
J
H
E
P
0
1
(
2
0
1
9
)
0
1
2

Published for SISSA by Springer

Received: June 25, 2018

Revised: October 10, 2018

Accepted: November 28, 2018

Published: January 2, 2019

Holographic subregion complexity from kinematic

space

Raimond Abt, Johanna Erdmenger, Marius Gerbershagen,

Charles M. Melby-Thompson and Christian Northe

Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,

Am Hubland, Würzburg, 97074 Germany

E-mail: raimond.abt@physik.uni-wuerzburg.de, jke@mppmu.mpg.de,

marius.gerbershagen@physik.uni-wuerzburg.de,

charles.melby-thompson@physik.uni-wuerzburg.de,

christian.northe@physik.uni-wuerzburg.de

Abstract: We consider the computation of volumes contained in a spatial slice of AdS3 in

terms of observables in a dual CFT. Our main tool is kinematic space, defined either from

the bulk perspective as the space of oriented bulk geodesics, or from the CFT perspective

as the space of entangling intervals. We give an explicit formula for the volume of a general
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plexity of an interval, defined as the volume under its Ryu-Takayanagi surface, is a measure

of the complexity of the corresponding reduced density matrix. If this is true, our results
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1 Introduction

A central component of the AdS/CFT duality is the question of how information in the

boundary CFT is encoded in its dual gravitational theory. One lesson learned in the past

decade is that there appear to be deep connections between quantum information-theoretic

objects on the boundary and geometric quantities in the bulk. The prototypical example

of such a relation is the Ryu-Takayanagi (RT) proposal [1], which states that the entan-

glement entropy of a subregion A on a given constant time slice on the CFT side is given

(at leading order in 1/N) by the area of an extremal codimension two bulk surface with

the same boundary as A, known as the Ryu-Takayanagi surface. Other proposals relating

quantum information to geometry include entanglement of purification [2, 3], Fisher infor-

mation [4, 5], and fidelity susceptibility [6–9]. Quantum error correcting codes, describing

quantum states that are maximally protected against erasure, can be constructed from

tensor networks inspired by, and intended to mimic the properties of, holographic bound-

ary states [10, 11]. The relation between quantum information and geometry even allowed

the derivation in [12] of the linearized Einstein’s equations about AdS using entanglement

entropy.
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Figure 1. In AdS3/CFT2 the RT proposal states that the entanglement entropy of the region A is

given by the length of the geodesic γA in the constant time slice that connects the boundary points

of A. The volume of the region Σ below γA is proposed to be a measure for the complexity of the

reduced density matrix corresponding to A.

The information-theoretic quantity we are interested in here is complexity [13]. The

complexity of a pure state within quantum information is computed with respect to a

reference state and a set of basic unitary operators, called gates. It is defined to be the

minimum number of gates that must be applied to the reference state in order to map it

to the desired state.1 For quantum theories defined on a finite-dimensional Hilbert space

(e.g. spin systems), this definition is straightforward. The definition of the complexity of a

state in field theory, however, is much less clear-cut, although there has been some progress

for free field theories [15–18].

Computing the complexity of a state using the holographic correspondence has recently

garnered a good deal of attention. The first proposals for bulk geometric quantities dual

to field theory complexity posited that the complexity of the evolution of two copies of a

CFT initially entangled in the thermofield double state is dual either to the volume of the

Einstein-Rosen bridge [19], or the action of a Wheeler-DeWitt patch [20], of the two-sided

black hole geometry. The first proposal relates complexity to a bulk volume, and is known

as the ‘complexity equals volume’ (complexity = volume) proposal. Based on complexity =

volume, Alishahiha proposed [21] that, for a given entangling region A, the volume enclosed

by the corresponding RT surface computes the complexity of the reduced density matrix of

A (see figure 1 for the case of AdS3/CFT2). This object, called the (holographic) subregion

complexity, has been computed in a number of cases, e.g. [22–25].

We cannot as yet study subregion complexity as an entry in the AdS/CFT dictionary,

however, because it is not clear how to define it in field theory. Since it is associated to

the reduced density matrix, a possible approach would be to use recent work on mixed

state complexities [26]. This work associates to any mixed state ρ two basic measures of

complexity: the spectrum complexity, which measures the difficulty of constructing a mixed

state ρspec with the same spectrum as ρ, and basis complexity, measuring the difficulty of

constructing ρ from ρspec. Applying these constructions to reduced density matrices may

1When working with a discrete set of unitary gates, we actually demand that the state is reproduced

up to a given accuracy. A cleaner definition can be made by taking the limit as the gates approach the

identity, which corresponds to introducing a measure on paths in U(N) [14].
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yield a natural field theory definition of subregion complexity. Comparing the properties

of a complexity so defined to holographic subregion complexity is an interesting problem

for future work, but lies beyond the scope of the present paper. Instead, we will take a

different approach to this issue.

The aim of this paper is to define a quantity in CFT2 that, when applied to a CFT

with a weakly curved holographic dual, reproduces the holographic subregion complexity of

vacuum AdS3. We present and prove a formula for the volume of an arbitrary spatial bulk

region as the integral over all geodesics of the lengths of geodesic segments intersecting that

region. We refer to this as the volume formula. We apply the volume formula to the region

under the RT surface to obtain an integral expression for holographic subregion complexity

written purely in terms of CFT entanglement entropy. This integral expression defines a

field theory quantity in any CFT, which reduces to the holographic subregion complexity

for CFTs with weakly curved holographic duals.2 We then extend our results to non-

vacuum states whose dual geometries are described by quotients of vacuum AdS3: conical

defects, dual to primary states, and black holes, dual to a system at finite temperature.

Our approach is based on the kinematic space formalism [28]. The kinematic space of

a time slice of a bulk geometry is the space of oriented bulk geodesics in that slice3 ending

on the boundary [28, 31–33]. Kinematic space is therefore parametrized by pairs of points

in a time slice of the dual CFT. It was shown in [31] that it is equipped with a natural

volume form ω, constructed from derivatives of the (regularized) length of geodesics. The

length of a bulk geodesic γA sharing its boundary points with a CFT interval A (figure 1)

corresponds, by the RT formula, to the entanglement entropy S(A) of A. In this way, we

can alternatively identify kinematic space as the space of CFT intervals, and the length of

γA with S(A). Hence we may treat kinematic space as a geometry associated to any CFT2,

by defining it as the space of all CFT intervals and equipping it with the volume form ω.

This construction makes no reference to any holographic dual geometry. It was shown

in [28, 31, 32] that detailed properties of the bulk geometry — specifically, the perimeter of

an arbitrary bulk curve — can be computed as the integral with respect to the measure ω

of the intersection number of geodesics with the curve. Applied to an AdS/CFT dual pair,

this relates the entanglement pattern of the CFT to the geometry of its gravitational dual.

In the same way, we may express the volume formula — a bulk geometric relation —

as a computation purely within CFT. We stress that for holographic subregion complexity,

this expression requires no reference to a bulk geometry; for the vacuum state we obtain

an expression for the holographic subregion complexity in terms of entanglement entropies

alone. The bulk volumes that are associated with holographic subregion complexity are,

however, divergent, and must be regularized. The cutoff scheme for the volume formula

considered in our first presentation of this method [27] corresponds to a radial cutoff in

the bulk, and is rather opaque from the CFT perspective. We offer an alternative cutoff

scheme that is more natural from the field theory and kinematic space points of view.

The volume formula applies not just to vacuum AdS, but can also be adapted to its

quotients. We give its explicit form in conical defect and static BTZ black hole geometries.

2We gave preliminary results in this direction previously in [27].
3Later generalizations [29, 30] drop the restriction to constant time slices, but these are not relevant to

this work.
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Using the volume formula to compute holographic subregion complexity for these geome-

tries, we confirm that it reproduces the results of direct calculations on the gravity side.

An important proviso, however, is that for the conical defect and BTZ black hole geome-

try, boundary intervals and oriented geodesics are no longer in one-to-one correspondence.

Thus, knowledge of single interval entanglement entropies alone is not enough to compute

the holographic subregion complexity in these states.

The paper is organized as follows. Section 2 reviews those aspects of kinematic space

relevant to this work. We present and prove the volume formula in section 3. In section 4

we apply this formula to subregion complexity in the vacuum. We present an expression for

it in terms of entanglement entropies and use it to compute subregion complexity in global

AdS3 and the Poincaré patch. In section 5 we consider primary states (dual to conical

defects) and thermal states (dual to BTZ black holes). Here we introduce the appropriate

kinematic spaces, and discuss the corresponding volume formulae. We discuss possible

interpretations of the volume formula and present our conclusions in section 6.

2 Review of kinematic space

The concept of kinematic space as a tool for studying the AdS/CFT correspondence was

introduced in [31]. The utility of the kinematic space formalism lies in its ability to explic-

itly decode parts of the correspondence between bulk geometry and boundary information,

making it an ideal starting point for studying bulk volumes in terms of CFT. In this section

we review the basic concepts of kinematic space required for this work.

The RT formula suggests a strong relationship between entanglement and geometry,

but does not immediately tell us how to construct the bulk geometry. One of the first steps

toward making this correspondence more precise was the result of [34] that the perimeter

of a closed bulk curve could be constructed from derivatives of the entanglement entropy

in terms of a quantity called differential entropy. Kinematic space provides a natural

framework for these concepts [28, 31, 32]. It was also noted there that, in the special case

of vacuum AdS3, the perimeter formula reduces to known results from the field of integral

geometry (see e.g. [35]).

Consider an asymptotically AdS3 spacetime M, i.e., a spacetime whose asymptotic

behavior matches that of AdS3:

ds2 ∼ − r
2

L2
dt2 + L2dr

2

r2
+ r2dφ2 as r →∞ , (2.1)

where φ ∼ φ+ 2π and L is the AdS radius.4 We consider only the case where M is static,

with Killing time t.

Fix a spatial slice given by t = constant. Its kinematic space K is the space of all

oriented boundary-anchored geodesics that lie inside the slice. For simplicity, we assume

that for any given pair of boundary points u, v there is a unique oriented geodesic running

from u to v. This uniqueness is guaranteed in particular for geometries sufficiently close

4Kinematic space is constructed analogously for other geometries, such as the Poincaré patch, which we

discuss later.
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Figure 2. We can parametrize geodesics via their endpoints u and v or via the position of their

center θ and their opening angle α. The tuples (θ, α) and (θ + π, π − α) correspond to the same

geodesic, but with opposite orientation. The geodesic with the orientation of the red arrow is

associated with the entangling interval [u, v], the geodesic with the orientation of the blue arrow is

associated with the complement [u, v]c.

Figure 3. A point p that lies in the constant time slice of asymptotic AdS3 is associated with the

set of all geodesics that intersect p (l.h.s.). This set is a curve in K, the so-called point curve of p.

The geodesic distance of two points p and p′ is given, up to a proportionality factor, by the volume

of the region ∆pp′ in K that is bounded by the point curves of p and p′ (r.h.s.). Since (θ, α = 0)

correspond to boundary points of AdS3, the lower boundary of K is identified with the constant

time slice of the CFT depicted in green (l.h.s.).

to pure AdS3. A point in K — that is, a geodesic — is specified by the location φ = u, v

of its endpoints, making (u, v) a coordinate system on K. An alternative parametrization

uses the midpoint θ of the interval [u, v] together with its opening angle α (figure 2),

u = θ − α , v = θ + α . (2.2)

As depicted in figure 2, (θ + π, π − α) encodes the same geodesic as (θ, α), but with the

opposite orientation. A bulk point p is encoded in kinematic space as the set of all geodesics

containing p. This set is a curve in K, the so-called point curve (see figure 3).

Given our assumptions, the geodesics (u, v) are in one-to-one correspondence with the

intervals [u, v], so we may interpret K as the space of entangling regions of the CFT and

consider the entanglement entropy S(u, v) to be a function on it. For a holographic CFT,

– 5 –
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this quantity is given at leading order in 1/N by the Ryu-Takayanagi formula:

S(u, v) =
`(u, v)

4GN
. (2.3)

Here `(u, v) denotes the length of the geodesic (u, v), regularized for example by truncating

at a large but finite value of r, and GN is the bulk Newton’s constant. The key observation

of [28] was that S induces a natural metric ds2
K on K, together with the corresponding

volume form ω:

ds2
K = ∂u∂vS du dv =

1

2
(∂2
θ − ∂2

α)S (−dα2 + dθ2) , (2.4)

ω = ∂u∂vS du ∧ dv =
1

2
(∂2
θ − ∂2

α)S dθ ∧ dα . (2.5)

In integral geometry the volume form is known as the Crofton form. In the following

sections we will only consider geometries that are invariant under translations, meaning S

depends only on the length v − u = 2α of the entangling interval and not its particular

position. In this situation, (2.4) and (2.5) simplify to

ds2
K = −1

2
∂2
αS(−dα2 + dθ2) , ω = −1

2
∂2
αSdθ ∧ dα . (2.6)

The metric ds2
K is Lorentzian, and u and v are light-cone coordinates.

The geometric structure (2.4), (2.5) of K encodes useful information about the bulk

geometry. For example, in pure AdS3 point curves are known to be spacelike geodesics on

K [31].5 Furthermore it is possible to express the geodesic distance d(p, p′) between two

bulk points p and p′ as an integral in kinematic space [28]:

d(p, p′)

4GN
=

1

4

∫
∆pp′

ω . (2.7)

Here ∆pp′ ⊂ K is the set of all geodesics separating p and p′. ∆pp′ turns out to be the

region bounded by the point curves of p and p′, as depicted in figure 3.

From here on (θ, α) will also denote entangling intervals and we will view K as the space

of these. In this picture we can understand the causal structure of K in an intuitive way:

(u1, v1) lies in the past of (u2, v2) if [u1, v1] ⊂ [u2, v2]. Note that the orientation reversal

(θ + π, π − α) of the geodesic (θ, α) is spacelike related to it; this is because (θ + π, π − α)

corresponds to the complement of the entangling interval (θ, α), as seen in figure 2. The

interpretation of K as the space of CFT intervals means that K can be constructed for any

CFT, regardless of the (non-)existence of a bulk dual. Finally, as α→ 0 the geodesic (α, θ)

collapses to the boundary point φ = θ. Therefore, the lower boundary K, α = 0, can be

identified with the CFT circle (see figure 3). This observation plays an important role in

later sections.

It is the RT proposal that connects kinematic space to quantum information. Equa-

tion (2.3) tells us that `(u, v) computes the entanglement entropy of the interval [u, v].

5In [31] it was shown that point curves are geodesics for several geometries, such as global AdS3, conical

defects and BTZ black holes.
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This connection allows one to express bulk lengths, as in (2.7), and volumes, which we

study in section 3, as integrals over derivatives of entanglement entropies. In this way, the

information-theoretic properties of a constant time slice in the CFT encode the geometry

of the corresponding constant time slice in the bulk.

In particular, the Crofton form ω can be interpreted as an infinitesimal version of the

conditional mutual information of two intervals A and B with respect to a third interval C,

I(A,B|C) = S(AC) + S(BC)− S(ABC)− S(C) . (2.8)

We recover the Crofton form from the infinitesimal conditional mutual information of the

neighboring intervals A = [u− du, u], B = [v, v + dv], C = [u, v] [28]:

I(A,B|C) ≈ ∂u∂vS du dv ∝ ω . (2.9)

Note that we can also motivate the causal structure of K by requiring (u1, v1) to lie in the

past of (u2, v2) if [u1, v1] ⊂ [u2, v2]. This immediately leads to

ds2
K ∝ du dv . (2.10)

The proportionality factor, ∂u∂vS, is fixed by demanding that the volume form match the

Crofton form. Consequently, the geometry of K can be constructed from the CFT side

without reference to the bulk. This will be important for us when we construct a field

theory expression for subregion complexity.

3 The volume formula

The goal of this paper is to establish and apply the following formula for the volume of a

bulk region Q as a kinematic space integral,

vol(Q)

4GN
=

1

2π

∫
K
λQω , (3.1)

which we first presented in [27]. Here λQ(θ, α) is the chord length of the geodesic (θ, α),

defined to be the length of the intersection of the geodesic (θ, α) with Q (figure 4). In the

following sections we use it to derive an expression for holographic subregion complexity

in the vacuum purely in terms of field theory quantities.

While formulae like this are known in integral geometry [35], we present here a simple

proof of (3.1) for the kinematic space of a constant time slice of global AdS3 with metric

ds2
AdS3

= −L
2 + r2

L2
dt2 +

L2

L2 + r2
dr2 + r2dφ2 . (3.2)

In this case the entanglement entropy is

S(α) =
c

3
log

(
2lCFT

ε
sin(α)

)
, (3.3)

– 7 –
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Figure 4. The volume of a region Q on the constant time slice is given by an integral over the

chord lengths of all geodesics. The chord length of a geodesic is the length of the segment of the

geodesic that lies inside of Q (depicted in red).

where c = 3L
2GN

is the central charge, lCFT is the radius of the CFT circle and ε is the UV

cutoff. The corresponding metric and Crofton form are

ds2
K =

c

6

1

sin2α
(−dα2 + dθ2) , ω =

c

6

1

sin2α
dθ ∧ dα . (3.4)

The strategy we pursue begins by verifying the volume formula for a disc DR of radius

R around the point r = 0 in a constant time slice of AdS3.6 We next show that the integral

in (3.1) shares with volumes certain characteristic properties such as non-negativity and

additivity, and use these properties to extend the volume formula to annular arcs. Using

annular arcs it is possible to construct Riemann sums, which approximate the volume of

Q arbitrarily well, proving the volume formula in the limit.

Denoting the integral in 3.1 by

V (Q) ≡ 2GN
π

∫
K
λQω , (3.5)

our proposal is that

V (Q) = vol(Q) . (3.6)

Let us first establish this for a disc DR (r ≤ R) of radius R. The chord length of the

geodesic (θ, α) for region DR is

λDR(θ, α) =

L arcosh
(

1 + 2R
2

L2 sin2(αR)
)
, if α∗ ≤ α ≤ π − α∗

0 , otherwise.
(3.7)

Here αR is the opening angle of the geodesic (θ, α) on the boundary of DR (figure 5), and

satisfies
R√

L2 +R2
cos(αR) = cos(α) . (3.8)

The angle α∗ is given by

cos(α∗) =
R√

L2 +R2
, (3.9)

6We presented this computation previously in [27].
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Figure 5. The disc DR associates an opening angle αR on its boundary to each geodesic (θ, α).

Geodesics of the form (θ, α∗) are tangent to DR.

and specifies the family of geodesics (θ, α∗) tangent to DR (figure 5). Since λDR vanishes

for α 6∈ [α∗, π − α∗] (see (3.7)), V (DR) takes the form

V (DR) = − 1

4π

∫ 2π

0
dθ

∫ π−α∗

α∗

dαλDR∂
2
α` . (3.10)

By expressing V (DR) as an integral over αR and integrating by parts, we find

V (DR) =
1

2

∫ π

0
dαR(∂αRλDR)2 =

∫ π

0
dαR

2L2R2 cos2(αR)

L2 +R2 sin2(αR)

= 2πL2

(√
1 +

R2

L2
− 1

)
,

(3.11)

which is indeed the volume of the disc DR.

Our next step is to establish the following important properties of V :

(a) V (Q) ≥ 0, with equality only when Q = ∅. This is simply due to the fact that it is

the integral of a non-negative function with a positive volume form.

(b) V is additive,

V (Q ∪Q′) = V (Q) + V (Q′)− V (Q ∩Q′) . (3.12)

Here, Q and Q′ are any regions in the constant time slice of AdS3. This property is

a direct consequence of the additivity of chord lengths,

λQ∪Q′ = λQ + λQ′ − λQ∩Q′ . (3.13)

(c) Non-negativity and additivity, together with V (∅) = 0, imply that V is monotonic,

V (Q) ≤ V (Q′) if Q ⊆ Q′ . (3.14)

(d) V is invariant under rotations around r = 0. This follows from the rotational in-

variance of the vacuum state (implying rotational invariance of the kinematic space

measure) and of the chord length λΣ.

– 9 –
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Figure 6. Annulus AR1R2 of inner radius R1 and outer radius R2 and annulus segment snR1R2
with

opening angle αn.

We can prove (3.6) by taking advantage of properties (a)–(d). Consider (3.6) for an

annulus AR1R2 of inner radius R1 and outer radius R2 centered around the origin (figure 6).

First note that, since the disc DR2 can be written as the union DR2 = DR1 ∪ AR1R2 ,

additivity implies

V (AR1R2) = V (DR2)− V (DR1). (3.15)

We already know that the volume formula holds for DR. Therefore, (3.15) shows that it

also holds for AR1R2 :

V (AR1R2) = vol(DR2)− vol(DR1) = vol(AR1R2) . (3.16)

The second step is to verify the proposal for a segment snR1R2
of the annulus AR1R2 (see

figure 6) with opening angle

αn ≡
π

n
, n ∈ N . (3.17)

Rotational invariance, additivity, and (3.16) together imply

V (snR1R2
) =

1

n
V (AR1R2) =

1

n
vol(AR1R2) = vol(snR1R2

) . (3.18)

So the proposal indeed holds for segments of annuli with opening angle αn.

Now consider an arbitrary region Q. We can approximate V (Q) arbitrarily well by

approximating Q by a disjoint union of sufficiently small annular arcs. Examples of such

approximations strictly contained in Q (region A1
Q) and strictly containing Q (region A2

Q)

are shown in figure 7. Taking the limit where the arc size goes to zero proves the volume

formula for arbitrary Q.

Alternative proof for the Poincaré patch. The volume formula (3.1) also holds in

Poincaré patch coordinates. We offer here a proof of the Poincaré patch volume formula

by a direct computation of the volume of an infinitesimally thin rectangle.

The metric of a constant time slice of the Poincaré patch is

ds2 = L2dx
2 + dz2

z2
. (3.19)

– 10 –
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Figure 7. Approximation of an arbitrary set Q by annular arcs. The approximations A1
Q ⊆ Q and

A2
Q ⊇ Q are depicted in red and green, respectively.

The geodesics of this geometry are semicircles anchored at z = 0 and are parametrized by

two endpoints u and v at the boundary, or equivalently the circle’s center χ and radius ψ.

Explicitly,

z2 = ψ2 − (x− χ)2 , u = χ− ψ , v = χ+ ψ . (3.20)

Cutting off the geometry at z = ε, the length of the geodesic is

`(u, v) = L log

(
1 +

√
1− (ε/ψ)2

1−
√

1− (ε/ψ)2

)
, (3.21)

which is of course translation-invariant. Applying (2.4), (2.5) and sending ε→ 0 gives the

kinematic space volume form and metric

ω =
c

6

dχ ∧ dψ
ψ2

, ds2
K =

c

6

dχ2 − dψ2

ψ2
. (3.22)

To simplify calculations we work with positively oriented geodesics (ψ > 0), and multiply

by two at the end.

To compute the volume of a bulk region Q, divide it into disjoint rectangles Ri of finite

height stretching from zi,1 to zi,2, but infinitesimal width δx. Because the chord length is

additive,

λQ = λ∪iRi =
∑
i

λRi , (3.23)

it suffices to show the volume formula for a general such rectangle R. To first order in

δx, only geodesics entering from the left and exiting from the right of R contribute. The

length of this intersection is given by

λR = ds =
L

z

√
δx2 + δz2 =

Lδx

z2

√
z2 + (x− χ)2 = L

ψ δx

ψ2 − (x− χ)2
(3.24)

if z1 < ψ2 − (x − χ)2 < z2, and zero otherwise. Setting ψ1,2 =
√
z2

1,2 + (x− χ)2, the

integration region in kinematic space is now ψ1 < ψ < ψ2. The volume formula then takes

the form

vol(R) = 2 · 4GN
2π

∫ ∞
−∞

dχ

∫ ψ2

ψ1

dψL
ψ δx

ψ2 − (x− χ)2
· c

6

1

ψ2
= L2δx

(
1

z1
− 1

z2

)
, (3.25)
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matching the volume computed directly from the Poincaré patch metric and proving the

volume formula.

4 Vacuum subregion complexity

Having proved the volume formula (3.1), we are in a position to derive an expression for

subregion complexity in a vacuum state in terms of entanglement entropy. The holographic

subregion complexity of a CFT interval was defined in [21] to be 1
8πGNL

vol(Σ), where

Σ is the region contained beneath its RT surface (figure 1). Using the kinematic space

parametrization of entangling intervals of section 2, we denote the boundary interval by

(θΣ, αΣ). The volume of Σ is easily computed, either directly [21–23] or by making use of

the Gauss-Bonnet theorem [27]. In our companion paper [27], we defined the topological

complexity C(θΣ, αΣ) of the interval (θΣ, αΣ) to be given by the integral of the scalar

curvature R of the constant time slice over Σ

C(θΣ, αΣ) = −1

2

∫
Σ
dσR . (4.1)

The terminology reflects its connection to the Gauss-Bonnet theorem. In this paper we

only consider geometries with constant R, in which case our definition (4.1) is proportional

to the volume,

C(θΣ, αΣ) = −R
2

vol(Σ) , (4.2)

and therefore to the subregion complexity of [21]. We will study this quantity with the

normalization (4.2) of [27].

In [27], we stated that the volume formula (3.1) gives an integral expression for vol(Σ)

involving only entanglement entropies. Since entanglement entropy is a CFT quantity,

this integral expression of the volume can be understood as a CFT formulation of the

holographic subregion complexity. In the following we expand on the work of [27] in greater

detail, deriving explicitly the expression for vol(Σ) in terms of entanglement entropies.

4.1 Subregion complexity in terms of entanglement entropy

In order to express vol(Σ) in terms of entanglement entropy alone, we apply the volume

formula (3.1) to the region Σ lying below the geodesic (θΣ, αΣ),

vol(Σ)

4GN
=

1

2π

∫
K
λΣω . (4.3)

Since we are considering vacuum states, the Crofton form ω depends only on entanglement

entropies (see (2.6)). The focus of our attention will thus be the chord length λΣ. For a

given geodesic (θ, α), λΣ(θ, α) is the length of the segment of (θ, α) contained in Σ. Since

Σ is convex, this length is simply the geodesic distance between the intersection points p, p′

of the geodesic (θ, α) with the boundary of Σ (see figure 8). We gave in (2.7) an expression

for the geodesic distance between two bulk points in terms of kinematic space quantities,

λΣ

4GN
=

1

4

∫
∆pp′

ω . (4.4)
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Figure 8. In order to construct ∆pp′ we need to distinguish three different types of geodesics.

Geodesics of type (a) do not intersect Σ at all. Type (b) geodesics completely lie inside of Σ. Type

(c) geodesics lie only partially inside of Σ. The intersection points p and p′ of a geodesic with the

boundary can be interpreted as endpoints of entangling regions. On the l.h.s. we show these three

types in the bulk, while on the r.h.s. we show where the geodesics of different types are located in

kinematic space.

The set ∆pp′(θ, α) ⊂ K is the region bounded by the two point curves corresponding to p

and p′ for fixed geodesic (θ, α) (see figure 3). Of course, if (θ, α) does not intersect Σ then

p, p′ do not exist, and ∆pp′ is empty. In this case, (4.4) implies λΣ(θ, α) = 0 as required.

Combining (4.3) and (4.4), we obtain an expression for vol(Σ) in terms of entanglement

entropy,

vol(Σ)

4G2
N

=
1

2π

∫
K
ω

(∫
∆pp′

ω

)
=

1

8π

∫
K
dθdα

∫
∆pp′

dθ′dα′∂2
αS(α)∂2

α′S(α′) . (4.5)

Applying (4.2) and inserting the relations R = −2/L2 and GN = 3L/2c gives an expression

for the subregion complexity in terms of entanglement entropy:

C(θΣ, αΣ) =
9

8πc2

∫
K
dθ dα

∫
∆pp′

dθ′dα′∂2
αS(α)∂2

α′S(α′) . (4.6)

This expression is one of the main results of this paper: it defines a CFT quantity depending

only on S and the integration region ∆pp′ . To give a purely field theory expression for

subregion complexity, it only remains to construct ∆pp′ itself within field theory. This will

be our next step.

4.2 Regions of integration for complexity

The integrand on the right hand side of (4.6) contains only field theory quantities. We did,

however, use the bulk geometry to construct the region of integration ∆pp′(θ, α) for each

geodesic (θ, α). Let us now discuss the explicit form of ∆pp′ , and show how to construct it

directly within CFT. Keep in mind that, as discussed in section 2, the geometry of kinematic

space can be constructed from entanglement entropy. Therefore, if we can construct the

∆pp′ only in terms of the geometry of K, we no longer reference the bulk explicitly. The

regions ∆pp′ are bounded by point curves. As pointed out in [31] point curves are space-

or light-like geodesics in K. So they are related in a very natural way to the geometry of

– 13 –
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Figure 9. The regions of integration ∆pp′(θ, α) for geodesics (θ, α) that are of type (b) and (c)

w.r.t. (θΣ, αΣ). For type (b) geodesics ∆pp′ is bounded by light rays. For type (c) geodesics one

boundary of ∆pp′ is the unique point curve that passes through (θΣ, αΣ) and (θ, α).

kinematic space. Thus the only thing left to do is to find a construction rule for the point

curves (i.e. geodesics in K) of interest that can be formulated from the CFT perspective.

We first examine these point curves from the bulk point of view and then translate our

results into CFT language. We distinguish three types of geodesics, as depicted in figure 8:

Type (a) geodesics are those (θ, α) that do not intersect Σ at all. Such geodesics have

∆pp′ = ∅, and therefore λΣ(θ, α) = 0.

Type (b) geodesics are those (θ, α) that lie completely inside of Σ. In this situation, the

intersection points p and p′ are located on the conformal boundary, i.e. the constant

time slice of the CFT. They are the endpoints of the entangling interval associated

with (θ, α) and can be interpreted as points that lie on the boundary of K. In

particular they lie within the entangling interval corresponding to (θΣ, αΣ). In this

case the corresponding point curves are null geodesics [28] emitted from p and p′.

Consequently, the region ∆pp′ enclosed by these light rays consists of causal diamonds

in K. An example of such a ∆pp′ is depicted in figure 9.

Type (c) geodesics are those (θ, α) that lie only partially inside Σ. In this case, one of

the intersection points p lies on the geodesic (θΣ, αΣ), while the other, p′, lies on

the boundary in the interval specified by (θΣ, αΣ). As for type (b), p′ is one of the

endpoints of the entangling region corresponding to (θ, α). Therefore, treating p′ as

a boundary point of K, the point curve of p′ is once again a null geodesic emitted

from p′. As mentioned in section 2, the point curve of p is a space-like geodesic in

K. Noting that p lies on both geodesics (θΣ, αΣ) and (θ, α), the point curve of p is

determined to be the unique geodesic in K containing both (θΣ, αΣ) and (θ, α). One

such ∆pp′ is depicted in figure 9.

Note that it is not possible for both p and p′ to lie on the geodesic (θΣ, αΣ), since

this would mean that the geodesic (θ, α) intersects (θΣ, αΣ) twice. Therefore, types (a)–(c)

exhaust all possibilities. Figure 8 illustrates the location of different types of geodesics in

kinematic space. Type (b) geodesics lie in the past of (θΣ, αΣ) and the future of (θΣ +

π, π − αΣ), while type (c) geodesics are those enclosed by the light rays emitted from

– 14 –
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the endpoints of the entangling region associated to (θΣ, αΣ). All other geodesics are of

type (a).

We constructed the region of integration ∆pp′ by identifying the point curves of p and

p′. The next step is to reformulate this construction in terms of CFT objects. Recall

that K has an interpretation as the space of CFT intervals. Through this vol(Σ) acquires

meaning without reference to the bulk geometry. When we consider (θ, α) and (θΣ, αΣ) to

be entangling intervals, the three types (a)–(c) distinguish where the endpoints of (θ, α)

lie relative to (θΣ, αΣ) (see figure 8): an entangling interval is of type (a) if none of its

endpoints lie inside (θΣ, αΣ); the intervals with both endpoints lying inside (θΣ, αΣ) are of

type (b); of type (c) are the entangling regions with only one endpoint lying in (θΣ, αΣ).

We have therefore constructed ∆pp′ using only entangling regions and the geometry

of K:

• If (θ, α) is of type (a), we set ∆pp′(θ, α) = ∅.

• If (θ, α) is of type (b), ∆pp′(θ, α) is the region bounded by the light rays emitted from

both boundary points of (θ, α). (Figure 9)

• If (θ, α) is of type (c), ∆pp′(θ, α) is the region bounded by the light rays emitted from

the endpoint of (θ, α) that lies inside of (θΣ, αΣ) and the space-like geodesic that

intersects (θΣ, αΣ) and (θ, α). (Figure 9)

We now have a formula specified by two components: the geometry of kinematic space,

and the integration regions ∆pp′ . The geometry of K is defined in terms of entanglement

entropy, while we have shown that the form ∆pp′ is determined by this geometry. The

resulting object (4.6) is therefore defined for any CFT, regardless of whether it has a

holographic dual or not. Our construction shows, however, that when the CFT does

possess a weakly curved holographic dual, this quantity coincides with the holographic

subregion complexity (4.2).

We emphasize that the only entangling intervals contributing to (4.6) are those with

one or both endpoints lying in the interval (θΣ, αΣ). In other words, only intervals of type

(b) and (c) are present. For the outer integral (over θ, α) this is clear, since ∆pp′(θ, α) is

empty for intervals with no endpoint contained in (θΣ, αΣ). To see this for the integral

computing chord lengths (over θ′, α′), note that the region of integration ∆pp′(θ, α) for type

(b) and (c) is given by the set of geodesics passing through the chord of geodesic (θ, α) in

Σ (see section 2). As a result, the geodesics in ∆pp′(θ, α) intersect Σ and are thus of type

(b) or (c) as well.

Let us briefly consider the more general problem of evaluating the volume of an ar-

bitrary bulk region Q. It can be expressed in terms of entanglement entropies using the

same basic procedure as above: one merely applies the formula for geodesic distances (2.7)

to the chord length λQ. The drawback is that the bulk region is no longer bounded by

geodesics, making the regions of integration in kinematic space difficult to determine with-

out explicit knowledge of the bulk. We still wish to stress, however, that it is possible to

express arbitrary volumes in terms of entanglement entropies, in the same way that it is

possible to express the length of an arbitrary curve as an integral over kinematic space.
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Σε

rε

Figure 10. L.h.s.: the region of integration for type (b) intervals. By construction the region of

integration ∆pp′(θ, α) of a type (b) interval (θ, α) consists of causal diamonds. After introducing

cutoffs at α′ = ξ and α′ = π − ξ the region of integration reduces to ∆ξ
pp′(θ, α). R.h.s.: close-up

of the region near the edge of Σ showing the inequivalence of radial and kinematic space cutoff

schemes. By choosing a cutoff at a fixed radial coordinate rε in the bulk (dashed line) we reduce

Σ to a regularized region Σε (yellow) whose volume is to be computed. The blue geodesic does not

contribute to vol(Σε), but it contributes to the volume regularized with the kinematic space cutoff

scheme, since its size is larger than ξ.

4.3 Subregion complexity for global AdS3

The last section explained how to construct the regions of integration in (4.6) from the

field theory perspective. We now evaluate (4.6) to compute subregion complexities. In this

section we consider global AdS3 (3.2) and present the complexity for the cases where (1)

the entangling interval (θΣ, αΣ) is the entire CFT circle, and (2) where it is half of this

circle. General intervals for the Poincaré patch will be considered in the next section.

Consider equation (4.6) for the subregion complexity. The entanglement entropy S is

given by (3.3). Note that S ∝ c and thus C ∝ c0. The complexity diverges, and must be

regularized. In the bulk, subregion complexity is identified with the volume below the RT

surface. Usually a radial cutoff is chosen to compute this volume. We could translate this

cutoff to kinematic space and use it for our computations. However, this regularization is

not very natural from the kinematic space or CFT perspectives. Once more we emphasize

that we wish to compute complexity without using the bulk. We therefore choose a different

cutoff scheme: we introduce a minimal opening angle ξ and only work with the part of

kinematic space with opening angles α, α′ ∈ [ξ, π − ξ] as depicted in the l.h.s. of figure 10.

From the CFT perspective this means that we are only working with entangling intervals

with an opening angle larger than ξ, and whose complement has opening angle larger

than ξ.

If we take the entangling region to be the entire constant time slice, all entangling

intervals (θ, α) are of type (b) (see section 4.2), and therefore ∆pp′(θ, α) consists of causal

diamonds that now need to be cut off at α′ = ξ and α′ = π − ξ. The resulting complexity

of the entire CFT circle is thus

C(circle) =
9

8πc2

∫ 2π

0
dθ

∫ π−ξ

ξ
dα

∫
∆ξ

pp′

dθ′dα′∂2
αS(α)∂2

α′S(α′) . (4.7)
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The region of integration ∆ξ
pp′ is depicted in the l.h.s. of figure 10. It is easy to verify that∫

∆ξ

pp′

dθ′dα′∂2
α′S(α′) = −8c

3

(
log

(
sin(α)

sin(ξ)

)
+ ξ cot(ξ)

)
= −8c

3

(
log

(
sin(α)

ξ

)
+O(ξ0)

)
.

(4.8)

As ξ → 0, this integral approaches −8 times the entanglement entropy of the boundary

interval [p, p′], provided the CFT cutoff is identified with ξ appropriately. The integral (4.8)

gives, up to a constant prefactor, the length of the geodesic connecting p and p′ (see (2.7)

and figure 8). Via the RT proposal, this length is associated with entanglement entropy.

So we see that in (4.8) we indeed obtain the correct logarithmic divergence in our chosen

cutoff scheme.

By inserting (4.8) into (4.7) we obtain

C(circle) = 4
(
ξ cot2(ξ) + cot(ξ) + ξ − π

2

)
=

8

ξ
− 2π +O(ξ2) . (4.9)

In [27] the complexity was determined by computing the volume below the RT surface

directly. This computation used the radial cutoff rε = LlCFT/ε, where lCFT is the radius

of the CFT circle and ε is the UV cutoff. We can match our result for the divergent and

constant parts of the complexity with those presented in [27] by setting ξ = 4ε/πlCFT. Just

as in [27] we obtain the constant part −2π.

We emphasize that the kinematic space cutoff scheme we have used is not equivalent

to any sharp geometric cutoff in the bulk. To see this explicitly, we consider the region Σε

obtained by regulating Σ at the radial cutoff rε, as shown in the r.h.s. of figure 10. When

computing the regularized subregion complexity in the kinematic space prescription with a

cutoff at fixed ξ, however, the result receives contributions from geodesics — like the blue

geodesic of the figure — that have an opening angle larger than ξ and yet do not intersect

the bulk region Σε.

The fact that the constant coefficient in the subregion complexity is the same in both

cutoff schemes supports the idea that it is indeed universal [21, 27]. This statement is

corroborated by the result for the complexity of one half of the CFT circle, computed in

appendix A. We find

C(semicircle) = 2ξ cot2(ξ) + 2 cot(ξ) + 2ξ − π =
4

ξ
− π +O(ξ2) . (4.10)

The constant and divergent parts of the complexity match the results of [27] provided we

identify ξ = 4ε/πlCFT.

4.4 Subregion complexity for the Poincaré patch

We now compute the subregion complexity for the Poincaré patch using kinematic space.

We use the coordinates (χ, ψ) introduced in (3.20) for elements in kinematic space, i.e.

entangling intervals. To compute the subregion complexity for an interval (χΣ, ψΣ) the

corresponding chord lengths have to be calculated. Recall from section 4.2 that they are

given by an integral over the area between two point curves (χ̃, ψ̃A(χ̃)) and (χ̃, ψ̃B(χ̃)).
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x

z

λΣ,(c),+

λΣ,(b)

λΣ,(c),−

χ̃

ψ̃ ψ̃A

ψ̃B

ξ
ξ

ψ

χ
uΣ vΣ

(c),+ (c),−
(b)

Figure 11. Chord lengths for a subregion Σ (left), regions of integration for chord length λΣ,(c),+

(middle) and for the full volume (right) in kinematic space. In the right-most figure, the regions

of integration for the chord lengths are marked with their respective subscripts. Note that as in

section 3 we restrict to positively oriented geodesics (ψ > 0).

There are contributions from two types of intervals, type (b) and type (c). For a type (b)

interval (χ, ψ), both point curves are light rays, ψ̃A,B = |χ± ψ− χ̃|, whereas if (χ, ψ) is of

type (c) one point curve is given by ψ̃A,B =
√
ψ2 + (χ̃− xλ)2 − (xλ − χ)2. Here,

xλ =
ψ2

Σ − ψ2 + χ2 − χ2
Σ

2(χ− χΣ)
(4.11)

is the x coordinate of the intersection point of the geodesics (χΣ, ψΣ) and (χ, ψ). Integrat-

ing (4.4) with kinematic space cutoff ψ = ξ yields

λΣ,(b) = 2L

[
log

(
ψ

ξ

)
+ 1

]
, (4.12)

λΣ,(c),± =
1

2
λΣ,(b) +

L

2
log

(
ψ ± (χ− xλ)

ψ ∓ (χ− xλ)

)
. (4.13)

Here, the length λΣ,(c),± corresponds to a geodesic with only its right (left) endpoint inside

the boundary interval (figure 11). We have implicitly assumed that for type (c) inter-

vals, the non-lightlike point curve stays above the cutoff for all χ̃. The error due to this

assumption is of order O(ξ) and can be ignored. Applying (4.3) the volume is now given by

vol(Σ) =
4cGN

6π

 ψΣ∫
ξ

dψ

vΣ−ψ∫
uΣ+ψ

dχ

ψ2
λΣ,(b) +

ψΣ∫
ξ

dψ

vΣ+ψ∫
vΣ−ψ

dχ

ψ2
λΣ,(c),− (4.14)

+

∞∫
ψΣ

dψ

vΣ+ψ∫
uΣ+ψ

dχ

ψ2
λΣ,(c),− +

ψΣ∫
ξ

dψ

uΣ+ψ∫
uΣ−ψ

dχ

ψ2
λΣ,(c),+ +

∞∫
ψΣ

dψ

vΣ−ψ∫
uΣ−ψ

dχ

ψ2
λΣ,(c),+

 ,
(4.15)

where uΣ = χΣ − ψΣ and vΣ = χΣ + ψΣ are the endpoints of the entangling interval.

Separating λΣ,(c),± into a divergent part proportional to λΣ,(b) and a finite part, we write

the divergent part of the volume as∫ ∞
ξ

dψ 2L2(vΣ − uΣ)
log(ψ/ξ) + 1

πψ2
= 8L2ψΣ

πξ
+O(ξ) , (4.16)
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Figure 12. Points on the geodesic (χ, ψ) can be assigned to points on the corresponding entangling

interval, depicted in red. This allows to write the length of the segment of the geodesic (green)

lying between the two points (x̄1, z̄1) and (x̄2, z̄2) in terms of entanglement entropies.

reproducing the expected divergent behavior. For the finite part, we set ξ to zero and

evaluate the remaining integrals in (4.15) to obtain∫ ∞
0

dψ
2L2

πψ2

[
ψΣ log

∣∣∣∣ ψ2
Σ

ψ2
Σ − ψ2

∣∣∣∣+ ψ log

∣∣∣∣ψΣ − ψ
ψΣ + ψ

∣∣∣∣]+O(ξ) = −L2π +O(ξ) . (4.17)

By applying this result to (4.2) and using R = − 2
L2 and GN = 3L

2c we find the subregion

complexity to be

C(χΣ, ψΣ) =
8ψΣ

πξ
− π +O(ξ) . (4.18)

As expected, up to subleading differences due to the choice of cutoff scheme we reproduce

the complexity as computed by direct bulk integration using a cutoff ε in the z coordinate,

C(χΣ, ψΣ) = 2ψΣ
ε − π + O(ε) [27]. Interestingly, the finite part comes only from type (c)

geodesics, whereas the divergent part requires contributions from both type (b) and type

(c) geodesics to get the correct result.

It is also possible to implement a sharp bulk cutoff at z = ε in the kinematic space

formalism, which is equivalent to using only point curves lying completely above ψ = ε. In

this case, the agreement is exact to all orders in ε.

4.5 Mutual information and the volume formula in the Poincaré patch

We conclude our analysis of the Poincaré patch with a reformulation of (4.6). The paper [36]

showed that the length of a sufficiently long geodesic chord can be interpreted in terms of a

mutual information in the dual CFT. We now apply this observation to the chord lengths

λΣ appearing in the volume formula (4.3).

Consider a Poincaré patch geodesic (u, v) = (χ−ψ, χ+ψ) in the notation of section 4.4.

Based on the bulk modular flow (equivalent to time evolution in the hyperbolic slicing

of [37, 38]), [36] assigned to each point (x̄, z̄) on the geodesic a point x in the corresponding

entangling interval (figure 12),7

x =
ψ2 −

√
ψ4 − (x̄− χ)2ψ2

x̄− χ
+ χ . (4.19)

7I.e. (x̄, z̄) satisfies z̄2 = ψ2 − (x̄− χ)2.
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The length of the geodesic segment between the two points (x̄1, z̄1) and (x̄2, z̄2) is given by

d
(
(x̄1, z̄1), (x̄2, z̄2)

)
= L log

(
2ψ(x2 − x1)

(x1 − u)(v − x2)
+ 1

)
= L log η , (4.20)

where xi (i = 1, 2) is the boundary point assigned to (x̄i, z̄i), and we take x2 > x1 by

convention. The last expression is in terms of the conformal cross-ratio

η =
(v − x1)(x2 − u)

(v − x2)(x1 − u)
. (4.21)

The setup is depicted in figure 12. Expressing the chord length λΣ in the form (4.20), the

volume formula (4.3) takes a compact form in terms of the cross ratio:

C(χΣ, ψΣ) =
3

πc

∫
types b,c

log η ω . (4.22)

For type (b) geodesics, the chord length reduces to the RT formula. For type (c) geodesics,

one of the points (x̄i, z̄i) corresponds to a boundary point of the geodesic (χ, ψ), which

implies xi = x̄i, while the other is the intersection point of (χΣ, ψΣ) and (χ, ψ). Note that

η is divergent for all contributing geodesics and so we must regularize (4.20) before using

it in (4.22).

Rather than working in terms of the cross-ratio, we may express (4.22) in terms of

another function of η. One interesting approach is to write η in terms of well-known quan-

tities from information theory. In particular, we may express η in terms of entanglement

entropies,

η = e
3
c
κ + 1 , (4.23)

where

κ = S([x1, x2]) + S([u, v])− S([x2, v])− S([u, x1]) . (4.24)

The mutual information I of two intervals A and B is defined as I(A,B) = S(A) +S(B)−
S(AB). When (x1−u)(v−x2) is sufficiently small, κ coincides with the mutual information

κ = I([x1, x2], [u, v]c) . (4.25)

For type (b) and (c) geodesics, as the cutoff is brought to zero the product (x1−u)(v−x2)→
0 as well, guaranteeing that the interpretation of κ as mutual information (4.25) is valid.

Writing (4.22) in terms of S and κ gives

C(χΣ, ψΣ) = − 9

πc2

∫
type b

dχdψS∂2
ψS −

3

2πc

∫
type c

dχdψ log
(
e

3
c
κ + 1

)
∂2
ψS . (4.26)

We note that (4.26) involves a single integral over kinematic space, as opposed to the

double integral of (4.6). We stress, however, that the derivation of (4.26) was based on

the identification of bulk chords with pairs of boundary intervals, which not only requires

explicit information from the bulk, but is special to the vacuum. Nevertheless, (4.26) may

offer clues to the interpretation bulk volumes within field theory. Finally, we comment

that, although we expect a similar relation to hold in global AdS3, we have not worked it

out explicitly.
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5 Excited states

So far, we have considered the volume formula only for vacuum AdS3. However, the same

tools can be applied to any geometry that is a quotient of AdS3 by a discrete group of isome-

tries. This is possible because the kinematic spaces for these geometries are themselves a

quotient of the AdS3 kinematic space.

We focus on the conical defect and (static) BTZ black hole geometries. In the CFT,

these correspond to light primary excitations and finite temperature states, respectively.

Because the kinematic spaces of these geometries are quotients of the vacuum kinematic

space, it follows that the volume formula derived above for vacuum AdS still applies, with

the measure ω inherited from the quotienting procedure.

Before we examine the volume formula in detail, let us point out several important dif-

ferences with the vacuum case. These differences stem from the fact that a given boundary

interval may now have multiple geodesics terminating on its endpoints. The RT formula

implies that only for one of these — the shortest, or minimal, geodesic — does its length

correspond to the entanglement entropy. Non-minimal geodesics come in two classes. The

first are those anchored at the endpoints of a boundary interval, but are not minimal;

these we call winding geodesics. The second are those with only one endpoint lying on the

boundary.

In general, the bulk contains regions that intersect no minimal geodesic. Such regions

untouched by entanglement entropy go by the name entanglement shadow. Hearteningly,

the entanglement shadow is probed by non-minimal geodesics, which are naturally included

as members of the quotient kinematic spaces. In the literature, non-minimal geodesics con-

stitute the building blocks of an observable called entwinement [39], and were conjectured

to measure correlations between internal degrees of freedom. For symmetric orbifold the-

ories, an expression for entwinement with the correct properties was proposed in [40].

The non-uniqueness of geodesics implies that ω is no longer given simply in terms of

the entanglement entropy, a consequence of the fact that at large c the entropy is sensitive

only to the shortest geodesic. In order to express the subregion complexity in terms of

CFT quantities, we would therefore need to compute the lengths of non-minimal geodesics

by alternate means, something that remains impossible with the present tools. Lastly, in

contrast to the conical defect, thermal states also possess geodesics that pass through the

black hole horizon. We expect the contributions from such geodesics to be associated to

the thermal part of the reduced density matrix, as we will discuss below.

We begin this section by studying volumes first in conical defect geometries, followed by

the BTZ black hole. We end by examining the decomposition of subregion complexity into

contributions from entanglement entropy and from non-minimal geodesics, and a discussion

of its physical significance.

5.1 Primary states: the conical defect CDN

The metric of the conical defect geometry CDN takes the same form as the AdS3 geome-

try (3.2), except that the periodicity of φ is modified to φ ∼ φ + 2π/N (N ∈ N). More
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Figure 13. Left: the conical defect for the case N = 3. A minimal (γ0) and a non-minimal (γ1)

geodesic — reaching into the entanglement shadow (red) — are depicted. Right: kinematic space

for N = 3. Minimal geodesics correspond to the lowest and upmost (n = 0) sectors. The rest

correspond to entwinements such as γ1.

concretely, it can be thought of as a quotient of pure AdS3,

CDN =
AdS3

ZN
. (5.1)

The kinematic space metric of the conical defect, as worked out in [41], takes the same

form (2.6) as in the vacuum,

ds2
K = −1

2
∂2
αS(−dα2 + dθ2) , ω = −1

2
∂2
αSdθ ∧ dα , (5.2)

the difference being that now θ ∼ θ+ 2π/N . As a result, some geodesics have lengths com-

puted by entanglement entropy, while others are non-minimal geodesics, possibly winding

multiple times around the singularity. The fundamental region is divided into sectors

α ∈ W±n , where

W+
n =

(
nπ

2N
,

(n+ 1)π

2N

]
, W−n =

[
(2N − n− 1)π

2N
,

(2N − n)π

2N

)
, (5.3)

with n ∈ {0, . . . , N−1}. W±n describes the geodesics with winding number n and orientation

±. In particular, n = 0 corresponds to minimal geodesics, while geodesics with n 6= 0 are

non-minimal. An illustration of these sectors is given in figure 13 for the case N = 3.

Including non-minimal geodesics is not only necessary, but also suffices to compute the

volume of the constant time slice of the conical defect,

C(CDN ) =
9

8πc2

∫ 2π/N

0
dθ︸ ︷︷ ︸

2π/N

∫ π−ξ

ξ
dα

∫
∆ξ

pp′

dθ′dα′∂2
αS(α)∂2

α′S(α′)︸ ︷︷ ︸
cf. (4.7)

=
1

N
C(circle) . (5.4)

Dropping contributions from non-minimal geodesics, on the other hand, leads to expressions

with the wrong divergence structure. For example, if we evaluate the outer integral in (5.4)
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over minimal geodesics alone, we obtain

− 1

2

∫ 2π
N

0
dθ

[∫ π
2N

ξ
dα+

∫ π−ξ

(2N−1)π
2N

dα

]∫
∆ξ

pp′

dθ′dα′∂2
α′S(α′)︸ ︷︷ ︸

cf. (4.8)

∂2
αS(α)

=
vol (AdS3)

N
− π

N

(
2 cot

( π

2N

)
log

(
sin(π/2N)

ξ

)
− π

N
(N − 1)

)
+O(ξ2) . (5.5)

Here, vol(AdS3) is the volume (4.9) of a constant time slice of AdS3. Only for the vacuum

(N = 1) does this coincide with (5.4). In fact, away from N = 1 the logarithmic dependence

on the cutoff is not even consistent with a volume in an asymptotically AdS3 spacetime,

which should exhibit as its sole singularity a term scaling as ξ−1 [27]. Of course, the

problematic logarithm of (5.5) drops out when we include non-minimal geodesics.

Finally, we emphasize that non-minimal geodesics are required not only to compute

volumes in the entanglement shadow, but also for regions outside of it, as is evident from

figure 13.

5.2 Subregion complexity at finite temperatures

We now turn to the volume formula in BTZ black hole geometries [42]. We restrict ourselves

for simplicity to the spinless solution (J = 0), whose metric is

ds2 = −r
2 − r2

0

L2
dt2 +

L2

r2 − r2
0

dr2 + r2dφ2 , φ ∼ φ+ 2π . (5.6)

Our discussion begins with a brief description of BTZ kinematic space8 and the general-

ization of the volume formula (3.1) to it. We then compute the BTZ subregion complexity

using this formula, written in terms of the Poincaré patch measure of section 4.4.

Kinematic space of the BTZ black hole. The BTZ black hole geometry (5.6) is

obtained from AdS3 by quotienting by a discrete group of isometries with a particularly

simple form in Poincaré patch coordinates. Writing the Poincaré patch metric in the form

ds2 = L2−(dx0)2 + (dx1)2 + dz2

z2
= L2dx

+dx− + dz2

z2
, (5.7)

with x± = x1 ± x0, the map

x± =

(
1− r2

0

r2

)1/2

e
r0
L

(φ±t/L) , z =
r0

r
e
r0
L
φ , (5.8)

is a local isometry to (5.6). The periodicity φ ∼ φ + 2π of the BTZ coordinates requires

us to identify the points

(x0, x1, z) ∼ e2πr0/L(x0, x1, z) . (5.9)

8Two versions of BTZ kinematic space have appeared in the literature: quotient kinematic spaces of

the type used here also appeared in [32, 43], whereas the kinematic space of [44] contained only minimal

geodesics.

– 23 –



J
H
E
P
0
1
(
2
0
1
9
)
0
1
2

e2πr0/L1
x1

z

R+R−
χ

ψ

I+

I−

II+

II−

III+

III−

Figure 14. Figure on left: fundamental region for the spatial slice of the 2-sided black hole in

Poincaré patch coordinates (5.13). The horizon (dark line) separates the two asymptotic regions R+

and R−. Figure on right: the six fundamental domains for kinematic space in (χ, ψ) coordinates.

The ratio of the outer and inner radii is e2πr0/L. The metric diverges as one approaches the dark

line ψ = 0.

This identification generates a group of infinite order, and the quotient of the Poincaré patch

by it is isometric to a region in the maximally extended BTZ geometry of mass M = r2
0/L

2.

Because (5.9) preserves the locus x0 = 0, the spatial slice t = 0 of the black hole

solution is the image of the spatial slice x0 = 0 of the Poincaré patch,

ds2 = L2 (dx1)2 + dz2

z2
. (5.10)

The quotient space of this slice is, in fact, globally equivalent to the spatial slice of the

two-sided BTZ black hole. The quotient has the convenient fundamental domain

1 ≤ (x1)2 + z2 < e4πr0/L (5.11)

(figure 14). Geodesics in the slice are mapped to geodesics, modulo the identification (5.9)

acting simultaneously on both endpoints. In other words, the kinematic space of BTZ is a

quotient of the kinematic space of AdS3. As in section 4.4, spatial geodesics in the Poincaré

patch ending at x1 = u, v can be written as u = χ− ψ, v = χ+ ψ, giving kinematic space

as the quotient manifold

ds2
KBTZ

=
c

6

dχ2 − dψ2

ψ2
, (χ, ψ) ∼ e2πr0/L(χ, ψ) . (5.12)

Note that the horizon corresponds to the line x0 = x1 = 0 in the Poincaré patch geometry.

The two sides of the black hole are separated by the horizon (figure 14).

The points of BTZ kinematic space naturally break into six families. In terms of the

covering space coordinates (u, v), they correspond to those with 0 < u < v (region I+);

those with u < 0 < v (region II+); those with u < v < 0 (region III+); and the orientation

reversal (u ↔ v) of these three sets. Each of these regions has convenient coordinate

systems. For example, consider region I+ the geodesics contained entirely in the positive
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asymptotic region with 0 < u < v (figure 14). Setting

v = e
r0
L

(θ+α) , u = e
r0
L

(θ−α) , (5.13)

we obtain

ds2
I+ =

r2
0

L

dθ2 − dα2

sinh2
(
r0α
L

) , θ ∼ θ + 2π , α ∈ R . (5.14)

Both ds2
I+

and the vacuum kinematic space metric (3.4) take the same form in the limit

α→ 0, as they should. Geodesics are split into sectors given by α ∈ Vn,

Vn = [2πn, 2π(n+ 1)) . (5.15)

Sector Vn is said to have winding number n. Similarly, for geodesics passing through the

horizon (u < 0 < v) we may set

v = e
r0
L

(θ̃+α̃) u = −e
r0
L

(θ̃−α̃) , (5.16)

leading to the geometry

ds2
II+ =

r2
0

L

dα̃2 − dθ̃2

sinh2
(
r0α̃
L

) , θ̃ ∼ θ̃ + 2π , α̃ ∈ R . (5.17)

The other four patches are related to these two by sign changes. I+, II+, and III+ all meet

at a cuspoidal point, the (positively oriented) horizon geodesic, which corresponds in the

two coordinate systems above to α→∞ and α̃→∞, respectively.

Volume formula at finite temperature. Our goal is to evaluate volumes in the BTZ

black hole using the volume formula (3.1). Using the quotient construction, it is straight-

forward to apply the volume formula: given a volume in BTZ, we lift it to the fundamental

domain (5.11) and apply (3.1). Note that, for a region Q lying entirely outside the horizon

(u, v > 0), (3.1) necessarily includes contributions not only from geodesics lying outside

the black hole, but also from those passing through the horizon. Pulling the resulting

quantities back to BTZ kinematic space, the volume becomes

vol(Q)

4GN
=

1

2π

∑
D

∫
λQωD , (5.18)

where D runs over the domains I±, II±, and III± of figure 14. Obviously, the III± contri-

bution vanishes when Q is outside the horizon. In the coordinates (5.13) and (5.16), the

Crofton form is

ωI,III =
c

6

dθ ∧ dα
sinh2

(
r0
L α
) ωII = − c

6

dθ̃ ∧ dα̃
sinh2

(
r0
L α
) . (5.19)

We are free to omit the “−” regions provided we multiply by an overall factor of 2.

In practice, the simplest way to perform computations is to work directly with a

fundamental region in Poincaré patch. We now turn to the application of this method to

evaluating the holographic subregion complexity in BTZ.
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Figure 15. For the BTZ black hole, the RT surface undergoes a phase transition. If the entangling

interval [u, v] is too large, the RT surface is no longer the geodesic γ[u,v] lying on the same side of

the black hole as [u, v] (Phase A) but consists of the black hole horizon and the geodesic γ[v,u] lying

on the opposite side of the black hole (Phase B). At the point of the phase transition the volume

below the RT surface jumps from vol(ΣA) to vol(ΣB).

Subregion complexity and the phase transition. The holographic subregion com-

plexity for an interval (u, v) is the volume lying under the minimal curve homologous to

that interval [45]. Depending on the size of the interval, there are two such curves, corre-

sponding to distinct phases A and B (see figure 15). In phase A, the minimal curve is the

curve in V0 representing (u, v). In phase B, it is the union of the curve in V−1 represent-

ing (v, u) and the horizon geodesic. The dominant phase is the one whose curve has the

shortest length. We saw in [27] that under the transition from phase A to phase B, the

topological complexity (4.1) increases by 2π.

We compute the subregion complexity by applying the Poincaré patch volume formula

to a fundamental region. For simplicity, we utilize the bulk cutoff regularization. The

correct domain of integration depends on the cutoff surface, which differs from that in the

Poincaré patch. The cutoff in the BTZ geometry lies at rε = LlCFT/ε, corresponding in

the Poincaré patch to the x1-dependent cutoff

ε(x) =

(
rε
r0
− 1

)−1/2

|x1| . (5.20)

In phase A, except for the modified cutoff the computation now takes the same form

as that of section 4.4. Integrating explicitly gives the final result

vol(ΣA) = L2

((
rε
r0
− 1

)1/2

log
(v
u

)
− π

)
+O(ε) = L2

(x
ε
− π

)
+O(ε) , (5.21)

where x = 2lCFTα is the length of the entangling interval in BTZ coordinates.

In phase B, the integration region of the volume formula stretches from the outside

of the complementary geodesic up to the black hole horizon. Hence, the volume can be

computed by calculating the volume between boundary and horizon, and then subtracting

the volume that lies in the geodesic corresponding to the complementary interval [v, u],

vol(ΣB) = vol(outside horizon) − vol(Σ′) = L2
(x
ε

+ π
)
, (5.22)
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where Σ′ is region under γ[v,u] (see figure 15) and x is the length of the boundary inter-

val. The volume of the outside horizon region is computed in kinematic space by taking

the integral over all geodesics, cut off at the horizon for those that fall into the black

hole, weighted with the Crofton form. Comparing with (5.21) gives the expected jump in

complexity of 2π.

One can also do the calculation using a kinematic space cutoff similar to section 4.4,

although in that case the regularization scheme no longer matches that used in the gravi-

tational calculation.

5.3 A bound on subregion complexity from entanglement entropy

The discussion above makes it clear that, unlike the vacuum case (section 4), the subregion

complexity of quotient geometries depends not only on entanglement entropies, but also

receives contributions from non-minimal geodesics. It is still possible, however, to isolate

contributions to subregion complexity depending only on entanglement entropies.

We first consider the conical defect geometry. Here, subregion complexity gets con-

tributions from winding geodesics, which spoils the one-to-one correspondence between

geodesics and entangling intervals. Those geodesics are nonetheless still attached to pairs

of boundary points, and are thus associated to entangling intervals in a natural way. We

can therefore organize the expression (4.6) for the subregion complexity of a boundary

interval A in the form

C(A) =

∫
dθ̂ dα̂

(
FCDA +GCDA

)
, (5.23)

where θ̂ and α̂ parametrize the set of boundary intervals as in the vacuum kinematic

space (3.4). FCDA denotes the part of subregion complexity containing only entanglement

entropies (that is, the subregions of K and ∆pp′ in the integral expression (4.6) due to

minimal geodesics). The term GCDA contains the remaining contributions from non-minimal

geodesics winding around the singularity.

As with the conical defect, the subregion complexity of the BTZ black hole receives

contributions from winding geodesics. However, black holes have a new class of geodesics

contributing to subregion complexity: those that pass through the black hole horizon

r = r0. Because they are associated to finite temperatures, we refer to them as ‘thermal

contributions’. The subregion complexity now takes the form

C(A) =

∫
dθ̂dα̂

(
FBTZ
A +GBTZ

A

)
+ thermal contributions , (5.24)

where FBTZ
A denotes those contributions from entanglement entropies alone, and GBTZ

A

represents contributions of winding geodesics. Because the thermal contributions have

only one endpoint on the boundary, they cannot be associated to entangling intervals, and

so cannot be included in the integral over entangling intervals of (5.24).

Although the pure entanglement contributions in these geometries do not suffice to

compute the subregion complexity, we note that because the other contributions are all

positive, the pure entanglement contribution
∫
F does place a lower bound on holographic

subregion complexity.
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This situation bears a certain resemblance to the distinction between spectrum com-

plexity and basis complexity of [26]. We can think of the part of holographic subregion

complexity containing only entanglement entropies as analogous to spectrum complexity

(since entanglement entropy only depends on the spectrum of a state), while the remaining

contributions build up the more detailed basis complexity. However, we should stress that

the entanglement contributions contain information not only about the spectrum of the

reduced density matrix of A (i.e., entanglement entropy), but also about the spectra of all

intervals overlapping A.

6 Discussion

In this paper we studied volumes in a fixed spatial slice of the AdS3 vacuum of a gravita-

tional theory with a holographic dual CFT. Our primary technical result is an expression

for the volume of any region in that slice as an integral over the kinematic space of the

dual CFT (section 3), a formula we applied to express the volume of the region contained

under a geodesic in terms of entanglement entropies alone (section 4). Following the pro-

posal of [21], we refer to this quantity as ‘subregion complexity’. The volume formula is a

manifestation of the relation between entanglement in a QFT and the geometry of its bulk

dual, as captured by the motto ‘entanglement builds geometry’ [46]. Because our result

represents this volume purely in terms of CFT quantities, it may help provide insight into

the significance of this quantity for CFT.

The description of locally AdS3 geometries as quotient spaces of the vacuum by a

discrete group of isometries allowed us to extend our primary result (4.6) to express subre-

gion complexities for primary excitations (conical defect of section 5.1) and thermal states

(BTZ black hole of section 5.2) as integrals over appropriate kinematic spaces. In these

cases, however, it was necessary to include not only the minimal geodesics corresponding

to entanglement entropies, but also contributions from non-minimal geodesics related to

entwinement and to the presence of a horizon.

While equation (4.6), together with the prescription of section 4.2, computes the vac-

uum subregion complexity in terms of CFT quantities, it is potentially useful to reformulate

this integral in terms of the correspondence [36] between bulk chords and nested pairs of

boundary intervals. This correspondence let us express the chord length λΣ appearing in

the volume formula (4.3) for the Poincaré patch using the conformal cross-ratio of these

two intervals (section 4.5). In many cases this can further be written in terms of a mu-

tual information (4.26). Such a reformulation may yield further insights into the volume

formula.

A major motivation for deriving bulk volumes from within field theory is the complexity

= volume conjecture [47], on which Alishahiha’s proposal — that the volume below an RT

surface is a measure of the complexity of the corresponding reduced density matrix [21] —

was based. This proposal is difficult to test: in contrast to entanglement entropy, there

is as yet no entirely satisfactory notion for complexity in QFT, although some progress

has been made toward such a notion for free QFTs [15–18, 48–50]. Instead of considering

its interpretation as a complexity, we focused on a complementary question: how can
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Alishahiha’s bulk geometric quantity, the holographic subregion complexity, be computed

within CFT? At least in the vacuum of a large-N CFT, the volume formula provides an

answer to this question.

Let us now consider the implications of our results, assuming Alishahiha’s proposal

is valid. The first is that in the vacuum state, subregion complexity can be computed

purely in terms of entanglement entropy, suggesting that vacuum subregion complexity is

encoded in the spectrum of single-interval entanglement, at least in the large-N limit. On

the other hand, in non-vacuum geometries we found that volumes received contributions

other than single-interval entanglement entropies. Nevertheless, a part of the complexity in

each geometry we considered is determined by entanglement entropies alone, as expressed

in (5.23) and (5.24). Therefore, if we restrict our formula to include contributions only from

entanglement entropies, the resulting information-theoretic quantity constitutes a lower

bound for Alishahiha’s holographic subregion complexity that is built entirely from single-

interval entanglement entropies. The relation between pure entanglement contributions

and subregion complexity also shares features with that between the spectrum and basis

complexities of [26].

Conical defect geometries require us to supplement entanglement entropies of single

intervals by non-minimal geodesics associated to single intervals, presumably reflecting the

more involved structure of entanglement in excited states. The volume formula for the BTZ

black hole requires us to include further objects, geodesics that enter the black hole horizon.

Because these do not bound any boundary interval in the BTZ geometry or the two-sided

black hole, they have no clear interpretation in terms of entanglement. Such geodesics are,

however, crucial to computing e.g. the length of the horizon in kinematic space, suggesting

that their lengths contain important information about the thermal density matrix that the

black hole geometry represents. It is important to understand the role of these geodesics

in greater detail.

A consequence of our construction is that holographic subregion complexity (in the

sense of Alishahiha) in vacuum and thermal states is universal, in that it depends only

on the central charge of the field theory. Field theory proposals for the complexity of

Gaussian states do not possess this property, exhibiting for example a different behavior

between bosons and fermions [16, 17].9 We note, however, that our results only compute

complexity in strongly interacting theories in the large N limit, and only if the complexity

= volume conjecture holds true. Nevertheless, this universality constitutes a strong test of

the conjecture once a field theory computation of complexity for such theories is known.

A number of important questions regarding the volume formula, and its interpretation

in terms of complexity, remain unanswered. One notable task is to generalize the volume

formula to geometries with small local variations away from vacuum AdS3. Note that

such geometries represent small (∆E � c/lCFT) deviations from the vacuum state, so it

is reasonable to expect that entwinement will play no role. If the complexity = volume

conjecture is correct, such a formula may give important insights into the structure of

complexity, as well as its relationship to entwinement.

9We would like to thank the referee for pointing this out.
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It is also desirable to understand the relationship between subregion complexity and

state complexity more deeply. Susskind’s original complexity = volume proposal [47] was

based on the expected features of time evolution in a two-sided eternal black hole back-

ground. It would be very useful to study the expected behavior of subregion complexity

in time-dependent quantum systems, and then to compare their qualitative behavior with

gravitational computations.

Another intriguing direction would be to study the relationship of our approach to that

of [51, 52], where complexity is defined in terms of a path integral optimization procedure.

Optimizations have been related to kinematic space [53], and thus it would be interesting to

understand how such approaches might be related to the concept of complexity as volumes

of AdS regions and their computation via the volume formula.

Acknowledgments

We thank Michal Heller, Haye Hinrichsen, René Meyer, Rob Myers, Andy O’Bannon,
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A Subregion complexity for the semicircle

In this section we show how to obtain the subregion complexity of the semicircle in the

vacuum state given by (4.10) from equation (4.6). Even though this calculation does not

require the bulk at any point, we will refer to it during the computation in order to explain

certain steps in the most intuitive way.

Without loss of generality, we assume that the semicircle is centered around 0, i.e. the

boundary interval is (θΣ = 0, αΣ = π/2). To regularize the integrals, we introduce the

usual cutoffs at α = ξ and α = π − ξ. Therefore we find from (4.6)

C(semicircle) =
9

8πc2

∫ 2π

0
dθ

∫ π−ξ

ξ
dαΛξ(θ, α)∂2

αS(α) , (A.1)

where

Λξ(θ, α) =

∫
∆ξ

pp′

dθ′dα′∂2
α′S(α′) . (A.2)

Since the entangling intervals of type (a) do not contribute, we only need to consider the

ones of type (b) and (c). Those are depicted in figure 16. Due to the symmetry of the

volume form, the regions I and II as well as III–VI give the same contribution to the

complexity. Consequently C is given by

C(semicircle) =
9

4πc2

(∫ π/2

ξ
dα

∫ π/2−α

α−π/2
dθΛξ(θ, α)∂2

αS(α)

+2

∫ π/2

ξ
dα

∫ π/2+α

π/2−α
dθΛξ(θ, α)∂2

αS(α)

)
.

(A.3)
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Figure 16. The set of type (b) and (c) intervals for the entangling interval (0, π/2). I and II denote

the intervals of type (b) while III–VI are the intervals of type (c). The cutoffs are set to α′ = ξ and

α′ = π − ξ. It is easy to verify that I and II contribute in the same way to the complexity. So do

III–VI.

Figure 17. In the calculation of the complexity of the semicircle (0, π/2), entangling intervals of

type (c) show up. By construction the corresponding regions of integration are inter alia bounded

by point curves. When we introduce cutoffs at α′ = ξ and α′ = π − ξ we obtain a region of

integration ∆ξ
pp′(θ, α) for each type (c) interval (θ, α). Note that not for all (θ, α) the point curve

stays above the cutoff (l.h.s.) but there are cases where the point curve crosses the cutoff (r.h.s.).

The first integral computes the contribution from type (b) intervals (region I), while the

second integral computes the contribution from type (c) intervals (region III). For the type

(b) intervals Λξ is already known and given by (4.8). So we obtain

C(semicircle) =
9

4πc2

(
−8c

3

∫ π/2

ξ
dα

∫ π/2−α

α−π/2
dθ

(
log

(
sin(α)

sin(ξ)

)
+ ξ cot(ξ)

)
∂2
αS(α)

+2

∫ π/2

ξ
dα

∫ π/2+α

π/2−α
dθΛξ(θ, α)∂2

αS(α)

)
.

(A.4)

The more subtle part is to calculate (A.2) for intervals (θ, α) of type (c). The difficulty

here comes from the fact that ∆pp′ is bounded by a point curve, not just light rays, as for

the type (b) intervals. This point curve even crosses the cutoff in some cases, as depicted

in figure 17.

However it is possible to bypass this subtlety for the semicircle by exploiting several

symmetries of the situation. Since these symmetries are easiest understood from the bulk
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Figure 18. The geodesics (θ, α) and (θ̃, α) both lie in region III in kinematic space. Σ is the region

below the geodesic (0, π/2). The chord length of (θ̃, α) w.r.t. Σ is equal to the length of the part of

(θ, α) that lies outside of Σ. Therefore the sum of the chord lengths of (θ, α) and (θ̃, α) gives the

total length of (θ, α).

point of view, we choose this picture to explain them. Λξ(θ, α) is, up to differences due to

the regularization scheme, the length of the segment of the geodesic (θ, α) that lies inside

of Σ. As depicted in figure 18 each geodesic (θ, α) in III has a counter part (θ̃, α) that also

lies in III, has the same opening angle α and whose chord length is equal to the length of

the part of (θ, α) that lies outside of Σ. Because the cutoff is independent of θ, these chord

lengths together sum up to the length of a full geodesic. Since we are integrating over all

chord lengths to obtain the complexity, this means we can replace the integration over the

chord lengths of the geodesics in III by an integral over their full length and multiplying

with 1/2. Consequently we can replace Λξ in the integral over the geodesics in III in (A.4)

with (4.8) and multiply by 1/2. We find

C(semicircle) = − 6

πc

(∫ π/2

ξ
dα

∫ α+π/2

α−π/2
dθ

(
log

(
sin(α)

sin(ξ)

)
+ ξ cot(ξ)

)
∂2
αS(α)

)

= 2ξ cot2(ξ) + 2 cot(ξ) + 2ξ − π =
4

ξ
− π +O(ξ2) .

(A.5)
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