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1 | Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is a valuable diagnostic imaging

technique that, unlike Computed Tomography (CT) or conventional

X-Ray examinations, does not require ionizing radiation. Another

advantage of magnetic resonance (MR) is its superior soft-tissue con-

trast, compared to CT. For 3-dimensional spatial coverage, however,

MR scans can be very time-consuming, especially for high-resolution

or dynamic applications. Extensive scan times not only reduce pa-

tient comfort, but also increase the risk of involuntary patient motion,

which ultimately degrades image quality. Furthermore, available time

slots in clinical routine are very limited and lengthy scans decrease

patient throughput.

Many techniques on the acceleration of MR scans have been devel-

oped and are usually based on utilizing additional information about

the imaged object or about the MR signal receiver system, in order

to reconstruct an image from an undersampled dataset. The most

prominent example is parallel imaging – it uses the different spatial

sensitivities of the multiple MR receiver coils for additional spatial

encoding. In 1999, Pruessmann et al. presented SENSE (Sensitivity

Encoding for Fast MRI) [1], a reconstruction algorithm for undersam-

pled MR datasets that operates in image space. An algorithm oper-

ating in the k-space domain (GRAPPA: Generalized Autocalibrating

Partially Parallel Acquisitions) was later introduced by Grisworld et
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al. [2]. Both these techniques require full sampling in a region, typi-

cally around the k-space center, which corresponds to a low-resolution

image of the object. SENSE-based methods then estimate spatial sen-

sitivity maps from the low-resolution images of the multiple receiver

elements and use this knowledge to undo the pixel superposition of the

aliasing effect. GRAPPA-based methods use the fully sampled k-space

region to calculate a GRAPPA kernel, consisting of linear combina-

tions of neighboring k-space locations in the different receiver coils.

Missing k-space locations can then be calculated via convolution of

the acquired k-space samples with the GRAPPA kernel.

Compressed Sensing (CS) [3, 4] approaches make use of the com-

pressibility of MR images to reconstruct artifact-free images from an

undersampled k-space. Exploiting correlations in spatial, temporal

and/or flow-encoding directions, Compressed Sensing has proven effi-

cient in various cardiac applications [5–9]. A drawback of any tech-

nique that applies a temporal model to dynamic data is, however, that

due to possible smoothing effects, functional parameters may exhibit

a lower temporal fidelity.

Apart from elaborated reconstruction techniques for undersampled

MR data, the image acquisition can also be accelerated by using the

gradient hardware more efficiently by means of non-Cartesian k-space

trajectories. Conventional MR examinations are performed with the

Cartesian trajectory, which has many advantages, such as ease of im-

plementation and inherent robustness against gradient system imper-

fections [10]. However, other k-space trajectories may be better suited

for specific applications. For example, the inherent signal averaging

near the k-space center in radial acquisitions reduces motion artifacts

in morphological and functional lung imaging [11–13]. Radial k-space

trajectories also facilitate the use of respiratory self-gating, since the

k-space center signal is measured in each readout and may be used for

gating. Furthermore, non-Cartesian k-space trajectories may lead to
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improved parallel imaging reconstructions of undersampled MR im-

ages. Recently, the wave-CAIPI (CAIPIRINHA: Controlled Alias-

ing in Parallel Imaging Results in Higher Acceleration) technique was

shown to be very efficient in highly undersampled volumetric acquisi-

tions [14–19]. It enables parallel imaging reconstructions with consid-

erably reduced noise enhancement, which is usually introduced in the

final images.

While the utilization of non-Cartesian k-space trajectories can have

a beneficial impact in parallel imaging reconstructions and may be less

sensitive to motion artifacts, some challenges also arise. For example,

off-resonance effects in spiral trajectories can lead to significant blur-

ring [20, 21]. This effect becomes stronger, as the readout duration

is increased. Moreover, significant distortions of non-Cartesian gradi-

ent waveforms arise due to gradient system imperfections [10, 22–24].

This leads to inaccuracies in the k-space trajectory and finally trans-

lates to severe image artifacts. As a consequence, methods for cor-

recting gradient errors, such as the gradient system transfer function

(GSTF) or autocalibration based on data consistency, are often re-

quired [10,17,22–24].

The aim of this work is to investigate the potential of the wave-

CAIPI technique to accelerate two particularly lengthy applications:

dynamic 3D lung MRI for radiotherapy treatment planning and 4D

flow MRI for the assessment of flow alterations in heart diseases. In

dynamic 3D lung MRI (4D lung MRI), several breathing states of

the lung need to be resolved, in order to quantify respiration-induced

tumor movement. Since a large field of view (FOV) needs to be covered

with sufficient spatial and temporal resolution, long scan times arise.

4D flow applications are usually accompanied by extensive acquisition

times, as a 3D volume must be encoded, the flow velocity needs to be

encoded in three orthogonal directions and resolution of the cardiac

cycle must be performed.
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All in vivo studies presented in this work were approved by our

institution’s ethics committee and informed, written consent was ob-

tained from each subject prior to the examination.

1.2 Outline

Chapter 2 elaborates on general aspects of MR image reconstruction

and signal encoding. In that context, the pulse sequence design for

the wave-CAIPI k-space trajectory is outlined and reconstruction tech-

niques are introduced. Further, the gradient system transfer function

and data-driven autocalibration are presented as methods to correct

for gradient system imperfections. In Chapter 3, dynamic 3D lung

imaging is introduced for radiotherapy treatment planning. The re-

sults of 4D lung MR scans, performed with wave-CAIPI and Cartesian

sampling, are quantitatively compared. To assess performance gains

by employing the wave-CAIPI sampling technique, image quality is

quantified as a function of acquisition time. 4D flow MRIs of the

aorta are presented in Chapter 4 for wave-CAIPI and Cartesian sam-

pling and for different acceleration factors. The dependence of several

flow parameters on the sampling scheme and on the acceleration factor

is investigated. Furthermore, error rates in flow parameters are calcu-

lated to quantitatively compare the two sampling strategies. Finally,

Chapter 5 summarizes the main findings of this work.
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2 | Non-Cartesian MR Data Acquisi-

tion

This chapter presents non-Cartesian k-space sampling and discusses

advantages and challenges. A brief introduction of parallel imaging

reconstructions for non-Cartesian k-space trajectories is given. The

wave-CAIPI k-space trajectory is introduced in detail. For more back-

ground on MR signal generation and measurement, the interested

reader is referred to relevant textbooks, e.g., the work by Bernstein et

al. [25].

Parts of the presented content in this chapter, as well as in the fol-

lowing chapters, were previously published in Magnetic Resonance in

Medicine by John Wiley & Sons, Inc., [26] under the Creative Com-

mons BY-NC 4.0 License1. Figures that were replicated in this work

(entirely, or in parts) are declared accordingly.

2.1 Sampling and Reconstruction

2.1.1 K-Space

In magnetic resonance imaging, the Fourier transform

Â = FA (2.1)

1https://creativecommons.org/licenses/by-nc/4.0/
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of the imaged object A is sampled during the measurement, where F
denotes the Fourier transformation operator, defined by

(FA)(~k) =

∫
R3

A(~r)e−2πı~k~rd3r (2.2)

in continuous 3-dimensional space, where ~k = (kx, ky, kz) are locations

in Fourier space and ~r = (x, y, z) denotes the spatial position. In order

to obtain an image A(~r) from the measured MR data Â(~k), an inverse

Fourier transform must be performed:

A(~r) = (F−1Â)(~r)

(Eq. 2.1)
= (F−1FA)(~r)

= F−1(FA)(~r)

(Eq. 2.2)
=

∫
C3

Â(~k)e2πı~k~rd3k.

(2.3)

As in reality, the MR signal is sampled with a finite sampling fre-

quency, the Fourier space (k-space) is sampled only at discrete posi-

tions (i.e., only a finite set of Fourier coefficients is sampled). Fur-

thermore, since the acquisition time in MR imaging is limited – due

to signal decay and also for practical reasons – only a limited vol-

ume in Fourier space can be sampled. Therefore, the inverse Fourier

transform in Eq. 2.3 can be discretized in the following way

A(~r) =
1

N

Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

A(nx∆kx, ny∆ky, nz∆kz)

e
2πı(∆kxnx

Nx
x+

∆kyny
Ny

y+∆kznz
Nz

z)
,

(2.4)

where for i ∈ {x, y, z}, Ni denotes the number of equidistant sample

positions in direction i, N = NxNyNz and ∆ki is the distance between

sample positions in direction i. Characteristics of the k-space sampling

scheme impact the image which is then reconstructed. For instance,
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the distance between two adjacent k-space samples in direction x de-

fines the encoded field of view in that direction:

FOVx =
1

∆kx
. (2.5)

Furthermore, the spatial resolution in the image is related to the max-

imum sampled frequency in k-space. For the x direction, the spatial

resolution is given by

∆x =
1

2kmax,x
. (2.6)

Directly performing the discrete Fourier transform in Eq. 2.4 is an

operation of O(N 2) computational complexity, which can be very de-

manding for large sample sizes. A more efficient implementation of

the discrete Fourier transform is the Fast Fourier Transform (FFT),

which reduces the complexity to O(N log(N)) [27].

2.1.2 Non-uniform Fourier Transform

While the Fourier transformation of MR data acquired with the stan-

dard Cartesian trajectory can be efficiently performed by a Fast

Fourier Transformation, some extra steps need to be taken for non-

Cartesian MR data. In 1991, Jackson et al. presented an efficient

method to transform data that was acquired on non-Cartesian sam-

pling positions to a regular Cartesian grid [28]. The method is called

convolutional gridding and is comprised of a convolution of the non-

Cartesian sampling positions with a short-ranged convolution kernel

b(k). After resampling the data on a Cartesian grid, the standard

FFT can be applied. After the Fourier transformation, however, the

image suffers from intensity errors, as the convolution with the kernel

function b(k) in k-space corresponds to a multiplication of the image

with the Fourier transformation of the kernel B(r) = Fb(k) in im-

age space. Therefore, the image needs to be divided by the Fourier

21



transformation of the convolution kernel. Care needs to be taken that

B(r) does not have zeros within the FOV of interest. A schematic

convolution of non-Cartesian sampling positions with the convolution

kernel is displayed in Fig. 2.1. As investigated by Jackson et al., the

Kaiser-Bessel function

b(k) =

 1
W I0(β

√
1− (2k/W )2) k ≤ W/2

0 otherwise
(2.7)

serves as a suitable convolution kernel, where I0 is the zeroth-order

modified Bessel function of the first kind, W describes the width of

the kernel and β is a scaling parameter. Fig. 2.2 displays the shape of

an exemplary Kaiser-Bessel convolution kernel.

Figure 2.1: Resampling of a spiral trajectory in 2D k-space onto a Cartesian grid
via convolutional gridding. Each data point on the non-Cartesian trajectory (red) is
convolved with a finite kernel (blue dotted line).
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Figure 2.2: Kaiser-Bessel convolution kernel for W = 4 and β = 8.
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2.1.3 Parallel Imaging

The image acquisition in magnetic resonance imaging can be accel-

erated by omitting readout lines in k-space, e.g., by measuring only

every other phase encoding step in 2D imaging (acceleration factor

R = 2). As a consequence, however, the distance between adjacent

sampled k-space locations is increased by a factor of 2 in phase encod-

ing direction. According to Eq. 2.5, the encoded field of view is thereby

reduced by a factor of 2, leading to aliasing artifacts in the image. In

order to remove the aliasing artifacts and obtain a full FOV image,

parallel imaging algorithms, such as SENSE or GRAPPA, can be em-

ployed [1, 2, 29]. SENSE-based algorithms make use of the different

spatial sensitivity profiles of the individual receiver coils for additional

spatial encoding. GRAPPA, on the other hand, estimates correlations

in neighboring k-space locations and among different receive channels

to recover missing k-space samples.

In this work, a SENSE-based algorithm was chosen for the recon-

struction of undersampled MR images. In R = 2-fold undersampled

Cartesian MR images, for instance, aliasing leads to a superposition

of pixels that are separated by a distance of FOV/2 in the undersam-

pled direction. The SENSE reconstruction relies on the fact that pixel

superposition is weighted by the spatial sensitivities of the individual

receiver elements. If the spatial sensitivities of the respective receive

channels are known, the superposition can be undone and the full FOV

image can be recovered.

For the reconstruction of images acquired with non-Cartesian k-

space trajectories, it is more efficient to perform the SENSE recon-

struction iteratively, as introduced in [29]. To this end, the SENSE

problem is solved with a Conjugate Gradient (CG) algorithm, mini-

mizing a data consistency term in image space. A common challenge

in iterative image reconstructions is the choice of a proper regulariza-
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tion or termination criterion. The number of iterations in an itera-

tive SENSE reconstruction corresponds to a regularization parameter,

dictating the compromise between the amplitude of undersampling

artifacts and image noise [30]. In this work, the residual of the Conju-

gate Gradient algorithm rCG, which is a measure of data consistency,

was used as a stopping criterion. The algorithm was stopped when

rCG decreased beyond a pre-determined threshold. To this end, the

actual image noise was estimated using the pseudo multiple replica ap-

proach [31]. Noise amplitudes and correlations between different chan-

nels were measured in a short pre-scan, using the same pulse sequence

setup as for actual imaging, but omitting the excitation pulse. With

the knowledge of noise amplitudes and correlations, a noise covariance

matrix was calculated. The noise covariance matrix was then used to

generate authentic, artificial noise samples (i.e., correct scaling and

correlations across the receive channels). A fully sampled, noise-only

k-space was thereby generated and, by performing a Fourier trans-

form, a noise-only image was obtained. The noise level was calculated

in the noise image, taking into account the sensitivity profiles of the

individual receive channels:

rNoise =

√√√√Npx∑
i=1

∣∣∣ Nch∑
k=1

mikC∗ki

∣∣∣2, (2.8)

where Npx denotes the number of pixels, Nch is the number of channels,

mik is the value of pixel i in channel k and C∗ is the complex conjugate

spatial sensitivity of channel k at pixel i. Using the image noise level,

the termination criterion of the Conjugate Gradient SENSE algorithm

was defined as

rCG ≤ c · rNoise, (2.9)

where c controls the compromise between noise level and residual un-

dersampling artifacts. In this work, c was chosen to be in the range
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of [0.09, 0.7], depending on the application. A typical evolution of

the CG residual is shown in Fig. 2.3, displaying also the termination

threshold for the reconstruction of an undersampled 3D lung MRI

examination.

Figure 2.3: Residual rCG of a Conjugate Gradient SENSE reconstruction after each
iteration. The dashed line represents the noise threshold according to Eq. 2.9.

A drawback of parallel imaging reconstructions is an elevated noise

level in the reconstructed images. In addition to the
√
R-fold loss in

SNR for R-fold acceleration, which is due to the smaller acquisition

time, a noise penalty related to the ill-conditioning of the reconstruc-

tion problem arises [31]. This noise amplification depends on the level

of undersampling and the receive coil setup (number of channels, loca-
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tion of receive elements and sensitivity profiles). The latter influence is

quantified by the geometry factor g, often abbreviated as the g-factor.

The g-factor can be calculated from the estimated SNR in acceler-

ated and fully sampled acquisitions, i.e., by using the pseudo multiple

replica approach [31]:

g =
SNRfull

SNRacc

√
R
, (2.10)

where SNRfull and SNRacc denote the SNR of fully sampled and ac-

celerated acquisitions, respectively. The g-factor is calculated on a

pixel-by-pixel basis.

2.2 Wave-CAIPI k-space Trajectory

The wave-CAIPI technique was recently introduced for optimized vol-

umetric acquisitions [14–19], enabling parallel imaging reconstructions

of undersampled datasets with reduced noise enhancement. The wave-

CAIPI technique applies sinusoidal gradient waves on the two phase

encoding directions during readout (cf. Fig. 2.4a). The gradient wave

oscillations are shifted with respect to one another by a phase differ-

ence of π/2. The k-space trajectory results from the time integral of

the gradient waveforms

~k(t) = γ

∫ t

0

~G(t′)dt′, (2.11)

where ~k = (kx, ky, kz) is the k-space location, t is the time, ~G =

(Gx, Gy, Gz) is the magnetic field gradient vector and γ denotes the

gyromagnetic ratio for protons. In the present case, the trajectory

then consists of helix-shaped readout lines in 3D k-space, as shown in

Fig. 2.4b. This wave encoding strategy is combined with a 2D-CAIPI

undersampling pattern, to make better use of receive coil sensitivity

variations [32,33].
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Figure 2.4: (a) Pulse sequence diagram of a gradient echo sequence with wave-CAIPI
sampling. (b) Wave-CAIPI k-space trajectory, consisting of helix-shaped readout lines.
Previously published in [26] under the CC BY-NC 4.0 license (modified).

The wave-CAIPI sampling leads to a more homogeneous distribu-

tion of missing k-space locations in the case of undersampling, com-

pared to the Cartesian trajectory. The omission of readout lines leads

to undersampling in the phase encoding, as well as in the frequency en-

coding direction. As a result, aliasing artifacts in the image space are

distributed in all three spatial dimensions. Therefore, coil sensitivity

variations can be exploited also in the frequency encoding direction,

leading to overall better parallel imaging reconstructions. In contrast

to that, aliasing only takes place in the phase encoding directions for

3D Cartesian sampling and coil sensitivity variations are only used in

two dimensions.

To demonstrate the voxel-spreading properties of the wave-CAIPI

k-space trajectory, the appearance of undersampling artifacts for wave-

CAIPI are presented in Fig. 2.5 for an acceleration rate of R = 2 in

the anterior-posterior direction (phase encoded).
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Figure 2.5: Appearance of undersampling artifacts in 3D Cartesian and wave-CAIPI
acquisitions. The images are 2-fold accelerated in anterior-posterior direction. The
wave-CAIPI technique spreads undersampling artifacts also in the frequency encoding
direction (head-feet).
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2.3 Gradient Correction

A disadvantage of non-Cartesian k-space trajectories is their suscep-

tibility to imperfections in the gradient system [10,22–24]. The wave-

forms that are actually played out by the MR scanner usually dif-

fer from the nominal input gradients. In case of the wave-CAIPI

method, the real sinusoidal gradient waves are distorted and differ

from the nominal gradient oscillations by time-delays and magnitude

alterations, which depend on the frequency of the oscillation. Dif-

ferences between the theoretical input gradient and the gradient that

is actually played out lead to errors in the k-space trajectory, as dis-

played in Fig. 2.6. Severe image artifacts arise from k-space trajectory

inaccuracies. Thus, a correction method that accounts for gradient

distortions is required, in order to avoid artifacts.

The gradient system behavior, including imperfections, can be char-

acterized by means of the gradient system transfer function (GSTF)

[10, 22–24]. The scanner specific GSTF can be determined in phan-

tom measurements. For this purpose, the phase evolution of the MR

signal is measured in two parallel slices, while several triangular input

gradients are applied on the gradient axis perpendicular to the excited

slice. From the phase information in two slices, the gradient that is

actually played out can be calculated and compared to the nominal

input. Using this method, three separate measurements need to be

performed, in order to characterize the system behavior in all three

gradient axes. The GSTF represents a general, linear model for gradi-

ent distortions and can be used to estimate the alterations of arbitrary

gradient waves, in order to account for them during the image recon-

struction. In this work, gradient correction was performed by only

using the linear self-terms of the GSTF. The effect of gradient inaccu-

racies on the image and the corresponding correction is demonstrated

in Fig. 2.7.

30



Figure 2.6: Differences between nominal and real k-space trajectory for wave-CAIPI
sampling on the Z gradient axis. Previously published in [26] under the CC BY-NC
4.0 license (modified).
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Figure 2.7: Impact of the GSTF-based gradient correction in a wave-CAIPI acquisition
of the lung. Trajectory errors in the left image lead to image artifacts. The right image
shows that GSTF-correction removes these artifacts efficiently. Previously published
in [26] under the CC BY-NC 4.0 license (modified).
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Gradient correction could also be performed by minimizing a data

consistency term, as was suggested recently for the wave-CAIPI k-

space trajectory [15]. There, the authors relate gradient distortions to

a small set of correction parameters. The gradient wave oscillations

of the wave-CAIPI can be sparsely described in the Fourier domain,

since the oscillation contains only a single frequency. In the presented

model, only the peak position and its neighboring positions in the fre-

quency spectrum are subjected to the optimization problem, resulting

in 3 complex correction parameters per gradient axis. The correction

parameters are varied and data consistency in a reduced SENSE recon-

struction model is used to guide the algorithm to the set of correction

parameters that best describes the acquired data.

A similar approach is to consider one delay and one magnitude al-

teration parameter per gradient axis and calculate the data consistency

term as a function of these parameters. Thereby, the gradient correc-

tion model consists of only 2 real correction parameters per gradient

axis, similar to the linear self-term GSTF approach. In Fig. 2.8, the

L1-norm of the Conjugate Gradient SENSE residual rCG is shown as a

function of the delay parameter of the Y-gradient axis. The minimum

in L1(rCG) is located near the GSTF-predicted value of 5.2µs.
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Figure 2.8: Autocalibration method to estimate the gradient delay of the Y-gradient
axis in a wave-CAIPI acquisition. The residual of the iterative SENSE reconstruction
is used to find the delay value that best represents the measured data, quantified in
terms of data consistency. The minimum of L1(rCG) indicates a suitable value for
the gradient delay and compares well to the GSTF-based estimation (dashed vertical
line).
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3 | Wave-CAIPI for Dynamic 3D Lung

MRI

This chapter presents the application of the wave-CAIPI sampling

technique to respiratory self-gated dynamic 3D lung MRI (4D lung

MRI) during free breathing, for the purpose of radiotherapy treat-

ment planning. The technique is tested on 6 volunteers (5 healthy

volunteers, 1 patient) and is compared to 4D lung MRI with standard

Cartesian sampling.

The majority of the presented findings was previously published

in Magnetic Resonance in Medicine by John Wiley & Sons, Inc., [26]

under the Creative Commons BY-NC 4.0 License1. Figures that were

replicated in this work (entirely, or in parts) are declared accordingly.

3.1 Background

Due to respiration and cardiac motion, moving organs, such as the

lungs are particularly challenging to image with MR, since the ac-

quisition is typically impaired by motion artifacts and blurring. Fur-

thermore, the inherently low proton density and the fast T ∗2 decay of

lung tissue complicates lung imaging, as the signal is weak. In order

to eliminate motion artifacts arising from respiration, a breathhold

examination can be performed. Such an approach, however, requires

patient compliance and severely restricts the time frame available for

1https://creativecommons.org/licenses/by-nc/4.0/

35



the acquisition. Breathhold examinations can be increasingly chal-

lenging for patients with a limited breathhold capability.

Respiratory motion can also be accounted for by means of image-

based gating methods [34, 35], or by employing additional hardware,

such as respiration belts, for instance [36]. A respiration belt, however,

requires additional time for setup and may reduce patient comfort. An

emerging hardware-based approach is the Pilot Tone technique [37,

38], which uses an additional RF transmitter to capture respiration-

induced tissue displacement.

Another approach is respiratory self-gating [39–41]. Thereby, the

breathing motion is estimated directly from the acquired MR data. To

this end, signal variations in the center of k-space may be used as a

respiratory navigator signal. A small increase in acquisition time has

to be spent for acquiring the center of k-space repeatedly, for Carte-

sian, as well as wave-CAIPI pulse sequences. In contrast to that, some

k-space trajectories, such as the 3D radial trajectory, inherently mea-

sure the center of k-space in each TR [13]. Only minor modifications

to existing MR pulse sequences are required to implement self-gating.

As long scan times increase the risk of involuntary patient motion that

degrades the image quality, the acquisition time of lung examinations

should be as short as possible, even with respiratory self-gating.

4D morphological lung imaging with respiratory self-gating has pre-

viously been reported in the context of radiotherapy treatment plan-

ning [40, 42, 43], for the purpose of quantifying respiration-induced

tumor displacement. If tumor displacement during respiration is un-

known, large safety margins around the tumor need to be defined, in

order to guarantee therapy with the prescribed dose. By determining

tumor displacement, optimized dose distributions may be calculated

to minimize radiation exposure of adjacent organs at risk.

The previous works [40,42,43] used the Cartesian k-space trajectory

for acquiring the MR data. In the present work, the wave-CAIPI k-
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space trajectory was used to further reduce the acquisition time, while

maintaining diagnostic image quality. The wave-CAIPI is usually em-

ployed on the basis of a regular, 2D-CAIPI undersampling pattern,

as presented in Sec. 2.2. In a study investigating motion-correction

for abdominal imaging with wave-CAIPI, a variable density sampling

and radial view ordering (VDRad) undersampling pattern was cho-

sen [19,44]. In this work, the phase encoding scheme was randomized

using a non-uniform density distribution, leading to random sampling

patterns after respiratory gating.

High quality, dynamic 3D images of the human lung were acquired

during free breathing using a randomized self-gated FLASH pulse se-

quence with wave encoding. Wave-CAIPI images were compared to

Cartesian images for different acquisition times and image quality was

quantitatively assessed by means of similarity measures, as well as

g-factor and SNR-calculations.

3.2 Methods

Setup

The wave-CAIPI k-space trajectory was integrated in a 3D gradient

echo pulse sequence, by applying sinusoidal gradient oscillations on

both phase encoding axes during readout (cf. Sec. 2.2). For this study,

a fixed number of complete wave cycles Nwave = 4 and a maximum

gradient wave amplitude of Awave = 6 mT/m was chosen. The ADC

(Analog-Digital Converter) was opened for a short period of time after

the non-selective RF excitation pulse. Thereby, the center of k-space

(”DC-Signal”) was acquired in each TR and used as a respiratory nav-

igator signal for retrospective self-gating. A schematic pulse sequence

diagram is displayed in Fig. 3.1a.

The phase encoding scheme was randomized using a non-uniform

density distribution σPE with increased sampling probability near the
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Figure 3.1: (a) Pulse sequence diagram of a self-gated 3D gradient echo sequence
with wave-CAIPI sampling. The ADC acquires the DC-signal directly after the non-
selective excitation pulse. (b) Nominal density distribution used for randomization
of the phase encoding order. (c) Typical sampling pattern of a 3-minute lung scan
after retrospective gating, using the density distribution in (b). Previously published
in [26] under the CC BY-NC 4.0 license (modified).
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k-space center. Thereby, synchronization between phase encoding and

respiration is prevented and large gaps in k-space after retrospective

self-gating are avoided, especially in the k-space center [42, 43]. To

this end, 2D pseudo-random numbers within the range of ([0, 1], [0, 1])

were generated using a Mersenne-Twister algorithm [45] (implemented

in the C++ standard library). The random numbers were distributed

according to a normal distribution with zero mean and a width of

w = 0.3:

σPE(ky, kz) = exp
(
−

√
k2
y + k2

z

2w

)
. (3.1)

The nominal density distribution in k-space is displayed in Fig. 3.1b.

A typical sampling pattern of a 3-minute lung scan after retrospective

self-gating is shown in Fig. 3.1c. The figure shows moderate undersam-

pling near the k-space center and increasing gaps towards the k-space

periphery.

In all volunteer and patient examinations, wave-CAIPI and Carte-

sian reference scans were performed. An identical set of pulse se-

quence parameters was chosen for both sampling schemes (except

for the wave-CAIPI specific parameters Awave and Nwave). Images

were acquired with a k-space matrix of size 224 × 224 × (112−144)

and an isotropic resolution of 2.23 mm. Further sequence param-

eters were: FOV = 500 × 500 × (250−321) mm3, repetition time

TR = 4.8 ms, echo time TE = 1.9 ms, flip angle ϕ = 5◦, readout

bandwidth BW = 350 Hz/px, which corresponds to a readout time

of 2.86 ms. Frequency encoding was performed in head-feet direction.

The examinations were performed using an 18 channel body coil ar-

ray, positioned on top of the volunteers, and a spine coil array (12–16

channels activated) that was integrated in the scanner table, resulting

in a total of 30–34 receiver channels.

In order to compare the image quality of wave-CAIPI and Carte-

sian 4D lung MR scans quantitatively, five healthy volunteers were
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examined with both sampling schemes. Furthermore, one patient

(male, 65 years old) with known squamous cell carcinoma in the

lung was examined and respiration-induced tumor movement was as-

sessed. The total acquisition time for one 4D lung scan was set to

be TAcq = (08:01–10:18) min for wave-CAIPI and Cartesian sampling.

This acquisition time lead to a moderate undersampling rate in the

self-gated images (R ≈ 1.5), which was considered to provide good

reference images for the subsequent comparison to accelerated images.

A low-resolution Cartesian calibration scan with increased FOV in

the coronal plane was performed for the calculation of coil sensitivity

maps.

All examinations were performed on a 3 Tesla clinical MR scanner

(MAGNETOM Prismafit, Siemens Healthcare, Erlangen, Germany).

Respiratory Self-Gating and Image Reconstruction

For both wave-CAIPI and Cartesian 4D lung scans, before image re-

construction, the series of readouts that was acquired in random order

needed to be sorted into different breathing phases. Therefore, the

DC-signal that was acquired in each TR served as a respiratory navi-

gator signal [39–41]. In the absence of spatial encoding, the signal is

proportional to the total amount of protons and the spatial coil sensi-

tivity profiles of the respective receiver elements. Hence, by manually

selecting a receive coil near the lung/liver interface, periodic varia-

tions in the DC-signal can be associated with respiration, since tissue

(liver) is moving in and out of the range of sensitivity of the respective

coil. The DC-signal was band-pass filtered, in order to eliminate signal

variations due to cardiac motion and to smooth the signal. A typical

self-gating signal, after filtering, is presented in Fig. 3.2 for a volun-

teer examination. The acquired data was distributed into 8 breathing

phases that partly overlap. A requirement in the distribution algo-
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Figure 3.2: Self-gating signal from a volunteer examination (after band-pass filtering).
Dashed lines represent the separation of the acquired data into 8 different breathing
phases. Adjacent breathing phases overlap to a certain degree (not displayed). Previ-
ously published in [26] under the CC BY-NC 4.0 license.
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rithm was that all breathing states contain a similar amount of data,

in order to ensure that a sufficient amount of data is available in all

breathing states for a stable parallel imaging reconstruction. For the

purpose of reaching a steady state DC-signal, the first 2500 TRs were

discarded prior to respiratory gating.

Gradient system imperfections were taken into account in retro-

spective. During the reconstruction, the k-space trajectory was cor-

rected using the gradient system transfer function that was presented

in Sec. 2.3.

The individual breathing states were reconstructed with an itera-

tive Conjugate Gradient (CG) SENSE approach [1,28,29]. Sensitivity

maps were estimated using an ESPIRiT calibration algorithm [46],

as implemented in the Berkeley Advanced Reconstruction Toolbox

(BART) [47]. Specifically for the comparison of two different MR

imaging techniques, a suitable, objective selection of regularization

parameters – in this case, the number of CG SENSE iterations – is

required. To this end, the image noise level was estimated and the

termination criterion developed in Sec. 2.1.3 was employed. For the

in vivo examinations, the free parameter c in Eq. 2.9 was chosen to be

in the range of 0.3–0.5. For phantom-based SNR calculations, c = 0.3

was chosen. For each volunteer, the same value of c was chosen for

the wave-CAIPI and Cartesian reconstructions.

Quantitative Image Analysis

The initially acquired wave-CAIPI and Cartesian 4D lung MRIs

(TAcq = (08:01–10:18) min) were retrospectively accelerated by dis-

carding measured data at the end of the respective scans. For differ-

ent scan time reductions (down to 01:00 min), the image quality was

quantified in terms of similarity to the reference scan. The normalized

mutual information (NMI) and the root-mean-square error (RMSE)

42



were calculated for each breathing state as a function of acquisition

time and used to quantify image similarity between retrospectively ac-

celerated acquisitions and their respective references. The normalized

mutual information of two discrete variables X and Y is defined as

NMI(X, Y ) =
I(X, Y )√
H(X)H(Y )

, (3.2)

where I(X, Y ) denotes the mutual information and H(X), H(Y ) is

the Shannon entropy of X and Y , respectively. The Shannon entropy

is calculated as

H(X) = −
Npx−1∑
i=0

Xi log(Xi), (3.3)

where Xi describes individual observations of X (here: pixels in an

image) and Npx is the total number of pixels. The joint entropy is

calculated accordingly:

H(X, Y ) = −
Npx−1∑
i=0

XiYi log(XiYi). (3.4)

The mutual information I(X, Y ) is defined as

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (3.5)

therefore, Eq. 3.2 can be expressed as

NMI(X, Y ) =
I(X, Y )√
H(X)H(Y )

(3.6)

=
H(X) +H(Y )−H(X, Y )√

H(X)H(Y )
(3.7)

=
−
∑Npx−1

i=0

(
Xi log(Xi) + Yi log(Yi)−XiYi log(XiYi)

)
√∑Npx−1

i,j=0 XiYj log(Xi) log(Yj)
.

(3.8)
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The root-mean-square error is defined as

RMSE(X, Y ) =

√√√√ 1

Npx

Npx−1∑
i=0

(Xi − Yi)2. (3.9)

The NMI describes the amount of information that can be obtained

about one variable X by only measuring the variable Y . Hence, it

presents a suitable similarity measure to compare various accelerated

images to their respective reference. The initial 4D lung scan (i.e.,

without retrospective scan time reduction) can be used as a reference

set to evaluate the image quality of accelerated scans. This approach

requires that the initially determined gating windows are kept fixed

for all accelerated datasets. Otherwise, changes in the breathing phase

could lead to corruptions in the image similarity measure. Addition-

ally, the root-mean-square error between the accelerated images and

the reference was calculated to capture and quantify discrepancies.

The SNR ratio, i.e., the ratio

rSNR =
SNRwave−CAIPI

SNRCartesian
(3.10)

was estimated in accelerated wave-CAIPI and Cartesian phantom ex-

periments on a pixel-by-pixel basis, using the pseudo multiple replica

approach [31] (c.f. also Sec. 2.1.3). For this purpose, 100 reconstruc-

tions of the phantom data were performed, each with additional,

properly correlated, artificial noise. The phantom experiment was

performed with the same setup as for in vivo imaging. The under-

sampling pattern was designed to mimic a k-space sampling pattern

of a 1-minute 4D lung MRI after applying respiratory gating (frac-

tion of missing k-space lines ≈ 92%). The phantom consisted of a

combination of two canisters, filled with water solutions of NaCl and

NaH2PO4 · 2H2O, respectively. The canisters were positioned in the

MR scanner, such that typical torso geometries were simulated. The
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chosen phantom is not representative of actual lung tissue, regarding

the relaxation times T1, T2 and proton density. Therefore, the indi-

vidual SNR measurements may not correspond to the SNR in actual

in vivo examinations. However, the ratio of two SNR measurements

(one for Cartesian and one for wave-CAIPI) is not affected by relax-

ation parameters or proton density and therefore serves as a suitable

measure to quantify the relative SNR.

The SNR calculation was performed on phantom data, rather than

in vivo measurements, since the undersampling pattern of in vivo ex-

aminations is unpredictable with respiratory self-gating. In the pre-

sented case, acquisitions of the phantom were performed with wave-

CAIPI and Cartesian sampling, using the same undersampling pat-

tern. Thereby, any possible effects arising from different sampling

patterns are avoided and a quantitative comparison can be performed

on a pixel-by-pixel basis – this is not possible for in vivo examina-

tions. Furthermore, as the ratio rSNR is calculated as the quotient

of two separate datasets on a pixel-by-pixel level, anatomical changes

(different breathing phases or other, involuntary motion) between the

two in vivo scans could influence the SNR ratio.

G-factor maps were calculated for 2-minute 4D lung MRIs with

wave-CAIPI and Cartesian sampling. For suitable comparison, equal

sampling patterns for wave-CAIPI and Cartesian sampling were simu-

lated in the following way: The initially acquired dataset (i.e., without

retrospective scan time reduction, scan time ∼ 8 minutes) were recon-

structed, using the iterative Conjugate Gradient SENSE method. The

resulting images, free of undersampling artifacts, were then re-sampled

to the respective trajectory, thereby simulating a fully sampled acqui-

sition. This artificially fully sampled dataset was then undersampled,

using a fixed undersampling pattern. G-factor maps were then calcu-

lated using the pseudo multiple replica method [31] and were used to

identify regions of increased noise enhancement in the in vivo images.
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3.3 Results

The gradient system transfer function could be successfully employed

to eliminate artifacts arising from imperfections in the gradient system.

An exemplary image with and without gradient correction is shown in

Sec. 2.3, Fig. 2.7, comparing a sagittal slice from a wave-CAIPI scan.

Fig. 3.3 compares the results of 4D lung MRIs with Cartesian and

wave-CAIPI sampling for different retrospective scan time reductions.

For a long acquisition time of 08:01 minutes, both sampling schemes

result in good image quality. However, as the acquisition time is de-

creased, the Cartesian images start to exhibit severe residual under-

sampling artifacts, whereas the artifact level is reduced in the wave-

CAIPI case. This effect is most prominent for the 1-minute scan. In

Fig. 3.4, the 2-minute Cartesian scan is compared to the 2-minute

wave-CAIPI scan in three different orientations. Some residual under-

sampling artifacts remain in the Cartesian images.

Figure 3.3: Results of 4D lung MRIs with Cartesian (top row) and wave-CAIPI sam-
pling (lower row) for different acquisition times. As the acquisition time is decreased,
severe artifacts arise in the Cartesian images. The red numbers in the lower left corners
denote the percentage of missing k-space lines in the respective images. Previously
published in [26] under the CC BY-NC 4.0 license.

46



Figure 3.4: Comparison of Cartesian and wave-CAIPI 4D lung MRIs in three orienta-
tions, for an acquisition time of 02:00 minutes. Residual undersampling artifacts are
visible in the Cartesian images. Previously published in [26] under the CC BY-NC
4.0 license.
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Scatterplots of the RMSE and NMI, containing data from all 5

volunteers, are displayed in Fig. 3.5. The majority (97%) of the cal-

culated NMI values of the accelerated wave-CAIPI images is higher

than the NMI for the Cartesian images. Furthermore, 91% of the in-

dividual RMSE values are lower for the wave-CAIPI sampling. The

difference between the two sampling techniques is more pronounced

for small acquisition times, which corresponds to lower NMI values

and higher RMSE values. On average, NMI values were (10.2± 7.3)%

higher, RMSE values were (18.9 ± 13.2)% lower for the wave-CAIPI,

compared to Cartesian sampling.

Boxplots of the calculated NMI values between retrospectively ac-

celerated images and their respective references for the 5 healthy vol-

unteers are presented in Fig. 3.6. The average was performed over

the individual breathing phases. The median NMI values of the wave-

CAIPI scans are consistently larger than the NMI values of the Carte-

sian scans.

Figure 3.5: Scatterplots of the root-mean-square error (a) and the normalized mutual
information (b), comparing wave-CAIPI and Cartesian 4D lung scans for different
acquisition times (color encoded). Previously published in [26] under the CC BY-NC
4.0 license.
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Figure 3.6: Boxplots showing the normalized mutual information between retrospec-
tively accelerated images and their respective references for 5 volunteer examinations
(a–e). The average is performed over the individual breathing phases. The median
NMI values of the wave-CAIPI technique are consistently higher than the Cartesian
NMI values. Previously published in [26] under the CC BY-NC 4.0 license.
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Figure 3.7: (a) Transversal slice of a 4D lung MR scan of a patient with squamous cell
carcinoma in the lung in inspiration and expiration, acquired with Cartesian and wave-
CAIPI sampling. (b) PET/CT acquisition of a similar slice as in (a), overlaid with the
target region for radiotherapy (magenta line). (c) Morphological differences (encoded
as magenta/green) between inspiration and expiration in coronal and transversal orien-
tation, determined from a 3-minute 4D lung examination with wave-CAIPI sampling.
Previously published in [26] under the CC BY-NC 4.0 license.

Fig. 3.7 presents 4D lung MR scans and a PET/CT (Positron Emis-

sion Tomography / Computed Tomography) examination of a patient

with squamous cell carcinoma in the lung. The 4D MR images were

reconstructed, using a simulated acquisition time of 03:00 minutes.

The wave-CAIPI images exhibit superior image quality over the Carte-

sian images – residual undersampling artifacts remain in the Cartesian

case. Fig. 3.7 also shows differences between the end-inspiration and

the end-expiration breathing phase from a 3-minute wave-CAIPI scan

as a color encoded difference image. Anatomical differences between
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Figure 3.8: (a) SNR ratio rSNR = SNRwave−CAIPI/SNRCartesian in individual pixels of
a phantom experiment, binned according to the Cartesian g-factor in the respective
pixels. The figure shows a larger SNR benefit of the wave-CAIPI in regions where the
Cartesian image exhibits a larger g-factor. (b) Exemplary coronal slice of the SNR
ratio map. Previously published in [26] under the CC BY-NC 4.0 license (modified).

inspiration and expiration are most prominent near the diaphragm.

From the presented dataset, no relevant respiration-induced tumor

displacement can be observed. As a result, the safety margins around

the tumor do not need to be increased due to respiration, during the

process of radiotherapy treatment planning.

Fig. 3.8a presents the calculated values of the SNR ratio rSNR =

SNRwave−CAIPI/SNRCartesian from the phantom study. In each pixel

of the phantom, the SNR ratio, as well as the Cartesian and wave-

CAIPI g-factors were calculated. The values of the SNR ratio in the

individual pixels are binned according to the corresponding Cartesian

g-factor in the respective pixel. In regions of the phantom, where the

Cartesian g-factor is large, the SNR of the wave-CAIPI technique is

more than 2-fold increased. The SNR ratio map was median-filtered,

in order to suppress fluctuations. A typical slice of the SNR ratio map

is shown in Fig. 3.8b. On average, the SNR gain of the wave-CAIPI
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Figure 3.9: g-factor calculations of a simulated 2-minute 4D lung examination for
wave-CAIPI (left) and Cartesian sampling (right). For wave-CAIPI sampling, the
g-factor is lower. In both cases, the center of the thorax exhibits an elevated g-factor
level. Previously published in [26] under the CC BY-NC 4.0 license (modified).

method was rSNR = (1.14 ± 0.31), compared to Cartesian imaging.

G-factor calculations were performed on the same phantom dataset

and resulted in an average g-factor of gmean = 1.21 for wave-CAIPI

sampling and gmean = 1.34 for Cartesian sampling.

The simulated in vivo g-factor maps are shown in Fig. 3.9 for a

2-minute 4D lung acquisition of a healthy volunteer. In the center

of the thorax, the g-factor is elevated in both the Cartesian and the

wave-CAIPI case. For wave-CAIPI sampling, however, the g-factor is

smaller, compared to Cartesian sampling.
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3.4 Discussion

The NMI as a function of scan time was employed as a quantitative

measure of image similarity between the retrospectively accelerated

images and their respective references (full-duration initial scan; no

retrospective scan time reduction). A series of images with decreasing

acquisition time was reconstructed for each breathing phase and the

NMI was calculated. As can be observed in Fig. 3.6, the median NMI

values of the wave-CAIPI images were always larger than those of

the Cartesian images, indicating a lower loss of information due to

scan time reduction for the wave-CAIPI technique. Furthermore, the

RMSE calculations revealed that the accelerated wave-CAIPI images

exhibit smaller discrepancies to their references than the accelerated

Cartesian images (c.f. the scatterplot of RMSE in Fig. 3.5).

These findings are consistent with the phantom-based SNR cal-

culations. The average SNR benefit of rSNR = (1.14 ± 0.31) of the

wave-CAIPI technique leads to a more stable CG SENSE reconstruc-

tion, which ultimately reduces residual artifacts from undersampling.

Fig. 3.8a shows that the SNR boost by using the wave-CAIPI sam-

pling is larger in regions of the phantom where the Cartesian g-factor

is larger. In regions where the Cartesian g-factor is already close to

unity, the SNR benefit is small.

To quantify noise enhancement in the Conjugate Gradient SENSE

reconstruction, Fig. 3.9 presents the g-factor map of a simulated 2-

minute in vivo measurement. The wave-CAIPI sampling technique

clearly leads to a reduced g-factor, compared to Cartesian sampling.

In both cases, the g-factor is elevated in the center of the thorax.

In the phantom, the average g-factor of the employed setup was

gmean = 1.21 for the wave-CAIPI and gmean = 1.34 for the Cartesian

sequence. In [14], the g-factors for the wave-CAIPI method were cal-

culated to be gmean = 1.03, compared to gmean = 1.42 for Cartesian 2D-
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CAIPI [32,33] sampling for an acceleration rate ofR = 3×3, suggesting

an average SNR benefit of around 40% for the wave-CAIPI. This study,

however, employed a regular 3× 3 2D-CAIPI undersampling pattern,

instead of a random, density-weighted pattern and the measurements

were performed with different sequence parameters. Further, a head

channel array coil was used, instead of a combination of a body array

coil and a spine array coil. Pulse sequence parameters which influ-

ence the g-factor in wave-CAIPI examinations are, for instance, the

resolution, the readout bandwidth and the maximum gradient wave

amplitude, as was systematically investigated in [17,18].

The wave-encoding technique was already applied to motion cor-

rected, free breathing abdominal imaging [19]. There, the wave-CAIPI

proved superior in reducing aliasing and motion artifacts, compared

to Cartesian sampling. Furthermore, the SNR was calculated in a

phantom study, using fully sampled wave-CAIPI and fully sampled

Cartesian acquisitions. The fully sampled wave-CAIPI showed a 45%

higher SNR than the fully sampled Cartesian acquisition. However,

the readout duration of the wave-CAIPI scan was 3 times higher than

the readout duration of the Cartesian scan, which greatly influences

SNR calculations.

Further optimization potential of the current setup lies in the se-

lection of wave-CAIPI parameters. The slew rate limits of the em-

ployed MR scanner would allow higher gradient wave amplitudes,

which in turn could further reduce the g-factor of the wave-CAIPI

technique [17, 18]. However, also the level of nerve stimulation needs

to be taken into account, as higher gradient amplitudes (and therefore

slew rates) result in an increased probability for nerve stimulation.

Issues with nerve stimulation or slew rate limits could be overcome

by decreasing the number of wave cycles, thereby reducing the slew

rate. In the work by Polak et al. [17], it was shown that the g-factor

of the wave-CAIPI is nearly independent of the number of complete
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wave cycles and the number of wave cycles could be decreased to 3.

The results of the patient examination show that the image quality

of accelerated acquisitions can be enhanced by employing the wave-

CAIPI technique, while keeping scan time constant. No relevant dis-

placement of the tumor could be observed during respiration in the

presented case. These findings have important implications on the

planning of radiotherapy treatment. Precise knowledge of the tu-

mor displacement during respiration is crucial, since the therapy of

the tumor needs to be conducted with the prescribed dose, but adja-

cent organs at risk (the lung, liver or the heart, for instance) should

be spared. In the process of radiotherapy treatment planning, safety

margins around the tumor are defined, ensuring adequate dose deposi-

tion. If exact displacement of the tumor during respiration is known,

the safety margins around the tumor can be adjusted, leading to a

dose reduction for organs at risk [48]. Large margins are necessary,

if tumor motion is not determined, bearing an increased risk of ra-

diation induced pneumonitis [49]. In the presented case, it was not

necessary to increase the safety margins around the tumor due to res-

piration, leading to a dose reduction of adjacent, healthy tissue. With

self-gated 4D lung MRI, regular breathing patterns can be imaged re-

liably, since in each respiratory phase, sufficient data is available for

adequate reconstruction. Extreme breathing states, such as unusually

deep inhalation or coughing, however, cannot be covered with this ap-

proach. To avoid excessive motion states, patients can be firmly fixed

during irradiation, restricting such motion. For the definition of tar-

get volumes for irradiation, several planning concepts exist, which are

differently influenced by extreme respiratory states [49,50].

By employing magnetic resonance imaging in the evaluation of tu-

mor displacement instead of computed tomography, the superior soft-

tissue contrast of MRI can lead to further reductions, since tumor

identification is more reliable. This has been shown in the identifi-
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cation of moving lesions in the pancreas, for instance [51–54]. For

adequate tumor delineation and definition of target volumes, the im-

age quality of the MR scans needs to be sufficiently high. Decreasing

the acquisition time has a negative impact on the SNR in the image

and may lead to unacceptable image quality. By employing the wave-

CAIPI sampling technique, the quality of MR images acquired with a

short scan time, can be increased, facilitating tumor delineation.

Previous studies showed that simple, linear phase encoding can lead

to large voids in k-space after respiratory gating, which complicates

parallel imaging reconstructions and can lead to extensive residual un-

dersampling artifacts in the image domain [42, 43]. In this work, the

wave-CAIPI technique was implemented to even further reduce large

gaps in k-space, since the wave-CAIPI trajectory inherently leads to

a more homogeneous sampling density than Cartesian sampling. In

terms of quantitative measures of image quality, the combination of

wave-CAIPI and a non-uniform sampling density has proven more

efficient than non-uniform sampling with the standard Cartesian tra-

jectory. In the case of the wave-CAIPI, missing k-space samples are

more evenly distributed, since all three spatial dimensions are involved

in undersampling, as discussed in Sec. 2.2. In contrast to that, the

frequency encoding direction is always fully sampled in Cartesian ac-

quisitions, leaving only the two phase encoding directions for under-

sampling. A consequence of that is a reduced artifact level of the

wave-CAIPI, as can be observed in the comparison of short 4D lung

scans in Fig. 3.3 and Fig. 3.4. There, residual undersampling artifacts

remain in the Cartesian images after the iterative SENSE reconstruc-

tion, rendering vessel identification and delineation difficult.

A previous study on 4D lung MRI, which used the Cartesian k-space

trajectory, achieved full coverage of the lung in 3 minutes [43]. The

image comparison for different acquisition times in Fig. 3.3 and the

NMI calculations, presented as boxplots in Fig. 3.6 suggest that the
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image quality of a 3-minute Cartesian scan could also be achieved by

a 2-minute wave-CAIPI scan. The benefit of wave-CAIPI could thus

be traded for a reduction in acquisition time, without compromising

image quality.

Self-gating is a convenient technique to account for respiratory mo-

tion, since it does not require external devices or positioning and cal-

ibration of navigator readouts. In this work, the DC-navigator signal

was obtained by manually selecting a receive coil element near the

lung/liver interface. For an automated workflow, an automatic se-

lection of the correct receive element (or a combination thereof) is

necessary. Approaches towards optimized, automatic coil selection

for respiratory and cardiac self-gating were investigated by Zhang et

al. [55].

An interesting extension of the presented work would be the self-

gating realtime tracking of the respiratory phase and to select the

phase encoding steps accordingly. Thereby, arbitrary and fixed sam-

pling patterns could be achieved in all breathing states. However,

such an approach would come at the price of an unpredictable scan

time, which complicates accurate patient planning in clinical routine.

Furthermore, adjacent breathing phases of the dynamic dataset differ

only slightly. These temporal correlations could be exploited in com-

pressed sensing approaches, in order to further reduce the acquisition

time [3–5].
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3.5 Conclusion

Quantitative image analysis, involving image similarity measures and

SNR calculations, demonstrated an enhanced image quality for the ac-

celerated wave-CAIPI technique, compared to the Cartesian sequence

in free-breathing self-gated 4D lung MRI. The benefit of the wave-

CAIPI technique can be traded for either enhanced image quality or

a reduced acquisition time. In combination with a randomized, den-

sity weighted phase encoding scheme, the wave-CAIPI method enables

full coverage of the human lung in 8 breathing states within only 2

minutes.
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4 | Wave-CAIPI for 4D Flow MRI of

the Aorta

This chapter reports on accelerated 4D flow examinations of 11 volun-

teers (10 healthy volunteers and 1 patient), comparing the wave-CAIPI

k-space trajectory to standard Cartesian sampling. Flow velocity is

quantified in the aorta and hemodynamic flow patterns are visualized.

Discrepancies in several flow parameters, arising from undersampling,

are investigated and statistical significance is evaluated.

The majority of the presented findings has been accepted and will

be published as a full paper in Magnetic Resonance in Medicine by

John Wiley & Sons, Inc. with DOI 10.1002/mrm.28605, under the Cre-

ative Commons BY-NC 4.0 License1 [56]. Figures that were replicated

in this work (entirely, or in parts) are declared accordingly.

4.1 Background

Magnetic resonance imaging can not only be used to represent static

tissue via magnitude images – also flow can be encoded into the MR

signal. By applying special velocity encoding gradients, the flow ve-

locity can be encoded into the phase of the MR signal (phase contrast

MRI). This information can be exploited for flow quantification in

various organs. Conventional phase contrast imaging resolves only

the flow velocity perpendicular to a 2D imaging plane. Especially

1https://creativecommons.org/licenses/by-nc/4.0/
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for cardiac applications, it is interesting to examine the 3-directional

velocity vector field in a 3D volume, resolved over the cardiac cycle

(4D flow MRI). Cardiac 4D flow examinations allow the calculation

of several flow parameters, such as the peak flow velocity or the flow

rate [7, 57–60]. One advantage of 4D flow MRI over conventional 2D

phase contrast methods is its ability to visualize complex hemody-

namic patterns and to quantify flow in arbitrary plane orientations

and positions after the examination. The dynamic 3D visualization of

blood flow can be useful in the identification of heart diseases, since

various heart diseases can be associated with blood flow alterations.

For instance, patients with aortic valve stenosis exhibit an increased lo-

cal peak flow velocity along the outer wall of the ascending aorta [60].

4D flow MRI is also employed for flow quantification in neuro and

abdominal applications [8, 61–64].

A considerable obstacle for 4D flow examinations to be integrated

in daily clinical routine, however, is the extensive scan time that is

required. 4D flow examinations require spatial encoding in three di-

mensions, flow-encoding in three dimensions and resolution of the car-

diac cycle. Such an examination is therefore associated with a chal-

lenging 7-dimensional encoding problem. Furthermore, sub-optimal

respiratory navigators additionally increase scan time. As time slots

for clinical MR applications are limited and patient comfort is reduced

in lengthy MR scans, parallel imaging techniques can be employed to

accelerate the examinations. As was outlined in Sec. 2.1.3, parallel

imaging comes at the cost of an increased noise level in the final im-

ages, the magnitude of which depends on the acceleration rate, the

coil geometry and details about the k-space sampling. It was shown

in Chapter 3 that by employing the wave-CAIPI k-space trajectory,

instead of Cartesian sampling, the noise enhancement in parallel imag-

ing can be reduced, since the g-factor for wave-CAIPI is smaller than

for Cartesian sampling [14]. The wave-CAIPI technique has proven
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very effective in the reconstruction of highly undersampled 3D MR

images for various applications [14–19,26]. It is therefore a promising

technique to accelerate 4D flow acquisitions.

An interesting approach to 4D flow imaging with non-Cartesian

k-space trajectories is presented in [65], where a stack-of-spirals tra-

jectory was shown to yield higher SNR than Cartesian 4D flow exam-

inations. However, efficient spiral k-space trajectories usually have a

long readout duration, which can cause considerable blurring in the

images, related to off-resonance [20, 21] and may require compensa-

tion techniques. A generic problem in non-Cartesian MR imaging are

gradient system imperfections that can also lead to significant image

artifacts. In this case, the general model of the gradient system trans-

fer function [10, 22–24] can be applied to correct for imperfections in

the gradient system.

Aside from parallel imaging techniques and optimal k-space sam-

pling, the acquisition time of 4D flow examinations can also be re-

duced by optimizing the respiratory navigator, which is required to

obtain images free of blurring or motion artifacts. Respiratory mo-

tion can be taken into account by applying a navigator window at

the lung/liver interface and only accepting data measured at a spe-

cific respiratory phase. However, such an approach can lead to very

low acceptance rates and generally results in unpredictable scan times.

Studies on improved navigator acceptance rates were performed, for

instance in [7, 66].

In this work, the potential of the wave-CAIPI technique to accel-

erate 4D flow acquisitions is assessed by means of in vivo examina-

tions of healthy volunteers and one patient with aortic valve stenosis.

The results of 4D flow examinations with Cartesian 2D-CAIPI sam-

pling [32,33] and wave-CAIPI sampling are compared, regarding bias

and precision of flow parameters and noise estimates.
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4.2 Methods

Setup

4D flow acquisitions were performed, using a spoiled gradient echo

pulse sequence with 3-directional flow velocity encoding. The flow

velocity ~v is encoded in the phase of the MR signal via a bipolar gra-

dient pair – two gradients of equal moment and opposite orientation,

prior to data acquisition. A representation of flow velocity encoding

is given in Fig. 4.1. The phase evolution of stationary spins is shown

in Fig. 4.1b. In Fig. 4.1c, a spin ensemble is assumed to move from

position x = x1 to x = x2. Only the moving spin ensemble acquires a

net phase due to the flow encoding gradient. Flow velocity can only

be encoded in one direction at a time and requires the measurement of

a reference phase, in order to calculate the phase contribution of the

flow encoding gradient. Therefore, a total of 4 3D images is required

to calculate the 3-dimensional flow velocity vector ~v = (vx, vy, vz).

A pulse sequence diagram with flow encoding is displayed in

Fig. 4.2. For time efficiency, the bipolar flow velocity encoding gra-

dients are combined with the readout dephaser gradient and the two

phase encoding gradients, respectively. 4D flow examinations were

performed with the Cartesian k-space trajectory and the wave-CAIPI

method, using sinusoidal gradient wave amplitudes as presented in

Fig. 4.2. In this study, the wave-CAIPI parameters were chosen to

be: number of complete wave cycles Nwave = 4 and maximum gra-

dient wave amplitude Awave = 9 mT/m. Further relevant sequence

parameters were: FOV = 320 × (260−320) × (98−180) mm3, flip an-

gle ϕ = 7◦, TR = 6.03 ms, TE = 3.40 ms, readout bandwidth BW =

500 Hz/px, maximum encoded flow velocity vENC = (200−250) cm/s.

The images were acquired in sagittal orientation with a spatial res-

olution of 2.5 × 3.5 × (3.5−5.0) mm3 and a k-space matrix of size
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Figure 4.1: Representation of flow velocity encoding into the phase of the MR signal
via a bipolar gradient (a). (b) and (c) show the phase evolution of stationary and
moving spins, respectively. Only moving spins acquire a net phase due to the bipolar
gradient.
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128 × (76−96) × (28−36). Frequency encoding direction was chosen

to be in head-feet direction. A slab-selective RF pulse in left-right di-

rection was used for excitation. The imperfect excitation profile of the

RF pulse lead to considerable aliasing in the outer slices. For the pur-

pose of time efficiency, no slice oversampling was performed in order

to eliminate the aliasing, instead, the aliasing was inherently removed

during the iterative SENSE reconstruction. The acquisition was trig-

gered using an external ECG (electrocardiogram) device. Between 11

and 14 cardiac phases were resolved with ECG-gating, leading to an

acquisition window of 550−700 ms in each heart beat at a temporal

resolution of 48.42 ms.

Figure 4.2: (a) Pulse sequence diagram of a spoiled 3D gradient echo with 3-directional
flow velocity encoding. The bipolar velocity encoding gradients are combined with
the readout dephaser gradient and the two phase encoding gradients. (b) 2D-CAIPI
undersampling pattern for an acceleration rate of R = 2×3 = 6. Previously published
in [56] under the CC BY-NC 4.0 license.

The examination was further respiratory gated by employing a nav-

igator readout, positioned at the lung/liver interface (c.f. Fig. 4.3).

Data was acquired in expiration phase. The ReCAR (Respiratory

Controlled Adaptive k-space Reordering) technique was employed, in

order to increase the acceptance rate of the respiratory navigator [7].

Thereby, the phase encoding order is adjusted in realtime, acquir-
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ing data near the k-space center at end-expiration and in the k-space

periphery during inspiration. The reordering of the phase encoding

scheme according to the respiratory phase allows for a larger navi-

gator acceptance window of 8 mm, without introducing blurring or

motion artifacts in the images. Due to respiratory and cardiac gating,

the total acquisition time depended on the subject’s specific breathing

pattern and heart rate. On average, one 4D flow examination required

(11:55 ± 02:01) min, with a prospective acceleration rate of R = 2 in

the anterior-posterior direction.

Figure 4.3: Prospective respiratory gating, using a navigator readout positioned at
the lung/liver interface. The navigator readout measures the diaphragm position and
data is only accepted near expiration.

In this study, 4D flow examinations, performed with Cartesian/2D-

CAIPI [32,33] sampling and wave-CAIPI sampling, are compared. To

this end, flow parameters were evaluated in 10 healthy volunteers (age:

(25.3 ± 2.7) years, 3 male) and one patient (84 years, female) with

known aortic valve stenosis. The healthy volunteers were examined

with both sampling schemes, the patient was examined only with the

wave-CAIPI technique. The acquisition time for the patient measure-

ment was 17:15 min, performed also with a prospective acceleration

rate of R = 2 in the anterior-posterior direction.
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All experiments were performed using a clinical 3 Tesla MR scanner

(MAGNETOM Prismafit, Siemens Healthcare, Erlangen, Germany).

Reconstruction

Image reconstruction of undersampled datasets was performed in anal-

ogy to Sec. 3.2, i.e., an iterative Conjugate Gradient SENSE algorithm

was employed. Sensitivity maps were calculated with ESPIRiT [46], as

implemented in the Berkeley Advanced Reconstruction Toolbox [47],

using an additional low-resolution Cartesian scan with increased FOV

in the coronal plane. Gradient system imperfections were taken into

account in retrospective, i.e., during the reconstruction using the gra-

dient system transfer function that was presented in Sec. 2.3.

Flow and Image Analysis

The noise levels in the 6-fold accelerated 2D-CAIPI and wave-CAIPI

images were calculated using the pseudo multiple replica approach [31].

To this end, noise correlations were measured in a short pre-scan. For

both sampling strategies, 500 reconstructions were performed with

additional noise added to the data and image noise was determined as

the standard deviation in each pixel across the different replicas.

In order to assess the precision of flow parameters for accelerated

Cartesian and wave-CAIPI 4D flow acquisitions, the datasets were

retrospectively undersampled (acceleration rates between R = 2 and

R = 8). The maximum possible undersampling rate was determined to

be R = 6, using the possibility of clear delineation and segmentation of

the aorta as a criterion. Finally, the 4D flow sets were retrospectively

undersampled in partition encoding direction by an acceleration rate

of 3 (total undersampling factor R = 2× 3 = 6). This corresponds to

a simulated scan time reduction from (11:55 ± 02:01) min to (03:58

± 00:40) min. For the 10 healthy volunteers, the flow rate Q, the
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net flow per cycle Qnet, the peak velocity vmax and the net average

through-plane velocity v̄⊥ were calculated in 8 planes along the as-

cending and descending aorta. The values of the flow parameters from

the retrospectively accelerated scans (R = 6) were then compared to

those of the reference scan (R = 2). The estimated error in flow pa-

rameters due to undersampling was calculated and compared for the

wave-CAIPI and 2D-CAIPI sampling scheme. Errors are reported as

the mean signed difference (denoted by angular brackets 〈·〉) and the

mean absolute difference (L1-norm) in flow parameters between the

6-fold accelerated scan and the corresponding reference scan (R = 2).

The error measures are used to assess bias and precision, respectively.

For the flow rate Q, e.g., the errors are calculated as follows:

L1(∆Q) =
1

NphasesNplanes

Nplanes∑
i

Nphases∑
j

∣∣∆Qi,j

∣∣
=
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i
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(
QR=6
i,j −QR=2

i,j

)
,

(4.1)

where Nplanes denotes the number of analysis planes and Nphases is the

number of cardiac phases. Differences between the 2-fold and the 6-

fold accelerated scans (i.e., ∆Q, ∆Qnet, ∆vmax and ∆v̄⊥) were tested

for statistical significance, using the paired Wilcoxon signed rank test

at the 5% significance level.

Possible discrepancies between flow parameters obtained from Carte-

sian and wave-CAIPI examinations were investigated by linear regres-

sions of the parameter values for an acceleration rate of R = 2. Fur-

thermore, a paired Wilcoxon signed rank test was employed to assess

the statistical significance of the discrepancies between wave-CAIPI
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and Cartesian sampling at the 5% significance level.

Hemodynamic patterns were visualized by means of streamlines,

particle traces and velocity vectors. In addition to the quantitative

comparison of calculated uncertainties in flow parameters to investi-

gate differences between Cartesian/2D-CAIPI and wave-CAIPI scans,

a qualitative comparison of flow visualization was performed. For all

volunteers, the same aorta segmentation was used for the wave-CAIPI

and Cartesian/2D-CAIPI images, to ensure adequate comparability.

The 4D flow datasets were evaluated and visualized with a pro-

totype software (4D Flow V2.4, Siemens Healthcare, Erlangen, Ger-

many). Image processing involved background phase correction, cor-

rection of velocity-aliasing and vessel segmentation.

4.3 Results

Magnitude wave-CAIPI images are shown in Fig. 4.4a for a healthy

volunteer during early systole, comparing different acceleration rates.

In Fig. 4.4b, pixel-based velocity errors are displayed for a wave-CAIPI

and a 2D-CAIPI 4D flow acquisition with a retrospective undersam-

pling factor of R = 6. The 2-fold accelerated acquisition was used as

a reference. Velocity encoding was performed in left-right, anterior-

posterior and head-feet direction, respectively.

Magnitude and 3-directional flow encoded phase contrast images of

a healthy volunteer are displayed in Fig. 4.5, where wave-CAIPI images

are compared to Cartesian/2D-CAIPI images. Images are shown for

a retrospective acceleration of R = 6 and the initially acquired, 2-fold

accelerated reference scans.

The calculation of the noise level in the 6-fold accelerated wave-

CAIPI and 2D-CAIPI 4D flow MRIs of a healthy volunteer are dis-

played in Fig. 4.6. In the region of the highest noise amplitude, the

noise level of the 2D-CAIPI scan was 3.35 times higher than the noise
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Figure 4.4: (a) Magnitude wave-CAIPI images of a healthy volunteer during early
systole for different acceleration rates. (b) Pixel-based velocity differences between
R = 2 and R = 6 in left-right, anterior-posterior and head-feet direction for wave-
CAIPI and 2D-CAIPI 4D flow acquisitions. An image mask has been applied in both
(a) and (b). Previously published in [56] under the CC BY-NC 4.0 license (modified).
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Figure 4.5: Results of 4D flow examinations of a healthy volunteer, using wave-CAIPI
and Cartesian/2D-CAIPI sampling. The first column represents magnitude images
for the different sampling schemes and for accelerations of R = 2 and R = 6. The
subsequent columns show phase contrast images, encoding flow velocity in left-right,
anterior-posterior and head-feet direction, respectively. Previously published in [56]
under the CC BY-NC 4.0 license (modified).
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Figure 4.6: Noise level calculated in wave-CAIPI (left) and 2D-CAIPI (right) 4D flow
MRIs with an acceleration factor of R = 6. The upper row displays the noise maps, the
lower row the corresponding magnitude images during diastole. Previously published
in [56] under the CC BY-NC 4.0 license.
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Figure 4.7: Mean absolute differences in the flow parameters Q, Qnet, vmax and v̄⊥ of 6-
fold accelerated 4D flow examinations, compared to the reference (2-fold accelerated
4D flow scan) for wave-CAIPI and Cartesian/2D-CAIPI sampling. The results are
presented for each of the 10 healthy volunteers individually. Previously published
in [56] under the CC BY-NC 4.0 license.

level of the wave-CAIPI scan. On average, the noise level of the 2D-

CAIPI scan was (43 ± 38)% higher than that of the wave-CAIPI ex-

amination.

In Fig. 4.7, the estimated errors in the flow parameters Q, Qnet,

vmax and v̄⊥ of the 6-fold accelerated wave-CAIPI and 2D-CAIPI scans

are presented for the examinations of the healthy volunteers. Errors

are reported as the mean absolute difference (L1-norm) and the mean

signed difference (〈·〉) in flow parameters between the 6-fold acceler-

ated scan and the corresponding reference scan (R = 2), according

to Eqs. 4.1. In every case, the mean absolute difference of wave-

CAIPI flow parameters is lower than the mean absolute difference of

the 2D-CAIPI flow parameters. For the flow rate, the mean abso-

lute difference was (34.5± 4.8)% lower, for the net flow, the difference
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〈∆Q〉 [ml/s] 〈∆Qnet〉 [ml] 〈∆vmax〉 [cm/s] 〈∆v̄⊥〉 [cm/s]

Wave-CAIPI 2.63± 12.73 1.74± 4.47 −3.45± 8.45 0.61± 3.09
Cartesian/2D-

CAIPI
3.51± 19.13 2.32± 7.11 −11.82± 18.16 0.90± 5.13

L1(∆Q) [ml/s] L1(∆Qnet) [ml] L1(∆vmax) [cm/s] L1(∆v̄
⊥) [cm/s]

Wave-CAIPI 9.03± 2.67 3.67± 1.40 6.02± 2.08 2.21± 0.58
Cartesian/2D-

CAIPI
13.73± 3.66 5.87± 1.91 14.36± 5.68 3.52± 0.88

Table 4.1: Discrepancies in flow rate Q, net flow Qnet, peak velocity vmax and net
average through-plane velocity v̄⊥ between 2-fold and 6-fold accelerated scans (for
both wave-CAIPI and Cartesian/2D-CAIPI sampling). The results are averaged over
all volunteer examinations and are reported as mean difference (〈·〉) and mean absolute
difference (L1(·)) to report on bias and precision, respectively.

was (36.4 ± 17.0)% lower, for the peak velocity, the difference was

(55.4 ± 12.1)% lower and for the net average through-plane velocity,

the difference was (37.0 ± 6.0)% lower. In most of the cases, the

mean signed differences in flow parameters are lower for wave-CAIPI

sampling, with respect to 2D-CAIPI sampling. The mean absolute

difference and the mean signed difference, averaged over all healthy

volunteer examinations, are displayed in Tab. 4.1.

A comparison of the calculated flow rates for Cartesian and wave-

CAIPI sampling is shown in Fig. 4.8 for the examinations of the 10

healthy volunteers, in the case of 2-fold undersampling. The lin-

ear regression of the individual flow rate values indicates good ac-

cordance between both sampling techniques (slope of regression line:

0.987). The differences of the flow rate in the Bland-Altman plot

of Fig. 4.8b are symmetrically distributed around the mean value.

The (signed) mean difference, averaged over all volunteers, is ∆Q =

(0.7 ± 13.7) ml/s. For the net flow per cycle, the mean difference is

∆Qnet = (0.46±3.84) ml. For the peak velocity, the mean difference is

∆vmax = (1.9± 7.1) cm/s and for the net average through plane veloc-

ity ∆v̄⊥ = (0.2± 3.4) cm/s. The correlation plots and Bland-Altman
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Figure 4.8: (a) Correlation plot and linear regression, comparing the individual flow
rate values of 2-fold accelerated wave-CAIPI and Cartesian 4D flow scans for 10
healthy volunteers. (b) Bland-Altman plot, comparing the flow rate of 2-fold accel-
erated wave-CAIPI and Cartesian 4D flow scans. Previously published in [56] under
the CC BY-NC 4.0 license (modified).

plots of Qnet, vmax and v̄⊥ are presented in Figs. 4.9, 4.10 and 4.11,

respectively. A paired Wilcoxon signed rank test was performed to in-

vestigate whether the differences are statistically significant. The Null-

Hypothesis that the individual differences in flow parameters originate

from a distribution with zero mean was rejected in 3/10 volunteers for

Q, in 1/10 volunteers for Qnet, in 8/10 volunteers for vmax and in 3/10

volunteers for v̄⊥ at the 5% significance level. Table 4.2 summarizes

the mean differences in flow parameters and reports on the statistical

significance for all 10 volunteers.
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Figure 4.9: (a) Correlation plot and linear regression, comparing the individual net
flow values of 2-fold accelerated wave-CAIPI and Cartesian 4D flow scans for 10
healthy volunteers. (b) Bland-Altman plot, comparing the net flow of 2-fold accel-
erated wave-CAIPI and Cartesian 4D flow scans. Previously published in [56] under
the CC BY-NC 4.0 license (modified).

Figure 4.10: (a) Correlation plot and linear regression, comparing the individual peak
velocity values of 2-fold accelerated wave-CAIPI and Cartesian 4D flow scans for 10
healthy volunteers. (b) Bland-Altman plot, comparing the peak velocity of 2-fold
accelerated wave-CAIPI and Cartesian 4D flow scans. Previously published in [56]
under the CC BY-NC 4.0 license (modified).
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Figure 4.11: (a) Correlation plot and linear regression, comparing the individual val-
ues of the net average through-plane velocity of 2-fold accelerated wave-CAIPI and
Cartesian 4D flow scans for 10 healthy volunteers. (b) Bland-Altman plot, comparing
the net average through-plane velocity of 2-fold accelerated wave-CAIPI and Carte-
sian 4D flow scans. Previously published in [56] under the CC BY-NC 4.0 license
(modified).

# Vol. ∆Q [ml/s] ∆Qnet [ml] ∆vmax [cm/s] ∆v̄⊥ [cm/s]

1 −0.61± 7.97 0.41± 2.05 0.34± 3.25 −0.23± 2.10
2 3.52± 9.84∗ −2.38± 3.01 1.41± 4.77∗ 0.97± 2.42∗

3 0.91± 16.63 −0.62± 4.36 2.61± 7.81∗ 0.33± 3.50
4 2.05± 10.31∗ −1.39± 2.96 2.25± 5.10∗ 0.43± 2.10∗

5 −0.68± 9.72 0.46± 2.17 0.60± 4.16∗ −0.14± 2.65
6 5.58± 21.75∗ −3.77± 4.35∗ 3.86± 8.35∗ 1.46± 4.89∗

7 −0.62±10.59 0.42± 3.77 2.28± 6.78∗ −0.14± 2.79
8 −1.24±13.58 0.84± 4.69 −1.10± 5.40 −0.30± 3.05
9 −0.19±10.36 0.10± 3.05 4.16± 12.88∗ −0.11± 2.78
10 −1.96±17.85 1.32± 5.44 3.35± 7.82∗ −0.54± 5.11

Table 4.2: Average differences in flow parameters Q, Qnet, vmax and v̄⊥ between wave-
CAIPI and Cartesian 4D flow acquisitions with R = 2 for 10 healthy volunteers. The
asterisk∗ denotes a statistically significant difference (5% significance level)
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Fig. 4.12 shows correlation and Bland-Altman plots, comparing the

flow rate measured in 10 healthy volunteers for an acceleration factor

of R = 6 and R = 2 in the case of wave-CAIPI and Cartesian/2D-

CAIPI sampling. The correlation and Bland-Altman plots for the

net flow, the peak velocity and the net average through-plane veloc-

ity are presented in Figs. 4.13, 4.14 and 4.15, respectively. For each

volunteer examination, a paired Wilcoxon signed rank test was per-

formed to investigate the statistical significance of the difference in

flow parameters between the 2-fold and the 6-fold accelerated scans,

for wave-CAIPI and Cartesian/2D-CAIPI sampling. The mean and

the standard deviation of the difference in flow parameters for the

10 volunteer examinations are presented in Tab. 4.3 (wave-CAIPI)

and Tab. 4.4 (Cartesian/2D-CAIPI), along with the evaluation of sta-

tistical significance of the difference. For the wave-CAIPI, the null

hypothesis was rejected in 4/10 cases for Q, in 1/10 cases for Qnet, in

9/10 cases for vmax and in 4/10 cases for v̄⊥. For the Cartesian/2D-

CAIPI acquisition, the null hypothesis was rejected in 7/10 cases for

Q, in 2/10 cases for Qnet, in 10/10 cases for vmax and in 6/10 cases for

v̄⊥.

# Vol. ∆Q [ml/s] ∆Qnet [ml] ∆vmax [cm/s] ∆v̄⊥ [cm/s]

1 0.59± 7.56 0.40± 2.54 −2.09± 4.31∗ 0.24± 2.30
2 0.12± 7.52 −0.75± 2.50 −3.81± 6.56∗ 0.24± 2.04
3 0.11± 14.73 0.75± 4.69 −4.49± 10.18∗ 0.41± 3.11
4 0.71± 11.67∗ 3.18± 4.81 −3.93± 6.89∗ 0.58± 2.33∗

5 0.91± 7.62∗ 3.32± 3.05∗ 0.49± 3.91 1.28± 1.82∗

6 0.13± 17.73 0.09± 5.43 −8.81± 12.02∗ 0.07± 4.54
7 0.63± 10.75∗ 2.45± 4.19 −3.70± 8.72∗ 1.00± 2.77∗

8 0.93± 16.64∗ 4.68± 6.72 −3.66± 8.69∗ 1.36± 3.64∗

9 0.27± 16.32 2.27± 5.19 −1.64± 7.59∗ 1.11± 4.15
10 0.51± 9.95 1.02± 2.97 −2.48± 7.01∗ 0.42± 2.96

Table 4.3: Average differences in flow parameters Q, Qnet, vmax and v̄⊥ between wave-
CAIPI 4D flow acquisitions with R = 2 and R = 6 for 10 healthy volunteers. The
asterisk∗ denotes a statistically significant difference (5% significance level)

77



# Vol. ∆Q [ml/s] ∆Qnet [ml] ∆vmax [cm/s] ∆v̄⊥ [cm/s]

1 −1.99± 11.50∗ −1.34± 5.14 −6.73± 10.55∗ −0.12± 3.42
2 7.11± 11.08∗ 4.80± 2.16∗ −5.78± 10.36∗ 1.87± 3.07∗

3 −4.03± 24.47 −2.72± 8.24 −14.24±20.06∗ −1.28± 5.90
4 0.88± 20.06 0.60± 6.36 −23.93±30.21∗ 0.20± 4.41
5 0.68± 15.03 0.46± 6.85 −3.81± 7.60∗ −0.50± 4.57
6 8.68± 24.79∗ 5.96± 10.27 −14.54±18.74∗ 2.22± 6.21∗

7 3.69± 16.02∗ 2.49± 6.92 −13.45±15.95∗ 1.20± 4.40∗

8 6.41± 21.35∗ 4.33± 8.53 −15.54±17.09∗ 1.33± 5.02∗

9 11.77± 22.32∗ 6.25± 7.47∗ −12.91±19.36∗ 3.78± 7.46∗

10 3.61± 14.32∗ 2.44± 2.52 −7.54± 12.10∗ 0.96± 4.27∗

Table 4.4: Average differences in flow parameters Q, Qnet, vmax and v̄⊥ between
Cartesian/2D-CAIPI 4D flow acquisitions with R = 2 and R = 6 for 10 healthy
volunteers. The asterisk∗ denotes a statistically significant difference (5% significance
level)
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Figure 4.12: Comparison of flow rate calculations from 6-fold and 2-fold accelerated 4D
flow MRIs. (a) and (c) show correlations plots and linear regressions of the individual
flow rate values for wave-CAIPI and Cartesian/2D-CAIPI sampling, respectively. (b)
and (d) show Bland-Altman plots of the flow rates for wave-CAIPI and Cartesian/2D-
CAIPI sampling, respectively. Previously published in [56] under the CC BY-NC 4.0
license (modified).
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Figure 4.13: Comparison of net flow calculations from 6-fold and 2-fold accelerated 4D
flow MRIs. (a) and (c) show correlations plots and linear regressions of the individual
net flow values for wave-CAIPI and Cartesian/2D-CAIPI sampling, respectively. (b)
and (d) show Bland-Altman plots of the net flow for wave-CAIPI and Cartesian/2D-
CAIPI sampling, respectively. Previously published in [56] under the CC BY-NC 4.0
license (modified).
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Figure 4.14: Comparison of peak velocity calculations from 6-fold and 2-fold acceler-
ated 4D flow MRIs. (a) and (c) show correlations plots and linear regressions of the
individual peak velocity values for wave-CAIPI and Cartesian/2D-CAIPI sampling,
respectively. (b) and (d) show Bland-Altman plots of the peak velocity for wave-
CAIPI and Cartesian/2D-CAIPI sampling, respectively. Previously published in [56]
under the CC BY-NC 4.0 license.

81



Figure 4.15: Comparison of net average through-plane velocity calculations from 6-
fold and 2-fold accelerated 4D flow MRIs. (a) and (c) show correlations plots and
linear regressions of the individual v̄⊥ values for wave-CAIPI and Cartesian/2D-CAIPI
sampling, respectively. (b) and (d) show Bland-Altman plots of the v̄⊥ values for wave-
CAIPI and Cartesian/2D-CAIPI sampling, respectively. Previously published in [56]
under the CC BY-NC 4.0 license.
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The measured flow in the aorta was visualized by means of stream-

lines for an exemplary volunteer examination in Fig. 4.16a. Streamline

visualizations during systole are shown for the retrospectively 6-fold

accelerated scan and the 2-fold accelerated reference scan. In the case

of Cartesian sampling, differences in the flow pattern can be observed,

especially in the descending aorta. For wave-CAIPI sampling, the

streamline visualizations for R = 2 and R = 6 are very similar and

exhibit only minor discrepancies. Fig. 4.16b presents particle traces

during systole, where particle generation was performed in a plane

near the aortic root. The 6-fold accelerated Cartesian acquisition un-

derestimates the flow velocity near the aortic root, in comparison to

the 2-fold accelerated scan. For wave-CAIPI sampling, the particle

trace representations for R = 2 and R = 6 are very similar.

In Fig. 4.17, flow velocity is represented as velocity vectors in the

same volunteer examination as in Fig. 4.16 during systole. The 6-fold

accelerated wave-CAIPI acquisition yields velocity vectors very similar

to those of the 2-fold accelerated scan. In the Cartesian/2D-CAIPI

case, the velocity vectors reveal an underestimation of flow velocity

near the aortic root (as in Fig. 4.16b) and an overestimation of flow

velocity in the descending aorta (as in Fig. 4.16a). Also the calculated

flow curves (in plane 1 and plane 8) show severe discrepancies between

R = 2 and R = 6 for Cartesian/2D-CAIPI sampling. In case of

the wave-CAIPI trajectory, deviations in flow curves are considerably

smaller.

Velocity vectors and streamlines that were calculated from the ex-

amination of the patient with known aortic valve stenosis are shown in

Fig. 4.18 for 2-fold and 6-fold acceleration. The patient was examined

only with the wave-CAIPI 4D flow pulse sequence. The streamline

visualization clearly shows an increased localized flow velocity along

the outer wall of the ascending aorta, which is typical for patients

with aortic valve stenosis. In the vector representation, as well as in
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Figure 4.16: Comparison of streamline visualizations (a) and particle trace represen-
tations (b) of flow velocity in the aorta of a healthy volunteer for 2-fold and 6-fold
accelerated scans in sagittal orientation. White arrows point to regions in the 6-fold
accelerated scans that exhibit noticeable discrepancies to the 2-fold accelerated scans.
Previously published in [56] under the CC BY-NC 4.0 license.
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Figure 4.17: Vector representation of aortic flow velocity in 8 planes for wave-CAIPI
(a) and Cartesian/2D-CAIPI sampling (b) during systole, in sagittal orientation. The
flow visualizations are compared for a 2-fold and a 6-fold retrospectively accelerated
scan. Flow rates are calculated in plane 1 and plane 8 and are presented as flow curves.
White arrows point to regions in the 6-fold accelerated scans that exhibit noticeable
discrepancies to the 2-fold accelerated scans. Previously published in [56] under the
CC BY-NC 4.0 license.

85



Figure 4.18: Flow velocity vectors (a) and streamlines (b), calculated from a wave-
CAIPI 4D flow examination of a patient with known aortic valve stenosis. Visual-
izations are compared for the 2-fold accelerated reference scan and the 6-fold retro-
spectively accelerated scan. Previously published in [56] under the CC BY-NC 4.0
license.
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the streamline visualization, differences between the retrospectively

6-fold accelerated scan and the 2-fold accelerated reference are mi-

nor. The peak flow velocity near the aortic root was calculated to be

vmax = 237.2 cm/s in the 2-fold accelerated scan and vmax = 225.9 cm/s

in the 6-fold accelerated reference, which corresponds to an underesti-

mation of 4.8%. Mean absolute differences and mean signed differences

in flow parameters between R = 2 and R = 6 are shown in Tab. 4.5

for the patient examination.

〈∆Q〉 [ml/s] 〈∆Qnet〉 [ml] 〈∆vmax〉 [cm/s] 〈∆v̄⊥〉 [cm/s]

2.8± 10.9 1.9± 3.0 −4.8± 9.2 0.42± 2.11

L1(∆Q) [ml/s] L1(∆Qnet) [ml] L1(∆vmax) [cm/s] L1(∆v̄
⊥) [cm/s]

8.5± 7.4 2.7± 2.1 6.8± 7.8 1.7± 1.4

Table 4.5: Mean signed and absolute differences in flow parameters of a wave-CAIPI
4D flow examination of a patient with aortic valve stenosis between R = 2 and R = 6.

4.4 Discussion

The calculations of noise levels in 6-fold accelerated images clearly

demonstrate a reduced noise level in the wave-CAIPI images after the

iterative SENSE reconstruction (c.f. Fig. 4.6). Since the image was

masked, setting sensitivity maps to zero outside of the imaged ob-

ject, edges are visible in Fig. 4.6 that arise from aliasing of the image

mask. The reduced noise level of the wave-CAIPI technique leads to

more precise reconstructions of accelerated 4D flow acquisition and ul-

timately results in lower uncertainties in flow parameters, compared to

Cartesian 4D flow acquisitions with the same acquisition time. The re-

duction of image noise by employing wave-CAIPI sampling can also be

noted in the phase contrast images in Fig. 4.4. The 6-fold accelerated

wave-CAIPI phase contrast images exhibit smaller discrepancies to the

2-fold accelerated phase contrast images, compared to Cartesian/2D-
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CAIPI sampling. Flow quantification is therefore more precise in the

wave-CAIPI case.

In most cases, the uncertainties in Q, Qnet, vmax and v̄⊥ are lower

for the wave-CAIPI technique, as displayed in Fig. 4.7 by means of

bar charts. In order to investigate possible systematic discrepancies

between wave-CAIPI and Cartesian 4D flow examinations, the flow

parameters from 2-fold accelerated wave-CAIPI and Cartesian scans

were compared in Figs. 4.8, 4.9, 4.10 and 4.11. In part of the volun-

teer examinations, statistically significant differences in the calculated

flow parameters were found between the wave-CAIPI and the Carte-

sian scan at 2-fold acceleration. The mean difference, however, was

in most cases close to zero and in all cases smaller than the standard

deviation (cf. Tab. 4.2). As this comparison involves two separate ex-

aminations, discrepancies in flow parameters could partly be explained

by physiological differences [67].

Systematic differences between wave-CAIPI 4D flow acquisitions

with R = 2 and R = 6 are also, in part, statistically significant

(cf. Tab. 4.3). The magnitudes of the systematic differences between

wave-CAIPI R = 2 and R = 6 are comparable to the differences be-

tween wave-CAIPI R = 2 and Cartesian R = 2. In the Cartesian

case, systematic discrepancies between R = 2 and R = 6 are larger

(Tab. 4.4). Tab. 4.1 shows that by using wave-CAIPI sampling instead

of 2D-CAIPI sampling, the precision of calculated flow parameters can

be enhanced in retrospectively 6-fold accelerated 4D flow MRI and

the bias, introduced by undersampling, can be reduced. The observed

range of variability in flow parameters of the 6-fold accelerated 4D

flow acquisitions is comparable to previous reports on undersampled

4D flow MRI [65,68].

Visualizations of aortic blood flow by means of streamlines, parti-

cle traces and velocity vectors (cf. Figs. 4.16 and 4.17) demonstrate a

reduced error rate for the accelerated wave-CAIPI scans, compared to
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Cartesian/2D-CAIPI sampling. As the noise level in the 6-fold acceler-

ated wave-CAIPI scans is about 43% lower than in the corresponding

Cartesian scans, alterations in flow representation due to undersam-

pling are reduced. Furthermore, due to the incoherent appearance of

aliasing artifacts of the wave-CAIPI sampling technique, any residual

aliasing may not be as prominent as in the Cartesian case (cf. Fig. 2.5

in Chapter 2).

The wave-CAIPI 4D flow examination of the patient suffering from

aortic valve stenosis clearly displays the typical localized flow accelera-

tion at the outer wall of the ascending aorta (Fig. 4.18). Furthermore,

an asymmetric flow profile is visible near the analysis plane at the aor-

tic root. These flow alterations can be identified in the 2-fold and in

the retrospectively 6-fold accelerated dataset. The 6-fold accelerated

scan underestimated the peak velocity near the aortic root by 4.8%.

Estimated uncertainties in the flow parameters Q, Qnet, vmax and v̄⊥

(Tab. 4.5) are within the expected range of variability, judging from

the examinations of the healthy volunteers (Tab. 4.1 and Fig. 4.7).

In the presented work, the retrospective acceleration of the acquired

data was limited to a total acceleration rate of R = 6. The choice of

6-fold undersampling was motivated by the objective of generating

high-quality MR images. Image quality was compared in Fig. 4.4a

for different acceleration rates. While clear delineation of the aorta is

still possible for R = 6, higher acceleration complicates delineation as

well as segmentation of the aorta. In previously reported brain and

abdominal applications that use the wave-CAIPI technique, acceler-

ation rates between R = 6 and R = 16 were used [14–19, 26, 69, 70].

The employed slab-selective RF excitation pulse in the presented work

exhibited an imperfect excitation profile, i.e., the excited slab was con-

siderably larger than the encoded FOV in slice direction. The differ-

ence between the encoded FOV and the excited FOV is visualized in

Fig. 4.19 and is estimated to be around 33%. This leads to aliasing in
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the slice direction and therefore adds to the net undersampling factor.

In order to prevent or reduce this aliasing, a longer excitation pulse,

with a more defined excitation profile could be used. Alternatively,

slice oversampling could be employed to increase the encoded FOV in

slice direction. Both of these approaches, however, inherently imply

an increased acquisition time.

In GRAPPA-based reconstructions, rather than the employed iter-

ative SENSE algorithm, the aliasing in slice direction can be ignored,

since GRAPPA also works reliably in cases where the imaged object is

larger than the encoded FOV [71–73]. A GRAPPA-based reconstruc-

tion for wave-CAIPI was introduced in [69] for brain applications.

However, this approach works best when a large number of wave cy-

cles is chosen in the trajectory implementation. Since it is known that

for the purpose of g-factor optimization, a large gradient wave ampli-

tude is preferable [17, 18], choosing many wave cycles in the current

setup may not be possible due to slew rate limitations. This could be

mitigated by significantly reducing the readout bandwidth (thereby

increasing the readout duration), which is not desirable for fast 4D

flow acquisitions.

Recently, an interesting approach towards optimal scan efficiency

regarding the respiratory motion navigator in 4D flow MRI was pre-

sented [66], using self-gating and retrospective image registration.

Self-gating techniques for 4D flow MRI were also previously studied

in [65, 74]. Retrospective self-gating has the advantage of retrospec-

tive adjustment of gating parameters and does not require manual

placement of image-based navigator windows, as was the case in the

presented work. Due to the employed prospective, image-based res-

piratory navigator, the total scan time was unpredictable, since it

depended on the subject’s specific breathing pattern, as well as the

heart rate. Combining the wave-CAIPI 4D flow technique with respi-

ratory self-gating would also facilitate examination scheduling, as the
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Figure 4.19: Estimations of encoded and excited FOV in a 4D flow examination
of a healthy volunteer. The encoded field of view can be estimated by measuring
the distance between aliasing structures in the left image before the parallel imaging
reconstruction. The excited field of view is estimated in the right image by measuring
the extent of the imaged subject in left-right direction.
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acquisition time could be reduced and could be predictable (at the

expense of unknown sampling patterns).

To make use of temporal correlations in 4D flow datasets, k-t

GRAPPA reconstructions can be employed [68, 75]. In [68], up to 8-

fold acceleration of k-t GRAPPA 4D flow acquisitions were achieved.

Similar to Compressed Sensing [3, 4] approaches, k-t GRAPPA bears

the risk of reducing temporal fidelity of the image series, resulting,

for instance, in an underestimation of peak velocities [68]. Several

works on Compressed Sensing reconstructions for dynamic applica-

tions, such as 4D flow, were studied previously [5, 7, 9, 63]. By taking

into account spatial and temporal correlations, high acceleration fac-

tor are achievable. In [7], for instance, 14.1-fold acceleration using a

Cartesian spiral phyllotaxis sampling pattern was achieved, where high

undersampling rates, however, also lead to increased blurring in the

temporal domain. A promising combination of wave-CAIPI encoding

and Compressed Sensing reconstructions is presented in [76], for brain

applications. An interesting extension of the presented work would be

the reconstruction of wave-CAIPI 4D flow examinations using a Com-

pressed Sensing model that takes into account temporal correlations,

such as the L+S (Low rank + Sparse) model [77]. In order to create

different incoherent undersampling artifacts for each cardiac phase,

the sampling pattern of the current setup would have to be adjusted.

The study population of this work was predominantly comprised

of young, healthy volunteers. When applying the proposed method

to patients, challenges can arise. Different patient body habitus may

require adjustment of sampling parameters. Furthermore, pathological

hemodynamic patterns may be more difficult to capture with 4D flow

MRI. In patients with aortic valve stenosis, for instance, increased flow

velocities may require a larger maximum encoded flow velocity, which

leads to overall increased noise in flow quantification.

The current setup is limited by its offline reconstruction. For the
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presented method to be integrated into clinical routine, reconstruc-

tion needs to be implemented directly at the MR scanner. Moreover,

the long reconstruction times (about one hour for a 6-fold acceler-

ated 4D flow acquisition) need to be reduced to a clinically accept-

able range. For artifact-free wave-CAIPI reconstructions, the gradi-

ent system transfer function was employed, which requires additional

characterization of the scanner’s gradient system using phantom mea-

surements. For an automated workflow, an autocalibrating approach

could be implemented, using data consistency to estimate gradient

errors [17].

4.5 Conclusion

In conclusion, the wave-CAIPI technique enables parallel imaging re-

constructions of 4D flow acquisitions with reduced noise enhancement,

leading to higher SNR in undersampled images. As a consequence, the

uncertainties in flow parameters could be reduced by up to 55% in 6-

fold accelerated 4D flow examinations. Differences in flow parameters

between Cartesian and wave-CAIPI acquisitions, as well as between

2-fold and 6-fold accelerated wave-CAIPI acquisitions are small but –

in part – statistically significant. Only minor differences in blood flow

visualization occur in accelerated wave-CAIPI examinations.
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5 | Summary

In summary, the wave-CAIPI k-space trajectory presents an efficient

sampling strategy for accelerated MR acquisitions. Using wave-CAIPI

in parallel imaging reconstructions leads to a reduced noise level in the

reconstructed images, compared to the Cartesian standard trajectory.

This effect could be quantified by means of noise and SNR calculations.

An SNR gain can be traded for a reduced scan time, i.e., additional

undersampling, or for an enhanced image quality, keeping scan time

constant.

Acceleration of MR imaging is especially important in dynamic

applications, since these examinations are inherently time-consuming.

The impact of wave-CAIPI sampling on image quality and its potential

for scan time reduction was investigated for two dynamic applications:

self-gated dynamic 3D lung MRI during free breathing and cardiac 4D

flow MRI.

Dynamic 3D Lung MRI

By employing wave-CAIPI sampling in self-gated, free-breathing dy-

namic 3D lung MRI for the purpose of radiotherapy treatment plan-

ning, the image quality of accelerated scans could be enhanced. Vol-

unteer examinations were used to quantify image quality by means of

similarity between accelerated and reference images. To this end, the

normalized mutual information and the root-mean-square error were

chosen as quantitative image similarity measures.
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The wave-CAIPI sampling was shown to exhibit superior quality,

especially for short scan times. The values of the normalized mutual

information were (10.2 ± 7.3)% higher in the wave-CAIPI case – the

root-mean-square error was (18.9 ± 13.2)% lower on average. SNR

calculations suggest an average SNR benefit of around 14% for the

wave-CAIPI, compared to Cartesian sampling.

Resolution of the lung in 8 breathing states can be achieved in

only 2 minutes. By using the wave-CAIPI k-space trajectory, precise

tumor delineation and assessment of respiration-induced displacement

is facilitated.

Cardiac 4D Flow MRI

In 4D flow MRI, acceleration of the image acquisition is essential to

incorporate the corresponding scan protocols into clinical routine. In

this work, a retrospective 6-fold acceleration of the image acquisition

was realized. Cartesian and wave-CAIPI 4D flow examinations of

healthy volunteers were used to quantify uncertainties in flow param-

eters for the respective sampling schemes.

By employing wave-CAIPI sampling, the estimated errors in flow

parameters in 6-fold accelerated scans could be reduced by up to 55%.

Noise calculations showed that the noise level in 6-fold accelerated 4D

flow acquisitions with wave-CAIPI is 43% lower, compared to Carte-

sian sampling. Comparisons between Cartesian and wave-CAIPI 4D

flow examinations with a prospective acceleration factor R = 2 re-

vealed small, but partly statistically significant discrepancies. Dif-

ferences between 2-fold and 6-fold accelerated wave-CAIPI scans are

comparable to the differences between Cartesian and wave-CAIPI ex-

aminations at R = 2.

Wave-CAIPI 4D flow acquisitions of the aorta could be performed

with an average, simulated scan time of under 4 minutes, with re-

96



duced uncertainties in flow parameters. Important visualizations of

hemodynamic flow patterns in the aorta were only slightly affected by

undersampling in the wave-CAIPI case, whereas for Cartesian sam-

pling, considerable discrepancies were observed.
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6 | Zusammenfassung

Die wave-CAIPI k-Raum Trajektorie stellt eine effiziente Methode

für beschleunigte MRT Akquisitionen dar. Die Benutzung der wave-

CAIPI Trajektorie anstelle der kartesischen Standardmethode in der

parallelen Bildgebung führt zu einem reduzierten Rausch-Niveau in

den rekonstruierten Bildern. Dieser Effekt kann durch Berechnungen

des Rauschpegels und des Signal-zu-Rausch Verhältnisses (SNR) quan-

tifiziert werden. Das höhere Signal-zu-Rausch Verhältnis kann genutzt

werden, um entweder die Akquisition durch eine höhere Unterabtas-

tung zu beschleunigen, oder um die Bildqualität zu verbessern.

Die Beschleunigung von MRT Akquisitionen ist besonders in dy-

namischen Anwendungen wichtig, da diese Untersuchungen inhärent

sehr zeitaufwendig sind. Der Einfluss der wave-CAIPI Methode auf

die Bildqualität und das Beschleunigungspotenzial der Messung wurde

in dieser Arbeit sowohl für selbst-navigierte, dynamische 3D Lungen-

bildgebung, als auch für 4D Fluss MRTs des Herzens untersucht

Dynamische 3D Lungen MRT

Durch die Verwendung der wave-CAIPI Samplingmethode konnte die

Bildqualität von selbst-navigierten, dynamischen 3D Lungen MRTs

bei freier Atmung verbessert werden. Eine wichtige Anwendung dieser

Technik liegt im Bereich der Strahlentherapieplanung. Dabei wurde

im Rahmen einer Probandenstudie die Bildqualität anhand der Ähn-

lichkeit zwischen beschleunigten Bildern und den jeweiligen Referen-
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zen quantifiziert. Zu diesem Zweck wurden die normalized mutual

information und der root-mean-square error als quantitative Maße

gewählt.

Es konnte gezeigt werden, dass – besonders bei kurzen Akquisition-

szeiten – die wave-CAIPI Methode zu besserer Bildqualität führte,

verglichen mit dem kartesischen Standard. Berechnungen der nor-

malized mutual information ergaben im Mittel (10.2 ± 7.3)% höhere

Werte für die wave-CAIPI Methode – der root-mean-square error war

(18.9 ± 13.2)% geringer. Darüber hinaus lieferte die wave-CAIPI ein

um etwa 14% höheres mittleres SNR.

In 2 Minuten konnte die Atembewegung der Lunge in 8 Atem-

zustände aufgelöst werden. Eine präzise Tumor-Abgrenzung und

die Evaluierung von respirationsinduzierten Tumorbewegungen wird

durch die Verwendung der wave-CAIPI Methode vereinfacht.

4D Fluss Herz MRT

Die Beschleunigung von 4D Fluss MRTs ist essentiell, um solche Unter-

suchungen in die klinische Routine zu integrieren. In der präsentierten

Arbeit wurde eine 6-fache retrospektive Beschleunigung realisiert. 4D

Fluss Untersuchungen von gesunden Probanden mit der wave-CAIPI

und mit der kartesischen Samplingmethode wurden verwendet, um

Unsicherheiten in verschiedenen Flussparametern für die beiden Sam-

plingmethoden zu berechnen.

Dabei zeigte sich, dass die geschätzten Fehler in den Flussparam-

etern der 6-fach beschleunigten wave-CAIPI Untersuchungen bis zu

55% geringer sind als die Fehler der kartesischen Messungen. Ferner

zeigten Rausch-Analysen, dass die beschleunigten wave-CAIPI Auf-

nahmen ein um 43% geringeres Rausch-Niveau aufweisen. Vergleiche

zwischen Flussparametern, die aus 2-fach beschleunigten wave-CAIPI

und kartesischen Messungen berechnet wurden, zeigten kleine, aber
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teilweise statistisch signifikante Unterschiede zwischen den beiden

Methoden. Unterschiede zwischen 2-fach und 6-fach beschleunigten

wave-CAIPI Aufnahmen sind vergleichbar mit den Unterschieden

zwischen der wave-CAIPI Methode und der kartesischen Methode bei

R = 2.

Wave-CAIPI 4D Fluss Aufnahmen des Herzens konnten mit einer

mittleren, simulierten Aufnahmezeit von unter 4 Minuten durchge-

führt werden. Die effizientere Samplingmethode ermöglichte dabei er-

heblich reduzierte Unsicherheiten in den berechneten Flussparametern.

Wichtige Visualisierungen des Blutflusses in der Aorta wurden im Falle

der wave-CAIPI Methode kaum von der Unterabtastung beeinflusst.

Hingegen wiesen die Visualisierungen der beschleunigten kartesischen

Messungen erhebliche Diskrepanzen auf.
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[34] M. v. Siebenthal, G. Székely, U. Gamper, P. Boesiger, A. Lomax,

and P. Cattin,“4d MR imaging of respiratory organ motion and its

variability”, Physics in Medicine and Biology, vol. 52, pp. 1547–

1564, Feb. 2007.

[35] J. Tokuda, S. Morikawa, H. A. Haque, T. Tsukamoto, K. Mat-

sumiya, H. Liao, K. Masamune, and T. Dohi, “Adaptive 4d MR

imaging using navigator-based respiratory signal for MRI-guided

therapy”, Magnetic Resonance in Medicine, vol. 59, pp. 1051–

1061, May 2008.

[36] J. F. Arnold, P. Mörchel, E. Glaser, E. D. Pracht, and P. M.

Jakob, “Lung MRI using an MR-compatible active breathing

control (MR-ABC)”, Magnetic Resonance in Medicine, vol. 58,

pp. 1092–1098, Dec. 2007.

[37] Peter Speier, Matthias Fenchel, and Robert Rehner, “Pt-nav: A

novel respiratory navigation method for continuous acquisition

based on modulation of a pilot tone on the mr-receiver”, in Proc

ESMRMB, vol. 32, 2015.

[38] Lea Schroeder, Jens Wetzl, Andreas Maier, Robert Rehner,

Matthias Fenchel, and Peter Speier, “Two-dimensional

respiratory-motion characterization for continuous mr mea-

surements using pilot tone navigation”, in Proc. Intl. Soc. Mag.

Reson. Med., vol. 24, 2016.

[39] A. Fischer, S. Weick, C. O. Ritter, M. Beer, C. Wirth, H. Hebe-

streit, P. M. Jakob, D. Hahn, T. Bley, and H. Köstler, “SElf-gated
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S. Weick, T.A. Bley, H. Köstler, ”Free-Breathing Self-Gated 4D-

Lung MRI with wave-CAIPI”, Proc. Intl. Soc. Mag. Reson.

Med. 27 (2019)

M. Stich, J.A.J. Richter, T. Wech, T.A. Bley, H. Köstler, A.E.
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