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Zusammenfassung

Strukturgleichungsmodellierung (SEM) wird seit Jahrzehnten in verschiedenen

Bereichen und Forschungsgebieten wie zum Beispiel der Psychologie, der Soziologie

und den Wirtschaftswissenschaften verwendet und weiterentwickelt. SEM umfasst

dabei die Gesamtheit einer Reihe verwandter Theorien, mathematischer Modelle,

Methoden, Algorithmen und Terminologien im Zusammenhang mit der Analyse der

Beziehungen zwischen theoretischen Entitäten – so genannten Konzepten –, ihrer

statistischen Repräsentation – als Konstrukte bezeichnet – und Beobachtungsgrößen –

üblicherweise Indikatoren, Items oder manifeste Variablen genannt.

Diese Arbeit befasst sich mit Aspekten eines bestimmten Forschungszweigs innerhalb

der SEM, den Komposit-basierten SEM Verfahren. Komposit-basiertes SEM ist ein

Überbegriff für alle SEM Methoden, die Kompositen – d.h. gewichtete

Linearkombinationen aus Beobachtungen – zur Schätzung unbekannter Größen

verwenden.

Der Inhalt der Arbeit basiert auf einem Arbeitspapier (Kapitel 2), einem

veröffentlichten referierten Zeitschriftenartikel (Kapitel 3), einem weiteren

Arbeitspapier (Kapitel 4) und einer stetig wachsenden Dokumentation, die ich für das

R-Paket cSEM geschrieben habe, bzw. kontinuierlich weiter schreibe (Kapitel 5). Das

Paket cSEM – geschrieben von mir und Florian Schuberth, meinem ehemaligen

Kollegen an der Universität Würzburg – stellt Funktionen zur Verfügung, um lineare,

nichtlineare, hierarchische und Multigruppen-Strukturgleichungsmodelle mit Hilfe von
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Komposit-basierten Ansätzen und Verfahren zu schätzen, zu analysieren, zu

bewerten, zu testen und zu untersuchen.

In Kapitel 1 gehe ich zunächst kurz auf einige der wichtigsten SEM Begriffe ein.

Kapitel 2 basiert auf einem Arbeitspapier mit dem Titel Assessing overall model fit of

composite models in structural equation modeling, das im Journal of Business

Research eingereicht werden wird. Der Artikel befasst sich mit dem Thema der

Bewertung der Gesamtgüte des Modells (eng. overall model fit) im Kontext des

Komposit-Modells. Das Papier leistet drei zentrale Beiträge zur Literatur zu diesem

Thema. Erstens wird das Konzept der Modellgüte in der SEM im Allgemeinen und

der Komposit-basierten SEM im Besonderen eingehend erörtert. Zweitens wird auf

gängige Fit-Indizes eingegangen und erläutert, ob und wie sie zur Beurteilung eines

Komposit-Modells angewendet werden können. Drittens wird gezeigt, dass der root

mean square outer residual covariance (RMSθ) identisch mit einem anderen

bekannten Index, dem standardized root mean square residual (SRMR) ist, falls der

RMSθ als Maß für die Modellanpassungsgüte verwendet werden soll.

Kapitel 3 basiert auf einem in Internet Research veröffentlichten Zeitschriftenartikel

mit dem Titel Measurement error correlation within blocks of indicators in consistent

partial least squares: Issues and remedies. Der Artikel entwickelt das consistent

partial least squares (PLSc) Verfahren weiter, um konsistente Parameterschätzungen

für Populationsmodelle zu erhalten, deren Indikatorblöcke korrelierte Messfehler

enthalten. Dies wird erreicht, indem die Korrektur für die Dämpfung (eng.

attenuation), wie sie ursprünglich von PLSc angewandt wird, so modifiziert wird,

dass sie a priori Annahmen über die Struktur der Messfehlerkorrelationen innerhalb

der Indikatorblöcke enthält. Um die statistische Gültigkeit der Modifikation zu

beurteilen, wird eine Monte Carlo Simulation durchgeführt. Das Papier wurde

gemeinsam mit Florian Schuberth und Theo Dijkstra verfasst.

Kapitel 4 basiert auf einem zur Veröffentlichung in Industrial Management & Data

Systems anstehenden Zeitschriftenartikel mit dem Titel Estimating and testing second

order constructs using PLS-PM: the case of composites of composites. Der Zweck

dieses Artikels ist ein dreifacher: (i) Bewertung und Vergleich gängiger Ansätze zur

Schätzung von Modellen, die Konstrukte zweiter Ordnung enthalten, die als

Komposite von Kompositen modelliert wurden; (ii) ein zweistufiges Testverfahren

vorzustellen und statistisch zu bewerten, um die allgemeine Modellanpassung solcher
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Modelle zu testen und (iii) auf der Grundlage unserer Ergebnisse Empfehlungen für

Praktiker zu formulieren. Darüber hinaus wurde eine Monte Carlo Simulation

durchgeführt, um die Ansätze in Bezug auf Fisher-Konsistenz, geschätzte Verzerrung

und RMSE zu vergleichen. Das Papier wurde gemeinsam mit Florian Schuberth und

Jörg Henseler verfasst.

Kapitel 5 stellt das R-Paket cSEM vor. Zum Zeitpunkt der Einreichung dieser

Dissertation zur Begutachtung ist cSEM im Comprehensive R Archive Network

(CRAN) als Version 0.2.0 verfügbar.
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Abstract

Structural equation modeling (SEM) has been used and developed for decades across

various domains and research fields such as, among others, psychology, sociology, and

business research. Although no unique definition exists, SEM is best understood as

the entirety of a set of related theories, mathematical models, methods, algorithms,

and terminologies related to analyzing the relationships between theoretical entities –

so-called concepts –, their statistical representations – referred to as constructs –, and

observables – usually called indicators, items or manifest variables.

This thesis is concerned with aspects of a particular strain of research within SEM –

namely, composite-based SEM. Composite-based SEM is defined as SEM involving

linear compounds, i.e., linear combinations of observables when estimating

parameters of interest.

The content of the thesis is based on a working paper (Chapter 2), a published

refereed journal article (Chapter 3), a working paper that is, at the time of

submission of this thesis, under review for publication (Chapter 4), and a steadily

growing documentation that I am writing for the R package cSEM (Chapter 5). The

cSEM package – written by myself and my former colleague at the University of

Wuerzburg, Florian Schuberth – provides functions to estimate, analyse, assess, and

test nonlinear, hierarchical and multigroup structural equation models using

composite-based approaches and procedures.

In Chapter 1 I briefly discuss some of the key SEM terminology.
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Chapter 2 is based on a working paper to be submitted to the Journal of Business

Research titled Assessing overall model fit of composite models in structural equation

modeling. The article is concerned with the topic of overall model fit assessment of

the composite model. Three main contributions to the literature are made. First, we

discuss the concept of model fit in SEM in general and composite-based SEM in

particular. Second, we review common fit indices and explain if and how they can be

applied to assess composite models. Third, we show that, if used for overall model fit

assessment, the root mean square outer residual covariance (RMSθ) is identical to

another well-known index called the standardized root mean square residual (SRMR).

Chapter 3 is based on a journal article published in Internet Research called

Measurement error correlation within blocks of indicators in consistent partial least

squares: Issues and remedies. The article enhances consistent partial least squares

(PLSc) to yield consistent parameter estimates for population models whose indicator

blocks contain a subset of correlated measurement errors. This is achieved by

modifying the correction for attenuation as originally applied by PLSc to include a

priori assumptions on the structure of the measurement error correlations within

blocks of indicators. To assess the efficacy of the modification, a Monte Carlo

simulation is conducted. The paper is joint work with Florian Schuberth and Theo

Dijkstra.

Chapter 4 is based on a journal article under review for publication in Industrial

Management & Data Systems called Estimating and testing second-order constructs

using PLS-PM: the case of composites of composites. The purpose of this article is

threefold: (i) evaluate and compare common approaches to estimate models

containing second-order constructs modeled as composites of composites, (ii) provide

and statistically assess a two-step testing procedure to test the overall model fit of

such models, and (iii) formulate recommendation for practitioners based on our

findings. Moreover, a Monte Carlo simulation to compare the approaches in terms of

Fisher consistency, estimated bias, and RMSE is conducted. The paper is joint work

with Florian Schuberth and Jörg Henseler.

Chapter 5 introduces the R package cSEM. By the time this dissertation was

submitted, cSEM was available on the Comprehensive R Archive Network (CRAN) as

version 0.2.0.
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Chapter 1

Introduction

1.1 Structural equation modeling

Structural equation modeling (SEM) is concerned with analyzing, i.e., modeling,

estimating, assessing, and testing the (causal) relationships between concepts –

entities defined by a conceptual definition (Rigdon, 2016) – with other concepts

and/or observable quantities generally referred to as indicators, manifest variables or

items.

Broadly speaking, two statistical modeling approaches for the concepts and their

relationship exist. The first is known as the latent variable or common factor model

and the second as the composite model. Each approach entails a different view of

"how the world functions" and, consequently, a potentially unique set of methods,

test, evaluation criteria, and a specific terminology that may or may not be adequate

within the realm of the other approach.

1.2 The latent variable or common factor model

Assuming a researcher identifies J concepts and K indicators, the fundamental

feature of the latent variable model is the assumption of the existence of a set of J

latent variables (common factors) that each serve as a statistical representation of one
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of the J concepts to be studied. Depending on the assumed theoretical relationship

between the latent variable J and its corresponding Kj indicators, the latter are

modeled as causes of the latent variable (reflective measurement) or as causing the

variable itself (causal-formative measurement).

The entirety of these measurement relations is captured by the measurement model

which relates indicators to latent variables according to the researchers theory of how

observables are related to the concepts in question. Figure 1.1 illustrates the two

types of measurement relations of the latent variable model using the standard SEM

symbols and notation (e.g., Bollen, 1989b).

η

y2y1 y3

ε2ε1 ε3

λ2λ1 λ3

(a) Reflective measure-
ment model

η

y2y1 y3

γ2γ1 γ3

ζ

(b) Causal-formative
measurement model

Figure 1.1: Measurement models

Accordingly, unobserved entities such as the latent variable η, the measurement error

terms ε1, ε2, and ε3, and the structural error term ζ are graphically illustrated by

circles. Observables, i.e., the indicators y1, y2, and y3 are depicted as squares. The

one-sided arrows either indicate the assumed causal relationship or adherence. In

Figure (a), for instance, the latent variable η is modeled as the underlying cause of

the indicators y1, y2, and y3. The strength of the relationship is captured by the

(factor) loadings λ1, λ2, and λ3. In Figure (b), one the other hand, the latent variable

is assumed to be caused by the indicators, with corresponding parameters γ1, γ2, and

γ3 capturing the strength of the relationship. The one-sided arrows from the error

terms to the indicators and latent variable indicate adherence. Two-sided arrows

indicate covariance or correlation.
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The entirety of the relationships between concepts – i.e., its representation in a

statistical model, the construct – is captured by the structural model, whose

parameters are usually at the center of the researchers interest. Using standard

notation and symbols again, a typical structural model would look like this:

η1

η2 η3 η4

η5

η6

γ

β1 β2

β
3

β4

β
5

β6

β 7

Figure 1.2: A typical structural model

Parameters γ and β are referred to as path or structural coefficients. Variables that

have an arrow pointing towards them are called endogenous; otherwise they are called

exogenous.

The unknown parameters of the latent variable model are usually estimated by

maximum likelihood (ML; Jöreskog, 1967, 1970b). The basic idea of ML is to find

parameters such that the difference between the empirical and the covariance matrix

implied by the model is minimized. Such estimation methods are therefore often

referred to as covariance-based methods. For details on the different measurement

models, estimation, and model assessment the reader is referred to the standard

literature of the area e.g., Bollen (1989b), Kline (2015) or Brown (2015).

1.3 The composite model

The second approach is known as the composite model (e.g., Dijkstra, 2017; Henseler,

2017; Schuberth et al., 2018a). As opposed to the latent variable or common factor

model, composites do not presuppose the existence of a latent variable. Hence,

designed entities (artifacts) such as a particular therapy in psychology or a

"leadership workshop" that arguably have no latent counterpart but rather emerge
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may be adequately described by a composite, i.e., the linear combination of

observables defining the composite. Figure 1.3 shows a generic composite model.

Note that contrary to the causal formative measurement model, there is no error

term ζ on the construct level.

η

y2y1 y3

w2w1 w3

Figure 1.3: The composite model

Composites are usually depicted by hexagons and the parameters w1, w2, and w3

capturing the magnitude of the relationship between the indicators and the

composites are called weights. Again, several composites can be placed in a structural

model as in Figure 1.2.

Composites may also be formed to represent latent variables/common factors, in

which case the composite serves as a proxy or stand-in for the latent variable (e.g.,

Rigdon, 2016; Rigdon et al., 2017, 2019).

Parameters in composite models are typically retrieved by a composite-based

approach such as the partial least squares (PLS) algorithm, generalized structured

component analysis (GSCA), or dimension reduction techniques such as principal

component analysis (PCA). However, in principal, ML estimation is possible as well.1

The basic idea of any composite-based approach is to build scores, i.e., composites for

each concept and subsequently retrieve structural model parameters by a series of

(linear) regressions. Such estimation methods are therefore often referred to as

variance-based methods, as regression maximizes the explained variance of the

dependent variable. See e.g., Dijkstra (2017) or Schuberth et al. (2018a) for details.
1This is ongoing research by Jörg Henseler, Florian Schuberth, and Tamara Schamberger.
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1.4 Composite-based SEM and the partial least

squares algorithm (PLS)

Composite-based SEM is the entirety of methods, approaches, procedures, and

algorithms that involve linear compounds (composites/proxies/scores), i.e., linear

combinations of observables when retrieving (estimating) quantities of interest such as

the coefficients of the structural model. It is crucial to clearly distinguish between the

composite model and composite-based SEM. They are not the same. While the former

is a statistical model relating constructs to observables, the latter simply states that

composites – linear compounds, i.e., weighted linear combinations of observables – are

used to estimate parameters of interest. Hence, composite-based SEM as a way of

obtaining/estimating parameters of interest may thus be used for the latent variable

or common factor model as well as the composite model. However, interpretation of

the parameter estimates is fundamentally different since the underlying models differ.

In principal, any weighted combination of appropriately chosen observables can be

used to estimate structural relationships between these linear compounds. Hence, any

conceptual or methodological issue discussed based on a composite build by a given

(weighting) approach may equally well be discussed for any other potential weighting

scheme. The appropriateness or potential superiority of a specific weighting approach

or algorithm such as the partial least squares (PLS) algorithm (Wold, 1975, 1982;

Lohmöller, 1989) over another such as unit weights (e.g., Devlieger and Rosseel,

2017), or generalized structured component analysis (GSCA; Hwang and Takane,

2014) is therefore a question of relative appropriateness and relative superiority

(Rönkkö, 2014).

As a notable consequence, approaches such as the PLS algorithm or GSCA are best

exclusively understood as prescriptions for forming linear compounds based on

observables, i.e., as weighting approaches. In fact, labels such as PLS-PM and even

more so PLS-SEM as propagated by e.g., Hair et al. (2017b); Sarstedt et al. (2019);

Cheah et al. (2018); Hair et al. (2019b,a, 2020) are misleading as they create the

impression that PLS(-SEM) is somehow capable of more than other composite-based

approaches. While among composite-based approaches, research surrounding

composites formed using weights obtained by the PLS algorithm is most vivid, the

PLS algorithm remains a weighting scheme in its core (Rönkkö et al., 2016).
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Chapter 2

Assessing overall model fit of

composite models in structural

equation modeling

2.1 Introduction 1

Structural equation modeling (SEM) is a widely used technique to examine

relationships between concepts – entities defined by a theoretical definition (Rigdon,

2016). Within SEM several strains of research may be distinguished. One distinction

is typically made with respect to the operationalization of the concepts as constructs

within a statistical model.

According to the latent variable or common factor model, concepts are

operationalized as latent variables, i.e., statistical entities for which there are no

direct observations but observable measures, the indicators (Bollen, 1989b).

Depending on the assumed theoretical relationship between the latent variable and its

corresponding indicators, the latter are either modeled as causes of the latent variable
1This chapter is based on a working paper to be submitted to the Journal of Business Research.

I thank Sebastian Groß, Florian Schuberth, and Tamara Schamberger for helpful comments on prior
versions of the manuscript.
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(reflective measurement) or as causing the variable itself (causal-formative

measurement). The latent variable model has been the dominant operationalization

framework for over a century and has been discussed extensively in numerous books

and articles (e.g, Jöreskog, 1969; Bollen, 1989b; Muthén, 2002; Kline, 2015; Brown,

2015, too name just a few).

An alternative, albeit less prominent, operationalization is the composite model (e.g.,

Henseler et al., 2014; Dijkstra, 2017; Henseler, 2017; Schuberth et al., 2018a). In the

composite model, concepts are modeled as emergent variables, i.e., a composite build

by a weighted sum of indicators. Hence, designed entities (artifacts) that arguably

have no latent counterpart could be adequately operationalized by a composite. For

example, concepts like marketing mix known from Marketing research (Fornell and

Bookstein, 1982) and concepts from Information Systems research such as IT

infrastructure flexibility (Benitez et al., 2018c) and IT integration capability (Braojos

et al., forthcoming) have been modeled as emergent variable. Besides using the

composite model to operationalize artifacts, the current literature argues that

composites may also be used as statistical proxies for latent variables (e.g., Rigdon,

2016; Rigdon et al., 2017, 2019; Hair and Sarstedt, 2019). Regardless of the intention

of application, concepts in the composite model are operationalized as weighted sums

of the indicators in either cases.

While parameters in the latent variable model are typically estimated by maximum

likelihood (ML; e.g., Jöreskog, 1969, 1970b,a), generalized least squares (GLS;

Browne, 1984), or variants thereof, parameters in composite models are naturally

estimated by a composite-based approach (e.g., Dijkstra, 2017; Schuberth et al.,

2018a). Composite-based approaches involve linear compounds, i.e., weighted linear

combinations of observables when retrieving (estimating) parameters of interest. The

basic idea of any composite-based approach is to build weighted scores/composites for

each concept and, subsequently, retrieve model parameters by a series of – usually

linear – regressions. Such estimation methods are therefore often referred to as

variance-based methods, as regression maximizes the explained variance of the

dependent variable. Similarly, estimators such as ML and GLS are sometimes

referred to as covariance-based estimators in the SEM context, as they obtain model

parameter estimates such that the discrepancy between the observed and the

model-implied indicator covariance is minimized. In this paper, we use the partial
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least squares algorithm (PLS; Wold, 1975, 1982; Lohmöller, 1989), which is arguably

the most common composite-based method.2

Irrespective of the choice of concept operationalization and estimator, overall model

fit assessment is considered an integral part of SEM (e.g., Bollen, 1989b; Hu and

Bentler, 1999; Yuan, 2005; Barrett, 2007; Hayduk, 2014; Kline, 2015; Greiff and

Heene, 2017; Henseler, 2018). On a theoretical level, overall model fit in SEM refers

to the closeness of a given model to the underlying process or distribution assumed to

give rise to the observed data – the data generating process (DGP). While closeness

may be defined in several ways, it is generally operationalized by a distance measure,

i.e., a mathematical loss function, capturing the discrepancy between the estimated

model-implied indicator covariance matrix and its sample counterpart.

The most common statistical framework to empirically assess model fit – as captured

by a distance measure – is the exact model fit testing framework. For

covariance-based estimators such as ML a χ2 test is readily available (e.g., Jöreskog,

1969; Bollen, 1989b). For composite-based estimators no χ2 test has been derived yet.

Composite-based estimators therefore rely on the bootstrap-based test for exact

overall model fit proposed by Dijkstra and Henseler (2015a) in the context of PLS.3

Both, the χ2 and the bootstrap-based test for exact overall model fit assess the null

hypothesis that the population covariance matrix (Σ) is exactly equal to the indicator

covariance matrix implied by the postulated model (Σ(θ)).

While the statistical testing framework is theoretically appealing, exact model fit

testing may not always be the adequate decisions framework for applied research

questions. The epistemological basis of the claim is rooted in Box (1976)’s famous “all

models are wrong, but some are useful” remark which implies that the null hypothesis

of perfect fit is, by definition of a model as inherently approximate, always wrong.

Accordingly, exact fit is therefore typically not of actual interest to researchers trying
2It is crucial at this point to clearly distinguish between the composite model and composite-

based estimators. While the former is a statistical model relating concepts to observables (indicators)
via composites, the latter simply states that composites - linear compounds, i.e., weighted linear
combinations of observables - are used to estimate parameters of the postulated statistical model.
Whether these estimates are “good” in a statistical sense – i.e., consistent and/or efficient – depends
on the statistical model to be estimated – e.g, composite-model vs. latent variable model. Composite-
based estimators essentially only differ in how they determine weights and consequently composite
scores. Possible contenders are, among others, the partial least squares algorithm (PLS; Wold, 1975,
1982; Lohmöller, 1989), generalized structured component analysis (GSCA; Hwang and Takane, 2004),
principal component analysis, or generalized canonical correlation analysis (GCCA; Kettenring, 1971).

3See Beran and Srivastava (1985) for mathematical proofs of the procedure and Bollen and Stine
(1992) for illustration and intuitive motivation.
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to study a certain phenomenon by means of a model, i.e., a deliberate approximation

to reality (e.g., Jöreskog, 1969; Steiger and Lind, 1980; Bentler and Bonett, 1980;

Browne and Cudeck, 1992; Mulaik et al., 1989; MacCallum, 2003; Cudeck and Henly,

2003; Steiger, 2007; Hoyle, 2012). Technically, dependence of the χ2 statistic on the

sample size will render the smallest numerical difference between Σ(θ) and Σ

statistically significant with a probability approaching 1 (Steiger and Lind, 1980). As

a consequence, virtually all models will have to be rejected for increasing sample

sizes. Hence, although a rejection of the null hypothesis of perfect fit has clear

statistical implications – namely that an alternative, typically more parameterized

model could be found which mimics the structure of the data more adequately – the

implications in practical terms are less clear: discard the model completely; or is

there anything to be learned from the model despite its lack of perfect fit?

Against this background, researchers in the early 1980s started popularizing a

number of fit indices as an alternative or supplement to binary reject/non-reject

exact model fit testing in an attempt to overcome the practical issues related to its

rational (e.g., Bentler and Bonett, 1980; Steiger and Lind, 1980; Jöreskog and

Sörbom, 1982). Since then a large number of fit indices has been proposed and

studied (see, e.g, Hoyle (2012) for an overview). Following McDonald and Ho (2002)

these indices can roughly be classified as absolute or relative.

The principal idea of absolute model fit indices is to measure the correspondence

between model and data along a continuum to gauge how well the postulated model

corresponds to the data instead of merely defining a perfect correspondence as the

(only) desirable objective (e.g. Mulaik et al., 1989, p. 431). Relative fit indices, on

the other hand, compare the postulated model to an adequate reference model to

assess the relative increase in model fit. In contrast to model fit testing, model fit

assessment via fit indices is consequently rather a question of “close” (Browne and

Cudeck, 1992) or “comparative” (Bentler and Bonett, 1980; Bentler, 1990) fit than

that of perfect fit.

To classify the magnitude of a given fit index as “sufficiently close” or “comparatively

better”, conventional recommendations rely on simple one-size-fits-all cut-offs that

essentially dichotomize the continuum of fit values into an acceptable/non-acceptable

region. While the index-cut-off decision strategy seems to convey similarity to

classical hypothesis testing, both frameworks are, in fact, distinctly different. First,
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the magnitudes of all indices are influenced, to different degrees, by model and data

characteristics other than the misspecification they attempt to quantify (e.g. Sivo

et al., 2006). The major factors identified by the literature are sample size, number of

constructs and number of indicators (i.e., model complexity), the distribution of the

data, and the sizes of the population parameters – see e.g., Niemand and Mai (2018)

for an overview. Second, the distinction between “good” and “bad” models in terms

of usefulness, parsimony, interpretability, and generalizability is widely recognized as

an inherently case-specific and subjective endeavor that requires to take into account

any kind of reliable evidence (e.g., Jöreskog, 1969; Bentler and Bonett, 1980; Bentler,

1990; Browne and Cudeck, 1992; Bollen, 1993; Marsh et al., 2004; Yuan, 2005;

Bentler, 2006; Lai, 2019). Hence, scientifically meaningful decisions about fit and

misfit are conceptually non-binary. Consequently, using fit indices as measures of

approximate fit and one-size-fits-all cut-offs to translate these values back into a

binary reject/non-reject framework is, to some extend, logically incoherent.

This paper makes three contributions to the literature on model assessment of

composite models estimated by PLS.

First, we provide a through discussion of the concept “model fit” in the context of

SEM in general and the composite model estimated by PLS in particular. The

discussion is motivated by a number of claims that have recently been brought

forward by e.g., Hair et al. (2017b), Hair et al. (2019a), and Hair et al. (2019b)

discouraging model fit assessment by means of model fit testing or model fit indices in

the context of a model estimated by PLS. These claims seem to warrant a correction.

Moreover, we clarify the role of exact model fit testing in the context of the

composite model estimated by PLS, explain the reasoning behind approximate model

fit assessment by means of fit indices, and discuss the (in)appropriateness of

conventional cut-offs for these indices.

Second, we review common fit indices known from the latent variable model and

explain their intuition and applicability to a composite model estimated by a

composite-based approach such as PLS. The number of fit indices available for

discussion is large, however, only a subset of indices is regularly used in practice. In

this paper, we therefore examine a subset of eight fit indices which, based on our

review, feature most prominently in SEM research. On the one hand, we examine

those fit indices whose construction logic is independent of the construct
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operationalization, namely the root mean square residual (RMR; Jöreskog and

Sörbom, 1982), the standardized root mean square residual (SRMR; Bentler, 1995)

and the normed fit index (NFI; Bentler and Bonett, 1980). On the other hand, we

consider five indices/statistics known from covariance-based SEM, namely the χ2

statistic and the χ2 statistic divided by its degrees of freedom (Jöreskog, 1969), the

nonnormed fit index (NNFI; Bentler and Bonett, 1980), the comparative fit index

(CFI; Bentler, 1990), and the root mean square error of approximation (RMSEA;

Steiger and Lind, 1980). The latter three indices rely on the χ2 statistic and

properties of its asymptotic χ2 distribution. In this context we show by means of a

small Monte Carlo simulation that the χ2 test statistic constructed using the PLS

estimator asymptotically follows a χ2 distribution with degrees of freedom equal to

the number of non-redundant elements of the empirical indicator covariance matrix

minus the number of model parameters.

Third, we thoroughly examine a lesser known index called the root mean square outer

residual covariance (RMSθ) which was first defined by Lohmöller (1989) in the

context of PLS and has been suggested as a suitable model fit criterion (e.g., Henseler

et al., 2014) – although evidence of the claim is scarce with no study providing

insights into its theoretical and statistical justification. In particular, we discuss the

different ways the RMSθ can be constructed and show that only one of the ways of

constructing the RMSθ is meaningful for model fit assessment; however, precisely in

this case, the RMSθ is numerically identical to the SRMR, which leads us to conclude

that the RMSθ is, in fact, simply the SRMR, unless it is defined in a way that makes

it unsuitable for model fit assessment.

The remainder of the paper is structured as followed. In Section 2 we review the

composite model and composite-based estimation. Section 3 is concerned with the

concept of model fit. In Section 4 we discuss distance measures, fit functions, fit

indices, recommended cut-offs, and explain their intuition and applicability to

composite models estimated by PLS. In Section 5 we discuss model fit tests. The

paper closes with a discussion in Section 6.
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2.2 The composite model and composite-based

estimation

Let ηj with j = 1, . . . , J be a construct, i.e., a statistical representation of a concept

and xj be a (Kj × 1) random vector of standardized indicators related to ηj. Let

Σj(θ) be the model-implied covariance matrix of these indicators based on a generic

model governed by a vector of generic population model parameters θ. Further, let

E(xjx′j) = Σj be the population indicator covariance matrix of the same indicator

block.4 In the composite model, constructs are operationalized by composites, i.e.,

linear combinations of indicators

ηj ≡ cj = w′jxj , (2.1)

where cj is called a composite and wj is a (Kj × 1) vector of weights scaled such that

the variance of the composite is one.5

The indicators of composite cj are allowed to freely covary. Hence, the model-implied

indicator covariance matrix Σj(θ) carries no restrictions regarding the off-diagonal

elements and is taken to be equal to Σj.

The composites may be assumed to freely correlate in which case the model-implied

composite covariance matrix Σc carries no restrictions other than the unit variance

restriction, i.e., diag(Σc) = ι, where ι is a vector of ones.

Alternatively, structural model restrictions may be imposed. Let cendo be the vector

of endogenous composites of the reduced form structural model and cexo a vector of

exogenous composites. Following common notation (e.g., Bollen, 1989b), the

structural relationship between composites can be written in general form as

cendo = Bcendo + Γcexo + ζ

= Πcexo + (I −B)−1ζ ,
(2.2)

where B and Γ are parameter matrices. The matrix Π is known as the reduced form

matrix containing the model-implied total effects of the exogenous on the endogenous

composites. I is the identity matrix and ζ a vector of structural errors with

E(ζ|cexo) = 0. Theoretically, B and Γ can take on any form, however, practically,
4Since indicators are standardized the terms covariance and correlation can be used interchange-

ably.
5Since by definition of the composite as cj = w′jxj the variance is Var(cj) = w′jΣjwj , weights are

scaled by (w′jΣjwj)− 1
2 such that Var(cj) = 1.
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model parameter identification typically necessitates several restrictions. To avoid

identification issues due to feedback loops and correlated structural error terms, we

only consider recursive models, and models with uncorrelated structural error terms

in this paper. Technically, recursivness implies that the vector cendo can be

rearranged such that B is lower triangular with zeros on its main diagonal.6 In

addition we focus on linear structural relations; models containing interactions,

quadratic terms or higher order constructs are thus excluded.

Rearranging the vector of composites such that c = (c′exo c′endo)′, the model-implied

covariance matrix of the composites is given by

Σc =

 Φ ΦΠ′

ΠΦ ΠΦΠ′ + (I −B)−1Ψ((I −B)−1)′

 , (2.3)

where Φ the composite covariance matrix of the exogenous composites and Ψ is the

covariance matrix of the error terms which is assumed to be diagonal.

The covariances between the composite cj and the corresponding indicators xj, i.e.,

the vector of composite loadings is captured by the (Kj × 1) vector λj = Σjwj. The

covariances between xj and xs (j 6= s) are fully attributed to the covariance between

its corresponding composites, i.e., the js’th element of the matrix Σc, and the vector

of composite loadings:

Σjs(θ) = σc;jsλjλ
′
s (2.4)

Technically, this is known as the rank 1 constraint, as the model-implied indicator

covariance matrix Σjs(θ) has rank 1 by construction. More intuitively, the constraint

is essentially a reformulation of Wolds fundamental principle of soft modeling in

terms of composites stating that all information between constructs is conveyed solely

by the composites (e.g., Wold, 1982; Dijkstra, 2010, 2017).

The complete model-implied indicator covariance matrix is thus given by:

Σ(θ) =



Σ1 Σ12 Σ13 . . . Σ1J

Σ2 Σ23 . . . Σ2J

. . . ... ...

ΣJ−1;J−1 ΣJ−1;J

ΣJ


(2.5)

6Ruling out feedback loops in the structural model essentially ensures identification, since recursive
models are almost always identified (Bollen, 1989b).
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Similar to latent variable models, degrees of freedom are calculated as the difference

between the number of non-redundant off-diagonal elements of the population

indicator covariance matrix Σ and the number of free model parameters in θ. If the

model contains only linear terms θ is:

θ = θ(Σ1,Σ2, . . . ,ΣJ ,W ,Φ,B,Γ) (2.6)

The degrees of freedom are thus given by:7

df = # of non-redundant off-diagonal elements of Σ

−# of non-redundant off-diagonal elements of Σj for j = 1, . . . J .

−# of weights

−# of free covariances between exogenous composites

−# of structural parameters (non-zero elements of B and Γ)

+ # of composites

(2.7)

2.2.1 Estimation

The vector θ contains all model parameters of the composite model. To obtain an

estimate θ̂ of θ any consistent estimator may be used.

In this paper, we use the PLS algorithm with mode B.8 As detailed by Dijkstra (2010,

2017) weight estimates obtained by PLS are continuously differentiable functions of

the sample indicator covariance matrix S. Moreover, any composite model parameter

estimate – e.g., the elements of Σ̂j, B̂ or Γ̂ – can be shown to depend smoothly on

elements of W and S only. Assuming S is a consistent estimate of Σ, the estimator

θ̂PLS = f(S, Ŵ (S)) is consistent for θ and asymptotically jointly normal. Similar

results apply to other composite-based algorithms such as the class of generalized

canonical correlation analysis (GCCA) algorithms (Kettenring, 1971; Dijkstra, 2017).

2.3 The concept of model fit

Model fit and statistical modeling in general is based on the idea that any population

whose features a researcher seeks to learn about is governed by a mechanism that
7Indicators are assumed to be standardized, i.e., their variance is fixed to one. Hence, in contrast

to the degrees of freedom calculation in the latent variable model, the main diagonal elements of Σ
are ignored.

8For algorithmic details interested readers are referred to e.g., Wold (1982), Lohmöller (1989), or
Rademaker et al. (2019).
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describes the population in its entirety. If the researcher knew the mechanism, any

feature of the population would be known, any (causal) relationships in the

population completely traceable, and any realization of that population completely

predictable. Hence, neither a model nor statistical inference is required. Practically,

the precise mechanism is, bearing some trivial exceptions, virtually never known.9 To

make inferential, causal, or even mechanistic statements about the population,

quantitative researchers formulate a statistical model that imposes restrictions on

how theoretical (unobserved) and observable features of the population are thought

to behave according to theory. A classical example of a statistical model is the

multiple linear regression model; the conditional mean of the dependent variable is

modeled as a linear function of a set of explanatory variables and an error term

assumed to be at least uncorrelated with the explanatory variables. Likewise, the

composite model as discussed in the previous section constitutes a statistical model

that imposes restrictions on how (mixed) moments of observables and unobservables

are thought to behave in the population.

Model fit refers to the closeness of a given statistical model to the underlying

mechanism assumed to govern the population and any realizations based thereon. In

statistics this mechanism is generically referred to as the data generating process

(DGP). Model fit assessment in quantitative research is therefore concerned with the

evaluation of statistical evidence indicating whether a statistical model is in line with

the (empirical) world, i.e., the data produced by the DGP the researcher intends to

model. Clearly, statistical evidence is not the only possible piece of evidence that

could be brought forward to judge whether a given model is “good” or “bad” in terms

of model fit, however, it is compelling and widely accepted for two reasons. First,

when judging a statistical model like the composite model in terms of model fit, it

seems reasonable to rely on statistical evidence to do so; after all, ignoring statistical

evidence begs the question of why statistical methodology was used in the first place.

Second, non-statistical model fit assessment does not adhere to an objective

framework with verifiable mathematical implications making scientific debates about

implications of a given model notoriously difficult (e.g. Browne and Cudeck, 1992).

Consequently, non-statistical statements about model fit are hard to generalize and
9Unless, of course, the process is designed by the researcher as in e.g., a simulation study.
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falsify.10

Since the term “fit” may convey a different meaning to readers of different scientific

backgrounds it is crucial to avoid ambiguity. Three aspects of model assessment have

explicitly or implicitly been associated with model fit: in-sample fit (fit in the

regression sense), out-of-sample “fit” – more commonly referred to as predictive

accuracy –, and fit in the SEM sense. Fit in the regression sense is the amount of

variation in a target variable that is explained by the model. Evidence of this type of

fit, as measured by the R2, is a measure of in-sample (predictive) fit. Out-of-sample

predictive accuracy, as measured by, for instance, the root mean square error

(RMSE), is the closeness between predicted and actual values of a subset of one or

several target variables whose values have not been used in the estimation. Note that

neither in-sample nor out-of-sample predictive accuracy require the model to be

causally correctly specified. In fact, a model may happen to be causally correctly

specified with respect to the population, however, neither causal misspecification nor

correct causal specification are sufficient for model-to-population fit in the SEM sense.

Fit in the SEM sense is distinctly different. In contrast to predictive fit (accuracy)

assessment, model fit in SEM is concerned with the closeness of the mechanism

implied by the researcher’s model to the DGP. While closeness may be defined in

several ways it is typically operationalized as the difference between the model-implied

indicator covariance matrix Σ(θ) of the postulated model and the population

indicator covariance matrix Σ as captured by a generic distance or fit function F :

F = F (Σ,Σ(θ)) (2.8)

In fact, model fit in SEM is used exclusively to refer to this concept of fit. The

implicit assumption motivating the use of covariance matrices is the idea that the

causal structure of the underlying DGP is thought to be reflected in these matrices.

While perfect fit in the population as indicated by some distance measure is
10We consider as non-statistical model fit assessment any assessment about the goodness/adequacy

of a model based on qualitative statements. The defining feature of statistical evidence on the other
hand is evidence obtained based on an objective framework with verifiable mathematical implications.
While most statistical frameworks such as the null hypothesis significance testing (NHST) framework
clearly involve subjectivity (which significance level α is appropriate?), the implications once α is
chosen are mathematically undeniable. Labeling qualitative statements as non-statistical should not
be misunderstood as dismissive, nor should the fact that NHST has clear mathematical implications
be interpreted as reckless support for NHST. Qualitative statements based on domain knowledge and
subjective judgment are a vital part of any scientific endeavor. Moreover, NHST does suffer from its
own set of challenges (e.g., Mertens and Recker, 2019; Wasserstein et al., 2019). Nevertheless, non-
statistical evidence must be labeled as such and not be confused with or sold as statistical evidence.
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necessary but not sufficient for a correctly causally specified model, observing a misfit

according to F is sufficient for causal misspecification.11 To put it differently: a

model-implied indicator covariance matrix that perfectly fits its population

counterpart according to the distance function F may still be causally misspecified,

however, models whose fit is non-zero can never be fully correctly specified (e.g.

Jöreskog and Sörbom, 1993, p.114).

As an important consequence of the scope of the different concepts of fit, statistical

evidence about fit according to one of the three concepts, does not necessarily imply

fit according to the other. Regression fit, for example, is no evidence of correct causal

specification; an R2 of 0.99 merely implies an almost perfect in-sample fit – typically

a sign of overfitting. Likewise, causally correctly specified models may exhibit high

out-of-sample predictive accuracy, yet reversing the argument is a known logical

fallacy (Saylors and Trafimow, 2020, p.10). Consequently, predictive accuracy cannot

serve as statistical evidence of correct causal specification, i.e., evidence of model fit

in terms of SEM.

No matter the choice of the distance function F , four outcomes are of particular

interest: F = 0, F > 0, 0 < F ≤ c, and F > c. Mathematically, models either fit, or

they do not. A given model-implied indicator covariance matrix may, for instance,

reproduce the population covariance matrix such that both matrices are numerically

identical. Mathematically speaking, model fit assessment is therefore an assessment

of F = 0 vs. F > 0. While mathematically appealing, a large body of literature

argues that this type of fit may only be of limited interest if applied to answer

real-world questions. The epistemological basis of the argument is conceptually

rooted in Box (1976)’s famous “all models are wrong, but some are useful” remark

which implies that perfect fit is, by definition of a model as inherently approximate,

always wrong. Accordingly, exact fit is therefore typically not of actual interest to

researchers trying to study a certain phenomena by means of a model, i.e., an

approximation to reality (e.g., Mulaik et al., 1989; Browne and Cudeck, 1992; Hoyle,

2012). Consequently, fit assessment becomes a question of the assessment of

approximate fit where F 6= 0 is a priori accepted as given (e.g., Steiger, 2007; Bentler,

1990). Hence, any value of F in the interval [0; c] is regarded as minor in a sense that

1.) findings and implications derived from the misspecified model are “in line with”
11Note that Equation (2.8) is on the population level, hence sampling variation is irrelevant here.
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the findings and implications that would have been derived from the correctly

specified model, and 2.) the model is still useful. While perfect fit is mathematically

incontestable and theoretically unambiguous, approximate fit obviously critically

hinges on the notation of approximate fit and usefulness.

Mirroring the theoretical concepts of perfect and approximate model fit, distance

measures, fit functions, fit indices and model fit testing in the composite model are

discussed next.

2.4 Distance measures, fit functions and fit indices

The term fit or fitting function is used to refer to a loss function that is minimized by

an associated estimator whose name is typically used to determine the name of the fit

function. By far the most famous fit function in SEM is the maximum likelihood

(ML) fit function

FML = FML(S,Σ(θ)) = ln(|Σ(θ)|) + tr
(
SΣ(θ)−1

)
− ln(|S|)− p , (2.9)

where p is the number indicators. The function is minimized by the ML estimator

θ̂ML with Σ(θ) replaced by its estimated counterpart Σ̂ = Σ(θ̂ML) – provided the

necessary assumptions for consistency of the ML estimator are met. Other fitting

functions known from covariance-based SEM include, the asymptotically distribution

free (FADF ), the generalized least squares (FGLS), and the unweighted least squares

(FULS) fitting functions minimized by respective estimators of the same name (e.g.,

Bollen, 1989b, pp. 111–115 and pp. 426–427).

Fit functions such as FML, FGLS, and FULS are also called distance or discrepancy

functions. We refer to a distance measure as mathematical function capturing the

discrepancy between the population and the postulated model on a continuous scale.

Technically, any feasible discrepancy function is theoretically applicable provided it is

increasing in the size of the discrepancy. Moreover, a fixed value (typically zero)

should imply perfect fit.

For composite models Dijkstra and Henseler (2015a) propose two distance functions,

namely the squared Euclidian distance

dL = 1
2tr[(S −Σ(θ))2] = 1

2

K∑
i=1

K∑
j=1

(sij − σ(θ)ij)2 , (2.10)
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which is identical to FULS and the geodesic distance

dG = 1
2

K∑
i=1

log(ψi)2 , (2.11)

which is asymptotically identical to FML, where ψi is the i-th eigenvalue of the

matrix S−1Σ(θ).

Distance functions are the basis for exact model fit tests discussed in the next section.

Moreover, they constitute the basis for a large range of fit indices. These indices can

be broadly categorized as absolute or relative (McDonald and Ho, 2002). There are

more refined classifications (e.g., Marsh and Hau, 1996; Yuan, 2005; Kline, 2015) that

further distinguished between e.g., parsimonious indices, noncentrality-based indices,

and goodness-of-fit/badness-of-fit indices, although the classification is fuzzy, as most

indices can be characterized according to either category. For the paper at hand a

rough distinction is sufficient. Note that in principle, fit indices may also be regarded

as specialized distance measures – although a distinction with respect to the specific

distance a given fit index actually captures must be made.

2.4.1 Measures of absolute fit

The χ2 and the χ2/df statistic

The χ2 statistic was introduced by Jöreskog (1969) and is typically not used as an

individual fit index, but rather as the basis for a number of other fit indices. The

statistic is defined as:

χ2 = (N − 1) · F , (2.12)

where F = F (S,Σ(θ)) is a generic distance function capturing the distance between

S and Σ(θ). Recognizing the practical limitations of exact model fit testing, Jöreskog

(1969, p. 202) suggested to divide the statistic by its respective degrees of freedom

and interpret the value as “... an indication that more information can be extracted

from the data” or “... an indication that the model fits too well”.

Theoretically, the χ2 statistic and the χ2 statistic divided by its degrees of freedom

can be computed using any distance measure F , although the χ2 statistic is

historically closely tied to the ML fitting function FML and, consequently, ML. The

reason is that the test statistic χ2
ML = (N − 1) · FML(S,Σ(θML)) asymptotically

follows a χ2 distribution with p(p− 1)− q degrees of freedom, where p is the number
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of indicators in S and q the number of parameter in θML (Wilks, 1938). The fact

that χ2
ML

a∼ χ2
df can be used to obtain an approximate distribution of the same test

statistic with θML replaced by θPLS. Since PLS using mode B is a consistent and

asymptotically normally distributed estimator for the composite model, it

asymptotically minimizes the maximum likelihood distance function FML from

Equation (2.9). The modified test statistic is therefore approximately χ2 distributed

with p(p− 1)− q degrees of freedom:

χ2
PLS = (N − 1) · FML(S,Σ(θPLS)) , (2.13)

Figure 2.1 shows the results of a small simulation study illustrating the efficacy of the

approximation.
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Figure 2.1: Histogramms of the simulated χ2 statistic and theoretical χ2 distribution.

Each of the 12 tiles show a histogramm of the simulated values of the test statistic

from Equation (2.13). The solid black line is the theoretical χ2 distribution with the
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respective number of degrees of freedom calculated according to Equation (2.7). For

the simulation, we drew M = 5000 samples of size N = {100, 200, 500, 1000} for 3

data generating processes with varying number of composites. Each composite is

build by 3 indicators with randomly assigned unscaled weights of 1, 2, or 3.

Within-block indicator correlations are set to 0.5. For simplicity no structural model

was assumed. Instead all composites are correlated with a correlation of 0.3.

For each DGP and sample size, a model was estimated that perfectly corresponds to

the DGP the data was drawn from. Hence, the null hypothesis of perfect fit is true.

In this case we expect FML(S,Σ(θ̂PLS)) to be close to zero and χ2
PLS to follow a χ2

distribution with degrees of freedom as shown in Figure 2.1.

Figure 2.1 illustrates that the approximation is extremely accurate for larger sample

sizes. In smaller samples the simulated distribution of the test statistic and the

theoretical χ2 distribution slightly diverge, in particular for more complex models

with many degrees of freedom.

Note that contrary to what authors such as e.g., Hair et al. (2019b) suggest, the fact

that PLS does not minimize any known distance metric during estimation – but

rather maximizes explained variance of the dependent variable –, is irrelevant for the

rational of the test statistic; only the choice of the distance function is less obvious –

in contrast to ML where the choice is given directly by the minimized function. The

only prerequisites are consistency and asymptotic normality of the estimator that is

used to derive Σ(θ̂).

Hence, although PLS’s estimation objective is not to minimize FML, it still does so

asymptotically when the model is correctly specified with respect to the DGP; this is,

of course, if PLS is consistent for the model it estimates.

The root mean square residual (RMR) and the standardized root mean

square residual (SRMR)

The root mean square residual (RMR) was first proposed by Jöreskog and Sörbom

(1982, p.408) and is given as:

RMR =

√√√√√ K∑
i=1

i∑
j=1

(sij − σ(θ)ij)2

K(K+1)
2

=
√√√√ dL

K(K+1)
2

(2.14)

The RMR is the square root of the average of the squared element-wise deviations

between all elements – including the main-diagonal elements – of S and Σ(θ), where
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S is the empirical indicator covariance matrix and Σ(θ) is the model-implied

covariance matrix. The RMR is therefore equal to the square root of the squared

Euclidian distance dL divided by 0.5 · (K(K + 1)). If S and Σ(θ) represent

correlation matrices, the RMR and its standardized version, the standardized root

mean square residual (SRMR; Bentler, 1995) defined as

SRMR =

√√√√√ K∑
i=1

i∑
j=1

(sij − σ(θ)ij)/
√
s2
iis

2
jj)2

K(K+1)
2

, (2.15)

are identical since in this case the variances are: s2
ii = s2

jj = 1. As it is common to

assume standardized indicators in PLS, the RMR and the SRMR are usually

identical.

In principal, both the RMR and the SRMR are conceptually meaningful to assess

(mis)fit in the composite model, however, a change to the original formula should be

considered. As detailed in Section 2.2, indicators of composite cj are allowed to freely

covary, rendering the difference Sj −Σ(θ)j equal to zero by definition of the

composite model. While, the numerator of the (S)RMR remains unchanged, the

number of elements to divide by should only be based on the number of

non-redundant elements in Sjs. Failing to do so essentially artificially deflates the

(S)RMR.

The root mean square outer residual covariance (RMSθ)

The root mean square outer residual covariance was first proposed by Lohmöller

(1989, p. 53; Eq. 2.118) under the same name as a potential candidate “... to

evaluate different aspects of the estimates” (Lohmöller, 1989, p. 53). Alluding to the

fact that the outer residual covariance is sometimes symbolically referred to by the

Greek letter θ, Henseler et al. (2014, p. 192) labeled the index RMSθ, however, they

did not provide mathematical details on how its computation was conducted.

The RMS outer residual covariance or RMSθ as proposed by Lohmöller (1989, p. 53;

Eq. 2.118) may be understood and implemented in at least two different ways, each

implying a different index. This confusion is likely due to four reasons.

First, Lohmöller (1989) did not give a precise formula for its computation leaving

room for interpretation as to what is meant by “rms outer residual covariance”

(Lohmöller, 1989, p. 53). Second, Lohmöller (1989) uses the term “residual” to refer

to the error term (a theoretical quantity), the difference between an observed score
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and its predicted counterpart (an empirical, i.e., estimated quantity), and the

difference between observed and model-implied covariances which adds scope for

interpretation (confusion).12 Third, Lohmöller (1989) did not motivate the intended

use of the RMS outer residual covariance beyond its basic use as a candidate “... to

evaluate different aspects of the estimates” (Lohmöller, 1989, p.53), nor did he

investigate its statistical properties. Fourth, to the best of our knowledge, since its

introduction, the RMSθ has never been subject to a thorough analysis of its

statistical properties – which could have clarified its precise implementation.

To understand where the different readings of the RMSθ come from, why and how

they differ, a brief review of the relevant sections of Lohmöller (1989)’s book are

necessary. The root mean square outer residual covariance is defined in Equation

(2.118) of the book as

c := rms C , (2.16)

where according to Lohmöller (1989, p. 24): C = cov(e) is the outer residual

covariance matrix.13 The outer residual is given as

e = y − PY , (2.17)

with y := manifest variables, data; P := loading pattern coefficients;

Y := latent variables. Lohmöller (1989, p. 24) defines the symbols y, P , Y and e in

a column labeled “estimated”. Translating the notation to be consistent with the

notation of the current paper, Equation (2.17) is thus identical to

Ê′ = X ′ − Λ̂ ·H ′ , (2.18)
12In SEM a “residual” is usually defined as the difference between observed and model-implied

covariances (e.g., Hoyle, 2012, p.216).
13Lohmöller (1989, p. 52) defines the operator rms(·) in Equation (2.108) as:

rms A =

√√√√ −∑
i

−∑
j

a2
ij

and notes: “ ... [the operator] is a shortcut for the root mean squared function of a matrix A, where
the diagonal is excluded if A is symmetric”. The definition is a bit unusual in a sense that, 1.) the
operator is commonly called the root mean square and 2.) the fact that the rms is a mean over squared
elements is typically made explicit. While the first point is probably just a somewhat careless use of
terminology, the second point is clarified by Equation (1.14) on page 26 stating that:

1
N

N∑
n=1

ykn =
−∑
n

ykn

Hence,
∑−

n akn is the arithmetic mean over all n.
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where Ê is a (N ×K) matrix of residuals, X the (N ×K) matrix of standardized

data, Λ̂ the (K × J) block-diagonal matrix of estimated composite loadings, and H

the (N × J) matrix of composite scores. The dimensions of the matrices follow from

pages 25, 28, and 35 of the book.

To compute the RMSθ the relevant (K ×K) covariance matrix C must be derived.

Depending on what Equation (2.17) actually constitutes and what concept of

“residual” Lohmöller (1989) had in mind, two different computations approaches of C

of are conceivable. We label the first the empirical and the second the model-implied

approach.

The empirical approach basically reads “rms outer residual covariance” as the root

mean square of the covariances of residuals. Residual in this case denotes the

difference between the observed and the fitted indicator value. Hence, the RMSθ is

simply the root mean square of the elements of

Cov(Ê) = Ê′Ê

N − 1 , (2.19)

where the means of the columns of Ê are by definition equal to zero.14 Diagonal

elements of Cov(Ê) are included in this case. Writing the covariances in terms of

right hand side variables of Equation (2.18) gives

ĉ1 ≡ Cov(Ê) = 1
N − 1(X ′ − Λ̂H ′) · (X ′ − Λ̂H ′)′

= 1
N − 1X

′X − 1
N − 1X

′HΛ̂′ − 1
N − 1Λ̂H ′X + 1

N − 1Λ̂H ′HΛ̂′

= S − T Λ̂′ − Λ̂T ′ + Λ̂V (H)Λ̂′

(2.20)

where V (H) is the (J × J) matrix of empirical composite correlations and S the

(K ×K) empirical indicator covariance matrix. T is the (K × J) “loadings structure

coefficient matrix” Lohmöller (1989, p.24) which is the indicator-composite covariance

matrix sometimes referred to as the matrix of “cross-loadings”. Since the composite

score H is equal to XŴ , where Ŵ is the estimated (K × J) weight matrix of the

same structure as Λ̂, we have:

T = 1
N − 1X

′H = 1
N − 1X

′XŴ = SŴ (2.21)
14Whether to divide by N or N − 1 makes hardly any difference.
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The RMSθ follows as

RMSempθ =

√√√√√ 1
K(K + 1)/2

K∑
i

i∑
j

ĉ2
1;ij , (2.22)

where ĉ1;ij is the ij-th element of ĉ1.

The model-implied approach considers Equation (2.17) as a model equation and e as

the estimated model-implied residual. The model in this case is the reflective

measurement model. Accordingly, Equation (2.18) is written on the population level

as:

ε = x−Λc (2.23)

The rms outer residual covariance is thus given as the root mean square of the

conditional, model-implied, covariances of errors, where the error is the difference

between the random matrix x and its conditional expectation implied by the

reflective measurement model E(x|c) = Λc. For the covariance expressed in terms of

the right hand side variables of Equation (2.23) we obtain:

c2 ≡ cov(ε) = E(εε′|c) = E[(x−Λc) · (x−Λc)′|c]

= E(xx′|c)− E(x|c)c′Λ′ −ΛcE(x′|c) + Λ E(cc′|c)Λ′

= Σ−Λcc′Λ′ −Λcc′Λ′ + Λcc′Λ′

= Σ−ΛΣcΛ′

= Σ−Σ(θ)

(2.24)

Here, Σc is the conditional (model-implied) composite covariance matrix and Σ(θ)

the model-implied indicator covariance matrix. Since Σ and Σ(θ) are theoretical

quantities they are replaced by their empirical/estimated counterparts S and

Σ̂ = Σ(θ̂) to obtain the (model-implied) outer residual covariance

ĉ2 = Cov(e) = S − Σ̂. The computation of the RMSθ in this case is given by

RMSmiθ =

√√√√√ 1
K(K + 1)/2

K∑
i

i∑
j

ĉ2
2;ij , (2.25)

where ĉ2
2;ij = (sij − σ̂ij)2 and therefore:

RMSmiθ =

√√√√√ 1
K(K + 1)/2

K∑
i

i∑
j

(sij − σ̂ij)2 = (S)RMR (2.26)

Without context, neither ĉ1 nor ĉ2 is statistically preferable over the other. However,

if – as it is reasonable to assume – the intended use of the RMSθ is as a criteria for
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model fit assessment only RMSmiθ adequately serves this purpose. Since ĉ1 cannot

generally be expected to be zero when the postulated model perfectly reproduces the

population indicator covariance matrix. In fact, even if S − Λ̂V (H)Λ̂′ in Equation

(2.20) is zero, i.e., the estimated model-implied indicator covariance matrix is

identical to the empirical indicator covariance matrix, the remaining terms −T Λ̂′ and

−Λ̂T ′ do not necessarily cancel. Hence, RMSempθ is non-zero for perfectly fitting

models. This lack of reference to perfect fit renders RMSempθ essentially unusable for

model fit assessment.

The RMSmiθ is by definition equal to zero if Σ = Σ(θ) in the population or – if

replaced by their empirical counterparts – S = Σ̂. However, in this case the RMSθ is

identical to the (S)RMR as defined in Equation (2.14).

We therefore conclude that the RMSθ is not a useful fit index unless implemented

such that it equals the (S)RMR in which both indices coincide.

The root mean square error of approximation (RMSEA)

The RMSEA is based on two related insights. First, the overall lack of fit between

the population indicator covariance matrix Σ and the estimated model-implied

indicator covariance matrix Σ̂ can be decomposed into an error of approximation and

an error of estimation (Browne and Cudeck, 1992, p. 236f.). The error of

approximation is captured by the discrepancy F (Σ, Σ̃) – the so-called discrepancy

due to approximation (Browne and Cudeck, 1992, p. 236) –, where Σ̃ = Σ(θ0) is the

model-implied indicator covariance matrix that would theoretically yield the best fit

to Σ; this is, the discrepancy that were to arise if the model were fitted using the

population covariance matrix. Hence, if the discrepancy F (Σ, Σ̃) is non-zero, no θ

exists such that Σ = Σ(θ). Of course, both Σ and Σ̃ are non-stochastic unknown

matrices. The error of estimation refers to the difference between Σ̃ – the best

possible matrix closest to Σ – and the estimated model-implied indicator covariance

matrix Σ̂ = Σ(θ̂) obtained using the sample covariance matrix S. The error of

estimation is captured by the discrepancy F (Σ̃, Σ̂) which is referred to as the

discrepancy due to estimation (Browne and Cudeck, 1992, p. 236). Formally:

F (Σ, Σ̂) = F (Σ, Σ̃) + F (Σ̃, Σ̂) (2.27)
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The second insight refers to the χ2 test statistic (Equation (2.12)). The observed

discrepancy F (S, Σ̂) asymptotically either follows a central – if Σ = Σ(θ) – or

noncentral – if Σ 6= Σ(θ) – χ2 distribution with noncentrality parameter

λ = (N − 1) · F (Σ, Σ̃). Using Browne and Cudeck (1992), Proposition 1, an estimate

of F (Σ, Σ̃) and λ̂ is given by:

F̂ = max
(
F (S, Σ̂)− df

N − 1; 0
)

and λ̂ = max
(
(N − 1) · F (S, Σ̂) + df ; 0

)
(2.28)

The RMSEA is the root mean square of the error of approximation per degree of

freedom (Steiger and Lind, 1980; Browne and Cudeck, 1992). Using F̂ as an estimate

of F (S, Σ̂), the estimated RMSEA is given by:

RMSEA =

√√√√ F̂

df
(2.29)

To obtain the RMSEA, an appropriate fit or distance function is required. For the

common factor model FML is usually the best choice. For the composite model

estimated by a composite-based approach such as PLS, we use the same argument as

for the central χ2 distribution from Section 2.4.1. Plugging θ̂PLS into F (S, Σ̂)

approximately minimizes the distance measure. Consequently,

χ2
PLS = (N − 1) ·F (S, Σ̂PLS) is expected to follow a noncentral chi square distribution

if the model is misspecified with respect to the population, i.e., F (Σ, Σ̃) > 0.

To illustrate, we conducted a small Monte Carlo simulation. The simulation setup is

similar to Section 2.4.1. Samples of size N = {100, 200, 500, 1000} for two DGPs with

4 or 6 composites are drawn. Each composite is build by 3 indicators with randomly

assigned unscaled weights of 1, 2, or 3. Intra-block indicator correlations are all equal

to 0.5. All composites are correlated with a correlation of 0.3.

For each DGP and sample size, M = 5000 data sets are drawn. For each data set a

misspecified model was estimated. As misspecification we imposed a path model on

the relationship between composites. Since all composites are correlated with a

correlation of 0.3 in the DGP, restricting certain paths to zero introduces an error of

approximation. The path models are given in Figure 2.2.15

15For our purpose the nature of the misspecification is irrelevant, as we only require the model
to exhibit some kind of misspecification. Alternative misspecifiations such as a different path model,
falsely assigned indicators, falsely omitting a composite etc. led to virtually identical results.
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Figure 2.2: Misspecified models

In each case we expect FML(S,Σ(θ̂PLS)) to be systematically non-zero and χ2
PLS to

follow a noncentral χ2 distribution with estimated noncentralitiy parameter

λ̂ = 1
M

M∑
i=1

(χ2
PLS;i − dfi) (2.30)

and degrees of freedom computed according to Equation (2.7). Figure 2.3 illustrates

that – similar to Figure 2.1 – the approximation is extremely accurate even in small

samples.

2.4.2 Measures of relative fit

In contrast to absolute fit indices, relative fit indices evaluate the goodness of fit of a

postulated model relative to a competing model. Let M0 denote the null, Mp the

postulated, Mk an alternative, and M s the saturated model. We assume that models

are nested, i.e., M0 ⊂Mp ⊂Mk ⊂M s. For each model corresponding distance

measures F 0, F k, F p, and F s with degrees of freedom df0, dfk, dfp, and dfs are

available. Of all possible models, the saturated model is the least restricted model

possible in a sense that there are as many model parameters as there are off-diagonal

elements in S; hence, only the identifying restrictions are placed on the model and no

testable restrictions remain, i.e., F s = 0 and dfs = 0. Likewise the “suitably framed

null model” (Bentler and Bonett, 1980, p. 595) is the most restricted theoretically

defensible model. Moreover, we assume that the alternative model is more restricted

than the postulated model. Hence: df0 > dfk > dfp > dfs = 0 and – if evaluated with

the same distance metric – F 0 ≥ F k ≥ F p ≥ F s = 0.

Note that the null model does not necessarily have to be the most restricted model

possible but rather “...one that would reasonably be considered in practice” (Bentler,

1990, p. 239). In the context of the latent variable model three such null models have
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Figure 2.3: Histogramms of the simulated χ2 statistic and theoretical noncentral χ2

distribution.

been suggested. The first null model was referred to as “no model at all” by Jöreskog

and Sörbom (1993, p. 122). The “model-implied” indicator covariance matrix is

accordingly equal to the null matrix:

Σ(θ) = 0 (2.31)

Such a “model” is unlikely to ever qualify as theoretically defensible in practice and

has, to the best of our knowledge, not been used in practice as a realistic null model.

The second null model, commonly called the independence model (e.g., Bentler and

Bonett, 1980, p. 596), restricts all indicator covariances to zero, yielding a

model-implied indicator covariance equal to the identity matrix:16

Σ(θ) = I (2.32)
16We assume standardized indicators again.
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This is the most common operationalization of the null model. The third null model

is called the “general” null model (Bentler and Bonett, 1980, p. 596). Such a model

would be similar to the independence model with selected indicator covariances left

unrestricted.

For the composite model, we suggest a modified independence model as a suitable

benchmark null model that accounts for the fact that, by assumption of the

composite model, indicators are allowed to freely covary within blocks. Hence, the

model-implied indicator covariance matrix of the modified independence model is

given by the the block diagonal matrix

Σ(θ) = diag(S1,S2, . . . ,SJ) , (2.33)

where Sj is the (Kj ×Kj) empirical covariance matrix of the indicators belonging to

composite cj.

The normed fit index (NFI)

The index first appeared in Bentler and Bonett (1980) and is defined as:

NFI = F 0 − F p

F 0 or alternatively NFIkp = F k − F p

F 0 (2.34)

The NFI measures the increase in fit relative to the fit of the null mode (NFI) or an

alternative model (NFIkp). The index can take values between 0 and 1 with 0

indicating no improvement in fit over the null (or alternative) model. A value of 1 of

the NFI implies perfect fit of the postulated model, i.e. F p = 0. Its intuition is

directly applicable to the composite model.

The nonnormed fit index (NNFI)

The NNFI first appeared in Bentler and Bonett (1980) by that name. The index is

identical to an index proposed by Tucker and Lewis (1973) which is commonly

labeled the Tucker-Lewis index (TLI). The NNFI is defined as:

NNFI =
F 0

df0
− F p

dfp

F 0

df0
− 1

N−1
or alternatively NNFIkp =

Fk

dfk
− F p

dfp

F 0

df0
− 1

N−1
(2.35)

The NNFI measures the discrepancy between the fit of two competing models per

degree of freedom relative to the null model.
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The construction logic of the index is based on properties that are directly related to

the (noncentral) χ2 distributed test statistic; the denominator F 0/df0− 1/(N − 1), for

instance, can be rewritten as (N − 1)−1df−1
0 (χ2

0 − df0). When rewriting the numerator

as well, the term (N − 1)−1df−1
0 cancels and χ2

0 − df0 is simply the difference between

the χ2
0 test statistic of the null model and its expected value E(χ2

0) = df0 which, in

turn, is used as an estimate of the noncentrality parameter λ. The same applies to

other closely related χ2-dependent indices such as the modified NNFI (Bollen, 1986),

the relative noncentrality index (RNI; Bentler, 1990), and the incremental fit index

(IFI; Bollen, 1989a). Consequently, the NNFI – and related χ2-based indices – may

be used for composite model estimated by PLS, as long as the alternative test

statistic χ2
PLS exhibits the same properties as χ2 test statistic based on ML.

The comparative fit index (CFI)

The CFI was first proposed by Bentler (1990). It is defined as:

CFI = 1− max(0, (N − 1) · F p − dfp)
max(0, (N − 1) · F p − dfp, (N − 1) · F 0 − df0) (2.36)

Like the RMSEA, the CFI is a non-centrality based index. It measures the increase in

fit – that is, the reduction in non-centrality – of the postulated model relative to the

fit of the null or another alternative model. The CFI is a normed index with a value

of 1 indicating the best fit. Like the NNFI, its construction rational is based on the

noncentrality of the χ2 statistic under violation of the null hypothesis of perfect fit.

Its intuition therefore does apply to the composite model estimated by a

composite-based estimator, provided χ2
PLS exhibits the same properties as the χ2 test

statistic based on ML.

Note, the relative fit indices discussed have originally been proposed using the value

of the χ2 test statistic from Equation (2.12) but have been redefined to be a function

of the distance function F (e.g., Bollen, 1986). We use this notation to emphasize

that the relative indices can be computed for arbitrary fitting or distance functions

although the construction rational of, for instance, the NNFI or the CFI is inherently

tied to properities of the χ2 test statistic and its corresponding noncentral χ2

distribution.
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2.4.3 Fit indices and cut-off

Once a particular value for a given fit index and model has been obtained, researchers

want to know whether the value can be considered as evidencing “sufficiently good

fit” or “bad fit”. To classify the magnitude of a given fit index such as the RMSEA or

the SRMR as “sufficiently good”, conventional recommendations rely on

one-size-fits-all cut-offs that essentially dichotomize the continuum of possible fit

values into an acceptable/non-acceptable region, similar to the hypothesis testing

framework. While certainly appealing for practitioners struggling to decide how to

handle a given fit index value, the use of cut-offs as the decision reference suffers from

statistical, conceptual, and logical shortcomings. To understand these issues it helps

to remember why fit indices are used in the first place and how current cut-off

recommendation have historically been derived.

Using fit indices with the intention to statistically assess the goodness/badness of the

postulated model is implicitly based on the idea that an unknown interval [0, c] of fit

values exists that indicates “acceptable misspecification” (approximate fit). Whereas

the lower bound of the interval has a clear interpretation – perfect fit in the SEM

sense –, the upper bound, and thus the size of the interval, is difficult to determine.

In fact, unless the distribution D of the entirety of misspecifications that could

theoretically be detected by a given fit index is known, c can only be determined

based on domain knowledge and subjective judgment. If the distribution D was

known, researchers could compare the fit index value obtained based on the

postulated model to a quantile of D in order to judge whether a given index

constitutes a comparatively small (if the fit value is smaller than, say, the 5% quantile

of D) or large misspecification (e.g., fit value > 95% quantile). Clearly, there is also

subjectivity involved when determining a reference quantile below which fit index

values are taken to indicate a small misspecification; however, the decision rule is

objective since D is fix and logically in line with the idea of approximate fit. Yet,

since D will never be known, researchers face the conundrum of determining c

without knowing the distribution D.

But are common cut-off values such as “SRMR < 0.08” not the upper bound c we are

looking for? Considering how these cut-offs historically arose, the answer is no. The

popularity of most common cut-off recommendations can be traced back to Hu and

Bentler (1999)’s seminal work. The authors essentially applied the hypothesis testing
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method box to determine optimal cut-offs that balance the type I error rate – falsely

rejecting the null hypothesis when it is true – and the type II error rate – falsely

“accepting” the null hypothesis when it is false. The idea of Hu and Bentler (1999)

was to determine the type I error rate for a range of fit indices with respect to several

model complexities, sample sizes and cut-offs. The type II error rate for the same fit

indices was determined with respect to models of varying magnitude of

misspecification using different sample sizes and cut-offs. Accordingly, the type I

error rate was determined as the α% quantile of the simulated distribution of the fit

index under the hypothesis of perfect fit. Hence, for a goodness-of-fit measure, cα is

interpreted in accordance with the interpretation of a quantile as the value that

subsumes α% of the probability mass to its left. Likewise, the type II error rate is the

share of misspecified models that have not been rejected. There are at least three

issues with this approach (e.g. Marsh et al., 2004; Sivo et al., 2006; Greiff and Heene,

2017; Niemand and Mai, 2018)

First, the distribution of the fit indices is influenced by factors other than the degree

of misspecification they attempt to quantify. The major factors identified as

influencing the distribution are sample size, number of constructs and number of

indicators (i.e., model complexity), the distribution of the data, and the sizes of the

population parameters – see e.g., Yuan (2005) or Niemand and Mai (2018) for an

overview. In their paper, Hu and Bentler (1999) were careful not to generalize their

results beyond the specific simulation design noting that “...it is difficult to designate

a specific cut-off value for each fit index because it does not work equally well with

various conditions”. Practically, however, – despite mantra like calls to the opposite –

cut-offs are de facto interpreted as universal rules.

Second, acknowledging sensibility of cut-offs to factors other than the magnitude of

misspecification, proponents argue that the issue is not the cut-off value per se but

how it is used and interpreted. Clearly, mindless applications of cut-off rules (of

thumb) will never constitute good scientific practice, however, even if applied

“carefully” the actual values Hu and Bentler (1999) proposed are partly based on a

flawed logic as illustrated by Marsh et al. (2004). The authors illustrate that the

cut-off values derived by Hu and Bentler (1999) heavily hinge on so-called

acceptable-misspecfied models – essentially models that are misspecified but should

have been classified as acceptable according to the cut-off the authors themselves
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propose. In other words, the “optimal cut-offs” found by Hu and Bentler (1999) may,

in fact, not be optimal when applied to a real-world situation.

Third, the concept of approximate fit implicitly or explicitly comprises the idea of the

statistical model as an approximation to reality. The model is accepted as wrong and

the hypothesis of the perfect fit is rejected from the outset. Against this background,

even if the cut-offs were based on a sound statistical procedure and independent of

factors other than the misspecification they attempt to quantify, determining a

cut-off with reference to a critical quantile of the distribution of an index under

perfect fit contradicts the very concept of approximate fit. Hence, using a decision

criterion obtained under the assumption of perfect fit for an index whose purpose is

to be applied precisely when perfect fit does not hold, seems logically incoherent. In

fact, Marsh et al. (2004) show that in order to correctly distinguish between correctly

and incorrectly specified models, a conventional hypothesis test based on the χ2 test

statistic, as discussed next, always outperforms the index plus cut-off decision

strategy.

2.5 Model fit tests

Model fit tests assess the null hypothesis of perfect (exact) fit, i.e., H0 : F = 0.

Hence, tests are by construction agnostic to the concept of approximate fit. By far

the most common statistical test to empirically assess exact model fit in the context

of a structural equation model estimated by a covariance-based estimator such as ML

is the χ2 test (e.g., Jöreskog, 1969) based on the χ2 test statistic (Equation 2.12).

The test typically involves the ML fit function FML (Equation 2.9) although other fit

or distance measures, given a set of assumptions hold, may be used as well (Bollen,

1989b). Since Σ and Σ(θ) are unknown, the estimated fit function F̂ = F (S, Σ̂) is

used, where Σ̂ = Σ(θ̂) represents the estimated model-implied indicator covariance

matrix of the postulated model based on the empirical indicator covariance matrix S

– which is assumed to be representative of the population indicator covariance matrix

Σ.17 As discussed in Section 2.4.1, using F̂ = FML(S,Σ(θ̂PLS)) asymptotically

minimizes the ML fit function. The resulting test statistic is thus approximately χ2

distributed under correctness of the null hypothesis – this is, if observations are
17Mathematically speaking we must have plimS = Σ.
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independent draws from a multivariate normal distribution. Hence, a simple χ2 test

could be used to test exact model fit of composite models estimated by PLS.

For a structural equation model estimated using PLS, Dijkstra and Henseler (2015a)

introduced the bootstrap-based test for exact overall model fit. Similarly to the χ2

test, the bootstrap-based test utilizes a discrepancy function capturing the distance

between S and Σ(θ̂) to infer how well Σ and Σ(θ) fit in the population. Dijkstra and

Henseler (2015a) use the squared Euclidian distance dL (Equation (2.10)) and the

geodesic distance (2.11). In addition, Schuberth et al. (2018a) propose to use the

SRMR. In principal, several distance measures qualify.

Instead of relying on the χ2 as the reference distribution, the distribution of the test

statistic under the null is obtained via bootstrap. Bootstrap based on the original

sample X is unfeasible since S −Σ(θ) does not satisfy the null hypothesis. To obtain

the distribution under the null hypothesis, Bollen and Stine (1992) propose to use a

general transformation procedure based on the work of Beran and Srivastava (1985).

Instead of using X directly, bootstrap is based on the transformed data:

X∗ = XS−
1
2 Σ̂

1
2 (2.37)

Note that now by definition:

S∗ = E(X ′∗X∗) = Σ̂ and consequently S∗ − Σ̂ = 0.

2.6 Discussion

Model fit assessment is widely recognized as crucial part in quantitative causal

research. In the context of the latent variable model estimated by e.g., maximum

likelihood (ML), the amount of literature written on the subject is huge. In contrast,

for the composite model estimated by a composite-based approach such as the partial

least squares algorithm (PLS), research is limited with some authors (e.g., Hair et al.,

2019a,b) even questioning its necessity for models estimated by PLS. We belief that

the controversy surrounding model fit assessment, in particular in the context models

estimated by PLS, is due to different apprehensions of the concepts, assumptions and

terminology surrounding the issue of model fit assessment in general.

To clarify, we thoroughly discussed the concept of model fit in SEM and argued that

fit assessment is both a question of what kind of fit a particular fit metric assesses –
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fit in the SEM sense, regression fit or predictive fit – and what kind of fit is called for

given the scientific goal of the researcher. If the goal is to answer any kind of

inferential, causal or mechanistic question, model fit assessment in the SEM sense is

the only known way to obtain statistical evidence with respect to the validity of

answers to such questions. If, on the other hand, prediction is the goal, model fit in

the SEM sense is virtually irrelevant, if not a nuisance.

Fit in the SEM sense is traditionally assessed using a null hypothesis significance test

or a range of fit indices. Both are discussed in detail against the background of the

composite model estimated by PLS. We find that the fit indices discussed in this

paper are, in theory, indeed applicable to the composite model estimated by PLS. For

the root mean square residual (RMR), the standardized root mean square residual

(SRMR) and the normed fit index (NFI) application and interpretation of the index

values is analogous to traditional SEM; however, to better reflect the restrictions of

the composite model, we suggest to divide by the number of off-diagonal elements of

the empirical indicator covariance matrix, excluding the number of non-redundant

intra-block indicator covariances when computing the RMR and SRMR. In contrast

to RMR, SRMR, and NFI, the root mean square error of approximation (RMSEA),

the nonnormed fit index (NNFI), and the comparative fit index (CFI) rely on the χ2

test statistic and its properties. For composite models estimated by PLS no χ2

statistic is available. To this end, we suggest a slightly modified χ2 test statistic

which is based on the ML fit function with PLS estimates instead of ML estimates. A

small simulation confirmed that the test statistic approximately follows a χ2

distribution with degrees of freedom equal to the number of non-redundant elements

of the empirical indicator covariance matrix minus the number of model parameters.

Likewise, for misspecified models the test statistic approximately follows a noncentral

χ2 distribution with estimated noncentrality parameter

λ̂ = max
(
(N − 1) · F (S, Σ̂) + df ; 0

)
.

Concerning the root mean square outer residual covariance (RMSθ) we showed that

the index is numerically identical to the SRMR, unless it is implemented in a way

that makes it inadequate for model fit assessment in the SEM sense. We therefore

recommend not to use the RMSθ unless it is computed identically to the SRMR.

With respect to the exact test of overall model fit, the bootstrap-based test suggested

by Dijkstra and Henseler (2015a) is available. Alternatively, a classical χ2 test based
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on the modified test statistic could be used. Whether a fully parametric theoretical

or a non-parametric bootstrap reference distribution is preferable largely depends on

how certain a researcher is with respect to the assumptions required for the χ2 test

statistic to indeed follow a χ2 distribution. In any case, the relevant hypothesis is

exact fit. Similarly, whether a rejection of the hypothesis of perfect fit therefore

necessarily implies that a given model should be discarded depends on whether a

researcher believes that a model can still be useful even if there is evidence against

perfect fit.

As usual results based on a Monte Carlo simulation using a particular design do not

automatically generalize; simulation-based findings are a piece of statistical evidence

whose informative value grows with similar evidence. However, in this particular

setup, results are indeed likely to generalize to other kinds of model setups and

misspecifications as long as observations are assumed to be independent draws from a

normal distribution. Under non-normality the χ2 test statistic generally does not

follow a χ2 distribution. Further research could investigate whether the modified χ2

test statistic based on the maximum likelihood fit function with PLS estimates

instead of maximum likelihood estimates behaves similarly to its ML sibling for

different kinds of non-normal data. Moreover, it would be interesting to learn,

whether common correction such as the well-known Satorra-Bentler correction for

non-normality (Satorra and Bentler, 2001) could be applied in this case.

Although, fit indices can be helpful, we remain skeptical regarding their current use,

in particular with respect to the pervasive use of cut-off values as decision criteria.

Clearly, cut-off values have great appeal for practitioners, as they essentially augment

a decision based on a continuous metric with undefined scale (the index) into a

binary test-like reject/not reject decision. Yet, their statistical and logical

shortcomings lead us to conclude that decisions based on cut-offs are, at best, rough

guesses that lack a statistical basis.

We use the PLS estimator because it features most prominently in the literature on

composite models, however, we stress that in principal any consistent estimator may

be used to estimate the composite model. Moreover the modified test statistic is

likely to behave similar for any consistent and asymptotically normally distributed

estimator. In fact, we used alternative estimators such as generalized structured

component analysis (GSCA) or several of Kettenring (1971)’s algorithms and
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obtained similar results. It seems reasonable to conclude that the choice of estimator

is of least importance when assessing model fit. In fact, the choice of the appropriate

estimator for model parameters is determined by the purpose of the model and the

resulting demands on the estimators’ statistical properties. If the model is used to

derive inferential or causal statements, possibly involving fit assessment, estimators

are expected to be unbiased or consistent for all model parameters. Ideally, the

estimator is also efficient in a sense that the information (sample) based upon which

estimates are derived is used most effectively thereby maximizing estimation

precision. If out-of-sample prediction is at the center of the researchers interest

statistical properties such as unbiasedness and consistency for a population parameter

become less important, or even a nuisance, as the sole objective is to minimize a loss

function such as the RMSE to maximize the out-of-sample predictive quality of the

model – the end justifies the means. In fact, population parameter estimates are

essentially just by-products of the loss function minimization in this case. Hence,

estimates may happen to be consistent estimates for their population parameter

counterpart, however, it is not a requirement as inferential or causal statements are

not to be made.
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Chapter 3

Measurement error correlation

within blocks of indicators in

consistent partial least squares:

Issues and remedies

3.1 Introduction 1

Structural equation modeling (SEM) is a versatile, widely used analytical techniques

to statistically examine relationships between unobserved constructs. In SEM

constructs are predominantly operationalized by latent variables; so-called common

factors assumed to be measured by a set of observable indicators within the

measurement model framework.

To estimate the measurement model parameters and the postulated structural

relationship between latent variables, two conceptually different estimation

approaches have been established: covariance-based (CB) estimation and
1This chapter is based on a peer-reviewed, published article written with Florian Schuberth and

Theo Dijkstra. Compared to the published article, I rewrote parts of the introduction and updated
the terminology to reflect my improved understanding since the paper was published.
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variance-based (VB) estimation. CB parameter estimates are obtained by minimizing

a distance measure capturing the discrepancy between the empirical indicator

covariance matrix and its model-implied counterpart. Usually, maximum likelihood is

used for this purpose (e.g., Jöreskog, 1978; Bollen, 1989b). VB estimators, on the

other hand, use weighted linear combinations of the indicators to represent or

approximate the constructs; subsequently, model parameters are estimated – e.g., by

means of linear regressions – based on these linear combinations.

Among VB estimators, the partial least squares path modeling (PLS) algorithm is

arguably most wide-spread. It has been used for research in numerous fields,

including strategic management (e.g., Hair et al., 2012a), marketing (e.g., Hair et al.,

2012b), information systems (e.g., Ringle et al., 2012), tourism research (e.g., Müller

et al., 2018), and internet research (e.g., Chiang and Hsiao, 2015; Yan et al., 2017;

Wu and Li, 2018). For a recent overview of the methodological research on PLS see

e.g, Khan et al. (2019).

However, despite its popularity, PLS has been subject to intense debate in recent

years (see e.g., Rigdon et al., 2017, for a recent stocktaking of the debate) that helped

show its limitations. Most notably, the PLS algorithm is only consistent at large (e.g.,

Dijkstra, 1981; Schneeweiss, 1993), hence yielding generally inconsistent parameter

estimates for common factor models. In fact, unless all measurement errors are zero

in the population, linear combinations of indicators, i.e. composites, cannot generally

be expected to be a perfect substitute for the underlying common factor. As a

consequence, the probability limit of the estimated correlation between composites is

smaller than the population correlation between their corresponding common factors.

Hence, path coefficients and factor loadings based on estimated composite

correlations are inconsistent estimates for their underlying latent variable counterpart

(Dijkstra and Henseler, 2015a).

To correct for these shortcomings, Dijkstra and Henseler (2015a) introduced

consistent partial least squares (PLSc). Like PLS, PLSc uses the PLS algorithm to

obtain composites. However, instead of using the raw composite-indicator and

composite-composite correlations to obtain parameter estimates, PLSc applies

adequate corrections yielding consistent and asymptotically normally distributed

parameter estimates for common factor models in line with Wold (1975)’s basic

design (Dijkstra, 1981; Dijkstra and Henseler, 2015a,b). As one of the defining
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assumptions of the basic design, uncorrelated measurement errors within and across

blocks of indicators are thus necessary in theory for PLSc to maintain consistency.

Practically, however, there are a number of cases in empirical research in which

uncorrelatedness of measurement errors may not hold (e.g., Gerbing and Anderson,

1984; Rubio and Gillespie, 1995; Chin et al., 2003; Saris and Aalberts, 2003; Henseler

and Chin, 2010; Brown, 2015). Depending on the magnitude of the unobserved

correlation between measurement errors, the number of indicators, and their quality,

ignoring measurement error correlations leads to inconsistent structural parameter

estimates and, therefore, to potentially erroneous conclusions (e.g., Podsakoff et al.,

2012; Westfall et al., 2012; Gu et al., 2017).

Different remedies have been proposed to prevent correlated measurement errors

through a careful study design (e.g., MacKenzie and Podsakoff, 2012; Podsakoff et al.,

2012). However, in practice, aspects such as study design, item quality, and wording

are often beyond the researchers’ control, essentially leaving modeling approaches as

the only alternative. Several researchers therefore suggest addressing the problem

indirectly, e.g., by means of bifactor models and associated hierarchical reliability

indices (e.g., McNeish, 2018). Others propose explicitly specifying the measurement

error correlation structure in the model (e.g., Rubio and Gillespie, 1995; Brown, 2015,

pp. 175 – 162) - although there is some controversy as to the conceptual justification

of such an approach (e.g., Landis et al., 2009; Hermida, 2015).

Against this background, we contribute to the literature by extending PLSc to yield

consistent parameter estimates for population models whose indicator blocks contain

a subset of correlated measurement errors. Based on an idea outlined in Dijkstra

(2013a) and mentioned in Dijkstra and Henseler (2015a), this is achieved by

modifying the calculation of the correction factors as defined by PLSc to include a

priori assumptions on the structure of the within-block measurement error

correlations.

The remainder of the paper is structured as follows: Section 3.2 briefly reviews the

PLS algorithm and its consistent version PLSc. Section 3.3 presents the

methodological contribution to obtain consistent and asymptotically normally

distributed parameter estimates if within-block measurement error correlation is

present. The design and results of a Monte Carlo simulation to assess the approach

are described in Sections 3.4 and 3.5. The paper closes with a discussion and an
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outline for potential future research in Section 3.6.

3.2 The partial least squares path modeling

algorithm

PLS was developed by Herman O. A. Wold for the analysis of high-dimensional data

in a low-structure environment but has been extended and modified in recent years to

accommodate a wide variety of analytical needs (e.g., Wold, 1975, 1982). PLS, which

may be regarded as similar to generalized canonical correlation analysis, is capable of

emulating several of Kettenring’s (1971) techniques for the canonical correlation

analysis of several sets of indicators (Tenenhaus et al., 2005).

The following section briefly reviews the notation and main aspects of the PLS

algorithm, PLSc, and their underlying model setup: the basic design.

Consider a model with J latent variables η1, η2,..., ηJ with unit variance related via a

set of structural equations and the existence of corresponding vectors of indicators

x1,x2,...,xJ ; indicators are defined as measurement error-prone manifestations of

their respective latent variable:

xj = λjηj + εj ∀j = 1,...,J , (3.1)

where the vector of loadings λj contains as many components as there are indicators

in xj. All variables involved are centered at their mean, and all second-order moments

are assumed to exist. The measurement errors εj are assumed to satisfy E(εj|ηj) = 0

such that the conditional mean of xj is given by λjηj. Furthermore, measurement

errors are taken as mutually uncorrelated within blocks and between blocks such that

the within-block measurement error covariance matrix Θjj ≡ E(εjε′j) is diagonal and

the measurement error covariance matrix across blocks Θij ≡ E(εiε′j) is zero. Based

on these assumptions, we have the following covariance matrices:

Σij ≡ E(xix′j) = ρijλiλ
′
j and (3.2)

Σjj ≡ E(xjx′j) = λjλ
′
j + Θjj , (3.3)

where ρij is the correlation between latent variables ηi and ηj. The correlation matrix

(ρij) will generally be positive definite. It can satisfy rank constraints on sub-matrices

as induced by (non-recursive) simultaneous equations for the latent variables
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(Dijkstra, 1981). In this paper, we work with recursive systems only, so each equation

for a latent variable is a regression equation.

3.2.1 Traditional partial least squares path modeling

In addition to the setup given above, assume that there are Kj column vectors of

standardized indicator observations of length N denoted by x1j,x2j,...,xKjj. For ease

of notation, all Kj indicators are stacked in the (N ×Kj) matrix Xj. In PLS, proxies

for each latent variable are built as the weighted sum of its related indicators. The

unknown weight vector wj is determined in an iterative three-step procedure.

At the outset, initial arbitrary outer weights ŵ(0)
j are chosen such that the unit

variance condition ŵ(0)′
j Sjjŵ

(0)
j = 1 holds, where the (Kj ×Kj) matrix Sjj is a

consistent estimate of the population correlation matrix Σjj.2 After initialization, the

iterative algorithm begins with Step 1, the outer estimation of ηj:

η̂
(h)
j = Xjŵ

(h)
j with ŵ

(h)′
j Sjjŵ

(h)
j = 1 ∀j = 1,...,J , (3.4)

where η̂(h)
j is the (N × 1) vector of outer estimates and ŵ(h)

j the (Kj × 1) estimated

weight vector. The superscript indicates the h-th iteration step. Since outer weights

are scaled, the outer estimates are scaled as well.

Based on the outer estimates from Step 1, so-called inner estimates of latent variable

ηj are computed according to the inner weighting scheme:

η̃
(h)
j =

J∑
i=1

e
(h)
ji η̂

(h)
i , (3.5)

where e(h)
ji = sign(ŵ(h)′

j Sjiŵ
(h)
i ) is the inner weight with plimSij = Σij.3 All inner

estimates η̃(h)
j are again scaled such that their variance is one.

In the third step of each iteration, new outer weights are calculated according to

mode A. For mode A, the new estimated outer weights, also known as correlation

weights, ŵ(h+1)
j are equal to the coefficients resulting from a sequence of univariate

2Throughout the iteration, the unit variance condition is maintained by using the scaling factor
(ŵ(h)′

j Sjjŵ
(h)
j )− 1

2 for the outer weights ŵ(h)
j in each iteration step h.

3The inner weight eji defines how the inner estimates are built. Three inner weighting schemes
are common: the centroid, the factorial, and the path weighting scheme. For linear structural models,
however, all schemes yield essentially the same results (Noonan and Wold, 1982) and therefore do not
affect our proposed approach. For the purpose of our simulation, we employed the centroid scheme.
For more details on the schemes, see e.g., Tenenhaus et al. (2005).
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ordinary least squares (OLS) regressions of Xj on η̃(h)
j .4 As a crucial result of mode

A, the following proportionality relation is obtained:

ŵ
(h+1)
j ∝

J∑
i=1

e
(h)
ij Sijŵ

(h)
i with ŵ

(h+1)′
j Sjjŵ

(h+1)
j = 1 . (3.6)

New outer weights ŵ(h+1)
j are checked for notable changes compared to the outer

weights from the previous iteration step ŵ(h)
j . If there is a significant change in the

weights, the algorithm continues by building new outer proxies based on the newly

obtained weights; otherwise, it stops. Assuming that the established model is correct,

it can be shown that the PLS algorithms will converge with a probability tending to

one as the sample size increases (Dijkstra, 1981). For smaller samples and

misspecified models, however, convergence may be an issue (Henseler and Chin, 2010).

The resulting weights satisfy Equation (3.6) with all superscripts removed. Moreover,

their probability limits satisfy the same equations, with Sij replaced by Σij. Thus,

the probability limits of the weights obtained by PLS and PLSc can be obtained by

applying them to the population indicator covariance matrix Σ. Notably, the proof of

numerical and probabilistic convergence does not require that the measurement errors

within blocks are uncorrelated. To see this, it is crucial to note, that the population

weights are unaffected of the precise nature of Σjj. Using the final weights ŵj and

taking probability limits on both sides of Equation (3.6), we have:

plim ŵj ∝ plim
J∑
i=1

eijSijŵi −→ wj ∝
J∑
i=1

eijΣijwi =
J∑
i=1

eijρijλiλ
′
jwi , (3.7)

where the last equality crucially assumes uncorrelated measurement errors across

blocks, i.e., Θij = 0, but not within blocks of indicators.5

Once convergence is reached, the resulting stable outer weights ŵj are used to build

the final proxy for the latent variables: η̂j = Xjŵj. Finally, factor loadings for each

block are obtained as the OLS solution of a sequence of regressions of Xj on η̂j.

Similarly, the path coefficients are the OLS estimates of the equations postulated by

the structural model.
4Only correlation weights are considered, as these were originally used by Dijkstra and Henseler

(2015a) to obtain consistent parameter estimates. However, consistent parameter estimates can be
also obtained from the weights calculated by mode B or mode C (Dijkstra, 1981, Chap.2 par. 5.2).
Moreover, weights obtained by mode A are generally more stable, since those from mode B (regression
weights) tend to suffer from multicollinearity. For an overview of outer weighting schemes and their
properties, see Dijkstra (1981).

5In fact, Equation (3.7) is not tied to using “converged” weights such as those obtained by PLS.
Dijkstra and Schermelleh-Engel (2014) for example discuss what they call “one-step” weight (essen-
tially weight obtained after one iteration). In theory, any weight vector obtained after an arbitrary
number of iterations (converged or not) will satisfy Equation (3.7).
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3.2.2 Consistent partial least squares

The principal idea of PLS is to build proxies as stand-ins for the latent variables and

subsequently estimate model parameters based on these proxies. Naturally, it cannot

be expected that these stand-ins perfectly reflect the underlying latent variables

unless all measurement errors are assumed to be zero in the population. As a

consequence, the probability limit of the estimated correlation between proxies is

smaller in absolute value than the population correlation between their corresponding

common factors. Hence, path coefficients and factor loadings based on estimated

proxy correlations are inconsistent estimates for their population counterpart. PLSc

addresses this shortcoming by consistently estimating the composite reliability and

subsequently correcting the correlations among the proxies for attenuation (Cohen

et al., 2003). Provided that each latent variable is connected to at least two

indicators, the population composite reliability of the population proxy η̄j as defined

in Dijkstra and Henseler (2015b) is given by:

ρA,j := (w′jwj)2 · c2
j , (3.8)

where cj :=
√
λ′jΣjjλj is the factor that relates population weights wj = plim ŵj to

their corresponding population loadings λj (Dijkstra, 1981; Dijkstra and Henseler,

2015a):

wj = λj√
λ′jΣjjλj

. (3.9)

It is crucial to note, that this relationship holds independent of the form of Σjj. To

see this, note that based on Equation (3.7), the population relation between weights

and loadings may simply be written as wj = c−1
j λj since

∑J
i=1 eijρijλ

′
iwi is a scalar.

Using the population normalization condition w′jΣjjwj = 1 now yields the

population value cj:

w′jΣjjwj = 1 (3.10)
λ′j
cj

Σjj
λj
cj

= 1 (3.11)

c2
j = λ′jΣjjλj . (3.12)

Consequently, population weights and the proportionality constant cj clearly vary

with Σjj, however the fundamental relationship given by Equation (3.7) is unaffected

by Σjj (and therefore also unaffected by potential within-block error correlation).
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To obtain the estimated correction factor ĉj, a variety of approaches are possible

(Dijkstra, 2013a). Usually, ĉj is chosen for block j such that the squared Euclidean

distance between the off-diagonal elements of the empirical covariance matrix Sjj and

the matrix (cjŵj)(cjŵj)′ is minimized. In this case, the squared estimated correction

factor is given by:

ĉ2
j =

ŵ′j(Sjj − diag(Sjj))ŵj

ŵ′j(ŵjŵ′j − diag(ŵjŵ′j))ŵj

. (3.13)

Since plim ŵj = wj and plimSjj = Σjj and since the functions involved are

continuous, the probability limit directly follows:

plim ĉ2
j =

w′j(Σjj − diag(Σjj))wj

w′j(wjw′j − diag(wjw′j))wj

(3.14)

= λ′jΣjjλj + λ′jΣjjλj ·
λ′j(Θjj − diag(Θjj))λj
λ′j(λjλ′j − diag(λjλ′j))λj

. (3.15)

The numerator of the last term in Equation (3.15) is zero when all the measurement

errors are uncorrelated in the population since, in this case, Θjj = diag(Θjj).

Assuming that Θjj is indeed a diagonal matrix, the resulting probability limit of the

squared estimated correction factor equals the squared correction factor from

Equation (3.12), i.e., the squared distortion of the population weights to population

loadings. Hence, consistent factor loading estimates and attenuation-corrected

correlations between common factors j and i are readily given by

λ̂j = ĉjŵj and ̂Cor(ηj, ηi) =
ŵ′jSjiŵi√
ρ̂A,j · ρ̂A,i

. (3.16)

Depending on the underlying structural model, consistent path coefficient estimates

may be obtained by OLS or two-staged least squares using the estimated

disattenuated correlation given above.

3.3 Correlated measurement errors

As suggested by Equation (3.15), the consistency of original PLSc was established

based on the assumptions of the basic design, including measurement errors that are

uncorrelated across and within blocks of indicators; i.e., Θjj is indeed a diagonal

matrix. In fact, if measurement errors in the population are correlated within blocks

of indicators, then original PLSc using the correction factor from Equation (3.13)

leads to inconsistent parameter estimates for both factor loadings and path
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coefficients, where the magnitude of the inconsistency is positively related to the

strength of the measurement error correlation and negatively affected by the

composite reliability. However, taking into account measurement errors is

straightforward provided that the correlation is confined to be within the indicator

blocks.

Given a presumption on the measurement error correlation structure, define the set of

uncorrelated measurement error pairs as Uj := {(k,m)|θkm;jj = 0}, where θkm;jj

denotes the population covariance between the k-th and m-th measurement error of

block j. An immediate extension to original PLSc is to minimize the squared

Euclidean distance between the off-diagonal elements of the empirical covariance

matrix Sjj and the matrix (cjŵj)(cjŵj)′ with respect to cj, including only those

elements contained in the set Uj:

ĉ2
j = argmin

c2
j

∑
k,m∈Uj

[
skm,jj − c2

j ŵkjŵmj
]2
, (3.17)

where ŵkj and ŵmj are the k-th and m-th elements of the weight vector ŵj and skm,jj
is the empirical covariance between the k-th and m-th indicators of block j.6

Provided that the set of uncorrelated measurement error pairs is nonempty,

minimization yields:

ĉ∗2j =

∑
k,m∈Uj

ŵkjŵmjskm,jj∑
k,m∈Uj

ŵ2
kjŵ

2
mj

. (3.18)

Because of the continuity of the functions involved, the consistency of the sample

moments, and the fact that the probability limits of the PLS weight vectors, as given

in Dijkstra (1981), are effectively independent of the assumed structure within the

blocks, the probability limit of the estimated adjusted correction factor is again equal

to λ′jΣjjλj. Indeed, replacing the terms in Equation (3.18) by their population
6The extension suggested here is not necessarily tied to using the Euclidean distance. As pointed

out by Dijkstra (2013a), weights could be introduced in Equation (3.17) to potentially reap efficiency
gains. More generally, functions of ratios may be minimized; however, the solution will require it-
erative procedures. In this paper, the simplest approach was chosen to keep the main focus on our
enhancement.
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counterparts yields:

plim ĉ∗2j =

∑
k,m∈Uj

wk,jwm,jσkm,jj∑
k,m∈Uj

w2
kjw

2
mj

(3.19)

= λ′jΣjjλj ·

∑
k,m∈Uj

λ2
kjλ

2
mj + ∑

k,m∈Uj

λkjλmjθkm;jj∑
k,m∈Uj

λ2
kjλ

2
mj

(3.20)

= λ′jΣjjλj . (3.21)

where the last term in Equation (3.20) is one since θkm;jj is zero by assumption for all

elements contained in Uj. As a consequence, consistent estimates for the

attenuation-corrected correlations between common factors, loadings, and path

coefficients may be obtained along the same lines described in the preceding section.

3.4 Monte Carlo simulation

To assess the efficacy of the modification, a Monte Carlo simulation is conducted.

To this end, six population models are investigated.7 The baseline population model

to be considered is illustrated in Figure 3.1.
7To draw a comprehensive picture of each modeling decision’s influence on the results, we examined

numerous alternative setups where we varied, for instance, the number of indicators, the number of
observations, the indicator block whose errors where correlated and the magnitude of different loadings.
Additionally, as a robustness check, we conducted the simulation using non-normally distributed
data as in Dijkstra and Henseler (2015a) and applied all of the alternative approaches to obtain the
correction factor described in Dijkstra (2013a). Here, we describe only those setups that we deem
most informative and most general, but note that none of the results of any other specifications were
contrary to the central findings of the paper at hand. The results for the alternative specifications or
the necessary R-files to reproduce these can be obtained from the authors upon request.
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x11 x21 x31 x12 x22 x32 x13 x23 x33

ε11 ε21 ε31 ε12 ε22 ε32 ε13 ε23 ε33

η1 η2 η3

ζ1 ζ2

λ11 = .65

λ21 = .8

λ31 λ12 = .7

λ22 = .85

λ32 = .8 λ13 = .8

λ23 = .75

λ33 = .8

γ1 = .6 β = .0

γ2 = .4

θ12;11

Figure 3.1: Baseline population model

The structural population model contains three latent variables:

η2 = γ1η1 + ζ1 (3.22)

η3 = γ2η1 + βη2 + ζ2, (3.23)

where γ1 = 0.6, γ2 = 0.4, β = 0 ,Var(ζ1) = 0.64, Var(ζ2) = 0.84, and

Cov(η1 · ζ1) = Cov(η1 · ζ2) = Cov(η2 · ζ2) = Cov(ζ1, ζ2) = 0. The structural model

remains identical across all six population models and is similar to structural models

typically applied in the literature (e.g., Paxton et al., 2001; Hwang et al., 2010).

For each population model, the exogenous latent variable η1 and the two endogenous

latent variables η2 and η3 are each connected to three indicators, the minimum

requirement for our approach to be feasible since the additional indicator ensures that

Uj 6= ∅ if a correlation between any two measurement errors is allowed. Loadings for

η2 and η3 are fixed at λ12 = 0.7, λ22 = 0.85, λ32 = 0.8 and λ13 = 0.8, λ23 = 0.75,

λ33 = 0.8, reflecting average indicator reliabilities. Furthermore, the first two loadings

of η1 are set to λ11 = 0.65 and λ21 = 0.8, respectively. To investigate how different

composite reliabilities affect parameter estimates, both the number of indicators per

block and the size of the loadings may be varied. Here, we chose the latter by varying

λ31 within a range of 0.5 to 0.9 in steps of 0.2.

All measurement errors (εkj) have a mean of zero and are uncorrelated across and

within blocks except for the first and the second measurement errors of the first

indicator block: θ12;11 =
√

0.360 · 0.578 · ρ12;11, where ρ12;11 denotes the correlation
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between ε11 and ε21. To assess how the strength of the correlation affects parameter

estimates, we include a case with comparatively low (ρ12;11 = 0.1) and high

correlation (ρ12;11 = 0.6).

The simulation is conducted in the statistical software environment R (R Core Team,

2017). The datasets for each of the six resulting population models (= 3 different

loading magnitudes × 2 different measurement error correlations) are drawn

according to the following baseline population indicator correlation matrix using the

MASS package (Venables and Ripley, 2002). Samples of size N = 100, 200, and 1000

are drawn from a multivariate normal distribution with the mean of each indicator

set to zero and the covariance matrix displayed in Equation (3.24).

Σ =



x11 x21 x31 x12 x22 x32 x13 x23 x33

1.00 0.52 + θ12;11 0.65 · λ31 0.27 0.33 0.31 0.21 0.20 0.21

1.00 0.80 · λ31 0.34 0.41 0.38 0.26 0.24 0.26

1.00 0.21 0.26 0.24 0.16 0.15 0.16

1.00 0.60 0.56 0.13 0.13 0.13

1.00 0.68 0.16 0.15 0.16

1.00 0.15 0.14 0.15

1.00 0.60 0.64

1.00 0.60

1.00



. (3.24)

The number of replications per population model is set to 1000, resulting in a total of

18,000 datasets (6 population models × 3 sample sizes × 1,000 replications).

To estimate the underlying population parameters for each data set, two models were

specified. The first model M1 correctly reflects the corresponding underlying

population model in terms of the structural and the measurement model but does not

explicitly account for the correlation between the measurement errors ε11 and ε21.

Here, estimation by traditional PLSc is expected to yield estimates that

systematically deviate from their corresponding population values. The second model

M2 is similar to the first model but acknowledges the measurement error correlation

as present in the population models. Estimation is performed using our contributed

modification. To this end, we use the MoMpoly function provided by the MoMpoly

package (Schuberth et al., 2017), which implements the procedure as described in this
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paper.8 Here, the enhanced procedure is expected to yield estimates close to the

corresponding population parameters. However, this is likely to come at the cost of a

loss in precision, as the calculation of the correction factor is based on less

information. In addition to the estimations based on the simulated datasets, we

retrieve the parameters for each population model using the population covariance

matrix as input. This serves to verify Fisher consistency, i.e., whether a given

estimator is in fact able to yield population parameters if supplied by the population

covariance matrix.

To compare the estimates across the different designs, two common quality measures

are considered: the estimated bias and the root mean squared error (RMSE). The

bias is estimated as

B̂ias = 1
M

M∑
i=1

(ψ̂i − ψ) , (3.25)

where ψ denotes a generic population parameter and ψ̂ is its corresponding estimate

for a given model and sample size. The number of elements M is equal to the number

of replications corrected for the number of Heywood cases and outliers.9 The latter is

defined as all estimates larger than the median +/− 3 times the interquartile range.

Consistency of our modification is essentially achieved by discarding information.

Hence, finite sample comparisons between modified PLSc and original PLSc should

take the expected trade-off between bias and variability into account. A

well-established measure in this respect is the (estimated) RMSE given by:

R̂MSE =

√√√√ 1
M

M∑
i=1

(ψ̂i − ψ)2 . (3.26)

The population RMSE essentially combines standard deviation and bias. For an

unbiased estimator, it equals to the standard deviation.

3.5 Results

Below, we present the results of the simulation study. We report the results for the

path coefficients γ1, γ2, and β and the factor loadings λ21 and λ31 of the indicator
8The MoMpoly package is currently not on the Comprehensive R Archive Network. To replicate

the results, a development version is available upon request.
9Heywood cases in PLSc may occur for three reasons: (i) the attenuation-corrected or uncorrected

estimated covariance matrix between proxies is not semi-positive definite, (ii) standardized absolute
loading estimates are larger than one, and (iii) the PLS algorithm has not converged.
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block affected by measurement error correlation. In addition, the share of Heywood

cases and the share of outliers are given for each setup. Omission of the other

loadings is justified because the results for λ11 are virtually identical to those of λ21

and λ31, while the loadings of those indicator blocks whose measurement errors are

assumed to be uncorrelated are by construction unaffected by the correlated

measurement errors of other blocks within the structural model.

Tables 3.1 and 3.2 summarize the results. Each major column contains the results for

a given population λ31 (i.e., 0.5, 0.7, 0.9) spread across two minor columns

representing the varying population measurement error correlation ρ12;11, where

ρ12;11 ∈ {0.1, 0.6}. Each major-minor combination is again split by model (i.e., model

M1 and model M2) to facilitate the comparison.

Table 3.1 displays the simulation results with respect to the estimated bias. Each row

displays the average deviation of the estimated parameters from their corresponding

population values split by sample size N = 100, 200, 1000 (across rows), population,

and estimated model (across columns). In the presence of unmodeled measurement

error correlation within a block of indicators, parameter estimates obtained by PLSc

using the traditional correction factor (model M1) systematically deviate on average

from their pre-specified population value, where the deviation per population model

and parameter is stable across sample sizes. This finding is in line with the fact that

original PLSc is indeed unable to retrieve population parameters when supplied with

the corresponding population indicator covariance matrix, as displayed at the bottom

of Table 3.1. Comparing results for a given sample size, the magnitude of the

deviations varies between virtually no bias (e.g., for λ31 = 0.9 and ρ12;11 = 0.1) and

values of up to 0.1 (e.g., for λ31 = 0.5 and ρ12;11 = 0.6), depending on the strength of

the measurement error correlation ρ12;11 and the size of the population loading λ31. In

this respect, the effect of the strength of the correlation between measurement errors

on the estimated bias is most pronounced with higher error correlations leading to

increased deviation.

Looking across columns for a given measurement error correlation, deviations vary

only marginally, although an increasing reliability – as induced by the higher loadings

– slightly decreases bias overall. These findings are again supported by the parameters

obtained based on the corresponding population covariance matrix shown in the last

four rows of Table 3.1: deviations for all parameters are lowest for estimates based on
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population models with a higher composite reliability, i.e., λ31 = 0.9.
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In contrast to Model M1, population model parameters are retrieved when errors are

taken into account along the lines described in Section 3.3 (model M2). The finite

sample results for model M2 are largely in line with these findings, although small

deviations are found; e.g., with values of 0.04 and 0.05, the estimated bias for path

coefficient γ2 is comparatively high.

For a given parameter, the sign of the deviations is relatively stable across sample

sizes, population model, and estimated model. The results show a small but almost

consistently negative deviation for γ1 and γ2, while β, the path coefficient connecting

the two endogenous latent variables η2 and η3, as well as the loadings λ21 and λ31 are

uniformly overestimated.

Overall, the difference between M1 and M2 is most pronounced for the estimated

loadings, while deviations for the path coefficients are generally small, with modified

PLSc outperforming original PLSc for large samples sizes and strong measurement

error correlation only.

Table 3.2 reports the results for the RMSE. Here, the picture is mixed. For medium

(λ31 = 0.7) and high (λ31 = 0.9) composite reliability, the RMSE for both loading and

path coefficient estimates is virtually identical for M1 and M2. In contrast to the

results in Table 3.1, the RMSE does not differ systematically with the magnitude of

the error correlation. For λ31 = 0.5, however, original PLSc is superior to the

modified approach in small samples (N = 100, 200). Only for a large sample size and

a high composite reliability does M2 produce strictly smaller RMSEs compared to the

values produced by M1.

Regarding Heywood cases and outliers, no significant difference between M1 and M2

is visible. While the number of Heywood cases is close to zero or is zero for large

samples, roughly 300 of the 1000 replications were discarded for a sample size of

N = 100. In each instance, Heywood cases occur because of the loading estimates

that are larger than one in absolute value.

3.6 Discussion and future research

Correlated measurement errors are a common feature in SEM. However, research

regarding issues and potential remedies related to measurement error correlations in

the context of VB estimation is scarce. While prior research papers (e.g., Charles,
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2005; Zimmerman, 2007; Padilla and Veprinsky, 2012; Raykov et al., 2014) have

discussed and addressed the issue of correlated measurement errors in the common

factor framework, none of these are based on a VB approach like PLS. Against this

background, we contribute to the ongoing development and assessment of VB

estimation approaches by filling two gaps in the literature.

First, this study enhanced PLSc to yield consistent parameter estimates for

population models whose indicator blocks contain a subset of correlated measurement

errors – provided that all correlated errors are accounted for in the estimated model.

Since PLS and PLSc are viable options for estimating interactions and other

nonlinear relationships between constructs (e.g., Dijkstra and Henseler, 2011; Dijkstra

and Schermelleh-Engel, 2014), our findings may help in advancing current approaches

in this field. Notable examples of this kind would be the product-indicator approach

(Chin et al., 2003) and the orthogonalizing approach (Henseler and Chin, 2010) –

both of which rely on indicators whose errors can safely be assumed to be correlated

for technical reasons. The proposed correction can help to make these two approaches

consistent.

Second, initial evidence on the implications of neglecting measurement error

correlation in PLSc was provided. To this end, a Monte Carlo simulation was

conducted to investigate the average difference between estimated parameters and

their respective population counterpart as well as the RMSE across a range of

pre-specified population models for original and modified PLSc.

For original PLSc, the simulation results showed a generally small yet persistent

average deviation between the estimated parameters and their corresponding

population value (estimated bias) across all population models if measurement error

correlation was neglected in the estimated model (model M1). For our proposed

approach (model M2), the average deviation between the estimated parameters and

their corresponding population value was virtually zero across all samples sizes,

indicating that the procedure works well in finite samples. These findings were in line

with theoretical considerations regarding the inconsistency of original PLSc when

measurement errors within indicator blocks are ignored. Overall, however, differences

were generally rather small. In particular, when efficiency is considered with respect

to the RMSE, M1 and M2 produce virtually identical results unless both the sample

size and the population error correlation are high and the population composite

57



reliability is low.

Regarding the magnitude of the estimated bias, we found a positive relation with the

strength of the measurement error correlation, while higher composite reliability can

be seen as a catalyst that essentially mitigates the effect of a given neglected

measurement error correlation. The latter is intuitively appealing since an increase in

composite reliability implies a decrease in attenuation of the latent variable

correlation. Hence, correction for attenuation and, by the same token, any

inconsistency caused by unmodeled measurement error correlation becomes less and

less influential. Regarding the RMSE, the relation is less clear, although the RMSE

for both the modified approach and original PLSc is higher when the population

measurement error is comparatively high.

These findings are regarded as initial evidence that – although our approach is

theoretically superior – original PLSc is comparatively robust with respect to

misspecification of the structure of the measurement error correlations within blocks

of indicators. Indeed, some preliminary simulation results by the authors confirm

that PLSc outperforms common CB estimators (including maximum likelihood) in

terms of bias if measurement error correlation within blocks of indicators is neglected.

However, a generalization of these findings requires separate attention.

The observed tendency of PLSc to produce Heywood cases (loadings larger than one

in absolute value), or incorrect signs of regression coefficients in PLS, should be

addressed. We chose the simplest method to demonstrate our modification, but more

robust approaches for estimating the correction factor may be applied. In fact, initial

Monte Carlo evidence confirms that using, e.g., Equation (11) of Dijkstra (2013a),

does indeed improve the share of admissible results by roughly 10 percentage points

without affecting any of the results described above. Whether these findings hold in

general, however, is an open question. Furthermore, we have developed a simple

approach – essentially empirically Bayes – where we use a posterior mean, median or

mode that does lie in the appropriate range to address these issues. The merits of

this approach, however, are not yet fully investigated (Dijkstra, 2018).

This study provided initial evidence on the implications of neglecting measurement

error correlation in terms of parameter accuracy. Clearly, this is of limited scope.

Future research should investigate the consequences of our modified approach for

model fit. Critics have repeatedly cautioned against pre-specifying measurement error
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correlations, claiming that these correlations often lack a substantive meaning, which

would in turn only obfuscate a meaningful interpretation of the specified model. In

fact, for CB estimators such as maximum likelihood freeing, one or more

measurement error correlations naturally leads to an increase in model fit, as the

estimated model-implied covariance matrix is closer to its empirical counterpart.

Similarly, common fit indices based on the distance between the estimated

model-implied and empirical covariance matrix - such as the standardized root mean

squared residual or the geodesic distance - generally indicate a better fit.

The focus of this paper was on within indicator block measurement error correlation

only. In the presence of unmodeled population measurement errors across blocks, the

modification does not yield consistent estimates because the proportionality between

weights and loadings as used to derive the correction factor no longer holds. As a

consequence, loadings, reliabilities, and path coefficients pertaining to the blocks

affected by measurement error correlation are generally inconsistent. Strategies to

address unmodeled population measurement errors across blocks within the

PLS/PLSc framework are thus needed.
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Chapter 4

Estimating and testing

second-order constructs using

partial least squares path modeling:

the case of composites of

composites

4.1 Introduction 1

Information systems (IS) research examines the impact of information technologies

(ITs) on society, e.g., organizations or individuals. Consequently, it must combine the

research paradigms of design and behavioral research. On the one hand, IS research

deals with human-made objects such as smart home services (Yang et al., 2017) or

transactional e-government services (Venkatesh et al., 2012), wherefore it can be

regarded as “a science of the artificial” (Simon, 1969). On the other hand, it
1This chapter is based on joint work with Florian Schuberth and Jörg Henseler. It forms the basis

for a paper with the same title. By the time this dissertation was submitted, the paper was under
review for publication in the journal Industrial Management & Data Systems.
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examines the interplay between such human-made objects and individuals in terms

of, e.g., perceived usefulness of a hospital information system (Park et al., 2015) or

the intention to use a particular smartphone app (Hew et al., 2015). Hence, it can

also be understood as a behavioral science.

To meet the demands of both design and behavioral sciences in empirical research,

structural equation modeling (SEM) is eminently suitable. SEM allows for

operationalizing unobserved concepts by a set of observable variables and to connect

these concepts as statistical entities in a structural model (Bollen, 1989b). In doing

so, complex relationships such as reciprocal (e.g., Dijkstra and Henseler, 2015a) or

nonlinear relationships (e.g., Klein and Moosbrugger, 2000; Dijkstra and

Schermelleh-Engel, 2014) among the concepts can be taken into account. Hence,

SEM allows researchers to statistically model and assess theories. Moreover, it can be

used to test these theories which makes it a favorable tool for disciplines whose main

objective is confirmatory research (e.g. Chin and Todd, 1995; Green and Inman, 2007;

Henseler et al., 2016a).

In SEM, two ways of operationalizing unobserved concepts have been established: the

latent variable model – also known as the common factor model/framework (e.g.,

Bollen, 1989b) – and the composite model (Fornell and Bookstein, 1982; Rigdon,

2016; Henseler, 2017; Schuberth et al., 2018a).

Within the latent variable model framework, the reflective measurement model is the

prevalent modeling approach in social and behavioral sciences; typically used to

operationalize unobserved concepts such as abilities or attitudes. Researcher using a

reflective measurement seek to explore whether the construct – i.e., a latent variable

representing the unobserved concept –, exists by testing whether the relationships

between its indicators – collected measures of that construct – are consistent with the

implied restrictions of the reflective measurement model framework. By virtue of this

type of operationalization, each indicator is modeled as a measurement-error-prone

consequence of the latent variable. Consequently, there is a presumed causal

relationship from the latent variable representing the unobserved concept on its

connected indicators. Potential unobserved concepts from the field of IS that have

been operationalized in a reflective measurement model are trust in mobile

applications (Hajiheydari and Ashkani, 2018) and purchase intention (Hsu, 2017).

Apart from the reflective measurement model, there is a highly controversial
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alternative measurement approach called the causal-formative measurement model

(e.g., Diamantopoulos, 2008; Edwards, 2011; Aguirre-Urreta et al., 2016; Bollen and

Diamantopoulos, 2017). Similar to the reflective measurement model, the concept in

a causal-formative measurement framework is modeled as a latent variable. However,

the presumed causality between indicators and the latent variable is reversed. Hence,

the latent variable is assumed to be causally affected by its connected indicators. The

remaining variance of the latent variable which is not explained by its indicators is

captured by an error term. The causal-formative measurement model requires at

least two paths to other variables as a sufficient condition for identification, e.g.,

additional indicators reflectively measuring other constructs affected by the

causal-formative construct (Bollen and Bauldry, 2011).

In the composite model, the relationship between the indicators and the construct is

modeled from the indicators to the construct. Unlike the causal-formative

measurement model, however, the relationship between the indicators and the

construct in a composite model is a definitorial rather than a causal one. Thus, an

aggregate, i.e., an emergent variable, of – typically measurement-error-free –

indicators is built to represent the underlying unobserved concept. Although the

composite model as a way of operationalizing unobserved concepts is not as prevalent

as the reflective measurement model in social and behavioral sciences, it is

acknowledged by researchers across several disciplines (Diamantopoulos, 2008; Grace

and Bollen, 2008; Rossiter, 2002). Examples from IS research are the unobserved

concepts organizational Internet use (Brock and Zhou, 2005) and IT infrastructure

capabilities (Benitez et al., 2018b). Therefore, unobserved concepts that are

conceived as constructions – i.e., a human-made object composed by its ingredients to

fulfill a certain purpose, a so-called artifact – (Henseler, 2017; Schuberth et al.,

2018a) are natural candidates for a composite operationalization.2 Compared to the

latent variable model, the composite operationalization is more pragmatic in a sense
2Besides using the composite model to operationalize artifacts, the current literature on composite-

based SEM argues that both common factors and composites can be used to operationalize unobserved
concepts of behavioral sciences (Rigdon, 2016; Rigdon et al., 2017, 2019). While we agree with the
idea in principal, in the following, we distinguish between unobserved concepts of behavioral sciences
and unobserved concepts of design science (artifacts) to motivate the use of composites.
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that it seeks to explore whether building an artifact is useful at all.3

Based on a given operationalization – latent variable or composite – two types of

estimation methods may be distinguished: (i) factor-based methods/estimators and

(ii) composite-based methods/estimators.4 While factor-based estimators such as

maximum likelihood minimize the discrepancy between the model-implied and the

empirical indicator covariance matrix to obtain model parameter estimates (e.g.,

Jöreskog, 1970a; Bollen, 1989b), composite-based estimators always use a composite,

i.e., a weighted sum of indicators as representation of a concept, and subsequently

retrieve model parameters based on these composites – typically by running a series

of regressions. The latter has important implications for interpretation; when the

composite used in the estimation represents a potentially error-prone proxy for an

underlying latent variable, parameters estimates based on regressions between proxies

are likely to be inconsistent estimates for their latent variable counterpart. In

contrast, regressions between composites representing composites in their own right,

i.e., entities in a composite model, generally yield consistent estimates for the

population path between these composites. It is therefore crucial to distinguish

between composites as entities of the composite model and composites as entities of a

composite-based estimator such as the partial least squares path modeling (PLS-PM)

algorithm (e.g., Wold, 1982; Lohmöller, 1989) which we use in this paper.

While the PLS-PM algorithm features most prominently among composite-based

methods, factor score regression using Bartlett, unit or regression weights (Devlieger

and Rosseel, 2017), principal components, techniques for the canonical correlation

analysis of several sets of indicators (Kettenring, 1971), and generalized structured

component analysis (GSCA; Hwang and Takane, 2004) constitute alternative

composite-based approaches.

In recent decades, hierarchical constructs – so-called higher-order constructs – have

gained popularity in SEM (e.g., Law and Wong, 1999; Johnson et al., 2012; Polites

et al., 2012). In contrast to unidimensional constructs assumed to represent one
3It is important to note here that the traditional nomenclature formative or formative measurement

has an ambiguous meaning as, although fundamentally different, both the composite model and the
(causal-)formative measurement model haven been referred to as formative measurement by different
researchers. Hence, we deliberately refrain from using these words to denote a composite model to
avoid any ambiguity.

4Factor-based methods are often called covariance-based methods as focal parameters are retrieved
such that the difference between the model-implied and the empirical indicator covariance matrix is
minimized. Composite-based methods are also called variance-based methods as focal parameters are
usually retrieved such that the explained variances are maximized.
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layered concepts, a higher-order construct contains several layered structures of

constructs and therefore involves several dimensions, i.e. represents a

multidimensional concept. Although, in general, any number of levels of abstraction

is conceivable, the overwhelming majority of empirical studies involving higher-order

constructs utilizes a second-order construct. In the remainder of this chapter, we

therefore focus on these types of higher-order constructs.

Figure 4.1 contrasts the four main types of second-order constructs commonly

encountered in applied research.

ξ2ξ1 ξ3

η

ζ1 ζ2 ζ3

x12x11 x13 x22x21 x23 x32x31 x33

ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33

(a) Common factor of common factors

c2c1 c3

η

ζ1 ζ2 ζ3

x12x11 x13 x22x21 x23 x32x31 x33

(b) Common factor of composites

ξ2ξ1 ξ3

C

x12x11 x13 x22x21 x23 x32x31 x33

ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33

(c) Composite of common factors

c2c1 c3

C

x12x11 x13 x22x21 x23 x32x31 x33

(d) Composite of composites

Figure 4.1: The four main types of second-order constructs

In line with common symbol usage, we use circles for latent variables or common

factors and hexagons for composites. Squares are observables. A second-order

construct modeled as a common factor measured by common factors is generally

referred to as reflective-reflective second-order construct (Figure 4.1a). This type of
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operationalization is typically used to model a multidimensional concept assumed to

be measured by several unobserved concepts each represented by a unidimensional

construct which is itself measured by a set of observable variables.

Reflective-reflective second-order constructs are preferably estimated by factor-based

estimators – typically maximum likelihood. Examples include job satisfaction

(Edwards, 2001) or a recent study by Nunkoo et al. (2017) investigating service

quality. A second-order construct modeled as a common factor measured by

composites as shown in Figure 4.1b is practically absent in empirical research (Becker

et al., 2012). Although such second-order constructs might be useful for item

parceling (Little et al., 2002, 2013) by using weights obtained by PLS-PM instead of

unit weights, this type of hierarchical construct is currently of least practical

relevance among the four types. In contrast, second-order constructs modeled as

composites build by common factors (Figure 4.1c) are frequently found and studied in

the literature (e.g., van Riel et al., 2017; Sarstedt et al., 2019).

The last type of second-order construct shown in Figure 4.1d constitutes a

second-order construct modeled as a composite build by composites which are in turn

build by a weighted linear combination of observable indicators. Such

composite-composite operationlizations are an obvious candidate to statistically

examine artifacts which are build by other artifacts. The practical relevance of this

kind of second-order construct is highlighted by Becker et al. (2012) who reviewed 25

models containing hierarchical constructs in the journal ’Management Information

Systems Quarterly’ and identified that composite-composite second-order constructs

are the second most often employed. Concrete empirical examples for this kind of

second-order construct are student satisfaction (Rueda et al., 2017), social media

capability (Benitez et al., 2018a), and IT infrastructure capability (Benitez et al.,

2018b).

To estimate a model containing second-order constructs, several approaches have

been applied in empirical research, namely the repeated indicators approach (Wold,

1982), the two-stage approach (Agarwal and Karahanna, 2000), and the hybrid

approach (Wilson and Henseler, 2007). However, while there are some theoretical

research papers investigating these approaches (Wilson and Henseler, 2007; Becker

et al., 2012; van Riel et al., 2017; Duarte and Amaro, 2018), their statistical

evaluation has received comparatively little attention in the past. This is particularly
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true with respect to composite-composite second-order constructs. While most

studies focus on composite or common factor second-order constructs built by

common factors, none of the studies has investigated the approaches’ performance for

composite-composite second-order constructs. Moreover, since a test for assessing the

overall model fit was introduced only recently (Dijkstra and Henseler, 2015a), the

current literature lacks guidance on how to statistically assess the overall model fit for

models containing second-order constructs. Recognizing this fact, van Riel et al.

(2017) provided a guideline for testing the overall model fit for models containing

second-order constructs modeled as composites of common factors. However,

recommendations for estimating and assessing models containing

composite-composite second-order constructs have not been provided, nor has the

testing procedure proposed by van Riel et al. (2017) been subject to a simulation

study. The paper at hands seeks to close these gaps in the literature.

The remainder of the paper is organized as follows. Section 4.2 reviews approaches

used to estimate models containing second-order constructs. Section 4.3 discuses a

testing procedure to examine whether the restrictions implied by including

composite-composite second-order constructs into the model are in line with the data.

In Section 4.4 the performance of commonly used estimators for composite-composite

second-order constructs is evaluated and compared by means of a Monte Carlo

simulation. Additionally, the performance of the proposed test is evaluated both in

terms of power (the probability of rejecting the null hypothesis when it is false i.e.,

the ability to detect misspecification) and type-I error rate (the probability of

rejecting the null hypothesis when it is true). The paper closes with a discussion and

an outlook for future research in Section 4.6.

4.2 Approaches to estimate models containing

second-order constructs

To review commonly used approaches to estimate models containing second-order

constructs we use the minimal model depicted in Figure 4.2. The model exhibits only

the features necessary to illustrate these approaches.

The simple model consists of one second-order construct modeled as a composite (C)

that is built by two first-order constructs which are themselves modeled as
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composites (c1 and c2). Empirically, this setup may be used to model a situation

where two human-made objects make up a second artifact. The two sets of indicators

(y1i and y2i, i = 1, 2) completely define/build the respective first-order composites

which, in turn, fully determine the second-order composite. Furthermore, the model

contains an exogenous common factor (ξ) that, in contrast to the first-order

composites, causally affects the second-order composite (C). The common factor is

connected to two indicators (x1 and x2). Consequently, the covariances between the

two sets of indicators y1i and y2i with ξ are fully mediated by C. Similarly, the

covariance between the indicators y1i and y2i with those of the indicators x1 and x2

are fully mediated by the first-order and the second-order composites, respectively.

To preserve clarity, the structural error, measurement errors, and covariances among

the variables are not depicted.

ξ C

c2c1

y12y11 y22y21

x2

x1

Figure 4.2: Example of a model containing a second-order composite formed by com-
posites

The existing literature suggests three approaches to estimate models containing

higher-order constructs: (i) the repeated indicators approach, (ii) the two-stage

approach, and (iii) the hybrid approach. Each approach has sub-approaches that are

best seen as extensions or variations of the main approaches.5 Table 4.1 summarizes

and illustrates the approaches and extensions relevant for this paper by means of the

model example illustrated in Figure 4.2.
5Most theoretical and empirical literature discuses or applies these approaches in the PLS-PM

framework. It is worth noting, however, that none of these approaches is conceptually tied to PLS-PM.
Researchers should be aware that, while PLS-PM is indeed most prominent among composite-based
methods, it may be more adequate to consider e.g., the repeated indicators approach as a composite-
based approach to estimate a structural equation model containing higher-order constructs.
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ĉ 1

ξ̂

D
es
cr
ip
ti
on

:
A
ll

in
di
ca
to
rs

of
th
e

fir
st
-o
rd
er

co
ns
tr
uc
ts

bu
ild

in
g
th
e
se
co
nd

-o
rd
er

co
ns
tr
uc
ta

re
us
ed

as
in
di
ca
to
rs

fo
r
th
e
se
co
nd

-o
rd
er

co
ns
tr
uc
t.

O
rig

in
al
ly
,
it

wa
s
pr
op

os
ed

to
sp
ec
ify

on
ly

th
e
di
re
ct

eff
ec
t
of

th
e
an

te
ce
de
nt

co
ns
tr
uc
t

on
th
e
se
co
nd

-o
rd
er

co
ns
tr
uc
t.

A
s
a
co
ns
e-

qu
en
ce
,
th
e
se
co
nd

-o
rd
er

co
ns
tr
uc
t
is

fu
lly

ex
pl
ai
ne
d
by

th
efi

rs
t-
or
de
rc

on
st
ru
ct
sc

1
an

d
c 2

an
d

al
l
pa

th
fro

m
an

te
ce
de
nt

co
ns
tr
uc
ts

(h
er
e
th
e
pa

th
fro

m
ξ
on

C
)
ar
e
es
tim

at
ed

to
wa

rd
s
ze
ro
.
To

ad
dr
es
s
th
is

sh
or
tc
om

in
g,

it
wa

s
pr
op

os
ed

to
ad

di
tio

na
lly

sp
ec
ify

th
e

in
di
re
ct

eff
ec
ts

of
th
e
an

te
ce
de
nt

co
ns
tr
uc
ts

on
th
e
se
co
nd

-o
rd
er

co
ns
tr
uc
t
th
ro
ug

h
th
e

fir
st
-o
rd
er

co
ns
tr
uc
ts

(d
ot
te
d

lin
es
)
to

es
ti-

m
at
e
th
e
eff

ec
t
of

th
e
re
sp
ec
tiv

e
an

te
ce
de
nt

co
ns
tr
uc
t
on

th
e
se
co
nd

-o
rd
er

co
ns
tr
uc
t
as

th
e
to
ta
le

ffe
ct
s
(B

ec
ke
r
et

al
.,
20
12
).

St
ag
e
1:

C
on

st
ru
ct

sc
or
es

(ĉ
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4.2.1 Repeated indicators approach

The repeated indicators approach was originally proposed by Wold (1982). According

to the repeated indicators approach all indicators of the first-order constructs

building the second-order construct are reused as indicators of the second-order

construct (Wold, 1982; Lohmöller, 1989). This essentially reduces the second-order

construct to a first-order construct. Although easy to implement, there are both

practical and conceptual downsides tied to the repeated indicators approach.

Being build by y1i and y2i respectively, the first-order constructs c1 and c2 are by

construction perfect predictors of C. Practically, retrieving the path coefficient

between an antecedent construct of the second-order construct (here: between ξ and

C) in a multiple regression based on composite scores obtained by any

composite-based approach will fail (i.e., will be close to zero) as all the variation in C

is fully explained by c1 and c2. To overcome this shortcoming, Becker et al. (2012)

proposed to additionally specify indirect effects of the lower-order antecedent

construct on the second-order construct through the first-order constructs forming

the second-order construct and recover a consistent estimate of the path from ξ to C

as the total effect of the antecedent construct on the second-order construct.

According to the commonly called extended repeated indicator approach researcher

would therefore add a path from ξ to c1 and one from ξ to c2, compute the total

effect and interpret this as the path from ξ to C.

If (out-of-sample) prediction is the sole purpose of the analysis, specifying or

removing path is unproblematic as long as the prediction error is improved. However,

if any kind of confirmatory or inferential statement is to be made, adding additional

paths or reducing the higher-order construct to a first-order construct is conceptually

hard to conceive as it challenges the very idea of the model the researcher theorized

in the first place. By changing the model, the model being estimated by the repeated

indicators approach no longer corresponds to the theoretical model the researchers

had in mind. This is particularly true for the extended repeated indicators approach.

By specifying additional path, researchers are likely to introduce new, potentially

unintended, restrictions which alter the model-implied indicator covariance matrix

and, subsequently, any quantity based thereon. In the simple model above, c1 and c2

are exogenous and therefore allowed to freely correlate. Introducing path from ξ to c1

and c2, say π1 and π2, renders c1 and c2 endogenous, essentially restricting the
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correlation between c1 and c2 to be π1π2. This would alter the model-implied

indicator covariance matrix. Since most common fit measures and model fit tests are

based on some kind of discrepancy between the empirical and the model-implied

indicator covariance matrix, any such measure will thus be affected. Hence, it is

unclear how such fit measures are to be interpreted in this case. To conclude: while it

is generally possible to leave the model-implied indicator covariance matrix

unchanged by adding yet another set of additional path, researchers would have to be

aware of the precise mechanism giving rise to the model-implied indicator covariance

matrix. In the simple case above, adding a path from c1 to c2 (or vice-versa) would

lift the restriction thereby reinstating the original covariance structure.

4.2.2 Two-stage approach

As the name suggests, the two-stage approach consists of two stages (Agarwal and

Karahanna, 2000; Henseler et al., 2007). In the first stage, the aim is to obtain

construct scores. Two strategies can be applied. First, all second-order constructs are

removed from the original model; the remaining model is estimated and construct

scores are saved. Technically, after removing the second-order constructs, researchers

may use any recursive structural model specification involving the remaining

constructs to obtain construct scores – provided all constructs are related in a

nomological net (van Riel et al., 2017). Practically, however, for testing purposes

there are advantages to specifying a saturated structural model instead – i.e., a

structural model with zero degrees of freedom. See Section 4.3 for explanation. A

second strategy proposed by Wilson (2010) and Ringle et al. (2012) uses the repeated

indicators approach to obtain construct scores in the first stage for all constructs,

including the second-order construct. Again, any recursive structural model

specification involving the remaining constructs could be used – provided all

constructs are related in a nomological net.

In the second stage, the original structural model involving all constructs is estimated

using the scores obtained in the first stage as indicators of the second stage

constructs. Practically, all non-second-order constructs therefore become single

indicator constructs. If the second-order construct is modeled as a common factor or

if any of the first-order constructs forming/measuring the second-order construct are

modeled as common factors, a correction for attenuation is necessary to obtain
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consistent parameter estimates (van Riel et al., 2017); a process van Riel et al. (2017)

label the the three-stage approach.

Consequently, in contrast to the repeated indicators approach, at least two estimation

steps are required to estimate the model parameters using the two-step approach. To

distinguish between the two versions of the two-stage approach, we refer to the

approach involving the repeated indicators approach in the first step as the embedded

two-stage approach. The alternative involving a saturated first stage model is labeled

the two-stage approach.

4.2.3 Hybrid approach

The hybrid approach (Wilson and Henseler, 2007) is similar to the repeated

indicators approach but avoids reusing the indicators of the first-order constructs

connected to the second-order construct. Instead, the sets of indicators of the

first-order constructs connected to the second-order construct are split in half: one

half of the indicators is used as indicators of the second-order construct, while the

other half remains as indicators of the respective first-order constructs. The primary

intention of this procedure is to avoid artificially correlated residuals (Wilson and

Henseler, 2007) although it has never been formally investigated whether the hybrid

approach adequately serves this purpose. For constructs modeled as composites,

correlated residuals are, by definition of the composite, not an issue. Moreover, using

only a subset of the indicators to define the composites contradicts the idea of a

composite as an artifact assumed to be fully defined by a unique set of indicators

(Bollen and Bauldry, 2011). Because of the conceptual shortcoming and the fact that

the approach is rarely applied in practice, the Hybrid approach is not considered in

the Monte Carlo simulation.

4.3 Assessment of the overall model fit

Many empirical questions are inferential, causal or even mechanistic in nature (Leek

and Peng, 2015). Statistically valid answers to these types of questions critically hinge

on the correctness of both the postulated model and the properties of the estimates of

focal model parameters. The latter typically comprises the need for consistent and/or

unbiased model parameter estimates and an adequate measure of the uncertainty tied
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to these estimates, i.e., consistent standard errors. Assessing the correctness of the

postulated model involves both theoretical and statistical considerations. On the one

hand, researchers must, for instance, assess whether to model a certain concept as a

higher-order construct is theoretically reasonable or whether restricting a path from

one construct to another to zero has theoretical support. On the other hand,

researchers can draw on a variety of statistical quality criteria and tests generally

referred to as model fit criteria and model fit tests respectively. Statistical assessment

of overall model fit in SEM can therefore be divided in (i) measures of model fit, i.e.

model fit indices and (ii) tests for (exact) overall model fit.

Model fit indices are broadly categorized as absolute or relative (McDonald and Ho,

2002). The principal idea of absolute model fit indices is to measure the

correspondence between model and data along a continuum to gauge how well the

postulated model corresponds to the data, instead of merely defining a perfect

correspondence as the (only) desirable objective (e.g., Mulaik et al., 1989, p. 431).

Relative fit indices, on the other hand, compare the postulated model to a reference

model (the “null model”) to assess the relative increase in model fit. Accordingly,

model fit assessment is rather a question of ”close” (Browne and Cudeck, 1992) or

”comparative” (Bentler and Bonett, 1980; Bentler, 1990) fit than that of perfect fit.

Classification of the magnitude of a given fit index as ”sufficiently close” or

”comparatively better” is based on heuristic rules; fit index values are compared to a

threshold to decide whether a model shows an acceptable model fit. The most

prominent fit index in the context of PLS-PM is the standardized root mean square

residual (SRMR, Bentler, 1995), where a value smaller than 0.08 is commonly taken

to indicate an acceptable model fit.6 Moreover, a multitude of fit measures such as

the comparative fit index (CFI, Bentler, 1990) the normed fit index (NFI, Bentler

and Bonett, 1980) or the root mean square outer residual covariance (RMSθ,

Lohmöller, 1989) could be applied. While there is plethora of research on the

(in)adequacy of fit indices in the context of factor-based SEM, we are unaware of any

study in the context of the composite model. However, the principal critique

surrounding test-like decision-making according to simulation-based cut-off values

(e.g., Marsh et al., 2004) is likely to carry over to the composite model.
6The value of 0.08 is usually justified with reference to Hu and Bentler (1999). Its adequacy,

however, has not been assessed for composite models yet.
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In contrast to fit measures, tests for exact overall model fit test the null hypotheses

that the population indicator covariance matrix equals the population covariance

matrix implied by the model. Such tests follow the well-known hypothesis testing

logic, i.e., postulate a null hypothesis, compute a test statistic using empirical data,

and decide based on a comparison of the value of the test statistic to the distribution

of the test statistic that were to arise if the null hypothesis were true.

Taking into account the usual limitations of hypothesis testing – i.e., falsely finding

no difference when, in fact, there is one – a non-rejection of perfect fit is therefore

statistical evidence that data and model do not stand in contradiction. Accordingly, a

model that fits – within the limits of sampling error – is evidence that the restrictions

implied by the postulated model – i.e. the theory –, are consistent with the data.

In analogy to the χ2-test in factor-based SEM (Jöreskog, 1967), any measure of

discrepancy between the empirical indicator covariance matrix and the indicator

covariance matrix implied by the model constitutes a reasonable test statistic.

Schuberth et al. (2018a) propose three such measures, namely the geodesic distance

(dG), the squared Euclidean distance (dL), and the standardized root mean square

residual (SRMR). As opposed to the χ2-test, however, non of these measures follow a

known statistical distribution under the null hypothesis. To obtain the reference

distribution in this case, it has become standard practice to use a bootstrap

procedure based on Beran and Srivastava (1985) and Bollen and Stine (1992).

According to the procedure, the original indicator data is transformed such that the

new data set satisfies the null hypothesis; i.e., the sample indicator covariance matrix

of the transformed data set equals the estimated model-implied indicator covariance

matrix under the null hypothesis. The reference distribution is now obtained by the

bootstrap based on the transformed data. Finally, the test statistic is compared to a

critical quantile of the reference distribution to obtain evidence in favor or against the

null hypothesis. Usually, values larger than the 95% or 99% quantiles are considered

sufficient evidence against the null hypothesis (Henseler et al., 2016b).

Assuming correct operationlization of all concepts in a structural equation model, the

type of misfit can roughly be divided into misfit pertaining to the measurement and

misfit pertaining to the structural model. Typical sources of the former are indicators

which are assigned to the wrong construct or (unmodeled) measurement error

correlation. Structural model misspecification, on the other hand, most frequently
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arises when paths between constructs are falsely restricted to zero or when a relevant

construct is incorrectly omitted from the postulated model (endogenity). Since the

model fit test is an overall test in a sense that all sources of misspecification are

simultaneously taken into account, a rejection of the null hypothesis carries no

specific information as to what constitutes the source of misspecification. Hence,

researchers must find ways to investigate separate parts of the model in isolation.

With regard to this issue, we propose a two-step strategy allowing researchers to

distinguish between measurement and structural model misspecification.

In a first step, the entire model is estimated assuming a saturated structural model

instead of the structural model postulated by the researcher. In this case, any

systematic misspecification detected when testing the model fit must inevitably be

due to misspecification in the measurement model – ignoring sample variation for

now. This fact is most easily understood when counting the structural model degrees

of freedom. In a model with J constructs there are J(J − 1)/2 unique construct

covariances (the number of non-redundant off-diagonal elements of the covariance

matrix). In a saturated model each construct has one path to all other constructs

such that the model is still recursive, i.e. there are no feedback loops. Hence, there

are J(J − 1)/2 unknown path coefficients. Consequently, by definition of the

structural model degrees of freedom as the number of unique construct covariances

minus the number of unknown parameters such a model has zero degrees of freedom.

In other words: the saturated model contains no testable restrictions, consequently –

ignoring sampling variation once again – any misfit found in a model with a saturated

structural model must be due to measurement model misspecification.

In the second step, assuming that overall model fit in the first step was not rejected

at the conventional significance levels, the original structural model specification is

estimated. A rejection of the test for overall model fit in this case can now be

interpreted as evidence against the null hypothesis of a correctly specified structural

model.

4.3.1 Assessing the fit of higher-order constructs

A specific kind of structural model misspecification occurs when higher-order

constructs are used; for example, a researcher might assume that a concept of her

model is multidimensional, i.e., is correctly represented in a statistical model as a
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second-order construct.

Due to its two-step design, the two-stage approach with a saturated first-stage model

naturally lends itself to the two-step testing procedure discussed above. Testing the

first step therefore provides evidence as to whether the measurement model is

correctly specified. This allows the researcher to decide whether it makes sense to

continue building and estimating the second-order construct. If no evidence of

systematic measurement model misspecification is found in the first stage, a rejection

of the second stage model is evidence against the postulated higher-order

specification. Consequently, to obtain empirical evidence for the usefulness of the

second-order composite, it must affect or be affected by at least two other constructs;

otherwise, the model is saturated and would always perfectly fit the data.

By design, alternative approaches such as the (extended) repeated indicators

approach make model fit testing difficult, since it is unclear which model should be

tested at all. From a testing point of view, the two-stage approach with a saturated

structural model is therefore conceptually superior to other approaches discussed in

the previous section – at least as long as confirmatory or inferential statements are to

be made.

4.4 A Monte Carlo simulation

A Monte Carlo simulation is conducted to further contribute to the understanding of

the approaches used to estimate models containing second-order composites and to

investigate the performance of two proposed ways of model fit assessment. Due to the

well-known drawback of the original repeated indicators approach in case of potential

predictors of the second-order constructs (Becker et al., 2012; Ringle et al., 2012) and

the inherent inappropriateness of the hybrid approach for concepts modeled as

composites, we only investigate the two-stage approach based on a saturated

structural model in the first stage, the embedded two-stage approach that combines

the repeated indicators and the two-stage approach, and the extended repeated

indicators approach that specifies additional effects.
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4.4.1 Simulation design

To assess the performance of the various approaches, we choose a data generating

process (DGP) that consists of one second-order composite (η3) built by three

first-order composites ci = w′ixi, i = 1, 2, 3. Figure 4.3 shows the second-order DGP.

For clarity, we omit error terms and correlations among variables forming a

composite.7

ξ
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Figure 4.3: Second-order DGP

To be in line with recent guidelines regarding the assessment of models containing

this type of second-order construct (Sarstedt et al., 2019), the population weights

used to build the second-order composite are w′c =
(

0.4 0.4 0.5
)
and the

population correlations among the first-order composites are set to: rc1c2 = 0.49,

rc1c3 = 0.27, and rc2c3 = 0.413. Thus, each first-order composite contributes

substantially to the second-order composite and multicollinearity among the

first-order composites is not an issue, i.e., first-order composites’ correlations are

below the recommended threshold of 0.5 and the VIF values of the weights are below

3 (Hair et al., 2017a). The number of indicators of the first-order composites is

deliberately chosen unequally to investigate the claim that an unequal number of
7The complete population indicator covariance matrix implied by the DGP is provided in Figure

4.5 of the Appendix.
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indicators has an adverse effect on the parameter estimates of the repeated indicators

approach. The first-order composite c1 is built by two indicators (y11 and y12), the

first-order composite c2 is built by four indicators (y21 to y24), and the first-order

composite c3 is built by six indicators (y31 to y36). To build the first-order composites

c1 to c3, we again choose indicator weights and correlations that are conform with

current guidelines on the assessment of models containing second-order composites:

w′1 =
(

0.8 0.4
)

(4.1)

w′2 =
(

0.5 0.3 0.2 0.4
)

(4.2)

w′3 =
(

0.3 0.3 0.2 0.2 0.4 0.3
)

(4.3)

Moreover, the population correlation between the two indicators of c1 is set to 0.3125,

the population correlation matrices of the indicators forming c2 and c3 respectively

are given in Equations 4.4 and 4.5. To preserve clarity, the correlations are rounded

to the second decimal place.

Σc2 =



y21 y22 y23 y24

1.00 0.40 0.30 0.31

1.00 0.28 0.31

1.00 0.30

1.00


(4.4)

and

Σc3 =



y31 y32 y33 y34 y35 y36

1.00 0.10 0.25 0.13 0.10 0.30

1.00 0.20 0.40 0.30 0.20

1.00 0.30 0.10 0.30

1.00 0.20 0.20

1.00 0.10

1.00



. (4.5)

Besides the first-order composites and the second-order composite, the structural

model consists of three composites (ξ, η1, and η2) that are antecedents of the

second-order composite η3. The second-order composite is deliberately in an

endogenous position to investigate the efficacy of the extended repeated indicators

approach that was proposed to overcome the drawbacks of the original repeated
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indicators approach in such a situation. In designing the structural model, we choose

a complexity that is similar to models found in the empirical literature (e.g., Ainin

et al., 2015; Yim and Leem, 2013; Hsieh et al., 2006). To ensure sufficient degrees of

freedom of the structural model – which is required for model fit assessment of the

structural model –, we opt for a multiple mediation structure with population path

coefficients: γ1 = 0.2, γ2 = −0.4, γ3 = 0.35, β1 = 0.4, and β2 = 0.2. As a consequence,

the effect sizes (f 2) range from 0.04 to 0.22 indicating small and medium effects

(Cohen, 1992). Moreover, the structural error terms are mutually independent.

To assess the performance of the various approaches, we consider the estimated bias

and the estimated root mean square error (RSME) which are defined as

B̂ias = 1
N

N∑
i=1

θ̂i − θ and R̂MSE =

√√√√ 1
N

N∑
i=1

(θ̂i − θ)2 , (4.6)

where θ represents a generic population parameter; θ̂i is its corresponding estimate

from the i-th Monte Carlo simulation run. N denotes the total number of Monte

Carlo simulation runs. While the estimated bias indicates how much an estimate

differs on average from its population counterpart, the RMSE combines the bias and

the uncertainty involved in an estimate, namely its standard deviation. Additionally,

we assess whether the approaches are Fisher consistent, i.e., whether they are able to

retrieve the population parameters when given the indicator population covariance

matrix as input.

To study the performance of the two presented testing procedures, we assess their

type I error rate, i.e., the probability of falsely rejecting the null hypothesis, and the

power, i.e., the probability of correctly rejecting the null hypothesis, under various

conditions. When assessing the complete model, the estimated model-implied

indicator covariance matrix of the model that matches the second-order DGP from

Figure 4.3 is compared to the sample indicator covariance matrix. For the two-step

testing procedure, the fit of the model without the second-order composite and a

saturated structural model is assessed; in the second step, the fit of the structural

model containing the second-order composite and the corresponding first-order

composites is tested. Estimations that were rejected in the first step are excluded in

the second step.

Assessment of the power of the overall model fit can be conducted in two ways.

According to the first approach a given data set drawn from a given (known) DGP is
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used to estimate a model which does not represent the DGP (e.g., a path that is non

zero in the population is falsely omitted). Consequently, the model is misspecified

with respect to the DGP. Depending on the source and the strength of the

misspecification a test should be able to detect this misspecification, i.e., correctly

reject the null hypothesis of no misspecification. The second approach takes the

model as given but varies the DGP such that it does not correspond to the postulated

model. Again, a test should be able to detect this misspecification with sufficient

power. We use the second approach in our simulation.

Clearly, the source and the magnitude of the misspecification are critical to power

assessment. With respect to the source of the misspecification, we focus on the

misspecification that arises when a researcher incorrectly imposes a second-order

structure on the relationship between a set of constructs. Practically, we therefore

take the second-order DGP in Figure 4.3, remove the second-order η3, and draw

direct path from all constructs antecedent to η3 to the respective lower dimensional

constructs c1 −−c3; hence, we obtain an alternative DGP as shown in Figure 4.4.

Indicators and weights are omitted as they remain unchanged.

ξ

η1

η2

c2

c1

c3

γ 1
=
.2

γ
2 =

−
.4

γ3

γ4

γ5

β1

β2

β3

β 4

β5

β6

ζ1

ζ2

ζ3

ζ4

ζ5

Figure 4.4: Structural specification of the alternative DGPs.

To be able to investigate power for varying levels of misspecification we choose three

different parameter combinations for the path from ξ, η1, and η2 to c1, c2, and c3,
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respectively. The first parameter combination yields a small, the second a medium,

and the third a large misspecification. Of course, small, medium, and large are to be

understood in relative terms. We quantify misspecification in terms of the

standardized root mean square residual (SRMR).8 The parameter combinations that

yielded the respective misspecifications are obtained by a procedure detailed in

Section 4.8.2 of Appendix B.

The sets of path coefficients and the corresponding SRMR values are displayed in

Table 4.2. Additionally, Table 4.2 reports the SRMR for a model without the

second-order composite and a saturated structural model, i.e., the model from the

first stage of the two-stage approach (SRMR1st) and the SRMR for the structural

model containing the second-order composites with its first-order composites, i.e., the

model from the second stage of two-stage approach (SRMR2nd). As can be seen, the

misfit is fully caused by the structural model, since the SRMR for the model from the

first stage is zero, while the SRMR for the model from the second stage is larger than

zero. For larger misspecifications and larger sample sizes, we expect larger rejection

rates. Rejection rates above 80% are desired (Cohen, 1988).

Table 4.2: Population path coefficients in case of misspecifications

Misspecification SRMR SRMR1st SRMR2nd γ3 γ4 γ5 β1 β2 β3 β4 β5 β6

Small 0.0302 0.000 0.0626 0.4 0.1 0.5 0.1 0.5 0.6 0.1 0.2 0.5
Medium 0.0629 0.000 0.1262 −0.4 0.1 0.5 0.1 0.5 0.6 0.2 0.2 0.5
Large 0.0949 0.000 0.1718 0.4 0.1 0.5 0.5 0.4 0.6 −0.4 0.2 0.5

Our simulation design additionally highlights the importance of model fit assessment

and emphasizes the need for updated guidelines on the assessment of models

containing second-order composites. Regardless of whether the two-stage approach,

the repeated indicators approach or embedded two-stage approach is employed,

current guidelines for the assessment of formative measurement models9 (Sarstedt

et al., 2019; Hair et al., 2017b,a; Ramayah et al., 2016; Becker et al., 2012) fail to

distinguish correctly from incorrectly specified models. On a population level, all four
8Alternatively, one could use the geodesic distance (dG) or the Euclidian distance (dL) to quan-

tify the amount of misspecification. SRMR and dL are identical except for a constant scaling factor.
SRMR and dG may slightly differ, however, the difference is negligible in a sense that categorizing
misspecifications as small, medium, and large will be highly similar for the SRMR or dG-based mis-
specification measure.

9In PLS-SEM parlance a formative construct is a composite whose weights are estimated by mode
B.
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estimated model, i.e., the correctly specified and the three misspecified models, are

not indicated as problematic by current guidelines on the assessment of models

containing composite of composites. In all cases, all indicators/first-order composites

contributed substantially to their composite, i.e., all weights are sizable. Moreover,

multicollinearity is not an issue as all VIF values are below the conservative rule of

thumb of 3 suggested by e.g. Hair et al. (2017a) and the correlations among the

indicators and first-order composites forming a composite are all below 0.5.

Convergent validity cannot be assessed, as the model does not contain reflective

measurement models. The results can be found in Table 4.11 in Appendix A.

The simulation is conducted in the statistical programming environment R (R Core

Team, 2020). To investigate the performance of the three approaches, the model that

matches the second-order DGP from Figure 4.3 is estimated 1,000 times by each

approach based on data of size: n = 100, 300, 500, and 1,000 drawn from the same

DGP. We check each estimation run for admissibility and instantly replace

inadmissible results such that in each case exactly 1,000 admissible results are

available. To examine the type I error rate, we repeatedly draw data set from the

second-order DGP of Figure 4.3, estimate the model which does indeed represent the

DGP, and perform the test for exact overall model fit. As the model is correctly

specified with respect to the DGP, we expect rejection rates close to the predefined

significance level α. The observations are drawn from a multivariate normal

distribution with means of zero using the mvrnorm() function of the MASS package

(Venables and Ripley, 2002). To examine the Fisher consistency of the approaches,

the indicator population covariance matrix is used as input for the various

approaches. To assess the power of the two testing strategies, the datasets are

generated based on population covariance matrices implied by the different degrees of

model misspecification displayed in Table 4.2. The PLS-PM parameter estimates are

obtained by the csem() function of the cSEM package (Rademaker and Schuberth,

2020). As outer weighting scheme Mode B is employed for all constructs since it has

been shown to produce consistent estimates for composite models (Dijkstra, 2017).

As stopping criterion the absolute change of the weights is considered, i.e., during the

PLS-PM algorithm the largest absolute difference between the current weights and

the weights from the previous iteration step are compared. In case that the largest

absolute difference is smaller than 10−5 the algorithm stops. Furthermore, the
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maximum number of iteration is set to 100.

While for models without second-order constructs, all inner weighting schemes

produce similar results (Noonan and Wold, 1982), there is only little advice on which

scheme to use for models containing second-order composites (Becker et al., 2012;

Sarstedt et al., 2019). Although the path weighting scheme seems to be favored for

models containing composites of composites (Becker et al., 2012), we further examine

whether the choice of the inner weighting scheme affects the behavior of the different

approaches. Therefore, the path, the factorial, and the centroid weighting scheme are

employed for every approach. Finally, the exact overall model fit test is conducted

using the testOMF() function of the cSEM package. We use 1,000 bootstrap runs per

test and replace non-converged estimations during the bootstrap. For the complete R

code, see Appendix B.

4.4.2 Simulation results

Behavior of the various approaches

Table 4.3 displays the results for the estimated bias, the estimated RMSE, Fisher

consistency, and share of converged estimations of the three investigated approaches

using the path, factorial, and centroid weighting scheme during PLS-PM’s inner

estimation. Due to space constraints, we present the results only for the estimates of

two path coefficients (γ1 and β1), the first weight of the first-order composite c1 (w11),

and the three weights used to build the second-order composite (wc1 , wc2 , and wc3).

The remaining estimates behave similarly to those presented.

The two-stage approach based on a saturated structural model in the first stage

appears to produce consistent estimates. The average estimates of all parameters

converge to their population counterparts for an increasing sample size. Moreover,

the decrease in the estimated RMSE reflects that the standard errors of the

parameter estimates decrease when the sample size increases. This result is hardly

affected by the choice of the inner weighting scheme. Furthermore, it produced the

smallest number of non-converged estimations. In none of the conditions more than

0.6% of the estimations have not converged. Finally, it returns the population

parameters when provided with the indicator population covariance matrix showing

the Fisher consistency of the two-stage approach.
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The embedded two-stage approach behaves similarly to the original two-stage

approach, but it produces a larger share of non-converged estimations. The highest

share of 10.9% was observed for small sample sizes (n = 100) in combination with the

path weighting scheme. However, the number of converged estimations decreases for

an increasing sample size and diminishes for sample sizes n ≥ 300. Considering the

estimated bias, it decreases for all parameters with an increasing sample size and

almost diminishes for a sample size of 1,000 observations. The estimated RMSE also

decreases for all parameters with an increasing sample size, as the standard errors of

the estimates decrease. In contrast to the two-stage approach, the embedded

two-stage approach cannot retrieve all population parameters from the indicator

population covariance matrix. The weights to build the first-order composites slightly

differ from their population counterparts.10 Among the three inner weighting

schemes, the path weighting scheme produces for the weights used to build the

first-order composites the smallest deviation from their population counterpart.

The extended repeated indicators approach, i.e., indirect effects of ξ, η1, and η2 on

the second-order composite η3 are specified through the first-order composites,

behaves similar to the two other approaches for the considered sample sizes when the

centroid or the factorial schemes are employed. In case of the path weighting scheme,

the weight estimates used to build the second-order composite considerably deviate

on average from their population counterparts. In contrast to the other model

parameters, the estimated bias of these weights does not diminish for an increasing

sample size. The large values of the estimated RMSE for these weights show that the

estimates have larger standard errors compared to the other approaches. As

expected, the direct effects of constructs on the second-order composites are biased

towards zero, however, the results confirm that the total effects can be used to

capture these effects. Moreover, in none of the conditions the share of non-converged

estimations is above 1.8%. However, not all population parameters can be retrieved

when the indicator population covariance matrix is provided as input. This result is

unaffected by the employed inner weighting scheme.
10Although not presented, in case of the path weighting scheme, the retrieved weights used to

build c3 deviate from their population counterpart. A table containing all estimated parameters can
be found in Tables 4.9 and 4.10 of the Appendix.
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Performance of the two testing procedures

In the following, we present the results of our simulation to assess the performance of

the two presented testing procedures based on the two-stage approach employing the

path weighting scheme and using a saturated structural model in the first stage. We

additionally employed the centroid and the factorial weighting scheme, however, the

results are very similar.
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Figure 4.5: Tests’ rejection rates in case of no misspecification

Figure 4.5 displays the tests’ rejection rates in case of no model misspecification, i.e.,

the null hypothesis is true. The complete model testing procedure produces rejection

slightly below the predefined significance level. Particularly, for a small sample size

and a significance level of 5%, the rejection rates are too small. However, the

rejection rates converge to the predefined significance level for an increasing sample

size. Similar can be observed for the first step of the two-step testing procedure. In
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contrast, in the second step of the two-step testing procedure, the rejection rates are

too conservative, i.e., the model is rejected too often. However, for an increasing

sample size, the rejection rates converge to predefined significance level.
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Figure 4.6: Tests’ rejection rates for various degrees of misspecification

Figure 4.6 depicts the rejection rates in case of the various misspecifications and the

two considered significance levels of 1% and 5%. For the complete model testing,

large and medium misspecified models are detected in all cases, except for small

sample sizes. However, in this case, it still reliably detects large and medium

misspecifications. For models with small misspecification, larger sample sizes are

required to reject the null hypothesis. In case of small sample sizes, small

misspecification cannot be reliably detected.
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In the first step of the two-step testing procedure, the rejection rates are close to the

predefined significance level. This is not surprising, as the model from the first stage

is not misspecified, since misspecifications in the structural model are ignored because

the specified structural model is saturated. In contrast, in the second step of the

two-step testing procedure almost all misspecifications are reliably detected, except

small misspecification in case of small sample sizes.

4.4.3 Simulation insights

The Monte Carlo simulation shows that for finite sample sizes all three approaches

perform similarly in terms of parameter recovery, i.e., estimated bias and RMSE. An

exception is the extended repeated indicators approach in combination with the path

weighting scheme, which produced considerably biased estimates for those weights

that are used to build the second-order composite. Moreover, our simulation confirms

that the extended repeated indicators approach is able to estimate the constructs’

direct effects on the second-order composite by their total effects. Considering Fisher

consistency, only the two-stage approach returns all population parameters when the

indicator population covariance matrix is applied. Additionally, its results are hardly

affected by the inner weighting scheme.

Considering the results of the two presented testing procedures, both produce

rejection rates slightly off the predefined significance level in case of no model

misspecification. However, the rejection rates converge to the significance level along

with an increasing sample size. Moreover, both procedures reliably detect most of the

misspecification. As expected, small misspecifications require larger sample sizes to

be reliably detected and the tests’ power increase for an increasing sample size.

4.5 Guidelines for estimating and assessing

models containing composites of composites

To enable researchers to appropriately estimate and assess models containing

composites of composites, particularly in the context of confirmatory and explanatory

research, we provide guidelines embracing the two-stage approach and the two-step

testing procedure. Although our simulation study shows that both testing procedures
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detect similarly reliably misspecification in the structural model, the two-step testing

procedure is recommended in the following as it allows for a separate assessment of

the concepts’ operationalization and the structural model. To fully leverage the

strength of the two-step testing procedure, a saturated structural model should be

specified in the first stage of the two-stage approach. This allows for spotting the

location of the misspecification, i.e., in the operationalization of the concepts and/or

in the structural model.

Prior to the estimation of the model and its assessment, the researcher should ensure

that the model is identified, guaranteeing that the model parameters can be uniquely

retrieved from the system of equations. Indeed, model identification is

straightforward in the case of composite models (Dijkstra, 2017; Schuberth et al.,

2018a); however, it must not be disregarded. A necessary condition for the

identification of a composite model is that each (higher-order) composite is built by

at least one indicator/lower-order composite and that no (higher-order) composite is

isolated in the structural model. Apart from all composites being connected via the

structural model, it must be additionally ensured that the structural model is also

identified. Since the study at hand focuses only on recursive models, we refer to the

’recursive rule’, which states that recursive models with uncorrelated structural error

terms are always identified (Bollen, 1989b, p. 104).

After model identification is ensured, the model can be estimated, and its fit can be

assessed. For this purpose, guidelines are developed and depicted in Table 4.4. In the

following, we elaborate on each step of our proposed guidelines to estimate and assess

recursive models containing composites of composites. In doing so, the two-stage

approach is employed for model estimation based on a saturated structural model in

the first stage.

Table 4.4: Guidelines for estimating and assessing models containing second-order
composites built by composites

Step 1: Estimate the model without second-order composites

Step 2: Assess the overall model fit

Step 3: Extract construct scores

Stage 1

Step 4: Estimate the structural model containing second-order composites

Step 5: Assess the overall model fit
Stage 2
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Stage 1

In the first stage, as suggested by the two-stage approach, the model is estimated

without second-order composites. The goal of this stage is to calculate the construct

scores and to assess the operationalization of the concepts represented in the

structural model. If all concepts are modeled as composites, this stage largely

resembles a CCA.

Step 1: Estimating the model without second-order composites

In Step 1, the model without the second-order composites is estimated. In doing so, a

model with a saturated structural model should be used. For concepts modeled as

common factors, the use of correlation weights (mode A) in combination with a

correction for attenuation is recommended, i.e., PLSc, while for concepts

conceptualized as composites, regression weights (mode B) should be employed.

Step 2: Assessing the overall model fit

Since the model is estimated, it is necessary to evaluate whether it makes sense to

continue forming second-order composites from the first-order composites. Thus, the

fit of the estimated model from Step 1 needs to be assessed to obtain empirical

evidence for the operationalization of the concepts. For this purpose, as our

simulation has shown, the bootstrap-based test based on a discrepancy measure –

such as the SRMR – can be used (see Section 4.3). For decision making, the 95% or

99% quantiles should be used as critical values, i.e., the value of the discrepancy

measure based on the original dataset is compared to the 95% or 99% quantiles of its

reference distribution, to decide whether the null hypothesis that the indicator

population covariance matrix equals the model-implied counterpart is rejected. Next

to the tests for exact overall model fit, fit measures can be employed to judge the fit

of the model. Yet, fit measures for composite models have yet not been properly

examined, therefore they should be used cautiously (Hair et al., 2019b). For

guidelines on assessing models estimated by PLS-PM in the context of explanatory

and confirmatory research, refer to Benitez et al. (2020).
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Step 3: Extracting construct scores

Once the estimated model from Step 1 has shown acceptable fit, the construct scores

are extracted for the first-order composites and the constructs not belonging to a

second-order composite. The standardized scores are appended as new variables to

the file containing the observations of the original variables.

Stage 2

In the second stage, the second-order construct is specified in the model by means of

a second-order composite. Moreover, first-order composites and the blocks of

indicators of constructs not belonging to a second-order composite are replaced by

the corresponding construct scores. The purpose of this stage is to obtain consistent

estimates for the parameters of the structural model, i.e., the path coefficients and

the weights of the first-order composites used to build the second-order composite.

Moreover, the overall fit of the structural model is assessed.

Step 4: Estimating the structural model containing second-order

composites

In Step 4, the second-order composite is included in the structural model and the

first-order composites are replaced by their construct scores. In doing so, the

construct scores of the first-order composites are utilized as indicators to build the

second-order composite. Similarly, the indicators of the other constructs are also

replaced by their construct scores, i.e., the construct become single-indicator

constructs. For the estimation of the weights used to build the second-order

composite, the use of mode B is recommended. However, in some situations the use

of predefined weights or weights obtained by other techniques can be beneficial

(Dijkstra, 2013b, 2016).

Step 5: Assessing model fit

In the last step, which is similar to Step 3, the overall model fit needs to be assessed

to obtain empirical support for the structural model containing composites of

composites. In other words, we investigate whether the structural model is

misspecified, and whether it is useful at all to build a second-order composite from
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the first-order composites. Supported by our simulation results, for this purpose the

bootstrap-based test of exact overall model fit from Section 4.3 can be used again. As

in Step 2, fit measures should be used cautiously as they are hardly explored in the

context of composite models.

4.6 Discussion and future research

Supported by the results of our Monte Carlo simulation, the study at hand introduces

step-by-step user-guidelines embracing the two-stage approach and a two-step testing

procedure on estimating and statistically assessing models containing composites of

composites in the context of PLS-PM. This enables researchers from the field of IS to

appropriately model artifacts which are again built by human-made objects and to

obtain empirical evidence for the specified model. The latter is particularly important

in causal research, i.e., explanatory and confirmatory research, as it supports the

researcher’s postulated theory. While the study at hand limits the use of the

composite to model artifacts, it is noted that the composite model can also be used to

operationalize behavioral concepts (Rigdon, 2016; Rigdon et al., 2017, 2019). This

notion assumes that both composites and common factors serve as proxy for the

behavioral concept (Sarstedt et al., 2016; Hair and Sarstedt, 2019). Moreover, recent

research identified instances in which the composite model appears to have advantages

over the common factor model (Rhemtulla et al., 2020). These findings are promising

and do not limit our guidelines; on contrary, they extend their application.

The need for updated guidelines for models containing composites of composites in

the context of explanatory and confirmatory research, is emphasized by our

simulation design. It shows that existing guidelines, which neglect overall model fit

assessment and focus mainly on measurement quality evaluation (e.g., Sarstedt

et al., 2019; Hair et al., 2020, 2019a, 2017b,a; Ramayah et al., 2016; Becker et al.,

2012), are unable to distinguish correctly from incorrectly specified models. These

guidelines ignore a crucial cornerstone of SEM, namely to investigate whether the

specified model fits to the collected data and as a consequence an important step to

detect potential weaknesses in the model is neglected. Finally, it has been suggested

to evaluate the predictive power of models estimated by PLS (Carrión et al., 2016;

Shmueli et al., 2019). Although we generally agree that knowledge about the
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predictive capacities of a model can provide additional insights, it cannot replace the

assessment steps of causal modeling involving model fit assessment. This is

highlighted by the fact that wrong models can predict well and that well-specified

models can predict poorly (Shmueli, 2010). Therefore, guidelines in the context of

causal research that currently ignore overall model fit assessment, should be extended

by it.

To support our proposed guidelines and to further shed light on the performance of

the commonly applied approaches in the context of PLS-PM to estimate models

containing composites of composites, a Monte Carlo simulation was conducted. The

results of our simulation showed that for finite sample sizes none of the approaches

considered is superior in terms of estimated bias and RMSE. For most approaches,

the average parameter estimates converged to the population counterpart and the

standard errors of the estimates decreased for an increasing sample size. However, for

the repeated indicators approach, we observed a slightly different behavior compared

to the findings of previous simulation studies. While for example Becker et al. (2012)

conclude that the path weighting scheme is the preferable option for the repeated

indicators approach, we observed in our simulation that this inner weighting scheme

produced more biased first-order composite weight estimates compared to the

centroid and the factorial inner weighting scheme. Overall, only the two-stage

approach based on a saturated structural model in the first stage is Fisher consistent,

i.e., it retrieves the population parameters when the indicator population covariance

matrix is used as input. Moreover, its results are hardly affected by the choice of the

inner weighting scheme and it produced a low share of non-converged estimations.

Additionally, the two-stage approach’s way to estimate models containing composites

of composites has advantages over the other two approaches in terms of model testing

as the source of misspecification can be located. Therefore, for models containing a

composite of composites, we recommend to use the two-stage approach based on a

saturated structural model in the first stage.

Similarly to investigate the efficacy of two presented testing procedures, namely the

complete testing and the two-step testing, a Monte Carlo simulation was conducted.

The results showed that, particularly for small sample sizes, both testing procedures

produce rejection rates slightly off the predefined significance. However, for an

increasing number of observations, the rejection rates converge to the predefined
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significance level. Moreover, both tests are capable to reliably detect

misspecifications, except for small misspecification and a small sample size. In this

case, the null hypothesis was rejected too rarely.

Since a simulation study is always limited to its design, modified replications and

extensions are always helpful. For instance, researchers could vary distributional

assumption and/or model complexity to broaden the understanding of the behavior

of the different approaches. Particularly, for the repeated indicators approach more

simulation studies would be beneficial, as our study observed a different behavior –

compared to previous studies (e.g., Becker et al., 2012) – in terms of which inner

PLS-PM weighting scheme should is statistically preferable.

Similarly, future research should strive for explanations why the repeated indicators

approach and its modifications are not Fisher consistent to mathematically support

our findings. Moreover, the performance of the approaches discussed in Section 4.2

based on weights obtained by PLS-PM could also be assessed using a different weight

estimators such as generalized structured component analysis (GSCA). Considering

the testing procedures, our simulation study is limited to misspecifications in the

structural model. However, there is a simulation study showing that the test is also

capable to investigate misspecifications in the composite models (Schuberth et al.,

2018a). This provides a starting point to further investigate the testing procedures’

behavior for misspecifications in the structural model and the concepts’

operationalization.

Moreover, we investigate the approaches’ performance only for models containing

second-order constructs specified as composites of composites. However, second-order

constructs specified as a mixture of different constructs are conceivable. Although to

our knowledge, this type of second-order constructs is not applied yet in the literature,

it may open new avenues for modeling theories in IS and beyond. In particular,

disciplines dealing with both behavioral concepts and artifacts, may benefit from its

examination. Potential candidates are second-order constructs specified as a common

factor of a mixture of composites and common factors and second-order constructs

specified as a composite of a mixture of composites and common factors. An

investigation of the performance of the commonly employed approaches and the

assessment of such models would further contribute to the literature.
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4.7 Appendix A to Chapter 4
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Table 4.5: Indicator population covariance matrix of the baseline model



y11 y12 y21 y22 y23 y24 y31 y32 y33 y34 y35 y36 y41 y42 y43 y51 y52 y53 y61 y62 y63

1.00 0.31 0.36 0.31 0.25 0.32 0.13 0.16 0.13 0.14 0.15 0.15 0.19 0.18 0.18 0.16 0.22 0.27 0.02 0.01 0.01
0.31 1.00 0.26 0.22 0.18 0.23 0.09 0.11 0.09 0.10 0.11 0.10 0.14 0.12 0.12 0.12 0.15 0.19 0.01 0.01 0.01
0.36 0.26 1.00 0.40 0.30 0.31 0.18 0.21 0.18 0.19 0.20 0.20 0.19 0.17 0.17 0.16 0.21 0.26 0.02 0.01 0.01
0.31 0.22 0.40 1.00 0.28 0.31 0.15 0.18 0.15 0.16 0.17 0.17 0.16 0.14 0.14 0.13 0.18 0.22 0.01 0.01 0.01
0.25 0.18 0.30 0.28 1.00 0.30 0.12 0.15 0.12 0.13 0.14 0.14 0.13 0.12 0.12 0.11 0.14 0.18 0.01 0.01 0.01
0.32 0.23 0.31 0.31 0.30 1.00 0.16 0.19 0.15 0.16 0.18 0.17 0.16 0.15 0.15 0.14 0.18 0.23 0.01 0.01 0.01
0.13 0.09 0.18 0.15 0.12 0.16 1.00 0.10 0.25 0.13 0.10 0.30 0.12 0.11 0.11 0.10 0.13 0.17 0.01 0.01 0.01
0.16 0.11 0.21 0.18 0.15 0.19 0.10 1.00 0.20 0.40 0.30 0.20 0.14 0.13 0.13 0.12 0.16 0.20 0.01 0.01 0.01
0.13 0.09 0.18 0.15 0.12 0.15 0.25 0.20 1.00 0.30 0.10 0.30 0.12 0.11 0.11 0.10 0.13 0.17 0.01 0.01 0.01
0.14 0.10 0.19 0.16 0.13 0.16 0.13 0.40 0.30 1.00 0.20 0.20 0.13 0.11 0.11 0.11 0.14 0.18 0.01 0.01 0.01
0.15 0.11 0.20 0.17 0.14 0.18 0.10 0.30 0.10 0.20 1.00 0.10 0.14 0.12 0.12 0.12 0.15 0.19 0.01 0.01 0.01
0.15 0.10 0.20 0.17 0.14 0.17 0.30 0.20 0.30 0.20 0.10 1.00 0.13 0.12 0.12 0.11 0.15 0.19 0.01 0.01 0.01
0.19 0.14 0.19 0.16 0.13 0.16 0.12 0.14 0.12 0.13 0.14 0.13 1.00 0.40 0.40 0.09 0.12 0.15 -0.29 -0.18 -0.22
0.18 0.12 0.17 0.14 0.12 0.15 0.11 0.13 0.11 0.11 0.12 0.12 0.40 1.00 0.40 0.08 0.11 0.13 -0.26 -0.17 -0.20
0.18 0.12 0.17 0.14 0.12 0.15 0.11 0.13 0.11 0.11 0.12 0.12 0.40 0.40 1.00 0.08 0.11 0.13 -0.26 -0.17 -0.20
0.16 0.12 0.16 0.13 0.11 0.14 0.10 0.12 0.10 0.11 0.12 0.11 0.09 0.08 0.08 1.00 0.20 0.30 -0.04 -0.02 -0.03
0.22 0.15 0.21 0.18 0.14 0.18 0.13 0.16 0.13 0.14 0.15 0.15 0.12 0.11 0.11 0.20 1.00 0.40 -0.05 -0.03 -0.04
0.27 0.19 0.26 0.22 0.18 0.23 0.17 0.20 0.17 0.18 0.19 0.19 0.15 0.13 0.13 0.30 0.40 1.00 -0.06 -0.04 -0.05
0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.29 -0.26 -0.26 -0.04 -0.05 -0.06 1.00 0.25 0.40
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.18 -0.17 -0.17 -0.02 -0.03 -0.04 0.25 1.00 0.16
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.22 -0.20 -0.20 -0.03 -0.04 -0.05 0.40 0.16 1.00
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Table 4.6: Indicator population covariance matrix in case of the small model misspecification



y11 y12 y21 y22 y23 y24 y31 y32 y33 y34 y35 y36 y41 y42 y43 y51 y52 y53 y61 y62 y63

1.00 0.31 0.22 0.18 0.15 0.19 0.11 0.13 0.11 0.11 0.12 0.12 0.17 0.15 0.15 0.07 0.09 0.12 0.27 0.17 0.20
0.31 1.00 0.15 0.13 0.10 0.13 0.08 0.09 0.07 0.08 0.09 0.08 0.12 0.11 0.11 0.05 0.06 0.08 0.19 0.12 0.14
0.22 0.15 1.00 0.40 0.30 0.31 0.15 0.18 0.15 0.16 0.17 0.17 −0.03 −0.02 −0.02 0.20 0.27 0.34 0.37 0.23 0.27
0.18 0.13 0.40 1.00 0.28 0.31 0.13 0.15 0.13 0.13 0.15 0.14 −0.02 −0.02 −0.02 0.17 0.23 0.29 0.31 0.20 0.23
0.15 0.10 0.30 0.28 1.00 0.30 0.10 0.12 0.10 0.11 0.12 0.12 −0.02 −0.02 −0.02 0.14 0.18 0.23 0.26 0.16 0.19
0.19 0.13 0.31 0.31 0.30 1.00 0.13 0.16 0.13 0.14 0.15 0.15 −0.02 −0.02 −0.02 0.18 0.24 0.30 0.33 0.20 0.24
0.11 0.08 0.15 0.13 0.10 0.13 1.00 0.10 0.25 0.13 0.10 0.30 −0.03 −0.02 −0.02 0.05 0.07 0.09 0.21 0.13 0.16
0.13 0.09 0.18 0.15 0.12 0.16 0.10 1.00 0.20 0.40 0.30 0.20 −0.03 −0.03 −0.03 0.06 0.08 0.10 0.25 0.16 0.18
0.11 0.07 0.15 0.13 0.10 0.13 0.25 0.20 1.00 0.30 0.10 0.30 −0.03 −0.02 −0.02 0.05 0.07 0.08 0.21 0.13 0.15
0.11 0.08 0.16 0.13 0.11 0.14 0.13 0.40 0.30 1.00 0.20 0.20 −0.03 −0.03 −0.03 0.05 0.07 0.09 0.22 0.14 0.16
0.12 0.09 0.17 0.15 0.12 0.15 0.10 0.30 0.10 0.20 1.00 0.10 −0.03 −0.03 −0.03 0.06 0.08 0.10 0.24 0.15 0.18
0.12 0.08 0.17 0.14 0.12 0.15 0.30 0.20 0.30 0.20 0.10 1.00 −0.03 −0.03 −0.03 0.06 0.08 0.10 0.23 0.15 0.17
0.17 0.12 −0.03 −0.02 −0.02 −0.02 −0.03 −0.03 −0.03 −0.03 −0.03 −0.03 1.00 0.40 0.40 0.09 0.12 0.15 −0.29 −0.18 −0.22
0.15 0.11 −0.02 −0.02 −0.02 −0.02 −0.02 −0.03 −0.02 −0.03 −0.03 −0.03 0.40 1.00 0.40 0.08 0.11 0.13 −0.26 −0.17 −0.20
0.15 0.11 −0.02 −0.02 −0.02 −0.02 −0.02 −0.03 −0.02 −0.03 −0.03 −0.03 0.40 0.40 1.00 0.08 0.11 0.13 −0.26 −0.17 −0.20
0.07 0.05 0.20 0.17 0.14 0.18 0.05 0.06 0.05 0.05 0.06 0.06 0.09 0.08 0.08 1.00 0.20 0.30 −0.04 −0.02 −0.03
0.09 0.06 0.27 0.23 0.18 0.24 0.07 0.08 0.07 0.07 0.08 0.08 0.12 0.11 0.11 0.20 1.00 0.40 −0.05 −0.03 −0.04
0.12 0.08 0.34 0.29 0.23 0.30 0.09 0.10 0.08 0.09 0.10 0.10 0.15 0.13 0.13 0.30 0.40 1.00 −0.06 −0.04 −0.05
0.27 0.19 0.37 0.31 0.26 0.33 0.21 0.25 0.21 0.22 0.24 0.23 −0.29 −0.26 −0.26 −0.04 −0.05 −0.06 1.00 0.25 0.40
0.17 0.12 0.23 0.20 0.16 0.20 0.13 0.16 0.13 0.14 0.15 0.15 −0.18 −0.17 −0.17 −0.02 −0.03 −0.04 0.25 1.00 0.16
0.20 0.14 0.27 0.23 0.19 0.24 0.16 0.18 0.15 0.16 0.18 0.17 −0.22 −0.20 −0.20 −0.03 −0.04 −0.05 0.40 0.16 1.00
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Table 4.7: Indicator population covariance matrix in case of the medium model misspecification



y11 y12 y21 y22 y23 y24 y31 y32 y33 y34 y35 y36 y41 y42 y43 y51 y52 y53 y61 y62 y63

1.00 0.31 0.24 0.20 0.17 0.21 0.10 0.12 0.10 0.11 0.12 0.11 −0.44 −0.40 −0.40 −0.01 −0.01 −0.02 0.54 0.34 0.40
0.31 1.00 0.17 0.14 0.12 0.15 0.07 0.08 0.07 0.08 0.08 0.08 −0.31 −0.28 −0.28 −0.01 −0.01 −0.01 0.38 0.24 0.28
0.24 0.17 1.00 0.40 0.30 0.31 0.15 0.18 0.15 0.16 0.17 0.17 −0.03 −0.02 −0.02 0.20 0.27 0.34 0.37 0.23 0.27
0.20 0.14 0.40 1.00 0.28 0.31 0.13 0.15 0.12 0.13 0.14 0.14 −0.02 −0.02 −0.02 0.17 0.23 0.29 0.31 0.20 0.23
0.17 0.12 0.30 0.28 1.00 0.30 0.10 0.12 0.10 0.11 0.12 0.11 −0.02 −0.02 −0.02 0.14 0.18 0.23 0.26 0.16 0.19
0.21 0.15 0.31 0.31 0.30 1.00 0.13 0.16 0.13 0.14 0.15 0.15 −0.02 −0.02 −0.02 0.18 0.24 0.30 0.33 0.20 0.24
0.10 0.07 0.15 0.13 0.10 0.13 1.00 0.10 0.25 0.13 0.10 0.30 0.02 0.02 0.02 0.06 0.08 0.10 0.19 0.12 0.14
0.12 0.08 0.18 0.15 0.12 0.16 0.10 1.00 0.20 0.40 0.30 0.20 0.02 0.02 0.02 0.07 0.09 0.11 0.23 0.14 0.17
0.10 0.07 0.15 0.12 0.10 0.13 0.25 0.20 1.00 0.30 0.10 0.30 0.02 0.02 0.02 0.06 0.07 0.09 0.19 0.12 0.14
0.11 0.08 0.16 0.13 0.11 0.14 0.13 0.40 0.30 1.00 0.20 0.20 0.02 0.02 0.02 0.06 0.08 0.10 0.20 0.13 0.15
0.12 0.08 0.17 0.14 0.12 0.15 0.10 0.30 0.10 0.20 1.00 0.10 0.02 0.02 0.02 0.07 0.09 0.11 0.22 0.14 0.16
0.11 0.08 0.17 0.14 0.11 0.15 0.30 0.20 0.30 0.20 0.10 1.00 0.02 0.02 0.02 0.06 0.08 0.11 0.21 0.13 0.16

−0.44 −0.31 −0.03 −0.02 −0.02 −0.02 0.02 0.02 0.02 0.02 0.02 0.02 1.00 0.40 0.40 0.09 0.12 0.15 −0.29 −0.18 −0.22
−0.40 −0.28 −0.02 −0.02 −0.02 −0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.40 1.00 0.40 0.08 0.11 0.13 −0.26 −0.17 −0.20
−0.40 −0.28 −0.02 −0.02 −0.02 −0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.40 0.40 1.00 0.08 0.11 0.13 −0.26 −0.17 −0.20
−0.01 −0.01 0.20 0.17 0.14 0.18 0.06 0.07 0.06 0.06 0.07 0.06 0.09 0.08 0.08 1.00 0.20 0.30 −0.04 −0.02 −0.03
−0.01 −0.01 0.27 0.23 0.18 0.24 0.08 0.09 0.07 0.08 0.09 0.08 0.12 0.11 0.11 0.20 1.00 0.40 −0.05 −0.03 −0.04
−0.02 −0.01 0.34 0.29 0.23 0.30 0.10 0.11 0.09 0.10 0.11 0.11 0.15 0.13 0.13 0.30 0.40 1.00 −0.06 −0.04 −0.05

0.54 0.38 0.37 0.31 0.26 0.33 0.19 0.23 0.19 0.20 0.22 0.21 −0.29 −0.26 −0.26 −0.04 −0.05 −0.06 1.00 0.25 0.40
0.34 0.24 0.23 0.20 0.16 0.20 0.12 0.14 0.12 0.13 0.14 0.13 −0.18 −0.17 −0.17 −0.02 −0.03 −0.04 0.25 1.00 0.16
0.40 0.28 0.27 0.23 0.19 0.24 0.14 0.17 0.14 0.15 0.16 0.16 −0.22 −0.20 −0.20 −0.03 −0.04 −0.05 0.40 0.16 1.00
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Table 4.8: Indicator population covariance matrix in case of the large model misspecification



y11 y12 y21 y22 y23 y24 y31 y32 y33 y34 y35 y36 y41 y42 y43 y51 y52 y53 y61 y62 y63

1.00 0.31 0.27 0.23 0.19 0.24 0.05 0.06 0.05 0.06 0.06 0.06 0.17 0.15 0.15 0.07 0.09 0.12 0.27 0.17 0.20
0.31 1.00 0.19 0.16 0.13 0.17 0.04 0.04 0.04 0.04 0.04 0.04 0.12 0.11 0.11 0.05 0.06 0.08 0.19 0.12 0.14
0.27 0.19 1.00 0.40 0.30 0.31 0.06 0.07 0.06 0.06 0.07 0.07 0.23 0.20 0.20 0.19 0.26 0.32 0.26 0.16 0.19
0.23 0.16 0.40 1.00 0.28 0.31 0.05 0.06 0.05 0.05 0.06 0.06 0.19 0.17 0.17 0.16 0.22 0.27 0.22 0.14 0.16
0.19 0.13 0.30 0.28 1.00 0.30 0.04 0.05 0.04 0.04 0.05 0.05 0.16 0.14 0.14 0.13 0.18 0.22 0.18 0.11 0.13
0.24 0.17 0.31 0.31 0.30 1.00 0.05 0.06 0.05 0.06 0.06 0.06 0.20 0.18 0.18 0.17 0.23 0.28 0.23 0.14 0.17
0.05 0.04 0.06 0.05 0.04 0.05 1.00 0.10 0.25 0.13 0.10 0.30 −0.25 −0.23 −0.23 0.02 0.03 0.04 0.31 0.19 0.23
0.06 0.04 0.07 0.06 0.05 0.06 0.10 1.00 0.20 0.40 0.30 0.20 −0.29 −0.26 −0.26 0.03 0.04 0.05 0.36 0.23 0.27
0.05 0.04 0.06 0.05 0.04 0.05 0.25 0.20 1.00 0.30 0.10 0.30 −0.24 −0.22 −0.22 0.02 0.03 0.04 0.30 0.19 0.22
0.06 0.04 0.06 0.05 0.04 0.06 0.13 0.40 0.30 1.00 0.20 0.20 −0.26 −0.24 −0.24 0.02 0.03 0.04 0.32 0.20 0.24
0.06 0.04 0.07 0.06 0.05 0.06 0.10 0.30 0.10 0.20 1.00 0.10 −0.28 −0.26 −0.26 0.03 0.03 0.04 0.35 0.22 0.26
0.06 0.04 0.07 0.06 0.05 0.06 0.30 0.20 0.30 0.20 0.10 1.00 −0.27 −0.25 −0.25 0.03 0.03 0.04 0.34 0.21 0.25
0.17 0.12 0.23 0.19 0.16 0.20 −0.25 −0.29 −0.24 −0.26 −0.28 −0.27 1.00 0.40 0.40 0.09 0.12 0.15 −0.29 −0.18 −0.22
0.15 0.11 0.20 0.17 0.14 0.18 −0.23 −0.26 −0.22 −0.24 −0.26 −0.25 0.40 1.00 0.40 0.08 0.11 0.13 −0.26 −0.17 −0.20
0.15 0.11 0.20 0.17 0.14 0.18 −0.23 −0.26 −0.22 −0.24 −0.26 −0.25 0.40 0.40 1.00 0.08 0.11 0.13 −0.26 −0.17 −0.20
0.07 0.05 0.19 0.16 0.13 0.17 0.02 0.03 0.02 0.02 0.03 0.03 0.09 0.08 0.08 1.00 0.20 0.30 −0.04 −0.02 −0.03
0.09 0.06 0.26 0.22 0.18 0.23 0.03 0.04 0.03 0.03 0.03 0.03 0.12 0.11 0.11 0.20 1.00 0.40 −0.05 −0.03 −0.04
0.12 0.08 0.32 0.27 0.22 0.28 0.04 0.05 0.04 0.04 0.04 0.04 0.15 0.13 0.13 0.30 0.40 1.00 −0.06 −0.04 −0.05
0.27 0.19 0.26 0.22 0.18 0.23 0.31 0.36 0.30 0.32 0.35 0.34 −0.29 −0.26 −0.26 −0.04 −0.05 −0.06 1.00 0.25 0.40
0.17 0.12 0.16 0.14 0.11 0.14 0.19 0.23 0.19 0.20 0.22 0.21 −0.18 −0.17 −0.17 −0.02 −0.03 −0.04 0.25 1.00 0.16
0.20 0.14 0.19 0.16 0.13 0.17 0.23 0.27 0.22 0.24 0.26 0.25 −0.22 −0.20 −0.20 −0.03 −0.04 −0.05 0.40 0.16 1.00
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Figure 4.7: Tests’ rejection rates for the alternative population models estimated by a
correctly specified model
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4.8 Appendix B to Chapter 4

4.8.1 Data generation

We consider four different data generating processes (DGPs) in the paper:

• dgp_2ndorder

• dgp_alt_small

• dgp_alt_med

• dgp_alt_large

The second-order DGP (dgp_2ndorder)

This DGP includes the second-order construct η3. The DGP is displayed in Figure

4.3 in the paper but repeated here for convenience.

ξ

η1

η2

η3 c2

c1

c3

y11 y12

y22

y21

y23

y24

y34y33y32y31 y35 y36

y42

y41

y43

y52

y51

y53

y62

y61

y63

.4887

.3665

.3665

.2617

.3926

.6543

.6696

.3348

.3348

.80 .40

.50

.30

.20

.40

wc1 = .4

wc2 = .4

wc3 = .5

.30 .30 .20 .20 .40 .30

γ 1
=
.2

γ
2 =

−
.4

γ3 = .35

β
1 =
.4

β 2
=
.2

Figure 4.9: Second-order DGP

We use the cSEM.DGP package (Rademaker and Schamberger, 2020) to generate the

data. The package was written by Tamara Schamberger and myself and is available

on GitHub. The main purpose of the package is to provide a quick way to generate

model-implied population covariance matrices or data for structural equation models

in R.
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dgp_2ndorder <- "
## Structural model
eta1 ~ 0.2*xi
eta2 ~ -0.4*xi
eta3 ~ 0.35*xi + 0.4*eta1 + 0.2*eta2

## Composite models
xi <~ 0.8*y41 + 0.6*y42 + 0.6*y43
eta1 <~ 2*y51 + 3*y52 + 5*y53
eta2 <~ 2*y61 + 1*y62 + 1*y63
c1 <~ 0.8*y11 + 0.4*y12
c2 <~ 0.5*y21 + 0.3*y22 + 0.2*y23 + 0.4*y24
c3 <~ 0.3*y31 + 0.3*y32 + 0.2*y33 + 0.2*y34 + 0.4*y35 + 0.3*y36

## Second-order composite
eta3 <~ 0.4*c1 + 0.4*c2 + 0.5*c3

## Composite indicator correlations
# xi
y41 ~~ 0.4*y42 + 0.4*y43
y42 ~~ 0.4*y43

# eta1
y51 ~~ 0.2*y52 + 0.3*y53
y52 ~~ 0.4*y53

# eta2
y61 ~~ 0.25*y62 + 0.4*y63
y62 ~~ 0.16*y63

# eta3 (the 2nd order construct)
c1 ~~ 0.49*c2 + 0.27*c3
c2 ~~ 0.413*c3

# c1-c3
y11 ~~ 0.3125*y12

y21 ~~ 0.4*y22 + 0.3*y23 + 0.31*y24
y22 ~~ 0.28*y23 + 0.31*y24
y23 ~~ 0.3*y24

y31 ~~ 0.1*y32 + 0.25*y33 + 0.13*y34 + 0.1*y35 + 0.3*y36
y32 ~~ 0.2*y33 + 0.4*y34 + 0.3*y35 + 0.2*y36
y33 ~~ 0.3*y34 + 0.1*y35 + 0.3*y36
y34 ~~ 0.2*y35 + 0.2*y36
y35 ~~ 0.1*y36
"
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## Generate data

dat <- generateData(dgp_2ndorder, .return_type = "data.frame", .empirical = TRUE)

## Estimate and summarize

out <- cSEM::summarize(csem(dat, dgp_2ndorder))

## Save the population parameters (to be able to compare them to the estimates)

pop_params_2ndorder <- list(
"Loadings" = {

l <- c(out$First_stage$Estimates$Loading_estimates$Estimate,
out$Second_stage$Estimates$Loading_estimates$Estimate)

names(l) <- c(out$First_stage$Estimates$Loading_estimates$Name,
out$Second_stage$Estimates$Loading_estimates$Name)

l
},
"Path_coefficients" = {

p <- out$Second_stage$Estimates$Path_estimates$Estimate
names(p) <- out$Second_stage$Estimates$Path_estimates$Name
p

},
"Weights" = {

w <- c(out$First_stage$Estimates$Weight_estimates$Estimate,
out$Second_stage$Estimates$Weight_estimates$Estimate)

names(w) <- c(out$First_stage$Estimates$Weight_estimates$Name,
out$Second_stage$Estimates$Weight_estimates$Name)

w
}

)

The alternative DGPs

The alternative DGPs are identical to the second-order DGP except for the structural

model. Hence, the population weights and intra-block correlations are identical to

those from the second-order DGP; however, unlike the second-order DGP, the

constructs ξ, η1, and η2 directly affect the constructs c1, c2, and c3 without there

being a second-order construct. The structural model is shown in Figure 4.4 of the

paper but repeated here for convenience.
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Figure 4.10: Structural specification for the alternative DGPs

To assess the power of the testing procedures proposed in the paper, three different

alternative DGPs are considered. They only differ in the absolute magnitude of the

direct effects of ξ, η1, and η2 on c1, c2, and c3. In the following, these DGPs are called:

• dgp_alt_small

• dgp_alt_med

• dgp_alt_large

The model that matches the second-order DGP (model_2ndorder in Subsection

4.8.3) is misspecified with respect to the alternative DGPs. The degree of

misspecification is measured by means of the standardized root mean square residual

(SRMR). Every test’s power to detect misspecification is a function of the magnitude

of misspecification; the larger the misspecification, the more likely the test is to

detect that misspecification. In order to obtain different amounts of misspecification

– while keeping the structure of the model unchanged –, we vary the magnitude of

the path coefficients of ξ, η1, and η2 on c1, c2, and c3. Depending on the combination

of population values for these paths, different amounts of misspecification with

respect to the second-order model arise.
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Technically, we use the generateData() function’s ability to generate data based on

variable parameter values. To achieve this, the package makes use of lavaan’s

labeling capabilities. Users may replace a given parameter in, i.e., the structural

model by a symbolic name – e.g., a, b, c etc. – and assign a value or a vector of

values to that name as an argument of generateData(). These values will be used to

generate data for all possible combinations of these values with the remaining fixed

parameters.

Table 4.2 lists the parameter combinations that we used for the alternative DGPs,

including the corresponding magnitude of misspecification. We repeat the table here

for convenience.

Table 4.12: Population path coefficients in case of misspecifications

Misspecification SRMR SRMR1st SRMR2nd γ3 γ4 γ5 β1 β2 β3 β4 β5 β6

Small 0.0302 0.000 0.0626 0.4 0.1 0.5 0.1 0.5 0.6 0.1 0.2 0.5
Medium 0.0629 0.000 0.1262 −0.4 0.1 0.5 0.1 0.5 0.6 0.2 0.2 0.5
Large 0.0949 0.000 0.1718 0.4 0.1 0.5 0.5 0.4 0.6 −0.4 0.2 0.5

The next subsection details how the parameter values are determined.

dgp_alt <- "
## Structural model
eta1 ~ gamma1*xi
eta2 ~ gamma2*xi
c1 ~ a*xi + b*eta1 + c*eta2
c2 ~ d*xi + e*eta1 + f*eta2
c3 ~ g*xi + h*eta1 + i*eta2

## Composite model
xi <~ 0.8*y41 + 0.6*y42 + 0.6*y43
eta1 <~ 2*y51 + 3*y52 + 5*y53
eta2 <~ 2*y61 + 1*y62 + 1*y63
c1 <~ 0.8*y11 + 0.4*y12
c2 <~ 0.5*y21 + 0.3*y22 + 0.2*y23 + 0.4*y24
c3 <~ 0.3*y31 + 0.3*y32 + 0.2*y33 + 0.2*y34 + 0.4*y35 + 0.3*y36

## Composite indicator correlations
# xi
y41 ~~ 0.4*y42 + 0.4*y43
y42 ~~ 0.4*y43

# eta1
y51 ~~ 0.2*y52 + 0.3*y53
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y52 ~~ 0.4*y53

# eta2
y61 ~~ 0.25*y62 + 0.4*y63
y62 ~~ 0.16*y63

# eta3 (the 2nd order construct)
c1 ~~ 0.49*c2 + 0.27*c3
c2 ~~ 0.413*c3

# c1-c3
y11 ~~ 0.3125*y12

y21 ~~ 0.4*y22 + 0.3*y23 + 0.31*y24
y22 ~~ 0.28*y23 + 0.31*y24
y23 ~~ 0.3*y24

y31 ~~ 0.1*y32 + 0.25*y33 + 0.13*y34 + 0.1*y35 + 0.3*y36
y32 ~~ 0.2*y33 + 0.4*y34 + 0.3*y35 + 0.2*y36
y33 ~~ 0.3*y34 + 0.1*y35 + 0.3*y36
y34 ~~ 0.2*y35 + 0.2*y36
y35 ~~ 0.1*y36
"

## Generate population indicator covariance matrices (Sigma matrices)

Sigma_dgp_alt_small <- generateData(.model = dgp_alt, .return_type = "cor",
gamma1 = 0.2, gamma2 = -0.4,
a = 0.4, b = 0.1, c = 0.5,
d = 0.1, e = 0.5, f = 0.6,
g = 0.1, h = 0.2, i = 0.5)

Sigma_dgp_alt_med <- generateData(.model = dgp_alt, .return_type = "cor",
gamma1 = 0.2, gamma2 = -0.4,
a = -0.4, b = 0.1, c = 0.5,
d = 0.1, e = 0.5, f = 0.6,
g = 0.2, h = 0.2, i = 0.5)

Sigma_dgp_alt_large <- generateData(.model = dgp_alt, .return_type = "cor",
gamma1 = 0.2, gamma2 = -0.4,
a = 0.4, b = 0.1, c = 0.5,
d = 0.5, e = 0.4, f = 0.6,
g = -0.4, h = 0.2, i = 0.5)

## Get Sigma matrix

Sigma_dgp_alt_small <- Sigma_dgp_alt_small$dgp[[1]]
Sigma_dgp_alt_med <- Sigma_dgp_alt_med$dgp[[1]]
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Sigma_dgp_alt_large <- Sigma_dgp_alt_large$dgp[[1]]

## Generate data -------------------------------------

dat1 <- MASS::mvrnorm(200, mu = rep(0, nrow(Sigma_dgp_alt_small)),
Sigma = Sigma_dgp_alt_small, empirical = TRUE)

dat2 <- MASS::mvrnorm(200, mu = rep(0, nrow(Sigma_dgp_alt_med)),
Sigma = Sigma_dgp_alt_med, empirical = TRUE)

dat3 <- MASS::mvrnorm(200, mu = rep(0, nrow(Sigma_dgp_alt_large)),
Sigma = Sigma_dgp_alt_large, empirical = TRUE)

### Collect and save population parameters ---------------------------

sout1 <- cSEM::summarize(csem(dat1, dgp_alt))
sout2 <- cSEM::summarize(csem(dat2, dgp_alt))
sout3 <- cSEM::summarize(csem(dat3, dgp_alt))

pop_params_alt_small <- list(
"Loadings" = {

l <- sout1$Estimates$Loading_estimates$Estimate
names(l) <- sout1$Estimates$Loading_estimates$Name
l

},
"Path_coefficients" = {

p <- sout1$Estimates$Path_estimates$Estimate
names(p) <- sout1$Estimates$Path_estimates$Name
p

},
"Weights" = {

w <- sout1$Estimates$Weight_estimates$Estimate
names(w) <- sout1$Estimates$Weight_estimates$Name
w

}
)

pop_params_alt_med <- list(
"Loadings" = {

l <- sout2$Estimates$Loading_estimates$Estimate
names(l) <- sout2$Estimates$Loading_estimates$Name
l

},
"Path_coefficients" = {

p <- sout2$Estimates$Path_estimates$Estimate
names(p) <- sout2$Estimates$Path_estimates$Name
p

},
"Weights" = {

w <- sout2$Estimates$Weight_estimates$Estimate
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names(w) <- sout2$Estimates$Weight_estimates$Name
w

}
)

pop_params_alt_large <- list(
"Loadings" = {

l <- sout3$Estimates$Loading_estimates$Estimate
names(l) <- sout3$Estimates$Loading_estimates$Name
l

},
"Path_coefficients" = {

p <- sout3$Estimates$Path_estimates$Estimate
names(p) <- sout3$Estimates$Path_estimates$Name
p

},
"Weights" = {

w <- sout3$Estimates$Weight_estimates$Estimate
names(w) <- sout3$Estimates$Weight_estimates$Name
w

}
)

### Save -----------------------------------------------------------------------

save(list = c("Sigma_dgp_2ndorder", "Sigma_dgp_alt_small", "Sigma_dgp_alt_med",
"Sigma_dgp_alt_large", "pop_params_2ndorder", "pop_params_alt_small",
"pop_params_alt_med", "pop_params_alt_large"),

file = "DGPs/DGPs.RData")

4.8.2 Procedure to obtain the alternative DGPs

The alternative DGPs are obtained by the following procedure:

1. Randomly vary the value of the paths of the constructs ξ, η1, and η2 on c1− c3.

2. Generate population covariance matrices and normally distributed data for each

parameter combination using the generateData() function of the cSEM.DGP

package. Make sure to set .empirical = TRUE such that the covariance

between variables of the data we generate perfectly reproduces the population

covariance matrix.

3. For each data set, estimate the model containing the second-order construct

(i.e., the “wrong” model with respect to the alternative DGPs).
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4. If an estimation produces admissible results, compute the SRMR as a measure

of misspecification.

5. Compute the empirical 5%, the 50% and 95% quantile of the SRMR values.

6. Obtain parameter combinations that produce SRMRs close to that of the 5%,

50% and 95% quantile.

7. Save DGPs for reproducibility.

8. Select combinations that satisfy the required guidelines on what parameter

values should be (i.e., loadings > 0.5, see below).

9. Randomly pick one population model from each selection. The path coefficients

of the three selected alternative population models are presented in the paper.

We want a data generating process that – if estimated using the wrong model, i.e.,

the model containing a second-order construct – should still be in line with the

guidelines for models containing composites as postulated, for instance, by Sarstedt

et al. (2019); Hair et al. (2017b,a); Ramayah et al. (2016); Becker et al. (2012).

Guidelines for a pure composite model (formative model in PLS-SEM parlance)

amount to:

1. All variance inflation factors (VIFs) between indicators should be smaller than

3.

2. All Composite loadings should be larger than 0.5.

3. Indicator correlations should be smaller than 0.5

4. Weights should not be “too small”.

The structural specification of the alternative DGP in general form is:

dgp_alt <- "
## Path model / Regressions
eta1 ~ gamma1*xi
eta2 ~ gamma2*xi
c1 ~ a*xi + b*eta1 + c*eta2
c2 ~ d*xi + e*eta1 + f*eta2
c3 ~ g*xi + h*eta1 + i*eta2
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... omitted ...
"

The structural and second-order part of the second-order model is:

model_2ndorder <- "
# Path model / Regressions
eta1 ~ xi
eta2 ~ xi
eta3 ~ xi + eta1 + eta2

# Higher order composite
eta3 <~ c1 + c2 + c3

... omitted ...
"

The model is clearly misspecified with respect to the alternative DGP no matter

what parameters we pick for a - i.

The procedure

## 1. and 2. Vary population path coefficients and generate data with

## a correlation matrix identical to the population correlation matrix

dat_table <- generateData(
.model = dgp_alt,
.return_type = "data.frame",
.empirical = TRUE,
.N = 200,
gamma1 = 0.2,
gamma2 = -0.4,
a = c(-0.4, 0.2, 0.4, 0.8),
b = c(0.1, 0.4, 0.6),
c = c(0.1, 0.5),
d = c(0.1, 0.5),
e = c(-0.5, 0.1, 0.4, 0.5),
f = c(-0.3, 0.2, 0.4, 0.6),
g = c(-0.4, 0.1, 0.2, 0.5),
h = c(-0.3, 0.2, 0.5),
i = c(-0.4, 0.1, 0.2, 0.5),
.handle_negative_definite = "drop") # creates about 180.000 data sets

## 3. and 4. Estimate and compute SRMR if estimates are admissible

res_table <- dat_table %>%
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mutate("SRMR" = sapply(dgp, function(x) {

out <- csem(x, model_2ndorder)

if(sum(unlist(verify(out))) == 0) {
cSEM:::calculateSRMR(out)

} else {
NA

}
}))

res_table2 <- res_table[!is.na(res_table$SRMR), ]

## 5. Compute quantiles of the SRMRs

quants <- quantile(res_table2$SRMR, probs = c(0.05, 0.5, 0.95), na.rm = TRUE)

## 6. Obtain parameter combinations that produce SRMRs close to the

## 5%, 50%, and 95% quantiles of the generated SRMRs

selected <- filter(res_table2,
(near(quants[1], res_table2$SRMR, tol = 0.001) |

near(quants[2], res_table2$SRMR, tol = 0.001) |
near(quants[3], res_table2$SRMR, tol = 0.001)))

## 7. Save the selected parameter combinations for replicability.

save(selected, file = "DGPs/selected_alt_dgps.RData")

## 8. Keep only those parameter combinations that produces estimates that

# are conform with existing guidelines

selected2 <- selected %>%
mutate("Passed_guidlines" = sapply(dgp, function(x) {
## The (extended) repeated indicators approach requires the repeated indicators to

## be attached to the data set

coln <- c(colnames(x), paste0(colnames(x), "_temp"))
x_RI <- x[, c(1:ncol(x), 1:ncol(x))]
colnames(x_RI) <- coln

# Two-stage

out_TS <- cSEM::summarize(csem(x, model_2ndorder))
loadings_TS <- min(out_TS$Second_stage$Estimates$Loading_estimates$Estimate)
weights_TS <- min(out_TS$Second_stage$Estimates$Weight_estimates$Estimate)
VIF_TS <- unlist(lapply(

cSEM::calculateVIFModeB(csem(x, model_2ndorder)$Second_stage), max))["eta3"]

# RI extended

out_RI <- csem(x_RI, model_RI_extended)
loadings_RI <- min(cSEM::summarize(out_RI)$Estimates$Loading_estimates$Estimate[1:21])
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loadings_RI_2ndorder <- min(cor(out_RI$Estimate$Construct_scores)[3:5, 7])
weights_RI <- min(cSEM::summarize(out_RI)$Estimates$Weight_estimates$Estimate[1:21])
weights_RI_2ndorder <- min(cSEM::summarize(out_RI)$Estimates$Path_estimates$Estimate[15:17])

VIF_RI <- max(out_RI$Estimates$VIF$eta3)

if(loadings_TS > 0.51 & weights_TS > 0.1 & VIF_TS < 3 &
loadings_RI > 0.51 & loadings_RI_2ndorder > 0.51 & weights_RI > 0.1 &
weights_RI_2ndorder > 0.1 & VIF_RI < 3) {

TRUE
} else {

FALSE
}

})) %>%
filter(Passed_guidlines == TRUE)

## 9. For the simulation, we pick the following parameter combinations:

# - small misspecification: Id = 31431

# - medium misspecificaiton: Id = 32989

# - large misspecification: Id = 32223

filter(selected2, Id %in% c(32223, 31431, 32989))

Note: Other parameter combinations producing similar misspecification could have

been picked as well. This is purely random. Results will not differ.

4.8.3 Models

We have three models:

• model_2ndorder: A specification that includes the second-order composite. If

such a model is provided to the csem() function, the two-stage approach with a

saturated structural model in the first stage is applied by default. To estimate

the model using the embedded two-stage approach set argument

.approach_2ndorder to “mixed” in csem(). Alternatively, the embedded

two-stage approach can be used (called “mixed” in cSEM).

• model_alt: This specification matches the structure of the alternative DGPs.

• model_RI_extended: This specification is used for the extended repeated

indicators approach.
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model_2ndorder <- "
# Structural model
eta1 ~ xi
eta2 ~ xi
eta3 ~ xi + eta1 + eta2

# Composite model
xi <~ y41 + y42 + y43
eta1 <~ y51 + y52 + y53
eta2 <~ y61 + y62 + y63
c1 <~ y11 + y12
c2 <~ y21 + y22 + y23 + y24
c3 <~ y31 + y32 + y33 + y34 + y35 + y36

# Second-order composite
eta3 <~ c1 + c2 + c3
"

model_alt <- "
# Structural model
eta1 ~ xi
eta2 ~ xi
c1 ~ xi + eta1 + eta2
c2 ~ xi + eta1 + eta2
c3 ~ xi + eta1 + eta2

# Composite model
xi <~ y41 + y42 + y43
eta1 <~ y51 + y52 + y53
eta2 <~ y61 + y62 + y63
c1 <~ y11 + y12
c2 <~ y21 + y22 + y23 + y24
c3 <~ y31 + y32 + y33 + y34 + y35 + y36"

model_RI_extended <- "
# Structural model
eta1 ~ xi
eta2 ~ xi
eta3 ~ xi + eta1 + eta2 + c1 + c2 + c3

# Composite model
xi <~ y41 + y42 + y43
eta1 <~ y51 + y52 + y53
eta2 <~ y61 + y62 + y63
c1 <~ y11 + y12
c2 <~ y21 + y22 + y23 + y24
c3 <~ y31 + y32 + y33 + y34 + y35 + y36
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# second-order composite
eta3 <~ y11_temp + y12_temp + y21_temp + y22_temp + y23_temp + y24_temp +

y31_temp + y32_temp + y33_temp + y34_temp + y35_temp + y36_temp

# Additional indirect effects
c1 ~ xi
c2 ~ xi
c3 ~ xi

c1 ~ eta1
c2 ~ eta1
c3 ~ eta1

c1 ~ eta2
c2 ~ eta2
c3 ~ eta2
"

### Save -----------------------------------------------------------------------

save(list = c("model_2ndorder", "model_alt", "model_RI_original", "model_RI_extended"),
file = "Models/Models.RData")

4.8.4 Simulation

This is the R code that runs the actual simulation.

# General Preparation ==========================================================

## Install packages if necessary

if(!require(foreach)) install.packages("foreach")
if(!require(doParallel)) install.packages("doParallel")
if(!require(parallel)) install.packages("parallel")
if(!require(cSEM)) install.packages("cSEM")

## Load packages

library(cSEM) # (version: 0.1.0)

library(foreach)

## Load DGPs and Models

load("DGPs/DGPs.RData") # see Subsection "Data generation" on how to obtain these.

load("Models/Models.RData") # see Subsection "Models" on how to obtain these.

## Source helper functions and models to estimate

source("0_0_HelperFunctions.R") # see Subsection "Helper functions"

# Simulation ===================================================================
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### Preparation ----------------------------------------------------------------

# Things to loop over

sample_size <- list(100, 300, 500, 750, 1000)
number_of_draws <- 1000
number_boot_reps <- 1000
dgp <- list(

"Sigma_dgp_2ndorder" = Sigma_dgp_2ndorder,
"Sigma_dgp_alt_low" = Sigma_dgp_alt_small,
"Sigma_dgp_alt_med" = Sigma_dgp_alt_med,
"Sigma_dgp_alt_high" = Sigma_dgp_alt_large)

model <- mget(c("model_2ndorder", "model_alt"))
weighting_scheme <- c("centroid", "factorial", "path")

number_cores <- parallel::detectCores()
### Monte Carlo simulation -----------------------------------------------------

## Create cluster

cl <- parallel::makeCluster(number_cores)
doParallel::registerDoParallel(cl)

sim <-
foreach(j = seq_along(dgp), .packages = c("MASS", "dplyr", "cSEM")) %:%
foreach(m = seq_along(model)) %:%
foreach(l = weighting_scheme) %:%
foreach(i = sample_size) %dopar% {

# Create dummy structures to make data processing easier

out1 <- data.frame(
"Estimate_type" = NA,
"Name" = NA,
"Estimate" = NA

)
out2 <- data.frame(

"Stage" = NA,
"Distance_measure" = NA,
"99%" = NA,
"95%" = NA,
"90%" = NA,
check.names = FALSE

)

out_dummy <- list(
"Parameter_estimates" = out1,
"Test" = out2

)

out_dummy_status <- data.frame(
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"Status_code" = NA,
"Status_code_1" = NA,
"Status_code_2" = NA

)

out_status <- list(
list(

out_dummy_status,
out_dummy_status,
out_dummy_status

)
)

## Note:

## j := the index for the DGP

## m := the index for the model

out_estimation <- list()
counter <- 0
repeat{

counter <- counter + 1

## Generate data

samp <- DataGeneration(
.sample_size = i,
.Sigma = dgp[[j]],
.ndraws = 1,
.scale_factor = "normal.kurt",
.empirical = FALSE

)[[1]]

## The (extended) repeated indicators approach requires the repeated indicators to

## be attached to the data set

coln <- c(colnames(samp), paste0(colnames(samp), "_temp"))
samp_RI <- samp[, c(1:ncol(samp), 1:ncol(samp))]
colnames(samp_RI) <- coln

### Two-stage approach ---------------------------------------------------

## Do the estimation (Result is a list of length number_of_draws with

## elements First_stage and Second_stage)

out_2stage <- csem(
.data = samp,
.model = model[[m]],
.approach_2ndorder = "2stage",
.PLS_weight_scheme_inner = l

)
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status_2stage <- sum(unlist(verify(out_2stage)))

## Only compute extended repeated indicators approach and mixed approach

## for the 2nd order model (model_pop_Sigma_2ndorder) and if the DGP is

## the second order DGP (Sigma_2ndorder)

status_mixed <- 0
status_RI_extended <- 0
if(j == 1 & m == 1) {

### Mixed two-stage approach -------------------------------------------

## Do the estimation (Result is a list of length number_of_draws with

## elements First_stage and Second_stage)

out_mixed <- csem(
.data = samp,
.model = model[[m]],
.approach_2ndorder = "mixed",
.PLS_weight_scheme_inner = l

)

status_mixed <- sum(unlist(verify(out_mixed)))

### Extended repeated indicators approach ------------------------------

out_RI_extended <- csem(
.data = samp_RI,
.model = model_RI_extended,
.PLS_weight_scheme_inner = l

)

status_RI_extended <- sum(unlist(verify(out_RI_extended)))

} else {
## Set up dummy structure to facilitate data processing

out_mixed <- out_dummy
out_RI_extended <- out_dummy

} # END if j == 1 & m == 1

if(status_2stage == 0 & status_mixed == 0 & status_RI_extended == 0) {

out_2stage <- computeRelevant(out_2stage, .R = number_boot_reps)
if(j == 1 & m == 1) {

out_mixed <- computeRelevant(out_mixed, .R = number_boot_reps)
out_RI_extended <- computeRelevant(out_RI_extended, .R = number_boot_reps)

}

out_estimation[[counter]] <- list(
"two-stage" = out_2stage,
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"embedded_TS" = out_mixed,
"extended_RI" = out_RI_extended

)
cat("Simulation run: ", counter)

} else {# status is not ok

ll <- list(out_2stage, out_mixed, out_RI_extended)

out_status[[length(out_status) + 1]] <- lapply(ll, function(x) {
if(inherits(x, "cSEMResults_default")) {

data.frame(
"Status_code" = names(verify(x)),
"Status_code_1" = c(verify(x)),
"Status_code_2" = NA

)
} else if(inherits(x, "cSEMResults_2ndorder")) {

data.frame(
"Status_code" = names(verify(x)[[1]]),
"Status_code_1" = c(verify(x)[[1]]),
"Status_code_2" = c(verify(x)[[2]])

)
} else {

data.frame(
"Status_code" = NA,
"Status_code_1" = NA,
"Status_code_2" = NA

)
}

})
# Reset counter

counter <- counter - 1
}

# Break repeat loop if .R results have been created.

if(length(out_estimation) == number_of_draws) {
## Give names

names(out_status) <- 1:length(out_status)
break

}
} # END repeat

out <- list(
"out_estimation" = out_estimation,
"out_status" = out_status

)
} # END simulation

closeAllConnections() # close connection to relase RAM
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# Save objects =================================================================

save(list = c("sim", "sample_size", "number_of_draws"),
file = "Data_simulation/sim.RData")

4.8.5 Helper functions

These functions are required for to run the estimation. The purpose of the two

functions is:

• DataGeneration(): The function is essentially a wrapper around the

mvrnorm() function of the MASS package. It is used to generate data.

• The function computes the relevant quantities for each Monte Carlo run.

DataGeneration <- function(.sample_size, .Sigma, .ndraws, .empirical = F,
.scale_factor = c("normal.kurt", "medium.kurt","high.kurt")) {

#----------- Arguments:

# .sample_size : numeric value indicating the sample size to draw

# .Sigma : (symmetric) indicator correlation matrix

# .ndraws : number of replications that should be drawn

# .empirical : see ?mvrnorm; defaults to "FALSE"

# .scale_factor: the scaling factor to be used for each vector of indicator values.

# The scaling factor is used to induce non-normality in the data. If

# "normal.kurt" (default) the data has a normal kurtosis (kurtosis of 3).

# "medium.kurt" increases the kurtosis by 1.7124.

# "high.kurt" increases the kurtosis by 6.

#----------- What it does:

# Draws .ndraws samples from a multivariate normal distribution for a given

# sample_size and Sigma matrix. The resulting data is either multivariate

# normal or non-normal depending on the .scale_factor argument. The function

# creates a list of lenght .ndraw (=the number of replications)

# where each list element is a matrix of simulated data based on .Sigma.

# The matrix has .sample_size rows and ncol columns.

type <- match.arg(.scale_factor)
scale_fac <- if(type == "normal.kurt") {

1
} else if(type == "medium.kurt") {

sqrt(abs(rnorm(.sample_size))*sqrt(pi/2))
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} else if(type == "high.kurt") {

sqrt(3)*(rchisq(.sample_size, 5))^(-1/2)
}

replicate(.ndraws,
scale(scale_fac*MASS::mvrnorm(.sample_size,

mu = rep(0, ncol(.Sigma)),
Sigma = .Sigma,
empirical = .empirical)),

simplify = FALSE)
}

computeRelevant <- function(.object, .R) {

#----------- Arguments:

# .object : a cSEMResults object

## Which columns are relevant in Path_ , Weight_ , and Effect_estimates?

relevant <- c("Name", "Estimate")

## Which parameters are of interest for the simulation

# All path : gamma1, gamma2, gamma3, beta1, beta2

# All weights : w_y11, w_y21, w_y31, w_y41, w_y51, w_y61, w_c1, w_c2, w_c3

# All total_effects : te_eta1_eta4, te_eta2_eta4, te_eta3_eta4

selector_path <- c(
"eta1 ~ xi",
"eta2 ~ xi",
"eta3 ~ xi",
"eta3 ~ eta1",
"eta3 ~ eta2"
)

selector_weights_1stage <- c(
"c1 <~ y11", "c1 <~ y12",
"c2 <~ y21", "c2 <~ y22", "c2 <~ y23", "c2 <~ y24",
"c3 <~ y31", "c3 <~ y32", "c3 <~ y33", "c3 <~ y34",
"c3 <~ y35", "c3 <~ y36",
"xi <~ y41", "xi <~ y42", "xi <~ y43",
"eta1 <~ y51", "eta1 <~ y52", "eta1 <~ y53",
"eta2 <~ y61", "eta2 <~ y62", "eta2 <~ y63"
)

selector_weights_2ndstage <- c("eta3 <~ c1", "eta3 <~ c2", "eta3 <~ c3")
selector_te <- c("eta3 ~ xi", "eta3 ~ eta1", "eta3 ~ eta2")

if(inherits(.object, "cSEMResults_2ndorder")) {
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### Parameter estimates --------------------------------------------------

sum_res <- cSEM:::summarize(.object)
path <- sum_res$Second_stage$Estimates$Path_estimates[

sum_res$Second_stage$Estimates$Path_estimates$Name %in% selector_path,
relevant, drop = FALSE]

weights_1stage <- sum_res$First_stage$Estimates$Weight_estimates[
sum_res$First_stage$Estimates$Weight_estimates$Name %in% selector_weights_1stage,
relevant, drop = FALSE]

weights_2stage <- sum_res$Second_stage$Estimates$Weight_estimates[
sum_res$Second_stage$Estimates$Weight_estimates$Name %in% selector_weights_2ndstage,
relevant, drop = FALSE]

total_effect <- sum_res$Second_stage$Estimates$Effect_estimates$Total_effect[
sum_res$Second_stage$Estimates$Effect_estimates$Total_effect$Name %in% selector_te,
relevant, drop = FALSE]

out1 <- dplyr::bind_rows(
list("Path" = path,

"Weights" = dplyr::bind_rows(weights_1stage, weights_2stage),
"Total_effect" = total_effect),

.id = "Estimate_type")

### Overall model fit test -------------------------------------------------

## Compute test only for two-stage approach

if(.object$Second_stage$Information$Approach_2ndorder == "2stage") {

## Joint test

out2a <- testOMF(.object,
.handle_inadmissibles = "replace",
.alpha = c(0.1, 0.05, 0.01),
.verbose = FALSE, .R = .R)

out2b <- data.frame(
"Distance_measure" = names(out2a$Test_statistic),
stringsAsFactors = FALSE

)

out2a <- cbind(out2b, out2a$Decision)
rownames(out2a) <- NULL

out2 <- cbind("Stage" = "Both", out2a)

## Test first and second stage separately

out2c <- lapply(.object, function(x) {
x <- testOMF(x, .handle_inadmissibles = "replace", .alpha = c(0.1, 0.05, 0.01),

.verbose = FALSE, .R = .R)
xa <- data.frame(

"Distance_measure" = names(x$Test_statistic),
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stringsAsFactors = FALSE
)

x <- cbind(xa, x$Decision)
rownames(x) <- NULL

x
})
## Combine

out2c[["Both"]] <- out2a
out2 <- dplyr::bind_rows(out2c, .id = "Stage")

} else {
## Set up empty data set to retain the same structure as for the second

## case

out2 <- data.frame(
"Stage" = NA,
"Distance_measure" = NA,
"99%" = NA,
"95%" = NA,
"90%" = NA,
check.names = FALSE

)
}

} else {

selector_weights2 <- c("eta3 ~ c1", "eta3 ~ c2", "eta3 ~ c3")

sum_res <- cSEM:::summarize(.object)
path <- sum_res$Estimates$Path_estimates[

sum_res$Estimates$Path_estimates$Name %in% selector_path, relevant,
drop = FALSE]

weights <- sum_res$Estimates$Weight_estimates[
sum_res$Estimates$Weight_estimates$Name %in% c(selector_weights_1stage,

selector_weights_2ndstage),
relevant, drop = FALSE]

weights2 <- sum_res$Estimates$Path_estimates[
sum_res$Estimates$Path_estimates$Name %in% selector_weights2, relevant,
drop = FALSE]

if(nrow(weights2) == 3) {
weights2$Name <- c("eta3 <~ c1", "eta3 <~ c2", "eta3 <~ c3")
weights <- dplyr::bind_rows(weights, weights2)

}
total_effect <- sum_res$Estimates$Effect_estimates$Total_effect[

sum_res$Estimates$Effect_estimates$Total_effect$Name %in% selector_te,
relevant, drop = FALSE]

out1 <- dplyr::bind_rows(
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list("Path" = path,
"Weights" = weights,
"Total_effect" = total_effect),

.id = "Estimate_type")

## Only compute test if no repeated indicators are present (in this case the

## length of data would be 35)

if(ncol(.object$Information$Data) == 21) {
## Joint test

out2a <- testOMF(.object,
.handle_inadmissibles = "replace",
.alpha = c(0.1, 0.05, 0.01),
.verbose = FALSE, .R = .R)

out2b <- data.frame(
"Distance_measure" = names(out2a$Test_statistic),
stringsAsFactors = FALSE

)

out2a <- cbind(out2b, out2a$Decision)
rownames(out2a) <- NULL

out2 <- cbind("Stage" = "Both", out2a)

} else {
## Set up empty data set to retain the same structure as for the second-order

## case

out2 <- data.frame(
"Stage" = NA,
"Distance_measure" = NA,
"99%" = NA,
"95%" = NA,
"90%" = NA,
check.names = FALSE

)
}

}

## Return list

out <- list(
"Parameter_estimates" = out1,
"Test" = out2
# "Status_code" = out3

)
}
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Chapter 5

cSEM: An R package for

composite-based structural

equation modeling

5.1 Introduction1

cSEM (Rademaker and Schuberth, 2020) is an R package that provides functions to

estimate, analyze, assess, test, and study linear, nonlinear, hierarchical, and

multi-group structural equation models using composite-based approaches and

procedures. The primary focus of the package is on those procedures centered around

the partial least squares path modeling (PLS-PM) algorithm (e.g., Wold, 1975, 1982),

including extensions such as consistent partial least squares (PLSc; Dijkstra and

Henseler, 2015b), ordinal (consistent) partial least squares (OrdPLSc; Schuberth

et al., 2018b), and robust (consistent) partial least squares (robustPLSc; Schamberger

et al., 2020). Besides PLS-PM, cSEM includes estimation approaches such as

generalized structured component analysis (GSCA; e.g., Hwang and Takane, 2004,
1This chapter is based on package help files, vignettes, as well as a working paper. By the time this

dissertation was submitted for review, cSEM was available on the Comprehensive R Archive Network
(CRAN) as version 0.2.0. cSEM is co-authored by Florian Schuberth. Development started in January
2018.
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2014), generalized structured component analysis with uniqueness terms (GSCAm;

Hwang et al., 2017b), generalized canonical correlation analysis (GCCA; Kettenring,

1971), principal component analysis (PCA), and factor score regression (FSR) using

sum, regression, or Bartlett scores – including bias correction using Croon (2002)’s

approach (e.g., Devlieger and Rosseel, 2017).

The intended principal purpose of cSEM is twofold:

1. Provide a unified framework to common composite-based structural equation

modeling (SEM) approaches, including typical postestimation procedures.

Ideally, the package should be similar to what the R package lavaan (Rosseel,

2012) constitutes for researchers and practitioners conducting factor-based SEM

analysis in R.

2. Make sure that the user experience is as simple and friendly as possible.

The first point is an always ongoing task; approaches are constantly evolving with

new developments appearing at a pace that my co-author, Florian Schuberth, and I,

the package author, will not be able to keep up with given the limited resources we

have at our disposable. However, as of version 0.2.0, the package includes most of the

existing capabilities that other R packages such as semPLS (Monecke and Leisch,

2012), plspm (Sanchez et al., 2017), matrixpls (Rönkkö, 2017), gesca (Hwang et al.,

2017a), seminr (Ray et al., 2019) and commercial software (e.g., smartPLS (Ringle

et al., 2015), ADANCO (Henseler, 2019)) addressing similar content offer. In

addition, cSEM offers approaches, methods, and ease-of-use that, to the best of my

knowledge, are not offered by any other R package related to composite-based SEM.

The second point, the user experience, has been particularly important to me as I

have regularly been frustrated by how technical and user-unfriendly packages in R can

be. From the very beginning of the package development in January 2018, I therefore

envisioned a consistent, intuitive workflow that essentially only comprises three steps:

1. Import the data into R and specify a model.

2. Estimate using a single function that only requires a data set and a model.

3. Apply simple “postestimation verbs” which require nothing but the results of

the estimation, yet cover all the analysis steps a typical user may need.

128

http://lavaan.ugent.be/


Moreover, I paid particular attention to informative and visually appealing print and

plot methods, as I believe that presentation of results is vital for a friendly

user-experience.

Before I explain in detail what I consider to be the cSEM workflow, a brief overview of

the three steps is given first.

1. Data and model: no estimator or approach works without data, a

specification of what parameters are to be estimated, and how data is related to

these parameters, i.e., a model. To do anything in cSEM, a data set and a model

specification are thus mandatory. Model specification is done in lavaan model

syntax2; model specification in lavaan model syntax is arguably the most

intuitive way of specifying structural equation models in R – and well known to

R users that have an interest in SEM. Consequently, the syntax qualified as the

most appealing way for users to specify their model. As for the data, experience

tells, for R beginners the biggest obstacle has been to get the data into R.

However, largely thanks to the tidyverse (Wickham et al., 2019) and RStudio

(RStudio Team, 2015), data import and data transformation are nowadays

relatively easy to handle. To mitigate potential problems caused by different

data types and classes, cSEM is designed to be flexible as to the type of data it

accepts.

2. Estimation: regardless of the model and type of data, estimation is always

done using the central function of the package: csem(). The function takes a

data set as its first and the model as its second argument:

csem(.data = my_data, .model = my_model)

The result of a call to csem() is an object of class cSEMResults. Naturally, the

csem() function has a number of additional arguments to fine-tune the

estimation, most notably, arguments to change the estimation approach. Since

csem() automatically recognizes, for instance, whether a concept was modeled

as a common factor or composite and automatically applies appropriate

correction for attenuation, only a small number of arguments need to be

changed in practical applications.
2See: http://lavaan.ugent.be/tutorial/syntax1.html; last accessed: 31.03.2020.
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3. Postestimation: inspired by the grammar of data manipulation3 underlying

widely-known R packages such as dplyr (Wickham et al., 2020) and tidyr

(Wickham and Henry, 2020), cSEM provides a verb-only postestimation

framework that concisely covers all common postestimation tasks. The purpose

of each function should be largely self-explanatory thanks to its name.

Currently there are five major postestimation verbs, four additional

test-commands and four do-commands:

• assess() • testOMF() • doFloodlightAnalysis()

• infer() • testMICOM() • doSurfaceAnalysis

• predict() • testMGD() • doRedundancyAnalysis()

• summarize() • testHausman() • doIPMA()

• verify()

All verbs accept the result of a call to csem(), i.e., a cSEMResults object, as

input and do not require further mandatory arguments, which makes working

with these function as simple as possible – only remember the verb, not any

specific syntax or arguments. In addition, all functions have a number of

additional arguments to fine-tune the postestimation.

Figure 5.1 summarizes the workflow.

Figure 5.1: The cSEM workflow

3See: https://dplyr.tidyverse.org/; last accessed: 31.03.2020

130

https://dplyr.tidyverse.org/
https://dplyr.tidyverse.org/
https://tidyr.tidyverse.org/
https://dplyr.tidyverse.org/


As a consequence of the design choice, the price for an increase in flexibility is

primarily a, mostly minor, loss in computational speed, in particular, when

large-scale resampling is involved – i.e., 10,000 bootstrap runs for a complex model

with, say, 1,000 observations.4 Users looking for the most efficient implementation of

common resampling routines may find faster implementations. In particular,

implementations that exhaust the full capacity of C or C++ code are likely to excel

in terms of speed. That said, I believe, the time saved when using a standardized

estimate-postestimate workflow, no matter the model or data used, well outweighs

the occasional computational inefficiencies.

For illustration, several example data sets are used throughout this chapter. The data

sets and corresponding models are either generated, used in Henseler (forthcoming)5,

or imported from other R packages. All data sets are available in cSEM. Since data

and models are used purely for illustration purposes, readers are referred to the

package help files and Henseler (forthcoming) for details on the data and the

reasoning behind the corresponding models.

5.2 Preparing the data

Technically, preparing the data does not require cSEM and is therefore better

considered a preparation task, i.e., a “pre-cSEM” task. The reason why this step is

nevertheless considered an explicit part of the cSEM-workflow is motivated by the

experience that applied users tend to shy away from software like R because “just

getting the data in” and understanding how to show, manipulate, and work with data

can be frustrating – at least, if one is not aware of R’s rich and easy to learn data

import and data processing capabilities. While these topics may have been

overwhelming for newcomers several years ago, data import and data transformation

have become relatively simple and user-friendly if the right packages are used. A

good place to start is the Rstudio cheat sheet webpage6, especially the Data Import

and the Data Transformation cheat sheets.
4Two years of experience in developing and maintaining the package have also shown that an

increase in flexibility for the user translates to an increase in complexity for the developer. This has
caused a significant amount of complications and extra hours during the development.

5By the time this thesis was submitted for review, the book had not been published yet. I am
grateful to Jörg Henseler for allowing me to use the data sets nonetheless.

6See: https://www.rstudio.com/resources/cheatsheets/; last accessed: 31.03.2020.
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To avoid potential frustrations, cSEM is relatively flexible as to the type of data

accepted. Currently the following data types and structures are accepted:

1. A data frame or tibble (Müller and Wickham, 2020), a type of data frame,

with column names matching the indicator names used in the lavaan model

syntax description. Possible column types or classes of the data provided are:

"logical" (TRUE/FALSE), "numeric" ("double" or "integer"), "factor"

("ordered" and/or "unordered"), or a mix of several types. Additionally, the

data may also include a single character column whose column name must be

given to the .id argument of csem(). Values of this column are interpreted as

group identifiers; csem() will split the data by levels of that column and run

the estimation for each level separately. This is particularly useful if the user

intends to perform a multigroup analysis as discussed in more detail in Section

5.5.

The order of the columns in the data set is irrelevant as variable names are

reordered internally to assure each column of the data is matched to the correct

indicator of the model description. Moreover, unused columns are simply

ignored.

2. A matrix with column names matching the indicator names used in the lavaan

model description of the measurement model or composite model description.

Matrices must be atomic, i.e., must have only one column-type. Typically,

matrices are used when the data is all-numeric.

3. A list of data frames or matrices. In this case estimation is repeated for each

data frame or matrix separately. This is useful if the user intends to perform a

multigroup analysis as discussed in more detail in Section 5.5.

Example 5.2.1. Assuming the following simple linear model involving three

constructs modeled as composites is to be estimated. In lavaan model syntax:

model <- "
# Composite model
AgrIneq <~ gini + farm + rent
IndDev <~ gnpr + labo
PolInst <~ inst + ecks + deat + stab + dict
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# Structural model
PolInst ~ AgrIneq + IndDev
"

To estimate the model a data frame, a tibble, a matrix, or a list of any of the three

with N rows (the observations) and at least K = 10 columns with column names

gini, farm, rent, gnpr, labo, inst, ecks, deat, stab, dict is required. The order of

the columns in the data does not matter as they are reordered internally.

The current version 0.2.0 of cSEM does not provide any tools to handle missing values;

hence, data must not contain missing values. Although, cSEM detects missing values

and warns the user, this is nevertheless a limitation, I intend to address. Future

versions are likely to include a framework to address missing values.

5.3 Specifying a model

Models are defined using lavaan model syntax. Currently, only the “standard” lavaan

model syntax is supported. This comprises:

1. The definition of a latent variable/common factor by the “=∼” operator.

2. The definition of a composite by the “<∼” operator.

3. The specification of regression (structural) equations by the “∼” operator.

4. The definition of error (co)variances, indicator correlations, or correlations

between constructs using the “∼∼” operator.

Other lavaan model syntax is ignored by cSEM. Specifying, for instance, a threshold

using the “|” operator or a scaling factor using the “∼ ∗ ∼” operator would thus be

silently ignored.

cSEM handles linear, nonlinear, and hierarchical models. Syntax for each model is

illustrated next. I use variables of the build-in satisfaction data set for linear

models, the Switching data set for nonlinear models, and the Yooetal2000 data set

for second-order models.
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5.3.1 Linear models

A full linear model specification in lavaan model syntax could look like this:

model <- "
# Structural model
EXPE ~ IMAG
QUAL ~ EXPE
VAL ~ EXPE + QUAL
SAT ~ IMAG + EXPE + QUAL + VAL
LOY ~ IMAG + SAT

# Composite model
IMAG <~ imag1 + imag2 + imag3 # composite
EXPE <~ expe1 + expe2 + expe3 # composite
QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5 # composite
VAL <~ val1 + val2 + val3 # composite

# Reflective measurement model
SAT =~ sat1 + sat2 + sat3 + sat4 # common factor
LOY =~ loy1 + loy2 + loy3 + loy4 # common factor

# Measurement error correlation
sat1 ~~ sat2
"

Note that the operator <∼ tells cSEM that the construct to its left is modeled as a

composite; the operator =∼ tells cSEM that the construct to its left is modeled as a

common factor. The operator ∼∼ tells cSEM that the measurement errors of the

indicators sat1 and sat2 are allowed to correlate. The # sign indicates a comment

that is ignored when parsing the model.

5.3.2 Models containing nonlinear terms

Nonlinear terms are specified as interactions using the dot operator “.”.7 Nonlinear

terms include interactions and exponential terms. The latter is described in model

syntax as an “interaction with itself”, e.g., x3
1 =x1.x1.x1. Currently, the following

terms are supported:

• Single, e.g., INV
7Interactions in lavaan are specified using the colon operator “:”. Unfortunately, I only became

aware of this feature when I had already fully implemented the dot operator in cSEM. Although, this
may occasionally confuse users jumping between lavaan and cSEM, my co-author and I decided to
accept this “inconsistency”; reversing it would be highly time consuming for relatively little gain.
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• Quadratic, e.g., INV.INV

• Cubic, e.g., INV.INV.INV

• Two-way interaction, e.g., INV.SAT

• Three-way interaction, e.g., INV.SAT.VAR3

• Quadratic and two-way interaction, e.g., INV.INV.SAT

Using the Switching data set, a simple example model involving an interaction term

could look like this:

model <- "
# Measurement models
INV =~ INV1 + INV2 + INV3 +INV4
SAT =~ SAT1 + SAT2 + SAT3
INT =~ INT1 + INT2

# Structural model containing an interaction term
INT ~ INV + SAT + INV.SAT
"

5.3.3 Hierarchical (second-order) models

With regards to hierarchical models, only second-order constructs are currently

supported, i.e., models containing at least one concept which is theorized to be a

second-order construct. Specification of the second-order construct takes place in the

measurement/composite model. Second-order models are therefore specified using the

operators =∼ or <∼. These operators are usually used with indicators on their

right-hand side. For second-order models the right-hand side variables are constructs

instead.

An example is the model used for the Yooetal2000 data set.

model <- "
# Measurement models
PR =~ PR1 + PR2 + PR3
IM =~ IM1 + IM2 + IM3
DI =~ DI1 + DI2 + DI3
AD =~ AD1 + AD2 + AD3
DL =~ DL1 + DL2 + DL3
AA =~ AA1 + AA2 + AA3 + AA4 + AA5 + AA6
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LO =~ LO1 + LO3
QL =~ QL1 + QL2 + QL3 + QL4 + QL5 + QL6

# Composite model for second-order construct BR
BR <~ QL + LO + AA

# Structural model
BR ~ PR + IM + DI + AD + DL
"

In this case, BR is modeled as a second-order composite formed by three common

factors QL, LO, and AA.

5.4 Estimation using csem()

csem() is the central function of the package. Although, it is possible to estimate a

model “by hand” using individual functions called by csem() (e.g., parseModel(),

processData(), calculateWeightsPLS(), estimatePath() etc.) , it is, by design,

easier, safer, and quicker to use csem() instead.8

Example 5.4.1. The simplest possible call to csem() involves a data set and a

model. For illustration, I use a very simple model. The model involves three

constructs modeled as common factors each measuring three indicators. The

corresponding threecommonfactors data is also available from the package. Note

that the threecommonfactors data set contains 500 observations drawn from a

population indicator covariance matrix that matches the postulated model. Sample

variation aside, the model thus represents the underlying structure of the data and

estimation is expected to yield parameters close to their population value. Population

path coefficients, for instance, are 0.6 for the path of η1 on η2, 0.4 for the path of η1

on η3, and 0.35 for the path of η2 on η3.

## Load the cSEM package

require(cSEM)

## Specify model in lavaan model syntax

model <- "

8Functions such as estimatePath() are internal, i.e., not directly available to the user once the
package is loaded in R. Internal functions can, however, still be called using R’s so called “:::”
(dotdotdot)-mechanism for non-exported functions. For details, see https://cran.r-project.org/
doc/manuals/R-exts.html#Using-pthreads; Section 1.5.1 “Specifying imports and exports”.
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# Path model / Regressions
eta2 ~ eta1
eta3 ~ eta1 + eta2

# Reflective measurement model
eta1 =~ y11 + y12 + y13
eta2 =~ y21 + y22 + y23
eta3 =~ y31 + y32 + y33
"

Using the threecommonfactors data set and the model saved under model, a

minimal call to csem() is now possible.

res1 <- csem(.data = threecommonfactors, .model = model)

Calling the saved object res1 tells the user whether csem() encountered any issues –

as checked by the postestimation function verify() discussed in Subsection 5.5.5.

Moreover, basic information about the structure of the resulting object is printed and

a hint at possible next steps is given.

res1

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## Estimation was successful.
##
## The result is a list of class cSEMResults with list elements:
##
## - Estimates
## - Information
##
## To get an overview or help type:
##
## - ?cSEMResults
## - str(<object-name>)
## - listviewer::jsondedit(<object-name>, mode = 'view')
##
## If you wish to access the list elements directly type e.g.
##
## - <object-name>$Estimates
##
## Available postestimation commands:
##
## - assess(<object-name>)
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## - infer(<object-name)
## - predict(<object-name>)
## - summarize(<object-name>)
## - verify(<object-name>)
## ________________________________________________________________________________

When calling csem(), all arguments not explicitly named are set to their defaults.

The simplest call is thus equivalent to:

csem(
.data = threecommonfactors,
.model = model,
.approach_cor_robust = "none",
.approach_nl = "sequential",
.approach_paths = "OLS",
.approach_weights = "PLS-PM",
.conv_criterion = "diff_absolute",
.disattenuate = TRUE,
.dominant_indicators = NULL,
.estimate_structural = TRUE,
.id = NULL,
.iter_max = 100,
.normality = FALSE,
.PLS_approach_cf = "dist_squared_euclid",
.PLS_ignore_structural_model = FALSE,
.PLS_modes = NULL,
.PLS_weight_scheme_inner = "path",
.reliabilities = NULL,
.starting_values = NULL,
.tolerance = 1e-05,
.resample_method = "none",
.resample_method2 = "none",
.R = 499,
.R2 = 199,
.handle_inadmissibles = "drop",
.user_funs = NULL,
.eval_plan = "sequential",
.seed = NULL,
.sign_change_option = "no"
)

Most of the arguments are discussed in the following sections and subsections. For

details on arguments not explicitly discussed, the reader is referred to the csem()
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reference on the cSEM website.9

5.4.1 Weighting approaches

Of particular importance is the .approach_weights argument; the third most

important argument after .data and .model.

By virtue of the package, cSEM uses composite-based approaches only. The defining

feature of a composite-based approach according to my understanding is that an

approach is “composite-based” if it involves linear compounds, i.e., a weighted linear

combination of observables when retrieving (estimating) quantities of interest such as

the coefficients of the structural model. Indeed, the way the weights forming the

compound are obtained is, in fact, the crucial distinguishing feature between all

composite-based approaches.

Consequently, composite-based approaches such as PLS-PM or GSCA are best

exclusively understood as prescriptions for forming linear compounds based on

observables, i.e., as weighting approaches. In cSEM, this is reflected by the fact that

e.g., "PLS-PM" and "GSCA" are choices of the .approach_weights argument.

Table 5.1 on the next page lists the available choices, offers a brief description, and

provides the relevant references. Note that as of version 0.2.0, applicability of some of

the postestimation functions discussed in Section 5.5 below are limited to PLS-PM.

Limitations are due to two reasons:

1. As the package is still developing, some routines have simply not been adressed

yet. Trying to estimate a model containing nonlinear terms using GSCA, for

instance, causes an error informing the user that the approach has not yet been

implemented.

2. Some postestimation approaches are, by the nature of their intended purpose,

not applicable to particular weighting approaches. PCA, for instance, does not

actually estimate a measurement model. Quality criteria such as the average

variance extracted (AVE) or the heterotrait-monotrait ratio of correlations

(HTMT) – as computed by assess() discussed in Subsection 5.5.1 – are

therefore not meaningfully applicable.

9See: https://m-e-rademaker.github.io/cSEM/reference/csem.html; last accessed:
06.04.2020.
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5.4.2 The cSEMResults class

csem() accepts all model and data types described in Section 5.2. Every call to

csem() results in an object of class cSEMResults. To be precise, csem() technically

results in an object with at least two class attributes. The first class attribute is

always cSEMResults, no matter the type of data or model provided. The second is

one of cSEMResults_default, cSEMResults_multi, or cSEMResults_2ndorder and

depends on the estimated model and/or the type of data provided. The third class

attribute, cSEMResults_resampled, is only added if resampling as described in

Subsection 5.4.3 was conducted.

Depending on the class of the resulting object, three different output structures exist.

Technically, these output structures are organized as named list; all R functions that

work on lists, therefore work on cSEMResults objects as well.

The default structure All objects that inherit the cSEMResults_default class

have the default structure. Figure 5.2 illustrates the default structure. This will

be the structure for the vast majority of applications.

Figure 5.2: Structure of a cSEMResults_default object

Users can access list elements by name using the $ operator. To get, for
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example, the path estimates or information on the number of iterations that

were necessary for convergence of the default algorithm in Example 5.4.1

(PLS-PM in this case), type:

res1$Estimates$Path_estimates

## eta1 eta2 eta3
## eta1 0.0000000 0.0000000 0
## eta2 0.6713334 0.0000000 0
## eta3 0.4585068 0.3051511 0

res1$Information$Weight_info$Number_iterations

## [1] 4

The multi-group structure All objects that inherit the cSEMResults_multi class

have the multi-group structure. If the data provided to csem() is, a) a single

matrix or data frame containing an id-column to split the data by its G group

levels, or, b) a list of G data sets, the resulting object is a list of G lists each of

class cSEMResults_default. Hence their structure is identical to default

structure. Figure 5.3 illustrates the structure.

By default, the G list elements are named according to the G group levels of the

id-column or the names of the G data sets. If the data sets have no name

attributes, list elements are labeled Data_1, Data_2, etc.

Figure 5.3: Structure of a cSEMResults_multi object

Again, list elements can be accessed using the $ operator. Since each list (group

or data set) has an identical structure, functions such as lapply() can be used
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to easily apply a function on each group simultaneously.

The two-stage structure A special output is generated if the model to be

estimated contains hierarchical constructs and the two-stage or the embedded

two-stage approach – also called the “mixed approach” – is used to estimate the

model (.approach_2ndorder = "2stage" or .approach_2ndorder =

"mixed" in csem()). In this case, the resulting object is, similar to the

multi-group structure, a list containing two elements First_stage and

Second_stage. While each list element has class cSEMResults_default again,

the “groups” differ compared to a cSEMResults_multi object in that a

different model is estimated in each stage. Figure 5.4 illustrates the structure.

Figure 5.4: Structure of a cSEMResults_2ndorder object

If .resample_method = "bootstrap" or .resample_method = "jackknife" in

csem(), resamples are attached to each object. For objects of class . . .

• cSEMResults_default the resamples are attached to

.object$Estimates$Estimates_resample.

• cSEMResults_multi resamples are attached to

.object$<group_name>$Estimates$Estimates_resample for each group/data.

• cSEMResults_2ndorder resamples are attached to

.object$Second_stage$Information$Resamples.

All objects containing these elements gain the cSEMResults_resampled class.
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5.4.3 Inference

By default, no inferential quantities are calculated since composite-based approaches,

generally, do not have closed-form solutions for standard errors.

To obtain inferential quantities like standard errors, test statistics, critical quantiles,

and confidence intervals, cSEM relies on resampling techniques such as bootstrap,

jackknife, and permutation. Depending on the complexity of the model, the method

chosen, the size of the data, and the hardware available, resampling can be time

consuming. Consequently, csem() and postestimation functions such as summarize()

and assess() do not compute and display any inferential quantities unless explicitly

requested by the user. Using summarize() on the cSEMResults object res1

computed in Example 5.4.1 in the previous subsection therefore displays NA for

standard errors, t-statistics and p-values.

summarize(res1)

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## General information:
## ------------------------
## Estimation status = Ok
## Number of observations = 500
## Weight estimator = PLS-PM
## Inner weighting scheme = "path"
## Type of indicator correlation = Pearson
## Path model estimator = OLS
## Second-order approach = NA
## Type of path model = Linear
## Disattenuated = Yes (PLSc)
##
## Construct details:
## ------------------
## Name Modeled as Order Mode
##
## eta1 Common factor First order "modeA"
## eta2 Common factor First order "modeA"
## eta3 Common factor First order "modeA"
##
## ----------------------------------- Estimates ----------------------------------
##
## Estimated path coefficients:
## ============================
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## Path Estimate Std. error t-stat. p-value
## eta2 ~ eta1 0.6713 NA NA NA
## eta3 ~ eta1 0.4585 NA NA NA
## eta3 ~ eta2 0.3052 NA NA NA
##
## Estimated loadings:
## ===================
## Loading Estimate Std. error t-stat. p-value
## eta1 =~ y11 0.6631 NA NA NA
## eta1 =~ y12 0.6493 NA NA NA
## eta1 =~ y13 0.7613 NA NA NA
## eta2 =~ y21 0.5165 NA NA NA
## eta2 =~ y22 0.7554 NA NA NA
## eta2 =~ y23 0.7997 NA NA NA
## eta3 =~ y31 0.8223 NA NA NA
## eta3 =~ y32 0.6581 NA NA NA
## eta3 =~ y33 0.7474 NA NA NA
##
## Estimated weights:
## ==================
## Weight Estimate Std. error t-stat. p-value
## eta1 <~ y11 0.3956 NA NA NA
## eta1 <~ y12 0.3873 NA NA NA
## eta1 <~ y13 0.4542 NA NA NA
## eta2 <~ y21 0.3058 NA NA NA
## eta2 <~ y22 0.4473 NA NA NA
## eta2 <~ y23 0.4735 NA NA NA
## eta3 <~ y31 0.4400 NA NA NA
## eta3 <~ y32 0.3521 NA NA NA
## eta3 <~ y33 0.3999 NA NA NA
##
## ------------------------------------ Effects -----------------------------------
##
## Estimated total effects:
## ========================
## Total effect Estimate Std. error t-stat. p-value
## eta2 ~ eta1 0.6713 NA NA NA
## eta3 ~ eta1 0.6634 NA NA NA
## eta3 ~ eta2 0.3052 NA NA NA
##
## Estimated indirect effects:
## ===========================
## Indirect effect Estimate Std. error t-stat. p-value
## eta3 ~ eta1 0.2049 NA NA NA
## ________________________________________________________________________________

Indeed, the most common use case where inferential quantities are required is
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assessment of statistical significance. cSEM offers two ways to compute standard

errors, p-values, and confidence intervals:

1. Pass a cSEMResults object that does not contain resamples to

resamplecSEMResults() and subsequently use summarize() or infer().

2. Set argument .resample_method of csem() to "jackkinfe" or "bootstrap"

to perform resampling and subsequently use infer() on the resulting object.

Typically, users are only interested in statistical significance of the coefficient

estimates in which case it is more convenient to call summarize() directly on

the resulting object as summarize() offers a much more user-friendly print

method. This is the recommend way. In fact, csem() internally calls

resamplecSEMResults() which does the actual computation and summarize()

internally calls infer() to compute the actual inferential quantities of interest

but has the added benefit of a visually appealing print method.

Resampling is eventually always executed by resamplecSEMResults(). When the

function is called, M resamples of the data used to compute the cSEMResults object

to be resampled are drawn. Based on these M resample data sets,

resamplecSEMResults() essentially calls csem() on each resample data set using the

arguments of the original call. By default, the function returns estimates for a subset

of the resampled parameters/statistics computed by csem(). Currently, the following

estimates are computed and returned by default based on each resample: path

estimates, loading estimates, weight estimates, measurement error correlations,

indicator correlations, construct correlations, total effects, and indirect effects.

In some applications, users may need the standard errors or confidence intervals for a

specific statistic – e.g, the differences between path coefficients β1 and β2. Such

statistics may be provided to resamplecSEMResults() or csem() as a function

fun(.object, ...) or a list of such functions via the .user_funs argument. The

first argument of these functions must always be a cSEMResults object. Internally,

the function will be applied on each resample to produce the desired statistic. Hence,

resamples for arbitrary complicated statistics may be computed – as long as the body

of the function draws on elements contained in the cSEMResults object. Output of

the function fun(.object, ...) should preferably be a (named) vector, but

matrices are also accepted; the output will be vectorized (columnwise) in this case.
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Both, resampling the original cSEMResults object ("first resample") and resampling

based on a resampled cSEMResults object ("second resample") are supported.

Resampling based on a resample is suppressed by default (.resample_method2 =

"none" ) as it significantly increases computation time; there are now M ·M2

resamples to compute. Resamples of a resample are required, e.g., for the studentized

confidence interval discussed in Subsection 5.5.2 (e.g., Hesterberg, 2015). Typically,

bootstrap resamples are used in this case (Davison, 1997).

As csem() accepts a single data set, a list of G data sets, as well as data sets that

contain a column name used to split the data into G groups, the cSEMResults object

may contain multiple data sets. In this case, resampling is done by data set or group.

Note that depending on the number of data sets/groups, the computation will be

considerably slower as resampling will be repeated for each data set/group, resulting

in a total of G ·M resample runs. However, apart from speed considerations, users do

not need to worry about the type of input used to compute the cSEMResults object;

resamplecSEMResults() is able to deal with each case.

The number of bootstrap runs for the first and second run are controlled by the .R

and .R2 argument. The default is 499 for the first and 199 for the second run but

should be increased in real applications. See e.g, Hesterberg (2015), Davison (1997) or

Efron and Hastie (2016) for recommendations. For jackknife .R are .R2 are ignored.

Resampling may produce inadmissible results (as checked by verify()). By default

these results are dropped however users may choose to "ignore" or "replace"

inadmissible results in which case resampling continues until the necessary number of

admissible results is reached. The behavior is controlled by csem()’s the

.handle_inadmissibles argument.

Both bootstrap and jackknife resampling support platform-independent

multiprocessing as well as random seeds via the future framework (Bengtsson, 2018).

To enable multiprocessing set .eval_plan = "multiprocess" . In this case, the

maximum number of available cores is used if on a Unix-type system. On Windows,

as many separate R instances are opened in the background as there are cores

available instead. Note that this naturally has some overhead. Consequently, for a

small number of resamples multiprocessing will generally not be faster compared to

sequential (single core) processing (.eval_plan = "sequential" ; the default).

Seeds are set via the .seed argument. If no seed is set, csem() randomly picks a
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seed, and saves it to be able to replicate resampling at a later point.

# Option 1

res_boot <- csem(.data = threecommonfactors, .model = model,
.resample_method = "bootstrap",
.R = 599,
.handle_inadmissibles = "replace")

# Option 2

res_boot2 <- resamplecSEMResults(res1) # res1 was computed at the beginning of Section 5.4.

summarize(res_boot)

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## General information:
## ------------------------
## Estimation status = Ok
## Number of observations = 500
## Weight estimator = PLS-PM
## Inner weighting scheme = "path"
## Type of indicator correlation = Pearson
## Path model estimator = OLS
## Second-order approach = NA
## Type of path model = Linear
## Disattenuated = Yes (PLSc)
##
## Resample information:
## ---------------------
## Resample method = "bootstrap"
## Number of resamples = 599
## Number of admissible results = 599
## Approach to handle inadmissibles = "replace"
## Sign change option = "none"
## Random seed = -378747585
##
## Construct details:
## ------------------
## Name Modeled as Order Mode
##
## eta1 Common factor First order "modeA"
## eta2 Common factor First order "modeA"
## eta3 Common factor First order "modeA"
##
## ----------------------------------- Estimates ----------------------------------
##
## Estimated path coefficients:
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## ============================
## CI_percentile
## Path Estimate Std. error t-stat. p-value 95%
## eta2 ~ eta1 0.6713 0.0435 15.4209 0.0000 [ 0.5874; 0.7548 ]
## eta3 ~ eta1 0.4585 0.0821 5.5879 0.0000 [ 0.2755; 0.6119 ]
## eta3 ~ eta2 0.3052 0.0848 3.5973 0.0003 [ 0.1368; 0.4793 ]
##
## Estimated loadings:
## ===================
## CI_percentile
## Loading Estimate Std. error t-stat. p-value 95%
## eta1 =~ y11 0.6631 0.0382 17.3720 0.0000 [ 0.5877; 0.7321 ]
## eta1 =~ y12 0.6493 0.0402 16.1432 0.0000 [ 0.5690; 0.7284 ]
## eta1 =~ y13 0.7613 0.0306 24.8648 0.0000 [ 0.6985; 0.8172 ]
## eta2 =~ y21 0.5165 0.0552 9.3508 0.0000 [ 0.4098; 0.6157 ]
## eta2 =~ y22 0.7554 0.0350 21.5743 0.0000 [ 0.6885; 0.8207 ]
## eta2 =~ y23 0.7997 0.0388 20.6265 0.0000 [ 0.7173; 0.8687 ]
## eta3 =~ y31 0.8223 0.0326 25.2295 0.0000 [ 0.7577; 0.8813 ]
## eta3 =~ y32 0.6581 0.0395 16.6622 0.0000 [ 0.5756; 0.7290 ]
## eta3 =~ y33 0.7474 0.0399 18.7099 0.0000 [ 0.6643; 0.8181 ]
##
## Estimated weights:
## ==================
## CI_percentile
## Weight Estimate Std. error t-stat. p-value 95%
## eta1 <~ y11 0.3956 0.0215 18.4025 0.0000 [ 0.3552; 0.4361 ]
## eta1 <~ y12 0.3873 0.0190 20.3482 0.0000 [ 0.3501; 0.4272 ]
## eta1 <~ y13 0.4542 0.0190 23.8970 0.0000 [ 0.4182; 0.4921 ]
## eta2 <~ y21 0.3058 0.0290 10.5440 0.0000 [ 0.2483; 0.3576 ]
## eta2 <~ y22 0.4473 0.0219 20.3788 0.0000 [ 0.4065; 0.4899 ]
## eta2 <~ y23 0.4735 0.0214 22.1343 0.0000 [ 0.4321; 0.5201 ]
## eta3 <~ y31 0.4400 0.0182 24.1682 0.0000 [ 0.4067; 0.4760 ]
## eta3 <~ y32 0.3521 0.0188 18.7126 0.0000 [ 0.3139; 0.3876 ]
## eta3 <~ y33 0.3999 0.0195 20.5096 0.0000 [ 0.3634; 0.4389 ]
##
## ------------------------------------ Effects -----------------------------------
##
## Estimated total effects:
## ========================
## CI_percentile
## Total effect Estimate Std. error t-stat. p-value 95%
## eta2 ~ eta1 0.6713 0.0435 15.4209 0.0000 [ 0.5874; 0.7548 ]
## eta3 ~ eta1 0.6634 0.0410 16.1811 0.0000 [ 0.5898; 0.7416 ]
## eta3 ~ eta2 0.3052 0.0848 3.5973 0.0003 [ 0.1368; 0.4793 ]
##
## Estimated indirect effects:
## ===========================
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## CI_percentile
## Indirect effect Estimate Std. error t-stat. p-value 95%
## eta3 ~ eta1 0.2049 0.0577 3.5531 0.0004 [ 0.0951; 0.3291 ]
## ________________________________________________________________________________

As discussed in Subsection 5.5.2, several confidence intervals are implemented and

available via the .ci argument of summarize(). By default, the percentile confidence

interval is computed. Using summariz() is the most convenient way to obtain a

confidence interval, however, it is also possible to compute one or several confidence

intervals directly via infer(). We may, for instance, want to compare the 95% and

the 99% normal-based (z) confidence interval with the percentile confidence interval

of the path coefficient estimates.

ii <- infer(res_boot, .quantity = c("CI_standard_z", "CI_percentile"), .alpha = c(0.01, 0.05))
ii$Path_estimates

## $CI_standard_z
## eta2 ~ eta1 eta3 ~ eta1 eta3 ~ eta2
## 99%L 0.5589022 0.2446665 0.08803619
## 99%U 0.7831749 0.6673769 0.52503894
## 95%L 0.5857133 0.2952003 0.14027856
## 95%U 0.7563638 0.6168431 0.47279657
##
## $CI_percentile
## eta2 ~ eta1 eta3 ~ eta1 eta3 ~ eta2
## 99%L 0.5556889 0.2333521 0.07165315
## 99%U 0.7877641 0.6785145 0.53492055
## 95%L 0.5874035 0.2754634 0.13678684
## 95%U 0.7547567 0.6118670 0.47927965
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5.5 Postestimation

As of version 0.2.0, cSEM provides five major postestimation functions, four

test-family functions, and four do-type functions:

Table 5.2: Available postestimation functions (cSEM, version 0.2.0)

Major functions Test-family Do-family

• assess() • testOMF() • doFloodlightAnalysis()
• infer() • testMICOM() • doSurfaceAnalysis
• predict() • testMGD() • doRedundancyAnalysis()
• summarize() • testHausman() • doIPMA()
• verify()

Some of the postestimation functions have already been mentioned in the previous

sections. This section covers the major postestimation functions and the test-family

functions in more detail. The do-family of functions are rather specialized and

therefore not discussed here.10

All postestimations functions expect a cSEMResults object. Technically, however,

the precise behavior of each postestimation function is determined by the second and

third class attribute, namely cSEMResults_default, cSEMResults_multi,

cSEMResults_2ndorder, and cSEMResults_resampled. Currently, some of the

postestimation functions can not (yet) deal with models containing nonlinear terms.

Similarly, not all functions accept objects of class cSEMResults_2ndorder.

Eventually, postestimation function will accept all possible types of models. Table 5.3

shows the current state of the functions in terms of models they currently accept.

For illustration, I use the Switching data set throughout this section. The model to

be estimated is:

model <- "
# Measurement models
INV =~ INV1 + INV2 + INV3 + INV4
SAT =~ SAT1 + SAT2 + SAT3
INT =~ INT1 + INT2

# Structural model
INT ~ INV + SAT
"

10The reader is referred to the package website: https://m-e-rademaker.github.io/cSEM/ for
details; last accessed: 22.04.2020.
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To obtain inferencial quantities, bootstrap with the default of 499 runs is used.

Inadmissible results are replaced on the fly to ensure that the number of admissible

results is sufficient for reliable inference. Moreover, for reproducibility, I use the

random number 170818 as the seed.

out_switching <- csem(
.data = Switching,
.model = model,
.resample_method = "bootstrap",
.handle_inadmissibles = "replace",
.seed = 170818
)

5.5.1 assess()

assess(
.object = NULL,
.quality_criterion = c(

"all", "ave", "chi_square", "chi_square_df",
"cfi", "dg", "df", "dl", "dml", "effects", "f2", "fl_criterion",
"gfi", "gof", "htmt", "ifi", "nfi", "nnfi", "r2", "r2_adj",
"reliability", "rho_C", "rho_C_mm", "rho_C_weighted",
"rho_C_weighted_mm", "rho_T", "rho_T_weighted",
"rmsea", "rms_theta", "srmr", "vif", "vifmodeB"),

.only_common_factors = TRUE,

...
)

As indicated by the name, assess() is used to assess an estimated model.

In cSEM, model assessment is considered to be any task that in some way or another

seeks to assess the quality of the estimated model without conducting a statistical test

– tests are covered by the test-family of functions. Quality, in this case, is taken to be

a catch-all term for all common aspects of model assessment; this mainly comprises

fit indices, reliability estimates, common validity assessment criteria, effect sizes, and

other related quality measures/indices that do not rely on a formal test procedure. In

cSEM a generic (fit) index, quality, or assessment measure is referred to as a quality

criterion.

Technically, the assess() function is essentially a wrapper around a number of

functions that perform a particular assessment task. These functions can be called
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directly, however, by design its more convenient to use assess() instead. An

exception are the tasks implemented via a do-family function. Due to the nature of

the task these procedures perform – for example doIMPA() relies on graphical

analysis –, they are not meaningfully integrated into a wrapper function like

assess(). They are therefore treated as independent functions, which must be called

separately if required.

By default, every possible quality criterion is calculated (.quality_criterion =

"all" ). If only a subset of quality criteria are needed, a single character string or a

vector of character strings naming the criteria to be computed may be supplied to

assess() via the .quality_criterion argument. Tables 5.4 and 5.5 list the

available quality criteria alongside a brief description.

Some assessment measures are inherently tied to the common factor model. It is

therefore unclear how to interpret their results in the context of a composite model.

Consequently, their computation is suppressed by default for constructs modeled as

composites. Currently, this applies to the following quality criteria:

• AVE and validity assessment based theron (i.e., the Fornell-Larcker criterion)

• HTMT and validity assessment based theron

• All reliability measures

It is possible to force computation of all quality criteria for constructs modeled as

composites using .only_common_factors = FALSE, however, interpreting results in

analogy to a common factor is conceptually questionable in this case.

It is possible to control the exact behavior of the functions which are called by

assess() by passing arguments down to these functions via assess()’s “...”

argument. To see what arguments are available, the reader is referred to the online

help file for assess().11 In particular the description of the “...” argument.

Lastly, all quality criteria assume that the estimated loadings, construct correlations

and path coefficients involved in the computation of a specific quality criterion are

consistent estimates for their theoretical population counterpart. If the user

deliberately chooses an approach that yields inconsistent estimates – by setting
11See: https://m-e-rademaker.github.io/cSEM/reference/assess.html; last accessed:

12.04.2020.
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.disattenuate = FALSE in csem() when the estimated model contains common

factors –, assess() will still estimate all quantities; however, quantities such as the

AVE or the congeneric reliability (ρC) inherit inconsistency and should thus not be

interpreted unless there is evidence indicating the inconsistency is not severe.

Example

To compute all possible quality criteria for the out_switching object, simply call

assess() on that object without any additional arguments.:

assess(out_switching)

## ________________________________________________________________________________
##
## Construct AVE R2 R2_adj
## INV 0.4391 NA NA
## SAT 0.6297 NA NA
## INT 0.5972 0.4519 0.4505
##
## -------------- Common (internal consistency) reliability estimates -------------
##
## Construct Cronbachs_alpha Joereskogs_rho Dijkstra-Henselers_rho_A
## INV 0.7452 0.7483 0.7827
## SAT 0.8362 0.8334 0.8561
## INT 0.7408 0.7464 0.7561
##
## ----------- Alternative (internal consistency) reliability estimates -----------
##
## Construct RhoC RhoC_mm RhoC_weighted
## INV 0.7483 0.7357 0.7827
## SAT 0.8334 0.8197 0.8561
## INT 0.7464 0.7464 0.7561
##
## Construct RhoC_weighted_mm RhoT RhoT_weighted
## INV 0.7827 0.7452 0.7148
## SAT 0.8561 0.8362 0.8397
## INT 0.7561 0.7408 0.7394
##
## --------------------------- Distance and fit measures --------------------------
##
## Geodesic distance = 0.08620259
## Squared Euclidian distance = 0.104884
## ML distance = 0.4604675
##
## Chi_square = 352.7181
## Chi_square_df = 14.69659
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## CFI = 0.8588499
## CN = 80.08274
## GFI = 0.881781
## IFI = 0.8595735
## NFI = 0.85085
## NNFI = 0.7882748
## RMSEA = 0.1337186
## RMS_theta = 0.08900008
## SRMR = 0.0482779
##
## Degrees of freedom = 24
##
## --------------------------- Model selection criteria ---------------------------
##
## Construct AIC AICc AICu
## INT -456.2132 312.8393 -453.2073
##
## Construct BIC FPE GM
## INT -442.2857 0.5517 785.4465
##
## Construct HQ HQc Mallows_Cp
## INT -450.8523 -450.7777 4.5190
##
## ----------------------- Variance inflation factors (VIFs) ----------------------
##
## Dependent construct: 'INT'
##
## Independent construct VIF value
## INV 1.1071
## SAT 1.1071
##
## -------------------------- Effect sizes (Cohen's f^2) --------------------------
##
## Dependent construct: 'INT'
##
## Independent construct f^2
## INV 0.3024
## SAT 0.2660
##
## ------------------------------ Validity assessment -----------------------------
##
## Heterotrait-monotrait ratio of correlations matrix (HTMT matrix)
##
## INV SAT INT
## INV 1.0000000 0.0000000 0
## SAT 0.3025275 1.0000000 0
## INT 0.5549424 0.5293116 1
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##
##
## Fornell-Larcker matrix
##
## INV SAT INT
## INV 0.43913216 0.09672899 0.3061243
## SAT 0.09672899 0.62965408 0.2861872
## INT 0.30612425 0.28618719 0.5971781
##
##
## ------------------------------------ Effects -----------------------------------
##
## Estimated total effects:
## ========================
## Total effect Estimate Std. error t-stat. p-value
## INT ~ INV 0.4283 0.0430 9.9694 0.0000
## INT ~ SAT -0.4017 0.0424 -9.4832 0.0000
## ________________________________________________________________________________

To pick only a subset of qualitiy criteria, use a vector of names:

assess(out_switching, .quality_criterion = c("dl", "dg", "dml"))

## ________________________________________________________________________________
##
## --------------------------- Distance and fit measures --------------------------
##
## Geodesic distance = 0.08620259
## Squared Euclidian distance = 0.104884
## ML distance = 0.4604675
##
## ________________________________________________________________________________

To compute, for instance, the critical 99%-quantiles for the HTMT, supply the

relevant arguments in place of the “...” argument:

assess(out_switching, .quality_criterion = "htmt", .inference = TRUE, .alpha = 0.01)

## ________________________________________________________________________________
##
## ------------------------------ Validity assessment -----------------------------
##
## Heterotrait-monotrait ratio of correlations matrix (HTMT matrix)
##
## Values in the upper triangular part are the 99%-quantile of the
## bootstrap distribution (using .ci = 'CI_percentile').
##
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## INV SAT INT
## INV 1.0000000 0.4043013 0.6515852
## SAT 0.3025275 1.0000000 0.6219331
## INT 0.5549424 0.5293116 1.0000000
##
## ________________________________________________________________________________

If the user wants to access the quality criteria, she must first assign the result of the

call to assess() to a name. The resulting object is a list of class cSEMAssess. As

usual, list elements can be accessed using the $ operator:

res_assess <- assess(out_switching)
names(res_assess)

## [1] "Information" "AVE" "AIC" "AICc"
## [5] "AICu" "BIC" "FPE" "GM"
## [9] "HQ" "HQc" "Mallows_Cp" "RhoC"
## [13] "RhoC_mm" "RhoC_weighted" "RhoC_weighted_mm" "DG"
## [17] "DL" "DML" "Df" "Effects"
## [21] "F2" "Chi_square" "Chi_square_df" "CFI"
## [25] "GFI" "CN" "IFI" "NFI"
## [29] "NNFI" "RMSEA" "RMS_theta" "SRMR"
## [33] "Fornell-Larcker" "GoF" "HTMT" "R2"
## [37] "R2_adj" "Reliability" "RhoT" "RhoT_weighted"
## [41] "VIF" "VIF_modeB"

And now for example:

res_assess$SRMR

## [1] 0.0482779

res_assess$HTMT

## INV SAT INT
## INV 1.0000000 0.0000000 0
## SAT 0.3025275 1.0000000 0
## INT 0.5549424 0.5293116 1
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5.5.2 infer()

infer(
.object = NULL,
.quantity = c(

"all", "mean", "sd", "bias", "CI_standard_z", "CI_standard_t",
"CI_percentile", "CI_basic", "CI_bc", "CI_bca", "CI_t_interval"),

.alpha = 0.05,

.bias_corrected = TRUE
)

Similar to assess(), infer() is a convenience wrapper around a number of internal,

i.e., non-exported functions. These functions compute a particular inferential

quantity, i.e., a value or set of values to be used in statistical inference. As mentioned

when discussing statistical inference in Section 5.4, cSEM relies on resampling

(bootstrap and jackknife) as the basis for the computation of e.g., standard errors or

confidence intervals. Consequently, infer() requires resamples to work. Technically,

the cSEMResults object used in the call to infer() must therefore also have class

attribute cSEMResults_resampled. If the object provided by the user does not

contain resamples yet, infer() will obtain bootstrap resamples first; a warning is

given to inform the user since computation will take longer in this case.

With regard to the goal of user-friendliness, infer() does as much as possible in the

background. Hence, every time infer() is called on a cSEMResults object, the

quantities chosen by the user are automatically computed for every estimated

parameter contained in the object. By default, all possible quantities are computed

(.quantity = all ). Table 5.6 lists the available inferential quantities alongside a

brief description. Implementation of the confidence intervals is based on Hesterberg

(2015) and Davison (1997).

By default, all but the studendized t-interval confidence interval and the

bias-corrected and accelerated confidence interval are calculated. The reason for

excluding these quantities by default is that both require an additional resampling

step.

As of version 0.2.0 of the package, infer() does not have a very user-friendly print

method yet – at least according to what I consider as user-friendly. Future versions
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Table 5.6: Inferential quantities computed by infer()

Inferential quantity Description cSEM name

Resample mean The mean over all M resample es-
timates of a generic statistic or pa-
rameter.

"mean"

Resample standard
deviation

The standard deviation based on
M resample estimates of a generic
statistic or parameter.

"sd"

Resample bias The difference between the resample
mean and the original estimate of a
generic statistic or parameter.

"bias"

Standard confidence
interval

The standard confidence interval of
a generic statistic or parameter with
standard errors estimated by the re-
sample standard deviation. While
"CI_standard_z" assumes a stan-
dard normally distributed statis-
tic, "CI_standard_t" assumes a t-
statistic with N − 1 degrees of free-
dom.

"CI_standard_z"
"CI_standard_t"

Percentile confidence
interval

The lower and upper bounds of the
confidence interval are estimated as
the α and 1−α quantiles of the dis-
tribution of the resample estimates.

"CI_percentile"

Basic confidence interval The basic confidence interval is also
called the reverse bootstrap per-
centile confidence interval. See Hes-
terberg (2015, p.381) for details.

"CI_basic"

Bias-corrected
confidence interval

The bias-corrected confidence inter-
val. See Davison (1997) for details.

"CI_bc"

Bias-corrected and
accelerated confidence
interval

The bias-corrected and accelerated
confidence interval. Requires addi-
tional jackknife resampling to com-
pute the influence values. See Davi-
son (1997) for details.

"CI_bca"

Studentized confidence
interval

If based on bootstrap resamples the
interval is also called the bootstrap
t-interval confidence interval (Hes-
terberg, 2015, p.381). Requires re-
samples of resamples. See Section
5.4 for how to obtain these.

"CI_t_interval"

will likely contain improvements.12

12As already mentioned in Section 5.4, for users interested in the estimated standard errors, t-values,
p-values and/or confidence intervals of the path, weight, or loading estimates, calling summarize()
directly will usually be more convenient. Hence, the typical user may never actually invoke infer()
directly.
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Example

To compute, for example, the percentile and the bias-corrected and accelerated (Bca)

confidence interval for the estimates in the out_switching object, call infer() on

the object and select the confidence intervals using the .quantity argument. Note

that out_switching already contains resamples, however, the Bca confidence interval

requires an additional round of jackknife resampling to compute the leverage values

necessary for its computation.

out_infer <- infer(out_switching, .quantity = c("CI_percentile", "CI_bca"))
out_infer$Path_estimates

## $CI_percentile
## INT ~ INV INT ~ SAT
## 95%L 0.3494161 -0.4974419
## 95%U 0.5124118 -0.3244157
##
## $CI_bca
## INT ~ INV INT ~ SAT
## 95%L 0.3483501 -0.4934969
## 95%U 0.5112962 -0.3211290

5.5.3 predict()

predict(
.object = NULL,
.benchmark = c("lm", "unit", "PLS-PM", "GSCA", "PCA", "MAXVAR"),
.cv_folds = 10,
.handle_inadmissibles = c("stop", "ignore", "set_NA"),
.r = 10,
.test_data = NULL

)

predict() uses the procedure introduced by Shmueli et al. (2016) in the context of

PLS-PM – commonly called “PLSPredict” by the authors (e.g., Shmueli et al., 2019).

Upon providing a cSEMResults object to predict(), k-fold cross-validation is

conducted to randomly split the data which was used to obtain the cSEMResults

object into training and test data. Subsequently, the relevant values in the test data

are predicted based on the model parameter estimates obtained using the training

data. The number of cross-validation folds is .cv_folds = 10 by default. Likewise,
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the procedure is repeated .r = 10 times to avoid irregularities due to a particular

split. See Shmueli et al. (2019) for details.

Alternatively, users may supply a matrix of .test_data with the same column names

as those in the data used to obtain the cSEMResults object (the training data). In

this case, arguments .cv_folds and .r are ignored and predict() uses the

estimated coefficients from the cSEMResults object to predict the values in the

columns of .test_data.

In Shmueli et al. (2016), PLS-based predictions for a generic indicator are compared

to the predictions based on a multiple regression of the indicator on all available

exogenous indicators (.benchmark = "lm" ) and a simple mean-based prediction

summarized in the so-called Q2
predict metric (Shmueli et al., 2019, p.2338). predict()

is more general in that it allows users to compare the predictions based on a so-called

target model/specification to predictions based on an alternative benchmark. Besides

multiple regression, available benchmarks include predictions based on a model

estimated using PLS-PM weights, unit weights (i.e., sum scores), GSCA weights,

PCA weights, and MAXVAR weights. In all cases, the available comparison metrics

are the mean absolute error (MAE) and the root mean square error (RMSE).

When conducting cross-validation, each estimation run is checked for admissibility

using verify(). If an estimation yields inadmissible results, predict() stops with

an error (.handle_inadmissibles = "stop" ). Users may choose to "ignore"

inadmissible results in which case they are included, or to simply set predictions to NA

(.handle_inadmissibles = "set_NA" ) for the particular run that failed. In this

case, some predictions may not be available. Use with care.

Example

For illustration, I use the Switching data set again. In this case, we compare the

predictions of the indicator values for indicators INT1 and INT2 based on the

postulated model with those of a simple multiple regression of INT1 and INT2 on all

other indicators (INV1, . . . , SAT3).

predict(out_switching)

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
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## Number of obs. training = 693
## Number of obs. test = 74
## Number of cv folds = 10
## Number of repetitions = 10
## Handle inadmissibles = stop
## Target = 'PLS-PM'
## Benchmark = 'lm'
##
## ------------------------------ Prediction metrics ------------------------------
##
##
## Name MAE target MAE benchmark RMSE target RMSE benchmark Q2_predict
## INT1 0.5995 0.6422 0.8346 0.8849 0.1845
## INT2 0.6326 0.6972 0.8470 0.9426 0.2618
## ________________________________________________________________________________

Both predictions metrics show lower values for the target model-based predictions –

compared to a benchmark simple linear regression model. According to Shmueli et al.

(2019), this can be taken as evidence that imposing a structure on the relationship

between observables has some merits in terms of out-of-sample predictive accuracy.13

There is also a method for the generic function plot() available which plots actual

vs. predicted values. Moreover, the density of the prediction residuals and of the

predicted values can be displayed.

pred_switching <- predict(out_switching)
plot_switching <- plot(pred_switching)

And now for example:

plot_switching$`Actual vs. predicted`

13In fact, the authors go much further by claiming that out-of-sample predictive accuracy somehow
translates into causal evidence. They position the procedure they label “PLSPredict” as a “...’causal-
predictive’ approach to structural equation modeling (SEM), designed to overcome the apparent di-
chotomy between explanation and prediction.” (Shmueli et al., 2019, p.2322). This is a strong assertion
that, as I have discussed in Chapter 2, lacks a theoretical foundation.
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5.5.4 summarize()

summarize(
.object = NULL,
.alpha = 0.05,
.ci = NULL,
...
)

The function is mainly called for its side effect: the printing of a structured summary

of the estimates. The resulting object has class cSEMSummarize. Objects of that class

are virtually identical to cSEMResults objects. The main difference is that path,

loading, weight, and effect estimates are returned as data frames instead of matrices.

The data frame format is usually much more convenient if users intend to present the

results in e.g., a paper or a presentation.

If .object contains resamples, standard errors, t-values and p-values – assuming

estimates are standard normally distributed – are computed and printed. By default,

the percentile confidence interval is given as well. For other confidence intervals the

.ci argument is used. See Table 5.6 in Subsection 5.5.2 for possible choices.

Example

We use the Switching data set again.
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sum_csem <- summarize(out_switching, .ci = "CI_standard_z")

Users are often only interested in path, loading, and weight estimates. It is possible

to print a smaller output which comprises only these estimates by setting the

.full_ouput arguement of print() to FALSE.

print(sum_csem, .full_output = FALSE)

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## General information:
## ------------------------
## Estimation status = Ok
## Number of observations = 767
## Weight estimator = PLS-PM
## Inner weighting scheme = "path"
## Type of indicator correlation = Pearson
## Path model estimator = OLS
## Second-order approach = NA
## Type of path model = Linear
## Disattenuated = Yes (PLSc)
##
## Resample information:
## ---------------------
## Resample method = "bootstrap"
## Number of resamples = 499
## Number of admissible results = 499
## Approach to handle inadmissibles = "replace"
## Sign change option = "none"
## Random seed = 170818
##
## Construct details:
## ------------------
## Name Modeled as Order Mode
##
## INV Common factor First order "modeA"
## SAT Common factor First order "modeA"
## INT Common factor First order "modeA"
##
## ----------------------------------- Estimates ----------------------------------
##
## Estimated path coefficients:
## ============================
## CI_standard_z
## Path Estimate Std. error t-stat. p-value 95%
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## INT ~ INV 0.4283 0.0430 9.9694 0.0000 [ 0.3426; 0.5110 ]
## INT ~ SAT -0.4017 0.0424 -9.4832 0.0000 [-0.4810;-0.3150 ]
##
## Estimated loadings:
## ===================
## CI_standard_z
## Loading Estimate Std. error t-stat. p-value 95%
## INV =~ INV1 0.6626 0.0512 12.9388 0.0000 [ 0.5630; 0.7637 ]
## INV =~ INV2 0.8173 0.0434 18.8280 0.0000 [ 0.7346; 0.9048 ]
## INV =~ INV3 0.6950 0.0442 15.7194 0.0000 [ 0.6103; 0.7836 ]
## INV =~ INV4 0.4080 0.0636 6.4190 0.0000 [ 0.2906; 0.5397 ]
## SAT =~ SAT1 0.6984 0.0384 18.1724 0.0000 [ 0.6196; 0.7703 ]
## SAT =~ SAT2 0.7170 0.0436 16.4393 0.0000 [ 0.6296; 0.8006 ]
## SAT =~ SAT3 0.9418 0.0355 26.5665 0.0000 [ 0.8799; 1.0189 ]
## INT =~ INT1 0.7033 0.0409 17.1850 0.0000 [ 0.6213; 0.7817 ]
## INT =~ INT2 0.8365 0.0341 24.5367 0.0000 [ 0.7698; 0.9034 ]
##
## Estimated weights:
## ==================
## CI_standard_z
## Weight Estimate Std. error t-stat. p-value 95%
## INV <~ INV1 0.3337 0.0254 13.1462 0.0000 [ 0.2831; 0.3826 ]
## INV <~ INV2 0.4117 0.0233 17.6962 0.0000 [ 0.3656; 0.4568 ]
## INV <~ INV3 0.3500 0.0211 16.5574 0.0000 [ 0.3083; 0.3912 ]
## INV <~ INV4 0.2055 0.0305 6.7398 0.0000 [ 0.1488; 0.2684 ]
## SAT <~ SAT1 0.3421 0.0166 20.6161 0.0000 [ 0.3075; 0.3726 ]
## SAT <~ SAT2 0.3512 0.0175 20.0746 0.0000 [ 0.3157; 0.3843 ]
## SAT <~ SAT3 0.4613 0.0215 21.4359 0.0000 [ 0.4220; 0.5064 ]
## INT <~ INT1 0.5120 0.0187 27.4357 0.0000 [ 0.4752; 0.5483 ]
## INT <~ INT2 0.6090 0.0230 26.4507 0.0000 [ 0.5646; 0.6548 ]
## ________________________________________________________________________________

The data frame output is much more convenient if results are to be reported in e.g., a

publication. With a few adjustments, the data frame output can be converted into a

near publication-ready table using e.g., the kable function of the knitr (Xie, 2020)

package.

require(kableExtra)
kable_styling(kable(sum_csem$Estimates$Path_estimates,

digits = 4,
caption = "Path estimates",
format = "latex",
booktabs = TRUE), latex_options = c("scale_down", "hold_position"))
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Table 5.7: Path estimates

Name Construct_type Estimate Std_err t_stat p_value CI_standard_z.95%L CI_standard_z.95%U

INT ~ INV Common factor 0.4283 0.0430 9.9694 0 0.3426 0.511
INT ~ SAT Common factor -0.4017 0.0424 -9.4832 0 -0.4810 -0.315

5.5.5 verify()

verify(.object)

Verify is a small, one-argument function that verifies admissibility of the results

obtained during the estimation. In cSEM there are five defects that are considered to

render the results inadmissible.

Non-convergence of the weight algorithm Non-convergence can be an issue for

all iterative algorithms such as PLS, GSCA, SUMCORR, GENVAR, and

SSQCORR (the other GCCA algorithms MAXVAR and MINVAR do not

iterate). For PLS and GSCA the maximum number of iterations is set to 100

by default, but may be changed by the user via csem()’s .iter_max argument.

For SUMCORR, GENVAR, and SSQCORR optimization is done using the

Augmented Lagrangian Minimization Algorithm implemented in the auglag()

function of the alabama (Varadhan, 2015) package. In this case, the user has no

influence on the convergence behavior.

Standardized loading estimates larger than 1 A violation implies either

negative measurement error variances or construct-indicator correlations larger

than 1. Loadings larger than 1 primarily occur after disattenuating the

composite-indicator correlations for constructs modeled as common factors to

obtain consistent loading estimates.

Estimated construct correlation is not positive semi-definite Similar to the

issue of loadings larger than 1, this primarily occurs after disattenuating the

composite correlations for constructs modeled as common factors to obtain

consistent construct-correlation estimates. Correlation estimates may be larger

than 1 which renders the construct correlation matrix non-positive semi-definite.

Congeneric reliability estimates larger than 1 Congeneric reliability of

construct j is estimated as the square of the sum of the estimated loadings

169



times the corresponding weights of that construct. If loading estimates are

larger than 1, this is likely, but not necessary, to cause reliability estimates to

be larger than 1 as well. In turn, being a sum, to have all loadings smaller than

1 does not imply reliability estimates smaller than 1.

Estimated model-implied correlation matrix is not positive semi-definite

Can have many causes. It is the most commonly encountered reason for

inadmissibility.

If the object to be verified is of class cSEMResults_2ndorder, i.e., estimates are

based on a model containing second-order constructs, both the first and the second

stage are checked separately.

Currently, a model-implied indicator correlation matrix for models containing

nonlinear terms is not available. verify() therefore skips the check for positive

definiteness of the model-implied indicator correlation matrix for nonlinear models

and returns “ok”.

Example

For the Switching data and model all 5 issues are ok.

verify(out_switching)

## ________________________________________________________________________________
##
## Verify admissibility:
##
## admissible
##
## Details:
##
## Code Status Description
## 1 ok Convergence achieved
## 2 ok All absolute standardized loading estimates <= 1
## 3 ok Construct VCV is positive semi-definite
## 4 ok All reliability estimates <= 1
## 5 ok Model-implied indicator VCV is positive semi-definite
## ________________________________________________________________________________
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5.5.6 testOMF()

testOMF(
.object = NULL,
.alpha = 0.05,
.fit_measures = FALSE,
.handle_inadmissibles = c("drop", "ignore", "replace"),
.R = 499,
.saturated = FALSE,
.seed = NULL,
.verbose = TRUE

)

The function performs the bootstrap-based exact test for overall model fit originally

proposed by Beran and Srivastava (1985). See also Dijkstra and Henseler (2015a)

who first suggested the test in the context of PLS-PM.

testOMF() tests the null hypothesis that the population indicator correlation matrix

equals the population model-implied indicator correlation matrix. In principal,

several discrepancy measures may be used as test statistics; hence, testOMF()

computes four such discrepancy measures, namely the geodesic distance (dG), the

squared Euclidean distance (dL), the standardized root mean square residual

(SRMR), and the distance based on the maximum likelihood fit function (dML). The

reference distribution for each test statistic is obtained by the bootstrap as proposed

by Beran and Srivastava (1985). See Chapter 2 for details on the distance measures

(Section 2.4) and on the test in general (Section 2.5).

It is possible to perform the bootstrap-based test using fit measures such as the GFI

or the RMSEA as the test statistic if .fit_measures = TRUE. This is experimental.

To the best of my knowledge, the applicability and usefulness of these fit measures as

test statistics in exact model fit assessment have not been formally, statistically

assessed yet. The logic of the test theoretically applies to some fit indices as well.

Hence, their applicability seems theoretically justified, although it is unclear whether

it is of any practical merit.

If .saturated = TRUE, the original structural model is ignored and replaced by a

saturated model, i.e., a model in which all constructs are allowed to correlate freely.

This is useful to test misspecification of the measurement model in isolation.

The other function arguments are used to set the number of bootstrap replication

(.R), the α-level or a vector of α-levels based upon which to compute the critical
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quantile(s) of the bootstrap distribution (.alpha), the random number seed (.seed),

instructions how inadmissible results are to be handled (handle_inadmissibles),

and whether the function should be verbose in a sense that progress is printed to the

console.

The resulting object is of class cSEMTestOMF containing the following list elements:

Test_statistic The value of the the geodesic distance, the squared Euclidean

distance, the standardized root mean square residual (SRMR), and the distance

based on the maximum likelihood fit function.

Critical_value The corresponding critical values computed as the 1− α quantile of

the bootstrap distribution of the respective test statistics.

Decision The test decision for each test statistic. One of: FALSE (Reject) or TRUE

(Do not reject).

Information Additional test information such as the number of bootstrap runs, the

number of admissible results, the number of total runs, and the seed used.

Example

Like all postestimation functions, testOMF() is designed to do as much as possible in

the background. Hence, typically it suffices to call testOMF() on the object of

interest without setting any additional arguments. For illustration some arguments

are used nonetheless:

out_testOMF <- testOMF(out_switching,
.alpha = c(0.01, 0.05, 0.1),
.seed = 2311,
.verbose = FALSE) # .verbose only set to FALSE

# in order to suppress console output such as

# the progress bar

out_testOMF

## ________________________________________________________________________________
## --------- Test for overall model fit based on Beran & Srivastava (1985) --------
##
## Null hypothesis:
##
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## +------------------------------------------------------------------+
## | |
## | H0: The model-implied indicator covariance matrix equals the |
## | population indicator covariance matrix. |
## | |
## +------------------------------------------------------------------+
##
## Test statistic and critical value:
##
## Critical value
## Distance measure Test statistic 99% 95% 90%
## dG 0.0862 0.0285 0.0228 0.0201
## SRMR 0.0483 0.0373 0.0326 0.0297
## dL 0.1049 0.0625 0.0479 0.0398
## dML 0.4605 0.1532 0.1220 0.1061
##
##
## Decision:
##
## Significance level
## Distance measure 99% 95% 90%
## dG reject reject reject
## SRMR reject reject reject
## dL reject reject reject
## dML reject reject reject
##
## Additional information:
##
## Out of 499 bootstrap replications 467 are admissible.
## See ?verify() for what constitutes an inadmissible result.
##
## The seed used was: 2311
## ________________________________________________________________________________

In this case, the null hypothesis must be rejected on all conventional levels, casting

doubt on any causal claims that may be derived from the postulated model.

5.5.7 testMICOM()

testMICOM(
.object = NULL,
.alpha = 0.05,
.approach_p_adjust = "none",
.handle_inadmissibles = c("drop", "ignore", "replace"),
.R = 499,
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.seed = NULL,

.verbose = TRUE
)

The functions performs the permutation-based test for measurement invariance of

composites across groups proposed by Henseler et al. (2016b). According to the

authors, measurement invariance in composite models can be assessed by a three-step

procedure. The first two steps involve an assessment of configural and compositional

invariance (Henseler et al., 2016b, p.413 and p.414f). The third step involves mean

and variance comparisons across groups (Henseler et al., 2016b, p.415f). Assessment

of configural invariance is qualitative in nature; hence, only step 2 and 3 are tested by

the testMICOM() function.

As testMICOM() requires at least two groups, .object must be of class

cSEMResults_multi. It is possible to compare more than two groups, however,

multiple-testing issues arise in this case. To adjust p-values, several p-value

adjustments are available via the approach_p_adjust argument.

Similar to the testOMF() function, there are arguments to set the number of

permutation runs to conduct (.R), the random number seed (.seed), instructions

how inadmissible results are to be handled (handle_inadmissibles), and whether

the function should be verbose in a sense that progress is printed to the console.

The resulting object is a list of class cSEMTestMICOM containing the following list

elements:

Step2 A list containing the results of the test for compositional invariance (Step 2).

Step3 A list containing the results of the test for mean and variance equality (Step

3).

Information Additional test information such as the number of permutation runs,

the number of admissible results, the number of total runs, and the seed used.

Example

For illustration, I use the model setup described in Henseler et al. (2016b, p.317). To

generate random data for the model, I use the cSEM.DGP package (Rademaker and
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Schamberger, 2020). cSEM.DGP is a package I wrote together with Tamara

Schamberger. The package provides the generateData() function that enables

random data generation based on a population structural equation model. For

details, see the the cSEM.DGP package website.14

First, two data generating processes (DGPs) are created; both consist of a

single-indicator common factor Y and a two-indicator composite X. The common

factor is explained by X with a coefficient of 0.6. The DGPs only differ in how the

composite X is build. In group 1 the first weight is 0.4 and the second is 0.8. In group

2, weights switch position. Hence, the two DGPs (groups) are not compositionally

invariant but the mean and the variances of the composite are equal across groups:

dgp1 <- "
# Structural model
Y ~ 0.6*X

# Reflective measurement model
Y =~ 1*y1
# Composite measurement model
X <~ 0.4*x1 + 0.8*x2

# Indicator correlation
x1 ~~ 0.3125*x2
"

dgp2 <- "
# Structural model
Y ~ 0.6*X

# Reflective measurement model
Y =~ 1*y1
# Composite measurement model
X <~ 0.8*x1 + 0.4*x2

# Indicator correlation
x1 ~~ 0.3125*x2
"

Based upon the indicator correlation matrix implied by the DGPs, sample data of

size 399 (for group 1) and 200 (for group 2) is drawn from a standard normal

distribution using the generateData() function of the cSEM.DGP package:
14See: https://m-e-rademaker.github.io/cSEM.DGP/; last accessed: 19.04.2020
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require(cSEM.DGP)
g1 <- generateData(dgp1, .N = 399) # requires cSEM.DGP

g2 <- generateData(dgp2, .N = 200) # requires cSEM.DGP

The model to estimate is identical for both groups; however, the sample data steam

from different DGPs. Estimation should thus yield different weight estimates for the

composite weights of X. Moreover, the test for measurement invariance should find

strong evidence of compositional invariance but no evidence of mean and variance

differences across groups:

# Specify model

model <- "
# Structural model
Y ~ X

# Measurement model
Y =~ y1
X <~ x1 + x2
"

# Estimate

csem_results <- csem(.data = list("group1" = g1, "group2" = g2), model)

# Compare weight estimates

wg1 <- summarize(csem_results)$group1$Estimates$Weight_estimates[, c("Name", "Estimate")]
wg2 <- summarize(csem_results)$group2$Estimates$Weight_estimates[, c("Name", "Estimate")]
data.frame(rbind(wg1, wg2), "Group" = rep(c("group1", "group2"), each = 3))

## Name Estimate Group
## 1 X <~ x1 0.3833547 group1
## 2 X <~ x2 0.8310082 group1
## 3 Y <~ y1 1.0000000 group1
## 4 X <~ x1 0.8855056 group2
## 5 X <~ x2 0.2488690 group2
## 6 Y <~ y1 1.0000000 group2

testMICOM(csem_results, .seed = 1987, .verbose=FALSE)

## ________________________________________________________________________________
## -------- Test for measurement invariance based on Henseler et al (2016) --------
## ======================== Step 1 - Configural invariance ========================
##
## Configural invariance is a precondition for step 2 and 3.
## Do not proceed to interpret results unless
## configural invariance has been established.
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##
## ======================= Step 2 - Compositional invariance ======================
##
## Null hypothesis:
##
## +-----------------------------------------------------------------+
## | |
## | H0: Compositional measurement invariance of the constructs. |
## | |
## +-----------------------------------------------------------------+
##
## Test statistic and p-value:
##
## Compared groups: group1_group2
## p-value by adjustment
## Construct Test statistic none
## X 0.7863 0.0000
## Y 1.0000 1.0000
##
##
## ================= Step 3 - Equality of the means and variances =================
##
## Null hypothesis:
##
## +------------------------------------------------------------+
## | |
## | 1. H0: Difference between group means is zero |
## | 2. H0: Log of the ratio of the group variances is zero |
## | |
## +------------------------------------------------------------+
##
## Test statistic and critical values:
##
## Compared groups: group1_group2
##
## Mean
## p-value by adjustment
## Construct Test statistic none
## X 0.0289 0.7295
## Y -0.0962 0.2485
##
## Var
## p-value by adjustment
## Construct Test statistic none
## X -0.0876 0.4549
## Y 0.0753 0.5671
##
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##
## Additional information:
##
## Out of 499 permutation runs, 499 where admissible.
## See ?verify() for what constitutes an inadmissible result.
##
## The seed used was: 1987
##
## Number of observations per group:
##
## Group No. observations
## group1 399
## group2 200
## ________________________________________________________________________________

As expected, the weights differ and the null hypothesis of compositional invariance of

the composite X is clearly rejected. Likewise, as expected, all other null hypothesis

are not rejected.

5.5.8 testMGD()

testMGD(
.object = NULL,
.alpha = 0.05,
.approach_p_adjust = "none",
.approach_mgd = c("all", "Klesel", "Chin", "Sarstedt",

"Keil", "Nitzl", "Henseler", "CI_para",
"CI_overlap"),

.parameters_to_compare = NULL,

.handle_inadmissibles = c("replace", "drop", "ignore"),

.R_permutation = 499,

.R_bootstrap = 499,

.saturated = FALSE,

.seed = NULL,

.type_ci = "CI_percentile",

.type_vcv = c("indicator", "construct"),

.verbose = TRUE
)

The function performs various group comparison tests, commonly called “tests of

multigroup differences” – hence the function name. As of version 0.2.0 of the

package, eight different test approaches are available via the .approach_mgd

argument. By default, all approaches are computed (.approach_mgd = "all" ). I
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briefly describe the tests here; for details, however, readers are referred to the original

sources.

Approach suggested by Klesel et al. (2019); .approach_mgd = "Klesel" The

model-implied variance-covariance matrix – either indicator (.type_vcv =

"indicator" ) or construct (.type_vcv = "construct" ) – is compared across

groups. If the model-implied indicator or construct correlation matrix based on

a saturated structural model should be compared, set .saturated = TRUE. To

measure the distance between the model-implied variance-covariance matrices,

the geodesic distance (dG) and the squared Euclidean distance (dL) are used. If

more than two groups are compared, the average distance over all groups is

used.

Approach suggested by Sarstedt et al. (2011); .approach_mgd = "Sarstedt"

Groups are compared in terms of parameter differences across groups. Sarstedt

et al. (2011) propose to test if parameter k is equal across all groups. If several

parameters are tested simultaneously it is recommended to adjust the

significance level or the p-values for decision making. By default no multiple

testing correction is done, however, several common adjustments are available

via .approach_p_adjust. Note: the test has severe conceptional shortcomings.

It is only implemented for comparison to other tests. Use is discouraged.

Approach suggested by Chin and Dibbern (2010); .approach_mgd = "Chin"

Similar to Sarstedt et al. (2011)’s approach, groups are compared in terms of

parameter differences across groups. However, Chin and Dibbern (2010) suggest

to test if parameter k is equal between two groups. If more than two groups are

tested for equality, parameter k is compared between all pairs of groups. In this

case, it is also recommended to adjust the significance level or the p-values since

this is essentially a multiple testing setup. If several parameters are tested

simultaneously, correction is by group and number of parameters. By default no

multiple testing correction is done, however, several common adjustments are

available via .approach_p_adjust.

Approach suggested by Keil et al. (2000); .approach_mgd = "Keil" The test

is similar to those proposed by Chin and Dibbern (2010) and Sarstedt et al.
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(2011). Groups are compared in terms of parameter differences across groups.

As in Chin and Dibbern (2010), Keil et al. (2000) tests if parameter k is equal

between two groups. It is assumed, that the standard errors of the coefficients

are equal across groups. The calculation of the standard error of the parameter

difference is adjusted as proposed by Henseler et al. (2009). If more than two

groups are tested for equality, parameter k is compared between all pairs of

groups. In this case, it is recommended to adjust the the p-values since this is

essentially a multiple testing setup. If several parameters are tested

simultaneously, correction is by group and number of parameters. By default no

multiple testing correction is done, however, several common adjustments are

available via .approach_p_adjust.

Approach suggested by Nitzl (2010); .approach_mgd = "Nitzl" Again,

groups are compared in terms of parameter differences across groups. Similarly

to Keil et al. (2000), a single parameter k is tested for equality between two

groups. However, in contrast, it is assumed, that the standard errors of the

coefficients are unequal across groups. If more than two groups are tested for

equality, parameter k is compared between all pairs of groups. In this case, it is

recommended to adjust the p-values since this is essentially a multiple testing

setup. If several parameters are tested simultaneously, correction is by group

and number of parameters. By default no multiple testing correction is done,

however, several common adjustments are available via .approach_p_adjust.

Approach suggested by Henseler (2007); .approach_mgd = "Henseler"

Groups are compared in terms of parameter differences across groups. In doing

so, the bootstrap estimates of one parameter are compared across groups. In

the literature, this approach is also known as PLS-MGA. This test is an

one-sided test, therefore we perform a left-sided and a right-sided test to

investigate whether a parameter differs across two groups. Consequently,

.approach_p_adjust is ignored. Moreover, no overall decision is returned. For

a more detailed description, see also Henseler et al. (2009).

Approach mentioned in Sarstedt et al. (2011); .approach_mgd = "CI_param"

The approach is based on the confidence intervals (CIs) constructed around the

parameter estimates for two groups. If the parameter of one group is covered by
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the CI of the other group and/or vice versa, it can be concluded that there is no

group difference. Since it is based on the CIs .approach_p_adjust is ignored.

Approach mentioned in Sarstedt et al. (2011); .approach_mgd = "CI_overlap"

The approach is also based on the confidence intervals (CIs) constructed around

the parameter estimates of the two groups. In this case, if the two CIs overlap,

it can be concluded that there is no group difference. Since it is based on the

confidence intervals .approach_p_adjust is ignored.

By default, approaches based on parameter differences across groups compare all

parameters (.parameters_to_compare = NULL). To compare only a subset of

parameters, the user can provide the parameters in lavaan model syntax similar to

how the main model to estimate would be specified. Assume, for example, the

following postulated model:

model_to_estimate <- "
Structural model
eta2 ~ eta1
eta3 ~ eta1 + eta2

# Reflective Measurement
eta1 =~ y11 + y12 + y13
eta2 =~ y21 + y22 + y23
eta3 =~ y31 + y32 + y33
"

If only the path from eta1 to eta3 and the loadings of eta1 are to be compared

across groups, write:

to_compare <- "
Structural parameters to compare
eta3 ~ eta1

# Loadings to compare
eta1 =~ y11 + y12 + y13
"

and then use .parameters_to_compare = to_compare. Note that the “model”

provided to .parameters_to_compare does not need to be an estimable model!

In contrast to all other functions in cSEM that have the .handle_inadmissibles

argument, the argument’s default is "replace" instead of "ignore". The reason is
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that the approach suggested by Sarstedt et al. (2011) requires an equal number of

resamples.

Argument .R_permuation is ignored for the "Nitzl" and the "Keil" approach as

these tests do not require permutation. .R_bootstrap is ignored if .object already

contains resamples, i.e., has class cSEMResults_resampled or if only the "Klesel"

or the "Chin" approach are used.

The argument .saturated is used by "Klesel" only. If .saturated = TRUE the

original structural model is ignored and replaced by a saturated model, i.e., a model

in which all constructs are allowed to correlate freely. This is useful to test differences

in the measurement models between groups in isolation.

The resulting object is a list of class cSEMTestMGD containing a list element for each

test that was chosen via .approach_mgd as well as an element Information with

additional information such as the seed, number of permuation runs etc.

Example

For illustration, I randomly split the Switching data set into two groups. In this

case, groups should, sampling error aside, not differ systematically:

set.seed(1224)
s <- sample(1:nrow(Switching))

switch1 <- Switching[s[1:383], ]
switch2 <- Switching[s[384:767], ]

model <-"
# Measurement models
INV =~ INV1 + INV2 + INV3 + INV4
SAT =~ SAT1 + SAT2 + SAT3
INT =~ INT1 + INT2

# Structural model
INT ~ INV + SAT
"
## Estimation

out_switching <- csem(
.data = list(switch1, switch2),
.model = model,
.resample_method = "bootstrap",
.handle_inadmissibles = "replace",
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.seed = 170818
)

testMGD(out_switching, .verbose = FALSE)

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## Total permutation runs = 623
## Admissible permutation results = 499
## Permutation seed = -1572774555
##
## Total bootstrap runs = 499
## Admissible bootstrap results:
##
## Group Admissibles
## Data_1 499
## Data_2 499
##
## Bootstrap seed:
##
## Group Seed
## Data_1 170818
## Data_2 170818
##
## Number of observations per group:
##
## Group No. Obs.
## Data_1 383
## Data_2 384
##
## Overall decision (based on alpha = 5%):
##
## p_adjust = 'none'
## Sarstedt reject
## Chin Do not reject
## Keil Do not reject
## Nitzl Do not reject
##
## For details on a particular approach type:
##
## - `print(<object-name>, .approach_mgd = '<approach-name>')`
##
## ________________________________________________________________________________
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As stated in the output, to get details on e.g., the test proposed by Klesel et al.

(2019), it must be chosen explicitly:

testMGD(out_switching, .approach_mgd = "Klesel", .verbose = FALSE)

## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## Total permutation runs = 655
## Admissible permutation results = 499
## Permutation seed = -1554328016
##
## Total bootstrap runs = NA
## Admissible bootstrap results:
##
## Group Admissibles
## Data_1 NA
##
## Bootstrap seed:
##
## Group Seed
## Data_1 NA
##
## Number of observations per group:
##
## Group No. Obs.
## Data_1 383
## Data_2 384
## ________________________________________________________________________________
## --------- Test for multigroup differences based on Klesel et al. (2019) --------
##
## Null hypothesis:
##
## +---------------------------------------------------------------------------+
## | |
## | H0: Model-implied indicator covariance matrix is equal across groups. |
## | |
## +---------------------------------------------------------------------------+
##
## Test statistic and p-value:
##
## Distance measure Test statistic p-value Decision
## dG 0.0158 0.9399 Do not reject
## dL 0.0521 0.9739 Do not reject
## ________________________________________________________________________________

As expected, the null hypothesis is not rejected on all conventional α-levels.
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5.5.9 testHausman()

testHausman(
.object = NULL,
.eval_plan = c("sequential", "multiprocess"),
.handle_inadmissibles = c("drop", "ignore", "replace"),
.R = 499,
.resample_method = c("bootstrap", "jackknife"),
.seed = NULL

)

The function calculates the regression-based Hausman test for endogeneity.

Practically, the test is used to compare OLS to 2SLS estimates (e.g., Wooldridge,

2010, p.131). The function is currently in an experimental stage, poorly documented

and may undergo changes in the future. The principal intend is to allow users to

supply a cSEMResults object whose path model has been estimated by two-stage

least squares (2SLS; using .approach_path = "2SLS" in csem()). The instruments

required for the computation are extracted from the object by testHausman() to

perform the regression based test for endogeneity using bootstrap or jackknife

standard errors.

Example

To illustrate the test, I use an example from Dijkstra and Henseler (2015a). The

values can be found on pages 15 and 16 of the paper:

# Preparation

Lambda <- t(kronecker(diag(6), c(0.7, 0.7, 0.7)))
Phi <- matrix(c(1.0000, 0.5000, 0.5000, 0.5000, 0.0500, 0.4000,

0.5000, 1.0000, 0.5000, 0.5000, 0.5071, 0.6286,
0.5000, 0.5000, 1.0000, 0.5000, 0.2929, 0.7714,
0.5000, 0.5000, 0.5000, 1.0000, 0.2571, 0.6286,
0.0500, 0.5071, 0.2929, 0.2571, 1.0000, sqrt(0.5),
0.4000, 0.6286, 0.7714, 0.6286, sqrt(0.5), 1.0000),

ncol = 6)

## Create population indicator covariance matrix

Sigma <- t(Lambda) %*% Phi %*% Lambda
diag(Sigma) <- 1
dimnames(Sigma) <- list(paste0("x", rep(1:6, each = 3), 1:3),

paste0("x", rep(1:6, each = 3), 1:3))
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## Generate data

dat <- MASS::mvrnorm(n = 500, mu = rep(0, 18), Sigma = Sigma, empirical = TRUE)
# empirical = TRUE to show that 2SLS is in fact able to recover the true population

# parameters.

The model to be estimated is nonrecursive; there are feedback loops and, therefore,

endogeneity issues.

model <- "
## Structural model (nonrecurisve)
eta5 ~ eta6 + eta1 + eta2
eta6 ~ eta5 + eta3 + eta4

## Measurement model
eta1 =~ x11 + x12 + x13
eta2 =~ x21 + x22 + x23
eta3 =~ x31 + x32 + x33
eta4 =~ x41 + x42 + x43

eta5 =~ x51 + x52 + x53
eta6 =~ x61 + x62 + x63
"

## Estimation

res_2sls <- csem(dat, .model = model, .approach_paths = "2SLS",
.instruments = list("eta5" = c('eta1','eta2','eta3','eta4'),

"eta6" = c('eta1','eta2','eta3','eta4')))
## Test for endogeneity

test_ha <- testHausman(res_2sls)
test_ha

## ________________________________________________________________________________
## ------------------------- Regression-based Hausman test ------------------------
##
## Null hypothesis:
##
## +--------------------------------------------------------------------------+
## | |
## | H0: Variable(s) suspected to be endogenous are uncorrelated with the |
## | error term (no endogeneity). |
## | |
## +--------------------------------------------------------------------------+
##
## Regression output:
##
##
## Dependent construct: 'eta5'
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##
## Independent construct Estimate Std. error t-stat. p-value
## eta1 -0.3000 0.1082 -2.7731 0.0056
## eta2 0.4999 0.0881 5.6755 0.0000
## eta6 0.2501 0.1251 1.9995 0.0456
## Resid_eta6 0.9784 0.2901 3.3728 0.0007
##
## Dependent construct: 'eta6'
##
## Independent construct Estimate Std. error t-stat. p-value
## eta3 0.4999 0.0559 8.9412 0.0000
## eta4 0.2501 0.0518 4.8243 0.0000
## eta5 0.5001 0.1052 4.7536 0.0000
## Resid_eta5 -0.0056 0.1435 -0.0389 0.9690
## ________________________________________________________________________________

The residuals term Resid_eta6 obtained from a regression of η6 on all instruments is

statistically significant in a regression of eta5 on eta1, eta2, eta6, and Resid_eta6.

This is statistical indication that η6 is endogenous. Resid_eta5 on the other hand is

statistically insignificant. Hence, the test does not indicate any statistical evidence of

endogeneity which is likely wrong, in this case.

5.6 Technical details

The package is developed in R using the RStudio IDE (RStudio Team, 2015).

Changes to the package are tracked using the powerful version control system Git

(e.g., Chacon and Straub, 2014). Git is primarily a command-line tool, although

some of the typical actions one would perform in Git are integrated into the RStudio

IDE. However, to fully access Gits capabilities, use of the terminal is indispensable.

In short, given a project folder, called a repository in Git parlance, Git essentially

distinguishes between unmodified files, files staged for commit – i.e., files that have

been modified, are ready to be committed, but have not yet been “officially recorded"

by Git –, and committed files. A commit in Git is like a snapshot or a record of the

current state of the repository. These snapshots are stored in a highly space-efficient

manner and can be, if necessary, accessed or modified later in the project development

cycle. In fact, unless the repository is deleted completely, commits are essentially

impossible to destroy by the user. Hence, no changes are lost and potential bugs

introduced by e.g., a modification to existing code can quickly and safely be reverted
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at any later stage in the project development cycle. Moreover, given that each

commit was labeled in a meaningful way, commits provide a natural change history.

In addition, Git offers a flexible branching system that corresponds well to the

demands of a collaborative software project like an R package. After setting up Git,

every change to a repository happens by default on the so-called “master branch".

Branches are best understood as separate instances of a repository. If a branch is

created it is always created based on a parent branch – typically the master branch.

At the point of creation, the new branch is an exact copy of its parent that lives

independently of the repository it has been copied from. Branches are primarily used

to implement new features or to test a modification to existing code while leaving the

parent branch unaffected. Branches can be modified and extended and, if necessary,

branched again. Once work on the copy-branch is finished – because a feature has

been implemented and sufficient stability tests have been made –, it can be merged

back into the parent branch. If, in the meantime, the parent had been modified, Git

will detect all changes and inform of any conflicts introduced by changes of the same

line of code in both the parent and the copy-branch.

Since Git tracks changes on the local machine, a remote copy of the package

repository is hosted and maintained in a GitHub repository.15 GitHub is a platform

for collaboration on code projects. Everyone contributing to the package may obtain

a local clone of the repository, implement modifications and push – if granted

permission by the repository owner – the changes back to the remote where they are

now accessible to all other users connected to the project. Git and GitHub offer a

variety of tools to synchronize the remote and local copies of a project allowing me,

the maintainer, to track, check, comment, and organize changes to different files by

different people at different times.

One of the more tedious tasks in package development is testing the code. To make

the process as hassle-free as possible, I use two helpful resources. First the actual

tests are embedded in the testthat (Wickham, 2011) framework. testthat is an R

package which offers a number of functions to organize and structure tests of different

parts of code. Second, instead of running each test manually whenever the package is

modified, I make use of the continuous integration (CI) service Travis CI16 to perform
15See:https://github.com/M-E-Rademaker/cSEM; last accessed: 19.04.2020
16See: https://travis-ci.org/; last accessed: 19.04.2020
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this task automatically. Once set up correctly, Travis CI automatically tracks changes

to cSEM’s remote package repository on GitHub. Whenever a change to the package

is detected – typically, because a change was pushed from the local repository to the

remote repository – Travis CI executes the following steps:

1. Create a brand new virtual machine on one of Travis CI’s servers.

2. Install an operating system on the machine.17

3. Install R and download the required packages as indicated in the DESCRIPTION

file of the package.

4. Clone the package repository and install the package using

install.packages("cSEM").

5. Run R CMD check, a standardized list of checks run by CRAN.

6. Run testthat::test_check("cSEM") which runs all user written tests

organized within the testthat framework.

If any of the installations, checks, and tests exit with an error or a warning, Travis-CI

indicates where the error or warning occurred. These can then be fixed locally; upon

pushing the changes back to the remote, Travis CI picks up a change and reexecutes

steps 1-6. This process is repeated until no issues are encountered.

The package website https://m-e-rademaker.github.io/cSEM/ is build using the

pkgdown package (Wickham and Hesselberth, 2020). pkgdown creates a static website

almost automatically from package meta data files like DECRIPTION or README and

other files such as the .Rd files.

Currently, the package website is hosted on GitHub pages.18 The actual content of

the website, which is required by GitHub pages to build the website, is stored in a

branch called “gh-pages" in the GitHub repository. Instead of updating the content of

the website manually, I use Travis CI for automatic deployment. Whenever a change
17To make sure the package passes the checks and tests on every common operating system, I set

up Travis CI to actually create three virtual machines. Each machine then uses a different operating
system. Currently, I use Ubuntu xenial 16.04 (and 18.04), mac OS 10.13, and windows x86_64-w64-
mingw32/x64. For Windows, I actually use a different CI service called appveyor (https://www.
appveyor.com/). However, the steps described here for Travis CI are virtually identical to those from
appveyor.

18https://pages.github.com/; last accessed: 13.03.2020
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to the remote repository is made, Travis CI will go through the steps described above.

When on the master branch, once testing is finished, an additional deployment script

is ran that calls the central pkgdown command pkgdown::build_site(). The

command triggers building the website. If building the site was successful, the script

pushes the results into the gh-pages branch, thus updating all files required for

building the website. GitHub pages then rebuilds the website based on the new files

and a couple of seconds later the changes will be visible on the website.
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