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Abstract

The human motor system is adaptive in two senses. It adapts to the properties of the
body to enable effective control. It also adapts to different situational requirements and
constraints. This thesis proposes a new neural network model of both kinds of adaptiv-
ity for the motor cortical control of human reaching movements, called SURE REACH
(sensorimotor unsupervised learning redundancy resolving control architecture). In this
neural network approach, the kinematic and sensorimotor redundancy of a three-joint
planar arm is encoded in task-independent internal models by an unsupervised learning
scheme. Before a movement is executed, the neural networks prepare a movement plan
from the task-independent internal models, which flexibly incorporates external, task-
specific constraints. The movement plan is then implemented by proprioceptive or visual
closed-loop control. This structure enables SURE REACH to reach hand targets while
incorporating task-specific contraints, for example adhering to kinematic constraints,
anticipating the demands of subsequent movements, avoiding obstacles, or reducing the
motion of impaired joints. Besides this functionality, the model accounts for temporal
aspects of human reaching movements or for data from priming experiments. Addi-
tionally, the neural network structure reflects properties of motor cortical networks like
interdependent population encoded body space representations, recurrent connectivity,
or associative learning schemes. This thesis introduces and describes the new model,
relates it to current computational models, evaluates its functionality, relates it to hu-
man behavior and neurophysiology, and finally discusses potential extensions as well as
the validity of the model. In conclusion, the proposed model grounds highly flexible
task-dependent behavior in a neural network framework and unsupervised sensorimotor
learning.
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Zusammenfassung

Das motorische System des Menschen ist in zweierlei Hinsicht anpassungsfähig. Es
passt sich den Eigenschaften des Körpers an, um diesen effektiv zu kontrollieren. Es
passt sich aber auch unterschiedlichen situationsabhängigen Erfordernissen und Be-
schränkungen an. Diese Dissertation stellt ein neues neuronales Netzwerk Modell der
motor-kortikalen Steuerung von menschlichen Zeigebewegungen vor, das beide Arten
von Anpassungsfähigkeit integriert (SURE REACH, Sensumotorische, unüberwacht ler-
nende, redundanzauflösende Kontrollarchitektur). Das neuronale Netzwerk speichert ki-
nematische und sensumotorische Redundanz eines planaren, dreigelenkigen Armes in auf-
gabenunabhängigen internen Modellen mittels unüberwachter Lernverfahrenen. Vor der
Ausführung einer Bewegung bereitet das neuronale Netzwerk einen Bewegungsplan vor.
Dieser basiert auf den aufgabenunabhängigen internen Modells und passt sich flexibel
äußeren, aufgabenabhängigen Erfordernissen an. Der Bewegungsplan wird dann durch
propriozeptive oder visuelle Regelung umgesetzt. Auf diese Weise erklärt SURE REACH
Bewegungen zu Handzielen die aufgabenabhängige Erfordernisse berücksichtigen, zum
Beispiel werden kinematische Beschränkungen miteinbezogen, Erfordernisse nachfolgen-
der Aufgaben antizipiert, Hindernisse vermieden oder Bewegungen verletzter Gelenke
reduziert. Desweiteren werden zeitliche Eigenschaften menschlicher Bewegungen oder
die Ergebnisse von Primingexperimenten erklärt. Die neuronalen Netzwerke bilden zu-
dem Eigenschaften motor-kortikaler Netzwerke ab, zum Beispiel wechselseitig abhängige
Raumrepräsentationen, rekurrente Verbindungen oder assoziative Lernverfahren. Diese
Dissertation beschreibt das neue Modell, vergleicht es mit anderen Modellen, untersucht
seine Funktionalität, stellt Verbindungen zu menschlichem Verhalten und menschlicher
Neurophysiologie her und erörtert schließlich mögliche Erweiterungen und die Validität
des Models. Zusammenfassend stellt das vorgeschlagene Model eine Erklärung für fle-
xibles aufgabenbezogenes Verhalten auf ein Fundament aus neuronalen Netzwerken und
unüberwachten sensumotorischen Lernen.
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Introduction

Virtually all human capabilities of both every day life and great virtuosity are medi-
ated by the motor apparatus. The plan to open a door requires to reach the doorknob
and press it down. The violinist has to move the bow and play the strings with her
arms and fingers to delight the audience. And even the most distinguished philosophers
had to use their vocal tracts to speak about sophisticated insights or had to make arm
and finger movements to write them down. Thus, the ability to control the own body
is one of the most basic requisites to implement higher cognitive or social competencies.
Even more, it has been suggested that higher cognitive functions or even consciousness
have only emerged on the basis of the complex representations and processes that are
required to control the human body (Barsalou 1999; Cruse 2003; Grush 2004; Körding,
Tenenbaum & Shadmehr 2007; Schubotz 2007; Wolpert, Doya & Kawato 2003). Besides,
the control of the human body poses a superb challenge on its own.

This challenge is mastered by all humans (and of course many animals) with as-
tonishing ease. In fact, most people do not think or even know about the daunting
problem that brain and body have to solve all the time: how can a goal in the mind
be transformed into a movement of the body? To solve this problem, some kind of
adaptive mapping from goal representations to efferent neural activations has to exist in
the brain. Since movement goals may be represented at some stage as a desired sensory
perception or an abstraction thereof, this mapping is a sensorimotor mapping (Elsner
& Hommel 2001; Greenwald 1970; James 1890; J. Hoffmann 1993, 2003; Powers 1973).
The acquisition of this mapping may be called motor learning, and the use of it to guide
movements may be called motor control.

The sensorimotor mapping is adaptive in two different senses. First, it is adaptive
in the sense that it is learned and not innate. This is necessary because the exact body
properties are unforeseeable by any innate mechanism and because the body changes
continuously. Limbs grow, fatigue reduces muscle strength, tools extend our body, and
injuries reduce its movability. In humans, the capability to make accurate goal-directed
movements only develops during infancy (von Hofsten 2003).

Second, the mapping is adaptive in the sense that the mapping has to adapt quickly
to different situations. This situational adaptation is possible because virtually all goals
may be implemented by different movements, and it is necessary to adjust a movement to
the specific requirements of each new task. For example, you might type your password
slowly and carefully to log in to your computer because you won’t be able to detect
and correct an error. However, you might write a text less carefully and much faster
because most errors are highlighted by your word processor and can be quickly corrected.
Likewise, if your goal is to grasp a wine glass, you might grasp it in very different ways
dependent if you intend to cheer to your friends or put it in the dish-washer.

In this thesis, I will present a novel computational model of motor learning and the
control of human reaching movements that focuses on adaptivity in both senses1. The

1Most of the results of this dissertation have been reported in Butz, Herbort und Hoffmann (2007)
and Herbort und Butz (2007).
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next section gives a more formal description of the problem of turning a goal into a
movement. Then I will highlight computational and representational problems which
make the acquisition and use of the mapping difficult. First, the human motor system
will be briefly described, emphasizing on the central requirements that enable behavioral
control. Second, the problem of motor redundancy and accounts for its solution are dis-
cussed. Third, different approaches to motor learning are outlined and the problem of
detecting relationships between the own efferent signals and body motions will be scru-
tinized. Starting from these problems, current computational models of motor learning
or motor control are reviewed. It will become apparent, that models of motor learning
on the one side and models that account for flexible adaptive control on the other side
are well developed but that unifying approaches that combine both kinds of adaptivity
are lagging behind. As the key contribution of this thesis, a novel computational model
for motor learning and control of goal-directed arm movement is presented that aims to
fill this gap. The subsequent evaluation and application of the model will show that it
matches behavioral human and primate data and that it accounts for both, movement
preparation and movement execution. A final discussion about potential extensions as
well as psychological and neurophysiological validity concludes the thesis.

The Inverse Problem

A goal can be seen as a desired consequence of some actions or movements. The abil-
ity to move goal-directedly bases on the ability to transform such a desired consequence
into a movement. This requires the internal inversion of the flow from cause to effect,
from movements to their consequences. The problem of finding such a transformation
may therefore be termed the inverse problem (Kalveram 2004).

The inverse problem was already discussed in the early days of psychology (Herbart
1825; Lotze 1852). Of course, the solution of this problem is crucial for motor control and
has been referenced in early theories (Bernstein 1967). Later, Adam’s (1971) “memory
trace” and Schmidt’s (1975) “recall schema” have been proposed for the acquisition of
a solution to the inverse problem. However, these accounts did not pay tribute to the
immense flexibility of human movement production and the capability to even exert
precise and sophisticated movements that have never been executed before. In recent
years, the term internal inverse model2 has been assigned to neural structures that solve
the inverse problem (Kawato 1999; Sabes 2000; Scott & Norman 2003). It emphasizes
that motor control is not based on a simple, fixed relationship between goals and efferent
signals but that a general, detailed representation of the body and how it moves underlies
motor behavior (Conditt, Gandolfo & Mussa-Ivaldi 1997; Cruse, Steinkühler & Burkamp
1998; Kawato 1999).

After these general comments, it should be noted that the brain doesn’t solve a

2Note, that the word “model” is used in two different meanings in this thesis. First, “model” might
refer to some kind of understanding that the brain has from the motor system (e.g. “internal model”).
Second, “model” might refer to some kind of understanding that scientists have from the brain (e.g. “a
model of motor control”). If a sentence requires mentioning both kinds of models, the second kind is
termed “approach” or “theory” to reduce confusion.
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single inverse problem as such. It is most likely that a goal, like wanting to switch on
the lights in a room, is not directly mapped onto motor commands but that a number of
intermediate representations exists. Thus, the big inverse problem of choosing efferent
signals to switching on the lights may be divided in many smaller inverse problems:
for example, the selection of an effector, the selection of a movement trajectory of that
effector, and finally a series of efferent neural impulses that initiate a movement.

However, the exact nature of the computations and its intermediate states are de-
bated. Figure 1 shows a number of possible pathways from a goal for a reaching move-
ment, a desired hand location, to motor commands. Some assume that a targeted hand

desired

hand location

(H)

hand

trajectory

(HT)

efferent signal

for dynamics

(DE)

final arm

posture

(FA)

arm posture

trajectory

(AT)

efferent signal

for kinematics

(KE)

extrinsic / task space intrinsic / body space actions / motor command space

Figure 1. The transformation of a extrinsically encoded movement goal into efferent signals
could follow different paths of intermediate representations. Not all or even no intermediate
stages have to be explicitly represented.

coordinate is first explicitly transformed into a specific arm posture and then, based
on initial and final posture, a trajectory of arm postures is traced (e.g. Rosenbaum,
Loukopoulos, Meulenbroek, Vaughan & Engelbrecht 1995). Others propose that the
trajectory is not planned in posture space but in visually encoded hand space (Flanagan
& Rao 1995; Flash & Hogan 1985). Again others state that neither the final posture
nor the arm posture trajectory or hand trajectory of a movement is explicitly planned
(e.g. Bullock, Grossberg & Guenther 1993; Cisek & Kalaska 2005; Morasso, Sanguineti
& Spada 1997). Likewise, it is debated if the efferent signals issued by the motor system
directly control muscle force or related dynamic properties like joint torques (Barto,
Fagg, Sitkoff & Houk 1999; Gottlieb 2000; Wolpert & Kawato 1998; Todorov 2000) or if
only kinematic features of the movement are controlled (Feldman 1966; Gribble, Ostry,
Sanguineti & Laboissiere 1998). Table 1 lists some models and the computations they
assume or account for. Finally, the view that the different intermediate representations
are computed one after another, resulting in the output of a prespecified movement
has been challenged. Recent experiments suggest that movement initiation might even
precede target selection (Cisek 2005; Cisek & Kalaska 2005; Song & Nakayama 2006).

The computational model presented in this thesis proposes that the inverse problem
is solved by first determining possible end-postures and then approaching these without
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planning a trajectory. However, although this is backed by empirical findings I do not
want to make a strong claim about the modalities or properties of any intermediate rep-
resentation but want to show that an intermediate representation of redundant solutions
of an inverse problem is the key to understand behavioral flexibility.

Regardless of what the specific computations in the brain are, at least some if not
all of the inverse motor problems are not easy to solve. The next sections will highlight
three issues related to encoding a solution of the inverse problem. First, the solution of
at least some of the inverse problems has to be a time-varying efferent signal. Second,
the problem of redundancy requires the selection of a specific solution to the inverse
problem among many seemingly equivalent possibilities. Third, possible accounts for
the acquisition of inverse models by motor learning are scrutinized.

Table 1: Computational Models of Motor Control

Stages References
H →FA →AT Rosenbaum, Engelbrecht, Bushe & Loukopoulos 1993a, 1993b;

Rosenbaum, Loukopoulos, Meulenbroek, Vaughan & Engel-
brecht 1995; Rosenbaum, Meulenbroek & Vaughan 2001;
Rosenbaum, Meulenbroek, Vaughan & Jansen 1999, 2001

H →HT,AT, FA Cruse & Steinkühler 1993; Cruse, Steinkühler & Burkamp
1998

H →KE Baraduc, Guigon & Burnod 2001; Berthier 1996; Berthier,
Singh, Barto & Houk 1992, 1993; Bullock, Grossberg & Guen-
ther 1993; Cisek 2006; Morasso, Sanguineti & Spada 1997;
Srinivasa & Grossberg 2007

H →DE Berthier, Rosenstein & Barto 2005; Rokni, Richardson, Bizzi
& Seung 2007

AT →DE Gribble & Ostry 2000; Hirayama, Kawoto & Jordan 1993
AT,FA →DE Barto, Fagg, Sitkoff & Houk 1999; Haruno, Wolpert & Kawato

2001, 2003; Herbort, Butz & Hoffmann 2005a; Kawato 1990;
Kositsky & Barto 2002; Wolpert & Kawato 1998
Abbreviations: AT: arm posture trajectory, DE: efferent sig-
nals (dynamics), FA: final arm posture, H: final hand location,
HT: hand trajectory, KE: efferent signals (kinematic).

Control of the Human Motor System

In the following, three aspects of the human motor system and their relevance for
the control of goal-directed movements are described: the musculoskeletal system, the
spinal neural circuity, and the brain. The sections about the musculoskeletal system
and the spinal circuity will focus on how these systems support central control of goal-
directed movements and on the structure of required control signals. The section about
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the brain will roughly outline the roles of different motor areas and interconnections
between them and other areas. Additionally, it will position the computational model
in the motor system.

The Musculoskeletal System

At first, of course, the setup of the skeleton and the muscles shapes the motor system.
This system seems highly complex but it evolved to enable the CNS to interact with
the environment as easily as possible. First, the geometrical configuration of the human
body and the joint functionality facilitate important behavior, like walking or grasping
objects and manipulating them under visual control (Shadmehr & Wise 2005). Second,
the actuators of the body, the muscles, enhance control stability. The mechanics of a
single muscle are comparable to a damped spring and each limb is actuated by at least
two antagonistic muscles (Birbaumer & Schmidt 1996).

Both features enable to compensate on a purely mechanical basis for perturbations,
resulting in a delay-free feedback loop. Even more, it has been hypothesized that by
centrally setting specific α-motoneuron activations in antagonistic muscles attached to a
limb, the limb might come to rest at a defined equilibrium position, regardless of initial
limb posture or perturbations (Bizzi, Polit & Morasso 1976; Polit & Bizzi 1979). Thus,
all what the brain would have to do to exert goal-directed movements is to generate
a specific constant alpha-motoneuron activation, thus rendering motor control a rather
simple task. However, this α - equilibrium point hypothesis could not be maintained in
its simplicity. Nevertheless, the mechanics and arrangement of muscles clearly facilitate
stable control (Bizzi, Accornero, Chapple & Hogan 1984; Buehrmann & Di Paolo 2006).

Spinal Neurons

The spinal neural circuity can be considered the second part of the motor system. It
provides neural circuity for simple repetitive behavior (central pattern generators) and
comprises spinal reflex arcs (Dietz 2003; Scott 2004). Whereas the ability to produce
certain forms of rhythmic behavior like walking or swimming is not of paramount impor-
tance to voluntary movement control, especially reaching, reflex arcs stabilize the motor
apparatus in a way that cannot be provided by the musculoskeletal system alone. For
example, the equilibrium position of a limb clamped between a pair of muscles does not
only depend on the contractional force exerted by the muscles but also on gravitational
or inertial forces.

The monosynaptic reflex arcs can compensate for limb displacements due to external
loads. It relays the perceived muscle length to α-motoneurons. By increasing muscle
force when the muscle is involuntarily stretched, a certain muscle length and hence limb
position can be maintained even if external loads apply.

Also, spinal circuity connects different muscles, for example by inhibitory connections
between antagonists. These findings have inspired the lambda version of the equilibrium
point theory, which states that the final limb position of voluntary movements is centrally
controlled by modifying reflex gains of the spinal circuity (Adamovich, Levin & Feldman
1997; Feldman 1966; Feldman & Levin 1995; Mussa-Ivaldi & Bizzi 2000; Mussa-Ivaldi,
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Giszter & Bizzi 1994). It has been hotly debated if the adjustment of reflex gains is
sufficient to account for voluntary movement (Bizzi, Hogan, Mussa-Ivaldi & Giszter
1992; Gomi & Kawato 1997; Gottlieb 2000; Ostry & Feldman 2003). Nevertheless, it
seems that central reflex arcs help to stabilize body postures without the need to react
centrally to perturbing torques or forces (Loeb, Brown & Cheng 1999; Hof 2003).

However, equilibrium point theories only account for the control of the final position
of a movement but not for control of the trajectory (McIntyre & Bizzi 1993). It has been
noted that these models can exert control over trajectories by shifting the reflex gains
along a more or less complex (virtual) trajectory (Gribble et al. 1998; Gribble & Ostry
2000). This reduces the original simplicity of these models because they now require the
central generation of a complex time varying control signal. Hence, regardless if central
motor control is mediated by reflex gains or if muscle forces are directly controlled (Gomi
& Kawato 1997; Gottlieb 2000; Gribble & Ostry 1999; Todorov 2000) it seems that
the brain has to provide a complex, time varying efference pattern to realize arbitrary
voluntary movement.

The Brain

The brain completes the human motor system. The most prominent motor area is
the primary motor cortex which connects (along with premotor areas) to many spinal
interneurons or directly to motoneurons by the cortico-spinal-tract. It has been suggested
that it encodes muscle force (Kakei, Hoffman & Strick 1999; Todorov 2000), target
posture (Aflalo & Graziano 2006), actual arm posture (Ajemian, Bullock & Grossberg
2000) as well as more abstract movement properties like hand movement direction (Cisek
2005; Georgopoulos, Caminiti, Kalaska & Massey 1983). The primary motor cortex is
closely connected to the primary somatosensory cortex, which provides proprioceptive
information, as well as premotor areas and the supplementary motor area. The former
seems to play an important part in representing movement goals and in planning and
executing movements whereas the latter is involved in retrieving motoric information
from memory (Afifi & Bergman 2005; Battaglia-Mayer, Caminiti, Lacquaniti & Zago
2003; Cisek & Kalaska 2005; Scott 2004). Both areas receive proprioceptive information
(from area 5) as well as exteroceptive visual input (from area 7). This enables premotor
areas to couple visual feedback to motor behavior. Additionally, they are connected to
the prefrontal cortex which is generally associated to higher cognitive functions. For
example, it encodes abstract movement categories (Shima, Isoda, Mushiake & Tanji
2007).

Additionally, many subcortial areas contribute to the generation of movements. First,
the basal ganglia interact with the primary motor cortex via thalamic connections and
seem to play a major role in context switching and action selection or inhibition (Red-
grave, Prescott & Gurney 1999). Second, the cerebellum plays a major role in the
acquisition and execution of motor behavior (Barlow 2002; Hikosaka, Nakamura, Sakai
& Nakahara 2002). It is massively linked to the primary motor cortex by the cortico-
pontocerebelar tract and affects spinal neurons mediated via the red nucleus, however
mainly affecting shoulder and arm movements (Afifi & Bergman 2005). The cerebellum is
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frequently seen as a side loop of the corticospinal system that adjusts or replaces cortical
motor commands to enhance control, especially in face of complex dynamic interactions
of different limbs (Barto et al. 1999; Berthier et al. 1993; Contreras-Vidal, Grossberg
& Bullock 1997; Doya 1999; Houk, Buckingham & Barto 1996; Kawato & Gomi 1992;
Schweighofer, Arbib & Kawato 1998; Schweighofer, Spoelstra, Arbib & Kawato 1998).
Also, its role as predictive or forward model has been emphasized (Desmurget & Grafton
2000; Miall, Weir, Wolpert & Stein 1993). Additionally, areas in the brain stem help to
balance the body or regulate spinal central pattern generators (Scott 2004; Shadmehr &
Wise 2005).

Short Summary

The last section gave an overview over the requirements to central control signals and
which brain areas contribute to their production. Even though the muscle physiology
and the spinal circuity facilitates stable control of the body, a central controller must
be able to produce complex, time-varying control signals to implement goal-directed
movements.

In the following, computational problems of the acquisition and control of goal-
directed behavior are examined from the perspective of motor cortical areas. This thesis
will contribute to the question of how these areas can generate efferent signals that
ultimately cause the body to reach a proprioceptively or exteroceptively encoded goal
and how this competency is acquired. In other words, this thesis addresses the question:
how does the brain solve the inverse problem.

Motor Redundancy

The motor system offers redundant possibilities to reach a specific goal because goals
are usually specified in a low dimensional task space but efferent signals have to be
specified in a higher dimensional space. To solve the inverse problem, it is not only
necessary to link goal representations to the efferent signals that bring the goal about
but also to select a specific efferent pattern among many alternatives. At last, only one
movement may be carried out at a time.

The motor system is redundant on many levels. At first, there is redundancy on the
neural level. Starting from the motor cortex, many efferent signals project to the spinal
cord. The corticospinal tract alone is comprised of roughly a million neurons (Afifi &
Bergman 2005). In the spinal cord these neurons are relayed on motor units, each of
which actuate a fraction of the fibers that comprise a single muscle. Thus, a certain
muscle contraction might be caused by many motoneuron activation patterns.

Second, there is kinematic and dynamic motor redundancy. The desired final hand
position can be realized in many different ways. This kinematic redundancy applies
to the human arm. For example, movements terminating at identical hand locations
assume different arm configurations, depending on the starting posture (Cruse, Brüwer
& Dean 1993; Soechting, Buneo, Herrmann & Flanders 1995). Moreover, the final
posture of a pointing movement (M. H. Fischer, Rosenbau & Vaughan 1997) or the way
an object is grasped (Weigelt, Cohen & Rosenbaum 2006; Weigelt, Kunde & Prinz 2006;
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Rosenbaum et al. 1990) may be adjusted to facilitate subsequent movements. Likewise,
the transition between two arm postures might be shaped in different ways. The most
compelling example of this is that different trajectories to the same goal are used if
obstacles block a direct transition from a start-point to the goal (Dean & Brüwer 1994)
or did so recently (Jax & Rosenbaum 2007). Also, if only the visually perceived trajectory
of a movement is distorted but not its start- and end-point, humans produce alternative
arm trajectories (Flanagan & Rao 1995, cf. Lackner & DiZio 1998). Recent experiments
revealed that especially task irrelevant properties of a movement show considerable trial-
to-trial variability (Latash, Scholz & Schöner 2002; Scholz, Schöner & Latash 2000).

To summarize, a vast number of cortical neurons are used to control the only seven
mechanical degrees of freedom of the human arm. Likewise, the mechanical degrees
of freedom of the arm enable to reach most goals with an infinite number of possible
muscle activation sequences, follow an infinite number of arm or hand trajectories and
can assume an infinite number of final arm postures. Of this abundance of possibilities,
only a single one can be applied at a time. The next sections describe how motor
synergies and optimal control reduce and resolve motor redundancy.

Motor Synergies

Not all neural and muscular degrees of freedom have to be controlled because many
neurons, muscles and joints are not independent but are organized in motor synergies
(Bernstein 1967). Motor synergies can be found on many levels. On the neural level,
a muscle, which is innervated by several motoneurons, could in principle be actuated
by any combinations of motoneuron activations, resulting in one degree of freedom for
each motoneuron. However, motoneurons are recruited in certain patterns, depending
on cell size and excitatory threshold. A low efferent signal causes the activation of
only the smallest motor units. If the efferent signal increases, medium-sized and later on
larger motor units are additionally activated (de Luca, LeFever, McCue & Xenakis 1982;
Henneman, Somjen & Carpenter 1965). The CNS clearly doesn’t have to deal with the
selection of specific motoneurons because a single central signal is automatically relayed
to the different motor units by means of the described recruitment scheme. Thus, the
number of functional degrees of freedom of a muscle is not determined by the number of
motoneurons that innervate the muscle but the CNS has to control only few degrees of
freedom per muscle, for example the contractile force of intra- and extrafusal muscles.

Likewise, many joints and muscles are organized in motor synergies (Mussa-Ivaldi et
al. 1994). A prominent example for this are the fingers of the human hand which have in
sum 23 degrees of freedom (Napier 1980). Fortunately, these are not functional degrees
of freedom. For example, it is for most people impossible to flex the most distal joint
of a finger while not flexing more proximal ones. Likewise, when a finger is required to
produce force, e.g. for pressing on a button, other fingers exert at least some force, too
(Latash, Scholz, Danion & Schöner 2001; Zhang, Zatsiorsky & Latash 2007).

In sum, by organizing degrees of freedom into motor synergies, the control of the body
is dramatically simplified because much fewer variables have to be controlled (Mussa-
Ivaldi et al. 1994; Mussa-Ivaldi 1999). Additionally, it has been hypothesized that
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the reduction of motor complexity by forcing degrees of freedom into motor synergies
facilitates initial motor learning because it reduces body complexity (Bernstein 1967;
Berthier et al. 2005; von Hofsten 2003). However, even if motor synergies boil down
neuronal, muscular and mechanical degrees of freedom by a large amount, they do not
completely resolve the redundancy problem because some excessive functional degrees
of freedom still remain.

Optimal Contol

Virtually all organisms have to resolve excessive functional degrees of freedom, at
least from time to time, simply because not all tasks require the complete maneuver-
ability of the body or its appendages. For example, grasping a cup requires the control
of six degrees of freedom because the hand has to be moved to the cup’s handle and the
hand has to be aligned in a way that enables approaching the handle from a reasonable
direction. Thus, in this task, six out of seven degrees of freedom of the hand are deter-
mined by the task and only one excess degree of freedom remains. However, most of us
have to press keys on a computer keyboard even more frequently than grasping cups.
This task is less constrained because its basic requirement is that a finger is located at
a certain point in space but no specific hand angle is required, thus leaving four excess
degrees of freedom. Hence, simply the fact that some of the tasks we can accomplish
include more constraints than others requires us to solve motor redundancy from time
to time. One way to solve the problem would be to simply pick a random action among
multiple equivalent alternatives. However, empiric findings suggest that the CNS selects
actions in a more sophisticated way.

This becomes apparent during motor development. Esther Thelen and her colleagues
(1993) observed the development of reaching movements in four infants from the 3rd to
the 52th week of their lifes. After three month, just about when the infants began to
reach goal-directed, they showed huge interindividual differences. Two infants made
forceful movements whereas the other two made slow movements. During the following
month, the movement pattern of both groups converged. Likewise, it has been found
that reaching movements of infants get not only more accurate but also more stereotyped
during the first two years until they finally resemble those of adults (Konczak, Borutta
& Dichgans 1997; Konczak & Dichgans 1997).

Also, in adults who learn a new motor skill, the variability of electrophysiological
and kinematic movement parameters decreases (Flament, Shapiro, Kempf & Corcos
1999; Jaric & Latash 1999; Ludwig 1982; Mosier, Scheidt, Acosta & Mussa-Ivaldi 2005).
These findings strongly support the notion that among the set of appropriate behaviors
not a random choice is made but that actions are selected that optimize additional
criteria.

Additional criteria that are not crucial for the task but can be used to explicitly se-
lect among possible solutions are termed optimality criteria (for a review see Engelbrecht
2001). Different optimality criteria have been proposed for the solution of the inverse
kinematics problem of selecting an appropriate end-posture for a movement to a specific
hand location. A straight forward criterion for end-posture selection is end-state comfort



17

(Cruse, Wischmeyer, Brüwer, Brockfeld & Dress 1990; Rosenbaum et al. 1990). The
comfort criterion is supported by different lines of experiments. For example, partici-
pants grasp objects in that way among multiple alternative ways that feels comfortable
and does not require extreme joint angles or awkward postures (Rosenbaum et al. 1990).
Reaching movements with an arm restricted to three degrees of freedom terminated in
joint configurations that were predicted to be optimally comfortable from participant
ratings (Cruse et al. 1990, 1993). However, end-state comfort cannot solely account for
the resolution of motor redundancy because also the start-posture of a movement has
a considerable effect on the final arm state (Cruse et al. 1990, 1993; M. H. Fischer et
al. 1997; Soechting et al. 1995). Additionally, it has been hypothesized that the inverse
kinematics problem is resolved without the explicit application of an optimality criterion
but by continuously moving the arm toward postures that realize hand positions with de-
creasing distance to the target, thus resolving kinematic redundancy implicitly (Bullock
et al. 1993; Cruse & Steinkühler 1993; Cruse et al. 1998; Morasso et al. 1997; Torres
& Zipser 2002). While these models account elegantly for the start-point dependency of
end-postures of movements, they can hardly account for other end-posture selection cri-
teria. For example the arm postures at the end of a movement depend on the subsequent
tasks (M. H. Fischer et al. 1997; Rosenbaum et al. 1990; Weigelt, Kunde & Prinz 2006).
Finally, it has been proposed that the resolution of kinematic redundancy adheres to a
conjoint optimality criterion that includes movement accuracy, movement time, comfort
or other criteria dependent on the requirements of the specific task (Rosenbaum et al.
1995; Rosenbaum, Meulenbroek, Vaughan & Jansen 2001). In conclusion, it seems un-
likely that a single optimality criterion is applied in all situations and tasks but that the
optimality criterion adapts to the situational constraints and task demands.

Even more than the inverse kinematics problem, the inverse dynamics problem of gen-
erating a specific sequence of motor commands requires the resolution of redundancy.
Early theories of optimal trajectory formation predicated that a sequence of motor com-
mands is executed that minimizes the overall jerk (change of acceleration) of the hand
(Flash & Hogan 1985) or that minimizes the overall torque change of the joints during
a movement (Uno, Kawato & Suzuki 1989). The theories account for behavioral data
but have some conceptual problems. First, models that predicate the optimization of a
motor command sequence to such criteria require an unrealistically precise and detailed
knowledge of the body physics and highly elaborate and accurate planning mechanisms
(Kawato, Maeda, Uno & Suzuki 1990). Second, while these theories offer a good descrip-
tion of movement trajectories they do not explain why trajectories are shaped the way
they are and how the brain could compute such high-level movement statistics. Subse-
quently, an ecologically more valid optimality criterion has been suggested: the spatial
accuracy of movement outcomes (Harris & Wolpert 1998). Based on the finding that
motor errors increase with the amplitude of motor commands (signal-dependent noise)
it is possible to demonstrate that minimum torque change trajectories also minimize
the end-point variance of a movement, thus offering a ecologically plausible optimality
criterion.

The theories outlined above mainly focus on preprogrammed open loop movement
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execution but movements are regulated online by visual or proprioceptive feedback to a
big extend (Desmurget & Grafton 2000). To account for this, theories of optimal feed-
back control have integrated closed-loop control and the optimality criterion of maximal
movement accuracy (Todorov & Jordan 2002). Optimal feedback control is based on the
premise of signal-dependent noise but emphasizes online correction of movements and
that correcting a deviation in one movement parameter may cause in itself deviations
in the remaining ones. Hence, correcting signals are kept as low as possible to reduce
noise and are only exerted if critical movement parameters deviate from desired values
(minimum intervention principle). As an example, consider grasping a broom that leans
against a wall. In this task, the control of the vertical hand location is not very im-
portant because it doesn’t matter where exactly the broom is grasped. However, the
horizontal position of the hand has to match that of the shaft accurately. If the hand
is perturbed and moves up or down, an optimal feedback controller would not correct
for this irrelevant deviation because it does not hinder the success of the movement.
Moreover, a correction of the vertical hand position could result in a critical deviation
of the highly relevant horizontal hand position. Indeed, experiments have shown that
the movement variability in the task irrelevant movement parameters is higher than in
task relevant movement parameters (Latash et al. 2002; Scholz et al. 2000).

Short Summmary

The previous section showed that solving the inverse problem of a redundant sys-
tem, such as the human motor apparatus, requires the resolution of motor redundancy.
Redundancy is partially reduced by coupling degrees of freedom in motor synergies.
However, at least some excess degrees of freedom remain in most tasks. Human motor
control seems to resolve this remaining redundancy by optimal control. However, the
neural mechanisms that achieve optimal control and the computations they carry out
remain largely unknown.

Closely related to the problem of redundancy is the acquisition of inverse models
during motor learning. The next section will elaborate on this problem. First, the
question is raised whether motor redundancy is resolved before or after learning and
what are the implications of both approaches. Second, the computational demands of
different models of motor learning are discussed.

Motor Learning

Inverse models, which are the neural basis of solving the inverse motor problem for
goal-directed movements, are acquired during infancy. On the one hand, neonates are
not yet able to exert pointing and reaching movements. On the other hand, the inverse
models have to be adjusted to the (changing) properties of the human perceptual and
motor system. The competency to reach goal-directeldy only starts to develop after the
first few month of life. Two year olds already perform reaching movements that are
very similar to those of adults (Konczak et al. 1997; Konczak & Dichgans 1997; Thelen
et al. 1993; von Hofsten 2003). However, also adults show a remarkable capability
to adjust movement control to novel circumstances, for example, novel body properties
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(Conditt et al. 1997; Lackner & DiZio 1998; Robertson & Miall 1997), novel sensorimotor
relationships (Mosier et al. 2005), or visuomotor distortions (Abeele & Bock 2001; Butz,
Lenhard & Herbort 2007; Krakauer, Pine, Ghilardi & Ghez 2000).

Motor Learning and the Resolution of Redundancy

In principle, there are two basic ways to address learning an inverse model for a
redundant body (see Figure 2): either an optimized inverse model or a task-independent
inverse model is acquired. An optimized inverse model provides a mapping from each
possible movement goal to specific efferent signals which are optimized for a specific
context. A task-independent inverse model, on the other hand, maps each possible
movement goal to all the efferent signals that might be used to pursue the goal, regardless
if and in which sense they are optimal. Each approach yields different requirements for
a neural controller and offers different capabilities.
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Figure 2. Motor redundancy may be resolved before learning (top) or during movement pro-
duction (bottom).

Learning optimized inverse models

By far the most computational models resolve motor redundancy before learning and
thus acquire an optimized inverse model (Figure 2, top). This has many computational
advantages. First, during movement execution the problem of selecting optimal efferent
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signals virtually does not exists because an optimized inverse model provides only a
single solution of the inverse problem. Second, the inverse model can be represented
very compact because only one efferent pattern has to be encoded for each situation and
movement goal.

The drawback of this approach is that it lacks the flexibility to quickly adapt to
new optimality criteria or to changes of the range of possible movements. Optimality
criteria may change for internal (e.g. growth, injury, fatique) or external (e.g. novel task
requirements) reasons. If this happens, the inverse model cannot provide alternative
efferent signals because it only encodes efferent signals that have been optimal in the
motor learning context but are most likely suboptimal in any other context. Even worse,
the range of possible actions may change because, for example, certain movements cannot
be carried out in narrow places, due to obstacles, or due to injuries. If the formerly
optimal action suddenly lies outside the range of applicable movements, some goals
cannot be pursued at all, even if suboptimal actions would exist.

Learning task-independent inverse model

If redundancy is resolved only before movement production, the inverse model has
to provide many redundant actions and a selection mechanisms has to choose one (Fig-
ure 2, bottom). Thus, the inverse model may provide multiple, even an infinite variety
of possible efferent signals for each movement goal. The approach is computationally
more demanding than the optimized inverse model approach. First, not a single but
many efferent signals have to be encoded, requiring larger and more sophisticated repre-
sentations. The encoding of redundant actions is the basis to overcome the inflexibility
of optimized inverse model approaches. However, to fully exploit the possibilities offered
by the task-independent inverse model, a movement production mechanism is required
that can select optimal actions dependent on current internal and external constraints.
The advantage of such a more complex system would be the possibility to quickly adapt
to novel or changing task-dependent optimality criteria and thus maintain optimal be-
havioral performance in a broad variety of situations and tasks.

General Approaches to Model Motor Learning

The previous paragraphs took a bird’s eye perspective on the process of motor learn-
ing. Now, more detailed computational constraints of the acquisition of inverse models
are examined. From a computational point of view, internal model learning is the ac-
quisition of an input-output mapping. In an inverse model, the input is a desired state
and the output should be an efferent signal that is suitable to pursue that goal. Hence,
inverse model learning can be considered as the association of goal states (input) to
certain efferent signals (output).

Thereby, a fundamental problem is the lack of external information about which
efferent signals could be used to pursue a goal. Whereas supervision by a teacher might
be able to support the acquisition of high level motor skills, for example in sports or
music, the overwhelming part of motor learning cannot profit from external guidance.
The problem at this level is, that the activity of efferent signals cannot be perceived
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directly and we are also not able to consciously activate certain efferent neurons. We are
restricted to perceive only the consequences of efferent signals, for example the tension or
length of a muscle or the movement of a limb. For this reasons, no one can tell an infant
which efferent signals to activate to pursue a goal, and, of course, the infant couldn’t
use this information anyway. In sum, to be able to associate the correct efferent signal
(output of the inverse model) to a goal (input), a representation of both is necessary.
Whereas the representation of the goal seems to be readily available, the representation
of the correct efferent signal cannot be provided externally and has hence to be generated
by the learning organism itself. Three different approaches of modeling motor learning
exist: error-based learning, reinforcement learning and ideomotor approaches3.

Error-based Learning

Theories of error-based learning have been very influential in motor learning research
(e.g. Jordan & Rumelhart 1992; Kawato 1990; R. A. Schmidt 1975, 1988). In error-based
learning, a goal is specified and represented before movement onset. Then, an inverse
model determines efferent signals that cause a certain movement and consequently spe-
cific sensory inputs. After the movement is completed, the desired goal state is compared
to the movement outcome (knowledge of result). If the efferent signals caused the in-
tended movements the inverse model is obviously suitable and is not changed. If not, the
discrepancy between movement outcome and goal is used to adjust the inverse model.

As an example, consider an experimental participant, making reaching movements
with visual feedback rotated clockwise by 30◦. Initially, reaching movements will fail
to acquire goals, because the movements that were successful under normal conditions
now cause a directional error of about 30◦. According to theories of error-based learning
the participants motor learning system would notice a discrepancy in desired and actual
movement outcome in the clockwise direction. Thus, the inverse model would be adjusted
to cause a movement that is directed counterclockwise to the initial one and thus closer
to the desired one.

However, adjusting the output of the inverse model requires that the error in per-
ceptual space is converted into an error in motor space. Considering the non-linear arm
geometry and the complex arrangement of muscles, even the adaptation to a simple
visual rotation seems to require extensive computations. Furthermore, as perceptual
space is usually low dimensional compared to motor command space, the conversion is
also hit by the problem of redundancy. For example, many different adjustments of the
inverse model’s input-output mapping may result in higher movement accuracy. Indeed,
a capable error-conversion mechanism can be already considered an inverse model be-
cause it would map from perceptual space to motor command space. It thus constitutes
at least a partial solution of the inverse problem.

In conclusion, error-based learning schemes cannot solve the motor learning problem
without a mechanism that maps errors from goal space to action space. However, such

3In recent publications, the term ideomotor principle has refered to the automatic priming or initiation
of observed actions (Jansson, Wilson, Williams & Mon-Williams 2007). Here, I refer to the original notion
that postulates links between sensory goal representations and actions (Stock & Stock 2004).
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a mechanism could be considered an inverse model by itself, even if this inverse model
only processed errors and not absolute values. Also, due to the iterative application of
small adjustments, this mechanisms wouldn’t have to be as accurate as an inverse model
that is used for actual movement production.

Reinforcement Learning

The problem of error conversion is avoided in reinforcement learning (RL) schemes
(Sutton & Barto 1998). Unlike error-based learning schemes, for RL it is sufficient to
provide a “reward” value that indicates the degree of goal completion. The reward
can usually be easily computed from the movement outcome and does not require a
conversion in efferent signal space. The inverse model is trained to store those efferent
signals that yield the highest rewards. However, the reward offers no guidance in which
direction to adjust the output of the inverse model. Hence, different efferent signal
patterns have to be randomly applied to search for rewarding actions, resulting in a less
efficient learning process.

Both, error-based learning and RL are well suited to acquire an optimized inverse
model because for each goal a single (hopefully optimal) solution is encoded. This
solution is either acquired by an error guided adjustment of the input-output mapping
or by encoding the efferent signals that yield highest rewards. However, these learning
schemes cannot account for the acquisition of task-independent models, which map goals
to many possible efferent signals.

Ideomotor Learning

Ideomotor approaches or direct inverse modeling (DIM) offer a surprisingly simple
concept of motor learning without the necessity of an error or reward signal (Greenwald
1970; Herbart 1825; J. Hoffmann 1993, 2003; James 1890). According to these ap-
proaches, motor learning starts with the activation of random efferent patterns resulting
in random movements (sometimes called “motor babbling”). During these movements,
the sensory input is monitored and associated to preceding efferent patterns, which as-
sumably elicited the current sensory effects. Afterwards, if the realization of a specific
sensory state is desired (i.e. a goal is set), the efferent signals linked to this state are
executed. These efferent signals are exactly those signals that usually precede and pre-
sumably cause the desired sensory signal, thus achieving the goal.

A main difference to error-based learning or RL lies in the role of the goal represen-
tation during motor learning. In the former, a goal is explicitly represented and failure
or success of goal achievement is used to guide learning. In contrast, the latter doesn’t
make use of such a goal representation. Note, that this doesn’t imply that early infant
movements are not goal-directed but only that this goal representation is not used for
motor learning. Thus, ideomotor learning does not collide with the notion that even the
most clumsy infant movements are goal-directed (von Hofsten 2004). An conceptual ad-
vantage of ideomotor learning is that behavioral goals do not need to be specified before
they have been encountered for the first time. Whereas error-based or RL can only be
successful for those goal that are explicitly intended during motor learning, ideomotor
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Figure 3. If the goal set is nonconvex (e.g., two separate points in joint angle space), DIM
might store a non-solution as the solution of the inverse problem (black dot).

learning enables an unconstrained exploration of the space of goals without the need of
prior knowledge of potential goal states.

However, ideomotor learning also has some considerable conceptual problems. First,
it requires a mechanism that enables to determine what is an action and what is an effect.
Whereas this seems straight forward in more symbolic contexts (e.g. Stock & Hoffmann
2002), it is not so simple in the domain of motor learning. During random movements,
a continuous flow of efferent outputs has to be related to a continuous flow of sensory
inputs. Furthermore in the dynamic context of movement, a specific sensory state is not
only caused by the efferent signals before but also by previous efferent signals. Likewise,
a single efferent signal does not only (partially) determine the subsequent sensory input
but has effects that reach further into the future. The problem that there is no simple
temporal relationship between cause and effect in motor control is termed temporal
alignment problem in the remainder of the thesis.

Second, ideomotor learning is usually implemented by DIM. Unfortunately, DIM is
an unreliable learning method for the acquisition of compact optimized inverse models
because it might be unable to converge to a solution of the inverse problem in redundant
contexts. It is destined to fail if the set of redundant efferent signals that are useful to
pursue a specific goal is nonconvex (Jordan & Rumelhart 1992). Consider the task of
determining a joint configuration that locates the hand of a two-joint planar arm at a
desired position. During learning, each hand location is realized by different joint angle
configurations, one with the elbow pointing clockwise and one with the elbow pointing
counterclockwise. Hence, no consistent bias toward one of the joint configurations exists
and the inverse model is likely to evoke a mixture of both postures (Figure 3). Direct
inverse models may learn to stretch the arm, consequently missing the target.

Short Summary

To summarize, the internal inverse models that humans use to control reaching move-
ments are acquired by motor learning. Motor learning might be error-based, done by
reinforcement learning (RL), or by ideomotor learning. A hard conceptual problem in
error-based motor learning is, that it requires the conversion of errors from perceptual
space to efferent signal space. A mechanism that enables such a conversion is by itself
at least a coarse inverse model and thus represents at least a partial solution of the
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problem that should be solved by learning. Thus, error-based learning is not suited
to model unsupervised motor learning. RL methods do not suffer this drawback but
to my knowledge, no computational model exists that implements the acquisition of
task-independent inverse models with this technique. However, only task-independent
inverse models seem to account for the flexibility of human motor behavior. Direct
inverse modeling or ideomotor learning might overcome some of the drawbacks of the
former approaches as models of human motor learning. They do not require a priori
goal representations and could potentially be used to acquire task-independent inverse
models. However, to do so, two shortcomings of DIM have to be overcome. First, the
problem of extracting learning information from a continuous flow of efferent signals and
sensory inflow has to be solved. Second, the problem of learning to control a redundant
body has to be solved.

Models of Motor Learning and Models of Flexible Behavior

This section reviews various computational models of motor learning and control.
Models that explicitly investigate supervised learning (e.g. Chapeau-Blondeau & Chau-
vet 1991; Stringer, Rolls, Trappenberg & de Araujo 2003; Stringer, Rolls & Taylor 2007)
or that include a learning mechanism but do not claim that this learning mechanism
is biologically relevant (e.g. Stroeve 1996, 1997) are not reviewed. The review starts
with the discussion of models that account for motor learning. All of them resolve mo-
tor redundancy before learning and encode optimized inverse models. Thus, they do
not account for the flexibility with which humans adapt to new situational constraints.
After that, approaches that use task-independent inverse model are discussed. These ap-
proaches show a remarkable adaptivity to situational constraints but are mostly unable
to account for motor learning.

Models of Motor Learning

Models of motor learning that resolve redundancy before learning are usually based
on goal-directed learning mechanisms. They strive to encode a single optimal efferent
signal for each possible goal. Common goal-directed approaches to motor learning are
direct inverse modeling (Jordan & Rumelhart 1992) and feedback error learning (Kawato,
Furukawa & Suzuki 1987). Additionally, reinforcement learning methods have shown
some success in this context (Berthier 1996; Berthier et al. 2005).

In the following, these approaches are discussed. Thereby, I focus on the three
problems that became apparent in the previous sections. First, the model should be
able to learn even if there is no clear temporal relationship between efferent signals and
sensory consequences (temporal alignment problem). Second, the model should be able
to account for learning to control a redundant body. Third, motor learning should be
unsupervised.

Direct Inverse Modeling Approaches

Direct inverse modeling (DIM) has been applied to model motor learning within a
range of computational models (Baraduc, Guigon & Burnod 1999; Baraduc et al. 2001;
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Bullock et al. 1993; Butz, Lenhard & Herbort 2007; Kuperstein 1988, 1991; Ognibene,
Mannella, Pezzulo & Baldassarre 2006; Ognibene, Rega & Baldassarre 2006; Srinivasa
& Grossberg 2007). The inverse model learns by observing the effects of random efferent
signals. It permanently predicts the efferent signals that might have caused the current
sensory input. If differences between predicted and actually issued motor commands are
detected, the inverse model is adjusted accordingly. As soon as it is sufficiently accurate,
it can be used to exert goal-directed behavior.

It was already expounded that DIM cannot readily account for learning if no simple
temporal relationship between efferent signals and their sensory consequences exists and
if the body is redundant (c.f. Herbort 2005). However, models that provide mecha-
nisms to cope with these problems might account for motor learning. The problem of
redundancy is frequently sidestepped. Some DIM approaches use arm models with only
two joints and a limited set of possible joint angles avoiding the necessity of handling
redundancy (e.g. Baraduc et al. 1999, 2001; Butz, Lenhard & Herbort 2007; Ognibene,
Mannella et al. 2006). Others are able to control bodies with redundant degrees of free-
dom by imposing additional constraints during learning, which eliminate the redundancy
(Bullock et al. 1993).

The temporal alignment problem may be avoided by taking a equilibrium point
control stance and by looking on entire movements episodes, not just fractions of it (Og-
nibene, Mannella et al. 2006). The assumption of equilibrium point control eliminates
the necessity to provide a time-varying control signal. By only considering entire move-
ment episodes and not looking at movement dynamics or kinematics, a clear relationship
between an efferent signal (i.e. the signal before the movement) and sensory inputs (i.e.
the sensory input after the movement) can be established. These simplifications may be
justified dependent on the scope of the computational model and the targeted processes
but models that build upon these simplifications are far from capturing the complexity
of motor learning and control.

The motor system might avoid the temporal alignment problem by associating hand
movement directions to efferent signals (Baraduc et al. 1999, 2001; Bullock et al. 1993).
At least in the case of a kinematic arm, it is sufficient to relate efferent signals to the hand
movement directions a short time afterwards. The desired hand movement direction may
be inferred from the visually encoded discrepancy between hand and target. However,
this requires that all movements in the same direction are always produced by the same
motor commands, independent of the movement amplitude. This approach still does
not solve the redundancy problem because movements in the same direction may well
be caused by different motor commands but by additionally constraining the learning
experience, it is possible to unsupervisedly learn an inverse model (Bullock et al. 1993).

With respect to learning, DIM is an unsupervised learning approach. As discussed
previously, no training signals need to be provided from the outside. Thus, DIM is able
to account for the extraction of an inverse model from mere random movements.

To summarize, DIM is an unsupervised learning approach. However, learning of
complex body interactions that unfold in time is impossible without additional mecha-
nisms. Most importantly, redundancy needs to be resolved before learning because DIM
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is a goal-directed learning scheme. Redundancy is usually resolved by constraining the
learning experience or the body characteristics.

Feedback Error Learning Approaches

Another goal-directed learning scheme for training inverse models is feedback error
learning (FEL, Kawato et al. 1987; Kawato 1990). In this learning scheme, the to-be-
trained inverse model works in parallel to a pre-existing, linear closed-loop controller.
Initially, the inverse model does not contribute to the formation of effective efferent
signals and does not enhance control. As a consequence, a difference between desired
and perceived state will arises. The “innate” feedback controller triggers suitable efferent
signals for adjustment, which are also used as training signals for the inverse model. This
training signal enables the inverse model not only to replicate the feedback controller but
also to acquire a non-linear mapping that levels out deficiencies of the linear feedback
controller. As the inverse model gets trained, its control signal gets more efficient.
Finally, it replaces the linear feedback controller as the main contributor to the efferent
signal because the inverse model is so efficient that no larger discrepancies between
desired and actual body position arise.

This principle was sometimes applied to motor learning in general (Karniel & Inbar
1997) but it is mainly used to model cerebellar motor learning (Barto et al. 1999;
Berthier et al. 1992, 1993; Haruno et al. 2001; Kawato et al. 1987; Kawato & Gomi 1992;
Schweighofer, Arbib & Kawato 1998; Schweighofer, Spoelstra et al. 1998; Wolpert &
Kawato 1998). In this context, the cerebellum is hypothesized to be an inverse dynamics
model, which is trained by corrective cerebral motor commands. Thus, it helps to
understand the role of the cerebellum in smoothing the movement dynamics (Barlow
2002).

Despite its success in modeling cerebellar learning, FEL cannot easily account for the
resolution of redundancy and unsupervised learning. The redundancy resolving problem
persists because an additional mechanism within the feedback controller is needed to
resolve redundancy consistently. A feedback controller may not be able to compute
a consistent, high dimensional training signal from a low dimensional error value. If
different actions are applicable to reach a goal and the feedback controller randomly
chooses between those actions, the learning mechanism is destined to fail if the set of
alternatives is nonconvex (Jordan & Rumelhart 1992). The feedback controller has to
be consistent in its choice of efferent signals to ensure successful learning. Hence, it is
the preprogrammed feedback controller that implicitly solves the redundancy problem
in FEL. However, a simple linear feedback controller as is usually used in FEL cannot
always achieve this.

FEL somewhat sidesteps the problem of unsupervised learning because it assumes
the existence of a linear closed-loop controller, which exerts corrective motor commands
based on position error. The controller is used to transform errors in hand space to
errors in efference space, serving as the missing teaching signal (Kawato 1990). Thus, the
mapping from hand locations to efferent signals, which should be acquired unsupervisedly
during learning, is wired into the system in form of the feedback controller. In conclusion,
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FEL does not address the acquisition of an inverse model from scratch but accounts for
additionally improving the performance of a pre-existing, maybe rather sparse, inverse
model.

FEL models mainly address the problem of controlling dynamic and complex bodies.
The temporal alignment problem is solved because potential goals do not have to be
extracted from a sequence of efferent signals and sensory inputs like in DIM but are self
generated and persist over a comparatively long time.

To summarize, FEL does not explicitly tackle the redundancy problem, rather, FEL
requires its resolution by a pre-existing feedback controller. In this sense, FEL addresses
the problem of acquiring a sophisticated inverse model based on a very basic feedback
controller but not on learning such a model from scratch. Thus, FEL significantly refines
a simple control strategy to be able to handle time-extended sensorimotor contingencies.
It is thus a valid approach to model cerebellar motor learning but the learning mechanism
should not be transfered to motor cortical models.

Reinforcement Learning Approaches

Unlike the above goal-directed learning schemes, which require the availability of
only one “correct” solution during learning, reinforcement learning (RL) approaches
shape behavior by means of reward values. The reward values indicate to which degree
an efferent signal optimized an optimality criterion (Wolpert, Ghahramani & Flanagan
2001). The efferent signals with the highest reward is stored (Berthier et al. 2005;
Kositsky & Barto 2002) or invariably selected for action execution (Berthier 1996).
Similar to FEL and DIM approaches, redundancy is generally resolved before learning
in RL approaches by imposing a particular reward scheme or optimality criterion.

The compelling advantage of RL is that it does not require a mechanism that maps
errors in hand space to errors in efferent signal space because it doesn’t need a corrective
training signal. A reward value is sufficient to learn an optimal control scheme and
this value may be easily derived from movement outcomes because it does not require
the conversion of a low dimensional input value to a high dimensional output. Thus,
RL accounts for unsupervised learning of a redundant body. However, as the reward
value conveys less information than an error signal, learning takes considerably longer
as compared to FEL or DIM.

RL approaches are able to cope with dynamic bodies and the temporal alignment
problem because reward values can be back-propagated to past efferent signal choices.
Thus, actions can be associated with goals that require the execution of long and complex
action sequences.

To summarize, RL methods provide an interesting alternative to the above-mentioned
mechanisms. Unlike DIM, the RL approach is also applicable in redundant, dynamic
bodies. And unlike FEL, the RL approach does not require a pre-existing inverse model
that provides consistent learning signals.
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Short Summary

This section showed how different learning schemes solve the redundancy problem
before learning. Direct inverse modeling (DIM) requires a non-redundant body with
a one-to-one mapping between actions and effects, or it requires the imposition of ad-
ditional mechanisms that resolve redundancy before learning. Feedback error learning
(FEL) requires the pre-existence of a feedback controller, which is used to provide the
required teaching signals for the supervised learning approach. Finally, reinforcement
learning (RL) methods enable learning in dynamic environments as long as an optimality
criterion is provided.

In all of the discussed learning schemes, only one single solution is stored for a given
control problem. While this solves the redundancy problem, the approaches lack the
flexibility to quickly adapt to novel situations or tasks, in which executable actions may
change, action preferences may change, or novel spatial or other constraints may be
imposed. For example, if the usually chosen action is not available any longer due to,
for example, obstacles or a broken limb, then the discussed approaches do not offer
alternative behavior. Similarly, if a usually chosen joint movement or joint position
is suddenly highly uncomfortable due to injury, the models are not able to rapidly
compensate.

Instead of storing only a single solution of an inverse problem, it can be advantageous
to represent redundant actions in a control structure and delay action selection until it
is really necessary. If obstacles or new optimality criteria reduce the appropriateness of
a formerly suitable action, alternatives would be immediately available. In the follow-
ing section I review computational models that resolve redundancy only during action
preparation, storing multiple actions for each possible task.

Models of Flexible Behavior

By now, some approaches have been proposed that use task-independent body mod-
els. These task-independent body models offer the motor control system a broad reper-
toire of possible efferent signals for each goal. Thus, these models are not bound to
pursuing a goal with a single efferent signal but can select among many possibilities
to optimally adapt to situational constraints. In the following, I review two different
theories that follow this approach. The mean of multiple computations network (Cruse
& Steinkühler 1993) is a neural network model that encodes the complete kinematics
of a body. The influential posture based motion planning theory (Rosenbaum et al.
1993b) selects targets according to task-dependent constraints. Both approaches resolve
redundancy for inverse kinematic problems.

Mean of Multiple Computations Network

The mean of multiple computation recurrent neural network (MMC ) models the
complete kinematics of the body in question. It solves the inverse kinematics problem
for arbitrary combinations of desired output values. It thus does not only solve the
inverse kinematics problem but can also solve the direct kinematics problem or any
mixed problem (Cruse & Steinkühler 1993; Cruse et al. 1998).
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The neural network dynamics inherent in MMC resolve redundancy iteratively. By
fixing some of the network inputs to currently desired values, the network dynamics
cause the network activation to shift into one of the states that represent a solution
to the posed inverse problem. Thus, MMC implicitly resolves redundancy by means
of its system dynamics. By tracking the shift in network weights, it is also possible
to determine a trajectory to the target. The structure allows the imposition of novel
constraints on the controlled arm, such as a desired joint angle or a desired position.
Thus, it is possible to adapt motor control to the demands of changing tasks.

The MMC model also has some considerable problems. First, even if the MMC
network itself is highly compact, it requires considerable pre- and post-processing of
the input and output values. For example, to enable the processing of joint angles, the
input and output values have to be normalized with trigonometric functions (Cruse et al.
1998). Thus, a big part of the computational burden of representing a non-linear body
has to be shouldered by signal normalization. Second, it is unknown if the MMC can be
trained unsupervisedly. In recent work the neural network weights and connectivity have
been derived analytically (Cruse & Steinkühler 1993; Cruse et al. 1998; Kindermann &
Cruse 2002; Steinkühler, Beyn & Cruse 1995). Despite some first successes to enable
learning in MMC networks (Kühn & Cruse 2005), enabling MMC to unsupervisedly
learn to control a redundant, nonlinear body remains an unsolved problem.

In conclusion, the MMC clearly shows that neural network models that encode all
solutions for an inverse problem may account for highly flexible behavior. However,
learning is not yet possible within the MMC framework.

Posture Based Motion Planning

Whereas the MMC is a neural network based approach, the posture based motion
planning theory (PB theory) is formulated rather abstract (Rosenbaum et al. 1993b,
1995; Rosenbaum, Meulenbroek, Vaughan & Jansen 2001). The PB theory solves the
inverse kinematics problem of selecting an appropriate end-posture for a movement to a
hand target. Additionally, it provides a mechanism to plan a trajectory in posture space
from the starting posture to the end-posture, which may circumvent obstacles.

In contrast to the approaches that resolve redundancy before learning, in PB the-
ory, an optimality criterion is only defined before movement onset. This rather complex
optimality criterion usually integrates different aspects of a movement, like accuracy
or movement time, in a weighting scheme (Rosenbaum et al. 1995) or in a constraint
hierarchy (Rosenbaum, Meulenbroek, Vaughan & Jansen 2001). End-posture selection
is based on two consecutive mechanisms. First a limited number of frequently used
postures are stored. All of these postures are evaluated according to the conjoint opti-
mality criterion and the highest ranking stored posture is selected for further processing.
Second, as it is likely that none of the stored postures is optimal for the current task,
the selected end-posture is further optimized by local linear adjustments (“feedforward
correction” in Rosenbaum et al. 1995) or breadth first search in posture space (“diffu-
sion ’til a deadline” in Rosenbaum et al. 1999; Rosenbaum, Meulenbroek & Vaughan
2001; Rosenbaum, Meulenbroek, Vaughan & Jansen 2001). When a good end-posture
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of a movement is determined the movement trajectory is planned by imposing a sinu-
soidal shift between start- and end-posture. If this trajectory happens to collide with
an obstacle, it is altered by superimposing a back and forth movement. Once a suitable
superimposed movement is found, the combined movement, which effectively moves the
arm around the obstacle, is executed. The PB theory accounts for a wide range of em-
pirical findings and excels at providing a framework for modeling the flexibility of human
reaching, grasping, or tool-use.

The PB theory emphasizes the resolution of redundancy but not the motor learning
problem. No properties of the stored postures, which are relevant for the evaluation
process, such as the coinciding hand location in space or transition times from one
posture to another, are learned. What is learned are postures, which serve as starting
points for the search of a posture that fulfills the current constraints and optimizes
the optimality criteria. Thus the model requires that knowledge about arm kinematics,
movement speeds, transition costs, or other potential selection criteria is already acquired
and readily accessible to the motor system. The acquisition of this information is not
subject of the model.

In conclusion, the PB theory shows how the motor system may maintain a high
performance, even if it has to adapt to changing task demands from one moment to
the next. This capability builds on the availability of a task-independent body models.
However, the PB theory does not account for their acquisition.

Learning and Flexibility

Both of the models discussed in the last section account for the flexible resolution of
motor redundancy. The MMC allows the invocation of posture constraints, which are
resolved by the inherent network dynamics but cannot be trained unsupervised. The PB
theory selects movement end-postures based on conjoint optimality criteria but cannot
account for the acquisition of the underlying task-independent body model. In contrast,
the earlier discussed models of motor learning do not account for behavioral flexibility
as do the MMC and PB theory.

By now, few approaches attempt to combine both, motor learning and flexible con-
trol. Such approaches might have several obvious advantages. First, to be able to learn,
they do not require any kind of teaching or reward signals that enable the model to store
one specific solution for the inverse kinematics problem. This eliminates the necessity
to provide a reward signal from the outside, pre-wire a basic inverse model into the
system as in FEL, or generate a reward signal as in RL approaches. Thus, it might
enable unsupervised learning. Second, since all solutions for a problem are stored, the
organism is still able to act in a goal-directed manner, if the preferred solution cannot
be applied. Additionally, if optimality criteria or reward values change after learning,
a complete remapping of the inverse model is not necessary. Instead, only constraints
need to be adjusted. Also, current findings suggest that the motor system does not
strive to encode stereotypic actions but rather to encode and exploit motor redundancy
to enhance control (Latash et al. 2002; Todorov & Jordan 2002).
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Description of the Model

The survey of related approaches in the previous section has shown that motor re-
dundancy can either be resolved before learning or after learning immediately during
movement preparation and execution. On the one side, direct inverse modeling (DIM),
feedback error learning (FEL), and reinforcement learning (RL) approaches enable mo-
tor learning, but lack the flexibility to adjust their motor policy online to account for
variations in task-related constraints. On the other side, the MMC and the posture-
based motion planning theory are much more flexible, but offer no or only restricted
learning capabilities.

In this section, I will introduce a novel computational model that adds to the flexibil-
ity of the latter a neural-based, unsupervised learning architecture that grounds distance
measures in experienced sensorimotor contingencies. As the model can be described as
a sensorimotor, unsupervised learning, redundancy resolving control architecture it is
called SURE REACH. The architecture is implemented as a biologically plausible neu-
ral network model. It differs from its predecessors which accounted for the control of a
one- or two-joint dynamic arm in two ways (Herbort 2005; Herbort et al. 2005a; Herbort,
Butz & Hoffmann 2005b). First, it introduces a mechanism for movement preparation
which helps to solve the temporal alignment problem and enables behavioral flexibility.
Second, whereas the previous models showed that unsupervised ideomotor learning may
be used to control a dynamic body, this thesis focusses on the unsupervised acquisition of
task-independent body models and their use for highly flexible control. The model and
some extensions of it have been described in (Butz, Herbort & Hoffmann 2007; Herbort
& Butz 2007; Herbort, Ognibene, Butz & Baldassarre 2007).

SURE REACH Architecture

SURE REACH is hierarchically structured (Figure 4), consisting of population en-
coded extrinsic hand and intrinsic posture space representations, a posture memory,
sensorimotor model, and a motor controller. The posture memory is a complete, task-
independent inverse kinematics model that transforms goals in hand space (XY coordi-
nates) into redundant goal representations in posture space (shoulder, elbow and wrist
angle combinations). It thereby co-activates all coinciding postures for a given hand
target to keep action selection maximally flexible. The sensorimotor model is a task-
independent model of how motor commands affect body postures. It thus encodes basic
sensorimotor contingencies. The motor controller participates in two partially over-
lapping phases of the movement process. First, a movement is prepared by means of
neurally implemented dynamic programming4 based on the sensorimotor model, which

4Dynamic programming is a method to determine optimal choices in a multi-stage decision process
(Bellman 1957), which may be applied to the control of behavior (Sutton 1990; Toussaint 2006). To
find the optimal sequence of choices, the method iteratively generates a policy, which, for each possible
situation, determines which decision optimizes a given criterion. For example, to exit a maze with known
layout as quickly as possible, it is necessary to make turns to the optimal direction at each intersection.
It is easy to turn to the right direction at the last intersection because one might already see the exit
down one way or the other. In similar fashion, the optimal decisions at intersections adjacent to that last
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generates a sensory-to-motor mapping, given a goal in posture space. The sensory-to-
motor mapping provides motor commands dependent on the current posture. Second,
during movement execution, this mapping is used to approach the goal by closed-loop
control. By default, these motor commands lead directly to the closest goal posture.
The closeness of two postures is represented in the weights of the sensorimotor model.
It depends on the motor command dependent temporal adjacency of posture as well as
on the frequency with which they are assumed. Closeness can be considered the default
optimality criterion. If no other constraints are imposed, the motor controller generates
a movement to that posture among many possible goal postures that can be reached by
the shortest movement trajectory.

The modular, hierarchical encoding enables the flexible imposition of additional con-
straints on hand space or on posture space. On the one side, the explicit representation
of redundant goal postures enables to change the range of acceptable end-postures (left
side of Figure 4). The goal representation, which is provided by the posture memory,
could be expanded or narrowed down thus altering the range of acceptable goal pos-
tures processed by the motor controller. For example, this enables generating a target
representation for a movement to a certain hand position with additional constraints
on joint angles. On the other side, the encoding of multiple sensorimotor contingencies
provides a possibility to alter movement trajectories (right side of Figure 4). For ex-
ample, inhibiting areas of posture space that coincide with obstacles during movement
preparation results in the generation of sensory-to-motor mappings that yield alterna-
tive movement trajectories. The mapping from externally represented obstacles into
corresponding posture space representations is achieved by the posture memory.

Both, the motor controller and the posture memory are acquired in an initial mo-
tor learning phase, during which random movements are executed. During this phase,
the sensorimotor model encodes sensorimotor contingencies and the posture memory ac-
quires its kinematic mapping. This does not imply that infant motor behavior is based
merely on random motoneuron excitations. The ideomotor learning approach, which
underlies the model, just does not require that movements are intentionally directed at
certain goals during learning. Random movements are only used as a model for early
infant movements because SURE REACH is not intended to account for infant reach-
ing or exploration strategies (e.g. Berthier 1996) but for the extraction of neural body
models from those movements.

In the following sections, the body and the neural implementation of SURE REACH
are described in detail. First, the body that is used to evaluate the model is explained.
Next, the implementation is detailed specifying the body space representations, posture
memory, sensorimotor model and motor controller. Finally, examples illustrate how the
activation of goal(s) and potentially additional constraints trigger appropriate motor
activity.

intersection can now be easily determined. Thus, starting from the goal, one might readily arrive at a
policy that tells the best direction to go for each point in the maze. By following this policy a sequence of
turns is made that minimizes the way out, or in general terms, a sequence of decisions is generated that
optimizes a certain criterion. In this way, dynamic programming solves complex problems by dividing
them into small and tractable ones.
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Figure 4. The SURE REACH architecture is hierarchically structured associating extrinsic
hand space with intrinsic posture space by an associative posture memory. Both spaces are
population encoded. The motor controller processes arbitrary goal activations in posture space
to invoke motor commands based on the sensorimotor model, depending on the actual arm state.
Additional constraints can be imposed on the goal representation on posture space as well as on
the movement preparation process realized in the motor controller.

A Three Joint Planar Arm

The body that is controlled by the current SURE REACH implementation is a three
joint planar arm (Figure 5). The three limbs have the lengths l1 = 1.0, l2 = 0.8 and
l3 = 0.6. The shoulder and elbow joint were allowed to rotate within ±180◦, whereas
the wrist joint was restricted to values between 0◦ and 180◦. Note that shoulder and
elbow joints cannot circle, that is, they cannot jump from −180◦ to 180◦ or vice versa.

Each joint is controlled by two actuators—causing a clockwise or counterclockwise
rotation step. Motoneurons yfini , which yield excitation levels between zero and one,
gradually activate the actuators. The actual joint displacement per time step during the
simulation is calculated by subtracting the activation level of two antagonistic actuators
and multiplying the result with a gain factor g. The gain factor determines the maximal
joint angle displacement in one activation step. If not stated differently, the gain factor
is set to g = 15◦. The total number of encoded actuators in the body is seven: two for
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Figure 5. The three joint arm is controlled by three pairs of antagonistic actuators. The
actuators are gradually controlled by motoneurons yfin

i . Additionally, a seventh motor command
exists that has no effect on the arm.

each of the three joints and one null actuator. Any weighted combination of actuators is
possible. The null actuator has no effect on the arm. It is used to include the possibility
to observe motor commands during learning that do not cause movements in the relevant
limbs.

Of course, this arm model lacks the complexity of a human arm, but it captures two
important features. First, the arm has redundant degrees of freedom. It is kinematically
redundant because each desired hand location can be realized by multiple arm postures.
It is redundant on the sensorimotor level because each arm posture can be reached by
many different motor command sequences.

Second, the temporal alignment problem has to be solved during learning. Most goal
states cannot be reached by issuing a single motor command but require the execution
of a motor command sequence. Thus, although joint torques and velocities are not
modeled, the arm model captures the challenging property that, in general, goals cannot
be reached by issuing a single motor command. Additionally, during learning the arm
jiggles around randomly so that no clear relationship between motor commands and
their outcomes can be easily established.

Hand and Posture Space

Hand space and posture space are represented by two population codes. The popula-
tion codes cover the spaces with a uniform field of partially overlapping receptive fields.
Due to the overlap, a particular position is encoded by a unique activity distribution in
the neurons whose receptive fields overlap with the position.

Hand space is encoded by a vector ~h of size h = 21× 21 = 441 with local activation
patterns for each neuron (see Figure 6). Each neuron hi of ~h fires if the current hand
coordinates (xhand, yhand) are sufficiently close to the neuron’s preferred hand location
(hxi ,hyi ):

hi = max(1.0− |xhand − h
x
i |

.24
; 0)×max(1.0−

|yhand − hyi |
.24

; 0) (1)

This sets the activation of the neuron to 1.0 if an actual hand location coincides with
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Figure 6. The chart shows the pyramidal activation function of a single hand space neuron
(left) and the alignment of the activation functions of several neurons (right).

the neuron’s preferred hand location. The receptive fields of the neurons are distributed
equidistantly in the coordinate space centered on the shoulder joint and covering a square
with side length twice the length of the extended arm. The receptive fields of adjacent
neurons overlap, reaching an activity of zero at the center of the eight neighboring
receptive fields, as illustrated in Figure 6. The resulting distance between adjacent
preferred hand locations is 10% (d = .24) of the length of the streched arm. Due to the
overlap of receptive fields and the shape of the activation function, any location of the
hand in the coordinate space has a unique neural activity encoding, which is expressed
by the four closest neurons surrounding a hand coordinate.

The posture space is represented likewise by a vector ~p of size p = 9 × 9 × 5 =
405. The neuron’s receptive fields cover the entire posture space (360◦ × 360◦ × 180◦).
The consequent distance between adjacent preferred postures is 45◦. Dependent on the
current arm posture, each neuron has the following activity:

pi =
3∏
j=1

max(1.0−
|φj − p

φj

i |
45◦

; 0), (2)

where pφj

i are the preferred joint angles of each neuron pi. Thus, all neurons are broadly
tuned to 90◦ wide, overlapping receptive fields in each dimension. Just like hand space,
the posture space as well has a unique encoding for any possible posture.

Posture Memory

The posture memory encodes the complete inverse kinematics of the arm. It learns
to associate hand space activations with corresponding, redundant posture space acti-
vations. The upper left of Figure 7 shows a population encoded hand target and the
population encoded redundant posture representation generated by the posture memory.

The posture memory is implemented as a fully connected single layer neural network,
with vectors of neurons encoding hand position (~h of size h = 21×21 = 441= and posture
(~p of size p = 9 × 9 × 5 = 405) forming the input and output layer, respectively. The
network weights encode the degree of correlation between postures and hand positions.
The weights are stored in the p × h-matrix WPM . To compute a set of appropriate
postures ~pg for a desired hand position ~hg, the activation of the hand space neurons is
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propagated through the neural network as follows:

~pg = WPM × ~hg (3)

To train the neural network a Hebbian learning rule is applied (Hebb 1949):

WPM (t) = WPM (t− 1) + ε ~p ~hT , (4)

where ~hT denotes the transpose of column vector ~h. The learning rate parameter ε =
0.001 modulates the speed of learning. This unsupervised learning rule increases the
synaptic weights between neurons that are active at the same time. This learning rule
causes weights to grow very large if applied over a long period of time. In the following
simulation, this has no effect because learning is limited to 1.000.000 time steps and
the output of the posture memory is always normalized. The problem of infinite weight
growth could be addressed by including a threshold term or reducing the learn rate
throughout learning (Milner 2003).

Due to the population encoding of hand space and posture space, joint angles of
different matching postures are not intermixed. Thus, the nonconvexity problem, which
constraints the applicability of direct inverse modeling (DIM), does not limit the posture
memory. Moreover, the overlapping receptive fields of the population codes result in an
implicit generalization. The neural encoding of any hand coordinate is associated with
the corresponding neural encoding in posture space. Due to the redundancy of the arm
and the associative learning rule, the posture memory will associate progressively larger
areas of posture space with each hand coordinate.

Motor Controller and Sensorimotor Model

The motor controller is engaged in two partially overlapping processes: the prepara-
tion of a movement and its execution by closed-loop control. During movement prepa-
ration, a target representation is transformed into a sensory-to-motor mapping that
provides for each possible posture a set of motor command that enables pursuing the
goal. The movement preparation is based on the sensorimotor model. Once a move-
ment is prepared, motor commands, which are provided by the sensorimotor mapping,
are repeatedly forwarded to the arm, resulting in effective close loop control. Note,
that movement preparation and movement control may happen in parallel, generating a
mapping for a new goal while another movement is still executed.

The motor controller and the sensorimotor model are organized in n = 7 action
columns. Each action column is associated to a specific motor command and consists
of a synaptic weight matrix which stores a part of the sensorimotor model and neural
circuity for learning, movement preparation, and movement execution, which is a part
of the motor controller. During motor learning, an action column extracts the sensori-
motor contingencies related to the associated motor command. Thus, after learning, the
synaptic weights of each action column encode the posture transitions that occur if the
associated motor command is executed. Together, the synaptic weight representations
of all columns form the sensorimotor model.
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During movement preparation, neural activity is distributed in a representation of
the posture space by dynamic programming. Activity spreads out from a goal repre-
sentation, resulting in a pattern of neural activity that depends on the learned synaptic
connectivity and on crosstalk between action columns. Finally, each neuron of the pos-
ture space representation has a certain activity. Figure 7 (right) shows the activation
maps resulting from the movement preparation process. Together, the activation pat-
tern of the seven action columns represent the sensory-to-motor mapping, which is used
for movement execution. A neuron’s activity reflects the degree to which the motor
command associated to the action column is suited to pursue the current goal from the
posture encoded by the neuron. By comparing the activities in those neurons of the
different action columns that encode the current arm posture, a motor command can be
shaped and executed (Figure 7, bottom). This changes the arm posture and causes the
subsequent generation of new motor commands, resulting in proprioceptive closed-loop
control.

Movement Preparation

Figure 8 (top) shows the neural circuity of an action column that is used for movement
preparation. For movement preparation, each column i makes use of neurons that encode
the posture space as well as the synaptic weights that encode sensorimotor contingencies.
The posture space is covered by a population code, which is represented by an activation
map ~ai of size p. The sensorimotor contingencies are represented by the synaptic weight
matrix Wi of size p × p. The synaptic weight between two neurons has been increased
during learning, if the posture represented by one neuron often preceded the posture
represented by the other.

The activation pattern, which is necessary to direct movement execution, may be
initiated in hand space and is then converted to a posture space representation by the
posture memory. Then, this activation pattern is diffused by means of the synaptic
weights that form the sensorimotor model (Wi) using dynamic programming. The acti-
vation propagation process in one action column is illustrated in the top part of Figure 8.
In the figure, the goal is to move to the posture represented by the most rightward goal
neuron (activation is indicated by a black circle). Let’s assume that the action column
is associated to a motor command that usually moves the arm from the posture encoded
by the leftmost neuron to the posture encoded by the rightmost neuron. Hence, synaptic
weights were established during learning, that connect the rightmost neuron to its left
neighbors. The goal activation spreads through these weights to the leftward postures,
which are exactly those postures, from which the goal is reached if the motor command
associated to the columns is executed. As the synaptic weights are not symmetrically
and differ in the action columns, a unique activation pattern emerges in each column.
Finally, those neurons that encode identical postures in different action columns are in-
terconnected. These lateral connections enable the propagation of activation to postures
from which the goal can only be reached by a sequence of different motor commands.

To generate activation patterns in action columns, the following computations are
carried out. Given the current goal-based posture space activation, which is represented
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in the neural activity of the posture space, the activation map of the i-th action column
~ai is updated by the following equations:

~a∗i ← max
{
β

(
γ

∑
j 6=i~aj

n− 1
+ (1− γ)~ai

)
, ~pg

}
, (5)

~ai ← ~a∗i +Wi × ~a∗i , (6)

where n = 7 is the number of action columns, max is an operator that computes the
entry-wise maximum of two vectors, β is a scalar that scales down network activation,
and the coefficient γ is a scalar that determines the contribution of other action columns
versus the own action column during activation propagation. The settings of these
parameters are specified in the appendix. The goal activation pattern (~pg) is normalized
in each iteration, so that the component values in each vector add up to 1.0. The action
column activation vectors (~ai) are restricted to values between 0.0 and 1.0.

The iterative equation propagates activity backwards within the posture space start-
ing from the goal activation pattern (~pg). Parameter γ balances the activation propaga-
tion within one action column (~ai) with the activation propagation stemming from other
action columns (~aj 6=i). Parameter β discounts activation propagation and assures that
activation ceases when no goal activation is applied. In effect, the activation pattern in
each action column ~ai encodes distance in posture space to the currently activated goals,
given motor command i is excited first. Larger values indicate smaller distances.

Movement Execution

To trigger motor activity, first, the activation maps generated during movement
preparation need to be read out. As mentioned, the activations in the columnar posture
space neurons ~ai encode the suitability of the i-th motor command for pursing the goal
with respect to all postures. To access the activity of the different activation maps for
a particular posture, the activity of the maps is multiplied by a representation of the
current posture (see Figure 7). Thus, the inner product between current posture space
activation representing the actual arm posture ~p and the columnar posture space activity
~ai is computed:

yi = ~pT~ai, (7)

which effectively determines the suitability of the i-th motor command to reach the
currently activated goal given current arm posture activity ~p. The lower part of Figure 8
illustrates the inner product computation dependent on the state of the current posture
in one action column. In the figure, the leftmost neuron of the encoding of the current
posture is active. Thus, only the activity in the leftmost neuron of the activation map
is used to compute the motor command.

The motor commands yi are normalized to the squared activation before they are
forwarded to the arm:

yneti =
y2
i∑6

j=0 y
2
j

(8)



39

a
0

a
6

a
5

a
4

a
3

a
2

y
6

y
5

y
4

y
3

y
2

y
1

y
0

m
o
to

r
c
o
m

m
a
n
d

y

g
o
a
l
in

h
a
n
d

s
p
a
c
e

h
g

P
o
s
tu

re
M

e
m

o
ry

A
c
ti
v
it
y

P
ro

p
a
g
a
ti
o
n

b
a
s
e
d

o
n

S
e
n
s
o
ri
m

o
to

r
M

o
d
e
l

c
u
rr

e
n
t
p
o
s
tu

re

o
v
e
rt

m
o
v
e
m

e
n
t

a
c
ti
v
a
ti
o
n

m
a
p
s

a
i

s
h
o
u
ld

e
r

=
-1

8
0
°

s
h
o
u
ld

e
r

=
-1

8
0
°

e
lb

o
w

=
-1

8
0
°

e
lb

o
w

=
1
8
0
°

w
ri
s
t
=

0
°

w
ri
s
t
=

1
8
0
°

e
lb

o
w

=
-1

8
0
°

e
lb

o
w

=
1
8
0
°

e
lb

o
w

=
-1

8
0
°

e
lb

o
w

=
1
8
0
°

e
lb

o
w

=
-1

8
0
°

e
lb

o
w

=
1
8
0
°

e
lb

o
w

=
-1

8
0
°

e
lb

o
w

=
1
8
0
°

g
o
a
l

w
ri
s
t
=

9
0
°g

o
a
l
in

p
o
s
tu

re
s
p
a
c
e

p
g

a
1

in
p
o
s
tu

re
s
p
a
c
e

p
(t

)

F
ig

ur
e

7.
T

he
ch

ar
t

de
pi

ct
s

th
e

ne
ur

on
al

ac
ti

va
ti

on
w

it
hi

n
SU

R
E

R
E

A
C

H
du

ri
ng

m
ov

em
en

t
pr

ep
ar

at
io

n
an

d
m

ov
em

en
t

ex
ec

ut
io

n
ph

as
es

.
D

ur
in

g
m

ov
em

en
t

pr
ep

ar
at

io
n,

a
go

al
th

at
is

fir
st

en
co

de
d

in
a

po
pu

la
ti

on
of

ne
ur

on
s

in
ha

nd
sp

ac
e

(~ h
g
)

is
tr

an
sf

or
m

ed
in

to
a

re
pr

es
en

ta
ti

on
of

al
lc

or
re

sp
on

di
ng

po
st

ur
es

(~p
g
)

by
th

e
po

st
ur

e
m

em
or

y.
T

hi
s

go
al

ac
ti

vi
ty

in
du

ce
s

a
dy

na
m

ic
pr

og
ra

m
m

in
g

pr
oc

es
s

in
th

e
m

ot
or

co
nt

ro
lle

r,
w

hi
ch

re
su

lt
s

in
th

e
ge

ne
ra

ti
on

of
sl

ig
ht

ly
di

ffe
re

nt
ac

ti
va

ti
on

pa
tt

er
n

in
th

e
ac

ti
va

ti
on

m
ap

s
~a

i
of

th
e

se
ns

or
y-

to
-

m
ot

or
m

ap
pi

ng
.

T
o

co
nt

ro
l

a
m

ov
em

en
t,

th
e

ac
ti

vi
ti

es
in

th
e

ac
ti

va
ti

on
m

ap
s

ar
e

re
ad

ou
t

by
co

m
bi

ni
ng

th
em

w
it

h
a

re
pr

es
en

ta
ti

on
of

th
e

cu
rr

en
t

po
st

ur
e.

T
hi

s
re

su
lt

s
in

di
ffe

re
nt

ex
ci

ta
ti

on
le

ve
ls

in
th

e
m

ot
or

co
m

m
an

ds
y i

ca
us

in
g

a
m

ov
em

en
t

to
w

ar
d

th
e

go
al

.



40

lateral connections from
other action columns

goal activation pg

lateral connections to
other action columns

y (t)i
s

current posture p(t)

m
o

v
e

m
e

n
t

p
re

p
a

ra
ti
o

n
m

o
v
e

m
e

n
t

e
x
e

c
u

ti
o

n

activation
map a*i

activation
map ai

synaptic weights Wi

Figure 8. During movement preparation, an action column propagates goal activations using
its learned weight matrix Wi, incoming and outgoing connections to other columns (lateral
connections). The so generated activation map ~ai can be read out during movement execution
by multiplicative units that determine the suitability of a motor command dependent on the
current posture state (top). The graph represents the activation propagation process specified
in Equations 5 and 6. The black dots indicate exemplar activations, spreading out from the
goal encoding neuron (~pg), bottom right).

The activations of opposing actuators (those that cause antagonistic movements) then
cancel each other out. That is,

ynet∗i =

{
yneti − ynetj , if yneti > ynetj ;
0, otherwise

, (9)

given i and j are antagonistic motor command pairs. Finally, the resulting absolute
activities are normalized to 1.0 and multiplied by gain factor g.

yfini = g
ynet∗i∑6
j=0 y

net∗
j

(10)

In this way, movement velocity becomes independent from absolute activation levels and
could in principle be further modulated (Bullock, Cisek & Grossberg 1998; Bullock et al.
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1993). Currently, during learning y∗i is purely determined by an endogenous excitation
generator that causes random motor commands and hence random movements.

Motor Learning

In order to prepare and execute movements, the synaptic weights of the sensorimotor
model have to be adapted during initial random movements. Figure 9 shows the circuity
in the action columns that is necessary for motor learning. Leaky integrator neurons ~ri
encode traces of previous posture activations. If the motor command represented by an
action column i is executed during motor learning, neurons that represent subsequent
postures are associated, storing the encountered sensorimotor contingencies in Wi.

Learning is again realized by a Hebbian learning rule that updates the weights in the
synaptic weight matrix of column i. The rule strengthens the weights between simulta-
neously firing posture space activation neurons ~p(t) and columnar recurrent connection
neurons ~ai, dependent of the currently issued motor command.

~ri(t) = yi(t− 1)~p(t− 1) + ρ~ri(t− 1), (11)

wjki (t) = wjki (t− 1) + δrji (t)p
k(t)(θ − wjki (t− 1)), (12)

where lower case letters with upper indices indicate particular values in the weight matrix
Wi, the columnar leaky integrator neurons ~ri, or the current posture space activation
~p. δ is the learning rate, ρ is the decay coefficient of the leaky columnar activity ri,
and y∗i is the activation of the i-th motoneuron during learning. The upper threshold
θ prevents the network weights from growing infinitely high after long training phases.
The settings of the parameters are specified in the appendix.

After learning, the weights represent motor command dependent associations be-
tween successively firing posture encodings resulting in the desired sensorimotor model.
The leaky integrator mechanism in neurons ~ri links each state not only to the directly
preceding states, but to a trace of many preceding states in which the motor command
associated to the action column has been carried out. This mechanism enables the motor
command dependent association of temporally remote postures. Thus, each (potential
goal) state gets linked to those states from which the potential goal can be reached by
carrying out the motor command associated to the respective action column, regardless
if this is sufficient to acquire a goal or if the execution of subsequent motor commands
is required. Note that the connections between potential goals and temporally remote
states are weaker due to the discounting factor of the leaky integrator neurons. This im-
plies that motor commands that move the arm faster from a given posture to a goal are
executed preferably. This mechanism helps SURE REACH to cope with the temporal
alignment problem.

Remote Goals in Learning and Movement Preparation

The last sections described the movement preparation by dynamic programming and
motor learning. In this paragraph, I want to discuss why the apparent complexity of
these processes is necessary to enable learning and enhance behavioral flexibility. At



42

posture p

leaky integrator neurons rimotoneuron activation yi
*

synaptic weights Wi

Figure 9. During learning, each action column develops a unique weight matrix (Wi) between
successively firing neurons. The graph visualizes the inverse model learning approach, specified
in Equations 12 and 11. The columnar leaky integrator neurons ~ri remember not only the most
recent posture activity but a motor command dependent, exponentially decreasing trace of recent
activities enabling the motor command dependent association of more distant postures.

the first glance, the synaptic weights of the action columns seem to be well suited to
store associations between any two reachable postures. However, even if the neural
networks enable in principle to represent association between any two postures, it is
hard for the unsupervised learning mechanism to acquire such associations. Consider a
simple unsupervised learning mechanism, much like direct inverse modeling (DIM), that
associates the posture and motor command in time step t − 1 to the posture in time
step t to encode a mapping from current and desired postures to motor commands. If a
movement from posture A to a distant posture B takes a considerable amount of time,
the learning mechanism would never encounter a motor command that, in one time step,
moves the arm from A to B. Hence, if B is desired and the current state is A, no motor
command can be provided. However, it might be possible to move from A to be B by
executing a sequence of motor commands. This problem is tackled by two independent
mechanisms.

First, the learning rule itself does not only associate postures to the immediately pre-
ceding ones but also to the postures encountered before, however only with discounted
associative strength and dependent on the then executed motor commands. This en-
hancement to basic DIM enlarges the maximal distance between postures that can be
associated by the learning mechanism but it still implies that only movements can be
executed that have been executed during motor learning. Also, this mechanism alone
would result in a very inflexible mapping from goals to motor commands.

The second mechanisms, the movement preparation by dynamic programming, finally
solves these problems. On the one side, associations between remote postures can be
established because the iterative use of local synaptic connections spreads activity from
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the goal encoding neurons to all neurons in the activation maps. On the other side, as
the association between the current posture, the desired posture(s) and motor commands
are not fixed but are newly generated for each goal, the movement preparation process
can be adjusted to the requirements of the current situation or task. For example, the
contribution of specific joints to a movement can be minimized by reducing activation
propagation in certain action columns or obstacles can be avoided by inhibiting certain
neuron populations. Thus, the complexity of the learning mechanism and the movement
preparation phase adds two important functionalities. First, they enable unsupervised
motor learning of temporally far-reaching sensorimotor contingencies thus solving the
temporal alignment problem. Second, they enable the model to account for the use of
multiple trajectories to reach goals and thus enhance behavioral flexibility.

Examples for Movement Preparation and Execution

The following examples illustrate movement preparation and execution by the motor
controller and the sensorimotor model. The activation propagation within the actual
simulation, conducted on the three-joint arm, is shown. To facilitate visualization, ex-
amples are chosen in which wrist movements are not crucial. Of course, the evaluation
in the subsequent sections is not restricted in such a way.

Example: Approaching a Particular Posture

Figure 11A shows a typical activity propagation process in the SURE REACH im-
plementation, when one particular goal posture is activated. Only in this illustrative
example, the wrist angle does not change from 0◦ to enable the two-dimensional repre-
sentation of the posture space. Figure 11A shows cross sections (wrist angle is 0◦) of
the activation maps. Rows show the differing maps of four action columns. Columns
show the maps at different moments during movement preparation. White areas are not
activated at all, dark areas are highly activated. The data stems from a well trained
controller (see next section for training procedure).

Initially, only one particular goal posture is activated in this example. Next, the
activity is propagated in the four rows of Figure 11A. This can be clearly seen in column
t = 1 where, for example, a counterclockwise movement of the shoulder (top row) co-
activates the clockwise space more strongly whereas a clockwise movement (second row
from top) co-activates the counterclockwise space more strongly. Due to the leaky-
integrator property of neurons ~ai during learning, not only the immediate surrounding
is activated but also more distant areas of posture space. These far-reaching connections
facilitate the movement preparation process and enable increasingly faster movement
onset, as will be shown later.

The motor commands, which are ultimately sent to the actuators, depend on the
activation of the neurons representing the current state in the different activation maps.
Figure 11B shows the corresponding sensory-to-motor mapping, which is generated from
the activation maps in the seven action columns by applying the normalization procedure
described in the previous section (Equations 7 - 10). The action columns of the motor
controller trigger motoneuron activity for many locations in posture space. However,
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Figure 10. A) The goal (marked in gray) consists of two distinct joint angle configurations. B)
The goal is the infinite set of postures with a stretched shoulder and wrist. Both charts shows
intersections (for φwrist = 0) of sensory-to-motor mappings.

between some state neurons no synaptic connectivity may have emerged because they
represent very distant postures and the transition time between those postures is high.
Thus, the activation maps for t = 1 do not cover the entire posture space by far. To
enable the action column to establish a connection between highly remote postures,
activation is propagated further. The activation maps for t = 2 cover a substantial
larger part of the posture space. After some iterations (t = 10 in the example), suitable
sets of motor commands are available for the entire posture space.

Movement can be initialized as soon as the activation pattern reaches the current arm
posture. Figures 11C, D show the resulting movement trajectories in hand space and
posture space, respectively. As the arm posture changes, the closed-loop control process
reads out the activation of the state neurons and issues motor commands accordingly.

Example: Activation Maps with Multiple Goals

The last section described the activation of a single posture. However, the posture
memory usually provides a goal representation which includes not only a single goal
posture but many of them. The activation propagation process can also be initialized
when more than one goal neuron is activated. In this case, the sensory-to-motor mapping
does not lead toward a single posture but toward a set of goal postures. Thereby, each
of the postures in the goal set represents an acceptable final state. In Figure 10A,
the goal set is the solution of the inverse kinematic problem of moving the hand to a
specific location and thereby maintaining a stretched wrist joint. The sensory-to-motor
mapping directs the shortest path to the goal for all possible arm postures. Note that
this problem cannot be solved by DIM. Furthermore, goal sets with an infinite number
of solutions are possible. For example, Figure 10B charts the sensory-to-motor mapping
to any posture with stretched wrist and shoulder joints.

Example: Obstacle Avoidance

So far, examples without trajectory constraints were given. However, SURE REACH
is also able to avoid arbitrary areas of posture space, consequently realizing, for example,
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obstacle avoidance. In the following example the neural activity for some postures is
inhibited, effectively disabling the arm to pass through the associated areas in posture
spaces. In the subsequent evaluations, areas specified in hand space are avoided by
inhibiting neurons in hand space and propagating this inhibition through to posture
space using the learned posture memory. Note, however, that currently the arm only
encodes its end-point in coordinate space so that it is only possible to prevent collision
of the hand, not that of other parts of the arm. However, it is imaginable that in later
simulations the full arm may be represented in coordinate space and associated with
posture space, which will make more advanced obstacle avoidance possible.

Figure 12A shows an example in which the posture space is constrained disallowing
postures in which the elbow is flexed when the shoulder angle is between −90◦ and
90◦. The movement starts with the upper limb pointing downward (φshoulder = 135◦)
and a 90◦-flexed elbow. The goal posture requires a counterclockwise movement of the
shoulder until the upper limb points straight down. The elbow and wrist angles in start
and goal posture are identical, but the additional constraint requires an extension of the
elbow during the movement.

The constraint is realized by inhibiting all postures that collide with the virtual obsta-
cle. The constraint requires the activation to spread from neurons in the clockwise elbow
rotation action column, to neurons in the counterclockwise shoulder rotation column, as
can be inferred from the activation maps in Figure 12A. The resulting sensory-to-motor
mapping (Figure 12B) causes substantial changes to the motor commands during the
movement. Figures 12C, D show that the trajectory contains changes in the elbow motor
commands to avoid the obstacle, first stretching it and then flexing it again.
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Simulation of Human Behavior

After this exemplification of SURE REACH’s capabilities, I now evaluate learning
and behavior in the architecture systematically and relate it to human motor behavior.
The evaluation starts with an assessment of the general learning accuracy of the model
and its parameter dependency. Next, the behavior of the model is characterized and
compared to various behavioral findings in humans. First, the effects of extensive training
on reaction and movement times are considered. Second, I show that the dynamics of the
movement preparation in SURE REACH produce priming effects that are comparable to
psychological experiments. Third, it is confirmed that SURE REACH benefits from the
representation of motor redundancy on the end-posture level as well as on the trajectory
level, exhibiting behavior in accordance with experimental data.

General Properties

A model that accounts for motor learning and control should improve during learning
and acquire at least some dexterity. To show this, the overall improvement of movement
accuracy during learning in SURE REACH is evaluated. First, the sensorimotor model
and the motor controller alone are evaluated for movements toward specific arm pos-
tures. Second, the complete SURE REACH model, including its posture memory, is
evaluated for movements toward specific hand targets. Finally, to assure that the model
is robust and does not rely on a fine-tuned set of parameters, the sensitivity of the
model’s performance is tested with respect to its most important parameters.

Motor Controller

To evaluate the overall properties of the model, ten controllers were trained indi-
vidually for 1,000,000 time steps each. The ten controllers differed in two properties.
First, their learning experiences differed because each controller executed a different se-
quence of random motor commands during motor learning. Second, the goals generated
during evaluation of each controller differed. During performance tests, each controller
had to perform a unique set of test movements, starting from certain randomly selected
postures, pursuing particular goals. Each controller had to perform the set of test move-
ments after various iterations of training. Thus, variances in the performances of the
controllers reflect both, variances due to different learning experiences and variances due
to different test movements.

Training began by setting the arm to a random posture. Then, a random motor
command set was generated and changed every one to four time steps. Each motoneuron
was set to 1.0 with a probability of 0.3 and was otherwise 0.0. If none of the seven
motoneurons were activated, this procedure was repeated. In each time step, the neural
network weights of the posture memory and the sensorimotor model were updated. To
evaluate learning progress, the neural network weights were frozen and the controller
was tested. After a test trial, training was continued from a new random posture.

To assess the accuracy of the sensorimotor model and the capabilities of the motor
controller alone, each individual controller was tested in 16 trials to move from ran-
domly selected starting postures to randomly selected target postures (φshoulder, φelbow ∈
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[−135◦; 135◦], φwrist ∈ [45◦; 135◦]). Target posture activity (~pg as in Equation 3) was
directly generated, bypassing the posture memory (using Equation 2). The controller
was allowed to take up to 80 time steps to reach the activated goal posture.

The average error of the last 10 time steps of each movement was used to determine
the accuracy of a single movement. The error was computed by averaging the absolute
differences between the target and actual shoulder, elbow, and wrist angles. To assess
the accuracy of a controller, the average movement accuracy and the worst movement
accuracy during a test phase were computed. Figure 13A shows the average and worst
case accuracy of the 10 individual controllers. The error before training was on average
82.1◦ (SD = 5.84◦). After 1,000,000 steps of training, the average error dropped to 3.52◦

(SD = .114◦) and the average error of the least accurate movement of each controller
dropped to 4.43◦ (SD = .314◦). The results confirm that the architecture is capable
of reliably moving the arm with reasonable accuracy to desired postures, considering
the sparse distribution of the receptive fields (45◦ between adjacent centers of receptive
fields).
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Figure 13. A) The average and worst end-posture error in mean absolute degrees continuously
improves during training. B) The average and maximal Euclidean distance from the desired goal
location continuously decreases during learning and consistently reaches a low level. Error bars
show standard deviations.

Posture Memory and Motor Controller

Similar to the evaluation of reaching goal postures, the accuracy of the whole archi-
tecture was evaluated. The error is now defined by the Euclidean distance between the
goal hand position and the final hand position in percent of the workspace size (twice the
length of the arm). Each controller had to perform 16 movements from random start-
postures to random hand targets. Hand targets (~hg) were generated by computing the
hand position of random arm postures to assure that the target was within reach of the
arm. Figure 13B depicts the average and maximal error during learning. The average
error dropped from 36.5% (SD = 7.07%) of the workspace size to 4.73% (SD = .715%)
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after 1,000,000 time steps of learning. The average error of the least accurate movements
of each controller was 9.32% (SD = 2.70%).

The results confirm that the SURE REACH implementation can account for accurate
goal-directed hand movements. As in the case of the posture space evaluation above,
the remaining error in final hand location is due to the low resolution of posture and
hand space. Potential solutions to this problem are discussed below.

Parameter and Training Sensitivity

To assure that the performance is not bound to a specific set of parameters or a
specific training setup, three important factors were systematically varied. First, the
random activation generation procedure applied in the training phase was varied. Either
exactly one random motoneuron was activated or each motoneuron was activated with a
probability of 0.3 or 0.5 (repeating the motor command activation process, if no motor
command was excited). Second, the joint angle gain g was set to 11.25◦, 15.0◦, or 22.5◦

during learning. Third, parameter ρ, which modulates the leak of the leaky integrator
neurons, was set to 0.0, 0.1 or 0.5. Ten individual controllers were trained for each
combination of values and the performance after 1,000,000 time steps of learning was
assessed as described above, except that only the final arm state of a movement was
used to calculate error values.

When the sensorimotor model plus motor controller were tested alone by activating
random, single goal postures, little impact from the parameter variations could be ob-
served. A 3x3x3 ANOVA revealed only a significant influence from the random activation
generation procedure, yielding better results if more than one motor command could be
active at a time, F (2, 243) = 7.46, p < .01. However, the variation had little impact on
absolute performance: All average end-point errors ranged between 3.25◦ (SD = .370◦)
and 4.05◦ (SD = .199◦).

When the complete architecture was tested by the activation of goal coordinates
and the successive posture space activation by the posture memory, a 3x3x3 ANOVA
also revealed a significant influence from the random activation generation procedure,
F (2, 243) = 18.5, p < .01. In this case, better results where obtained when only one
motor command could be applied at a time. For the co-activation of multiple goal
postures, the results indicate that it is slightly better to learn the sensorimotor model by
executing single motoneurons, since the inverse model becomes more uniquely dependent
on each motor command. Nonetheless, the results ranged between 3.85% (SD = .686%)
and 5.10% (SD = .727%), so that the absolute difference in error remained small.

In conclusion, the small performance differences suggest that parameter and training
variations only slightly affect model performance. Thus, the architecture does not need
a fine-tuned set of parameters to work but seems generally robust.

Effects of Extensive Training

It is a common finding that training does not only affect the accuracy of human
movements, but also that movement times and reaction times decrease during learning
(Gottlieb, Corcos, Jaric & Agarwal 1988; Flament et al. 1999; Lavrysen et al. 2003;
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Ludwig 1982). The model contributes to both findings. First, in SURE REACH the time
it takes to initiate a movement decreases by encoding temporally far-reaching sensori-
motor contingencies. The further reaching the contingencies, though, the longer it takes
to encode them during training. Second, the movement time decreases because sensori-
motor model and posture memory encode progressively more, and thus more efficient,
movement trajectories and postures, respectively.

Reduced Reaction Times

For movements to remote goals, the dynamic programming process requires some
time to prepare a movement, because movement onset relies on a sufficient spread of
activation through the activation maps (~ai). The time it takes from presenting a target
to SURE REACH until the activation is spread far enough to initiate a movement can
be considered the latency or reaction time. This time decreases during motor learning.

The leaky integrator neurons enable the controller to establish direct connections
between remote situations and goals, thus being able to replace, or at least enhance,
the activation propagation process. If the parameter ρ, which specifies the leak of the
leaky integrators, is set to zero, only associations of state neurons that are activated in
subsequent time steps are learned. In this case, it is impossible to learn far-reaching
connections. The higher ρ, the more far reaching connections will be learned and the
faster the movement is initiated.

To confirm this, three groups of ten individual controllers were trained for 1,000,000
time steps with the leaky integrator set to ρ = 0.0, ρ = 0.5 and ρ = 0.8, respectively.
The test procedure for movements to different postures was applied. Only the final arm
position was used to compute the error value. After 10,000 time steps of training all
controllers were trained well enough to be able to initialize movements to all given goals
and movement latencies were thus comparable5. Figure 14A and Table 2 show that
a high value of ρ causes on average a significantly decreased movement latency after
1,000,000 time steps of learning, F (2, 27) = 36.9, p < .01.

Table 2: Movement latencies for different values of parameter ρ

after 106 time steps from 105.5 to 106 time steps
ρ latency M (SD) error M(SD) ∆latency M (SD) t(9) p
0.00 .663 (.145) 3.71◦ (.417◦) .000 (.000)
0.50 .356 (.179) 3.54◦ (.227◦) .0438 (.0593) 2.33 < .05
0.80 .113 (.0922) 3.85◦ (.471◦) .0250 (.0323) 2.45 < .05

5The minimal amount of learning required to initiate a movement and the movement latency are
likely to be correlated. To avoid a bias in the movement latency that depends on the selection of
evaluated movements, only data from evaluation phases, in which all movements could be included into
the analysis, are analyzed.
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Figure 14. A) Movement latencies are lower and continue to decrease during extensive training
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reached after 103.5, after 104, after 104.5, or after 105 time steps of learning. Movement times
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Furthermore, if ρ is set to 0.5 or 0.8, the movement latency progressively decreases during
learning. Pairwise t-tests revealed that a significant decrease is even detectable between
the final two test periods (see Table 2). On the other hand, if ρ is set to zero, the
decrease of movement onset time ceases completely after 100,000 time steps of learning.

Despite the variations of parameter ρ and the consequent differences in the connectiv-
ity within the inverse models, no significant impact on the average end-posture accuracy
was detectable, F (2, 27) = 1.64, p > .05. The results confirm that the leaky integrator
neurons enable the inverse model to associate far-reaching arm postures. Movement
latency is significantly reduced with extensive training without affecting the accuracy of
the reaching movements. Hence, SURE REACH accounts for the empiric finding that
movement latencies or reaction times decrease during motor learning.

Improved Movement Times

Besides a reduction of the reaction time, training also reduces the time needed to
move to a goal. In the model, two factors are responsible for this effect. First, during
training, the inverse kinematics model learns more and more postures that coincide
with particular hand locations. A well-trained posture memory provides a broader goal
posture activity (~pg). It is likely, that at least some of the postures activated in the
broader goal activity are closer to the starting position than any posture in a smaller
subset. Hence, movement transitions get faster on average. Second, the representation of
sensorimotor contingencies gets more reliable during training and covers bigger parts of
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posture space. Since the determination of the motor commands depends on the learned
inverse sensorimotor model, more suitable motor commands are generated after longer
learning periods.

To show the influence of training on movement time, the data of the previous section
was reanalyzed. Each controller had to perform identical movement tasks after varying
amounts of learning. Only movement times from movements that did arrive at the
target (distance from hand to target lower than 15% of workspace size) were compared.
For each run, the targets were divided into four groups: those targets that were reached
after 103.5 learning iterations (16.3% movements total), those that were reached after 104

(19.2% movements total), those that were reached after 104.5 (29.6% movements total),
and those that were reached after 105 learning iterations (29.4% movements total). The
remaining 5.6% movements required more than 105 learning iterations and were not
included in the analysis.

Since parameter ρ had no significant impact on movement times, all controllers were
evaluated independent of this factor. Figure 14B depicts the development of average
movement times for the four groups of movements. On average, when a movement is
successful for the first time, it takes longer, m = 15.7, SD = 2.21, than after complete
training, m = 12.4, SD = 1.50, t(29) = 10.8, p < 0.001. Both, the development
of posture memory and sensorimotor model contribute to the decrease of movement
time. On the one hand, the average distances of the movement in joint space (2-norm)
decrease from 186◦, SD = 19.2 to 180◦, SD = 20.6; t(29) = 8.06, p < 0.001. This shows
that the posture memory activates end-postures that are closer to the goal after complete
training, compared to not fully trained controllers. On the other hand, a similar analysis
of the movements to goal postures, which are controlled by the motor controller and
the sensorimotor model but not the posture memory, reveals that movement times also
decrease, comparing first successful movements, m = 11.0, SD = 0.868, with completely
trained movements, m = 10.0, SD = 0.752; t(9) = 6.11, p < 0.001. This shows that
due to the increase of both, the accuracy of posture memory and sensorimotor model,
movement times decrease during training.

Priming Effects on Movement Execution

Movement preparation and execution often depend on environmental stimuli. Reac-
tions to external stimuli can be facilitated to some degree if primes precede the stimulus
that affords a reaction. The influence of these primes on action execution has been ex-
tensively studied, mainly with choice reaction time tasks (Dehaene et al. 1998; Kunde,
Kiesel & Hoffmann 2003; Vorberg, Mattler, Heinecke, Schmidt & Schwarzbach 2003).

Continuous movements have also been studied in this context. Participants in an
experiment by T. Schmidt (2002) were shown a red and a green target at opposing
directions from their resting index finger. As soon as these targets appeared, they
had to point as quickly as possible to the target with a specific color. For example, a
participant could be instructed to point to the red target. However, 10ms to 60ms before
the actual targets appeared either congruent or incongruent primes were displayed for
10ms. In the congruent case, the primes appeared at the same locations and had the
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same color as the actual targets. In the incongruent case, the primes appeared at the
same locations as the actual targets but with switched colors.

The movement trajectories of incongruently primed targets clearly showed a short
motion in the wrong (i.e. primed) direction before this error was corrected and the tra-
jectories approached the actual target. The extent of the motion in the wrong direction
was significantly larger if the incongruent primes were shown longer before the targets
appeared (longer stimulus onset asynchrony, SOA; see Figure 2 in T. Schmidt, 2002).
The primes were replaced by the targets for at least approximately 200ms before move-
ment onset. The results were explained by assuming that, as soon as the primes were
visible, they contributed to the generation of a response until the target appeared, thus
causing initially misguided movements in the incongruent case.

SURE REACH accounts for these effects. Priming of different durations was sim-
ulated by pre-activating the activation maps for 1 to 5 time steps with a congruent or
incongruent target posture, without actually executing the movement (targets: stretched
arm, φelbow,wrist = 0, with shoulder either φshoulder = −90◦ or φshoulder = 90◦ , move-
ments started from φshoulder,elbow,wrist = 0◦). Then the primes were replaced by the
targets and the movement was initialized. To measure the extent of movements in the
wrong direction, the maximal Euclidean distances between the hand coordinates asso-
ciated with the goal posture (±2.4, 0) and the hand coordinates during each movement
were assessed. The movements were executed by 10 controllers that were individually
trained for 1,000,000 time steps. To enhance the effect, the inertia of the dynamic
generation of the sensory-to-motor mapping was increased by adjusting the parameter
that scales down network activity to β = .48 (Equation 5), and the movement gain was
reduced to 6◦ (Equation 10).

Figure 15A shows the distance between the hand and the actual target during the
movement. The chart displays the average performances of ten controllers in both move-
ment directions. If the prime is congruent, the arm moves monotonously toward the
target. However, if the prime is incongruent, an initial movement in the wrong direction
is made. As in T. Schmidt’s (2002) experiment, the extent of this movement depends on
the duration between prime onset and the onset of the actual target (SOA). Figure 15B
plots the average maximal distance of the movements against different SOAs for the
incongruent case. A one-way ANOVA revealed a significant main effect for the SOA,
F (4, 45) = 42.2, p < 0.01.

To summarize, the population encoded space representation is suitable to model
preparatory effects of movements, once a goal is selected. Moreover, priming effects
that alter the encoded goal representations can be simulated due to the neural network
dynamics.

Benefits of Encoding Kinematic Redundancy

One of the claimed advantages of storing multiple solutions for a single goal is en-
hanced behavioral flexibility. To test this flexibility, the posture goal representation is
now further constrained to examine if SURE REACH benefits from storing redundancy
at the kinematic level. Also, it will be shown that, as observable in humans, the fi-
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with incongruent primes increases with the SOA. Error bars show standard deviations.

nal posture of a movement depends on the starting posture. Finally, the anticipatory
selection of a final posture dependent on a consecutive goal is simulated.

Constrained Joint-Angle Space and Posture Variability

The posture memory activates sets of postures that all realize a desired hand position.
If this redundancy is beneficial, the controller should exert the shortest possible path
in joint angle space to reach a goal location. Less direct but still accurate movements
should be triggered if additional constrains apply.

To test this, ten unconstrained individual controllers were trained with the procedure
described above and each controller was tested in five different conditions. In the first
one, there were no constraints except the targeted hand location. In the second and
third conditions, besides the targeted hand location, the desired shoulder angle was set
to 0◦ and 45◦, respectively. In the fourth and the fifth conditions, besides a desired
hand position, the desired elbow angle was set to 0◦ and 45◦, respectively. During each
test phase, 16 movements were made toward random goals, but only movements toward
goals that could be theoretically reached with the given constraints were included in the
evaluation. The additional constraints were imposed by inhibiting all neurons in posture
memory output (~pg) that did not satisfy the joint angle constraints.

Figure 16 shows the distribution of shoulder, elbow, and wrist angles when the goal
was reached. The desired joint angle constraint is met selectively for each condition (with
a standard deviation of ±45◦ for each constraint). Furthermore, the controller uses a
broad variety of final joint angles in the unconstrained joints to reach the activated goal
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Figure 16. The chart shows box-plots for the distribution of the final joint angles in five
constraint conditions. The different constraints for elbow and shoulder joint are met selectively,
albeit not completely accurately, due to the broad tuning of the receptive fields in joint space
(90◦). A box ranges from the lower to the upper quartile, the lines in the boxes indicate medians,
the whiskers show the range from the smallest to the largest observed joint angle.

location, indicating that the architecture effectively exploits redundancy.
To check if fulfilling constraints comes at a price, the hand position accuracy and

movement duration for constrained and unconstrained movements were compared. Fig-
ure 17 shows the development of movement duration and error after various amounts
of learning. Movement duration is only charted from 100,000 trials of learning because
this is the first time that all controllers were able to finish all required movements.
After 1,000,000 time steps, there is no difference in average hand position accuracy be-
tween constrained (M = 4.77% of workspace size, SD = .835%) and unconstrained
(M = 4.56%, SD = .791%) movements, t(18) = .591, p > .05. On the other hand,
movement durations differed significantly. The movement duration is measured as the
number of time steps used from the first change of the posture until the hand moves closer
than 15% of the workspace size to the goal. After 1,000,000 time steps of learning, the
average movement time of an unconstrained movement is M = 6.44 steps (SD = 1.79).
Constrained movements are significantly slower, M = 16.6, SD = 6.51, t(10.4) = 4.75,
p < .01.

In human hand movements, the final arm posture that places the hand at the target
location is dependent on the starting posture (Cruse et al. 1993; Jaric, Corcos & Latash
1992; Soechting et al. 1995). This exploitation of kinematic redundancy seems to mini-
mize movement costs (M. H. Fischer et al. 1997). To allow an analysis of start-posture
dependency, each hand target in the previous evaluation was approached from two dif-
ferent random starting postures. For movements with the same hand target but different
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Figure 17. While the average hand position errors of constrained and unconstrained movements
do not differ significantly, unconstrained movements are much faster than constrained movements.
Error bars show standard deviations.

starting postures, the final postures of the movement were compared (2-norm). On av-
erage, the end-postures of unconstrained movements differed by 111◦(SD = 56.3◦). For
the constrained movements, the average posture difference was 70.9◦(SD = 49.2◦). Con-
strained movements could still express a high amount of start-posture dependency, be-
cause some targets could be realized by moving one joint to one extreme or the other, and
because not all constraints were exactly met. Both values differ significantly from zero
and from each other: from zero for unconstrained movements, t(9) = 6.22, p < 0.001;
from zero for constrained movements, t(9) = 4.56, p < 0.001; from each other (pairwise
t-test), t(9) = 3.32, p < 0.01. In conclusion, this shows that the model generates short
trajectories in unconstrained conditions but is also able to produce longer movements to
match additional constraints.

Anticipatory Posture Adjustment

Most movements in every day life are part of a larger sequence. For example, grasping
a cup is often followed by moving the cup to the mouth. Hence, in movement sequences,
motor redundancy could be exploited to make the outcome of one movement a good
starting point for the subsequent one. Indeed, data from humans that had to sequentially
reach different hand targets revealed that the arm posture at an intermediate target
location depends on the subsequent target (M. H. Fischer et al. 1997).

Computational models of motor learning and control that do not encode redundant
solutions for the inverse kinematics problem are unlikely to account for this finding. In
SURE REACH, the redundant postures that are represented for each hand target can be
weighted, dependent on their utility to reach the next goal. This was simulated6 by a two

6Different parameter settings, which are specified in the appendix, were used for this simulation.
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step process involving both posture memory and motor controller. First, activation maps
for moving to the second of two targets were generated for 25 time steps without actually
moving the arm. Second, this activation was combined with a goal representation for
the first target (~pg) to generate a target representation (~p∗g) for the first movement, that
incorporates demands for the second movement.

~p∗jg = ~pjg × (10−α + max(aji,0≤i≤n)) (13)

where p∗jg are the components of ~p∗g and pjg are the components of ~pg, and α is a weighting
parameter that determines the amount to which the compound target representation
is influenced by the subsequent target. The larger α, the higher the influence of the
second target. The aj are the components of the activation maps ~ai, which indicate
the closeness of the associated posture to the subsequent target, assuming that the i-th
motor command is activated. Thus, the largest ai indicates closeness, assuming that the
optimal motor command is activated.

The anticipatory capabilities of the controller were tested with the ten controllers,
which were independently trained for 1,000,000 time steps. Each controller had to per-
form 50 sets of movements. A set consisted of four movements to random locations V ia,
T1, and T2: (1) a movement from a starting posture S to a via target V ia anticipating a
subsequent target T1, (2) a subsequent movement to T1, (3) a movement from S to V ia
anticipating T2, and (4) the subsequent movement to T2. Thereby the goal representa-
tion for movements to the via target (1,3) were determined by Equation 13. Figure 18
shows example movements (α = 6.0). Each of the movement sets was simulated with
four different settings of α (α = 3, 4, 5, 6) and a control setting, in which movements to
the via target were carried out independently of the subsequent goal. The hand location
at S and the targets T1, T2, and V ia were separated by at least 20cm from each other.

For each controller and each of the four settings of α, the average difference between
end-postures of movements to the same via location but with different anticipated sub-
sequent targets (1,3) was computed (2-norm) to determine how α affects the dependency
of a movement’s end-posture on a subsequent task. In the control setting the postures at
the via location did not depend on a subsequent target. Figure 19A shows that the in-
creasing impact of the anticipated goal increases the posture difference at the via location
as well. A one-way ANOVA revealed a significant effect of α , F (3, 36) = 70.2, p < 0.001.

To assess if this effect was accompanied by an increase in efficiency, I further analyzed
two performance measures for movements (2) and (4): the joint angle transitions (2-
norm) made during the movement and its duration7. The performance of movements in
the anticipatory conditions is contrasted to those in the control condition by subtracting
the former from the latter. Positive values indicate lower joint angle transitions and

Mainly, the arm geometry was adapted to resemble a human arm more closely, hand- and posture space
encoding was more fine-grained, and only six motor commands were used.

7The movement duration was considered the time between the onset of a target and the number of
time steps required to move to an area within 5cm of the target. To obtain valid results, movement sets
were excluded from the computation of the movement duration if at least one movement didn’t reach
the 5cm criteria (6.0%).
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Figure 18. The end-postures of movements from identical start-postures (S) to identical targets
(Via) can be adjusted so that good starting positions for movements to subsequent targets
(T1,T2) are assumed.

faster movement times compared to control movements. Figures 19B and C show that
the efficiency of the subsequent movements (2) and (4) increases if the goals of these
movements are more strongly incorporated in the goal representations of the preceding
movements. One-way ANOVAs revealed a significant impact of α on the remaining
joint angle transition (F [3, 36] = 108, p < 0.001) and on movement duration (F [3, 36] =
127, p < 0.001).

The simulated experiments show that SURE REACH exploits kinematic redundancy
to incorporate demands of the subsequent task in its goal representation. By doing so,
the subsequent movement can be carried out faster because it starts from an advanta-
geous posture. The suitability of a posture to serve as starting posture for a movement
to a particular hand target is provided by the sensorimotor grounded distance measures
in the sensorimotor model. Similar behavior in humans has been found in reaching tasks
(M. H. Fischer et al. 1997) but also in other domains like bimanual object manipula-
tion (Weigelt, Kunde & Prinz 2006) or speech production (Dell, Chang & Griffin 1999).
Additionally, the more complex movement preparation process is in line with experi-
mental findings, which show an increase in preparation time for the initiation of the first
movement of a sequence of aiming movements (Lavrysen et al. 2003). In conclusion,
the availability of redundant postures provides the flexibility to align movements to the
demands of future tasks.
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Figure 19. A) A goal representation in SURE REACH can be adjusted to facilitate an antici-
pated subsequent movement. The more the goal of a subsequent movement is incorporated (α)
into a goal representation, the more differ the end-postures of movements to the same location,
given different subsequent targets. B) The differences between the required transition in posture
space of movements that independently followed another movement and movements that have
been anticipated in the preceding movement, increase with α. C) The same effect is observable
for movement times. Error bars show standard deviations of the average performances of ten
individually trained controllers.

Short Summary

The data confirms two important claims. First, the capability to store and process
many possible arm postures for single goal coordinates enables SURE REACH to flexibly
incorporate new task-dependent constraints. For example, a goal that requires the hand
to reach a certain position while maintaining a specific elbow angle can be easily pursued
by the model—even if this task has never been explicitly trained. This capability may
be useful if the hand rotation has to be aligned in order to grasp an object or press a
button. Second, the significant difference in movement times reveals that the sensory-
to-motor mapping induces more efficient movements if it is activated by a larger set
of acceptable goal postures. Additionally, the anticipatory posture alignment found in
human reaching movements could only be modeled because redundant goal postures are
encoded. SURE REACH exploits the redundancy provided by a larger goal set reaching
the desired goal locations faster, because the posture within the goal set that is closest
to the starting posture is approached. These findings parallel current behavioral data
from humans (Cruse et al. 1993; M. H. Fischer et al. 1997; Jaric et al. 1992; Soechting
et al. 1995).
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Benefits of Encoding Sensorimotor Redundancy

In the last section, it was demonstrated that the representation of kinematic redun-
dancy significantly enhances the flexibility of the controller. In this section, sensorimotor
redundancy is exploited to adapt to obstacles, different movement costs, and immobilized
joints.

Obstacle Avoidance

The previous section showed that the end-posture of a movement can be influenced
by additional constraints. It was shown that the redundancy of postures associated to a
hand position can be exploited to choose amongst alternative goal postures, considering
additional constraints.

Another form of motor redundancy resolution lies in the trajectory generation by
means of dynamic programming. If an obstacle blocks a certain area in posture space,
the activity in the associated neural subspace may be inhibited consecutively. Thus, the
activation diffusion by means of dynamic programming generates an alternative trajec-
tory that circumvents the obstacle. However, obstacles are usually seen before move-
ment onset and are represented in an extrinsic coordinate frame. In SURE REACH, an
extrinsically represented obstacle can be transformed into an obstacle representation in
posture space by the posture memory (see right-hand side of Figure 4). Since the posture
memory activates all postures that realize certain hand positions, feeding the complete
extrinsic obstacle representation into the posture memory results in a representation of
all those postures for which the hand would collide with the obstacle. For now, the
posture memory only activates those postures that coincide with certain hand locations,
so that it is only possible to avoid hand collisions but not collisions of other body parts.
A more general posture memory that does not only map from certain hand locations to
postures but that could determine arm postures that coincide with any other point on
the arm could be used to extend obstacle avoidance to the entire arm.

To evaluate the current obstacle avoidance capability, 10 individual controllers were
trained for 1,000,000 time steps and each of them was tested in two different tasks
(see Figure 20). In each task, obstacles had to be avoided. Obstacles were defined in
hand space. A hand space obstacle representation was generated by inhibiting neurons
whose preferred values laid within the obstacle. This inhibition was passed through to
posture space by means of the posture memory, consequently inhibiting those neurons
in posture space that collide with the obstacle. All neurons in the activation maps (~ai)
were inhibited (set to 0.0) that had an activation level of at least .01 stemming from the
inhibition passed through posture memory.

In the first task, the arm had to move the hand to the lowest position in the workspace
(empty circle in Figures 20A, B) from an upward pointing posture. This goal can
be pursued by two different movements. Either the arm can be rotated clockwise or
counterclockwise. In two different settings, either the clockwise or counterclockwise
movement was blocked by a square obstacle placed next to the shoulder (see appendix
for details). Figures 20A, B show the movement trajectories of ten individual controllers.
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Each controller avoided the obstacle by rotating the shoulder joint in the unblocked
direction.

In the second task, the controllers had to move the arm to a stretched posture with
a shoulder angle of −225◦. The initial posture was a stretched arm, however with a
shoulder angle of 225◦. If no obstacle was in the way, the controller rotated only the
shoulder joint (Figure 20C), following the shortest trajectory in joint angle space. In
a second condition, a ceiling obstacle was introduced that would cause a collision if
the hand location was too close to the ceiling. In this case, the controller bent the
other joints in order to reduce the height of the extended arm and thus moved the
hand beneath the obstacle (Figure 20D). After the obstacle was passed, the arm re-
stretched the joints to reach the desired posture. The highest hand locations within
the trajectories, M = 1.40, SD = .0563, were significantly lower when an obstacle was
present, compared to unconstrained movements, M = 2.39, SD = .00626, pairwise t-
test, t(9) = −58.7, p < .01. The figure shows that all trajectories slightly moved through
areas of hand space that were part of the obstacle. These collisions result from the broad
tuning of the posture space neurons’ receptive fields and might be avoided by a larger
set of neurons covering the hand- and posture spaces, or by a further reaching inhibition,
which would trigger even stronger obstacle avoidance.

To summarize, obstacle avoidance can be incorporated into SURE REACH by in-
hibiting neurons during movement preparation. This capability is due to the fact that
the sensorimotor model of the motor controller implicitly stores all possible trajecto-
ries to a particular goal position and that the posture memory can be readily used to
convert an obstacle representation from a hand-based to posture-based representation.
The sensorimotor model triggers the most direct trajectory in posture space if no ob-
stacle is present. If such a trajectory is blocked, a sensory-to-motor mapping can be
generated that causes movements around the obstacle. As obstacle avoidance is based
on the sparsely encoded posture representation, the current model can only account for
the avoidance of larger obstacles and goals that are sufficiently distant from obstacles.
However, a more fine-grained neural encoding might also enable the avoidance of smaller
objects and closer goal and obstacle locations. Finally, note that obstacle avoidance in
SURE REACH is based on proprioceptive obstacle representations and proprioceptive
feedback. Thus, the models capabilities might be enhanced by including visual feedback
of the arm into motor control.

Reduced Joint Mobility

During life, the costs of moving certain limbs might suddenly change. For example,
arthralgic patients suffer sever pain from moving a specific joint and hence have to achieve
certain behavioral goals while trying to move one joint or the other as little as possible.
If a joint is in a cast, some motions might not only be costly but suddenly impossible.
Despite this impairment, patients can usually control their arm accurately and effectively
with the remaining mobility. SURE REACH can account for this flexibility limiting the
extent to which some motor commands are applied by reducing the impact of those motor
commands on the activation propagation process. This adjustment might be considered
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Figure 20. A, B) The hand paths of movements differ significantly, if an obstacle (rectangle)
is presented to the left (A) or to the right (B). All movements bypass the obstacle successfully.
C) The chart shows a movement of a stretched arm without any obstacles. D) The chart shows
the same movement if a ceiling obstacle constrains possible hand locations. The empty circles
indicate desired hand targets, the filled circles indicate the position of the shoulder joint.

a neural implementation of the adjustment of movement cost functions proposed by
Rosenbaum et al. (1995). It was simulated by enhancing Equation 5 as follows:

~a∗i ← vi max
{
β

(
γ

∑
j 6=i~aj

y − 1
+ (1− γ)~ai

)
, ~pg

}
. (14)

The difference between Equations 5 and 14 is that in the former all motor commands
contribute equally to the activation propagation process, whereas in the latter, the con-
tribution of each motor command is weighted according to a weighting coefficient, vi.
By adjusting vi, the extent to which certain motor commands and hence certain joint
motions are executed during a movement can be regulated. A larger coefficient vi means
relying more on the associated motor command.

An Arthralgic Joint

Figure 21 shows examples of movements that result from the modified activation
propagation process. Whereas Figure 21A displays a normal unconstrained movement,
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Figures 21B, C show movements in which the contribution of the motor commands
affecting the elbow and wrist joint have been reduced to 1% of the contribution of the
remaining motor commands. It is apparent that all joints are used in the unconstrained
movement but that the motions of the elbow or wrist joint, respectively, are highly
reduced in the other examples.

To check if this process also holds in the general case, ten controllers were trained
individually for 1,000,000 steps. Each controller had to perform movements from 16
different start-postures to different goals provided in hand space. For each of the 16
start-goal pairs, one normal movement, and three movements with a reduced desired
contribution of the shoulder, elbow, or wrist were executed. For normal movements, all
motoneurons contributed equally to the activation propagation process. For movements
in which a reduced motion of a specific joint was desired, the vis for motor commands
associated to that joint were set to 1% of the vis of the remaining motor commands.
For example, if the wrist joint should move as little as possible, vis were set to v0 =
v1 = 0.01 and v2 = . . . = v6 = 1.00. The contribution of each joint to a movement was
operationalized as the absolute difference between its initial angle and final angle. The
contributions were averaged for each controller, each of the four movement conditions,
and each joint. Start-goal pairs yielding movements that did not move as close as 15% of
the workspace size to the goal within 160 time steps in at least one of the four conditions
were removed from the evaluation (48.8%). Figure 21 and Table 3 summarize the results.
It can be seen, that the contribution of each joint angle is reduced selectively for the
desired joint. Pairwise t-tests confirm this finding (see Table 3).

Table 3: Transitions of restricted and unrestricted joints

joint normal transition (SD) constraint transition (SD) t(9) p

shoulder 69.1◦ (49.1◦) 32.5◦ (28.2◦) 15.7 < 0.01
elbow 66.5◦ (48.7◦) 26.5◦ (25.2◦) 17.2 < 0.01
wrist 60.2◦ (44.5◦) 24.0◦ (22.5◦) 16.4 < 0.01

Thereby, the final position error is only slightly larger for movements with reduced
joint motions: for normal movements, m = 4.00% of workspace size, SD = 0.427; for
constraint movements, m = 4.67%, SD = 0.443; t(9) = 5.216, p < 0.01. Motion of the
impaired joint is not reduced to zero, because many movements require a transition of
all joints in order to move to the goal. Note that the reduction of the contribution of a
motor command to the activation propagation process does not inhibit the motoneuron
per se. Only when other motor commands can be used to fulfill the given goal, the
inhibited motoneuron will not be excited.

A Broken Arm

Sometimes it might be necessary to move the arm without the capability of relying
on the complete movement repertoire that was available during motor learning. This
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Figure 21. A) An example of an unconstrained movement. B, C) The charts show movements
with reduced rotation of the elbow (B) and wrist (C) joint to the same target. D) A systematic
evaluation reveals that the contribution of each joint to a movement (operationalized as the
change in joint angle between movement onset and the final position) can be selectively reduced.
Error bars show standard deviations.

may be the case if the arm is broken and in a cast. Usually used motor command
sequences will then be fruitless if they rely on motor commands that now have no effect.
Experiments show that constraining one limb hardly affects the capability for accurate
movements and does not require exhaustive relearning (Robertson & Miall 1997).

To verify that the reduction of the contribution of not anymore useful motor com-
mands to the activation process can be used to control an arm with a joint in a cast,
10 controllers were individually trained for 1,000,000 steps and had to perform reaching
movements with either normal mobility or with the shoulder, elbow, or wrist joint angle
set to φi = 0 , regardless of the motor commands that are executed. The vi values for
motor commands associated to joints in a cast were set to vjoint in cast = 0, whereas all
others were set to vfree = 1.0. To compare the different conditions, the end-point error
of all reaching movements with random goals that could be theoretically reached in all
movement conditions (on average 12.6 per controller) were averaged and compared by
pairwise T-tests. Movements with the shoulder or wrist in a cast were only somewhat
less accurate but fixing the elbow did not affect average accuracy (see Table 4).

To summarize, the activation propagation process can be modified by weighting the
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Table 4: Accuracy of movements with a joint in a cast

compared to normal condition
condition end-point error (SD) t(9) p

normal 3.54% (0.659%)
shoulder in a cast 8.08% (2.40%) 5.72 < 0.01
elbow in a cast 3.24% (0.724%) −1.118 > 0.05
wrist in a cast 6.70% (0.861%) 11.22 < 0.01

contribution of sensorimotor contingencies associated to certain joint motions. On the
one hand, joint movements that cause pain or are otherwise costly can be replaced by
movements of the other joints (as long as this is possible). On the other hand, the
modification can be used to control the arm if certain joint movements are suddenly
impossible. In either case, it is not necessary to relearn the sensorimotor mapping of the
arm.

Summary of Results

The evaluations of this implementation of SURE REACH confirmed several interest-
ing model features. The overall reliability and accuracy of the model was high despite
the rather sparse representation of postures and end-point coordinates. Model learning
was stable under several different learning and parameter conditions.

More important, SURE REACH accounts for empirical findings related to human
motor learning and control. First, during human motor learning, accuracy increases
and movement times and reaction times decrease. The model does not only account for
increasingly accurate movements, but also exhibits that training decreases movement
preparation and movement execution times. Second, representing goals by population
codes is not only in line with neurophysiological data but also with psychological find-
ings and theories (e.g. (Erlhagen & Schöner 2002; Flash & Sejnowski 2001)). In contrast
to many other models of motor learning and control, which can only process a single
target posture or hand location, SURE REACH can account for more complex target
representations, such as the target activation of multiple alternative postures. Likewise,
humans and primates are able to partially prepare movements towards subsets of move-
ment directions or distances. Third, a priming experiment was replicated by means of
the space representation and network dynamics. Fourth, it was demonstrated that rep-
resenting kinematic redundancy enables the simulation of some features of the flexibility
of human motor control. In humans, the final arm posture of a movement depends on
the starting posture . Also in SURE REACH, movements to the same hand position
differ, depending on the starting posture. Additionally, anticipatory effects of posture
selection were modeled. This was only possible because multiple end-postures were ex-
plicitly associated to each hand position. To my knowledge, this effect has not been
simulated before. Finally, due to the encoded sensorimotor redundancy in the sensori-
motor model, SURE REACH is able to adapt quickly to novel trajectory constraints.
The architecture is able to avoid obstacles and recruit alternative motor commands,
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given that previously optimal motor commands are suddenly costly or even impossible.
Together, the evaluations show that the encoding of motor redundancy on many levels
enables the simulation of flexible human motor behavior that cannot be accounted for
by models that strive to resolve redundancy before learning. Moreover, the online gen-
eration of the sensory-to-motor mapping enables to model the dynamics of movement
preparation.

Visually Guided Reaching

The computational model presented so far uses a visually encoded goal representation
to prepare a movement. The control of the movement itself is exclusively guided by
proprioceptive feedback. However, it has long been known that human reaching relies
extensively on vision of the hand and the target throughout a movement (Woodworth
1899). In this section, the model will be extended to enable visually guided movements.
This extension enhances the model’s ecological validity and additionally, it sketches how
a hierarchy of control loops coordinates movements.

The control of accurate human reaching movements relies on the availability of visual
feedback. Movement accuracy decreases considerably if vision is occluded (Spijkers &
Spellerberg 1995; Ma-Wyatt & McKee 2007). Extensive training under visual control
even increases the impact of withdrawing visual feedback (Khan, Franks & Goodman
1998; Proteau, Marteniuk, Girouard & Dugas 1987). Likewise, errors in arm positioning
tasks result mostly from inaccurate vision (van den Dobbelsteen, Brenner & Smeets
2001). Furthermore, even if visual feedback is not available, visual cortical areas are
active during a movements (Darling, Seitz, Peltier & Butler 2007).

However, the computational model described so far only accounts in a limited way for
the exploitation of visual feedback. Even if a hand target may be encoded in vision-based
hand space, this target representation is converted into a postural target representation
before it is used to control the movement. Hence, the generation of motor commands
solely depends on a posture space representation of the goal and the proprioceptively
perceived arm posture. The model accounts already for the ability to update target
locations during movements because the posture goal representation may be updated
during an ongoing movement based on a novel visual goal representation. However,
there is no mechanism that is able to influence motor command generation based on the
difference between the actual hand position and the target location. Thus, movement
errors cannot be corrected based on visual information. This might be necessary to level
out inaccuracies of the posture memory, which might arise due to insufficient learning
experience, limited spatial resolution, or sudden kinematic distortions. In the following
section, the model is enhanced by a mechanism that enables movement adjustment based
on visual feedback.

In principle, two different approaches could account for corrective movements based
on visual error perception. First, the perceived error could directly be converted into
motor command space. Neural network models that implement this approach acquire a
mapping from the direction of the vector between hand and target, and motor commands
(e.g. Baraduc et al. 1999, 2001; Bullock et al. 1993; Srinivasa & Grossberg 2007).
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According to these models, all movements are specified at some point in terms of a
vision-based error signal8. Also, these models are in line with experiments that suggest
that movements are planned in terms of hand displacements (e.g. Krakauer et al. 2000;
Wang & Sainburg 2005). The benefits and limitations of these models have already
been discussed in the introduction. In short, these models do not represent postural
redundancy and thus cannot account for most of human movement flexibility.

Second, the perceived error could indirectly elicit changes in the motor commands
by altering the target representations. I took this approach to include visual feedback in
the SURE REACH model. Here, the perceived error causes an adjustment of the visual
goal representation. The altered visual goal representation in turn causes an adjust-
ment in the postural goal representation, subsequently an adjustment of the sensory-to-
motor mapping, and finally causes a change in the motor commands. An indirect motor
command adjustment is computational advantageous. First, altering the visual target
representation is unproblematic because both the perceived error and the consequent
adjustment have to be made in the same sensory modality. In contrast, a direct conver-
sion of visually represented errors into changes in motor commands would require the
demanding mapping from a low dimensional visual space into a high dimensional motor
command space. Second, altering the visual target representation builds on the lower
levels of the motor control system, conserving redundant postural target representations.
Thus, the model is inline with the notion that motor control is hierarchically organized
(Cisek 2006; Jordan & Wolpert 1999; Todorov 2004; Wolpert et al. 2003). Finally, this
approach complies with behavioral and neurophysiologcial studies that favor end-point
based movement control (Aflalo & Graziano 2006; van den Dobbelsteen et al. 2001).

Visual Feedback Controller

The following section describes the neural structure that enables visually guided
reaching in the SURE REACH model. Figure 22 outlines the mechanism. Once a
(visual) hand target is provided, two different target representations are formed. A static
target representation encodes the actual goal of the movement. It is used to compute
an error signal by contrasting it to the representation of the perceived hand position
(comparator). The resulting error signal controls the dynamic target representation. The
dynamic target representation serves as input to the lower levels of the control hierarchy.
Initially, it may encode the same information as the static target representation but
it may change as soon as a discrepancy between actual target and hand position is
perceived. Thus, the dynamic target representation can be thought of as encoding
a virtual target that is not necessarily identical to the desired hand target but helps
the underlying control structures to acquire the actual target more accurately. It is
continuously forwarded to the posture memory whose output in turn causes a continuous
adjustment of the sensory-to-motor mapping by the motor controller. If an error is
perceived, the virtual target is shifted in the direction opposite to that of the error. For
example, if the hand is to the left of the actual target, the virtual target is shifted slowly

8The vision based error signal may also be derived from internal feedback (Bullock et al. 1993;
Desmurget & Grafton 2000).
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to the right, resulting in an arm movement to the right. A similar mechanism has been
used in a version of the posture based motion planning model (Rosenbaum et al. 1995).
The next section describes the realization of target representations, comparator, and the
control mechanisms for the dynamic target representation by neural networks.

posture memory

dynamic target representation

static target representation

actual target

virtual target

hand position

hand position representation

comparator
error signal

Figure 22. The comparator computes an error signal from the difference between the actual
target, encoded by the static target representation, and the hand position. The error signal
induces shifts of the virtual target, encoded in the dynamic target representation. The dynamic
target representation is detached from the actual target perception during the movement and
serves as input to the posture memory and subsequent networks.

Adaptive Neural Fields

The dynamic target representation has to meet three requirements. First, the vir-
tual target encoded in the dynamic target representation has to be detached from the
actual target representation to enable a shift in the virtual target. Second, despite this
detachment, the dynamic target representation has to be able to maintain a neural ac-
tivity distribution that accurately encodes the virtual target throughout the movement.
Third, the neural activity in the dynamic target representation has to be controllable in
order to induce corrective movements.

A neural network structure that fulfills the first two criteria is the lateral inhibition
neural field (Amari 1977; Erlhagen & Schöner 2002). Such a neural field consists of
many neurons, each of which is associated with certain spatial coordinates, similar to
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the hand and posture space encodings. These coordinates may, for example, be the hand
position, to which the neuron responds maximally. Distances between two neurons are
calculated based on these coordinates. Adjacent neurons are connected by excitatory
connections and distant neurons are connected by inhibitory connections. Once some
activity is injected into such a network, it is able to maintain a focused “hill” of neural
activity (see hills in Figure 22). The activity hill can be maintained without further
activity injection due to the positive feedback loop formed by the excitatory connections
between adjacent neurons. Additionally, the inhibitory connections between distant
neurons keep the activity in the neural network local and focused.

The lateral inhibition neural field is suitable to stabilize and maintain activity but it
cannot be used to control shifts of the activity hill. Hence, additional adaptive neuronal
connections are introduced. They can impose a bias in the lateral connectivity, pushing
the activity hill in a specific direction (Stringer et al. 2007, 2003). Thus, the neural field
is extended to an adaptive neural field. Figure 23 sketches a simplified one-dimensional
adaptive neural field. The adaptive neural connections are shaped during motor learn-
ing together with the posture memory and the sensorimotor model. In the following
implementation, the adaptive connections are organized in several layers, comparable to
the different neural networks encoding the sensorimotor model. The synaptic weights
of the layers differ from each other. Thus, the activity distribution can be controlled
by modulating the contribution of each layer to the overall activity propagation. In the
model, the differences between layers develop because layers are only trained when move-
ments in specific directions are executed. Thus, activating specific layers of the adaptive
neural connectivity enables the imposition of a specific bias on the neural field activity
propagation. During corrective movements, a population coded error representation is
computed from the static target representation and the perceived hand location, which
in turn biases the adaptive connections. In the current architecture, the error representa-
tion is derived solely from the perceived hand position and the neural network structure
that encodes the adaptive connections.

The adaptive neural field is a hand space representation modeled as a vector ~hdyn
consisting of h = 21×21 = 441 neurons. The adaptive connections are realized by c = 8
neural networks with h = 441 input neurons and h = 441 output neurons, which are
connected by h× h weight matrices WACj . Finally, a comparator mechanism computes
an error signal ~e with c = 8 components.

In the extended model, the hand target representation ~hg (also consisting of h =
21× 21 = 441 neurons), as used in Equation 3, is not directly forwarded to the posture
memory but serves as the static target representation. In the following, I refer to ~hg
as ~hstat to distinguish it from the dynamic target representation ~hdyn. When a novel
target is presented, ~hdyn is set to ~hstat. Then, static and dynamic target representations
are detached. The static target representation is conserved during the movement. The
dynamic target representation is updated each time step according to the following
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Figure 23. The dynamic target representation is realized by an adaptive neural field. It contains
lateral excitatory (black lines) and inhibitory (dotted lines) connections, which maintain an
accurate target representation. Several layers of adaptive connections, which are modulated by
the error signal, induce shifts in the neural activity. In the figure, the drawn layer of adaptive
connections induces an activity shift to the right. Lateral connections are only drawn for one
neuron for clarity, but in the network all neurons are interconnected.

equation:

∆hidyn = −αdynhidyn − βdyn
h−1∑
j=0

f(hjdyn) + γdyn

h−1∑
j=0

f(hjdyn)d(i, j) + δdync
i(~hdyn, ~e) (15)

where ∆hidyn is the change in the i-th component of ~hdyn, αdyn scales the reduction of
the activity of the neuron proportional to its activity, βdyn weighs a general inhibitory
term that scales down overall network activity, γdyn weighs the influence of the lateral
inhibitory and excitatory connections, and δdyn weighs the influence of the adaptive
connections. Table 5 lists the values of the parameters. The activity of a single neuron
is restricted to the range from 0.0 to 2.0. The steep nonlinear sigmoidal function f(t)
bounds the propagated neural network activity:

f(t) =
1

1 + e−20(t−0.8)
(16)

The weight of lateral connections is determined by the function d(i, j)

d′(i, j) =
π

dinh

√
(ix − jx)2 + (iy − jy)2 (17)

d(i, j) =

{
cos(d′(i, j)) d′(i, j) < π

−1 d′(i, j) ≥ π
(18)

where dinh = 0.36 is the smallest distance between preferred values of neurons that
are connected by maximally inhibitory lateral connections and ix, iy, jx, and jy are the
preferred values of the i-th and j-th neuron, respectively. This results in some self-
excitation for each neuron, low impact on adjacent neurons and inhibitory impact on
distant neurons.
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Finally, the adaptive connections impose a bias on the propagation of neural activ-
ity dependent on the error signal. In Equation 15, function ci(~hdyn, ~e) introduces the
adaptive connectivity, which returns the i-th component of the vectorial function

c(~hdyn, ~e) =
c−1∑
j=0

ej(WACj × fv(~hdyn)) (19)

where fv(~t) is a vectorial function that computes f(t) for each component, ej is the
j-th component of the error signal, and WACj is the j-th weight matrix for the adaptive
connections. In sum, this function determines the connectivity between all neurons of
the neural field by weighing the impact of the different layers of adaptive connectivity
with the error signal. This weighted adaptive connectivity propagates the activity of
the neural field with the desired bias. Figure 24 shows two examples of the different
propagation biases of each of the eight layers of adaptive connections. White areas

x=0.0 , y=1.0 x=0.0 , y=2.0

Figure 24. The figures show neural activity propagation in the eight different adaptive connec-
tions networks for activity injection at two different positions. Each network propagates activity
in a specific direction.

indicate excitatory connections whereas dark areas indicate inhibitory connections. The
examples show, that each layer of adaptive connections locally propagates activity in a
specific direction.

Comparator and Error Signal

In order to bias activity propagation in the dynamic target representation, an error
signal has to be computed from the perceived hand location and the actual target lo-
cation. Many models do not consider how such an error signal may be computed (e.g.
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Table 5: Parameters
parameter value description
αdyn 0.2 activity leak
βdyn 0.05 weight of general inhibitory term
γdyn 0.1 weight of lateral connections
δdyn 3 weight of adaptive connections
dinh 0.36 minimal distance for full lateral inhibition
εAC 0.001 learn rate for adaptive connections

Baraduc et al. 2001; Bullock et al. 1993; Srinivasa & Grossberg 2007) but the error
signal is provided from an external source. In contrast, the mechanism provided here
explores the possibility to deduce an internal error signal solely from a vision-based
representation of hand and target, building upon already encoded neural networks and
representations.

The comparator processes population codes representing the static hand target and
the actual hand representation. Each layer of adaptive connections is used to predict
the activity distribution that would arise from applying the specific layers. The overlaps
of these predictions with the static target representation are used to determine the error
signal. This is modeled by the equation

ei = fe((WACi × ~hact)T~hstat) (20)

in which ei is the i-th component of the error signal ~e, WACi is the weight matrix of the
i-th layer of adaptive connections, ~hact is a h = 441 component vector that encodes the
actual hand location similar to the target representations ~hstat and ~hdyn, and ~hstat is the
static target representation. The sigmoidal function

fe(t) =
1

1 + e−3t
(21)

limits the maximal activities in the error signal while pronouncing smaller differences.
The logic behind this process is closely related to the mechanisms for motor command

generation in the motor controller. Both rely on independent neural networks that are
used to establish the degree to which certain efferent signals, motor commands in the
motor controller or in this case the error signal, are useful to pursue a given target.

Learning

Before the adaptive connections can effectively control the neural activity of the dy-
namic target representation they are shaped during motor learning. As in all neural
networks of the SURE REACH model, the weights of the adaptive connections are ac-
quired unsupervisedly during random movements. Thereby, it depends on the direction
of the ongoing movement if connections are strengthened or weakened in a specific layer.
This direction dependency is later used to bias activity propagation in the dynamic hand
representation. Note, that synaptic connections may get inhibitory (negative weights).
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During learning, each layer i of adaptive connections is associated to a specific angle
αi. In the simulation these angles are set to α0 = 0◦, α1 = 45◦, α2 = 90◦, . . . , α7 = 315◦.
In each time step t, the i-th layer of adaptive connections is updated according to the
following equation

WACi(t) = WACi(t− 1) + εAC~hact(t)~hTact(t− 1)
dxcos(αi) + dysin(αi)√

d2
x + d2

y

(22)

where WACi(t) is the weight matrix of the i-th layer of adaptive connections at time
step t, εAC = 0.001 is a learning rate, ~hact(t) is a vector that encodes the current hand
location, ~hTact(t− 1) is the transpose of a vector that encodes the hand location at time
step t − 1, and the fraction term causes a strengthening or weakening of the lateral
connection weights dependent of the direction of the actual hand movement (dx, dy) in
euclidean space. Note that during learning some explicit knowledge about movement
direction is used. This information could be retrieved, for example, from the motor
commands that are used to track the hand with saccades. However, this information
only enables the layers of adaptive connections to develop distinct activation propagation
biases and is not used during movement execution.

Evaluation

To test the advantage that visually controlled movements yields over exclusively pro-
prioceptively controlled movements, ten individual neural networks, including sensori-
motor model, posture memory, and adaptive connections were independently trained for
1,000,000 time steps. Each controller had to excert 16 movements from randomly chosen
start-postures to randomly chosen hand targets in two conditions. First, in the visually
guided condition, the SURE REACH model and the described visual feedback neural
network were used. Second, in the proprioception only condition, the SURE REACH
model without the visual feedback neural network was used. Each movement was ex-
ecuted for 320 time steps. The gain g, as used in Equation 10, was set to g = 2.86◦

(0.05rad)9. Figure 25 details the trajectory of the hand and the virtual target of an
exemplar movement. It can be seen that a shift of the virtual target enables the con-
troller to compensate for an initial overshoot of the movement. Figure 26 compares the
trajectories of hand-target distances for three visually guided and three proprioceptively
controlled movements. All three charts show a reduction of the error for the visually
guided movements, which sets in as soon as the hand moves closer to the target.

For each controller and both modes of control, the distances from the hand to the
target at the end of the movement were averaged. Average error of visually guided
movements was only 2.50% of workspace size (SD = 0.965%) whereas the average error
of proprioceptively controlled movements was 3.82% (SD = 0.676%). Pairwise t-tests
confirm the significance of the decrease, t(9) = 8.11, p < 0.01.

9During learning, the gain was doubled. A higher gain was used during learning to ensure a complete
exploration of the arm’s workspace whereas a smaller gain was used during testing to enhance overall
precision of both proprioceptive and visually guided movements.
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Figure 25. A) The left chart shows the x- (top three lines) and y-coordinates (lower three lines)
of the actual target (dashed), the virtual target (black), and the hand location (dotted) of an
exemplar movement. B) The right chart displays the hand trajectory, the actual target (circle),
and the final position of the virtual target (cross). The virtual target shifts considerably to
compensate for the initial overshoot. The charted location of the virtual target is the mean of
the preferred values of the dynamic target representation weighted by their activations.

Discussion

The previous section introduced a neural network for incorporating visual feedback
in SURE REACH’s control process. The mechanism is able to detect discrepancies be-
tween the (static) visual goal representation and a similar representation of the hand.
The discrepancy influences motor command generation indirectly by altering interme-
diate goal representations. In this case, a dynamic hand target representation, which
is processed by the posture memory, is adjusted. A systematic evaluation reveals that
additional visual guidance reduces the final error on average by 35%.

A qualitative look on movement trajectories reveals that the hand initially approaches
the target rather fast and then homes into the target with a slower, more precise move-
ment. This compares to human visually guided arm movements, which are also com-
prised of an initial fast approach and then slower corrective movements (Elliott, Helsen
& Chua 2001; Woodworth 1899). In the model, error correction movements are clearly
distinct from the initial approaching movement because only the former are based on,
and limited by, the adjustment of the dynamic target representation.

The dynamic target representation, which is used for motor command generation, is
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Figure 26. The charts show trajectories of the distance between hand and target for three
exemplar movements under visual (circles) and solely proprioceptive (triangles) control. Initially,
both control processes generate nearly identical trajectories. As the hand moves closer to the
target, proprioceptively controlled movements come to rest at some distance to the target whereas
visually guided movements slowly approach the target.
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detached from visual representations of the target. Hence, displacements of the target
during the movement cannot be directly incorporated in the dynamic target represen-
tation from which the sensory-to-motor mapping is ultimately generated. Nevertheless,
the proposed architecture can still react to target displacements in two different ways.
If a significant change in the target location is detected, the dynamic target representa-
tion could be reset and a movement could be prepared independent from the preceding
movement plan. In this case, the corrections induced so far would get lost, but it seems
unlikely that they would be appropriate in a completely different area of the workspace
anyhow. If a smaller target change is detected, the adjustments could be made indirectly
by shifting the target representation based on an error signal. Indeed, experiments show
that prepared movements are reprogrammed by continuous target shifts (van Sonderen
& Dernier van der Gon 1991; van Sonderen, Denier van der Gon & Gielen 1988).

Finally, the neural network is able to compute an error signal based only on visually
encoded hand and target representations. Thus, given that sufficiently distinct biases in
the layers of adaptive connections have developed, the architecture does not require an
externally provided error signal to correct smaller deficiencies of executed movements.
The next sections discuss specific properties of the neural network implementation of
the visual feedback controller and relates it to hierarchical motor control.

Discussion of the Neural Network Implementation

The generation of the error signal is partially based on the actual hand location.
However, the perception of the hand not yet having reached the target does not imply
that the hand goal representation requires an adjustment. It is well possible that, after
some time, the hand acquires the target perfectly. The mechanism outlined above will
almost certainly adjust the dynamic goal representation as the hand approaches the
target because it cannot distinguish between the meaningless discrepancies that persist
during the execution of the movement and the meaningful discrepancies that arise due
to an inappropriate target representation. However, adjustments are limited to the final
phase of the movement because the comparatively slow movements during the learning
phase result in a highly local neural network connectivity (see Figure 24). Due to
this local connectivity of the adaptive connections an error signal that imposes a clear
bias on the activity of the dynamic target representation is only generated as the hand
approximates the target. On the other hand, this also implies that large discrepancies
between hand and target cannot be corrected. Anyhow, it is questionable if the proposed
mechanism can compensate for very large disturbances in the posture memory due to
the non-linearity of the arm kinematics. In this case, the movement plan should be
completely re-prepared, including a reset of the dynamic target representation. In future
work, the error signal might not depend on the actual hand location but on a prediction
of the final hand location to avoid adjusting motor commands based on a not yet finished
movement (Desmurget & Grafton 2000).

Finally, even though the proposed neural network reduces the average error of move-
ments considerably, visual guidance does not eliminate the error completely in all move-
ments. Unsystematic experiments with an analytic implementation of the described
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mechanism showed that the end-point error can be almost reduced to zero. Addition-
ally, a similar (analytic) mechanism was successfully applied elsewhere (Rosenbaum et
al. 1995). The inaccuracy of the neural network implementation might be mainly caused
by the low number of neurons covering visual space. First, a small number of neurons
implies that hand and target location are encoded with a low resolution. Thus, also
deviations are harder to detect and to process. Second, the small number of neurons
also reduces the stability of the neural field. This could result in a deterioration of
the dynamic target representation, for example, caused by a total cessation of neural
activity or by over-activation of larger populations of neurons. In other neural network
models, dynamic neural fields are usually implemented with 10 times as many neurons
for each spatial dimension (Erlhagen & Schöner 2002; Stringer et al. 2003). However,
the memory requirements for the adaptive connections currently prohibit larger dynamic
fields. In future work, high-resolution adaptive neural fields could be implemented by
only sparsely interconnecting the neurons of the neural field thus combining high spatial
resolution and compact neural networks (see Baraduc et al. 2001 for neural fields with
sparse inputs).

Outlook on Hierarchical Motor Control

Motor control is generally understood as a hierarchy or cascade of nested control
processes (Cisek 2006; Haruno et al. 2003; J. Hoffmann, Butz, Herbort, Kiesel & Lenhard
2007; Jordan & Wolpert 1999; Mussa-Ivaldi 1999; Mussa-Ivaldi & Bizzi 2000; Powers
1973; Todorov 2004; Wolpert et al. 2003). In such a hierarchy, a rather abstract goal
— such as wanting to have the hand at a certain location — is decoded into more
concrete representations, for example in proprioceptive terms, until motor commands are
finally generated. Thereby, intermediate representations are not only the byproduct of
a stepwise transformation process but are also actively controlled to enhance movement
accuracy and stability.

SURE REACH and the presented visual feedback neural networks fit well into this
framework. They form two nested control loops (Figure 27). The lower level loop,
formed by the motor controller, controls the proprioceptive arm posture. It strives to
match actual and desired posture. This loop is enclosed by the visual feedback neural
network, which minimizes the distance between the exteroceptively perceived hand and
target location. It does so indirectly by adjusting the posture representation of the
motor controller via an intermediate hand representation and the kinematic mapping
encoded in the posture memory. Thus the model differs from approaches that claim
that rather higher level goals, for example, visually encoded errors, are directly relayed
to motor commands or movement based representations (Baraduc et al. 1999; Bullock
et al. 1993; Srinivasa & Grossberg 2007).

Conclusion

In conclusion, the described neural network incorporates visually guided reaching
in the SURE REACH framework. A vision-based representations of the hand and the
target are used to adjust a virtual goal representation that serves as input to lower
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Figure 27. The visual feedback networks, posture memory, sensorimotor model, and motor
controller form a cascade of control loops. The visual feedback processing neural networks
control the input for the lower level, proprioceptive controller.

levels of the control hierarchy. Thus, the discrepancy between hand and target loca-
tion indirectly induces corrective movements that enhance movement accuracy. Even
if the implementation of the neural network could still be enhanced, it already realizes
hierarchical motor control.
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Discussion

In the previous sections, a new computational model of motor learning and control
was introduced and evaluated. The basic philosophy behind the model is that motor
learning is all about acquiring a very general understanding of the own body and its
movements, about forming a general body model. This general body model, which is
implemented in SURE REACH as sensorimotor model and posture memory, cannot be
directly used for movement control because it is not specific to a certain task, with its
specific end-state goals and constraints. However, once the task is known a movement can
be prepared based upon the general body model. Even more, tasks can be accomplished
that have very different constraints or requirements, compared to those in the learning
context. Note, that the random behavior during motor learning differs tremendously
from the behavior required during the evaluation phases. This emphasize of a task-
independent body model and a mechanism that enables to use this body model to
prepare movement for concrete tasks is the main difference between this approach and
many other neural network models of motor learning and control. It is also the basis of
much of the model’s functionality and enables a more profound comparison to behavioral
and neurophysiological data.

In the following, three topics are discussed. First, I will point at the model’s potential
to simulate further aspects of human motor control and propose structural extensions.
Second, the model is related to other computational modeling approaches and I high-
light in which respect it extends them. Third, I will argue that SURE REACH is a
computationally, neurophysiologically, and psychologically valid model of motor cortical
learning and control.

Modeling Capabilities and Potential Model Extensions

The previous sections presented the current capabilities of the SURE REACH model.
Future extensions of the model may aim in two directions. First, the current architecture
may be challenged to model additional tasks and experiments. Second, the current
architecture may be structurally extended to capture more of the functionality of the
human motor control system.

Further Modeling Capabilities

In the recent sections, it was shown that the model accounts for a range of data
gathered from experimental psychology. Even if the main contribution of the model is
its account for the flexibility of human motor control, it also captures aspects of the
dynamics of movement preparation, for example reactions time or priming effects. In
the following section, I want to highlight some experimental findings that also could be
modeled with the current architecture without substantially modifying it.

Bayesian Information Processing. In general, humans rely strongly on visual feed-
back to control movements. However, if vision is blurry or occluded, humans tend to rely
more on a priori knowledge, for example about generally likely finger positions or pertur-
bations, to control their movements (Körding & Wolpert 2004; Körding, Ku & Wolpert



81

2004). Thus, multiple information sources are integrated, dependent on the significance
and current reliability of each available information source. Population codes seem well
suited to neurally implement such Bayesian information processing (Deneve & Pouget
2004; Knill & Pouget 2004; Ma, Beck, Latham & Pouget 2006). SURE REACH seems
to be able to account for Bayesian integration of current proprioceptive feedback with a
priori knowledge of likely and unlikely arm postures. The arm posture is represented by
a number of different neurons forming a population code. In situations of uncertainty,
many neurons may be activated, forming a broader, more blurry representation of the
current posture, whereas only few neurons may be active if the posture is accurately
perceived. Additionally, frequently observed sensorimotor contingencies will be linked
by stronger synaptic connections than others due to the associative learning scheme.
Hence, if the arm state is well defined, a very narrow set of sensorimotor contingencies
is included in the motor command generation process, resulting in precise movements.
On the other hand, if the arm state is uncertain and the current posture is consequently
represented by many neurons, many sensorimotor contingencies compete for their con-
tribution to the motor commands. Due to the stronger synaptic connectivity associated
to frequently experienced postures, these postures will have a stronger impact on motor
command generation than others. In conclusion, it should be well possible to replicate
behavioral data from related experiments (e.g. Körding & Wolpert 2004). Likewise,
the neural network model for visual control of movements is also capable to account
for Bayesian integration, as blurry representations of either hand or target would result
in less pronounced error signals and thus a motor control process that relies more on
proprioceptive input than on vision.

Memory Consolidation. When humans learn a new motor task over a period of sev-
eral days, it is often observed that the performance improves considerably from the end
of one training session to the beginning of the next one on a subsequent day (S. Fischer,
Hallschmid, Elsner & Born 2002). This improvement is caused by the consolidation of
the newly learned skill during a period of rest (Korman et al. 2007). The current struc-
ture of the sensorimotor model may at least partially account for memory consolidation.
Synaptic connections in the sensorimotor model may be split in two groups. Local con-
nections relate to small changes in arm posture and are easily acquired during motor
learning. In contrast, far-reaching connections, which help to initiate longer movements
faster, are only acquired after extensive training. The time to acquire sufficient far-
reaching connections may be reduced by separating periods of online learning by offline
learning periods. In these periods, neural activity could be propagated through posture
space by local connections. The resulting activity distribution could than be used to up-
date the connectivity of far-reaching connections. Thus, the sensorimotor model could
be improved without engaging in actual movements.

A concept closely related to consolidation is interference. Experiments have shown
that a newly acquired motor skill can hardly be consolidated if right after training a
related but different motor skill is practiced (Shadmehr & Brashers-Krug 1997, see also
Caithness et al. 2004). If the sensorimotor model’s far-reaching synaptic connections,
rather than local connections, are mostly responsible for the initiation of movements,
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it could even be possible to account for retrograde interference. In this case, mostly
synaptic changes that were caused by the second of two subsequently trained tasks will
be consolidated to far-reaching synaptic connections and later on play a major role in
motor control. Thus, training of one skill could interfere with the recent training of
another, different skill.

Model Extensions

The SURE REACH model focusses on the unsupervised acquisition of inverse mod-
els and how these inverse models may be used to control movements. However, it is
clear from theoretical, physiological and psychological considerations that there is more
to motor control than inverse models (Desmurget & Grafton 2000; Jordan & Wolpert
1999; Kawato 1999; Scott & Norman 2003). Hence, new structures should be added to
the architecture to cover more of the human motor system’s functionality and also to
highlight computational problems that arise from the interaction of these structures with
the current architecture. Additionally, components of the current architecture could be
advanced to address more complex control tasks. In the following, potential extensions
of the model are discussed.

Balancing Synaptic Connectivity. In the moment, the connectivity in the model is
not well balanced. For example, due to the relative low maximal synaptic weight of
θ = 0.1 in the sensorimotor model, the activity of the sensory-to-motor mapping differs
by some magnitudes between neurons that encode the target and neurons that encode
remote areas in workspace. This results in an unrealistically wide spectrum of neural
activity. Thus, the learning rules and activity propagation mechanism should be im-
proved to provide a more coherent activity distribution. The introduction of inhibitory
connectivity, as applied in the networks for visual feedback control, might help to realize
this goal.

Next, the acquisition of far-reaching sensorimotor contingencies is necessary to model
reaction time effects of the model but at the same time seem to hinder its capabilities
to avoid obstacles. This contradiction needs to be resolved by further discounting the
weight of far-reaching connections. This would result in the fast generation of a weakly
represented movement plan based on the far-reaching connections, which is subsequently
overridden by the slowly spreading activity propagated by local connections. Thus both
features, decreasing reaction times and obstacle avoidance, could be preserved in the
model. In conclusion, further improvement of the learning and movement preparation
mechanisms seems necessary to enhance the models robustness and provide a sound
foundation for future model extensions.

Adaptive Space Representation. By now, the representation of hand and posture
space is prewired. Body spaces are covered by neuron populations of predefined size
with uniformly distributed receptive fields, regardless of the relevance of different parts
of the workspace. Currently, the memory requirements for space representation and
neural networks grow exponentially with the number of input dimensions, resulting in
neither biological plausible nor computational tractable models for more complex control
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tasks. Thus, compact and adaptive space representations are crucial to address more
complex control problems, for example three-dimensional bodies with more degrees of
freedom or with dynamic properties. In the future, body space representations should
develop unsupervised in order to cover body spaces adaptively. Body spaces could be
based on self-organizing maps (Morasso et al. 1997; Toussaint 2006), neural-gas like
structures (H. Hoffmann & Möller 2003; Martinez, Berkovich & Schulten 1993), or other
machine learning techniques (Butz 2005, 2006). In these representations, receptive fields
of neurons are not only distributed adaptively in each spatial dimension but it is also
possible to cover entire subspaces with single neurons. This would result in a considerable
reduction of the required number of neurons for each dimension of a body space and
would enable to address more complex control problems.

Merging Acting and Learning. SURE REACH’s learning scheme does not require the
existence of goals during motor learning, though it also doesn’t deny that goals may be
represented. Hence, random movements are chosen as a model of the movements during
early motor learning. In the recent sections, phases of motor learning and purposive
behavior were strictly separated to enable a sound evaluation. However, it is known that
most behavior is goal-oriented even in the youngest infants and it seems obvious that
infants learn from such behavior (von Hofsten 2004). Thus, it should also be possible
to engage in goal-directed reaching and meanwhile adapt the neural connectivity of
SURE REACH. This would allow to compare the development of the model’s movement
trajectories to those of infants that develop their reaching skills. Additionally, learning
during goal-directed behavior may lead to a preferred exploration of those regions of the
body’s workspace that are especially relevant. This might result in more efficient body
space representations and motor learning.

Predictive Mechanisms and Internal Feedback. Not only inverse models but also for-
ward models seem to play a crucial role in motor control (Bhushan & Shadmehr 1999;
Karniel 2002; Kawato 1999). Forward models encode the direct input-output mapping
of a body. Thus, they are relevant for many tasks that require some knowledge about
how the body might potentially move. First, forward models might help to compensate
for missing, unreliable, or delayed sensory feedback by predicting how the body reacts to
issued motor commands (Bullock et al. 1993; Kalman 1960; Sabes 2000; Scott & Norman
2003). Integrating forward models into SURE REACH might enable to simulate control
of movements despite impaired sensory feedback. It would require the integration of two
possibly contradicting sources of information for estimating the current hand position or
arm posture. The neural population codes used throughout the model seem well suited
to integrate multiple information sources (Deneve & Pouget 2004). Second, forward
models may be used to predict the outcome of an ongoing movement. This capability
seems crucial to further develop the neural networks for visual movement control or other
potential, higher-level control loops, which require that lower-level goal representations
are adjusted based on an expected movement outcome rather than on the current body
state (Desmurget & Grafton 2000). Third, forward models are important for motor
learning with a distal teacher (Jordan & Rumelhart 1992). Whereas the motor learning
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approach favored in this thesis clearly does not require forward models, forward models
might be necessary to model offline motor learning. In sum, striving to integrate forward
models for state estimation and outcome prediction into the present architecture might
considerably advance the model and might also highlight new interesting problems.

Target Evaluation. In many situations, multiple objects offer themselves as targets
for reaching movements. Thereby, the choice is not only based on the value associated
to one or the other object but also the costs of moving there (Trommershäuser, Landy
& Maloney 2006). Neurophysiological studies suggest that information about target
location and the value of target acquisitions are integrated in parietal sensorimotor
areas (Musallam, Corneil, Greger, Scherberger & Andersen 2004). Additionally, it is well
possible that the actual process of target selection happens not earlier than in primary
motor areas (Bastian, Schöner & Riehle 2003; Cisek 2006; Cisek & Kalaska 2005). Thus,
target selection and motor control seem to be deeply entangled. A recent integration of
the SURE REACH model with a neural network model for target selection accounted
for such, more complex motor behavior (Herbort et al. 2007; Ognibene, Mannella et al.
2006). In this case, experimental data was replicated that shows that humans integrate
knowledge about their own motor variability and potential targets to maximize the
performance in an aiming task (Trommershäuser, Maloney & Landy 2003). However,
in this approach the interaction between motor control structures and mechanism of
target selection was unidirectional. In future work, it might prove helpful to enable
crosstalk between both to enable integrating motor control with higher-level cognitive
or motivational processes, such as decisions between multiple targets.

Relation to other Models

The previous sections outlined SURE REACH’s modeling potential and possible
structural extensions. This section discusses its relationship to other computational
models, which were reviewed earlier in more detail (page 24). It owes much to many of
these models and many of them are more powerful than SURE REACH in one aspect or
the other. Anyhow, in the next paragraphs, this model’s relations to other approaches
are discussed, highlighting the advancement manifested in this approach.

Feedback Error Learning

The cerebellar models of feedback error learning (FEL) address the acquisition of
fine-tuned, fast, cerebellar inverse models for reaching movements by learning from, and
finally substituting, cerebral motor commands (Berthier et al. 1993; Haruno et al. 2001,
2003; Kawato et al. 1987). SURE REACH, on the other hand, addresses a different
part of the human motor system because it is a model of unsupervised motor cortical
learning. However, it might serve as a model of the cerebral source of the motor signals,
which are necessary to enable FEL. In the future, SURE REACH might be integrated
with cerebellar models of motor control to cover a broader range of the anatomy and
computational mechanism that underly human motor control.
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Direct Inverse Modeling

The presented model extends models that implement direct inverse modeling (DIM)
in two ways. First, the temporally weighted association mechanism in the action columns
and the activation propagation process results in effective links between potential goal
states, and temporally remote actions and initial condition. This enables SURE REACH
to learn motor control even in a context in which the consequences of motor commands
only unfold in time and no clear relationship between actions and perception exists, thus
solving the temporal alignment problem. Second, the unsupervised learning method
enables the representation and flexible online resolution of motor redundancy. Hence,
unlike DIM approaches, SURE REACH is able to effectively and flexibly learn to control
a redundant body.

Posture-Based Motion Planning Theory

SURE REACH is able to solve the redundancy problem online and under varying
constraints, similar to the posture-based motion planning theory (PB theory, Rosenbaum
et al. 1993b, 1995; Rosenbaum, Meulenbroek, Vaughan & Jansen 2001). Thus, it owes
to the PB theory the emphasize on the task-dependent preparation of movements each
time a novel target is provided or situational constraints change. It extends the PB
theory in three ways.

First, unlike the PB theory, SURE REACH accounts for the acquisition of a sensori-
motor body model. Second, the PB theory is mainly a theory for movement preparation
and details no mechanism for movement control. In contrast, SURE REACH also mod-
els the execution of a movement, continuously integrating novel information. Third,
whereas SURE REACH is implemented in a neural network model that reflects aspects
of the neurophysiology of the human motor control system, the PB theory is analytically
formulated and, by now, offers no neural network implementation and doesn’t relate to
cortical representations. Nonetheless, the PB theory has much to offer to SURE REACH
as it is the model that embraces human behavioral flexibility to the largest extent, in-
cluding for example grasping and tool use (Meulenbroek, Rosenbaum, Jansen, Vaughan
& Vogt 2001).

Reinforcement Learning

The dynamic programming approach of the movement preparation process resembles
model-based reinforcement learning (RL, Sutton 1990; Sutton & Barto 1998). Never-
theless, there is a strong difference to RL approaches discussed in the context of motor
learning (Berthier 1996; Berthier et al. 2005; Kositsky & Barto 2002). In these models,
task-specific inverse models are acquired and the motor control process does not enable
the integration of additional constraints or novel tasks. In general, dynamic program-
ming might enhance the flexibility of RL approaches in being able to approach arbitrary
representable goals and adhere to additional constraints.
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Validity

The recent paragraphs related the presented model to other current models of mo-
tor learning and control, and pin-pointed the specific contribution of SURE REACH.
In the following sections, I will discuss the validity of the model with respect to the
computational demands of the task, neurophysiological findings, and behavioral data.

The Simulated Body

The computational demands for the presented model are mostly defined by the body
that it has to control. In this case, the task was to control a planar, kinematic, three-joint
arm by several pairs of antagonistic motoneurons, each of which controls the motion of a
certain joint. Doubtless, this is a dramatic simplification of the musculoskeletal system
of the human arm and the spinal circuity that connects the motor cortex with the arm’s
motoneurons. Due to this simplifications, several problems that make motor control
difficult were not directly addressed.

First, the modeled arm is merely kinematic and does not account for the velocities,
torques, and forces that have to be considered when controlling a physical body (Gribble
& Ostry 1999). This also means that the motor commands, which the motor controller
produces, don’t need to be properly scaled because only the direction of the movement
is ultimately relevant but not the amplitude of the motor commands. Second, in the
model, motor commands directly influenced the displacement of the arm rather than
contracting muscles or altering the properties of spinal feedback loops. Additionally,
the model’s actuators only affect single joints, are arranged symmetrically, and their
strength is well balanced. In contrast, human muscle often span several joints, are
not symmetrically arranged and are of differing strengths. Third, efferent and afferent
signals are not subject to delays. Thus, the model doesn’t need to compensate for
delayed perception and motor commands.

The purpose of the presented model is mainly to account for the unsupervised ac-
quisition of flexible motor control in a redundant context. The arm model captures two
critical properties that are relevant for understanding this task. First, the arm is redun-
dant on the kinematic and the sensorimotor level; each hand position can be realized by
many different arm postures, and transition between any two postures can be realized
by different sequences of motor commands. This redundancy enables to avoid obsta-
cles or to include demands of future tasks in movement planning, but it also requires
body models to encode redundant solutions for the different motor problems. Second,
each movement requires the execution of a sequence of motor commands and the neural
networks have to learn from a continuous stream of perceptions and motor commands.
This is especially important to understand the challenges of unsupervised motor learn-
ing because there is no clear temporal relationship between start-conditions, goals, and
motor commands (temporal alignment problem). Motor redundancy and the temporal
properties of movement execution are crucial to enable behavioral flexibility but also
impose severe problems on unsupervised learning schemes. In conclusion, the simulated
arm can be seen as one of the simplest bodies that imposes the targeted problems on a
computational model.
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The next step to improve the models functional validity would certainly be the intro-
duction of a dynamic body. One of the key problems of applying unsupervised learning
methods to dynamic bodies, the temporal alignment problem, is already addressed. Ad-
ditionally, a fore-runner of this model has already shown success in controlling a dynamic
arm (Herbort et al. 2005a; Herbort 2005). Thus, SURE REACH should be able to con-
trol dynamic bodies.

Neural Body Spaces

The model was clearly not devised to closely mirror motor cortical anatomy or phys-
iology. Nevertheless, the model is based on several known properties of cortical motor
control structures. Representations of the body, be it hand or posture space, are im-
plemented as neural population codes. Neuron recordings show that body spaces are
similarly encoded in the primate brain’s sensory, sensorimotor, and motor areas (Aflalo
& Graziano 2006; Cisek & Kalaska 2005; Georgopoulos 1995; Georgopoulos et al. 1983;
Kakei et al. 1999; Rizzolatti, Fadiga, Fogassi & Gallese 1997; Scherberger & Andersen
2007; Scherberger, Jarvis & Andersen 2005; Shadmehr & Wise 2005). In fact, repre-
sentations of arm movements in ventral premotor areas and primary motor cortex differ
if vision is artificially distorted (Schwartz, Moran & Reina 2004). Thus, different body
spaces, whose activities depend predominantly on different sensory information, can also
be found in the brain. The identified encodings parallel SURE REACH’s posture space
and hand space, in which the former encodes proprioceptive inputs whereas the latter
relies on vision.

Moreover, the motor cortical representations seem to encode arm postures. Cell
responses during ongoing movements depend on arm postures (Scott & Kalaska 1997)
and are most likely encoded in a posture-based coordinate frame (Ajemian et al. 2000).
Neural activity and artificial neural stimulation of a neuron correlate most significantly
with particular postures, either holding the arm in that posture or causing the arm
to move to that posture (Graziano 2006). Additionally, motor cortical cells in freely
behaving monkeys seem to mostly encode movement end-postures (Aflalo & Graziano
2006). Likewise, in the model movement control and goal representations are encoded
posture-based.

Additionally, the finding that potential to-be-executed movements that differ only
slightly from each other cannot be independently prepared as compared to rather distinct
movements fits well in the context of neural population codes, which also have a limited
spatial resolution (Favilla 1997; van Sonderen & Dernier van der Gon 1991; van Sonderen
et al. 1988).

Motor Learning

From a macroscopic perspective, the model fits well into current theories that locate
associative unsupervised learning mechanisms in the cerebral cortex and that emphasize
the importance of recurrent neural connections in this area (Doya 1999, 2000). Fur-
thermore, humans independently acquire inverse models for movement kinematics and
dynamics (Krakauer, Ghilardi & Ghez 1999). This fact is reflected in SURE REACH
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because the posture memory, which is an inverse kinematics model, is trained indepen-
dently from the sensorimotor model, which relates more to inverse dynamic models. On
a synaptic level, the model relies entirely on simple Hebbian learning, which is prin-
cipally known to modulate synaptic connectivity in the brain (Abbott & Nelson 2000;
Jackson, Mavoori & Fetz 2006). Thus, the learning mechanisms in SURE REACH seem
biologically justified.

Representations of Redundancy

One of the distinct features of the SURE REACH model is its ability to encode
redundant goal representations. For example, in the motor controller the goal to move
the hand to a certain location is represented by the activation of many neurons, which
encode redundant postures. To my knowledge, by now no experiment has been conducted
that might allow to decide if redundant goal representations are also used in the brain
to control movements. However, multiple lines of neurophysiological and psychological
experiments show that redundancy might be explicitly encoded.

Evidence from psychological and neurophysiological experiments shows that multiple
goals are represented at least during the preparation of a movement. In these experi-
ments, participants or monkeys were presented with a cue indicating multiple potential
movement targets before the final target was specified. Humans profit from such prior in-
formation, which reduces the set of possible targets, even if some ambiguity is left (Bock
& Arnold 1992; Rosenbaum 1980). Neurophysiological recordings show that monkeys
can pre-activate ranges of multiple movements (Bastian et al. 2003) or even opposing
movements (Cisek & Kalaska 2005). However, when these experiments are related to the
SURE REACH model, some limitations should be kept in mind. On the one side, they
examine the possibility of representing multiple targets for the hand rather than multi-
ple postures for a single hand target. On the other side, they focus on representations
that are active before a movement is initiated or even before it is completely prepared,
but in the model these representations persist throughout the movement. Neverthe-
less, it shows that multiple targets may be coactivated in other stages of the movement
preparation process and motor cortical networks are principally capable of representing
redundancy.

Furthermore, behavioral experiments suggest that redundancy is explicitly encoded
during movement preparation and execution. The way humans carry out actions that
are part of a sequence depends on the requirements of subsequent tasks (Dell et al. 1999;
M. H. Fischer et al. 1997; Weigelt, Kunde & Prinz 2006). Thus, among the possible
ways to carry out an action a way is selected that optimizes the performance of the
subsequent action. As mentioned earlier, it seems likely that this capability requires the
explicit representation of motor redundancy in some form.

Finally, the extent of task-irrelevant variability of movement trajectories depends on
target certainty even if movement start- and end-points are identical (de Freitas, Scholz &
Stehman 2007). Thus, the authors concluded that “the use of motor redundancy can be
affected by movement planning” (de Freitas et al. 2007, p. 71). However, if the amount
of redundancy allowed in a movement can be explicitly controlled, there should also



89

be some form of explicit representation of motor redundancy as in the SURE REACH
model.

In sum, neurophysiological studies show that motor cortical areas are capable and
actually do encode redundant action possibilities at some stages of the movement prepa-
ration process. Even more so, behavioral experiments suggest that redundancy is explic-
itly encoded and processed during movement preparation and execution. In conclusion,
it seems that motor control builds on, as does the model, explicit representations of
motor redundancy.

Parallel Processes

In humans, movement preparation and movement execution seem to be parallel and
comparatively independent processes, which can even be experimentally detached. On
the one hand, movements may be prepared without being executed (Bastian et al. 2003),
and on the other hand, movements may be executed without having been properly
prepared (van Sonderen & Dernier van der Gon 1991; van Sonderen et al. 1988). Also,
the model incorporates parallel mechanisms for movement preparation and movement
execution because the sensory-to-motor mapping can gradually adapt to a new goal
representation during an ongoing movement. For example, this was the case in the
simulation of the priming experiment (page 53).

In this context it is interesting to note that humans who move a computer mouse
react quicker to target displacements than to cursor displacements during an ongoing
movement (Brenner & Smeets 2003). This asymmetry might relate to the parallel pro-
cesses of movement preparation and movement execution in humans and in the model.
Whereas a change of the cursor location only requires a readout of the movement plan
for another position, similar to the combination of the sensory-to-motor mapping and
the current posture representation, a target displacement requires a more time con-
suming update of the movement plan. Besides the empirical data that support the
SURE REACH model, this parallel processing captures an important and interesting
aspect of the motor system, which has to be examined more thoroughly in future work.

Summary

As discussed earlier, recent models of motor learning fall short in accounting for the
high flexibility with which human motor control adapts to novel situations. On the other
hand, theories of motor control that emphasize this human ability offer no account for
sensorimotor learning. The SURE REACH model is a new framework for understanding
both, motor learning and highly adaptive behavioral control. The advancement that
this model has made for the understanding of motor learning is the combination of
the following two properties. First, it proposed a mechanism that enables effective and
unsupervised motor learning in a redundant context in which movements extend in time.
Second, motor learning is based on encoding redundant kinematics and trajectories. In
contrast to many other approaches, SURE REACH emphasizes the necessity to prepare
movements based on a general, task-independent body model. The adaptive preparation
of movements is the basis for its functionality and has enabled the model to account
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for a range of behavioral data, for example the capability to avoid obstacles or adjust
movements to fit the requirements of subsequent behavior.

The model of the movement preparation process enables to compare the model’s
behavior to many experiments that are related to movement preparation and initiation.
In this context, for example, priming effects have been already modeled successfully.
Additionally, the interaction of motor learning, movement preparation, and motor per-
formance may be examined with the model. The decrease of movement durations and
reaction times with extensive training has already been shown in the model. Likewise,
the model might also account for performance increases due to memory consolidation or
bayesian integration.

Finally, the model builds on principles that underly human learning and motor con-
trol. Multiple interdependent body space representations are organized by populations
of neurons and motor learning is realized by local learning rules. On a systemic levels,
no neural signals are provided that the brain could not easily compute. The purpose
of the neural networks presented is not to model closely the anatomy or microstructure
of motor cortical tissue. Nevertheless, it may serve as a good starting point to develop
models of cortical motor networks that detail neuroanatomical and neurophysiological
features and account for the high functionality of human motor learning and behavioral
control.

Conclusion

In conclusion, the model offers a comprehensive account of how humans adapt to
their bodies on the one side and adapt motor control flexibly to ever-changing situational
requirements and constraints on the other side. Whereas many details of the model may
be debated and some of them might be oversimplifications, I think the basic approach
that led to the development of the model is a considerable advancement in modeling
human motor learning and behavioral control. On the one hand, SURE REACH steps
behind the highly constraint and somewhat simplistic notion of human behavior that
is eminent in many current neural network models. On the other hand, it offers a
foundation for grounding abstract theories of highly adaptive behavior in unsupervised
sensorimotor learning and a neural network structure. Thus, the model opens the door to
now integrate more cognitive aspects of motor control into neural network models. These
might finally offer a real account for the intricate brain mechanisms that enable humans
to learn to move their bodies seemingly effortless and nevertheless with unmatched
sophistication.
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Bastian, A., Schöner, G. & Riehle, A. (2003). Preshaping and continuous evolution of motor
cortical representations during movement preparation. European Journal of Neuroscience,
18, 2047-2058.

Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F. & Zago, M. (2003). Multiple levels of repre-
sentation of reaching in the parieto-frontal network. Cerebral Cortex, 13 (10), 1009-1022.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.
Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon

Press.
Berthier, N. E. (1996). Learning to reach: A mathematical model. Developmental Psychology,

32 (5), 811-823.
Berthier, N. E., Rosenstein, M. T. & Barto, A. G. (2005). Approximate optimal control as a

model for motor learning. Psychological Review, 112 (2), 329 - 346.
Berthier, N. E., Singh, S. P., Barto, A. G. & Houk, J. C. (1992). A cortico-cerebellar model that

learns to generate distributed motor commands to control a kinematic arm. Advances in
Neural Information Processing Systems, 4, 611-618.

Berthier, N. E., Singh, S. P., Barto, A. G. & Houk, J. C. (1993). Distributed representation



92

of limb motor programs in arrays of adjustable pattern generators. Journal of Cognitive
Neuroscience, 5, 56-78.

Bhushan, N. & Shadmehr, R. (1999). Computational nature of human adaptive control during
learning of reaching movements in force fields. Biological Cybernetics, 81, 39-60.

Birbaumer, N. & Schmidt, R. (1996). Biologische Psychologie [Biological psychology] (3rd Aufl.).
Berlin Heidelberg, Germany: Springer.

Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1984). Posture control and trajectory
formation during arm movment. The Journal of Neuroscience, 4 (11), 2738-2744.

Bizzi, E., Hogan, N., Mussa-Ivaldi, F. A. & Giszter, S. (1992). Does the nervous system use
equilibrium-point control to guide single and multiple joint movements? Behavioral and
Brain Sciences, 15, 603-613.

Bizzi, E., Polit, A. & Morasso, P. (1976). Mechanisms underlying achievement of final head
position. Journal of Neurophysiology, 39 (2), 435-444.

Bock, O. & Arnold, K. (1992). Motor control prior to movement onset: preparatory mechanisms
for pointing at visual targets. Experimental Brain Research, 90, 209-216.

Brenner, E. & Smeets, J. N. J. (2003). Fast corrections of movements with a computer mouse.
Spatial Vision, 16 (3-4), 365-376.

Buehrmann, T. & Di Paolo, E. (2006). Biological actuators are not just springs: Investigating
muscle dynamics and control signals. In S. Nolfi et al. (Hg.), From Animals to Animats 9:
The Ninth International Conference on the Simulation of Adaptive Behavior (S. 89-100).
Berlin, Heidelberg: Springer.

Bullock, D., Cisek, P. & Grossberg, S. (1998). Cortical networks for control of voluntary arm
movements under variable force conditions. Cerebral Cortex, 8, 48-62.

Bullock, D., Grossberg, S. & Guenther, F. H. (1993). A self-organizing neural model of motor
equivalent reaching and tool use by a multijoint arm. Journal of Cognitive Neuroscience,
5 (4), 408-435.

Butz, M. V. (2005). Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system.
GECCO 2005: Genetic and Evolutionary Computation Conference, 1835-1842.

Butz, M. V. (2006). Rule-based evolutionary online learning systems: A principled approach to
LCS analysis and design. Berlin Heidelberg: Springer-Verlag.

Butz, M. V., Herbort, O. & Hoffmann, J. (2007). Exploiting redundancy for flexible behav-
ior: Unsupervised learning in a modular sensorimotor control architecture. Psychological
Review, 114 (4), 1015-1046.

Butz, M. V., Lenhard, A. & Herbort, O. (2007). Emergent effector-independent internal spaces:
Adaptation and intermanual learning transfer in humans and neural networks. Proceedings
of the International Joint Conference on Neural Networks, 20, 1970-1975.

Caithness, G., Osu, R., Bays, P., Chase, H., Klassen, J., Kawato, M. et al. (2004). Failure to
consolidate the consolidation theory of learning for sensorimotor adaptation tasks. The
Journal of Neuroscience, 24 (40), 8662-8671.

Chapeau-Blondeau, F. & Chauvet, G. (1991). A neural network model of the cerebellar cortex
performing dynamic associations. Biological Cybernetics, 65, 267-279.

Cisek, P. (2005). Neural representations of motor plans, desired trajectories, and controlled
objects. Cognitive Processing, 6 (1), 15-24.

Cisek, P. (2006). Integrated neural processes for defining potential actions and deciding between
them: A computational model. Journal of Neuroscience, 26 (38), 9761-9770.

Cisek, P. & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor
cortex: Specification of multiple direction choices and final selection of action. Neuron,
45 (5), 801-814.

Conditt, M. A., Gandolfo, F. & Mussa-Ivaldi, F. A. (1997). The motor system does not learn the



93

dynamics of the arm by rote memorization of past experience. Journal of Neurophysiology,
78, 554-560.

Contreras-Vidal, J. L., Grossberg, S. & Bullock, D. (1997). A neural model of cerebellar learning
for arm movement control: Cortico-spino-cerebellar dynamics. Learning and Memory, 3,
475-502.

Cruse, H. (2003). The evolution of cognition - a hypothesis. Cognitve Science, 27, 135-155.
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Appendix

Parameter Specifications

General Parameters

In section Simulation of Human Behavior (page 48), the following parameters were
used to evaluate the model, if not mentioned otherwise in the text: θ = 0.10; ρ = 0.10;
In the motor controller, δ decayed exponentially from 0.1 in the first time step to 0.01 in
the 1, 000, 000th time step; The learning rate in posture memory was set to ε = 0.001;
For the generation of the sensory-to-motor mappings the following factors were used:
γ = .434, β = .172.

Anticipatory Posture Adjustment

In section Anticipatory Posture Adjustment (page 57) a different model setup was
used. The three joint planar arm approximates the kinematic features of a human arm
that is restricted to the transverse plane. The lengths of the upper arm, forearm, and
hand are l1 = 32cm, l2 = 25cm and l3 = 18cm, respectively. The shoulder, elbow and
wrist joints are allowed to move within −60◦ ≤ φ1 ≤ 120◦, −160◦ ≤ φ2 ≤ 0◦, and
−80◦ ≤ φ3 ≤ 60◦, respectively.

Each neuron hi of the hand space representation ~h fires if the hand coordinates (x, y)
are close enough to the neuron’s preferred hand location (hxi ,hyi ):

hi = max(1.0− |x− h
x
i |

3.0
; 0) ·max(1.0−

|y − hyi |
3.0

; 0)

The preferred hand locations are arranged in a 51× 26 = 1326 grid with 3cm distance,
covering a 150cm × 75cm rectangle, which covers the upper half of the arm’s work
space. The shoulder joint is centered on the lower line of this rectangle. Arm postures
are encoded in a similar population of neurons ~p, where each neuron pi is activated
according to the following equation:

pi =
3∏
j=1

max(1.0−
|φj − p

φj

i |
20.0◦

; 0),

where p
φj

i are the preferred joint angles of each neuron pi, which are arranged in a
10 × 9 × 8 = 720 grid covering the entire posture space. The distance between two
adjacent neurons is 20◦.

Only n = 6 action columns are used, two actuating each joint. Motor command
activation is normalized (1-norm) so that the arm moves with a gain of g = 2.25◦ in
posture space, in each time step. During motor learning, a new set of motor commands
was generated by setting each motor command to 1.0 with a probability of p = 0.3 and
to 0.0 otherwise, in random intervals of 1 to 8 time steps.
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Obstacle Avoidance

In the first obstacle avoidance task (page 61), neurons with preferred values within
the rectangle with top left corner at (−2.4, 0.8) and bottom right corner at (−0.8,−0.8)
were considered part of the left obstacle and inhibitory activations of these neurons were
set to 1.0. The corners of the rectangle representing the right obstacle were (0.8, 0.8)
and (2.4,−0.8). In the second task, state neurons with preferred values that had a
y-component of at least 1.0 were considered part of the ceiling obstacle. The obstacle
avoidance tasks were performed with the same 10 controllers that were used in the
Constrained Joint-Angle Spaceßection.

Simulation Code

A demo program, the simulation tools, the running code and the source code of both,
documentation and syntax files for SPSS (14) can be found on the web at:

http://www.psychologie.uni-wuerzburg.de/i3pages/SURE_REACH/

Simulation Systems

The model is implemented in JAVA 1.6. The experiments were run on a standard
office computers (Pentium 4 HT 3.2GHz and Intel Core 2 Duo). Training and evaluating
a single controller took approximately 25 minutes.


