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Abstract
The liver-derived, circulating transport protein transthyretin (TTR) is the cause of sys-
temic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and 
knockdown are approved therapies to mitigate the otherwise lethal disease course. 
To date, the variety in phenotypic penetrance is not fully understood. This systematic 
review summarizes the current literature on TTR pathophysiology with its therapeu-
tic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. 
Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) 
and external (extracellular matrix, Schwann cell interaction) factors influence the 
type of onset and organ tropism. The approved small molecule tafamidis stabilizes 
the tetramer and significantly decelerates the clinical course. By sequence-specific 
mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and anti-
sense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels 
and improve neuropathy and quality of life compared to placebo. With enhanced 
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1  | INTRODUC TION

Transthyretin (TTR)-related amyloidosis is a progressive, systemic 
disease caused by dissociation and deposition of the amyloidogenic 
protein in peripheral sensorimotor and autonomic nerves, heart, vit-
reous bodies, gastrointestinal mucosae, kidneys, and the central ner-
vous system (Planté-Bordeneuve & Said, 2011). By September 2020, 
133 known destabilizing missense variants in the TTR-gene (OMIM 
*176,300) favor this mechanism in an autosomal dominant mode of 
inheritance (ATTRv amyloidosis). The clinical spectrum is broad and 
the age of onset variable, ranging from 20 to 80 years for the same 
variants (Parman et al., 2016). While some mutation carriers remain 
asymptomatic throughout life, elderly individuals are susceptible to 
a sporadic wild-type TTR amyloidosis (ATTRwt), predominantly af-
fecting cardiac tissue (Westermark et al., 1990). Although the clini-
cal prevalence of ATTRwt amyloidosis is not clear yet, wild-type TTR 
amyoid is found in up to 25% of all autopsy cases older than 85 years 
and might be the underlying cause for heart failure with preserved 
ejection fraction in up to 13% (Gonzalez-Lopez et al., 2015; Tanskanen 
et al., 2008). While ATTRv amyloidosis is still considered a rare disease 
in non-endemic areas, high allele frequencies have been described for 
the variants p.Val50Met (0.1%) and p.Val144Ile (up to 3.5%) in individ-
uals of northern Portuguese (Plante-Bordeneuve et al., 2003) or west 
African descent (Buxbaum & Ruberg, 2017). Aside from TTR itself, 
there must therefore be several genetic and environmental modifiers 
influencing its amyloidogenicity and organ tropism.

Currently approved treatment options include liver transplanta-
tion, thereby removing the main source of mutant TTR in the pe-
riphery, but not targeting the 10% produced in the choroid plexus 
and retina, tetramer stabilization, and TTR mRNA degradation. As 
primary outcome parameters of all clinical trials, both the overall 
survival and quality of life were significantly improved under treat-
ment, which is a great success considering the otherwise chron-
ically progressive and fatal disease course. However, each of these 

approaches has its limitations, and to date, there is no definite cure. 
In this review, we summarize the underlying mechanisms of both 
disease and therapy, emphasizing the respective challenges and 
chances for future studies.

2  | METHODS

For this work, the database (PubMed/Medline) search included the 
following terms of enquiry “hereditary transthyretin amyloidosis”, 
“TTR amyloidosis”, and “familial amyloid polyneuropathy” in combi-
nation with “pathophysiology”, “TTR function”, “TTR stabilization”, 
“TTR knockdown”, “antisense oligonucleotides”, and “small-interfer-
ing RNA”. We included peer-reviewed, PubMed-listed publications 
written in English and published between 1970 and 2020. Registered 
clinical trials were assessed at clinicaltrials.gov, ISRCTN registry, and 
clinicaltrialsregister.eu, and respective pharmaceutical companies 
were contacted requesting informative material. Additional search 
was based on the authors’ expertise on the topic. The final bibliog-
raphy was generated based on both relevance and originality. We 
emphasized articles published in the past ten years, however, fre-
quently cited works from previous decades were included as well.

3  | RE VIE W

3.1 | From function to disease: understanding TTR 
amyloidogenicity

3.1.1 | TTR—an amyloidogenic protein

Comprising four exons and 0.4kb, the TTR gene is located on chro-
mosome 18q12.1 and encodes a 55 kDa tetramer with four iden-
tical monomers of 127 amino acids, each forming a β-sandwich 

hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently en-
tered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in 
vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with 
the potential to cross the blood–brain barrier, but its half-life is short and liver failure 
a potential side effect. Amyloid-directed antibodies and substances like doxycycline 
aim at reducing the amyloid load, however, none of the yet developed antibodies has 
successfully passed clinical trials. ATTR-amyloidosis has become a model disease for 
pathophysiology-based treatment. Further understanding of disease mechanisms will 
help to overcome the remaining limitations, including application burden, side effects, 
and blood–brain barrier permeability.
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with one small α-helix and eight β-strands. Following the identi-
fication of its amino acid sequence in 1974 (Kanda et al., 1974), 
the protein was first associated with amyloidosis by Costa and 
colleagues (Costa et al., 1978). Based on its slightly more nega-
tive charge, transthyretin migrates in front of the albumin band 
in an agarose gel electrophoresis at neutral pH, which is why it 
was formerly called pre-albumin. The current name “transthyretin” 
reflects the primary protein function (Liz et al., 2010) of trans-
porting thyroxin (Woeber & Ingbar, 1968) and retinol-binding pro-
tein (Smith et al., 1970) in plasma and cerebrospinal fluid (CSF). 
In humans, contrary to the original nomenclature, TTR is a minor 
carrier of T4 in plasma (5%–15% of total), whereas the greatest 
part is carried by thyroxine-binding globulin. Albumin has a lower 
affinity, but because of its total concentration in serum, the ab-
solute amount of transported T4 may be even greater than that 
carried by TTR. Therefore, T4 transport can be well compensated 
in absence of TTR (Liz et al., 2010), whereas retinol-binding pro-
tein levels decrease because of a higher renal loss (Liz et al., 2010). 
Normal concentrations of plasma TTR vary between 20 and 
40 mg/dl. As a secretory protein, TTR is assembled and folded 
in the endoplasmic reticulum, exported to the Golgi, and subse-
quently secreted for circulation. The main source of TTR synthesis 
is the liver, contributing roughly 90% of the overall production. 
Another 10% originate from the choroid plexus and retinal epi-
thelium (Herbert et al., 1986). Representing 20% of the total CSF 
proteins, TTR levels range between 1.5 and 2.5 mg/dl (Weisner & 
Roethig, 1983). Especially under neuronal stress, a so far not quan-
tified amount of central TTR production is attributed to neurons, 
which has been previously discussed as a protective mechanism 
in Alzheimer's disease (AD) (Ghadami et al., 2020; Li et al., 2011; 
Wang et al., 2014). How exactly TTR interacts with Aβ and attenu-
ates its toxicity, has so far not been fully understood (for review 
see (Li & Buxbaum, 2011)).

Within the frame of systemic, TTR-related amyloidosis, RNA-
degrading substances have so far not been able to overcome the 
blood–brain barrier, which is a limitation for the treatment of CNS 
manifestations. To deprive the CNS of the neuroprotective effects 
of TTR might, on the other hand, evoke new problems in the future.

3.1.2 | Dissociation and denaturation – steps of 
amyloidogenesis

Amyloid is an extracellular mass of fibrillar proteins with the typical 
β sheet structure that can be identified by congo red birefringence 
or thioflavine S fluorescence staining. To determine the protein of 
origin, immunohistochemistry (Schönland et al., 2012), immuno-
electron microscopy (Arbustini et al., 2002), or mass spectrometry 
(Winter et al., 2017) are typically applied in specialized laboratories. 
The rate-limiting step of TTR amyloidogenesis is tetramer dissocia-
tion (Colon & Kelly, 1992), which typically takes place at the AB-CD 
dimer-dimer interface of the homotetramer (Foss et al., 2005). It has 
been hypothesized in the past that specific proteolytic cleavage of 

the protomer residues 48–49 located between the C and D strands 
(Mangione et al., 2018) favors amyloid formation in vitro. Recent 
ultrastructural characterizations of patient-derived TTR amyloid fi-
brils showed, however, a preserved continuity of the unfolded full-
length monomers, pointing toward the hypothesis that disassembly 
precedes cleavage in patients (Schmidt et al., 2019), which might 
therefore be more relevantly associated with aggregation than dis-
sociation. Pathogenic mutations in the TTR gene were shown to favor 
both cleavage and dissociation, so that for example the p.Leu75Pro 
variant is associated with a 10 times faster disintegration of tetra-
meric TTR in vitro (Hammarström et al., 2002). Contrarily, the benign 
variant p.Thr139Met creates additional hydrogen bonds between 
serine residues of adjacent monomers and therefore increases the 
tetramer stability, an effect that prevents dissociation in compound-
heterozygosity with an otherwise amyloidogenic variant (Almeida 
et al., 2000).

Depending on denaturating factors and TTR concentrations, 
monomer unfolding has its own thermodynamic equilibrium, which 
can be influenced by certain TTR variants as well (Hammarström 
et al., 2002; Hurshman Babbes et al., 2008). Because monomer de-
naturation is the critical step preceding fibril formation and amyloid 
deposition, the disease severity and penetrance might not only de-
pend on the tetramer, but also on the monomer stability influenced 
by both the respectively underlying mutations and by extrinsic mod-
ifiers as well.

3.1.3 | Organ tropism, age of onset, and clinical 
variability—open questions

While the mechanism of amyloidogenesis is well understood, it re-
mains unclear to date, why TTR amyloid deposits in certain, but not 
in all tissues, contributes to tissue degeneration, and what deter-
mines the broad variability in phenotype severity (expressivity) and 
age at onset (penetrance). It is of special interest, how some carriers 
of amyloidogenic variants do not develop any symptoms throughout 
their lifetime, whereas other individuals display a severe cardiomyo-
pathy with thickened walls and TTR-positive deposits without any 
genetic mutation in TTR.

Fragmented TTR has been identified in patient biopsies by pro-
tein composition analyses (Ihse et al., 2013). The fragment types, de-
pending on the site of cleavage, correlate with the type of onset and 
the respective organ tropism (Suhr et al., 2017).

It is further hypothesized that the extracellular matrix might in-
fluence both the time and place of protein ensconcing, a mechanism 
that has been discussed for amyloidosis in general (Kim et al. 2019). 
By up-regulating remodeling proteins in the presence of TTR fibrils, 
the tissue microenvironment apparently contributes to neuroinflam-
mation (Sousa et al., 2005). Disturbed axon Schwann cell crosstalk 
has previously been discussed as a factor in neurodegeneration, a 
theory established by Sousa and colleagues, showing neuroprotec-
tive factors released from Schwann cells are vanishing with disease 
progression (Sousa, Du Yan, et al., 2001). Recently, Murakami et al. 
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showed mutant TTR secreted by Schwann cells had an inhibitory ef-
fect on neurite outgrowth of sensory neurons in mice, but wild-type 
TTR did not (Murakami et al., 2015). The role of direct TTR-toxicity 
imposed on peripheral neurons by their surrounding Schwann cells is, 
however, unclear to date. It might come into question if hepatic TTR-
knockdown alone does not lead to a long-term disease stabilization.

The activation of receptors for advanced glycation end products, 
responsive to β sheet formation, is hypothesized to induce neu-
roinflammation. This process is not only associated with yet depos-
ited, but especially with soluble amyloid fibrils (Sousa et al., 2001). 
Accordingly, small unmyelinated nerve fibers are more and earlier 
involved despite being less prone to compression than large, myelin-
ated nerves, which goes along with the established theory that the 
actual amyloid load is of greater extent in proximal nerve sections 
(Kollmer et al., 2015), still causing a length-dependent neuropathy. 
Additionally, amyloid vasculopathy has been discussed as another 
contributor to neuropathy (Koike et al., 2016).

TTR deposition might further be influenced by genetic or epi-
genetic factors regulating protein expression levels not only of TTR 
itself, but of other interacting proteins in circulation or tissue. This is 
supported by the fact that one mutation, namely the most frequent 
and well-characterized variant p.Val50Met, causes a high-pene-
trance/early-onset phenotype in the northern Portuguese popula-
tion, but a low-penetrance/late-onset subtype in other, non-endemic 
areas (Coelho et al., 2018; Conceição & De Carvalho, 2007; Dohrn 
et al., 2013; Inês et al., 2018). A notable clinical variability has, how-
ever, been described within the same families and, in rare cases, 
even between monozygotic twins (Ruzhansky et al., 2014; Saporta 
et al., 2009).

Exploiting the Genotype-Tissue Expression (GTEx) database, 
Iorio and colleagues hypothesized that the expression of TTR mRNA 
in tissues like skeletal and heart muscle correlates with the geo-
graphical distribution of disease manifestations (Iorio, De Angelis, 
et al., 2017). The same authors identified intronic regulatory variants 
in the TTR-gene that, as they discussed, might influence the regional 
expression pattern and therefore likewise the tissue susceptibility 
for amyloidosis (Iorio, De Lillo, et al., 2017). This hypothesis has so 
far not been confirmed by any experimental data. In comparison to 
its overall high expression levels in liver, retina, or choroid plexus, 
TTR mRNA is, however, relatively underrepresented in tissues like 
heart muscle or peripheral nerves (https://bgee.org/?page=gene&-
gene_id=ENSG0 00001 18271) as well as in cultured cardiomy-
ocytes derived from induced pluripotent stem cells (Synnergren 
et al., 2008). TTR-transgenic mice with cardiac amyloid deposits had 
no evident transcription of the TTR gene in the heart muscle, under-
lining the primarily non-cardiac origin of TTR amyloid in this model 
(Buxbaum et al., 2012).

Soares and colleagues (Soares et al., 2005) screened 100 het-
erozygous p.Val50Met carriers of Portuguese origin, 92 clinically 
affected (60 early- and 32 late-onset) and 8 pre-symptomatic, for 
genetic variants in genes associated with TTR-interacting pro-
teins such as RBP4 and APCS. Identifying several single nucleo-
tide polymorphisms (SNP) out of the Hardy–Weinberg equilibrium 

compared with healthy controls (n = 85), the authors assumed that 
these genes might influence amyloid formation. While the statis-
tical power was too low to show an association with the age of 
onset for individual candidate genes alone, the combination of sev-
eral genetic loci including polymorphisms in RBP4, APCS, HSPG2, 
ApoE, SAA1, and SAA2 correlated significantly with the late or early 
disease manifestation subtype, respectively (Soares et al., 2005). 
Since that first study, RBP4 has been reproduced as a modifier by 
different works (De Lillo et al., 2019; Santos et al., 2016). In a larger 
Portuguese cohort, including 318 patients from 106 families, for 
instance, generalized estimating equations of candidate genes 
revealed three SNPs in RBP4 associated with late and one with 
early onset (Santos et al., 2016). By candidate gene screening in 36 
early- and 15 late-onset Greek p.Val50Met patients, Dardiotis and 
colleagues identified polymorphisms in C1Q, a complement cas-
cade protein, and APOε, an apolipoprotein known in the context of 
Alzheimer's disease, to be associated with an earlier disease onset 
(Dardiotis et al., 2009). The former association was later repro-
duced by Dias and colleagues (Dias et al., 2019), whereas the latter 
could not be confirmed (Satoh et al., 1996; Soares et al., 2005). As 
assessed by serum protein analyses, Nylander and colleagues had 
previously reported certain complement factor subtypes to influ-
ence the risk of developing a disease phenotype in p.Val50Met 
TTR mutation carriers (Nylander et al., 1990). CAG expansions in 
the ATXN2 gene cause autosomal dominant spinocerebellar ataxia 
if exceeding 32 repeats. In a Portuguese p.Val50Met cohort, het-
erozygous allele carriers of borderline repeat lengths of at least 
22 CAGs showed a significantly earlier age at amyloidosis onset 
(Santos et al., 2019). Observing that female patients typically pres-
ent with initial symptoms at a later age than males, and realizing 
anticipation predominantly occurs in mother-son pairs, Santos and 
colleagues additionally analyzed the androgen receptor (AR) gene 
on the X chromosome (Santos et al., 2016). They found five SNPs 
to be associated with a later or earlier onset with dependence on 
the patient's sex, respectively (Santos et al., 2016).

Despite these results, all so far performed modifier studies were 
limited to p.Val50Met mutation carriers and pre-selected candidate 
genes. Broader genetic screening studies including hereditary and 
wild-type cases are required for a better understanding of regulat-
ing mechanisms derived from yet undiscovered genes or epigenetic 
factors.

3.2 | On stabilization and knockdown: approved 
treatment approaches

3.2.1 | Preventing dissociation—small molecules to 
stabilize the tetramer

To date, the formation of amyloid fibrils can be prevented thera-
peutically by two different approaches (Figure 1). The first of 
which, TTR stabilization, exploits the known effect of thyroxine 
(T4) that enhances the tetramer stability when bound into the 

https://bgee.org/?page=gene&gene_id=ENSG00000118271
https://bgee.org/?page=gene&gene_id=ENSG00000118271
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inter-dimeric grove (Miroy et al., 1996). It has additionally been 
observed that certain TTR variants do not cause the disease phe-
notype, but prevent it even in compound-heterozygosity with 
known, otherwise amyloidogenic mutations (Almeida et al., 2000). 
This led to the conclusion that the rate-limiting tetramer disso-
ciation can be influenced (Almeida et al., 2005), depending on 
certain amino acid residues and its interaction. By comparing 
crystal structures of both TTR and T4, several substances, pre-
dominantly non-steroidal anti-inflammatory drugs (NSAID), were 
identified and tested (Almeida et al., 2005). As the most promi-
nent drug of this group, diflunisal succeeded in a randomized, 
placebo-controlled clinical trial (NCT00294671) showing signifi-
cantly reduced neuropathy progression measured by the clinical 
NIS+7 score (Berk et al., 2013). However, the pre-existing FDA 
approval of diflunisal for arthritis has never been extended for 
ATTRv amyloidosis. High drop-out rates in the trial and the risk of 
cardiac and nephrotoxic side effects (Wixner et al., 2019) have fur-
ther been points of discussion. Several similarly structured drugs 
were designed and tested (Miller et al., 2004; Razavi et al., 2003), 

revealing that 2-(3,5-dichlorophenyl)-1,3-benzoxazole-6-car-
boxylic acid was most effective in stabilizing the tetramer while 
being deprived of its cyclooxygenase inhibitory properties. This 
substance, later called tafamidis, has become the first approved 
TTR stabilizing drug that entered the European market in a daily 
oral dosage of 20 mg with an approval for stage 1 ATTRv amy-
loidosis with polyneuropathy in 2011. The higher dosage of 61 
mg received FDA approval for the TTR-associated (ATTRv and 
ATTRwt) cardiomyopathy in 2019, which was followed by an EMA 
indication expansion in 2020. The primary outcome parameter of 
the first, 18 months lasting phase III trial (Fx-005: NCT00409175) 
was the stop of neuropathy progression that was realized in 60% 
of the treated compared to 38% of the placebo group (Coelho 
et al., 2012). Other parameters with a stabilization under treat-
ment were quality of life (p = .045 in the efficacy-evaluable group) 
and the modified body mass index (mBMI, p < .0001) (Coelho 
et al., 2010, 2012). These results were confirmed by an open-label 
extension trial (Fx-006: NCT00791492), including 71 patients over 
a time span of 5.5 years (Waddington Cruz et al., 2016). In non-p.

F I G U R E  1   Pathophysiology and treatment approaches. Following hepatic production and secretion, the TTR tetramer circulates as a 
transport protein in blood. Amyloidogenic monomers are drawn towards different tissues including peripheral nerves, heart muscle, and 
gastrointestinal mucosae, where they form extracellular deposits that stain positive by Congo red. TTR production can be therapeutically 
targeted by mRNA degrading drugs including the small interference RNA substance patisiran and the antisense oligonucleotide inotersen. 
Tetramer-stabilizing drugs including tafamidis, diflunisal, and tolcapone prevent TTR dissociation, the first and rate-limiting step of 
amyloidogenesis. Out of the aforementioned, tafamidis is the only approved substance to date. Amyloid-directed antibodies and substances 
like doxycycline aim at reducing the deposit load in tissues. They have not been approved for this indication so far.
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Val50Met patients, a significant TTR stabilization was observed 
as well, with less evident benefit, however (Merlini et al., 2013). 
Long-term data on tafamidis (e.g., NCT00925002) revealed about 
one-third of responders, one-third of partial responders, and one-
third of non-responders all defined by progression of sensorimo-
tor and autonomic neuropathy. Positive predictors for a good 
response aside from being a carrier of the p.Val50Met mutation 
were female sex and an early disease stage (Monteiro et al., 2019). 
Focusing on the TTR-related cardiomyopathy, the ATTR-ACT trial 
(NCT01994889) measured the overall survival and the reduction 
in cardiovascular events leading to hospitalization and, as second-
ary outcome parameters, the clinical (6-min walk test) and func-
tional (echocardiography, laboratory parameters) performance 
under oral tafamidis treatment in a dosage of 20 mg and 80 mg. 
With an observation time of 30 months, all outcome measures 
were met for both dosages from the 18 months visit on (Maurer 
et al., 2018). In all trials, tafamidis was well tolerated with minor 
side effects including urinary tract infections (for more informa-
tion, see specialist information).

3.2.2 | Modifying translation—RNA degradation to 
reduce protein levels

Acknowledging that disease-causing mutations are anchored in the 
patient's DNA, the concept of “genetic therapy” is particularly at-
tractive. Replacing the main source of mutant TTR protein by liver 
transplantation became the first mechanism-based treatment of 
ATTRv amyloidosis that enabled a significant improvement of both 
span and quality of life (Holmgren et al., 1993; Suhr et al., 1995; 
Yamashita et al., 2012). Between 1990 and 2010, 1940 patients and 
2,127 liver transplants were included in the Familial Amyloidotic 
Polyneuropathy World Transplant Registry (FAPWTR) (Ericzon 
et al., 2015), 1628 of whom being carriers of the most frequent 
Val50Met variant. In 86 cases, the liver was transplanted in combi-
nation with other affected organs including heart and/or kidney. In 
the overall collective, the 20-year survival rate was 55.3% with the 
greatest benefit in young Val50Met patients. The otherwise healthy 
liver was donated to patients with end-stage liver diseases in 1,064 
of these registered ATTRv cases (Ericzon et al., 2015). This concept, 
called domino liver transplantation, was first conducted in 1995 
(Furtado et al., 1999). In the meantime, several recipients of such an 
ATTRv liver were diagnosed with an “acquired” form of TTR amy-
loidosis (Lladó et al., 2010), requiring regular monitoring. Despite 
longer survival, liver transplantation is not considered a definite 
cure in liver-transplanted patients with hereditary ATTRv amyloido-
sis. The slower, but continuous disease progression is attributed to 
an ongoing deposition of wild-type TTR around the amyloid seeds 
(Liepnieks et al., 2010). Considering that pre-existing cardiac de-
posits were the main reason for complications and failure of liver 
transplant, the combination of both liver and heart transplantation 
therefore became the therapy of choice in such cases (Barreiros 
et al., 2010). Unhalted disease progression after liver transplantation 

was, however, observed in vitreous (Beirão et al., 2015), cerebro-
vascular (Sekijima, 2015), and leptomeningeal manifestations (Maia 
et al., 2015). Other challenges including surgery complications, life-
long immunosuppression, and organ allocation problems underline 
the need for other, less invasive concepts.

Translation modification has become a new therapeutic principle 
that can be exploited to knock-down the expression of an intended 
target protein by sequence-specific mRNA degradation. In about 
20 years of research, this concept had to overcome pharmacokinetic 
obstacles such as identifying suitable application pathways and 
avoiding immediate renal filtration as well as pharmacodynamic chal-
lenges including off-target phenomena as well as immune-mediated 
side effects. With the comparably well-targetable liver in the center 
of pathogenesis, ATTR amyloidosis has become a model disease for 
two different classes of expression modification, namely small inter-
fering RNA (siRNA) and antisense oligonucleotides (ASOs). Sharing 
a similar path of RNA degradation, these two different substance 
classes harbor some mechanistic differences (Crooke et al., 2018).

ASOs (Crooke et al., 2017) are amphipathic, single-stranded DNA 
sequences, typically modified at the phosphate and sugar moieties to 
confer greater exo- and endonuclease resistance. They have a high 
binding affinity to proteins enabling an easy distribution, which is 
independent of the route of administration. Various receptors on the 
hepatocyte cell surface provide their uptake, which is mostly clath-
rin-, but also caveolin-mediated and partially unspecific. Following 
endosomal escape, chaperone proteins and GTPases shuttle the 
substance to the nucleus, where it evolves its highest efficiency in 
mRNA degradation. The recognition of the target strand is provided 
by the whole antisense sequence, however, at least two base pairs 
with unmodified sugar moieties must be accessible to RNase H2, a 
non-specific endonuclease predominantly found in the nucleus, in 
order to be recognized as a DNA:RNA hybrid. True to its canoni-
cal function, RNase H2 will cleave the phosphodiester bond in the 
pre-mRNA or mRNA transcript that are bound to DNA, and thereby 
setting in place a degradation mechanism for the targeted transcript 
of choice. Sugar moiety modifications can provide greater resis-
tance to endogenous degradation, but these modifications, like the 
2′-O-methoxyethyl (MOE) modification routinely used in pre-clini-
cal and clinical models, can create significant steric hindrance, and 
if used throughout the entire ASO sequence, can block recognition 
by RNase H2. For this reason, sugar modifications are either re-
served for purposes other than transcript knockdown or used in a 
gapmer fashion, where only the flanking ends of the ASO sequence 
are modified. The safety of MOE-ASOs, in general, is high, however, 
thrombopenia has been observed to be caused by different drugs, 
including inotersen and volanesorsen (Witztum et al., 2019).

Double-stranded siRNA (Setten et al., 2019) molecules range 
in size between 19 to 21 base pairs with a two-base 3’ overhang. 
Because of their polyanionic charge and hydrophilic structure, 
siRNA do not bind to plasma proteins and are therefore prone to 
rapid renal excretion. To prevent this, lipophilic formulations such 
as lipid nanoparticles are used enabling an unspecific hepatic uptake 
by micropinocytosis. They require an intravenous administration and 
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harbor the potential to cause immunoreactions, so that a pre-med-
ication with corticosteroids and histamine-receptor blockers is 
necessary (Zhao & Huang, 2014). The mechanism of endosomal es-
cape is not fully understood to date. Once arrived in the cytoplasm, 
siRNA exploit a natural mechanism of antiviral defense in eukaryotic 
cells (Coelho et al., 2013), using pre-existing protein complexes for 
mRNA degradation. Before the antisense sequence can leap into ac-
tion, however, the sense strand, likewise a “drug-delivery device”, 
has to be removed. Ago2, an argonaut protein complex, recognizes 
and cleaves RNA and additionally facilitates hybridization with the 
target mRNA. This induces the formation of the likewise cytoplas-
matic located RNA-induced silencing complex (RISC) followed by a 
sequence-specific degradation of the mRNA of interest.

In the history of translation modification, patisiran, an siRNA 
molecule, and inotersen, an ASO drug, have competed almost head-
to-head to enter the market (Adams et al., 2018; Benson et al., 2018). 
Reasons that ATTRv became such a pioneer disease are manifold, in-
cluding the toxic-gain-of-function mechanism that can be addressed 
by protein reduction, the relative dispensability of TTR in peripheral 
circulation that makes knockdown a justifiable concept, the hepatic 
origin of TTR synthesis enabling a systemic application for targeting 
the organ of interest, and, from an ethical point of view, the partic-
ularly cruel and progressive disease character that requires urgent 
prioritization. As the mechanism is independent of the underlying 
mutation, it has the potential to treat ATTRv amyloidosis patients 
with any mutation and to be additionally applied for ATTRwt amy-
loidosis in the future. As the suppression of circulating TTR protein 
comes along with reduced vitamin A levels, a daily oral substitution 
is recommended.

In 2018, patisiran reached EMA and FDA approval for the first 
and second stage of the ATTRv-related polyneuropathy, following an 
18-month long, randomized, placebo-controlled phase III trial with 
225 participants (APOLLO, NCT01960348) (Adams et al., 2018). It 
was intravenously administered in a dosage of 0.3 mg per kg body 
weight every three weeks. The drug led to an 81% (mean) reduction 
in serum TTR and, as primary endpoint, to a clinical improvement 
of −6 ± 1 points of the mNIS+7 neuropathy score, whereas place-
bo-treated patients worsened in a range of 28 ± 2,6 points. An ac-
cording improvement was measured for the patients’ quality of life 
(Adams et al., 2018; Obici et al., 2020). Cardiac markers including 
left ventricular hypertrophy, global longitudinal strain, N-terminal 
pro brain natriuretic peptide, and the 10 meter walk test pointed 
towards a positive treatment response of the cardiomyopathy as 
well (Solomon et al., 2019). Typical side effects included peripheral 
edema and infusion reactions. There were seven deaths in the pati-
siran (all cardiovascular related) and six in the placebo cohort (three 
cardiovascular related). In a pooled analysis of cardiac adverse and 
serious adverse events as well as cardiac hospitalization and death 
rates, there were no significant differences between the two groups, 
however (Solomon et al., 2019). Whether the study drug contrib-
uted to the development of sudden cardiac deaths or whether these 
cases were fully attributed to the patients’ disease severity has 
since been the subject of debate (González-Costello et al., 2019). 

Interim analyses of the not yet published open-label extension trial 
(NCT02510261), including 211 patients, 49 of which switched from 
the former placebo arm, confirmed a significant clinical benefit and 
did not reveal further side effects. The time delay in the former 
placebo group caused a higher overall disease burden (Polydefkis 
et al., 2020).

Inotersen was investigated in an international phase III trial 
including 172 patients in a 2:1 randomization (NEURO-TTR, 
NCT01737398). By subcutaneous application, patients received a 
weekly dosage of 284 mg. TTR serum levels were reduced by about 
75% (mean) from baseline. As primary endpoints at week 66, the 
inotersen-treated group showed a significantly lower mNIS+7 score 
(Benson et al., 2018) and a significantly higher quality of life (Coelho 
et al., 2019) compared to placebo. These results were independent of 
the underlying TTR variant, the ambulatory status, and the presence 
of cardiomyopathy (Benson et al., 2018), and led to EMA and FDA ap-
proval for the first and second stage of ATTRv-related polyneuropa-
thy in 2018. Subgroup analyses showed a significant reduction in the 
left ventricular volume and septum diameter (Dasgupta et al., 2020). 
As mentioned earlier, the most relevant side effect of inotersen was 
thrombopenia, which might be a class effect as it occurred with 
volanesorsen, another MOE-ASO, as well (Witztum et al., 2019). 
Thrombopenia was observed in 60% of all drug-treated patients 
overall, however, a severe course led to intracranial hemorrhage and 
death of one study participant. Further common side effects were 
nausea and vomiting, fever, and glomerulonephritis. Subsequently, 
the monitoring strategies were improved including obligatory con-
trols of blood cell counts and renal function on a regular basis (for 
details view specialist information). An open-label extension study 
(NCT02175004) including 50 previously placebo-treated individuals 
and 135 patients overall did not reveal any further safety concerns 
and confirmed a significant benefit especially for the early treated 
patients (Brannagan 2020 et al.).

3.3 | Overcoming barriers: next 
steps and novel approaches

3.3.1 | Optimizing administration: GalNac 
formulations in clinical use

To increase the hepatic delivery (pharmacokinetics) and RNA deg-
radation potency (pharmacodynamics), to therefore enable lower 
dosages and less frequent application intervals, and additionally to 
reduce side effects such as infusion (patisiran) or injection site (in-
otersen) reactions, specific drug modifications are promising. The 
so far most investigated (Crooke et al., 2019) of such modifications 
is N-acetylgalactosamine (GalNAc) (Plank et al., 1992), a galactose 
derivative that binds to the asialoglycoprotein receptor (ASGPR) on 
hepatocytes (Zimmermann et al., 2017), which leads to a specific, 
clathrin-mediated uptake. Thus, the same hepatic concentrations 
can be reached with a drastically reduced dosage. By conjugating 
the ribose backbone of either ASO or siRNA molecules with GalNAc, 
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a subcutaneous application is enabled, which is not only easier and 
more comfortable for the patient, but makes pharmacodynamics 
slower through a steadier release, decreases renal filtration, and 
does not require pre-medication in order to reduce infusion reac-
tions (applicable for siRNA only). Several TTR-directed GalNAc-
conjugates have been in clinical trials to date (Magrinelli et al., 2020).

Revusiran was the first TTR-directed GalNAc drug to enter 
clinical trials (Gillmore et al., 2015). Parallel to the APOLLO trial, 
ENDEAVOUR (NCT02319005) was a placebo-controlled phase III 
study including 206 2:1 randomized patients with TTR-related car-
diomyopathy (Judge et al., 2020). Revusiran, an siRNA molecule like 
patisiran, was subcutaneously administered in a dosage of 500 mg 
weekly following a loading interval of five consecutive application 
days. Primary endpoints were TTR serum levels and the 6-min-
ute walk test. The mean reduction in plasma TTR levels was 80%. 
Hepatic events occurred in 34.4% of the revusiran-treated com-
pared to 13.6% of the placebo group. Related to heart failure and 
associated cardiovascular events, 18 patients died in the revusiu-
ran-treated patient cohort. With only 2 death cases in the placebo 
arm, this imbalance led to a study halt. Subsequent analyses did not 
reveal any specific causality of the study drug (Judge et al., 2020).

Vutrisiran, a new, “second generation” GalNAc siRNA drug is 
currently in a patisiran-controlled phase III trial for patients with 
ATTRv-related polyneuropathy (HELIOS-A, NCT03759379) and 
in a placebo-controlled phase III trial for patients with hereditary 
and wild-type cardiac amyoloidosis (HELIOS-B, NCT04153149). 
With its so called “enhanced stabilization chemistry”, vutrisiran 
is expected to have an up to 10 times increased potency com-
pared with the standard template chemistry of first-generation 
GalNAc-siRNA. Significant modifications have been made at the 
sugar-phosphate backbone including the amount and positions 
of 2’deoxy-2’-fluoro, 2’-O-methyl, and phosphorothioate linkages 
(Nair et al., 2017). With a dosage of 25 mg every three months, 
the yearly amount will account for 100 mg (compared to 28 g re-
vusiran per year). A phase 1 trial on 80 healthy subjects, 60 of 
whom receiving vutrisiran, reported no serious adverse events. 
TTR plasma levels were reduced by 90%, an effect that lasted for 
90 days (2020). The current phase 3 trial, initialized in November 
2019, is scheduled until 2025.

In parallel, a GalNAc-modification of inotersen, AKCEA-TTR-
LRx, seems to be promising to increase the drug's potency and there-
fore reduce required dosages and side effects. Phase 1 data have not 
been published to date, however, the safety of several ligand-con-
jugated antisense drugs appeared to be ensured in several studies 
including a total of >600 healthy probands (Crooke et al., 2019). In a 
phase 3 clinical trial initiated in January 2020 (NEURO-TTRansform, 
NCT04136184), 140 patients with ATTRv-related polyneuropathy 
are planned to be randomized for subcutaneous injections of either 
45 mg AKCEA-TTR-LRx every 4 weeks or 284 mg inotersen once 
weekly (Khella et al., 2020). For TTR-related hereditary and wild-
type cardiac amyloidosis, a parallel placebo-controlled phase III trial 
(CARDIO-TTRransform, NCT04136171) has begun in March 2020. 
Both trials are scheduled until 2024.

3.3.2 | Increasing stability beyond borders: new 
horizons for TTR stabilization

With longer lifespans, new challenges arise, including central nervous 
system involvement in ATTRv amyloidosis. This experience has already 
been made in the long-term follow-up of individuals, who underwent 
liver transplant (Sekijima et al., 2016). About 90% of the circulating TTR 
in the cerebrospinal fluid is produced in the choroid plexus (Weisner 
& Roethig, 1983). Hence, targeting the liver by either antisense mol-
ecules or transplantation might not be a sufficient long-term concept 
to prevent CNS manifestations with consequences including stroke-
like episodes, dementia, and intracerebral hemorrhage (Nakamura 
et al., 2005). Blindness can be another disabling manifestation because 
of retinal TTR production. There is no evidence of TTR degradation in 
the CNS (Makover et al., 1988). Out of all three approved medications, 
the small molecule tafamidis is the only one with the potential to cross 
the blood–brain barrier, however, no more than 1.5% of the plasma-
circulating drug actually reach the cerebrospinal fluid, and stabilization 
kinetics are moderate only (Monteiro et al., 2018).

The orally applicable drug tolcapone binds with high affin-
ity to the T4-binding groves. Like tafamidis, it establishes specific 
contacts with the dimer–dimer interface subsequently reducing 
the tetramer dissociation of wild-type TTR and several mutants 
(p. Ala45Thr, p.Val50Met, p.Val50Gly, p. Leu75Pro, p.Tyr134Cys, 
p.Val142Ile) in vitro. Tolcapone has a similarly stabilizing effect as 
tafamidis (Sant'Anna et al., 2016), but a greater capacity to cross 
the blood–brain barrier (Russ et al., 1999). This might be of interest 
for the treatment of leptomeningeal manifestations of ATTRv am-
yloidosis in the future (Pinheiro et al., 2020). Because of its short 
half-life, however, it is difficult to find an efficient dosage for TTR 
stabilization. With an oral administration of 100 mg (maximum 200 
mg) three times daily, the catechol-O-methyltransferase (COMT) 
inhibitor is already FDA and EMA approved for the treatment of 
Parkinson's disease. Typical side effects are sleep disturbances, 
headaches, gastrointestinal symptoms, and elevation of liver en-
zymes. Because of the increased risk of liver failure, a black box 
warning has been issued for tolcapone. In cases of liver disease or 
concomitant drugs sharing the CYP2C9 metabolism (e.g., warfa-
rine), monitoring is required. For ATTRv amyloidosis, tolcapone has 
passed a phase IIa clinical trial (NCT02191826).

The binding of small ligands by the TTR tetramer significantly 
reduces its susceptibility to dissociation, cleavage, and aggregation. 
Full inhibition can only be achieved when both of the two binding 
groves and the central channel between them are simultaneously 
occupied (Mangione et al., 2018). When the first pore is filled, this 
leads to conformational changes in the protein structure, decreasing 
the accessibility of the second binding grove. Such negative coop-
erative effects therefore only allow a relatively small percentage of 
the TTR tetramer to be double stabilized at physiological tafamidis 
concentrations. Increasing the orally administered dosage accord-
ingly to the ATTR-ACT trial is therefore an attempt that might not 
fully solve this problem. Another TTR stabilizer, AG10, 3-[3-(3,5-di-
methyl-1H-pyrazol-4-yl)propoxy]-4-fluorobenzoic acid, is an orally 
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administrable, well-tolerated (Fox et al., 2019) small molecule that 
provides higher stabilizing propensities by fostering intermonomeric 
hydrogen bonds comparably to the protective p.Thr139Met variant. 
Compared to tafamidis and tolcapone, AG10 is slightly more potent 
to stabilize TTR in patient plasma, to reach the required concentra-
tions, however, patients would have to take 1,600 mg of AG10 versus 
80 mg tafamidis per day (Nelson et al., 2020). An ongoing placebo-, 
but not tafamidis-controlled phase III clinical trial (NCT03860935/ 
ATTRIBUTE-CM), including 510 individuals with cardiac ATTR am-
yloidosis, is expected to show results in 2024 (Judge et al., 2019). 
Another approach targeting TTR dissociation are bivalent TTR sta-
bilizers (Corazza et al., 2019; Verona et al., 2017), such as the sub-
stance mds84, that bind both binding groves and the central protein 
channel at the same time and therefore exhibit one kinetic binding 
curve only. By doing so, TTR dissociation and cleavage are both 
more efficiently prevented compared to monovalent substances in-
cluding tafamidis and tolcapone in vitro (Corazza et al., 2019; Verona 
et al., 2017). So far, however, mds84 has not been tested in clinical 
trials.

Epigallocatechin gallate (EGCG), a polyphenolic component of 
green tea, binds and stabilizes TTR outside the thyroxine-binding 
grove. By direct interaction with amino acid residues at the dimer-di-
mer interface (Miyata et al., 2010), it prevents tetramer dissociation 
and disrupts preformed amyloid fibrils in vitro (Ferreira et al., 2012). 
In patients, oral EGCG was shown to be safe (Cappelli et al., 2018) 
and to reduce left ventricular wall thickness (aus dem Siepen 
et al., 2015). However, the interpretation of findings was limited by 
small case numbers or retrospective data acquisition. A prospective, 
randomized, and placebo-controlled trial on EGCG in patients with 
light chain amyloidosis (TAME-AL, NCT02015312) did not reveal a 
significant benefit (data not published).

3.3.3 | Improving amyloid clearance: antibodies to 
reduce the deposit load

The very first, historic treatment approach was selective plasma-
pheresis, intending to wash out the amyloidogenic protein (Regnault 
et al., 1992). This was, however, not successful. Novel therapies aim 
likewise at removing already deposited amyloid (Müller et al., 2020) 
(Figure 1). Despite extensive and expensive effort, clearing amyloid 
has so far been of very limited success.

The tetracycline derivates doxycycline, an approved antibi-
otic drug, has been shown to disrupt amyloid aggregates in mice 
(Cardoso et al., 2003). Minocycline, a similar drug from the same 
family as doxycycline, reduces the synthesis of aggregation-prone 
proteins by targeting cytoplasmatic ribosomes (Solis et al. 2018), 
a mechanism that could, for doxycycline as well, additionally con-
tribute to the reduction in amyloid load. Biliary acids such as tau-
roursodeoxycholic acid reduce the load of circulating, fibrillar TTR 
by a not yet fully understood mechanism (Cardoso et al., 2010). 
In order to prevent and reduce the amyloid load, several combi-
nations of orally administered doxycycline and different biliary 

acids have been tested in open-label clinical trials (NCT01677286, 
NCT01171859). Results point towards a clinical benefit for both 
neurologic and cardiac outcome parameters (Obici et al., 2012; 
Wixner et al., 2017). Because of high drop-out rates, however, 
these trials have not led to approval yet. A new phase III trial for 
the combination of doxycycline and tauroursodeoxycholic acid in 
patients with cardiac ATTR amyloidosis (NCT03481972) is still on-
going, and results are expected in 2021.

Immediate TTR-directed antibodies (George et al., 2019) were 
shown to recognize specific epitopes in the fibrillar TTR forms and 
not to target native TTR in-vitro (Ando & Ueda, 2017). An ongoing 
phase 1 clinical trial on PRX004 (NCT03336580) has recently fin-
ished its recruitment, and results are expected to be published in 
2021.

By complement activation and the induction of phagocytosis, an-
tibodies against serum amyloid A component (SAP) aimed at trigger-
ing the elimination of systemic amyloid deposits (Bodin et al., 2010; 
Richards et al., 2015), which seemed to be a promising approach in 
a previous study including patients with different types of amyloi-
dosis (NCT03336580) (Richards et al., 2018). In a phase 2 clinical 
trial (NCT03044353) with patients with cardiac ATTR amyloidosis 
in one and with post-chemotherapy light chain amyloidosis in a sec-
ond study arm, the combination of the subcutaneously given small 
molecule miridesap (CPHPC) and the intravenously applicated SAP-
specific antibody dezamizumab was studied. Miridesap was given 
in order to prevent the formation of circulating immune complexes 
by enhancing the hepatic clearance of circulating SAP (Richards 
et al., 2015). Because of a “change in benefit/risk profile”, however, 
the study was halted (data not yet published).

4  | DISCUSSION AND CONCLUSION

ATTRv-amyloidosis has become a model disease for pathophys-
iology-based novel treatment approaches (Adams et al., 2019). To 
prevent amyloid formation, TTR can either be stabilized or knocked 
down, and amyloid-derived antibodies have been investigated for 
deposit removal. As none of the yet approved drugs or those in 
clinical trials directly target the specific TTR mutation, they are all 
promising approaches for various phenotypes (leading neuropathy 
or cardiomyopathy) or onset types (early and late), including ATTRwt 
amyloidosis.

In order to understand each substance's benefits, accurate bio-
markers of progression and treatment response are crucial. In the 
previous studies, compiled scores of neuropathy severity, includ-
ing, for example the NIS, NIS-LL, mNIS+7, PND, COMPASS-31, and 
Norfolk QoL were used as primary and secondary outcome param-
eters for neuropathy, whereas overall and cardiovascular mortality, 
6-minute walking test, left ventricular wall thickness, global longi-
tudinal strain, (NT-pro)BNP, and other values were used to measure 
progression of cardiomyopathy (Table 1). Because of limitations such 
as subjectivity of such scores or complexity in assessment, the search 
for new markers will have to go on in the future. One promising 
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approach to objectively detect axonal damage is, for example, mea-
suring neurofilament light chain (NFL) serum levels, which is not spe-
cific for ATTR-related neuropathies, but seems to correlate with the 
clinical course (Kapoor et al., 2019; Louwsma et al., 2020).

Between the three already approved drugs, tafamidis, pati-
siran, and inotersen, no head-to-head comparison has been made. 
Differences in the study designs including patient collectives and 
numbers, study duration, and outcome parameters do not allow to 
designate “the best” of all substances (Magrinelli et al., 2020). In 
the ongoing phase 3 trial on AG10, a third study arm with tafamid-
is-treated patients would have been interesting to compare the novel 
stabilizer directly with the current standard of care. For all already 
and yet to be approved drugs, real-life long-term data are required 
to define individual predictors for a good treatment response, and 
immersing investigation needed to fill the holes in pathophysiologi-
cal understanding.

In contrast to treatment approaches for other neurodegenera-
tive diseases, ATTR amyloidosis harbors the opportunity of targeting 
the liver as the main production site of the amyloidogenic protein 
while not being directly affected by the disease itself. To decrease 
the treatment burden associated with unpleasant application types 
or side effects, further drug modifications for a more specific he-
patic uptake are the next steps under investigation. For the remain-
ing 10% of TTR that is produced in the choroid plexus and retina, the 
blood–brain and blood–eye barrier needs to be overcome. Despite 
enthralling success in these past few years, TTR has therefore saved 
some demanding challenges for the future.
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