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The landscape of genomic alterations 
across childhood cancers
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Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful 
way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a 
pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular 
types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and 
significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer 
driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating 
with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and 
mutational signatures. Our data suggest that 7–8% of the children in this cohort carry an unambiguous predisposing 
germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly 
relevant for the design of future clinical trials.

Cure rates for childhood cancers have increased to about 80% in recent 
decades, but cancer is still the leading cause of death by disease in the 
developed world among children over one year of age1,2. Furthermore, 
many children who survive cancer suffer from long-term sequelae of 
surgery, cytotoxic chemotherapy, and radiotherapy, including mental 
disabilities, organ toxicities, and secondary cancers3. A crucial step in 
developing more specific and less damaging therapies is the unravelling 
of the complete genetic repertoire of paediatric malignancies, which 
differ from adult malignancies in terms of their histopathological 
entities and molecular subtypes4. Over the past few years, many entity-
specific sequencing efforts have been launched, but the few paediatric 
pan-cancer studies thus far have focused only on mutation frequencies, 
germline predisposition, and alterations in epigenetic regulators4–6.

We have carried out a broad exploration of cancers in children, 
adolescents, and young adults, by incorporating small mutations and 
copy-number or structural variants on somatic and germline levels, 
and by identifying putative cancer genes and comparing them to those 
previously reported in adult cancers by The Cancer Genome Atlas 
(TCGA)7. We have also examined mutational signatures and potential 
drug targets. The compendium of genetic alterations presented here is 
available to the scientific community at http://www.pedpancan.com.

This integrative analysis includes 24 types of cancer and covers all 
major childhood cancer entities, many of which occur exclusively in 
children8 (Fig. 1, Supplementary Table 1). Ninety-five per cent of the 
patients in this study were diagnosed during childhood or adolescence 
(aged 18 years or younger) and 5% as young adults (up to 25 years)  
(Extended Data Fig. 1a). This study is biased towards central nervous  
system tumours, and is complemented by an additional study of a 
non-overlapping paediatric cohort with mainly leukaemias and extra
cranial solid tumours9.

We compiled paired-end Illumina-based sequencing data for 961 
tumours (914 individual patients) from previous cancer-type spe-
cific studies (see Methods and Supplementary Note 1) including 547 
whole-genome sequences (WGS, median coverage 37×​) and 414 
whole-exome sequences (WES, 121×​) partially complemented by 
low-coverage whole genomes (Supplementary Tables 1, 2). Tumour 
and matched germline samples were processed with standardized pipe-
lines to detect single nucleotide variants (SNVs), short insertions and 
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deletions (indels), copy-number variants (CNVs) and other structural 
variants. Secondary (relapse) tumours (n =​ 82, including 47 matched 
to primaries) were analysed separately from the main primary cohort 
(n =​ 879).

Mutation frequencies across cancer types
Coding somatic SNV (93%) and indel (7%) counts correlated across all 
samples (n =​ 879) (R =​ 0.27, P =​ 9.1 ×​ 10−5; Extended Data Fig. 1b, c).  
Mutation frequencies varied between cancer types (0.02–0.49 muta-
tions per Mb) and were overall 14 times lower than in adult cancers7 
(0.13 versus 1.8 mutations per Mb, TCGA data; Fig. 1, Extended Data 
Fig. 1c, Supplementary Table 3). Relapse tumours harboured signifi-
cantly more mutations than primary tumours (P =​ 0.0015, excluding 
highly mutated tumours; Extended Data Fig. 1d).

Tumours with more than 10 mutations per Mb have been referred 
to as ‘hypermutators’, and are often related to deficiencies in mismatch 
repair (MMR)10,11. In this cohort, hypermutation occurred exclu-
sively in H3.3 or H3.1 K27-wildtype (K27wt) high-grade gliomas with 
biallelic germline mutations in MSH6 or PMS2, with an extremely 
high mutational burden similar to the highest among adult tumours 
(in POLE- or POLQ-mutated carcinomas)7,12 (Fig. 1). Some paediatric 
tumours had a mutational burden below this threshold, but markedly 
above average (2–10 mutations per Mb, referred to as ‘paediatric highly 
mutated’), including several K27wt high-grade gliomas with monoal-
lelic germline variants in MSH2, MSH6 or PMS2 (Fig. 1). Whether these 
highly mutated tumours respond to immune checkpoint inhibitors, as 
described for paediatric glioblastoma, should be of clinical interest13.

As in previous reports, the somatic mutation burden increased with 
patient age (R =​ 0.39, P =​ 2.9 ×​ 10−6), except in Burkitt’s lymphoma 
(immunoglobulin hypermutation) and tumours with ‘kataegis’ events of 
localized hypermutation at double-stranded breakpoints14,15 (Extended 
Data Fig. 1e, f). Both SNVs (R =​ 0.37, P =​ 1.0 ×​ 10−5) and indels 
(R =​ 0.27, P =​ 5.4 ×​ 10−4) correlated with patient age overall, although 
within some cancers (for example, acute lymphoblastic leukaeumia 
(ALL), Ewing’s sarcoma, and rhabdomyosarcoma), we observed almost 
random mutational loads (R <​ 0.2). Rhabdomyosarcomas were largely 
dominated by embryonal tumours with more mutations than the few 
alveolar cases (median 0.27 versus 0.12 mutations per Mb, P =​ 0.002).
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Mutational processes in childhood cancers
Most cancer types predominantly harboured C >​ T transitions  
(≥​30% of SNVs in two-thirds of cancer types) linked to mutational 
signature 1, whose previously described age-association occurred 
in some paediatric brain tumours15,16 (P <​ 0.05; Extended Data  
Figs 1g, 2a–c). Mutational signatures, possibly reflecting biochemical 
cellular processes, have previously been investigated for many, mainly 
adult, cancers15. In this paediatric cohort (WGS, n =​ 503), we found 
evidence for major contributions of 16 out of 30 published signa-
tures and also identified one new signature15 (Fig. 2, Extended Data  
Fig. 2a, Supplementary Table 4). This ‘signature P1’, which is distinct 
from any previously documented signatures and harbours elevated 
C >​ T mutations in a CCC/CCT context, occurred in several atypi-
cal teratoid rhabdoid tumours (ATRTs) and one ependymoma (Fig. 2, 
Extended Data Fig. 2d, Supplementary Table 5). Its activity correlated 
with ‘multiple nucleotide variants’ (MNVs; R =​ 0.87, P =​ 1.1 ×​ 10−12), 
but no particular loci or genes were mutually altered in the affected 
tumours (Extended Data Fig. 2d). Notably, all ATRTs with signature 
P1 were in the recently defined subgroup ‘SHH’, and even within one 
proposed methylation subset of these17 (P =​ 0.003, Wilcoxon rank-sum 
test; Extended Data Fig. 2d). Signatures 16 and 18 were heterogene-
ously represented within several cancer types, with signature 16 being 
most prominent in pilocytic astrocytomas, and signature 18, previously 
proposed to be associated with oxidative DNA damage and related 
to C >​ A transversions, in neuroblastomas, rhabdomyosarcomas, and 
other tumours with multiple structural variants15,18 (Extended Data 
Figs 1g, 2a, c, 3a).

Signature 3, the ‘canonical’ double-stranded break signature linked 
to mutations in BRCA1 or BRCA2 or to a ‘BRCAness’ phenotype, and 
signatures 8 (recently linked to BRCA2 or PALB2 germline mutations 
in medulloblastomas; S. M. Waszak et al., personal communication) 
and 13 were linked to chromothripsis and TP53 mutations. This was 
particularly true for TP53 germline-mutated SHH medulloblastomas, 

and similarly for adrenocortical carcinomas and rhabdomyosarcomas 
(Extended Data Fig. 3b, c). Overall, signatures 3, 8, and 13 were more 
pronounced in cancer types with higher genomic instability (that is, 
structural variants; Extended Data Fig. 2e).

Germline variants in cancer predisposition genes
A recent study of more than 1,000 patients estimated that about 8% of 
children with cancer harbour a hereditary predisposition5. Accordingly, 
in our cohort (n =​ 914 individual patients, about 25% of samples over-
lapping with the previous study), 7.6% of samples were determined 
as being likely to be associated with a pathogenic germline variant5,19  
(162 genes investigated; Supplementary Tables 6, 7). No general age-
of-onset bias was observed in patients with a predisposition; however, 
onset was later in germline MMR-deficient patients (P =​ 0.0001), even 
within the high-grade glioma sub-cohort (P =​ 0.001).

Hereditary predisposition was most common in adrenocortical 
carcinomas (50%) and hypodiploid B-ALL (28%), followed by K27wt 
high-grade gliomas, ATRTs, SHH medulloblastomas, and retinoblas-
tomas (15–25% each; Fig. 3a). Compared to the previous study, LZTR1, 
TSC2, and CHEK2 emerged as new putative predisposition genes, and 
possible new associations, such as SDHA with medulloblastoma, were 
detected5 (Fig. 3b).

Most germline variants were related to DNA repair genes from 
mismatch (MSH2, MSH6, PMS2) and double-stranded break (TP53, 
BRCA2, CHEK2) repair (Fig. 3b, c). Both groups are clinically rele-
vant: patients with constitutional MMR deficiency could be candidates 
for immune checkpoint inhibition13 (Figs 1, 3b, c). Carriers of TP53 
germline mutations (Li–Fraumeni syndrome), here most common in 
adrenocortical carcinomas, hypodiploid B-ALL, SHH medulloblasto-
mas, and K27wt high-grade gliomas, are at a 50% risk for early-onset 
cancer compared to 1% overall, and are susceptible to treatment- 
induced secondary oncogenesis2,20–22 (Fig. 3b). Correcting the predis-
position frequency of 7.6% in this cohort for the relative incidence of 
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Figure 1 | Somatic mutations in the paediatric pan-cancer cohort. 
Somatic coding mutation frequencies in 24 paediatric (n =​ 879 primary 
tumours) and 11 adult (n =​ 3,281) cancer types (TCGA)7. Hypermutated 

and highly mutated samples are separated by dashed grey lines and 
highlighted with black squares. Median mutation loads are shown as solid 
lines (black, cancer types; purple, all paediatric; green, all adult).
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cancer types as a whole, we find that approximately 6% of all childhood 
cancer patients may carry a causative germline variant (Fig. 3d).

Significance analysis identifies cancer driver genes
Genome-wide analysis for significant mutation clusters (n =​ 538, 
WGS excluding hypermutators) identified non-coding mutations in 
the TERT promoter in 2.5% of tumours (Extended Data Fig. 4a, b,  
Supplementary Table 8). Further high-confidence clusters corre-
sponded to coding mutations in frequently mutated genes (TP53, 
H3F3A, CTNNB1), and to localized hypermutation at the rearranged 
MYC locus in Burkitt’s lymphoma, while the bulk were classified as 
likely technical artefacts23 (Extended Data Fig. 4b).

MuSiC identified 77 significantly mutated genes (SMGs), which were 
ranked according to their pan-cancer mutation frequency24 (Fig. 4, 
Supplementary Tables 9, 10). Most SMGs were mutually exclusively 
mutated across cancer types, demonstrating specificity of single puta-
tive driver genes in childhood cancers as compared to more frequent 
co-mutation in adult cancers in the TCGA study7 (Extended Data 
Fig. 4c–e). None of the SMGs showed a bias towards samples with 
higher mutation frequencies. The allele frequencies of mutations in 
SMGs were higher than in non-SMGs, and ranked higher in individual 
tumours, suggesting an early clonal occurrence of these likely driver 
events (Extended Data Fig. 4f). Two additional SMGs emerged from 
analysis of the relapse tumours (n =​ 82): PRPS1 and NT5C2, both of 
which have been previously implicated in disease progression and 
chemotherapy resistance25,26 (Extended Data Fig. 4g).

Genes linked to epigenetic modification emerged as the most 
common (25% of tumours, 23 of 24 cancer types) and the largest (20%) 
group of SMGs (Extended Data Fig. 5a). Compared to a previous study6, 
for example, we also detected ARID1A and BCOR. Transcriptional 

regulators and MAP-kinase-associated genes accounted for 12–15% 
of SMGs. TP53 was the only DNA repair gene among somatic SMGs, 
in contrast to the multiple DNA repair-related germline mutations, 
and also in contrast to adult cancers (9% of SMGs, TCGA)7. PI3K-
associated SMGs are the most commonly altered (31%) genes in adult 
cancers, compared to only 3% in paediatric cancers, which could be 
related to their often late occurrence in the evolution of multi-hit adult 
cancers27 (Extended Data Fig. 5a).

Forty-seven per cent of paediatric tumours harboured at least one 
SMG mutation, with most tumours (57%) having only one. SMG muta-
tions were rare (<​15%) in ependymomas, hepatoblastomas, Ewing’s 
sarcomas (driven by EWSR1 fusions instead of by point mutations28), 
and pilocytic astrocytomas, and common (>​90%) in K27M high-
grade gliomas, WNT medulloblastomas, and Burkitt’s lymphomas. 
By contrast, 93% of adult cancers harbour at least one mutation in an 
(adult cancer-related) SMG and 76% in multiple SMGs7 (Extended 
Data Fig. 5b). In line with the accompanying paediatric pan-cancer 
study9, only around 30% of paediatric SMGs overlapped with adult 
SMGs (Extended Data Fig. 5c). On the basis of incidence-normalized 
mutation frequencies, TP53 is predicted to be the most common 
somatically mutated gene (4% of childhood tumours), followed by 
KRAS, ATRX, NF1, and RB1 (1–2% of tumours); in adult cancers, with 
similarly normalized data, TP53 is also the most commonly mutated 
gene, albeit ten times more frequently (Extended Data Fig. 5d).

Assessment of high functional impact mutations (OncodriveFM)29 
revealed well-known tumour suppressor genes (TSGs) such as TP53, 
ATRX, SMARCA4, and RB1, and further putative TSGs, including 
FMR1 in SHH/WNT medulloblastomas and MALRD1 (also known 
as C10orf112) in rhabdomyosarcomas (Extended Data Fig. 6a). Locally 
clustered ‘hotspot mutations’ (OncodriveClust)29,30 identified known 
oncogenes, such as CTNNB1, PIK3CA, KRAS, and BRAF, proposed 
oncogenes (ACVR1, KBTBD4, TBR1), and possible new candidates, 
such as SF3B1, in Group 4 medulloblastomas (Extended Data Fig. 6b).

Recurrent structural and copy-number variants
The degree of genomic instability (that is, the number of structural 
variants, including insertions, deletions, translocations, and inver-
sions), varied substantially (median 1–434 structural variants) across 
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cancer types (WGS, n =​ 539), with more than 1,000 structural variants 
in individual samples of adrenocortical carcinoma and osteosarcoma 
(Fig. 5a, Supplementary Table 11). Genomic instability correlated with 
germline (P =​ 3 ×​ 10−15) and somatic (P =​ 2 ×​ 10−4) TP53 mutations 
across all samples, but differed markedly between cancer types—again 
suggesting cancer type-specific effects of DNA repair (Fig. 5b, Extended 
Data Figs 3b, 7a).

Genomically unstable cancers were also more often hyperdiploid31 
(Supplementary Table 12). Twelve per cent of tumours had a ploidy of 
four or more, 72% retained a near-diploid state (ploidy 1.5–2.5), and 
hypodiploidy was observed mainly in hypodiploid B-ALLs (Extended 
Data Fig. 7b). Hyperdiploidy was associated with somatic (P =​ 0.005) 
and germline (P =​ 0.003) TP53 mutations, in line with a role for mutant 
TP53 in the bypassing of the G1 tetraploidy checkpoint32 (Extended 
Data Fig. 7c–e). Chromothripsis was also often observed in hyper-
diploid cancers and co-occurred with somatic (P =​ 2.3 ×​ 10−10) and 
germline TP53 (P =​ 5 ×​ 10−8) mutations in 50% and 66% of these 
tumours, compared to 8% in TP53 wild-type tumours33–35 (Extended 
Data Fig. 7f–h, Supplementary Table 13).

Thirty-four regions recurrently altered by copy-number changes 
(17 amplified, 17 deleted) were identified using GISTIC2.0 (WGS, 
n =​ 516)36; candidate driver genes were assigned to each based on 
known cancer genes and literature review (Fig. 5c, Extended Data  
Fig. 8a, b, Supplementary Tables 14–17). Alterations per cancer type 
are summarized in Extended Data Fig. 9.

Recurrently amplified regions contained known oncogenes, 
including MYC, MYCN, or GLI2, with 11 regions involving high-
level amplifications (at least 5-fold gain) (Extended Data Fig. 8b). 
Further interesting regions included 17q11.2 with 61 genes, contain-
ing NCOR1 as a potential candidate, and a region on 12q24.31 near 
(~​0.1 Mb) the proposed oncogene KDM2B37,38. Recurrently deleted 
regions were predominantly associated with epigenetic or cell cycle 
regulators, most commonly TP53, PTEN, SETD2, and CDKN2A or 
CDKN2B. Further potential tumour suppressors included RAD51D 
on 17q12 and FOXF1 on 16q24.1, with significant loss across the 
cohort39.

As evidenced by recurrent structural variation outside genes (based 
on breakpoint clusters in 10-kb windows), rearrangements linked to 
enhancer hijacking were also found, involving GFI1B and DDX31 
in medulloblastomas and TERT in neuroblastomas40,41. Together 
with genes directly affected by breakpoints, in total 70 structural 
variant-related putative cancer genes were found, many associ-
ated with cell cycle or growth (for example, the tumour suppressor 
PTPRD) or epigenetic regulators (such as SUZ12)42,43 (Extended Data  
Fig. 8c, Supplementary Tables 18, 19). Cancer type-specific events that 

occurred together with high expression (data derived from Northcott 
et al.44) included alterations of RIMS245.

The analysed genomic alterations were combined into 166 
‘likely functional events’ (LFEs) affecting 149 genes, classified as 
M-(mutation)-type or as SC-(structural/copy-number variant)-type 
(Extended Data Fig. 10a, Supplementary Table 20). Along the ‘cancer 
genome hyperbola’, individual tumours (WGS, n =​ 539) differenti-
ated between an M-class (more M-type LFEs) and an SC-class (more 
SC-type LFEs)46 (Extended Data Fig. 10b, Supplementary Table 21). 
Fifty-five per cent of tumours were exclusive to one class, 27% were 
mixed but dominated by one type of LFE, 8% were ambiguous, and 
10% had no LFEs (which may be of particular interest in assessing 
other tumour-driving events at the epigenetic or transcriptomic level). 
Germline MMR mutations were enriched in the M-class, and germline 
TP53 mutations in the SC-class (P =​ 0.0003 and P =​ 0.05, respectively, 
Fisher’s exact test; Extended Data Fig. 10c). Individual cancer types 
displayed varying relative distributions of mutation classes (Extended 
Data Fig. 10d).

Drug targets in childhood cancers
To assess the status of druggability of childhood cancers, the cohort 
(n =​ 675 with full genomic information; WES-only, n =​ 39; see 
Methods) was screened for potentially druggable events19 (PDEs, that is, 
alterations in 179 genes with a directly or indirectly targeted treatment 
currently available or under development; Supplementary Table 22).  
This analysis revealed 453 PDEs in 59 genes, including 3% germline 
events (Supplementary Table 23). Most cancer types had tumours with 
PDEs related to both M- and SC-type (Fig. 6a). Most commonly, PDEs 
occurred in Burkitt’s lymphomas and pilocytic astrocytomas, while 
none were detected in ependymomas or hepatoblastomas (although 
the latter lacked information regarding CNVs or structural variants). 
Associated pathways included RTK/MAPK signalling, transcriptional 
regulation, cell cycle control, and DNA repair (Fig. 6a).

When the data are normalized for relative cancer incidence, 52% 
of all primary paediatric tumours may harbour a PDE (Fig. 6b); this 
might be an underestimate, given that some structural variants may 
not have been detected by this approach (for example, the common 
MYC translocations in Burkitt’s lymphoma)23. After incidence adjust-
ment, MAPK signalling and cell cycle control were most commonly 
affected. Notably, the PDEs often varied between primary and relapse 
tumours from one patient (n =​ 41): only 37% of primary tumours 
with PDEs retained these upon progression, while most of them par-
tially or completely gained or lost events. This highlights the need 
for profiling of the current tumour when considering personalized 
therapy.
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Discussion
Our analysis of this pan-cancer compendium outlines the landscape of 
genomic alterations across multiple childhood cancer types. Although 
some alteration types and rarer entities are still under-represented 
and significance analyses are probably limited, this dataset of nearly 
1,000 tumours (which can be explored at http://www.pedpancan.
com) provides an unprecedented data resource for paediatric cancer 
research, further complemented by the accompanying pan-cancer 
study9 (https://pecan.stjude.org/proteinpaint/study/pan-target). The 
multiple differences found compared to previous studies of adult 
tumours emphasize the need to consider paediatric cancers separately, 
further demonstrating a need for mechanism-of-action driven drug 
development for paediatric indications47.

The predicted frequency of pathogenic germline variants in 6% of 
patients, together with previous findings, demonstrates the relevance of 
genetic predisposition in childhood cancer5. Germline TP53 variants, 
which are clinically highly important, are estimated for 1.5% of children 
with cancer, and for more than 10% within individual cancer types. 
Genetic counselling should thus be systematically considered, particu-
larly for patients with indicated high-risk entities.

Although stratified targeted treatment is currently incorporated 
only rarely into first-line therapy for paediatric cancer patients, 
our finding that nearly 50% of primary childhood tumours har-
bour a potentially targetable genetic event is encouraging. It also 
highlights the need for personalized profiling for each patient, 
both to increase diagnostic accuracy and to exploit the potential 
for potentially more effective and less harmful precision therapies. 
This may also transcend the direct targeting of genes or pathways, 
for example, through immune checkpoint inhibition in hypermu-
tated tumours13 or through PARP inhibition in genomically unsta-
ble (‘BRCAness’) tumours48. It is hoped that ongoing personalized 
medicine approaches for patients at relapse will give initial infor-
mation on the use and effectiveness of such targeted drugs (for 
example, in the clinical trials pedMATCH-NCT03155620; eSMART-
NCT02813135; INFORM19). Additional longitudinal monitoring, 
for example using serial liquid biopsies, may further improve our 
understanding of tumour biology and the development of resistance 

mechanisms, and shed light on therapeutic challenges such as tumour  
heterogeneity.

In summary, this multi-faceted pan-cancer analysis provides a 
valuable resource for assessing genomic alterations across the spectrum 
of paediatric tumours. While there are undoubtedly more discoveries 
to come in terms of expanded cohorts and whole-genome and tran-
scriptome analysis, we believe that this study provides a strong basis for 
functional follow-up and investigation of potential therapeutic targets 
in this specific patient population.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Samples. The cohort analysed in this study is a compilation of individual sequencing  
datasets from various sources: the International Cancer Genome Consortium 
(ICGC) – Pedbrain Tumor and MMML-seq (http://www.icgc.org), the German 
Cancer Consortium (DKTK) (https://dktk.dkfz.de/en/home), the Pediatric Cancer 
Genome Project (PCGP) (http://explore.pediatriccancergenomeproject.org/), 
the Heidelberg Institute for Personalized Oncology (HIPO) (http://www.dkfz.de/
en/hipo), the Individualized Therapy For Relapsed Malignancies in Childhood 
(INFORM) registry (www.dkfz.de/en/inform), and other previously published 
datasets (listed below). For all included tumours, matched germline control tissue 
was available. Ninety-five per cent of the patients were under 18 years of age (or age 
unspecified but confirmed age group paediatric), but available data were included 
for patients up to 25 years, as these were considered relevant for cancer types that 
typically peak at a young age. All centres have approved data access and informed 
consent had been obtained from all patients.

External data were downloaded from the European Genome-Phenome 
Archive (EGA; https://www.ebi.ac.uk/ega/home) using the accession numbers  
EGAD00001000085 ,  EGAD00001000135 ,  EGAD00001000159 , 
EGAD00001000160 ,  EGAD00001000161 ,  EGAD00001000162 , 
EGAD00001000163 ,  EGAD00001000164 ,  EGAD00001000165 , 
EGAD00001000259 ,  EGAD00001000260 ,  EGAD00001000261 , 
EGAD00001000268, and EGAD0000100026949–62; internal datasets are related to 
previous PMIDs 27748748, 27479119, 26923874, 25670083, 25253770, 24972766, 
24553142, 25135868, 26632267, 26179511, 24651015, 28726821, 23817572, 
25962120, 2629472517,19,44,63–74 (Supplementary Note 1).

The final cohort included 914 individual patients of no more than 25 years of 
age including primary tumours for 879 patients with 47 matched relapsed tumours, 
and an additional 35 independent relapsed tumours (Supplementary Tables 1, 2).  
Deep-sequencing (~​30×​) whole-genome data (WGS) were available for 547 
samples with matched control, whole-exome sequencing (WES) for 414, and 
low-coverage whole-genome sequencing (lcWGS) for an additional 54 germline 
and 186 tumour samples. Depending on the requirements of each sub-analysis, 
we used WES and WGS, WGS only (excluding Ewing’s sarcoma, Wilms tumour, 
hepatoblastoma, and T-ALL), or WES, WGS and lcWGS (germline excluding 
Ewing’s sarcoma, Wilms tumour and hepatoblastoma; tumours excluding Ewing’s 
sarcoma and hepatoblastoma) were used (Supplementary Table 24). ‘Subgroups’ of 
cancer types were considered as separate entities if there was considerable evidence 
of differences in terms of clinical and molecular behaviours, if sub-cohort sizes 
were substantial, and if full annotation of all samples was available. All samples 
had been sequenced using Illumina technology and 99% of samples were paired-
end sequences with 100 bp read length. Ninety-eight per cent of exome sequences 
are covered with at least 30×​, 94% with at least 60×​, and the total median exome 
coverage is 121×​. The whole-genome sequenced samples have a median coverage 
of 37×​ and 94% of samples are covered with at least 30×​. Information on coverage 
and other metrics for all samples are provided in Supplementary Table 2.
Cancer type incidence. Information on incidence of cancer types in the popula-
tion was derived from the SEER database (Surveillance, Epidemiology, and End 
Results program)8; further detailed information on different subgroups of cancer 
types (central nervous system tumours and subgroups of medulloblastoma, epend-
ymoma, and ALL) was transferred from cancer type-specific publications75–79. 
Survival data are based on information from the German Childhood Cancer 
Registry80. Incidence rates of adult cancers were taken from information in the 
German GEKID database (http://www.gekid.de/, 2003–2012).
Data preprocessing. All data were processed using a standardized alignment 
and variant calling pipeline, which was developed in the context of the ICGC 
Pan-Cancer project (https://dockstore.org/containers/quay.io/pancancer/pcawg-
dkfz-workflow)81.
Alignments. Datasets were available in either raw FASTQ or aligned BAM format. 
To allow standardized processing for all included samples, BAM files were sorted 
by read name using sambamba (v.0.4.6) and converted to a raw-like FASTQ  
format using SamToFastq (v.1.61). Reads were then aligned to the phase II reference 
human genome assembly of the 1000 Genomes Project including decoy sequences 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_
assembly_sequence/hs37d5.fa.gz) using BWA-MEM (v.0.7.8 using default settings 
except ‘-T 0’). Matching genotypes of tumour and control samples were confirmed 
by calculating pairwise DNA sequence similarities at 1,000 reference SNPs (dbSNP 
v.138)82.
Mutation calling. SNVs were called with the previously described samtools-based 
DKFZ pipeline adjusted for ICGC Pan-Cancer settings, and short indels were called 
using Platypus (v.0.7.4)74,83. Variants were first identified in the tumour sample and 
germline or somatic origin was determined based on their presence or absence in 
the matched control tissue. Functional effects were annotated using ANNOVAR 
and GENCODE19 (http://www.gencodegenes.org/releases/19.html)84.

Somatic structural variant discovery. Somatic structural variant discovery 
was pursued across all whole-genome sequenced samples (high-quality struc-
tural variants available for n =​ 539 primary tumours) using the DELLY ICGC 
Pan-Cancer analysis workflow (https://github.com/ICGC-TCGA-PanCancer/
pcawg_delly_workflow)85. A high-stringency structural variant set was obtained 
by additionally filtering somatic structural variants detected in 1% or more of a 
set of 1,105 germline samples from healthy individuals belonging to phase I of the 
1000 Genomes Project and by removing somatic structural variants present in 
any of the paediatric germline samples of this study86. High-stringency structural 
variants were further required to have at least four supporting read pairs with a 
minimum mapping quality of 20 and were restricted to somatic structural variant 
sizes from 300 bp to 500 Mb.
Copy-number calling. Copy numbers were estimated using ACEseq (allele-
specific copy-number estimation from sequencing) (K. Kleinheinz et al., unpub-
lished data), using a binned tumour–control coverage ratio and B-allele frequency 
(BAF). Allele frequencies were obtained for all single nucleotide polymorphism 
(SNP) positions recorded in dbSNP version 13582. To improve sensitivity with 
regard to imbalanced and balanced regions, SNP positions in the control were 
phased with impute287. Additionally, the coverage for 10-kb windows with suffi-
cient mapping quality and read density was recorded and subsequently corrected 
for GC content and replication timing.

The genome was segmented using the PSCBS package incorporating structural 
variant breakpoints defined by DELLY88,89. Segments were clustered based on 
coverage ratio and BAF using k-means and neighbouring segments in the same 
cluster were joined; focal segments (<​9 Mb) were stitched to the more similar 
neighbour. Tumour cell content and ploidy were estimated by testing how well 
different combinations of both explain the data. Segments with balanced BAF were 
assigned to even-numbered copy-number states, whereas unbalanced segments 
were allowed to match with uneven numbers as well. Finally, estimated tumour cell 
content and ploidy were used to compute the total and allele-specific copy-number 
for each segment. High-quality copy-number calls were available for n =​ 516 of 
the WGS samples.
Mutation statistics. The frequency of somatic mutations in coding regions was 
determined for each sample individually by normalizing the total number of 
coding mutations for the number of sufficiently covered (≥​6×​) coding bases to 
account (determined using MuSiC-bmr) for different data types (WGS/WES) and 
for different exome target enrichment kits24. Mutation spectra were obtained by 
categorizing observed SNVs into base substitution types in pyrimidine context. 
Spearman’s rank correlation test was applied to infer correlations between different 
types of mutation counts or between mutation counts and age. Generalized linear 
models were used to fit regression lines. Clusters of localized hypermutation were 
identified using a previously presented approach adjusted for mutation rates in 
human paediatric cancers90.
Deciphering mutation signatures. Exome-sequenced tumours, except for hyper-
mutator cases, were excluded from signature analysis owing to their low numbers 
of mutations. In brief, signatures are represented as probability distributions of 
substitution types of SNVs in pyrimidine context. Considering the immediate 
sequence context of each SNV, this results in 96 possible mutation types with 
directly adjacent mutations (multiple nucleotide variants, MNVs) being excluded, 
which are counted per tumour to compile its mutational profile.

As proposed by Alexandrov et al.91, the mutational profile of a tumour 
is expected to reflect a superposition of mutational processes (signatures) 
acting on its genome, where each mutational process has a different intensity  
(exposure). For a cohort of tumour genomes, this is modelled as a system of 
matrices for signatures (P) and exposures (E) defining the observed mutational 
catalogue (M)91: M ≈​ P ×​ E.

De novo deciphering of signatures was done as described91 based on the muta-
tional catalogues of all cancer types and of the pan-cancer cohort. All resulting 
signatures were compared to published signatures (available in the COSMIC 
database, http://cancer.sanger.ac.uk/cosmic/signatures) based on their cosine 
similarity15. Signatures that did not correspond to any of the previously known 
signatures (cosine similarity <​0.85) were further analysed to examine their 
relevance for modelling the cancer genomes. First, linear independence from 
the known set of signatures was confirmed. Second, for each potentially novel 
signature, we examined whether the modelling of mutation profiles improved when 
compared to having used the set of known signatures: for each sample, the observed 
mutational profile was compared to the theoretical profiles calculated using the 
set of known signatures only, and using the extended set including the new  
candidate signature. Here, only samples with a total number of mutations over 200 
were considered. Reconstruction was calculated as the difference between cosine 
similarity of the modelled profile and the observed profile. On the basis of the 
resulting distribution of similarities in both alternatives, a signature was considered 
to have a relevant contribution to the model, and thus a potential new signature,  
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if both of the following conditions were fulfilled: the reconstruction (measured as 
the difference of similarities) of at least one sample increased by 0.02 and that sample 
had a reconstruction accuracy of <​0.9 based on the known set of signatures only.

This procedure resulted in one new candidate signature, signature P1, which was 
added to the set of reference signatures. In order to achieve maximum resolution 
per sample, a sample-wise re-extraction of exposures from the mutational profiles 
was performed using quadratic programming with the reference signature set used 
for P and the exposures in E as unknown variables. Samples with a reconstruction 
accuracy below 0.5 were excluded (resulting in n =​ 503 tumours with high-quality 
signature information), as these samples would not be correctly accounted for by 
the model, which might be due to quality issues or to contributions of unknown 
signatures that are not present at intensities sufficient to be identified by a de novo 
approach. The resulting exposures were used for further downstream analyses 
and visualization. Previously published signatures without validation were first 
included to model the mutational catalogues as precisely as possible, but then 
summarized as ‘other’ for representation.

Spearman’s rank correlation and two-sided Kolmogorov–Smirnov tests were 
used to associate exposure of signatures with numerical and categorical variables, 
respectively. Exposures to signatures across multiple groups were compared using 
ANOVA and the post hoc Tukey’s test.
Identifying mutations in genes predisposing to cancers. To identify germline 
variants with a high likelihood of being implicated in cancer development, we 
investigated 162 candidate genes adapted from ref. 19 (110 genes regarded as 
following a dominant inheritance pattern and 52 genes with recessive inheritance) 
(Supplementary Table 6).

Germline SNVs and indels were subjected to a stepwise filtering approach 
to eventually classify them into five categories: benign, likely benign, uncertain 
significance, likely pathogenic, and pathogenic. First, variants reported in both 
the 1000 Genomes (release November 2010) and dbSNP (v.141) databases were 
excluded. High-quality variant calls were selected by including only positions 
with ≥​15×​ coverage, a germline allele frequency of ≥​0.2, and a phred-based 
quality score of ≥​10. Variants with a population frequency ≥​0.01 reported in 
additional common databases (esp6500siv2, X1000g2015, and exac03 included in 
ANNOVAR (http://annovar.openbioinformatics.org)) or with ClinVar (ftp://ftp.
ncbi.nlm.nih.gov/pub/clinvar/) annotations of ‘benign’, ‘likely benign’ or ‘uncertain 
significance’ were removed.

Furthermore, variants with a phred-scaled CADD score ≥​15 (http://cadd.
gs.washington.edu/info) and with Mutation Assessor (http://mutationassessor.
org/r3/) categories ‘medium’ and ‘high’, or no available annotation, were included. 
Variants with a dbSNP classification of ‘precious’ were not subject to these two 
filtering steps. As indel calling is more prone to alignment and calling errors, 
potentially deleterious indels were manually investigated for artefacts. For recessive 
tumour genes, variants were included only with an allele frequency of one or with 
two compound heterozygous mutations of the same gene in the same patient. 
In total, the filtering steps narrowed down the number of potentially pathogenic 
mutations to n =​ 433. Every variant was then manually checked and scored  
by the use of varied, mainly gene-specific online databases (http://p53.iarc.
fr/, http://www.lovd.nl/3.0/home, https://www.ncbi.nlm.nih.gov/clinvar/, and 
others). Only likely pathogenic and pathogenic mutations were considered as 
cancer-relevant and used for representation in Fig. 3. Additionally, whole-genome 
sequenced samples were manually screened for copy-number losses in 13 tumour 
suppressor genes of the candidate list, which are known to occasionally harbour 
germline focal deletions (MLH1, MSH2, MSH6, NF1, PMS2, PRKAR1A, PTCH1, 
PTEN, RB1, SMARCA4, SMARCB1, SUFU, TP53).
Detecting genome-wide mutation clusters. To identify genomic regions with single 
or clusters of recurrent mutations, the human genome was binned into non-overlap-
ping windows of various sizes (50–500 bp) and compared the observed mutations to 
a background model (V. A. Rudneva et al., unpublished data) which was estimated 
using the ‘global’ model: the genome was stratified into 25 evenly sized groups of 
genomic windows based on the combined vector of five genetic and epigenetic 
features (replication timing, gene expression level, GC content, H3K9me3, and open 
versus closed chromatin conformation). For each region an enrichment score, bino-
mial P value, and negative binomial test P value were computed.

Cross-validations were used to determine the significance cut-off that would 
provide reproducible results (with samples segregated by subgroup). A combi-
nation of the window size (500 bp), test statistics (enrichment score, mutational 
recurrence, binomial test P value, and gamma Poisson test P value), and a cut-off 
value that ensured high precision and recall values based on the precision-recall 
analysis (P =​ 10−20) were chosen (Extended Data Fig. 4a). Recall was calculated 
as the number of regions that satisfied the cut-off in results obtained on both 
halves of the dataset; precision was calculated as a fraction of the recalled regions 
to the total number of regions that satisfied the cut-off in each of the datasets.  
The chosen parameters were then used to run the pipeline on the complete dataset 

and then the mutations in the resulting regions were further examined manually 
for potential false positives in order to identify high-confidence candidate regions 
(Extended Data Fig. 4b).
Significantly mutated genes. Significantly mutated genes based on somatic 
SNVs and indels were identified with the SMG module of the MuSiC tools suite24  
separately from all cancer types and from the pan-cancer cohort, and then merged.

This kind of significance analysis often produces false positive hits (for example, 
very large genes), despite normalization procedures, and thus several filters 
were applied to the raw output30. First, all genes of >​30,000 bp exonic length or  
>​10,000 bp with additional replication timing >​800 were excluded (Cancer 
Cell Line Encyclopedia; CCLE)92. Genes that scored significant in three or 
more cancer types, or that were recurrently mutated at the same position, were 
manually inspected for artefacts from ambiguous alignments (for example, 
repetitive sequence regions). Also, genes that are probably not associated with 
tumour development but rather represent non-neoplastic somatic hypermutation 
processes in the context of immune function were removed. Furthermore, genes 
mutated in <​2% of the cohort were included only if they had a secondary signal 
from either functional impact or from localized clustering bias (Intogen modules 
OncodriveFM and OncodriveClust v. 3.0 beta) or from being among known 
cancer genes29,93. Mutation needle plots were generated using MutationMapper94. 
Biological processes were assigned to the significantly mutated genes mostly exclu-
sively, except for a few genes with high relevance for multiple processes, as specified 
in Supplementary Table 9.
Genome instability. Occurrence of chromothripsis was determined by manual 
inspection of coverage ratio plots (tumour/control) for WGS samples based on 
previously proposed guidelines95: at least ten copy-number switches on one 
chromosome, oscillating copy-number variation (usually with changes of +​1 
or −​1, but also between other levels where additional large-scale copy-number 
changes interfere), and many more of such copy-number variations in one chro-
mosome or chromosome arm compared to the remaining genome. In samples 
with an exceptionally high degree of structural variation, several chromosomes 
could be affected, and some samples showed an ‘amplifier’ type of chromothripsis, 
which was classified as several high-level focal amplifications on exactly the same 
copy-number level that are thus likely to be connected to one single event.
Generation of copy-number profiles. Copy-number calls reported by ACEseq 
were converted to the ‘SEG’ segmentation format, similar to the output of the 
circular binary segmentation algorithm based on chromosomal segment borders 
as pseudo marker positions96. All possible marker positions were determined from 
the whole cohort before assessing sample-wise copy-number profiles per marker 
in order to achieve identical resolution for all samples. Owing to sparse and highly 
oscillating sequencing coverage at centromeres, centromeric coordinates (±​3 Mb 
around the centre of annotated centromeres) were excluded from whole-genome 
segmentation, as were two likely artefact regions on chromosomes 7 and 14 with 
nonspecific occurrences of relative copy-number gains and losses in 28% and 30% 
of all analysed samples in 17 of 19 entities (14q11.2, 7p14.1), which were identified 
using GISTIC2.0 (as described below) with ±​1 Mb.
Identifying recurrent copy-number/structural variations. GISTIC2.0 (v.2.0.22, 
gene-gistic default parameter settings) was applied to the segmented copy-number 
data (per cancer type and pan-cancer) to identify significant copy-number 
alterations36. The resulting peaks were filtered for significance (q ≤​ 0.1) and size 
(≤​10 Mb). Compared to array-based data, which commonly serve as inputs for 
copy-number significance analysis, sequencing-based copy-number profiles are 
more prone to artefact copy-number variations, for example, due to repetitive 
regions leading to ambiguous alignments. Thus, several filtering steps were used 
to eliminate false-positive GISTIC peak calls and to discover potentially cancer-
relevant copy-number alterations: first, peaks overlapping with common fragile 
genomic sites were excluded, as these are likely to be consequences of genomic 
instability rather than cancer-driving events97; next, peaks overlapping within 
1 Mb of chromosomal ends were removed, as here sequencing coverage tends to 
vary frequently; and last, peaks overlapping with copy-number variable regions98 
(regions ranked 1–100) were excluded. Additionally, some of the resulting peaks 
were classified as ‘passengers’ of variable regions that were called as separated peaks 
from most likely one event, for example, a peak with MYCNOS as passenger peak 
of MYCN amplification. For overlapping peaks called in multiple entities and/or 
pan-cancer, the final region was determined based on the analysis with highest 
significance for each peak, respectively.

Genes with a breakpoint inside the gene borders were assumed to be altered by 
structural variation and considered as recurrently altered if they had breakpoints 
in ≥​5 samples in total or in ≥​2 samples of one cancer type (for samples without 
chromothripsis). For other samples, genes with breakpoints in ≥​5 samples were 
included as candidates, but these were not used for further downstream analyses. 
Additionally, recurrent sites of structural variation outside of gene bodies by  
clustering breakpoints were determined in 10-kb windows.
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Scoring of druggable mutations. To identify candidates for targeted therapy, 
somatic and germline mutations (SNV and indels) were screened for variants in 
genes that are directly or indirectly involved in pathways with matched drugs either 
approved or currently being investigated in clinical trials (Supplementary Table 22a,  
adapted from ref. 19). The mutations were then manually assessed by experts in 
translational oncology and prioritized according to an internal algorithm taking 
into account the type of alteration, the mechanism of action of potential drugs 
within the pathway, the level of evidence for the specific alteration, and its role in 
the present cancer type (Supplementary Table 22b, adapted from ref. 19). Only 
alterations scored ‘intermediate’ or ‘high’ were regarded as being relevant in terms 
of druggability. A clonality analysis was not performed owing to limited sequencing 
depth in whole-genome-sequenced tumours.

Additionally, copy-number plots of whole-genome-sequenced data (including 
low-coverage WGS) were used to manually screen 52 druggable genes for amplifi-
cations or deletions (Supplementary Table 22a). Only focal CNVs (<​10 Mb) with 
at least 5 copies (log2 ≥​ 1.3) in the case of amplifications or the loss of ≥​ 1 copy 
(log2 ≤​ −​1) for deletions were included and subsequently prioritized as described 
for the SNVs/indels. The data representation includes all tumours with full 
genomic information (WES +​ lcWGS or WGS; n =​ 675) and, additionally, tumours 
analysed by WES only for cancer types without any whole-genome-sequenced 
tumours (T-ALL, Ewing’s sarcoma, HB; n =​ 39), but the latter were excluded from 
downstream analyses.
Data availability. Mutation data have been deposited into commonly used public 
data portals and are accessible at http://pedpancan.com. They can be explored 
in and downloaded from the R2 Analysis and Genomics Platform, the PedcBio 
Portal for Cancer Visualization, and the TARGET Data Matrix. Sequencing 
data were obtained from previous studies as listed in Supplementary Note 1 
and include the following accession codes: RP012816, PRJEB11430 (European 
Nucleotide Archive); EGAS00001001139, EGAS00001001953, EGAS00001000607, 
EGAS00001000381, EGAS00001000906, EGAS00001001297, EGAS00001000443, 
EGAS00001000213, EGAS00001000263, EGAS00001000192, EGAS00001000255, 
EGAS00001000254, EGAS00001000253, EGAS00001000256, EGAS00001000246, 
EGAS00001000379, EGAS00001000380, EGAS00001000346, EGAS00001000349, 
EGAS00001000347, EGAS00001000192 (European Genome-Phenome Archive).
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Extended Data Figure 1 | Somatic mutation frequencies and spectra.  
a, Patient age at diagnosis (black lines, median); asterisks highlight cancer 
types with significant correlation of mutation load with age within cancer 
types (grey, SNVs; black, indels). b, Correlation of SNV and indel loads 
(left, median per cancer type; right, cross-cohort, n =​ 876). c, Somatic 
mutation frequencies (top, indels; bottom, SNVs) in the coding region 
(n =​ 879) (black lines, median). d, Mutation loads in primary versus 
relapse tumours (cross-cohort n =​ 958, per cancer type, see Supplementary 
Table 1; two-sided t-test, confidence interval 0.95). n.s., not significant; 

NA, not applicable. e, Correlation of mutations (SNVs and indels) with age 
(left, median per cancer type; right, cross-cohort n =​ 876). f, Proportion 
of tumours with one or several events of localized hypermutation 
(WGS samples, n =​ 540). g, Mutation spectra of SNVs (top, per sample; 
bottom, average per cancer type; n =​ 879). Distributions of frequencies 
per substitution type across cancer types are indicated on the right; 
outliers are highlighted in the heat map (quartiles, range of whiskers: 
1.5 ×​ interquartile range). a, b, e, Linear model, confidence interval 0.95. 
Hypermutators and ultramutators are considered only in c.
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Extended Data Figure 2 | Mutational signatures in paediatric cancer 
types. a, Summarized contribution of signatures to mutational profiles 
per cancer type (proportion of mutations per signature and cancer type). 
Signatures with contributions of ≥​5% in at least one cancer type are 
shown. The colour intensity reflects the relative activity of each signature 
per cancer type. b, Correlation of signature 1 with patient age per cancer 
type in this paediatric pan-cancer cohort (left, n =​ 503) compared to 
results from a global pan-cancer study on 30 cancer types (n =​ 7,042)15.  
c, Relative contributions of mutational signatures to somatic mutations per 

individual tumour, clustered within cancer types (n =​ 503). d, Correlation 
of signatures 3, 8, and 13 (somatic mutations) with genome instability 
(structural variants) per cancer type. e, Substitution type probabilities in 
trinucleotide context for the newly discovered mutational signature P1; 
contribution of signature P1 per tumour (n =​ 503); correlation of signature 
P1 with multiple nucleotide variants (MNVs); activity of signature  
P1 in ATRT subgroups (Wilcoxon rank-sum test, confidence interval 
0.95). b–d, Spearman’s correlation, confidence interval 0.95.
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Extended Data Figure 3 | Association of mutational signatures with 
genomic instability. a, Correlation of signatures with the number 
of structural variants across all tumours and selected cancer types 
(Spearman’s correlation, confidence interval 0.95). b, Association of 
signatures with chromothripsis across all tumours and within selected 
cancer types. TP53 mutation status (germline/somatic) is highlighted 

(Kolmogorov–Smirnov test, confidence interval 0.95, range of whiskers: 
1.5 ×​ interquartile range). c, Association of signatures with TP53 mutation 
status (germline/somatic/none) across all tumours and within selected 
cancer types (ANOVA and post hoc Tukey’s test, confidence interval 0.95, 
quartiles, range of whiskers: 1.5 ×​ interquartile range). a–c, Cross-cohort 
n =​ 503, cancer types see Supplementary Tables 1, 4.
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Extended Data Figure 4 | Characteristics of significantly mutated 
genomic regions and genes. a, Precision-recall curves (mean precision) 
for various binomial P value cut-offs for the identification of genome-
wide mutation clusters. b, Manhattan plot for the test statistic of genomic 
windows. Dashed line indicates the P value cutoff from a. c, Significant 
co-occurrence/mutual exclusivity of SMGs in the pan-cancer dataset 

(n =​ 876). d, Most frequently mutated genes from c. e, Mutations in SMGs 
selected in d per cancer type. f, Allele frequencies of mutations in SMGs 
compared to mutations in non-SMGs in n =​ 876 tumours (two-sided t-test, 
confidence interval 0.95, quartiles, range of whiskers: 1.5 ×​ interquartile 
range). g, SMGs identified from relapse tumours and representation in 
cancer types.
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Extended Data Figure 5 | Significantly mutated genes across age 
groups. a, Cellular processes associated with paediatric (left) and adult 
(right) SMGs. b, Frequency of mutations in SMGs in paediatric (n =​ 879) 
compared to adult (n =​ 3,281) cancers. Top, percentage of SMG-mutated 
samples. Bottom, mutations in SMGs per sample (centre, median; range, 

minimum to maximum). c, Overlap of SMGs detected in paediatric and 
adult cancers. d, Projected mutation rates of SMGs based on normalization 
of the cohort frequencies for cancer type incidence among patients for 
paediatric and adult cancers. a–d, Information on adult SMGs is based on 
TCGA data and previous analysis7.
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Extended Data Figure 6 | Mutation needle plots for significantly 
mutated genes. Mutations in selected significantly mutated genes across 
pan-cancer cohort: missense (green), truncating (black), in-frame (blue), 

and other (purple). Hotspot amino acid changes are highlighted. a, Genes 
with tumour suppressor-like mutation patterns. b, Genes with oncogenic 
or oncogene-like mutation patterns.
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Extended Data Figure 7 | Genomic instability across paediatric 
cancer types. a, Structural variant load in relation to TP53 mutation 
status for individual cancer types (generalized linear model, confidence 
interval 0.95). b–h, Characteristics of genomic instability (left) and their 
associations with TP53 mutation status (right) (n.s., not significant).  
b, Genome ploidy; density of ploidy across all lineages is summarized on 
the right. c, Co-occurrence (Fisher’s exact test) of hyperdiploidy (cross-
cohort, n =​ 516) and TP53 mutations (left, somatic; right, germline). 
d, Percentage of tumours per cancer type with hyper- (≥​1.5) and 

hypodiploid (≤​0.5) genomes. e, Rate of hypodiploidy in relation to TP53 
mutation status (left, cross-cohort; right, cancer type-specific (nSHH =​ 38) 
with co-occurrence highlighted as in b). f, Rate of chromothripsis 
(positive/negative). g, Rate of chromothripsis in relation to TP53 mutation 
status (left, cross-cohort; right, cancer type-specific (nSHH =​ 38) with co-
occurrence highlighted as in b). h, Cross-cohort (n =​ 516) co-occurrence 
of samples with chromothripsis and TP53 mutations (top, somatic; 
bottom, germline).
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Extended Data Figure 8 | Recurrent CNVs and structural variations. 
a, Genome-wide copy-number profiles normalized for tumour ploidy 
(n =​ 516). Cancer types are sorted by genome instability (Fig. 5a). Regions 
or genes with significant CNVs are indicated (blue, deleted; red, gained 
or amplified) (Fig. 5b). b, Relative copy-number status (normalized for 
tumour ploidy to baseline 1) for regions with significant copy-number 
changes (top, gains or amplifications; bottom, deletions) in n =​ 516 
tumours. Thresholds (amplified: ≥​1.4, deleted: ≤​0.6) are based on the 

overall copy-number distribution indicated on the right. c, Genes affected 
by breakpoints from structural variants and additional genes associated 
with clustered breakpoints (in square brackets). Samples are divided into 
sub-cohorts of tumours with (bottom, n =​ 73) and without (top, n =​ 455) 
chromothripsis. Genes overlapping (direct overlap or within ±​200 kb) 
with genes with significant copy-number changes from a (blue, deletions; 
red, amplifications).
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Extended Data Figure 9 | Averaged copy-number profiles per cancer 
type. Averaged copy-number profiles for all cancer types ordered by 
genome instability (Fig. 5a) and significant regions (Fig. 5b). The x-axis 
represents chromosomal positions in 1-kb windows and the y-axis the log2 

coverage of tumours versus controls. Asterisks indicate in which cancer 
types a region was called significant (amplifications, red and above copy-
number profiles; deletions, blue and below profiles).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 10 | Genetic events define mutation classes.  
a, Genes significantly or recurrently affected by mutations, amplification, 
deletions, and gene-disrupting structural variants (likely functional  
events, LFEs). Copy-number and structural variations are summarized 
as SC-class in contrast to mutations (SNVs or indels) as M-class. 
b, Number of SC-class (x-axis) and M-class (y-axis) alterations per tumour. 
c, Proportion of events from M-class and SC-class within each tumour. 

Tumours with more than 50% (mixed) or 100% (unique) events from one 
category are considered to be members of the associated class; tumours 
with equal contributions from both categories are ‘ambiguous’, and 
tumours without an LFE are assigned class ‘none’ (not shown). Colours 
indicate germline mutations per tumour. d, Fraction of tumours assigned 
to different classes per cancer type.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was determined by tumor/control samples available.

2.   Data exclusions

Describe any data exclusions. General: Samples were excluded if the sequencing type was not suitable for a 
particular analysis, as shown in Fig. 1b. 
Copy-number calling: samples were excluded if no high-quality calls could be made 
as for example for samples with noisy coverage; regions surrounding centromeres 
and coverage artifacts were excluded from analyzing significant copy-number 
changes; 
Mutational signatures: directly adjacent mutations were excluded for calculating 
signatures; samples with a reconstruction accuracy <0.5 were excluded from any 
downstream analysis; for evaluating the model samples with <200 mutations were 
excluded 
Germline analysis: mutations reported in the 1000 genomes release and 
dbSNPv141 database were excluded 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No experiments were performed. 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization was done. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Investigators were not blinded to allocation.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

All software used is described in the methods section. Publicly available software 
included: sambamba, SamToFastq, bwa-mem, samtools, platypus, delly, R, ACEseq, 
impute2, genome music, gistic2.0

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used. 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used. 

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used. 

b.  Describe the method of cell line authentication used. NA

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

NA

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

NA

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used. 
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Data were obtained from previously published sequencing studies and available 
metadata are provided in Suppl. Table 2. 
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