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Genome-wide inference of the 
Camponotus floridanus protein-
protein interaction network 
using homologous mapping and 
interacting domain profile pairs
Shishir K. Gupta1,2,4, Mugdha Srivastava1,4, Özge Osmanoglu1 & Thomas Dandekar   1,3*

Apart from some model organisms, the interactome of most organisms is largely unidentified. High-
throughput experimental techniques to determine protein-protein interactions (PPIs) are resource 
intensive and highly susceptible to noise. Computational methods of PPI determination can accelerate 
biological discovery by identifying the most promising interacting pairs of proteins and by assessing 
the reliability of identified PPIs. Here we present a first in-depth study describing a global view of the 
ant Camponotus floridanus interactome. Although several ant genomes have been sequenced in the 
last eight years, studies exploring and investigating PPIs in ants are lacking. Our study attempts to 
fill this gap and the presented interactome will also serve as a template for determining PPIs in other 
ants in future. Our C. floridanus interactome covers 51,866 non-redundant PPIs among 6,274 proteins, 
including 20,544 interactions supported by domain-domain interactions (DDIs), 13,640 interactions 
supported by DDIs and subcellular localization, and 10,834 high confidence interactions mediated by 
3,289 proteins. These interactions involve and cover 30.6% of the entire C. floridanus proteome.

In terms of biodiversity and biomass, insects are the most successful animals on earth. They provide major ben-
eficial impacts such as pollination, food source and soil improvement. On the contrary, some insects damage 
crops and spread deadly diseases as vectors. One of the harmful pests is the ant Camponotus floridanus which is 
widely distributed throughout Florida and the neighboring states1. They hollow the wood softened by moisture 
and damage the structural integrity of houses by affecting the wood work with their strong mandibles. Besides 
this, this ant species serves as a good model system to understand host-endosymbiont relationships regarding its 
bacterial endosymbiont Blochmannia2.

The complete genome sequences of C. floridanus has revealed the composition of proteins, based mainly 
on theoretical predictions utilizing their corresponding DNA sequence. We analyzed the transcriptome level 
evidence of protein existence and re-annotated the C. floridanus gene models and proteins3. How these proteins 
interact is not yet explored, in part due to limited genetic studies in this organism, high cost, time-consuming 
and labor-intensive nature of experimental methods. Protein interactions are at the core of nearly all biological 
processes, and knowledge about protein-protein interactions (PPIs) is vital for understanding biological systems. 
Despite advances in high-throughput experimental methods for detecting PPIs, the interaction networks for even 
the well-studied experimental model organisms are far from complete4. Nevertheless, high throughput assays typ-
ically include false positives PPIs5 which stipulate an enduring need for efficient computational methods to com-
plement existing experimental approaches. In this context, combining the interolog method6 with adding domain 
information7, gene ontology (GO) annotation8 and cellular localization9,10 yields a graphical representation of the 
interaction networks, a robust and well-established approach to provide an intuitive vision and useful insights 
to help and analyze complex relations therein, as indicated by several previous studies in the reconstruction and 
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understanding of PPIs in various organisms11–14. Here we used domain information, subcellular localization and 
isoform information to filter the preliminary global PPI network of C. floridanus reconstructed on stringent inter-
olog based criteria. We focus on interactions predicted with high confidence to reduce noise. This conservative 
approach rejects 79.1% of the preliminary predicted interactions. We then explored the topologically important 
and evolutionary conserved proteins by analyzing the reconstructed interactome regarding cellular functions.

Results and Discussion
Generating the interactome of ant C. floridanus.  PPIs are typically mediated by interactions between 
domains that are often evolutionary conserved across species15 and form stable interactions16,17. PPI (protein-pro-
tein interaction) maps from experiments on D. melanogaster were collected and augmented by PPI data from 
the DIP database (Database of Interacting Proteins). This provided a basis for interaction predictions according 
to interologs from C. floridanus: conserved proteins compared to Drosophila should also be conserved in their 
interactions6,18 (see Materials and methods for details).

Optimally, for such predictions several methods are combined19 (Fig. 1). We combined the orthology predic-
tion methods InParanoid20 and OrthoMCL21. This did yield a first estimate of the C. floridanus interactome with 
6274 nodes and 51866 edges22. However, the preliminary ant PPI network could have several false positive interac-
tions acquired from the interologs of template data as shown previously in similar other studies5,10,23,24, including 
transfer to curated databases25. To reduce false predictions, we counter-checked all our data by domain-domain 
interactions (DDI). DDI are often used as an approach independent from sequence homology-based methods 
to predict protein-protein interaction networks and thus strongly reduce the number of false positives7,26,27. 
Generally, some of the PPIs are achieved via interactions between short motifs that are often transient interac-
tions28. On the other hand, conserved interactions are mediated by conserved interaction domains across spe-
cies6. Moreover, many signals and processes in the cell rely on conserved interacting protein domains16,29. There 
were 51866 conserved proteins (interologs) and 20544 ant protein-protein interactions that also were associated 
with DDI pairs, yielding a curated C. floridanus interactome with 4589 nodes and 20544 edges. For final curation 
of the interactome we used the subcellular localization of ant proteins: interacting proteins have to share the same 
subcellular localization (summarized in Table 1), predicted interactions between proteins not in the same location 
were removed. This led to a consolidated ant interactome consisting of 3914 nodes and 13640 edges. The highest 
proportion of interactions were identified in the cytoplasm followed by nucleus and plasma membrane respec-
tively. A closer inspection of the interactions that were enriched across subcellular compartments (such as Golgi 
apparatus-cytoplasm) showed that in numerous cases at least one of the interacting proteins was alternatively 
localized to a compartment other than its major site of localization and thus the interacting proteins did indeed 
share a common compartment. For instance, in 482 interaction pairs (Table 1) at least one protein showed both 
the Golgi apparatus localization and cytoplasmic localization. It should be noted that these interaction partners 
are multiple localized proteins and may also appear in other cellular compartments. This is not an uncommon 
situation, as > 50% of proteins of our final interactome network annotated with predicted subcellular localization 
information are, in fact, localized at two or more compartments.

As a final step of network reduction, isoforms of proteins are shown as a single node. These steps of succes-
sive filtering ultimately reduce the complexity of the network and increase the confidence of the C. floridanus 
interactome. Figure 1 summarizes the C. floridanus protein-protein interaction databases, our workflow, pruning 
steps and resulting ant network. It consists of 3289 nodes and 10834 edges (more details in22). The complete 
four networks are provided in the Datasheets 1–4 in Supplementary Material. We also identified several novel 
interactions predicted to be present in C. floridanus. For instance, an interaction was observed between S-phase 
kinase-associated protein 1 (SkpA, Cflo_N_g10272) and immune receptor peptidoglycan-recognition protein LC 
(PGRP-LC, Cflo_N_g10272). As an important component of ubiquitin-proteasome pathway SkpA is involved 
in Immune Deficiency (IMD) pathway regulation in D. melanogaster30. Since PGRP-LC is also a regulator of 
the ant IMD pathway3, the interaction we identified suggests that SkpA can modulate the IMD pathway by the 
interaction with PGRP-LC. Not only the interaction between protein complexes such as laminin subunit beta-1 
(Cflo_N_g14102) and laminin subunit gamma-1 (Cflo_N_g9869) but also the interaction between Cflo_N_
g14102 and C-type lectin precursor (Cflo_N_g765) was resolved (see Datasheets 3 in Supplementary Material 
for all the interactions).

To further supplement the proposed ant interactome, we performed a topology-based scoring of the network. 
The method CAPPIC31 used the intrinsic modularity of PPI network for assessing the confidence of individual 
interactions. 88.5% of the total interactions are high confidence (Fig. 2) while 9.65% were assigned to medium 
confidence and 1.8% to low confidence.

We applied the Mann-Whitney test to compare the average confidence scores of all four PPI networks and 
observed significant increase of confidence score for the first three steps from the preliminary network through 
DDI mediated filtering and localization-based filtering (Supplementary Fig. 1). The mean confidence score of the 
final interactome, after the isoform merging, did not change much. This is because the merging of this last step 
also eliminated some high confidence PPIs mediated by the isoforms. Nevertheless, the comparison of the pro-
portions of high-confidence PPIs in the preliminary interactome and the final ant interactome indicates that it has 
a significantly increased number of high confidence interactions (in the preliminary network these are 78%, in the 
final 89%; Fisher’s exact test p-value < 2.2e-16). Note that the applied filtering steps also eliminated most of the 
low confidence PPIs (see low confidence zone in Supplementary Fig. 1). To further confirm the elimination after 
successive filtering steps, we compared the low confidence PPIs proportions in all four interactomes in a pairwise 
way with Fisher’s exact test and show a significant decrease in the number of the low confidence PPIs between 
the preliminary, DDI-filtered and localization-filtered interactomes (in preliminary 4.5%, in DDI-filtered 2,2%, 
in localization-filtered 1.6% with maximum p-value < 3.4e-05). These analyses clearly demonstrate the improve-
ment of network quality after filtering steps.
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Network analysis of C. floridanus interactome and accuracy assessment.  The resulting PPI sum-
marizes the whole network and reveals central connecting nodes. The final high confidence ant interactome 
showed a clustering coefficient of 0.094 with a mean shortest path length of 4.359, network diameter 14 and an 
average degree of 6.970. As a typical biological network32–34 it shows small-world connectivity and scale-free 
topology.

We further tested whether the proposed interactome aligns with the properties of a real biological network. To 
assess this, we derived three independent datasets and compared their topological properties with the proposed 
network. The average z-statistic value (Datasheet 5 in Supplementary Material) clearly indicates comparatively 
less variation of the ant interactome from the ‘Barabási-Albert scale free model’ (z-statistic = 23.06, −5.28) in 
terms of clustering coefficient and mean shortest path. However, the differences were high while comparing that 
of with ‘Watts–Strogatz small world graph model’ (z-statistic = −30.95, −58.49) and ‘Erdős-Rényi flat-random’ 
network model (z-statistic = 171.03, −52.72). Scale-free networks have been often observed in biological systems 
such as PPI and gene regulatory networks35, therefore the bias towards such a network is an indicator of the equal-
ity of the reconstructed ant interactome. To test another factor, the degree distribution of the ant interactome was 

Figure 1.  Pipeline for reconstruction of C. floridanus interactome. Top: Five databases, yeast two hybrid 
screens and coAP/MS screens and the C. floridanus interactome provide data for calculating conserved proteins 
(interologs) and protein-protein interactions. The preliminary protein-protein interaction network (top, right) 
is then filtered (right) by demanding in addition support by domain-domain interactions and shared subcellular 
localizations (right, bottom). It is then simplified merging similar isoforms (bottom, left).
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much closer to Watts–Strogatz model (z-statistic = 0.49), although the differences with Barabási-Albert model 
was not too high (z-statistic = 2.45). The nodes in the network obey a power-law distribution indicating a typical, 
biological small-world and scale-free network.

Gene ontology (GO) enrichment analysis.  The molecular function GO term over-representation analysis 
indicates enriched protein functions in the ant networks (FDR <0.05; Table 2 and Datasheet 6 in Supplementary 
Material). Over-represented functional categories include the term ‘binding’ as to be expected from the PPI con-
struction and a validation criterion. Out of 2804 proteins annotated as GO term GO:0005488 ‘binding’ in C. 
floridanus proteome, 46.11% proteins are present in the final interactome. In total, 64 binding-related GO terms 
were identified constituting 34.97% of all over-represented GO terms. We only found the under-representation 
of two GO terms: GO:0003964 ‘RNA-directed DNA polymerase activity’ and GO:0034061 ‘DNA polymerase 
activity’. This indicates during the filtering we did not lose most of the functional proteins that are involved in 
molecular binding.

We further compared the semantic similarity scores of the interacting pairs with the random networks of 
non-interacting proteins. We first assigned the level-4 GO annotations (for molecular function) to all the proteins 
coded by the ant genome using Blast2GO36. Next, we used the GOGO algorithm37 to measure the semantic sim-
ilarity scores of the high confidence interacting pairs in the proposed ant interactome. We further generated 30 

Cytoplasm (2176) 6871

Golgi apparatus 
(243) 482 720

Peroxisome (21) 11 3 4

Other (1) † 1 0 0 1

Nucleus (1866) 4686 227 3 0 6596

Cytoskeleton (427) 1580 134 0 1 926 387

Lysosome (50) 106 17 0 0 53 26 11

Mitochondrion 
(319) 443 39 8 0 297 61 12 211

ER (270) 368 59 0 1 179 79 19 24 155

Extracellular (123) 120 16 4 0 87 36 1 19 22 51

Plasma membrane 
(1522) 2365 383 10 1 1187 507 79 245 416 83 2636
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Table 1.  Numbers of PPIs, by subcellular localization of interacting proteins in localization supported network. 
The numbers in the parentheses indicate the total number of proteins in the interactome that are present in 
each subcellular compartment (based on localization prediction, including multiple localized proteins). ER, 
endoplasmic reticulum. †The number given here in parentheses is the number of proteins that do not have 
subcellular localization in any of the other compartmenst in the table.

Figure 2.  Density plot of the confidence scores for interactions in the C. floridanus interactome. How sure are 
the predicted protein-protein interactions? The distribution of the different confidence levels were computed 
with CAPPIC31. Score distributions were separated into low, medium and high confidence category and the 
density for each category was plotted. In the three subsets scores range between 0 and 0.3 for subset 1 (green, 
low confidence), 0.3 and 0.7 for subset 2 (blue, medium confidence) and 0.7 and 1 for subset 3 (red, high 
confidence). Stippled coloured lines indicate median values for the different categories.
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random networks each with 100 random interactions among the proteins that were assigned to level-4 molecular 
function GO annotations using a custom-made Perl script which can be accessed from the GitHub repository 
(https://github.com/ShishirGupta-Wu/ant_ppi). We made sure the random networks did not contain any pro-
teins pairs apparent in the preliminary interactome. Using the GOGO algorithm37 semantic similarity scores were 
also assigned to the random networks (non-PPIs) and these scores were further compared with the interacting 
proteins in a pairwise way using the Mann-Whitney U test. We observed that the interacting protein set had not 
only the highest average score of 0,47, this was also well separated and significantly higher than the average score 
in all the 30 non-PPI sets (Fig. 3). This comparison demonstrates the interactions in our calculated ant interac-
tome are functionally relevant and clearly different from random networks.

C. floridanus interactome protein conservation compared with seven organisms.  Proteins that 
perform essential functions are expected to be evolutionary conserved. We further investigated the evolutionary 
conservation of ant interactome proteins. Higher degree proteins are generally evolutionary better conserved38, 
some caveats are discussed in39,40. To analyze this, node degree and the fraction of proteins present in the ant 
interactome that are conserved in different model organisms were compared. It turns out that in general the inter-
actions are conserved and supported by most species tested and not just by one (Fig. 4). For exact quantification 
we did not check the possible restricted conservation of the binary ant PPIs, but more general the conservation of 
proteins that are present in the ant interactome and have orthologs in seven other species. For instance, in the ant 
interactome there are 535 proteins of degree 2. Out of these 535 proteins 451 have an ortholog in Anopheles, 209 
have an ortholog in Arabidopsis, 298 have an ortholog in C. elegans, 404 have an ortholog in mouse, 82 have an 
ortholog in plasmodium, 151 have an ortholog in yeast, and 402 have a human ortholog.

There was a positive correlation between degree and conservation in the evolutionary closest analyzed spe-
cies A. gambiae (Spearman’s rank r = 0.62, p-value = 3.5e-09). Similar correlations are observed between ant and 
human (r = 0.60), and mouse (r = 0.51). Between ant and worm the correlation was weak (r = 0.33), while no 
significant correlation is observed between ant and A. thaliana, P. falciparum, and yeast. An ortholog table is 
provided in Datasheet 7 in Supplementary Material.

Overall conservation and infection induced hubs and bottlenecks in the ant interactome.  We 
also evaluated the overall conservation of all the ant proteins with the other seven model organisms and com-
pared the relatedness of the ant interactome proteins using the chi-square test. The analysis indicated the related-
ness of corresponding proportions with p-value < 0.05 in each case. The differences in the number of orthologs 
can be clearly visualized (Fig. 5a) in case of ant comparison with protozoan parasite, yeast and plant.

Due to the large phylogenetic distance to these three organisms there are less orthologs but these are well 
conserved (chi-square test).

GO ID GO molecular function term FDR

GO:0005488 Binding 3.27E-130

GO:0003824 Catalytic activity 8.17E-92

GO:0097159 Organic cyclic compound binding 9.44E-88

GO:1901363 Heterocyclic compound binding 9.44E-88

GO:0036094 Small molecule binding 3.59E-80

GO:1901265 Nucleoside phosphate binding 7.83E-78

GO:0000166 Nucleotide binding 7.83E-78

GO:0043168 Anion binding 2.45E-66

GO:0017076 Purine nucleotide binding 5.15E-59

GO:0032553 Ribonucleotide binding 7.09E-59

GO:0032555 Purine ribonucleotide binding 1.76E-58

GO:0035639 Purine ribonucleoside triphosphate 
binding 2.85E-58

GO:0097367 Carbohydrate derivative binding 2.68E-55

GO:0043167 Ion binding 3.31E-52

GO:0016817 Hydrolase activity, acting on acid 
anhydrides 2.18E-39

GO:0005515 Protein binding 2.18E-39

GO:0016818
Hydrolase activity, acting on acid 
anhydrides, in phosphorus-containing 
anhydrides

9.29E-39

GO:0016462 Pyrophosphatase activity 6.95E-38

GO:0017111 Nucleoside-triphosphatase activity 3.90E-37

GO:0030554 Adenyl nucleotide binding 3.90E-37

Table 2.  Top 20 over-represented GO molecular function terms in the ant-interactomea. aSee Datasheet 6 
in Supplementary material for the complete list of over-represented GO molecular functions terms in ant-
interactome.
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The remaining set of the other four organisms including insect, human, mouse and worm together consists of/
contains higher number of orthologs in comparison to the ant proteins (Fig. 5b and Datasheet 7 in Supplementary 
Material). 187 proteins of the ant interactome are ant-specific in this comparison: they do not have orthologs in 
any of the analysed organisms (Fig. 5b). The analysis of central topological properties of a PPI network helps to 
identify key multifunctional components of the network41. Infection induced proteins of C. floridanus are con-
served in related organisms including key interactions. The degree of the node42 and the betweenness centrality43 

Figure 3.  Pairwise Gene Ontology (GO) similarity of the ant interactome compared against non-interacting 
proteins. The high average similarity score of the ant interactome (PPI, left) stands out against the low similarity 
scores of the non-interacting PPIs. Semantic similarity score between interacting (PPI) and non-interacting 
(nonPPI) protein pairs were compared in a pairwise fashion using the Mann-Whitney U test. The Average 
scores for semantic similarity in molecular function level-4 GO annotations of interacting proteins and 30 
random networks of non-interacting proteins are shown.

Figure 4.  Conservation of interacting proteins by degree in different model species. The conservation level 
of ant interactome proteins with varying degrees are shown in each analyzed species and in general the 
interactions are well confirmed by several species (symbols listed on the right, middle). Higher connceted 
proteins (right) become rare and so if present in the compared model organism, they are fully confirmed 
(1.00, top) or nothing is found in some other model species (0.00, bottom). Each protein in the C. floridanus 
interactome was examined for orthologous proteins in the seven organisms, and binned according to degree. 
The proportion of each bin with orthologous proteins in shown. A trendline is not shown on the graph since the 
data is analyzed with Spearman’s rank correlation and a trendline could be misleading.

https://doi.org/10.1038/s41598-020-59344-1
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represent the most important properties in the PPI network because of their role in maintaining the functional 
integrity and connectivity of the network. Proteins with high degree are termed as hubs while the proteins with 
high betweenness centrality are termed bottlenecks.

Figure 5.  Conservation of C. floridanus proteins. (a) Network showing the similarity of C. floridanus proteins 
(central node) with other organisms proteins (peripheral nodes) quantitively by color codes. Color gradients 
represent the number of proteins in each species that have orthologs in either C. floridanus interactome (itor, 
inner circle) or in the whole C. floridanus proteome (tor, outer circle). A similar color to the ant node shows 
close orthology relation while nodes of more distant species have different colors. A correlation between the 
colors of two circles is expected to show that the interactome successfully represent the orthology relationships 
between ant and other species. For instance, if both circles of a species show a similar color to ant, it depicts 
that the close orthology to ant can be also observed in the interactome. Pearson’s Chi-squared test with Yates’ 
continuity correction showed relationship (p-value < 2.2e-16) between the total ant proteins orthologs and 
interactome proteins orthologs for each corresponding organisms. (b) Conservation of ant interactome proteins 
in set of any analyzed organisms. Number of ant interactome proteins that are unique to ant and that are 
orthologous to proteins in different numbers of analyzed species is shown. (c) Differentially expressed top hubs 
and bottlenecks (represented by black dots) and presence/absence of their orthologs in other seven organisms. 
Differential expression values (log2FC) of hubs and bottlenecks in bacterial infection of C. floridanus are 
represented by a color gradient.

https://doi.org/10.1038/s41598-020-59344-1
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We applied Fisher’s exact test to compare the proportion of multi-localized proteins in hubs and bottlenecks 
to non-hubs and non-bottlenecks, respectively. Supplementary Fig. 2 shows differences between the localization 
of bottlenecks and hubs of the ant interactome. For bottleneck proteins, 70% were found to be multi-localized 
(versus 56% for non-bottleneck proteins; significant difference; p = 9.6 × 10−10). On the other hand, 62% of the 
hub proteins had multiple localizations (versus 56% for non-hub proteins; significant difference, p = 0.001575).

Integration of the RNASeq data3 with the ant interactome revealed differentially expressed infection-induced 
hubs and bottlenecks during the bacterial infection of C. floridanus (Fig. 5c). These include also well-known key 
proteins involved in C. floridanus immune response such as nuclear factor NF-kappa-B p110 (Relish, Cflo_N_
g6082), acidic mammalian chitinase (Cflo_N_g2277), as well as stress-related protein cytochromes P450 6A1 
(Cflo_N_g11706)3. Given the high importance of hubs and bottlenecks in PPI networks and their differential 
expression during bacterial infection, all the identified proteins are expected to participate in the defense against 
bacterial pathogen, and hence can also be examined for decoding immune mechanisms. The insect peritrophic 
membrane (PM) imposes protective physical barriers over the midgut epithelium44. The PM related proteins have 
shown their potential as targets for pest control45,46. Therefore, the important ant peritrophic membrane protein 
1 (Cflo_N_g4555) (Fig. 5c) with no human homology could be further tested as a potential pest target. However, 
differential expression does not guarantee a protein to be the best target47,48 and therefore, other topologically 
important proteins in the network without human homology (Datasheet 7 in Supplementary Material) should 
also be considered as potential pest targets in future.

Conclusions
Our curated ant interactome is the first large-scale PPI network of an ant. It allows besides numerous analysis 
of network biology to study how different cellular processes connect to each other including hub proteins and 
different types of crosstalk, for instance in immunity.

Similarly, the PPI maps of other sequenced ants can be reliably predicted using the interologs of the recon-
structed high-confidence C. floridanus interactome. Moreover, detailed cross-validation, comparison with 
random networks, GO annotation, and conservation analysis support the high quality of the resulting ant inter-
actome and its construction steps. The network analysis including evolutionary conserved network proteins fur-
ther suggest that topologically important proteins could also be exploited as future pest targets. For instance, 
cytochrome P450 6A1 (Cflo_N_g11706), peritrophic membrane protein 1 (Cflo_N_g4555), flexible cuticle pro-
tein 12 (Cflo_N_g6859), endocuticle structural glycoprotein SgAbd-1 (Cflo_N_g7775) were identified as topo-
logically important differentially expressed proteins with no human orthologs. Nevertheless, specific interactions 
highlighted from our global analysis will need individual follow up by detailed investigations.

Materials and Methods
Reconstructing protein-protein interaction map of C. floridanus.  We compiled the list of experi-
mentally verified high-confidence PPIs available in Database of interacting proteins (DIP)49, D. melanogaster PPIs 
from DroID50 database which includes data from different studies including interactions from high throughput 
Gal4 proteome-wide yeast two-hybrid (Y2H) screens32, LexA Y2H system screens51–53, PPIs from fly protein 
interaction map54, interactions determined in large-scale co-affinity purification (co-AP)/MS screens55,56, inter-
actions from BIND57, BioGRID58, MINT59, IntAct60, and databases available in DroID v2014_10.

The C. floridanus interologs of the entire template PPIs were determined using orthology predictions from the 
software InParanoid20,61 and OrthoMCL21. These were further customized using own perl and bash scripts. For 
DIP interactors we used the default parameters of InParanoid. For the fly data orthology was determined using 
the stricter Blosum80 matrix. For the OrthoMCL based interologs mapping a Blast e-value of 1e-05 was used 
and the MCL inflation index set to 1.5. InParanoid distinguished seed orthologs with co-orthologs and left fewer 
possibilities of mixing outparalogs in orthologous clusters. Consensus predictions of InParanoid and OrthoMCL 
were added to InParanoid seed orthologs to create a set of interologs.

Pruning PPIs with domain-domain interactions.  The amino acid sequences of non-redundant prelimi-
nary PPIs were extracted and domains were assigned to them using Pfam version 27.062. The list of non-redundant 
domain-domain interactions was prepared from the meta-databases Domine63, DIMA 3.064 and IDDI database65. 
These use complexes available in the Protein Data Bank (PDB)66 to identify by interacting domains the Pfam 
families containing these domains. These Pfam families are then predicted to be interacting. This list was used to 
parse the template PPIs. All interactions were categorized whether they are supported (good interactions, used 
for further filtering steps) or not by domain-domain interactions (DDIs).

Subcellular localization filtering.  The subcellular localization of C. floridanus proteins was determined 
with orthology to Swiss-Prot proteins and the extended version of KnowPredsite67 available at UniLoc server 
(bioapp.iis.sinica.edu.tw/UniLoc/), a knowledge-based classifier for protein subcellular localization. If in a binary 
interaction, both proteins do not share the same localization or at least one compartment in multiple localized 
proteins, the interaction was ruled out as probable not occurring.

Isoform filtering.  The information on C. floridanus protein isoforms and their function was extracted from 
our previous publication of C. floridanus re-annotation and transcriptome sequencing3,68. To reduce network 
complexity and noise, isoforms of any specific protein present in the network were represented as a single node. 
Although, the data files for all the networks are provided in the Supplementary Tables (1–5) which allow inter-
ested readers to analyze the network of their choice further if they wish.
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Assigning the confidence score.  In fact, the preliminary network is filtered successively as mentioned 
above to reconstruct the final network, in this way the final network is already of high-confidence as many net-
work biologists working on PPI networks have used DDIs and subcellular localization either to increase confi-
dence or validate the interacting pairs. Here additionally we used topology-based method CAPPIC (cluster-based 
assessment of protein-protein interaction confidence) to assign the interaction confidence score31,69 in the 
filtered network. In brief, CAPPIC calculations are based on the assumption that the proteins existing in the 
same network module are expected to have a higher number of common neighbours (neighbourhood inter-
connectedness70), and a short path length inbetween71. For scoring the confidence level, CAPPIC first performs 
the clustering of the network using a robust clustering algorithm, Markov Cluster (MCL)72 and then scores the 
interactions according to their level of compliance with the basic assumptions of topology-based methods. For 
the clustering we used an MCL inflation value of 1.5. Scores were classified to three subsets; low confidence score 
between 0 to 0.3, medium confidence score between 0.3 to 0.7, and high confidence score between 0.7 to 1.

Network analysis and visualization.  The C. floridanus interactome was subjected to topological analysis 
using Network Analyzer plugin version 2.7 of Cytoscape version 2.8.173. The node degree distribution, mean path 
length, network diameter and betweenness centrality (BC) were determined with graph theoretic analysis imple-
mented with CentiScaPe74. For the network G(V,E), the BC of node n is defined as follows

∑
σ

σ
=









≠ ≠

BC n( ) (n)

(1)s n t

st

st

here s and t are network nodes different from node n, σst is the number of shortest paths from s to t, and σst (n) 
gives the number of shortest paths from s to t that goes through node n.

Hubs and bottlenecks in the network were identified with cytoHubba75. Hubs were defined as proteins 
connecting with ≥5 proteins. Moreover, top 20% of bottlenecks and hubs were considered for mapping of the 
RNASeq expression data which was collected from our previous publication3.

Random networks.  We generated random networks following the Erdős-Rényi Model76, Barabási-Albert 
Model77 and randomized the proposed (final) ant interactome while preserving the total number of interactome 
nodes using the Network Randomizer plugin78 of Cytoscape73. A total of 1000 random simulation were employed 
to generate the undirected random graphs. For all three network sets we computed topological parameters, mean 
shortest path, degree distribution and clustering coefficient and compared their differences to the native ant inter-
actome using the statistical Z-test79.

Functional annotation.  Blast2GO36 was used to annotate the Gene Ontology (GO) terms of proteins 
involved in the reconstructed interactome. Over-representation analyses of GO terms was performed using the 
Gossip package80 of the Blast2GO suite. A two-tailed Fisher’s exact test followed by false discovery rate (FDR) 
correction for multiple testing81 was applied to see the functional difference of ant interactome proteins annota-
tions (foreground set) and full C. floridanus proteome annotations3 (background set). Only differences having an 
adjusted p‐value < 0.05 were considered significant.

Orthology analysis.  InParanoid20 was used to identify the orthologs of topologically important nodes in 
seven model organisms: Anopheles gambiae, Arabidopsis thaliana, Caenorhabditis elegans, Homo sapiens, Mus 
musculus, Plasmodium falciparum, and Saccharomyces cerevisiae. Only the ortholog with 100% bootstrap sup-
port was considered as true ortholog. As a note of caution, the conservation was calculated rather conservatively 
demanding double orthology relations. Hence, the absence of an ortholog (Suppl. Datasheet 7) only indicates 
that the highly restrictive threshold was not met. Generally, a sequence related protein may still be found by less 
restrictive algorithms (e.g. BLAST).

For exact quantification of the degree of conservation of ant PPIs we did not check the possible restricted 
conservation of the binary ant PPIs, but more general the conservation of proteins that are present in the ant 
interactome and have orthologs in seven other species. After calculation of the orthology relationships between 
ant and other organisms we identified for every degree the occurrence value of the ant interactome and how many 
orthologs are present in other species. For each organism the fraction of proteins at a particular ant interactome 
degree is considered as the number of ant protein orthologs at that particular degree and greater divided by the 
number of proteins in the set.

Data availability
All data generated and analysed during this study are included in this published article (and its supplementary 
Information files). The dataset and codes for random network generation are also available at https://github.com/
ShishirGupta-Wu/ant_ppi.

Received: 9 May 2019; Accepted: 22 January 2020;
Published: xx xx xxxx

References
	 1.	 Gadau, J., Heinze, J., Holldobler, B. & Schmid, M. Population and colony structure of the carpenter ant Camponotus floridanus. Mol. 

Ecol. 5, 785–792 (1996).
	 2.	 Zientz, E., Beyaert, I., Gross, R. & Feldhaar, H. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at 

different stages of the life cycle of the host. Appl. Env. Microbiol. 72, 6027–6033, https://doi.org/10.1128/AEM.00933-06 (2006).

https://doi.org/10.1038/s41598-020-59344-1
https://github.com/ShishirGupta-Wu/ant_ppi
https://github.com/ShishirGupta-Wu/ant_ppi
https://doi.org/10.1128/AEM.00933-06


1 0Scientific Reports |         (2020) 10:2334  | https://doi.org/10.1038/s41598-020-59344-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 3.	 Gupta, S. K. et al. Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. 
BMC Genomics 16, 540, https://doi.org/10.1186/s12864-015-1748-1 (2015).

	 4.	 Ben-Hur, A. & Noble, W. S. Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinforma. 
7(Suppl 1), S2, https://doi.org/10.1186/1471-2105-7-S1-S2 (2006).

	 5.	 von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nat. 417, 399–403, https://doi.
org/10.1038/nature750 (2002).

	 6.	 Yu, H. et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14, 
1107–1118, https://doi.org/10.1101/gr.1774904 (2004).

	 7.	 Zhang, S., Chen, H., Liu, K. & Sun, Z. Inferring protein function by domain context similarities in protein-protein interaction 
networks. BMC Bioinforma. 10, 395, https://doi.org/10.1186/1471-2105-10-395 (2009).

	 8.	 Mahdavi, M. A. & Lin, Y. H. False positive reduction in protein-protein interaction predictions using gene ontology annotations. 
BMC Bioinforma. 8, 262, https://doi.org/10.1186/1471-2105-8-262 (2007).

	 9.	 Saito, R., Suzuki, H. & Hayashizaki, Y. Interaction generality, a measurement to assess the reliability of a protein-protein interaction. 
Nucleic acids Res. 30, 1163–1168 (2002).

	10.	 Sprinzak, E., Sattath, S. & Margalit, H. How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327, 919–923 
(2003).

	11.	 Dyer, M. D., Murali, T. M. & Sobral, B. W. Computational prediction of host-pathogen protein-protein interactions. Bioinforma. 23, 
i159–166, https://doi.org/10.1093/bioinformatics/btm208 (2007).

	12.	 Remmele, C. W. et al. Integrated inference and evaluation of host-fungi interaction networks. Front. microbiology 6, 764, https://doi.
org/10.3389/fmicb.2015.00764 (2015).

	13.	 Wang, Y. C. et al. Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: 
a Candida albicans-zebrafish interaction study. BMC Syst. Biol. 7, 79, https://doi.org/10.1186/1752-0509-7-79 (2013).

	14.	 Zhou, H. et al. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Biol. direct 
9, 5, https://doi.org/10.1186/1745-6150-9-5 (2014).

	15.	 Itzhaki, Z., Akiva, E., Altuvia, Y. & Margalit, H. Evolutionary conservation of domain-domain interactions. Genome Biol. 7, R125, 
https://doi.org/10.1186/gb-2006-7-12-r125 (2006).

	16.	 Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Sci. 300, 445–452, https://doi.
org/10.1126/science.1083653 (2003).

	17.	 Schuster-Bockler, B. & Bateman, A. Reuse of structural domain-domain interactions in protein networks. BMC Bioinforma. 8, 259, 
https://doi.org/10.1186/1471-2105-8-259 (2007).

	18.	 Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl Acad. Sci. United States of America 102, 
1974–1979, https://doi.org/10.1073/pnas.0409522102 (2005).

	19.	 Pereira, C., Denise, A. & Lespinet, O. A meta-approach for improving the prediction and the functional annotation of ortholog 
groups. BMC genomics 15(Suppl 6), S16, https://doi.org/10.1186/1471-2164-15-S6-S16 (2014).

	20.	 Sonnhammer, E. L. & Ostlund, G. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic acids Res. 43, 
D234–239, https://doi.org/10.1093/nar/gku1203 (2015).

	21.	 Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 
2178–2189, https://doi.org/10.1101/gr.1224503 (2003).

	22.	 Gupta, S. K. Re-annotation of Camponotus floridanus Genome and Characterization of Innate Immunity Transcriptome Responses 
to Bacterial Infections PhD thesis, Universität Würzburg, (2016).

	23.	 Deane, C. M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high 
throughput observations. Mol. Cell. proteomics: MCP 1, 349–356 (2002).

	24.	 Mrowka, R., Patzak, A. & Herzel, H. Is there a bias in proteome research? Genome Res. 11, 1971–1973, https://doi.org/10.1101/
gr.206701 (2001).

	25.	 Cusick, M. E. et al. Literature-curated protein interaction datasets. Nat. methods 6, 39–46, https://doi.org/10.1038/nmeth.1284 
(2009).

	26.	 Wojcik, J. & Schachter, V. Protein-protein interaction map inference using interacting domain profile pairs. Bioinforma. 17(Suppl 1), 
S296–305 (2001).

	27.	 Zhou, H. et al. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. BMC Syst. Biol. 
7(Suppl 6), S6, https://doi.org/10.1186/1752-0509-7-S6-S6 (2013).

	28.	 Pawson, T., Raina, M. & Nash, P. Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett. 513, 2–10 
(2002).

	29.	 Prieto, C. & Rivas, D. L. J. Structural domain-domain interactions: assessment and comparison with protein-protein interaction data 
to improve the interactome. Proteins 78, 109–117, https://doi.org/10.1002/prot.22569 (2010).

	30.	 Khush, R. S., Cornwell, W. D., Uram, J. N. & Lemaitre, B. A ubiquitin-proteasome pathway represses the Drosophila immune 
deficiency signaling cascade. Curr. Biol. 12, 1728–1737 (2002).

	31.	 Kamburov, A., Grossmann, A., Herwig, R. & Stelzl, U. Cluster-based assessment of protein-protein interaction confidence. BMC 
Bioinforma. 13, 262, https://doi.org/10.1186/1471-2105-13-262 (2012).

	32.	 Giot, L. et al. A protein interaction map of Drosophila melanogaster. Sci. 302, 1727–1736, https://doi.org/10.1126/science.1090289 
(2003).

	33.	 Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nat. 411, 41–42, https://doi.
org/10.1038/35075138 (2001).

	34.	 Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Sci. 296, 910–913, https://doi.org/10.1126/
science.1065103 (2002).

	35.	 Albert, R. Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957, https://doi.org/10.1242/jcs.02714 (2005).
	36.	 Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinforma. 

21, 3674–3676, https://doi.org/10.1093/bioinformatics/bti610 (2005).
	37.	 Zhao, C. & Wang, Z. GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms. Sci. Rep. 8, 

15107, https://doi.org/10.1038/s41598-018-33219-y (2018).
	38.	 Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Sci. 

296, 750–752, https://doi.org/10.1126/science.1068696 (2002).
	39.	 Fraser, H. B., Wall, D. P. & Hirsh, A. E. A simple dependence between protein evolution rate and the number of protein-protein 

interactions. BMC Evol. Biol. 3, 11, https://doi.org/10.1186/1471-2148-3-11 (2003).
	40.	 Jordan, I. K., Wolf, Y. I. & Koonin, E. V. No simple dependence between protein evolution rate and the number of protein-protein 

interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3, 1 (2003).
	41.	 Akhoon, B. A. et al. C. elegans protein interaction network analysis probes RNAi validated pro-longevity effect of nhr-6, a human 

homolog of tumor suppressor Nr4a1. Sci. Rep. 9, 15711, https://doi.org/10.1038/s41598-019-51649-0 (2019).
	42.	 Batada, N. N., Hurst, L. D. & Tyers, M. Evolutionary and physiological importance of hub proteins. PLoS computational Biol. 2, e88, 

https://doi.org/10.1371/journal.pcbi.0020088 (2006).
	43.	 Yu, H., Kim, P. M., Sprecher, E., Trifonov, V. & Gerstein, M. The importance of bottlenecks in protein networks: correlation with gene 

essentiality and expression dynamics. PLoS computational Biol. 3, e59, https://doi.org/10.1371/journal.pcbi.0030059 (2007).

https://doi.org/10.1038/s41598-020-59344-1
https://doi.org/10.1186/s12864-015-1748-1
https://doi.org/10.1186/1471-2105-7-S1-S2
https://doi.org/10.1038/nature750
https://doi.org/10.1038/nature750
https://doi.org/10.1101/gr.1774904
https://doi.org/10.1186/1471-2105-10-395
https://doi.org/10.1186/1471-2105-8-262
https://doi.org/10.1093/bioinformatics/btm208
https://doi.org/10.3389/fmicb.2015.00764
https://doi.org/10.3389/fmicb.2015.00764
https://doi.org/10.1186/1752-0509-7-79
https://doi.org/10.1186/1745-6150-9-5
https://doi.org/10.1186/gb-2006-7-12-r125
https://doi.org/10.1126/science.1083653
https://doi.org/10.1126/science.1083653
https://doi.org/10.1186/1471-2105-8-259
https://doi.org/10.1073/pnas.0409522102
https://doi.org/10.1186/1471-2164-15-S6-S16
https://doi.org/10.1093/nar/gku1203
https://doi.org/10.1101/gr.1224503
https://doi.org/10.1101/gr.206701
https://doi.org/10.1101/gr.206701
https://doi.org/10.1038/nmeth.1284
https://doi.org/10.1186/1752-0509-7-S6-S6
https://doi.org/10.1002/prot.22569
https://doi.org/10.1186/1471-2105-13-262
https://doi.org/10.1126/science.1090289
https://doi.org/10.1038/35075138
https://doi.org/10.1038/35075138
https://doi.org/10.1126/science.1065103
https://doi.org/10.1126/science.1065103
https://doi.org/10.1242/jcs.02714
https://doi.org/10.1093/bioinformatics/bti610
https://doi.org/10.1038/s41598-018-33219-y
https://doi.org/10.1126/science.1068696
https://doi.org/10.1186/1471-2148-3-11
https://doi.org/10.1038/s41598-019-51649-0
https://doi.org/10.1371/journal.pcbi.0020088
https://doi.org/10.1371/journal.pcbi.0030059


1 1Scientific Reports |         (2020) 10:2334  | https://doi.org/10.1038/s41598-020-59344-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

	44.	 Kuraishi, T., Binggeli, O., Opota, O., Buchon, N. & Lemaitre, B. Genetic evidence for a protective role of the peritrophic matrix 
against intestinal bacterial infection in Drosophila melanogaster. Proc. Natl Acad. Sci. U S Am. 108, 15966–15971, https://doi.
org/10.1073/pnas.1105994108 (2011).

	45.	 Sajjadian, M. & Hosseininaveh, V. Destruction of peritrophic membrane and its effect on biological characteristics and activity of 
digestive enzymes in larvae of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). Eur. J. Entomology 112, 
245–250, https://doi.org/10.14411/eje.2015.046 (2015).

	46.	 Zhang, X. & Guo, W. Isolation and identification of insect intestinal mucin HaIIM86–the new target for Helicoverpa armigera 
biocontrol. Int. J. Biol. Sci. 7, 286–296 (2011).

	47.	 Gupta, S. K., Gross, R. & Dandekar, T. An antibiotic target ranking and prioritization pipeline combining sequence, structure and 
network-based approaches exemplified for Serratia marcescens. Gene 591, 268–278, https://doi.org/10.1016/j.gene.2016.07.030 
(2016).

	48.	 Kaltdorf, M. et al. Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach. Front. Mol. Biosci. 3, 22, 
https://doi.org/10.3389/fmolb.2016.00022 (2016).

	49.	 Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic acids Res. 32, D449–451, https://doi.org/10.1093/nar/
gkh086 (2004).

	50.	 Murali, T. et al. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for 
Drosophila. Nucleic acids Res. 39, D736–743, https://doi.org/10.1093/nar/gkq1092 (2011).

	51.	 Schwartz, A. S., Yu, J., Gardenour, K. R., Finley, R. L. Jr. & Ideker, T. Cost-effective strategies for completing the interactome. Nat. 
methods 6, 55–61, https://doi.org/10.1038/nmeth.1283 (2009).

	52.	 Stanyon, C. A. et al. A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5, R96, https://doi.
org/10.1186/gb-2004-5-12-r96 (2004).

	53.	 Zhong, J., Zhang, H., Stanyon, C. A., Tromp, G. & Finley, R. L. Jr. A strategy for constructing large protein interaction maps using 
the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res. 13, 2691–2699, https://doi.
org/10.1101/gr.1134603 (2003).

	54.	 Formstecher, E. et al. Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384, https://doi.org/10.1101/
gr.2659105 (2005).

	55.	 Friedman, A. A. et al. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-
regulated kinase signaling. Sci. Signal. 4, rs10, https://doi.org/10.1126/scisignal.2002029 (2011).

	56.	 Guruharsha, K. G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703, https://doi.org/10.1016/j.
cell.2011.08.047 (2011).

	57.	 Bader, G. D., Betel, D. & Hogue, C. W. BIND: the Biomolecular Interaction Network Database. Nucleic acids research 31, (248–250 
(2003).

	58.	 Stark, C. et al. The BioGRID Interaction Database: 2011 update. Nucleic acids Res. 39, D698–704, https://doi.org/10.1093/nar/
gkq1116 (2011).

	59.	 Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic acids Res. 40, D857–861, https://doi.org/10.1093/
nar/gkr930 (2012).

	60.	 Orchard, S. et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic acids 
Res. 42, D358–363, https://doi.org/10.1093/nar/gkt1115 (2014).

	61.	 Remm, M., Storm, C. E. & Sonnhammer, E. L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. 
J. Mol. Biol. 314, 1041–1052, https://doi.org/10.1006/jmbi.2000.5197 (2001).

	62.	 Finn, R. D. et al. Pfam: the protein families database. Nucleic acids Res. 42, D222–230, https://doi.org/10.1093/nar/gkt1223 (2014).
	63.	 Yellaboina, S., Tasneem, A., Zaykin, D. V., Raghavachari, B. & Jothi, R. DOMINE: a comprehensive collection of known and 

predicted domain-domain interactions. Nucleic acids Res. 39, D730–735, https://doi.org/10.1093/nar/gkq1229 (2011).
	64.	 Luo, Q., Pagel, P., Vilne, B. & Frishman, D. DIMA 3.0: Domain Interaction Map. Nucleic acids Res. 39, D724–729, https://doi.

org/10.1093/nar/gkq1200 (2011).
	65.	 Kim, Y., Min, B. & Yi, G. S. IDDI: integrated domain-domain interaction and protein interaction analysis system. Proteome Sci. 

10(Suppl 1), S9, https://doi.org/10.1186/1477-5956-10-S1-S9 (2012).
	66.	 Berman, H. M. et al. The Protein Data Bank. Nucleic acids Res. 28, 235–242 (2000).
	67.	 Lin, H. N., Chen, C. T., Sung, T. Y., Ho, S. Y. & Hsu, W. L. Protein subcellular localization prediction of eukaryotes using a 

knowledge-based approach. BMC Bioinforma. 10(Suppl 15), S8, https://doi.org/10.1186/1471-2105-10-S15-S8 (2009).
	68.	 Gupta, S. K. et al. in Big Data Analytics in Genomics (ed Ka-Chun Wong) 171–195 (Springer International Publishing, (2016).
	69.	 Kamburov, A., Stelzl, U. & Herwig, R. IntScore: a web tool for confidence scoring of biological interactions. Nucleic acids Res. 40, 

W140–146, https://doi.org/10.1093/nar/gks492 (2012).
	70.	 Goldberg, D. S. & Roth, F. P. Assessing experimentally derived interactions in a small world. Proc. Natl Acad. Sci. United States of 

America 100, 4372–4376, https://doi.org/10.1073/pnas.0735871100 (2003).
	71.	 Kuchaiev, O., Rasajski, M., Higham, D. J. & Przulj, N. Geometric de-noising of protein-protein interaction networks. PLoS 

computational Biol. 5, e1000454, https://doi.org/10.1371/journal.pcbi.1000454 (2009).
	72.	 Vlasblom, J. & Wodak, S. J. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC 

Bioinforma. 10, 99, https://doi.org/10.1186/1471-2105-10-99 (2009).
	73.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 

2498–2504, https://doi.org/10.1101/gr.1239303 (2003).
	74.	 Scardoni, G., Petterlini, M. & Laudanna, C. Analyzing biological network parameters with CentiScaPe. Bioinforma. 25, 2857–2859, 

https://doi.org/10.1093/bioinformatics/btp517 (2009).
	75.	 Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), S11, 

https://doi.org/10.1186/1752-0509-8-S4-S11 (2014).
	76.	 Erdös, P. & Rényi, A. On Random Graphs I. Publicationes Mathematicae 6, 290–297 (1959).
	77.	 Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Sci. 286, 509–512 (1999).
	78.	 Tosadori, G., Bestvina, I., Spoto, F., Laudanna, C. & Scardoni, G. Creating, generating and comparing random network models with 

NetworkRandomizer. F1000Res 5, 2524, https://doi.org/10.12688/f1000research.9203.3 (2016).
	79.	 Kreyszig, E. Applied Mathematics, fourth ed., (Hoboken, NJ: John Wiley & Sons, (1979).
	80.	 Bluthgen, N. et al. Biological profiling of gene groups utilizing Gene Ontology. Genome Inf. 16, 106–115 (2005).
	81.	 Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the 

royal statistical society. Series B (Methodological), 289–300 (1995).

Acknowledgements
We gratefully acknowledge funding of this work by the German Research Foundation (DFG-GR1243/8-1; and 
T.D. by project number 210879364 – TRR 124/B-1). S.K.G. gratefully acknowledges that the present work is 
a partial output of his PhD thesis22 and fruitful discussions with GRK 2157 3D tissue infect (project number 
270563345). M.S. would like to thank for the financial support from Frauenbeauftragten Büro, University of 
Wuerzburg, Germany. S.K.G. and Ö.O. would like to thank Dr. Atanas Kamburov (Harvard Medical School, 

https://doi.org/10.1038/s41598-020-59344-1
https://doi.org/10.1073/pnas.1105994108
https://doi.org/10.1073/pnas.1105994108
https://doi.org/10.14411/eje.2015.046
https://doi.org/10.1016/j.gene.2016.07.030
https://doi.org/10.3389/fmolb.2016.00022
https://doi.org/10.1093/nar/gkh086
https://doi.org/10.1093/nar/gkh086
https://doi.org/10.1093/nar/gkq1092
https://doi.org/10.1038/nmeth.1283
https://doi.org/10.1186/gb-2004-5-12-r96
https://doi.org/10.1186/gb-2004-5-12-r96
https://doi.org/10.1101/gr.1134603
https://doi.org/10.1101/gr.1134603
https://doi.org/10.1101/gr.2659105
https://doi.org/10.1101/gr.2659105
https://doi.org/10.1126/scisignal.2002029
https://doi.org/10.1016/j.cell.2011.08.047
https://doi.org/10.1016/j.cell.2011.08.047
https://doi.org/10.1093/nar/gkq1116
https://doi.org/10.1093/nar/gkq1116
https://doi.org/10.1093/nar/gkr930
https://doi.org/10.1093/nar/gkr930
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1006/jmbi.2000.5197
https://doi.org/10.1093/nar/gkt1223
https://doi.org/10.1093/nar/gkq1229
https://doi.org/10.1093/nar/gkq1200
https://doi.org/10.1093/nar/gkq1200
https://doi.org/10.1186/1477-5956-10-S1-S9
https://doi.org/10.1186/1471-2105-10-S15-S8
https://doi.org/10.1093/nar/gks492
https://doi.org/10.1073/pnas.0735871100
https://doi.org/10.1371/journal.pcbi.1000454
https://doi.org/10.1186/1471-2105-10-99
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/bioinformatics/btp517
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.12688/f1000research.9203.3


1 2Scientific Reports |         (2020) 10:2334  | https://doi.org/10.1038/s41598-020-59344-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Massachusetts, USA) for help and useful discussions on the CAPPIC calculations. This publication was funded 
by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme Open 
Access Publishing.

Author contributions
S.K.G. and T.D. conceived and designed the study. S.K.G., Ö.O., and M.S. performed the procedure and analyzed 
the data. All authors contributed to biological interpretation of the results. M.S. and T.D. wrote the manuscript. 
All authors read and agreed to the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-59344-1.
Correspondence and requests for materials should be addressed to T.D.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-59344-1
https://doi.org/10.1038/s41598-020-59344-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Genome-wide inference of the Camponotus floridanus protein-protein interaction network using homologous mapping and interac ...
	Results and Discussion

	Generating the interactome of ant C. floridanus. 
	Network analysis of C. floridanus interactome and accuracy assessment. 
	Gene ontology (GO) enrichment analysis. 
	C. floridanus interactome protein conservation compared with seven organisms. 
	Overall conservation and infection induced hubs and bottlenecks in the ant interactome. 

	Conclusions

	Materials and Methods

	Reconstructing protein-protein interaction map of C. floridanus. 
	Pruning PPIs with domain-domain interactions. 
	Subcellular localization filtering. 
	Isoform filtering. 
	Assigning the confidence score. 
	Network analysis and visualization. 
	Random networks. 
	Functional annotation. 
	Orthology analysis. 

	Acknowledgements

	Figure 1 Pipeline for reconstruction of C.
	Figure 2 Density plot of the confidence scores for interactions in the C.
	Figure 3 Pairwise Gene Ontology (GO) similarity of the ant interactome compared against non-interacting proteins.
	Figure 4 Conservation of interacting proteins by degree in different model species.
	Figure 5 Conservation of C.
	Table 1 Numbers of PPIs, by subcellular localization of interacting proteins in localization supported network.
	Table 2 Top 20 over-represented GO molecular function terms in the ant-interactomea.




