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Abstract

Background: This inter-comparison exercise was performed to demonstrate the
variability of quantitative SPECT/CT imaging for lutetium-177 (177Lu) in current clinical
practice. Our aim was to assess the feasibility of using international inter-comparison
exercises as a means to ensure consistency between clinical sites whilst enabling the sites
to use their own choice of quantitative imaging protocols, specific to their systems.
Dual-compartment concentric spherical sources of accurately known activity
concentrations were prepared and sent to seven European clinical sites. The site staff
were not aware of the true volumes or activity within the sources—they performed
SPECT/CT imaging of the source, positioned within a water-filled phantom, using their
own choice of parameters and reported their estimate of the activities within the source.

Results: The volumes reported by the participants for the inner section of the source
were all within 29% of the true value and within 60% of the true value for the outer
section. The activities reported by the participants for the inner section of the source
were all within 20% of the true value, whilst those reported for the outer section were
up to 83% different to the true value.

Conclusions: A variety of calibration and segmentation methods were used by the
participants for this exercise which demonstrated the variability of quantitative imaging
across clinical sites. This paper presents a method to assess consistency between sites
using different calibration and segmentation methods.

Keywords: Lutetium, Lu-177, SPECT/CT, Quantitative imaging, PRRT, Molecular
radiotherapy

Background
The accuracy of quantitative single photon emission tomography (SPECT) imaging is

critical if the absorbed doses to organs or tumours are to be determined following adminis-

tration of a radiopharmaceutical [13, 32]. However, for clinical use, SPECT has yet to be

proved as a reliable quantitative tool, taking into account the different technical challenges.

Guidance on quantitative SPECT has been issued by the European Association of Nuclear

Medicine (EANM) [20], the International Atomic Energy Agency (IAEA) [18] and Medical

Internal Radiation Dose (MIRD) Committee ([9, 10, 22]), including different methodologies

of quantitative imaging. However, in most cases, these documents do not provide any direct

recommendations. Many other publications have proposed a variety of methods for

performing dosimetry when using radiopharmaceuticals in therapy ([26, 31, 35]), including
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the use of SPECT/CT measurements ([2, 4, 8, 12–14, 21, 23, 27, 28, 30, 36, 38, 39]). As a

result, different centres use different techniques, which makes comparisons of any reported

dosimetric results difficult. A multi-centre inter-comparison study has previously been per-

formed using barium-133 (133Ba) as a surrogate for iodine-131 (131I), in order to compare

the quantitative imaging results using various planar and SPECT imaging protocols [40].

This study demonstrated significant variability in quantitative accuracy between protocols

but concluded that standardised protocols were needed to ensure consistent results.

Due to the increased interest in accurate dosimetry for molecular radiotherapy (MRT),

the need to establish equivalence between sites is critical, particularly if large-scale multi-

centre randomised clinical trials are to take place. In order to establish this equivalence

and compare different techniques, the National Physical Laboratory (NPL) in the UK,

along with several other National Metrology Institutes and clinical partners from across

Europe, was awarded funding to address the metrology challenges associated with deter-

mining the radiation dose to patients undergoing MRT (EURAMET Project HLT11:

Metrology for Molecular Radiotherapy). As part of this collaboration, a further inter-

comparison exercise between a representative subset of seven European hospitals was

carried out in order to establish the inter-hospital variability with regard to quantitative

SPECT/CT imaging for 177Lu, a commonly used radionuclide for Peptide Receptor

Radionuclide Therapy (PRRT) [3, 22]. The hospitals were provided with independently

calibrated radioactive sources and phantoms and used their own choice of calibration,

acquisition, reconstruction and image processing protocols.

The results of this inter-comparison will provide a means to demonstrate the variability

in current clinical quantitative imaging methods, and establish the feasibility of inter-

national comparison exercises as a means to arrive at consistency whilst allowing clinical

centres to use their own choice of calibration methods, specific to their systems.

Methods
Inter-comparison phantom

The inter-comparison exercise used six accurately calibrated radioactive sources (prepared

at the NPL—the UK National Measurement Institute) and a single phantom. The

phantom used is shown in Fig. 1 and was based on an elliptical Jaszczak phantom supplied

by Data Spectrum Corporation (DSC, Durham, US) with lung and spine inserts and body

contour rings added. The spine insert was filled with bone equivalent solution of dipotas-

sium hydrogen orthophosphate (100 g dipotassium hydrogen phosphate dissolved in 67-g

water [11]). The lungs were filled with Styrofoam© beads mixed with water with a result-

ing composition of 60% Styrofoam and 40% water by volume, resulting in a density of

approximately 0.3 g/cm2 to mimic the lung tissue. The same phantom was used at each

site, and no modifications were made to the contents of the lungs or spine insert between

sites. The radioactive comparison sources consisted of a ‘shell sphere’ (also provided by

DSC) which is shown in Fig. 2 and consist of two isolated concentric spheres: an ‘inner

sphere’ of nominal diameter 36 mm filled with a high activity concentration, surrounded

by a less-active ‘outer shell’ of nominal thickness 11 mm. The measured volumes of the

shell spheres are presented in Table 1. Six different comparison sources were prepared at

NPL and shipped to the sites directly, immediately prior to the inter-comparison visit,

such that an approximately equal amount of activity was measured at each site. Table 1
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shows the detailed dimensions of the phantom and its components, including shell

spheres. The small differences in the shell constructions are estimated to have a negligible

influence on the final results.

The choice of inter-comparison phantom was driven by a desire to use an off-the-

shelf pseudo-anthropomorphic set-up approximately simulating an active lesion in an

organ of lower activity that could be readily replicated by other users (i.e. using

commercially available phantoms). Ideally, the background volume would have been

larger than described here, but this was limited by the practicalities of transporting the

sources to the participating sites.

Fig. 1 Comparison phantom shown in measurement setup prior to filling with water

Fig. 2 The DSC large spherical shell used in the comparison exercise
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Phantom and source preparation

Each source was prepared at NPL by the standardisation of stock solutions at two activity

concentrations (to represent a ‘hot’ lesion in a ‘warm’ background/organ) at a ratio of

approximately 15:1. Ampoules and vials from each stock solution were analysed on two

independent secondary standard ionisation chamber systems which had been previously

calibrated directly against primary standards by NPL and by a well-calibrated secondary

standard High-Purity Germanium (HPGe) spectrometer to ensure no radionuclidic

impurities were present. The activity content of the sources were chosen such that no

dead-time correction would be required by any of the sites and that the source could be

measured within a realistic time frame. A carrier solution was used to prepare each of the

stock solutions and was comprised of 0.1 M hydrochloric acid solution also containing

10 μg g−1 inactive lutetium. The empty phantom spheres were first treated, prior to filling

with radioactivity, for a minimum of 24 h with inactive carrier solution to ensure activity

did not adhere to the walls of the shells [25].

The inactive parts of the phantom were transported to each site by NPL and were

assembled with the active shell sphere before being filled with inactive water, excluding

as many air bubbles as possible, and sealed. The sources were reproducibly located

within the phantom by the use of threaded rods. The phantom was placed on absorbent

material on the imaging couch in the ‘head first’ position and centred between the

detector heads.

Phantom measurement

A SPECT/CT image of the phantom was acquired by each of the sites, using their

own choice of quantitative imaging protocol. Every site corrected the data for at-

tenuation using the acquired CT data, most sites corrected the data for scatter

(techniques detailed in the relevant sections), and some sites also corrected for

collimator-detector response using resolution recovery methods [34]. The acquisi-

tion and processing parameters are summarised in Table 2 in addition to being de-

tailed in the text below.

Table 1 Comparison phantom component specifications
Elliptical Jaszczak (ECT/ELP/P) Body contour rings (ECT/BCR)

Internal diameter
(major axis)

Internal diameter
(minor axis)

Internal height Wall thickness External diameter
(major axis)

External diameter
(minor axis)

Thickness
(per ring)

305 mm 221 mm 186 mm 64 mm 380 mm 260 mm 25 mm

Lung/spine insert (ECT/LUNG/I)

Fillable spine Lungs

Internal diameter Internal length External diameter External length Internal volume RH lung
volume
(incl.
Styrofoam
beads)

LH lung
volume
(incl.
Styrofoam
beads)

38 mm 152 mm 45 mm 190 mm 170 ml 1100 ml 900 ml

Shell spheres (ECT/SPS-LG/A)

H1 H2 H3 H4 and H5 H6 H7

Inner sphere
volume (ml)

26.1 26.0 26.3 26.7 26.0 27.2

Outer shell
volume (ml)

80.8 81.3 80.8 79.3 81.6 80.7
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Each site had completed SPECT/CT quality assurance procedures including uniformity,

energy peaking and CT/NM registration prior to the phantom imaging, according to their

local protocols.

Hospital 1—Siemens Symbia T2 (5/8″ crystal)

Camera calibration and acquisition parameters A 130-ml plastic bottle and a NEMA

body phantom containing three hollow glass spheres (PTW, Freiburg, Germany) were

used. The three largest spheres (internal diameters 22, 28 and 37 mm) and the bottle were

filled with a homogeneous activity solution of 2.0 MBq/ml 177Lu-DOTATATE. The

phantom was filled with water. The plastic bottle was positioned immediately adjacent to

the NEMA phantom and a SPECT/CT image acquired. The same acquisition parameters

were used for calibration and the inter-comparison exercise (medium energy collimators,

contoured orbit, 128 × 128 matrix, 120 projections, 30 s per projection, photopeak 208 ±

10% keV, scatter windows of 176.8 ± 5% and 239.2 ± 5% keV). Volumes of interest (VOIs)

were drawn around the bottle and the three active spheres on the CT data as the physical

volume plus 10 mm (in each spatial direction).

The cps/MBq factor was obtained from the bottle VOI. The activities within each

sphere were assessed to establish the volume below which partial volume corrections

should be applied.

Table 2 Summary of acquisition and processing parameters used. See text for full details

Site

1 2 3 4 5 6 7

Camera Siemens
Symbia T2

Siemens
Symbia T2

GE Infinia
Hawkeye 4

Siemens
Intevo

Ge Optima
640

Siemens
Symbia T6

GE Discovery
670

Collimator ME ME MEGP ME MEGP MELP MEGP

Crystal thickness 5/8″ 3/8″ 3/8″ 3/8″ 3/8″ 3/8″ 5/8″

Photopeak(s), keV – 113 ± 7.5% 113 ± 10% 113 ± 10% – – –

208 ± 10% 208 ± 10% 208 ± 10% 208 ± 10% 208 ± 10% 208 ± 10% 208 ± 10%

Scatter window(s), keV – – – 98.7 ± 5% – – –

– – – 131 ± 5% – – –

176.8 ± 5% – – 178 ± 5% 178 ± 5% – –

239.2 ± 5% – – 214 ± 5% 214 ± 5% – –

Orbit type Contoured Circular Contoured Contoured Contoured Circular Contoured

Matrix 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128

Number of
projections

120 120 120 120 120 120 120

Time per projection 30 s 30 s 30 s 30 s 30 s 30 s 60 s *

Reconstruction type OSEM OSEM OSEM OSEM OSEM OSEM OSEM

Iterations/subsets 6/6 8/4 16/5 24/24 5/10 5/15 8/10

Attenuation correction CT CT CT CT CT CT CT

Scatter correction TEW No Monte
Carlo

TEW TEW Monte
Carlo

ESSE

Resolution recovery Yes No Yes Yes No Yes Yes

Segmentation method CT VOI +
10 mm

SPECT
threshold

CT VOI CT VOI CT VOI CT VOI CT VOI
plus SPECT
auto-threshold

*The activity of the source used at site H7 was approximately 50% of that used in all other sites, so the
acquisition time was doubled to compensate for this
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Image reconstruction The projection data was reconstructed using reconstruction

software provided by the camera manufacturer, using an ordered subset expectation

maximisation (OSEM) algorithm with 6 iterations and 6 subsets, with triple energy

window (TEW) scatter correction, CT attenuation correction and resolution recovery

enabled.

Image segmentation The inner sphere was segmented using a spherical VOI aligned

to the CT images, with the sphere diameter set to be the physical diameter of the

sphere (as measured on the CT) plus 10 mm.

The outer shell was segmented using a spherical volume aligned to the CT data, with

the sphere diameter set to be the physical diameter of the external surface of the outer

shell plus 10 mm. The VOI of the inner sphere was then subtracted from the VOI of the

external surface of the outer shell to obtain the data for the shell. The arbitrary expansion

of the region of interest by 10 mm in each direction is the standard clinical protocol at

this site as it is felt that this will allow for correction for spill-out due to partial volume

effects. This method therefore resulted in an 11-mm-thick outer shell VOI that only in-

cluded the outermost 1 mm of the physical outer shell volume, and the rest of the physical

outer shell volume was included in the inner sphere VOI.

Uncertainty estimation The standard deviation in counts (Poisson noise) in the

calibration measurement combined in quadrature with the uncertainty in the activity

concentration of the 177Lu solution. No estimate of the uncertainty in the volumes was

provided.

Hospital 2—Siemens Symbia T2 (3/8″ crystal)

Camera calibration and acquisition parameters A shell sphere of the same design as

that used for the inter-comparison was filled with a known quantity of 177Lu-DOTATATE

and imaged in a cylindrical water-filled phantom. The same acquisition parameters were

used for calibration and the inter-comparison exercise (medium energy collimators, circu-

lar orbit, 128 × 128 matrix, 120 projections, 30 s per projection, photopeaks 113 ± 7.5%,

208 ± 10% keV).
177Lu-DOTATATE was first added to the outer shell only (with the inner sphere

empty) and the phantom imaged. Then, 177Lu-DOTATATE was added to the inner

sphere, and the phantom was imaged again. The same activity concentration was used

for both the inner sphere and the outer shell. These two images were used to select

appropriate thresholds for the image segmentation.

Further images were then acquired with the shell sphere located at various depths within

the cylindrical phantom in order to determine the cps/MBq factor for the source at each of

the different depths within the phantom. This yielded a number of cps/MBq factors, and

the factor for the calibration source at the most similar depth to the position of the inter-

comparison source was used to obtain an activity value for the inter-comparison source.

Image reconstruction The projection data was reconstructed using reconstruction soft-

ware provided by the camera manufacturer, using OSEM with 8 iterations and 4 subsets,

with CT attenuation correction. No scatter correction or resolution recovery was applied.
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The two sets of photopeak data were reconstructed individually (with CT attenuation

maps generated for each photopeak) and then summed after reconstruction.

Image segmentation An iso-contour of 35% was used to segment the surface of the

inner sphere and 10% to segment the external surface of the outer shell on the SPECT

data. The VOI of the inner sphere was subtracted from the outer shell external surface

to obtain the data for the outer shell. The iso-contour thresholds were determined by

varying the thresholding value to obtain a volume that most closely matched the known

volumes of the shells.

Uncertainty estimation The standard deviation in calibration factors calculated for each

of the calibration images. No estimate of the uncertainty in the volumes was provided.

Hospital 3—GE Infinia Hawkeye 4 (3/8″ crystal)

Camera calibration and acquisition parameters A 16-ml plastic sphere filled with

approximately 20 MBq 177Lu with no radionuclidic impurities was imaged in the centre of

a water-filled elliptical Jaszczak phantom using the same acquisition parameters as used

in the inter-comparison exercise (medium energy collimators, contoured orbit, 128 × 128

matrix, 120 projections, 30 s per projection, photopeaks 113 ± 10% and 208 ± 10% keV).

A VOI was drawn on the sphere on the CT images and transferred to the SPECT data

to obtain the cps/MBq factor.

Image reconstruction The 113- and 208-keV photopeak projection data were recon-

structed in a third-party vendor-neutral reconstruction software using OSEM with 16

iterations and 5 subsets, with Monte Carlo-based scatter correction based on CT density

information [29], with CT attenuation correction and resolution recovery enabled. The

two sets of photopeak data were reconstructed individually (with CT attenuation maps

generated for each photopeak) and then summed after reconstruction.

Image segmentation The inner sphere and external surface of the outer shell were

segmented using a spherical VOI drawn on the CT images. The VOI of the inner sphere

was then subtracted from the VOI of the outer shell external surface to obtain the data for

the outer shell.

Uncertainty estimation The standard deviation in counts (Poisson noise) in the

calibration measurement combined in quadrature with the uncertainty in the activity

concentration of the calibration sphere. No estimate of the uncertainty in the volumes

was provided.

Hospital 4—Siemens Symbia Intevo 16 (3/8″ crystal)

Camera calibration and acquisition parameters A 16-ml plastic sphere filled with

approximately 35 MBq 177Lu with no radionuclidic impurities was imaged in an

elliptical Jaszczak phantom in three positions (in air at the centre of the phantom, in

water at the centre of the phantom and in water at a 15-cm displacement from the

centre of the phantom). The same acquisition parameters were used for calibration and
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the inter-comparison exercise (medium energy collimators, contoured orbit, 128 × 128

matrix, 120 projections, 30 s per projection, photopeaks 113 ± 10% and 208 ± 10% keV,

scatter windows 98.7 ± 5%, 131 ± 5%, 178 ± 5% and 214 ± 5% keV). VOIs were drawn

freehand by the operator on the CT images.

The cps/MBq factor was calculated as the mean of the cps/MBq value calculated for

each of the three imaging positions.

Image reconstruction The projection data was reconstructed using the reconstruction

software provided by the camera manufacturer, using OSEM with 24 iterations and 24

subsets, with scatter correction, attenuation correction and resolution recovery enabled.

Scatter correction was performed using TEW algorithm. The two sets of photopeak

data were reconstructed individually (with CT attenuation maps generated for each

photopeak) and then summed after reconstruction.

Image segmentation VOIs were drawn freehand by the operator on the inner sphere

and outer shell walls on the CT data.

Uncertainty estimation The mean standard deviation in counts (Poisson noise) in the

calibration volumes was combined in quadrature with the standard deviation in counts

in the individual volumes of interest in the inter-comparison images. No estimate of

the uncertainty in the volumes was provided.

Hospital 5—GE Optima 640 (3/8″ crystal)

Camera calibration and acquisition parameters A 16-ml plastic sphere filled with

approximately 25 MBq 177Lu with no radionuclidic impurities was imaged three times in an

elliptical Jaszczak phantom at three different positions (in air at the centre of the phantom,

in water at the centre of the phantom and in water at a 15-cm displacement from the centre

of the phantom). The same acquisition parameters were used for calibration and the inter-

comparison exercise (medium energy collimators, contoured orbit, 128 × 128 matrix, 120

projections, 30 s per projection, photopeak 208 ± 10% keV, scatter windows of 178 ± 5% and

214 ± 5% keV). Spherical VOIs were drawn on the CT images and transferred to the SPECT

data. Since volumes on the reconstruction workstation only include whole pixels, two VOIs

were drawn on each image: one slightly smaller than the physical size of the sphere and one

slightly larger, resulting in 6 VOIs for three images.

The cps/MBq factor was calculated as the mean of the cps/MBq value measured for

each of the six VOIs.

Image reconstruction The projection data was reconstructed using the reconstruction

software provided by the camera manufacturer, using OSEM with 5 iterations and 10

subsets, with attenuation correction enabled. The projection data was corrected for

scatter prior to reconstruction, using an in-house TEW algorithm. Resolution recovery

was not enabled.

Image segmentation The inner sphere and external surface of the outer shell were

segmented using spherical VOIs drawn on the CT images. The VOI of the inner sphere
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was then subtracted from the outer shell external surface VOI to obtain the data for

the shell.

Uncertainty estimation The standard deviation in the six calibration measurements

combined in quadrature with the uncertainty in the activity concentration of the calibration

sphere. No estimate of the uncertainty in the volumes was provided.

Hospital 6—Siemens Symbia T16 (3/8″ crystal)

Camera calibration and acquisition parameters A 6.9-l cylindrical Jaszczak phantom

containing a homogenous solution of approximately 120 MBq of Lu177-DOTATATE

was imaged. The same acquisition parameters were used for the calibration and the

inter-comparison exercise (medium energy collimators, circular orbit, 128 × 128 matrix,

120 projections, 30 s per projection, photopeak 208 ± 10% keV).

A cps/MBq factor was determined using a large VOI positioned centrally within the

phantom.

Image reconstruction The projection data was reconstructed in a third-party vendor-

neutral reconstruction software using OSEM with 5 iterations and 15 subsets, with

scatter correction, attenuation correction and resolution recovery enabled. Scatter

correction was performed using Monte Carlo simulations based on the CT density

information [29]. A Gaussian filter with a Full Width at Half Maximum of 8 mm was

applied post-reconstruction.

Image segmentation The inner sphere was segmented using a spherical VOI aligned

to the CT images, with the sphere diameter set to 8 cm. No results were reported for

the outer shell.

Uncertainty estimation No estimation of uncertainty was performed as the calibration

performed by this site was done using previously acquired data that did not have any

associated uncertainty values.

Hospital 7—GE Discovery 670 (5/8″ crystal)

Camera calibration and acquisition parameters Five stock vials, each containing

approximately 40 MBq of Lu177-DOTATATE in a 4-ml solution, were made. These

were then dispensed into five petri dishes, each 6 cm in diameter, and planar images

were acquired for each camera head, at 10-cm distance from the collimator. The counts

in a circular region of interest (ROI) with a diameter of 10 cm drawn around the petri

dish on each image were obtained. The diameter was set at 10 cm, as previously deter-

mined by gradually increasing the diameter until it encompassed the counts contribu-

tion from the source. ROIs were also drawn outside the petri dish to assess the number

of counts in the background.

The cps/MBq factor was calculated as the mean of the cps/MBq value calculated for

each of the five sources.

A recovery-coefficient curve was also determined, by obtaining SPECT images of various

sized spheres with known activity. The same acquisition parameters were used for the
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recovery curve imaging and the inter-comparison exercise (medium energy collimators,

contoured orbit, 128 × 128 matrix, 120 projections, 60 s per projection, photopeak 208 ±

10% keV). An auto-contouring algorithm, based on the Otsu method [24], was used to

delineate the spheres, and a curve was fitted to the recovery coefficient versus sphere

volume data.

Image reconstruction The projection data was reconstructed in an in-house vendor-

neutral reconstruction software using OSEM, with 8 iterations and 10 subsets, with

scatter correction, attenuation correction and resolution recovery enabled. Scatter

correction was performed using effective source scatter estimation (ESSE) method [15],

using Monte Carlo-calculated scatter kernels as input. The previously determined

recovery coefficient equation was then applied to the result to obtain the activity

concentration in the inner sphere.

Image segmentation The inner sphere was segmented on the SPECT data using an

auto-contouring algorithm based on the Otsu method [24]. The outer shell was

segmented manually by the operator on the CT data. The estimated activity in the inner

sphere was then subtracted from the VOI encompassing the entire shell sphere to give the

data for the outer shell.

Uncertainty estimation The standard deviation in the five calibration measurements

combined in quadrature with previously estimated uncertainties of recovery coefficients.

No estimate of the uncertainty in the volumes was provided.

Results
Participants reported results independently following the completion of the exercise

and were assigned unique identifiers to maintain confidentiality of the results.

Volume

Figure 3 shows the volumes reported by six of the sites for the inner sphere of the

comparison source, given as the difference between the locally measured volume and

the true volume, as measured at NPL. The data shows a spread of 46% (range − 17 to

+ 29%) with a slight tendency to overestimate the volume by a mean value of 7%. The

two sites that segmented using auto-contouring technique on the SPECT data (H2 and

H7) reported the two answers furthest from the truth (− 17 and + 29% difference to the

true value, respectively). Sites that segmented using the CT data reported answers

between − 9 and + 22% from the true value of the volume.

Figure 4 shows the volumes reported by six of the sites for the outer shell of the

comparison source, given as the difference between the locally measured volume and the

true volume, as measured at NPL. The data shows a spread of 110% (range − 60 to + 50%)

with a tendency to overestimate the volume by a mean value of 9%. As for the inner

sphere, the two sites that segmented at least partially using auto-contouring technique on

the SPECT data (H2 and H7) reported the two answers furthest from the truth (− 60 and

+ 50% difference to the true value, respectively). Sites that segmented entirely using the

CT data reported answers between + 1 and + 36% from the true value.

Wevrett et al. EJNMMI Physics  (2018) 5:17 Page 10 of 18



Figure 5 shows the volumes reported by six of the sites for the volume of the entire

comparison source, given as the difference between the locally measured volumes and

the true volumes, as measured at NPL. The data shows a spread of 95% (range − 50 to

+ 45%), with a tendency to overestimate the volume by a mean value of 9%.

H1 reported volumes within 5% of the true value for both parts of the comparison

source (inner sphere − 2%, outer shell 4%).

Activity

Figure 6 shows the results reported by the sites for the inner sphere of the comparison

source, given as the difference between the locally measured activity values and the true

activity, as calibrated at NPL. The data shows a spread of 22% (range − 2 to + 20%) with a

Fig. 3 Participants reported volumes for the inner sphere of the comparison source. Since H6 used an
arbitrary spherical volume of 8 cm in lieu of outlining the inner sphere, no volume is included in this graph

Fig. 4 Participants reported volumes for the outer shell of the comparison source
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tendency to overestimate the activity by a mean value of 10%. H3 reported the result that

was most consistent with the NPL value for the inner sphere and also had the lowest uncer-

tainty of the participants. Three of the participants’ (H2, H3 and H7) reported ranges

included the NPL value. The remaining four results were within 20% of the NPL value.

Figure 7 shows the results reported by the sites for the outer shell of the comparison

source, given as the difference between the locally measured activity values and the true

activity, as calibrated at NPL. The data shows a spread of 117% (range − 34 to + 83%),

with a tendency towards overestimating the activity by a mean value of 27%. H4

reported the closest result to the NPL value, but the reported range did not include the

NPL result. Only H2 reported a range that included the NPL value. Three of the partic-

ipants’ (H1, H2, H4) results were within 50% of the NPL value, with all results being

within 100%.

Fig. 5 Participants reported volumes for the entire comparison source
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Fig. 6 Participants reported activities for the inner sphere of the comparison source
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Figure 8 shows the results reported by the sites for the total activity of the comparison

source (the sum of the activity for the inner sphere and the outer shell), given as the differ-

ence between the locally measured activity values and the true activity, as calibrated at NPL.

The data shows a spread of 23% (range 0 to + 23%), with all participants overestimating the

total activity by a mean value of 12%. Three of the participants’ (H2, H5 and H7) reported

ranges included the NPL value and all results were within 30% of the NPL value.

Table 3 shows a breakdown of the agreement between locally measured absolute activity

values for the comparison source compared to the true activity. Table 4 shows a breakdown

of the agreement between the locally measured activity ranges for the comparison source

compared to the true activity.
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Fig. 7 Participants reported activities for the outer shell of the comparison source
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Fig. 8 Participants reported activities for the entire comparison source
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Effect of volume on activity

For all sites that used a non-specific calibration method (i.e. all sites other than H2), the

use of a VOI larger than the true volume of the inner sphere resulted in a reported activity

higher than the true value and likewise for VOIs smaller than the true volume. The same

was true for the outer shell, with the exception of H1, for which the segmentation method

(expanded volume: expanded on outer surface of the shell but reduced on inner surface of

the shell) meant that the majority of the outer shell volume was included in the inner

sphere VOI rather than the outer shell.

Discussion
Different participants used different segmentation methods depending on whether they

used the knowledge that the comparison source was spherical and drew spherical VOIs

on the CT (H1, H3, H5 and H6) or whether they assumed no prior knowledge and

segmented the source manually (H4 and H7) and/or using thresholding techniques (H2

and H7). The resultant volumes indicate that segmenting on the SPECT data is likely to

be less accurate than segmenting on CT data, regardless of whether prior knowledge of

the shape of the VOI is utilised. The use of VOIs larger than the physical volume results

in reported activity higher than the true value and vice versa, since this will result in the

inclusion of additional voxels (for larger VOIs) or exclude voxels that should be included

(for smaller VOIs). The uncertainty in the final activity is therefore strongly dependent on

the uncertainty in the segmentation method used, but none of the participants included

an estimate of the segmentation uncertainty in their activity uncertainty estimation.

The overestimation of activity for the inner sphere may also be partly due to the

inclusion of ‘spill in’ from the warm (1:15) outer shell. It was not anticipated that the

inner sphere would have suffered significantly from ‘spill out’ since it is a volume of

26 ml (internal diameter 36 mm), which is approximately equivalent to the largest

fillable spheres used by clinical sites to measure partial volume effects [6, 7]. As part of

the calibration measurements, H1 determined that partial volume corrections were not

necessary for this volume on their Siemens gamma camera when resolution recovery is

used. However, recent simulation work [16] for a GE gamma camera found that partial

volume effects are less than 15% at this size if resolution recovery is performed (H1,

Table 3 Proportion of sites for which reported values were within the given percentage of the
true value

Within 5% Within 10% Within 20% Within 50% Within 75% Within 100%

Inner sphere 1/7 (14%) 4/7 (57%) 7/7 (100%) 7/7 (100%) 7/7 (100%) 7/7 (100%)

Outer shell 0/6 (0%) 1/6 (17%) 1/6 (17%) 3/6 (50%) 5/6 (83%) 6/6 (100%)

Total source 1/6 (17%) 2/6 (33%) 5/6 (83%) 6/6 (100%) 6/6 (100%) 6/6 (100%)

Table 4 Proportion of sites for which reported uncertainty on the measured activity was within
the given percentage of the true value. Since H6 did not report an uncertainty, the data from H6
has been excluded from this table

Within 5% Within 10% Within 20% Within 50% Within 75% Within 100%

Inner sphere 3/6 (50%) 5/6 (83%) 6/6 (100%) 6/6 (100%) 6/6 (100% 6/6 (100%)

Outer shell 2/6 (33%) 2/6 (33%) 2/6 (33%) 4/6 (67%) 6/6 (100%) 6/6 (100%)

Total source 4/6 (67%) 5/6 (83%) 6/6 (100%) 6/6 (100%) 6/6 (100%) 6/6 (100%)
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H3, H4, H6 and H7). The same study found that if resolution recovery is not used (H2

and H5), partial volume corrections of less than 30% are likely to be required. Further-

more, four of the participants used sphere of similar or smaller volumes than that of

the inner sphere (H1, H3, H4 and H5) to calibrate their systems, which will have

resulted in some degree of partial volume correction being incorporated into their cps/

MBq factors (if partial volume corrections were necessary at these volumes).

However, due to its smaller thickness (11 mm), the outer shell was more likely than the

inner sphere to have been subject to significant partial volume effects due to both image

sampling (pixelation) and image blurring (low spatial resolution). Only one participating

site corrected for partial volume effects (H7) whilst five of the sites used resolution recov-

ery (H1, H3, H4, H6 and H7). As already noted, the activity concentrations in the outer

shell were relatively low compared to the inner sphere. There was thus significantly

increased Poisson noise in the outer shell in comparison to the inner sphere due to low

counting statistics which may also have contributed to the observed deviations. Three of

the sites (H1, H3 and H4) accounted for Poisson noise in their uncertainty estimation.

As mentioned in the ‘Methods’ section, the shell sphere chosen for this exercise was

selected for logistical purposes—the inclusion of background activity was desired, but

the source had to be able to be prepared at NPL and shipped to the participants. It was

unfeasible to transport a 9-l phantom filled with liquid activity, and shipping vials of

activity to be added to the water in the phantom at each site would have contaminated

the phantom, preventing onward transportation of the phantom to the next site. The

shell source selected was commercially available, and it was possible to obtain transpor-

tation containers that made shipping them a viable option. If this comparison exercise

were to be repeated with a similar set-up, it may be desirable to use a shell sphere with

a thicker outer shell.

When the activity of the inner sphere and the outer shell was summed to give a total

source activity (Fig. 8), the participants still overestimated the activity in the source but by

substantially less than what was reported for the outer shell. Summing the activity in the

inner sphere with that in the outer shell ensures that some of the spill-out from the outer

shell is included. This result highlights the importance of accurate VOI drawing and per-

forming partial volume correction to exclude spill-out from neighbouring active regions.
177Lu has two main gamma emissions [1], at 113 keV (6%) and 208 keV (10%). Three

participants (H2, H3, H4) chose to acquire both photopeaks to maximise the total

number of counts acquired, whilst four participants (H1, H5, H6, H7) acquired only

the 208-keV photopeak in order to reduce scatter within the image [17]. It should be

noted that the choice of photopeaks at each site was determined by standard clinical

practice and was not tailored to this specific set-up. In this set-up, scatter is likely to be

much less significant than in, for example, a patient with a large lesion located close to

a lower activity organ of interest. Our data showed no advantage to using 208 keV in

comparison to using both 113 and 208 keV in this situation, but other variations in the

protocols used by each participant make it impossible to draw any conclusions.

Two sites (H1 and H7) had SPECT/CT systems with 5/8″ crystals, compared to the

3/8″ for all other sites and a thicker crystal will provide greater sensitivity at the cost of

a reduction in spatial resolution. As with the choice of photopeaks, our data showed no

advantage to using 5/8″ over 3/8″, but the variations in the techniques used make it

impossible to draw any conclusions.
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177Lu can be produced with or without the addition of a carrier [5]. The manufacturing

method for carrier-added 177Lu results in low-level contamination of the final product with
177mLu—typically around 0.01–0.02% at the end of irradiation [5], whereas the non-carrier-

added (n.c.a.) method results in no 177mLu impurities in the final product. The comparison

source was filled with n.c.a. 177Lu, and H3, H4 and H5 performed their calibrations using n.

c.a. 177Lu whilst H1, H2, H6 and H7 used 177Lu-DOTATATE which was likely to contain

trace amounts of 177mLu. 177mLu has a 160-day half-life, and so as long as the calibration

measurements were done reasonably promptly after production, the presence of any 177mLu

impurities would have been negligible and our data showed no benefit to using n.c.a. 177Lu

rather than 177Lu-DOTATATE.

The calibration geometries used at different sites varied from using SPECT/CT imaging

of a comparably large homogenous source (H1, H6), a homogenous spherical 16-ml source

(H3, H4, H5) or a shell sphere of the same design as the comparison source (H2) to planar

imaging of activity in a petri dish (H7). Results do not clearly point at one method being

superior to the others. The option of using the same geometry for calibration and imaging

(H2) is not currently available in clinical studies, although some research groups have pro-

posed that 3D printing of patient-specific phantoms is potentially feasible [33, 37] and may

be the future of MRT dosimetry. A limitation of 3D printing patient-specific phantoms is

the inability to model inhomogeneous activity uptake (although multi-compartment models

can be made allowing a number of different activity concentrations to be used). However,

the speculation is that since many other image properties will be the same at calibration

and imaging (such as scatter, attenuation and volume, position, shape and surface area of

VOI), patient-specific calibrations could provide more accurate results by removing the

need to extrapolate from calibration measurements to volumes of vastly differing properties.

In this small study, the site that used this method (H2) was the only site to report activity

ranges including the true NPL activity values for both the inner sphere and outer shell.

Some issues were encountered with the study due to different participants interpreting

the task in different ways. These issues could have been addressed had the instructions been

clearer and the various possible interpretations considered when designing the comparison.

Different participants used different segmentation methods depending on whether they

used the knowledge that the comparison source was spherical, and drew spherical VOIs on

the CT (H1, H3, H5, H6), or whether they assumed no prior knowledge and segmented the

source manually (H4, H7) and/or using thresholding techniques (H2, H7). Guidance could

have been provided to the participants regarding this. However, the choice of segmentation

method(s) will also affect the quantitation of the images, so it is interesting to include in this

paper, and guidance was deliberately kept to a minimum to allow participants to use their

own choice and judgement.

The outer shell was referred to as the ‘background region’ on the reporting form, and

there was some confusion as to what part of the phantom that meant. As a result, H6

reported the background region as a VOI located in a non-active region of the phantom

rather than the outer shell. Clearer naming of the parts of the comparison source would

have prevented this from happening.

The results also show that a great deal of work is still required to reduce the uncertainties

in quantitative SPECT to enable individual patient doses to both tumours and surrounding

healthy tissue to be calculated within limits generally considered acceptable in external

beam radiotherapy (within 5% [19]).
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Conclusions
Participants described a variety of methods used to determine the cps/MBq factor, mostly

centred on the measurement of a simple sphere in a Jaszczak phantom; however, no single

method was identified as yielding significantly improved accuracy compared to the others

due mostly to the small number of participants. Reasonable uncertainties were reported by

some of the participants, and various methods were used to determine these uncertainties;

however, further research into the sources of uncertainty should be performed in order to

fully determine a realistic uncertainty budget. This inter-comparison only investigated a

simple geometry, and corrections for partial volume effects, dead time or background

concentration were not fully incorporated; however, the results reinforce the need for more

guidance and present a method for assessing consistency in this area.
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