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Summary 

The biosphere harbors a large quantity and diversity of microbial organisms that can 

thrive in all environments. Estimates of the total number of microbial species reach up to 1012, 

of which less than 15,000 have been characterized to date. It has been challenging to delineate 

phenotypically, evolutionary and ecologically meaningful lineages such as for example, 

species, subspecies and strains. Even within recognized species, gene content can vary 

considerably between sublineages (for example strains), a problem that can be addressed by 

analyzing pangenomes, defined as the non-redundant set of genes within a phylogenetic clade, 

as evolutionary units.  

Species considered to be ecologically and evolutionary coherent units, however to date 

it is still not fully understood what are primary habitats and ecological niches of many 

prokaryotic species and how environmental preferences drive their genomic diversity. Majority 

of comparative genomics studies focused on a single prokaryotic species in context of clinical 

relevance and ecology. With accumulation of sequencing data due to genomics and 

metagenomics, it is now possible to investigate trends across many species, which will facilitate 

understanding of pangenome evolution, species and subspecies delineation. 

The major aims of this thesis were 1) to annotate habitat preferences of prokaryotic 

species and strains; 2) investigate to what extent these environmental preferences drive genomic 

diversity of prokaryotes and to what extent phylogenetic constraints limit this diversification; 

3) explore natural nucleotide identity thresholds to delineate species in bacteria in 

metagenomics gene catalogs; 4) explore species delineation for applications in subspecies and 

strain delineation in metagenomics. 

The first part of the thesis describes methods to infer environmental preferences of 

microbial species. This data is a prerequisite for the analyses performed in the second part of 

the thesis which explores how the structure of bacterial pangenomes is predetermined by past 

evolutionary history and how is it linked to environmental preferences of the species. The main 

finding in this subchapter that habitat preferences explained up to 49% of the variance for 

pangenome structure, compared to 18% by phylogenetic inertia. In general, this trend indicates 

that phylogenetic inertia does not limit evolution of pangenome size and diversity, but that 

convergent evolution may overcome phylogenetic constraints. In this project we show that core 

genome size is associated with higher environmental ubiquity of species. It is likely this is due 

to the fact that species need to have more versatile genomes and most necessary genes need to 

be present in majority of genomes of that species to be highly prevalent. Taken together these 
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findings may be useful for future predictive analyses of ecological niches in newly discovered 

species. 

The third part of the thesis explores data-driven, operational species boundaries. I show 

that homologous genes from the same species from different genomes tend to share at least 95% 

of nucleotide identity, while different species within the same genus have lower nucleotide 

identity. This is in line with other studies showing that genome-wide natural species boundary 

might be in range of 90-95% of nucleotide identity. Finally, the fourth part of the thesis 

discusses how challenges in species delineation are relevant for the identification of meaningful 

within-species groups, followed by a discussion on how advancements in species delineation 

can be applied for classification of within-species genomic diversity in the age of 

metagenomics. 
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Zusammenfassung 

Die Biosphäre beherbergt eine große Zahl verschiedener Mikroorganismen, die fast alle 

bekannten Lebensräume besiedeln können. Die Gesamtzahl mikrobieller Spezies liegt 

Schätzungen zu Folge bei bis zu 1012, von denen jedoch bis heute erst 15.000 beschrieben 

worden sind. Die Beschreibung von phänotypisch, evolutionsbiologisch und ökologisch 

kohärenten Spezies, Sub-Spezies oder Stämmen stellt Forscher vor konzeptionelle 

Herausforderungen. Selbst innerhalb anerkannter Spezies kann die Kombination einzelner 

Gene oft stark variieren. Diese Beobachtung ist die Grundlage der Analyse von Pan-Genomen. 

also der Konstellation originärer Gene innerhalb einer Abstammunsglinie, als 

evolutionsbiologische Einheiten. 

Spezies entsprechen prinzipiell ökologisch und evolutionär kohärenten Einheiten, 

jedoch sind die primären Habitate und ökologischen Nischen vieler prokaryotischer Spezies bis 

heute nur unzureichend beschrieben, insbesondere mit Blick auf den Einfluss ökologischer 

Präferenzen auf die Evolution von Genomen. Die Mehrheit vergleichender genomischer 

Studien untersucht einzelne prokaryotische Spezies mit Bezug auf deren klinische oder 

ökologische Relevanz. Aufgrund der wachsenden Verfügbarkeit genomischer Daten ist es nun 

jedoch möglich, vergleichende Studien über Speziesgrenzen hinweg durchzuführen, um 

allgemeine Prinzipien der Evolution von Pan-Genomen, Spezies und Sub-Spezies zu 

untersuchen. 

Die wesentlichen Ziele der vorliegenden Arbeit waren 1) die Annotation von 

Habitatpräferenzen prokaryotischer Spezies und Stämme; 2) die Quantifizierung des Einflusses 

von Umwelt und Evolutionsgeschichte (Phylogenie) auf die genomische Diversität von 

Prokaryoten; 3) die Bestimmung natürlicher Schwellenwerte der Genomsequenzähnlichkeit 

zwischen Spezies, auch anhand von Genkatalogen; 4) die Untersuchung der Abgrenzung 

zwischen Spezies, Sub-Spezies und Stämmen mithilfe metagenomischer Daten. 

Im ersten Teil der Arbeit werden Methoden zur Bestimmung ökologischer Präferenzen 

mikrobieller Spezies beschrieben. Die so gewonnenen Daten dienen in der Folge als Grundlage 

für die Quantifizierung von Umwelt- und evolutionsgeschichtlichen Einflüssen auf die Struktur 

und Evolution bakterieller Pan-Genome im zweiten Teil der Arbeit. Ein zentrales Ergebnis 

dieser Untersuchung war, dass bis zu 49% der strukturellen Varianz in Pan-Genomen durch 

Habitatpräferenzen erklärt werden kann, im Gegensatz zu lediglich 18% durch phylogenetische 

Trägheitseffekte. Dies zeigt, dass die Größe und Diversität von Pan-Genomen nicht 

phylogenetisch limitiert ist, insbesondere in Fällen von konvergenter Evolution. Große Kern-

Genome sind ferner mit einer weiten ökologischen Verbreitung von Spezies assoziiert; eine 
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mögliche Erklärung ist, dass weit verbreitete Spezies vielseitigere Genome mit mehr 

notwendigen Genen besitzen, die ein Überleben in vielfältigen Umgebungen ermöglichen. Die 

vorgelegte Arbeit kann weiterhin einen Beitrag zur Vorhersage ökologischer Profile neu 

beschriebener Spezies leisten. 

Im dritten Teil der Arbeit werden datenbezogene, operationelle Definition von Spezies-

Grenzen untersucht. Es konnte gezeigt werden, dass Gene verschiedener Genome innerhalb 

derselben Spezies normalerweise mindestens 95% Ähnlichkeit der Nukleotidsequenz 

aufweisen, während die Ähnlichkeit zwischen Spezies desselben Genus geringer ausfällt. 

Dieser Wert liegt im Rahmen früherer Schätzungen. Der vierte Teil der Arbeit beschreibt 

abschließend die Herausforderungen bei der Bestimmung von evolutionären Linien innerhalb 

von Spezies und diskutiert anschließend, wie konzeptionelle Entwicklungen in dieser Frage für 

die Klassifizierung und Quantifizierung von Diversität anhand metagenomischer Daten genutzt 

werden kann. 
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Chapter 1. Introduction 

1.1. Diversity and function of microbiome 

Microbial organisms inhabit almost every environment on Earth and have a significant 

impact on biogeochemical cycles of entire biosphere, specific ecosystems within it and the 

wellbeing of individual macroorganisms (Stolz 2017; Lovelock 1979; McFall-Ngai et al. 2013). 

Microorganisms are key components of nutrient, energy and information (horizontal gene 

transfer and molecular signaling) cycles across ecosystems. Prokaryotes are primary producers 

as well as decomposers of organic matter and a source of nutrients for other trophic levels. 

Carbon, nitrogen, sulfur, phosphor and other nutrients’ cycles depend on bacteria and their 

viruses (Delgado-Baquerizo et al. 2017). There are at least 104 known microbial species with 

sequenced genomes, while the predicted number of microbial species might be as low as 105 or 

as high as 1012 in the entire biosphere (Locey and Lennon 2016; Editorial 2011). 

The community complexity of microbial ecosystems varies enormously, from single-

species ecosystems such as in the lithosphere (Chivian et al. 2008), to highly complex soil 

communities with thousands of species per gram of soil (Torsvik, Goksoyr, and Daae 1990; 

Raynaud and Nunan 2014). Similarly, microbial population densities cover a wide range, from 

104-106 cells/gram in lithosphere (Cockell 2011), ocean – 105 cells/g (Nimnoi and Pongsilp 

2020) to soils – 108 - 1010 cells/g (Christensen, Hansen, and Sørensen 1999) and 1011 cells/g in 

the mammalian gastrointestinal tract (Sender, Fuchs, and Milo 2016). Such density, to some 

extent, leads to close interactions between prokaryotic species and eukaryotic organisms in the 

ecosystem. Formally, bacteria have been ecologically classified as either free-living and host-

associated. Host-associated species tend to form close symbiotic interactions with 

macroorganisms (also more generically called “host” organism when cannot be referred to as 

macroorganism), for example plants and animals. Due to these symbiotic relationships, the 

host-symbiont unit (also referred to as meta-organism) is considered a fundamental unit for 

many biological processes (De Bary 1879; McFall-Ngai et al. 2013). Now it is acknowledged 

that interactions between species (macroorganism and its symbionts) form complex network 

which resulted in the shift in understanding what is the unit of development, disease/health, 

aging, lifespan determination, and natural selection (McFall-Ngai et al. 2013; Schmidt, Raes, 

and Bork 2018; Cho and Blaser 2012; Zilber-Rosenberg and Rosenberg 2008; B. B. Finlay et 

al. 2019; Maistrenko et al. 2016; 2015). Importantly, host-associated microbial species can have 

distinct genomic features compared to free-living bacteria (for example, genome size, 

functional gene content, discussed in more details in Subchapter 1.2.). Both free-living and 

host-associated microbes frequently exchange genetic material across clade boundaries, in a 
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process called horizontal gene transfer (HGT). Patterns and outcomes of HGT in host-

associated and free-living species might differ. In particular host-associated species tend to 

share and lose genes over time due to relaxed environmental selective pressure, while free-

living might accumulate genes. HGT essentially leads to circulation of information within and 

between ecosystems and species. In consequence, microbial lineages are interconnected 

genetically within and across clade boundaries, and theoretically species have access to nearly-

infinite pools of genes (Baumdicker, Hess, and Pfaffelhuber 2012; Lapierre and Gogarten 

2009), leading to an enormous gene content diversity within and between species. The 

pangenome concept addresses this extensive variation in gene content among members of the 

same lineage. A pangenome is the non-redundant set of genes present in group of genomes 

(Tettelin et al. 2005). All domains of life – Prokaryotes, Viruses and Eukaryotes have 

pangenomes, leading to challenges to delineate species especially in Prokaryotes due to high 

rates of recombination and HGT between phylogenetically distant clades. One of the aims of 

microbiome sciences is to catalog all genes, explore their functional potential, distribution 

(across species, strains and samples/biomes) and identify how environmental properties and 

other factors drive expansion or reduction of species’ or ecosystem’s gene pools and how these 

gene pools are linked to functioning of ecosystems and associated with phenotypes of individual 

organisms. This thesis, in part tackles, some of these questions. Specifically, I improve 

annotations of environmental preferences of microbial species (Subchapter 3.1.); investigate 

how gene content diversity in prokaryotes is driven by the environmental preferences 

(Subchapter 3.2.); search for universal nucleotide identity threshold for species delineation at 

gene level (Subchapter 3.3.) and discuss how problems in species delineation are inherited into 

identification of meaningful within species groups (Subchapter 3.4.). 

1.2. Pangenomes in context of microbial ecology and evolution  

Bacterial and archaeal genomes/pangenomes are “open” entities that experience gene 

gain (via horizontal gene transfer (HGT), duplications and de novo origin) and gene loss 

(Puigbò et al. 2014). Genome/pangenome features (size and diversity) are further shaped by 

varying strength of selection in combination with the genetic drift (Bentley and Parkhill 2004). 

Responses to these evolutionary factors depend, among other parameters, on the effective 

population size of species which is defined at least partially by habitat preferences (MartÃ­nez-

Cano et al. 2015; Batut et al. 2014). Habitat preferences are defined as set of habitats where 

species are observed. Ubiquity is defined (sometimes also referred as environmental range 

(Barberán et al. 2014)) as a count of habitats in which species is present (B. J. Finlay and Clarke 

1999; Fenchel and Finlay 2004; Whitfield 2005; O’Malley 2008). Genome size in general 
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known to be affected by habitat preferences. For example, some of the free-living bacteria in 

soil tend to have extremely large genomes (Guieysse 2012) while free-living bacteria in marine 

habitat (Ghai et al. 2013; Giovannoni, Cameron Thrash, and Temperton 2014) and intracellular 

symbionts tend to have the smallest ones (Hessen et al. 2010; Lynch 2006). Obligate symbiotic 

species tend to have small pangenomes – almost equal to the genome size. Soil-associated and 

some highly abundant marine bacteria tend to have the largest pangenomes (Rouli et al. 2015). 

Passive dispersal in complex habitats such as soil causes an increase of 

genome/pangenome sizes possibly due to range expansion in the combination with the constant 

acquisition of new genes via HGT and their increase in frequency across the population due to 

bottlenecks (Choudoir et al. 2017). It has been shown that HGT can lead to an increase of 

genome sizes (Paquola et al. 2018), while, for example, the deletion bias (higher deletion than 

insertions/duplication rates) in bacteria leads to a reduction (or preservation) of genome size 

(Nilsson et al. 2005). In marine bacteria, genome streamlining and large pangenome are likely 

adaptive and a consequence of natural selection and incomplete selective sweeps (Grote et al. 

2012; Giovannoni, Cameron Thrash, and Temperton 2014). In obligate symbionts, small 

genomes and pangenomes are rather result of drift caused by reduced effective population size 

(McCutcheon, McDonald, and Moran 2009b). However, most species are abundant in multiple 

habitats and host association or free-living state can be facultative which leads to 

multidirectional pressures on genome structure evolution. Broader ecological niches and higher 

ubiquity tend to be associated with larger and more functionally versatile genomes (Cobo-

Simón and Tamames 2017). Highly ubiquitous species tend to accumulate more accessory 

genes (in particular due to HGT) to deal with environmental factors and to interact and compete 

with other species (Juhas et al. 2009; Bobay and Ochman 2017b). 

Past exposure of a species to different habitats is likely to set constraints on habitat 

preferences and the evolution of phenotype traits and genome/pangenome features. 

Phylogenetic relatedness is predictive of some of microbial phenotypic traits (Goberna and 

Verdú 2016) because they tend to be somewhat phylogenetically conserved (e.g. spore-

formation, Gram-staining, cell shape, photosynthesis, methanogenesis (A. C. Martiny, 

Treseder, and Pusch 2013; J. B. H. Martiny et al. 2015; Barberán et al. 2017)). Closely related 

species tend to share more genes, in other words, gene content similarity follows phylogeny 

reconstructed with 16S rRNA genes (Snel, Bork, and Huynen 1999; Konstantinidis and Tiedje 

2005). Functional gene content contains niche and clade signal (Zhang and Sievert 2014), 

consequently phylogenetic relatedness and genome functionality are mildly predictive of 

species ubiquity and genome size (Barberán et al. 2014; Tamames et al. 2016). Moreover, 

habitat and phylogeny shape nucleotide composition of prokaryotes (Reichenberger et al. 2015; 



26 
 

Hellweger, Huang, and Luo 2018). Namely, GC content (Foerstner et al. 2005) and codon usage 

are affected by habitat (Roller et al. 2013). Habitat preferences are also phylogenetically 

predetermined (von Mering et al. 2007) and dispersal capability also varies across different taxa 

(Choudoir et al. 2018; Delgado-Baquerizo et al. 2018). 

In conclusion, genomic parameters and phenotypic traits exhibit phylogenetic and 

environmental association. At the same time habitat preferences are also phylogenetically 

predetermined. Since, closely related species have possibly speciated in similar environment 

they would harbor similar genomes because of phylogenetic inertia and have alike habitat 

preference. Species from distant clades with similar habitat preferences will evolve similar 

features due to convergent evolution. For example, species in major phylogenetic groups that 

explore host-associated habitat, convergently, harbor reduced genomes. Also, at least 130 

genera in 13 phyla evolved large genome size independently (Guieysse 2012). Given that there 

are many (105 – 1012) unknown microbial species, predictive analysis of ecological niche is 

highly important. In particular, it will be possible to predict host-association and cultivation 

requirements of species from metagenome samples using (meta-)pangenomics approach, as 

well as to understand general principles of evolution and functioning of ecosystems at 

microscale. In this thesis I explore to what extent environmental preferences and phylogenetic 

inertia can explain pangenome structure (Subchapter 3.2.). This study provides fundamental 

framework for future predictive analysis of ecological niches and environmental preferences of 

unknown prokaryotic genomes and species. 

1.3. Delineation of species and strains in microbiome 

Quantifying and classifying the biodiversity are important topics in classic biological 

fields such as botany, zoology, microbiology and virology. “Species” is considered to be the 

central unit of biodiversity. However, species delineation has been a problem in biology in 

general and in microbiology in particular. It has been questioned whether species are real 

evolutionary and ecologically meaningful and coherent units and do they have a natural 

boundary. More than 20 species concepts have been proposed to address these questions 

(Wilkins 2003; Mayden 1997; Hey 2001). In prokaryotes, the applicability of any species 

concept has long been considered to be limited, because they were developed for animals and 

plants. However, it has since become evident that some defining aspects of established species 

concepts are indeed approximated in microbes, in particular the so-called Biological Species 

Concept and phylogenetic species concepts (Konstantinidis, Ramette, and Tiedje 2006). The 

Biological Species Concept defines species as a group of individuals that can interbreed 

resulting in viable offspring (Queiroz 2005). In bacteria, homologous recombination between 
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cells provides an analogous mechanism. According to phylogenetic species concepts, 

individuals form coherent genomic clusters that are characterized by distinctive phenotypic 

properties (Nixon and Wheeler 1990). These concepts predict that there is a decline of 

homologous recombination and decline of gene turnover between different species (Shapiro et 

al. 2012). Significant decline in recombination rates will result in diversification of population 

into new species. This process will be accompanied by decline of nucleotide identity because 

of accumulation of distinct mutation patterns. Recently, it has been demonstrated at the genomic 

level that species in this sense may exist at least in some bacterial clades: (1) using core genome 

recombination rates (Bobay and Ochman 2017a), (2) FastANI comparisons (Jain et al. 2018), 

(3) gene content similarity (Moldovan and Gelfand 2018), (4) genomic ANI in metagenomes 

(Olm et al. 2020). Moreover, in accordance with phylogenetic coherence, species in bacteria 

can be operationally defined by phenotype similarity, DNA-DNA hybridization, similarity in 

16S rRNA and/or in universal-single copy marker genes, as well as gene content and nucleotide 

identity (Konstantinidis and Tiedje 2005). Approximately ≥70% similarity in DNA–DNA 

hybridization corresponds to ≥95% of ANI (in core genome) and ≥96% in universal marker 

genes (Klappenbach et al. 2007; Konstantinidis, Ramette, and Tiedje 2006). Due to the fast 

accumulation of newly sequenced genomes the most scalable and efficient way to delineate 

species is based on the ANI of 40 (Mende et al. 2013) or 100 universal marker genes (Parks et 

al. 2018). This operational delineation has resulted in the reclassification of species in some 

cases into multiple distinct species, or in other cases combining of several species into 

complexes with potentially many clades/subspecies within the species (Parks et al. 2018; 

Mende et al. 2020). ANI thresholds are a useful operational way to define species, yet they 

probably are not universal for all species (Konstantinidis and Tiedje 2005). Also existence of 

species is questioned by other publications for various important reasons, such as that there is 

not enough of sampling of strains within species, incomplete sampling of different species, 

technical and conceptual biases, true rates of HGT and recombination are much higher 

compared to existing estimates (Doolittle and Zhaxybayeva 2009; Doolittle 2012; Rocha 2018). 

In the Subchapter 3.3. I investigate which threshold of nucleotide identity is an optimal and 

natural for delineating species boundaries in Prokaryotes across all genes in pangenomes. This 

particular gap in knowledge is important to address to find optimal threshold and apply it for 

gene clustering in metagenomics gene catalogs. 

Due to existence of large genomic diversity between genomes of the same species, 

classification of ecologically, phenotypically, clinically meaningful within-species groups is 

another topic that is related to delineation of species in Prokaryotes. Many comparative 

genomics and metagenomics studies pursue in-depth exploration of within-species diversity (S. 
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Nayfach and Pollard 2015). However, application of terminology and concepts from older 

biological fields, such as microbiology, remains imprecise due technical and biological reasons. 

Challenges in delineation of species are also inherited into the delineation of meaningful and 

natural groups at intraspecific levels. Many intraspecific categories that are recognized by the 

International Code of Nomenclature of Prokaryotes are delineated using a combination of 

genomic and phenotype features (Charles T. Parker, Brian J. Tindall 2019; Brenner, Staley, and 

Krieg 2015), however this information is difficult to obtain, for example, within the framework 

of metagenomics studies. In Subchapter 3.4. of this thesis I discuss the magnitude of the 

problem and some of the solutions. 

1.4. Pangenomes, gene catalogs and their application in metagenomics 

Comparative genomics of whole genomes obtained from isolates (Tettelin et al. 2005; 

Medini et al. 2005) and metagenomic samples (Qin et al. 2010; L. Xiao et al. 2016; 2015) 

showed that the gene content of all organisms is highly variable between and within species 

and samples. Because a lot of genes perform similar functions and are homologs to each other, 

both sequencing of isolated strains in culture (whole genome shotgun sequencing) and whole 

genome shotgun metagenomics had developed conceptually similar redundancy reduction (also 

called dereplication or gene clustering) methods that enabled identification of those 

homologous groups across genomes and samples. This led to introduction of pangenomes and 

gene catalogs. Non-redundant sets of genes constructed on the metagenomic samples are called 

gene catalogs. Non-redundant sets of genes constructed on genomes (or isolates) are called 

pangenomes. Pangenomes and gene catalogs are useful “tools” to characterize the gene content 

of any taxonomic group and metagenomics samples, respectively. In particular, it is possible to 

characterize what fraction of pangenome of every taxonomic group is present in the specific 

samples and environments which in turn enables to perform microbiome genome-wide 

association studies. Such approach can help to identify genomic variants associated with, for 

example, microbiome-related disease, variants involved in antibiotic resistance and other 

phenotypes (Garud and Pollard 2020). For performing successful analysis using pangenomes 

and gene catalogs it is important to take into account technical and conceptual differences in 

underlying infrastructure of pipelines to construct them. There are >30 pipelines to construct 

pangenomes which usually rely on blastp search of best-hits between genomes or cd-hit 

clustering and sometimes others methods (J. Xiao et al. 2015; G. S. Vernikos 2020). In 

pangenomics, thresholds for gene clustering vary in range 30% - 95% of protein identity in 

different tools/pipelines and studies potentially resulting in difficulties for comparative 

interpretation of results from different projects (G. S. Vernikos 2020; Page et al. 2015). Gene 
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catalogs built using Blast-like algorithm – BLAT which is more scalable on bigger datasets 

than typical pangenome construction algorithms (Kent 2002; L. Xiao et al. 2015; Qin et al. 

2010). Main aim of pangenomic analysis is to characterize all orthologous groups present in the 

species and investigate their occurrence patterns across genomes in context of phenotypes. 

Metagenomic gene catalogs are typically built with purpose to use them for metagenomics 

profiling and SNP-calling, with nucleotide identity threshold for gene clustering close to 95% 

(Qin et al. 2010; L. Xiao et al. 2016; 2015). Since pipelines for mapping reads that include, for 

example, bwa read aligner (Li and Durbin 2009) are limited in performance by 5-10% diversity 

threshold, it is not worth to use lower thresholds to cluster genes in gene catalogs that will be 

used for recruiting reads (Bush et al. 2020). Only recently it has been proven (in this thesis and 

several other works, discussed in Subchapter 1.3. and 3.3.) that 95% ANI might be also the 

optimal threshold from biological perspective for clustering genes because it is close to the 

natural species boundary.  

Recently, distinction between pangenome and gene catalog approaches has been 

practically eliminated because species-centered assembly of genomes from metagenomes is 

now possible and pangenomes are increasingly becoming a tool to investigate metagenomic 

samples (Delmont and Eren 2018). A comprehensive meta-pangenomic study will include some 

or all of the following steps 1) assembly and binning of metagenomic sequencing reads into 

metagenome assembled genomes, 2) construction of pangenomes using monoisolate whole 

genomes and metagenome-assembled genomes, 3) construction of gene catalog for all genes 

that were not possible to link to species; 4) mapping of reads to the resulting pangenomes / gene 

catalogs to identify the presence of genes in individual samples. This approach enables a 

species-centered annotation of functions in community or ecosystem, investigates population 

structure of bacteria at intraspecific level, and as a result, enables metagenomic genome-wide 

association studies to link, for example, host disease phenotype and microbiome abundances, 

prevalence and genomic signatures (Wang and Jia 2016; Delmont and Eren 2018; Denef 2018; 

Scholz et al. 2016; Garud and Pollard 2020). 

Metagenomics does not yet provide full breadth of coverage of individual genomes of 

species in microbial community but provides better estimate of overall diversity of uncultivated 

species and strains (Teeling and Glöckner 2012). Whole genome sequencing approach provides 

sufficient breadth of coverage for a single isolate, yet, it fails to capture broad strain-level 

diversity of known and unknown, cultivable and uncultivable microorganisms. To benefit from 

advantages of both approaches, several studies have used pangenome (and/or gene catalog) of 

species (instead of single references) to investigate variation in gene content between human 

microbiomes (Ma et al. 2020; Zhu et al. 2015), investigate strain-level structure of Escherichia 
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coli O104:H4 outbreaks and ecotypes of marine communities from different regions (Scholz et 

al. 2016; Stephen Nayfach et al. 2016; Delmont and Eren 2018). Mapping of metagenomic 

reads on pangenome of species allows to estimate which part of known pangenome “space” of 

species is present in microbial community. With advances of metagenomic assembly of 

genomes it is now also possible to add new genes to pangenomes from metagenomics samples, 

however this comes with the cost of quality decline because metagenomic genomes might be 

contaminated with other species (Shaiber and Eren 2019). This information leads to better 

understanding of the ecological niche and pathogenic capacity of species in particular 

ecosystem and potentially enables to identify habitat-specific accessory genes for species that 

are present in many habitats (Zhang and Sievert 2014).  

In summary, it is important to note that the pangenomes and the gene catalogs are 

complementary approaches. Each of these approaches can be used to improve each another. In 

this thesis I use pangenomes to investigate which nucleotide identity threshold can be used for 

clustering genes in metagenomics gene catalogs so that each gene cluster belongs to the same 

species (Subchapter 3.3.).  

1.5. Outline of the thesis 

In the Subchapter 3.1. of the thesis I improve and systematically characterize 

annotations and metadata about ecological niches and environmental preferences of microbial 

species.  

In the Subchapter 3.2. I investigate how environmental preferences of species 

characterized in Subchapter 3.1. and phylogenetic inertia affect pangenome structure. Results 

show that ecological niche is highly important in defining pangenome structure. 

In the Subchapter 3.3. I use pangenomes from Subchapter 3.2. to delineate species at 

the gene level in metagenomics data. This subchapter shows that the 95% nucleotide identity is 

biologically meaningful boundary for delineating species in bacteria and can be applied for 

construction of metagenomics gene catalogs. 

In the Subchapter 3.4. I explore how traditional microbiology, pangenomes and 

knowledge in evolutionary biology might be useful for delineation of meaningful groups within 

species when studying metagenomics data. 
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Chapter 2. Methods  

Methods Subchapters 2.1. - 2.5. are published as part of the manuscript “Disentangling the 

impact of environmental and phylogenetic constraints on prokaryotic within-species 

diversity” in the ISME journal; Subchapter 2.6. are methods for unpublished results; 

Subchapter 2.7. are methods from the manuscript “Towards the biogeography of prokaryotic 

genes” which is in preparation/revision. 

 

2.1. Habitat database building 

Habitat metadata of genomes were obtained from the Global Microbial Gene Catalog 

(http://gmgc.embl.de), Microbe Atlas Project database (https://microbeatlas.org), (Wattam et 

al. 2014), and the Pathosystems Resource Integration Center (PATRIC) database, resulting in 

the high quality comprehensive annotation of species to one or many habitats (maximum 

possible number is 83 habitats, see Supplementary Table 1 for definitions of habitats, 

Supplementary Table 2 for list of genomes, Supplementary Table 3 for habitat annotations for 

each species). The annotations from PATRIC database were manually curated using a 

predefined list of key-words (Supplementary Table 1). The species was considered to be present 

in the biome from Global Microbial Gene Catalog if at least 10 genes from the pangenome 

where present in the samples from that biome. To annotate environmental preferences using the 

Microbe Atlas Project dataset, we extracted 16S rRNA genes (filtered for at least 50% of the 

entire gene length) from the original GenBank files or, we re-annotated the rRNA genes using 

barrnap (Seemann n.d.) for missing annotations. Obtained 16S rRNA sequences were then 

mapped to the Microbe Atlas Project reference database using MAPseq (Matias Rodrigues et 

al. 2017) to link species clusters to Operational Taxonomic Units (OTUs) at 98% sequence 

similarity. Species were considered to be associated with the habitats in the Microbe Atlas 

Project only if Fisher’s Exact Tests was significant after Benjamini-Hochberg correction for 

multiple testing (p≤0.05). Ubiquity was estimated as the sum of all positive associations across 

all habitats in the Microbe Atlas Project dataset. The final annotations are available as 

Supplementary Table 3. 

 

2.2. Genomic data 

In this study (Subchapter 3.2.), I used 155 species, in total 7,104 genomes. All species 

(specI clusters) were consistently delineated using 40 single-copy universal marker genes 

(Mende et al. 2013), obtained from the proGenomes database version 1 (Mende et al. 2017) 

(see Supplementary Table 2). This removes biases resulting from differing species definitions 

http://gmgc.embl.de/
https://microbeatlas.org/
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in distinct research projects. To increase the reliability of further analysis, (i) we included only 

high-quality genomes with 300 or fewer contigs, (ii) only one genome from any pair of genomes 

was retained for downstream analysis when pairwise nucleotide identity in the core genome 

was 100% and pairwise gene content overlaps (Jaccard index) > 99%, (iii) we used only species 

that contained at least 10 high-quality genomes in the proGenomes database version 1 after 

filtering to remove highly similar genomes (Mende et al. 2017). I also created two confirmatory 

extended datasets that included all species in proGenomes version 1 and proGenomes version 

2 (for which <10 genomes were sequenced but habitat preferences were still annotated). The 

first confirmatory dataset represents the proGenomes database version 1 (the same database 

underlying the pangenome dataset) consisting of 4,582 species with 24,223 genomes. The 

second dataset includes almost the entire proGenomes2 database which consists of 10,100 

species with 84,022 genomes (Mende et al. 2020). For this confirmatory analyses, I computed 

only the average genome size for each species within each of the datasets.  

 

2.3. Pangenome reconstruction 

Pangenomes for the 155 species were constructed using the Roary pipeline (Page et al. 

2015). Raw contig files of genomes were first annotated using Prokka (Seemann 2014). We 

identified homologous gene clusters at an amino acid identity threshold of 80% (Fedrizzi et al. 

2017; Iraola et al. 2017; Batty et al. 2018; Kavvas et al. 2018). Pangenome and core genome 

curves (rarefaction curves) were generated using 30 random permutation orders of adding 

genomes (Supplementary Figure 1) (similar to the approach in the GET_HOMOLOGUES 

pangenome pipeline (Contreras-Moreira and Vinuesa 2013)). Fitting of non-linear regressions 

was performed in R statistical programming language v.3.3.2 (R Core Team 2018) using the 

“nls package” (Baty et al. 2015). The total number of genes in the pangenome of a species, the 

number of new genes that are added per genome and the total number of core genes were 

modeled using equations below {1}, {2} and {3} respectively to estimate the openness of 

pangenomes (Tettelin et al. 2005; Medini et al. 2005).  

{1} 𝐺 = 𝑘𝑁𝛾 + 𝑐, 

{2} 𝐺 = 𝑘𝑁−𝛼, 

{3} 𝐺 = 𝑘𝑒−𝑁∗𝛾 + 𝑐, 

where G – number of genes; N – genome number that is added to analysis; k, c, - constants; α 

and γ – saturation coefficients. When γ≤0 in equation {1} – pangenome is closed (saturated); 

0<<γ≤1 – pangenome is open. When α<1 in {2} – pangenome is open, α>1 – pangenome is 

closed. 



33 
 

The thresholds for classification of pangenome components were defined in the 

following way: core genes – present in all strains; extended core – present in > 90% of genomes; 

cloud genes – present in < 15% (includes unique genes in pangenome); the remaining part of 

pangenome were considered “shell” genes (Supplementary Figure 2). These thresholds are 

based on default parameters of the Roary pipeline (Page et al. 2015), although we readjusted 

the extended core threshold to 90%, as suggested by the distribution frequency of genes within 

the pangenomes in our dataset (Supplementary Figure 2). The R package “micropan” (Snipen 

and Liland 2015) was used to compute genomic fluidity (Kislyuk et al. 2011), Chao’s lower 

bound for gene content in the pangenome (Chao 1987) and Heaps’ alpha (equation {2}) 

(Tettelin et al. 2005). Functional distance between strains within each pangenome was 

estimated as Jaccard distance based on EggNog v4.5 annotations (Huerta-Cepas et al. 2016) of 

pangenome gene clusters. 23 parameters (21 pangenome features, the number of conspecific 

isolates and species ubiquity) were compared using Spearman’s rank correlation. This 

comparison was performed to investigate the associations between sample sizes, components 

of the pangenomes, the saturation parameters (γ and α) in the equations {1}, {2}, {3}, genome 

fluidity, functional distance and average core genome nucleotide identity (see Supplementary 

Table 1 for definitions of pangenome features). To obtain unbiased estimates of core and 

pangenome sizes we calculated average core and pangenome sizes across 30 random 

combinations of 9 genomes for each species (also see Supplementary Table 1 for definitions 

and Supplementary Figure 1). Hierarchical clustering of a subset of pangenome features was 

performed on absolute values of pairwise Spearman Rho values as displayed in Figure 3.1.2a. 

 

2.4. Phylogenetic signal and phylogenetic generalized least squares 

An approximate maximum likelihood phylogenetic tree of all 155 species was generated 

using the ete-build concatenation workflow “clustalo_default-trimal01-none-none” and 

“sptree-fasttree-all” from ETE Toolkit v3.1.1 (Huerta-Cepas, Serra, and Bork 2016), using 

protein sequences of 40 conserved nearly-universal single copy marker genes (Mende et al. 

2013; Sorek et al. 2007; Ciccarelli et al. 2006) and default parameters in the ClustalOmega 

aligner (Sievers et al. 2011) and FastTree2 (Price, Dehal, and Arkin 2010) with the JTT model 

(Jones, Taylor, and Thornton 1992). 

To estimate the phylogenetic signal of genomic traits, we used the R package 

“phylosignal” (Keck et al. 2016) with Pagel’s Lambda (Pagel 1999), following guidelines for 

phylogenetic signal analysis (Münkemüller et al. 2012; Symonds and Blomberg 2014) 
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(Supplementary Figure 3). The “Caper” R-package was used for phylogenetic generalized least 

squares regression (Orme 2013). 

 

2.5. Quantification of explained variance in pangenome features 

The phylogenetic tree was used to calculated cophenetic distance matrix. The  

cophenetic distance matrix  and the binary habitat association matrix (83 habitat annotations 

originating from Microbe Atlas, Global Microbial Gene Catalog and proGenoems1/2) were 

each decomposed using the “FactoMineR” R package (Lê, Josse, and Husson 2008). PCs were 

selected using the “broken stick” model (Borcard, Gillet, and Legendre 2011). Only the first 5 

phylogenetic principal components, accounting for ~80% of phylogenetic variance, and 10 

habitat PCs, accounting for ~50% of habitat variance, were used for variance partitioning. The 

first two principal components for phylogenetic and habitat matrices decompositions are 

visualized in Supplementary Figure 4 and Supplementary Figure 5. To reduce the influence of 

different sample sizes (see equations {4}, {5}, {6}), the number of genomes that was used for 

each species were included as an additional predictor variable. The fraction of the variance 

explained by habitat and phylogeny were estimated using the CAR metric which performs a 

decorrelation of predictors (Zuber and Strimmer 2011) implemented in the “care” and 

“relaimpo” R-package (Groemping 2006) with the following models using function 

“calc.relimp” from “relaimpo” R-package: 

{4} Pangenome feature = number of genomes in each species + 5 phylogenetic PCs + 

10 habitat PCs  

 

{5} Pangenome feature = number of genomes in each species + genome size + 5 

phylogenetic PCs + 10 habitat PCs  

 

{6} Pangenome feature = number of genomes in each species + core genome nucleotide 

diversity + 5 phylogenetic PCs + 10 habitat PCs  

 

To investigate robustness of the estimates of explained variance, I fitted the model from 

equation {4} in 1,000 row-wise permutations of the first 10 habitat PCs and 5 phylogenetic PCs 

to ensure that the actual habitats and phylogeny data explain a higher fraction of the variance 

than randomized models (Supplementary Figure 6). 
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2.6. Estimation of natural selection and recombination rates 

Rate of nonsynonymous and synonymous substitutions(dN/dS) was estimated using 

PAML pipeline (Yang 2007). Due to memory and time limitations, 30 species with more than 

80 genomes were randomly subsampled to contain only 80 genomes. Estimation of the 

recombination rates between strains within each species was performed using FastGear 

software (Mostowy et al. 2017). For downstream analysis, we only used the estimate of number 

recent recombination events.  

 

2.7. Investigating species boundary for global microbial gene catalog 

Genes were predicted and annotated in Prokka. Blastn (Nucleotide-Nucleotide BLAST 

2.2.29+) searches were performed on 107 species (specI clusters) which belong to 32 genera. 

Each species had at least 10 genomes. Species that contained more than 20 genomes were 

randomly down-sampled to 20 genomes. I performed blastn search of all genes in each genome 

against other genomes of the same species or against genomes form species from the same 

genus. Nucleotide identity in the Figure 3.3.1 is the average of all identities of gene matches in 

the pair of genomes. In total I performed 14,686 pairwise genome-comparisons within species 

and 51,368 comparisons between species within Genera. 
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Chapter 3. Results and discussion 

3.1. Habitat resource development for genomes and metagenomes 

This subchapter describes construction of microbial habitat preference resource whose utility 

is described in subsequent chapters of this thesis. In this project I performed (1) extraction of 

16S rRNA sequences from isolates genomes, (2) curation of isolation sources of genomes in 

proGenomes2 database, and (3) inferring habitat preferences of species using genes from 

pangenomes linked to genes in metagenomic gene catalog derived from known biomes. Habitat 

preference data is published in part with proGenomes2 database  (Mende et al. 2020). 

 

Mende DR, Letunic I, Maistrenko OM, et al (2020) proGenomes2: an improved database for 

accurate and consistent habitat, taxonomic and functional annotations of prokaryotic 

genomes. Nucleic Acids Research 

 

3.1.1 Introduction 

With an exponential accumulation of sequenced microbial genomes and discovery of 

numerous new species it is ever so important to appropriately catalogue and curate the 

associated isolates’ metadata (for example, year of isolation, isolation source, habitat 

preferences, disease association, Gram staining and others). Availability of metadata enables 

large scale comparative analyses in genomics and microbial ecology, databases such as ENA 

(Amid et al. 2020), NCBI, IMG (Chen et al. 2019), GOLD (Mukherjee et al. 2018), PATRIC 

(Wattam et al. 2014), ProTraits (Brbić et al. 2016) and others make this possible. However, for 

the convenience of the data depositor metadata submission in most databases is optional, 

unstructured and flexible (or sometimes too specific or not specific), making any downstream 

comparative analysis challenging due to incomplete and unclassifiable metadata. One such 

problem concerns isolation source (or habitat preferences) of sequenced genomes and species, 

wherein routinely the place/habitat from which microbial species is isolated is missing. Along 

with this biological and technical limitations such as biased sampling of cultivable host-

associated or disease-associated species and strains further limit our understanding of real 

ecological niche and environmental preference of a species and thus hinder comparative studies. 

The main aim of this subchapter is unbiased cataloguing and curation of habitat data. 

The resource made available in this subchapter enables identification of primary and secondary 

habitats of species, study of habitat connectivity via gene transfer, exploration of species 

dispersal, identification of origin of pathogenic species and association studies that link habitats 

to antimicrobial resistance and virulence capacities of species. In particular, in this thesis 
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proGenomes2 environmental data was used for studying impact of phylogenetic and 

environmental constraints on pangenome structure and effects of habitat preferences on 

recombination rate and natural selection (Subchapter 3.2.). 

 

3.1.2. Environmental preferences of microbial species 

To address the problem of non-universal and non-standardized metadata information, I 

first screened for optimal groups of habitats terms and categories that can be assigned 

universally to as many genomes and species as possible which included broad categories such 

as aquatic, soil/terrestrial and host-associated and subcategories, for example freshwater, 

sediment and disease-associated. Then I curated the isolation source using set of keywords, for 

an extended list of these keywords refer to Supplementary Table 1. For example, to assign strain 

or species to “aquatic” habitat following key-words in PATRIC database metadata were used: 

“aquatic”, “marine”, “lake”, “spring”, “river” and so on. As a result, ~60,000 out of >80,000 

genomes were assigned to at least one of habitat and phenotype entries, and >8000/12221 

species getting at least one habitat annotation. The host-associated habitat annotations as a result 

of bias in sequencing studies were overrepresented as compared to soil and aquatic habitats 

(Figure 3.1.1a, Figure 3.1.1b). This categorization also allowed inclusion of habitat sub-

categories that provided better habitat characterization, since aquatic habitat could now include 

freshwater as a sub-category (Figure 3.1.1b).  

 

 

Figure 3.1.1. Summary of environmental preferences annotations of 12221 species, >87000 

isolates in curated PATRIC database metadata. (Figure and description to the figure are in part 

published in (Mende et al. 2020) in the Nucleic Acids Research journal, 2020 Oxford University 

Press) 
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3.1.3. Discussion 

It is well known that many host-associated species might inhabit multiple habitats and 

their  habitats can be further classified as their primary or temporary/secondary niches (Leibold 

et al. 2004). Hence, inferring species’ niche only from isolation source does not always lead to 

exhaustive and accurate understanding of ecological niche of a species. To address this 

problem, we extracted 16S rRNA gene sequences from whole genome sequencing data and 

screened for them in the 16S rRNA environmental metagenomics datasets with known 

environment/habitat annotation. We also screened for individual genes from pangenomes in the 

metagenomic gene catalog which enabled to link individual genes to biomes. General patterns 

of environmental preferences inferred from these different sources showed overall agreement 

and complemented with each other (Figure 3.1.2.). We found that host-associated and free-

living habitats (terrestrial/soil and aquatic) tend to correlate negatively, implicating that free-

living and host-associated lifestyles are to some extent mutually exclusive. However, this trend 

does not hold for invertebrate animals, they tend to share microbial species with aquatic and 

soil environments, indicating that symbiotic bacteria in those groups of animals might be 

transient and temporary (Whitaker et al. 2016; Hammer, Sanders, and Fierer 2019). Thus, the 

comprehensive approach presented here enables accurate habitat characterization and 

applications in the fields of genomics and metagenomics.  
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Figure 3.1.2. Pearson correlation of habitats (based on species’ associations with them) from 

three sources used in the project (curated PATRIC habitat data, 16S rRNA based microbial 

atlas and Global Microbial Gene Catalog). 

 

 

3.1.4. Conclusion and future outlook 

Advances in database development and curation are important for further progress in 

microbial ecology and other fields. Comprehensive databases will enable confirmatory analysis 

of previously observed trends on limited datasets, discovery of new trends and predictive 

analysis. High quality habitat annotations will help investigation of circulation of genetic 

material via HGT in ecosystems and species, dispersal of species and specific strains, sources 

of emerging pathogens and antibiotic resistance or virulence genes. Some of the topics are 

tackled in this thesis, for example, in Subchapter 3.2. I ask a fundamental question about the 

extent to which habitat preferences drive expansion of species gene pools (pangenomes) in 

bacteria.  
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3.2. Disentangling the impact of environmental and phylogenetic constraints 

on prokaryotic within-species diversity  

 

This subchapter presents the main result of the thesis. I investigated the impact of environmental 

preferences on pangenome structure and how phylogenetic inertia limits expansion or reduction 

of size and diversity of pangenomes. Pangenomes were constructed by Daniel Mende and me. 

Curation of environmental metadata was performed by Simone Li, Sebastian Schmidt, Luis 

Coelho and me. I performed majority of the downstream analysis, interpretation of data, 

preparation of figures and writing the manuscript. Natural selection and recombination rates 

were calculated by Mechthild Luetge and Falk Hildebrand (this data is unpublished). Majority 

of the results described in this subchapter were published in: 

 

Maistrenko OM, Mende DR, Luetge M, et al (2020) Disentangling the impact of 

environmental and phylogenetic constraints on prokaryotic within-species diversity. The 

ISME Journal. 

 

3.2.1. Introduction 

Across sequenced microbial species there is approximately a 100-fold variation in 

genome size, at extremes: the smallest known genomes are of endosymbiotic bacteria 

Candidatus Tremblaya princeps with 116 protein coding genes and genome length 139Kbp 

(McCutcheon and von Dohlen 2011), and Ca. Nasuia deltocephalinicola with 137 protein 

coding genes and genome length 112Kbp (Bennett and Moran 2013), the largest known genome 

is of the soil bacterium Sorangium cellulosum which encodes >9000 protein-coding genes and 

is >13Mbp in size (Schneiker et al. 2007; Han et al. 2013). Genomes, when compared within 

species, can harbor from several new genes up to more than 300 new genes per genome 

(McInerney, McNally, and O’Connell 2017a). This tremendous variation in the gene content is 

described using the pangenome concept. The pangenome is a non-redundant set of all genes, 

gene clusters or homologous groups found in a certain (group of isolates/genomes of a) 

taxonomic group, e.g. species (Tettelin et al. 2005; Medini et al. 2005; G. Vernikos et al. 2015). 

Pangenomes are subdivided into core genes - genes that are present in almost all isolates and 

accessory genes - genes that are missing in many isolates. Remaining genes within a pangenome 

are called accessory (100% < extended core > ~95% > shell > ~15% < cloud). If every new 

genome adds new accessory genes, pangenome is called “open” and when most of genes from 

a species can be cataloged with few genomes, pangenome is called “closed” (Lapierre and 
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Gogarten 2009). Inference about pangenome openness is performed using pangenome 

saturation curves (Supplementary Figure 1). It is still unclear how much different habitat 

preferences and species ubiquity affect pangenome features such as sizes of core and accessory 

genomes (“shell” and “cloud”), pangenome openness, genome fluidity and core genome 

nucleotide diversity. In other words, the relative contributions of phylogenetic conservation and 

habitat preference to the evolution of pangenome features remains unexplored. Taking 

advantage of accumulated whole genome sequencing and habitat preference data, I present a 

meta-analysis study covering pangenomes of 155 species spread over 10 prokaryotic phyla with 

the aim of a) investigating relationship between pangenome features and ubiquity of species 

and b) quantifying the amount of variation in pangenome features explained by phylogenetic 

inertia and habitat preferences. 

 

3.2.2. Overview of pangenome features. Ubiquity of species is related to core genome size 

Each species in the analysis contained at least 10 and up 200 high quality and diverse 

genomes (Figure 3.2.1). We annotated habitat preferences for each species using the PATRIC 

database (Wattam et al. 2014), the Microbial Atlas Project Database 

(https://beta.microbeatlas.org/) (JF Matias Rodrigues et al, in preparation) and a Global 

Microbial Gene Catalog (http://gmgc.embl.de/) (LP Coelho et al, in preparation), resulting in 

annotations of a total of 83 habitats. Ubiquity of species was estimated as the sum of all positive 

associations (Benjamini-Hochberg-corrected Fisher’s Exact Tests, p≤0.05) with each habitat in 

the Microbial Atlas Project dataset. Typically, ubiquity of species varied from 1 up to 30 

habitats (out of 60 possible). 

 

 

 

Figure 3.2.1. Study design. We used the proGenomes database version 1 (Mende et al. 2017) 

of high-quality genomes to compute pangenomes (using the Roary pipeline) and pangenome 

https://beta.microbeatlas.org/
http://gmgc.embl.de/
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features. Species were assigned to their preferred habitats using three databases: PATRIC, 

Microbe Atlas Project and Global Microbial Gene Catalog (see Methods). As many pangenome 

features are interdependent or affected by sampling size bias, I used a multivariate analysis 

framework to disentangle habitat properties from phylogenetic inertia. This allows for the 

quantification of environmental and phylogenetic factors that impact diversity within species. 

To construct the phylogenetic tree, we used the concatenated protein sequences of 40 conserved 

universal marker genes which were aligned using the ClustalOmega aligner (default 

parameters). The tree was constructed using FastTree2 (JTT model). (Figure and description to 

the figure are published in (Maistrenko et al. 2020) in the ISME journal, 2020 Springer Nature 

Limited). 

 

 

I estimated 22 pangenome features for 155 species originating from 10 Phyla (Figure 

3.2.1, Figure 3.2.2a). We observed effect of sample size on different pangenome features such 

as core genome saturation and sizes of cloud, unique, extended core and pangenome. Because 

of this sampling bias, for downstream analysis we selected less biased features according to 

correlational analysis (Figure 3.2.2a) and included sample size as a predictor into the regression 

model. To get unbiased estimates of core and pangenome size we used pangenome and core 

genome size calculated at 9 genomes (see Supplementary Figure 1) from random permutation 

orders of genomes generated as suggested in GET_HOMOLOGUES tool (Contreras-Moreira 

and Vinuesa 2013). 

Overall the observed variation in genome size and genome fluidity was high - the largest 

genome in our dataset was the Streptomyces sp complex (species cluster -specI cluster 244 in 

proGenomes version 1) 7174±383 genes and the smallest was the Tropheryma whipplei (species 

cluster 1011) 833±27 genes. The genome fluidity varied from 0.01896±0.0091 in Chlamydia 

trachomatis up to 0.324±0.043 in Bacteroides fragilis/ovatus species complex (Supplementary 

Table 3). These genome fluidity estimates are in line with previous reports, suggesting that 

species complexes and larger genomes are more diverse in their gene content (Kislyuk et al. 

2011; Andreani, Hesse, and Vos 2017). Another more qualitative way to infer size of the 

pangenome is to estimate the coefficient “alpha” from Heaps law equation (equation [2] in 

Methods). This coefficient allows to tell if pangenome is “open” (nearly infinite) or “closed”. 

This way I show that six pangenomes of host-associated species were “closed”: Neisseria 

gonorrhoeae, Mannheimia haemolytica, Methanobrevibacter smithii, Lactobacillus 

acidophilus, Staphylococcus aureus and Streptococcus thermophilus. In general, it is expected 
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that host-associated bacteria can have “closed” pangenomes because they are affected by 

genome reduction trend due to relaxation of selection (Boscaro et al. 2017).  

Ubiquity of species is potentially linked to pangenome features such as pangenome 

saturation. In other words, it is expected that highly ubiquitous species have larger pangenomes 

that are less saturated. Indeed, we observed a weak effect of species ubiquity on the saturation 

of pangenomes (“alpha” in Heap’s law model (equation [2] in Methods) (Table 1) and on the 

core genome size (Table 1 and Figure 3.2.2b) but not on any other pangenome features after 

correcting for phylogenetic effect. This result suggest that a larger core genome may be 

important to facilitate persistence/proliferation in multiple habitats. Previously, it has been 

shown that there is a weak positive relationship between the ubiquity of species and genome 

size. Species that are present in many habitats contain more genes to interact with the 

environment (Cobo-Simón and Tamames 2017). Our observation suggests that all genes that 

are needed for a species to be highly ubiquitous (present in many habitats) have to be present 

in the core genome rather than in accessory (in other words, most of isolates have to have genes 

that facilitate ubiquity, at least according to our dataset). Some of previous studies showed that, 

for example, Cronobacter species tended to contain relatively large core genome encoding 

genes that enable plant association and virulence in human (Grim et al. 2013). In our dataset, 

functional analysis revealed that highly ubiquitous species were enriched with genes involved 

in Lipid Metabolism (I) and in agreement with previous studies, enriched with Secondary 

metabolites biosynthesis genes (Q) (Figure 3.2.2c) (Cobo-Simón and Tamames 2017). 

However, phylogenetic regression did not support an enrichment of any of these functional 

categories among core genes of highly ubiquitous species in our dataset.  

 

Table 1. Phylogenetic generalized least squares of core genome size and pangenome saturation 

(Heaps alpha) and ubiquity of species. 

Dependent 

variables 

Independent 

variables 
Estimate s.e. t-value p-value Lambda 

Lambda, 

confidence 

interval 

Core 

genome 
Intercept 38.9 9.1 4.27 3.392e-05 0.98 0.96, 0.99 

 Ubiquity 0.26 0.078 3.36 0.000984   

Saturation 

(alpha 

coefficient) 

Intercept 0.89 5.9680e-02 14.94 0.00000 0.317 0, 0.71 

 Ubiquity -0.0055 1.6247e-03 -3.37 0.00095   

  



45 
 

 

 

Figure 3.2.2. Relationship between different pangenome features. a. Correlation matrix 

between (I) the number of conspecific genomes used to estimate pangenome features, (II) 21 

pangenome features, (III) the ubiquity of species as an environmental feature computed from 

habitat preference of strains, and (IV) major habitat groups from the Microbial Atlas project. 

The heatmap visualizes Spearman Rho values for correlations between sample size (I), 21 

pangenome features (II) and species ubiquity (III). Four major habitats (aquatic, animal host, 
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plant host, soil (IV)) were correlated to the (I) number of conspecific genomes, (II) pangenome 

features and (III) ubiquity via point-biserial correlation. Statistical significance of correlations 

was determined using adjusted p-values (using Benjamin-Hochberg correction) < 0.05. Raw 

correlation data is in Supplementary Table 4. b. Effect of ubiquity on core genome size and 

functional content. Species ubiquity (number of habitats a species was assigned to), a habitat 

feature, is linked to core genome sizes after correction for phylogenetic effect (Phylogenetic 

generalized least squares, p-value=0.00005, λ=0.98 (95% C.I. 0.957, 0.992), partial R-square 

(for ubiquity coefficient) 0.09, see also Supplementary Table 5). c. Correlation of ubiquity with 

the relative frequency of functional categories (COG categories assigned by EggNog v4.5) in 

core and accessory genomes. Species of high ubiquity tend to encode more proteins involved 

in Lipid Metabolism (I) and Secondary Metabolite Biosynthesis (Q). (Figure and description to 

the figure are published in (Maistrenko et al. 2020) in the ISME journal, 2020 Springer Nature 

Limited). 

 

3.2.3. Effect of habitat and phylogeny on pangenome features 

Since pangenome features are correlated with each other (Figure 3.2.2a) we selected for 

variance partitioning only conceptually different and the least biased features as determined by 

correlation to number of genomes (sample size) (see Figure 3.2.3 select list of features). 

Pangenome features were modeled as a function of the a) number of genomes used to compute 

the feature, b) principal components of multidimensional scaling of the cophenetic distance 

matrix of the phylogenetic tree and c) principal components of multidimensional scaling of the 

binary matrix of species’ associations with habitats. The phylogenetic effect and habitat 

preferences were thus represented in the linear model by 5 and 10 principal components, 

respectively (selected using a “broken stick” model approach): 

 

Pangenome feature ~ Number of genomes + 5 phylogenetic PCs + 10 habitat PCs. 

 

Both habitat and phylogenetic effects explained variance in all selected features (Figure 

3.2.3, Supplementary Table 6). Habitat preferences tended to have stronger effects on 

pangenome features than phylogenetic inertia. The accessory genome size was less affected by 

habitat preference of species than core genome size. Variance in pangenome features explained 

by randomly permutated scores from habitat and phylogenetic principal components did not 

exceed variance explained by the actual data (except for genome fluidity for which randomized 

habitat and phylogenetic PCs explained more variance than actual). Phylogenetic component 
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of variance explained more variance compared to randomized data only in core and average 

genome sizes (Supplementary Figure 6). Phylogenetic conservation of pangenome features in 

our dataset was also confirmed with test for phylogenetic signal – Pagel’s Lambda estimate 

(Pagel 1999). The strongest phylogenetic effects were observed for the average core, 

pangenome and genome sizes. Accessory genome (shell and cloud) size and average functional 

distances between genomes within species were less affected by phylogeny (Supplementary 

Figure 3). This is in line with results on random data were only two pangenome features (core 

genome size and average genome size) had more variance explained by phylogenetic 

component than random data (Supplementary Figure 6). 

Stronger phylogenetic conservation of core genome is likely due to the fact that core 

genome consists of essential genes that are under stronger negative selection pressure (Bolotin 

et al. 2016; Rodriguez-Valera and Ussery 2012; Bohlin et al. 2017), which leads to vertical 

“heritability” of its content and size from ancestral species to descendants during speciation 

events. “Heritability” of core genome size at macroevolutionary scale (above species level) 

breaks-down when closely related species occupy different ecological niches. For example, 

Burkholderia rhizoxinica which is an endosymbiont of the fungus Rhizopus microsporus has 

3,878 genes (Lackner et al. 2011) while soil free-living (and sometimes plant pathogen) 

Burkholderia gladioli has 7,410 genes (Seo et al. 2011). Even within similar niche there is 

specialization in genome size, e.g. obligate symbiont Treponema pallidum has 1,031 genes 

(Fraser et al. 1998) and Treponema denticola – 2,767 genes (Seshadri et al. 2004). In this case, 

difference is attributed to genome reduction and lineage-specific expansions with horizontal 

gene transfer (Seshadri et al. 2004).  

Differential preferences in habitat lead to differences in core genome sizes across 

Prokaryotic species (divergent evolution), while in other cases the same habitats promote 

evolution of the similar core genome sizes (convergent evolution) (Figure 3.2.4). In our dataset, 

large core genome evolved in at least four Phyla (Proteobacteria, Actinobacteria, Spirochaetes 

and Firmicutes) in species associated with soil (Figure 3.2.4) (Kruskal-Wallis test, chi-squared 

= 32.194, df = 1, p-value = 1.395e-08). Aquatic species showed higher nucleotide diversity of 

core genome, however habitat and phylogenetic signals were less pronounced for this feature 

(Figure 3.2.4) (Kruskal-Wallis test, chi-squared = 25.69, df = 1, p-value = 4.01e-07). This 

observed trend of high diversity in species from aquatic habitats is consistent with well-studied 

aquatic species, such as Prochloroccocus and Synechococcus (Biller et al. 2014). 
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Figure 3.2.3. Partitioning of variance in pangenome features explained by phylogenetic inertia 

and habitat preferences (R-square(car score)) based on model {1} from Figure 3.2.5. (Figure 

and description to the figure are published in (Maistrenko et al. 2020) in the ISME journal, 2020 

Springer Nature Limited). 
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Figure 3.2.4. Phylogenetic tree of 155 microbial species with scatterplots of core genome size 

and average nucleotide diversity of core genomes. Soil-associated species tend to have larger 

core genomes (marked in red in the left scatter plot), aquatic species tend to be more diverse 

(marked in blue in right scatter plot). Tree labels and background of scatter plots are colored by 

their taxonomic annotations (phylum). Bottom panel: Relationships between habitats and core 

genome size and average nucleotide diversity of core genomes. (Figure and description to the 

figure are published in (Maistrenko et al. 2020) in the ISME journal, 2020 Springer Nature 

Limited). 
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Figure 3.2.5. Clustering of a subset of nine pangenome features based on their pairwise 

correlation strengths. Horizontal stacked charts present amount of variance explained by 

various predictors (number of genomes, phylogeny and habitat represented by their principal 

components (PCs), and genome size or diversity). The first set of stacked charts (“no 

correction”) shows variance explained in pangenome features by the number of genomes used 

to compute pangenome features as well as species’ phylogeny and habitat preferences; the 

second and the third sets of stacked charts represent the amount of variance explained (see 

Methods) by the same set of predictors when correcting for genome size or nucleotide diversity 

in core genome respectively. Size and diversity estimates form distinct feature groups. (Figure 

and description to the figure are published in (Maistrenko et al. 2020) in the ISME journal, 2020 

Springer Nature Limited). 
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It is important to take into account biases and interconnectivity between pangenome 

features because every feature potentially co-evolves with others. For example, large 

pangenome size is, probably, more likely to be seen in species with large genome. I fitted 

regression models that incorporated genome size or nucleotide diversity (Figure 3.2.5 equation 

2 and 3). As a result, we observed that habitat and phylogeny are still explaining variance in the 

pangenome features even when genome size and diversity of core genome were included in the 

model as predictors (Figure 3.2.5). This means that there is still direct effect of habitat 

preferences on pangenomes size that cannot be reduced to average genome size. In general, 

diversity estimates are less explained by habitat preferences of species and phylogenetic inertia, 

compared to most of the size estimates, because they are likely reflecting spatio-

temporal(microevolutionary) variation of sub-populations within species due to local 

adaptation and/or genetic drift (Shapiro et al. 2012). For example, pangenome analysis of 274 

Vibrio cholera isolates revealed that pangenome structure could be attributed to variation of 

accessory genome (in particular mobile genetic elements) in isolates around the world and 

different sampling time (1910-2010 years range)(Dutilh et al. 2014).  

 

3.2.4. Reproducibility of the observations on larger sample of species 

Our observation of explained variance relies on trends of different habitats to increase 

or decrease genome/pangenomes sizes and diversity. Some species of bacteria are known 

exceptions from such trends, for example, endosymbiotic Ca. Hodgkinia cicadicola and Ca. 

Sulcia muelleri have high GC content in contrary to what is expected due to GC->AT mutation 

bias (McCutcheon, McDonald, and Moran 2009a; 2009b). Also, genome reduction in 

symbionts is not always true, for example, in Ca. Endobugula sertula (symbiont of Bryozoa) 

and some endohyphal bacteria genomes remain relatively large (Miller et al. 2016; Baltrus et 

al. 2017). Furthermore, a lot of prokaryotic species diversity is yet unknown and undiscovered 

(Whitman, Coleman, and Wiebe 1998; Staley and Konopka 1985) (see also Subchapter 3.3.). 

Hence, it is likely that more exceptions from general trends will be found which might lead to 

decline of explanatory power of habitat preferences and phylogeny in pangenome features. 

Despite this potential limitations we still observed that in larger datasets of 4,582 species from 

proGenomes version 1 (Mende et al. 2017) and 10,100 species from proGenomes2 (Mende et 

al. 2020) amount of variance explained for average genomes size by habitat was 34.6% and 

26.7% and by phylogeny was 9.8% and 10.8%, respectively (raw data is provided in 



52 
 

Supplementary Table 7 and Supplementary Table 8). Based on this we conclude that our 

observations are likely to hold when more undiscovered species are considered and 

consequently these results in combination with functional content of genomes can be used for 

predicting ecological niche of species, for example, free-living or host-associated niches. 

3.2.5. Discussion 

Why do organisms have pangenome and are they adaptive are important and debated 

topics in genomics. In the debate about adaptive role of pangenome (McInerney, McNally, and 

O’Connell 2017a; Andreani, Hesse, and Vos 2017; Shapiro 2017; McInerney, McNally, and 

O’Connell 2017b; Vos and Eyre-Walker 2017; Lobkovsky, Wolf, and Koonin 2013; 

Baumdicker, Hess, and Pfaffelhuber 2012; Sung et al. 2012) focus on size estimates conclude 

that pangenomes are adaptive (McInerney, McNally, and O’Connell 2017a), while focus on 

diversity measures (effective population size and genome fluidity) conclude that pangenomes 

are rather neutral (Andreani, Hesse, and Vos 2017). Interestingly, these two sets of features, 

diversity estimates (core genome nucleotide diversity, functional distance, genome fluidity) and 

size estimates, cluster into two subgroups of pangenome features (Figure 3.2.5) based on 

pairwise correlations (from Figure 3.2.2a). It is possible that these two groups of features reflect 

different aspects of pangenome structure and should be interpreted together in the debate about 

adaptive role of pangenomes. 

In our dataset we were able to show that accessory genes are under strong purifying 

selection however selection is slightly relaxed compared to core genome (Supplementary 

Figure 7). Phylogenetic inertia and habitat associations of pangenome features’ sizes do 

partially explain why pangenome size could be perceived as adaptive. Habitat is likely to drive 

pangenome evolution by affecting dispersal (which in turn affects recombination rate and 

chances to acquire new genes), genetic drift and natural selection depending on the effective 

population size of species (Bobay and Ochman 2018). Since, number of recombination events 

is negatively associated with dN/dS, the dispersal of adaptive variants is potentially favored 

through recombination (Supplementary Figure 8a). We also observed association of number of 

recombination events with the rate of synonymous substitutions (dS) which is likely 

proportional to effective population size (Supplementary Figure 8b). Also genomic fluidity was 

positively associated with the number of recombination events implying that species with 

higher gene diversity and gene turnover have higher recombination rate and possibly bigger 

population size (Supplementary Figure 8c). However, at the same time pangenome diversity 

(or “openness”) estimated using saturation curves did not have any association with 

recombination rate which might be a result of technical biases (Supplementary Figure 8d). 
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There was also no effect of habitat preferences on recombination rate and only moderate effect 

of habitat preferences on selection strength (Supplementary Figure 9). These observations 

might support the hypothesis that pangenome expansion is driven by gene turnover with 

incomplete elimination of acquired genes and natural selection favoring accessory genes, most 

likely, in a context dependent way (Choudoir et al. 2017). In conclusion, both phylogeny and 

habitat explain variation of pangenome features (even after correcting for genome size and 

diversity). Habitat preference had stronger effect on evolution of size of pangenome features 

compared to phylogenetic inertia. Only core genome size and total genome size are robustly 

exhibiting dependence on phylogenetic inertia (“heritable” during speciation). It is likely that a 

combination of selective and random processes contribute to expansion of pangenomes, 

possibly through dispersal that is followed by acquisition of new genes whose fate (retaining or 

elimination) in population is determined via drift and selection. Drift likely plays bigger role in 

accessory genome which is under slightly relaxed purifying selection compared to core genome. 

Future studies in this direction have to investigate patterns of selection and recombination at 

individual gene level to show which functions of the species drive its adaptation and habitat 

preferences. 

3.2.6. Conclusion and future outlook 

Exhaustive analysis of pangenome features in context of habitat preferences revealed 

that the core genome size is affected by species ubiquity and is potentially associated with 

breadth of niche in microbial species. Core and average genome sizes are affected strongly by 

phylogeny and habitat preferences of species. Up to 65% of variance in pangenome features 

can be explained by habitat and phylogeny combined. At macroevolutionary scale core and 

mean genome sizes tend to stay more conserved than other features. 44.4% of variance in 

genome size of 4,582 species is explained with habitat and phylogeny. These results together 

with previous studies indicate that it will be possible to perform predictive analysis of ecological 

niches of newly discovered uncultivated bacterial species 
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3.3. Estimating a species boundary in metagenomic global microbial gene 

catalog using pangenomes 

This subchapter investigates the optimal nucleotide identity threshold for delineation of species 

boundaries in prokaryotes at gene level, which can be applied to metagenomics data when 

constructing metagenomic gene catalogs. For this project I performed blastn analysis of genes 

in pangenomes to find the nucleotide identity range between orthologs within the same species 

and between different species within the same genus. This work resulted in the co-authorship 

in the following manuscript: 

 

Luis Pedro Coelho, Renato Alves, Álvaro Rodríguez del Río, Pernille Neve Myers, Carlos P. 

Cantalapiedra, Joaquín Giner-Lamia, Thomas Sebastian Schmidt, Daniel Mende, Askarbek 

Orakov, Ivica Letunic, Falk Hildebrand, Thea Van Rossum, Sofia K. Forslund, Supriya 

Khedkar, Oleksandr M. Maistrenko, et al. Towards the biogeography of prokaryotic genes. 

In preparation. 

 

3.3.1. Introduction 

The existence of species in Prokaryotes has been under debate for several decades 

(Konstantinidis and Tiedje 2005). A species can be defined as a coherent cluster of isolates 

(strains) with similar phenotype that can recombine and exchange genes (Konstantinidis, 

Ramette, and Tiedje 2006). In line with this definition, it is predicted that reduction of the ratio 

between recombination to mutation (r/m) events below 0.25 can enable subpopulations to 

diverge freely resulting in eventual speciation (González-Torres et al. 2019). Recombination in 

general tends to reduce diversity between subpopulations and species. For this reason, decline 

in the recombination rate between species will be likely proportional to a nucleotide identity 

threshold that can be potentially almost-universally applied for many species. However, these 

important theoretical advances in our understanding of the species concept in Prokaryotes have 

limited application for the construction of gene catalogs from metagenomic data. Because 

majority of previous studies focused on genome-wide thresholds (identity calculated on coding 

sequences and non-coding/intergenic regions together) (Jain et al. 2018) or only marker genes 

(Mende et al. 2013). It is important to know the optimal thresholds of the nucleotide identity at 

gene level to group genes into homologous groups at species level without knowing to which 

species those genes belong. This is a common situation in metagenomics, however robust data 

to support such an ANI threshold was missing from the field. Here I address this question using 

species-specific pangenomes to find operational and natural species boundaries at gene level. 
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These boundaries can be used in metagenomics, where the species to which a gene belongs is 

often unknown. I then use this species boundary to estimate the global number of prokaryotic 

species from a global microbial gene catalog and compare these results to past predictions. 

3.3.2. Identification of a natural species boundary based on gene similarity in Prokaryotes 

I compared the similarity between genes from the same species to the similarity between 

genes from different species within the same genus. To do this, I built redundant pangenomes 

for 107 species and calculated the ANI using blastn between all genes both within pangenomes 

and between pangenomes of different species. From this data, I observed that genes from the 

same species tended to have ANI greater than 95% while genes from different species within 

the same genus tended to have ANI values less than 95%. This separation supports the 

hypothesis of existence of species with a gene-based ANI boundary around 95% (Figure 3.5.1). 

In particular, this result is in line with evidence that species exist judging from recombination 

rates in core genomes (Bobay and Ochman 2017a), pangenome structure and gene sharing 

(Moldovan and Gelfand 2018), average nucleotide identity (>90% ANI) computed from k-mer 

similarity approximation for shared genomic islands (Jain et al. 2018) and finally in this study 

at gene level via identity of blastn matches between genes within species and between species.  
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Figure 3.3.1. A 95% nucleotide identity threshold is a proxy for species in Prokaryotes. Shown 

is nucleotide identity of the closest gene homolog within the same species (blue) or within the 

same genus (pink). 

 

3.3.3. Discussion 

We compiled a global microbial gene catalog from over 13,000 metagenomic samples 

from all major habitats (marine, freshwater, host-associated, and soil). This resulted in a catalog 

of 2.3 x 109 open reading frames. Applying 95% ANI threshold on this data resulted in 

302,655,267 gene clusters (7.4-fold redundancy reduction). These estimates allow us to 

speculate about the total global number of microbial species and the number that have yet to be 

isolated and characterized. Assuming that average microbial genome size is 3,600 genes 

(diCenzo and Finan 2017), then the total number of species in the studied metagenomic samples 

would be 85,000 (302,655,267 GMGC gene clusters / 3,600 average genome size). This number 

of species is close to lower bound estimate of the predicted number of microbial species, which 

is approximately 100,000 (Editorial 2011). In contrast, the number of known species that have 

been sequenced so far is estimated to be 10,000-15,000 (Parks et al. 2018; Mende et al. 2020). 

It is important to take into account that robustness in the predictions of the number of species 

of Prokaryotes is limited by incomplete recovery of genomes from metagenomics samples and 

bias in favor of highly abundant species; differences in species delineation approaches; 

imprecise average genome size; and exceptions to the 95% ANI species boundary threshold. 

Despite these limitations several studies discovered the large number of species-level clusters 

from metagenomic data (Milanese et al. 2019; Pasolli et al. 2019). With accumulation of 

metagenomics data, it is possible that we will be able to describe the majority of highly 

prevalent, highly abundant microbial species using co-assembly and isolation with improved 

cultivation methods. However, if the species number is indeed close 1012 it will be difficult to 

characterize all of them. Finally, due to the large gene content dissimilarity between strains in 

the same species (see Subchapter 3.2.) it is unlikely that it will be possible to catalog all genes 

of every species, thus, many pangenomes will appear “open”. 

3.3.4. Conclusion and future outlook 

At the moment, there is an overwhelming evidence for the existence of species clusters 

in Prokaryotes that is supported by different methods. Results from this project together with 

recent papers published independently from our project support predictions about existence of 

species boundary in Prokaryotes. In future attempts to catalog and delineate all species in the 
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biosphere it will be important to continue to question and test species concepts with more high-

quality genomes, more species and different methods and algorithms. There is a possibility that 

gaps in ANI between known species will be filled by newly discovered strains. Future studies 

in this direction need to address problems of contamination in reference genomes, incorporate 

bigger diversity of species and incorporate HGT which will result in a comprehensive nearly-

universal species model of Prokaryotes.  
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3.4. Assessing within-species diversity and delineating subspecies from 

metagenomic data 

This subchapter explores challenges and possible solutions when searching for meaningful 

groups within species in metagenomes, and how analysis of gene content variation can result 

in a powerful tool to further advance this investigation. For this project, I performed an analysis 

to quantify the association between core genome nucleotide identity and gene content similarity 

between genomes of the same species. I also wrote some of the discussion on how genetic 

variation arises and what are challenges and advances in the delineation of subspecies. The 

results and discussion in part have been published in the following manuscript: 

 

Van Rossum T, Ferretti P, Maistrenko OM, Bork P (2020) Diversity within species: 

interpreting strains in microbiomes. Nature Reviews Microbiology. 

 

3.4.1. Introduction 

Systematic identification of within-species variation is a relatively well-established field 

and generally relies on a set of standard genomic analysis tools (Bush et al. 2020). However, 

classification of within-species variation is challenging due to issues in species classification 

that are inhered in within-species analysis, as well as conceptual limitations and terminological 

confusion and redundancy.  

The growing attention towards the analysis of within-species diversity in the 

metagenomic field led to an increasing confusion in the terminology. In particular, there is an 

issue of using of different definitions for what is considered a strain and a subspecies in 

traditional microbiology and metagenomics. In traditional culture-based microbiology, “strain” 

is defined as the “descendants of a single isolation in pure culture and usually is made up of a 

succession of cultures ultimately derived from an initial single colony” (Brenner, Staley, and 

Krieg 2015). Metagenomics often does not involve isolation of pure cultures of species and 

strains and consequently is limited in estimating phenotypes. This could potentially lead to 

naming every variant as a new strain, without knowing if those variants differ significantly in 

their phenotype. It is recommended that the null hypothesis about any variant is that it is neutral 

for phenotype (Rocha 2018). Such an assumption raises the question of whether all variants and 

which variants should be considered when naming new strains and species. These aspects 

represent considerable challenges when trying to apply terms from classic microbiology, such 

as strain and subspecies, in the metagenomic context because of absence of experimental 

validation and appropriate metadata. In this subchapter I discuss (1) what is the magnitude of 
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within-species diversity; (2) what are challenges in delineating within-species variants, and (3) 

why gene content is gaining relevance in the attempt to delineate meaningful within-species 

groups. I also discuss how the development and reapplication of the theoretical framework of 

species delineation will help advancing within-species analysis in metagenomics. 

 

3.4.2. Magnitude of within-species diversity 

It is established that more closely related strains share more genes compared to more 

distantly related ones within the same species (Sheppard et al. 2013; Dillon et al. 2019). In other 

words, there are species with tight cohesion of core genome SNP diversity and accessory gene 

content. Gene and SNP contents diversify together gradually and in a linked manner. However, 

some species have highly flexible secondary chromosomes (e.g. Vibrio spp.) (Heidelberg et al. 

2000) and in some species  nearly half of the genome is represented by plasmids, for example, 

in Borrelia (Brisson et al. 2012). Such properties of genomes can promote breakdown of the 

association between gene content and SNP similarity of strains of the same species. To date, 

there has been no explicit estimates of genomic dissimilarity of pangenomes using the same 

method across many species (using only high quality genomes, and species classified with the 

same method). To quantify this relationship across many species systematically, I gathered 

reference genomes for 155 species (at least 10 genomes per species) and calculated the core 

genome ANI and gene content dissimilarity among genomes for each species. In Figure 3.4.1, 

I show that the trend of association of gene content and core genome identity across species 

indeed exists with relatively high support based on Spearman correlation (Spearman Rho = 

0.57, p < 2.2e-16). In the figure it is also visible that the magnitude of variation in the gene 

content (the highest density of points is in the range of 60%-100% Jaccard index of gene content 

overlap) is bigger than in nucleotide identity (the highest density of points is in the range 97%-

100% of nucleotide identity). In part due to this difference in the distribution of values, a 

considerable number of strains are similar in their core genome but dissimilar in the gene 

content. Such large difference together with the observation that gene content diversifies earlier 

than SNP content might indicate in favor of the idea that gene content is more important for 

ongoing adaptions and subspeciation across many species (Andreani, Hesse, and Vos 2017). 
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Figure 3.4.1. Scatterplot of average gene content overlap and average core genome identity 

between strains. Each point is a pairwise comparison of one isolate genome versus all other 

conspecific isolate genomes. The data is from 155 bacterial species, each with at least 10 

sequenced isolate genomes. Opacity of red-coloured topographical overlay indicates density of 

points. The plot shows the relationship between the similarity of the core genome, measured by 

average nucleotide identity (ANI), versus the similarity of gene content, measured by Jaccard 

Index. Genomes with higher similarity between their core gene sequences tend to have more 

genes in common (Spearman correlation R=0.57, p < 2.2e-16). However, high ANI does not 

necessarily imply highly similar gene content, with many genomes with over 99% core genome 

ANI having less than 70% of genes in common. Most within-species ANI values are greater 

than 97%, the few data points below 95% ANI are not shown (83% and 4% of data points, 

respectively). (Data for this figure originates from Subchapter 3.2. published in (Maistrenko et 

al. 2020), figure and its caption was adapted from “Van Rossum, T., Ferretti, P., Maistrenko, 

O.M., Bork, P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 
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(2020). https://doi.org/10.1038/s41579-020-0368-1, Springer Nature, 2020 Springer Nature 

Limited”). 

 

 

3.4.3. Discussion 

Genomic variation emerges through constant occurrence of mutations due to errors in 

replication, repair and recombination, resulting in diversification of species. This variation is 

shaped and distributed in population(s) by genetic drift, selection and dispersal/HGT/gene flow 

into new genomes and environments(O’Donnell, Langston, and Stillman 2013; Radman, 

Taddei, and Matic 2000). All these forces combined together result in high genetic diversity 

and lead to pangenomes. In the broad and more abstract sense, a pangenome is defined as a set 

of all possible variants: gene content variation and other structural variants, indels, SNPs in a 

sample of genomes or in any taxonomic group (Marschall et al. 2016). A combination of 

evolutionary factors can result in emergence of distinctive subgroups within a species. While 

species are the results of long-term evolution and specialization, within-species variations are 

often novel mutations that are neutral and/or indistinguishable in phenotype and might be 

quickly removed from the population. This brings up the first conceptual problem: where to set 

the boundaries of how much variation to consider as relevant in within-species analysis. 

Traditional multi-locus sequence typing (MLST) based on few loci might result in lack of 

resolution. At the same time, multi-locus sequence typing based on too many loci (up to whole 

genome multilocus sequence typing (wgMLST)) can result in reclassification of existing types, 

adding more confusion (Pearce et al. 2018; Achtman et al. 2012). Metagenomics can potentially 

introduce even more confusion by introducing additional sources of multi-strain diversity from 

the same sample. This is because metagenomics theoretically enables recovery of several strains 

of the same species simultaneously. Consequently, even more diversity can be characterized 

with metagenomics. 

The second conceptual problem is which type of variation is more important for 

delineating within-species groups: whether to prefer single nucleotide polymorphisms over 

gene content or vice versa. It is likely that both variation types are important, but even very 

high (>99%) nucleotide similarity can correspond to very low (70%) gene content overlap (as 

shown in the Figure 3.4.1). Without phenotype data it is possible to speculate whether on 

average across many species if gene content variations will be more important for pathogenesis 

and ecological niche functions than single nucleotide polymorphisms. Such speculation is 

backed-up by the fact that accessory genes can be transferred as part of genomic islands and 
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operons introducing new ready-to-use functional pathways into recipient strains. Various 

studies support this hypothesis, arguing that gene content change is a primary evolutionary 

response (Dutilh et al. 2014; Andreani, Hesse, and Vos 2017).  

The third conceptual and technical problem is that some of the variation is not 

necessarily due to true variants, because they might be polymerase chain reaction errors during 

library preparation and sequencing. Presence and absence of genes has to be cautiously 

evaluated when dealing with assembled genomes. For example, metagenomics-assembled 

genomes are likely to have low completeness and high contamination levels with fragments 

from other species or the same species but different strains (Bowers et al. 2017; Shaiber and 

Eren 2019). These problems can potentially lead to overestimations of the gene content 

diversity. To mitigate and address these problems various pipelines set a nucleotide identity 

threshold above which variation is considered to be biologically meaningful. Qualities of the 

metagenomic assemblies are evaluated to exclude additional genes originating from other 

species.  

The fourth problem is the lack of knowledge about natural universal boundaries for 

subspecies and other intraspecific groups for a majority of species (Brenner, Staley, and Krieg 

2015). In principle, delineation of subspecies could rely on conceptually similar approaches as 

species delineation, such as detectable decline in frequency of HGT, recombination and ANI 

between groups of strains. However, due to high recombination rates, actual phylogeny might 

be difficult to reconstruct, which limits the potential to search for meaningful clusters within 

species (Shapiro et al. 2012). 

The practical solution would be to refer to new genomes (isolate-based sequencing or 

metagenomics assembled genomes) in a context-dependent way in each project and use the 

closest terms from classical microbiology. In other words, naming of within-species variants is 

rather a convenience than an evolutionary meaningful delineation.  

Additional progress might be achieved by incorporating the concepts of genotype space 

and pangenomes (Medini et al. 2005; Tettelin et al. 2005) into metagenomics 

(metapangenomics) (Delmont and Eren 2018). This integration will enable viewing of all 

genomic variation as a nearly-continuous, nearly-infinite genotype space. In such a scenario, 

every genotype is characterized by the set of coordinates in multidimensional space of all 

possible genotypes. There are several efforts moving in this direction, such as the attempt to 

upgrade the human genome reference by including population diversity as a pangenome graph 

(Llamas et al. 2019). However, with the continuous increase in sequencing data this approach 

might become not computationally feasible to apply for all microbial species, including isolate-

based and metagenomics-based whole genome sequencing data. 
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3.4.4. Conclusion and future outlook 

Gene content diversity is becoming a primary focus of species and within-species level 

analysis in genomics and metagenomics. Metapangenomics analysis, with careful application 

of known terminology from classic microbiology, will ensure a coherent development of the 

field. Investigating within-species diversity systematically across species (Figure 3.4.1) 

provides a foundation for building a better understanding on how to delineate subspecies and 

within-species groups. In future studies, it is important to continue to search for biologically 

meaningful within-species groups that might highlight ongoing speciation. In particular, 

combining metadata about species’ and strains’ environmental preferences, antibiotic resistance 

and virulence can provide insights into what drives the within-species groups’ diversification 

in the settings of metagenomics and microbiome genome-wide association studies. 
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Appendix 
 

 
 

Supplementary Figure 1. Examples of saturation curves. Core- and pangenome size at a 

given number of (randomly chosen) genomes from a species. Fits to displayed formulas 

shown in red (core genome) and green (pangenome). (Figure and description to the figure are 

published in (Maistrenko et al. 2020) in the ISME journal, 2020 Springer Nature Limited). 
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Supplementary Figure 2. Thresholds for pangenome components. Gene frequency 

distribution displayed in black. Dash lines represent boundaries between extended core and 

shell genome; shell and cloud genome. (Figure and description to the figure are published in 

(Maistrenko et al. 2020) in the ISME journal, 2020 Springer Nature Limited). 
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Supplementary Figure 3. Phylogenetic signal of 10 genomic characteristics across 155 

species of Prokaryotes. When Pagel’s λ approximates to 1 – trait manifests phylogenetic 

signal (marked with dash line). (Figure and description to the figure are published in 

(Maistrenko et al. 2020) in the ISME journal, 2020 Springer Nature Limited). 
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Supplementary Figure 4. Biplot of PCA (PC1 and PC2) using cophenetic distances observed 

in the phylogenetic tree reconstructed from 155 species used in this study. (Figure and 

description to the figure are published in (Maistrenko et al. 2020) in the ISME journal, 2020 

Springer Nature Limited). 

 

  



69 
 

 

 
Supplementary Figure 5. Biplot of the first 2 principal components of the decomposition of 

the habitat-association matrix (0 - not associated with soil habitat, 1 - associated with soil 

habitat). (Figure and description to the figure are published in (Maistrenko et al. 2020) in the 

ISME journal, 2020 Springer Nature Limited). 
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Supplementary Figure 6. Randomized phylogenetic and habitat PCs explain a smaller 

fraction of the variance than actual data for the core genome size and the average genome. 

(Figure and description to the figure are published in (Maistrenko et al. 2020) in the ISME 

journal, 2020 Springer Nature Limited). 
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Supplementary Figure 7. Accessory genome is under relaxed purifying selection compared to 

core genome (unpublished data).  
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Supplementary Figure 8. Recombination rates. Association of recombination events in core 

and accessory components of pangenome with (a) average ratio of non-synonymous to 

synonymous substitutions – dN/dS, (b) average fraction of synonymous substitutions – dS, (c) 

genome fluidity, and (d) pangenome saturation. Association between variables was tested with 

Spearman rank correlation (“Rho” and their p-values are presented on figures for component 

of pangenome) (unpublished data). 
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Supplementary Figure 9. Association of recombination rate and dN/dS with habitat 

preferences. Global test shows difference for dN/dS by habitat Kruskal-Wallis chi-squared = 

8.3923, df = 3, p-value = 0.03856, post-hoc pairwise test does not show difference. 

Recombination rates are not affected by habitat preferences in this dataset. Kruskal-Wallis chi-

squared = 5.3574, df = 3, p-value = 0.1474 (unpublished data). 
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Supplementary Table 1 

 (Supplementary tables and descriptions are published in (Maistrenko et al. 2020) in the ISME 

journal, 2020 Springer Nature Limited). 

Supplementary Table 1. Definitions of pangenome features and other terms used in the 

manuscript; key-words used for habitat annotation from PATRIC database. 

Term Definition 

Number of genomes (sample size) 

Number of genomes (also referred as sample 

size) that were used to calculate pangenome 

features for each species 

Pangenome saturation (alpha) 
Absolute value of alpha in equation [1] in 

methods 

Pangenome saturation (gamma) 
Coefficient gamma from equation [2] in 

methods 

Core genome saturation 
Coefficient gamma from equation [3] in 

methods 

Pangenome 

Total number of protein coding gene clusters 

estimated present in any number of genomes 

for each species (all genomes of a given 

species used to calculate this) 

Core 

Number of protein coding gene clusters found 

in every genome in a given species (all 

genomes of a given species used to calculate 

this) 

Extended core 

Total number of protein coding gene clusters 

in the extended core genome of a given species 

(all genomes of a given species used to 

calculate this) 

Shell 

Total number of protein coding gene clusters 

in the shell genome fo a given species (all 

genomes of a given species used to calculate 

this) 

Cloud 

Total number of protein coding gene clusters 

in the cloud genome for a given species (all 

genomes of a given species used to calculate 

this) 

Unique 

Total number of unique protein coding gene 

clusters found in a given species (all genomes 

of a given species used to calculate this) 

Average genome 
Mean number of protein coding gene clusters 

averaged across all genomes of each species 
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Average extended core 

Mean number of protein coding gene clusters 

in the extended core averaged across all 

genomes of each species 

Average shell 

Mean number of protein coding gene clusters 

in the shell genome averaged across all 

genomes of each species 

Average cloud 

Mean number of protein coding gene clusters 

in the cloud genome averaged across all 

genomes of each species 

Average unique 

Mean number of unique protein coding gene 

clusters averaged across all genomes of each 

species 

Average core genome 

Mean number of protein coding gene clusters 

in the core genome averaged across 30 random 

combination of 9 genomes (for each species) 

Average pangenome 

Mean number of protein coding gene clusters 

in the core genome averaged across 30 random 

combination of 9 genomes (for each species) 

Pangenome size (Chao lower bound 

estimate) 

Chao lower bound estimate of the possible 

number of genes in a given species’ 

pangenome (calculated using the 

corresponding function of the "micropan" R-

package) 

Diversity 

Mean nucleotide divergence (1 - nucleotide 

identity) of the core genome calculated across 

all pairs of genomes within a given species 

Average Jaccard distance 

Average Jaccard distance (1 - Jaccard index) 

calculated across all pairs of genomes within a 

given species 

Genome fluidity 

Genomic fluidity is calculated as the ratio of 

unique gene families over the sum of gene 

families averaged over randomly chosen pairs 

of genomes from within a given species of N 

genomes 

Functional distance 
COG-based average Jaccard distance between 

isolates/strains within a given species 

Ubiquity of species 

Ubiquity is the sum of all positive associations 

(Benjamini-Hochberg-corrected Fisher’s 

Exact Tests, p≤0.05) of a species with habitats 

in the Microbial Atlas Project dataset. In other 

words, ubiquity shows with how many habitats 

a certain species was associated. 

Key-words for habitat annotation 

"soil" 

["terrestrial biome", "Terrestrial", "Soil", 

"soil", "Rhizosphere", "rhizosphere", "plant 

root", "Plant root", "root nodule", "Root 

nodule", "root nodules", "rhizosphere soils", 

"Tailings", "Rhizospheric", "rhizospheric", 

"Sand", "soil sample", "sediment", 
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"Sediment", "Sludge", "sludge", "mud", 

"Mud", "Sand"] 

Key-words for habitat annotation 

"aquatic" 

["Aquatic", "aquatic", "marine", "Marine", 

"water", "Water", "Sea water", "Fresh water", 

"sea water", "fresh water", "Pond", "pond", 

"river", "River", "lake", "Lake", "Ocean", 

"ocean", "creek", "Creek", "waterfall", 

"Waterfall", "Hot spring", "Hot springs", "hot 

springs", "Hot springs", "hot spring", 

"oceanic", "Oceanic", "sea ", "sea-", 

"Wastewater", "wastewater", "Rice paddies"] 

Key-words for habitat annotation 

"host-associated" 

["HostAssociated", "Host-associated", "Host 

Associated", "host", "Host", "Rhizosphere", 

"rhizosphere", "Plants", "plant root", "Plant 

root", "root nodule", "Root nodule", "root 

nodules", "rhizosphere soils", "Rhizospheric", 

"rhizospheric", "Symbiotic", " skin", 

"Zoonotic", "rumen", "livestock-assoicated 

habitat", "Feces", "nasopharynx", "Blood", 

"sputum", "blood", "patient", "CSF", "stool", 

"feces", "Bodily fluid", "nares", "BLOOD", 

"Respiratory system"] 

Key-words for habitat annotation 

"food"  

["food", "Food", "FOOD", "milk", "Milk", 

"cheese", "Cheese", "fermented", "meat", 

"Meat", "frozen peas", "dairy product", "dairy 

products", "Dairy", "koumiss", "burger", 

"yogurt", "Burger", "Yogurt", "wine", "Wine", 

"Champagne", "Cider", "champagne", "cider", 

"bread ", "Bread ", "liver paste", "liquor", 

"sashimi", "beef", "Beef", "Seafood", 

"seafood", "silage", "ground turkey", "chicken 

breast", "sourdough", "fermented soybean", 

"fermented", "fermentation", "Fermented", 

"Fermentation"] 

 

 

Supplementary tables 2-8 are provided in online version of thesis. Tables can be accessed also 

at the ISME journal were the manuscript is published (“Disentangling the impact of 

environmental and phylogenetic constraints on prokaryotic within-species diversity”, 

https://doi.org/10.1038/s41396-020-0600-z ).  

 

Supplementary Table 2. List of isolates of 155 species used in the analysis 

Supplementary Table 3. Taxonomy, pangenome features, habitat metadata, principal 

components used for variance quantification 

Supplementary Table 4. Pairwise correlations between pangenome features and habitat 

preferences of 155 species. 

Supplementary Table 5. (or Supplementary Table 6 in the manuscript). Phylogenetic 

generalized least squares (pangenome features ~ ubiquity fit (y~x)). 

Supplementary Table 6. (or Supplementary Table 5 in the manuscript). Quantities of 

variance explained by habitat preferences and phylogenetic inertia. 

https://doi.org/10.1038/s41396-020-0600-z
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Supplementary Table 7. Average genome size and habitat preferences of species in 

proGenomes1 database. 

Supplementary Table 8. Average genome size and habitat preferences of species in 

proGenomes2 database. 
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