
The Forbidden Pattern Approach

to Concatenation Hierarchies

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Bayerischen Julius–Maximilians–Universität Würzburg

vorgelegt von

Heinz Schmitz

aus

Köln

Würzburg, 2000

Eingereicht am: 13.7.2000
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr. Klaus W. Wagner
2. Gutachter: Prof. Dr. Thomas Wilke
Tag der mündlichen Prüfung: 19.1.2001

Meinen Eltern.

Ich danke allen, die zum Entstehen dieser Arbeit beigetragen haben. Besonders
erwähnen möchte ich meinen Doktorvater Klaus W. Wagner, Christian Glaßer und
Thomas Wilke. Mein Dank gilt ebenso Sven Kosub, Heribert Vollmer, Christiane
Fahlberg und Nicholas Dickety.

Weiterhin möchte ich der Deutschen Forschungsgemeinschaft (DFG) für ihre fi-
nanzielle Unterstützung im Rahmen der Projekte Wa 847/1-2 undWa 847/4-1 danken.

Table of Contents

List of Figures . 5

Introduction . 7

1. Concatenation Hierarchies . 15
1.1 Definition of Concatenation Hierarchies . 15
1.2 Alternative Definitions and Normal Forms . 17

1.2.1 Polynomial Closure and Boolean Closure . 18
1.2.2 Comparing Hierarchies: Proof of Theorem 1.8 . 21
1.2.3 Normal Forms and Closure Properties . 24

1.3 The Dot–Depth Problem . 26
1.3.1 Logical Characterizations . 27
1.3.2 Leaf Languages for Complexity Classes . 27

1.4 Connecting STH and DDH . 29
1.4.1 Block Decomposition of Words . 29
1.4.2 Connecting L1/2 and B1/2 . 30
1.4.3 More Concatenation Hierarchies . 33

1.5 Finite Automata and Forbidden Pattern Classes . 34

2. Dot–Depth One . 39
2.1 Subword Relations . 39

2.1.1 Basic Properties and Elementary k-Extensions . 40
2.1.2 Well Partial Ordered Sets . 42

2.2 The Classes B1/2,k . 43
2.2.1 Order Ideals and Closure Properties . 43
2.2.2 Forbidden Pattern Characterization . 45

2.3 Stern’s Theorem . 48
2.4 The Boolean Hierarchy over B1/2,k . 50

2.4.1 A Membership Criterion . 50
2.4.2 Strictness and Decidability Results . 52

2.5 The Boolean Structure of Dot–Depth One . 59
2.6 Forbidden Pattern Characterization of B1 . 62
2.7 Discussion and Bibliographic Notes . 64

2 Table of Contents

3. Deterministic Languages and Restricted Temporal Logic 67
3.1 Generalized Deterministic Languages . 67
3.2 Forbidden Pattern Characterization of Dleftk and Drightk . 68

3.2.1 Basic Properties . 69
3.2.2 Forbidden Pattern Characterization: Proof of Theorem 3.5 71

3.3 Restricted Temporal Logic . 75
3.3.1 Definitions and Known Results . 75
3.3.2 From Logic to Languages and Back . 78
3.3.3 The Next Hierarchy . 80

3.4 Relations to Concatenation Hierarchies . 81
3.5 RTL–definable Languages and their Relation to ∆p2 . 84
3.6 Discussion and Bibliographic Notes . 88

4. Dot–Depth 3/2 . 91
4.1 How to find Automata Loops in Words . 93

4.1.1 How to find One Loop . 93
4.1.2 Proof of Theorem 4.3 . 96

4.2 A Normal Form for B3/2,k . 96

4.2.1 A Normal Form for B̃3/2,k . 97

4.2.2 Basic Properties of B̃3/2,k . 99
4.2.3 Proof of Theorem 4.9 . 102

4.3 Forbidden Pattern Characterization of B3/2,k . 104
4.3.1 The Easy Inclusion . 105
4.3.2 The More Complicated Inclusion . 107
4.3.3 Strictness and Decidability Results . 114

4.4 Forbidden Pattern Characterization of B3/2 . 115
4.4.1 Proof of Theorem 4.32 . 116
4.4.2 Decidability Results . 118

4.5 Discussion and Further Consequences . 119

5. A Theory of Forbidden Patterns . 121
5.1 Pattern Iteration . 123

5.1.1 How to Define Iterated Patterns . 123
5.1.2 Some Technical Results . 124

5.2 Pattern Iterator versus Polynomial Closure . 129
5.2.1 Proof of Theorem 5.13 . 129
5.2.2 Inclusion Relations . 132
5.2.3 Decidability of Pattern Classes . 133

5.3 Discussion . 135

6. Lower Bounds and a Decidability Result for the STH 139
6.1 Consequences for Concatenation Hierarchies . 139

6.1.1 DDH and STH versus Pattern Classes . 139
6.1.2 Pattern Classes are Starfree . 142
6.1.3 Strictness of Pattern Hierarchies . 143
6.1.4 Lower Bounds and a Conjecture for the Dot–Depth Problem 146

Table of Contents 3

6.2 L5/2 is Decidable for Two–Letter Alphabets . 147
6.2.1 Changing the Alphabet . 148
6.2.2 Transformation of Patterns . 150
6.2.3 Transformation of Expressions . 155

6.3 Discussion . 161

Bibliography . 163

Index . 169

4 Table of Contents

List of Figures

1.1 Concatenation hierarchies of star–free languages . 17
1.2 Connecting STH and DDH . 35

2.1 Forbidden pattern L 1/2 for L1/2 . 46
2.2 Forbidden pattern B 1/2 for B1/2 . 46
2.3 Forbidden pattern B 1,k for B1,k . 49

2.4 Forbidden pattern B̂ 1,k for B1,k . 49

2.5 Forbidden pattern B̂ rev
1,k for B1,k . 49

2.6 The Boolean structure of B1 . 60
2.7 Forbidden pattern B 1 for B1 . 62
2.8 Forbidden pattern D for B1 . 62
2.9 Forbidden pattern D rev for B1 . 62

3.1 Forbidden pattern D k for Dleftk . 69

3.2 Forbidden pattern D rev
k for Drightk . 69

3.3 Classes of generalized deterministic languages . 82
3.4 Example automaton . 83
3.5 Pattern of type 1 . 85
3.6 Pattern of type 2 . 85
3.7 Pattern of type 3 . 85
3.8 Pattern of type 4 . 85

4.1 Forbidden pattern L 3/2 for L3/2 . 92
4.2 Forbidden pattern B 3/2,k for B3/2,k . 105
4.3 Forbidden pattern B 3/2 for B3/2 . 115
5.1 Forbidden pattern for B1/2, revised . 121
5.2 Forbidden pattern for B3/2, revised . 122
5.3 Forbidden pattern for L1/2, revised . 122
5.4 Forbidden pattern for L3/2, revised . 123
5.5 Example of the appearance of a pattern at some state . 136
5.6 Example of a connection of two states via a pattern . 136

6.1 Concatenation hierarchies and forbidden pattern classes . 140
6.2 Pattern W n . 144
6.3 AutomatonMn with pattern W n . 145
6.4 Forbidden pattern P L

2 for FPL
2 . 147

6 List of Figures

Introduction

The study of the class of regular languages and its subclasses has a long tradition, start-
ing with characterizations in terms of regular expressions, finite automata, finite monoids,
equivalence relations and monadic second order logic [Kle56, Myh57, Ner58, Tra58, Büc60].
This thesis looks at the subclass formed by star–free languages, i.e., languages that can
be described by regular expressions using only Boolean operations and concatenation. In
particular, iteration (the Kleene star) is not allowed. Also for this subclass various char-
acterizations have been obtained. A celebrated theorem by Schützenberger [Sch65] states
that a regular language is star–free if and only if it can be recognized by an aperiodic finite
monoid. Since a recognizing monoid can be computed from a given regular language, and
since its aperiodicity can be effectively determined, this yields a decision algorithm for the
membership problem of the class of star–free languages. Other characterizations in terms of
permutation–free finite automata and first–order logic go back to the work of McNaughton
and Papert [MP71], while a characterization by loop–free alternating finite automata is given
in [SY00]. Moreover, several authors have drawn the connection to propositional temporal
logic [Kam68, MP71, GPSS80, CPP93, EW96, TW96, Wil99]. Along these lines, further
subclasses have attracted a lot of attention, among them the locally testable languages,
the piecewise testable languages and their variations, which are matter of classical results
[BS73, McN74, Sim75, BF80] as well as present work, e.g., [Tra99]. For an overview on star–
free languages we refer to [Pin95, Pin96, Tho96].
Brzozowski and Cohen were the first to ask the following natural question [CB71]. Suppose

we count the number of alternations in star–free expressions between Boolean operations on
one hand and concatenation on the other hand. Given a star–free language L, what is the
minimal number of such alternations needed to define L? The distinction between these
two kinds of operations reflects that Boolean operations are combinatorial in nature while
concatenation is a sequential operation. In fact, we can think of the number of unavoidable
alternations as a natural complexity measure for star–free languages. The question whether
there exists an algorithm that determines for a given language its alternation complexity
became famous as the dot–depth problem.
If we start with a class of languages having a neglectable complexity in these terms, we

obtain classes of more complex languages by taking repeatedly the closure of this class under
Boolean operations and concatenation. This leads to so–called concatenation hierarchies that
exhaust the class of star–free languages. Prominent examples are the dot–depth hierarchy,
first studied in [CB71], and the Straubing–Thérien hierarchy [Str81, Thé81, Str85] which both
formalize the dot–depth problem in terms of hierarchy classes: the dot–depth of a language
L is just the minimal level in the dot–depth hierarchy that contains L. Both concatenation
hierarchies are closely related to each other and it is known that there are languages of
arbitrary dot–depth [BK78, Tho84].

8 Introduction

A seemingly weaker form of the dot–depth problem is to solve the membership problem
of a fixed level of such a hierarchy. Clearly, if this can be done for all levels in some uniform
way, this also yields a solution to the dot–depth problem. A lot of effort has been invested
in the last thirty years to cope with the levelwise membership problems. However, it seems
to be a very difficult task and results are known only for some lower levels. The dot–depth
problem was considered recently as one of the most important open questions on regular
languages [Pin98]. To our knowledge, the membership problems of levels 1/2, 1 and 3/2 of
both hierarchies are known to be decidable [Sim75, Kna83, Arf87, PW97, GS00d] while the
question is open for any other level. Partial results are known for level 2 [Str88] and level 5/2
[GS00b] of the Straubing–Thérien hierarchy which are decidable if a two–letter alphabet is
considered (among others, the latest results for level 3/2 of the dot–depth hierarchy and level
5/2 of the Straubing–Thérien hierarchy will be presented in this thesis). It should be noted
that—due to the difficulties to find a solution to the dot–depth problem—some researchers
tend to look for undecidability results. We do not follow these lines here, but think one should
have this in mind.
Levelwise connections have been exposed from concatenation hierarchies to other fields of

research, e.g., to finite model theory [Tho82, PP86], to the theory of finite semigroups [Str85,
PW97], to complexity theory [HLS+93] and others. Consequently, the dot–depth problem can
be rephrased in these terms and various methods are at hand to attack the problem—however,
none of them being successful in general so far. On the other hand, the dot–depth problem
itself has stimulated a lot of research activities, resulting in new fundamental insights into
the class of regular languages. To begin with, mention must be made of the algebraic theory
of finite semigroups. Many of the results cited above have been obtained within this theory
([Pin96] gives an overview). For instance, in [Str85] it is shown that level n of the dot–depth
hierarchy (for integer n) is decidable if and only if level n of the Straubing–Thérien hierarchy
is decidable, which is a simplification of the dot–depth problem.
We may assume that regular languages are presented by deterministic finite automata

(DFA, for short). Note that there are standard algorithms to pass from a representation by
automata, expressions and semigroups one to another. Consider again the class of star–free
languages. It is shown in [MP71] that a language L is star–free if and only if the minimal DFA
M accepting L is permutation–free. The latter means that there is no word w that induces
a cycle of the following type in the transition graph ofM: there are pairwise distinct states
s1, s2, . . . , sm for some m ≥ 2 such thatM moves on input w from si to si+1 for all 1 ≤ i ≤ m
(with sm+1 =def s1). So w induces a non–trivial permutation on a subset of states ofM. This
type of cycle is in fact an example of a forbidden pattern (i.e., a forbidden subgraph) in the
transition graph of a DFA, and by the cited result, this forbidden pattern characterizes the
class of star–free languages. It is known that the problem to decide from a DFA whether it
has this pattern in its transition graph is complete for PSPACE [CH91].
We carry over in this thesis the forbidden pattern approach to subclasses of star–free

languages, i.e., we look for results of the type “L belongs to the class C if and only if an
accepting DFA does not have pattern P in its transition graph.” The major advantage of such
a characterization is that it implies decidability of the membership problem of C because the
existence of a certain subgraph can be effectively verified if a transition graph is given (at least
in all reasonable cases). But such a result says even more: it reflects the effect of language
operations in the structure of automata. One can understand a forbidden pattern as the
particular property that cannot be expressed due to the limited resources of the characterized

Introduction 9

class. In general, forbidden pattern characterizations are far from being easy to achieve.
However, we consequently follow this approach in connection with concatenation hierarchies.
There are more examples of forbidden pattern characterizations in the literature. In

[Ste85a] a levelwise characterization of dot–depth one languages is given, and in [CPP93]
conditions on certain varieties of finite semigroups are translated to forbidden patterns in or-
der to obtain decision procedures for these classes. In [Wil98, Wil99] syntactical fragments of
temporal logic are investigated, using forbidden patterns to determine their expressive power.
Finally, the known decidability results of level 1/2 and level 3/2 of the Straubing–Thérien
hierarchy from [Arf91], and of level 1/2 of the dot–depth hierarchy, are given in [PW97] in a
forbidden pattern manner. We come back to these results throughout the exposition.
Before we give a chapter overview, we want to make a general bibliographic remark. The

clarification of definitions in Section 1.2 and the results of Chapters 4, 5 and 6 were obtained
by the author in joint work with Christian Glaßer, Würzburg. Chapters 2 and 3 and the
remaining parts of Chapter 1 are due to the author.

Overview

The thesis has two major parts. Besides the introductory Chapter 1, the larger first part com-
prises Chapters 2 to 4 which share a common viewpoint: we parameterize the relation between
the dot–depth hierarchy and the Straubing–Thérien hierarchy in terms of the number of con-
secutively specified letters in a language definition (taking up an idea from [Sim72, Str85]).
Using this together with the forbidden pattern approach, we look in the first part at the fine
structure of level 3/2 in these hierarchies. Hereby we provide alternative proofs of virtually
all previously known decidability results for concatenation hierarchies, we significantly re-
fine these results and obtain a complete overview on the structure of the lower levels. And
we make progress on the dot–depth problem by proving the decidability of level 3/2 of the
dot–depth hierarchy.
Chapters 5 and 6 form the second part. Here we generalize from what we have achieved

so far and develop an abstract theory of forbidden patterns. We apply this theory to the
dot–depth hierarchy and the Straubing–Thérien hierarchy and show a lower bound result for
the dot–depth problem. And we prove the decidability of level 5/2 of the Straubing–Thérien
hierarchy in case of a two–letter alphabet.
Each chapter starts with references to the main theorems. There is a discussion section at

the end of every chapter with more bibliographic notes and an outlook to further research.

Chapter One

This chapter has an introductory character. Fix some finite alphabet A with |A| ≥ 2, denote
by Pol(C) the closure of a language class C under finite union and concatenation and let
BC(C) denote its closure under Boolean operations. We define the classes Bn/2 of the dot–
depth hierarchy (DDH, for short) and the classes Ln/2 of the Straubing–Thérien hierarchy
(STH, for short) as follows:

B1/2 =def Pol({ {w} |w ∈ A+ } ∪ {A+}) L1/2 =def Pol({A∗aA∗ | a ∈ A })
Bn+1 =def BC(Bn+1/2) for n ≥ 0 Ln+1 =def BC(Ln+1/2) for n ≥ 0
Bn+3/2 =def Pol(Bn+1) for n ≥ 0 Ln+3/2 =def Pol(Ln+1) for n ≥ 0

10 Introduction

Starting with two different classes for level 1/2, the higher levels of both hierarchies are defined
via the alternating application of the same closure operations. We immediately obtain from
the definitions that both hierarchies are mutually comparable by inclusion. However, other
definitions of the DDH and STH can be found in the literature, e.g., in [PW97] and we show
that these coincide with ours (up to the empty word). As a consequence, we may carry over
known closure properties and normal form results from [Arf91, PW97, Gla98].
Then we recall the dot–depth problem in terms of hierarchy classes, state the correspon-

dence to first–order logic from [Tho82, PP86] and draw connections to complexity theory via
the leaf language approach to define complexity classes [BCS92, Ver93, HLS+93].
If we compare L1/2 with B1/2 we see that we can specify two or more consecutive letters in

one case while only one letter may be fixed in the other. This observation leads in a natural
way to a parametrization of the relation between STH and DDH in terms of the maximal
block length k + 1 for k ≥ 0 that is allowed to specify. It is useful in this context to look
at words by taking together each k + 1 consecutive letters. We call the sequence of these
blocks the k-decomposition of a word (k indicates the number of overlapping letters). Then
we introduce classes B1/2,k for k ≥ 0 such that L1/2 = B1/2,0 and B1/2 is the union over all
B1/2,k. For fixed k ≥ 0, we take B1/2,k as level 1/2 of a concatenation hierarchy and define
for n ≥ 1 classes Bn/2,k just as in the case of the DDH and STH. It holds for all n ≥ 1
that Ln/2 = Bn/2,0 and Bn/2 is the union over all Bn/2,k for k ≥ 0. The idea of looking at a
parameterization in terms of block lengths is from [Sim72] for dot–depth one and from [Str85]
for the general case.
Finally, we turn in this chapter to deterministic finite automata. We make precise what we

understand under a forbidden pattern P in a transition graph and what we mean by FP(P):
it is the class of all regular languages L such that there exists some DFA accepting L which
does not have P in its transition graph. Results of the type ‘C = FP(P)’ for language classes
C are called forbidden pattern characterizations.

Chapter Two

We contribute in this chapter to the study of languages having dot–depth one. To our knowl-
edge, B1 is the highest level of the DDH which is closed under Boolean operations and which
is known to be decidable. The decidability of B1 was first shown with an algebraic approach
in [Kna83]. From characterizations via families of equivalence relations [Sim72] several sub-
hierarchies in B1 can be derived. One can show that the family of classes B1,k for k ≥ 0 is the
so–called γ–hierarchy [Brz76], first studied in [Sim72]. The decision algorithms for B1 have
been investigated in [Ste85a, Ste85b] and the membership problem is known to be complete
for NL [CH91]. Besides the connections to first–order logic and complexity theory there is
also a relation to Boolean circuits, recently studied in [MPT00]. But it is not only its location
in the DDH that makes B1 an interesting class to look at. It can also be viewed as the natural
generalization of the two notions of local and piecewise testability which both have gained
much attention [BS73, McN74, Sim75, TW85, BP89, Str94]. In fact, B1,0 = L1 is the class of
piecewise testable languages, shown to be decidable in [Sim75].
We contribute in two ways. First, we look at the classes B1/2,k for k ≥ 0. We recall a

generalization of the subword relation introduced in [Ste85a] and prove that these relations
�k for k ≥ 0 have a fundamental property: �k is a well partial order on A+. This generalizes
the well–known result of this type for the usual subword relation from [Hig52]. Then we show

Introduction 11

that B1/2,k is the class of all order ideals of (A+,�k) and we provide a forbidden pattern
characterization: it holds that B1/2,k = FP(B 1/2,k) for a certain pattern B 1/2,k. With the
latter we show how the forbidden pattern L 1/2 for L1/2 turns in a natural way into the
forbidden pattern B 1/2 for B1/2 as k increases. We will observe and exploit this mechanism
again in Chapters 3 and 4.
Second, we consider the classes B1,k for k ≥ 0. We restate the main result from [Ste85a]

which gives various characterizations and which we refine in the following way. It is shown
in [Ste85a] that a language L belongs to B1,k if and only if L induces only a finite number
of alternations in �k-chains. We prove that the maximal number of such alternations with
respect to L determines the location of L in the Boolean hierarchy over B1/2,k. This has
the mentioned finiteness condition as a corollary, and we use our characterization to obtain
strictness and decidability results for the Boolean hierarchy over B1/2,k (note that the Boolean
hierarchy over B1/2,k exhausts B1,k). The decidability of these classes has been independently
studied using a logical approach in [Sel01]. Such results are also known for the Boolean
hierarchy over B1/2 [Gla99] and taking them into account we obtain a complete overview
over the Boolean structure of B1. In particular, we identify a landscape that allows to study
the question whether or not there exists a trade–off in B1 between the parameter k on one
hand and Boolean operations on the other hand. Both can be understood as a measure of the
descriptional complexity of dot–depth one languages. Finally, we derive a forbidden pattern
characterization of B1 and show that B1 = FP(B 1) for some pattern B 1.

Chapter Three

This chapter deals with deterministic languages and restricted temporal logic. Let us recall
right deterministic languages from [Eil76], see also [BF80, Pin86, CPP93]. A language is
called right deterministic if it is a finite union of languages A∗

0a1A
∗
1 · · · anA∗

n with Ai ⊆ A
and ai �∈ Ai. We adapt with little modifications the notion of right deterministic languages
to k-decompositions of words and introduce right k-deterministic languages. For fixed k ≥ 0
we prove a forbidden pattern characterization of the class Drightk of right k-deterministic

languages and show that Drightk = FP(D rev
k) for some pattern D rev

k .
As it turns out, there are close connections to restricted temporal logic (RTL, for short).

The latter is a fragment of temporal logic (more precisely: propositional linear–time temporal
logic), a formalism to describe events occurring over time. The ability of temporal logic to
express temporal properties has been recently investigated and surveyed in [Wil99], see also
[Wil98]. There the expressive power of fragments obtained by omitting one or the other of
the usual temporal operators next (X), eventually (F) and until (U) have been studied. In
case of restricted temporal logic RTL the use of U is not allowed.
Several proofs are known for the fact that formulas involving all three operators together

with Boolean connectives (interpreted over finite words) yield the star–free languages [Kam68,
MP71, GPSS80, CPP93, Wil99]. A natural hierarchy of star–free languages emerges from
counting the nesting depth in U. This until–hierarchy was introduced and shown to be strict
in [EW96] while its decidability goes back to [TW96]. Interestingly, this is an example of
a strict hierarchy exhausting the class of star–free languages with decidable membership
problems. However, there is a family of languages in B3/2 separating all levels of the until–
hierarchy, so the necessity of a large nesting depth in U to define languages does not imply
a large dot–depth [EW96].

12 Introduction

Note that RTL is just the zero level of the until–hierarchy. Effective characterizations in
terms of forbidden patterns for RTL are known from [CPP93]. In case X is also forbidden this
was done in [CPP93, EW96]. Observe also that in the latter case we are not allowed to specify
the next event while in the former the unrestricted use of X is possible. A natural way to
further classify RTL is to restrict the nesting depth in the next operator X. We introduce the
so–called next hierarchy. It formalizes in terms of hierarchy classes the question of how many
nested uses ofX are needed to express a certain property in restricted temporal logic. Then we
prove that the languages in level k of the next hierarchy are exactly the right k-deterministic
languages. As the main result of this chapter we show that the following concepts to define
languages in fact coincide:

(1) L is definable by an RTL formula having next depth at most k.
(2) L is a finite union of right k-deterministic languages.
(3) Any DFA accepting L does not have pattern D rev

k in its transition graph.

The third statement allows to give concise proof of strictness and decidability results for the
next hierarchy. Moreover, we see that our generalized deterministic languages are exactly the
languages definable in restricted temporal logic. We also investigate in detail the relation
of the next hierarchy to the DDH and STH. At the end of the chapter we come back to
complexity theory and show how languages definable in restricted temporal logic and the
complexity class ∆p2 are related.

Chapter Four

We turn to level 3/2 of the DDH and show its decidability which answers an open question
from [Pin96, PW97]. To obtain this result we recall from Chapter 2 how one can prove an
effective characterization of B1/2 using the forbidden pattern B 1/2,k for B1/2,k together with
a bound on k in the size of a given DFA. This is fairly easy in case of B1/2 and something
similar can be observed in case of right k-deterministic languages. We follow this approach
one more time and consider the classes B3/2,k for fixed k ≥ 0.
As a first step we carry over the normal form result for L3/2 = B3/2,0 known from [Arf91]

to B3/2,k for arbitrary k. One of the main technical contributions in this chapter is the proof
of a forbidden pattern characterization of B3/2,k, i.e., we show that B3/2,k = FP(B 3/2,k) for
a certain pattern B 3/2,k. It implies the decidability of B3/2,k for fixed k ≥ 0 and enables us to
prove the strictness of the hierarchy of classes B3/2,k for k = 0, 1, 2 Since we encounter in
case k = 0 level 3/2 of the STH we provide as a by–product another proof of the decidability
result for this class. Note that the previous proofs in [Arf91] and [PW97] use deep results
from [Has83] and [Sim90], respectively.
With help of our generalization to arbitrary k we identify a single forbidden pattern B 3/2

that must occur if k is large in comparison to the alphabet size and the size of the DFA.
This pattern characterizes B3/2 and implies the announced result which extends the known
decidability results for the DDH. It has consequences in first–order logic and the algebraic
theory of finite semigroups. At the beginning of the chapter we develop a combinatorial tool
that allows to partition words of arbitrary length into factors of bounded length such that
every second factor u leads to a loop with label u in a given DFA.

Introduction 13

Chapter Five

We follow the idea of forbidden pattern characterizations in a more general way and develop a
method for a uniform definition of hierarchies via iterated patterns in transition graphs. Based
on the previous result for B3/2 we observe how the forbidden pattern B 1/2 characterizing B1/2
acts as a building block in the forbidden pattern B 3/2 that characterizes B3/2. Surprisingly,
we find this observation confirmed if we compare the pattern L 1/2 for L1/2 with the pattern
L 3/2 for L3/2 after an appropriate rewriting of the latter. Note from the definition above that
we get in both cases with the same language operations from one level to the next. Together,
this motivates the introduction of an iteration rule IT on patterns which continues the just
observed formation procedure.
In general, starting with some initial pattern I, our iterator generates for n ≥ 0 classes

of patterns P I
n which in turn define language classes FP(P I

n) as usual by prohibiting the
patterns P I

n in transition graphs. For a class C of languages let coC denote the class of their
complements. We prove that

FP(P I
n) ∪ coFP(P I

n) ⊆ FP(P I
n+1) ∩ coFP(P I

n+1)

and as the main technical result in this chapter that

Pol(coFP(P I
n)) ⊆ FP(P I

n+1).

With the latter we relate in a very general way Boolean operations and concatenation to the
structural complexity of transition graphs. We show that the membership problems of the
classes FP(P I

n) for fixed n ≥ 0 are efficiently decidable if that is true for n = 0.

Chapter Six

We consider in this chapter particular initial patterns B and L such that FP(P B
0) = B1/2 and

FP(P L
0) = L1/2. It follows from our general results in Chapter 5 and from our characterization

B3/2 = FP(B 3/2) in Chapter 4 that

B1/2 = FP(P B
0) L1/2 = FP(P L

0)

B3/2 = FP(P B
1) L3/2 = FP(P L

1)

Bn+1/2 ⊆ FP(P B
n) Ln+1/2 ⊆ FP(P L

n)

Moreover, we see that all classes FP(P B
n) and FP(P L

n) have decidable membership problems
and that they form hierarchies that exhaust the class of star–free languages. The inclusions
above imply in particular a lower bound algorithm for the dot–depth of a given language L.
One just has to determine the class FP(P B

n) for minimal n to which L belongs, and it follows
that the dot–depth of L is strictly greater than n − 1/2 (another lower bound result for
dot-depth n is known from [Wei93]). Then we provide some arguments that the forbidden
pattern classes are not too large, e.g., if for n ≥ 2 they were all equal to the class of star–free
languages nothing would be won. For this end, we provide more structural similarities between
the DDH and STH and the hierarchies of forbidden pattern classes: all hierarchies show the
same inclusion structure and, interestingly, the typical languages that separate the levels of
the DDH and STH also separate levelwise our forbidden pattern hierarchies. In particular, it
holds that FP(P L

n) does not capture Bn+1/2.

14 Introduction

So here we introduce two strict and decidable hierarchies of star–free languages that are
comparable (at least in one direction) to the DDH and STH. Up to now we have no evidence
against the coincidence of the concatenation hierarchies and the respective forbidden pattern
classes which we state as a conjecture (note that this would solve the dot–depth problem).
In the second part of the chapter we prove that even L5/2 = FP(P L

2) holds if a two–
letter alphabet is considered, i.e., in this special case we can show the reverse inclusion. The
forbidden pattern characterization of L5/2 implies in particular its decidability in the two–
letter case which extends the known results for the STH and has consequences in first–order
logic. To obtain this result we show something more general: whenever it holds that Bn+1/2 =
FP(P B

n) for some n ≥ 1 and arbitrary alphabets then it follows that Ln+3/2 = FP(P L
n+1) in

case of a two–letter alphabet. Since the prerequisite of this implication holds for n = 1 by
our previous work we obtain L5/2 = FP(P L

2) for two–letter alphabets.

The forbidden pattern approach turns out to be a useful method in the context of con-
catenation hierarchies. It leads to new insights in the structure of the classes at the lower
end and it allows to push the line of decidability in the DDH and in the STH a little higher
than previously known. Moreover, it provides several promising starting points for further
investigations and seems to have the capability to be successful in the general case.

Publications

The following papers contain results presented in this thesis.

[GS00c] C. Glaßer and H. Schmitz, Decidable hierarchies of starfree languages.
Proceedings FST TCS 2000, 20th Conference on the Foundations of Software
Technology and Theoretical Computer Science, LNCS 1974, pages 503–515,
Springer Verlag, 2000.

[GS00a] C. Glaßer and H. Schmitz, The Boolean structure of dot–depth one.
Preproceedings DCAGRS 2000, Second International Workshop on Descrip-
tional Complexity of Automata, Grammars and Related Structures, London,
Ontario, July 27-29, 2000.

[GS00d] C. Glaßer and H. Schmitz, Languages of dot-depth 3/2.
Proceedings STACS 2000, 17th Symposium on Theoretical Aspects of Com-
puter Science, LNCS 1770, pages 555–566, Springer Verlag, 2000.

[Sch00] H. Schmitz, Restricted temporal logic and deterministic languages.
Journal of Automata, Languages and Combinatorics, 5(3): 325–341, 2000.

These and the technical reports [Sch99a, Sch99b, GS99, GS00b] relate to the single chapters
of this thesis as follows.

– The content of Chapter 2 is from [Sch99a] and appeared together with [Gla99] as [GS00a].
– The results of Chapter 3 are from [Sch99b] which appeared as [Sch00].
– Chapter 4 is from [GS99] published as [GS00d].
– Chapters 5 and 6 contain the material from [GS00b], partially published as [GS00c].

1. Concatenation Hierarchies

We start this introductory chapter with some basic notations, more will be given as we
continue. We fix some arbitrary finite alphabet A with |A| ≥ 2. Elements of A are called
letters and a word over A is a finite (possibly empty) concatenation of letters from A. The
empty word is denoted by ε and the set of all (non–empty) words over A is denoted by A∗

(A+, respectively). For w ∈ A∗ we denote by |w| its number of letters. A language L is a
subset of A+ and we call a set of languages also a class of languages . If L may contain ε
we explicitely mention that L is a subset of A∗. Forthcoming definitions of languages will be
made with respect to our fixed alphabet A and we will take care that it is clear from the
context if we deal with a particular alphabet. If w ∈ A∗ and L ⊆ A∗ we define the left and
right residuals of L as w−1L =def { v ∈ A∗ |wv ∈ L } and Lw−1 =def { v ∈ A∗ | vw ∈ L }. We
write P(B) for the powerset of an arbitrary set B. Moreover, for a class C of languages we
denote by coC =def {A+ \ L |L ∈ C } the set of complements with respect to A+.
Regular languages over A are built up from the empty set and the singletons {a} for a ∈ A

using Boolean operations (finite union, finite intersection and complementation), concatena-
tion and iteration. The subclass of star–free languages SF over A is of particular interest
for us. Here the iteration operation is not allowed, and—since we look at subsets of A+—
complements are taken with respect to A+. For background on regular languages we refer to
any standard textbook, e.g., [HU79].

1.1 Definition of Concatenation Hierarchies

A natural approach to further classify star–free languages is to look at the two different
kinds of remaining operations: Boolean operations on one hand and concatenation on the
other hand. If we emphasize the number of their alternating uses, this leads to the notion of
concatenation hierarchies. The DDH and the STH are well–known concatenation hierarchies.
To state their definition below, we specify closure operations on language classes. Denote for
a class C of languages its closure under finite (possibly empty) union by FU(C). Moreover,
we set

Pol(C) =def FU({L0L1 · · ·Ln |n ≥ 0 and Li ∈ C })
as the polynomial closure of C. Note that Pol(C) is exactly the closure of C under finite
(possibly empty) union and finite (non–empty) concatenation. Furthermore, C is a subset of
the polynomial closure of C. For a second closure operation we consider Boolean operations.
We denote the Boolean closure of a class C of languages of A+ by BC(C) (as before, taking
complements with respect to A+).

16 1. Concatenation Hierarchies

Definition 1.1 (DDH). The classes of the dot–depth hierarchy are defined as

B1/2 =def Pol({ {w} |w ∈ A+ } ∪ {A+}),
Bn+1 =def BC(Bn+1/2) for n ≥ 0 and
Bn+3/2 =def Pol(Bn+1) for n ≥ 0.

Definition 1.2 (STH). The classes of the Straubing–Thérien hierarchy are defined as

L1/2 =def Pol({A∗aA∗ | a ∈ A }),
Ln+1 =def BC(Ln+1/2) for n ≥ 0 and
Ln+3/2 =def Pol(Ln+1) for n ≥ 0.

Note that {w} and A+ as the complement of the empty set, and also A∗aA∗ can be considered
as simple languages in terms of alternation complexity with respect to Boolean operations
and concatenation. We call the introduced classes also the levels of the DDH and STH where
for integers n levels n are called full levels, and levels n + 1/2 are called half levels. The
discussion in the forthcoming section, Section 1.2, relates these definitions to other definitions
of concatenation hierarchies known from literature. The following inclusion relations in each
hierarchy are easy to see from the definitions.

Proposition 1.3. For n ≥ 0 it holds that Bn+1/2 ∪ coBn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 ∩ coBn+3/2
and Ln+1/2 ∪ coLn+1/2 ⊆ Ln+1 ⊆ Ln+3/2 ∩ coLn+3/2.
We can also compare one hierarchy to the other by inclusion.

Proposition 1.4. For n ≥ 1 it holds that

1. Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2,
2. coLn−1/2 ⊆ coBn−1/2 ⊆ coLn+1/2 and
3. Ln ⊆ Bn ⊆ Ln+1.
Proof. Since for all a ∈ A it holds that A∗aA∗ = {a} ∪ aA+ ∪ A+a ∪ A+aA+ ∈ B1/2 we
obtain L1/2 ⊆ B1/2. Moreover, it holds that A+ =

⋃
a∈AA∗aA∗ ∈ L1/2, and for w ∈ A+ with

w = a1 · · · an for letters ai ∈ A and n ≥ 1 we obtain

{w} = A∗a1A∗ · · · anA∗︸ ︷︷ ︸
∈L1/2

∩
(
A+ \

⋃
b1,...,bn+1∈A

A∗b1A∗ · · · bn+1A∗

︸ ︷︷ ︸
∈L1/2

)
∈ L1.

In particular, A+ ∈ L3/2 and w ∈ L3/2 for all w ∈ A+ from which we get B1/2 ⊆ L3/2. So we
have seen L1/2 ⊆ B1/2 ⊆ L3/2 and the proposition follows from the monotony of Pol(·) and
BC(·), and complementation. ❑

It is easy to see that the classes Bn for n ≥ 1 coincide with the ones studied in [Eil76]. In par-
ticular, it is shown in [Eil76, Chapter IX.4] that

⋃
n≥1 Bn = SF. Together with Proposition 1.4

we see the following.

Proposition 1.5. It holds that
⋃

n≥1Ln/2 =
⋃

n≥1 Bn/2 = SF.
Figure 1.1 gives an overview.

1.2 Alternative Definitions and Normal Forms 17

star-free

L1

L2

coL3/2

coL5/2

coL1/2

L3/2

L5/2

L1/2

L3

B1

B2

coB3/2

coB5/2

coB1/2

B3/2

B5/2

B1/2

Fig. 1.1. Concatenation hierarchies of star–free languages. Inclusions hold from bottom to top.

1.2 Alternative Definitions and Normal Forms

The dot–depth hierarchy and the Straubing–Thérien hierarchy have gained much attention
due to the still pending dot–depth problem (see Section 1.3 below). The purpose of this
section here is to make our work comparable to other investigations from the literature and
to take over known results to our notations. So we discuss alternative definitions and there
are two points to look at. First, one finds other versions of the polynomial closure operation
in the literature. Let C be a class of languages. Here are the definitions of the polynomial
closure as chosen, e.g., with an algebraic approach recently in [PW97].

PolL(C) =def FU({L0a1L1 · · · anLn |n ≥ 0, Li ∈ C and ai ∈ A })
PolB(C) =def FU({u0L1u1 · · ·Lnun |n ≥ 0, Li ∈ C, ui ∈ A∗ and if n = 0 then u0 �= ε })

A second point is that languages may be defined in a way such that they contain the empty
word. So we also want to see if that makes any difference. It is pointed out, e.g., in [Pin95]
that this is a crucial point in the theory of varieties of finite semigroups. We denote the
Boolean closure of a class D of languages of A∗ by BC∗(D) (here taking complements with
respect to A∗). Moreover, let co∗D =def {A∗ \ L |L ∈ C } denote the set of complements with
respect to A∗.

18 1. Concatenation Hierarchies

Definition 1.6 (DDH due to [Pin96]). Let B+1/2 be the class of all languages of A+ that
can be written as finite unions of languages of the form u0A

+u1 · · ·A+um where m ≥ 0 and
ui ∈ A∗. For n ≥ 0 let B+n+1 =def BC(B+n+1/2) and B+n+3/2 =def PolB(B+n+1).

Definition 1.7 (STH due to [Str81, Thé81]). Let L∗
1/2 be the class of all languages of

A∗ that can be written as finite unions of languages of the form A∗a1A∗ · · · amA∗ wherem ≥ 0
and ai ∈ A. For n ≥ 0 let L∗

n+1 =def BC
∗(L∗

n+1/2) and L∗
n+3/2 =def Pol

L(L∗
n+1).

These definitions are local to the remainder of Section 1.2. For the approach we follow in this
thesis we find it suitable to have the inclusion relations from Proposition 1.4 at hand. We
show in this section the following theorem.

Theorem 1.8. It holds that

1. B+n/2 = Bn/2 for n ≥ 1,
2. L∗

1/2 = L1/2 ∪ {A∗} and

3. L∗
n/2 = Ln/2 ∪

{
L ∪ {ε} ∣∣L ∈ Ln/2 } for n ≥ 2.

So the classes B+n/2 from Definition 1.6 and the classes Bn/2 coincide, and the languages in L∗
n/2

are up to the empty word the languages in Ln/2. This enables us to carry over known normal
forms and closure properties to our definitions in Subsection 1.2.3. The proof of Theorem 1.8
is given in Subsection 1.2.2. Let us recall known closure properties of the just defined classes.

Lemma 1.9 ([Arf91, PW97, Gla98]). Let n ≥ 1 and a ∈ A.

1. The classes B+n/2, coB+n/2,L∗
n/2 and co

∗L∗
n/2 are closed under finite union and intersection.

2. Let C be one of the classes B+n/2 or coB+n/2. Then a−1L ∩ A+, La−1 ∩ A+ ∈ C for L ∈ C.
3. Let D be one of the classes L∗

n/2 or co∗L∗
n/2. Then a−1L,La−1 ∈ D for L ∈ D.

1.2.1 Polynomial Closure and Boolean Closure

We investigate the relationships between the different notions of polynomial closure and
identify a condition for C under which these notions coincide.
Theorem 1.10. It holds that Pol(C) = PolL(C) = PolB(C) for a class of languages C satisfy-
ing the conditions

(a) {w} ∈ C for w ∈ A+ and
(b) a−1L ∩ A+ ∈ C and La−1 ∩ A+ ∈ C for L ∈ C and a ∈ A.

The theorem is immediate from the following lemma.

Lemma 1.11. Let C be a class of languages.

1. PolL(C) ⊆ PolB(C)
2. Pol(C) ⊆ PolB(C)
3. If {w} ∈ C for all w ∈ A+ then PolB(C) ⊆ Pol(C).
4. If {w} , a−1L∩A+, La−1∩A+ ∈ C for w ∈ A1∪A2, a ∈ A, L ∈ C, then Pol(C) ⊆ PolL(C).
5. If {a} ∈ C for a ∈ A then PolL(C) ⊆ Pol(C).

1.2 Alternative Definitions and Normal Forms 19

Proof. Statements 1, 2 and 5 can be easily verified, and we argue for statement 3. Let a
language of the form u0L1u1 · · ·Lnun be given with n ≥ 0, Li ∈ C and ui ∈ A∗ such that
if n = 0 then u0 �= ε. Then we can take out every ui = ε in this representation without
changing the language. By assumption, {w} ∈ C for w ∈ A+, so we may replace all remaining
ui ∈ A+ by languages from C. We obtain an equivalent expression of the form L′

0L
′
1 · · ·L′

n′
with n′ ≥ 0 and L′

i ∈ C (note that if n = 0 then {u0} ∈ C). This shows statement 3.
Let us turn to statement 4. Here we have the assumption that {w} ∈ C for w ∈ A+ with

length 1 or 2, and a−1L ∩ A+, La−1 ∩ A+ ∈ C for a ∈ A and L ∈ C. It suffices to show that
L0L1 · · ·Ln ∈ PolL(C) for n ≥ 0 and Li ∈ C. We prove this by induction on n. The induction
base with n = 0 is trivial. Now we assume that we have proven L0L1 · · ·Ln ∈ PolL(C) for
n ≥ 0 and we want to show that L0L1 · · ·Ln+1 ∈ PolL(C). Since L0L1 · · ·Ln ∈ PolL(C) by
induction hypothesis, it suffices to show for some L′ =def L′

0a1L
′
1 · · · alL′

l with l ≥ 0, L′
i ∈ C

and ai ∈ A that L =def L
′ · Ln+1 ∈ PolL(C). We obtain

L =

(⋃
a∈A

L′ · a · (a−1Ln+1 ∩ A+
)) ∪ (⋃

a∈Ln+1∩A
L′ · a
)
∪ L′ : if ε ∈ Ln+1(⋃

a∈A
L′ · a · (a−1Ln+1 ∩ A+

)) ∪ (⋃
a∈Ln+1∩A

L′ · a
)

: otherwise

By assumption we have a−1Ln+1 ∩A+ ∈ C. It follows that⋃
a∈A

L′ · a · (a−1Lm+1 ∩ A+
) ∈ PolL(C).

Since also L′ ∈ PolL(C) it remains to show that L′ · b ∈ PolL(C) for letters b ∈ A. If l ≥ 1
then define L′′ =def L′

0a1 · · ·L′
l−1al. Now consider the following case study of L

′ · b.

L′·b =

(⋃
a∈A

L′′ · (L′
la

−1 ∩ A+
) · a · b) ∪ (⋃

a∈L′
l∩A

L′′ · a · b
)
∪ L′′ · b : if l ≥ 1 and ε ∈ L′

l(⋃
a∈A

L′′ · (L′
la

−1 ∩ A+
) · a · b) ∪ (⋃

a∈L′
l∩A

L′′ · a · b
)

: if l ≥ 1 and ε /∈ L′
l(⋃

a∈A

(
L′
la

−1 ∩ A+
) · a · b) ∪ (⋃

a∈L′
l∩A
{ab}
)
∪ {b} : if l = 0 and ε ∈ L′

l(⋃
a∈A

(
L′
la

−1 ∩ A+
) · a · b) ∪ (⋃

a∈L′
l∩A
{ab}
)

: if l = 0 and ε /∈ L′
l

By assumption, {b} , {ab} ∈ C for letters a, b and L̃ =def L
′
la

−1 ∩ A+ ∈ C. Hence for a, b ∈ A
it holds that

– if l ≥ 1 then L′′ · (L′
la

−1 ∩ A+
) · a · b = L′′ · L̃ · a · {b} ∈ PolL(C),

– if l ≥ 1 then L′′ · a · b = L′′ · {ab} ∈ PolL(C),
– if l ≥ 1 then L′′ · b = L′′ · {b} ∈ PolL(C), and
–
(
L′
la

−1 ∩ A+
) · a · b = L̃ · a · {b} ∈ PolL(C).

Together with the case study this implies L′ · b ∈ PolL(C), which completes the induction and
the proof of statement 4. ❑

If the languages of two classes C and D differ only by the empty word, we show that this
property is preserved by the polynomial closure operation. In other words, we obtain that
also Pol(C) is equal to Pol(D) up to the empty word.

20 1. Concatenation Hierarchies

Lemma 1.12. Let C be a class of languages of A+ and D be a class of languages of A∗. If
{ε} ∈ D and D = C ∪ {L ∪ {ε} |L ∈ C } then it holds that

1. Pol(C) is a class of languages of A+ and Pol(D) is a class of languages of A∗,
2. {ε} ∈ Pol(D) and
3. Pol(D) = Pol(C) ∪ {L ∪ {ε} |L ∈ Pol(C) }.
Proof. Statements 1 and 2 follow immediately from the definition of Pol(·). First, we show
the inclusion Pol(D) ⊆ Pol(C) ∪ {L ∪ {ε} |L ∈ Pol(C) }. Since the right hand side is closed
under finite union, it suffices to prove the following claim.
Claim. It holds that L0 · · ·Ln ∈ Pol(C) ∪ {L ∪ {ε} |L ∈ Pol(C) } for n ≥ 0 and Li ∈ D.
We give a proof of the claim by induction on n. For the induction base let n = 0 and

observe that the claim holds. Now assume that we have proven the claim for some n ≥ 0 and
we want to show it for n + 1. Let L =def L0 · · ·Ln+1 with Li ∈ D. By induction hypothesis
there exists some L′ ∈ Pol(C), such that L0 · · ·Ln = L′ or L0 · · ·Ln = L′∪{ε}. Since Ln+1 ∈ D
there exists an L′′ ∈ C ⊆ Pol(C) such that Ln+1 = L′′ or Ln+1 = L′′ ∪ {ε}. This leads to the
following four cases.

L =

L′L′′ : if L0 · · ·Ln = L′ and Ln+1 = L′′

L′L′′ ∪ L′ : if L0 · · ·Ln = L′ and Ln+1 = L′′ ∪ {ε}
L′L′′ ∪ L′′ : if L0 · · ·Ln = L′ ∪ {ε} and Ln+1 = L′′

L′L′′ ∪ L′′ ∪ L′ ∪ {ε} : if L0 · · ·Ln = L′ ∪ {ε} and Ln+1 = L′′ ∪ {ε}

In any case there exists some L̃ ∈ Pol(C) with L = L̃ or L = L̃ ∪ {ε}. This proves the claim.
Finally, we have to show the reverse inclusion. Since C ⊆ D we have Pol(C) ⊆ Pol(D). So

L ∪ {ε} ∈ Pol(D) for L ∈ Pol(C) because {ε} ∈ Pol(D). This proves the lemma. ❑

We show the counterpart of Lemma 1.12 for Boolean closures.

Lemma 1.13. Let C be a class of languages of A+ and D be a class of languages of A∗. If
{ε} ∈ D and D = C ∪ {L ∪ {ε} |L ∈ C } then it holds that

1. BC(C) is a class of languages of A+ and BC∗(D) is a class of languages of A∗,
2. {ε} ∈ BC∗(D) and
3. BC∗(D) = BC(C) ∪ {L ∪ {ε} |L ∈ BC(C) }.
Proof. Statements 1 and 2 follow from the definition of BC(·) and BC∗(·). First, we show the
inclusion BC∗(D) ⊆ BC(C) ∪ {L ∪ {ε} |L ∈ BC(C) }. Note that languages from BC∗(D) can
be written as finite unions of finite intersections of literals, which in turn are of the form L
(positive literal) or A∗ \ L (negative literal) for some L ∈ D. It is easy to see the right hand
side of the equation in statement 3 is closed under finite union and intersection. So it suffices
to show that all literals are elements of the right hand side. Since D ⊆ C∪{L ∪ {ε} |L ∈ C } ⊆
BC(C) ∪ {L ∪ {ε} |L ∈ BC(C) } all positive literals are elements of the right hand side and
it remains to show the following claim.
Claim. It holds that A∗ \ L ∈ BC(C) ∪ {L ∪ {ε} |L ∈ BC(C) } for L ∈ D.
Let L ∈ D. Then there exists an L′ ∈ C such that L = L′ or L = L′ ∪ {ε}. Since L′ ⊆ A+

we obtain A∗ \ L = (A+ \ L′) ∪ {ε} in the first case and A∗ \ L = (A+ \ L′) in the second
case. Because A+ \ L′ ∈ BC(C) we conclude that A∗ \ L ∈ BC(C) ∪ {L ∪ {ε} |L ∈ BC(C) }.
This proves the claim and it follows that BC∗(D) ⊆ BC(C) ∪ {L ∪ {ε} |L ∈ BC(C) }.

1.2 Alternative Definitions and Normal Forms 21

Finally, we turn to the reverse inclusion. From C ⊆ D, A+ \ L = (A∗ \ L) ∩ (A∗ \ {ε}) for
L ⊆ A+ and {ε} ∈ BC∗(D) it follows that BC(C) ⊆ BC∗(D) and {L ∪ {ε} |L ∈ BC(C) } ⊆
BC∗(D). This proves the lemma. ❑

1.2.2 Comparing Hierarchies: Proof of Theorem 1.8

Now we are ready to compare Definitions 1.1 and 1.2 with Definitions 1.6 and 1.7. First, we
apply our Theorem 1.10.

Proposition 1.14.

1. For n ≥ 1 let C be one of the classes B+n/2 or coB+n/2. Then Pol(C) = PolL(C) = PolB(C).
2. For n ≥ 2 let D be one of the classes L∗

n/2 or co
∗L∗

n/2. Then Pol(D) = PolL(D) = PolB(D).
Proof. To show the proposition we need to prove that the mentioned classes fulfill the two
conditions from Theorem 1.10:

(a) {w} ∈ C for all w ∈ A+ and
(b) a−1L ∩ A+ ∈ C and La−1 ∩ A+ ∈ C for L ∈ C and a ∈ A.

In fact, it suffices to prove condition (a) for B+1/2, coB+1/2 and L∗
1 since these classes are included

in the respective higher levels. So let w ∈ A+. Then we have {w} ∈ B+1/2 by definition, and
we see that

{w} = A+ \
(⋃

v∈A+with
|v|=|w|

vA+ε ∪
⋃

v∈A+\{w}
with |v|≤|w|

v

︸ ︷︷ ︸
∈B+

1/2

)
∈ coB+1/2.

If w = a1 · · · an for n ≥ 1 and letters ai ∈ A we obtain (a) for L∗
1 with

{w} = A∗a1A∗ · · · anA∗︸ ︷︷ ︸
∈L∗

1/2

∩
(
A∗ \

⋃
b1,...,bn+1∈A

A∗b1A∗ · · · bn+1A∗

︸ ︷︷ ︸
∈L∗

1/2

)
∈ L∗

1.

It remains to verify condition (b) for both statements. This is clear for statement 1 by
Lemma 1.9. We use the same lemma for statement 2 together with the closure under inter-
section. Note that A+ ∈ L∗

1/2 ⊆ L∗
1. ❑

The next two propositions will serve as the induction base for the proof of Theorem 1.8 below.

Proposition 1.15. The following holds.

1. B1/2 = B+1/2
2. B1/2 is equal to the class of languages of A+ that can be written as finite unions of

languages of the form u0A
∗u1 · · ·A∗um where m ≥ 0 and ui ∈ A∗.

Proof. Observe that languages from B1/2 are languages of A+ that can be written as finite
unions of languages of the form u0A

+u1 · · ·A+um where m ≥ 0 and ui ∈ A∗ (add some ui = ε
if necessary). It follows that B1/2 ⊆ B+1/2. On the other hand, languages of A+ having the

22 1. Concatenation Hierarchies

form u0A
+u1 · · ·A+um with m ≥ 0 and ui ∈ A∗, can be written as concatenations of A+ and

non–empty words (just drop all ui = ε). This shows B1/2 ⊆ B+1/2 and statement 1 follows.
Now we exploit statement 1 for the proof of statement 2. Therefore, it suffices to show

that for each language L ⊆ A+ the following holds: L is a finite union of languages of the
form u0A

∗u1 · · ·A∗um with m ≥ 0, ui ∈ A∗ if and only if L is a finite union of languages of
the form u0A

+u1 · · ·A+um with m ≥ 0, ui ∈ A∗. This is easy to see since we can replace A∗

and A+ vice versa, due to A∗ = {ε} ∪A+ and A+ =
⋃

a∈A aA∗. This shows statement 2. ❑

Proposition 1.16. The following holds.

1. L1/2 is equal to the class of languages of A+ that can be written as finite unions of
languages of the form A∗a1A∗ · · · amA∗ where m ≥ 0 and ai ∈ A.

2. L1/2 is a class of languages of A+ and L∗
1/2 = L1/2 ∪ {A∗}.

3. L1 is a class of languages of A+ and L∗
1 = L1 ∪ {L ∪ {ε} |L ∈ L1 }.

Proof. Clearly, L1/2 and L1 are classes of languages of A+. So to see statement 1 it suffices to
mention that (i) the case m = 0 cannot occur since we speak about languages of A+ and (ii)
A∗ = A∗A∗. Statement 2 follows immediately from statement 1 and the definition of L∗

1/2.

For statement 3 observe that L∗
1 and L1 ∪ {L ∪ {ε} |L ∈ L1 } are classes being closed under

finite union and finite intersection. Furthermore, we have

{ε} = A∗ \ (⋃
a∈A

A∗aA∗) ∈ co∗L∗
1/2 ⊆ L∗

1.

Thus it suffices to show that (i) L,A∗ \ L ∈ L1 ∪ {L ∪ {ε} |L ∈ L1 } for L ∈ L∗
1/2 and

(ii) L′, A+ \ L′ ∈ L∗
1 for L′ ∈ L1/2. Since by the second statement of the lemma we have

L∗
1/2 = L1/2 ∪ {A∗} and because

A∗ =
⋃
a∈A

A∗aA∗

︸ ︷︷ ︸
∈L1/2

∪{ε}

it follows that L∗
1/2 ⊆ L1 ∪{L ∪ {ε} |L ∈ L1 } and L1/2 ⊆ L∗

1. Hence it remains to show that

1. A∗ \ L ∈ L1 ∪ {L ∪ {ε} |L ∈ L1 } for L ∈ L∗
1/2 and

2. A+ \ L′ ∈ L∗
1 for L

′ ∈ L1/2.
First let L ∈ L∗

1/2. If L /∈ L1/2 then L = A∗ and we obtain A∗ \ L ∈ L1/2 ⊆ L1. Otherwise
we can write A∗ \ L = (A+ \ L) ∪ {ε} ∈ {L ∪ {ε} |L ∈ L1 }. Now let L′ ∈ L1/2 ⊆ L∗

1/2.

Since A+ ∈ L∗
1/2 and A+ \ L′ = (A∗ \ L′) ∩ A+ we obtain A+ \ L′ ∈ L∗

1. This proves the
proposition. ❑

We give a proof of Theorem 1.8. Recall with Proposition 1.16 that it remains to show that

1. B+n/2 = Bn/2 for n ≥ 1 and
2. L∗

n/2 = Ln/2 ∪
{
L ∪ {ε} ∣∣L ∈ Ln/2 } for n ≥ 2.

1.2 Alternative Definitions and Normal Forms 23

Proof of Theorem 1.8. We show both statements by induction on n and start with state-
ment 1. By Proposition 1.15 the assertion holds for n = 1 which is the induction base. We
first assume that it holds for n ≥ 1 with n ≡ 1 mod 2 and we want to prove it for n + 1.
Then

B(n+1)/2 = BC(Bn/2) = BC(B+n/2) = B+(n+1)/2
with the induction hypothesis Bn/2 = B+n/2. This shows in particular statement 1 for n = 2.
So now we assume that it holds for n ≥ 2 with n ≡ 0 mod 2 and we want to prove it for n+1.
Then we have by definition B(n+1)/2 = Pol(Bn/2) and from Proposition 1.14 we get B+(n+1)/2 =
PolB(B+n/2) = Pol(B+n/2). The induction hypothesis provides Pol(Bn/2) = Pol(B+n/2).
We turn to statement 2. The induction base n = 2 is given in Proposition 1.16. Again, we

first assume that the assertion holds for n ≥ 2 with n ≡ 0 mod 2 and we want to prove it for
n+ 1. Then we have by definition L∗

(n+1)/2 = Pol
L(L∗

n/2) and L(n+1)/2 = Pol(Ln/2). It holds
that Ln/2 is a class of languages of A+, {ε} ∈ L∗

1 ⊆ L∗
n/2, and from the induction hypothesis

we obtain L∗
n/2 = Ln/2 ∪

{
L ∪ {ε} ∣∣L ∈ Ln/2 }. This shows that the classes C =def Ln/2 and

D =def L∗
n/2 satisfy the assumptions of Lemma 1.12 and we obtain

Pol(L∗
n/2) = Pol(Ln/2) ∪

{
L ∪ {ε} ∣∣L ∈ Pol(Ln/2) } .

Because n ≥ 2 we get from Proposition 1.14 that Pol(L∗
n/2) = Pol

L(L∗
n/2) = L∗

(n+1)/2.
This shows in particular statement 2 for n = 3. So now we assume that the assertion

holds for n ≥ 3 with n ≡ 1 mod 2 and we want to prove it for n + 1. Then we have by
definition L∗

(n+1)/2 = BC∗(L∗
n/2) and L(n+1)/2 = BC(Ln/2). It holds that Ln/2 is a class

of languages of A+, {ε} ∈ L∗
1 ⊆ L∗

n/2, and from the induction hypothesis we obtain L∗
n/2 =

Ln/2∪
{
L ∪ {ε} ∣∣L ∈ Ln/2 }. This shows that the classes C =def Ln/2 and D =def L∗

n/2 satisfy
the assumptions of Lemma 1.13 and we obtain

BC∗(L∗
n/2) = BC(Ln/2) ∪

{
L ∪ {ε} ∣∣L ∈ BC(Ln/2) } .

So we get
L∗
(n+1)/2 = L(n+1)/2 ∪

{
L ∪ {ε} ∣∣L ∈ L(n+1)/2 }

which finishes the induction. (End proof of Theorem 1.8.)

Let us carry over Theorem 1.8 to the classes of complements.

Corollary 1.17. It holds that

1. coB+n+1/2 = coBn+1/2 for n ≥ 0 and

2. co∗L∗
n+1/2 = coLn+1/2 ∪

{
L ∪ {ε} ∣∣L ∈ coLn+1/2 } for n ≥ 1.

Proof. Statement 1 is an immediate consequence of Theorem 1.8 from which we also get for
n ≥ 1 that

co∗L∗
n+1/2 =

{
A∗ \ L

∣∣∣L ∈ L∗
n+1/2

}
=

languages with ε︷ ︸︸ ︷{
A∗ \ L ∣∣L ∈ Ln+1/2 }∪

languages without ε︷ ︸︸ ︷{
A+ \ L ∣∣L ∈ Ln+1/2 }

=
{
L ∪ {ε} ∣∣L ∈ coLn+1/2 } ∪ coLn+1/2.

This shows the second statement. ❑

24 1. Concatenation Hierarchies

Note that L1/2 and L∗
1/2 in Theorem 1.8 are some kind of exception since all classes L∗

n/2

with n ≥ 2 have the property L ∪ {ε} ∈ L∗
n/2 ⇐⇒ L \ {ε} ∈ L∗

n/2 for all L ⊆ A∗. This does
not hold for L∗

1/2 because A∗ is the only language in L∗
1/2 which contains the empty word.

However, we have the following uniform statement of this relation.

Corollary 1.18. For n ≥ 1 it holds that Ln/2 = L∗
n/2 ∩ P(A+).

Proof. For n ≥ 2 this follows from Theorem 1.8. By definition, L1/2 is a class of languages
of A+ and if we intersect both sides of L∗

1/2 = L1/2 ∪ {A∗} with P(A+) we get L1/2 =
L∗
1/2 ∩ P(A+). ❑

1.2.3 Normal Forms and Closure Properties

Finally, we give in this section some normal forms and closure properties for the hierar-
chy classes Ln/2 and Bn/2. They are adaptions of known results. We mention with the first
statement in the following proposition the normal form for L3/2 known from [Arf87, Arf91].

Proposition 1.19. The following holds.

1. L3/2 is equal to the class of languages of A+ that can be written as finite unions of
languages of the form A∗

0a1A
∗
0 · · · anA∗

n where n ≥ 0, ai ∈ A and Ai ⊆ A.
2. L3/2 is equal to the class of languages of A+ that can be written as finite unions of

languages of the form u0A
+
1 u1 · · ·A+n un where n ≥ 0, ui ∈ A∗ and ∅ �= Ai ⊆ A.

Proof. In [Arf91] it is shown that L∗
3/2 is equal to the class of languages of A

∗ that can be
written as finite unions of languages of the form A∗

0a1A
∗
0 · · · anA∗

n where n ≥ 0, ai ∈ A and
Ai ⊆ A. By Corollary 1.18 we have

L3/2 =
{
L ∈ L∗

3/2

∣∣L ⊆ A+
}

which shows statement 1. Observe that ∅∗ = {ε}, and for a ∈ A and ∅ �= A′ ⊆ A we have
A′∗ = A′+ ∪ {ε} and A′+ =

⋃
a∈A′ aA′∗. So it is easy to see by mutual substitution that the

following statements are equivalent for every language L ⊆ A+.

(1) L is a finite union of languages A∗
0a1A

∗
0 · · · anA∗

n with n ≥ 0, ai ∈ A and Ai ⊆ A.
(2) L is a finite union of languages u0A

∗
1u1 · · ·A∗

nun with n ≥ 0, ui ∈ A∗, ∅ �= Ai ⊆ A.
(3) L is a finite union of languages u0A

+
1 u1 · · ·A+n un with n ≥ 0, ui ∈ A∗, ∅ �= Ai ⊆ A.

This shows statement 2. ❑

In [Gla98] normal forms for the levels n+1/2 of the dot–depth hierarchy and the Straubing–
Thérien hierarchy are given.

Lemma 1.20. For n ≥ 1 it holds that

1. Ln+1/2 = Pol(coLn−1/2) and
2. Bn+1/2 = Pol(coBn−1/2).

1.2 Alternative Definitions and Normal Forms 25

Proof. By definition, coLn−1/2 ⊆ Ln and coBn−1/2 ⊆ Bn for n ≥ 1. Thus we have
Pol(coLn−1/2) ⊆ Ln+1/2 and Pol(coBn−1/2) ⊆ Bn+1/2 for n ≥ 1. It remains to show the
reverse inclusions. For this end, we recall the normal form result from [Gla98] which says for
n ≥ 1 that

L∗
n+1/2 = PolL(co∗L∗

n−1/2) and (1.1)

B+n+1/2 = PolB(coB+n−1/2). (1.2)

First we consider statement 1 for n = 1. By Proposition 1.19 languages from L3/2 can be
written as finite unions of languages of the form u0A

+
1 u1 · · ·A+mum where m ≥ 0, ui ∈ A∗

and ∅ �= Ai ⊆ A. Note that if m = 0 then u0 �= ε since languages from L3/2 do not contain
the empty word. Hence it suffices to show that A′+, {a} ∈ coL1/2 for ∅ �= A′ ⊆ A and a ∈ A
which can be seen as follows.

A′+ = A+ \
(⋃

a∈A\A′
A∗aA∗

)
∈ coL1/2

{a} = A+ \
(⋃

a′∈A\{a}
A∗a′A∗

︸ ︷︷ ︸
words of length ≥1

containing a letter a′ =a

∪ A∗aA∗aA∗︸ ︷︷ ︸
words with ≥2 a′s

)
∈ coL1/2

This shows L3/2 ⊆ Pol(coL1/2). Now we consider statement 1 for some n ≥ 2. Here we have
co∗L∗

n−1/2 = coLn−1/2 ∪
{
L ∪ {ε} ∣∣L ∈ coLn−1/2 } by Corollary 1.17. Since {ε} ∈ co∗L∗

1/2 ⊆
co∗L∗

n−1/2 we can apply Lemma 1.12 as before and we obtain

Pol(co∗L∗
n−1/2) = Pol(coLn−1/2) ∪

{
L ∪ {ε} ∣∣L ∈ Pol(coLn−1/2) } . (1.3)

From Proposition 1.14 we see that Pol(co∗L∗
n−1/2) = Pol

L(co∗L∗
n−1/2). So together with (1.1)

we can rewrite (1.3) as

L∗
n+1/2 = Pol(coLn−1/2)︸ ︷︷ ︸

languages without ε

∪{L ∪ {ε} ∣∣L ∈ Pol(coLn−1/2) }︸ ︷︷ ︸
languages with ε

. (1.4)

We can compare this to Theorem 1.8 where we have

L∗
n+1/2 = Ln+1/2︸ ︷︷ ︸

languages without ε

∪{L ∪ {ε} ∣∣L ∈ Ln+1/2 }︸ ︷︷ ︸
languages with ε

. (1.5)

Because the unions in (1.4) and (1.5) are disjoint we see that Ln+1/2 = Pol(coLn−1/2) which
shows statement 1.
Let us consider statement 2 for n ≥ 1. From (1.2) and Theorem 1.8 we obtain Bn+1/2 =

PolB(coB+n−1/2). Together with Proposition 1.14 this yields Bn+1/2 = Pol(coB+n−1/2). With
Corollary 1.17 we get Bn+1/2 = Pol(coBn−1/2). ❑

Finally, we translate the closure properties from Lemma 1.9 to our definitions.

26 1. Concatenation Hierarchies

Lemma 1.21. Let n ≥ 1.
1. The classes Bn/2, coBn/2,Ln/2 and coLn/2 are closed under finite union and intersection.
2. Let C be one of the classes Bn/2, coBn/2, Ln/2 or coLn/2. Then a−1L∩A+, La−1∩A+ ∈ C

for a ∈ A and L ∈ C.
Proof. For the classes Bn/2 and coBn/2 the lemma follows from Theorem 1.8 and Lemma 1.9.
The closure of Ln/2 under finite union and intersection for n ≥ 1 is immediate from Lemma 1.9
and Corollary 1.18. This carries over to coLn/2.
Now let n ≥ 1, a ∈ A and L ∈ Ln/2. By Theorem 1.8 we have Ln/2 ⊆ L∗

n/2. Thus L ∈ L∗
n/2

and we obtain La−1, a−1L ∈ L∗
n/2 by Lemma 1.9. Since A+ ∈ L1/2 ⊆ Ln/2 it follows from

the closure under intersection and from Theorem 1.8 that La−1 ∩ A+, a−1L ∩ A+ ∈ Ln/2.
Analogously this can be shown for n ≥ 1, a ∈ A and L ∈ coLn+1/2 using Corollary 1.17 and
Lemma 1.9.
Finally let L′ ∈ coL1/2 with L′ = A+ \ L for some L ∈ L1/2. Then we have

L′a−1 ∩ A+ =
{
v ∈ A+

∣∣ va ∈ L′ } =
{
v ∈ A+

∣∣ va ∈ A+ \ L }
=
{
v ∈ A+ | va /∈ L

}
= A+ \ { v ∈ A+ | va ∈ L

}
= A+ \ (La−1 ∩ A+)︸ ︷︷ ︸

∈L1/2

∈ coL1/2.

Analogously one shows a−1L ∩ A+ ∈ coL1/2. ❑

1.3 The Dot–Depth Problem

The dot–depth problem is the question whether there exists an algorithms that outputs for
a given language L ⊆ A+ in the input the minimal n ≥ 1 such that L ∈ Bn/2. We also say
that L has dot–depth n/2 if L ∈ Bn/2 for a minimal n. As pointed out in the introduction, a
reasonable way to approach the dot–depth problem is to consider the membership problems
of fixed levels in concatenation hierarchies. We do this for the classes Bn/2 and Ln/2 and fixed
n ≥ 1. Recall with Figure 1.1 how these classes are comparable by inclusion, so we say with
respect to these inclusions that one class has a higher concatenation complexity than another
one, e.g., in these terms B2 is more complex than coB3/2, and B3/2 is more complex than
L3/2. Note that in light of Theorem 1.8 we may consider the classes Bn/2 and Ln/2 without
loss of generality: it is easy to determine from a given DFA M accepting some language L
whether it accepts the empty word, and we can construct some DFAM′ accepting L \ {ε}.
We make some remarks concerning the strictness of the inclusions pictured in Figure 1.1.

The strictness of the dot–depth hierarchy is shown in [BK78], a different proof by means of
first–order logic can be found in [Tho84]. The proof given there even shows that Ln is strictly
included in Bn for integers n ≥ 1 from which we immediately get Ln/2 � Bn/2 for all n ≥ 1. It
is easy to see from this that also all inclusions Bn � Bn+1/2 for n ≥ 1 and Bn+1/2 � Bn+1 for
n ≥ 0 are strict. The same holds for the classes of complements, and Bn+1/2 �= coBn+1/2 for
n ≥ 0. So we derive from [Tho84] that in Figure 1.1 all inclusions between classes of the DDH
are strict. No new argument is needed to do all this for the STH since the result Ln � Bn for
n ≥ 1 from [Tho84] also shows that Ln � Ln+1 for n ≥ 1.

1.3 The Dot–Depth Problem 27

1.3.1 Logical Characterizations

We recall a very natural connection between concatenation hierarchies and first–order logic.
For an introduction to the field we refer to [Tho96].
Here formulas are considered using the binary relation symbol <, the constant symbols min

and max, the function symbols S and P , and unary relation symbols πa for each letter a ∈ A.
They may also involve the equality symbol =, the Boolean connectives ¬,∨,∧ and quantifiers
∃,∀ bounding variables. Let Σn (Πn) be the subclass of such formulas that have at most n−1
quantifier alternations, starting with an existential (universal, respectively) quantifier. We
say that a language L ⊆ A+ is definable by a formula of the logic FO[<,min,max, S, P]
if there exists a sentence ϕ (i.e., a formula of the above type without free variables) such
that all words w ∈ L satisfy ϕ under the following interpretation: variables hold positions
in w, < is the usual <-relation on {1, . . . , |w|}, min = 1, max = |w|, S (P) is the successor
(predecessor) function on {1, . . . , |w|}, and πax means that the letter at position x is a. The
following levelwise correspondence between the classes of concatenation hierarchies and the
number of quantifier alternations are known.

Theorem 1.22 ([Tho82]). Let n ≥ 1 and let L ⊆ A+.

1. L ∈ Bn−1/2 if and only if L is definable by a Σn formula of FO[<,min,max, S, P].
2. L ∈ coBn−1/2 if and only if L is definable by a Πn formula of FO[<,min,max, S, P].
3. L ∈ Bn if and only if L is definable by a Boolean combination of Σn formulas of
FO[<,min,max, S, P].

Denote by FO[<] the restricted fragment, where the use of min, max, S and P in formulas
is not allowed.

Theorem 1.23 ([Tho82, PP86]). Let n ≥ 1 and let L ⊆ A+.

1. L ∈ Ln−1/2 if and only if L is definable by a Σn formula of FO[<].
2. L ∈ coLn−1/2 if and only if L is definable by a Πn formula of FO[<].
3. L ∈ Ln if and only if L is definable by a Boolean combination of Σn formulas of FO[<].

Due to these characterizations our results in Chapters 4 and 6 have consequences in first–order
logic (cf. Corollaries 4.37 and 6.20).

1.3.2 Leaf Languages for Complexity Classes

There is also a close connection between concatenation hierarchies and complexity classes,
both related via the so-called leaf language approach to define complexity classes. This ap-
proach was introduced in [BCS92, Ver93] and led to a number of interesting results giv-
ing new insights into the structure of complexity classes between P and PSPACE, e.g.,
[HLS+93, JMT94, KSV98, BV98, CHVW98]. We refer to these papers for a more compre-
hensive introduction, but briefly sketch the approach here. For undefined notions see [Pap94].
Let a nondeterministic polynomial–time Turing machine M output on every computation

path a symbol from A and assume a fixed ordering on the set of all paths. This leads in a
natural way to the notion of the leafstring of M on some input x when concatenating the
output symbols at the leafs of the computation tree of M . Now a language L ⊆ A+ gives rise
to the class LeafP(L) of all languages L′ for which there exists a machine M of the above

28 1. Concatenation Hierarchies

type such that for all x it holds that x ∈ L′ if and only if the leafstring of M on input x
belongs to L. For some class C denote by LeafP(C) the union of all classes LeafP(L) with
L ∈ C. As an example, let us look at the class NP. By definition, a language L′ ∈ NP is given
by a nondeterministic polynomial–time machine M such that for all inputs x we have that
x belongs to L′ if and only if there is at least one accepting path in the computation tree of
M on input x. Suppose that M outputs on accepting paths the symbol 1 and on rejecting
paths the symbol 0. Hence NP is defined by the leaf language L =def 0

∗1 {0, 1}∗. Note that
0∗1 {0, 1}∗ = {0, 1}∗ 1 {0, 1}∗ ∈ L1/2 and it can be easily seen from Proposition 1.15 that in

fact NP = LeafP(B1/2). Interestingly, this relation holds in general between the levels of the
dot–depth hierarchy and the classes of the polynomial time hierarchy. Denote by Σpn and Π

p
n

for n ≥ 1 the classes of the polynomial time hierarchy [Sto73].
Theorem 1.24 ([HLS+93, BV98, BKS98]). Let n ≥ 1.
1. Σpn = Leaf

P(Bn−1/2)
2. Πpn = Leaf

P(coBn−1/2)
3. BC(Σpn) = Leaf

P(Bn)
4. NP(n) = LeafP(B1/2(n))
In the last statement NP(n) denotes the n-th level of the difference hierarchy over NP and
B1/2(n) denotes the n-th level of the difference hierarchy over B1/2 (for a formal definition see
Definition 2.23). However, the above results are of the type that they deal with classes of leaf
languages. An important questions in this context is what complexity classes are definable by
a single leaf language. It is known that

{
LeafP(L) |L non–trivial regular language } together

with the inclusion relation forms an upper semilattice [Bor95]. The structure of this semi-
lattice has been clarified in [Bor95, BKS98] for the classes at the lower end. Unfortunately,
it seems to be a difficult task to do this for higher levels, i.e., to prove results supporting
our intuition that more difficult regular languages lead to presumably broader complexity
classes—opposed to the possibility that they may refine the upper semilattice of leaf lan-
guage definable complexity classes. Such results cannot be achieved by union–style theorems
like the ones above.
Here forbidden patterns may help since they make a positive assertion about the structure

we find at least in the transiton graph of a DFA if the accepted language is not in some class
any more. So the occurrence of a pattern can help to identify complexity classes that are at
least included in the complexity class defined by the leaf language of the DFA having this
pattern. In this way, the forbidden pattern result for B1/2 from [PW97] is exploited in [BKS98]
to prove a gap theorem for the definability of complexity classes right above NP. To prove
gap theorems along these lines for higher levels of the polynomial time hierarchy prerequistes
forbidden pattern characterizations of the levels of the dot–depth hierarchy, clearly a difficult
task. As pointed out earlier, forbidden pattern characterizations usually imply decidability
of the respective membership problem.
We prove a result concerning the complexity class ∆p2 and identify leaf language definable

complexity classes in the upper semilattice around this class (cf. Theorem 3.31). As we will
also see in Section 3.5, there is a close relation of ∆p2 to regular languages definable in
restricted temporal logic. In Section 4.5 we discuss possible consequences of the forbidden
pattern characterization of B3/2 given in Chapter 4.

1.4 Connecting STH and DDH 29

1.4 Connecting STH and DDH

In this section we introduce for k ≥ 0 a family of hierarchies of classes Bn/2,k for n ≥ 1 such
that Ln/2 = Bn/2,0 and Bn/2 is just the union over all Bn/2,k for k ≥ 0.
Recall from Proposition 1.16 that a language L ⊆ A+ is in L1/2 if and only if it can be

written as a finite union of languages of the form A∗a1A∗ · · · amA∗ where m ≥ 0 and ai ∈ A.
On the other hand, we have by Proposition 1.15 that L belongs to B1/2 if and only if it
can be written as a finite union of languages of the form u0A

∗u1 · · ·A∗um where m ≥ 0 and
ui ∈ A∗. So the difference between the two classes L1/2 and B1/2 is the possibility to specify
a prefix and a suffix, and to fix two or more consecutive letters in the latter case. We have
already noted that these two classes are distinct and it is also intuitively clear that finite
unions cannot help to specify a longer block of consecutive letters within the resources of
L1/2. A natural way to bridge these differences is to emphasize on the maximal block length.
The parameter k with k ≥ 0 will play this role in the forthcoming chapters.
The idea of looking at a parameterization in terms of block lengths is from [Sim72] and

[Str85]. In the former, subhierarchies of B1 are studied where besides k also the parameter
m, i.e., the number of specified blocks, is emphasized. Here each fixed pair (m,k) defines a
subclass of B1, which is a Boolean algebra and which is characterized in [Sim72] in terms of
certain equivalence relations on words (for an overview, see [Brz76]). A more general approach
is chosen in [Str85]. As mentioned in the introduction, it is shown in this paper that the
membership problems of Bn and Ln for integers n are equivalent with respect to decidability.
This is achieved with an algebraic approach relating certain products of varieties of finite
semigroups. We will take a careful look at the levels 1/2, 3/2 and intermediate classes, and
give positive answers to several membership problems with an automata–theoretic approach
in Chapters 2 to 4.

1.4.1 Block Decomposition of Words

Fix some k ≥ 0. The set of all words from A∗ of length k is denoted by Ak. Moreover, we
denote by A≤k (A<k, A≥k, . . .) the set of words from A+ of length less or equal to k (less than
k, greater or equal to k, . . . respectively). Note that none of these sets contains the empty
word, i.e., A<0 = A≤0 = ∅. For x ∈ A≥k we denote by pk(x) the length-k prefix of x, and by
sk(x) the length-k suffix of x. We call these the k-prefix and k-suffix of x. If x ∈ A<k we set
pk(x) = sk(x) =def x.
The k-decomposition of a word x ∈ A+ is the sequence of each k + 1 consecutive letters

of x. In order to avoid confusion we denote elements from Ak+1 as α, β, γ, . . . and subsets of
Ak+1 as Σ,Γ, Let x = a1a2 · · · ak+l ∈ A+ for some l ≥ 1. We call

x̂ =def (α1, α2, . . . , αl)

the k-decomposition of x if αi = ai · · · ai+k for 1 ≤ i ≤ l. If x ∈ A≤k then we set x̂ =def x.
The value of k will always be clear from the context when we use the notation x̂. Intuitively,
k indicates by how many letters from A consecutive αi overlap. For x ∈ A≥k+1 we set
α(x̂) =def {α1, α2, . . . , αl} as the set of elements from Ak+1 in the k-decomposition of x.
Next we want to define languages of words from A+ that admit the same k-decomposition

with respect to given elements and subsets of Ak+1.

30 1. Concatenation Hierarchies

Definition 1.25. Let k ≥ 0. Let α1, . . . , αn ∈ Ak+1 and Σ0,Σ1, . . . ,Σn ⊆ Ak+1 for some
n ≥ 0. For every x ∈ A+ we say x ∈ (Σ0, α1,Σ1, . . . , αn,Σn)k if and only if |x| ≥ k + 1,
x̂ = (β1, . . . , βl) and there exist 0 = j0 < j1 < j2 < . . . < jn < jn+1 = l + 1 such that

(a) βji = αi for 1 ≤ i ≤ n and
(b) βj ∈ Σi for 0 ≤ i ≤ n and ji < j < ji+1.

If we write an expression (Σ0, α1,Σ1, . . . , αn,Σn)k we understand this as a syntactical
object describing some language. While being aware of this, we do not distinguish between
such an object and the language it stands for, unless stated otherwise. So the language
(Σ0, α1,Σ1, α2,Σ2, . . . , αn,Σn)k consists of those words x ∈ A≥k+1, whose k-decomposition
starts with a number (possibly zero) of elements from Σ0, then α1, followed by a num-
ber (possibly zero) of elements from Σ1, then α2 and so on. A subset of Ak+1 in such an
expression stands for possibly multiple occurrences of its elements. Note that the defined
languages only contain words that admit a k-decomposition and that in case k = 0 we deal
with the usual concatenation, e.g., (A0, a1, A1, a2, A2)0 = A∗

0a1A
∗
1a2A

∗
2 and (A0)0 = A+0 .

Without further definition we also use expressions of the form (α1,Σ1, . . . , αn+1,Σn+1)k and
(Σ0, α1,Σ1, . . . ,Σn, αn+1)k and thelike with the obvious meaning. We introduce other conve-
nient notations.

Definition 1.26. Let w, v ∈ A∗, α1, . . . , αn ∈ Ak+1 and Σ0, . . . ,Σn ⊆ Ak+1 for some n ≥ 0.
Then we write (w|Σ0, α1,Σ1, . . . , αn,Σn|v)k instead of

(
wA∗∩A∗v∩(Σ0, α1,Σ1, . . . , αn,Σn)k

)
.

Moreover, if all Σi are equal to Ak+1 we do not want to mention them repeatedly in an
expression. So we write (α1, α2, . . . , αm)k instead of (A

k+1, α1, A
k+1, α2, . . . , A

k+1, αm, Ak+1)k
for m ≥ 1.

1.4.2 Connecting L1=2 and B1=2

We introduce the classes B1/2,k.
Definition 1.27. Let k ≥ 0. The class B1/2,k is the class of all languages L ⊆ A+ that can

be written as a finite union of languages Li such that Li ⊆ A≤k or

Li = (w|α1, α2, . . . , αm|v)k
where m ≥ 1, α1, . . . , αm ∈ Ak+1 and w, v ∈ Ak.

So here we are allowed to fix a prefix and a suffix of length k, and occurring blocks of length
k + 1 can be positively specified. Note that these blocks may overlap.

Proposition 1.28. Let k ≥ 0. It holds that

1. L1/2 = B1/2,0 and
2. B1/2,k ⊆ B1/2,k+1.
Proof. The first statement is obvious from Proposition 1.16. Just note that the case m = 0
implies L = ∅ since we deal with languages of A+, and that (ε|a1, a2, . . . , am|ε)0 =
A∗a1A∗a2 · · ·A∗amA∗.

1.4 Connecting STH and DDH 31

For the second statement let a language from B1/2,k for some k ≥ 0 be given. It suffices
to show for some L =def (w|α1, α2, . . . , αm|v)k with m ≥ 1, α1, . . . , αm ∈ Ak+1 and w, v ∈ Ak

that L ∈ B1/2,k+1. We distinguish two cases.
Case 1. Suppose that L ∩ Ak+m = ∅. We claim that

L =
⋃(

w′|β1, β2, . . . , βm|v′
)
k+1

(1.6)

where the union ranges over all n,w′, v′ and β1, . . . , βm with w′ ∈ wA, v′ ∈ Av, 0 ≤ n ≤ m,
βl ∈ αlA for 1 ≤ l ≤ n and βl ∈ Aαl for n < l ≤ m. Clearly, this is a finite union.
We argue for the two inclusions. Let x be a word from the right hand side and fix some

member of the union containing x. Suppose x = c1 · · · c|x| and x̂ = (γ1, . . . , γ|x|−k−1) for
suitable c1, . . . , c|x| ∈ A and γ1, . . . , γ|x|−k−1 ∈ Ak+2. Note that we have fixed with x̂ a (k+1)-
decomposition of x. By definition, there exist indices 1 ≤ j1 < j2 < · · · < jm ≤ |x| − k − 1
such that βl = γjl for 1 ≤ l ≤ m. Let

il =def

{
jl : if l ≤ n

jl + 1 : otherwise

for 1 ≤ l ≤ m. Then 1 ≤ i1 < i2 < · · · < im ≤ |x| − k. Because βl ∈ αlA for 1 ≤ l ≤ n and
βl ∈ Aαl for n < l ≤ m we obtain αl = cil · · · cil+k for 1 ≤ l ≤ m. So x ∈ (α1, α2, . . . , αm)k
and since w′ ∈ wA and v′ ∈ Av we conclude x ∈ L.
Conversely, let x ∈ L. Choose suitable c1, . . . , c|x| ∈ A and γ1, . . . , γ|x|−k ∈ Ak+1 such

that x = c1 · · · c|x| and x̂ = (γ1, . . . , γ|x|−k). Here the latter is a k-decomposition. Again by
definition, there are indices 1 ≤ i1 < i2 < · · · < im ≤ |x|− k such that αl = γil for 1 ≤ l ≤ m.
By assumption of this case we have |x| ≥ k +m+ 1, so there exists an index 1 ≤ r ≤ |x| − k
such that r �= il for all 1 ≤ l ≤ m. Therefore, we obtain 1 ≤ j1 < j2 < · · · < jm ≤ |x| − k − 1
with the definition

jl =def

{
il : if il < r

il − 1 : otherwise (il > r)

for 1 ≤ l ≤ m. Let n =def max { 1 ≤ l ≤ m | jl < r } ∪ {0} and βl =def cjl · · · cjl+k+1 for
1 ≤ l ≤ m. Then we obtain βl ∈ αlA for 1 ≤ l ≤ n and βl ∈ Aαl for n < l ≤ m. With
w′ =def pk+1(x) and v′ =def sk+1(x) we conclude x ∈ (w′|β1, β2, . . . , βm|v′)k+1. This shows
(1.6) and completes the first case.

Case 2. Now assume L ∩ Ak+m �= ∅. Then this set has only one element x with x̂ =
(α1, α2, . . . , αm), w = pk(α1) and v = sk(αm). We show how we can modify the first case by
taking certain languages into the union on the right hand side in (1.6). If m = 1 then x = α1
and |x| = k + 1. So we can take {x} to the union in (1.6) and still have a language from
B1/2,k+1. Now assume that m ≥ 2 and let (γ1, γ2, . . . , γm−1) be the (k + 1)-decomposition of
x. Observe that for 1 ≤ l ≤ m − 1 it holds that pk+1(γl) = αl and sk+1(γm−1) = αm. We
claim that it suffices to add

(α1|γ1, γ2, . . . , γm−1|αm)k+1

to the union in (1.6). Note that this is a language from B1/2,k+1. Clearly, x is in the set
(α1|γ1, . . . , γm−1|αm)k+1 since it has (k + 1)-prefix α1, (k + 1)-suffix αm and (γ1, . . . , γm−1)
is just its (k + 1)-decomposition. So it remains to show that (α1|γ1, . . . , γm−1|αm)k+1 ⊆ L.
Therefore, let u ∈ (α1|γ1, . . . , γm−1|αm)k+1 and let 1 ≤ i1 < i2 < · · · < im−1 ≤ |u| − k − 1
such that for the (k + 1)-decomposition û = (ζ1, ζ2, . . . , ζ|u|−k−1) it holds that γl = ζil for

32 1. Concatenation Hierarchies

1 ≤ l ≤ m − 1. Now define jl =def il for 1 ≤ l ≤ m − 1 and jm =def im−1 + 1. Then it
holds that 1 ≤ j1 < j2 < · · · < jm−1 < jm ≤ |u| − k and pk+1(ζjl) = pk+1(γl) = αl for
1 ≤ l ≤ m − 1. Recall that sk+1(γm−1) = αm, so we find αm starting at position jm in u.
Together, the indices jl witness that u ∈ (α1, α2, . . . , αm−1, αm)k. It remains to observe that
pk(u) = pk(α1) = w and sk(u) = sk(αm) = v. This finishes the second case and the proof of
the proposition. ❑

Next we see that the union of all classes B1/2,k amounts to B1/2.
Lemma 1.29. It holds that B1/2 =

⋃
k≥0 B1/2,k.

Proof. We have to show two inclusions and need to swap between k-decompositions and the
usual concatenation. We argue first for the inclusion from right to left. So let k ≥ 0 and let
L ∈ B1/2,k. Since B1/2 is closed under finite union and contains all finite sets, we may assume
that

L = (w|α1, α2, . . . , αm|v)k
where m ≥ 1, αi ∈ Ak+1 and w, v ∈ Ak. To show that L ∈ B1/2 we have to consider that the
elements αi ∈ Ak+1 in the description of L may overlap, and we have to express this with
usual concatenations.
For given l ≥ 1 and β1, . . . , βl ∈ Ak+1 we define the set sh(β1, β2, . . . , βl) of shuffle words

as follows. A word x belongs to sh(β1, β2, . . . , βl) if and only if x̂ = (γ1, . . . , γn) for some
n ≥ 1 and there exist 1 ≤ j1 < j2 < . . . < jl ≤ n with γji = βi for 1 ≤ i ≤ l and ji+1 − ji ≤ k
for 1 ≤ i ≤ l − 1. The latter condition ensures that all occurrences of βi in x overlap,
e.g., for k = 2 and β1 =def abb, β2 =def bbc we have sh(abb, bbc) = A∗abbcA∗ ∪ A∗abbbcA∗.
Moreover, we see that each sh(β1, . . . , βl) is a finite union of languages of the form A∗xA∗ with
k + l ≤ |x| ≤ kl + 1. Since k + l ≥ 1 we get from Proposition 1.15 that sh(β1, . . . , βl) ∈ B1/2.
Now we want to express L in terms of concatenations of sets of shuffle words and therefore

rewrite L as (wA+ ∩A+v) ∩ (L′ ∪ sh(α1, . . . , αm)) where

L′ =def
⋃

1≤n≤m−1
2≤i1<i2<...<in≤m

sh(α1, . . . , αi1−1)sh(αi1 , . . . , αi2−1) · · · sh(αin , . . . , αm).

With the set L′ we guess a number of n positions where the αi from the description of L
do not overlap. Since B1/2 is closed under concatenation, finite union and intersection (cf.
Lemma 1.21) we obtain L ∈ B1/2.
We turn to the reverse inclusion, so let a language from B1/2 be given. In light of Propo-

sition 1.28 it suffices to show that for each language L =def u0A
+u1 · · ·A+un with ui ∈ A+

and n ≥ 0 there is some k ≥ 0 such that L ∈ B1/2,k. We show this by induction on n and
prove the induction base for n = 0 and n = 1. In case n = 0 set k0 =def |u0| and we see that
{u0} ∈ B1/2,k0 . For the same reason we do not have to care about finite sets any more. Now
let n = 1 and suppose L = u0A

+u1. Define k1 =def |u0|+ |u1|. We claim that

L =
⋃
w,α,v

(w| α |v)k1

where the union ranges over all w ∈ Ak1 ∩ u0A
∗, v ∈ Ak1 ∩ A∗u1 and all α ∈ Ak1+1. To see

this we observe that L contains only words of length ≥ k1 + 1.

1.4 Connecting STH and DDH 33

For the induction step suppose for n ≥ 1 that L = (D∪L′) ·A+un+1 where D ⊆ A≤kn and
L′ = (w|α1, α2, . . . , αm|v)kn with m ≥ 1, w, v ∈ Akn and αi ∈ Akn+1. We assume here that L′

is just a single such language again by Proposition 1.28. The case D ·A+un+1 was treated in
the induction base. We can also suppose that l =def |un+1| ≤ kn since otherwise we get from
Proposition 1.28 a representation of L′ with a sufficiently large kn. We claim that

L′ · A+un+1 =
⋃

(w|α1, α2, . . . , αm, va, β1, . . . , βl|z)kn

where the union ranges over all a ∈ A, z ∈ Akn with sl(z) = un+1 and over all βj ∈ Akn+1

for 1 ≤ j ≤ l. For the inclusion from left to right observe that l is defined in a way that there
are at least l occurrences of some βj ∈ Akn+1 right of va. On the other hand, the l-suffix of
z does not begin before va ends, which is due to the l occurrences of βj . This completes the
induction and the proof of the lemma. ❑

1.4.3 More Concatenation Hierarchies

The aim of this subsection is to carry over the relation between L1/2 and B1/2 to all other
levels of the STH and DHH. Therefore we define for all k ≥ 0 a hierarchy over B1/2,k.
Definition 1.30. Let k ≥ 0. The classes of the concatenation hierarchy over B1/2,k are
defined as

Bn+1,k =def BC(Bn+1/2,k) for n ≥ 0 and
Bn+3/2,k =def Pol(Bn+1,k) for n ≥ 0.

The following proposition is the counterpart of Proposition 1.28.

Proposition 1.31. Let k ≥ 0 and n ≥ 1. It holds that

1. Ln/2 = Bn/2,0 and
2. Bn/2,k ⊆ Bn/2,k+1.
Proof. The first statement is obvious from Proposition 1.28 because with L1/2 = B1/2,0 we
see that Definitions 1.2 and 1.30 coincide.
We show the second statement by induction on n. The induction base for n = 1 is given

by Proposition 1.28. We first assume that the statement holds for n ≥ 1 with n ≡ 1 mod 2
and we want to prove it for n+ 1. Then

B(n+1)/2,k = BC(Bn/2,k) ⊆ BC(Bn/2,k+1) = B(n+1)/2,k+1
by the induction hypothesis Bn/2,k ⊆ Bn/2,k+1 and the monotony of BC(·). This shows in
particular the second statement for n = 2. So now we assume that it holds for n ≥ 2 with
n ≡ 0 mod 2 and we want to prove it for n+1. This is the same as before, just change BC(·)
to Pol(·). ❑

There is also a general version of Lemma 1.29. To get this we first observe the following.

Proposition 1.32. For k ≥ 0 let Ck be a family of classes such that Ck ⊆ Ck+1. It holds that

BC(
⋃

k≥0 Ck) =
⋃

k≥0BC(Ck) and Pol(
⋃

k≥0 Ck) =
⋃

k≥0 Pol(Ck).

34 1. Concatenation Hierarchies

Proof. Suppose L is a Boolean combination of finitely many languages Li ∈ Cki for ki ≥ 0.
Then L is also a Boolean combination of languages Li ∈ Ck with k =def max ki because
Cki ⊆ Ck by assumption. Conversely, if L is in BC(Ck′) for some k′ ≥ 0 then it is also in
BC(Ck′) ⊆ BC(

⋃
k≥0 Ck). The second part of the proposition can be seen with the same

arguments. ❑

Lemma 1.33. It holds that Bn/2 =
⋃

k≥0 Bn/2,k for n ≥ 1.
Proof. We show the lemma by induction on n. The induction base for n = 1 is given by
Lemma 1.29. We show the induction step for n + 1 with n ≥ 1 and n ≡ 1 mod 2, for the
other case just change BC(·) to Pol(·). It holds that

B(n+1)/2 = BC(Bn/2) = BC(
⋃

k≥0 Bn/2,k) =
⋃

k≥0BC(Bn/2,k) =
⋃

k≥0 B(n+1)/2,k
by the induction hypothesis Bn/2 =

⋃
k≥0 Bn/2,k and Proposition 1.32 together with Proposi-

tion 1.31. ❑

It is easy to see that all these relations hold also for the classes of complements and that
for n ≥ 0 it holds that Bn+1/2,k ∪ coBn+1/2,k ⊆ Bn+1,k ⊆ Bn+3/2,k ∩ coBn+3/2,k. So we have
the inclusions given in Figure 1.2. It pictures the landscape of classes that we study from
Chapter 2 onwards.

1.5 Finite Automata and Forbidden Pattern Classes

A DFA M is given by M = (A,S, δ, s0, S
′), where A is the input alphabet, S is the set of

states, δ : A×S → S is the total transition function, s0 ∈ S is the starting state and S′ ⊆ S is
the set of accepting states. We denote by L(M) the language accepted byM and by |M| the
number of states ofM. We say a DFA is minimal if for all s1, s2 ∈ S with s1 �= s2 there exists
some z ∈ A∗ such that δ(s1, z) ∈ S′ ⇔ δ(s2, z) �∈ S′. We can identify everyM with its finite
transition graph by taking S as the set of nodes, while edges are drawn and labelled with
respect to the transition function. Since M is a deterministic automaton every w ∈ A∗ and
s ∈ S induce a unique path in the transition graph starting at s and labelled subsequently
by the letters of w.
For notational convenience we extend the transition function to input words and, corre-

spondingly, we look at the extended transition graph: the set of nodes is still S, but edges
are drawn with respect to the extended transition function and have labels from A∗. This is
an infinite directed graph with a finite number of nodes. We say that a state s ∈ S has a loop
w ∈ A∗ (has a w-loop, for short) if and only if δ(s,w) = s. This is just a cycle in the extended
transition graph at node s with label w. Every w ∈ A∗ induces a total mapping δw : S → S
with δw(s) =def δ(s,w) which also has an interpretation in the extended transition graph: we
follow a path labelled w starting simultaneously at each node of the graph. Moreover, we say
that a total mapping δ′ : S → S leads to a w-loop if and only if δ′(s) has a w-loop for all
s ∈ S. We may also say for short that v ∈ A∗ leads to a w-loop if δv leads to a w-loop. We
consider only automata where each state is reachable from the starting state and where the
starting state is not accepting. Clearly, every DFA runs into a loop of w’s if there are enough
of them in the input.

1.5 Finite Automata and Forbidden Pattern Classes 35

B1,k

B2,k

B1

B2

L1

L2B3/2 coB3/2

B3/2,k coB3/2,k

L3/2 coL3/2

B5/2 coB5/2

B5/2,k coB5/2,k

L5/2 coL5/2

B1/2 coB1/2

B1/2,k coB1/2,k

L1/2 coL1/2

star-free

Fig. 1.2. Connecting STH and DDH via classes Bn/2,k for k ≥ 0.

Proposition 1.34. Let M be a DFA and r ≥ |M|. Then wr leads to a wr!-loop for all
w ∈ A∗.

Proof. Observe that wr leads to a wi-loop for some 1 ≤ i ≤ |M|. This is because r ≥ |M|, so
there must be a state appearing twice after input w0, w1, w2, . . . , wr. The proposition follows
since every such wi-loop can be considered as a wr!-loop. ❑

It is also easy to find simultaneous loops between pairs of states if each two states of a pair
are connected by the same word of sufficient length.

Proposition 1.35. LetM = (A,S, δ, s0, S
′) be a DFA, let l ≥ 1 and v ∈ A+ with |v| ≥ |M|l.

Furthermore, let (s1, s
′
1), . . . , (sl, s

′
l) ∈ S × S such that δ(si, v) = s′i for 1 ≤ i ≤ l. Then there

exist ŝi ∈ S, x, y ∈ A∗ and v′ ∈ A+ with v = xv′y and δ(si, xv
′y) = δ(ŝi, v

′y) = δ(ŝi, y) = s′i
for all 1 ≤ i ≤ l.

Proof. Let vj denote the prefix of v of length j with 0 ≤ j ≤ |v| and consider the sequence of
l-tuples of states

36 1. Concatenation Hierarchies

(s01, s
0
2, . . . , s

0
l), (s

1
1, s

1
2, . . . , s

1
l), . . . , (s

|v|
1 , s

|v|
2 , . . . , s

|v|
l)

with sji =def δ(si, vj) for 1 ≤ i ≤ l and 0 ≤ j ≤ |v|. These are at least (|M|l + 1) tuples, so
there exist 0 ≤ j1 < j1 ≤ |v| with (sj11 , . . . , sj1l) = (s

j2
1 , . . . , sj2l). Now rewrite v as v = xv′y

such that x = vj1 and xv′ = vj2 . ❑

A pattern is a subgraph of the extended transition graph with edges labelled by variables
for words from A∗, denoted as u, v, w, x, Sometimes patterns come with side conditions
that must hold for the word variables. We define particular patterns by specifying the vari-
ables (eventually with a side condition) and by providing a figure of the subgraph (see Def-
inition 2.15 and Figure 2.1 as an example). In such a figure some states are labelled by +
(accepting) or by − (rejecting). If we want to express that one of two states is accepting if
and only if the other one is rejecting we write +/− and −/+. We say that a DFA M has
a certain pattern if there is a subgraph in the extended transition graph of M as specified
in the pattern definition, and if all side conditions hold when the labels are assigned to the
word variables.

Definition 1.36. Let P denote a pattern. ThenFP(P) denotes the class of languages L ⊆ A+

such that there is some DFAM with L(M) = L andM does not have pattern P .

In all cases we consider in this thesis the classes FP(P) will be well–defined, i.e., for any
two automata accepting L it holds that one has P if and only if the other one has P . For a finite
number of patterns P 1, P 2, . . . , P n let FP(P 1, P 2, . . . , P n) denote the class of languages where
all patterns P 1, P 2, . . . , P n are simultaneously forbidden in an accepting DFA. A theorem
stating C = FP(P) or C = FP(P 1, . . . , P n) for a language class C is called a forbidden pattern
characterization of C. As mentioned earlier, such a result usually implies the decidability of
the membership problem of C (even efficiently). To decide whether a given DFA has some
pattern we have to verify the respective graph reachability conditions in its transition graph.
Let NL denote the class of languages that are decidable by a nondeterministic algorithm

using space at most logarithmically in the input size (see, e.g., [Pap94] for details). It is known
that this class is closed under complement [Sze87, Imm88]. So to show that the membership
problem of some class FP(P) is in NL we may provide an algorithm that accepts if and
only if the DFA in the input has pattern P . We introduce some more notations to describe
algorithms that look for patterns in transition graphs. LetM = (A,S, δ, s0, S

′) be some DFA.
Then we define for n ≥ 1, si, s′i ∈ S and u ∈ A∗ that

(s1, . . . , sn)
u−→(s′1, . . . , s′n) ⇐⇒def δ(si, u) = s′i for all 1 ≤ i ≤ n

(s1, . . . , sn) −→ (s′1, . . . , s
′
n) ⇐⇒def there exists some v ∈ A∗ such that

(s1, . . . , sn)
v−→(s′1, . . . , s′n)

(s1, . . . , sn) −→+ (s′1, . . . , s
′
n) ⇐⇒def there exists some w ∈ A+ such that

(s1, . . . , sn)
w−→(s′1, . . . , s′n)

If n = 1 we write s1
w−→ s′1, s1 −→ s′1 and s1 −→+ s′1, respectively. Assume that n ≥ 1 is

fixed. On input (M,W) with W = { (si, s′i) ∈ S × S | 1 ≤ i ≤ n } we can verify if

(s1, . . . , sn) −→ (s′1, . . . , s
′
n)

1.5 Finite Automata and Forbidden Pattern Classes 37

in nondeterministic logarithmic space NL. To see this we may guess w ∈ A∗ letter by letter
and follow the paths which start in s1, . . . , sn and have label w with help of the transition
function δ. After each guessed letter we store the new states on these paths in variables
(t1, . . . , tn). Moreover, we guess in each step whether we have already reached the end of w,
and if so, we check whether ti = s′i for all 1 ≤ i ≤ n. Because n is a constant to this algorithm
the space needed is dominated by the space needed to store the tuple (t1, . . . , tn) which is
logarithmic in the input size.
We recall the following theorem concerning star–free languages. It is the characterization

of this class mentioned in the introduction.

Theorem 1.37 ([Sch65, MP71]). Let M = (A,S, δ, s0, S
′) be a minimal DFA. Then

L(M) is star–free if and only if there is some m ≥ 0 such that for all w ∈ A+ and for
all s ∈ S it holds that δ(s,wm) = δ(s,wm+1).

A minimal DFA M is called permutation–free if it has the above property. For later use we
restate the previous theorem as follows.

Proposition 1.38. LetM = (A,S, δ, s0, S
′) be a minimal DFA. Then L(M) is not star–free

if and only if there exist w ∈ A+, some l ≥ 2 and pairwise distinct states r0, r1, . . . , rl−1 ∈ S
such that δ(ri, w) = ri+1 for 0 ≤ i ≤ l − 1 (with rl =def r0).

An obvious property of permutation–free automata is that they run into a w-loop after input
of successive w’s. Otherwise the automaton is not permutation–free as can be seen with
Propositions 1.34 and 1.38.

Proposition 1.39. Let M be a permutation–free DFA and r ≥ |M|. Then wr leads to a
w-loop for all w ∈ A∗.

38 1. Concatenation Hierarchies

2. Dot–Depth One

We refer to the main results of this chapter. In
Section 2.1 we recall generalizations of the sub-
word relation introduced in [Ste85a] and prove
that these relations �k for k ≥ 0 have a fun-
damental property: A+ together with �k is a
well partial ordered set (cf. Theorem 2.10). This
is exploited in Section 2.2 where we show that
B1/2,k is the class of all order ideals of (A+,�k)
(cf. Theorem 2.12). We also give a forbidden pat-
tern characterization of the classes B1/2,k (cf.
Theorem 2.18). In Section 2.3 we restate the
main result from [Ste85a] which gives various
characterizations of the classes B1,k and which
we refine in the following way.
First, we deal in Section 2.4 with the known
characterization of B1,k in terms of a finiteness
condition on the number of alternations in �k-
chains. We prove that the maximal number of
such alternations with respect to a language L
determines the location of L in the Boolean hi-
erarchy over B1/2,k (cf. Theorem 2.30).

B1,k

B1

L1

B3/2 coB3/2

B3/2,k

L3/2 coL3/2

B1/2 coB1/2

B1/2,k coB1/2,k

L1/2 coL1/2

coB3/2,k

This has the mentioned finiteness condition as a corollary and we use our characterization
to obtain strictness and decidability results for the Boolean hierarchy over B1/2,k (cf. Theo-
rems 2.31 and 2.33). Such results are also known for the Boolean hierarchy over B1/2 [Gla99].
Taking them into account we identify in Section 2.5 a landscape that allows to study the
question whether there exist trade–offs between the parameter k on one hand and Boolean
operations on the other hand. We obtain a complete overview over the Boolean structure of
B1 (see Figure 2.6). Finally, we show in Section 2.6 a forbidden pattern characterization of
B1 (cf. Theorem 2.39).

2.1 Subword Relations

We start with a generalization of the well–known subword relation, here extended to k-
decompositions of words.

Definition 2.1. Let k ≥ 0 and let u, v ∈ A≥k+1. Suppose û = (α1, . . . , αm) and v̂ =
(β1, . . . , βn) for m,n ≥ 1. We define

40 2. Dot–Depth One

u�k v ⇐⇒def there exist 1 ≤ j1 < j2 . . . < jm ≤ n such that βji = αi and

u �k v ⇐⇒def u�k v and pk(u) = pk(v) and sk(u) = sk(v).

Moreover, if |u| ≤ k we write u�k v or u �k v if and only if u = v.

Since the k-decomposition of u has to be a subsequence of the k-decomposition of v, both
relations are the usual subword relation in case k = 0. The relation �k was introduced in
[Ste85a] (see also the discussion in Section 2.7). Obviously, we have that u �k v implies u�k v
and we see that both relations are reflexive and transitive. If u �k v we also say that v is a
k-extension of u.
A sequence of words w1, w2, . . . is called a �k-chain if wi �k wi+1 for all words in the

sequence (analogously, we define �k-chains). We say that a chain has an alternation with
respect to some given language L if wi ∈ L⇔ wi+1 �∈ L for some i.

2.1.1 Basic Properties and Elementary k-Extensions

We give basic properties of the defined relations. For some w ∈ A+ denote by wR its reverse
and set LR =def

{
wR |w ∈ L

}
.

Proposition 2.2. Let k ≥ 0 and u, v ∈ A+. Then u�k v if and only if uR �k vR. The same
holds for �k.

Proof. The proposition is clear if |u| ≤ k. So suppose û = (α1, . . . , αm) and v̂ = (β1, . . . , βn)
for appropriate m,n ≥ 1. Observe that for every w ∈ A≥k+1 with ŵ = (γ1, γ2, . . . , γl) it holds

that ŵR = (γRl , γRl−1, . . . , γ
R
1). So if 1 ≤ j1 < j2 . . . < jm ≤ n witness that u �k v we may

take j′i =def n − jm−i+1 + 1 for 1 ≤ i ≤ m to see uR �k vR. Finally, it suffices to note that
pk(w)

R = sk(w
R) for all w ∈ A+. ❑

With the next two propositions we isolate some arguments used in forthcoming proofs.

Proposition 2.3. Let k ≥ 0 and x, y, z ∈ A∗. It holds that

1. u�k xuy for every u ∈ A≥k+1,
2. uy �k uz =⇒ xuy �k xuz for every u ∈ A≥k and
3. xu�k yu =⇒ xuz �k yuz for every u ∈ A≥k.

Proof. Statement 1 is obvious. To see statement 2 note that if |uy| = k then y = z = ε.
If |uy| > k then suppose 1 ≤ j1 < j2 . . . < jm ≤ n for appropriate m,n ≥ 1 witness that
uy �k uz. Since uy and uz have the same k-prefix we may take j′i =def i for 1 ≤ i ≤ |x| and
j′i =def ji−|x| + |x| for |x|+ 1 ≤ i ≤ |x|+m to see that xuy �k xuz. Statement 3 follows from
statement 2 using Proposition 2.2. ❑

Proposition 2.4. Let k ≥ 0 and x, y, z ∈ A∗. It holds that

1. w1 �k w2 =⇒ xw1y �k xw2y for every w1, w2 ∈ A+,
2. xy �k xzy if pk(y) = pk(zy) ∈ Ak and xy ∈ A≥k+1 and
3. w1x �k w2x, xv1 �k xv2 =⇒ w1xv1 �k w2xv2 for every w1, w2, v1, v2 ∈ A+.

2.1 Subword Relations 41

Proof. Statement 1 is clear for |w1| ≤ k. For the other case note that from w1 �k w2 it follows
that both words have the same k-prefix and k-suffix. Hence, we may apply Proposition 2.3.2
and then 2.3.3 to get xw1y �k xw2y. Since these words have again the same k-prefix and
k-suffix we get xw1y �k xw2y. For statement 2 we may take ji =def i for 1 ≤ i ≤ |x| and
ji =def i+ |z| for |x|+ 1 ≤ i ≤ |xy| − k as witnessing indices. Again, we see that both words
have the same k-prefix and k-suffix. Moreover, the letter at position j|x| in xy and in xzy is
followed by pk(y) = pk(zy). If we apply statement 1 twice we get w1xv1 �k w2xv1 �k w2xv2
and obtain statement 3. ❑

One can understand u�k v as a simultaneous insertion of factors at different positions in
u to obtain v, while respecting certain context conditions depending on k. As a special case,
there may only be one such insertion position. This gives rise to the notion of elementary
k-extensions introduced next.

Definition 2.5. Let k ≥ 0 and let u, v ∈ A≥k+1. Suppose û = (α1, . . . , αm) and v̂ =
(β1, . . . , βn) for m,n ≥ 1. We define

u�ek v ⇐⇒def there exist r ≥ 0 and 0 ≤ l ≤ m such that
(β1, . . . , βn) = (α1, . . . , αl, γ1, . . . , γr, αl+1, . . . , αm)
for some γ1, . . . , γr ∈ Ak+1 and

u �ek v ⇐⇒def u�ek v and pk(u) = pk(v) and sk(u) = sk(v).

As before, if |u| ≤ k we write u�ek v or u �ek v if and only if u = v.

If u �ek v we say that v is an elementary k-extension of u. Clearly, if u �ek v then u �k v
and if u �ek v then u �k v. Note also that if u�ek v or u �ek v then there are x, y, z ∈ A∗ with
u = xy and v = xzy. What we have described in Proposition 2.4.2 is in fact an elementary
k-extension. We show with the following two propositions that we can decompose any k-
extension into a finite number of elementary ones.

Proposition 2.6. Let k ≥ 0 and let u, v ∈ A+. If u �= v and u �k v then there exists some
w ∈ A+ with w �= u and u �ek w �k v.

Proof. We may assume u �k v with u, v ∈ A≥k+1. Let û = (α1, . . . , αm) and v̂ = (β1, . . . , βn)
for some m,n ≥ 1. By definition it holds that pk(u) = pk(v) and sk(u) = sk(v) and there are
1 ≤ j1 < j2 . . . < jm ≤ n such that βji = αi for 1 ≤ i ≤ m. Set j0 = 0 and jm+1 = n+ 1. Fix
now a maximal l with 0 ≤ l ≤ m such that jl = l and set r =def jl+1 − jl − 1. Note that such
an l exists since u �= v, and that r ≥ 1. We claim that there is a word w ∈ A≥k+1 such that

ŵ = (α1, . . . , αl, βl+1, . . . , βl+r, αl+1, . . . , αm).

Let ai for 1 ≤ i ≤ m be the first letter of αi, and let bi for 1 ≤ i ≤ n be the first letter
of βi. Define w =def a1 · · · albl+1 · · · bl+ral+1 · · · amsk(αm). If we show that w has the above
k-decomposition we immediately have u �ek w. In fact, we only need to show that αl, βl+1
and βl+r, αl+1 fit together in the sense that sk(αl) = pk(βl+1) and sk(βl+r) = pk(αl+1). To
see that sk(αl) = pk(βl+1) note that l = jl and thus αl = βl. To see that sk(βl+r) = pk(αl+1)
observe that l + r + 1 = jl+1 and thus αl+1 = βl+r+1.
If 0 < l < m then pk(w) = pk(u) and sk(w) = sk(u). If l = 0 then pk(w) = pk(v) and

hence pk(w) = pk(u). The same holds for the k-suffix if l = m. So u �ek w.

42 2. Dot–Depth One

We need to show w �k v. In fact, we only need to show w�k v. Due to the construction of
w we may take as a witnessing sequence of indices 1, 2, . . . , l, l+1, . . . , l+ r, jl+1, jl+2, . . . , jm.
Recall that jl+1 = l + r + 1. ❑

Proposition 2.7. Let k ≥ 0 and let u, v ∈ A+ with u �= v and u �k v. Then there exist l ≥ 1
and words w0, w1, . . . , wl ∈ A+ with w0 = u,wl = v such that for all 0 ≤ i < l it holds that
wi �ek wi+1. Moreover, all wi are pairwise distinct.

Proof. Define w0 =def u. If v is already an elementary k-extension of u we are done with
w1 =def v. Otherwise we apply Proposition 2.6, set w1 =def w and obtain w0 �ek w1. Now we
start over again with w1 and v, apply Proposition 2.6 if w1 �= v, and so on. This procedure
comes to an end since Proposition 2.6 provides a strict elementary k-extension and strict
extensions are length increasing. ❑

Remark 2.8. In case k = 0 we can assume that r = 1 in an elementary 0-extension, sim-
ply insert one letter after another. This is because we do not have to respect any context
conditions which is not true if k ≥ 1. Consider over alphabet A =def {a, b, c} for example
ab �e1 abcb with âb = (ab) and âbcb = (ab, bc, cb). We look for a word axb with x ∈ A and

âxb = (ax, xb) such that ab �e1 axb �e1 abcb. But x = a (x = b) is not possible because there

is no aa (bb, respectively) in âbcb, and x = c is not possible since then there is no ab in âcb.
This is a significant difference between k = 0 and arbitrary k.

2.1.2 Well Partial Ordered Sets

As it turns out, the word extensions we consider have a fundamental property: (A+,�k) for
k ≥ 0 is a well partial ordered set (wpos, for short). The proof we give below is based on an
idea from [SS83] where A+ and the usual subword relation are considered. A first proof of
the latter was given in [Hig52].
For several equivalent properties, which may be used for defining well partial ordered sets,

see [CK96, SS83]. We show here that in A+ there exists neither an infinite strictly descending
�k-chain, nor an infinite set of pairwise incomparable elements with respect to �k. This is
equivalent to saying that for every non–empty subset of A+ the set of minimal elements with
respect to �k in this subset is non–empty and finite [CK96]. In case k = 0 (i.e., the subword
relation, also called division ordering) we encounter the fundamental theorem from Higman
[Hig52].

Theorem 2.9. Let k ≥ 0. It holds that (A+,�k) is a wpos.

Proof. First observe by a typical length argument (namely that u �k v with u �= v implies
|u| < |v|) that we only have to show that any set of pairwise incomparable elements is finite.
Assume to the contrary that there is an infinite subset of A+ such that all its elements are
pairwise incomparable with respect to �k. In particular, there exist infinite sequences {fi}
of words such that from i < j it follows that fi ��k fj. We will show that this is not true.
For this consider any such sequence {fi} and note that all words in such a sequence must be
different since �k is reflexive. We choose from all sequences {fi} an ‘earliest’ sequence {ui}
as follows (using the axiom of choice): let u1 be a shortest word beginning some sequence
{fi}, then let u2 be a shortest second word of any sequence u1, f2, f3 . . ., then let u3 be a

2.2 The Classes B1/2,k 43

shortest third word of any sequence u1, u2, f3 . . ., and so on. Clearly, also for {ui} it holds
that from i < j it follows that ui ��k uj . Since we have a finite alphabet there are words
ui1 = awg1, ui2 = awg2, . . . with i1 < i2 < . . . for some a ∈ A and some w ∈ Ak. Note that
none of these gj can be ε since aw �k awv for arbitrary v.
Now we look at the sequence u1, u2, . . . , ui1−1, wg1, wg2, . . . Denote this new sequence as

{xi} which is ‘earlier’ than {ui} since |wg1| < |ui1 |. In order to obtain a contradiction to our
construction we need to show that for all i, j with i < j we can conclude xi ��k xj. This is clear
if i, j ∈ {1, . . . , i1 − 1} by the same property for {ui}. Now suppose i ∈ {1, . . . , i1 − 1} and
j ≥ i1 and assume xi �k xj where xi = ui and xj = wgl for some l ≥ 1. Since wgl ∈ A≥k+1

we have by Proposition 2.3.1 that wgl �k awgl = uil and together ui �k uil , a contradiction.
Finally let i, j ≥ i1 with i < j. Assume xi�k xj with xi = wgl and xj = wgm for some l < m.
By Proposition 2.3.2 we have that awgl �k awgm, so uil �k uim , again a contradiction. ❑

Theorem 2.10. Let k ≥ 0. It holds that (A+,�k) is a wpos.

Proof. Suppose there exists an infinite subset of A+ such that all its elements are pairwise
incomparable with respect to �k. Then there is also an infinite subset L such that all words
in L have the same k-prefix and k-suffix. So the words in L are pairwise incomparable with
respect to �k contradicting Theorem 2.9. ❑

Interestingly, it seems to be difficult to find a direct proof for �k. In fact, this is the reason
why we introduced �k.

2.2 The Classes B1=2;k

There are close connections of k-extensions to the classes B1/2,k.

2.2.1 Order Ideals and Closure Properties

The closure of u ∈ A+ under k-extensions is denoted as 〈u〉k =def { v ∈ A+ | u �k v }. If
u ∈ A≤k then 〈u〉k = {u}, so 〈u〉k ∈ B1/2,k. If u ∈ A≥k+1 and û = (α1, . . . , αm) for some
m ≥ 1 then 〈u〉k = (pk(u)|α1, . . . , αm|sk(u))k, so again 〈u〉k ∈ B1/2,k.
Proposition 2.11. Let k ≥ 0 and u ∈ A+. It holds that 〈u〉k ∈ B1/2,k.
Now we look at the closure of some L ⊆ A+ under k-extensions, which we denote as 〈L〉k =def⋃

u∈L〈u〉k. A language L is called an order ideal of (A+,�k) if and only if L = 〈L〉k.
Theorem 2.12. Let k ≥ 0 and L ⊆ A+. It holds that L ∈ B1/2,k if and only if L is an order
ideal of (A+,�k).

Proof. Suppose L = 〈L〉k =
⋃

u∈L〈u〉k. We have seen before that 〈u〉k ∈ B1/2,k. Since (A+,�k)
is a wpos by Theorem 2.10 the set of distinct minimal elements u ∈ L with respect to �k is
finite. Note that u �k v if and only if 〈u〉k ⊇ 〈v〉k, so we may assume that the union

⋃
u∈L〈u〉k

is finite. Hence, L ∈ B1/2,k.
Conversely, it suffices to show that 〈L〉k ⊆ L. Suppose u ∈ 〈L〉k. Then there is some x ∈ L

such that x �k u. If x ∈ A≤k then x = u. If x ∈ A≥k+1 then x is in some set of the form
(w|α1, . . . , αm|v)k ⊆ L withm ≥ 1, w, v ∈ Ak and αi ∈ Ak+1. By definition of �k, the words x

44 2. Dot–Depth One

and u have the same k-prefix and k-suffix, so w = pk(x) = pk(u) and v = sk(x) = sk(u). More-
over, all elements of the k-decomposition of x appear in this ordering in the k-decomposition
of u, which holds in particular for α1, . . . , αm. This shows u ∈ (w|α1, . . . , αm|v)k ⊆ L. ❑

The theorem also shows that the closure of an arbitrary language under k-extensions is
in B1/2,k. In particular, we obtain a regular language independent of the language we start
with.

Corollary 2.13. Let k ≥ 0 and L ⊆ A+. It holds that 〈L〉k ∈ B1/2,k.
We continue with closure properties of the classes B1/2,k. The closure under right and left
residuals is shown already for all Bn/2,k with n ≥ 1.
Lemma 2.14. Let k ≥ 0 and n ≥ 1.
1. The classes B1/2,k and coB1/2,k are closed under finite union and intersection.
2. It holds that a−1L ∩ A+, La−1 ∩ A+ ∈ Bn/2,k for a ∈ A and L ∈ Bn/2,k.
Proof. The closure of B1/2,k under finite union is by definition. To prove the first statement
it suffices to show the closure of B1/2,k under finite intersection, since then both closure
properties translate to coB1/2,k by DeMorgan’s law. So suppose L,L′ ∈ B1/2,k. We show that
L∩L′ = 〈L ∩L′〉k from which L∩L′ ∈ B1/2,k follows with Theorem 2.12. It suffices to argue
for the inclusion 〈L∩L′〉k ⊆ L∩L′. For every u ∈ 〈L∩L′〉k there is some x ∈ L∩L′ such that
x �k u. Since by Theorem 2.12 we have L = 〈L〉k and L′ = 〈L′〉k there are y ∈ L and y′ ∈ L′

such that y �k x �k u and y′ �k x �k u. So it holds that u ∈ 〈L〉k = L and u ∈ 〈L′〉k = L′.
We turn to the second statement which we show by induction on n. It suffices to argue

for the case of left residuals.
Induction base. Let n = 1. Since B1/2,0 = L1/2 by Proposition 1.28 and together with

Lemma 1.21 it remains to show the case when k ≥ 1. So let a language L ∈ B1/2,k be given. By
definition, L is a finite union of a subset of A≤k with languages of the form (w|α1, . . . , αm|v)k ⊆
A≥k+1 where m ≥ 1, w, v ∈ Ak and αi ∈ Ak+1. We can treat the members of this union
separately since a−1(L1 ∪ L2) = a−1L1 ∪ a−1L2 for arbitrary L1, L2 ⊆ A+. Clearly, a−1D ∩
A+ ⊆ A≤k for D ⊆ A≤k. So fix some L′ =def (w|α1, . . . , αm|v)k with m ≥ 1, w, v ∈ Ak and
αi ∈ Ak+1. Note that k ≥ 1 and that a−1L′ ⊆ A≥k. So a−1L′ ∩A+ = a−1L′ and it remains to
show that a−1L′ ∈ B1/2,k. Furthermore we may assume that w = aw′ for some w′ ∈ A∗ since
otherwise a−1L′ = ∅ ∈ B1/2,k.

Case 1. Suppose aw′ �= pk(α1). Then a−1L′ ⊆ A≥k+1 and there are no words x in L′ such
that α1 is the first element in the k-decomposition of x. We obtain

a−1L′ =
⋃
b∈A
(w′b|α1, . . . , αm|v)k ∈ B1/2,k.

Case 2. Suppose aw′ = pk(α1) and m ≥ 2. Then again a−1L′ ⊆ A≥k+1, but the k-
decomposition of some x ∈ L′ may start with α1. In this case we see that

a−1L′ =
⋃
b∈A
(w′b|α1, . . . , αm|v)k ∪ (sk(α1)|α2, . . . , αm|v)k ∈ B1/2,k.

Case 3. Suppose aw′ = pk(α1) and m = 1. Then it holds that

2.2 The Classes B1/2,k 45

a−1L′ =
⋃
b∈A
(w′b|α1 |v)k ∪

⋃
β∈Ak+1

(sk(α1)|β |v)k ∪ { v | sk(α1) = v } ∈ B1/2,k.

Induction step. We first assume that the assertion holds for n ≥ 1 with n ≡ 1 mod 2
and we want to prove it for n+1. So let L ∈ B(n+1)/2,k and a ∈ A. By definition, L is a Boolean
combination of languages from Bn/2,k that we can write as a finite union of intersections of
sets E and A+ \ E with E ∈ Bn/2,k. Again note that a−1(L1 ∪ L2) = a−1L1 ∪ a−1L2 and
also a−1(L1 ∩ L2) = a−1L1 ∩ a−1L2 for all L1, L2 ⊆ A+. So a−1L ∩ A+ can be written as
a finite union of intersections of sets L1 =def a

−1E ∩ A+ and L2 =def a
−1(A+ \ E) ∩ A+.

By hypothesis, we have L1 ∈ Bn/2,k ⊆ B(n+1)/2,k and it remains to show that L2 ∈ B(n+1)/2,k.
Note that E ⊆ A+ and denote for this proof by L the complement of L with respect to A∗.
Then we can carry out the following calculation.

L2 = a−1(A+ \E) ∩ A+

= a−1
(
A+ ∩ E

) ∩ A+

= a−1A+ ∩ a−1E ∩ A+

= A∗ ∩ a−1E ∩ A+

=
(
a−1E ∪ A+

)
∩ A+

= A+ \ (a−1E ∩ A+
)

By hypothesis, L2 ∈ coBn/2,k ⊆ B(n+1)/2,k. This shows in particular the second statement for
n = 2. So now we assume that it holds for n ≥ 2 with n ≡ 0 mod 2 and we want to prove
it for n + 1. Let L ∈ B(n+1)/2,k. By definition, L is a finite union of language L1L2 · · ·Lm

with m ≥ 0 and Li ∈ Bn/2,k. It suffices to consider each member of the union separately. In
case m = 0 there is nothing to do and if m = 1 we can immediately apply the hypothesis. It
remains to show that a−1 (L1L2 · · ·Lm) ∩ A+ = a−1 (L1L2 · · ·Lm) ∈ B(n+1)/2,k for m ≥ 2.
Since Li ⊆ A+ we can write a−1 (L1L2 · · ·Lm) =

(
(a−1L1)L2 · · ·Lm

)
. Now we use that

{b}, L1 ∈ Bn/2,k which is a class closed under Boolean operations. So we can rewrite L1 as
L1 = L′

1 ∪ L′′
2 with L′

1 =def L1 ∩ A and L′′
1 =def L1 \ L′

1. Observe that again L′
1, L

′′
1 ∈ Bn/2,k.

If we rewrite in(
(a−1L1)L2 · · ·Lm

)
=
(
(a−1L′

1 ∪ a−1L′′
1)L2 · · ·Lm

)
= (a−1L′

1)L2 · · ·Lm ∪ (a−1L′′
1)L2 · · ·Lm

the set L′
1 as the finite union of its elements, we encounter either the empty set or

L2 · · ·Lm which are both in B(n+1)/2,k. In case of a−1L′′
1 observe that L′′

1 ⊆ A≥2 and
a−1L′′

1 = a−1L′′
1 ∩ A+ ∈ Bn/2,k by hypothesis. So also (a−1L′′

1)L2 · · ·Lm ∈ B(n+1)/2,k which
completes the induction. ❑

2.2.2 Forbidden Pattern Characterization

We recall the forbidden patterns L 1/2 and B 1/2 characterizing L1/2 and B1/2, respectively.
Definition 2.15 ([PW97]).

1. Pattern L 1/2 is defined as the subgraph given in Figure 2.1 with x,w, z ∈ A∗.
2. Pattern B 1/2 is defined as the subgraph given in Figure 2.2 with x, z ∈ A∗ and v,w ∈ A+.

46 2. Dot–Depth One

zz

x ws1 s2s0

−+
Fig. 2.1. Pattern L1/2 .

zz

x ws1 s2s0

vv

+ −
Fig. 2.2. Pattern B1/2 .

It is easy to see that FP(L 1/2) is well–defined. The same holds for FP(B 1/2) which can be
shown using the arguments from the second part of the following proof.

Theorem 2.16 ([PW97],[Arf91]). It holds that

1. L1/2 = FP(L 1/2) and
2. B1/2 = FP(B 1/2).
Proof. To show the first statement we recall [PW97, Theorem 8.5]. After rewriting their
notations we obtain the following (together with Theorem 1.8). It is an automata–theoretic
version of [Arf91, Theorem 3.3].

(a) Let M be a minimal DFA with L(M) ⊆ A∗. Then L(M) ∈ L1/2 ∪ {A∗} if and only
if M does not have a subgraph in its transition graph as depicted in Figure 2.1 with
x,w, z ∈ A∗.

Suppose L ∈ L1/2 and letM = (A,S, δ, s0, S
′) be the minimal DFA with L(M) = L ⊆ A+.

Assume that M has pattern L 1/2 via x,w, z ∈ A∗. We apply (a) and see that L = L(M) /∈
L1/2 ∪ {A∗}, a contradiction. It follows that there exists an DFA accepting L that does not
have pattern L 1/2, so L ∈ FP(L 1/2) (recall Definition 1.36).
Conversely, let L ∈ FP(L 1/2). So there exists some DFAM with L(M) = L ⊆ A+ such

that M does not have pattern L 1/2. We assume that L /∈ L1/2 and show that this leads
to a contradiction. Since L ⊆ A+ we see that L /∈ L1/2 ∪ {A∗}. So by (a), the minimal
DFAM′ = (A,S, δ, s0, S

′) accepting L has a subgraph in its transition graph as depicted in
Figure 2.1 with x,w, z ∈ A∗. Then xz ∈ L = L(M) and xwz /∈ L = L(M) with x,w, z ∈ A∗,
which shows thatM has pattern L 1/2, a contradiction.
To see the second statement of the theorem we recall [PW97, Theorem 8.15]. After rewrit-

ing their notations we obtain the following (recall also by Theorem 1.8 that we talk about
the same class of languages B1/2).
(b) LetM be a minimal DFA with L(M) ⊆ A+. Then L(M) ∈ B1/2 if and only ifM does

not have a subgraph in its transition graph as depicted in Figure 2.2 with x ∈ A∗ and
v,w, z ∈ A+.

Suppose L ∈ B1/2 and letM = (A,S, δ, s0, S
′) be the minimal DFA with L(M) = L ⊆ A+.

Assume that M has pattern B 1/2 via x, z ∈ A∗ and v,w ∈ A+. Then M also has pattern
B 1/2 via x ∈ A∗ and v,w, z′ ∈ A+ with z′ =def vz. So we can apply (b) and see that
L = L(M) /∈ B1/2, a contradiction. It follows that there exists an DFA accepting L that does
not have pattern B 1/2, so L ∈ FP(B 1/2).

2.2 The Classes B1/2,k 47

Conversely, let L ∈ FP(B 1/2). So there exists some DFAM with L(M) = L ⊆ A+ such
that M does not have pattern B 1/2. We assume that L /∈ B1/2 and show that this leads to
a contradiction. By (b), the minimal DFA M′ accepting L has a subgraph in its transition
graph as depicted in Figure 2.2 with x ∈ A∗ and v,w, z ∈ A+.
Now let r =def |M|, and define z′ =def z, x′ =def xvr, w′ =def wvr and v′ =def vr!. Observe

that x′, z′ ∈ A∗ and v′, w′ ∈ A+. We obtain from Proposition 1.34 that x′ and w′ lead to a
v′-loop. Moreover, we see from M′ that x′z′ ∈ L = L(M) and x′w′z′ /∈ L = L(M). So M
has pattern B 1/2, a contradiction. ❑

We show that the connection of L1/2 and B1/2 via the classes B1/2,k has a natural coun-
terpart on the pattern side.

Definition 2.17. Let k ≥ 0. Pattern B 1/2,k is defined as the subgraph given in Figure 2.1
with x,w, z ∈ A∗ and the side conditions

– |x| ≥ k, |xz| ≥ k + 1 and
– sk(x) = sk(xw).

Note that L 1/2 is the same pattern as B 1/2,0 since we look only at automata accepting lan-
guages from A+. It is easy to see that FP(B 1/2,k) is well–defined. The following theorem
gives in particular another proof of the first statement of Theorem 2.16.

Theorem 2.18. Let k ≥ 0. It holds that B1/2,k = FP(B 1/2,k).
Proof. For the inclusion from left to right suppose L ∈ B1/2,k and letM be a DFA accepting
L. If M has pattern B 1/2,k with x,w, z ∈ A∗, then it is easy to see that xz �k xwz, e.g.,
apply Propositions 2.4.2 and 2.2. Since xz ∈ L and xwz /∈ L we see that L is not an order
ideal of (A+,�k). So by Theorem 2.12 we have L /∈ B1/2,k, a contradiction.
For the reverse inclusion suppose L ∈ FP(B 1/2,k). Then there exists some DFA M with

L(M) = L such thatM does not have pattern B 1/2,k. Assume to the contrary that L /∈ B1/2,k.
Again by Theorem 2.12 there is some u ∈ L and v /∈ L such that u �k v. Note that |u| ≥ k+1
since otherwise u = v. We want to exploit this situation to find pattern B 1/2,k in M. First,
we apply the decomposition of k-extensions into elementary ones from Proposition 2.7. There
must be at least one position i in the sequence of elementary k-extensions from u to v where
wi �ek wi+1 with wi ∈ L and wi+1 /∈ L. So we assume without loss of generality that u �ek v.
Let û = (α1, . . . , αm) for some m ≥ 1 and v̂ = (α1, . . . , αl, γ1, . . . , γr, αl+1, . . . , αm) for

some 0 ≤ l ≤ m, r ≥ 1 and γi ∈ Ak+1. Let a1, . . . , al be the first letters of α1, . . . , αl, and
let b1, . . . , br, cl+1, . . . , cm be the last letters of γ1, . . . , γr, αl+1, . . . , αm. Now define x =def
a1 · · · alpk(γ1), w =def b1 · · · br and z =def cl+1 · · · cm. Then |x| ≥ k, xz = u, |xz| ≥ k + 1 and
xwz = v. First assume 0 < l < m. Then it holds that sk(x) = sk(αl) = pk(αl+1) = sk(γr) =
sk(xw). If l = 0 then x = pk(γ1) = pk(α1) = sk(xw) since pk(u) = pk(v). Analogously, if
l = m then sk(x) = sk(αl) = sk(γr) = sk(xw) since sk(u) = sk(v). Together we see that
x,w, z ∈ A∗ give rise to pattern B 1/2,k inM, a contradiction. So L ∈ B1/2,k. ❑

One can understand pattern B 1/2,k as an elementary k-extensions in the transition graph
ofM leading from L(M) to its complement, i.e., one alternation from + to −. It is clear that
we encounter pattern B 1/2 if k is large enough in comparison toM.

Proposition 2.19. Let M be a DFA and k ≥ |M|2. If M has pattern B 1/2,k then M has
pattern B 1/2.

48 2. Dot–Depth One

Proof. SupposeM = (A,S, δ, s0, S
′) has pattern B 1/2,k via x,w, z ∈ A∗. Then there are two

distinct pairs of states (s′1, s1) and (s′2, s2) such that for v =def sk(x) = sk(xw) we have
δ(s′i, v) = si for i = 1, 2. We apply Proposition 1.35 which provides ŝi ∈ S, x′, y′ ∈ A∗ and
v′ ∈ A+ such that v = x′v′y′ and δ(s′i, x

′v′y′) = δ(ŝi, v
′y′) = δ(ŝi, y

′) = si for i = 1, 2. It is
easy to see that this yields pattern B 1/2 inM since ŝ1 and ŝ2 have a non–empty v′-loop. ❑

So we see how pattern L 1/2 turns in a natural way to pattern B 1/2 as k increases. We
describe now another proof of the second statement of Theorem 2.16. Let L ∈ B1/2 and let
M be some DFA accepting L. Then L is in B1/2,k for some k ≥ 0 by Lemma 1.29 and hence
M does not have pattern B 1/2,k by Theorem 2.18. But then M does also not have pattern
B 1/2 since B 1/2 is a special case of B 1/2,k for all k ≥ 0. On the other hand, if L /∈ B1/2 then
it is in none of the classes B1/2,k. SoM has in particular pattern B 1/2,k for k = |M|2. From
Proposition 2.19 we see thatM has pattern B 1/2.
Theorem 2.18 yields an NL–algorithm for the membership problem of B1/2,k for fixed

k ≥ 0. We only have to look for pattern B 1/2,k in the transition graph of a given DFA. To do
so we guess states s1, s2, s

+, s− and check whether s+ is accepting and s− is rejecting. Then
we verify s0 −→ s1 and (s1, s2) −→ (s+, s−). We can also store the needed suffixes of size k
because this is a contant to the algorithm.
There are similar NL–algorithm to find patterns L 1/2 and B 1/2 in transition graphs. Such

algorithms were also pointed out in [PW97] for the membership problems of L1/2 and of
B1/2. The bound on k from Proposition 2.19 allows the exact location of a language in the
hierarchy of classes B1/2,k. Just repeat the algorithm for B1/2,k with k = 0, 1, . . . , |M|2. The
latter is an algorithm that also decides the membership problem of B1/2.

2.3 Stern’s Theorem

We turn to the classes B1,k which are by definition the Boolean closure of B1/2,k. The forbidden
patterns B 1,k, B̂ 1,k and B̂ rev

1,k characterize B1,k.
Definition 2.20 ([Ste85a]). Let k ≥ 0.
1. Pattern B 1,k is defined as the subgraph given in Figure 2.3 with x, y, y′, u, v, w,w′, z ∈ A∗

and |w| = |w′| = k.
2. Pattern B̂ 1,k is defined as the subgraph given in Figure 2.4 with x, u, v, w, z ∈ A∗ and
|w| = k.

3. Pattern B̂ rev
1,k is defined as the subgraph given in Figure 2.5 with x, u, v, w, z ∈ A∗ and

|w| = k.

The following is the main result from [Ste85a, Theorem 3.3] stated here in our notations.
We have already defined the notion of �k-chains at the beginning of Section 2.1.

Theorem 2.21 ([Ste85a]). Let k ≥ 0, L ⊆ A+ and let M be the minimal DFA accepting
L. The following statements are equivalent.

(1) L ∈ B1,k
(2) L ∈ FP(B 1,k, B̂ 1,k, B̂ rev

1,k)
(3) Any �k-chain has a finite number of alternations with respect to L.

(4) Any �k-chain has at most 22|A|k+2(k+1)2|M| alternations with respect to L.

2.3 Stern’s Theorem 49

s1
xs0

w′

w y′

y

u

z

s5

u

v w′

w

s3

+/−

v

z

s4

u

v w′

w

s6

−/+

s2

Fig. 2.3. Pattern B1,k with |w| = |w′| = k.

s2

zz

s1
xs0

w

w v

u

+/− −/+
Fig. 2.4. Pattern B̂1,k with |w| = k.

s1
xs0

w

s2
u v

z

s5

u

v w

w

z

s4

u

v w

w

s3 s6

−/++/−
Fig. 2.5. Pattern B̂ rev

1,k with |w| = k.

Let us mention that the patterns B̂ 1,k and B̂ rev
1,k are connected via taking reverse languages.

IfM is some DFA then for any DFA M̂ with L(M̂) = L(M)R it holds thatM has pattern
B̂ 1,k if and only if M̂ has pattern B̂ rev

1,k. Moreover, FP(B 1,k, B̂ 1,k, B̂ rev
1,k) is well–defined. We

show both for very similar patterns in the forthcoming Propositions 3.6 and 3.7 and give
proofs there. In case k = 0 we get a forbidden pattern characterization of B1,0 = L1 which
can be slightly simplified.

Proposition 2.22. It holds that L1 = FP(B̂ 1,0, B̂ rev
1,0).

Proof. It suffices to prove FP(B̂ 1,0, B̂ rev
1,0) ⊆ FP(B 1,0, B̂ 1,0, B̂ rev

1,0). So let L ∈ FP(B̂ 1,0, B̂ rev
1,0).

We need to show that there is some DFA accepting L that has none of the patterns B 1,0, B̂ 1,0
and B̂ rev

1,0. For this consider the minimal DFAM with L(M) = L and assume to the contrary

that M has pattern B 1,0. If s1 �= s2 in this pattern then we found pattern B̂ 1,0 becauseM
is minimal. If s1 = s2 in this pattern then we found pattern B̂ rev

1,0. SoM has patterns B̂ 1,0 or

B̂ rev
1,0, a contradiction. ❑

Note that this proof does not work for k ≥ 1 since eventually w �= w′ in pattern B 1,k. This
yields an NL–algorithm for the membership problem of L1. We guess in a straightforward
way the involved states and verify the reachability conditions given by the patterns. Similar
algorithms can be provided for the membership problem of B1,k for fixed k ≥ 0, investigated
in [Ste85b, CH91]

50 2. Dot–Depth One

2.4 The Boolean Hierarchy over B1=2;k

There is a natural connection between the class B1,k and the number of alternations in �k-
chains: the maximal number of such alternations determines the location of a language in the
Boolean hierarchy over B1/2,k. Our Theorem 2.30 below has the equivalence of (1) and (3) in
Theorem 2.21 as a corollary. We begin with the definition of Boolean hierarchies.

Definition 2.23 ([KSW87, CGH+88]). Let C be a class of languages closed under union
and intersection. The Boolean hierarchy over C is the family of classes C(l) and coC(l) for
l ≥ 1 such that
1. L ∈ C(2l − 1) if and only if there exist L1, L2, . . . , L2l−1 ∈ C with L1 ⊇ L2 ⊇ · · · ⊇ L2l−1
and L =

⋃l−1
i=1(L2i−1\L2i) ∪ L2l−1 and

2. L ∈ C(2l) if and only if there exist L1, L2, . . . , L2l ∈ C with L1 ⊇ L2 ⊇ · · · ⊇ L2l and
L =
⋃l

i=1(L2i−1\L2i).
It is known from these papers that every class defined via a fixed but arbitrary Boolean
combination of the languages from C coincides with one of the classes C(l) or coC(l). We have
taken this normal form result for the definition here. Moreover, the following inclusions are
known.

Lemma 2.24 ([KSW87, CGH+88]). Let C be a class of languages closed under union and
intersection. Then BC(C) = ⋃l≥1 C(l) and C(l) ∪ coC(l) ⊆ C(l + 1) ∩ coC(l + 1) for l ≥ 1.
The previous lemma can be applied in particular to the classes B1/2,k due to Lemma 2.14.

2.4.1 A Membership Criterion

We fix some k ≥ 0 for this subsection. The Boolean hierarchy over B1/2,k is the family of
classes B1/2,k(l) and coB1/2,k(l) for l ≥ 1. We introduce a notation for alternating �k-chains.

Definition 2.25. Let L ⊆ A+, m ≥ 0 and w, v ∈ A+. We say that v is reachable from w

by a �k-chain having m alternations with respect to L, in notation w
m,k
=⇒L v, if and only if

there exist w0, . . . , wm ∈ A+ such that

1. w = w0 �k w1 �k w2 �k . . . �k wm �k v and

2. wi ∈ L if and only if wi+1 �∈ L for 0 ≤ i ≤ m− 1.
If wi ∈ L (wi �∈ L) we say that wi has signature + (−, respectively). Next we take a closer
look at such chains and define the sets of words that can be reached from a word (not) in a
given language L by m alternations.

Definition 2.26. For a language L ⊆ A+ and m ≥ 0 we define
1. L+k (m) =def

{
v ∈ A+

∣∣∣ ∃w (w ∈ L ∧ w
m,k
=⇒L v)

}
and

2. L−
k (m) =def

{
v ∈ A+

∣∣∣ ∃w (w �∈ L ∧ w
m,k
=⇒L v)

}
.

Here are some properties of these sets.

2.4 The Boolean Hierarchy over B1/2,k 51

Proposition 2.27. Let L ⊆ A+ and m ≥ 0. It holds that

1. L−
k (m) = (A

+ \ L)+k (m),
2. L+k (m+ 1) ∪ L−

k (m+ 1) ⊆ L+k (m) ∩ L−
k (m) and

3. L+k (m) and L−
k (m) are languages in B1/2,k.

Proof. To see statement 1 suppose v ∈ L−
k (m) for some m ≥ 0. If we look at the witnessing

�k-chain with m alternations, then going from L to (A+ \ L) just inverts its signature. Now
this chain witnesses v ∈ (A+ \ L)+k (m). The second statement is due to the fact that a �k-
chain with m+1 alternations is also a k-chain with m alternations since �k is transitive. For
statement 3 note from the definitions that L+k (m) and L−

k (m) are order ideals of (A
+,�k). ❑

Any language L can be expressed as a possibly infinite union of set differences of sets
L+k (m) and L−

k (m).

Proposition 2.28. For L ⊆ A+ the following holds.

1. L =
⋃∞

m≥0
(
L+k (2m)\L+k (2m + 1)

)
and

(A+ \ L) = (A+\L+k (0)) ∪⋃∞
m≥1
(
L+k (2m − 1)\L+k (2m)

)
.

2. (A+ \ L) = ⋃∞
m≥0
(
L−
k (2m)\L−

k (2m + 1)
)
and

L =
(
A+\L−

k (0)
) ∪⋃∞

m≥1
(
L−
k (2m − 1)\L−

k (2m)
)
.

Proof. It suffices to prove statement 1 since the second statement follows from the first by
Proposition 2.27. Let m ≥ 0 and v ∈ L+k (2m)\L+k (2m+1). Because v ∈ L+k (2m) there exists

some w ∈ L with w
2m,k
=⇒L v. Now observe that if v �∈ L then w

2m+1,k
=⇒ L v witnessed by the

same �k-chain as before. But this is a contradiction to v �∈ L+k (2m+1). So v ∈ L. This shows
the inclusion from right to left.
For the other inclusion let v ∈ L and look at all sequences of words w0, w1, . . . , wl ∈ A+

with l ≥ 0 such that w0 ∈ L, wl = v, w0 �k w1 �k . . . �k wl, and wi �= wi+1 for 0 ≤ i ≤ l−1.
Note that at least one such sequence exists. In fact, there is only a finite number of them since
there are no infinite strictly descending �k-chains. We can associate with each such sequence
its number of alternations with respect to L. Let lmax be the maximal such number over all
considered sequences. First observe that lmax = 2m for some m ≥ 0 because w0, wlmax ∈ L.
So we have v ∈ L+k (2m) witnessed by the sequence with lmax alternations. It cannot hold
that v ∈ L+k (2m + 1) due to the maximality of lmax.
To see the statement for (A+ \ L) we can prove as before that v ∈ L+(2m − 1)\L+(2m)

implies v �∈ L for m ≥ 1. Since for all v ∈ A+ it holds that v
0,k
=⇒L v we have L ⊆ L+k (0).

Hence v ∈ A+\L+(0) implies v �∈ L. This shows the inclusion from right to left. On the other
hand, if v �∈ L then there is no �k-chain starting with some w ∈ L and ending with v, or
we may argue as before with the maximal number of alternations (which must be odd this
time). ❑

In order to measure the number of inevitable alternations that occur with respect to a
given language L we look for the maximal m such that the sets L+k (m) and L−

k (m) are not
empty.

Definition 2.29. For a language L ⊆ A+ we define m+
k (L) =def sup

{
m
∣∣L+k (m) �= ∅ } and

m−
k (L) =def sup

{
m
∣∣L−

k (m) �= ∅
}
.

52 2. Dot–Depth One

Since the measure m+
k gives the maximal number of alternations in �k-chains it is the same

measure as used in Theorem 2.21. We relate the single classes of the Boolean hierarchy over
B1/2,k to particular values of m+

k and m−
k .

Theorem 2.30. Let L ⊆ A+ and l ≥ 1. It holds that

1. L ∈ B1/2,k(l) if and only if m+
k (L) < l and

2. L ∈ coB1/2,k(l) if and only if m−
k (L) < l.

Proof. We begin with statement 1 and we restrict ourselves to the case of even l, the other
case being proved completely analogously.
Let L ⊆ A+ with m+

k (L) < 2l. Then L+k (i) = ∅ for all i ≥ 2l. By Proposition 2.28 we can
write L as

L =
l−1⋃
i=0

(
L+k (2i)\L+k (2i + 1)

)
and from Proposition 2.27 we see with Definition 2.23 that L ∈ B1/2,k(2l).
Now suppose L ∈ B1/2,k(2l). By definition there exist L1, L2, . . . , L2l ∈ B1/2,k such that

L1 ⊇ L2 ⊇ · · · ⊇ L2l and L =
⋃l

i=1(L2i−1\L2i). With L0 =def A
+ and L2l+1 =def ∅ we obtain

(A+ \ L) =
⋃l

i=0(L2i\L2i+1). So each word from A+ is contained in some set Li\Li+1 for
some i ∈ {0, . . . , 2l}.
Assume to the contrary that L+k (2l) �= ∅. Then by definition of L+k (2l) there exist w ∈ L,

some v ∈ L+k (2l) and w0, w1, . . . , w2l ∈ A+ such that w = w0 �k w1 �k . . . �k w2l �k v
with w2i ∈ L and w2i−1 �∈ L. For any i ∈ {0, 1, . . . , 2l − 1} there must be two indices
j, j′ ∈ {0, . . . , 2l} with wi ∈ Lj\Lj+1 and wi+1 ∈ Lj′\Lj′+1. Since wi ∈ L ⇔ wi+1 �∈ L these
indices must be different. Note that 〈Lj〉k = Lj for all j. So from wi �k wi+1 we can conclude
that wi+1 ∈ Lj as well, which implies j

′ > j. Consequently, the words w0, w1, . . . , w2l are in
2l + 1 different sets Lj\Lj+1 with j ≥ 1 (since w0 ∈ L ⊆ L1). This is a contradiction since
there are only 2l such sets. Hence m+

k (L) < 2l.
Statement 2 follows from the first statement because m+

k (L) = m−
k (A

+ \ L) which is
immediate by Proposition 2.27. ❑

2.4.2 Strictness and Decidability Results

We give a strictness argument for the Boolean hierarchy over B1/2,k and show afterwards how
the measures m+

k and m−
k can be effectively computed.

Theorem 2.31. For every l ≥ 1 it holds that B1/2,k(l) �⊆ coB1/2,k(l).
Proof. Since |A| ≥ 2 there are two different letters a, b ∈ A. Let α =def ak+1. For a word
w ∈ A≥k+1 we define |w|α to be the number of occurrences of α in the k-decomposition ŵ.
For r ≥ 1 define
1. M2r−1 =def

{
w ∈ A≥k+1 | |w|α is odd or |w|α > 2r − 1 } and

2. M2r =def
{
w ∈ A≥k+1 | |w|α is odd and |w|α ≤ 2r

}
.

We claim that for all l ≥ 1 it holds that m−
k (Ml) = l and m+

k (Ml) = l − 1. Then we obtain
from Theorem 2.30 that Ml ∈ B1/2,k(l)\coB1/2,k(l). So it remains to prove this claim.

2.4 The Boolean Hierarchy over B1/2,k 53

We first show that m−
k (Ml) ≥ l and m+

k (Ml) ≥ l − 1 for all l ≥ 1. Therefore we define
yi =def ba

kai for all i ≥ 0. It is easy to see that |yi|α = i and that yi �ek yi+1 for all i ≥ 0. As in
the definition of the sets above we distinguish the cases of odd and even l. So let us assume first
that l = 2r−1 for some r ≥ 1. We see that y2j �∈M2r−1 and y2j+1 ∈M2r−1 for 0 ≤ j ≤ r−1.
So we may take y0 �k y1 �k . . . �k y2r−1 as a �k-chain having 2r − 1 alternations with
respect to M2r−1 that witnesses m−

k (M2r−1) ≥ 2r−1. The same �k-chain also witnesses that
m+

k (M2r−1) ≥ 2r − 2. Now let l = 2r for some r ≥ 1. Again we observe that y2j �∈ M2r and
y2j+1 ∈ M2r for 0 ≤ j ≤ r − 1. Since y2r �∈ M2r we may take y0 �k y1 �k . . . �k y2r as
a �k-chain having 2r alternations with respect to M2r that witnesses m−

k (M2r) ≥ 2r. The
same �k-chain also witnesses that m

+
k (M2r) ≥ 2r − 1.

We prove next that m−
k (Ml) ≤ l and m+

k (Ml) ≤ l−1 for all l ≥ 1. For a �k-chain involving
words wi note that from wi �k wi+1 it follows that |wi|α ≤ |wi+1|α. Due to the definition of
the sets Ml this inequality must be strict if there is an alternation with respect to these sets
between wi and wi+1.
First assume again that l = 2r − 1 for some r ≥ 1. If m−

k (M2r−1) > 2r − 1 then there
are w0, w1, . . . , w2r ∈ A+ such that w0 �k w1 �k w2 �k . . . �k w2r with w2i �∈ M2r−1
and w2i+1 ∈ M2r−1. It follows by the previous remark that |w2r|α > 2r − 1, a contradiction
to w2r �∈ M2r−1. If m+

k (M2r−1) > 2r − 2 then there are w0, w1, . . . , w2r−1 ∈ A+ such that
w0 �k w1 �k w2 �k . . . �k w2r−1 with w2i ∈ M2r−1 and w2i+1 �∈ M2r−1. Since in particular
|w0|α > 0 it follows that |w2r−1|α > 2r − 1, a contradiction to w2r−1 �∈M2r−1.
Now let l = 2r for some r ≥ 1. Suppose m−

k (M2r) > 2r. We may conclude as above that
in a witnessing �k-chain having (2r+1) alternations we have |w2r+1|α > 2r, a contradiction
to w2r+1 ∈M2r. If m

+
k (M2r) > 2r− 1 we obtain also as above for a witnessing �k-chain that

|w2r|α > 2r since |w0|α > 0. This contradicts that w2r ∈M2r. ❑

It follows immediately with the complements of the witnessing languages that also
coB1/2,k(l) �⊆ B1/2,k(l). So all classes of the Boolean hierarchy over B1/2,k are distinct. We
turn to the membership problems of these classes. Suppose some DFA M is given and fix
some l ≥ 1. We exploit the equivalence

L(M) ∈ B1/2,k(l) ⇐⇒ m+
k (L(M)) < l ⇐⇒ L(M)+k (l) = ∅

obtained from Theorem 2.30 and construct a nondeterministic finite automaton Ml from
M that accepts L(M)+k (l). An emptyness test will then provide the answer to the question
whether L(M) ∈ B1/2,k(l). We carry out this construction in the following lemma whereMl

realizes the idea of guessing a �k-chain having l alternations with respect to L(M). We treat
here only the measure m+

k because this translates in an obvious way to m−
k , just consider the

DFA for A+ \ L(M). For nondeterministic finite automata (NFA) we let δ : A× S → 2S .

Lemma 2.32. Let M be a DFA and let l ≥ 1. Then there exists some NFA Ml such that
|Ml| ≤ (2|M||A|2k+2)l+3 and L(Ml) = L(M)+k (l).

Proof. LetM = (A,S, δ, s0, S
′) and set L =def L(M). We are interested in the set of words v

that can be reached from some word w ∈ L via a �k-chain having at least l alternations with
respect to L. Note that from l ≥ 1 it follows that |v| > k + 1 and observe that L ∩ A≤k+1 ⊆
L+k (0)\L+k (1). The automatonMl we have in mind guesses on input v a �k-chain of sufficient
length and stores the k-prefix and the k-suffix of each word in the chain. It also remembers

54 2. Dot–Depth One

the states to which these words lead to in M. Then Ml accepts v if and only if we find
l alternations with respect to S′ in this sequence of states and if the stored k-prefixes and
k-suffixes match the ones of the input.
For each guessed word wi of the �k-chain we store a quadruple ti = (ci, di, fi, ri) where ci

(di) is the current k-prefix (k-suffix, resp.) of wi, where fi denotes a 0/1–valued variable, and
ri is the stateM reaches after input wi. The flag fi tells us whether there is already a wi in
the guessed chain (fi = 1) or whether the chain is still too short (fi = 0). We also store in a
variable c (d) the k-prefix (k-suffix, resp.) of the input. So let the set of states T be defined
as the set of all tuples

[t0, t1, . . . , tl, c, d]

such that for 0 ≤ i ≤ l we have ti = (ci, di, fi, ri) with ci, di ∈ A≤k ∪ {ε}, fi ∈ {0, 1}, ri ∈ S
and c, d ∈ A≤k ∪ {ε}. Moreover, we set

sl0 =def [(ε, ε, 0, s0), (ε, ε, 0, s0), . . . , (ε, ε, 0, s0)︸ ︷︷ ︸
(l+1)–times

, ε, ε]

as the starting state. Let [t0, t1, . . . , tl, c, d], [t
′
0, t

′
1, . . . , t

′
l, c

′, d′] ∈ T be given with t′i =
(c′i, d

′
i, f

′
i , r

′
i) for 0 ≤ i ≤ l. We define that [t0, t1, . . . , tl, c, d] ∈ δl([t

′
0, t

′
1, . . . , t

′
l, c

′, d′], a) if
and only if c = pk(c

′a), d = sk(d
′a) and there exists some j with 0 ≤ j ≤ l + 1 such that

1. for 0 ≤ i < j it holds that
a) if f ′

i = 0 then ti = (sk(d
′a), sk(d′a), 0, δ(s0, sk(d′a))),

b) if f ′
i = 1 then ti = t′i,

2. and for j ≤ i ≤ l it holds that
a) d′i = d′ and |d′i| = k, and
b) ti = (c

′
i, sk(d

′a), 1, δ(r′i, a)).

Let us comment a little bit on this definition before we continue. Clearly, on the next
letter a of the input we want to maintain the actual k-prefix and k-suffix of the input in
c and d. When reading the first k letters of the input there is no nondeterministic choice
possible for j because of 2.a, so it must be that j = l + 1. Since during this time all f ′

i are
0, only the variables for the k-prefixes and k-suffixes are filled and the respective states of
M are stored (see 1.a). If the input is longer than k and if we have already guessed a chain
w0 �k w1 �k . . . �k wl �k v, then we may guess a smallest index j such that the new last
element d′a of the k-decomposition of the actual input appears in wj first. We only obtain a
�k-chain again if all words wj , wj+1, . . . , wl, v have the same k-suffix, ensured by 2.a. With
2.b we keep all old k-prefixes and set the new k-suffixes and states. The quadruples for the
words w0, . . . , wj−1 are not affected (see 1.b). It can also be the case that we have guessed
only a chain wm �k . . . �k wl �k v with m > 0 yet. If j ≥ m we keep the actual values with
1.a and 1.b. If j < m then wj = wj+1 = . . . = wm−1 = d′a are the new first words of the
chain wj �k . . .�k wm �k . . .�k wl �k v and the flag variables fj, . . . , fm−1 turn from 0 to 1
by 2.b.
We want to prove formally what we just described. Note that due to the definition of δl

only states [t0, t1, . . . , tl, c, d] can be reached such that f0f1 · · · fl ∈ 0∗1∗. Moreover, it holds
that |T | ≤ (2|M||A|2k+2)l+3.

2.4 The Boolean Hierarchy over B1/2,k 55

Claim. Let v ∈ A≥k+1. Then [t0, t1, . . . , tl, c, d] ∈ δl(s
l
0, v) if and only if

c = pk(v), d = sk(v) and there exist wm, wm+1, . . . , wl ∈ A≥k+1 for some
m with 0 ≤ m ≤ l + 1 such that

1. ti = (d, d, 0, δ(s0 , d)) for 0 ≤ i < m,
2. wm �k wm+1 �k . . .�k wl �k v and
3. ti = (pk(wi), sk(wi), 1, δ(s0, wi)) for m ≤ i ≤ l.

Proof of Claim. We prove the claim by induction on the length of v.
Induction base. Let v = xa with x ∈ Ak, a ∈ A and set s′ =def δ(s0, x). It is easy to see that
δl(s

l
0, x) = {[(x, x, 0, s′), . . . , (x, x, 0, s′), x, x]}. Now if [t0, t1, . . . , tl, c, d] ∈ δl(s

l
0, v) then there

is some m with 0 ≤ m ≤ l + 1 such that ti = (ci, di, 0, ri) for 0 ≤ i < m and ti = (ci, di, 1, ri)
for m ≤ i ≤ l. Since [t0, t1, . . . , tl, c, d] must emerge from δl(s

l
0, x) by choosing j = m in the

definition of δl, we have that c = pk(xa), d = sk(xa), ti = (sk(xa), sk(xa), 0, δ(s0, sk(xa))) for
0 ≤ i < m and ti = (x, sk(xa), 1, δ(s

′, a)) for m ≤ i ≤ l. Since xa = v we obtain c = pk(v),
d = sk(v) and ti = (d, d, 0, δ(s0 , d)) for 0 ≤ i < m. If we define wi =def v for m ≤ i ≤ l then
it holds that wm �k . . . �k wl �k v. For m ≤ i ≤ l we have x = pk(wi), sk(xa) = sk(wi) and
because δ(s′, a) = δ(δ(s0, x), a) = δ(s0, v) = δ(s0, wi) we have shown the ‘only-if’–part of the
induction base.
To see the ‘if’–part assume that c = pk(v), d = sk(v) and there are wm, . . . , wl ∈ A≥k+1

for some m with 0 ≤ m ≤ l + 1 such that wm �k . . . �k wl �k v. Then c = pk(xa), d =
sk(xa) and we can conclude from |v| = k + 1 that in fact wm = wm+1 = . . . = wl = v.
So the assumptions translate to ti = (sk(xa), sk(xa), 0, δ(s0, sk(xa))) for 0 ≤ i < m and
ti = (pk(xa), sk(xa), 1, δ(s0 , xa)) for m ≤ i ≤ l. Now it can be seen that [t0, t1, . . . , tl, c, d]
is in δl(s

l
0, v) by choosing again j = m in the definition of δl when going from δl(s

l
0, x) to

δl(s
l
0, xa).
Induction step. Let va be given with v ∈ A≥k+1 and a ∈ A. We show the ‘only-if’–part

first. Suppose we know that [t0, t1, . . . , tl, c, d] ∈ δl(s
l
0, va) for some [t0, t1, . . . , tl, c, d] ∈ T .

Then there is some m with 0 ≤ m ≤ l + 1 such that ti = (ci, di, 0, ri) for 0 ≤ i < m and
ti = (ci, di, 1, ri) for m ≤ i ≤ l. Moreover, there is some [t′0, t

′
1, . . . , t

′
l, c

′, d′] ∈ δl(s
l
0, v) with

t′i = (c
′
i, d

′
i, f

′
i , r

′
i) for 0 ≤ i ≤ l such that [t0, t1, . . . , tl, c, d] ∈ δl([t

′
0, t

′
1, . . . , t

′
l, c

′, d′], a). Let j
with 0 ≤ j ≤ l + 1 denote the nondeterministic choice of this transition.
By hypothesis, we have c′ = pk(v) and d′ = sk(v), and by definition of δl it holds that

c = pk(c
′a) and d = sk(d

′a). Hence d = sk(va) and because |c′| = k we have c = c′ = pk(v) =
pk(va). There also is some m′ with 0 ≤ m′ ≤ l + 1 such that f ′

i = 0 for 0 ≤ i < m′ and
f ′
i = 1 for m

′ ≤ i ≤ l. Since fi = 0 for 0 ≤ i < m it must be that m ≤ m′ and also m ≤ j. So
for 0 ≤ i < m it holds by definition of δl that ti = (sk(d

′a), sk(d′a), 0, δ(s0, sk(d′a))). Hence
ti = (d, d, 0, δ(s0 , d)) for 0 ≤ i < m which shows statement 1 of the claim.
If m < m′ then it must be that j = m because f ′

m = 0 and fm = 1. In this case the length
of the guessed �k-chain strictly increases when going from v to va. Ifm = m′ thenm′ ≤ j ≤ l.
We distinguish these two cases. By hypothesis there exist w′

m′ , w′
m′+1, . . . , w

′
l ∈ A≥k+1 such

that w′
m′ �k w′

m′+1 �k . . .�k w′
l �k v and t′i = (pk(w

′
i), sk(w

′
i), 1, δ(s0, w

′
i)) for m

′ ≤ i ≤ l.
Case 1. Suppose m < m′ and hence j = m. So by definition of δl it holds that d′i = d′

and |d′i| = k for m ≤ i ≤ l, and since f ′
m = f ′

m+1 = . . . = f ′
m′−1 = 0 we have by hypothesis

that t′i = (d
′, d′, 0, δ(s0, d′)) for m ≤ i < m′. Define for m ≤ i < m′ words wi =def d

′a and for
m′ ≤ i ≤ l set wi =def w

′
ia. For concise notations we set w

′
l+1 =def v and wl+1 =def va. Then

56 2. Dot–Depth One

for m ≤ i < m′ − 1 we have d′a = wi �k wi+1 = d′a. Moreover, for m′ ≤ i ≤ l it holds that
sk(w

′
i) = d′i = d′ = sk(v) and hence we have w′

ia = wi �k wi+1 = w′
i+1a for m′ ≤ i ≤ l by

Proposition 2.3. We also see that wm′−1 = d′a = sk(w
′
m′)a�k w

′
m′a = wm′ . Together we have

obtained wm �k . . .�k wl �k va which gives statement 2 of the claim.
For m ≤ i < m′ we have by definition that wi = d′a and by hypothesis that c′i = d′,

d′i = d′ and r′i = δ(s0, d
′). By definition of δl it holds that ti = (c′i, sk(d

′a), 1, δ(r′i, a)) and
hence ti = (pk(wi), sk(wi), 1, δ(s0, wi)). For m

′ ≤ i ≤ l we have by definition wi = w′
ia and by

hypothesis that c′i = pk(w
′
i), d

′
i = sk(w

′
i) and r′i = δ(s0, w

′
i). By definition of δl we have ti =

(c′i, sk(d
′a), 1, δ(r′i, a)), and since d′ = d′i it follows that ti = (pk(w

′
ia), sk(w

′
ia), 1, δ(s0, w

′
ia)).

Together we see that ti = (pk(wi), sk(wi), 1, δ(s0, wi)) for m ≤ i ≤ l which gives statement 3
of the claim.

Case 2. Now assume m = m′ and hence m′ ≤ j ≤ l. Define for m ≤ i < j words
wi =def w

′
i and for j ≤ i ≤ l set wi =def w

′
ia. Again, set for concise notations w

′
l+1 =def v and

wl+1 =def va. Statements 2 and 3 are clear for wi with m ≤ i < j by hypothesis and since by
definition of δl we have ti = t′i. From w′

j−1�kw
′
j we obtain wj−1 = w′

j−1�kw
′
j�kw

′
ja = wj by

Proposition 2.3. By hypothesis we have d′i = sk(w
′
i) and from the definition of δl it follows that

sk(w
′
i) = d′ for j ≤ i ≤ l. So we can conclude as in the first case that wi = w′

ia�kw
′
i+1a = wi+1

for j ≤ i ≤ l. Together we have wm �k . . . �k wl �k va.
Additionally to d′i = sk(w

′
i) it holds for j ≤ i ≤ l by hypothesis that c′i = pk(w

′
i) and r′i =

δ(s0, w
′
i). By definition of δl we have as before for j ≤ i ≤ l that ti = (c

′
i, sk(d

′a), 1, δ(r′i, a))
and it follows that ti = (pk(w

′
ia), sk(w

′
ia), 1, δ(s0, w

′
ia)) = (pk(wi), sk(wi), 1, δ(s0, wi)). This

completes the proof for statements 2 and 3 for the second case.
Next we show the ‘if’–part. Assume that c = pk(va), d = sk(va) and there exist

wm, . . . , wl ∈ A≥k+1 for some m with 0 ≤ m ≤ l + 1 such that ti = (d, d, 0, δ(s0 , d)) for
0 ≤ i < m and wm �k . . .�k wl �k va and ti = (pk(wi), sk(wi), 1, δ(s0, wi)) for m ≤ i ≤ l. We
need to show [t0, t1, . . . , tl, c, d] ∈ δl(s

l
0, va) and start with the construction of a �k-chain for

v from the given �k-chain for va in order to apply the hypothesis below.
Set wl+1 =def va, w

′
l+1 =def v, c

′ =def pk(v) and d′ =def sk(v). We give an algorithm that
computes a �k-chain for v stepwise for n = l downto m. During this computation we will
ensure that before each step n the following condition (C) holds.

(C) For n + 1 ≤ i ≤ l + 1 there are words w′
i such that wi = w′

ia and
sk(w

′
i) = d′, and for n+ 1 ≤ i ≤ l it holds that w′

i �k w′
i+1.

If we set initially n = l then (C) holds. We proceed as follows.

Step n: (1) If n < m then stop.
(2) If wn �k w′

n+1 then stop.
(3) If |wna

−1| = k then stop.
(4) Set w′

n =def wna
−1 and continue with Step n− 1.

Let us first argue why before Step n− 1 again (C) holds. After line (1) we know that n ≥ m.
After line (2) we have wn ��k w

′
n+1. It follows that sk+1(wn) = d′a since otherwise we obtain

from wn �k w′
n+1a and sk(w

′
n+1) = d′ that wn �k w′

n+1. With the definition in line (4) we
have sk(w

′
n) = d′ and since we know that |w′

n| ≥ k + 1 we obtain w′
n �k w′

n+1. The latter is
because w′

na�k w
′
n+1a. It is clear that the proposed algorithm stops. We distinguish in cases

where the algorithm stops.

2.4 The Boolean Hierarchy over B1/2,k 57

Case 1. Suppose our algorithm stops in line (1) or line (2). In the former case we have
by (C) that for m ≤ i ≤ l + 1 there are words w′

i such that wi = w′
ia and sk(w

′
i) = d′, and

for m ≤ i ≤ l it holds that w′
i �k w′

i+1. In the latter case we have n ≥ m and also by (C)
that for n + 1 ≤ i ≤ l + 1 there are words w′

i such that wi = w′
ia and sk(w

′
i) = d′, and for

n+1 ≤ i ≤ l it holds that w′
i�k w

′
i+1. If we define for m ≤ i ≤ n words w′

i =def wi we obtain
for m ≤ i ≤ l that w′

i �k w′
i+1 since wn �k w′

n+1.
Taking this together, we can state that for m ≤ i ≤ l there are words w′

i such that
w′
i �k w′

i+1. Moreover, for m ≤ i ≤ n it holds that w′
i = wi and for n + 1 ≤ i ≤ l + 1

we have sk(w
′
i) = d′ and wi = w′

ia. Note that m = n + 1 is possible. By hypothesis we
know that [t′0, t

′
1, . . . , t

′
l, c

′, d′] ∈ δl(s
l
0, v) with t′i = (d

′, d′, 0, δ(s0, d′)) for 0 ≤ i < m and t′i =
(pk(w

′
i), sk(w

′
i), 1, δ(s0, w

′
i)) for m ≤ i ≤ l. Since for n+1 ≤ i ≤ l+1 we have d′i = sk(w

′
i) = d′

we can apply δl to [t
′
0, t

′
1, . . . , t

′
l, c

′, d′] and input a with j =def n+1. Recall that by definition
of δl we obtain a state [t

′′
0, t

′′
1 , . . . , t

′′
l , c

′′, d′′] with c′′ = pk(c
′a), d′′ = sk(d

′a) and

– t′′i = (sk(d
′a), sk(d′a), 0, δ(s0, sk(d′a))) for 0 ≤ i < m,

– t′′i = t′i for m ≤ i ≤ n and
– t′′i = (c

′
i, sk(d

′a), 1, δ(r′i, a)) for n+ 1 ≤ i ≤ l.

We have c′′ = c′ = pk(va) = c and d′′ = sk(va) = d. Moreover, it holds that t′′i =
(d, d, 0, δ(s0 , d)) for 0 ≤ i < m and we have t′′i = (pk(wi), sk(wi), 1, δ(s0, wi)) for m ≤ i ≤ n
because we have defined w′

i = wi. Now let n + 1 ≤ i ≤ l. Then c′i = pk(w
′
i) = pk(w

′
ia) and

d′ = d′i = sk(w
′
i) implies sk(d

′a) = sk(w
′
ia). Finally, from δ(r′i, a) = δ(δ(s0, w

′
i), a) = δ(s0, w

′
ia)

it follows that t′′i = (pk(wi), sk(wi), 1, δ(s0, wi)) for n + 1 ≤ i ≤ l. Together this shows
[t0, t1, . . . , tl, c, d] ∈ δl(s

l
0, va).

Case 2. Assume our algorithm stops in line (3). Then n ≥ m. Since it did not stop in line (2)
we have sk+1(wn) = d′a and from |wn| = k + 1 it follows that wm = wm+1 = . . . = wn = d′a.
Moreover, by (C) we have for n + 1 ≤ i ≤ l + 1 that wi = w′

ia and sk(w
′
i) = d′, and for

n+1 ≤ i ≤ l that w′
i�kw

′
i+1. By hypothesis we know that [t

′
0, t

′
1, . . . , t

′
l, c

′, d′] ∈ δl(s
l
0, v) with

t′i = (d
′, d′, 0, δ(s0, d′)) for 0 ≤ i ≤ n and t′i = (pk(w

′
i), sk(w

′
i), 1, δ(s0, w

′
i)) for n + 1 ≤ i ≤ l.

Since we have for m ≤ i ≤ n that d′i = d′ and for n+ 1 ≤ i ≤ l + 1 that d′i = sk(w
′
i) = d′ we

can apply δl to [t
′
0, t

′
1, . . . , t

′
l, c

′, d′] and input a with j =def m. Similar to above, we obtain by
definition of δl a state [t

′′
0, t

′′
1 , . . . , t

′′
l , c

′′, d′′] with c′′ = pk(c
′a), d′′ = sk(d

′a) and

– t′′i = (sk(d
′a), sk(d′a), 0, δ(s0, sk(d′a))) for 0 ≤ i < m and

– t′′i = (c
′
i, sk(d

′a), 1, δ(r′i, a)) for m ≤ i ≤ l.

We conclude as in the first case that c′′ = c, d′′ = d and that for 0 ≤ i < m and n+1 ≤ i ≤ l
we have t′′i = ti. For m ≤ i ≤ n we have c′′i = c′i = d′ = pk(d

′a) and δ(r′i, a) = δ(δ(s0, d
′), a) =

δ(s0, d
′a). Note for m ≤ i ≤ n that wi = d′a and hence t′′i = (pk(wi), sk(wi), 1, δ(s0, wi)). This

shows [t0, t1, . . . , tl, c, d] ∈ δl(s
l
0, va). (End proof of Claim.)

We specify the set of acccepting states for Ml. Let [t0, t1, . . . , tl, c, d] ∈ T with ti =
(ci, di, fi, ri) for 0 ≤ i ≤ l. We define [t0, t1, . . . , tl, c, d] ∈ S′

l if and only if it holds for 0 ≤ i ≤ l
that

– fi = 1, ci = c, di = d and
– ri ∈ S′ ↔ i ≡ 0 mod 2.

The first item ensures that we have guessed a �k-chain w0 �k w1 �k . . . �k wl �k v, while
the second one takes alternations with respect to the given DFA M into consideration. We

58 2. Dot–Depth One

setMl =def (A,T, δl, s
l
0, S

′
l) and claim that L(Ml) = L(M)+k (l). To see this we conclude

v ∈ L(Ml) ⇐⇒ δl(s
l
0, v) ∩ S′

l �= ∅
⇐⇒ there exists some [t0, t1, . . . , tl, c, d] ∈ δl(s

l
0, v) ∩ S′

l

⇐⇒ c = pk(v), d = sk(v) and there exist some w0, . . . , wl such that
w0 �k . . .�k wl �k v and for 0 ≤ i ≤ l it holds that
ti = (pk(wi), sk(wi), 1, δ(s0, wi)) with pk(wi) = c, sk(wi) = d and
(δ(s0, wi) ∈ S′ ↔ i ≡ 0 mod 2)

⇐⇒ there exist w0, . . . , wl such that w0 �k . . . �k wl �k v and
(δ(s0, wi) ∈ S′ ↔ i ≡ 0 mod 2) for 0 ≤ i ≤ l

⇐⇒ v ∈ L(M)+k (l)

where the third equivalence is due to our claim and the definition of S′
l. ❑

We use this lemma to show the decidability of the membership problem of B1/2,k(l) for
fixed l ≥ 1 and k ≥ 0. There is even an efficient algorithm for this which we sketch in the
following proof.

Theorem 2.33. For fixed l ≥ 1 and k ≥ 0 the membership problems for B1/2,k(l) and
coB1/2,k(l) are decidable in nondeterministic logarithmic space NL.

Proof. Suppose some DFA M is given. We consider the NFA Ml from the proof of Lemma
2.32 and we need to determine whether L(Ml) = ∅. This is equivalent with the non–existence
of a path in the transition graph of Ml between the starting state and one of its accepting
states. Hence, we have to solve the graph non–accessibility problem for the transition graph
ofMl = (A,T, δl, s

l
0, S

′
l). To do this, we start with the initial state sl0 and then continuously

guess a next input letter and a nondeterministic choice j for the transition function δl. We
then determine with help of δl the next state of Ml, overwrite the actual state and check
whether the new state is an accepting one. If so, the algorithm stops and accepts the input,
otherwise we continue this procedure. The space needed to do this is dominated by the space
needed to store a state ofMl. Note that the needed counters to reconstruct δl remain small.
So this can be done in space ≤ c · (k · l · log |A|+ l · log |M|) for some constant c. Since NL is
closed under complement this shows the theorem. ❑

With help of Theorem 2.21 we can now bound l for fixed k, which yields an algorithm that
determines for a regular language its exact location in the Boolean hierarchy over B1/2,k.
Theorem 2.34. Let L ⊆ A+ be a regular language. There is a recursive and monotone
decreasing function fL such that for k ≥ 0 it holds that

L ∈ B1/2,k if fL(k) = 1,

L ∈ B1/2,k(l) \ B1/2,k(l − 1) if fL(k) = l for l ≥ 2 and

L /∈ B1,k if fL(k) =∞.

Proof. Define fL(k) =def m+
k (L) + 1 for k ≥ 0. Observe that u �k+1 v implies u �k v and

hence every �k+1-chain is also a �k-chain. It follows that m
+
k+1(L) ≤ m+

k (L) for all regular
languages L and all k ≥ 0. So fL is a monotone decreasing function.
Let M be a DFA such that L(M) = L and let k ≥ 0 be given. To compute fL(k) we

need to determine m+
k (L) = m+

k (L(M)). We may apply the algorithm from Theorem 2.33 for

2.5 The Boolean Structure of Dot–Depth One 59

l = 1, 2, . . . , 22|A|k+2(k+1)2|M|+1 answering the questions m+
k (L(M)) < l. If the first positive

answer occurs then we output l as the value for fL(k). If all answers are negative then we
output a special symbol for ∞. Note that this computation can be done by a binary search
since the answer string is monotonic. The remaining parts of the theorem are a consequence
of Theorems 2.30 and 2.21. ❑

For k = 0 the results of this subsection carry over to the classes L1/2(l) and coL1/2(l)
of the Boolean hierarchy over level 1/2 of the STH, i.e., it is a strict hierarchy of classes
with decidable membership problems. Due to the logical characterization which we recalled
in Theorem 1.23, this also holds for the Boolean hierarchy over the class of languages that
are definable by a Σ1 formula of FO[<].

2.5 The Boolean Structure of Dot–Depth One

We have already seen that B1/2 =
⋃

k≥0 B1/2,k and B1 =
⋃

k≥0 B1,k. This relation holds for
every level of the Boolean hierarchy. Recall that we know from Lemma 1.21 that B1/2 is closed
under union and intersection, so the classes B1/2(l) and coB1/2(l) form the Boolean hierarchy
over B1/2.
Proposition 2.35. Let l ≥ 1. It holds that

1. B1/2(l) =
⋃

k≥0 B1/2,k(l) and
2. B1/2,k(l) � B1/2,k+1(l) for all k ≥ 0.
Proof. For the first statement let L ∈ B1/2(l) via languages L1, L2, . . . , Ll ∈ B1/2. By
Lemma 1.29 we have Li ∈ B1/2,ki for 1 ≤ i ≤ l and suitable ki ≥ 0. With Proposition 1.28
we see that Li ∈ B1/2,k for k =def max1≤i≤l ki and hence L ∈ B1/2,k(l). Conversely, let
L ∈ B1/2,k(l) for some k ≥ 0. Since B1/2,k ⊆ B1/2 we immediately have L ∈ B1/2(l).
To see the second statement we obtain B1/2,k(l) ⊆ B1/2,k+1(l) from B1/2,k ⊆ B1/2,k+1 as

before. That this inclusion is strict follows from B1/2,k+1 �⊆ B1,k which we show next.
Define for k ≥ 0 languages Lk+1 =def a

k+1A+ and note that there are at least two different
letters a, b ∈ A. Then Lk+1 ∈ B1/2,k+1 because

Lk+1 =
⋃

α∈Ak+2

⋃
w∈Ak+1

(ak+1| α |w)k+1.

To see that Lk+1 �∈ B1,k let x0 =def ak+2 and for i ≥ 0 set x2i+1 =def akbx2i and x2i+2 =def
ax2i+1. Then for all i ≥ 0 we have xi �k xi+1 and it holds that x2i ∈ Lk+1 and x2i+1 �∈ Lk+1.
So x0 �k x1 �k x2 �k . . . is a �k-chain having an infinite number of alternations with respect
to Lk+1. Hence Lk+1 �∈ B1,k by Theorem 2.21. ❑

These relations hold also for the classes coB1/2,k(l) which can be proved completely analo-
gously. So the Boolean hierarchies over B1/2,k amount to the Boolean hierarchy over B1/2.
We have already noted that m+

k+1(L) ≤ m+
k (L) and m−

k+1(L) ≤ m−
k (L).

Definition 2.36. For a language L ⊆ A+ we define m+(L) =def mink≥0m+
k (L) and

m−(L) =def mink≥0m−
k (L).

60 2. Dot–Depth One

B1/2

B1/2(l)

B1

hierarchies
Boolean

L1

L1/2

B1/2,k

B1/2,k(l)

B1,k

B1/2,k+1

B1/2,k+1(l)

B1,k+1

L1/2(l)
m+

m+
k+1

m+
k

m+
0

increased k

Fig. 2.6. The fine Boolean structure of B1

The measures m+ and m− relate to the single classes of the Boolean hierarchy over B1/2.
Proposition 2.37. Let L ⊆ A+ and let l ≥ 1. It holds that

1. L ∈ B1/2(l) if and only if m+(L) < l and
2. L ∈ coB1/2(l) if and only if m−(L) < l.

Proof. We only argue for the first statement. By Proposition 2.35 we have that L ∈ B1/2(l) if
and only there exists some k ≥ 0 such that L ∈ B1/2,k(l). By Theorem 2.30 the latter holds

if and only if there exists some k ≥ 0 such that m+
k (L) < l which in turn is equivalent to

m+(L) < l by the definition of m+. ❑

Unfortunately, it is not clear how to compute m+ from m+
k although the latter is computable

for fixed k. Here a result from [Gla99] can help where the classes of the Boolean hierarchy
over B1/2 are characterized as in Proposition 2.37 but in terms of a measure mM for a given
DFAM. This measure involves a relation on so–called structured words depending onM. It
follows that m+(L(M)) = mM. It is shown in [Gla99] that the question if mM < l for fixed
l is decidable, which implies the decidability of the membership problem of B1/2(l). Since the
membership problem of B1 is decidable, one can compute the exact level of some language in
the Boolean hierarchy over B1/2. A strictness argument for the Boolean hierarchy over B1/2
is also given in [Gla99]. In fact, for the latter the languages Ml for k = 0 from Theorem 2.31
can be used.
Figure 2.6 gives the structure of B1 in terms of Boolean combinations on one hand and

in terms of the sequential parameter k on the other hand. This is a refinement of the figure
at the beginning of this chapter. We show now how we can locate a given language L in
this two–dimensional landscape and further investigate how the function fL behaves (see
Theorem 2.34). Observe that for a regular language L and for l ≥ 1 it holds that L ∈ B1/2(l)
if and only if limk→∞ fL(k) ≤ l. So for L ∈ B1 the function fL reaches the exact level of L in
the Boolean hierarchy over B1/2 as k goes to infinity, and fL(k) =∞ for all k ≥ 0 if L /∈ B1.
The following can be done for a given regular language L ⊆ A+.

2.5 The Boolean Structure of Dot–Depth One 61

1. Determine if L ∈ B1 by one of the algorithms provided in [Kna83, Ste85b, CH91]. If
L �∈ B1 then fL(k) =∞ for all k ≥ 0, otherwise continue.

2. Determine l′ =def m+(L) + 1 = limk→∞ fL(k) with help of the results in [Gla99].
3. Compute for k = 0, 1, 2, . . . the value of fL(k) (Theorem 2.34) until fL(k) = l′ for some

k. Then also fL(k
′) = l′ for all k′ ≥ k.

All this can be carried out effectively. We may interpret the graph of fL as follows. As long as
fL(k) is infinite, it is not possible to describe L by combinations of blocks of length k+1. If L
is in B1 then there is some minimal k0 where this is possible. The minimal amount of Boolean
complexity we need to spend for L in case of this particular k0 is given by l0 =def fL(k0). If
l0 = l′ then k0 is optimal in the sense that any larger k does not save Boolean combinations. If
l0 > l′ then trade–offs are possible and we can use the above algorithm to select the amount of
descriptional complexity for L we like to spend — in terms of k versus Boolean combinations.
However, it remains to investigate if there are any trade–offs at all. For a partial answer we

consider the following example language. Recall from the proof of Theorem 2.31 the language
M3 for k = 1 and define L =def M3∪

{
bb
}
. Then we can compute via the above procedure the

following table, in which we also provide witnessing �k-chains having the maximal number
of alternations.

k fL(k) witnessing �k-chain

0 ∞ aa �0 aba �0 aaba �0 ababa �0 aababa �0 . . .
1 5 bb �1 bbabb �1 bbaabb �1 bbaabbaabb �1 bbaabbaabbaabb
2 3 b3aab3 �2 b3aab3aab3 �2 b3aab3aab3aab3

3 3 b4aab4 �3 b4aab4aab4 �3 b4aab4aab4aab4

...
...

...
∞ 3

Intuitively, there are no �k-chains having more alternations than our witnesses here, because
w �k u implies that |w|α ≤ |u|α for all α ∈ Ak+1 (recall that |w|α is the number of occurrences
of α in the k-decomposition ŵ). Note that L is a language of infinite cardinality having
trade–offs in our setting. More precisely, the table says that L is not in B1,0, but it is in
B1/2,1(5)\B1/2,1(4). We can do better if we choose k = 2, but no larger k has effects on the
Boolean complexity. In particular, we have L ∈ B1/2(3)\B1/2(2). The reason for the jump
between k = 1 and k = 2 here is that bb is too short to take part in �k-chains for k ≥ 2.
More complicated stepwise functions can be obtained by similar constructions.
What we observed here in the example is a more general phenomenon: whenever we can

bound the length of at least one word in every �k-chain having the maximal number of
alternations, then we can take for some k′ > k all these words into a finite set from B1/2,k′ .
This shortens all witnessing maximal chains and hence, reduces the level in the respective
Boolean hierarchy. In particular, we have this case when there is only a finite number of
�k-chains having a maximal number of alternations.
So the question remains whether we can still save Boolean combinations by increasing k if

the condition we described does not hold. We feel the answer should be no, but could not give
a proof yet. We think that this is an interesting point concerning dot–depth one languages
and leave it as an open question here.

62 2. Dot–Depth One

2.6 Forbidden Pattern Characterization of B1

We derive in this section a forbidden pattern characterization of B1 using Theorem 2.21.

Definition 2.38.

1. Pattern B 1 is defined as the subgraph given in Figure 2.7 with x, y, y′, u, v, z ∈ A∗ and
w,w′ ∈ A+.

2. Pattern D is defined as the subgraph given in Figure 2.8 with x, u, v, z ∈ A∗ and w ∈ A+.
3. Pattern D rev is defined as the subgraph given in Figure 2.9 with x, u, v, z ∈ A∗ and w ∈ A+.

s0

vu y′

w′

y

w

s2s1

v

w′

u

w

s3s5

z
v

w′

u

w

s6s4

x

z

+/− −/+
Fig. 2.7. Pattern B1 with w,w′ ∈ A+.

xs0

v

u

s2s1

z z

ww

−/++/−
Fig. 2.8. Pattern D with w ∈ A+.

s0 w

s1

v

u

w

s2s4

z

+/−
v

w

u

w

s5s3

z

−/+

u

w

v

x

Fig. 2.9. Pattern D rev with w ∈ A+.

To see that FP(B 1) and FP(B 1, D , D rev) are well–defined we consider pattern B 1 since no
new argument is needed for the others. Suppose there is some DFA accepting some language
L and which has pattern B 1 via x, y, y′, u, v, z ∈ A∗ and w,w′ ∈ A+. LetM be an arbitrary
DFA with L(M) = L and set r =def |M|. If we substitute
– x̂ =def xw

r, ŷ =def y(w
′)r, ŷ′ =def y′wr,

– û =def u(w
′)r, v̂ =def vwr and

– ŵ =def w
r!, ŵ′ =def (w′)r! and ẑ =def z

we see with Proposition 1.34 that we find the required loops inM and one verifies that these
words give rise to pattern B 1 inM.

Theorem 2.39. It holds that B1 = FP(B 1) = FP(B 1, D , D rev).

2.6 Forbidden Pattern Characterization of B1 63

Proof. Suppose L ∈ B1 and let M be a DFA with L(M) = L. Then there is some k ≥ 0
such that L ∈ B1,k. By Theorem 2.21 we know that M has none of the patterns B 1,k, B̂ 1,k
and B̂ rev

1,k. Assume to the contrary that M has pattern B 1. Since w,w′ ∈ A+ we may take

ŵ =def w
k and ŵ′ =def (w′)k to see thatM has pattern B 1,k, a contradiction. SoM is a DFA

with L(M) = L which does not have pattern B 1. This shows that L ∈ FP(B 1).
Now let L ∈ FP(B 1). Then there is some DFAM = (A,S, δ, s0, S

′) with L(M) = L and
which does not have pattern B 1. Assume to the contrary that L /∈ FP(B 1, D , D rev), soM has
one of the patterns B 1, D or D rev. It suffices to show that D and D rev are special cases of B 1.
First supposeM has pattern D via x, u, v, z ∈ A∗ and w ∈ A+ involving states s1 and s2.
Then we set

– x̂ =def x, ŷ =def u, ŷ
′ =def v,

– ŵ =def w, ŵ
′ =def w, ẑ =def z and

– û =def ε, v̂ =def ε.

These words give rise to pattern B 1 in M involving the states ŝ1 = ŝ3 = ŝ5 = s1 and
ŝ2 = ŝ4 = ŝ6 = s2. As the second case, assume that M has pattern D rev via x, u, v, z ∈ A∗

and w ∈ A+ involving states s1 to s5. This time we just set y =def ε, y
′ =def ε and w′ =def w

to see together with x, u, v, w, z thatM has pattern B 1.
Finally, let L ∈ FP(B 1, D , D rev). Then there is some DFA M = (A,S, δ, s0, S

′) with
L(M) = L and which does not have any of the patterns B 1, D or D rev. Assume to the
contrary that L /∈ B1, so for all k ≥ 0 it holds that L /∈ B1,k. It follows from Theorem 2.21
and because FP(B 1, D , D rev) is well–defined that for all k ≥ 0 the DFA M has one of the
patterns B 1,k, B̂ 1,k or B̂ rev

1,k. We look at the case k = |M|5 and show that pattern B 1,k, B̂ 1,k
or B̂ rev

1,k inM implies pattern B 1, D or D rev inM, respectively, which is a contradiction.
Case 1. Assume thatM has pattern B 1,k via x, y, y′, v, u, w,w′, z ∈ A∗ with |w| = |w′| = k

(see Figure 2.3). We apply Proposition 1.35 to w′ and the three pairs of states

– (δ(s0, xy), δ(s0, xyw
′)), (δ(s0, xu), δ(s0, xuw′)) and (δ(s0, xyw′vwu), δ(s0, xyw

′vwuw′)).

This provides states ŝ2, ŝ3 and ŝ6, respectively, such that w
′ = w′

1ŵ
′w′
2 and ŝi has a ŵ′-loop

for i = 2, 3, 6. We do the same thing for w and

– (δ(s0, xyw
′y′), δ(s0, x)), (δ(s0, xuw′v), δ(s0, xuw′vw)) and (δ(s0, xyw′v), δ(s0, xyw′vw))

to get states ŝ1, ŝ5 and ŝ4 having a ŵ-loop where w = w1ŵw2. Now we find pattern B 1
involving states ŝ1 to ŝ6 when considering

– x̂ =def xyw
′y′w1, ŷ =def w2yw′

1, ŷ
′ =def w′

2y
′w1,

– û =def w2uw
′
1, v̂ =def w

′
2vw1, ẑ =def w

′
2vwuz and

– ŵ, ŵ′ ∈ A+.

Case 2. Assume thatM has pattern B̂ 1,k via x, u, v, w, z ∈ A∗ with |w| = k (see Figure 2.4).
We apply Proposition 1.35 to w and

– (δ(s0, xuwv), δ(s0, x)) and (δ(s0, xu), δ(s0, xuw))

to get states ŝ1 and ŝ2, respectively, having a ŵ-loop where w = w1ŵw2. We find pattern D
involving states ŝ1 and ŝ2 when considering

– x̂ =def xuwvw1, û =def w2uw1, v̂ =def w2vw1,
– ẑ =def w2z and ŵ ∈ A+.

64 2. Dot–Depth One

Case 3.Assume thatM has pattern B̂ rev
1,k via x, u, v, w, z ∈ A∗ with |w| = k (see Figure 2.5).

We apply Proposition 1.35 to w and

– (δ(s0, x), δ(s0, xw)), (δ(s0, xwu), δ(s0, xwuw)), (δ(s0, xwv), δ(s0, xwvw)),
– (δ(s0, xwuwv), δ(s0, xwuwvw)) and (δ(s0, xwvwu), δ(s0 , xwvwuw))

to get states ŝi for 1 ≤ i ≤ 5, respectively, having a ŵ-loop where w = w1ŵw2. We find
pattern D rev involving states ŝ1 to ŝ5 when considering

– x̂ =def xw1, û =def w2uw1, v̂ =def w2vw1,
– ẑ =def w2vwuz and ŵ ∈ A+.

❑

The previous theorem yields an NL–algorithm for the membership problem of B1 as follows.
Let a DFA M = (A,S, δ, s0, S

′) be given. We guess states s1, . . . s6, s
+, s− ∈ S and check

whether s+ is accepting and s− is rejecting. Then we verify s0 −→ s1 and (s3, s6) −→
(s+, s−). If the latter fails we check (s3, s6) −→ (s−, s+). Now it remains to verify that
(s1, s4, s5) −→+ (s1, s4, s5), (s2, s3, s6) −→+ (s2, s3, s6), s1 −→ s2, s2 −→ s1, (s5, s4) −→
(s3, s6) and (s3, s6) −→ (s5, s4). Similar algorithms have been investigated in [Ste85b, CH91].

2.7 Discussion and Bibliographic Notes

We want to make a few remarks concerning the major characterizations of B1,k from [Ste85a,
Theorem 3.3]. With the way we have cited this theorem as Theorem 2.21 we have translated
the notations from [Ste85a] as follows. Pattern B̂ 1,k is given as the property of ‘k-stableness’,

i.e., a minimal DFA is k-stable if and only if it does not have pattern B̂ 1,k. The patterns

B̂ rev
1,k and B 1,k are called ‘forks of type I’ and ‘forks of type II’, respectively. For systematic
reasons we chose here a uniform treatment in terms of patterns. However, there is a little
difference in the pattern definitions. It is additionally required in [Ste85a] that the states
s3 and s6 in pattern B 1,k and also the states s3 and s6 in pattern B̂ rev

1,k must be in distinct
strongly connected components. It is easy to see that we can drop this condition if all three
patterns are forbidden: if s3 and s6 are in the same strongly connected component then we
find pattern B̂ 1,k (in both cases).
Moreover, in [Ste85a] the classes B1,k are defined differently, i.e., based on certain equiv-

alence relations from [Sim72]. To show that this definition coincides with our definition, one
has to show that L ∈ B1,k if and only if there exists some m ≥ 1 such that L is in the
Boolean algebra generated by languages Li with Li ⊆ A<k+m or Li = (w|α1, . . . , αm|v)k
where αi ∈ Ak+1 and w, v ∈ Ak. For the ‘if’–part we only need to observe that languages
Li ⊆ A<k+m are in the Boolean closure of B1/2,k. This is due to the fact that we can express
words x with lengths ≥ k + 1 as

{x} = 〈x〉k \
⋃

x�ky
x =y

〈y〉k ∈ BC(B1/2,k)

since the latter union is finite by Theorem 2.12. For the reverse implication one can show
that the mentioned Boolean algebras are included in each other for increasing m. This is very
similar to Proposition 1.28.

2.7 Discussion and Bibliographic Notes 65

The relation �k is introduced as so–called ‘k-embeddings’ in [Ste85a, Section 1.2]. Unfor-
tunately, the definition given there is misleading since it requires that u and v have the same
prefix of length 2k if there is a k-embedding from u to v (this is inconsistent with [Ste85a,
Theorem 3.3]). A look at the proofs in [Ste85a] shows that in fact k-embeddings are used
in the way we have defined �k here. We have not yet mentioned [Ste85a, Proposition 4.1]
which says that a language L is in B1 if and only if it is in B1,k with k ≤ |M|3 and where
M is the minimal DFA accepting L. We want to remark that another proof of the remaining
statements of Theorem 2.21 can be concluded from [Sch99c].
The characterization of B1 in terms of B 1 can be compared to the algebraic condition

from [Kna83] where the decidability of the membership problem of B1 was first shown. The
algebraic condition is reflected in a straightforward way in the structure of the subgraph
defined by B 1.
The patterns D and D rev itself characterize the classes of languages that have locally R-

trivial and locally L-trivial semigroups, respectively, which is a result from [CPP93]. It looks
like the authors have rediscovered these patterns since they do not mention [Ste85a]. We will
further investigate these classes in the following chapter.
Finally, we want to mention that for the case k = 0 the results of Subsection 2.4 can be

found in [SW98], where the usual subword relation and the Boolean hierarchy over level 1/2
of the STH are studied. The hint to look at [Hig52] for a connection of the subword relation
to order ideals is from Dietrich Kuske, Dresden.

66 2. Dot–Depth One

3. Deterministic Languages and Restricted Temporal Logic

We refer to the main results of this chapter. We
define the classes of k-deterministic languages in
Section 3.1 and isolate their main property (cf.
Lemma 3.3). For fixed k ≥ 0 we prove in Sec-
tion 3.2 a forbidden pattern characterization of
these classes (cf. Theorem 3.5). In Section 3.3
we turn to restricted temporal logic, recall the
needed definitions and introduce fragments of
this logic in terms of the nesting depth ≤ k of
the next operator. These fragments give rise to
the so–called next hierarchy of classes of lan-
guages that are definable by formulas restricted
in this way. Then we show that the languages
of level k of the next hierarchy are just the k-
deterministic languages (cf. Theorem 3.17). Our
characterization in terms of forbidden patterns
allows to give concise proofs of decidability and
strictness results for the next hierarchy (cf. The-
orems 3.21 and 3.22).

B1,k

B1

L1

B3/2 coB3/2

B3/2,k

L3/2 coL3/2

B1/2 coB1/2

B1/2,k coB1/2,k

L1/2 coL1/2

coB3/2,k

In Section 3.4 we investigate the relation of k-deterministic languages to the DDH and
the STH, and we see how these classes fit into this landscape (cf. Figure 3.3). Finally, in
Section 3.5 we show that there are close connections between the complexity class ∆p2 and
languages definable in restricted temporal logic (cf. Theorem 3.31).

3.1 Generalized Deterministic Languages

Recall with Definition 1.25 that a language (Σ1, α1, . . . ,Σn+1, αn+1)k with n ≥ 0, αi ∈ Ak+1

and Σi ⊆ Ak+1 consists of those words x ∈ A≥k+1 whose k-decomposition starts with a
number (possibly zero) of elements from Σ1, then α1, followed by a number (possibly zero) of
elements from Σ2, then α2 and so on, and ends with αn+1. Of special interest in this chapter
are languages that admit a unique such decomposition.

Definition 3.1. Let k ≥ 0 and L ⊆ A+.

1. L is left k-deterministic if and only if there exist n ≥ 0, αi ∈ Ak+1 and Σi ⊆ Ak+1 with
L = (Σ1, α1, . . . ,Σn, αn,Σn+1, αn+1)k and for 1 ≤ i ≤ n it holds that αi �∈ Σi.

2. L is right k-deterministic if and only if there exist n ≥ 0, αi ∈ Ak+1 and Σi ⊆ Ak+1 with
L = (α1,Σ1, α2,Σ2, . . . , αn+1,Σn+1)k and for 2 ≤ i ≤ n+ 1 it holds that αi �∈ Σi.

68 3. Deterministic Languages and Restricted Temporal Logic

Note that the requirement αi �∈ Σi does not range over the last (first) index. We refer to
these languages as k-deterministic languages. Deterministic languages for k = 0 and sets
A∗
0a1A

∗
1 · · · anA∗

n were studied in [Eil76, Pin86].

Definition 3.2. Let k ≥ 0. Then Dleftk is the class of languages that can be written as finite

unions of left k-deterministic languages. Moreover, Drightk is the class of languages that can
be written as finite unions of right k-deterministic languages. We may eventually take a finite
set D ⊆ A≤k to each of these languages.

It is easy to see that a language belongs to Dleftk if and only if its reverse belongs to Drightk due
to the symmetric definitions. The following lemma demonstrates the effect of the property
αi �∈ Σi in the representation of a language L. It basically says that the partitioning of a
word x that witnesses x ∈ L must be the same for all xy ∈ L.

Lemma 3.3. Let k, s ≥ 0. Let α1, . . . , αs ∈ Ak+1 and Σ1, . . . ,Σs+1 ⊆ Ak+1 with αi �∈ Σi

for 1 ≤ i ≤ s. If x and xy belong to (Σ1, α1, . . . ,Σs, αs,Σs+1)k with x̂ = (β1, . . . , βl) and
x̂y = (β1, . . . , βl, βl+1, . . . , βl+m), then βl+i ∈ Σs+1 for 1 ≤ i ≤ m.

Proof. Suppose all prerequisites of the lemma are given. Since x ∈ L there are 1 ≤ j1 < j2 <
. . . < js ≤ l with βji = αi and βj ∈ Σi with ji < j < ji+1 for all 0 ≤ i ≤ s (set j0 =def 0 and
js+1 =def l+1). The same holds for xy ∈ L, so there are 1 ≤ j′1 < j′2 < . . . < j′s ≤ l+m with
βj′i = αi and βj ∈ Σi with j′i < j < j′i+1 for all 0 ≤ i ≤ s (set j′0 =def 0 and j′s+1 =def l+m+1).
We show ji = j′i for all 0 ≤ i ≤ s by induction on i. The induction base is clear by

definition, so assume that ji+1 �= j′i+1 for some i with 0 ≤ i < s. Without loss of generality
we may suppose that j′i+1 > ji+1. Moreover, we know that βj′i+1, . . . , βj′i+1−1 ∈ Σi+1. Since

by hypothesis ji = j′i this sequence in fact starts with elements βji+1, . . . , βji+1−1, βji+1 and
we get βji+1 = αi+1 ∈ Σi+1, a contradiction.
Especially, we have js = j′s ≤ l < l+ i for 1 ≤ i ≤ m. So from βj ∈ Σs+1 for j

′
s < j ≤ l+m

we conclude βl+i ∈ Σs+1 for 1 ≤ i ≤ m. ❑

As a special case we have that if Σs+1 = ∅ and x belongs to a language L as above,
then there is no y ∈ A+ such that xy is in L. A dual lemma holds for right k-deterministic
languages.

3.2 Forbidden Pattern Characterization of Dleft
k and Dright

k

We define the following patterns.

Definition 3.4. Let k ≥ 0.
1. Pattern D k is defined as the subgraph given in Figure 3.1 with x, u, v, w, z ∈ A∗, a ∈ A
and |w| = k.

2. Pattern D rev
k is defined as the subgraph given in Figure 3.2 with x, u, v, w, z ∈ A∗, a ∈ A

and |w| = k.

This definition for k = 0 can already be found in [EW96]. Note that the letter a ∈ A makes
the difference to the definition of the patterns B̂ 1,k and B̂ rev

1,k (see Definition 2.20). We come
back to this point in Section 3.4. In this section, we prove the following forbidden pattern
characterization of the classes Dleftk and Drightk .

3.2 Forbidden Pattern Characterization of Dleft
k and Dright

k 69

z

+/−

a a

xs0

w

w v

u

−/+
z

s1

s3

s2

s5 s6

s4

Fig. 3.1. Pattern D k with |w| = k
and a ∈ A.

w

s2
u v

z

s5

u

v w

w

z

s4

u

v w

w

s3 s6

−/++/−

a

s1
xs0

Fig. 3.2. Pattern D rev
k with |w| = k and a ∈ A.

Theorem 3.5. Let k ≥ 0. It holds that

1. Dleftk = FP(D k) and

2. Drightk = FP(D rev
k).

Before we give a proof in Subsection 3.2.2 we observe some properties of the just defined
patterns. It follows from Proposition 3.7 below that FP(D k) and FP(D rev

k) are well–defined.

3.2.1 Basic Properties

We show with the next two propositions that the patterns D k and D rev
k are related via the

reverse of the accepted languages, and that if some DFA has one of these patterns, then any
DFA accepting the same language also has this pattern.

Proposition 3.6. Let k ≥ 0. LetM and M̂ be two DFA’s such that L(M̂) = L(M)R. Then
M has pattern D k if and only if M̂ has pattern D rev

k .

Proof. Let M = (A,S, δ, s0, S
′) and let M̂ = (A, Ŝ, δ̂, ŝ0, Ŝ

′) with L(M̂) = L(M)R. Set
L =def L(M).
First suppose M has pattern D k for some k ≥ 0 witnessed by x, u, v, w, z ∈ A∗ and

a ∈ A such that |w| = k. We assume without loss of generality that δ(s0, xaz) ∈ S′ and
δ(s0, xuwaz) �∈ S′. Then for all l ≥ 0 we have x(uwvw)laz ∈ L and x(uwvw)luwaz �∈ L.
So for all l ≥ 0 we know that zRa(wRvRwRuR)lxR ∈ LR and zRawRuR(wRvRwRuR)lxR =
zRa(wRuRwRvR)lwRuRxR �∈ LR.
Due to the finiteness of Ŝ there are r1, l1, r2, l2 ≥ 1 such that δ̂(ŝ0, zRa(wRvRwRuR)r1) =

δ̂(ŝ0, z
Ra(wRvRwRuR)r1+l1) and δ̂(ŝ0, z

Ra(wRuRwRvR)r2) = δ̂(ŝ0, z
Ra(wRuRwRvR)r2+l2).

Without loss of generality we may assume that l1 ≥ r1 and l2 ≥ r2 (otherwise consider
appropriate multiples of l1 and l2). Let t be the smallest common multiple of l1 and l2. Then
it holds that

δ̂(ŝ0, z
Ra(wRvRwRuR)t) = δ̂(ŝ0, z

Ra(wRvRwRuR)rt)

and

70 3. Deterministic Languages and Restricted Temporal Logic

δ̂(ŝ0, z
Ra(wRuRwRvR)t) = δ̂(ŝ0, z

Ra(wRuRwRvR)rt)

for all r ≥ 1, because t ≥ l1 ≥ r1 and t ≥ l2 ≥ r2. We define

x̂ =def z
R,

û =def (u
RwRvRwR)2t−1uR,

v̂ =def (v
RwRuRwR)tvR,

ŵ =def w
R and

ẑ =def x
R.

Then the state

δ̂(ŝ0, x̂aŵû) = δ̂(ŝ0, z
RawR(uRwRvRwR)2t−1uR) = δ̂(ŝ0, z

Ra(wRuRwRvR)2t−1wRuR)

has a loop with label

(wRvRwRuR)3t = wR · (vRwRuRwR)tvR · wR · (uRwRvRwR)2t−1uR = ŵv̂ŵû.

On the other hand, the state

δ̂(ŝ0, x̂aŵv̂) = δ̂(ŝ0, z
RawR(vRwRuRwR)tvR) = δ̂(ŝ0, z

Ra(wRvRwRuR)twRvR)

has a loop with label

(wRuRwRvR)3t = wR · (uRwRvRwR)2t−1uR · wR · (vRwRuRwR)tvR = ŵûŵv̂.

One verifies that x̂, û, v̂, ŵ, ẑ ∈ A∗ and a ∈ A with |ŵ| = k witness that M̂ has pattern D rev
k .

Conversely, suppose that M̂ has pattern D rev
k witnessed by x, u, v, w, z ∈ A∗ and a ∈ A with

|w| = k. We assume without loss of generality δ̂(ŝ0, xawuz) ∈ Ŝ′ and δ̂(ŝ0, xawvwuz) /∈ Ŝ′.
Then for all l ≥ 0 we have xawu(wvwu)lz ∈ LR and xa(wvwu)l+1z �∈ LR. So for all l ≥ 1 we
know that zR(uRwRvRwR)luRwRaxR ∈ L and zR(uRwRvRwR)laxR �∈ L.
Due to the finiteness of S there are r, t ≥ 1 such that δ(s0, z

R(uRwRvRwR)r) =
δ(s0, z

R(uRwRvRwR)r+t). We define

x̂ =def z
R(uRwRvRwR)r,

û =def u
R,

v̂ =def (v
RwRuRwR)t−1vR,

ŵ =def w
R and

ẑ =def x
R.

Then the state δ(s0, x̂) = δ(s0, z
R(uRwRvRwR)r) has a loop with label

(uRwRvRwR)t = uR · wR · (vRwRuRwR)t−1vR · wR = ûŵv̂ŵ.

It is easy to verify that x̂, û, v̂, ŵ, ẑ ∈ A∗ and a ∈ A with |ŵ| = k witness that M has the
pattern D k. ❑

Proposition 3.7. Let k ≥ 0. Let M and M̂ be two DFA’s such that L(M) = L(M̂). Then
M has pattern D k if and only if M̂ has pattern D k. The same holds for D rev

k .

Proof. It suffices to show one implication. So suppose M has pattern D k and let M′ be
some DFA with L(M′) = L(M)R. By Proposition 3.6 we see thatM′ has pattern D rev

k . Now

observe that L(M′) = L(M̂)R so again by Proposition 3.6 we obtain that M̂ has pattern
D k. This can also be carried out for pattern D rev

k . ❑

3.2 Forbidden Pattern Characterization of Dleft
k and Dright

k 71

3.2.2 Forbidden Pattern Characterization: Proof of Theorem 3.5

We show the two inclusions of the first statement of Theorem 3.5 in Lemma 3.8 and
Lemma 3.11. The second statement of Theorem 3.5 is an easy consequence of the first state-
ment and Proposition 3.6. Recall that the duality via reversion of languages holds also between
Dleftk and Drightk .

Lemma 3.8. Let k ≥ 0. It holds that Dleftk ⊆ FP(D k).

Proof. LetM = (A,S, δ, s0, S
′) be some DFA with L(M) ∈ Dleftk . We assume to the contrary

thatM has pattern D k and show that this leads to a contradiction.
SupposeM has pattern D k via x, u, v, w, z ∈ A∗ and a ∈ A such that |w| = k. Without loss

of generality we may assume that δ(s0, xaz) ∈ S′ and δ(s0, xuwaz) �∈ S′. Then for all l ≥ 0 it
holds that x(uwvw)laz ∈ L(M) and x(uwvw)luwaz �∈ L(M). Since L(M) is a finite union
of left k-deterministic languages, there is a one such language L such that x(uwvw)laz ∈ L
for infinitely many l. By definition, there exist n ≥ 0, αi ∈ Ak+1 and Σi ⊆ Ak+1 such that
L = (Σ1, α1, . . . ,Σn, αn,Σn+1, αn+1)k and for 1 ≤ i ≤ n it holds that αi �∈ Σi. We consider
the k-decompositions of the selected words x(uwvw)laz ∈ L and look in particular at two
parts of it, namely at the k-decomposition of x(uwvw)l and at the one of waz. Note that if
we put them together we get exactly the k-decomposition of x(uwvw)laz because |w| = k.
We want to determine the position of the last element of the k-decomposition of x(uwvw)l

in the left k-deterministic representation of L. At first glance, there are two possibilities: it
must be that there is some i with 0 ≤ i ≤ n such that for infinitely many l we have

x(uwvw)l ∈ (Σ1, . . . , αi,Σi+1)k and waz ∈ (Σi+1, αi+1, . . . ,Σn+1, αn+1)k (3.1)

or there is some i with 1 ≤ i ≤ n (i �= n+ 1 since az �= ε) such that for infinitely many l

x(uwvw)l ∈ (Σ1, . . . ,Σi, αi)k and waz ∈ (Σi+1, αi+1, . . . ,Σn+1, αn+1)k. (3.2)

But Lemma 3.3 tells us that case (3.2) is not possible: it cannot be for two distinct values
of l that x(uwvw)l ∈ (Σ1, . . . ,Σi, αi)k since αj /∈ Σj for 1 ≤ j ≤ i. So let 1 < l1 < l2
such that x(uwvw)l1 , x(uwvw)l2 ∈ (Σ1, . . . , αi,Σi+1)k as stated in (3.1), and define x′ =def
x(uwvw)l1 and y′ =def (uwvw)l2−l1 . We can apply Lemma 3.3 to x′ and x′y′ and obtain
that α(ŵy′) ∈ Σi+1. Since l2 − l1 ≥ 1 we have in particular that α(ŵuw) ∈ Σi+1 from which
x(uwvw)l1uw ∈ (Σ1, . . . , αi,Σi+1)k follows. Now we recall from (3.1) that it holds that waz ∈
(Σi+1, αi+1, . . . ,Σn+1, αn+1)k. If we put these pieces together we finally get x(uwvw)l1uwaz ∈
(Σ1, . . . , αi,Σi+1, . . . ,Σn+1, αn+1)k ⊆ L(M) which is a contradiction. ❑

Let M = (A,S, δ, s0, S
′) be some DFA. We start working our way towards the reverse

implication and give a finite decomposition of L(M) into subsets that remain in a strongly
connected component (SCC). To do so, we unfold the acyclic graph of SCC’s to a tree and
emphasize in each SCC on the entry state, the leaving state, and a prefix and suffix of
constant length. The absence of pattern D k intuitively says that within an SCC it cannot
be distinguished between different occurrences of a word of length k + 1. This will allow a
description of the languages in each SCC over Ak+1.
A strongly connected component of the transition graph ofM is a maximal set of states

C ⊆ S such that there is a path between any two states in C. We allow this path to be empty,

72 3. Deterministic Languages and Restricted Temporal Logic

so S is a finite union of disjoint SCC’s. Let p ∈ S and set L(p) =def { x ∈ A+ | δ(s0, x) = p }.
We immediately obtain

L(M) =
⋃
s∈S′

L(s). (3.3)

If C is an SCC and p, q ∈ C we define L(p,C, q) =def {x ∈ A∗ | δ(p, x) = q } as the set of
words that remain in C between two particular states. For any p ∈ S we have

L(p) =
⋃

L(p1, C1, q1)a1L(p2, C2, q2) · · · anL(pn+1, Cn+1, qn+1) (3.4)

where the union ranges over any sequence of distinct SCC’s C1, . . . , Cn+1 with n ≥ 0 such
that p1 = s0, qn+1 = p, pi, qi ∈ Ci for 1 ≤ i ≤ n + 1 and δ(qi, ai) = pi+1 for 1 ≤ i ≤ n.
Observe that for any x ∈ L(p) we can find distinct witnesses C1, . . . , Cn+1 on the path from
s0 to p given by x, and that the above union is finite. For k ≥ 0 we define

L<k(p,C, q) =def L(p,C, q) ∩ (k−1⋃
i=0

Ai
)
and L≥k(p,C, q) =def L(p,C, q) ∩ (Ak ∪ A>k

)
.

So we split the set L(p,C, q) in the set of words with lengths < k and in the set of words
with lengths ≥ k. Note that also the empty word is considered. It holds that

L(p,C, q) = L<k(p,C, q) ∪ L≥k(p,C, q). (3.5)

Let u, v ∈ A∗ and define L≥k(p, u,C, v, q) =def L≥k(p,C, q) ∩ (uA∗ ∩ A∗v) as the set of all
words in L≥k(p,C, q) with prefix u and suffix v. Then it holds that

L≥k(p,C, q) =
⋃

u,v∈Ak

L≥k(p, u,C, v, q). (3.6)

Now we are ready to give the decomposition of L(M)

Lemma 3.9. Let M = (A,S, δ, s0, S
′) be a DFA and let k ≥ 0. Then L(M) can be written

as a finite union of languages w0L1a1w1L2a2w2 · · ·LnanwnLn+1 with n ≥ 0, wi ∈ A∗ for
0 ≤ i ≤ n and there exist distinct SCC’s C1, . . . , Cn+1 in the transition graph of M, states
pi, qi ∈ Ci for 1 ≤ i ≤ n + 1, words ui, vi ∈ Ak for 1 ≤ i ≤ n and words un+1 ∈ Ak and
vn+1 ∈ Ak+1 such that

1. δ(s0, w0) = p1 and qn+1 ∈ S′,

2. δ(qi, aiwi) = pi+1 and δ(qi, ai) �∈ Ci for 1 ≤ i ≤ n,

3. Li = L≥k(pi, ui, Ci, vi, qi) for 1 ≤ i ≤ n and

4. Ln+1 = L<k+1(pn+1, Cn+1, qn+1) ∪ L≥k+1(pn+1, un+1, Cn+1, vn+1, qn+1).

Proof. To obtain the required representation, we start with (3.3), substitute the occurring
languages using (3.4) to (3.6), rewrite all finite sets as the finite unions of their elements and
apply the identity L(L′ ∪ L′′) = LL′ ∪ LL′′. Note that we fix in Cn+1 the k-prefix un+1 and
the (k + 1)-suffix vn+1, which we can do with a suitable adaption of (3.6). Note also that
we may ignore empty sets in the stepwise decomposition just described. So we obtain for
each language Li for 1 ≤ i ≤ n + 1 a witnessing SCC Ci with the properties stated in the
lemma. ❑

3.2 Forbidden Pattern Characterization of Dleft
k and Dright

k 73

The following proposition isolates the pattern arguments used in the proof of Lemma 3.11.
For an SCC C set S(C) =def

{
α ∈ Ak+1 | there exists some q ∈ C such that δ(q, α) ∈ C

}
.

Proposition 3.10. LetM be a minimal DFA and fix a decomposition as given by Lemma 3.9.
Then M has pattern D k in all of the following cases.

1. There exist 1 ≤ i ≤ n and x ∈ A∗vi with δ(pi, x) ∈ Ci and δ(pi, xai) �= δ(qi, ai).
2. There exists some x ∈ A∗vn+1 with δ(pn+1, x) ∈ Cn+1 and δ(pn+1, x) �= qn+1.
3. There exist 1 ≤ i ≤ n+ 1 and x ∈ uiA

+ with α(x̂) ⊆ S(Ci) and δ(pi, x) �∈ Ci.

Proof. We additionally fix for 1 ≤ i ≤ n + 1 some state q′i ∈ Ci with δ(q′i, vi) = qi (such
q′i exist since Li �= ∅). To see that M has D k, we specify in each case some w ∈ Ak and
witnessing states s1, . . . , s6 (see Figure 3.1) in the SCC Ci. Note that s3 is reachable from s1,
and s4 is reachable from s2 since they will be in the same SCC, and we only need to argue
that s5 and s6 are distinct, becauseM is minimal.
1. Let x = x′vi and set w =def vi, s1 =def δ(pi, x), s2 =def qi, s3 =def q′i, s4 =def δ(pi, x

′),
s5 =def δ(pi, xai), s6 =def δ(qi, ai). By assumption, s5 �= s6.
2. Let x = x′vn+1, and vn+1 = wa for w ∈ Ak and a ∈ A. Then set s1 =def δ(pn+1, x

′w),
s2 =def δ(q′n+1, w), s3 =def q′n+1, s4 =def δ(pn+1, x

′), s5 =def δ(pn+1, x), s6 =def qn+1. By
assumption, s5 �= s6.
3. Let wa for w ∈ Ak and a ∈ A be the leftmost factor of x such that there is a state

s ∈ Ci with δ(s,w) ∈ Ci and δ(s,wa) �∈ Ci. Such a factor exists because |x| ≥ k + 1 and
because x has k-prefix ui with δ(pi, ui) ∈ Ci. Since wa ∈ α(x̂) ⊆ S(Ci) there are also states
s′, s′′ ∈ Ci such that δ(s

′, wa) = s′′ and s′ �= s. Set s1 =def δ(s
′, w), s2 =def δ(s,w), s3 =def s,

s4 =def s
′, s5 =def s′′, s6 =def δ(s,wa). Then s5 �= s6 because s5 ∈ Ci and s6 �∈ Ci. ❑

Lemma 3.11. Let k ≥ 0. It holds that FP(D k) ⊆ Dleftk .

Proof. Let a language from FP(D k) be given. We can consider the minimal DFA M ac-
cepting this language because FP(D k) is well–defined. We show that any language L =def
w0L1a1w1L2a2w2 · · ·LnanwnLn+1 from Lemma 3.9 is in Dleftk ifM does not have pattern D k.

Step 1. There is no need to fix qi in the sets Li for 1 ≤ i ≤ n since any path labeled vi in
Ci and followed by ai must end in the same state, or we find pattern D k. Therefore we define
for 1 ≤ i ≤ n sets

Vi =def

{
x ∈ A≥k

∣∣∣ δ(pi, x) ∈ Ci

}
∩ (uiA∗ ∩ A∗vi)

and do the same thing for Cn+1 regarding just the (k + 1)-suffix. Let

Vn+1 =def

{
x ∈ A≥k+1

∣∣∣ δ(pn+1, x) ∈ Cn+1

}
∩ (un+1A∗ ∩ A∗vn+1) .

Clearly, Li ⊆ Vi. With B =def L
<k+1(pn+1, Cn+1, qn+1) we obtain that

L = w0V1a1w1V2a2w2 · · ·Vnanwn(B ∪ Vn+1).

The inclusion from right to left is an easy consequence of the first and second statement of
Proposition 3.10.

74 3. Deterministic Languages and Restricted Temporal Logic

Step 2. We are interested in a description of the sets Vi over Ak+1. Given some x with
x̂ = (α1, . . . , αl) we write for short (. . . , x̂, . . .)k instead of (. . . , α1, ∅, α2, ∅, . . . , ∅, αl, . . .)k in
this proof. Let y0 =def w0u1, yi =def viaiwiui+1 for 1 ≤ i ≤ n and B′ =def vnanwnB.
As the first case, assume that w0 �= ε and that n > 0. We claim that

L =
⋃

yn+1∈B′
(ŷ0, S(C1), ŷ1, S(C2), ŷ2, . . . , S(Cn), ŷn+1)k ∪

(ŷ0, S(C1), ŷ1, S(C2), ŷ2, . . . , S(Cn), ŷn, S(Cn+1), vn+1)k .

(3.7)

For the inclusion from left to right in (3.7) it suffices to observe where we find the k-
decomposition of an arbitrary x ∈ Vi for 1 ≤ i ≤ n+1 on the right hand side. If |x| = k then
x = ui = vi and no element from S(Ci) occurs. If |x| ≥ k+1 then δ(pi, x) ∈ Ci by definition,
and hence α(x̂) ⊆ S(Ci). The prefix ui and the suffix vi of x allow the connection to ŷi−1 and
ŷi before and after each S(Ci) in the description.
For the inclusion from right to left in (3.7) we show for any x with k-prefix ui, with k-

suffix vi and with α(x̂) ⊆ S(Ci) (if |x| ≥ k + 1) that δ(pi, x) ∈ Ci, and hence x ∈ Vi. In case
1 ≤ i ≤ n and |x| = k we have δ(pi, x) ∈ Ci, and if 1 ≤ i ≤ n and |w| ≥ k + 1 we can apply
the third statement of Proposition 3.10. Now we look at i = n + 1. So let x be given with
x̂ = (α1, . . . , αl−1, vn+1) such that αj ∈ S(Cn+1) for 1 ≤ j ≤ l − 1. We can apply the third
statement of Proposition 3.10 again because vn+1 ∈ S(Cn+1).
The remaining cases deal with little modifications due to lengths of words. No new argu-

ment is needed, so we just state the respective representation of L. For the second case let
w0 = ε and n > 0. If V1 contains only words of length ≥ k + 1 we can state

L =
⋃

u1a∈S(C1)

[⋃
yn+1∈B′

(u1a, S(C1), ŷ1, S(C2), . . . , S(Cn), ŷn+1)k ∪

(u1a, S(C1), ŷ1, S(C2), ŷ2, . . . , S(Cn), ŷn, S(Cn+1), vn+1)k

]
.

(3.8)

If V1 contains a word of length k then this word is u1 = v1 and we add to the union above
each set again, this time starting with (ŷ1, S(C2), ŷ2, . . .)k.
The third case is n = 0 and w0 �= ε. Then we have L = w0B ∪ w0V1 and see that

L =
(
w0B ∩ A≤k) ∪ ⋃

x∈w0B
|x|>k

(x̂)k ∪
(
ŵ0u1, S(C1), v1

)
k
. (3.9)

Finally, for the last case suppose n = 0 and w0 = ε. Then L = B ∪ V1 and we have

L = B ∪ ⋃
α∈V1∩Ak+1

(∅, α)k ∪
⋃

u1a∈S(C1)
(u1a, S(C1), v1)k . (3.10)

Step 3. In any of the sets on the right hand side in (3.7) to (3.10) and for any 1 ≤ i ≤ n
it holds that viai �∈ S(Ci). Otherwise we can apply the first statement of Proposition 3.10
to find pattern D k in Ci. To see that L is left k-deterministic observe that we can insert in
(3.7) to (3.10) the empty set at any position in the description over Ak+1. Note that in case
of (. . . , α, ∅, β, . . .)k we have fulfilled β �∈ ∅. Note that the last index is not subject to the
requirement αi �∈ Σi. In our construction we have indeed vn+1 ∈ S(Cn+1). This completes
the proof of the lemma. ❑

3.3 Restricted Temporal Logic 75

With help of the pattern characterization of Dleftk it is easy to see that these classes are
in fact Boolean algebras. Just note that the part of the transition graph of a DFA where a
pattern can appear, does not change when inverting acceptance.

Proposition 3.12. Let k ≥ 0. It holds that Dleftk is closed under finite union, finite intersec-

tion and complementation. The same holds for Drightk .

3.3 Restricted Temporal Logic

We turn to temporal logic, and contribute to the study of the expressive power of its frag-
ments, which are obtained by omitting one or the other of the usual temporal operators next
(X), eventually (F) and until (U). With little modifications we use notations from [Wil99].
Formulas of temporal logic TL over an alphabet A are built up from the elements of A as
atomic formulas, using the Boolean connectives ∧,∨,¬, the unary operators X and F and
the binary operator U. We interpret formulas over finite words. A fragment TL[.] of TL is a
subset of TL where only the use of the temporal operators specified in brackets is allowed,
e.g., TL[] ⊆ TL[F] ⊆ TL[X,F] ⊆ TL[X,F,U] = TL.
In Subsection 3.3.1, Theorem 3.14, we recall known forbidden pattern characterizations of

the fragments TL[F] and TL[X,F] from [CPP93, EW96]. The latter fragment is also known
as restricted temporal logic (RTL). Characterizations of this type allow to decide whether
or not a given language is definable when only the restricted formalism of the respective
fragment can be used. Note that in case of TL[F] we are not allowed to specify the next
event, while in case of TL[X,F] unrestricted use of X is possible. We fill the room between
these two positions and give a comprehensive answer to the question of how many nested uses
of X are needed to express a certain property in restricted temporal logic. As it turns out in
Subsection 3.3.2, if we put the bound k on the nesting depth of X we encounter exactly the
right k-deterministic languages (see Theorem 3.17). We subsume our characterizations and
discuss consequences in Subsection 3.3.3.

3.3.1 Definitions and Known Results

For a word x = a1a2 · · · an ∈ A+ and some i ∈ {1, . . . , n} we define what it means that an
RTL formula ϕ is true in x at position i, in notation (x, i) |= ϕ.

1. (x, i) |= a if and only if ai = a (for all a ∈ A).
2. (x, i) |= ϕ ∨ ψ if and only if (x, i) |= ϕ or (x, i) |= ψ (analogously for ∧,¬).
3. (x, i) |= Xϕ if and only if i < n and (x, i + 1) |= ϕ.
4. (x, i) |= Fϕ if and only if there exists some j with i < j ≤ n and (x, j) |= ϕ.

Given an RTL formula ϕ and a word x we say that x is a model of ϕ, in notation x |= ϕ,
if and only if (x, 1) |= ϕ. We write L(ϕ) =def { x ∈ A+ | x |= ϕ } for the set of all models of
ϕ and for a class of formulas Φ ⊆ RTL we denote by L(Φ) =def {L(ϕ) |ϕ ∈ Φ } the class of
Φ-definable languages. E.g., for the RTL formula ϕ = F(a ∧Xb) we have L(ϕ) = AA∗abA∗.
Note that the eventually operator F is defined here in a way such that the quantified position
is strictly greater than the actual position.
So far we have defined the future version of restricted temporal logic. One can also think

of a past version simply by reversing the ordering. We will treat both cases in parallel and

76 3. Deterministic Languages and Restricted Temporal Logic

use in the proofs the formalism we find more suitable. An easy duality argument then allows
to carry over the results from one version to another. If we substitute the temporal operators
X by Y (previously) and F by P (eventually in the past) we obtain formulas of restricted
past temporal logic (RPTL). Again, we define for a given word w = a1a2 · · · an ∈ A+ and
some i ∈ {1, . . . , n} what it means that such a formula ϕ is true in w at position i (with 1.
and 2. as above).

3’ (w, i) |= Yϕ if and only if i > 1 and (w, i − 1) |= ϕ.
4’ (w, i) |= Pϕ if and only if there exists some j with 1 ≤ j < i and (w, j) |= ϕ.

Given an RPTL formula ϕ and a word w we say that w is a model of ϕ, in notation
w |= ϕ, if and only if (w, |w|) |= ϕ. Furthermore we carry over all definitions introduced for
RTL formulas in an obvious way to RPTL formulas, e.g., the definition of fragments and
definable languages. We will ensure that it is always clear from the context with what kind
of formula we deal. Note that for the RTL formula a we have L(a) = aA∗ and for the RPTL
formula a it holds that L(a) = A∗a. However, there is an easy way to turn an RTL formula
into an RPTL formula and vice versa, such that the defined languages are just the reverse
of one another, and such that the syntactic structure of the formula is maintained. The dual
of an RTL formula (RPTL formula) ϕ is the RPTL formula (RTL formula) ϕ where each
occurrence of X is substituted by Y (Y by X) and each occurrence of F by P (P by F,
respectively).

Proposition 3.13. Let w ∈ A+.

1. For any ϕ ∈ RTL it holds that w |= ϕ if and only if wR |= ϕ.
2. For any ϕ ∈ RPTL it holds that w |= ϕ if and only if wR |= ϕ.

Proof. We only argue for the first statement, since ϕ = ϕ. Let ϕ ∈ RTL and fix some w =
a1 · · · an ∈ A+. We show by induction on the structure of ϕ that for all 1 ≤ i ≤ n it holds that
(w, i) |= ϕ if and only if (wR, n− i+1) |= ϕ. Note that the i-th letter of w is the (n− i+1)-th
letter of wR, so if ϕ = a for some a ∈ A then (w, i) |= a ⇐⇒ ai = a ⇐⇒ (wR, n−i+1) |= a.
If ϕ is a Boolean combination of formulas for which the induction hypothesis holds, there is
nothing to prove. Now assume ϕ = Xψ. Then

(w, i) |= Xψ ⇐⇒ i < n and (w, i + 1) |= ψ
hyp⇐⇒ n− i > 0 and (wR, n− i) |= ψ

⇐⇒ (wR, n− i+ 1) |= Yψ = ϕ.

Finally, suppose ϕ = Fψ. Then we can conclude

(w, i) |= Fψ ⇐⇒ there exists some i < j ≤ n with (w, j) |= ψ
hyp⇐⇒ there exists some 1 ≤ n− j + 1 < n− i+ 1 with (wR, n − j + 1) |= ψ

⇐⇒ (wR, n− i+ 1) |= Pψ = ϕ.

In particular, this shows (w, 1) |= ϕ if and only if (wR, n) |= ϕ. ❑

Now we recall the following.

3.3 Restricted Temporal Logic 77

Theorem 3.14 ([CPP93, EW96]). Let k ≥ 0. It holds that

1. L(TL[Y,P]) = FP(D),
2. L(TL[P]) = FP(D 0),
3. L(TL[X,F]) = FP(D rev) and
4. L(TL[F]) = FP(D rev

0).

Note that L(TL[Y,P]) = L(RPTL) and L(TL[X,F]) = L(RTL). To take a closer look
at the fine structure of the class of RTL-definable languages we define the notion of the
next depth of an RTL formula, i.e., we count the number of nested uses of the X opera-
tor. If ϕ is an RTL formula then nd(ϕ) denotes its next depth. More precisely, we define
inductively nd(a) =def 0 for all a ∈ A, nd(ϕ ∨ ψ) = nd(ϕ ∧ ψ) =def max{nd(ϕ), nd(ψ)} and
nd(Xϕ) =def nd(ϕ)+1 (¬ and F have no effect). Let k ≥ 0 and denote with TL[X(k),F] =def
{ϕ ∈ TL[X,F] |nd(ϕ) ≤ k } the set of all RTL formulas ϕ having next depth at most k.
One easily relates these definitions to Theorem 3.14 due to TL[F] = TL[X(0),F] and
RTL = TL[X,F] =

⋃
k≥0TL[X(k),F]. Within the next hierarchy {L(TL[X(k),F]) | k ≥ 0 }

a language has next depth k if it is in one of these classes for minimal k. Analogously, one
defines the previously depth of an RPTL formula and the previously hierarchy. Note that
a language L has next depth k if and only if LR has previously depth k, which is an easy
consequence of Proposition 3.13.
Fortunately the next operatorX shows a nice property: it commutes with ∧,∨ and F (even

with U), and also in case of negation we can do something similar. The following switching
rules [Eme90] allow us to bring all X operators next to atomic formulas.

Proposition 3.15. Let ϕ,ψ ∈ RTL and let w = a1 · · · an ∈ A+. For all 1 ≤ i ≤ n it holds
that

1. (w, i) |= XFϕ ⇐⇒ (w, i) |= FXϕ,
2. (w, i) |= X(ϕ ∨ ψ) ⇐⇒ (w, i) |= (Xϕ ∨Xψ),
3. (w, i) |= X(ϕ ∧ ψ) ⇐⇒ (w, i) |= (Xϕ ∧Xψ) and
4. (w, i) |= X¬ϕ ⇐⇒ (w, i) |= ((¬Xϕ) ∧ (X∨a∈A a)).

Proof. We only show the first and the last statement since the others are easily seen. Let
ϕ ∈ RTL and w = a1 · · · an ∈ A+ and suppose first that (w, i) |= XFϕ for some i with
1 ≤ i ≤ n. So i < n and there exists some j with i+ 1 < j ≤ n such that (w, j) |= ϕ. Then
j′ =def j − 1 witnesses that (w, i) |= FXϕ. Conversely, assume (w, i) |= FXϕ. Then there is
some j with i < j ≤ n such that j < n and (w, j + 1) |= ϕ. For j′ =def j + 1 it holds that
i+ 1 < j′ ≤ n and (w, j′) |= ϕ, so (w, i) |= XFϕ.
To see the last statement, suppose (w, i) |= X¬ϕ. Then i < n and it is not the case that

(w, i+1) |= ϕ. Additionally, since i < n it holds that (w, i) |= (X∨a∈A a). Conversely, assume
(w, i) |= (¬Xϕ) and (w, i) |= (X

∨
a∈A a). From the first part we known that i < n is not

true or it is not the case that (w, i + 1) |= ϕ. From the second part we conclude that i < n
so together we obtain i < n and it is not the case that (w, i + 1) |= ϕ, so (w, i) |= X¬ϕ. ❑

Observe that in statement 4 we have to ensure that there is at least one more letter right
to the actual position in order to establish the implication from right to left. It is important
to see that these rules preserve the next depth of the formula in question. This gives rise
to the definition of the set Xk =def {X · · ·X︸ ︷︷ ︸

l times

a | a ∈ A, 0 ≤ l ≤ k} of all atomic formulas a

78 3. Deterministic Languages and Restricted Temporal Logic

with a prefix of at most k next operators. Denote by 〈Xk〉 the set of all RTL formulas built
up from elements of Xk using ∨,∧,¬ and F. The following proposition is a consequence of
Proposition 3.15.

Proposition 3.16. Let k ≥ 0. It holds that L(TL[X(k),F]) = L(〈Xk〉).

3.3.2 From Logic to Languages and Back

We prove in this subsection the following theorem.

Theorem 3.17. Let k ≥ 0. It holds that

1. L(TL[Y(k),P]) = Dleftk and

2. L(TL[X(k),F]) = Drightk .

Again due to the duality argument we may restrict ourselves to one statement. This time we
show the second one in Lemma 3.18 and Lemma 3.19 (together with Proposition 3.16).

Lemma 3.18. Let k ≥ 0. It holds that L(〈Xk〉) ⊆ Drightk .

Proof. Let ϕ ∈ 〈Xk〉. We show L(ϕ) ∈ Drightk by induction on the structure of ϕ. For the
induction base let ϕ ∈ Xk, so ϕ = X · · ·X︸ ︷︷ ︸

l times

a for some a ∈ A and 0 ≤ l ≤ k. Then L(ϕ) =

AlaA∗. For i, j ≥ 0 we define Bi,j =def A
iaAj. One verifies that

L(ϕ) =
⋃

0≤j<k−l

Bl,j ∪
⋃

α∈Bl,k−l

(α,Ak+1)k

where we have a finite union of right k-deterministic languages on the right hand side.
By Proposition 3.12 it suffices to show the induction step for ϕ = Fψ with L(ψ) ∈ Drightk .

It holds that L(Fψ) = AA∗L(ψ) =
⋃

a∈A aA∗L(ψ). Suppose L(ψ) is a finite union of right
k-deterministic languages with some finite set D ⊆ A≤k. We are done if we prove for any
member L of this union that aA∗L ∈ Drightk .
For L = D and D′ =def

{
xz ∈ Ak+1 | z ∈ D

}
one verifies that

aA∗D = (aA∗D ∩ A≤k) ∪
⋃

α∈aA∗D ∩ Ak+1

(α, ∅)k ∪
⋃

β∈aAk

⋃
γ∈D′

(β,Ak+1, γ, ∅)k

where again we have a finite union of right k-deterministic languages.
Now let L = (α1,Σ1, α2,Σ2, . . . , αn+1,Σn+1)k with n ≥ 0, αi ∈ Ak+1 and Σi ⊆ Ak+1 such

that for 2 ≤ i ≤ n+ 1 it holds that αi �∈ Σi. Obviously, aA
∗L is equal to

L′ =def
⋃

α∈aAk

(α,Ak+1, α1,Σ1, . . . , αn+1,Σn+1)k.

We may not necessarily have a right k-deterministic representation of L′ on the right hand
side since possibly α1 ∈ Σ1. But we can choose in the k-decomposition of a word from L′ the
rightmost occurrence of α1 in the sequence of elements from Σ1. So with Σ

′
1 =def Σ1\{α1}

we have
L′ =

⋃
α∈aAk

(α,Ak+1, α1,Σ
′
1, . . . , αn+1,Σn+1)k

with αi �∈ Σi for 2 ≤ i ≤ n+ 1 by hypothesis and α1 �∈ Σ′
1. ❑

3.3 Restricted Temporal Logic 79

Lemma 3.19. Let k ≥ 0. It holds that Drightk ⊆ L(〈Xk〉).
Proof. To define a finite set D with words of length at most k by a formula of next depth ≤ k,
it suffices to show this for some w = a1 · · · an with ai ∈ A and n ≤ k. We obtain L(ϕ) = {w}
with

ϕ =def
(∧
0≤i≤n−1

X · · ·X︸ ︷︷ ︸
i times

ai+1
) ∧ ¬(∨

a∈A
X · · ·X︸ ︷︷ ︸
n times

a
)
.

Note that we can define the empty set with the second conjunct of ϕ setting n = 0.
It remains to prove for a non–empty right k-deterministic language L that there is an RTL

formula ϕ ∈ 〈Xk〉 with L(ϕ) = L. Let us look at some L = (α1,Σ1, α2,Σ2, . . . , αn+1,Σn+1)k
with n ≥ 0, αi ∈ Ak+1 and Σi ⊆ Ak+1 such that for 2 ≤ i ≤ n + 1 it holds that αi �∈ Σi. For
a language L′ denote by suf(L′) =def

{
y ∈ A≥k+1 | there exists some x ∈ A∗ with xy ∈ L′ }

the set of all suffixes of length ≥ k+1 from words in L′. We make the following observation,
which ensures that we always find for certain suffixes y some x such that xy ∈ L.
Suppose y ∈ (αi,Σi, . . . , αn+1,Σn+1)k for some 1 ≤ i ≤ n+ 1. Then there is some x ∈ A∗

such that xy ∈ L since otherwise L = ∅. Moreover, if y ∈ (β,Σi, . . . , αn+1,Σn+1)k for some
1 ≤ i ≤ n+1 and β ∈ Σi then we can also assume that there is always some x ∈ A∗ such that
xy ∈ L. To see this assume for the moment that there is some y for which there is no x ∈ A∗

such that xy ∈ L. But then also for all y′ ∈ (β,Σi, . . . , αn+1,Σn+1)k it holds that there is no
x ∈ A∗ such that xy ∈ L because k-decompositions overlap by at most k letters. Hence, we
may take Σ′

i =def Σi\{β} instead of Σi without changing the language. This procedure comes
to an end.
For notational convenience we write Gφ instead of ¬F¬φ for all φ ∈ RTL. We define for

all α = a1 · · · ak+1 ∈ Ak+1 formulas

ψ(α) =def
∧

0≤l≤k

X · · ·X︸ ︷︷ ︸
l times

al+1 with L(ψ(α)) = αA∗

and for each Σ ⊆ Ak+1 formulas

ψ(Σ) =def
∨
α∈Σ

ψ(α) with L(ψ(Σ)) = ΣA∗.

Moreover, set χ =def ¬ψ(Ak+1) with L(χ) = A≤k. Then ψ(α), ψ(Σ), χ ∈ 〈Xk〉.
The proof is by induction on n. Additionally, we make available in each step a formula ϕ′

defining suf(L(ϕ)). For the induction base let n = 0. So L = (α1,Σ1)k and we set

ϕ =def ψ(α1) ∧G(ψ(Σ1) ∨ χ) and ϕ′ =def (ψ(α1) ∨ ψ(Σ1)) ∧G(ψ(Σ1) ∨ χ).

Then ϕ,ϕ′ ∈ 〈Xk〉 and it holds that L(ϕ) = L and L(ϕ′) = suf(L(ϕ)).
Now let n ≥ 1 and L = (α1,Σ1, α2,Σ2, . . . , αn+1,Σn+1)k. By hypothesis, there exist

ϕ1, ϕ
′
1 ∈ 〈Xk〉 such that L(ϕ1) = (α2,Σ2, . . . , αn+1,Σn+1)k and L(ϕ′

1) = suf(L(ϕ1)). We
define

ϕ =def
(
ψ(α1) ∧Fϕ1

) ∧G(ψ(Σ1) ∨ ϕ′
1 ∨ χ) and

ϕ′ =def
[(
(ψ(α1) ∨ ψ(Σ1)) ∧ Fϕ1

) ∧G(ψ(Σ1) ∨ ϕ′
1 ∨ χ)
]
∨ ϕ′

1.

Then ϕ,ϕ′ ∈ 〈Xk〉 since ϕ1, ϕ
′
1 ∈ 〈Xk〉. Observe that L ⊆ L(ϕ) is easy to verify: every word

w in L starts with α1 and there is a strict suffix of w from L(ϕ1). Moreover, for all positions
strictly greater than the first, it holds that there begins

80 3. Deterministic Languages and Restricted Temporal Logic

– some element from Σ1 (between α1 and α2), or
– a suffix of length ≥ k + 1 of L(ϕ1), or
– some word of length ≤ k.

Similarly, we see suf(L) ⊆ L(ϕ′). It remains to argue for the reverse inclusions.
Let w ∈ L(ϕ) with ŵ = (β1, . . . , βl) for some l ≥ 1. Then β1 = α1 and there is some

strict suffix z ∈ L(ϕ1) of w with ẑ = (βi, . . . , βl) for some i with 2 ≤ i ≤ l. If i = 2 then
no element from Σ1 occurs, sk(α1) = pk(α2) and w ∈ L. For i ≥ 3 we want to show that
the definition of ϕ ensures {β2, . . . , βi−1} ∈ Σ1. Suppose that this is not the case. By the
formula G(. . .) in the definition of ϕ there is some j with 2 ≤ j ≤ i − 1 and some y ∈ A+

such that ŷz = (βj , . . . , βi, . . . , βl) and yz ∈ L(ϕ′
1). Observe that y ∈ A+ because j ≤ i− 1.

Since L(ϕ′
1) = suf(L(ϕ1)) there is some x ∈ A∗ with xyz ∈ L(ϕ1). Note with the observation

from the beginning of the proof that such an x always exists. So we obtain that z and xyz
are in L(ϕ1) = (α2,Σ2, . . . , αn+1,Σn+1)k. Recall that for 2 ≤ i ≤ n+ 1 we have αi �∈ Σi and
observe that |xyz| > |z|. This is a contradiction to the dual version of Lemma 3.3 for right
deterministic languages.
The same arguments prove L(ϕ′) ⊆ suf(L). ❑

3.3.3 The Next Hierarchy

Taking together Theorems 3.5 and 3.17 we obtain the following characterization of the pre-
viously hierarchy and the next hierarchy.

Theorem 3.20. Let k ≥ 0. It holds that

1. L(TL[Y(k),P]) = Dleftk = FP(D k) and

2. L(TL[X(k),F]) = Drightk = FP(D rev
k).

We immediately obtain L(RPTL) =
⋃

k≥0Dleftk and L(RTL) =
⋃

k≥0Drightk . Note also that
for k = 0 we have given another proof of the second and fourth statement of Theorem 3.14.
Using Theorem 3.20 we obtain an NL–algorithm for the membership problem of Dleftk for fixed
k as in case of the forbidden pattern characterizations before. We additionally guess some
letter a and a word w of length k (hence count to k, which is a constant to the algorithm),
and verify the required reachability conditions. There is a similar algorithm for the classes
Drightk so the levels of the previously hierarchy and of the next hierarchy have membership
problems decidable in NL.

Theorem 3.21. For fixed k ≥ 0 the membership problem of Dleftk is decidable in nondeter-

ministic logarithmic space NL. The same holds for Drightk .

Recall Proposition 2.19. The same proof shows that if k ≥ |M|2 and M has pattern D k

the M has pattern D . As before, we see how pattern D k turns in a natural way to pattern
D as k increases. The same holds for the patterns D rev

k and D rev. Moreover, we can determine
the exact level of a language in the previously hierarchy and in the next hierarchy. We simply
apply the algorithm for the membership problems for k = 0, . . . , |M|2, which is an algorithm
that also decides the membership problems of L(RTL) and L(RPTL). In particular, this
yields another proof of the remaining statements of Theorem 3.14, in the same way as in case
of the patterns B 1/2,k and B 1/2. Also a strictness result can be easily achieved with help of
our forbidden pattern characterization.

3.4 Relations to Concatenation Hierarchies 81

Theorem 3.22. For all k ≥ 0 it holds that Dleftk � Dleftk+1 and Drightk � Drightk+1 .

Proof. Suppose a DFA M has D k for some k ≥ 0. Then it also has D l for 0 ≤ l ≤ k. So
Dleftk ⊆ Dleftk+1. We may assume that there are different letters a, b ∈ A and define witnessing

languages as Lk+1 =def A
∗bk+1\A∗bk+2A∗. If we look at the minimal DFA accepting Lk+1 we

observe that it has pattern D k but it does not have pattern D k+1. Thus, by Theorem 3.20 we
have Lk+1 ∈ Dleftk+1\Dleftk . We may take LR

k+1 to see Drightk �= Drightk+1 . ❑

3.4 Relations to Concatenation Hierarchies

We have already observed that the patterns B̂ 1,k and D k are very similar: they differ only
in the occurrence of the letter a (compare Figures 2.4 and 3.1). We discuss and clarify the
inclusion structure between the occurring classes. First, we give a formal language representa-
tion of FP(B̂ 1,k). Instead of fixing the last (first) element in the definition of k-deterministic
languages, let us fix only the k-suffix (k-prefix) of some last (first) element. We define that
L is weak left k-deterministic if and only if there exist v ∈ Ak, α1, . . . , αn ∈ Ak+1 and
Σ1, . . . ,Σn+1 ⊆ Ak+1 for some n ≥ 0 such that L = ((Σ1, α1, . . . ,Σn, αn,Σn+1)k ∩ A∗v) and
for 1 ≤ i ≤ n it holds that αi �∈ Σi. There is an analog definition for weak right k-deterministic
languages. We denote the classes of finite unions of such languages as D̂leftk and D̂rightk (again,
we may take some finite set D ⊆ A≤k to each language). Slight modifications in the proof of
Theorem 3.5 allow to establish the following.

Theorem 3.23. Let k ≥ 0. It holds that

1. D̂leftk = FP(B̂ 1,k) and
2. D̂rightk = FP(B̂ rev

1,k).

Next we see that the difference in the pattern definitions really causes a difference in the
languages classes.

Proposition 3.24. Let k ≥ 0. It holds that

1. D̂leftk � Dleftk � D̂leftk+1 and

2. D̂rightk � Drightk � D̂rightk+1 .

Proof. We only show the first statement. It is an easy obseration that if a DFA has pattern
B̂ k+1 then it also has pattern D k, and if it has D k then it also has pattern B̂ k. To see that
these inclusions are strict we look again at the witnessing language from Proposition 3.22 and
observe that the minimal automaton accepting Lk+1 has pattern D k but it does not even have
pattern B̂ k+1. On the other hand, the minimal automaton accepting L′

k =def A
∗bk+1 has B̂ k

but it does not have D k. Analog arguments hold for the reverse patterns and languages. ❑

Figure 3.3 gives a summary of the structural results and refines the figure from the begin-
ning of this chapter. We have proved (or provided alternative proofs of) forbidden pattern
characterizations of all pictured classes (except for B3/2 ∩ coB3/2 and L3/2 ∩ coL3/2 which
we treat in the next chapter). From this, efficient algorithms for their membership prob-
lems are easily derived. Since we have for a given DFA M a bound on k we can exactly
locate any L(M) in this landscape. Note that if for some language classes C1 and C2 we have
C1 = FP(P 1) and C2 = FP(P 2) then C1 ∩ C2 = FP(P 1, P 2).

82 3. Deterministic Languages and Restricted Temporal Logic

L(RPTL) ∩ L(RTL)

B3/2 ∩ coB3/2

L(RPTL) L(RTL)

D̂left
k+1

Dleft
k

D̂right
k+1

Dright
k

D̂left
k D̂right

k

D̂left
k ∩ D̂right

k

D̂left
k+1 ∩ D̂right

k+1

B1,k+1

B1,k

D̂left
0

L1

L3/2 ∩ coL3/2

Dleft
0 Dright

0

D̂right
0

B1

Fig. 3.3. Classes of generalized deterministic languages. All inclusions are strict.

We turn to strictness issues. As pointed out in [EW96] it holds that L(RTL) ⊆ B3/2.
Since the former is a Boolean algebra and the latter is closed under reversion of languages
it follows that L(RTL) ∪ L(RPTL) ⊆ B3/2 ∩ coB3/2. This inclusion is strict because the
languages from [EW96] that separate the levels of the until–hierarchy are in B3/2 but not in
L(RTL) (the until–hierarchy is defined via the nesting depth of U in formulas from TL, see
[EW96, TW96]).
The case k = 0 in Figure 3.3 is somewhat special. Recall from Proposition 2.22 together

with Theorem 3.23 that L1 = D̂left0 ∩ D̂right0 . This equation is known as the fact that a finite
monoid is J -trivial if and only if it is R-trivial and L-trivial (see, e.g., [Pin86]), here expressed
in terms of forbidden patterns, and D̂left0 and D̂right0 are the deterministic languages studied
in [Eil76].

In contrast, the inclusions B1,k � D̂rightk ∩ D̂rightk are strict for k ≥ 1 which is due to the
following example. Let M =def (A,S, δ, s0, S

′) with A = {0, 1, a, b}, S =def {s0, . . . , s3} and
S′ =def {s2}. The transition function δ is given in Figure 3.4. Observe thatM is minimal.

We claim that L(M) ∈ D̂left1 ∩ D̂right1 \ B1,1. If we set
– x̂ =def ε, ŷ =def ε, ŷ

′ =def ε,
– û =def b, v̂ =def a, ẑ =def ε,
– ŵ =def 0 and ŵ′ =def 1

then x̂, ŷ, ŷ′, û, v̂, ŵ, ŵ′, ẑ ∈ A∗ and |ŵ| = |ŵ′| = 1 witness hat M has pattern B 1,1. So
L(M) �∈ B1,1 by Theorem 2.21. Observe that M even has pattern B 1,k for all k ≥ 1, so

3.4 Relations to Concatenation Hierarchies 83

as0 s2s1
a

b

0, 1 0 1

b, 0b

s3

a, 1

A

Fig. 3.4. Automaton M with
L(M) ∈ D̂left

1 ∩ D̂right
1 \ B1,1.

L(M) �∈ B1. It remains to show that M has neither pattern B̂ 1,1 nor pattern B̂ rev
1,1. The

former is easily seen, because there is no strongly connected component C in the transition
graph of M such that there is some letter c ∈ A and two distinct states s, s′ ∈ C for which
δ(s, c), δ(s′ , c) ∈ C. The same observation can be made when looking at the minimal DFA

accepting L(M)R, so with Theorem 3.23 and Proposition 3.6 we obtain L(M) ∈ D̂left1 ∩D̂right1 .
It follows in particular that B1 � L(RPTL) ∩ L(RTL) and as demonstrated, this is not

hard to see once forbidden patterns are known. However, before a first proof of strictness was
given (by algebraic methods), it was conjectured for a while that equality might hold [Pin00].
We give an informal interpretation why we encounter strictness for k ≥ 1 but not for k = 0.
Let k ≥ 0 and recall from Theorem 2.21 that B1,k is characterized by the finiteness condition
on the number of alternations in �k-chains. Pattern B̂ 1,k induces for i ≥ 1 a �k-chain

x(uwvw)iz �ek x(uwvw)iuwz �ek x(uwvw)iuwvwz = x(uwvw)i+1z

having an infinite number of alternations, where the next alternation happens right to the
position of the previous one, i.e., every inserted factor remains untouched. It is sufficient
here to have one word w of length k which ensures the needed context condition. The same
can be observed in case of pattern B̂ rev

1,k where insertion happens always left to the previous

alternation. These two types of �k-chains are forbidden for languages in D̂leftk ∩ D̂rightk . But
there still exist languages in this class which lead to an infinite number of alternations, because
a third type of �k-chain is possible: also factors inserted just into a previously inserted factor
may cause alternation. To see this, we look at pattern B 1,k which makes the difference between

B1,k and D̂leftk ∩ D̂rightk . Here we obtain for i ≥ 1 a �k-chain

x(yw′y′w)iu(w′vwu)iz
�ek x(yw′y′w)iyw′vwu(w′vwu)iz
�ek x(yw′y′w)iyw′y′wuw′vwu(w′vwu)iz
= x(yw′y′w)i+1u(w′vwu)i+1z

having an infinite number of alternations. Note that yw′vw is inserted into y′w · uw′ and
y′wuw′ is inserted into yw′ · vw and both insertions lead to an alternation. Moreover, w and
w′ ensure the needed context conditions. As we have pointed out in Remark 2.8, this third
type of �k-chain does not appear if k = 0 but it cannot be avoided if k ≥ 1. If k = 0 we can
insert one letter after another, since no context conditions have to be considered.

84 3. Deterministic Languages and Restricted Temporal Logic

3.5 RTL–definable Languages and their Relation to ∆p
2

We turn to the connection of regular languages to complexity classes defined via leaf languages
as mentioned in Subsection 1.3.2. First, we show a result of the type of Theorem 1.24, i.e.,
∆p2 is just the class of all languages that can be accepted by leaf languages from the Boolean
closure of L(RTL) and L(RPTL). Then we make some progress on the question of what single
complexity classes are definable by regular leaf languages. If we consider the complexity class
defined by a leaf language that is neither in L(RTL) nor in L(RPTL), then this complexity
class contains at least ∆p2 or a class from a short list of other classes (cf. Theorem 3.31). With
the list we provide hereby, we identify more complexity classes in the upper semilattice of
leaf language definable classes. However, since the upper bound ∆p2 for leaf languages from
L(RTL) ∩ L(RPTL) meets our lower bound for languages not in L(RTL) ∩ L(RPTL), this
does not show a gap in terms of leaf language definability (as, e.g., in [Bor95, BKS98]). But it
draws a line such that leaf languages with higher concatenation complexity do not refine the
upper semilattice of leaf language definable complexity classes below this line. For background
on standard complexity classes we refer to [Pap94].

Lemma 3.25. It holds that ∆p2 = Leaf
P(L(RTL)).

Proof. To see ∆p2 ⊆ LeafP(L(RTL)) one may consider a characterization of ∆p2 from [Wag90,
Theorem 6.5]. With help of this characterization it is easy to see that ∆p2 = Leaf

P(L1) with
L1 =def A

∗10∗ and A =def {0, 1, 2}. Since the minimal automaton accepting L1 does not have
pattern D rev we have by Theorem 3.14 that L1 ∈ L(RTL). Interestingly, this automaton has
pattern D so L1 ∈ L(RTL)\L(RPTL). The language L1 is in fact a weak right 0-deterministic
language. There is also a weak right 1-deterministic language over a two–letter alphabet which
can be used instead.
Now let L ∈ L(RTL). By our previous results, there is some k ≥ 0 such that L ∈ Drightk .

First suppose k = 0. Since ∆p2 is closed under union it is sufficient to show that Leaf
P(L) ⊆ ∆p2

for some right 0-deterministic language L. So let a1, . . . , an+1 ∈ A and A1, . . . , An+1 ⊆ A for
some n ≥ 0 such that for 2 ≤ i ≤ n+1 it holds that ai �∈ Ai and L = a1A

∗
1a2A

∗
2 · · · an+1A∗

n+1.
Any language accepted by some nondeterministic polynomial time Turing machine M via
leaf language L can also be accepted by the following polynomial time algorithm using an
NP–oracle.

1. Find the first computation path pn+1 from the right with output an+1 using a binary
search and suitable oracle queries. The oracle answers questions of the type “does there
exist a path p right of pn+1 with output an+1?” One can check with one more oracle query
if all paths right of pn+1 produce an output from An+1.

2. Repeat this procedure for i = n, n− 1, . . . , 2, i.e., find the first path pi left from pi+1 with
output ai by a binary search as above. Again, one can check with one oracle query if all
paths between pi and pi+1 produce an output from Ai.

3. Check whether all paths between the first path and p2 have a result from A1 and whether
the first path has the result a1 with one more oracle query.

Now suppose k ≥ 1. We adapt the above algorithm and do not only check a single path, but
blocks of k+1 adjacent paths each time. Since k is a constant to this algorithm we only have
a polynomial time increase. ❑

3.5 RTL–definable Languages and their Relation to ∆p
2 85

Since LeafP(L) = LeafP(LR) for all L and because ∆p2 is closed under Boolean operations,
we immediately have the following corollary.

Corollary 3.26. It holds that ∆p2 = Leaf
P(BC(L(RTL) ∪ L(RPTL))).

This result can be strengthened to ∆p2 = Leaf
P(B3/2 ∩ coB3/2) [BSS99]. Now we implement a

catalogue of patterns in automata that are typical for certain complexity classes. We define
patterns of type 1 through type 4 by drawing their graph in Figures 3.5 to 3.8, respectively,
just as in case of forbidden patterns. Additionally, we require the side conditions

– z ∈ A∗, d, e ∈ A+ and
– there is some w ∈ A+ such that δ(s,w) = s for each pictured state s (except +/−, . . .).

Note that from the existence of a pattern of type 1 to 4 it follows that d �= e.

d
e

e

+/− −/+

z z

d

Fig. 3.5. Pattern of type 1.

+/−

z

−/+

z

d

e

d, e d, e

Fig. 3.6. Pattern of type 2.

d

e

de

−/−

z

+/− −/+
d, e

zz

Fig. 3.7. Pattern of type 3.

d

e

de

+/+

z

+/− −/+
d, e

zz

Fig. 3.8. Pattern of type 4.

We introduce the complexity class ACP which is closely related to the just defined patterns.

Definition 3.27. Set L2 =def (0
∗10∗2)∗0∗. We define ACP =def LeafP(L2).

Proposition 3.28. Let L ⊆ A+ and let M be a DFA with L(M) = L.

1. If M has a pattern of type 1 then ∆p2 ⊆ LeafP(L).
2. If M has a pattern of type 2 then ∆p2 ⊆ LeafP(L).
3. If M has a pattern of type 3 then ACP ⊆ LeafP(L).
4. If M has a pattern of type 4 then coACP ⊆ LeafP(L).

86 3. Deterministic Languages and Restricted Temporal Logic

Proof. All statements can be proved similarly. As an example, we show the first statement.
Let M = (A,S, δ, s0, S

′) be a DFA which has a pattern of type 1, and let L = L(M).
Moreover, let p, q ∈ S, z ∈ A∗ and d, e, w ∈ A+ witness that there is a pattern of type 1 in
the transition graph of M and suppose δ(s0, x) = p for some x ∈ A∗. We assume without
loss of generality that δ(p, z) �∈ S′ and δ(q, z) ∈ S′. Recall now that ∆p2 = LeafP(B∗10∗)
with B =def {0, 1, 2} and let L′ ∈ LeafP(B∗10∗) for some language L′ ∈ ∆p2 be witnessed
by a nondeterministic polynomial time Turing machine M . To see that L′ ∈ LeafP(L) we
reconstruct M as follows. We add a leftmost path spanning a computation tree having x as
its leafstring, we add a rightmost path spanning a computation tree having z as its leafstring,
and for every path of M , if M outputs 0 (1, 2) we append a computation tree with leafstring
w (d, e, respectively). ❑

Note that we may consider the patterns of type 1 to 4 as DFA’s itself, which shows that the
complexity classes from Proposition 3.28 are leaf language definable. Now we prove that we
encounter one of the patterns of type 1 to 4 if some DFA has pattern D .

Lemma 3.29. Let L ⊆ A+ and let M be the minimal DFA with L(M) = L. If M has
pattern D then L �∈ SF or M has a pattern of type 1, 2, 3 or 4.

Proof. Let M = (A,S, δ, s0, S
′) be the minimal DFA accepting L. We assume that M has

pattern D and thatM is permutation–free, since otherwise L �∈ SF. By Theorem 1.37 there
is some c ≥ 1 such that for all s ∈ S and all w ∈ A∗ it holds that δ(s,wc) = δ(s,wc+1). Under
these assumptions we show below by case distinction that we always find in M one of the
patterns of type 1 to 4.
In particular, let p, q ∈ S and x,w, u, v, z ∈ A∗ with |w| ≥ 1 witness thatM has pattern D .

So δ(s0, x) = p = δ(p,w) = δ(q, v), δ(p, u) = q = δ(q, w), δ(p, z) ∈ S
′
and δ(p, z) �∈ S

′
(or vice

versa). SinceM is permutation–free it holds that u �= v. As a first step we set u′ =def uwc

and v′ =def vwc. Then still δ(p, u′) = q and δ(q, v′) = p, but now there is a w-loop at any
state inM that can be reached with u′ or v′. We write u and v instead of u′ and v′ for short.

Case 1. Suppose δ(p, v) = p or δ(q, u) = q. Without loss of generality we assume δ(p, v) =
p. Then we found a pattern of type 1 with d =def vu and e =def v.

Case 2. Suppose δ(p, v) �= p and δ(q, u) �= q. We define d =def (uv)
cu and e =def (vu)

cv.
Our strategy will be as follows. Let s, r be two distinct states such that δ(s, d) = r and
δ(r, e) = s, and note that this holds in particular for p, q. We define two operations −→R

(‘right’) and −→L (‘left’) on such pairs (s, r) resulting in one of the desired patterns, in a
new pair (s′, r′) fulfilling certain helpful properties, or in some case we have treated before.
We start with the operation −→R on (s, r) having the above property, i.e., s and r are

distinct and δ(s, d) = r and δ(r, e) = s. Let p0 =def s and q0 =def r. For 1 ≤ i ≤ c set
qi =def δ(qi−1, d) and pi =def δ(qi, e). Then it holds for 0 ≤ i ≤ c that δ(qi, e) = pi and
δ(pi, d) = qi. Additionally we have δ(qc, d) = qc. We distinguish two cases. Assume that
pc �= qc. Then, since F is minimal, we found a situation as in Case 1. Otherwise we have
pc = qc and we take the minimal j with 0 ≤ j < c such that pj �= qj. Then δ(pj , d) = qj,
δ(qj , e) = pj and additionally δ(qj , d) = qj+1 = δ(qj+1, e) = δ(qj+1, d). We keep the pair
(pj , qj) with pj �= qj as a result of operation −→R on (s, r). Moreover, we see that there is

some 0 ≤ l < c such that δ(r, dl) = qj. We denote this operation by (s, r)
l−→R (pj, qj).

The operation −→L on a pair (s, r) is a dual version of −→R. We investigate what happens
on input e at state s. Let p0 =def s and q0 =def r. Similar as above, for 1 ≤ i ≤ c we set

3.5 RTL–definable Languages and their Relation to ∆p
2 87

pi =def δ(pi−1, e) and qi =def δ(pi, d). Then it holds for 0 ≤ i ≤ c that δ(pi, d) = qi and
δ(qi, e) = pi. Additionally we have δ(pc, e) = pc. If pc �= qc we also find a situation as in
Case 1, and otherwise we keep for a minimal j such that pj �= qj the pair (pj , qj), where
additionally δ(pj , e) = pj+1 = δ(pj+1, e) = δ(pj+1, d). There is some 0 ≤ l < c such that

δ(s, el) = pj. We denote this operation by (s, r)
l−→L (pj , qj).

Now look at the sequence of pairs that results from alternating applications of the oper-
ations −→R and −→L to p and q, starting with −→R. Set p0 =def p and q0 =def q. Every
application produces a pair of distinct states having the described properties, or we are done.
So we may assume that for all i ≥ 0 there are pairs (p2i, q2i) and (p2i+1, q2i+1), and also

l2i, l2i+1 ≥ 0 such that (p2i, q2i) l2i−→R (p2i+1, q2i+1)
l2i+1−→L (p2(i+1), q2(i+1)) with p2i �= q2i and

p2i+1 �= q2i+1.
Case 2.a. Suppose there is a pair (s, r) that appears in the sequence after an −→R

operation and also after an −→L operation. Then there are states s
′ and r′ such that δ(s, e) =

s′ = δ(s′, d) = δ(s′, e) and δ(r, d) = r′ = δ(r′, d) = δ(r′, e). If s′ �= r′ then we found a pattern
of type 2, witnessed by the states s′, s, r′ and words e and dd. Now assume that s′ = r′ and
let z witness that s and r are distinct. If δ(s′, z) = δ(r′, z) �∈ S′ then we found a pattern of
type 3 witnessed by s, r and s′. If δ(s′, z) = δ(r′, z) ∈ S′ then this is a pattern of type 4.

Case 2.b. Any pair (s, r) of the sequence appears only after −→R operations or it appears
only after −→L operations. Then there must be i, j with 1 ≤ i < j such that (p2i, q2i) =
(p2j , q2j). By construction, there are states p

′
2i and q′2i+1 such that δ(p2i, e) = p′2i = δ(p′2i, d) =

δ(p′2i, e) and δ(q2i+1, d) = q′2i+1 = δ(q′2i+1, d) = δ(q′2i+1, e). Moreover, there is some l2i ≥ 0
with δ(q2i, d

l2i) = q2i+1 and in fact l2i ≥ 1 because otherwise we are in Case 2.a. There is
also a word ef with f ∈ {d, e}∗ such that δ(q2i+1, ef) = p2j = p2i. Furthermore, it must hold
that p2i �= q2i+1 since otherwise p2i = q2i follows. Now we have a situation as in Case 2.a
witnessed by the states p2i, q2i+1, p

′
2i, q

′
2i+1 and words d

′ =def ddl2i and e′ =def ef . ❑

We can show the same fact in caseM has pattern D rev.

Lemma 3.30. Let L ⊆ A+ and let M be the minimal DFA with L(M) = L. If M has
pattern D rev then L �∈ SF or M has a pattern of type 1, 2, 3 or 4.

Proof. Let M = (A,S, δ, s0, S
′) be the minimal DFA accepting L. Let s1, . . . , s5 ∈ S and

x,w, u, v, z ∈ A∗ with |w| ≥ 1 witness thatM has pattern D rev. Suppose s2 �= s4 or s3 �= s5.
Then we found pattern D and we can apply Lemma 3.29. On the other hand, if s2 = s4 and
s3 = s5 then u �= v and we found a pattern of type 2. ❑

Finally, we obtain the following theorem.

Theorem 3.31. Let L ⊆ A+ be a regular language.

1. If L ∈ L(RTL) ∩ L(RPTL) then LeafP(L) ⊆ ∆p2 .
2. If L �∈ L(RTL) ∩ L(RPTL) then LeafP(L) contains one of the classes ∆p2, ACP, coACP

or MODpP for some prime p.

Proof. Let L = L(M) for the minimal DFA M. The first statement is a consequence of
Corollary 3.26. If L �∈ L(RTL)∩L(RPTL) thenM has one of the patterns D or D rev by The-
orem 3.14. We may apply Lemma 3.29 or Lemma 3.30 to obtain thatM is not permutation–
free or we find a pattern of type 1, 2, 3 or 4 in the transition graph ofM. For the former case

88 3. Deterministic Languages and Restricted Temporal Logic

it is known that MODpP ⊆ LeafP(L) for some prime p [Bor95]. In the latter case we apply
Proposition 3.28. ❑

The classes MODpP do not come into place, if we consider only star–free languages.
Since there is evidence that MODpP is not a subclass of some level of the polynomial time
hierarchy (otherwise the latter collapses, see [Tod91]), we may take a closer look at the
case of star–free leaf languages. The relation of ACP to the classes of the polynomial time
hierarchy is of particular interest. One can show that ACP ⊆ Πp2 and that ∆p2 ⊆ ACP if and
only if ACP = Πp2 . Certainly, there is more to investigate. In case of the first statement of
Theorem 3.31 we have no evidence that this is optimal in the sense that there exists some
L ∈ L(RTL) ∩ L(RPTL) such that LeafP(L) = ∆p2 . In fact, the typical languages with this
property are in L(RTL) \L(RPTL) or L(RPTL) \L(RTL) (see the proof of Lemma 3.25). So
also here it remains to investigate if there is a presumably smaller class than ∆p2 for which the
first statement holds. We have pointed out at the end of the previous section what properties
are typical for languages in L(RTL) ∩ L(RPTL).

3.6 Discussion and Bibliographic Notes

We make some more remarks concerning the results of this chapter. Let us consider the gen-
eralized deterministic languages first, for which another characterization can be added, this
time derived from the theory of finite semigroups. We look only at one of the two dual cases.
Denote by R the variety of finite R-trivial monoids and by LR the variety of finite locally
R-trivial semigroups. It is shown in [Eil76] that D̂left0 forms the language variety correspond-
ing to R, and we see from [CPP93] that L(RPTL) forms the language variety corresponding
to LR. Moreover, it is known from [Eil76, Chapter V.12] that LR = R ∗ D, the variety
resulting from the right unitary, semidirect products of members from R and D (the variety
of definite semigroups). So the general results from [Str85] for varieties of this form can be
applied here: it holds that R ∗ D is the union of all R ∗ Dk (the latter is the variety of
k-definite semigroups) and each R ∗Dk is characterized using certain generalizations of the
congruences corresponding to R. Now the following can be done. Starting with the congru-
ences for R known from [BF80], one can show that languages from D̂leftk can be described

by the generalized congruences used in [Str85]. It follows that D̂leftk is the language variety
corresponding to R ∗ Dk. So in this case we have additionally to Theorem 3.23 a levelwise
algebraic characterization. This sketches also a way to show that the unions of weak left
k-deterministic languages can be made disjoint.
Further investigations may involve, e.g., to find a logical characterization of D̂leftk , or to

look for an algebraic characterization of Dleftk (using the forbidden patterns, for instance). One
can also look at a non–strict version of F: this makes a difference if F is the only temporal
operator, while when arbitrary use of X is added, both versions have the same expressive
power [Wil98]. There are several characterizations known for the classes L3/2 ∩ coL3/2 and
B3/2 ∩ coB3/2 in terms of first–order logic restricted to two variables, in terms of restricted
temporal logic where future and past opertors are allowed to use at the same time, and in
terms of unambiguous languages [EVW97, PW97, TW98].
Recall with Theorem 2.39 the forbidden pattern characterization of B1. Together with

Theorem 1.24 this could be used to look for a theorem on leaf language definability similar

3.6 Discussion and Bibliographic Notes 89

to Theorem 3.31. However, to find pattern types that appear in a DFA having pattern B 1
seems to be difficult, because a lot more combinations are possible than in case of pattern D .
The work done in this chapter was initiated by a proof of Theorem 3.17 for k = 0, provided

by Klaus W. Wagner.

90 3. Deterministic Languages and Restricted Temporal Logic

4. Dot–Depth 3/2

In Chapter 2 we have generalized the forbid-
den pattern L 1/2 characterizing L1/2 to show a
forbidden pattern characterization of B1/2,k via
pattern B 1/2,k. It was fairly easy to establish a
bound on k if a DFA is given, which in turn
yields the forbidden pattern characterization of
B1/2 (see Theorem 2.18 and Proposition 2.19
and the discussion following there). The same
observation can be made when going from Dleft0

via Dleftk to L(RPTL) (see the discussion fol-
lowing Theorem 3.21). In these two cases, the
forbidden pattern characterizations of B1/2 and
L(RPTL) were previously known, and our re-
finements lead to other proofs of these results. In
this chapter, we exploit this approach one more
time: we restate the known forbidden pattern for
L 3/2 characterizing L3/2 from [PW97] (cf. Theo-
rem 4.2), define a generalized pattern B3/2,k and
provide a forbidden pattern characterization of
B3/2,k (cf. Theorem 4.22).

B1,k

B1

L1

B3/2 coB3/2

B3/2,k

L3/2 coL3/2

B1/2 coB1/2

B1/2,k coB1/2,k

L1/2 coL1/2

coB3/2,k

This yields the decidability of the membership problem of B3/2,k (cf. Theorem 4.30) and
enables us to prove the strictness of the hierarchy of classes B3/2,k for k ≥ 0 (cf. Theo-
rem 4.29). However, no forbidden pattern characterization of B3/2 (or any other effective
characterization) was known before and the situation is more involved than in the previous
chapters. We prove a bound on k from which we derive a forbidden pattern characterization of
B3/2 (cf. Theorem 4.32). This implies the decidability of the membership problem of B3/2 (cf.
Theorem 4.35) and has consequences in first–order logic (cf. Corollary 4.37). In Section 4.5
we see that the forbidden pattern characterization of B3/2 has also an algebraic interpretation
(cf. Theorem 4.38) and we sketch consequences for complexity theory (cf. Theorem 4.40).
First, we develop in Section 4.1 a combinatorial tool that (for a given DFAM) allows to

partition words w of arbitrary length into factors wi of bounded length, such that every second
factor w2j is idempotent in M, i.e., w2j leads to a w2j-loop (cf. Theorem 4.3). Moreover,
we provide in Section 4.2 a normal form for languages in B3/2,k (cf. Theorem 4.9) which
generalizes (and gives in case k = 0 another proof) of the normal form result from [Arf91]
stated in Proposition 1.19. Let us first recall the following.

92 4. Dot–Depth 3/2

Definition 4.1 ([PW97]). Pattern L 3/2 is defined as the subgraph given in Figure 4.1
with x, z ∈ A∗, v,w ∈ A+ and α(vwv) ⊆ α(vv).

Note that the subgraph in Figure 4.1 is the same as in case of pattern B 1/2, but has the
additional side condition α(vwv) ⊆ α(vv) (recall also that α(x) denotes the set of letters
occurring in x for any x ∈ A∗). The latter is equivalent to α(w) ⊆ α(v) but in order to
have a uniform treatment with our generalizations below we state it this way. It holds that
FP(L 3/2) is well–defined as can be seen with the arguments used in the following proof.

zz

x ws1 s2s0

vv

+ −
Fig. 4.1. Pattern L3/2 with
α(vwv) ⊆ α(vv).

Theorem 4.2 ([PW97]). It holds that L3/2 = FP(L 3/2).
Proof. To show the theorem we recall [PW97, Theorem 8.9]. After rewriting their notations
we obtain the following (together with Theorem 1.8).

(a) LetM be a minimal DFA with L(M) ⊆ A∗. Then L(M) ∈ L3/2 ∪
{
L ∪ {ε} ∣∣L ∈ L3/2 }

if and only ifM does not have a subgraph in its transition graph as depicted in Figure 4.1
with x, v, w, z ∈ A∗ and α(w) = α(v).

Suppose L ∈ L3/2 and letM = (A,S, δ, s0, S
′) be the minimal DFA with L(M) = L ⊆ A+.

Assume that M has pattern L 3/2 via x ∈ A∗, v,w ∈ A+ and α(vwv) ⊆ α(vv). Now let
w′ =def vwv and observe that M still has pattern L 3/2 via x, z ∈ A∗, v,w′ ∈ A+ and
α(w′) = α(v). We apply (a) and see that L = L(M) /∈ L3/2 ∪

{
L ∪ {ε} ∣∣L ∈ L3/2 }, a

contradiction. It follows that there exists some DFA accepting L which does not have pattern
L 3/2. Hence L ∈ FP(L 3/2).
Conversely, let L ∈ FP(L 3/2). So there exists some DFAM with L(M) = L ⊆ A+ such

that M does not have pattern L 3/2. We assume that L /∈ L3/2 and show that this leads to
a contradiction. By (a), the minimal DFA M′ accepting L has a subgraph in its transition
graph as depicted in Figure 4.1 with x, v, w, z ∈ A∗ and α(w) = α(v). Note that w ∈ A+

because the states s1 and s2 in the pattern are distinct. It follows that also v ∈ A+.
We argue as in the case of Theorem 2.16 for B 1/2. Let r =def |M| and define z′ =def z,

x′ =def xvr, w′ =def wvr and v′ =def vr!. Observe that x′, z′ ∈ A∗, v′, w′ ∈ A+ and that

α(v′w′v′) = α(vr!wvrvr!) = α(vw) = α(v) = α(vr!vr!) = α(v′v′).

We obtain from Proposition 1.34 that x′ and w′ lead to a v′-loop in M. Moreover, we see
from M′ that x′z′ ∈ L = L(M) and x′w′z′ /∈ L = L(M). So M has pattern L 3/2, a
contradiction. ❑

4.1 How to find Automata Loops in Words 93

This forbidden pattern characterization implies the decidability of the membership problem
of L3/2.

4.1 How to find Automata Loops in Words

A useful tool in further proofs is the fact that we can find factors in a word that lead to
loops in a given DFA. It is important here to analyse the length needed to find such a factor,
depending on the size of the DFA in question. For this end, we define a bounding function
K(n) as

K(n) =def (n+ 1)(n+1)
(n+1)

and prove in this section the following rather technical theorem. Let δ denote the transition
function of the given DFAM.

Theorem 4.3. For every DFA M and for all v0, . . . , vn ∈ A+ there exist an m ≥ 0 and
indices 0 = i0 < i1 < · · · < i2m+1 = n+ 1 such that

1. ij+1 − ij ≤ K(|M|) for 0 ≤ j ≤ 2m and
2. δuu = δu for all u = vijvij+1 · · · vij+1−1 with 1 ≤ j < 2m and j ≡ 1 mod 2.

The proof is given in Subsection 4.1.2. To give some intuition we state what this means for
factors of length one, i.e., letters.

Corollary 4.4. For every DFA M = (A,S, δ, s0, S
′) and every w ∈ A+ there exist words

w0, . . . , wm, u1, . . . , um ∈ A≤K(|F |) such that w = w0u1w1 · · · umwm and δui = δuiui for 1 ≤
i ≤ m.

We use Theorem 4.3 for arbitrary factors vi in the proof of Lemma 4.27 below. This is the
main lemma from which we derive the forbidden pattern characterization of B3/2,k.

4.1.1 How to find One Loop

We first show with a rather rough estimation, that K(n) does not become too small if we
repeatedly divide it by nn. This will make the proof of Lemma 4.7 below better readable.

Proposition 4.5. Let n ≥ 1, m1 =def +K(n)/2, and mi+1 =def +mi/n
n, − 1 for i ≥ 1. For

1 ≤ i ≤ nn + 1 it holds that
mi ≥ (2nn)(nn+3−i).

Proof. We will prove the lemma by induction on i with 1 ≤ i ≤ nn + 1. For the induction
base let i = 1. We distinguish two cases, first suppose n = 1. By definition of K(n), we have
m1 = 8 = (2nn)(n

n+3−1). Now let n ≥ 2. By the binomial theorem we have in this case
(n+ 1)n+1 ≥ nn+1+(n+ 1)nn+(n+ 1)n+1 ≥ nn+1+2n+2 and nn+n ·nn−1 ≤ (n+ 1)n.
So the following estimation shows the induction base.

94 4. Dot–Depth 3/2

(2nn)(n
n+3−1) =

(
nn + n · nn−1)(nn+3−1) ≤ (n+ 1)n(n

n+2)

≤ (n+ 1)((n+1)
(n+1)−2)

≤ (n+ 1)((n+1)
(n+1)−1) − 1

≤ (n+ 1)((n+1)
(n+1))

2
− 1

≤ +K(n)/2, = m1

For the induction step, suppose that we have already shown mk ≥ (2nn)(n
n+3−k) with

1 ≤ k < nn + 1. By definition, mk+1 = +mk/n
n, − 1. From the induction hypothesis we

obtain

mk+1 ≥ (2nn)(n
n+3−k)

nn
− 2.

Since n ≥ 1 and k < nn + 1 we have (2nn)(n
n+3−k)/nn ≥ 8. It follows that

mk+1 ≥ (2nn)(n
n+3−k)

nn
− 2 = 2 · (2nn)(nn+3−(k+1)) − 2 ≥ (2nn)(nn+3−(k+1)).

❑

The key argument for Lemma 4.7 below is the iterated use of the fact that there is only
a finite number of mappings δ′ : S → S when a finite set S is given. We isolate the iteration
step in the following lemma. Let a word v be given with a factorization v = v1v2 · · · vl for
sufficiently large l. Among the mappings δv1···vj some coincide if l is large enough. Suppose for
instance, there are x, y, z, v′ such that v = xyzv′ and δx = δxy = δxyz . Then δx leads to a y-
loop and also to a z-loop. We repeat this selection procedure on the now coarser factorization
xyzv′ = v = v1v2 · · · vl, and collect the hereby encountered mappings in the set ∆.
In order to make this precise, let v0, v1, . . . , vl ∈ A+ and define v[i, j] =def vivi+1 · · · vj−1

for all 0 ≤ i < j ≤ l + 1 as the concatenation of the respective words. We work with indices
i0, . . . , im in order to allow iterated applications.

Lemma 4.6. Let M = (A,S, δ, s0, S
′) be a DFA and let v0, v1, . . . , vl ∈ A+ be given. Fur-

thermore, let 0 ≤ i0 < i1 < · · · < im ≤ l and suppose that ∆ is a set of total mappings
δ′ : S → S such that every δ′ ∈ ∆ leads to a v[ij , ij+1]-loop for all 0 ≤ j < m. Then there
exist indices i′0 < i′1 < · · · < i′n with n =def +m/(|S||S|), such that

1. {i′0, i′1, . . . , i′n} ⊆ {i0, i1, . . . , im},
2. every δ′ ∈ ∆ leads to a v[i′0, i

′
1]-loop (for n ≥ 1) and

3. every δ′ ∈ ∆ ∪
{
δv[i

′
0,i

′
1]
}

leads to a v[i′j , i
′
j+1]-loop for all 1 ≤ j < n.

Proof. First, set i′0 =def i0. This shows in particular the lemma for n = 0. If n = 1 we set
i′1 =def i1 and we are done. Suppose n ≥ 2 and set δij =def δv[i0,ij] for 1 ≤ j ≤ m. Since

there are at most |S||S| total mappings S → S, there exist mappings appearing several times
in the list δi1 , δi2 , . . . , δim . From these mappings we choose a mapping δ that appears most
frequently, say δ appears n′ times. So n′ ≥ +m/(|S||S|), = n. Let i′1, i′2, . . . , i′n ∈ {i1, i2, . . . , im}
such that i′1 < i′2 < · · · < i′n and δ = δi′j for 1 ≤ j ≤ n.

4.1 How to find Automata Loops in Words 95

Since {i′1, i′2, . . . , i′n} ⊆ {i1, i2, . . . , im} we see the first statement. By assumption, every
δ′ ∈ ∆ leads to a v[ij , ij+1]-loop for all 0 ≤ j < m. It follows that every δ′ ∈ ∆ leads also to a
u-loop, where u is an arbitrary concatenation of words v[ij , ij+1] with 0 ≤ j < m. Particularly,
every δ′ ∈ ∆ leads to a v[i′j , i

′
j+1]-loop for all 0 ≤ j < n, thus the second statement follows.

The same argument shows also the third statement for δ′ ∈ ∆.
It remains to show that δv[i

′
0,i

′
1] leads to a v[i′j , i

′
j+1]-loop for all 1 ≤ j < n. By the choice

of δ we have that δv[i
′
0,i

′
j] = δ = δv[i

′
0,i

′
j+1] for all 1 ≤ j < n and we see that δ leads to an

v[i′j , i
′
j+1]-loop for all 1 ≤ j < n. Since δv[i

′
0,i

′
1] = δ the third statement follows. ❑

Note that the second statement in the previous lemma and also third statement for δ′ ∈ ∆
follow immediately from the first statement. We explicitely state them here to focus on what is
important in the following proof. We use the same finiteness argument as before: the mapping
we add to ∆ in Lemma 4.6 cannot always be a new mapping. So if the number of factors we
start with is large enough to allow many applications of Lemma 4.6, then we find a mapping
δu that has already been added to δ before, say δ′. But this means by the second statement
of Lemma 4.6 that δ′ leads to a u-loop, and hence δ′ = δu = δuu.

Lemma 4.7. For every DFA M = (A,S, δ, s0, S
′) and for all v0, v1, . . . , vl ∈ A+ with l =def

+K(|M|)/2, there exist 0 ≤ g < h ≤ l such that δuu = δu with u =def vgvg+1 · · · vh−1.

Proof. Let n =def |M|. Initially, let m(1) =def l, ∆(1) =def ∅ and i
(1)
r =def r for 0 ≤ r ≤ l.

We apply Lemma 4.6 the first time and obtain for n(1) =def +m(1)/nn, indices i′(1)r with
0 ≤ r ≤ n(1) such that

1.
{
i′(1)r

∣∣ 0 ≤ r ≤ n(1)
}
⊆
{
i
(1)
r

∣∣ 0 ≤ r ≤ m(1)
}
and

2. δv[i
′(1)
0 ,i′(1)1] leads to a v[i′(1)r , i′(1)r+1]-loop for all 1 ≤ r < n(1).

Now we want to start over after position i′(1)1 and set m(2) =def n(1) − 1, ∆(2) =def ∆(1) ∪{
δv[i

′(1)
0 ,i′(1)1]
}
and i

(2)
r =def i

′(1)
r+1 for 0 ≤ r < n(1). We apply Lemma 4.6 again.

In general, after the j-th application of Lemma 4.6, we obtain for n(j) =def +m(j)/nn, the
indices i′(j)r with 0 ≤ r ≤ n(j) such that

1.
{
i′(j)r

∣∣ 0 ≤ r ≤ n(j)
}
⊆
{
i
(j)
r

∣∣ 0 ≤ r ≤ m(j)
}
,

2. every δ′ ∈ ∆(j) leads to a v[i′(j)0 , i′(j)1]-loop (for n
(j) > 0) and

3. every δ′ ∈ ∆(j) ∪
{
δv[i

′(j)
0 ,i′(j)1]
}
leads to a v[i′(j)r , i′(j)r+1]-loop for all 1 ≤ r < n(j).

Moreover, with m(j+1) =def n
(j)− 1, ∆(j+1) =def ∆(j)∪

{
δv[i

′(j)
0 ,i′(j)1]
}
and i

(j+1)
r =def i

′(j)
r+1 for

0 ≤ r < n(j) we can carry out the (j + 1)-st application of Lemma 4.6.
We chose l at the beginning large enough such that we can apply Lemma 4.6 sufficiently

often to face the same mapping twice. This can be seen as follows. By Proposition 4.5 we
have that m(j) ≥ (2nn)(n

n+3−j) for 1 ≤ j ≤ nn + 1. It follows that n(j) = +m(j)/nn, ≥
(2nn)(n

n+2−j) − 1 ≥ 1 for 1 ≤ j ≤ nn + 1. Particularly, the indices i′(j)0 and i′(j)1 exist for
1 ≤ j ≤ nn + 1.

On one hand, at the end of each step j we take δv[i
′(j)
0 ,i′(j)1] to ∆(j) and obtain ∆(j+1). On

the other hand, there are at most nn total mappings S → S. Therefore, there exists a step

96 4. Dot–Depth 3/2

t with 1 ≤ t ≤ nn + 1 such that δ =def δv[i
′(t)
0 ,i′(t)1] is already an element of ∆(t). From the

second statement of Lemma 4.6 it follows that δ leads to a v[i′(t)0 , i′(t)1]-loop. With g =def i
′(t)
0 ,

h =def i
′(t)
1 and u =def vgvg+1 · · · vh−1 we have u = v[i′(t)0 , i′(t)1]. Thus δ = δu leads to a u-loop

and hence δuu = δu. ❑

4.1.2 Proof of Theorem 4.3

Now we give a proof of Theorem 4.3. If we do not have the particular number l of words,
but factors v0, v1, . . . , vn for arbitrary n, we can partition them in a number of factors such
that in each factor there are only K(|M|) words vi, and every second factor u has in fact the
property δuu = δu. Note that we can understand v0, v1, . . . , vn as some word v = v0v1 · · · vn
with n markers attached to it. So we obtain for words of arbitrary length a factorization with
the described properties.
Proof of Theorem 4.3. Let l =def +K(|M|)/2,. If n < K(|M|) then we set m =def 0,
i0 =def 0, i1 =def n + 1 and we are done. Otherwise we partition the list v1, . . . , vn from
left to right into factors such that every factor contains l + 1 words vj. We obtain m ≥ 1
such factors B1, . . . , Bm and r ≤ l remaining words vn−r+1, . . . , vn. For every factor Bt =
(vj , vj+1, . . . , vj+l) with j = (t − 1)(l + 1) + 1 and 1 ≤ t ≤ m we apply Lemma 4.7 and
we obtain indices j ≤ gt < ht ≤ j + l such that δuu = δu with u =def vgtvgt+1 · · · vht−1.
Now let i0 =def 0, i2m+1 =def n + 1 and i2t−1 =def gt, i2t =def ht for 1 ≤ t ≤ m. Since
0 = i0 < i1 < · · · < i2m+1 = n+ 1 we already have the second statement of Theorem 4.3.
It remains to show the first statement. For 1 ≤ t ≤ m it holds that i2t − i2t−1 =

ht − gt ≤ l < K(|M|). For 1 ≤ t < m we have Bt = (vj, vj+1, . . . , vj+l) and Bt+1 =
(vj+l+1, vj+l+2, . . . , vj+2l+1) with j = (t− 1)(l + 1) + 1. Since

j ≤ gt < ht ≤ j + l < j + l + 1 ≤ gt+1 < ht+1 ≤ j + 2l + 1

it follows that gt+1 − ht ≤ (j + 2l)− (j + 1) = 2l− 1 < K(|M|). Moreover i1 − i0 = g1 ≤ l <
K(|M|), so we have shown ij+1 − ij ≤ K(|M|) for 0 ≤ j ≤ 2m − 1.
We are left with i2m+1 − i2m. Observe that Bm = (vn−r−l, vn−r−l+1, . . . , vn−r) and that

i2m = hm > n− r − l. So

i2m+1 − i2m = n+ 1− i2m < n+ 1− n+ r + l = r + l + 1 ≤ 2l + 1 ≤ K(|M|) + 1

and hence i2m+1 − i2m ≤ K(|M|). (End proof of Theorem 4.3.)

4.2 A Normal Form for B3=2;k

By definition, languages in B3/2,k are finite unions of concatenations of languages, that are in
turn Boolean combinations of languages from B1/2,k. In case k = 0 we have B3/2,0 = L3/2 for
which the following normal form is known [Arf91]. Every language from L3/2 can be written as
a finite union of languages of the form A∗

0a1A
∗
0 · · · anA∗

n where n ≥ 0, ai ∈ A and Ai ⊆ A (see
Proposition 1.19). The natural way to carry this over to arbitrary k is to look at expressions
of the form (Σ0, α1,Σ1, . . . , αm,Σm)k with αi ∈ Ak+1 and Σi ⊆ Ak+1 (recall Definition 1.25).

4.2 A Normal Form for B3/2,k 97

Definition 4.8. Let k ≥ 0. The class B̃3/2,k is the class of all languages L ⊆ A+ that can be

written as a finite union of languages Li such that Li ⊆ A≤k or

Li = (Σ0, α1,Σ1, . . . , αm,Σm)k

where m ≥ 1, α1, . . . , αm ∈ Ak+1 and Σ0,Σ1, . . . ,Σm ⊆ Ak+1.

Note that we require here m ≥ 1 which is no restriction since (Σ0)k contains only words of
length ≥ k + 1 and hence (Σ0)k =

⋃
β∈Σ0(Σ0, β,Σ0)k (the latter is also true if Σ0 = ∅). We

show in this section that in fact B3/2,k = B̃3/2,k for all k ≥ 0, which gives for the special case
k = 0 another proof of the result from [Arf91].

Theorem 4.9. Let k ≥ 0. It holds that B3/2,k = B̃3/2,k.
The proof of this theorem is given in Subsection 4.2.3. While preparing this proof, we show
an even stronger result in the following subsection.

4.2.1 A Normal Form for B̃3=2;k

We show with the following theorem that we may assume in the expressions of the form
(Σ0, α1,Σ1, . . . , αm,Σm)k that every β ∈ Σi appears first as some αj with j ≤ i.

Theorem 4.10. Let k ≥ 0. Every L ∈ B̃3/2,k can be written as a finite union of languages

Li such that Li ⊆ A≤k or Li = (Σ0, α1,Σ1, . . . , αm,Σm)k where m ≥ 1, α1, . . . , αm ∈ Ak+1,
Σ0, . . . ,Σm ⊆ Ak+1 such that for 0 ≤ i ≤ m it holds that

Σi ⊆ {α1, . . . , αi} .

The proof of this theorem is immediate from the next lemma. Some more definitions are
needed. In order to distinguish between languages and their formal representation we use now
the term expression and mean the syntactical object (Σ0, α1,Σ1, . . . , αn,Σn)k that describes
a language. Let us formally describe what we mean with the notion of first occurrence.

Definition 4.11. For every β ∈ Ak+1 and every expression (Σ0, α1,Σ1, . . . , αn,Σn)k with
n ≥ 0, αi ∈ Ak+1 and Σi ⊆ Ak+1 we define the position of the first occurrence of β as

βmin (Σ0, α1,Σ1, . . . , αn,Σn)k =def min ({ 1 ≤ i ≤ n | β = αi } ∪ {n+ 1}) and
βMIN (Σ0, α1,Σ1, . . . , αn,Σn)k =def min ({ 0 ≤ i ≤ n | β ∈ Σi } ∪ {n+ 1}) .

Here βmin is the leftmost position of β as some αj in an expression, and βMIN is the index
of the leftmost set Σi in which β is contained. Next we look at two cardinalities. The first
measures the size of an expression and the other one gives the number of words from Ak+1

for which the property of first occurrence is violated, i.e., it measures the number of different
β ∈ Ak+1 that occur in an expression at first in some set Σi. We call this the number of
transpositions. These two cardinalities will be used in the proof of the following lemma by
two nested inductions.

98 4. Dot–Depth 3/2

Definition 4.12. We define the size of an expression and its number of transpositions as

size(Σ0, α1,Σ1, . . . , αn,Σn)k =def n+
∑
0≤i≤n

|Σi| and

Tr (Σ0, α1,Σ1, . . . , αn,Σn)k =def

∣∣∣{ β ∈ Ak+1 | βMIN (Σ0, . . . ,Σn)k < βmin (Σ0, . . . ,Σn)k

}∣∣∣ .
The following lemma says that we can always find equivalent expressions, i.e., expressions that
describe the same language, with zero transpositions. It applies in particular to the languages
from B̃3/2,k and if the number of transpositions is zero, then it holds that Σi ⊆ {α1, . . . , αi} .
So Lemma 4.13 proves Theorem 4.10.

Lemma 4.13. Let k ≥ 0. Every language given by an expression (Σ0, α1,Σ1, . . . , αm,Σm)k
with m ≥ 0 can be written as a finite union of languages, each of which represented by
expressions of the form (Γ0, γ1,Γ1, . . . , γn,Γn)k such that Tr (Γ0, γ1,Γ1, . . . , γn,Γn)k = 0 and
n ≥ m.

Proof. We show the lemma by induction on Tr (Σ0, α1,Σ1, . . . , αm,Σm)k. The induction base
is trivial. Now assume that we have shown the lemma for all languages given by expres-
sions (Θ0, θ1,Θ1, . . . , θp,Θp)k with Tr (Θ0, θ1,Θ1, . . . , θp,Θp)k ≤ l and we have to show the
following claim.

Claim. Every language given by an expression (Σ0, α1,Σ1, . . . , αm,Σm)k with
m ≥ 0 and Tr (Σ0, α1,Σ1, . . . , αm,Σm)k = l + 1 can be written as a finite union
of languages represented by expressions of the form (Γ0, γ1,Γ1, . . . , γn,Γn)k with
Tr (Γ0, γ1,Γ1, . . . , γn,Γn)k = 0 and n ≥ m.

We will prove this claim by a second induction on size(Σ0, α1,Σ1, . . . , αm,Σm)k. If it holds
that size(Σ0, α1,Σ1, . . . , αm,Σm)k = 0, then it must be that m = 0 and Σ0 = ∅. Thus
Tr (Σ0)k = 0, which proves the induction base of the second induction. Now assume that
claim has been shown for all languages given by expressions (Θ0, θ1,Θ1, . . . , θp,Θp)k with
Tr (Θ0, θ1,Θ1, . . . , θp,Θp)k = l + 1 and size(Θ0, θ1,Θ1, . . . , θp,Θp)k ≤ r.
Let E =def (Σ0, α1,Σ1, . . . , αm,Σm)k be an expression with Tr(E) = l + 1 and size(E) =

r + 1. Thus there exists some β ∈ Ak+1 and indices 0 ≤ i1 < i2 ≤ m + 1 with i1 = βMIN(E)
and i2 = βmin(E). We define the expressions

E1 =def (Σ0, α1,Σ1, . . . , αi1 ,Σi1 \ {β} , αi1+1,Σi1+1, . . . , αm,Σm)k and

E2 =def (Σ0, α1,Σ1, . . . , αi1 ,Σi1 \ {β} , β,Σi1 , αi1+1,Σi1+1, . . . , αm,Σm)k .

Since β ∈ Σi1 it is easy to see that the language given by E is just the union of the languages
given by E1 and E2. Moreover, the length (i.e., number of components) of E1 and E2 is
greater or equal to the length of E and size(E1) = r. The expression E1 was obtained from
E by removing β from Σi1 , thus we have β′

MIN(E) ≤ β′
MIN(E1) and β′

min(E) = β′
min(E1) for

all β′ ∈ Ak+1. It follows that Tr(E1) ≤ Tr(E) = l + 1. If Tr(E1) < l + 1 then the language
given by E1 can be written as a finite union of languages represented by expressions E

′ with
Tr(E′) = 0 by the first induction hypothesis. If Tr(E1) = l+1 then the language given by E1
can be written as a finite union of languages represented by expressions E′ with Tr(E′) = 0
by the second induction hypothesis (because size(E1) = r).
Now we want to show that we reduced the number of transpositions with the construction

of E2 and hence Tr(E2) < l+1. Let β′ ∈ Ak+1 \ {β}. It follows from the definition of E2 that

4.2 A Normal Form for B3/2,k 99

β′
MIN(E2) �= i1 + 1 because from β′ ∈ Σi1 also β′ ∈ Σi1 \ {β} would follow. Furthermore, we

have

β′
MIN(E) =

{
β′

MIN(E2) : if β′
MIN(E2) ≤ i1

β′
MIN(E2)− 1 : otherwise, i.e., if β′

MIN(E2) ≥ i1 + 2, and

β′
min(E) =

{
β′

min(E2) : if β′
min(E2) ≤ i1

β′
min(E2)− 1 : otherwise, i.e., if β′

min(E2) ≥ i1 + 2.

Therefore, for every β′ ∈ Ak+1 \ {β} it holds that
β′

MIN(E2) < β′
min(E2) =⇒ β′

MIN(E) < β′
min(E). (4.1)

Since i1 = βMIN(E), we obtain
βMIN(E2) ≥ βmin(E2). (4.2)

From (4.1), (4.2) and from βMIN(E) < βmin(E) it follows that Tr(E2) < Tr(E) = l+ 1. Hence
E2 can be represented as a finite union of expressions E

′ with Tr(E′) = 0 by the first induction
hypothesis. This completes our second induction and proves the claim. So the induction step
of the first induction is completed. ❑

4.2.2 Basic Properties of B̃3=2;k

We provide some auxiliary results concerning B̃3/2,k and start with closure properties.

Proposition 4.14. Let k ≥ 0. It holds that a−1L ∩ A+, La−1 ∩ A+ ∈ B̃3/2,k for a ∈ A and

L ∈ B̃3/2,k.

Proof. We show that a−1L ∩ A+ ∈ B̃3/2,k for L =def (Σ0, α1,Σ1, . . . , αm,Σm)k with m ≥ 1,
αi ∈ Ak+1 and Σi ⊆ Ak+1. The other case follows from the closure of B̃3/2,k under reversion,
which is easy to see from the definition. Note also that a−1D ∩ A+ ⊆ A≤k for D ⊆ A≤k. By
Theorem 4.10 we may assume without loss of generality that Σ0 = ∅ and that Σ1 ∈ {{α1}, ∅}.
Furthermore, we may also assume that L �= ∅. So α1 = aw for some a ∈ A and w ∈ Ak since
otherwise a−1L = ∅. We distinguish two cases.

Case 1. Assume that m = 1. If Σ1 = ∅ then L = (∅, aw, ∅)k and a−1L ∩ A+ = {w} ∩ A+.

If k = 0 then the latter set is empty and belongs to B̃3/2,k, otherwise {w} ⊆ A≤k and belongs

also to B̃3/2,k. Now suppose Σ1 = {aw}. If pk(aw) �= w then we may set Σ1 = ∅ without
changing the language. We have treated this before, so suppose pk(aw) = w. Then

a−1L ∩ A+ = a−1 (∅, aw, {aw})k ∩ A+ =
({w} ∪ ({aw})k) ∩ A+.

Note that ({aw})k contains only words of length ≥ k + 1 and we argue as before that we

have obtained a set in B̃3/2,k.
Case 2. Now let m ≥ 2. It must be that pk(α2) = w since otherwise L = ∅. If Σ1 = ∅ then

a−1L ∩ A+ = a−1 (∅, aw, ∅, α2,Σ2, . . . , αm,Σm)k ∩ A+

= (α2,Σ2, . . . , αm,Σm)k ∩ A+

= (∅, α2,Σ2, . . . , αm,Σm)k ∈ B̃3/2,k.

100 4. Dot–Depth 3/2

Finally, suppose Σ1 = {aw}. Again, if pk(aw) �= w then we may set Σ1 = ∅ without changing
the language. We have treated this before, so suppose pk(aw) = w and recall that pk(α2) = w.
Then

a−1L ∩ A+ = a−1 (∅, aw, {aw} , α2,Σ2, . . . , αm,Σm)k ∩ A+

= ({aw} , α2,Σ2, . . . , αm,Σm)k ∩ A+

= ({aw} , α2,Σ2, . . . , αm,Σm)k ∈ B̃3/2,k.

❑

We show next that B̃3/2,k is closed under polynomial closure. Recall that the polynomial
closure is exactly the closure under finite union and concatenation since concatenation dis-
tributes over finite unions.

Proposition 4.15. Let k ≥ 0. It holds that B̃3/2,k = Pol(B̃3/2,k).
Proof. We need to argue for the inclusion from right to left. It suffices show for any two
languages L1, L2 ∈ B̃3/2,k that L1 · L2 ∈ B̃3/2,k since B̃3/2,k is closed under finite union by
definition. For the same reason it remains to consider the following cases.
First, suppose L2 ⊆ A≤k. If also L1 ⊆ A≤k we consider (L1 ·L2)∩A≤k and (L1 ·L2)∩A≥k+1

separately. The former language is in B̃3/2,k and to see this for the latter, note that for any
word w ∈ A≥k+1 we have {w} = (∅, α1, ∅, α2, . . . ∅, αm, ∅)k if ŵ = (α1, α2, . . . , αm).
If L1 = (Σ0, α1,Σ1, . . . , αm,Σm)k with k ≥ 0, m ≥ 1, αi ∈ Ak+1 and Σi ⊆ Ak+1 we see

that L1 · a ∈ B̃3/2,k for some a ∈ A by

L1 · a =
⋃

β∈Ak·a
(Σ0, α1,Σ1, . . . , αm,Σm, β, ∅)k .

This covers also the case that L1 ⊆ A≤k and L2 has the form (Σ0, α1,Σ1, . . . , αm,Σm)k.
Finally, suppose L1 = (Σ0, α1,Σ1, . . . , αm,Σm)k and L2 = (Γ0, γ1,Γ1, . . . , γn,Γn)k with

k ≥ 0, m,n ≥ 1, αi, γi ∈ Ak+1 and Σi,Γi ⊆ Ak+1, and we want to show L1 · L2 ∈ B̃3/2,k. All
we have to do is to ensure that there are exactly k elements in the k-decomposition of any
word in L1 · L2 between the rightmost element from Σm (or αm) and the leftmost element
from Γ0 (or γ1). It holds that

L1 · L2 =
⋃

β1,...,βk∈Ak+1

(Σ0, α1,Σ1, . . . , αm,Σm, β1, ∅, β2, . . . , ∅, βk,Γ0, γ1,Γ1, . . . , γn,Γn)k

where we have a language from B̃3/2,k on the right hand side. ❑

We can also isolate each single αi in (Σ0, α1,Σ1, . . . , αm,Σm)k.

Lemma 4.16. Let k ≥ 0 and L = (Σ0, α1,Σ1, . . . , αm,Σm)k for m ≥ 1, αi ∈ Ak+1 and
Σi ⊆ Ak+1. For all 1 ≤ h ≤ m it holds that

L = (Σ0, α1,Σ1, . . . , αh−1,Σh−1)k pk(αh)
−1 · αh · sk(αh)

−1 (Σh, αh+1,Σh+1, . . . , αm,Σm)k.

4.2 A Normal Form for B3/2,k 101

Proof. For some fixed h with 1 ≤ h ≤ m we set L1 =def (Σ0, α1,Σ1, . . . , αh−1,Σh−1)k and
L2 =def (Σh, αh+1,Σh+1, . . . , αm,Σm)k. We argue first for the inclusion from left to right, so
let w ∈ L with w = a1 · · · al+k and ŵ = (β1, . . . , βl) for l ≥ 1, ai ∈ A and βi ∈ Ak+1. By
definition, there exist 0 = j0 < j1 < j2 < . . . < jm < jm+1 = l + 1 such that

(a) βji = αi for 1 ≤ i ≤ m and
(b) βj ∈ Σi for 0 ≤ i ≤ m and ji < j < ji+1.

With w1 =def a1a2 · · · ajh−1, w2 =def ajh+k+1ajh+k+2 · · · al+k and w′
1 =def w1 ·pk(αh), w

′
2 =def

sk(αh) · w2 we obtain
w′
1 = a1a2 · · · ajh−1 · ajhajh+1 · · · ajh+k−1 and

w′
2 = ajh+1ajh+2 · · · ajh+k · ajh+k+1ajh+k+2 · · · al+k.

Hence w = w1αhw2, ŵ
′
1 = (β1, . . . , βjh−1) and ŵ′

2 = (βjh+1, . . . , βl). It follows that w′
1 ∈ L1

and w′
2 ∈ L2. Thus we obtain w1 ∈ L1pk(αh)

−1 and w2 ∈ sk(αh)
−1L2. Therefore, we have

w ∈ L1pk(αh)
−1 · αh · sk(αh)

−1L2.
Conversely, let w ∈ L1pk(αh)

−1 ·αh · sk(αh)
−1L2, i.e., there exist words w1 ∈ L1pk(αh)

−1,
w2 ∈ sk(αh)

−1L2 such that w = w1αhw2. Observe that w1, w2 ∈ A+ since L1, L2 ⊆ A≥k+1.
For suitable a1, . . . , al+k ∈ A and βi ∈ Ak+1 we have w = a1 · · · al+k, ŵ = (β1, . . . , βl) and

βih = αh with ih =def |w1| + 1. Define w′
1, w

′
2 ∈ A+ such that ŵ′

1 = (β1, . . . , βih−1) and
ŵ′
2 = (βih+1, . . . , βl) and notice that such w′

1, w
′
2 exist. It follows that w′

1 = a1 · · · aih+k−1
and w′

2 = aih+1 · · · al+k, hence w′
1 = w1pk(αh) and w′

2 = sk(αh)w2. We obtain that w′
1 ∈

L1 = (Σ0, α1,Σ1, . . . , αh−1,Σh−1)k and w′
2 ∈ L2 = (Σh, αh+1,Σh+1, . . . , αm,Σm)k. Since

ŵ = (β1, . . . , βl), ŵ′
1 = (β1, . . . , βih−1) and ŵ′

2 = (βih+1, . . . , βl), we conclude w ∈ L =
(Σ0, α1,Σ1, . . . , αm,Σm)k. ❑

In general, we must not distribute concatenation over intersections. The situation changes if
the concatenation is at a certain position, namely where some factor β occurs the first time.

Lemma 4.17. Let k ≥ 0. Let C1, C2,D1,D2 ⊆ A∗ and β ∈ Ak+1. Furthermore, set v =def
pk(β) and w =def sk(β). If (C1 ∪D1) ⊆ (A∗ \ A∗βA∗) then it holds that

(C1 ∩D1) v
−1 · β · w−1 (C2 ∩D2) =

(
C1v

−1 · β · w−1C2
) ∩ (D1v

−1 · β · w−1D2

)
.

Proof. It suffices to show that(
C1v

−1 ∩D1v
−1) · β · (w−1C2 ∩ w−1D2

)
=
(
C1v

−1 · β · w−1C2
) ∩ (D1v

−1 · β · w−1D2

)
.

We argue first for the inclusion from right to left. So let u be an element of the right hand
side. Then there exist words c1 ∈ C1v

−1, c2 ∈ w−1C2, d1 ∈ D1v
−1 and d2 ∈ w−1D2 such

that u = c1 · β · c2 = d1 · β · d2. We want to show c1 = d1. Assume |c1 · β| < |d1 · β|. Because
c1 · β is a proper prefix of d1 · β there exists an l ≥ 1 and letters b1, . . . , bl ∈ A such that
d1 ·β = c1 ·β · b1 · · · bl. Since d1 ∈ D1v

−1 we have d1v = d1pk(β) = c1 ·β · b1 · · · bl−1 ∈ D1. This
is a contradiction, because D1 ⊆ (A∗ \ A∗βA∗) by assumption. We obtain |c1 · β| ≥ |d1 · β|,
and the same argument shows |c1 · β| ≤ |d1 · β|. Therefore, c1 = d1 and c2 = d2. It follows
that u ∈ (C1v−1 ∩D1v

−1) · β · (w−1C2 ∩w−1D2

)
.

Conversely, let u ∈ (C1v−1 ∩D1v
−1) · β · (w−1C2 ∩ w−1D2

)
. Then there exits some u1 ∈(

C1v
−1 ∩D1v

−1) and u2 ∈
(
w−1C2 ∩ w−1D2

)
such that u = u1 ·β ·u2. It follows that u1 ·β ·u2

is an element of
(
C1v

−1 · β · w−1C2
)
and also of

(
D1v

−1 · β · w−1D2

)
. ❑

102 4. Dot–Depth 3/2

4.2.3 Proof of Theorem 4.9

The crucial part in the proof of Theorem 4.9 is to show that B̃3/2,k is closed under intersection
with languages from coB1/2. This is stated in Lemma 4.20 below and we prepare the proof of
this lemma with the following two propositions. First, we turn certain languages from coB1/2
into finite unions of particular languages from B̃3/2,k. Note that here no k-prefix and k-suffix
is specified.

Proposition 4.18. Let k ≥ 0. Let L =
(
A+ \ (α1, . . . , αm)k

)
with m ≥ 1 and αi ∈ Ak+1. It

holds that

L =
⋃

1≤i≤m

(
Ak+1\{α1} , α1, Ak+1\{α2} , α2, . . . , Ak+1\{αi−1} , αi−1, Ak+1\{αi}

)
k
∪A≤k.

Proof. Let us first define for 1 ≤ i ≤ m the sets

Li =def

(
Ak+1\{α1} , α1, Ak+1\{α2} , α2, . . . , Ak+1\{αi−1} , αi−1, Ak+1\{αi}

)
k
.

The inclusion from right to left is easy to see. Just note that A≤k ⊆ L and that Li ⊆(
A+ \ (α1, . . . , αi)k

)
for 1 ≤ i ≤ m. Hence Li ⊆ L for 1 ≤ i ≤ m.

We turn to the inclusion from left to right. Let w ∈ L. If 1 ≤ |w| ≤ k then we are done.
Otherwise ŵ = (β1, . . . , βl) for suitable l ≥ 1 and βi ∈ Ak+1. Let n ≥ 1 be minimal such
that there do not exist indices 1 ≤ i1 < i2 < · · · < in ≤ l with βij = αj for 1 ≤ j ≤ n.
Notice that n ≤ m because otherwise w ∈ (α1, . . . , αm)k, a contradiction. For i0 =def 0 and
j = 1, . . . , n − 1 let ij =def min {h > ij−1 |βh = αj } and observe that those minima exist.
Thus for 1 ≤ j < n we have βij = αj and βh ∈ Ak+1 \ {αj} for ij−1 < h < ij . It follows from
the definition of n that βh ∈ Ak+1 \ {αn} for all in−1 < h ≤ l. Therefore, w ∈ Ln. ❑

With this representation at hand we show the following.

Proposition 4.19. Let k ≥ 0. It holds that L ∩ L′ ∈ B̃3/2,k for languages L ∈ B̃3/2,k and

L′ =
(
A+ \ (α1, . . . , αm)k

)
with m ≥ 1 and αi ∈ Ak+1.

Proof. Note that
(
A+\(α1, . . . , αm

)
k

)∩D = D for every D ⊆ A≤k. Thus by Proposition 4.18
and distributive laws it suffices to prove the following claim.

Claim. Let C = (Γ0, γ1,Γ1, . . . , γn,Γn)k with n ≥ 1, γi ∈ Ak+1 and Γi ⊆ Ak+1. Let
D =

(
Ak+1\{α1} , α1, Ak+1\{α2} , α2, . . . , Ak+1\{αm−1} , αm−1, Ak+1\{αm}

)
k

with m ≥ 1 and αi ∈ Ak+1. Then C ∩D ∈ B̃3/2,k.
The proof is by induction on m.
Induction base. For m = 1 we have D =

(
Ak+1 \ {α1}

)
k
. By Theorem 4.10 and distributive

laws, we may assume without loss of generality that Γi ⊆ {γ1, . . . , γi} for 0 ≤ i ≤ n. So if
α1 /∈ {γ1, . . . , γn} then C ∩D = C ∈ B̃3/2,k and otherwise C ∩D = ∅ ∈ B̃3/2,k.
Induction step. Suppose the claim holds for some m ≥ 1 and we want to show it for m+1.
Again by Theorem 4.10 and distributive laws, we may assume Γi ⊆ {γ1, . . . , γi} for 0 ≤ i ≤ n.
If α1 /∈ {γ1, . . . , γn} we have C ⊆

(
Ak+1 \ {α1}

)
k
and C∩D = ∅. Note that α1 appears in the

k-decomposition of every word in D. Otherwise, let j =def min { i | γi = α1 }. By Lemma 4.16
we obtain with β =def α1, v =def pk(α1) and w =def sk(α1) that

4.2 A Normal Form for B3/2,k 103

C =

C1=def︷ ︸︸ ︷
(Γ0, γ1,Γ1, . . . , γj−1,Γj−1)k v

−1 · β · w−1
C2=def︷ ︸︸ ︷

(Γj, γj+1,Γj+1, . . . , γn,Γn)k and

D =
(
Ak+1\{α1}

)
k︸ ︷︷ ︸

D1=def

v−1 · β · w−1
(
Ak+1\{α2} , α2, . . . , Ak+1\{αm} , αm, Ak+1\{αm+1}

)
k︸ ︷︷ ︸

D2=def

.

Since Γi ⊆ {γ1, . . . , γi} for 0 ≤ i ≤ n it follows from the definition of j that C1 ⊆ (A∗\A∗βA∗)
and it also holds that D1 ⊆ (A∗ \ A∗βA∗). Thus we can apply Lemma 4.17 and obtain

C ∩D = (C1 ∩D1) v
−1 · β · w−1 (C2 ∩D2) .

Observe that C1 ∩ D1 = C1 ∈ B̃3/2,k (if j = 1 then C1 = (∅)k = ∅ ∈ B̃3/2,k). We
see with the hypothesis that C2 ∩ D2 ∈ B̃3/2,k (if j = n then C2 =

⋃
γ∈Γn

(Γn, γ,Γn)k).

Because C1, C2,D1,D2 ⊆ A≥k+1 and |v| = |w| = k it follows from Proposition 4.14
that (C1 ∩D1) v

−1 ∈ B̃3/2,k and w−1 (C2 ∩D2) ∈ B̃3/2,k. Note with Proposition 4.15 that
B̃3/2,k is closed under concatenation and that {β} = (∅, β, ∅)k ∈ B̃3/2,k. We conclude that
C ∩D ∈ B̃3/2,k which proves the claim. ❑

Lemma 4.20. Let k ≥ 0. It holds that L ∩ L′ ∈ B̃3/2,k for L ∈ B̃3/2,k and L′ ∈ coB1/2,k.
Proof. By definition, languages from coB1/2,k are finite intersections of languages Li such that

Li = A+ \D for some D ⊆ A≤k or Li =
(
A+ \ (w|α1, . . . , αm|v)k

)
where m ≥ 1, αi ∈ Ak+1

and w, v ∈ Ak. It is easy to see that B̃3/2,k is closed under intersection with languages of the
form A+ \D, so it remains to treat the other case. Let L′ =def

(
A+ \ (w|α1, . . . , αm|v)k

)
be

a language as above. By definition we have (w|α1, . . . , αm|v)k = (α1, . . . , αm)k ∩ wA∗ ∩ A∗v
and it holds that A≤k ⊆ (A+ \ (α1, . . . , αm)k

)
. So we obtain

L′ =
(
A+ \ (α1, . . . , αm)k

) ∪ ((A+ \ wA∗) ∩A≥k+1) ∪ ((A+ \ A∗v) ∩ A≥k+1).
By Proposition 4.19 it remains to show that B̃3/2,k is closed under intersection with languages(

(A+ \ wA∗) ∩ A≥k+1) =
⋃

β∈Ak+1\wA

(∅, β,Ak+1
)
k
and

(
(A+ \A∗v) ∩ A≥k+1) =

⋃
β∈Ak+1\Av

(
Ak+1, β, ∅)

k
.

It suffices to show for C =def (Γ0, γ1,Γ1, . . . , γn,Γn)k with n ≥ 1, γi ∈ Ak+1 and Γi ⊆ Ak+1,
and D =def (∅, β,Ak+1)k with β ∈ Ak+1 that C ∩D ∈ B̃3/2,k. The same arguments can also
be applied to languages (Ak+1, β, ∅)k . We obtain

C ∩D =

(∅, β,Γ0, γ1,Γ1, . . . , γn,Γn)k ∪ (∅, γ1,Γ1, . . . , γn,Γn)k : if β ∈ Γ0 ∧ γ1 = β

(∅, β,Γ0, γ1,Γ1, . . . , γn,Γn)k : if β ∈ Γ0 ∧ γ1 �= β
(∅, γ1,Γ1, . . . , γn,Γn)k : if β /∈ Γ0 ∧ γ1 = β

∅ : if β /∈ Γ0 ∧ γ1 �= β.

This shows C ∩D ∈ B̃3/2,k. ❑

104 4. Dot–Depth 3/2

Proof of Theorem 4.9. We want to show now that B3/2,k = B̃3/2,k for k ≥ 0. For the

inclusion from right to left note that B3/2,k is closed under finite union and that any D ⊆ A≤k

is in B1/2,k ⊆ B3/2,k. So it remains to show for languages (Σ0, α1,Σ1, . . . , αm,Σm)k with

m ≥ 1, αi ∈ Ak+1 and Σi ⊆ Ak+1 that they belong to B3/2,k. We do this a little more general
for L =def (Γ0, γ1,Γ1, . . . , γn,Γn)k with γi ∈ Ak+1 and Γi ⊆ Ak+1, where we allow n ≥ 0. The
proof is by induction on n.
For n = 0 we have

(Γ0)k =
⋂

α∈Ak+1\Γ0
w,v∈Ak

(
A+ \ (w| α |v)k

) ∩ (A+ \A≤k)

which shows that (Γ0)k ∈ coB1/2 ⊆ B3/2,k. For the induction step we suppose that L =
(Γ0, γ1,Γ1, . . . , γn+1,Γn+1)k which we can write by Lemma 4.16 as

L = (Γ0)k︸ ︷︷ ︸
L1=def

pk(γ1)
−1 · γ1 · sk(γ1)

−1 (Γ1, γ2,Γ2, . . . , γn+1,Γn+1)k︸ ︷︷ ︸
L2=def

.

By hypothesis, we have L1, L2 ∈ B3/2,k. Since L1, L2 ⊆ A≥k+1 we obtain from Lemma 2.14
that also L1pk(γ1)

−1, sk(γ1)−1L2 ∈ B3/2,k. With the observation that {γ1} ∈ B1,k we finally
get L ∈ B3/2,k.
We turn to the more difficult inclusion B3/2,k ⊆ B̃3/2,k and argue first that B1/2,k ⊆ B̃3/2,k.

It suffices to show that L ∈ B̃3/2,k for L =def (w|α1, . . . , αn|v)k with n ≥ 1, w, v ∈ Ak and

αi ∈ Ak+1. By definition of B̃3/2,k we know that L′ =def
(
Ak+1, α1, A

k+1, . . . , αn, A
k+1
)
k
∈

B̃3/2,k. Let L′
1 =def w

(
w−1L′) and observe that L′

1 = L′∩wA∗. Since |w| = k and L′ ⊆ A≥k+1

we can apply Proposition 4.14 and obtain w−1L′ ∈ B̃3/2,k. Because {w} ∈ B̃3/2,k and B̃3/2,k
is closed under concatenation by Proposition 4.15 we have that L′

1 ∈ B̃3/2,k. It follows that
L′
1 ⊆ A≥k+1 and we can do the same thing for the k-suffix v. Therefore, let L′

2 =def
(
L′
1v

−1) v
for which the same arguments show that L′

2 = L′
1 ∩ A∗v and L′

2 ∈ B̃3/2,k. We conclude that
L = wA∗ ∩ A∗v ∩ L′ = L′

2 ∈ B̃3/2,k which shows B1/2,k ⊆ B̃3/2,k.
Now we show that B1,k ⊆ B̃3/2,k. Recall from Lemma 2.14 that B1/2,k and coB1/2,k are

closed under intersection. So any language from B1,k can be written as a finite union of
languages C, D or C ∩ D with C ∈ B1/2,k and D ∈ coB1/2,k. It follows from Lemma 4.20

that in particular coB1/2,k ⊆ B̃3/2,k, so with the same lemma we see that C, D and C ∩ D

belong to B̃3/2,k. Hence, B1,k ⊆ B̃3/2,k. Together with Proposition 4.15 we finally obtain
B3/2,k = Pol(B1,k) ⊆ Pol(B̃3/2,k) = B̃3/2,k. (End proof of Theorem 4.9.)

4.3 Forbidden Pattern Characterization of B3=2;k

Let us look again at the definition of the pattern L 3/2 characterizing L3/2 (see Definition 4.1).
It is defined as the subgraph in Figure 4.2 with the condition that α(vwv) ⊆ α(vv). We
generalize this condition to k-decompositions and make the following definition.

Definition 4.21. Let k ≥ 0. Pattern B 3/2,k is defined as the subgraph given in Figure 4.2
with x, z ∈ A∗, w ∈ A+, v ∈ A≥k+1 and α(v̂wv) ⊆ α(v̂v).

4.3 Forbidden Pattern Characterization of B3/2,k 105

zz

x ws1 s2s0

vv

+ −
Fig. 4.2. Pattern B3/2,k

with α(dvwv) ⊆ α(cvv).

Recall that α(x̂) is the set of factors of length k + 1 in the k-decomposition of x ∈ A≥k+1.
So in case k = 0 we encounter pattern L 3/2 and no new argument is needed to see that also
FP(B 3/2,k) is well–defined. We prove in this section the following theorem, which gives in the
special case k = 0 another proof of Theorem 4.2.

Theorem 4.22. Let k ≥ 0. It holds that B3/2,k = FP(B 3/2,k).
The two inclusions are given in Lemma 4.24 in Subsection 4.3.1 and Lemma 4.28 in Subsec-
tion 4.3.2. We discuss consequences of Theorem 4.22 in Subsection 4.3.3.

4.3.1 The Easy Inclusion

If a language L = (Σ0, α1,Σ1, . . . , αm,Σm)k is given, then there is some n such that we can
insert w with α(v̂wv) ⊆ α(v̂v) into xvnz ∈ L and still have a word in L. This can be seen by
the following argument. If n is large enough then there must be some Σi such that α(v̂v) ⊆ Σi.
It follows from α(v̂wv) ⊆ α(v̂v) that we do not leave Σi if w is inserted.

Lemma 4.23. Let k ≥ 0 and let L = (Σ0, α1,Σ1, . . . , αm,Σm)k with m ≥ 1, αi ∈ Ak+1 and
Σi ⊆ Ak+1. Moreover, let n ≥ 4m + 3. Then for all x, z ∈ A∗, w ∈ A+ and v ∈ A≥k+1 with
α(v̂wv) ⊆ α(v̂v) there exists some p with 1 ≤ p < n such that

xvnz ∈ L =⇒ xvpwvn−pz ∈ L.

Proof. Let xvnz ∈ L and choose suitable l ≥ 1, a1, . . . , al+k ∈ A and βi ∈ Ak+1 such that
xvnz = a1 · · · al+k and x̂vnz = (β1, . . . , βl). By definition of L there exist 0 = j0 < j1 < j2 <
. . . < jm < jm+1 = l + 1 such that

(a) βji = αi for 1 ≤ i ≤ m and
(b) βj ∈ Σi for 0 ≤ i ≤ m and ji < j < ji+1.

We denote the position in xvnz where the i-th v starts by qi, i.e., for 1 ≤ i ≤ n we set
qi =def 1 + |x| + (i − 1)|v|. Since |v| ≥ k + 1 we obtain n different positions such that
1 ≤ q1 < q2 < · · · < qn ≤ l and qi − qi−1 = |v| for 2 ≤ i ≤ n. By assumption we have
that n ≥ 4m + 3, so at least 3(m + 1) of the positions qi are different from j1, . . . , jm. By
the pigeon hole principle there exist h, p with 0 ≤ h ≤ m and 1 ≤ p ≤ n − 2 such that
jh < qp < qp+1 < qp+2 < jh+1. We fix these positions and set λ =def qm, µ =def qm+1 and
ν =def qm+2. Since aλaλ+1 · · · aµ−1 = aµaµ+1 · · · aν−1 = v and |v| ≥ k + 1 we have

α(v̂v) ⊆ Σh. (4.3)

106 4. Dot–Depth 3/2

Now we look at u =def xv
pwvn−pz and choose suitable b1, . . . , bl+k+|w| ∈ A, γi ∈ Ak+1 such

that u = b1 · · · bl+k+|w| and û =
(
γ1, . . . , γl+|w|

)
. Observe that

ai =

{
bi : if 1 ≤ i ≤ µ− 1,

bi+|w| : if µ ≤ i ≤ l + k

and

βj =

{
γj : if 1 ≤ j ≤ µ− k − 1,

γj+|w| : if µ ≤ j ≤ l.
(4.4)

Let li =def ji for 0 ≤ i ≤ h and li =def ji + |w| for h < i ≤ m+1. Since jh < λ and jh+1 > µ,
we have lh ≤ µ− k − 1 and lh+1 ≥ µ+ |w|. From (4.4) it follows that γj = βj for 1 ≤ j ≤ lh
and γj = βj−|w| for lh+1 ≤ j ≤ l + |w|. Thus we have γli = γji = βji for 1 ≤ i ≤ h and
γli = γji+|w| = βji for h < i ≤ m. Therefore, we obtain

γli = αi for i with 1 ≤ i ≤ m, (4.5)

γj = βj ∈ Σi for i, j with 0 ≤ i < h and li = ji < j < ji+1 = li+1 and

γj = βj−|w| ∈ Σi for i, j with h < i ≤ m and li = ji + |w| < j < ji+1 + |w| = li+1.

To see that u ∈ L = (Σ0, α1,Σ1, . . . , αm,Σm)k it remains to show γj ∈ Σh for lh < j < lh+1.
This is clear for lh < j < µ − k and for all µ + |w| ≤ j < lh+1 due to (4.4). So we have to
show γj ∈ Σh for µ− k ≤ j < µ+ |w|. Observe that

bµ−kbµ−k+1bµ−k+2 · · · bµ+|w|+k−1 = sk(v) · w · pk(v).
So for µ− k ≤ j < µ+ |w| we have γj ∈ α(v̂wv) ⊆ α(v̂v) ⊆ Σh by (4.3). This shows

γj ∈ Σh for lh < j < lh+1. (4.6)

We summarize (4.5) and (4.6) as

(a) γli = αi for 1 ≤ i ≤ m and
(b) γj ∈ Σi for 0 ≤ i ≤ m and li < j < li+1

which shows u ∈ L. ❑

We immediately see that the insertion stated in Lemma 4.23 contradicts the occurrence of
pattern B 3/2,k.

Lemma 4.24. Let k ≥ 0. It holds that B3/2,k ⊆ FP(B 3/2,k).
Proof. Let L ∈ B3/2,k and letM be some DFA accepting L. By Theorem 4.9 we can write L
as

L =

m⋃
i=1

(Σi,0, αi,1,Σi,1, . . . , αi,mi ,Σi,mi)k ∪ D

for some m ≥ 0, mi ≥ 1, αi,j ∈ Ak+1, Σi,j ⊆ Ak+1 and D ⊆ A≤k. Assume to the contrary
that M has pattern B 3/2,k witnessed by x, z ∈ A∗, w ∈ A+ and v ∈ A≥k+1 such that
α(v̂wv) ⊆ α(v̂v). Then xviz ∈ L and xviwvjz /∈ L for all i, j ≥ 0. In particular, xvnz ∈ L
with n =def max { 4mi + 3 | 1 ≤ i ≤ m }∪ {k + 1}. Hence |xvnz| ≥ k+1 and there exists an l
with xvnz ∈ (Σl,0, αl,1,Σl,1, . . . , αl,ml

,Σl,ml
)k. Since n ≥ 4ml+3 we can apply Lemma 4.23 and

we obtain xvpwvn−pz ∈ (Σl,0, αl,1,Σl,1, . . . , αl,ml
,Σl,ml

)k ⊆ L for a suitable p with 1 ≤ p < n.
This is a contradiction to the occurrence of pattern B 3/2,k inM since the state we reach after
input xvpwvn−pz is rejecting. We conclude thatM does not have pattern B 3/2,k. ❑

4.3 Forbidden Pattern Characterization of B3/2,k 107

4.3.2 The More Complicated Inclusion

We turn to the inclusion FP(B 3/2,k) ⊆ B3/2,k which is more difficult to handle than the
reverse inclusion. The reason is that we can only use the fact that some DFA M does not
have a certain structure. We apply this argument to all words x ∈ L(M) and derive for each
such x a subset of L(M) that can be described by expressions of bounded size. Due to this
bound we then conclude that L(M) itself can be described by a finite number of expressions.
We consider for k ≥ 0 expressions E of the form

w0 ·
(
v1|Σ1|v′1

)
k
· w1 · · ·

(
vn|Σn|v′n

)
k
· wn

where n ≥ 0, wi ∈ A+, vj , v
′
j ∈ Ak and Σj ⊆ Ak+1 for 0 ≤ i ≤ n and 1 ≤ j ≤ n. In order not

to overload notations, we identify each such expression E with the language described by E
(recall Definitions 1.25 and 1.26). So at the same time we will make statements like ‘x ∈ E’
and also talk about the size of E as a syntactical object. For fixed k ≥ 0 we denote the set
of all such expressions by Ek. Observe also that if we start with an expression E ∈ Ek and we
replace a factor of some wi by an expression E′ ∈ Ek, then the resulting expression is again
in Ek (even if we replace wi completely by E′).

Definition 4.25. Let k ≥ 0. For E ∈ Ek with E = w0 · (v1|Σ1|v′1)k · w1 · · · (vn|Σn|v′n)k · wn

we define the size of E as
‖E‖ =def |w0w1 · · ·wn|.

Since the wi are non–empty words, there exist for fixed k ≥ 0 only a finite number of
expressions in Ek having the same size. We define a function that helps to analyze the size
of expressions in the following lemma. The variables a,m and n will be associated with the
size of the alphabet A, the size of the automatonM and the cardinality of α(ŵ) for a given
word w, respectively.

Definition 4.26.

S(k, a,m, n) =def

k : if n = 0

2mm + k + 1 : if n = 1
3K(m) · (5mmak + 1) · S(k, a,m, n − 1) : otherwise

Recall that K(m) = (m+1)(m+1)(m+1)
is defined at the beginning of Section 4.1 where it was

used to find automata loops in words. The following main lemma states, under the assumption
that a DFAM does not have pattern B 3/2,k, that for any word x we can find an expression
Ex of bounded size such that x ∈ Ex and if x ∈ L(F) then Ex ⊆ L(M). We consider also
prefixes x′ and suffixes x′′ in order to allow an inductive proof.

Lemma 4.27. Let k ≥ 0. Let M be a DFA which does not have pattern B 3/2,k. For every
x ∈ A+ there exists an expression Ex ∈ Ek with x ∈ Ex and ‖Ex‖ ≤ S(k, |A|, |M|, |α(x̂)|)
such that for all x′, x′′ ∈ A∗ it holds that

x′xx′′ ∈ L(M) =⇒ x′Exx
′′ ⊆ L(M).

108 4. Dot–Depth 3/2

Proof. LetM = (A,S, δ, s0, S
′) be a DFA which does not have pattern B 3/2,k. For this proof

we extend the definition of α(x̂) to words x ∈ A≤k and set α(x̂) =def ∅ for such x. The proof
is by induction on N =def |α(x̂)| with 0 ≤ N ≤ |A|k+1. For the induction base we consider
the cases N = 0 and N = 1.
Induction base. For N = 0 we set Ex =def x and we are done. Now let x ∈ A+ with
N = |α(x̂)| = 1. If |x| ≤ S(k, |A|, |M|, 1) we set again Ex =def x and we are done. Otherwise,
we have |x| > 2|M||M|+k+1. Since |x| ≥ k+2 we obtain by comparing letters that x = a|x|

for some a ∈ A. We consider the mappings δa
i
induced by prefixes ai of x. There exist i, j

with 1 ≤ i < j ≤ |M||M| + 1 such that δai = δa
j
. So for all m ≥ 0 it holds that

δa
i
= δa

i+m(j−i)
. (4.7)

We choose some l with 1 ≤ l ≤ j − i such that |x| − i − l ≡ 0 mod (j − i). From (4.7) we
obtain

δa
i+l
= δx. (4.8)

Now define
Ex =def a

i · (ak| {ak+1} |ak)
k
· al

and observe that 1 ≤ i, l ≤ |M||M|. Because |x| > 2|M||M|+k+1 we have |x|− i− l ≥ k+1.
So it follows that x ∈ Ex. Moreover, it holds that Ex ∈ Ek and ‖Ex‖ = i + l ≤ 2|M||M| ≤
S(k, |A|, |M|, 1).
Let x′, x′′ ∈ A∗ be given such that x′xx′′ ∈ L(M). Furthermore, set s1 =def δ(s0, x

′ai).
Then by (4.7) we have δ(s1, a

m(j−i)) = s1 for all m ≥ 0. Assume that there exists some
h ≥ k + 1 such that δ(s1, a

halx′′) /∈ L(M). Let s2 =def δ(s1, a
h) and define x̃ =def x′ai,

ṽ =def a
(k+1)(j−i), w̃ =def a

h and z̃ =def a
lx′′.

Then α(̂̃vw̃ṽ) ⊆ α(̂̃vṽ) since only the letter a occurs, and |ṽ| = (j − i)(k + 1) ≥ k + 1.
Because s1 has a ṽ-loop and ṽ is a sequence of a’s, we do not leave this loop with the word
ah, and we obtain that s2 also has a ṽ-loop. Furthermore, we have δ(s0, x̃) = s1, δ(s1, z̃) ∈ S′

by (4.8) and δ(s2, z̃) /∈ S′ by assumption. This shows that we found pattern B 3/2,k in M,

witnessed by x̃, z̃ ∈ A∗, w̃ ∈ A+ and ṽ ∈ A≥k+1 with α(̂̃vw̃ṽ) ⊆ α(̂̃vṽ), a contradiction.
So we have for all h ≥ k + 1 that δ(s0, x

′aiahalx′′) = δ(s1, a
halx′′) ∈ L(M). In particular,

x′Exx
′′ ⊆ L(M) which shows the induction base.

Induction step. We state the induction hypothesis.

For all x ∈ A+ with 0 ≤ |α(x̂)| ≤ N < |A|k+1 there exists some Ex ∈ Ek with
x ∈ Ex and ‖Ex‖ ≤ S(k, |A|, |M|, |α(x̂)|) such that for all x′, x′′ ∈ A∗ it holds that

x′xx′′ ∈ L(M) =⇒ x′Exx
′′ ⊆ L(M).

Let x ∈ A+ be given with α(x̂) = N + 1 and N ≥ 1. We start with a decomposition of x
into so–called ‘sectors’, i.e., we decompose x into factors si such that |α(ŝi)| ≤ N (actually
we will have |α(ŝi)| = N for all sectors except for the last one). This is done in the following
way: we start with x and determine the longest prefix s1 of x such that |α(ŝ1)| ≤ N . Now
we start over with s−11 x, determine the longest prefix s2 of s

−1
1 x such that |α(ŝ2)| ≤ N and

proceed with (s1s2)
−1x. If we continue this procedure, we obtain a factorization of x into

sectors s1, s2, . . . , sl for some l ≥ 2 such that

4.3 Forbidden Pattern Characterization of B3/2,k 109

1. x = s1s2 · · · sl with |si| ≥ k + 1 for 1 ≤ i < l (since |α(ŝi)| = N ≥ 1 for 1 ≤ i < l),
2. α(ŝi) � α(x̂) for 1 ≤ i ≤ l and
3. α(ŝisi+1) = α(x̂) for 1 ≤ i < l (since we have chosen maximal prefixes si).

Before we continue, we give an outline of the further argumentation. Sectors do not have to
be factors of x for which we know how to bound their length, and we can also not state a
particular bound on the number of sectors. The main task of the induction step is to replace
the unbounded number of consecutive sectors by a bounded number of terms of the form
(v|Σ|v′)k in a way such that (i) we do not leave L(M) if we started with x ∈ L(M) and (ii)
we obtain an expression where only a bounded number of sectors and of terms of the form
(v|Σ|v′)k are left. The induction hypothesis then provides expressions of bounded size for
the remaining sectors. Note that the closure under concatenation of the class in question is
necessary for this approach. Together, we obtain an expression of bounded size containing x
and being a subset of L(M) which will prove the lemma. We distinguish the two cases when
the number l of sectors is already reasonable small, and when it is not.

Case 1. Assume for the number of sectors l that l ≤ 3K(|M|) · (5|M||M| · |A|k + 1). Then
there is not much to do since l is reasonable small and |α(ŝi)| ≤ N for 1 ≤ i ≤ l. Thus,
by induction hypothesis, we find for 1 ≤ i ≤ l expressions Esi ∈ Ek such that si ∈ Esi ,
‖Esi‖ ≤ S(k, |A|, |F |, N) and

s′iEsis
′′
i ⊆ L(M) for all s′i, s

′′
i ∈ A∗ with s′isis

′′
i ∈ L(M). (4.9)

We define Ex =def Es1 ·Es2 · · ·Esl . It follows that x ∈ Ex and ‖Ex‖ ≤ S(k, |A|, |M|, N + 1).
Now let x′, x′′ ∈ A∗ such that x′xx′′ ∈ L(M). We need to show that x′Exx

′′ ⊆ L(M).
Let y ∈ Ex. Then for 1 ≤ i ≤ l there exist yi ∈ Esi such that y = y1y2 · · · yl. Starting with
x′xx′′ = x′s1s2 · · · slx′′ ∈ L(M) we will step by step replace the sectors si by yi without
leaving L(M). For the first step we define s′l =def x′s1 · · · sl−1 and s′′l =def x′′. So we have
x′xx′′ = s′lsls

′′
l ∈ L(M). From (4.9) it follows that s′lEsls

′′
l ⊆ L(M) and s′lyls

′′
l ∈ L(M).

This shows x′s1 · · · sl−1ylx′′ ∈ L(M). For the second step let s′l−1 =def x′s1 · · · sl−2 and
s′′l−1 =def ylx

′′. So we have s′l−1sl−1s
′′
l−1 ∈ L(M) by the previous step, and again from (4.9)

it follows that s′l−1yl−1s
′′
l−1 ∈ L(M). This shows x′s1 · · · sl−2yl−1ylx′′ ∈ L(M). If we continue

this procedure we finally obtain x′y1 · · · ylx′′ = x′yx′′ ∈ L(M). Hence x′Exx
′′ ⊆ L(M).

Case 2. Suppose for the number of sectors l that l > 3K(|M|) · (5|M||M| · |A|k+1). Define
vi =def s2i−1s2i for 1 ≤ i ≤ +l/2, − 1 and v�l/2� =def s2�l/2�−1 · · · sl. Note that if l is odd,
then v�l/2� contains three sectors. So x = v1v2 · · · v�l/2� and every vi contains at least two and
at most three sectors with the effect that α(v̂i) = α(x̂). Now we apply Theorem 4.3 to the
list of words v1, v2, . . . , v�l/2� and obtain a new list of words x′

0, x1, x
′
1, x2, x

′
2, . . . , xm, x′

m with
m ≥ 1 (since l > 3K(|M|)) such that x = x′

0x1x
′
1x2x

′
2 · · · xmx′

m and the following fact holds.

Fact 1.

1. Every xi (and also every x′
i) is a concatenation of at least one and at most

K(|M|) words vj . Thus it contains at least two and at most 3K(|M|) sectors.
2. For every xi it holds that δ

xixi = δxi .

Next we assign for 1 ≤ i ≤ m to each xi a tag representing the mapping δi =def δ
x′0x1x

′
1···xi

and also sk(xi), the k-suffix of xi. Note that there are at most |M||M| · |A|k different tags.
Now the task is to find maximal factors between some xi and xj having the same tags. We

110 4. Dot–Depth 3/2

call such a maximal factor a ‘region’ and we argue below, how the number of regions can be
bounded.
Let us start with an algorithm that describes how to determine regions. First we choose

some j1, j
′
1 with 1 ≤ j1 < j′1 ≤ m such that xj1 , xj′1 have the same tag and j′1− j1 is maximal.

With (j1, j
′
1) we have found the first region and we mark for j1 ≤ i ≤ j′1 all xi as already

used, i.e., we mark all xi within this region. We call xj1 (xj′1) the left border (right border,
respectively) and the word x′

j1
xj1+1x

′
j1+1

· · · xj′1−1x′
j′1−1 the content of the region (j1, j

′
1). In a

second step, we choose j2, j
′
2 with 1 ≤ j2 < j′2 ≤ m such that none of the xj2 , xj2+1, . . . , xj′2 is

marked, xj2 and xj′2 have the same tag and j′2−j2 is maximal. With (j2, j
′
2) we have found the

second region (with left border xj2 , right border xj′2 and content x
′
j2
xj2+1x

′
j2+1

· · · xj′2−1x′
j′2−1).

Again we mark all xi for j2 ≤ i ≤ j′2 as already used. Analogously, we proceed in the following
steps, until no more pairs of indices can be found that fulfill the selection condition. We obtain
non–intersecting regions (j1, j

′
1), (j2, j

′
2), . . . , (jn, j

′
n).

If we denote the left (right) borders of a region by ri (r
′
i, respectively), the content of a

region by bi and the gaps between consecutive regions by b′i, we can write x as

x = b′0 r1b1r
′
1 b′1 r2b2r

′
2 b′2 · · · rnbnr

′
n b′n.

We treat the content bi of a region below and show that we can give a short representation.
Before we do so, we want to establish a bound on the number of sectors that do not belong
to the content of some region (see statement 5 of the following fact). In order to keep the
argumentation transparent we also give some auxiliary statements.

Fact 2.

1. There do not exist two different regions (i, i′) and (j, j′) that both have the
same tags attached to their borders.

2. There do not exist i < j such that xi, xj are not marked and both have the
same tags attached.

3. The number of the xi that are not marked and the number n of regions is
bounded by |M||M| · |A|k.

4. The total number of sectors which lie in some gap b′i is bounded by 3K(|M|) ·
(3|M||M| · |A|k + 1).

5. The total number of sectors which lie in some ri, r
′
i or b

′
i is bounded by 3K(|M|)·

(5|M||M| · |A|k + 1) .
6. For every ri it holds that δ

riri = δri . The same holds for every r′i.

Proof of Fact 2. We begin to argue for the first statement of Fact 2. Suppose there exist
regions (i, i′) and (j, j′) such that i < i′ < j < j′ and xi, xi′ , xj , xj′ have the same tags. If
there is no other region between (i, i′) and (j, j′), we should have chosen (i, j′) instead of
(i, i′) and (j, j′) in order to maximize the size of the region. On the other hand, if there exist
a region (̃i, ĩ′) between (i, i′) and (j, j′), we should have chosen (i, j′) instead of (̃i, ĩ′), again
in order to maximize the size of the region. So in both cases we obtain a contradiction. This
shows the first statement, and the second can be seen analogously. The third statement is an
easy consequence of the first and second statement.
We turn to statement 4. Each b′i has the form x′

jxj+1x
′
j+1 · · · xj′x′

j′ for j ≤ j′ by the
construction of regions. The number of last factors x′

j′ can be bounded by the total number

4.3 Forbidden Pattern Characterization of B3/2,k 111

of gaps b′i which is by statement 3 less then or equal to |M||M| · |A|k+1. Also by statement 3
there are at most |M||M| · |A|k factors xi in x that are not marked. This bounds also the
number of factors x′

i before some unmarked xi+1 in x. Together, it follows that the total
number of all xi and x′

i that lie in some gap is bounded by

2 ·
(
|M||M| · |A|k

)
+
(
|M||M| · |A|k + 1

)
= 3 · |M||M| · |A|k + 1.

By statement 1 of Fact 1, every xi (and x′
i) contains at most 3K(|M|) sectors, which in turn

gives statement 4.
By the definition of regions, every ri (and r′i) consists of exactly one xi. So from statement 1

of Fact 1 and statement 3 of Fact 2 we obtain that the number of sectors that lie in some ri
or r′i is bounded by

3K(|M|) · 2 · |M||M| · |A|k.
If we add this number to the quantity given in statement 4 we obtain what is required for
statement 5. From statement 2 of Fact 1 we obtain statement 6. (End proof of Fact 2.)

As an intermediate step we define an expression E′
x for words x that satisfy the above

fact, where we replace each bi by (pk(bi)|α(x̂)|sk(bi))k.

E′
x =def b′0 r1 ·

(
pk(b1)|α(x̂)|sk(b1)

)
k
· r′1 b′1 ·

r2 ·
(
pk(b2)|α(x̂)|sk(b2)

)
k
· r′2 b′2 ·

...

rn ·
(
pk(bn)|α(x̂)|sk(bn)

)
k
· r′n b′n

Although the number of remaining sectors in the b′i, ri and r′i is bounded (see statement 5
of Fact 2), we cannot bound the size of E′

x yet. This is because the size of each remaining
sector is still unbounded. We will treat these sectors below, using the induction hypothesis,
and then finally obtain the needed expression Ex for x. Let us first prove that E′

x has the
properties stated in the lemma, except for the size requirement.
Since for 1 ≤ i ≤ n each bi is a factor of x and consists of at least one x′

j which in

turn consists of at least two sectors, we have α(b̂i) = α(x̂) and hence x ∈ E′
x. Now consider

arbitrary x′, x′′ ∈ A∗ and suppose x′xx′′ ∈ L(M). We will show x′E′
xx

′′ ⊆ L(M) using the
argument thatM does not have pattern B 3/2,k. So let y ∈ E′

x. Then there are for 1 ≤ i ≤ n
words yi ∈ (pk(bi)|α(x̂)|sk(bi))k such that

y = b′0 · r1y1r′1 · b′1 · r2y2r′2 · b′2 · · · rnynr′n · b′n.

Similar to Case 1 above, we turn x′xx′′ into x′yx′′ by showing that we can replace each bi in
x by yi for i = n downto 1, and always obtain a word in L(M). We demonstrate the first
step of this procedure and argue how it can be repeated. Define

y′n =def b
′
0r1b1r

′
1b

′
1r2b2r

′
2b

′
2 · · · b′n−1 and y′′n =def b

′
n.

Then x′xx′′ = x′y′nrn · bn · r′ny′′nx′′ ∈ L(M) and we assume to the contrary that it holds that
x′y′nrn · yn · r′ny′′nx′′ �∈ L(M). Define

112 4. Dot–Depth 3/2

x̃ =def x′y′nrn,
ṽ =def r′n,
w̃ =def ynr

′
n,

z̃ =def y′′nx
′′,

s1 =def δ(s0, x̃) and

s2 =def δ(s0, x̃w̃).

We claim thatM has pattern B 3/2,k witnessed by x̃, z̃ ∈ A∗, w̃ ∈ A+, ṽ ∈ A≥k+1 and states

s1 and s2. Observe that ṽ = r′n which contains at least two sectors and hence ṽ ∈ A≥k+1 (only
the last sector of x may be shorter than k+1). Note also that by assumption δ(s2, z̃) �∈ S′. By
the choice of regions, we know that rn and r′n have the same tags, hence y′nrn and y′nrnbnr′n
induce the same mappings on the states of M. It follows that δx̃ = δx̃bnr

′
n . In particular, it

holds that δ(s0, x̃bnr
′
n) = s1 and since x′xx′′ = x̃bnr

′
nz̃ ∈ L(M) we conclude δ(s1, z̃) ∈ S′.

Moreover, statement 6 of Fact 2 holds for r′n and hence both states s1 and s2 have a ṽ-loop
(note that s1 = δ(s0, x̃bnr

′
n)). So we found a subgraph in the transition graph ofM which is

a candidate for pattern B 3/2,k.
It remains to verify the condition for the respective k-decompositions, more precisely, we

need to show α(̂̃vw̃ṽ) ⊆ α(̂̃vṽ) which is the same as α(̂r′nynr′nr′n) ⊆ α(r̂′nr′n). By the choice of
r′i each such word contains at least two successive sectors (see statement 1 of Fact 1). So by
the choice of sectors we have α(x̂) = α(r̂′n) ⊆ α(r̂′nr′n). We show that α(r̂′nynr′n) ⊆ α(x̂).
Since r′n is a factor of x the inclusion is clear for every element in the k-decomposition of

r′nynr′n which is a factor of r′n. Also α(ŷn) ⊆ α(x̂) is clear by definition of yn. So we are left
with the factors of length k + 1 in r′nynr′n that contain letters from r′n and also from yn. It
holds that

α(̂sk(r′n)pk(yn)) = α(̂sk(rn)pk(bn)) ⊆ α(x̂)

since r′n and rn have the same k-suffix, yn ∈ (pk(bn)|α(x̂)|sk(bn))k and sk(rn)pk(bn) is a factor
of x. We can also state

α(̂sk(yn)pk(r′n)) = α(̂sk(bn)pk(r′n)) ⊆ α(x̂)

with the same arguments. Together, we have shown α(r̂′nynr′n) ⊆ α(x̂) ⊆ α(r̂′nr′n) and it fol-
lows that α(̂̃vw̃ṽ) ⊆ α(̂̃vṽ) because |ṽ| ≥ k+1. Hence we found pattern B 3/2,k, a contradiction.
We conclude that x′y′nrnynr′ny′′nx′′ ∈ L(M).
The previous argumentation was independent of the particular prefix x′y′n and the suffix

y′′nx′′, so we can repeat this step for yn−1. It is crucial here that we proceed from right to left,
so all tags left to the actual substitution position remain valid, i.e., the tags still stand for the
mapping induced by the respective prefix. If we define y′n−1 =def b

′
0r1b1r

′
1b

′
1r2b2r

′
2b

′
2 · · · b′n−2

and y′′n−1 =def b′n−1rnynr′nb′n then x′y′n−1rn−1bn−1r′n−1y′′n−1x′′ ∈ L(M) by the previous step.
Now we want to substitute bn−1 by yn−1 and we observe that we have the same starting
position as in the previous step. In the same way we get x′y′n−1rn−1yn−1r′n−1y′′n−1x′′ ∈ L(M).
If we repeat this procedure n-times, we obtain x′yx′′ ∈ L(M), which shows x′E′

xx
′′ ⊆ L(M).

The remaining task is to construct the expression Ex with bounded size. We start with
expression E′

x and apply the induction hypothesis to each sector si in E′
x. Note that we have

4.3 Forbidden Pattern Characterization of B3/2,k 113

|α(ŝi)| ≤ N by the construction of the sectors, so we may replace each remaining si by Esi

and obtain the expression Ex.
Finally, let us verify what is required for Ex. Since x ∈ E′

x and si ∈ Esi for every sector si
in E′

x, we obtain x ∈ E′
x ⊆ Ex. Now let x

′, x′′ ∈ A∗ with x′xx′′ ∈ L(M). We already know that
x′E′

xx
′′ ⊆ L(M). Exactly as in Case 1 we can show that we do not leave L(M) if we replace

in x′E′
xx

′′ each sector si by Esi . This shows x
′Exx

′′ ⊆ L(M). Now we consider the size of Ex.
By definition, E′

x is a concatenation of sectors si and terms of the form (pk(bi)|α(x̂)|sk(bi))k.
Since the latter terms do not influence the size of expressions, we obtain

‖Ex‖ =
∑

sectors si
in E′

x

‖Esi‖.

By induction hypothesis we have ‖Esi‖ ≤ S(k, |A|, |M|, N) for all sectors si of E′
x. By

statement 5 of Fact 2 we know that the number of sectors in E′
x is less than or equal to

3K(|M|) · (5|M||M| · |A|k + 1). It follows that

‖Ex‖ ≤ 3K(|M|) · (5|M||M| · |A|k + 1) · S(k, |A|, |M|, N) = S(k, |A|, |M|, N + 1).

This completes the induction. ❑

We show the remaining inclusion.

Lemma 4.28. Let k ≥ 0. It holds that FP(B 3/2,k) ⊆ B3/2,k.
Proof. If L ∈ FP(B 3/2,k) then there exists some DFA M with L(M) = L which does not
have pattern B 3/2,k. We apply Lemma 4.27 to every x ∈ L(M) and obtain corresponding
expressions Ex with x ∈ Ex. Since x = εxε ∈ L(M) we have Ex = εExε ⊆ L(M). So it holds
that

L(M) =
⋃

x∈L(M)

Ex

Also by Lemma 4.27, the size of Ex is bounded by S(k, |A|, |M|, |α(x̂)|), so in particular
S(k, |A|, |M|, |A|k+1) bounds the size of each Ex. Because there is only a finite number of
expressions in Ek having the same size, the above union is finite.
It remains to show that languages described by expressions from Ek are in B3/2,k = B̃3/2,k.

Languages of the form {u} with u ∈ A+ are in B̃3/2,k, because they can be written either as
{u} ⊆ A≤k or as (∅, α1, ∅, α2, . . . , ∅, αn, ∅)k if û = (α1, α2, . . . , αn). Let us consider languages
of the form (w|Σ|v)k with w, v ∈ Ak and Σ ⊆ Ak+1. For k = 0 they can be written as

(Σ)k ∈ B̃3/2,k. If k ≥ 1 we have (w|Σ|v)k = ((w(w−1 (Σ)k))v
−1)v. Since |w| = |v| = k and

(Σ)k ⊆ A≥k+1 we can apply Proposition 4.14. Together with Proposition 4.15 we obtain

(w|Σ|v)k ∈ B̃3/2,k. Thus we have shown that languages of the form {u} and (w|Σ|v)k are in
B̃3/2,k. Again by Proposition 4.15 we conclude that languages described by expressions from
Ek are in B̃3/2,k. Together we see that L(M) is a finite union of languages from B̃3/2,k. Hence
L(M) ∈ B̃3/2,k = B3/2,k by Theorem 4.9. ❑

114 4. Dot–Depth 3/2

4.3.3 Strictness and Decidability Results

As in the case of the forbidden pattern characterizations we have obtained earlier, Theo-
rem 4.22 has the decidability of B3/2,k for fixed k as a consequence. Moreover, it follows that
the hierarchy of classes B3/2,k is strict, which we show first. We could provide a witnessing
language L and analyse that a DFA accepting L has pattern B 3/2,k but not pattern B 3/2,k+1.

However, we use instead a easy counting argument and the normal form result B3/2,k = B̃3/2,k
from Theorem 4.9 in the following proof.

Theorem 4.29. For all k ≥ 0 it holds that B3/2,k � B3/2,k+1.
Proof. It holds that B3/2,k ⊆ B3/2,k+1 for all k ≥ 0 by Proposition 1.31. Let a, b ∈ A be

different letters, let wi =def
(
ak+1b
)i
for i ≥ 1 and define

L =def

(
ak+1b,
{

aibak+1−i
∣∣∣ 0 ≤ i ≤ k + 1

}
, ak+1b
)
k+1

.

So L ∈ B̃3/2,k+1 and it is easy to see that L = {wi | i ≥ 2 }. We assume that also L ∈ B̃3/2,k
and show that this is not true. Since L ⊆ A≥k+2, we have

L =

m⋃
i=1

(Σi,0, αi,1,Σi,1, . . . , αi,mi ,Σi,mi)k

for some m ≥ 1, mi ≥ 1, αi,j ∈ Ak+1 and Σi,j ⊆ Ak+1. Let n be the maximum over all mi.
There exists some l with 1 ≤ l ≤ m such that w2n+2 ∈ (Σl,0, αl,1,Σl,1, . . . , αl,ml

,Σl,ml
)k. The

k-decomposition of w2n+2 consists of (2n+2)(k+2)−k ≥ n+(n+1)(k+2) elements of Ak+1.
By the pigeon hole principle there exists some 1 ≤ h ≤ ml such that at least k+2 consecutive
elements of this k-decomposition are assigned to Σl,h. By definition of w2n+2 the element a

k+1

must appear in this sequence of words of length k + 1. Therefore, we can pump up the word
w2n+2 with letters a without leaving L. This is a contradiction, because in every word from
L the number of consecutive letters a is bounded by k + 1. So L ∈ B̃3/2,k+1\B̃3/2,k. ❑

Next we turn to decidability issues and give in the following proof an efficient algorithm for
the membership problem of B3/2,k for fixed k.

Theorem 4.30. For fixed k ≥ 0 the membership problem of B3/2,k is decidable in nondeter-
ministic logarithmic space NL.

Proof. Let some DFAM = (A,S, δ, s0, S
′) be given. Note thatM does not have pattern B 3/2,k

if and only if L(M) ∈ B3/2,k by Theorem 4.22 and since FP(B 3/2,k) is well–defined. So it
suffices provide an algorithm that decides whetherM has pattern B 3/2,k. If x, z ∈ A∗, w ∈ A+

and v ∈ A≥k+1 witness the occurrence of pattern B 3/2,k then we may assume that w has length
≥ k+1, otherwise we take vwv instead of w. Note that this does not affect the side condition.

1. Guess states s1, s2, s
+, s− ∈ S and store them. Check whether s+ ∈ S′, s− /∈ S′, s0 −→ s1

and (s1, s2) −→ (s+, s−). Reject if any of this fails.
2. Check (s1, s2) −→+ (s1, s2) and while doing this, perform the following. Let v ∈ A+

be the sequence of continuously guessed letters. Start guessing the end of v not before
|v| ≥ k+ 1 and store pk(v). While guessing v store also the actual value of sk(v) and the
set M ′ =def α(v̂). If (s1, s2)

v−→(s1, s2) then determine M =def α(v̂v) with help of M ′,
pk(v) and sk(v), and store the sets M

′,M .

4.4 Forbidden Pattern Characterization of B3/2 115

3. Check s1 −→+ s2 and while doing this, perform the following. Let w ∈ A+ be the sequence
of continuously guessed letters. As before, start guessing the end of w not before |w| ≥
k + 1, store pk(w), the actual value of sk(w) and also the set N ′ =def α(ŵ). If s1

w−→ s2
then determine the set N =def α(v̂wv) from N ′ with help of sk(v), pk(v), sk(w), pk(w) and
the set M ′. Store the set N .

4. Accept if N ⊆M , otherwise reject.

It is easy to see that this algorithm accepts if and only if M has pattern B 3/2,k. The space
needed to store the states s1, s2, s

+, s− and to check the reachability conditions is O(log |M|).
For the sets M ′,M,N ′, N the algorithm uses space at most O(k) · |A|k+1 which is a constant
to the algorithm. ❑

For the case k = 0 a similar algorithm is provided in [PW97].

4.4 Forbidden Pattern Characterization of B3=2

Now we have the following interesting situation. Suppose some DFA M is given. If L(M)
is in B3/2 then it is in B3/2,k for some k ≥ 0 and we already know how to decide this for
k = 0, 1, 2, On the other hand, if L(M) �∈ B3/2 then it has for all k ≥ 0 the patterns B 3/2,k.
But due to the finiteness of M these patterns should not be all different, i.e., we can do
something similar as in case of B1/2 and Dleftk : if k is sufficiently large in comparison to M
then we identify a single pattern B 3/2 inM which characterizes B3/2. As usual, the decidability
of the membership problem of B3/2 follows from this forbidden pattern characterization.

s1

w1

b0

w0

s0

l0

l1

lm−1

lm

w1

b0

w0

l0

l1

l1

lm−1

lm

x

z

l1

w1

l0 l1 lm−1

s2
w0 wm

wm wm

l0 l0
bm bm

b1 b1

lm lm

z

+ −
Fig. 4.3. Pattern B3/2 .

Definition 4.31. Pattern B 3/2 is defined as the subgraph given in Figure 4.3 with m ≥ 0,
x, z ∈ A∗ and wi, li, bi ∈ A+.

116 4. Dot–Depth 3/2

That FP(B 3/2) is well–defined follows from Proposition 5.14 together with Theorem 6.4 where
this is shown for generalized patterns of which B 3/2 is a special case. We prove in this section
the following theorem.

Theorem 4.32. It holds that B3/2 = FP(B 3/2).
The proof is given in Subsection 4.4.1 and consequences are discussed in Subsection 4.4.2.

4.4.1 Proof of Theorem 4.32

We prepare the proof with the following two lemmas.

Lemma 4.33. Suppose some DFA M has pattern B 3/2,k with k > K(|M|) witnessed by

x, z ∈ A∗, w ∈ A+ and v ∈ A≥k+1. Then we may assume that v and w are of the form
v = v′u and w = w′u such that 1 ≤ |u| ≤ K(|M|) and δuu = δu.

Proof. We define below words x̃, ṽ, w̃, z̃ which show that M has another instance of pat-
tern B 3/2,k having the properties required in the lemma. By Corollary 4.4 we can write v as

v = v0u1v1 · · · umvm such that ui, vi ∈ A≤K(|M|) and δuiui = δui . Since |v| ≥ k + 1 > K(|M|)
it must be that m ≥ 1. Therefore, with v̇ =def v0u1v1 · · · um−1vm−1, u̇ =def um and v̈ =def vm
we can rewrite v as v = v̇u̇v̈ with u̇, v̈ ∈ A≤K(|M|) and δu̇u̇ = δu̇. Now define

x̃ =def xv̇u̇,

ṽ =def v̈v̇u̇,

w̃ =def v̈wv̇u̇ and

z̃ =def v̈z.

With v′ =def v̈v̇, w′ =def v̈wv̇ we can write ṽ and w̃ as ṽ = v′u̇ and w̃ = w′u̇ such that
1 ≤ |u̇| ≤ K(|M|) and δu̇u̇ = δu̇. To see that x̃, ṽ, w̃ and z̃ give rise to pattern B 3/2,k in M
note that w̃ ∈ A+ and |ṽ| = |v| ≥ k + 1. It remains to verify α(̂̃vw̃ṽ) ⊆ α(̂̃vṽ). Since ṽw̃ṽ is a
factor of vvwvv and |v| ≥ k + 1 we obtain α(̂̃vw̃ṽ) ⊆ α(v̂vwvv) ⊆ α(v̂v). With the argument
that |v| = |ṽ| ≥ k + 1 one verifies that α(v̂v) = α(̂̃vṽ). ❑

Lemma 4.34. Let M be a DFA and k ≥ 3K(|M|). If M has pattern B 3/2,k then M has
pattern B 3/2.

Proof. First observe for y1, y2 ∈ A≥k′+1 and k′ ≥ k that if α(ŷ1) ⊆ α(ŷ2) with respect to
k′-decomposition then also α(ŷ1) ⊆ α(ŷ2) with respect to k-decomposition. To see this note
that any factor of length k + 1 is a factor of some factor of length k′ + 1.
So we may suppose that the DFAM has pattern B 3/2,k with k = 3K(|M|) witnessed by

x, z ∈ A∗, w ∈ A+ and v ∈ A≥k+1. With Lemma 4.33 we assume that v and w are of the form
v = v′u and w = w′u such that 1 ≤ |u| ≤ K(|M|) and δuu = δu. It follows that the states
s1 and s2 in pattern B 3/2,k both have a u-loop. Next we obtain with help of Corollary 4.4 a

factorization of w′ with w′ = w′
0u1w

′
1 · · · umw′

m such that w′
i, ui ∈ A≤K(|M|) and δuiui = δui .

Let u0 =def u and um+1 =def u. Then we have u0, w
′
0, u1, . . . , w

′
m, um+1 ∈ A≤K(|M|) and

δuiui = δui for 0 ≤ i ≤ m+ 1.
We want to see how the factors uiw

′
iui+1 appear as factors in some loop at s1 and at s2.

Observe that |uiw′
iui+1| ≤ 3K(|M|) < k + 1 for 0 ≤ i ≤ m and that u0w

′
0u1 · · ·w′

mum+1 =

4.4 Forbidden Pattern Characterization of B3/2 117

uw′u = uw is a factor of vw. So each uiw
′
iui+1 for 0 ≤ i ≤ m appears in some element of the k-

decomposition of vwv. From the condition α(v̂wv) ⊆ α(v̂v) it follows that for 0 ≤ i ≤ m each
uiw

′
iui+1 is a factor of vv. Hence for 0 ≤ i ≤ m there exist v′i, v

′′
i such that vv = v′iuiw

′
iui+1v

′′
i .

We make the following definitions in order to show thatM has pattern B 3/2. Setm
′ =def m+1

and li =def ui for 0 ≤ i ≤ m′. Furthermore, we define

b0 =def v′0u0,
bi =def v′′i−1v

′
iui for 1 ≤ i ≤ m′ − 1,

bm′ =def v′′mum′ ,

w0 =def u0 and

wi =def w′
i−1ui for 1 ≤ i ≤ m′.

Observe for 0 ≤ i ≤ m′ that wi, li, bi ∈ A+ and that there is a li-loop in M after each
wi, bi ∈ A+ since they have suffix ui = li and δuiui = δui . It remains to show that s1 and s2
have a loop with label w0b0w1b1 · · ·wm′bm′ and that we get from s1 to s2 with w0w1 · · ·wm′ .
To see this we look at the factorizations

w0b0w1b1 · · · bmwm′bm′ =

w0︷︸︸︷
u0

b0︷︸︸︷
v′0u0

w1︷ ︸︸ ︷
w′
0u1

b1︷ ︸︸ ︷
v′′0v

′
1u1

w2︷ ︸︸ ︷
w′
1u2

b2︷ ︸︸ ︷
v′′1v

′
2u2 · · ·

bm︷ ︸︸ ︷
v′′m−1v

′
mum

wm′︷ ︸︸ ︷
w′
mum′

bm′︷ ︸︸ ︷
v′′m um′

= u0︸︷︷︸
u

v′0u0w
′
0u1v

′′
0︸ ︷︷ ︸

vv

v′1u1w
′
1u2v

′′
1︸ ︷︷ ︸

vv

v′2u2 · · · v′′m−1 v
′
mumw′

mum+1v
′′
m︸ ︷︷ ︸

vv

um′︸︷︷︸
u

= uv2m
′
u

and

w0w1w2 · · ·wmwm′ =

w0︷︸︸︷
u0

w1︷ ︸︸ ︷
w′
0u1

w2︷ ︸︸ ︷
w′
1u2 · · ·

wm︷ ︸︸ ︷
w′
m−1um

wm′︷ ︸︸ ︷
w′
mum′

= u0︸︷︷︸
u

w′
0u1w

′
1u2 · · ·w′

m−1umw′
m︸ ︷︷ ︸

w′

um′︸︷︷︸
u

= uw′u.

Recall that s1 and s2 have a u-loop and that w = w′u. ❑

Proof of Theorem 4.32. We have to show B3/2 = FP(B 3/2). For the inclusion from left
to right, let L ∈ B3/2 and let M be some DFA with L(M) = L. We assume that M has
pattern B 3/2 and show that this leads to a contradiction. Suppose m ≥ 0, x, z ∈ A∗ and
wi, li, bi ∈ A+ witness thatM has pattern B 3/2 and let k ≥ 0. We define

v =def w0 · lk0b0lk0 · w1 · lk1b1lk1 · · ·wm · lkmbmlkm and

w =def w0 · lk0 · w1 · lk1 · · ·wm−1 · lkm−1 · wm · lkm.

Note that δ(s0, x) = δ(s0, xv), δ(s0, xw) = δ(s0, xwv), δ(s0, xz) ∈ S′ and that δ(s0, xwz) �∈ S′.
Moreover, it holds that w ∈ A+ because m ≥ 0 and w0 ∈ A+, and v ∈ A≥k+1 because m ≥ 0
and w0l

k
0 ∈ A≥k+1. So with x, z ∈ A∗, w ∈ A+ and v ∈ A≥k+1 we have found a subgraph

inM that is of the form as required for pattern B 3/2,k. It remains to show α(v̂wv) ⊆ α(v̂v)
with respect to k-decomposition. For β ∈ α(v̂wv) we distinguish three cases.

118 4. Dot–Depth 3/2

Case 1: Suppose β is a factor of v. Then β ∈ α(v̂v).
Case 2: Suppose β is a factor of w. Since |li| ≥ 1, we have |lki | ≥ k for 0 ≤ i ≤ m. Because

|β| = k + 1 each occurrence of β in w overlaps at most with one of the wi. In particular, β
is a factor of w0l

k
0 or it is a factor of l

k
i wi+1l

k
i+1 for some 0 ≤ i < m. From the definition of

v we see that w0l
k
0 is a factor of v and that l

k
i wi+1l

k
i+1 for all 0 ≤ i < m is a factor of v, so

β ∈ α(v̂v).
Case 3: Suppose β is a factor of sk(v)pk(w) or sk(w)pk(v). In both cases is β a factor of

lkmw0l
k
0 . It follows that β is also a factor of vv, so β ∈ α(v̂v).

Together, we have shown that an arbitrary DFA M with L(M) = L has pattern B 3/2,k
for arbitrary k ≥ 0, if it has pattern B 3/2. By Theorem 4.22 we have L �∈ ⋃k≥0 B3/2,k = B3/2,
a contradiction. It follows thatM does not have pattern B 3/2, so L ∈ FP(B 3/2).
Conversely, let L ∈ FP(B 3/2) and letM be some DFA with L(M) = L that does not have

pattern B 3/2. Assume to the contrary that L �∈ B3/2 =
⋃

k≥0 B3/2,k. So for all k ≥ 0 it holds
that M has pattern B 3/2,k. In particular, it has pattern B 3/2,k for k = 3K(|M|). We apply
Lemma 4.34 and obtain thatM has pattern B 3/2, a contradiction. It follows that L ∈ B3/2.

(End proof of Theorem 4.32.)

4.4.2 Decidability Results

Let some regular language L ⊆ A+ be given via a DFA M with L(M) = L. Due to Theo-
rem 4.32 we can decide whether L ∈ B3/2 by looking at the transition graph ofM as follows.
IfM does not have pattern B 3/2 then L ∈ B3/2 by Theorem 4.32, and ifM has pattern B 3/2
then L �∈ B3/2 because FP(B 3/2) is well–defined.
Theorem 4.35. The membership problem of B3/2 is decidable in nondeterministic logarith-
mic space NL.

We postpone the proof of this theorem until Chapter 5. There we show for classes defined
via certain generalized forbidden patterns that their membership problems can be decided in
NL. Since FP(B 3/2) is a special case of these classes we refer here to the forthcoming proof
of Theorem 6.15. We give an informal description how we can find pattern B 3/2 in a given
transition graph.
As in case of the patterns treated earlier, we first guess states s1, s2, s

+ and s− and see if
s0 −→ s1, (s1, s2) −→ (s+, s−) and if s+ is accepting and s− is rejecting. Now we start a loop
in the algorithm, and guess states r1, r2, r3 and verify (s1, s1, s2) −→+ (r1, r2, r3), i.e., the lat-
ter are reachable by w0. Then we guess two more states q1, q2 and check (r1, r2, r3, q1, q2) −→+

(r1, r2, r3, q1, q2), i.e., they all have an l0-loop, and see if (r2, r3) −→+ (q1, q2), i.e., there is
some b0 between r2 and q1, and also between r3 and q2. If r1 = s2, q1 = s1 and q2 = s2 we
accept, otherwise we continue this procedure and start over again, this time with r1, q1, q2
instead of s1, s1, s2. Note that we only need to store a constant number of states at a time.
Now we know that B3/2 and also all classes B3/2,k have decidable membership problems.

The following is an immediate consequence.

Theorem 4.36. There exists a recursive function which outputs for a given regular language
L ⊆ A+ the minimal k ≥ 0 such that L ∈ B3/2,k (or some special symbol if L �∈ B3/2).
Finally, we draw the connection to first–order logic. Theorem 1.22 provides the following

corollary of Theorem 4.35.

4.5 Discussion and Further Consequences 119

Corollary 4.37. Given a regular language L it is decidable whether L is definable by a Σ2
formula of the logic FO[<,min,max, S, P].

4.5 Discussion and Further Consequences

In this section, we look at consequences of Theorem 4.35 for finite semigroups and leaf lan-
guages. We leave Theorem 4.38 and 4.40 below without proof, and understand them as
directions to further research.
First, we look at the algebraic approach to regular languages, which we do not follow in

this thesis. As mentioned in the introduction, many results — among them the forbidden
pattern characterizations of L1/2, B1/2 and L3/2 from [PW97] — have been obtained in this
theory. For an introduction to the field see [Pin96]. We have given other proofs of these
characterizations, and we sketch in what follows an algebraic interpretation of Theorem 4.35.
Let M = (A,S, δ, s0, S

′) be some minimal DFA and denote by TM =def { δw |w ∈ A+ }
the transition semigroup of M. In general, we can associate with a semigroup T an order
relation ≤ (reflexive, transitive, antisymmetric) on T which respects the multiplication of T ,
i.e., for every µ, ν, γ ∈ T with µ ≤ ν we have µγ ≤ νγ and γµ ≤ γν. This is called the ordered
semigroup (T,≤). In particular, we define in case of TM that µ ≤ ν if and only if ανβ(s0) ∈ S′

implies αµβ(s0) ∈ S′ for all α, β ∈ TM ∪ {id} (where id denotes the identity mapping on T).
It is easy to see that (TM,≤) is an ordered semigroup, which we call the ordered transition
semigroup of L. We need one more notion from semigroup theory. For every element µ of a
semigroup T we define the ω-power of µ as µω =def µ

i where i = inf
{
j ≥ 1 ∣∣µj = µ2j

}
. Note

that for a finite semigroup T it holds that µω is always an element of T . Using Theorem 4.35
one can now show the following.

Theorem 4.38. Let L ⊆ A+ be a regular language and (TM,≤) be the ordered transition
semigroup of L. Then L ∈ B3/2 if and only if (TM,≤) satisfies all inequalities {Em |m ≥ 0 }
for any choice of τi, βi and γi from TM where

Em =def βωγβω ≤ βω with

γ =def γ0τ
ω
0 γ1τ

ω
1 γ2τ

ω
2 · · · γmτωm and

β =def γ0τ
ω
0 β0τ

ω
0 γ1τ

ω
1 β1τ

ω
1 γ2τ

ω
2 β2τ

ω
2 · · · γmτωmβmτωm.

These inequalities reflect in a straightforward way the subgraph given by pattern B 3/2. More-
over, they characterize the variety of finite ordered semigroups which corresponds to the
positive +–variety of languages as which B3/2 can be understood (see [Arf91, PW97]). An-
other characterization of this variety of semigroups can be found in [PW97]. However, the
decidability of the membership problem of B3/2 could not be derived in [PW97] and was left
as an open question, which we answer with the work done in this chapter.
Let us look at leaf languages now and see what we can conclude from Theorem 4.35. We

already know that LeafP(L) ⊆ Σp2 if L ∈ B3/2 by Theorem 1.24. If L �∈ B3/2 then a DFA
M with L(M) = L has pattern B 3/2 by Theorem 4.35, and we can exploit this to show

what complexity classes we encounter at least in LeafP(L). In order to state Theorem 4.40
below we need to recall some more notations from complexity theory. For the remainder of

120 4. Dot–Depth 3/2

this section, let x, y denote strings over {0, 1}. Moreover, for a set M let ‖M‖ denote its
cardinality. For a language class C we define

L ∈ ∃u·C ⇐⇒def there exists D ∈ C and polynomial p such that
(a) ∀x [‖ { (x, y) | |y| = p(|x|) ∧ (x, y) ∈ D } ‖ ≤ 1] and
(b) x ∈ L⇔ ∃y [|y| = p(|x|) ∧ (x, y) ∈ D

]
L ∈ ∀u·C ⇐⇒def there exists D ∈ C and polynomial p such that

(a) ∀x [‖ { (x, y) | |y| = p(|x|) ∧ (x, y) ∈ D } ‖ ≤ 1] and
(b) x ∈ L⇔ ∀y [|y| = p(|x|) =⇒ (x, y) ∈ D

]
L ∈ ∃!·C ⇐⇒def there exists D ∈ C and polynomial p such that

x ∈ L⇔ there exists exactly one y with
[|y| = p(|x|) ∧ (x, y) ∈ D

]
For more background on these quantifiers we refer to [NR98]. If we drop condition (a) above
we obtain the quantifiers ∃· and ∀· that build up the polynomial time hierarchy when applied
to P in an alternating way. For comparison, we state the main theorem from [BKS98].

Theorem 4.39 ([BKS98]). Let L ⊆ A+ be a regular language.

1. If L ∈ B1/2 then LeafP(L) ⊆ NP.
2. If L �∈ B1/2 then LeafP(L) contains one of the classes ∀·P, co∃!·P or MODpP for some

prime p.

The first statement is known from [HLS+93]. For the second statement, note that it is quite
easy to see from pattern B 1/2 that if L �∈ B1/2 but star–free, then LeafP(L) contains ∀u·P.
The main task carried out in [BKS98] is resolving the promise condition (a) in the quantor
∀u· which can be achieved by looking at the possible continuations of pattern B 1/2 in a DFA.
Now pattern B 3/2 for B3/2 is known, and we can show the following.

Theorem 4.40. Let L ⊆ A+ be a regular language.

1. If L ∈ B3/2 then LeafP(L) ⊆ Σp2.
2. If L �∈ B3/2 then LeafP(L) contains one of the classes ∀·∃u·P, co∃!·∃u·P or MODpP for

some prime p.

Here also the first statement is known from [HLS+93]. For the second statement note that it
is quite easy to see from pattern B 3/2 that if L �∈ B3/2 but star–free, then LeafP(L) contains
∀u∃u·P. Using the techniques from [BKS98] together with some additional constructions
we can resolve the promise condition of the outer quantor ∀u·. Certainly, there is more to
investigate in this direction.
Finally, we want to remark that the decidability of the membership problem of B3/2 follows

also from very recently provided results in [PW00] (although not explicitly mentioned there).
The authors extend the result from [Str85] to levels n + 1/2: for all n ≥ 0 the membership
problem of Bn+1/2 is decidable if and only if the membership problem of Ln+1/2 is decidable.

5. A Theory of Forbidden Patterns

We refer to the main results of this chapter. First, we consider the patterns B 1/2 and B 3/2 again
and observe how B 1/2 acts as a building block in B 3/2. Surprisingly, we find this confirmed if we
compare the patterns L 1/2 and L 3/2. However, to reveal this relation in the latter case we need
to rewrite L 3/2 in an appropriate way. If we continue the just observed formation procedure
this leads in a natural way to an iteration rule IT (cf. Definition 5.3). We consider this rule
for arbitrary initial patterns I fulfilling some reasonable weak assumptions. In Section 5.1
we show how IT can be used to define classes of patterns P I

n for n ≥ 0 (cf. Definitions 5.1
to 5.5). After some technical results that allow to handle these patterns we give the main
result of this chapter: we prove that a complementation followed by a polynomial closure
operation on the language side is captured by our iteration rule on the forbidden pattern side
(cf. Theorem 5.13). Moreover, we investigate the inclusion structure between the forbidden
pattern classes (cf. Theorem 5.19) and we treat their decidability (cf. Theorem 5.25).
We recall pattern B 1/2 from Figure 2.2 and give the significant part of it in Figure 5.1

again. The loop–structure of the pattern is just the v-loop at s1 and at s2, and we call
p = (v,w) ∈ A+ ×A+ the bridge–structure since it forms the subgraph that bridges from s1
to s2.

p
p′

v v

s1 s2
w

Fig. 5.1. Forbidden pattern for B1/2
with p = (v, w) ∈ A+ × A+ and
loop–structure p′.

Now we look at pattern B 3/2 from Figure 4.3 and give its significant part in Figure 5.2
again. Here the loop–structure p′ is more complex: it is the sequence of words w0, w1, . . . , wm

for m ≥ 0 such that between each wi, wi+1 there is the bridge–structure pi from some pat-
tern B 1/2. Moreover, we get from s1 with w0w1 · · ·wm to s2 and after each prefix w0w1 · · ·wi

we reach a state with the loop–structure p′i (corresponding to the bridge–structure pi between
wi and wi+1).
So how may a next iteration step look like? There should be two states s1 and s2 both

having the same loop–structure as follows. There are words w0, w1, . . . , wm such that between
each wi, wi+1 there is the bridge–structure p′ now from some pattern B 3/2. Furthermore, we

122 5. A Theory of Forbidden Patterns

p′0 p′1

p0

p1

p0

p1

p′m

pm pm

p′
p

w0

w1

w0

w1w0

w1

wm wm

wm
s1 s2

Fig. 5.2. Forbidden pattern for B3/2 with p = (w0, p0, w1, p1, . . . , wm, pm)

and loop–structure p′. Note that pi ∈ A+×A+ are patterns of type B1/2 with
loop–structure p′i.

should find after every prefix w0w1 · · ·wi a state with the loop–structure p
′ from the respective

pattern B 3/2 that appeared between wi and wi+1. This formation procedure is made precise
in the next section.
However, if this should make any sense in connection with the DDH and STH in general,

we must look first at L1/2 and L3/2. Recall from Lemma 1.20 that B3/2 = Pol(coB1/2) and
L3/2 = Pol(coL1/2). We give pattern L 1/2 from Figure 2.1 again in Figure 5.3. Here the loop–
structure is just an ε-loop at s1 and at s2, and the bridge–structure is p = (ε, w) ∈ {ε}×A∗.

p
p′

ε ε

s1 s2
w

Fig. 5.3. Forbidden pattern for L1/2
with p = (ε,w) ∈ {ε} × A∗ and loop–
structure p′.

Now we look at pattern L 3/2 from Figure 4.1 and do some rewriting before we state its
significant part in Figure 5.4. In fact, this figure looks just like Figure 5.2. The only difference
is that the loop–structures p′i from some pattern L 1/2 are ε-loops. So the pattern given in
Figure 5.4 is equivalent to saying that for some m ≥ 0 there are words w0, w1, . . . , wm and
b0, b1, . . . , bm such that for v̂ =def w0b0w1b1 · · ·wm−1bmwm and ŵ =def w0w1 · · ·wm we have

s1
v̂−→ s1 and s2

v̂−→ s2 and s1
ŵ−→ s2.

We will prove formally in Theorem 6.4 that this is equivalent to pattern L 3/2 but note for
now that α(ŵ) ⊆ α(v̂).

5.1 Pattern Iteration 123

p′0 p′1

p0

p1

p0

p1

p′m

pm pm

p′
p

w0

w1

w0

w1w0

w1

wm wm

wm
s1 s2

Fig. 5.4. Forbidden pattern for L3/2 with p = (w0, p0, w1, p1, . . . , wm, pm)
and loop–structure p′. Note that pi ∈ {ε}×A∗ are patterns of type L1/2 with
loop–structure p′i = ε.

5.1 Pattern Iteration

We make precise what we just observed, define the iteration rule IT and provide some useful
constructions that let us handle the iterated patterns. Everything in this chapter is valid for
an arbitrary initial pattern I fulfilling some reasonable weak assumptions.

5.1.1 How to Define Iterated Patterns

Let us first say what an initial pattern is.

Definition 5.1. We define an initial pattern I to be a subset of A∗ × A∗ such that for all
r ≥ 1 and v,w ∈ A∗ it holds that (v,w) ∈ I =⇒ (v, v), (vr , w · vr) ∈ I.
Note that this requirement is just what is needed to show that FP(B 1/2) is well–defined. In
order to cope with the inductive nature of the iteration rule we refine what we understand
under the notion “some DFAM has pattern P ”. So far we had to find the particular subgraph
from the definition of P in the transition graph ofM. This will still be the case but we consider
P now to be a set of tuples of words, where each tuple is an instance of the pattern. We say
in Definition 5.5 below that a DFA M has pattern P if there exists some tuple p ∈ P that
witnesses certain reachability condition, namely that a certain subgraph appears at some state
(the loop–structure) and that two states are connected by a certain subgraph (the bridge–
structure). This is consistent with our prior definitions of patterns since the witnessing word
variables are all existentially quantified. As the first step of an inductive definition we consider
an initial pattern.

Definition 5.2. For p = (v,w) ∈ I and given states s, s1, s2 of some DFAM we say

– p appears at s ⇐⇒def s has a v-loop and
– s1, s2 are connected via p (in notation s1

p� s2)⇐⇒def p appears at s1 and s2, and s1
w−→ s2.

It is easy to compare this definition to the patterns B 1/2 and L 1/2 with I = A+ × A+ and
I = {ε} ×A∗, respectively. Now we formalize the iteration rule.

124 5. A Theory of Forbidden Patterns

Definition 5.3. For every set P we define

IT(P) =def
{
(w0, p0, . . . , wm, pm)

∣∣m ≥ 0, pi ∈ P , wi ∈ A+
}
.

Moreover, for an initial pattern I we set P I
0 =def I and P I

n+1 =def IT(P
I
n) for n ≥ 0 to obtain

iterated patterns starting with I. We have to say what it means that we find an iterated
pattern in the transition graph of some DFA.

Definition 5.4. For some p = (w0, p0, . . . , wm, pm) ∈ IT(P I
n+1) with n ≥ 0 and given states

s, s1, s2 of some DFAM we say

– p appears at s ⇐⇒def there exist states q0, r0, . . . , qm, rm ofM such that

s
w0−→ q0

p0� r0
w1−→ q1

p1� r1
w2−→· · · wm−→ qm

pm� rm = s

– s1, s2 are connected via p (in notation s1
p� s2) ⇐⇒def p appears at s1 and s2, and there

exist states q0, . . . , qm ofM such that pi appears at state qi for 0 ≤ i ≤ m and

s1
w0−→ q0

w1−→ q1
w2−→· · · wm−→ qm = s2.

If we compare the definition of P I
n for I = A+×A+ and I = {ε}×A∗ with the patterns B 3/2

and L 3/2 as given in Figures 5.2 and 5.4, respectively, we see how our previous observations
are reflected. Finally, we define what it means that some DFA has pattern P I

n.

Definition 5.5. For a DFA M = (A,S, δ, s0, S
′), an initial pattern I and n ≥ 0 we say

thatM has pattern P I
n if and only if there exist s1, s2 ∈ S, x, z ∈ A∗ and p ∈ P I

n such that

δ(s0, x) = s1, δ(s1, z) ∈ S′, δ(s2, z) /∈ S′ and s1
p� s2.

5.1.2 Some Technical Results

We give two useful constructions to obtain from a given pattern p ∈ P I
n a new pattern from

P I
n having certain nice properties. Before this, we fix a word p◦ obtained from the loop–
structure of p (call this the loop–word), and a word p derived from the bridge–structure of p
(the bridge–word).

Definition 5.6. Let I be an initial pattern. For p = (v,w) ∈ P I
0 we define p =def w and

p◦ =def v. For n ≥ 0 and p = (w0, p0, . . . , wm, pm) ∈ P I
n+1 we define p =def w0 · · ·wm and

p◦ =def w0p0 · · ·wmpm.

We describe two constructions. First, for p ∈ P I
n some λ(p) ∈ P I

n can be defined such that if p
appears at some state s then s, s are connected via λ(p) (cf. Definition 5.8 and Lemma 5.9).
Secondly, in Definition 5.10 we pump up the loop–structure of p to construct for given r ≥ 3
some π(p, r) ∈ P I

n such that

– if two states are connected via p, then they are also connected via π(p, r) (cf. Lemma 5.11)
and

– in every DFA M with |M| ≤ r the words π(p, r) and π(p, r)
◦
lead to states where π(p, r)

appears (cf. Lemma 5.12).

– in every DFA M with |M| ≤ r the words π(p, r)
◦
and π(p, r)

◦
π(p, r) lead to states that

are connected via π(p, r) (cf. Lemma 5.12).

5.1 Pattern Iteration 125

Let us begin with some easy to see statements. In particular the second and third statement
show why we call p the bridge–word and p◦ the loop–word of p.

Proposition 5.7. Let I be an initial pattern, n ≥ 0, p ∈ P I
n and let s, s1, s2 be states of

some DFA.

1. If n ≥ 1 then p, p◦ ∈ A+.

2. If s1
p� s2 then s1

p−→ s2 and p appears at s1 and at s2.

3. If p appears at state s then s
p◦−→ s.

4. If p appears at state s and if p = (w0, p0, . . . , wm, pm) with pi ∈ P I
n−1 for n ≥ 1, then also

pm appears at state s.

All statements are immediate from the definitions (for the third use the second statement).
We give the construction of λ(p).

Definition 5.8. Let I be an initial pattern. For p = (v,w) ∈ P I
0 we define λ(p) =def (v, v).

For n ≥ 1 and p = (w0, p0, . . . , wm, pm) ∈ P I
n we define λ(p) =def (p

◦, λ(pm)).

The following lemma states the announced property of λ(p).

Lemma 5.9. For every initial pattern I, n ≥ 0 and p ∈ P I
n we have λ(p) ∈ P I

n. Moreover, if

p appears at state s of some DFA then s, s are connected via λ(p), i.e., s
λ(p)� s.

Proof. We prove the lemma by induction on n. For n = 0 we have p = (v,w) ∈ P I
0 = I.

By Definition 5.1 it holds that λ(p) = (v, v) ∈ I = P I
0. If p appears at some state s we

have δ(s, v) = s by definition. Therefore, the states s, s are connected via λ(p) = (v, v) by
Definition 5.2.
Assume the lemma holds for some n ≥ 0 and we want to prove it for n+ 1. Let p ∈ P I

n+1

such that for some m ≥ 0, pi ∈ P I
n and wi ∈ A+ we have p = (w0, p0, . . . , wm, pm). By

Proposition 5.7 we have p◦ ∈ A+ and from induction hypothesis we know that λ(pm) ∈ P I
n.

So with Definition 5.3 we see that λ(p) = (p◦, λ(pm)) ∈ IT(P I
n) = P I

n+1.
It remains to show that the states s, s are connected via λ(p) = (p◦, λ(pm)) in some DFA if

p appears at state s. By Proposition 5.7 we know that pm appears at state s so we get from the
induction hypothesis that s, s are connected via λ(pm). Since δ(s, p◦) = s by Proposition 5.7
we obtain that λ(p) appears at state s. Now let s1 =def s, s2 =def s and q0 =def s. Then
q0 = s2 and since p appears at state s it follows from Proposition 5.7 that δ(s1, p

◦) = q0.
We have already seen that s, s are connected via λ(pm), particularly λ(pm) appears at state
s = q0 by Proposition 5.7. This shows that s, s are connected via λ(p). ❑

The second construction, i.e., the construction of π(p, r) is more involved.

Definition 5.10. Let I be an initial pattern and r ≥ 3. For p = (v,w) ∈ P I
0 let π(p, r) =def

(vr!, w · vr!). For n ≥ 1 and p = (w0, p0, . . . , wm, pm) ∈ P I
n we define the following:

p′i =def π(pi, r)

w =def w0 · p′0
◦ · p′0 · w1 · p′1

◦ · p′1 · · ·wm · p′m◦ · p′m
π(p, r) =def (w0 · p′0

◦
, p′0, w1 · p′1

◦
, p′1, . . . , wm · p′m◦

, p′m, w, λ(p′m), . . . , w, λ(p′m)︸ ︷︷ ︸
(r!− 1) times “w, λ(p′m)”

)

126 5. A Theory of Forbidden Patterns

With the next lemma we show that pattern π(p, r) is equivalent to p in the sense that it
appears at a state and connects states in some DFA if p does.

Lemma 5.11. Let I be an initial pattern, r ≥ 3, n ≥ 0, p ∈ P I
n and let s, s1, s2 be states of

some DFA.

1. It holds that π(p, r) ∈ P I
n.

2. If p appears at some state s then also π(p, r) appears at s.

3. If s1
p� s2 then s1, s2 are connected also via π(p, r), i.e., s1

π(p,r)� s2.

Proof. We show the three statements simultaneously by induction on n.
Induction base. For n = 0 we have p = (v,w) ∈ P I

0 = I and p′ =def π(p, r) = (vr!, w · vr!).
By Definition 5.1 we get p′ ∈ I = P I

0. Let M = (A,S, δ, s0, S
′) be a DFA and s, s1, s2 ∈ S.

If p appears at state s then δ(s, v) = s. Hence δ(s, vr!) = s and so p′ appears at state s. If
s1, s2 are connected via p, then s1 = δ(s1, v) and s2 = δ(s1, w) = δ(s2, v). It follows that
s1 = δ(s1, v

r!) and s2 = δ(s1, w · vr!) = δ(s2, v
r!). Thus s1, s2 are also connected via p′.

Induction step. Suppose we have shown the lemma for some n ≥ 0 and we want to show
it for n + 1. Let p ∈ P I

n+1, choose suitable m ≥ 0, pi ∈ P I
n and wi ∈ A+ such that p =

(w0, p0, . . . , wm, pm) and set p′ =def π(p, r). As in Definition 5.10 let p′i =def π(pi, r) and

w =def w0 · p′0
◦ · p′0 · · ·wm · p′m◦ · p′m. LetM = (A,S, δ, s0, S

′) be some DFA. First we show the
following claim.

Claim. Let s′ ∈ S such that p appears at s′. Then it holds that δ(s′, w) = s′.

Proof of Claim. If p appears at s′ then there exist states q0, r0, . . . , qm, rm ofM such that

s′ w0−→ q0
p0� r0

w1−→ q1
p1� r1

w2−→· · · wm−→ qm
pm� rm = s′.

By induction hypothesis we know that qi, ri are also connected via p′i for 0 ≤ i ≤ m. From
Proposition 5.7 we see that δ(qi, p′i) = ri for 0 ≤ i ≤ m. Again by Proposition 5.7 the state qi
has a p′i

◦
-loop for 0 ≤ i ≤ m. It follows that δ(s′, w0 ·p′0

◦ ·p′0 · · ·wi ·p′i
◦ ·p′i) = ri for 0 ≤ i ≤ m.

This shows δ(s′, w) = rm = s′. (End proof of Claim.)

We use similar arguments to show the induction step. For the first statement observe
that by hypothesis we have p′0, . . . , p′m ∈ P I

n. By Lemma 5.9 it holds that λ(p
′
m) ∈ P I

n. Since

w ∈ A+ and also w0p′0
◦
, . . . , wmp′m

◦ ∈ A+ it follows that π(p, r) ∈ IT(P I
n) = P I

n+1.
Let s, s1, s2 ∈ S. For the second statement assume that p appears at state s. By definition,

there exist states q0, r0, . . . , qm, rm ofM such that

s
w0−→ q0

p0� r0
w1−→ q1

p1� r1
w2−→· · · wm−→ qm

pm� rm = s.

Using the additional states qj =def s and rj =def s for m+1 ≤ j ≤ m′ with m′ =def m+r!−1
we show that also p′ appears at state s. Therefore we have to show that

s
w0p′0

◦

−→ q0
p′0� r0

w1p′1
◦

−→ q1
p′1� r1

w2p′2
◦

−→ · · · wmp′m
◦

−→ qm
p′m� rm

w−→ qm+1
λ(p′m)� rm+1 · · · w−→ qm′

λ(p′m)� rm′ .

Note that rm′ = s and let 1 ≤ j ≤ m. Since qj
pj� rj we have by Proposition 5.7 that pj

appears at qj. We obtain from the hypothesis that p
′
j appears at qj and from Proposition 5.7

that δ(qj , p′j
◦
) = qj. So for 1 ≤ j ≤ m we see that

5.1 Pattern Iteration 127

s
w0p′0

◦

−→ q0 and rj−1
wjp′j

◦

−→ qj

while the former is shown with the same arguments. By hypothesis we have that qi, ri are
connected via p′i for 0 ≤ i ≤ m. It remains to show that δ(s,w) = s and that s, s are
connected via λ(p′m). For the former we apply our claim from above, for the latter note with
Proposition 5.7 that pm appears at rm = s. So by hypothesis we have that p′m appears at s
and Lemma 5.9 says that s, s are connected via λ(p′m).
We turn to the third statement and assume that s1, s2 are connected via p. By definition,

p appears at s1 and s2, and there exist states q0, . . . , qm ofM such that pi appears at state
qi for 0 ≤ i ≤ m and

s1
w0−→ q0

w1−→ q1
w2−→· · · wm−→ qm = s2.

We already know from the second statement that p′ appears at s1 and s2. Using the additional
states qj =def s2 for m+ 1 ≤ j ≤ m′ with m′ =def m+ r!− 1 we first show that

s1
w0p′0

◦

−→ q0
w1p′1

◦

−→ q1
w2p′2

◦

−→ · · · wmp′m
◦

−→ qm
w−→ qm+1 · · · w−→ qm′ .

Note that qm′ = s2 and let 0 ≤ i ≤ m. By assumption we know that pi appears at qi and
from the hypothesis we get that also p′i appears at qi. So we have by Proposition 5.7 that

δ(qi, p
′
i

◦
) = qi and together with the assumption we see for 0 ≤ i < m that

s
w0p′0

◦

−→ q0 and qi
wip′i

◦

−→ qi+1.

Since p appears at s2 our claim shows for m ≤ j < m′ that δ(qj , w) = δ(s2, w) = s2 = qj+1.
We know that pi appears at qi for 0 ≤ i ≤ m and by hypothesis we obtain that p′i appears

at qi. In particular p
′
m appears at qm = s2. So from Lemma 5.9 together with Proposition 5.7

we obtain that λ(p′m) appears at qj for m+ 1 ≤ j ≤ m′. ❑

With the construction of π(p, r) we have obtained a possibility to find patterns from P I
n in

automata for which we only require that their size is less or equal to r. Note in particular
that we do not require in the following lemma that p ∈ P I

n appears somewhere inM or that
it connects some states, we just have the size restriction.

Lemma 5.12. Let I be an initial pattern, r ≥ 3, n ≥ 0, p ∈ P I
n and let M be a DFA with

|M| ≤ r. It holds that

1. π(p, r)
◦
leads to states in M where π(p, r) appears,

2. π(p, r) leads to states in M where π(p, r) appears and

3. π(p, r)
◦
and π(p, r)

◦
π(p, r) lead to states in M that are connected via π(p, r).

Proof. We prove the lemma by induction on n.
Induction base. LetM = (A,S, δ, s0, S

′) be some DFA with |M| ≤ r. If n = 0 then we have
p = (v,w) ∈ P I

0 and π(p, r) = (vr!, w ·vr!). Since vr leads to vr!-loops inM by Proposition 1.34

we obtain that π(p, r)
◦
= vr!−r · vr and π(p, r) = w · vr!−r · vr lead to states where π(p, r)

appears. Hence π(p, r)
◦
and π(p, r)

◦ · π(p, r) lead to states which are connected via π(p, r).
Induction step. Suppose we have shown the lemma for some n ≥ 0 and we want to show
it for n + 1. Let M = (A,S, δ, s0, S

′) be some DFA with |M| ≤ r. Furthermore, let p =
(w0, p0, . . . , wm, pm) ∈ P I

n+1 and assume that w, p′i are as in Definition 5.10. First we show
the following claim.

128 5. A Theory of Forbidden Patterns

Claim. It holds that wr!−1 leads to states inM where π(p, r) appears.

Proof of Claim. Observe that wr!−1 = wr!−1−rwr leads to a wr!-loop in M by Proposi-
tion 1.34 since r ≥ 3 and hence r! ≥ r+1. So let s be a state ofM which has a wr!-loop and
we will show that π(p, r) appears at s. Define the following witnessing states.

q0 =def δ(s,w0 · p′0
◦
) r0 =def δ(q0, p

′
0)

qi =def δ(ri−1, wi · p′i
◦
) ri =def δ(qi, p

′
i) for 1 ≤ i ≤ m

qm+j =def δ(rm, wj) rm+j =def qm+j for 1 ≤ j ≤ r!− 1
So we have the following situation where m′ =def m+ r!− 1.

s
w0·p′0

◦

−→ q0
p′0−→ r0

w1·p′1
◦

−→ q1
p′1−→ r1

w2·p′2
◦

−→ · · · wm·p′m◦
−→ qm

p′m−→ rm and

rm
w−→ qm+1 = rm+1

w−→ qm+2 = rm+2
w−→· · · w−→ qm′ = rm′

It follows from induction hypothesis that qi, ri are connected via p′i for 0 ≤ i ≤ m. Moreover,
the hypothesis also shows that p′m appears at qj for m + 1 ≤ j ≤ m′ since p′m is a suffix of
w. From Lemma 5.9 we get that qj, rj are connected via λ(p′m). Finally, by the definition of
w we have rm = δ(s,w) and rm′ = δ(rm, wr!−1) = δ(s,wr!) = s. Hence we have shown that

s
w0·p′0

◦

−→ q0
p′0� r0

w1·p′1
◦

−→ q1
p′1� r1

w2·p′2
◦

−→ · · · wm·p′m◦
−→ qm

p′m� rm and

rm
w−→ qm+1

λ(p′m)� rm+1
w−→ qm+2

λ(p′m)� rm+2
w−→· · · w−→ qm′

λ(p′m)� rm′ = s.

So π(p, r) appears at s. (End proof of Claim.)

Since p′m is a suffix of w it follows from the induction hypothesis that w leads to states
where p′m appears. From Lemma 5.9 and Proposition 5.7 we obtain that w leads to a λ(p′m)-
loop inM. Hence our claim holds also for

(
w · λ(p′m)

)r!−1
. Now observe that

π(p, r) = w0 · p′0
◦ · · ·wm · p′m◦ · wr!−1 and

π(p, r)
◦
= w0 · p′0

◦ · p′0 · · ·wm · p′m◦ · p′m ·
(
w · λ(p′m)

)r!−1
.

So the claim says that π(p, r) and π(p, r)
◦
lead to states in M where π(p, r) appears. This

shows statements 1 and 2 of the lemma.
We turn to statement 3 and choose an arbitrary state s ofM. For s1 =def δ(s, π(p, r)

◦
) and

s2 =def δ(s, π(p, r)
◦·π(p, r)) we show that s1, s2 are connected via π(p, r). Letm′ =def m+r!−1

and define the following witnessing states.

q0 =def δ(s1, w0 · p′0
◦
)

qi+1 =def δ(qi, wi+1 · p′i+1
◦
) for 0 ≤ i < m

qj+1 =def δ(qj , w) for m ≤ j < m′

We have already seen that π(p, r) appears at s1 and at s2. Observe that qm′ = δ(s1, π(p, r)) =
s2. So it remains to show that p

′
i appears at qi for 0 ≤ i ≤ m and that λ(p′m) appears at qj

for m+ 1 ≤ j ≤ m′.
By induction hypothesis we have that p′i

◦
leads to states in M where p′i appears. Hence

p′i appears at state qi for 0 ≤ i ≤ m. Since p′m is a suffix of w the induction hypothesis shows
that p′m appears at qj for all j with m+ 1 ≤ j ≤ m′. With Lemma 5.9 we see that qj, qj are
connected via λ(p′m), so in particular λ(p′m) appears at state qj. ❑

5.2 Pattern Iterator versus Polynomial Closure 129

5.2 Pattern Iterator versus Polynomial Closure

We relate in this section in a general way Boolean operations and concatenation to the
structural complexity of transition graphs, i.e., we show with the following theorem that a
complementation followed by a polynomial closure operation on the language side is captured
by our iteration rule on the forbidden pattern side.

Theorem 5.13. Let I be an initial pattern and let n ≥ 0. It holds that

Pol(coFP(P I
n)) ⊆ FP(P I

n+1).

The proof is given in the next subsection, while we show in Subsection 5.2.2 what inclusion
relations hold between the forbidden pattern classes. Subsection 5.2.3 investigates under what
circumstances the classes FP(P I

n) have decidable membership problems. Let us begin with
the fact that for all n ≥ 0 the classes FP(P I

n) are well–defined.

Proposition 5.14. Let I be an initial pattern, n ≥ 0 and letM1 andM2 be two DFA’s such
that L(M1) = L(M2). Then it holds that M1 has pattern P I

n if and only M2 has pattern P I
n.

Proof. It suffices to show one implication, so suppose M1 has pattern P I
n. Then there are

states s1, s2 inM1 that are connected via some p ∈ P I
n such that δ(s0, x) = s1, δ(s1, z) ∈ S′,

δ(s2, z) /∈ S′ for suitable x, z ∈ A∗ and if s0 is the starting state ofM1 and if S
′ is its set of

accepting states. Define r =def |M2| and p′ =def π(p, r). We obtain from Lemma 5.11 that
s1, s2 inM1 are also connected via p′ ∈ P I

n. So by Proposition 5.7 we have xp′◦z ∈ L(M1) =
L(M2) and xp′◦p′z �∈ L(M1) = L(M2). Now define s′1 and s′2 to be the states in M2 that
can be reached from its starting state on input xp′◦ and xp′◦p′, respectively. By Lemma 5.12
we get that s′1 and s′2 are connected via p′ in M2. Since we reach from s′1 (s′2) with z an
accepting state ofM2 (rejecting state, respectively) this shows thatM2 has pattern P I

n. ❑

5.2.1 Proof of Theorem 5.13

We isolate the main argument of the proof in the following lemma. It says that under certain
assumptions we can replace bridge–words by their respective loop–words without leaving the
language of some DFA.

Lemma 5.15. Let I be an initial pattern, r ≥ 3, n ≥ 0 and p ∈ P I
n+1. Let M be a DFA with

|M| ≤ r which does not have pattern P I
n. Then for all x, z ∈ A∗ it holds that

x · π(p, r) · z ∈ L(M) =⇒ x · π(p, r)◦ · z ∈ L(M).

Proof. We choose suitable m ≥ 0, wi ∈ A+ and pi ∈ P I
n such that p = (w0, p0, . . . , wm, pm).

For 0 ≤ i ≤ m let as before p′i =def π(pi, r) and w =def w0 · p′0
◦ · p′0 · · ·wm · p′m◦ · p′m. By

Definitions 5.10 and 5.6 we have that

p′ =def π(p, r) = (w0 · p′0
◦
, p′0, w1 · p′1

◦
. . . , wm · p′m◦

, p′m, w, λ(p′m), . . . , w, λ(p′m))

p′◦ = w0 · p′0
◦ · p′0 · w1 · p′1

◦ · · ·wm · p′m◦ · p′m ·
(
w · λ(p′m)

)r!−1
and

p′ = w0 · p′0
◦ · w1 · p′1

◦ · · ·wm · p′m◦ ·
(
w

)r!−1

130 5. A Theory of Forbidden Patterns

where the term “w, λ(p′m)” in π(p, r) is repeated (r!− 1) times. Now let x, z ∈ A∗ such that
xp′z ∈ L(M). First, we show that we can successively insert the p′i in p′. By assumption we
have

xw0︸︷︷︸
x′=def

p′0
◦
w1p

′
1

◦
w2p

′
2

◦ · · ·wmp′m
◦
wr!−1z︸ ︷︷ ︸

z′=def

∈ L(M).

We show that x′p′0
◦
p′0z

′ ∈ L(M). From Lemma 5.12 we see that the states s1 =def δ(s0, x
′p′0

◦
)

and s2 =def δ(s0, x
′p′0

◦
p′0) are connected via p′0. Note that p′0 ∈ P I

n by Lemma 5.11. If

x′p′0
◦
p′0z

′ /∈ L(M) then we have δ(s0, x
′p′0

◦
) = s1, δ(s1, z

′) ∈ S′, δ(s2, z′) /∈ S′ and the states
s1, s2 are connected via p′0 ∈ P I

n. It follows thatM has pattern P I
n which is a contradiction

to the assumption. Thus starting from

xw0p′0
◦

w1p′1
◦
w2p′2

◦ · · ·wmp′m
◦
wr!−1z ∈ L(M)

we have shown
xw0p′0

◦
p′0w1p′1

◦
w2p′2

◦ · · ·wmp′m
◦
wr!−1z ∈ L(M).

With the same procedure we obtain:

xw0p
′
0

◦
p′0w1p

′
1

◦
w2p

′
2

◦
w3p

′
3

◦
w4p

′
4

◦ · · · wmp′m
◦

wr!−1z ∈ L(M)

xw0p′0
◦
p′0w1p′1

◦
p′1w2p′2

◦
w3p′3

◦
w4p′4

◦ · · · wmp′m
◦

wr!−1z ∈ L(M)

xw0p′0
◦
p′0w1p′1

◦
p′1w2p′2

◦
p′2w3p′3

◦
w4p′4

◦ · · · wmp′m
◦

wr!−1z ∈ L(M)

xw0p
′
0

◦
p′0w1p

′
1

◦
p′1w2p

′
2

◦
p′2w3p

′
3

◦
p′3w4p

′
4

◦ · · · wmp′m
◦

wr!−1z ∈ L(M)

...

xw0p′0
◦
p′0w1p′1

◦
p′1w2p′2

◦
p′2w3p′3

◦
p′3w4p′4

◦ · · · wmp′m
◦
p′mwr!−1z ∈ L(M) (5.1)

Now we have to deal with the λ(p′m). Note that by definition p′m is a suffix of w. From
Lemma 5.12 it follows that w leads to states inM where p′m appears. By Lemma 5.9 we get
for all s′ ∈ S and s =def δ(s

′, w) that s, s are connected via λ(p′m). Now Proposition 5.7 says
that w leads to states inM which have a λ(p′m)-loop. So starting with (5.1) we concluded

xw0p′0
◦
p′0w1p′1

◦
p′1w2p′2

◦
p′2w3p′3

◦
p′3w4p′4

◦ · · ·wmp′m
◦
p′m wλ(p′m) w

r!−2z ∈ L(M).

We can repeat this argument for the remaining (r!− 2) occurrences of w to see that

xw0p′0
◦
p′0w1p′1

◦
p′1w2p′2

◦
p′2w3p′3

◦
p′3w4p′4

◦ · · ·wmp′m
◦
p′mwλ(p′m) . . . wλ(p′m)︸ ︷︷ ︸

=p′◦

z ∈ L(M)

where the term “w, λ(p′m)” is repeated (r!− 1) times. This shows that xp′◦z ∈ L(M). ❑

Proof of Theorem 5.13. We assume that there exists an L ∈ Pol(coFP(P I
n)) which is no

element of FP(P I
n+1) and show that this leads to a contradiction. From L ∈ Pol(coFP(P I

n))
it follows that

L =
k⋃

i=1

Li,0Li,1 · · ·Li,ki

5.2 Pattern Iterator versus Polynomial Closure 131

for some k ≥ 0, ki ≥ 0 and Li,j ∈ coFP(P I
n). Let M = (A,S, δ, s0, S

′) be a DFA with
L(M) = L. For 1 ≤ i ≤ k and 0 ≤ j ≤ ki let Mi,j be a DFA with L(Mi,j) = Li,j and let
M′

i,j be a DFA with L(M′
i,j) = A+ \ Li,j. Furthermore, we define

r =def max
({ |Mi,j|, |M′

i,j | | 1 ≤ i ≤ k ∧ 0 ≤ j ≤ ki
} ∪ {|M|, 3} ∪ { ki + 1 | 1 ≤ i ≤ k }) .

The DFAM has pattern P I
n+1 since L �∈ FP(P I

n+1) by assumption. So there exist s1, s2 ∈ S,
x, z ∈ A∗, p ∈ P I

n+1 such that δ(s0, x) = s1, δ(s1, z) ∈ S′, δ(s2, z) /∈ S′ and the states s1, s2
are connected via p. It follows that L �= ∅ and k ≥ 1. By Lemma 5.11 the states s1, s2 are
also connected via pattern p′ =def π(p, r). From Proposition 5.7 it follows that x

(
p′◦
)i
z ∈ L

for all i ≥ 0. Thus there exists an i′ with 1 ≤ i′ ≤ k such that

x
(
p′◦
)r

z ∈ Li′,0Li′,1 · · ·Li′,ki′ .

Since r ≥ ki′ + 1 it follows with a pigeon hole argument that there exist 0 ≤ j′ ≤ ki′ and
words x′, x′′, z′, z′′ ∈ A∗ such that

1. x
(
p′◦
)r

z = x′′x′p′◦z′z′′,

2. x′′x′ = x
(
p′◦
)i
and z′z′′ =

(
p′◦
)j

z for some i, j ≥ 0 and
3. x′′ ∈ Li′,0Li′,1 · · ·Li′,j′−1, x′p′◦z′ ∈ Li′,j′ and z′′ ∈ Li′,j′+1Li′,j′+2 · · ·Li′,ki′ .

Since |Mi′,j′| ≤ r the word p′◦ leads to states inMi′,j′ where p′ appears by Lemma 5.12. In
particular, such a state has a p′◦-loop by Proposition 5.7. From x′p′◦z′ ∈ Li′,j′ it follows that
for all i ≥ 1 we have

x′
(
p′◦
)i

z′ ∈ Li′,j′. (5.2)

Because s1, s2 are connected via p′ in M we have by Proposition 5.7 that δ(s0, x
′′x′) = s1,

δ(s2, z
′z′′) = δ(s2, z) and δ(s1, p′) = s2. Assume to the contrary that x

′p′◦p′z′ ∈ Li′,j′ . Then

we obtain x′′x′p′◦p′z′z′′ ∈ L. It follows that

δ(s2, z) = δ(s2, z
′z′′) = δ(s1, p′z′z′′) = δ(s1, p′

◦
p′z′z′′) = δ(s0, x

′′x′p′◦p′z′z′′) ∈ S′.

This is a contradiction since δ(s2, z) /∈ S′. So we have seen that

x′p′◦p′z′ /∈ Li′,j′.

In other terms, it holds that

x′p′◦p′z′ ∈ A+ \ Li′,j′ = L(M′
i′,j′) (5.3)

because |x′p′◦p′z′| ≥ |x′p′◦z′| ≥ 1. Recall that L(M′
i′,j′) ∈ FP(P I

n) and hence the DFAM′
i′,j′

does not have pattern P I
n. Since |M′

i′,j′ | ≤ r we can apply Lemma 5.15 and together with

(5.3) we obtain x′p′◦p′◦z′ ∈ L(M′
i′,j′). It follows that x

′p′◦p′◦z′ /∈ A+ \L(M′
i′,j′) = Li′,j′ . This

is a contradiction to (5.2). So Pol(coFP(P I
n)) ⊆ FP(P I

n+1).
(End proof of Theorem 5.13.)

132 5. A Theory of Forbidden Patterns

5.2.2 Inclusion Relations

In this subsection we show that if some initial pattern I satisfies a certain weak property
then the inclusion FP(P I

n) ∪ coFP(P I
n) ⊆ FP(P I

n+1) ∩ coFP(P I
n+1) holds for all n ≥ 0 (cf.

Theorem 5.19).

Definition 5.16. Let I1,I2 be initial patterns and let n1, n2 ≥ 0. We define that P I1
n1 � P I2

n2

if and only if for every p2 ∈ P I2
n2 there exists a p1 ∈ P I1

n1 such that for every DFA M =
(A,S, δ, s0, S

′) and all states s, s1, s2 ∈ S the following holds:

1. If p2 appears at s then p1 appears at s.
2. If s1

p2� s2 then s1
p1� s2.

If the relation � holds on one level, then it also holds on the next.
Proposition 5.17. Let I1,I2 be initial patterns and let n1, n2 ≥ 0. It holds that

P I1
n1 � P I2

n2 =⇒ P I1
n1+1

� P I2
n2+1

.

Proof. Suppose P I1
n1 � P I2

n2 . So for given p2 = (w2,0, p2,0, . . . , w2,m, p2,m) ∈ P I2
n2+1

with w2,i ∈
A+ and p2,i ∈ P I1

n2 there exist p1,0, . . . , p1,m ∈ P I1
n1 such that for every DFAM = (A,S, δ, s0, S

′)
and all states s, s1, s2 ∈ S the following holds:

a. If p2,i appears at s then p1,i appears at s.

b. If s1
p2,i� s2 then s1

p1,i� s2.

Define p1 =def (w2,0, p1,0, . . . , w2,m, p1,m) and observe that p1 ∈ P I1
n1+1

. Now let M =
(A,S, δ, s0, S

′) be some DFA and s, s1, s2 ∈ S. We have to show the following:

(i) If p2 appears at s then p1 appears at s.

(ii) If s1
p2� s2 then s1

p1� s2.

Suppose that p2 appears at s inM. Then there exist states q0, r0, . . . , qm, rm ofM such that

s
w2,0−→ q0

p2,0� r0
w2,1−→ q1

p2,1� r1
w2,2−→· · · w2,m−→ qm

p2,m� rm = s.

Using b. from above this implies that

s
w2,0−→ q0

p1,0� r0
w2,1−→ q1

p1,1� r1
w2,2−→· · · w2,m−→ qm

p1,m� rm = s

which shows that p1 appears at s.
Now assume that s1, s2 are connected via p2. Then p2 appears at s1 and s2, and there

exist states q0, . . . , qm ofM such that p2,i appears at state qi for 0 ≤ i ≤ m and

s1
w2,0−→ q0

w2,1−→ q1
w2,2−→· · · w2,m−→ qm = s2.

From (i) we obtain that p1 appears at s1 and s2, and if we apply a. we get that p1,i appears
at state qi for 0 ≤ i ≤ m. This shows that s1, s2 are connected via p1. So P

I1
n1+1

� P I2
n2+1

. ❑

5.2 Pattern Iterator versus Polynomial Closure 133

Proposition 5.18. Let I1,I2 be initial patterns and let n1, n2 ≥ 0. It holds that

P I1
n1 � P I2

n2 =⇒ FP(P I1
n1) ⊆ FP(P I2

n2).

Proof. Suppose P I1
n1 � P I2

n2 . For any language L /∈ FP(P I2
n2) we show that L /∈ FP(P I1

n1).
Let M = (A,S, δ, s0, S

′) be a DFA with L(M) = L. Observe that M has pattern P I2
n2 by

assumption. So there exist s1, s2 ∈ S, x, z ∈ A∗ and p2 ∈ P I2
n2 such that δ(s0, x) = s1,

δ(s1, z) ∈ S′, δ(s2, z) /∈ S′ and the states s1, s2 are connected via p2. Because P
I1
n1 � P I2

n2 there
exists some p1 ∈ P I1

n1 such that the states s1, s2 are connected via p1. It follows thatM has
also pattern P I1

n1 . This shows L /∈ FP(P I1
n1) and hence FP(P I1

n1) ⊆ FP(P I2
n2). ❑

The proof of the following theorem is an immediate consequence of these propositions.

Theorem 5.19. Let I be an initial pattern with P I
0 � P I

1. For n ≥ 0 it holds that

FP(P I
n) ∪ coFP(P I

n) ⊆ FP(P I
n+1) ∩ coFP(P I

n+1).

Proof. From Proposition 5.17 we obtain with the assumption P I
0 � P I

1 that P I
n � P I

n+1

for all n ≥ 0. By Proposition 5.18 this implies FP(P I
n) ⊆ FP(P I

n+1) for all n ≥ 0. We
conclude that also coFP(P I

n) ⊆ coFP(P I
n+1) for all n ≥ 0. Observe from Theorem 5.13 that

coFP(P I
n) ⊆ Pol(coFP(P I

n)) ⊆ FP(P I
n+1) which also implies FP(P I

n) = co(coFP(P I
n)) ⊆

coFP(P I
n+1). ❑

5.2.3 Decidability of Pattern Classes

We show that the membership problem of the class FP(P I
n) for fixed n ≥ 0 is decidable in

nondeterministic logarithmic space NL whenever the following can be done for the initial
pattern I in these space bounds: decide for a given DFA M and a constant number of
states whether I appears at these states and whether they are connected via I. Note that
the decidability of FP(P I

n) has to depend on the initial pattern, since an undecidable set I
(which can be easily constructed) may lead to undecidable pattern classes.
We define two problems addressing the question of the existence of paths and patterns

that appear simultaneously in a DFA. The first problem Reachk has already been considered
in Section 1.5, however, we have not fixed a notation yet.

Definition 5.20. Let k ≥ 1. We define Reachk to be the set of pairs (M,W) such that

1. M = (A,S, δ, s0, S
′) is a DFA,

2. W ⊆ S × S with |W | ≤ k and
3. (s1, . . . , s|W |) −→+ (s′1, . . . , s′|W |) for (si, s

′
i) ∈W .

We have argued in Section 1.5 that for fixed k ≥ 0 it holds that Reachk is in NL: start at
(s1, . . . , s|W |), guess a non–empty path and continuously compare the actual tuple of states
with (s′1, . . . , s

′
|W |).

Proposition 5.21. Let k ≥ 1. It holds that Reachk ∈ NL.
The second problem has two parameters, additionally to k bounding the number of states as
before, there is a parameter n refering to FP(P I

n).

134 5. A Theory of Forbidden Patterns

Definition 5.22. Let I be an initial pattern, n ≥ 0 and k ≥ 1. We define PatternI
n,k to be

the set of all triples (M, T1, T2) such that

1. M = (A,S, δ, s0, S
′) is a DFA,

2. T1 ⊆ S with |T1| ≤ k,
3. T2 ⊆ S × S with |T2| ≤ k and
4. there exists some p ∈ P I

n such that for all s ∈ T1 and all (s1, s2) ∈ T2 it holds that
a) p appears at s and

b) s1
p� s2.

Before we continue, we need to make a remark concerning our computation model. Our
algorithm in the forthcoming proof works on nondeterministic Turing machines having a read–
only input tape and a read–write working tape. We prerequisite some standard enconding of
a DFA and of the respective set of states. Moreover, a Turing machine represents a single
state of a DFA on its working tape by the number of the state in binary. Note that the space
needed to do this for a contant number of states is bounded logarithmically in the input size.
Furthermore, the type of Turing machine we have in mind have access to an oracle via

an additional write–only query tape. The restrictions for the query tape are as follows. From
the moment where the machine writes the first letter on the query tape, it is not allowed to
make nondeterministic choices until the oracle is asked. It receives the answer whether the
string on the query tape belongs to the oracle set by changing to a respective state. After
doing this the query tape is empty. When we determine the amount of space the machine
uses then only the working tape is considered. For details about this computation model we
refer to [RST82], an introduction to oracle computation can be found in [Pap94].
The next lemma says that the problem PatternI

n,k is decidable in nondeterministic log-

arithmic space when the machine has access to PatternI
(n−1),3k as an oracle. Note that the

first index is reduced to n− 1.
Lemma 5.23. Let I be an initial pattern, n ≥ 1 and k ≥ 1. It holds that

PatternI
n,k ∈ NLPattern

I
(n−1),3k .

Proof. We give an algorithm for PatternI
n,k in Table 5.1. This algorithm has access to a

Reach4k oracle and to a PatternI
(n−1),3k oracle. The notations in the table are adopted

from Figures 5.5 and 5.6 where we give an example of the case that a pattern appears at
some state and of the case that two states are connected via a pattern, respectively. We show
that this algorithm works in logarithmic space and decides PatternI

n,k. By Proposition 5.21
we have Reachk ∈ NL. Since the access to an oracle from NL does not rise the power of an
NL machine, i.e., NLNL = NL [Sze87, Imm88], we can do the same computation without the
Reach4k oracle and obtain the required algorithm.
First we observe that the algorithm accesses the oracle in the way as described above.

For this we only have to consider step 4. Since on one hand we have already computed the
sets W , T ′

1 and T ′
2 (and stored on the working–tape) and on the other hand M is stored

on the input–tape, we can actually write down the queries (M,W) and (M, T ′
1, T

′
2) on the

query–tape without making any nondeterministic choices.
Let us analyse the space on the working–tape which is needed on input (M, T1, T2). Note

that our algorithm uses only a constant number of variables which is bounded by O(k).

5.3 Discussion 135

Moreover, all variables except T ′
1, T

′
2,W contain numbers of states ofM, which can be stored

in logarithmic space. Each of the variables T ′
1, T

′
2,W contains a set consisting of at most 4k

(pairs of) numbers of states. This shows that our algorithm works in logarithmic space.
In the remaining part of the proof we argue that our algorithm really decides PatternI

n,k.

First we want to see that the computation has an accepting path if (M, T1, T2) ∈ PatternI
n,k.

For this let p = (w0, p0, . . . , wm, pm) ∈ P I
n be a witnessing pattern. We denote the involved

states in the occurrence of p at si as in Figure 5.5, and we denote the involved states of
the connection of qj, rj via p as in Figure 5.6. Now consider that particular path of the
computation, where we carry out exactly m + 1 passes of the loop and where we guess the
states φi,l, ψi,l, αj,l, βj,l, γj,l, δj,l, λj,l at the beginning of the l-th pass of the loop (starting with
pass 0). It can be easily verified that this is an accepting path.
Now suppose that the computation on input (M, T1, T2) has an accepting path, and fix

one of these paths. Choose m such that on this path the loop is passed m + 1 times. Note
that in each pass of the loop we receive positive answers to the queries (M,W) ∈ Reach4k
and (M, T ′

1, T
′
2) ∈ PatternI

(n−1),3k because otherwise the fixed path would be rejecting. It
follows that for each pass l there exists a word wl ∈ A+ witnessing (M,W) ∈ Reach4k
and there exists a pattern pl ∈ P I

n−1 witnessing (M, T ′
1, T

′
2) ∈ PatternI

(n−1),3k. Now define
p =def (w0, p0, . . . , wm, pm). Using the states φi,l, ψi,l, αj,l, βj,l, γj,l, δj,l, λj,l which were guessed
at the beginning of the l-th pass of the loop, we can verify that a) p appears at all si ∈ T1
and b) all qi, ri with (qi, ri) ∈ T2 are connected via p. ❑

The following corollary is immediate, just note again that NLNL = NL [Sze87, Imm88].

Corollary 5.24. Let I be an initial pattern such that PatternI
0,k ∈ NL for all k ≥ 1. Then

PatternI
n,k ∈ NL for all n ≥ 0 and k ≥ 1.

Finally, we obtain the efficient decidability of the membership problem of FP(P I
n) for fixed

n ≥ 0 under the assumptions that the appearance (and connection) of the initial pattern can
be efficiently verified at a constant number of states.

Theorem 5.25. Let I be an initial pattern with PatternI
0,k ∈ NL for k ≥ 1. For fixed n ≥ 0

the membership problem of FP(P I
n) is decidable in nondeterministic logarithmic space NL.

Proof. Let a DFA M = (A,S, δ, s0, S
′) be given. We first guess states s1, s2, s

+, s− ∈ S and
check whether s+ (s−) is accepting (rejecting, respectively), and if s0 −→ s1, (s1, s2) −→
(s+, s−), i.e., we test if (M, {(s0, s1)}) ∈ Reach1 and (M, {(s1, s+), (s2, s−)}) ∈ Reach2.
This is possible in nondeterministic logarithmic space by Proposition 5.21. It remains to check
whether (M, ∅, {(s1, s2)}) ∈ PatternI

n,1 which is also possible in NL by Corollary 5.24. ❑

5.3 Discussion

We want to mention that our result Pol(coFP(P I
n)) ⊆ FP(P I

n+1) generalizes the usually easier
to prove inclusion in forbidden pattern characterizations. Of course we are also interested in
the reverse inclusion. Further investigations may involve to look for particular initial patterns
I for which the reverse inclusion holds — or does not hold: it is possible that the iteration
rule is too strong in the sense that FP(P I

n+1) is a much broader class than Pol(coFP(P I
n)).

However, the applications in the next chapter give some evidence that this is not true in case
of the concatenation hierarchies we are interested in.

136 5. A Theory of Forbidden Patterns

pm

p0

w0

w1

wm

p1

ψi,1

ψi,m−1

φi,m

ψi,m = si

φi,0

ψi,0

φi,1

Fig. 5.5. Example of p = (w0, p0, w1, p1, . . . , wm, pm)
that appears at state si.

pm−1 pm

w0 w1

pm p0 p1

pm pm

αj,0

αj,1

w0

w1

p0
wm p0

w0

w1

wm

p1 p1

γj,0

wm

γj,1

βj,m = qj

βj,0 δj,0

βj,1 δj,1

βj,m−1 δj,m−1

αj,m γj,m

λj,0 λj,1 λj,m−1

rj = δj,m = λj,m

Fig. 5.6. Example of states qj , rj that are connected via p = (w0, p0, w1, p1, . . . , wm, pm).

5.3 Discussion 137

Step,
Label

Command Remark

1. Let t1 := |T1|, t2 := |T2| and let si, qj , rj
such that T1 = {s1, . . . , st1} and T2 =
{(q1, r1), . . . , (qt2 , rt2)}.

Note that t1, t2 are bounded by the constant k. We
have to decide whether there is a p ∈ P

I
n such that

a) p appears at all si (Figure 5.5) and b) all qj , rj
are connected via p (Figure 5.6).

2. For 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2 let

ψstarti := si βstartj := qj

δstartj := rj λstartj := qj

Variables marked with ‘start’ contain the starting
point from where we have to guess and check the
next fragment of the pattern.

3.
loop:

Guess states φi, ψi for 1 ≤ i ≤ t1, states
αj , βj , γj , δj , λj for 1 ≤ j ≤ t2 and let

T ′
1 := {λj | 1 ≤ j ≤ t2 }

T ′
2 := { (φi, ψi) | 1 ≤ i ≤ t1 } ∪

{ (αj , βj) | 1 ≤ j ≤ t2 } ∪
{ (γj , δj ,) | 1 ≤ j ≤ t2 }

W :=
�
(ψstarti , φi) | 1 ≤ i ≤ t1

	 ∪�
(βstartj , αj) | 1 ≤ j ≤ t2

	 ∪�
(δstartj , γj) | 1 ≤ j ≤ t2

	 ∪�
(λstartj , λj) | 1 ≤ j ≤ t2

	

The guessed states correspond to Figures 5.5 and
5.6. In the l-th pass of this loop (starting with
pass 0) the variables φi, ψi, αj , βj , γj , δj , λj

used in the algorithm correspond to
φi,l, ψi,l, αj,l, βj,l, γj,l, δj,l, λj,l, respectively. More-
over, at the beginning of the l-th pass we have a
correspondence between ψstarti , βstartj , δstartj , λstartj

and ψi,l−1, βj,l−1, δj,l−1, λj,l−1, respectively. Using
T ′
1 and T ′

2 we ask the oracle whether there is a
pattern pl that connects (and appears at) the
guessed states. With W we test the existence of a
word wl.

4. Ask the following queries and reject when a
negative answer is given.

(M,W) ∈ Reach4k

(M, T ′
1, T

′
2) ∈ PatternI

(n−1),3k

If at least one negative answer is given then the
states guessed in the previous step do not witness
that there is a pattern from P

I
n.

5. For 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2 let

ψstarti := ψi βstartj := βj

δstartj := δj λstartj := λj

Here we set the next starting points after a success-
full check of the previous fragment of the pattern.

6. Jump nondeterministically to loop or to
exit.

Guess whether we have already checked the right
number of fragments of the pattern, i.e., whether
the number of passes equals m.

7.
exit:

Accept if and only if the following conditions
hold for all 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2:

ψi = si βj = qj

δj = rj λj = rj

It remains to check whether the guessed loops have
reached their starting points, and whether the path
which was guessed via λj leads from qj to rj .

Table 5.1. An algorithm which decides (M, T1, T2) ∈ PatternI
n,k on input of a DFA M = (A,S, δ, s0, S

′)
and sets T1 ⊆ S and T2 ⊆ S × S with |T1|, |T2| ≤ k.

138 5. A Theory of Forbidden Patterns

6. Lower Bounds and a Decidability Result for the STH

We consider in this chapter two special initial patterns L and B corresponding to the con-
catenation hierarchies we are interested in. For notational convenience we write FPL

n and
FPB

n instead of FP(P L
n) and FP(P B

n), respectively.
The main results of this chapter are as follows. In Section 6.1 we see what consequences of

our previous results can be derived for the DDH and STH. We provide the inclusion relations
between forbidden pattern classes (cf. Theorem 6.3) and the inclusion relations between the
STH and DDH and forbidden pattern classes (cf. Theorem 6.4). All classes FPL

n and FPB
n

contain only star–free languages (cf. Theorem 6.7) and can be separated using languages
that also separate the DDH and STH (cf. Corollary 6.11). Then we show that all pattern
classes have decidable membership problems (cf. Theorem 6.15) and derive from this a lower
bound algorithm for the dot–depth of a given regular language. In Section 6.2 we show that
even L5/2 = FPL

2 holds if a two–letter alphabet is considered (cf. Corollary 6.18). This
implies in particular the decidability of L5/2 in the two–letter case (cf. Corollary 6.19) and
has consequences in first–order logic (cf. Corollary 6.20). In fact, we show more general that
whenever Bn+1/2 = FPB

n for some n ≥ 1 and arbitrary alphabets then Ln+3/2 = FPL
n+1 in

case of a two–letter alphabet (cf. Theorem 6.17).

6.1 Consequences for Concatenation Hierarchies

In case of the pattern L 1/2 for L1/2 it was required that there is some w ∈ A∗ such that for
two states s1, s2 it holds that s1

w−→ s2, while in case of pattern B 1/2 for B1/2 there must be
v,w ∈ A+ such that for two states s1, s2 we have s1

w−→ s2, and s1 and s2 both have a v-loop.

Definition 6.1. We define the following initial patterns.

L =def {ε} ×A∗

B =def A+ ×A+

It is easy to see that L and B are indeed initial patterns. Figure 6.1 summarizes the results
of Section 6.1.

6.1.1 DDH and STH versus Pattern Classes

Let us consider the inclusion relations between classes of concatenation hierarchies and for-
bidden pattern classes.

Proposition 6.2. It holds that P L
0 � P L

1 , P
B
0 � P B

1 , P
L
0 � P B

0 and P B
0 � P L

1 .

140 6. Lower Bounds and a Decidability Result for the STH

L3/2

B1/2

L1/2

L5/2

B3/2

L7/2

B5/2

B7/2

star-free

FPL
0

FPB
0

FPB
1

FPB
2

FPB
3

FPL
3

FPL
2

FPL
1

Fig. 6.1. Concatenation hierarchies and forbidden pat-
tern classes. Doubled lines stand for equality.

Proof. We show P B
0 � P L

1 first. Let p = (w0, p0, . . . , wm, pm) ∈ P L
1 with m ≥ 0, wi ∈ A+ and

pi ∈ P L
0 = L = {ε}×A∗ for 0 ≤ i ≤ m. Define p̃ =def (p

◦, p). Note that p̃ ∈ P B
0 = B = A+×A+

because p◦, p ∈ A+ by Proposition 5.7. Now let s, s1, s2 be states of some DFA. If p appears
at s then s has a p◦-loop by Proposition 5.7, so p̃ appears at s. If s1, s2 are connected via

p then p appears at s1 and at s2 and so does p̃. Moreover, s1
p−→ s2 by Proposition 5.7 and

hence s1, s2 are connected via p̃.
We give the constructions that witness the remaining relations. In case of P L

0 � P B
0 let p =

(v,w) ∈ P B
0 = A+×A+ and define p̃ =def (ε, w). For P B

0 � P B
1 let p = (w0, p0, . . . , wm, pm) ∈ P B

1

and set p̃ =def (p
◦, p). Finally, to see P L

0 � P L
1 let p = (w0, p0, . . . , wm, pm) ∈ P L

1 and define
p̃ =def (ε, p). ❑

So the following theorem is an immediate consequence of Theorem 5.19 and Propositions 5.17
and 5.18.

Theorem 6.3. For n ≥ 0 the following inclusions hold.

1. FPL
n ∪ coFPL

n ⊆ FPL
n+1 ∩ coFPL

n+1

2. FPB
n ∪ coFPB

n ⊆ FPB
n+1 ∩ coFPB

n+1

3. FPL
n ⊆ FPB

n

4. FPB
n ⊆ FPL

n+1

6.1 Consequences for Concatenation Hierarchies 141

If we compare these relations to Proposition 1.3 and 1.4 we see the same inclusion structure
as in case of the STH and DDH. However, the connections between pattern classes and classes
of concatenation hierarchies are even closer.

Theorem 6.4. For n ≥ 0 it holds that

1. L1/2 = FPL
0 , L3/2 = FPL

1 and Ln+1/2 ⊆ FPL
n and

2. B1/2 = FPB
0 , B3/2 = FPB

1 and Bn+1/2 ⊆ FPB
n.

We prepare the proof with the following two propositions. Recall from Proposition 5.7 that
if some p ∈ P I

n appears at some state s then s has a p◦-loop. In case of P L
1 also the reverse

implication holds.

Proposition 6.5. Let p ∈ P L
1 . For every state s of some DFA it holds that p appears at s if

and only if s has a p◦-loop.

Proof. We need to show the ‘if’–part. Let p = (w0, p0, . . . , wm, pm) ∈ P L
1 with m ≥ 0, wi ∈ A+

and pi = (ε, bi) ∈ P L
0 = {ε} × A∗ for 0 ≤ i ≤ m. It holds that p◦ = w0p0w1p1 · · ·wmpm and

pi = bi. So for any state s of some DFA that has a p◦-loop there are states q0, r0, . . . , qm, rm
such that

s
w0−→ q0

b0−→ r0
w1−→ q1

b1−→ r1
w2−→· · · wm−→ qm

bm−→ rm = s.

Since pi = (ε, bi) for 0 ≤ i ≤ m we have in fact

s
w0−→ q0

p0� r0
w1−→ q1

p1� r1
w2−→· · · wm−→ qm

pm� rm = s

which shows that p appears at s. ❑

Next we see that a pattern p ∈ P B
0 with an additional alphabet condition is in fact a pattern

from P L
1 .

Proposition 6.6. Let p = (l, b) ∈ P B
0 such that α(b) ⊆ α(l) and l and b have the same first

letter. Then there is some p′ ∈ P L
1 with p′◦ = ln for n =def |b| such that for every DFA

M = (A,S, δ, s0, S
′) and s1, s2 ∈ S it holds that s1

p� s2 implies s1
p′� s2.

Proof. Recall that p = (l, b) ∈ A+ × A+ and let b = a0a1 · · · am for m ≥ 0 and ai ∈ A.
Because {a0, . . . , am} ⊆ α(l) we can rewrite l for all 0 ≤ i ≤ m as l = liail

′
i. Since l and

b start with the same first letter by assumption we may assume that l0 = ε. Now define
p′ =def (w0, p0, . . . , wm, pm) with wi =def ai for 0 ≤ i ≤ m, pi =def (ε, l

′
j lj+1) for 0 ≤ j < m

and pm =def (ε, l
′
m). Then pi ∈ P L

0 , wi ∈ A+ and hence p′ ∈ P L
1 . Observe also that

p′◦ = w0p0w1p1 · · ·wmpm = a0 · l′0l1 · a1 · l′1l2 · · · am · l′m = l0a0l
′
0 · l1a1l′1 · · · lmaml′m = lm+1

and m+ 1 = |b|.
Let us first show that p′ appears at s1 and at s2. Since p appears at s1 and at s2 we know

that these states have an l-loop. So they also have a p′◦-loop and hence p′ appears at s1 and
at s2 by Proposition 6.5. Because pi

◦ = ε for 0 ≤ i ≤ m and p′ = w0w1 · · ·wm = b we see

from s1
b−→ s2 that s1, s2 are connected via p′. ❑

142 6. Lower Bounds and a Decidability Result for the STH

Proof of Theorem 6.4. It is easy to see that FPL
0 = FP(L 1/2) and FPB

0 = FP(B 1/2) just
by comparing definitions. For L 1/2 and B 1/2 see Definition 2.15, for P

L
0 and P B

0 consider L and
B and Definitions 5.2 and 5.5. Actually, we have set–up the definition of P I

n in order to obtain
this. For the same reason we see that also FPB

1 = FP(B 3/2). Here we look at Definition 4.31
and consider the first iteration step IT(P B

0) = P B
1 in Definition 5.4. So by Theorem 2.16 we

have L1/2 = FP(L 1/2) = FPL
0 and B1/2 = FP(B 1/2) = FPB

0 , and Theorem 4.32 yields
B3/2 = FP(B 3/2) = FPB

1 . The inclusions Ln+1/2 ⊆ FPL
n and Bn+1/2 ⊆ FPB

n for n ≥ 0
follow from Theorem 5.13 and Lemma 1.20 together with L1/2 = FPL

0 , B1/2 = FPB
0 and the

monotony of Pol(·) and BC(·). It remains to argue that FPL
1 ⊆ L3/2.

We have by Theorem 4.2 that L3/2 = FP(L 3/2) so it suffices to show that if some DFA
M = (A,S, δ, s0, S

′) has pattern L 3/2 then it has pattern P L
1 . So assume that M has pat-

tern L 3/2 witnessed by x, z ∈ A∗, s1, s2 ∈ S and v,w ∈ A+ with α(vwv) ⊆ α(vv). Define
l =def vv and b =def vwv and observe that p =def (l, b) ∈ P B

0 . By assumption we have
α(b) ⊆ α(l) and by definition it holds that l and b start with the same first letter. Note that
s1, s2 are connected via p since s1 and s2 have an l-loop and δ(s1, b) = s2. Hence we may
apply Proposition 6.6 and obtain that s1, s2 are connected via some p′ ∈ P L

1 . It follows that
M has pattern P L

1 . (End proof of Theorem 6.4.)

6.1.2 Pattern Classes are Starfree

We show that all classes FPB
n and FPL

n contain only star–free languages. To do this, we
prove that if some minimal DFAM is not permutation–free, thenM has all patterns P B

n for
arbitrary n ≥ 0. Recall that SF denotes the class of star–free languages.
Theorem 6.7. It holds that

⋃
n≥0FPL

n =
⋃

n≥0FPB
n = SF.

Note that we already have SF ⊆ ⋃n≥0 Ln+1/2 by Proposition 1.5, that Ln+1/2 ⊆ FPL
n by

Theorem 6.4 and that FPL
n ⊆ FPB

n by Theorem 6.3. So the proof of the previous theorem is
immediate from Lemma 6.9 below. We show the first the following auxiliary lemma.

Lemma 6.8. Let n ≥ 0 and let M = (A,S, δ, s0, S
′) be a DFA such that there exist w ∈ A+,

l ≥ 2 and r0, r1, . . . , rl−1 ∈ S with δ(ri, w) = ri+1 for 0 ≤ i ≤ l−1 (with rl =def r0). Then for
all m with 1 ≤ m ≤ l−1 there exists some pm ∈ P B

n such that for all j, j′ with 0 ≤ j, j′ ≤ l−1
and rj

wm−→ rj′ it holds that rj
pm� rj′.

Proof. LetM be a DFA with the properties states in the lemma. The proof is by induction
on n. For the induction base let n = 0 and let some m with 1 ≤ m ≤ l − 1 be given. Define
pm =def (w

l, wm) and observe that pm ∈ P B
0 because l,m ≥ 1. Since for 0 ≤ i ≤ l − 1 all

states ri have a wl-loop, we see that pm appears at rj and also at rj′ . Due to δ(rj , w
m) = rj′

we have that rj and rj′ are connected via pm.
Suppose the lemma holds for some n ≥ 0 and we want to show it for n+1. Again, let some

m with 1 ≤ m ≤ l − 1 be given. Set m′ =def l −m. Then 1 ≤ m′ ≤ l − 1 and the induction
hypothesis provides some p̂m′ ∈ P B

n. Now define pm =def (w
m, p̂m′). Then pm ∈ P B

n+1 and we
have to show for given j, j′ with 0 ≤ j, j′ ≤ l − 1 and δ(rj , w

m) = rj′ that rj and rj′ are

connected via pm. Since rj
wm−→ rj′

wm′
−→ rj we obtain by hypothesis that

rj
wm−→ rj′

p̂m′� rj

6.1 Consequences for Concatenation Hierarchies 143

and hence pm appears at rj. Because rj′
wm−→ r(j′+m mod l)

wm′
−→ rj′ we get by hypothesis that

rj′
wm−→ r(j′+m mod l)

p̂m′� rj′

and hence pm appears at rj′ . Finally, note that δ(rj , w
m) = rj′ and that p̂m′ appears at rj′ .

So rj and rj′ are connected via pm. ❑

Lemma 6.9. For all n ≥ 0 it holds that FPB
n ⊆ SF.

Proof. Let L ∈ FPB
n for some n ≥ 0. Then the minimal DFA M = (A,S, δ, s0, S

′) with
L(M) = L does not have pattern P B

n since FPB
n is well–defined. Assume to the contrary that

L �∈ SF. By Proposition 1.38 there exist w ∈ A+, some l ≥ 2 and pairwise distinct states
r0, r1, . . . , rl−1 ∈ S such that δ(ri, w) = ri+1 for 0 ≤ i ≤ l − 1 (with rl =def r0). Since we
deal with distinct states in a minimal DFA there exists some z ∈ A∗ and 0 ≤ j < k ≤ l − 1
such that δ(rj , z) ∈ S′ ⇔ δ(rk, z) �∈ S′. By renaming states we can assume that j = 0 and
1 ≤ k ≤ l − 1. Moreover, we may suppose that δ(r0, z) ∈ S′ and δ(rk, z) �∈ S′ because if it is
the other way round, then we rename again and take rk as r0, rk+1 as r1, . . ., rk−1 as rl−1.
Since δ(r0, w

k) = rk we can apply Lemma 6.8 for m = k and obtain that r0, rk are connected
via some p ∈ P B

n. Taking some x ∈ A∗ with δ(s0, x) = r0 into account shows that M has
pattern P B

n which is a contradiction. So L ∈ SF. ❑

6.1.3 Strictness of Pattern Hierarchies

We want to show the strictness of the forbidden pattern hierarchies in a certain way, namely
we take witnessing languages from [Tho84] that were used there to separate the classes of
the dot–depth hierarchy. As remarked in [Tho84], these languages can also be used to show
that the Straubing–Thérien hierarchy is strict. A first proof of strictness of the DDH was
given in [BK78] using similar languages. We could also do our separation here with these
languages, but to facilitate the exposition we stick to [Tho84]. We assume in this subsection
that A = {a, b} and we separate our hierarchies when defined over A. This can also be done
for larger alphabets, see Remark 6.14 below. We show the following theorem.

Theorem 6.10. For all n ≥ 0 it holds that FPL
n � FPB

n.

The proof is given at the end of this subsection where it remains to argue for the strictness due
to Theorem 6.3. We immediatly have the following corollary. Observe with Theorem 6.10 and
Theorem 6.3 that for n ≥ 1 we have FPL

n−1 � FPB
n−1 ⊆ FPL

n and FPB
n−1 ⊆ FPL

n � FPB
n.

Corollary 6.11. For all n ≥ 1 it holds that FPL
n−1 � FPL

n and FPB
n−1 � FPB

n.

Inspired by [Tho84] we define a family of patterns W n for n ≥ 1.
Definition 6.12. Let n ≥ 1. Pattern W n is defined as the subgraph given in Figure 6.2.

Lemma 6.13. Let n ≥ 2. There exist p, p′ ∈ P L
n−1 such that for every DFA M =

(A,S, δ, s0, S
′) and for every occurrence r0, r1, . . . , rn ∈ S of W n in M it holds that

r0
p� r1 and r1

p′� r0.

144 6. Lower Bounds and a Decidability Result for the STH

r2 rnr0 r1
a

b

a

b

a

b b

a

Fig. 6.2. Pattern W n with n ≥ 1.

Proof. The proof is by induction on n. For the induction base let n = 2 and define p̂ =def
(ab, a) and p̂′ =def (ab, abb). Because all involved words are in A+ it holds that p̂, p̂′ ∈ P B

0 .
We may apply Proposition 6.6 to see that there are p, p′ ∈ P L

1 such that if two states are
connected via p̂ or p̂′ in a DFA M then they are connected via p or p′, respectively. The
definition of p and p′ does not depend on M so it suffices to show the induction base for p̂
and p̂′.
Let the states r0, r1, r2 ∈ S witness that some DFAM = (A,S, δ, s0, S

′) has pattern W 2.
Then r0 and r1 have an ab-loop and hence p̂ appears at r0 and r1, and p̂′ appears at r0 and
r1. Since δ(r0, a) = r1 and δ(r1, abb) = r0 we see that r0, r1 are connected via p̂, and that
r1, r0 are connected via p̂′.
Suppose the lemma holds for some n ≥ 2 and we want to show it for n+1. By hypothesis

there are p̂, p̂′ ∈ P L
n−1 for some n ≥ 2 having the properties stated in the lemma. We define

p =def (a, p̂
′) and p′ =def (ab, p̂, b, λ(p̂)).

Then it holds that p, p′ ∈ P L
n since also λ(p̂) ∈ P L

n−1 by Lemma 5.9. Now let some DFA
M = (A,S, δ, s0, S

′) be given such that r0, r1, . . . , rn, rn+1 ∈ S witness an occurrence of
pattern W n+1 inM. Since r0, . . . , rn and r1, . . . , rn+1 witness two ocurrences of pattern W n

inM we can apply the induction hypothesis and obtain that

a. r0
p̂� r1

p̂� r2 and

b. r2
p̂′� r1

p̂′� r0.

It follows that p̂ appears at r0 and at r1. So Lemma 5.9 shows that

c. r0
λ(p̂)� r0 and r1

λ(p̂)� r1.

Let us verify that r0, r1 are connected via p. We obtain with b. that p appears at r0 and also
at r1 because

r0
a−→ r1

p̂′� r0 and r1
a−→ r2

p̂′� r1.

It follows that p̂′ appears at r1, so δ(r0, a) = r1 implies that r0, r1 are connected via p. Now
we want so see that r1, r0 are connected via p′. We obtain from a. and c. that p′ appears at
r1 and at r0 because

r1
ab−→ r1

p̂� r2
b−→ r1

λ(p̂)� r1 and r0
ab−→ r0

p̂� r1
b−→ r0

λ(p̂)� r0.

It follows that p̂ appears at r1 and that λ(p̂) appears at r0. So

r1
ab−→ r1

b−→ r0

shows that r1, r0 are connected via p′. ❑

6.1 Consequences for Concatenation Hierarchies 145

Proof of Theorem 6.10. We need to show FPL
n � FPB

n for all n ≥ 0. The case n = 0
is easily seen since FPL

0 = L1/2 � B1/2 = FPB
0 by Theorem 6.4 and Proposition 2.35. Also

the case n = 1 is already settled since FPL
1 = L3/2 � B3/2 = FPB

1 by Theorem 6.4 and
Theorem 4.29. So we may assume n ≥ 2. We consider witnessing languages Ln such that
Ln ∈ FPB

n \FPL
n. Therefore, we recall the definition of a particular family of languages from

[Tho84]. For n ≥ 2 let Ln be the set of words w ∈ A+ such that

– |w|a − |w|b = n and
– for every prefix v of w it holds that 0 ≤ (|v|a − |v|b) ≤ n.

Recall that |w|a for a letter a ∈ A denotes the number of occurrences of a in w. It is shown
in [Tho84] that Ln ∈ Bn (these languages are denoted as L+n there). With Theorem 6.4 we
have Ln ∈ Bn ⊆ Bn+1/2 ⊆ FPB

n for all n ≥ 1 and it remains to prove that Ln �∈ FPL
n. For

this we define a DFAMn with L(Mn) = Ln as follows. LetMn =def (A,S, δ, r0, {rn}) with
S =def {r0, r1, . . . rn, r−} and
– δ(ri, a) =def ri+1 and δ(ri+1, b) =def ri for 0 ≤ i ≤ n− 1,
– δ(rn, a) =def r

− and δ(r0, b) =def r
− and

– δ(r−, a) = δ(r−, b) =def r
−.

a

b

a

b

a

b

a

ab

b

r−

r0 r1 r2 rn

a, b

Fig. 6.3. Automaton Mn with L(Mn) = Ln.

The DFAMn is given in Figure 6.3 and it is easy to see that L(Mn) = Ln. We show for all
n ≥ 2 thatMn has pattern P L

n. It follows from this that L(Mn) = Ln �∈ FPL
n.

Observe that Mn has pattern W n witnessed by r0, r1, . . . , rn. So from Lemma 6.13 we
obtain that there exists some p̂ ∈ P L

n−1 such that r0, r1 are connected via p̂. Now define
p =def (ab, p̂, b, λ(p̂)) as in the induction step in the proof of Lemma 6.13. Then p ∈ P L

n and
we show that r0, r

− are connected via p.
We obtain that p appears at r0 because

r0
ab−→ r0

p̂� r1
b−→ r0

λ(p̂)� r0.

Here we use that r0, r1 are connected via p̂ from Lemma 6.13 and that r0, r0 are connected
via λ(p̂) by Lemma 5.9 since p̂ appears at r0. It also holds that p appears at r

− because this
is a sink state and one can show with a trivial induction that for all n ≥ 0 and all p̃ ∈ P L

n

146 6. Lower Bounds and a Decidability Result for the STH

it holds that p̃ appears at a sink. For the same reason also λ(p̂) appears at r− and we have
already noticed that p̂ appears at r0. Together with

r0
ab−→ r0

b−→ r−

this shows that r0, r
− are connected via p. Finally we define x =def ε and z =def an to see

thatMn has pattern P L
n. (End proof of Theorem 6.10.)

Remark 6.14. Suppose we deal with some alphabet A such that |A| ≥ 3, e.g., A =
{a, b, c1, · · · , cl} for some l ≥ 1. If we define Mn such that δ(s, ci) = r− for 1 ≤ i ≤ l
and for all s ∈ S, we still find the required patterns. This means on the language side that we
intersect the expressions for Ln with {a, b}+ = A+\⋃1≤i≤l A

∗ciA∗ ∈ coB1/2. The latter does
not increase the dot–depth since Ln ∈ Bn which is a Boolean algebra that includes coB1/2.
Together this allows to prove Theorem 6.10 also in case of a larger alphabet.

6.1.4 Decidability, Lower Bounds and a Conjecture for the Dot–Depth Problem

We carry over our general decidability result for pattern classes.

Theorem 6.15. For fixed n ≥ 0 the membership problems of FPL
n and FPB

n are decidable
in nondeterministic logarithmic space NL.

Proof. It holds that PatternL
0,k,Pattern

B
0,k ∈ NL for each k ≥ 1. To see this observe that

due to the definition of the initial patterns the problems PatternL
0,k and Pattern

B
0,k are just

reachability problems very similar to Reachk which can be solved in NL. Now the theorem
follows from Theorem 5.25. ❑

Since membership to SF is decidable, Theorem 6.15 yields an algorithm to determine the
minimal n such that a given regular language is in FPB

n. This is in fact a lower bound
algorithm for the dot–depth of a given language: if L ∈ FPB

n \ FPB
n−1 then the dot–depth of

L is strictly greater than n− 1/2 by Theorem 6.4.
We have seen many structural similarities between the STH and DDH on one hand, and

the hierarchies of the forbidden pattern classes FPL
n and FPB

n on the other hand. Among
them we have shown strictness and the upper bound SF. At this point we have no evidence
against the following conjecture.

Conjecture 6.16. For all n ≥ 0 it holds that Bn+1/2 = FPB
n and Ln+1/2 = FPL

n.

Note that this conjectures an effective characterization of all levels n+ 1/2 of the DDH and
STH. As stated in Theorem 6.4 we already now that the conjecture is true for n ∈ {0, 1}.
If we look at the witnessing language Ln from Theorem 6.10 again we see that Ln ∈ Bn+1/2
but Ln �∈ FPL

n. So Bn+1/2 �⊆ FPL
n which shows that FPL

n captures Ln+1/2 but not Bn+1/2.
We may conclude that our pattern classes are not too ‘broad’.

6.2 L5/2 is Decidable for Two–Letter Alphabets 147

6.2 L5=2 is Decidable for Two–Letter Alphabets

We prove in this section the following theorem.

Theorem 6.17. Let n ≥ 1. If Bn+1/2 = FPB
n for arbitrary alphabets, then Ln+3/2 = FPL

n+1

in case of a two–letter alphabet.

With the latter we mean that we consider the STH defined over some alphabet A with
|A| = 2, and correspondingly we consider for FPL

n+1 only automata with input alphabet A.
Note that the inclusion Ln+3/2 ⊆ FPL

n+1 is from Theorem 6.4 and holds unconditionally. The
proof of Theorem 6.17 is given at the end of Subsection 6.2.3. From Theorem 6.4 we know
that B3/2 = FPB

1 . Here we had no restrictions on the size of the alphabet over which B3/2 is
defined.

Corollary 6.18. It holds that L5/2 = FPL
2 in case of a two–letter alphabet.

We give P L
2 in Figure 6.4. The following corollary is an immediate consequence of Theo-

rem 6.15.

lm−1

wm

w0

b0

l0

l0
w1

l1

l1

b1

wm

bm

lm−1

lm

lm

w0

b0

s0
x

l0

l0
w1

l1

l1

b1

wm

bm

lm−1

lm

w0 w1

lm l0 l1z z

−+
Fig. 6.4. Forbidden pattern for FPL

2 with p = (w0, p0, . . . , wm, pm) ∈ P
L
2 where wi ∈ A+, pi ∈ P

L
1 and

pi = bi and pi
◦ = li. It holds that L5/2 = FPL

2 if |A| = 2.

Corollary 6.19. The membership problem of L5/2 defined over a two–letter alphabet is de-
cidable in nondeterministic logarithmic space NL.

Finally, we draw the connection to first–order logic with help of Theorem 1.23.

Corollary 6.20. Given a language L ⊆ {0, 1}+ it is decidable whether L is definable by a
Σ3 formula of the logic FO[<].

148 6. Lower Bounds and a Decidability Result for the STH

6.2.1 Changing the Alphabet

Let A =def {a, b} for the remainder of this section. We want to show for n ≥ 1 the inclusion
FPL

n+1 ⊆ Ln+3/2 when both classes are defined with respect to A. To do so, we reduce this
case to the assumption FPB

n = Bn+1/2 from Theorem 6.17 where FPB
n and Bn+1/2 are defined

with respect to some arbitrary large but fixed alphabet. The reduction is as follows. Note with
Theorem 6.7 and Theorem 1.37 that there exists for every L ∈ FPL

n+1 some permutation–free
DFA accepting L. So let us fix some arbitrary permutation–free DFA M = (A,S, δ, s0, S

′)
and set r =def |M|. The idea in this section is straightforward: nothing new happens in M
if the same letter appears ≥ r times consecutively in the input (see Proposition 1.39). We
encode the behaviour ofM in these finitely many cases over some larger alphabet. Therefore,
we define AM =def A

a
M ∪ Ab

M with

Aa
M =def {a1, . . . , ar} and Ab

M =def {b1, . . . , br}

and some function fM : A+ → (AM)
+ that achieves the encoding. The function fM will map

every block from {a}+ ∪ {b}+ of maximal length to a single letter from AM, where the index
of the letter corresponds to the block size up to threshold r. First, we write every w ∈ A+ as
w = w1w2 · · ·wk for some k ≥ 1 and factors wi of maximal length such that wi ∈ {a}+∪{b}+.
Call this the A-factorization of w and observe that this factorization is unique due to the
maximality condition.

Definition 6.21. Let w ∈ A+ and let w = w1w2 · · ·wk for some k ≥ 1 be the A-factorization
of w. Then fM(w) =def c1c2 · · · ck ∈ (AM)

+ with

ci =def

{
amin{l,r} : wi = al

bmin{l,r} : wi = bl

for 1 ≤ i ≤ k and l ≥ 1.
We say that c ∈ AM has type a if c ∈ Aa

M and it has type b if c ∈ Ab
M. Observe that

wi ∈ {a}+ if and only if ci has type a and wi ∈ {b}+ if and only if ci has type b. Note also
that |fM(w)| = k if and only if the A-factorization of w has k factors wi. Moreover, we define
for L ⊆ A+ and for a class of languages C that

fM(L) =def
⋃
w∈L

{fM(w)} and fM(C) =def { fM(L) |L ∈ C } .

Since the definition of fM is based on the single factors of an A-factorization we can also
concatenate the fM(wi) and obtain fM(w).

Proposition 6.22. Let w ∈ A+ and let w = w1w2 · · ·wk for some k ≥ 1 be the A-
factorization of w. Then fM(w) = fM(w1)fM(w2) · · · fM(wk) with fM(wi) ∈ AM.

Proof. By definition, fM(w) = c1c2 · · · ck such that for 1 ≤ i ≤ k we have ci = amin{li,r} if
wi = ali or ci = bmin{li,r} if wi = bli for some li ≥ 1. Fix some i with 1 ≤ i ≤ k and assume

without loss of generality that wi ∈ {a}+. Then the A-factorization of wi is just wi = ali

and by definition we have fM(wi) = amin{li,r}. So ci = amin{li,r} = fM(wi). It follows that
fM(w) = fM(w1)fM(w2) · · · fM(wk). ❑

6.2 L5/2 is Decidable for Two–Letter Alphabets 149

We will use the previous proposition without further reference. Let us also note that we can
take factors of w that respect its A-factorization and obtain the respective factor of fM(w).

Proposition 6.23. Let w ∈ A+ and let w = w1w2 · · ·wk be the A-factorization of w for
some k ≥ 1. If fM(w) = c1c2 · · · ck for ci ∈ AM then for all j, j′ with 1 ≤ j ≤ j′ ≤ k it holds
that fM(wjwj+1 · · ·wj′) = cjcj+1 · · · cj′.
Proof. It holds that fM(wi) = ci for 1 ≤ i ≤ k. Since wjwj+1 · · ·wj′ is an A-factorization we
have

cjcj+1 · · · cj′ = fM(wj)fM(wj+1) · · · fM(wj′) = fM(wjwj+1 · · ·wj′).

❑

Next we see that fM does what we intended, namely thatM cannot distinguish words having
the same encoding.

Proposition 6.24. Let w, v ∈ A+ with fM(w) = fM(v). Then δ(s,w) = δ(s, v) for all s ∈ S.
In particular, it holds that w ∈ L(M)⇔ v ∈ L(M).

Proof. By assumption, fM(w) = c1c2 · · · ck = fM(v) for some k ≥ 1 and ci ∈ AM. Let
w = w1w2 · · ·wk and let v = v1v2 · · · vk be the A-factorizations of w and v, respectively. Fix
some s ∈ S and some i with 1 ≤ i ≤ k. We argue that δ(s,wi) = δ(s, vi). Assume without
loss of generality that ci is of type a and hence wi, vi ∈ {a}+. If ci = aj with 1 ≤ j ≤ r − 1
then wi = aj = vi and δ(s,wi) = δ(s, vi). If ci = ar then wi = al and vi = al

′
with l, l′ ≥ r.

By Proposition 1.39 we have that δ(s, al) = δ(s, ar) = δ(s, al
′
). It follows inductively that

δ(s,w1w2 · · ·wi) = δ(s, v1v2 · · · vi) for all s ∈ S and 1 ≤ i ≤ k. Hence, δ(s,w) = δ(s, v) and in
particular δ(s0, w) = δ(s0, v). ❑

However, not all words from (AM)
+ can appear in the range of fM. The maximality condition

in A-factorizations ensures that the types of letters in fM(w) alternate between a and b. We
call these words well–formed.

Definition 6.25. Define WFM =def fM(A
+) as the set of well–formed words of (AM)

+. For
µ ∈WFM let Lµ =def { v ∈ A+ | fM(v) = µ }.
By definition, none of the sets Lµ is empty. The alternation condition of letter types is
characteristic for WFM.

Proposition 6.26. It holds that µ ∈ WFM if and only if the letters in µ alternate between
type a and b.

Proof. Let µ = c1c2 · · · ck ∈ (AM)
+ for some k ≥ 1. If µ = fM(w) for some w ∈ A+

then the letters ci alternate between Aa
M and Ab

M due to the maximality condition in the
A-factorization of w. Conversely, we may consider w =def w1w2 · · ·wk with wi =def aj if
ci = aj ∈ Aa

M and wi =def b
j if ci = bj ∈ Ab

M. Then w = w1w2 · · ·wk is the A-factorization of
w with fM(wi) = ci. So fM(w) = fM(w1)fM(w2) · · · fM(wk) = c1c2 · · · ck and hence fM(w) =
µ ∈WFM. ❑

Since this condition holds also for factors of well–formed words, these are again well–formed.

Proposition 6.27. Every non–empty factor of a well–formed word is well–formed.

150 6. Lower Bounds and a Decidability Result for the STH

Finally, we see that well–formed words behave nicely with fM.

Proposition 6.28. Let w, v ∈ A+. It holds that

fM(w)fM(v) ∈WFM ⇐⇒ fM(w)fM(v) = fM(wv).

Proof. It suffices to argue for the ‘only-if’–part. Suppose w = w1 · · ·wk and v = wk+1 · · ·wk+l

for k, l ≥ 1 are the A-factorizations of w and v, respectively. Since fM(w)fM(v) ∈ WFM we
have by Proposition 6.26 that wk ∈ {a}+ ⇔ wk+1 ∈ {b}+. So the A-factorization of wv is
wv = w1 · · ·wkwk+1 · · ·wk+l. Hence, fM(wv) = fM(w1) · · · fM(wk)fM(wk+1) · · · fM(wk+l) =
fM(w)fM(v). ❑

6.2.2 Transformation of Patterns

The goal of this subsection is to prove Lemma 6.29 below. It says that if L(M) ∈ FPL
n+1

for n ≥ 1 and for some permutation–free DFA M with a two–letter input alphabet, then
fM(L(M)) ∈ FPB

n. In the rather technical proof we do the following. Starting with the given
DFA M we define another DFA M̃ with L(M̃) = fM(L(M)). Then we show that if M̃
had pattern P B

n thenM would have even pattern P L
n+1. The fact that |A| = 2 and that only

well–formed words appear in pattern P B
n in the transition graph of M̃ are the main arguments

to see that the loops in the innermost bridge–structures of pattern P B
n in M̃ have letters of

type a and of type b. It follows from this that the innermost bridge–structures of the pattern
inM satisfy a certain alphabet condition, henceM has in fact pattern P L

n+1 (similar to B 1/2
versus L 3/2).

Lemma 6.29. Let n ≥ 1 and let M be a permutation–free DFA with input alphabet A =
{a, b}. If L(M) ∈ FPL

n+1 then fM(L(M)) ∈ FPB
n.

Proof. LetM = (A,S, δ, s0, S
′), set r =def |M| and L =def L(M). We use the notations from

the previous subsection. The proof has three steps.
Step 1: Construction of M̃. The automaton M̃ we have in mind has input alphabet

AM and simulates M as follows. If M̃ reads for instance aj for 1 ≤ j ≤ r from the input
then it behaves likeM on input aj . Since we want that M̃ rejects whenever the input is not
well–formed, we have to store the type of the previous input letter in a second component in
order to ensure the alternation of letter types. We introduce a rejecting sink state ⊥ for all
non well–formed inputs to M̃. As we will see, this construction preserves the structure of the
transition graph ofM in a way such that we can conclude from a pattern in M̃ to a pattern
inM. Now define M̃ =def (AM, S̃, δ̃, (s0, ε), S̃

′) with

a. S̃ =def {S × {a, b}} ∪ {(s0, ε),⊥},
b. S̃′ =def S′ × {a, b},
c. δ̃(⊥, c) =def ⊥ for all c ∈ AM,

d. δ̃((s0, ε), aj) =def (δ(s0, a
j), a) for all aj ∈ Aa

M,

e. δ̃((s0, ε), bj) =def (δ(s0, b
j), b) for all bj ∈ Ab

M,

f. δ̃((s, a), aj) =def ⊥ for all aj ∈ Aa
M and s ∈ S,

g. δ̃((s, a), bj) =def (δ(s, b
j), b) for all bj ∈ Ab

M and s ∈ S,

h. δ̃((s, b), aj) =def (δ(s, a
j), a) for all aj ∈ Aa

M and s ∈ S and

i. δ̃((s, b), bj) =def ⊥ for all bj ∈ Ab
M and s ∈ S.

6.2 L5/2 is Decidable for Two–Letter Alphabets 151

We set L̃ =def L(M̃). With the following two claims we make precise the relation between
M and M̃, i.e., we show how we find a path of the transition graph of M in the transition
graph of M̃ and vice versa.

Claim 1. Let w ∈ A+ and s
w−→ s′ in M for some s, s′ ∈ S. Let tf ∈ A

(tl ∈ A) be the first letter (last letter, respectively) of w. For t′ ∈ A ∪ {ε}
with t′ �= tf and (s, t

′) ∈ S̃ it holds that (s, t′)
fM(w)−→ (s′, tl) in M̃.

Proof of Claim 1. Let w = w1w2 · · ·wk with k ≥ 1 be the A-factorization of w. Moreover,
let fM(w) = c1c2 · · · ck and define ti ∈ A to be the type of ci. Hence, t1t2 · · · tk consists of
alternating a’s and b’s, and in particular t1 = tf and tk = tl. For 1 ≤ i ≤ k define vi =def a

j

if ci = aj and vi =def b
j if ci = bj . Since fM(wi) = ci = fM(vi) we have δ(p,wi) = δ(p, vi) for

all p ∈ S by Proposition 6.24. Now assume that t′ ∈ A ∪ {ε} with t′ �= tf and (s, t
′) ∈ S̃. We

show inductively that δ̃((s, t′), c1 · · · ci) = (δ(s,w1 · · ·wi), ti) for 1 ≤ i ≤ k.
Induction base. Let i = 1 and assume without loss of generality that t1 = tf = a. Hence,

c1 = aj and v1 = aj for some 1 ≤ j ≤ r, and t′ ∈ {b, ε} by assumption. First suppose t′ = ε.
Since we require that (s, t′) ∈ S̃ we only make an assertion in case s = s0. We conclude from
δ(s0, w1) = δ(s0, v1) and from d. in the definition of M̃ that

δ̃((s, t′), c1) = δ̃((s0, ε), aj) = (δ(s0, a
j), a) = (δ(s0, v1), a) = (δ(s0, w1), t1).

Now assume that t′ = b. Then we see with δ(s,w1) = δ(s, v1) and h. in the definition of M̃
that

δ̃((s, t′), c1) = δ̃((s, b), aj) = (δ(s, a
j), a) = (δ(s, v1), a) = (δ(s,w1), t1).

The case t1 = tf = b is completely analogously involving e. and g. from the definition of M̃.
Induction step. Suppose we have δ̃((s, t′), c1 · · · ci) = (δ(s,w1 · · ·wi), ti) for some i with

1 ≤ i < k and we want to show this for i+ 1. Let us assume without loss of generality that
ti = a. Hence, ci = aj , vi = aj and ti+1 = b, ci+1 = bj′ , vi+1 = bj

′
for some 1 ≤ j, j′ ≤ r.

We conclude from the hypothesis, from δ(r, wi+1) = δ(r, vi+1) for arbitrary r ∈ S and
from g. in the definition of M̃ that

δ̃((s, t′), c1 · · · cici+1) = δ̃(δ̃((s, t′), c1 · · · ci), ci+1)
= δ̃((δ(s,w1 · · ·wi), ti), ci+1)

= δ̃((δ(s,w1 · · ·wi), a), bj′)

= (δ(δ(s0, w1 · · ·wi), b
j′), b)

= (δ(δ(s0, w1 · · ·wi), vi+1), b)

= (δ(δ(s0, w1 · · ·wi), wi+1), ti+1)

= (δ(s0, w1 · · ·wiwi+1), ti+1).

The case of ti = b is completely analogously involving h. from the definition of M̃. This
completes the induction and it follows that

δ̃((s, t′), fM(w)) = δ̃((s, t′), c1 · · · ck) = (δ(s,w1 · · ·wk), tk) = (δ(s,w), tl) = (s
′, tl).

(End proof of Claim 1.)

152 6. Lower Bounds and a Decidability Result for the STH

Claim 2. Suppose (s, t)
µ−→(s′, t′) in M̃ for some µ ∈ (AM)

+ and (s, t), (s′, t′) ∈ S̃
with s, s′ ∈ S, t ∈ A ∪ {ε} and t′ ∈ A. Then µ ∈ WFM and s

w−→ s′ inM for all
w ∈ Lµ.

Proof of Claim 2. Let µ = c1c2 · · · ck for some k ≥ 1 and define ti as before to be the type
of ci. Note that if t1 = t then δ̃((s, t), c1) = ⊥ due to f. and i. in the definition of M̃, and
δ̃((s, t), µ) = ⊥ due to c. So t1 �= t.
Now assume to the contrary that µ �∈WFM. Then we get from Proposition 6.26 that there

is some minimal i with 1 ≤ i < k such that ci, ci+1 ∈ Aa
M or ci, ci+1 ∈ Ab

M. So ti = ti+1 and
c1c2 · · · ci ∈ WFM. Hence, there is some v ∈ A+ with first letter t1 and last letter ti such
that fM(v) = c1 · · · ci and there is some s′′ ∈ S with δ(s, v) = s′′. Because t1 �= t we have
all prerequisites of Claim 1 and obtain from it that δ̃((s, t), c1c2 · · · ci) = (s′′, ti). From f. and
i. in the definition of M̃ we see that δ̃((s′′, ti), ci+1) = ⊥ since ti = ti+1, and from c. we get
δ̃((s, t), µ) = ⊥, a contradiction to our assumption in Claim 2 that δ̃((s, t), µ) = (s′, t′). This
shows that µ ∈WFM.
Now let w ∈ Lµ. Then fM(w) = µ and w has first letter t1 and last letter tk. Moreover,

there is some s′′ ∈ S such that δ(s,w) = s′′. Since we know that t1 �= t we can apply Claim 1
again and obtain

(s′, t′) = δ̃((s, t), µ) = δ̃((s, t), fM(w)) = (s
′′, tk).

So δ(s,w) = s′′ = s′. (End proof of Claim 2.)

We immediately obtain from these claims that L̃ = L(M̃) = fM(L(M)) = fM(L). To
see this suppose first µ ∈ L̃. Then δ̃((s0, ε), µ) = (s, d) ∈ S̃′ for some s ∈ S′ and d ∈ A
by b. in the definition of M̃. We can apply Claim 2 to see µ ∈ WFM. So there exists some
w ∈ A+ with µ = fM(w) and again by Claim 2 we obtain w ∈ L from δ(s0, w) = s.
Conversely, suppose w ∈ L. Then δ(s0, w) = s for some s ∈ S′ and by Claim 1 we see that
δ̃((s0, ε), fM(w)) = (s, t) ∈ S̃′ for some t ∈ A. Hence fM(w) ∈ L̃.
So we have seen in this first step that L̃ = fM(L) ⊆WFM.

Step 2: Pattern transformation. We show in this second step that if two states
(s, t), (s′, t′) are connected in M̃ via some p̃ ∈ P B

n for n ≥ 0 then there exists some p ∈ P L
n+1

such that s, s′ are connected inM via p. We require here as an assumption that the two states
that are connected via p̃ in M̃ are not ⊥. It is shown in Step 3 that this is no restriction.

Claim 3. Let n ≥ 0 and p̃ ∈ P B
n such that (s, t)

p̃�(s′, t′) in M̃ for some (s, t), (s′, t′) ∈ S̃
with s, s′ ∈ S and t, t′ ∈ A ∪ {ε}. Then there exists some p ∈ P L

n+1 such that for all

(s1, t1), (s2, t2), (s3, t3) ∈ S̃ with s1, s2, s3 ∈ S and t1, t2, t3 ∈ A ∪ {ε} the following
holds.

1. If p̃ appears at (s1, t1) in M̃, then p appears at s1 inM.

2. If (s2, t2)
p̃�(s3, t3) in M̃, then s2

p� s3 inM.

Proof of Claim 3. The proof is by induction on n.
Induction base. Let n = 0. Then p̃ = (ν, µ) ∈ P B

0 for some ν, µ ∈ (AM)
+. Since

(s, t), (s′, t′) ∈ S̃ are connected via p̃ it follows that δ̃((s, t), νi) = (s, t) for all i ≥ 1 and
δ̃((s, t), µ) = (s′, t′). We obtain from Claim 2 that νi, µ ∈WFM for i ≥ 1. So we can consider
Lν and Lµ, and there are v ∈ Lν and w ∈ Lµ with fM(v) = ν and fM(w) = µ. Note that

6.2 L5/2 is Decidable for Two–Letter Alphabets 153

v,w ∈ A+ and define p′ =def (vv, vwv). Then p′ ∈ P B
0 (with respect to A), and vv and vwv

start with the same letter. Moreover, it holds that α(vv) = A. To see this suppose α(vv) �= A.
Then all letters of ν have the same type α(v) and ν2 �∈WFM, a contradiction. It follows that
α(vwv) ⊆ A = α(vv). We apply Proposition 6.6 with l =def vv and b =def vwv and obtain
some p ∈ P L

1 such that p
◦ = v|vwv| and if any two states inM are connected via p′ then they

are also connected via p.
To show the first statement suppose p̃ appears at (s1, t1) in M̃. Then δ̃((s1, t1), ν) = (s1, t1)

and we obtain from Claim 2 that δ(s1, v) = s1. So δ(s1, p
◦) = s1 and Proposition 6.5 shows

that p appears at s1 inM. For the second statement assume that (s2, t2), (s3, t3) are connected
via p̃ in M̃. By definition, δ̃((s2, t2), ν) = (s2, t2), δ̃((s3, t3), ν) = (s3, t3) and δ̃((s2, t2), µ) =
(s3, t3). We get from Claim 2 that δ(s2, v) = s2 = δ(s2, vv), δ(s3, v) = s3 = δ(s3, vv) and
δ(s2, vwv) = δ(s2, wv) = δ(s3, v) = s3. So s2, s3 are connected via p′ in M and we have
already noted from Proposition 6.6 that they are also connected via p.

Induction step. Suppose the lemma holds for some n ≥ 0 and we want to show it for
n+1. So let p̃ = (µ0, p̃0, . . . , µm, p̃m) ∈ P B

n+1 with µi ∈ (AM)
+ and p̃i ∈ P B

n for 0 ≤ i ≤ m. By

assumption, there are (s, t), (s′, t′) ∈ S̃ that are connected via p̃, and in particular p̃ appears
at (s, t). So there exist states q̃0, r̃0, . . . , q̃m, r̃m of M̃ such that

(s, t)
µ0−→ q̃0

p̃0� r̃0
µ1−→ q̃1

p̃1� r̃1
µ2−→· · · µm−→ q̃m

p̃m� r̃m = (s, t)

Note that q̃i
p̃i−→ r̃i in M̃ for 0 ≤ i ≤ m. Since (s, t) �= ⊥ and because of c. in the definition

of M̃ it follows that the states q̃i, r̃i for 0 ≤ i ≤ m are not ⊥. So we can rewrite these states
as q̃i = (qi, tqi) and r̃i = (ri, tri) for 0 ≤ i ≤ m, for suitable qi, ri ∈ S and tqi , tri ∈ A. Due to
the construction of M̃ the latter are not ε and we have

(s, t)
µ0−→(q0, tq0)

p̃0�(r0, tr0)
µ1−→(q1, tq1)

p̃1�(r1, tr1)
µ2−→· · · µm−→(qm, tqm)

p̃m�(rm, trm) = (s, t).

We see that each p̃i connects some states in M that are not ⊥. So the induction hypoth-
esis provides for each p̃i some pi ∈ P L

n+1 such that for all (s
′
1, t

′
1), (s

′
2, t

′
2), (s

′
3, t

′
3) ∈ S̃ with

s′1, s′2, s′3 ∈ S and t′1, t′2, t′3 ∈ A ∪ {ε} the following holds.
(H1) If p̃i appears at (s

′
1, t

′
1) in M̃, then pi appears at s

′
1 inM.

(H2) If (s′2, t′2)
p̃i�(s′3, t′3) in M̃, then s′2

pi� s′3 inM.

Moreover, we get from Claim 2 that p̃
◦ ∈WFM. So with Proposition 6.27 we have µi ∈WFM

for 0 ≤ i ≤ m. In particular, there are wi ∈ Lµi such that fM(wi) = µi for 0 ≤ i ≤ m. Define
now p =def (w0, p0, . . . , wm, pm) and observe that p ∈ P L

n+2.

We turn to the first statement. Suppose p̃ appears at (s1, t1) in M̃. Then there exist states
q̃′0, r̃′0, . . . , q̃′m, r̃′m of M̃ such that

(s1, t1)
µ0−→ q̃′0

p̃0� r̃′0
µ1−→ q̃′1

p̃1� r̃′1
µ2−→· · · µm−→ q̃′m

p̃m� r̃′m = (s1, t1)

With the same argument as above, we can rewrite these states as q̃′i = (q
′
i, tq′i) and r̃′i = (r

′
i, tr′i)

for 0 ≤ i ≤ m, for suitable q′i, r
′
i ∈ S and tq′i , tr′i ∈ A. So we have

(s1, t1)
µ0−→(q′0, tq′0)

p̃0�(r′0, tr′0)
µ1−→(q′1, tq′1)

p̃1�(r′1, tr′1)
µ2−→· · · µm−→(q′m, tq′m)

p̃m�(r′m, tr′m) = (s1, t1).

154 6. Lower Bounds and a Decidability Result for the STH

From Claim 2 and the induction hypothesis (H2) we obtain that

s1
w0−→ q′0

p0� r′0
w1−→ q′1

p1� r′1
w2−→· · · wm−→ q′m

pm� r′m = s1

which shows that p appears at s1 inM.
Next we want to prove the second statement. Therefore assume that (s2, t2), (s3, t3) are

connected via p̃ in M̃. Then p̃ appears at (s2, t2) and also at (s3, t3), and there are states
q̃i ∈ S̃ with 0 ≤ i ≤ m such that p̃i appears at state q̃i for 0 ≤ i ≤ m and

(s2, t2)
µ0−→ q̃0

µ1−→ q̃1
µ2−→· · · µm−→ q̃m = (s3, t3).

As before, none of the states q̃i for 0 ≤ i ≤ m can be ⊥, so we can rewrite them as q̃i = (qi, tqi)
for 0 ≤ i ≤ m, for suitable qi ∈ S and tqi ∈ A. Then

(s2, t2)
µ0−→(q0, tq0) µ1−→(q1, tq1) µ2−→· · · µm−→(qm, tqm) = (s3, t3).

From Claim 2 we obtain that

s2
w0−→ q0

w1−→ q1
w2−→· · · wm−→ qm = s3.

By the induction hypothesis (H1) we know that pi appears at state qi for 0 ≤ i ≤ m and
for the first statement we obtain that p appears at s2 and at s3. This shows that s2, s3 are
connected via p. (End proof of Claim 3.)

Note that Claim 3 provides in particular for p̃ ∈ P B
n with (s, t)

p̃�(s′, t′) in M̃ some p ∈ P L
n+1

such that s
p� s′ inM.

Step 3: From M̃ to M. We prove in this final step the following claim.

Claim 4. Let n ≥ 1. If M̃ has pattern P B
n thenM has pattern P L

n+1.

Proof of Claim 4. Suppose that M̃ has pattern P B
n. Then there exist s̃1, s̃2 ∈ S̃, η, ζ ∈ (AM)

∗,
p̃ ∈ P B

n, s̃
+ ∈ S̃′ and s̃− �∈ S̃′ such that

(s0, ε)
η−→ s̃1

p̃� s̃2 and s̃1
ζ−→ s̃+ and s̃2

ζ−→ s̃−. (6.1)

We may assume without loss of generality that η, ζ ∈ (AM)
+. To see this note that s̃1

and s̃2 have a p̃
◦
-loop by Proposition 5.7 (but (s0, ε) has no loop by construction). Let

p̃ = (µ0, p̃0, . . . , µm, p̃m) for some m ≥ 0 with µi ∈ (AM)
+ and p̃i ∈ P B

n−1. We already now
that η · ζ ∈WFM because η · ζ ∈ L(M̃) = fM(L(M)) ⊆WFM. Now we want to show this for
η · p̃ · ζ. Since p̃ appears at s̃1 there exist states q̃0, r̃0, . . . , q̃m, r̃m of M̃ such that

(s0, ε)
η−→ s̃1

µ0−→ q̃0
p̃0� r̃0

µ1−→ q̃1
p̃1� r̃1

µ2−→· · · µm−→ q̃m
p̃m� r̃m = s̃1

ζ−→ s̃+.

Note that q̃i
p̃i−→ r̃i and that q̃i and r̃i have a non–empty p̃i

◦
-loop for 0 ≤ i ≤ m because

n ≥ 1. With the same argument as before we see that
η · µ0 · p̃0 · µ1 · p̃1 · · · µm · p̃m · ζ ⊆WFM and

η · µ0 · p̃0◦ · p̃0 · p̃0◦ · µ1 · p̃1◦ · p̃1 · p̃1◦ · · · µm · p̃m◦ · p̃m · p̃m◦ · ζ ⊆WFM.

6.2 L5/2 is Decidable for Two–Letter Alphabets 155

To argue that
η · p̃ · ζ = η · µ0 · µ1 · · ·µm · ζ ∈WFM

we need to observe that the types of every two consecutive letters alternate. We see from
above that it suffices to show for 0 ≤ i ≤ m that the type of the last letter of µi is the same
as the type of the last letter of p̃i. But this is clear because the type of the last letter of µi is
different from the type of the first letter of p̃i

◦
which in turn is different from the type of the

last letter of p̃i. Note that there are only two types a and b.
Because η · ζ ∈WFM and η · p̃ · ζ ∈WFM none of the states s̃1, s̃2, s̃

+ and s̃− is the sink
state ⊥. So we can rewrite them as

s̃1 = (s1, ts1) and s̃2 = (s2, ts2) and s̃+ = (s+, ts+) and s̃− = (s−, ts−)

for suitable s1, s2, s
+, s− ∈ S with s+ ∈ S′, s− �∈ S′ and ts1 , ts2 , ts+ , ts− ∈ A. It follows that

we can rewrite (6.1) as

(s0, ε)
η−→(s1, ts1)

p̃�(s2, ts2) and (s1, ts1)
ζ−→(s+, ts+) and (s2, ts2)

ζ−→(s−, ts−).
Furthermore, we have η, ζ ∈ WFM. So let x, z ∈ A+ such that fM(x) = η and fM(z) = ζ.
From Claim 2 and Claim 3 we obtain that

s0
x−→ s1

p� s2 and s1
z−→ s+ and s2

z−→ s−

for some p ∈ P L
n+1. This shows thatM has pattern P L

n+1. (End proof of Claim 4.)

Now the proof of Lemma 6.29 is as follows. Assume fM(L(M)) �∈ FPB
n. Since L(M̃) =

fM(L(M)) by Step 1 this implies that M̃ has pattern P B
n. From Claim 4 we obtain that

M has pattern P L
n+1 and hence L(M) �∈ FPL

n+1. This shows that L(M) ∈ FPL
n+1 implies

fM(L(M)) ∈ FPB
n as stated in the lemma. ❑

6.2.3 Transformation of Expressions

The main result of this subsection is Lemma 6.34 that allows together with Lemma 6.29 a
proof of Theorem 6.17. For some permutation–free DFA M with input alphabet A = {a, b}
denote for R ⊆ (AM)

+ by f−1
M (R) the set of all words w from A+ such that fM(w) ∈ R. We

show in Lemma 6.34 that for n ≥ 1 and for every R ⊆ WFM with R ∈ Bn+1/2 we can find
a language T (R) ⊆ A+ such that T (R) = f−1

M (R). Moreover, T (R) does not have a much
higher concatenation complexity than R, i.e., T (R) ∈ Ln+3/2. To prepare the proof of this
we fix some permutation–free DFAM with input alphabet A = {a, b}. First, we observe the
following two propositions concerning Lµ and WFM.

Proposition 6.30. Let µ ∈WFM. It holds that Lµ ∈ L3/2 and Lµ = f−1
M ({µ}).

Proof. Let µ = c1c2 · · · ck ∈WFM for some k ≥ 1. Recall that by Definition 6.25 it holds that
Lµ = { v ∈ A+ | fM(v) = µ }. So we immediately have Lµ = f−1

M ({µ}) and it remains to show
that Lµ ∈ L3/2. For c ∈ AM define

T (c) =def

aj : c = aj and 1 ≤ j ≤ r − 1
bj : c = bj and 1 ≤ j ≤ r − 1

ar · {a}∗ : c = ar
br · {b}∗ : c = br

156 6. Lower Bounds and a Decidability Result for the STH

and set T (µ) =def T (c1) · T (c2) · · · T (ck). Note with Proposition 1.19 that T (µ) ∈ L3/2. We
show that Lµ = T (µ).
Let w ∈ A+ be given and assume w ∈ Lµ. Then fM(w) = µ = c1c2 · · · ck and w has

the A-factorization w = w1w2 · · ·wk with fM(wi) = ci for 1 ≤ i ≤ k. Now fix some i with
1 ≤ i ≤ k and suppose without loss of generality that ci = aj for some 1 ≤ j ≤ r. Since ci
has type a we have wi = al for some l ≥ 1 with j = min{r, l}. If 1 ≤ j ≤ r− 1 then j = l and
wi = al = aj = T (ci). If j = r then l ≥ r and wi = al ∈ ar · {a}∗ = T (ci). We put all factors
together and see that w ∈ T (µ).
Conversely, suppose w ∈ T (µ). We can write w as w = v1v2 · · · vk with vi ∈ T (ci) (vi =

T (ci), respectively) for 1 ≤ i ≤ k. Since µ ∈ WFM the types of the ci alternate between a
and b. It follows that vi ∈ {a}+ ⇔ vi+1 ∈ {b}+ for 1 ≤ i < k. So w = v1v2 · · · vk is the A-
factorization of w and fM(w) = fM(v1v2 · · · vk) = fM(v1)fM(v2) · · · fM(vk). The definition of
each T (ci) is such that vi ∈ T (ci) (vi = T (ci), respectively) implies fM(vi) = ci for 1 ≤ i ≤ k.
Hence fM(w) = fM(v1)fM(v2) · · · fM(vk) = c1c2 · · · cn = µ which shows w ∈ Lµ. ❑

Proposition 6.31. It holds that WFM ∈ coB1/2.
Proof. Consider the following definition.

T =def (AM)
+ \
(⋃
ν∈Aa

MAa
M ∪Ab

MAb
M

(AM)
∗ · ν · (AM)

∗
)

Note with Proposition 1.15 that T ∈ coB1/2 and we want to show T = WFM. Let µ =
c1c2 · · · ck ∈ (AM)

+ for some k ≥ 1 be given and recall from Proposition 6.26 that µ ∈WFM
if and only if ci ∈ Aa

M ⇔ ci+1 ∈ Ab
M for 1 ≤ i < k. So if every two consecutive letters in µ

have different type then µ is in none of the sets subtracted from (AM)
+ in the definition of

T . If two consecutive letters cici+1 in µ have the same type then cici+1 ∈ Aa
MAa

M ∪ Ab
MAb

M
and µ �∈ T . ❑

The following two lemmas will help to give the proof of Lemma 6.34. In particular,
Lemma 6.33 serves as a part of the induction base there. We treat in Lemma 6.32 languages
R that may contain words that are not well–formed.

Lemma 6.32. Let µ0, µ1, . . . , µm ∈ (AM)
+ for m ≥ 0 and let l1, r1, l2, r2, . . . , lm, rm ∈ A

such that µ0 ·Al1
M, Ari

M · µi ·Ali+1
M , Arm

M · µm ⊆WFM for 1 ≤ i < m. For the language

R = µ0 · Al1
M(AM)

∗Ar1
M · µ1 · Al2

M(AM)
∗Ar2

M · µ2 · · ·Alm
M (AM)

∗Arm
M · µm

there exists some T (R) ⊆ A+ with T (R) ∈ L3/2 such that T (R) = f−1
M (R).

Proof. We define the transformation of R as

T (R) =def Lµ0 · l1B1r1 · Lµ1 · l2B2r2 · Lµ2 · · · lmBmrm · Lµm

with

Bi =def

A∗ : li �= ri

A∗bA∗ : li = ri = a
A∗aA∗ : li = ri = b

6.2 L5/2 is Decidable for Two–Letter Alphabets 157

for 1 ≤ i ≤ m. Proposition 6.30 shows that Lµi ∈ L3/2 for 0 ≤ i ≤ m and from Proposi-
tion 1.19 we see that also liBiri ∈ L3/2 for 1 ≤ i ≤ m. Since L3/2 is closed under concatenation
we obtain T (R) ∈ L3/2.
Now we want to show that T (R) = f−1

M (R). First let w ∈ f−1
M (R) and we have to show

that w ∈ T (R). Let w = w1w2 · · ·wk ∈ A+ for some k ≥ 1 be the A-factorization of w. Then
fM(w) = c1c2 · · · ck ∈WFM for some ci ∈ AM and because fM(w) ∈ R we can write it as

fM(w) = µ0 · d1ν1e1 · µ1 · d2ν2e2 · µ2 · · · dmνmem · µm
with di ∈ Ali

M, ei ∈ Ari
M and νi ∈ (AM)

∗ for 1 ≤ i ≤ m. Let 1 < j1 < j′1 < j2 < j′2 · · · <
jm < j′m < k such that di = cji , νi = cji+1 · · · cj′i−1 and ei = cj′i for 1 ≤ i ≤ m, and µi =
cj′i+1 · · · cji+1−1 for 0 ≤ i ≤ m (set j′0 =def 0 and jm+1 =def k+1). We apply Proposition 6.23
and obtain fM(wj′i+1 · · ·wji+1−1) = cj′i+1 · · · cji+1−1 = µi for 0 ≤ i ≤ m. By Proposition 6.30
this implies that wj′i+1 · · ·wji+1−1 ∈ Lµi for 0 ≤ i ≤ m.

Also by Proposition 6.23 we see that fM(wji · · ·wj′i) = cji · · · cj′i = diνiei with wji ∈ {li}+
and wj′i ∈ {ri}+ for 1 ≤ i ≤ m. Now fix some i with 1 ≤ i ≤ m. If li �= ri then wji · · ·wj′i ∈
liA

∗ri = liBiri. If li = ri we may assume without loss of generality that li = ri = a and hence
wji , wj′i ∈ {a}+. But since the latter are factors of maximal length and because ji < j′i there
must be some j with ji < j < j′i and wj ∈ {b}+. So wji · · ·wj · · ·wj′i ∈ aA∗bA∗a = liBiri. We
put all factors together and see that w ∈ T (R).
Conversely, assume that w ∈ T (R) and we have to show that fM(w) ∈ R. Since w ∈ T (R)

we can write w as
w = u0 · l1v1r1 · u1 · l2v2r2 · u2 · · · lmvmrm · um

with vi ∈ Bi for 1 ≤ i ≤ m and ui ∈ Lµi for 0 ≤ i ≤ m. We obtain from Proposition 6.30
that fM(ui) = µi for 0 ≤ i ≤ m.
Now fix some i with 1 ≤ i ≤ m and let fM(liviri) = f1f2 · · · fn′ for some n′ ≥ 1 and

fj ∈ AM. First suppose li �= ri. Then f1 has type li and fn′ has different type ri. So n′ ≥ 2
and f1f2 · · · fn′ ∈ Ali

M(AM)
∗Ari

M. If li = ri we may assume without loss of generality that
li = ri = a. Then f1 and fn′ have both type a. By definition of T (R) we see vi ∈ Bi = A∗bA∗.
It follows that there is some factor from {b}+ in avia. Hence there must be some j with
1 < j < n′ such that fj has type b. So n′ ≥ 3 and f1f2 · · · fn′ ∈ Aa

M(AM)
∗Aa

M = Ali
M(AM)

∗Ari
M.

Define ϕi =def fM(liviri) for 1 ≤ i ≤ m. We have just shown that ϕi ∈ Ali
M(AM)

∗Ari
M for

1 ≤ i ≤ m and obtain with fM(ui) = µi for 0 ≤ i ≤ m from above that

µ =def fM(u0)·fM(l1v1r1)·fM(u1) · · · fM(lmvmrm)·fM(um) = µ0·ϕ1 ·µ1 · · ·ϕm ·µm ∈ R.

We argue that µ is well–formed with a few observations. Let t(c) for c ∈ AM denote the type
of c and recall that p1(x) (s1(x)) is just the first letter (last letter, respectively) of a word x.
It holds that

– t(s1(µ0)) �= l1 = t(p1(ϕ1)) because µ0 ·Al1
M ⊆WFM,

– t(s1(ϕi)) = ri �= t(p1(µi)) and t(s1(µi)) �= li+1 = t(p1(ϕi+1)) because A
ri
M ·µi ·Ali+1

M ⊆WFM
for 1 ≤ i < m and

– t(s1(ϕm)) = rm �= t(p1(µm)) because Arm
M · µm ⊆WFM.

We apply repeatedly Proposition 6.27 and Proposition 6.28 to µ ∈WFM and obtain

fM(u0) ·fM(l1v1r1) ·fM(u1) · · · fM(lmvmrm) ·fM(um) = fM(u0 · l1v1r1 ·u1 · · · lmvmrm ·um).
So fM(w) = µ ∈ R. ❑

158 6. Lower Bounds and a Decidability Result for the STH

Let B ⊆ A+, C ⊆ (AM)
+. We write for short B instead of A+\B and C instead of (AM)

+\C.
Lemma 6.33. Let R ⊆ WFM with R ∈ coB1/2. There exists some T (R) ⊆ A+ such that
T (R) ∈ coL3/2 and T (R) = f−1

M (R).

Proof. Since R ∈ B1/2 we can write R by Proposition 1.15 as a finite union of languages R′

of the form

R′ = µ0(AM)
+µ1(AM)

+ · · ·µm−1(AM)
+µm

with m ≥ 0 and µi ∈ (AM)
∗ for 0 ≤ i ≤ m. Let U denote the finite union of all letters in

AM. We can assume without loss of generality that for 0 ≤ i ≤ m we have µi �= ε. To see this
first assume that µ0 = ε. Then it must be that m ≥ 1 and we rewrite the leftmost occurrence
of (AM)

+ as U ∪ U(AM)
+ and distribute the concatenations over the occurring unions. If

µm = ε we can do a similar thing. Finally, if µi = ε for 0 < i < m we rewrite (AM)
+(AM)

+

as U(AM)
+ and continue as before.

Moreover, we can rewrite each (AM)
+ as U ∪ AM(AM)

∗AM and distribute again the
concatenations over the occurring unions. So we obtain as a first step that R is a finite union
of languages R′ of the form

R′ = µ0 · (Aa
M ∪ Ab

M) · (AM)
∗ · (Aa

M ∪Ab
M) · µ1 · · · (Aa

M ∪ Ab
M) · (AM)

∗ · (Aa
M ∪ Ab

M) · µm
with m ≥ 0 and µi ∈ (AM)

+ for 0 ≤ i ≤ m. Now we distribute the concatenations over the
remaining unions (Aa

M ∪ Ab
M) and find that R is a finite union of languages R′ of the form

R′ = µ0 · Al1
M · (AM)

∗ ·Ar1
M · µ1 ·Al2

M · (AM)
∗ ·Ar2

M · µ2 · · ·Alm
M · (AM)

∗ · Arm
M · µm (6.2)

with m ≥ 0, letters li, ri ∈ A and µi ∈ (AM)
+ for 0 ≤ i ≤ m.

Observe that if for some R′ the conditionµ0Al1
M ∪

⋃
1≤i<m

Ari
MµiA

li+1
M ∪ Arm

M µm

 ∩ WFM �= ∅ (6.3)

is true then R′ ⊆ WFM which can be seen as follows. Suppose ν witnesses that (6.3) holds

and let us further assume without loss of generality that ν ∈ Ari
MµiA

li+1
M for some fixed i with

1 ≤ i < m (the cases ν ∈ µ0A
l1
M and ν ∈ Arm

M µm can be seen analogously). Then also any

other ν ′ ∈ Ari
MµiA

li+1
M is in WFM since ν and ν ′ have the same sequence of types of letters

from AM. If there is some β ∈ R′ ∩WFM then we have by definition of R′ that β has some
factor ν ′ ∈ Ari

MµiA
li+1
M with ν ′ ∈ WFM. Because β ∈ WFM and non–empty factors are again

well–formed by Proposition 6.27 this is a contradiction.
Suppose that for k ≥ 0 the sets R′

1, R
′
2, . . . , R

′
k of the form as stated in (6.2) occur in the

finite union describing R. We turn to the description of R now. Let I ⊆ {1, . . . , k} be the
set of indices such that R′

i does not satisfy (6.3) for all i ∈ I and set I =def {1, . . . , k}\I.
As pointed out before, we have R′

i ⊆ WFM and hence WFM ⊆ R′
i for all i ∈ I. Recall that

R ⊆WFM is assumed in the lemma. So we have

6.2 L5/2 is Decidable for Two–Letter Alphabets 159

R = R ∩ WFM since R ⊆WFM

=
⋂
1≤i≤k R

′
i ∩ WFM

=
⋂

i∈I R
′
i ∩ ⋂i∈I R′

i ∩ WFM

=
⋂

i∈I R
′
i ∩ WFM because WFM ⊆ ⋂i∈I R′

i.

Since for all i ∈ I the sets R′
i do not fulfil (6.3) it follows that we can apply Lemma 6.32

to each of them. Denote for all i ∈ I by T (R′
i) the languages of A

+ with T (R′
i) ∈ L3/2 and

T (R′
i) = f−1

M (R
′
i) provided by Lemma 6.32 and define

T (R) =def
⋂
i∈I

T (R′
i) .

The class coL3/2 is closed under intersection by definition, so T (R) ∈ coL3/2. To show that
T (R) = f−1

M (R) let w ∈ A+ be given. We observe that

w ∈ f−1
M (R) ⇐⇒ fM(w) ∈ R

⇐⇒ fM(w) ∈ R′
i for all i ∈ I and fM(w) ∈WFM

⇐⇒ fM(w) ∈ R′
i for all i ∈ I since fM(w) ∈WFM

⇐⇒ w ∈ T (R′
i) for all i ∈ I since T (R′

i) = f−1
M (R

′
i)

⇐⇒ w ∈ T (R).

❑

Now we transfer this relation inductively to all higher levels of the DDH and STH.

Lemma 6.34. Let n ≥ 1 and let M be a permutation–free DFA which has input alphabet
A = {a, b}.
1. For every R ⊆ WFM with R ∈ coBn−1/2 there exists some T (R) ⊆ A+ such that T (R) ∈
coLn+1/2 and T (R) = f−1

M (R).
2. For every R ⊆ WFM with R ∈ Bn+1/2 there exists some T (R) ⊆ A+ such that T (R) ∈
Ln+3/2 and T (R) = f−1

M (R).

Proof. We prove both statements simultaneously by induction on n.
Induction base. Let n = 1. The first statement holds by Lemma 6.33 and we have to show
the second statement. Recall from Lemma 1.20 that B3/2 = Pol(coB1/2). So R can be written
as a finite union of languages R′ for which in turn there are languages L0, L1, . . . , Lm ⊆ (AM)

+

for some m ≥ 0 such that
R′ = L0L1 · · ·Lm

with Li ∈ coB1/2 for 0 ≤ i ≤ m. From R ⊆WFM we see R′ ⊆WFM for each member R′ of the
union. Moreover, for each R′ it holds that Li ⊆WFM for all 0 ≤ i ≤ m since otherwise there
is a word in R′ (having a factor) that is not well–formed. Let us define the transformation
T (Li) ⊆ A+ of Li to be the set from coL3/2 with T (Li) = f−1

M (Li) provided by the first
statement. Now set

160 6. Lower Bounds and a Decidability Result for the STH

T (R′) =def T (L0)T (L1) · · ·T (Lm)

and define T (R) to be the union of all T (R′) ranging over all R′. Because T (Li) ∈ coL3/2 for
0 ≤ i ≤ m we have T (R′) ∈ Pol(coL3/2) and also T (R) ∈ Pol(coL3/2). So T (R) ∈ L5/2 by
Lemma 1.20.
It remains to show that T (R) = f−1

M (R) which we do for every member of the union
T (R′) separately. First let w ∈ f−1

M (R
′) and let w = w1w2 · · ·wk ∈ A+ for some k ≥ 1 be

the A-factorization of w. Then fM(w) ∈ R′ and fM(w) = c1c2 · · · ck ∈ WFM with ci ∈ AM.
We can write fM(w) as fM(w) = µ0µ1 · · ·µm with µi ∈ Li for 0 ≤ i ≤ m. Let 1 = j0 <
j1 < · · · < jm < k such that µi = cji · · · cji+1−1 for 0 ≤ i ≤ m (set jm+1 =def k + 1).
We apply Proposition 6.23 and obtain fM(wji · · ·wji+1−1) = µi ∈ Li for 0 ≤ i ≤ m. Since
T (Li) = f−1

M (Li) we obtain wji · · ·wji+1−1 ∈ T (Li) for 0 ≤ i ≤ m. If we put these factors
together we get w ∈ T (R′).
Conversely, let w ∈ T (R′). We can write w as w = u0u1 · · · um with ui ∈ T (Li)

for 0 ≤ i ≤ m. Because T (Li) = f−1
M (Li) we have fM(ui) ∈ Li for 0 ≤ i ≤ m. So

fM(u0)fM(u1) · · · fM(um) ∈ R′ ⊆ WFM. We apply repeatedly Proposition 6.27 and Propo-
sition 6.28 and obtain fM(u0)fM(u1) · · · fM(um) = fM(u0u1 · · · um) = fM(w) ∈ R′. Hence,
w ∈ f−1

M (R
′)

Induction step. Assume the lemma holds for some n ≥ 1 and we want to show it for n+1.
We begin with the first statement and suppose that R ∈ coBn+1/2. Define R′ =def R∩WFM.
It holds that R′ ∈ Bn+1/2 because WFM ∈ coB1/2 ⊆ Bn+1/2 for n ≥ 1 by Proposition 6.31
and since Bn+1/2 is closed under intersection by Lemma 1.21. Moreover, we have

R′ ∩WFM = R ∩WFM ∩ WFM =
(
R ∪WFM

) ∩ WFM = R ∩WFM. (6.4)

So we see that

R = R ∩ WFM since R ⊆WFM

= R′ ∩ WFM by (6.4).

Since R′ ∈ Bn+1/2 is a subset of WFM we can apply the induction hypothesis of the second
statement. Denote by T (R′) the language of A+ with T (R′) ∈ Ln+3/2 and T (R′) = f−1

M (R
′)

provided by the hypothesis and define

T (R) =def T (R′) .

Note that T (R) ∈ coLn+3/2 and let some w ∈ A+ be given in order to show T (R) = f−1
M (R).

We observe that

w ∈ f−1
M (R) ⇐⇒ fM(w) ∈ R

⇐⇒ fM(w) ∈ R′ and fM(w) ∈WFM

⇐⇒ fM(w) ∈ R′ since fM(w) ∈WFM

⇐⇒ w ∈ T (R′) since T (R′) = f−1
M (R

′)

⇐⇒ w ∈ T (R).

This completes the induction step for the first statement and we turn to the second statement.

6.3 Discussion 161

Let R ∈ Bn+3/2 with R ⊆ WFM be given and recall from Lemma 1.20 that Bn+3/2 =
Pol(coBn+1/2). Now we can proceed exactly as in the proof of the induction base for the
second statement. Just apply what we have shown for coBn+1/2 in the induction step for the
first statement. ❑

Finally, we give the proof of Theorem 6.17.

Proof of Theorem 6.17. It suffices to show for n ≥ 1 the inclusion FPL
n+1 ⊆ Ln+3/2 (defined

over A = {a, b}) under the assumption that Bn+1/2 = FPB
n for arbitrary alphabets. So let

L ∈ FPL
n+1. By Theorem 6.7 and Theorem 1.37 there is some permutation–free DFAM with

L = L(M) ⊆ A+. It follows from Lemma 6.29 and our assumption that fM(L(M)) ∈ FPB
n =

Bn+1/2. Since fM(L(M)) ⊆ WFM we obtain from Lemma 6.34 some T (fM(L(M))) ⊆ A+

with T (fM(L(M))) ∈ Ln+3/2 such that T (fM(L(M))) = f−1
M (fM(L(M))). It holds that

L(M) ⊆ f−1
M (fM(L(M))) and we want to argue that also the reverse inclusion holds. So let

w ∈ f−1
M (fM(L(M))) and hence fM(w) ∈ fM(L(M)). It follows that there is some v ∈ L(M)

with fM(v) = fM(w) and Proposition 6.24 shows that also w ∈ L(M). Together we see that

L = L(M) = f−1
M (fM(L(M))) = T (fM(L(M))) ∈ Ln+3/2.

(End proof of Theorem 6.17.)

6.3 Discussion

We want to make a few more remarks concerning Conjecture 6.16. It may turn out that
the conjecture does not hold, which we think is certainly possible. However, we did not find
evidence against it and we even may interpret the results of Section 6.2 as another argument
supporting it. If an effective characterization of the DDH and STH is possible at all, and if
this can be done in terms of forbidden patterns, we believe that the work done in the last
two chapters is a step in this direction. Our approach is dynamic in the sense that we can
eventually learn from counter–examples and adjust the iteration rule respectively.
Independently from the validity of Conjecture 6.16 we have obtained with the forbidden

pattern classes two strict and decidable hierarchies of star–free languages that are comparable
(at least in one direction) to the DDH and STH. We think that it is an interesting task to
further investigate these hierarchies, i.e., to look for characterizations in terms of formal
languages, logic or finite semigroups.

162 6. Lower Bounds and a Decidability Result for the STH

Bibliography

[Arf87] M. Arfi. Polynomial operations on rational languages. In Proceedings 4th Sympo-
sium on Theoretical Aspects of Computer Science, volume 247 of Lecture Notes
in Computer Science, pages 198–206. Springer-Verlag, 1987.

[Arf91] M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical
Computer Science, 91:71–84, 1991.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define com-
plexity classes. Theoretical Computer Science, 104:263–283, 1992.

[BF80] J. A. Brzozowski and F. E. Fich. Languages of R-trivial monoids. Journal of
Computer and System Sciences, 20:32–49, 1980.

[BK78] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages
is infinite. Journal of Computer and System Sciences, 16:37–55, 1978.

[BKS98] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable
languages and their relation to NP. In Proc. 25rd International Colloquium
on Automata, Languages and Programming, volume 1443 of Lecture Notes in
Computer Science, pages 17–28. Springer Verlag, 1998.

[Bor95] B. Borchert. On the acceptance power of regular languages. Theoretical Com-
puter Science, 148:207–225, 1995.

[BP89] D. Beauquier and J.-E. Pin. Factors of words. In Proceedings 16th International
Colloquium on Automata, Languages and Programming, volume 372 of LNCS,
pages 63–79. Springer Verlag, 1989.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor.,
10:33–49, 1976.

[BS73] J. A. Brzozowski and I. Simon. Characterizations of locally testable languages.
Discrete Math., 4:243–271, 1973.

[BS94] F. Blanchet-Sadri. Equations and monoid varieties of dot-depth one and two.
Theoretical Computer Science, 123:239–258, 1994.

[BS95] F. Blanchet-Sadri. Some logical characterizations of the dot-depth hierarchy and
applications. Journal of Computer and System Sciences, 51:324–337, 1995.

[BSS99] B. Borchert, H. Schmitz, and F. Stephan, 1999. Manuscript.
[Büc60] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik

und Grundl. Math., 6:66–92, 1960.
[BV98] H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language defin-

ability. International Journal of Foundations of Computer Science, 9:277–294,
1998.

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of
Computer and System Sciences, 5:1–16, 1971.

164 Bibliography

[CGH+88] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson,
K. W. Wagner, and G. Wechsung. The Boolean hierarchy I: Structural proper-
ties. SIAM Journal on Computing, 17:1232–1252, 1988.

[CH91] S. Cho and D. T. Huynh. Finite-automaton aperiodicity is PSPACE-complete.
Theoretical Computer Science, 88:99–116, 1991.

[CHVW98] K. Cronauer, U. Hertrampf, H. Vollmer, and K. W. Wagner. The chain method
to separate counting classes. Theoretical Computer Science, 31:93–108, 1998.

[CK96] C. Choffrut and J. Karhumäki. Combinatorics of words. In G.Rozenberg and
A.Salomaa, editors, Handbook of formal languages, volume I, pages 329–438.
Springer, 1996.

[CPP93] J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logic.
Journal of Computer and System Sciences, 46:271–294, 1993.

[Eil76] S. Eilenberg. Automata, languages and machines, volume B. Academic Press,
New York, 1976.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of theoretical computer science, volume B, pages 995–1072. Springer, 1990.

[EVW97] K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables
and unary temporal logic. In Proceedings 12th IEEE Symposium on Logic in
Computer Science, pages 108–117. IEEE Computer Society Press, 1997.

[EW96] K. Etessami and T. Wilke. An until hierarchy for temporal logic. In Proceedings
11th IEEE Symposium on Logic in Computer Science, pages 108–117. IEEE
Computer Society Press, 1996.

[Gla98] C. Glaßer. A normal form for classes of concatenation hierarchies. Technical
Report 216, Inst. für Informatik, Univ. Würzburg, 1998.

[Gla99] C. Glaßer. The Boolean hierarchy over dot-depth 1/2. Technical Report 230,
Inst. für Informatik, Univ. Würzburg, 1999.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proceedings 12th ACM Symposium on Principles of Programming
Languages, pages 163–173, Las Vegas, 1980.

[GS99] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Technical Report 243,
Inst. für Informatik, Univ. Würzburg, 1999.

[GS00a] C. Glaßer and H. Schmitz. The Boolean structure of dot-depth one. In Pre-
proceedings Second International Workshop on Descriptional Complexity of Au-
tomata, Grammars and Related Structures, London, Ontario, 2000.

[GS00b] C. Glaßer and H. Schmitz. Concatenation hierarchies and forbidden patterns.
Technical Report 256, Inst. für Informatik, Univ. Würzburg, 2000.

[GS00c] C. Glaßer and H. Schmitz. Decidable hierarchies of starfree languages. In Pro-
ceedings 20th Conference on the Foundations of Software Technology and Theo-
retical Computer Science, volume 1974 of LNCS, pages 503–515. Springer Verlag,
2000.

[GS00d] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. In Proceedings 17th
Symposium on Theoretical Aspects of Computer Science, volume 1770 of LNCS,
pages 555–566. Springer Verlag, 2000.

[Has83] K. Hashiguchi. Representation theorems on regular languages. Journal of Com-
puter and System Sciences, 27:101–115, 1983.

Bibliography 165

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. In Proc. London
Math. Soc., volume 3, pages 326–336, 1952.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner.
On the power of polynomial time bit-reductions. In Proceedings 8th Structure
in Complexity Theory, pages 200–207, 1993.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison–Wesley, Reading, 1979.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17:935–938, 1988.

[JMT94] B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages.
In 9th Annual Conference Structure in Complexity Theory, pages 242–254, 1994.

[Kam68] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, Los Angeles, 1968.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3–42. Princeton
University Press, Princeton, New Jersey, 1956.

[Kna83] R. Knast. A semigroup characterization of dot-depth one languages. RAIRO
Inform. Théor., 17:321–330, 1983.

[KSV98] S. Kosub, H. Schmitz, and H. Vollmer. Uniformly defining complexity classes of
functions. In Proceedings 15th Symposium on Theoretical Aspects of Computer
Science, volume 1373 of Lecture Notes in Computer Science, pages 607–617.
Springer-Verlag, 1998.

[KSW87] J. Köbler, U. Schöning, and K. W. Wagner. The difference and the truth-table
hierarchies for NP. RAIRO Inform. Théor., 21:419–435, 1987.

[McN74] R. McNaughton. Algebraic decision procedures for local testablility. Math. Syst.
Theor., 8:60–76, 1974.

[MP71] R. McNaughton and S. Papert. Counterfree Automata. MIT Press, Cambridge,
1971.

[MPT00] A. Maciel, P. Péladeau, and D. Thérien. Programs over semigroups of dot-depth
one. Theoretical Computer Science, 245:135–148, 2000.

[Myh57] J. Myhill. Finite automata and the representation of events. Technical Report
TR-57-624, WADD, Wright Patterson AFB, Ohio, 1957.

[Ner58] A. Nerode. Linear automata transformation. In Proceedings of AMS, volume 9,
pages 541–544, 1958.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally
definable acceptance types. Theoretical Computer Science, 194:137–161, 1998.

[Pap94] C. H. Papadimitriou. Computational complexity. Addison–Wesley, Reading,
1994.

[Pin86] J.-E. Pin. Varieties of formal languages. Plenum, New York, 1986.
[Pin95] J.-E. Pin. Finite semigroups and recognizable languages: an introduction. In

J. Fountain, editor, NATO Advanced Study Institute: Semigroups, Formal Lan-
guages and Groups, pages 1–32. Kluwer Academic Publishers, 1995.

[Pin96] J.-E. Pin. Syntactic semigroups. In G.Rozenberg and A.Salomaa, editors, Hand-
book of formal languages, volume I, pages 679–746. Springer, 1996.

166 Bibliography

[Pin98] J.-E. Pin. Bridges for concatenation hierarchies. In Proceedings 25th Interna-
tional Colloquium on Automata, Languages and Programming, volume 1443 of
LNCS, pages 431–442. Springer Verlag, 1998.

[Pin00] J.-E. Pin, 2000. Personal communication.
[PP86] D. Perrin and J.-E. Pin. First-order logic and star-free sets. Journal of Computer

and System Sciences, 32:393–406, 1986.
[PW97] J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of

computing systems, 30:383–422, 1997.
[PW00] J.-E. Pin and P. Weil. The wreath product principle for ordered semigroups.

Technical report, 2000.
[RST82] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and prob-

abilistic computations. In Proceedings of the 14th ACM Symposium on Theory
of Computing, pages 215–223, San Francisco, California, 5–7 May 1982.

[Sch65] M. P. Schützenberger. On finite monoids having only trivial subgroups. Infor-
mation and Control, 8:190–194, 1965.

[Sch99a] H. Schmitz. Boolean hierarchies inside dot-depth one. Technical Report 240,
Inst. für Informatik, Univ. Würzburg, 1999.

[Sch99b] H. Schmitz. Generalized deterministic languages and their automata: A charac-
terization of restricted temporal logic. Technical Report 226, Inst. für Informatik,
Univ. Würzburg, 1999.

[Sch99c] H. Schmitz. Some forbidden patterns in automata for dot-depth one languages.
Technical Report 220, Inst. für Informatik, Univ. Würzburg, 1999.

[Sch00] H. Schmitz. Restricted temporal logic and deterministic languages. Journal of
Automata, Languages and Combinatorics, 5(3):325–341, 2000.

[Sel01] Victor L. Selivanov. A logical approach to decidability of hierarchies of regular
star-free languages. In Proceedings 18th Symposium on Theoretical Aspects of
Computer Science, LNCS. Springer Verlag, 2001. To appear.

[Sim72] I. Simon. Hierarchies of events with dot-depth one. PhD thesis, University of
Waterloo, 1972.

[Sim75] I. Simon. Piecewise testable events. In Proceedings 2nd GI Conference, volume 33
of Lecture Notes in Computer Science, pages 214–222. Springer-Verlag, 1975.

[Sim90] I. Simon. Factorization forests of finite height. Theoretical Computer Science,
72:65–94, 1990.

[SS83] J. Sakarovitch and I. Simon. Subwords. In M. Lothaire, editor, Combinatorics
on Words, Encyclopedia of mathematics and its applications, pages 105–142.
Addison–Wesley, 1983.

[Ste85a] J. Stern. Characterizations of some classes of regular events. Theoretical Com-
puter Science, 35:17–42, 1985.

[Ste85b] J. Stern. Complexity of some problems from the theory of automata. Information
and Control, 66:163–176, 1985.

[Sto73] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1973.

[Str81] H. Straubing. A generalization of the Schützenberger product of finite monoids.
Theoretical Computer Science, 13:137–150, 1981.

[Str85] H. Straubing. Finite semigroup varieties of the form V * D. J.Pure Appl.Algebra,
36:53–94, 1985.

Bibliography 167

[Str88] H. Straubing. Semigroups and languages of dot-depth two. Theoretical Computer
Science, 58:361–378, 1988.

[Str94] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, 1994.

[SW98] H. Schmitz and K. W. Wagner. The Boolean hierarchy over level 1/2 of
the Straubing-Thèrien hierarchy. Technical Report 201, Inst. für Informatik,
Univ. Würzburg, 1998.

[SY00] K. Salomaa and S. Yu. Alternating finite automata and star-free languages.
Theoretical Computer Science, 234:167–176, 2000.

[Sze87] R. Szelepcsényi. The method of forcing for nondeterministic automata. Bull.of
the EATCS, 33:96–100, 1987.

[Thé81] D. Thérien. Classification of finite monoids: the language approach. Theoretical
Computer Science, 14:195–208, 1981.

[Tho82] W. Thomas. Classifying regular events in symbolic logic. Journal of Computer
and System Sciences, 25:360–376, 1982.

[Tho84] W. Thomas. An application of the Ehrenfeucht–Fräıssé game in formal language
theory. Société Mathématique de France, mémoire 16, 2:11–21, 1984.

[Tho96] W. Thomas. Languages, automata, and logic. In G.Rozenberg and A.Salomaa,
editors, Handbook of formal languages, volume III, pages 389–456. Springer,
1996.

[Tod91] S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal on
Computing, 20:865–877, 1991.

[Tra58] B. A. Trakhtenbrot. Synthesis of logic networks whose operators are described
by means of single-place predicate calculus. Doklady Akad. Nauk SSSR, 118:646–
649, 1958.

[Tra99] A. N. Trahtman. Computing the order of local testability. In Preproceedings First
International Workshop on Descriptional Complexity of Automata, Grammars
and Related Structures, Magdeburg, pages 197–206, 1999.

[TW85] D. Thérien and A. Weiss. Graph congruences and wreath products. J.Pure
Appl.Algebra, 35:205–215, 1985.

[TW96] D. Thérien and T. Wilke. Temporal logic and semidirect products: an effective
characterization of the until hierarchy. In Proceedings 37th Annual Symposium
on Foundations of Computer Science. IEEE Computer Society Press, 1996.

[TW98] D. Thérien and T. Wilke. Over words, two variables are as powerful as one
quantifier alternation: FO2 = Σ2 ∩ Π2. In Proceedings of the 30th annual ACM
symposium on Theory of computing, pages 234–240, Dallas, Texas, 1998. ACM
Press.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polyno-
mial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993.
In Russian.

[Wag90] K. W. Wagner. Bounded query classes. SIAM Journal on Computing, 19:833–
846, 1990.

[Wei93] P. Weil. Some results on the dot-depth hierarchy. Semigroup Forum, 46:352–370,
1993.

[Wil98] T. Wilke. Classifying discrete temporal properties, 1998. Habilitationsschrift.

168 Bibliography

[Wil99] T. Wilke. Classifying discrete temporal properties. In Proceedings 16th Sympo-
sium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes
in Computer Science, pages 32–46. Springer-Verlag, 1999.

Index

(TM,≤), 119
Ak, 29
A≤k, 29
Lµ, 149
L+k (·), 50
L−

k (·), 50
TM, 119
ACP, 85
B+n , 18
B1/2,k, 10, 30, 33
Bn/2,k, 10, 33
Bn/2, 9, 16
∆p
2 , 28, 84

FU(·), 15
βMIN, 97
IT(·), 13, 124
Dleft

k , 68
L∗

n, 18
Dright

k , 68

D̂left
k , 81

D̂right
k , 81

Ln/2, 9, 16
NL, 36
Πpn, 28
RPTL, 76
RTL, 11, 75
Σpn, 28
TL[.], 75
α(·), 29
AM, 148
Aa

M, 148
Ab

M, 148
BC∗(·), 17
BC(·), 9, 15
eB3/2,k, 97
p, 124
fM(·), 148
f−1
M (·), 155
co, 15
co∗, 17
δw, 34
PatternI

n,k, 134
ε, 15
S(·, ·, ·, ·), 107
F, 11, 75
βmin, 97
W n , 143
K(·), 93

I, 123
B, 13, 139
L, 13, 139
�k, 10, 40
�k-chain, 40
– alternation in, 11, 40, 50
�e

k, 41
�k, 40
�k-chain, 40
�e

k, 41
〈Xk〉, 78
LeafP(·), 27
u−→, 36

λ(·), 125
p◦, 124
|=, 75
size, 98
ω-power, 119
〈·〉k, 43
P, 76
‖ · ‖, 107
�, 132
FP(·, . . . , ·), 36
FP(·), 10, 36
FPB

n, 139
FPL

n , 139
PolB(·), 17
PolL(·), 17
Pol(·), 9, 15
P(·), 15
pk(·), 29
π(·, ·), 125
Reachk, 133
−→+, 36
−→, 36
m,k
=⇒L, 50
P

I
n, 124
SF, 15
sk(·), 29
Tr, 98
U, 11, 75
WFM, 149
bx, 29
X, 11, 75
Y, 76
k-decomposition, 10, 29
k-extension, 40
– elementary, 41

170 Index

k-prefix, 29
k-suffix, 29
m+(·), 60
m−(·), 60
m+

k (·), 51
m−

k (·), 51
nd(·), 77
sh(·), 32
v[·, ·], 94
w-loop, 34
– leads to, 34
wR, 40
FO[<,min,max, S, P], 27, 119
FO[<], 27, 59, 147
DFA, 8, 34
NFA, 53

alphabet, 15

Boolean closure, 15, 17, 20
Boolean hierarchy, 50
– over B1/2,k, 11, 50
– over B1/2, 60
– over L1/2, 59
bridge–structure, 121
bridge–word, 124

class of languages, 15
closure properties

– of eB3/2,k, 99, 102
– of B+n , 18
– of B1/2,k, 44
– of Bn/2,k, 44
– of Bn, 25
– of L∗

n, 18
– of Ln, 25
concatenation hierarchies, 7
conjecture for the dot–depth problem, 146, 161

DDH, 9
difference hierarchy, 28
dot–depth hierarchy, 7, 16
dot–depth problem, 7, 26

empty word, 15
expression, 97
– size of, 97, 107

finite automaton
– deterministic, 8, 10, 34
– minimal, 8, 34, 37
– nondeterministic, 53
– permutation–free, 8, 37
first–order logic, 10, 27, 119, 147
– Πn formula, 27
– Σn formula, 27, 119, 147
– Boolean hierarchy over Σ1, 59
forbidden pattern, 8, 10, 28, 36

– B̂
rev
1,k , 48

– B̂1,k , 48
– B1,k , 48

– B1/2,k , 11, 47
– B1/2 , 11, 45
– B1 , 11, 62
– B3/2,k , 12, 104
– B3/2 , 12, 115
– D

rev
k , 11, 68

– D
rev , 62

– D k , 68
– D , 62
– L1/2 , 11, 45, 46
– L3/2 , 92
– FP(PB

n), 139
– FP(PL

n), 139
– P

I
n, 13, 124

– approach, 8
– characterization, 28, 36
– – of B1,k, 48
– – of B1/2,k, 47
– – of B1/2, 46
– – of B1, 62
– – of B3/2,k, 105
– – of B3/2, 116
– – of Dleft

k , 69
– – of Dright

k , 69

– – of D̂left
k , 81

– – of D̂right
k , 81

– – of L1/2, 46
– – of L1, 49
– – of L3/2, 92
– – of L5/2, for two–letter alphabets, 147
– – of L(TL[F]), 77
– – of L(TL[P]), 77
– – of L(TL[X(k),F]), 80
– – of L(TL[X,F]), 77
– – of L(TL[Y(k),P]), 80
– – of L(TL[Y,P]), 77
– – of the next hierarchy, 80

initial pattern, 123

language, 15
languages
– k-deterministic, 68
– deterministic, 11
– – generalized, 12, 68
– left k-deterministic, 68
– locally testable, 7, 10
– piecewise testable, 7, 10
– regular, 7, 15
– right k-deterministic, 11, 68
– star–free, 7, 15, 37, 142
– weak left k-deterministic, 81
– weak right k-deterministic, 81
leaf language, 10, 27, 84, 119
– for ∆p

2 , 87
– for NP, 28, 120
– for Σp2 , 120
letter of type a, 148
letter of type b, 148
loop–structure, 121
loop–word, 124

Index 171

lower bound algorithm, 13, 146

membership problem, 8, 36
– of B1,k, 49
– of B1/2,k, 48
– of B1/2,k(l), 58
– of B1/2, 48
– of B1/2(l), 60
– of B1, 64
– of B3/2,k, 114
– of B3/2, 118
– of Dleft

k , 80

– of Dright
k , 80

– of L1/2, 48
– of L1/2(l), 59
– of L1, 49
– of L3/2, 93
– of L5/2, for two–letter alphabets, 147
– of FP(PI

n), 135
– of FPB

n, 146
– of FPL

n, 146

next depth, 77
next hierarchy, 12, 77, 80
normal forms
– for eB3/2,k, 97
– for B3/2,k, 12, 97
– for Bn+1/2, 24
– for L3/2, 24
– for Ln+1/2, 24

order ideal, 11, 43

pattern, 36, 123
– W n , 143
– of type 1 to 4, 85
permutation, 8
polynomial closure, 15, 17, 18
polynomial time hierarchy, 28

region, 110
residuals
– left and right residuals, 15

sector, 108
semigroup
– ordered, 119
– ordered transition, (TM,≤), 119
– transition, TM, 119
side condition, 36
STH, 9
Straubing–Thérien hierarchy, 7, 16
strongly connected component, 71
subgraph, 36
subword relation
– generalized, 39

temporal logic, 9, 11, 75
– eventually in the past,P, 76
– eventually, F, 11, 75
– fragment of, TL[.], 75
– next, X, 11, 75

– previously,Y, 76
– restricted, 11, 28, 75
– – next hierarchy of, 77
– until, U, 11, 75
transition graph, 34
– extended, 34
transpositions, 97

variety, 88, 119

well partial ordered set, 42
well–formed words, 149
wpos, 42

