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Abstract

In this thesis we investigate near—isomorphism classes and isomorphism classes of almost
completely decomposable groups.

In Chapter 2 we introduce the concept of almost completely decomposable groups and
sum up their most important facts. A local group is an almost completely decomposable
group with a primary regulator quotient. A uniform group is a rigid local group with
a homocyclic regulator quotient.

In Chapter 3 a weakening of isomorphism, called type-isomorphism, appears. It is
shown that type—isomorphism agrees with Lady’s near—isomorphism. By the Main
Decomposition Theorem and the Primary Reduction Theorem we are allowed to restrict
ourselves on clipped local groups, namely groups without a direct rank—one summand.

In Chapter 4 we collect facts of matrices over commutative rings with an identity
element. Matrices over the local ring Z/p°Z play an important role.

In Chapter 5 we introduce representing matrices of finite essential extensions. Here a
normal form for local groups is found by the Gaufl algorithm. Uniform groups have
representing matrices in Hermite normal form.

The classification problems for almost completely decomposable groups up to isomor-
phism and up to near—isomorphism can be rephrased as equivalence problems for the
representing matrices. In Chapter 6 we derive a criterion for the representing matrices
of local groups in Gaufl normal form.

In Chapter 7 we formulate the matrix criterion for uniform groups. Two representing
matrices in Hermite normal form describe isomorphic groups if and only if the rest
blocks of the representing matrices are T—diagonally equivalent.

Starting from a fixed near—isomorphism class in Chapter 8 we investigate isomorphism
classes of uniform groups. We count groups and isomorphism classes.

In Chapter 9 we specialize on uniform groups of rank 2r with a regulator quotient of
rank r such that the rest block of the representing matrix is invertible and normed.
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1. NOTATIONS

The notation in this thesis follows Fuchs [Fuc73] and Mader [Mad00]. All ap-
pearing groups are additive abelian groups. We investigate torsion—free groups of
finite rank and drop the adjective “torsion—free”. Finite groups will be explicitly
mentioned. We only use the inclusion symbols C, D and C, D. Maps are written
on the left.

Let h be a natural number. The factor Z/hZ =: Z; denotes the ring of residue
classes of the rational integers mod h just as the additive cyclic group of order h.

2. ALMosT COMPLETELY DECOMPOSABLE GROUPS

Definition 2.1. Suppose that X is a group. With rank we mean the dimension
of the Q-vector space QX = (qz|q € Q, z € X) = {d°,qz;|n € N,¢g; €
Q, z; € X}. Short rk X = dim QX. We call QX the divisible hull of X.

Remark 2.2. We consider a torsion—free group X as a pair X C QX. Rank-one
groups are groups isomorphic to rational groups, i.e. subgroups of Q.

Definition 2.3. Let X be an arbitrary abelian group and n be a natural number.
The subgroup

X[n]|={xr € X | nz =0}
is called the n—socle of X.

The subgroup S(X) = @,cp X[p| consists of all x € X such that ord(z) is a
square—free integer and is said to be the socle of X.

Remark 2.4. The socle is 0 if and only if X is torsion—free. For a p—group X
we have S(X) = X|[p].

One of the most important tools for characterizing groups is the knowledge of
divisibilities of elements by primes p. Let us start with basic concepts.
Definition 2.5. Let X be a group, x € X and p be a prime.

The largest integer k for which p~x is still in X is called the p-height hgt,, ()
of z; if no such maximal integer exists, i.e. p™*z € X for all £ € N, we set
hgt,,(z) = oo.
The sequence of p—heights

x(z) = (hgt,, (z),...  hgt, (z),...)
is said to be the characteristic of x, where p; is standing for the i—th prime.

We mean by x; < x» that every component of y; is less or equal than the
corresponding one in Ys. Define the pointwise operations

(kh...,ki7...)/\(l1,...,li7...) = (min(k:l,ll),...,min(ki,li),...)
and (kl,...7k¢,...)\/(h,...,l¢,...) = (max(kl,ll),...,max(ki,li),...)

for any two characteristics.
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The type tp(x) of x is the equivalence class of all characteristics x which have
exactly the same oo—components as x(x) and which differ for at most finitely
many components with finite entries from y(z). For two types 11, 2 we set
71 < 7y if there are characteristics y; in 7; and x9 in 7 with x; < y2. We define
T1 A Ty [or 71 V T3] to be the equivalence class of the characteristic x; A x2 [or
X1 V X2], where y; is a characteristic in 71 and Y3 is a characteristic in 7.

A group Y in which all elements # 0 are of the same type 7 is called homogeneous.
For example there is only one type occurring in a rank—one group. So it makes
sense to speak of the type tp(Y) of a rank—one group Y.

Definition 2.6. Let X be a group. A subgroup U of X is called pure if pXNU =
pU for every prime p. The group

X ={zeX|TennreU}=XNQU
is the purification of U in X.

Remark 2.7. The subgroup UZX is the intersection of all pure subgroups of X
that contain UU. Thus UX is the minimal pure subgroup including U.

Lemma 2.8. [Mad00, Lemma 2.1.7] Let X be a group and U a subgroup of X.
Then the following are equivalent:

(1) U is pure in X,

(2) X/U is torsion—free,
( ) neN TLX ﬂ U — TLU
(4) U

Lemma 2.9. [Mad00, Lemma 2.1.1] Let X be a group of finite rank and h a
positive integer. Then X/hX is a finite group. Moreover, for every prime p,
dim(X/hX)[p] <1tk X.

Definition 2.10. Let A be a torsion—free group of finite rank and h a positive
integer. Let
FEE(A,h) ={X <QA|A< X <h'A}.

Remark 2.11. For X € FEE(A, h) the index [X : A] is finite by Lemma 2.9,
and X is a “finite essential extension” of A.

For X,Y € FEE(A, h),
X=Y if and only if X/A=Y/A.

Definition 2.12. Let X be an arbitrary group. A subgroup U of X that is
carried into itself by every endomorphism [automorphism| of X is said to be a
fully invariant [characteristic] subgroup of X.
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Notation 2.13. Let T(X) denote the set of all types of non—zero elements in
the group X.

With every type 7 we can associate fully invariant “type—subgroups” of a given
group which are useful tools in the theory.

Definition 2.14. Let X be a group and 7 a type in X. Define
X(r):={z e X|tpx) >7}, X*(7):=(xeX|tpx)>7), X¥r):=X"(r).

Remark 2.15. Since tp(¢z) > tp(z) for any endomorphism ¢, all type-
subgroups are fully invariant. For m € N, x € X and y € X(7) with mzx =
y € X (7) one calculates tp(z) = tp(mz) = tp(y) > 7. Hence x € X(7) and X (1)
is pure in X. Of course X*(7) is pure, too. One sees X*(7) C X*(7) C X(7) C X.

Definition 2.16. Let X be a group. The type 7 is a critical type of X if
X(7)
0
Xi(r) 7
Let Te,(X) denote the set of all critical types of X. If T (X) is an antichain,
i.e. if the critical types of X are pairwise incomparable, then X is called block—

rigid. If tk X (7)/X*(7) = 1 for all critical types, then X is called slim. If X is
block-rigid and slim, then X is a rigid group.

Definition 2.17. The group A is called completely decomposable if it is the direct
sum of rank—one groups.

Let A= pETer(A) A, be a direct decomposition into 7-homogeneous completely
decomposable summands A,. We call the A, the 7—homogeneous components of

Aand A= 1, (x) Ap & homogeneous decomposition of A.

We now define formally a class of torsion—free groups which are the center of
attention throughout this thesis and are natural generalizations of completely
decomposable groups.

Definition 2.18. An almost completely decomposable group is a torsion—free
group of finite rank which contains a completely decomposable subgroup of finite
index.

Lemma 2.19. (Butler Decomposition) [Mad00, Lemma 4.1.2] Let X be an
almost completely decomposable group and T a critical type of X. Then

X(1)= A, @ X¥(1),

and the Butler complement A, is T—homogeneous completely decomposable and
pure in X.



Isomorphism Classes, Michael Nahler 5

Definition 2.20. Let X be an almost completely decomposable group, T (X)
its critical typeset, and let X (7) = A, @ X*(7) be a Butler decomposition for
each 7 € Te,(X). The subgroup A = 3" 1. ()4, is called a regulating subgroup
of X. The symbol Regg(X) denotes the family of all regulating subgroups of X.

The intersection of all regulating subgroups of X is the regulator R(X) of X. If
there is only one regulating subgroup, the regulator is called regulating regulator.

Remark 2.21. Any two regulating subgroups of X are isomorphic. The number
of regulating subgroups for X is finite.

X
rgi(X)
. o A, regulating subgroup
I R(X) =) Regg(X), regulator
|
I 00
l
0

Theorem 2.22. (Lady) [Mad00, Theorem 4.2.13] Let X be an almost com-
pletely decomposable group and A a regulating subgroup of X. Then

[X : A] =: rgi(X)
15 an invariant of X, the regulating index. If B s a completely decomposable
subgroup of finite index of X, then rgi(X) divides [X : B], and [X : B] = rgi(X)
if and only if B is requlating in X. The requlating subgroups are exactly the
completely decomposable subgroups of X of minimal index rgi(X).

Definition 2.23. Let X be an almost completely decomposable group and 7 any
type. The Burkhardt invariants 32X of X are defined by
XH(r)

P =P Ry

Remark 2.24. It is X = exp Rg{((i))) for all types 7. If 7 is maximal in T, (X),
then 3% = 1.
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We now formulate the important description of the regulator due to Burkhardt
[Mad00, Theorem 4.4.4].

Theorem 2.25. (Burkhardt Regulator Theorem) Let X be any almost com-
pletely decomposable group and A = eapeTcr(X) A, any regulating subgroup of X.

Then
R(X) = @ ﬁ;(Ap :

pETer (X)

Corollary 2.26. [Mad00, Corollary 4.4.5] Let X be an almost completely decom-
posable group. Then
ROX)= ) 67X(p).

pETer (X)

Remark 2.27. Let X be an almost completely decomposable group with reg-
ulator R. Then R is a fully invariant and completely decomposable subgroup
of finite index in X. If h is the exponent of the regulator quotient X/R, then
RC X Ch!R.

Another important result of Burkhardt [Mad00, Theorem 4.4.6] characterizes the
regulator among the completely decomposable subgroups of finite index.

Theorem 2.28. (Burkhardt Regulator Criterion) Let U be a completely
decomposable subgroup of finite index in the almost completely decomposable

group X and let 3, = exp )[jj—((:)) for 7 € Te,(X). Then U = R(X) if and only if

there is a homogeneous decomposition
v= @ v,
PETer (X)
such that for each critical type T,

U, C 3. X(r) CU(r) .

The following application of Schlez [Sch98, Lemma 5.2] is a useful tool.

Lemma 2.29. Let X be an almost completely decomposable group. Let R =
@?:1 R, be a rigid completely decomposable subgroup of finite index and X/R of
exponent m € N. The following are equivalent:

(1) R(X) = R.
(2) (R,,))y =Ry, forallj=1,... n.
(3) %ﬂ%z@foralljzl,...,n.

Proof. “(1)<>(2)” One has 7; = tp(R;,) for j = 1,... ,n. By BURKHARDT REGU-
LATOR CRITERION, the regulator of X is R if and only if R, C 3. X(7;) C R(7;)
for all j, where 3;, = exp[X*(7;)/R*(7;)]. Since R is rigid, one obtains 3,, = 1 and
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R(1j) = R;, for all j. Hence R, C X(7;) C R(7;) = R,, with equality. Therefore
(R-,)¥ = [R())]¥ = X(7;) and so (R;,); = R,,. Thus R is the regulator of X if
and only if all R, are pure subgroups of X.

“(2)e(3)” By definition (R;,) = R,, if and only if R, NkX = kR, forallk e N

and j =1,...,n. Here R;, N mX = mR, implies the purity:
X/R,, =mX/mR; = mX/(R,, "mX) = (mX + R,)/R., C R/R.,

i.e. X/R, is torsion-free, since R/R; is torsion-free, and therefore R, is pure
in X. Hence the purity of R., is equivalent to R, NmX = mR,,. Since all groups
are torsion—free, this is equivalent to mflRTj NX = R, so (mflRT]. +R)NX = R.
Consideration modulo R implies the claim. O

Definition 2.30. An almost completely decomposable group X is called p—local
for a prime p if X/ R(X) is a (finite) p—group, where R(X) is the regulator of X.
Groups with an arbitrary regulator quotient are called global.

Remark 2.31. A group X is p-local if and only if X has a regulating subgroup U
such that X/U is a p—group, equivalently the regulating index rgi(X) is a power
of p. Therefore X is called a p—primary requlating quotient group, too.

Definition 2.32. Let p be a prime and e, n, r natural numbers. Let T =
(T1,...,7) be an ordered n—tuple of pairwise incomparable types with p—height
0 = 7;(p). Then C(T', p, e, r) denotes the class of almost completely decomposable
groups X such that

(1) T = T (X) is the critical typeset of X,

(2) X isrigid, i.e. X(7) has rank 1 for all 7 € T,

(3) tk X =n,

(4) the regulator quotient is homocyclic of exponent p¢ i.e. X/R(X)
(Zpe)" = Zipe ® Lie ® -+ @ Zype is a direct sum of r copies of Zye.

1%

r

We call such groups X uniform.

Remark 2.33. Since such a uniform group X is rigid, one has R(X) =
D, X(7,).

Definition 2.34. Let p be a prime. A group D is said to be p—divisible if pD =
D. 1If the group X has no non-trivial p—divisible subgroup, then X is called
p—reduced.

Remark 2.35. Each uniform group X € C(T,p,e,r) is p-local and p-reduced.
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3. NEAR-ISOMORPHISM

Definition 3.1. (Lady) Let X and Y be groups of finite rank. Then X and Y
are called nearly isomorphic, in symbols X =, Y, if for every positive inte-
ger n, there is a monomorphism ¢, : X — Y such that [V : ¢,X] is finite and
ged (n, [Y @ ¢, X]) = 1.

Remark 3.2. Near-isomorphism is a weakening of isomorphism. Isomorphic
groups are nearly isomorphic, too. Use the isomorphism for all monomor-
phisms ¢,, of the definition.

Remark 3.3. Let R be a completely decomposable group and h a positive inte-
ger. The map
“":R—R=h'R/IR,z2—Z=h""2+R
denotes the natural epimorphism. Furthermore, — will denote as well the induced
homomorphism
~:AutR — AutR, a—a via a(T):=a(x).
This definition is well-defined, since T = 2/, i.e. h'x + R = h™'2’ + R, implies
z = ' + hr for a suitable r € R. Then we get a(Z) = a(z) = h'a(z) + R =
h=ta(x’ +hr)+ R = h~ta(z’) + h 'a(hr) +R = a(2’) = @(2’) and the definition
€R

does not depend on the representative of # = z/. Let
Aut R = {@ | o € Aut R}

denote the set of induced automorphisms of R.

Definition 3.4. Let R be a completely decomposable group and h a positive
integer. Let
RFEE(R,h) = {X <QR| R=R(X) and X C h"'R}.

The groups of RFEE(R, h) will be called regulated extensions of R with h—bounded
requlator quotient.

Theorem 3.5. (Isomorphism Criterion) [Mad00, Theorem 8.1.13]
Let X,Y € RFEE(R,h). Then X =Y if and only if there is « € Aut R such
that ahX = hY .

Remark 3.6. In this case we have hX = {hz |z € X} = {z + R|z € X} =
X/R, since hx = v + R, and @(x + R) = a(hr) = a(hz).

Definition 3.7. Let R be a completely decomposable group and h positive inte-
ger. A type automorphism ¢ is an automorphism of R such that £ R(7) = R(7) for
every critical type 7 € T (R). The set of type automorphisms is a multiplicative
group denoted by

TypAut R := {€ e Aut R | Veero(r) E R(T) = R(T)}.
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Definition 3.8. Let X, Y € RFEE(R, h). The groups X and Y are called type-
isomorphic in R = h™'R/R if there is ¢ € TypAut R such that £(hX) = hY, and
we write X =, Y in this case.

Remark 3.9. This equivalence relation on RFEE(R, h) is a weakening of isomor-
phism. Each induced automorphism @ € Aut R satisfies@ R(7) = o R(7) = R(7).
Hence Aut R C TypAut R and the Isomorphism Criterion 3.5 shows that isomor-
phic groups X, Y € RFEE(R, h) are type-isomorphic, too.

The equivalence of type-isomorphism and near—isomorphism is shown in [Mad00,
Theorem 9.2.4]. The next theorem includes this fact and other characterizations
of near—isomorphism.

Theorem 3.10. Let X and Y be almost completely decomposable groups. Then
the following are equivalent.

(1) X =, Y.

(2) There exists a monomorphism ¢ : X — Y such that [Y : ¢X] is finite and
relatively prime to rgi(X)rgi(Y).

3) X pR(X) XY @ R(X).

(4) XD A=Y @ A for some completely decomposable group A.

(5) X/R(X) = Y/R(Y) and there exists a monomorphism ¢ : X — Y such
that [Y : ¢X] is finite and relatively prime to [X : R(X)].

(6) X = Y.

(7) There exists an integer n such that X™ =Y™.

The well known classification [Mut99] of almost completely decomposable groups
up to near—isomorphism will be improved to a classification up to isomorphism
within a near—isomorphism class. We reduce this problem up to clipped groups
in Theorem 3.12 and p—primary constituents in Theorem 3.15.

Definition 3.11. An almost completely decomposable group X is called clipped
if it does not have any rational direct summands.

Theorem 3.12. (Main Decomposition Theorem) [Mad00, Theorem 9.2.7]
Let X and Y be almost completely decomposable groups. Let X = X.q & X be
a decomposition of X with completely decomposable summand X.q and clipped
summand Xg. Then the following hold.

(1) Xeq 1s unique up to isomorphism and X is unique up to near—isomorphism.
(2) If Y = Yeqa @ Yq is such that Yeq is completely decomposable and Yy is
clipped, then X =Y if and only if Xeq = Yeq and Xo =4 Ya.

Remark 3.13. Hence we only have to investigate clipped groups for near—
isomorphism.
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Definition 3.14. Let X be an almost completely decomposable group, A a com-
pletely decomposable subgroup, p a prime and h a positive integer such that
hX C A. Recall that Z[p~'] = {7t | m € Z, k € N}. The subgroup

X, i ={r € X |p"x € Afor some n} = X NZ[p ']A

is called p—primary constituent of X with respect to A.

Theorem 3.15. (Primary Reduction Theorem) [Mad00, Theorem 9.2.8]

(1) Let X be an almost completely decomposable group, A a completely de-
composable subgroup. Then A = R(X) if and only if A = R(X,,) for all
pPrimes p.

(2) If X and Y are almost completely decomposable groups, then X =, Y if
and only if Xy, = Yy for all primes p.

Remark 3.16. The finite group X/A has a direct decomposition into primary
components and we get

X
=% — » component of T

A

Set A = R(X). By Theorem 3.15, we only have to look at almost completely
decomposable groups with a p—group being the regulator quotient to investigate
the near—isomorphism class.

For easy reference we summarize the known properties shared by nearly isomor-
phic almost completely decomposable groups.

Theorem 3.17. [Mad00, Theorem 9.2.6] Let X and Y be nearly isomorphic al-
most completely decomposable groups. Then the following hold.

(1) rk(X) = rk(Y) and T, (X) = T (Y).

(2) rgi(X) = rgi(Y).

3) XeRY)=ZY ®R(Y).

(4) For all 7 € T (X) = Toe(Y), 85 = Y, R(X) ¥ R(Y), and X/R(X) =

Y/R(Y).
(5) The isomorphism classes of regulating quotients of X and Y coincide.
(6) For all types T whatsoever, X (1) =, Y (1), X*(7) =, Y*(7).

Remark 3.18. Since nearly isomorphic groups have isomorphic regulators we
restrict ourselves for simplification to groups with a common regulator.
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4. MATRIX THEORY

Definition 4.1. Let S be a commutative ring with 1, let 7, n be natural numbers.
Let S* denote the set of units in S. Let the set of (r x n)-matrices over S
be denoted by M"*"(S). A matrix which is obtained by striking out rows and
columns of a matrix A is called a submatriz of A. The maximal natural number k
such that there is an invertible k—rowed submatrix of A is called determinantal
rank of A. Write rkge(A) = k. Note that a square matrix over S is invertible if
and only if its determinant is a unit in S. Such matrices are also called regular
or nonsingular. Let GL(n,S) denote the set of all invertible (n x n)-matrices
with coefficients in S, the general linear group of degree n over S. Abbreviate
a diagonal matrix by

dy
diag(dy, ... ,d,) == e M™"(S).

n

If r < nand D = diag(dy,...,d.,dy11,...,d,), then define the submatrices
D¢, = diag(dy,... ,d,) and D, := diag(d,1, ... ,d,).

Definition 4.2. Let S be a commutative ring with 1, let n be a natural number.

Let U, Uy,...,U, be subgroups of (S*, - ). Write
DIAG(TL, U) = {dl&g(dl, C. ,dn) | vj:l,...,n dj c U}

for the set of all (n x n)-diagonal matrices over U. This definition can be gener-
alized by

DIAG(Ul, R ,Un) = {dlag(fl, Ce ,fn) | Vj:17...7n fj S UJ}

Lemma 4.3. Let p be a prime and e, m, n, r € N natural numbers. For M &
M™ ™ (Zye) the following are equivalent.

(1) The mazimal number of p—independent rows is .
(2) The mazimal number of p—independent columns is r.
(3) The determinantal rank is r.

Proof. Since rkget (M) = rkget (M) we only have to show that p-independence of
the rows of an (r X n)-submatrix A is equivalent to the fact that A has determi-
nantal rank . Note that a square matrix over Z, has p-independent rows if and
only if it describes an automorphism of a homocyclic group, i.e. if and only if it
is invertible.

If the (r x n)—matrix A has determinantal rank r, then it has an invertible square
r-rowed submatrix, whose rows are p-independent. But then the rows of A are
p—independent.

Conversely, if A has p-independent rows, then A is a submatrix of some square
n—rowed matrix B whose n rows are p—independent, since a p—-independent set is
contained in a maximal p-independent set. Thus B is invertible and A contains
an invertible r-rowed submatrix by Laplace’s expansion of determinants. O
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Definition 4.4. Let S be a commutative ring with 1, let 7, n be natural numbers.
The matrices M, N € M"™"(S) are said to be equivalent if there are invertible
matrices U € GL(r, S) and V' € GL(n, S) such that

N=UMYV.

Let U C GL(r, S) and V C GL(n, S) be not empty subsets. If U ¢ Y/ and V € V
this is called U|V—equivalence. If V' is specialized to be a diagonal matrix this is
called g|d—equivalence (g = general, d = diagonal). If U is the identity matrix
and V is a permutation matrix this is called column permutation equivalence.
If U and V' both are specialized to be diagonal matrices this is called diagonal
equivalence.

Two square matrices M and N over S are called similar if there is an invertible
matrix V with N =V-IMV.

Lemma 4.5. Let S be a commutative ring with 1, let r, n be natural numbers. If
M, N € M™"(S) are g|d—equivalent, then for allk =1,... ,n the matrices M*),
N®) obtained from M, N by deleting the k-th column are g|d-equivalent, too.

Proof. Assume that N = U - M - diag(dy,... ,d,). Then N® = U . M® .

diag(dy, ... ,dk_1,dgy1,-.. ,dy,), since it does not matter whether you delete
firstly a column and multiply secondly the others by units d; or you turn this
around. O

Remark 4.6. Let M € M™"(S). Striking out the k-th column is represented
by multiplying by the following [n x (n — 1)]-matrix from the right side:

1
0
o]
Sp=170 - 0[0]--- 0 | —&
T
0
1

Hence NGE) = N-S,=U-M -diag(dy, ... ,d,) - Sk
= UMSkdlag(dl, ,dkfl,korl,... 7dn>

=M (k)

Lemma 4.7. Let p be a prime and e, n, r € N natural numbers with r < n. Let
M, N € M""(Zye) be g|d—equivalent.

Any submatriz obtained from M by striking out one column has p—independent
rows if and only if this is true for N.
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Proof. Let M™® denote the [rx (n—1)]-matrix over Z,. obtained from M by delet-
ing the k-th column. By Lemma 4.5 the matrices M*), N®) are g|d-equivalent,
too. Hence rkge(M®*)) = rkget(N®) and both submatrices M*) N®) have an
identical number of p—independent rows. O

Example 4.8. Let

1 01
M':(Oll) and V=

o O =
O = O
)

Let M) = (1) 1 ) denote the matrix obtained from M by deleting the first
column. We calculate
1 00 00
_ 1 _
MV—(Oll) and (MV) —(11).

Although M and MV are equivalent, the submatrices M) and (MV)®) have
distinct determinantal rank. Hence equivalence in general does not preserve the
striking out—property of Lemma 4.7. A

Definition 4.9. Let p be a prime and e, n, r € N natural numbers. Let A = ()
be an (r x n)-matrix over Z,. = Z/p°Z. Note that Z,e is a local ring and all ideals
are principal. Let p°Z,e be the ideal of Z,e generated by the set of all entries a;;
of A. The exponent § is called the stripping ezponent of A. The matrix A%® with
entries in Z,e is called stripped form of A if p° A%t = A. The determinantal rank
of A% is called lower determinantal rank of A. Note that the entries of A are
uniquely determined up to p°0Z,. [% (Zs , —I—)}

Let A # 0. The tuple (41, ... ,is) determines a block structure on the matrix A if
1 <iy <...<ip=min(r,n) as follows: Let ip = 0. The square (i; — i;_1)-rowed
submatrices A; = (ay;)i_,<ij<i, of A, 1 <1 < f, are the diagonal blocks of A.
Let A; = (Oé,L-j)Z'l71<i7j denote the rest block of the diagonal block A;. Let §; be
the stripping exponent of A; and let Cj = (v, ;) be the stripped form of Aj. The

matrix A is called straight with block structure (iy,... ,if) and stripping sequence
(01,...,05), if

(1) 4, — 4,1 is the lower determinantal rank of the rest block Aj, 1 <[ < f.

(2) All main submatrices (%j),-l_1<i,j§il_1+m of all stripped diagonal blocks # 0
of A, separately, are invertible.
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io - O ’il ig
Ay
m
. _—
11 1
I
I
m Ay
_____ 1
19 - - - - - - - - - - - T T T T~
I
/
I A's
I
I

Remark 4.10. Note that 0 < 6; <y < ... < ¢y < e and that §; = e is
equivalent to A; = 0, i.e. in particular, A4, = 0. Moreover, the properties of
straight only relate to the maximal main square submatrix of a matrix.

Proposition 4.11. Every (r X n)—matriz with determinantal rank r is column
permutation equivalent to a straight matriz.

More precise, let r, n € N be natural numbers with r < n and let M € M"™"(Zye)

be a matriz with rkqe (M) = r. Then a permutation matriz P exists such that
MP s straight.

Proof. Since M has determinantal rank r, there is an invertible (r x r)-
submatrix A which can moved to the left edge by a rearrangement of the
columns. We restrict ourselves to A. We use an induction on the number r
of rows. An invertible (1 x 1)-matrix is straight. Suppose that for every invert-
ible [(r — 1) x (r — 1)]-matrix B there is a permutation matrix ) such that BQ is

straight. Now let A = (ay;)i=1,.. » be invertible over Z.. Let A™®) = (a;) iz de-
J=lor ik
note the [(r — 1) x (r — 1)]-submatrix obtained from A by deleting the r—th row

and the k-th column. There exists k € {1,... 7} such that A is invertible.
Otherwise det A is a non—unit for all k = 1,... ,r. Note that the set of non-
units is an ideal in the local ring Z,.. By Laplace’s expansion of determinants,
det A =7 _ (—=1)*a,; det AT is also a non—unit, contradiction. Hence A™*)
is invertible. This invertible [(r — 1) x (r — 1)]-submatrix can be moved to the
left upper corner of A by a permutation of columns. Thus there is a permutation
matrix P such that

r.k
AP = Al
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By the induction hypothesis there is a permutation matrix @ such that AR Q
is straight. Then

0 *
ap| @ [i|Z| ame
0 *
0 -~ 0]1 EEAE
is straight, since it is invertible and A"¥)Q is straight. O

Definition 4.12. Let p be a prime and e, n, r € N natural numbers. Let M be
an (r x n)-matrix over Z, with determinantal rank r. Then there are invertible
submatrices of size r X r. The set of indices of the columns for such an invertible
submatrix is called a pivot set of the matrix M.

Remark 4.13. A pivot set is not uniquely determined in general.

Definition 4.14. A straight matrix C' is said to be normed if all the main sub-
matrices of the stripped diagonal blocks C} # 0 have determinant 1.

Two diagonally equivalent normed matrices with the same block structure
(i1,...,1s) and the same stripping sequence (1, ... ,dy) are called modified diag-
onally similar if the stripped forms of the diagonal blocks A4; # 0,1 <[ < f, are
diagonally similar modulo p®Z,., respectively.

Remark 4.15. Note that modified diagonal similarity is defined for non—square
matrices, too, and that for square matrices with determinant 1, modified diagonal
similarity is exactly diagonal similarity.

Definition 4.16. Let p be a prime, r < n natural numbers and e = ¢; > --- >

e, > 1 integers. A matrix M € M"*"(Z,.) is said to be in Gaufs normal form if
M=A(E|A), where A=diag(p,...,p" ), and

1 mypp - my,
0 1 Moy

E — . . I
0O O 1

mi; €{k+pLELPLI0<k<pi}forall 1 <i<j<r

Definition 4.17. Let r, n be positive integers with r < n. Let M = («a;;);; be
an (r x n)-matrix over Zy. Then M is said to be in Hermite normal form if

lfori=y o . :
o= = ’ < <
a;j = 0;; { 0 for i £ j. for all 1 < 14,7 < r. In this way M decomposes into
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the (r x r)-identity matrix [, and A = (ay;) i=1,.., . We get

j=r+1,...,n
1 Arr41 -0 O1p
M=(I | A) =
1 Appp1 =0 Qg

Lemma 4.18. If a square (r x r)-matric C' = (v;;)1<ij<r over a local ring is
invertible, then there exists a permutation o € S, such that ;@) is a unit for
allt=1,... ,r. In particular each row and each column has an entry which is a
unit.

Proof. Let S be a local ring, i.e. a commutative ring with 1 which has a unique
maximal ideal I. Then I = S\ S* is the set of non—units. Let C' be an (r x r)-
matrix over S.

Suppose that there is no permutation o € S, such that 7; ,(;) is a unit for all ¢ =
1,...,r. Since the set of non—units [ is an ideal, for all permutations o € S, the
product Vi 5(1)Y2,0(2) * * * Vro(r) 18 @ non—unit, too. Hence

det C = Z Sign<a)’yl,o(l)’72,a(2) e ’77",0(7")

UGS’V‘

is in the ideal I and is a non—unit. Then C' is not invertible. O

Example 4.19. The condition of this Lemma is only necessary but not sufficient,
e.g. (11) is not invertible.

An invertible matrix over a general commutative ring with 1 need not to have a
unit in each row or column. For example

(‘;’ ;l) e M>2(Z)

has determinant 1 and is invertible. But no entry is a unit {1} in Z.

Definition 4.20. Let m, r € N be natural numbers. The matrix A € M"™"(Z,.)
is called primitive if each row of A has an entry which is a unit in Z,, i.e.
V; E|j Q5 € Z;;e

Lemma 4.21. Let M = (I, | A) € M"™"(Zye) be a matriz in Hermite normal
form. Then any submatrixz obtained from M by striking out one column has p—
independent rows if and only if the rest block A is primitive.

Proof. Let M*) denote the [r x (n — 1)]-matrix over Z,. obtained from M by
deleting the k—th column.

“=" Assume for contradiction that there is no unit in the k-th row of A. Then
the k-th row of M®*) = (Lgk) | A) contains no unit, too, and therefore the k—th
row of M®* is not p-independent by definition.

“«<” Assume that each row of A = (a;;) i=1,..» has an entry which is a unit
j=r+1,....n



Isomorphism Classes, Michael Nahler 17

in Zy. For k > r the matrix M® = (I, | A®) has determinantal rank r
and therefore p-independent rows. Let k € {1,...,r} be fixed and let ay; be

a unit in the k—th row of A by assumption. The matrix M®*) = (Lgk) | A) has
p-independent rows, since it has the following invertible (r X r)-submatrix

1 5]
0
1
0 0 O — k
1
0
1 Qnj
with determinant (—1)*™ - o, which is a unit in Ze. O

Definition 4.22. Let p be a prime and e = e; > --- > e, > 1 natural numbers.
Abbreviate € = (ey, ... ,e,) . Let P(p;e) C GL(r, Z,e) denote the set of invertible
(7” X r)fmatrices P= (’Yij)lgi,jgr with Vij € pej_eine lfj S 1.

Let Q(p;e) C GL(r,Zy) denote the set of invertible (r x r)-matrices ) =
(pij)lgi,jﬁr with Pij S pei’eﬂ'Zpe if ¢ S j

Proposition 4.23. If P € P(p;e), then there exists Q € Q(p;e) such that

(4.24) P - diag(p®,...,p" %) = diag(p”“,... ,p" ) -Q .
If Q € Q(p;e), then there exists P € P(p;e) such that (4.24) holds.

Proof. Assume that P = (7;j)1<i j<r is invertible with ;; € p“~Z,. for all j <.
For v € p*Zye, a € Ny, there is a p € Zp such that p®p = v and p is well-
defined modulo p®~*Z,.. We denote briefly p = p~@~. In this sense the matrix
Q = (pij)i<ij<r is well-defined by p;; := p®~% ;. If < j, then p;; € p“= 9 Ze,
since 7;; € Zy in that case. We have the identity diag(p®=®,...,p" ) -Q =
(P pij)ig = PP yig)ig = (4 )iy = P - diag(p®™, ... ,p°*) and
equation (4.24) holds. We have to show that @ is invertible. We use Leib-
niz’s determinantal formula to determine det (). For all permutations o € S,
we calculate D70 \[e; — eo)] = Y€ — Dhepn. e = 0 and therefore

[T_, poi® = pXici—ct) = p’ = 1. We get
det Q@ = det(pi;)i; = det(p” “vij)i; =

= > (Sign(a) HPEi_ea(i)'yi,a(i)) =
i=1

UGS‘I’
= Z (sign(o) H%v”(i)> = det(v;;)i; = det P,
ocESy i=1

and det ) is a unit in Z,c. Hence the inverse Q' exists.
The other way round is similar. O
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Remark 4.25. Let S be a commutative ring with an identity element and
let 7, n be natural numbers with » < n. Note that DIAG(n;S*) =
{diag(dy, ... ,d,) | d; € S*} = (S*)" is an abelian subgroup of GL(n,S). The
group DIAG(n; S*) acts on M™("=")(S) via diagonal equivalence:

DIAG(n; §*) x M™"=(8) — M™"="(S), (D, M)+~ D2} M D

This is a group action, since (I,,, M) — M and (D-D', M) — D’;Tl,- (D;,l, MD>T)-
D's,. Let A€ M™*(")(S). The stabilizer of A in DIAG(n;S*) is defined as
(426) StabDIAG(n;S*)(A) = {D c DIAG(n, S*) ‘ D;,} AD>T = A} .

The DIAG(n;S*)-orbits are known as diagonal equivalence classes in
M=) (S). The orbit of A is
Orb(4) = {D_} AD., | Dg = diag(dy,... .d,),
D., = diag(d,+1, ... ,d,), where d; € S*}.

Lemma 4.27. Let S be a finite commutative ring with 1, let r, n be natural
numbers with r < n. Let A € M"™*("=7)(S).

The number of matrices which are diagonally equivalent to A is

5™
DIAG(n; S*) : Stab s (A)| = :
[ ( ) DIAG(m:S )( )} |StabD1AG<n;S*)(A)|
The diagonal equivalence class of A has at most |S*|"~ matrices.

Proof. The stabilizer Stabpiag(n;s+)(A) of A relating to the diagonal equivalence
of matrices is a subgroup of DIAG(n; S*). The cardinality of the orbit of A is
the index of the stabilizer of A in the group of all invertible diagonal matrices:
| Orb(A)| = [DIAG(n; S*) : Stabpiac(ns+)(A)]. In order to establish this consider
the map

DIAG(n; S*)

A N S
Orb( ) — StabDIAg(A)

, Dzi AD>T — ( Dgr D ) . StabDIAg<A> .

= >r
From DM AD., = FUAF, & (Do F2H) A (DS, F3l) = Ao DF' ¢
Stabpiac(n;s+)(A) & D - Stabpiagm;s+)(A) = F - Stabpragms+)(A) we conclude
that this is a well-defined and bijective map from the orbit Orb(A) to the set of
left cosets of Stabpiag(n;s+)(A4) in DIAG(n; S*).

Since D := diag(d,...,d) = d - I,, d € S*, has the property D;iAD>T = A,
i.e. D € Stabprag(ms+)(A), we conclude |S*| < | Stabpiagns+)(A)|. Hence

| Orb(A)] = 157] < 19

_ — S* n—l‘ |:|
| Stabpiac(ns+) (A)] = |S* 571
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Example 4.28. Let A = (11) € M"*%*(Z3) be a (1 x 2)-matrix with coefficients
in the field Zs = 7Z/37 with three elements. Here we have n = 3 and r = 1.
By Lemma 4.27, there are at most |Z5|> = 22 = 4 matrices which are diagonally
equivalent to A. Indeed there are exactly four diagonally equivalent matrices:

. en=e-an.azn-an-(', ) en-an-(* ).

Hence the upper bound of Lemma 4.27 is sharp. A

Remark 4.29. Let S be a commutative ring with 1 and let r, n be natural
numbers with r < n. Assume that Uy, ... U, are subgroups of (S*, - ). Note
that DIAG(Uy, ... ,U,) = {diag(f1, ... . fn) | Viz1,.n f; € U;} = H?Zl U; is an
abelian subgroup of GL(n, S). The group DIAG (U, ... ,U,) acts on M"™*(=7)(S)
via diagonal equivalence:

(4.30)

DIAG(Uy, ..., U,) x M™>)(S) — M =")(S),  (F,M)+~—— FZ' M F., .
This is a group action, since ([,,M) +— M and (F - F/',M)
F’g (F!MF.,) F's,. Let A € M™"")(S). The stabilizer of A in
DIAG(Uy, ... ,U,) is defined as

Stabpiac(,....v,)(A) = {F € DIAG(Uy,... ,U,) | F! AF., = A},

The DIAG(Uq,...,U,)-orbits are known as diagonal equivalence classes in
M=) (S). The orbit of A is
Ol"b(A) = {F<_r1 AF, | FST = diag(fh - 7fr)a
F>r = diag(frﬂ, ce ,fn), where fj S U]}

Lemma 4.31. Let S be a finite commutative ring with 1, let r, n be natural
numbers with r < n. Assume that Uy, ... U, are subgroups of (S*, - ). Let
A e M= (g),

The number of matrices which are DIAG(Uy, ... ,U,)-diagonally equivalent to A
18

H;'L:1 ’Uj|

[DIAG(Ul, ce 7Un) : StabDIAG(Ul""’U")(A)} - |StabD1AG(U U )(A)| ‘

Proof. The  stabilizer — Stabpiacw,,.. v,)(A) of A relating to the
DIAG(Uy, ... ,U,)-diagonal equivalence of matrices is a subgroup of
DIAG(Uy, ..., U,). The cardinality of the orbit of A is the index
of the stabilizer of A in the group of all DIAG(Ui,...,U,) matrices:
|Orb(A)| = [DIAG(Uy,...,U,) : Stabpiacn,.. v (A)].  In order to estab-
lish this consider the map

DIAG(U,, ... ,U,)
Stab(A)

Orb(A) — , ng}AFM — ( For 7 ) - Stab(A) .
>r
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From DM AD., = FUAF, & (Do F2H) A (DS, F3l) = Ao DF' ¢
Stabpiac(u,...,v,)(A) < D - Stabpiagw,.... v, (A) = F - Stabpiag,,... v,)(A) we
conclude that this is a well-defined and bijective map from the orbit Orb(A) to

the set of left cosets of Stabpiac(u,,... v,)(A4) in DIAG(Uq, ... ,U,). O
Example 4.32. Let p be a prime and e a natural number. By [Mut99, p. 126—
127] the number of normed invertible (2 x 2)-matrices over Z,. = Z/p°Z is
pe+1+pe_2

p—1

We want to determine the cardinality of an arbitrary diagonal equivalence class.
A 2-rowed matrix A is invertible and normed if and only if

1 «
A:(ﬂ 1+aﬁ)’

where oo = \p™, = pp' and A, p are units, 0 < m, [ < e.
By Lemma 4.27 we have to calculate the cardinality of StabDIAGM;Z;e)(A). By
Definition 4.26 we have D = diag(d, ds, ds,dy) € StabDIAGM;Z;E)(A) if and only if

dl_l 1 « d3 . dl_ldg dl_ld4CY
dy’ B 1+ap dy ) =\ dy'dsB dy'dy(1+ap)

1 o

6 1+aB ) -
Comparison of the coefficients yields d3 = dy A doff = d3f8 = d1f N dyar = diax A
dy(1+ aff) = dao(1 + af). The last equation shows

d4 + d4aﬁ = d2 + dgaﬁ.
S~~~ S~~~
=diaf =diaf

Thus dy = dy and the matrix equivalence is a similarity, in fact. The matrix equa-
tion is equivalent to the following linear equation system for the indeterminates
d1> ey d42

(433) d3:d1/\d4:d2/\(dg—dl)'OéZO/\(dQ—dl)'ﬁ:O.

We have to count the possibilities of the solutions to determine
| Stabpracszz.) (A)]-
10 2
1. case: A= 01 . Then [ Stabpracz:.)(A)] = ¢(p°)* and

|Orb(A)] = ()2 = (p°L(p - 1))" .

10 .
2. case: A 7é ( 0 1 > Then |StabDIA(;(4;Z;e)(A)| — S0<pe) .pmm(l,m) and

’ OI'b(A)‘ — Sp(pe)?y p min(l,m) _ p36737min(l,m) (p o 1)3 )
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Here | Orb(A)| is the number of (2 x 2)-matrices over Z, which are diagonally
equivalent to A. Recall that ¢ denotes the Euler p—function.

For case 1 let A = (}%), so @« = § = 0. Then StabDIAGM;Z;e)(A) =
{diag(dl,dg,dl,dg) | di,ds € Z;e} ~ (Z;e)2. Hence there are
’ZZE ! * 12 e\2 e—1 2
s =12 P =0 = (0 ' (p— 1))
|Zp'5|

matrices which are diagonally equivalent to I5.
For case 2 let A # (7). The linear equation system (4.33) holds. Without loss
of generality suppose that o = p™ and 8 = p', where 0 < m, [ < e, since we
are able to divide the last two equations by units. By the assumption we have
k :=min(l,m) < e. The ideal-structure of Z. is
0C P Zpe P Zpe C ... Cplipe S Le .

The last two equations of (4.33) are equivalent to

(do —di)p" =0 €p (Z/p°L) <= (do—dy) € p* " (Z/p°L) X L)Y*L.
Hence d; is an arbitrary unit in Z, and dy € d; + pe_kZpe is a unit, too.
There are |Z/p*Z| = p" possibilities for dy. Hence we get Stabpiag(z:.)(4) =
{diag(dl,dg,dl, dg) | dl, dy € Z;e such that dy — dy € pekape} =
{diag(d1, d, d1,ds) | dv € Ziye, dy € dy + p**Zye} and |Stabpiagz:,)(4)] =
|Zz.| - p*. Therefore

_ 1z 0

|z,

| Orb(A)]

— (p(pe)S _pfk — p3e737k(p o 1)3' A

pk
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5. REPRESENTING MATRICES

Definition 5.1. Let R be a completely decomposable group of rank n and h an
integer. Suppose that T'= (7y,...,7,) is an indexing of the critical typeset of R.

Then the tuple x = (x1,... ,x,) of elements in R is called an ordered decomposi-
tion basis of R if .
R=@P ()~
j=1

If in addition 7; = tpf(z;) for all j = 1,... ,n, then x is called a decomposition
basis ordered by T

The ordered decomposition basis is an ordered h—decomposition basis of R if it
meets the condition hgt/(z;) € {0,00} for all j = 1,... ,n and all primes p | h.
If R is p-reduced, then hgtf(xj) =0 for all j.

Definition 5.2. Let R be a completely decomposable group and h a natural
number. Let x = (z1,...,2,) be an ordered h-decomposition basis of R. The
map
~"R—-R=h'R/R,c—T=h"'2+R

denotes the natural epimorphism. The quotient group A~ 'R/R is a Zj—module
and h"'R/R = R = @_, Z,T;, where T; = h™'z; + R. Then X := (Ty,... ,Tp)
is called an ordered induced decomposition basis of h~'R/R. The basis X is called
induced by x.

Remark 5.3. Let p be a prime. Then R is p-reduced if and only if no critical
type 7; is p-divisible: 7;(p) # o0, i.e. hgtf(xj) # 0.

The Z;-module R need not be free. If R is p-reduced for every prime divisor p
of h, then R is a free Z,—module and

h*lR/R = E = @thj = (Zh)n ’
j=1
i.e. X is a free basis with ordZ; = h for all j.

Definition 5.4. Assume that h, n, r € N are natural numbers. Let X be an
almost completely decomposable group of rank n with completely decomposable
subgroup R such that R € X C h™'R. Suppose that X = (Ty,... ,T,) is an
ordered induced decomposition basis of h"*R/R. Let a = (ai,...,a,) be an
ordered basis of X/R C h_lR/ R. Then the basis elements @; may be written as
linear combinations of the induced decomposition basis

(55) a; = Zaijfj s for 1= 1, eIy
j=1

where a;; € Zy. The (r x n)-matrix
M = (Oéij)z:zl,...,'r € M”X"(Zh)

7=1,...
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is called representing matriz of X over R relative to a and X.

Remark 5.6. (1) In general h~'R/R need not be a free Z;, module and X is
not necessarily a free basis. Hence for given a and X the matrix M is not

uniquely determined over Zj. Since a is a minimal generating system, we in-
fer from (ay,...,a,) = X/RC h"'R/R = (Ty,... ,T,) that r <n.

(2) Let h'R/R = (Zy)" be a free Z,—module. Then X is a free basis. The
basis elements @; can be written uniquely as linear combinations of the induced
decomposition basis. Note that > 7 | a;;T; = @ = Y 7, 3;T; is equivalent to
Z;L:l(aij — Bi;)T; = 0. Then we get o,;; = f5;; in Zj, since {Ty,... ,T,} is a free
Zp~basis. Hence there is exactly one representation (5.5). For given @ and X the
representing matrix M is therefore uniquely determined over Z,.

(3) We wish to investigate almost completely decomposable groups up to near—
isomorphism and subsequently up to isomorphism. The Primary Reduction Theo-
rem is a local-global relationship for almost completely decomposable groups. By
this Theorem 3.15 we restrict ourselves to (rigid) p—local almost completely de-
composable groups X, meaning that the regulator quotient X/ R(X) is a p—group.
Therefore choose the integer h as a p—power, say h = p®. In this case a p—divisible
critical type 7; creates a p-divisible direct rank-one summand 7;x; of X. By the
Main Decomposition Theorem 3.12 we only have to investigate clipped groups,
i.e. groups without rational direct summands. The ranks rk(Xcq,,) taken for all
critical types 7; € T (X) form a complete independent system of invariants for
the maximal completely decomposable direct summand X 4.

We therefore assume that the groups under consideration are p—reduced, mean-
ing that there are no non—trivial p—divisible subgroups. In this situation a p*-basis
x = (21,...,2,) is the same as a p—basis and it means that hgtf(xj) =0, or
equivalently 7;(p) = 0.

(4) Let R be a p-reduced completely decomposable group of rank n. Then
p °R/R is a homocyclic group of rank n and of exponent p°. Hence p *R/R =
(Zye)" can be regarded as a free Z,c—module. An ordered induced decomposition
basis X = (T1,...,T,) is a free basis. Let X be a p-local group with subgroup
R C X Cp“R. Let a be a basis of X/R. By 5.6(2) the representing matrix M
of X/R relative to a and X is uniquely determined over Ze.

For fized bases the representing matrices of reduced p—local groups are uniquely
determined.

(5) If X is a uniform group with regulator R C X C p°R, then X/R = (Z,)"
and therefore @ and X are both free Z,.—bases.

Representing Matrices of p—local Groups

The next result is a generalization of [Mut99, Lemma 4.1].

Lemma 5.7. Let p be a prime and n, r € N natural numbers with r < n.
Let R be completely decomposable p—reduced group of rank n with p—decomposition
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basis (x1,...,x,). Let e = ey > -+ > e, > 1 be natural numbers. Let M =
(aj)i=1,..r € MT™(Z/p°Z) be a matriz such that
Jj=1,...,n

M = diag(p*,... ,p°“)-B

for some B € M"™™(Z/p°Z). Let a; = Y7, o x;, 1 < i <, where of; € Z
such that o ; + p*Z = ;j for all i, j. Let

X:R—l—ZZp’eai CQR.
i=1

Then

X/R =P (Z/pZ)
i=1
if and only if the matrix B over Z/p°Z has determinantal rank r.

Proof. Let —: R — R=p°R/R, x — T = p_“x+ R denote the natural epimor-
phism. Then X = (71,...,T,) is an induced decomposition basis of p~*R/R =
(Z/p°Z)". We have p~“a; + R = @; = > 7 a;;7; and {@; | 1 <4 < r}is
a generating system of X/R. Hence X/R = @._, (Z/p%Z) if and only if the
set {@; | 1 < i <r}is a p-basis of X/R or equivalently a maximal p-independent
system of X/R with orda; = p*, cf. [Fuc73, 32.2]. Write B = (0, )i=1,..» and

define g, := > fi;7; for 1 <4 <r. Hence (7, | 1 <i <r) =P, 7(Z/peZ)
if and only if {g;, | 1 < ¢ < r} is a p-independent system with ordy, = p° or
equivalently B has p-independent rows. Since (o ;) = (p°~%f; )i, , we compute
A= 5 QT =p~% Y0 B T =P,

“«<" Suppose that rkqet B = r. Then the rows of B = (f3; ;) are p-independent
and B is primitive by Lemma 4.18. Hence ordy; = p® for all i and {y, | 1 <i <r}
is a p—independent system. Therefore

(@ 1<i<r)C(yl1<i<r)=EDE) =P 2/ .
i=1 i=1

e—e;

From @; = p°~“ 7, we conclude orda; = p* and a; € (y;). Hence

X/R=(@|1<i<r) = @ia) =P @)
i=1 i=1

“=” Suppose that X/R = (@, | 1 <i <r)=@,_, (@) = B,_, (Z/p“Z). We
use p—elementary row operations of the Gaufi—algorithm to transform B into an
upper triangular matrix. Any permutation of columns means a renumbering of
the basis (Z1,... ,Z,). Adding a multiple of the j—th row to the i—th row means
to replace @; by @; + ha;. For i > j we have ord(a; + ha;) = p® if and only if
h € p®~¢ - Z,. These row operations preserve the p-rank of the rows and also
the determinantal rank. This algorithm creates a new basis @ = (a@,... ,a.)
with the same property (a,) = Z/p“Z.
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(1) An entry of the first row of B is a unit in Z,.. Otherwise all entries 3 ; for
1 <j <narein pZy and then

prta =pt (peel > b Ej) =D pB T =0
j=1 =1

contradicts orda; = p**. We rearrange the columns of B such that 3, is this

unit. For all 7 > 1 we do the following procedure: We subtract the (pel*ei . %)—
multiple of the first row from the i—th row. Then the new coefficient at the
place (i,1) in the matrix M is p®~ ;1 — <pel_e" . %) -p¢° By 1 = 0. Hence we
get the new form

ﬁl,l ‘ * N * k... 3k

0 e .

By =1 . ﬁ?’z , ﬁ?’
0 5r,2 ﬁr,r koo ook

(2) An entry of the second row of By is a unit in Z,.. We rearrange the columns
2,...,n of By such that (5 is this unit. The Gauf—algorithm eliminates the
coefficients (s, ... , Br2.

(7) We rerun this procedure in step (i) for the i~th column.

Then we get recursively

Bii ok * % *
0
Be-ny=1{ . [:}2’2 ,
0 e 0 ﬂr,?" % ... %
The diagonal elements 11, £22,... , Br, are units in Z,.. Therefore B has de-
terminantal rank r. O

Lemma 5.8. Let p be a prime and e, n, r € N natural numbers with r < n. Let
R be completely decomposable p-reduced group of rank n with p—decomposition
basis x = (x1,... ,x,). LetX = (T1,... ,Ty,) be the ordered induced decomposition
basis of p *R/R. Lete = e; > --- > e, > 1 be natural numbers. Let B €
M"™"™(Zye) be a matriz of maximal determinantal rank rkae(B) = r. Let

M = diag(p“,... ,p°“)-B
be an (r x n)-matriz over Zye.

Then there exists exactly one almost completely decomposable group X with R C
X C p°R and an ordered basis a of X/R = @._, (Z/p“Z) such that M is the
representing matriz of X/R relative to a and X.

Proof. Write M = () i=1,...
j=1,...,n
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For existence let (aj;);; € M™"(Z) with aj; + p°Z = ay; for all i, j. Set a; =
> afryand @ = 7 ;T for i =1,... 7. Define

X :=(R,p a1,...,p ‘a,).
Then X/R = (a; |i=1,...,r). Now rkee(B) = r implies X/R = @;_, (a;) =
@D,_, (Z/p“Z) by Lemma 5.7. In particular @ := (@i, ... ,a,) is a basis of X/R
and M is the representing matrix of X/R relative to a and X.
To show the uniqueness let X’ be another group with R C X’ C p~°R and basis
a’ = (a),...,al) of X'/R such that M is the representing matrix of X'/R relative
to @' and X. By definition we have @; = > 7 a;;T; for i = 1,... ;7. There are
aff € Z with off +p°Z = «; for all i, j which yield aj = 37| ajx; such that @’
is induced by a’ = (af,... ,al). Then

X'=(R,p~dl,... ,p%a.).

For all i = 1,...,r we have p~®a} — p~“a; = }_i_, p~“(ajf — aj;)x; € R, since

o= mod p°. So X' = (R,p“ay,... ,p"%a,) = X. =

*
ij =&

The next theorem is an improvement of [MMNO1, Theorem 3.7].

Theorem 5.9. Let p be a prime and e, n, r natural numbers. Let X be a p—
reduced almost completely decomposable group of rank n with completely decom-
posable subgroup R such that

X/R=(Z/p*Z2)® - & (Z/p“Z), with e=e > - >e. > 1.
Then there is an ordered induced decomposition basis X = (T, ... ,T,) of p *R/R
and an ordered basis a = (@i, ... ,a,) of X/R with (a;) = Z/p*Z such that the

representing matriz of X/R relative to X and @ is in Gaul normal form

M=A(E|A), where A=diag(p~,...,p" %), and

I mio ... mi,—1 my,

0 1 co. Mor_1 Moy
(5.10) E=|: + - : ,

O 0 ... 1 My_1

o 0 ... 0 1

mi; €E{k+pZLeZ/pZ|0<k<pi %} foralll <i < j <r. If especially
e; = e, then m; ; = 0. In particular, when e = e; = --- = e,, there are bases X
and @ such that X/R has a representing matriz in Hermite normal form M =
(I. | A), where I, is the (r X r)—identity matriz.

Proof. Let a = (ay,...,a,) be a basis of X/R such that (a;) = Z/p“7Z. Let M =
(aj)i=1,..r € M""(Z,e) be the representing matrix of X/R relative to a and X.
j=1

We use jofélementary row operations of the Gaufi—algorithm to transform M into
the Gaufl normal form (5.10). Any permutation of columns means a renumbering
of the basis (Z1, ... ,T,). Multiplying the i—th row by a unit A means to exchange
a; by Aa;. Adding a multiple of the j—th row to the i—th row means to replace
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a; by @; + ha;. If i < j, then ord(a; + ha;) = p in general. For i > j we have
ord(a; + ha;) = p® if and only if h € p%~% - Zye. Cleatly (ay,...,a@;,...,a,) =
(ay,...,a;+haj,...,a.). The row operations create a new basisa’ = (@}, ... ,a,)
with the same property (a,) = Z/p%Z. The group X/R does not change.

Since ord(a@;) = p*, we conclude 0 = p®@; = p* > 7 | @, ;T; = Y7 (P i) T;
by definition. Therefore p®a;; = 0 in Zpe, so o;; € p* ¢ - Zpe for all j. By
extracting the highest p—power divisors from the rows, we can write

M =AB, where A=diag(p®,...,p" ).

Since a is a basis of X/R, the matrix B has determinantal rank r by Lemma 5.7.
Hence B has an invertible (r x r)-submatrix £. By renumbering of the ba-
sis (T1,... ,T,) we move E to the left side such that B = (E | A). Since FE is
invertible, we can permute the columns to a straight matrix, cf. Proposition 4.11.
By [Mut99, Proposition 2.1] we can multiply the rows by units such that we may
assume that £ = (m;;)i=1,... » is normed. Now we transform (AFE) into an upper
Jj=1,...,r

triangular matrix.

(1) It is my 1 = 1. For all ¢ > 1 we perform the following procedure: We subtract
the (p® =% -m;1)-multiple of the first row from the i~th row. Then the new coeffi-
cient at the place (7,1) in the matrix (AE) is p*~“m; 1 — (p©~“my 1) -p*~ " myq =

=1

p°~%(m;1 —my;1) = 0. Since these p-elementary row operations do not change
the determinant, the new matrix £ is normed again.

(2) Now mao = 1, since E' is normed and mgy; = 0. The GaufBi-—algorithm elimi-
nates the coefficients ms o, ..., m, 9.

(7) We rerun this procedure in step () for the i~th column.

1 m; j
Then E = is an upper triangular matrix.

0 1
Each element m € Z, from the ring of residue classes of the rational integers
mod p°¢ has a unique integral representative m* € {0,1,... ,p° — 1} such that

m =m* 4 p°Z. Let 0 <1 < e be an integer. We can use division by p' to obtain
integers m’ € {0,1,... ,p' — 1} and m” € {0,1,... ,p*~! — 1} such that

m* :m/_i_m//'pl'

Now we shorten the p-adic expansion of the coefficients m; ; in E. For all i < j we
do the following procedure: Let [ = e; —e; > 0. We subtract the (mj;)-multiple
of the j—th row from the i—th row. Then the representative of the new coefficient
at the place (7, ) in the matrix (DF) is

pe_eimf,j - m;,g P my =pT” (m;,j + m;,g P — pe_e‘jm;/,j = pe_eim;,j )
=1
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where 0 < mj; < p“~% — 1. This is the cut off expansion of the new represen-
tative. Let this procedure run through the columns 2 to r. In that way an entry
changes only once a time. O

Remark 5.11. Each element of the representing matrix M =
diag(p®=©,... ,p° ) - B has the form

P My € Lipe

where m; ; is unique modulo p® Ze.

Example 5.12. Let p be a prime and 7, 7, 73 pairwise incomparable types with
p-height 0 = 7;(p). Then R := 721 ® 7222 ® 1323 is a p-reduced rigid completely
decomposable group. Let
1 1
X:R—i—ZE(xmL:cQ )+Z]¥( P2 + pr3)
be an almost completely decomposable group. One calculates X/R = (Z/p*Z) &
(Z/pZ) and therefore exp % = p?. We use Lemma 2.29 to identify the regulator
with R = R(X). By the Modular Law we get
X pilrz;+R
Xﬂ(p*QTja:j—l—R) = (meiQle'j)‘i‘R = le'j‘i‘R = R = Eﬂ% = 0
for all_j € {1,2,3}. Abbreviate a; := x; + x5 and ay := pry + pr3. Let ~
R — R=pR/R, x — T = p *z + R denote the natural epimorphism. Then
a = (a;,a) is a basis of X/R and X = (T}, T2, T3) is a basis of R = p?R/R =
(Z/p*Z)’. The representing matrix of X/R relative to a and X is in GauB normal

form (5.10):
110 10 1 1]0
M:(O p p):<0 p) (0 1‘1)'
—_—

=B
Each submatrix obtained from the right factor B by deleting one column has
p—independent rows. Note that the rest block () is not primitive. Hence the
statement R = R(X) is not equivalent to a primitive rest block. This equivalence
holds for uniform groups, cf. Lemma 5.13. JAN

Lemma 5.13. Let p be a prime and e, n, r € N natural numbers with r < n.
Let X be a p—reduced rigid almost completely decomposable group of rank n with
a completely decomposable subgroup R such that X/R = @;_, (Z/p“Z), where
e=e > >e.>1. Let X be an ordered basis of p *R/R anda = (a,... ,a,)
an ordered basis of X/R with (a;) = Z/p“Z. Let B € M"™"(Z,e) be some matriz
such that
M = diag(p“,... ,p°“)-B
is the representing matriz of X/R relative to @ and X.

Then R = R(X) is the requlator of X if and only if any submatriz obtained
from B by deleting one column has determinantal rank r.
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If in addition e = e; = -+ = e, and M = (I, | A) is in Hermite normal form,
then R is the regulator of X if and only if A is primitive.

Proof. Write R = @)_, R,, = @_,(z;)F, where x = (z1,...,%,) is an or-
dered p-decomposition basis with tp(z;) = 7; € T (R). Let — : R — R =
p °R/R, x — T = p~“x + R denote the natural epimorphism. Recall that % =

eal \Zyd and @1 T — R R = @' R, = @, Z,T;. Write
= (Bij)i=1,. o and (aw)” =M = dlag( e, pe) - B = (p*%fi)i . Let

Jj=1,...
B®) denote the [ x (n—1)]-matrix over Z, obtained from B by deleting the k-th
column. This matrix B%*) has p-independent rows if and only if rkgqe; B® = 7.

By the regulator criterion 2.29, we have to show:

X e 9.9¢
Eﬂ%:Oforallkzl,...,n [gR:R(X)]
< B® has p—independent rows for all k =1,... ,n.

“<” Assume that k& € {1,...,n} and B® has p-independent rows. Let

r _ _ X AP °Rn+R _— p°Rn+R _ ., _ .
Do mib; € 0N 7 C 7 = ZpeTy, be an arbitrary element of the

intersection. Then

n

zr:miai = i:mz(zn: aijfj> = Z (imiaij>fj € Zpefk .
=1

i=1 j=1 j=1 4=l

Since the sum R = D), Z,T; is direct, we conclude 3}, mja;
Sory (mip®©) B;; = 0 in Zye for all j # k. Hence

(™, mypt) - B® = (0, ,0).

So (map®®,... ,mp=°) = (0,...,0) as the rows of B® are p-independent.
Thus 37 maa = Yo mi( X0, aiT;) = 205 2o map” 7 BTy = 0 and

therefore % N 2wt ) Since this is true for all k = 1, ..,n, R(X)=R

R
follows.
“=” Assume that k € {1,... ,n} and & xn m — 0. Then X [p] N RTk+R
0. Notice that X[p] = p_lng — <p67, a |1 S i < r) is the p-socle of )}g and
—1 e
% = (p°~'x}) is the p-socle of RTk = %. Let my,...,m, € Zy such
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that (mq,...,m,)- B® € p(Z,)""". Then

X L ~ v _
gl 2 2 mata = ) mat () oy )
i=1 i=1 Jj=1 —pe—cify;

= Zpe_l( Zmzﬂz‘j )T
=1 i=1

——
€pZye for j#k

=P (;mzﬁm)ﬂﬁk € (P Tk) = R [p] -
Therefore p*' (Y1, miBi)Tu € %[p] N IL};’“H%[;D] = 0, so (my,...,m;) -

(Biks - -5 Bot)™ =D iy Mifig € pZye, since ord T, = p°. Hence
(ma,...,my) - B€p(Zy)",

and therefore (mq,...,m,) € (pZy)", since B has p-independent rows
by Lemma 5.7. We have shown

(ma,...,m,) - B® € p(Z,)"™" = (mq,...,m,) € (pZLye)" .
For 1 <[ < e we get recursively the implication

(n1s...,n.) - B® € p(Z,)"™" = (nay...,n.) € (p'Zy)" .
This shows, by definition [Fuc73, 32.], the p-independence of the rows of B
in [(Z,)" ', +] forallk=1,... ,n.

For the second statement use Lemma 4.21. O

Lemma 5.14. Let p be a prime and e, n, r natural numbers. Let X be a rigid
p—reduced almost completely decomposable group of rank n with requlator R such
that

X/R=(Z/p"Z)® -+ B (Z)p"Z), where e=e >--->e.> 1.

Let X be an ordered induced basis of p *R/R and @ = (ai,...,a,) an ordered
basis of X/ R with (a;) = Z/p“Z. Let B € M"*"(Zy,e) be some matriz such that
M = diag(p“,... ,p°“)-B

is the representing matriz of X/R relative to @ and X.

Then a pivot set of B does not depend on the bases @ and X. In particular, pivot
sets are invariants of X.

Proof. From a basis a = (ay, ... ,a,) one gets another basis @’ by a sequence of
p—elementary row operations of the Gaufi—algorithm to M. Clearly, p—elementary
row operations do not change the p—independence of the r pivot columns. Thus
pivot sets do not depend on a basis a of X/R.

Write M = (aij>i,j and B = (ﬁij)i,j- Then Qy; = peieiﬁij for all i, 7. Let
“: R— R=p°R/R, v — T =p °z+ R denote the natural epimorphism and



Isomorphism Classes, Michael Nahler 31

let x = (21,...,x,) be a p-basis of R such that X = (71, ... ,T,) is induced by x.
Since R is p—reduced and rigid, one obtains every other ordered p—decomposition
basis y = (1, .- ,¥yn) of R by multiplying x = (x1,... ,z,) by rational numbers
¢; € Q, \ pQ, whose numerators and denominators are relatively prime to p, i.e.
yj = qj;- Let

- a _ .

F Q= Zye, 5= (040 Z) (0 +p°D),

where a,b € 7Z with p {1 b, be a ring homomorphism which supplies y; =
7;7; = q;zj. Here ¢ € Q, \ pQ, yields q; € Zye \ pZye = Z). Then
vy =", --,Y,) = (1T1,... ,GuTn) is the new ordered induced decomposition
basis of p=®R/R. Therefore@; = Y7, oyT; = Y7 ai;q; g fori =1,... ,rand
M' = (@ijq;l)i,j = (Pe_eiﬂijq;l)i,j = diag(p®, ... ,p* ). B-diag(q, ', ... ,q,")
is the new representing matrix of X /R relative to a and y. Since @_1 € Ly is a
unit, the r pivot columns of B - diag(g, ", ... ,q,") are again p-independent. [J

Definition 5.15. Let p be a prime and e, n, r € N natural numbers with r < n.
Let X be a p-reduced almost completely decomposable group of rank n with
regulator R such that X/R = @_, (Z/p“Z), where e = e; > --- > ¢, > 1. Let
x = (21,...,T,) be adecomposition basis of R ordered by the critical typeset T' =
(T1,. .+ ,Tn), i.e. tpf(x;) = 7;. Let X be the induced basis of R = p°*R/R and a =
(@y,...,a,) an ordered basis of X/R with (a;) = Z/p“Z. Let B = (0;;)i=1,...,

Jj=1,...,n

5

be some matrix over Zy, such that
M = diag(p“,...,p°“)-B
is the representing matrix of X/R relative to a and X.

Then the subset {7j,, ..., 7; } of T corresponding to some pivot set {j1,...,j.} C
{1,... ,n} of the columns of B is called a pivot set of X.

The n—tuple T'= (T1,... , Ty, Tri1, . - . , Tn) is said to be an admissible indexing of
the critical typeset of X if there is a basis @’ of X/R such that B = (E | A) is
the Gaufl normal form (5.10), where

I miyp -+ my,

0 1 Cee My
E= . . . € MTXT(ZPG> :
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6. MATRIX [NEAR—]|ISOMORPHISM CRITERION FOR p—LOCAL GROUPS

Remark 6.1. Let p be a prime. In this chapter we want to describe the concept
of near-isomorphism of p-local groups in a new way. We develop a method to
investigate two given p—local groups up to near—isomorphism and isomorphism.

Let X and Y be p-local groups with a common regulator R(X) = R(Y) =
R. Thus X,)Y C p°R. Let = : R —- R =p°R/R, v — T =p c+ R
denote the natural epimorphism. Furthermore, — will denote as well the induced

homomorphism ~ : Aut R — Aut R, a — @ via a@(T) := a(x). Recall that

TypAut R = {¢£ € Aut R | Vrera(r) ER(T) = R(7)}

is the set of type automorphisms of R and
Aut R ={a | o € Aut R}
is the set of induced automorphisms of R.

(1) The groups X and Y are nearly isomorphic if and only if there exists

¢ € TypAut R such that £% = %.

(2) The groups X and Y are isomorphic if and only if there exists ( € Aut R

such that C% = %.

Definition 6.2. Let m be a natural number and 7 any type. Define

7 (1) :=(=1+mZ, g+ mZ € Z}, | q¢ prime number, 7(q) = 00)

mult. "

Denote its order by o(7;m) := |Z* (7).

Remark 6.3. (a) The group Z! (7) is a subgroup of the multiplicative

group Z! = {n+ mZ € Zy,, | ged(n,m) = 1} of units in Z,,. Hence o(7;m)

divides p(m) :== |Z;,| = {n € Z | 1 <n < m, ged(n,m) = 1}|, by Lagrange. Re-

call that the Euler p—function ¢ : N — N is multiplicative.

(b) Let p be a prime and e a natural number. Observe that Zy.(7) C Z;. and
* 3 : e\ —_ e—1 *

Zy. is cyclic of order ¢(p®) = p*~*(p—1). Therefore, each subgroup Z.(7)

cyclic and its order divides p*~!(p — 1).

is also

(c) Let p be a prime, e a natural number and 7 a type with 7(p) # oco. If Aisa 17—
homogeneous group, then Z3.(7) = (—1+ p°Z, ¢+ p°Z | q prime, gA = A) . .
By assumption all primes ¢ with 7(¢) = oo are relatively prime to p°. Since A is

a homogeneous group of type 7, we have 7(q) = oo for a prime ¢ if and only if
gA = A.

(d) In the particular case that 7 € T is a critical type of the p—reduced completely

decomposable group R = P qer 2y we obtain

L (T) = (=14 p°Z, q+ p°Z | q prime number, ¢R, = R.)

D mult.”
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Lemma 6.4. Let R be a rigid and p—reduced completely decomposable group with
decomposition basis x = (x1,...,x,), which is ordered by the critical typeset
T = (m,...,7). Then X = (Zy,...,T,) is an ordered induced decomposition

basis of R =p °*R/R. Let ¢, ( € Aut R.

(1) Then & € TypAut R is a type automorphism of R if and only if there exist
dj € Zye such that
§T; = d;T;
forg=1,... n.

(2) Then ¢ € Aut R is an induced automorphism of R if and only if there exist
fi € Zy(75) such that
(T; = fiT;

forg=1,... n.

Proof. (1) The arrangement of the basis x by T" means 7; = tpf(z;). Since R
is rigid, R(r) = R, has rank 1 for all 7 € T. We have R = @_,(z;)I' =

@, R(rj) andp *R/R =R = @, R(7) = @_, Z,-T;. A type automorphism
§ is completely determined by the images of the basis X. It follows that {z; €
ER(1j) = R(7;) = ZpeT;, since R is rigid. Thus {Z; = d;T;, where d; € Zy.. Since
¢ € Aut R is an automorphism, we have ¢! € Aut R such that 7; = £71¢z; =
§7'd;T; = d;&'T; = d;d;T;. Therefore, there are d; € Z7. such that (T; = d;T;
forj=1,... ,n.

On the other hand £7; := d;T; — where d; € Zy. for j = 1,... ,n — defines a
type automorphism ¢ of R.

(2) This is a special case of [KM84, Theorem 1.3]. We provide evidence in another
way. Since Aut R C TypAut R we can use part (1) of this Lemma. If ( € Aut R
is induced by an automorphism ¢* of R, then ¢ = {* and there are [i € Z;. such
that (7; = f;x;. There is a f; € Z such that ("R, = [/ R, = R, since R is
rigid. Then f; = f; +p°Z € (—1 +p°Z, q+ p°Z | q prime number, R, = R,).
Therefore there are f; € Zj.(7;) such that (7; = f;7; for j =1,... ,n.

On the other hand (7; := f;7; — where f; € Z;.(7;) for j = 1,... ,n — defines
an induced automorphism ¢ of R. O

Definition 6.5. Let p be a prime and e, n natural numbers. Let R be a
rigid and p-reduced completely decomposable group of rank n. Suppose that

T = (11,...,7,) is an indexing of the critical typeset. Let — : R —
R = p“R/R, ©* — T = p“z + R denote the canonical epimorphism. Let
x = (21,...,x,) be adecomposition basis of R ordered by T"and X = (71, ... ,T,)

the ordered induced decomposition basis of R.

(1) Let ¢ € TypAut R such that £z; = d;T; with d; € Zi, for j = 1,... ,n.
The invertible diagonal matrix

D = diag(dy, . .. ,dy) € M™"(Z,:)

is called representing matriz of the type automorphism & relative to X.
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(2) Let ¢ € Aut R such that (Z; = f;7; with f; € Z3.(7;) for j = 1,... ,n.
The invertible diagonal matrix
F :=diag(fi1,..., fn) € M""(Zye)

is called representing matriz of the induced automorphism ( relative to X.

Remark 6.6. Let p be a prime and e = ey > --- > ¢, > 1 natural numbers. Let
M = ,_, (@) be a finite (Z/p°Z)-module, where (@;) = p*~*(Z/p°ZL) = L/p* L.
Let I' : M — M be a module endomorphism and v;; € Zy, 1 <4, j < r, such
that F(GZ) = Z;:l ’)/ijaj for all 7.

Then v;; € p~%Zye for all 7 <7 and I' is an automorphism of M if and only if
P = (’7ij)1§i,j§'r is invertible.

Proof. From Anna;, = p“ Z, we conclude 0 = I'(0) = I'(p“@;) = p“I'(a;) =
Z;Zl p“i;a;. This implies p®7,; € Anna; = p*Z,. for the j—th summand, since
the sum is direct. Therefore v;; € p“~%Z,. if e; > e; or equivalently j <.

The equivalence is clear. O

Definition 6.7. Let p be a prime and e = e¢; > --- > e, > 1 natural numbers.
Let M = @,_,(a;) be a (Z/p°Z)-module, where (@;) = p* “(Z/p°Z). Let I :
M — M be an automorphism and v;; € Zye, 1 < i, j < r, such that I'(a;) =
Z;Zl vija; for all 7. The regular matrix

P = (%’j)lgi,jgr

is called representing matriz of the automorphism I relative to a := {ay, ... ,a,}.
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Remark 6.8. The representing matrix P of the automorphism I' : @;_, Z,e; —
D;_, Z,e: has the following form:

p
pr
pel+1
qu@ Ce @Zpek@ . @ZpezH@ e @ZPET
1 k [+1 r
1
invertible
%k
k
* - peLTCk invertible
P =
[+1
k- pAITEHL k. pCRTEH invertible
r

This matrix P = (7;)1<ij<r is invertible with ~;; € p~%Z,e if j <. If €1 >
er = ... = e, > €41, then the diagonal block (7;j)k<i < is invertible. Notice
that the coefficient v;; is only unique modulo p*Zye: Since Anna; = p%Zye, we
recognize that I'(@;) = Zk# Vik@k + VijG; = Zk# Yikar + (vi; +m - p%)a; for
all m € Zpe.
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Definition 6.9. Let p be a prime and r, n natural numbers. Let e = e; > --- >
e, > 1 be integers and € = (ey,...,e,). The matrices A, B € M"™"(Z,.) are
called e-congruent if

diag(p®™,... ,p %) - A =diag(p”,... ,p* ) B,

and we write A =, B in that case.

44_ 7

Remark 6.10. This e-congruence is an equivalence relation on M"™*"(Z,c ).

Theorem 6.11. Let p be a prime and r < n natural numbers. Lete =e; > --- >
e, > 1 be integers and € = (eq,... ,e.). Let X and Y be p—reduced rigid groups
of rank n with a common regulator R such that X/R = @,_,(Z/p"Z) = Y/R.
Let X = (Ty,... ,@,) be an induced decomposition basis of R = p~°R/R ordered
by the indexing T' = (71,... ,T,) of the critical typeset. Leta = (ai,...,a,) be a
basis of X/R and b = (by,... ,b,) be a basis of Y/R with {a;) = Z/p'”Z (b;).
Set A = diag(p®~®,... ,p° ). Let A and B be some (r x n)-matrices over Zye
such that M = AA is the representing matriz of X/R relative to X and Q, and
N = AB is the representing matriz of Y/R relative to X and b.

(1) The groups X and Y are nearly isomorphic, X =, Y, if and only if there
exist an invertible matriz P = (V) 1<ij<r With vij € p~%Zye for all j <1
and an invertible diagonal matriz D such that

PMD = N.

Equivalently there is an invertible matric Q@ = (pij)i<ij<r With
pij € P9 Lye for alli < j such that QAD =, B.

(2) The groups X and Y are isomorphic, X =Y, if and only if there exist an
invertible matriz P = (%ij)1<ij<r With v;; € p9~%Zye for all j < i and a
matriz F' = diag(fi,... , fu) with f; € Zy.(7;) such that

PMF = N.
Equivalently there is an invertible matrizc QQ = (pij)i<ij<r With p;; €
P Lpe for all t < j such that QAF =, B
Proof. Write M = (,uzj)izl,,”r. Recall the abbreviations P € P(p;e) and @ €
=1

Q(p; e) of Definition 4.22.
(1) “«<” Assume firstly that X =, Y. Then there exists ¢ € TypAutR

with 5% = % and there are units di,...,d, € Zj such that {z; = d;T;
for j = 1,...,n. Let D = diag(d,...,d,) be the representing matrix
of the type automorphism ¢ relative to X. We infer from ({ay,...,&a,) =
(@, ... .a,)) = £X = X 2 @_,(Z/p"Z) and (a;) = &(a;) = Z/p“Z that
(&ay, ... &a,) =: b deﬁnes a new ordered basis of Y/R. There is an automor-
phism I : % — X which maps the new basis elements {a; = b to the old ones b.

Let P = (v )1<”<r be the representing matrix of the automorphlsm I' rela-
—/

tive to b. Then P € P(p;e), by Remark 6.6, and b; = F(bi) = > io1 Vigh;-
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7/ _ n — n _ n —_
One computes b; = a; = § D 7, Ty = Y5 €T = Y5y pijd;T; and
N' = (pidj)i=1,..r = MD = AAD is the representing matrix of Y/R rela-
tive to b and X. By Proposition 4.23 there is a matrix Q € Q(p;e) such that

PA = AQ. Since I maps 5; to b;, we conclude for the representing matrix N
of Y/R relative to b that

AB=N = PN' = PMD = PAAD = AQAD,

so B =, QAD.

“=" Conversely let AQAD = AB, where ) € Q(p;¢e) and D = diag(dy, ... ,d,),
dj € Zy.. Then T := d;T; for j =1,... ,n defines a type automorphism § of R,
by Lemma 6.4(1). There is a matrix P € P(p;e) with the property AQ = PA.
With the definition N’ := M D we get N = AB = AQAD = PAAD = PMD =
PN'. Set b; = 20, puyjdyT; = S0 juy€T; = € S0 T, = €G; for all i. Note
that P is the representing matrix of an automorphism I' : % — % with r'(b) =b,.
Therefore b’ := (5,1, . ,E,T) is an ordered basis of Y/ R with ord 52 = orda@; = p“.
Now N’ is the representing matrix of Y/R relative to b and X. We have z
By,....b) = (cay, ... ) =E(@,....a,) = ¢X. Therefore X =, Y.

(2) By the Isomorphism Criterion 3.5, we have X = Y if and only if there is an in-
duced automorphism ¢ € Aut R C Aut R such that ¢ % = %. An automorphism ¢

is induced exactly if there is a matrix F' = diag(fy, ..., fu) with f; € Z3.(7;) and
(z; = f;z;, cf. Lemma 6.4(2). Use F instead of D in part (1) of this proof. All
conclusions are the same. O

The following result is a generalization of [D0O93, Theorem 2.10].

Theorem 6.12. Pivot sets are near—isomorphism invariants for reduced p—local
rigid groups. Moreover, admissible indexings of the critical typeset are near—
isomorphism invariants.

Proof. Let the group X be given by a representing matrix A (E | A), where A
is a diagonal matrix with p—power entries. Let the critical typeset have a fixed
admissible ordering such that

L myp - my,
0 1 - my
o o --- 1

is of the form (5.10). Let Y be nearly isomorphic to X. Let A(E" | B) be
the representing matrix of Y relative to the same ordering of the critical type-
set. Near—isomorphism means P|diag—equivalence of the representing matrices.
By comparison of the left (r x r)-blocks, there is a representing matrix P of
an automorphism of Y/R(Y) and an invertible diagonal matrix D, such that
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PE = FE Dg,. Then

1 d; miid;
D_ PE' =D_ EDg, = _
0 1
is the upper triangular form (5.10), too. Thus the indexing of the columns is also
admissible for Y. O

We investigate p—local groups with a simultaneous admissible indexing of the
critical typeset:

Theorem 6.13. (Matrix [Near—|Isomorphism Criterion for p-local
Groups)

Let r < n be natural numbers and e = e; > --- > e, > 1 integers. Let X and Y
be p—reduced rigid groups of rank n with a common regulator R such that

X/R=EP(Z/p"L)=Y/R.
i=1
LetX = (Ty,... ,T,) be an induced decomposition basis of R = p~®R/R ordered by
a simultaneous admissible indexing T = (11,... ,T,) of the critical typeset for X
andY . Leta = (ay,... ,a,) be a basis of X/R andb = (by,... ,b,) a basis of Y/R
with (@;) = Z/p%7Z = (b;). Set A = diag(p®=®,... ,p°~°). Let the representing
matric M = A (Ag, | As,) of X/R and the representing matric N = A (Bg, |
B-,) of Y/R be in the Gauf$ normal form, where

1 mio -+ My 1 Nig -+ MNip

0 1 - my 0 1 - no
Ag = . . . and B¢, =

o 0 --- 1 o 0 --- 1

(1) The groups X and Y are nearly isomorphic, X =, Y, if and only if there
is a matriv D = diag(dy, ... ,d,) with d; € Zy. and an upper triangular
matrix

dit *
P = .
0 d!
such that
N=PMD.

(2) The groups X and Y are isomorphic, X =Y, if and only if there there is
a matriz F' = diag(f1,..., fu) with f; € Zy.(1;) and an upper triangular
matriz

it *
0 £
such that

N=PMF.
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Proof. (1) “<” Invertible matrices D and P with N = PM D show X =, Y, by
Theorem 6.11(1).

“=”" Assume that X =, Y. By Theorem 6.11(1), there exists an invert-
ible matrix D = diag(ds, ... ,d,) and a representing matrix P of an automor-
phism I' € Aut % such that PMD = N. We compare the left (r x r)-blocks of
this matrix equation:

1 mij 1 nij

(6.14) PA Do, = A

All appearing matrices are invertible except A. Then PA = ABg, D;i A;i is an
upper triangular matrix. Hence we can choose P = (7;;)1<ij<r to be an upper
triangular matrix, too. Note that the entry «;; is unique modulo p%Zy,.. The
coefficient (i,7) of the matrix equation (6.14) is y;; - p*~% - 1-d; = p* “ - 1. Hence
we can assume ; = d; ' for P = (Vig )i
(2) Use a representing matrix F' = diag(f1,... ,dn), f; € Zy.(7;), of an induced
automorphism ¢ € Aut R instead of D in part (1) of this proof. All conclusions are
the same. Then the representing matrix P = (7;j)1<; j<, of the relevant automor-
phism of X/R is also an upper triangular matrix with diagonal elements v;; = f; .
If © < j, then v,; € Z, is arbitrary, by Remark 6.6. (|

Remark 6.15. If X and Y are uniform groups with representing matrices in
Hermite normal form, then X =, Y if and only if the representing matrices are
diagonally equivalent, cf. Theorem 7.5(1).

In general diagonal equivalence of the representing matrices in Gauf$ normal form
is not necessary for the near—isomorphism of p-local groups:

Example 6.16. Let p # 2 be a prime and 71, 75, 73 pairwise incomparable types
with p-height 0 = 7;(p). Then R := Tz ® Toxs @ 7323 is a p-reduced rigid
completely decomposable group. Let

1 1
X = R+Z]¥(azl+x2—x3)+Zﬁ( prg + prs) € p°R,
1 1
Y = R+Zp—(:c1+x2—(1+2p)x3)+2—

pg ( &) ‘|‘p$3) and

2
1 1
Z = R + Z]? (1'1 -+ (p — 1)1’2 — (p + 1):E3) + ZE< P2 +pm3)

be almost completely decomposable groups. One calculates (Z/p*Z) ® (Z/pZ) =
X/R=Y/R~Z/R C p2R/R = (Z/p*Z)’. The representing matrices are in
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Gaufl normal form:

L= (é g) (é ” 11>€M2X3<Z/p2z)7
e (o) (31]TTP)
Z — C = (ég)(é(pzl)(pid))

By Lemma 5.13, the regulator of X, Y and Z is R. Here

( 1+p -1 (-1 1
P = < 0 1 and P, = 0 1
are the representing matrices of automorphisms of X/R. Clearly, D =
diag(1 — p, 1, 1) is the representing matrix of a type-automorphism of p—?R/R,
and F' = diag(—1, 1, 1) is the representing matrix of an induced automorphism
of p™2R/R. Then we have the identities:

PPAD=B and PBAF=C.

Hence X =, Y, but we cannot choose P; to be a diagonal matrix. These groups
X and Y are mentioned in [DO93, p. 148|, too. Here the near-isomorphism
is proved in a more group theoretic sense. The second matrix equation shows
X = Z although the left (2 x 2)-blocks of the relevant matrices are not equal. A
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7. MATRIX [NEAR-]ISOMORPHISM CRITERION FOR UNIFORM GROUPS

Lemma 7.1. Let p be a prime and e, n, r € N natural numbers with r < n. Let
R = @?:1 R, be a p-reduced rigid completely decomposable group of rank n with
an indexing T' = (11, ... ,T,) of the critical typeset. Suppose that x = (xq,... ,x,)
is a p—decomposition basis of R ordered by T and X = (T1,... ,Tp) is the induced
decomposition basis of R = p°R/R. Let M, N € M"™"(Z,) be diagonally
equivalent matrices of determinantal rank r. Let X, Y be almost completely
decomposable groups with the common subgroup R such that X/R = (Zp)" =
Y/R. Leta, b be ordered bases of X/ R, Y/R such that M, N are the representing
matrices of X/R, Y/R relative to X and a, b.

Then R = R(X) is the regulator of X if and only if R = R(Y) is the regulator
of Y.

Proof. Let M®) denote the [r x (n — 1)]-matrix over Z, obtained from M by
canceling the k-th column. By Lemma 5.13, the regulator of X is R if and

only if M®*) has determinantal rank r for all & = 1,... ,n. Since rkqe;(M*)) =
rkge; (N®)), this is equivalent to R = R(Y). O

Isomorphism of Uniform Groups

Example 7.2. Let 7y = Z[27'| = {% | n € Z, k € No} and 75 = Z[137']. Then
R := mx1 ® Toxo is 17-reduced. Consider the almost completely decomposable
groups

X:R+Zi(:v1+$2), Y:R+Zi($1+3$2).
17 17
Then X and Y are indecomposable with common regulator R(X) = R(Y) = R
and regulator quotient X/R = Y/R = Z/17Z. Here X,Y € C((11,72),17,1,1)
and the map — : R — 17 'R/R, z — 17 'z + R denotes the natural epimor-
phism. Then X = (71, T») is an ordered induced-decomposition basis of 17" 'R/R.
Here M = (1| 1), N = (1| 3) are the corresponding representing matrices in Her-

mite normal form of X, Y, respectively. The rest blocks are diagonally equivalent:
1-(1)-3=(3). Hence X =,, Y by [Mad00, Lemma 12.5.6].

Look at 17X = X/R = {{(z1 + 22) + R | k€ {0,1,... ,16}} and 17Y = Y/R =
{£ (@1 +323) + R|1€{0,1,...,16}}. We use the Isomorphism Criterion 3.5 to
show that X 2 Y.

AutR = {(
— {( >’Els,teza:i?,b::|:13t}.

a unit in Z[27Y, b unit in Z[13_1]}

o e O
O o O
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Hence, for all & € Aut R exist eq,e5 € {1,—1} and s,t € Z such that a(z;+x9) =
12511 + ex13'wy or equivalently

R CCUESS P P

. ]{3(6128231 + 6213t$2)
B 17

Because of the linear independence of {zj,z:} C QR there are no k €
{0,1,...,16}, e1,e9 € {1,—1}, s,t € Z such that

11 + 3wy = k(e12°1; + ea13'1y).

+R'k€{0,1,...,16}}.

Then for all admissible k, eq, es, s, we have

_ X k’(612s$1 + 6213%32) T+ 31’2 Y

That’s why X 2. A

Definition 7.3. Let p be a prime and e, n, » € N natural numbers with r < n.
Let T'= (7,...,7,) be an ordered n—tuple of types. We call

DIAG(T;Z,.) = DIAG(Zye(71), .- s Ze(Tn))
= Adiag(fi,. .-, fa) | Vim0 [ € Zpe(75) }
the set of T'-diagonal matrices over Zye.

Let A and B be [r x (n — r)|-matrices over Z,. Then A and B are called T-
diagonally equivalent if there is a T-diagonal matrix ' € DIAG(T; Z;.) such
that

B=F_AF.,.

Remark 7.4. This matrix equation is equivalent to
fi! fran
B = “A- , where f; € Z.(75);
I f
= if A = () i=1,., and B = (8j) i=1,..» , then there are f; € Z.(7;),

j=r+1,....n Jj=r+1,...,n
1 < j < n, such that
-1
Bij = I oujf;

in Zy fori=1,...,rand j=r+1,... ,n;
<= A and B are DIAG(Z;.(71), ... , Z}(7,))diagonally equivalent;

> B e Orb(A) = {F_'AF., | F = diag(f1,..., fa). [ € Z}(7;)} relative to
the group action 4.30.
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Theorem 7.5. (Matrix [Near—]Isomorphism Criterion for Uniform
Groups)

Let X, Y € C(T,p,e,r) be uniform groups with a common requlator R. Let
X = (T1,...,T,) be an induced decomposition basis of R = p~®R/R ordered by
a simultaneous admissible indexing T = (11,... ,T,) of the critical typeset for X
and Y. Let M = (I, | A) and N = (I, | B) be the representing matrices of X/R
and Y /R relative to X in Hermite normal form, where A and B are [r X (n—1)]-
matrices over Lye.

(1) The groups X and Y are nearly isomorphic, X =, Y, if and only if A
and B are diagonally equivalent.

(2) The groups X andY are isomorphic, X =Y, if and only if A and B are
T—diagonally equivalent.

Proof. Write A = (a;) i=1,..., and B = (8i;) i=1,.r -

j=r+1.n i1 m
(2) “«=” Assume that the second statement holds: There are f, € Z3.(7;), 1 <
k < n, such that

By = [t
in Zy fori =1,... ,7rand j =r+1,... ,n. The units f1,..., f, determine an
induced automorphism ¢ of R relative to X via (7; := f;7;. The representing ma-

trix F' = diag(fi,..., fn) of this induced automorphism decomposes into Fg, :=

diag(fi,..., fr) and Fy, = diag(fr+1,..., fn). Then (G;;) = (fi_laijfj)j:l,,_,m

j=r+1,....,n
_ -1 : —1_ g -1 -1
means B = F AF.,, since F, = diag(f, ,..., f ). Hence we get

_ _ _ Fe,
N = (1 B) = (P e | PR = P2 ] 4) (FEr )
= F_'MF.

Application of Lemma 6.11(2) yields X =Y.

“=” Now let X and Y be isomorphic. Lemma 6.11(2) yields a regular matrix
P € M"™"(Z,e) and a regular diagonal matrix F' = diag(fi, ..., f,), where f; €

Z5.(7;), such that N = PMF. Again I’ decomposes into F' = ( Fer . )

Thus we calculate

(I,|]B)y=N=PMF =P(I, | A <F<T 7 ):(PF@\PAFM).
>r

By comparison of the first [r x r]-block we conclude P = F_'. The second
[r x (n — r)]-block shows that
B=F_AF,,.

(1) This result is written down in [Mad00, Lemma 12.5.6.1]. As R is rigid, a type—
automorphism & is represented by an invertible diagonal matrix D € M™*"™(Z,.),
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cf. Lemma 6.4(1). Use D = ( Der 5 ) instead of F' in the part above. All
>r

conclusions are the same.

Example 7.6. Look at Example 7.2 again. M = (1 | 1) and N =
(1]3) are the representing matrices of X and Y. Here 7, = Z[27Y], = =
Z[137'] and we compute Zi;(11) = (=1 + 172, 2+ 17Z) . = {£1 +17Z, £2 +
177, 4 + 172, £8 + 17TZ} = Zg, since 2* = 16 = —1 (mod 17), and
Zin(r) = (—1+ 172, 13+ 172)_ . = {&1 + 17Z, £13 + 172} = Z,, since
132 = 169 = —1 (mod 17). We get Zi.(r2) € Zi.(11) S Z},, where Z}, is
cyclic of order 16 = 24

From Theorem 7.5 we obtain X =Y & 37 cpe 1) Foens ()] = f13 [ in Zir &
I eni (o f1 f2 = 371 in Zug. But Zj; = (3+17Z),,y, , hence 3+ 172 ¢ Zi, (1)

There are no f, € Z. (1), fo € Z,(12) such that f, f, = 371 in Z;;. Hence
X 2Y again. A
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8. ISOMORPHISM CLASSES OF UNIFORM GROUPS

Remark 8.1. Starting from a fixed near—isomorphism class in C(T, p, e, r) we are
looking for a criterion to decide if any groups X, Y with a common regulator R
within this class are isomorphic. Let x = (z1,...,%,) be a decomposition basis
of R ordered by the critical typeset T = (71,... ,Tn), i. e. tpf(z;) = 7;. The map
~: R— p°R/R, v — px+ R denotes the canonical epimorphism. Then
X = (T1,...,Ty) is the ordered induced decomposition basis of R = p~*R/R.
Suppose that 7" is an admissible ordering, with corresponding block structure and
stripping sequence, of the critical typeset for all groups in this near—isomorphism
class. This assumption is no loss of generality as admissible orderings are near—
isomorphism invariants. There is a modified diagonal similarity class of normed
[ % (n —r)]-matrices over Z, belonging to this near-isomorphism class [Mut99,
Theorem 4.3]. Let C = (i) i=1,...r € M™*™(Z,) be out of this class. By

j=r+l,....n
Lemma 5.13, the rest block C' is primitive. Using Lemma 5.8, we see that there
exists exactly one uniform group Z with regulator R C Z C p~°R and an ordered
basis € of Z/R such that @ = (I, | C) is the representing matrix of Z/R relative

to ¢ and X.

Lemma 8.2. Let R be a rigid and p-reduced completely decomposable group of
rank n. Let C € M™ (" "(Z,) be a normed and primitive matriz. Let X €
C(T,p,e,r) be a uniform group with regulator R. Let X = (T1,...,T,) be an
induced decomposition basis of R = p~*R/R with fived admissible ordering of T.

The group X is from the near—isomorphism class relative to C' if and only if
there is a basis a = (ai,...,a,) of X/R such that the representing matriz M
of X over R relative to @ and X is in the form

M = (I, | A) = (I, | D,;CD-,)
where D, = diag(dy, ... ,d,) and D, := diag(d,41, ... ,dy), d; € Z;..
Proof. Let Z be the unique group with regulator R C Z C p~°R and ordered

basis € of Z/R such that @Q = (I, | C') is the representing matrix of Z/R relative
to € and X, where C' = (v;;) i=1,.., . Using Theorem 7.5, X &, Z if and only

j=r+1,...,n
if the matrix rest blocks are diagonally equivalent. Write A = D;:C’DM, where
D¢, :=diag(dy, ... ,d;) and D, := diag(d,y1,... ,dy), dj € Z. O

Remark 8.3. (1) In particular there is a one-to-one correspondence between
groups within the near-isomorphism class and sets of diagonal matrices over Zj.:
For each group X in the near—isomorphism class there is an invertible diagonal
matrix D. On the other hand it is true that each matrix D = diag(d, ... ,d,),
dj € Zye, leads to a unique group of the near-isomorphism class. But several
distinct matrices D # D’ can form the same matrix D_/CDs, = D’ ~CD.,
corresponding to exactly one group. For example let C' = (1). Each matrix D =
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E)l 2 , d € Z., leads to the same matrix D;}CDM =dHQ)(d) = (1)=
C and the unique group Z of Remark 8.1.
(2) For each diagonal matrix D over Z;. the representing matrix (1, | A) = (I, |

D;i C D-,) = D;} (I. | C) ( Der is diagonally equivalent to (I, | C).

D>T
Since (I, | C) is in Hermite straight form, A is straight and has the same block
structure and the same stripping sequence as C, by [Mut99, Corollary 3.2].

Lemma 8.4. Let R be a rigid and p—reduced completely decomposable group of
rank n. Let C = () i=1,..,» be a normed and primitive matriz over Zye. Let

j=r+1,..,n

D = diag(dy, ... ,d,) and D' = diag(d}, ... ,d}) be invertible diagonal matrices.
Let X, Y € C(T,p,e,r) be groups of the near—isomorphism class relative to C
with representing matrices M = (I, | A) = (I, | D_}CDs,), N = (I, | B) =
(I, | D’;iCD;T) relative to a given induced decomposition basis X of R = p *R/R
ordered by T = (T1,...,Ty).

Then X =Y if and only if there are f; € Z;.(7;), 1 < j < n, such that v;; =
& fd iy dy f AT in Zye foralli=1,...,r, j=r+1,...,n

Proof. The assumption A = D_!CD-, means (a;;) = (di 'yi;d;) i=1,.» and

j=r+1,..,n
B = D'}CD., means (8;) = (d; v;d;) i=1,.» . By Theorem 7.5, X 2 Y

jg}d,...,n

if and only if there are f; € Z3.(7;), 1 < j < n, such that d’i_lm-jd;» = [ij
fi_laijfj = fi_ldi_lyijdjfj in Zye fori =1,...,rand j =r+1,... ,n. This is
equivalent to the claim. O

N

ot

Remark 8.5. The following diagram illustrates the situation of Lemma 8.2
and 8.4:

near—isomorphism C

class
N/ \\J\nr < D Dl
X — -Y A F - B

XY & D_CD., =B=FAF., = F,' D CD.,F.,

C=DgF'D]CD., F.,DZ,

& vy =d [ yidy fd; in Zye foralli=1,... 7,
j=r+1,...,n,where dy,d; € Z. and f; € Zn.(7).

i
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Theorem 8.6. Let p be a prime and e, n, r € N natural numbers with r < n.
Let R be a rigid and p—reduced completely decomposable group of rank n. Sup-
pose that C' = (v;;) € M™""")(Z,.) is a normed and primitive matriz. Let
StabDIAg(n;Z;G)(O) = {D = diag(dl, Ce ,dn) | dj € Z;;e, D;: OD>T = O}

The number of groups X contained in the near—isomorphism class relative to C
and with requlator R C X C p~°R 1s

(' p—1)"
| Stabpiac(mizz,.) (&)

n—1

There are at most p(p°) = (pp—1)"" groups within the near-
1somorphism class relative to C'.

Proof. By Lemma 8.2 the group X is of the near-isomorphism class relative
to C' if and only if there is a basis @ of X/R such that M = (I, | D_,CD-,)
is the representing matrix of X/R, where D¢, = diag(d,...,d,) and Ds, =
diag(dyy1, ... ,dn), dj € Z. We have |Z3.| = o(p°) = p'(p —1). By
(r='(p-1))"
| StabDIAG(n;Z;e)(C
lent to C. Every of these diagonal equivalent matrices belongs to a group X of
the near-isomorphism class as Lemma 5.8 shows. By Lemma 7.1 the regulator
of X is R. The upper bound for the number of near-isomorphic groups is shown
in Lemma 4.27, too. ]

Lemma 4.27 there are I matrices which are diagonally equiva-

Theorem 8.7. Let p be a prime and e, n, r € N natural numbers with r < n. Let
R = @?:1 R, be a rigid and p—reduced completely decomposable group of rank n.

Let B € M ("=")(Z,.) be a normed and primitive matriz and let Stab~(B) =
{F =diag(f1,..., fa) | f; € Z2e(7;), FZ} BF., = B}.

The number of groups X contained in the isomorphism class relative to B and
with requlator R C X C p~°R 1is

[T |Z; (7))
| Stab~(B)|

Proof. Let T'= (1, ... ,7,) be an indexing of the critical typeset. By Lemma 7.5
the group X belongs to the isomorphism class relative to B if and only if there
is a basis @ of X/R such that M = (I, | F_'BF,) is the representing matrix
of X/R, where F¢, = diag(f1,..., f,) and I\, = diag(fr1,. .., fu), fj € Zye(75).
Then we have F' € DIAG(Zy.(71), ... , Zy. (1)) = DIAG(T'; Z¢. ). By Lemma 4.31
there are

| DIAG(T'; Z;. )
| Stab~(B)
matrices which are T—diagonally equivalent to B. Each of these diagonally equiv-

alent matrices belongs to a group X of the isomorphism class as Lemma 5.8 shows.
By Lemma 7.1 the regulator of X is R. O
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Theorem 8.8. Let p be a prime and e, n, r € N natural numbers with
r<n. Let R = @} R; be a rigid and p-reduced completely decom-
posable group of rank n with an indexing T = (7,...,T,) of its crit-
ical typeset. Let C € M™(")(Z,) be a normed and primitive ma-
triz. Let Stabs,, (C) = {D = diag(ds, ... ,d,) | d; € Lnye, D;iCDw = C} and
Stab~(C) = {F = diag(f1,... , fa) | f; € Ze(1j), FL! C s, = C}.

Each near—isomorphism class is the union of isomorphism classes all of equal
length.  The number of distinct isomorphism classes contained in the near—
isomorphism class of C' and with requlator R is

P tp—1)" _ (pe*l(p— )"
15—, |Zye(7;)] - [Stabs,, (C) : Stab~(C)] | DIAG(T'; Z;y ) - Stab,, (C)] -

Proof. Here DIAG(n; Z;.) acts on M"*("=7) via diagonal equivalence. The sta-
bilizer of A under this action is Stab~, (A) and the orbit of A is Orb~ (A) =
{D_ AD., | D € DIAG(n; Z,)}.

In addition DIAG(T; Z.) = DIAG(Z:.(71), . .. , Z}.(7,)) acts on M™*("™") via di-
agonal equivalence, too. The stabilizer of A under this action is Stab~(A) and
the orbit of A is Orbx(A) = {F_'AF., | F € DIAG(T; Z;.)}.

Firstly, we show that the isomorphism classes of near—isomorphic groups have
equal length. For that let C” be diagonally equivalent to C, i.e. C" = D;,% C D-.,,
where D € DIAG(n;Z;.). Then

F € Stab~(C) <= F_' CF., = C < D_ (F_'CF.,) D5, = D_, C D,
<= F_!(DZ!CDs,) F., = DO D, <= F € Stabs(C).

c’ c’

Hence Stab~(C') = Stab~(C") and therefore | Orb~(C)| = | Orb=(C")|.

Now we use Theorem 8.6 and Theorem 8.7 to compute

| Orbe.,, (C)]
| Orb=(C))|
[DIAG(n; Z3.) : Stabs,, (C)]
[DIAG(T;ZZe):Stab~ )]
| DIAG(n: Z,)
| DIAG(T'; Z;. )| - [Stabe,, (C) : Staba(C)]
(r'p—1))"
H?:1|Z;6(TJ)| [Stabs,, (C

[{Orba(A) | A € Orbe, (O)}|

) - Stab=(C)]
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DIAG(n; Z;.)

DIAG(T; Z3,)

Stabgm (C)

Stabg (C)

We have DIAG(T;Z;.) N Stabs, (C) = Stab~(C). Therefore the denominator
simplifies:
| DIAG(T'; Z;. )| - | Stab,, ()]
| Stab~ (C))|
= |DIAG(T; Z,.) - Stabx,, (C)|

and the claim follows. O

| DIAG(T; Z.)

[Staba, (C) : Stabx(C)] =

Remark 8.9. According to Theorem 8.8 each near—isomorphism class decom-
poses into isomorphism classes all of the same cardinality:

NrlsoCl(Z)

oX 'Z
Y

IsoCl(X) IsoCl(Z)

This is a general result in [Mad00, Theorem 8.2.5].

Corollary 8.10. There are at most

n

[z : z.(7)] = )

e [Tjm 125 (75)]

pairwise non—isomorphic groups within the near—isomorphism class of the normed
and primitive matriz C' € M™""")(Z,.).

Proof. Since [Stabx,, (C) : Stab~(C)] > 1, Theorem 8.8 shows the claim. O
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9. UNIFORM GROUPS OF EVEN RANK WITH NORMED REPRESENTING
MATRICES

Remark 9.1. Let us investigate uniform groups of even rank n = 2r. A fixed
near—isomorphism class of groups is represented by a modified diagonal similarity
class of normed (r x r)-matrices. These are the rest blocks of the representing
matrices. Let C' = (y45) i=1,.., € M"™"(Z,) be a representative. Additionally

Jj=r+1,..2r

suppose for simplification that the normed matrix C' is invertible. Then C' is
primitive by Lemma 4.18. All main submatrices Cy,, = (745) i=1,...m for 1 <

Jj=r+1,..,r+m
m < r have determinant 1 by Definition 4.14.

If X 2Y, then we can prove the following necessary condition.

Lemma 9.2. Let R be a rigid and p—reduced completely decomposable group
of rank 2r. Let C' be a normed and invertible (r x r)-matriz over Zp. Let
D = diag(dy,... ,dy.) and D" = diag(d},... ,d,,) be invertible matrices. Let
X, Y € C(T,p,e,r) be groups of the near—isomorphism class relative to C' with
representing matrices M = (I, | D/CDx,), N = (I, | D’;iCD;r) relative to
a given induced decomposition basis X of R = p~°R/R which is ordered by the

admissible critical typeset T = (11, ... ,Top).
If X =Y, then there are f; € Zj(r;), 1 < j < 2r, such that
d ol dot dyn from d L = 1in Zpe for allm =1,... 7.

Proof. Since C' = (vi;) 1<i<r 1is normed and invertible, all main submatrices
rI<j<or
Cm = (7ij) 1<icm for m = 1,... r have determinant 1. We proceed by
r+1<j<r+m
induction on m. The assumptions of Lemma 8.4 hold. Hence 1 = det C} i

dy fitdi deyy fraad' jl. Suppose that the claim has been established for all
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integers < m. Now Lemma 8.4 implies

1 = det(C’m) = det(%]) 1<i<m 8:4 det(d; f;l d;l ’}/z‘j dj fj d/gl) 1<i<m

r+1<j<r+m r+1<j<r+m

- det<diag(d’l,...,d’m).diag(ffl,...,f,;l).diag(dfl,... A1) -

' m

’ diag(dr-ﬁ-l? SR d'f—&-m) ’ diag(f'l‘-i-la SRR fT—l-m) ' diag(d/;i17 s 7d,;4im)>
= dll"'d/m'fl_l"'fr;l'dl_l"'d_l'1'

m

7—1 7—1
'dr-‘rl"'dr-i—m'fr+1"'f7’+m'dr+1"'dr+m

m—1
_ r p—1 3—1 r—1 -1 j—1 r—1
= (L d s desk frnd i | - i fr i v from '
k=1 ;q
1 p—1 3—1 r—1
= dmfm dm dT+mfr+md7»+m,

by the induction hypothesis. O

Lemma 9.3. Let m be a natural number and 1, 1o any types, i. e. rational groups
including Z. Then 7 (11) - 2, (12) = Z,(T1 V T2).

Proof. The lattice operation of types 71 V72 = 7 means 7(q) = max {71(q), 72(q)}

for all primes q. Hence Z; (1) - Z},(12) = (Z},(11), Z},(T2)) ot 6.2
(—=1+mZ, g+ mZ | q prime, 71(q) = 00 or T2(q) = 00) 4 =
(—=1+mZ, g+ mZ | q prime, (11 V 72)(q) = 00) . o2 Z; (1 V T2). O

Remark 9.4. Let m be a natural number and 7y, 7 any types i.e. rational
groups including Z. Then Z} (11 A 12) C ZF,(11) N Z,(T2). This can be a proper
inclusion.

Proof. The lattice operation of types 74 A 9 = 7 means 7(¢q) = min {71(q), 72(q)}
for all primes ¢. Hence each generator ¢ + mZ of Z! (m A 72) satisfies
min {7(q), 72(q)} = oo. Therefore we have 7(q) = 0o = 7(q) and ¢ + mZ €
Z} (1), ¢ +mZ € Z, (12). This shows the inclusion.

For the inequality choose m = 17, 7, = Z[37!] and 7, = Z[5!]. Then we calculate
T ATy =tp(Z), Zi7(11 A7) = (=1 + 17Z)yue. = {£1 + 172} [= (Zo, +)] and
Ly, (1) = Ziq = Zi7(12) [= (Zag, +)], since ord(3 + 17Z) = 16 = ord(5 + 17Z).
Thus the inclusion is proper. O

Remark 9.5. Let p be a prime and e,n natural numbers. Let R be a rigid
and p-reduced completely decomposable group of rank n. Suppose that T =
(71, ,7s) is an indexing of the critical typeset of R, such that R = @)_, R,
is a homogeneous decomposition of R.

If 7;, Tj € T, then

* 9.3 * *
Zpe (T’L' \ TJ) = <Zpe (Ti)’ Zpe <Tj)>mult.
3

= <—1 +0°Z, q+p°Z | q prime, qR,, = R, or qR,, = RTJ.>

=2

mult.”
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Lemma 9.6. Let R be a rigid and p—reduced completely decomposable group of
rankn = 2r. Let C' be a normed and invertible (rxr)-matriz over Zy.. Let X,Y €
C(T,p,e,r) be groups of the near—isomorphism class relative to C' with correspond-
ing (r x r)—diagonal matrices D¢, = diag(dy, ... ,d,), D, = diag(d, 41, ... ,da)
with respect to X and D, = diag(dy,... ,d,), DL, = diag(d,,,,... ,dy,) with
respect to Y .

IF X2V, the

dr Ly (T V Tygm) for allm=1,... 7.

r+m dr m

Proof. The assumptions of Lemma 9.2 hold. Thus there are f; € Zy.(7;) such

that d, ot dot den fromd' ), = 1 in Zye or equivalently dfj:bm df:zm . ff;nm
L (T V Tyg) forallm=1,... 7. d

dr+m

Remark 9.7. We give a counter-example for the way back in 9.12. The condi-
tion of Lemma 9.6 is a relation for the diagonal elements of the rest blocks. If C'
is particularly the identity matrix, then the condition is also sufficient, cf. Corol-
lary 9.16.

Theorem 9.8. There are at least

r

I1 2z : 2y (v rem)] =

m=1

-1
H;lzl |Z;€ (Tm V Triem)|

pairwise non—isomorphic groups contained in the near—isomorphism class relative
to a normed and invertible (r X r)-matriz.

Proof. Assume that C' = (vi) i=1,..r € M"™"(Z,) is normed and invertible.

Let R be a rigid and pfreducedj comi)létely decomposable group of rank 2r. Sup-
pose that T = (71,... , Ty, Try1, - . - To) is the admissible indexing of the critical
typeset for the fixed near—isomorphism class in C(T,p,e,r) relative to C. Let
X = (T1,...,%,) be an induced decomposition basis of R = p~®R/R which is
ordered by T. We are looking for pairwise non—isomorphic groups within this
near—isomorphism class.

Construction: For m = 1,...,r abbreviate k(m) := [Z% : Z5(Tn V Trpm)] =

z (Ti;i;#m) Tz ;:ari)m” > 1. Thus for all m = 1,... | r there are k(m) left
cosets of Z. (T V Trym):
s(m, 1) Zye (T NV Trm )5 (M, 2) - L (T N Toan), -+ 5 (M, k(M) - Zoye (T V Trgem)-
Define dy = ... =d, =1 = 1+p°Z and choose d;,, € {s(m,1),...,s(m, k(m))}
for m = 1,...,r. Hence there are [T/, _, k(m) = [T, [Z} - Z (Tm \/ Trtm)]
distinct diagonal matrices D = diag(dy, ... ,ds.) = diag(1l,... 1, dr+1, ooy day)

——
r times

over Zpe.

By Lemma 8.2 each diagonal matrix D of the construction leads to a uniform
group X € C(T,p, e,r) of the near—isomorphism class relative to C' with regulator
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R C X C p °Rand a basis a of X/R such that M = (I, | CD-,) is the represent-
ing matrix of X/R relative to @ and X. Now let D = diag(1,... ,1,d,41,... ,ds;)
and D' = diag(1,...,1,d,,,,...,d,,) different diagonal matrices, which have
been constructed as above, with corresponding groups X and Y of the near—
isomorphism class. Since D # D’ over Zye, there is an integer m € {1,... ,r}
with the property d,.,, # d.,,, in Z, or equivalently d,!,, # d’;},.. There-
fore d, ), - Ze (T V Typm) and d', e Z3(Tim V Trm) are distinct, too, since the
diagonal elements are representatives of distinct cosets of Zy. (7, V 7p4m) by con-

struction. Hence d', jm Z dl, - L3 (Tim V Trym), since distinct left cosets are

disjunct. Lemma 9.6 shows X 2 Y. O

Remark 9.9. Now we have got a lower and an upper bound for the number of
isomorphism classes within a given near—isomorphism class from groups of even
rank n = 2r.

(P 'p-1)
HTmzl |Z;€ (T V Trgm) |

0 (ptp—1))"
[T 1 Zye ()]

Example 9.10. Let 7y = Z[37'] = {% | n € Z, k € Ng} and 75 = Z[57']. Then
R := mx1 @ mxy is 17-reduced.
Consider the almost completely decomposable group

9.8 8.1
< [{IsoCl(X) | X € NrIsoCl(Z)}| <

1
Z: R+Z—(ZE1 +$2)

17
with corresponding representing matrix M = (1] 1).
We compute 3° = —1 (mod 17) and 5° = —1 (mod 17). Then we obtain

Zi.(m) = Zi7(12) = Zj; = Zye, since ord(3 + 17Z) = 16 = ord(5 + 17Z). Hence
Zi.(m1 V 12) = Z;; and therefore the formulas of 9.8 and 8.10 simplify:

16! 162 162
1 7 =1 and T = 1—62
[l 1 Z5(T V T14m)| [T 1Z37(7)]

This means that the lower and upper bounds of 9.8 and 8.10 are sharp. All groups
in the near—isomorphism class of Z are isomorphic.

Example 9.11. In Example 7.2 the representing matrix M = (1 | 1) of X
R+ Z7=(x1 + x) is in Hermite normed form. Here 7 = Z[27'] = {3 | n
Z,k € No}, 79 = Z[137'] and R := 1171 @ Towg is 17-reduced. From Z;,(73)
Zi-(m) C Zj; = Za7 \ {0+ 17Z}, by Example 7.6, we conclude Zi,(m V 72)
Zi,(m) ={£1+17Z, £24+ 177, £4+ 17Z, £8 + 17Z}. Theorem 9.8 proves that
there are at least

4N m

. . 16
[Z17 : ZiZ(1i V 12)] = ] 2
isomorphism classes within the near—isomorphism class of X. We use Lemma 8.2

to determine all groups X’ near—isomorphic to X with regulator R C X' C ﬁR:

8.2

X' 2, X & X' =R+ Zi=(x1 + Aap), where X € {£1, £2, +3, ..., £8}.
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Recall that X %Y = R+ Zz=(21 + 3x3). Theorem 7.5 shows that there are
exactly two isomorphism classes of groups:

X' X L3 X' = R+ Zh(zy + pa), where = fi' fy € {1, +2, +4, +8},
and

Y2y L2 Y = R4 ZL () + vay), where v = f ' fy € {£3, £6, +5, +7}.
Hence {X' | X' = X, R(X') = R} and {Y' | Y/ =2 Y, R(Y’') = R} are the only
two isomorphism classes. A

Example 9.12. Let 7, = Z[37!], 7 = Z[137Y], 3 = Z[477'], 74 = Z[57!] then
R = 111 @ Toxe ® 373 B T4y is rigid and 17-reduced. Here X = (71, T2, T3, T4)
is an induced 17-decomposition basis of R = %R/ R, which is ordered by T' =
(71,72, 73, 714). We compute 3% = —1 (mod 17) and 5° = —1 (mod 17). Similarly
as in Example 7.6 we obtain

Ziz(m) = (—1+17Z, 3+ 17Z) . = 237, since ord(3 + 17Z) = 16,

Li (o) = Zi,(m3) = {£1+ 17Z, £4 + 17Z} > 7,4, since 13 = 47
(mod 17) and 4% = 16 = —1 (mod 17),

Liz(1y) = (—1+ 17Z, 5+ 17Z) . = Z};, since ord(5 + 17Z) = 16.

both with equality.

—4

mult.

Consider the following uniform groups with corresponding representing matrices
relative to X:

1 1
Z:R—FZl—,?(.’L'l —|—[L'3—|—ZE4)—|—ZE( ZE2+I3+2$4)

ca=(g |1 3)-wio

1 1
X:R—{—Z1—7(x1 —|—2.CE3+334)—|—Z1—7( To + 223 + 214)

1 012 1
HM:(Q 1‘2 2):(12‘14)7

1 1
Y=R+Z—=(r1 Hzx3+z4)+2Z-—=( xo2+2x3+T4)

17 17
1 01 1
HN:(O 1‘1 1):(1r2|3).
17'R
Pl P oo e
Ye Y7 SeX 17°'R/R = T finite

R

Theorem 9.8 yields that there is at least [, [Z%; : Z%(Tim V Tom)] = 1-1 =1
isomorphism class of groups with regulator R near-isomorphic to Z.
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Clearly YV 2., Z, since tki; B = 1 # 2 = rky; C' and the matrices B, C' are not
(diagonally) equivalent.

Since (§9)C(29) = A, Lemma 8.2 shows X 2, Z. We apply Theorem 7.5 to

the coefficient (2,3) of C' and A to decide that X % Z: There are no fa, f3 €

{:l:l, :|:4} = ZT7(T2) = ZT7(T3) such that 2 = g3 = f;l Y23 f3 = f;lfg S
=1

{£1, &4} in Z;;. Hence there are more than one isomorphism class within the

near—isomorphism class relative to C'.

This is a counter—example for the way back of Lemma 9.6, too. Here it is r = 2,
D = diag(1,1,2,1) and D’ = I;. The group Z agrees with Y of Lemma 9.6.
We have ¢ - Zi,(n V 13) = Zj; and # - Zi, (2 V 14) = Zj;. The statement
d”"i dm

d,2+m d2+m

X 27

How many pairwise non-isomorphic groups are in the near-isomorphism class
of Z? By Example 4.32 there are Orb~, (C) = 16° = 2! = 4096 matrices
diagonally equivalent to C' such that each matrix belongs to precisely one group
which is near-isomorphic to Z. For f; € Zi;(7;), where j = 1,... ,4, we have to

solve
(ff1 )(1 1><f3 > _ (fflfg ff1f4>
£t I 2 Ja ' fs 2f5 fa

B 11
- 12 )
This is equivalent to the linear equation system f; = fo = f3 = f; €
N}_1Zi,(1;) = Zi;(m2) = Zs. Hence, by Theorem 8.7, the number of groups
within the isomorphism class of Z is
4 *
Hj:l |Z37(75)] _16-4-4-16
|Zi7(72)] 4
The number of distinct isomorphism classes contained in the near—isomorphism
class of Z is

L7 (T V Toym) for m = 1,2 is not sufficient for isomorphism, since

=210 — 1024.

4096

1024
We determine the number of isomorphism classes of uniform groups G €
C(T,17,1,2) with regulator R C G C 17 'R such that the representing ma-
trix of G/R = Zi7 & Zq7 relative to X = (T, T, T3, T4) is in Hermite normed
form. Write

1 1
G=R+ 21—7(1’1 + Y1323 + Y1aT4) + Z1—7( Ty + Y2323 + Y244)
I 073 7
= (I, | (O).
- ( 0 1|73 Y2 ( 2 | )

Again Orbe, (C) = {diag(di,d2) *C diag(ds,ds) | d; € Zj,} agrees with
the class of uniform groups nearly isomorphic to G. Similarly Orb~(C) =
{diag(f1, fo) ' C diag(fs, fa) | f; € Zi;(7;)} agrees with the isomorphism class
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of G. Then % is the number of isomorphism classes of uniform groups
within the near—isomorphism class of G.

By [Mut99, p. 133] there are 17 + 4 = 21 normal forms of (2 x 2)-matrices
over Zi7; and therefore precisely 21 near—isomorphism classes of those groups in
C(T,17,1,2) of rank 4. Let n € {0,1,... ,16}.

| NilsoCL C [ (18) (39) (1D (1) (G.4,) ]
[Stab~ (C)[[ 28 28 28 2f 27
|Orb~, (C) || 28 28 212 212 212
|Stab=(C)| || 26 2¢ 22 22 22
|Orb~(C)| || 26 28 210 210 210

lower bound 9.8 - 1 - 1 1

upper bound 8.10 || 2% 24 24 24 24
OI‘bm C

{IsoCl}| = Ll |22 1 22 22 22

A

Remark 9.13. Example 9.10 shows that the lower bound of Theorem 9.8 and
the upper bound of Corollary 8.10 cannot be improved with the same general
assumptions. Example 9.12 shows that the precise number of isomorphism classes
depends on C, namely the near—isomorphism class.

Applications to Groups of Small Rank

Remark 9.14. The situation simplifies if the normed and invertible matrix C' is
particularly the identity matrix. Then all groups taken under consideration have
a finest direct decomposition into indecomposable rank two summands.

Corollary 9.15. Let e be a natural number and p a prime. Let §, 6" € Z \ pZ be
integers. Then d := §+p°Z and d' := §' +p°Z are units of Zye. Let T = (11, 72) be
a pair of incomparable types with 7;(p) = 0. Then R = 121 ® Toxs 1S a rigid and
p—reduced rank two group. Let X = R—l—Z#(ml +0x9) and Y = R+Z#<I’1+5,I‘2)
be groups.

(1) Then X and Y are nearly isomorphic uniform groups of C(T,p,e,r) with
the common regulator R such that R C X, Y C p~®R.

(2) The groups X andY are isomorphic, X =Y if and only if
d, S d- Z;e(Tl \/’7'2) .

(3) The total number of pairwise non—isomorphic groups contained in the near—
isomorphism class of X is

e —1)  pW) - |Zge () N Zye (7))
|Zie (11 V 72)| |Zye (11)] - |Zg5e (72))]
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Proof. (1) The rest blocks (d) and (d') of the representing matrices are di-
agonally equivalent. It follows that X and Y are nearly isomorphic. By
BURKHARDT REGULATOR CRITERION, the regulator of X and Y is R. We
compute X/R = Z, = Y/R. Hence both groups are uniform.

(2) If X and Y are isomorphic, then d' € d - Zj. (7 V 72), by Lemma 9.6.

For the converse we assume that there exist f1- fo € Zye(11) - Zye(12) = Zye (11 V T2)
such that d = d - f; - fo. The representing matrix rest blocks (d) and (d') are
T—diagonally equivalent. Hence X =Y by Theorem 7.5.

(3) The groups X and Y are isomorphic if and only if the elements d and
d" of the rest blocks are in the same coset of Z:.(71 V 7). Hence there are

Z3e : Zr(m V)] = 2= patrices D = (d') which fail this condition.

\Z;e (T1VvT2)|

The cardinality of the complex product Zy. (71 V 7o) = Zre(71) - Zje(72) is

| Ze(11)] - |25 (72)]
|Zone (11) - Ziye (12)| = 5 . :
A |Zze (1) N 25 (1))

Corollary 9.16. Let R be a rigid and p—reduced completely decomposable group
of rank n = 2r with an indexing T = (11, ... ,7,) of ils critical typeset. Suppose
that X = (T, ... ,T,) is an induced decomposition basis of R = p~“R/R. Let X
and Y be groups with the common regulator R such that R C X, Y C p“R. Let
a and b be bases of X/R and Y /R, respectively. Let
1 dq 1 dy
M = and N = 5
1 d, 1 d,

where dy, d), € Z;., be the representing matrices of X and Y relative to a and b.

(1) Then X and Y are nearly isomorphic uniform groups of C(T,p,e,r).

(2) Both groups have a finest direct decomposition X = @ _ Xn
and Y = @ _, Y, into indecomposable rank two summands, 1i.e.

rk X, =2 =r1kY,,.
(3) The groups X and 'Y are isomorphic, X =Y, if and only if
dy, € A - Zone (T V Trgom)
forallm=1,... r.

(4) The total number of pairwise non—isomorphic groups contained in the near—
isomorphism class of X is

H [Z;e : Z;e(Tm\/Tr+m)] =

m=1

(P p-1)
HTm:l ’Z;;e (T V Trgm)| .

Proof. The matrix rest blocks may be abbreviated by D = diag(dy, ... ,d,) and
D' = diag(d}, ... ,d.). The r-rowed identity matrix I, is a normed and invert-
ible matrix. Define ¢; = z; + x,4; and ¢; = T; + T,y; for ¢ = 1,... ;r. Then
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Z =(R,p%cy,...,p “c) is a uniform group with regulator R C Z C p~“R. The
ordered tuple € = (¢4,...,¢,) is a basis of X/R such that @ = (I, | I,) is the
representing matrix of Z/R relative to € and X.

(1) The rest blocks D and D’ of M and N are diagonally equivalent to I,. It
follows that X and Y are nearly isomorphic to Z. Hence both groups are uniform,
too.

(2) Define X, = (T, Trom)E + Zp~*(2p + Tpim) for m = 1,... ;7. Then we
have rk X,, =2 and X = @ _, X,

(3) The groups X and Y are isomorphic if and only if the submatrices D
and D’ are T-diagonally equivalent. Thus there are f; € Zr.(7;) such that
diag(d'y, ... ,d',) = diag(f;', ..., f7Y) - diag(dy, ... ,d,) - diag(fry1,-- ., fn) =
diag(f; 'difryrs ..., f7defn). This is equivalent to d', = dpfi fnsr € do -
L5 (Tim) Zoge (Tinyr) for allm =1,... 7.

(4) The groups X and Y are isomorphic if and only if the diagonal elements d,,
and d;, of the rest blocks D and D’ are in the same coset of Z;. (7, V 7, 11m). Hence

there are []7 _, [Z3e : Zi(Tw V Tyim)| matrices D' = diag(dy, ... , d.) which fail

this condition. O

Corollary 9.17. Let p be a prime and e a natural number. Let R = 1121 ... 0
Taz4 be a rigid and p—reduced completely decomposable group with critical typeset
T = (1,...,71). Let X € C(T,p,e,2) be an almost completely decomposable
group with requlator R such that X/R = (Zy)?. Let X = (T1,...,T,) be the
induced decomposition basis of R = p~°R/R and @ be an ordered basis of X/R.
Let the representing matriz M of X/R relative to X and @ be in Hermite normed
form with invertible rest block

== )

where o = \p™, B = pp' for some units X\, u and some integers 0 < m, [ < e.
Let Stab~(A) = {F =diag(f1,..., f1) | fj € Z3e(5), F;;AF>2 = A} denote
the stabilizer of A relative to the T—diagonal equivalence.

Let A# (§Y). Then
Staba(4) = {ding(fy, fo o) | f1 € Zip () N Zyp (), fo € Zip () N 2o (),
such that fo — f; € pemin(ml Lpe }.

The number of distinct isomorphism classes contained in the near—isomorphism
class of X 1is

@(p)3 p~minlmd) . |Stab(A)|

N = ]
Hj:l ‘Z;;e (Tj)|

If o or B is a unit in Zye, then

o — 1)) |y Zie (75)
H?:1 ‘Zze (Tj)|

N =
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Proof. Let Stab~, (A) = {D = diag(dy, ... ,ds) | d; € Zj, D;; AD<y = A} de-
note the stabilizer of A relative to arbitrary diagonal equivalence.  Let
Orbx, (A) = {DAD<, | D € DIAG(4;Z.)} denote the diagonal equivalence
class of A. Let Orbe(A) = {FAF.y | F € DIAG(T;Z;.)} denote the T-
diagonal equivalence class of A. Recall from Example 4.32 that Stab~  (A) =
{D = diag(dy,dy,dy,dy) | di,dy € Z. such that dy — d; € pemin(md 7, .1
and |Orbs, (A)] = @(p¢)?p~ mintml) = ple=s—minllm) (5, _ 1)3 We compute
Stab~(A) = DIAG(T'; Z;.) N Stabs,, (A) = {diag(f1, fo, f3, fa) | f; € Zye, f1 =

f3, f2 = fisuch that fo — f; € p¢™™n(mDZ .} and we get the claim. Clearly we
) [T, 125 ()
have | Orb~(A)| = [DIAG(T; Z;.) : Stab(A)] = =557~ By Theorem 8.8

the number of isomorphism classes within the near—isomorphism class of X is
_ [Orbe, (A)]  p(pf)*p~ ™0™ - | Stabe(A)]

N — —

| Orba(A)] [T, |Z:(7)|
If @ or §is a unit in Zy, then min(m,l) = 0 and we compute Stab~(A) =
{diag(f, 1. £, f) | f € ﬂ?zl Z.(75)}. Then the statement follows. O

10. RESULTING PROBLEMS

(1) The critical typeset of a local group can have several admissible orderings.
In general not all orderings are equally good. Is there a distinguished
ordering?

(2) There is a complete system of near-isomorphism invariants for uniform
groups, cf. [DO93] and [Mut99]. Does there exist a complete system
of near—isomorphism invariants for block-rigid groups with a primary
homocyclic regulator quotient and for rigid local groups?

(3) Is there a complete system of isomorphism invariants for rigid local groups?

(4) Does there exist a complete system of isomorphism invariants for groups
with isomorphic primary constituents?



[DOY3]

[Fuc73]
(KM84]

[Mad00]
[MMNO1]

[Mut99]

[Nah9s]

[Sch9g]
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