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Abstract

In the present study numerical methods are employed within the framework of
multiscale modeling. Quantum mechanics and finite element method simulations have
been used in order to calculate thermoelastic properties of ceramics. At the atomic
scale, elastic constants of ten different ceramics (Al2O3, α- and β-SiC, TiO2-rutile
and anatase, AlN, BN, CaF2, TiB2, ZrO2) were calculated from the first principles
(ab-initio) using the density functional theory with the general gradient approximation.
The simulated elastic moduli were compared with measured values. These results have
shown that the ab-initio computations can be used independently from experiment to
predict elastic behavior and can provide a basis for the modeling of structural and
elastic properties of more complex composite ceramics.

In order to simulate macroscopic material properties of composite ceramics from
the material properties of the constituting phases, 3D finite element models were
used. The influence of microstructural features such as pores and grain boundaries
on the effective thermoelastic properties is studied through a diversity of geometries
like truncated spheres in cubic and random arrangement, modified Voronoi polyhedra,
etc. A 3D model is used for modeling the microstructure of the ceramic samples. The
measured parameters, like volume fractions of the two phases, grain size ratios and
grain boundary areas are calculated for each structure. The theoretical model is then
varied to fit the geometrical data derived from experimental samples.

The model considerations are illustrated on two types of bi-continuous materials,
a porous ceramic, alumina (Al2O3) and a dense ceramic, zirconia-alumina composite
(ZA). For the present study, alumina samples partially sintered at temperatures between
800 and 1320◦C, with fractional densities between 58.4% and 97% have been used. For
ZA ceramic the zirconia powder was partially stabilized and the ratio between alumina
and zirconia was varied. For these two examples of ceramics, Young’s modulus and
thermal conductivity were calculated and compared to experimental data of samples of
the respective microstructure.

Comparing the experimental and simulated values of Young’s modulus for Al2O3

ceramic a good agreement was obtained. For the thermal conductivity the consideration
of thermal boundary resistance (TBR) was necessary. It was shown that for different
values of TBR the experimental data lie within the simulated thermal conductivities.
In the case of ZA ceramic also a good agreement between simulated and experimental
values was observed. For smaller ZrO2 fractions, a larger Young’s modulus and thermal
conductivity was observed in the experimental samples. The discrepancies have been
discussed by taking into account the effect of pressure. Considering the dependence of
the thermoelastic properties on the pressure, it has been shown that the thermal stresses
resulting from the cooling process were insufficient to explain the discrepancies between
experimental and simulated thermoelastic properties.





Zusammenfassung

In der vorliegenden Arbeit wurden im Rahmen einer Multiskalen-Modellierung
quantenmechanische und Finite-Elemente-Simulationen verwendet, um thermoelastis-
che Eigenschaften keramischer Materialien zu untersuchen. Auf atomarer Skala wurden
die elastischen Konstanten von zehn unterschiedlichen Keramiken berechnet: Al2O3,
α- und β-SiC, TiO2-Rutil und Anatas, AlN, BN, CaF2, TiB2, ZrO2, wobei die Dichte-
funktionaltheorie mit der verallgemeinerten Gradientennäherung verwendet wurde. Die
simulierten elastischen Konstanten wurden mit gemessenen Werten verglichen. Diese
Ergebnisse haben gezeigt, dass die quantenmechanischen Berechnungen unabhängig vom
Experiment verwendet werden können, um elastisches Verhalten vorauszusagen. Außer-
dem stehen sie als Grundlage für das Modellieren der strukturellen und elastischen
Eigenschaften der komplexeren keramischen Kompositen zur Verfügung.

Um makroskopische Eigenschaften keramischer Komposite aus den Eigenschaften der
beteiligten Phasen zu simulieren, wurden 3D Finite Elemente Modelle benutzt. Der Ein-
fluss von Mikrostrukturmerkmalen, wie Poren und Korngrenzen, auf die thermoelastis-
chen Eigenschaften wurde in verschiedenen Geometrien wie z.B. abgeschnittene Kugeln
in kubischer und zufälliger Anordnung oder Voronoi-Polyeder studiert. 3D-Modelle wur-
den auch für das Modellieren der Mikrostruktur experimenteller Proben benutzt. Pa-
rameter, wie der Volumenanteil der beteiligten Phasen, die Korngrößenverhältnisse und
die Korngrenzflächenanteile wurden für jede Struktur gemessen. Das theoretische Struk-
turmodell wurde dann variiert, um es an die geometrischen Daten der experimentellen
Proben anzupassen.

Das Modell wurde an zwei Materialtypen, einer porösen Keramik, Aluminiumoxid
(Al2O3) und einer dichten Keramik, einem Komposit aus Aluminiumoxid und Zirkonoxid
(ZA) angewendet. Für die vorliegende Arbeit wurden die Al2O3 Proben teilgesintert,
bei Temperaturen zwischen 800 und 1320◦C, mit Dichten zwischen 58.4% und 97%. Für
die ZA Keramik wurde das ZrO2 Pulver partiell stabilisiert und das Verhältnis zwischen
Al2O3 und ZrO2 verändert. Für diese zwei Keramiken wurden der Young Modul und
die Wärmeleitfähigkeit errechnet und mit den experimentellen Daten verglichen.

Der Young Modul der Al2O3 Keramik zeigte eine gute Übereinstimmung zwis-
chen experimentellen und simulierten Werten. Für die Wärmeleitfähigkeit wurde
die Berücksichtigung des Wärmewiderstands an Korngrenzen notwendig. Es zeigte
sich, dass die experimentellen Daten für den Wärmewiderstand mit dem simulierten
Wert kompatibel sind. Im Fall der ZA-Keramik wurde bei höheren ZrO2 -
Volumenanteilen ebenfalls eine gute Übereinstimmung zwischen simulierten und ex-
perimentellen Werten des Young-Moduls und der Wärmeleitfähigkeit beobachtet. Bei
kleineren ZrO2 -Volumenanteilen wurden jedoch ein größerer Young-Modul und eine
größere Wärmeleitfähigkeit in den experimentellen Proben beobachtet. Um diese Un-
terschiede zu erklären, wurde der Einfluss des Drucks auf die thermoelastischen Eigen-
schaften berechnet. Es wurde gezeigt, dass die thermischen Spannungen, die aus dem
Abkühlungsprozess resultieren, nicht ausreichen, um die Unterschiede zwischen experi-
mentellen und simulierten Eigenschaften zu erklären.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 7
2.1 Thermoelastic properties of solids . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Elastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Thermal properties . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Thermoelastic properties at atomic scale . . . . . . . . . . . . . . 11

2.2 QM simulations of material properties . . . . . . . . . . . . . . . . . . . 14
2.2.1 Density functional theory (DFT) . . . . . . . . . . . . . . . . . . 14

2.3 Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . 18

3 Numerical methods 21
3.1 Simulation of material properties using QM . . . . . . . . . . . . . . . . 21

3.1.1 Crystal structure of investigated materials . . . . . . . . . . . . . 22
3.1.2 Convergence of simulations . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Simulation of material properties using FEM . . . . . . . . . . . . . . . . 28
3.2.1 Theoretical microstructures . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Finite element mesh and boundary conditions . . . . . . . . . . . 35
3.2.3 Convergence and verification . . . . . . . . . . . . . . . . . . . . . 37

3.3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Quantitative image analysis . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Experimental measurements of thermoelastic properties . . . . . . 45

4 Results and discussions 47
4.1 Quantum mechanics (QM) simulations . . . . . . . . . . . . . . . . . . . 47

4.1.1 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Elastic constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Finite element simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Microstructure-property relations in synthetic structures . . . . . 52
4.2.2 Microstructure-property relations in real structures . . . . . . . . 61

A Stress calculation on a 3D element 75

i



ii CONTENTS

Bibliography 80



List of symbols iii

List of symbols

Small letters
a edge of the unit cell
ac total neck area
ai total pore-solid interface area
as ratio of total contact area to total interface area
b edge lengths at contact area
c light velocity
ca auto-correlation parameter
ci chord lengths of particles
c′i component i of center of unit cell
cij elastic constants
cP specific heat capacity at constant pressure
c2
s average squared solid chord length

d interatomic distance
dshift displacement of particles (spheres)
fE Eulerian finite strain parameter
fs solid volume fraction
fσ stress concentration factor
g Bridgeman parameter
h height of the truncated pyramid
hP Planck’s constant
k wave vector
kB Boltzmann’s constant
m integer number
r neck radius
ri coordinate of electron i
r′i component i of initial center position of particle
sij elastic compliance constants
ui displacement vector
ui(r) periodic part of cell
v sound velocity
vi volume of element i
vP longitudinal (compressional) sound wave velocity
vS transversal (shear) sound wave velocity



iv List of symbols

Capital letters
B bulk modulus
B ′ pressure derivative of bulk modulus
BA boundary area
CV specific heat capacity at constant volume
E Young’s modulus
Es scaled Young’s modulus
Emin minimum of energy
E[ρ] universal functional of energy
Exc[ρ] exchange-correlation functional
G shear modulus
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Chapter 1

Introduction

1.1 Motivation

As a result of their brittleness and difficulty of manufacturing, ceramic materials were
useful for millennia only in the making of pottery and other artworks. However, the
demand for microelectronics and structural composite components have created a high
request for ceramics. Modern ceramics offer a wide range of mechanical, thermal and
chemical properties with applications from combustion engines to artificial teeth. Fur-
ther progress has followed as the behavior of ceramics was better understood. Physical
mechanisms which govern the behavior of these materials can be better understood
with the aid of computational modeling. Once having gained such knowledge it can be
utilized for design of materials and improvement of properties.

Generally, the microstructure of a ceramic is characterized by grains, grains bound-
aries, pores and glass phases. In order to simulate the material properties, it is therefore
necessary to construct a representative geometry - a representative volume element
(RVE) - that incorporates overall features of the real structures, like volume fraction of
different phases, interfaces between different phases, etc. For the accuracy of the results,
validation of the models is an important issue in material modeling. The predictive ca-
pabilities of the model should be validates by recourse to other simulation approaches
and/or by recourse to experimental data. Here it is worth mentioning that experimen-
tal characterization often yields an incomplete picture of the material’s behavior. If the
agreement between experiment and predictions is not satisfactory, identification of the
causes is of high interest.

The present thesis is devoted to computational simulations of ceramics. The mod-
eling of the entire behavior is far beyond the scope of this work, which would require
the treatment of a huge number of different properties, mechanisms and phenomena.
Considerations are focused on the thermoelastic behavior as response to mechanical and
temperature loading. Numerical methods are employed within the framework of mul-
tiscale modeling. In multiscale modeling, the goal is to predict the performance and
behavior of complex materials across relevant length and time scales, starting from fun-
damental physical principles and experimental data. At the atomistic scale (nanometer),
electrons govern the interactions of atoms in a solid, and therefore a precise quantum
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2 CHAPTER 1. INTRODUCTION

mechanical description is required to characterize the collective behavior of atoms in a
material. However, at the engineering scale, forces arising from macroscopic stresses and
temperature gradients may be the controlling elements of materials performance. At in-
termediate scales, defects such as dislocations, grain boundaries etc. control mechanical
and thermal behavior on the microscale (tens of micrometers), while large collections
of such defects, grain boundaries and other microstructural elements, like grains govern
mesoscopic properties (hundreds of micrometers). The net outcome of these interactions
is often in the form of a constitutive law that ultimately governs continuum behavior
on the macroscale (centimeters).

For the present study quantum mechanics and finite element method simulations
have been employed in order to calculate thermoelastic properties of materials. At
the atomic scale, elastic constants of different ceramics were calculated from the first
principles. These results could be used further as input properties for finite element
simulations of microstructure properties at the mesoscale. For purposes of computa-
tion, some models of microstructures must be assumed. At the microscale the thermal
resistance at grain boundaries was derived. Fig. 1.1 summarizes the different scales and
indicates the domain to which they apply.

Figure 1.1: Modeling of materials at different scales

Atomistic simulations. Ab-initio quantum mechanical (QM) calculations take
into account the electronic structure by solving, at some level of approximation, the
Schrödinger equation [Sch26]. Despite the remarkable array of techniques available, cal-
culations are typically performed within two computational frameworks. Hartree-Fock
theory [Har28], [Foc30], [Sla51] is the older of the two, and describes the system in
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terms of atomic orbitals, with the many-body wave function approximated as the prod-
uct of one-electron wave functions. The second approach is based on Density Functional
Theory (DFT) usually within either the Local Density Approximation (LDA) [Hed71],
[Cep80] or Generalized Gradient Approximation (GGA) [Per92], [Per96] in which the
energy of the system is a function of its total electron density. DFT is computationally
easier to apply to solid state systems, and so it has become increasingly important in
the study of ceramics over the last years. This method was developed by W. Kohn and
co-workers [Hoh64], [Koh65]. For this work W. Kohn has received the Nobel prize for
Chemistry in 1998. Several academic and commercial software packages are available for
performing QM calculations, some of the better known being CRYSTAL, GAUSSIAN,
CASTEP, WIEN2k. These methods have the disadvantage that they are computatio-
nally expensive; even with modern computers, calculations are confined to at most a
hundred or so atoms. Since many ceramic phases have large unit cells, this places lim-
its on the range of structures and phenomena to which these methods can be usefully
applied. Nevertheless, these methods are vital for the accurate determination of the
fundamental physics and chemistry of ceramics, and are used to solve problems where
knowledge of electronic structure is important.

Mesoscale simulations. Most ceramics are used in polycrystalline form, and it
has long been recognized that the microstructure of ceramics has a profound influence
on their properties. A major goal of current research is therefore the development of
simulation methods that can reliably reproduce the time-evolution of microstructures.
Many processes, such as those involved in the formation and use of ceramic components,
have been successfully modeled using Finite Element Methods (FEM). This is one of
the earliest techniques applied to materials modeling, and is used throughout industry
today. Many powerful commercial software packages are available for calculating 2D and
3D thermomechanical, electromechanical and optical processes, like ANSYS, FLUENT,
ABAQUS, etc. FEM is the simulation method closest to real ceramic applications and
usually relies on a large database of measured materials properties as input. In this
respect, first principles calculations provide the ideal complement to experiments, as
calculations can supply critical information which may be difficult to measure experi-
mentally.

Thermal and mechanical properties such as thermal conductivity, elastic moduli,
thermal expansion and thermal stresses are basic properties, which are crucial in de-
velopment of ceramics. Some thermoelastic properties, like density, heat capacity or
coefficient of thermal expansion, in porous or two phase materials are simply determined
by a rule of mixtures [Has62]. However, thermal conductivity and elastic coefficients
are strongly related to microstructure and therefore, when predicting the thermoelas-
tic properties of materials, one should take into account the microstructure resulting
from the manufacturing of ceramics. To estimate the effective material properties of
porous and bi-continuous ceramics many analytical methods have been developed over
the years. Most of them are essential variants of the composite cylinder model [Has62a]
or self-consistent models [Hil63], [Mil88]. Many studies have investigated the relation
between total pore volume and thermoelastic properties of porous compacts [Mar71],
[Muk98], [Kov01], [Mun01], [Jef02], [Pab03]. In the last decades theories of effective
media, which sufficiently describe microstructures with inclusions or closed pores have
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been widely used [Dea83], [Boc93], [Chu96], [Boc97], [Pet02]. If the pore fraction is
small, the composite properties can be calculated with high accuracy for ellipsoidal pores
[Ond74]. Another class of studies have concentrated on derivation of different bounds.
Variational principles have been used to obtain rigorous upper and lower bounds for
the properties of composites with given properties of the participating phases [Has63],
[Hal76], [Tor91]. The analytical models represent two-phase or multiphase materials
only approximately, as they ignore specific details of the microstructure. To overcome
this serious problem, numerical methods were developed using the increasing computer
power, like random walk [Tob90], [Rae98], finite difference methods [Hah96] and finite
element methods. FEM are easily available and can be used for the calculation of
thermal as well as mechanical properties [Ram93], [Bis97], [Gou00], [Gus00], [Gus01],
[Rob00], [Bir01], [Kar01], [Par01], [She01], [Jef02], [Rob02]. Although two-dimensional
models are still used, many topological features, e.g. particle connectivity, cannot be
adequately described in two dimensions and generally 3-D models are preferred. There
are two types of 3-D models: periodic lattices and random structures. The periodic
lattices are calculated with spherical particles or pores in a simple cubic (sc), body cen-
tered cubic (bcc) or face centered cubic (fcc) arrangement [Jef02]. Sintering necks are
simulated using truncated spheres [Jef02] or sometimes overlapping cylinders [Sch98].
Random microstructures are produced in different ways. Often ellipsoidal particles or
pores with randomly chosen centers and more or less overlap are generated [Jef02],
[Rob02]. The random structures have the advantage that resemble much more the real
microstructures.

The disadvantage of both types of geometric models is that fundamental phenomena
cannot be described using simple particle shapes. Therefore, in this study, other particle
shapes like truncated octahedron, overlapping spheres and cylinders, truncated square
pyramids, Voronoi polyhedra, etc. were considered. Their influence on the thermal
and elastic properties was investigated. The arrangement of the particles within a 3D
unit cell plays also an important role as described in this study. In order to validate
the models and for an improved understanding of the ceramic’s mechanical and ther-
mal properties, some real systems were investigated: a porous alumina (Al2O3) and a
zirconia-alumina composite (Al2O3-ZrO2) ceramic.

1.2 Outline

This thesis is focused on simulations of thermal and elastic properties of different ma-
terials using two approaches: quantum mechanics and finite element based method.
Therefore the outline of the thesis is as follows:

Chapter 2 presents the theory and starts with a summary about the basics of the
elastic and thermal properties of solids. Some thermoelastic properties, like elastic
constants and thermal conductivity are described at the macroscopic as well as the
atomistic scale. The theoretical background concerning the two approaches, ab-initio
(first principles) and finite element methods, are presented in the next subchapters.

Chapter 3, which refers to the methods developed in order to perform the simu-
lations, is divided in three parts. The first part contains the method applied in the
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quantum mechanical calculations. Convergence studies are also included. The second
part describes the method used to perform FEM calculations. Theoretical microstruc-
tures used in FE analysis together with the convergence and validation of simulations
are presented here. The last part contains experimental details. Microstructure of the
ceramic samples as well as measurements of their thermal and mechanical properties
are presented. Some basics of quantitative image analysis used to investigate the real
microstructures are also given.

Chapter 4 titled results and discussions illustrates the results of the simulations
by applying the two approaches (ab-initio and FEM) to various ceramics. First, the
results of QM simulations for ten ceramic systems (Al2O3, α- and β-SiC, TiO2 rutile
and anatase, AlN, BN, TiB2, CaF2 and ZrO2) are presented and discussed. In the
following FEM simulations results concerning the theoretical and real microstructures
are outlined. In every subchapter conclusions concerning the results of QM and FEM
simulations were drawn.
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Chapter 2

Theory

2.1 Thermoelastic properties of solids

2.1.1 Elastic properties

The elasticity of materials is important for the understanding of processes, ranging
from brittle failure to the propagation of elastic waves. The elastic constants of solids
provide information about the bonding characteristic between the atoms, the anisotropic
character of the bonding and structural stability.

The elastic constants relate an applied external force described by the stress tensor
to the resulting deformation described by the strain tensor. Assuming that a crystal is
a homogeneous, anisotropic medium and that stress and strain are homogeneous, the
Hook’s approximation states that the strain, εkl is proportional to the applied stress, σij

and depends on the material properties, described by the constants of elasticity, cijkl:

σij = cijklεkl. (2.1)

Here the four rank tensor of elasticity cijkl consists of 81 components. The three dimen-
sional stress and strain tensors, σij and εkl are defined as:

σij =







σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33





 (2.2)

and

εkl =







ε11 γ12 γ13

γ21 ε22 γ23

γ31 γ32 ε33





 (2.3)

where σ11, σ22, σ33 are tensile (or compressional) stresses in x, y and z direction re-
spectively. The other components of the stress tensor are shear stresses. ε11, ε22, ε33

represents the strain in x, y and z directions respectively. Like in case of stress tensor,
the other components of the strain tensor are shear strains.

7
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To calculate the principal stresses σ1, σ2 and σ3 the three invariants of stress tensor
must be calculated:

I1 = σ11 + σ22 + σ33

I2 = σ11σ22 + σ22σ33 + σ33σ11 − τ12
2 − τ23

2 − τ13
2 (2.4)

I3 = σ11σ22σ33 + 2τ12τ23τ13 − σ11τ23
2 − σ22τ13

2 − σ33τ12
2

Then the characteristic equation of 3D principal stresses is expressed as:

σ3 − I1σ
2 + I2σ − I3 = 0 (2.5)

The three roots of this equation are principal stresses σ1, σ2 and σ3.
In the case of a solid, the hydrostatic (or isostatic) pressure P is defined as one third

of the trace of the stress tensor, i.e. the mean of the diagonal terms:

P =
Tr(σij)

3
=

σ11 + σ22 + σ33

3
(2.6)

Because of the symmetry of both the stress and strain tensor (6 independent com-
ponents each) and due to the reversibility of elastic deformation the numbers reduce to
21 independent components. Voigt introduced a simplification notation known as Voigt
notation. The pairs of indices are replaced by a single index according to the matrix
scheme,







11 12 13
21 22 23
31 32 33





 →







1 6 5
6 2 4
5 4 3





 (2.7)

Finally, the relationship between stress and strain can be written as:

σi = cijεj. (2.8)

The elastic constants can now be summarized readily:

cij =





















c11

c12 c22

c13 c23 c33

c14 c24 c34 c44

c15 c25 c35 c45 c55

c16 c26 c36 c46 c56 c66





















(2.9)

They can be further reduced depending on the symmetry of the medium (see [Nye57]). If
the solid has orthorhombic, hexagonal, tetragonal or cubic symmetry it will be described
by 9, 6, 5 and 3 independent elastic constants, respectively.

In the simplest case of an isotropic elastic solid two elastic moduli are sufficient to
describe the elastic behavior of the materials, e. g. the Lamè constants λL and µL ,
whereby λL is the first Lamè constant and µL is the second Lamè constant. In this case
Eq. (2.8) reduces to:

σij = λL · ∆c · δkl + 2 · µL · εkl (2.10)

with the Kronecker symbol δkl equal to 1 for k = l and 0 for k 6= l, respectively. ∆c

represents the cubic dilatation and for small deformations: ∆c = εxx + εyy + εzz. Other
elastic moduli can be derived from the Lamè constants:
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- bulk modulus, B is a measure for the resistance of the medium to volumetric change
(see Fig. 2.1a) and is given by:

B = λL +
2

3
µL, (2.11)

- Young’s modulus, E is defined as the resistance to elongation and is given by:

E =
(3λL + 2µL)

(λL + µL)
µL, (2.12)

- shear modulus, G (also known as modulus of rigidity) is a measure of the resistance
of the medium to shear (see Fig. 2.1b). The second Lamè constant is identical to
shear modulus:

G = µL, (2.13)

- Poisson’s ratio, ν is defined as the ratio between the fractional lateral contraction
and the fractional longitudinal extension (see Fig. 2.1c) and is given by:

ν =
λL

2(λL + µL)
. (2.14)

Figure 2.1: Illustration of (a) bulk modulus, (b) shear modulus, (c) Young’s modulus
and Poisson’s ratio

Solving the equations of motion through an isotropic elastic medium and using Eq.
(2.10) the velocities for the two types of waves can be derived. The velocities for longi-
tudinal or compressional waves (P ) are:

vP =

√

λL + 2µL

ρ
=

√

√

√

√

B + 4
3
G

ρ
. (2.15)
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In transversal or shear waves (S), the particle oscillation is perpendicular to the propa-
gation direction and involves shearing motions without any volume change:

vS =

√

G

ρ
. (2.16)

Calculation of elastic constants for polycrystalline aggregates

Considering a crystalline aggregate which consists of single phase monocrystals having
a random orientation, the determination of the stress or strain distribution with respect
to an external load can be established for two extreme cases: by equating the uniform
strain in the polycrystalline aggregate to the external strain or alternatively the uniform
stress to the external stress. The former scheme is called the Voigt approximation [Voi28]
and the latter is called the Reuss approximation [Reu29]. It is evident that the Voigt
and Reuss approximations are true only when the aggregate considered is composed
of isotropic crystals. If one wants to calculate the average isotropic elastic moduli
from the anisotropic single crystal elastic constants, one finds that the Voigt and Reuss
assumptions result in the theoretical maximum and minimum values of the isotropic
elastic moduli, respectively.

For specific cases of orthorhombic solids, the Reuss shear modulus (GR) and the
Voigt shear modulus (GV ) are:

GR =
15

4(s11 + s22 + s33) − 4(s12 + s13 + s23) + 3(s44 + s55 + s66)
, (2.17)

and

GV =
1

15
(c11 + c22 + c33 − c12 − c13 − c23) +

1

3
(c44 + c55 + c66), (2.18)

and the Reuss bulk modulus (BR) and the Voigt bulk modulus (BV ) are defined as:

BR =
1

(s11 + s22 + s33) + 2(s12 + s13 + s23)
, (2.19)

and

BV =
1

9
(c11 + c22 + c33) +

2

9
(c12 + c13 + c23). (2.20)

In equations (2.17) and (2.19), the sij are the elastic compliance constants. Note that
the stress-strain relationships can be also written in the matrix form:

εi = sijσj, (2.21)

where sij is the compliance matrix and sij = c−1
ij . Using energy considerations Hill

[Hil52] proved that the Voigt and Reuss equations represent upper and lower limits of
the true polycrystalline constants, and recommended that a practical estimate of the
bulk and shear moduli were the arithmetic means of the extremes. Hence, the elastic
moduli of the polycrystalline material can be approximated by Hill’s average and for
shear moduli it is G = 1

2
(GR + GV ) and for bulk moduli it is B = 1

2
(BR + BV ). The

Young’s modulus, E, and Poisson’s ratio, ν, can be then calculated using the following
formula:

E =
9BG

3B + G
and ν =

3B − 2G

2(3B + G)
(2.22)
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2.1.2 Thermal properties

In addition to the elastic behavior of materials, the thermal behavior is also impor-
tant. To describe the heat transfer in solids, the conduction equation is applied. A
temperature gradient, ∇T , causes a heat flux Q [W/m2], which is described by Fourier’s
law:

Q = −λ · ∇T (2.23)

where λ is a positive coefficient, the thermal conductivity. The heat thus flows in
the direction of the greatest difference in temperature and the rate of flow is directly
proportional to the temperature gradient. If the medium is anisotropic, i. e. if the
conductivity depends upon direction, λ represent the conductivity tensor and has the
following form:

λ =







λ11

λ12 λ22

λ13 λ23 λ33





 (2.24)

where, for example, λ12 denotes the thermal conductivity in the x direction across a
surface with normal in the y direction, λ13 denotes the thermal conductivity in the x
direction across a surface with normal in the z direction, etc. Then the heat flux becomes
a vector quantity.

Transient heat transfer problems occur when the temperature distribution changes
with the time. The fundamental quantity that enters into heat transfer situations not
at steady state is the thermal diffusivity. It is related to the steady-state thermal
conductivity, λ, through the equation:

χ =
λ

cPρ
(2.25)

where χ is the thermal diffusivity, cP is the specific heat at constant pressure and ρ is the
density. The diffusivity is a measure of how quickly a body can change its temperature.
It increases with the ability of the body to conduct heat, λ and it decreases with the
amount of heat needed to change the temperature of a body, cP .

2.1.3 Thermoelastic properties at atomic scale

It is well known that in a crystal the atoms vibrate. Harmonic approximation assume
that the atoms will not deviate substantially from their equilibrium positions. In this
case the potential energy is written as:

U = Ueq + Uharm (2.26)

where Ueq is the equilibrium potential energy and Uharm is the harmonic potential and
usually has a quadratic form. In reality the harmonic approximation neglects important
physical phenomena. In an harmonic crystal there will be no thermal expansion, the
elastic constants will not depend on temperature and pressure, the elastic waves will
not interact and an elastic wave will not be damped in time [Kit96]. If, for example,
the thermal expansion of an harmonic oscillator is considered, it can be seen from the



12 CHAPTER 2. THEORY

form of an harmonic potential (Fig. 2.2a) that the distance d1 − d0 is the same as
the distance d0 − d2. This means that the equilibrium separation is always d0 for all
temperatures, i.e. the coefficient of thermal expansion will be zero. If a potential energy
with an asymmetric curve is considered (Fig. 2.2b), the center of the oscillation is at
a separation which is greater then d0. As the temperature increases the equilibrium
separation increases. The inclusion of the anharmonic terms is therefore very important
when calculating thermal expansion of a solid. Further corrections to U especially those

Figure 2.2: Thermal expansion can be explained using a typical potential energy. At
temperature T = 0 K the energy of the system is Emin. At finite temperatures the finite
energy is Emin + kBT corresponding to an atomic separation between d2 and d1, i.e. d0:
(a) harmonic potential; (b) anharmonic potential

of third and fourth order known as anharmonic terms are of considerable importance in
understanding the physical phenomena mentioned above. The potential energy in this
case is given by [Ash71]:

U = Ueq + Uharm + Uanh (2.27)

Real crystals exhibit thermal resistance which can also be explained through the
anharmonicity effect. Thermal resistance appears as a result of interchange of energy
between lattice waves (phonons), that is, scattering. Scattering can be caused by static
imperfections and anharmonicity. The static imperfections include grain boundaries,
impurities, vacancies, interstitials, dislocations and their associated strain fields. At low
temperatures the thermal energies are not so high, and there are few phonons. That
means the probability of phonons interacting strongly with one another is low. The
energy of the phonons is given by: E = hP c/λ′, where λ′ represents the wavelength
associated with the phonon. In this case the energy of phonons is low and therefore
the wavelength is large. As a consequence, the phonons are not easily scattered by the
impurities and imperfections. With increasing temperatures, there are a large number
of phonons and so the probability of interactions with other phonons is much higher.
The wavelength becomes shorter, which means that the phonons interact strongly with
impurities and imperfections. Elastic strains in the crystals scatter because of the strain
dependence of the elastic properties, a nonlinear and anharmonic effect.

From the kinetic theory of gases, the following expression of the thermal conductivity
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was derived [Kit96]:

λ =
1

3
CV v` (2.28)

where CV is the specific heat at constant volume, v the average velocity of the phonons
and ` the average free path of phonons. Knowing that the sound is transmitted by
the vibrations of the atoms, it can be assumed that the velocity of the phonons is
approximately equal to the velocity of sound. The appropriate average of the sound
velocities is given, in Debye theory by:

v =

[

1

3

(

1

v3
P

+
2

v3
S

)]−1/3

, (2.29)

where vP and vS are longitudinal and transversal average sound velocities. In Debye
theory, the specific heat capacity at low temperature is given by:

CV =
12Rπ4

5

(

T

ΘD

)3

(2.30)

where R is the molar gas constant, T is the temperature and ΘD is the Debye tempera-
ture: ΘD = hPωmax/kB with hP being the Planck’s constant, ωmax the maximal vibra-
tional frequency and kB the Boltzmann’s constant. Therefore at low temperature a tem-
perature dependence of CV on T 3 is predicted, as observed in experiments. At high tem-
peratures CV is limited by the value for the classical harmonic solid: CV = 3NAkB = 3R.
The mean free path of the phonons can be estimated as:

` ≈ d

αγT
, (2.31)

where d is the interatomic distance, α the thermal expansion coefficient and γ the
thermodynamic Grüneisen parameter. That means, the calculation of λ from kinetic
theory requires the calculation of CV , v, α, and γ at the pressure and temperature
conditions of interest.

The coefficient of thermal expansion and Grüneisen parameter are given by:

α =
1

V

(

∂V

∂T

)

P

=
1

B

(

∂P

∂T

)

V

(2.32)

and

γ =
V Bα

CV
(2.33)

where B = −V (∂P/∂V )T is the isothermal bulk modulus. Therefore, Eq. (2.28) be-
comes:

λ =

1
3

(

1
v3

P

+ 2
v3

S

)−1/3

αB

ργ2T
(2.34)

Equation (2.34) gives the expression of thermal conductivity and it can be seen that it
depends on properties like, bulk modulus, coefficient of thermal expansion and Grüneisen
parameter.
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2.2 Quantum mechanics simulations of material

properties

Quantum mechanics (QM) (called also first principles) methods, such as Density Func-
tional Theory (DFT) and Hartree-Fock, require only the positions and atomic numbers
of each atom as input in the calculation. A pre-defined methodology, containing no ad-
justable parameters, approximates a solution to the Schrödinger equation [Sch26]. These
methods work for every element in the periodic table, and a vast literature demonstrates
their accuracy. DFT [Hoh64], [Koh65] is based on functions that describe the electron
density. The results of these calculations usually include the position of all of the atoms
concerned, the forces on them, the electronic structure and the energy of the system.
From these basic data, and how they develop over time, most other key properties can be
derived. In the last years DFT became a very powerful tool in computational condensed
matter physics and therefore, in the present study, this method is employed.

2.2.1 Density functional theory (DFT)

The energy may be computed by solution of Schrödinger equation, which in time-
dependent, non-relativistic, Born-Oppenheimer approximation is:

ĤΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN) (2.35)

Here ri is the coordinate of electron i. The Hamiltonian operator, Ĥ, consists of a sum
of three terms: the kinetic energy, T̂ , the interaction with the external potential, V̂ext

and the electron-electron interaction, V̂ee:

Ĥ = T̂ + V̂ext + V̂ee = −1

2

N
∑

i

∇2
i −

Nat
∑

α

Zαe2

|ri −Rα|
+

1

2

N
∑

i≤j

e2

|ri − rj|
(2.36)

where the external potential represents simply the interaction of the electrons with
the atomic nuclei (the charge of the nucleus at Rα is Zα) and the electron-electron
interaction, is the Coulomb potential between electrons, with e being the electron charge.

Kohn and Sham theorems [Hoh64], [Koh65] lead to the fundamental statement of
the density functional theory:

δ
[

E[ρ] − µch

(∫

ρ(r)dr −N
)]

= 0 (2.37)

The ground state energy and density correspond to the minimum of functional E[ρ],
subject to the constraint that the density contains the correct number of electrons. The
Lagrange multiplier of this constraint is the electronic chemical potential µch. E[ρ] is a
universal functional. If its form is known, it could be inserted into the above equation
and minimized to obtain the exact ground state density and energy.

From the form of the Schrödinger equation (Eq. (2.35)) it can be seen that the energy
functional contains three terms: the kinetic energy, the interaction with the external
potential and the electron-electron interaction, and so we may write the functional as:

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ] (2.38)
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The interaction with the external potential is given by:

Vext[ρ] =
∫

V̂extρ(r)dr, (2.39)

but the kinetic and electron-electron functionals are unknown.
Kohn and Sham proposed the following approach to approximating the kinetic and

electron-electron functionals. They introduced a fictious system of N non-interacting
electrons to be described by a single determinant wave function in N orbitals Ψi. In this
system the kinetic energy and electron density are known exactly from the orbitals:

Ts[ρ] = −1

2

N
∑

i

< Ψi|∇2|Ψi > (2.40)

Here the suffix s emphasizes that this is not the true kinetic energy but that of a
system of non-interacting electrons, which reproduce the true ground state density:
ρ(r) =

∑N
i |Ψi|2. If it is also noted that a significant component of the electron-electron

interaction will be the classical Coulomb interaction written in terms of density as:

VH [ρ] =
1

2

∫

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (2.41)

then the energy functional can be rearranged:

E[ρ] = TS[ρ] + Vext[ρ] + VH [ρ] + Exc[ρ] (2.42)

Here the exchange-correlation functional Exc[ρ] was introduced and is given by:

Exc[ρ] = (T [ρ] − TS[ρ]) + (Vee[ρ] − VH [ρ]) (2.43)

Exc[ρ] is simply the sum of the error made in using a non-interacting kinetic energy
and the error made in treating the electron-electron interaction classically. Writing the
functional Eq. (2.42) explicitly in terms of density and applying the variational theorem
Eq. (2.37), the orbitals, which minimize the energy, satisfy the following set of equations:

[

−1

2
∇2 + νext(r) +

ρ(r′)

|r − r′|dr′ + νxc(r)

]

Ψi(r) = εiΨi(r) (2.44)

in which a local multiplicative potential was introduced: the functional derivative of the
exchange correlation energy with respect to the density,

νxc(r) =
δExc[ρ]

δρ
(2.45)

This set of non-linear equations (the Kohn-Sham equations) describes the behavior of
non-interacting electrons in an effective local potential.

The local exchange correlation energy per electron might be approximated as a simple
function of the local charge density (ε(ρ)). That is, an approximation of the form:

Exc[ρ] ≈ ρ(r)εxc(ρ(r))dr, (2.46)
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where εxc will be the exchange and correlation energy density of the uniform electron
gas of the density ρ - this is the local density approximation (LDA). Within LDA, εxc is
a function of only the local value of the density. It can be separated into exchange and
correlation contributions:

εxc(ρ) = εx(ρ) + εc(ρ) (2.47)

A natural progression beyond the LDA is thus to the general gradient approximation
(GGA). In the GGA a functional form is adopted which ensures the normalization
condition and that the exchange hole is negative definite. This leads to an energy
functional that depends on both the density and its gradient but retains the analytic
properties of the exchange correlation hole inherent in the LDA. The typical form for a
GGA functional is:

Exc ≈
∫

ρ(r)εxc(ρ, δρ)dr (2.48)

For a better understanding of the way that simulations are performed a short description
of some important concepts is presented in the following.

The supercell approach assumes that simulations must be performed on a periodic
system, even when the periodicity is superficial. For example, if one wants to study
molecules it is necessary to assume that they are in a box and treat them as periodic
systems.

The periodic boundary conditions are related to Bloch’s theorem, which uses the
periodicity of a crystal to reduce the infinite number of one electron wave functions to
be calculated to simply the number of electrons in the unit cell of the crystal. The wave
function is written as the product of a wavelike part and a cell periodic part:

Ψi(r) = ui(r) e(ik·r), (2.49)

where k is the wave vector. The cell periodic part, ui(r) can be expanded using a basis
set consisting of a discrete set of plane waves, whose wave vectors are reciprocal lattice
vectors (K) of the crystal:

ui(r) =
∑

K

Ci,K e(iK·r). (2.50)

The reciprocal lattice vectors K are defined by K ·L = 2πm for all L, where L is a lattice
vector of the crystal and m is an integer. Therefore, each electronic wave function, Ψ is
expressed as a sum of plane waves which differ by reciprocal lattice vectors:

Ψk
i (r) =

∑

K

Ci,k+K e(i(k+K)·r). (2.51)

By use of Bloch’s theorem, the problem of the infinite number of electrons has now been
mapped onto the problem of expressing the wave functions in term of an infinite number
of reciprocal space vectors within the first Brillouin zone of the periodic cell, k. This
problem is dealt with by sampling the Brillouin zone at special set of k-points. The
first Brillouin zone can be mapped out by a continuous set of k-points {k : (kx, ky, kz)},
throughout the region of the reciprocal space (k-space). Since k set is dense, there are
an infinite number of k-points in the Brillouin zone at which the wave functions must be
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calculated. Therefore if a continuum of plane wave basis sets are required, the basis set
for any calculation will still be infinite, no matter how small the plane wave energy cutoff
was chosen. For this reason the electronic states are only calculated at a set of k-points
determined by the shape of the Brillouin zone. The reason that this can be done is
that the electronic wave functions at k-points that are very close together will almost be
identical. It is therefore possible to represent the electronic wave functions over a region
of reciprocal space at a single k-point. This approximation allows the electronic potential
to be calculated at a finite number of k-points and hence determine the total energy of
solid. In order to obtain very accurate approximations to the electronic potential there
are a number of methods which choose the set of k-points within the Brillouin zone, the
Monkhorst and Pack scheme [Mon76] being the most commonly used.

The valence electrons of an atom are responsible for the chemical bonding and most
physical properties. The core electrons are affected little by the atomic environment, i.e.
only the valence electrons are considered in the calculations. The real potential, arising
from the nuclear charge and the core electrons, is replaced with an effective potential,
within a core region of radius Rc. This requires fewer plane waves. Fig. 2.3 illustrate a
schematic representation of a pseudopotential. Thus, the pseudopotential is required

Figure 2.3: Schematic representation of a pseudopotential

to reproduce the behavior and properties of the valence electrons in the all-electron
calculation. There are two types of pseudopotentials:

• norm-conserving pseudopotential: the total valence electron density within the
core radius equals that in the all-electron situation;

• ultrasoft pseudopotential: relaxation of the norm-conservation requirement, only
fewer plane waves are required.

The electronic relaxation is also important because it involves the minimization
of the total energy. The electronic wave functions are expanded using a plane-wave basis
set, and the expansion coefficients are varied so as to minimize the total energy. This
minimization can be achieved either by using a band-by-band technique, where each
wave function is optimized independently, or by a modern all-bands method that allows
simultaneous update of all wave functions. Another alternative is based on density
mixing [Kre96]. In this scheme the sum of electronic relaxation electronic eigenvalues
is minimized in the fixed potential. The new charge density at the end of the step is
mixed with the initial density and the process is repeated until convergence.
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2.3 Finite Element Method (FEM)

It is already known that the material properties can be calculated starting from first
principles (quantum mechanics) by using only the coordinates of the atoms in the unit
cell. The method has the advantage to provide high-quality quantitative predictions but
has the disadvantage to be very time consuming when large systems are considered. For
larger systems at a large scale the finite element method can be employed.

The finite element method has a long history of success in diverse applications ranging
from civil engineering to material science. The first applications in engineering date back
to the ’50s. FEM is a numerical technique for solving problems which are described by
partial differential equations or can be formulated as functional minimization [Zie71].
A domain of interest is represented as an assembly of finite elements. Approximating
functions in finite elements are determined in terms of nodal values of a physical field
which is sought. A continuous physical problem is transformed into a discretized finite
element problem with unknown nodal values. For a linear problem a system of linear
algebraic equations should be solved. Values inside finite elements can be recovered
using nodal values.

Fig. 2.4 shows the sequences of a finite element simulation. In the following, some

Figure 2.4: Principle of FEM

important steps which summarize how the FEM is working are presented:
1. Discretization. The first step is to divide a solution region into finite elements.

First the geometry of the domain must be generated. In the work presented here the
software package ANSYS was used. In ANSYS some geometrical objects like keypoints,
lines, areas, volumes are available. After the geometry was obtained the mesh must
be performed. The finite element mesh is typically generated by a preprocessor pro-
gram. The elements can be one, two or three dimensional, depending on the problem
to be solved. Volumes can be meshed with 3D elements, areas with 2D elements, like
shell elements and lines with beam, link or pipe elements. The elements are connected
through nodes, which can have different degrees of freedom (DOF), like displacements,
temperature, potentials, etc. and they are the unknown in FE simulations (see Fig.
2.5). In principle, the mesh consists of several arrays which are nodal coordinates and
element connectivities.

2. Interpolation functions. Interpolation functions are used to interpolate the field
variables over the element. Often, polynomials are selected as interpolation functions.
The degree of the polynomial depends on the number of nodes assigned to the element.
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Figure 2.5: DOFs of various problems

The elements can also have middle nodes (see Fig. 2.6).

Figure 2.6: Different element types

3. Element properties. The matrix equation for the finite element, which relates the
nodal values of the unknown function to the other parameters, should be established.
For this task different approaches can be used. The most convenient are the variational
approach [Mit71] and the Galerkin method [Mit71], [Coo81].

4. Assembly of the element equations. To find the global equation system for the
whole solution region, the all element equations must be assembled, i.e. the local element
equations for all elements must be combined by using element connectivity. Before
solution, boundary conditions (which are not accounted in element equations) should
be imposed.

5. Solving the global equation system. The global finite element equation system is
typically sparse, symmetric and positive definite. Direct and iterative methods can be
used for solution.
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6. Computation of additional results. In many cases one needs to calculate addi-
tional parameters. For example, in mechanical problems strain and stress are of interest
in addition to displacements, which are obtained after solution of the global equation
system.

In Appendix A, an example which contains the calculation of stresses for a 3D
element using FEM is presented.



Chapter 3

Numerical methods

3.1 Simulation of material properties using QM

For the present study calculations of the elastic constants for a wide range of ceramic
materials: Al2O3, SiC, TiO2, AlN, BN, TiB2, CaF2 and ZrO2 were performed. The sim-
ulations based on quantum mechanics method have been employed, by using CASTEP
(Cambridge Serial Total Energy Package) [Seg02], which is a program designed specifi-
cally for solid state material science. It employs density functional theory which allows
to perform first principles (ab-initio) quantum mechanics calculations that explore the
properties of crystals in materials like ceramics, semiconductors, metals, minerals etc.
In Fig. 3.1 a flow diagram shows the steps of a simulation.

In order to perform the simulations, a plane wave basis set was used for expanding
electronic states in the pseudopotential approximation. Plane waves are included with
energies up to a cutoff energy (Table 3.2). The norm-conserving (NC) and ultrasoft
(US) pseudopotentials from the CASTEP database have been employed for the com-
putations. Exchange-correlation effects were taken into account using the generalized
gradient approximation, GGA [Per92] in the formulation of Perdew, Burke and Ernzer-
hof [Per96], [Per96a]. Reciprocal space integration in the Brillouin zone is performed by
summation over k-points. Here the Monkhorst-Pack method [Mon76] was used, whereby
the k-points are distributed homogeneously throughout space in rows and columns that
follow the shape of the Brillouin zone. The number of k-points necessary for converged
results differs between structures due to symmetry and the degree of dispersion in elec-
tronic states (Table 3.2). With the computational parameters applied here a very high
level of convergence of elastic parameters is achieved.

In this study two types of calculations have been carried out. The first set of simu-
lations was performed to obtain the static equation of state (EOS) of above mentioned
ceramic materials. Internal and external degrees of freedom were optimized for a num-
ber of structures (at constant volume), typically covering a compression range from 0.8
to 1.06 relative to the experimental zero pressure volume (see Table 3.2). In order to
obtain the zero pressure volume, V0, the bulk modulus, B and its pressure derivative, B′,
the energies were computed and then used to fit a finite strain equation of state [Bir52]:

P = 3B0fE(1 + 2fE)7/2
[

1 +
3

2
(B ′

0 − 4)fE + ...
]

, (3.1)

21
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Figure 3.1: Flow diagram of quantum mechanics simulations

where fE is the Eulerian finite strain parameter and is given by:

fE =
1

2

[

(

V0

V

)2/3

− 1

]

.

Another set of simulations was performed in order to obtain the elastic coefficients of
ceramic materials. The calculation of the elastic constants from first principles is based
on applying small strains to the ground state structure, followed by the relaxation of the
atomic positions and a subsequent computation of the stress tensor. Elastic coefficients
are then determined from a linear fit of the computed stress to the applied strain, where
3 − 6 amplitudes up to a maximum of 0.003 have been used.

3.1.1 Crystal structure of investigated materials

The unit cells of some materials investigated are shown in Fig. 3.2. In Table 3.1
the crystal structures of the ceramic phases are presented. For rhombohedral crystals,
like Al2O3, there are six independent elastic constants c11, c33 (which represent the
longitudinal distortions in x -(or y-) and z-directions), c44 (shear distortion in the x-
or y-direction), and the off-diagonal constants c12, c13 and c14. Hexagonal structures,
i.e. α-SiC, AlN and TiB2 have also six elastic constants, but only five of them (c11, c33,
c44, c12 and c13) are required to describe their elastic behavior, since c66 = (c11 − c12)/2.
Table 3.1 shows the crystal structure of TiO2 rutile and anatase phases, both structures
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Figure 3.2: Unit cell of Al2O3, CaF2, α − SiC, TiO2 rutile, TiO2 anatase and BN
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having a tetragonal symmetry with six unique elastic constants (c11, c33, c44, c66, c12

and c13). Because of the high symmetry cubic systems like, β- SiC, CaF2 and BN, have
only three elastic constants: c11, c12 and c44. The most complex structure in this study
is the monoclinic ZrO2 crystal, which has 13 elastic constants (c11, c22, c33, c44, c55, c66,
c12, c13, c15, c23, c25, c35 and c46).

3.1.2 Convergence of simulations

Two important parameters that affect the accuracy of calculations are the kinetic cutoff
energy, which determines the number of plane waves and the number of special k-points
used for the Brillouin zone integration. Therefore, convergence of the simulations with
respect to these parameters was studied. Here we present results on the cell volume
as a function of these parameters allowing for the relaxation of internal and external
degrees of freedom . For a given set of k-points and a cutoff energy a calculation was
considered converged when the maximum force on atoms was below 0.03 eV/A and the
stress below 0.05 GPa.

In Fig. 3.3 the results of convergence simulations for two systems, Al2O3 and TiO2

rutile are presented. Further results of the convergence study for every material are
presented in Table 3.2.

The simulations mentioned above were performed on a PC cluster with eight CPUs
(every CPU being a 2.4 GHz Pentium 4). The computational time for the calculation
of the cell volumes through geometry optimization was not expensive (except for mon-
oclinic ZrO2), one to five hours. Concerning the calculation of elastic constants the
computational time was different, depending on the complexity of the structures (for
cubic symmetry some hours and for monoclinic symmetry about 72 hours).
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Table 3.1: Crystal structures of the studied materials. Space group and lattice param-
eters are given in the first line for each material; the atomic positions in the following
lines

Material Space group a (A) b (A) c (A) α ◦ β ◦ γ ◦

Atom Position x y z
Al2O3 R-3cr (167) 5.129 5.129 5.129 55.29 55.29 55.29

Al 4 c 0.145 0.145 0.145
O 6 e 0.947 0.553 0.250

α-SiC P63mc (186) 3.087 3.087 10.046 90 90 120
Si 2 a 0 0 0.188
Si 2 b 0.333 -0.333 0.438
C 2 a 0 0 0
C 2 b 0.333 -0.333 0.250

β-SiC F43m (216) 4.384 4.384 4.384 90 90 90
Si 4 a 0 0 0
C 4 c 0.25 0.25 0.25

TiO2 r P42/mnm (136) 4.594 4.594 2.959 90 90 90
Ti 2 a 0 0 0
O 2 f 0.301 0.301 0

TiO2 a I41/amds (141) 3.776 3.776 9.486 90 90 90
Ti 4 a 0 0 0
O 8 e 0 0 0.208

CaF2 Fm-3m (225) 3.863 3.863 3.863 90 90 90
Ca 4 a 0 0 0
F 8 c 0.25 0.25 0.25

AlN P63m (186) 3.11 3.11 4.98 90 90 120
Al 2 b -0.333 -0.666 0
N 2 b 0.333 -0.666 0.382

BN Fm-3m (225) 3.615 3.615 3.615 90 90 90
B 4 a 0 0 0
N 4 c 0.25 0.25 0.25

TiB2 P6/mmm (191) 3.024 3.024 3.220 90 90 120
Ti 1 a 0 0 0
B 2 d 0.333 0.666 0.5

ZrO2 P21/c (14) 5.145 5.208 5.311 90 99.23 90
Zr 4 e 0.273 0.034 0.209
O 4 e 0.077 0.313 0.305
O 4 e 0.462 0.788 0.436
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Figure 3.3: Convergence study for Al2O3 and TiO2 rutile
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Table 3.2: Computational parameters used in simulations for the elastic constants.
Given are the k-point sampling for reciprocal space integration, the cutoff energy for
the basis set, the type of pseudopotential (PS) used (norm-conserving NC and ultrasoft
US) and the range of cell volume for EOS

Al2O3 α − SiC β − SiC r T iO2 a T iO2

kp 85 28 110 50 84
Ecutoff 500 400 400 450 550
[eV ]
PS US US US US US

Vrange 76.4-90 69.3-87.4 64.9-87.1 59.4-66.1 113.6-148.7
[A3]

CaF2 AlN BN T iB2 ZrO2

kp 60 84 120 162 39
Ecutoff 500 350 400 400 500
[eV ]
PS US US US US US

Vrange 36.6-44.8 33.3-44.2 37.3-50 20.3-27 126.4-148.8
[A3]
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3.2 Simulation of material properties using FEM

The flow chart presented in Fig. 3.4 shows how the calculations of thermal and mechan-
ical microstructure properties have been carried out. In the following sections the steps

Figure 3.4: Flow diagram of microstructure simulation

are described in detail.

3.2.1 Theoretical microstructures

To simulate the macroscopic properties of polycrystalline ceramics three dimensional
structures have been used. The various structures could be classified in two types of
models, depending on the arrangement of the particles within the unit cell:

• Cubic structures - a periodic arrangement of truncated spheres or other particles
with different shapes;

• Random structures - a random arrangement of truncated spheres or Voronoi poly-
hedra.

In this study two phenomena concerning the cubic structures have been investigated:
the effect of different particle shapes as well as the effect of different arrangement of
truncated spheres within the unit cell on thermoelastic properties.
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Different particle shapes

Solid particles with different shapes have been used in simulations. Fig. 3.5 shows some
elementary particle shapes within their simple cubic unit cell. Truncated spheres (Fig.
3.5a) were used in more complex particle arrangement. The truncated octahedron (Fig.
3.5b) was used to compare the effect of curved particle surfaces to flat surfaces as the
latter can occur during sintering of crystalline particles with anisotropic surface energy.
The overlapping spheres and cylinders (Fig. 3.5c) were considered since overlapping
cylinders were introduced by other authors [Och03], [Sch98]. The sphere at the center
of the cell has been added to be able to vary the radius r of the cylinders, which is
identical to the particle contact radius, independently from the solid volume fraction.

Figure 3.5: Simple cubic particles used in the FE simulations: (a) truncated sphere, (b)
truncated octahedron and (c) overlapping sphere and cylinders. Grey lines indicate the
unit cell

A solid volume fraction of 70% has been used in Figs. 3.5 - 3.8. It was calculated
from the radii and edge lengths of the respective simple bodies using elementary geom-
etry. The inverse problem of finding the radii and the edge lengths for given volume
fractions has been solved numerically using an in-house developed software, Geosphere
(F. Raether, Fraunhofer ISC).

In Fig. 3.6 a particle type which allows a much larger variation of neck area than
the overlapping sphere and cylinders is presented. It is formed by a cube (with edge
length b), which has 6 respectively 24 cylindrical contacts (with radius r) to its 6 neigh-
bors. Although this particle type looks somewhat artificial, it was considered helpful
in understanding microstructure in intermediate stage sintering. Those structures are
frequently formed by dense agglomerates loosely connected by small elongated particles.

Fig. 3.7 shows a structure which is very flexible too, but looks more similar to an
individual powder particle. It is formed by six truncated squared pyramids based on the
sides of an enclosed cube. The lateral surfaces of the pyramids meet at a constant open-
ing angle at the edges of the particle contacts. The structure is completely determined
by the opening angle Θ and the volume fraction of solid phase fs:

fs =
a3 + 8h2b + 8hb2 − 12abh

a3
, with h = b[1 + tan(Θ)−1]

−1
(3.2)
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Figure 3.6: Extreme particle shapes used to describe microstructures with high solid
volume fractions and small sintering neck areas: (a) cube with 6 cylindrical contacts
and (b) cube with 24 cylindrical contacts

where b is the edge length at contact area of pyramids (particle contact area is b2), h
height of pyramids and a the edge length of the unit cell. Increasing the opening angle
at constant volume fraction causes a drastic increase of the contact area.

Figure 3.7: Particles formed by six truncated pyramids based on the sides of an enclosed
cube with different opening angles Θ: (a) Θ = 60◦ and (b) Θ = 120◦

Since the plane faces of the structure with truncated square pyramids only reflect
materials with anisotropic interface energy another microstructure has been generated
by looking for the particle pore interface with minimum energy - assuming that the in-
terface energy doesn’t vary with crystal direction (Fig. 3.8). For given volume fractions
of the two phases and given spherical neck areas the minimization was performed by the
computer program Surface Evolver [Bra92]. It was started with a simple prescribed ge-
ometry of cubic symmetry and with correct volume fractions. Due to the high symmetry

of the cubic structure only 1/48th of the volume of the unit cell was actually minimized
and the structures shown in Fig. 3.8 were constructed by symmetry operations. The
interface was composed of small plane triangular facets defined by the coordinates of
their vertices. The vertices were moved after subsequent iterations according to an in-
dividual force vector. The force vector was calculated locally for each vertex from the
tensile stresses originating from the neighboring vertices. Appropriate constraints were
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Figure 3.8: Particles formed by minimizing the interface energy at given ratio between
neck radii r and edge length of the unit cell a: (a) r/a = 0.5, (b) r/a = 0.6, (c) r/a = 0.7

used to ensure that the cubic symmetry was maintained during the minimization. The
mesh was successively refined, ending up with about 100 to 200 vertices. Convergence
was achieved after a total of about 100 iterations. Computation time was less then one
minute on a usual PC. From Fig. 3.8 it can be seen that curvature at the interface
changed from convex to concave if the sintering neck radius, r was increased.

Different particle arrangement

Besides the different particle shapes, various particle arrangements of truncated spheres
within the unit cell were considered. Super cells with cubic symmetry which contains
some tens of particles have been used to investigate the influence of different particle size,
displacement and coordination number on thermoelastic properties. Taking into account
the requirement to maintain the cubic symmetry the allowed geometrical variations are
reduced.

The displacement of the particles was introduced in order to investigate the effect of
agglomeration or large pore formation during sintering. Considering cubic symmetry, a
simple transformation was used which generates a constant gradient in mass. For that
the centers of the particles were shifted by a displacement vector whose i-th component
ui was calculated according to:

ui =
r′i − c′i + a

2
(c′i − r′i)

dshift

a
(3.3)

where r′i is the component i of initial center position of particle, c′i the component i of
center of unit cell, a the edge length of unit cell and dshift a dimensionless parameter
which controls the amount of displacement. If dshift was positive the particles were
shifted towards the center of the unit cell which corresponded to agglomeration (Fig.
3.9b). If dshift was negative the particles were shifted towards the sides of the unit cell
which corresponded to pore formation (Fig. 3.9a).

The effect of particle size was studied using a bimodal distribution of the parti-
cles with two different sphere diameters. The arrangement of the particles was either
homogeneous (smaller particles were surrounded by larger particles or vice versa), or
inhomogeneous (the smaller particles were in the center of the super cell and the larger
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Figure 3.9: Cubic structures with truncated spheres shifted towards (a) the sides and
(b) the center of the unit cell. Some particles were removed to get a better view of the
microstructure and the contact areas are represented with the dark gray color

particles at the edges). In Fig. 3.10 two different super cells with 64 particles and
homogeneous or inhomogeneous arrangement of particles are shown. The different ar-
rangement is supposed to reflect different attractive and repulsive forces between the
smaller and larger particles during the forming process.

Figure 3.10: Cubic structures with (a) homogeneous and (b) inhomogeneous arrange-
ment of small and large particles

All the structures mentioned up to now have 6 nearest neighbors. In the following,
structures derived from bcc and fcc lattices with 8 and 12 nearest neighbors have been
considered (Fig. 3.11). This way the influence of the coordination number on the
material properties could be investigated. Therefore, the number of nearest neighbors
used in simulation covered the range of nearest neighbors observed in green compacts
(6−8) and sintered materials (12−14) [Ger96]. Particle size, displacement and number of
nearest neighbors could be varied at the same time without violating the cubic symmetry
of the super cell.

Random structures

Random structures were derived from a Poisson distribution of spheres centers within
a cube. Initial center positions were obtained by a standard random number generator.
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Figure 3.11: Cubic structures with (a) 8 and (b) 12 nearest neighbors (bcc and fcc
structures, respectively)

Typically four to eight initial spheres were used for one microstructure. Particle com-
paction was considered by starting with a large unit cell and subsequently reducing its
size by an affine transformation of the particle centers. The centers of contacting spheres
were shifted by an individual displacement vector for each sphere, which was calculated
from all its contacts, to prevent overlap with neighboring spheres. When density was
high enough, the movement of the spheres was restricted by other contacts. Then over-
lapping of spheres was allowed and the total elastic energy of all spheres within the unit
cell was minimized by applying a common scaling factor to the individual displacement
vector. The scaling factor was between 0 (soft sphere limit) and 1 (hard sphere limit).
Elastic energy was determined from the sum of the local energies determined by contact
area and sphere radii [Wal87]. According to Gusev et al. [Gus00] periodic boundaries
were introduced by shifting those parts of spheres, which lay outside the cube to the
respective opposite sides of the cube (see Fig. 3.12a). This increased the total number
of spheres to 14 − 30 within the unit cell.

In order to better describe two bi-continuous crystalline phases a Voronoi model is
used. The microstructure is produced from a Poisson distribution of particle centers
within the unit cell where the center positions are obtained by a standard random num-
ber generator. The two phases are attributed randomly to the center points according to
their volume fractions and grain size ratios. The center points are periodically continued
in the neighboring unit cells. Then the Voronoi tessellation is performed by constructing
polyhedra which separate regions closest to each center point. Actually a modification
of this procedure based on radial planes is used to consider different grain sizes of the
two phases. The algorithm is described in Ref. [Gel82]. A typical Voronoi structure is
presented in Fig. 3.12b.

The random structures were produced by using the Geosphere software. It enables
the generation of structures with additional specified geometric properties, like a fixed
average number of contacts per particle (see Fig. 3.13) or contact area, by generating
and testing thousands of structures until the required properties were met. Since many
structures had to be generated to find one valid structure the computational effort for
generating the random structure was much higher than that for super cells. Sintering
necks were constructed as planes defined by the circular edge of the overlap region of
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Figure 3.12: Random structures with periodic boundaries: (a) truncated spheres and
(b) Voronoi polyhedra

Figure 3.13: Random structure of spherical particles with (a) 4.75 and (b) 7.5 con-
tacts per particle. Here the solid particles are transparent and the contact areas are
represented with the grey/red color
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two spheres. To avoid conflicts, the structures, where the center of a sphere lays within
another sphere were not considered.

Some geometric data were derived from the microstructure. Most important were the
interface areas between pores and solid phases, or between the two solid phases and the
neck area at the particle contacts. Also the minimum solid area perpendicular to the flux
or force direction was derived (according to the minimum solid area approach [Ric89]).
Finally, a chord length analysis was performed by randomly selecting the starting point
and direction of 10, 000 test lines within the microstructure and determining the volume
fractions of different phases, the number of interfaces and the mean value of the squared
solid chord lengths. The volume fraction of the phases (solid-solid or solid-pores) and
the number of interfaces from chord length analysis were used to control and match
the microstructure to the experimental one. The mean value of the squared solid chord
lengths cs2 was used as a measure for the length of force transmission:

cs2 =

∑

i c
2
i

∑

i ci
(3.4)

with ci the chord length of individual particles. The homogeneity of the microstructure
was measured by an auto-correlation parameter ca, which was calculated by summing
up the products of the chord lengths of neighboring particles:

ca =

∑

i cici−1
∑

i c
2
i

(3.5)

3.2.2 Finite element mesh and boundary conditions

In order to ensure that the regions with a fine structure (e.g. contact region at small
sintering necks) are meshed with a sufficiently large number of elements, first a 2D grid
was performed. Different areas, like contact areas, interface areas between solid and
pore phase, side areas of the unit cell, were meshed applying a 2D surface element and
using a fixed number of nodes (typically between 6 and 10) at line segments within the
microstructure. The different phases were then discretized using 3D ANSYS elements,
SOLID87 and SOLID187 for thermal and mechanical simulations, respectively. Contact
(CONTA174) and target (TARG170) elements were used to take into account the ther-
mal resistance at grain boundaries and to evaluate the normal stresses at the interfaces
between different grains. The bulk material properties (thermal conductivity, Young’s
modulus, Poisson ratio etc.) were attributed to different phases.

In the cubic structures the calculations of the thermal properties have been performed
by setting a temperature gradient at two opposite sides of the unit cell and applying
adiabatic boundary conditions to the four remaining sides. The thermal conductivity λ
was averaged at one side with fixed temperature and calculated from the heat flux Q by:
λ = Q/(a · ∇T ). Here a is the edge length of the unit cell and ∇T is the temperature
difference at the opposite sides of unit cell.

In order to obtain the elastic properties of structures with cubic symmetry an uniaxial
tensile strain was applied. On the two opposite sides of the unit cell a small amount of
strain ε is applied, whereas a constraint on the other sides ensured that they remained
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plane during the tension. The Young’s modulus, E, is calculated from the resulting
stress σ determined at one of the two strained sides (see Fig. 2.1c). From the resulting
strain at the perpendicular sides, the Poisson’s ratio was calculated (see Fig. 2.1c).
Always linear elastic behavior was considered as described by Hook’s law (Eq. (2.8)).
The shear modulus G was determined by applying a simple shear strain and calculating
from the resulting shear stresses τ according to formula G = τ/ϕ (see Fig. 2.1b).

For the random microstructures, loads were applied in different directions. For heat
flow the symmetric thermal conductivity tensor λij was determined by applying temper-
ature gradients parallel to the edges of the unit cell. In Fig. 3.14 one can see the cycle
of a thermal simulation in one (of three) direction. For stress simulations both tensile

Figure 3.14: (a) The microstructure, (b) the mesh and (c) the temperature field as a
result of simulation

and shear strains were applied in different directions to determine the 21 independent
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elements cij (with i ≤ j, j ≤ 6) of the symmetric stiffness matrix.
Stress, strain, heat flow and temperature gradient were determined from the FE

solution by calculating the weighted average over all elements within the unit cube:

S =

∑

i Sivi

a3

with S the respective quantity, vi the volume of element i, a the edge length of unit
cell. The system of linear equations (2.8) was solved by an in-house developed software,
Crystal (Raether, Fraunhofer ISC) using singular value decomposition SVD [Pre89]. A
number of 3 and 6 simulations with different loads were required for each structure to
determine all λij and cij respectively. Using Crystal the elasticity and thermal conduc-
tivity tensor was diagonalized.

From the λij and cij the polycrystalline material properties E and ν were estimated
by performing an additional simulation: the unit cell was replaced by a single hexagonal
element of a homogeneous anisotropic material (SOLID70 and SOLID185 for thermal
and mechanical simulations respectively). Thermal or elastic material properties were
set to the values obtained for the respective unit cell. Then a large cube was constructed
from 10 × 10 × 10 of such elements where the orientation of each element has been
randomly chosen. The material properties of the large cube were determined by applying
loads as described for the small unit cell. Nearly isotropic behavior was obtained and
computation time was less than one minute for this last step of the simulation. All data
obtained from this polycrystal simulation were within the range of the Hashin-Shtrikman
and Voigt-Reuss-Hill approximation respectively.

The stress concentration factor fσ was calculated from the ratio of the maximum
principal tensile stress σ1max within the unit cell of the applied tensile stress σ:

fσ =
σ1max

σ
(3.6)

Since stresses were largest at the edge of the particle contacts, the stress concentration
factor was actually determined by averaging the first principal stress at all nodes at the
edges of individual contacts and selecting the maximum of these averaged values.

The FE solution was obtained by searching the minimum of the quadratic functional
of the system using a Conjugate Gradient method, i.e. the solutions for the degrees
of freedom (DOF) were calculated by iterating the system equations to convergence,
starting with an assumed zero value for all DOFs and following orthogonal residual
vectors. Computing time was about 5 minutes for one direction of applied strain or
thermal gradient.

3.2.3 Convergence and verification

The simulations have been performed using ANSYS on a PC work station (Intel Pentium
4 Xeon 2.8 GHz). Fig. 3.15 shows the convergence of the FEM results when mesh size
was decreased by increasing the number of nodes on the line segments of the model. A
sufficient convergence for thermal conductivity, Young’s modulus and Poisson’s ratio was
achieved within 2% with a mesh size corresponding to 6 to 10 nodes. The convergence



38 CHAPTER 3. NUMERICAL METHODS

for the stress concentration factor was distinctly worse which was attributed to its local
determination in regions showing a very high stress gradient. Consequently, in the
following sections stress concentration factors should be considered as a rough estimate.
Altogether convergence was much better than in simulations with hexagonal elements.
Although hexagonal elements are widely used, they were not appropriate to represent
the fine structures at the particle contacts in the present study.

Figure 3.15: Convergence of FE simulations determined by variation of material prop-
erties with number of nodes on line segments for simple cubic arrangement of truncated
spheres (fs = 70%): (a) scaled thermal conductivity λs and Young’s modulus, Es and
(b) inverse stress concentration factor 1/fσ and Poisson’s ratio νs

In Fig. 3.16 the convergence of the FEM results for random structures is illustrated.
In this case the mesh size was influenced by using another type of parameter, called
grid refinement, GR. Here a linear trend for thermal conductivity, Young’s modulus and
Poisson’s ratio was observed. The convergence was achieved within 2%, with a mesh
size corresponding to GR = 0.2. Note that in Figs. 3.15 and 3.16 and the following
figures, scaled material properties are used (given in %), which means that the respective
property of the solid phase corresponds to 100%.

For spherical particles with very small contacts analytical solutions exists for thermal
conductivity [Kav91] and elastic properties [Wal87], [Wal75]. Fig. 3.17 shows a com-
parison of our FE simulation with the analytical results. To be noticed that a scaled
area was used which was calculated by dividing the two particle contact area by the
side areas of the cube. The excellent agreement demonstrates that the FE model was
appropriate for the simulation of structures with very small particle contacts. Unlike
the other figures that show polycrystalline results obtained by the FE method described
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Figure 3.16: Convergence of FE simulations as a function of grid refinement, GR for
random arrangement of truncated spheres (fs = 70%): scaled thermal conductivity λs

and Young’s modulus, Es and Poisson’s ratio νs

in the previous paragraph, Fig. 3.17 shows single crystal material properties in the [100]
direction.

To avoid handling errors the simulations were performed completely in batch mode.
Geometric properties of the model were controlled twice after generating the model and
after meshing. If deviations were detected between solid volume fraction, particle con-
tact areas or interface areas to those values determined by the independent computer
program Geosphere, which had generated the structures, the simulation was automati-
cally aborted.

3.3 Experimental procedure

3.3.1 Quantitative image analysis

In order to evaluate the microstructures, it is necessary to make a quantitative anal-
ysis that means to accumulate data needed to formulate a quantitative description of
the properties from the microstructure. There are many methods to perform a quan-
titative image analysis, like point, lineal or area analysis [Exn88]. In this work, the
samples were investigated using the lineal analysis (see Fig. 3.18). In lineal analysis,
the intercept lengths are measured along randomly applied straight lines across the mi-
crostructure. The individual lengths intercepted by particles or two-phase regions are
measured separately, added up, and compared to the total lengths of traverse. The ratio
LL is determined for a particular selected phase. The volume fraction of a phase can be
determined from the data obtained by lineal analysis. Within the limit of scatter, the
volume fractions are equivalent to the lineal fractions:

V = LL
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Figure 3.17: Comparison of material properties calculated by FE model and theoretical
small radii solutions (srs): (a) scaled thermal conductivities for sc, bcc and fcc structures
and (b) scaled Young’s and shear moduli for simple cubic arrangement (srs) equation s
from [Kav91], [Wal87], [Wal75]

In order to determine the interface areas the number of intersections made by the traverse
with phase boundaries or grain boundaries is counted. So, the fraction of boundary areas
in a structure is given by:

BA =
NPo

NP

where NPo represents the number of point interceptions of an object, NP represents the
total number of point interceptions on a test line. The term object is related in this
case to grain boundaries or phase boundaries. This way volume fraction of component
phases and interfaces between different grains could be determined and used as input
for further simulations. A large contrast of the pictures is required to identify the
grain boundaries. Therefore the sample preparation was carefully performed, i.e. the
parameters for polishing and flame etching were always adjusted in order to obtain
accurate micrographs.

3.3.2 Sample preparation

In Fig. 3.19 a general procedure concerning the sample preparation is presented.
As mentioned before, in this work we have concentrated on two types of systems, a

porous Al2O3 ceramic and a dense ceramic, a zirconia-alumina (ZA) composite.
The starting powder used for the Al2O3 ceramic was Al2O3 powder of type Taimicron

DAR (reported purity > 99.99%). The powder was equiaxed with an average particle
diameter of 0.2 µm. The green compacts were prepared by gel casting [Kre06]. For
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Figure 3.18: Microstructure of a ZA ceramic. Parallel lines along the structure is ana-
lyzed are indicated with white color. The circles mark the interfaces between alumina
and zirconia grains, the segments the interfaces between alumina grains and the filled
rhombus the interfaces between zirconia grains
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Figure 3.19: Flow chart describing experimental procedure of samples
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the present study, samples partially sintered at temperatures between 800 and 1320◦C
with fractional densities between 58.4% and 97% have been used. For further steps, e.g.
measurements of material properties and quantitative image analysis, the samples have
been sawed, grounded and polished. In order to make the grain boundaries visible the
samples were flame etched.

Fig. 3.20 illustrates the microstructure development of Al2O3 sintered at increasing
temperatures (from 800 to 1350◦C). Porosity decreased from 41.6% (Fig. 3.20a) to 3%
(Fig. 3.20d) and at higher densities grain growth occurred. From the SEM images

Figure 3.20: Aluminium oxide microstructure at different sintering stages

the interfaces between the Al2O3 grains and between Al2O3 grains and pores were de-
termined from the number of intersections of random lines with the respective type of
interfaces.



44 CHAPTER 3. NUMERICAL METHODS

In case of ZA composite, the samples have been made by tape casting a slurry of
alumina and zirconia powders. The zirconia powder was partially stabilized by 3 mol%
Y2O3 and the ratio between zirconia and alumina was varied (e.g. 100 wt% Al2O3,
98 wt% Al2O3, 50 wt% Al2O3, 2 wt% Al2O3 and 0 wt% Al2O3). The alumina and
zirconia powders were equiaxed with an average particle diameter of about 0.83 µm and
0.8 µm, respectively. The green compacts were dried and pressed cold isostatically (at
1500 kN), followed by sintering at temperatures between 1520◦C and 1550◦C for 2 hours.
Finally the samples were prepared for SEM and measurements of material properties
(sawing, grinding and polishing).

The microstructures of polished and flame etched sections of the ZA ceramic are
shown in Fig. 3.21. Zirconia can be distinguished from alumina by its brighter coloring.
In Fig. 3.21a, pure Al2O3 ceramic is presented. Fig. 3.21b and 3.21c show the 50 wt%

Figure 3.21: Microstructure of ZA ceramic with different alumina and zirconia volume
fractions

Al2O3- 50 wt% ZrO2 and 2 wt% Al2O3- 98 wt% ZrO2 ceramics. Pure ZrO2 is depicted
in Fig. 3.21d. In all micrographs the interfaces between different grains (ZrO2-ZrO2,
Al2O3-Al2O3 and ZrO2-Al2O3) are readily recognized and could be measured using the
chord length analysis. It can be observed that some of the pores are enclosed within the
alumina grains (see 3.21a and b). Curvature of the grain boundaries is small. In 2 wt%
Al2O3- 98 wt% ZrO2 sample the alumina grains are isolated and surrounded by zirconia
grains. The same was observed in the case of 2 wt% ZrO2- 98 wt% Al2O3 sample,
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alumina grains being surrounded by zirconia grains (not illustrated in Fig. 3.21). In
the 50 wt% Al2O3- 50 wt% ZrO2 the alumina and zirconia grains were homogeneously
distributed, the alumina grains being larger than the zirconia grains.

3.3.3 Experimental measurements of thermoelastic properties

Thermal diffusivity of samples was measured by the laser-flash method [Rae98a] at room
temperature. Usually disk shaped samples with a diameter between 11 and 20 mm and
a thickness of 1 mm are used. The wavelength of the CO2 used laser is 10.6 µm. The
pyrometer filters, which measure the temperatures, have a wavelength above 11 µm.
Therefore a special coating of the samples is avoided and thermal properties are mea-
sured completely non-contact. The thermal diffusivity values were determined by aver-
aging 10 individual measurements. Measuring uncertainty (1 σ) was 4%. From thermal
diffusivity χ, thermal conductivity λ is calculated according to following formula:

λ = ρcP χ (3.7)

with ρ being the density and cP the specific heat of the sample. In case of composites
cP was calculated by a rule of mixtures:

cP = cP1
· f1 + cP2

· f2, (3.8)

where cP1
, cP2

and f1, f2 are the specific heat and fractional volume of component phases
(1 and 2). Densities of the ceramic samples were measured using Archimedes principle.
The samples with open pores were first degassed, then submerged in water under vacuum
and weighted submerged to obtain the wet weight. The samples were then dried in a
desiccator and the dry weight was determined with an analytical balance. Porosity was
determined by the difference between theoretical density calculated from the density of
the participating phases and measured density.

Young’s modulus of the samples was determined by ultrasonic velocity measurement
(USIP12, Krautkrämer, Hürth, Germany). Samples in the form of disks with 11 to
20 mm in diameter and 1 mm thick have been used. Young’s modulus, E, was calculated
according to formula:

E =
(1 + ν)(1 − 2ν)

(1 − ν)
ρv2

P (3.9)

where ν represents the Poisson’s ratio, ρ the sample density and vP the longitudinal
ultrasonic velocity. Measuring uncertainty of Young’s modulus was about 1%.

Experimental data for pure Al2O3 and ZrO2 doped with 3 mol% Y2O3 used to
simulate the thermoelastic properties of alumina and ZA ceramics are summarized in
Table 3.3. Note that the properties from Table 3.3 correspond to the dense (without
pores) respective material.
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Table 3.3: Experimental data for alumina and zirconia: density ρ, specific heat cP ,
thermal conductivity λ, Young’s modulus E, Poisson’s ratio ν and coefficient of thermal
expansion α

ρ cP λ E ν α
[g/cm3] [J/g*K] [W/m*K] [GPa] [1/K*106]

Al2O3 3.989a 0.78a 29a 390a 0.22a 9.1a

ZrO2 6.081b 0.46b 3.1b 220b 0.3b 12.2b

a Ref. [Dor84]; b Ref. [Gre89]



Chapter 4

Results and discussions

4.1 Quantum mechanics (QM) simulations

In this section, the results concerning the ab-initio computations based on density func-
tional theory for ten ceramic systems are presented. Both, energy-volume equation-of-
state computations to obtain the zero pressure equilibrium volume and bulk modulus
as well as computations of the full elastic constant tensor of these ceramics at the ex-
perimental zero pressure volume have been performed.

4.1.1 Equation of state

DFT based computations using LDA typically overbond compounds and hence predict
equilibrium volumes smaller than in experiment. GGA corrects from this and usually
better agreement with experiment is obtained. Overall good agreement of the zero pres-
sure volume computed with that in experiments (Table 4.1), was found within 4% of
one another. Only the TiO2 phases have a zero pressure volume that is larger than in
experiment, with GGA overcorrecting the LDA shortcoming. The situation for the com-
pression behavior and hence the bulk modulus is less satisfying (Table 4.1). While for
most ceramics studied the computed bulk modulus (at computed zero pressure volume)
is within 10% of ambient condition experiments the one for TiO2 anatase is larger by
almost 25% and for α-SiC by 16%. These values are considerably larger than compu-
tational results previously reported in the literature which use energy-volume relations
to fit an equation of state [Arl00], [Kae94]. These studies, however, use a Hartree-Fock
formalism or the LDA approximation to exchange and correlation, respectively. Due to
the restricted volume range considered in the computations (Table 3.2) we find B′

0 = 4.0
in all computations. The consideration of a wider compression range would change this
parameter.

4.1.2 Elastic constants

Individual elastic constants (evaluated at the experimental zero pressure volume) can
differ significantly between computations and experiment, but these differences are hard

47
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Table 4.1: Equation of state parameters of the ceramic compounds. The first line of
the table gives fit parameters for the computational results for the zero pressure volume
(V0), the bulk modulus (B0) at this pressure and its pressure derivative (B′). Calculated
results (given in the first line of respective material) are compared with experimental
equation-of-state parameters (see the second line written with italic characters)

V0 B0 B′
0

[A3] [GPa]
Al2O3 82.0 241 4.0

84.9 254 a 4.3 b

α-SiC 79.6 260 4.0
82.4 224 c -

β-SiC 79.4 220 4.0
82.2 220 d -

TiO2 rut 63.4 235 4.0
62.5 212 e 6.3 f

TiO2 anat 138.3 221 4.0
135.5 179 g 4.5 g

CaF2 41.6 78 4.0
41.6 81 h 5.2 h

AlN 39.8 210 4.0
40.8 211 i,j 6.3 i,j

BN 46.3 362 4.0
47.2 400 k,j 4.5 k,j

TiB2 25.2 251 4.0
25.5 237 l,m 2.0 l,m

ZrO2 142.4 174 4.0
140.5 187 n -

a Ref. [Got89]; b Ref. [Dam78]; c Ref. [Kam97]; d Ref. [Hea84]; e Ref. [Isa98]; f Ref.
[Man69]; g Ref. [Arl00]; h Ref. [Ang93]; i Ref. [Mcn93]; j Ref. [Kim96]; k Ref. [Gri94];
l Ref. [Spo97]; m Ref. [Dan93], n Ref. [Cha91]
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to quantify for all the materials studied (Table 4.2). Instead of considering them sep-
arately the results were quantified by computing the average moduli according to Hill
(arithmetic means of the Voigt and Reuss bounds) [Voi28], [Reu29], [Hil52] from the
individual elastic constants (Table 4.2). We obtain bulk and shear moduli for all ma-
terials considered (Fig. 4.1). In addition we have computed the anisotropy ratios for
the longitudinal (c22/c11 and c33/c11) and shear (c55/c44 and c66/c44) elastic constants
(Fig. 4.2). These ratios are a measure of the relative propagation of the longitudinal
and transverse acoustic waves along the crystallographic axes, respectively.

For the bulk modulus derived from the elastic constant tensor (Fig. 4.1a, Table
4.2) we find much better agreement (within 5%) with experiment than for that from
the equation of state. This better agreement justifies and suggests the use of the ex-
perimental zero pressure volume to evaluate elastic parameters of materials rather than
the computational equilibrium volume. Similar to the bulk moduli, the shear moduli
determined from the computations are in overall good agreement with experiment, with
a maximum deviation of 10% (or 20 GPa) for the SiC polytypes (Fig. 4.1b, Table 4.2).
Typically we find that the shear moduli of the stiffer materials are overpredicted, while
those of the softer materials are underpredicted.

Figure 4.1: (a) Bulk and (b) shear moduli calculated from elastic constant tensor

The comparison of anisotropy ratios between experiments and computations provide
a similarly good picture (Fig. 4.2). Regardless the anisotropy type of the system,
the correct sense of anisotropy (fast vs. slow propagation direction of acoustic waves)
was correctly predicted. Similarly, the materials that show strongest anisotropy in
experiment, TiO2 rutile and ZrO2 for shear anisotropy and TiO2 rutile and TiB2 for
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Figure 4.2: (a) Longitudinal and (b) shear anisotropy ratios

longitudinal anisotropy are predicted with the strongest anisotropy in the computations.

Conclusions

DFT based ab-initio calculations for elastic properties of a number of ceramic materials,
Al2O3, SiC, TiO2, AlN, BN, TiB2, CaF2, ZrO2 have been carried out. The full elastic
constant tensor at the experimental zero pressure volume was computed, and it was
found that ab-initio methods with the GGA approximation are capable of reproduc-
ing the most important features in elastic behavior: the aggregate moduli as well as
the general sense of anisotropy in longitudinal and shear moduli. These results show
that modern ab-initio computations can be used independently from experiment to pre-
dict elastic stability, and can provide a basis for the modeling of structural and elastic
properties of more complex composite ceramic materials.
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Table 4.2: Elastic constants cij for studied ceramic materials. The first line of every material gives the computed data and the
italic characters the experimental ones. The last two columns show the theoretical and experimental bulk and shear modulus

c11 c22 c33 c44 c55 c66 c12 c13 c15 c23 c25 c35 c46 B G
Al2O3 484 501 138 167 150 99 -27 240 161

497 a 501 a 147 a 167 a 163 a 116 a -22 a 254 a 164 a

α-SiC 534 574 171 219 96 50 226 206
501 b 553 b 163 b 195 b 111 b 52 b 220 b 191 b

β-SiC 420 267 132 228 208
379 c 252 c 141 c 220 c 186 c

r-TiO2 278 479 115 214 153 149 204 118
268 d 484 d 124 d 190 d 175 d 147 d 212 d 113 d

a-TiO2 320 190 54 60 151 143 174 58
- - - - - - 178 e -

CaF2 155 31 39 78 40
165 f 34 f 39 f 81 f 43 f

AlN 413 386 126 142 129 96 205 138
411 g 389 g 125 g 130 g 149 g 99 g 211 g 133 g

BN 816 469 168 384 405
820 h 480 h 190 h 400 h 405 h

TiB2 671 468 269 305 62 103 256 268
660 i 432 i 260 i 306 i 48 i 93 i 243 i 262 i

ZrO2 341 349 274 80 73.4 116 158 88 29 156 -4 2 -14 187 88
361 j 408 j 258 j 100 j 81.2 j 126 j 142 j 55 j -21 j 196 j 31 j -18 j -23 j 187 j 93 j

a Ref. [Got89]; b Ref. [Kam97]; c Ref. [Hea84]; d Ref. [Isa98]; e Ref. [Swa01]; f Ref. [Cat78]; g Ref. [Mcn93]; h Ref. [Gri94]; i

Ref. [Spo97]; j Ref. [Cha91]



52 CHAPTER 4. RESULTS AND DISCUSSIONS

4.2 Finite element simulations

In this section the results and discussions related to FEM simulations are illustrated.
First, the investigation of the synthetic microstructures is depicted. Second, the results
of structures adapted to two real ceramics, are presented and discussed.

4.2.1 Microstructure-property relations in synthetic struc-

tures

In Fig. 4.3 the resulting distribution of the heat flux and stress in a particle, which
has been subjected to a thermal gradient and uniaxial tensile strain, respectively is
presented. One can see that flux and stresses are largest in the contact region. Especially

Figure 4.3: Contour maps of: (a) heat flux and (b) first principal stress. Temperature
gradient and strain were applied in the z-direction

large values are observed at the edges of the sintering necks. This was already observed in
previous work on the heat flow [Hah96]. The concentration of heat flux and mechanical
stress at the edges of the particle contacts was observed for various particle shapes and
arrangements investigated during this work.

Different particle shapes

As mentioned previously, different solid particle shapes have been considered in order to
study the influence of various contact areas on material properties. The corresponding
shapes are shown in Figs. 3.5-3.8.

Fig. 4.4 depicts simulated thermal conductivity, Young’s modulus, Poisson’s ratio
and stress concentration factor for these particles. Here the solid volume fraction was
always 70% and the arrangement of the particles within the unit cell was simple cubic.
For comparison also a simple cubic microstructure with 30% closed spherical pores was
considered. In this case the contact area, which corresponds to the minimum solid area,
was much higher than for the other structures.
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Figure 4.4: Material properties of different particle shapes at constant solid volume
fraction of 70%: (a) scaled thermal conductivity, (b) scaled Young’s modulus, (c) scaled
Poisson’s ratio, (d) inverse stress concentration factor

The differences in the thermoelastic properties of particles with different shapes (see
Figure 3.5, 3.7 and 3.8) are very small. Only the structure depicted in Fig. 3.6a shows
considerably lower thermal conductivity and Young’s modulus than the others. However,
from the convex curvature of the FEM curve it can be seen that there are quantitative
differences (the minimum solid area approach would yield a straight line through the
origin with slope 1). It can be explained looking at the concentration of the heat flux and
stress at the edges of the particle contacts (see Fig. 4.3). This allows for a larger heat
and force transfer (especially with small particle contacts) than it would be expected
from purely geometrical considerations. One can see from Fig. 4.4a and 4.4b that the
curvature of the Young’s modulus is smaller than that of the thermal conductivity. The
steeper increase at small particle contacts for thermal conductivity corresponded to the
larger gradient in heat flux across the particle contact compared to the stress gradient.

From Fig. 4.4c it can be seen that the Poisson’s ratio does not tend to zero with
decreasing contact area. For the cube structure with 24 cylindrical contacts (3.6b) the
Poisson’s ratio is even nearly independent of contact area. Other groups have suggested
a convergence of the Poisson’s ratio to finite values with decreasing contact area [Ram93],
[Rob00] which has been controversially discussed based on different experimental [Boc94]
and theoretical [Ric94] results.

The stress concentration factor fσ (Fig. 4.4d) has very high values at small contact
areas. This corresponds to the inferior strength of porous compacts during the first
sintering stage. For structures with cylindrical contacts (see Fig. 3.5c, 3.6a and 3.6b), a
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distinctly smaller stress concentration at medium contact areas could be observed. This
was attributed to the more homogeneous distribution of stress along the cylindrical
contacts compared to the notched contact regions of the other particle shapes. The
particle shapes with minimized energy show a steep increase of 1/fσ when neck area
exceeds 30%. This was correlated to a similar increase of the dihedral angle which leads
to a smoothing of the particle surfaces in the contact region (see Fig. 3.8c).

Different particle arrangement

Besides the influence of particle shapes on thermoelastic properties the effect of different
particle arrangements within the unit cell was also investigated. Aspects like agglomer-
ation or large pore formation could be studied by applying a displacement to the centers
of the truncated spheres (Fig. 3.9). The effect of different particle sizes was considered
(see Fig. 3.10). The influence of the coordination number on material properties was
investigated using structures with different number of nearest neighbors (Fig. 3.11).

Fig. 4.5 shows the effect of particle displacement in a cubic super cell with 64 spher-
ical particles and a solid volume fraction of 70%. The corners and the center of the unit
cell changed their role as nucleation center for agglomerates. In this way the displace-
ment of the particles towards the center has the same effect as a displacement with the
opposite sign. By increasing the displacement, thermal conductivity, Young’s modulus
and Poisson’s ratio will decrease (Fig. 4.5a). This can be explained qualitatively by the
formation of a matrix with weakly bonded particles in which the agglomerates of more
strongly bonded particles were embedded.

Fig. 4.5b and 4.5c present various geometric properties of microstructures. The
number of contacts per particle was six for all shown displacements. As a measure of
the geometrical change the ratio, as, of total contact area to total interface area (i.e.
as = ac/(ac+ai), where ac is the total neck area and ai the total pore-solid interface area)
within the unit cell was used. In this case the particle contacts within one microstructure
have different sizes and the scaled neck area could not be used. The parameter as is
dimensionless and independent of the size of the unit cell. It showed a small increase of
contact area with increasing particle displacement. This reflected the non-linear increase
of contact area with decreasing center distance of spherical particles. In Fig. 4.5c also
the squared solid chord lengths cs2, the auto-correlation parameter ca and the minimum
solid area (MSA) are shown. MSA decrease with increasing displacement and decreasing
material properties according to the minimum solid area approach.

Fig. 4.6 shows the effect of different particle size ratios in the cubic super cell with 64
spherical particles and a solid volume fraction of 70%. The particle size ratio was defined
as the ratio of the volumes of a large and a small particle, respectively. The thermoelastic
properties for a homogeneous arrangement of large and small particles (see Fig. 3.10a)
vs. the particle size ratio are depicted in Fig. 4.6a and the corresponding geometric
parameters in Fig. 4.6b and c. At a size ratio between 1 and 2.5 a decrease of thermal
conductivity and Young’s modulus could be observed. The inverse stress concentration
factor showed a pronounced decrease at this size ratio (Fig. 4.6b). This was correlated
to a decrease in the average number of contacts per particle (see Fig. 4.6c), caused
by vanishing particle contacts between neighboring particles of the small size category.



4.2. FINITE ELEMENT SIMULATIONS 55

Figure 4.5: Properties of cubic structures at different displacements of truncated spheri-
cal particles and constant solid volume fraction 70%: (a) scaled thermal conductivity λs,
Young’s modulus Es and Poisson’s ratio νs, (b) related inverse stress concentration fac-
tor 1/fσ and minimum solid area MSA, (c) contacts per particle N/n, average squared
solid chord length cs2 , auto-correlation parameter ca and ratio between total contact
area and total interface area as
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Figure 4.6: Properties of cubic structures at different size ratios of truncated spherical
particles and constant solid volume fraction 70%: (a) scaled thermal conductivity λs,
Young’s modulus Es and Poisson’s ratio νs, (b) related inverse stress concentration fac-
tor 1/fσ and minimum solid area MSA, (c) contacts per particle N/n, average squared
solid chord length cs2, auto-correlation parameter ca and ratio between total contact
area and total interface area as, (d) material properties for particles arranged inho-
mogeneously, (e) related inverse stress concentration factor and MSA and (f) related
geometric properties
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The high stress concentration at this size ratio was attributed to the smallest particle
contacts. Stress concentration decreased after these contacts were released.

In Fig. 4.6d, e and f the results for an inhomogeneous arrangement of large and small
particles and the corresponding geometric parameters are shown. A similar correlation
between the material properties and the average number of particle contacts as in the
case of homogeneous arrangement was observed. In the inhomogeneous arrangement, an
increase in Young’s modulus and thermal conductivity for large size ratios can be seen
(Fig. 4.6d). This was attributed to the load-bearing capability of the spatial structure
shown in Fig. 3.10b, which was enhanced by the volume increase and the corresponding
increase of contact area between the large particles at the edges. The increase of the
Young’s modulus was correlated to an increase in the squared solid chord lengths cs2 ,
which was considered reasonable since cs2 was introduced as a measure for the length
of force transmission that was very large at the edges of the unit cell. There was a
close correlation between thermal conductivity and Young’s modulus (Fig. 4.6a and d).
Between the MSA and material properties a poor correlation was observed, especially
in the homogeneous particle arrangement (Fig. 4.6a and b).

The effect of particles coordination on thermoelastic properties is shown in Fig. 4.7.
The symmetry of the unit cell was varied from sc to bcc and fcc for a fixed volume
fraction of solid phase of 80% (Fig. 4.7a). Additionally, the same structures have been
calculated for a fixed area ratio as = 0.09 corresponding to a solid volume fraction fs

of 61.5, 76.7 and 80.1% for the sc, bcc and fcc structures, respectively (Fig. 4.7d).
The geometric parameters related to these structures are shown in Fig. 4.7b and c,
as well as 4.7e and f. Thermoelastic properties decreased when coordination number
was increased with constant solid volume fraction (4.7a). This can be explained looking
at the area ratio as of these structures (Fig. 4.7c), which was drastically decreased
by 80% when the coordination number was increased from 6 to 12. In Fig. 4.7d the
thermoelastic properties increased when the coordination number was increased at the
same level of as. Also the stress concentration factor decreased which demonstrated that
stress was distributed more homogeneously in the microstructures with more particles
contacts. The increase in coordination number was related to an increase in the auto-
correlation parameter for constant volume fractions (Fig. 4.7a and c) and the increase
of the constant area ratio was correlated with the increase in the squared solid chord
length (Fig. 4.7d and f). Like in case of Fig. 4.6 correlation between minimum solid
area and material properties was poor, especially with fixed solid volume fraction fs

(Fig. 4.7a and b).

Random arrangement of particles

The results described above are related to a cubic arrangement of the truncated spheres
within the unit cell. Because these type of structures do not give an accurate image of
real structures, a random arrangement of the spheres is considered.

In Fig. 4.8 the solid volume fraction fs was 70% and the contact area ratio as was
about 0.09, but the coordination number (Fig. 4.8a), particle displacement (Fig. 4.8b)
and particle size ratio (Fig. 4.8c) were changed. Each point in Fig. 4.8 represents the
mean value of 10 independent runs for different random structures obtained with the
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Figure 4.7: Properties of cubic structures at different number of nearest neighbors: (a)
scaled thermal conductivity λs, Young’s modulus Es and Poisson’s ratio νs for constant
solid volume fraction 80%, (b) related inverse stress concentration factor 1/fσ and mini-
mum solid area MSA, (c) related contacts per particle N/n, average squared solid chord
length cs2, auto-correlation parameter ca and ratio of total contact area and total in-
terface area as, (d) material properties for particles with constant scaled contact area
as = 0.09 at different solid volume fractions fs, (e) related inverse stress concentration
factor and MSA and (f) related geometric properties
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Figure 4.8: Properties resulting from random arrangement of truncated spheres (solid
volume fraction 70% and scaled contact area as = 0.09): (a) scaled thermal conductivity
λs and Young’s modulus Es, (b) scaled Poisson’s ratio νs, (c) average squared solid
chord length cs2 and auto-correlation parameter ca for different coordination number,
(d-f) corresponding quantities for different particle displacement, (g-i) corresponding
quantities for different particle size ratios



60 CHAPTER 4. RESULTS AND DISCUSSIONS

same boundary conditions. The error bars indicate uncertainty derived from statistical
spread of results from different simulation runs. From Fig. 4.8a and b it can be seen
that the thermoelastic properties increased with increasing coordination number. The
result is consistent with the simulation result in case of the cubic structures if the area
ratio was fixed (see Fig. 4.7d). A particle displacement to the center of the unit cell
caused an increase and an outward displacement a decrease of the thermal conductivity
and Young’s modulus (Fig. 4.8d). This was attributed to a more efficient formation of
a load-bearing frame by concentrating the spheres in the center compared to the less
dense distribution on the surface of the unit cell. When the particles size increased an
increase of the material properties was also observed. This could be explained by the
improvement of the heat transfer and force transmission within the large spheres, which
lead to higher temperature gradients and stresses at the particle contacts. Minimum
solid area was not determined for the random structures. The other geometric properties
that were calculated from chord length analysis did not show a clear correlation to the
thermoelastic properties.

Conclusions

Different particle shapes allow for an independent variation of contact area and solid
volume fraction and offer much more flexibility in modeling of microstructures than the
widely used truncated spheres. For this reason additional particle shapes and arrange-
ments were used to simulate porous ceramics. It was shown that phenomena related to
particle arrangement could be simulated in cubic unit cells. These models were proposed
to understand the effects which contribute to microstructure property relations.

Random structures have the advantage to reproduce the disorder of the real struc-
tures. It has been shown that they offer more flexibility to control simultaneously
geometric parameters like solid volume fraction, contact area and coordination number
than cubic structures. This makes them more appropriate to investigate the influence of
one microstructure parameter without unwillingly changing other parameters. However,
the use of random structures without such control has the disadvantage that interpre-
tation of results is difficult, compared to cubic structures. Another disadvantage of the
random microstructures was the computational effort, which was two or three order of
magnitudes larger that for cubic structures.

Thermal conductivity and Young’s modulus were closely correlated in all porous com-
pacts investigated in the present study. Parameters like coordination number, particle
size distribution and shape, agglomeration, pore volume and contact area affected both
properties similarly. The largest changes were caused by the contact area between the
particles. Therefore, in comparing porous ceramics with different microstructures, ther-
mal conductivity as well as Young’s modulus are a good measure for changes in contact
area. Together with the measurement of total pore volume they can provide a valu-
able complement to ceramographic methods. Although the Young’s modulus shows the
same trend as the thermal conductivity, the scaled Young’s moduli were allays smaller
by 20 − 50% than the respective scaled thermal conductivities. This was attributed to
the larger capability of heat flux to bypass thermal barriers compared to force transmis-
sion, which is most efficient along straight lines. Microstructure parameters which were
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determined in the present study by chord length and minimum solid area analysis, i.
e. squared chord lengths, auto-correlation etc., did not show unambiguous correlation
to the changes of thermoelastic properties. Some of the phenomena could not be cor-
related to a specific parameter; the unambiguous interpretation was obscured by other
parameters, like number of particle contacts and size distribution.

Although the present results are considered helpful in understanding some basic
relations between microstructure phenomena and material properties, the formation of
the microstructures was not considered.

4.2.2 Microstructure-property relations in real structures

The microstructures studied in the previous section were used in order to understand
the principal effects in porous structures. In the following we will concentrate on real
structures, e.g. two types of ceramics, a porous and a bi-continuous system. The
simulations of effective material properties are focused on aluminium oxide (Al2O3) and
on zirconia-alumina composites.

Aluminium oxide ceramic

The microstructures of the sintered Al2O3 ceramic are presented in Chapter 3, section
3.3.2 (see Fig. 3.20). As mentioned, the scanning electron micrographs were evaluated
using the mean intercept length technique. Fig. 4.9 shows some geometrical properties
derived from image analysis of the experimental samples. The same properties obtained
from the theoretical structure after fitting the model to the experimental data are also
presented in Fig. 4.9. Fig. 4.9a shows the interfaces between Al2O3 grains for both,

Figure 4.9: Geometrical properties of microstructures derived from experimental and
model structures: (a) interfaces between Al2O3 particles, (b) interfaces between Al2O3

and pores

experimental and simulated structures. The particle interfaces were determined for
the truncated spheres as well as for Voronoi model. In case of truncated spheres, a
simple cubic (sc) as well as a random arrangement of particles within the unit cell was
considered. Fig. 4.9b represents the same comparison for the interfaces between Al2O3
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grains and pores. It can be seen that the experimental values are always lying in-between
the theoretical values of the three models.

A combination of FEM simulations for the thermal conductivity and the experimen-
tal data for Al2O3 samples are presented in Fig. 4.10. It is well known that the thermal
conductivity in a real crystal is influenced by the phonon-phonon interactions and by
phonon interactions with impurities and/or imperfections of lattice (see Chapter 2, sec-
tion 2.1.3). Grain boundaries in polycrystalline material will act as scattering sites and,
hence, decrease the thermal conductivity. At the grain boundaries there is a change of
the crystallite orientation, therefore in an anisotropic crystal this leads to a change in
the velocity of the phonons in the direction of the heat flow. The grain boundaries are
a disordered region which also leads to a local change of phonon velocity. Both aspects
are important and must be considered, but Klemens [Kle94] has deduced that the latter
one is more significant. Looking at earlier work concerning the role of grain boundaries
on the thermal conductivity of single phase materials some contradictions can be ob-
served. Berman [Ber52] has compared the difference between thermal conductivity of
a single crystal sapphire and sintered alumina. It was shown that the polycrystalline
material has a thermal conductivity which decreases from intrinsic behavior by a factor
> 50 when the temperature is < 50 K. As the temperature increases (> 100 K) the
divergence rapidly diminished and the mean free path is controlled by phonon-phonon
scattering. Charvat and Kingery [Cha57] have investigated a dense alumina ceramic
with different average grain sizes (9 and 17 µm) above 300 ◦C and have concluded that
the influence of the grain boundaries is negligible in this temperature range, because
the mean free path of phonons is much smaller than the grain size. The work of Smith
et al [Fay00] on more conductive oxides (tin oxide) demonstrate the contrary. They
reported for the thermal resistance of the grain boundaries a value of 0.04 mm2K/W
at 300 K. From the literature a typical value for the thermal boundary resistance of
0.01 − 0.1 mm2K/W is suggested. But is not expected that all materials will have the
same values.

In this work the influence of grain boundaries on heat transfer was taken into ac-
count according to the results of Smith et al [Smi03]. By comparison of various sintered
alumina ceramics with different grain sizes they found that the average thermal resis-
tance of a grain boundary in dense alumina at room temperature is ≈ 0.010 mm2K/W.
In partially sintered porous alumina a slightly higher value of 0.022 mm2K/W was ob-
served. Therefore in the present simulations two values have been used for thermal
boundary resistance (TBR): 0.01 and 0.02 mm2K/W. The results of the calculated
thermal conductivity for Voronoi polyhedra and truncated spheres are depicted in Fig.
4.10a and 4.10b, respectively. The graph shows that the experimental values are in the
range of the simulated one for the applied TBRs. It can be observed that for Voronoi
structures (Fig. 4.10a) at small and high densities the experimental and simulated data
agree well. For the region in-between, the higher the values of TBRs (TBR = 0.01
and TBR = 0.02 mm2K/W) the smaller the thermal conductivity values. The same
tendency can be seen in case of sc truncated spheres (Fig. 4.10b). Here the simulation
for the 97% density could not be performed because of geometry constrains reasons. As
expected the curve which indicates the calculated conductivities for a very small TBR
are situated above experimental data (the values being much larger).
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Figure 4.10: Experimental and simulated thermal conductivity of Al2O3 ceramic using
different thermal boundary resistances: (a) Voronoi model, (b) sc truncated spheres

In Fig. 4.11a the Al2O3 grains as deduced from the experimental structures are pre-
sented. As the sintering temperature increases (and hence the Al2O3 volume fraction),

Figure 4.11: (a) Al2O3 grains and (b) first principal stress (σ1) in Al2O3 and the stress
at Al2O3 grain boundaries

the grains becomes larger. It can be observed that the first two values in Fig. 4.11a
are too high. This can be explained looking at the SEM pictures of Al2O3 samples
(compare Fig. 3.20a and 3.20b). In both cases the boundaries between Al2O3 grains
are not visible. Therefore it is possible that the quantitative image analysis is erroneous
because some of the grains were not considered. In Fig. 4.11b the first principal stress
(σ1) as a function of Al2O3 volume fraction is presented. The stress was calculated by
cooling the system from the following temperatures: 750, 1100, 1130, 1170, 1250 and
1270 ◦C (where a stress free state was considered) to room temperature. The anisotropy
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of the thermal expansion coefficient for the Al2O3 was taken into account: αa = 8.62
and αc = 9.38 × 10−6/K [Mer62]. As expected the stresses increase as the sintering
temperature increases. Fig. 4.11b illustrates also the stresses calculated at Al2O3 grain
boundaries. This was possible by using contact and target elements for meshing the
contact areas. The same tendency as for the first principal stress is observed, namely
the stress at grain boundaries increases with higher density.

It was already mentioned that the different grain sizes influence the thermal conduc-
tivity, i.e. the smaller the grains (that means the larger the number of grain boundaries)
in a structure, the lower the value of thermal conductivity. Looking at the simulation
results (see Fig. 4.10a and b) and considering this effect it can be concluded that the
thermal conductivity slope will increase. So, a better agreement with experimental work
is obtained. That means, for small density the values of thermal conductivity calculated
for TBR= 0.01 mm2K/W will be in better agreement with experimental data as the one
calculated for TBR= 0.02 mm2K/W. The same conclusion can be drawn for the stress
influences. Taking into account that the stress will lower the thermal conductivity at
high fractional densities, it can be observed that the slope will decrease, which means
that a poor agreement between experiment and simulations is obtained.

Besides thermal properties also elastic moduli of Al2O3 ceramic have been calculated.
Fig. 4.12 shows the comparison between experimental and simulated Young’s moduli. It

Figure 4.12: Experimental and simulated Young’s modulus of Al2O3 ceramic using the
Voronoi model and truncated spheres in simple cubic and random arrangement

can be recognized that the simulated Young’s moduli are in good agreement with the ex-
perimental data for fractional densities larger than 70% when the Voronoi model is used.
For a small Al2O3 volume fraction (< 70%) a better agreement between experimental
and simulated Young’s moduli can be achieved by using a random arrangement of the
truncated spheres instead of the simple cubic arrangement. In order to obtain a high
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volume fraction (high density), for the random arrangement of the truncated spheres,
the overlap of three and four spheres was allowed. It can be observed that for the case of
simple cubic structures a higher Young’s modulus obtained in the simulations. This can
be explained on the basis of the load bearing capability of simple cubic structures due
to the force transmission, which is most efficient along straight lines. In case of random
arrangement of truncated spheres the force transmission is no more along a straight line,
therefore the structures will have a lower Young’s modulus.

Conclusions

The microstructure of porous Al2O3 could be adequately described in terms of interface
areas and grain sizes. In the beginning stage of sintering the truncated spheres model
describes better the microstructure, while, in the final stage, Voronoi polyhedra are more
close to the real microstructures (see Fig. 3.20).

Comparing the experimental and simulated values of Young’s modulus a good agree-
ment can be seen (Fig. 4.12). In case of low Al2O3 volume fractions the agreement
between experimental and simulated values was better for random arrangement of trun-
cated spheres, because the force transmission is in this case not so efficient, as in case
of simple cubic arrangement (along straight lines).

For the thermal conductivity the consideration of thermal boundary resistance was
necessary. In this case the simulated and experimental values are in good agreement.
It can be seen that for different values of thermal boundary resistance the thermal
conductivities lie within the experimental data (see Fig. 4.10). Taking into account the
effect of grain growth (see Fig. 4.11a), the slope of the simulated curve will increase, that
means the experimental and simulated values will be in a better agreement. Therefore
it can be concluded that a constant value of TBR can be used to describe adequately
the thermal behavior of all Al2O3 microstructures.

Zirconia-alumina ceramic

The microstructures of the ZA ceramic are presented in section 3.3.2 (see Fig. 3.21). The
scanning electron micrographs were evaluated using the mean intercept length technique
and different geometrical properties could be derived.

Fig. 4.13 shows the different types of interface areas between grains. The grain
boundaries were calculated for both experimental and theoretical microstructures and
compared. The experimental and simulated results agree very well and thus the struc-
tures could be accurately represented in terms of interface areas. In Fig. 4.14 the ratios
between the mean chord lengths of Al2O3 and ZrO2 grains are illustrated. It can be
observed that the experimental and simulated data are in good agreement except for the
larger Al2O3 volume fractions. Concerning the volume fraction, the theoretical struc-
tures were always varied to fit to experimental ones within 0.1%. For the ZA ceramics
only the Voronoi model was employed for simulations, as the microstructures can be
better described by the Voronoi polyhedra then the truncated spheres (see Fig. 3.21).

In the following the thermal and mechanical properties of the ZA ceramics are pre-
sented. Thermal conductivity and Young’s modulus were calculated using the bulk
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Figure 4.13: Geometrical properties of microstructures derived from experimental and
model structures: (a) interfaces between Al2O3 grains, (b) interfaces between Al2O3 and
ZrO2 grains, (c) interfaces between ZrO2 grains

Figure 4.14: Ratio of mean chord lengths between Al2O3 and ZrO2 grains
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properties from Table 3.3. The simulated values were then scaled, i.e. the difference
(Psim − Pexp) calculated for 100% Al2O3 was added to every simulated value. Fig. 4.15
shows the comparison of both simulated properties with measured data. A good agree-

Figure 4.15: Thermal conductivity and Young’s modulus for ZA ceramic

ment between experimental and simulated results is observed for both properties (ther-
mal conductivity and Young’s modulus), except for higher volume fractions of Al2O3

where a large discrepancy is observed (see the zoom on every picture). Therefore an
explanation of the differences between experiment and theory data will be given in the
next paragraphs.

Effect of stresses on thermoelastic properties of zirconia-alumina ceramic

It is well known that the tetragonal to monoclinic (t-m) crystallographic transforma-
tion, which is a natural polymorphism in zirconia, increase the fracture toughness of the
material. The phenomenon is based on the volume increase occurring when a zirconia
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particle changes the crystallographic cell from tetragonal to monoclinic; in absence of
constrains the volume increases by about 5%, but when the transformation is opposed
by the surrounding material, stresses build up and they tend to exert a closing pressure.
As a normal consequence the zirconia particles with tetragonal symmetry are usually
embedded in a suitable matrix. Alumina is a very good candidate, because its high
elastic modulus makes it very effective in transmitting the stress to the transformable
zirconia. During cooling, the tetragonal to monoclinic transformation of pure ZrO2 be-
gins at ≈ 1200 ◦C and proceeds over a wide temperature range (1200 ◦C to 600 ◦C) until
completion of transformation. Additives like Y2O3, CeO2, etc. lower the transformation
temperature.

In the present study X-ray diffraction (XRD) has been used to determine the extent
of the t-m transformation of zirconia in ZA samples. Only for the 2 wt% ZrO2 sample
this measurement could not be effectuated because the ZrO2 quantity was too small
to be detected. For the other samples, it was found that the largest part of zirconia
(95%) remained tetragonal. Classical theory has shown that retention of the tetrago-
nal structure depends on the magnitude of the strain energy arising from the elastic
constraints imposed by surrounding material on shape and volume changes associated
with the transformation. Constraint can arise from several sources: as an effect of the
second-phase matrix and/or as a consequence of the residual stresses which can increase
or decrease the strain energy and, thus influence the transformation temperature.

Fig. 4.16 presents the thermoelastic properties for volume fraction of Al2O3 higher
than 97 vol%. The percentage differences between experimental and simulated data are
calculated according to formula, (Psim − Pexp)/Psim, where Psim is the scaled simulated
property and Pexp is the experimental data for the respective property (see Fig. 4.16a
and b). In Fig. 4.16c the percentage change of thermal conductivity and Young’s
modulus is given. Averaging the ratio of the two values (first the ratio between the
percentage change of thermal conductivity and Young’s modulus is calculated for every
experimental point and then the mean value was calculated) a value about 2.3 was
determined. In order to verify the result, the same ratio is calculated in the following
using the theory.

According to kinetic theory, thermal conductivity λ is given by Eq. (2.28). How-
ever this equation do not show a direct dependence of λ on pressure and therefore the
commonly used equation for λ and P is [Tan01]:

λ(P ) = λ0 +
g0λ0

B0
· P. (4.1)

Here g0 and B0 are the Bridgeman parameter and bulk modulus, respectively. Subscript
0 stands for properties at normal state. These parameters are known for Al2O3: g0 = 5.63
[Tan01] and B0 = 254 GPa. Using these values the change of thermal conductivity with
pressure can be numerically calculated and is:

∂λ

∂P

1

λ0
= 0.022

1

GPa

The elastic moduli of Al2O3 are also influenced by pressure. Duan [Dua99] has
calculated the dependence of elastic constants on pressure using ab-initio simulations.
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Figure 4.16: Thermal conductivity and Young’s modulus for Al2O3 volume fractions
above 97%
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They have found that the change of bulk and shear modulus with pressure are 4.06 and
1.44 respectively. From Eq. (2.22) Young’s modulus and its change with pressure could
be calculated: ∂E/∂P = 3.95. The dependence of Young’s modulus on pressure can be
described using a linear equation:

E(P ) = E0 +
∂E

∂P
· P, (4.2)

were E0 is the Young’s modulus at zero pressure (for Al2O3 E0 = 390 GPa). Replacing
the numerical values the following value was calculated:

∂E

∂P

1

E0
= 0.010

1

GPa

Now, the ratio between the change of thermal conductivity and change of Young’s mod-
ulus with pressure could be calculated and a value of approximatively 2.2 was derived,
which agrees well with the value of 2.3 calculated from experimental data.

Residual stresses in zirconia-alumina ceramic

Components made of alumina/zirconia are usually fired at high temperatures and resid-
ual stress results during cooling due to the mismatch in the coefficient of thermal expan-
sion. Alumina shrinks less than zirconia and is in compression. The static equilibrium
condition requires that zirconia is in tension. In order to measure these stresses two
methods have been used: neutron diffraction [Kra90] and the optical fluorescence tech-
nique based on the piezospectroscopic effect [Ma93] and Raman spectroscopy [Ser95a].

In alumina based composites containing ceria-stabilized tetragonal zirconia (≤ 40%)
the internal stresses were measured using neutron diffraction by Alexander et al [Ale95].
The average internal stresses for alumina phase were in between -50 MPa and -300 MPa.
Sergo et al. [Ser95] have measured the residual stresses in Al2O3/Ce-TZP (12 mol%
CeO2) sintered composites containing 10, 20 and 40% zirconia using neutron diffraction
and piezospectroscopy technique. The measured stresses in alumina phase are in be-
tween -100 MPa and -440 MPa. Using the indirect determination of piezospectroscopic
coefficients Tomaszewski et al. [Tom02] have determined the stresses in ceria-stabilized
tetragonal zirconia polycrystals. In this case zirconia-alumina composites having 0-90%
alumina were measured and hydrostatic stresses between 0 MPa and -650 MPa were
obtained. The residual thermoelastic stresses were studied in Al2O3-ZrO2 (3.5 mol%
Y2O3) directionally eutectics (produced via laser floating zone method) using piezospec-
troscopic effect by Pardo et al. [Par00]. For 34.5 mol% ZrO2 an average stress of
−360 MPa was measured. In this case also the longitudinal (parallel to c-axis of alu-
mina) and transverse stresses (in the alumina basal plane) were determined, and values
of −250 MPa and −420 MPa, respectively, have been found.

Further the internal stresses (introduced during post-sintering cooling as a result
of the thermal expansion mismatch between alumina and tetragonal-zirconia) are dis-
cussed. Thermal expansion mismatch stresses using the properties listed in Table (3.3)
were calculated. The simulations are compared with the results derived from an ana-
lytical model developed by Hsueh [Hsu86] and Taya [Tay90]. Hsueh used a composite
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sphere model to analyze the stresses that develop during sintering due to the presence
of heterogeneities. Taya et al. used a modified Eshelby-based model to predict stresses
that develop in composites due to thermal stresses. For the case of fully dense com-
posites the appropriate equations which were derived by Hsueh and Taya et al. can be
rearranged to yield identical solutions [Ale95]:

σp =
(αp − αm)∆T

[

1−2νp

Ep
+ 1+2fs+νm(1−4fs)

2Em(1−fs)

] , (4.3)

where αp and αm represent the coefficient of thermal expansion of particles and matrix,
respectively. Ep, Em are the Young’s moduli of particles and matrix, and νp, νm refer to
Poisson’s ratio of particles and matrix. fs represents the volume fraction. The average
hydrostatic stresses in the matrix are related to those in the particle through the relation
fsσp + (1 − fs)σm = 0. The stresses can be modeled using an isolated zirconia particle
surrounded by a continuous alumina phase (matrix), or vice-versa (alumina particle
is surrounded by zirconia phase) and are reflected in the choice of matrix (m) and
particle (p) parameters in Eq. (4.3). The hydrostatic pressures in alumina and zirconia
phases are presented in Fig. 4.17. The alumina phase is subjected, as expected, to a

Figure 4.17: Thermal stresses in ZA ceramic simulated and calculated using an analytical
formula. The calculated values are obtained from the analysis of Alexander et al. [Ale95]:
when zirconia is an isolated phase (p) in alumina matrix (m) yields the lower bound for
stress in alumina and the upper bound in zirconia and vice-versa, when alumina (p) is
isolated in zirconia phase (m) yields the lower bound for stress in zirconia and the upper
bound in alumina

compressive stress because it has the smaller coefficient of thermal expansion (see Table
3.3). Thermal stresses calculated with ANSYS and with Eq. (4.3) agree well and are
also in the same range of values as in work presented before.
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Calculation of stresses in alumina matrix with a ZrO2 inclusion

From Fig. 4.16 it can be seen that the maximum in experimental thermal conductivity
and Young’s modulus deviations from simulated data is at 98.7 Al2O3 vol%. For this
case, a spherical inclusion of 1.3 ZrO2 vol% within an alumina matrix was considered.
The thermal stresses were calculated, by cooling from a stress free state (1200◦C). In
Fig. 4.18 one can see the stresses developed in the ZA composite (Fig. 4.18a) as well
as the stress in Al2O3 matrix due to the spherical inclusion (Fig. 4.18b). It can be seen

Figure 4.18: Thermal stresses (a) in the ZA composite and (b) around the ZrO2 inclusion
in Al2O3 matrix (98.7 vol%). The cube which represent alumina matrix is cut in the
middle and the cutting plane is perpendicular on z axis (which points directly into the
center of the view window)

that the stress around the spherical inclusion (in the radial direction) is compressive.
Considering this distribution of the thermal stresses a further simulation was developed.
An anisotropic element with different Young’s moduli, Poisson’s ratios and shear moduli
on x, y and z directions was used. The respective properties in x, y and z directions
were calculated by taking into account the effect of pressure on mechanical properties
according to Eq. (4.2). The values of the hydrostatic pressure P have been taken from
simulation of thermal stresses mentioned above. Finally the overall Young’s modulus
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and Poisson’s ratio were simulated by imposing a displacement in x, y, or z direction.
The difference between the Young’s modulus calculated before (387 GPa) and the one
calculated using the anisotropic distribution of stresses (389 GPa) was small. This
indicates that the thermal stresses developed in Al2O3 phase during the cooling process
are small and cannot explain the differences between the simulation and experimental
measurements.

An hypothesis to explain these discrepancies could be that a ”latent” pressure devel-
ops as a consequence of the untransformed zirconia which exert pressure on the alumina
matrix. For this latent pressure a value of 3 GPa was estimated to explain for the
difference in experimental and theoretical data. The effects of the pressure and temper-
ature on the tetragonal zirconia have been addressed by a number of authors [Heu85],
[Lan82], [Gar85], [Whi62], [Blo85]. By extrapolation of Whitney’s pressure-temperature
data, was it shown that at a pressure of 3.9 GPa the tetragonal phase of zirconia powder
particles is retained at room temperature (see Fig. 4.19).

Figure 4.19: Pressure-temperature diagram of pure zirconia. After Block et al. [Blo85]

The pressure at which the tetragonal phase is stable (3.9 GPa) fits to the estimated
latent pressure (3 GPa). However the values given in Fig. 4.19 correspond to pure
zirconia and not to Y2O3 doped zirconia.

Conclusions

For the ZA composite the Voronoi polyhedra model offer a good description of the
microstructure in terms of grain boundaries and grain sizes. The thermal conductivity
and Young’s modulus were numerically predicted using values reported in the literature
as properties for the individual phases. The simulated properties have been compared
with the measurements and, in general, a good agreement could be observed.

For 1 to 4 wt% ZrO2, larger differences between simulated and experimental values
were observed. The discrepancies have been explained by taking into account the effect
of pressure on ZA microstructures. Along this lines, the thermal stresses resulting from
the cooling process were calculated and compared with other experimental work. The
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simulation of the average stresses for both phases (alumina and zirconia) performed in
the present study agree well with experimental data from other work.

The local anisotropy of the thermal stresses near a spherical zirconia inclusion in the
alumina matrix was considered. The Young’s modulus was calculated for this case but
the value obtained was too small and did not agree with experimental data.

Taking into account the linear dependence of the thermomechanical properties on
the pressure, it has been shown that the amount of the stress developed in microstruc-
tures was insufficient to explain the discrepancies between experimental and simulated
thermoelastic properties.

In order to determine the causes for the large values of thermal conductivity and
Young’s modulus at high Al2O3 volume fractions, further work is in progress. New ZA
samples, where the contain of ZrO2 was varied from 0.01 to 1 wt% in small steps, have
been produced. Also the contain of Y2O3 in ZrO2 has been changed from 3 mol% to 8
mol% to obtain stable cubic zirconia without a phase transformation. Thermal stresses
in all samples will be measured using the cathodoluminescence spectroscopy.



Appendix A

Example of stress calculation on a
three-dimensional isoparametric
element

Shape functions

Brick (or hexahedral) type linear with 8-node (and quadratic 20-nodes) three- dimen-
sional elements are depicted in Figure A.1. The geometry and displacement field of
elements are specified in parametric form and are interpolated with the same functions.
Shape function used for interpolation are polynomials of the local coordinates ξ, η and
ζ (−1 ≤ ξ, η, ζ ≤ 1).

Figure A.1: Linear and quadratic three-dimensional finite element and their represen-
tation in the local coordinate system

Both, coordinates and displacements, are interpolated with the same shape function:

{x} = [N ]{xe}
{x} = {x y z } (A.1)

{xe} = {x1 y1 z1 x2 y2 z2 ...}

{u} = [N ]{q}
{u} = {u v w } (A.2)

{q} = {u1 v1 w1 u2 v2 w2 ...}

75
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where x, y, z are point coordinates, xi, yi, zi are coordinates of nodes, u, v, w are
displacements at point with local coordinates ξ, η, ζ and ui, vi, wi are displacement
values at nodes.

The matrix of shape function is:

[N ] =







N1 0 0 N2 0 0 ...
0 N1 0 0 N2 0 ...
0 0 N1 0 0 N2 ...





 (A.3)

Shape functions of the linear element are equal to:

Ni =
1

8
(1 + ξ0)(1 + η0)(1 + ζ0) (A.4)

ξ0 = ξξi, η0 = ηηi, ζ0 = ζζi

For the quadratic element with 20 nodes the shape functions can be written in the
following form:

Ni =
1

8
(1 + ξ0)(1 + η0)(1 + ζ0)(ξ0 + η0 + ζ0 − 2) vertices

Ni =
1

4
(1 − ξ2)(1 + η0)(1 + ζ0), i = 2, 6, 14, 18 (A.5)

Ni =
1

4
(1 − η2)(1 + ξ0)(1 + ζ0), i = 4, 8, 16, 20

Ni =
1

4
(1 − ζ2)(1 + ξ0)(1 + η0), i = 9, 10, 11, 12

In the above relations ξi, ηi, ζi are values of local coordinates ξ, η, ζ at nodes.

Strain-displacement matrix

The strain vector {ε} contains six different components of the strain tensor:

{ε} = {εx εy εz γxy γyz γzx} (A.6)

The strain-displacement matrix for three-dimensional elements has the following ap-
pearance:

[B] = [D][N ] = [B1 B2 B3 ...] (A.7)

[Bi] =























∂Ni

∂x
0 0

0 ∂Ni

∂y
0

0 0 ∂Ni

∂z
∂Ni

∂y
∂Ni

∂x
0

0 ∂Ni

∂z
∂Ni

∂y
∂Ni

∂z
0 ∂Ni

∂x























(A.8)

Derivatives of shape functions with respect to global coordinates are obtained as follows:










∂Ni

∂x
∂Ni

∂y
∂Ni

∂z











= [J ]−1















∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ















(A.9)
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where the [J ] is the Jacobian matrix and has the following form:

[J ] =









∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ









(A.10)

The partial derivatives of x, y, z with respect to ξ, η, ζ are found by differentiation of
displacements expressed through shape functions and nodal displacements values:

∂x

∂ξ
=
∑ ∂Ni

∂ξ
xi,

∂x

∂η
=
∑ ∂Ni

∂η
xi,

∂x

∂ζ
=
∑ ∂Ni

∂ζ
xi

∂y

∂ξ
=
∑ ∂Ni

∂ξ
yi,

∂y

∂η
=
∑ ∂Ni

∂η
yi,

∂y

∂ζ
=
∑ ∂Ni

∂ζ
yi (A.11)

∂z

∂ξ
=
∑ ∂Ni

∂ξ
zi,

∂z

∂η
=
∑ ∂Ni

∂η
zi,

∂z

∂ζ
=
∑ ∂Ni

∂ζ
zi

The transformation of integrals from the global coordinates system to the local coordi-
nate system is performed with the use of determinant of the Jacobian matrix:

dD = dxdydz = dξdηdζ|J | (A.12)

Element properties

Element equilibrium equation has the following form:

[k]{q} = {f}, where {f} = {p} + {h} (A.13)

Element matrices and vectors are:

• stiffness matrix

[k] =
∫

D
[B]T [E][B]dD (A.14)

• force vector (volume and surface load)

{p} =
∫

D
[N ]T{pD}dD +

∫

S
[N ]T{pS}dS (A.15)

• thermal vector (fictious forces to simulate thermal expansion)

{h} =
∫

D
[B]T [E]{εT}dD (A.16)

where [E] is the elasticity matrix (see Eq. (2.8)).
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Computation of the stiffness matrix

Calculation of the element stiffness matrix by multiplication of the three matrices in-
volves many arithmetic operations with zeros. After performing multiplications in closed
form, coefficients of the element stiffness matrix [k] can be expressed as follows:

kmn
ii =

∫

D

[

β
∂Nm

∂xi

∂Nn

∂xi
+ µ

(

∂Nm

∂xi+1

∂Nn

∂xi+1
+

∂Nm

∂xi+2

∂Nn

∂xi+2

)]

dD

kmn
ii =

∫

D

(

λ
∂Nm

∂xi

∂Nn

∂xj
+ µ

∂Nm

∂xj

∂Nn

∂xi

)

(A.17)

β = λ + 2µ

where m, n are local node numbers; i, j are indices related to coordinate axes
(x1, x2, x3). Cyclic rule is employed in the above equation if coordinate indices become
greater than 3.

Integration of the stiffness matrix for three-dimensional elements is carried out in
the local coordinate system ξ, η, ζ:

[k] =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B(ξ, η, ζ)]

T
[E][B(ξ, η, ζ)]|J |dξdηdζ (A.18)

Three-time application of the one-dimensional Gauss quadrature rule leads to the fol-
lowing numerical integration procedure:

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f(ξ, η, ζ)dξdηdζ =

n
∑

i=1

n
∑

j=1

n
∑

k=1

f(ξi, ηj, ζk)wiwjwk (A.19)

Usually 2 × 2 × 2 integration is used for linear elements and integration 3 × 3 × 3
is applied to the evaluation of the stiffness matrix for quadratic elements. Fore more
efficient integration, a special 14-point Gauss-type rule exists, which provides sufficient
precision of integration for three-dimensional quadratic elements.

Calculation of strains and stresses

After computing matrices and vectors, the assembly process is used to compose the
global equation system. Solution of the global equation system provides displacements
at nodes of the finite element model. Using disassembly, nodal displacement for each
element can be obtained.

Strains inside an element are determined with the use of the displacement differen-
tiation matrix:

{ε} = [B]{q} (A.20)

Stresses are calculated with the Hook’s law (Eq. 2.8). The displacement gradients (and
hence strains and stresses) have quite difference precision at different point inside finite
elements. The highest precision for displacement gradients are at the geometric center
for the linear element and at reduced integration points 2 × 2 × 2 for the quadratic
hexagonal element.
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For quadratic elements, displacement derivatives have best precision at 2 × 2 × 2
integration points with local coordinates ξ, η, ζ = ±1/

√
3. In order to build a continuous

field of strains or stresses, it is necessary to extrapolate results values from 2 × 2 × 2
integration points to vertices of 20-node element (numbering of integration points and
vertices is shown in Fig. A.1).

Results are calculated at 8 integration points, and trilinear extrapolation in the local
coordinate system ξ, η, ζ is used:

fi = Li(m)f(m) (A.21)

where f(m) are known function values at reduces integration points; fi are function values
at vertex nodes and Li(m) is the symmetric extrapolation matrix:

Li(m) =
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(A.22)

A =
5 +

√
3

4
, B = −

√
3 + 1

4
, C =

√
3 − 1

4
, D =

5 −
√

3

4

Stresses are extrapolated from integration points to all nodes of elements. Values for
midside nodes can be calculated as an average between values for two vertex nodal values.
Then averaging of contributions from the neighboring finite element is performed for all
nodes of the finite element model. Averaging produces a continuous field of secondary
results specified at nodes of the model with quadratic variation inside finite elements.
Later, the results can be interpolated to any point inside element or on its surface using
quadratic shape functions.
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[Pab03] W. Pabst, E. Gregorovà, Derivation of the Simplest Exponential and Power-
Law Relations for the Effective Tensile Modulus of Porous Ceramics via Func-
tional Equations, J. Mat. Sci. Lett. 22 (2003) 1673-1675

[Par00] J. Pardo, R.I. Merino, V.M. Orera, J.I. Pena, Piezospectroscopic Study of
Residual Stresses in Al2O3 − ZrO2 Directionally Solidified Eutectics, J. Am.
Ceram. Soc. 83 2745-2752

[Par01] J.S. Park, C.T. Sun, Micromechanical Modeling of Co-Continuous Ceramic

Metal Composites, Proc. Am. Soc. Composites, 16th Technical Conf. (2001)
123-134

[Per92] J.P. Perdew, Y. Wang, Accurate and Simple Analytic Representation of the
Electron-Gas Correlation Energy , Phys. Rev. B 45 (1992) 13244-13249

[Per96] J.P. Perdew, K. Burke, Y. Wang, Generalized Gradient Approximation for the
Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B 54 (1996)
16533 - 16539

[Per96a] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation
Made Simple , Phys. Rev. Lett. 77 (1996) 3865-3868
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