size under the microscope and no incorporation of 

radioactivity is measurable (Fig. 1.1 B, C and F). Therefore, mature DC are the 

most potent stimulators of naïve T cells. In this study, mature DC isolated from 
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the spleen of Lewis rats were used as stimulator cells. Their interaction with T 

lymphocytes, however, can be impaired by so-called competitor cells. These 

cells inhibit the APC-induced T cell proliferation in a dose dependent manner 

(Fig. 1.1 D and F). The effects of the IL-4 MФ and M-CSF MФ as competitor 

cells are proven in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. T cell activation and proliferation in mixed leukocyte cultures. For full T 
cell activation, antigen recognition and costimulation is necessary (A). Increased T cell 
proliferation is characterised by a strong uptake of [3H]-thymidine presented in the 
medium (E). Under the light microscope, these proliferating cells are obvious as cell 
clusters. APC lacking a surface expression of costimulatory molecules as well as MHC 
molecules are not able to activate T lymphocytes (B and C). The consequence is no 
proliferation and no activated (normal-sized) T lymphocytes under the light microscope 
(F). The activation of T lymphocytes by fully functional APC, however, can be 
prevented by competitor cells (D). 
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2 Aims of the study 

The aim of the study was to analyse the biological effect of bone marrow 

derived macrophages. They are generated from bone marrow precursor cells 

cultured with M-CSF and IL-4 (IL-4 MФ) and with M-CSF alone (M-CSF MФ). 

Previous studies of the group (Tiurbe GC, 2006) demonstrated a suppressive 

effect of bone marrow derived dendritic cells (DC) cultured with GM-CSF and 

IL-4 (IL-4 DC). In this study the possible immune regulatory effect of IL-4 MФ 

and M-CSF MФ are evaluated. 

 

Cell type  Effect on T cell proliferation 

Rat macrophages (M-CSF MФ)  Unknown (will be investigated in this study) 

Rat macrophages (IL-4 MФ)  Unknown (will be investigated in this study) 

Rat dendritic cells (IL-4 DC)  Suppression (Tiurbe GC, 2006) 

 

 

Questions 

 

(1) IL-4 combined with GM-CSF induces bone marrow derived DC with immune 

regulatory effects. Does IL-4 combined with M-CSF also induce the 

development of bone marrow derived immune regulatory macrophages? 

 

(2) IL-4 is an anti-inflammatory cytokine. How does IL-4 influence the 

expression of certain surface molecules on IL-4 MФ, which are involved in T 

cell activation? 

 

(3) IL-4 DC suppress the activation of naïve T lymphocytes. What are the 

immune regulatory effects of IL-4 derived macrophages in comparison to IL-

4 DC? 
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3 Materials and Methods 

3.1 Animals 

Inbred Lewis and Wistar Furth rats were provided by Harlan Winkelmann GmbH 

(Borchen, Germany). The animals weighed about 250-350g prior to the removal 

of femurs, spleen and lymph nodes for the isolation of macrophage / dendritic 

cell progenitor cells, dendritic cells and T cells. 

 

3.2 Culture medium and buffers 

Culture medium 

Roswell Park Memorial Institute (RPMI) 1640 cell culture medium supplemented 

with 1 mmol/L sodium pyruvate, 2 mmol/L L-glutamine, 100 U/mL penicillin, 10 

µg/L streptomycin, 5x10-5 mol/L 2-mercaptoethanol, 1% non-essential amino 

acids and 10% fetal calf serum served as standard culture medium (all reagents 

provided by Gibco/Invitrogen, Karlsruhe, Germany). All concentrations indicate 

final concentrations. 

 

Phosphate-buffered saline (PBS) 

PBS contains 140 mmol/L sodium chloride, 2.7 mmol/L potassium chloride, 7.2 

mmol/L sodium dihydrogen phosphate and 1.47 mmol/L potassium dihydrogen 

phosphate and the pH was adjusted to 7.2. The solution was kept at 4°C after 

sterilization. 

 

Erythrocyte lysis buffer I and II 

Lysis buffer I (10-fold concentration) contains 1.68 mol/L ammonium chloride, 

99.88 mmol/L potassium hydrogen carbonate and 12.6 mmol/L EDTA. The 

buffer was diluted 1:10 with sterile aqua injectabila before use. Lysis buffer II 

consists of 154.95 mmol/L ammonium chloride, 9.99 mmol/L potassium 

hydrogen carbonate and 1.27 mol/L EDTA. 
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Tris Acetat (TA) buffer 

TA buffer contains 40 mmol/L Tris(hydroxymethyl)aminomethane hydrochloride, 

20 mmol/L sodium acetate and 20 mmol/L EDTA. 

 

Macrophage detaching buffer (2-fold concentrated) 

Macrophage detaching buffer contains 1.6 mmol/L EDTA, 240 mmol/L sodium 

chloride, 5.4 mmol/L potassium chloride, 16 mmol/L sodium hydrogen 

phosphate, 3 mmol/L potassium dihydrogen phosphate. The pH was adjusted to 

7.4. 

 

3.3 Isolation of bone marrow cells 

Bone marrow cells were isolated from femur bones of Lewis rats. The extracted 

bones were cleaned of muscular and sinewy tissues with a scalpel and washed 

in 70% ethanol and in sterile PBS afterwards. Both ends were cut off with 

surgical scissors. The bone marrow was flushed with 20 mL sterile PBS for 

each bone using a syringe and a 20-gauge needle through a 70 µm nylon cell 

strainer (Becton Dickinson Biosciences, Heidelberg, Germany) to receive a 

single cell suspension. The contaminating erythrocytes were lysed with 10 mL 

lysis buffer II for 5 min at room temperature. Subsequently, the bone marrow 

cells were cultured in culture dishes (Falcon, Becton Dickinson Biosciences, 

Heidelberg, Germany) at a cell density of approximately 0.6x106 cells per mL. 

Then, cytokines were added to the culture medium: 5 ng/mL murine M-CSF 

(macrophages colony stimulating factor; R&D Systems, Heidelberg, Germany) 

for the induction of M-CSF-derived macrophages (M-CSF MФ); 5 ng/mL murine 

M-CSF plus 5 ng/mL rat IL-4 (interleukin-4, Strathmann Biotech AG, Hamburg, 

Germany) for the induction of IL-4 MФ; 5 ng/mL rat GM-CSF (granulocyte 

macrophage colony stimulating factor, R&D Systems) plus 5 ng/mL rat IL-4 (for 

the induction of IL-4 DC. The cells were cultured at 37°C in a 5% humidified 

CO2 atmosphere and after 3 days of culture, medium and cytokines were 

renewed. On day +6, the M-CSF/IL-4-derived, adherent IL-4 MФ were detached 

from the culture dishes by incubation with 1xHyQTase (HyClone, Perbio 

Science Deutschland GmbH, Bonn, Germany) for 25 min at 37°C and the gentle 
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use of a cell scraper. M-CSF MФ were incubated with 2x macrophage 

detaching buffer for 10 min at 37°C and then detached by moderate pipetting. 

IL-4 DC were collected from the medium. After washing, the cells were counted 

in a Neubauer chamber.  

 

3.4 Isolation of mature splenic DC 

In order to receive a single cell suspension of mature DC (mDC), the spleen of 

a Lewis rat was homogenized with a 5 ml syringe piston through a 70 µm nylon 

cell strainer (Becton Dickinson Biosciences). After washing and lysing the 

erythrocytes with 10 mL 1x lysis buffer I for 3 min, the cells were disseminated 

in Petri dishes (Falcon, Becton Dickinson Biosciences). The next day, non-

adherent and slightly adherent cells were centrifuged over 14.5% metrizamide 

(Linaris Biologische Produkte GmbH, Wertheim, Germany) at 4°C and 1,823 x g 

for 13 minutes. Mature DC were collected from the interface and counted in a 

Neubauer chamber. 

 

3.5 Isolation of T lymphocytes from lymph nodes 

In order to get naïve T lymphocytes, cervical lymph nodes were isolated from 

Wistar Furth rats and homogenized with a 5 mL syringe piston through a 70 µm 

nylon cell strainer (Becton Dickinson Biosciences). After washing and lysing the 

erythrocytes with 5 mL 1x lysis buffer I for 3 min, the viable cells were counted 

in a Neubauer chamber. 

 

3.6 Activation of naïve T lymphocytes  

The effect of IL-4 MФ, M-CSF MФ or IL-4 DC on the activation of naïve T 

lymphocytes were investigated in mixed lymphocyte cultures (MLC). For this, 

naïve T lymphocytes isolated from lymph nodes of Wistar Futh rats were 

incubated with various allogeneic stimulator cells or culture supernatant from 

these stimulator cells in 96-well round-bottom plates at 37°C in a 5% humidified 

CO2 atmosphere for 3 days. Assays of T cells (1x105 cells/well) together with 
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mDC (1x104 cells/well) isolated from spleens of Lewis rats served as positive 

control for antigen-dependent T cell stimulation. IL-4 MФ, M-CSF MФ or IL-4 DC 

(1x104 cells/well) were incubated with T lymphocytes (1x105 cells/well). 

Furthermore, the inhibitory effect of IL-4 MФ, M-CSF MФ and IL-4 DC on the T 

cell activation mediated by mature DC was measured. In such competition 

assays 1x105 allogeneic T lymphocytes cells were incubated with 1x104 mDC 

and different amounts (104-101) of IL-4 MФ, M-CSF MФ or IL-4 DC. In addition, 

the possible effect of soluble factors secreted by IL-4 MФ, M-CSF MФ or IL-4 

DC was proven. Culture supernatant from these cells (up to 106 cells per 96-

well plate) were collected after 24h and 48h incubation time. Cancer cells 

(MDA-MB 231) served as negative control cells, T lymphocytes incubating 

alone served as negative control for T cell proliferation and T lymphocytes 

incubating with mature splenic DC as positive control. After 3 days of culture, 

the cells were pulsed with 0,5 µCi/well [3H]-thymidine (Biomedicals Germany 

GmbH, Eschwege, Germany) for the last six hours of culture. To quantify [3H]-

thymidine incorporation, the cells were harvested with the MicroBeta Filtermat-

96 cell harvester (Wallac, Turku, Finland) and their DNA blotted on special filter 

paper (1450-421 Filtermat A, Wallac, Perkin-Elmer Life and Analytical Sciences, 

Rodgau, Germany). The paper was dried for 45 min and then sealed in special 

plastic bags (Wallac, Perkin-Elmer) with scintillation liquid. The measurement of 

[3H]-thymidine incorporation was performed with a Wallac-MicroBeta TriLux 

radiation counter (Institute für Virologie und Immunologie, Würzburg). 

 

3.7 Immunohistochemistry 

Cells (IL-4 MФ, M-CSF MФ or IL-4 DC) from day 6 of culture were isolated, 

counted and centrifuged on cytospins (5x105 cells/slide). The cytospins were 

then air-dried and after fixation in acetone for 10 min, the cells were incubated 

overnight with monoclonal antibodies (Tab. 3.1) diluted in background reducing 

buffer (DAKO Cytomation, Hamburg, Germany). The next day, the slides were 

washed and incubated with a mix of 1:50 peroxidase-conjugated rabbit anti-

mouse antibody (DAKO) and rat serum in a final volume of 200 µL per slide for 

1h and then washed again. The preparations were incubated with diamino-
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benzidine (Liquid DAB, BioGenex, San Ramon, USA) afterwards, counter-

stained with hematoxilin and embedded with Entelan (Merk, Darmstadt, 

Germany). 

 

Tab. 3.1. Primary antibodies used for immunohistochemical staining. All anti-
bodies were purchased from Linaris Biologische Produkte, Wertheim-Bettingen, 
Germany. 

 

 

3.8 Flow cytometric analysis 

For the flow cytometric analysis, various specific antibodies conjugated with 

fluorescein isothiocyanate (FITC) or phycoerythrine (PE) (Tab. 3.2) were 

incubated with 5x105 cells each for 20 min at room temperature. Non-

conjugated primary antibodies were detected with PE-conjugated secondary 

antibodies (“indirect staining”). Isotype antibodies conjugated with FITC and PE, 

respectively, served as isotyp controls for controling non-specific binding. Non-

viable cells were detected with 7-amino actinomycin D (7-AAD) (Becton 

Dickinson Biosciences). The flow cytometric analysis was performed using an 

argon-laser flow-cytometer FACSscan (Becton Dickinson Biosciences) and 

evaluated with the program FlowJo. Detection of apoptosis was performed 

using the Annexin V Apoptosis Detection Kit I (Becton Dickinson Biosciences). 

Annexin V provides a simple and effective method to detect apoptosis at a very 

early stage. Soon after the induction of apoptosis the phosphatidylserine is 

translocated from the inner (cytoplasmic) leaflet of the plasma membrane to the 

outer (cell surface) leaflet. The annexin V protein has a strong, specific affinity 

Antibody Dilution Specifity Secondary antibody Dilution 

ED1 1:100 CD68 rabbit-anti-mouse 1:50 

Ox6 1:100 MHCII rabbit-anti-mouse 1:50 

Ox18 1:100 MHCI rabbit-anti-mouse 1:50 

CD80 1:100 CD80 rabbit-anti-mouse 1:50 

CD86 1:100 CD86 rabbit-anti-mouse 1:50 

Ox62 1:100 α-E2 Integrin rabbit-anti-mouse 1:50 
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for phosphatidylserine and the binding by labeled annexin V provided the basis 

for this staining assay. 

 

 

Tab. 3.2. Primary and secondary antibodies used in flow cytometric analysis. All 
antibodies were purchased from Linaris Biologische Produkte, Wertheim-Bettingen, 
Germany.  

 

 

3.9 RNA isolation and reverse transcriptase 

Total RNA from 1x106 cells were isolated with 1 mL of the ready-to-use Trizol 

reagent (Invitrogen GmbH, Karlsruhe, Germany). The cell samples were 

homogenized in the Trizol reagent and chloroform (Carl Roth GmbH, Karlsruhe, 

Germany) was added to the homogenous lysate. The mixture was separated by 

centrifugation (15 min, 16060 x g at 4° C) into two phases. The aqueous phase 

with RNA was then transferred into a new tube and precipitated with 

isopropanol (Merck Eurolab, Nürnberg, Germany) at -20°C overnight. After 

centrifugation at 13.000 rpm for 10 min, the pellet was washed with ethanol 

(Merck Eurolab), air-dried, dissolved in 40 µL RNA storage solution (Ambion, 

Huntingdon, United Kingkom) and stored at -80°C. The cDNA synthesis was 

performed by reverse transcription of 5 µL RNA with reverse-transcriptase (2.5 

Antibody Dilution Specifity Secondary antibody Dilution 

ED1 1,5:50 CD68 DAM-PE 1:16 

Ox6-PE 3:50 MHC II - undiluted 

Ox18-PE 5:50 MHC I - undiluted 

CD80 2:50 CD80 DAM-PE 1:16 

CD86 2:50 CD86 DAM-PE 1:16 

CD40-FITC 1,5:50 CD40 - undiluted 

Ox62 3:50 αE2 Integrin DAM-PE 1:16 

Ox1-FITC 5:50 CD45 - undiluted 

R73-PE 5:50 αβ TCR - undiluted 
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U/µL) and Oligo d(T)16 primer (2.5 µmol/L), using the GeneAmp RNA-PCR-Kit 

(Applied Biosystems GmbH, Weiterstadt, Germany). 

 
 

3.10 Real time polymerase chain reaction (PCR) 

Real time PCR was applied to monitor the gene expression levels of different 

cell surface molecules. The housekeeping gene GAPDH was used as positive 

control. A 2x concentrated solution of the SYBR Green PCR Master Mix 

(Applied Biosystems) containing Ampli Taq Gold polymerase and dNTPs was 

added to 1 µL of sample cDNA to a final volume of 25 µL. Specific primers (Tab. 

3.3) were added to the mix and the amplification was performed by Opticon 2 

Cycler (M.J. Research, Bio-rad, USA). The thermal cycling conditions were: 

95°C 15 min, and 35x (95°C 15 sec, annealing (temperatures see Tab. 3.3) 30 

sec, 72°C 30 sec). Positive controls were 108 copies of PCR vector with a 

certain cloned PCR fragment (TA Cloning Kit from Invitrogen) and nuclease free 

water (Promega) was used as negative control. A melting curve was performed 

to analyse product homogeneity. Afterwards, the PCR products were proven in 

agarose gel. For this, 10 µL of each PCR product were mixed with 1.5 µL 

Blue/Orange 6x loading dye (Promega GmbH) and transferred to a 2% agarose 

gel loaded with ethidium bromide (Amresco, Solo, Ohio, USA). The gel was run 

at 75 volt for approximately 30 minutes. The separated PCR products were 

photographed in the gel with UV light illumination (ImageMaster workstation 

from Amersham Pharmacia Biotech, Piscataway, USA). 

 

3.11 ELISA 

IL-4 MФ, M-CSF MФ and IL-4-DC were replated in 96-well flat bottom plates 

after 6 days of culture (1x106 - 104 cells/well in a final volume of 150 µL) without 

exogenous cytokines. The presence of IL-10 and TGF-β1 in the supernatant 

was detected using ELISA kits from Biosource, Ratingen, Germany, for rat IL-10 

(KRC0101) and TGF-β1 (KAC1688). 

 

 



– Mater ials and Methods – 

14 

Tab. 3.3. Sequences of the primers used for this study. The forward and reverse 
sequence, PCR product size (in bp), and the annealing temperature (Temp) are 
presented for each primer. All the primers were synthesized by MWG Biotech AG 
(Ebersberg, Germany) according to published sequences: GAPDH (Kruse et al., 1999); 
MHC class II (Syha-Jedelhauser et al., 1991); MHC class I (Sourial-Bassillious N et al., 
2006), CD40 (Matsui et al., 2002); CD80 (Holowachuk and Ruhoff, 2001); CD86 (self 
made with GeneFisher), IL-10 (Siegling et al., 1994), iNOS (Sterin-Borda et al., 2003). 
In addition, the related nucleotide sequences are listed in PubMed Nukleotide. bp = 
base pair; Temp = annealing temperature of the primers, for = forward, rev = reverse. 

1) Sequence X02231 
2) Sequence X56596 
3) Sequence NM_012645 
4) Sequence AF241231 
5) Sequence NM_020081  
6) Sequence AJ305049 
 

 

 

Primer bp Temp Sequence 5´→→→→ 3´ 

 for GGT CGG TGT GAA CGG ATT TG 
GAPDH 1) 319 62°C 

 rev GTG AGC CCC AGC CTT CTC CAT 

 for CAG GAT CTG GAA GGT CCA 
MHC II 2) 517 55°C 

 rev AGC TGT GGT TGT GCT GA 

 for CCT CCT CCT CCT CAC  AAC AAC CAC 
MHC I 3) 530 58°C 

 rev AGG GCG GCT CTC ACA CCA TCC 

 for CGC TAT GGG GCT GCT TGT TGA CAG 
CD40 4) 401 58°C 

 rev GAC GGT ATC AGT GGT CTC AGT GGC 

 for TGG TGA AAC ACC TGA CCA 
CD80  517 50°C 

 rev GTT TCT CTG CTT GCC TCA 

 for TGG GAA ACA GAG CTC TCA 
CD86 5) 518 53°C 

 rev AGG TTG ATC GAC TCG TCA 

 for TCC ATC CGG GGT GAC AAT AAC 
IL-10 6) 371 55°C 

 rev AAT CAT TCT TCA CCT GCT CC 

 for GAT CAA TAA CCT GAA GCC CG 
iNOS  578 60°C 

 rev GCC CTT TTT TGC TCC ATA AGG 



– Results – 

15 

4 Results 

4.1 Generation of bone marrow derived macrophages and DC  

Bone marrow cells, isolated from femurs of Lewis rats, were cultured at a cell 

density of about 1x107 cells per 15 mL culture medium and incubated in 

presence of the cytokines M-CSF, M-CSF + IL-4, and GM-CSF + IL-4 (5 ng/mL 

each) for six days to induce macrophages and dendritic cells (DC). Freshly 

isolated bone marrow cells are a mix of lymphocytes and granular cells (Fig. 

4.1) and after three days of culture first morphological changes occurred (Fig. 

4.2). Within the granular cell fraction, progenitor cells started to differentiate 

under the influence of the cytokines. 

 

In presence of M-CSF, the progenitor cells differentiated into adherent, spindle-

shaped macrophages (M-CSF MФ) with considerable projections (Fig. 4.2 A). 

Until day 6, the end of culture, these cells were enlarged and showed more 

distinct processes (Fig 4.2 B). The incubation with M-CSF + IL-4 also led to the 

development of large, adherent macrophages (IL-4 MФ) with prominent 

projections (Fig. 4.2 C). On day 6, the plastic surface of the culture dishes was 

nearly completely covered by a cell layer of enlarged IL-4 MФ (Fig. 4.2 D). 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.1. Cell morphology of freshly 
isolated bone marrow cells in culture. 
Freshly isolated bone marrow cells 
appeared round and were a mixture of 
lymphocytes and granular cells. Phase 
contrast microscope Olympus IMT-2, 
100x magnified. 
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Fig. 4.2 (page 16). Representative changes in the cell morphology of bone 
marrow cells after 3 and 6 days of culture. Bone marrow cells developed into 
spindle-shaped, adherent macrophages with characteristic processes after three days 
of culture with M-CSF and M-CSF + IL-4, respectively (A and C). After six days, most of 
the cells were enlarged and showed definite processes (B and D). Large, round DC 
floating in the culture medium developed after three days of culture with GM-CSF + IL-
4 (E). On day 6, major clusters consisting of large, round IL-4 DC slightly attached to 
the plastic surface were observed. Contaminating fibroblasts were also present (F). 
Phase contrast microscope Olympus IMT-2, 200x magnified. 
 

 

The incubation of bone marrow precursor cells with GM-CSF + IL-4 led to the 

development of dendritic cells (IL-4 DC). After 3 days of culture, numerous 

large, round IL-4 DC floating in the medium were seen and some spindle-

shaped fibroblasts which were adherent to the plastic surface of culture dishes 

(Fig. 4.2 E). Until day 6, large, round IL-4 DC grew in compact clusters slightly 

attached to the plastic surface. The amount of fibroblasts increased, too (Fig. 

4.2 F). 

 

 

4.2 The effect of IL-4 MФ, M-CSF MФ and IL-4 DC on allogenic T 

lymphocytes 

4.2.1 IL-4 MФ, M-CSF MФ and IL-4 DC are not T cell stimulators 

IL-4 MФ, M-CSF MФ and IL-4 DC were tested in vitro for their stimulatory 

effects on allogenic T lymphocytes in mixed leukocyte cultures (MLC). For this, 

allogeneic T lymphocytes from Wistar Furth rats were cultured with different 

types of stimulator cells propagated from bone marrow precursor cells of Lewis 

rats (Fig. 1.1 displays the principles of the assay). Compared to mDC, IL-4 MФ, 

M-CSF MФ and IL-4 DC were unable to induce T cell proliferation (Fig. 4.3 and 

Tab. 9.1 of the appendix). In detail, in presence of IL-4 MФ the proliferation of T 

lymphocytes was limited to 3% of the proliferation rate reached after stimulation 

by mDC; in the presence of M-CSF MФ to 2% and in presence of IL-4 DC to 4% 

(Tab. 9.1 of the appendix). 
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4.2.2 IL-4 MФ, M-CSF MФ and IL-4 DC suppress the mDC-mediated 

activation of naïve T lymphocytes in competition assays 

In competition assays (Fig. 1.1 displays the principles of the assay), the effect of 

IL-4 MФ, M-CSF MФ and IL-4 DC as competitor cells on the stimulation of naïve 

T lymphocytes (105 cells/well) mediated by mDC (104 cells/well) was analysed 

(Fig. 4.4). The ratio of mDC to T lymphocytes was constant (1:10) for each 

experiment and the ratio of mDC to competitor cells ranged from 1:1 to 10:1, 

100:1 and 1000:1. As shown in Fig. 4.4, all three types of competitor cells 

demonstrated a suppressive effect dependent on their cell number. The 

strongest suppressive effect was observed on a stimulator cell ratio of 1:1 and 

this effect rapidly nearly disappeared at a lower ratio of mDC to competitor cells. 

The slight effect on T cell proliferation at a ratio of 1000:1 seems not to be the 

effect of the 10 stimulator cells on T cell proliferation but rather a problem of the 

readout system (Fig. 4.4 A, B, C and Tab. 9.2 of the appendix). In Table 4.1, the 

percentages of suppression (∆%) were calculated for the experiments in Fig. 

4.4. In order to estimate the cut-off level, different numbers of mDC as pseudo 

competitor cells were added to the MLC (Fig. 4.4 D, Tab. 9.4 of the appendix). 

This strategy allows setting the cut-off level for active cell-mediated suppression 

to 33% (Tab. 4.1, Tab. 9.4 of the appendix). 

Fig. 4.3. IL-4 MФ, M-CSF MФ and IL-
4 DC did not activate naïve T cells 
in the MLC. In co-culture with mDC the 
allogeneic T lymphocytes showed a 
strong proliferation but not with IL-4 Mφ, 

M-CSF Mφ and IL-4 DC. The stimulator 
cells were isolated from the spleen 
(mDC) or generated from bone marrow 
cells (IL-4 Mφ, M-CSF Mφ and IL-4 DC) 
of Lewis rats. The naïve responder T 
lymphocytes were isolated from Wistar 
Furth rats. 104 stimulator cells were co-
cultured with 105 responder cells. The 
results are presented as mean  ±  
standard deviation (n = 3 per group). 
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Fig. 4.4. IL-4 MФ, M-CSF MФ and IL-4 DC inhibited the mDC-induced proliferation 
of naïve T lymphocytes in competition assays. The strongest inhibition of T cell 
proliferation was found in those experiments where the ratio of stimulator cells and 
competitor cells was 1:1 (see also Tab. 4.1). With the stepwise reduction of the 
competitor cells IL-4 MФ (A), M-CSF MФ (B) and IL-4 DC (C), the mDC-induced 
proliferation of naïve T cells increased. The addition of different amounts of mDC as 
pseudo competitor cells to the MLC did not influence the proliferation rate as expected 
(D). This allows the calculation of the cut-off level for the suppression rate (Tab. 4.1). 
The obvious reduction of T cell proliferation at the ratio of 100:1 (the fourth bar from left 
in D) do not reflect a real suppression but demonstrate the variability of the in vitro 
system. The results (mean ± standard deviation) shown are representative for three 
experiments. 
 

 

 

The results of the competition assays (Fig. 4.4, Tab. 4.1) indicated an active 

suppressive effect mediated by IL-4 MФ, M-CSF MФ and IL-4 DC for the cell 

ratios 1:1 and 10:1 (ratio of mDC to competitor cells). In addition, IL-4 MФ also 

demonstrates a suppressive effect of 45% at the cell ratio 100:1 (Tab. 9.3 of the 

appendix). The values for the other competitor cells are below the cut-off value 

of 33% (Tab. 9.3 of the appendix). 
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In summary, IL-4 MФ, M-CSF MФ and IL-4 DC did not induce the proliferation of 

naïve T lymphocytes (Fig. 4.3) but they did demonstrate competitor qualities 

indicating a cell mediated suppressive effect (Fig. 4.4). 

 

 

Tab. 4.1. Calculation of the suppressive effect mediated by IL-4 MФ, M-CSF 
MФand IL-4 DC (Fig. 4.4). The uninfluenced T cell proliferation in MLC (104 mDC co-
cultured with 105 allogeneic T cells) is set as 100% proliferation or 0% suppression. 
The suppression rate ∆% induced by IL-4 MФ, M-CSF MФ and IL-4 DC in the 
competitor assays is calculated according to the following formula: ∆% = (cpm mDC induced 

T cell proliferation - cpm T cell proliferation in the co-cultures / cpm mDC induced T cell proliferation) x 100. 

 

  Competition assays (Fig. 4.4) 

      

  
10

5 
T cells + 

10
4 
mDC + 

10
4  

IL-4 MФ 

10
5 
T cells + 

10
4 
mDC + 

10
3  

IL-4 MФ 

10
5 
T cells + 

10
4 
mDC + 

10
2  

IL-4 MФ  

10
5 
T cells + 

10
4 
mDC + 

10
1 
IL-4 MФ 

 Suppression (∆∆∆∆%) 96 51 45 11 
      

  
10

5 
T cells + 

10
4 
mDC + 

10
4  

M-CSF MФ  

10 
5 
T cells + 

10
4
 mDC + 

10
3  

M-CSF MФ  

10
5 
T cells + 

10
4
 mDC + 

10
2  

M-CSF MФ 

10
5 
T cells + 

10
4
 mDC+ 

10
1 
M-CSF MФ 

 Suppression (∆∆∆∆%) 98 49 28 23 

      

  
10

5 
T cells + 

10
4 
mDC + 

10
4 
IL-4 DC 

10
5 
T cells + 

10
4 
mDC + 

10
3 
IL-4 DC 

10
5 
T cells + 

10
4 
mDC + 

10
2 
IL-4 DC 

10
5 
T cells + 

10
4 
mDC + 

10
1 
IL-4 DC 

 Suppression (∆∆∆∆%) 99 69 31 21 

      
  

10
5 
T cells + 

10
4 
mDC + 

10
4 
mDC 

10
5 
T cells + 

10
4 
mDC + 

10
3 
mDC 

10
5 
T cells + 

10
4 
mDC + 

10
2 
mDC 

10
5 
T cells + 

10
4 
mDC + 

10
1 
mDC 

 Suppression (∆∆∆∆%) 15 11 33 13 

 

The specificity of the observed suppressive effect mediated by IL-4 MФ, M-CSF 

MФ and IL-4 DC was proven by varying the ratio of mDC to competitor cells 

(Fig. 4.4). In addition, human cells of the mammarian carcinoma cell line MDA-

MB 231 were also used to control the specificity of the suppressive effect 

mediated by IL-4 MФ, M-CSF MФ and IL-4 DC. Cells of this cell line did not 

activate T lymphocytes and did not act as competitor cells in the competition 

assay (Fig. 4.5 and Tab. 4.1). 
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Figure 4.6 summarises the results of the chapter. It shows that the competitor 

cells IL-4 MФ, M-CSF MФ and IL-4 DC demonstrate a suppressive effect on the 

mDC-mediated T cell proliferation. Their suppressive effect was most obvious at 

a ratio of mDC to competitor cells of 1:1 as shown in Fig. 4.4. The pseudo 

competitor cells of the human carcinoma cell line MDA-MB 231 did not show a 

suppressive effect at the same cell ratio (Fig. 4.5). 

 

In Fig. 4.6, the ratio of T lymphocytes to mDC is shown. In the MLC (Fig. 4.3), 

this ratio is 10:1 (105 T lymphocytes : 104 mDC) as demonstrated in Fig. 4.6 A. 

In contrast, the ratio of T lymphocytes to mDC is reduced in the competition 

assays depending on the amount of competitor cells. With 104 competitor cells 

added to the competition assays, the ratio of T lymphocytes to mDC is with 5:1 

as small as possible: 105 T lymphocytes : (104 mDC + 104 competitor cells). In 

Fig.4.6, three different situations are shown to achieve this ratio of 5:1 (Fig. B-

D). First, by reducing the amount of T lymphocytes to 0.5x105; second, by 

adding 104 pseudo competitor cells (“invalid cells”) and third, by adding 104 

competitor cells. Only the competitor cells IL-4 MФ, M-CSF MФ and IL-4 DC 

suppress significantly the mDC-induced T cell proliferation at this ratio 5:1 (Fig. 

4.6 D). 

Fig. 4.5. Control cells did not 
stimulate naïve T lymphocytes and 
did not suppress the mDC-mediated T 
cell proliferation. Cells of the human 
mammarian carcinoma cell line MDA-
MB 231 (“MammaCa”) served as control 
cells in MLC and competition assay. 
With a suppression rate of 21%, no 
active suppressive effect was observed 
(Tab. 9.5 in appendix). 104 MammaCa 
cells were co-cultured with 105 T 
lymphocytes in the MLC and with 104 
mDC and 105 T lymphocytes in the 
competition assay. The results (mean 
± standard deviation) shown are 
representative for two experiments. 
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Fig. 4.6. IL-4 MФ, M-CSF MФ, and IL-4 DC suppressed the mDC-induced 
proliferation. Different situations are displayed where T cell proliferation may be 
reduced (B and C). However, only the presence of the competitor cells IL-4 MФ, M-
CSF MФ and IL-4 DC (D) significantly suppressed the T cell proliferation. Results 
(mean ± standard deviation) of T cell proliferation in cpm. 
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4.2.3 Supernatant from IL-4 MФ, M-CSF MФ and IL-4 DC suppresses the 

activation of naïve T lymphocytes 

To investigate the role of soluble factors secreted by IL-4 MФ, M-CSF MФ and 

IL-4 DC in the suppression of T cell proliferation, supernatant was collected 

after 24h and 48h of culture of IL-4 MФ, M-CSF MФ and IL-4 DC (106 cells/150 

µL culture medium) and added to MLC (105 T lymphocytes and 104 mDC). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Supernatant of IL-4 MФ, M-CSF MФ and IL-4 DC cultured for 24h/48h 
suppressed the mDC-stimulated T cell proliferation in a dose-dependent manner. 
After six days of culture, IL-4 MФ, M-CSF MФ and IL-4 DC were replated in 96-well 
plates (106 cells/150 µL culture medium) and cultured for 24h or 48h (pre-culture). The 
supernatant was collected and 50 µL and 100 µL, respectively, were transferred to the 
MLC (105 T lymphocytes cultured with 104 mDC). The supernatant of 106 MammaCa 
cells served as negative control. MammaCa: Cells of the cell line MDA-MB 231. The 
results (mean ± standard deviation) shown are representative for two experiments. 
 

 

The results obtained with the supernatant from 24h- and 48h- cultures of IL-4 

MФ, M-CSF MФ, and IL-4 DC demonstrate a suppressive effect (Fig. 4.7, Tab. 

9.6 of the appendix). Therefore, the presence of IL-4 MФ, M-CSF MФ, and IL-4 

DC in the MLC was not obligatory to induce suppression on T cell proliferation 

and the secretion of a soluble factor into the culture medium can be assumed. 

This factor was not identified in this study; the immunoregulatory cytokine TGF-

β, however, was detected in supernatant from cultures with IL-4 MФ, M-CSF 
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MФ, and IL-4 DC (Fig. 4.18). Supernatant of 1x106 cells collected after 24h 

suppressed T cell proliferation with a suppression rate of 81-85% (Tab. 4.2). 

The suppressive effect of the 48h supernatant was even stronger with a 

suppression of 90-100% (Tab. 4.2). The values for the supernatant of cells from 

the mammarian carcinoma cell line MDA-MB 231 (“MammaCa”) were below the 

cut-off value of 33%. 

 

 

Tab. 4.2. Calculation of the suppressive effect mediated by 24h- and 48h- 
supernatant of IL-4 MФ, M-CSF MФ and IL-4 (Fig. 4.7). The T cell proliferation in 
MLC (104 mDC co-cultured with 105 allogeneic T cells) without addition of supernatant 
is set as 100% proliferation or 0% suppression. The suppression rate ∆% induced by 
supernatant of 106 IL-4 MФ, M-CSF MФ and IL-4 cultured for 24h or 48h in the MLC is 
calculated according to the following formula: ∆% = (cpm mDC induced T cell proliferation - cpm T 

cell proliferation with supernatant / cpm mDC induced T cell proliferation) x 100. Supernatant of 106 Mamma 
Ca cells served as negative control. MammaCa: Cells of the cell line MDA-MB 231. 
See also Table 9.6 in the appendix. SN: supernatant. 
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4.3 Characterisation of the suppressive effect on T cell proliferation 

mediated by IL-4 MФ, M-CSF MФ, and IL-4 DC  

4.3.1 Possible reason for T cell hyporesponsiveness: T cell apoptosis 

As described in the previous chapter, IL-4 MФ, M-CSF MФ and IL-4 DC did not 

activate naïve T lymphocytes and in addition, they acted as competitor cells 

indicating an active suppressive effect. To investigate the “nature” of this 

suppressive effect, first the rate of apoptotic T cells after the incubation with IL-4 

MФ, M-CSF MФ and IL-4 DC was calculated. The programmed cell death 

(apoptosis) of T lymphocytes is an important mechanism to regulate T cell 

activation in vivo and in vitro. T lymphocytes cultured alone and or with mDC 

showed an average rate of apoptosis between 9-10% (Fig. 4.8). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 4.8. Detection of early T cell apoptosis by flow cytometry. The FSC and SSC 
characteristics are shown for T lymphocytes cultured alone (A) and with mDC (D) after 
three days of culture in 96-well plates. Forward Scatter (FSC) and Side Scatter (SSC) 
are parameters related to cell size and cell granularity, respectively. The region 
indicates the analysed lymphocyte population. T lymphocytes were detected with the 
antibody R73 (B, E) and T cell apoptosis were detected with a combination of R73 and 
Annexin-V (C, F). The results shown are representative for two independent 
experiments. 

R
73

-P
E

Annexin-FITC

R
73

-P
E

A Annexin-FITC

49.4 9.37

1427.3

49.4 9.37

1427.3
100

101

102

103

104

100 101 102 103 104

59.6 9.98

8.6621.7

59.6 9.98

8.6621.7
100

101

102

103

104

100 101 102 103 104

100 101 102 103 104

ISO-FITC

100

101

102

103

104

R
73

-P
E

61.6 0.34

0.138

61.6 0.34

0.138

0 200 400 600 800 1000
FSC

0

200

400

600

800

1000

S
S

C

40.640.6

CB

D F

E

0 200 400 600 800 1000
FSC

0

200

400

600

800

1000

S
S

C

45.545.5

100 101 102 103 104

ISO-FITC

100

101

102

103

104

R
73

-P
E

65.4 0.13

0.02234.4

65.4 0.13

0.02234.4

E

R
73

-P
E

Annexin-FITC

R
73

-P
E

A Annexin-FITC

49.4 9.37

1427.3

49.4 9.37

1427.3
100

101

102

103

104

100 101 102 103 104

59.6 9.98

8.6621.7

59.6 9.98

8.6621.7
100

101

102

103

104

100 101 102 103 104

59.6 9.98

8.6621.7

59.6 9.98

8.6621.7
100

101

102

103

104

100 101 102 103 104
100

101

102

103

104

100

101

102

103

104

100 101 102 103 104100 101 102 103 104

100 101 102 103 104

ISO-FITC

100

101

102

103

104

R
73

-P
E

61.661.6 0.340.34

0.10.13838

61.6 0.34

0.138

61.661.6 0.340.34

0.10.13838

0 200 400 600 800 10000 200 400 600 800 1000
FSC

0

200

400

600

800

1000

0

200

400

600

800

1000

S
S

C

40.640.640.640.640.6

CB

D F

E

0 200 400 600 800 1000
FSC

0

200

400

600

800

1000

S
S

C

45.545.5

E

0 200 400 600 800 1000
FSC

0 200 400 600 800 10000 200 400 600 800 1000
FSC

0

200

400

600

800

1000

S
S

C

0

200

400

600

800

1000

0

200

400

600

800

1000

S
S

C

45.545.545.545.545.5

100 101 102 103 104

ISO-FITC

100

101

102

103

104

R
73

-P
E

65.465.4 0.130.13

0.0220.02234.434.4

65.4 0.13

0.02234.4

65.465.4 0.130.13

0.0220.02234.434.4

E  



– Results – 

26 

T lymphocytes collected from co-cultures with IL-4 MФ, M-CSF MФ and IL-4 

DC, respectively, did not show a significant increase of apoptosis (Fig. 4.9 A, 

Tab. 9.7 of the appendix). In contrast, increased rates of apoptosis between 20-

30% were measured for T lymphocytes cultured in competition assays (Fig. 4.9 

B, C and Tab. 9.7 of the appendix). Interestingly, these rates of apoptosis were 

found in those competition assays with only 100 IL-4 MФ and M-CSF MФ 

competitor cells, respectively. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.9. IL-4 MФ and M-CSF MФ induced T cell apoptosis. Shown are the results 
for the MLC (A) and competition assays (B-D). IL-4 MФ were of low effect and M-CSF 
MФ and IL-4 DC were without any effects in the MLC (A). In contrast to IL-4 MФ and M-
CSF MФ, which showed the strongest effects at a cell ratio of mDC to competitor cells 
of 1:100 (B, C), IL-4 DC did not considerably induce T cell apoptosis in the competition 
assays (D). Detection of apoptosis in T lymphocytes was performed by flow cytometry 
(Fig. 4.8). The results (mean ± standard deviation) shown are representative for two 
independent experiments. 
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4.3.2 Possible reason for T cell hyporesponsiveness: T cell anergy 

Another possible effect of IL-4 MФ, M-CSF MФ and IL-4 DC on allogenic T 

lymphocytes leading to non- or reduced proliferation is the induction of T cell 

anergy. T cell anergy is characterised by reduced proliferation and cytokine 

production (Fathman and Lineberry, 2007). This state is distinct from apoptosis 

and anergic T cells do not proliferate in response to appropriate antigenic 

stimulation (Appleman and Boussiotis, 2003). To investigate whether IL-4 MФ, 

M-CSF MФ and IL-4 DC induced an anergic state in T lymphocytes, they were 

collected from the first MLC and restimulated by mDC in a second MLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 4.10. T lymphocytes from co-cultures with IL-4 MФ, M-CSF MФ and IL-4 DC 
showed a reduced proliferation when incubated with mDC. T lymphocytes were 
cultured with IL-4 MФ, M-CSF MФ, and IL-4 DC (first MLC in B) and after three days of 
culture they were transferred to the second MLC with mDC. In addition, T lymphocytes 
were cultured in the competition assay (D) first and then incubated with mDC. The 
proliferation of these T lymphocytes was clearly reduced in comparison to the control T 
lymphocytes which were cultured alone or with mDC during the first MLC or 
competition assay. The results (mean ± standard deviation) shown are representative 
for two independent experiments. 
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T lymphocytes cultured with IL-4 MФ, M-CSF MФ or IL-4 DC alone or in 

competition assays showed a strongly reduced proliferation when subsequently 

transferred to mDC (Fig. 4.10 B and D, Tab. 9.8 of the appendix). T 

lymphocytes cultured for three days without stimulation demonstrated a clear 

proliferation in the second culture with mDC. The same effect was observed for 

T lymphocytes, which were stimulated and restimulated with mDC. 

 

 

4.4 Characterisation of the phenotype of IL-4 MФ, M-CSF MФ, and IL-4 

DC 

4.4.1 The costimulatory molecules CD80 and CD86 are not detected on 

the surface of IL-4 MФ and M-CSF MФ but on IL-4 DC by 

immunohistochemistry 

IL-4 MФ, M-CSF MФ and IL-4 DC did not activate naïve T lymphocytes and, 

used as competitor cells, inhibited their activation by mDC (Fig. 4.3 and 4.4). 

For full T cell activation, antigens and costimulatory molecules are necessary; 

therefore, the surface expression of MHC class I, MHC class II, CD40, CD80, 

and CD86 was proven by immunohistochemistry and flow cytometry with the 

antibodies listed in Tables 3.1 and 3.2. 

 

With the monoclonal antibodies ED1 (CD68, macrophage marker) and Ox62 

(Ox62 antigen, DC marker) the origin of IL-4 MФ, M-CSF MФ and IL-4 DC was 

validated. More than 95% of IL-4 MФ and M-CSF MФ were positive for CD68 

(Fig. 4.11 B and D) and negative for Ox62 antigen (data not shown). IL-4 DC 

expressed both CD68 and Ox62 (Fig. 4.12 B and C). The expression of MHC 

class I and class II molecules was proven with the monoclonal antibodies Ox6 

and Ox18, respectively. Whereas MHC I molecules were expressed on all three 

cell types (data not shown), MHC II molecules were only detected on IL-4 MФ 

and IL-4 DC, not on M-CSF MФ (Fig. 4.11 A and C, Fig. 4.12 A). 
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Fig. 4.11. IL-4 MФ and M-CSF MФ expressed CD68, but only IL-4 MФ expressed 
MHC II molecules. Immunohistochemical staining of IL-4 MФ (A, B) and M-CSF MФ 
(C, D) with the monoclonal antibodies ED1 (CD68) and Ox6 (MHC class II). Nuclear 
staining was performed with hematoxylin. The staining is representative for three 
independent experiments. Olympus BH-2 light microscope, 400x magnification. Images 
were captured using a digital camera and processed with Corel Photo-Paint 11. 
 
 
 
IL-4 MФ, M-CSF MФ and IL-4 DC demonstrated different expression of 

costimulatory molecules. IL-4 MФ and M-CSF MФ did not show any expression 

of CD80 or CD86 molecules (data not shown), whereas approximately 75% of 

IL-4 DC were positive for these costimulatory molecules (Fig. 4.12 D, no data 

shown for CD86). 
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Fig. 4.12. IL-4 DC expressed CD68, Ox62 antigen, CD80, CD86, MHC I and II 
molecules. Immunohistochemical staining of IL-4 DC revealed various cell surface 
molecules. Shown are the results for MHC II, CD68, Ox62 antigen and CD80. Nuclear 
staining was performed with hematoxylin. The staining is representative for three 
independent experiments. Olympus BH-2 light microscope, 400x magnification. Images 
were captured using a digital camera and processed with Corel Photo-Paint 11. 
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4.4.2 The costimulatory molecules CD80, CD86 and MHC class I and class 

II are expressed differently on the surface of IL-4 MФ, M-CSF MФ 

and IL-4 DC shown by flow cytometry 

In addition to the immunohistochemistry, the phenotypes of IL-4 MФ, M-CSF 

MФ and IL-4 DC were characterised by flow cytometry. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4.13. Flow cytometry profiles of IL-4 MФ. The expression of different cell 
surface molecules was examined by flow cytometry. FSC/SSC profile is shown in the 
top left corner. Forward Scatter (FSC) and Side Scatter (SSC) are parameters related 
to cell size and cell granularity, respectively. The isotype control is shown in grey. The 
data are representative for eight independent experiments. 
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L-4 MФ showed a considerable expression of the leukocyte cell marker CD45 

and the macrophage cell marker CD68 but no or a very low expression of the 

DC marker Ox62 (Fig. 4.13). Simultaneously, no or a very low expression of the 

costimulatory molecules CD80 and CD86, but a considerable expression of the 

costimulatory molecule CD40 was detected. In view of MHC molecules class I 

and class II, IL-4 MФ were clearly positive (Fig. 4.13, Tab. 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 4.14. Flow cytometry profiles of M-CSF MФ. The expression of different cell 
surface molecules was examined by flow cytometry. FSC/SSC profile is shown in the 
top left corner. Forward Scatter (FSC) and Side Scatter (SSC) are parameters related 
to cell size and cell granularity, respectively. Isotype control is shown in grey. The data 
are representative for four independent experiments. 
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M-CSF MФ also showed a clear expression of both the leukocyte marker CD45 

and the macrophage marker CD68. These cells were also negative for the DC 

marker Ox62 and the costimulatory molecules CD80 and CD86. A moderate 

expression of CD40 and MHC class I molecules but no expression of MHC II 

molecules can be assumed according to the FACS profiles (Fig. 4.14, Tab. 4.3). 

 

The comparison of IL-4 MФ and M-CSF MФ shows that IL-4 induced the 

expression of both MHC class I and class II as well as of the costimulatory 

molecule CD40. This may indicate that IL-4 MФ are activated macrophages in 

contrast to M-CSF MФ. 
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Fig. 4.15 (page 33). Flow cytometry profiles of IL-4 DC. The expression of different 
cell surface molecules was examined by flow cytometry. FSC/SSC profile is shown in 
the top left corner. Forward Scatter (FSC) and Side Scatter (SSC) are parameters 
related to cell size and cell granularity, respectively. Isotype control is shown in grey. 
The data are representative for four independent experiments. 
 
 

According to the flow cytometry profiles in Fig. 4.15, IL-4 DC expressed the 

leukocyte marker CD45, the macrophage cell marker CD68 and the DC marker 

Ox62. In contrast to M-CSF and IL-4 MФ, IL-4-DC showed a clear expression of 

the costimulatory molecules CD40, CD80 and CD86. Moreover, these cells 

were evidently positive for MHC class I and II molecules (Fig. 4.15, Tab. 4.3). 

 

 

Tab. 4.3. Analysis of the flow cytometry profiles (Fig. 4.13-4.15). The fluorescence 
intensity of antibody binding was calculated to discriminate differences in the cell 
surface expression. IL-4, M-CSF MФ and IL-4-DC generated from bone marrow 
derived precursor cells were harvested after 6 days of culture. Mean fluorescence (MF) 
values and percentage of positive cells (P) are shown. MF = F (protein of interest) - F 
(isotype control). 

 
 
 
 
 
 
 
 
 
 

Antigen IL-4 MФ M-CSF MФ IL-4 DC 

 MF P (%) MF P (%) MF P (%) 

MHC II 103 58 20 16 335 96 

MHC I 346 78 80 47 102 92 

CD40 831 80 101 37 113 70 

CD80 29 25 33 34 169 86 

CD86 53 36 51 42 72 67 

CD45 120 95 90 89 112 98 

OX62 antigen 56 32 29 21 81 60 

CD68 139 92 104 55 215 87 
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4.4.3 The Real time PCR revealed a lower expression of MHC class I and 

class II, CD80 and CD86 in IL-4 MФ and M-CSF MФ than in IL-4 DC 

The Real time PCR was used to investigate the expression of specific mRNA 

for the cell surface molecules MHC I and MHC II, CD40, CD80 and CD86. In 

addition, the presence of specific RNA for the cytokine TGF-β and for the 

enzyme iNOS was proven. The housekeeping gene GAPDH served as internal 

positive control, 108 copies of the TA vector with a specific cloned PCR 

fragment or mRNA isolated from mDC served as positive and Nuclease-free 

water as negative control (Fig. 9.1 of the appendix).  

 

Real time PCR monitors the fluorescence emitted during the reaction as an 

indicator of amplicon production during each PCR cycle. For the relative 

quantitation of the expression of certain mRNA, the Ct (“threshold cycle”) is 

used. Ct is the cycle number where the fluorescence signal caused by the 

increased amounts of PCR amplicon is above background fluorescence and the 

PCR amplification is in the exponential phase. The sample with the highest 

amount of the mRNA template, reaches this point first (Fig. 9.2 A and B). In a 

relative quantitation, the expression of the gene of interest (GOI) is set in 

relation to the expression of a housekeeping gene, here GAPDH: ∆Ct = Ct(GOI) - 

Ct(GAPDH) (Pfaffl, 2001; Tichopad et al., 2003). As shown in Table 9.9 of the 

appendix, a relative quantitation is performed for the macrophages IL-4 MФ, M-

CSF MФ and for IL-4 DC. The ∆∆Ct calculation involves the subtraction as 

follows: ∆∆Ct =∆Ct(x) - ∆Ct(IL-4 DC) (x = IL-4 MФ or M-CSF MФ), whereby the IL-4 

DC served as reference. Fig. 9.2 C and D of the appendix illustrates the 

interpretation of the comparative threshold (Ct) method. The last step in 

quantitation is to transform these values to absolute values. The formula for 

calculating the comparative expression level is: 2-∆∆Ct (Pfaffl, 2001). The relative 

quantitation revealed that IL-4 MФ and M-CFS MФ demonstrated reduced 

levels for MHC class I and class II, CD80 and CD86 in comparison to IL-4 DC. 

However, the relative expression levels were more strongly reduced for M-CSF 

MФ than for IL-4 MФ. For CD40, only IL-4 MФ showed a comparable 

expression to IL-4 DC (Tab. 4.4). 
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Tab. 4.4. Comparative expression levels. The relative expression of MHC class I and 
class II, CD40, CD80 and CD86 for IL-4 MФ and M-CSF MФ in comparison to IL-4 DC 
is shown. These data and the results from immunohistochemistry (Fig. 4.11, 4.12) and 
flow cytometry (4.13-4.15) demonstrate strongly reduced expression levels for the M-
CSF MФ. 

 MHC I MHC II CD40 CD80 CD86 

IL-4 MФ  0.63 0.77 1.42 0.15 0.45 

M-CSF MФ 0.18 0.003 0.25 0.06 0.01 

 

In accordance with the results of the flow cytometric analysis (Fig. 4.14), the M-

CSF MФ were scarce in the surface molecules MHC class II, CD80 and CD86 

(Fig. 4.16). For these molecules, the relative expression levels of the certain 

mRNA were below 0.1 (Tab. 4.4). The IL-4 MФ expressed MHC I and II and 

CD40 and low amounts of CD86. The relative expression level of CD86 was 

0.45 (Tab. 4.4). The lack of costimulation may explain why these cells are not 

able to activate T lymphocytes (Fig. 4.3). Nonetheless, these results do not 

explain why these cells inhibit the mDC-induced proliferation of naïve T 

lymphocytes in competition assays (Fig. 4.4). IL-4 DC express all these 

molecules and are poor stimulator cells, too. 

 

 

 
 

 

 

 
Fig. 4.16. Agarose gel electrophoresis of the amplified PCR products. Additional 
information regarding the PCR products can be found in Table 2.3. Marker: 100 bp 
DNA Ladder (Promega). 
 

In addition to MHC class I and class II, CD40, CD80 and CD86, comparative 

expression levels for TGF-β and iNOS were also calculated (Tab. 4.5). IL-4 MФ 

demonstrated the same expression level for TGF-β as IL-4 DC; the relative 

expression level of M-CSF MФ was 0.65 (Tab. 4.5). TGF-β is an 

immunosuppressive cytokine that inhibits T cell proliferation (Kehrl et al., 1986). 

In addition, supernatant from these cells was positive for soluble TGF-β (Fig. 
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4.18). Both macrophage subtypes expressed reduced levels of specific mRNA 

coding for the enzyme inducible nitric oxide synthase (iNOS) that produce nitric 

oxide (NO) and reactive oxygen species involved in T cell apoptosis (Sade and 

Sarin, 2004). 

 
 

 TGF-β iNOS 

IL-4 MФ 0,99 0,63 

M-CSF MФ 0,65 0,25 

 

 

 

 

 

 

 

4.4.4 Testing supernatant with ELISA: IL-4 MФ, M-CSF MФ and IL-4 DC 

secrete the immunoregulatory cytokine TGF-β but not IL-10  

The presence of IL-10 and TGF-β, both immunoinhibitory cytokines (Wahl et al., 

2006), in the supernatant of replated 104 and 106 M-CSF MФ, IL-4 MФ and IL-4 

DC was investigated after 48h of incubation. In contrast to IL-10, TGF-β was 

detected in the supernatant (Fig. 4.18, Tab.9.10 of the appendix). 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17. Agarose gel electro-
phoresis of the amplified PCR 
products. Additional information 
regarding the PCR products can be 
found in Table 2.3. Marker: 100 bp 
DNA Ladder (Promega). 

Fig. 4.18. TGF-β production of M-
CSF MФ, IL-4 MФ and IL-4 DC. The 
results (mean ± standard deviation) 
shown are from one experiment in 
triplicate wells. 
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Tab. 4.5. Comparative expression 
levels. The relative expression of TGF-
β and iNOS for IL-4 MФ and M-CSF 
MФ in comparison to IL-4 DC. 
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5 Discussion 

The growth and differentiation of macrophages and dendritic cells from 

haematopoietic stem cells of the bone marrow depend on lineage-determining 

cytokines (Gordon, 2003). Granulocyte macrophage colony stimulating factor 

(GM-CSF) and macrophage colony stimulating factor (M-CSF) are related 

growth factors participating in macrophage development (Santin et al., 1999). 

M-CSF is considered more specific to the macrophage lineage, whereas GM-

CSF promotes dendritic cell differentiation, particularly when coupled to the Th2 

cytokines IL-4 or IL-13 (Mueller et al., 2007). Dependent on the environmental 

cytokines, a common myeloid precursor differentiates into monocytes/ 

macrophages, dendritic cells and osteoklasts (Gordon, 2003). Monocytes are 

distributed through the blood stream, enter tissue compartments and undergo 

activation due to present, local stimuli (Gordon, 2003). Macrophages share 

many properties with dendritic cells and are of great importance in the biology of 

allograft rejection (Wyburn et al., 2005). 

 

 

5.1 Influence of IL-4 on the phenotype of IL-4 MФ 

In this study the biological effect of bone marrow derived macrophages was 

analysed. They were generated from bone marrow precursor cells cultured with 

M-CSF and IL-4 (IL-4 MФ) and with M-CSF (M-CSF MФ). IL-4 MФ 

demonstrated a unique phenotype different from M-CSF MФ. They are positive 

for MHC class I and class II molecules as well as for CD40 and negative for 

CD80 and CD86 as shown by flow cytometry (Fig. 4.13). The relative 

quantitation with real time PCR demonstrates the presence of specific mRNA 

for MHC class I and class II as well as for CD40 and CD86 (Tab. 4.4, Fig. 5.1). 

The results of flow cytometry and real time PCR indicate the presence of CD86 

mRNA but not of CD86 protein. The M-CSF MФ, with a clear surface 

expression of CD40 and a low expression of MHC I, seem to be negative for 

MHC class II, CD80 and CD86 in the flow cytometric profiles (Fig. 4.14 and 5.1). 
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However, on mRNA level, signals for MHC class II and CD86 was detected 

(Fig. 4.16). 

 

The engagement of IL-4 with its receptor can regulate a wide variety of 

biological responses. IL-4 stimulates in vitro the growth and viability of T and B 

lymphocytes, monocytes and myeloid progenitors, deactivates inflammatory 

macrophages and regulates the induction of CD4+ T-helper 2 (Th2) cells (Paul, 

1991). Furthermore, IL-4 inhibits the release of inflammatory molecules such as 

IL-1, TNF-α, and IL-8 (Rocken and Shevach, 1996). 

 

Macrophages are well-known immunostimulatory cells of the innate immune 

system with a proinflammatory phenotype, but immunomodulatory activities are 

also described (Mantovani et al., 2004; Gordon, 2003). The anti-inflammatory 

cytokine IL-4 is characterised as one of the agents inducing a so-called 

alternative activation in macrophages (Gordon, 2003; Goerdt and Orfanos, 

1999). These macrophages which exert immunoregulatory functions, are 

particularly found in the placenta and lungs of healthy individuals where they 

protect from unwanted immune responses (Chang et al., 1993; Holt et al., 1988; 

Miyazaki et al., 2003; Mues et al., 1989). In addition, they also accumulate in 

wound tissue during the healing phase where they down-regulate inflammation 

(Song et al., 2000). 

 

 

 

 

 

 

 

 

 

In previous studies of the Experimental Transplantation Immunology of the 

Department of Surgery, immunosuppressive properties for so-called IL-4 DC 

Fig. 5.1. The phenotype of IL-4 Mφφφφ 

and M-CSF Mφφφφ. The results based 
on analysis with flow cytometry (Fig. 
4.13 and 4.14), real time PCR (Tab. 
4.4 and 4.5, Fig. 4.16 and 4.17) and 
ELISA (Fig. 4.18). 
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during the alloimmune response were described (Tiurbe GC, 2006). These cells 

were derived from bone marrow precursor cells by granulocyte macrophage 

colony stimulating factor (GM-CSF) and IL-4. In this study, the effect of IL-4 on 

the induction of bone marrow derived macrophages and their proposed 

immunoregulatory properties was analysed. The results of this study show that 

M-CSF MФ and IL-4 MФ do not activate allogeneic T lymphocytes in mixed 

leukocyte cultures (Fig. 4.3). The phenotypes of these cells lack the 

costimulatory molecules CD80 and CD86 and this may explain these results 

(Fig. 4.11, 4.13, 4.14). According to the “two-signal” hypothesis of T cell 

activation, naïve alloreactive T lymphocytes need two signals for their complete 

activation (Fig. 1.1). The first signal is induced by the engagement of the T cell 

receptor with the MHC molecules plus the presented peptide. This signal must 

be accompanied by a second stimulus through the coreceptor CD80 and CD86 

(signal two). IL-4 DC, however, analysed as control cells in this study, 

demonstrated surface expression of CD80 and CD86 and are poor T cell 

stimulators, too. Nevertheless, in comparison to mature dendritic cells the 

expression levels for CD80 and CD86 on IL-4 DC are reduced (data not 

shown). Consequently, the costimulation of IL-4 DC as well as of M-CSF MФ 

and IL-4 MФ seems not to be effective enough to activate naïve T lymphocytes. 

The induction of hyporesponsiveness in allogeneic T lymphocytes with so-called 

resting (non-activated) macrophages was described by Hoves et al. (Hoves et 

al., 2006). This effect was independent of the lack of costimulatory molecules 

and even with costimulation, provided by the addition of anti-CD28 monoclonal 

antibodies, allogeneic T lymphocytes still did not proliferate adequately. 

 

In the present study, competition assays show a suppressive effect on mDC-

mediated T cell proliferation for the M-CSF MФ, IL-4 MФ and IL-4 DC (Fig. 4.4). 

This suppressive effect was dose-dependent indicating an active, inhibitory 

mechanism. This result is in accordance with Schebesch et al. who showed that 

mitogen-induced proliferation of peripheral blood lymphocytes and purified 

CD4+ T cells was strongly inhibited by human IL-4 MФ. Again, this effect did not 

depend on expression of costimulatory molecules (Schebesch et al., 1997). 
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5.2 Characterisation of the suppressive effect mediated by IL-4 MФ 

T cell tolerance can be caused by diverse mechanisms including the induction 

of apoptosis, T cell anergy or differentiation and activation of T regulatory cells 

(Abbas et al., 2004). Low rates of apoptosis of T lymphocytes were detected 

after the incubation with M-CSF MФ, IL-4 MФ and IL-4 DC but the highest rates 

were found in those competition assays with only 100 IL-4 MФ and M-CSF MФ 

competitor cells, respectively. Therefore, it is not clear whether this is a relevant 

biological effect (Fig. 4.9). 

 

Viable T lymphocytes collected from competition assays with M-CSF MФ, IL-4 

MФ and IL-4 DC could not fully respond to maximal stimulatory signals provided 

by mDC (Fig. 4.10). This result supports the assumption of anergy induction by 

M-CSF MФ, IL-4 MФ and IL-4 DC. Since anergic T lymphocytes occur after 

activation in absence of sufficient costimulation (Schwartz, 1992), the low 

expression levels of costimulatory molecules on the surface of M-CSF MФ and 

IL-4 MФ and IL-4 DC (Fig. 4.11, 4.13, 4.14, 4.15, Tab. 4.4) may allow anergy 

induction by these cells. 

 

The possible role of soluble factors secreted by IL-4 MФ for the suppression of 

T cell proliferation was investigated and the results obtained in this study 

demonstrate an inhibitory effect. Therefore, the direct presence of IL-4 MФ was 

not obligatory to suppress T cell activation (Fig. 4.7). Whether this soluble factor 

induces anergy in T lymphocytes, as observed in T lymphocytes co-cultured 

with IL-4 MФ, was not investigated. The nature of this factor was not idntified 

but the immunoregulatory cytokine TGF-β was detected in the supernatant of 

cultures with IL-4 MФ as well as of M-CSF MФ and IL-4 DC (Fig. 4.18). 

 

TGF-β (and IL-10) are important immunoregulatory cytokines which can 

regulate alloreactive T cell responses after organ transplantation (Bickerstaff et 

al., 2001). TGF-β suppresses allospecific delayed-type hypersensitivity (DTH) 

responses primarily mediated by alloantigen-specific CD4+ T-helper 1 (Th1) 

cells (Bickerstaff et al., 2000). Th1 cells triggered by alloantigens secrete 
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proinflammatory cytokines such as interferon-γ (IFN-γ) and tumor nekrose 

factor (TNF). IFN-γ promotes the MHC class II expression and has effects on 

the generation of cytotoxic T lymphocytes (“killer T cells”), which are capable of 

killing cells. After transplantation, they are involved in the destruction of the 

allograft. The presence of TNF has been associated with acute rejection and 

blocking the action of TNF-α with neutralising antibodies can prolong 

experimental cardiac allograft survival (Imagawa et al., 1991). Similar blunting 

effects of TGF-β on the DTH response was observed in mouse recipients of 

spontaneously accepted kidney allografts (Bickerstaff et al., 2001). TGF-β, a 

multifunctional peptide, is a part of a superfamily of proteins controlling 

proliferation, differentiation, and other function in most cell types (Rubtsov and 

Rudensky, 2007). In immunology, TGF-β is known as an important 

immunoregulatory cytokine, secreted by so-called regulatory T cells (Sakaguchi 

and Powrie, 2007), which suppress T cell proliferation (Barker et al., 2002). 

Therefore, the detection of TGF-β in the supernatant of IL-4 MФ (M-CSF MФ 

and IL-4 DC) described in this study is an important finding but further 

investigations are necessary to clarify its role in the suppression of T cell 

activation in this system. 
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6 Conclusions 

The present study demonstrates an immune inhibitory effect for IL-4 MФ and M-

CSF MФ in vitro. The results provide the answers to the following questions: 

 

 

(1) IL-4 combined with GM-CSF induces bone marrow derived DC with immune 

regulatory effects. Does IL-4 combined with M-CSF also induce the 

development of bone marrow derived immune regulatory macrophages (IL-4 

MФ)? 

 

IL-4 combined with M-CSF induced the development of bone marrow derived 

macrophages (IL-4 MФ). The IL-4 MФ showed a suppressive effect on the 

activation of allogenic T lymphocytes when used as competitor cells (Fig. 4.4). 

This effect was comparable with that of the IL-4 DC. However, the effect of IL-4 

on the development of haematopoietic stem cells into IL-4 MФ and IL-4 DC, 

respectively, does not seem to be unique because the M-CSF MФ also show a 

suppressive effect. 

 

(2) IL-4 is an anti-inflammatory cytokine. How does IL-4 influence the 

expression of certain surface molecules on IL-4 MФ, which are involved in T 

cell activation? 

 

IL-4 MФ demonstrated a unique phenotype different from M-CSF MФ and IL-4 

DC. They are positive for MHC class I and class II molecules as well as for 

CD40 and negative for CD80 and CD86 as shown by flow cytometry (Fig. 4.13). 

Results from real time PCR, however, demonstrate the presence of specific 

mRNA for CD86 (Tab. 4.4). The M-CSF MФ, clearly positive for CD40 and MHC 

I, seem not to express MHC II, CD80 and CD86 or only in low amounts (Fig. 

4.14). According to the “two-signal” hypothesis of T cell activation, naïve 

alloreactive T lymphocytes need two signals for their complete activation (Fig. 

1.1). The first signal is induced by the engagement of the T cell receptor with 
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the MHC molecules and must be accompanied by a second stimulus through 

the coreceptor CD80 and CD86 (signal two). The loss or reduced surface 

expression of CD80 and CD86 might explain why IL-4 MФ and M-CSF MФ are 

poor stimulator cells for T cell activation as shown in this study (Fig. 4.3). 

 

(3) IL-4 DC suppress the activation of naïve T lymphocytes. What are the 

immune regulatory effects of IL-4 derived macrophages in comparison to IL-

4 DC? 

 

Until now, it is not clear whether the suppressive effect of IL-4 MФ, M-CSF MФ 

and IL-4 DC is mediated via cell-cell contact or soluble factors. This study 

presents results for both mechanisms. The three subsets demonstrate a 

suppressive effect on the activation of alloreactive T lymphocytes when used as 

competitor cells. T lymphocytes co-cultured with IL-4 MФ, M-CSF MФ or IL-4 

DC were not restimulated by mature DC. This indicates that IL-4 MФ, M-CSF 

MФ and IL-4 DC induce a permanent state of hyporesponsiveness (T cell 

anergy). Since a suppressive effect could be attributed to the supernatant from 

cultures of IL-4 MФ, M-CSF MФ and IL-4 DC, the presence of a soluble 

inhibitory factor is assumed (Fig. 4.7). The immunoregulatory cytokine TGF-β 

was found in those supernatants (Fig. 4.18). In addition, specific mRNA for 

iNOS was proven in all three subsets. However, we have no evidence that the 

iNOS product NO is the pursued soluble inhibitory factor. iNOS-positive 

macrophages are generally known to induce T cell apoptosis (van der Veen et 

al., 2000). The highest rates of apoptosis were found in those competition 

assays with only 100 IL-4 MФ and M-CSF MФ competitor cells, respectively. It 

is not clear whether this is a relevant biological effect. 
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7 Summary 

Immune cells with suppressive or regulatory properties appear very attractive 

for selective suppression of unwanted immune responses, occurring for 

example after transplantation. 

 

In previous studies, we showed that immunoregulatory dendritic cells can be 

generated from rat bone marrow haematopoietic precursor cells with GM-CSF 

and IL-4 (so-called IL-4 DC). In the present study, bone marrow derived 

macrophages generated in the presence of M-CSF plus IL-4 (IL-4 MФ) were 

compared to IL-4 DC in view of their phenotype and immunological functions. 

M-CSF MФ generated with M-CSF alone were used as controls. In contrast to 

mature splenic dendritic cells (mDC), M-CSF MФ, IL-4 MФ and IL-4 DC were 

not able to activate naïve T lymphocytes in vitro. Moreover, used as competitor 

cells, a dose-dependent suppression of mDC-stimulated allogeneic T cell 

activation was observed. At a cell ratio of 1:1 (IL-4 MФ:mDC), IL-4 MФ induced 

a suppression rate of 96%. M-CSF MФ and IL-4 DC demonstrated similar 

effects at the same cell ratio. It is not clear how the cells mediated the 

suppressive effect, but this study presents evidence for both a cell surface 

mediated mechanism and a mechanism mediated by soluble factors. 

 

Flow cytometric, immunohistochemical and real time PCR analysis 

demonstrated a unique phenotype for IL-4 MФ and M-CSF MФ. Their surface 

expression of CD80 and CD86 was lower in comparison to the expression 

found on IL-4 DC whose surface expression of costimulatory molecules was 

reduced in comparison to mDC as shown in previous studies. Therefore, 

insufficient costimulation could be the reason for the observed inability of the 

three subsets to activate naïve T lymphocytes. All three subsets were positive 

for MHC I and CD40, and additionally, IL-4 MФ and IL-4 DC were clearly 

positive for MHC II. T lymphocytes co-cultured with IL-4 MФ, M-CSF MФ or IL-4 

DC, demonstrated a minimal proliferation when subsequently restimulated with 

mDC. This indicates that IL-4 MФ, M-CSF MФ and IL4-DC induced a stable 
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hyporesponsiveness (anergy) in these T lymphocytes, which is probably due to 

the insufficient costimulation. Moreover, a marginally increased rate of 

apoptosis was detected in T lymphocytes collected from the competition assays 

with IL-4 MФ, M-CSF MФ and IL4-DC in contrast to T lymphocytes cultured 

alone or with mDC during the competition assays. 

 

Soluble inhibitory factors secreted by IL-4 MФ, M-CSF MФ or IL-4 DC could 

also play a role in T cell suppression. Supernatant of 106 M-CSF MФ, IL-4 MФ 

and IL-4 DC collected after 24h of culture suppressed mDC-induced T cell 

proliferation with a suppression rate of 81-85%. The suppressive effect of the 

supernatant collected after 48h was even stronger with a suppression rate of 

90-100%. As shown in ELISA and real time PCR analysis, IL-4 MФ, M-CSF MФ 

and IL4-DC expressed the immunoinhibitory cytokine TGF-β that might be 

involved in T cell suppression. 

 

In conclusion, these results show that the bone-marrow derived IL-4 MФ and M-

CSF MФ suppress the activation and proliferation of naïve T lymphocytes. They 

share this feature with the bone marrow derived IL-4 DC despite different 

phenotypes. The results of this study indicate that dendritic cells and 

macrophages derived from haematopoietic stem cells of the bone marrow share 

the same suppressive properties. The mechanism how these cells mediate their 

suppressive effect is still unknown and should be analysed in further studies. In 

this context, these cells should be able to suppress unwanted immune 

responses in an antigen specific manner. 
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8 Zusammenfassung 

Immunzellen mit hemmenden bzw. regulatorischen Eigenschaften erscheinen 

sehr attraktiv, um ungewollte Immunantworten, wie sie z.B. nach Transplan-

tationen auftreten, selektiv zu hemmen. 

 

In früheren Arbeiten konnten wir zeigen, dass sich mit GM-CSF und IL-4 

immunregulatorische Dendritische Zellen (IL-4 DC) aus hämatopoetischen 

Vorläuferzellen des Knochenmarks der Lewis-Ratte generieren lassen. In der 

vorliegenden Arbeit wurden Makrophagen aus Knochenmarkvorläuferzellen mit 

M-CSF und IL-4 (IL-4 MФ) generiert und mit den IL-4 DC hinsichtlich ihres 

Phänotyps und ihrer immunologischen Eigenschaften verglichen. M-CSF MФ, 

die nur mit M-CSF generiert wurden, dienten hierbei als Kontrolle. Im 

Gegensatz zu reifen DC (mDC), die aus der Milz isoliert wurden, sind weder M-

CSF MФ noch IL-4 MФ bzw. IL-4 DC in der Lage, naive T Lymphozyten in vitro 

zu aktivieren. Zudem wurde eine Zellzahl-abhängige Hemmung der mDC 

induzierten T Zell-Aktivierung beobachtet. So hemmten IL-4 MФ die mDC-

induzierte T-Zellproliferation nahezu vollständig (bis zu 96%), wenn sie in einem 

Zellverhältnis von 1:1 (IL-4 MФ:mDC) als Kompetitorzellen eingesetzt wurden. 

Ähnliche Effekte waren auch für M-CSF MФ und IL-4 DC zu beobachten. Zwar 

ist nicht geklärt, wie die Zellen diesen hemmenden Effekt vermitteln, doch 

lassen die Daten der vorliegenden Arbeit sowohl einen durch 

Oberflächenmoleküle als auch lösliche Mediatoren vermittelten Mechanismus 

für möglich erscheinen. 

 

Durchflusszytometrische Analysen, ergänzt durch Immunhistochemie und Real 

time PCR, zeigten für IL-4 MФ und M-CSF MФ einen Phänotyp, der gegenüber 

IL-4 DC, eine geringere Expression von CD80 und CD86 auf der Zelloberfläche 

aufwies. Die IL-4 DC wiesen ihrerseits eine geringe Expression von CD80 und 

CD86 in Vergleich zu mDC auf, wie in vorangegangenen Arbeiten gezeigt 

wurde. Alle drei Subpopulationen waren positiv für MHC I und CD40, während 

IL-4 MФ und IL-4 DC zusätzlich positiv für MHC II waren. T Lymphozyten in 
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Kokultur mit IL-4 MФ bzw. mit M-CSF MФ oder IL-4 DC wiesen nur eine geringe 

Proliferation auf, wenn sie anschließend mit mDC restimuliert wurden. Diese 

Daten deuten darauf hin, dass IL-4 MФ, M-CSF MФ und IL-4 DC naive T-

Lymphozyten dauerhaft in ihrer Restimulierung hemmen. Dieser anergische 

Zustand ist möglicherweise auf die unzureichende Kostimulation 

zurückzuführen. Zudem wurde bei den mit IL-4 MФ, M-CSF MФ und IL-4 DC 

kokultivierten T Lymphozyten eine geringfügig erhöhte Rate an apoptotischen 

Zellen gemessen als bei T Lymphozyten, die zuvor alleine oder mit mDC 

kultiviert wurden. 

 

Auch von IL-4 MФ, M-CSF MФ und IL-4 DC sezernierte lösliche Faktoren 

können eine Rolle bei der Hemmung der T-Zellaktivierung spielen. Überstände 

einer 24-stündigen Kultur mit 106 IL-4 MФ, M-CSF MФ und IL-4 DC, hemmten 

die mDC-induzierte T-Zellaktivierung mit einer Suppressionsrate von 81-85%. 

Mit einer nahezu vollständigen Hemmung der T-Zellaktivierung war der Effekt 

von Überständen aus 48-stündigen Kulturen sogar noch stärker. Wie anhand 

von ELISA und real time PCR gezeigt wurde, exprimierten IL-4 MФ, M-CSF MФ 

und IL-4 DC das immuninhibitorische Zytokin TGF-β, das für die beobachtete 

Hemmung der T-Zellproliferation verantwortlich sein könnte. 

 

Die Ergebnisse zeigen somit, dass die aus Knochenmarkvorläuferzellen 

generierten IL-4 MФ und M-CSF MФ die Aktivierung naiver T-Lymphozyten 

hemmen. Diese Eigenschaft teilen sie sich mit IL-4 DC trotz deutlicher 

Unterschiede bei den Phänotypen dieser Zellen. Die Ergebnisse dieser Arbeit 

lassen den Schluss zu, dass die aus hämatopoetischen Stammzellen des 

Knochenmarks hergestellten Dendritische Zellen und Makrophagen die 

Aktivierung naiver T-Lymphozyten effektiv hemmen. Der Mechanismus, wie 

dieser hemmende Effekt vermittelt wird, ist zurzeit noch unbekannt und sollte in 

weiteren Arbeiten analysiert werden. Von grundlegender Bedeutung wäre der 

erfolgreiche Nachweis, dass diese Zellen ungewollte Immunantworten antigen-

spezifisch hemmen. 
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9 Abbreviations 

APC   Antigen-presenting cells 

BMDC   Bone marrow derived cells 

FACS   Fluorescence Activated Cell Sorting  

FITC   Fluorescein isothiocyanate 

FSC   Forward Scatter Channel 

GM-CSF  Granulocyte Macrophage Colony Stimulating Factor 

IFN-γ   Interferon-γ 

IL-4   Interleukin-4 

IL-10   Interleukin-10 

M-CSF   Macrophage Colony Stimulating Factor 

mDC   Mature dendritic cells 

MФ   Macrophages 

PBS   Phosphate-buffered saline 

PE   Phycoerythrine 

rpm   Rounds per minute 

SSC   Side Scatter Channel 

TCR   T cell receptor 

TGF-β   Transforming Growth Factor-β 

WF   Wistar Furth 
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Tab. 9.2. M-CSF MФ, IL-4 MФ and IL-4 DC act as competitor cells and inhibit the mDC-induced proliferation of naЇve T lymphocytes. Representative competition assay of n=4. mDC 
served as control cells.
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104 mDC

105 T cells +
104 mDC

1152929314342035
Standard 

deviation (cpm)

909479633601177307157
Mean value

(cpm)

105 T cells +
104 mDC +
101 IL-4 DC

105 T cells +
104 mDC +
102 IL-4 DC

105 T cells +
104 mDC +
103 IL-4 DC

105 T cells +
104 mDC +
104 IL-4 DC

105 T cells +
104 IL-4 DC

104 IL-4 MФ

640405508564618
Standard 

deviation (cpm)

883882725859212199113Mean value
(cpm)

105 T cells +
104 mDC + 101 

M-CSF MФ

105 T cells +
104 mDC +

102 M-CSF MФ

105 T cells +
104 mDC +

103  M-CSF MФ

105 T cells +
104 mDC +

104 M-CSF MФ

105 T cells +
104 M-CSF MФ

104  M-CSF MФ

9946775391833286419153626
Standard 

deviation (cpm)

1025163635682470108429111542178329
Mean value

(cpm)

105 T cells +
104 mDC +

101 IL-4 MФ

105 T cells +
104 mDC +
102 IL-4 MФ

105 T cells +
104 mDC +

103 IL-4 MФ

105 T cells +
104 mDC +
104 IL-4 MФ

105 T cells +
104 IL-4 MФ

104 IL-4 MФ
105 T cells
+ 104 mDC

104 mDC105 T cells

Tab. 9.2. M-CSF MФ, IL-4 MФ and IL-4 DC act as competitor cells and inhibit the mDC-induced proliferation of naЇve T lymphocytes. Representative competition assay of n=4. mDC 
served as control cells.
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Tab. 9.3. Calculation of the suppressive effect mediated by IL-4 MФ, M-CSF MФ and IL-4 
DC (based on values of Tab. 9.2). The T cell proliferation in MLC (104 mDC co-cultured with 
105 allogeneic T cells) is setting as 100% proliferation or 0% suppression. The suppression rate 
∆% induced by IL-4 MФ, M-CSF MФ and IL-4 in the competition assays (Tab. 9.2) is calculated 
according the following formula: ∆% = (cpm mDC induced T cell proliferation - cpm T cell proliferation in the co-cultures 
/ cpm mDC induced T cell proliferation) x 100. Proliferation is calculated as follows: % = (cpm T cell proliferation in 

the co-cultures / cpm mDC induced T cell proliferation) x 100. 
 

 
 
Tab. 9.4. Calculation of the suppressive effect mediated by mDC as pseudo competitor 
cells (Tab. 9.3). SD= Standard deviation. N=2. 

 
 
Tab. 9.5. Calculation of the suppressive effect mediated by cells of the mammarian cell 
line MDA-MB 231 (“MammaCa”) as pseudo competitor cells. SD= Standard deviation. N=2. 
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Mean (cpm) 27940 23783 25018 18773 24331 

SD (cpm) 3517 2083 2959 1952 3272 

Proliferation (%) 100 85 90 67 87 

Suppression (∆%) --- 15 11 33 13 
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Tab. 9.6. Proof of soluble factors secreted by IL-4 MФ, M-CSF MФ and IL-4 DC, which 
mediate suppression. 106 cells (IL-4 MФ, M-CSF MФ and IL-4 DC and cells of the cell line 
MDA-MB 231 as control) were cultured in 96 well plates in 150 µL culture medium. Supernatant 
(50 µL, 100 µL) of 24h- and 48h- cultures were transferred to MLC. MammaCa: Cells of the 
mammarian carcinoma cell line MDA-MB 231. SN= supernatant. SD= Standard deviation. 
 

 

10
5 
T cells + 

10
4 
mDC  

SN: Mamma Ca 
(24h, 100µL) 

+
 

10
5 
T cells + 

10
4 
mDC + 

SN: IL-4 MФ 
(24h, 100µL) 

+ 
10

5 
T cells + 

10
4 
mDC 

SN: MCSF MФ 
(24h, 100µL) 

+ 
10

5 
T cells + 

10
4 
mDC 

SN: IL-4 DC 
(24h, 100µL) 

+ 
10

5 
T cells + 

10
4 
mDC 

Mean (cpm) 31170 22306 5146 5939 4776 
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Tab. 9.7. Flow cytometric analysis of T cell apoptosis by staining with Annexin V. T 
lymphocytes was proven in MLC and competition assays. Controls are T lymphocytes cultured 
alone and with mDC. Representative results from n=2 experiments. 
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Tab. 9.8. Naïve T lymphocytes pre-incubated with IL-4 MФ, M-CSF MФ and IL-4-DC 
showed low proliferation in the presence of mDC (=second culture). Shown are the results 
of second culture. T lymphocytes cultured alone were used as controls for the second culture. 
SD= Standard deviation. Representative results from n=2 experiments. 
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Fig. 9.1. Controls of the polymerase chain reaction (PCR). Positive control: 108 copies of 
PCR vector (TA vector from Invitrogen) with a certain cloned PCR fragment. Negative control: 
PCR grade water (Nuclease-free) from Promega. 
 
 
 
Tab. 9.9. Analysis of real time PCR data for relative quantitation of different target mRNA 
in IL-4 MФ and M-CSF MФ. Targets are MHC I and II mRNA, CD80, CD86 and CD40 mRNA, 
IL-10 mRNA, TGF-β mRNA and iNOS mRNA; endogenous control is GAPDH mRNA. Shown 
are the Ct values, the calculated ∆Ct and ∆∆Ct values and the relative expression (2-∆∆Ct) of 
certain mRNA of IL-4 MФ and M-CSF MФ in comparison to IL-4 DC. 
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Ct  

GAPDH 
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Mean Ct 
GAPDH 
Mean Ct 

∆Ct ∆∆∆∆∆∆∆∆Ct 2
-∆∆Ct

 

IL-4 DC 12.28 12.49 14.51 13.14 12.39 13.83 -1.44 --- 1.00 

IL-4 MФ 14.44 15.82 15.24 16.55 15.13 15.89 -0.76 0.68 0.63 

M-CSF MФ 18.52 14.65 16.55 14.53 16.58 15.54 1.04 2.48 0.18 

∆Ct = Ct(MHC I) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
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Mean Ct 

GAPDH 
Mean Ct 

∆Ct ∆∆∆∆∆∆∆∆Ct 2
-∆∆Ct

 

IL-4 DC 17.34 17.46 14.51 13.14 17.40 13.83 3.58 --- 1.00 

IL-4 MФ 19.36 20.33 15.24 16.55 19.85 15.89 3.95 0.38 0.77 

M-CSF MФ 28.39 26.80 16.55 14.53 27.59 15.54 12.05 8.48 0.00 

∆Ct = Ct(MHC II) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
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∆Ct ∆∆∆∆∆∆∆∆Ct 2
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IL-4 DC 27.37 26.91 14.51 13.14 27.14 13.83 13.31 --- 1.00 

IL-4 MФ 32.12 31.76 15.24 16.55 31.94 15.89 16.05 2.74 0.15 

M-CSF MФ 35.00 30.99 16.55 14.53 32.99 15.54 17.45 4.14 0.06 

∆Ct = Ct(CD80) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
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Ct 

CD86 
Ct  

GAPDH 
CD86 

Mean Ct 
GAPDH 
Mean Ct 

∆Ct ∆∆∆∆∆∆∆∆Ct 2
-∆∆Ct

 

IL-4 DC 22.00 23.16 14.51 13.14 22.58 13.83 8.75 --- 1.00 

IL-4 MФ 25.88 25.70 15.24 16.55 25.79 15.89 9.89 1.14 0.45 

M-CSF MФ 35.00 28.55 16.55 14.53 31.78 15.54 16.24 7.49 0.01 

∆Ct = Ct(CD86) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
 
 

 
Ct 

CD40 
Ct  

GAPDH 
CD40 

Mean Ct 
GAPDH 
Mean Ct 

∆Ct ∆∆∆∆∆∆∆∆Ct 2
-∆∆Ct

 

IL-4 DC 20.98 21.43 14.51 13.14 21.20 13.83 7.38 --- 1.00 

IL-4 MФ 22.95 22.59 15.24 16.55 22.77 15.89 6.87 -0.51 1.42 

M-CSF MФ 24.70 25.18 16.55 14.53 24.94 15.54 9.40 2.02 0.25 

∆Ct = Ct(CD40) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
 
 

 
Ct 

TGF-β 
Ct  

GAPDH 
TGF-β 
Mean Ct 

GAPDH 
Mean Ct 

∆Ct ∆∆∆∆∆∆∆∆Ct 2
-∆∆Ct

 

IL-4 DC 18.74 17.75 14.51 13.14 18.24 13.83 4.42 --- 1 

IL-4 MФ 19.90 20.75 15.24 16.55 20.33 15.89 4.44 0.02 0.99 

M-CSF MФ 22.02 19.12 16.55 14.53 20.57 15.54 5.03 0.61 0.65 

∆Ct = Ct(TGF-β) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
 
 

 
Ct 
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Ct  

GAPDH 
iNOS 

Mean Ct 
GAPDH 
Mean Ct 

∆Ct ∆∆∆∆∆∆∆∆Ct 2
-∆∆Ct

 

IL-4 DC 27.34 25.82 14.51 13.14 26.58 13.83 12.75 --- 1 

IL-4 MФ 29.81 28.81 15.24 16.55 29.31 15.89 13.42 0.66 0.63 

M-CSF MФ 33.39 27.23 16.55 14.53 30.31 15.54 14.77 2.02 0.25 

∆Ct = Ct(iNOS) - Ct(GAPDH), ∆∆Ct = ∆Ct(x) - ∆Ct(IL-4DC) (x = IL-4 MФ or M-CSF MФ) 
 



– Appendix – 

61 

Tab. 9.10. Proof of the production of IL-10 and TGF-β by IL-4 MФ, M-CSF MФ and IL-4 DC 
with specific ELISA kits (Biosource). Cells were harvested on day +6 of culture and replated 
in 96 well plates (104 and 106 cells/well) in 150 µL medium. Supernatant was collected after 24h 
and 48h. 
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Fig. 9.2. Interpretation of real time PCR results and the comparative threshold 
(Ct) method as an approach to calculate relative (comparative) expression levels. 
The advantage of using the comparative Ct method is that the need of a standard 
curve is eliminated. 
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