Untersuchungen zum Proteom und zur Funktion von sekretierten Proteinen und äußeren Membranvesikeln von *Legionella pneumophila*

Dissertation

zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Frank Galka aus Schweinfurt

Würzburg, November 2007

Eingereicht am:

Mitglieder der Promotionskommission:

- 1. Gutachter: Prof. Dr. Michael Steinert
- 2. Gutachter: Prof. Dr. Roland Benz

Tag des Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

Erklärung

Die vorliegende Arbeit wurde von mir selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt.

Weiterhin erkläre ich, dass die Dissertation bisher nicht in gleicher oder ähnlicher Form in einem anderen Prüfungsverfahren vorgelegen hat, und ich bisher keine akademischen Grade erworben oder zu erwerben versucht habe.

Würzburg, November 2007

Frank Galka

Für Julia

DANKSAGUNG

An dieser Stelle möchte ich mich bei allen bedanken, die durch ihre Unterstützung diese Arbeit überhaupt erst möglich gemacht haben.

Besonders bedanken möchte ich mich bei

Prof. Dr. Michael Steinert für die Betreuung, seine stete Diskussionsbereitschaft und vor allem für seinen Optimismus, die wesentlich zum Erfolg dieser Arbeit beigetragen haben.

Prof. Dr. Dr. h. c. Jörg Hacker für die Möglichkeit an seinem Institut arbeiten zu dürfen und Prof. Dr. Roland Benz für die freundliche Übernahme des Zweitgutachtens.

Prof. Dr. Sun Nyunt Wai und Prof. Dr. Bernt Eric Uhlin sowie allen ihren Mitarbeitern für die technische Einführung in die Welt der Membranvesikel-Forschung. Darüber hinaus danke ich Ihnen für die zahlreichen wissenschaftlichen Diskussionen und die familiäre Atmosphäre während meinen Aufenthalten in Umeå, Schweden.

Dr. Susanne Engelmann und insbesondere Dr. Harald Kusch von der Universität Greifswald für die tolle Betreuung bei der Proteomsequenzierung und bei Dr. Bernd Schmeck sowie Kerstin Möhr von der Charité in Berlin für die Unterstützung bei den Zytokinexperimenten.

Prof. Dr. Alicia Ponte-Sucre für die Einführung in Wachstums-Assays, sowie bei Franziska und Florian für ihre Hilfen bei der konfokalen Lasermikroskopie.

PD Dr. Klaus Heuner für die wissenschaftlichen Diskussionen und Ratschläge und für die zahlreichen Tipps im Laboralltag.

meinen Laborkollegen Johannes, Olga, Can, Eva, Matthias, Carina, Markus, Christoph, Erik, Christiane und Sebastian für die tolle Arbeitsatmosphäre und besonders bei Simone, Melanie und Silke für die Hilfsbereitschaft bei allen technischen Fragen.

meinen Freunden für die aufmunternden Worte und viele gemeinsame Erlebnisse. Besonders danke ich Stefan für das Ausdrucken der Farbseiten.

meinen Eltern und Großeltern für die großzügige finanzielle Unterstützung, ohne die diese Doktorarbeit nicht möglich gewesen wäre. Außerdem danke ich meiner Familie für den Rückhalt, ihre Nachsicht und vor allem für die immerwährende Unterstützung.

und bei Julia für die liebevolle Rücksicht, ihre unendliche Geduld und noch vieles mehr.

DER MANN, DER DEN BERG ABTRUG, WAR DERSELBE, DER ANFING, KLEINE STEINE WEGZUTRAGEN.

Aus China

INHALTSVERZEICHNIS

Zusammenfassung1			
S	umn	nary	3
1	Eiı	nleitung	5
	1.1	Legionella pneumophila – ein Umweltpathogen	5
	1.2	Infektion des Menschen	7
	1.3	Aufnahme in Wirtszellen und Replikation	10
	1.4	Sekretionssysteme und ihre Substrate (SSPs)	15
	1.5	Äußere Membran-Vesikel (OMVs)	20
	1.6	Zielsetzung der Arbeit	25
2	Ма	iterialien	27
	2.1	Bakterienstämme und Wirtszellen	27
	2.2	Geräte	28
	2.3	Chemikalien und Antibiotika	30
	2.4	Fertigkits	31
	2.5	Antikörper	32
	2.6	Größenstandards	33
	2.7	Zellkulturmedien und Plastikmaterial	33
	2.8	Puffer und Lösungen	35
3	Me	ethoden	36
	3.1 3.1 3.1 3.1	Mikrobiologische Methoden.1Anzucht auf Agarplatten.2Anzucht als Flüssigkultur in Schüttelkolben.3Langzeitlagerung	36 36 36 37
	3.2 3.2	Zellbiologische Methoden. 2.1 Kultivierung der Amöben Acanthamoeba castellanii und Diatvastelium diagoislaume	
	3.2	2.2 Kultivierung der humanen Zelllinien A549 und NCI-H292	

	3.2 3.2	2.3 "Alamar Blue-Assay" 2.4 "Bioplex protein array"	39 40
	2.2	Dreteinbigehemigehe Methoden	
	3.3 ຊີຊີ	Proteinbiocnemische Methoden	4 1
	3.3	 Konzentrationsbestimmung von Proteinen mit Roti-Nanoguant 	
	3.3	3.3 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)	42
	3.3	8.4 Färbetechniken für SDS-PAGE-Gele	43
	3.3	3.5 Westernblot	45
	3.3	3.6 Zymographie	48
	3.3	3.7 Enzym-Assays	48
	3.3	3.8 2-D SDS-Polyacrylamidgelelektrophorese (2-DE)	50
	3.4	Mikroskopische Methoden	55
	3.4	I.1 Transmissionselektronenmikroskopie (TEM)	55
	3.4 2 /	4.2 "Atomic force microscopy (AFIVI)	50
	3.4		57
4	Erg	gebnisse	58
		- 	
	4.1	Etablierung der Fraktionierung von <i>L. pneumophila</i> -Überständen	58
	4.1	1.1 Untersuchung der Abhängigkeit der OMV-Produktion von Kulti-	
	1 1	Vierungsbedingungen und extra- bzw. Intrazeilularem Wachstum	58 60
	4.1 1	1.2 WIKIOSKOPISCIE Validerung des Fraktionierungsprotokolis 1.3 SDS-PAGE und Westernblot-Analyse der Sekretomfraktionen	00 61
	4 1	4 Zusammenfassung	01
	12	Brotoomanalyse der Sekretomfraktionen SSB und OMV	61
	4. Z	2.1 SSP- und OMV-Fraktionen sind spezifisch in ihrer Protein-	04
	7.2		64
	4.2	2.2 Identifizierung der Proteome der SSP- und OMV-Fraktionen	65
	4.2	2.3 Zusammenfassung	75
	4.3	Untersuchungen zur Funktion der Sekretomfraktionen	
	4.3	3.1 Degradierende Enzymaktivitäten von SSP- und OMV-Fraktionen	76
	4.3	3.2 Aktivierungsprofile von Zytokinen bei humanen Wirtszellen durch	80
	4.3	B.3 Einfluss von OMVs auf das Wachstum von humanen und proto-	
		zoischen Wirtszellen	81
	4.3	3.4 Untersuchungen zur Bindung von OMVs an die Oberfläche von	
			83
	4.5	3.5 Zusammenfassung	86
5	Dis	skussion	88
	5.1	OMV-Produktion bei <i>L. pneumophila</i>	88
	5.2	Die Proteome der Sekretomfraktionen SSP und OMV von	
		L. pneumophila	90
	5.3	Funktionale Analyse der SSP- und OMV-Fraktionen	94

	5.3.1 5.3.2 5.3.3	Destruktive Enzymaktivitäten Zelluläre Effekte Bindung von OMVs an Alveolarepithelzellen	94 96 97
	5.4 Moc	dell der Funktionen von <i>L. pneumophila</i> -sekretierten OMVs	98
6	Literat	urverzeichnis	102
7	Anhan	g	116
8	Publik	ationsliste	150
9	Leben	slauf	152

ZUSAMMENFASSUNG

Das Gram-negative Bakterium *Legionella pneumophila* ist der Haupterreger der humanen Legionärskrankheit, einer schweren atypischen Pneumonie. Aufgrund mangelnder Diagnostik bleibt *L. pneumophila* als Krankheitsverursacher jedoch oft unerkannt. Neuesten Schätzungen des Kompetenznetzwerkes für ambulant erworbene Pneumonien (CAPNETZ) zufolge könnten Legionellen in Deutschland für jährlich ca. 21 000 Pneumonien verantwortlich sein, etwa doppelt so viele Fälle wie bisher angenommen. Die Pathologie der humanen Infektion zeichnet sich durch extrazelluläre Effekte aus, für die in den letzten Jahren vielfältige sekretierte Effektormoleküle (SSPs) verantwortlich gemacht wurden. Darüber hinaus tragen spezielle Sekretionsmaschinen wie das Dot/Icm Typ-IV-Sekretionssystem sowie ersten Hinweisen entsprechend Membranvesikel, die von der äußeren Membran der Bakterien abgeschnürt werden (OMVs), zur intrazellulären Pathogenität von *L. pneumophila* bei.

In der vorliegenden Dissertation bildet die umfassende Charakterisierung des Sekretoms von *L. pneumophila* den Schwerpunkt. Diese ist untergliedert in (i) Untersuchungen zur OMV-Produktion im Lebenszyklus von *L. pneumophila*, (ii) Proteomcharakterisierung der Sekretomfraktionen SSP und OMV und (iii) funktionale Analyse der Sekretomfraktionen.

Für einen Beitrag von OMVs zur *L. pneumophila*-Pathogenese ist deren Produktion während extra- und intrazellulären Wachstums essentiell. Mit Hilfe verschiedener Mikroskopie-Techniken wird in dieser Dissertation gezeigt, dass die Abschnürung von OMVs sowohl extrazellulär als auch intrazellulär in *Legionella*-spezifischen Phagosomen stattfindet und von einer intakten Bakterienmembran erfolgt. Des Weiteren werden OMVs nicht nur während der exponentiellen, sondern auch während der stationären Phase produziert. Diese Beobachtung ist bedeutend, weil sich *L. pneumophila* während der postexponentiellen Phase in die transmissive Form mit voller Virulenz differenziert und sich der Wechsel in die virulente Form folglich auch in der Zusammensetzung der OMVs widerspiegeln könnte.

Der zweite Teil beschäftigt sich mit der Proteomanalyse der Sekretomfraktionen. Die Proteinidentifikation ergab 181 nicht-redundante Proteine im *L. pneumophila*-Sekretom, von denen 107 für die SSP-Fraktion und 33 für die OMV-Fraktion hochspezifisch sind. In beiden Fraktionen sind insgesamt 22 Typ-II-Sekretionssubstrate enthalten, die verschiedene degradierende Enzymaktivitäten aufweisen. Außerdem wurden 38 bisher putative Typ-II-Substrate, 3 Typ-IV- Substrate und 7 Eukaryoten-ähnliche Proteine detektiert. Die Analyse der Verteilung der Proteine zeigt, dass der prozentuale Anteil der "Virulenz-/Pathogenese"-Proteine in der OMV-Fraktion mit 24% gegenüber 11% in der SSP-Fraktion mehr als doppelt so hoch liegt. Acht Faktoren, u. a. das Mip-Protein, einer der Haupt-Virulenzfaktoren von *L. pneumophila*, sind nur auf OMVs beschränkt. Dies könnte darauf hindeuten, dass OMVs als spezifische Transportmittel für Virulenz-assoziierte Effektoren dienen.

In der funktionalen Analyse der SSP- und OMV-Fraktionen wurden anhand verschiedener Techniken Aspekte untersucht, die während des Infektionsprozesses eine Rolle spielen. Dabei zeigt sich, dass SSPs und OMVs proteo- und lipolytische Enzymaktivitäten besitzen, die zur Zerstörung der Alveolaroberfläche, zur Transmigration der Bakterien durch Lungenepithelbarriere und Basallamina und letztendlich zur Ausbreitung von L. pneumophila im Lungengewebe und zur Milz beitragen könnten. Jedoch konnten für OMVs keine naheliegenden zytotoxischen oder zytolytischen Eigenschaften nachgewiesen werden. In Alveolarepithelzellen sie spezifisches Zytokinsekretionsprofil induzieren. können ein was ihre modulierenden Effekte auf Wirtszellen bestätigt. Die gezeigte Bindung von OMVs an Alveolarepithelzellen bildet die Voraussetzung für eine Interaktion mit den Wirtszellen. Ob dabei eine Fusion mit der Zytoplasmamembran und ein möglicher Transfer von Effektoren in die Wirtszelle stattfinden, bleibt zu klären. Abschließend werden diskutierte Funktionen sekretierter OMVs während der L. pneumophila-Infektion in einem Modell zusammengefasst.

Diese neuen Ergebnisse zum Proteom des Sekretoms und zur Funktion von *L. pneumophila*-OMVs tragen zum besseren Verständnis der Interaktion von *L. pneumophila* mit seiner Umwelt und der Pathogenese bei. Gleichzeitig liefern sie eine wichtige theoretische Grundlage für zukünftige Forschungsarbeiten über Interaktionsprozesse und beteiligter Effektoren, deren tiefgreifendes Verständnis die Vorraussetzung für die Entwicklung neuer Strategien in der Therapie von *Legionella*-Infektionen bildet.

SUMMARY

The Gram negative bacterium *Legionella pneumophila* is the aetiological agent of Legionnaires' disease, a severe atypical form of pneumonia. Due to poor diagnostics, in many cases *L. pneumophila* is not detected as causative organism. According to recent evaluations of the "Kompetenznetzwerkes für ambulant erworbene Pneumonien" (CAPNETZ), *Legionella* might be responsible for ca. 21.000 pneumonia every year in Germany, which is twice as much as originally estimated. Massive extracellular damages are typical features of the pathology during human infection, for which secreted effector molecules (SSPs) have been made responsible. Moreover, recent studies demonstrated that sophisticated secretion machineries like the Dot/Icm type-IV secretion system as well as membrane vesicles, which are pinched off the outer bacterial membrane (OMVs), can contribute to intracellular pathology of *L. pneumophila*.

The present thesis deals with the comprehensive characterisation of the *L. pneumophila* secretome and is subdivided in (i) examinations on OMV production during the *L. pneumophila* life cycle, (ii) proteome characterisation of secretome fractions SSP and OMV, and (iii) functional analysis of the secretome fractions.

To contribute to *L. pneumophila* pathogenesis, the production of OMVs during extraand intracellular growth is essential. By applying various microscopical techniques it is shown that OMVs are pinched off from an intact bacterial membrane when residing extracellularly as well as intracellularly in *Legionella*-specific phagosomes. Moreover, OMVs are produced during exponential and stationary phase. This observation is of relevance as *L. pneumophila* differentiates into the transmissive form, which owns full virulence traits, during the post-exponential phase. Consequently, the transformation into the virulent form might be reflected in the composition of OMVs.

The second section deals with the proteome analysis of secretome fractions. The protein identification resulted in 181 non-redundant *L. pneumophila* secretome proteins, of which 107 are highly specific for the SSP fraction and 33 for OMVs, respectively. Both fractions contain a total of 22 type-II secretion substrates which exhibit various degradative enzyme activities. Furthermore, 38 so far putative type-II substrates, 3 type-IV substrates and 7 eukaryotic-like proteins were detected. The analysis of the distribution of proteins demonstrates that the percentage of virulence/pathogenicity-involved proteins differs heavily between 24% at the OMV fraction and 11% at the SSP fraction. Eight factors including Mip, which is one of the main

virulence factors of *L. pneumophila*, were unique to OMVs. This suggests that OMVs might serve as specifc carriers for virulence-associated effectors.

In the functional analysis of SSP and OMV fractions several techniques were applied to highlight aspects which play a role during the infection process. The results show that SSPs and OMVs possess proteolytic and lipolytic enzyme activities which might contribute to the destruction of the alveolar surface, the transmigration of bacteria through the lung epithelial barrier and the basal lamina, and finally to the dissemination of *L. pneumophila* in the lung tissue and to the spleen. However, neither cytotoxic nor cytolytic activities were observed for OMVs. In alveolar epithelial cells OMVs are able to induce a specific cytokine secretion profile, confirming their modulatory effects on host cells. The demonstrated bindung of OMVs on alveolar epithelial cells is the precondition for an interaction with host cells. Whether OMVs fuse with cytoplasmic membranes or transfer effector molecules into the host cell remains to be established. Finally, discussed functions of secreted OMVs during *L. pneumophila* infection are combined in a model.

These results on the secretome proteome and the functions of *L. pneumophila* OMVs contribute to a better understanding of the interaction of *L. pneumophila* with its environment and of pathogenesis. At the same time the data provide an important theoretical basis for future studies on interaction processes and involved effectors, whose comprehensive understanding is required for the development of novel strategies in the therapy of *Legionella* infections.

1 EINLEITUNG

1.1 Legionella pneumophila – ein Umweltpathogen

Legionellen sind Gram-negative, nicht Sporen-bildende Bakterien, die zur γ-Untergruppe der Proteobakterien gehören. Sie wurden erstmals beschrieben, nachdem im Juli 1976 zahlreiche Teilnehmer einer Tagung der American Legion Convention in Philadelphia (USA) an einer schweren atypischen Pneumonie erkrankten. Von 221 erkrankten Teilnehmern starben 34. Als Krankheitserreger konnte die Spezies *Legionella pneumophila* isoliert werden, die durch die Klimaanlage des Hotels verbreitet worden war (Fraser *et al.*, 1977; McDade *et al.*, 1977).

Abb. 1-1: Legionella pneumophila – der Haupterreger der Legionellen-Infektion. Elektronenmikroskopie einer extrazellulären Bakterienzelle mit Flagelle.

Die Bakterien sind unipolar begeißelt und stäbchenförmig, mit einem Durchmesser von ca. 0,3 bis 0,9 μ m und einer Länge von ca. 2 bis 20 μ m. Das Legionellen-Genom besteht aus durchschnittlich 3 000 Genen, die auf einem einzelnen zirkulären Chromosom mit einer Größe von 3,3 bis 3,5 Mb und einem GC-Gehalt von 38% organisiert sind (Cazalet et al., 2004; Chien et al., 2004). Die Legionellen sind in der

Familie der Legionallaceae eingeordnet, die nur die Gattung Legionella enthält. Mittlerweile wurden 50 verschiedene Spezies und 70 Serogruppen beschrieben (Alli et al., 2003; Wullings and van der Kooij, 2006). Zusätzlich gehören dieser Gattung noch mindestens 12 "Legionella Like Amoebal Pathogens" (LLAP) an (Adeleke et al., 2001; Wullings and van der Kooij, 2006).

Legionellen leben aerob und haben keinen fermentativen Metabolismus. Sie werden als chemoorganotroph bezeichnet und nutzen Aminosäuren als Kohlenstoffquelle (George et al., 1980). Eine mögliche Umsetzung von Kohlenhydraten wurde erst kürzlich diskutiert (Brüggemann et al., 2006b). Für das Wachstum von Legionellen sind die Aminosäure L-Cystein sowie eisenhaltige Salze essentiell. Die Aufnahme von Eisenionen ist für die intra- und extrazelluläre Vermehrung von Bedeutung und geschieht über mehrere sekretierte und zellassoziierte Proteine (Byrd and Horwitz, 2000). Dazu gehören die Methyltransferase IraA, das putative Eisentransportsystem IraB und das Cytochrom-Biogenesesystem CcmC, deren Gene durch den Transkriptionsfaktor Fur in Abhängigkeit von der Eisenkonzentration in der Wirtszelle reguliert sind (Hickey and Cianciotto, 1997; Viswanathan et al., 2000; Viswanathan et al., 2002). Der Eisenionen-Transporter FeoB ist besonders wichtig für das Wachstum bei niedrigen Eisenkonzentrationen in Wirtszellen und in der Säugetierlunge (Robey and Cianciotto, 2002). Darüber hinaus sekretieren Legionellen zur Bindung von Eisenionen das Sidephor Legiobactin (Liles et al., 2000). Die IbtAB-Gene sind in die Synthese und Sekretion dieses nicht-proteinösen, hochaffinen Eisen-Chelators involviert. Auch über die Produktion eines zweiten Siderophors wird derzeit spekuliert (Cianciotto, 2007).

In der Umwelt kommen Legionellen weltweit in Süßwasserhabitaten und zum Teil auch in feuchtem Erdreich vor (Fliermans *et al.*, 1981; Steele, 1989). Aufgrund ihrer besonderen Nährstoffanforderungen können sie nur als intrazelluläre Parasiten von freilebenden Protozoen überleben (Abb. 1-2) (Fields, 1996). So wurde ein Wachstum in 14 Amöben-Spezies, zwei zilientragenden Protozoen und einem Schleimpilz nachgewiesen, während eine Vermehrung außerhalb von Protozoen bisher nur in speziellen Labormedien beobachtet werden konnte (Fields *et al.*, 2002). Daneben bietet das Parasitieren in Protozoen einen weiteren wesentlichen Vorteil, den Schutz vor ungünstigen Umweltbedingungen. Beispielsweise konnte gezeigt werden, dass

Legionellen auf diese Weise pH-Änderungen, hohe Temperaturen und sogar Desinfektionsmaßnahmen wie Chlorierung überleben (Donlan *et al.*, 2005; Fliermans *et al.*, 1981; Katz and Hammel, 1987). Dabei können sie in einem physiologisch inaktiven Stadium (VBNC, "viable but non culturable") vorliegen, aus dem sie durch Passage in Amöben wieder aktiviert werden können (Garcia *et al.*, 2007; Steinert *et al.*, 1997).

1.2 Infektion des Menschen

Die Infektion des Menschen erfolgt durch Inhalation von Legionellen-haltigen Aerosolen oder Aspiration von kontaminiertem Wasser. Während in natürlichen Habitaten Legionellen in zu geringen Mengen vorkommen, um eine Gefahr für den Menschen darzustellen, bieten dagegen die vom Menschen geschaffenen Habitate ideale Voraussetzungen für eine starke Vermehrung sowie anschließende Verbreitung. Zu den künstlichen Habitaten gehören Warmwassersysteme sowie Kühl- und Belüftungssysteme (Fliermans et al., 1981; Nguyen et al., 2006). In diesen Systemen vermehren sie sich bei Temperaturen von 25 bis 42°C (Optimum bei 35°C) in Amöben, die überwiegend mit Biofilmen (Abb. 1-2) assoziiert sind (Fields et al., 2002; Katz and Hammel, 1987; Rogers et al., 1994). Diese bieten den Legionellen, wie in Kapitel 1.1 beschrieben, Schutz vor Temperaturschwankungen und Desinfektionsmaßnahmen. Beispielsweise können sie in Amöbenzysten bis zu 50 mg/l freies Chlor überleben (Kilvington and Price, 1990). In entsprechend höheren Dosen werden heute Monochloramin, Chlordioxid bzw. Kupfer-Silber-Ionisierung zur Dekontamination eingesetzt (Heffelfinger et al., 2003; Srinivasan et al., 2003; Stout and Yu, 2003). Auch die thermische Desinfektion mit Temperaturen von 60 bis 70°C bzw. die dauerhafte Anhebung der Warmwassertemperatur auf mindestens 55°C können bei bestimmten technischen Voraussetzungen zur Bekämpfung angewendet werden (Darelid et al., 2002; Zacheus and Martikainen, 1996).

Für die Entstehung Legionellen-haltiger Aerosole konnten bisher mehrere Quellen verantwortlich gemacht werden. Dazu gehören hauptsächlich Kühltürme und Luftbefeuchter von Klimaanlagen, Whirlpools und Duschbrausen (Breiman *et al.*,

1990; Breiman and Butler, 1998). Durch Einatmen dieser Aerosole bzw. durch Aspiration von kontaminiertem Wasser gelangen die Bakterien schließlich in die Lunge und können bei empfänglichen Personen eine Infektion (Legionellose) auslösen. Zur Risikogruppe gehören immunsupprimierte oder Transplantations-Patienten, Patienten mit lang andauernder Kortison-Behandlung, Alkoholiker, Raucher und Menschen mit einem hohen Lebensalter, wobei Männer häufiger als Frauen erkranken (Breiman and Butler, 1998; Marston *et al.*, 1994). Nach dem Krankheitsverlauf unterscheidet man zwischen zwei unterschiedlichen Formen, der Legionärskrankheit und dem Pontiac-Fieber.

Bei der Legionärskrankheit handelt es sich um eine schwere atypische Pneumonie (Abb. 1-2) (Fraser et al., 1977). Die Inkubationszeit beträgt zwei bis zehn Tage. Die Krankheit beginnt mit uncharakteristischen Symptomen wie allgemeinem Unwohlsein, Gliederschmerzen, Kopfschmerzen und unproduktivem Reizhusten. Innerhalb weniger Stunden kommt es zu Thoraxschmerzen, Schüttelfrost, hohem Fieber und teilweise auch Abdominalschmerzen mit Durchfällen und Erbrechen bzw. bis zu schwerer Benommenheit. Eine Übertragung von Mensch zu Mensch wurde bisher nicht beobachtet. Die Rekonvaleszenz ist meist langwierig. In einigen Fällen kann als Folge der Erkrankung eine eingeschränkte Lungenfunktion zurückbleiben oder eine Lungenfibrose entstehen (http://www.rki.de). Die Sterblichkeitsrate beträgt 5 bis 25%. Zur Therapie werden membrangängige Antibiotika wie Makrolidantibiotika (z. B. Azithromyzin, Clarithromyzin) und Fluorochinolone (z. B. Levofloxacin, Ciprofloxacin, Moxifloxacin) verabreicht (Mykietiuk et al., 2005). In Deutschland letzten Jahren jeweils ca. 500 Erkrankungen wurden in den gemeldet (http://www.rki.de). Allerdings bleibt die Krankheit oft unerkannt, weshalb die tatsächlichen Zahlen deutlich höher liegen dürften. Neuesten Schätzungen des Kompetenznetzwerkes für ambulant erworbene Pneumonien (CAPNETZ) zufolge könnten von jährlich ca. 500 000 auftretenden Pneumonien etwa 4,2% durch Legionellen verursacht werden. Mit ca. 21 000 Fällen wären dies etwa doppelt so viele wie bisher angenommen wurde. In den USA geht man bei jährlich berichteten ca. 1 000 Fällen von effektiv 8 000 bis 18 000 Fällen aus (Marston et al., 1997).

Abb. 1-2: L. pneumophila – vom natürlichen Reservoir zum humanen Wirt.
 A. TEM-Aufnahme eines Biofilms, die zeigt, dass sich Legionella intrazellulär in Protozoen vermehrt.

B. TEM-Aufnahme einer infizierten humanen Makrophagenzelle. 18 h nach Infektion hat sich *L. pneumophila* stark vermehrt und füllt fast das ganze Zytoplasma der Wirtszelle aus.

C. Computer-Tomographie eines Patienten mit Legionärskrankheit. Die Aufnahme zeigt beidseitig starke Schattierungen der Lunge, die mit Konsolidierungen des Lungengewebes (Flüssigkeitsansammlungen) durchsetzt sind.

(Modifiziert nach Atlas, 1999; Gao et al., 1998; Sakai et al., 2007)

Das **Pontiac-Fieber** ist eine selbst-limitierende Grippe-ähnliche Krankheit, die nicht zu einer Lungenentzündung führt (Glick *et al.*, 1978; Kaufmann *et al.*, 1981). Nach einer kurzen Inkubationszeit von 6 bis 48 h treten Symptome wie Unwohlsein, Kopfund Gliederschmerzen, Schüttelfrost, Husten und Fieber auf. Allerdings heilt die Krankheit ohne antibiotische Therapie nach zwei bis drei Tagen wieder ohne zurückbleibende Spätschäden ab. Todesfälle sind bis heute keine bekannt (http://www.rki.de). Die Ursache dieser zweiten Verlaufsform, die durch den gleichen Erreger ausgelöst werden kann, konnte noch nicht geklärt werden (Fields *et al.*, 2001).

In ca. 90% der berichteten Legionellose-Fälle in den USA ist die bekannteste Spezies von *Legionella, L. pneumophila*, der Erreger. Von den 16 Serogruppen von *L. pneumophila* werden 79% der Fälle von *L. pneumophila* Serogruppe 1 hervorgerufen. Generell wurde die Hälfte aller *Legionella*-Spezies als humaner Krankheitserreger nachgewiesen. Der Anteil dieser Gruppe an den berichteten Legionellose-Fällen fällt möglicherweise auch wegen der für diese Spezies fehlenden Diagnostika so gering aus (Fields *et al.*, 2002; Marston *et al.*, 1994). Als Diagnostik-Werkzeuge stehen heute mehrere Methoden zur Verfügung, die aber nur bei

Kombination die erforderliche Sensitivität und Spezifität in entsprechend kurzer Zeit erreichen. Beispielsweise können mit dem kulturellen Nachweis auf BCYE-Agar ("buffered charcoal yeast extract") respiratorische Proben wie Sputum, Bronchialsekret und bronchoalveoläre Lavage auf Legionellen untersucht werden, während der ELISA-Test zur Detektion von *Legionella*-Antigenen im Urin dient (Murdoch, 2003). Eine neue und für die Zukunft vielversprechende Entwicklung ist der "real-time PCR"-Nachweis von *Legionella*-DNA (Diederen *et al.*, 2007; Hayden *et al.*, 2001).

1.3 Aufnahme in Wirtszellen und Replikation

L. pneumophila besitzt ein duales Wirtssystem, d. h. die Bakterien können sich sowohl in freilebenden Protozoen als auch in Säugetierzellen vermehren. Für die Aufnahme in diese Wirtszellen wurden gleiche, aber zum Teil auch unterschiedliche Mechanismen identifiziert.

Die Aufnahme in Protozoen und Makrophagen erfolgt durch konventionelle oder durch "coiling" Phagozytose (Bozue and Johnson, 1996; Cirillo *et al.*, 1999; Horwitz, 1984). Im Gegensatz zur konventionellen Phagozytose umschließt bei der "coiling" Phagozytose ein einzelnes Pseudopodium mehrmals das Bakterium. Anschließend liegt das Bakterium in einem Phagosom aus mehreren Membranschichten vor, die sich innerhalb von Minuten zu einer einzelnen Membran auflösen (Horwitz, 1983). Dieser ungewöhnliche Aufnahmemechanismus scheint aber nicht ausschlaggebend für das intrazelluläre Überleben von *L. pneumophila* zu sein. Auch Hitze-abgetötete und avirulente *L. pneumophila* werden über "coiling" Phagozytose aufgenommen, werden jedoch anschließend an das endosomale Kompartiment weitergeleitet (Bozue and Johnson, 1996; Horwitz, 1987). Die "coiling" Phagozytose tritt jedoch nicht bei allen Protozoen auf und wurde nicht bei allen virulenten *L. pneumophila*-Spezies beobachtet (Abu Kwaik, 1996; Rechnitzer and Blom, 1989).

In Anwesenheit von Serum kann bei humanen Makrophagen die Phagozytose auch abhängig von den Komplementrezeptoren CR1 und CR3 erfolgen, die auf der Zelloberfläche lokalisiert sind (Payne and Horwitz, 1987). Zunächst binden die Komplementfaktoren C3b und C3bi an das "major outer membrane protein" (MOMP) auf der Oberfläche von *L. pneumophila*. Anschließend vermittelt der MOMP-C3-Komplex die *L. pneumophila*-Aufnahme über die Bindung an CR1- und CR3-Rezeptoren (Bellinger-Kawahara and Horwitz, 1990). Neben diesen Rezeptoren sind wahrscheinlich weitere noch nicht identifizierte Rezeptoren beteiligt, da spezifische Antikörper gegen CR1 und CR3 die *L. pneumophila*-Bindung nicht inhibieren können (Molmeret *et al.*, 2004b). MOMP könnte zudem eine Komplement-unabhängige Funktion haben, da es die Adhäsion an Makrophagen auch in Abwesenheit von Serum verstärkt (Krinos *et al.*, 1999).

Erfolgreiches intrazelluläres Wachstum wurde auch nach Komplement-unabhängiger Aufnahme beobachtet. Ein bakterielles Protein könnte hier für die Bindung an Kohlenhydrate auf der Zytoplasmamembran von Säugetierzellen verantwortlich sein (Gibson *et al.*, 1994). Beim Protozoenwirt *H. vermiformis* wird die Bindung und Invasion durch ein mit Galaktose/N-Acetylgalaktosamin inhibierbares 170-kDa Lektin auf der Protozoenoberfläche vermittelt (Harb *et al.*, 1998; Venkataraman *et al.*, 1997). Der in diesem Zusammenhang verantwortliche bakterielle Faktor wurde noch nicht identifiziert.

Darüber hinaus können bei den beschriebenen Aufnahmemechanismen noch weitere *L. pneumophila*-Faktoren zur Bindung an die Wirtszellen beitragen. Beispielsweise wurde für das 60-kDa Hitzeschockprotein Hsp60 eine Beteiligung an Bindung bzw. Aufnahme in humane Epithelzellen beobachtet (Garduno *et al.*, 1998b). Dabei induziert Hsp60 auch die Zytokinproduktion in Makrophagen (Retzlaff *et al.*, 1996). Des Weiteren ermöglichen Typ-IV-Pili die *L. pneumophila*-Adhäsion an Amöben und Säugetierzellen. Bei Pilus-Mutanten wurde eine deutliche Reduktion der Adhäsion an Amöben und Säugerwirtszellen beobachtet, die intrazelluläre Replikation war jedoch unverändert (Brüggemann *et al.*, 2006b; Rossier *et al.*, 2004; Stone and Abu Kwaik, 1998). Für die aus Flagellin (FlaA)-Untereinheiten aufgebaute Flagelle wurde auch eine Beteiligung an der Invasion von Wirtszellen beschrieben (Byrne and Swanson, 1998; Heuner *et al.*, 1995). In den letzten Jahren wurden außerdem immer wieder neue *L. pneumophila*-Genloci und -Gene identifiziert, die für die Aufnahme in Wirtszellen bedeutend sind. Zu diesen gehören die *enh* ("enhanced

entry")-Gene, das *rtxA* ("repeats in structural toxin")-Gen und das *lpnE* (*"L. pneumophila* entry")-Gen (Cirillo *et al.*, 2000; Cirillo *et al.*, 2001; Cirillo *et al.*, 2002; Newton *et al.*, 2006). Deren genaue Wirkmechanismen sind Gegenstand derzeitiger Forschung.

4. Modulation of host-cell gene expression

Abb. 1-3: Ablauf der intrazellulären Vermehrung von *L. pneumophila* in Makrophagen.

 Adhäsion an und Invasion in die Wirtszelle.
 Inhibition der Phagosom-Lysosom-Fusion.
 Rekrutierung von Organellen zum Phagosom und später Fusion mit dem rauhen endoplasmatischen Retikulum. Diese Umstrukturierungen münden schließlich in die Bildung der replikativen Vakuole, in der sich *L. pneumophila* repliziert. Während dieser Prozesse findet die Modulation der Genexpression (4.) und von Signaltransduktionsmechanismen (5.) der Wirtszelle statt.
 Freisetzung von flagellierten *L. pneumophila*.

(ER) endoplasmatisches Retikulum. (Modifiziert nach Brüggemann et al., 2006a)

Nach der Aufnahme in die Wirtszelle ist das *L. pneumophila*-Bakterium in einem membrangebundenen Phagosom eingeschlossen (Abb. 1-3), das nicht mit Lysosomen fusioniert (Horwitz, 1983). Auf diesem Weg entkommt *L. pneumophila* der Tötung durch Ansäuerung der Vakuole und Iysosomale Enzyme (Clemens and Horwitz, 1995; Horwitz and Maxfield, 1984). Bereits nach wenigen Minuten beginnt die Assoziation von zahlreichen Wirtsorganellen wie Mitochondrien,

Sekretionsvesikeln endoplasmatischem und rauhem Retikulum mit dem L. pneumophila-Phagosom (Abu Kwaik, 1996; Swanson and Isberg, 1995). Dieser Prozess mündet schließlich in die Fusion mit dem endoplasmatischen Retikulum der Wirtszelle (Robinson and Roy, 2006; Tilney et al., 2001). Der genaue Nutzen ist bisher unbekannt, jedoch wird der Import von Nährstoffen und Peptiden ins Phagosom vermutet. Etwa 3 bis 6 h nach der Aufnahme findet die Replikation von L. pneumophila statt (Shuman et al., 1998). Während der exponentiellen Wachstumsphase sind die Bakterien Natrium-resistent, nicht zytotoxisch, filamentös und bilden keine Flagellen (Swanson and Hammer, 2000). Da auch die Inhibition der Lysosom-Fusion eingeschränkt ist, beginnt die Ansäuerung der L. pneumophila-Phagosome durch Lysosomen, was zu diesem Zeitpunkt jedoch keinen Effekt mehr auf das Wachstum von L. pneumophila hat. Nach ca. 18 h haben zwischen 50 und 70% der Vakuolen lysosomale Eigenschaften (Sturgill-Koszycki and Swanson, 2000). Durch die starke Replikation nehmen die Phagolysosomen jetzt einen großen Teil des Wirtszellzytoplasmas ein (Abu Kwaik, 1996).

Am Ende der **replikativen Phase** führt *L. pneumophila* einen Phasenwechsel durch. Angetrieben durch die Verknappung von Nährstoffen treten sie in die transmissive Phase ein (Byrne and Swanson, 1998; Molofsky and Swanson, 2004). Die Bakterien sind jetzt Natrium-sensitiv, zytotoxisch, stäbchenförmig und stark beweglich, da sie Flagellen produzieren. Der biphasische Lebenszyklus von *L. pneumophila* ist durch verschiedene alternative Sigmafaktoren und post-transkriptionale Regulatoren komplex reguliert. In der replikativen Phase unterdrückt der globale Repressor CsrA die Expression der Virulenzmerkmale und fördert das Wachstum (Molofsky and Swanson, 2003). Gegen Ende der Phase tritt allmählich Aminosäuremangel auf, durch den die Guanosin 3',5'-Bispyrophosphat-Synthetase RelA aktiviert und folglich das ", second messenger"-Molekül Guanosin 3',5'-Bispyrophosphat (ppGpp) akkumuliert wird. Daraufhin werden das Zwei-Komponenten-System LetA/S, LetE und die Sigmafaktoren RpoS und FliA aktiviert, die zusammen die Expression der Virulenzmerkmale bewirken (Bachman and Swanson, 2001, 2004; Molofsky et al., 2005). Zusammenfassend besitzen die Legionellen in der transmissiven Phase die maximale Virulenz, die zunächst zum Verlassen des Phagolysosoms bzw. zur Lyse der Wirtszelle und dann zur Infektion neuer Wirtszellen führt.

Für die Freisetzung aus Amöben wurden bis heute verschiedene Mechanismen diskutiert. Beispielsweise könnte der physikalische und metabolische Stress, ausgelöst durch die hohe Anzahl L. pneumophila-Bakterien an im Wirtszellzytoplasma, zur Zerstörung der Wirtszelle beitragen (Alli et al., 2000). Des Weiteren können Toxine wie z. B. das hämolytische Legiolysin oder die Zink-Metalloprotease Msp ("major secretory protein", ProA1) die Wirtszellmembranen schädigen bzw. lysieren (Conlan et al., 1986; Wintermeyer et al., 1991). Auch eine Zytotoxizität wurde beschrieben. kontaktabhängige Nach Abschluss der intrazellulären Replikation besitzt L. pneumophila eine Poren-bildende Aktivität, die auf das Dot/Icm Typ-IV-Sekretionssystem zurückzuführen ist. Die Insertion von Poren in die Membranen der Wirtszelle führt innerhalb von 48 h zur Nekrosevermittelten Lyse und damit zur Freisetzung aller intrazellulärer Bakterien (Gao and Kwaik, 2000; Molmeret et al., 2004a).

Wahrscheinlich ist die Poren-bildende Aktivität der Hauptmechanismus für die Freisetzung aus Protozoen. Die Induktion von Apoptose konnte bei Protozoen nicht nachgewiesen werden (Gao and Kwaik, 2000). Bei Makrophagen und anderen Säugerzellen wurde dagegen eine zweistufige Zerstörung der Wirtszelle beobachtet. Zunächst induziert L. pneumophila während der frühen exponentiellen Wachstumsphase Apoptose (Gao and Abu Kwaik, 1999b; Hägele et al., 1998), die jedoch nicht sofort, sondern verzögert auftritt (Abu-Zant et al., 2007). Die Aktivierung erfolgt dabei ausschließlich über Caspase-3 und nicht über Caspase-1 und erfordert die Beteiligung des Dot/Icm Typ-IV-Sekretionssystems (Gao and Abu Kwaik, 1999a; s. Kap. 1.4; Santic et al., 2007). Die zweite Stufe findet am Ende der intrazellulären Replikation statt. Vergleichbar mit den Protozoen werden die intrazellulären Bakterien durch eine Nekrose-vermittelte Lyse, die durch die Poren-bildende Aktivität von L. pneumophila hervorgerufen wird, aus den Säugerzellen freigesetzt (Kirby et al., 1998; Molmeret et al., 2004a).

1.4 Sekretionssysteme und ihre Substrate (SSPs)

Die Sekretion von Proteinen ist der Schlüsselmechanismus, mit dem Gram-negative pathogene Bakterien die Bindung an Wirtszellen, die Aufnahme und die Modulation induzieren. Sekretierte der Wirtszelle Proteine können mit der äußeren Bakterienmembran assoziiert, als lösliches Protein im extrazellulären Raum oder direkt in die Wirtszelle injiziert vorliegen. Dafür notwendige Transportvorgänge werden durch spezielle Transportmaschinen bewerkstelligt. Eine Übersicht der bis heute beschriebenen Sekretionssysteme Gram-negativer Bakterien ist in Abb. 1-5 dargestellt.

Abb. 1-4: Schema der Sekretionssysteme Gram-negativer Bakterien.

Blaue Pfeile: Effektormoleküle, die durch das Typ-I-Sekretionssystem über die innere und äußere Membran transportiert werden. Violette Pfeile: Effektormoleküle, die den Tat-Sekretionsweg als Ziel haben. Gelbe Pfeile: Effektormoleküle, die über ein molekulares Chaperon wie SecB an einen Sekretionsweg gerichtet sind. Rote Pfeile: Effektormoleküle, die durch den Sec-Apparat über die innere Membran transloziert wurden, nachdem sie dorthin durch ein molekulares Chaperon wie SecB gelangt waren. Schwarze Pfeile: Effektormoleküle, die an den Sec-Sekretionsweg über das SRP ("signal recognition particle") gerichtet sind. **Grüne Pfeile**: Effektormoleküle, die durch das Typ-IV-Sekretionssystem über die innere und äußere Membran transloziert werden. Ähnlich dem Typ-II-System, geht man jedoch auch beim Typ-IV-System von einer zweistufigen Sekretion aus, der ein Sec-abhängiger Transport über die innere Membran (rote Pfeile) vorgeschaltet ist (Lammertyn and Anne, 2004). Der Nachweis einer Beteiligung des Tat-abhängigen Transports steht noch aus. **Pinke Pfeile**: Effektormoleküle, die vom Typ-III-Sekretionsapparat durch die innere und äußere Membran transportiert werden. (Cyto) Zytoplasma; (ABC) "ATP-binding cassette exporter"; (IM) innere Membran;

(Cyto) Zytoplasma; (ABC) "ATP-binding cassette exporter; (IM) innere Membran; (MFP) "membrane fusion protein"; (Peri) Periplasma; (OMP) "outer membrane channel-forming protein"; (OM) äußere Membran; (TU) Translokationseinheit. (Desvaux *et al.*, 2004)

Für die Virulenz von *L. pneumophila* sind besonders das Lsp Typ-II- und das Dot/Icm Typ-IV-Sekretionssystem von Bedeutung. Daneben besitzt *L. pneumophila* noch weitere Sekretionssysteme wie ein zweites Typ-IV-System Lvh, ein Typ-I-System Lss, sowie einen Tat- ("twin arginine translocation") und einen Sec- ("general secretory pathway") Sekretionsweg (Albert-Weissenberger *et al.*, 2007). Zur Vereinfachung wurde für die in dieser Arbeit untersuchten extrazellulären Proteine die generelle Bezeichnung "lösliche Sekretomproteine" oder "SSPs" ("soluble secretome proteins") eingeführt.

Das **Dot/Icm** ("defective organelle trafficking"/"intracellular multiplication") **Typ-IVB-Sekretionssystem** ist absolut essentiell für die *L. pneumophila*-Infektion. Der makromolekulare Komplex wird durch 25 Gene kodiert, die in zwei getrennten Regionen auf dem Chromosom lokalisiert sind (Gal-Mor *et al.*, 2002). Das System ist nicht für das intrazelluläre Wachstum als solches erforderlich. Jedoch spielt es eine entscheidende Rolle in der Einrichtung einer replikativen Vakuole, die vor der Fusion mit Lysosomen geschützt ist, und trägt zur intrazellulären Vermehrung bei (Andrews *et al.*, 1998; Segal and Shuman, 1999). Auch ein Zusammenhang mit der Apoptose von Wirtszellen wurde beoachtet. Obwohl das Dot/Icm-System in humanen Makrophagen schon früh Caspase-3 aktiviert, löst es eine starke anti-apoptotische Signal-Kaskade aus, so dass die Apoptose bis zu späten Phasen der Infektion verzögert ist (Abu-Zant *et al.*, 2007; Molmeret *et al.*, 2004c).

Allgemein werden die Effekte des Dot/Icm-Systems durch Effektormoleküle ausgelöst, die entweder in die extrazelluläre Umgebung entlassen oder direkt in das Wirtszellzytoplasma exportiert werden. Bis heute wurden einige Effektoren identifiziert. Nagai und Kollegen beschrieben mit RalF im Jahr 2002 das erste Dot/Icm-Substrat. RalF wird durch die Phagosomenmembran ins Zytoplasma transportiert und ist für die Rekrutierung der Wirts-GTPase ARF-1, ein Schlüsselregulator des ER-Vesikeltransports, zum Phagosom verantwortlich (Nagai et al., 2002). LidA, ein weiteres Dot/Icm-Substrat, ist an der Rekrutierung von Vesikeln während der Vakuolen-Biogenese und an der Aufrechterhaltung der Integrität der Bakterienzelle beteiligt (Conover et al., 2003). LepA und LepB sind in die nicht-lytische Freisetzung (Egress) von L. pneumophila aus Amöben nach der intrazellulären Vermehrung involviert (Chen et al., 2004). Eine größere Anzahl von Substraten, SidA-H, wurde mit Hilfe des Cre/LoxP-Protein-Translokations-Assays identifiziert. Dieser Assay basiert auf der Beobachtung, dass Proteine, die für die Säugerwirtszelle bestimmt sind, auch von einer Bakterienzelle zu einer anderen transferiert werden können (Luo and Isberg, 2004). Eines dieser Substrate, SidF, ist an der Inhibition der Apoptose-Aktivierung bei infizierten Makrophagenzellen beteiligt, um eine maximale Vermehrung der Bakterien zu gewährleisten (Banga et al., 2007). Liu und Kollegen zeigten kürzlich, dass SidJ für eine effiziente Rekrutierung von ER-Proteinen zum Phagosom notwendig ist (Liu and Luo, 2007). SidM/DrrA ist ein Guanin-Nukleotid-Austauschfaktor, der zusammen mit LidA die kleine Wirts-GTPase Rab1 (reguliert den ER-Golgi-Verkehr) zum Legionella-Phagosom rekrutiert (Machner and Isberg, 2006; Murata et al., 2006). Ein Paralog der SidE-Proteinfamilie, LaiA (SdeA), ist in die Adhäsion an und Invasion in humane Alveolarzellen involviert (Chang et al., 2005). Weitere Substrate sind die Vip ("vacuole protein sorting inhibitor")-Proteine. VipA ist ein "coiled-coil" Protein, VipD enthält eine Patatin-Domäne und VipF weist eine Acetyltransferase-Domäne auf. Diese Proteine inhibieren auf unterschiedliche Weise den lysosomalen Protein-Verkehr (Shohdy et al., 2005). Außerdem wurde für WipA, WipB, YlfA, YlfB und für sechs weitere Proteine, die Leucin-reiche Wiederholungen bzw. "coiled-coil"-Domänen enthalten, die Translokation über das Dot/Icm-System nachgewiesen (Campodonico et al., 2005; de Felipe et al., 2005; Ninio et al., 2005). Zusätzlich zur Modulation der Wirtszelle kann das Dot/Icm-System Plasmid-DNA zwischen Bakterien transferieren (Vogel et al., 1998).

Das Lsp ("Legionella secretion pathway") Typ-II-Sekretionssystem fördert die Infektion von Protozoen und humanen Alveolarzellen, die Vermehrung in der Säugerlunge und das Wachstum bei niedrigen Temperaturen (Rossier and Cianciotto, 2001; Rossier *et al.*, 2004; Soderberg *et al.*, 2004). Dieses Sekretionssystem basiert zum einen auf dem *pilBCD*-Locus und zum anderen auf den *lspFGHIJK*-Genen, die in fünf Loci auf dem Chromosom verteilt sind. An der Typ-II-Proteinsekretion sind die Prepilin-Peptidase PilD, die den Zusammenbau der Komponenten LspG, H, I, J und K zum Sekretionsapparat prozessiert, ein Sekretin der äußeren Membran LspD, die ATPase LspE und ein Protein der inneren Membran LspF beteiligt (Rossier and Cianciotto, 2001; Rossier *et al.*, 2004).

Als Substrate wurden verschiedene Enzyme wie z. B. eine Tartrat-resistente und eine Tartrat-sensitive saure Phosphatase, eine RNase, die Zink-Metalloprotease Msp, Mono-, Di- und Triacylglycerol-Lipasen, die Phospholipasen A und C, die Lysophospholipase A PlaA, das Homolog der Lysophospholipase A PlaC und eine p-Nitrophenyl-Phosphorylcholin-Hydrolase identifiziert (Aragon et al., 2000; Aragon et al., 2001; Banerji et al., 2005; Flieger et al., 2002; Hales and Shuman, 1999; Rossier and Cianciotto, 2001). Erst vor kurzem veröffentlichte die Arbeitsgruppe von N. Cianciotto eine Studie über das Typ-II-Sekretom. Mit Hilfe der 2-DE konnten sie 20 Proteine nachweisen, die Typ-II-abhängig sekretiert werden. Neben den schon bekannten Substraten wurden Aminopeptidasen, eine Chitinase, Proteine mit Homologien zu eukaryotischen Faktoren und einige Proteine mit bisher unbekannten Funktionen gefunden. Insgesamt stellten die Proteasen/Peptidasen den größten Anteil, was zur Beobachtung passt, dass Aminosäuren die Hauptquelle für Kohlenstoff und Energie sind. Die neu beschriebene Chitinase ChiA trägt bei der L. pneumophila-Infektion, im Gegensatz zur typischen Funktion von Chitinasen, zur Persistenz in der Säugerlunge bei. Den Autoren zufolge liegt die tatsächliche Zahl der Typ-II-Effektoren bei mindestens 25 und könnte bis zu 60 reichen (DebRoy et al., 2006b).

Das Lvh (*"Legionella* vir homologues") Typ-IVA-Sekretionssystem ist für das intrazelluläre Wachstum in Amöben und Makrophagen nicht erforderlich, jedoch an der Infektion von Wirtszellen bei 30°C beteiligt (Ridenour *et al.*, 2003; Segal *et al.*, 1999). Das Lvh-System wird durch 11 Gene kodiert, die auf einem Plasmid-ähnlichen Element liegen. Dieses kann entweder in das *L. pneumophila*-Chromosom integriert sein oder als *"multicopy"-Plasmid im Zytoplasma vorliegen* (Doleans-Jordheim *et al.*, 2006). Der höhere GC-Gehalt könnte auf den Erwerb durch horizontalen Gentransfer

hindeuten. So wie das Dot/Icm-System kann auch das Lvh-System DNA durch Konjugation transferieren. In diesem Zusammenhang wurde eine Interaktion von Lvh-Komponenten mit Dot/Icm-Komponenten beobachtet (Segal *et al.*, 1999).

Generell wird die Proteinsekretion bei Typ-II- und Typ-IV-Sekretionssystemen als zweistufig bezeichnet. Da Typ-II- und Typ-IV-Systeme ihre Proteinsubstrate nur über die äußere Membran der Bakterien transportieren können, ist ihnen ein Transportprozess vom Zytoplasma ins Periplasma vorgeschaltet. Diese Beförderung über die innere Membran wird bei L. pneumophila durch den Sec- bzw. den Tat-Sekretionsweg bewerkstelligt (Lammertyn and Anne, 2004). Während die Secabhängige Sekretion Proteine im ungefalteten Zustand transportiert, katalysiert die Tat-abhängige Sekretion die Translokation von gefalteten Proteinen. Für beide Sekretionswege sind spezifische Signalpeptide erforderlich, die nach dem Durchtritt der bakteriellen Zytoplasma-Membran durch eine membrangebunde Signalpeptidase LepB abgespalten werden (Lammertyn et al., 2004). Für die Tat-abhängige Sekretion konnte eine Beteiligung an der Biofilmbildung, am Wachstum bei niedrigen Eisenkonzentrationen und am Wachstum in Amöben und Makrophagen nachgewiesen werden (De Buck et al., 2005; Rossier and Cianciotto, 2005).

L. pneumophila enthält außerdem ein putatives Lss ("Legionella secretion system") Typ-I-Sekretionssystem (oft auch "ABC protein mediated exporters" genannt), das durch die IssXYZABD-Gene aufgebaut wird. Im Gegensatz zu Typ-II- und Typ-IV-Sekretionssystemen erfolgt bei der Typ-I-Sekretion der Transport von Proteinen in Schritt über beide Bakterienmembranen, d. h. ohne ein einzigen einem periplasmatisches Intermediat direkt vom Zytoplasma in den extrazellulären Raum. Der Iss-Locus kodiert ein Protein der "ATP binding casette" (ABC)-Proteinfamilie LssB und ein Protein der "membrane fusion protein" (MFP)-Familie LssD. Auch Gene für TolC-ähnliche Proteine, die Komponente der äußeren Membran im Typ-I-Sekretionssystem, wurden im L. pneumophila-Genom nachgewiesen. Das Lss Typ-I-Sekretionssystem könnte den Transport von Toxinen, degradierenden Enzymen oder Virulenzfaktoren vermitteln. in anderen Obwohl den meisten Typ-I-Sekretionssystemen die Gene, die die Zielproteine kodieren, "upstream" von den Genen für den ABC-Transporter liegen, konnte bis heute kein mögliches Substrat identifiziert werden (Jacobi and Heuner, 2003).

In der Literatur sind neben den oben aufgeführten Proteinen weitere Virulenzfaktoren beschrieben, die mit der äußeren Membran von *L. pneumophila* assoziiert sind, aber bisher keinem Sekretionsweg zugeordnet werden konnten. Ein großer Teil ist an der Bindung bzw. Aufnahme in Wirtszellen beteiligt, die bereits ausführlich in Kap. 1.3 beschrieben wurde.

Ein Beispiel ist das 28-kDa Porin "major outer membrane protein" (*ompS*), das die Aufnahme in Wirtszellen vermittelt (Bellinger-Kawahara and Horwitz, 1990; Hoffman *et al.*, 1992). Das 25-kDa "outer membrane protein" (*ompM*) fördert die Bindung von *L. pneumophila* an Makrophagen (Krinos *et al.*, 1999). Hsp60 (60-kDa Hitzeschock-Protein) und das 16-kDa "outer membrane protein" (*ligA*) sind ebenfalls an der Invasion von *L. pneumophila* beteiligt (Fettes *et al.*, 2000; Garduno *et al.*, 1998b).

Einer der Hauptvirulenzfaktoren von *L. pneumophila* ist der "macrophage infectivity potentiator" (Mip). Mip gehört zu den FK506-bindenden Proteinen und besitzt eine Peptidyl-Prolyl-*cis/trans*-Isomerase (PPIase) Aktivität. Mit Hilfe der Immunlokalisation wurde Mip auf der Oberfläche von *L. pneumophila* und bei der Infektion von *A. castellanii* auf Wirtsmembranen detektiert (Helbig *et al.*, 2001). Das Homodimer fördert eine *p*-Nitrophenyl-Phosphorylcholin-Hydrolase Aktivität im Kulturüberstand (DebRoy *et al.*, 2006a). Außerdem trägt es zur Verbreitung innerhalb des Lungengewebes und zur Ausbreitung in die Milz bei (Wagner *et al.*, 2007). Wagner und Kollegen zeigten, dass Mip an Kollagene der extrazellulären Matrix (Typ I, II, III, IV, V und VI) bindet und die Transmigration von *L. pneumophila* über eine Barriere aus Lungenepithelzellen und extrazellulärer Matrix ermöglicht. Die Beobachtung, dass dieser Vorgang von einer Serinprotease-Aktivität abhängig ist, unterstützt die Hypothese von einem Synergismus zwischen Mip und einer Serinprotease.

1.5 Äußere Membran-Vesikel (OMVs)

Neben der Sekretion von einzelnen Proteinen geben Gram-negative Bakterien auch makromolekulare Partikel mit einem Durchmesser von 50 bis zu 250 nm von der äußeren Membran in die Umgebung ab. Diese Partikel werden als äußere Membran-Vesikel ("outer membrane vesicles", OMVs) bezeichnet (Beveridge, 1999). Obwohl schon früh beobachtet wurde, dass auch die Membranoberfläche von

L. pneumophila derartige Vesikel abschnürt (Flesher *et al.*, 1979; Rodgers, 1979), wurde dieses Phänomen nicht weiter untersucht. In der vor kurzem erschienenen ersten Studie zeigten Fernandez-Moreira und Kollegen, dass *L. pneumophila*-OMVs alleine ausreichen, die Phagosom-Lysosom Fusion zu inhibieren. Die Inhibition korreliert mit Wachstums-abhängigen Modifikationen der Bakterienoberfläche wie des LPS (Lipopolysaccharid)-Profils und ist unabhängig von der Typ-IV-Sekretion (Fernandez-Moreira *et al.*, 2006).

OMVs entstehen durch Ausstülpung und Abschnürung aus der äußeren Membran von lebenden Bakterienzellen (Abb. 1-5). Sie sind kugelförmig und besitzen eine Bilayer-Membran. Entsprechend ihrer Herkunft bestehen OMVs aus Phospholipiden, Lipopolysaccharid (LPS) und Membranproteinen der äußeren Membran und schließen Periplasma im Lumen ein. Analog zur äußeren Membran der Bakterien kann die OMV-Zusammensetzung abhängig von den Umweltbedingungen variieren. Komponenten der inneren Membran und des Zytoplasmas sind nicht enthalten. Die genauen Mechanismen, die Gram-negative Bakterien für die OMV-Sekretion entwickelt haben, sind bis heute nicht bekannt (Kuehn and Kesty, 2005).

Abb. 1-5: Modell der OMV-Sekretion von Gram-negativen Bakterien.

OMVs bestehen aus Phospholipiden der äußeren Membran, LPS, äußere Membran-Proteine und periplasmatische Proteine. Proteine, die auf der Membranoberfläche der Bakterien adherieren (rot markiert), sind auch auf der OMV-Oberfläche assoziiert. Die Abschnürung der Vesikel könnte an Stellen erfolgen, wo die Verbindung zwischen Peptidoglykan und äußerer Membran gestört ist. (LPS) Lipopolysaccharid; (Pp) Periplasma; (OM) äußere Membran;(PG) Peptidoglykan; (IM) innere Membran; (Cyt) Zytoplasma. (Kuehn and Kesty, 2005) OMVs werden während des normalen Wachstums unter den verschiedensten Bedingungen gebildet. Beispielsweise wurde die Produktion auf festem und in flüssigem Medium, bei planktonischer Lebensweise oder in Biofilmen, bei Schwärmkulturen und in der natürlichen Umgebung nachgewiesen. Bei pathogenen Bakterien wurden OMVs in infiziertem Gewebe und außerdem in den Körperflüssigkeiten detektiert. Auch während des intrazellulären Wachstums wurde die Sekretion beobachtet (Beveridge, 1999; Kuehn and Kesty, 2005). Die maximale Produktionsrate tritt am Ende der logarithmischen Wachstumsphase auf (Gamazo and Moriyon, 1987; Hoekstra et al., 1976). Interessanterweise produzieren pathogene Bakterien mehr OMVs als ihre nichtpathogenen Verwandten (Wai et al., 1995). Zieht man in Betracht, dass bei Escherichia coli 0,2 – 0,5% der Proteine der äußeren Membran und des Periplasmas in OMVs verpackt werden, so stellt dies einen nicht unerheblichen Energieverlust für die Bakterienzelle dar (Kuehn and Kesty, 2005). Daher ist die Produktion von OMVs ohne Funktion eher unwahrscheinlich. Auch wurde mehrfach beschrieben, dass spezifische Proteine in OMVs angereichert oder davon ausgeschlossen sein können (Kato et al., 2002; Wai et al., 2003). Ein dafür erforderlicher Sortiermechanismus unterstützt die Hypothese der funktionalen OMV-Sekretion.

Allgemein betrachtet stellen OMVs eine Möglichkeit für Gram-negative Bakterien dar, mit pro- und eukaryotischen Zellen in ihrer Umgebung zu interagieren. Da durch OMVs eine komplexe Gruppe von Effektoren wie Proteine, Lipide und LPS in die extrazelluläre Umgebung sekretiert werden kann, wurde die Bezeichnung "Typ-VI-Sekretion" vorgeschlagen.

Die Interaktion mit Prokaryoten durch OMVs kann unterschiedlichen Zwecken dienen. Um sich gegenüber anderen Bakterien zu behaupten, z. B. während der Kolonisierung eines Wirts, können durch OMVs Proteasen, Toxine oder andere Effektoren übertragen werden. Li und Kollegen zeigten, dass durch Fusion die Peptidoglykan-Hydrolase transferiert wird, die fremde Gram-negative sowie Grampositive Bakterien lysiert. Die Fusion mit Bakterien der eigenen Spezies ist aufgrund der im Periplasma vorhandenen Regulationsmechanismen für diese Proteine nicht schädlich (Li *et al.*, 1998). OMVs können auch zur genetischen Diversität und zum Überleben beitragen. Beispielsweise transferieren *Pseudomonas aeruginosa* OMVs

Antibiotikaresistenz-Enzyme und können dadurch die Überlebenschancen von benachbarten Bakterien erhöhen (Ciofu *et al.*, 2000). OMVs können DNA im Lumen und auf ihrer Oberfläche tragen, die vom Chromosom, von Plasmiden und von Phagen stammt. In einigen Fällen ist OMV-assoziierte DNA sogar in der Lage, benachbarte Bakterien zu transformieren (Kolling and Matthews, 1999; Yaron *et al.*, 2000). Neben dem interbakteriellen Materialtransfer können OMVs außerdem zur Koaggregation von Bakterien beitragen, die die Biofilmbildung und Kolonisierung ermöglicht (Kuehn and Kesty, 2005). Des Weiteren sind OMVs an sich eine Komponente der Matrix von Gram-negativen oder gemischten bakteriellen Biofilmen (Schooling and Beveridge, 2006). Auch die Kommunikation und Koordination innerhalb einer Population ("quorum sensing") kann über sekretierte OMVs erfolgen. Mashburn und Whiteley zeigten in ihrer Studie, dass *P. aeruginosa* das Signalmolekül 2-Heptyl-3-hydroxy-4-Quinolon ("pseudomonas quinolone signal", PQS) in OMVs verpackt, die dazu dienen, dieses Molekül innerhalb einer Population zu verbreiten (Mashburn and Whiteley, 2005).

Bei der Interaktion mit eukaryotischen Zellen stehen hauptsächlich die Kolonisierung des Wirts und eine erfolgreiche Vermehrung im Vordergrund. OMVs von pathogenen Bakterien enthalten Adhäsine, Toxine, Proteasen und andere Virulenzfaktoren sowie LPS (Endotoxin), weshalb sie im übertragenen Sinn als "bakterielle Bomben" bezeichnet werden können.

Durch Oberflächenfaktoren wie äußere Membranproteine und Adhäsine, etc. wird die Bindung an eukaryotische Wirtszellen vermittelt und zum Teil auch die anschließende Internalisierung von OMVs induziert. Da die Zusammensetzung der OMV-Oberfläche generell ähnlich zur Bakterienmembran ist, sind auch die Mechanismen der Adhäsion und Internalisierung ähnlich zu denen der ganzen Bakterienzelle (Kuehn and Kesty, 2005). Außerdem können Toxine, die auf der OMV-Oberfläche lokalisiert sind, wie das Hitze-labile Enterotoxin (LT) von ETECs ("Enterotoxigenic" *E. coli*), durch Interaktion mit ihrem eukaryotischen Rezeptor die Bindung an die Wirtszelle veranlassen. Die Rezeptorbindung führt bei ETEC-OMVs dazu, dass durch "lipid raft"-vermittelte Endozytose intakte OMVs in die Wirtszelle aufgenommen werden (Kesty and Kuehn, 2004; Kesty *et al.*, 2004). Vergleichbare Vorgänge wurden für das Membran-assoziierte "vacuolating toxin" (VacA) von *Helicobacter pylori* berichtet (Fiocca *et al.*, 1999). Des Weiteren wurde beobachtet, dass die OMV-Bindung an Wirtszellen die Bindung der Bakterien an diese Zellen inhibieren oder verstärken kann. Die Inhibition wird durch Kompetition mit bakteriellen Rezeptoren auf der Wirtszelle verursacht, während für die Verstärkung assoziierte Effektoren verantwortlich sein könnten (Kuehn and Kesty, 2005).

OMVs können Toxine, Proteasen und andere Virulenzfaktoren, die im Lumen lokalisiert sind, vor dem Abbau durch extrazelluläre Wirtsproteasen schützen und können durch ihre geringe Größe Gewebe leichter ein- bzw. durchdringen als ganze Bakterienzellen. Beispielsweise konnte bei *Treponema denticola* nachgewiesen werden, dass sekretierte OMVs im Lumen eine Protease (Dentilisin) enthalten, die *T. denticola* die Penetration einer Epithelbarriere ermöglicht. Diese OMVs zerstören die "tight junctions" einer Epithelbarriere und penetrieren die Epithelschichten (Chi *et al.*, 2003). In einigen Fällen wurde berichtet, dass OMV-assoziierte Toxine stärker aktiv sind, als das Toxin alleine. Bei Cytolysin A (ClyA) von *E. coli* konnte ein veränderter Redoxstatus in OMVs im Vergleich zum Periplasma für die Aktivierung verantwortlich gemacht werden. Durch das reduzierende Milieu bildet ClyA in den OMVs aktive oligomere Porenstrukturen (Wai *et al.*, 2003).

Neben der bereits am Kapitelanfang beschriebenen Inhibition der Phagosom-Lysosom-Fusion durch L. pneumophila-OMVs können weitere Modulationen in der Wirtszelle hervorgerufen werden. Wie erwartet konnte die Modulation der Immunantwort durch OMVs gezeigt werden, da die enthaltenen Komponenten LPS, Lipoprotein und äußere Membranproteine sowie weitere Effektorproteine sowohl die angeborene als auch die erworbene Immunantwort aktivieren können (Kuehn and Kesty, 2005). Da sich die Zusammensetzung der Bakterienoberfläche während der Infektion verändert, ist eine Variation der Immunsystemstimulation durch OMVs wahrscheinlich. Bei H. pylori wurde eine Aktivierung des Entzündungsmediators IL-8 durch OMVs beobachtet, die unabhängig vom VacA-Toxin war (Ismail et al., 2003). Dies zeigt, dass auch OMVs, die keine Toxine enthalten, allein durch die übrigen Komponenten eine Entzündungsantwort und dadurch eine Schädigung des Wirts induzieren können. OMVs könnten ferner die Bakterien während der Kolonisierung vor der Erkennung durch das Immunsystem schützen. Bei Neisseria gonorrhoeae wurde vermutet, dass OMVs als Köder für das Immunsystem dienen, da sie gegen die Bakterien gerichtete Faktoren im Serum binden und abbauen (Pettit and Judd, 1992).

Unabhängig von der Interaktion mit Pro- und Eukaryoten können OMVs eine schützende Rolle für die Bakterienzelle spielen und zum Überleben beitragen. Beispielsweise werden beim Toluen-toleranten Stamm Pseudomonas putida Toluenmoleküle, die an der äußeren Bakterienmembran adherieren, durch Abschnürung von OMVs eliminiert (Kobayashi et al., 2000). Auch die Sekretion von nicht-verwertbaren Molekülen und Verbindungen, die während sich des Metabolismus oder anderer Vorgänge ansammeln können, über OMVs wäre denkbar. Vor kurzem wurde eine Studie publiziert, die diese Hypothese unterstützt. McBroom und Kollegen zeigten, dass die Menge an ausgeschütteten OMVs direkt mit dem Level an in der Zellhülle angehäuften Proteinen korreliert. Die OMV-Abschnürung kann hier dazu beitragen, selektiv unerwünschtes Material zu eliminieren. Deshalb kann die OMV-Produktion auch als Stressantwort der Zellhülle fungieren (McBroom and Kuehn, 2007).

1.6 Zielsetzung der Arbeit

Während der humanen Infektion durchdringen *Legionella pneumophila*-Bakterien die Alveolaroberfläche und breiten sich im Lungengewebe aus. Für diese Prozesse ist die Interaktion der Bakterien, sowohl extra- als auch intrazellulär, mit den Wirtszellen fundamental, die durch vielfältige sekretierte Effektoren bewerkstelligt wird. Für neue Strategien gegen *Legionella*-Infektionen ist daher ein tiefgreifendes Verständnis der Interaktionsprozesse und der beteiligten Effektoren die Vorraussetzung. In der vorliegenden Dissertation bildet deshalb die umfassende Charakterisierung des Sekretoms von *L. pneumophila* den Schwerpunkt.

Aus frühen Arbeiten der *Legionella*-Forschung war bekannt, dass die Bakterien neben löslichen Proteinen auch Membranvesikel (OMVs), die aus der äußeren Membran abgeschnürt werden, in den extrazellulären Raum abgeben. Deshalb sollte zunächst anhand verschiedener mikroskopischer Techniken die Produktion der Membranvesikel in unterschiedlichen Stadien des Lebenszyklus untersucht werden. Anschließend sollten die Proteome der beiden Sekretomfraktionen von *L. pneumophila*, der Fraktion der löslichen Proteine (SSPs) und der OMV-Fraktion, vollständig aufgeklärt werden. Nach Abschluss der Proteomcharakterisierung sollten die Funktionen der Sekretomfraktionen analysiert werden. Da über die genauen Funktionen, insbesondere der OMVs, zu Beginn dieser Arbeit wenig bekannt war, sollte hier ein breites Methodenspektrum zum Einsatz kommen. Dieses umfasst neben Standardtechniken verschiedene Enzymaktivitäts-Assays, Bioplex protein arrays zur Bestimmung von Zytokinaktivierungsprofilen, Alamar Blue-Assays für die Messung des Wirtszellwachstums und konfokale Lasermikroskopie für OMV-Bindestudien.

2 MATERIALIEN

2.1 Bakterienstämme und Wirtszellen

Tab. 2-1: Bakterienstämme

Stamm	Eigenschaften	Referenz
<i>L. pneumophila</i>	Restriktionsdefizientes Derivat von	Marra and Shuman,
Phil-1 JR32	<i>L. pneumophila</i> Phil-1 (Sm ^r)	1989
<i>L. pneumophila</i>	<i>mip</i> -negative Mutante von	E. Wintermeyer,
Phil-1 JR32-2	<i>L. p.</i> Phil-1 JR32 (Sm ^r , Km ^r)	Dissertation, 1994

Tab. 2-2: Wirtszellen

Organismus	Eigenschaften	Referenz
Dictyostelium discoideum AX2	Axenisiertes Umweltisolat des zellu- lären Schleimpilzes <i>D. discoideum</i>	M. Schleicher, LMU München
Acanthamoeba castellanii	amöboider Einzeller	R. Michel, BWK Koblenz
NCI-H292	Humane Typ II Alveolarepithelzellen	ATCC, CRL-1848
A549	Humane Typ II Alveolarepithelzellen	ATCC, CCL-185
2.2 Geräte

Tab. 2-3:	Verwendete	Geräte
-----------	------------	--------

Gerät	Typ/Hersteller
12-Kanal-Pipetten, 20 μl und 200 μl	Pipet-Lite LTS L12-20 und L12-200, Rainin
2-D-Gel Apparatur, komplett	Ettan DALT six, Amersham Biosciences Netzgerät E835, Consort Kryostat Multi Temp III, Amersham Biosciences
automatisierte Trypsin-Verdaustation	Ettan Spot Handling Workstation, GE Healthcare
Analysenwaage	JL-180, Chyo
Blotter (semi dry)	Perfect Blue Electroblotter Modell SEDEC M, Peqlab GmbH
Brutschrank (37°C)	Typ 5060 EC- CO ₂ Platteninkubator, Heraeus
ELISA-Reader (verschiedene Filter)	Multiskan ascent plate reader, Thermo Electron Corporation
Entwicklermaschine	Curix 60, Agfa
Fluoreszenzdetektor	Typhoon-Imager 8600, Amersham Biosciences
Gefrierschrank -20°C	Senator, Privileg
Gefrierschrank -80°C	Revco
Grobwaage	470 bzw. 572, Kern
Heizblock	Liebisch
Hybridisierungsofen	Mini-10, Hybaid
IEF	Ettan IPG Phor, Amersham Biosciences
Immobilisierte pH-Gradienten Streifen	non-linear 24 cm IPG strips pH 3 – 10, GE Healthcare
Klimaschrank (für 23°C)	ICP 400, Memmert

konfokales Lasermikroskop	LSM 510. Zeiss
Kühlschrank	Super Öko, Privilea
Kühlzentrifuge	Multifuge 1 L-R und Megafuge 1.0R, Biofuge 13R, Heraeus
Magnetrührer	Typ RMO, Gerhardt
Massenspektrometer (MALDI-TOF-MS)	Proteome-Analyzer 4700, Applied Biosystems
Mikroskop für Zellkultur (invers)	Leica
Mikrowelle	Micromat, AEG
Netzgeräte	E455, Consort EPS 200, Amersham Biosciences PowerPac 3000, Bio-Rad
Pipetten	Eppendorf Gilson Pipet-Lite LTS L-10, Rainin
PC	handelsüblich mit Software
pH-Meter	MultiLine P4, WTW
Schüttler, groß	HS501 digital, IKA
Schüttler, klein	KS125 basic, IKA
Schüttelinkubator	Certomat BS-1, B. Braun
SDS-Page-Kammer	Mini-PROTEAN 3 Cell, Bio-Rad
Sicherheitswerkbank	Microflow Biological Safety Cabinet, Nunc
Spectrophotometer	Ultrospec 3000 bzw. Ultrospec 3100 pro, Amersham Biosciences
Spot cutter	Proteome Works spot cutter, Bio-Rad
Vakuumpumpe	Laboport, KNF Neuberger
Tischzentrifuge	Centrifuge 5415C, Eppendorf
Transmissionselektronenmikroskop	A100 TEM, Zeiss
UZ und UZ-Rotor	SW40 bzw. SW41 und Ti45, Beckman

Vortexer

Zentrifuge

Mixomat, Boskamp

J2-HC mit JA-10-, JA-14, JA-20-Rotor, Beckman

2.3 Chemikalien und Antibiotika

Tab. 2-4: Speziell für 2-DE verwendete Chemikalien

Chemikalie	Hersteller
Ammoniumsulfat	Carl Roth, Karlsruhe
30% Acrylamidlösung	Carl Roth, Karlsruhe
APS	Applichem, Darmstadt
2% Bisacrylamid	Carl Roth, Karlsruhe
CHAPS	Applichem, Darmstadt
Coomassie Billiant Blue G (B-1131)	Sigma-Aldrich Chemie, Taufkirchen
DTT	Carl Roth, Karlsruhe
Dry strip cover fluid	GE Healthcare, Freiburg
Glycerin	Carl Roth, Karlsruhe
lodacetamid	Sigma-Aldrich Chemie, Taufkirchen
Pharmalyte pH 3 – 10	GE Healthcare, Freiburg
SDS	Carl Roth, Karlsruhe
TEMED	Carl Roth, Karlsruhe
Tris	Carl Roth, Karlsruhe
Thiourea	Carl Roth, Karlsruhe
Urea	Applichem, Darmstadt

Alle anderen benötigten Chemikalien wurden von folgenden Firmen bezogen: Applichem, Darmstadt; BD Biosciences, Heidelberg; Carl Roth, Karlsruhe; GE

Healthcare, Freiburg; Gerbu Biotechnik, Gaiberg; Sigma-Aldrich Chemie, Taufkirchen; VWR International, Nürnberg.

Alle Lösungen für 2-DE und andere Assays wurden mit Milli-Q Reinstwasser (Millipore) angesetzt. Für Medien wurde vollentsalztes Wasser verwendet.

Für die Selektion von Bakterien wurden den Agarplatten bzw. dem Flüssigmedium folgende Antibiotika (Tab. 2-5) zugesetzt:

Tab. 2-5:	Antibiotika-Konzentrationen
-----------	-----------------------------

Antibiotikum	Konzentration	Stocklösung; Lagerung
Kanamycin (Km)	10 µg/ml	10 mg/ml in H ₂ O; -20°C

2.4 Fertigkits

Tab. 2-6: Verwendete Ki

Kit	Hersteller
"ECL Western Blotting System"	GE Healthcare, Freiburg
"ECL Advance Western Blotting Detection Kit"	GE Healthcare, Freiburg
"Immobilon Western Chemiluminescent HRP Substrate"	Millipore, Schwalbach
"Image-iT FX Kit, Alexa Fluor 488"	Molecular Probes/Invitrogen, Karlsruhe
"Wheat germ agglutinin, Alexa Fluor 594 conjugate"	Molecular Probes/Invitrogen, Karlsruhe
"CyDye DIGE Fluor minimal labeling kit"	GE Healthcare, Freiburg
"Roti-Nanoquant"	Carl Roth, Karlsruhe

Alle Kits wurden nach den Anleitungen der Hersteller verwendet.

2.5 Antikörper

Tab. 2-7: Antikörper

Bezeichnung/Spezifität	Herkunft	Verdünnung	Referenz
Polyklonaler anti- <i>E. c.</i> DnaK ¹	Kaninchen	1:1000	M. Liebscher, Halle
Monoklonaler anti- <i>L. p.</i> LPS	Maus	1:3000 bzw. 1:100 (bei CLSM)	HyTest/Acris, Hiddenhausen
Monoklonaler anti- <i>L. p.</i> Mip (2D8)	Maus	1:700 – 1:1500	B. Bubert, Würzburg
Monoklonaler anti- <i>L. p.</i> OmpM ²	Maus	1:100 – 1:1000	Bio-Rad, München
anti-Maus IgG-HRP	Ziege	1:5000 - 1:20000	Dako, Hamburg
Alexa Fluor 488 anti- Maus IgG	Ziege	1:100 (bei CLSM)	Molecular Probes/ Invitrogen, Karlsruhe

¹Nach erfolgreichen Tests wurde der anti-*E. coli* DnaK Antikörper gegen *L. pneumophila*-Proben verwendet und z. T. auch mit Ziege anti-Maus-HRP Antiserum detektiert.

²Der anti-*L. p.* ompM Antikörper wurde als "MonoFluo *Legionella pneumophilia* IFA Test Kit" von Bio-Rad, München, bezogen.

2.6 Größenstandards

Abb. 2-1: Größenstandards für die Proteinanalyse.
A. Bandenmuster des SDS-PAGE-Standards "PageRuler Unstained Protein Ladder" (Fermentas, St. Leon-Rot)
B. Bandenmuster des Western Blot-Standards "PageRuler Prestained Protein Ladder" (Fermentas, St. Leon-Rot)

2.7 Zellkulturmedien und Plastikmaterial

Zellkulturmedien

PYG-Medium für A. castellanii		
1 g	Trinatriumcitrat	
20 g	Proteose Pepton	
1 g	Hefeextrakt	
10 ml	0,4 M MgSO ₄	
10 ml	0,25 M KH ₂ PO ₄	
10 ml	0,25 M Na ₂ HPO ₄	
8 ml	50 mM CaCl ₂	
ad 940 ml	H ₂ O	

Nach Autoklavieren folgendes steril zugeben:

50 ml 2 M Glukose (18 g in H_2O gelöst und autoklaviert.)

Nach Abkühlen sterilfiltriert folgendes zugeben:

10 ml 5 mM $(NH_4)_2 Fe^{II} (SO_4)_2 \times 6 H_2O$

HL5-Medium für D. discoideum

14,3 g	Proteose Pepton
· ·, • g	1 1010000 1 001011

7,15 g Hefeextrakt

15,4 g Glukose

- 1,28 g Na₂HPO₄
- 0,49 g KH₂PO₄
- ad 1 I H₂O

pH 7,5 mit 10 N KOH einstellen.

RPMI/FCS-Medium für humane Zelllinien A549 und NCI-H 292

500 ml R	PMI-1640 mit 2 mM	L-Glutamin
----------	-------------------	------------

10% (v/v) "FCS Gold"

Alle Medien, Zusätze und Lösungen für die humanen Zelllinien, einschließlich Trypsin/EDTA, wurden ausschließlich von PAA, Cölbe, bezogen.

Plastikmaterial

Die Plastikmaterialien für die Kultivierung und die Assays wurden von BD Falcon (Heidelberg), Greiner Bio-One (Frickenhausen) und Sarstedt (Nümbrecht) bezogen.

2.8 Puffer und Lösungen

Bezeichnung	Bestandteil	Endkonzentration/Menge	
10xPBS	NaCl KCl Na₂HPO₄ KH₂PO₄ H₂O	80 g 2 g 14,4 g 2,4 g ad 1 l	
	pH 7,4 nachstellen und autoklavieren.		
1 M Tris-HCI (pH 8,0)	Tris H ₂ O	121,14 g ad 1 l	
pH 8,0 mit HCI einstellen.			

Tab. 2-8: Zusammensetzung allgemeiner Puffer und Lösungen

3 METHODEN

3.1 Mikrobiologische Methoden

3.1.1 Anzucht auf Agarplatten

Für die Anzucht wurden die *L. pneumophila*-Stämme auf BCYE-Agarplatten ausgestrichen und bei 37°C und 5% CO_2 für 4 bis 5 Tage bis zur stationären Phase kultiviert. Anschließend wurden die Bakterien entweder direkt in Übernachtkulturen überimpft oder zur weiteren Verwendung mit 1xPBS von der Agarplatte abgeschwemmt und evtl. die optische Dichte (OD₆₀₀) gemessen bzw. eingestellt.

BCYE-Agar

5 g/l	ACES
10 g/l	Hefeextrakt (Bacto Yeast Extract, #212750, BD Difco)
ad 900 ml	H ₂ O
pH 6,9 mit 10) N KOH einstellen. Anschließend folgendes zugeben:
2 g/l	Aktivkohle
15 g/l	Agar
Nach Autok	lavieren auf ca. 40°C abkühlen lassen und sterilfiltriert folgendes
zugeben:	
0.4 ~//	L Cystein, goldet in 10 ml H C

0,4 g/l L-Cystein, gelöst in 10 ml H_2O

0,25 g/l Fe(NO₃)₃, gelöst in 10 ml H₂O (Eisen(III)nitrat)

evtl. Antibiotikum

3.1.2 Anzucht als Flüssigkultur in Schüttelkolben

Für die Fraktionierung von Flüssigkultur-Überständen wurden die *L. pneumophila*-Stämme im großen Maßstab vermehrt. Dazu wurde 350 ml YEB-Medium in 1 I-Erlenmeyerkolben vorgelegt, mit Bakterien einer Übernachtkultur angeimpft (Verdünnung 1:15) und bei 37°C unter Schütteln bis zur frühen stationären Phase (beim verwendeten Hefeextrakt: ca. 21 h Inkubation; OD₆₀₀ 1,8 bis 2,0; noch keine Pigmentierung der Suspension erkennbar) inkubiert.

YEB-Flüssigmedium

10 g	ACES
iug	ACES

10 g Hefeextrakt (Bacto Yeast Extract, #212750, BD Difco)

ad 1 I H₂O

pH 6,9 mit 10 N KOH einstellen.

0,4 g L-Cystein, gelöst in 10 ml H₂O

0,25 g $Fe_4(P_2O_7)_3$, gelöst in 10 ml H₂O (Eisen(III)pyrophosphat)

Anschließend mit Vakuum-Filtereinheiten (Millipore, Schwalbach) sterilfiltrieren.

3.1.3 Langzeitlagerung

Zur Lagerung über einen längeren Zeitraum wurden Glycerin-Stammkulturen angelegt. Dazu wurden die Bakterienstämme auf Agarplatten ausgestrichen und im Brutschrank mehrere Tage bei 37°C und 5% CO₂ inkubiert. Nach Abschwemmen der Bakterien mit ca. 3 ml 1xPBS wurden 800 bis 1000 µl von dieser Suspension in Cryo-Röhrchen mit 500 µl sterilem Glycerin gegeben und durch vorsichtiges Vortexen gemischt. Die Lagerung der fertigen Glycerin-Stammkulturen erfolgte bei -80°C.

3.2 Zellbiologische Methoden

3.2.1 Kultivierung der Amöben Acanthamoeba castellanii und Dictyostelium discoideum

A. castellanii wurde in 75 cm²-Zellkulturflaschen (BD Falcon) bei Raumtemperatur kultiviert. In Abständen von 3 Tagen wurden die Kulturen gesplittet. Dabei wurden die Amöben durch kräftiges Klopfen der Zellkulturflasche auf eine Tischkante vom Flaschenboden abgelöst und 200 μ l in eine neue Flasche mit 20 ml PYG-Medium überimpft. Für die Weiterverwendung im "Alamar Blue-Assay" (Kap. 3.2.3) wurde die

Zelldichte mit einer Fuchs-Rosenthal-Zählkammer bestimmt und auf die gewünschte Zellkonzentration eingestellt.

PYG-Medium für A. castellanii

20 g Proteose Pepton

1 g Hefeextrakt

10 ml 0,4 M MgSO₄

10 ml 0,25 M KH₂PO₄

10 ml 0,25 M Na₂HPO₄

8 ml 50 mM CaCl₂

ad 940 ml H₂O

Nach Autoklavieren folgendes steril zugeben:

50 ml 2 M Glukose (18 g in H₂O gelöst und autoklaviert.)

Nach Abkühlen sterilfiltriert folgendes zugeben:

10 ml 5 mM $(NH_4)_2 Fe^{II} (SO_4)_2 \times 6 H_2O$

Die Kultivierung der Amöbe *D. discoideum* war vergleichbar mit der für *A. castellanii*, allerdings wurde HL5 als Medium eingesetzt und bei 23°C inkubiert. Die Subkultivierung erfolgte alle 2 bis 3 Tage durch Animpfen von 20 ml frischem HL5-Medium mit 500 µl abgelöster Amöbensuspension. Diese Suspension war auch Ausgang für die Mikroskopie-Experimente (Kap. 3.4).

HL5-Medium für D. discoideum

- 14,3 g Proteose Pepton
- 7,15 g Hefeextrakt
- 15,4 g Glukose
- 1,28 g Na₂HPO₄
- 0,49 g KH₂PO₄
- ad 1 I H₂O

pH 7,5 mit 10 N KOH einstellen.

3.2.2 Kultivierung der humanen Zelllinien A549 und NCI-H292

Die Alveolarepithelzellinien A549 und NCI-H292 wurden in 75 cm² Zellkulturflaschen (BD Falcon) bei 37°C und 5% CO₂ kultiviert. Als Medium wurde 20 ml RPMI-1640 (RPMI/FCS) verwendet, das mit 2 mM L-Glutamin und 10% FCS versetzt war (s. Kap. 2.7). Die Zellen wurden alle 3 bis 4 Tage gesplittet. Dazu wurde das alte Medium abgezogen und mit 5 ml Trypsin/EDTA bei 37°C und 5% CO₂ inkubiert. Bei beginnender Ablösung der Zellen wurde das Trypsin durch weitere Zugabe von 5 ml RPMI/FCS verdünnt bzw. inaktiviert. Durch vorsichtiges Resuspendieren wurden die Zellen vom Boden abgespült und dann 1:20 verdünnt in neue Zellkulturflaschen verteilt. Für die Langzeitlagerung wurden die Zelllinien exakt nach den ATCC-Anleitungen für diese Zellen vorbereitet und dann in flüssigen Stickstoff überführt. Das Auftauen erfolgte ebenfalls nach dem ATCC-Protokoll (www.atcc.org).

3.2.3 "Alamar Blue-Assay"

Zur Analyse des Wachstums von Amöben und humanen Wirtszellen unter dem Einfluss von OMVs wurde der Alamar Blue-Assay angewendet (Ahmed *et al.*, 1994; McBride *et al.*, 2005). Diese Methode beruht auf der Reduktion des nicht-toxischen, wasserlöslichen Farbstoffs Alamar Blue (Biozol, Eching) durch die reduzierende Umgebung von proliferierenden Zellen, die in einer Farbänderung von blau (oxidierte Form) nach rot (reduzierte Form) resultiert. Die Stärke der Reduktion kann sehr einfach spektralphotometrisch bestimmt werden, indem man von der gemessenen Absorption bei 570 nm (reduziert) die Hintergrundabsorption bei 600 nm (oxidiert) subtrahiert.

Der Ablauf des Assays war zweigeteilt. Zunächst wurde ein Linearitätstest durchgeführt um die jeweilige Zellkonzentration für *A. castellanii* , A549 und NCI-H292 zu ermitteln, bei der das Wachstum über die komplette Inkubationszeit des Assays linear stattfand. Dafür wurden in je drei Vertiefungen einer 96-Loch Mikrotiterplatte ("flat bottom", Greiner Bio-One) 180 µl PYG-Medium bzw. RPMI/FCS (s. Kap. 2.7) vorgelegt und 20 µl einer Verdünnungsstufe (Verdünnungsreihe z. B. von 1 × 10^4 /ml bis 1 × 10^6 /ml) der entsprechenden Zellsuspension zugegeben. Als Blank wurden 200 µl PYG-Medium bzw. RPMI/FCS verwendet. Nach 24 h Inkubation bei RT bzw. 37° C und 5% CO₂ wurden pro Vertiefung 20 µl Alamar Blue zugegeben. Die Alamar Blue-Reduktion wurde dann nach 24, 48 und 72 h Inkubation durch Messung der Absorbtionen mit einem Multiskan ascent plate reader (Thermo) bestimmt und die Wachstumskurven der einzelnen Zellkonzentrationen mit der Software Excel (Microsoft) ausgewertet. Die Zelldichte, die lineares Wachstum zeigte, wurde im Anschluss für die Analyse des Wachstums verwendet.

Der Versuchsaufbau des Wachstumsassays war vergleichbar zum Linearitätstest. In je drei Vertiefungen wurden 180 µl PYG-Medium bzw. RPMI/FCS, das verschiedene Mengen OMVs enthielt, und anschließend 20 µl einer Suspension mit der zuvor bestimmten Zelldichte zugegeben. Als Blank wurden wieder 200 µl PYG-Medium bzw. RPMI/FCS eingesetzt. Zur Vermeidung von Fehlern durch Verdunstung wurden die äußeren Vertiefungen frei gelassen. Die Zugabe von 20 µl Alamar Blue erfolgte nach 24 h Inkubation. Die Reduktion von Alamar Blue wurde dann nach 24, 48 und 72 h Inkubation gemessen und wie oben beschrieben ausgewertet.

3.2.4 "Bioplex protein array"

Die Aktivierung der Sekretion von Zytokinen wurde mit dem "Bioplex Protein Array System" (Bio-Rad, München) quantifiziert. Diese Versuche wurden in Kooperation mit Dr. Bernd Schmeck an der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité Berlin, nach Herstellerangaben durchgeführt.

Konfluente A549 Zellen wurden 15 h mit 50 µg tp (total protein, s. Kap. 3.3.1) OMVder Inkubation wurden die Zellkultur-Überstände Fraktion stimuliert. Nach Zelltrümmer durch Zentrifugation entfernt. Die Zytokinabgenommen und Ausschüttung wurde anschließend mit dem Bioplex protein array bestimmt. Diese Methode der Verwendung Polystyren-Beads, basiert auf von die mit unterschiedlichen Verhältnissen von zwei Farbstoffen gefärbt sind, wodurch sie eindeutig unterschieden werden können. Für die Detektion der Zytokine sind an die jeweiligen Beads spezifische monoklonale Antikörper konjugiert. Nach der Reaktion mit der Probe werden gebundene Zytokine über einen zweiten Antikörper im Bioplex-Reader (Bio-Rad) quantifiziert. Diese Technik ermöglicht die simultane Messung mehrerer Zytokine (generell bis zu 100 verschiedene Proteine) in einer Probe und damit die Aufnahme eines "Zytokin-Profils". Der hier verwendete Array umfasste Beads, die für IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, IL-17, MCP-1, TNFα, IFNγ, GM-CSF und G-CSF spezifisch waren.

3.3 Proteinbiochemische Methoden

3.3.1 Fraktionierung von Flüssigkultur-Überständen

Zur Fraktionierung von L. pneumophila-Überständen wurden 350 ml-Flüssigkulturen eingesetzt. Um die maximale OMV-Menge zu erhalten, wurden die Kulturen bis zur frühen stationären Phase kultiviert (s. Kap. 1.5). Nach Pelletieren der Bakterien für 15 min bei 5000 x g und 4°C wurde der Überstand durch 0,22 µm Vakuum-Filtereinheiten (Millipore, Schwalbach) sterilfiltriert. Anschließend wurden die OMVs nach dem Isolationsprotokoll von Dr. Sun Nyunt Wai (Umeå University, Schweden) (Wai et al., 2003) über Ultrazentrifugation für 3 h bei 150000 x g und 4°C mit einem den 45 Ti Rotor (Beckman Coulter) abgetrennt. Die Überstände in Zentrifugenbechern wurden gesammelt und als SSP-Fraktion verwendet. Die erhaltenen Pellets wurden in 600 µl 0,02 M Tris-HCI (pH 8,0) resuspendiert und je nach Verwendungszweck noch mit einem 0,22 µm Spritzenvorsatzfilter (Millipore) sterilfiltriert. Schließlich wurde die Suspension mit Zentrifugen-Filtereinheiten (Millipore) aufkonzentriert und als OMV-Fraktion untersucht. Die Lagerung der fertigen Fraktionen erfolgte bei -20°C.

Um vergleichbare OMV-Mengen einer bzw. verschiedener Chargen untersuchen zu können, wurde die Gesamtproteinmenge pro µl (total protein, tp) von OMV-Suspensionen mit Roti-Nanoquant (Roth) bestimmt (Kap. 3.3.2).

3.3.2 Konzentrationsbestimmung von Proteinen mit Roti-Nanoquant

Proteinkonzentrationen von Bakterienüberständen, SSP- und OMV-Fraktionen und Proteinpräparationen für 2-DE wurden mit Roti-Nanoquant (Carl Roth, Karlsruhe) bestimmt. Roti-Nanoquant beruht auf einer Modifikation des Bradford Assays (Bradford, 1976), bei dem die Absorption einer Färbelösung bei 590 nm und 450 nm gemessen wird. Die Nachweisgrenze liegt bei diesem Assay bei 200 ng.

Zur Proteinbestimmung wurden 800 μ l Roti-Nanoquant Arbeitslösung (1:5 verdünnte 5xStocklösung) mit 200 μ l verdünnter Proteinlösung in einer Küvette gemischt und im Photometer gegen H₂O als Referenz gemessen. Der gemessene Quotient A₅₉₀/A₄₅₀ wurde mit Hilfe einer Eichgeradenfunktion, die zuvor mit Hilfe von Proteinstandards

(BSA) erstellt worden war, und unter Berücksichtigung des Verdünnungsfaktors wie folgt in die Proteinkonzentration [µg/µl] umgerechnet.

Proteinkonzentration $[\mu g/\mu I] = V \cdot ((A_{590}/A_{450} - 0.4475)/0.1132)$

mit:

V

 Verdünnungsfaktor = Kehrbruch des Probenvolumens [µl], das vor der Bestimmung in 200 µl verdünnt wurde.

Um eine möglichst exakte und vergleichbare Bestimmung der Proteinkonzentrationen verschiedener Proben zu gewährleisten wurden die Verdünnungen der Proteinproben so gewählt, dass der Quotient A₅₉₀/A₄₅₀ zwischen 0,6 und 0,8 lag. Jede Proteinbestimmung wurde zur Erhöhung der Genauigkeit zweifach durchgeführt und die Endkonzentrationen aus den Einzelmessungen gemittelt.

3.3.3 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

Mit dieser Methode können Proteine unter denaturierenden Bedingungen der Größe nach aufgetrennt werden (Laemmli, 1970). In dieser Arbeit wurden ausschließlich 12%ige SDS-Polyacrylamid-Trenngele verwendet. Die Elektrophorese wurde mit einer Mini-PROTEAN 3 Cell-Elektrophoresekammer (Bio-Rad, München) exakt nach dem Handbuch "Mini-PROTEAN 3 Cell Instruction Manual" durchgeführt.

Nach Zusammenbauen der Glasplatten wurde die Trenngel-Lösung bis ca. 2 bis 3 cm unterhalb der oberen Kante der Gelkammer eingegossen und mit Wasser vorsichtig überschichtet. Nach der Polymerisation wurde das Wasser entfernt, die Gelkammer bis zum oberen Rand mit Sammelgel aufgefüllt und ein geeigneter Kamm eingesetzt. Nach erfolgter Polymerisation wurde der Kamm entfernt, das Gel in der Elektrophoreseapparatur fixiert und diese mit 1xSDS-Laufpuffer befüllt.

Die Proteinproben wurden vor dem Auftrag mit reduzierendem 4xRoti-Load (Carl Roth, Karlsruhe) versetzt und zu ihrer vollständigen Denaturierung 5 min bei 100°C aufgekocht. Zusätzlich wurde in einer separaten Spur als Größenvergleich ein Proteinstandard (Kap. 2.6) mitgeführt. Die Auftrennung erfolgte bei einer Spannung von 170 bis 180 V. Nach Abschluß der Elektrophorese wurde das Gel entweder gefärbt oder im Westernblot analysiert.

Trenngel-Lösung (12%) für ein Minigel

- 3,2 ml Rotiphorese Gel 30 (30% AA/0,8% BAA; Carl Roth, Karlsruhe)
- 2,0 ml 1,5 M Tris-HCl (pH 8,8)
- 2,8 ml H₂O
- 80 µl 10% SDS
- 40 µl 10% APS
- 5 µl TEMED

Sammelgel-Lösung (5%) für zwei Minigele

1,33 ml	Rotiphorese Gel 30 (30% AA/0,8% BAA; Carl Roth, Karlsruhe)
2,0 ml	0,5 M Tris-HCI (pH 6,8)
4,37 ml	H ₂ O
80 µl	10% SDS
40 µl	10% APS
5 µl	TEMED

10xSDS-Laufpuffer

30 g	Tris
144 g	Glycin
10 g	SDS
ad 1 I	H ₂ O

3.3.4 Färbetechniken für SDS-PAGE-Gele

Coomassie-Färbung

Für die Coomassie-Färbung wurden die Gele auf einem Horizontalschüttler mindestens 30 min in Färbelösung gelegt und anschließend mehrere Stunden in Entfärber entfärbt.

Coomassie-Färbelösung 250 ml Eisessig 1000 ml MeOH (bzw. EtOH)
1250 ml H₂O
6,25 g Coomassie Brilliant Blue R250
Nach Lösen filtrieren.

Entfärber

1 Teil	Isopropanol
8 Teile	H ₂ O
1 Teil	Eisessig

Silber-Färbung

Geringere Proteinmengen wurden mit der zehnfach sensitiveren Silber-Färbung detektiert. Die Färbung wurde nach dem Protokoll in Tab. 3-1 durchgeführt.

Arbeitsschritt	Inkubationszeit	Lösung	Menge	
Fixierung	15 – 30 min	1xStock Formaldehyd (37%)	100 ml 50 µl	
Waschen	2 x 10 min	H ₂ O		
Sensitivierung	1 min	1xStock	100 ml	
Waschen	2 x 20 s	H ₂ O		
Silber-Färbung	15 – 20 min	10xStock H₂O Formaldehyd (37%)	10 ml ad 100 ml 75 μl	
Waschen	2 x 20 s	H ₂ O		
Entwicklung	ca. 4 – 5 min; nicht überfärben!	1xStock Formaldehyd (37%)	100 ml 50 µl	
Abstoppen	30 s	5xStock H ₂ O	20 ml ad 100 ml	
Waschen	30 s	H ₂ O		
Abstoppen	10 – 30 min	5xStock H₂O	20 ml ad 100 ml	

Tab. 3-1: Protokoll der Silber-Färbung für ein SDS-PAGE-Gel

Waschen	Mind. 60 min	H ₂ O
<u>1xFixierer</u>		
250 ml	Ethanol 96%	
60 ml	Eisessig	
ad 500 ml	H ₂ O	
1xSensitivier	er	
0,1 g	 Na ₂ S ₂ O ₃ × 5 H ₂ O	
ad 500 ml	H ₂ O	
Lagerung be	i 4°C.	
10xSilber-Fä	rber	
10 a		
ad 500 ml	H ₂ O	
au 500 mi	1120	
1xEntwickler		
15 g	Na ₂ CO ₃	
2 mg	Na ₂ S ₂ O ₃ × 5 H ₂ O	
ad 500 ml	H ₂ O	
1xStop		
25 g	Glycin	

ad 500 ml H_2O

Aufbewahrung von Gelen

Zur langfristigen Aufbewahrung wurden die gefärbten Gele für mindestens 20 min in 30% Methanol geschüttelt und dann eingebettet in Zellophanfolie an der Luft getrocknet.

3.3.5 Westernblot

Die Westernblot-Analyse umfasst den Transfer von Proteinen aus einem SDS-PAGE-Gel auf eine Membran in einem angelegten elektrischen Feld, die spezifische Detektion von Proteinen mit Hilfe von Antikörperreaktionen und die Visualisierung z. B. über die Chemilumineszenzreaktion.

Proteintransfer auf PVDF-Membranen

Vor dem Zusammenbauen wurden sechs Whatman-Papierstücke und die PVDF-Membran auf die Größe des Polyacrylamidgels zugeschnitten. Die PVDF-Membran wurde 30 s in 100% MeOH gelegt und dann 5 min in Towbin-Puffer äquilibriert. Die Whatmanpapiere wurden ebenfalls in Towbin-Puffer getränkt. Anschließend wurden der Reihe nach drei Whatmanpapiere, die äquilibrierte Membran, das SDS-PAGE-Gel und nochmal drei Whatmanpapiere auf die mit Wasser angefeuchtete Grafitplatte (Anode) des PerfectBlue Semi Dry Electroblotters (PeqLab) gestapelt. Dabei wurde darauf geachtet, dass die PVDF-Membran und das SDS-PAGE-Gel luftblasenfrei aufgelegt wurden. Überschüssiger Puffer und evtl. noch vorhandene kleine Luftblasen wurden durch vorsichtiges Ausrollen mit einer Pipette ausgedrückt. Das Gerät wurde dann durch Fixieren des Deckels mit der Edelstahlelektrode (Kathode) geschlossen. Die Proteine wurden 1 h konstant bei 68 mA (ca. 1,25 mA/cm²) auf die Membran transferiert. Beim gleichzeitigen Transfer mehrerer SDS-PAGE-Gele wurde die einzustellende Stromstärke über die gesamte Membranfläche und dem angegebenen Faktor errechnet.

Towbin-Puffer

3,0 g	Tris (25 mM)
14,4 g	Glycin (192 mM)
200 ml	Methanol (20%)
ad 1 I	H ₂ O

Immuno-Detektion und Chemilumineszenzreaktion

Nach dem Elektrotransfer wurde die PVDF-Membran zunächst mit 5% Milch bzw. 2% Blocking Agent in PBS/Tween bei 4°C über Nacht blockiert, um eine unspezifische Bindung von Antikörpern an die Membran zu reduzieren. Nach kurzem Waschen mit PBS/Tween wurde der primäre Antikörper, der an das gesuchte Protein bindet, in 1% Milch bzw. 2% Blocking Agent in PBS/Tween zugegeben und 1 h bei RT unter leichtem Schütteln inkubiert. Die Verdünnung des Antikörpers erfolgte wie in Kap. 2.5 angegeben. Danach wurden ungebundene Antikörper durch dreimal Waschen mit

PBS/Tween für je 10 min entfernt. Die Inkubation mit dem HRP-gekoppelten sekundären Antikörper (Dako) in PBS/Tween erfolgte wie oben 1 h bei RT. Abschließend wurde die Membran noch dreimal je 10 min in PBS/Tween gewaschen, um nicht gebundene Antikörper zu entfernen.

Die Visualisierung der gebundenen Antikörper erfolgte mit Hilfe der Chemilumineszenzreaktion. Je nach Menge des zu detektierenden Proteins wurde aus den in Kap. 2.4 aufgelisteten ein ECL ("enhanced chemiluminescence")-Kit mit geeigneter Sensitivität ausgewählt. Die Durchführung erfolgte nach der Anleitung des entsprechenden Kits. Zur Detektion der Proteinbanden wurden mit den Membranen Filme (Hyperfilm ECL; GE Healthcare) belichtet. Je nach Signalstärke wurden die Filme unterschiedlich lang exponiert und schließlich mit einer Entwicklermaschine (Agfa) entwickelt. Nach dem Entwickeln wurden die PVDF-Membranen nass in Frischhaltefolie eingepackt und bei 4°C gelagert.

PBS/Tween

100 ml	10xPBS
1 ml	Tween20 (0,1% Endkonzentration)
ad 1 I	H₂O

Strippen von Westernblot-Membranen

Durch Entfernen der gebundenen primären und sekundären Antikörper von einer Membran können diese für neue Antikörperreaktionen wiederverwendet werden. In der Regel kann dieser Prozess mehrmals mit einer Membran durchgeführt werden. Hierzu wurde die PVDF-Membran mit Strip-Puffer für 30 min bei 50°C und gelegentlichem Schütteln inkubiert. Anschließend wurde zweimal 10 min in PBS/Tween gewaschen und dann wieder wie oben beschrieben blockiert und mit Antikörpern detektiert.

Strip-Puffer

62,5 mM Tris-HCI (pH 7,6)

2% (w/v) SDS

ad 500 ml H_2O

Vor Gebrauch 100 mM 2-Mercaptoethanol zugeben (350 µl zu 50 ml Strip-Puffer).

3.3.6 Zymographie

Proteolytische Aktivitäten von Bakterienüberständen, SSP- und OMV-Fraktionen wurden mit SDS-Gelatine-Polyacrylamidgelen nach der modifizierten Methode von Heussen *et al.* (Heussen and Dowdle, 1980) detektiert. Diese Technik bietet den Vorteil, dass neben der Detektion der Proteolyse gleichzeitig über die sichtbaren Banden die Größen aktiver Proteasen abgeschätzt werden können.

Für die Herstellung von 12%igen SDS-PAGE-Gelen, die 0,2% (w/v) Gelatine (type B from bovine skin; Sigma) als Substrat enthielten, wurden zunächst 0,03 g Gelatine in 5 ml H₂O durch Erwärmen in der Mikrowelle (nicht aufkochen!) gelöst. Dann wurde die Trenngel-Lösung nach dem Protokoll in Kap. 3.3.3 für zwei Gele zusammengemischt, wobei jedoch statt H₂O die noch warme Gelatine-Lösung zugegeben wurde. Die nachfolgenden Arbeitsschritte einschließlich des Gießens des Sammelgels wurden analog zu herkömmlichen SDS-PAGE-Gelen (Kap. 3.3.3) ausgeführt.

Im Gegensatz zur normalen SDS-PAGE wurden die zu analysierenden Proben mit Probenpuffer ohne 2-Mercaptoethanol versetzt und nicht hitzedenaturiert. Die Proben wurden dann unter Standardbedingungen (Kap. 3.3.3) aufgetrennt. Anschließend wurden die Gele ausgebaut und SDS durch zweimaliges Waschen mit 2% Triton X-100 in 1xPBS für 30 min bei RT entfernt. Die Enzymreaktion fand in 1xPBS bei 37°C über Nacht statt. Schließlich wurden proteolytische Aktivitäten durch Coomassie-Färbung identifiziert.

3.3.7 Enzym-Assays

Zum quantitativen Vergleich von Enzymaktivitäten verschiedener Proben wurden in dieser Arbeit Flüssig-Assays angewendet. Alle Enzym-Assays wurden mit spezifisch modifizierten Substraten durchgeführt, die nach Spaltung die Reaktionslösung färben. Diese Färbung kann dann spektralphotometrisch gemessen werden. Protease-Aktivitäten wurden mit Hide powder azure blue (Sigma), wie von Howe und Iglewski (Howe and Iglewski, 1984) publiziert, bestimmt. Elastase-Aktivitäten wurden mit einem Assay detektiert, der auf der Methode von Kessler *et al.* (Kessler *et al.*, 1982) basiert und bei dem Elastin Congo red (Sigma) benutzt wird. Lipolytische Aktivitäten wurden mit *p*-Nitrophenylpalmitat (NPP) und *p*-Nitrophenylphosphoryl-

cholin (NPPC) (Sigma) untersucht, wie von Aragon *et al.* (Aragon *et al.*, 2000; Aragon *et al.*, 2002) beschrieben.

In allen Assays wurden Bakterienüberstände, SSP- und OMV-Fraktionen getestet. Die Durchführung der Assays verlief bei allen Substraten nach dem gleichen Prinzip. Im Reaktionsgefäß wurde das jeweilige Substrat im Reaktionspuffer vorgelegt. Dann wurde die Probe zugegeben und bei 37°C inkubiert. Nach der Inkubation wurde zur Klärung der Lösung kurz zentrifugiert und die Überstände in neue Reaktionsgefäße überführt. Die Messung der Färbung (bzw. der Absorption) erfolgte bei der entsprechenden Wellenlänge je nach Reaktionsgefäß mit einem Photometer (Amersham Biosciences) bzw. mit einem Multiskan ascent plate reader (Thermo). Da je nach verwendetem Substrat die Assays leicht variierten, sind die Versuchsdetails zur Vereinfachung tabellenförmig (Tab. 3-2) dargestellt. YEB-Medium, 0,02 M Tris-HCI (pH 8,0) und 1xPBS dienten als Negativkontrolle. Jede Probe wurde doppelt bestimmt. Die Durchschnittswerte und Standardabweichungen wurden aus mindestens drei unabhängigen Experimenten berechnet.

Substrat	Reaktions- gefäß	Reaktionspuffer	Inkubations- zeit bei 37°C	Wellen- länge
Hide powder azure blue	2 ml	0,1 M NaH₂PO₄ (pH 6) 25 mg/ml Substrat	1 h	595 nm
Elastin Congo red	96-Loch- Platte	10 mM NaH₂PO₄ (pH 7) 10 mg/ml Substrat	über Nacht	495 nm
<i>p</i> -Nitrophenyl- palmitat (NPP)	96-Loch- Platte	0,1 M Tris-HCl (pH 8) 0,2% (v/v) Triton X-100 2 mM Substrat	über Nacht	405 nm
<i>p</i> -Nitrophenyl- phosphoryl- cholin (NPPC)	96-Loch- Platte	0,1 M HEPES (pH 7,5) 10 mM CaCl ₂ 10 mM MnCl ₂	über Nacht	405 nm

 Tab. 3-2:
 Übersicht über Reaktionsbedingungen für die in dieser Arbeit durchgeführten Enzym-Assays

3.3.8 2-D SDS-Polyacrylamidgelelektrophorese (2-DE)

3.3.8.1 Proteinpräparation für 2-DE

Vor der 2-DE wurden die Sekretomfraktionen zunächst aufbereitet. Die Vesikel von OMV-Fraktion wurden jeweils 600 μΙ zuerst durch Inkubation mit der Detergenzlösung Triton X-100 (0,5% finale Konzentration) für 25 min auf Eis aufgelöst. Nach der Inkubation wurden unlösliche Bestandteile durch Zentrifugation für 10 min bei 12000 x g und 4°C pelletiert. Die erhaltenen Überstände wurden in neue Reaktionsgefäße überführt und ad 9 ml mit Milli-Q Reinstwasser (Millipore) verdünnt. Die folgenden Arbeitsschritte wurden sowohl für OMV- (9 ml Probenvolumen) als auch für SSP-Fraktionen (45 ml Probenvolumen) gleich ausgeführt. Die Proteine der beiden Fraktionen wurden durch Zugabe von eiskaltem TCA mit einer Endkonzentration von 10% über Nacht bei 4°C ausgefällt. Anschließend wurde 1 h bei mindestens 6000 x g und 4°C zentrifugiert und die resultierenden Proteinpellets fünfmal mit 96% Ethanol gewaschen. Um das TCA zu entfernen, wurden die Pellets dabei möglichst komplett resuspendiert. Nach dem letzten Waschschritt wurde der Ethanol vollständig abgenommen und das Pellet bei bei 4°C über Nacht oder kurz bei 37°C getrocknet. Schließlich wurden die Proteinpellets unter Schütteln in Probenpuffer gelöst und die Proteinkonzentrationen mit Roti-Nanoquant (Roth) bestimmt (Kap. 3.3.2). Bis zur 2-DE erfolgte die Lagerung bei -20°C.

Probenpuffer

8 M	Urea
2 M	Thiourea
4% (w/v)	CHAPS

3.3.8.2 Präparative 2-DE

Mit Hilfe der 2-DE können komplexe Proteingemische in zwei Dimensionen aufgetrennt werden; in der ersten Dimension erfolgt die Auftrennung nach ihrem isoelektrischen Punkt und in der zweiten Dimension nach ihrer molekularen Masse (Klose, 1975; O'Farrell, 1975). Durch die Einführung von immobilisierten pH-Gradienten-Streifen wurde die erste Dimension verbessert und eine hohe Auflösung und Reproduzierbarkeit erreicht (Blomberg *et al.*, 1995; Görg *et al.*, 1995). In der vorliegenden Arbeit wurde die 2-DE-Technik als präparative 2-DE angewendet, um die Proteine der Sekretomfraktionen aufzutrennen und anschließend ausschneiden und identifizieren zu können. Alle Arbeitsschritte, einschließlich Rehydratisierung, isoelektrische Fokussierung, Äquilibrierung und Elektrophorese der zweiten Dimension, wurden exakt nach dem Handbuch "2-D Electrophoresis using immobilized pH gradients - Principles and Methods" (GE Healthcare, Freiburg) durchgeführt. Deshalb werden nur kurz die wichtigsten Bedingungen wie Mengen und Lösungen beschrieben.

Für präparative 2-D Gele wurden je 500 µg von SSP- bzw. OMV-Proteinpräparationen eingesetzt. Die Proben wurden mit Rehydratisierungslösung auf ein Volumen von 405 µl eingestellt. Anschließend wurden 45 µl 10xDTT/PL in Rehydratisierungslösung zugegeben, gemischt und bei RT über Nacht in "non-linear 24 cm IPG strips pH 3 – 10" (GE Healthcare) rehydratisiert. Die isoelektrische Fokussierung in der Ettan IPG Phor (Amersham Biosciences), sowie die anschließende 12,5% SDS-PAGE der zweiten Dimension mit der Ettan Dalt six electrophoresis unit (Amersham Biosciences) wurden nach dem oben beschriebenen Handbuch durchgeführt.

Rehydratisierungslösung

7 M	Urea
2 M	Thiourea
4% (w/v)	CHAPS

10xDTT/PL in Rehydratisierungslösung

900 µl Rehydratisierungslösung

200 mM DTT

10% (v/v) Pharmalyte pH 3 – 10

Ein Körnchen Bromphenolblau zugeben und lösen.

3.3.8.3 "Silver Coomassie"-Färbung

Nach der Elektrophorese der zweiten Dimension wurden die präparativen Gele ausgebaut, kurz in H₂O gespült und 1 h fixiert. Es folgte ein Waschschritt mit H₂O für 5 min und eine weitere Fixierung für 1 h. Anschließend wurden die Gele 2 min in H₂O gewaschen und mindestens zwei Tage mit der "Silver Coomassie"-Färbelösung auf einem Horizontalschüttler gefärbt. Zur Entfernung von nicht gebundenem Coomassie-Farbstoff wurden die Gele mehrere Tage mit H₂O unter Schütteln entfärbt. Die Lagerung der Gele erfolgte eingeschweißt in Klarsichtfolien und bei 4°C.

Fixierer

40% (v/v)	Ethanol 96%
10 % (v/v)	Essigsäure 100%
ad 1 I	H₂O

"Silver Coomassie" (kolloidales Coomassie)

100 g/l	Ammoniumsulfat	
100 ml/l	Phosphorsäure 85%	
1,2 g/l	Coomassie Brilliant Blue G (B-1131) (Sigma-Aldrich Chemie)	
ad 250 ml	H ₂ O	
Nach einer Stunde Lösen folgendes zugeben:		
200 ml/l	Ethanol 96%	
ad 1 I	H ₂ O (ca. 550 ml)	

3.3.8.4 DIGE-Fluoreszenzfärbung

Für die vergleichende Analyse der Proteinspot-Muster von SSP- und OMV-Fraktionen wurden "DIGE (2-D Fluorescence Difference Gel Electrophoresis) minimal labelling"-Experimente durchgeführt. Bei dieser Methode werden zunächst zwei zu vergleichende Proteinproben getrennt voneinander mit den Fluoreszenzfarbstoffen Cy3- bzw. Cy5-CyDye Fluor (GE Healthcare) unterschiedlich markiert. Anschließend werden die Proben zusammengemischt und gemeinsam in einer 2-DE aufgetrennt.

METHODEN

Die Möglichkeit, unterschiedliche Proben im selben 2-D Gel zu analysieren, wird auch als "multiplexing" bezeichnet und limitiert dadurch die experimentelle Variation. Nach der 2-DE wird das Gel mit einem Typhoon Imager (Amersham Biosciences) eingescannt. Die beiden bei 635 nm bzw. 532 nm gescannten Bilder können getrennt betrachtet bzw. direkt ohne "warp"-Prozess übereinander gelegt und miteinander verglichen werden. Für die Markierungsreaktion wurden 50 µg SSP- bzw. 75 µg OMV-Proteinpräparation eingesetzt und exakt nach Herstellerangaben mit Cy3- bzw. Cy5-CyDye Fluor (GE Healthcare) markiert. Die folgende 2-DE wurde wie in der DIGE-Anleitung bzw. in Kap. 3.3.7.2 beschrieben lichtgeschützt durchgeführt.

3.3.8.5 Analyse der 2-DE-Daten

Die Bildanalyse von 2-D Gelen wurde mit der Software Delta 2-D, Version 3.2, (Decodon, Greifswald) durchgeführt. Gescannte Bilder von DIGE-Gelen wurden in einem Projekt hochgeladen und für den Vergleich des Proteinspot-Musters übereinander gelegt. Mit "Silver Coomassie" gefärbte präparative 2-D Gele wurden mit einem HP Scanjet 4300 (Hewlett-Packard) eingescannt. Anschließend wurden die Spots von je zwei unabhängigen, parallelen Gelen von SSP- bzw. OMV-Proteinpräparationen mit der Delta 2-D Software numeriert, um das Ausschneiden für die Proteinidentifikation zu erleichtern. Nach Abschluss der Identifikation wurden die Spotnummern gegen die "locus tags" der Genomsequenzierung bzw. Proteinnamen ausgetauscht. Anhand gleicher Proteinspots wurden die beiden analysierten Gele der SSP- bzw. OMV-Proteinpräparationen durch die "warping"-Funktion zur Deckung gebracht. Durch Fusion der einzelnen Spotbeschriftungssätze und der jeweiligen 2-D Gelbilder ("max. intensity"-Fusion) wurden schließlich 2-D Referenzkarten für die Proteome der SSP- und OMV-Fraktion erstellt.

3.3.8.6 Proteinidentifikation per Massenspektrometrie und in silico-Analyse

Proteine der präparativen 2-D Gele wurden massenspektrometrisch in Kooperation mit Dr. Harald Kusch und Dr. Susanne Engelmann am Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, identifiziert.

Zunächst wurden die 2-D Gele über Nacht gewässert um die Schrumpfung während des Ausschneidens zu minimieren. Das Ausschneiden der Proteinspots wurde an

einem Proteome Works spot cutter (Bio-Rad) durchgeführt. Dazu wurde das gewässerte Gel auf dem Lichttisch befestigt und mit der spot cutter-Kamera ein Bild aufgenommen. Anhand dieses Bildes wurden nun die Proteinspots ausgewählt. Anschließend wurden die Spots vollautomatisch ausgeschnitten und in eine 96-Loch Mikrotiterplatte überführt. Im nächsten Schritt folgte der automatisierte Trypsin-Verdau in einer Ettan Spot Handling Workstation (GE Healthcare). Dabei entsteht für jedes Protein ein charakteristisches Muster aus Peptidfragmenten mit unterschiedlicher Masse, das auch als "peptide mass fingerprint" bezeichnet wird. Die entstandenen Peptidlösungen wurden schließlich in der Workstation auf "MALDI targets" gespottet. Die MALDI-TOF (Matrix Assisted Laser Desorption/Ionization-Time Of Flight)-Massenspektrometrie (MS) der gespotteten Peptide wurde an einem Proteome-Analyzer 4700 (Applied Biosystems) ausgeführt. Dabei werden die auf der Matrix kokristallisierten Peptide durch einen Laserimpuls aus der Oberfläche herausgelöst und ionisiert. Die Ionen werden in einem elektrischen Feld beschleunigt und durchlaufen anschließend eine Flugstrecke. Da die Flugzeiten von der Masse abhängig sind, kann die Massebestimmung über die Messung der Flugzeit erfolgen. Den so erhaltenen Massespektren können dann entsprechende Peptide zugeordnet und über den Vergleich mit Datenbanken die Proteine identifiziert werden. Die hier gemessenen Spektren wurden mit MASCOT search engine (Matrix Science) analysiert und anhand der Genomdatenbank von L. pneumophila Philadelphia-1 (http://legionella.cu-genome.org/) (Chien et al., 2004) entsprechende Proteine identifiziert.

Identifizierte Proteine wurden nach den unter http://www.genome.ad.jp/kegg/ (Kanehisa et al., 2006) erhältlichen "KEGG pathway maps" (Karten für Reaktionswege von biologischen Prozessen) für L. pneumophila Philadelphia-1 sortiert. Proteine, die nicht in den Karten aufgeführt waren, wurden von Hand nach ihrer Funktion einsortiert bzw. gruppiert. Proteine, die Eukaryoten-ähnliche Domänen enthielten, mit Homologien zu bekannten Virulenz-/Pathogenitätsfaktoren und mit putativer oder bekannter Beteiligung an der Virulenz/Pathogenese von L. pneumophila, wurden in separate Klassen sortiert. Vorhersagen von Proteinlokalisationen wurden mit PA-SUB (Lu et al., 2004) und PSORTb bzw. mit dem PSORTdb-Datensatz für L. pneumophila Philadelphia-1 auf http://db.psort.org/ (Gardy et al., 2005; Rey et al., 2005) berechnet. PSORTb wurde auch zur

54

Berechnung von Signalpeptiden verwendet. Abschließend wurden die theoretischen Ergebnisse durch in der Literatur beschriebene Lokalisationen von Hand ergänzt.

3.4 Mikroskopische Methoden

3.4.1 Transmissionselektronenmikroskopie (TEM)

Dünnschnitt-TEM

Für die Infektion von Wirtszellen wurden 5 × 10⁵ Dictyostelien/ml auf runde Deckgläser in 24-Loch-Platten ausgesät und 3 h mit 100 µl 1 × 10⁶ Bakterien/ml inkubiert. Danach wurden die Deckgläser mit einer Pinzette aus den Vertiefungen genommen und 2 h bei RT in 0,5xKarnovsky-Lösung fixiert. Anschließend wurden die Deckgläser kurz mit 1xPBS gewaschen und mit 25% Glutaraldehyd überschichtet. Nach 15 min wurde mit 0,2 M Cacodylatpuffer abgespült und auf Eis 2% Osmiumtetroxid aufgetropft. Nach weiteren 15 min wurde das Osmiumtetroxid mit kaltem H₂O abgewaschen und die Zellen bei 4°C über Nacht in 0,2 M Cacodylatpuffer inkubiert. Am nächsten Tag wurden die Zellen durch eine aufsteigende Alkoholreihe mit 70, 80, 90, 96 und zweimal 100% Ethanol sowie zweimal Propylenoxid für jeweils 5 bis 10 min dehydriert. Die Deckgläser verblieben für mindestens 2 h bzw. über Nacht in einer 1:1-Mischung aus Propylenoxid und Epon, bevor sie für weitere 2 bis 4 h in reines Epon überführt wurden. Anschließend wurden Gelatinekapseln mit Epon gefüllt und vorsichtig auf die Zellseite der Deckgläser gepresst. Im Wärmeschrank polymerisierte das Epon bei 50 bis 60°C innerhalb von zwei Tagen aus. Die Deckgläser wurden mit flüssigem Stickstoff abgesprengt. Nach dem Schneiden und Kontrastieren wurden die fertigen Präparate mit einem Zeiss A100 Transmissionselektronenmikroskop untersucht.

1xKarnovsky-Lösung

1 g Paraformaldehyd in 12,5 ml H_2O unter Rühren bei ca. 60 – 70°C (nicht kochen) lösen.

Durch Zugabe von 1 bis 3 Tropfen 1 N NaOH wird die Lösung klar. Nach Abkühlen auf RT zugeben: 5 ml 25%ige Glutaraldehydlösung

ad 25 ml 0,2 M Cacodylatpuffer

(Die Lösung hat dann pH 7,2 und eine Endkonzentration von 4% Formaldehyd bzw. 5% Glutaraldehyd.)

0,5xKarnovsky-Lösung: Mit 0,1 M Cacodylatpuffer auf halbe Konzentration verdünnen.

Negativfärbung für TEM

Für die Negativfärbung wurden 5 µl einer Bakteriensuspension in 1xPBS bzw. einer OMV-Fraktion auf Netzen aus Kupfer (Provac), die mit einem dünnen Film aus 0,6% Polioform in Chloroform beschichtet waren, verteilt. Anschließend wurden die Netze dreimal mit Milli-Q Reinstwasser (Millipore), das zuvor mit einem 0,22 µm Spritzenvorsatzfilter (Millipore) filtriert worden war, gewaschen, indem sie vorsichtig mit einer Pinzette auf Wassertropfen getupft wurden. Zwischen den Waschschritten wurde die Flüssigkeit an den Kanten mit Whatman-Papier abgesaugt. Die Färbung erfolgte durch Zugabe von 5 µl einer wässrigen 0,5% Uranylacetat-Lösung für 1 bis 2 min. Danach wurde die Lösung mit Whatman-Papier abgenommen und die Netze kurz an der Luft getrocknet. Die Lagerung der fertigen Präparate erfolgte bei RT.

3.4.2 "Atomic force microscopy" (AFM)

Die AFM wurde in Kooperation mit Dr. Sun Nyunt Wai am Department of Molecular Biology, Umeå University (Schweden), durchgeführt. Dafür wurden OMV-Fraktionen und abgeschwemmte Bakteriensuspensionen mit 0,22 µm-filtriertem Milli-Q Reinstwasser (Millipore) verdünnt. Von diesen verdünnten Proben wurden 10 µl auf eine frisch abgezogene "Mica"-Oberfläche (Goodfellow) verteilt und 5 min bei Raumtemperatur inkubiert. Anschließend wurden die Proben vorsichtig mit filtriertem Milli-Q Reinstwasser gewaschen. Überschüssige Flüssigkeit wurde an den Kanten mit Whatman-Papier abgezogen. Danach wurden die Proben über Nacht im Exsikkator getrocknet. Die Aufnahmen erfolgten an einem Nanoscope IIIa Atomic Force Microscope (Digital Instruments) mit der Einstellung "tapping mode". Dabei wurden normale "silicon cantilevers" (Digital Instruments) benutzt.

3.4.3 Konfokale Lasermikroskopie (CLSM)

Zur Analyse der Bindung von OMVs an die Oberfläche von Alveolarepithelzellen wurde die CLSM eingesetzt. Dafür wurden zunächst runde Deckgläser in 24-Loch-Platten gegeben und mit einer Mischung aus Fibronectin und Poly-L-Lysin (in 1xPBS, jeweils 2 µg/ml finale Konzentration) bei 4°C über Nacht oder 2 h bei 37°C beschichtet. Dann wurden 2 × 10⁴ A549 Zellen auf die Deckgläser ausgesät und über Nacht inkubiert. Am nächsten Tag wurde das Medium gegen Serum-freies RPMI ausgetauscht und verschiedene Mengen der OMV-Fraktion zugegeben. Nach 8 h Inkubation bei 37°C wurden die Zellen mit PBS++ gewaschen, mit 4% Paraformaldehyd 20 min bei RT im Dunkeln fixiert und wieder mit PBS++ gewaschen. Falls gewünscht, konnten die Proben nach diesem Schritt bei 4°C über Nacht gelagert werden. Um unspezifische Bindungsstellen zu blockieren, wurden die fixierten Zellen mit Blockierungspuffer (10% FCS in PBS++) 5 min bei RT abgesättigt. Anschließend wurden die OMVs durch Zugabe des monoklonalen Antikörpers anti-L. p. LPS (verdünnt in Blockierungspuffer) und Inkubation für 45 min bei RT markiert. Die Proben wurden zweimal mit PBS++ gewaschen, wieder für 5 min blockiert und mit einer Mischung aus dem Detektionsantikörper Alexa Fluor 488 anti-Maus IgG und WGA-Alexa Fluor 594 (bindet an eukaryotische Membranen), verdünnt in Blockierungspuffer, für 45 min bei RT inkubiert. Nach dreimaligem Waschen mit PBS++ wurden die Deckgläser in Einbettmedium (Dako) auf Objektträger befestigt und mit Nagellack luftdicht versiegelt.

Die Auswertung der Proben erfolgte an einem Zeiss LSM 510 konfokalen Lasermikroskop. Um ein Ausbleichen zu verhindern wurden die Fluoreszenzsignale der doppelt gefärbten Proben mit Hilfe geeigneter Filter nacheinander aufgenommen. Im Anschluss wurden die Bilder mit Photoshop (Adobe Systems) digital verarbeitet und übereinander gelegt.

PBS++ 0,25 mM MgCl2 0,35 mM CaCl2 ad 1 l 1xPBS Autoklavieren.

4 ERGEBNISSE

4.1 Etablierung der Fraktionierung von *L. pneumophila*-Überständen

4.1.1 Untersuchung der Abhängigkeit der OMV-Produktion von Kultivierungsbedingungen und extra- bzw. intrazellulärem Wachstum

Obwohl sehr früh beobachtet worden war, dass die Membranoberfläche von L. pneumophila mit kleinen Vesikeln umgeben ist, wurde dieses Phänomen bis zum Beginn dieser Dissertation nicht weiter erforscht. Deshalb wurde zunächst grundsätzlich untersucht, ob die Produktion von OMVs ein genereller Mechanismus im Lebenszyklus von L. pneumophila oder eher ein Artefakt des Wachstums unter speziellen Laborbedingungen ist. Für diesen Zweck wurden, wie in Kap. 3.4 beschrieben, mikroskopische Studien durchgeführt. Die TEM- und AFM-Aufnahmen von Bakterien, die auf BCYE-Agarplatten gewachsen waren, zeigen Bakterienzellen in der logarithmischen und stationären Phase, die von zahlreichen OMVs umgeben sind (Abb. 4-1A und B). Die Abbildungen 4-1C und D sind repräsentative Dünnschnitt-TEM-Aufnahmen von extrazellulären logarithmischen und stationären L. pneumophila-Zellen aus Flüssigkulturen. In beiden Wachstumsphasen ist das Abschnüren einzelner OMVs von einer intakten Membranoberfläche sichtbar. Darüber hinaus weist die intakte Memran darauf hin, dass OMVs kein Produkt einer bakteriellen Zelllyse sind. Des Weiteren wurden D. discoideum-Wirtszellen mit L. pneumophila infiziert und Dünnschnitt-Präparate hergestellt. Die TEM dieser Proben (Abb. 4-1E) beweist, dass auch Bakterien, die intrazellulär in einem L. pneumophila-spezifischen Phagosom **OMVs** vorliegen, von der Membranoberfläche sekretieren. Die Sekretion von OMVs innerhalb eines Wirts-Phagosoms stimmt zudem mit der Beobachtung der Studie von Fernandez-Moreira und Kollegen überein, dass L. pneumophila-OMVs die Phagosom-Lysosom-Fusion inhibieren (Fernandez-Moreira et al., 2006). Mit Hilfe der AFM konnte der Durchmesser von *L. pneumophila*-OMVs bestimmt werden (Abb. 4-1F). Dieser liegt zwischen 100 und 200 nm.

Abb. 4-1: *L. pneumophila* sekretiert OMVs während intra- und extrazellulärer Bedingungen. A und B. Die OMV-Sekretion von *L. pneumophila*, die auf festem Nährmedium gewachsen waren (BCYE-Agar), wurde durch TEM nach Negativfärbung (A) und durch AFM (B) untersucht. Balken = 0,5 μm. C und D. Das Abschnüren von OMVs während logarithmischer (C) und stationärer Phase (D) in Flüssigmedium wurde mit Hilfe der Dünnschnitt-TEM beobachtet. Pfeile zeigen die "Knospung" von OMVs auf der Membranoberfläche. Balken = $0.5 \mu m$ (C) und $0.2 \mu m$ (D). E. Die Produktion von OMVs bei intrazellulären *L. pneumophila*. Die Dünnschnitt-

TEM-Aufnahme zeigt ein *Legionella*-spezifisches Phagosom von einer infizierten *Dictyostelium discoideum*-Wirtszelle. Die Pfeile markieren Stellen auf der *L. pneumophila*-Membran, an denen OMVs gebildet werden. Balken = 0,2 μm. F und G. OMVs wurden nach dem entwickelten Fraktionierungsprotokoll aus Flüssigkulturen isoliert und durch TEM (Negativfärbung) (F) und AFM (G) visualisiert. Balken = 0,2 μm.

4.1.2 Mikroskopische Validierung des Fraktionierungsprotokolls

Nachdem überprüft worden war, dass auch unter Laborbedingungen OMVs sekretiert werden (Kap. 4.1.1), wurde in Kooperation mit Dr. Sun Nyunt Wai (Umeå University, Schweden) ein Fraktionierungsprotokoll für *L. pneumophila*-Überstände entwickelt. Dieses umfasste im Wesentlichen die vollständige Entfernung der Bakterien aus der Flüssigkultur, die Auftrennung des Überstands in lösliche Protein-Fraktion und OMVs und die anschließende Probenaufarbeitung für entsprechende Experimente (Abb. 4-2; s. Kap. 3.3.1).

Die Abwesenheit von bakteriellen Zelltrümmern und anderen Strukturen wie Flagellen in isolierten OMV-Fraktionen bestätigte, dass das etablierte Fraktionierungsprotokoll erfolgreich war. Die Mikroskopie-Aufnahmen (Abb. 4-1F, G) zeigen vielfach kleine kugelförmige Vesikel, die teilweise auch zusammengelagert bzw. fusioniert vorliegen.

 Abb. 4-2: Schematisierte Darstellung des entwickelten Fraktionierungsprotokolls für L. pneumophila-Überstände.
 Erhaltene Fraktionen wurden anschließend je nach Verwendung aufgearbeitet, z. B. durch TCA-Fällung bei der Proteinpräparation für die 2-DE.
 (SSPs) lösliche Sekretomproteine; (OMVs) äußere Membranvesikel.

4.1.3 SDS-PAGE und Westernblot-Analyse der Sekretomfraktionen

Für eine einfache visuelle Untersuchung der Zusammensetzung von *L. pneumophila*-Überstands- bzw. Gesamtzellproben wurde die SDS-PAGE mit anschließender Silberfärbung durchgeführt. Der Vorteil dieser Färbetechnik liegt darin, dass neben Proteinen auch evtl. vorhandenes LPS, ein Bestandteil der äußeren Membran von Gram-negativen Bakterien, sichtbar gemacht werden kann. Im Vergleich zur Gesamtzellprobe in Spur 1 von Abb. 4-3A sind bei OMVs (Spur 2) nur wenige Proteinbanden vorhanden. Jedoch fallen bei der OMV-Probe die Bereiche zwischen 17 und 24 kDa und um 33 kDa auf, die sehr viele dunkelbraun gefärbte Banden mit geringen Masseunterschieden enthalten. Diese Banden sind nicht auf Proteine, sondern auf O-Antigen-Polysaccharide zurückzuführen, die Bestandteile des LPS sind. Die SSP-Fraktion in Spur 3 zeigt, wie erwartet, keine Banden in diesen Bereichen. Verglichen mit der OMV-Fraktion sind hier allerdings mehr Proteinbanden enthalten.

Die Westernblot-Analyse (Abb. 4-3B) mit Antikörpern gegen die äußeren Membrankomponenten OmpM, Mip und LPS und gegen das Zytoplasmaprotein DnaK wurde anfangs dazu verwendet, die Herkunft von OMVs nachzuweisen. Die anti-OmpM und anti-LPS Antikörper detektierten entsprechende Banden in der OMV-Fraktion (Spur 2), wobei sich die LPS-Detektion über die komplette Spur, mit Schwerpunkt bei ca. 35 bis 45 kDa, erstreckte. Mip konnte mit dem anti-Mip Antikörper in der Gesamtzell-Fraktion (Bande bei 25 kDa in Spur 1), nicht aber in OMVs nachgewiesen werden. Der gegen das zytoplasmatische DnaK gerichtete Antikörper zeigte wie erwartet nur eine 70 kDa-Bande bei der Gesamtzell-Fraktion (Spur 1). Da jedoch die Nachweisgrenze von einzelnen Protein-Banden im Westernblot bei ca. 10 ng liegt und Proteine durch geringe Expression teilweise in kleineren Mengen vorliegen können, wurde der Nachweis als vorläufig betrachtet. Eine präzise Charakterisierung wurde anhand der in dieser Arbeit durchgeführten wesentlich sensitiveren MALDI-TOF-Analyse (Kap. 4.2.2) erreicht.

Abb. 4-3: SDS-PAGE und Westernblot-Analyse der *L. pneumophila* OMV- und SSP-Fraktion.

A. *L. pneumophila*-Sekretomfraktionen wurden mit SDS-PAGE und anschließender Silberfärbung analysiert. Spur 1, Gesamtzelllysat (WC); 2, OMV-Fraktion (OMV); 3, SSP-Fraktion (SSP); 4, Kulturüberstand vor der Fraktionierung (SN).

B. Im Westernblot wurde die OMV-Fraktion auf die äußeren Membrankomponenten OmpM, Mip und LPS getestet. Das zytoplasmatische DnaK konnte wie erwartet nicht nachgewiesen werden. Spur 1, Gesamtzelllysat (WC); 2, OMV-Fraktion (OMV); 3, rekombinantes DnaK als Kontrolle (DnaK).

4.1.4 Zusammenfassung

Mit Hilfe mikroskopischer Techniken konnte in der vorliegenden Arbeit gezeigt werden, dass die Produktion von OMVs bei *L. pneumophila* kein Artefakt von Laborbedingungen ist. Die OMV-Produktion findet bei extrazellulärem Wachstum und intrazellulärer Infektion, sowie während logarithmischer und stationärer Wachstumsphase statt.

Für die weitere Untersuchung der zwei resultierenden *L. pneumophila*-Sekretomfraktionen OMV und SSP wurde ein Fraktionierungsprotokoll etabliert. Die erfolgreiche Isolation von OMVs wurde anschließend über verschiedene mikroskopische Techniken bestätigt.

Die OMV-Fraktion ist durch Auftreten vieler O-Antigen-Polysaccharid-Banden, die Komponenten von LPS sind, gekennzeichnet. Im Gegensatz zur SSP-Fraktion sind bei OMVs weniger Proteinbanden sichtbar. In Westernblots sind in der OMV-Fraktion die äußeren Membran-Marker OmpM und LPS, nicht aber das zytoplasmatische DnaK nachweisbar. Das Oberflächenprotein Mip konnte in OMVs mit der Westernblot-Technik nicht detektiert werden.
4.2 Proteomanalyse der Sekretomfraktionen SSP und OMV

4.2.1 SSP- und OMV-Fraktionen sind spezifisch in ihrer Proteinzusammensetzung

Generell werden OMVs durch Abschnürung von der äußeren Bakterienmembran gebildet, während die SSPs durch Sekretionssysteme aus dem Zytoplasma über das Periplasma in den extrazellulären Raum transportiert werden. Um die Proteome dieser beiden Sekretomfraktionen zu vergleichen und Unterschiede in der Zusammensetzung zu charakterisieren, wurde die 2-D DIGE-Technik angewendet. Dazu wurden SSP- und OMV-Fraktionen von Flüssigkulturen in der frühen stationären Phase präpariert. Nach der Markierung der Proteinproben mit CyDye Fluor-Fluoreszenzfarbstoffen unterschiedlichen wie in Kap. 3.3.8.4 dargestellt, wurden anschließend die Proben zusammengemischt und über den pH-Bereich 3 – 10 aufgetrennt. Die gemeinsame Analyse in einem einzigen 2-D Gel eliminiert die sonst üblichen Variationen, die bei der Auftrennung in verschiedenen Gelen auftreten. Dieses "multiplexing" von Proben ist eine spezielle Eigenschaft der 2-D DIGE-Technik, die den Vergleich von unterschiedlichen Proben im selben 2-D Gel ermöglicht. Dadurch können Unterschiede sehr genau und zuverlässig detektiert werden. Nach der zweiten Dimension wurden die 2-D Gele mit dem Phosphoimager eingescannt und mit Hilfe der Delta 2-D Software ausgewertet. In Abb. 4-4 ist ein repräsentatives Falschfarben-Bild eines 2-D DIGE Gels dargestellt. Dieses Experiment zeigt sehr deutlich, dass nur wenige Proteine in beiden Fraktionen, SSP und OMV, vorkommen (gelbe Spots). Interessanterweise ist die Mehrzahl der Proteine spezifisch für die SSP- (grüne Spots) oder die OMV-Fraktion (rote Spots).

Abb. 4-4: L. pneumophila Sekretomfraktionen differieren in der Proteinzusammensetzung. Falschfarbenbild der Sekretomfraktionen SSP (grüner Kanal) und OMV (roter Kanal). Die Fraktionen wurden isoliert und durch 2-DE unter Verwendung von IPG-Streifen im pH-Bereich 3 – 10 aufgetrennt. Vor der Auftrennung wurden die Proteine der Fraktionen mit fluoreszierenden Cy3- bzw. Cy5-CyDye Fluor-Farbstoffen markiert. Proteine, die nur in einer Fraktion vorhanden sind, erscheinen grün oder rot. Gelbe Spots kennzeichnen Proteine, die mit beiden Fraktionen assoziiert sind.

4.2.2 Identifizierung der Proteome der SSP- und OMV-Fraktionen

Da die Proteome der Sekretomfraktionen SSP und OMV stärker unterschiedlich waren als erwartet, wurde bei beiden Sekretomfraktionen eine umfassende Proteom-Identifizierung durchgeführt. Die daraus resultierenden Proteomkarten konnten als Basis für weitergehende Untersuchungen verwendet werden. Dafür wurden SSPund OMV-Fraktionen von Flüssigkulturen in der frühen stationären Phase präpariert. Je 500 µg der SSP- bzw. OMV-Proben wurden in präparativen 2-D Gelen im gleichen pH-Bereich wie bei der 2-D DIGE-Technik, pH-Bereich 3 – 10, aufgetrennt. Nach der Färbung mit "Silver Coomassie" wurden alle sichtbaren Proteinspots aus den 2-D Gelen ausgeschnitten. Die Identifikation der Proteine erfolgte massenspektrometrisch in Kooperation mit Dr. Harald Kusch und Dr. Susanne Engelmann am Institut für Mikrobiologie der Ernst-Moritz-Arndt-Universität in Greifswald.

In Abb. 4-5 sind die Referenzkarten für die Proteome der Sekretomfraktionen SSP und OMV dargestellt. Im Ganzen wurden ca. 1000 Proteinspots ausgeschnitten und mit der MALDI-TOF-Massenspektrometrie analysiert. Die durchschnittlich 336 detektierten Proteinspots in der SSP-Fraktion repräsentieren insgesamt 148 unterschiedliche Proteine (Abb. 4-5A (1) – (4)). Außerdem wurden 74 verschiedene Proteine aus durchschnittlich 157 sichtbaren OMV-Proteinspots identifiziert (Abb. 4-5B). Einige Proteine waren auf mehr als einem Spot verteilt, was vermutlich auf Variationen im pl oder der Masse zurückzuführen ist. Teilweise lagen Proteine auch als Spotketten aneinander gereiht vor. Kombiniert man die Massenspektrometrie-Daten der einzelnen Fraktionen, so wurden 181 verschiedene Proteine im *L. pneumophila*-Überstand identifiziert. Diese sind unterteilt in 107 SSPs (59%) und 33 OMV-Proteine (18%). Nur 41 Proteine (23%) waren in beiden Fraktionen vorhanden. Die vollständige Liste mit detaillierten Daten für alle identifizierten Proteine ist im Anhang als Tab. A1 dargestellt.

identifizierten wurde Zur Bewertung der Proteine die Lokalisation von L. pneumophila-Proteinen anhand von zwei unabhängigen Programmen, PSORTb und PA-SUB, am PC berechnet. Zusätzlich wurden die theoretischen Ergebnisse mit früherer experimentell beobachteten Lokalisationen Forschungsarbeiten Beide Fraktionen enthalten extrazelluläre, abgeglichen. äußere Membran-, periplasmatische, innere Membran- und zytoplasmatische Proteine. Wie erwartet war die Mehrheit der detektierten periplasmatischen und äußere Membran-Proteine mit OMVs assoziiert, wohingegen die SSP-Fraktion eine größere Anzahl an extrazellulären Proteinen enthielt (Tab. A1). Insgesamt wurden nur 31 der 181 identifizierten Proteine (17%) durch beide Computerprogramme als zytoplasmatisch berechnet. Im Vergleich zu früheren Arbeiten über OMV-Proteome (Ferrari et al., 2006; Williams et al., 2007) ist dieser Prozentsatz gering und weist auf eine gute Qualität der analysierten Proben hin. Generell könnten die zytoplasmatischen bakterieller während Proteine auf Zelllyse oder Autolyse, die des Bakterienwachstums auftritt, beruhen (Tullius et al., 2001).

66

A(1)

A(2)

9

Ipg0187/lpg0194 lpg2220 Ipg2220 pepo lpg0194 pepo pepo metk a metk 0 lpg1583/lpg0244 lpg0187 pepo pepo pepo pyrC pyrC lpg0956 pg0194 metc/lpg0194 fadA/lpg0194 4 Pyrc Purc F lpg0956/lpg2843 com1 0 0 pepO Ipg0612/pyrC D Ipg0187/lpg0194 lpg2848 lpg0194 lpg0194 lpg0194 glyA3 lpg1558/lpg2843 ⊿ icmX lpg1558/lpg0956 A icd/gabT Ipg0194/metC lpg1379 acnA/lpg1351 lpg0956 pg1889 Ipg2848 lpg0194 mmsAlpg1351 mmsA pdA acni pgd194 b A glyA3A acnA/mmsA/lpg1351 g0264/lpg2277 1885 pg 1885 V pg1913 pg0502 fadA lpg1379 lpg1910/lpg2526/astB
 lpg0194
 fadA
 fadA lpg2848/hem lpg0422/Map/lpg2206 lpg1889 ⊿ rph lpg2276 AcnA lpg1351/mmsA ◄ lpg0497 Pipg0950/icmX acnA mmsA _ lpg1350/lpg2276 D lpg1156/lpg0194 v argD/lpg2588 argD/lpg2588 lpg2848 IpdA/Ipg1351 /serC/lpg0422 acnA lpg0950/lpg2665 Ipg2848 🗠 fadB fadB V V Ipg2314th Icd tpiA/lpg227 IpdA/Ipg1351 pgbsA aruDo acnA 0 lpg0497/lpg0194 0 Ipg0604/Map 4 lpg1351 lpg0264 lpg0422/Map 2951/lpg2814 Ipg0194/acnA lpg1558 g2848/xapA ر Vipg1351 lpg2526 pg1156 g0422 4/tpiA 000056 20 4 526 88 Σ

A(3)

Abb. 4-5: 2-D Proteomkarten der Sekretomfraktionen von *L. pneumophila*.

A. SSP-Fraktion. Zur besseren Übersicht ist die 2-D Referenzkarte in vier Sektionen aufgeteilt: (1) oben links (hohes M_r und niedriger pl), (2) oben rechts (hohes M_r und hoher pl), (3) unten links (niedriges M_r und niedriger pl) und (4) unten rechts (niedriges M_r und hoher pl).
B. OMV-Fraktion.

Isolierte Protein-Fraktionen wurden auf IPG-Streifen im pH-Bereich 3 – 10 fokussiert und durch die SDS-PAGE der zweiten Dimension aufgetrennt. Die Gele wurden mit "Silver Coomassie" gefärbt. Die Proteine wurden nach dem Trypsin-Verdau und der Analyse der erhaltenen Peptide über MALDI-TOF-MS identifiziert. Die Gen-Bezeichnungen stammen von der "*L. pneumophila* Philadelphia-1 database" (http://legionella.cu-genome.org/). Alle MS-identifizierten Proteine sind in Tab. A1 im Anhang aufgeführt. Dort sind neben proteinspezifischen Daten wie Genannotierung, M_r und pl auch Angaben zur Funktion, Lokalisierung und zum verwendeten Sekretionssystem aufgelistet.

Beim Durchsuchen der Protein-Listen wurden zahlreiche Typ-II- und Typ-IV-Sekretionssubstrate entdeckt. Von 27 Typ-II-Substraten, die im letzten Jahr von DebRoy und Kollegen publiziert wurden (DebRoy et al., 2006b), konnten 22 in der vorliegenden Proteom-Analyse identifiziert werden (Tab. A1). Nur LvrE (lpg1244) und vier hypothetische Proteine wurden nicht detektiert. Folgerichtig waren auch alle nachgewiesenen Typ-II-Substrate in der SSP-Fraktion lokalisiert, ausgenommen Flagellin, das nur in OMVs gefunden wurde. Einige Typ-II-Substrate waren außerdem mit OMVs assoziiert. In ihrer Studie führten DebRoy und Kollegen außerdem eine in silico-Vorhersage für putative Typ-II-Substrate durch. Von diesen Proteinen wurden in der vorliegenden Arbeit 38 tatsächlich im Überstand detektiert. Des Weiteren wurden drei Typ-IV-Substrate LaiE (lpg2154), SdeD (LaiF, lpg2509) und WipC (lpg2206) in der OMV- bzw. der SSP-Fraktion gefunden (Brüggemann et al., 2006a; Ninio and Roy, 2007). Das Fehlen einiger berechneter oder bekannter extrazellulärer, äußerer Membran- und periplasmatischer Proteine sowie von Sekretionssubstraten könnte aus Problemen bei der Massenspektrometrie, z. B. bei Proteinen mit kleiner Masse oder bei geringer Menge, resultieren. Darüber hinaus könnten bestimmte Proteine unter den vorliegenden Wachstumsbedingungen wie künstliches Flüssigmedium, kein Wirtszellkontakt, usw. nicht exprimiert werden (Chen et al., 2007).

Mit Hilfe der KEGG GENES Datenbank und einer ausführlichen Literaturrecherche wurden dann identifizierte Proteine in 21 funktionale Gruppen sortiert, die in Tab. 4-1 dargestellt sind. Auffällig ist dabei, dass die meisten Einträge in den Klassen "Virulenz/Pathogenese", "Aminosäure-Metabolismus", "Kohlenhydrat-Metabolismus", "Energie-Metabolismus" sowie "Proteinfaltung, -sortierung und -abbau" zu finden sind.

Funktionale Gruppe	Einträge
Virulenz/Pathogenese	25
Aminosäure-Metabolismus	35
Kohlenhydrat-Metabolismus	21
Energie-Metabolismus	13
Proteinfaltung, -sortierung und -abbau	16
Lipid-Metabolismus	9
Nukleotid-Metabolismus	9
Peptidoglykan-Biosynthese	1
Metabolismus von Cofaktoren und Vitaminen	8
Limonen- und Pinen-Abbau	2
Xenobiotika-Abbau und -Metabolismus	5
Am Metabolismus beteiligt	5
Proteinexport	1
ABC Transporter - allgemein	2
Zellhülle	4
Zwei-Komponenten-System - allgemein	1
Flagellenaufbau	1
Stress	5
Andere Funktionen	19
Hypothetische Proteine	36
Unbekannt	5

Tab. 4-1: Funktionale Gruppen der identifizierten *L. pneumophila* Sekretomproteine

Im Hinblick auf die Fraktionszugehörigkeit der einzelnen Proteine fielen die Anteile an den Gruppen für die SSP-Fraktion im Vergleich zur OMV-Fraktion generell höher aus, mit Ausnahme der funktionalen Gruppe "Virulenz/Pathogenese". Diese Klasse enthält von den insgesamt 181 Überstandsproteinen 25 Proteine (14%). In der SSP-Fraktion sind nur 11% (17 von 148 SSP-Proteinen) vorhanden. Dagegen liegt der prozentuale Anteil der "Virulenz-/Pathogenese"-Proteine in der OMV-Fraktion mit 24% (18 von 74 OMV-Proteinen) mehr als doppelt so hoch, was auf eine spezifische Funktion während der *L. pneumophila*-Infektion hindeuten könnte. Darüber hinaus wurde der Virulenzfaktor Mip (lpg0791) nur in der OMV-Fraktion detektiert. Eine Übersicht der Proteine, die in der Klasse "Virulenz/Pathogenese" zusammengefasst sind, ist in Tab. 4-2 gezeigt.

Tab. 4-2: 2-DE-identifizierte Sekretomproteine mit putativer oder bestätigter Beteiligung an der Virulenz/Pathogenese von *L. pneumophila*

2-DE		- Identität (nach der		Genbezeichnung		nung		
ому	SSP	GI no.	Definition im Genom)	Phil	Lens	Paris	Charakteristika	Referenzen
+		52840695	IcmK (DotH)	lpg0450	lpl0492	lpp0516	Teil des "core transmembrane complex" (Typ-IV-Sekretionssystem)	(Vincent et al., 2006)
+		52841028	mip; macrophage infectivity potentiator (Mip)	lpg0791	lp10829	lpp0855	PPIase-Domäne; Protein-Protein- Interaktion; fördert Phospholipase C- Aktivität und Transmigration durch Lungenepithelizellen	(DebRoy <i>et al.</i> , 2006a; Wagner <i>et al.</i> , 2007)
+		52841206	ecto-ATP diphospho- hydrolase II	lpg0971	lpl1000	lpp1033	Eukaryoten-ähnlich; eukaryotisches GDA1/CD39 NTPDase-Familien Homolog; Phosphoesterase/ Phosphatase	(Sansom <i>et al.</i> , 2007)
+		52841570	fliC; flagellin	lpg1340	lpl1293	lpp1294	Flagellenaufbau; involviert in Freisetzung und Verbreitung; Typ-II-sekretiert	(DebRoy <i>et al.</i> , 2006b)
+		52841685	phospholipase C	lpg1455	lpl1573	lpp1411	Phospholipase; plcB-Homolog	(DebRoy et al., 2006b)
+		52842368	LaiE	lpg2154	lpl2082	lpp2093	SidE-Paralog; Typ-IV-sekretiert	(Brüggemann <i>et al.</i> , 2006a)
+		52842717	SdeD (LaiF)	lpg2509	lpl2431	lpp2577	SidE-Paralog; Typ-IV-sekretiert	(Brüggemann <i>et al.</i> , 2006a)
+		52843033	phospholipase/lecithinase/ hemolysin, lysophospho- lipase A	lpg2837	lpl2749	lpp2894	Phospholipase; plaC-Homolog	(Banerji <i>et al.</i> , 2005; DebRoy <i>et al.</i> , 2006b)
+	+	52840696	IcmE (DotG)	lpg0451	lp10493	lpp0517	Teil des "core transmembrane complex" (Typ-IV-Sekretionssystem)	(Vincent et al., 2006)
+	+	52840712	zinc metalloprotease (ProA1, Msp)	lpg0467	lpl0508	lpp0532	Protease/Peptidase; trägt zum Gewebeschaden <i>in vivo</i> bei; Typ-II- sekretiert	(DebRoy <i>et al.</i> , 2006b; Moffat <i>et al.</i> , 1994; Rossier <i>et al.</i> , 2004)
+	+	52840747	phosphatidylcholine hydro- lyzing phospholipase	lpg0502	lpl0541	lpp0565	Phospholipase; plcA-Homolog	(Aragon <i>et al.</i> , 2002; DebRoy <i>et al.</i> , 2006b)
+	+	52840925	htpB; Hsp60, 60K heat shock protein HtpB	lpg0688	lpl0724	lpp0743	Mitglied der GroEL Chaperonin-Familie; Protein-Protein- Interaktion; involviert in Adhärenz und Invasion	(Garduno <i>et al.</i> , 1998b)
+	+	52841350	chitinase (ChiA)	lpg1116	lpl1121	lpp1117	Glykosylase; fördert Persistenz in der Lunge; Typ-II-sekretiert	(DebRoy <i>et al.</i> , 2006b)
+	+	52841353	major acid phosphatase (Map)	lpg1119	lpl1124	lpp1120	Eukaryoten-ähnlich; Phosphoesterase/ Phosphatase; Typ-II-sekretiert	(DebRoy <i>et al.</i> , 2006b)
+	+	52842435	TPR repeat protein, protein-protein interaction	lpg2222	lpl2147	lpp2174	Eukaryoten-ähnlich; IpnE-Homolog (enhC- like)	(DebRoy <i>et al.</i> , 2006b)
+	+	52842850	sclB; tail fiber protein	lpg2644	lpl2569	lpp2697	Eukaryoten-ähnlich; Domänen-Homologie zu Typ VI Kollagen; Typ-II-sekretiert	(DebRoy <i>et al.</i> , 2006b; Sansom <i>et al.</i> , 2006)
+	+	52842895	IcmX (IcmY)	lpg2689	lpl2616	lpp2743	involviert in Typ-IV-Sekretion; erforderlich für Biogenese der replikativen Organelle; Typ-II-sekretiert	(DebRoy <i>et al.</i> , 2006b; Matthews and Roy, 2000)
+	+	52843192	legP; astacin protease	lpg2999	lpl2927	lpp3071	Eukaryoten-ähnlich; Astacin-Protease; Typ-II-sekretiert	(DebRoy <i>et al.</i> , 2006b; Shuman <i>et al.</i> , 2006)
	+	52840667	legY; amylase	lpg0422	lpl0465	lpp0489	Eukaryoten-ähnlich; Amylase	(Shuman <i>et al.</i> , 2006)
	+	52840945	IcmL-like	lpg0708	lpl0745	lpp0763	putativ involviert in Typ-IV-Sekretion	(Vincent et al., 2006)
	+	52841883	lasB; class 4 metallo- protease (elastase)	lpg1655	lpl1620	lpp1626	proA-ähnliche Protease/Peptidase	
	+	52842236	serine metalloprotease	lpg2019	lpl1996	lpp2001	Protease/Peptidase	
	+	52842419	WipC	lpg2206	lpl2131	lpp2157	IcmW-interagierendes Protein; Typ-IV- sekretiert	(Brüggemann <i>et al.</i> , 2006a)
	+	52842553	sseJ; lysophospholipase A	lpg2343	lpl2264	lpp2291	Phospholipase; plaA-Homolog; Typ-II- sekretiert	(DebRoy <i>et al.</i> , 2006b; Flieger <i>et al.</i> , 2002)
	+	52842794	legS1; lipid phospho- esterase	lpg2588	lpl2511	lpp2641	Eukaryoten-ähnlich; "signalling lipid"-ver- wandte Domäne; Lipid- Phosphoesterase	(Shuman <i>et al.</i> , 2006)

Symbole in der 2-DE-Spalte kennzeichnen die in dieser Arbeit detektierte Präsenz des Proteins in den Sekretomfraktionen OMV und/oder SSP. GI (GenInfo Identifier)-Nummern repräsentieren die Einträge in der "NCBI protein sequence database". Identitäten beziehen sich auf die Genom-Annotierung von *L. pneumophila* Philadelphia-1 (http://legionella.cu-genome.org/). Genbezeichnungen sind für die drei sequenzierten Stämme *L. pneumophila*

Philadelphia-1, Lens und Paris http://genolist.pasteur.fr/LegioList/) aufgelistet.

(http://legionella.cu-genome.org/ und

4.2.3 Zusammenfassung

2-D DIGE-Experimente zeigten sehr deutlich, dass nur ein Teil der Proteine in beiden Sekretomfraktionen vorliegt, während sehr viele Proteine spezifisch entweder der SSP- oder der OMV-Fraktion zugeordnet sind.

Anhand präparativer 2-D Gele und MALDI-TOF-Massenspektrometrie wurden die Proteome der *L. pneumophila*-Sekretomfraktionen SSP und OMV aufgeklärt. In der SSP-Fraktion wurden insgesamt 148 Proteine identifiziert. Die Zahl der Proteine, die mit OMVs assoziiert sind, lag bei 74. Nach Kombination dieser Daten wurden im *L. pneumophila*-Überstand insgesamt 181 unterschiedliche Proteine identifiziert, die in 107 SSPs (59%) und 33 OMV-Proteine (18%) unterteilt sind. Der kleine Anteil an Proteinen (41; 23%), die in beiden Fraktionen vorhanden waren, bestätigt die in DIGE-Experimenten beobachtete Spezifität.

Unter den identifizierten Sekretomproteinen waren auch 22 der 27 bis heute bekannten Typ-II-Substrate. Alle 22 waren folgerichtig in der SSP-Fraktion zu finden. Einige Typ-II-Substrate waren auch mit OMVs assoziiert. Darüber hinaus wurden 38 als putative Typ-II-Substrate beschriebene Proteine in dieser Arbeit tatsächlich im Überstand detektiert. Des Weiteren wurden drei Typ-IV-Substrate in der OMV- bzw. der SSP-Fraktion gefunden.

Beim Sortieren identifizierter Proteine in funktionale Gruppen war auffällig, dass für die SSP-Fraktion im Vergleich zur OMV-Fraktion die Anteile an den Gruppen generell höher ausfielen. Eine Ausnahme war die funktionale Gruppe "Virulenz/Pathogenese", die 25 der insgesamt 181 Überstandsproteine (14%) enthielt. Hier zeigte sich, dass die Mehrzahl der an der Virulenz/Pathogenese beteiligten Proteine nicht in der SSP-Fraktion (17; 11%) vorliegt, sondern mit OMVs (18; 24%) assoziiert ist. Zusammen mit der alleinigen Detektion des Virulenzfaktors Mip in der OMV-Fraktion könnte dies darauf hindeuten, dass *L. pneumophila* während der Infektion OMVs als Transporter für spezifische Virulenzfaktoren benutzt.

4.3 Untersuchungen zur Funktion der Sekretomfraktionen

4.3.1 Degradierende Enzymaktivitäten von SSP- und OMV-Fraktionen

Während der humanen Infektion durchdringen die *L. pneumophila*-Bakterien in den Alveolen den Surfactant-Oberflächenfilm und die Basallamina. Darüber hinaus zerstören sie Alveolarsepten und wandern in das Interstitium ein, um Wirtszellen zu erreichen und sich zu verbreiten. Für all diese Vorgänge sind degradierende Enzyme erforderlich, die diese Barrieren durchlässig machen. Um den Beitrag der SSP- bzw. der OMV-Fraktion zu überprüfen, wurden Assays angewendet, mit denen degradierende Enzymaktivitäten detektiert werden können. Da die Barrieren zum einen aus Surfactant, das selbst aus spezifischen Lipiden und Surfactant-Proteinen besteht, zum anderen aus extrazellulären Matrix-Proteinen aufgebaut sind (Dunsmore and Rannels, 1996; Goerke, 1998), wurden proteolytische und lipolytische Aktivitäten untersucht.

Proteolytische Aktivitäten von Gesamtzellprotein-Proben, Bakterienüberständen, SSP- und OMV-Fraktionen wurden zunächst mittels Zymographie detektiert. Der Vorteil dieser Methode liegt darin, dass neben der Enzymaktivität sofort die molekularen Massen der verantwortlichen Proteine mitbestimmt werden können. Dazu wurden die nicht denaturierten Proben mit 12%igen SDS-PAGE-Gelen aufgetrennt, die 0,2% Substrat enthielten. Als Substrat wurde hier Gelatine eingesetzt, das aus den extrazellulären Matrix-Proteinen Kollagen I, II und III besteht. Nach dem Gel-Lauf und dem Auswaschen von SDS fand die Enzymreaktion in 1xPBS bei 37°C über Nacht statt. Proteolytische Proteinbanden wurden durch Coomassie-Färbung identifiziert. Sind proteolytische Aktivitäten vorhanden, so erscheinen diese Banden im Gel durchsichtig. Bei den Überstandsproben SN OMV-(L. pneumophila-Kulturüberstand), und SSP-Fraktion traten starke proteolytische Aktivitäten bei ungefähr 38 bis 40 kDa auf (Abb. 4-6A). Diese Aktivität könnte durch die Zink-Metalloprotease ProA1 (Msp, lpg0467, berechnete molekulare Masse des reifen Proteins 37,8 kDa) hervorgerufen worden sein, die während der Proteomanalyse dieser Arbeit folgerichtig als eines der am meisten vorhandenen Überstandsproteine von *L. pneumophila* identifiziert wurde (s. Kap. 4.2). Des

Weiteren waren bei allen Proben schwache Banden mit hohen molekularen Massen (100 bis 200 kDa) zu beobachten. Diese könnten auf Aggregationen von Proteinen aufgrund der nicht-reduzierten Proben bei der Zymographie zurückzuführen sein.

Zum guantitativen Vergleich wurden proteolytische Enzymaktivitäten durch einen Flüssig-Assay mit Hide powder azure blue als Substrat bestimmt. Verschiedene Mengen von Bakterienüberständen und SSP- bzw. OMV-Fraktionen wurden bei 37°C mit dem Substrat inkubiert. Die Bestimmung der Aktivitäten erfolgte schließlich über die photometrische Messung der Reaktionslösung, da durch die Spaltung des Substrates die Lösung gefärbt wird. Im Balkendiagramm in Abb. 4-6B sind die Ergebnisse graphisch dargestellt. Bei allen Proben konnte eine Dosisabhängigkeit, d. h. ein Anstieg der Aktivität bei größerer Probenmenge, und damit eine spezifische Spaltung des Substrates beobachtet werden. Beide Sekretomfraktionen, SSP und OMV, zeigten proteolytische Aktivitäten. Vergleicht man die gemessenen Werte der Überstandsprobe mit der SSP-Fraktion, so stellt man fest, dass die Aktivität der SSP-Fraktion nur schwach reduziert ist, z. B. 6% bei den 500 µl-Proben. Dies deutet darauf hin, dass die Mehrzahl der Proteasen nicht mit OMVs assoziiert ist, sondern in der SSP-Fraktion vorliegt. Des Weiteren wurde auch Elastin Congo red als Substrat im Flüssig-Assay eingesetzt (Abb. 4-6C). Im Gegensatz zum synthetischen Hide powder azure blue basiert dieses Substrat auf Elastin, einem Protein der extrazellulären Matrix, und detektiert Elastase-spezifische proteolytische Aktivitäten. Die verwendeten Proben sowie die Versuchsdurchführung waren analog zum Hide powder azure blue. Bei allen getesteten Proben wurde eine Degradation des Elastins beobachtet. Vergleichbar zum Hide powder azure blue-Assay ist auch hier die Mehrzahl der Proteasen in der SSP-Fraktion lokalisiert und nur sehr geringe Aktivität mit OMVs assoziiert.

Abb. 4-6: *L. pneumophila* SSP- und OMV-Fraktionen degradieren verschiedene Protease-Substrate.

A. Protease-Aktivitäten wurden durch Zymographie mit Gelatine detektiert. Weiße Banden zeigen Proteine, die Gelatine abgebaut haben.

B. Proteolytische-Aktivitäten wurden in einem Flüssig-Assay mit dem synthetischen Substrat Hide powder azure blue analysiert.

C. Als Substrat für proteolytische Aktivitäten wurde hier Elastin-Congo red eingesetzt. Dieses basiert auf Elastin, einem Protein der extrazellulären Matrix, und weist Elastase-spezifische proteolytische Aktivitäten nach.

Die Linie trennt die OMV bzw. WC-Proben ab, da die getesteten Mengen nicht vergleichbar mit den anderen Proben waren. (SN) bakterieller Kulturüberstand; (WC) Gesamtzelllysat; (tp) Gesamtprotein pro µl der OMV-Probe.

Die lipolytischen Effekte verschiedenen wurden mit zwei Substraten. p-Nitrophenylpalmitat (NPP) für Esterase-Lipase- bzw. p-Nitrophenylphosphorylcholin (NPPC) für Lipase-Aktivität, ebenfalls in Flüssig-Assays nachgewiesen. Die Versuchsdurchführung sowie eingesetzte Proben waren vergleichbar zu den bereits beschriebenen Protease-Assays. Die Graphen (Abb. 4-7) zeigen bei allen Proben eine Dosisabhängigkeit der Aktivität und daher eine spezifische Spaltung des Substrates. Bei beiden Sekretomfraktionen, SSP und OMV, konnte ein Abbau der Lipase-Substrate beobachtet werden. Ähnlich den Protease-Aktivitäten war auch hier der überwiegende Anteil der lipolytischen Aktivitäten mit der SSP-Fraktion assoziiert.

- Abb. 4-7: SSP- und OMV-Fraktionen von *L. pneumophila* degradieren unterschiedliche Lipase-Substrate. Lipolytische Aktivitäten wurden durch die Spaltung der beiden synthetischen Substrate
 - A. *p*-Nitrophenylpalmitat (NPP) und
 - B. *p*-Nitrophenylphosphorylcholin (NPPC) nachgewiesen.

Die Linie trennt die OMV-Proben ab, da die getesteten Mengen nicht vergleichbar mit den anderen Proben waren. (SN) bakterieller Kulturüberstand; (WC) Gesamtzelllysat; (tp) Gesamtprotein pro µl der OMV-Probe.

4.3.2 Aktivierungsprofile von Zytokinen bei humanen Wirtszellen durch OMVs

Humane Wirtszellen antworten nach der Erkennung von L. pneumophila-Bakterien mit der Aktivierung der Ausschüttung von Zytokinen. In diesem Zusammenhang wurde in Kooperation mit Dr. Bernd Schmeck an der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité Berlin, überprüft, ob OMVs alleine eine Zytokinausschüttung induzieren können und diese vergleichbar zu Bakterienzellen ist. Dafür wurden, wie in Kap. 3.2.4 beschrieben, Alveolarepithelzellen 15 h mit 50 µg tp OMV-Fraktion stimuliert und anschließend das Sekretionsprofil ausgewählter Zytokine mit dem Bioplex protein array bestimmt.

Nach 15 h Inkubation mit OMVs war die Ausschüttung der folgenden Zytokine induziert: IL-6, IL-7, IL-8, IL-13, G-CSF, IFN γ und MCP-1 (Abb. 4-8). Mit fünf- bis sechsfach erhöhten Sekretionsmengen wurden bei IL-7 und IL-8 die stärksten Aktivierungen gemessen. Die Sekretion folgender Zytokine war nicht beeinflusst: IL-1 β , IL-2, IL-4, IL-5, IL-10, IL-12, IL-17, GM-CSF und TNF α . Im Rahmen dieser Kooperation wurden auch OMV-Proben zusätzlich mit den Proteaseinhibitoren Phosphoramidon (Metallo-Protease-Inhibitor) bzw. Complete EDTA-free Protease Inhibitor Cocktail (Serin-/Cystein-Protease-Inhibitor) vorinkubiert bzw. durch Hitze inaktiviert und dann im Assay eingesetzt. Jedoch zeigten beide Behandlungen keine Änderung im Sekretionsprofil. Vergleicht man schließlich die Daten mit den Zytokin-Sekretionsprofilen von *L. pneumophila*-Bakterienzellen (publiziert in Schmeck *et al.*, 2007), so wird deutlich, dass OMVs im Gegensatz zu Bakterienzellen spezifisch die Sekretion von IL-7 und IL-13 aktivieren.

Abb. 4-8: Die OMV-Fraktion von *L. pneumophila* stimuliert die Zytokin-Sekretion.
 A549 Alveolarepithelzellen wurden 15 h mit 50 μg tp OMV-Fraktion stimuliert.
 Anschließend wurde das Zytokin-Sekretionsprofil mit dem Bioplex protein array gemessen. Die Graphen zeigen die induzierten Zytokine. Folgende waren nicht induziert: IL-1β, IL-2, IL-4, IL-5, IL-10, IL-12, IL-17, GM-CSF und TNFα.

4.3.3 Einfluss von OMVs auf das Wachstum von humanen und protozoischen Wirtszellen

In vorangegangenen Versuchen war festgestellt worden, dass *L. pneumophila*-OMVs Wirtszellen in Bezug auf die Ausschüttung von Zytokinen modifizieren können. Um zu untersuchen, ob neben der Aktivierung der Ausschüttung von "Alarmsignalen" die Wirtszellen darüber hinaus durch OMVs geschädigt oder sogar lysiert werden können, wurden Alamar blue-Assays durchgeführt. Dazu wurden die humanen Alveolarepithelzellen A549 und NCI-H292, sowie protozoische *A. castellanii* Wirtszellen wie in Kap. 3.2.3 beschrieben über einen Zeitraum von 72 h mit OMVs inkubiert. Die graphische Darstellung des Wachstums erfolgte anhand der in 24 h-Intervallen bestimmten Stärke der Alamar Blue-Reduktion. Abb. 4-9 zeigt, dass sich die Alveolarepithelzelllinien trotz der Anwesenheit von OMVs im gesamten Inkubationszeitraum vermehren und das Wachstum der beiden im Vergleich zu den Kontrollen nach 72 h nur schwach reduziert ist. Daraus folgt eindeutig, dass OMVs keine zytotoxischen Effekte auf humane Wirtszellen ausüben.

Abb. 4-9: OMVs sind nicht f\u00e4hig, humane Wirtszellen von *L. pneumophila* abzut\u00f6ten. 4 × 10² A549 (●) und 1,2 × 10³ NCI-H292 (■) Alveolarepithelzellen wurden mit 50 µg tp OMV-Fraktion inkubiert. Zellsuspensionen ohne OMVs dienten als Kontrolle (○, □). Nach 24 h wurde Alamar Blue zugegeben. Anschließend wurde das Zellwachstum anhand der Reduktion von Alamar Blue \u00fcber 72 h in 24 h-Intervallen bestimmt.

Sehr auffällig ist dagegen der beobachtete Effekt beim protozoischen Wirt *A. castellanii* . Innerhalb der gleichen Inkubationszeit wurde sogar ein 64% stärkeres Wachstum gemessen (Abb. 4-10). Der Grund für diesen Anstieg könnte sein, dass OMVs als zusätzliche Nährstoffquelle dienen. Unter Laborbedingungen ernährt sich *A. castellanii* von den Peptiden und Aminosäuren, die im künstlichen PYG-Medium vorhanden sind, während in der natürlichen Umgebung Bakterien als Nahrung dienen.

Abb. 4-10: OMVs sind nicht zytotoxisch für protozoische Wirtszellen von *L. pneumophila*.
 2 × 10⁴ *A. castellanii* (▲) wurden mit 50 µg tp OMV-Fraktion inkubiert. Bei der Kontrolle (△) wurde ohne OMVs inkubiert. Nach 24 h wurde Alamar Blue zugegeben. Das Zellwachstum wurde anschließend wie zuvor anhand der Reduktion von Alamar Blue über 72 h in 24 h-Intervallen bestimmt.

Im Rahmen der Kooperation mit Dr. Bernd Schmeck an der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité Berlin, wurde auch überprüft, ob OMVs schädigende Effekte auf Wirtszellen ausüben, die langsamer oder zeitverzögert wirken und deshalb evtl. mit dem Alamar Blue-Assay nicht nachweisbar wären. Hierfür wurden TUNEL-Assays angewendet, mit denen anhand der DNA-Fragmentierung das späte Apoptosestadium detektiert wird. Mit diesen Experimenten konnten für Alveolarepithelzellen auch apoptotische Effekte ausgeschlossen werden.

4.3.4 Untersuchungen zur Bindung von OMVs an die Oberfläche von humanen Wirtszellen

L. pneumophila-OMVs enthalten zahlreiche Virulenzfaktoren (s. Kap. 4.2), Membranbestandteile wie LPS und schließen periplasmatische Faktoren im Lumen ein, die sie während der extrazellulären Phase zu Wirtszellen und zu Wirtsgewebe transportieren können. Andererseits könnten OMVs auch während des intrazellulären Wachstums Effektoren zur Phagosomenmembran des Wirts übertragen. Nach dem Kontakt könnten die Effektormoleküle die Zelle modifizieren, beispielsweise durch Bindung von Effektoren an Membranrezeptoren und eine damit verbundene Aktivierung von Signalkaskaden oder durch direkten Transfer von Effektormolekülen nach Fusion der OMVs mit der Membran. Da OMVs bei der Entstehung aus der äußeren Membran der Bakterien abgeschnürt werden und deshalb die Membranoberflächen ähnlich sind, sind auch vergleichbare Aufnahmemechanismen und damit die Phagozytose in die Wirtszelle prinzipiell möglich.

Um den ersten Schritt, den Kontakt der OMVs mit Wirtszellmembranen, zu untersuchen, wurden Bindestudien L. pneumophila-OMVs von an Alveolarepithelzellen durchgeführt. Dazu wurden A549 Alveolarepithelzellen auf Deckgläser ausgesät und mit verschiedenen Mengen der OMV-Fraktion inkubiert. Nach 8 h wurden ungebundene OMVs weggewaschen und dann die gebundenen OMVs mit anti-L. p. LPS Primärantikörpern markiert. Die Detektion der anti-LPS Antikörper erfolgte über Alexa Fluor 488 anti-Maus IgG (grüne Fluoreszenz). Die Membranen der Epithelzellen wurden mit rot fluoreszierendem WGA-Alexa Fluor 594 gefärbt. Die fertigen Präparate wurden schließlich mit einem konfokalen Lasermikroskop ausgewertet. Bei Inkubation mit 25 µg tp OMV-Fraktion zeigen die Aufnahmen (Abb. 4-11, obere Bildreihe), dass einzelne große OMVs an die Oberfläche bzw. an Zellausläufer gebunden sind. Auch bei Zugabe der achtfachen Menge (200 µg tp OMV-Fraktion) sind OMVs nicht frei verteilt, sondern spezifisch mit der Membran von Alveolarepithelzellen kolokalisiert, was beim Vergleich der jeweiligen Fluoreszenzkanäle sehr deutlich wird (Abb. 4-11, untere Bildreihe). Diese Beobachtungen könnten zum einen auf die Persistenz auf der Membranoberfläche, zum anderen auf eine Fusion mit der Zytoplasmamembran der Wirtszelle hindeuten. Interessanterweise stieg die Anzahl abgerundeter Alveolarepithelzellen an, wenn eine größere Menge an OMVs zugegeben wurde (Abb. 4-11, untere Bildreihe). Der Grund für diese mikroskopisch sichtbare Gestaltänderung der Wirtszellen könnten assoziierte oder in OMVs eingeschlossene Effektormoleküle sein, die entweder indirekt über Signalkaskaden oder durch direkte Aktivität eine Schädigung bewirkt haben.

Abb. 4-11: Bindung von *L. pneumophila*-OMVs an Wirtszellmembranen.

 2×10^4 A549 Alveolarepithelzellen (rot) wurden 8 h mit 25 µg tp bzw. 200 µg tp OMV-Fraktion (grün) inkubiert. OMVs wurden mit anti-*L. p.* LPS Primärantikörpern markiert, die anschließend über Alexa Fluor 488 anti-Maus IgG visualisiert wurden. Wirtszellmembranen wurden mit WGA-Alexa Fluor 594 gefärbt. Die Fluoreszenzsignale wurden mit dem konfokalen Lasermikroskop einzeln

aufgenommen und mit Photoshop (Adobe Systems) digital verarbeitet und übereinander gelegt (Merge). Balken = 5 µm.

4.3.5 Zusammenfassung

Mit Hilfe verschiedenartiger Enzym-Assays und spezifischer Substrate zur Detektion von proteolytischen und lipolytischen Aktivitäten wurden in der vorliegenden Arbeit Enzym-Aktivitäten nachgewiesen, die zur Zerstörung von Surfactant-Filmen, der Basallamina und von Alveolarsepten beitragen könnten. In den angewandten Assays zeigte sich, dass *L. pneumophila*-OMVs und SSPs proteolytische sowie lipolytische Aktivitäten besitzen, allerdings war der überwiegende Anteil der Aktivitäten mit der SSP-Fraktion assoziiert. Die bei der OMV- und der SSP-Fraktion auftretende proteolytische Bande bei 38 bis 40 kDa wird wahrscheinlich durch die Zink-Metalloprotease ProA1, eines der am stärksten sekretierten Überstandsproteine von *L. pneumophila*, hervorgerufen.

OMVs können auch die Ausschüttung von Zytokinen induzieren, was in Bioplex-Experimenten überprüft wurde. Nach Inkubation mit OMVs war bei Alveolarepithelzellen die Sekretion von folgenden Zytokinen aktiviert: IL-6, IL-7, IL-8, IL-13, G-CSF, IFNy und MCP-1. Mit fünf- bis sechsfach erhöhten Sekretionsmengen wurden bei IL-7 und 8 die stärksten Aktivierungen gemessen. Im Vergleich zu L. pneumophila-Bakterienzellen waren IL-7 und -13 nur bei OMVs aktiviert, was ein spezifisches Zytokin-Sekretionsprofil durch OMVs belegt. Die Ergebnisse der Protein-Inaktivierungsexperimente deuten darauf hin, dass nicht Proteine, sondern andere Komponenten von OMVs, beispielsweise LPS, für die Aktivierung der Zytokin-Ausschüttung bei Alveolarepithelzellen verantwortlich sind.

Alamar Blue-Assays zeigten jedoch, dass die Effekte von OMVs nicht ausreichen, um humane Wirtszellen abzutöten. Im Gegensatz dazu wurde beim protozoischen Wirt *A. castellanii* sogar ein 64% stärkeres Wachstum gemessen. Diese Beobachtung könnte darauf zurückzuführen sein, dass OMVs als zusätzliche Nährstoffquelle gedient haben, da *A. castellanii* sich von Bakterien bzw. Peptiden und Aminosäuren ernährt. Anhand von TUNEL-Assays, die die DNA-Fragmentierung nachweisen, konnte auch die Induktion apoptotischer Effekte ausgeschlossen werden. Bindestudien von *L. pneumophila*-OMVs an Alveolarepithelzellen demonstrierten, dass die OMVs nach Inkubation nicht frei verteilt vorliegen, sondern spezifisch mit der Zytoplasmamembran der Epithelzellen kolokalisiert sind. Dabei könnten die OMVs entweder auf der Wirtszelloberfläche adhäriert oder mit der Membran fusioniert sein. Auffällig war, dass die Zahl der abgerundeten Alveolarepithelzellen zunahm, wenn mehr OMVs zugegeben wurden. OMVs scheinen Effektormoleküle zu transportieren, die von den Alveolarepithelzellen erkannt werden und daraufhin eine mikroskopisch sichtbare Gestaltänderung der Wirtszellen auslösen. Möglich ist in diesem Zusammenhang eine indirekte Schädigung über den Eingriff in Signalkaskaden des Wirts bzw. direkt durch LPS oder durch die (Enzym-) Aktivitäten von Proteineffektoren.

5 DISKUSSION

5.1 OMV-Produktion bei L. pneumophila

Vergleichbar mit anderen Krankheitserregern sind auch bei *L. pneumophila* Effektormoleküle, die in den extrazellulären Raum sekretiert werden, für die extrazelluläre Pathogenität verantwortlich. Wie in der Einleitung bereits beschrieben, können hier sowohl lösliche Proteine als auch die makromolekularen OMV-Partikel als Effektormoleküle bezeichnet werden. Bei *L. pneumophila* zeichnet sich die extrazelluläre Pathogenität durch eine massive Zerstörung von Lungengewebe, einschließlich der Degradierung von extrazellulärer Matrix und dem Auflösen von Fokalkontakten, aus (Wagner *et al.*, 2007). Darüber hinaus wurde in den letzten Jahren nachgewiesen, dass spezielle Sekretionsmaschinen wie das Dot/Icm Typ-IV-Sekretionssystem sowie OMVs zur intrazellulären Pathogenität beitragen. Mit deren Hilfe erreicht *L. pneumophila* die Inhibition der Reifung von Phagosomen, die Modifikation von Wirtsmembranen und das intrazelluläre Wachstum in Phagozyten (Fernandez-Moreira *et al.*, 2006; Wagner *et al.*, 2007).

In frühen Mikroskopiearbeiten war bereits beobachtet worden, dass auf der *Legionella*-Oberfläche Membranvesikel vorhanden sind. Rodgers bezeichnete sie in seiner Studie als "Farbstoff-gefüllte Vakuolen" (Rodgers, 1979). Mikroskopieaufnahmen von infiziertem Lungengewebe in der gleichen Studie deuteten auch auf die Präsenz der Membranvesikel während der humanen Infektion hin. Trotz dieser Beobachtungen und einer möglichen Beteiligung an der Pathogenese von *L. pneumophila* wurde das Phänomen der Membranvesikel jedoch bis zum Beginn dieser Doktorarbeit nicht weiter untersucht.

Die Voraussetzung für einen Beitrag von *L. pneumophila* OMVs zu den im ersten Absatz genannten Prozessen bildet deren Produktion während extra- und intrazellulären Wachstums. Daher sollte zunächst die OMV-Produktion mit Hilfe verschiedener Mikroskopie-Techniken genauer untersucht werden (Abb. 4-1). Wie vermutet konnte die Abschnürung von OMVs bei extrazellulärem Wachstum beobachtet werden. Außerdem zeigen die Ergebnisse dieser Experimente, dass OMVs tatsächlich von L. pneumophila produziert werden, die intrazellulär in Legionella-spezifischen Phagosomen vorliegen. Fernandez-Moreira und Kollegen beschrieben in der im letzten Jahr erschienenen ersten Studie über L. pneumophila OMVs, dass isolierte OMVs die Fusion von Phagosomen mit Lysosomen verhindern können. Da eine Beteiligung des Dot/Icm Typ-IV-Sekretionssystems ausgeschlossen werden konnte, müssen OMV-spezifische Mechanismen zu Grunde liegen (Fernandez-Moreira et al., 2006). Die in der vorliegenden Arbeit abgebildeten Aufnahmen (Abb. 4-1) liefern nun den bisher fehlenden Beweis für eine OMV-Produktion innerhalb der Wirtszelle und unterstützen somit die geforderte Fusions-Inhibition durch OMVs. Da die Abschnürung von OMVs sowohl bei extra- als auch bei intrazellulären L. pneumophila von einer intakten Bakterienmembran erfolgt, ist die OMV-Sekretion kein Produkt bakterieller Zelllyse, sondern stellt einen aktiven Prozess dar. Auch andere Forschungsgruppen, die an der OMV-Sekretion Gramnegativer Bakterien arbeiten, teilen diese Auffassung, jedoch sind die genauen Mechanismen noch ungeklärt (Kuehn and Kesty, 2005).

Mit Hilfe von *L. pneumophila*-Flüssigkulturen konnte nachgewiesen werden, dass die OMV-Produktion nicht nur während der exponentiellen, sondern auch während der stationären Phase stattfindet. Diese Beobachtung ist sehr interessant, weil sich *L. pneumophila* während der postexponentiellen Phase in die transmissive Form differenziert. Erst dann wird das komplette Spektrum an Virulenzfaktoren exprimiert. Da OMVs aus der äußeren Bakterienmembran gebildet werden, könnte sich der Wechsel in die virulente Form folglich in der Zusammensetzung der OMVs widerspiegeln. Deshalb wurden im weiteren Verlauf dieser Doktorarbeit Flüssigkulturen in der frühen stationären Phase zur Isolierung und Untersuchung von OMV- und SSP-Sekretomfraktionen verwendet.

89

5.2 Die Proteome der Sekretomfraktionen SSP und OMV von *L. pneumophila*

Bis heute wurden extrazelluläre Proteome von verschiedenen Gram-positiven und Gram-negativen pathogenen Bakterien wie Bacillus anthracis. Listeria monocytogenes, Helicobacter pylori und Pseudomonas aeruginosa charakterisiert (Antelmann et al., 2005; Bumann et al., 2002; Nouwens et al., 2002; Trost et al., 2005). Für L. pneumophila wurden bisher keine umfassenden Sekretom-Studien angefertigt. Vor kurzem veröffentlichten DebRoy und Kollegen die erste extrazelluläre Proteom-Analyse, die sich jedoch nur auf einen Teil des nämlich die durch den Typ-II-Sekretionsapparat L. pneumophila-Sekretoms, sekretierten Effektorproteine, konzentriert (DebRoy et al., 2006b). Die Anzahl von Proteom-Arbeiten über OMVs ist bis heute sehr gering. Die einzigen bisher durchgeführten Untersuchungen sind die beiden für Neissera meningitidis (Ferrari et al., 2006; Williams et al., 2007). Die Ergebnisse gaben umfangreichen Aufschluss über Oberflächenantigene von Neissera und fanden in der Entwicklung von MeNZB, einem OMV-Vakzin gegen die Serogruppe B, Anwendung (Oster et al., 2005).

Im weiteren Verlauf dieser Arbeit stand zunächst eine Voranalyse der SSP- und OMV-Fraktionen im Vordergrund. Die hier durchgeführten SDS-PAGE- und Westernblot-Analysen lieferten jedoch nur wenige Ergebnisse. Allerdings war zu erkennen, dass die Proteininhalte der beiden Sekretomfraktionen unterschiedlich sind. Um eine genaue Aussage über die Proteinunterschiede der Fraktionen zu treffen, wurde die DIGE-2-DE herangezogen. Diese einzigartige Technik ermöglicht durch unterschiedliche Fluoreszenz-Markierung und anschließender gemeinsamer Auftrennung in einem 2-D-Gel eine exakte Visualisierung von Gemeinsamkeiten und Unterschieden in der Proteinzusammensetzung. Das gelieferte Ergebnis war eher unerwartet, jedoch sehr interessant (Abb. 4-4). Nur ein Teil der Proteine kam in beiden Fraktionen gleichzeitig vor. Dagegen waren sehr viele Proteine entweder für die SSP- oder für die OMV-Fraktion hochspezifisch. Ein Grund für dieses Resultat könnte die unterschiedliche Löslichkeit der Proteine und dadurch folgende Assoziation mit der SSP- (hydrophile Proteine) oder der OMV-Fraktion (lipophile und z. T. hydrophile Proteine) sein. Ein Vergleich der Außenmembranen der Bakterien

und der OMVs könnte auch auf einen möglichen Sortiermechanismus als Verursacher der Spezifität hindeuten. Diese Hypothese wurde beispielsweise auch für *E. coli* und dessen OMV-beschränkten Aktivierungsmechanismus für das ClyA-Toxin diskutiert (Wai *et al.*, 2003).

Aufgrund spezifischen Proteinzusammensetzung der beobachteten der Sekretomfraktionen wurde die umfassende Aufklärung des L. pneumophila-Sekretoms durchgeführt. Die beiden Sekretomfraktionen SSP und OMV wurden aus Kultur-Überständen isoliert und die darin enthaltenen Proteine durch 2-DE aufgetrennt. Die Identifikation der Proteine erfolgte nach dem Ausschneiden der Protein-Spots und anschließendem Trypsin-Verdau mit Hilfe der MALDI-TOF-MS. In der Summe waren durchschnittlich 493 Proteinspots im Kultur-Überstand sichtbar. Die MS-Analyse ergab, dass 181 nicht-redundante Proteine im L. pneumophila-Sekretom enthalten sind (Tab. A1). Einige der identifizierten Proteine waren auf mehrere Spots verteilt oder lagen in "Spotketten" vor (Abb. 4-5). Dies könnte auf künstliche (z. B. Deamidierung) oder post-translationale Modifikationen zurückzuführen sein. Auch eine Degradierung durch Proteasen im Überstand, beispielsweise durch die sehr stark sekretierte Protease ProA1, könnte stattgefunden haben (Bauman and Kuehn, 2006). Die MS-Analyse belegte eindeutig die mit der DIGE-Technik zu Beginn festgestellten hochspezifischen Proteinzusammensetzungen der einzelnen Sekretomfraktionen. SSP- und OMV-Fraktionen von L. pneumophila enthalten 107 bzw. 33 spezifische Proteine, während nur 41 Proteine unspezifisch in beiden Fraktionen vorhanden sind.

In beiden Sekretomfraktionen wurden insgesamt 22 der 27 bekannten Typ-II-Substrate detektiert. Das Typ-II-Sekretionssystem unterstützt bei *L. pneumophila* u. a. die Infektion von Protozoen und die Vermehrung in der Säugerlunge. Identifizierte Substrate umfassen verschiedene Enzyme wie eine saure Phosphatase (Map, lpg1119), eine Metalloprotease (ProA1/Msp), eine Chitinase (ChiA, lpg1116), eine Ribonuclease (lpg2848) und eine Lysophospholipase (lpg2343) (DebRoy *et al.*, 2006b). Zusammen betrachtet könnten diese degradierenden Eigenschaften zur Bereitstellung von essentiellen Verbindungen sowie Nährstoffen und dadurch zum Überleben bzw. zur Vermehrung von *L. pneumophila* in der entsprechenden Umgebung beitragen. Einige dieser Proteine fördern auch die Virulenz bzw. Pathogenese von L. pneumophila. Obwohl die Metalloprotease ProA1, eines der am meisten sekretierten Proteine von L. pneumophila, nicht essentiell für die Infektion ist, zeigt dieses Protein hämolytische und zytotoxische Aktivitäten in vitro und trägt zur Gewebszerstörung in vivo bei (Blander et al., 1990; Moffat et al., 1994; Quinn and Tompkins, 1989). Die Chitinase ChiA, ein erst kürzlich entdeckter neuer Virulenzfaktor von L. pneumophila, fördert die Persistenz der Bakterien in der Lunge (DebRoy et al., 2006b). Außerdem wurden weitere 38 bisher als putativ betrachtete Typ-II-Substrate (DebRoy et al., 2006b) detektiert. Die tatsächliche Präsenz dieser Substrate in den Sekretomfraktionen unterstützt die Hypothese von DebRoy und Kollegen, dass das Typ-II-Sekretionssystem 60 bzw. eine noch höhere Anzahl an Proteinen prozessieren könnte. Zur endgültigen Bestätigung sind jedoch weitere Studien, z. B. Proteom-Experimente mit diversen Sekretionsmutanten, notwendig. Im Gegensatz zur hohen Anzahl an Typ-II-Substraten wurden nur drei Typ-IV-Substrate, LaiE (lpg2154), LaiF (SdeD, lpg2509) und WipC (lpg2206), nachgewiesen. Dieser Sekretionsdefekt könnte auf den fehlenden Wirtszellkontakt, der vor kurzem als Voraussetzung für die Typ-IV-Sekretion diskutiert wurde, unter den angewendeten Versuchsbedingungen zurückzuführen sein (Chen et al., 2007). Ebenso könnten die fehlenden Typ-II-Substrate aus geringen Unterschieden in der Kultivierung im Vergleich zur DebRoy-Studie, die schon durch unterschiedliche Wasserqualitäten oder verschiedene Schüttelinkubatoren hervorgerufen werden können, resultieren.

Des Weiteren sind in den Fraktionen sieben Eukaryoten-ähnliche Proteine vorhanden (Tab. 4-2). Obwohl die genauen Funktionen dieser Proteine noch unbekannt sind, wurde deren Beitrag zur Pathogenese von *L. pneumophila* in verschiedenen Publikationen postuliert (Brüggemann *et al.*, 2006a; Cazalet *et al.*, 2004). Durch das Nachahmen der Funktionen ihrer eukaryotischen Verwandten, beispielsweise in der Signalübertragung oder in degradierenden Prozessen, könnten diese Proteine *Legionella* ermöglichen, mit den eukaryotischen Zellen zu kommunizieren und könnten dadurch das Überleben sowie die Replikation absichern. Erst kürzlich erschienene Publikationen von Chen *et al.* und Sansom *et al.* bestätigen eine Beteiligung Eukaryoten-ähnlicher Proteine an der Pathogenese. Beispielsweise werden LepA und LepB nach Wirtszellkontakt durch das Dot/Icm Typ-IV-Sekretionssystem transloziert und fördern die nicht-lytische Freisetzung von *L. pneumophila* aus Protozoen. Stämme, denen diese Proteine fehlen, bleiben in der

replikativen Vakuole eingeschlossen und können sich somit nicht weiter verbreiten und vermehren (Chen et al., 2007). lpg1905, ein L. pneumophila-Protein mit Homologie zur humanen ekto-Nukleosidtriphosphat-Diphosphohydrolase (ekto-NTPDase), ist in die Aufnahme sowie in die Replikation in Wirtszellen involviert. Als Mechanismus wurde hier eine Manipulation von Signalwegen des Wirts, die in einer Herunterregulation der Entzündungsantwort münden, erachtet (Sansom et al., 2007). Die Erforschung der in der vorliegenden Arbeit im Sekretom detektierten Eukaryotenähnlichen Proteine stellt ein spannendes zukünftiges Forschungsfeld dar und wird sicherlich zur weiteren Entschlüssselung der Infektionsmechanismen von L. pneumophila einen Beitrag leisten.

Auch die Verteilung der Proteine der Sekretomfraktionen auf funktionale Gruppen liefert ein auffälliges Ergebnis. Die meisten Einträge sind in den Klassen zu finden, die hauptsächlich mit dem Überleben der Zelle verbunden sind. Darunter fällt u. a. die Erschließung und der Metabolismus von Nährstoffen. Da *L. pneumophila* Aminosäuren als Nährstoffquelle nutzt, bildet folgerichtig der "Aminosäure-Metabolismus" die umfangreichste Gruppe. Interessanterweise gehört auch der "Kohlenhydrat-Metabolismus" zu den größten Gruppen. Diese Beobachtung könnte auf eine Umsetzung von Kohlenhydraten hindeuten, was die neue Forderung von Brüggemann *et al.* aus dem letzten Jahr unterstützen würde (Brüggemann *et al.*, 2006b).

Besonders interessant ist jedoch die Verteilung von Virulenzfaktoren auf die beiden Sekretomfraktionen. Der prozentuale Anteil der "Virulenz-/Pathogenese"-Proteine liegt in der OMV-Fraktion mit 24% gegenüber 11% in der SSP-Fraktion mehr als doppelt so hoch. Von insgesamt 25 im Sekretom identifizierten "Virulenz-/Pathogenese"-Proteine sind 18 mit OMVs assoziiert (Tab. 4-2). Acht von diesen Faktoren sind nur auf OMVs beschränkt. Darunter fällt auch Mip, einer der Haupt-Virulenzfaktoren von *L. pneumophila*. Diese Beobachtung bekräftigt, dass OMVs als spezifische Transportmittel für Virulenz-assoziierte Effektoren dienen können. Im weiteren Verlauf dieser Doktorarbeit wurde deshalb der Fokus auf die Analyse der OMVs in Bezug auf eine mögliche Funktion als bakterielle "Waffe" bzw. "Kommunikationssatellit" gerichtet.

5.3 Funktionale Analyse der SSP- und OMV-Fraktionen

5.3.1 Destruktive Enzymaktivitäten

Die Verabreichung von *L. pneumophila*-Kulturüberständen in die Lunge von Meerschweinchen ruft Läsionen hervor, die pathologische Ähnlichkeit zur klinischen sowie zur experimentell herbeigeführten Legionärskrankheit haben (Baskerville *et al.*, 1986; Conlan *et al.*, 1986). Diese früheren sowie neuere Publikationen weisen darauf hin, dass verschiedene Enzymaktivitäten für diese Phänomene verantwortlich sein könnten (Flieger *et al.*, 2004; Wagner *et al.*, 2007).

Für die Detektion von Enzymaktivitäten, die diese Gewebeschäden hervorrufen können, wurden Zymographien und Enzym-Assays mit unterschiedlichen Substraten durchgeführt. Die Experimente zeigten deutlich, dass SSP- und OMV-Fraktionen proteolytische und lipolytische Enzymaktivitäten besitzen.

Die Zersetzung proteinöser Strukturen in den Alveolen wurde mit Hilfe von verschiedenen Protease-Substraten nachempfunden. Die Proteom-Analyse liefert hier mehrere identifizierte Proteasen, die die beobachteten proteolytischen Effekte verursacht haben können. Darunter fallen z. B. die Metalloprotease ProA1, die Eukaryoten-ähnliche Astacinprotease LegP (lpg2999), die Elastase LasB (lpg1655) und eine weitere Serinmetalloprotease (lpg2019). Da ProA1 eines der Proteine ist, die am meisten im Überstand vorhanden sind, ist es wahrscheinlich, dass diese Protease sehr stark für die eingangs genannten Gewebeschäden verantwortlich ist. Außerdem wurde vor kurzem vorgeschlagen, dass eine Serinmetalloprotease im Synergismus mit Mip die Transmigration von *L. pneumophila* durch eine Barriere aus NCI-H292 Alveolarepithelzellen und extrazellulärer Matrix ermöglicht (Wagner *et al.*, 2007). Die hier identifizierte sekretierte Serinmetalloprotease (lpg2019) und das OMV-assoziierte Mip könnten im Zusammenwirken diese Effekte hervorrufen. Hier sind jedoch weiterführende Experimente notwendig, um dies zu bestätigen.

Die Verwendung von Gelatine und Elastin als Protease-Substrat stellt einen direkten Bezug zum Lungengewebe her. Die Inhaltsstoffe der Gelatine, fibrilläres Kollagen I, II und III, sowie Elastin stellen Grundbausteine der extrazelllulären Matrix dar. Sie sind Bestandteil der Basallamina, einer Proteinschicht aus extrazellulärer Matrix, die das Alveolarepithel vom darunterliegenden Lungeninterstitium abgrenzt. Des Weiteren bilden die Kollagene und Elastin elastische Bindegewebsfasern im Interstitium. Eine Zerstörung dieser Proteine deutet somit darauf hin, dass die Enzymaktivitäten während der Infektion zur Verbreitung der Bakterien im Lungengewebe beitragen könnten. Auch für die kürzlich beobachtete Verbreitung der *L. pneumophila*-Bakterien in die Milz könnten sie die Grundlage bilden (Wagner *et al.*, 2007). Während die Kollagene vermutlich überwiegend durch ProA1 abgebaut wurden, was an der massiven Proteasebande bei ca. 38 bis 40 kDa im Gelatine-Zymogramm deutlich wird, könnte der nachgewiesene Abbau von Elastin auf das detektierte LasB zurückzuführen sein. Analog zu den Vorgängen bei *P. aeruginosa* könnte die Elastase zusätzlich die Surfactant-Proteine A und D degradieren (Mariencheck *et al.*, 2003).

Die Zerstörung von Surfactant-Oberflächenfilmen, die erste Barriere auf der Alveolaroberfläche, wurde stellvertretend an zwei synthetischen Lipidsubstraten, NPP und NPPC, gezeigt. Beide Sekretomfraktionen von *Legionella* besitzen Enzymaktivitäten, die die Substrate abbauen, wie in Abb. 4-7 gezeigt. Anhand der Proteomdaten kommen mehrere Phospholipasen in Betracht, die für diese Vorgänge verantwortlich sein können. Zu diesen gehören ein PlcB-Homolog (lpg1455), ein PlaC-Homolog (lpg2837), ein PlcA-Homolog (lpg0502) und ein PlaA-Homolog (lpg2343). Auch das OMV-spezifische Mip könnte an diesen Abbauprozessen beteiligt sein, da es eine extrazelluläre Phospholipase C-ähnliche Aktivität fördert (DebRoy *et al.*, 2006a). Die schon früher beobachtete Zerstörung von Rinder-Surfactant durch die Phospholipase A von *L. pneumophila* (Flieger *et al.*, 2000) und die Ergebnisse der vorliegenden Experimente deuten zusammen darauf hin, dass SSPs und OMVs humane Surfactant-Lipide degradieren können.

Zusammenfassend könnten die untersuchten proteolytischen und lipolytischen Prozesse während der humanen Infektion zur Zerstörung der Alveolaroberfläche, zur Transmigration der Bakterien durch die Lungenepithelbarriere und die darunterliegende Basallamina und letztendlich zur Ausbreitung von *L. pneumophila* im Lungengewebe und zur Milz beitragen. Die spezifische OMV-Zusammensetzung gepaart mit der kleinen Größe von OMVs könnte dabei die Interaktion mit

95

Gewebestrukturen ermöglichen, die für Bakterien nicht zugänglich sind. Dies legt den Schluss nahe, dass OMVs den Weg für infizierende Legionellen ebnen können.

5.3.2 Zelluläre Effekte

Aufgrund der beobachteten verschiedenen zerstörerischen Enzymaktivitäten lag die Vermutung nahe, dass OMVs zytopathische Effekte auf Wirtszellen haben. Daher wurden in weiteren Experimenten humane Alveolarepithelzellen und protozoische A. castellanii -Zellen mit OMVs inkubiert und das Zellwachstum über einen Zeitraum von 72 h verfolgt. Im Gegensatz zu OMVs anderer Spezies (Balsalobre et al., 2006; Kouokam et al., 2006; Wai et al., 2003) zeigte sich jedoch, dass L. pneumophila OMVs weder zytotoxisch noch zytolytisch sind. In den hier durchgeführten Experimenten wurde auch keine OMV-induzierte Apoptose in den Wirtszellen festgestellt. Dies ist in Übereinstimmung mit früheren Beobachtungen von Gao und Kollegen, die zeigten, dass L. pneumophila-freie Kulturüberstände keine Apoptose induzieren können (Gao and Abu Kwaik, 1999a). Erstaunlicherweise war die Wachstumsrate von protozoischen A. castellanii-Zellen bei Koinkubation mit OMVs sogar um 64% erhöht. Da A. castellanii sich in der Umwelt von Bakterien ernährt, könnten in diesem Fall OMVs phagozytiert worden sein und als Nahrungspartikel oder Wachstumsstimulanz gedient haben. Überträgt man diese Beobachtung auf die Situation in der Umwelt, so könnten dort sekretierte OMVs als ein Gradient von Nahrungspartikel dienen, der den protozoischen Wirt zu den L. pneumophila-Bakterien lockt. Analog ist ein ähnlicher Ablauf während der humanen Infektion in den Alveolen vorstellbar. Dort könnnte L. pneumophila durch sekretierte OMVs professionell phagozytierende Makrophagen anziehen, die gewöhnlich zwischen dem Surfactant-Oberflächenfilm und dem Alveolarepithel umherwandern.

Diese Überlegungen deuten einen weiteren funktionalen Aspekt mit eher modulierenden statt zytotoxischen Aktivitäten an. OMVs enthalten verschiedenartige Komponenten wie LPS, Lipoproteine und Proteine, die von eukaryotischen Zellen als "fremd" erkannt werden und die Ausschüttung von Zytokinen beeinflussen. Deshalb wurden in diesem Zusammenhang Bioplex protein arrays mit Alveolarepithelzellen, die mit *L. pneumophila*-OMVs stimuliert wurden, durchgeführt. Aufgenommene

Zytokinprofile zeigen in der Tat, dass OMVs ein spezifisches Zytokinsekretionsprofil in Alveolarepithelzellen induzieren. Zu den aktivierten Zytokinen gehören u. a. die pro-inflammatorischen Zytokine IL-6, -8 und IFNy sowie das anti-inflammatorische IL-13. Vergleicht man diese Ergebnisse mit denen von *L. pneumophila*-Zellen (Schmeck et al., 2007) so wird deutlich, dass OMVs die Ausschüttung von IL-7 und IL-13 spezifisch stimulieren. Dieses Ergebnis könnte durch die interessante Beobachtung in erklärt werden, dass L. pneumophila der transmissiven Phase die Zusammensetzung von sekretiertem LPS (assoziiert mit OMVs) verändert, wohingegen das LPS auf der Bakterienoberfläche gleich bleibt (Fernandez-Moreira et al., 2006; F. Galka, nicht gezeigt). Genauere Mechanismen dieses Phänomens sind bisher noch nicht bekannt. Zusammenfassend bestätigen diese Daten eine Modulation der Wirtszellantwort. Spezifische Effekte wie die Förderung der Immunzellinvasion in die Lunge, Gewebeschäden durch eine überstimulierte Entzündungsreaktion und Mechanismen, die das Immunsystem stören bzw. ablenken. stellen interessante und herausfordernde Themen zukünftiger Forschungsarbeiten dar (Bauman and Kuehn, 2006; Wilson et al., 1998).

5.3.3 Bindung von OMVs an Alveolarepithelzellen

Vergleichbar zu anderen Gram-negativen Pathogenen exprimiert *L. pneumophila* äußere Membranproteine die die Adhärenz an Wirtszellen bewirken. Darüber hinaus können auch andere Proteintypen zur Adhäsion an Wirtsmembranen beitragen. Beispielsweise wurde für Hsp60, ein molekulares Chaperon, eine Beteiligung an der Adhärenz von *L. pneumophila* an HeLa-Zellen nachgewiesen (Garduno *et al.*, 1998a; Garduno *et al.*, 1998b). Da OMVs durch Abschnürung aus der äußeren Membran der Bakterien gebildet werden und folglich einen Ausschnitt der äußeren Membran repräsentieren, leitete sich die Fragestellung ab, ob auch OMVs an die Alveolarzelloberfläche binden können.

Mit Hilfe der konfokalen Lasermikroskopie konnte in der durchgeführten Bindungsstudie die Adhärenz von OMVs an Alveolarepithelzellen bestätigt werden. Darüber hinaus ist auch eine Fusion der OMVs mit der Zytoplasmamembran denkbar, die durch LPS vermittelt wird. Erst vor kurzem wurde vorgeschlagen, dass LPS-reiche *L. pneumophila* OMVs in die Phagosomenmembran interkalieren und so die Fusion mit Lysosomen effektiv verhindern (Fernandez-Moreira *et al.*, 2006). Während der Bindungsstudie trat auch eine sehr starke Abrundung der Alveolarepithelzellen auf, die von der zugegebenen OMV-Menge abhängig war. Diese Effekte könnten durch OMV-Proteasen, die die Zellhaftung abdauen, ausgelöst werden. Andererseits könnte auch die hohe Konzentration an bakteriellen Komponenten (LPS und Proteine) per se diese Gestaltänderung hervorrufen. Ob Virulenzfaktoren wie die SidE-Paraloge LaiE und F, identifizierte Eukaryoten-ähnliche Proteine oder hypothetische Proteine mit bisher unbekannten Funktionen während dieser Prozesse in die Wirtszelle transferiert werden bleibt noch zu klären. Dennoch demonstrieren die durch OMVs induzierten morphologischen Änderungen der Wirtszellen deutlich ihre modulierende Funktion.

5.4 Modell der Funktionen von L. pneumophila-sekretierten OMVs

Ausgehend von den vorliegenden Ergebnissen dieser Dissertation können für *L. pneumophila*-OMVs verschiedene mögliche Funktionen während der humanen Infektion abgeleitet werden, die in der Abb. 5-1 modellhaft zusammengefasst sind. Im nachfolgenden Text sind die einzelnen Punkte ausführlicher erklärt.

Gelangen L. pneumophila-Bakterien in die Alveolen so treffen sie zunächst auf den Surfactant-Oberflächenfilm, der die Innenseite der Alveolen auskleidet und das Alveolarepithel bedeckt. Nachgewiesene OMV-eigene lipolytische und proteolytische Enzymaktivitäten, hervorgerufen durch verschiedene Proteasen, insbesondere ProA1, und Phospholipasen, könnten die Zerstörung dieses Films bewirken (Abb. 5-1A 1.). Durch die gleichen Enzymaktivitäten sowie ihre modulierende Eigenschaften können **OMVs** freigelegte Alveolarepithelzellen schädigen und eine Zytokinausschüttung induzieren (Abb. 5-1A 2.). Lokal hohe Konzentrationen an bakteriellen Effektoren (Proteine, LPS, etc.) als Folge der OMV-Abschnürung und die Alveolarepithelzellen Schädigung von könnten dann zum Anlocken von Makrophagen führen, die gleichzeitig potentielle Wirtszellen von L. pneumophila sind (Abb. 5-1A 3.). Auch bei der anschließenden Aufnahme der Bakterienzellen könnten OMVs möglicherweise durch Interaktion assoziierter äußerer Membran-Proteine mit Wirtszellrezeptoren oder Einschleußung von Effektoren ins Zytoplasma von Bedeutung sein (Abb. 5-1B 1.). Des Weiteren könnten die detektierten OMV-eigenen proteolytischen Enzymaktivitäten, besonders von ProA1 und LasB, die Perforation der Basallamina auslösen und damit die Einwanderung der Legionellen ins subepitheliale Bindegewebe, dem Lungeninterstitium, ermöglichen (Abb. 5-1A 4.). Wie in verschiedenen Arbeiten beschrieben, könnte das OMV-assoziierte Mip-Protein sowohl bei der Degradation des Surfactant-Films, als auch bei der Perforation der Basallamina eine zentrale Rolle spielen (DebRoy *et al.*, 2006a; Wagner *et al.*, 2007). Im Lungeninterstitium könnten die degradierenden Enzymaktivitäten zum Abbau von Bindegewebsfasern und zur Schädigung von Blutkapillaren und Fibroblasten führen und damit die Grundlage zur Verbreitung von *L. pneumophila* in der Lunge und zur Milz bilden.

Nach der Aufnahme in die Wirtszellen können L. pneumophila-OMVs die Fusion des Phagosoms mit Lysosomen verhindern (Fernandez-Moreira et al., 2006) (Abb. 5-1B 2.). In diesem Zusammenhang wurde eine Interkalation von OMVs, die eine andere LPS-Zusammensetzung als die Bakterienmembran enthalten, in die Phagosomenmembran als Ursache diskutiert. Durch Translokation von Effektormolekülen wie z. B. die detektierten Typ-IV-Substrate oder Eukaryotenähnliche Proteine in das Zytoplasma der Wirtszelle könnten OMVs Wirtszellprozesse beeinflussen und zur Einrichtung der replikativen Vakuole beitragen (Abb. 5-1B 3.). Des Weiteren könnten Effektoren Signalwege der Wirtszelle manipulieren, was kürzlich als Mechanismus für das Eukaryoten-ähnliche L. pneumophila-Protein lpg1905 diskutiert wurde (Sansom et al., 2007) (Abb. 5-1B 4.). Außerdem könnten sie eine Rolle bei der Freisetzung von L. pneumophila nach der Replikation spielen (Abb. 5-1B 5.). Durch massive Anhäufung von OMVs können in der Vakuole beispielsweise starke lipolytische und proteolytische Enzymaktivitäten auftreten, die zur Zerstörung der Vakuolenmembran und letztendlich auch zur Lyse der Wirtszelle führen könnten. Auch die OMV-vermittelte Translokation großer Mengen an spezieller Effektoren über die Vakuolenmembran ins Zytoplasma oder bereits die vielfache Fusion von OMVs mit der Vakuolenmembran könnten zu diesen Prozessen beitragen.

Abb. 5-1: Modell möglicher extra- und intrazellulärer Funktionen von *L. pneumophila*-OMVs.
 A. Extrazelluläre Funktionen. 1. Zerstörung des Surfactant-Oberflächenfilms (S).
 2. Schädigung von Alveolarepithelzellen (E), die unter dem Surfactant-Film liegen, und anschließende Perforation der Basallamina (BI). 3. Anlocken von

Makrophagen (M), potentielle Wirtszellen von *L. pneumophila*, durch lokal hohe Konzentrationen an bakteriellen Effektoren (Proteine, LPS, etc.) als Folge der OMV-Sekretion. Auch die Ausschüttung von Zytokinen nach OMV-Kontakt könnte dazu beitragen. Möglicherweise fördern OMVs zusätzlich die Aufnahme der Bakterienzellen. **4.** Nach Einwanderung der Legionellen ins subepitheliale Bindegewebe, auch als Lungeninterstitium (Li) bezeichnet, Abbau von Bindegewebsfasern und Schädigung von Blutkapillaren (Bk) und Fibroblasten (F). Diese Prozesse bilden die Grundlage zur Verbreitung von *L. pneumophila* in der Lunge und zur Milz.

B. Intrazelluläre Funktionen (modifizierte Grafik nach Brüggemann *et al.*, 2006a). **1.** Bindung an bzw. Fusion mit der Zytoplasmamembran, wodurch gebundene bzw. injizierte *L. pneumophila*-Effektoren die Aufnahme der Bakterienzelle beeinflussen. **2.** Inhibition der Fusion des Phagosoms mit Lysosomen (bereits nachgewiesen von Fernandez-Moreira *et al.*, 2006). **3.** Beeinflussung von Wirtszellprozessen zur Einrichtung der replikativen Vakuole durch OMV-transportierte Effektormoleküle. **4.** Modulation von Signalkaskaden der Wirtszelle. **5.** Freisetzung von *L. pneumophila* nach Replikation. Durch massive Anhäufung von OMVs treten starke Enzymaktivitäten auf, die zur Zerstörung der Vakuole und schließlich der Wirtszelle führen. Auch andere Prozesse wie der OMV-Transport großer Mengen an spezieller Effektoren über die Vakuolenmembran ins Zytoplasma oder bereits die vielfache Fusion von OMVs mit der Vakuolenmembran könnten dazu beitragen.

Alle hier wiedergegebenen Funktionsmöglichkeiten für OMVs basieren auf Beobachtungen, die *in vitro* gemacht wurden. Um Wissenslücken zu schließen und gesicherte Aussagen über die Funktionen von *L. pneumophila*-OMVs zu treffen, sind deshalb weiterführende Studien im Zellkulturmodell und *in vivo* notwendig. An dieser Stelle kann jedoch der Schluss gezogen werden, dass mit der vorliegenden Arbeit, insbesondere durch die Proteomcharakterisierung der OMVs, eine neue "Tür" im Feld der *Legionella*-Forschung geöffnet wurde, was vielfältige Ansätze für zukünftige und spannende Forschungsvorhaben liefert.

6 LITERATURVERZEICHNIS

- Abu Kwaik, Y. (1996) The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. *Appl Environ Microbiol* **62**: 2022-2028.
- Abu-Zant, A., Jones, S., Asare, R., Suttles, J., Price, C., Graham, J., and Kwaik, Y.A. (2007) Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila. *Cell Microbiol* **9**: 246-264.
- Adeleke, A.A., Fields, B.S., Benson, R.F., Daneshvar, M.I., Pruckler, J.M., Ratcliff, R.M., Harrison, T.G., Weyant, R.S., Birtles, R.J., Raoult, D., and Halablab, M.A. (2001) Legionella drozanskii sp. nov., Legionella rowbothamii sp. nov. and Legionella fallonii sp. nov.: three unusual new Legionella species. *Int J Syst Evol Microbiol* **51**: 1151-1160.
- Ahmed, S.A., Gogal, R.M., Jr., and Walsh, J.E. (1994) A new rapid and simple nonradioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. *J Immunol Methods* **170**: 211-224.
- Albert-Weissenberger, C., Cazalet, C., and Buchrieser, C. (2007) Legionella pneumophila a human pathogen that co-evolved with fresh water protozoa. *Cell Mol Life Sci* **64**: 432-448.
- Alli, O.A., Gao, L.Y., Pedersen, L.L., Zink, S., Radulic, M., Doric, M., and Abu Kwaik, Y. (2000) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. *Infect Immun* 68: 6431-6440.
- Alli, O.A., Zink, S., von Lackum, N.K., and Abu-Kwaik, Y. (2003) Comparative assessment of virulence traits in Legionella spp. *Microbiology* **149**: 631-641.
- Andrews, H.L., Vogel, J.P., and Isberg, R.R. (1998) Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. *Infect Immun* **66**: 950-958.
- Antelmann, H., Williams, R.C., Miethke, M., Wipat, A., Albrecht, D., Harwood, C.R., and Hecker, M. (2005) The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1-2. *Proteomics* **5**: 3684-3695.
- Aragon, V., Kurtz, S., Flieger, A., Neumeister, B., and Cianciotto, N.P. (2000) Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. *Infect Immun* 68: 1855-1863.
- Aragon, V., Kurtz, S., and Cianciotto, N.P. (2001) Legionella pneumophila major acid phosphatase and its role in intracellular infection. *Infect Immun* **69**: 177-185.
- Aragon, V., Rossier, O., and Cianciotto, N.P. (2002) Legionella pneumophila genes that encode lipase and phospholipase C activities. *Microbiology* **148**: 2223-2231.
- Atlas, R.M. (1999) Legionella: from environmental habitats to disease pathology, detection and control. *Environ Microbiol* **1**: 283-293.
- Bachman, M.A., and Swanson, M.S. (2001) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. *Mol Microbiol* **40**: 1201-1214.
- Bachman, M.A., and Swanson, M.S. (2004) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in

both the exponential phase and the stationary phase. *Infect Immun* **72**: 2468-2476.

- Balsalobre, C., Silvan, J.M., Berglund, S., Mizunoe, Y., Uhlin, B.E., and Wai, S.N. (2006) Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. *Mol Microbiol* **59**: 99-112.
- Banerji, S., Bewersdorff, M., Hermes, B., Cianciotto, N.P., and Flieger, A. (2005) Characterization of the major secreted zinc metalloprotease- dependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. *Infect Immun* **73**: 2899-2909.
- Banga, S., Gao, P., Shen, X., Fiscus, V., Zong, W.X., Chen, L., and Luo, Z.Q. (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. *Proc Natl Acad Sci U S A* **104**: 5121-5126.
- Baskerville, A., Conlan, J.W., Ashworth, L.A., and Dowsett, A.B. (1986) Pulmonary damage caused by a protease from Legionella pneumophila. *Br J Exp Pathol* **67**: 527-536.
- Bauman, S.J., and Kuehn, M.J. (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. *Microbes Infect* **8**: 2400-2408.
- Bellinger-Kawahara, C., and Horwitz, M.A. (1990) Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes. J Exp Med 172: 1201-1210.
- Beveridge, T.J. (1999) Structures of gram-negative cell walls and their derived membrane vesicles. *J Bacteriol* **181**: 4725-4733.
- Blander, S.J., Szeto, L., Shuman, H.A., and Horwitz, M.A. (1990) An immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires' disease. *J Clin Invest* **86**: 817-824.
- Blomberg, A., Blomberg, L., Norbeck, J., Fey, S.J., Larsen, P.M., Larsen, M., Roepstorff, P., Degand, H., Boutry, M., Posch, A., and et al. (1995) Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. *Electrophoresis* 16: 1935-1945.
- Bozue, J.A., and Johnson, W. (1996) Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. *Infect Immun* **64**: 668-673.
- Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**: 248-254.
- Breiman, R.F., Cozen, W., Fields, B.S., Mastro, T.D., Carr, S.J., Spika, J.S., and Mascola, L. (1990) Role of air sampling in investigation of an outbreak of legionnaires' disease associated with exposure to aerosols from an evaporative condenser. *J Infect Dis* 161: 1257-1261.
- Breiman, R.F., and Butler, J.C. (1998) Legionnaires' disease: clinical, epidemiological, and public health perspectives. *Semin Respir Infect* **13**: 84-89.
- Brüggemann, H., Cazalet, C., and Buchrieser, C. (2006a) Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. *Curr Opin Microbiol* **9**: 86-94.

- Brüggemann, H., Hagman, A., Jules, M., Sismeiro, O., Dillies, M.A., Gouyette, C., Kunst, F., Steinert, M., Heuner, K., Coppee, J.Y., and Buchrieser, C. (2006b) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. *Cell Microbiol* 8: 1228-1240.
- Bumann, D., Aksu, S., Wendland, M., Janek, K., Zimny-Arndt, U., Sabarth, N., Meyer, T.F., and Jungblut, P.R. (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. *Infect Immun* **70**: 3396-3403.
- Byrd, T.F., and Horwitz, M.A. (2000) Aberrantly low transferrin receptor expression on human monocytes is associated with nonpermissiveness for Legionella pneumophila growth. *J Infect Dis* **181**: 1394-1400.
- Byrne, B., and Swanson, M.S. (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. *Infect Immun* **66**: 3029-3034.
- Campodonico, E.M., Chesnel, L., and Roy, C.R. (2005) A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. *Mol Microbiol* 56: 918-933.
- Cazalet, C., Rusniok, C., Brüggemann, H., Zidane, N., Magnier, A., Ma, L., Tichit, M., Jarraud, S., Bouchier, C., Vandenesch, F., Kunst, F., Etienne, J., Glaser, P., and Buchrieser, C. (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. *Nat Genet* 36: 1165-1173.
- Chang, B., Kura, F., Amemura-Maekawa, J., Koizumi, N., and Watanabe, H. (2005) Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. *Infect Immun* **73**: 4272-4280.
- Chen, J., de Felipe, K.S., Clarke, M., Lu, H., Anderson, O.R., Segal, G., and Shuman, H.A. (2004) Legionella effectors that promote nonlytic release from protozoa. *Science* **303**: 1358-1361.
- Chen, J., Reyes, M., Clarke, M., and Shuman, H.A. (2007) Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. *Cell Microbiol* **9**: 1660-1671.
- Chi, B., Qi, M., and Kuramitsu, H.K. (2003) Role of dentilisin in Treponema denticola epithelial cell layer penetration. *Res Microbiol* **154**: 637-643.
- Chien, M., Morozova, I., Shi, S., Sheng, H., Chen, J., Gomez, S.M., Asamani, G., Hill, K., Nuara, J., Feder, M., Rineer, J., Greenberg, J.J., Steshenko, V., Park, S.H., Zhao, B., Teplitskaya, E., Edwards, J.R., Pampou, S., Georghiou, A., Chou, I.C., Iannuccilli, W., Ulz, M.E., Kim, D.H., Geringer-Sameth, A., Goldsberry, C., Morozov, P., Fischer, S.G., Segal, G., Qu, X., Rzhetsky, A., Zhang, P., Cayanis, E., De Jong, P.J., Ju, J., Kalachikov, S., Shuman, H.A., and Russo, J.J. (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. *Science* 305: 1966-1968.
- Cianciotto, N.P. (2007) Iron acquisition by Legionella pneumophila. *Biometals* **20**: 323-331.
- Ciofu, O., Beveridge, T.J., Kadurugamuwa, J., Walther-Rasmussen, J., and Hoiby, N. (2000) Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. *J Antimicrob Chemother* **45**: 9-13.
- Cirillo, J.D., Cirillo, S.L., Yan, L., Bermudez, L.E., Falkow, S., and Tompkins, L.S. (1999) Intracellular growth in Acanthamoeba castellanii affects monocyte entry

mechanisms and enhances virulence of Legionella pneumophila. *Infect Immun* **67**: 4427-4434.

- Cirillo, S.L., Lum, J., and Cirillo, J.D. (2000) Identification of novel loci involved in entry by Legionella pneumophila. *Microbiology* **146 (Pt 6)**: 1345-1359.
- Cirillo, S.L., Bermudez, L.E., El-Etr, S.H., Duhamel, G.E., and Cirillo, J.D. (2001) Legionella pneumophila entry gene rtxA is involved in virulence. *Infect Immun* **69**: 508-517.
- Cirillo, S.L., Yan, L., Littman, M., Samrakandi, M.M., and Cirillo, J.D. (2002) Role of the Legionella pneumophila rtxA gene in amoebae. *Microbiology* **148**: 1667-1677.
- Clemens, D.L., and Horwitz, M.A. (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. *J Exp Med* **181**: 257-270.
- Conlan, J.W., Baskerville, A., and Ashworth, L.A. (1986) Separation of Legionella pneumophila proteases and purification of a protease which produces lesions like those of Legionnaires' disease in guinea pig lung. *J Gen Microbiol* **132**: 1565-1574.
- Conover, G.M., Derre, I., Vogel, J.P., and Isberg, R.R. (2003) The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. *Mol Microbiol* **48**: 305-321.
- Darelid, J., Lofgren, S., and Malmvall, B.E. (2002) Control of nosocomial Legionnaires' disease by keeping the circulating hot water temperature above 55 degrees C: experience from a 10-year surveillance programme in a district general hospital. *J Hosp Infect* **50**: 213-219.
- De Buck, E., Maes, L., Meyen, E., Van Mellaert, L., Geukens, N., Anne, J., and Lammertyn, E. (2005) Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. *Biochem Biophys Res Commun* **331**: 1413-1420.
- de Felipe, K.S., Pampou, S., Jovanovic, O.S., Pericone, C.D., Ye, S.F., Kalachikov, S., and Shuman, H.A. (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. *J Bacteriol* **187**: 7716-7726.
- DebRoy, S., Aragon, V., Kurtz, S., and Cianciotto, N.P. (2006a) Legionella pneumophila Mip, a surface-exposed peptidylproline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants. *Infect Immun* **74**: 5152-5160.
- DebRoy, S., Dao, J., Soderberg, M., Rossier, O., and Cianciotto, N.P. (2006b) Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. *Proc Natl Acad Sci U S A* **103**: 19146-19151.
- Desvaux, M., Parham, N.J., Scott-Tucker, A., and Henderson, I.R. (2004) The general secretory pathway: a general misnomer? *Trends Microbiol* **12**: 306-309.
- Diederen, B.M., de Jong, C.M., Marmouk, F., Kluytmans, J.A., Peeters, M.F., and Van der Zee, A. (2007) Evaluation of real-time PCR for the early detection of Legionella pneumophila DNA in serum samples. *J Med Microbiol* **56**: 94-101.
- Doleans-Jordheim, A., Akermi, M., Ginevra, C., Cazalet, C., Kay, E., Schneider, D., Buchrieser, C., Atlan, D., Vandenesch, F., Etienne, J., and Jarraud, S. (2006) Growth-phase-dependent mobility of the lvh-encoding region in Legionella pneumophila strain Paris. *Microbiology* **152**: 3561-3568.

- Donlan, R.M., Forster, T., Murga, R., Brown, E., Lucas, C., Carpenter, J., and Fields, B. (2005) Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants. *Biofouling* **21**: 1-7.
- Dunsmore, S.E., and Rannels, D.E. (1996) Extracellular matrix biology in the lung. *Am J Physiol* **270**: L3-27.
- Fernandez-Moreira, E., Helbig, J.H., and Swanson, M.S. (2006) Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. *Infect Immun* **74**: 3285-3295.
- Ferrari, G., Garaguso, I., Adu-Bobie, J., Doro, F., Taddei, A.R., Biolchi, A., Brunelli, B., Giuliani, M.M., Pizza, M., Norais, N., and Grandi, G. (2006) Outer membrane vesicles from group B Neisseria meningitidis delta gna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. *Proteomics* 6: 1856-1866.
- Fettes, P.S., Susa, M., Hacker, J., and Marre, R. (2000) Characterization of the Legionella pneumophila gene ligA. *Int J Med Microbiol* **290**: 239-250.
- Fields, B.S. (1996) The molecular ecology of legionellae. *Trends Microbiol* **4**: 286-290.
- Fields, B.S., Haupt, T., Davis, J.P., Arduino, M.J., Miller, P.H., and Butler, J.C. (2001) Pontiac fever due to Legionella micdadei from a whirlpool spa: possible role of bacterial endotoxin. *J Infect Dis* 184: 1289-1292.
- Fields, B.S., Benson, R.F., and Besser, R.E. (2002) Legionella and Legionnaires' disease: 25 years of investigation. *Clin Microbiol Rev* **15**: 506-526.
- Fiocca, R., Necchi, V., Sommi, P., Ricci, V., Telford, J., Cover, T.L., and Solcia, E. (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. *J Pathol* **188**: 220-226.
- Flesher, A.R., Ito, S., Mansheim, B.J., and Kasper, D.L. (1979) The cell envelope of the Legionnaires' disease bacterium. Morphologic and biochemical characteristics. *Ann Intern Med* **90**: 628-630.
- Flieger, A., Gongab, S., Faigle, M., Mayer, H.A., Kehrer, U., Mussotter, J., Bartmann, P., and Neumeister, B. (2000) Phospholipase A secreted by Legionella pneumophila destroys alveolar surfactant phospholipids. *FEMS Microbiol Lett* **188**: 129-133.
- Flieger, A., Neumeister, B., and Cianciotto, N.P. (2002) Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. *Infect Immun* **70**: 6094-6106.
- Flieger, A., Rydzewski, K., Banerji, S., Broich, M., and Heuner, K. (2004) Cloning and characterization of the gene encoding the major cell-associated phospholipase A of Legionella pneumophila, plaB, exhibiting hemolytic activity. *Infect Immun* 72: 2648-2658.
- Fliermans, C.B., Cherry, W.B., Orrison, L.H., Smith, S.J., Tison, D.L., and Pope, D.H. (1981) Ecological distribution of Legionella pneumophila. *Appl Environ Microbiol* **41**: 9-16.
- Fraser, D.W., Tsai, T.R., Orenstein, W., Parkin, W.E., Beecham, H.J., Sharrar, R.G., Harris, J., Mallison, G.F., Martin, S.M., McDade, J.E., Shepard, C.C., and Brachman, P.S. (1977) Legionnaires' disease: description of an epidemic of pneumonia. *N Engl J Med* **297**: 1189-1197.

- Gal-Mor, O., Zusman, T., and Segal, G. (2002) Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. *J Bacteriol* **184**: 3823-3833.
- Gamazo, C., and Moriyon, I. (1987) Release of outer membrane fragments by exponentially growing Brucella melitensis cells. *Infect Immun* **55**: 609-615.
- Gao, L.Y., Harb, O.S., and Kwaik, Y.A. (1998) Identification of macrophage-specific infectivity loci (mil) of Legionella pneumophila that are not required for infectivity of protozoa. *Infect Immun* 66: 883-892.
- Gao, L.Y., and Abu Kwaik, Y. (1999a) Activation of caspase 3 during Legionella pneumophila-induced apoptosis. *Infect Immun* **67**: 4886-4894.
- Gao, L.Y., and Abu Kwaik, Y. (1999b) Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. *Infect Immun* **67**: 862-870.
- Gao, L.Y., and Kwaik, Y.A. (2000) The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. *Environ Microbiol* **2**: 79-90.
- Garcia, M.T., Jones, S., Pelaz, C., Millar, R.D., and Abu Kwaik, Y. (2007) Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. *Environ Microbiol* **9**: 1267-1277.
- Garduno, R.A., Faulkner, G., Trevors, M.A., Vats, N., and Hoffman, P.S. (1998a) Immunolocalization of Hsp60 in Legionella pneumophila. *J Bacteriol* **180**: 505-513.
- Garduno, R.A., Garduno, E., and Hoffman, P.S. (1998b) Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. *Infect Immun* **66**: 4602-4610.
- Gardy, J.L., Laird, M.R., Chen, F., Rey, S., Walsh, C.J., Ester, M., and Brinkman, F.S. (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. *Bioinformatics* 21: 617-623.
- George, J.R., Pine, L., Reeves, M.W., and Harrell, W.K. (1980) Amino acid requirements of Legionella pneumophila. *J Clin Microbiol* **11**: 286-291.
- Gibson, F.C., 3rd, Tzianabos, A.O., and Rodgers, F.G. (1994) Adherence of Legionella pneumophila to U-937 cells, guinea-pig alveolar macrophages, and MRC-5 cells by a novel, complement-independent binding mechanism. *Can J Microbiol* **40**: 865-872.
- Glick, T.H., Gregg, M.B., Berman, B., Mallison, G., Rhodes, W.W., Jr., and Kassanoff, I. (1978) Pontiac fever. An epidemic of unknown etiology in a health department: I. Clinical and epidemiologic aspects. *Am J Epidemiol* **107**: 149-160.
- Goerke, J. (1998) Pulmonary surfactant: functions and molecular composition. *Biochim Biophys Acta* **1408**: 79-89.
- Görg, A., Boguth, G., Obermaier, C., Posch, A., and Weiss, W. (1995) Twodimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. *Electrophoresis* **16**: 1079-1086.
- Hägele, S., Hacker, J., and Brand, B.C. (1998) Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death. *FEMS Microbiol Lett* **169**: 51-58.

- Hales, L.M., and Shuman, H.A. (1999) Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. *Infect Immun* **67**: 3662-3666.
- Harb, O.S., Venkataraman, C., Haack, B.J., Gao, L.Y., and Kwaik, Y.A. (1998)
 Heterogeneity in the attachment and uptake mechanisms of the Legionnaires' disease bacterium, Legionella pneumophila, by protozoan hosts. *Appl Environ Microbiol* 64: 126-132.
- Hayden, R.T., Uhl, J.R., Qian, X., Hopkins, M.K., Aubry, M.C., Limper, A.H., Lloyd, R.V., and Cockerill, F.R. (2001) Direct detection of Legionella species from bronchoalveolar lavage and open lung biopsy specimens: comparison of LightCycler PCR, in situ hybridization, direct fluorescence antigen detection, and culture. *J Clin Microbiol* **39**: 2618-2626.
- Heffelfinger, J.D., Kool, J.L., Fridkin, S., Fraser, V.J., Hageman, J., Carpenter, J., and Whitney, C.G. (2003) Risk of hospital-acquired legionnaires' disease in cities using monochloramine versus other water disinfectants. *Infect Control Hosp Epidemiol* 24: 569-574.
- Helbig, J.H., Luck, P.C., Steinert, M., Jacobs, E., and Witt, M. (2001) Immunolocalization of the Mip protein of intracellularly and extracellularly grown Legionella pneumophila. *Lett Appl Microbiol* **32**: 83-88.
- Heuner, K., Bender-Beck, L., Brand, B.C., Luck, P.C., Mann, K.H., Marre, R., Ott, M., and Hacker, J. (1995) Cloning and genetic characterization of the flagellum subunit gene (flaA) of Legionella pneumophila serogroup 1. *Infect Immun* 63: 2499-2507.
- Heussen, C., and Dowdle, E.B. (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. *Anal Biochem* **102**: 196-202.
- Hickey, E.K., and Cianciotto, N.P. (1997) An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. *Infect Immun* **65**: 133-143.
- Hoekstra, D., van der Laan, J.W., de Leij, L., and Witholt, B. (1976) Release of outer membrane fragments from normally growing Escherichia coli. *Biochim Biophys Acta* **455**: 889-899.
- Hoffman, P.S., Ripley, M., and Weeratna, R. (1992) Cloning and nucleotide sequence of a gene (ompS) encoding the major outer membrane protein of Legionella pneumophila. *J Bacteriol* **174**: 914-920.
- Horwitz, M.A. (1983) Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. *J Exp Med* **158**: 1319-1331.
- Horwitz, M.A. (1984) Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. *Cell* **36**: 27-33.
- Horwitz, M.A., and Maxfield, F.R. (1984) Legionella pneumophila inhibits acidification of its phagosome in human monocytes. *J Cell Biol* **99**: 1936-1943.
- Horwitz, M.A. (1987) Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. *J Exp Med* **166**: 1310-1328.
- Howe, T.R., and Iglewski, B.H. (1984) Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model. *Infect Immun* **43**: 1058-1063.

- Ismail, S., Hampton, M.B., and Keenan, J.I. (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. *Infect Immun* **71**: 5670-5675.
- Jacobi, S., and Heuner, K. (2003) Description of a putative type I secretion system in Legionella pneumophila. *Int J Med Microbiol* **293**: 349-358.
- Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. (2006) From genomics to chemical genomics: new developments in KEGG. *Nucleic Acids Res* 34: D354-357.
- Kato, S., Kowashi, Y., and Demuth, D.R. (2002) Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. *Microb Pathog* **32**: 1-13.
- Katz, S.M., and Hammel, J.M. (1987) The effect of drying, heat, and pH on the survival of Legionella pneumophila. *Ann Clin Lab Sci* **17**: 150-156.
- Kaufmann, A.F., McDade, J.E., Patton, C.M., Bennett, J.V., Skaliy, P., Feeley, J.C., Anderson, D.C., Potter, M.E., Newhouse, V.F., Gregg, M.B., and Brachman, P.S. (1981) Pontiac fever: isolation of the etiologic agent (Legionella pneumophilia) and demonstration of its mode of transmission. *Am J Epidemiol* 114: 337-347.
- Kessler, E., Israel, M., Landshman, N., Chechick, A., and Blumberg, S. (1982) In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives. *Infect Immun* **38**: 716-723.
- Kesty, N.C., and Kuehn, M.J. (2004) Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. *J Biol Chem* **279**: 2069-2076.
- Kesty, N.C., Mason, K.M., Reedy, M., Miller, S.E., and Kuehn, M.J. (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. *Embo J* 23: 4538-4549.
- Kilvington, S., and Price, J. (1990) Survival of Legionella pneumophila within cysts of Acanthamoeba polyphaga following chlorine exposure. *J Appl Bacteriol* **68**: 519-525.
- Kirby, J.E., Vogel, J.P., Andrews, H.L., and Isberg, R.R. (1998) Evidence for poreforming ability by Legionella pneumophila. *Mol Microbiol* **27**: 323-336.
- Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. *Humangenetik* **26**: 231-243.
- Kobayashi, H., Uematsu, K., Hirayama, H., and Horikoshi, K. (2000) Novel toluene elimination system in a toluene-tolerant microorganism. *J Bacteriol* **182**: 6451-6455.
- Kolling, G.L., and Matthews, K.R. (1999) Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. *Appl Environ Microbiol* **65**: 1843-1848.
- Kouokam, J.C., Wai, S.N., Fallman, M., Dobrindt, U., Hacker, J., and Uhlin, B.E.
 (2006) Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. *Infect Immun* 74: 2022-2030.
- Krinos, C., High, A.S., and Rodgers, F.G. (1999) Role of the 25 kDa major outer membrane protein of Legionella pneumophila in attachment to U-937 cells and its potential as a virulence factor for chick embryos. *J Appl Microbiol* 86: 237-244.
- Kuehn, M.J., and Kesty, N.C. (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. *Genes Dev* **19**: 2645-2655.

- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**: 680-685.
- Lammertyn, E., and Anne, J. (2004) Protein secretion in Legionella pneumophila and its relation to virulence. *FEMS Microbiol Lett* **238**: 273-279.
- Lammertyn, E., Van Mellaert, L., Meyen, E., Lebeau, I., De Buck, E., Anne, J., and Geukens, N. (2004) Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. *Microbiology* **150**: 1475-1483.
- Li, Z., Clarke, A.J., and Beveridge, T.J. (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. *J Bacteriol* **180**: 5478-5483.
- Liles, M.R., Scheel, T.A., and Cianciotto, N.P. (2000) Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. *J Bacteriol* **182**: 749-757.
- Liu, Y., and Luo, Z.Q. (2007) The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. *Infect Immun* **75**: 592-603.
- Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D.S., Poulin, B., Anvik, J., Macdonell, C., and Eisner, R. (2004) Predicting subcellular localization of proteins using machine-learned classifiers. *Bioinformatics* **20**: 547-556.
- Luo, Z.Q., and Isberg, R.R. (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. *Proc Natl Acad Sci U S A* **101**: 841-846.
- Machner, M.P., and Isberg, R.R. (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. *Dev Cell* **11**: 47-56.
- Mariencheck, W.I., Alcorn, J.F., Palmer, S.M., and Wright, J.R. (2003) Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. *Am J Respir Cell Mol Biol* **28**: 528-537.
- Marston, B.J., Lipman, H.B., and Breiman, R.F. (1994) Surveillance for Legionnaires' disease. Risk factors for morbidity and mortality. *Arch Intern Med* **154**: 2417-2422.
- Marston, B.J., Plouffe, J.F., File, T.M., Jr., Hackman, B.A., Salstrom, S.J., Lipman, H.B., Kolczak, M.S., and Breiman, R.F. (1997) Incidence of communityacquired pneumonia requiring hospitalization. Results of a population-based active surveillance Study in Ohio. The Community-Based Pneumonia Incidence Study Group. *Arch Intern Med* **157**: 1709-1718.
- Mashburn, L.M., and Whiteley, M. (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. *Nature* **437**: 422-425.
- Matthews, M., and Roy, C.R. (2000) Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. *Infect Immun* **68**: 3971-3982.
- McBride, J., Ingram, P.R., Henriquez, F.L., and Roberts, C.W. (2005) Development of colorimetric microtiter plate assay for assessment of antimicrobials against Acanthamoeba. *J Clin Microbiol* **43**: 629-634.
- McBroom, A.J., and Kuehn, M.J. (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. In *Mol Microbiol*. Vol. 63, pp. 545-558.
- McDade, J.E., Shepard, C.C., Fraser, D.W., Tsai, T.R., Redus, M.A., and Dowdle, W.R. (1977) Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. *N Engl J Med* **297**: 1197-1203.

- Moffat, J.F., Edelstein, P.H., Regula, D.P., Jr., Cirillo, J.D., and Tompkins, L.S. (1994) Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. *Mol Microbiol* **12**: 693-705.
- Molmeret, M., Bitar, D.M., Han, L., and Kwaik, Y.A. (2004a) Disruption of the phagosomal membrane and egress of Legionella pneumophila into the cytoplasm during the last stages of intracellular infection of macrophages and Acanthamoeba polyphaga. *Infect Immun* **72**: 4040-4051.
- Molmeret, M., Bitar, D.M., Han, L., and Kwaik, Y.A. (2004b) Cell biology of the intracellular infection by Legionella pneumophila. *Microbes Infect* 6: 129-139.
- Molmeret, M., Zink, S.D., Han, L., Abu-Zant, A., Asari, R., Bitar, D.M., and Abu Kwaik, Y. (2004c) Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phagosome. *Cell Microbiol* **6**: 33-48.
- Molofsky, A.B., and Swanson, M.S. (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. *Mol Microbiol* **50**: 445-461.
- Molofsky, A.B., and Swanson, M.S. (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. *Mol Microbiol* **53**: 29-40.
- Molofsky, A.B., Shetron-Rama, L.M., and Swanson, M.S. (2005) Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. *Infect Immun* **73**: 5720-5734.
- Murata, T., Delprato, A., Ingmundson, A., Toomre, D.K., Lambright, D.G., and Roy, C.R. (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. *Nat Cell Biol* **8**: 971-977.
- Murdoch, D.R. (2003) Diagnosis of Legionella infection. Clin Infect Dis 36: 64-69.
- Mykietiuk, A., Carratala, J., Fernandez-Sabe, N., Dorca, J., Verdaguer, R., Manresa, F., and Gudiol, F. (2005) Clinical outcomes for hospitalized patients with Legionella pneumonia in the antigenuria era: the influence of levofloxacin therapy. *Clin Infect Dis* **40**: 794-799.
- Nagai, H., Kagan, J.C., Zhu, X., Kahn, R.A., and Roy, C.R. (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. *Science* **295**: 679-682.
- Newton, H.J., Sansom, F.M., Bennett-Wood, V., and Hartland, E.L. (2006) Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of IpnE, a gene required for efficient host cell entry. *Infect Immun* **74**: 1683-1691.
- Nguyen, T.M., Ilef, D., Jarraud, S., Rouil, L., Campese, C., Che, D., Haeghebaert, S., Ganiayre, F., Marcel, F., Etienne, J., and Desenclos, J.C. (2006) A community-wide outbreak of legionnaires disease linked to industrial cooling towers--how far can contaminated aerosols spread? *J Infect Dis* **193**: 102-111.
- Ninio, S., Zuckman-Cholon, D.M., Cambronne, E.D., and Roy, C.R. (2005) The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. *Mol Microbiol* **55**: 912-926.
- Ninio, S., and Roy, C.R. (2007) Effector proteins translocated by Legionella pneumophila: strength in numbers. *Trends Microbiol* **15**: 372-380.
- Nouwens, A.S., Willcox, M.D., Walsh, B.J., and Cordwell, S.J. (2002) Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa. *Proteomics* **2**: 1325-1346.

- O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. *J* Biol Chem **250**: 4007-4021.
- Oster, P., Lennon, D., O'Hallahan, J., Mulholland, K., Reid, S., and Martin, D. (2005) MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. *Vaccine* **23**: 2191-2196.
- Payne, N.R., and Horwitz, M.A. (1987) Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. *J Exp Med* **166**: 1377-1389.
- Pettit, R.K., and Judd, R.C. (1992) The interaction of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae with normal human serum. *Mol Microbiol* **6**: 729-734.
- Quinn, F.D., and Tompkins, L.S. (1989) Analysis of a cloned sequence of Legionella pneumophila encoding a 38 kD metalloprotease possessing haemolytic and cytotoxic activities. *Mol Microbiol* **3**: 797-805.
- Rechnitzer, C., and Blom, J. (1989) Engulfment of the Philadelphia strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with other Legionella strains and species. *Apmis* **97**: 105-114.
- Retzlaff, C., Yamamoto, Y., Okubo, S., Hoffman, P.S., Friedman, H., and Klein, T.W. (1996) Legionella pneumophila heat-shock protein-induced increase of interleukin-1 beta mRNA involves protein kinase C signalling in macrophages. *Immunology* **89**: 281-288.
- Rey, S., Acab, M., Gardy, J.L., Laird, M.R., deFays, K., Lambert, C., and Brinkman, F.S. (2005) PSORTdb: a protein subcellular localization database for bacteria. *Nucleic Acids Res* 33: D164-168.
- Ridenour, D.A., Cirillo, S.L., Feng, S., Samrakandi, M.M., and Cirillo, J.D. (2003) Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion. *Infect Immun* **71**: 6256-6263.
- Robey, M., and Cianciotto, N.P. (2002) Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. *Infect Immun* **70**: 5659-5669.
- Robinson, C.G., and Roy, C.R. (2006) Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. *Cell Microbiol* **8**: 793-805.
- Rodgers, F.G. (1979) Ultrastructure of Legionella pneumophila. *J Clin Pathol* **32**: 1195-1202.
- Rogers, J., Dowsett, A.B., Dennis, P.J., Lee, J.V., and Keevil, C.W. (1994) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. *Appl Environ Microbiol* **60**: 1585-1592.
- Rossier, O., and Cianciotto, N.P. (2001) Type II protein secretion is a subset of the PiID-dependent processes that facilitate intracellular infection by Legionella pneumophila. *Infect Immun* **69**: 2092-2098.
- Rossier, O., Starkenburg, S.R., and Cianciotto, N.P. (2004) Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. *Infect Immun* **72**: 310-321.
- Rossier, O., and Cianciotto, N.P. (2005) The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. *Infect Immun* **73**: 2020-2032.

- Sakai, F., Tokuda, H., Goto, H., Tateda, K., Johkoh, T., Nakamura, H., Matsuoka, T., Fujita, A., Nakamori, Y., Aoki, S., and Ohdama, S. (2007) Computed tomographic features of Legionella pneumophila pneumonia in 38 cases. J Comput Assist Tomogr 31: 125-131.
- Sansom, F.M., Newton, H.J., and Hartland, E.L. (2006) Eukaryotic-like proteins of Legionella pneumophila as potential virulence factors. In *Legionella: State of the Art 30 Years after its Recognition*. Cianciotto, N.P., Abu Kwaik, Y., Edelstein, P.H., Fields, B.S., Geary, D.F., Harrison, T.G., Joseph, C.A., Ratcliff, R.M., Stout, J.E. and Swanson, M.S. (eds.): Washington, DC: ASM Press, pp. 246-250.
- Sansom, F.M., Newton, H.J., Crikis, S., Cianciotto, N.P., Cowan, P.J., d'Apice, A.J., and Hartland, E.L. (2007) A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila. *Cell Microbiol* **9**: 1922-1935.
- Santic, M., Asare, R., Doric, M., and Abu Kwaik, Y. (2007) Host-dependent trigger of caspases and apoptosis by Legionella pneumophila. *Infect Immun* **75**: 2903-2913.
- Schmeck, B., N'Guessan, P.D., Ollomang, M., Lorenz, J., Zahlten, J., Opitz, B., Flieger, A., Suttorp, N., and Hippenstiel, S. (2007) Legionella pneumophilainduced NF-kappaB- and MAPK-dependent cytokine release by lung epithelial cells. *Eur Respir J* 29: 25-33.
- Schooling, S.R., and Beveridge, T.J. (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. *J Bacteriol* **188**: 5945-5957.
- Segal, G., Russo, J.J., and Shuman, H.A. (1999) Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. *Mol Microbiol* **34**: 799-809.
- Segal, G., and Shuman, H.A. (1999) Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. *Infect Immun* **67**: 2117-2124.
- Shohdy, N., Efe, J.A., Emr, S.D., and Shuman, H.A. (2005) Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. *Proc Natl Acad Sci U S A* **102**: 4866-4871.
- Shuman, H.A., Purcell, M., Segal, G., Hales, L., and Wiater, L.A. (1998) Intracellular multiplication of Legionella pneumophila: human pathogen or accidental tourist? *Curr Top Microbiol Immunol* **225**: 99-112.
- Shuman, H.A., Pericone, C.D., Shohdy, N., de Felipe, K.S., and Clarke, M. (2006) Function of Legionella effectors. In *Legionella: State of the Art 30 Years after its Recognition*. Cianciotto, N.P., Abu Kwaik, Y., Edelstein, P.H., Fields, B.S., Geary, D.F., Harrison, T.G., Joseph, C.A., Ratcliff, R.M., Stout, J.E. and Swanson, M.S. (eds.): Washington, DC: ASM Press, pp. 177-183.
- Soderberg, M.A., Rossier, O., and Cianciotto, N.P. (2004) The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. *J Bacteriol* **186**: 3712-3720.
- Srinivasan, A., Bova, G., Ross, T., Mackie, K., Paquette, N., Merz, W., and Perl, T.M. (2003) A 17-month evaluation of a chlorine dioxide water treatment system to control Legionella species in a hospital water supply. *Infect Control Hosp Epidemiol* 24: 575-579.
- Steele, T.W. (1989) Legionnaires' disease in South Australia, 1979-1988. *Med J Aust* **151**: 322, 325-326, 328.

- Steinert, M., Emody, L., Amann, R., and Hacker, J. (1997) Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. *Appl Environ Microbiol* **63**: 2047-2053.
- Stone, B.J., and Abu Kwaik, Y. (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. *Infect Immun* 66: 1768-1775.
- Stout, J.E., and Yu, V.L. (2003) Experiences of the first 16 hospitals using coppersilver ionization for Legionella control: implications for the evaluation of other disinfection modalities. *Infect Control Hosp Epidemiol* **24**: 563-568.
- Sturgill-Koszycki, S., and Swanson, M.S. (2000) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. *J Exp Med* **192**: 1261-1272.
- Swanson, M.S., and Isberg, R.R. (1995) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. *Infect Immun* **63**: 3609-3620.
- Swanson, M.S., and Hammer, B.K. (2000) Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. *Annu Rev Microbiol* **54**: 567-613.
- Tilney, L.G., Harb, O.S., Connelly, P.S., Robinson, C.G., and Roy, C.R. (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. *J Cell Sci* **114**: 4637-4650.
- Trost, M., Wehmhoner, D., Karst, U., Dieterich, G., Wehland, J., and Jansch, L. (2005) Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. *Proteomics* **5**: 1544-1557.
- Tullius, M.V., Harth, G., and Horwitz, M.A. (2001) High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. *Infect Immun* 69: 6348-6363.
- Venkataraman, C., Haack, B.J., Bondada, S., and Abu Kwaik, Y. (1997) Identification of a Gal/GalNAc lectin in the protozoan Hartmannella vermiformis as a potential receptor for attachment and invasion by the Legionnaires' disease bacterium. J Exp Med 186: 537-547.
- Vincent, C.D., Friedman, J.R., Jeong, K.C., Buford, E.C., Miller, J.L., and Vogel, J.P. (2006) Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. *Mol Microbiol* **62**: 1278-1291.
- Viswanathan, V.K., Edelstein, P.H., Pope, C.D., and Cianciotto, N.P. (2000) The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. *Infect Immun* **68**: 1069-1079.
- Viswanathan, V.K., Kurtz, S., Pedersen, L.L., Abu-Kwaik, Y., Krcmarik, K., Mody, S., and Cianciotto, N.P. (2002) The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. *Infect Immun* **70**: 1842-1852.
- Vogel, J.P., Andrews, H.L., Wong, S.K., and Isberg, R.R. (1998) Conjugative transfer by the virulence system of Legionella pneumophila. *Science* **279**: 873-876.
- Wagner, C., Khan, A.S., Kamphausen, T., Schmausser, B., Unal, C., Lorenz, U.,
 Fischer, G., Hacker, J., and Steinert, M. (2007) Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. *Cell Microbiol* **9**: 450-462.

- Wai, S.N., Takade, A., and Amako, K. (1995) The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. *Microbiol Immunol* 39: 451-456.
- Wai, S.N., Lindmark, B., Soderblom, T., Takade, A., Westermark, M., Oscarsson, J., Jass, J., Richter-Dahlfors, A., Mizunoe, Y., and Uhlin, B.E. (2003) Vesiclemediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. *Cell* **115**: 25-35.
- Williams, J.N., Skipp, P.J., Humphries, H.E., Christodoulides, M., O'Connor, C.D., and Heckels, J.E. (2007) Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharidedeficient mutant. *Infect Immun* **75**: 1364-1372.
- Wilson, M., Seymour, R., and Henderson, B. (1998) Bacterial perturbation of cytokine networks. *Infect Immun* **66**: 2401-2409.
- Wintermeyer, E., Rdest, U., Ludwig, B., Debes, A., and Hacker, J. (1991) Characterization of legiolysin (lly), responsible for haemolytic activity, colour production and fluorescence of Legionella pneumophila. *Mol Microbiol* 5: 1135-1143.
- Wullings, B.A., and van der Kooij, D. (2006) Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 degrees C. Appl Environ Microbiol 72: 157-166.
- Yaron, S., Kolling, G.L., Simon, L., and Matthews, K.R. (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. *Appl Environ Microbiol* 66: 4414-4420.
- Zacheus, O.M., and Martikainen, P.J. (1996) Effect of heat flushing on the concentrations of Legionella pneumophila and other heterotrophic microbes in hot water systems of apartment buildings. *Can J Microbiol* **42**: 811-818.

7 ANHANG

Im Anhang sind Tabellen und Bilder mit den Gesamtdaten der 2-DE-Proteomanalyse verzeichnet. Die Tabellen- und Bildbeschreibungen sind wegen der besseren Übersichtlichkeit auf dieser Seite vorangestellt.

 Tab. A1:
 Detaillierte
 Protein und
 in
 silico-Daten
 aller
 identifizierter
 L. pneumophila

 Sekretomproteine.
 Sekretomprot

Aufgelistet sind Protein-spezifische Daten wie GI (GenInfo Identifier)-Nummer, Genbezeichnung, Identität (http://legionella.cu-genome.org/), molekulare Masse M_r und pl. Mit Hilfe von KEGG (http://www.genome.ad.jp/ kegg/) wurde die Funktion vorhergesagt (Kanehisa *et al.*, 2006). Proteine, die in KEGG nicht aufgeführt waren, wurden von Hand nach ihrer Funktion einsortiert bzw. gruppiert. Die Protein-Lokalisierung wurde mit PA-SUB (Lu *et al.*, 2004) und PSORTb (Gardy *et al.*, 2005; Rey *et al.*, 2005) berechnet. PSORTb wurde auch zur Berechnung von Signalpeptiden eingesetzt. Abschließend wurden die theoretischen Ergebnisse durch in der Literatur beschriebene Lokalisationen und verwendete Sekretionssysteme von Hand ergänzt.

(C) Zytoplasma; (IM) innere Membran; (P) Periplasma; (OM) äußere Membran; (E) extrazellulär.

- Abb. A1: Bei der Proteomanalyse eingesetzte repräsentative SSP- und OMV-Gele. Isolierte Protein-Fraktionen wurden auf IPG-Streifen im pH-Bereich 3 – 10 fokussiert und durch die SDS-PAGE der zweiten Dimension aufgetrennt. Die Gele wurden mit "Silver Coomassie" gefärbt. Anschließend wurden alle nummerierten Proteinspots ausgeschnitten und der Trypsin-Verdau durchgeführt. Nach der MALDI-TOF-Massenspektrometrie konnten den Spots anhand der Nummerierung identifizierte Proteine zugeordnet werden (s. Kap. 4.2.2).
- Tab. A2: Ergebnisse der MALDI-TOF-Massenspektrometrie (MS). Gelistet sind die Rohergebnisse der MALDI-TOF-MS, identifizierte Proteine und die zugehörige Zuordnung nach Spotnummern der in Abb. A1 gezeigten 2-DE-Gele. Peptidgemische, die einen Protein Score (Mascot) von mindestens 49 und einen Protein Score C.I. von mindestens 95% erzielten, wurden als positive Identifikation betrachtet. Bei schlechter Sequenzabdeckung bzw. Proteinüberlagerung in einem Spot wurden die stärksten Peaks mit MALDI-TOF-MS/MS analysiert. Ein Total Ion Score C.I. von mindestens 95% wurde als positiv betrachtet. Die identifizierten Proteine der einzelnen SSP- bzw. OMV-Gele wurden miteinander kombiniert und im Anschluß mit der Delta 2-D Software Referenzkarten der Proteome erstellt.

Tabellen A1 und A2 sind für eine einfachere Vergleichbarkeit analog zur Veröffentlichung in englischer Sprache dargestellt.

Tab. A1:	Detaillierte Protein-	- und in silico-Dater	n aller identifizierter L	pneumophila-Se	ekretomproteine.
----------	-----------------------	-----------------------	---------------------------	----------------	------------------

		· · ·	•-		-	Pred	icted			2-l anal	DE
GI no.	Gene	Identity (as defined in the genome)	Mr (Da)	pl	Predicted function KEGG	PSORTb	PA-SUB	Observed localization	Observed secretion	OMV	SSP
52840263	lpg0007	probable hydrolase	31860,84	5,53	Unknown		C				+
52840264	lpg0008	hypothetical protein lpg0008	47428,18	5,21	Hypothetical protein	С					+
52840288	lpg0032	leucine aminopeptidase	44692,56	5,53	Protein folding, sorting or degradation	Е	E/P	Е	II, (put. II)		+
52840293	lpg0037	artJ; arginine 3rd transport system periplasmic binding protein	28080,35	5,04	ABC transporters - general	Р	Р				+
52840297	lpg0041	hypothetical protein lpg0041	81136,70	5,87	Hypothetical protein	non-C			(put. II)	+	+
52840298	lpg0042	hypothetical protein lpg0042	25896,12	5,50	Hypothetical protein				(put. II)	+	
52840356	lpg0101	hypothetical protein lpg0101	28686,53	6,89	Hypothetical protein	non-C			(put. II)	+	
52840378	lpg0123	dsbA; thiol:disulfide interchange protein DsbA	24695,59	8,70	Protein folding, sorting or degradation	P/non-C	Р			+	
52840383	lpg0128	3-hydroxyisobutyrate dehydrogenase	32278,41	5,73	Amino acid metabolism						+
52840384	lpg0129	mmsA, methylmalonate-semialdehyde dehydrogenase	55247,05	6,26	Carbohydrate metabolism; amino acid metabolism	С					+
52840396	lpg0141	oligopeptidase A	78191,94	5,55	Protein folding, sorting or degradation	С	С				+
52840420	lpg0165	hypothetical protein lpg0165	16917,78	5,52	Hypothetical protein	multiple/ non-C			(put. II)		+
52840442	lpg0187	hypothetical protein lpg0187	52545,23	8,51	Hypothetical protein	non-C	E/P		(put. II)		+
52840444	lpg0189	hypothetical protein lpg0189	33303,32	4,87	Hypothetical protein	non-C		E	II, (put. II)		+
52840449	lpg0194	catalase/(hydro)peroxidase KatG	82862,77	7,67	Energy metabolism; amino acid metabolism	non-C	Р			+	+
52840493	lpg0238	gbsA; glycine betaine aldehyde dehydrogenase	52911,40	6,02	Amino acid metabolism	С					+
52840494	lpg0239	4-aminobutyrate aminotransferase	49017,37	7,64	Carbohydrate metabolism; amino acid metabolism	С	С				+
52840498	lpg0243	short chain dehydrogenase	21169,95	6,12	Involved in metabolism		С				+
52840499	lpg0244	pyridine nucleotide-disulfide oxidoreductase	50735,89	7,16	Other functions	С	С				+
52840519	lpg0264	hypothetical protein lpg0264	26460,56	6,38	Hypothetical protein	non-C		E	II, (put. II)		+
52840520	lpg0265	multicopper oxidase	58173,80	8,66	Other functions	Р	E/P				+
52840572	lpg0327	tufB; translation elongation factor Tu (EF- Tu)	43152,06	5,23	Other functions	С	С				+
52840601	lpg0356	ssb; single strand binding protein	17963,76	4,89	Other functions		С				+
52840619	lpg0374	hypothetical protein lpg0374	14205,74	5,39	Hypothetical protein	non-C			(put. II)	+	+
52840667	lpg0422	legY; amylase	51946,01	6,46	Involved in virulence/pathogenesis		E		(put. II)		+

		Identity	Mr		Predicted function	Pred localiz	icted zation	Observed	Observed	2-l anal	DE lysis
GI no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	ΟΜΥ	SSP
52840695	lpg0450	IcmK (DotH)	38901,52	5,97	Involved in virulence/pathogenesis	non-C		ОМ	(put. II)	+	
52840696	lpg0451	IcmE (DotG)	107740,9 9	5,57	Involved in virulence/pathogenesis			IM/ P		+	+
52840712	lpg0467	zinc metalloprotease (ProA1, Msp)	60631,06	5,33	Involved in virulence/pathogenesis	E/non-C	Е	Е	II, (put. II)	+	+
52840727	lpg0482	endo-1,4 beta-glucanase	42385,17	6,73	Involved in metabolism	non-C	Е		(put. II)	+	
52840742	lpg0497	adenosine deaminase	55620,04	6,11	Nucleotide metabolism	non-C			(put. II)		+
52840747	lpg0502	phosphatidylcholine hydrolyzing phospholipase	47935,24	6,54	Involved in virulence/pathogenesis				(put. II)	+	+
52840752	lpg0507	outer membrane protein OmpH	18864,92	9,14	Other functions	non-C	OM			+	
52840755	lpg0510	fabZ; (3R)-hydroxymyristoyl-(acyl carrier protein) dehydratase	17037,87	6,96	Lipid metabolism		С				+
52840776	lpg0532	sucA; 2-oxoglutarate dehydrogenase E1 component	106321,2 5	6,29	Carbohydrate metabolism; amino acid metabolism	С	С				+
52840841	lpg0604	aminotransferase	45855,18	5,84	Amino acid metabolism		С				+
52840849	lpg0612	alcohol dehydrogenase (NADP- dependent, zinc-type)	37905,25	6,56	Carbohydrate metabolism; lipid metabolism; xenobiotics biodegradation and metabolism	С	С				+
52840876	lpg0639	deoB; phosphopentomutase	44352,26	5,52	Carbohydrate metabolism; nucleotide metabolism	С	С				+
52840877	lpg0640	hsIV, ATP-dependent protease peptidase subunit	19695,36	6,32	Protein folding, sorting or degradation	С	С				+
52840883	lpg0646	wrbA, trp repressor binding protein	21066,58	6,04	Other functions		С				+
52840888	lpg0651	malate oxidoreductase	44317,12	5,35	Carbohydrate metabolism						+
52840901	lpg0664	rpe; D-ribulose-5-phosphate-3-epimerase	23571,18	6,03	Carbohydrate metabolism; energy metabolism		С				+
52840909	lpg0672	acetoacetate decarboxylase	28321,79	5,43	Carbohydrate metabolism; lipid metabolism		С			+	+
52840925	lpg0688	htpB; Hsp60, 60K heat shock protein HtpB	58371,87	5,27	Involved in virulence/pathogenesis		С	OM/ E		+	+
52840926	lpg0689	DNA binding stress protein	16596,48	6,07	Stress	С	С			+	+
52840945	lpg0708	IcmL-like	34606,96	4,86	Involved in virulence/pathogenesis	non-C	С		(put. II)		+
52840949	lpg0712	yjeA; endo-1,4-beta-xylanase-like	25764,32	6,84	Involved in metabolism	non-C			(put. II)		+
52840962	lpg0725	glyA3; serine hydroxymethyltransferase	45518,38	6,36	Energy metabolism; amino acid metabolism; metabolism of cofactors and vitamins	С	С				+
52840968	lpg0731	hypothetical protein lpg0731	26333,13	5,32	Hypothetical protein	IM/non-C				+	
52840969	lpg0732	hypothetical protein lpg0732	23406,42	5,77	Hypothetical protein	OM/non- C				+	

		Identity	Mr		Predicted function	Pred locali	icted zation	Observed	Observed	2-l anal	DE ysis
GI no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	ΟΜΥ	SSP
52840985	lpg0748	LPS biosynthesis protein, PseA-like	53469,38	6,12	Cell envelope	С					+
52841028	lpg0791	mip; macrophage infectivity potentiator (Mip)	25142,93	9,19	Involved in virulence/pathogenesis	OM/non- C	OM			+	
52841034	lpg0798	hypothetical protein lpg0798	14261,95	6,70	Hypothetical protein	non-C			(put. II)	+	+
52841047	lpg0811	mreB; rod shape determining protein MreB	37217,48	5,60	Cell envelope	С				+	
52841052	lpg0816	icd; isocitrate dehydrogenase, NADP- dependent	46387,64	6,22	Carbohydrate metabolism; energy metabolism; amino acid metabolism	С	С				+
52841109	lpg0873	hypothetical protein lpg0873	15229,71	6,04	Hypothetical protein	non-C		E	II, (put. II)	+	+
52841045	lpg0887	dapE; succinyl-diaminopimelate desuccinylase	52462,41	5,57	Amino acid metabolism		Е				+
52841125	lpg0890	metC; cystathionine beta-lyase	41948,56	6,71	Energy Metabolism; amino acid metabolism; metabolism of cofactors and vitamins	С	С				+
52841181	lpg0946	pdxJ; pyridoxal phosphate biosynthetic protein	30180,51	5,76	Metabolism of cofactors and vitamins	С	С				+
52841185	lpg0950	nitrilase	30067,59	5,93	Other functions	С					+
52841191	lpg0956	hypothetical protein lpg0956	44453,99	7,12	Hypothetical protein			E	II, (put. II)		+
52841192	lpg0957	hypothetical protein lpg0957	33592,70	5,52	Hypothetical protein				(put. II)	+	+
52841206	lpg0971	ecto-ATP diphosphohydrolase II	43614,92	6,26	Involved in virulence/pathogenesis	non-C			(put. II)	+	
52841264	lpg1030	hypothetical protein lpg1030	16637,71	6,96	Hypothetical protein				(put. II)		+
52841350	lpg1116	chitinase	83046,41	5,24	Involved in virulence/pathogenesis	E/non-C	E/OM/P	E	II, (put. II)	+	+
52841353	lpg1119	major acid phosphatase (Map)	39563,11	5,87	Involved in virulence/pathogenesis	non-C	E/P	E	II, (put. II)	+	+
52841390	lpg1156	aminopeptidase	44297,41	5,64	Protein folding, sorting or degradation	E	E		(put. II)		+
52841424	lpg1191	glycosyl hydrolase family 3	44665,93	6,14	Involved in metabolism	multiple/ non-C	Р				+
52841441	lpg1209	hypothetical protein lpg1209	29711,81	5,30	Hypothetical protein						+
52841447	lpg1215	hemF; coproporphyrinogen III oxidase	36369,98	6,02	Metabolism of cofactors and vitamins		С				+
52841451	lpg1219	flgE; flagellar hook protein FlgE	45550,36	4,62	Flagellar assembly	OM				+	
52841465	lpg1233	hypothetical protein lpg1233	29730,38	5,23	Hypothetical protein				(put. II)		+
52841549	lpg1318	hypothetical protein lpg1318	73730,25	5,20	Hypothetical protein				(put. II)		+
52841570	lpg1340	fliC; flagellin	47815,98	4,87	Involved in virulence/pathogenesis	E	Р	E	Ш	+	
52841580	lpg1350	L-lysine dehydrogenase	41536,19	6,17	Protein folding, sorting or degradation					+	+

ANHANG

		Identity	Mr		Predicted function	Pred locali	icted zation	Observed	Observed	2-l anal	DE ysis
Gl no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	OMV	SSP
52841581	lpg1351	piperidine-6-carboxylate dehydrogenase	55233,96	6,21	Carbohydrate metabolism; lipid metabolism; amino acid metabolism; limonene and pinene degradation	С					+
52841582	lpg1352	fadB; 3-hydroxyacyl CoA dehydrogenase oxidoreductase protein	87682,73	6,15	Carbohydrate metabolism; lipid metabolism; amino acid metabolism; limonene and pinene degradation; xenobiotics biodegradation and metabolism						+
52841583	lpg1353	fadA; acetyl-CoA acetyltransferase	42264,01	6,47	Lipid metabolism; amino acid metabolism; xenobiotics biodegradation and metabolism	С				+	+
52841594	lpg1364	gInA; glutamine synthetase, type I	52768,11	5,56	Energy metabolism; amino acid metabolism; peptidoglycan biosynthesis; two-component system - general	С	С			+	+
52841609	lpg1379	urocanate hydratase	61091,99	6,48	Amino acid metabolism		С				+
52841615	lpg1385	hypothetical protein lpg1385	14031,08	5,16	Hypothetical protein	non-C		E	II, (put. II)		+
52841639	lpg1409	hypothetical protein lpg1409	29548,62	5,62	Hypothetical protein	С	С				+
52841644	lpg1414	glycerol kinase	54558,46	5,65	Lipid metabolism		С				+
52841648	lpg1418	serC; phosphoserine aminotransferase	41670,13	6,21	Amino acid metabolism; metabolism of cofactors and vitamins	С	С				+
52841661	lpg1431	hypothetical protein lpg1431	14410,87	9,49	Hypothetical protein	non-C	OM/P		(put. II)	+	
52841664	lpg1434	xapA; purine nucleoside phosphorylase	30258,50	6,05	Nucleotide metabolism	С	С				+
52841681	lpg1451	hypothetical protein lpg1451	11524,67	4,95	Hypothetical protein	С				+	+
52841685	lpg1455	phospholipase C	47204,83	6,44	Involved in virulence/pathogenesis	multiple/ non-C			(put. II)	+	
52841732	lpg1502	lpdA; dihydrolipoamide dehydrogenase	51358,17	7,11	Carbohydrate metabolism; amino acid metabolism	С	С				+
52841778	lpg1548	ndk; nucleoside diphosphate kinase	17573,86	5,58	Nucleotide metabolism	С	С			+	
52841788	lpg1558	pyruvate dehydrogenase E1 alpha subunit	40561,36	5,31	Carbohydrate metabolism; amino acid metabolism		С			+	+
52841789	lpg1559	pyruvate dehydrogenase E1 beta subunit	35403,19	5,75	Carbohydrate metabolism; amino acid metabolism	С					+
52841801	lpg1571	tolB; TolB colicin import protein	45359,30	8,67	Other functions	Р	Р			+	
52841813	lpg1583	succinate semialdehyde dehyrogenase (NADP+)	50817,33	6,73	Carbohydrate metabolism; amino acid metabolism	IM	С				+
52841817	lpg1587	hypothetical thiol-disulfide isomerase and thioredoxins family	20862,39	5,30	Unknown	С					+
52841883	lpg1655	lasB; class 4 metalloprotease (elastase)	62986,53	5,95	Involved in	E/non-C	E		(put. II)		+

		Identity	Mr		Predicted function	Pred localiz	icted zation	Observed	Observed	2-I anal)E ysis
GI no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	ΟΜV	SSP
					virulence/pathogenesis						
52841893	lpg1665	hypothetical protein lpg1665	214784,4	5,17	Hypothetical protein	OM				+	
52841895	lpg1667	hypothetical protein lpg1667	8 53337,42	5,98	Hypothetical protein				(put. II)		+
52841918	lpg1690	acnA; aconitate hydratase	98147,10	6,09	Carbohydrate metabolism; energy			Е	Ш	+	+
52841935	lpg1707	aruD; succinylglutamic-5-semialdehyde dehydrogenase	54661,72	6,18	Amino acid metabolism	С					+
52841936	lpg1708	astB; succinylarginine dihydrolase	50102,40	5,93	Amino acid metabolism						+
52841952	lpg1724	minD; septum site-determining protein MinD	30120,05	5,78	Other functions	С	IM			+	
52841973	lpg1746	iscS; cysteine desulfurase NifS	42188,96	6,28	Amino acid metabolism		С				+
52841998	lpg1771	pmbA; peptide maturation protein PmbA	51148,62	5,98	Protein folding, sorting or degradation	С	С				+
52842036	lpg1809	hypothetical protein lpg1809	13737,92	7,77	Hypothetical protein	non-C		E	II, (put. II)		+
52842037	lpg1810	long chain fatty acid transporter	52598,53	5,98	Lipid metabolism	OM	IM/OM			+	
52842058	lpg1831	acetoacetyl CoA synthetase	75022,11	6,83	Carbohydrate metabolism; energy metabolism		С				+
52842059	lpg1832	hypothetical protein lpg1832	15098,55	6,56	Hypothetical protein	non-C		E	II, (put. II)		+
52842062	lpg1835	29 kDa immunogenic protein	28928,24	5,39	ABC transporters - general	С	Р				+
52842068	lpg1841	com1; 27 kDa outer membrane protein	28475,71	6,92	Other functions	non-C	Р			+	+
52842073	lpg1846	gshB; glutathione synthetase	35841,33	5,52	Amino acid metabolism	С	С				+
52842081	lpg1854	fabl; enoyl reductase	28448,44	5,63	Lipid metabolism	С	IM				+
52842107	lpg1889	lipase	35533,38	6,33	Involved in metabolism	С	IM				+
52842128	lpg1910	D-alanyl-D-alanine carboxypeptidase	47341,08	6,15	Cell envelope	Р	Е		(put. II)		+
52842131	lpg1913	6-phosphofructokinase	44863,79	5,89	Carbohydrate metabolism	С	С				+
52842136	lpg1918	hypothetical protein lpg1918	53228,10	5,05	Hypothetical protein		E/P	Е	II, (put. II)	+	+
52842162	lpg1945	3',5'-cyclic nucleotide phosphodiesterase	36717,07	5,83	Other functions	multiple	Р			+	+
52842179	lpg1962	peptidyl-prolyl cis-trans isomerase (rotamase)	20026,26	7,74	Protein folding, sorting or degradation	multiple/ non-C	С		(put. II)		+
52842188	lpg1971	organic hydroperoxide resistance protein OsmC	14693,52	6,29	Stress						+
52842189	lpg1972	hypothetical protein lpg1972	13830,05	6,11	Hypothetical protein					+	
52842229	lpg2012	rph; ribonuclease PH	26093,27	6,13	Other functions		С				+
52842236	lpg2019	serine metalloprotease	60439,49	6,29	Involved in virulence/pathogenesis	E/non-C	Е		(put. II)		+
52842239	lpg2022	metK; S-adenosylmethionine synthetase	41952,35	5,60	Amino acid metabolism	С	С			+	+

		Identity	Mr		Predicted function	Pred locali:	icted zation	Observed	Observed	2- anal	DE lysis
GI no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	OMV	SSP
52842242	lpg2025	dnaK; chaperone protein DnaK, heat shock protein Hsp70	70702,55	4,95	Protein folding, sorting or degradation; stress		С	E	II	+	+
52842254	lpg2037	eno; enolase	46188,42	5,54	Carbohydrate metabolism; amino acid metabolism	С	С				+
52842260	lpg2043	peptidoglycan associated lipoprotein	18899,35	6,59	Cell envelope	OM	OM				+
52842368	lpg2154	LaiE	34315,20	5,56	Involved in virulence/pathogenesis			E	IV	+	
52842419	lpg2206	WipC	42694,54	6,00	Involved in virulence/pathogenesis			E	IV, (put. II)		+
52842430	lpg2217	chitinase domain	35980,72	5,58	Other functions		E/P		(put. II)		+
52842433	lpg2220	hypothetical protein lpg2220	57364,62	8,78	Hypothetical protein				(put. II)		+
52842435	lpg2222	TPR repeat protein, protein-protein interaction	41389,14	5,35	Involved in virulence/pathogenesis	E/non-C	IM		(put. II)	+	+
52842453	lpg2240	dipeptidyl aminopeptidase/acylaminoacyl peptidase	45569,11	5,31	Protein folding, sorting or degradation						+
52842459	lpg2246	hypothetical protein lpg2246	19072,83	5,51	Hypothetical protein				(put. II)		+
52842488	lpg2275	hypothetical protein lpg2275	26348,58	6,19	Hypothetical protein				(put. II)	+	
52842489	lpg2276	Glu/Leu/Phe/Val dehydrogenase	38192,71	6,05	Amino acid metabolism	С				+	+
52842490	lpg2277	O-methyltransferase, SAM-dependent	24736,94	6,16	Amino acid metabolism; xenobiotics biodegradation and metabolism		С				+
52842492	lpg2279	fumarylacetoacetate hydrolase	36764,54	5,12	Amino acid metabolism; xenobiotics biodegradation and metabolism					+	+
52842512	lpg2302	asd; aspartate semialdehyde dehydrogenase	36995,21	5,70	Amino acid metabolism		С			+	+
52842518	lpg2308	secB; protein export protein SecB	18315,28	4,84	Protein export		IM				+
52842524	lpg2314	dihydropicolinate synthase	31530,43	5,99	Amino acid metabolism	С	С				+
52842530	lpg2320	hypothetical protein lpg2320	17807,98	6,58	Hypothetical protein				(put. II)		+
52842553	lpg2343	sseJ; lysophospholipase A	36318,94	4,75	Involved in virulence/pathogenesis	E/non-C	Е	Е	II, (put. II)		+
52842562	lpg2352	mdh; malate dehydrogenase	35984,07	5,41	Carbohydrate metabolism; energy metabolism		С			+	
52842627	lpg2418	penicillin-binding protein AmpH, putative	61570,42	6,18	Unknown		Р				+
52842695	lpg2487	dut; deoxyuridine 5'-triphosphate nucleotidohydrolase	16849,80	5,52	Nucleotide metabolism	С					+
52842717	lpg2509	SdeD (LaiF)	45077,66	5,75	Involved in virulence/pathogenesis			E	IV	+	
52842734	lpg2526	hypothetical protein lpg2526	50706,43	6,20	Hypothetical protein			E	II	+	+
52842794	lpg2588	legS1; lipid phosphoesterase	44385,05	6,05	Involved in virulence/pathogenesis	non-C	E		(put. II)		+

		ldentity	Mr		Predicted function	Pred locali	icted zation	Observed	Observed	2-l anal	DE ysis
GI no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	ΟΜV	SSP
52842801	lpg2595	def; peptide deformylase	19215,19	7,75	Protein folding, sorting or degradation	С	С				+
52842802	lpg2596	signal peptide protein, LysM domain protein	38494,21	6,33	Unknown	С			(put. II)	+	
52842813	lpg2607	pepO; metallopeptidase PepO, peptidase, M13 family	76809,81	7,66	Protein folding, sorting or degradation	С	E/IM		(put. II)		+
52842830	lpg2624	greA; transcription elongation factor GreA	17658,16	5,40	Other functions		С			+	
52842837	lpg2631	pepA; aminopeptidase A/I	53587,45	5,53	Protein folding, sorting or degradation		С			+	+
52842840	lpg2634	leucine aminopeptidase	49860,50	5,42	Protein folding, sorting or degradation		С				+
52842850	lpg2644	sclB; tail fiber protein	49539,70	5,53	Involved in virulence/pathogenesis		E/P	E	II, (put. II)	+	+
52842871	lpg2665	dienelactone hydrolase family protein	26605,11	5,85	Other functions	С					+
52842883	lpg2677	5'-nucleotidase	63106,20	5,98	Nucleotide metabolism; metabolism of cofactors and vitamins	Р	E/P		(put. II)		+
52842895	lpg2689	IcmX (IcmY)	50657,19	6,32	Involved in virulence/nathogenesis	non-C		P/E	II, (put. II)	+	+
52842931	lpg2726	ppiB; peptidylprolyl cis-trans isomerase B (cyclophilin-type) Lcy	17956,87	5,28	Protein folding, sorting or degradation	С	С			+	+
52842945	lpg2741	orn; oligoribonuclease	21723,12	5,43	Other functions		С				+
52842965	lpg2766	folE2; GTP cyclohydrolase I	21062,82	6,52	Metabolism of cofactors and vitamins	С	С			+	+
52842967	lpg2768	pnp; polyribonucleotide nucleotidyltransferase	80057,31	5,01	Nucleotide metabolism	С	С			+	+
52842989	lpg2792	tpiA; triosephosphate isomerase (TIM)	27495,89	5,98	Carbohydrate metabolism; energy metabolism		С				+
52843005	lpg2809	pepN; aminopeptidase N	99848,10	5,34	Amino acid metabolism	С	E				+
52843010	lpg2814	aminopeptidase	47072,39	5,73	Protein folding, sorting or degradation	E/non-C	Е	E	II, (put. II)	+	+
52843021	lpg2825	cold shock protein CspE	7389,64	6,56	Stress	С	С			+	
52843033	lpg2837	phospholipase/lecithinase/hemolysin, lysophospholipase A	49760,15	5,28	Involved in virulence/pathogenesis		Е		(put. II)	+	
52843039	lpg2843	inosine 5'-monophosphate dehydrogenase	36054,12	6,26	Nucleotide metabolism	С				+	+
52843044	lpg2848	ribonuclease, T2 family	37975,71	6,59	Other functions		Р	E	II, (put. II)		+
52843060	lpg2865	6-pyruvoyl tetrahydropterin synthase, putative	19763,94	6,09	Metabolism of cofactors and vitamins		С				+
52843129	lpg2935	trxA, probable thioredoxin 1	11831,99	5,00	Unknown	С					+
52843136	lpg2942	hypothetical protein lpg2942	38846,55	7,07	Hypothetical protein	OM/non-				+	

		Identity	Mr		Predicted function	Pred locali	icted zation	Observed	Observed	2-l anal	DE ysis
GI no.	Gene	(as defined in the genome)	(Da)	pl	KEGG	PSORTb	PA-SUB	localization	secretion	ΟΜΥ	SSP
52843145	lpg2951	cystathionine beta synthase	34335,62	5,76	Energy metabolism; amino acid metabolism		С				+
52843153	lpg2959	hypothetical protein lpg2959	57411,94	8,30	Hypothetical protein	OM/non- C				+	
52843154	lpg2960	major outer membrane protein	35253,58	6,51	Other functions	OM/non- C				+	
52843155	lpg2961	major outer membrane protein	32109,12	5,01	Other functions	non-C				+	+
52843157	lpg2963	pyrC; dihydroorotase	39945,63	6,92	Nucleotide metabolism		С				+
52843161	lpg2967	sodB; superoxide dismutase	22113,76	5,59	Stress						+
52843162	lpg2968	argD; acetylornithine aminotransferase	42622,88	5,97	Amino acid metabolism	С	С				+
52843175	lpg2982	atpD; ATP synthase subunit B	49994,85	5,00	Energy metabolism	С	IM			+	
52843177	lpg2984	ATP synthase subunit A	55493,97	5,53	Energy metabolism		IM			+	+
52843192	lpg2999	legP; astacin protease	30161,99	5,72	Involved in virulence/pathogenesis		E	E	II, (put. II)	+	+

Abb. A1: Bei der Proteomanalyse eingesetzte repräsentative SSP- und OMV-Gele.

OMV #5

Tab. A2: Ergebnisse der MALDI-TOF-Massenspektrometrie (MS).

SSP	#2
-----	----

SSP#2			Peptide	Protein score	Protein score	Total Ion Score C.I.
Spot	Gene	GI no.	Count	(Mascot)	C.I. %	%
1	pepN	52843005	25	291	100	100
2	pepN	52843005	26	300	100	100
3	pepN	52843005	28	297	100	100
4	pepN	52843005	25	393	100	100
5	acnA	52841918	24	191	100	95,28
6	acnA	52841918	25	185	100	0
7						
8						
9						
10	lpg1116	52841350	10	157	100	100
11						
12	lpg1116	52841350	9	397	100	100
13						
14	lpg0194	52840449	14	278	100	100
15						
16	lpg0194	52840449	16	354	100	100
17	lpg0194	52840449	19	343	100	100
18	lpg0194	52840449	16	348	100	100
19	lpg0194	52840449	19	380	100	100
20	lpg1116	52841350	10	140	100	100
21	lpg1116	52841350	10	303	100	100
22	lpg1116	52841350	11	216	100	100
23	lpg1116	52841350	10	349	100	100
24						
25	lpg1318	52841549	19	227	100	100
26						
27	htpB	52840925	19	243	100	100
28	lpg0041	52840297	14	128	100	100
29	lpg0041	52840297	17	227	100	100
30	lpg1379	52841609	10	103	100	100
31						
32						
33	lpg1379	52841609	11	132	100	100
34	sclB	52842850	11	224	100	100
35						
36	sclB	52842850	11	231	100	100
37	glnA	52841594	12	286	100	100
38	glnA	52841594	19	505	100	100
39	gInA/lpg2677	52841594/52842883	16	380	100	100
40						
41	lpg2677/lpg2984	52842883/52843177	22	352	100	100
42	lpg2677	52842883	25	456	100	100
43						
44	lpdA/lpg1351	52841732/52841581	14	220	100	100
45	lpg1351	52841581	18	302	100	100
46						

SSP#2			Peptide	Protein score	Protein score	Total Ion Score C.I.
Spot	Gene	GI no.	Count	(Mascot)	C.I. %	%
47	lpdA/lpg1351	52841732/52841581	11	223	100	100
48	lpg1351/mmsA	52841581/52840384	17	308	100	100
49	mmsA/lpg1351	52840384/52841581	14	167	100	100
50	mmsA	52840384	14	265	100	100
51	lpdA	52841732	9	82	100	99,75
52	lpg1116	52841350	8	169	100	100
53						
54	lpg1918	52842136	18	213	100	100
55						
56	lpg1918	52842136	9	53	98,56	17,84
57	lpg1918	52842136	17	254	100	100
58	lpg1918	52842136	20	241	100	100
59			7	36	27,76	XXX
60			9	51	97,96	XXX
61	lpg1318	52841549	15	175	100	100
62						
63	dapE	52841045	15	286	100	100
64	lpg2984	52843177	16	384	100	100
65	_					
66	aruD	52841935	11	306	100	100
67	lpg0497	52840742	23	341	100	100
68	lpg0497	52840742	27	430	100	100
69						
70	lpg1414	52841644	10	62	99,82	XXX
71						
72	dnaK	52842242	21	681	100	100
73					(00	100
74	dnaK	52842242	21	978	100	100
75 70						
76	la - Díana (iana)			054	100	400
70	lasB/eno/ICMX	52841883/52842254/52842895	14	254	100	100
78	1pg2634	52842840	12	195	100	100
79	metk/ipgu651	52842239/52840888	11	194	100	100
80	ipg1667	52841895	11	324	100	100
01	ana/matk	E20422E4/E2042220	10	257	100	100
02	eno/metk	52642254/52642259	13	307	100	100
03	log1667	E204100E	12	262	100	100
04 85	opo/motK	52842254/52842220	13	JUZ 173	100	100
86	eno/metr	52642254/52642259	14	473	100	100
97						
88						
80	nmhA	528/1008	18	266	100	100
90		52841895	10	200	100	100
90 Q1	ipg1007	52041035		200	100	100
00 16	lpg0604	52840841	16	115	100	100
02 02	Ing2526	52842734	10	406	100	100
94	lpg1910	52842128	14	188	100	100
95	lpa0194	52840449	15	350	100	100
96			7	40	76.09	xxx
					-,-•	

SSP#2			Peptide	Protein score	Protein score	Total Ion Score C.I.
Spot	Gene	Gl no.	Count	(Mascot)	C.I. %	%
97	glyA3	52840962	16	243	100	100
98	icd	52841052	16	234	100	100
99	glyA3	52840962	19	644	100	100
100	lpg0187/lpg0194	52840442/52840449	18	306	100	100
101						
102	lpg0467	52840712	16	276	100	100
103	lpg0467	52840712	15	298	100	100
104	lpg0467	52840712	7	54	98,93	99,16
105						
106	lpg0467	52840712	15	333	100	100
107	lpg0467	52840712	6	81	100	100
108						
109	lpg1116	52841350	5	148	100	100
110	lpg0467	52840712	9	149	100	100
111			10	58	99,56	XXX
112			10	53	98,62	XXX
113	lpg0467	52840712	7	66	99,94	99,95
114	dnaK	52842242	13	213	100	100
115	lpg1191	52841424	12	234	100	100
116	lpg1191	52841424	18	336	100	100
117	argD	52843162	17	501	100	100
118	argD/lpg2588	52843162/52842794	18	574	100	100
119	argD/lpg2588	52843162/52842794	21	607	100	100
120	fadA	52841583	19	426	100	100
121						
122	fadA/lpg0194	52841583/52840449	16	248	100	100
123	lpg0194	52840449	19	390	100	100
124						
125	lpg2814	52843010	11	195	100	100
126			9	37	47.68	XXX
127	lpg2222/lpg2814	52842435/52843010	11	181	100	100
128						
129	pa2222/ pa1116/ pa2814	52842435/52841350/52843010	19	291	100	100
130						
131	lpg2814/lpg2019	52843010/52842236	9	250	100	100
132	lpg2814	52843010	8	122	100	100
133						
134	lpa1945/lpa2814	52842162/52843010	7	127	100	100
135	icmX	52842895	9	326	100	100
136	lpg1945	52842162	11	234	100	100
137	lpg1945	52842162	14	295	100	100
138	lpg1945	52842162	13	313	100	100
139	lpg1119	52841353	10	146	100	100
140	lpg1945	52842162	12	94	100	222
141	lpg1945	52842162	13	282	100	100
142	Ing1119/asd	52841353/52842512	10	340	100	100
142	Ing1119/asd	52841353/52842512	11	285	100	100
143	Ing 1550	52841789	17	200 190	100	001
144	1991333 acd/lna2526	52842512/52842724	10	262	100	30,40 100
140	Ing1119	52841353	10	303	100	100
170			10	000	100	100

SSP#2			Peptide	Protein score	Protein score	Total Ion Score C.I.
Spot	Gene	GI no.	Count	(Mascot)	C.I. %	%
147	lpg2951/lpg2814	52843145/52843010	13	304	100	100
148	lpg0422	52840667	9	186	100	100
149	lpg0422	52840667	15	141	100	88,21
150	lpg1350/lpg2276	52841580/52842489	12	261	100	100
151			17	182	100	70,5
152	lpg2276	52842489	13	421	100	100
153	lpg0502	52840747	14	248	100	100
154	lpg1889	52842107	16	302	100	100
155	lpg1889	52842107	18	383	100	100
156	lpg0194/metC	52840449/52841125	16	337	100	100
157			10	75	99,99	XXX
158	metC/lpg0194	52841125/52840449	13	191	100	100
159	pyrC	52843157	10	106	100	99,92
160	lpg2246	52842459	5	160	100	100
161	lpg0467	52840712	9	52	98,46	78,49
162						
163						
164	lpg0467	52840712	12	170	100	100
165						
166	lpg0467	52840712	13	226	100	100
167	lpg1116	52841350	5	114	100	100
168	icmX/lpg2814	52842895/52843010	8	264	100	100
169	lpg1233/lpg2814	52841465/52843010	8	244	100	100
170	icmX	52842895	11	406	100	100
171	icmX	52842895	11	264	100	100
172	lpg0194	52840449	12	219	100	100
173	icmX	52842895	14	351	100	100
174	icmX/lpg0007	52842895/52840263	11	254	100	100
175	pdxJ/lpg1945	52841181/52842162	12	272	100	100
176						
177			5	38	56,47	77,32
178	icmX	52842895	5	69	99,97	100
179	lpg1156	52841390	7	142	100	100
180						
181						
182	icd	52841052	11	102	100	99,75
183	acnA	52841918	19	162	100	100
184	rph	52842229	10	346	100	100
185	lpg2848/hemF	52843044/52841447	12	289	100	100
186	lpg2848	52843044	12	370	100	100
187	lpa0187/lpa0194	52840442/52840449	13	165	100	100
188	icmX	52842895	11	298	100	100
189	lpg2848	52843044	16	367	100	100
190	lpg0467	52840712		85	100	100
191	lpg0467	52840712	11	157	100	100
107	Ing0467	52840712	11	160	100	100
102	Ing/1957	52841192	7	218	100	100
100	Ing/0957	52841192	7	157	100	100
194	1pg0957	528/1102	7	107	100	100
190	1pg0007	52840264/52842236/52842040	10	177 015	100	100
100	142000000000000000000000000000000000000		13	210	100	100

SSP#2				Protein	Protein	Total Ion
Spot	Gene	GI no.	Peptide Count	score (Mascot)	score C.I. %	Score C.I. %
197	lpg1209	52841441	12	288	100	100
198	lpg0008/lpg0194	52840264/52840449	18	289	100	100
199	lpg1558	52841788	9	303	100	100
200	lpg1119/lpg0950	52841353/52841185	8	207	100	100
201	lpg1558	52841788	13	450	100	100
202	lpg2848	52843044	8	138	100	100
203	lpg0950/lpg2665	52841185/52842871	12	211	100	100
204	lpg0950/icmX	52841185/52842895	6	103	100	100
205	lpg2848	52843044	9	174	100	100
206	lpg1913	52842131	13	157	100	100
207	lpg2843	52843039	12	275	100	100
208	lpg0956	52841191	12	326	100	100
209	lpg0956/lpg2843	52841191/52843039	15	278	100	100
210	lpg0956	52841191	14	362	100	100
211	lpq0956	52841191	18	360	100	100
212	lpg0467	52840712	13	82	100	xxx
213	sseJ	52842553	6	200	100	100
214	lpa0467	52840712	11	135	100	100
215	lpg0467	52840712	10	161	100	100
216	lpg0467	52840712	12	215	100	100
217	lpg0467	52840712	12	227	100	100
218	Ing0467	52840712	11	158	100	100
210	lpg0407	52842062	14	304	100	100
220	eno	52842254	8	332	100	100
220	Ing2276	52842489	6	184	100	100
222	dnak	52842242	15	388	100	100
222	unary		10	500	100	100
223	lpg0672	52840000	11	304	100	100
224	lpg0072	52843010	0	136	100	100
225	1992014	52045010	5	150	100	100
220						
221	tniA	52842080	12	115	100	83.07
220	1pg0264	52840519	0	1/18	100	100
229	toiA	52842080	12	244	100	100
230	φια	52042909	10	66	00 03	75.81
201	lpg2949	52843044	0	00	100	00.52
232	1pg0264	52840510	9 10	144	100	99,52 100
200	1µg0204	52840519	10	207	100	100
204	yjeA	52842949	10	307	100	100
200	1µy2040	52843044	10	202	100	100
200	com	52642008	10	200	100	100
237	artJ	52840293	10	187	100	100
238	artj	52840293	9	310	100	100
239	1pg0467	52840712	11	218	100	100
240	ipg0467	5284U/12	10	152	100	100
241	1991587	52841817	6	190	100	100
242			12	26	XXX	XXX
243						
244	lpg1945	52842162	9	171	100	100
245	lpg1945	52842162	7	84	100	99,97
246	lpg0956	52841191	11	246	100	100

SSP#2	Cono		Peptide	Protein score	Protein score	Tota Scor	l Ion e C.I.
Spot	Gene	GI NO.	Count	(Mascot)	C.I. %	%	
247							
248							
249	lpg0956	52841191	13	308	100		100
250	lpg2999/lpg0956	52843192/52841191	7	286	100		100
251	lpg0243	52840498	9	131	100		100
252			10				
253			10	98	100		64,34
254			5	29	XXX	XXX	
255			9	44	88,81	XXX	
256							
257							
258	dnaK	52842242	7	168	100		100
259							
260	dnaK	52842242	10	368	100		100
261							
262	pnp	52842967	11	118	100		100
263	lpg2814	52843010	7	206	100		100
264			6	47	95,12	ххх	
265	lpg2814	52843010	9	104	100		100
266			7	60	99,71	ххх	
267							
268	lpg1918	52842136	10	119	100		100
269							
270	foIE2	52842965	9	175	100		100
271	com1	52842068	11	310	100		100
272	com1	52842068	12	259	100		100
273	lpg1451	52841681	4	139	100		100
274	lpg1451	52841681	4	230	100		100
275	lpg0467	52840712	11	196	100		100
276	lpg1962/lpg0467	52842179/52840712	4	102	100		100
277							
278							
279							
280			8	44	88,55	XXX	
281	hslV	52840877	11	343	100		100
282							
282							
283							
284							
285			9	46	93,85	XXX	
286			8	39	66,22	XXX	
287							
288							
289							
290			4	34	4,8	xxx	
291	ssb	52840601	10	151	100		100
292							
293							
294							
295			7	38	62,1	ххх	

SSP#2			Peptide	Protein score	Protein score	Total Ion Score C.I.	
Spot	Gene	GI no.	Count	(Mascot)	C.I. %	%	
296			6	41	81	ХХХ	
297	lpg0708/lpg0467	52840945/52840712	8	184	100		100
298			7	31	XXX	ххх	
299	lpg2043	52842260	13	400	100		100
300			5	31	XXX	ххх	
301							
302							
303							
304	secB/lpg2246	52842518/52842459	6	127	100		100
305	lpg0798	52841034	4	180	100		100
306	lpg0467	52840712	10	208	100		100
307							
308	lpg0165	52840420	9	125	100	ç	99,95
309	fabZ/tufB	52840755/52840572	7	223	100		100
310	lpg0689/lpg2320	52840926/52842530	7	109	100	ç	99,99
311	lpg2320	52842530	9	208	100		100
312	lpg1971	52842188	7	321	100		100
313			5	32	XXX	XXX	
314			7	46	93,41		85,4
315	lpg0956	52841191	7	168	100		100
316			6	42	83,07	ххх	
317							
318							
319			_				
320	trxA	52843129	5	141	100		100
321			9	93	100	1	9,17
322			6	53	98,69	XXX	
323	lpg1030	52841264	5	273	100		100
324			_	100	100		
325	lpg1385	52841615	7	133	100		100
326							
327		500 400 40			100		
328	lpg0374	52840619	6	91	100	Ę	99,71
329	1 0070	50011100		100	100		400
330	1pg0873	52841109	6	180	100		100
331			0		00 70		
332			0	53	98,72	XXX	
333			F	40	06 7		
225			C	49	90,7	XXX	
335							
330 227							
220							
ააბ ააი			n	20	~~~	~~~	
339			3	32	***	***	
340			-	E0	00 67		
341			7	59	99,07	***	
342							
211							
345							
0-0							
SSP#2			Dontido	Protein	Protein	Total Ion	
-------	---------	----------	---------	----------	---------	-----------	
Spot	Gene	GI no.	Count	(Mascot)	C.I. %	%	
132a	lpg0032	52840288	11	271	100	100	
179a	lpg1945	52842162	9	254	100	100	
52a							
53a							

OMV #2

OMV#2				Protein	Protein	Total Ion
Spot	Gene	Gl no	Peptide	score (Mascot)	score C.I. %	Score C.I.
1		00		(70	70
2	icmE	52840696	28	322	100	100
- 3	icmE	52840696	23	297	100	100
4	icmE	52840696	25	241	100	100
5	lpg1665/lpg1810	52841893/52842037	19	161	100	100
6	lpg1665	52841893	20	145	100	100
7	dnaK	52842242		228	100	100
8						
9	lpg1116	52841350	10	301	100	100
10	lpq1116	52841350	9	243	100	100
11	lpg1116	52841350	9	90	100	100
12			11	59	99,63	0
13	lpg0041/icmX	52840297/52842895	14	149	100	100
14	icmE	52840696	18	187	100	100
15						
16			14	65	99,92	87,06
17	lpg0194	52840449	15	242	100	100
18	lpg0194	52840449	19	171	100	99,98
19	lpg0194	52840449	16	205	100	100
20						
21						
22	lpg1116	52841350	9	221	100	100
23						
24			14	102	100	XXX
25	sclB	52842850	12	98	100	96,06
26	htpB	52840925	25	361	100	100
27	htpB	52840925	22	243	100	100
28	gInA/lpg2984	52841594/52843177	13	269	100	100
29	gInA/lpg2984	52841594/52843177	14	278	100	100
30	gInA	52841594	14	298	100	100
31						
32						
33						
34	fliC	52841570	22	498	100	100
35	fliC	52841570	19	307	100	100
36						
37						
38						
39			16	127	100	XXX
40	atpD/lpg1810	52843175/52842037	20	328	100	100
41			15	113	100	XXX

OMV#2 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
42	lpg1810/fliC	52842037/52841570	14	214	100	100
43	lpg1810	52842037	16	235	100	100
44	lpg1810	52842037	15	216	100	100
45	lpg1810	52842037	14	329	100	100
46			6	34	xxx	xxx
47	icmK	52840695	11	301	100	100
48	metK	52842239	19	334	100	100
49	lpg2526	52842734	17	321	100	100
50	lpg2526	52842734	13	243	100	100
51	lpg2526	52842734	17	252	100	100
52	lpg2959	52843153	13	309	100	100
53	lpg2959	52843153	12	152	100	100
54			14	103	100	xxx
55	lpg0467	52840712	17	207	100	100
56	lpg2509/lpg2154	52842717/52842368	15	217	100	100
57	lpg2509/lpg2154/icmX	52842717/52842368/52842895	16	341	100	100
58	lpq0482	52840727	20	347	100	100
59	fadA	52841583	18	329	100	100
60	fadA/lpg1455	52841583/52841685	12	224	100	100
61	lpq0194	52840449	14	317	100	100
62	tolB	52841801	18	390	100	100
63	flaE/icmE	52841451/52840696	9	170	100	100
64	lpg2222	52842435	11	160	100	100
65	mreB/mdh/icmX	52841047/52842562/52842895	15	243	100	100
66	icmK/lpa1119	52840695/52841353	11	237	100	100
67	lpg1119/asd	52841353/52842512	12	265	100	100
68	icmK/lpa1350/lpa2276	52840695/52841580/52842489	8	220	100	100
69	icmK	52840695	10	212	100	100
70	lpg1350/lpg0502/lpg2596	52841580/52840747/52842802	10	135	100	100
71		52840747	14	192	100	100
72	Ing2814	52843010	10	136	100	100
73	Ing2814	52843010	10	159	100	100
74	Ing2279/Ing2814	52842492/52843010	7	184	100	100
75	mdh/nnn	52842562/52842967	11	252	100	100
76	Ing1945	52842162	10	90	100	96.63
77	Ing2942	52843136	10	285	100	100
78	Ing2942	52843136	11	377	100	100
79	icmX	52842895	13	246	100	100
80	icmX	52842895	13	251	100	100
81	icmX/nnn	52842895/52842967	10	201	100	100
82	icmX	52842895	15	280	100	100
83	Ing2961	52843155	8	131	100	100
84	minD	52841952	14	269	100	100
85	Ing1558	52841788	11	200	100	100
86	lpg1990	52843154	8	172	100	100
97	1pg2300	52841018	16	172	100	100
07	Ing2060	52843154	10 7	109	100	100
00	ipg2300 icmK/icmY	52840605/52942905	1	109	100	100
09		52040030/02042090	11	244 150	100	100
90	iµy∠301 Ing2061	52043155	8	109	100	
91	ເມີລີຂອດເ	02040100	10	80	100	***

OMV#2 Spot	Gene	Gi no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
92	Ing2961	52843155	10	154	100	100
93	lpg2961	52843155	8	125	100	100
94	lpg2961	52843155	8	125	100	100
95	lpg2961	52843155	10	156	100	100
96	lpg0957	52841192	7	80	100	99.96
97	lpg0672	52840909	10	237	100	100
98	lpg0672	52840909	11	286	100	100
99	lpg0101	52840356	10	261	100	100
100	lpg2843	52843039	13	145	100	100
101						
102	com1	52842068	13	356	100	100
103	min	52841028	12	221	100	100
104	mip	52841028	13	237	100	100
105		0_0110_0	5	39	63 81	xxx
106	lpg2961	52843155	8	132	100	100
107	lpg0731	52840968	6	180	100	100
108	lpg2961/lpg0731	52843155/52840968	8	138	100	100
109	lpg2001.pg0101	52843155	5	94	100	100
110	lpg0042	52840298	5	130	100	100
111	lpg2275	52842488	12	311	100	100
112	lpg2999	52843192	9	248	100	100
113	lpg2999	52843192	13	295	100	100
114	lpg2999	52843192	10	200	100	100
115	com1/dsbA/lpg0101	52842068/52840378/52840356		178	100	100
116	lpg0732	52840969	8	210	100	100
117	lpg2275	52842488	6	151	100	100
118		0_0.2.00	Ū			
119	lpa0971	52841206	8	139	100	100
120						
121	lpa1451	52841681	4	147	100	100
122			6	31	XXX	XXX
123						
124						
125	ppiB	52842931	5	237	100	100
126	greA/ppiB	52842830/52842931	5	164	100	100
127	lpq0971	52841206	7	210	100	100
128	lpg0507	52840752	7	181	100	100
129			6	37	43,94	xxx
130			7	47	94,52	xxx
131	lpg0689	52840926	8	159	100	100
132						
133						
134	lpg1972	52842189	3	116	100	100
135			8	38	53,36	xxx
136					·	
137						
138	lpg0374	52840619	7	247	100	100
139	lpg0873	52841109	2	98	100	100
140	lpg1431	52841661	6	202	100	100
	· -					

OMV#2			Peptide	Protein score	Protein score C.I.	Total Ion Score C.I.
Spot	Gene	GI no.	Count	(Mascot)	%	%
142						
143						
144						
145	lpg2825	52843021	5	223	100	100
146						
44a	pepA/lpg1810	52842837/52842037	13	154	100	100
60a	fadA/lpg1455	52841583/52841685	16	556	100	100
65a			5	30	xxx	XXX
96a						

SSP #5

SSP#5			Dontido	Protein	Protein	Total Ion
Spot	Gene	GI no.	Count	(Mascot)	%	%
1	lpg0467	52840712	16	187	100	100
2	lpg0467	52840712	16	131	100	99,24
3	lpg0467	52840712	18	157	100	99,47
4	lpg0467	52840712	18	213	100	100
5	lpg0467	52840712	18	156	100	98,71
6	pepN	52843005	31	373	100	100
7	pepN	52843005	36	434	100	100
8	pepN	52843005	37	463	100	100
9	pepN	52843005	37	462	100	100
10	pepN	52843005	31	375	100	100
11						
12	acnA	52841918	23	161	100	xxx
13	acnA	52841918	26	246	100	100
14	lpg0467	52840712	16	277	100	100
15	lpg0467	52840712	18	161	100	99,86
16	lpg1116	52841350	11	214	100	100
17	lpg1116	52841350	11	246	100	100
18	lpg1116	52841350	12	266	100	100
19	lpg1116	52841350	11	259	100	100
20	lpg1116	52841350	12	226	100	100
21	lpg1116	52841350	9	232	100	100
22	lpg0041/lpg0141	52840297/52840396	16	152	100	100
23	lpg0141	52840396	26	311	100	100
24	lpg0141	52840396	30	365	100	100
25	lpg0141	52840396	30	379	100	100
26	lpg0041	52840297	17	168	100	100
27	lpg0141/lpg0041	52840396/52840297	25	304	100	100
28	lpg0194/acnA	52840449/52841918	19	379	100	100
29	fadB	52841582	20	215	100	100
30	fadB	52841582	20	219	100	100
31						
32	lpg0194	52840449	24	300	100	100
33	lpg0194	52840449	21	266	100	100
34	lpg0194	52840449	19	243	100	100
35	lpg0194	52840449	22	268	100	100
36	рерО	52842813	25	292	100	100

SSP#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
37	рерО	52842813	26	296	100	100
38	рерО	52842813	27	335	100	100
39	lpg1116	52841350	10	253	100	100
40	lpg1116	52841350	11	123	100	100
41	lpg1116	52841350	12	380	100	100
42	lpg1116	52841350	11	281	100	100
43	lpg1318	52841549	21	203	100	99,99
44	lpg1318	52841549	23	251	100	100
45	lpg1379	52841609	19	246	100	100
46	рерО	52842813	22	305	100	100
47	рерО	52842813	24	278	100	100
48	рерО	52842813	24	294	100	100
49	рерО	52842813	24	294	100	100
50	sclB	52842850	15	213	100	100
51	sclB	52842850	15	148	100	99,92
52	lpg2677	52842883	28	447	100	100
53	lpg2677	52842883	29	562	100	100
54	gbsA/lpg1351	52840493/52841581	10	320	100	100
55	lpg1351	52841581	21	403	100	100
56	gbsA	52840493	16	238	100	100
57	lpdA/mmsA	52841732/52840384	12	320	100	100
58	lpg1351/mmsA	52841581/52840384	23	454	100	100
59	mmsA	52840384	18	301	100	100
60	mmsA	52840384	18	292	100	100
61	acnA/mmsA/lpg1351	52841918/52840384/52841581	17	155	100	100
62	acnA/lpg1351	52841918/52841581	21	226	100	100
63	acnA	52841918	21	239	100	100
64	acnA	52841918	18	224	100	100
65	lpg1918	52842136	18	149	100	xxx
66	lpg1918	52842136	22	208	100	32,45
67	lpg1918	52842136	22	345	100	100
68	lpq1918	52842136	23	394	100	100
69	lpq1918	52842136	21	211	100	98,67
70	lpq1918	52842136	17	137	100	XXX
71	pepA	52842837	14	144	100	100
72						
73			19	174	100	0
74						
75	lpg0497/lpg0194	52840742/52840449	20	226	100	100
76	lpg0497	52840742	27	330	100	100
77						
78	lpg0748	52840985	20	217	100	99,99
79						
80	lpg1583/lpg0244	52841813/52840499	12	206	100	100
81	lpg2220	52842433	18	265	100	100
82	lpg2220	52842433	21	328	100	100
83	lpg2220	52842433	21	491	100	100
84	dnaK	52842242	18	222	100	100
85						
86	dnaK	52842242	21	486	100	100

SSP#5				Protein	Protein	Total Ion
Snot	Cono	Clino	Peptide	score	score C.I.	Score C.I.
<u>əpor</u> 07	Gene	GINC.	Count	(Mascol)	70	70
07	dnaK	52842242	22	401	100	100
00	unar	52042242	22	491	100	100
09	lna2419/lna2624	52942627/52942940	11	207	100	100
90	npy2410/1py2034	52842021/52840888	11	297	100	100
91		52841883/52842805	14	230	100	100
92	IdSD/ICITIA	52041065/52642695	10	214	100	100
93	motk/lpg0651	E2942220/E2940999	17	270	100	100
94		52642239/52640666	17	2/0	100	100
95	ipg 1667	52041095	10	240	100	100
90		52041910	10	244	100	100
97	1pg2418	52842627	10	344	100	100
98	metk	52842239	21	349	100	100
99	A	50044040	6	33	XXX	XXX
100	achA	5284 19 18	19	229	100	100
101	lpg1667	52841895	18	223	100	100
102	1pg 1007	52841018/52842734	10	197	100	100
103	nmbA	52841008	19	259	100	100
104	prinda Ing2526	52842734	10	200	100	100
105	1992520	52042754	19	201	100	100
100	lpg0604/lpg1110	52940941/52941353	12	265	100	100
100	1990004/1991119	52040041/52041555	13	200	100	100
107	Ing 1010/Ing 2526/actD	E2042420/E2042724/E2044026	4	20	XXX 100	XXX 100
100	ipg 19 10/ipg2526/asib	52642126/52642754/52641950	10	220	100	100
109	alu A 2	52041052/52040494	21	202	100	100
110	giyA3	52640902	19	392	100	100
110	lna0197	52940442	17	206	100	100
112	1pg0187	52640442	17	200	100	100
113	1pg0187	52640442	21	339	100	100
114	1pg0167	52040442	21	202	100	100
110	1pg0407	52040712	10	300	100	100
110	1pg0467	52840712	14	164	100	100
117	lag1116	E20413E0	0	100	100	100
110	1pg1110	52641550	0	120	100	100
119	1pg2814/1pg0467	52843010/52840712	9	100	100	100
120	1pg0467	52040712	10	1/0	100	100
121	1pg0467	52840712	12	140	100	100
122	1pg 19 18/1pg0467	52842130/52840712	19	339	100	100
123	ipg1116	52841350	8	220	100	100
124	argD/lpg2588	52843162/52842794	17	410	100	100
125	argD/lpg2588	52843162/52842794	21	375	100	100
126	argD/lpg2588	52843162/52842794	21	3/3	100	100
127	c 14	500.44500	6	31	XXX	XXX
128	iaŭA fod A	52841583	20	396	100	100
129	iduA	52841583	21	500	100	100
130	1a0A/1pg0194	52841583/52840449	18	331	100	100
131	ipg0194	52840449	27	345	100	100
132	ipg2814	52843010	13	181	100	100
133	la = 2011	52042040	6	39	66,22	XXX
134	ipg2814	52843010	14	201	100	100
135						

SSP#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
136	lpg2222/lpg2814	52842435/52843010	17	235	100	100
137	lpg2279/lpg2814	52842492/52843010	9	216	100	100
138						
139	lpg2019	52842236	13	403	100	100
140	lpg2019/lpg1945	52842236/52842162	12	259	100	100
141						
142	lpg1116	52841350	9	166	100	100
143			7	34	xxx	xxx
144			5	30	XXX	XXX
145	lpg1945	52842162	13	240	100	100
146			6	39	62,96	XXX
147	lpg1559	52841789	15	184	100	100
148	lpg1945	52842162	15	276	100	100
149	lpg1119/asd	52841353/52842512	14	386	100	100
150	lpg1119	52841353	14	287	100	100
151	lpg1559	52841789	19	253	100	100
152	lpg1119	52841353	10	158	100	100
153	lpg1119/lpg0422	52841353/52840667	13	303	100	100
154	lpg2951	52843145	14	199	100	100
155	lpg0422/lpg1119	52840667/52841353	12	216	100	100
156	lpg0422/lpg1119/lpg2206	52840667/52841353/52842419	10	168	100	100
157	lpg2276/serC/lpg0422	52842489/52841648/52840667	10	290	100	100
158	lpg2276	52842489	13	364	100	100
159	lpg1889	52842107	17	323	100	100
160						
161			5	26	XXX	XXX
162	lpg1889	52842107	19	495	100	100
163	lpg0612/pyrC	52840849/52843157	9	155	100	100
164	pyrC	52843157	11	208	100	100
165	pyrC	52843157	13	158	100	100
166	pyrC	52843157	9	99	100	99,92
167	lpg2246	52842459	6	362	100	100
168	lpg0467	52840712	11	80	100	99,27
169	lpg0467	52840712	11	185	100	100
170	lpg0189	52840444	14	314	100	100
171	icmX/lpg2814	52842895/52843010	16	283	100	100
172	lpg1233/icmX/lpg2814	52841465/52842895/52843010	12	262	100	100
173	icmX/lpg2814	52842895/52843010	13	250	100	100
174	icmX	52842895	13	240	100	100
175	pnp/icmX	52842967/52842895	14	196	100	100
176	icmX	52842895	16	286	100	100
177	icmX/lpg0007	52842895/52840263	13	286	100	100
178	pdxJ/icmX	52841181/52842895	12	218	100	100
179	lpg1156	52841390	12	218	100	100
180	lpg1156	52841390	11	198	100	100
181	lpg2314	52842524	10	124	100	99,99
182	icd	52841052	16	149	100	96,87
183	lpg1156/lpg0194	52841390/52840449	9	152	100	100
184	acnA	52841918	21	412	100	100
185	rph	52842229	11	184	100	100

SSP#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
186	lpg2848	52843044	13	198	100	100
187	lpg2848	52843044	15	268	100	100
188	metK	52842239	14	238	100	100
189	metK	52842239	12	196	100	100
190	sseJ	52842553	8	160	100	100
191	lpg0189/lpg2961	52840444/52843155	11	178	100	100
192	lpg0189	52840444	9	152	100	100
193	lpg0957	52841192	8	146	100	100
194	lpg0957	52841192	9	168	100	100
195	lpg1835	52842062	17	307	100	100
196	lpg0957	52841192	8	141	100	100
197	lpg0008	52840264	16	194	100	100
198	lpg0672	52840909	12	180	100	100
199			4	30	xxx	xxx
200			6	41	79,65	xxx
200			7	63	99,88	92,44
201	lpg2240	52842453	18	208	100	100
202	icmE	52840696	15	139	100	100
203	lpg0672	52840909	12	183	100	100
204	lpg1409	52841639	19	327	100	100
205	lpg1558	52841788	13	315	100	100
206	tpiA	52842989	13	165	100	100
207	gshB/lpg2814/tpiA	52842073/52843010/52842989	8	224	100	100
207			9	77	99,99	0
208	lpg1558	52841788	12	306	100	100
209	lpg2848/xapA	52843044/52841664	8	198	100	100
210	lpg0950	52841185	10	204	100	100
211	tpiA/lpg2277	52842989/52842490	15	225	100	100
212	mmsA	52840384	9	127	100	100
213	lpg0264/lpg2277	52840519/52842490	11	184	100	100
214	yjeA	52840949	13	343	100	100
215	lpg1558/lpg0956	52841788/52841191	9	236	100	100
216	lpg1558/lpg2843	52841788/52843039	9	277	100	100
217	lpg0956	52841191	17	326	100	100
218	lpg0956/lpg2843	52841191/52843039	14	263	100	100
219	lpg0956	52841191	17	344	100	100
220	lpg0956	52841191	18	489	100	100
221	com1	52842068	15	301	100	100
222			4	30	xxx	XXX
223			6	35	9,08	XXX
224	artJ	52840293	11	260	100	100
225	artJ	52840293	12	284	100	100
226	dnaK	52842242	6	196	100	100
227	lpg1116/deoB/lpg0467	52841350/52840876/52840712	4	168	100	100
228			8	43	86,55	89,78
229	lpg0128	52840383	6	160	100	100
230	lpg2951	52843145	6	104	100	100
231	lpg0128	52840383	11	263	100	100
232	lpg0956/sucA/orn	52841191/52840776/52842945	12	240	100	100
233						

SSP#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
234	lpg0956	52841191	11	266	100	100
235	lpg0243/lpg0956	52840498/52841191	14	211	100	100
236	rpe	52840901	8	254	100	100
237	fabl	52842081	12	399	100	100
238			5	42	81,44	xxx
238						
239						
240			6	30	xxx	xxx
241						
242	lpg1451	52841681	4	158	100	100
243						
244	def	52842801	11	218	100	100
245	pnp	52842967	12	169	100	100
246						
247	рріВ	52842931	10	350	100	100
248	lpg1962	52842179	6	137	100	100
249	lpg1962	52842179	5	125	100	100
250	sodB	52843161	7	117	100	100
251	sodB	52843161	7	110	100	100
252	sodB	52843161	10	167	100	100
253	lpg0265	52840520	8	143	100	100
254	sodB	52843161	7	89	100	99,79
255	lpg2865/wrbA	52843060/52840883	5	156	100	100
256						
257						
258			5	29	xxx	xxx
259						
260						
261	lpg0265	52840520	13	178	100	100
262						
263						
264			8	60	99,72	58,86
265	lpg0708	52840945	8	136	100	100
266	lpg0708	52840945	8	148	100	100
267						
268			7	55	99,21	xxx
269	lpg2043	52842260	9	155	100	100
270						
271	ssb	52840601	9	141	100	100
272	lpg2246	52842459	5	82	100	99,99
273	lpg2246	52842459	8	173	100	100
274						
275			5	36	35,61	ххх
276	secB	52842518	5	85	100	99,99
277	dut	52842695	5	146	100	100
278	lpg0798	52841034	5	118	100	100
279			7	56	99,31	XXX
280			5	44	88,29	44,41
281						
282	fah7	52840755	6	74	99 99	99 15

SSP#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Ion Score C.I. %
283			7	62	99.83	0
284			6	47	94,89	xxx
285	lpg2320	52842530	8	106	100	99,91
286	lpg1971	52842188	5	65	99,92	97,91
287						
288						
289						
290						
291						
292						
293	lpg0374	52840619	5	96	100	100
294						
294			10	49	96,7	XXX
295			9	37	52,27	XXX
295			5	48	95,84	XXX
296	lpg0374	52840619	5	163	100	100
297						
298	lpg1832	52842059	13	183	100	99,73
299						
300						
301						
302			4	40	73,17	43,51
303						
304	lpg1809	52842036	4	63	99,86	99,56
305						
306			8	39	66,98	XXX
307						
308			4	45	02.44	
210			4	40	92,44	XXX
310						
310			1	45	01 52	VVV
312			4	45	91,52	***
1249						
139a	lna0032/lna2217	52840288/52842430	13	335	100	100
157a	lpg0002/lpg2217	52842489/52841580	10	191	100	100
158a	lpg2276/lpg1350	52842489/52841580	13	291	100	100
159a	lpg1889/iscS	52842107/52841973	15	274	100	100
160a	.pg		6	39	63.81	xxx
28a	lpg0194/acnA	52840449/52841918	18	336	100	100
42a	lpg1116	52841350	10	258	100	100
54a	lpg1351/gbsA/lpdA	52841581/52840493/52841732	11	161	100	100
59a	mmsA/lpg1351	52840384/52841581	15	245	100	100
61a	lpa1831	52842058	19	379	100	100

OMV #5

OMV#5			Pontido	Protein	Protein	Total Ion
Spot	Gene	GI no.	Count	(Mascot)	C.I. %	%
1	icmE	52840696	21	159	100	99,9

OMV#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Tota Sco %	al Ion re C.I.
2	icmE	52840696	24	175	100	70	95.09
- 3	icmE	52840696	27	219	100		99.29
4	icmE	52840696	20	143	100		99.6
5	Iome	02010000	18	155	100		91 57
6							0.,01
7			9	37	42.64	xxx	
8	lpg1116	52841350	10	200	100		100
9	10						
10			17	109	100	xxx	
11			16	71	99,98	xxx	
12			15	92	100	xxx	
13			7	44	90,03	xxx	
14					,		
15							
16			10	48	95,65	xxx	
17	sclB	52842850	13	91	100	xxx	
18	sclB	52842850	15	196	100		100
19	sclB	52842850	15	199	100		100
20	sclB	52842850	14	141	100		99.95
21			12	81	100		84.21
22			5	38	56.48	xxx	,
23			11	71	99,98	xxx	
24	lpg2959	52843153	12	109	100	7000	99 89
25	.69_000		12	75	99 99	xxx	00,00
26	fliC	52841570	23	354	100	,	100
27	fliC	52841570		301	100		100
28	fliC	52841570	23	293	100		99 99
29	fliC	52841570	23	266	100		99.68
30		0_0.000	12	_00 76	99 99	xxx	00,00
31	lpa1918	52842136	17	141	100	,	49.93
32	lpg1810/fliC	52842037/52841570	11	140	100		100
33	.pg.o.oo		9	47	94 13	xxx	
34	lpg1810	52842037	15	171	100	,	100
35	lpg1810	52842037	15	176	100		100
36	lpg1810	52842037	15	169	100		100
37	lpg1810	52842037	14	171	100		100
38	icmK	52840695	12	128	100		99.92
39	fliC	52841570	24	297	100		100
40	Ing1810	52842037	10	-01	99 99		95 13
41			9	55	99.19	xxx	,
42	lpg2526	52842734	13	93	100	xxx	
43	lpg2526	52842734	18	154	100	xxx	
44	lpg2526	52842734	16	146	100		91.93
45	lpa2526	52842734	13	93	100	xxx	- ,
46	fliC	52841570	20	250	100		100
47	lpg2959	52843153	11	77	99.99		90.34
48	lpg2959	52843153	11	81	100		96.12
49	lpg2959	52843153	11	67	99.95	ххх	· -, · -
50	fliC	52841570	25	354	100		100
51	fliC	52841570	23	337	100		100
-	-		20	201			

OMV#5 Spot	Gene	GI no	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Tota Scor %	l Ion re C.I.
52	fliC	52841570	24	308	100		100
53	fliC	52841570	25	278	100		98,45
54	fliC	52841570	23	420	100		100
55	fliC	52841570	23	353	100		100
56	fliC	52841570	20	288	100		100
57							
58	lpg0467	52840712	18	161	100		90
59	lpg0467	52840712	15	137	100		99,62
60	flgE	52841451	11	104	100		99,85
61	lpg2509	52842717	11	73	99,99	XXX	
62	lpg2509	52842717	12	82	100	XXX	
63	lpg0482	52840727	18	213	100		100
64			6	80	100		0
65			11	80	100	XXX	
66	lpg0502	52840747	12	125	100		99,98
67	lpg0502	52840747	13	168	100		100
68	fadA	52841583	18	173	100		52,88
69	fadA	52841583	19	225	100		99,99
70	lpg1455	52841685	12	163	100		100
71		500 40 4 40	15	114	100	XXX	~ ~ ~
72	lpg0194	52840449	13	96	100		99,69
73	tolB	52841801	18	189	100		99,9
74	lpg2814	52843010	10	120	100		100
75	lpg2814	52843010	11	104	100		99,86
/6 77	In a 2027	52042022	8	51	97,72	XXX	00 5
70	1pg2837	52843033	12	111	100		99,5
78	ipg2837	52843033	15	211	67.74		100
79 00	Inc.2027	52842022	7	39 00	100	XXX	66 65
0U Q1	ipg2837	52843035	9	122	100		00,00
01		52041047	12	123	100		99,04
02 93	ipy 1945	52842102	9	107	100		99,95
84	ICHIN	52640095	8	51	07 77	~~~	99,19
85			9	68	97,77	~~~	70 79
86			Ũ	00	00,00		10,10
87	lpa2942	52843136	10	178	100		100
88	lpg2942	52843136	8	136	100		100
89			5	30	xxx	xxx	
90	lpg2942	52843136	12	184	100		100
91	icmX	52842895	12	156	100		100
92	icmX	52842895	10	156	100		100
93			6	38	55,44	xxx	
94	icmX	52842895	15	241	100		100
95	minD	52841952	13	242	100		100
96			5	35	6,93	xxx	
97	lpg2960	52843154	6	71	99,98		99,67
98	lpg2960	52843154	6	113	100		100
99			11	87	100		49,78
100	lpg2961	52843155	8	56	99,34	ххх	
101	lpg2961	52843155	8	175	100		100

OMV#5 Spot	Gene	GI no.	Peptide Count	Protein score (Mascot)	Protein score C.I. %	Total Score %	lon e C.I.
102	lpg2961	52843155	8	118	100		100
102	lpg2961	52843155	8	99	100		99,99
103	lpg2961	52843155	8	123	100		100
104			7	47	94,52	xxx	
105	lpg0957	52841192	6	72	99,98		99,94
106			10	87	100	xxx	
107	lpg0672	52840909	10	134	100		100
108	lpg0101	52840356	5	52	98,35		95,21
109							
110	lpg0101	52840356	9	138	100		100
111	lpg2843	52843039	13	127	100		99,5
112	com1	52842068	11	171	100		99,65
113	com1	52842068	15	212	100		100
114	mip	52841028	11	126	100		99,89
115	mip	52841028	13	128	100		71,21
116							
117							
118	lpg2961	52843155	7	108	100		100
119	lpg0731	52840968	7	124	100		100
120	lpg2961	52843155	9	147	100		100
121	lpg2275	52842488	8	91	100		99,7
122	10						,
123							
124	lpa2999	52843192	9	147	100		100
125	lpg2999	52843192	8	155	100		100
126	lpg2999	52843192	11	178	100		100
127	lpg2999	52843192	9	153	100		100
128	lpa0732	52840969	8	99	100		99.87
129	lpg0732	52840969	9	147	100		100
130	.pgo: o_		6	41	80.56	xxx	
131			7	60	99.73		71 26
132			10	94	100		0
133			10	01	100		Ũ
134							
135			10	49	96 77	XXX	
136			7	40	74.96	XXX	
137			8	86	100	1000	81 88
138			6	73	99 99		52 01
139			8	65	99,00		71.89
140			7	59	99.64	YYY	11,00
141	lpa0971	52841206	9	77	00,01 00 00	1000	96 62
142	ipgeon	32041200	5	35	22 59	***	50,02
143			Ũ	00	22,00		
140	Ing0798	52841034	4	131	100		100
145	1990100	02041004	7	101	100		100
146	ndk	52841778	6	88	00 03		99 34
147	TMN .	02041770	Q Q	72	100		ب ری م
148	foIE2	52842965	0 10	112	100		00 00
140		020-2000	10	112	100		50,00
175							

OMV#5				Protein	Protein	Total Ion
Spot	Gene	GI no.	Peptide Count	score (Mascot)	score C.I. %	Score C.I. %
151						
152						
153						
154						
155			5	37	45,2	xxx
156						
157						
158			5	35	20,82	xxx
159	lpg2825	52843021	6	87	100	97,85
160			8	73	99,99	xxx
161						
162						
163			6	55	99,19	xxx
123a	lpg2999	52843192	8	130	100	100
68a	lpg1455	52841685	13	134	100	99,95

8 **PUBLIKATIONSLISTE**

Veröffentlichungen

Galka, F., Wai, S. N., Kusch, H., Engelmann, S., Hecker, M., Schmeck, B., Hippenstiel, S., Uhlin, B. E., and Steinert, M. Proteomic characterisation of the whole secretome of *Legionella pneumophila* and functional analysis of outer membrane vesicles. Eingereicht bei *Infection and Immunity*.

Steinert, M., Wagner, C., Fajardo, M., Shevchuk, O., Ünal, C., Galka, F., Heuner, K., Eichinger, L., and Bozzaro, S. (2006) The Amoeba *Dictyostelium discoideum* Contributes to *Legionella* Infection. In Legionella: State of the art 30 years after its recognition. Eds.: Cianciotto, N. P., Abu Kwaik, Y., Edelstein, P. H., Fields, B. S., Geary, D. F., Harrison, T. G., Joseph, C. A., Ratcliff, R. M., Stout, J. E., Swanson, M. S. ASM Press, Washington DC, USA: 390-394.

Tagungsbeiträge

Proteomic and functional analysis of *Legionella pneumophila* secretome and outer membrane vesicles

Galka, F., Wai, S. N., Kusch, H., Engelmann, S., Hecker, M., Schmeck, B., Hippenstiel, S., Uhlin, B. E., and Steinert, M. *GRK Annual Retreat*, 13.01.2007, Retzbach (Vortrag)

Characterization and Functional Analysis of Outer Membrane Vesicles Secreted by Legionella pneumophila

Galka, F., Wai, S. N., Batzilla, C., Schmeck, B., Hippenstiel, S., Uhlin, B. E., and Steinert, M. *European Graduate Academy course and workshop*, 10. – 17.05.2006; Umeå University, Schweden (Poster)

Novel Strategies Against Legionnaires` Disease

Schunder, E., J. Putze, F. Galka, C. Ünal, C. Wagner, A. S. Khan, J. Hacker, and M. Steinert. *SFB630 1st International Symposium*; 12. – 15.02.2006; Würzburg (Poster)

Guinea Pig Infections with *Legionella pneumophila* Reveal a Mip-dependent Colonization of the Lung

Galka, F., C. Wagner, A. S. Khan, B. Schmausser, U. Lorenz, J. Hacker, and M. Steinert. *6th International Conference on* Legionella, 16. – 20.10.2005, Chicago, USA (Poster)

Characterization and functional analysis of outer membrane vesicles secreted by Legionella pneumophila

Galka, F., Wai, S. N., Uhlin, B. E., and Steinert, M. Legionella *Mini-Symposium*, 21. – 22.04.2005, Robert-Koch-Institut Berlin (Vortrag)

Outer Membrane Vesicles of *Legionella pneumophila* and Analysis of their Role in Pathogenesis

Galka, F., Wai, S. N., Uhlin, B. E., and Steinert, M. EGC 587/2-Evaluierung, 11.03.2005, Würzburg (Poster)

Isolation of Outer Membrane Vesicles of *Legionella pneumophila* and Functional Characterization of the Mip Protein

Galka, F., Wai, S. N., Uhlin, B. E., and Steinert, M. *Mini-Symposium*, 22. – 24.11.2004, Kloster Banz (Poster)

Isolation of outer membrane vesicles of *Legionella pneumophila* and functional characterization of the Mip protein Galka, F., Wai, S. N., Uhlin, B. E., and Steinert, M. *SFB630/SFB544 Joint Ph.D. Students Meeting*, 10. – 12.11.2004 (Vortrag)

9 LEBENSLAUF

PERSÖNLICHE DATEN

FRANK GALKA

Geburtsdatum:	29. Juni 1977
Geburtsort:	Schweinfurt
Familienstand:	ledig

AUSBILDUNG

07.2003 – 11.2007	INSTITUT FÜR MOLEKULARE INFEKTIONSBIOLOGIE, BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG Promotion <i>Thema der Dissertation:</i> Untersuchungen zum Proteom und zur Funktion von sekretierten Proteinen und äußeren Membranvesikeln von <i>Legionella pneumophila</i>
10.1997 – 01.2003	BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG Studiengang Biologie <i>Hauptfach:</i> Biotechnologie <i>Nebenfächer:</i> Zell- und Entwicklungsbiologie, Physiologische Chemie <i>Thema der Diplomarbeit:</i> Mutations- und Interaktionsanalyse von "Transforming Growth Factor- beta 2" zur Bestimmung der Rezeptorbindeepitope im Hinblick auf die Generierung von Antagonisten <i>Abschluss:</i> Diplom
09.1987 – 06.1996	WALTHER-RATHENAU-GYMNASIUM SCHWEINFURT Leistungskurse: Mathematik und Chemie Abschluss: Allgemeine Hochschulreife

AUSBILDUNGSBEGLEITENDE TÄTIGKEITEN

07.2003 – 03.2007 10.2007 – 12.2007	INSTITUT FÜR MOLEKULARE INFEKTIONSBIOLOGIE, BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG Wissenschaftlicher Mitarbeiter
01.2004 – 12.2005	INTERNATIONAL GRADUATE COLLEGE GRK 587/2, BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG und UMEÅ UNIVERSITY, SCHWEDEN Assoziiertes Mitglied
03.2002 – 12.2002	LEHRSTUHL FÜR PHYSIOLOGISCHE CHEMIE II, BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG Studentische Hilfskraft

Bergrheinfeld, November 2007