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Amalgamated cross-species transcriptomes reveal
organ-specific propensity in gene expression
evolution
Kenji Fukushima 1,2✉ & David D. Pollock 1✉

The origins of multicellular physiology are tied to evolution of gene expression. Genes can

shift expression as organisms evolve, but how ancestral expression influences altered des-

cendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq

datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality

control eliminates project-specific biases, and expression shifts are reconstructed using gene-

family-wise phylogenetic Ornstein–Uhlenbeck models. Expression shifts following gene

duplication result in more drastic changes in expression properties than shifts without gene

duplication. The expression properties are tightly coupled with protein evolutionary rate,

depending on whether and how gene duplication occurred. Fluxes in expression patterns

among organs are nonrandom, forming modular connections that are reshaped by gene

duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong

propensity for expression in particular organs in descendants. Regardless of whether the

shifts are adaptive or not, this supports a major role for what might be termed preadaptive

pathways of gene expression evolution.
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Vertebrate organs organize physiological activities, and the
diverse expression patterns of thousands of genes deter-
mines organ identities and functions. Because of this, the

evolution of gene expression patterns plays a central role in
organismal evolution. The degree of organ expression specificity
correlates to how fast amino acids substitute1, how rapidly they
change expression levels2, and patterns of histone modifications3.
Major organ-altering evolutionary events such as development of
the hominoid brain are also associated with gene expression
shifts4–7. However, although gene duplication is well-known to
play an important role in expression pattern shifts (see e.g., the
ortholog conjecture8–11), the evolutionary dynamics of expression
patterns with and without gene duplication remain poorly
understood. An important question is whether long-term
expression in one organ predisposes genes to be subsequently
utilized in other organs.

A possible theoretical basis for such predisposition is the idea
that certain preexisting adapted states are more conducive to
evolution of specific new traits than other preexisting states. This
is known as preadaptation, and when a trait makes such a shift it
is referred to as exaptation12. Evidence for preadaptation was long
ago found in phenotypic traits13, and recently in molecular traits
such as protein sequences during de novo gene birth14 or during
functional innovations15. Protein sequence evolution generally
involves highly epistatic interactions and context-dependent
changes15,16 that affect preadaptation, but the modular nature
of expression regulation17 makes it unclear whether preexisting
expression patterns constrain evolutionary outcomes.

Evolution of gene expression has been studied at genome-wide
scales mainly using two distinct approaches: phylogenetic and
pairwise analyses. Phylogenetic approaches model gene expres-
sion dynamics and infer ancestral expression patterns in the
context of gene phylogenies. For example, Brownian motion
models embody purely neutral expression evolution18, whereas
Ornstein–Uhlenbeck (OU) models are designed to detect pur-
ifying selection and adaptive evolution along with neutral fluc-
tuation19–21. Although each gene family has a distinct
evolutionary history, a species phylogeny is often used for the
sake of simplicity. Because such approximations cannot be
applied to gene families with lineage-specific gene duplications
and losses, its application has mostly been limited to single-copy
genes. In contrast, pairwise analysis compares gene expression
between paralogs in single species22,23 or between orthologs or
paralogs in pairs of species9,11,24–26. Although pairwise approa-
ches can evaluate the effect of gene duplications, ancestral
expression cannot be inferred.

To infer the adaptive evolution of gene expression in diverse
gene families, we apply OU models for complex gene family
phylogenies containing gene duplications and losses, without
assuming species phylogeny. We also develop a curation pipeline
to amalgamate large amounts of transcriptome data from many
studies for a better phylogenetic resolution.

The results of this study, using these methods and genome-
scale datasets, show how gene duplication affects evolution of
expression. As genes evolve, their patterns of expression occa-
sionally shift from primarily one organ to another, forming
modular connections. Our main conclusion is that these shifts are
not random. When a shift occurs, the organ of primary expres-
sion for the ancestral gene strongly predicts the organ of primary
expression for the descendant gene. We conclude that this sup-
ports a major role for what can be described as preadaptive
pathways of gene expression evolution, by which we mean that
adaptation of a gene for expression and presumably functional
utility in one organ predisposes it to be more readily utilized for
primary expression in another organ. A further result of this
study is that expression shifts are larger and more frequent

following gene duplication than in its absence. Each shift in
gene expression may or may not be itself adaptive, but especially
after gene duplication they are often accompanied by accelerated
or decelerated rates of protein evolution. We conclude that this
and the larger expression shifts observed following gene dupli-
cation support the idea that gene duplication tends to free
genes up for regulatory or structural functional divergence, and
sometimes both.

Results
Duplication-permissive genome-wide analysis of gene families.
To allow evolutionary expression analysis on a broad set of genes,
we used a phylogenetic approach that deals with the complex
history of gene family trees with duplications and losses, and
applied it to 21 tetrapod genomes (Supplementary Fig. 1). A
major challenge in using gene trees was divergence time estima-
tion, a prerequisite for applying phylogenetic comparative
methods. We overcame this problem by incorporating phylogeny
reconciliation in estimating divergence time of gene trees. Gene
divergence nodes were constrained by the corresponding diver-
gence times in a known species tree, and duplication nodes were
constrained by ancestral and descendant speciation events
(see “Methods” for details). Because we estimated individual gene
phylogenies rather than using a single species phylogeny, we
could analyze gene families that included many lineage-specific
gene duplications and losses, making our study less biased toward
conserved genes with slow gene turnovers24. Use of gene family
trees also allowed us to include many organ-specific genes that
are enriched in lineage-specific and young duplications24. There
were only 1377 single-copy orthologs for which the species
phylogeny was applicable, but we were able to include 15,475
genes per species on average (including 20,873 human genes,
merged into 15,280 gene families). This approach eliminates
problems with pairwise analyses that ignore phylogenetic tree
structure, and allowed us to infer expression at ancestral nodes in
the tree.

Transcriptome amalgamation. To attain high resolution in our
analyses, we amalgamated 1903 RNA-seq experiments from 182
research projects (i.e., 182 BioProject IDs in the NCBI SRA
database) and generated a dataset covering six organs from 21
vertebrate species without missing data (Supplementary Data 1
and 2 and Supplementary Fig. 1). In comparison, other recent
comparative transcriptomic analyses of vertebrates20,24,26–32

often used the same dataset containing 131 RNA-seq experiments
from six organs and ten species19, with some additional data in
different studies. RNA-seq reads were first mapped to corre-
sponding reference genomes and then the expression level was
quantified by two metrics: transcripts per million (TPM) and
fragments per kilobase million normalized by trimmed mean of
M-values33 (TMM-FPKM). To reduce the among-species varia-
tion, the TMM normalization was applied across all 1903 samples
using the 1377 single-copy orthologs.

To allow rapid integrated analysis of datasets, we employed
automated multi-aspect quality controls, including metadata
curation (Supplementary Data 3), sequence read filtering
(Supplementary Fig. 2), and iterative removal of anomalous
RNA-seq samples by monitoring correlations between and within
data categories (Fig. 1a and Supplementary Fig. 3). The metadata
curation enabled us to select appropriate samples from the NCBI
SRA database. Data that were not compatible with those from
other research projects (defined by BioProject ID) were removed
in the correlation analysis by implementing a majority rule
(Supplementary Data 3), resulting in a cleaned dataset. This
filtering step was designed to fulfill the assumption that any
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samples from the same organ should correlate better than
samples from different organs within species. When anomalous
data were detected, all samples belonging to the same research
projects (i.e., the same BioProject ID) were discarded.

Finally, we applied surrogate variable analysis (SVA)34 to
detect and correct hidden biases likely originating from hetero-
geneous sampling conditions and sequencing procedures among
experiments in both log2-scaled TPM and TMM-FPKM (SVA-

log-TPM and SVA-log-TMM-FPKM, respectively; Supplemen-
tary Fig. 4a, b). This correction greatly improved the correlation
of expression levels within organs from the same species, even
when data were derived from different research projects (Fig. 1b,
c and Supplementary Fig. 4c–f). Among surrogate variables,
BioProject IDs tend to show a high predictive power, suggesting
project-specific sources of bias (Fig. 1d and Supplementary
Fig. 4g–h). Although the inclusion of many species from
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phylogenetically diverse lineages makes it difficult to extract
organ-wise characteristics from the limited number of single-copy
orthologs, a principal component analysis produced moderate
organ-wise segregation in the multispecies comparison (Fig. 1e
and Supplementary Fig. 4i–k), further indicating that the curated
dataset is sufficiently reliable for use in cross-species expression
pattern analyses. The previously-reported uniqueness of testis
transcriptomes19 was partly resolved as the third principal
component (Supplementary Fig. 4k).

To further evaluate the validity of amalgamated transcrip-
tomes, we analyzed the expression of community-curated cell-
type-specific marker genes associated with organs in Pan-
glaoDB35, which organizes a number of single-cell RNA-seq
experiments in human and mouse. We compared median values
of log-transformed expression levels of >100 marker genes in each
organ (Supplementary Fig. 5). After SVA correction, all RNA-seq
samples in the both species showed the corresponding marker
expression values higher than those from the other organs,
suggesting our amalgamated transcriptomes preserve the organ-
specific gene expression. In the cell-type-wise analysis, a few
cases, such as juxtaglomerular cells in kidney and hepatic stellate
cells in liver, could not resolve our organ-wise transcriptomes
(Supplementary Dataset https://doi.org/10.17632/3vcstwdbrn.1).
However, such low performance was seen in all samples rather
than subsets associated with particular BioProject IDs, suggesting
that the dissection decisions have negligible effects to cell-type
compositions in the organs.

In addition to the better phylogenetic coverage, greater
accuracy of estimated expression levels is another possible
advantage of integrating many RNA-seq datasets. This idea is
supported by subsampling analysis on a housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase, where, as more data
are used, estimated expression levels in different organs tend to
quickly converge to a similar range of values (Fig. 1f, ca. 15 SVA-
log-TMM-FPKM; Supplementary Fig. 4l, ca. 11.5 SVA-log-TPM).

Modeling expression evolution. We next used the amalgamated
transcriptomes to evaluate how expression evolved along 15,280
maximum-likelihood gene family phylogenies (Supplementary
Data 4), employing multi-optima OU models36 to allow for
possible adaptive shifts of optimal expression levels and neutral
fluctuations19–21. This modeling identified statistically supported
expression regime shifts36,37 on each gene tree (Fig. 2a), which
were then analyzed in the context of preceding duplication events.
Speciation events (S node; Fig. 2b) with no duplication were
considered the baseline mode of expression evolution because
regulatory environments and expression patterns are more

preserved among orthologous genes in comparison with para-
logous genes produced by gene duplication8–11. Because OU shift
detection has been applied for gene expression by assuming
species tree phylogeny in single-copy genes, shifts in S branches
are equivalent to those characterized previously19,20 but also
include many more speciation events in duplication-prone gene
families. Gene tree nodes associated with preceding duplication
events were categorized as DNA-based duplication or retro-
transposition (D or R nodes, respectively) depending on complete
intron losses (Fig. 2b).

Organ-wise means of the two expression values, SVA-log-TPM
and SVA-log-TMM-FPKM, were separately used to model
expression evolution with OU processes. The two analyses
resulted in similar numbers and characteristics of expression
regime shifts (Supplementary Fig. 6), but the shift locations were
sometimes inconsistent. S branches were a major source of
apparently inconsistent regime shifts, whereas branches following
duplication (D and R) showed largely consistent detection
between the two metrics (Fig. 2c). Although the inclusion of
inconsistently detected branches did not change the results, we
retained only consistently detected regime shifts for all down-
stream analysis to draw a more robust conclusion. While SVA-
log-TMM-FPKM values were reported in the main text unless
otherwise mentioned, the comparisons with SVA-log-TPM-based
analyses are available as Supplementary Information (see below
for specific citations).

As an example of this analysis, an orthogroup of phosphogly-
cerol kinases (PGKs), containing all three categories of branching
events followed by expression shifts (S, D, and R), is shown in
Fig. 2d. This protein catalyzes the first ATP-generating step in the
glycolytic pathway and is required for most cell types including
sperms38,39. PGK1, the original copy on the X chromosome, is
known to have duplicated independently in eutherians and
marsupials to produce the autosomal retrocopy PGK2 that
compensates the protein activity during X-inactivation40–42. Our
automated analysis correctly recovered both retrotranspositions
as well as the subsequent gains of testis-specific expression in
eutherian and marsupial lineages. This illustrates that our
automated genome-wide analysis can recover evolutionary
trajectories that are compatible with focused single gene family
analyses (see Supplementary Dataset https://doi.org/10.17632/
3vcstwdbrn.1 for individual gene trees).

Duplication-specific effects in expression evolution. Across
gene trees, per-branch frequencies of expression regime shifts
were significantly different among S, D, and R branches (P ≈ 0;
χ2= 2.11 × 104; χ2 test). Expression regime shifts were relatively

Fig. 1 Transcriptome amalgamation to integrate heterogeneous RNA-seq samples. a A simplified flow chart of the transcriptome amalgamation. The full
chart is available in Supplementary Fig. 1. b–d Transcriptome curation within species. Data from Monodelphis domestica with SVA-log-TMM-FPKM metrics
are shown as an example. The heatmaps show Pearson’s correlation coefficients among RNA-seq samples (b). Each row and column corresponds to one
RNA-seq sample. The expression levels of all genes were used to calculate the correlation coefficients. Note that anomalous samples contaminated in the
curated metadata (low correlation samples in 1) are successfully removed, and that project-specific correlations visible in the uncorrected data (marked 2)
are absent in the corrected data (marked 3). The boxplots show distinct distributions of the correlation coefficients depending on whether a pair of samples
are the same organ or whether they are from the same research project (c). The numbers of comparisons are provided in the plot. The correlation
coefficients are largely improved in within-organ comparisons when surrogate variables are removed, while within-project biases are attenuated. In this
species, nine surrogate variables were detected against 52 RNA-seq data from eight projects (d). Analysis of those variables by linear regression highlights
the BioProject feature as the strongest source of removed biases. For full description of predictors, see Supplementary Fig. 4. e A principal component
analysis using expression levels of 1377 single-copy orthologs from 21 species. Points correspond to RNA-seq samples. Curves show the estimated kernel
density. Explained variations in percentages are indicated in each axis. f Estimated organ-wise expression levels of a housekeeping gene. Since data from
relatively many BioProjects are available, glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH, Ensembl gene ID: ENSGALG00000014442) in Gallus
gallus is shown as an example. Points correspond to the average expression level calculated by random subsampling. All data points and the median value
(bar), rather than a boxplot, are shown if the number of subsampled BioProject combinations is <10. Boxplot elements are defined as follows: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range; points, outliers.
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rare in S branches, for a probability of 2.2% per branch, and
an average rate of 2.5 × 10−4 shifts per MY (million years)
(Fig. 3a, b). In agreement with the idea that gene duplication
tends to free genes up for functional divergence and enhance
long-term retention of duplicated copies22,43, the frequency of
regime shifts in D branches was four times as much per branch
(9.0% per branch, at a rate of 1.7 × 10−3 shifts per MY across all
genes and all D branches). Thus, although far fewer branches are
preceded by DNA-based duplication events (65,868 branches)
than speciation events (542,978 branches), D branches account
for over 33% of all regime shifts consistently detected by the two
expression measures. We note that this result reinforces previous
results on the ortholog conjecture, the idea that duplicated gene
copies (paralogs) are more prone to expression shifts than
orthologs8–11. R branches were far more likely to result in
expression regime shifts (37.3% per branch, at a rate of 7.0 × 10−3

shifts per MY), but with only 2963 R branches, this resulted in
only 1106 shifts (5.6% of the total). Translocated genes are more
likely to shift expression than those that do not (Supplementary
Fig. 7), in line with previous observations from the human gen-
ome23. While the expression shift frequency in S and D branches

varies slightly across the phylogeny, R branches showed much
stronger among-lineage heterogeneity, and had a particularly
high frequency in the mammalian lineage (Fig. 3b). These
retrotransposition-related expression changes may be related to
the variation in the retrotransposition rate itself, which is known
to vary across lineages44,45. Among-species heterogeneity in gene
prediction quality may also be attributed to this pattern because
early-diverging species tended to show higher percentages of
missing single-copy orthologs than those in mammalian species
(Supplementary Fig. 8; but see Danio rerio, Oreochromis niloticus,
and Oryctolagus cuniculus as counterexamples). In the absence of
regime shifts, expression levels varied most in ovary and testes,
which had significantly higher average stationary variances than
the other four organs on the basis of tree-wise stationary variance
(Fig. 3c). This supports previously observed high variation of gene
expression in testes19 and extends it to the reproductive organs of
both sexes.

If expression regime shifts are due to functional divergence, it
is highly relevant to characterize how expression properties
changed from ancestral to derived regimes. To do this, we
examined changes in organ expression specificity, maximum
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expression level, and organ expression complementarity. The
specificity measure τ ranges from 0 for uniformly expressed genes
to 1 for genes with highly specific expression46. The distributions
of regime shifts in D and R branches are shifted toward greater
organ specificity compared to shifts in S branches, with R

branches creating the most specific expression (Fig. 3d). To
characterize the on state transcriptional activity, we analyzed the
maximum fitted expression levels among the six organs (μmax). D
and R branches appear to be enriched for downregulation
compared to S branches (Fig. 3e). Complementarity of organ
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expression patterns was measured to evaluate the differentiation
between a pair of sister branches. We used a metric on the fitted
organ-wise expression levels (μ) called TEC, which ranges from 0
for completely overlapping expression to 1 for mutually exclusive
patterns43. Nearly all branches with regime shifts (95%) had
complementarity values >0.5, indicating that most regime shifts
detected involve differentiation of expression patterns, rather
than overall up- or downregulation. Regime shifts in D and R
branches often had more complementary expression than those
in S branches (Fig. 3f), further supporting the role of gene
duplication in functional differentiation. The more drastic effect
in R branches probably reflects the regular loss of regulatory
elements in retrotranspositions, whereas DNA-based duplication
can more often retain regulatory regions47. Jointly, these results
indicate that, compared with the baseline from speciation-
associated shifts, gene duplication tend to produce more organ-
specific, more often downregulated, and more differentiated
expression patterns. Although the downregulation may be
explainable by a tendency to need less of the newly functional
expression regime, it may also be explained by either recent
nonfunctionalization48,49 or specialized expression in organs that
were not part of this analysis.

Context-dependent change in the rate of protein evolution.
Change in gene expression can be accompanied by accelerated or
decelerated protein evolution, which may be detected by change
in the ratio of nonsynonymous/synonymous substitutions (dN/dS
or ω) along branches. In D and R branches, median ω values are
more than double the baseline seen in S branches (Fig. 4a; Sup-
plementary Fig. 9a), again supporting the ortholog conjecture and
the idea that gene duplication tends to free genes up for func-
tional divergence22,43. Within each of S, D, and R branch cate-
gories, branches with expression regime shifts accompany an
increased ω compared to sister branches (Fig. 4a). The increased
rate was quite small in S branches (median ω, 0.096 in branches
with shifts versus 0.102 in sister branches), much bigger in D
branches (0.182 versus 0.244), and huge in R branches (0.036
versus 0.394). If the changes in expression and the rate of protein
evolution are due to functional changes, this may indicate that
functional divergence is sometimes effected by joint changes in
expression and accelerated protein evolution.

Although 52.3% of all branches with expression regime shifts
had higher ω relative to sister branches (ω ratio), 27.5% of sister
branch pairs are relatively undifferentiated, with differences in ω
within ±5%, and 42.5% had lower ω in the branches with
expression shifts. This finding led us to hypothesize that the
direction of the rate changes in protein evolution is linked to how,
rather than whether, expression is changed. Strikingly, we found a
context-dependent association between protein and expression
evolution (Fig. 4b and Supplementary Fig. 9b). Increased ω ratio
was linked strongly to increased, rather than decreased, organ
expression specificity in S and D branches, potentially reflecting
adaptive evolution coupled with specialized expression. However,
it was in turn highly associated with decreased specificity in R
branches, which may be explained by frequent gene decay in
unsuccessful retro-copies. The change in maximum expression
level was overall negatively correlated with ω ratio, but this link
was stronger in downregulation compared with upregulation,
except for D branches where the ω ratio was smaller when Δμmax

was larger (Fig. 4b). It has been reported that high expression
slows protein evolution1, and our results suggest that DNA-based
duplication creates such constraints when accompanied by
upregulation. The organ expression complementarity between
sister lineages was positively correlated with ω ratio (Fig. 4b), and
its association was strongest in R branches, suggesting that

protein evolution accelerates as gene expression patterns
differentiate from their ancestral state. Collectively, these results
suggest that protein evolution rate is linked to changes in
expression properties through a complicated association, which
masks their relationships in a global, unstratified analysis, and
potentially explain a previous report of no strong relation26.

Organ-specific propensity in gene expression evolution. The
preadaptation hypothesis predicts that the ancestral organ
expression prior to the shifts will affect which organs are likely to
become the target of newly specific expression. To assess this, we
tested whether expression shifts are random with respect to
change in expression from one organ to another, by character-
izing the organ in which genes are most highly expressed (pri-
mary-expressed organ, PEO).

Across vertebrates, switching from one PEO to another was
detected in 6886, 3586, and 746 regime shifts in S, D, and R
branches, respectively. The gain/loss ratios are heterogeneous
among organs (Fig. 5a), suggesting that vertebrate organs serve as
both sources and sinks in expression evolution, but that their
relative contributions are organ-specific. Although S, D, and R
branches shared a global trend of relatively abundant testis-
related PEO shifts, their distributions are largely different (P=
1.52 × 10−77; χ2= 531; χ2 test). D branches were moderately
similar to both S and R branches (Spearman’s ρ ~ 0.6), but S and
R branches were dissimilar (ρ= 0.28). This pattern, including the
abundant shifts related to testis, was robust against the correction
by the organ-wise numbers of expressed genes (Supplementary
Fig. 10). This result suggests a role for gene duplication, including
by retrotranspositions, in remodeling the among-organ flow of
expressed genes.

Controlling the total number of shifts from and to each PEO,
some PEO shifts are significantly different from the random
expectation (Fig. 5b and Supplementary Data 5). There are clear
patterns of evolutionary transitions that are statistically sup-
ported by independent OU modeling of the two expression
metrics. In S branches, the pairs of brain–testis and testis–ovary
showed strong connections, indicating a solid exchange module.
Kidney and liver also donate genes to one another, forming a
separate module from brain–testis–ovary. D and R branches
showed a pronounced acceleration of PEO shifts between testis
and ovary. PEO shifts in S and D branches were moderately
symmetric in the flow between pairs of organs (Fig. 5c), meaning
two organs tend to donate comparable numbers of expressed
genes each other. In contrast, R branches were more asymmetric.
The lower symmetry may have perturbed the evolutionary
dynamics of gene expression.

To check the robustness of our analysis, we analyzed high-
confidence subsets of expression regime shifts. The most drastic
expression changes were characterized by introducing a cutoff of
organ expression specificity (τ > 0.5) to define organ-specific
genes. Although some previously significant trends were not
recovered due to small sample sizes, the result was largely
consistent with the broader analysis (Supplementary Fig. 11).
Because tree inference errors can bias the downstream analysis
including OU modeling, we also analyzed expression regime shifts
found in clades which have a high support in tree inference (>99%
bootstrap support). Again, the results were largely consistent
(Supplementary Fig. 11). Especially, the brain–testis–ovary and
kidney–liver modules in S branches and the testis–ovary
connection in D and R branches were always reproduced in the
analyses with the above thresholds in combinations with the two
expression metrics (SVA-log-TMM-FPKM and SVA-log-TPM;
Supplementary Fig. 11). The analysis of shifts in high-support
branches also reproduced the other main results in this paper
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(Supplementary Dataset https://doi.org/10.17632/3vcstwdbrn.1),
demonstrating the robustness of our conclusion.

The effect of gene trees was further examined by replicating the
analysis with alternative tree topologies inferred by species tree
reconciliation, which takes into account duplication–loss rates50.
This reconciliation step is expected to correct erroneous tree
topology, while possibly introducing another bias derived from
over-correction of biological signals such as incomplete lineage
sorting. With the reconciled trees, the OU modeling with SVA-
log-TMM-FPKM values resulted in equivalent numbers of
expression shifts in S and D branches compared with those with
non-reconciled trees (97% [23,231/23,985] and 104% [9407/
9018], respectively) (Supplementary Fig. 12a). In contrast, the
phylogeny reconciliation substantially reduced the number of
shifts in R branches (39% [481/1238]). This could be explained by
the correction of erroneous tree topology caused by the fast-
evolving retro-copies (Fig. 4a), although the differences in shift
numbers did not correlate with the topological differences
measured by the Robinson–Foulds distance51 (Supplementary
Fig. 12b). Nevertheless, resulting PEO shift distributions were
largely similar (Supplementary Fig. 12c), with the reproduced
accelerations in the brain–testis–ovary and kidney–liver modules

(Supplementary Fig. 12d) and the asymmetric PEO shifts in R
branches (Supplementary Fig. 12e), suggesting the robustness of
detected modules against gene tree topology.

To obtain insight into the biological relevance of the among-
organ modules, we characterized human genes involved in PEO
shifts from all branch categories using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis. The
genes descended from the testis–ovary PEO shifts enriched only
one KEGG pathway term “cell cycle” (Supplementary Data 6;
adjusted P value < 0.05, Fisher’s exact test with the
Benjamini–Hochberg correction), likely reflecting their function
in meiosis. Although the adjusted P value was not statistically
significant, it is noteworthy that the top-ranked term for the
brain–testis connection was “endocrine and other factor-
regulated calcium reabsorption” (unadjusted P value= 1.66 ×
10−3; adjusted P value= 0.26) annotated to four genes including
GNAQ, which has been implicated to tumor formation in
neuronal tissues52,53. In the kidney–liver module, 15 terms were
significantly enriched, many of which appear to be related to the
functions and diseases in those organs, for example, “bile
secretion,” “phagosome,” “lysosome,” “ABC transporters,”
“sphingolipid metabolism,” and “Type-I diabetes mellitus”
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(Supplementary Data 6). These results suggest that the among-
organ modules in the PEO shifts played a role in supplying
functionally important genes.

Because ancestral expression was shown to orient new
expression by the analysis of PEO shifts, we concluded that there
was prevalent organ-specific propensity, which supports the
presence of preadaptation in gene expression.

Discussion
Our results suggest that the landscape of expression evolution is
strongly shaped by mechanisms of gene birth. Expression shifts
are more pronounced following gene duplication in agreement
with the results of pairwise gene expression analyses22,24,43, and

shifts in patterns of PEOs strongly depend on the expression state
in the ancestral organism. Thus, by analyzing such influences on a
genome-wide scale for a moderately large number of species, the
question whether long-term expression in one organ predisposes
genes to be subsequently utilized in other organs has been
answered in the affirmative. There are preadaptive propensities in
the evolution of vertebrate gene expression, and the propensity
varies with the presence and type of gene duplication. Further-
more, the approach developed in this study, using complex gene
family phylogenies including gene duplications and losses that do
not assume perfect match to the species phylogeny, and incor-
porating a curation pipeline to amalgamate large amounts of
transcriptome data from many studies, was essential to obtain the
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necessary species density and phylogenetic resolution to answer
this question. The extensibility of this method will allow for more
species and more organs to be incorporated as further studies
come into the literature from diverse laboratories.

The mechanisms responsible for the preadaptive propensities
that influence expression shifts among organs are, however,
unknown. A key question in understanding these shifts may be
the role of adaptation in the shift, and in subsequent evolution.
We have been careful so far to simply describe the shifts, but
adaptive possibilities include subfunctionalization, escape from
adaptive conflict (EAC), and neofunctionalization54–56. The
increased number of shifts following duplication suggests that
drift alone is not the explanation, but subfunctionalization easily
could be. Subfunctionalization is the idea that, if a gene has
multiple functions prior to duplication, they may be segregated
among the duplicates following gene duplication. Thus, the
expression shifts may be simply a shift in focus of a duplicated
copy on a subset of the necessary expression profile needed at the
organismal level. In this scenario, any accompanying acceleration
of amino acid substitution would be caused by a loss of constraint
and reduced purifying selection in one expression environment or
the other.

EAC involves more adaptation by adding the simple idea that
prior to duplication, the multiple functions and expression
regimes were at least partially in conflict. Such conflicts could
clearly occur at the amino acid level, but could also occur at the
expression level. For example, if expression levels were focused on
a most-important tissue or most-sensitive tissue prior to dupli-
cation, but after duplication could be more tailored to what is
better for the new expression regime. Finally, neofunctionaliza-
tion would occur at the sequence or expression level, if the loss of
selection on a duplicate allowed mutations that were previously
harmful to the old function, but now are not, and are able to carry
out some novel functional aspect that was previously prohibited.
Neofunctionalization is perhaps the most interesting and extra-
ordinary possible cause for the expression regime shifts we see,
but it requires strong evidence and it is not a necessary expla-
nation for what we observe.

In this context, the patterns of expression regime shifts we
observed may be explained at different levels of biological orga-
nization, from the tissues and cells that make up organs, to
subcellular compartments, chromatin structure, promoter usage,
and protein biochemistry. Part of the propensity shifts we
observed can be explained by the out-of-the-testis hypothesis,
which posits that accelerated gains of testis expression are based
on the permissive chromatin state, abundant transcriptional
machinery, relatively simple promoters required for the expres-
sion in spermatogenic cells, and following gains of new expres-
sion patterns4,57. This theory fits to the accelerated testis-related
PEO shifts, and could fit with any of the adaptive scenarios dis-
cussed above, but the other detected patterns (e.g., kidney–liver
module) require other explanations.

One potential mechanism of preferences in expression regime
shifts is a cell-type or subcellular component mechanism. In such
a mechanism, if two organs tend to share cell types or usage of
subcellular components, they may be prone to expropriate genes
between the two organs. It is known that gene expression levels in
the kidney and liver tend to change jointly, possibly reflecting
their similar physiology including detoxifications and waste
excretion19. Such functional similarity may also explain the pre-
sence of the kidney–liver module of gene exchange.

Another possibility is a regulatory mechanism whereby fre-
quent gene-exchanging organs use similar sets of regulatory ele-
ments. Altered expression between such organs could occur with
relatively few mutations in regulatory sequences. Cis-regulation is
indeed a major source of expression evolution, as it explains a

certain fraction of expression variability, for example, in budding
yeast (30% in duplicates and 19% in singletons) and undergoes a
more rapid divergence than trans-regulation58.

Finally, another possible mechanism for expression regime
shifts following gene duplication is at the protein level. If fre-
quently interacting organs have similar environmental require-
ments for expressed proteins, a few amino acid substitutions may
tend to be required to adjust biochemical properties. Protein
reusability may be determined by cellular environments such as
pH and temperature or by functional categories of proteins. Our
analysis indicates that the regime shifts that drastically differ-
entiate the expression tend to be coupled with accelerated protein
evolution (Fig. 4b), and this result can be viewed as a support for
a protein-level mechanism. In such a mechanism, synergistic
resolution of EAC may be a driving force for changes in both
amino acid composition and expression regimes. We note that
these mechanistic hypotheses are not mutually exclusive, and
varying combinations of factors may contribute to generate pre-
adaptive patterns of gene expression.

In this study, we established a method to standardize RNA-seq
data from disparate research projects and developed a pathway
for data amalgamation. Thanks to multiple rounds of innovations
in sequencing technology, transcriptome data are being produced
at an unprecedented rate in a greater variety of organisms and
samples, such as those for multispecies multi-organ develop-
mental series59. The transcriptome amalgamation will expand the
use of such resources to study gene expression evolution.

By reconstructing gene expression in gene family phylogenies,
our analysis revealed nonrandomness and directionality of
expression evolution. This suggests prevalent preadaptation in
gene expression, and that adaptation to expression in certain
organs is more conducive to future expression in other organs.
This provides further details on how gene duplication has helped
to reshape the dynamics of expression evolution that contributed
to the vertebrate diversification.

Methods
Species selection. A total of 105 species included in the Ensembl release 9160 were
searched for data availability in the NCBI SRA database61 (final search on May 1,
2018) and 22 species were found to have RNA-seq data for six organs: brain, heart,
kidney, liver, ovary, and testis. Lepisosteus oculatus was excluded due to an
insufficient quality of available expression data, and therefore remaining 21 species
were selected for further analysis.

Species tree. The dated species tree for the 21 species was retrieved from Time-
Tree62 (downloaded on March 15, 2018; Supplementary Dataset https://doi.org/
10.17632/3vcstwdbrn.1). Some species were unavailable in the database and
therefore they were temporarily replaced by closely related species to obtain the
dated species tree.

Gene sets. Coding sequences (CDS) were retrieved from the Ensembl database.
The longest transcript was retained when multiple transcripts were annotated to
the gene. The quality of gene sets was evaluated using BUSCO 4.0.563 with the
single-copy ortholog set vertebrata_odb10 (Supplementary Fig. 8).

Transcriptome metadata curation. We developed an automated python program
for SRA metadata curation (Supplementary Data 3 and Supplementary Dataset
https://doi.org/10.17632/3vcstwdbrn.1). RNA-seq data were selected from the
NCBI SRA database by keyword searches limited to the 21 species, the six organs,
and Illumina sequencing platforms. Orthographical variants of annotations were
standardized with keyword libraries created by manually checking the original
annotations. Prenatal or unhealthy samples and small-scale sequencing samples
(<5 million reads) were excluded. Data for non-messenger RNA sequencings were
also removed. In treatment and control RNA-seq pairs, only control experiments
were included.

Transcriptome quantification. Fastq files were extracted from downloaded SRA
files using parallel-fastq-dump 0.6.2 (https://github.com/rvalieris/parallel-fastq-
dump) with the minimum read length of 25 bp and the quality filter (-E option)61.
The fastq sequences were then subjected to a quality filtering by fastp 0.12.364. The
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filtered reads were mapped to genomic features annotated as non-messenger RNAs
in the Ensembl GTF files using bowtie2 2.3.465 and resultant unmapped reads were
used for expression level quantification using kallisto 0.43.1 with the sequence-
based bias correction66. Samples were removed if 20% or smaller percentages of
reads were mappable (Supplementary Fig. 2). Estimated mapped read counts and
transcript lengths were used to calculate TPM and FPKM values. For the latter, the
“TMM” normalization method was applied33. Sample-wise TMM scaling factors
were obtained across all RNA-seq samples using the FPKM values of 1377 single-
copy orthologs. Because the TMM normalization destroys the estimated relative
abundance of TPM, in which, by definition, the total counts must be 106, this
scaling method was applied only to FPKM values, but not to TPM values. TPM and
TMM-FPKM values were subsequently transformed to log (N+ 1) values (log-
TPM and log-TMM-FPKM, respectively). Paralogous genes that haven’t diverged
in their nucleotide sequences could not be distinguished well in the quantification
step. Although our scope is to characterize gene expression in the timescale of
vertebrate evolution, this difficulty likely leads to an underestimation of expression
regime shifts in young duplicates.

Iterative anomalous sample removal coupled with SVA. Anomalous RNA-seq
samples were iteratively removed by a correlation analysis coupled with an
expression bias correction. In each iteration, unwanted biases in expression level
were removed by SVA (sva function in an R package sva)34. SVA analysis was
applied at the beginning of each iteration so that it is not influenced by anomalous
samples removed in previous iterations. Subsequently, Pearson’s correlation coef-
ficients were calculated for every RNA-seq data against mean expression level in
each organ generated by averaging all other data excluding those from the same
BioProject (Supplementary Fig. 3). We assume that the sample’s correlation
coefficient against the same organ is higher than any of the values against the other
organs, and we removed all samples from the same BioProject when violations
were found. These steps were repeated until no violations were left and SVA-
corrected expression levels were finally reported (SVA-log-TMM-FPKM and SVA-
log-TPM). The curation steps were skipped if multiple samples were unavailable in
the species and hence SVA analysis was inapplicable. The final dataset was com-
prised of 1903 RNA-seq experiments from 182 BioProjects that cover six organs
from 21 vertebrate species without missing data (Supplementary Data 1 and 2).

Orthogroup classification. Orthogroups, which contain all genes descended from
one gene in the common ancestor, were inferred from CDS of the 21 species using
OrthoFinder 2.1.267 guided by the species tree. In total, 17,896 orthogroups were
generated. The largest orthogroup, which comprised 7893 olfactory receptor genes,
was removed from the analysis because of computational burden. After sequence
alignment processing (see “Multiple sequence alignment”), we removed small
orthogroups, which retained less than four genes and orthogroups that showed no
parsimony informative sites, because phylogenetic relationships cannot be inferred.
As the result of filtering, 15,280 orthogroups were left for OU modeling, with the
largest one containing 3796 zinc-finger proteins (Supplementary Data 4).

Multiple sequence alignment. Multiple fasta files containing CDS were generated
for each orthogroup. Stops and ambiguous codons were masked as gaps (for
implementation, see https://github.com/kfuku52/cdskit). In-frame multiple codon
sequence alignments were generated using MAFFT 7.394 with the auto option68

and tranalign in EMBOSS 6.5.7.069. Anomalous genes were excluded by Max-
Align70, which decreased the largest orthogroup size from 3796 to 2382 genes.
Spurious codons were removed in-frame using pgtrimal in Phylogears2-
2.0.2016.09.06 (https://www.fifthdimension.jp/products/phylogears/) with the
gappyout option71.

Gene tree reconstruction. Maximum-likelihood trees were reconstructed using
IQ-TREE 1.6.572 with the best-fit nucleotide substitution models selected by
ModelFinder with the Bayesian Information Criterion73. Larger orthogroups and
longer genes tended to fit more complex substitution matrices and larger numbers
of categories of rate heterogeneity (Supplementary Fig. 13a, b and Supplementary
Data 4). Ultrafast bootstrapping with 1000 replicates was performed to evaluate the
credibility of tree topology74 with a further optimization of each bootstrapping tree
(-bnni option)75. To evaluate the effect of alternative gene tree topologies, we
performed phylogeny reconciliation using GeneRax 1.0.050 with the maximum-
likelihood gene trees and the species tree as input. Because rooted trees were
generated in this step, the tree rooting (described below) was skipped for the
reconciled trees.

Reconciliation-assisted gene tree rooting. Candidate rooting positions were
inferred with different methods. Using the dated species tree, all rooting branches
with the minimum duplication–loss score were identified using the rooting mode
of NOTUNG 2.9 with the default parameters (duplication score= 1.5, loss score=
1.0)76. The midpoint of the longest path77 and the position with the minimal
ancestor deviations78 were also considered as candidates. The final rooting position
was reported based on overlaps among those rooting positions (Supplementary
Fig. 13c, e and Supplementary Data 4).

Reconciliation-assisted divergence time estimation. To prepare dated gene
trees, we first matched species tree nodes with corresponding gene tree nodes using
the reconciliation mode of NOTUNG 2.976 and created time constraints of spe-
ciation nodes (Supplementary Fig. 13f). Duplication nodes were constrained with
the upper and lower age limits derived from corresponding speciation nodes. If the
root node is a duplication node and is not covered by the range of the species tree,
the upper age limit was set to 1105 million years ago, which corresponds to the split
of animals and fungi62. Divergence time was then estimated by a penalized like-
lihood method79 implemented in an R package ape (chronos function with discrete
model)80 with time constraints on speciation, duplication, and root nodes. When
reasonable initial parameters were not found after 1000 trials, the above constraints
were partly relaxed (Supplementary Fig. 13d and Supplementary Data 4). The
implementation is provided on GitHub (https://github.com/kfuku52/RADTE).

Modeling and shift detection of expression evolution. Using the dated gene
trees and organ-wise mean values of SVA-log-TMM-FPKM and SVA-log-TPM,
regime shifts in gene expression were detected as shifts of optimal trait values in
OU models determined by a Lasso-based model selection with AICc in an R
package l1ou37. Because there is no available software to handle within-species
variation in phylogenetic OU shift detection without predefined hypotheses on the
number and place of regime shifts, we used mean expression level as the input. It is
shown by simulation that the species mean and species variance models show
comparable power in the regime shift detection21, suggesting that our species mean
model is expected to perform as good as the species variance model. In the model,
α and σ2 parameters were assumed unchanged in the tree37, and therefore only the
global, rather than branch- or clade-wise, stationary variance (γ) were obtained.
Expression levels in the six organs were treated as multivariate traits where α and
σ2 were estimated for each organ but regime shifts were assumed to occur jointly in
the same set of branches37. The phylogenetic mean (expression level at the root
node) was estimated with the OUfixedRoot model. To handle gene trees recalci-
trant to this analysis (especially those with a large number of genes), we skimmed
gene trees by collapsing clades with small changes in expression level (Supple-
mentary Fig. 14). Specifically, we first calculated all-vs.-all Pearson’s correlation
coefficients of gene expression level among all genes that belong the clade. The
clade was collapsed into a single tip if the expression patterns were almost identical
(minimum correlation coefficient between genes > 0.99). Phylogenetic means of the
collapsed clade were calculated by assuming the Brownian motion and were used as
expression level at the new tip. The upper limit of regime shifts was set as max[min
(N/2, 100),

ffiffiffiffi

N2
p

], except for the largest tree with 2382 genes where the upper limit
was decreased to 10 to cope with an unrealistically large number of branch com-
binations to consider. The number of detected regime shifts was always smaller
than the upper limit in the SVA-log-TMM-FPKM analysis, whereas three out of
15,820 trees reached the upper limit in the SVA-log-TPM analysis (Supplementary
Fig. 6a).

Analysis of expression pattern. We characterized expression patterns of extant
and ancestral genes by calculating different metrics from fitted values (μ) in the OU
models. Organ specificity was measured by τ46, which outperformed other methods
in a benchmark for tissue specificity81. Expression complementarity between sister
lineages was measured by the metrics called TEC43. Because μ was estimated from
log-transformed expression levels, these expression metrics were calculated with
unlog-transformed μ values. PEOs were defined as the organ in which the highest
expression levels were observed among the six organs we analyzed.

Estimation of protein evolution rate. Parameters for codon substitution matrix,
shape parameter of discrete gamma distribution for rate heterogeneity (α), equi-
librium transition/transversion rate ratio (κ), equilibrium nonsynonymous/
synonymous substitution rate ratio (ω) were estimated using IQ-TREE 1.6.572 by
fitting GY+F3X4+G4 models to each gene tree. Equilibrium base composition (θ)
was estimated from empirical codon state frequencies, which are calculated from
the alignment by counting. To obtain θ at the root node, we calculated θ at subroot
nodes by taking advantage of IQ-TREE’s empirical Bayesian method for ancestral
sequence reconstruction. Considering subroot branch length, a weighted average of
the subroot θ values were calculated as the θ value at the root node. Using all those
parameters, branch-wise nonsynonymous/synonymous substitution rate ratios
were estimated by stochastic substitution mapping (mapdNdS)82 using bio++
library83. To examine the robustness of the mapdNdS-based ω estimation, we
compared the results with those obtained by maximum-likelihood ω estimation by
fitting MG94W9 models in HyPhy 2.3.1184. The two methods yielded consistent
results on the effect of branching events and expression shifts (Fig. 4a and Sup-
plementary Fig. 9a), suggesting methodological robustness. We reported mapdNdS-
based results in the main text.

Analysis of gene structure and location. The number of introns and chromo-
somal location were obtained for each gene from the Ensembl gene models (GFF3
files). The intron numbers were subsequently converted to binary values that
represent intronless and intron-containing states. Chromosomal locations were
categorized into autosome, X chromosome, and Y chromosome. Genes from non-
therian species were treated as missing data because mechanisms of their sex
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determination are not homologous to the mammalian XY system85. Genes from
Chinchilla lanigera were also treated as missing data because their sequenced
genomes are not anchored to chromosomes in the Ensembl release 91. The pos-
terior probabilities of ancestral character states were inferred by the stochastic
character mapping of discrete traits86 implemented in an R package phytools87.
Because functional retrotranspositions44,88 and interchromosomal duplications89

are rare events relative to the timescale of the vertebrate evolution on the per-gene
basis, we set the transition rate parameters to a sufficiently small value (1 × 10−3

per gene per million years). Since intron gain occurs few orders of magnitude less
frequently than its loss caused by retrotransposition and others90, the rate of intron
gain is set to be lower (1 × 10−4 per gene per million years).

Analysis of branching events. Speciation and duplication nodes (S and D/R
nodes, respectively) were classified by a species-overlap method91 and were map-
ped to the species tree on the basis of species coverages of the gene tree clades. A
transition from intron-containing to intronless states with a posterior probability
>0.5 was classified as a retrotransposition event (R node). The branches that
correspond to the original copy of a retrotransposition event were not included in
R branches. Although our classification cannot detect retrotranspositions from
originally intronless genes, we expect such situations would be rare because most
vertebrate genes contain at least one intron (e.g., 20,160/21,242 human genes).
Interchromosomal translocation was detected by considering chromosomal loca-
tions with the highest posterior probability as the ancestral states. Because of the
difficulty in determining rooting positions of deep phylogenies, gene tree nodes
older than the root node of the species tree were removed from the analysis.

KEGG pathway enrichment analysis. Human genes that descend from the shift
branches were pooled for each specific PEO shift. The gene lists were examined for
enrichment against an Enrichr library KEGG_2019_Human92 using a python
package GSEApy (https://github.com/zqfang/GSEApy). Statistically significant
(adjusted P value < 0.05) KEGG pathway terms were reported in Supplementary
Data 6.

Data visualization. Phylogenetic trees were visualized using a python package ETE
393 and an R package ggtree94. A part of animal silhouettes in Fig. 3a and Sup-
plementary Fig. 4 were obtained from PhyloPic (http://phylopic.org). The silhou-
ettes of Astyanax mexicanus and Oreochromis niloticus are licensed under CC BY-
NC-SA 3.0 (https://creativecommons.org/licenses/by-nc-sa/3.0/) by Milton Tan
(reproduced with permission), and those of Anolis carolinensis (by Sarah Werning),
Ornithorhynchus anatinus (by Sarah Werning), and Rattus norvegicus (by Rebecca
Groom; with modification) are licensed under CC BY 3.0 (https://
creativecommons.org/licenses/by/3.0/). Boxplot elements of all figures are defined
as follows: center line, median; box limits, upper and lower quartiles; whiskers,
1.5 × interquartile range; points, outliers. Boxplot outliers are suppressed in Figs. 3
and 4 and Supplementary Figs. 9, 11, and 12.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Gene expression values including SVA-log-TMM-FPKM and SVA-log-TPM and other
data used in this study are available as Supplementary Data 1–6 and Supplementary
Dataset (https://doi.org/10.17632/3vcstwdbrn.1). NCBI SRA accessions for the RNA-seq
datasets analyzed in this study are available in Supplementary Data 1.

Code availability
All codes used in this study are available from the following link: https://doi.org/
10.17632/3vcstwdbrn.1.
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