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Introduction

The information technology based society has an increasing demand for efficient comput-

ing power. A gain in efficiency can be achieved by reduced production costs for single

logic devices, by an increased number of computational operations per given time in-

terval, or by reduced energy consumption in relation to the number of logic operations.

These goals are achievable by means of size reduction of conventional logic components,

which are based on the laws of classical information theory, and by the application of

quantum information theory. The latter allows a high degree of parallel information

processing to be attained. The fundamental limit of the size of new information pro-

cessing and storing devices is given by the properties of single particles, or to be more

precise, the spacial extension of single quantum states. The particle states are charac-

terized by a given set of quantum numbers and these states yield the information that

has to be stored or processed. Modern semiconductor fabrication technologies make it

possible for these geometric limits to be approached, and consequently offer the prospect

of scalable semiconductor quantum processing devices; hence, the intense interest in the

study of quantum dot (QD) structures that contain only a few electrons [LD98]. For the

development of these devices, a detailed knowledge of the underlying electron transport

processes is of crucial importance. So far, most of the transport experiments have fo-

cused on the electrical conductance [KMM+97]. Besides the proofs that semiconductor

QD structures can be used for (coherent) single particle and quantum state manipula-

tion [EHWvB+04, KBT+06], measurements have shown that the dynamic and magnetic

quantum mechanical properties of the QD electrons govern the electrical transport at low

temperatures [GGSAM+98, COK98, vdWDFF+00], and that (QD) systems containing

confined electrons are a useful tool for studying fundamental transport phenomena, e.g.

the quantum Hall effect [KDP80, vKGW05]. These, as well as many other experiments

on the electrical conductance, have made few electron QDs a magnificent model system

for testing the charge transport properties on the scale of a single lattice site, or single

impurity, respectively.

Although thermoelectrical transport measurements are known to be more sensitive to

the details of the electronic structure than conventional transport measurements [Zim63],

little experimental attention has so far been paid to this kind of measurements on QDs.

Thus it is desirable that such measurements be done, since the measurement of the ther-

moelectric power (thermopower) allows a direct analysis of the charge transport dynamics
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2 Introduction

to be carried out. Moreover, it is an important measurement due to the close connection

between the thermopower and the heat transport, i.e. entropy transport. Experiments

show that diverse behaviors are found for the thermopower of simple metals, where even

the sign of this quantity shows no regularity. Although there has been extensive work

on this topic, the low temperature theory even in metals has still not been well under-

stood [Mah81]. Thus, it is highly desirable to establish a complete microscopic picture of

thermoelectric transport in mesoscopic and quantum systems.

Recently, the field of thermoelectricity has gained large renewed attention. Much in-

terest has been focused on understanding thermoelectric transport in nano-scale devices

due to the possible applications of QDs for efficient thermoelectric power generation or

cooling [SNB07b, GGB+06, DiS99, KNY+98]. In this connection, thermoelectric devices

have the advantages of being reliable, cheap and scalable down to mesoscopic sizes, which

makes them interesting for on-chip cooling applications. The advances in growth and

fabrication of complex compounds, mesoscopic devices and nanostructures open up var-

ious opportunities for studying new materials and device designs. Generally speaking,

the concepts are based on improving the macroscopic material properties by controlling

the energy transport on a (very) small scale. The ideas to enhance the efficiency of

thermoelectric devices range from modifications of the crystal lattice (phonon system),

such as in super-lattice structures, over changes in the energy spectrum of the charge

carriers by quantum mechanical confinement in low dimensional systems, to the use of

magnetic (spin) properties in spin entropy transport. The modification of the electronic

energy spectrum in low dimensional systems has a significant impact on the performance

of thermoelectric and solid-state thermionic devices. It has been shown that devices with

a sharply rising transmission probability significantly outperform those that do not show

this behavior [OLZH05].

Within this context, single electron QDs represent the smallest thermoelectric devices

besides molecular junctions [RJSM07]. They naturally have sharply rising transmission

properties and provide a high degree of variability. Additionally, they allow a fundamental

control of the energy and entropy flow, which makes them interesting for heat information

processing [TPC02, Pey06], complementary to the well known charge based information

processing. Thus, the investigation of the thermoelectric properties of few-electron QDs

can contribute to the understanding of the fundamental questions of information, charge

and heat transport processes in quantum systems, which represent an important basis of

the future information technology based society.

The used QD design is based on lithographically patterned high electron mobility

transistor nanostructures. The QDs are defined electrostatically in a 2-dimensional elec-

tron gas (2DEG). Their nominal lateral diameter is 250 nm, and the QDs contain up

to a few tens of electrons. In order to observe charge quantization (Coulomb blockade)

and size quantization effects (discrete energy spectrum of the QD) in the electrical and

thermoelectrical transport, electromagnetic interferences and thermal noise have to be

minimized. This is achieved by cooling the samples to temperatures below 1 K in an
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electromagnetically shielded environment. The size and the energy spectrum of the QDs

can be controlled by means of voltages applied to nearby metallic surface electrodes, and

by the application of magnetic fields up to 16 T. The ambient temperature of the QD

serves as an additional parameter for modifying the contributions of the various charge

transport mechanisms to the overall electrical and thermoelectrical transport.

The aim of this thesis is to clarify the role of the QD energy spectrum and the QD spin

properties on the thermoelectric response. This would contribute to the understanding

of charge and entropy transport processes in future solid state quantum information pro-

cessing and in highly efficient nano-scale thermoelectric devices. In this regard, the thesis

investigates the electronic orbital and spin transport dynamics through few-electron QDs

by means of electrical and thermoelectrical measurements. It should be pointed out that

there are contributions to the thermoelectric transport which result from the interaction

of the crystal lattice and the electrons. This so called phonon drag contribution to the

thermoelectric transport is not investigated here. The experimental work has produced

experimental results and confirms theoretical calculations, which were obtained earlier

for the diffusion thermopower of larger QDs [SMA+93, MBGM98, DSB+97, TM02]. The

new experimental findings for the thermoelectric response of few-electron QDs have been

compared with theoretical model calculations. This enables a direct analysis of the com-

position of first and second order transport processes to be done. Deviations between

measurements and simulations are discussed with respect to their various possible ori-

gins. The detailed direct comparison of nonlinear differential conduction measurements

and thermopower measurements on the same sample are used to identify the thermoelec-

tric signatures due to single QD states, and asymmetries as well as imperfections in the

sample design. It is shown that under certain circumstances the QD configuration can

even lead to rectifying effects in the thermal transport. The influence of the spin prop-

erties of the QD on the thermopower is studied in the spin-correlated transport regime.

Here, the magnetic interaction between localized QD electrons and the free electrons in

the leads creates correlated many-particle states which are known from bulk materials to

exhibit a very irregular thermoelectric behavior. Having investigated extensively the QD

as a tunable model system, this work can serve as a starting point for future investigations

in the field of many-particle thermoelectric effects and spin entropy transport.



4 Introduction

The details of this thesis are organized in the following chapters:

The first chapter reviews the basic concepts of electric transport through lateral few-

electron QDs. A brief introduction is given on the theoretical description of QDs, and on

the first and second order transport in the Coulomb blockade regime. The nonlinear elec-

tric transport is discussed with respect to the charge transfer via the discrete energy states

of the QD. The chapter gives an introduction to the interpretation of Coulomb blockade

diamonds which are obtained by nonlinear differential conductance measurements. The

commonly known signatures of charge transport via the ground states and the excited

states are summarized with respect to first and second order charge transport.

The second chapter starts by introducing the basic concepts of thermoelectricity. The

thermodynamics of irreversible processes is reviewed with respect to the charge transfer

and its accompanying heat flow. The macroscopic transport equations are introduced for

the thermoelectric transport in microstructures and a short remark is given on the appli-

cability of the semiclassical Mott’s relation between the conductance and thermopower

in the thermoelectrical transport. The chapter ends with an introductory review of the

known results for thermopower oscillations in the Coulomb blockade regime.

The third chapter addresses the design of the few-electron QDs, the material system,

as well as the split gate sample layout. Furthermore, the experimental techniques for

the electrical and thermoelectrical characterization are explained. The chapter also dis-

cusses in detail the used current-heating technique, especially due to its importance for

the quantitative analysis of the experimental data. In this regard, various electron gas

temperature calibration techniques are compared.

The fourth chapter deals with measurements of the thermopower of few-electron QDs

in the temperature range between 1.5 K and 40 mK. Comparison is made with results of

past measurements of the thermopower of QDs in the Coulomb blockade transport regime

which yielded qualitatively different results for many electron QDs. It is verified that these

differences result from the different strengths of the transport processes. The temperature-

dependent line shape of the thermopower oscillations in the Coulomb blockade regime is

analyzed and explained with respect to the thermoelectric contributions of sequential and

cotunneling transport. The observed deviations from model calculations, which account

for sequential and inelastic cotunneling, are discussed with respect to the finite level

spacing in the QD, the low temperature electron distribution in the heated reservoir, and

the temperature stability during the measurement.

The high sensitivity of thermopower measurements very often reveals deviations from

an expected ideal model system. In order to clarify the origin of these differences between

theoretical model calculations and experimentally obtained data, the fifth chapter focuses

on the contributions to the thermoelectric response which arise from asymmetries in the

QD-lead system. Effects caused by the finite height of the connecting tunneling barriers

are discussed as well as the signature of the intrinsic symmetry properties of given QD

states. The thermoelectric signal is directly compared with the excitation spectrum of
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the QD which is obtained independently from nonlinear differential conductance measure-

ments. In order to show that part of the line shape of the thermoelectric signal reflects the

symmetry of the coupling of given QD states to the leads, numerical model calculations

are presented which are based on a resonant tunneling model. The possibility of using

the internal properties of a QD for thermal rectification is discussed. The chapter ends

with a section on the influence of the symmetry properties of given QD states on the

thermoelectric transport via excited states in first order and second order transport.

Finally, the sixth chapter deals with the influence of the magnetic properties of the

QDs and their interactions with the surrounding lead system. In the limiting case of

a strong coupling of the QD to the leads, these interactions result in so called spin- or

Kondo-correlations under certain circumstances. Thus, a complete picture of the elec-

tronic contributions to the thermoelectric transport requires the spin-correlation contri-

bution to the thermopower of a few-electron QD to be studied. A clear deviation from the

semiclassical Mott relation between thermopower and conductivity indicates a significant

asymmetry in the spectral density of states of the spin-correlated state with respect to the

Fermi energies of the reservoirs. The observed behavior is explained within the framework

of an Anderson-impurity model and possible contributions to the thermoelectric transport

due to spin entropy transport.



6 Introduction



Chapter 1

Fundamentals of Coulomb-blockade

in quantum dots

In this chapter, basic concepts are presented for the theoretical description of a quantum

dot (QD) and for the electric transport through QDs at low temperatures. In the first

section, the Hamilton operator is introduced and approximations are discussed, which

are in the framework of the so called constant interaction model (CI-model). The second

part summarizes the theoretical description of the transport through single QDs in the

Coulomb blockade (CB) regime. The third section reviews the interpretation of Coulomb

blockade diamonds obtained by nonlinear conductance measurements.

7



8 1. Fundamentals of Coulomb-blockade in quantum dots

1.1 Theoretical description of a quantum dot

1.1.1 Hamiltonian for transport through a quantum dot

Starting with an electrostatic description of a QD, a general expression for the Hamilton

operator Ĥ can be given by [HWM96, KWS+01, Kel01]

Ĥ(N) =
1

2m∗

N∑
n=1

[p̂n + eA(r̂n)]

+
N∑

n=1

Φext(r̂n)

+
e2

2

N∑
n=1

N∑

n′=1,n′ 6=n

G(r̂n, r̂n′)

+ gµBBŜ. (1.1)

The first term of the Hamilton operator reflects the kinetic energy of N (independent)

electrons in a magnetic field B = ∇×A, where A is the vector potential, p̂n is the canon-

ical momentum operator for the n-th electron, r̂n is the corresponding position operator

and e the elementary charge.

The second term describes the additional electrostatic energy due to the confining po-

tential Φext(r̂n). In general, Φext(r̂n) depends on the shape and position of metallic gate

electrodes, the average charge density of ionized donors or impurities and the potentials

applied to the individual gate electrodes. Furthermore, a local variation of the material

composition can be included, as well as the interaction of the QD electrons with its mirror

charges on the gate electrodes.

In the third term, the Green-function G(r̂n, r̂n′) reflects the interaction between the QD

electrons.

The last term represents the Zeeman energy of the QD in a magnetic field, where g is the

Landé-factor, µB the Bohr magneton and Ŝ the total spin operator.

In order to calculate the N -electron states |N, k〉 and the corresponding eigen-energies,

the N -particle Schrödinger equation has to be solved:

Ĥ|N, k〉 = E(N, k)|N, k〉. (1.2)

The N -electron state is characterized by the number of electrons N on the QD and a

set of quantum numbers k ≥ 0. In the following, |N, 0〉 denotes the ground state of

the N-electron QD and |N, k〉 with k > 0 denote excited states of the corresponding

system. Equation (1.2), can be solved exactly by numerical methods only for a small

number of electrons (N . 10). Thus, approximations, e.g. the Hartree-approximation

and the Thomas-Fermi-approximation, are introduced, which reduce the complexity of
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Fig. 1.1: Schematic diagram of the capacitive coupling between QD and nearby electrodes.
Ci,j with i, j 6= 0 describe the capacitive coupling among electrodes. Considering the symmetry
properties of the system, the relation Ci,j = Cj,i applies.

the problem. In these approximations, the N -particle problem is usually reduced to a

single particle problem, where the interaction between the electrons is taken into account

by an effective interaction potential. The results of these approximations will be used to

explain the experimental observations in the quantum Hall regime [Chap. 6], where the

confining potential considerably depends on the number of electrons in the QD.

1.1.2 Constant interaction model

For the discussion of the experiments shown in this thesis, it is usually sufficient to

describe the QD by a phenomenological model, which is an extension of the pure classical

description. Following for example Ref. [Kel01] and referring to Fig. 1.1, the QD can be

described as a conductive island that contains an integer number of electrons N = |Q0|/e.
Voltages Vi applied to nearby electrodes (electron gas reservoirs, as well as gate electrodes)

couple capacitively to the island. The corresponding capacities Ci,j are assumed to be

independent of the number of electrons. They induce a charge of

Q0 =
3∑

i=1

C0,i(V0 − Vi) (1.3)

on the QD. Using the total capacity of the QD, C =
∑3

i=1 C0,i, the total potential of the

QD is given by

V0 =
Q0

C
+

3∑
i=3

Ci,0 · Vi

C
. (1.4)
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Thus, the total electrostatic energy Eel.stat.(N) needed to charge N electrons onto the QD

is

Eel.stat.(N, Vi) =

∫ −eN

0

V0(q)dq = −Ne ·
3∑

i=1

Ci,0 · Vi

C
+

(Ne)2

2C
. (1.5)

In QDs, which are of the size of the de Broglie-wavelength λF = h/m∗vF , the quantum

confinement causes a discrete energy spectrum in the QD. Thus, by increasing the number

of electrons on the dot, the energies of the QD states εp has to be provided in addition to

Eel.stat.(N). The total energy of the N -electron QD is given by the sum of the classical

electrostatic energy and the sum of the occupied QD states1.

E(N) =
N∑

p=1

εp + Eel.stat.(N, Vi) (1.6)

In the limit T → 0, the electrochemical potential µ̄(N + 1) of the QD, is given by the

difference in the ground state energies of the N+1 and N electron system:

µ̄(N + 1, 0; N, 0) = EN+1 − EN = εN+1 − e ·
k∑

i=1

Ci

C
Vi + (N + 1/2)

e2

C
. (1.7)

Within this model, the interaction between the electrons is considered by the constant

electrostatic energy EC = e2/C; this is why it is called the constant interaction model.

1.2 First and second order transport

While in the previous section the QD was considered as an isolated system, this section

presents the basic concepts of the electron transport from adjacent reservoirs through

the QD. The overview follows Ref. [KMM+97] and gives an introduction about the basic

properties of Coulomb blockade (CB) transport.

In order to accomplish charge transport through the QD in the classical sense, electrons

have to be added to and removed from the QD. From Eq. (1.7), it follows that there are

two possible ways to change the number of electrons on the QD. First, at constant gate

voltage, the number of electrons is increased by one, when the electrochemical potential

changes by

µ̄(N + 1, 0; N, 0)− µ̄(N, 0; N − 1, 0) =
e2

C
+ (εN+1 − εN) = EC + δE. (1.8)

Second, the change in gate voltage ∆Vi which is needed to change the number of QD

electrons by one is given by

∆Vi =
C

eCi

(EC + δE). (1.9)

1The QD states can be approximated by the quantum mechanical single particle states. The occupa-
tion of theses states results according to Hund’s rules [TAH+96]. Their energy is measured with respect
to the bottom of the confining potential.
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Fig. 1.2: Schematic energy diagram of the QD and the adjacent reservoirs. Panel (a) shows the
situation in the case of single-electron-tunneling (SET). Panel (b) depicts the situation, where
the transport through the QD is blocked due to Coulomb blockade (CB).

In the first case, the effective charging energy E∗
C = EC + δE has to be provided by the

incoming electron from the reservoir. In the second case, E∗
C originates from the electric

field energy of the continuously variable mirror charge on electrode i.

In order to observe these sequential charging effects,2 the thermal excitations have to

be small compared to the effective charging energy (kBT ¿ E∗
C), and the electrons have

to be localized either in the QD or in the reservoirs. The latter requirement is satisfied,

if the time required to change the number of electrons on the QD, ∆t = RtC, is large

compared to the fundamental measurement time limit, which is given by the Heisenberg

uncertainty principle

∆E∆t =
e2

C
RtC > h. (1.10)

Thus, electrons are classically localized either in the reservoir or in the QD, when the

tunnel (transfer) resistance Rt À h/e2.

In this thesis, this basic model of the so called (extended) orthodox Coulomb blockade

will be taken as the starting point for the investigations of further thermoelectric transport

phenomena. In the following, some results of the orthodox model are reviewed and their

application to the linear and nonlinear transport is discussed.

1.2.1 First order linear transport

Figure 1.2 depicts the potential landscape of a QD in the regime of linear transport. The

QD is separated by two tunneling barriers from the reservoirs, which are characterized by

2This phenomenon was first reported by Gorter in 1951 [Gor51].
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their electro-chemical potentials µ̄l,r and their temperature T . The occupation probability

of states in the reservoirs is given by the the Fermi distribution

f(E, T, µ) =
1

e
E−µ
kBT + 1

. (1.11)

The relative position of the QD electrochemical potential can be varied reversibly by a

gate voltage (VP). A current can be driven through the QD when the electrochemical

potential of the QD lies between the Fermi energies of the reservoirs [cf. Fig.1.2(a)] by

means of a small bias voltage VDS applied between the left and the right reservoirs, where

eVDS < kBT . In the first step, an electron, which has enough energy, enters the QD from

the left reservoir and increases the number of electrons from N − 1 to N . In the second

step, an electron from the QD tunnels into the free states of the right reservoir. Of course,

the electron which is leaving the QD has to have enough energy to occupy the free state

in the lead. The transport of electrons is blocked, if µ̄(N) < µ̄l,r < µ̄(N + 1) [situation

depicted in Fig. 1.2(b)]. Neither have the electrons in the reservoir enough energy to

increase the number of electrons on the dot from N to N + 1, nor can an electron from

the dot tunnel into the reservoirs, since all states of the same energy are occupied. Upon

increasing the gate voltage continuously (∆VP = VP,f −VP,i > 0), the number of electrons

is increased successively. Each time the electrochemical potential of the QD is aligned

between the Fermi edges of the reservoirs, an electric current I can flow through the QD,

and a single-electron-tunneling (SET) conductance peak results in the linear conductance

G = limVDS→0 I/∆VDS.

For first order transport (sequential tunneling), a linear-response theory has been

presented in Ref. [Bee91]. This theory describes the Coulomb blockade conductance

oscillations quantitatively. The theory extends the classical theory of Coulomb blockade

oscillations by Kulik and Shekhter [She73, KS75] to the regime where the influence of

the charging energy on resonant tunneling is formulated for a QD with discrete energy

spectrum and which is weakly coupled to two electron reservoirs. The model assumes

that the thermal energy exceeds the width of the transmission resonance kBT À hΓl,r,

i.e. the SET conductance peaks are thermally broadened. The QD states are equally

spaced and the coupling does not depend on the energy. It should be noted that the

model assumes that the distribution of electrons among the levels in the QD is given

by the Gibbs distribution, and this differs from the Fermi-Dirac distribution in the case

kBT ≈ δE.
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In the regime of the classical Coulomb blockade (kBT ¿ δE) and in the regime of the

quantum Coulomb blockade (δE ¿ kBT ), the line shape of the SET conductance peaks

can be expressed by

G =
e2ρ

2

ΓlΓr

Γl + Γr

cosh−2

(
∆min

2kBT

)

if kBT ¿ δE, (1.12)

G =
e2

4kBT

ΓlΓr

Γl + Γr

∆min/kBT

sinh(∆min/kBT )
≈ e2

4kBT

ΓlΓr

Γl + Γr

cosh−2

(
∆min

2.5kBT

)

if δE ¿ kBT . (1.13)

Here, ρ denotes the density of states in the QD, and ∆min = µ̄QD(N)− µ̄l,r the minimum

energy gap between the electrochemical potentials of QD and reservoirs. This theory is

used to fit the line shape of the SET conductance peaks obtained by linear conductance

measurements. The fit allows the temperature of the electron gas to be extracted, since

the charging energy of the QD can be obtained independently by nonlinear conductance

measurements. In order to fit the SET conductance peaks in the intermediate temperature

regime (kBT ¿ δE), the exact equations have to be used. These are given in Chap. 4,

where a comparison between first and second order transport processes with respect to

the thermoelectric transport behavior is given.

1.2.2 Elastic and inelastic cotunneling

In linear response, the sequential charge transport through the QD is mainly mediated

by thermally activated electrons in the leads and the QD. An increasing energy gap

between the electrochemical potential of the QD and the Fermi energies of the adjacent

reservoirs (Eg) leads to an exponential suppression of the QD conductance away from

the SET conductance peak. This is also reflected in Eqs. (1.12) and (1.13). Quantum

mechanically, however, the electrons of the leads do not necessarily need the excitation

energy Eg (with respect to the Fermi energy) to traverse the QD. Tunneling through the

QD is possible by means of the virtual occupation of an intermediate state. This so called

second order transport (cotunneling) decreases according to a power law behavior with

increasing Eg. Thus, for low enough temperatures, conduction is mediated by cotunneling

processes in the conductance valleys between CB resonances [AN90, GAM90, HTT92].

Figure 1.3 shows a schematic energy diagram of an inelastic cotunneling process. Initially

the QD is in the N electron ground state. An electron from the reservoir enters the QD

and transfers the QD into a virtual intermediate (N + 1)-electron state. Then, a second

electron leaves the QD to the second reservoir, and the QD ends in an excited N -electron

state. The energy difference δE between the initial and the final QD states is provided

by the tunneling electron entering the QD. Since the energy of the total process has to

be conserved, the intermediate (N + 1)-electron QD state can only be occupied virtually.
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Fig. 1.3: Schematic energy diagram of an inelastic cotunneling process. From left to right:
initially the QD is in the N electron ground state, then it is transferred into a virtual intermediate
N + 1-electron state and finally ends in an excited N -electron state. The energy difference δE

between the initial and the final QD states is provided by the tunneling electron entering the
QD.
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Figure 1.3 depicts just one possible contribution to the cotunneling. For the complete

description of cotunneling transport, other possible intermediate excited states also have

to be included, as well as hole-like excitations of the QD. Cotunneling processes can be

either elastic (coherent) or inelastic (incoherent), depending on whether the dot is left

in its ground state or is left in an excited state after the charge transfer, respectively

[DFSE+01]. Their contributions to the average conductance are respectively:

〈Gel〉 =
~GlGrδE

4πe2

(
1

Ee

+
1

Eh

)
(1.14)

〈Gin〉 =
~GlGrπ

3e2
(kBT )2

(
1

Ee

+
1

Eh

)2

, (1.15)

where Gl,r denote the conductances of the left and the right tunnel barrier, Ee and Eh

the energy differences between the Fermi energy of the reservoirs and the electrochemical

potential of the corresponding QD state above or below EF . Note that the tunneling

rates depend on the characteristic time scale τ = E∗
C/~, since Ee,h are of the order of EC.

This is a consequence of the Heisenberg principle and corresponds to the time which the

electron can spend propagating via the virtual state from one reservoir to the other.

1.3 Nonlinear transport

In the previous sections, it was shown that charge transport through QDs can be accom-

plished by various transport mechanisms. Experimentally, the transport of charges results

in a measurable current. For a given set of external experimental parameters Pi, defining

the potential differences between the QD reservoirs and the gate voltages, the current is

proportional to the transmission probability of electrons through the QD. In the frame-

work of the Landauer-Büttiker formalism [Lan57, Lan70, BILP85, Büt86], the change of

the current dI due to a change in the potential difference dVDS between the two connecting

reservoirs (source and drain) is interpreted as a change in the transmission probability

at a given set of external parameters Pi. Thus, the differential conductance dI/dVDS,

reflects the strength of the change in the transmission probability, which is either due to

an increasing or a decreasing number of transport channels or transport mechanisms.

During the last two decades, a large number of investigations involving finite-bias dif-

ferential conductance measurements on QDs in the Coulomb blockade and SET transport

regimes were carried out. The advances in measurement techniques have lead to a far-

reaching understanding of the interpretation of these measurements. In the following,

a short introduction to the interpretation of such measurements by means of graphs is

given. The actual experimental technique is described in Chap. 3.
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Fig. 1.4: Color scale plot of the nonlinear differential conductance (middle panel) and corre-
sponding schematic energy diagrams of the transitions from Coulomb blocked transport to the
single electron tunneling regime [(1)-(4)]. Black lines are added as a guide to the eye for the
cases, where either source or drain is aligned with the electrochemical potential of the QD.
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1.3.1 Coulomb Blockade Diamonds

The middle panel of Fig. 1.4 shows a color scale plot of the nonlinear differential con-

ductance as a function of the gate voltage VP and applied drain-source voltage VDS =

−(µ̄D − µ̄S)/e. Dark and bright colors correspond to high and low differential conduc-

tance, respectively. In the middle, a region of low dI/dVDS indicates the transport regime,

where the charge transport is blocked. Here, the electrochemical potentials of the source

and the drain contacts lie between the electrochemical potentials of the N and (N + 1)-

electron QD, i.e.

µ̄N,0(VP) < µ̄D, µ̄S < µ̄N+1,0(VP). (1.16)

Black lines are added as a guide to the eye at the border lines of the Coulomb blockaded

transport regime. Outside this Coulomb blockade diamond, sequential charge transport

sets in, since the electrochemical potential of the QD lies between the electrochemical

potentials of the reservoirs. The schematic energy diagrams [(1)-(4)] depict the situations,

where either the drain contact [lines (2) and (4)] or the source contact [lines (1) and (3)]

are aligned with the electrochemical potentials of the QD ground states. The slopes

of lines (2) and (4) mS, and (1) and (3) mD depend on the capacitive coupling of the

reservoirs and the gates to the QD. Taking the source potential to be constant,3 the latter

(mD) can be calculated by considering that the change in the QD energy ∆EQD = −eVDS

is equal to the energy shift due to the capacitive coupling of the drain contact (∆ED =

−eCD

C
VDS = −ecDVDS) and to the gate voltage (∆EVP

= −eCP

C
VP = −ecP VP) so that

∆EQD = −eVDS = −e

(
CD

C
VDS +

CP

C
VP

)

⇔ ∆VP

∆VDS

= mD =
1− cD

cP

. (1.17)

In a similar way, the slope of lines (2) and (4) mS can be calculated. Here, the electro-

chemical potential is aligned with the fixed electrochemical potential of the source, and

∆ED = −ecDVDS has to be compensated by ∆EVP
= −ecP VP:

∆EQD = 0 = −e

(
CD

C
VDS +

CP

C
VP

)

⇔ ∆VP

∆VDS

= mS = −cD

cP

. (1.18)

The scaling factor α = E∗
C/∆VP, which can be obtained from the transport spectrum

directly for an estimate, is then given by

α =
1

mD −ms

. (1.19)

3In the experiments, the source contact is usually connected to an I-V converter, which keeps VS on
virtual ground (VS = 0).
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The value of α has to be determined separately for each QD-sample. It is constant only

in the case of constant capacities ci. In few-electron QDs, this is not quite the case and

α has to be determined for each Coulomb blockade diamond.

1.3.2 Transport via excited states in the SET regime

So far, the sequential tunneling via the ground states of the QDs µ̄(n, 0) has been con-

sidered. However, the excited states µ̄(n, i) with iεN+ also contribute to the sequential

tunneling transport in the SET regime once the corresponding electrochemical potentials

are between µ̄D and µ̄S. The increase or decrease in the transmission probability of elec-

trons through the QD results in a positive or negative dI/dVDS in a line parallel to the

edge of the Coulomb blockade diamond, respectively. Figure 1.5 shows the schematic en-

ergy diagrams, of the situations where either the first excited state of the (N +1)-electron

system [(1) and (2)] or the N -electron system [(3) and (4)] participates in the transport.

In Fig. 1.5, panels (1)-(4) depict special situations, where the electrochemical potentials

of the QD are aligned with µ̄S or µ̄D. The schematic color-scale plot shows the positions

of the expected structures caused by µ̄(N + 1, 1; N, 0) and µ̄(N + 1, 0; N, 1) in dI/dVDS

as dashed and dotted lines, respectively.

The level spacing is given by e∆V ∗
DS, where ∆V ∗

DS is the difference in applied drain-

source voltage between the intersection points of the dashed lines with the CB diamond

border (red dots in Fig. 1.5).

Note that only transitions which involve the participation of the ground state intersect

with the CB diamond border (red dots in Fig. 1.5), and those of the type µ̄(N +1, i; N, j)

with i, j > 0 do not. In order to obtain the level spacing of these transitions, their lines

have to be extrapolated to the border of the CB diamond.

1.3.3 Cotunneling in the CB regime

Corresponding to Sec. 1.2.2, charge transport through the QD is not completely blocked

within the Coulomb blockade diamond. Elastic and inelastic cotunneling takes place via

virtual intermediate, excited states of the QD. Cotunneling only depends on the coupling

of the QD states to the reservoirs and the charging energy of the QD, provided energy

conservation is obeyed. An increase in the conductance independent of gate voltage is ex-

pected within the CB diamond once the e∆µ̄| > δE, since inelastic cotunneling transport

is mediated via the discrete excited energy states [see also Fig. 1.3]. Figure 1.6 shows a

Coulomb blockade diamond where strong inelastic cotunneling sets in for VDS > 0.5 mV.

A corresponding increase is also observable for VDS < −0.5 mV, though less pronounced.

Red dashed lines have been added as a guide to the eye. At the diamond edges, the co-

tunneling lines connect to lines where first order tunneling via the corresponding excited

state sets in. For these points, the panels (1)-(4) depict the schematic energy diagram,

where the ground state transitions are aligned with source or drain, respectively.
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The onset of inelastic cotunneling is characterized by its width. In the zero tempera-

ture limit, this width is determined by the lifetime broadening of the excited state.

In summary, the VDS-VP plane which contains the Coulomb blockade diamonds can be

divided into areas corresponding to the various transport processes. Figure 1.7 presents a

schematic drawing of the various tunneling regimes within a Coulomb blockade diamond

[Tew04, SIR+05]. Here, only one excited state is taken into account. It has an energy

difference to the ground state of δE. For energy differences between the electrochemical

potentials of source and drain smaller than the level splitting, (∆µ̄ < δE), only elastic

cotunneling is possible within the Coulomb blockade diamond (yellow area). Once ∆µ̄ >

δE, inelastic cotunneling processes (can) set in (blue and orange area). If the QD remains

in the excited state after an inelastic cotunneling process, the effective charging energy

is reduced by the amount of the level spacing. In this case, it is possible that sequential

tunneling occurs even within the CB diamond (blue area).
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Fig. 1.7: Schematic drawing of the various tunneling regimes within the Coulomb blockade
according to Refs. [Tew04] and [SIR+05]. Thick solid lines correspond to the edges of the CB
diamond. δE denotes the energy difference between the ground state and the first excited state.



Chapter 2

Fundamentals of thermoelectric

transport

2.1 General considerations

The measurement of the thermoelectric properties of a system provides an alternative way

to study transport of charged particles besides the common electric transport measure-

ments. It also yields additional information about the dynamic processes during charge

transport [Mah81]. For a detailed study, an introduction on thermoelectricity can be

found in Ref. [Bar72]. Here, only the most important basics will be given in a short

résumé.

In general, if one side of a conductor is heated, electrons at the hot end will ac-

quire increased energy relative to the cold end and will diffuse to the side where their

energy may be lowered.1 The heat flow is accompanied by the accumulation of nega-

tive charge at the cold end, thus setting up an electric field or a potential difference

(VT = e−1∆µ̄ = e−1∆(µ − eV )) between the two sides of the device. The electric field

builds up until a state of dynamic equilibrium is established between electron flux due

to the temperature difference ∆T and the electron flux due to the potential difference

caused by the accumulation of electrons at the cold end. This phenomenon is consid-

ered to be the basic thermoelectric effect. In this sense, thermoelectricity concerns the

direct generation of an electromotive force (e.m.f) by thermal means. This e.m.f. is called

the Seebeck e.m.f. after its discoverer Johann Seebeck (1770-1831). In the limit of zero

electrical current flow, the quotient

S ≡ − VT

∆T

∣∣∣∣
I=0

(2.1)

is called the thermoelectric power or thermopower S. In the stationary state, the electrical

energy which is required to transfer n electrons from the hot end to the cold end is

1This is essentially the manner in which heat is conducted through the device.

23
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balanced by the change in thermal energy (that is, the heat Q = ST ), and it is possible

to approximate: neV
T

= Sn∆T ; where n is the particle density and Sn is the entropy

density of the charge carriers corresponding to the average potential and temperature of

the sample [ZMFB05]. This results in the approximate relationship between the Seebeck

coefficient and the entropy

S ≡ Sn

en
. (2.2)

This is why the thermopower is often interpreted as entropy per charge carrier.

The described basic thermoelectric effect leads to a negative thermopower coefficient.

However, the correct sign and the magnitude of the thermoelectric parameters for various

materials strongly depend on the temperature, the type of conduction (p or n type)

and the scattering interactions which charge carriers experience in their motion under

a temperature gradient. If the electrons travelling down the temperature gradient are

scattered in the same way as the electrons travelling upwards, the scattering would be

expected to play no part in the determination of the thermopower. If the scattering is

energy dependent, it might be that low energy electrons moving to the hot end would

encounter less scattering than those moving to the cold end, thus resulting in a positive

thermopower. Vice versa, it is possible that high energy electrons moving to the cold end

encounter less scattering than those moving to the hot end, which results in an enhanced

negative thermopower. Thus, the energy dependence of the scattering mechanisms is

intimately related to the thermoelectric response. This simple example shows that by

measuring the thermoelectric response of a material or a device, conclusions can be drawn

about the dynamics of the charge carriers during the transport from the hot to the cold

reservoir.

In this thesis, the thermoelectric response is investigated with respect to the underlying

transport scattering mechanisms in single artificial impurities (QD) which are mostly

known from studies of the electric conductance. In order to clarify the connection between

conductance and thermopower measurements, the underlying thermodynamic concept is

summarized in the following section.

2.1.1 Thermodynamics of irreversible processes

In bulk thermoelectricity, the flow of heat and charge under the action of an electric

potential and a temperature gradient is considered. Reversible processes (Peltier and

Thomson effects) take place simultaneously with irreversible processes (Joule heating and

thermal conductance). In 1931, Onsager (Refs. [Ons31a, Ons31b]) derived relationships

between the macroscopic observables by taking into account the irreversible processes.

He presented a method, which relates the ‘fluxes’ in a system to the ‘forces’ present.

Provided the ‘forces’ are not too large, linear relations exist between them and their

appropriate ‘fluxes’. In linear response there are currents Ji which flow as a result of

forces Xi on the system. These forces might be temperature gradients, or electric fields,
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or concentration gradients, which are expressed as gradients of the chemical potential.

Linear response assumes that these are proportional and the system may be represented

by a set of phenomenological or macroscopic transport equations of the form:

Ji =
∑

j

Zij ·Xj. (2.3)

The coefficients Zij are the measurable quantities and may be divided into two classes,

those with equal subscripts, which are associated with primary flows under primary forces

and those with unequal subscripts which relate primary flows with interference or coupling

forces. According to the analysis given by Onsager in which small deviations from the

equilibrium state were considered at the molecular level, the reciprocal relationship

Zij = Zji (2.4)

holds provided that the choice of the flows and forces are governed by given rules. The

reciprocal relationship can be seen as axiomatic and reflects the reversible nature of the

microscopic processes, i.e. the time invariance of classical and quantum mechanical equa-

tions of motion [dG63]. The adequate choice of the flows and forces results from the

consideration of the entropy production in an adiabatic isolated system. The entropy

production dS̄/dt is given by the product of the primary flows and primary forces

dS̄

dt
=

∑
i

JiXi. (2.5)

Provided that dS̄/dt remains unchanged, various specifications of the macroscopic trans-

port equations are possible. One possible specification is given by
(

J

JQ

)
=

( −Z11

T
−Z12

T 2

−Z21

T
−Z22

T 2

)( ∇µ̄

∇T

)
, (2.6)

where J = −I/|e| is the particle current, JQ is the heat current, µ̄ = µ − |e|V is the

electrochemical potential. Obviously Zik = Zki holds within this choice of representa-

tion. However, very often, more convenient representations are chosen. For example, the

following representation can be chosen
(

I

JQ

)
=

(
L11 L12

L21 L22

)(
e−1∇µ̄

∇T

)
, (2.7)

where the conductivity σ, the diffusion thermopower S, the Peltier coefficient π and the

thermal conductivity κ are given by

σ = L11, (2.8)

S = −L12

L11

, (2.9)

π =
L21

L11

, (2.10)

κ =
L21L12

L11

− L22. (2.11)
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Note that in measuring the thermal conductivity κ, the heat flow is not measured under

the condition ∇µ̄ = 0 but with I = 0. This is the origin of the first term of Eq. (2.11).

When an isolated sample is subjected to a temperature difference, as it is in the typical

arrangement for the measurement of κ, a potential difference exists between the two heat

reservoirs. Due to the thermoelectric effect, a difference in the electrochemical potential

develops (∆µ̄ = −L12/L11∆T ).

In this representation, the reciprocal Onsager relation is reflected by

S = π/T , (2.12)

which is the so called the first Kelvin relation.

So far, only the macroscopic transport equations of bulk materials have been regarded.

In the next section, the results of the extension to the field of microstructures is given.

2.1.2 Thermoelectric transport in microstructures

The general considerations of the thermodynamics of irreversible processes has been ex-

tended by Sivian and Imri, and Butcher [SI86, But90] to the physics of microstructures.

In analogy to the Landauer-Büttiker formalism [Lan57, Lan70, BILP85, Büt86], one can

express the thermal and thermoelectric transport matrices (coefficients) in terms of the

scattering matrix S for a microstructure. In this model, the elastic scatterer (microstruc-

ture) is fed by two ideal leads each supporting a certain number of conduction channels.

The leads are driven by heat and electron reservoirs with chemical potentials µ1, µ2 and

temperatures T1, T2, respectively. The thermalization of the electrons by inelastic scat-

tering, and hence Joule energy dissipation, occurs only in the heat reservoirs and not in

the system itself. It is assumed that the heat reservoirs maintain a Fermi distribution.

In the measurement of a microstructure, only the total fluxes of charge and heat in

each reservoir or terminal are accessible. Thus, the conductance between the reservoirs

is defined as the total current divided by the potential difference between them. Simi-

larly, the other transport coefficients are expressed in terms of temperature and potential

differences instead of the gradients. The transport equations may then be written in the

following way [GBJB95]

(
I

JQ

)
=

(
L11 L12

L21 L22

)(
e−1∆µ̄

∆T

)
, (2.13)

where the macroscopic observables are given by

G = L(11), (2.14)

S = −L(21)/L(11), (2.15)

Π = L(22)/L(11), (2.16)

κ = (L(21)L(12)/L(11))− L(22). (2.17)
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The total particle current carried by one mode n in the left lead is then

Jn ∝
∫ ∞

−∞
Dn(E)vn(E)fL(E)t(E)dE. (2.18)

Regarding the leads to the microstructure as 1D particle waveguide systems, Jn can be

simplified, since the energy dependence of the density of states D(E) ∝ √
E
−1

and the

group velocity vn ∝
√

E cancel each other. The transport coefficients can be evaluated

accordingly using the following expression for the total generalized current between the

reservoirs [GBJB95]:

Jtot = JL − JR =

∫ ∞

−∞
dE

(
Λ

h

)
[fL(E, T )− fR(E, T )]t(E, T ). (2.19)

Here, Λ is equivalent to either the electron charge −e, which is used for the calculation of

the charge current or to the kinetic energy (E − µ̄) carried by an electron, which is used

for the calculation of the heat currents. The term fL,R(E, T ) gives the Fermi distribution

in the leads. L and R denote the left and the right reservoirs of the microstructure.

The factor t(E, T ) is the energy dependent transmission function, which characterizes the

microstructure. It has to be evaluated separately by considering the scattering properties

of the actual device.2 In the linear response approximation, where eV and ∆T are small

perturbations of the chemical potential and temperature of the reservoirs, respectively,

the Fermi distribution in the reservoirs can be approximated by

f(E − eV, T + ∆T ) ' f0 +

(
−df0

dE

)
[eV + (E − µ)∆T/T ] (2.20)

and the transport coefficients can be evaluated using the following expressions:

L11 =
e2

h

∫ ∞

−∞
dEt(E)

(
−df0

dE

)
, (2.21)

L12 = − e

hT

∫ ∞

−∞
dE(E − µ)t(E)

(
−df0

dE

)
, (2.22)

L21 = − e

h

∫ ∞

−∞
dE(E − µ)t(E)

(
−df0

dE

)
, (2.23)

L22 = − 1

Th

∫ ∞

−∞
dE(E − µ)2t(E)

(
−df0

dE

)
. (2.24)

By applying the first Kelvin relation [Eq. (2.12)], or by combining Eqs. (2.15) and (2.22),

the thermopower is found to be proportional to the average energy 〈E〉 of the charge

carriers during transport:

S ∝ −〈E〉/eT . (2.25)

2Since spin effects can also influence the scattering in the microstructure the spin degeneracy is included
in t(E, T ).
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The product (E − µ)
(−df0

dE

)
is an odd function of energy; therefore large L12, i.e. strong

thermoelectric effects, can only be expected if t(E) is asymmetric with respect to the

chemical potential in the reservoirs.

Note: this treatment assumes that the heat flux JQ is due to the kinetic energy of the

charge carriers with respect to the Fermi energy in the reservoirs. Additional contributions

to the heat flux, e.g. due to changes in the chemical potential, are neglected, which is a

good approximation in many cases. However, it should be noted that in systems, where

the kinetic contribution to the thermal transport is very small, additional terms may

dominate the heat transport [see discussion at the end of Chap. 6].

2.1.3 Remark on Mott’s law

Within the semiclassical treatment of the electron gas in metallic systems, a close connec-

tion exists between the thermopower and the energy dependent conductance (conductiv-

ity). The thermopower can be expressed in terms of the energy dependent conductivity

at the Fermi energy [Zim63]

SM = −π2

3

k2
BT

e

∂ ln[σ(E)]

∂E

∣∣∣∣
E=EF

. (2.26)

The so called Mott-formula is derived by the Sommerfeld expansion, taking into con-

sideration only the first order in kBT . Furthermore, it is assumed that the particles do

not interact and the conductivity varies slowly as a function of the energy in the close

vicinity of the Fermi energy. Thus, it is a good approximation as far as the product

t(E)[−∂f/∂E] is sufficiently large near the Fermi energy.

The Mott formula can be applied to the physics of microstructures by replacing the

conductivity by the conductance. Studies of the applicability of the Mott formula to

microstructures, such as quantum point contacts, show that the Mott formula gives qual-

itatively good results as long as the above mentioned conditions are satisfied [LF05].

However, particle interactions and quantum confinement can lead to sharp peaks and a

strongly varying density of states far from the Fermi energy. For example, in a Coulomb

blockaded QD, the characteristic energy scale associated with the charge transport is not

given by the temperature scale but by the charging energy and the level spacing. The

density of states near the Fermi energy is zero and shows a sudden step once the Coulomb

energy gap is overcome.

2.2 Thermoelectric transport in the Coulomb-blockade

From the general discussion of thermoelectric effects we will now turn to the thermoelec-

tric effects of QDs. Equations (2.21- 2.24) of the previous section indicate that strong

thermoelectric effects can be expected, if the transmission function t(E) describing the

scattering exhibits a very strong asymmetry with respect to the electrochemical potential
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in the reservoirs. Due to the discrete energy spectra in quantum structures, a highly

nonlinear transport behavior and thus strong thermoelectric signals are expected.

For the characterization of QDs, the thermopower can be regarded as a different

“spectroscopic” tool besides the linear conductance. The variation of the QD potential

by means of a gate voltage measures the addition spectrum in a linear conductance ex-

periment. This means, it measures differences in ground state energies with increasing

number N of electrons on the QD. The thermopower contains information about the

average energy of the charges during the transport. It gives information about the ex-

citation spectrum, i.e. the energy differences at constant N , and thus can be compared

to the measurement of the nonlinear conductance and nonlinear differential conductance.

However, the fundamental difference is that the thermopower oscillations are a linear

response phenomenon, which involves only a small perturbation of the QD system from

equilibrium.

2.2.1 Sequential tunneling

In 1992, Beenakker and Staring [Ref. [BS92]] presented results of a linear-response theory

for the thermopower of a QD. The Coulomb repulsion was treated within the framework of

the “orthodox model” (CI-model) of single electron tunneling [AL91, Bee91]. A possible

dependence of the tunneling rates on the number of electrons on the QD was ignored, and

the energy level spacing and kBT were taken much larger than the coupling of the QD

states to the leads h(Γl + Γr) ¿ kBT , δE. These assumptions facilitate the characteriza-

tion of the QD by a set of occupation numbers, one for each energy level. The transport

through the dot can then be described by the tunneling rate equations of the transport

of electrons from the reservoirs to the QD and vice versa. The result of the stationary

solution of the kinetic equation is presented in Chap. 4, where the sequential tunneling

theory is used to fit the experimental curves. Here, a descriptive explanation is given for

the interpretation of the measured thermovoltage VT = −S∆T . It considers only ground

state transitions in the QD. In the first order transport, the excited states do not modify

the presented concept considerably and simply lead to an additional fine structure on top

of the measurement curves; these are discussed in more detail at the end of Chap. 5.

As depicted in Fig. 2.1 for a thermopower measurement, one reservoir has a higher

temperature and therefore more occupied states above (a) or more empty states below

(b) the Fermi energy EF than the second reservoir. At low temperatures (kBT ¿ EC),

the thermally activated transport takes place mostly through the minimum energy gap

between EF and the QD states. When the electrochemical potential of the QD [here

µ̄(N + 1)] has an energy slightly higher than the Fermi level EF of the reservoirs, the

dominating first order transport process is the transport of electrons from the hot reservoir

via µ̄(N + 1) to the cold reservoir [Fig. 2.1(a)].3 In the thermopower measurement setup,

3The dominating transport process is the one, which is most probable before the dynamic equilibrium
is established.
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Fig. 2.1: Schematic energy diagram of positive (a) and negative (b) thermovoltage contributions
due to sequential (thermally activated) transport. Positive thermovoltage contributions result
from the transport of electrons from the hot reservoir to the cold reservoir. The negative
thermovoltage contributions correspond to the transport of electrons from the cold reservoir to
the hot reservoir. The latter process can also be described as a hole-like transport process, where
an empty state (hole excitation) moves from the hot reservoir to the cold reservoir.

the transferred electrons cannot discharge through the electrical connections back to the

hot reservoir. Thus an increase in the electrochemical potential of the cold reservoir

results, until the transport processes in the reversed direction are of equal strength and

the net current flow through the QD is zero. Since the sign of the thermopower (in this

case negative) is determined by electrons from above the Fermi level, the transport is

described to be electron-like, which is in accordance with the thermopower of n-doped

semiconductors and most metals. The average energy 〈E〉 of the charges moving from the

hot reservoir to the cold reservoir is positive with respect to EF . Figure 2.1(b) illustrates

the situation where the electrochemical potential of the QD [here µ̄(N +1)] has an energy

slightly lower than the Fermi level EF of the reservoirs. The dominating transport process

can be described by a sequence where first an electron leaves the QD to the hot reservoir,

followed by an electron from the cold reservoir entering the QD and reestablishing the

initial number of electrons on the dot. The resulting difference in the electrochemical

potentials of the reservoirs, as well as the average energy, are of opposite signs (negative)

compared to the situation in Fig. 2.1(a). Obviously, the process, which is depicted in

Fig. 2.1(b), can also be described by considering a hole that moves from the hot reservoir

to the cold reservoir. The charge transport then corresponds to p-doped semiconductors

and is said to be a hole-like process.

In general, the thermopower is a result of the competition between the electron- and

hole-like transport processes, which have the same strength once the dynamic equilibrium

has been reached, i.e. IQD = 0. Two situations, where the thermopower contributions

from electron and hole like processes exactly cancel each other, are depicted in Fig. 2.2.
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Fig. 2.2: Schematic energy diagram of a QD adjustment that leads to a zero thermovoltage
signal amplitude. (a) The electrochemical potential of the QD is aligned with the chemical
potentials of both reservoirs. (b) The electrochemical potentials of both reservoirs are aligned
in the middle of the effective energy gap.

Here, either the electrochemical potential of the QD is in resonance with the Fermi energy

in the leads [Fig. 2.2(a)], or the electrochemical potential from below EF and above EF

have the same energetic distance to the Fermi energy [Fig. 2.2(a)]. In the latter case,

a small shift in the QD potential leads to either dominating electron-like or to hole-like

processes via a maximum energy gap. In the limit T → 0, the energy gap determines the

average energy which is then given by 〈E〉 = ±∆EC/2. Using the Kelvin relation, this

yields a maximum thermopower of Sextremal = −〈E〉/eT = ±EC/2eT .

2.2.2 Cotunneling

In addition to first order tunneling processes, higher order transport processes are expected

to take place for the gate voltage range between two single electron tunneling (SET)

conductance peaks. The transport mechanism is the same as shown in Chap. 1, Fig. 1.3.

However, since the electrochemical potentials of source and drain are in equilibrium, the

additional energy that is needed for inelastic cotunneling processes to occur has to be

provided by the thermal excitation in the reservoirs [see Fig. 2.3]. The thermoelectric

signature of these cotunneling processes (inelastic as well as elastic) in few-electron QD

is part of the investigations presented in this thesis.
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Fig. 2.3: Schematic energy diagram of a cotunneling process (inelastic) in the presence of a
temperature difference across the QD. The necessary activation energy is provided by thermally
excited electrons in the leads.



Chapter 3

Experimental setup

For the electric and thermoelectric characterization of QD structures special experimental

techniques are needed. These are summarized in this chapter in three parts and they are

also discussed with respect to their limitations. In the first part, the design of the QD

sample is presented, focusing on the material system and the actual QD structure. In the

second part, a general overview is given about the experimental techniques which are used

for electric and thermoelectric characterization. The third section deals with the current

heating technique, which is used for the thermoelectric characterization.

3.1 Quantum dot sample design

3.1.1 Material properties

The few-electron QD structures studied are based on lithographically patterned high elec-

tron mobility heterostructures that contain a two dimensional electron gas (2DEG). The

GaAs/(Al,Ga)As heterostructures have been grown using molecular beam epitaxy (MBE)

by external groups.1 The results presented in this thesis use 2DEG wafers grown in the

group of Dr. D. Reuter and Prof. A.D. Wieck from the Ruhr-Universität Bochum. Ohmic

contacts, optical and electron-beam lithography have been done mainly by Dipl. Phys.

Markus König and Dr. Tanja Borzenko at the clean-room facilities of the Experimentelle

Physik 3 at the Physikalisches Institut der Universität Würzburg.

Figure 3.1 shows the layer sequence of a typical heterostructure with the corresponding

valence and conduction band energy diagram. A discontinuity in the potential of the va-

lence band develops at the interface between the GaAs buffer layer and the Al0.33Ga0.67As

spacer layer due to the band gap difference of GaAs (1.52 eV) and Al0.33Ga0.67As (∼
1.67eV).2 Electrons from the donor layer accumulate in the resulting triangular quantum

1The 2DEG wafers have been provided by the groups of Prof. W. Wegscheider (Institut für Angewandte
und Experimentelle Physik II, Universität Regensburg), Prof. A.D. Wieck (Lehrstuhl für Angewandte
Festkörper Physik, Ruhr-Universität Bochum).

2The band gap of AlxGa1−xAs ranges from 1.52 eV for x = 0 to 2.16 eV for x = 1.

33



34 3. Experimental setup

surface / gate electrode

V-B C-B

2 DEG

EF

17 nm

38 nm

20 nm

0.4 µm

superlattice

substrate

GaAs

Al Ga As0,33 0,67

Al Ga As0,33 0,67

GaAs

cover-layer

donor-

layer (Si)

spacer-layer

d
ire

c
tio

n
 o

f 
g

ro
w

th

energy

buffer

GaAs

Fig. 3.1: Schematic diagram of an (Al,Ga)As heterostructure similar to the ones used for the
experiments. The corresponding schematic band diagram of valence and conduction band (V-
B, C-B) is shown on the right. The encircled crosses represent the ionized donor lattice sites.
The layer thicknesses given in the graph may vary slightly from sample to sample. Here, a
homogeneous doping throughout the donor layer is shown; alternatively, delta doping can be
chosen, where just a single layer of Si is placed between the spacer layer and the AlGaAs-layer.
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well and form a 2DEG. For electron densities ne . 5×1015 m−2, only the lowest sub-band

(transversal mode in growth direction) of the quantum well is occupied. In the examined

samples, the 2DEG is located 75-80 nm below the surface. Electrical contact to the 2DEG

is achieved by alloying standard NiAuGe ohmic contacts.

Due to the high purity of the materials used, the very low interface roughness,3 and

the spacial distance of ionized donors and electrons in the quantum well, the lattice defect

and impurity-scattering rates are very low for the electrons in the 2DEG. Consequently,

very high mean free paths can be achieved for electrons. The samples investigated had a

nominal mobility of the order of 106 cm2/Vs at 4.2 K prior to processing. This corresponds

to elastic mean free paths le ≥ 100 µm. A detailed table containing the layer sequence

and some material parameters of the heterostructures is given in Appendix A.

The basic parameters for electrons in the 2DEG are given here for the ease of reference:

The effective mass m∗ of the electrons in the 2DEG for GaAs is equal to 0.067m0, where

m0 denotes the free electron mass. A typical electron density of ne = 3×1011 cm−2 yields

a Fermi-energy of EF = ne/D2D(E) = neπ~2/m∗ = 10.7 meV, and a Fermi wavelength of

λ =
√

2π/ne = 46 nm.

3.1.2 Split gate quantum dot structure

In order to locally control the density of electrons in the 2DEG, metallic (Ti/Au) elec-

trodes (gates) are placed on top of the heterostructure. The isolation to the 2DEG is

provided automatically by the metal-semiconductor Schottky barrier. By tuning the bias

voltages applied to the individual surface electrodes, the shape of the confining potential

in the 2DEG can be modified reversibly. By means of optical and electron-beam litho-

graphy, the shape of the Ti/Au-electrodes can be patterned on length scales of just a

few 10 nm. This allows devices with dimensions of the order of the Fermi wave length

to be fabricated, so that the transport properties are determined by quantum size effects

[TPA+86].

Figure 3.2 shows a scanning electron micrograph (SEM) of the central part of the gate

structure. Gates R1 and R2, form a quantum point contact (QPC), which serves together

with gates T and S2 as the boundaries of an electron heating channel. The functionality

of the heating channel will be explained in more detail in Sec. 3.3 of this chapter. Gates

T, S1, S2 and P form the QD with a nominal diameter of approximately 250 nm. The

surface electrode layout of the gate electrodes is similar to the QD gate structures used in

previous QD experiments, where it has been shown that the design allows great flexibility

in the number of electrons on the dot to be achieved [CSH+00]. In principle, the number

of electrons on the QD can be successively increased, starting from 0 up to above 50, by

changing the plunger gate voltage VP. However, at the same time, the voltages applied

to gates T, S1 and S2, which form the tunneling barriers, have to be varied separately in

3The lattice constants a of GaAs and AlAs are aGaAs = 0.56325 nm and aAlAs = 0.566139 nm. Thus,
the lattice mismatch between GaAs- and AlGaAs-layers is smaller than 1%.
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Fig. 3.2: Scanning electron microscope image of the central part of the sample structure.
Schottky gates shown by light gray stripes are labeled R1, R2, T, P, S1 and S2. Ohmic contacts
which are schematically indicated by enumerated squares serve as current and voltage contacts
via the corresponding sample areas marked in dark gray. The red shaded sample areas mark
the electron heating channel.

order to maintain a constant coupling of the QD to the two contacting reservoirs. For the

present experiments, the barriers are adjusted in a way that the number of electrons can

be varied conveniently, i.e. by changing only the voltage VP applied to the plunger gate

P.4

The electrostatic confinement potential can be calculated following an approach of

[DLS95, LS94]. The height of the total electrostatic confining potential Φ(r) is given by

the superposition of the confining potentials of the individual gates i:

Φ(R) =
1

2π

∑
i

ViĨi(r, z), (3.1)

where

Ĩi(r) =

∫ ∫

Si

zdr′

(|r − r′|2 + z2)2/3
(3.2)

is the surface integral over the area of the gate electrodes.

Figure 3.3 shows the results of the calculations of the QD confining potential for two

different plunger gate voltages. At the boundaries of the gate electrodes, a smooth step

in the potential is observed, due to the large lateral depletion length (of the order of 100

nm for a step height of 10 meV). For VP = 0 V, the QD is large and the distance between

the QD and the reservoirs is small. For VP = −2.0 V, the size of the QD is reduced, and

the distance between the QD and the reservoirs has increased.

4The number of electrons on the QD can be deduced from the magnetic-field evolution of the CB
peaks [MFM+91, MFK+92]. In order to use a charge read-out technique, an additional quantum point
contact has to be placed in the close vicinity of the QD [EHG+03]. Measurements of comparable single
QD structures have shown that it is possible to successively fill up the QD starting from zero electrons
[Sch06].
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Fig. 3.3: Color-scale plot of the calculated electrostatic confining potential of a single QD
structure. Red and blue colors correspond to low and high electrostatic potential, thus to high
and low electron density domains, respectively. White shaded areas mark the positions of the
surface gate electrodes. The black thick equipotential line is added as a guide to the eye. This
line corresponds to the Fermi energy level of the 2DEG. The black hatched area marks the
position of the QD. The numerical values of the voltages applied to the tunnel barrier gates are:
Vtop = −1.1 V, VS1,S2 = −0.75 V. The plunger gate voltages correspond to (a) VP = 0 V and
(b) VP = -2.0 V.
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From the potential landscape, one can infer that the size of the QD in the y-direction

depends on the voltage ratio of the voltages applied to the side gates and the top gate.

In order to obtain very small QDs, large side gate voltages and small top gate voltages

are desirable. The thickness of the tunnel barriers, which determine the coupling of the

QD to the reservoirs, crucially depends on the overlap of the side gates and the top gate

(in the x-direction). In order to examine the strong coupling regime of the QD to the

reservoirs, a maximum nominal overlap of 25 nm has been chosen.

3.2 Measurement setup

3.2.1 General considerations

The material system and the size of the QDs determine the energy scale which has to

be considered for the experiments. Typical charging energies of EC = 1 - 3 meV and

QD level spacings of the order of δE = 100 µeV have to be resolved in the transport

experiments. Thus, the temperature range of interest is between 10 mK and 1-4 K. This

temperature range lies in the operating regime of commercially available dilution cryostat

systems. For the experiments, the samples are either mounted inside the mixing chamber

of a top loading dilution refrigerator (Oxford Instruments, Model 400 TLM Dilution Re-

frigerator) or in thermal contact outside the mixing chamber of a bottom loading system

(Leiden Cryogenics B.V., Model Minikelvin 126-TOF Dilution Refrigerator). Generally

speaking, it is necessary to keep excitation as well as noise signals small compared to

the temperature energy scale for the characterization in the linear transport regime. The

excitation voltages applied in linear conductance measurements have to be smaller than

kBT/e = 86.2µV, in order to avoid unwanted sample heating or non-equilibrium situa-

tions. Below T = 100 mK, signal amplitudes of a few µV have to be detected with a

reasonable resolution.5 Furthermore, the measurement apparatus has to provide a high

dynamical range since the sample resistance ranges from a few kΩ to several 100 MΩ.

In order to accomplish all these requirements, low-frequency lock-in techniques are

used for the electrical and thermoelectrical transport experiments.

3.2.2 Electrical characterization

Figure 3.4 shows a schematic block diagram of the measurement circuit for the electric

characterization. In order to measure the linear conductance, an ac modulated excitation

5In order to reduce electron heating by radio frequency electrical noise, low-pass RLC- and Π-filters
are used in the electrical wiring connected to the device at the top of the cryostat. In the bottom loading
system, it is possible to use thermally anchored Thermocoaxr cables for the connection between the
mixing chamber and the sample. For the Minikelvin 126-TOF dilution refrigerator system, the length
of the Thermocoaxr cables is approximately 45 cm. A comparison of various low temperature electrical
filter techniques can be found in Ref. [BGH+03].
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Fig. 3.4: Schematic block diagram of the measurement setup for the electric characterization.
Excitation voltages from the ac- and dc voltage sources are added by means of a summing
voltage amplifier (Add). The excitation amplitude is reduced by a voltage divider prior to the
QD. For most of the measurements, I/V-converter with amplifying factors ranging from 106 V/A
to 108 V/A have been used. ac-voltages are detected by phase sensitive lock-in amplifiers.
The effective voltage output of the lock-in amplifiers as well as the dc-voltage component of
the I/V-converter output are monitored by digital voltmeters (DVM). The lock-ins are phase
synchronized with the ac-voltage source.

voltage Vex,ac < kBT/e is applied across the QD. The resulting current IQD = ∆IQD,ac

is converted by an Ithaco 1211 current-voltage converter into a voltage signal which is

measured by a lock-in amplifier (LI-amp). In order to eliminate the series resistance of

the ohmic contacts, a second lock-in amplifier is used to measure the amplitude mod-

ulated voltage drop across the QD, where VQD = ∆VQD,ac. The conductance of the

QD is GQD = IQD/VQD = ∆IQD,ac/∆VQD,ac. The LI-amps are phase locked to the ac-

voltage source. The dc output voltage is related to the peak to peak input voltage by

Veff,dc = 1/2
√

2Vinp,pp. The (effective) dc voltages are measured by digital voltmeters

(DVM) which are connected to the computer via an optical fiber. Prior to the signal

processing in the mixer stage of the LI-amp, the voltage signal is amplified either by an

external (differential) amplifier or the internal amplifier stage of the lock-in. Using an

external preamplifier turns out to be useful in order to reduce noise coupling into the

measurement circuit, since the external preamplifier can be placed close to the sample,

keeping the cables at room temperature outside the cryostat as short as possible. Ground

loops are prevented by electrically isolating all measurement devices from each other. The

electric ground of the cryostat serves as common ground of the measurement circuit and

the individual measurement devices. Source-drain bias and gate bias voltages are applied

with regard to this fixed potential.

By adding a finite dc drain-source voltage VDS to the ac modulated excitation voltage,

where Vex,ac < kBT/e, the nonlinear differential conductance dIDS

dVDS
can be measured with

the same setup. The necessary dc-bias voltage VDS is added to the ac-modulated excitation
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voltage by means of a summing amplifier. dIDS

dVDS
is given by

dIDS

dVDS

∣∣∣∣
VDS 6=0

≈ ∆IQD,ac

∆VQD,ac

∣∣∣∣
VDS 6=0

. (3.3)

This represents the derivative of the finite-bias conductance G = IDS/VDS with respect

to the applied drain source voltage VDS in the limit of a small Vex,ac. dIDS/dVDS is in-

terpreted as the convolution of the thermally broadened Fermi distributions of the leads

with the transmission function (spectral density) of the QD t(E). The derivative dIDS

dVDS
will

be large if the conductance increases due to an increase in the QD transmission. dIDS

dVDS
< 0

can be observed if the transmission decreases although VDS increases. This scenario oc-

curs if an increasing number of transport channels through the QD leads to destructive

interference between the travelling paths of the electrons and thus to a reduced transmis-

sion probability. Using this technique, one has to keep in mind that a finite VDS applied

across the device (QD) creates a non-equilibrium situation for the QD, and may alter the

unperturbed internal properties of the device itself under test.

Referring to Fig. 3.2, gates R1 and R2 are grounded for linear and, especially, for

finite-bias conductance measurements. This procedure eliminates the finite channel con-

tact resistance, and prevents a significant heating of the electron gas in the heating channel

at high source-drain currents, which would lead to thermal smearing and unwanted tem-

perature differences between the QD reservoirs. Since the gates of the reference quantum

point contact R1 and R2 are in the vicinity of the QD gates, they couple capacitively to

the QD. For a direct comparison of conductance and thermopower measurements, where

in the latter a constant voltage is applied to R1 and R2, the capacitive coupling of the

QD and the quantum point contact gates has to be taken into account. The capacitive

coupling leads to a linear shift of the QD potential. The capacitive coupling of gates R1,2

to the QD is about a factor of 5 smaller than the capacitive coupling of the plunger gate

(CP/CR1,R2 ≈ 0.2). This slightly modifies the effective height of the tunnel barriers.6 The

measurements presented in this thesis are corrected for this potential shift in order to

allow direct comparison of conductance and thermopower measurements to be made.

3.2.3 Thermoelectrical characterization

The basic principle of thermoelectric measurements is explained in the first part of this

section, following Ref. [Bar72]. In the second part, the setup for the thermoelectric

characterization of the QD sample is presented.

For measuring the potential difference which develops across a device subjected to a

temperature gradient (or temperature difference), electrical connections must be made to

either end of the device, thus setting up a similar temperature gradient (difference) in the

6Since both tunnel barriers are located at different distances to the quantum point contact gates,
careful readjustment of the barrier height is necessary in order to maintain the same situation as in the
case of the undefined reference quantum point contact (VR1,R2 = 0 V)
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Fig. 3.5: Schematic diagrams of asymmetrical circuits constructed from different components
(metals and/or devices) for thermoelectric measurements. (a) Most simple configuration, using
only two different components. (b) Configuration used for measuring the thermopower of meso-
scopic or QD devices. In both cases, the Seebeck electro motive force, determined solely by the
components A and B, is measured by the detector.

complete electrical detecting system. This will contribute its own thermoelectric electro

motive force (e.m.f.) to the circuit. If the entire detecting circuit is made of the same

material as that under test, a symmetrical circuit will result and no net e.m.f. will be

detected. Thus, in order to measure a thermoelectric e.m.f., asymmetrical circuits of at

least two different materials must be constructed. This implies that only the differences of

the thermoelectric e.m.f. of two different materials can be measured.7 Figure 3.5 shows two

examples of possible electrical circuit configurations, which can be used to determine the

thermoelectric e.m.f. created by material or device A with respect to the thermoelectric

e.m.f. created by material or device B. The circuit diagram of Fig. 3.5(a) represents the

most basic configuration. However, for measuring the thermoelectric properties of the QD

sample, this configuration cannot be used due to the following reasons. First, the materials

of the sample and the wiring into the cryostat can not be made of the same materials,

and second, using an electric current for local heating of the electron gas on a mesoscopic

scale helps to avoid the direct connection of the hot reservoir to a voltage probe. In order

to circumvent these problems, a third component is inserted in the electric circuit [cf.

Fig. 3.5(b)]. In the actual QD sample [see Fig. 3.2], components A and B correspond

to the QD and the quantum point contact respectively. The component C, which is at

temperature T2, corresponds to the electron gas in the heating channel formed by gates

7The absolute thermoelectric power of a material or a device can be measured if the second material
is a superconductor, since the thermoelectric e.m.f. of superconductors vanishes.
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Fig. 3.6: Schematic circuit diagram of the QD-QPC equivalent thermovoltage measurement
circuit. QD and QPC act as alternating voltage sources (VT,QD and VT,QPC) with internal
resistances Ri,QD and Ri,QPC. The wiring from the voltage probes into the cryostat has the
capacitance CW, the heating channel has the capacitance CC.

R1, R2, T and S1 (red shaded area). The component C, which is at temperature T1,

corresponds to the electron gas of the 2DEG regions connected to ohmic contacts labeled

3, 4, 11 and 12.

By means of an electron heating technique, which is described in more detail in Sec. 3.3

of this chapter, the temperature of the electron gas in the current heating channel (red

shaded area in Fig. 3.2) is increased by an amount ∆T = Te,hot − Te,2DEG with respect

to the temperature of the surrounding 2DEG areas (dark grey areas of Fig. 3.2). The

temperature difference across the QD and the quantum point contact creates two ther-

movoltages VT,QD and VT,QPC. The voltage difference VT = VT,QD-VT,QPC is measured by

a differential voltmeter, which is connected to ohmic contacts 3 and 11 (or 4 and 12). VT

contains the thermopower of the QD (SQD = VT,QD/∆T ) as well as that of the QPCR1R2

(SQPC = VT,QPC/∆T ). For convenience, the thermopower of QPCR1R2 is adjusted to zero

by setting its conductance at the center of a conductance plateau [vHMBF92].

In order to separate the small thermoelectric signal from offset voltages and improve

the signal to noise ratio, the temperature difference ∆T is amplitude modulated. This is

accomplished by driving an ac-modulated heating current of frequency ν = 13 Hz through

the heating channel. The dissipated power is proportional to the temperature increase

VT ∝ ∆T ∝ P = RI2(ν), and thus the thermovoltage can be detected at twice the

frequency [VT ∝ I0 cos2(νt) = I0(1− cos(2νt)/2)].
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In the thermopower measurement setup, the QD-QPC-system acts as a voltage source.

Like all voltage sources, this system is not ideal, and the internal resistance of the voltage

source has to be taken into account. The equivalent circuit diagram of the thermovoltage

signal path is sketched in Fig. 3.6. The QD as well as the quantum point contact consists

of an ideal voltage source in series with their internal resistances Ri,QD and Ri,QPC, and

generate the thermovoltages VT,QD and VT,QPC. The voltage signals pass the feed-through

capacitances CW of the wiring into the cryostat. Outside the cryostat, the differential

voltmeter detects the difference of the corresponding voltages V ∗
T,QD and V ∗

T,QPC. This

electric circuit shows a low pass filter behavior, where the ratio between the detected

signal amplitude and the actual thermovoltage created is given by

|V ∗
T |

|VT| =
1√

1 + (ωRC)2
. (3.4)

The cut-off frequency 2πνg = ωg = 1/RC depends on CW and Ri,QD. The internal

resistance of the QPC usually is much smaller than the internal resistance of the QD,

and VT,QPC is not attenuated. A typical measurement signal modulation frequency of

νg = 26 Hz and a capacitive load of the order of 5 nF thus yield a -3 dB signal attenuation

for internal resistances of 1.22 MOhm (=̂4.2×10−3e2/h). Additionally, the low pass filter

induces a phase shift of the signal with respect to the excitation signal (heating current);

this can be measured by phase-sensitive lock-in detection. The magnitude of the phase

shift is given by

tan ϕ =
V ∗

T,y

V ∗
T,x

= −ωRC, (3.5)

where V ∗
T,x and V ∗

T,y are the x and y-components of the phase dependent signal of the QD

thermovoltage. Equations (3.4) and (3.5) can be used to eliminate the low pass filter effect

of the measurement circuit, and rescale the thermovoltage data. This method extends

the measurement range by one to two orders of magnitude. However, it is limited by the

phase stability of the lock-in detection and the signal noise of the (in-phase) x-component

of the thermovoltage signal.

Figure 3.7 shows the zero-bias conductance G and the corresponding thermovoltage

VT of a single-electron-tunneling (SET) conductance peak as a function of the plunger

gate voltage VP at a lattice temperature of TL = 20 mK. For comparison, the x- and

y-components of the detected thermovoltage signal together with the calculated full mag-

nitude |V ∗
T | =

√
(V ∗

T,x)
2 + (V ∗

T,y)
2 have been added to the graph. Towards more negative

VP, the height of the tunnel barriers increases, leading to a very low conductance in the

Coulomb blockade conductance valley (G ≤ 10−4e2/h). At these plunger gate voltages,

the attenuation of the thermovoltage signal is strongest and the rescaled thermovoltage

shows strong fluctuations due to the high measurement uncertainty. These fluctuations

can be reduced by averaging multiple curves. Note that the y-component shows an addi-

tional wiggle at the center of the SET conductance peak. This non-monotonous behavior
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Fig. 3.7: Zero-bias conductance G (upper panel) and corresponding thermovoltage (lower panel)
of a single electron tunneling conductance peak both at TL = 20 mK. The solid vertical line
indicates the position of the conductance peak. The lower panel shows the x- and y-components
of the detected thermovoltage signal (orange and dark yellow line, respectively) together with
the calculated full magnitude |V ∗
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√
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T,y)2 (blue line), and the rescaled actual

thermovoltage created by the QD VT (black line).
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results from the fact that the phase adjustment of the lock-in amplifier has to be done a

little away from the center of the SET conductance peak at finite signal amplitude.

The low pass filter effect results from the low temperature measurement setup. At-

tempts to reduce this effect by choosing lower modulation frequencies resulted in an in-

creased noise level, mostly due to 1/f noise. Thus, a compromise has to be made between

the necessary filtering and the QD impedance (coupling of the QD to the leads) in order

to obtain a reasonably low temperature of the electron gas and the capability to measure

the thermovoltage of a very high impedance source, respectively. The thermopower mea-

surement data shown throughout this thesis has taken into account this limiting low-pass

effect.

3.3 Current-heating technique

3.3.1 Basic principle

Experimentally, the main problem in performing thermopower measurements on nanos-

tructures is how to obtain a sizable temperature difference across a very small device.

Here, a current heating technique is used [GHL+90], that previously has been success-

fully applied to measure the diffusion thermoelectric properties of quantum point contacts

[MvHB+90, MGvH+92, ANS+98, ANS+98], and metallic QDs [SMA+93, MBGM98].

This technique is based on the fact that the coupling between electrons in the 2DEG

and phonons (lattice) is significantly reduced at low temperatures. For T < 1 K, heated

electrons relax to the lattice temperature over a distance of several 100 µm [MWK+96].

For bias voltages exceeding kBT , and device sizes smaller than the electron-phonon scat-

tering length le−ph, the distribution of the electrons is not necessarily in equilibrium with

the surrounding lattice, since the thermalization due to electron-phonon scattering is

strongly reduced. As a result, the temperature of the electrons can vary locally, and

differs from the temperature of the lattice at very low temperatures. The local electron

temperature depends on the dissipated power, the device geometry as well as on the

interaction of the electrons with phonons, local lattice defects and other electrons.

In particular, the local heating of just one QD reservoir is accomplished by electrostat-

ically defining a two dimensional wire next to the QD through which an electric heating

current is driven. Figure 3.2 shows a SEM micrograph of the gate structure, where gates

R1, R2 define, together with gates T and S1, the electron heating channel. The length

lC and width wC of the heating channel are lC = 20 µm and wC = 2 µm, respectively.

Energy dissipation in the channel results in the local heating of the electron gas.
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Due to the small electron-phonon coupling in (Al,Ga)As 2DEGs at low temperatures

(le−ph À lC), hot electrons can only dissipate their excess energy to the lattice in the

wide 2DEG area behind the channel exit, while rapid electron-electron scattering leads

to thermalization of the electrons in the channel to a temperature Te,ch which is higher

than the lattice temperature (TL (le−e < lC). Hence, the QD is embedded between

the hot electron reservoir in the channel (with electron temperature Th = Te,ch) and

the cold surrounding 2DEG (Th > T2DEG ≥ TL). The constant temperature difference

∆T = Te,ch − T2DEG across the QD can be adjusted via the current through the channel.

Note that by using this electron heating technique, the 2DEG is heated directly, with-

out raising the lattice temperature TL. Thus, the phonon drag contribution to the ther-

mopower can be neglected and only the contribution of electron diffusion is detected

[ANS+98, CB86].

3.3.2 Temperature calibration

While the temperature of the electron gas T2DEG can be determined by fitting the tem-

perature dependent line shape of the SET conductance peaks, an additional method is

needed that reliably determines the increase of the temperature in the current heating

channel as a function of the applied heating current.

Fitting the thermovoltage measurement curves with the available theoretical models

for thermopower oscillations in the Coulomb blockade regime represents one possibility

to obtain a value for the applied temperature difference. However, this method depends

on the validity and applicability of the used theoretical models. In previous studies of the

thermoelectric power of nanostructures, various methods have been used to independently

determine the temperature increase of the 2DEG due to an applied heating current. Most

techniques have employed the visibility of features in the electrical transport; among these

are Shubnikov-de Haas (SdH) oscillations [MFZ+91, MAE+87, LNHF89, BimcVC95], the

zero magnetic field resistance and weak localization corrections [WYGB86, MWK+96].

Additionally, the quantized conductance of 1-dimensional wires [ANS+98] can be utilized.

In the following, the techniques mentioned will be discussed shortly with respect to their

applicability to the given sample structure.

3.3.2.1 Quantum point contact

As pointed out in the previous section [Sec. 3.2.3], the thermopower of a device can only

be determined in comparison with a reference material or device. For the given sample

structure, the quantum point contact located at the opposite side of the heating channel

is used for this purpose. The electric and thermoelectric properties of QPCs are well

understood [vWvHB+88, WvHB+88, MvHB+90, vHMBF92], allowing a comparison of

the experimental thermovoltage of the QPC with theory to be made. Thus, it seems

reasonable to employ the known behavior of the QPC as a thermometer for the 2DEG

itself, as has been done in Ref. [ANS+98].
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For the measurement of the thermovoltage of QPCR1,R2 , only the gates of the current

heating channel are defined, leaving VS2 and Vtop at a constant voltage, while VS1 and

VP are kept at zero voltage. The heating current is applied between contacts 1 and 5,

and the created thermovoltage is detected at contacts 3 and 11. As the gate voltages

VR1 and VR2 are made more negative, the QPCR1,R2 constriction is narrowed, and the

conductance drops in steps of 2e2/h each time the number of subbands i is reduced. As

the conductance GQPCR1,R2
falls, a peak is observed in the thermovoltage VT,QPCR1,R2

.8

The peak height can be used to determine the electron temperature of the hot electrons

in the heating channel. The maxima are given by [Str89, MvHB+90, vHMBF92]

S = −kB

e

ln 2

i− 1/2
, (3.6)

where a step-function model has been assumed for the transmission function t(E) of the

quantum point contact. A more realistic model accounts for the rounding of the steps

in t(E) by modelling the electrostatic confining potential by a saddle-shaped function.

This yields a value of S ≈ −20 µVK−1 for the thermovoltage peak near G = 1.5 (2e2/h)

instead of S = −40 µVK−1 predicted by the pure step-function model.

The prerequisite for this calibration procedure is a well defined behavior of the QPC,

i.e. the existence of well defined conductance plateaus. Unfortunately, the samples in-

vestigated, show a strongly oscillating behavior of the QPC resistance as a function of

the gate voltage [cf. Fig. 3.8(a)], especially at very low (millikelvin) temperatures. Cor-

respondingly, the thermovoltage also oscillates instead of showing a pronounced peak like

structure [cf. Fig. 3.8(b)]. This behavior results from potential fluctuations in the 2DEG

in the close vicinity of the QPC [KBM00] and the reflection of ballistic electrons at the

opposite boundary of the current heating channel. In order to calculate the expected QPC

thermopower, a detailed knowledge of the QPC confining potential or the energy depen-

dent transmission function t(E) would be desirable, and a more sophisticated treatment

would possibly be necessary. Furthermore, additional many body effects, as the so called

0.7 anomaly, would have to be incorporated [ANP+00, TM06]. Although the mentioned

uncertainties limit the accuracy of this temperature calibration technique, it is a reason-

ably reliable method. Even in the case of very strong QPC fluctuations, as it is shown

in Fig.3.8, the method has proved useful for estimating the order of magnitude of the

temperature increase due to the current heating. Assuming the oscillation amplitude at

VS1 = 1.0 V to correspond to a thermopower of -20 µV/K yields a temperature difference

of ∆T ' 10 mK for IH = 4.2 nA.

It is noteworthy that the single particle thermopower line shape, that is calculated by

using the Mott-formula [Eq. (2.26)], often yields qualitatively good agreement with the

measured thermovoltage curve. However, especially in the presence of strong conductance

fluctuations, the calculated Mott thermopower shows poor agreement with the measured

8Alternatively, the same procedure can be applied to measure the thermovoltage of QPCS2,T .
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Fig. 3.8: (a) Resistance of QPCS1,T with gates R1 and R2 defined and Vtop = 0.76 V. (b) Cor-
responding thermovoltage (black line) and calculated Mott-thermopower (orange line, arbitrary
scale).
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QPC thermopower [cf. Fig. 3.8(b)]. In any case, care has to be taken for fitting the tem-

perature difference, since the numerical pre-factor of SMott is only valid if the temperature

represents the smallest energy scale in the system [LF05].

3.3.2.2 SdH-Oscillations

The amplitude of Shubnikov-de Haas (SdH) oscillations in the longitudinal resistance Rxx

of the heating channel are temperature as well as heating current dependent. The com-

parison of Rxx(T ) with Rxx(IH), allows a calibration for the temperature of the electron

gas in the heating channel TC(IH) to be obtained.

Following factors have to be considered when this method is applied: These mea-

surements have to be done in strong magnetic fields perpendicular to the 2DEG in the

quantum Hall regime. At high fields, the scattering of the electrons is modified, because

the electrons are forced on circular trajectories. The wave functions are those appro-

priate to Landau levels, and the momentum transfer in the plane is restricted to ~/lc,
where lc = m∗vF /eB is the cyclotron length [MSKH94]. Additionally, on a quantum Hall

plateau the dissipation of the injected heat takes place at so called “hot spots” close to

the ohmic contacts of the samples, where the current is injected [RDC98]. Since the heat

transport and the scattering also crucially depend on the spacial extension of compressible

or incompressible regions at the center of the 2DEG, a variation of ∆T as a function of the

applied magnetic field can be expected. A careful analysis of this method has to consider

how the temperature increase determined at high magnetic fields can be extrapolated

to the low magnetic field range. So far, it has been shown that different thermometry

techniques yield different temperatures under the same heating conditions [ANS+98].

Due to these inherent problems, this method has not been chosen for determining the

temperature difference created by the heating current at small magnetic fields. In Chap.

6, it is shown that indeed a strong variation of the thermovoltage signal amplitude as

a function of the magnetic field can be observed. Hence, the present work leaves the

quantitative investigation of the thermopower of QDs in the quantum Hall regime as a

future perspective.

3.3.2.3 Analysis of the heating channel resistance

The local electron temperature in the heating channel does not only affect the transport

through the QD and the quantum point contact, but also the scattering of the electrons

in the heating channel itself. Thus, the measurement of the temperature and heating

current dependent resistance of the heating channel provides a method for the temperature

calibration at zero and low magnetic fields perpendicular to the plane of the 2DEG.

Figure 3.9, shows the magneto-resistance of the heating channel RC for various lat-

tice temperatures TL and heating currents IH. In this measurement, the magnetic field

is applied parallel to the 2DEG. The resistance curves show a fluctuating RC as a func-

tion of the applied magnetic field, which is nearly symmetric with respect to the zero
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Fig. 3.9: Resistance of the heating channel as function of magnetic field applied parallel to the
2DEG at various lattice temperatures (a) and various heating currents (b).
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magnetic field line. The fluctuation amplitude decreases for higher temperatures and

increasing heating currents. At B‖ = 0 T, a sharp peak can be observed, which shows

a slightly different temperature (current) dependence than the other magneto-resistance

fluctuations. This is most obvious at higher temperatures (currents). For TL = 1118 mK

(IH = 16.55 nA), this peak is still visible while the fluctuations for B‖ 6= 0 T, have almost

vanished. Thus, it can be inferred that the peak at B‖ = 0 T is caused by a different

effect than the other fluctuations.

A magnetic field applied parallel to the 2DEG changes the Zeeman energy of spin up

and spin down electrons in the 2DEG, which is not expected to modify the scattering

at these small fields. Thus, the magneto-resistance pattern most probably results from

a small misalignment of the field out of the plane of the 2DEG. Under this assumption,

the observed pattern represents the magnetic fingerprint of the sample due to the orbital

effects of a finite perpendicular field component. The finger print can be divided into two

parts. The first part, the peak at B‖ = 0 T, is a result of the coherent back-scattering

of the electrons traversing the heating channel, which is commonly known as weak local-

ization. This quantum mechanical interference effect dominates in long channels L À lφ
(lφ: phase coherence length), and can be lifted by applying a small magnetic field, which

is perpendicular to the plane of the 2DEG and which breaks the time-reversal symmetry

of the back-scattering processes. The second part, the resistance fluctuations for finite

magnetic fields, are due to the quantum mechanical interference of the electron waves

along different paths through the narrow channel, which can be reversibly modified by

the B⊥-component of the magnetic field. This interference effect predominates in shorter

samples since it is proportional to (lφ/L)3/2. A more detailed discussion can be found in

Ref.[BvH91] and references therein. In this context, it is more important that the phase

coherence length lφ depends on the temperature of the electron gas, and that both effects

are caused by the local confinement of the heating channel.

For the temperature calibration, the temperature and current dependence can be an-

alyzed with the help of either the weak localization peak, or the resistance fluctuations at

finite magnetic fields. Here, the analysis of the resistance fluctuations, which shows higher

statistical stability, is presented.9 Figure 3.10(a) shows the relative standard deviation

of the magneto-resistance fluctuations as a function of the lattice temperature for two

different heating currents. The double logarithmic plot is divided into three temperature

regimes. (1) For lattice temperatures above TL & 200 mK, a linear decrease of the relative

fluctuation amplitude is observed. (2) For intermediate temperatures, the fluctuation am-

plitude saturates toward lower temperatures. (3) For TL . 80 mK, the relative fluctuation

amplitude is constant.

9It is noted that there is a difference in the overall line shape between temperature and current
dependent measurements of Fig. 3.9. This difference results from a potential shift of the QD. Note that
the overall resistance of the heating channel can vary by δRC(VP)/R̄C(VP) = 0.05 depending on the
potential of the QD.
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Fig. 3.10: Relative magneto-resistance fluctuation amplitude σ(RC)/R̄C as function of lattice
temperature TL (a), and heating current IH (b). For the curves in (a) the heating current is
IH = 1.4 nA. The curves in (b) are taken at base temperature of the cryostat (TL = 10 mK).
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Besides unwanted electromagnetic noise, which cannot be filtered out completely, the

saturation value at low temperatures depends on the applied heating current, as shown

in the semi-logarithmic plot of Fig. 3.10(b).

The behavior can be explained by the temperature dependence of the electron gas-

lattice coupling. For TL & 200 mK, the temperature of the electron gas is coupled to the

lattice temperature. For TL . 80 mK, the coupling to the lattice temperature is strongly

reduced. Here, the cooling power of the electron-phonon coupling is not sufficient enough

to compensate the incoming heat due to the heating current and additional electromag-

netic noise. The intersection point of the extrapolated high and low temperature behaviors

marks the point where the excess heating contributions are comparable to the cooling due

to the lattice-coupling. The difference between the corresponding lattice temperatures

then is a measure of the temperature increase due to different heating currents. In the

example shown here, the temperature difference is ∆T = 30 mK [cf. Fig. 3.10(a)].

This technique has the advantage to locally probe the temperature of the heating

channel. The result agrees well with the experimental findings presented in Chap. 5.

However, it would take more than two temperature cycles to be able to make a more

quantitative analysis.
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Chapter 4

Cotunneling contribution to the

thermopower of few-electron

quantum dots

4.1 Introduction

In the past, thermopower measurements on QDs in the Coulomb blockade (CB) regime

have yielded qualitatively different results: either a sawtoothlike line shape, or a line shape

similar to the derivative of a single-electron-tunneling (SET) conductance peak is observed

when the electrochemical potential is varied in order to change the number of electrons

occupying the QD. So far, a sawtoothlike behavior has been observed mainly for many-

electron QDs, while derivative-like line shapes are predominantly reported for smaller

QDs at very low (millikelvin) temperatures [SMA+93, GMB+99, DSB+97, DSB+98]. In

the following, thermovoltage measurements on gate-defined, lateral QDs, containing a few

tens of electrons, are presented which allow the low-temperature line shape profile to be

analyzed in detail. For a series of SET conductance peaks, a transition is observed from

a full sawtooth line shape to a sawtooth with a periodic intermittent zero thermovoltage

signal while the temperature is lowered from T = 1.5 K to T < 100 mK. This behavior

is in qualitative agreement with recent theoretical considerations of Turek and Matveev

[TM02] for many-electron QDs. The transition is associated with an increasing dominance

of cotunneling processes for decreasing temperatures. In the measurements, it has been

found that the regime of sequential tunneling, which dominates the transport in the

vicinity of the SET conductance peaks, extends much further than anticipated for many-

electron dots. This leads to an enhanced absolute thermopower for few-electron devices.
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Fig. 4.1: (a) Conductance G (upper panel) and the corresponding thermovoltage VT (lower
panel) of QD1 as a function of the plunger-gate voltage VP. (b) Thermovoltage curves as a
function of VP at seven different temperatures: TL = 40 mK (black), 66 mK (brown), 158 mK
(cyan), 257 mK (blue), 425 mK (orange), 1.04 K (pink) and 1.5 K (purple).
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4.2 Experimental results

Here, two QD samples [QD1 (Bochum I3C) and QD2 (Bochum I4A)] are investigated that

have the same gate structure design [see Chap. 3.1.2 Fig. 3.2] but are adjusted differently

in their electrostatic confinement. They differ in their number of electrons, the coupling

to the reservoirs and level spacing. QD1 contains between 15 and 20 electrons, while QD2

contains between 30 and 40 electrons. In the whole temperature range, a constant ac

current of IH = 9.7 nA (4.2 nA) has been used to increase the electron temperature in

the heating channel.

Figure 4.1 (a) shows the conductance G and the corresponding thermovoltage VT

of QD1 for an electrostatic charging energy EC = 1.43 meV at lattice temperatures

TL = 40 mK (black lines) and 1.32 K (gray lines). At 1.32 K, thermal broadening

determines the shape of the SET conductance peaks. The corresponding thermovoltage

signal shows a sawtooth-like line shape with a maximum in the vicinity of the center of

the CB. An additional fine structure on the sawtooth line shape, which is even visible at

elevated temperatures, is due to the finite level spacings in the QD. At TL = 40 mK the

SET conductance peaks have an increased height, a reduced width, and are well separated

by regimes of approximately zero conductance. The line shape of the corresponding

thermovoltage now resembles more the negative derivative of the conductance G. The

extremal values of the thermovoltage have increased by a factor of three and their positions

are shifted towards the SET conductance peaks.

A small asymmetry between the thermovoltage values of positive and negative am-

plitudes is observed for all measurements (cf. Fig. 4.1 and Fig. 4.10). Lower tunneling

probabilities, for strongly negative plunger gate voltages VP, reduce this asymmetry. The

asymmetry is intrinsic and has been ascribed to the energy dependent transmission proba-

bility of the tunnel barriers and possible multi-channel tunneling processes [XY02, XX99].

Additionally, long shoulders are observable in the thermovoltage for the SET conductance

peak at VP = −0.54 V. In this regime, the thermovoltage is highly sensitive to any asym-

metric contribution of cotunneling processes from above or below the Fermi-level, which

leads to a non zero VT. As discussed in more detail in Chap. 5, the magnitude of these

contributions is controlled by the coupling and energetic position of the QD states. Sim-

ilar features occur in the spin correlated transport regime [SBR+05]; this is discussed in

Chap. 6.

Figure 4.1(b) shows VT for seven different temperatures in the range from TL = 1.32 K

down to 40 mK. It is evident that the change in line shape occurs continuously. In the

vicinity of the SET conductance peak, the thermovoltage varies linearly with VP. Its slope

increases with decreasing T . In between the SET conductance peaks, however, a region

develops, where VT ' 0. The observation of two different line shapes indicates that at

different temperatures different transport mechanisms dominate the electronic transport

properties.
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4.3 Model calculations and comparison

Near the SET conductance peaks, the charge transport is dominated by sequential tun-

neling (ST) processes and is explained within the so-called orthodox model [BS92], where

only first order tunneling processes are considered (see Chap. 1.2.1 and Chap. 2.2.1). Be-

tween the SET conductance peaks, the transport can also be due to ST processes, but

only at relatively high temperatures (∼ 1 K). In ST transport, the average electron energy

is proportional to an effective energy gap Eg which is defined as the difference between

the Fermi energy of the leads and the energy of the closest QD state. The value of Eg

varies linearly between −E∗
C/2 and +E∗

C/2 with increasing electrochemical potential of

the QD, ΦQD, and subsequently jumps back to −E∗
C/2 at the center of the CB. According

to Eq. (2.25), the thermovoltage follows this sawtoothlike behavior. Thermal smearing

at higher temperatures leads to a more sinusoidal variation of Eg and thus the extremal

values of the thermovoltage oscillations are located slightly away from the center of the

CB. The ST mechanism thus explains the line shape at temperatures around 1 K.

The very low (millikelvin) temperature line shape is attributed to the occurrence of

inelastic cotunneling (CT) transport in between the SET conductance peaks [TM02]. Se-

quential tunneling processes are thermally activated and thus exponentially suppressed

by lowering the temperature, while CT processes scale only according to a power law

[AN90]. Thus, the higher order processes dominate the transport away from the SET

conductance peak at low temperatures. The average (kinetic) energy transferred by co-

tunneling processes is proportional to the temperature (〈Eco〉 ∝ T ), because energy has

to be conserved in CT transport. Therefore, the expected low temperature thermoelectric

signal of CT processes is vanishingly small [TM02]. Decreasing the sample temperature

implies a transition from ST- to CT-dominated transport in the CB regime away from the

SET conductance peaks and thus a suppression of the thermovoltage signal in the corre-

sponding gate voltage ranges. The sawtooth line shape becomes interrupted by regions

of nearly zero signal amplitude, as observed in Fig. 4.1.

In order to discuss this transition more quantitatively, the thermovoltage oscillations

at VP = −0.73 V are compared with the behavior of the orthodox (pure ST) [BS92] model,

and a model that also includes CT effects [TM02].

For fitting the experimental findings with the pure ST model, Eqs. (3.13) and (3.14)

from Ref. [BS92] have been used. Within the ST, picture the thermopower S is given by

S =
L12

G
= − e

kBT 2GST

∞∑
p=1

∞∑
N=1

Γl
pΓ

r
p

Γl
p + Γr

p

[εp + EC(N)− EC(N − 1)− EF ]

× Peq(N)Feq(εp|N){1− f [εp + EC(N)− EC(N − 1)− EF ]}, (4.1)

where the electrical conductance GST of the QD is given by

G = − e2

kBT

∞∑
p=1

∞∑
N=1

Γl
pΓ

r
p

Γl
p + Γr

p

× Peq(N)Feq(εp|N){1− f [εp + EC(N)− EC(N − 1)− EF ]}. (4.2)
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Fig. 4.2: (a) Calculated thermovoltage for the CT-included model (dotted lines) and measured
thermovoltage (solid lines) as a function of VP. (b) Calculated thermovoltage for the ST model
(dotted lines) and measured thermovoltage (solid lines) as a function of VP. The insets give the
extracted electron temperatures from the curve fitting. Dots mark the extremal values of the
thermovoltage line shape. Their positions are the same as the positions of the dots in Fig. 4.3.
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Here, p denotes the individual QD states, Γ(r,l) the tunnel coupling to the right and the

left reservoir, EC(N) the charging energy of the N -electron QD, Peq the probability that

the QD contains N electrons, Feq the conditional probability in equilibrium that level

p is occupied, given that the QD contains N electrons, and f the Fermi distribution.

Furthermore, the ST curves shown in Fig. 4.2 (b) and Fig. 4.3 are computed for a series

of equidistant non-degenerate QD levels, assuming level-independent tunnel rates.

The CT-included model incorporates the effects of cotunneling by assuming that the

thermoelectric (kinetic) coefficient L12 and the electrical conductance G are given in an

expansion of first and second order transport processes:

S =
L12

G
=

LST
12 + LCT

12

GST + GCT
. (4.3)

The sequential tunneling contributions to the electric conductance and the thermoelectric

coefficient are calculated by using the results from the Beenakker [Bee91, BS92] theory in

the limit of negligible spacing of the QD states at low temperatures kBT ¿ EC.

LST
12 =

GlGr

4(Gl + Gr)

e(φ− φN)2/T 2

sinh[e(φ− φN)/T ]
(4.4)

GST =
GlGr

2(Gl + Gr)

e(φ− φN)/T

sinh[e(φ− φN)/T ]
(4.5)

In the same limit, the inelastic cotunneling contributions of the electrical and thermal

conductances can be approximated in the following way:

LCT
12 = −4π3

15

~
e3

GlGr(kBT )3(
1

u1

+
1

u−1

)(
1

u2
1

− 1

u2
−1

), (4.6)

GCT =
π~
3e2

GlGr(kBT )2

(
1

u1

+
1

u−1

)2

, (4.7)

where u±1 ≡ E(N ± 1) − E(N) = e(φN − φ) and N is determined by minimizing the

electrostatic energy of the dot for a given potential φ. From Eqs. (4.6) and (4.7), the

cotunneling thermopower SCT is given by the following:

SCT =
4π2

5

kBT

e2

(
1

φ− φN

+
1

φ− φN−1

)
,, (4.8)

which reflects the 1/φ behavior in the potential range between two conductance peaks.

Note that Eq. (4.8) formally diverges at the center of the conductance peaks. The regu-

larization of the divergencies is presented in Ref. [TM02], and will not be repeated here.

The results for the cotunneling contributions LCT
12 and GCT at arbitrary temperatures

which have been used for fitting the line shape of the measured thermovoltage oscillations
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are given by

GCT =
~
e2

GlGr

4π

∞∑
N=−∞

[
(W

(0)
N−1 + W

(0)
N )F

(
E(N)− E(N − 1)

2kBT

)

−4kBTC

e2
(W

(0)
N−1 + W

(0)
N )F ∗

(
E(N)− E(N − 1)

2kBT

)]
, (4.9)

LCT
12 = − ~

e3

GlGr

4π

∞∑
N=−∞

[
(W

(0)
N−1 + W

(0)
N )FT

(
E(N)− E(N − 1)

2kBT

)

−4kBTC

e2
(W

(0)
N−1 + W

(0)
N )F ∗

T

(
E(N)− E(N − 1)

2kBT

)]
, (4.10)

where W
(0)
N ≡ e−EN/kBT /

∑
N e−EN/kBT stands for the equilibrium probability distribution

of the dot charge, and the functions F (x), F ∗(x), FT (x) and F ∗
T (x) are defined by

F (x) ≡ |x|
∫ ∞

0

dz

z2

(
(1 + z)2

sinh2[x(1 + z)]
+

(1− z)2

sinh2[x(1− z)]
− 2

sinh2[x]

)
, (4.11)

F ∗(x) ≡ x|x|
∫ ∞

0

dz

z

(
(1 + z)2

sinh2[x(1 + z)]
− (1− z)2

sinh2[x(1− z)]

)
, (4.12)

FT (x) ≡ x|x|
∫ ∞

0

dz

z2

(
(1 + z)3

sinh2[x(1 + z)]
+

(1− z)3

sinh2[x(1− z)]
− 2

sinh2[x]

)
, (4.13)

F ∗
T (x) ≡ x2|x|

∫ ∞

0

dz

z

(
(1 + z)3

sinh2[x(1 + z)]
+

(1− z)3

sinh2[x(1− z)]

)
. (4.14)

At TL= 1.0 K, both models exhibit nearly the same thermovoltage amplitude and

approximately the same line shape [cf. Fig. 4.3]. For this temperature, the temperature

of the electron gas Te is assumed to be equal to the lattice temperature TL, and the

QD fulfills the condition ~Γ << kBT << EC, which allows the relevant model param-

eters to be extracted. From fits of the SET conductance peaks [cf. Fig. 4.5], we obtain

E∗
C = 1.712 meV, α = ΦQD/(−eVP) = 0.0095, and Gl,r = 0.072 e2/h, where Gl,r describes

the tunnel conductance to the left and right reservoirs, respectively. The temperature dif-

ference can be extracted by fitting the thermovoltage line shape at the same temperature

(TL = 1.0 K). The result is a temperature difference of ∆T = 9 mK [cf. Fig. 4.2]. The

temperature dependent thermovoltage shown in Fig. 4.3 is calculated by considering these

parameters as temperature independent. Since sequential tunneling, and hence the charg-

ing energy of the QD, determines the slope mVT
of the thermovoltage signal in the close

vicinity of the SET conductance peaks, the direct comparison with experiment allows the

effective electron temperature Te under the experimental conditions to be extracted. The

slope mVT
is given by

mVT
≈ ∆VT

∆VP

∝ 〈E〉
T

, (4.15)
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Fig. 4.3: Calculated thermovoltage for the orthodox (dotted lines) and CT-included model (full
lines) as a function of VP. The dots indicate the maxima of the measured thermovoltage signal.
The inset shows the orthodox model at full scale.

where Eq. 2.25 has been used. Figure 4.2 shows the model calculation for the CT-included

model [Fig. 4.2 (a)], and the pure ST model [Fig. 4.2 (b)] together with the experimental

data. The temperature dependent change of mVT
results in a difference between the

extracted electron temperatures of the two models. The difference occurs due to the fact

that the CT-included model neglects the finite level spacing in the QD, whereas the ST-

model accounts for these effects. The temperature dependent evolution of mVT
is given

in Fig. 4.4. In contrast to the CT-included model, which shows a uniform temperature

dependence of mVT
in the whole temperature range, the ST model calculations reveal a

non-linear behavior in the higher temperature range of the double logarithmic plot. In

Fig. 4.3, only the extremal values of the measured thermovoltage are indicated together

with the results of the model calculations. In the orthodox model, a sawtooth line shape is

predicted for all temperatures (Fig. 4.3, upper right inset). The wiggles at the declining

slope of the sawtooth come from excited states and have the periodicity of the level

spacing. At the same time, the CT-included model does indeed reproduce a transition

from a sawtooth to a periodically suppressed sawtooth line shape. However, while the CT-

included model predicts an approximately constant peak amplitude, the experiments show

a strong increase in peak amplitude with decreasing temperature. In addition, the model
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Fig. 4.4: Calculated slope of the thermovoltage in the close vicinity of a SET conductance
resonance for ST and CT-included model.

does not predict the gate voltage position of the maxima correctly. The comparison of

Fig. 4.1 and Fig. 4.3 reveals that in the experiment the linear increase of the thermovoltage

around the SET conductance peak extends much further than anticipated by the CT-

included model, and rather follows the behavior of the orthodox model, i.e., the voltage

range where ST dominates the transport is larger than given by the CT-included model.

In other words, the CT-included model does not describe quantitatively the influence of

CT processes for the few-electron QD.

The bottom left inset of Fig. 4.3 presents the deduced values for Te from the ST

model fit. These values represent an upper limit at low temperatures, and are in better

agreement with the lattice temperature at high temperatures. The extracted tempera-

tures have been confirmed independently by fitting the corresponding conductance peaks

[Bee91, Vor04], which are shown in Fig. 4.5. The fitting procedure focused on the repro-

duction of the maximum peak amplitude of the SET conductance peak, since sequential

tunneling is expected to be the main contribution at this point. Figure 4.6 shows the

comparison of the temperatures determined from conductance measurements and ther-

movoltage measurements. The nonlinear temperature dependence which appears in all

curves of Fig. 4.6 (a) is caused by the spacial separation of the sample and the temper-



64
4. Cotunneling contribution to the thermopower of few-electron

quantum dots

-0.82 -0.80 -0.78 -0.76 -0.74 -0.72 -0.70 -0.68 -0.66
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 

          TL (K)      Te (K)
  1.068      1.215
  0.743      1.080
  0.426      0.937
  0.298      0.752
  0.206      0.587
  0.161      0.494
  0.089      0.367
  0.016      0.251

G
 (e

2 /h
)

 

 VP (V)

 

Fig. 4.5: Conductance of QD1 as a function of the plunger gate voltage. Full lines depict
the experimental data, and dashed lines represent the corresponding fitted curves. The inset
presents the measured lattice temperature TL and the extracted electron temperature Te.

ature sensor in the cryostat. Figure 4.6 (b) presents the good agreement between the

temperature scales obtained from the fitting of the SET conductance peaks Te,G−fit and

the slope of the thermovoltage in the vicinity of the SET conductance peak Te,S−fit at a

constant temperature difference.

4.4 Discussion and conclusion

The deviations between the experimental observations and the results from the theoretical

calculations originate from three different effects.

1 The CT-included model assumes a negligible energy spacing of the QD states (δEQD <<

kBT ), as applicable for metallic dots. For the present few-electron QD, clearly, δEQD is

not negligible, since the energy gap between the ground state and the first excited state

is of the order of 250 µeV. Even at temperatures around 1 K, only a few excited states

are available for transport, which reduces the probability for inelastic cotunneling events.

Interestingly, the deviations between the calculations and the experiment are small in

the measurement of the thermovoltage, while the finite energy spacing shows strong ef-
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Fig. 4.6: (a) Electron temperatures Te extracted from conductance measurements and thermo-
voltage measurements as function of lattice temperature TL. The conductance has been fitted
with a sequential tunneling model [Beenakker (G-fit)] [Bee91], the thermovoltage has been fitted
with the ST-model [Beenakker (S-fit)] [BS92] and the CT-model [Turek (S-fit)] [TM02]. The red
line is a polynomial fit to the conductance fit points. (b) Electron temperatures Te,S−fit, which
have been obtained from fitting the thermovoltage as a function of the electron temperature scale
Te,G−fit, which is shown by the red line in (a). The black line in (b) indicates Te,G−fit = Te,S−fit.
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Fig. 4.7: Calculated temperature dependence of the SET conductance peak amplitude for the
CT-included model (brown line), the ST model (blue line). For comparison, the experimental
data (red squares) have been added.

fects in the temperature dependence of the maximum amplitude of the SET conductance

peaks Gmax. Figure 4.7 displays Gmax as a function of the electron temperature for the

CT-included and the ST models. While the maximum electrical conductance used in

the CT-included model is temperature independent, the ST model shows a 1/T increase

towards low temperatures, which agrees with the experimental observation. The behavior

of Gmax in the CT-included model and in the ST model is characteristic for the trans-

port regimes of classical Coulomb blockade and quantum Coulomb blockade, respectively

[KMM+97]. It shows that only individual QD levels are available for the charge transport

through the QD. In the CT-included model, however, a quasi continuum of QD states

contributes to the transport. This assumption may lead to an overestimation of the total

number of inelastic cotunneling scattering channels and hence to the deviations of the

measurement results with respect to the CT-included model calculations.

2 The reduction of the electron temperature leads to a considerable increase in the

electron-electron scattering length lee [GQ82]. If lee exceeds the length of the heat-
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ing channel at very low temperatures,1 one expects that the energy does not fully re-

distribute among the electrons within the heating channel. In this case, the differ-

ence between electron distributions in the QD leads (fhot − fcold) is determined by the

excitation voltage across the heating channel Vex,chan and the temperature broadening

of the electron distributions in the heating channel reservoirs given by (fhot − fcold ∝
f1(T, µ+eVex,chan/2)−f2(T, µ−eVex,chan/2). The energetically weighted particle distribu-

tion difference [E× (fhot−fcold)], which enters into the calculation of the thermopower, is

depicted in Fig. 4.8 for three different temperatures. Black lines correspond to the ener-

getically weighted derivative of the Fermi-Dirac distribution, which represents the result

in the linear response regime for a fully thermally distributed heating channel reservoir

[see also Chap. 2, Eqs. (2.15) and (2.22)]. For kBTe > eVex,chan, only a tiny difference

exists between the fully thermalized and the non-thermalized particle distribution. For

kBTe < eVex,chan, the voltage drop across the heating channel leads to an enhanced oc-

cupation of higher energy states compared to the Fermi-Dirac distribution. Since the

thermovoltage in the vicinity of a SET conductance peak reflects the weighted particle

distribution as a function of the QD potential, this effect enhances the transport contri-

butions of high energetic sequential tunneling events at very low temperatures. For the

interpretation of thermopower measurements, this means that the actual particle distri-

bution in the heated lead has to be taken into account if this kind of current heating

technique is used.

3 The temperature difference across the QD depends on the temperature itself [∆T (T )e]

and may not be constant over the whole temperature range. In this case, the measured

thermovoltage curves have to be fitted using both the temperature and the temperature

difference. To obtain a reasonable estimate for the actual electron temperature, the

electron temperature of the conductance measurements can be used. Figure 4.9 shows

the corresponding temperature differences, which have to be applied across the QD in

order to maintain the measured slope of the linearly increasing thermovoltage signal at

the positions of the SET conductance peaks. This procedure allows the temperature

difference as a function of the electron temperature to be obtained. The temperature

difference increases from ∆T ≈ 8 mK at Te = 1.4 K to ∆T ≈ 12 mK at Te = 250 mK.

The data shows a plateau-like feature (∆T ≈ 9 mK) in the temperature range from

Te = 1.2 K to Te = 600 mK, and is strongly fluctuating in the subsequent temperature

ranges. The small temperature difference and the strong fluctuations make it very difficult

to further compare the data with independent measurements of the temperature increase

in the heating channel. Thus, for future studies of this kind, it may be necessary to

develop a reliable method for measuring the 2DEG temperature in the heating channel

with an accuracy better than 10 %. Furthermore, more detailed studies should also

1A long-time cutoff in the theory of electron-electron interactions in a disordered conductor is given
by the thermal length τT = ~/kBT , which gives a thermal length of 17.5 µm at T = 100 mK (EF = 10
meV) [BvH91].
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Fig. 4.8: Energy dependence of the energetically weighted particle distributions for various
temperatures. Red lines correspond to the calculations for the case of missing energy redistri-
bution via electron-electron scattering (see text). For the calculations, the excitation voltage
across the heating channel has been set to Vex,channel = 50µV. Black lines represent the ener-
getically weighted derivative of the Fermi-Dirac distribution, which corresponds to a complete
redistribution of the excess energy among the electrons in the heating channel system.

take into consideration quantum fluctuation effects in the thermopower of metallic QDs,

which lead to an additional reduction of the charging energy gap [KK06], and thus also

to the reduction in the slope of the thermovoltage oscillations at the center of the SET

conductance peaks.

The above discussions show that the deviations between experimental observations

and theoretical model calculations most likely result from a mixture of all three effects.

In order to identify the individual contributions of these effects, more sophisticated exper-

iments would be necessary. Especially, for the analysis of the particle distribution in the

heating channel, it would be essential to provide a reliable technique which determines

the temperature difference with high accuracy [δ(∆T ) < 1 mK] in the whole temperature

range. From the theoretical point of view, further model calculations of S have to take

into account the finite level spacing of the QDs. However, these effects do not necessarily

modify the overall change in the line shape from a full sawtooth to a periodically inter-

mitted sawtooth, which is the basis for further analysis of the additional (fine) structures

in the following chapters.

In particular, the change of line shape persists in the strong coupling regime [see

Chap. 6]. For the analysis of the thermopower in this regime, a second QD sample has

been measured (cf. Fig. 4.10), which has the same layout as QD1. The quantum dot QD2
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Fig. 4.9: Temperature difference across the QD as a function of the electron temperature, which
has been extracted from the fitting of the SET conductance peaks.

exhibits a similar charging energy (E∗
C ≈ 1.5 meV) but smaller level spacing (δE ∼ 50

µeV) presumably due to variations in the potential landscape in the 2DEG [KBM00].

The characteristics of this sample go further into the many electron QD limit and the

sample exhibits a very strong coupling of the QD states to the leads (Gl,r ≥ 0.7e2/h).

Thus, one would expect strong cotunneling contributions to the thermopower. However,

a similar behavior as for QD1 has been observed. Figure 4.10(a) shows the change of the

thermovoltage line shape for a series of SET conductance peaks. The change in line shape

with temperature is present. It can be identified by the shift of the thermovoltage extremal

values towards the positions of the SET conductance peaks and by the appearance of a

plateau like structure for low temperatures at VP = −1.85 V. The change in line shape

becomes less pronounced for more positive gate voltages, where the coupling of the QD

states to the leads increases considerably. Since the theoretical models used are not really

applicable in the strong coupling limit (VP > −1.85 V), the line shape close to the SET

conductance peak at VP = −1.9 V has been used to evaluate the model calculations similar

to QD1. Fig. 4.10(b) shows again that the regime of sequential tunneling is extended with

respect to the expected curves based on the CT-included model.
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Fig. 4.10: (a) Thermovoltage for a series of SET conductance peaks as a function of the
plunger gate voltage VP for QD2. The positions of the SET conductance peaks are indicated
by vertical dashed lines. (b) Calculated thermovoltage for the orthodox (dash-dotted lines)
and CT-included model (full lines) as a function of VP. The dots indicate the maxima of the
measured thermovoltage signal near the SET conductance peak at VP = −1.9V .
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In summary, it has been established that the measurements of the thermopower of

few-electron QDs show a temperature dependent change in the line shape of the ther-

mopower oscillations as a function of the QD potential. This change agrees qualitatively

well with the theoretical predictions for the contributions of sequential- and cotunneling

transport. Deviations between model calculations and experimental data result because

of the following three reasons. First, the model calculations do not account for the finite

level spacing in the QD. Second, the electron distribution in the heated reservoir may dif-

fer from a fully thermalized Fermi distribution. Third, the calibration of the temperature

difference varies over the temperature range of the measurement.
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Chapter 5

Thermoelectric transport in the

presence of asymmetries

In Chap. 4, it was shown that the overall line shape of the thermopower oscillations reflects

the strength of the various transport mechanisms. Theoretical model calculations, which

include sequential as well as cotunneling contributions to the thermoelectric transport,

and experimental data show qualitatively good agreement. Very often, however, the

experimental data deviates from the calculated ideal point-symmetric signal amplitude

with respect to the position of the SET conductance peaks [e.g. see Chap. 4 Fig. 4.1 at

VP = -0.54 V].

Previous studies of the thermoelectric properties of QDs showed various types of asym-

metries in the line shape of the thermopower oscillations. In Ref. [SMA+93], an overall

offset has been reported for the thermopower of Coulomb blockade oscillations of large

QDs. In Ref. [DSB+97] and in the previous chapter, an asymmetry has been observed

between positive and negative oscillation amplitudes. In contrast to these results, no

asymmetry of the thermopower oscillations has been observed in Ref. [GMB+99], al-

though the difference between the tunneling barrier thicknesses has been varied in order

to study the charging energy as a function of the dot-leads coupling strength.

So far, the underlying theoretical models consider energetically and spacially symmet-

ric QD systems. The corresponding model calculations are based on the assumptions of

an equidistant level spacing in the QD and a symmetric coupling of the QD states to both

heat reservoirs. These assumptions are only partially fulfilled in a real QD structure. For

example, the transition rates Γ
(i,j)
l,r for electrons entering or leaving the QD have been

assumed to be constant so far. However, in real QD systems, Γ
(i,j)
l,r is given by [WHK95]

hΓ
(i,j)
l,r =

tl,r
2
|〈Si,Mi,

1

2
,±1

2
|Sj,Mj〉CG|2

× (
fl,r(E)δnj ,ni+1 + [1− fl,r(−E)]δnj ,ni−1

)
, (5.1)

where tl,r denotes the transmittances of the tunneling barriers. The two participating

n-electron states of the QD |i〉, |j〉 are associated with a certain electron number ni, an

73
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energy Ei, a total spin Si, and a magnetic quantum number Mi. Besides the fact that the

transmittance is not necessarily equal for electrons from the left and the right reservoirs,

Eq. (5.1) contains Clebsch-Gordan coefficients 〈...|...〉CG. Thus, the different states of the

QD do not contribute in an equal way to the electric and thermoelectric transport.

This chapter deals with various deviations from an idealized QD structure and their

implications for the thermopower measurements. Although, a broad variety of effects are

presented, the selection does not claim completeness. There may be additional effects

such as phase breaking [NK06], which have not been identified, and which are left for

future studies.

Generally speaking, asymmetries in the line-shape of the thermopower oscillations can

originate from three different sources: (a) the tunnel barriers, (b) a difference between the

contacting heat reservoirs and (c) the internal degrees of freedom of the QD. In this regard,

the chapter discusses the modification of the idealized line-shape of the thermopower

oscillations as a result of (a) the energy dependence of the tunneling barriers, (b) the

asymmetric coupling of given QD states to the source and the drain leads with respect to

first order transport and (c) the influence of the excited QD states with respect to further

asymmetries in first and second order transport.

5.1 Energy dependence of tunnel barriers

The QD connects to the leads via two tunnel barriers. Their shape can be characterized

by an effective width and effective height. The transmission of an incident wave through

a single barrier depends on the product of these two quantities [Sak94]. In linear con-

ductance measurements, these two parameters cannot be accessed separately, so that the

tunnel barriers are described by an overall transmission probability. The additional in-

formation on the tunnel barrier thickness and height, or shape, has to be obtained by the

help of an additional experimental parameter such as the temperature, the bias voltage

or the magnetic field.

The measurement of the linear thermoelectric power yields additional information

about the dynamics of the system. Referring to Mott’s formula [see Chap. Eq. (2.26)],

the thermopower depends on the conductance and the derivative of the conductance with

respect to the energy. Thus, one expects the information about the shape of the tunneling

barriers to enter directly into the linear thermoelectric transport.

In the given QD structure, the shape of the tunneling barriers is determined by geo-

metrical constraints and the dielectric material properties. Such geometrical constraints

are, for example, the lithographical dimensions of the gates and the distance of the 2DEG

to the surface. The dielectric material properties depend on the material composition, the

donor concentration, the technique of doping (δ-doping or homogeneous doping) and, in

the local vicinity of the gate electrodes, the cooling procedure of the sample [PLDL+05].
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Fig. 5.1: Thermovoltage as function of plunger gate voltage in the strong coupling regime of
a QD at six different temperatures. The arrows indicate the crossing from positive to negative
oscillation amplitudes as the temperature is lowered. Vertical dashed lines indicate the position
of the SET conductance peaks at the highest and lowest temperatures.

Changing the gate bias voltage within one sample alters both the height and the

width of the tunneling barriers. A very sophisticated method is needed to keep one of

these parameters constant while changing the other without changing the properties of

the QD (e.g. the number of electrons). However, effects due to the energy dependence

of the tunneling barriers can be distinguished from transport effects of the QD by their

weak dependence on the plunger gate voltage in the presented experimental data. The

thermoelectric contributions due to the energy dependence of the tunnel barriers are

expected to add “homogeneously” to the effects due to the Coulomb-blockade over a wide

range of the plunger gate voltage.

Figure 5.1 shows thermovoltage curves as a function of the plunger gate voltage VP at

six different temperatures. The bias voltages of the gates that form the tunneling barriers

are kept at a constant value. Thus, the height and the width of the barriers are increased

as the plunger gate voltage is tuned to more negative values [see also Chap. 3.1.2].

At the most negative plunger gate voltages (VP < −1.85 V), the thermovoltage os-

cillations have nearly the same positive and negative signal amplitude in the vicinity of

a SET conductance peak for all temperatures. At more positive plunger gate voltages

(VP > −1.7 V), a different behavior can be observed. At low temperatures, the extremal
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values of the thermovoltage oscillations show enhanced positive thermovoltage amplitudes.

As the temperature is increased, the negative oscillation amplitude is further reduced, and

the oscillation minimum crosses the zero thermovoltage line at Te = 348 mK. For even

higher temperatures, a positive thermovoltage is observable even in the transport regime,

where the effective energy gap of the SET QD state is negative, and the thermovoltage

oscillation is completely positive [indicated by the red arrow in Fig. 5.1].

In order to explain the observed enhanced positive contribution to the thermovoltage

at more positive plunger gate voltages, the coupling strength of the QD states to the leads

has to be considered. At strongly negative plunger gate voltages, the tunneling barriers

are high compared with kBT , and one can assume energy independent barrier transmis-

sion in the energy window where thermoelectric transport takes place (∼ EF ±kBT ). QD

states from above and below the Fermi level contribute with equal statistical weight to

the electric and thermoelectric transport. Thus, the line shape is symmetric with respect

to the zero voltage line. At more positive plunger gate voltages, the tunneling barriers

decrease in height, and cannot be seen as energy independent within the energy window

∼ EF ± kBT . QD states from above the Fermi level of the leads couple stronger to the

leads than QD states from below the Fermi level. The transmission through high energy

states is more likely than through low energy states. Because the states above or below

the Fermi level are responsible for the positive or negative contributions to the thermo-

voltage, respectively, positive transport contributions to the thermovoltage (electron-like

transport) dominate over negative transport contributions to the thermovoltage (hole-like

transport). This effect results in a temperature dependent distortion of the thermovoltage

oscillations towards the positive thermovoltage scale. In some cases, the effect may even

result in an offset.

With respect to the size of the QD, one would expect that in the many electron (metal-

lic) limit, the line shape of the thermovoltage oscillations experiences a homogeneous

offset or distortion, since a continuum of excited states contributes to the thermoelec-

tric transport. In the few electron limit, where only a few QD states contribute to the

thermoelectric transport, a more pronounced and a more irregular distortion is expected,

since the coupling of single QD states strongly influences the balance between positive

and negative thermopower contributions. As it is shown in Fig. 5.1, this tunnel barrier

dependent effect becomes especially significant in the regime of strong coupling of the QD

to the leads. This regime is discussed in more detail in Chap. 6.
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5.2 Unidirectional thermoelectric transport in a SET

conductance peak

While in the previous section the influence of the energy dependence of the tunneling

barriers on the thermoelectrical signal was discussed, this part focuses on the internal

symmetry properties of single QD states and their influence on the single electron tunnel-

ing transport. Equation (5.1) shows that the dynamics of various transport phenomena

in QD structures crucially depend on the coupling strength of individual QD states to the

leads [WHK95]. Even though there might be a spacial overlap of the wave functions of

QD and 2DEG electrons, the transport can be fully blocked, if the Clebsch-Gordan coeffi-

cient is zero. Vice versa, in the physics of the Kondo effect in QDs, a spin-degenerate QD

state with S ≥ 1/2, which couples strongly to the reservoirs, can even lift the Coulomb

blockade [GGSAM+98, COK98, vdWDFF+00, SBR+05].

So far, asymmetries in the coupling of individual QD states to the leads have been

studied experimentally by finite-bias electrical transport measurements or by means of

finite-bias single charge detection techniques [WHvKP93, SRI+05]. These measurements

have shown that the occupation of excited states can suppress the transport occurring via

transitions between QD ground states with different numbers of electrons.

Besides the advantage that the QD system is kept in close to equilibrium in a ther-

mopower measurement, additional interest arises due to possible applications of QDs for

efficient thermoelectric power generation or cooling [DiS99, GGB+06, KNY+98]. So far,

however, detailed studies which clarify the role of asymmetrically coupled QD states in

the thermoelectric transport have been missing .

For the analysis of first order thermoelectric transport using asymmetrically coupled

QD states, the thermoelectric properties of a few-electron QD are compared with its

excitation spectrum which has been obtained independently from nonlinear differential

conductance measurements. It is shown that the line shape of the thermoelectric signal

reflects the symmetry of the coupling of given QD states to the leads. By using magnetic

fields up to B‖ = 14 T parallel to the plane of the 2DEG, a strong rectified (unidirectional)

thermoelectrical transport is observed in a SET resonance instead of the commonly ex-

pected positive and negative contributions. This behavior is discussed with respect to the

consequences for the thermoelectrical and thermal transport.

5.2.1 Experimental observation

Figure 5.2(a) shows a color scale plot of the zero-bias conductance in the regime of two

SET conductance peaks at VP = −2.17 V and VP = −2.33 V as a function of plunger

gate voltage VP and magnetic field B‖ applied parallel to the 2DEG plane. Dark colors

correspond to high conductance and bright colors correspond to low conductance. Both

SET conductance peaks, µ̄N+1;N and µ̄N+2;N+1, shift towards more positive gate voltages

with increasing magnetic fields. This diamagnetic shift is due to a different magnetic
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Fig. 5.2: (a) Color scale plot of the conductance G as a function of parallel magnetic field B‖
and plunger gate voltage VP. Dark regions represent high conductance on the logarithmic scale.
(b) Corresponding color scale plot of the thermovoltage (linear scale).
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field dependence of energy states in the QD and in the leads [WHvKP93, WHKP94,

DGGW+00, Ste68]. The amplitudes of both SET conductance peaks show qualitatively

different behaviors as a function of the magnetic field. The SET peak at VP = −2.33 V

exhibits a moderate decrease of the peak amplitude towards high magnetic fields. The

SET conductance peak at VP = −2.17 V, however, starts decreasing at B‖ = 5 T and

vanishes almost for magnetic fields higher than B‖ = 8 T. For clarity, single traces of

G(VP) at B‖ = 0, 7, and 13 T are shown in the right panel of Fig. 5.2(a).

The corresponding thermovoltage is shown in Figure 5.2(b). Dark and bright regions

correspond to large positive and negative thermovoltage signals, respectively. The posi-

tions of the SET resonances can be identified by the sharp transition from positive to

negative thermovoltages with increasing VP. The line shape of the thermovoltage oscil-

lations is in agreement with the results which have been discussed in Chap. 4. Close to

the Coulomb blockade resonance, the transport is mainly due to sequential tunneling and

the thermovoltage is proportional to the average energy gap between the QD resonance

and the Fermi level in the leads [BS92]. Between two SET conductance peaks, the ther-

movoltage is approximately zero due to the energy conserving nature of the dominating

cotunneling processes [TM02, KK06, SNB+07a]. The observed diamagnetic shift is clearly

visible in the thermovoltage measurement. The SET resonance at VP = −2.33 V shows

a uniform behavior for the whole magnetic field range while for the second resonance at

VP = −2.17 V, the thermovoltage exhibits significant changes for B ≥ 5 T. For B < 5 T

a regular resonance with a crossing from positive to negative thermovoltages can be ob-

served. At 5 T ≥ B ≥ 8 T, an intermediate region is observable, where the thermovoltage

positive to negative transition turns into a double peak structure with negative ampli-

tudes. For B > 8 T, only a single negative thermovoltage signal remains. In contrast

to the conductance measurements, the amplitude of the negative thermovoltage signal

remains approximately unchanged. Traces of the thermovoltage at B‖ = 0, 7, and 13 T

are plotted on the right hand side of Fig. 5.2(b).
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Fig. 5.3: Color scale plot of the differential conductance as a function of drain-source voltage
VDS and plunger gate voltage VP at (a) B‖ = 0 T and (b) B‖ = 13 T. The arrow marks the transi-
tion from a suppressed to a high differential conductance. The dashed line indicates the direction
of numerical integration for the comparison of differential conductance and thermovoltage (see
text).
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In order to analyze the behavior of the µ̄N+2;N+1 SET resonance at VP = −2.17 V

in detail, the addition spectrum of the QD at B = 0 T is compared to the addi-

tion spectrum taken at B = 13 T. Figure 5.3 displays the nonlinear differential con-

ductance as a function of plunger gate voltage and source drain voltage at B‖ = 0 T

[Fig. 5.3(a)] and at B‖ = 13 T [Fig. 5.3(b)]. The familiar diamond shaped regions of zero

(differential) conductance develop in the VDS-VP plane corresponding to fixed numbers

(..., N-1, N, N+1, ...) of electrons on the QD [KMM+97]. Borders of the Coulomb block-

aded regime with negative slope indicate the alignment of ground states resonances with

the source contact µ̄S = µ̄n+1,0;n,0. Lines with positive slope correspond to the alignment

with the drain contact µ̄D = µ̄n+1,0;n,0. Lines outside the Coulomb blockade diamonds,

originate from transport through excited states µ̄n+1,i;n,j, where (i, j) ∈ N+ [FMM+93].

The appearance of areas with negative differential conductance (white areas) are typical

signatures for blocking mechanisms of various kinds [WHK95, DMTG02, Tew04]. For

example, a first kind of blocking occurs due to interference of two competing transport

channels. Once the second channel is energetically available, destructive interference re-

duces the total transmission probability. A second kind of blocking mechanism considers

that due to fast inner dot transitions, the dot can relax into an excited state that is spin

blocked for further transport or that takes place on a very much longer time scale.

At B‖ = 0 T, the SET resonance µ(N+2;N+1) exhibits a negativ differential conductance

for VDS < −250 µeV and VP < −2.17 V [onset indicated by an arrow in Fig. 5.3(a)]. The

resonance line with a positive slope involving the ground state, µN+2,0;N+1,0 is absent. The

sudden jump in the differential conductance indicates that a QD state, which inhibits

the charge transport, becomes energetically accessible for VDS < −250 µeV. From the

asymmetric behavior with respect to positive and negative VDS, it can be deduced that

this blocking state couples asymmetrically to both contact reservoirs. In the following,

the two participating QD resonances is denoted by µ̄(N+2;N+1) (regular resonance) and

µ̄∗(N+2;N+1) (asymmetrically coupled resonance).

At B‖ = 13 T, the gate voltage range, where the transport for negative VDS is inhibited,

extends to more positive plunger gate voltages [cf. Fig. 5.3(b)]. At the zero bias N +2 ↔
N + 1 transition, the transport is now dominated by the µ̄∗(N+2;N+1) resonance, which

shows strongly suppressed transmission. The suppression of the differential conductance

still occurs mainly for negative VDS. Hence, an asymmetric transport gap opens for the

zero bias N + 2 ↔ N + 1 transition.
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5.2.2 Discussion

Obviously, the asymmetric transport gap results from a broken symmetry within the QD-

leads system. The symmetry in charge transport between source and drain reservoirs can

be broken either by a difference between the properties of source and drain1 or due to an

intrinsic asymmetry within the QD. Since the source and the drain reservoirs are equal in

the experimental setup, they are not expected to be the origin of the observed asymmetric

behavior. Thus, the source-drain-dependent asymmetric transport can be attributed to

an intrinsic property of the QD.

In the following, it is shown that the interplay between two QD states which are

energetically close to each other causes the asymmetry in the transport. At B = 0 T, the

µ̄(N+2;N+1) resonance shows a high differential conductance for both transport directions

(positive and negative VDS). Therefore, the assumption is justified that this first QD state

has a symmetric coupling to the source and the drain contact. The second state, couples

strongly to the drain, while at the same time it couples very weakly to the source and thus

determines the transport via the µ̄∗(N+2;N+1) resonance. At B‖ = 0 T, the symmetrically

coupled state lies energetically below the the asymmetrically coupled state and represents

the ground state of the QD.

If the state which couples asymmetrically lies energetically lower [cf. Fig. 5.3(b)],

electrons from the drain are very likely to enter the dot into this state, but their further

transport to the source is blocked. Electrons from the source reservoir are then expected

to tunnel mainly into the symmetrically coupled state and leave the dot to the other side.

Vice versa, if the state which couples symmetrically to both sides is the ground state, a

much smaller difference can be expected between the transport in both directions.

Both the external gate voltage (VP) and the magnetic field (B‖), shift the energetic

position of the QD states with respect to each other. VP changes the strength and the

shape of the confinement potential of the QD, which itself determines the level splitting

between the QD states. The resulting energetic shift varies for states with different spacial

orientations. By applying an in-plane magnetic field, the energies of the QD states shift

due to the Zeeman effect according to δEZ = mJgµBB, where mJ is the magnetic quantum

number of the QD state with total angular momentum J , g is the associated g-factor, and

µB is the Bohr magneton. For a single QD state, the orbital part of the electronic wave

function remains almost unchanged when B‖ is increased. This ensures that the coupling

of this single QD state to the leads through the tunnel barriers is mostly independent of

the magnetic field. If two states possess different magnetic quantum numbers, B‖ can be

1The difference between source and drain can be due to differences in electron densities or magnetiza-
tion. For example, an asymmetric transport gap can be accomplished in a spin blockade scenario where
the addition of one electron to the dot is forbidden, since electrons from the leads can only change the
spin state of the QD by ∆S = 1/2, though at the same time the next available ground state transition
would require ∆S > 1/2. If, additionally, the electrons in the source were fully spin polarized and those in
the drain were not, only a spin degenerate level would accomplish equal or symmetric transport between
source and drain.
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Fig. 5.4: Conductance peak spacings as a function of B‖ for constant electron numbers in units
of energy. The curves are offset for clarity. The lines are linear fits to the measurement data by
using the indicated slopes.

used to tune both states into resonance. For the investigated QD, this means that the

resonance point for the two states with different coupling properties can be tuned into

the vicinity of the SET conductance peak.

Information about the magnetic quantum numbers and the energetic ordering can be

obtained by analyzing the B‖-dependent evolution of the SET conductance peak-spacings

[DGGW+00, LIH+02, PFM+03]. The spacing between successive SET conductance peaks

changes due to shell filling and spin effects [TAH+96]. Figure 5.4 shows the energy de-

pendence of the spacings between neighboring SET conductance peaks δEZ as a function

of B‖. For clarity, the electrostatic charging energy has been removed and the curves are

vertically offset. The curves are fitted using a linear magnetic field dispersion with a slope

in multiples of gGaAs = − 0.44, which is assumed to be the g-factor of an S = 1/2 state

in the GaAs QD. The slopes of the fitted lines are added in units of µB to the graph. A

positive or negative slope of 0.44 µB denotes that upon successively adding two electrons

to the QD, first the total spin of the QD increases or decreases by 1/2 and then decreases

or increases again by 1/2. At a constant number of electrons on the QD, a change of
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slope indicates either a rearrangement of the QD orbital configuration or a change of the

spin in the ground state. At B‖ = 5 T, such a rearrangement of the electrons in the QD

occurs. For the N +1 electron occupation, the Coulomb blockade resonance peak spacing

increases with a slope of 0.88 µB. This behavior can not be explained by considering spin

states in the QD with S ≤ 1/2, and thus requires the occupation of orbital wave functions

with L > 0.

The peculiar magnetic behavior of the blocking state and the asymmetric transport

behavior indicate that the charge distribution of this state has a preferred spacial orien-

tation and a high magnetic moment. Hence, the asymmetric transport gap most likely

results from a sophisticated spin blockade mechanism due to a QD state with a spacial

orientation in the direction of the drain reservoir.

5.2.3 Comparison of thermovoltage and nonlinear differential

conductance

In order to verify that the measured asymmetric transport gap at the N+1↔N+2-

transition is responsible for the observed asymmetric thermovoltage signal at B = 13 T, a

resonant tunneling model within the Landauer picture [GBJB95] is used to compute the

thermovoltage by numerical integration of the nonlinear differential conductance data.

The total generalized current through the QD is given by

Jtot =

∫ ∞

−∞
dE

(
Λ

h

)
[fL(E, T )− fR(E, T )]t(E) (5.2)

where Λ is either the electron charge −e or the energy (E− µ̄) carried by an electron, f is

the Fermi distribution in the leads, L and R denote the left and the right reservoirs, and

t(E) the energy dependent transmission function. The transport coefficients Lij connect

charge and heat currents (I, Q) to the applied electrochemical potential or temperature

differences in the following way:

(
I

Q

)
=

(
L11 L12

L21 L22

)(
µ̄L/e− µ̄R/e

TL − TR

)
. (5.3)

Within this framework, the linear-response diffusion thermopower is given by

S = −L12

L11

= −(− e
Th

)
∫∞
−∞ dE (E − µ̄) t(E) (− df

dE
)

( e2

h
)
∫∞
−∞ dE t(E) (− df

dE
)

. (5.4)

Here, L12 and L11 = G denote the thermoelectric and electric transport coefficients

which describe the response of the system with respect to an applied temperature differ-

ence and bias voltage, respectively. For the calculation, it is assumed that t(E) = dG
dE

and

additionally one accounts for thermal broadening by a constant factor.2 For the numerical

2The constant factor is 1/1.76. It only enters into the amplitude of the calculated coefficients and L11

and L12, but cancels out in the calculation of the thermopower.
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Fig. 5.5: Conductance G (upper panel) and thermopower S (lower panel) at B‖ = 0 T [(a)]
and B‖ = 13 T [(b)]. Black lines indicate experimental data; the red line shows the results
from the numerical integration of the nonlinear differential conductance using Eq. (5.4) for
T = 150 mK. The blue line indicates the sequential tunneling limit for the thermopower of the
left SET resonance for T = 80 mK and EC = 2.2 meV.

integration of dG/dE, it has to be considered that the source and the drain contact couple

capacitively to the QD and the fact that the drain contact is used as the hot reservoir

for the measurement of the thermovoltage. The thermovoltage as a function of plunger

gate voltage is obtained by using subsets of measurement data for t(E), which have been

extracted from dG/dVDS along parallel lines to the dashed line shown in Fig. 5.3(b).

Figures 5.5(a) and (b) show the results of the numerical integration of dI/dVDS ac-

cording to Eq. (5.4) for B‖ = 0 T and B‖ = 13 T. Here, an increased average temperature

of T = 150 mK has been used for the numerical calculations, in order to average over

a set of data points and avoid numerical artifacts. For direct comparison, the measured

zero bias conductance and the corresponding thermopower have been added. For the

experimental data, the temperature of the electron gas T = 80 mK and the temperature

difference ∆T = 30 mK have been obtained independently by analyzing the tempera-

ture dependence of magneto-conductance fluctuations in the electron heating channel (cf.

Chap. 3.3.2.3). In order to account for the temperature dependence of the thermopower,

the theoretical results have been scaled according to the sequential tunneling theory, i.e.

S(T ) × T = −〈E〉/2e = S80 mK × 80 mK, which increases the amplitude roughly by a
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factor of 2. This procedure is valid at least in the close vicinity of the SET conduc-

tance peaks, where sequential tunneling contributions to the thermopower dominate (cf.

Chap. 4). Here, 〈E〉 is the temperature independent effective energy gap between the QD

state and the Fermi level.

The curves presented in Figs. 5.5(a) and (b) show good agreement between experimen-

tal and numerically deduced data. The line shape and the approximate amplitude agree

well with the measurement data. Differences between experimental and calculated ther-

mopower are expected to result from neglecting any interplay between the thermoelectric

contributions of sequential tunneling and cotunneling within the theoretical treatment.

The agreement between the numerical analysis and the measurement data confirms that

the calculations using the resonant tunneling model are applicable to the thermoelectric

transport in QDs. Additionally, it confirms that the asymmetric transport gap at the

N+1↔N+2-transition is responsible for the observed asymmetric thermovoltage signal at

B‖ = 13 T.

Furthermore, theoretical model calculations show that the observed behavior can be

explained by a two state model system. Figure 5.6 presents the results of the numeri-

cal calculation of the transport coefficients using Eq. 5.2 and an idealized transmission

function

t(E) = λ(E)× σ(E, T ) = A
(hΓ/2)2

(hΓ/2)2 + (E)2
× f(E − δEZ , T ). (5.5)

Here, λ(E) represents a single QD resonance, while σ(E, T ) accounts for the thermal oc-

cupation of a blocking state which depends on the Zeeman energy separation δEZ between

the transmitting and the blocking state. For the calculations the SET conductance peak

at VP = −2.17 V, (B‖ = 0 T) has been fitted; this gives A = 0.79 and hΓ = 0.2 meV.

In order to account for co-tunneling contributions via additional excited states, a con-

stant amount of Gcot = 0.001 e2/h has been added to the conductance. The amplitude of

Gcot corresponds to the experimentally observed minimum conductance between two SET

conductance peaks. Furthermore, the experimentally determined electron temperature

T = 80 mK and temperature difference ∆T = 30 mK have been used for all calculations.
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Fig. 5.6: Conductance G (upper panel) and thermopower S (lower panel) obtained from a
numerical simulation using Eq. (5.2) and Eq. (5.5) for various Zeeman energies EZ of the blocking
state: without blocking (black), δEZ = −250 µeV (blue), 0 µeV (red), 400 µeV (orange). Other
parameters used for the calculation: EC/eVP = 0.0154, hΓ = 200 µeV, T = 150 mK, and
∆T = 30 mK. For comparison, the experimental data points for B‖ = 0 and 13 T have been
added to the graphs as black and dark yellow crosses, respectively. The experimental data have
been corrected for shifts in the potential of the QD.
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Starting from a situation where the blocking state is energetically above the transmit-

ting state (δEZ = −250 µeV), the upper panel of Fig. 5.6 shows that the SET conductance

peak becomes more and more asymmetric with increasing δEZ . For δEZ = 0, the SET

conductance peak shows a sharp cutoff edge at its center position. The calculated con-

ductance for δEZ = 400 µeV closely resembles the measured G(VP) at B‖ = 13 T. This

value corresponds to the situation where the blocking state is energetically below the

transmitting state. The corresponding thermopower S changes from a point symmetric

shape to a single peak structure as the blocking state is shifted through the resonance.

Again, good agreement with the experiment is achieved for all values of δEZ = 0. The

observed deviations most probably result from neglecting additional excited states which

may broaden the overall line shape in the experimental curves.

5.2.4 Thermal rectification

Although electric rectification is a hint for similar thermal effects, it seems noteworthy

that within the framework of this model for the transmission function [Eq. (5.5)], the QD

acts as a electronic thermal rectifier, which is the thermal analogue to the electrical diode

[Pey06, COMZ06]. The reversal of the temperature difference across the QD results

in a difference in the heat flow through the QD. This is because the line shape of the

transmission function depends on the temperature of the reservoir that determines the

occupation of the blocking state. The rectifying behavior with respect to the thermal

transport is shown in Figs. 5.7(a) and (b), where the parameters of the measurement

(T = 80 mK, δT = 30 mK) have been used for the calculation of the experimentally

measurable thermal conductance κ = L22 − (L12L21/L11). The efficiency of rectification,

(∆κ/κ), reaches 10.5 % at the given temperatures. The effect increases with increasing

temperature difference. However, it has to be considered that very high temperature

differences lead to increased thermally activated transport via other excited states in a

real QD structure. These effects modify the transport properties considerably, and are

not included in the present model calculations. Nevertheless, the perspective of a more

sophisticated device geometry (e.g. in multiple QDs or QD molecules) may lead to an

improved performance.

Finally, it should be mentioned that these investigations show that QDs are capable

of intrinsically uniting electrical and thermal information processing in one device.
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Fig. 5.7: (a) Thermal conductance κ = L22−(L12L21/L11) calculated for T = 80 mK, δEZ = 0,
and ∆T = 30 mK. The red line corresponds to the case of a strong coupling of the blocking
state to the hot reservoir. The blue line indicates a strong coupling of the blocking state to the
cold reservoir. (b) Difference in the heat conductance ∆L22 due to the reversed temperature
difference.
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5.3 Asymmetric thermoelectric transport induced by

excited states

In the previous section, the thermoelectric signal in the regime of asymmetric first order

transport was discussed. Since the asymmetric coupling of the QD states is not restricted

to sequential tunneling via the ground state transition, the thermoelectric signal should

also be sensitive to asymmetries in the sequential and co-tunneling transport via the

excited states of the QD. In the following, the signatures of the various possible situations

and QD configurations will be explained by means of an exemplary measurement.

Figure 5.8 presents a color scale plot of the nonlinear differential conductance against

the plunger gate voltage VP at TL = 40 mK together with the corresponding zero-bias

conductance line and traces of the thermovoltage at high and low temperatures. The

plot shows three successive Coulomb blockade diamonds, which are labelled by N , N+1,

and N+2 respectively. The QD is the same as the one discussed in Chap. 4, where the

change from a sawtooth line shape for high temperatures to a sawtooth shape interposed

periodically by a zero thermovoltage for low temperatures in the Coulomb blockade regime

[see third and fourth panels of Fig. 5.8]. This behavior has been ascribed to the increasing

dominance of the cotunneling transport at very low temperatures.

In the dI/dVDS-measurement, differences between the charge transport from drain to

source and the transport from source to drain are observable. This indicates an asymmet-

ric coupling of the QD to the leads [WHvKP93]. The finite-bias differential conductance

lines for positive VDS differ in height from the lines observed for negative VDS. Most obvi-

ously, this can be seen for the N - and N + 1-electron QD. The single-electron-tunneling

(SET) from source to drain via the ground state transition ((n, 0) ↔ (n+1, 0)) is partially

suppressed for positive VDS. This is evident in the upper right boundary of the Coulomb

blockade diamonds in the first panel of Fig. 5.8. For negative VDS, the corresponding SET

transition from drain to source via the same ground states is clearly visible [see the lower

right boundary of the Coulomb blockade diamonds].

Furthermore, strong negative differential conductance is observable in the SET regime

for excited states of the configuration µ̄n,i;n+1,0 with i > 0. Again, this behavior is less

pronounced for negative VDS. According to the subsequent filling of the single particle

states of the QD with increasing number of electrons N with increasing VP, these lines

of negative differential conductance (excited states) move closer to the ground state SET

transition. Corresponding to the discussion in the previous section, the occurrence of

regions with strong negative differential conductance in the VDS-VP plane is the signature

of various transport blocking mechanisms [WHK95, Tew04]. In connection with the neg-

ative differential conductance, also a suppression of the ground state transitions can be

observed again for finite |VDS| > 0.

These distinct features in the finite-bias differential conductance can be compared to

pronounced features in the fine structure of the thermovoltage line shape, indicated by

the dashed vertical lines in Fig. 5.8. For direct comparison, it is necessary to keep in
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Fig. 5.8: Logarithmic color-scale plot of the nonlinear differential conductance dI/dVDS against
plunger gate voltage VP at TL = 40 mK (first panel) together with corresponding zero bias
conductance G (second panel) and corresponding thermovoltage at low (third panel) and high
(fourth panel) temperatures. White areas mark regions of a negative differential conductance.
Solid vertical lines indicate the gate voltage positions of the zero-bias SET conductance peaks.
Vertical dashed lines mark the points of special interest (see Roman numbers from I to III).
These are discussed in the text and in Figs. 5.10, 5.9 and 5.11. Diagonal dashed lines indicate
the direction in the VP-VDS-plane which has to be considered for the comparison of the nonlinear
differential conductance with the thermovoltage measurement data.
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mind that the drain contact of the conductance measurement connects to the cold side

in the thermovoltage measurement. Thus, a high differential conductance at positive

source-drain voltage translates into a positive energy gap in the thermoelectric transport.

Taking into account the capacitive coupling of source and drain contacts to the QD, the

thermovoltage has to be compared to the excitation spectrum along the diagonal dashed

lines in the first panel of Fig. 5.8.

Note that the N + 2 ↔ N + 3 SET conductance peak is strongly suppressed [see

second panel of Fig. 5.8]. Here, the single particle state, which is responsible for the

negative differential conductance at more negative plunger gate voltages, is the ground

state of the N + 3 electron system. A finite VDS is needed to accomplish transport via

excited states of the system. The corresponding thermovoltage curve shows a non trivial

behavior at low temperatures, which is a mixture of strong cotunneling away from the

SET conductance peak, and mainly thermally activated tunneling at the center of the

SET conductance peak. The following discussion does not cover this situation in detail,

since it is rather similar to the thermoelectric signature of the ground state transition

via an asymmetrically coupled blocking state, which has been discussed in the previous

section. The main differences to the previous case are the strength of the asymmetric

coupling and the ratio of positive and negative thermovoltage contributions via excited

states. Here, negative contributions prevail at very low temperatures, while positive

contributions outweigh in the temperature range above TL = 1 K.

The following subsections discuss the fine structure in the thermovoltage measurements

by analyzing the excited state spectra of the QD. According to the Roman numeral

labelling given in Fig. 5.8, first the effects due to an enhanced SET transport via an

excited state are discussed (I). Then, the signature of a reduced SET transport due to

a blocking excited state is discussed (II). The last subsection focuses on thermoelectric

effects due to cotunneling, in the case of an asymmetric coupling of the excited states

(gate voltage range III).

5.3.1 Fine structure of first order transport via excited states

Figure 5.9 shows a color-scale plot of dI/dVDS and the corresponding thermovoltage in the

vicinity of the N ↔ N +1 SET conductance peak. A diagonal dotted line has been added

to the graph in order to extrapolate the energetic position of an excited state to the zero-

bias axis. The excited state intersects the Coulomb blockade diamond at VDS = 0.5 mV

and VP = −0.76 V. The extrapolated line intersects the zero-bias axis at VP = −0.78 V.

Here, the potential of the QD is raised to the point, where the Fermi levels of source and

drain reservoirs are equal to the electro-chemical potential of the corresponding excited

state resonance µ̄N,2;N+1,0.

The thermovoltage line shape taken at TL = 1.3 K shows a small wiggle at the cor-

responding plunger gate voltage. These kinds of wiggles also show up in the model

calculations of the sequential thermopower contributions, which have been presented in
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Fig. 5.9: Logarithmic color-scale plot of the nonlinear differential conductance
dI/dVDS(VP, VDS) (upper panel) together with corresponding thermovoltage at low (middle
panel) and high (lower panel) temperatures. The solid vertical line at VP = −0.73 V indi-
cates the gate voltage position of the zero-bias SET conductance peak. The diagonal dashed
line indicates the direction in the VP-VDS-plane which has to be considered in the compari-
son of the nonlinear differential conductance with the thermovoltage measurement data, and
extrapolates the enhanced tunneling via one excited state to the zero-bias line at VP = −0.78 V.
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Chap. 4. This kind of fine structure has been observed in previous experimental studies of

the thermopower of QDs [DSB+97]. However, a direct one-to-one comparison of contribu-

tions due to single excited states has not been treated. The fine structure is determined

by the level spacing, and is only equally spaced if the levels are equally spaced. This is

usually not the case in few-electron QDs, and the fine structure on top of the positive

part of the thermovoltage sawtooth does not map to that on top of the negative part.

At TL = 40 mK, the thermovoltage is already dominated by cotunneling processes in

the corresponding gate voltage range. However, the contribution of the excited state to

the thermoelectric transport can still be seen as the beginning of a shoulder toward the

more negative VP.

5.3.2 Thermoelectric signature of blocked excited states

Figure 5.10 shows a color scale plot of dI/dVDS(VP, VDS) in the vicinity of the N + 1 ↔
N + 2 SET conductance peak. For positive VDS and −0.55 V < VP < −0.47 V, strong

negative differential conductance is measured. Furthermore, the ground state transition

is suppressed for VP < −0.55 V and VDS > 0. This behavior indicates that the occupation

of an excited state of the N + 1 electron system blocks further transport from source to

drain for VP . −0.54 V.

The low temperature (TL = 40 mK) thermoelectric transport shows a significantly

reduced positive thermovoltage amplitude compared to the negative thermovoltage am-

plitude at more positive plunger gate voltages (VP ∼ −0.51 V). However, the high tem-

perature (TL = 1.3 K) line shape of the thermovoltage is enhanced for VT = 0.34 µV in

the plunger gate voltage range where the electric transport is characterized by a strong

negative differential conductance for VDS > 0.

The different low and high temperature behaviors of the thermoelectric contribution of

the blocking state can be explained by the interplay between sequential and cotunneling

transport. In general, it has to be considered that the blocking state itself contributes

only weakly to the thermoelectric transport. For the high temperature thermoelectric

transport, which is dominated by sequential tunneling, this means that the electrons

which cross the QD have to tunnel via excited states at a higher energy. This energy is

provided by the high temperature in the leads, and correspondingly the average energy

of tunneling charge carriers, which is proportional to the thermovoltage, is increased.

At low temperatures, the thermal energy is not sufficient to overcome the additional

energy gap and sequential transport is suppressed. The ratio of thermally activated

transport to cotunneling transport is shifted in favor of the cotunneling transport events.

Since the average energy of cotunneling charges is only of the order of kBT , a reduced

thermovoltage signal amplitude results.

Because the blocking state seems to have less influence on the electron transport

from drain to source, the additional energy gap also has little influence on the negative

thermovoltage signal amplitude for VP > −0.54 V.
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Fig. 5.10: Logarithmic color-scale plot of the nonlinear differential conductance
dI/dVDS(VP, VDS) (upper panel) together with corresponding thermovoltage at low (middle
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cates the gate voltage position of the zero-bias SET conductance peak. The diagonal dashed
lines define the area limits in the VP-VDS plane where strong negative differential conductance
contributes to the thermoelectric transport.
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This example shows that the asymmetric coupling of excited states can have a strong

influence on the low temperature thermoelectric transport. In this case, remarkably, the

“fine structure correction” due to the effect of one excited state is about 30% of the

total signal. This may be taken as an indication of the fact that the low temperature

thermoelectric behavior of many material compositions is hardly predictable.

5.3.3 Asymmetric cotunneling

While the examples studied in the previous sections cover the interplay between sequential

and cotunneling of asymmetrically coupled states, the thermoelectric transport due to

pure cotunneling in the case of asymmetrically coupled states is discussed in this part.

The color scale plot of Figure 5.11 shows the nonlinear differential conductance for

the N + 2 Coulomb blockade diamond of Fig. 5.8 in detail. In the regime of Coulomb

blockade, small peaks of enhanced differential conductance dI/dVDS(VDS)|VP=const. are

visible as faint lines parallel to the zero-bias line. These are asymmetrically distributed

in positive and negative VDS directions. The lines end at the intersections of the adjacent

SET regimes, where the SET differential conductance lines of the excited states intersect

the ground state transition. This contribution is visible in all of the Coulomb blockade

diamonds shown in Fig. 5.8. Their amplitude, however, decreases with increasing VP,

which indicates a dependence on the tunneling barrier height.

The low temperature thermovoltage (TL = 40 mK) shows a plateau-like structure from

VP = −0.47 V to VP = −0.47 V instead of the expected zero thermovoltage between two

SET conductance peaks. The high temperature thermovoltage (TL = 1.3 K) shows a

similar but less pronounced plateau structure in the same plunger gate voltage range.

The finite differential conductance in the Coulomb blockade regime, which sets in at

|VDS| > 0, is characteristic for inelastic cotunneling. Two states and electrons participate

in this incoherent second order transport process. First, an electron tunnels from one lead

to the QD, and in the second step, an electron which occupies a different state tunnels

from the QD to the second lead. In order to obey the conservation of energy law, the

energy difference between the two participating QD states δEin has to be provided by

the energy difference of the electrons in the leads prior to and after the transport event.

As discussed in more detail in Chap. 1, this effect depends on the coupling of the QD to

the leads and the level spacing. In the Coulomb blockade regime, inelastic cotunneling

is independent of the potential of the QD. And due to the discrete level spectrum of the

QD, it sets in abruptly at |eVDS| = δEin À kBT .
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Fig. 5.11: Logarithmic color-scale plot of the nonlinear differential conductance
dI/dVDS(VP, VDS) (upper panel) together with corresponding thermovoltage at low (middle
panel) and high (lower panel) temperatures. The solid vertical lines at VP = -0.19 and -0.53 V
indicate the gate voltage positions of the zero-bias SET conductance peak. The vertical dashed
lines mark the beginning and the end of the low temperature thermovoltage plateau between
the SET conductance peaks.



98 5. Thermoelectric transport in the presence of asymmetries

In the same gate voltage range, the sequential tunneling is exponentially suppressed

and does not contribute to the charge transport at very low temperatures. The small-

est energy gap, which mainly determines the signal amplitude of the low temperature

thermovoltage, is determined by the level spacing of the QD.3 In the case of a direction

independent transmission through the QD, positive and negative contributions cancel

each other, and a zero thermovoltage results. However, in the present case, the strongly

asymmetric transport behavior of the given QD states favor the positive contributions

to the thermovoltage. At very low temperatures, the thermovoltage signal is clearly in-

dependent of VP [see lower panel of Fig. 5.11]. This behavior is not preserved for high

temperatures, since part of the transport is again thermally activated. The remaining

strong cotunneling reduces the back-formation of the full sawtooth line shape.

This measurement shows that cotunneling transport strongly contributes to the ther-

moelectric transport. The cotunneling contributions to the thermoelectric transport are

directly visible by means of a QD state, which shows a strong unidirectional transport

behavior. In the QD system under investigation, the asymmetric dynamics lead to ther-

movoltage signals that are in a certain range independent of the QD potential.

3At very low temperatures, the thermoelectric contribution due to inelastic cotunneling is determined
by the energy difference between the ground state and first excited state.



Chapter 6

Thermoelectric transport in the

spin-correlated regime

Since the early 1930s it has been known that the low temperature resistance of certain

bulk metals first decreases, then goes through a minimum at a certain temperature, and

then increases again for decreasing temperature, if the impurities in the material possess

a magnetic moment. This effect has become known as the Kondo-effect, named after

the Japanese theoretician Jun Kondo and the temperature of minimum resistance as

the Kondo temperature. Jun Kondo developed a theoretical model which describes the

observed effect by considering a spin scattering mechanism of the free electrons at the

localized magnetic moments of the impurities [Kon64]. The Kondo effect due to magnetic

impurity scattering in metals is a well known and a widely studied phenomenon [Hew93].

This effect has received much renewed attention after it was first predicted [NL88, GR88,

MWL93, WM94, ISS98] and later on demonstrated [GGSAM+98, COK98, SWEK98]

that the Kondo effect can significantly influence transport through semiconductor QDs.

The problem of transmission through a QD is similar to that of transitions between

channels in a multi-channel scattering problem. Under certain model assumptions, the

transition rate is proportional to the total scattering cross section. Therefore, the two

problems, namely the calculation of the tunneling conductance G and the evaluation of the

impurity contribution to the resistivity of a bulk metal are equivalent [PG01, GR88, NL88].

In a gate defined QD, the electronic states can be controlled externally. This enables

experimenters to address many questions concerning Kondo physics that were previously

inaccessible [vdWDFF+00]. Still unexplored are the thermoelectric properties of a QD

in the presence of Kondo correlations. Such thermoelectric properties can often yield

valuable additional information concerning transport phenomena. In a Kondo correlated

QD, the interaction between the localized magnetic moment of the dot and the free

electrons in the adjacent reservoirs leads to a state which is energetically linked to the

Fermi energy. The correlated state is destroyed in non-equilibrium situations, e.g. for large

bias voltages between the lead reservoirs. In the previous chapters, it has been shown

that the thermopower S is a sensitive tool for measuring the weighted spectral density

99
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Fig. 6.1: Schematic energy diagram of a QD in the presence of (Kondo) spin-correlations. (a)
The electron on the QD occupies a (spin) degenerate energy state. Via an intermediate virtual
excited state, the electron from the QD is replaced by the scattered electron from the reservoir,
leading to a spin flip on the QD. (b) Density of states in the QD. Due to the spin correlations an
additional resonance develops at the position of the Fermi levels of the reservoirs in the Coulomb
blockade energy gap.

of states in the close vicinity of the Fermi energy EF , while leaving the QD at almost

zero-bias at the same time. Thus, S is an almost ideal tool for studying the physics of

the correlated state.

The next section begins with a brief summary of the Kondo-effect in QDs. Then, the

results of thermopower measurements on a lateral QD in a magnetic field perpendicular

to the plane of the 2DEG are presented. As a next step, the magnetic field dependent

and nonlinear conductance measurements are used to identify the presence of Kondo

spin-correlations. The subsequent comparison between the transport regimes of strong

and weak coupling of the QD to the leads shows a clear breakdown of symmetry in the

electron-hole transport through the QD in the presence of Kondo spin-correlations. This

observation is accompanied by qualitative deviations from the semiclassical Mott relation

[see Chap. 2.26]. The chapter ends with the discussion of the experimental findings with

respect to the kinetic and spin-entropy contribution to the thermoelectric transport.

6.1 Kondo-effect in quantum dots

The Kondo effect in QDs is usually described by using the Anderson impurity model.

This model was developed by P.W. Anderson in 1961 [And61]. The model enables the

calculation of the transport effects in metals in the presence of magnetic impurities to

be done. The schematic energy diagram for the Anderson impurity model is analogous

to the schematic energy diagram of a spin degenerate QD in the Coulomb blockade.
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Both systems, i.e. the magnetic impurity in metals and the QD, are characterized by the

electrostatic Coulomb repulsion energy EC which is necessary to add an electron to the

impurity or to the QD. Further parameters for characterizing the system are the energy

level of the spin-degenerate ground state of the impurity or QD, and the constant Γ which

describes the tunnel coupling to the reservoirs.

If the coupling of the QD states to the leads is strong enough, higher order tunnel-

ing processes via virtual intermediate states have to be incorporated into the transport

models, as already discussed. Likewise, elastic and inelastic cotunneling processes in the

absence of spin-magnetic moments have already been treated in the previous chapters

[Chaps. 4 and 5]. When spin is incorporated, the coupling due to the magnetic exchange

interaction modifies the tunneling [cf. Fig. 6.1]. The Kondo effect is a result of this inter-

action between the localized magnetic moment of the QD and the spin of the electrons

in the surrounding electron gas. Successive virtual spin-flip scattering processes effec-

tively screen the local spin of the QD and a quasi bound state is formed by the electrons

in the leads interacting with the QD electrons. In the very low temperature limit, the

magnetic moment of the QD is completely screened and the spin-correlated state forms

a spin-singlet. The stability of this quasi-bound state can be characterized by the energy

bandwidth of its spectral density, which is proportional to the Kondo-temperature TK.

According to Ref. [Hal78], the Kondo-temperature TK for the Anderson-impurity model

is given by the analytical expression:

kBTK =
1

2

√
EC~Γ exp

(
πε0(EC + ε0)

~ΓEC

)
. (6.1)

In the measurements of the nonlinear differential conductance of a QD in the CB regime,

the Kondo effect expresses itself by a resonance at zero bias between successive SET

conductance peaks. In non-equilibrium situations such as in the presence of magnetic

fields, which introduce a Zeeman splitting of the spin states in the QD, or in the presence

of bias voltages between the leads, the Kondo resonance splits apart and decreases in

amplitude [COK98, SWEK98, DFHvdW+02]. This behavior can be explained by the

following facts: (a) the spin-correlated state is linked to the electrons close to the Fermi-

surface and (b) the virtual spin-flip scattering processes have to be energy conserving.

It should be noted here that other more complex situations can lead to spin- or Kondo-

correlated states. These are, among others, the orbital Kondo effect and the Kondo

effect at the transition from spin-singlet and spin-triplet states of the QD [JHKvdZ+05,

vdWDFE+02]. These will not be discussed here further.

For a more precise and quantitative description of the Kondo effect, reference is made

to the large number of literature available on this topic, for example, Ref. [Hew93]. In

addition, summaries of the Kondo effect in QDs can be found in Refs. [Pus06, GP03].
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Fig. 6.2: Color-scale plot of the linear conductance G (left panel) and the thermovoltage VT

(right panel) as function of magnetic field B⊥ and plunger gate voltage VP. Between the SET
conductance peaks, small circles mark odd number of electrons on the QD. The longitudinal
resistance of the current heating channel RC as a function of the magnetic field has been added
in an additional panel above the thermovoltage color scale plot. Grey shaded regions indicate
magnetic field ranges of Shubnikov-de Haas oscillation minima in the panel of the heating channel
resistance.
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Fig. 6.3: SET conductance peak positions as function of magnetic field. The positions of the
SET conductance peaks have been individually offset for clarity. The corresponding voltage
shift is given in the legend. The legend denotes the SET conductance peaks according to the
transition between n and n + 1 electrons on the QD [cf. Fig. 6.2].

6.2 Magnetically induced chessboard pattern

Figure 6.2 shows a color-scale plot of the conductance (left panel) and the thermovoltage

(right panel) of the QD as a function of magnetic field B⊥, applied perpendicular to the

plane of the 2DEG, and as a function of plunger gate voltage VP. Bright and dark colors

correspond to low and high conductance and thermovoltage domains, respectively. Two

transport regimes can be identified immediately. For VP ≥ −1.0 V, the conductance

shows pronounced patterns, while the thermovoltage measurement is characterized only

by a moderate variation in the signal amplitude. For VP ≤ −1.0 V, the situation is

reversed. Here, the thermovoltage shows large signal amplitudes, while the conductance

shows a less pronounced signature.

For VP ≤ −1.0 V, the coupling of the QD to the leads is weak. This results in relatively

sharp SET conductance peaks and a low Coulomb blockade valley conductance. Corre-

spondingly, the thermovoltage oscillations show the pattern of an intermittent sawtooth

[cf. right panel of Fig. 6.2], as has been described in Chap. 4. In the weak coupling regime,

the exact positions of the SET conductance peaks can be identified in the conductance as

well as in the thermovoltage diagrams. This can be used to assign each SET conductance

peak to its corresponding thermovoltage oscillation.
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The sharp SET conductance peaks allow a detailed analysis of the peak positions to

be done. Figure 6.3 shows the evolution of the SET conductance peak positions V ∗
P as a

function of the magnetic field. For clarity, the peak positions have been shifted to zero

voltage and additionally offset. The voltage shifts are given in the legend of Fig. 6.3. In the

gate voltage range VP ≤ −1.1 V [cf. Fig. 6.2], i.e. for electron numbers ranging from N +1

to N +4 (lowest four curves in Fig. 6.3), the peak positions clearly evolve in pairs (lowest

four curves). This can be explained by the fact that when electrons are successively added

to the QD, two electrons with spin up and spin down can occupy the same orbital state.

If the total spin of the QD alternates between S = 0 (all spins are paired) and S = 1/2

(one spin remains unpaired), an odd-even behavior is expected. Adding one electron to

a QD of the first kind (S = 0, all spins are paired) requires an extra amount of energy

δEO(B) in addition to the charging energy, since a higher orbital state has to be occupied.

This extra charging energy is not needed, if an electron is added to a QD with S = 1/2,

since the electron can occupy the same orbital state as the unpaired electron, building a

spin singlet. The evolution of the orbital states as function of magnetic field, which was

first calculated the first time by Fock and Darwin [Foc28, Dar30], differs for different QD

states. The pairing behavior allows even and odd numbers of electrons on the QD to be

identified. In Figs. 6.2 and 6.4, small circles mark an odd number of electrons on the QD.

For more positive plunger gate voltages (VP ≥ −1.0 V), the conductance peak posi-

tions show considerable variations in the VP-direction [see Fig. 6.3]. Here, the coupling of

the QD to the reservoirs is increased (as can be seen by the width of the SET conduc-

tance peaks), and the conductance reaches considerable high values even in some Coulomb

blockade valleys of the (VP, B⊥)-plane [cf. left panels of Figs. 6.2 and 6.4]. The regions of

low and high valley conductance alternate along both the VP and the B directions. This

forms a chessboard like pattern, which is displayed in detail in Fig. 6.4. A similar struc-

ture can be observed in the measurement of the thermovoltage in Fig. 6.4 (right panel),

though not as pronounced as in the conductance measurement. For direct comparison,

the hexagonal pattern obtained from the conductance measurement is sketched on top

of the thermovoltage data. A more complex pattern is observed in the VP-direction for

the thermovoltage measurement, since the positions of the conductance resonances are

expected only at every second zero-crossing of the thermovoltage signal amplitude. In

the B⊥-direction, the correspondence of both chessboard patterns is more obvious, since

regions of positive and negative VT alternate with the same periodicity (∆B⊥ = 0.355 T)

as the regions of zero and high CB valley conductance.

Nonlinear differential conductance measurements clarify the origin of the enhanced

conductance in the Coulomb blockade valleys. From the analysis of the Coulomb blockade

diamonds [KMM+97], charging energies varying from EC = 0.6 meV to EC = 1.5 meV

and corresponding intrinsic level widths of hΓ ∼ 0.35 meV to hΓ ∼ 0.15 meV have been

deduced respectively for strong and weak coupling of the dot to the reservoirs. Figure 6.5

shows a color-scale plot of the differential conductance as a function of the QD potential

(∝ VP) and VDS at a magnetic field of B⊥ = 1.2 T. Here, alternating regimes of low
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Fig. 6.4: Color-scale plot of the linear conductance G (left panel) and the thermovoltage VT

(right panel) as function of magnetic field B⊥ and plunger gate voltage VP in the regime of a
strong coupling of the QD to the reservoirs (small negative plunger gate voltages). The horizontal
bar indicates the periodicity of the chessboard pattern (∆B⊥ = 0.355 T) in the direction of the
magnetic field. A plot of the longitudinal resistance of the current heating channel RC as a
function of the magnetic field has been added as additional panel above the thermovoltage color
scale plot. Grey shaded regions indicate magnetic field ranges of Shubnikov-de Haas oscillation
minima in the panel of the heating channel resistance.
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Fig. 6.5: Color-scale plot of the finite-bias differential conductance as a function of the QD
potential (∝ VP) and the externally applied bias voltage across the QD (VDS). Alternating
regimes of low and high conductance are observed between successive conductance peaks within
the CB diamonds (dashed lines).

and high conductance between two successive conductance peaks can be observed in the

gate-voltage range −0.7 < VP < −1.2 V along the zero bias line [VDS = 0, horizontal

solid line in Fig. 6.5].1 At VP = −1.08 V (high conductance between two Coulomb

blockade peaks) a VDS-dependent trace shows a clear zero bias peak in the differential

conductance, in contrast to a VDS trace taken in the adjacent conductance valley at

VP = −1.21 V [Fig. 6.6]. For VP < −1.2 V, the coupling between the QD electrons and

the surrounding 2DEG decreases and no further zero bias peaks are observable in the

VDS-dependent differential conductance. These zero bias resonances are characteristic for

Kondo correlated systems [Hew93]. In the following, regions of enhanced conductance in

the Coulomb blockade valleys of the chessboard pattern are assigned as magnetic field

and voltage ranges where spin correlations modify the transport characteristics.

In the past, several experimental investigations of QDs in magnetic fields perpendicular

to the 2DEG plane have shown a similar magnetically induced chessboard pattern in

the conductance [SWEvK00, KWS+01, SJH+02, FKH+02, KFB+03]. The occurrence of

the hexagonal pattern, which is indicated with red lines in Fig. 6.4, has been explained

1The QD potential has shifted with respect to those in Figs. 6.2 and 6.4. Due to a power failure of
the gate voltage source during the measurement, the QD had to be readjusted.
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Fig. 6.6: Traces of the differential conductance as a function of the applied drain-source voltage
at constant plunger gate voltages VP = −1.08 V (black line) and VP = −1.08 V (red line).

quantitatively in terms of a constant-interaction model of coupled QDs [SvdWDF+03].

In strong perpendicular magnetic fields, compressible and incompressible regions are

formed in the QD corresponding to the Landau level quantization in the 2DEG [MFK+92,

vKGW05].2 The electron density distribution of a QD in the quantum Hall regime can be

calculated by using a self-consistent iterative solution of the QD Hamiltonian [Eq. (1.1)]

in the framework of the Thomas-Fermi approximation. Figures 6.7(a) and (b) depict

schematically the situation for a QD when only two Landau levels are filled. Within the

constant-interaction model [SvdWDF+03], electrons from different Landau levels (index ν)

behave like electrons from separate QDs with capacitances Cν . These QDs are capacitively

coupled to each other Cνi,νii
and the plunger gate couples capacitively to all Landau levels

with different lever arm (Cp,ν).

Principally, the magnetic field induces the depopulation of higher Landau levels to

lower Landau levels. For low enough magnetic fields, the polarization of the electrons due

to the Zeeman splitting can be ignored, and successive depopulation due to an increase

of the applied magnetic field results in an alternating total spin (S = 0 ↔ S = 1/2) of

2Compressible regions exhibit a metallic behavior of the electrons, which screen the confining potential.
Incompressible regions are characterized by a constant electron density in the regime of completely filled
Landau levels. They show an insulating behavior (energy gap to the next Landau level), and the electrons
cannot screen the confining potential completely.
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Fig. 6.7: Schematic illustrations of a QD in a high magnetic field, which depict the origin of
the chessboard pattern. (a) Electron density profile for a QD in a high magnetic field when
only two Landau levels (0 and 1) are occupied. (b) Capacitance model of the corresponding
effective double-QD from (a). C0 and C1 denote the capacitances of the Landau levels; C12, Cp0

and Cp1 denote the capacitive coupling of the Landau levels to the plunger gate. (c) Schematic
drawing of the chessboard pattern from Fig. 6.4 including representative spin configurations of
inner (orange) and outer (blue) Landau levels.
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the lowest Landau level. Since inner (higher) Landau levels couple much weaker to the

drain and source contacts than the outer (lower) Landau levels, the spin-correlation of

electrons in the leads and the QD is mainly determined by the spin state of the outermost

(lowest) Landau level. Due to the possibility of enhanced spin scattering, an enhanced

conductance results when the total spin of the lowest Landau level S = 1/2 (S 6= 0).

The periodicity ∆B⊥ of the alternating spin configuration in the outermost Landau

level is roughly proportional to the addition of one flux quantum Φ0 = h/e to the dot

[FKH+02]. Thus, the size of the QD can be estimated by using the formula

dQD = 2
√

Φ0/(π∆B⊥). (6.2)

For ∆B⊥ = 0.355 T, the diameter of the QD is approximately 120 nm. This is in

good agreement with the lithographically determined diameter of d = 250 nm, since the

difference between the two values can be explained by the increased depletion of the 2DEG

around the biased gates. Assuming an overall electron density of ne = 2.3 · 1011cm−2, the

total number of electrons is about 26 for the QD labeled N + 10.

The thermovoltage shows an additional modification of the signal amplitude as a func-

tion of the magnetic field. An almost zero signal amplitude coincides with the occurrence

of a minimum in the longitudinal resistance of the heating channel RC [see upper panel

of Fig. 6.2]. The minima of the heating channel resistance result from the conductance

quantization in the 2DEG in strong magnetic fields, which are the origin of the quantum

Hall effect (QHE). In a conductance valley, only completely filled Landau levels contribute

to the electron transport. At this point, it seems reasonable to argue that the scattering

is considerably reduced in this state and the dissipation of the heat takes place close to

the ohmic contacts. At the entrance of the heating channel, the electron gas may not

distribute its energy among the electrons and the electron temperature in the heating

channel does not increase. The necessary temperature difference for the thermovoltage

measurements may not be provided at integer filling factors of the heating channel elec-

tron gas, and the signal amplitude vanishes at these magnetic fields. However, in the

weak coupling regime of the QD, the thermovoltage oscillations are still visible. Thus a

temperature difference still exists. This point is emphasized again in Sec. 6.4.2, where the

origin of amplitude modulation is discussed in more detail.

6.3 Contributions of spin-correlations to the ther-

mopower

Due to the strong variation of the thermovoltage signal amplitude as a function of mag-

netic field, the following discussion focuses on measurements at fixed magnetic fields.

In Fig. 6.8, conductance and thermovoltage measurements are shown as function of VP

at B⊥ = 0 T [Fig. 6.8(a)] and B⊥ = 1.2 T [Fig. 6.8(b)]. The positions of the conductance

resonances (indicated by the two vertical black lines) have been used to compensate for
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Fig. 6.9: Conductance (upper panel), thermovoltage (lower panel, black line), and Mott ther-
mopower (lower panel, red line) as function of plunger gate voltage VP at B⊥ = 0 T [(a)] and
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Coulomb blockade resonances.

potential shifts in the thermovoltage measurement. As mentioned above, the measurement

can be split into two transport regimes. The regime of weak QD-lead coupling (V
P

<

−1.1 V) has already been discussed in Chap. 4. Hence, the discussion here concerns

mainly the regime of the strong QD lead coupling (V
P

> −1.1 V).

Figure 6.9 presents detailed plots of the thermovoltage VT as a function of plunger

gate voltage VP (lower panel) together with the corresponding conductance curve (upper

panel) in the strong coupling regime at B⊥ = 0 and 1.2 T. The strong coupling of the

QD to the leads results in an enhanced conductance between SET conductance peaks due

Kondo correlations in the gate voltage ranges indicated by the grey shaded areas.

At B⊥ = 0 T, an overall enhancement of conductance can be observed in the Coulomb

blockade valleys between the SET conductance peaks at VP = −1.0 V and VP = −0.6 V.

In the same range of the plunger gate voltage, the thermovoltage exhibits an oscillating

behavior. In contrast to the weak coupling regime, where positive and negative thermo-

voltage signal amplitudes are measured in the vicinity of an SET conductance peak, the

thermovoltage shows only positive contributions, except for a small plunger gate voltage

range around VP = −0.85 V.

The contrast between thermoelectric transport with and without spin-correlations is

enhanced at the magnetic field of B⊥ = 1.2 T [cf. Fig. 6.8(b)]. In the conductance (upper
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panel), the alternating occurrence of spin-correlated and normal transport produces an

alternating lifting of the Coulomb blockade between the SET conductance peaks. In the

bottom (thermovoltage) panel, a striking difference between the behavior of VT in the

spin correlated regime as compared with the regime without spin correlations is directly

conspicuous.

In the transport regime without spin correlations, the thermovoltage exhibits both,

negative and positive signal amplitudes in the vicinity of a conductance peak. Corre-

sponding to the discussion in Chap. 4 and Refs. [BS92, TM02], this behavior results

from sequential and cotunneling contributions to the thermopower. In this regime, the

thermovoltage line shape follows qualitatively the negative parametric derivative of the

conductance data, as described by Mott’s relation, Eq. (2.26) [Zim63]. The red lines in

the bottom panels of Figs. 6.8 and 6.9 show the qualitative behavior of the thermopower

as expected from Mott’s relation.

For the spin correlated transport regime, the striking experimental result is that in

the presence of spin correlations at VP = −0.70 V and −0.93 V, VT exhibits only pos-

itive values, while in the absence of these correlations (VP = −0.60 V and −0.85 V),

the usual negative VT shows up between the Coulomb resonances. A comparison to the

semiclassically expected SMott [cf. Eq. 2.26] in Figs. 6.8 and 6.9 shows significant addi-

tional contributions at VP = −0.70 V and −0.93 V of approximately 0.5 µV. This cannot

originate from single particle effects in the close vicinity of the Fermi energy. Clearly, spin

correlations are a prime candidate for explaining the occurrence of these extra contribu-

tions.

Further information can be obtained from the dependencies of these effects on the

temperature, which are shown in Fig. 6.10.3 Figure 6.10 (a) shows the temperature de-

pendence of the thermopower anomaly. The additional contributions to the thermopower

are suppressed at higher temperatures. As a consequence, the expected valley reappears

between the main CB resonances. For comparison, Figs. 6.10 (b) and (c) show the tem-

perature evolution of the zero bias conductance and the bias(VDS)-dependent differential

conductance of the QD. The zero bias resonance in these curves disappears on a similar

temperature scale as the extra features in the thermovoltage, establishing a very strong

indication that these features are related to spin correlations.

6.4 Discussion

6.4.1 Kinetic spin-correlation contribution to the thermopower

The anomalous behavior of the thermovoltage in the spin-correlation regime points to an

asymmetry in the position of the spin correlation resonance εQD with respect to the Fermi

3Note that these experiments were done on the same sample but for a different cooling cycle, where
the regime of spin correlations was observed for a different adjustment of the voltages applied to the QD
gates.
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Fig. 6.10: (a) Thermovoltage signal for various lattice temperatures TL at constant temperature
difference ∆T . The curves are normalized to the value at VP = −1.8 V. At high temperatures
the spin contribution to the thermopower between two CB peaks decreases and the oscillating
CB substructure of the thermopower reappears (indicated by the arrow). (b,c) Temperature
dependent (differential) conductance of the zero bias resonance as a function of QD potential
VP and bias voltage VDS.
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energy levels EF of the reservoirs. One can directly deduce the position of εQD relative

to EF from the sign of the thermovoltage signal. In order to explain the observation of

a positive thermovoltage signal, the spectral density of the correlated state on the QD

must have its weighted maximum above EF in the leads. The bias(VDS)-dependent differ-

ential conductance traces which are shown in Fig. 6.10(c) confirm this assumption. Espe-

cially the low temperature data exhibit a maximum of the spin-correlated conductance at

VDS ≈ −50 µV.

From the experimental characterization of the QD, it has been found that

µ̄QD,N/hΓ > −3 in the gate voltage region where spin correlations are observed [cf. Fig. 6.9

(VP > −1.2 V)]. By describing the spin correlated QD in terms of an asymmetric An-

derson model (i.e. µ̄QD,N 6= −EC/2)4 [Hew93, CHZ94, BF01, DL02], it implies that one

is in the mixed-valence regime. In this limit, the spectral density of the hybridized state

has its maximum above EF [CHZ94, Hew93]. The strong coupling to the reservoirs leads

to significant charge valence fluctuations, i.e. a delocalization of the QD charge. Thus,

the average electron occupation number deviates from an expected integer number, which

results in an overall asymmetry between electron and hole-like transport. According to

Ref. [CHZ94], enhanced positive contributions to the thermovoltage are expected in this

case. This is in contrast to numerical calculations for an ideal Kondo-QD system, where

the QD charge is an integer multiple of the electron charge and one expects both positive

and negative contributions to the thermopower, due to the electron-hole symmetry of the

problem [DL02].

It should be noted here that many experiments reported on Kondo QDs very often

operate in the mixed valence regime [GGSAM+98, COK98]. This notion may have escaped

general attention, because of the insensitivity of zero bias conductance measurements with

respect to the exact location of the spectral density of the hybridized state. In contrast, the

thermopower is very sensitive to this location [BF01], which is why a non-zero contribution

to the thermopower is observed.

Further deviations of the experimental results from the single level Anderson model are

expected for the following additional reasons. First, the intrinsic level broadening of the

QD states, which even leads to an overlap of the states across the CB gap, results in a non-

zero conductance in the CB valleys without spin correlations at VP > −1.1V (cf. Fig. 6.9).

Thus, the truncation of the spectrum to a single level is not strictly possible. Second, it

has to be considered that the QD ground state spin may differ from S= 1/2 at B⊥ = 0 T,

or that the electrons of the QD occupy various Landau levels for B⊥ 6= 0 T, which

corresponds to a multiple QD configuration. In these cases, the Anderson impurity model

does not describe the transport behavior quantitatively, and a strongly non-monotonic

behavior is expected for the transport contributions of the spin correlations as a function

of the experimental parameter B, T and VP [PG01, SWEvK00]. Especially a multi-dot

configuration is expected to show a spin-correlation resonance at finite bias [KKM03].

4Note that, using the notation of the Anderson model as described in Refs. [Hew93, CHZ94], µ̄QD,N

varies between 0 and −EC/2 during the CB oscillations.



6.4. Discussion 115

6.4.2 Spin-entropy flux

So far, the discussion has focused on the kinetic contribution of the heat flux through the

QD and the observed thermoelectric behavior has been strictly attributed to the properties

of the QD. This treatment leaves two questions unaddressed regarding the spin-correlated

transport regime.

First, the QD cannot be seen as an isolated system in the limit of a strong coupling

to the reservoirs. Thus, one can argue that the observed thermoelectric effects have to

be attributed to both subsystems, i.e. to the QD and the reservoirs. In this regard, the

question arises, whether there are any signatures of thermoelectric effects which result

from the thermopower of the 2DEG in the reservoirs.

Second, it has been shown by measurements of the finite bias differential conductance

that the energy difference between the spin-correlated state and the Fermi-levels of the

reservoirs is small. Correspondingly, the kinetic contribution to the heat flux is small and

one may ask whether additional kinetic or configurational contributions to the heat flux

can account for or contribute to the observed behavior of the thermopower in the spin

correlated transport regime, respectively.

In order to address both questions, the magneto-thermopower of the weak coupling

regime and the strong coupling regime of the QD has to be analyzed in more detail in the

following.

6.4.2.1 Magnetothermopower of the 2DEG

Figure 6.11 presents two traces of the thermovoltage as a function of the QD plunger gate

voltage at B⊥ = 1.2 T and B⊥ = 1.4 T. For VP . −1.0 V, both traces exhibit regular

thermovoltage oscillations of almost the same oscillation amplitude. For VP & −1.0 V,

the two curves differ significantly from each other. While for B⊥ = 1.2 T thermovoltage

oscillations are clearly visible, the oscillations vanish and the thermovoltage is almost

zero for B⊥ = 1.4 T. The modulation of the thermovoltage oscillation amplitude as a

function of the magnetic field occurs for magnetic fields above B⊥ > 0.5 T as can be seen

in Figs. 6.2 and 6.4. The periodicity coincides with the Shubnikov-de Haas oscillations

of the longitudinal resistance RC of the heating channel. A minimum or a maximum

in the thermovoltage oscillation amplitude occurs for magnetic fields where also RC(B⊥)

shows a minimum or a maximum. The vanishing of the thermovoltage signal is obviously

independent of the SET conductance peaks, the QD occupation number and the spin

state.

Similar vanishing of the thermopower has been observed for the longitudinal ther-

moelectric power (Sxx) of high mobility heterostructures in the integer and fractional

quantum Hall regime [OvKP86, FDS+88, ROJ+88, ZMW+93, YBSS94, BGM+95]. Ac-

cording to the theory of the diffusion thermopower in high magnetic fields, Sxx is indepen-

dent of scattering and is given by the entropy per particle divided by the particle charge

[GJ82, JG84, Lyo84, Oji84].
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Fig. 6.11: Thermovoltage traces as function of plunger gate voltage VP at B⊥ = 1.2 and 1.4 T.
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In a full Landau level, the charge carriers have zero entropy. Thus, Sxx is expected to

vanish at integer filling factors ν for kBT ¿ ~ωC and hΓLL ¿ ~ωC , where hΓLL is the

Landau level broadening and ~ωC is the cyclotron energy. For a half-filled Landau level,

the entropy per particle is maximum, and Sxx reaches the universal value

Sxx = g
kB

q

ln 2

ν
, (6.3)

where the factor g is a function of kBT/ΓLL [ZL84]. The entropy of the charge carriers

in the Landau levels can be seen to be analogous to the entropy of the particles in filled

or partially filled bands. For a filled band, the entropy (i.e. quantity of heat divided by

temperature) vanishes and heat can be carried to the next level only by activation. The

entropy becomes maximum (i.e. ln 2 per state) at half-filling of the band and drops as the

band is gradually emptied or filled [Lyo84].

The positions of the amplitude variations of the QD thermopower as a function of the

magnetic field show qualitative agreement with these considerations. For VP & −1.0 V,

the QD is strongly coupled to the 2DEG regions in the leads. As a consequence, it

seems that the thermopower of the QD-reservoir system is determined by a mixture of

the behaviors of both subsystems. These are the QD-state, which determines the wave

function overlap of the electronic states in the QD and in the leads, and the entropy of the

electrons of the 2DEG. For VP . −1.0 V, the coupling of QD states to the reservoirs is

weak and sequential tunneling in the classical transport regime dominates. Classical rate

equations [cf. Chap. 4.3 and Ref. [Bee91]] describe the thermoelectric transport. In this

case, the QD can be seen as an isolated system and the thermopower is mostly determined

by the incoherent transport of electrons through the QD.

The discussion above actually implies that the connecting reservoirs differ from ideal

reservoirs with fixed temperature and (electro)chemical potential, which have been as-

sumed so far. More quantitative results would be desirable in order to support the above

statements. However, the lack of adequate samples prevented further studies in this trans-

port regime, which leaves the regime of “coherent entropy transport” for future studies.

6.4.2.2 Spin-Entropy of strongly correlated systems

In principle, one expects contributions from both spin and orbital degrees of freedom to

the entropy flux. However, in systems with dominating strong electron-electron interac-

tion, the thermopower should be dominated by the spin degrees of freedom. This spin

entropy contribution to the thermopower is known from the thermoelectric transport in

the correlated hopping regime [CB76], which occurs in impurity conduction or glasses

containing transition metal ions [AM98, AM01], and in 1-dimensional organic salts in the

narrow band limit [CKE79, Ben74, KBC76]. Recently, the spin entropy contribution to

the thermopower has received strong, renewed attention, since it has been proven to be

the origin of the giant thermoelectric power in layered cobalt oxide structures [WRCO03].
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In these strongly correlated systems, the spin entropy flux accompanying electron trans-

port gives significant contributions to the thermopower [Muk05, KTM00, KM01]. With

respect to QD systems, one may anticipate similar large effects since the transport is

dominated by strong electron-electron interactions and correlation effects. So far, inves-

tigations of the thermopower on single QDs have not shown explicit signs of spin entropy

transport, which may be due to the hardly predictable interplay between the various

kinetic contributions to the thermopower.

Following the theoretical considerations for the charge transport between localized ion

sites in the calculation of the thermopower, a term SSE does arise which is of the form

[Hei61, AM98, AM01]

SSE = −1

q
∆S. (6.4)

Here, ∆S is the change in the entropy of a lattice or impurity site due to the presence

of a charge carrier q. This term takes into account the fact that the charge transport

between two heat reservoirs is accompanied by an entropy flow due to the change of the

configurational entropy of the unoccupied or occupied lattice sites.

For example, the addition of an electron to an empty, spin degenerate state of an iso-

lated site changes its configurational entropy by ∆S = kB(ln gf − ln gi) = kB(ln 2− ln 1) =

kB ln 2, where gi,f denotes the initial and final degree of degeneracy. The temperature

driven electron transport along a linear chain, which is made up of such lattice sites,

enhances the entropy at the end of the chain where the accumulation of electrons occurs.

At this point, it seems straight forward to directly translate this “Gedanken experi-

ment” to the single QD system, although a single site may only under certain circum-

stances be regarded as a very short version of a one-dimensional chain. Starting from this

theoretical concept of spin entropy transport, a simple model for the QD spin correlated

transport regime is discussed in the following.

Basically, the number of electrons on the QD has to fluctuate or change during trans-

port in order for a spin entropy contribution to the thermopower of QDs to be observed.

This condition is necessary, since the spin entropy term SSE results from the entropy

change due to the presence of an electron on the lattice or impurity site. Thus, spin

entropy contributions to the thermopower of QDs are expected to occur in the vicinity of

SET conductance peaks, where the number of electrons on the QD changes.5 In transport

regimes of the full CB or in the completely screened Kondo regime, spin entropy contri-

butions are expected to be small compared to other contributions since the number of

electrons on the QD and thus the configuration remains constant. Assuming that the QD

is in a twofold spin degenerate state and that the hybridization with the free electrons in

the reservoirs results in a spin-correlated transport, the Coulomb blockade oscillations can

be divided into four sections as depicted in Fig. 6.12. Panel (I) of Fig. 6.12 sketches the

zero-bias conductance of a QD as a function of the number of electrons on the QD. The

5This might as well be interpreted as a change of the QD valency.
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Fig. 6.12: Conductance and thermovoltage in the spin-correlated transport regime as a function
of the number of electrons on the QD. For a spin-degenerate ground state of the N -electron QD,
panels I-IV qualitatively show the conductance (I), the thermovoltage without spin correlation
effects (II), the spin entropy contribution to the thermovoltage (III), and the expected total
thermovoltage (IV).



120 6. Thermoelectric transport in the spin-correlated regime

N -electron QD is assumed to have a spin-degenerate ground state (g = 2) and the con-

ductance in the CB valley between the SET conductance peaks is enhanced due to spin-

or Kondo- correlated transport. The ground states of the N ± 1 QDs are not degenerate

(g = 1).

In region 1, the dominating charge transport mechanism is the addition of one electron

to the QD from the hot reservoir, which then leaves the QD to the cold reservoir. During

transport, the change in entropy of the QD due to the presence of the excess electron

is ∆S = Sf − Si = kB(ln gf − ln gi) = kB(ln 2 − ln 1) = kB ln 2. Thus, the spin entropy

contribution to the thermopower is given by SSE = −kB

e
ln 2.

In region 2, the leading charge transport mechanism is the hopping of one QD electron

to the hot reservoir, which is followed by the addition of one electron from the cold

reservoir to the QD. In this case, the change in entropy is ∆S = kB(ln 1− ln 2) = −kB ln 2

and the spin entropy contribution to the QD thermopower is again SSE = −kB

e
ln 2, since

the reversal of the transport direction introduces an additional change of the sign.

In region 3, the transport is dominated by the same hopping process as it is described

for region 1. However, the degeneracies of initial and final state of the QD are inter-

changed. The entropy change due to the presence of the transported electron is given by

∆S = kB(ln 1− ln 2) = −kB ln 2, and the SE thermopower is SSE = kB

e
ln 2.

For region 4, the corresponding analysis yields ∆S = kB(ln 2 − ln 1) = kB ln 2, and

SSE = kB

e
ln 2, where again an additional sign change occurs due to the reversal of the

transport direction.

Figure 6.12 summarizes the results of the above discussion. While panel (I) shows the

zero-bias conductance and defines the four transport regions (1-4), panels (II-IV) depict

the thermoelectric effects. For a better comparison to the experiment, the thermovoltage

signal amplitudes (VT ∝ −S) are shown in these panels. Panel (II) shows the thermovolt-

age as it is expected for single electron tunneling including cotunneling effects without

spin entropy contributions. Panel (III) gives an estimate of the spin entropy contribution

to the thermovoltage signal. The actual contributions may differ from the simplified line

shape shown, since the strength of the correlation is not included quantitatively. It is

assumed that the correlation effects are strongest in the very close vicinity of the con-

ductance peaks, where the energetic difference between the QD states and the electrons

at the Fermi surface is smallest. The combination of panels (II) and (III) is depicted

in panel (IV). Note that the superposition of the regular thermovoltage oscillations and

the spin entropy contribution results in an amplification of every second maximum and

minimum. This is in good agreement with the black curve in Fig. 6.11, where the QD

has been adjusted to show an odd-even behavior of alternating spin-degenerate and non-

degenerate ground states as a function of the plunger gate voltage. As has been discussed

in the previous sections, the measurements of the thermopower of the single QD show

that significant additional contributions to the thermopower can be observed in the spin

correlated transport regime. These occur predominantly in the vicinity of the positions

of the conductance peaks [cf. Fig. 6.11]. Deviations from the theoretically predicted line
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shape may result from small asymmetries in the QD-lead system as have been discussed in

Chap. 5. The value for the experimentally observed additional thermopower contributions

can be estimated to be |S| ≈ 0.5 mV/10 mK = 50 µV/K, which is close to the theoretical

value of SSE = 59.7 µV/K. This leads to the conclusion that the thermoelectric transport

in the spin-correlated transport regime in the presence of charge valence fluctuations is

mainly spin entropy driven.

Obviously, the above model represents a rather simple qualitative description. For

future analysis, a detailed knowledge of the QD ground state configuration is desirable,

since theoretical calculations would have to include all the various transport mechanisms.

The presented model, however, gives an adequate starting point for the analysis of the

thermoelectric transport in the spin-correlated transport regime of QD systems. It has

the capability to address questions concerning the entropy transport and entropy produc-

tion with respect to single bit operations. These questions are of fundamental physical

interest due to their close connection to the problem of minimal energy requirements and

dissipation in communication, and thus ultimately to the so called “Maxwell’s demon”

with respect to the second law of thermodynamics. [Ben98, Lan96].
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Summary

This thesis presents an experimental study of the thermoelectrical properties of semi-

conductor quantum dots (QD). The measurements give information about the interplay

between first order tunneling and macroscopic quantum tunneling transport effects in the

presence of thermal gradients by the direct comparison of the thermoelectric response

and the energy spectrum of the QD. The aim of the thesis is to contribute to the un-

derstanding of the charge and spin transport in few-electron quantum dots with respect

to potential applications in future quantum computing devices. It also gives new insight

into the field of low temperature thermoelectricity.

The investigated QDs were defined electrostatically in a two dimensional electron

gas (2DEG) formed with a GaAs/(Al,Ga)As heterostructure by means of metallic gate

electrodes on top of the heterostructure. Negative voltages with respect to the potential

of the 2DEG applied to the gate electrodes were used to deplete the electron gas below

them and to form an isolated island of electron gas in the 2DEG which contains a few ten

electrons. This QD was electrically connected to the 2DEG via two tunneling barriers.

A special electron heating technique was used to create a temperature difference between

the two connecting reservoirs across the QD. The resulting thermoelectric voltage was

used to study the charge and spin transport processes with respect to the discrete energy

spectrum and the magnetic properties of the QD.

Such a two dimensional island usually exhibits a discrete energy spectrum, which is

comparable to that of atoms. At temperatures below a few degrees Kelvin, the electro-

static charging energy of the QDs exceeds the thermal activation energy of the electrons in

the leads, and the transport of electrons through the QD is dominated by electron-electron

interaction effects. The thesis starts by outlining the basic concepts of the electrical and

thermoelectrical transport through QD systems as well as the details of the sample design

and the experimental techniques.

After the introductory chapters, measurements of the temperature dependent ther-

mopower are presented for the temperature range between 1.5 K and 40 mK. The ther-

mopower of few-electron QDs reveals a transition of the line shape as a function of the

QD potential from a full sawtooth to an intermittent sawtooth behavior. Although, the

two different line shapes have been observed in previous studies of the thermopower of

larger QDs, the results of the present measurements show, for the first time, that both

line shapes can occur within the same sample. The comparison of the experimental data

123
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and theoretical model calculations confirms that the transition is directly related to a

change in the dominant transport processes. While close to the SET conductance peaks,

sequential tunneling processes dominate, the full Coulomb blockaded regime is dominated

by elastic and inelastic cotunneling processes. Compared with many-electron or metallic

QDs, it turns out that in the present experiments the regime of sequential tunneling is

extended over a wider gate voltage range for few-electron QDs. This results in an in-

creasing thermopower peak amplitude with decreasing temperature. Additionally, the

analysis reveals that QDs with known energy spectrum can be used as an excellent tool

for studying the electron distribution in the 2DEG.

Subsequent to the analysis of the underlying transport behavior, the thesis investigates

why the fine structure of low temperature thermopower measurements deviates frequently

from the results of idealized model calculations. In this regard, the thermopower as a

function of the QD potential has been investigated with respect to certain asymmetries in

the QD-lead system. The high sensitivity of the thermopower measurements with respect

to the dynamics of the charge transport has revealed that the shape of the tunneling

barriers has a significant influence on the thermoelectric transport, especially in the regime

of low tunnel barrier heights. In this regime, the transport of electrons from above the

Fermi energy of the reservoirs is favored and the thermopower oscillations obtain an offset

contribution. It has been found out that this offset is weakly dependent on the potential

of the QD and, thus, can be distinguished from other effects.

Furthermore, the effects of an asymmetric coupling of QD states to the contacting

reservoirs on the thermoelectric transport have been investigated. High magnetic fields

parallel to the plane of the 2DEG have been used to tune the energy states of a QD into a

transport regime, where a unidirectional thermoelectric transport in a SET conductance

maximum is observable. By using a resonant tunneling model for the charge transport,

the nonlinear differential conductance measurements have been directly compared to the

thermoelectric signal. The good agreement confirms that the unidirectional thermoelectric

transport is a result of an asymmetric transport gap. This gap is induced by the internal

symmetry properties of the QD and the spacial configuration of the quantum states.

For a corresponding idealized two-level QD system, numerical model calculations show

good agreement with these experimental findings. From the observations and the model

calculations, it has been inferred that a QD can act as a thermal rectifier. These results

imply that in addition to the conventional electronic information processing, information

processing based on the rectification of the electronic heat flow is possible in QD systems.

Additionally, these investigations reveal that the asymmetric coupling of QD states

to the leads also strongly influences the charge transport via excited states in first and

second order tunneling. It is shown that these contributions to the thermoelectric signal

can reach up to 30% of the maximum amplitude of the thermopower oscillations. This

result explains why a detailed knowledge of the band structure and the impurity levels is

necessary in order to understand the complex behavior of the thermopower at very low

temperatures.
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In order to clarify the role of the magnetic or spin properties of QDs in the thermo-

electric transport, the thermopower of a Kondo spin-correlated QD has been studied. The

spin correlations manifest themselves as a zero-bias resonance in the finite-bias differen-

tial conductance measurements. The temperature dependence of the conductance and the

magnetic field induced chessboard pattern in the measurement of the Coulomb blockade

oscillations have been used to identify the thermoelectric signature of the spin-correlated

transport. In this regime, clear deviations from the semiclassical single particle Mott

relation between thermopower and conductance have been observed. This is interpreted

as a clear sign of the underlying many-particle nature of the correlated transport process.

The observed strong thermopower contributions indicate a significant asymmetry in the

spectral density of states of the spin-correlated state with respect to the Fermi energies

of the reservoirs. The measurements agree well with theoretical considerations, which

address the evolution of the thermopower as a function of the QD energy. The results

presented here confirm that the spectral density of states for the spin correlations of a

QD can be explained in the framework of an Anderson impurity model in the presence of

charge valence fluctuations.

Generally speaking, the measurements clarify the overall line shape of thermopower

oscillations and the observed fine structure as well as additional spin effects in the ther-

moelectrical transport. The observations demonstrate that it is possible to control and

optimize the strength and direction of the electronic heat flow on the scale of a single im-

purity and create spin-correlated thermoelectric transport in nanostructures, where the

experimenter has a close control of the exact transport conditions. The results support

the assumption that the performance of thermoelectric devices can be enhanced by the

adjustment of the QD energy levels and by exploiting the properties of the spin-correlated

charge transport via localized, spin-degenerate impurity states. Within this context, spin

entropy has been identified as a driving force for the thermoelectric transport in the

spin-correlated transport regime in addition to the kinetic contributions. Fundamental

considerations, which are based on simple model assumptions, suggest that spin entropy

plays an important role in the presence of charge valence fluctuations in the QD. The

presented model gives an adequate starting point for future quantitative analysis of the

thermoelectricity in the spin-correlated transport regime. These future studies might

cover the physics in the limit of single electron QDs or the physics of more complex struc-

tures such as QD molecules as well as QD chains. In particular, it should be noted that

the experimental investigations of the thermopower of few-electron QDs address questions

concerning the entropy transport and entropy production with respect to single-bit infor-

mation processing operations. These questions are of fundamental physical interest due to

their close connection to the problem of minimal energy requirements in communication,

and thus ultimately to the so called “Maxwell’s demon” with respect to the second law

of thermodynamics.
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Zusammenfassung

Diese Dissertation präsentiert eine experimentelle Studie über die thermoelektrischen

Eigenschaften von Halbleiterquantenpunkten. Das thermoelektrische Verhalten der Quan-

tenpunkte wird unter besonderer Berücksichtigung ihrer jeweiligen Energiespektren und

magnetischen bzw Spin-Eigenschaften diskutiert. Die durchgeführten Messungen geben

Aufschluss über das Zusammenspiel von Einzelelektronentunnelprozessen erster und

höherer Ordnung unter dem Einfluss thermischer Gradienten. Somit trägt diese Dis-

sertation zum Verständnis des Ladungs- und Spintransports in potentiellen, zukünftigen

Bausteinen für die Quanteninformationsverarbeitung bei und ermöglicht neue Einblicke

in das Themengebiet der Thermoelektrizität bei sehr tiefen Temperaturen.

Die untersuchten Quantenpunkte wurden in einem zweidimensionalen Elektronengas

(2DEG) mittels nanostrukturierter, metallischer ,,gates” erzeugt, die auf der Oberfläche

einer GaAs/AlGaAs Heterostrukturoberfläche aufgebracht wurden. Durch das Anlegen

negativer Spannungen in Bezug auf das Potential des 2DEGs, wurde das Elektronengas

unter den gates verdrängt, so dass eine isolierte Insel entstand, die bis zu ca. 30 Elektronen

zählte. Zwei Tunnelbarrieren dienten als elektrische Verbindung dieses Quantenpunkts

zu den Zuleitungen. Unter Verwendung einer speziellen Stromheizungstechnik wurde

eine Temperaturdifferenz zwischen den zwei Zuleitungsreservoirs über dem Quantenpunkt

erzeugt. Die Untersuchung von Ladungs- und Spintransportprozessen erfolgte über den

direkten Vergleich der resultierenden thermoelektrischen Spannung mit den jeweiligen

Energiespektren der Quantenpunkte.

Im Allgemeinen weist eine solche zweidimensionale Insel ein diskretes Energiespektrum

auf, das vergleichbar mit dem einzelner Atome ist. Unterhalb einer Temperatur von weni-

gen Grad Kelvin, ist die elektrostatische Aufladungsenergie des Quantenpunkts größer

als die thermische Anregungsenergie der Elektronen in den Zuleitungen. Als Folge be-

stimmen Elektron-Elektron-Wechselwirkungseffekte den Transport von Elektronen durch

den Quantenpunkt. Ein einführender Überblick über diese grundlegenden Konzepte des

elektrischen und thermoelektrischen Transports durch Quantenpunktsysteme sowie die

experimentellen Techniken wird in den einleitenden Kapiteln geben.

Im Anschluss werden Messungen zur Temperaturabhängigkeit der thermoelektrischen

Kraft (Thermokraft) im Temperaturbereich zwischen 1,5 K und 40 mK diskutiert. Die

Thermokraft von Quantenpunkten mit nur wenigen Elektronen zeigt in ihrem Verlauf

als Funktion des Quantenpunktpotentials einen Übergang von einem sich wiederholenden

127



128 Zusammenfassung

Sägezahnprofil bei hohen Temperaturen, in diesem Fall 1,5 K, zu einem periodisch unter-

brochenen Sägezahnprofil bei tiefen Temperaturen. Obwohl diese zwei unterschiedlichen

Linienformen in vorangegangenen Untersuchungen an größeren Quantenpunkten bereits

beobachtet wurden, gaben die durchgeführten Messungen zum ersten Mal zu erkennen,

dass beide Linienformen in ein und derselben Probe auftreten können. Zudem wurde

nachgewiesen, dass der Übergang eine Konsequenz aus der Änderung der dominieren-

den Transportprozesse ist. Während in der Nähe der Leitwertsmaxima, welche durch

das Einzelelektronentunneln hervorgerufen werden, sequentielles Tunneln vorherrscht,

dominieren elastische und inelastische Cotunnelprozesse im Bereich der vollständigen

Coulombblockade. Im Gegensatz zu Vielelektronenquantenpunkten, sog. metallischen

Quantenpunkten, hat sich in diesen Experimente herausgestellt, dass sich das Regime des

sequentiellen Tunnelns bei Quantenpunkten, die nur wenige Elektronen zählen, über einen

erweiterten Bereich der Elektrodenspannung erstreckt. Dies führt zu einer ansteigen-

den Amplitude der Extrema der Thermokraft mit einhergehender Temperaturabnahme.

Darüberhinaus folgt aus der Analyse der Messdaten, dass Quantenpunkte, deren En-

ergiespektrum im Detail bekannt ist, ein überaus geeignetes Mittel zur Untersuchung der

Elektronenverteilung im 2DEG darstellen.

Ausgehend von dieser Analyse der zugrunde liegenden Transporteigenschaften wird in

der Dissertation die Frage erläutert, aus welchem Grund die Feinstruktur der Tieftem-

peraturmessungen der Thermokraft in einer Vielzahl von Messungen von den Ergebnissen

der Modellrechnungen abwich. Zu diesem Zwecke wurde die Thermokraft als Funktion

des Quantenpunktpotentials hinsichtlich möglicher Asymmetrien im Quantenpunktsys-

tem untersucht.

Die hohe Empfindlichkeit der Thermokraftmessungen bezüglich der Dynamik des La-

dungstransports hat zum Vorschein gebracht, dass im Regime niedriger Tunnelbarrieren

die Thermokraftoszillationen einen Untergrundbeitrag enthalten, der schwach vom Po-

tential des Quantenpunkts abhängt. Dieser Beitrag wurde der Form der Tunnelbarr-

ieren zugeschrieben, welche den Transport von Elektronen oberhalb der Fermienergie der

Zuleitungen begünstigt.

Darüber hinaus wurden Messungen vorgestellt, die es erlaubten das Zusammenspiel

von Quantenpunktzuständen zu untersuchen, welche symmetrisch bzw. asymmetrisch an

die Zuleitungen gekoppelt wurden. Hohe Magnetfelder parallel zur Ebene des 2DEGs wur-

den verwendet um die Quantenpunktzustände in ein Transportregime einzustellen, in dem

ein nur in eine Richtung gerichteter thermoelektrischer Transport in einem Leitwertsmax-

imum des Einzelelektronentunnels beobachtbar war. Basierend auf ein Modell, das einen

resonanten Ladungstransport betrachtet, konnte der nicht-lineare differentielle Leitwert

direkt mit dem Thermospannungssignal verglichen werden. Die gute Übereinstimmung

bestätigte, dass der unidirektionale thermoelektrische Transport die Folge einer asym-

metrischen Transportlücke war. Diese Lücke wurde durch die internen Symmetrieeigen-

schaften des Quantenpunkts und der räumlichen Anordnung seiner quantenmechanischen

Zustände bestimmt. Numerische Berechnungen für ein Zwei-Niveau Quantenpunktsystem
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zeigten eine sehr gute Übereinstimmung mit diesen experimentellen Ergebnissen. Aus

diesen Beobachtungen und den Modellrechnungen folgt, dass ein Quantenpunkt als ther-

mischer Gleichrichter agieren kann. Aus diesen neuen Ergebnissen folgt, dass zusätzlich

zur bekannten elektronischen Informationsverarbeitung, eine Informationsverarbeitung

beruhend auf dem Prinzip der Gleichrichtung des elektronischen Wärmeflusses möglich

ist.

Desweiteren wurde durch diese Untersuchungen deutlich gezeigt, dass das asymme-

trische Koppeln von Quantenpunktzuständen zu den Zuleitungen den Ladungstransport

über angeregte Zustände bei Tunnelprozessen erster und zweiter Ordnung ebenfalls stark

beeinflusst. Es hat sich herausgestellt, dass diese Beiträge zum thermoelektrischen Sig-

nal bis zu 30% der maximalen Amplitude der Thermokraftoszillationen erreichen kann.

Dieses Ergebnis erklärt, weshalb eine detaillierte Kenntnis der Bandstruktur und der

Energiezustände von Verunreinigungen notwendig ist, um das komplexe Verhalten der

Thermokraft bei tiefen Temperaturen zu verstehen.

Um die Rolle der magnetischen bzw. Spineigenschaften von Quantenpunkten im ther-

moelektrischen Transport zu klären, wurde die Thermokraft eines Spin-korrelierten Quan-

tenpunkts untersucht. Die Spinkorrelationen äußern sich in den Messungen des dif-

ferentiellen Leitwerts als zusätzliche Resonanz, wenn keine Vorspannung am Quanten-

punkt anliegt. Die Temperaturabhängigkeit des Leitwerts und das magnetfeldinduziertes

Schachbrettmuster in den Coulombblockadeoszillationen wurden verwendet, um das Re-

gime des Spin-korrelierten Transports zu identifizieren. In der Gegenwart von Spinkorre-

lationen wurde eine offensichtliche Abweichung von der semiklassischen Mott-Beziehung

für Ein-Teilchensysteme zwischen dem Leitwert und der Thermokraft beobachtet. Dies

wird als klares Zeichen der zugrunde liegenden Viel-Teilchennatur des korrelierten Trans-

portprozesses interpretiert. Die beobachteten, starken Beiträge zur Thermokraft weisen

auf eine ausgesprochene Asymmetrie der spektralen Zustandsdichte des Spin-korrelierten

Zustands bezüglich der Fermi-Energien der Reservoirs hin. Die Messungen stimmen mit

theoretischen Überlegungen überein, die das Verhalten der Thermokraft als Funktion

der Quantenpunktenergie behandeln. Dabei bestätigen die gezeigten Ergebnisse, dass

die spektrale Zustandsdichte der Spinkorrelationen eines Quantenpunkts im Rahmen

eines Anderson-Störstellenmodells bei vorhandenen Fluktuationen der Valenzladungen

des Quantenpunkts beschrieben werden kann.

Allgemein betrachtet, erklären die durchgeführten Messungen den Verlauf der Thermo-

kraft als Funktion des Quantenpunktpotentials einschließlich der aufgeprägten Feinstruk-

tur sowie zusätzliche thermoelektrische Effekte, die von den Spin-Eigenschaften des Quan-

tenpunkts hervorgerufen werden. Die Beobachtungen beweisen, dass es möglich ist Stärke

und Richtung des elektronischen Wärmeflusses auf der Größenskala einzelner Verunreini-

gungen zu kontrollieren und gegebenenfalls zu optimieren sowie Spin-korrelierten ther-

moelektrischen Transport in künstlich hergestellten Nanostrukturen zu verwirklichen,

welche eine gezielte Kontrolle der Transportbedingungen erlauben. Die Ergebnisse un-

termauern die Annahmen einer möglichen Verbesserung der Effizienz thermoelektrisch
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aktiver Materialien durch die Anpassung der energetischen Lage entsprechender Quan-

tenpunktzustände und durch die Ausnutzung der thermoelektrischen Effekte im Spin-

korrelierten Ladungstransport durch energetisch entartete, lokalisierte Zustände. In diesem

Rahmen wurde erläutert, dass Spinentropie neben den kinetischen Beiträgen eine weit-

ere treibende Kraft des thermoelektrischen Transports durch Quantenpunkte darstellt.

Grundlegende Überlegungen, die auf einfachen Modellannahmen beruhen, lassen erwarten,

dass die Beiträge der Spinentropie zum thermoelektischen Transport bei vorhandenen

Fluktuationen der Anzahl der Ladungen auf dem Quantenpunkt eine signifikante Rolle

spielen. Das vorgestellte Modell bietet hierzu einen geeigneten Ausgangspunkt für weit-

ere quantitative Analysen der Thermoelektrizität im Spin-korrelierten Transportregime.

Diese zukünftigen Untersuchungen sollten sich voraussichtlich mit der Physik von Ein-

Elektron-Quantenpunkten oder Strukturen höherer Komplexität, wie z.B. Quantenpunk-

tmolekülen oder Kettenstrukturen, bestehend aus Quantenpunkten, befassen. Insbeson-

dere sei darauf hingewiesen, dass die experimentelle Untersuchung der Thermokraft von

Quantenpunktstrukturen, wie sie hier verwendet wurden, den Entropietransport und die

Entropieerzeugung in Bezug zu Ein-Bit-Rechenoperationen setzen. Fragestellungen dieser

Art sind von fundamentalem physikalischen Interesse aufgrund ihrer engen Verknüpfung

mit der Frage nach dem minimalen Energieaufwand, der eine Kommunikation ermöglicht.

Dieses Problem wird häufig mittels des so genannten Maxwell’schen Dämon diskutiert

und hinterfragt in ihrem Ursprung den zweiten Hauptsatz der Thermodynamik.



Appendix A

Sample information

The table lists the layer sequence of the (Ga,Al)As heterostructure, which was used for the

fabrication of samples Bochum I4A and Bochum I13C. The electron density nHe and the

mobility µHe are the nominal values given on the data sheet for the 2DEG heterostructure.

These values may differ from the values obtained form the actual samples. Especially the

mobility turned out to be very sensitive to the cooling procedure from room temperature

to below 77 K. Best stability of the QDs was obtained for cooling with an applied gate

voltage bias of +0.2 V with respect to the potential of the 2DEG.

substrate

cover layer

donor

layer

spacer layer

d
ire

c
tio

n
 o

f 
g

ro
w

th

buffer

2DEG

Wafer

Samples

Bo-11189 :

Bochum I4A, Bochum I13C

Layer Thickness (nm) Material

cover layer 5.0 GaAs:Si

donor layer 26.0 + 4.0 + Si-? Al0.32Ga0.68As

spacer layer 35 Al0.32Ga0.68As

buffer 600 GaAs

nHe = 1.41 x10
11

cm
-2

Si-? doping

µHe = 2.29 10
6

cm
2
/Vs
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Appendix B

Cryogenic filtering

Below temperatures of a few 100 mK, the 2DEG decouples from the lattice due to the

strongly reduced electron phonon interaction. Thus, accurate electronic measurements of

single electron tunneling devices require an appropriate filtering of the connecting wires

into the cryostat in order to reduce thermal noise and noise from other sources in the

environment which would heat up the electronic system. Proper shielding and, especially,

low temperature filtering is of special importance, since even the black body radiation

of 4 K photons is enough to heat up the sample [VOJ+95]. A comparison of various

cryogenic filters can be found in Ref. [BGH+03] and Ref. [CBCP95]. Most of these filters

act as so called lossy lines which employ the high capacity and resistance of the lines going

to the sample as an RC-filter. Here, it should be noted that this filtering technique sets

limitations to the measurement of the thermovoltage of quantum dots. The capacity of

the wiring and the high impedance of the quantum dot in the Coulomb blockade regime

act as a very efficient RC-filter which attenuates the frequency modulated thermovoltage

signal as it has been described in Chap. 3.2.3. Depending on which transport regime is

investigated, e.g. the regime of strong coupling or the regime of a very weak coupling,

respectively, the capacity of the line filters has to be chosen adequately. Thus, in the limit

of a very high QD impedance, a trade-off has to be made between the electron temperature

and the accuracy of the measurement in the fully Coulomb blockaded transport regime.

Figure B.1 shows a 3-D projection of the bottom part of the sample holder which has been

built for the 18-Tesla Leiden cryogenics dilution cryostat unit which is a bottom loading

system. According to the constraints of the investigated QD system and the geometry of

the dilution unit, the capacity of one of the Thermocoaxr cables has been chosen to be

approximately 200 pF at cryogenic temperatures.
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Thermocoax

lines

®

sample 1

sample 2

Fig. B.1: Technical sketch of the sample holder for the bottom loading cryostat. Here, the
wiring is made of approximately 45 cm of Thermocoaxr cables with an outer diameter of 1 mm.
This filter stage is located below the cryostat cold plate and is thermally anchored to the mixing
chamber. The sample holder allows two samples to be measured at the same time; sample 1 is
oriented parallel to the direction of the magnetic field, sample 2 is oriented perpendicular to the
magnetic field direction.
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des Forschungsthemas.

• Herrn Dr. Michael Gbordzoe, einem der wenigen Mitstreiter auf dem Gebiet der
Thermokraft, der stets bereit war und ist darüber zu diskutieren und außerordentlich
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