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Chapter 1

Summary

Zusammenfassung

Hintergrund: Die Häufigkeit von Non-Hodgkin-Lymphomen (NHL), den

am meisten beobachteten Krebserkrankungen, steigt weiter an. Von den

aggressiven Non-Hodgkin-Lymphomen (NHL) macht das “großzellige, dif-

fuse B-Zell-Lymphom” (DLBCL) den größten Anteil aus. Durch Genex-

pressionsmuster wurden zwei Subtypen definiert: ACB (“Activated B-like

DLBCL”) und GCB (“Germinal Center B-like DLBCL”). Die Patienten der

Gruppe ABC sterben ohne Therapie oft innerhalb weniger Monate, weil der

ABC Typ einen aggressiveren Krankheitsverlauf aufweist. Ein weiteres, von

einer malignen Entartung der B-Lymphozyten ausgehendes Lymphom, ist

das “Mantelzell Lymphom” (MCL). Es tritt selten auf und ist ebenfalls mit

einer schlechten Prognose verbunden. Eine vollständige Heilung nach der

Therapie ist sehr selten.
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Methoden: In diesem Projekt wurden diese B-zell Lymphome mit bioin-

formatischen Methoden untersucht, um auf molekularer Ebene neue Eigen-

schaften oder bisher unentdeckte Zusammenhänge zu finden. Das würde das

Verständnis und damit auch die Therapie voranbringen. Dafür standen uns

Überlebens-, Genexpressions- und chromosomale Aberrationsdaten zur Ver-

fügung. Sie sind die bevorzugte Wahl der Mittel, um genetische Veränderun-

gen in Tumorzellen zu bestimmen. Hierbei fallen oft große Datenmengen an,

aus welchen man mit bioinformatischen Methoden vorher unerkannte Trends

und Hinweise identifizieren kann.

Ergebnisse (MCL): Explorative Analysen sowohl der Genexpressions-

(zweite Hauptachse der Korrespondenz Analyse) als auch der chromosoma-

len Aberrationsdaten des Mantelzell-Lymphom zeigten uns hierbei, daß es

trotz der linearen Korrelation zwischen der veröffentlichten Proliferationssig-

natur und der Überlebenszeit sinnvoll ist, in den Patienten (n=71) zwei Aus-

prägungen zu betrachten: Patienten mit schlechter und mit guter Prognose.

Statistische Tests (moderate t-test, Wilcoxon rank-sum test) dieser beiden

Typen zeigten Unterschiede im Zellzyklus und ein Netzwerk von Kinasen

auf, welche für den Unterschied zwischen guter und schlechter Prognose ve-

rantwortlich sind. Sieben Gene (CENPE, CDC20, HPRT1, CDC2, BIRC5,

ASPM, IGF2BP3) konnten gefunden werden, die eine ähnliche gute Prog-

nose für Überlebenszeiten ermöglichen, wie eine früher veröffentlichte Pro-

liferationssignatur mit 20 Genen. Außerdem konnten chromosomale Banden

durch eine explorative Analyse mit der Prognose assoziiert werden (Chromo-

som 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34).
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Ergebnisse (DLBCL): Durch geeignete Normalisierung der Genexpres-

sionsdaten von 248 DLBCL-Patienten trennte der Signatur basierte Predic-

tor die Risikogruppen nun besser auf. Eine ähnlich gute Auftrennung konnte

von uns sogar mit sechs Genen erreicht werden. Die explorative Analyse der

Genexpressionsdaten (S. Blenk, J. Engelmann, M. Weniger, J. Schultz, M.

Dittrich, A. Rosenwald, H. K. Müller-Hermelink, T. Müller and T. Dandekar;

Cancer Informatics, in press) konnte die Subtypen ABC und GCB als valide

Gruppen bestätigen. In den Genen, die ABC und GCB unterscheiden, ergab

sich eine Häufung in späten und frühen Zellzyklusstadien. Klassische Lym-

phommarker, neu aufgefundene spezielle Gene und Zellzyklusgene bilden ein

Netzwerk, das die ABC und GCB Gruppen klassifizieren und Unterschiede

in deren Regulation erklären kann (ASB13, BCL2, BCL6, BCL7A, CCND2,

COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10,

MME, MYBL1, NEIL1 and SH3BP5; unterstrichene Gene sind überexprim-

iert in ABC). Dies ist auch für die Diagnose, Prognose und Therapie (Zyto-

statika) interessant.

Summary

Background: The frequency of the most observed cancer, Non Hodgkin

Lymphoma (NHL), is further rising. Diffuse large B-cell lymphoma (DLBCL)

is the most common of the NHLs. There are two subgroups of DLBCL

with different gene expression patterns: ABC (“Activated B-like DLBCL”)

and GCB (“Germinal Center B-like DLBCL”). Without therapy the patients

often die within a few months, the ABC type exhibits the more aggressive
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behaviour. A further B-cell lymphoma is the Mantle cell lymphoma (MCL).

It is rare and shows very poor prognosis. There is no cure yet.

Methods: In this project these B-cell lymphomas were examined with

methods from bioinformatics, to find new characteristics or undiscovered

events on the molecular level. This would improve understanding and ther-

apy of lymphomas. For this purpose we used survival, gene expression and

comparative genomic hybridization (CGH) data. In some clinical studies,

you get large data sets, from which one can reveal yet unknown trends.

Results (MCL): The published proliferation signature correlates directly

with survival. Exploratory analyses of gene expression and CGH data of

MCL samples (n=71) revealed a valid grouping according to the median

of the proliferation signature values. The second axis of correspondence

analysis distinguishes between good and bad prognosis. Statistical testing

(moderate t-test, Wilcoxon rank-sum test) showed differences in the cell cycle

and delivered a network of kinases, which are responsible for the difference

between good and bad prognosis. A set of seven genes (CENPE, CDC20,

HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) predicted, similarly well, survival

patterns as proliferation signature with 20 genes. Furthermore, some bands

could be associated with prognosis in the explorative analysis (chromosome

9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34).

Results (DLBCL): New normalization of gene expression data of DL-

BCL patients revealed better separation of risk groups by the 2002 published

signature based predictor. We could achieve, similarly well, a separation
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with six genes. Exploratory analysis of gene expression data could confirm

the subgroups ABC and GCB. We recognized a clear difference in early and

late cell cycle stages of cell cycle genes, which can separate ABC and GCB.

Classical lymphoma and best separating genes form a network, which can

classify and explain the ABC and GCB groups. Together with gene sets

which identify ABC and GCB we get a network, which can classify and ex-

plain the ABC and GCB groups (ASB13, BCL2, BCL6, BCL7A, CCND2,

COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10,

MME, MYBL1, NEIL1 and SH3BP5; underlined genes are more highly ex-

pressed in ABC; S. Blenk, J. Engelmann, M. Weniger, J. Schultz, M. Dittrich,

A. Rosenwald, H. K. Müller-Hermelink, T. Müller and T. Dandekar; Cancer

Informatics, in press).

Altogether these findings are useful for diagnosis, prognosis and therapy

(cytostatic drugs).

13



Chapter 2

Introduction

Lymphomas are cancers originating in the lymphatic system. They arise if a

lymphocyte starts to proliferate in an uncontrolled way, crowding out healthy

cells and creating tumors. These lymphocytes may spread from one site to

other parts of the body. Lymphomas are divided into two major groups, the

Hodgkin Lymphoma (HL) and all other lymphomas fall into the category of

Non Hodgkin Lymphomas (NHL). The incidence of Non Hodgkin lymphoma

cases has almost doubled over the last 20 years (Fisher and Fisher, 2004). The

reasons are uncertain, although there are some known correlations between

NHL and infection with HIV or Epstein-Barr virus. In this thesis the “Diffuse

Large B-cell Lymphoma”, most common, and the “Mantle Cell Lymphoma”

one of the rarest of the NHLs, are investigated. Their causes are uncertain

too, but there is some knowledge about their biology. Large scale array data

can shed light on typical disease markers and genes. We investigate gene

expression arrays from over 240 diffuse large B-cell lymphoma patients, find

key genes for prognosis and distinguishing between different subtypes of this
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disease. Furthermore, from a set of gene expression and CGH data from 71

cyclin D1-positive mantle cell lymphoma patients we identify key genes and

indication for long and short surviving patients.

2.1 Immune System

As the thesis mainly analyzes the gene expression in B-cell cancers some

facts about the genetics of the immune system need to be introduced. To-

gether with the T-lymphocytes the B-lymphocytes form the two main types

of lymphocytes, subtypes of leucocytes (white blood cells). They are both

essential components of the adaptive immune system, giving cellular and

humoral immune responses.

B-lymphocytes or B-cells are produced in the bone marrow and are very

important for the humoral immune response. Their main function is to pro-

duce antibodies against soluble antigens. In their development each stage

represents a change in the genome content at the antibody loci. The an-

tibodies are composed of two light (L) and two heavy (H) chains. Many

variations of these chains exist due to somatic recombination and mutation

and also through gene recombination of and within the H and the L chain

loci. The main antibody factories are the plasma B-cells. Memory B-cells

develop from activated B-cells and are specific to the antigen encountered

during the primary immune response.

T-lymphocytes are responsible for cell mediated immunity. They are de-

veloped in the thymus, which is the reason for the abbreviation “T”, but

they arise in the bone marrow. Several different subtypes of T cells exist,
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each with a distinct function, for example the cytotoxic T cells and helper

T cells. The cytotoxic T cells (Tc cells) are responsible for cell mediated

immune response, by destroying infected cells. Their T-cell receptor (TCR)

allows them to monitor all cells of the body with the help of the Major Histo-

compatibility Complex (MHC) I proteins, which are expressed and presented

on the surface by nearly all human cells. MHC II proteins are anchored only

on antigen presenting cells (APCs), like B-cells, and are recognised by helper

T cells (Th cells). The MHC T cell interactions are mediated by the glyco-

protein co-receptors CD8 for MHCI and CD4 for MHCII molecules, whereas

CD8 (“cluster of differentiation 8”) is expressed on the surface of Tc cells

and CD4 (“cluster of differentiation 4”) on Th helper cells. The most known

MHC genes are HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-

DQA1, HLA-DQB1, HLA-DRA and HLA-DRB1 (HLA: Human Leukocyte

Antigen). The first three genes express MHC I and the last six the MHC II

proteins, both encoded by chromosome 6p.

Another important part of humoral immune response are the so called

germinal centers (GC) in the lymphoid tissue. After B-cells are activated

by antigens they migrate to the GCs, where the memory B-cells are born

by undergoing isotype switching and somatic mutation resulting in a more

accurate antigen binding. The B-cells there proliferate rapidly.

2.2 Cell cycle

Cancer cells are uncontrolled proliferating cells, the cell cycle is continuously

kept active, therefore the cell cycle is subject in this chapter. The cell cycle
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takes place between cell divisions and triggers the following division. There

are four distinct phases in the common cell cycle in eukaryotes: G1, S, G2,

and M. The three first are called interphase, as the cell prepares itself for

the division.

In the G1 phase, or “GAP 1” phase, the cell performs its usual metabolic

activities. Fully differentiated cells enter from G1 the G0 state, where they

can remain indefinitely. If the cell is going to divide, it increases the amount

of cytoplasm. After a distinct “point of no return”, the restriction point,

the cell has to go on into the S, the “synthesis” phase, where its DNA is

duplicated. After the S phase, the “GAP 2” (G2) phase is used by the cell

for preparing the mitosis by growth and producing new proteins. In the M

phase, the cell segregates the duplicated chromosomes, so both daughter cells

are diploid again with one chromosome from the mother and one from the

father. In detail the M phase consists of the mitosis, separating the chro-

mosomes between the two daughter cells and the cytokinesis, which divides

the cytoplasm. The mitosis passes through the stages prophase, metaphase,

anaphase, and telophase, and each of these is defined by several processes

and morphological properties. After the telophase a fiber ring composed of

actin around the center of the cell contracts and pinches the cell into two

daughter cells, the so called cytokinesis. Then the cell cycle is complete and

the daughter cells are in G1 again. The duration of the G2 and the M phase

is relatively short.

The most important known molecule classes for the regulation of the

cell cycle are the cyclins and the cyclin-dependent kinases (CDKs). CDKs

perform phosphorylation that activates or inactivates target proteins to co-

17



ordinate the entry into the next cell cycle phase. Cyclins themselves are

characterized by periodicity in protein abundance throughout the cell cycle.

Bound to CDKs, they function as regulatory subunits, as CDKs are inactive

in their absence. Different cyclins exhibit distinct expression and degrada-

tion patterns which contribute to the temporal coordination of the cell cycle.

Once activated the cyclin CDK complexes prepare the cell for entry in the

next phase by promoting the gene expression of transcription factors or the

degradation of inhibitors.

2.3 Classifications of lymphomas

For effective and successful treatments a more detailed classification of human

cancer has been shown to be clinically useful. The most common classifica-

tion for lymphomas is the distinction between Hodgkin lymphomas, with

about 15%, and Non-Hodgkin Lymphomas (NHL), with around 85% of hu-

man lymphomas. Dr. Thomas Hodgkin defined the Hodgkin lymphoma

1832. These two subgroups are heterogeneous. Further classifications are

defined on the basis of morphologic and molecular parameters, described in

the “Revised European-American Lymphoma” (REAL) classification by the

“World Health Organization” (WHO). Unfortunately it is very likely, that

some morphologic subtypes consist of more than one disease, as reflected by

WHO‘s classification, which includes several morphologic and immunophe-

notypic variants. Such is the case for “Diffuse Large B-cell Lymphoma”

(DLBCL), the most common type of Non Hodgkin lymphoma accounting for

about 40%. “Mantle Cell Lymphoma” (MCL) is also a member of the NHL
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and accounts for about 5%-6% of lymphomas.

2.3.1 Diffuse Large B Cell Lymphoma

Diffuse Large B-cell Lymphoma (DLBCL) is an aggressive cancer of the ma-

ture B-lymphocytes and the most frequent B-cell NHL. It usually occurs

between adolescence and old age, but the frequency is clearly higher in peo-

ple over 60 years of age, and it is more common in men than women. Around

40% of these lymphoma patients are cured with therapy, but the causes for

MCL are unknown yet.

Diagnosis relies on morphological, immunophenotypic and laboratory pa-

rameters. In clinical situations, the International Prognostic Index (IPI)

(1993) is often used to predict outcome. The IPI estimates the threat fac-

ing patients with risk factors: age; tumor stage; serum lactate dehydroge-

nase concentration; performance status and the number of extranodal disease

sites. The detailed calculation is not relevant here, but each risk factor in-

creases the value with its level. For example, the age counts as “high level”

if the patient is over 60 years and an elevated concentration of serum lactate

dehydrogenase (LDH) too. LDH serves here as an indicator for cells with a

high rate of turnover which is characteristic for cancer cells. The combina-

tion of factors correlates with the risk groups, whereas patients in the high

risk group have clearly less than a 50% chance of 5-year survival. On the

molecular level, gene expression signatures have been defined that predict

outcome in DLBCL independent of the IPI (Rosenwald et al., 2002), hoping

it will be more useful than the IPI.
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The most frequent treatment is chemotherapy, which applies anti-cancer

(cytotoxic) drugs to destroy the cancer cells. This cures a large number

of patients, and even if a cure is not possible, this treatment can control

the disease for a number of years. Other therapies are inclusive of: high-

dose chemotherapy in combination with bone marrow or stem cell infusions,

radiotherapy, steroid therapy and monoclonal antibody therapy.

An advance in classification for the DLBCL was reported in 2000 as two

new subtypes were proposed on the basis of gene expression profiling: the

“Activated B-like DLBCL” (ABC) and the “Germinal Center B-like DLBCL”

(GCB) subtype. The first one is more aggressive and overall the survival rate

is much lower than the other. As the names indicate, the ABC DLBCL cells

show a gene expression pattern similar to in vitro activated B-cells and the

GCB DLBCL cells similar to the germinal center B-cells.

ABC and GCB gene expression patterns differ in thousands of genes.

One of them is the “B-cell CLL/lymphoma 6” (BCL6), which plays an im-

portant role in development of B-cells and of DLBCL cancer. BCL6 is a

zinc finger transcription factor, which acts as a sequence-specific repressor of

transcription. It is essential for differentiation of mature B-cells into germi-

nal center B-cells during an immune response (Ye et al., 1997; Dent et al.,

1997). GCB patients show a higher expression of BCL6, than ABC patients

(Alizadeh et al., 2000; Rosenwald et al., 2002; Wright et al., 2003). The tar-

get genes, regulated by BCL6, were identified (Shaffer et al., 2000) and they

are not surprisingly lower expressed in GCB than in ABC. Some of them

are known to be induced when B-cells are activated through the antigen re-

ceptor. Known as “cyclin D2” (CCND2), “CD69 molecule” (CD69), “CD44
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molecule” (CD44), and “chemokine (C-C motif) ligand 3” (CCL3, also re-

ferred as MIP-1-alpha or SCYA3). “Cyclin-dependent kinase inhibitor 1B”

(p27, Kip1 or CDKN1B) is also a target of BCL6 and a negative regulator

of cell cycle progression. As BCL6 blocks that inhibitor, it could explain the

proliferation rate of germinal center B-cells.

It should be mentioned here that BCL6 is deregulated by chromosomal

translocations in about 20% of DLBCLs (Pasqualucci et al., 2003). Neverthe-

less, these translocations cannot explain all BCL6 deregulations. Although

GCB cases show a high gene expression of BCL6, they do not correlate to

these translocations. A further property of GCB gene expression which dif-

fers from ABC cases is the somatic hypermutation of immunoglobulin genes,

as they derive from germinal center B-cells (Lossos et al., 2000).

An oncogenic event in DLBCL is the translocation t(14;18), which leads

to a higher expression of “B-cell CLL/lymphoma 2” (BCL2), because then

BCL2 lies closely to the enhancers of the immunoglobulin heavy chain locus.

This translocation occurs in 45% of the GCB cases, and was not found in

ABC cases. However, most of the ABC patients have a high gene expression

value of BCL2 mRNA (Rosenwald et al., 2002; Wright et al., 2003).

The amplification of the c-rel (REL) locus on chromosome 2, was also not

found in ABC patients (Rosenwald et al., 2002; Bea et al., 2005) occurring

in about 16% of the GCB cases. REL, or “v-rel reticuloendotheliosis viral

oncogene homolog (avian)” encodes a member of the NF-κB family. NF-

κBs are anti apoptotic transcription factors. The NF-κB pathway is highly

expressed in ABC but not in GCB patients. Complementary to this ABC

patients show a high expression of NF-κB targets (Davis et al., 2001). So the
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NF-κB pathway could be a promising therapeutic target for ABC patients.

As the known subgroups of DLBCL differ in their biology and their gene

expression, a molecular diagnosis method was developed, which estimates the

probability of being ABC or GCB. Applied to gene expression values of 58

DLBCL patients measured with Affymetrix chips, it classified the subgroups

successfully, with some remaining unidentified (Wright et al., 2003).

2.3.2 Mantle Cell lymphoma

Mantle cell lymphoma (Swerdlow and Williams, 2002) usually infiltrates the

mantle zone of the lymph nodes, the filtering components of the lymphatic

system. Although patients receive a variety of chemotherapies, there is no

cure nor survival prolonging treatment as yet. MCL is associated with a

poor prognosis, and it remains incurable with the current chemotherapeutic

approaches. It usually occurs between the late 30s to old age, but the highest

frequency of MCL is in the people over 50 years of age and it is three times

more common in men than women. Despite response rates of 50-70% with

many regimens, the disease typically progresses after chemotherapy. The

median survival time is approximately 3 years (range, 2-5 y); the 10-year

survival rate is only 5-10%. Although it is also a cancer of the B-lymphocytes,

its biology is completely different from DLBCL. It arises from malignant B

lymphocytes in the mantle zone, a part of the lymph nodes, which surrounds

the follicle centers of the lymph nodes. These cancer lymphocytes start

growing eliminating mantle zone and changing the size of the lymph node.

Furthermore, they penetrate rapidly into other lymph nodes and organs.
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The most known and important biological event is the translocation be-

tween chromosome 11 and 14 (t(11;14)(q13;q32)) (Bogner et al., 2006) in

about 50% of all MCL cases. As a result the “cyclin D1” (CCND1) gene is

brought under the control of the IgH enhancer leading to an overexpression.

As shown (Rosenwald et al., 2003), some cases show a higher CCND1 expres-

sion, with an associated shorter survival. Different observed expressed forms

of CCND1 in MCL account for that observation (Rimokh et al., 1994; Leb-

wohl et al., 1994). Although the translocation can be observed in about half

of the MCL cases, the CCND1 overexpression is a more constant observation.

Staining cells for increased levels of cyclin D1 provides an excellent marker

for specific diagnosis. CCND1 forms heterodimers with the kinases CDK4

or CDK6 and functions as their regulatory subunit. These CDKs trigger the

G1/S phase transition of the cell cycle (Sherr and McCormick, 2002). So this

translocation disturbs the regulation of the cell cycle.

Another important event is the deletion of the INK4a/ARF locus in about

every fifth patient (Pinyol et al., 1997, 1998, 2000; Rosenwald et al., 2003).

It encodes the tumor suppressor proteins, p16INK4a and p14ARF (Sherr

and McCormick, 2002), which both can arrest the cell cycle. The former

one by inhibiting the interaction of CDK4 and CDK6 with D cyclins, as

CCND1, and the latter one by blocking the degradation of “tumor protein

p53” (p53), a well known protein, playing important roles in apoptosis and

cell cycle, especially the transition from G0 to G1.

2003 Rosenwald et al defined a proliferation signature based predictor, in

which the expression values of 20 genes estimate the length of survival. This

signature was created by fitting gene expression values to survival data in
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a supervised manner. By identifying patient subsets that differed by more

than five years in median survival, the authors showed the advantage of this

predictor compared with 2.7 years of other methods (Velders et al., 1996;

Argatoff et al., 1997; Bosch et al., 1998; Räty et al., 2002).

Furthermore, they showed that the differences in CCND1 abundance syn-

ergized with INK4a/ARF locus deletions to affect proliferation rate and sur-

vival. Another advantage of this signature is its property to measure the

proliferation rate indepently of events as INK4a/ARF deletion or CCND1

overexpression, which both are independently occuring, and integrating those

effects, which affect the cell cycle process. These results led to a proposed

model of abnormal cell cycle regulation in MCL and point to a cell cycle

inhibiting therapy.

2.4 Gene expression microarrays

A microarray is a spatial array of oligonucleotide probes, which are arranged

on a small solid support surface. These probes, representing nucleotide se-

quences in known genes, are located in such a way that the position and

the nucleotide sequence of each probe are known. The length of the probes

varies between 15 and 25 nucleotides, but up to 60 are possible. The DNA

from the sample being studied is isolated, fragmented and tagged with a flu-

orescent dye. After that the DNA fragments are incubated with the chip.

DNA or RNA from the samples, which is complementary to the DNA in

the microarray, binds to the probes and the unbound DNA/RNA is washed

away. The surface of the microarray is then scanned with a laser beam and
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the data obtained is used to produce a visible image. Colour intensity indi-

cates the extent of hybridization of the different probes. In this way RNA

can be measured that may be translated into active proteins. The term

for this is gene expression analysis. With tens of thousands of probes on

each slide, the microarrays accelerated the science in general and mainly in

the topic for genetic tests. Even whole genome chips are available. There

are several different technologies for producing chips, for example printing

with fine-pointed pins on glass chips, photolithographies, even ink jet print-

ing. In data collection and statistical analysis different technologies have also

evolved.

Two main types of arrays are mentioned here: single channel and two

channel microarrays. The first one is incubated with samples, marked by

one dye. The advantage of this chip type is the estimation of the absolute

value of gene expression, but the comparison of two groups needs two chips.

The most well known are the commercially available Affymetrix chips. The

two channel microarrays are usually hybridized with a cDNA mix of two

samples, which are marked with two different dyes, for example Cy5 a red

and Cy3 a green fluorescence. You can measure the up and down regulated

genes of two groups with one chip, however, the disadvantage is in the lack

of absolute gene expression levels.

Special arrays for different aims can be created, mostly by using the two

channel technology. A prominent example is the “Lymphochip”, a microarray

especially for lymphomas (Alizadeh et al., 1999).

Of course the limitations of microarrays should be kept in mind. So the

measurement of transcription of genes includes not the protein expression.
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In every gene expression experiment the transcription is only an indication

of the real protein expression. Especially boutique arrays are further limited

by lacking the genes of the complete genome. On the other hand boutique

arrays enable more samples to be measured, because of the much cheaper

source, and deliver a more stable and low-noise result. In regard to these

conditions one may ask, if microarrays are an adequate tool at all. But dis-

eases with clonal beginning and gene associated changes are best investigated

by microarrays. For example, it has been shown that microarrays can sub-

classificate leukemia (Kohlmann et al., 2003). Only microarrays could find

those clinically relevant acute leukemia subgroups.

2.5 CGH - Comparative genomic hybridiza-

tion

Another broadly used method for investigating oncogenetic events in cancers

is the comparative genomic hybridization (CGH). This method measures

copy number changes of chromosome regions, as gains, losses, amplification

or even no change. Fluorescently labeled samples of interest and normal

DNA hybridize to either normal human metaphase preparations or array-

CGH, a slide containing defined DNA probes. With the colour ratio the

DNA gain or loss in the sample is measured. As mentioned it measures only

copy number changes, so balanced chromosomal changes and the location of

the rearranged sequences remain undetected.
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2.6 Thesis Project

The thesis project (part of project B-36) is funded, by the “Interdisziplinä-

res Zentrum für Klinische Forschung” (IZKF) Würzburg. The overall aim of

the B-36 project is a better understanding of tumor progression and patho-

genesis in B-cell lymphoma. Besides gaining knowledge about the biology

of the disease itself, a better understanding supports the treatment success.

Therefore gene expression- and CGH-data of the collaborating IZKF groups

of Prof. Dr. Müller-Hermelink, Dr. Rosenwald and Dr. Kneitz are anal-

ysed. Through bioinformatical analyses of this data and pathway modelling,

key factors can be identified. The validation is done by experimental work.

In this way diagnostic factors and potential pharmacological targets become

available. Another task mentioned here is the build up of a database, which

stores data, results and delivers the bioinformatical methods for finding key

genes and events by a web interface. This database is now available at the

URL http://gepat.bioapps.biozentrum.uni-wuerzburg.de/GEPAT/ (Weniger

et al., 2007).

In detail my part of the project used statistical analysis for identifying key

factors as well as pathway modelling. Therefor the DLBCL and MCL data,

generated with the Lymphochip and delivered by Prof. Müller-Hermelink

and Dr. Rosenwald, were analysed bioinformatically. The first step, the

normalization of gene expression data for samples comparison and analy-

sis, was performed by my colleague Julia Engelmann. The database, which

accelerated my work enormously, was established by my colleague Markus

Weniger.
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The causes for DLBCL and MCL are unknown. Medicine focuses on

investigating clinically relevant subgroups for more accurate treatment. We

investigate here the differences between the ABC and GCB subgroups and

search for potential entities in MCL cases, hoping to gain new knowledge and

improvements in their treatment.

For the interactions between pathogen/tumor and host the “Active An-

alyzer of Interaction Networks” is proposed in chapter 4. It contributes

database search, network analysis and enlargement as a small Java based

tool. It was exemplary applied to actin polymerization.

The gene expression and CGH-data of the MCL samples are analysed in

chapter 5. The published proliferation signature (Rosenwald et al., 2003)

of 20 genes enabled patients to be categorised into four risk groups. Here,

the aim was to find key events and entities within the MCL cases. Ex-

ploratory analysis of gene expression and CGH-data revealed a patients clus-

tering matching the separation by the median of their proliferation signa-

tures. Following this, a classification according to the proliferation signature

was done, which was supported and confirmed by exploratory analysis of

gene expression and CGH-data. Moreover the regulatory differences and

cascades implicated in the group differences are further promoted by a novel

application of the non-parametric Wilcoxon rank-sum test on CGH data e.g.

specific changes on chromosome 9. As a clinical application a new seven gene

predictor is derived from these gene markers distinguishing efficiently long

and short living patients.

In chapter 6 the DLBCL analysis is described. The gene expression mea-

surements of the Lymphochip revealed the ABC and GCB subgroups and
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their distinguishing genes as well as a signature based survival predictor. We

tried to find a new handy survival predictor in these gene expression data

and the supported survival data. Simultaneously, the analysis focuses on

the ABC and GCB classification by gene expression measurements. There-

for three gene sets were investigated in order to establish how well they are

able to distinguish between the subgroups. The associated knowledge and

experimental data from the protein interaction database STRING delivered

a network for these gene sets.

The discussion is in chapter 7. The general aim of this project was to

find key events as genes and pathways to gain new knowledge about the two

B-cell lymphomas DLBCL and MCL. The results will help to understand

the biology of DLBCL and MCL and to investigate new treatment targets.
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Chapter 3

Materials and Methods

We used as hardware a Personal Computer with a 2.00 GHz Intel Pentium

Prozessor and 512 MByte RAM. For more time consuming calculations or

high-throughput experiments a Transtec Linux Cluster (10 dual Xeon pro-

cessors each with 1GB RAM) was used.

3.1 Software development

Eclipse The program ACTIN was developed with the open source develop-

ment platform “Eclipse”. It is, besides others, an “Integrated Developement

Environment” (IDE) which allows working with different programming lan-

guages. There are also plugins for markup languages. We chose the program-

ming language Java, (Java 2 SDK, SE Version 1.4.2_03 ) as it is available

for all common operating systems and computers.

Data formats The “Extensible Markup Language” (XML) (W3C, a) en-

ables defining data formats and exchanging a wide variety of data. Data for-
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mats are created by defining tags. The “Document Type Definition” (DTD)

specifies the syntax of an XML. One example of an XML based data format is

the following protein interaction format. A work group of the “Human Pro-

teome Organization” (HUPO), the “Proteomics Standards Initiative” (PSI),

defined the protein interaction data format PSI Molecular Interaction (PSI

MI) (Kaiser, 2002; Hermjakob et al., 2004a). It describes protein interactions

and was developed to facilitate data comparison, exchange and allows data

integration across experiments. This data format is supported by databases

such as “Biomolecular Interaction Network Database” (BIND) (Bader et al.,

2003; Gilbert, 2005), Cellzome, “Database of Interacting Proteins” (DIP)

(Salwinski et al., 2004), “Human Protein Reference Database” (HPRD) (Peri

et al., 2003), “European Bioinformatics Institute’s” (EMBL-EBI) (Stoesser

et al., 2003), IntAct (Hermjakob et al., 2004b), “Molecular Interactions”

(MINT) (Zanzoni et al., 2002; Chatr-aryamontri et al., 2007), and STRING.

These databases are not synchronised with each other and their inhouse data

formats are not compatible. PSI MI enables adapting and investigating the

protein interaction infomation in thes databases. The PSI MI data format

consists of some parts, from which ACTIN extracts the “interactorList” und

die “interactionList”. The former one lists annotations of each protein inter-

actor and the latter one describes the protein interactions. The “eXtensible

Stylesheet Language” (XSL) (W3C, b), a transformation language, was cho-

sen to convert XML files into HTML (W3C, c) files.
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3.2 Data sets

Both data sets contain besides the gene expression measurements censored

survival data for the patients.

DLBCL data The DLBCL study includes and re-analyzes raw data from

a well documented study (Rosenwald et al., 2002). We have access to all

data, in which the subgroups were defined by hierarchical clustering. Our

study analyzes a modified data set as follows: more patients (a total of 248

patients, each patient array included 12196 gene spots corresponding to 3717

genes), different classifications and number of cases (12.3

MCL data As the DLBCL data set, the MCL gene expression data (n=71)

were obtained from cDNA arrays containing genes preferentially expressed in

lymphoid cells or genes known or presumed to be part of cancer development

or immune function (“Lymphochip” microarrays (Alizadeh et al., 1999)).

Additionally the dataset is completed by comparative genomic hybridization

(CGH) data for each patient (n=71). The CGH values are associated with

following meanings: 1 = “loss”; 2 = “gain”; 3 = “amplification”. The “am-

plification” is understood here as a multiplier of 4, compared to 0, which

denotes “no change”. The samples were collected from cyclin D1-positive

patients of several hospitals in the “Lymphoma and Leukemia Molecular

Profiling Project” (LLMPP) (Rosenwald et al., 2003).
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3.3 Explorative data analysis

For the explorative analysis principal component, and correspondence anal-

ysis were used.

The Principal Components Analysis (PCA) method used here is imple-

mented in R (R Development Core Team, 2006). The aim is to reduce mul-

tidimensional datasets to lower dimensions containing the most important

properties of the data for explorative analysis. By linear transformation the

dimensions are combined in principal axes, and so the data are positioned

into a new coordinate system in such way, that the greatest variance lies

on the first principal component, the second greatest variance on the second

one, etc. The advantage is in keeping the subspace with the largest variance.

The top few linear combinations typically contain the most information in

the data and serve as good overview.

The R package “Modern Applied Statistics with S” (MASS) (Venables

and Ripley, 2002) was used here for the correspondence analysis (CA), an-

other explorative analysis. Its concept is similar to PCA, but the data are

additionally scaled and the rows and columns are treated equivalently. So it

can be that some unimodal distributed measurements can be recognized by

CA but not by PCA.

For both methods, PCA and CA, different calculation algorithms exist to

get the results.

The R library vegan (Oksanen et al., 2007) was used for the constrained

or Canonical Correspondence Analysis (CCA) (Ter Braak, 1986). In this

package Legendre & Legendre’s algorithm is used (Legendre and Legendre,
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1998). A weighted linear regression on constraining variables is applied to the

Chi-square transformed data. Here we used the chromosomes as constraining

variables. Then a correspondence analysis is performed on the fitted values.

Unbiased class discovery, used the ISIS (“Identifying Splits with clear

Separation”) method (von Heydebreck et al., 2001). This method searches

for binary class distinctions in the gene expression levels in an unsupervised

fashion. The “Diagonal Linear Discriminant (DLD) score” quantifies for

every found bipartition how strongly the two classes are separated. It is a

type of “diagonal linear discriminant analysis” (DLDA). Scoring each vertex

in a graph in which they stand for bipartitions and are defined as neighbours

if they differ only in one sample, the search focuses on local maxima. As

the whole graph has got 2n−1 nodes it is not applicable to score all possible

bipartitions with the DLD score. So an efficient heuristic finds candidate

partitions.

3.4 Statistical analysis

All statistical analyses applied to the DLBCL data set were performed using

the statistical software package R (Ihaka and Gentleman, 1996; R Develop-

ment Core Team, 2006) with its specific libraries. For data normalization, the

Bioconductor package, an open source software project for the analysis and

comprehension of genomic data (Gentleman et al., 2004), including methods

such as vsn, loess and scaling methods, was used. Based on diagnostic plots

we chose gene expression normalization using within-array and between-array

normalization methods. The within-array normalization “loess” (W.S. Cleve-
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land and Shyu, 1992; Yang et al., 2001, 2002) adjusts expression log-ratios

in such a way that they average to zero within each array to make genes on

one array comparable with each other. For between-array normalization, the

“scale” method proposed by Yang et al. (2001, 2002) and further explained

by Smyth and Speed (2003) was applied. This method scales log-ratios to

have the same median-absolute-deviation (MAD) across arrays. By this,

log-ratios are normalized to show similar variance across a batch of arrays.

To detect differentially expressed genes the Bioconductor (Gentleman et al.,

2004) package “limma” (Smyth, 2005) was used. It is a state of the art gene

expression analysis framework. Its special strength is the improved robust

statistics based on linear models and a moderated t-test statistics corrected

for multiple measurements to detect differentially expressed genes (Smyth,

2005, 2004). It fits linear models on the gene expression values of each gene

with respect to the groups which are compared. After that the method ap-

plies empirical Bayes shrinkage of the standard errors. Due to its robustness

the method can be applied to experiments with a small number of samples.

Each spot is now analyzed individually and not just pooled as was done in

the previous analysis(Rosenwald et al., 2002). Furthermore, we investigated

how robust the data is regarding advanced normalization.

The R package “survival” was used to calculate the Cox regression hazard

model (Andersen and Gill, 1982; Therneau et al., 1990), which investigates

the influence of gene expression values on survival time. The survival data

contain as usual censored information. A sample contains censored data if

the event of interest (death) did not happen within the observation time.

This lack of information can be handled by the Cox regression hazard model.
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It estimates the effect of variables on the time an event takes to happen. The

variables and events stand here for gene expression values and death. The

model defines the log-hazard as

log hi(t) = α(t) + β1xi1 + β2xi2 + · · ·+ βkxik

whereas α(t) is the unspecified baseline hazard and xi the ith covariate. In

contrast to the variables the baseline hazard function α(t), remains unspec-

ified. As the covariates, here the gene expression values, enter the model

linearly the only condition is the constancy of variable’s effects on survival.

The package used here applies the Andersen and Gill (Andersen and Gill,

1982) counting process formulation of the Cox proportional hazards regres-

sion model. Using the coefficients with their according gene expression val-

ues, the outcome predictor score for each patient can be calculated. The

coefficients relate directly to hazard so that a positive value indicates a bad

outcome prognosis and a negative one a positive effect of the variable. We

used here the Wald test to determine the significance of the association be-

tween the model and the outcome. Furthermore, Kaplan Meier estimates

were also derived. They can show the survival difference of conditions in

the course of time by plotting the according curves on the abscissa against

the probability of survival ordinate. The plot shows decreasing horizontal

steps, the decreasing survival probability over time, and the vertical marks

indicate censored information. In our case, the single lines represent different

risk groups.

“Prediction Analysis of Microarrays” (PAM) was used for supervised
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analyses. PAM (Tibshirani et al., 2002) performs a nearest shrunken cen-

troid method to identify a subset of genes that best characterize samples as

ABC or GCB DLBCL. It computes a standardized centroid for each class

and shrinks the prototypes for a given classification error threshold. In the

resulting list the obtained optimal (for the given error) shrunken centroid

identifier is followed by the number of genes it contains. The chosen clas-

sifier is validated by ten-fold cross-validation. Smaller gene sets typically

show larger error rates. However, often many almost equally good perform-

ing classifiers exist, showing very similar error rates. In this case, following

the parsimony idea, we opted for the one containing the smallest number of

genes. The proposed best gene set used for our analysis (31 spots) is labeled

in the plot by an “x” character.

To identify all protein-protein network interactions and their analysis

we used the “Search Tool for the Retrieval of Interacting Genes/Proteins”

(STRING)-version 6.3 (http://string.embl.de/) (von Mering et al., 2005).

STRING is a database of known and predicted protein-protein interactions.

The interaction information arises from genomic context, experiments, other

databases, coexpression and textmining. Here we used it with a Bayesian

confidence level of 0.400 (medium confidence) and a custom limit of 0 (this

means, that only direct interactions of the considered genes and their proteins

are shown).

Gene sequences were delivered by the Ensembl database (Hubbard et al.,

2007) (http://www.ensembl.org/). It provides, besides other organisms, the

genome for homo sapiens and very useful search features, creating a user

friendly database search.
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Most of the statistical analyses on the MCL data set were performed using

the “Genome Expression Pathway Analysis Tool” (GEPAT), a web-based

platform for annotation, analysis and visualization of microarray gene ex-

pression data (Weniger et al., 2007). The analysis and visualization methods

in the context of genomic, proteomic and metabolic scope are integrated in

an easy to use, interactive graphical user interface. The database performs

the analyses with Bioconductor (Gentleman et al., 2004) and some of its

packages.

For identification of differentially expressed genes, it uses also the “limma”

package (Smyth, 2005) which offers moderate t-statistics. For multiple test-

ing correction it offers three methods from which we chose the Benjamini

and Hochberg method (Benjamini and Hochberg, 1995). For identifying all

protein-protein network interactions GEPAT uses also the STRING database

(von Mering et al., 2005) version 6.3. The STRING database comprises

known and predicted protein-protein interactions.

3.5 CGH analysis

The Wilcoxon rank-sum test (Wilcoxon, 1945; Bauer, 1972; Hollander and

Wolfe, 1999), a non-parametric statistical significance test, was applied to

the CGH data. It tests here each of the chosen bands against the null hy-

pothesis H0 in which there is no statistically significant difference between

our proposed two MCL subgroups in specific chromosomes. The compared

groups, therefore, consist of the values -1, 0, 1 and 2. The method tests if

the ranked values are equally distributed – the null hypothesis – or more
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group like distributed – the two sided alternative H1. An exact p-value gives

a rejection probability of the null hypothesis.

The R package “survival” was used to calculate the Cox regression hazard

models. It examines the correlation between the given measurements and the

survival data. For the exploratory analysis of the CGH-data as well as for the

new predictor of MCL overall survival, we used the Wald test to determine

the significance of the association between the model and the outcome.
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Chapter 4

Interlude:

A network analyzer - ACTIN

Protein network interactions are a focus of tumor-host-interaction. A tool

developed for this is the “Active Analyzer of Interaction Networks” (ACTIN).

The aim was network extension which was exemplary applied on the actin

polymerization. In order to model the actin polymerization in silicio, an

appropriate program was developed, which simulates any cascade depending

on user input. It provides depth-first simulation for the investigated net-

work topology, which can be given in by an ASCII file or by hand. The user

interface allows to modify individual nodes and simulates the resulting net-

work with every single step. It provides furthermore network extension by

searching protein interaction partners in PSI MI (See chapter 3) supporting

databases. So the existing network can be extended and simulated again.

ACTIN is a pure Java application and delivers a clear model also in complex

situations.
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The program was presented at the “German Conference on Bioinformatics

2004” in Bielefeld. On the following two pages the poster abstract is shown.
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Simulating actin polymerization cascades with ACTIN

Steffen Blenk and Thomas Dandekar
Dept. of bioinformatics, biocenter, D-97074 university of Würzburg

Introduction
All multi-cellular organisms use signalling cascades for transducing information. Because many pathogenes
use specific signalling cascades it is important to understand the processing of pathogen transducing signals,
the actual time course and key steps of processing events (activation, inhibition). In our study we considered
the actin polymeryzation signalling cascade which is modified upon invasion of pathogens such as Lysteria
monocytogenes. L. monocytogenes is quite hardy and resists the deleterious effects of freezing, drying, and
heat remarkably well. Most L. monocytogenes strains are pathogenic to some degree. The aim at searching
for new starting points for medical therapy by modulation of pathogen input signals or inhibition of an
activation signal leads to questions for fundamental research. Before implementing a new anti-pathogen
strategy it is necessary to know how the different activatory and inhibitory stimuli interact, in particular
given a certain set of stimuli, (i) what will be the outcome? (ii) What happens if a certain node or input is
modified?

Many different approaches have been proposed to study regulatory networks, e.g. Petri nets [Heiner et al.,
2004][Chen et al., 2003], custom written simulations with differential equations [Lee et al., 2003] or even
virtual cells [Tomita, 2001].

The present study shows a very fast and direct modelling approach using HashMaps. The advantages are (i)
fast simulation speed and (ii) Virtual unlimited size of simulated network. 

Results and Discussion
The program was implemented in Java 2 SDK, SE Version  1.4.2_03 using an 2.00 GHz Intel  Pentium
Prozessor with 512 MByte RAM.

User surface and program run: To run a simulation, an ASCII formatted Input File represents the network.
The  additional  protein  interactions  are  loaded  from all  databases,  which  provide  their  information  in
HUPO`s PSI MI format (DIP, MINT, EBI, …).

The  defined  topology  can  be  changed  and  allows  the  user  to  introduce  and  consider  new   network
interactions. A user surface allows further to change the presence of individual components of the network.
The output consists of the end-elements, the end effectors of the cascade, which the program identifies by
searching a way through the cascade, considering inhibitory and activatory stimuli and processing through
the cascade.

Example:

Rac-GTP 

Rac-GTP activates PAK

PAK inhibits MLCkinase PAK

PAK activates LIMK

MLCkinase activates relaxation of contractile forces LIMK       MLCkinase

LIMK inhibits cofilin

cofilin

cofilin activates actin filament stabilisation

              actin filament stabilisation         relaxation of contractile forces

In the example (subgraph of the complete actin polymerization network) we have to find a condition for
actin filament stabilisation. In this simple netmap, if the user sets the node LIMK to “not present” then the
actin filament stabilisation can be reached provided that the set of the conditions of the input nodes is set to
activatory  (in  the  simple  example  this  requires  only  ras-GTP  as  active).  This  example  is  part  of  the



regulation of actin-based motility  we used for our study.  The model  for  this  function is a middle-sized
network of 23 elements and 6 end reactions, which are different types of actin polymerization (biological
data after [Ahmadian et al., 2002]).

2. Performance: 

Run time increases with additional entries only slowly arithmetically, because the Algorithm uses simple
indexing by directly hashing. As [Schmidt et al., 2001] showed in their work, in which they used hashes for
an artificial intelligence system, the direct indexing provides the advantage of working very fast.

Further advantages of our implementation are that results can be stored in different formats: HTML, XML
and MI-XML.

The MI-XML formatted results can be adapted to other databanks.

3. Application to the actin nucleation network: 

Database  searches  provide  further  interaction   partners  and  indications  for  new not  known interaction
partners.  Using the algorithm a number of different  input and output conditions can be analyzed, in the
middle sized network we study 22 nodes which already provide 222 possibilities how input can be processed
before the action (actin polymerization) comes about. Our large network of over 108 nodes provides 2108

possibilities for processing to the algorithm. The simulation allows us to rapidly test the network behaviour
on this wide range of conditions  and to see which set  of conditions is  necessary for  a distinct  pathway
allowing actin nucleation under certain biological pre-conditions.

Another option the network simulator allows is to test network robustness. Some networks need to react to
weak stimuli, whereas they must be able to maintain their state when exposed even to very strong stimuli
[Bar-Yam et al., 2004]. The robustness is affected by the topology [Ingolia 2004]. In the current model we
want to identify pivotal nodes (where removal is not robust for output behaviour) for further therapeutic
modification of response.                                                                                                                                   

Even large networks can be simulated with the present implementation with rapid processing and output.
The program directly sums up stimuli at each node conveniently using the hash map and can process large
quantities  of  data.  However,  further  effort  will  include  additional  important  information  such  as
modification and/or different  processing times of individual nodes and conditions to better  separate  and
identify the biological important paths leading to the various effector reactions when the cascade is properly
switched by the correct biological stimuli. 

Availability: The executable is available on request from the authors together with a protocol for use.
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 [Heiner et al., 2004] M. Heiner and I. Koch and J. Will.  Model validation of biological pathways using
Petri nets-demonstrated for apoptosis. Biosystems. 2004                               
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The tool was furthermore applied to test and model different kinase net-

work topologies of the human actin polymerization network used by pathogens.
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Chapter 5

Analysis of gene expression:

Long and short surviving MCL

patients

This second study is an effort to improve molecular insights and markers

of the disease for better diagnosis and potential therapeutic strategies. The

study thus looked both at CGH and gene expression data to improve diag-

nosis in this respect as well as new molecular markers in addition to the well

known ones such as the characteristic antigens (shared with blood cells from

which the tumor may develop) CD5, CD 20 and FMC7.

In our study we used gene expression data from 71 cyclin D1-positive pa-

tients and coupled these to data on their corresponding chromosomal aber-

rations (n=71) and pathway modelling. Different bioinformatical techniques

applied involve the new databank-system GEPAT (Weniger et al., 2007) as

well as pathway alignment and gene context methods (von Mering et al.,
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2005).

Some morphological subtypes of MCL are known (Argatoff et al., 1997;

Bosch et al., 1998). The relations between the proliferation of the tumor and

the shorter survival of patients were recognized resulting in prognostic mark-

ers fitting markers or clinical parameters to the survival time (Argatoff et al.,

1997; Bosch et al., 1998; Räty et al., 2002; Velders et al., 1996; Rosenwald

et al., 2003). After exploratory analysis of gene expression and CGH-data,

we classified patients according to the proliferation signature of Rosenwald

et al. (Rosenwald et al., 2003), a gene expression based predictor of survival.

Therefor we separated the patients according to the median of the (precalcu-

lated) proliferation signature values. This leads to the two subgroups “small”

and “big”, which are from now on referred to as “s” and “b” and, which are

supported and confirmed by. We identify aurora kinases, further disregulated

cell cycle genes linked to CDC2 and regulatory differences and cascades im-

plicated in the group differences, which represent an interaction network. A

separation according this molecular marker was not done yet and helps to

reveal further differences between long time and short time survival in MCL.

The analysis of the corresponding CGH-data from chromosomes VII and IX

supports the classification and tests single bands. Additionally a seven gene

predictor is derived distinguishing long and short living patients.

Moreover, we investigated in an extended diffuse large B-cell lymphoma

(DLBCL) data set (chapter 6) the gene expression differences between MCL

and DLBCL in the MAPK cascade. Clinical implications from the analysis

are discussed.
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5.1 Exploratory identification of the Mantle

Cell Lymphoma subgroups “survival” (s)

and “bad prognosis” (b)

Some parameters were found which are useful for defining subgroups of man-

tle cell lymphoma and allow a separation according to the survival time.

The survival time is the most obvious and biological meaningful parame-

ter in which subgroups should show a significant difference in determining

individual clinical treatment.

Gene expression data

After extensive reannotation using GEPAT (Weniger et al., 2007), we selected

3000 genes with the highest variance and applied correspondence analysis

(Figure 5.1). We know, that the proliferation signature values represent a

continuum. Our analyses show that we can define two clinical useful types.

We already found that the second axis is able to, almost perfectly, separate

patients according to the median of the proliferation signature values in a

multidimensional data space, confirming the stability and reliability of the

two subgroups in the data. In other words, the second axis distinguishes

between the poorer or better prognosis.

So the proliferation signature (Rosenwald et al., 2003) was re-examined

by exploratory data analysis not only by the genes of the proliferation sig-

nature but also by a huge amount of genes. We ranked the 71 MCL patients

according to their proliferation signature values and separated them accord-
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Figure 5.1: Correspondence analysis identifies the two Mantle cell
lymphoma subgroups. The gene expression data are projected on
the first two principal axes. The patients can be clearly separated
by this exploratory analysis considering the 3.000 genes (red dots)
of the highest variance. In the correspondence plot this is indicated
by the horizontal separation line. The patients are labelled with
“s” and “b” which represent the separation by the median of the
proliferation signature into two different entities. Patients with a
proliferation signature value smaller than the median are marked
with “s” (survival) and the other patients with “b” (bad prognosis).
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Figure 5.2: Density plot of proliferation signature values in MCL
patients. The 71 proliferation signature values are ranked on the x-
axis. The vertical line marks the median. The values do not clearly
build two clusters. The outcome correlates directly to the value.
Exploratory analyses reveal clusters wich represent a separation by
the median.

ing to the median (Figure 5.2). We defined two groups - “s” for survival and

“b” for bad prognosis. Patients with a high proliferation signature value tend

to have a poorer prognosis than patients with a low proliferation signature

value.

CGH data

Now to each single chromosome of the CGH data, the exploratory data anal-

yses correspondence analysis (Figure 5.3) and principal component analysis

(Figure 5.4) were applied. Both methods are useful for exploring informa-

tion and structures in data in order to get a first impression. Principal
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Figure 5.3: Correspondence analysis of chromosome 9 over the
“s” and “b” group. The first order factor axis separates almost
completely these two groups. It is also obvious that the first four
bands 9p24, 9p23, 9p22, 9p21 attract most of all b-patients. This
leads to the assumption, that these four bands are responsible for
the difference of the longer living “s” and the shorter living “b”
patients. The second order factor axis separates at first glance
strongly the last two bands 9q33 9q34 from the rest.

components analysis reduces multidimensional data sets to lower dimensions

for analysis. Correspondence analysis works similarly, but scales the data,

which results in rows and columns being equivalent. Regarding CGH-data

without prior knowledge and through these well known and smart methods

provides an unprejudiced picture of the chromosomal aberrations.

The results indicate a strong correlation to the first four bands of chro-

mosome 9, 9p24, 9p23, 9p22 and 9p21 and the proposed two subgroups “s”

and “b”. In the correspondence plot Figure 5.3, the four bands mentioned

before attract most patients of the subgroup “b” and the first factor axis
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Figure 5.4: Principal Components Analysis of chromosome 9
bands separating the "s" and "b" group. The second principal
component separates almost all patients of the subgroup “b” from
the remain. They are grouped together close to the first four vec-
tors, corresponding to the first four bands 9p24, 9p23, 9p22, 9p21,
which go into the same direction and are of similar length. Remark-
able are the vectors of the bands 9q33 and 9q34. They also are of
similar length and go exactly into the same direction. Along their
length, they congregate almost all patients of the type “s”. This
leads to the assumption, that the first four and the last two bands
of chromosome 9 play a crucial role for “s” and “b” classification.
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separates almost completely the two groups. Therefore, these four bands

seem to play a role towards a better prognosis. The bands 9q33 and 9q34

are located relatively far away from the remaining ones. In Figure 5.4, the

second principal component groups almost all the “b” patients near the four

bands 9p24, 9p23, 9p22, 9p21; vectors of these show similar length and sim-

ilar direction. As in the correspondence analysis the bands 9q33 and 9q34

are grouped together. Here, their vectors show very similar length and the

same direction. Along their length almost all “s” samples congregate. These

results indicate that the these 6 bands, the first four and the last two bands

of chromosome 9, are connected with the subgroups “s” and “b”. So these

exploratory analyses support the “s” and “b” classification.

Cox regression hazard model applied to CGH data

Further exploratory data analysis was performed to merge the survival time

and the CGH-data by the Cox regression hazard model. To avoid problems

with the regression we changed the data in such a way as no data points occur

with a value of 0, which is associated with “no change”. The values and their

meanings are now: “loss”: −1; “no change”: 1; “gain”: 2; “amplification”:

3. So only the “loss” data values are transformed into -1. A univariate Cox

regression hazard model was performed on all available bands of the CGH-

data of all 71 patients. The above mentioned four bands of chromosome 9

delivered, amongst others, the most significant results. The resulting bands

are “9p24”, “9p23”, “9p22”, “9p21”, “9q31” and “9q32”. Note that the

previous analyses revealed four bands, which intersect with these.
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These two different entities were further examined. As proliferation marks

the cancer progress, on average “s”-patients have a better prognosis than

“b”-patients.

5.2 A gene expression based survival predic-

tor

To improve survival predictions we searched with univariate Cox regression

hazard analysis for highly significant genes, which correlate strongly with the

overall survival time of the first 50 MCL samples, our training set. A four

gene predictor with the genes CDC2, ASPM, tubulin-α and CENP-F (1)

could not be tested, as after reannotation by GEPAT, mapping of CENP-F

seems not sure anymore. Predictors with 4, 5 or 6 genes delivered not the

desired predictive power (data not shown). So we identified for this task a

set of seven genes, which again includes the well known “cell division cycle 20

homolog” (CDC20) and the “cell division cycle 2” (CDC2). The former one

is known to be required for two microtubule-dependent processes, nuclear

movement prior to anaphase and chromosome separation (Sethi et al., 1991).

As a member of the Ser/Thr protein kinase family the latter is a catalytic

subunit of the protein kinase complex “M-phase promoting factor” (MPF),

which is necessary for G1/S and G2/M phase transitions of eukaryotic cell

cycle. It is regulated by cyclins (Norbury and Nurse, 1991, 1992). HPRT1,

the “hypoxanthine phosphoribosyltransferase 1” is located on chromosome

X. It is known to be involved in colon cancer and Lesch-Nyhan syndrome
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SpotID Gene GeneID Official Full Name

6558 CENPE ENSG00000138778 Centromeric protein E
7495 CDC20 ENSG00000117399 Cell division cycle protein 20 ho-

molog
7892 HPRT1 ENSG00000165704 Hypoxanthine-guanine phospho-

ribosyltransferase
7019 CDC2 ENSG00000170312 Cell division control protein 2 ho-

molog
7376 BIRC5 ENSG00000089685 Baculoviral IAP repeat-

containing protein 5
6422 ASPM ENSG00000066279 Abnormal spindle-like

microcephaly-associated pro-
tein

5923 IGF2BP3 ENSG00000136231 IGF-II mRNA-binding protein 3

Table 5.1: The genes of the survival predictor. Univariate Cox
regression hazard analysis revealed these seven genes best corre-
lating with the survival time (see Material and Methods). The first
column indicates the gene accession number in the data set, the
second the gene name, followed by the official full name. The genes
are ordered by their significance in decreasing order. CENPE ist
the most significant gene.

(Jinnah et al., 2000). With CDC20, HPRT1 and CDC2 three of the strongest

predictor genes match with three genes from the 20 genes proliferation sig-

nature of Rosenwald et al.. However, a good prediction power was obtained

with additional four genes and a new compact survival predictor could be

derived from this (Table 5.1).

As with the gene CENPF in the proliferation signature, there is one

member of the centromere proteins in our predictor. The kinesin-like mo-

tor protein “centromere protein E” (CENPE) accumulates in the G2 phase

of the cell cycle. It is supposed to be responsible for mammalian chromo-

some movement or spindle elongation or even both (Yen et al., 1992). The

55



“baculoviral IAP repeat-containing 5” (BIRC5) gene prevents apoptotic cell

death and is a member of the “inhibitor of apoptosis” (IAP) gene family.

It has been established that it is expressed in most tumours and in lym-

phoma (Ambrosini et al., 1997). It takes part in controlling cell proliferation

and in regulation of cell lifespan. Additionally, it is supposed to participate

in the spindle checkpoint and associates with AURKB (Beardmore et al.,

2004). ASPM, the “asp (abnormal spindle) homolog” is essential for normal

mitotic spindle function in embryonic neuroblasts (Bond et al., 2002). The

protein encoded by “insulin-like growth factor 2 mRNA binding protein 3”

(IGF2BP3), overexpressed in some human tumours, is found in the nucleo-

lus. It binds there to the 5’ UTR of the insulin-like growth factor II leader

3 mRNA and may repress translation of insulin-like growth factor II during

late development (Müeller-Pillasch et al., 1997; Monk et al., 2002; Nielsen

et al., 1999).

The seven genes were used to calculate a multivariate Cox regression

hazard model and with its coefficients, a gene expression based survival esti-

mator separated all 71 patients into two subgroups (Figure 8.1). Compared

to proliferation signature’s ability to distinguish two risk groups, the seven

gene predictor does it similarly well (Figure 5.5). The correlation between

this classification and the “s” and “b” groups of the proliferation signature

(Figure 8.2) is overall about 0.62 and in the validation set (patients 51 - 71)

it is 0.81.

A correspondence analysis of the 3000 genes with the highest variance

showed clear clustering of these two entities (Figure 5.6).

Compared with the sample grouping of the proliferation signature (Figure
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Figure 5.6: Correspondence analysis separates two MCL sub-
groups derived by the 7 genes survival predictor. The 3.000 genes
with highest variance (red dots) separate between the two sub-
groups, which were delivered by the seven gene predictor and are
drawn as “S” and “B”. They were separated by the median of the
predictor values. In contrast to the proliferation signature based
predictor (Figure 5.1), the patients here show a little more overlap,
but cluster clearly.
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5.1), the samples show a little overlap, but are once again clearly separated.

These results, taken together, give a clear indication, that the seven gene

predictor is able to distinguish the patients almost like the proliferation sig-

nature, but with less effort.

5.3 Protein networks and interactions differ-

entiating between two lymphoma subgroups

Following this we searched for differentially expressed key genes in the two

subgroups “s” and “b”. After applying a moderate t-test the well known

cell division cycle 2(CDC2) gene, also known as CDK1, shows the most

significance difference between “s” and “b” patients (Table 5.2).

It is important for the transition from G1 to S and G2 to M (Aleem

et al., 2005; Malumbres and Barbacid, 2007), and its interaction partners

show a significant up/downregulation as can be seen in the protein-protein

interaction plot created with the hand curated “Human Protein Reference

Database” (HPRD) database (Peri et al., 2003) (Figure 5.7). This indicates

the genes being relevant for the pathogenicity of MCL.

Furthermore, our data show differences for genes encoding the direct in-

teractions between CDC2, the Serine/Threonine kinase WEE1 and the ty-

rosine phosphatase “cell division cycle 25C” (CDC25). WEE1 catalyzes the

inhibitory tyrosine phosphorylation of CDC2/cyclin B kinase, and appears to

coordinate the transition between DNA replication and mitosis by protecting

the nucleus from cytoplasmically activated CDC2 kinase. CDC25 directs de-

59



SpotID Gene Fold change p-value EnsemblID

7019 CDC2 1.3737029 1.8651454E-13 ENSG00000170312
6632 NP-057427.3 0.94384 3.4574367E-13 ENSG00000117724
3399 UHRF1 1.1446086 1.5513529E-12 ENSG00000034063
5112 NP-060880.2 1.0916529 1.5513529E-12 ENSG00000123485
6994 AURKB 1.4594886 1.5513529E-12 ENSG00000178999
6388 MKI67 1.5062114 1.7304206E-12 ENSG00000148773
6721 Q9Y645 1.2185314 3.2408542E-12 ENSG00000140451
7024 BUB1 1.2488679 3.2408542E-12 ENSG00000169679
6392 NP-057427.3 1.3208085 3.2902188E-12 ENSG00000117724
5726 MKI67 1.4871315 3.6012686E-12 ENSG00000148773
6029 NP-057427.3 1.2980943 5.249176E-12 ENSG00000117724
7423 BIRC5 1.3726515 6.49239E-12 ENSG00000089685
4985 ASPM 1.3310171 7.281489E-12 ENSG00000066279
5754 KIF23 1.2461857 1.6424877E-11 ENSG00000137807
5271 ASPM 1.3205649 2.2259293E-11 ENSG00000066279
6104 KIF23 1.1683029 2.4981522E-11 ENSG00000137807

Table 5.2: More significant genes separating good (s) and bad (b)
prognosis. The most significant genes after a moderate t-test be-
tween the groups “s” and “b” with Benjamini and Hochberg mul-
tiple testing correction. The gene “cell division cycle 2” (CDC2),
which is important for the transition G1 to S and G2 to M shows
the biggest difference in gene expression between the two groups.
This indicates that these cell cycle transitions are part of the dif-
ference between the two groups.
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Figure 5.7: Protein interaction network (HPRD) of significantly
different expressed genes. The genes encoding these proteins show
a significant expression difference between the “s” and “b” group
(moderate t-test). Remarkably CDC2 is involved in a small in-
teraction network of protein kinases and almost all of these in-
teraction partners(CDC25, WEE1, AURKB, AURKA, BUB1) are
associated with the cell cycle.
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phosphorylation of the cyclin B-bound CDC2 and triggers entry into mitosis

(Schafer, 1998). However, a new finding are the expression differences in the

Aurora kinases for “s” and “b”. These associate with microtubules during

chromosome movement and segregation during mitosis, whereas the kinase

“budding uninhibited by benzimidazoles 1 homolog” (BUB1) is involved in

spindle checkpoint function. “Aurora kinase B” (AURKB) localizes to mi-

crotubules near kinetochores, “Aurora kinase A” (AURKA) localizes to cen-

trosomes (Lampson et al., 2004). BUB1 partly functions by phosphorylating

CDC20, a member of the mitotic checkpoint complex, and activating the

spindle checkpoint (Tang et al., 2004). Aside from other proteins, the check-

point machinery consists of the kinases Bub1, Mps1, BubR1 and Aurora B

(AURKB). It is possible that they phosphorylate diffusible key substrates

and provide a way to amplify and strengthen the “wait-anaphase” signal in

group “b”.

It is remarkable and unknown for MCL, that a relatively tight network

of cell cycle regulating phosphatases and kinases (CDC25, WEE1, AURKB,

AURKA, BUB1) results in an up- or down regulation if the “b” and “s”

group are compared (Figure 5.7).

The network of interaction partners of CDC2 from the STRING server is

shown in Figure 5.8. STRING is a database with documented and predicted

protein-protein interactions to which we mapped the genes with expression

differences. We have found that CDC2, E2F1, PCNA, CDC25C, WEE1 and

NCL, show high expression values in group “b”.

Four proteins differently expressed in “s” and “b” join the interaction

partners mentioned above. The “proliferating cell nuclear antigen” (PCNA),
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Figure 5.8: Differences in gene expression of interaction partners
of CDC2 in MCL subgroups. In this network figure, red indicates
high expression and blue low expression in the subgroup “b” of
the proliferation signature. White indicates no gene expression
diïňĂerence and grey the unavailability of the gene in our data set.
“Cell division cycle 2” (CDC2) gene interacts in different manners
with “cyclin D1” (CCND1), “cell division cycle 25C”(CDC25C),
“proliferating cell nuclear antigen” (PCNA), “E2F transcription
factor 1” (E2F1) and WEE1. CDC2 and CCND1 are both required
for the G1/S transition (Aleem et al., 2005; Malumbres and Bar-
bacid, 2007; Schafer, 1998). The genes WEE1 and CDC25C phos-
phorylate and dephosphorylate the complexes bound with CDC2
in a cell cycle regulating manner. The “proliferating cell nuclear
antigen” (PCNA) is involved in DNA replication whereas “E2F
transcription factor 1” (E2F1) controls cell cycle and mediates cell
proliferation and apoptosis. A cell cycle regulated transcription
activator “Nucleolin” (NCL) shows little difference.
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a cofactor of DNA polymerase delta, helps to increase the processivity of

leading strand synthesis during DNA replication in group “b”. Because of its

ability to interact with multiple partners, it is involved in Okazaki fragment

processing, DNA repair, translesion DNA synthesis, DNA methylation, chro-

matin remodeling and cell cycle regulation (Maga and Hubscher, 2003). The

“E2F transcription factor 1” (E2F1) is a member of the E2F family of tran-

scription factors and plays a crucial role in the control of the cell cycle. This

protein can mediate both cell proliferation and p53-dependent/independent

apoptosis (Crosby and Almasan, 2004) and is less expressed in “s”. “Nu-

cleolin” (NCL), an abundant multifunctional phosphoprotein of proliferating

and cancerous cells (Lapeyre et al., 1987; Derenzini et al., 1995; Srivastava

and Pollard, 1999), was identified as cell cycle regulated transcription ac-

tivator (Grinstein et al., 2006) and is highly expressed in “b”. CDC2 also

interacts here with CCND1. CDC2 and CCND1 are both required for the

G1/S transition. Note that with the exception of CDC2, CCND1 and E2F1

these genes were not known to play a role for survival in MCL.

Moreover, the interaction partners of cyclin D1 are significantly and dif-

ferently expressed genes (Figure 5.9; the colour coding is the same as in

Figure 5.8). Whereas CCND1 and CDK4 are assumed to be involved in

cell cycle progression of MCL, MYC is suspected of increasing MCL’s pro-

liferation rate. FOS, JUN and MYBL2 are known to play a role in cancer,

but not explicitly in MCL. Whereas FOS (“v-fos FBJ murine osteosarcoma

viral oncogene homolog”) and JUN (“jun oncogene”) are weakly down reg-

ulated in “b” the remaining ones like MYC (“v-myc myelocytomatosis viral

oncogene homolog (avian)”), MYBL2 (“v-myb myeloblastosis viral oncogene
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Figure 5.9: Protein interaction partners of CCND1: Different
gene expression in MCL subgroups. The colors red, blue and grey
mean “over expressed”, “down regulated” (in “b”) and “not avail-
able in the data set”. FOS encodes for a leucine zipper protein and
plays a role in regulation of cell proliferation, differentiation, trans-
formation and tumourigenesis (Milde-Langosch, 2005). The JUN
protein interacts directly with specific target DNA sequences to
regulate gene expression (Hartl et al., 2003) and is involved in tu-
morigenesis by cooperating with oncogenic alleles of Ras, an activa-
tor of the mitogen activated protein kinases (Weiss and Bohmann,
2004). MYC and MYBL2 play a role in cell cycle progression and
act as transcription factors. MYC is also associated with apoptosis,
cellular transformation, cell growth, proliferation, differentiation,
and a variety of hematopoietic tumors, leukemias and lymphomas
(Eisenman, 2001; Marcu et al., 1992; Pelengaris et al., 2002), and
was part of the original proliferation signature (Rosenwald et al.,
2003). MYBL2 has been shown to play a role in the G1/S transi-
tion (Golay et al., 1992) and proliferation (Sala and Watson, 1999)
and is known to be regulated by CCND1 (Horstmann et al., 2000;
Cesi et al., 2002). CDK4 and CDK6 are important regulators of
cell cycle transition from G1 to S, phosphorylate, and thus regulate
the activity of tumor suppressor protein Rb (Schafer, 1998).
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homolog (avian)-like 2”), CDK4 (“Cyclin-dependent kinase 4”) and CDK6

show higher gene expression values. The high expression of transcription fac-

tors and cell cycle regulating factors in the “b” group emphasizes the poor

prognosis for this group.

5.4 CGH data from chromosomes VII, IX sup-

port the classification and add new genes

To test the indication exploratory analysis of CGH-data revealed, we applied

the Wilcoxon rank-sum test on the CGH data and compared the two groups

“s” and “b”. The null hypothesis corresponds to no differences between

the two entities. The resulting p-values for every band of chromosome 9

are compared in Figure 5.10. They strongly indicate the significance of the

first four bands 9p24, 9p23, 9p22 and 9p21. These bands have MCL related

genes such as “cyclin-dependent kinase inhibitor 2B” (CDKN2B), “cyclin-

dependent kinase inhibitor 2A” (CDKN2A) and “tumor protein p53” (TP53).

TP53 mutations are associated with the blastoid variant of MCL and with

a poorer prognosis. The bands 9q33 and 9q34 have less significance. To

visualize this result more clearly Figure 8.3 plots the densities of the p-values.

A peak in the density indicates significant bands of the Wilcoxon test.

The Wilcoxon rank sum test revealed similar results for chromosome 7.

Here, the bands 7p21, 7p15, 7p14 are potentially related to the classification

of “s” and “b” patients. Now the log p-values and their densities are plotted

against the bands in Figure 5.11 and in Figure 8.4. The explorative analyses
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Figure 5.10: P values of the Wilcoxon test for the bands of chro-
mosome 9. This figure plots the bands of Chromosome 9 on the x-
axis against the p-values of the Wilcoxon test (y-axis), which tested
each band between the two groups “s” and “b”. The p-values of
the first four bands 9p24, 9p23, 9p22, 9p21 are very small, com-
pared to the remaining ones. This affirms the proposed subgroups
“s” and “b” and indicates that the first four bands have a relation
to this classification.
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Figure 5.11: P-values of the Wilcoxon test for the bands of chro-
mosome 7. The Wilcoxon test was applied to all bands of chromo-
some 7 over the two groups “s” and “b”. The bands of chromosome
7 (x-axis) are plotted against the log p-values (y-axis). Three bands
show a very low p-value: 7p21, 7p15, 7p14. As the four bands of
chromosome 9, they could have a relation to the “s” - “b” classifi-
cation.

of chromosome 7 did not reveal such a clear relation as in chromosome 9.

The proposed subgroups are defined by the gene expression based pro-

liferation signature, which acts as a survival predictor, and are supported

very well by the CGH data of chromosome 9. We checked the location of the

signature genes as we wondered if they were on chromosome 9 or 7, however,

this was not the case. Also the genes of the gene network in Figure 5.8 are

located elsewhere. We investigated the gene expression data of these bands

as none of the previously mentioned results could explain the relationship be-

tween the subgroups and the subgroup-separating CGH-data of chromosome
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SpotID Gene Start bp End bp p-value Official Full
Name

7865 HSPA5 1.270e+07 1.270e+07 0.0304 Heat shock 70kDa
protein 5

7073 PPP6C 1.269e+07 1.269e+07 0.0338 Protein phospha-
tase 6, catalytic
subunit

7430 PBX3 1.275e+07 1.277e+07 0.0338 Pre-B-cell leukemia
homeobox 3

1694 PTGS1 1.241e+07 1.241e+07 0.0393 Prostaglandin-
endoperoxide
synthase 1

7687 QSCN6L1 1.382e+07 1.382e+07 0.0393 Quiescin Q6 sulfhy-
dryl oxidase 2

Table 5.3: The best “s” and “b” separating genes of chromosome
9 bands 9p24, 9p21, 9q33, and 9q34. A moderate t-test revealed
the following ones as the genes with the highest significance. Al-
thogh the significance is weak, it is quite remarkable that these
genes here show a distinct clustering on the basis of genomic posi-
tions, which can be observed in Figure 8.5

9. Again a moderate t-test was applied to rank genes differentially expressed

between “s” and “b”. The top five are listed in Table 5.3, e.g. the “Heat

Shock 70kDa protein 5” and a catalytic subunit of “Protein Phosphatase 6”.

Several of their functions implicate that they are critical in cancer devel-

opment. Their genomic positions revealed a quite remarkable clustering of

these genes, shown in Figure 8.5. Three of the genes seem to be located very

closely to each other.

The “heat shock 70kDa protein 5” (HSPA5), also referred to as ’im-

munoglobulin heavy chain-binding protein’ (BiP) targets misfolded proteins

for degradation, and has an anti-apoptotic property. It is present in a wide

variety of cancer cells and cancer biopsy tissues and contributes to tumor
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growth and drug resistance of cancer cells (Li and Lee, 2006). The PPP6C

gene encodes for a catalytic subunit of the Ser/Thr phosphatases, the “pro-

tein phosphatase 6 catalytic subunit” (Stefansson and Brautigan, 2006). The

pre-B-cell leukemia transcription factor 3 (PBX3) reveals extensive homology

to PBX1, a human homeobox gene involved in t(1;19) translocation in acute

pre-B-cell leukemias. However, in contrast to PBX1, the expression of PBX3

is not restricted to particular states of differentiation or development (Mon-

ica et al., 1991). It is also known that if HoxB8, a homeobox gene identified

as a cause of leukaemia, binds to the Pbx cofactors it blocks differentiation

in certain cell types (Knoepfler et al., 2001). “Prostaglandin-endoperoxide

synthase 1” (PTGS1) is the key enzyme in prostaglandin biosynthesis, and

is known to play a role in the human colon cancer (Garavito and Mulichak,

2003; Wiese et al., 2003). The expression of the alternative splice variants is

differentially regulated by cytokines and growth factors (DeWitt, 1991; Hla

et al., 1993; Herschman, 1994). Very little is known about “quiescin Q6-

like 1” (QSCN6L1), except its major role in regulating the sensitization of

neuroblastoma cells for IFN-gamma-induced apoptosis (Wittke et al., 2003).

Similar obvious clustering on chromosome 7 could not be observed.
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Chapter 6

Analysis of gene expression:

Survival and subgroups in

DLBCL

In this chapter the raw data from a well documented study (Rosenwald et al.,

2002) are analyzed. However, now more patients are involved in an enlarged

data set with a total of 248 patients. Each patient array included 12196

gene spots corresponding to 3717 genes, generated with the “Lymphochip”

(Alizadeh et al., 2000). With this specialized microarray Alizadeh et al. (Al-

izadeh et al., 2000) investigated the gene expression patterns of “diffuse large

B-cell lymphoma” (DLBCL), “follicular lymphoma” (FL) and “chronic lym-

phocytic leukemia” (CLL). They identified two until then unknown distinct

types of the DLBCL by gene expression profiling. As described in detail in

chapter one the “activated B-cell-like DLBCL” (ABC) group has a worse

overall survival than the “germinal center B-cell-like DLBCL” (GCB) group.

71



von Heydebreck et al. (2001) applied their new class discovery method

ISIS on a subset of 62 samples and 4026 clones of the data by Alizadeh and

colleagues (Alizadeh et al., 2000) and were able to show evidence for ABC

and GCB next to CLL and FL in an unsupervised manner. Here ISIS was

also applied and it confirmed the classical subgroups ABC DLBCL and GCB

DLBCL independent from hierarchical clustering. Furthermore, it supports

those subgroups being homogeneous entities in the data..

The survival analysis of Rosenwald et al. (2002), revealed gene expression

signatures (collating several genes) and based on this an outcome predictor of

survival. The constituents are the “Germinal-center B-cell signature”, “MHC

class II signature”, “Lymph-node signature”, “Proliferation signature” and

the gene “BMP6”. The predictor has a greater prognostic power in classifying

patients into risk groups than the IPI (see above).

Starting with 36 well known DLBCL prognosis genes from the literature,

Lossos et al. (Lossos et al., 2004) found a six gene based outcome predictor

and applied it to the data sets of Alizadeh et al. (Alizadeh et al., 2000) and

of Rosenwald et al. (Rosenwald et al., 2002). The latter one is an ongoing

study and thus an extension and revision of the old data from Rosenwald

et al. (2002) was possible (see Material and Methods).

To find better prognosis predictors, our analysis includes the expression

values for these 36 well known DLBCL prognosis genes (Lossos et al., 2004).

However, we use a data set enlarged to previous studies and we apply more

adequate tools from the Bioconductor library (Gentleman et al., 2004) to

derive better predictors than e.g. the six-spot predictor derived previously

by (Lossos et al., 2004). We examine the data set to validate the marker gene
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classification into exactly two pathological entities by a unbiased statistical

classification analysis and show further that these confirms the classical sub-

groups ABC DLBCL and GCB DLBCL independent from gene expression

signatures. After that, we advance the analysis of the raw data and obtain

a simplified predictor with good quality for clinical prognosis (6 instead of

17 genes). More importantly, we identify and demonstrate that expression

of early and late cell cycle genes distinguishes well the pathological entities

ABC and GCB DLBCL. Furthermore, we show that the most significant

gene expression differences found including the cell cycle genes as well as

classical markers and best separating genes can be integrated into a compact

key regulatory network showing clear expression differences between both

diffuse large B-cell-lymphoma subgroups. This finding is verified comparing

it to the average distribution of genes on the Lymphochip and the connection

distances between them as well as confirming key gene expression differences

found in our main data set by new analysis of further gene expression data

(Shipp et al., 2002). The introduced methods can also be applied to other

studies of gene expression analysis in cancer. Now a picture emerges where

a central regulatory circuit tunes immune signatures, apoptotic and prolifer-

ation pathways in different ways between ABC and GCB DLBCL.

6.1 Survival analysis

The raw data include microarray data and survival data from 240 patients

with diffuse large B-cell lymphoma as well as their pathological classification.

For normalization the methods “loess” (W.S. Cleveland and Shyu, 1992; Yang
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et al., 2001, 2002) and “scale” (Yang et al., 2001, 2002; Smyth and Speed,

2003) were used, as we are aware, for the first time.

Survival Prognosis of immune signatures applied to the data set

The International Prognostic Index (IPI) score is often used in the clinical

setting to differentiate lymphomas into low, medium and high risk cases. The

immune signatures by Rosenwald et al. (2002) were shown to be independent

from the clinical IPI score and useful predictors within the low, medium and

high IPI risk groups on their data set.

We tested the performance of advanced normalization methods, namely

the methods “loess” and “scale” on our enlarged data set. The IPI score

is considered here only as an independent and established clinical prognosis

marker. On normalized data of 240 patients and considering all individual

spots we utilised Kaplan Meier plots (Figure 8.6) and reveal the efficient per-

formance of the gene expression profiles (Rosenwald et al., 2002) also for this

enlarged set of data using the improved normalization procedure. The low

risk IPI group in the renormalized and enlarged data is not as well separated

between the best and worst quartile as in Rosenwald et al. (Rosenwald et al.,

2002). The separation of the high risk group is virtually unchanged. However,

in the medium risk group a better separation was achieved by the renormal-

ization and single spot analysis of all patient data. For the medium risk

patients a better separation into high and low risk is particularly important

for prognosis. The aim of the previous study mentioned above (Rosenwald

et al., 2002) and our new study is of course to derive even better and gene

expression based predictors of survival than the IPI score, which is consid-
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ered here only as an independent and established clinical prognosis marker.

However, these results support this notion with enlarged data and further

developed normalization methods. This methodi, including the advanced

normalization, can also be applied to any other microarray data set.

Simplified prognosis predictors for cox hazard regression survival

analysis The immune signature requires the measurement of gene expres-

sion for a battery of genes. Next, we investigated whether a combination

of fewer array spots and gene expression measurements is able to achieve a

similarly good classification.

Multivariate analysis is computational prohibitive for more than 4 spots

(results in Table 8.1, Table 8.2). However, by univariate analysis we could

systematically test the capability of the gene expression values from individ-

ual spots to separate patients with good and bad prognosis in Kaplan-Meier

plots. Within each of the three IPI classes the gene expression measurement

should recognize and separate well the best patient quartile (with good prog-

nosis) from the worst patient quartile (with poor prognosis). In contrast,

a sub-optimal combination of spots confuses these patients and achieves no

good separation in the plots. The univariate analysis was done with all genes

and the 160 patients from the training-set and we identified the spots for the

best describing outcome. Taken together in a multivariate model they form

a predictor separating best and worse quartiles for all three IPI categories in-

cluding the 80 patients from the validation-set. Results show, that five spots

(details in Supplemental Material) are about equal to the six gene predictor

of Lossos et al. (Lossos et al., 2004). Note that the 5 spot predictor also con-

75



Gene name Gene Description

HLA-DPα Major histocompatibility complex, class II, DP alpha 1
HLA-DQα Major histocompatibility complex, class II, DQ alpha 1
HLA-DRb5 Major histocompatibility complex, class II, DR beta 1
SEPT1 Serologically defined breast cancer antigen NY-BR-

24=Similar to DIFF6
EIF2S2 Eukaryotic translation initiation factor 2 subunit 2
IDH3A Isocitrate dehydrogenase 3 (NAD+) alpha

Table 6.1: Optimal molecular survival predictor applying six
genes. The gene symbol (left side) is followed by the gene de-
scription. Three of these genes are HLA major histocompatibility
complex genes (HLA).

siders different splicing forms in HLA-DRB5. However six spots (Table 6.1)

– corresponding to 6 genes – even are an improvement for this classification

task. The five-spot-predictor includes the following spots: HLA-DPa, Brca,

HLA-DQa, and two clones of HLA-DRB5. The six-spot-predictor includes

the HLA-DPa, HLA-DQa, HLA-DRB5, Brca, ETIF2 and ID3A genes and

shows an improved performance (Figure 6.1). The separation of the best and

worst quartiles in the three IPI classes is comparable to the prediction success

of the complete signature according to Rosenwald et al. ((Rosenwald et al.,

2002), Figure 3) and classifies different patient quartiles better than the set

proposed by Lossos et al. (LMO2, BCL6, FN1, CCND2, SCYA3 and BCL2

for overall survival in DLBCL). Our predictor is delivered by bioinformatical

analysis of gene expression measurements, whereas Lossos et al. (2004) used

RT-PCR. Our method, however can also be applied to RT-PCR. Moreover,

we tested the influence of the high correlation between the genes HLA-DPa,

HLA-DQa and HLA-DRB5 on the quality of the predictor. Therefore we es-

timated the survival probability with predictors of non correlated genes from
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Figure 6.1: Prognosis prediction applying the molecular predictor
of 6 genes after improved normalization. Kaplan-Meier plots are
estimated by a Cox-Regression Hazard model of the genes listed
in Table 6.1. Normalization was improved applying the “loess”
method. The x-axis corresponds to the time, measured in years
and the y-axis denotes the probability of survival, predicted for
the risk group. The predictor was applied over all patients in each
single risk group, namely “low”, “medium” and “high”. The plots
show large differences in the survival rate for all risk groups.

the univariate analysis (data not shown). However, the survival probability

yields no improvement in the results (data not shown).

6.2 An older DLBCL classification with ABC,

GCB and Type 3

The patient classifications ABC, GCB and “Type 3” found by Rosenwald

et al. (2002) are outdated. Type 3, supposed to include more than one type

of DLBCL because of its heterogeneity, was rejected. So a more recent and

accurate classification is available and used in the whole thesis. But in this

chapter we introduce a remarkable result obtained with the old one. Within

this rejected classification from 240 patients correspond 73 to ABC, 115 to

GCB, and 52 are annotated to “Type 3”. Until there is no more evidence for

“Type 3”, the following results have to be considered as interesting theory.

The genetic differences between the three DLBCL entities, ABC, GCB,
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and Type 3 were now investigated through consideration of periodically ex-

pressed human genes associated with the cell cycle, a trigger of cell differ-

entiation and proliferation. Within the cell cycle lies the crucial decision of

abnormal proliferation.

The 240 samples were separated according to the three subtypes. We

compared the gene expression measurements of cell cycle genes between the

subgroups by moderate t-test. Significant differently expressed cell cyle genes

were found in all comparisons for each single group. 32 were characteristic

for GCB, 16 for ABC and 57 for Type 3. The intersection of all tests con-

tains 5. 281 measurements showed no significant different expression for the

subgroups (Figure 6.2(a)). We tested not only the cell cycle genes but all

available genes (Figure 6.2(b)).

With this random noise we obtained almost the same result: almost all

cell cycle genes were in the significant gene groups. This indicates that the

result is independent of other gene expression values.

We then tested if the cell cycle result especially the peak for Type 3,

reflects only a random result. As 473 is the amount of mapped cell cycle

measurements, we randomly chose 1000 times 473 values randomly from all

Lymphochip spots and each time we performed the moderate t-test. The

result (Figure 6.3) very clearly shows that now there is no significant bigger

amount of genes in the Type 3 describing intersection. Furthermore, the

study revealed that the cell cycle result does not reflect a random result. On

the contrary the comparison of random results and cell cycle results indicates

a Type 3 specific subset of cell cycle genes.

As a result the cell cycle genes, which specifically assign B-cell lymphomas
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cell cycle set
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data set

Figure 6.2: Venn Diagrams of differently expressed genes. Each
circle represents a comparison between two subgroups. The over-
lap of circles gives the intersection of differently expressed genes.
6.2(a) shows cell cycle gene expression differences between the
three B-cell lymphoma groups. 6.2(b) represents the same test
with all “Lymphochip” genes, which include the cell cycle genes.
Almost all cell cycle genes of 6.2(a) occur in the outlined groups
in 6.2(b). The number on the bottom corner in on the right rep-
resents genes with “no significant difference” in the comparisons.
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Figure 6.3: Differently expressed genes of randomly chosen genes.
To test if the peak of cell cycle genes in Type 3 was a random re-
sult, we randomly randomly chose the same amount of spots as in
moderate t-test for cell cycle genes (473) and again we applied a
moderate ttest with the same group comparisons. This procedure
was performed 1000 times. The x-axis represents the group com-
parisons and the y-axis delivers the amount of differently expressed
spots. The x-indices are from left to right: “Not significant”,
“Type3-ABC”, “Type3-GCB”, “(Type3-GCB) + (Type3-ABC)”,
“GCB-ABC”, “(GCB-ABC) + (Type3- ABC)”, “(GCB-ABC) +
(Type3-GCB)”, “overall intersection”. The box plots indicate the
distribution of the resulting gene amounts after random selection.
The red dots signify the resulting gene amounts of moderate t-test,
shown in Figure 6.2(a). Obviously the differently expressed genes
in the Type 3 describing group “Type 3-GCB ∩ Type 3-ABC” (red
dot in the fourth index on x-axis) show clearly a higher value than
test results from randomly chosen genes (box plot).

80



to Type 3, permit investigaton of the cell cycle states and allow us make an

assumption in regard to which state Type 3 is predominantly occuring. As

Type 3 patients are a heterogeneous group, a reclassification was performed

and some of the Type 3 patients are now part of ABC or GCB type DLBCL-

patients.

6.3 Statistical validation of ABC DLBCL and

GCB DLBCL

The ABC and GCB DLBCL subgroups were originally introduced on the

basis of gene expression profiling. There has been some suggestion that

certain DLBCL form a third group (Hans et al., 2004). Furthermore, it is

interesting to see whether this classification is also valid for an enlarged data

set by an unsupervised classification method. Statistical analysis on the data

(50 best separating genes from 3000 and a total of 150 patients) allows us to

decide, independently of any pre-clustering of specific marker genes, whether

there are 2, 3 or more lymphoma subgroups and whether they overlap with

groups according to other group definitions (e.g. pathology).

The ISIS method (von Heydebreck et al., 2001) classifies data into two

groups without prior (unsupervised) knowledge of the grouping. It investi-

gates systematically all likely bipartitions on the gene expression data from

our data set (see chapter 3) and gives a DLD score (diagonal linear discrim-

inant score) for each partition. As a gene-expression profile based control,

the samples were revised and 82 patients have been originally classified as
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ABC subtype, 112 as GCB subgroup, for 48 patients no previous classifica-

tion was available. A maximum sample size of 150 patients each for ISIS

run considered 3000 measurements and delivered 50 best separating genes.

Figure 6.4 shows the bipartitions ranked according to their DLD score. The

bipartitions with the three highest DLD scores support and, in fact, identify

each the two pathological entities ABC and GCB, though for this bipartition

search only bipartitions were considered and no marker gene or signature

pre-classification into ABC or GCB was applied. We further searched for

subgroups within these splits but found no support for this. An appropriate

bipartition could not be observed using previously putatively classified Type

3 patients and the ABC or GCB samples (data not shown). A further sub-

group within the ABC or GCB entities is not validated by ISIS. We conclude

that the precise separation into these two subgroups is thus well supported

even by an unbiased statistical method independent of predefined expression

signatures.

6.4 Genes best distinguishing DLBCL sub-

groups ABC from GCB

In all following chapters the most recent classification is used. Now from 248

patients 82 correspond to the ABC subtype whereas 112 are annotated to the

GCB subgroup, for 48 patients thus a gene expression-based classification

into either group was not available. The resting ones are associated with

PMBL and MCL.

82



Figure 6.4: ABC and GCB DLBCL are clearly separated by unsu-
pervised statistical analysis. Optimal bipartitions of patients are
calculated by ISIS based on optimal bipartition subsets of genes
(50). Every column of the x-axis represents a patient. On the
bottom, the DLBCL-type of the patient is labeled. On the y-axis
every row shows the bipartitions ranked in increasing score of sep-
aration quality. The three best bipartitions show a very consistent
and clear signal separating the ABC from the GCB patients. The
unsupervised method ISIS reveals the ABC-GCB classification in-
dependent of proliferation signatures. No evidence for a previously
suggested third group “Type 3”âĂİ was found. Only a few patients
are falsely assigned if compared to the DLBCL gene signature as-
signment, some of the patients are consistently wrongly assigned
over many optimal bipartitions. The unsupervised method ISIS
reveals the ABC-GCB classification based on 50 genes, reflecting
that the difference in gene expression between both tumour sub-
groups is the major signal in the data.
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The nearest shrunken centroid analysis using the R-package PAM (“Pre-

diction Analysis of Microarrays”) allows us to identify the best separating

genes between the two subgroups ABC and GCB DLBCL with the small-

est cross-validation error. Figure 8.7 in the supplement plots gene numbers

of classifiers versus the resulting error rates. We identified a subset of 18

genes (31 spots), at which the associated optimal classifier indicates a good

prediction power even with a small number of genes: Larger gene sets yield

classifiers showing similar error rates (see Materials and Methods). However,

smaller gene sets (less than 22 genes) result in inferior classification (Figure

8.7 upper plot). In detail, the error rate for the single subgroups differs be-

tween ABC and GCB DLBCL. Whereas GCB DLBCL is correctly predicted

with few genes, the error for ABC DLBCL increases strongly (Figure 8.7

lower plot). However, for clinical application both entities have to be sepa-

rated well and should not be confused. The optimal set of 18 genes is listed

in the Table 8.8. Based on this gene subset a separation of ABC and GCB

DLBCL with an overall cross validation error of 6.2% was achieved, see top

of Figure 8.7. 5 out of 82 ABC DLBCL samples were falsely predicted as

GCB, which corresponds to an error rate of 6.10%. The false prediction of

7 GCB samples out of 112 corresponds to an error rate of 6.25% (Figure 8.7

lower plot; error rates in Table 8.3).
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6.5 Functional relationship of classical lym-

phoma marker genes and the genes from

the best separating set

How well distinguish well known classical markers for lymphoma between

these two subtypes of DLBCL? For this we collected classical lymphoma

genes from literature (Monti et al., 2005; Lee et al., 2003; Willis et al., 1999;

Polo et al., 2004; Rosenwald et al., 2002) and identified 35 genes in our

data set which represent classical markers involved in lymphoma pathogen-

esis. Furthermore, we added the three metabolic enzymes LDH (IPI score

prognosis marker), IDH and PDH (Table 8.4). Altogether these 38 genes

correspond to 180 spots. PAM analysis identified from these genes a set of

9 well distinguishing genes (21 spots) (Table 8.5, Table 8.6), with an overall

error rate of 14% (10% for the training set; 15% for the validation group).

Thus these classical genes require more spots and their separation is less than

the optimal prediction set above (Figure 8.7). To investigate the relationship

between the best separating gene set identified above (see Figure 8.7) and the

classical lymphoma marker genes, we merged them and performed the analy-

sis again. We found, however, that here the best separating genes (Figure 8.7)

achieve top ranks in this task (Table 8.7). It is only the “mitogen-activated

protein kinase 10” (MAPK10), the best classical lymphoma marker, that

reaches top ranks with 3 spots. BCL6 as the next best classical marker only

reaches rank 31. Perhaps in contrast to expectation, the classical lymphoma

genes do not add much information to the set of best separating diagnostic
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genes. Below we show that classical marker genes are close to the central

regulatory network best separating GCB and ABC DCBCL. However, the

classical marker genes achieve not such a high rank in the separation task

and hence are not that clearly differentially regulated as are the genes from

the best-separating set.

6.6 Differences in the cell cycle

As cell cycle is critical for cancer cell division we next investigated by PAM

analysis (see Material and Methods), whether the functional group of cell

cycle genes alone could separate the two B-cell lymphoma groups.

We identified 473 spots in the data set, which correspond and are homol-

ogous to the cell cycle genes found by de Lichtenberg et al. (2005). These

genes are annotated according to expression in the cell cycle state (100 steps

between 0 and 99 for a full cell cycle). The separation between the lymphoma

subgroups improves as more genes are used. We show here the result for 77

genes (Table 8.8, Table 8.9; error rate of 15.4%; classification optimum, see

Materials and Methods). This set of cell cycle genes yields low error rates

combined with a medium sized gene set. The genes are listed in Table 8.9.

They mainly reflect the late cell cycle states. We asked how their cell cycle

stages behave compared to the total of cell cycle genes. Figure 6.5 compares

the complete cell cycle genes in our data set with the subset of 77 genes in a

density plot.

The line over the coloured area indicates all cell cycle states of the whole

chip and the bold dashed line the subset of 77 genes. The densities of this
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Figure 6.5: Early and late cell cycle genes are overrepresented in
the best separating cell cycle gene set. The density plot compares
the distribution of different cell cycle gene sets. The x-axis de-
notes the cell cycle states from 0 to 99 (complete cell cycle), the
y-axis represents the relative frequencies. The black line over the
coloured area shows the density of all mapped cell cycle genes of
de Lichtenberg et al. (2005) in the enlarged data set. The area
is coloured for easier comparison. The dashed line represents the
density of the optimal separating subset of cell cycle genes (77
spots). It is obvious that the subset, compared with the mapping
of all cell cycle genes, has got two big peaks, one in the early and
one in the later cell cycle states. These peaks indicate cell cycle
gene expression differences between the subgroups ABC and GCB
in these states.
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gene sets clearly differ in the early (0% - 18%) and in the late (75% - 85%)

states (p = 6.65 · 10−10; Wilcoxon one sided test).

Additionally the cell cycle spots, which show the biggest difference in

gene expression values between the two groups, are in the late states 72, 80,

84 and 85. Supplemental Figure 8.8 (MA-plot: middle intensity of the genes

against difference in expression of both lymphoma subgroups) plots the whole

data set and shows their expression values according to the ABC and GCB

subgroups, cell cycle spots are drawn according to their state between 0 and

99 with colours from red to yellow. Spots with very big differences between

the subgroups are labeled with their gene name and cell cycle state. They

concern mainly the late cell cycle states. It is quite remarkable, that in the

gene expression based two dimensions of the MA-plot these cell cycle states

stay together and form a cluster. These results indicate a clear subgroup

difference in the cell cycle states. Important differences concern the genes:

butyrophilin-like 9 (BTNL9), early B-cell factor (EBF), cyclin G2 (CCNG2),

TSC22 domain family, member 1 (TSC22D1), interleukin 6 (IL6), imme-

diate early response 5 (IER5), TIMP metallopeptidase inhibitor 1(TIMP1)

and v-maf musculoaponeurotic fibrosarcoma oncogene homolog (MAF). The

function of these genes indicates specific differences in the behaviour of the

two tumour subgroups.

88



6.7 Network analysis of differentially expressed

key genes

To follow up these findings, we next investigated how the differentially ex-

pressed genes in the two subgroups are specially connected, and how their

respective gene products interact with each other. To analyze this system-

atically, different large scale protein interaction databases were investigated.

We first tried to apply the HPRD database (Peri et al., 2003) (hand cu-

rated protein interactions) but the data in this database are too sparse to

cover all lymphoma markers analyzed. In contrast, the much larger meta-

and protein-protein interactions database STRING (von Mering et al., 2005)

allowed us to establish an interaction network. (Figure 6.6, details in Fig-

ure 8.9) Note that this analysis focuses on the clearly differently expressed

genes in ABC and GCB (Table 8.7). The resulting interactions and func-

tional classification of the genes identified are shown as a network in Figure

8.9. Classical lymphoma gene markers (dark grey boxes) as listed in Ta-

ble 8.5 combine and interact with the compact cluster of the most powerful

differentiating genes (white boxes) for the whole data set (Table 8.10) as de-

livered by PAM. The connections are mainly found by textmining and only

the two interactions between BCL6 - IRF4 and between SH3BP5 - MAPK10

are available from the HPRD data set (experimental/biochemical Data) as

a direct physical interaction (blue). The different article sources re-examine

the interaction predictions for different tumor entities: “DLBCL”, “no can-

cer disease”âĂİand “other cancer”. Note that these categories support the

interactions from three different view points (Figure 6.6).

89



Figure 6.6: Regulatory network differently regulated in ABC and
GCB B-cell lymphomas. Functional protein association network
using interactions predicted by the STRING database: the most
powerful predictive genes in the PAM analysis (white boxes; see
Figure 8.9), classical textbook lymphoma genes (dark grey boxes),
additional the cell cycle genes (light grey boxes; see Figure 8.8: 5
of these 8 cell cycle genes are connected directly with the network.
TIMP1 even connects the so far uninvolved classical lymphoma
gene CTGF with the network. This indicates how well the cell
cycle genes fit to the existing graph). The new connections are
confirmed by text mining of PubMed abstracts(circles: “DLBCL”,
diamonds: “no cancer disease”, empty square: “other cancer”);
these different data complement each other. The genes with a
significantly higher expression in the ABC group are marked by
a red rectangle. Green ellipses mark higher expression in GCB.
Black hexagons mark genes which have a very high average gene
expression value in both entities and are an important part for the
network.
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Validation of the central network including further tests. As a con-

trol for this finding of a compact regulatory network separating both entities

regarding gene expression, we establish that all Lymphochip genes are equally

distributed in regard to the human interactome and not pre-clustered in this

respect (Figure 8.10). Moreover, the characteristic path length for randomly

picked protein genes from the Lymphochip is 3.985 (Figure 8.11) and clearly

longer than the direct interactions (path to lengths 1 or 2) found for differ-

entially regulated network (Figure 8.9).

STRING found 11 of the 18 best separating genes and 8 of the 9 separating

classical lymphoma genes as members of this dense interaction network. The

remaining 8 genes, 7 from the first mentioned set and 1 from the latter one,

are not part of the database. As “cyclin D2” (CCND2) occurs in these

two subsets we obtain a protein-protein association network of 18 nodes.

Regarding network regulation the underlined genes are more highly expressed

in ABC, all others are more highly expressed expressed in GCB subtype:

ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1,

IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5

(Table 8.11). The network of different regulated genes, which was found, is

predicted to closely interact with and influence each other. This has been

determined by evidence from the STRING database, HPRD database and

various interaction evidence types specifically collated by STRING). The

different characteristics of the network can partly be rationalized. Protein

functions involved in the network include stimulation of proliferation, block

of proliferation, apoptosis, differentiation and immune cell specific functions

(Table 6.2).
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Functional categories Gene Description

Proliferation

CCND2 cyclin D2, regulates G1 to S transi-

tion of CDK4/CDK6; CTGF, fibrob-

last growth factor

MAPK10 map kinase 10

MYBL1 transcriptional activator in the prolif-

eration of neurons, spermatogenic and

B-lymphoid cells (recognition sequence:

5’YAAC(GT)G-3’)

ASB13 ankyrin repeat and sox box-containing

protein 13, mediates protein-protein in-

teractions, sox box couples suppressors

of cytokine signalling and binding part-

ners with elongin B and C complex to

target them for degradation

SH3BP5 SH3 domain binding protein, targets

protein-protein interaction

Block of proliferation

MME synonyms CALLA, common acute lym-

phocytic leukemia antigen, the syn-

onym CD10 stresses its properties as a

tumor suppressor gene
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BCL7A putative tumor suppressor gene in T-

cell lymphoma

Apoptosis

BCL2 integral outer mitochondrial protein to

block apoptosis

BCL6 transcriptional repressor, necessary for

germinal center formation in lymph

nodes

Differentiation

CTGF fibroblast differentiation

FOXP1 forkhead box P1

LMO2 LIM domain only 2 transcription factor

for hematopoetic development

LAMP expressed in lymphoid cells during de-

velopment

COL3A1 collagen type III

FN1 fibronectin 1, cell adhesion

NEIL1 base excision repair

Immune cell specific

IGHM immunoglobulin heavy chain gene

IRF4 interferon regulatory factor 4
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Table 6.2: Regulatory network of genes best dis-

tinguishing ABC and GCB. The genes of the

network in Figure 8.9 are associated to the func-

tional categories “Proliferation”, “Block of pro-

liferation”, “Apoptosis”, “Differentiation” and

“Immune cell specific”, by their annotation. Most

of them are part of the antagonists “Prolifera-

tion” and “Block of proliferation”. This indicates

the complex regulation and importance of pro-

liferation in the determination of ABC and GCB

lymphomas. Classical lymphoma genes (see Table

8.4) known previously are given in italics.

Interestingly, both subgroups reveal clear differences in these specific

pathways and sub-networks with their regulation. Furthermore, the large

collection of protein-protein interactions from the STRING database shows

that all these different proteins separating the two subgroups are connected

by first order interactions. Moreover, 5 of the 8 cell cycle genes identified

in Figure 8.8 above, to be regulated differently are directly interacting with

this regulatory network (Figure 6.6). The genes with a significantly higher

expression in the ABC group are marked by a red rectangle, whereas green

ellipses mark higher expression in GCB. These differences are an interesting

pointer for a more specific anti-cancer treatment. In order to validate the

gene expression differences that were found, we show that several of the key
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gene expression differences identified are found again after analyzing further

data from Shipp et al. ((Shipp et al., 2002; Wright et al., 2003); Table 8.12).

Gene functions for separating genes. The shorter survival of patients

with ABC DLBCL is connected to pathways regulated differently from GCB

DLBCL. Thus the well known BCL2 as a central apoptosis blocker is more

highly expressed in order to allow tumor cell survival in ABC DLBCL. BCL6,

a transcriptional repressor important for B-cell differentiation, is downregu-

lated in ABC DLBCL. Altogether, apoptosis is less highly expressed in the

ABC DLBCL subtype. Furthermore, the low gene expression values of the

genes MME, a proliferation blocker, the proliferation promoting CCND2 and

BCL7A, and the high expression values of SH3BP5 in the ABC DLBCL pa-

tients stimulate proliferation. Both the immune cell specific genes IGHM and

IRF4 are more highly expressed in ABC DLBCL, however, all genes which

are associated with differentiation are downregulated. In conclusion, this

network indicates a downregulation of apoptosis and differentiation for the

ABC DLBCL patients whereas the proliferation and immune cell stimulating

genes are upregulated.

From the cell cycle genes which are connected to the network, IL6 and

IER5 higher values are shown in the ABC group whereas BTNL9 and CCNG2

show an upregulation in the GCB group. For the latter it is known that

CCNG2 and IL6 block the proliferation.

Do the clear gene expression differences between both subgroups reflect

only differences in B-cell specific regulation? In order to gain a first impres-

sion, regarding T-cell regulatory pathways from our data, we tested whether
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notch target genes, important in T cell differentiation (Reizis and Leder,

2002), are regulated differently in the two groups. Notch proteins are trans-

membrane receptors, which trigger the signalling pathway. They alter gene

expression and are often repressed in many cancers. We conducted a search

for differential regulation of notch target genes in diffuse large B-cell lym-

phomas (DLBCL). Notch target genes in Drosophila are regulated by GY-

box-, Brd-box-, and K-box-class microRNAs (Lai et al., 2005). The boxes

are found in the 3’-UTRs. We mapped all genes of the “Lymphochip” to the

transcripts annotated in Ensemble database. We screened these and found

candidate notch target genes, whose transcripts bear the target sequences

that have been mentioned. All three boxes were found in the genes given

in supplementary Table 8.13. From these transcripts the “Deoxycytidine

kinase” gene (ENSG00000156136, DCK) and the “Translocation associated

membrane protein 2” (ENSG00000065308, TRAM2) show clear gene expres-

sion differences between the ABC and GCB subgroups.
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Chapter 7

Discussion

Limitations A certain limitation is that we support only acyclic networks.

This means no cycles are allowed in the network and the cascade itself cannot

be a cycle. Nevertheless giving the same protein or reaction as a start node

and an end node allows to trace a cycle semi-automatically. The user should

appreciate the function of the algorithm, especially the handling of inhibiting

relations so that he is able to enter a correctly designated pathway. However

this can be advantageously exploited for teaching.

7.1 Comparing Lymphoma subgroups

We identified key factors, genes and networks in order to improve under-

standing of tumor progression in lymphoma. We investigated survival data

and gene expression differences between two entities of diffuse large B-cell

lymphoma. We have described a compact prognostic predictor and a key

network which separates gene regulation in ABC (Activated B-like DLBCL)
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from GCB (Germinal Center B-like DLBCL) including cell cycle regulating

differences.

The second project explored the severe mantle cell lymphoma. The most

accurate and well known survival predictor was shown to reveal new rela-

tionships which were accessible by the effective bioinformatical analysis of

gene expression combined with CGH data. CGH data were used to sup-

port the proliferation signature based patient classification. The results led

to a biological functional network. Additionally a seven gene predictor was

proposed, which distinguishes the two risk groups well.

In both projects microarray data were used to get results. As mentioned

in chapter 2.4 microarrays are an appropriate measurement tool for diseases

with gene associated changes. Further, using microarrays to obtain so many

gene measurements makes it possible to investigate relationships between

genes or gene sets. This is essential for understanding such diseases and

subsequently their treatment. Finally, the advantage of such measurements

is the possibility to combine them with data and additional information from

different sources, as was done here with the cell cycle stages. As a result this

data enabled effective production of relevant results.

Many marker genes for diagnosis and prognosis have been found previ-

ously by other authors and are discussed in the following text. Compared

with these, our results were delivered by analysis of existing data and addi-

tional knowledge such as new patient classification or gene sets of interest.

Generally, the data were enlarged and investigated bioinformatically. As a

result our markers and found relationships include more than one biological

aspect of these two lymphomas and result in an overall picture. The results
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are discussed now in detail.

7.2 MCL

The MCL study consolidates gene expression and CGH-data regarding MCL

subgroups with good or bad prognosis to an overall picture. These subgroups

are indicated and confirmed by exploratory analyses. This picture highlights

as yet unknown relationships and differences between patients from these

groups.

Correspondence analysis of gene expression values indicated a statistical

valid classification into the longer living “s” and the shorter living “b” sub-

groups. These were defined by the median of the outcome predictor score

derived by proliferation signature (Rosenwald et al., 2003) as a discriminator.

A new prognostic indicator, similar to the proliferation signature, was

developed with gene expression values of only seven genes, which are, un-

doubtedly, a much smaller gene set than the 20 genes of the proliferation

signature. With the key genes CDC20, HPRT1 and CDC2 the seven-gene-

predictor matches with three genes from the 20 genes proliferation signature.

Moreover, the four genes CENPE, BIRC5, ASPM and IGF2BP3 add to its

predictive power and are associated with chromosome movement, inhibition

of apoptosis and tumors. It was shown that a four gene predictor (CDC2,

ASPM, tubulin-alpha, CENP-F) (Rosenwald et al., 2003) is also able to pre-

dict length of survival with high statistical significance. Besides the fact,

that the proliferation signature is more efficient and powerful than the four

gene model, our model meets extensive re-annotation of the genes through
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the clone IDs.

Also the CGH data supported the classification of “b” and “s”. The asso-

ciation of alterations in chromosomal regions and outcome of MCL patients

was shown (Beà et al., 1999; Allen et al., 2002; Kohlhammer et al., 2004).

Gene expression analysis comparing the “s” and “b” groups, delivered

mostly cell cycle related genes and their protein interactions, which deter-

mine prognosis. We systematically both confirmed and identified additional

genes which were also found to be differentially expressed. Differently ex-

pressed interaction partners of the most significant gene CDC2 and the well

known marker CCND1 revealed a network picture, which ensures the crucial

role of the cell cycle in MCL. Thereby we confirmed the MCL relevant genes

CDC2, CCND1, CDK4, MYC and E2F1 and found such genes as CDC25,

WEE1, AURKB, AURKA, BUB1, PCNA, FOS, JUN and MYBL2 interest-

ing specifically for MCL.

The Wilcoxon rank sum test reveal relations between the bands 9p24,

9p23, 9p22 and 9p21 and the difference in prognosis of the subgroups. Investi-

gation of those bands and their most significant differentially expressed genes

revealed a cluster of genes with properties such as “differentiation blocking”,

“anti apoptotic” and “apoptosis inducing”. Supporting our finding, the band

9p21 was suggested, by microarray analysis, to be useful in MCL (Rubio-

Moscardo et al., 2005). Less convincingly, some bands of chromsome 7 also

confirmed the classification. Also here the the annotations and properties of

embedded genes are known, but further data are required to better explain

the relation between gene functions and survival. CGH-data may improve

the power of gene expression based predictors in MCL and influence the gene
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expression (Salaverria et al., 2007). Besides others, the band 9p21 was as-

sociated with a poor clinical outcome, which affirms our finding. But this

study extends these results in two ways.

1. exploratory analysis shows here for the first time, that in fact CGH-

data alone point and support two different MCL groups with clearly

different prognosis.

2. CGH-data point here directly to several genes regulated differently in

these two subgroups.

The analysis found after careful reannotation of involved genes two en-

tities of MCL patients which could be supported by exploratory analysis,

gene expression values, CGH-data, network analysis and literature mining.

We obtain an improved classification of MCL subgroups in which differen-

tially expressed genes led to a small protein interaction network of kinases.

A seven gene predictor appears as an easy to measure prognosis indicator

for clinical use. The Wilcoxon rank sum test was for the first time applied

successfully to a CGH data set in this study as well as the PCA, which nicely

focus on chromosome 9. Following the indicated bands, we found differen-

tially expressed, cancer related genes. We conclude that the combination of

gene expression and CGH-data reveals new impressions of MCL.

7.3 DLBCL

This study strives to improve marker gene detection for prognosis and sub-

type diagnosis of Diffuse Large B-cell Lymphomas (DLBCL) through the
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application of a range of methods that are also useful for other gene expres-

sion measurements in cancer. This was achieved on different levels:

An adequate normalization of the gene expression intensities, applying

the loess method (W.S. Cleveland and Shyu, 1992; Yang et al., 2001, 2002)

allowed a better separation for good and poor outcome quartiles of survival,

in particular for patients with medium IPI score where a better separation

is important in order to give an accurate prognosis.

We investigated simplified predictors: multivariate analysis showed that

a four-spot predictor does not perform well. Univariate analysis found that a

six spot predictor is able to reflect prognosis better than quartiles in previous

six-spot predictors (Lossos et al., 2004) or a tested five spot predictor, in

particular for high risk patients.

Simplified prognosis predictors are of great importance in cancer treat-

ment. In regard to diffuse large B-cell lymphomas, the IPI score (199, 1993)

is a clinical standard. Our analysis identified a simplified predictor that is

very useful and reliable for clinical prognosis (6 instead of 17 gene spots).

Such a simplified prognosis predictor can be more easily applied in clinical

settings than a measurement of a complex gene array signature. This find-

ing will be also useful for clinical monitoring e.g. applying RT-PCR (Lossos

et al., 2003).

The classification of diffuse large B-cell lymphoma into two pathological

entities has been established by marker genes and their expression for some

time (Alizadeh et al., 2000). A third entity has been discussed (Hans et al.,

2004) but was disputed again in the light of recent data. The present sta-

tistical analysis where we applied the ISIS method provides an independent
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and unsupervised method to support and identify these two subgroups. In

addition to the work of von Heydebreck et al., ISIS analysis here clearly indi-

cates, for a large data set, the separation of patients into the two subgroups

ABC and GCB through an unbiased and independent statistical method.

Integrated picture of all gene regulation differences. Following this

the statistical analysis identified all genes which clearly distinguish the ABC

and GCB DLBCL subgroups, including differences in early and late cell cy-

cle, which could be exploited for a differential cytostatic therapy in the two

subgroups. To get an integrated picture of these differences we considered all

the identified gene expression differences in order to obtain a detailed descrip-

tion of the differences between both DLBCL subgroups regarding regulation

of the cellular network. We show that immune signatures, apoptotic and

proliferation pathways are tuned in different ways between ABC and GCB

DLBCL. A central circuit of genes is formed by genes that distinguish both

lymphoma subgroups and are regulated differently. We also verified this for

other data after completion of the first analysis. For the data by Shipp et

al. (Shipp et al., 2002; Wright et al., 2003) once again key genes from the

central network shown in Figure 8.9 are confirmed as having a significant

different regulation in this totally different data and patient set (Table 8.12).

Classical lymphoma genes are either directly or indirectly interacting with

it.

Besides this central network other pathways are also implicated, we showed

that two Notch pathway targets are specifically upregulated.

The different predictors shown in this study were the best predictors
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according to PAM curves and statistical analysis, and also it gave clear im-

provements in determining prognosis compared to previous studies (Alizadeh

et al., 1999; Lossos et al., 2004). Furthermore, our hypothesis is not pure

speculation but directly includes enlarged gene expression data on 248 pa-

tients and individual analysis of 12196 array spots compared to pooled data

whereas fewer patients were used in a number of older studies (Alizadeh

et al., 1999; Lossos et al., 2004). Significant marker genes were found in

this study by different statistical methods (PAM, ISIS, LIMMA). Clearly,

using other methods (e.g. support vector machine) different gene sets can

be obtained. However, the influential gene selection of PAM has previously

been shown (Tibshirani et al., 2002). The different gene sets were validated

against each other including classical marker genes and furthermore by anal-

ysis of new data (Shipp et al., 2002; Wright et al., 2003). The genes found

are shown to form a compact interaction network obtained by another inde-

pendent analysis method. Furthermore, the delineated regulatory network

adds biological data and data from large-scale interaction databases to show

that the identified marker genes are in fact members of a close interacting

regulatory network, with molecular functions that mirror the differences in

pathology of the two subgroups GCB and ABC DLBCL. The statistical

analysis of the cell cycle genes and their associated cell cycle states indicates

a possible target for therapy. Differences between the ABC and GCB DL-

BCL subgroups are at the beginning and the end of the M-phase and the

early part of the G1 phase. Inhibiting early cell cycle genes, overexpressed

in ABC, adding known cytostatic drugs such as mitosis inhibitors and early

G1 blocker, may be particularly useful for ABC DLBCL patients. A more
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detailed therapy profile would take the further differences in regulation into

account.

Conclusion. The present analysis reveals through the use of an array of

methods a detailed picture for molecular markers differentiating GCB and

ABC DLBCL for prognosis and diagnosis. We apply it to GCB and ABC

DLBCL for clinical use in determining prognosis and diagnosis, this included

efficient six spot predictors. The entities ABC and GCB DLBCL have been

confirmed by statistical analysis independent of gene expression signatures, a

third entity could not be supported. The resulting genes with altered expres-

sions were found to form a tightly connected regulatory network including cell

cycle genes, apoptosis and immune differentiation implicated in the clinical

severity of ABC DLBCL compared to the GCB DLBCL subtype.

7.4 Interlude: ACTIN

ACTIN is a Java based tool which delivers a simulation with the Depth-

First-Search. The visualization of the simulation is carried out by showing

the found traces by writing the labels of the visited nodes. The program

directly sums up stimuli at each node conveniently using the hash map and

can process large quantities of data. In a network of 1000 nodes there are

up to 21000 = 10300 possibilities how input can be processed before the action

comes about. Future effort will include additional important information

such as modification and/or different processing times of individual nodes

and conditions to better separate and identify the biological important paths
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leading to the various effector reactions when the cascade is properly switched

by the correct biological stimuli.

7.5 General Challenges

The combination of knowledge and data from different sources is – amongst

others – a characteristic property of bioinformatics and critical for biologi-

cal insight into cell differentiation and cancer. The fascination in this study

was enhanced by the discovery of new knowledge and the subsequent conclu-

sions. Subsequent to this caution needs to be exercised to ensure an accurate

observation and of the results. Also here, in two lymphoma analyses differ-

ent sources like experimental data, databases and knowledge from literature

were combined. The results of the two single lymphoma analyses are now

discussed together, how they benefit and contribute to biological knowledge

and the development of treatment.

Both tasks conclude that the cell cycle plays an important role in sur-

vival and tumor progression. A general problem that occurs in every gene

expression analysis, is that results are based on previously used normalization

methods. Notable here is that alternative normalization methods can have

different effects on results (Irizarry et al., 2003; Quackenbush, 2002; Smyth

and Speed, 2003). As there is no “best” normalization method we cannot

reflect on this topic here, and have to assume that we have chosen the most

appropriate method available. We mention here, that recently a modified

“lowess” normalization method for special boutique two-colour microarrays

as the Lymphochip was proposed (Oshlack et al., 2007).
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With high throughput analysis and univariate Cox regression hazard mod-

els a gene expression based survival predictor was created. As was shown in

another high throughput study (Rosenwald et al., 2002) and a MHC class II

gene expression analysis (Rimsza et al., 2004) this gene family is correlated

with poor patient survival. The proposed predictor reflects this, consisting

of 50% MHC class II genes. The unsatisfactory treatment success of the

IPI classification led to gene expression based predictors which show obvious

improved prognostic accuracy as most probably they are associated with the

cause, progress and biology of cancer disease. Interestingly, it has been re-

cently shown that including the IPI with dimension reduction methods can

improve the accuracy of prognosis compared to only gene expression based

predictors (Li, 2006), but including the IPI as a simple covariate in the Cox

regression hazard model did not lead to an improved predictor in this study

(data not shown).

Several other predictors can be found with different methods. Here a pub-

lication should be mentioned, which re-evaluates and extends this statistical

methodology applied to the same data set used in this thesis (Segal, 2006)

and another one, which found three genes of our own predictor (SEPT1,

HLA-DPα, EIF2S2) to be associated with survival time using Bayesian vari-

able selection (Sha et al., 2006). HLA-DPα was also identified by (Rosenwald

et al., 2002) and (Gui and Li, 2005) to be correlated with survival.

Regarding the differences in cell cycle states between the ABC and GCB

DLBCL we conclude that a combination of gene expression data and cell

cycle time series experiments can produce reliable results even if the gene

expression data were not measured in a time series experiment. We are
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aware, that this kind of combination was done for the first time for this

data set. As a result new information was found from the well known gene

expression data set, resulting in new potential targets for treatment of ABC

and GCB DLBCL, at the end of M-phase and the early part of G1 phase.

The analysis of the rejected Type 3 confronts us with a result that raises

a question. Why there is a signal and what does it reflect?

MCL analysis delivered differences between patients with poor and good

prognosis in gene expression and CGH data, and the classification was stim-

ulated by explorative analysis and literature (Rosenwald et al., 2003). The

differences between the two types of MCL patients help in the understanding

of a lymphoma, that to date remains incurable. Using the Cox regression haz-

ard models, a useful gene set was defined which distinguishes patients with

good and poor prognosis. An alternative to gene expression measurements is

the immunohistochemical measurement of prognostic markers. With Repp86

a proliferation marker for MCL patients expressed in cell cycle phases S, G2

and M delivers similar survival curves as Rosenwald et al. (2003) (Schrader

et al., 2005).

The undoubted crucial role of CCND1 in MCL becomes more complex

as point mutations and genomic deletions in CCND1 influence the prolifera-

tion rate and hence the survival (Wiestner et al., 2007). Unfortunately this

information cannot be taken into account in the data set used here.

The screening for potential drug targets using bioinformatics and genomic

information proceeds (Ricke et al., 2006; Krasky et al., 2007) and the inves-

tigation of two well known data sets in this thesis led to potential drug and

treatment targets of two Lymphomas.
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Microarrays and cancer in general Genetic diseases are usually at-

tributed to a set of genes, proteins and other factors. As protein expression is

very difficult to measure, gene expression analysis usually investigates tran-

scription of genes. Microarrays make investigation of gene expression and

their connection to function an easy to use approach (Brown and Botstein,

1999) and presumably they will become a standard laboratory tool (Saito,

2006). Their use was proved (Spellman et al., 1998) and the understanding

of cell properties continues to grow. Although limitations and problems are

known (Oshlack et al., 2007; Chaudhuri, 2005) there is a lot of optimism

surrounding this technology (Strauss, 2006; Jayapal and Melendez, 2006).

Also science in general and especially treatment of cancer benefit as microar-

rays are helpful in drug discovery and validation of therapeutics. They are

particularly, helpful in forming hypothesis (Gerhold et al., 2002), identify-

ing biological pathways (Quackenbush, 2001; Eisen et al., 1998) and have

enormous potential (Cole et al., 1999).

Cancer is a set of abnormal cells dividing consistently. The cause of most

types of human cancers is unknown, but as uncontrolled growth and prolifer-

ation is their common property, scientists suspect key events associated with

cell cycle and proliferation. The comparative analyses of gene expression

in this study pointed to cell cycle relevant genes. As the stages of human

cell cycle genes are known and were successfully applied here, we propose

that there will be further promising experiments in which the expression of

human cell cycle genes in lymphoma or general in cancer samples are mea-

sured. As in this task not all human cell cycle genes could be mapped on the

chip, microarrays for the human genome or boutique arrays with these genes
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should be used. Another approach could be a meta-analysis of existing gene

expression data.
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Figure 8.1: Kaplan Meier plot of prognosis prediction applying a
set of seven genes as a molecular predictor. The seven genes with
the strongest influence on survival time were chosen by univariate
Cox-Regression Hazard models. Applied to all patients it deliveres
two distinct clearly separated risk groups. The x-axis denotes the
course of time in years and the y-axis marks the probability of
survival.
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Figure 8.2: Kaplan Meier plot of prognosis prediction applying
the genes of proliferation signature as a molecular predictor. A
Cox-Regression Hazard model of proliferation signature genes de-
livered the two distinct risk groups drawn in the Kaplan-Meier
plots. The x-axis represents the time in years and the y-axis de-
notes the probability of survival. The predictor was applied over
all patients. There is a clear difference of the survival rate between
the two risk groups.
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Figure 8.3: Density plot of p-values of the Wilcoxon test for the
bands of chromosome 9. The p-values of Wilcoxon test for the
bands (x-axis) of chromosome 9 over the subgroups “s” and “b”
are represented in their relative frequencies (y-axis). The peak
of the first bands indicates that signal of the test ranges from p-
value 0 to 0.1. The p-values of the first four bands 9p24, 9p23,
9p22, 9p21 vary between these limits. This affirms the proposed
subgroups “s” and “b” and indicates that the first four bands have
a relation to this classification.
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Figure 8.4: Density plot of p-values of the Wilcoxon test for the
bands of chromosome 7. The p-values from the Wilcoxon test
applied on the bands of chromosome 7 are plotted against their
relative frequencies. A peak occurs between the limits of 0 and
0.1. The p-values of some bands vary between these limits. These
bands are the significant signal of the performed test, affirm the
proposed subgroups “s” and “b” and could have a relation to this
classification.
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Figure 8.5: Plotted base pair positions of genes on Chromosome
9. Here all genes, which are located on the bands 9p24, 9p21,
9q33 and 9q34 of chromosome 9 are sorted and plotted according
to their starting genomic position. The positions are plotted on
the y axis. The x-axis represents the genes. A moderate t-test
revealed the best “s” and “b” separating genes in our dataset in
these bands. Their starting points are drawn in red. Remarkably
three are close to each other.
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8.2 DLBCL
A multivariate analysis is desirable in order to systematically identify spots
which describe the outcome and cooperate well with each other in the Cox
regression hazard model. However, this requires a huge search space of com-
binations to be tested. To reduce this, we considered only four spot combi-
nations of (i) the gene spots suggested by Rosenwald et al. (2002), (ii) the
36 important genes for diffuse large B-cell lymphoma chosen by Lossos et al.
(2004) and (iii) the LDH-, IDH-, and PDH gene spots (the latter to better
reflect IPI-scores). Cox Regression Hazard analysis was performed on all
possible four tuples of these 153 indicator spots testing 160 patients (several
days of calculation time on a LINUX cluster with 20 nodes of Pentium IV
CPUs). Table 8.1 shows the gene content of the ten best multivariate four-
spot-predictors (the next best combinations after removing these spots is
found in Table 8.2). The best multivariate four-spot combination is compact
and small, but neither as good as the five spot predictor in results nor as good
as the signatures from Rosenwald et al. (2002). The analysis further shows
that there is a correlation with survival prediction for the clinical parameter
LDH (Table 8.2), but the prediction based on this well known parameter
(part of the IPI score) is even worse than the results shown in Table 8.2. In
contrast (see below), the new five-spot and six-spot predictors identified by
univariate analysis will be useful heuristics for diagnosis and clinic, e.g. to
identify risk quartiles and subgroups (Figure 8.6).

Nr. Gene

1 BCL6
2 BRAF
3 ARAF1
4 RAF1
5 RAS
6 MEK
7 MAP
8 HLA-DPα
9 HLA-DQα
10 HLA-DRα
11 HLA-DRα
12 α-Actinin
13 COL3A1
14 Connective-tissue growth factor
15 FN1
16 KIAA0233
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17 PLAUR
18 E2IG3
19 NPM3
20 BMP6
21 CASP10
22 POU2AF1
23 CDKN2A
24 MYC
25 BCL2
26 FCGR2B
27 CyclinD1
28 NFKB2
29 PAX5
30 BCL10
31 CDK6
32 DDX6
33 BCL7A
34 CyclinD2
35 IL-10
36 LDH
37 IDH
38 PDH

Table 8.4: Classical lymphoma genes. Lymphoma as-
sociated genes were collected from literature and were
also found in the data set. Furthermore, we added
the metabolic enzymes “lactate dehydrogenase” (LDH),
“isocitrate dehydrogenase” (IDH) and “pyruvate dehy-
drogenase” (PDH). The latter are represented in the data
by the genes PDHB, PDHA1, IDH3A, IDH3G, IDH3B,
IDH1, IDH3B, IDH3A, LDHB and LDHA.

SpotID Gene Name

24376 *Centerin
17496 MYBL1
28014 MYBL1
19326 IGHM
19254 MME
33991 FOXP1
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19384 MAPK10
19375 FOXP1
16049 IGHM
26454 SH3BP5
22118 KIAA0864
24787 CCND2
24787 CCND2
28979 LMO2
15914 MAPK10
19346 SH3BP5
15864 MME
19238 LMO2
30263 ASB13
19291 MYBL1
19312 NEIL1
25036 FLJ12363
26385 MME
19227 LOC96597
22122 IRF4
16886 LRMP
24480 KIAA1039
27378 LRMP
27379 LRMP
24729 IRF4
27673 LRMP
19348 *Similar to
24429 BCL6
28472 MAPK10
26516 *Similar tlone=417048
19268 BCL6
32529 @Homo sapiH08 (LOC152137) Sur_clone=232 2321
17646 BCL2
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Table 8.7: Combined classifier for lymphoma sub-
types. The resulting gene list that distinguishes
ABC and GCB if the PAM analysis is performed
only on the 31 best spots merged with the well
known lymphoma genes. Marked in grey are the
31 best spots from all twelve thousand spots com-
pared. Remarkably, the two classical lymphoma
marker genes MAPK10 and CCND2 reach a sim-
ilar quality in distinguishing ABC and GCB as
the best separating ones.

SpotID EnsembleID Cell cycle state Gene

24927 ENSG00000165810 85 BTNL9
33929 ENSG00000165810 85 BTNL9
26913 ENSG00000138764 72 CCNG2
24750 ENSG00000136244 80 IL6
32430 ENSG00000162783 56 IER5
24491 ENSG00000165810 85 BTNL9
30172 ENSG00000138764 72 CCNG2
24930 ENSG00000187837 69 HIST1H1C
24725 ENSG00000011007 59 TCEB3
24908 ENSG00000118515 83 SGK
30355 ENSG00000164330 84 EBF
32096 ENSG00000164330 84 EBF
31931 ENSG00000164543 18 STK17A
26081 ENSG00000180447 80 GAS1
19374 ENSG00000124762 21 CDKN1A
24969 ENSG00000164330 84 EBF
24647 ENSG00000164330 84 EBF
34708 ENSG00000118515 83 SGK
27774 ENSG00000134058 92 CDK7
26401 ENSG00000118515 83 SGK
26725 ENSG00000164330 84 EBF
28881 ENSG00000163918 52 RFC4
17786 ENSG00000102804 1 TSC22D1
24613 ENSG00000102804 1 TSC22D1
33901 ENSG00000100644 2 HIF1A
27538 ENSG00000171656 96 ETV5
27952 ENSG00000179583 76 CIITA
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34557 ENSG00000052841 2 TTC17
30021 ENSG00000099953 95 MMP11
27704 ENSG00000164330 84 EBF
26992 ENSG00000102804 1 TSC22D1
26344 ENSG00000138764 72 CCNG2
24832 ENSG00000163918 52 RFC4
26080 ENSG00000163739 76 CXCL1
33329 ENSG00000179583 76 CIITA
17290 ENSG00000134058 92 CDK7
30922 ENSG00000185658 5 BRWD1
26162 ENSG00000135541 91 AHI1
34288 ENSG00000134884 48 NA
33646 ENSG00000185658 5 BRWD1
26951 ENSG00000102804 1 TSC22D1
24977 ENSG00000153936 92 HS2ST1
16661 ENSG00000123080 75 CDKN2C
25942 ENSG00000145050 49 ARMET
22163 ENSG00000169926 6 KLF13
17405 ENSG00000178573 30 MAF
27275 ENSG00000100644 2 HIF1A
30415 ENSG00000164330 84 EBF
34484 ENSG00000151150 50 ANK3
33221 ENSG00000065809 2 FAM107B
32218 ENSG00000179583 76 CIITA
29637 ENSG00000145632 99 PLK2PLK2
27939 ENSG00000179583 76 CIITA
27328 ENSG00000108984 44 MAP2K6
28792 ENSG00000099326 53 ZNF42
30725 ENSG00000175455 65 CCDC14
16736 ENSG00000136244 80 IL6
30874 ENSG00000081320 77 STK17B
28707 ENSG00000123080 75 CDKN2C
33336 ENSG00000175455 65 CCDC14
15871 ENSG00000168310 7 IRF2
28640 ENSG00000100526 0 CDKN3
28748 ENSG00000136244 80 IL6
28430 ENSG00000168310 7 IRF2
26084 ENSG00000128590 38 DNAJB9
30859 ENSG00000117650 93 NEK2
28674 ENSG00000138061 66 CYP1B1
16127 ENSG00000138061 66 CYP1B1
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24868 ENSG00000012963 52 C14orf130
30508 ENSG00000081320 77 STK17B
34108 ENSG00000169926 6 KLF13
16053 ENSG00000173757 83 STAT5B
16091 ENSG00000100526 0 CDKN3
33594 ENSG00000179583 76 CIITA
32924 ENSG00000185658 5 BRWD1
32766 ENSG00000135164 74 DMTF1
16597 ENSG00000109971 0 HSPA8

Table 8.8: Cell cycle gene set that best distin-
guishes ABC and GCB subgroup. The genes are
annotated by their spot ID, ensemble gene-ID and
their gene name. Additionally the cell cycle states
are given. The latter parameter shows a strong
signal in the early and late cell cycle states com-
pared with all available cell cycle states in the
data set.

Ensemble gene ID Cell cycle state Gene symbol

ENSG00000011007 59 TCEB3
ENSG00000012963 52 C14orf130
ENSG00000052841 2 TTC17
ENSG00000065809 2 FAM107B
ENSG00000081320 77 STK17B
ENSG00000099326 53 ZNF42
ENSG00000099953 95 MMP11
ENSG00000100526 0 CDKN3
ENSG00000100644 2 HIF1A
ENSG00000102804 1 TSC22D1
ENSG00000108984 44 MAP2K6
ENSG00000109971 0 HSPA8
ENSG00000117650 93 NEK2
ENSG00000118515 83 SGK
ENSG00000123080 75 CDKN2C
ENSG00000124762 21 CDKN1A
ENSG00000128590 38 DNAJB9
ENSG00000134058 92 CDK7
ENSG00000134884 48 NA
ENSG00000135164 74 DMTF1
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ENSG00000135541 91 AHI1
ENSG00000136244 80 IL6
ENSG00000138061 66 CYP1B1
ENSG00000138764 72 CCNG2
ENSG00000145050 49 ARMET
ENSG00000145632 99 PLK2PLK2
ENSG00000151150 50 ANK3
ENSG00000153936 92 HS2ST1
ENSG00000162783 56 IER5
ENSG00000163739 76 CXCL1
ENSG00000163918 52 RFC4
ENSG00000164330 84 EBF
ENSG00000164543 18 STK17A
ENSG00000165810 85 BTNL9
ENSG00000168310 7 IRF2
ENSG00000169926 6 KLF13
ENSG00000171656 96 ETV5
ENSG00000173757 83 STAT5B
ENSG00000175455 65 CCDC14
ENSG00000178573 30 MAF
ENSG00000179583 76 CIITA
ENSG00000180447 80 GAS1
ENSG00000185658 5 BRWD1
ENSG00000187837 69 HIST1H1C
Table 8.9: The cell cycle genes, which were chosen
to distinguish the ABC and the GCB group. The
cell cycle genes annotated by their ensemble gene-
ID and their gene name. Additionally the cell
cycle states are annotated. The latter parameter
shows a strong signal in the early and late cell
cycle states compared with all available cell cycle
states in the data set.
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Figure 8.6: Kaplan Meier plots of the IPI groups. The Kaplan
Meier plots estimated by the molecular predictor of Rosenwald
et al. applied to the new normalized gene expression data of the
240 diffuse large B-cell lymphoma patients. The plots show dif-
ferent groups according to their IPI risk and the training set as
Training, Validation and all patients. The left column represents
the training-group, the middle one the validation group and the
right one all patients. The rows show the IPI risk groups. The
first row shows low risk, the second one the medium risk and the
last one the high risk patients. The x-axis is the time in years and
the y-axis the probability of survival.
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Nr. Multivariate Cox regression hazard

1 HGAL Germ-S ACTa1 HLA-DRA
2 HGAL CD54(2) ACTa1 HLA-DRA
3 HGAL CD54(2) HLA-DRA(2) ACTa1
4 HGAL CD54(2) HLA-DRA(3) ACTa1
5 HGAL ACTa1 HLA-DRA CD54
6 HGAL MHCIIDQa1 CD54(2) ACTa1
7 HGAL CD54(2) MHCIIDRb ACTa1
8 HGAL Germ-S MHCIIDRb ACTa1
9 HGAL Germ-S HLA-DRA(2) ACTa1
10 HGAL Germ-S HLA-DRA(3) ACTa1

Table 8.1: Multivariate Cox regression hazard models. A heuristic
search of multivariate Cox regression hazard models revealed this
10 best fitting models. All possible multivariate Cox regression
hazard models of four 4 genes from 36 important genes for diffuse
large B-cell lymphoma and the metabolic genes LDH, IDH and
PDH were calculated and these ten gene sets fit best. Genes are
abbreviated according to GenBank nomenclature.

Nr. Multivariate Cox regression hazard

1 CD10 IRF4 HLA-DRb5 LDH(2)
2 IRF4(2) BCL7A HLA-DRb5 LDH(2)
3 MYC IRF4(2) HLA-DRb5 LDH
4 MYC IRF4(2) HLA-DQa1 LDH
5 PLAU IRF4 BCL7A HLA-DRb5
6 IRF4 BCL7A HLA-DRb5 LDH(2)
7 PLAU IRF4(2) BCL7A HLA-DRb5
8 IRF4 BCL6 BCL7A HLA-DRb5
9 CD10 IRF4(2) HLA-DRb5 LDH(2)
10 MYC IRF4(2) HLA-DRb5 LDH(2)

Table 8.2: Next best multivariate Cox regression hazard models.
If the genes appearing in Table 8.1 are removed, and the heuris-
tic search of multivariate Cox regression hazard models is redone,
these ten models are the next best fitting. The genes are rep-
resented by their GenBank abbreviation. The metabolic marker
LDH from the IPI score occurs in the four best fitting models as
well as in the the majority of the models.
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Figure 8.7: PAM misclassification error of the ABC and GCB
subgroups over all genes of the enlarged dataset. The upper plot
shows the overall error while the lower one shows the subgroup
specific errors. In both, the various thresholds on the lower x-axis
correspond to different numbers of genes, labeled on the upper
x-axis. The y-axis represents the error and ranges from 0 to 1.
The good overall performance of PAM requires only few genes to
decrease the error dramatically. The error rate decreases strongly
between the thresholds of 6 and 5, which represent the amount
of shrinkage. Hence we chose a threshold below 5 with the cor-
responding set of best separating genes (an optimal choice with
few errors and a low number of genes). The performance for the
single subgroups shows a big difference between ABC and GCB.
Whereas GCB shows a good performance even with few genes, the
prediction quality of ABC decreases dramatically. This indicates
a complex pattern of gene expression in ABC patients which is
defined in more than 15 genes.
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Type ABC GCB Class Error rate

ABC 77 5 0.06097561
GCB 7 105 0.06250000
Overall error rate = 0.062

Table 8.3: Confusion matrix of misclassification. Confusion ma-
trix of the cross validated PAM analysis with the threshold 4.906,
applied to all available spots. From 80 ABC patients 5 were pre-
dicted as GCB and from 112 GCB patients 7 were predicted as
ABC. The overall error rate is the mean of the two single group
error rates.

Nr. Gene

1 FN1
2 BCL6
3 CTGF
4 BCL2
5 MAPK10
6 CCND2
7 COL3A1
8 KIAA0233
9 BCL7A

Table 8.5: Classical marker genes of lymphoma disease distin-
guish between ABC and GCB lymphoma subtype. (PAM analysis;
error rates for this gene set: TR:10% VAL:15.38%; F:CV:14%)
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SpotID Gene Name

19384 MAPK10
24787 CCND2
15914 MAPK10
24429 BCL6
28472 MAPK10
19268 BCL6
16858 CCND2
17646 BCL2
16789 BCL2
19361 COL3A1
26535 BCL6
28859 BCL2
24367 BCL2
17791 FN1
16016 FN1
16732 FN1
31398 FN1
19379 FN1
27499 KIAA0233
24415 BCL7A
29222 CTGF

Table 8.6: Lymphochip spots of known lymphoma genes. 180
spots, which are known to deal with lymphoma were tested to
distinguish between ABC and GCB subtype by PAM analysis.
Successful genes are given in descending order (gene set error
rate:TR:10% VAL:15.38%; F:CV:14%).
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Figure 8.8: Cell cycle genes with extreme expression differences
shown by a MA-plot of normalized gene expression values. The
M values on the y-axis correspond to the gene expression differ-
ence between the ABC and GCB patient medians and the A values
on the x-axis correspond to the average expression of all genes in
both groups. The coloured points represent the 77 cell cycle spots
chosen by PAM analysis. The colour scale ranges from yellow to
red, whereas yellow is annotated to cellcycle state 0 and red to
state 99. Additionally some cell cycle genes show more extreme A
values (circle). They are labeled with their names and their cell
cycle state. Remarkably, some genes associated with a late cell
cycle state cluster together regarding their gene expression values
in both dimensions (ellipse). Again, late cell cycle states indicate
a high difference in the M value (difference in gene expression) be-
tween the two subgroups. A locally weighted regression smoothing
line (lowess) shows that systematic and random variations are well
controlled by the normalization procedure: Its shape fits almost
perfectly the horizontal line.

147



Figure 8.9: Regulatory network differently regulated in ABC and
GCB B-cell lymphomas. This figure shows the resulting network
and interaction pattern with each other for the best separating
genes applying data from the STRING meta-database of protein
interactions. Classical lymphoma genes and best separating gene
set form a tight network with the best separating genes in the cen-
ter. Shown are the strongly connected network members. They
consist of (i) classical lymphoma marker genes (grey boxes), and
(ii) the most powerful predictive genes in the PAM analysis (white
boxes). Genes which show a significant higher expression in the
ABC subgroup are marked by a red rectangle. They are associ-
ated to proliferation, block of proliferation, apoptosis, differentia-
tion and specific for immune cells, as most of the remaining ones.
Green ellipses mark higher expression in GCB. The almost fully
connected gene network demonstrates that both classes of genes
are well participating in the interaction network according to the
string meta-database. Furthermore, the string analysis shows that
almost all connections between both classes – the yellow coloured
edges – are based from biochemical literature (mainly Medline re-
ports). Only the interaction of “interferon regulatory factor 4”
(IRF4) and “B-cell CLL/lymphoma 6” (BCL6) is confirmed by
large-scale interaction screen experiments.
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Nr. Gene

1 MYBL1
2 *Centerin
3 FOXP1
4 LOC96597
5 SH3BP5
6 KIAA0864
7 IRF4
8 ASB13
9 *Similar to human endogenous retrovirus-4 Clone=417048
10 NEIL1
11 MME
12 IGHM
13 LMO2
14 LOC152137
15 KIAA1039
16 LRMP
17 FLJ123633
18 CCND2

Table 8.10: Genes which distinguish best between ABC and GCB
according PAM analysis. From all twelve thousand spots from the
lymphoma chip, the listed genes distinguish best between ABC and
GCB according to PAM analysis. The best separating genes are
written on the top.
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Figure 8.10: The Lymphochip genes in the human interactome.
This plot shows the human interactome as a protein interaction
network. The proteins (circles) of the lymphochip are filled out.
Interactions are drawn as a line. Characteristic path length and
the longest one are 4.642 and 15, respectively.
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Distances in the Interactome of Chip Genes
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Figure 8.11: Histogram of the protein interaction distances. The
genes of the Lymphochip were mapped to the protein interaction
graph in the human interactom. The histogram shows the oc-
curring distances of these genes in the interactome. The longest
distance is 11 whereas the characteristic path length is 3.985.
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Gene ABC GCB

ASB13 - +
MYBL1 - +
MME - +
MAPK10 - +
LRMP - +
LMO2 - +
FN1 - +
CTGF - +
COL3A1 - +
BCL6 - +
BCL7A - +
NEIL1 - +
SH3BP5 + -
BCL2 + -
CCND2 + -
IRF4 + -
IGHM + -
FOXP1 + -

Table 8.11: Gene expression values of the main regulatory net-
work distinguishing ABC and GCB. Genes from Figure 8.9 and
their gene expression values in the subgroups ABC and GCB are
shown. The symbol “-” indicates a lower gene expression than “+”.
In this network, more genes of the more aggressive ABC type have
a lower gene expression than the GCB type.
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Genes p-value T-value

CCND2 6.260705e-06 5.56939706
BCL6 2.490035e-02 -2.34449786
BCL2 1.843571e-03 3.43618678
IRF4 2.082072e-07 6.49044833
LMO2 3.820841e-07 -6.66162303
MAPK10 3.888633e-02 -2.15403094

Table 8.12: T-test result of network genes in another data set.
The genes from the proposed STRING-network in Figure 8.9 were
used to apply a T-test between the ABC and the GCB group in
the gene expression data of Shipp et al.. The authors Wright
et al. found some evidence for these DLBCL groups in there. The
most obvious rejection of the null hypothesis is delivered by IRF4,
LMO2, CCND2, BCL2, BCL6 and MAPK10, which are also part
of the predictor of Wright et al..

GeneID TranscriptID Description

ENSG00000156136 ENST00000286648 Deoxycytidine kinase
ENSG00000148158 ENST00000277244 Sorting nexin family member 30
ENSG00000179388 ENST00000317216 Early growth response protein 3
ENSG00000198833 ENST00000361212 Ubiquitin-conjugating enzyme E2 J1
ENSG00000198833 ENST00000361333 Ubiquitin-conjugating enzyme E2 J1
ENSG00000065308 ENST00000182527 Translocation associated membrane protein 2
ENSG00000170584 ENST00000302764 NudC domain containing protein 2
ENSG00000074706 ENST00000265198 phosphoinositide-binding protein PIP3-E
ENSG00000134108 ENST00000256496 ADP-ribosylation factor-like 10C)

Table 8.13: List of potential Notch target transcripts. For all genes
of the Lymphochip, all available transcripts annotated in ensemble
were screened for the GY, Brd and K boxes. Only these transcripts
bear all three boxes, GY, Brd and K in the 3’-UTRs. They are pos-
sible candidates to be regulated by the Notch signalling pathway.
Moreover, the Deoxycytidine kinase (ENSG00000156136) and the
Translocation associated membrane protein 2 (ENSG00000065308)
show different gene expression values between the ABC and GCB
subgroups.
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