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Summary

The goal of this doctoral thesis is to identify appropriate methods for the estimation
of connectivity and for measuring synchrony between spike trains from in vitro
neuronal networks. Special focus is set on the parameter optimization, the suitability
for massively parallel spike trains, and the consideration of the characteristics of real
recordings.

Two new methods were developed in the course of the optimization which outper-
formed other methods from the literature. The first method “Total spiking probability
edges” (TSPE) estimates the effective connectivity of two spike trains, based on the
cross-correlation and a subsequent analysis of the cross-correlogram. In addition to
the estimation of the synaptic weight, a distinction between excitatory and inhibitory
connections is possible. Compared to other methods, simulated neuronal networks
could be estimated with higher accuracy, while being suitable for the analysis of
massively parallel spike trains.

The second method “Spike-contrast” measures the synchrony of parallel spike trains
with the advantage of automatically optimizing its time scale to the data. In contrast
to other methods, which also adapt to the characteristics of the data, Spike-contrast
is more robust to erroneous spike trains and significantly faster for large amounts of
parallel spike trains. Moreover, a synchrony curve as a function of the time scale
is generated by Spike-contrast. This optimization curve is a novel feature for the
analysis of parallel spike trains.



Zusammenfassung

Ziel dieser Dissertation ist die Identifizierung geeigneter Methoden zur Schatzung
der Konnektivitdt und zur Messung der Synchronitdt von in-vitro Spike-Trains.
Besonderes Augenmerk wird dabei auf die Parameteroptimierung, die Eignung fiir
groBe Mengen paralleler Spike-Trains und die Berlicksichtigung der Charakteristik
von realen Aufnahmen gelegt.

Im Zuge der Optimierung wurden zwei neue Methoden entwickelt, die anderen
Methoden aus der Literatur Gberlegen waren. Die erste Methode “Total spiking pro-
bability edges” (TSPE) schatzt die effektive Konnektivitéat zwischen zwei Spike-Trains
basierend auf der Berechnung einer Kreuzkorrelation und einer anschlieBenden
Analyse des Kreuzkorrelograms. Neben der Schatzung der synaptischen Ge-
wichtung ist eine Unterscheidung zwischen exzitatorischen und inhibitorischen
Verbindungen médglich. Im Vergleich zu anderen Methoden, konnten simulierte
neuronale Netzwerke mit einer héheren Genauigkeit geschéatzt werden. Zudem
ist TSPE aufgrund der hohen Rechengeschwindigkeit flir groBe Datenmengen
geeignet.

Die zweite Methode “Spike-contrast” misst die Synchronitat paralleler Spike-Trains
mit dem Vorteil, dass die Zeitskala automatisch an die Daten angepasst wird. Im
Gegensatz zu anderen Methoden, welche sich ebenfalls an die Daten anpassen, ist
Spike-contrast robuster gegeniiber fehlerhaften Spike-Trains und schneller fir gro3e
Datenmengen. Dariiber hinaus berechnet Spike-Contrast eine Synchronitatskurve
als Funktion der Zeitskala. Diese Kurve ist ein neuartiges Feature zur Analyse par-
alleler Spike-Trains.






Chapter 1

Introduction

1.1 Motivation

How does the brain work? Evidences for stone age cranial surgery around 7000
years ago (Alt et al., [1997) could indicate that this question has been of concern to
mankind for a long time. Still, in the 21th century, there are many challenges in neu-
roscience (Markram| |2013) and the underlying mechanisms of basic brain functions
are incompletely understood (Rees et al., [2002).

Understanding the brain is motivated by various areas that have a major impact on
our daily lives: |Gustavsson et al.| (2011) estimated that at least a third of all people
in the EU were affected by brain disorders in 2010, mostly anxietey disorders (12%),
followed by migrain (10%), mood disorders such as depression (6%), addiction (3%),
psychotic disorders such as schizophrenia (1%), dementia such as Alzheimer’s dis-
ease (1%) and other disorders EL which account for an estimated 25% of all direct
health care costs. In developing countries, the proportion of the population with
brain disorders such as depression and anxiety are rated even higher (WHO, [2017).
Understanding the mechanisms of brain disorders will help to improve treatments
such as deep brain stimulation (Mayberg et al., [2005), surgery (Téllez-Zenteno et al.,
2005), treatment with psychopharmaca (Cooper et al., |2003) or psychedelics (Mut-
toni et al., [2019), meditation (Fox et al., [2014), and to understand neurotoxicological
effects due to chemicals (Bondy and Campbell, 2005), to radiation (Dropcho, 2010),
or stress (De Kloet et al., 2005). It can further improve knowledge of emerging brain
properties such as human and social behavior (Dumas et al., [2011), or even ad-
dress philosophical questions about the nature of consciousness (Schwartz et al.,
2005|;|Dehaenel [2014).

Knowledge about the brain can be transferred to other areas: Bio-inspired comput-
ing such as artificial neural networks (Kar, [2016) or even new discoveries through
curiosity-driven basic research can be expected (Botstein, [2012;|Amon, |2015). Even
in the field of astronomy, there is evidence that the network of cosmic galaxies is sim-
ilar in structure and complexity to the neuronal networks in the human brain (Vazza
and Feletti, 2017). The human brain consists of 10! neurons (Williams and Herrup,
1988) and is one of the most complex systems.

epilepsy (0.5%), stroke (0.3%), Parkinson’s disease (0.2%), traumatic brain injury (0.2%), multiple
sclerosis (0.1%), brain tumor (0.05%),
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1.2 Connectivity and synchrony

What is the current understanding of how the brain works? Current theories and
research on brain function differ in their perspectives on certain characteristics
of the brain. Among others, different spatial and temporal scales are considered
(Amunts et al) [2016). It is assumed that brain functions can be understood by
recording every action potential from every neuron in the brain, which allows to draw
conclusions about brain connectivity (Alivisatos et al. 2012). Such connections
are called “functional connectivity” because they are defined by their function,
which is the transmitted signal. Functional connectivity is a subset of the physical
connectivity of neurons, also known as “structural connectivity”. More precisely,
functional connectivity is defined as the statistical correlation between signals
generated by two neurons and also can contain the information about the direction
of signal propagation. If the functional connectivity contains information about the
direction and also allows a distinction between excitatory or inhibitory connections,
it is called “effective connectivity” or “causal connectivity” (Yu et al., 2017). In a
broader sense, effective connectivity is based on a coupling model and refers to
the influence between two neuronal systems, either at the synaptic level or at the
population level (Friston, 2011).

Self-organization is a fundamental brain operation in brain dynamic. The pertur-
bation of spontaneous brain activity causes the brain to adjust to its environment
(Buzsaki et al., |2013) by changing its effective connectivity. Many brain theories
regard this adaptation as a process of optimizing the brain to understand its outside
world. One of these theories is the free-energy principle by |Friston| (2010), which
possibly unifies all optimization-based theories (e.g. the Bayesian brain hypothesis,
the principle of efficient coding, and the cell assembly theory by Hebb). Common to
all these theories is that a change in network connections is necessary for the brain
to adapt to its environment. The investigation of functional or effective connections
is therefore an important task in neuroscience (Friston, [1994b, 2011} |Poli et al.,
2015bj Yu et al., [2017).

Depending on the functional or effective connectivity, neuronal firing within a network
can synchronize (Yu et al., 2017). Synchronization is an emergent property of cou-
pled oscillators (Dorfler et al., 2013) and can generally be defined as a process of
adjustment of rhythms between interacting self-sustained oscillators (Pikovsky et al.,
2003). Neurons can be regarded as oscillators such as the so-called “pacemaker
neurons” generating rhythmic burst activity (Ramirez et al., 2004). The similar terms
“synchrony” and “synchronicity” should not be confused as they are used in different
contexts. The term “synchrony” means “the state of two or more events occurring
at the same time”, whereas “synchronicity” is used for a concept in psychologyﬂ
Whether two events can be considered synchronous depends on how “at the same
time” is defined. In neural networks, the time window in which two events are consid-
ered synchronous can be defined differently. The time window can either be absolute

2The term “synchronicity” is a concept introduced by Carl Jung that describes a “meaningful coinci-
dence of two or more events where something other than the probability of chance is involved” and is
usually used in the context of paranormal phenomena (Jung) [1997;|Cambray, 2002).
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due to latencies or synaptic delays (Jeffress| [1948; Bahmer and Langner, 2006) or
it can be relative to the oscillation rhythms. For instance, oscillations in the brain
vary between milliseconds and slower time scales, such as the 24-h period of the
circadian rhythm (Buzsaki, [2006).

Synchrony in complex neuronal networks is thought to play a key role in neuro-
science as it is related to cognitive processes (Ward, |2003), sensory awareness
(Engel and Singer, 2001), pathological states such as epilepsy (Fisher et al., [2005),
and tremors caused by Parkinson’s disease (Pare et al., [1990; /Arnulfo et al., 2015).
The reason why synchrony is fundamental to the neurosciences is well illustrated
by the example of the electroencephalography (EEG). The higher the number of
neurons which fire synchronously, the higher is the EEG power in the correspondig
frequency band (Klimesch, [1999; Buzsaki et al., 2012). In epilepsy, the synchrony
over large brain areas or certain networks is increased (Schevon et al., |2007). In
the context of higher brain functions, synchrony has been suggested as a possible —
albeit controversial (Shadlen and Movshon| [1999) — solution to the “binding problem”
(Singer, [1999). The binding problem describes the problem of how different sensory
stimuli are segregated or combined by the brain. For example, different locations
of the visual brain are functionally specialized to analyze different features such as
shapes and colors (Zeki, [1978). The question of the binding problem is: How does
the brain combine or segregate them correctly? Synchrony may “tag” the features
together. There is also evidence that spike synchrony is used to carry information
complementary to a firing rate code. For example, Kilavik et al.| (2009) showed that
intensive practice of a particular task leads to increased spike synchrony and a re-
duced spike rate in the motor cortex. Furthermore, it is suggested that synchronized
cell assemblies are involved in non-linear computations (Tetzlaff et al., [2015). Syn-
chronized activity is also the fundamental feature in the “synfire chain” model pro-
posed by |Abeles (2012) to explain reliable signal transmission over the network. A
synfire chain is a feed-forward network of excitatory neurons organized in different
layers. A neuron of a layer is connected to all neurons of the next layer. Network ac-
tivity propagates synchronously or asynchronously. In addition to synchrony within
the brain, there is also synchronization between interacting brains. For example, a
listener’s brain activity synchronizes with the speaker’s brain activity (Dumas et al.,
2011) or brain activities synchronizes between musicians playing in unison (Wash-
burn et al., 2019).

1.3 Connectivity estimators and synchrony mea-
sures

The study of network dynamics defined by connectivity and their emergent prop-
erties such as synchrony plays a central role in neuroscience. To investigate
such networks, the network activities have to be recorded. With methods that use
microelectrode arrays (MEAS), extracellular and, depending on the technology, even
intracellular neuronal activity can be recorded over time from a neuronal network
at different spatial positions (Spira and Hai, 2013). Since it is assumed that the
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information is mainly encoded by the temporal occurrence of action potentiaIsE]
(Riekel [1999), the recorded neuronal activity is reduced to spike time series using
a spike-detection method (Wilson and Emerson, 2002} |Lieb et al., 2017). Such a
sequence of spike times is called a “spike train”.

By comparing the spike trains of two neurons, the functional or effective connec-
tivity of these neurons can be estimated using functional or effective “connectivity
estimation” methods (e.g. see (Garofalo et al.| (2009b)). If the functional or effective
connectivity of all neuron pairs is estimated, a network graph can be constructed.
The network topology can be further characterized using complex measuers from
graph theory such as the network centrality (Rodrigues) [2019) or small worldness
(Poli et al., |2015b). Connectivity estimation in combination with complex measures
from graph theory therefore enables the analysis of spike trains and the investigation
of neural networks.

Another way to analyze spike trains is to measure the synchrony between two or
more spike trains using “synchrony measure” methods (e.g. see |[Eisenman et al.
(2015)). Such methods usually provide a single value that quantifies the synchrony
level of the entire recording.

Studying methods from the class of functional or effective connectivity estimators and
methods from the class of synchrony measures can be confusing because network
connectivity and synchrony are related as discussed in section For example,
methods for estimating functional connections apply synchrony measures to esti-
mate the strength of the connection (e.g. cross-correlation (Garofalo et al., 2009b)).
Further confusion can arise because some analysis methods focus on finding the
temporal position of significant synchronous events (Grin et al., [2002), estimating
signal propagation (Kreuz et al., 2017), or identifying neural subpopulations within a
network (Gerstein, |2010; [Satuvuori et al., [2018). Other measures quantify the syn-
chrony level of the entire spike train (Eisenman et al.,2015) which is the focus of this
work. It should be noted that a spike train is not a continuous signal but a sequence
of discrete events. Synchrony measures and connectivity estimators for continuous
signals — such as for EEG signals (Dauwels et al., 2010; |[Haufe et al., [2013) — are
not considered here. Likewise, synchrony measures between spikes and local field
potentials are described elsewhere, e.g. in|Li et al.| (2019).

Another reason for confusion is the different terms used in the literature regarding
synchrony measures. Terms such as spike train “measure” (Paiva et al.l 2010),
“synchrony” (Eisenman et al., 2015), “(dis)similarity” (Schreiber et al., |2003}; De-
Marse et al., |2016), “correlation” (Cutts and Eglen, 2014), or “distance[’_f]’ (Victor and
Purpura, (1996; |Quian Quiroga et al., |2002) are used depending on the research
question. In this work, the term “synchrony” is used.

Many methods have been proposed in the literature for estimating connectivity
(Gourévitch and Eggermont, [2007c; |Garofalo et al., 2009b; |Isomura et al., [2014b;
Poli et al.,[2016b) and measuring synchrony (Selinger et al., 2004} Paiva et al., |2010j;

31t should be noted, that the Holonomic Brain Theory considers also sub-threshold oscillations within
fine dendritic patches of a neuronal network as a carrier of Fourier-transformed information according to
the principles in holography (Pribram and Carlton, |1986). In this case, spikes are only a subset of the
whole information.

4If a distance measure is inverted, it can be used as a synchrony measure or vice versa.
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Cutts and Eglen, 2014} [Eisenman et al., 2015} [Satuvuori et al. [2017). However,
there is currently no gold standard, which means that a variety of methods are
used, making it difficult to compare research. Furthermore, some of these methods
depend heavily on parameters that have to be selected by the user. If different
parameters are chosen, even identical methods are no longer comparable. In
addition, there is a risk of selecting parameter values that are not suitable, especially
if the data contains several time scales (Chicharro et al., [2011). In the worst case,
an inappropriate choice of parameter leads to misinterpretations, as in the case
of the correlation index when choosing a time scale parameter that is too large
(Tchumatchenko et al., 2011).

Example applications where spike trains have to be analyzed are in vivo recordings
in the context of basic research (Kilavik et al., |2009) or pharmacological (Chiap-
palone et al., 2003) or toxicological (Johnstone et al., 2010) studies using in vitro
neuronal networks on MEAs. Recently, standard MEAs with 60 electrodes are more
and more replaced by CMOS-based high density microelectrode arrays (HDMEASs)
with between 500 and 20.000 electrodes (Litke et al.,2004}; Berdondini et al., |2009b);
Dragas et al., |2017; |Yuan et al., 2020) due to improved statistical significance of the
network activity (Maccione et al.l 2010) and for the investigation of effects down to
the single cell level (Yuan et al., [2020). Such experiments generate massively paral-
lel spike trains, which challenges the analysis methods with regard to the calculation
speed.

Since the beginning of experiments with neuronal networks on MEAs, mainly
neurons from animals have been used (Pine, 2006). Recently, however, stem
cell-derived human neurons are increasingly being used to examine the possibility
of replacing animal models (Amin et al., [2016). Especially in the early stages of
development, these neurons generate signals with low signal to noise ratio (SNR)
(Amin et al.l 2016). This increases the likelihood of erroneous spike trains due to
spike detection errors (Lieb et al.,2017). It is desirable that connectivity estimators
and synchrony measures are as robust as possible to such errors and at the same
time as sensitive as possible to the effect examined.

Previous comparisons of connectivity estimators (Garofalo et al., |2009b; [Poli et al.|
2015b) as well as comparisons of synchrony measures (Kreuz et al., |2007b; |Paiva
et al, |2010; [Cutts and Eglen, 2014; [Eisenman et al., [2015) did neither consider
the usability for massively parallel spike trains from HDMEAs recordings, nor the
robustness against erroneous spike trains. Furthermore, there is no established pro-
cedure to compare and benchmark connectivity estimators or synchrony measures
with respect to signals of in vitro neuronal networks. In comparisons of connectivity
estimators, only simulated neuronal networks with about 100 neurons were consid-
ered, which did not take into account the complexity of experimental data (Garofalo
et al., |2009b; [Poli et al., |2015b). In vitro neuronal networks usually contain between
50,000 to 300,000 neurons (Novellino et al., [2011). Neuronal signals show a wide
diversity in signal characteristics depending on the size, density, and topology of the
network as well as the neuron type (Reimer et al.,|2012). This diversity is difficult to
address in simulated data. [Eisenman et al.[|(2015) therefore used experimental data
of in vitro neuronal networks on MEAs to compare different synchrony measures.
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In this study, however, only a small part of the available synchrony measures was
considered. Furthermore, the data are not publicly available, which prevents the
inclusion of new synchrony measures in the study, such as the recently developed
measures of Satuvuori et al.| (2017). The present work aims at filling these open
issues.

1.4 Aims of the work

The following research question arises from the discussion in the previous section.
What are the most appropriate connectivity estimators and synchrony measures for
spike train signals from in vitro neuronal networks considering

(a) the choice of appropriate parameter values,
(b) the suitability for massively parallel spike trains such as from HDMEAs, and

(c) the characteristics of experimental data such as different time scales or erro-
neous spike trains?

In order to answer this question, evaluation methods have to be developed that
include the characteristics of experimental data. The developed evaluation methods
should be publicly available in order to help the research community to establish a
uniform benchmarking.

The structure of this work is as follows. Chapter [2| contains the publication Total
spiking probability edges: A cross-correlation based method for effective connectiv-
ity estimation of cortical spiking neurons by De Blasi et al.| (2019) which compares
functional connectivity estimators and introduces a novel method called “total spiking
probability edges (TSPE)” to estimate the effective connectivity. Chapter 3] contains
the publication Spike-contrast: A novel time scale independent and multivariate mea-
sure of spike train synchrony by |Ciba et al.| (2018) which introduces a novel method
called “Spike-contrast” to measure spike train synchrony. Chapter |4] contains the
publication Comparison of different spike train synchrony measures regarding their
robustness to erroneous data from bicuculline-induced epileptiform activity by |Ciba
et al.| (2020) which compares and evaluates different spike train synchrony measures.
The general discussion is provided in chapter[5]
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Abstract

Background:

Connectivity is a relevant parameter for the information flow within neuronal net-
works. Network connectivity can be reconstructed from recorded spike train data.
Various methods have been developed to estimate connectivity from spike trains.

New method:

In this work, a novel effective connectivity estimation algorithm called Total Spiking
Probability Edges (TSPE) is proposed and evaluated. First, a cross-correlation
between pairs of spike trains is calculated. Second, to distinguish between
excitatory and inhibitory connections, edge filters are applied on the resulting
cross-correlogram.

Results:

TSPE was evaluated with large scale in silico networks and enables almost perfect
reconstructions (true positive rate of approx. 99% at a false positive rate of 1% for
low density random networks) depending on the network topology and the spike
train duration. A distinction between excitatory and inhibitory connections was
possible. TSPE is computational effective and takes less than three minutes on a
high-performance computer to estimate the connectivity of an one hour dataset of
1000 spike trains.

Comparison of existing methods:

TSPE was compared with connectivity estimation algorithms like Transfer Entropy
based methods, Filtered and Normalized Cross-Correlation Histogram and Nor-
malized Cross-Correlation. In all test cases, TSPE outperformed the compared
methods in the connectivity reconstruction accuracy.

Conclusions:

The results show that the accuracy of functional connectivity estimation of large scale
neuronal networks has been enhanced by TSPE compared to state of the art meth-
ods. Furthermore, TSPE enables the classification of excitatory and inhibitory synap-
tic effects.
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2.1 Introduction

The human brain consists of billions of neurons and one of the current scientific
challenges is to understand the information processing within the brain. For this pur-
pose, it is desirable to analyze and maybe one day even comprehend the neuronal
information flow based on sequences of action potentials.

The brain is a huge network formed of neuronal populations connected to each other
via synapses, axons and dendrites. Understanding of basic concepts of the con-
nectivity within our nervous system will be crucial for elucidating how neurons and
neural networks process information. Definition of connectivity is generally made at
three different levels: structural, functional, and effective |Friston| (1994a); |Poli et al.
(2015a). Structural connectivity describes the anatomic and mostly static connec-
tions within a physical network containing synapses and neurons. Functional con-
nectivity is a statistical concept that defines the correlation between all network neu-
ron activities, depending on which physical connections transmitted action potentials.
Effective connectivity focuses on the causality in a network [Poli et al.| (2015a) includ-
ing directed connections addressing the question which neuron is source and which
is target. By means of the effective connectivity it is possible to discriminate between
inhibitory or excitatory synaptic effects and to determine synaptic strength.
Functional relation within in vitro neuronal networks can be analyzed by the tempo-
ral correlation between recorded spike trains. Existing methods for the estimation
of functional or effective connectivity calculate relations between the activities of dif-
ferent neurons, e.g. incoming synaptic action potentials influence the behavior of
the receiving neuron. Functional or effective connectivity estimation algorithms ap-
plied on spike trains estimate connections strengths between network nodes. These
connection strengths can be displayed for illustration in a connectivity matrix (CM).
CM values strongly depend on the applied algorithm in contrast to synaptic weight
matrix (SWM) which contains synaptic parameters depending on the neuron model.
To estimate the functional or effective connectivity different methods based on infor-
mation theory |Gourévitch and Eggermont| (2007a); Garofalo et al.| (2009a), pattern
recognition |Perkel et al.| (1967); [Masud et al.| (2017), model fitting |lsomura et al.
(20144a); [Friston et al.| (2011) or data mining Diekman et al.| (2014) have been de-
veloped and applied. The quality of the results is strongly dependent on data sets
gained from in vivo or in vitro neural networks.

Some methods are not developed for large and complex networks, for example
estimating the connectivity by modeling in silico neuronal networks [Isomura et al.
(20144, 2015); |Friston et al.| (2011) or by using data mining methods |Diekman et al.
(2014). Another method is Partial Correlation, which is able to distinguish between
direct and indirect connections by considering linear contributions. Partial Correla-
tion estimates connectivity precisely for in silico with a small amount of neurons, e.g.
130 neurons [Kadirvelu et al.| (2017). However, Partial Correlation is inaccurate for
large scale network models |Poli et al.| (2016a) because of the complex amount of
possibilities for considered indirect contributions. Therefore, in this work we focus on
a scenario measuring signals of a small subset of a large scale neuronal network,
which is more realistic for most in vitro and in vivo applications.

As the number of electrodes in electrophysiological recordings have increased up to
several thousands accompanied with huge data sets, used algorithms for connectiv-
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ity analysis have to be highly computationally effective.

For this purpose, a novel connectivity estimation method, called Total Spiking Prob-
ability Edges (TSPE), based on cross-correlation and edge filtering at different time
scales is proposed and the theoretical framework is outlined in this work. TSPE
enables the classification between inhibitory and excitatory connections, which is a
feature of effective connectivity estimation.

By means of simulated data sets encompassing various topologies (random and
scale-free) results of TSPE are compared to a wide range of state-of-art connec-
tivity estimation algorithms, including filtered and normalized cross-correlation his-
togram (FNCCH) [Pastore et al.| (2018b), delayed transfer entropy (DTE), delayed
higher order transfer entropy (DHOTE), delayed transfer entropy coincidence in-
dex (DTECI), delayed higher order transfer entropy coincidence index (DHOTECI)
Stetter et al.| (2012); |lto et al.| (2011), normalized cross-correlation (NCC) [Beden-
baugh and Gerstein|(1997), normalized cross-correlation coincidence index (NCCCI)
and combined high order transfer entropy (CDHOTE). Each of these algorithms is
adapted to connectivity estimation for large scale networks and described in the
attachment. Evaluated algorithms are applied on every combination of a possible
source neuron X and target neuron Y in the network to be explored. For each neu-
ron pair, dependency in both directions are studied. The knowledge about causal
relationships between neurons is another feature of effective connectivity estimation.
The TSPE algorithm and evaluation framework is implemented in MATLAB and avail-
able on https://github.com/biomemsLAB/TSPE.
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2.2 Methods

2.2.1 Connectivity estimation algorithm TSPE
The proposed effective connectivity estimation method TSPE is based on the following assumptions:

o If the spike rate of a neuron increases after it has received an input signal, the connection is considered
excitatory. Due to refractory times of the receiving neuron, the spike rate drops again after the excitatory
input signal. The resulting cross-correlogram of emitting and receiving spike train shows a maximum
(excitatory input) followed by low values (refractory time).

¢ If the spike rate of a neuron decreases after receiving an incoming action potential, the connection is
considered inhibitory. The resulting cross-correlogram of emitting and receiving spike train shows a
minimum (inhibitory input) surrounded by high values (activity before and after the inhibitory input). In
this way inhibitory stimulation can only be identified if the receiving neuron is active before the stimulation.

In order to capture these local maxima and minima of the cross-correlogram, we apply an edge filter to
the cross-correlogram. More precisely, the cross-correlation between spike train X and spike train Y (see
Fig. (c)) is calculated (see NCC in the attachment) to obtain the cross-correlogram NCCxy 4y, where d is
the temporal displacement (see Fig. (d)). Next, the filter is applied by convolving NCCxy (4 with 1D edge
filter g, (Fig., resulting in spiking probability edges (SPE)

SPEX_>y(d) = NOCXy(d) * g(i)- (21)
(a) (b) (d) O%gcxn((d) %gEX>Y(d) +
13 ms ' ‘ ' ‘
X > Y X z 8 0.2
» * : |
\ > 0.25 \ 04
\2 Mms Y HIN '
\ g Y 0 —
\ Ve l%. . 0.15 ) \\ \\\ | -
- NN / N\~ -0.1 .
Z \/ - Y \ \\/‘
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Figure 2.1: Principle of SPE: An exemplary network of three neurons (a) with a synaptic weight matrix (SWM)
(b). Neuron X has an excitatory impact on Y with a latency of 13 ms after activation, while X is influenced
by an inhibitory input of Z with a latency of 2ms. (c) Spike trains of the three neurons X, Y and Z. (d)
NCC of neuron pair X — Y and Z — X (left column). The convolution of the NCC with an edge filter g,
results in the respective SPE (right). Global maxima (excitatory) and minima (inhibitory) are indicated by red
and blue arrows, respectively. The latency can be seen on the abscissa. Areas in the left column show the
corresponding areas for the calculation of the maximum and minimum (green: addition, red: subtraction).

We define the edge filters as a function g;) with window size parameters «a, b, c (in sampling periods, see
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Fig. 22 (a).
-1 ifo<i<a
= fatc<i<a+b+ec

In=93 , . , (2.2)
- ifat+b+2c<i<2a+b+2c

0 else.

a is the window size for the surrounding area of the point of interest which is used to calculate the local spiking
probability average. b is the window size of the observed area. Small values for b increase the sensitivity for
single outliers at the cross-correlogram. To avoid the including of overlapped spiking probabilities of interest
with the local spiking probability average a soft crossover parameter ¢ can be used. For an in silico evaluation
with constant transmission times and a simple neuron model the usage of ¢ is not necessary. Note that without
using ¢ the spiking probability edges of complex networks (in vitro or in vivo) can be smoothed, which is
disadvantageous for an edge detection.

(b)

(a

TIN N—

s ©

Figure 2.2: Design of edge filter ;) and running total filter 7.;): (a) The designed edge filters have an
arithmetic mean of zero and are applied to the cross-correlogram. (b) The running total filters are designed by
the same parameter b of the corresponding edge filter.

If the mean of function g(;) is zero, the calculation results in an arithmetic mean of zero for SPE,, which
prevents an offset for the resulting value range of SPE . If NCCx_,y 4 shows alocal maximum, SPEx_y (4
leads to a positive peak, while a local minimum for NCCx_,y (4 results in a negative peak, see Fig (d).
Thus, negative peaks of SPEx_,y 4y indicate an inhibitory effect of neuron X to neuron Y while positive
peaks correspond to excitatory effects. By considering the highest absolute value of SPEx_,y (4), the synaptic
relation X — Y is obtained.

Since the network activity is significantly higher at periods of network bursts, this leads to a local offset of
SPEx_,y ) and distort the calculation by overestimating the influences on receiving neurons. Normalization
can reduce this unwanted impact. For this purpose, each SPE 4 is divided by the sum over all neuron pair
results for the delay d,

SPEx _y ()

X=N Y=N :
X=1 Y=1 SPEX—>Y(d)

SPEY L,y = (2.3)
Parameter values a = 5, b = 4, and ¢ = 0 (no smoothing) provided the best results to our simulated data. Thus,
this combination captures the time constant of the used neural model. For more realistic applications different
time scales should be considered because neurons are able to emit action potentials in several firing patterns.

To cover multiple spiking behaviors of neurons SPEgHy(d) is extended by the integration of many combina-
tions of filter parameters we chose a = [3,4,5,6,7,8], b = [2, 3,4, 5, 6], ¢ = [0, 1] with vector length N,, Np, N..
We found that low values of ¢ and b increase the sensitivity to noise whereas high values do not affect results.
Further N, - N, - N. combinations were taken into account. This introduces different lengths of convolution

results SPE;?iy(d) (n is the index of the used edge filter). To obtain result vectors with same length 1D
running total filters hgf)) (see Fig. (b)) are applied to SPE;((’L),YM). For each edge filter g((;;> a corresponding
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running total filter is designed (2.4) by using the same parameter b from (2.2).

1 ifo<i<b
hey = (2.4)
0 else.
As all SPE;?’ Sy (d) have the same length, a matrix is obtained by introducing a row for each calculated
SPEgg’zy( (see Fig. (d)). An vertically addition of this matrix enables the consideration of different time
scales.
RN (n)
TSPEx v = , SPEY", . *hi (2.5)
n=1

The resulting TSPEx_,y(q values are interpreted as described before for SPE;_,Y( Q- The sign of
TSPEx_y @) with d at the absolute extreme value allows a discrimination between inhibitory from excitatory
effects.

(a) ( )

spE'Y , Hl
NCC(d)/\/\/m & g((li)) * H(ll)) "__(d)*_() ------------ — , )
T (d) n (Index of SPE'{* hy))

NCC(d)M g(.) |)

Figure 2.3: Principle of TSPE: (a) After the SPE|, is calculated by a convolution of NCC'(4) with an edge

filter g(l)) (see Fig. , a second convolution with a 1D running total filter h(l) is performed. (b) The result of

the second convolution SPEE“)) hgj)) is plotted with a gray scale plot. Dark color indicates a high value at a

certain delay time d. (c) In order to capture the variance of time constants of the neurons, » edge filters g(;) are
calculated for different window parameters. By n = 9 filtering operations, a three dimensional representation is
obtained (d). The abscissa is the delay time and the ordinate is the index of calculated SPEEd) * h(;y, while the
gray scale indicates the resulting value. The green marked convolution (b) can be found in function (d) as first
row, which is also marked green. The resulting TSPE 4 can be obtained by adding the values vertically. The
absolute maximum is the most likely point of effect, which is marked red.

2.2.2 Implementations

For DTE, DHOTE, DTECI and DHOTECI we used the toolbox described in|lto et al.| (2011), which is a MATLAB
executable (MEX) application. CDHOTE is based on the calculations of DTECI and DHOTECI. The imple-
mentation of NCC, NCCCI, FNCCH and TSPE are realized with sparse matrices multiplications (unbinned
simulation data, approx. 0.2% filled). All spike trains are stored in a common sparse matrix with the length
that equals the sampling number. This matrix is multiplied with the transposed and time shifted matrix. The
normalization matrix is calculated by multiplying the standard deviation (SD) vector with the its transposed
version. For a faster calculation of TSPE the mean values of spike trains (0.005 to 0.04 at bin size of 1 ms)
were omitted, because they did not affect the accuracy.
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2.2.3 Evaluation methods
Simulation

For the evaluation of connectivity estimation algorithms, neuronal network behavior was simulated with the
Izhikevich model, which is designed for large scale simulations [Izhikevich| (2003). The change over time of the
membrane potential v in mV is

=004 v +5 v +140 —u+ 1T (2.6)

and the recovery variable u is
U= ary - (bIZ U — u), (27)

which takes the inactivation of sodium Na* and activation of potassium K+ channels into account. Variable I
is the synaptic current and a7z is the time scale parameter for u, while bz describes the sensitivity of u to the
sub-threshold fluctuations of v.

By reaching the threshold of v > 30 mV, the neuron emits an action potential and the refractory period is
activated. In that case variables v and u are changed obeying the rule (2.8). ciz is the reset potential and
parameter dyz describes the reset value of the recovery variable « after each spike,

if v>30mV,thend = 2 (2.8)
u=u-+dg
Parameters are for regular spiking (RS) excitatory neurons a;z = 0.02; b1z = 0.2; ¢z = —65; diz = 8. Parame-

ters for fast spiking (FS) inhibitory neurons are arz = 0.02; b1z = 0.2; ¢z = —65;diz = 2. The sampling rate of
simulation is 1 kHz, which is enough to separate action potentials and a standard |Izhikevich| (2003). Synaptic
transmission times are between 1 and 20 ms, which is realistic for monosynaptic delay times in cortex Mason
et al.[(1991); Swadlow| (1994). The distribution of delay times was chosen uniformly.

Each simulated network contains 1000 neurons, which is a standard for large scale in silico models |Izhike-
vich| (2003). Electrophysiological recording methods can only measure a subset of the signals of a neuronal
network. In order to take this into account only a subset of the simulated network is used for the connectiv-
ity estimation evaluation. Each subset contains 100 spike trains from randomly chosen 80 excitatory and 20
inhibitory neurons. This ratio of 4 to 1 reflects the observations in cortex and is also used in the large scale
network. A square symmetric SWM with size of the number of neurons stores the synaptic properties of the
network. The evaluation includes various network types and complexities:

e Random networks Erdos and Rényi (1959) with connection probability p = 0.05, p = 0.1 and p = 0.15

e Watts-Strogatz (WS) small-world networks |Watts and Strogatz (1998) with a mean degree of 100 and a
rewiring probability of 0.5

e implementation of Catanzaro (IC) scale-free networks|Catanzaro et al.| (2005) with a minimum degree of
10and v =2.0

e Barabasi—Albert (BA) scale-free networks Barabasi and Bonabeau| (2003) with step wise growing of 24
connections (12 input- and 12 output-synapses)

Since random networks are used for the evaluation of many connectivity estimation algorithm evaluations
Garofalo et al.[(2009a); |lto et al.| (2011); |[Pastore et al.| (2018a), the Erdos—Renyi (ER) random network topol-
ogy [Erdos and Renyil (1959) was implemented using different connection probabilities p, following a Poisson
distribution for input- and output-degrees. The mean degree of the random network in Figure [2.4] for example
is five, see degree distribution in Figure [2.4] By setting a connection probability p, a random network with N
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neurons has a mean degree of N - p. Random networks with different connection probabilities are simulated to
study effects of increasing network complexity on the algorithm accuracy.

Random network Scale-free network

[7p] [7p]
Q Q
o ©
o o
C C
Y— Y—
o o
| - | -
Q Q
o) o)
e £
3 05 Number of links E: °  Number of links

Figure 2.4: Topologies of random and scale-free networks: A random network is constructed choosing a
constant connection probability. All nodes have approximately the same degree. The degree distribution for
random networks is bell shaped. Most nodes of the network have five synapses. The construction of a scale-
free network differs. Hub nodes are marked red and have a larger number of connections than the average of
the scale-free network. lts distribution of node linkages is formed like a power law function. Thus, there are
many nodes which are sparsely connected while some hubs are able to have lots of links.

Furthermore, a small-world topology is applied for evaluation because some studies Humphries et al.| (2006)
suggest that the neuronal network has small-world features. However, it is still controversial which network
type it is exactly [Muldoon et al.| (2016). For a realistic simulation of in vitro spike trains, a log normal distri-
bution for intracortical spontaneous mean firing rates (MFRs) |Song and Wang| (2005) is desired. One way to
ensure more realistic MFRs is to model so called scale-free topologies for large scale neural network simula-
tions |De Blasi| (2018a). Hub nodes have an immense number of connections with other nodes |Barabasi and
Bonabeau| (2003), which was also detected for neurons in regions of the brain [Sporns et al.| (2007); Bonifazi
et al.|(2009). In Figure 2.4]a scale-free network is illustrated with seven red marked hub neurons, resulting in a
log normal distribution of node degrees. Since there are several forms of scale-free networks, exemplary two
network generations were used: The IC|Catanzaro et al.[ (2005) for uncorrelated scale-free networks and the
BA Barabasi and Bonabeau| (2003) scale-free network.

Our simulated networks can contain antiparallel synapses whereas no self-connections and parallel synapses
were implemented. In contrast to some in silico models [Izhikevich| (2003); |lto et al.| (2011); |Pastore et al.
(2018a), our networks can contain connections between inhibitory neurons. The respective SWMs were con-
structed by modified implementations of the Python complex network package NetworkX |Hagberg et al.|(2008).
For each simulation the mean of the log-normal distributed synaptic weights were set for potential network
bursts. A higher density of connections requires a lower average synaptic weight for regular network bursts.
For each simulated millisecond the network receives five external inputs at random nodes.

All simulations were performed in 2017a MATLAB, MathWorks, with a modified version of the published code
described in [Izhikevich| (2006). Each network type was generated and simulated ten times with different seed
values for the random number generator of our simulation. Calculated mean values and standard deviations
are used for the connectivity estimation evaluation. The in silico networks were designed according the guide
described in |De Blasi| (2018a) for evaluation applications in neuroscience. The spike train subset of 100
neurons was recorded for 60 minutes, while studies were performed also for shorter time frames to analyze
the impact of this parameter. It was demonstrated that long recording times improve the estimation results |lto
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et al (2017).

ROC Curve and AUC

The accuracy of a connectivity estimation algorithm is evaluated by comparing the results with the properties
of the simulated network, described in the SWM. Since value ranges of CM are strongly dependent on the
measured signal, these values are not directly comparable. In the best case, values of CM should be propor-
tional to real synaptic weights of SWM. A threshold to distinguish between a real connection’ and a ’statistical
correlation’ is used to calculate the thresholded connectivity matrix (TCM). This binary pattern of connection
or non-connection will be used for the comparison with the SWM. The matches and mismatches between
TCM and SWM are stored in four groups. Matches of connections are true positive (TP), mismatches are false
positive (FP), matches for non existing synapses are true negative (TN), and mismatches are FP. A standard
method to evaluate the performance of classifiers is the receiver operating characteristic (ROC) curve, which
is a plot of true positive rate (TPR)

TP
TPR= 75 FN (&9
depending on the false positive rate (FPR)
FP
FPR=Fp 1N (2.10)

A perfect reconstruction of the SWM is indicated by a TPR of 1 and a FPR of 0. In case of equality of both rates
classification is a random guess. Because of the sparse SWM a low FPR means a larger amount of wrong
estimated connections than correctly estimated connections even with large TPRs. To prevent this misleading
impression, the evaluation focuses on the TPR values at 1% FPR.

Another possibility to reduce the ROC to a single value of estimation accuracy is the area under the curve
(AUC) Bradley| (1997). While a AUC of 0.5 is a random guess, 1 means a perfect estimation.

Confusion matrix

A widely used visualization tool for the classification performance is the confusion matrix, or error matrix. It is
a specific table layout that allows visualization of the performance of an algorithm. Each column of the matrix
represents the labels while each row represents the predicted class. This visualization allows to see easily
which classes are classified with high or low accuracy and which classes are often confused. In this study,
inhibitory, excitatory, and no connection were used as class labels. The columns of a 2D confusion matrix
are real labels obtained by the SWM. The rows contain the predicted classes of the classification algorithm.
On the very right column the percentage of correctly classified connections of the output class is shown, at
the bottom the percentage of correctly classified connections of the target classes is displayed. The general
classification accuracy can be found in the lower right box. The classification ability of TSPE for distinguishing
inhibitory from excitatory synapses is evaluated at a 1% FPR level.
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2.3 Results

2.3.1 Accuracy of functional connectivity estimation

Generally, spike raster plots of all simulated topologies show spikes and network bursts with varying rate
(see Fig. left). For random networks the spike density within network bursts increases with connection
probability p. For scale-free networks, spike density within network bursts is lower for the IC version than for
the BA version.

The accuracy of the connectivity estimation methods NCC, NCCCI, FNCCH, DHOTE, DHOTECI, DTE, DTECI
and CDHOTE was calculated for signals generated with random and scale-free networks and compared to
the results of our TSPE algorithm. The results of all tested algorithms are depicted in Fig. and better
than random guessing (grey dashed line). The accuracy strongly depends on network topologies. For spike
raster plots generated with random networks, the performances of the tested algorithms deteriorates with
higher connection probability p. Methods based on a coincidence index (NCCCI, DHOTECI, DTECI) perform
significantly better than their corresponding basic algorithms (NCC, DHOTE, DTE). This is particularly evident
in the AUC values (right column in Fig.[2.5). The results of the TSPE algorithm show a ROC curve with a TPR
up to 99.5% for p = 0.05 and p = 0.1. For p = 0.15 the performance accuracy decreased to 92%. The results
of the FNCCH algorithm were similar to the results of TSPE for random networks with p = 0.05. However,
the accuracy decrease for increased complexity (p = 0.1 and p = 0.15) was larger. The CDHOTE algorithm
was inferior to NCCCI, DHOTECI, and DTECI for random and small-world networks. In contrast, for scale-free
network topologies CDHOTE was superior.

All algorithms estimate the connectivity of small-world networks more accurately than that of complex random
networks with p = 0.15. The SD of the results varied depending on topology. For random and small-world
networks, the SD was lower than for scale-free networks. Especially for NCCCI, DTECI and DHOTECI large
SDs are visible at the AUC values. At a FPR of 1% TSPE estimated the connectivity more precisely than any
other tested algorithms. For both scale-free networks the accuracy of TSPE is inferior to the performance for
random and small-world networks.

To study the performance dependency on the recording duration of spike train data, the TPR was measured at
FPR of 1% for simulation durations of 1 min, 5min, 10 min, 30 min and 60 min (see Fig.[2.6). The results show
that accuracy increases with recording time. In case of random networks (p = 0.05 and p = 0.1) and small-
world networks, TSPE is able to reach almost a TPR of 100% for a simulation duration of 60 min. Connectivity
estimation saturates and therefore we assumed no accuracy increase for simulation durations longer than 60
minutes which is also true for scale-free networks.



800

Random network p=0.05
Index of neuron

1000

Random network p=0.1
Index of neuron

1000

Random network p=0.15
Index of neuron

600

WS small-world network
Index of neuron

1000

IC scale-free network
Index of neuron

1000

400

200

BA scale-free network
Index of neuron

1000 p~——=

600 |.

800 .

600 |.

1000 (=

800 |

800 |-
600 [

600 [ %

CHAPTER 2. CONNECTIVITY ESTIMATION

Spike raster plot

500 1000
Time (ms)

500 1000
Time (ms)

500 1000

500 1000
Time (ms)

800 -

500 1000
Time (ms)

True positive rate True positive rate True positive rate True positive rate True positive rate

True positive rate

BEHEDOOOCEOR) XX

0 0.5 1
False positive rate

0 0.5 1
False positive rate

False positive rate

Receiver operating cha
OO RARARDDE

True positive rate True positive rate True positive rate True positive rate True positive rate

True positive rate

1

0.8

racteristic curve

CDHOTE

— % — Ncccel
[ — DHOTECI

— & —TECI

0.5
False positive rate

0.5

0.5
False positive rate

0.5
False positive rate

False positive rate

Area under the curve Area under the curve Area under the curve Area under the curve Area under the curve

Area under the curve

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

18
Area under the curve
O A
=
|_*-|1 ‘[®|
|
o
Ll
I i |
R
I*I‘ \rel
1l
!
| I\ L
e
=
|*|\ ‘r®|
[IFeE i
Ll
E‘O
| I: LN
| I‘ L
L
e

r{el\é‘#l

[T
L )

1

L il

Figure 2.5: Evaluation of connectivity estimation algorithms for different network topologies: Left col-
umn: Spike trains of the simulated networks. For the evaluation a subset of only 100 spike trains with a
simulation duration of 30 minutes were used. Network bursts appeared for all network topologies. Middle
columns: ROC curves of all tested algorithms for n = 10 simulations per network topology. Right column:
AUC values of all tested algorithms. With increased complexity of the random networks the accuracy of all
algorithms decreased. Error-bars indicate standard deviation. TSPE outperformed all evaluated algorithms.
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Figure 2.6: Effects of the recording time on the accuracy of the connectivity estimation. Accuracy
estimation increases until a saturation is reached. Error-bars indicate standard deviation. Within the first ten
minutes, the increase is strongest which is prominent for the TSPE algorithm.

2.3.2 Accuracy of effective connectivity estimation by TSPE

For effective connectivity not just connection strength but also information about causality and the synaptic
effect is required. TSPE offers information about excitation and inhibition, which classification accuracy is
studied in the following. In Fig. the confusion matrices are plotted for TSPE at a FPR threshold level of
1%.

For random networks with p = 0.05, the total classification accuracy was 99.1%, which is practically the maxi-
mal achievable classification accuracy given that FPR is 1%. By increasing the complexity of random networks
to p = 0.1, the total accuracy decreased by 0.3% (see blue boxes in Fig.[2.7). Further increase of complexity
to p = 0.15 resulted in a large decrease of the classification performance and many effects were not detected
instead of classified as a synaptic connection. For example, 32.3% of all inhibitory effects were not detected.
The classification of excitatory effects is more accurate for small-world networks than for random networks
(p = 0.1 and p = 0.15). In contrast, for inhibitory effects the classification is more accurate for random networks
(p =0.1).

For both scale-free network types, the accuracy was 98.6 (92.3% and 88.7% for excitatory effects). However,
74% of all inhibitory effects were not classified correctly for the BA scale-free network (see Fig. dark grey,
bottom-center boxes).

To summarize, the classification accuracy for excitatory synapses was between 88.7 and 100%, for inhibitory
effects it was between 26 and 96.6%.

Effective connectivity estimation also include the estimation of monosynaptic delay times. To evaluate the
accuracy of this feature, the absolute difference of the estimated delay time to the respective morphological
delay time was studied (see Fig.[2.8). The unrecognized connections are also included.
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Figure 2.7: Confusion matrices for connection types classified by TSPE for simulated network topolo-
gies: Green (red) fields: correct (incorrect) classification (upper number: absolute, lower number: in per-
centage). Bottom row (grey): estimated connections to actual connections; Right column (grey): correctly
estimated connections to all estimated connections. Blue field: total accuracy of classification. Grey and blue
fields: green number percentage of correctness; red number percentage of incorrectness.

The delay times of excitatory effects were generally estimated more accurately. For the random and small-
world networks, the majority of all estimated delay times matched or missed the actual delay time by only
1 ms. In general, the delay times of scale-free networks were more difficult to refer than with all other network
topologies. Also for the delay estimation, inhibitory effects were more difficult to handle, resulting in up to 20%
discrepancies of about 5ms.

Since random and scale-free networks can be identified by their degree distribution, it is interesting whether
this distribution can also be reconstructed. For this purpose, the actual degree distribution was compared with
the estimated one (see Fig. [2.9).
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Figure 2.8: Distribution of absolute estimation errors for delay times. Estimated delay times of inhibitory
effects are illustrated blue in front of the red illustrated excitatory effects. The delay times of inhibitory effects
were generally estimated less accurately (especially for scale-free networks).

2.3.3 Calculation time

For a comparison of calculation efficiency, the processing time was measured for the calculation of connectivity
estimation for IC scale-free networks with different number of spike trains (between 2 and 1000) and different
simulation durations (between 1 and 60 minutes, see Fig.[2.70). Calculations were conducted using MATLAB
Distributed Computing Server toolbox on a high-performance computer, which is equipped with 2 Intel Xeon
'‘Broadwell’ E5-2680v4 processors, 8x32 GB DDR4 2400 MHz RAM, SSD and 4 SXM-2 P100 GPUs.

The results show that the calculation time increased linearly with recording time (indicated by blue dashed
lines in Fig [2.10). Since the increase of recording time is also the increase of the amount of bins, the choice
of a smaller bin size has the same influence on the calculation time. Due to the pairwise comparison of spike
trains, the number of spike train comparisons increased exponentially (power of two) with the number of spike
trains taken into account, which affected the computing time exponentially (indicated by green dashed lines in
Fig[2.70). For large numbers of recorded spike trains, the calculation of transfer entropy (TE) based algorithms,
like DTE or DHOTE, was longer than the calculation of cross-correlation (CC) based algorithms. NCC, TSPE
and FNCCH were parallelized (matrix operation based algorithms). For example, the calculation time for a IC
scale-free network with 1000 recorded spike trains and a simulation duration of 10 minutes was approx. 25
seconds for NCC, NCCCI or FNCCH, 45 seconds for TSPE, 16 minutes for DTE or DTECI, and 51 minutes for
DHOTE or DHOTECI.
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Figure 2.9: Comparison of actual and estimated degree distributions. The degree distribution used for
the simulation is illustrated blank with edges and the estimated distribution is green. The low degree range is

justified by the subset size of 100 neurons.
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Figure 2.10: Comparison of calculation times of tested algorithms: The connectivity estimation algorithms
were evaluated using data generated by IC scale-free networks for different lengths of recording and a variable
number of spike trains. Red colored areas indicated long and light areas indicated small calculation times.
Calculation time increased linearly with duration (indicated by blue dashed lines) but exponentially with number
of spike trains (indicated by green dashed lines). Calculation time was in the following ascending order for
algorithm groups: 1) NCC, NCCCI, FNCCH, TSPE 2) DTE, DTECI 3) DHOTE, DHOTECI.
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2.4 Discussion and conclusion

In this work, a novel estimation algorithm for effective connectivity is proposed called
Total Spiking Probability Edges (TSPE). The new algorithm is based on cross-
correlation and detects correlation by edge filtering on different time scales of the
cross-correlogram. A large framework of in silico networks with different topologies
was used to benchmark the performance of the novel approach in comparison to
FNCCH, NCC, NCCCI, DHOTE, DHOTECI, DTE, DTECI and CDHOTE. Influences
of recording time on estimation accuracy and calculation time was analyzed.
Furthermore, the classification ability in terms of inhibitory and excitatory effects of
TSPE was evaluated.

The novel method is able to outperform the accuracy of other connectivity estimation
algorithms when applied on simulated neuronal network data with different topolo-
gies. Especially for spike trains with a long recording duration like 30 minutes TSPE
was outperforming. With TSPE, it was possible to discriminate between estimated
excitatory and inhibitory connections, which is characteristic for effective connectiv-
ity. The total classification accuracy varied between 97.6 and 99.1%, depending on
complexity of network topology. This estimation feature enables the characterization
of the analyzed biological network.

Although these results are very promising, we also see critical aspects. TSPE is not
able to detect effects of self-connections. Thus, the diagonal values of the CM have
to be neglected or set to zero. Like for all other evaluated algorithms, the current
implementation does not take multiple effects, e.g. driven by parallel connections,
for a causal relation into account. Further, inhibition is more difficult to identify and
to classify than excitation with estimation algorithms [lto et al.| (2011); [Masud et al.
(2017); |Pastore et al.| (2018b) which is one aim of further improvements of TSPE.
TSPE is easy to implement and fast for large spike train datasets. Since new tech-
nologies of electrophysiological recording are able to record from thousands of elec-
trodes, e.g. HDMEA chips with 4096 electrodes Berdondini et al.| (2009a), it is cru-
cial to minimize the computation time for large numbers of recorded spike trains. In
our studies, TSPE, FNCCH, NCC and NCCCI were computed for 1000 spike trains
(30 minutes duration) in less than 2 minutes, while Transfer Entropy based meth-
ods needed more than 45 minutes. Nevertheless, also the Transfer Entropy based
methods take less than 3 minutes for 30 minutes of 60 channel recordings (stan-
dard MEA chip), which is considered acceptable for this application. The in silico
model for evaluation was sampled at 1 kHz, which is enough to separate action po-
tentials. We simulated the described model also for 10 kHz (data not shown) and
found no difference in accuracy for the evaluated algorithms with the unbinned or bi-
nary binned (1 ms bin size) spike trains. We recommend a binning for preprocessing
because of the linearly increasing computing time for evaluated connectivity estima-
tion algorithms with smaller bin sizes. The gradient of computing time is smaller
for cross correlation based connectivity estimation algorithms than for the TE based
algorithms. Thus, long term experiments will benefit by applying TSPE or NCC.

For future research, the determination of an accurate threshold will be addressed. It
is not possible to select a threshold at 1% FPR for real spike trains without knowing
the connectivity of biological in vitro network, which is generally true for all reviewed
algorithms. There are two common ways to select a threshold by means of signif-
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icance test. First, a threshold can be obtained by calculating the 99% quantile of
all possible connections for a generated surrogate spike train dataset (Grin| (2009),
which theoretically estimates 1% wrong. This threshold should lead to 1% FPR for
the real recorded dataset. Second, a threshold can be determined by calculating the
mean value and a multiple of SDs of the resulting CM. One disadvantage of the first
method is the multiplication of calculation time for the number of generated surrogate
data, whereas the second method has a negligible calculation time.

Another problem for all evaluated methods is the activity dependent plasticity of con-
nectivity, which should be considered for long term recordings of in vitro or in vivo
neuronal networks. Since a long duration of recording improves the performance
of connectivity estimation algorithms, a compromise between recording time and
plasticity of connectivity has to be found. Our research will be continued with the de-
velopment of innovative threshold selection methods for connectivity estimation and
the application of SPE and TSPE for spike trains of in vitro experiments. The ability
of TSPE to distinguish between excitatory and inhibitory effects could improve the
meaningfulness of these experiments.

To summarize, the evaluation results show that the accuracy of connectivity estima-
tion of large scale neuronal networks has been enhanced by the novel algorithm
TSPE. This advantage combined with the ability to distinguish between excitatory
and inhibitory effects will help to improve the accuracy of future experiments. To
establish a standardized framework for comparison between connectivity estimation
algorithms, the used simulation framework for large scale neural networks with differ-
ent topologies is available for all as well as the MATLAB based TSPE toolbox, which
has the potential of parallelization, https: //github.com/biomemsLAB/TSPE.

Appendix

Comparison algorithms
Cross-Correlation

In 1967 CC has already been used to measure similarity between spike trains X
and Y |Perkel et al.| (1967). By multiplying the time-shifted signal ;) element-wise
with another non-shifted signal y;), temporal similarities are revealed as a function
of time shift d. CC is defined as

CCx_y@ = Z Y(i) " T(i—d)- (2.11)
Since the value range of the result of Eq depends on the MFR, a normal-
ization is needed. Using different types of normalization strongly affect the results
of connectivity estimation. While some implementations are not able to detect in-
hibitory connections [Masud et al.| (2017), other methods of CC are even able to
distinguish between inhibitory and excitatory connections |Bartho et al.| (2004). The
most common method is normalized cross-correlation histogram (NCCH), which nor-
malizes results with the geometric mean of total spiking times n, and n,, of both spike
trains |Pasquale et al.| (2008); Berdondini et al.| (2009c); Maccione et al.| (2012); |Poli
et al.| (2015a); Pastore et al.| (2016); |Ito et al. (2011); [Brosch and Schreiner (1999);
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Kiemel and Cohen| (1998); |[Eytan et al.[|(2004).

oo

1
NCCHX Y(d) — —— Yi) " T(i—d (212)
~Y (d) W-nyé_: (i) * L(i—d)

Another method of normalization is the usage of SD ¢, - 5, and the number of bins
N of the binned spike train. Additionally, the mean values z and g are subtracted of
the respective spike moves before multiplication. This normalized version of CC is
called NCC and is defined as |Bedenbaugh and Gerstein| (1997)
1 < e —9) - (@—a) — 7)
NCCxoyw) = 5 > . (2.13)

Oy " Oy

1=—00

For sparse spike trains NCC and NCCH lead to similar results. However, the perfor-
mance of NCC increases with increasing spike train length [lto et al.| (2011). Thus,
here only NCC is used for evaluation. Since the resulting matrix for the pairwise com-
parison of all combinations of spike trains is symmetric, the number of independent
calculations for NCCs is £2=X  where K is the number of spike trains.

Filtered and Normalized Cross-Correlation Histogram

Based on NCCH, the mean value of the cross-correlogram is calculated in a W
window that is subtracted from the central value |Pastore et al.| (2018b). Positive
values indicate excitatory effects and inhibitory effects for negative values. FNCCH
is mathematical defined as

w
1 ?)—7

FNCCHx .y = NCCHx_,y () — W Z NCCHx_,y(a)- (2.14)
w

Transfer Entropy

TE measures statistical dependence of three random processes, e.g. spike trains.
The source spike train is considered the first random process, the target spike train
the second process and the third process the future bin of the target spike train.
Therefore, spike trains are usually delayed by one bin (Eq. [2.15). This form of
TE is called delay one transfer entropy (D1TE) and known as the original defini-
tion|Schreiber (2000).

i iy L
TEx_ .y = Z Z Z p(yi—&-l;yivxi)'l()gQM (2.15)

r,€X y; €Y yz+1EY p(yl+1|yl)

TE is able to detect linear and nonlinear correlations |Gourevitch and Eggermont
(20073a); |Garofalo et al.| (2009a). The advantage of TE taking own history into ac-
count is tremendous for neuronal data because of refractory periods after spiking
statements |Ito et al.| (2011). In contrast to Mutual Information, it is also possible to
distinguish between source and target neuron

D1TE needs n? independent calculations for signals with base n (e.g. binary spike
trains have the base two). If base two is used the results in CM are in bits. The
higher the values, the stronger the information flow from source to target neuron.
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D1TE showed good results for in silico evaluations |Garofalo et al.| (2009a); Pastore
et al.[ (2016); |Poli et al.| (2016a). However, these models did not take variable delay
times of axonal conductions into account, which is reason for an easy but unrealistic
selection of optimal bin sizes (e.g. in their studies 1 ms). In reality, it is a problematic
issue to choose a good value because it depends on each pair of spike trains.

Higher Order Transfer Entropy

Normally, TE is used with an order of one bin for both spike trains [Lungarella and
Sporns| (2006); [Garofalo et al.| (2009a); |Pastore et al.| (2016); Poli et al.| (2016a).
However, D1TE can be extended to an higher order transfer entropy (HOTE) by in-
creasing its temporal range [Stetter et al.| (2012); [lto et al.| (2011), see Eq.[2.16]

)
HOTEx = 3 5 S plossr s e?) - logy LU80) g 1

{
7
sDex y® ey Vi1 €Y (yz+1|yz )

Parameters k and [ are the number (=order) of history bins of target and source spike
train taken into account. For k = 1 and | = 1 HOTE would be equal to D1TE. The
number of patterns is 2! %+ and rises exponentially with the chosen order. Thus,
HOTE can be computationally intensive compared with D1TE.

Delayed Higher Order Transfer Entropy

Another modification of TE was introduced to neuroscience |[lto et al.[ (2011), which
was already used in other fields of research Overbey and Todd| (2009). By shifting
the source spike train with a delay d in the past, it is possible to consider effects in a
variable time window. This shifting process is similar to CC. Therefore, the Eq.
of HOTE is further extended to Eq.

O] )

(k)

l PWir1ly; il

DHOTEx .y = »_ > 3 plyenyl al)y ) - logy ==t
sWex y® ey vit1€Y P(yi+1ly;

(2.17)
DHOTE with d = 1 is equal to the normal HOTE. For various delay times (e.g. 1 to
25ms in 1 ms steps) DHOTE is calculated while the maximum value is used for the
CM value of the examined connection X — Y.
Thus, in contrast to normal TE or HOTE, the information flow is observed for variable
delay times of the event. Since it is no longer necessary to take as many influences
as possible in one bin into account, the selection of a small bin size in combination
of a wide shifting range should be able to process all relevant effects. Nevertheless,
selecting the smallest possible bin size, which would be limited by the sampling fre-
quency, leads to a longer computing time because of the increasing signal length for
probability calculations. We chose | = 2, k = 3 for DHOTE and [ =1, k = 1 for DTE.

Coincidence Index

A delay-dependent function M), like NCCxy (4 for example, is normally analyzed
by chosing its peak value. In order to further improve the results of the analysis quali-
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tatively, a widely used tool is introduced: The coincidence index (Cl), see Eq. Ito
et al.[|(2011); Chiappalone et al.| (2006a); Juergens and Eckhorn|(1997); Jimbo et al.

(1999).
dpt3

v My
o e (2.18)
@= i M)

The CI algorithm integrates values in a range of = around the maximum value and
normalizes the integral. For M, we chose the absolute values of NCCxy (q). For
reasons of overview, suffix -CI will indicate the use of Cl, e.g. NCCCI for the Cl of
NCC. Furthermore, DTECI and DHOTECI are introduced as well.

Combined High Order Transfer Entropy

By combining the results of connectivity estimation algorithms, it is possible to get
a different accuracy. Based on the idea of identifying significant connections by
combining DHOTECI and DHOTE results |Shimono and Beggs| (2015), a geometric
combination method is developed. CDHOTE is implemented by plotting DHOTECI
values against DHOTE values. In this plot the value point M (max(DHOTE);
max(DHOTECI)) is assumed to be the place with highest possibility for a connection.
For the two-dimensional space, the Euclidean distance between any points P and @
is calculated following Eq.

d(P,Q) = /(P1 — Q1) + (P2 — Q2)? (2.19)

Calculating the Euclidean distance from the point of interest M to each value pair
V with coordinates (DHOTE; DHOTECI), a new CM can be formed. Low values
(distances) are more likely to indicate connections and the threshold is the Euclidean
distance starting from 0.

CDHOTEx_,y = d(Vx_y, M) (2.20)
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Abstract

Background:

Synchrony within neuronal networks is thought to be a fundamental feature of
neuronal networks. In order to quantify synchrony between spike trains, various syn-
chrony measures were developed. Most of them are time scale dependent and thus
require the setting of an appropriate time scale. Recently, alternative methods have
been developed, such as the time scale independent SPIKE-distance by Kreuz et al..

New Method:

In this study, a novel time-scale independent spike train synchrony measure called
Spike-contrast is proposed. The algorithm is based on the temporal “contrast”
(activity vs. non-activity in certain temporal bins) and not only provides a single
synchrony value, but also a synchrony curve as a function of the bin size.

Results:

For most test data sets synchrony values obtained with Spike-contrast are highly
correlated with those of the SPIKE-distance (Spearman correlation value of 0.99).
Correlation was lower for data containing multiple time scales (Spearman correlation
value of 0.89). When analyzing large sets of data, Spike-contrast performed faster.

Comparison of existing Method:

Spike-contrast is compared to the SPIKE-distance algorithm. The test data con-
sisted of artificial spike trains with various levels of synchrony, including Poisson
spike trains and bursts, spike trains from simulated neuronal Izhikevich networks,
and bursts made of smaller bursts (sub-bursts).

Conclusions:

The high correlation of Spike-contrast with the established SPIKE-distance for most
test data, suggests the suitability of the proposed measure. Both measures are
complementary as SPIKE-distance provides a synchrony profile over time, whereas
Spike-contrast provides a synchrony curve over bin size.
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3.1 Introduction

Synchrony within neuronal networks is thought to play an important role since it is
related to e. g. cognitive processes (Ward, 2003), sensory awareness (Engel et al.,
2001) as well as pathological states such as epilepsy (Fisher et al., |2005; [Truc-
colo et al, )2014), and Parkinson’s disease (Pare et al., (1990} Arnulfo et al., 2015).
Recorded neuronal signals are often reduced to spike time series to conduct further
analyses as it is assumed that information is mostly coded in the time of occurrence
(Riekel [1999). Such a sequence of spike times is called a spike train. The level of
synchrony among two or more spike trains can be used to e. g. evaluate theoretical
neuronal models (Jolivet et al., [2008), test stimulus response reliability of neurons
(Mainen and Sejnowskil, (1995), or quantify the effect of drugs in in vitro biosensor
applications (Selinger et al., [2004} |[Flachs and Cibal [2016).

In general, synchrony means “the state of two or more events occurring at the same
time”. Whether two events can be considered synchronous depends on how “at the
same time” is specified. In neuronal networks such a time can be absolute due to
latencies or synaptic delays (Jeffress| [1948]; Bahmer and Langner, [2006), but also
relative depending on the oscillatory rhythms. For instance, oscillations in the brain
vary between milliseconds and slower time scales, such as the 24-hour period of
the circadian rhythm (Buzsaki, 2006).

In order to quantify the level of synchrony, many different methods have been
developed. When applied to spike train data, most of them are time scale depen-
dent, requiring the user to define a relevant time scale (Victor and Purpura, (1996},
van Rossum, 2001; Quian Quiroga et al., 2002; |Schreiber et al., 2003} [Selinger
et al., [2004; |Chiappalone et al.l [2007bj |Cutts and Eglenl 2014). Thereby, a risk
exists of choosing suboptimal time scales, affecting the comparability or validity of
results. In contrast, time scale independent measures are able to perform optimally
without choosing the optimal time scale beforehand (Kreuz et al., [2007a). Recently,
time scale independent measures have been developed, such as [S/-distance
(Kreuz et al., |2007al, 2009), SPIKE-distance (Kreuz et al., 2013), and SPIKE-
synchronization (Kreuz et al.,[2015).

In this study, a novel spike train synchrony measure called Spike-contrast is pro-
posed and evaluated. The general idea of the synchrony measure is based on an
intuitive visual contrast when displaying spike trains as a raster plot. Synchronized
spike trains can be observed as vertical bars whose visual contrast increases with in-
creasing synchrony. Thus, by means of Spike-contrast, the synchrony between spike
trains is calculated. To avoid the limitations of a fixed time window for which spikes
are considered synchronous, the time window length is varied (this can be regarded
as “zooming”). Synchrony is calculated as a function of the time scale, producing a
synchrony curve whose maximum is defined as the overall synchrony value. If more
than one maximum appears, this indicates that spike train data are synchronized at
different time scales.

The mathematical description of the new measure is given in the method section

Implementation details are in method section and Spike-contrast
is compared to the synchrony measure SPIKE-distance (Kreuz et al. 2013) as



CHAPTER 3. SYNCHRONY MEASUREMENT 32

SPIKE-distance has been successfully used in different applications, e. g. dis-
crimination of the synchrony increase mediated by bicuculline and cyclothiazide in
cultured hippocampal neurons (Eisenman et al., 2015), evaluation of a bioinspired
locomotion system for a quadruped robot (Espinal et al. 2016), and correlating
behavioral metrics and spike trains in an inverse neurocontroller (Dura-Bernal et al.,
2016). For the comparison, both synchrony measures were applied to artificial
spike train data featuring different levels of synchrony (section [3.2.4). The data
include Poisson distributed spike trains and spike bursts, spike trains generated
from simulated neuronal Izhikevich networks, and bursts that include shorter bursts
(sub-bursts). Moreover, calculation speeds were compared.

3.2 Material and methods

3.2.1 Definition of Spike-contrast

The proposed synchrony measure Spike-contrast is based on the visual observation
that synchronous spike trains form vertical bars when displayed as a raster plot.
Fig. shows three raster plots where each spike is represented as a black dot
on a white background over time. If all spike trains are perfectly synchronized, the
raster plot exhibits black vertical bars separated by white bars (Fig. [3.1]top). Here,
the transition between black and white bars is referred to as “contrast”. The higher
the level of synchrony, the higher the gradient of the transition between black and
white bars, and the higher the contrast. However, the contrast critically depends on
the considered time scale. If only shorter and shorter parts of the spike trains are
considered, spike trains appear less and less synchronized (Fig. middle and
bottom).

To eliminate the time scale dependence of the method, different time scales are
considered by “zooming” into the signal. Finally, the maximum synchrony value found
across the time scales is defined as the synchrony value S of the network. The
zooming process is realized using various bin sizes to construct time histograms.
The following steps are required (see also Fig. [3.2p), where N is the total number
of spike trains, A is the bin size, and K is the total number of bins: 1) Creation of a
time histogram counting the number of spikes per kth bin () across all spike trains.
The histogram is used to calculate a first factor Contrast. 2) Creation of a second
time histogram counting the number of spike trains showing at least one spike per
kth bin (ng). The histogram is used to calculate a second factor ActiveST. This
factor is needed to compensate for unwanted high Contrast values in cases where a
single spike falls into a separate bin which is surrounded by empty bins. 3) Step one
and two are repeated for different bin sizes A (for details see section resulting
in two curves Contrast(A) and ActiveST(A). 4) The product of Contrast(A) and
ActiveST(A) yields the synchrony curve s(A). 5) The maximum of s(A) is defined
as the final synchrony value S. More precisely, the synchrony measure is defined as

S = max s(A) (3.1)

with
s(A) = Contrast(A) - ActiveST(A). (3.2)
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Figure 3.1: Raster plots of simultaneously recorded spike trains from an in vitro neu-
ronal network cultured on a microelectrode array (MEA) chip with 64 recording sites.
Considering a time period of 100 s (top) spike trains appear highly synchronized.
When zooming into the signal, spike trains appear less and less synchronized (mid-
dle and bottom). This leads to the problem of having to choose an appropriate time
scale to measure synchrony.

The first factor in Eq. the spike train contrast, is defined as

K—1
. Ok = Opy
Contrast(A) = =L — (3.3)

K
25 O
k=1

with ©; being the sum of all spikes of the kth bin over all spike trains, and K being
the number of bins. For a signal length T" and a bin size A with a bin overlap of A/2,
K =2-|T/A|. The second factor ActiveST is defined as

ActiveST(A) = Nl—l =1 -1 (3.4)

with N being the number of spike trains, and n; the number of spike trains containing
at least one spike inside the kth bin. For a detailed explanation and derivation see

appendix after section
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Figure 3.2: Visualization of factors and variables of Spike-contrast using example
signals. (a) Raster plot of three artificial spike trains (V = 3). The number of spikes
per bin ©, and the number of spike trains n; containing at least one spike inside the
kth bin are plotted as a histogram using a bin size A. Note that bins are overlapping
by A/2. (b) The synchrony curve s(A) is defined as the product of the two curves
Contrast(A) and ActiveST(A). The final synchrony value S is defined as the maxi-
mum of s(A). The displayed curve resulted from an analysis of a 5-minute recording
of a cortical neuronal network grown in vitro on an MEA chip.

3.2.2 Bin size selection

To obtain the synchrony function s(A), calculations for various bin sizes A are nec-
essary. The choice of bin sizes not only influences the accuracy of the method, but
also the calculation speed needed to obtain the final synchrony value. In order to
compromise between calculation speed and accuracy, the following bin sizes were
chosen in this study: The maximum bin size A,, .. is set to half of the signal length
T. The minimum bin size A,,;,, is set to half of the smallest inter-spike interval (ISI)
or to a constant value L (whichever is greater):

Armaz =T}2 (3.5)
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Apin, = ma"T(ISI’rnin/Za L) (36)

The adaptive limit of 1.57,,.,/2 is defined in order to ensure an empty bin besides
every spike. This is a prerequisite for the calculation of the contrast. L is a minimum
bin size limit, that can be used to limit the maximum calculation duration. For the
analysis of neuronal signals from cortical networks, L could be set to 1 ms, as the
maximum oscillation frequency in cortical networks has been reported to be around
500 Hz (Buzsaki and Draguhnl 2004). If L is set to zero, A,,;, only depends on
151,,;,. In this case, Spike-contrast is completely adaptive to the data. The calcu-
lation is started using the bin size A,,.... For every further iteration the previous bin
size is then multiplied by 0.9 until it underruns A,,.;,,. Especially, for large bin sizes the
temporal structure of the spike train may be not represented well by the histogram
(e. g- several spike bursts end up in one bin). In order to better preserve the signal
characteristic, bins are overlapping by half of the bin size A.

3.2.3 Synchrony measure implementation

All calculations made in this work were conducted using MATLAB® (MATLAB 2016a,
The MathWorks, Inc., Natick, Massachusetts, USA) on a regular personal computer
(CPU: Intel® Core i5-2400 @ 3.10 GHz, RAM: 16 GB). The test data and the
MATLAB and Python (Python Software Foundation, https://www.python.org/) source
code of Spike-contrast is available online (https://github.com/biomemsLAB/Spike-
Contrast). The source code of SPIKE-distance was downloaded along with
the tool called cSPIKE (http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-
Code/cSPIKE.html) with the time-critical components written in C and used in
MATLAB as a MEX file. SPIKE-distance is defined in [Kreuz et al.| (2013). As the
measure of SPIKE-distance yields zero for perfect synchrony, it is substracted from
one for easier comparability with Spike-contrast.

3.2.4 Test data

In order to evaluate Spike-contrast, it was compared to SPIKE-distance by means of
four spike train data sets with different synchrony levels (for example spike trains see
Fig. column one and two). Poisson processes were used as a simple model that
allows to control synchrony in a defined manner. Moreover, the Izhikevich neuronal
network model (Izhikevich et al.,|2003) was used to get biologically plausible signals.
Below, the synchrony levels of all test data correspond to the factor F', having values
in the range of [0, 1] (F = 0: highest synchrony level, F = 1: lowest synchrony level).

Test data 1: Poisson spike model The first set of data consisted of Poisson pro-
cesses based on test data used in [Cutts and Eglen| (2014). Two spike trains were
generated with a spike rate \ of 1.5 spikes per second and a signal length of 300 s.
Both spike trains shared a defined fraction of identical spikes. The shared spike train
also came from a Poisson process with a rate of

As=A-(1—F) (3.7)



CHAPTER 3. SYNCHRONY MEASUREMENT 36

with the factor F' corresponding to different synchrony levels (F' = {0,0.05,0.1, ... 1}).
For each F', n = 20 spike train pairs were generated.

Test data 2: Poisson burst model The second set of data was composed of bursts
of spikes (Cutts and Eglen| |2014). The temporal center of each burst was deter-
mined in the same way as for the spike times in test data 1 (Poisson spike model)
with a shared fraction \g of burst centers. The value of A from Eq. was 0.05
bursts per second. Relative to the burst center, M spikes were randomly (uniform
distribution) assigned in the range of [—1,1] seconds. The number of spikes, M,
was drawn from a Poisson distribution with a mean value of 8. The relative spike
times as well as M were assigned independently for each burst and spike train. For
each F (F = {0,0.05,0.1, ... 1}), n = 20 spike train pairs were generated. Note that
even for the most synchronous case (F' = 0) both spike trains were not identical as
only the burst center points of both spike trains were synchronized but not the spike
times inside a burst (as they were assigned randomly).

Test data 3: Izhikevich network Simulated spike trains were generated with
networks of I1zhikevich neurons using the Matlab source code from |Izhikevich et al.
(2003). All parameters were set to the values used in the source code, resulting
in a network of heterogeneous cortical neuron types. Each network consisted of
1000 neurons (800 excitatory, 200 inhibitory). In order to reduce the size of data,
only 60 spike trains were randomly chosen for further use. The simulation time was
2.2 s, but the first 0.2 s were rejected as signals were not yet in a steady-state. To
obtain different levels of synchrony, the inhibitory synaptic strengths of the networks
were multiplied by the factor F'. It resulted in an increasing level of synchrony with
decreasing values of F. This approach was inspired by the effect of the GABA 4
receptor blocker bicuculline, which causes an increase in synchronized signals
in neuronal networks (Scharfman, 1994). In total, 20 values of F' in the range of
[0,1] were used to obtain different levels of synchrony. Values of F' were chosen to
have a uniform distribution of synchrony levels. For each F, n = 20 networks were
generated randomly.

Test data 4: Sub-bursts This data set contains bursts that consist of shorter bursts,
which we call sub-bursts. This approach was chosen as burst patterns at several
time scales can be observed in real data e. g. in in vitro recordings from cortex slices
(Baker et al., 2006). The first step was to create a spike train S7; made of single
spikes with equal ISIs of 2 s and a signal length of 300 s. Each spike of ST; was
then replaced by a burst consisting of three spikes, resulting in spike train ST, (spike
positions are used as the burst starting points in all replacement steps). The ISI of
the spikes inside a burst was set to 10% of the original I1SI of ST (0.2 s). For the
final spike train ST3, the replacement step was repeated for ST5,. ST3 contained sub-
bursts made of spikes with ISls of 0.02 s. Next, a second spike train was generated
by copying ST3, but with a random jitter applied to each spike. The amount of random
jitter came from a uniform distribution in the range of [0s,0.02s]- F. For F' = 0 no jitter
was applied and spike trains were identical. For each F' (F = {0,0.05,0.1, ... 1}),
n = 20 spike train pairs were generated.
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3.2.5 Comparison of calculation speed

To compare the calculation speed of Spike-contrast and SPIKE-distance, they were
applied to test data consisting of Poisson spike trains. All spike trains had a constant
length of 100 s so the first bin size of Spike-contrast was 50 s. As the calculation
speed of Spike-contrast depends on the minimal bin size A,,.;n, Anin Was set to a
constant value of 1 ms to simulate a worst case scenario when analyzing neuronal
data (assuming a maximum oscillation frequency of 500 Hz such as described in
Section[3.2.2). Not only the number of total spikes was varied, but also the number
of spike trains, as both measures handle multivariate data differently. The number of
spikes per spike train was varied from 10 to 1,000 and the number of spike trains was
varied from 10 to 1,000. So, the total number of spikes varied from 100 to 1, 000, 000.
Calculations were performed on a regular personal computer (CPU: Intel® Core i5-
2400 @ 3.10 GHz, RAM: 16 GB).

3.3 Results

3.3.1 Correlation of the synchrony measures

Spike-contrast and SPIKE-distance were applied to four sets of simulated spike train
data (Fig. [3.3p-d) with different levels of synchrony, denoted as factor F. An F-
value of zero corresponds to a high level of synchrony and an F-value of one to a
low level of synchrony. Both measures were able to detect a monotonic change in
synchrony as a function of F' with SPIKE-distance showing synchrony values from
0.72894+0.0083 (mean =+ standard deviation) and 0.9799 4+ 0.0029, and Spike-contrast
showing synchrony values from 0.1413 + 0.0264 to 0.9869 -+ 0.0034 for |zhikevich net-
work generated data (Fig. [3.3] third column). The results of both measures showed
a very high correlation for most test data (Fig. [3.3ga-c), in the very right column).
The Spearman correlation coefficient p was around one, indicating a monotonic re-
lation. This means that if the synchrony value of Spike-contrast increased, the value
of SPIKE-distance also increased and vice versa. In addition, the correlation is ap-
proximately linear as indicated by the regression line. However, when applied to
the sub-burst test data set (Fig. [3.3d), the correlation between both measures was
lower (p = 0.89). The synchrony values of SPIKE-distance gradually decreased with
increasing jitter, while synchrony values of Spike-contrast remained almost constant.

3.3.2 Calculation speed

Fig. [3.4] shows the calculation speed as a function of spikes per spike train and num-
ber of spike trains. The calculation time of SPIKE-distance increased with increasing
number of spike trains (Fig.[3.4]top), whereas the calculation time of Spike-contrast
did not increased remarkably with increasing number of spike trains (Fig.[3.4middle).
Spike-contrast is faster than SPIKE-distance for large sets of data (e. g. containing
more than 200 spike trains and 1000 spikes per spike train) but slower for smaller sets
of data (Fig. bottom). The largest set of data used in the calculation speed test
consisted of 1000 spike trains and 1000 spikes per spike train (1,000,000 spikes in
total). In this case, Spike-contrast was almost 10 times faster than SPIKE-distance.
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(a) Test data 1: Poisson spike model
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(b) Test data 2: Poisson burst model
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F =0.00 F=0.70 4
g2 11 11 g2 11 11 9
a1l 11 11 a S 1] 1] c
0 T T a5 - 2
| | | | | | g
| | | | | | : 0.958
2.19 2.224 2.258 2.19 2.224 2.258 0 0.5 070 1 0.998 1
Time in seconds F Spike-contrast

Time in seconds

Figure 3.3: Comparison of Spike-contrast with SPIKE-distance using four different
test data sets ((a) to (d)). First two columns: Test data sets with high (F' = 0) and
low (F' = 1) synchrony. In (b) and (d) spike trains are magnified for visualization of
single bursts. For each test data 20 synchrony levels F =[0, 1] and for each F, n =
20 independent realizations were generated. Third column: Calculated synchrony
values S from Spike-contrast and SPIKE-distance. Each data point represents the
mean synchrony value. Shaded area: Standard deviation, only visible in (c). Fourth
column: Synchrony values of Spike-contrast versus synchrony values of SPIKE-
distance fitted with a linear regression line (p: Spearman correlation coefficient, in
all cases correlation is significantly different from zero with p << 0.01 using large-

sample approximation based on a t-statistic).
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Figure 3.4: Calculation times for SPIKE-distance and Spike-contrast. Top: Abso-
lute calculation times for SPIKE-distance. Middle: Absolute calculation times for
Spike-contrast. Bottom: The ratio of the calculation times of SPIKE-distance to the
calculation times of Spike-contrast. The green area outlined with dashed lines indi-
cates equal calculation times. Spike-contrast is faster than SPIKE-distance if values
are greater than the green area and vice versa.

3.4 Discussion

In this study, a novel spike train synchrony measure is proposed called Spike-
contrast. It is compared to the spike train synchrony measure called SPIKE-distance
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(Kreuz et al.,)2013) by using artificially generated spike train data. Both measures
are time scale independent, which means that their adapt themselves to the time
scales found in the spike train data. Therefore, the user does not need to define
synchrony by choosing e. g. a relevant time scale or a certain bin size. When applied
to Poisson spike trains, Poisson burst trains, and spike trains from Izhikevich net-
works, synchrony values from Spike-contrast are highly correlated with synchrony
values from SPIKE-distance. This suggests that similar synchrony values can be
obtained from both measures for these cases. However, both measures differ in
detecting synchrony in spike trains containing sub-bursts. In this specific test data,
only spikes in these sub-bursts are desynchronized, while burst temporal positions
remain fully synchronized. Synchrony value of SPIKE-distance decreases because
of desynchronized spikes in sub-bursts. Conversely, Spike-contrast indicates
no change in synchrony as burst positions are still synchronous. Whether the
insensitivity of Spike-contrast can be considered a disadvantage depends on the
scope of the analysis. Very recently, a new adaptive version of SPIKE-distance
was developed, called A-SPIKE-distance (Satuvuori et al., 2017). It is motivated by
the assumption that small time scales are typically less important when analyzing
data containing multiple time scales (e. g. regular spiking and bursts). From that
perspective, Spike-Contrast performs better than SPIKE-distance in the sub-bursts
containing test data set. As A-SPIKE-distance neglects smaller time scales, we
applied it to our test data as well. As expected, it is less sensitive to desynchronized
spikes in sub-bursts compared to SPIKE-distance. However, A-SPIKE-distance is
still more sensitive than Spike-contrast (results not shown).

3.4.1 Disadvantages

Compared to SPIKE-distance, Spike-contrast is not parameter-free, although it does
not need a time scale parameter to be defined by the user. A bin shrink factor has to
be determined (influencing the resolution of the synchrony curve s(A)), the degree of
bin-overlap (influencing the smoothness of the histogram), and optional, a minimum
bin size limit L to avoid unnecessary calculations. We found that the parameter val-
ues used in this study presented a sufficient compromise between computational ef-
ficiency and accuracy because of the high correlation with SPIKE-distance. It should
also be mentioned that in certain cases Spike-contrast may yield unexpected syn-
chrony values. One extreme example would be a signal showing spikes during the
first half and no spikes during the second half of the signal. In this case, Spike-
contrast would yield a high synchrony value as there is a high contrast between the
first and the second half of the signal (like considering all spikes in the first half as one
burst). To avoid this limitation, spike trains could be tested for non-stationarity first
(Gourevitch and Eggermont, [2007b). Another uncertainty is the question whether
the bin placement relative to the spike train affects the calculated synchrony value.
This question is hard to address, as simply shifting the spike train, e. g. by adding
a time offset, also changes the entire signal characteristic affecting the spike train
contrast (such an offset time can be considered as the quiescence time between
bursts).
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3.4.2 Advantages

Spike-contrast is faster than SPIKE-distance when calculating large data sets (e. g.
almost 10 times faster for 1000 spike trains and 1000 spikes per spike train), although
Spike-contrast is slower than SPIKE-distance when applied to smaller data sets (e. g.
containing less than 200 spike trains and 1000 spikes per spike train). The calcula-
tion speed of Spike-contrast depends mainly on the number of spikes per spike train
but is nearly independent of the number of spike trains. Therefore, it can be advan-
tageous when analyzing large sets of data, like those recorded from high-density
microelectrode array (MEA) chips providing 512 (Litke et al., [2004), 2048 (Dragas
et al [2017), or 4096 (Berdondini et al., 2009b) recording channels. If small time
scales (e. g. order of milliseconds) are not relevant, the minimum bin size limit L
(see section may be set to a value greater than 0 ms to speed up calculation.
For example, setting L = 10 ms decreases the calculation times in the speed com-
parison (Fig. middle) almost by a factor of 10. The reduced calculation time does
not affect the final synchrony value S, as long as L is smaller than the location of the
synchrony curve maximum. The calculation speed advantage of Spike-contrast is
because of its multivariate nature. While bivariate measures calculate a synchrony
value for each combination of spike trains and average across all synchrony values to
get the final synchrony value, multivariate methods directly calculate one synchrony
value from an arbitrary number of spike trains. Brown et al.| (2004) accentuated the
need for multivariate methods to analyze spike train data, so Spike-contrast complies
with that request.

Even though Spike-contrast and SPIKE-distance are able to provide a single syn-
chrony value, both measures differ in their additional output. SPIKE-distance pro-
vides a time-resolved synchrony profile, whereas Spike-contrast provides a syn-
chrony curve as a function of bin size. Therefore, both measures can be considered
complementary methods. The synchrony curve provides further information about
temporal spike patterns. For example, more than one peak in the curve indicates
synchrony at multiple time scales (e. g. synchronized networkbursts made of shorter
synchronized bursts). To the best of our knowledge, this is a unique feature of Spike-
contrast.
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Appendix

Derivation of the synchrony measure

Contrast For an observation period 7', the histogram contains K = T/A bins (if
bins are overlapped by A/2, number of bins are K = 2 - |T/A]). The number of
spikes falling into the kth bin is expressed as ©. In order to obtain the contrast of
the histogram, the differences between each neighboring pair of bin

O — Ok (3.8)

are calculated. As the direction of the change does not matter, absolute values are
used. Those values are reduced to one contrast value, by taking the sum

K-1
|Ok — Or11]. (3.9)
k=1

If all spike-containing bins are surrounded by empty bins, Eq. reaches its highest
possible value of

K
2> O, (3.10)
k=1

therefore, this term is used for normalization between 0 and 1, giving the final defini-
tion of
K—-1
> [Ok = Ok
Contrast(A) = kle— (8.11)

25 O

k=1
for a given bin size A. For extreme examples, if (01,05,05,04,05,...) =
(O7 1, 0, 1, 0, ), COTltT’CLSt(@) is 1, while if (@1, @2, @3, @47 @5, ) = (1, 1, 1, 1, 17 ), it
is 0.

ActiveST Actually, the maximum of Contrast(A) could already be used to define the
final synchrony value. If the bin size becomes very small compared to the inter-spike
intervals, every spike may fall into a bin surrounded by empty bins, which also results
in a maximum contrast value of 1. In order to compensate for this situation, a second
factor ActiveST is introduced, which becomes 0 if only one spike train contributes
to the contrast value and 1 if all spike trains contribute to the contrast value. By
calculating the product, a coefficient

s(A) = Contrast(A) - ActiveST(A) (3.12)

is defined, which only reaches a high value if the contrast of the spike trains is high,
and at the same time, if many spike trains contribute to the contrast.

Below, the definition of ActiveST (quantity of “active spike trains”) is given. Let us
define n; the number of spike trains that contribute to the sum of spikes ©, in the kth
bin. If the observed set of data contains N spike trains, which are highly synchro-
nized (all spike trains show spikes in the kth bin), then the number of active spike
trains ny, equals N. If the kth bin does not contain any spikes, ny, is zero. To obtain a
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value between 0 and 1 for each bin, n; is normalized by N and averaged across all
bins:

1 &E g SR
KN NL™ 313)
k=1 k=1

Real recorded data, however, often show large periods of quiescence, resulting in
most bins being empty. Empty bins would decrease the average, even if all spikes
are perfectly synchronized. Therefore, the average is weighted by the number of
spikes in each bin to ensure that only non-empty bins are considered:

1 f K
— > N Oy ny - O
K- N /= —
1’“; == (3.14)
_ N - Oy
K 2, Ok k§1 ;

k

1

The calculated value can be between 1/N (spike trains are not synchronized so ny
is not greater than 1 for every k) and 1 (n;, = N for every k with ©; > 0). In order to
achieve a value of ActiveST between 0 and 1, the term has to be normalized

K

> k- O
k=1 1
K N
N> O
ActiveST(A) = L (3.15)
"N
leading to the final expression:
K-1
] ng - O
. o k=1 -
ActiveST(A) = N1 = 1 (3.16)
> O
k=1

Author contributions

Initiated the idea to find an intuitive synchrony measure: Tl YJ. Development of the
algorithm: MC. Conceived and designed the experiments: MC TI. Performed the
experiments: MC. Analyzed the data: MC. Wrote the paper: MC T1 YJ AB CT.



Chapter 4

Comparison of different spike
train synchrony measures
regarding their robustness to
erroneous data from
bicuculline-induced
epileptiform activity

Manuel Ciba'’, Robert Bestel', Christoph Nick', Guilherme Fer-
raz de Arruda?, Thomas Peron®, Comin César Henrique*, Luciano
da Fontoura Costa®, Francisco Aparecido Rodrigues®, Christiane
Thielemann'

1 Biomems lab, University of Applied Sciences Aschaffenburg, 63743 Aschaffen-
burg, Germany.

2 ISI Foundation, Via Chisola 5, 10126 Torino, Italy.

3 Institute of Mathematics and Computer Science, University of Sédo Paulo - Sao
Carlos, SP 13566-590, Brazil.

4 Department of Computer Science, Federal University of Sdo Carlos - Sdo Carlos,
SP, Brazil.

5 Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, Sao
Paulo, Brazil.

* Corresponding author, manuel.ciba@th-ab.de

Published in Neural Computation
Volume 32, Issue 5, May 2020, p.887-911

44



45 CHAPTER 4. COMPARISON OF SYNCHRONY MEASURES

Abstract

As synchronized activity is associated with basic brain functions and pathological
states, spike train synchrony has become an important measure to analyze experi-
mental neuronal data. Many different measures of spike train synchrony have been
proposed, but there is no gold standard allowing for comparison of results between
different experiments. This work aims to provide guidance on which synchrony mea-
sure is best suitable to quantify the effect of epileptiform inducing substances (e.g.
bicuculline (BIC)) in in vitro neuronal spike train data.

Spike train data from recordings are likely to suffer from erroneous spike detection,
such as missed spikes (false negative) or noise (false positive). Therefore, differ-
ent time-scale dependent (cross-correlation, mutual information, spike time tiling
coefficient) and time-scale independent (Spike-contrast, phase synchronization, A-
SPIKE-synchronization, A-ISI-distance, ARI-SPIKE-distance) synchrony measures
were compared in terms of their robustness to erroneous spike trains.

For this purpose, erroneous spike trains were generated by randomly adding (=false
positive) or deleting (=false negative) spikes (=in silico manipulated data) from ex-
perimental data. In addition, experimental data were analyzed using different spike
detection threshold factors in order to confirm the robustness of the synchrony mea-
sures. All experimental data were recorded from cortical neuronal networks on MEA
chips, which show epileptiform activity induced by the substance BIC.

As a result of the in silico manipulated data, Spike-contrast was the only measure
being robust to false negative as well as false positive spikes. Analyzing the experi-
mental data set revealed that all measures were able to capture the effect of BIC in
a statistically significant way, with Spike-contrast showing the highest statistical sig-
nificance even at low spike detection thresholds. In summary, we suggest the usage
of Spike-contrast to complement established synchrony measures, as it is time-scale
independent and robust to erroneous spike trains.
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4.1 Introduction

Synchrony is generally accepted to be an important feature of basic brain functions
(Engel et al., 2001 |Ward, 2003; |Rosenbaum et al., 2014) and pathological states
(Pare et al., [1990; |[Fisher et al., 2005; [Truccolo et al., |2014]; |Arnulfo et al., 2015).
Measuring synchrony between neural spike trains is a common method to analyze
experimental data e.g. recordings from in vitro neuronal cell cultures with microelec-
trode arrays (MEA) (Selinger et al., [2004; [Chiappalone et al., 2006b, 2007bj; Eisen-
man et al.,2015|;[Flachs and Cibal 2016) or from in vivo experiments (Li et al.,2011).
As an example for in vitro neuronal cell cultures on MEA chips, |Sokal et al.| (2000)
reported that synchrony reliably increased due to the substance bicuculline (BIC),
while the usual applied quantification method “spike rate” increased or decreased.
In order to quantify synchrony, many spike train synchrony measures have been
proposed based on different approaches. Some of them belong to the class of time-
scale dependent measures. This means that at the beginning of the analysis the
user has to select the desired time scale (e.g. bin size) (Selinger et al., [2004; [Cutts
and Eglen, [2014). The second class contains time-scale independent measures,
which automatically adapt their time-scale parameter according to the data (Satu-
vuori et al., 2017} |Ciba et al., [2018). However, there is no gold standard for the
evaluation of synchrony in experimental data. This is because there is no common
definition of synchrony between spike trains. To be more specific, each synchrony
measure can be considered as its own definition of synchrony, extracting different
features from the data. This situation is unsatisfactory as data interpretations are not
comparable. Therefore, a guidance would be desirable on which synchrony measure
to use for specific data.

When it comes to the analysis of experimental spike train data, the data are likely
to suffer from erroneous spike detection. For example, spikes are missed as they
are buried in noise (false negative) or noise is misinterpreted as spikes (false pos-
itive). At low signal-to-noise ratios (SNR), even advanced spike detection methods
are affected by missed or misinterpreted spikes (Lieb et al., [2017).

Hence, a synchrony measure that operates on spike trains from experimental data
should be as robust as possible to such erroneous spike trains.

In order to approach a guidance to analyze epileptiform spike trains from in vitro neu-
ronal networks, the performance of different synchrony measures was compared with
the focus on robustness to erroneous spike trains. Well known time-scale dependent
measures, like cross-correlation (CC), mutual information (MI), and spike time tiling
coefficient (STTC) and time-scale independent measures, like Spike-contrast, phase
synchronization (PS), A-SPIKE-synchronization, A-ISI-distance, A-SPIKE-distance,
and ARI-SPIKE-distance were applied to two types of data sets: (1) in silico manip-
ulated data and (2) experimental data.

(1) The in silico manipulated data are based on the experimental data and were used
to simulate erroneous spike train data by randomly adding spikes (false positive) or
deleting spikes (false negative). As a requirement, the synchrony measures should
be robust to added and deleted spikes.

(2) The experimental data were recorded from primary cortical networks grown in
vitro on MEA chips. Neuronal networks were exposed to the y-aminobutyric acid
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(GABA ,4) receptor antagonist bicuculline (BIC) in order to increase the synchrony
level of the network activity. Spike detection threshold factor was varied in order to
vary the level of false positive and false negative spikes. The synchrony measures
were tested for their ability to find significant synchrony changes induced by BIC.

4.2 Material and methods

4.2.1 Synchrony measures

In this section the synchrony measures used in this study are briefly described. To
consider a wide range of synchronization measures, a representative group of linear
and nonlinear methods as well as time-scale dependent and independent methods
were chosen. For a detailed definition see the respective original publication. Since
there is no specific publication on how to apply Ml and PS to spike train data, their
definitions are provided in appendix [4.4]

Time-scale dependent:

e Cross-correlation (CC) based methods are probably most popular to mea-
sure synchrony (Cutts and Eglen, |2014). Here we use a definition by |Selinger
et al| (2004) that was specially proposed for in vitro experiments and had also
been used by [Chiappalone et al.| (2006b). According to the definition, syn-
chrony between two spike trains is measured by binning the spike trains into
a binary signal and then calculating the cross-correlation without shifting the
signals. |Selinger et al.| (2004) proposed a bin size of 500 ms and was able
to detect synchrony changes in spinal-cord cultures mediated by the chemi-
cals BIC, strychnin, and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-
7-sulphonamide (NBQX). Due to the bin size parameter, CC is time-scale de-
pendent. A bin size of 500 ms is also used in this study (see Section4.2.4).

e Mutual information (MI) is a measure from the field of information theory and
is — in contrast to CC — able to capture non-linear dependencies. In this work,
MI measures the synchrony between two spike trains by binning the spike
trains into binary signals and quantifying the redundant information (Cover and
Thomas| 2012). Therefore, this version of Ml is time-scale dependent using a
bin size of 500 ms (see Section[4.2.4).

o Spike time tiling coefficient (STTC) measures the synchrony between two
spike trains and has been proposed by (Cutts and Eglen| (2014) as a spike rate
independent replacement of a synchrony measure called “correlation index” by
Wong et al.| (1993). Reanalysis of a study of retinal waves using STTC instead
of the “correlation index” significantly changed the result and conclusion (Cutts
and Eglen, [2014). STTC is a time-scale dependent measures as it needs a
predefined time window At in which spikes are considered synchronous. Re-
ferring to the work of (Cutts and Eglen| (2014), a time window of 100 ms was
used in this work (see Section{4.2.4).
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Time-scale independent:

Phase synchronization (PS) measures the synchrony between spike trains in
two steps. First step is to assign a linear phase procession from 0 and 27 to
every interspike interval (I1Sl). Second step is quantifying the common phase
evolution of all spike trains via an order parameter defined by |Pikovsky et al.
(2003). PS is time-scale independent and — to the best of our knowledge —
has not been systematically compared with other measurements in studies of
spike train synchrony yet or has even never been used to measure synchrony
of neural spike trains.

Spike-contrast is a time-scale independent synchrony measure based on the
temporal “contrast” of the spike raster plot (activity vs. non-activity in certain
temporal bins) and not only provides a single synchrony value, but also a syn-
chrony curve as a function of the bin size, or in other words, as a function of
the time-scale (Ciba et al.l 2018). Here, instead of the synchrony curve only
the single synchrony value was used.

A-SPIKE-synchronization is a time-scale independent and parameter free co-
incidence detector (Satuvuori et al., [2017). It measures the similarity between
spike trains and is the adaptive generalization of SPIKE-synchronization (Kreuz
et al.l [2015). In the adaptive versions a decision is made if the spike trains are
compared considering their local or global time-scale, which is advantageous
for data containing different time-scales like regular spiking and bursts.

A-ISI-distance is a time-scale independent and parameter free distance mea-
sure (Satuvuori et al., 2017). It measures the instantaneous rate difference
between spike trains and is the adaptive generalization of ISl-distance (Kreuz
et al., [2007a).

A-SPIKE-distance is a time-scale independent and parameter free distance
measure (Satuvuori et al., [2017). It measures the accuracy of spike times be-
tween spike trains relative to local firing rates and is the adaptive generalization
of SPIKE-distance (Kreuz et al., 2011}, [2013).

ARI-SPIKE-distance is the rate independent version of A-SPIKE-distance
(Satuvuori et all 2017). It measures the accuracy of spike times between
spike trains without using the relative local firing rate. Some of the original
version have already been applied to experimental neuronal data. For example
Andrzejak et al.|(2014) used ISI-distance and SPIKE-distance and|Dura-Bernal
et al| (2016) used SPIKE-distance and SPIKE-synchronization. [Espinal et al.
(2016) applied SPIKE-distance to simulated data.

In order to get a final synchrony value over all recorded spike trains, synchrony
between all spike train pairs was calculated and averaged. With the exception of
Spike-contrast, which already yields a single synchrony value between all spike
trains due to its multivariate nature.

Note that all synchrony measures are designed to provide a value between 0
(miminum synchrony) and 1 (maximum synchrony). Only CC and STTC are
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able to yield negative values in case of anticorrelation. The distance measures
A-I1SI-distance, A-SPIKE-distance, and ARI-SPIKE-distance naturally provide values
between 0 (minimal distance or maximum synchrony) and 1 (maximum distance
or minimum synchrony). Therefore, their values were substracted from 1 to make
the distance measures comparable to the synchrony measures. The MATLAB®
(MATLAB 2016a, MathWorks, Inc., Natick, Massachusetts, USA) source code of A-
SPIKE-synchronization, A-ISI-distance, A-SPIKE-distance, and ARI-SPIKE-distance
was downloaded along with the tool called cSPIKEl The Spike-contrasf and M|
MATLAB source code also was taken from online sources. STTC python codeE] was
translated into MATLAB code. MATLAB code for PS was specifically programmed
for this work. All MATLAB functions and scripts used for this work are provided

online®l

4.2.2 In silico manipulated data

Two sets of in silico manipulated data were generated featuring added spikes (=false
positive spikes) and deleted spikes (=false negative spikes). As the measures CC,
MI, and STTC are time-scale dependent, the in silico manipulated data are based
on the experimental data (see Section in order to obtain realistic time-scales.
In total, 10 recordings from 5 independent networks (N = 5) were used (5 without
and 5 with 10 M BIC). Each recording had a length of 300 s and up to 60 active
electrodes. The following procedures were applied for every active electrode (active
if at least 6 spikes per minute, see Section with X being the spike train of the
original electrode and Y being the manipulated spike train:

1) Added spikes: Spike train Y was generated by copying spike train X and
adding N,qq spikes to Y with temporal positions randomly assigned in the
range of (0, 300] seconds. In case of identical spike times, new random spike
times were generated until all spike times were unique. Depending on the ma-
nipulation level the number of added spikes was

Ngga =L-0.1-Nx, (4.1)

with Nx being the number of spikes in spike train X and L being the manipu-
lation level in the range of L = [0,0.1,0.2...1] (L = 0: No manipulation, L = 1:
10% random spikes were added). For each L, 40 independent random ma-
nipulations (nmanipuiated = 40) were performed (see Fig. (b 2) for example
spike trains).

2) Deleted spikes: Spike train Y was generated by copying spike train X and
deleting Nyeiete randomly selected spikes from Y. Depending on the manipu-
lation level the number of deleted spikes was

Ndelete =L-09- NX7 (42)

Thttp://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html
2https://github.com/biomemsLAB/Spike-Contrast
Shttps://de.mathworks.com/matlabcentral/fileexchange/28694-mutual-information
“http://neuralensemble.org/elephant/
Shitps://github.com/biomemsLAB/SynchronyMeasures-Robustness



CHAPTER 4. COMPARISON OF SYNCHRONY MEASURES 50

where Ny is the number of spikes in spike train X and L is the manipulation
level in the range of L = [0,0.1,0.2,...1] (L = 0: No manipulation, L = 1:
90% of all spikes were deleted). Note that the maximum range was restricted
to 90% of Nx as some of the tested synchrony measures were not defined
for empty spike trains. For each L, 40 independent random manipulations
(Pmanipulated = 40) were performed (see Fig. (b 3) for example spike trains).

A single synchrony value was then calculated for every recording (N = 10) and every
random manipulation (nmanipuiatea = 40). Overall, for every manipulation level 400
synchrony values were calculated per synchrony measure.

As some of the synchrony measures differ in terms of their minimum value for Pois-
son spike trains with equal rate (e.g. 0.295 for SPIKE-distance and 0.5 for ISI-distance
(Kreuz et al.,|2013)), they could not be compared directly. Therefore, synchrony val-
ues of each measure were rescaled to their lowest possible synchrony value defined
as synchrony of a data set made of Poisson spike trains Y7, ,andom at the manipula-
tion level L. The number of spikes in Y7, rqndom Was equal to the number of spikes in
Yy, (being the manipulated spike train Y at the manipulation level L), to account for
the spike rate dependence of some synchrony measures, as reported in |Cutts and
Eglen| (2014). The scaling was done with

SL — SL,random

I B

SL=7 s (4.3)
— SL,random

where s, is the synchrony value at a manipulation level L, 51, ;andom 1S the mean syn-
chrony value of the data set consisting of Poisson spike trains Y7, rqndom, and value
“1 ” representing the largest possible synchrony value (all synchrony measures were
able to yield “1 ” for identical spike trains). As ten different recordings with different
synchrony level were used, all synchrony values were normalized, allowing to calcu-
late the mean over all recordings and all random realizations. The normalization was
done with

s = 2L (4.4)
SL=0
where s _, is the synchrony of the orginal spike train (manipulation level L = 0), and
s the normalized synchrony value. All normalized synchrony values of all recordings
and all random realizations taken together are denoted as s7 ;. In order to ease the
comparison between the different synchrony measures, the total deviation of the
normalized synchrony (TDNS) over the manipulation level was calculated as

1
TDNS =Y std(s} ,), (4.5)

L=0

where std() is the standard deviation. The lower the TDNS, the more robust the
synchrony measure against the spike train manipulation procedure.
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Figure 4.1: Comparison of different synchrony measures regarding their ro-
bustness to erroneous spike trains. (a) Spike trains recorded from 60 electrodes
with 10 M BIC. Each line represents the spike train of one electrode (only first 15 s
of 300 s are displayed). (b) Same as (a) but with maximum manipulation level applied
(left: Simulation of false positive spikes, right: Simulation of false negative spikes). In
total 10 different recordings were used to generate the in silico manipulated data (for
details see Sec.[4.2.2). (c) Sum of synchrony deviation over all manipulation levels
(denoted as total deviation of the normalized synchrony (TDNS), see Eq.[4.5). The
lower the TDNS value of a synchrony measure, the more robust it is to spike train
manipulation.
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4.2.3 Experimental data

Cell culture and electrophysiological recordings

Experimental data used for this study were recorded from primary cortical neurons
(Lonza Ltd, Basel, Switzerland) harvested from embryonic rats (E18 and E19). Cell
cultivation followed a modified protocol based on|(Otto et al.| (2003). Briefly, vials con-
taining 4 x 10 cells were stored in liquid nitrogen at -196°C. After thawing, cells were
diluted drop-wise with pre-warmed cell culture medium and seeded at a density of
5000 cells/mm? onto Poly-D-Lysine and Laminin coated (Sigma Aldrich Co. LLC, St.
Louis, USA) microelectrode arrays (60MEA200/30iR-Ti, Multichannel Systems MCS
GmbH, Reutlingen, Germany). Twice a week, half of the medium was replaced with
fresh, pre-warmed medium.

Neuronal signals were recorded extracellularly at a sampling rate of 10kHz out-
side the incubator at 37°C employing a temperature-controller (Multichannel Sys-
tems MCS GmbH). For drug-induced increase of network synchronization, bicu-
culline (BIC) (Sigma Aldrich Co. LLC) was applied to the neuronal cell culture after
21 days in vitro (div) at a concentration of 10 uM. BIC is a competitive antagonist
of the GABA 4 receptor. Since it blocks the inhibitory function of GABA 4 receptors,
its application yields an increased incidence of synchronized burst events (Jungblut
et al., 2009), see Fig. (b) and (c). Neuronal activity was recorded for 5 minutes
before and 5 minutes during the application of BIC.

Spike detection

Raw data were stored for offline spike detection with DrCell, a custom-made Matlab
(MathWorks Inc., Natick, Massachusetts, U.S.A.) software tool, developed by [Nick
et al. (2013). After applying a high-pass filter with a cutoff frequency of 50 Hz, spikes
were separated from noise using a threshold-based algorithm, with a threshold cal-
culated by multiplying the standard deviation of the noise by a factor of 5 (or more
precisely -5 as only negative spikes were used for analysis). As soon as the raw
signal underran the threshold, the time of the minimum voltage value was defined as
a spike time stamp (Fig. (a)). Additionally, in order to alter the level of false pos-
itive and false negative spikes, spike detection was also conducted using threshold
factors of 4, 6, and 7. For subsequent spike train analysis, only electrodes with more
than 5 spikes per minute were considered active and used for analysis (Novellino
et al.,[2011).
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Figure 4.2: Exemplary illustration of the experimental data. (a) Signal recorded
from one MEA electrode (50 Hz high-pass filtered). Thresholds are displayed for
the lowest (4) and highest (7) threshold factors used for spike detection. The higher
the threshold factor, the less spikes are detected. (b) Rasterplot of the spontaneous
activity of one MEA chip without BIC (only first 60 s of 300 s are shown). (¢) Same
as (b) but with 10 M BIC. Spontaneous activity was recorded with a 60 electrode
MEA chip at 23 div. Compared to the native state, the administration of 10 zM BIC
increased the level of synchrony.

Statistical analysis

Since it is known that BIC causes an increase of network synchrony in cortical neu-
rons in vitro (Sokal et al., [2000; |Chiappalone et al., [2007a; [Eisenman et al., [2015),
a one-tailed statistical test was applied. More specifically, a paired t-test was applied
under the null hypothesis that BIC does not increase synchrony. The lower the p-
value, the lower the probability that there is no synchrony change, and hence the
better the synchrony measure’s sensitivity to BIC.

4.2.4 Parameter choice

As the synchrony measures CC, MI, and STTC depend on a time-scale parameter
that directly influences the synchrony definition, an appropriate parameter value had
to be chosen. Therefore, we analyzed the experimental BIC data using different pa-
rameter values and conducted a statistical hypothesis test. The lower the p-value, the
higher the probability that an increase in synchrony occurred. Parameter values that
lead to low p-values are therefore desirable (given that BIC results in increased level
of synchrony). CC proposed by |Selinger et al.| (2004) chose a bin size of 500 ms,
which also gave reasonable low p-values in our analysis (Fig.[4.3). Even if smaller
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bin sizes yielded lower p-values in our data, we stuck to the predefined 500 ms. For
MI, we also chose a bin size of 500 ms as for smaller bin sizes the p-value only
improved slightly. The parameter dt of STTC was set to 100 ms according to the
original publication from |Cutts and Eglen| (2014). Note that in our cortical data a
larger dt value would only slightly improve the p-value.

—-=k—--CC (bin)
...... - MI (bin)
—*— STTC (dt)

10%%
10150,

1072

p (t-test)

103 ¢

1074 : : : :
10 107 107" 10° 10’
Parameter in seconds

Figure 4.3: Influence of the parameter choice on the statistical significance of
the experimental data. The synchrony measures CC, MI, and STTC depend on a
parameter which has to be chosen by the user. For each synchrony measure, the ex-
perimental data described in Section |4.2.3| were analyzed using different parameter
values. After that, a t-test was applied to the data with the null hypothesis that syn-
chrony values of the data with BIC are lower or equal to synchrony values of the data
without BIC. In this work, a bin size of 500 ms was used for CC and a dt of 100 ms for
STTC (red squares), as these values were suggested in their original publications.
For MI, the same bin size as for CC was used due to the identical binning procedure.

4.3 Results

4.3.1 Comparison of synchrony measures for in silico manipu-
lated data

1) Added spikes: The robustness of measures was studied by randomly adding
false positive spikes to the basic signals. For a robust synchrony measure
low sensitivity to false positive spikes is desirable as such noise may falsify
the results. As displayed in Fig. (c, left) Spike-contrast was most robust to
false positive spikes indicated by the small TDNS value of around 1, closely
followed by A-ISl-distance and ARI-SPIKE-distance. MI showed by far the
largest synchrony deviation indicated by a TDNS value of around 17.
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2) Deleted spikes: A similar picture occurs after increasingly deleting spikes in
order to simulate false negative spikes, as robustness to false negative spikes
was required. In Fig. (c, right) results of synchrony measure dependency
to false negative spikes are shown. Here, Ml and Spike-contrast were most
robust to false negative spikes yielding the smallest TDNS value of around 2.
STTC and A-SPIKE-synchronization showed largest TDNS value of around
14.

4.3.2 Comparison of synchrony measures for experimental data

In addition to the evaluation with in silico manipulated data, all synchrony measures
were applied to experimental data recorded from cortical neurons by MEA chips with
and without the application of 10 uM BIC. Fig. (a) shows the absolute synchrony
values for each synchrony measure and for all different cell cultures (N = 5), before
and after the application of BIC. Generally all measures showed a significant syn-
chrony increase due to the BIC application with p-values of 5% and below, where
A-SPIKE-synchronization, A-1SI-distance, and A-SPIKE-distance failed to reach the
high significance level of 1%.

In order to alter the level of false positive and false negative spikes in the experi-
mental data, different spike detection threshold factors (4 to 7) were applied. Where
low thresholds are likely to correspond to additional false spikes (false positive) and
high thresholds to missed spikes (false negative). Increasing the threshold factor is
comparable with deleting spikes from the spike train as already done in the in sil-
ico manipulated data evaluation (Section [4.3.7). For the in silico manipulated data,
the synchrony measures STTC and A-SPIKE-synchronization were most sensitive
to deleted spikes. This behavior was also evident within the experimental data
(Fig. [4.5). As the spike detection threshold factor increased, STTC and A-Spike-
synchronization lose their statistical significance (above 5% level), while all others
remained stable indicating statistical significance (below 5% level). Spike-contrast
yielded the highest statistical significance across all tested threshold factors, and
was the only measures that still indicated a statistical significance (at 5% level) at the
smallest threshold factor of 4, where a high level of noise spikes is assumable.
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Figure 4.4: Results of the application of different time-scale dependent and
time-scale independent synchrony measures to a set of experimental data. Ex-
perimental data were recorded from cortical cell cultures on MEA chips (IV = 5) in
the absence and presence of 10 uM BIC. (a) Absolute synchrony values of each
synchrony measure for data without BIC (white circles) and with BIC (gray circles).
(b) P-values for each synchrony measure from a one-tailed paired t-test assuming
an increase in synchrony. The lower the p-value, the better the synchrony mea-
sure’s ability to capture the effect of BIC. Grey ellipse marks synchrony measures
that were not able to indicate high significant effects below p-values of 1%. Spike
detection threshold factor was 5.
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Figure 4.5: Influence of the spike detection threshold on the statistical signif-
icance of the experimental data. Synchrony and statistical significance of the ex-
perimental data were analyzed like in Fig. applying different thresholds to detect
spikes from the recorded signals. Assumably, the higher the spike detection thresh-
old factor, the less noise were detected but also more real spikes were missed. The
lower the p-value, the better the synchrony measure’s ability to capture the effect of
BIC.

4.4 Discussion and conclusion

In this work we compared different spike train synchrony measures regarding their
robustness to false positive and false negative spikes in epileptiform signals. Such
robustness is particularly relevant for experimental data with error prone spike
detection, especially at low signal-to-noise ratios. Representative synchrony mea-
sures were chosen from different categories such as time-scale dependent (CC, M,
STTC), or time-scale independent (Spike-contrast, PS, A-SPIKE-synchronization,
A-1SI-distance, A-SPIKE-distance, ARI-SPIKE-distance). In order to perform a
comparison, we proposed a procedure based on a set of in silico manipulated
spike trains with defined manipulation of features. Two data sets were generated
based on experimental data by adding spikes, representing noise (false positive),
and deleting spikes, representing missed spikes (false negative). Synchrony
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of the experimental data was increased by applying BIC to cortical in vitro net-
works. The code and data used in this work are publicly available (see Section|4.2.1).

For the in silico manipulated data, the results showed that Spike-contrast was most
robust to added spikes and very robust to deleted spikes. All other measures showed
either comparable high robustness for added or deleted spikes, but not for both
cases. Furthermore, CC, MI, and Spike-contrast work with binnend spike trains,
which explains their robustness to deleted spikes as long as bursts (=many spikes
occuring within a small time period) are still present in the data (see Fig. (b 2)).
A binned spike train will almost not change if only some spikes are deleted from a
burst and if the bin size and burst duration are similar. As Spike-contrast automat-
ically adapts its bin-size to the data, it is preferable over CC and MI for exploratory
studies, where the time-scale is not known beforehand.

For the experimental data, all synchrony measures captured the synchrony increase
mediated by BIC in a statistical significant way (below a p-value of 5%). However,
there were differences in performance as the synchrony measures CC, MI, PS,
Spike-contrast, and ARI-SPIKE-distance yielded values leading to a high statistical
significance below p-values of 1%. Note that for CC the proposed bin size of 500 ms
was used, but smaller bin sizes of around 300 ms would have overperformed
Spike-contrast (Fig. [4.3). Referring to our assumption “the lower the p-value, the
better the synchrony measure” defined in Section it must be taken into
account that this assumption is controversial since the actual synchrony increase
(=ground truth) is not known for the experimental data. Thus, a synchrony measure
that overestimates the synchrony increase mediated by BIC would incorrectly lead
to a low p-value.

For small sample sizes, as in our experiment (N = 5), parameter-free statistics like
the Wilcoxon signed-rank test are generally used to avoid assumptions about pop-
ulation distribution. Application of the Wilcoxon signed-rank test to our data yielded
almost identical p-values for all synchrony measures (data not shown). In contrast,
the t-test used in this work resulted in different p-values for each synchrony measure.
So, it also depends on the choice of statistical test whether the choice of synchrony
measures affects the final results.

Considering the results of the in silico manipulated data, the measures CC, M,
Spike-contrast, and ARI-SPIKE-distance were most robust to deleted spikes (=false
negative spikes). As mentioned above, these synchrony measures also showed the
best performance in the experimental data. This suggests that robustness to false
negative spikes correlates with the ability to quantify synchrony changes in experi-
mental data. If so, it would also imply that the experimental data used in this work
were more affected by false negative spikes, than by false positive spikes. In other
words, more spikes were missed than noise was misinterpreted as spikes. This be-
havior could be used to draw conclusions about the quality of an experimental spike
train from the rank of the p-values of different synchrony measures.

Like already mentioned, there were some synchrony measures, whose results of
the in silico manipulated data and experimental data did not correlate. This sug-
gests, that robustness to false positive or false negative spikes is not the only factor
to effectively capture synchrony changes in experimental data. Factors like robust-
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ness to temporal non-stationarity of the recording could also be different among the
synchrony measures. For instance, PS, A-SPIKE-distance, ARI-SPIKE-distance, A-
ISI-distance, and A-SPIKE-synchronization are more adaptive to changes in time
scales inside a spike train as they dynamically define their time scales considering
nearby spikes. In contrast, CC, Ml, STTC, and Spike-contrast use equally spaced
time scales along the entire spike train duration.

Overall, for our specific data set, Spike-contrast was the only time-scale independent
measure being robust to noise (false positive spikes) as well as missed spikes (false
negative spikes). This desirable performance was confirmed by the ability of the
Spike-contrast measure to detect biochemically induced synchrony with a high sig-
nificance, even for different spike detection threshold factors. It should be mentioned
that the measures A-SPIKE-synchronization, A-ISI-distance, A-SPIKE-distance, and
ARI-SPIKE-distance are able to produce a synchrony profile over time, which com-
plements the synchrony profile over time-scale of Spike-contrast.

Summarizing, we suggest to include the Spike-contrast synchrony measure into syn-
chrony studies of epileptiform experimental neuronal data sets in addition to estab-
lished synchrony measures.
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Appendix

Synchrony measure description

Mutual Information M| measures how two random variables X and Y are re-
lated (Cover and Thomas, [2012) and is based on the concept of entropy, which
is a fundamental concept in information theory (Shannon and Weaver, [1948; |Cover
and Thomas, 2012). The Shannon entropy (Cover and Thomas), |2012) of a random
variable X is defined as

Zpa: log pa: (4.6)

where p, (i) = P(X = i) and the log function is taken to the base 2 (see Fig.[4.6|a for
an example calculation). H(X) measures the uncertainty about a random variable
X. The conditional entropy quantifies the information necessary to describe the
random variable Y given that the information about X is known (Cover and Thomas,
2012). Formally, it is defined by
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Additionally, the MI can be expressed in terms of the entropy and the conditional
entropy of random variables X and Y as

(4.9)
X)+ H(Y) - H(X,Y)

X,Y) - HX[Y) - HY|X).

Aside from the analytic expressions, it is possible to interpret those quantities graph-
ically, as depicted in Fig. [4.6p. MI is more general than the correlation coefficient
and quantifies how the joint distribution p(z, y) is similar to the products of marginal
distributions p(z)p(y) (Cover and Thomas,,2012). Compared to the cross-correlation
measure, mutual information also captures non-linear dependencies.
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(a)

Spike train 1: ‘ Spike train 2: ‘
X:{1]1]o]1] Y:[1]ofo[1]

Alphabet: {0, 1} {0, 1}
Frequency: {1, 3} {2, 2}
Probability: {0.25, 0.75} {0.5, 0.5}

Entropy: H(X) = 0.8113 H(Y)=1.0

(b)

THXKY)

Figure 4.6: Example entropy calculation of two spike trains and illustration of
the mutual information (MI) measure. (a) Two different spike trains are binned
in a binary way resulting in X and Y. Each value is considered a character building
the alphabet of the signal. The probability of each character is obtained by dividing
its incidence by the length of the signal. The entropy of each signal (H(X), H(Y)) is
calculated using Eq. (4.6) with the probabilities given above. (b) Visualization of the
mutual information 1(X;Y) using the joint entropy H(X,Y), the entropies H(X), H(Y),
and conditional entropies H(X|Y), H(Y|X) like calculated in Eq. (4.9). The mutual
information value I(X;Y) increases with increasing synchrony between signal X and
Y.

For comparison, the value of mutual information needs to be normalized. Many
possible approaches have been proposed (Cover and Thomas, 2012), such as

I(X;Y)

M(X;Y) = min [H(X),H(Y)]’

(4.10)

because I(X;Y) < min [H(X), H(Y)] and, consequently, 0 < M(X;Y) < 1. This
formulation has been used before in the context of neuronal signal analysis (Betten-
court et al., 2007, 2008; |Ham et al., 2010). Another possible normalization is the
so-called symmetric uncertainty (Witten and Frank, |2000), defined as

I(X:;Y)

M*(X;Y):QH(X)—i—H(Y)’

(4.11)
where 0 < M*(X;Y) < 1. In this work the latter normalization were used as it
performed better than the first one when applied to the experimental data (data not
shown).

In order to estimate the M| between two spike trains, both spike trains were trans-
formed into binary binned signals. A spike train i is binnend as

(t {1, if spike train i shows at least one spike in time interval ¢ to ¢ + At.
ZT; =

0, if spike train i shows no spike in time interval ¢ to ¢ + At.
(4.12)

using a bin size At = 500ms and ¢t = 0At, 1At, 2At¢, ... (also see Fig. [4.6]a). The
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choice of the bin size of 500 ms is justified in Section[4.2.4).

Phase Synchronization Since synchronization processes are related with rhythm
adjustment, it is natural to introduce the concept of phase of an oscillator, a quantity
that increases by 27 within an oscillation cycle and determines unambiguously the
state of a periodic oscillator (Pikovsky et al., |2003). For instance, consider a har-
monic oscillator described by the variable z(t) = Asin(wot + ¢0). In this case, wqy
denotes the angular frequency, which is related to the oscillation period wy = 27/T,
A is the amplitude of oscillation, and the quantity ¢(¢) = wot + ¢¢ is the phase of
this oscillator. Two or more oscillators are synchronized when they present the same
phase evolution (Pikovsky et al., 2003).

The measurement of the synchronization level of self-sustained oscillators can be
done by considering the phases as rotating points in the unit cycle of the complex
plane (Pikovsky et al., 2003; Strogatz, 2000). If an oscillator has a phase ¢(t), then
its trajectory in the complex plane is described by the vector ¢*¢(*). For instance,
if two oscillators have phases ¢;(t) = ¢2(t) = ¢(t), then they will have the same
trajectory in the complex plane and thus the modulus of the resultant vector will
be |e'1(t) 1 ¢i92(t)| /2 = 1, meaning that the oscillators are perfectly synchronized.
Supposing now a population of N interacting phase oscillators whose phases are
described by the variable ¢;(t), i = 1, ..., N. The synchronization order parameter is
defined as (Strogatz, 2000)

N
ih(t) — #;(t)
re =~ jgzl e Pt (4.13)

where v (t) is the average phase of the system at time t. When r ~ 0, the phases
are distributed uniformly over [0, 27| corresponding to the asynchronous state. When
r =~ 1 the phases rotate together corresponding to fully synchronized state (Fig.[4.7).

-

w(t) =Qt

Figure 4.7: Example for distribution of phase vectors ¢*(Y) in complex plane.
(a) Randomly distributed phase vectors over [0, 2], implying » ~ 0; in other words
the oscillators are completely asynchronous. (b) Regime of partial synchronization;
phase vectors of some oscillators are grouped in a synchronous cluster equivalent
to r > 0. (c) Strongly synchronized state, where all oscillators group into a single
synchronous cluster rotating with average frequency €, thus r =~ 1.

Neurons can also be considered as self-sustained oscillators (Arenas et al., [2008)
and are often modeled as integrate-and-fire oscillators, where the rhythmic quantity
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is the rate at which spikes are fired. The synchronization process in this case is the
adjustment of the spiking patterns, i.e., if two interacting integrate-and-fire oscillators
discharge their spikes jointly, then they are synchronized. Therefore, in order to
quantify the synchronization between interacting integrate-and-fire oscillators, the
phases associated to the respective spike signals have to be defined.

The time series recorded by an electrode can be considered as a sequence of point
events taking place at time ¢, with £ = 1,2, ..., Npikes- The time interval between two
spikes can be treated as a complete cycle. In this case, the phase increase during
this time interval is exactly 27. Hence, the values of ¢(t;) = 27k are assigned to the
times t, and for an arbitrary instant of time (¢, < ¢ < tx11), the phase is considered
as a linear interpolation between these values (Pikovsky et al., 2003; Neiman et al.,
1998; |Pikovsky et al., 11997} |Tass et al.,[1998};|Hu and Zhou, |2000), as

(1) = 2n—— T | orp. (4.14)
Tk+1 — Tk
This method can be applied to any process containing time series of spikes and it
is widely used in the study of synchronization in neuronal dynamics (Pikovsky et al.,
2003). Fig. exemplifies the calculation of phases ¢(t) of two spike signals and
their respective sum of the phase vectors ¢**() in the complex plane.
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Figure 4.8: Example of phase vector construction. (a) ¢:(t) and (b) ¢2(t) are
calculated using the respective spike signals according to Equation (4.14). (c) Su-
perposition of temporal evolution of phases and (d) phase vectors ei¢1(t:) ¢i¢2(t:) ag
well as the resultant vector at time ¢ = t;, 7 - e/¢r(ti) = (i91(ti) 4 gid2(ti)) /9,
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For a system composed of N oscillators, the instant phase synchronization is quan-
tified by the order parameter defined in Eq. (4.13). However, to quantify the level of
synchronization of the neurons, we consider the average over the recorded time

F:< > : (4.15)

t
where (---), stands for the temporal average and N stands for the number of elec-
trodes used to compute the order parameter.

1 N
il i (t)
N Z ¢

i=1

Author contributions

M.C.: Conception, design, generation, and analysis of in silico manipulated
data. Application of the synchrony measures STTC, Spike-contrast, A-SPIKE-
synchronization, A-ISI-distance, A-SPIKE-distance, ARI-SPIKE-distance to ex-
perimental data. Statistical tests and spike detection with varying thresholds.
Preparation of figure 1 to 6. Draft of the manuscript. R.B.: Initial conception and
design of synchrony measure comparison using experimental data. C.N.: Initial
conception and design of synchrony measure comparison using experimental data.
Performed cell experiments and spike detection of raw data. G.FA.: Implemen-
tation and application of the synchrony measure Ml to experimental data and Ml
description in appendix. T.P.: Implementation and application of the synchrony
measure PS to experimental data and PS description in appendix. Preparation of
figure 7 and 8. C.C.H.: Implementation and application of the synchrony measures
CC to experimental data. L.F.C.: Helped in the initial conception, discussions and
revision. F.A.R.: Conception and design of research. C.T.: Conception and design
of research. ALL: Interpreted and discussed results of experiments. Edited and
revised manuscript. Approved final version of manuscript.



Chapter 5

General discussion

The aim of this work is to identify the most appropriate connectivity estimators and
synchrony measures for spike train signals from in vitro neuronal networks. Espe-
cially, attention was paid to

(a) the choice of appropriate parameter values,
(b) the suitability for massively parallel spike trains such as from HDMEAs, and

(c) the characteristics of experimental data such as different time scales or erro-
neous spike trains.

As a result, evaluation frameworks were developed considering the characteristics
of experimental data in order to compare known methods from the literature. In
addition, two new methods were developed. A connectivity estimator called total
spiking probability edges (TSPE) and a synchrony measure called Spike-contrast.
The comparison showed that the two new methods outperformed the methods known
from the current literature.

In the following, this chapter is divided into discussions about connectivity estimators
(section and synchrony measures (section[5.2). The connectivity estimator sec-
tion refers to the manuscript in chapter [2and the synchrony measure section to the
manuscripts in chapter [3/and chapter 4]

5.1 Connectivity estimation

Parameter value optimization (a): In order to identify appropriate connectivity
estimators, different methods were selected from the literature based on cross-
correlation and on transfer entropy. The newly introduced method, TSPE, is
based on cross-correlation and not only estimates functional connections but also
effective connections. The difference to other cross-correlation based methods, is
the additional analysis of the cross-correlogram. More specifically, negative and
positive peaks of the cross-correlogram are emphasized by a filter, which enables a
distinction between inhibitory and excitatory connections. This filtering procedure is
performed for various filter lengths to cover different time constants of neurons. All
filtered cross-correlograms are then averaged to a new curve. The extreme value of
this curve is the value of the estimated connection strength (see Fig. 3 in chapter[2).

65
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Note that a very similar approach called FNCCH was developed independently at
about the same time by |Pastore et al.| (2018c). This method uses a simpler filter
approach for the cross-correlogram and does not vary the filter length.

HDMEA suitability (b): The calculation speed comparison for massively parallel
spike trains showed that cross-correlation based methods are the fastest connectiv-
ity estimators (see Fig. 10 in chapter [2). The calculation of transfer entropy based
methods took at least ten times as long. Despite the additional filter procedure, the
computing time of TSPE was only about twice as much as for the cross-correlation
based connectivity estimators from the literature. This is due to the fact that the
calculation of cross-correlation as well as the filtering is performed in parallelizable
matrix operations. TSPE is therefore suitable for massively parallel spike trains.

Complexity of experimental data (c): TSPE was evaluated using simulated data
from in silico networks with different topologies. In contrast to other comparative
studies, not only random networks were used for the simulations, but also small-
world and scale-free networks. Since small-world and scale-free networks are more
similar to biological neuronal networks, this evaluation approach better captured the
complexity of experimental data. As a result, the classification accuracy of TSPE
outperformed the compared methods for all simulated network topologies (see Fig. 5
in chapter[2). Because of the high accuracy and the ability to discriminate betweeen
excitatory and inhibitory connections, TSPE is considered the most appropriate
connectivity estimator.

Limitations and future work: A limitation of TSPE is that it is not possible to
detect self-connections or parallel connections, which is generally true for all other
connectivity measures evaluated in this work. It should also be noted that the
accuracy for estimated inhibitory connections is significantly lower than for excitatory
connections. This is a general issue, since inhibitory effects are only visible if the
target neuron already exhibits high firing rates.

Another limitation is that TSPE uses predefined values to vary the filter length. While
the selected values proved to be suitable for the test data, this does not necessarily
apply to all data. It should be kept in mind, that the test data was generated using
Izhikevich networks, which are motivated by the anatomy of a mammalian cortex
(Izhikevich et al.l 2003). For the analysis of neuronal networks from brain regions
other than the cortex, a re-evaluation of the predefined values is recommended.

An additional point for future work is the threshold selection. Connectivity estimators
provide an estimated connectivity value between all pairs of spike trains. However,
depending on the postprocessing of these values, it can be desireable to only
consider the most relevant connections. A preliminary study for the threshold
selection based on the connectivity matrix distribution or on surrogate data are
decribed in |De Blasi| (2018b).
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5.2 Synchrony measurement

Parameter value optimization (a): In order to identify the most appropriate syn-
chrony measure, different time scale dependent and time scale inependent syn-
chrony measures were compared. The novel method Spike-contrast is a time scale
independent synchrony measure as it optimizes itself to the time scale of the data.
The automatic optimization is based on an intuitive approach, when observing spike
raster plots. In raster plots, synchronized network activity appears as vertical lines.
The higher the synchrony level, the more distinct the vertical lines appear — or in
other words — the visual contrast increases (see Fig. 1 in chapter[3]If, additionally to
a high contrast, the number of contributing spike trains to the vertical lines is high, a
high synchrony is indicated. This calculation is repeated for different bin sizes which
reveals the maximum synchrony in the data. In addition to the maximum synchrony
value, this approach also provides a synchrony curve as a function of the time scale
(see Fig. 2 in chapter [3). This curve is a new feature of time scale independent
synchrony measures and complements the synchrony curve over time from known
measures such as SPIKE-distance.

It was shown that Spike-contrast yields similar results to the established time scale
independent measure SPIKE-distance for most data (see Fig. 3 in chapter[3). The
similarity was surprising, as both methods are based on fundamentally different
approaches. The main difference, however, was visible in spike trains with self-
similalf_r] bursts (“parent bursts”) consisting of smaller bursts (“sub-bursts”). In this
case, Spike-contrast only emphasizes synchronization changes in the parent bursts
or more exactly the largest available time scale. This property is desirable for the
analysis of experimental data (see also|Ciba et al.| (2017)). For example, |Satuvuori
et al.| (2017) modified time scale independent methods to be less sensitive to small
time scales. Such modifications are not necessary for Spike-contrast, as it is not
only “less sensitive” for small time scales, but “not sensitive at all” which is an
advantage over other time scale independent methods.

HDMEA suitability (b): The calculation time for Spike-contrast takes longer than the
established measures (e.g. SPIKE-distance) for MEA data with a small number of
electrodes. For HDMEA data containing several hundred or thousands of electrodes,
however, the calculation becomes significantly faster (see Fig. 4 in chapter[3). The
reason lies in the multivariate nature of Spike-contrast, so that the calculation time
is nearly independent from the number of parallel spike trains. Spike-contrast is
therefore particularly suitable for massively parallel spike trains.

Complexity of experimental data (c): For the comparison framework, experimental
data from in vitro recordings were used in order to obtian a test data set featuring
more complexity than simulated networks. The level of synchrony was increased
using a substance called bicuculline (BIC). In addition, spikes were added or
deleted from the recorded data in order to study the robustness of the synchrony
measures. As a result, Spike-contrast was the most robust time scale independent
measure against erroneous spike trains and similarly robust to time scale dependent

T Another term is “fractal”. Fractal geometry is a fundamental pattern in nature (Mandelbrot, [1983) and
is also present in neuronal networks and their signals (Baker et al., [2006)
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measures (see Fig. 1 in chapter [4). Furthermore, Spike-contrast was the most
sensitive measure to synchrony changes mediated by the substance BIC (see Fig. 4
in chapter[4). The resason for that was the binning procedure within Spike-contrast.
All synchrony measures which contain a binning procedure, showed high robustness
to the error case of missed spikes and high sensitivity to the substance BIC. Overall,
it could be demonstrated that Spike-contrast combines the robustness of bin-based
time scale dependent measures, with the flexibility of time scale independent
measures. Spike-contrast is therefore considered as the most appropriate measure
for experimental data.

Limitations and future work: As a limitation of Spike-contrast it should be noted
that — although it is time scale independent — it is not parameter free compared to
other time scale independent measures. Parameter such as the resolution of the
bin size sweep and the bin overlap have to be chosen. However, the proposed pa-
rameter values were suitable for analyzing both simulated and experimental data
(Ciba et al.l 2017} |Ciba and Thielemann| 2019; |Ciba et al., [2019} 2020). Because
of the binning procedure of Spike-contrast, “binning-artefacts” may influence the fi-
nal synchrony value such as observed when analyzing random spike trains. There-
fore, further investigations are needed in order to better understand the limitations of
Spike-contrast.

In addition to the limitations of Spike-contrast, the fact that not all synchrony mea-
sures described in the literature were included can be regarded as a limitation of
the comparison. While all time scale independent synchrony measures found in the
literature were taken into account, the comparison of time scale dependent meth-
ods is not comprehensive. The reason lies in the large number of different methods
which are scattered across the literature, inconsistent programming platforms, re-
stricted accessability (e.g. Global-Synchrony-Index used in |Eisenman et al.| (2015)),
or recently published methods (Sihn and Kim, [2019];|Sotomayor-Gomez et al., 2020).
Moreover, there are further methods in the literature that are modifiable to derive a
synchrony value. For example unitary event analysis (UEA) (Grun et al., 2002; |(Grun
and Rotter, 2010), was used to derive a time scale dependent synchrony index by
calculating the average number of synchronous events (Kilavik et al., |2009). Such
synchrony measures could be included in future work if the focus is on time scale
dependent measures.

As a further point for future work, the impact of errors due to incorrect spike sorting
could be taken into account. A spike sorting procedure can be used to distinguish
between different source neurons contributing to the same spike train. However,
such a spike sorting is also prone to errors (Rey et al., [2015). Although this has not
been explicitly investigated, it is assumed that Spike-contrast is robust against spike
sorting errors, as long as the overall burst patterns are preserved.

Due to the time scale independence, Spike-contrast could also be applied to in vivo
data or even to other fields. Not only neurons generate spike trains but also car-
diomyocytes (Spira and Hai, [2013) or plant roots (Masi et al., 2012). Also beyond
biology, all systems that can be reduced to sequences of discrete events may be
a potential application. For example, spike train synchrony measures have already
been used in social science to study inter-personal synchronization in cooperative
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tasks of children (Rabinowitch and Knafo-Noam, [2015), quantifying the regularity of
human behaviour, (Williams et al. |2012), or in climate research to identify spatial
structure of rainfall fields (Malik et al., 2010).

5.3 Summary and outlook

In summary, an evaluation framework for connectivity estimators and for synchrony
measures was developed and two novel methods were proposed which outper-
formed methods known from the literature. While many methods depend heavily on
parameters that have to be selected by the user, the two new methods are designed
to require no user interaction, thus avoiding misinterpretation of the data and ensur-
ing comparability of the results. The demand for computationally efficient analysis
methods, which arises from the increasing use of HDMEAs, is covered by the two
analysis methods as well. In contrast to other comparative studies known from the
literature, the evaluation framework of this work takes into account further aspects
of the complexity of experimental data, such as more realistic network topologies
or pre-processing errors. As the new methods performed best in these evaluation
frameworks, they are considered as the most appropriate methods for the analysis
of in vitro neuronal networks. The developed evaluation framework serves as a step
towards a standard benchmark procedure for testing newly developed functional or
effective connectivity estimators and synchrony measures. In order to help fill the
gap of a missing gold standard, the proposed evaluation framework as well as the
new methods were made available online at https://github.com/biomemsLAB/.

Due to the discussed advantages of the two new methods, the performance of es-
timating connectivity and measuring synchrony increased. Since information about
the connectivity and synchrony of neuronal networks are fundamental to study neu-
ronal networks, research fields such as pharmacology (Chiappalone et al., 2003;
Amin et al., [2016)), toxicology (Johnstone et al.| 2010, [Flachs and Ciba, 2016), and
basic research will benefit. For example, the synchrony curve from Spike-contrast
has already been applied as a new feature to analyze the synchrony development of
a neuronal in vitro network during a long-term recording of several days (Ciba and
Thielemann|2019). A first application of Spike-contrast and TSPE to HDMEA data is
shown in|Ciba et al.|(2019) to study the effects of psychedelics with the aim of devel-
oping treatments for depression, anxiety, addiction or to explore neural correlates to
consciousness. Additionally, TSPE has already found its way into the research com-
munity due to its fast calculation. |De Filippo et al.| (2020) applied it for the estimation
of inhibitory connections in order to study the effect of serotonin on slow oscillations
in the entorhinal cortex.


https://github.com/biomemsLAB/
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