
Multicriteria Approximation
of Network Design

and Network Upgrade Problems

Dissertation
zur Erlangung des

naturwissenschaftlichen Doktorgrades
der Bayerischen Julius-Maximilians-Universität

Würzburg

vorgelegt
von Hans-Christoph Wirth

aus Naila

Würzburg im März 2001

Bei der Fakultät für Mathematik und Informatik
eingereicht am: 25. März 2001

Erster Gutachter: Prof. Dr. Hartmut Noltemeier, Würzburg
Zweiter Gutachter: Prof. Dr. Victor Chepoi, Marseille

Tag der mündlichen Prüfung: 27. Juli 2001

I

Contents

Preface v

1 Introduction 1
1.1 Definitions . 1
1.2 Complexity of Computation . 5
1.3 Optimization Problems . 9

1.3.1 Uni-criterion Optimization 9
1.3.2 Multi-criteria Optimization Problems 11
1.3.3 Reductions and Hardness of Approximation 16

1.4 Network Design and Network Upgrade 18
1.5 Literature . 19

I Network Design Problems 21

2 Edge Labeled Graphs 23
2.1 Preliminaries and Problem Formulation 24
2.2 Related Work . 25
2.3 Approximating Minimum Label Spanning Tree 26

2.3.1 The Algorithm . 27
2.3.2 Performance Guarantee . 28
2.3.3 Asymptotic Performance Guarantee 32
2.3.4 Running Time . 33

2.4 Hardness of Minimum Label Spanning Tree 34
2.5 Hardness of Minimum Label Path 36

2.5.1 Red-Blue Set Cover . 36
2.5.2 Hardness of Red-Blue Set Cover 37
2.5.3 Hardness of Minimum Label Path 39

2.6 Concluding Remarks . 40

II CONTENTS

3 Reload Costs 43
3.1 Preliminaries and Problem Formulation 45

3.1.1 Reload Costs . 45
3.1.2 Reload Cost Distance . 46
3.1.3 Problem Formulation . 47
3.1.4 Combining Reload Cost and Length 48

3.2 Related Work . 49
3.3 Minimum Reload Cost Path . 50
3.4 Minimum Reload Cost Radius Spanning Tree 54
3.5 Minimum Reload Cost Diameter Spanning Tree 59

3.5.1 Setting Up the Auxiliary Graph 60
3.5.2 Projections . 63
3.5.3 Transformation of the Solution to Original Graph 68

3.6 Hardness Results . 73
3.6.1 General Reload Cost Functions 73
3.6.2 Reload Cost Functions with Triangle Inequality 76

3.7 Concluding Remarks . 82

4 Dial a Ride 85
4.1 Preliminaries and Problem Formulation 86

4.1.1 Basic Problem . 86
4.1.2 Precedence Constraints . 88
4.1.3 Basic Observations . 89

4.2 Related Work . 90
4.3 Balancing . 91
4.4 Euler Cycles Respecting Source Orders 93
4.5 A Polynomial Time Algorithm for Source-Darp on Paths 96
4.6 An Approximation for Source-Darp on General Graphs 100

4.6.1 TSP-based Algorithm . 100
4.6.2 Algorithm Based on Set of Last Arcs 103
4.6.3 Combining Both Algorithms 105

4.7 Improved Approximation for Source-Darp on Trees 107
4.8 Source-Darp with Start and Stop Penalties 110
4.9 Hardness Results . 112
4.10 Concluding Remarks . 115

II Network Upgrade Problems 117

5 Node Upgrade Problems 119
5.1 Preliminaries and Problem Formulation 120

5.1.1 Node Upgrade Model . 120
5.1.2 Constrained Forest Problems 120
5.1.3 Problem Formulation . 123

CONTENTS III

5.2 Related Work . 125
5.3 The Algorithm . 126

5.3.1 Quotient Costs . 126
5.3.2 Computing the Best Upgrading Paths 129
5.3.3 Running Time . 130

5.4 Performance Guarantee . 131
5.4.1 Spider Decompositions and Coverings 131
5.4.2 An Averaging Lemma . 134
5.4.3 Potential Function Argument 136

5.5 Hardness Results . 137
5.6 Concluding Remarks . 138

6 Arc Upgrade Problems 141
6.1 Preliminaries and Problem Formulation 142

6.1.1 Flow Cost Functions . 142
6.1.2 Improvement of Capacity 144
6.1.3 Improvement of Unit Flow Cost 148
6.1.4 Improvement of Both Capacity and Unit Flow Cost 150

6.2 Related Work . 152
6.3 Solving Capacity Improvement Problems 153

6.3.1 Continuous Upgrade Strategy 153
6.3.2 Integer Upgrade Strategy 154

6.4 Approximating Capacity Improvement Problems 156
6.4.1 An mFPAS on Series-Parallel Graphs 157
6.4.2 Towards an Approximation on General Graphs 161

6.5 Hardness of Capacity Improvement Problems 162
6.6 Approximating Unit Flow Cost Improvement Problems 164

6.6.1 An mFPAS on Series-Parallel Graphs 164
6.6.2 Towards an Approximation on General Graphs 171

6.7 Hardness of Unit Flow Cost Improvement Problems 177
6.8 Combined Improvement . 179

6.8.1 Approximating Combined Improvement Problems 179
6.8.2 Hardness of Combined Improvement Problems 182

6.9 Concluding Remarks . 182

Synopsis 185

Bibliography 189

Index 199

IV

V

Preface

Network planning has come to great importance during the past decades. To-
day’s telecommunication, traffic systems, and logistics would not have been
evolved to the current state without careful analysis of the underlying network
problems and precise implementation of the results obtained from those exam-
inations. Graphs with node and arc attributes are a very useful tool to model
realistic applications, while on the other hand they are well understood in the-
ory.

We investigate network design problems which are motivated particularly
from applications in communication networks and logistics. On the other hand,
we use node and edge upgrade models to deal with the fact that in many cases
one prefers to change existing networks rather than implementing a newly com-
puted solution from scratch. All problems are examined within a framework of
multi-criteria optimization.

Many of the problems can be shown to be NP-hard, with the consequence
that, under the widely accepted assumption that P is not equal to NP, there can-
not exist efficient algorithms for solving the problems. This motivates the de-
velopment of approximation algorithms which compute near-optimal solutions
with provable performance guarantee in polynomial time.

*

This thesis is organized as follows: In Chapter 1 we give a short overview of the
notational framework used in the thesis. Moreover, we give a brief recapitula-
tion of some important results this work relies on. Finally we refer the reader to
a limited and exemplary list of monographs.

In Chapter 2 we start the part on network design problems with investi-
gating the minimum label spanning tree problem: This problem is specified by a
graph with edge labels, and the goal is to construct a spanning tree with min-
imum number of different labels. We also provide results on the analogous
problem on paths, namely the minimum label path problem, and on further re-
lated problems.

VI PREFACE

Chapter 3 introduces the reload cost model: given an edge labeled graph, costs
arise at nodes and depend on the pair of labels used by the traversal through
that node. We investigate the problems of finding a shortest path and a spanning
tree of minimum radius and minimum diameter with respect to reload costs.

In Chapter 4 we close the part on network design problems with providing
results on the dial a ride problem. This problem is defined on a graph with an
additional set of arcs specifying transportation requests. The goal is to find a
shortest tour which traverses all arcs. We investigate the complexity for several
graph classes and provide approximation algorithms.

Chapter 5 starts with the introduction of the node upgrade model used in
the sequel for defining the upgrading bottleneck constrained forest problem. The
problem consists in finding an optimal (budget constrained) node improve-
ment strategy such that the resulting bottleneck graph admits a constrained
forest. Constrained forests generalize well known design problems including
the search for paths, spanning trees and Steiner trees.

The part on network upgrade problems is concluded with Chapter 6 where
we investigate several flow problems under an edge based upgrade model. All prob-
lems are related to the well known maximum flow and minimum cost flow
problems. The upgrade model admits to modify the edge capacity, the unit
flow cost, or both. The goal is to optimize the total flow cost, the total flow
value, and the upgrade budget.

Acknowledgements

At this point I want to thank all the persons who have contributed to this work.
First of all, I would like to thank my advisor, Prof. Dr. H. Noltemeier, who has
patiently guided me during all phases of this work and made inspiring sugges-
tions for orienting the line of research. My thanks also go to all of my colleagues,
in particular S. O. Krumke, O. Karch, I. Demgensky, and J. Steffan, who have
spent numerous hours of fruitful discussions on all parts of this work and far
beyond. Special thanks go also to M. V. Marathe and S. S. Ravi for giving me the
excellent chance to do research together. Further I am thankful to the German
research foundation “Deutsche Forschungsgemeinschaft” (DFG) for supporting
large parts of my work.

Credits

The work on the minimum label spanning tree in Chapter 2 is a joint work
with S. O. Krumke [KW98]. The results on the edge labeled paths reported in

VII

that chapter were obtained jointly with R. Jacob, G. Konjevod, S. O. Krumke,
M. V. Marathe, R. Ravi, and T. Samstag [JK+99]. The results from Chapter 3
on the minimum reload cost diameter spanning tree problem are based on joint
work with J. Steffan [Ste99, WS99, WS01]. The work on the dial a ride problem in
Chapter 4 was done together with D. Hauptmeier, S. O. Krumke, and J. Rambau
[HK+99, HK+01]. The results from Chapter 5 on the node upgrade constrained
forest problem are obtained jointly with S. O. Krumke, M. V. Marathe, H. Nolte-
meier, and S. S. Ravi [KM+01]. The work in Chapter 6 on arc upgrade flow
problems is based on co-operative research with I. Demgensky, S. O. Krumke,
H. Noltemeier, R. Ravi, and S. Schwarz [KN+99, Dem00, DNW00].

I am greatly thankful to all of the co-authors for many hours of inspiring
discussions and for allowing me to include the work in this thesis.

VIII

1

Chapter 1

Introduction

This chapter is intended mainly as a reference for the notations used in this
thesis and the foundations this work relies on. We assume that the reader is
familiar with elementary graph theory, graph algorithmic concepts, and combi-
natorial optimization as well as with basic results from complexity theory. For
detailed reviews we refer the reader to monographs and textbooks which are
listed at the end of this chapter.

1.1 Definitions

Basics

By N := {1, 2, . . .} we denote the set of natural numbers, and we define N0 :=

{0} ∪ N. Set N0 is also called the set of integer numbers. Q and R denote the set
of rational numbers and real numbers, respectively. We write Q+ := {q ∈ Q |

q > 0 } and Q+
0 := {0} ∪Q+. Sets R+ and R+

0 are defined analogously.
The rounding of real numbers x ∈ R+

0 is denoted by the common notation
bxc := max{n ∈ N0 | n ≤ x } and dxe := min{n ∈ N0 | n ≥ x }.

By 2S we denote the power set of a set S, which is the set of all subsets of
set S (including the empty set ∅ and S itself).

Sets and Multi-sets

A multi-set X over a ground set U, denoted by X @ U, is defined as a mapping
X : U→ N0, where for u ∈ U the number X(u) denotes the multiplicity of u in X.
We write u ∈ X if X(u) ≥ 1. If Y @ U then X @ Y denotes a multi-set over the
ground set {u ∈ U : Y(u) > 0 }.

2 CHAPTER 1 INTRODUCTION

If X @ U and Y @ U are multi-sets over the same ground set U, then we
denote by X + Y their multi-set union, by X − Y their multi-set difference and
by X ∩ Y their multi-set intersection, defined for u ∈ U by

(X+ Y)(u) := X(u) + Y(u)

(X− Y)(u) := max{X(u) − Y(u), 0}

(X ∩ Y)(u) := min{X(u), Y(u)}.

The multi-set X @ U is a subset of the multi-set Y @ U, denoted by X ⊆ Y, if
X(u) ≤ Y(u) for all u ∈ U. We denote the cardinality of a multi-set X @ U by
|X| :=

∑
u∈U X(u). For a weight function c : U → R the weight of a multi-set

X @ U is defined by c(X) :=
∑
u∈U c(u)X(u).

Any standard set can be viewed as a multi-set with elements of multiplicity 0
and 1. If X and Y are two standard sets with X ⊆ Y and X 6= Y, then X is a proper
subset of Y, denoted by X ⊂ Y. Two subsets X1 ⊆ Y, X2 ⊆ Y of a standard set Y
form a partition of Y, if Y = X1 ∪ X2 and X1 ∩ X2 = ∅.

Graphs

An undirected graph is denoted by G = (V, E). Here, V(G) := V specifies the
set of nodes or vertices and E(G) := E specifies the set of edges. Throughout
the thesis we assume that both V and E are finite, and we write n := |V | and
m := |E| to denote the cardinalities. An edge e ∈ Ewith two endpoints v,w ∈ V
is denoted by the unordered pair e = (v,w) of nodes. Two edges with identical
pairs of endpoints are called parallel. An edge with two coinciding endpoints
is a loop. A graph without parallels and without loops is called simple.

For e = (v,w), we say that edge e is incident with nodes v and w, while
nodes v,w are adjacent to each other. For v ∈ V , the set N(v), called the neigh-
borhood of v, contains all adjacent nodes including node v itself. The number of
edges incident with a node v is called the degree of node v and denoted by d(v).

A directed graph is denoted by G = (V, R), where R is the set of arcs. An arc
with source v ∈ V and target w ∈ V is denoted by the ordered pair (v,w) of
nodes. This arc emanates from v and reaches w. We write (v,w)−1 := (w, v)

to denote an anti-parallel arc. The neighborhood N+(v) of node v contains all
nodes which are reached by an arc emanating from v. The out-degree d+(v)

of node v is the number of arcs emanating from v, the in-degree d−(v) is the
number of arcs reaching v. The degree of v is defined by d(v) := d+(v) + d−(v).
A graph is called degree balanced if d+(v) = d−(v) for all of its vertices v. The
remaining notions are defined analogously to the case of undirected graphs.

1.1 DEFINITIONS 3

A mixed graph is a special type of graph which has undirected edges and di-
rected arcs at the same time. A mixed graph G = (V, E,A) consists of a set V
of vertices, a set E of undirected edges without parallels, and a multi-set A of
directed arcs (parallel arcs allowed). In order to be able to distinguish nota-
tionally between edges and arcs, we use [u, v] to denote an (undirected) edge
with endpoints u and v, and we use (u, v) to denote a (directed) arc from u

to v. (The notational conventions for edges in mixed graphs are in contrast to
the case of undirected graphs. In this thesis they apply exclusively to the work
in Chapter 4.) We denote by n := |V |, mE := |E| and mA := |A| the number of
vertices, edges and arcs, respectively. For v ∈ V we let Av ⊆ A be the set of arcs
emanating from v. For edge set E, denote by

E� := { (u, v), (v, u) : [u, v] ∈ E } (1.1)

the set of arcs which contains for each undirected edge e ∈ E a pair of anti-
parallel arcs between the endpoints of e.

Where not stated otherwise we assume throughout the thesis that graphs are
undirected and simple.

Subgraphs

A graph H = (VH, EH) is a subgraph of graph G = (V, E), if VH ⊆ V and EH ⊆ E.
In this case we write H @ G.

Let G = (V, E) be a graph, assume V ′ ⊆ V and E ′ ⊆ E. By G[E ′] := (V, E ′)

we denote the subgraph induced by edge set E ′. The graph G[V ′] induced by
node set V ′ consists of node set V ′ and contains all those edges from E with
both endpoints in V ′.

The degree of a node v in a subgraph H is denoted by dH(v). For shorter
notation we use dE ′ and dV ′ instead of dG[E ′] and dG[V ′] for degrees in induced
subgraphs.

A graph G = (V, E) is called complete if the set of its edges consists of all
pairs of different nodes. A complete subgraph is called a clique.

A path p in a graph G = (V, E) is defined to be an alternating sequence p =

(v1, e1, v2, . . . , ek, vk+1) of nodes vi ∈ V and edges ei ∈ E, where for each triple
(vi, ei, vi+1) we have ei = (vi, vi+1). (For directed graphs G = (V, R), edges
are replaced by arcs, and we require ri = (vi, vi+1) and ri ∈ R ∪ R−1 for each
triple. If the stronger condition ri ∈ R holds, the path is called directed. For
mixed graphs, we define a walk which traverses arbitrarily edges and directed
arcs.) We use equivalently the alternative notations p = (v1, v2, . . . , vk+1) and
p = (e1, e2, . . . , ek) when the meaning is clear. Nodes v1 and vk+1 are the start

4 CHAPTER 1 INTRODUCTION

point and end point of p. If all nodes of the path or walk are pairwise different
(without considering the pair v1, vk+1), the path or walk is called simple. A path
or walk with coincident start and endpoint is closed. A closed and simple path
is a cycle.

A (directed or undirected) graph is called connected if it contains for each pair
v,w of nodes a path between v and w. A directed graph is called strongly con-
nected if it contains for each pair v,w of nodes a directed path from v to w and
vice versa. A subgraph is called maximal [strongly] connected, if it cannot be
enlarged by edges or nodes without losing the [strong] connectivity. A maximal
[strongly] connected subgraph is also called [strongly] connected component.

A series-parallel graph is a directed graph G = (V, R) with two terminals, the
source and the target (both terminals are distinct nodes from V) which admits
to be defined recursively as follows.

A basic series-parallel graph is the graph with vertex set {s, t} and arc set
{(s, t)}. Node s is the source, node t the target. Assume that G1 = (V1, R1) and
G2 = (V2, R2) are two series-parallel graphs (where V1 ∩ V2 = ∅), with sources
s1, s2 and targets t1, t2, respectively. Then

• the graph obtained by identifying t1 and s2 is series-parallel with source s1
and target t2. This graph is the series composition of G1 and G2.
• the graph obtained by identifying s1 with s2 and t1 with t2 is series-parallel

with source s1 and target t1. This graph is the parallel composition of G1
and G2.

Series-parallel graphs are a special case of decomposable graphs [BLW87]. De-
composable graphs are specified by a finite set of primitive graphs, where each
graph has an ordered set of terminal nodes. Moreover, there is a finite set of
binary composition rules operating only on the terminals of the two graphs be-
ing composed. This definition can be applied to both undirected and directed
graphs.

A tree is a connected subgraph with no cycles. A node in a tree is called a
leaf if its degree equals 1, and an inner node otherwise. A forest is a set of
pairwise node-disjoint trees. A subgraph H @ G is called spanning subgraph
if H is connected and V(H) = V(G). A directed spanning tree rooted towards
a node o ∈ V is a spanning tree of a directed graph which contains for each
node v ∈ V a directed path from v to o.

A star is a tree with at most one inner node, the center of the star. A spider is a
tree with at most one node of degree greater than 2.

1.2 COMPLEXITY OF COMPUTATION 5

A caterpillar graph is a special case of a tree where the graph induced by the set
of inner nodes is a path. This path is called the backbone of the caterpillar, the
remaining nodes (i. e., the leaves) are also called the feet of the caterpillar. The
edges between the backbone and the feet are called hairs. We restrict the class
of caterpillars further to those graphs where no two hairs are incident, i. e., the
nodes on the backbone are of maximum degree 3.

Graphs with Attributes

Graphs can be attributed with functions defined on the set of edges or nodes of
various meaning. Those functions are introduced and described in this thesis at
the point where they come into need.

A commonly used attribution of a graph G = (V, E) is a cost or weight func-
tion l : E → R defined on the set of edges. Usually the total weight of a sub-
graph H @ G is calculated by l(H) :=

∑
e∈E(H) l(e). If p is a path, then l(p)

denotes the length of the path.

Let G = (V, R) be a directed graph with two distinguished nodes s, t ∈ V . A
function x : R → R

+
0 is called a flow, if for each node v ∈ V \ {s, t} the inflow

x−(v) :=
∑
r ∈ Rwith target v x(r) equals the outflow x+(v) :=

∑
r ∈ Rwith source v x(r).

The net outflow x+(s) − x−(s) of the source is called the value of flow x and
denoted by F(x). Assume that there is an arbitrary function u : R → R

+
0 , called

the capacity function. A flow x is called feasible if 0 ≤ x(r) ≤ u(r) for each
arc r ∈ R.

Some models introduce also a lower capacity function l on the set of arcs and
define feasibility by l(r) ≤ x(r) ≤ u(r) for each arc r. Since there are standard
techniques to reduce to the case l ≡ 0 (see [AMO93]) we silently assume l ≡ 0
throughout the thesis.

1.2 Complexity of Computation

When working with computational problems there arise two main goals: The
first goal is to find a solution. The second (and maybe the even more impor-
tant) goal is to do this efficiently. This implies the need for a classification of
algorithms with respect to their efficiency and a classification of problems ac-
cording to their difficulty and complexity.

6 CHAPTER 1 INTRODUCTION

Measuring the Running Time

A natural way to determine the complexity of a problem is to measure the time
needed by an algorithm which computes a solution. This measure is dependent
on many factors including the applied computational model and, as a conse-
quence thereof, the representation of problem instances.

In complexity theory the Turing machine [GJ79] is widely used as a model of
computation. This plain model is unwieldy for the aims of algorithmic graph
theory. There are models which are more applicable from this practical point
of view, e. g. the model of a random access machine or an abstract Pascal machine
[Pap94, AC+99]. These models admit to use a high-level programming lan-
guage for formulating algorithms. Since we are more interested in the complex-
ity of the problems itself rather than in the efficiency of a particular implemen-
tation, we decided not to specify and use a concrete programming language,
but we formulate our algorithms using a pseudo-code which can easily be com-
piled into a programming language if desired. The main reason for this decision
is that the presentation of algorithms can be cleared and simplified. Of course
one must be careful that complex tasks are not hidden by the notation.

We briefly reflect the arguments of [AC+99]. The running time of an algo-
rithm is basically the number of instructions the abstract processor performs
until the calculation is complete. The set of instructions includes assignments
and basic numerical operations on the numbers stored in the machine variables.
From a strict point of view, the duration of execution of a single statement de-
pends on the size of the operands, i. e., the number of bits which is logarithmic
in the size of the numbers. This suggests to employ the log-cost model. Albeit,
it turns out that as long as numbers keep “sufficiently small” (to be more con-
crete, the size of numbers must be bounded by a polynomial in the size of the
input instance, see below) during the execution, the extra time does not affect
the measured effort substantially. Since the above condition is true for most ap-
plications (and in particular, for the problems investigated in this thesis), it is
acceptable to use the easier to analyze unit-cost model where the execution cost
of a numerical operation does not depend on the size of the operands.

In order to characterize the complexity of a particular problem one must con-
sider all instances to this problem. A convenient way to do the characterization
is to specify the running time function of an algorithm. Such a function measures
the running time of an algorithm as a function of the size of the instance. This
size is measured in the number of bits which are needed for storing the instance.

This leads immediately to the question how to represent an instance of a
particular problem. One must assure that the representation cannot be padded
arbitrarily with redundant information, because in this case the specification of

1.2 COMPLEXITY OF COMPUTATION 7

a running time function would become useless. For graphs, reasonable encod-
ing schemes include the representation as an incidence matrix or as adjacency
lists. Here all graph items are represented by a unique number which is binary
encoded. (See e. g. [CLR90] for a further discussion of graph representations.)
As a result, the size of a reasonable representation of a graphG = (V, E) is linear
in |V | and |E|.

A key observation [AC+99] is, that all “reasonable” encoding schemes are poly-
nomially equivalent, i. e., for arbitrary reasonable encodings there exists a polyno-
mial such that the size of an instance coded according to one scheme is bounded
by the polynomial in the size of the other encoding and vice versa. A similar
observation holds for the machine models and languages used for describing
algorithms. Coming back to the discussion of the cost model from above, this
observation is the reason why numbers of polynomially bounded size can be
treated by a unit cost model.

For graph algorithms it is conventional to specify the running time as a func-
tion depending on |V |, i. e., the number of nodes of the graph, rather than to use
a function of the length of the encoding. This is admissible due to the above
considerations: As long as we decide for reasonable encodings, the length of
the encoding is bounded by a polynomial in |V |. Hence if an algorithm is said
to have polynomial running time, is does not matter whether to use |V | or the
length of the encoding as the argument of the polynomial. As a consequence,
if the running time function is given in terms of |V |, the results are independent
of the particular machine model and graph encoding scheme. This enables to
compare algorithms with respect to their running time.

We close this section with a remark on the encoding of numbers. Integer num-
bers are usually encoded binary (or k-ary for alphabets of cardinality k). As
considered above, the length of the encoding of each number must be bounded
by a polynomial p(|V |). Consequently, the range of integer numbers which are
specified by any input instance is restricted to the interval [0, 2p(|V |)] for some
polynomial p. This restriction is tacitly assumed in most of the contributions
to the complexity of graph algorithms in literature, and this is true also for the
current thesis.

Non-integer numbers cannot be stored with arbitrary precision under the
above restrictions. Usually, those numbers are approximated by a rational num-
ber. Rational numbers are stored as a pair of integer numbers. In most cases (in
particular this holds for the problems considered in this thesis), one can trans-
form an instance with rational numbers into an equivalent instance with integer
numbers by multiplying all numbers by the lowest common denominator. One
can observe that this operation retains the polynomial bound on the encoding

8 CHAPTER 1 INTRODUCTION

size of all numbers. Thus, whenever it is convenient, we can assume without
loss of generality that all numbers of an input instance are integer. For a fur-
ther discussion of some subtleties involved by division operations with rational
numbers in several machine models we refer to [GLS88].

Asymptotic Running Time

A widely used tool for characterizing the running time complexity of an algo-
rithm is the worst case analysis: The running time is specified by a function f,
where the value f(n) is an upper bound on the running time of the algorithm
for each instance with size n. Alternative approaches include the average case
analysis which is usually more complex to perform and has applications differ-
ent from the aims of this thesis.

Running time functions are usually denoted using the O-notation. This makes
the results independent of constant factors which may be solely a consequence
of special capabilities of the particular machine model or programming lan-
guage. We briefly introduce this notation: Let F = {f : N → R} be the set of all
real valued functions on N. For f ∈ F, define

O(f) := {g ∈ F | ∃a ∈ R+,∃n0 ∈ N : ∀n ∈ N, n > n0 : |g(n)| ≤ a · f(n) }

Ω(f) := {g ∈ F | ∃a ∈ R+,∃n0 ∈ N : ∀n ∈ N, n > n0 : g(n) ≥ a · |f(n)| }

Θ(f) := O(f) ∩Ω(f)

o(f) := {g ∈ F | ∀a ∈ R+,∃n0 ∈ N : ∀n ∈ N, n > n0 : a · |g(n)| < f(n) }

In literature there can be found an alternative definition of g ∈ o(f), namely
limn→∞ g(n)/f(n) = 0. It is easy to observe that this definition is equivalent (as
long as the functions do not attain negative values). Moreover, for a subset F ′ ⊂
F we define O(F ′) := ∪f∈F ′O(f).

Notice that for arbitrary constants a, b > 1, we have Θ(loga) = Θ(logb).
Therefore we basically omit the base of the logarithm function in all arguments
of the O-notation.

A very fast growing function is Ackerman’s function A : N2 → N (see [CLR90]),
which is defined recursively by

A(1, j) := 2j for j ≥ 1 ,
A(i, 1) := A(i− 1, 2) for i ≥ 2 ,
A(i, j) := A(i− 1,A(i, j− 1)) for i, j ≥ 2 .

By defining

α(m,n) := min{ i ∈ N | A(i, bm/nc) > log2 n }

1.3 OPTIMIZATION PROBLEMS 9

one introduces a function α : N2 → N, called the inverse of Ackerman’s function.
Here the notion “inverse” must be taken with a grain of salt: The function α is
not the inverse in the true mathematical sense, but it growths as slow as Acker-
man’s function grows fast.

Complexity classes

We briefly note some few complexity classes which are defined for decision
problems. A decision problem is a problem where each instance has only one
of two outcomes from the set {yes,no}. For a function f : N → N, the class
DTIME(f(n)) [NTIME(f(n))] contains all problems which can be decided on
a deterministic [nondeterministic] Turing machine within time O(f). There are
two important classes known from complexity theory, defined by

P :=

∞⋃
k=1

DTIME(nk) and NP :=

∞⋃
k=1

NTIME(nk) .

A decision problem π is called NP-complete, if it is a member of NP and every
other problem of NP can be reduced to π in polynomial time. This means, for
each problem π ′ ∈ NP there is a polynomial time computable function fπ ′ map-
ping instances of π ′ to instances of π with the property that for each instance x ′

of π ′, x ′ is a yes-instance of π ′ if and only if f(x ′) is a yes-instance for π. [GJ79]
Many interesting decision problems are NP-complete. Under the widely be-
liefed assumption P 6= NP this has the consequence that those problems are
intractable, i. e., there is no deterministic algorithm deciding them in polynomial
time.

1.3 Optimization Problems

1.3.1 Uni-criterion Optimization

Following [AC+99], an optimization problem π is characterized by a quadruple
π = (I, SOL,m, g) where the objects have the following meaning: I specifies
the set of instances of problem π, and SOL is a function on I which yields the
set of feasible solutions to the problem. Measure function m assigns a positive
integer value to each feasible solution, and g specifies whether problem π is a
maximization or a minimization problem. By SOL∗(x) one denotes the set of
optimal solutions for instance x ∈ I. The value m(y) of all optimal solutions y ∈
SOL∗(x) is also denoted bym∗(x).

Each optimization problem π induces naturally the following family of three
problems:

10 CHAPTER 1 INTRODUCTION

• constructive problem πC: Given an instance x ∈ I, derive an optimal solu-
tion y ∈ SOL(x) and its measurem(y).
• evaluation problem πE: Given an instance x ∈ I, derive its measurem∗(x).
• decision problem πD : Given an instance x ∈ I and an integer K ∈ N, decide

whether m∗(x) ≥ K (for maximization problem) or whether m∗(x) ≤ K

(for minimization problem).

Optimization problems in algorithmic graph theory are usually constructive
problems in this sense: We are always interested both in optimizing the measure
function (albeit the actual value of the measure function is usually not com-
puted explicitly) and in constructing a solution which implements this value.

A first rough characterization of optimization problems can be performed sim-
ilarly to the situation for decision problems, where classes P and NP have been
introduced. For optimization problems, one uses another view at nondetermin-
ism [AC+99]. The class NPO is defined to contain all optimization problems
where the set of instances can be recognized in polynomial time, and a feasible
solution can be guessed and verified (and the measure function can be evalu-
ated) in polynomial time. The subclass PO of NPO contains all optimization
problems where a deterministic algorithm exists which constructs for each in-
stance an optimal solution in polynomial time.

One can show that for each optimization problem in NPO, the correspond-
ing decision problem is in NP. Moreover, the notion of hardness can be extended
to optimization problems: An optimization problem is called NP-hard, if the
corresponding decision problem is NP-complete. Since the common assump-
tion P 6= NP implies also PO 6= NPO (see [AC+99]), all optimization problems
which can be shown to be NP-hard are considered as intractable.

Approximation Algorithms

In order to deal with the intractability of NP-hard optimization problems, it is
useful to design approximation algorithms [AC+99]. In a general sense, an ap-
proximation algorithm is a polynomial time algorithm which produces for any
instance x ∈ I of an optimization problem an arbitrary feasible solution y ∈
SOL(x).

Let x ∈ I be an instance of an optimization problem and y ∈ SOL(x) be an
approximate solution. We use the performance ratio R(x, y)

R(x, y) := max
{
m(y)

m∗(x)
,
m∗(x)

m(y)

}

1.3 OPTIMIZATION PROBLEMS 11

to estimate the quality of y. Other approaches include measuring the absolute
error D(x, y) and the relative error E(x, y), defined by

D(x, y) := |m(y) −m∗(x)| and E(x, y) :=
|m(y) −m∗(x)|

max{m∗(x),m(y)}
.

Notice that the performance ratio satisfies always R(x, y) ≥ 1. Moreover,
R(x, y) = 1 if and only if y is an optimal solution. At this point one defines:

Definition 1.1 (Approximation Algorithm, Performance Guarantee)
Let π be an optimization problem and A be a (deterministic) polynomial time
algorithm for π. Algorithm A is called approximation algorithm for π with
performance α (or α-approximation algorithm), if for each instance x, the al-
gorithm outputs a solution A(x) ∈ SOL(x) with

R(x,A(x)) ≤ α .

In this definition, α may be a constant or a function depending on the input
instance. Observe that this definition relies on a worst case analysis.

Complexity Classes

There are some important subclasses in NPO according to the benevolence
of NPO problems with respect to their approximability [AC+99]. Class APX
contains all NPO problems where for some constant r > 1 there exists an r-
approximation algorithm. Class PAS contains all problems for which there is a
polynomial approximation scheme, i. e., there is an algorithm which for each ε > 0
is an approximation algorithm with performance 1 + ε. If the running time of
this algorithm is also polynomial in 1/ε, the scheme is called fully polynomial
approximation scheme, and the resulting class is denoted by FPAS. The relation
between the problem classes is reflected by the chain of inclusions

PO ⊆ FPAS ⊆ PAS ⊆ APX ⊆ NPO

which can be proven to be strict if and only if P 6= NP. Observe that showing
the existence of an FPAS for an optimization problem is the best approximation
result one can achieve if this problem is NP-hard.

1.3.2 Multi-criteria Optimization Problems

In this thesis we are also interested in optimization problems π which are char-
acterized by more than one measure function. In this case we have a tuple
m = (m1, . . . ,mk) of k > 1 measure functions (also called objective functions)

12 CHAPTER 1 INTRODUCTION

and a corresponding tuple g = (g1, . . . , gk) of goals. There are different ways to
define optimality for multi-criteria problems, since it is not clear in general how
to solve the conflict between concurrent objective functions.

We use the following approach in our work: We constrain all but one of
the objective functions by a numerical bound, and optimize the remaining ob-
jective subject to those constraints. Other approaches include the search for
lexicographic optimal solutions and for the set of pareto optimal solutions: a solu-
tion is pareto optimal (also called efficient), if there is no other solution which
dominates it in all objectives at the same time.

In the context of the definitions from [AC+99], the approach of bounding
the objectives can be modeled as follows: The set I of problem instances has the
form I = I ′ × (R+

0)k−1. As before, there is a function which maps each instance
x ∈ I ′ to a set of solutions, we call this function Γ . This function is augmented
to I by defining Γ(x, B) := { (y, B) | y ∈ Γ(x) }. A function FSm ′,g ′ on the set of
solutions selects feasible solutions. This function is designed to reflect measure
vectorm ′ = (m2, . . . ,mk) and goal vector g ′ = (g2, . . . , gk), and is defined by

FSm ′,g ′(Y, B) =

{
y ∈ Y

∣∣∣ mi(y) ≤ Bi, for 2 ≤ i ≤ kwhere gi = min,
mi(y) ≥ Bi, for 2 ≤ i ≤ kwhere gi = max.

}
where B = (B2, . . . , Bk) is the tuple of k − 1 numerical constraints specified
by the instance. With the composition SOL := FSm ′,g ′ ◦ Γ , the overall problem
π = (I, SOL,m1, g1) is now a uni-criterion optimization problem with measure
functionm1 and goal g1.

Since the definitions for SOL∗,m∗, and the performance ratio R(x, y) can eas-
ily be extended from I ′ to I, also the definition of an α-approximation algorithm
carries over to this case.

For many multi-criteria optimization problems it turns out that, given an in-
stance x, even the problem of deciding whether FS(Γ(x, B)) is nonempty is NP-
complete. This defers to construct an efficient approximation algorithm in the
sense described above. We show how to dodge this situation. To this end, one
introduces a set of almost feasible solutions. Let α ′ = (α2, . . . , αk) be a performance
vector of numbers αi ≥ 1. Similar to above, let AFSα ′,m ′,g ′ be a selection func-
tion on the set of solutions which is defined by

AFSα ′,m ′,g ′(Y, B) =

{
y ∈ Y

∣∣∣ mi(y) ≤ αi · Bi, for all iwhere gi = min,
mi(y) ≥ 1/αi · Bi, for all iwhere gi = max.

}

An almost feasible solution violates the constraints on the optimization objec-
tives in a controlled fashion.

1.3 OPTIMIZATION PROBLEMS 13

Definition 1.2 (Multi-criteria Approximation Algorithm, Performance)
Let π be an optimization problem with k objectives and A be a (deterministic)
polynomial time algorithm. AlgorithmA is called multi-criteria approximation
algorithm for πwith performance (α1, . . . , αk), if for each instance (x, B) where
FS ◦ Γ(x, B) 6= ∅, the algorithm outputs a solution

A(x, B) ∈ AFS ◦ Γ(x, B) ,

and, besides, each solution A(x, B) output satisfies

R(x,A(x, B)) ≤ α1 .

This definition implies that, for the case FS ◦ Γ(x, B) = ∅, the algorithm has
two choices: either it outputs the undefined solution ⊥ meaning “there is no
feasible solution”, or, since m∗(x, B) is undefined and max{∅} = −∞, the rela-
tion R(x,A(x, B)) ≤ α1 becomes trivial and the algorithm can output any almost
feasible solution. (We refer to [KM+98a] for a suggestion on a post-processing
step which produces even in this case a final solution with a “good” objective
valuem1 with respect to a further relaxed instance.)

On the other hand, even if the algorithm outputs a solution, one can not
draw a conclusion to the fact whether FS ◦ Γ(x, B) 6= ∅. Therefore the existence
of multi-criteria approximation algorithms does not imply P = NP, even if the
decision problem on the set of feasible solutions is NP-complete.

Notational Conventions

For convenience, we use a simpler notation for naming the optimization prob-
lems throughout this thesis. The set I of instances is usually the set of graphs
with additional node and edge attributes depending on the particular problem.
It is specified explicitly in the definition of the problem but withdrawn from the
problem name. The set Γ of feasible instances consists in most cases of a class
of subgraphs. This is also specified in the definition. In the problem name, the
class appears in the designation of the objective functions. Moreover, from the
context it is usually evident which of the feasibility objectives have maximiza-
tion or minimization goal.

Thus we use the following canonical notation for k-criteria optimization
problems: each problem is denoted by a k-tuple. The first entry consists of the
optimization objective and its goal. The remaining entries describe the bounds
on the remaining objectives. For instance, the tuple

(MAX: FLOW, COST IMPROVEMENT, TOTAL FLOW COST)

14 CHAPTER 1 INTRODUCTION

(taken from Definition 6.6 on page 150) denotes the problem of maximizing the
value of a flow in a network (which itself is a directed graph furnished with
edge capacities, flow costs and some more parameters), subject to a restriction
on the budget available for the edge cost improvement and a restriction on the
flow cost of the resulting flow. It will later be clear from the context which im-
provement model to apply and that both restrictions are upper bounds. Within
the running text, we also use a further abbreviation MAXFL-COI-FC derived in
an obvious acronym-like fashion from the full tuple.

Related Multi-criteria Optimization Problems

From the definition of a k-criteria optimization problem with objective func-
tions (m1, . . . ,mk) is is evident that objective m1 plays a special role while ob-
jectives m2, . . . ,mk are treated equally. This means, objectives m2, . . . ,mk (to-
gether with the corresponding bounds) can be interchanged with each other
without affecting the spirit of the problem.

By interchanging the first objective m1 with one of the remaining objec-
tivesmi, i > 1, one constructs a family of related problems. In the case of bicriteria
problems, the result of this construction is also called pair of dual problems.

There is a strong relationship between the approximability within a family
of related problems. The following result is an easy generalization of a theorem
formulated for a pair of dual problems in [KM+98a].
Theorem 1.3 (Approximability of Related Problems)
Let π = (m1, . . . ,mk) be a k-criteria optimization problem. Let π ′ be a related
problem constructed from π by interchanging objectives m1 and mi. With-
out loss of generality i = 2, i. e., π ′ = (m2,m1,m3, . . . ,mk). If π is approx-
imable with performance (α1, . . . , αk), then for any ε > 0 problem π ′ is ap-
proximable with performance ((1 + ε)α2, α1, α3, . . . , αk). Moreover, if objec-
tive m2 is integer valued, then problem π ′ can be approximated with perfor-
mance (α2, α1, α3, . . . , αk).

Proof. We assume that objectives m1 and m2 have both minimization goals.
The other cases are analogous. LetA be the approximation algorithm for π. The
proof uses A as a subroutine within a binary search to construct an approxima-
tion for π ′ (see [KM+98a]).

Let B1 be the bound on m1 in problem π ′, let B3, . . . , Bk be the remaining
bounds. Let OPT be the optimal m2-value for this problem. Since the size of
numbers is polynomially bounded (confer page 7), one can guess in polynomial
time a numberΩ ∈ N with 0 ≤ OPT ≤ Ω.

Perform a binary search on the set

M = { (1+ ε)i | i = 0, 1, . . . , dlog1+εΩe }

1.3 OPTIMIZATION PROBLEMS 15

to find the smallest number B2 ∈ M such that algorithm A with bound B2
on objective m2 and bounds B3, . . . , Bk on the remaining objectives outputs
a solution y with m1(y) ≤ α1B1. Then, B2 ≤ (1 + ε)OPT. Consequently,
m2(y) ≤ α2B2 ≤ (1 + ε)α2OPT. Clearly, mj(y) ≤ αjBj for all j = 3, . . . , k.
Thus, solution y has performance ((1+ ε)α2, α1, α3, . . . , αk) for problem π ′.

If objective m2 is integer valued, the binary search can be performed on the
interval [1,Ω] of integers, and the minimal successful number B2 satisfies B2 =

OPT.
We briefly estimate the running time in the case of non-integer valued ob-

jective functions. The binary search on set M needs log2 log1+εΩ calls to algo-
rithm A. Since Ω ≤ 2p(|x|) for some polynomial p on input x, the number of
iteration equals

log2 log1+εΩ ≤ log2 log1+ε 2
p(|x|) = log2

(
p(|x|)

ln 2
ln(1+ ε)

)
.

Since 1/ ln(1+ ε) ∈ o(1/ε2) for ε→ 0, the number of iterations (and, finally, the
overall running time) is polynomial in the input size and in 1/ε. �

Similarly to the definition of FPAS for the uni-criterion case, we now define
the class mFPAS containing all problems which admit a multi-criteria fully poly-
nomial approximation scheme: A multi-criteria optimization problem belongs to
mFPAS, if there is an approximation algorithm which computes for each ε1 > 0
and ε2 ≥ 0, . . . , εk ≥ 0 a solution with performance (1 + ε1, . . . , 1 + εk), and
whose running time is a polynomial in the input size and in

∏
εi>0

1/εi.
We obtain the following result:

Theorem 1.4
Let π and π ′ be two members of a family of related problems. If π ∈ mFPAS,
then also π ′ ∈ mFPAS.

Proof. Let (1+ε2, 1+ε1, 1+ε3, . . . , 1+εk) be the desired performance guarantee
for π ′. Choose ε > 0 such that (1+ ε)2 ≤ 1+ ε2. Apply Theorem 1.3 with perfor-
mance vector (1 + ε1, 1 + ε, 1 + ε3, . . . , 1 + εk) for π to obtain an approximation
with performance ((1+ ε)2, 1+ ε1, . . . , 1+ εk) for π ′. Since (1+ ε)2 ≤ 1+ ε2, the
solution obeys the initial performance guarantee. From the observations at the
end of the proof of Theorem 1.3 it follows that the running time of the overall
algorithm is also polynomial in

∏
εi>0

1/εi. �

16 CHAPTER 1 INTRODUCTION

1.3.3 Reductions and Hardness of Approximation

In order to derive an approximation algorithm for a new problem, it is useful
to use a reduction to a problem where the approximability is already known.
The guaranteed performance carries over to the new problem if this reduction
complies with some special properties. In particular, if there is a linear relation
between the optimal measures and a linear relation between the absolute errors,
the resulting reduction is called L-reduction.

Definition 1.5 (L-reduction [PY91])
Let π1 and π2 be two NPO problems. Problem π1 is L-reducible to π2, in sym-
bols π1 ≤L π2, if polynomial time computable functions f and g and two con-
stants β > 0, γ > 0 exist, such that

1. for each x ∈ Iπ1 , we have f(x) ∈ Iπ2 with

m∗π2(f(x)) ≤ β ·m
∗
π1

(x) (for minimization problems)

m∗π2(f(x)) ≥ 1/β ·m
∗
π1

(x) (for maximization problems)

2. for each x ∈ Iπ1 and y ∈ SOLπ2(f(x)), we have g(x, y) ∈ SOLπ1(x) with∣∣m∗π1(x) −mπ1(x, g(x, y))
∣∣ ≤ γ · ∣∣m∗π2(f(x)) −mπ2(f(x), y)

∣∣ .
The tuple (f, g, β, γ) is called L-reduction from π1 to π2.

An L-reduction is approximation preserving (confer [PY91]): LetA2 be an approxi-
mation algorithm for π2 with performance α. If π1 ≤L π2, then one can derive an
approximation algorithm A1 for π1 as follows. Let (f, g, β, γ) be the L-reduction
from π1 to π2. Define

A1(x) := g(x,A2(f(x))) .

Clearly, A1 is a polynomial time algorithm. For simplicity, we assume that both
problems are minimization problems (the other case is similar). The perfor-
mance of algorithm A1 is given by

R(x, g(x,A2(f(x)))) =

∣∣m∗π1(x) −mπ1(x, g(x,A2(f(x))))
∣∣

m∗π1(x)

≤ γ ·
∣∣m∗π2(f(x)) −mπ2(f(x), A2(f(x)))

∣∣
m∗π1(x)

≤ γβ ·
∣∣m∗π2(f(x)) −mπ2(f(x), A2(f(x)))

∣∣
m∗π2(f(x))

≤ γβ · α .

1.3 OPTIMIZATION PROBLEMS 17

Hence, theα-approximation algorithm for π2 implies anαβγ-approximation for
problem π1. We remark that in many of the proofs the reduction satisfies β =

γ = 1.
The existence of an L-reduction can also be exploited in the opposite di-

rection: Assume there is a non-approximability result for a problem π1. With
providing a proof for π1 ≤L π2 one can derive a non-approximability result for
problem π2.

The L-reduction is a sufficiently powerful tool for the aims of this work. For
a further discussion of other approximation preserving reductions, in particular
the stronger AP-reduction and its applications, we refer e. g. to [AC+99].

For deriving the hardness of approximating problems investigated in this thesis,
we make particularly use of two strong non-approximability results from [LY93,
Fei96] (stated in the following two theorems) where logarithmic lower bounds
on the approximability of MINIMUM SET COVER and MINIMUM DOMINATING
SET have been provided. Further non-approximability results can be found e. g.
in [AL97].

An instance of MINIMUM SET COVER [GJ79, Problem SP5] is given by a finite
setQ = {q1, . . . , qs} of ground elements and a family F = {Q1, . . . , Ql} of subsets
of Q. The problem consists of finding a covering C ⊆ F of Q with minimum
number |C| of sets.

Theorem 1.6 (Non-approximability of MINIMUM SET COVER)
Unless NP ⊆ DTIME(NO(log logN)), for any ε > 0, there is no approximation
algorithm for MINIMUM SET COVER with performance (1− ε) ln |Q|. �

In [ESW98] there has been shown that the instances constructed in the re-
duction proof of the preceding theorem have a special property: The number of
subsets is polynomially bounded by the number of ground elements. This fact
will later be exploited in reductions from MINIMUM SET COVER.

Property 1.7
Let (Q, F) be any instance produced by the reduction in [Fei96] used for the
proof of Theorem 1.6. Then, |F| ≤ |Q|5. �

An instance of MINIMUM DOMINATING SET [GJ79, Problem GT2] is given
by a graph G = (V, E). A node v dominates a node w ∈ V if either v = w

or (v,w) ∈ E. A subset D ⊆ V is called dominating set, if each node in V is
dominated by at least one node from D. The problem consists of finding a
dominating set of minimal cardinality.

Theorem 1.8 (Non-approximability of MINIMUM DOMINATING SET)
Unless NP ⊆ DTIME(NO(log logN)), for any ε > 0, there is no approximation
algorithm for MINIMUM DOMINATING SET with performance (1− ε) ln |V |. �

18 CHAPTER 1 INTRODUCTION

1.4 Network Design and Network Upgrade

Graphs are a useful tool to model network planning problems. There are many
practical applications of network planning, in particular in the area of commu-
nication networks and logistics. Edge and node attributes are used to model the
parameters (including length of links, cost of transportation, delay of routing,
capacity of transmission) extracted from the realistic application. A challeng-
ing goal is to develop models which are both close enough to reality to draw
reasonable conclusions from the theoretical results towards an implementation
and simple enough to be handled within the theoretical framework.

A main area of network planning is the field of network design problems. Prob-
lems of this type are given by a set of possible solutions which is usually mod-
eled by a single graph. Problem specific requirements and constraints define
feasible solutions. In many applications those constraints can be reflected by
specifying a particular graph class. One or more appraisal functions define a
relation on the set of feasible solutions and a notion of optimality. This naturally
yields multi-criteria optimization problems on weighted graphs where the goal
is to find a substructure of the input instance which best meets all demands of the
individual problem situation.

One of the first network design problems to study is the minimum spanning
tree problem [Kru56]. Further problems include the search for a k-minimum
spanning tree [AA+95, BCV95, BRV96, BRV99], for a Steiner tree [KZ97], for a
shortest path tree [Dij59, MM93, Tho97], for a minimal total path length tree [WL+98,
WCT00], and for a minimum diameter spanning tree [Ple81, HT95]. Other types
of edge weight functions yield the most uniform spanning tree problem [CM+86,
GS88]. This area of research also covers the minimum label spanning tree problem
[CL97, KW98] and the minimum reload cost problems with respect to the length
of a path and to the diameter and radius of a spanning tree [WS99, WS01] studied
in this thesis.

Natural network design problems arise also in the area of location plan-
ning. We briefly recall some important problems including the p-center [KH79a,
DF85, MF90, HS85, Vis97, Arc00, Kru95, CGR98, KPS00] and p-median problem
[KH79b, LV92, ARR98, CG+99b, CG99a, JV99] and the field of facility location
problems [GK99a, CG99a, JV99, STA97, JV00, Shm00, KPR00].

Another important class of network design problems are tour planning
problems. Probably one of the most famous problems is the traveling sales-
person problem [Kru56, Chr76, AF+95], which consists in finding a shortest
round tour visiting all nodes. A tour visiting all edges of a graph yields the
chinese postman problem [EJ73, Fre79, FHK78, FG93]. Many authors exploit
the geometric context behind tour planning problems [AA+95, Mit96, Mit98,

1.5 LITERATURE 19

AMN98, NMK99, Mit00]. A shortest tour meeting a set of arcs representing
transportation requests yields the dial a ride problem (also known as stacker
crane) [FHK78, CR98, AKR00, HK+01, FS01] which is also contributed to in this
thesis.

Opposed to the network planning problems described above, network upgrade
problems use a different approach which is motivated from the observation that
in realistic applications one seldomly can spend the effort for implementing a
solution from scratch after theoretically computing an optimal network. In most
cases the situation is more likely as follows: one is given a current network, and
the goal is to change the existing network in order to improve its efficiency. The
modification of the graph is caused by an investment on several parts of the
network which is limited by an overall bound on the available budget.

Problems where the structure of the graph is subject to change (by in-
serting new edges) are known as augmentation problems in literature starting
with [ET76]. Other upgrade models retain the graph structure but modify the
weights of edges and nodes [KM+98b].

A node upgrade model can be found in [PS95], where upgrading a node effects
a decrease in edge length of all incident edges by a factor δ < 1. We use a
more general node upgrade model [KM+99b, KM+99a, KM+01] in this thesis
where the decrease can be adjusted separately for each incident edge. A node
upgrade model is motivated from the fact that in particular in high speed optical
networks switches are the limiting factor with respect to the capacity of the
network, hence an upgrade of a node improves the throughput in all incident
links.

In edge upgrade models there is usually one linear or, more general, mono-
tone function per edge which describes the dependency between the change of
the edge weight and the amount of budget needed for the improvement. The
problems considered in this area of research include the search for minimizing a
minimal spanning tree [KN+98], minimizing a shortest path tree [Ber92], maximizing
a minimal spanning tree [FSO96], minimizing longest paths [HT97], or minimizing
the capacity of a minimum cut [Phi93]. Flow problems with capacities to upgrade
have been considered in [CGS98, SC+98, KN+99, DNW00] and in this thesis.

1.5 Literature

There are numerous monographs and standard textbooks on elementary graph
theory. We refer the reader for instance to [Har72, Nol76, Die96]. Flow algo-
rithms have been surveyed in [AMO93]. Graph problems and applications with
special focus on directed graphs can be found in [BJG00]. For implementations

20 CHAPTER 1 INTRODUCTION

of efficient graph algorithms see the LEDA library [MN99].
For further books on computational complexity we refer the reader for in-

stance to [GJ79, WW85, Pap94, AC+99]. Efficient algorithms and data structures
can be found in [CLR90, MN99].

For books on combinatorial optimization we refer the reader e. g. to [Law76,
PS82, GLS88]. Approximation issues with special focus on graph problems
can be found in [Hoc97, AC+99]. We also refer to [CK] which is the regu-
larly updated online database version of the list of results for NPO problems
from [AC+99]. A survey on multi-criteria optimization problems with focus on
pareto optimality can be found in [Ehr00, EG00].

21

Part I

Network Design Problems

23

Chapter 2

Edge Labeled Graphs

The problems considered in the current chapter are characterized as network
design problems on edge labeled graphs. In all cases the goal is to find an op-
timal subgraph of an edge labeled graph. Optimality of a solution is measured
in the number of labels used by the subgraph. Feasible subgraphs are specified
by a graph class. Typical graph classes are the class of all spanning trees or the
class of all paths connecting two distinguished vertices.

As pointed out in the introduction, graph attributes such as edge functions are a
general model to specify measurements including the length of a link, the dura-
tion or delay of transmission, the effort of construction, or the cost of transporta-
tion. Edge functions of this type are summarized as numerical edge attributes. We
will speak of edge weights, edge lengths, and edge costs, respectively, depending on
the context.

A common property of numerical edge attributes is that they represent (in-
teger, rational, or real) numbers. This allows to do calculations with those at-
tributes and enables the definition of complex objective functions for graphs
which measure e. g. the length of paths, the total weight of trees or the trans-
portation costs of flows. This is the basis for the formulation and definition of
many optimization problems.

There are other types of edge functions, called edge labels, which we try to care-
fully distinguish from numerical edge attributes in this thesis. For motivation
of edge labels, consider an electronic communication network which is subdi-
vided into parts of different transmission technologies. Each subnetwork uses
its own specifications for transmitting data. These specifications may include
transmission speed, packet size, and special protocols for error recovery. The
subnetworks are connected via gateways which have the task to adapt the pro-
tocols. If information is routed through this network, data has to be converted

24 CHAPTER 2 EDGE LABELED GRAPHS

at gateways. In order to keep the effort for installing and running data conver-
sion gateways as small as possible, a reasonable goal is to minimize the number
of subnetworks of different technologies involved in a routing network.

A practical way to model this scenario is to choose a discrete set of labels
or colors and assign a unique label to each subnetwork. The overall instance is
then modeled by an edge colored graph where each graph induced by the set
of edges of the same color represents one of the above mentioned subnetworks.

By now, there is no other operation defined on the set of labels than count-
ing them. We remark that in real implementations labels are usually stored as
integer numbers. Nevertheless, when speaking of labels instead of numerical
attributes, we do not make use of the usual properties of integer numbers which
are, in particular, arithmetic calculations and comparability.

2.1 Preliminaries and Problem Formulation

We continue with stating some basic definitions of edge labeled graphs and
subgraphs.

Definition 2.1 (Edge labeled graph)
An edge labeled graph G = (V, E, c) is a graph (V, E) together with an edge
label function c : E→ N.

Notice that an edge labeled graph may contain parallel edges of different
colors, i. e., we do not require the graph to be simple throughout this chapter.

Definition 2.2 (k-labeled subgraph)
Let G = (V, E, c) be an edge labeled graph. A subgraph H @ G is called k-
labeled if ∣∣{ c(e) | e ∈ E(H) }

∣∣ = k,

i. e., the subgraph uses k different labels.

We assume without loss of generality that the graph does not contain parallel
edges of the same color throughout the chapter.

In the sequel we investigate minimum label subgraph problems. Typical classes
of subgraphs are the class of paths or the class of spanning trees. Given an
edge labeled graph, the goal of a minimum label subgraph problem is to find a
k-labeled subgraph of the specified graph class where k is as small as possible.

Definition 2.3 (MINIMUM LABEL SPANNING TREE Problem)
Let G = (V, E) be a connected undirected graph and c : E→ N be an edge label-
ing function. The goal is to find a k-labeled spanning tree ofGwith minimum k.

2.2 RELATED WORK 25

The problem is defined on connected graphs only. The analogous problem
on general (i. e., unconnected) graphs is called MINIMUM LABEL SPANNING
FOREST problem. A spanning forest is defined to be a family of trees each span-
ning one connected component of the graph. The MINIMUM LABEL SPANNING
FOREST problem can easily be reduced to MINIMUM LABEL SPANNING TREE:
Solve the tree problem on each of the connected components, and collect the
resulting trees. This obvious observation suggests to restrict the view to con-
nected graphs only.

We will provide an approximation algorithm with logarithmic performance
guarantee and prove a logarithmic lower bound for the approximability.

The second problem considered in this chapter is the MINIMUM LABEL PATH
problem:

Definition 2.4 (MINIMUM LABEL PATH Problem)
Let G = (V, E, c) be an edge labeled graph, v,w ∈ V two distinguished nodes.
The goal is to find a k-labeled path in G from v to wwhere k is minimized.

It will turn out that MINIMUM LABEL PATH is NP-hard and very hard to
approximate. This is proved by a reduction from RED-BLUE SET COVER which
is introduced in Section 2.5.

2.2 Related Work

The MINIMUM LABEL SPANNING TREE problem was introduced by Chang and
Leu in [CL97]. By a reduction from MINIMUM SET COVER the authors show
that the corresponding decision problem of MINIMUM LABEL SPANNING TREE
is NP-complete. This result holds even if the underlying graph is complete.
Moreover, some heuristics for solving MINIMUM LABEL SPANNING TREE were
given.

From the viewpoint of the definition, a closely related problem is the MOST
UNIFORM SPANNING TREE problem. An instance is given by an undirected
graph with edge weights. The uniformity of a tree is measured by the difference
between the most and least weighted edge in the tree, i. e., by the size of the
interval spanned by the used edges’ weights. The goal is to find a spanning
tree which minimizes the size of that interval. The MOST UNIFORM SPANNING
TREE problem can be solved optimally in time O(|E| log |V |) [CM+86, GS88].

Minimum label subgraph problems are also related to minimum weight sub-
graph problems. The problem of finding a shortest path in an edge weighted

26 CHAPTER 2 EDGE LABELED GRAPHS

graph is one of the first graph algorithmic problems to investigate in liter-
ature. Starting with the algorithm of Dijkstra [Dij59] with running time in
O(|E| + |V | log |V |), there have been many contributions on SHORTEST PATH
culminating in Thorups O(|V | + |E|)-algorithm [Tho97]. For the case of trees,
the problem MINIMUM SPANNING TREE is not less important. There are nu-
merous algorithms including the algorithm of Kruskal [Kru56] with running
time O(|E| log |V |) up to an algorithm with running time O(|E| · α(|E|, |V |)) sug-
gested by Chazelle [Cha00].

One may observe that for edge weights, the path problem appears to be
less complex than the tree problem. On the other hand, from the results of
this chapter one can draw the conclusion that the situation for edge labels is
opposed: here it turns out that the path problem, MINIMUM LABEL PATH, is
harder to approximate than the tree problem.

2.3 Approximating Minimum Label Spanning Tree

We first note a trivial upper bound on the performance of an approximation
algorithm for MINIMUM LABEL SPANNING TREE: Any spanning tree with node
set V consists of |V | − 1 edges and hence of at most |V | − 1 different labels.
Therefore, performance |V | − 1 is achieved by any spanning tree.

Chang and Leu [CL97] suggest two heuristical polynomial time algorithms and
evaluate the quality of the solutions experimentally. In this section we describe
the first heuristic algorithm. Confer Algorithm 2.1 on the next page for a de-
tailed description of the algorithm.

Starting with an arbitrary spanning tree, the algorithm considers each non-
tree edge once as the current edge. The algorithm identifies an edge on the cycle
induced by the current edge whose label has the least number of appearances in
the cycle; then this edge is replaced by the current edge. Obviously the current
subgraph is a spanning tree at each time.

The main idea behind this approach is the following observation: If one
removes an edge where the set of edges of the same color in the tree is rather
sparse, it seems to be likely that by this procedure the color might disappear
from the tree at all. In this case the number of used labels would be reduced.
Unfortunately there are examples where this heuristic can be misled as much as
possible.

We give a worst case example which shows that this heuristic might produce
a solution with performance guarantee |V |−1matching the trivial upper bound.
See Figure 2.2 on page 28 for an illustration. The graph consists of a wheel
of n − 1 nodes plus one center node. One rung of the wheel together with

2.3 APPROXIMATING MINIMUM LABEL SPANNING TREE 27

Input: A graph G = (V, E), and edge labels c : E→ {1, . . . , l}

1 Find an arbitrary spanning tree of G
2 for each non-tree edge iwith label c(i) do
3 Let current← c(i)

4 if label current appears in the spanning tree then
5 Let C be the cycle induced by edge i in the tree
6 Let least be a label with the least number of appearances in C
7 if label current appears more often than label least in cycle C then
8 Replace an edge of label least in C by edge i
9 end if

10 end if
11 end for
Output: Current spanning tree

ALGORITHM 2.1: First heuristic of [CL97].

n − 2 edges on the periphery of the wheel are assigned the same color 0. The
remaining n− 1 edges are colored by n− 1more (pairwise different) colors.

The optimal solution uses the edges of the single color 0which form a span-
ning tree of the graph.

Assume that Algorithm 2.1 starts with the spanning tree which contains no
edge of color 0 (see Figure 2.2 (right)). Then in each iteration, the current edge
of color 0 induces a cycle of three or four edges in which no two edges have
the same color. Therefore no edge swaps will be performed by the algorithm.
Consequently, the heuristic ends up with the initial spanning tree. This tree uses
n− 1 = |V | − 1 colors.

It can be concluded that |V | − 1 is a lower bound on the performance of this
heuristic. With the observations above it follows that the heuristic might behave
as badly as possible.

In the sequel we will provide an algorithm based on the second heuristic sug-
gested by Chang and Leu [CL97]. While they observe experimentally that this
approach behaves well in practice, we prove a logarithmic performance guar-
antee of the algorithm. This result is completed by a matching lower bound on
the approximability of MINIMUM LABEL SPANNING TREE in Section 2.4.

2.3.1 The Algorithm

The second algorithm is formally described in Algorithm 2.3 on page 29. It starts
with the graph where all edges are removed. This graph consists of n connected

28 CHAPTER 2 EDGE LABELED GRAPHS

FIGURE 2.2: Worst case example for the first heuristic (left). Optimal solution (center)
and heuristic solution (right).

components. Iteratively the algorithm selects a color and throws in all edges of
that color. By this procedure the number of connected components is reduced.
The iteration is repeated until the graph is connected.

At the end the number of iterations is an upper bound on the number of
colors needed for a spanning tree of the graph. Therefore the algorithm tries
to keep the number of iterations small. To achieve this goal, in each iteration it
decides for that color which reduces the number of connected components by
the largest amount.

2.3.2 Performance Guarantee

We now prove that Algorithm 2.3 approximates the MINIMUM LABEL SPAN-
NING TREE problem with a logarithmic performance guarantee. In this section
we denote by OPT the value of an optimal solution, i. e., we assume that the
graph admits a spanning tree with OPT different labels. If OPT = 1, the al-
gorithm chooses an optimal color in the first iteration and stops immediately.
Hence we assume OPT ≥ 2 in the sequel.

At first we give the main idea of the proof. The algorithm adds one color per
iteration and stops when the current graph is connected. Therefore the number
of iterations performed by the algorithm is an upper bound on the number of
labels used in the final solution.

The analysis divides the iterations into two phases. The first phase ends after
k1 iterations, where k1 is given by

k1 :=
⌈

OPT · ln n

OPT

⌉
. (2.1)

2.3 APPROXIMATING MINIMUM LABEL SPANNING TREE 29

Input: A graph G = (V, E), and edge labels c : E→ {1, . . . , l}

1 Let C← ∅ the set of used colors
2 repeat
3 Let H be the subgraph of G restricted to edges with colors from C

4 Contract each connected component in H to a supernode
5 for all i ∈ {1, . . . , l} \ C do
6 Let Ei be the set of edges of color i
7 Determine the number of connected components

of graph H augmented by edge set Ei
8 end for
9 Choose color iwith smallest resulting number of components

10 Let C← C ∪ {i}

11 until graph H is connected
12 Compute a spanning tree T of graph H
Output: Spanning tree T

ALGORITHM 2.3: Approximation Algorithm for MINIMUM LABEL SPANNING TREE.

We will show that during the first phase the number of connected components
reduces essentially by a constant factor in each iteration. This can be exploited
to bound the number k2 of connected components which remain at the end of
the first phase. During the second phase we use the basic observation that the
number of connected components reduces by at least one per iteration. There-
fore, k2 − 1 is an upper bound on the number of iterations of the second phase.
Consequently,

k1 + k2 − 1

is an upper bound on the total number of iterations and even on the total num-
ber of colors in the final solution. Observe that the breakpoint between the two
phases is only virtually introduced for the sake of the analysis: since the algo-
rithm does not have any knowledge about OPT in advance, it cannot determine
this point.

We will now continue with proving the ingredients needed to estimate the num-
ber of connected components remaining at the end of the first phase.

Lemma 2.5
Let H be a connected graph with r nodes which has a p-colored spanning tree.
Then there is a color i such that H, restricted to edges of color i, has no more

30 CHAPTER 2 EDGE LABELED GRAPHS

than

r(1− 1/p) + 1/p

connected components.

Proof. Let T be the p-colored spanning tree. Then T contains r− 1 edges. By an
averaging argument, there must be a color i such that the number of i-colored
edges in T is at least (r−1)/p. Moreover, since the number must be integral, we
can conclude that this number is in fact at least d(r− 1)/pe.

Remove all edges from H and then reinsert all tree edges of color i one by
one. Each time inserting one edge, the number of connected components con-
nected component decreases by one, since otherwise the edges would form a
cycle in the tree T . Therefore, the resulting graph has at most

r−

⌈
r− 1

p

⌉
=

⌊
r−

r− 1

p

⌋
=

⌊
r

(
1−

1

p

)
+
1

p

⌋
connected components. This shows the claim. �

Let OPT be the number of colors in the optimal spanning tree. Define

f(n) := n(1− 1/OPT) + 1/OPT .

Then, by Lemma 2.5 and the fact that the algorithm chooses the best possi-
ble color in each iteration, it follows that after the first iteration no more than
f(n) connected components remain. We define the k-fold iteration of f by
fk(n) := f(fk−1(n)) and conclude by induction that fk(n) is an upper bound
on the number of connected components after iteration k. The value of fk(n)

can be bounded as follows:
Lemma 2.6
Let f(n) := n(1− 1/p) + 1/p for some fixed p ≥ 1. Then,

fk(n) ≤ n
(
1−

1

p

)k
+
k

p
.

Proof. We establish the claim by induction on k. The claim is trivial for k = 0.
Assume that it is correct for some k ≥ 0. Then, using the induction hypothesis,

fk+1(n) = f(fk(n)) = fk(n)

(
1−

1

p

)
+
1

p

≤ n
(
1−

1

p

)k(
1−

1

p

)
+
k

p

(
1−

1

p

)
+
1

p

≤ n
(
1−

1

p

)k+1
+
k+ 1

p

as proposed in the lemma. �

2.3 APPROXIMATING MINIMUM LABEL SPANNING TREE 31

At this point we can bound the number of components remaining after k it-
erations. We now try to estimate how many iterations are necessary until the
number of components has fallen below a constant. To this end, we formulate
the following lemma which can be shown by elementary analysis:

Lemma 2.7
For n, p ∈ N, n ≥ p, we have:

n(1− 1/p)k ≤ p if k ≥ p ln
n

p
.

Proof. Since the expression given on the left hand side of the inequality is de-
creasing as long as k increases, it suffices to show that n

(
1 − 1/p

)k ≤ p for
k = p ln n

p
. Taking the natural logarithm on both sides and plugging in the

value of k, we have the following chain of equivalent inequations:(
1−

1

p

)k
≤ p

n⇐⇒ ek·ln
p−1
p ≤ p

n⇐⇒ p · ln n
p
· ln p− 1

p
≤ ln

p

n⇐⇒ p · ln p

p− 1
≥ 1 .

The function p 7→ p ln p
p−1

is non-increasing on interval]1,∞[and has limit of 1
for p→∞. Thus, p ln p

p−1
≥ 1 for all p > 1, and the claim follows. �

We now are able to bound the number of iterations the algorithm performs.
Recall that k1 := dOPT·ln(n/OPT)e is the number of iterations of the first phase.
Let k2 be the number of connected components at the end of this phase. By
Lemma 2.6 and Lemma 2.7, k2 is bounded from above by

k2 ≤ fk1(n)

≤ n
(
1−

1

OPT

)k1
+

k1

OPT

≤ OPT +
k1

OPT
.

(2.2)

Now we consider the number of iterations in the second phase. Since the num-
ber of connected components decreases by at least one in each iteration, phase 2
consists of no more than k2 − 1 additional iterations.

32 CHAPTER 2 EDGE LABELED GRAPHS

As observed before, the total number of iterations is not greater than k1 +

k2 − 1. Using the previous estimations, we conclude further

k1 + k2 − 1
(2.2)
≤ k1 + OPT +

k1

OPT
− 1

(2.1)
=
⌈

OPT · ln n

OPT

⌉
+ OPT +

⌈
OPT · ln n

OPT

⌉
OPT

− 1

≤ OPT · ln n

OPT
+ 1+ OPT +

⌈
ln

n

OPT

⌉
− 1

≤ OPT · ln n

OPT
+ OPT + ln

n

OPT
+ 1

≤ OPT · (2 lnn+ 1)

(2.3)

In the last line of (2.3) we have used the observation ln(n/p) + 1 ≤ p ln(n/p)

which is true for 1 < p ≤ n. Hence, OPT · (2 lnn+ 1) is an upper bound on the
number of iterations performed by the algorithm. This is summarized by the
following theorem:

Theorem 2.8 (Approximability of MINIMUM LABEL SPANNING TREE)
Algorithm 2.3 is an approximation algorithm for the MINIMUM LABEL SPAN-
NING TREE problem with performance guarantee of 2 lnn+ 1. �

The running time of the algorithm is polynomial and will be precisely esti-
mated in Section 2.3.4.

2.3.3 Asymptotic Performance Guarantee

The approximation result from Theorem 2.8 can further be improved using an
asymptotic performance analysis:

Theorem 2.9 (Approximability of MINIMUM LABEL SPANNING TREE)
For any ε > 0, problem MINIMUM LABEL SPANNING TREE can be approxi-
mated with performance (1+ ε) lnn in polynomial time.

Proof. Let ε > 0 be fixed. We first show that there exist constants p0 ∈ N and
n0 ∈ N such that for any n ≥ n0 and any OPT ≥ p0, the last estimation in (2.3)
can be strengthened yielding a bound of (1+ ε) lnn.

To this end, choose δ := min{ε/3, 1}. Further we define

p0 :=

⌈
1

δ

⌉
and n0 :=

⌈
e1/δ

⌉
.

2.3 APPROXIMATING MINIMUM LABEL SPANNING TREE 33

Then for any n ≥ n0, OPT ≥ p0, we have

1

OPT
≤ δ, 1

lnn
≤ δ, 1

OPT · lnn
≤ δ2 ≤ δ .

In this case, the right hand side of (2.3) can be estimated as follows:

OPT · ln n

OPT
+ OPT + ln

n

OPT
+ 1

≤ OPT · lnn+ OPT + lnn+ 1

=

(
1+

1

lnn
+

1

OPT
+

1

OPT · lnn

)
·OPT · lnn

≤ (1+ 3δ) ·OPT · lnn
≤ OPT · (1+ ε) · lnn .

(2.4)

Notice that n0 and p0 are constants which do not depend on the input instance.
An approximation for MINIMUM LABEL SPANNING TREE can be computed

as follows: If the number n of nodes in the input instance obeys n < n0, then
a solution can be output using a table lookup in constant time. For n ≥ n0,
we have two phases: First, for each i = 1, . . . , p0 − 1 we check all

(
l
i

)
∈ O(mi)

combinations of i colors for a feasible solution. The running time for the first
phase is in O(mp0) and in particular polynomial. If no feasible solution has
been found, we start the second phase and run Algorithm 2.3. Since in this
situation we know that OPT ≥ p0, we can use (2.4) to improve the estimation
(2.3). This shows that the performance guarantee of the algorithm is bounded
by (1+ ε) lnn. �

We point out that this is only a theoretical result. Albeit the actual running
time of the suggested algorithm is shown to be polynomial, it may be far too
large to be of practical use.

2.3.4 Running Time

We now estimate the running time of Algorithm 2.3 on page 29. Let l be the
number of colors of the input graph. We show that the algorithm can be imple-
mented to run in time O(m + α(m,n) · l ·min{ln,m}). Here, α is the inverse of
Ackerman’s function (see page 8 for a definition).

The implementation uses efficient data types and data structures for disjoint
sets. See [CLR90] for a detailed description of the path compression and union-
by-rank heuristics for union-find data structures. Recall that t union-find opera-
tions on s elements can be implemented with total running time O(t · α(t, s)).

34 CHAPTER 2 EDGE LABELED GRAPHS

We first do a preprocessing step to reduce the number of edges of each color
to at most n−1. Let Ec ⊆ E be the set of edges of color c and choose Fc ⊆ Ec such
that G[Fc] is a spanning forest of the graph G[Ec]. Then |Fc| ≤ n − 1 while both
edge sets Ec and Fc still induce the same connected components of graph G.
Replace Ec by Fc. Since the main algorithm operates on connected components
rather than on edge sets, this preprocessing does not have an impact on the
correctness. The computation of the spanning forests for all colors c = 1, . . . , l

can be implemented using the depth first search algorithm (see e.g. [CLR90]) in
total time O

(∑l
c=1(n+ |Ec|)

)
⊆ O(ln+m).

To determine the number of connected components when adding edge set Fc
to the graph (Step 7 of Algorithm 2.3) it suffices to perform |Fc| union-find oper-
ations on the set of nodes ofH for a fixed color c. Since there are at most l colors
to test in each iteration, the running time per iteration can be bounded by

O
(l∑
c=1

|Fc|α(|Fc|, n)
)
⊆ O

(
α(m,n) ·

l∑
c=1

|Fc|
)
⊆ O

(
α(m,n) ·min{ln,m}

)
.

The last estimation uses the fact that |Fc| < n for all colors c and on the other
hand

∑l
c=1 |Fc| ≤ |E| = m. Now observe that the number of iterations is at

most l. Respecting the effort used for the preprocessing, this results in

O(m+ α(m,n) · l ·min{ln,m})

as an upper bound for the overall running time of Algorithm 2.3.

Theorem 2.10 (Running time)
Algorithm 2.3 has a running time within

O(m+ α(m,n) · l ·min{ln,m})

on an l-colored graph. �

2.4 Hardness of Minimum Label Spanning Tree

In this section we provide a logarithmic lower bound on the approximability of
MINIMUM LABEL SPANNING TREE.

Theorem 2.11 (Non-Approximability of MINIMUM LABEL SPANNING TREE)
Unless NP ⊆ DTIME(NO(log logN)), for any ε > 0, MINIMUM LABEL SPANNING

TREE cannot be approximated with performance 6
31

(1− ε) ln |V |.

2.4 HARDNESS OF MINIMUM LABEL SPANNING TREE 35

Proof. We give a reduction from MINIMUM SET COVER. An instance of MIN-
IMUM SET COVER is given by a finite set Q = {q1, . . . , qs} of ground elements
and a family F = {Q1, . . . , Ql} of subsets ofQ. The problem consists of finding a
covering C ⊆ F ofQwith minimum number |C| of sets. The problem MINIMUM
SET COVER cannot be approximated within a factor (1 − ε) ln |Q| for any ε > 0,
unless NP ⊆ DTIME(NO(log logN)) (see Theorem 1.6 on page 17).

I1 I2 Il

1 2 l

q1 q2 qs

Q2Q1 Ql· · ·

FIGURE 2.4: Reduction from MINIMUM SET COVER to MINIMUM LABEL SPANNING

TREE. In instance Ij, color j is shown by thick lines.

Given an instance of MINIMUM SET COVER problem, we construct a collec-
tion {I1, I2, . . . , Il} of instances of MINIMUM LABEL SPANNING TREE as follows
(confer Figure 2.4 for an illustration of the reduction): The node set of graph Ij
consists of Q (the element nodes), F (the set nodes), and an additional node r
(the root). The root is connected to each set node via an edge of color j. Further,
the graph contains an edge (qν,Qµ) of color µ between an element node qν and
a set node Qµ if and only if qν ∈ Qµ. Observe that the construction can be
performed in polynomial time.

It is easy to see that there is a covering C ⊆ F of Q with no more than k sub-
sets if and only if there is a j ∈ {1, . . . , l} such that instance Ij contains a spanning
tree with edges of no more than k different colors.

A spanning k-labeled tree induces a set cover of size at most k in an obvious
way: If color µ appears in the tree, then choose set Qµ to be in the cover. Since
the tree is spanning, the resulting collection of sets covers the whole ground set.
(Note that if a color merely appears in edges adjacent to the root, we can remove
the corresponding set Qj from the cover and obtain a valid cover of size k− 1.)

Conversely, let there be a covering C of Q with k subsets. Choose a j ∈
{1, . . . , l} such that Qj ∈ C and consider instance Ij. The subgraph consisting
of all edges adjacent to the root and all edges adjacent to one of the set nodes
of C consists of k colors, it is connected, and it spans all nodes. Therefore this
subgraph contains a spanning tree of no more than k colors.

36 CHAPTER 2 EDGE LABELED GRAPHS

Consider an instance I of MINIMUM SET COVER with ground set |Q| and sub-
sets F as constructed in the proof of [Fei96] (confer Property 1.7 on page 17), let
Ij be the corresponding instance of MINIMUM LABEL SPANNING TREE which
admits a tree with the same optimal number OPT of colors.

From the construction it is easy to see that the number n of nodes of in-
stance Ij satisfies n = |Q| + |F| + 1. By Property 1.7, we can conclude n ≤
|Q|5 + |Q| + 1 ≤ |Q|31/6 for |Q| ≥ 2.

Assume there were an approximation algorithm for MINIMUM LABEL SPAN-
NING TREE on an n-node graph with performance c · (1− ε) lnn for some con-
stant c > 0. This algorithm, when run on instance Ij, outputs a solution with at
most c · (1 − ε) lnn · OPT ≤ 31/6 · c · (1 − ε) ln |Q| · OPT colors which can be
transformed into a set cover of the same size. If c < 6/31, this is a contradic-
tion to the inapproximability of MINIMUM SET COVER (confer Theorem 1.6 on
page 17). �

2.5 Hardness of Minimum Label Path

For proving the hardness of MINIMUM LABEL PATH, we use a reduction from
RED-BLUE SET COVER. This problem has been introduced in [JK+99, CD+00].

2.5.1 Red-Blue Set Cover

An instance of RED-BLUE SET COVER specifies a set of ground elements, each
colored red or blue, together with a family of subsets of the ground set. Each of
the subsets may contain both red and blue elements, or elements of one color
only. A feasible covering consists of a collection of sets in the family which cover
all the blue elements. The goal is to find a feasible covering which minimizes
the number of red elements.

Observe that one can assume without loss of generality that the family does
not contain subsets with red elements only.

Definition 2.12 (RED-BLUE SET COVER problem)
Let R and B be two finite sets of red and blue elements, respectively, R ∩ B = ∅.
Let S ⊆ 2R∪B be a family of subsets of R ∪ B. A solution of the RED-BLUE SET
COVER problem is a collection C ⊆ Swith the following two properties:

1. all blue elements are covered, i. e.,⋃
s∈C

s ⊇ B ,

2.5 HARDNESS OF MINIMUM LABEL PATH 37

2. the number of red elements covered, i. e.,∣∣∣∣∣R ∩⋃
s∈C

s

∣∣∣∣∣ ,
is minimized.

RED-BLUE SET COVER is a generalization of MINIMUM SET COVER. In the latter
problem, the goal is to find a covering where the number of sets used for the
covering is minimized: This can be reduced to RED-BLUE SET COVER if each of
the subsets in the family is assigned a unique red element.

In [DS99], RED-BLUE SET COVER is viewed in the hierarchy of MINIMUM
MONOTONE SATISFYING ASSIGNMENT problems. (This problem class is also
known by the name AND-OR SCHEDULING [GM97].) A formula is called mono-
tone if it contains only positive literals. An assignment is called minimal if the
number of variables which are assigned the true value is minimal. A formula
belongs to class Πk if it has k− 1 alternations between AND and OR and the first
level of operators is AND. Problem class MMSAk contains all MMSA problems
restricted to formulae of Πk. In [DS99] it is shown that MINIMUM SET COVER is
equivalent to MMSA2 while RED-BLUE SET COVER is equivalent to MMSA3.

2.5.2 Hardness of Red-Blue Set Cover

We continue with some results on RED-BLUE SET COVER. Since the problem
generalizes MINIMUM SET COVER, one can immediately use the hardness re-
sult from Theorem 1.6 on page 17 to derive a logarithmic lower bound on the
approximability of RED-BLUE SET COVER under the assumption that NP 6⊆
DTIME(Nlog logN).

Improved lower bounds on the approximability have been shown recently
in [CD+00]:

Theorem 2.13 (Hardness of RED-BLUE SET COVER [CD+00])
Unless NP ⊆ DTIME(Npolylog(N)), for any ε > 0, problem RED-BLUE SET COVER

can not be approximated to within a factor of O(2(lnn)1−ε
), where n = |S|4, and

|S| denotes the cardinality of the family of subsets given by the problem in-
stance. �

Theorem 2.14 (Hardness of RED-BLUE SET COVER [CD+00])
Theorem 2.13 continues to hold even if the subsets are restricted to contain ex-
actly one blue and two red elements. �

38 CHAPTER 2 EDGE LABELED GRAPHS

The proof of Theorem 2.13 uses a reduction from SYMMETRIC LABEL COVER
for which a similar lower bound on the approximability is known [DK99]. The
restriction to sets of one blue and two red elements can be guaranteed by the
reduction used in that proof.

Theorem 2.15 (Hardness of RED-BLUE SET COVER [CD+00])
For any c < 1/2, let δc := 1/ log logc |R|, where |R| denotes the size of the set of
red elements given by the problem instance. Unless P = NP, RED-BLUE SET

COVER cannot be approximated to within a factor of O(2log1−δc |R|). �

The proof of Theorem 2.15 uses the equivalence to MMSA3 and a non-
approximability result from [DS99].

Notice that the first results are stated in terms of the number of sets while
the other one is stated in terms of the number of red elements. Therefore the
theorems are not comparable to each other with respect to the strength of the
result. If one assumes that the number of subsets is polynomially bounded by
the number of red elements, Theorem 2.15 provides the stronger result [CD+00].

In [CD+00] it is argued that the lower bounds of Theorem 2.13 and Theorem 2.15
improve the logarithmic lower bounds following from the straightforward re-
duction from MINIMUM SET COVER. In the remaining part of this section we
try to comprehend this proposition.

Problem MINIMUM SET COVER can be approximated within a factor given
by a function f(n) = (logn)k for some fixed k > 0 (confer [CLR90]). The lower
bound for RED-BLUE SET COVER noted above is given by a function g(n) =

b(lnn)1−ε for arbitrary but fixed 0 < ε < 1 and b > 1. We briefly deduce that

f ∈ o(g)

proving the fact that RED-BLUE SET COVER is indeed substantially harder to
approximate than MINIMUM SET COVER.

To examine the behavior of f/g for large n, we substitute N := lnn and get

f(n)

g(n)
=

(lnn)k

b(lnn)ε

=
Nk

bN
ε

It is easy to see that this ratio decreases monotonically if ε ·Nε · lnb > 1 and ap-
proaches zero for N→∞ and hence also for n→∞. Consequently, function g
growths indeed asymptotically faster than function f as claimed.

2.5 HARDNESS OF MINIMUM LABEL PATH 39

2.5.3 Hardness of Minimum Label Path

After stating the hardness results on RED-BLUE SET COVER, we will now carry
out the reduction from RED-BLUE SET COVER to MINIMUM LABEL PATH. It
will turn out that the reduction is approximation preserving, hence the non-
approximability results for RED-BLUE SET COVER also hold for MINIMUM LA-
BEL PATH.

Theorem 2.16 (Hardness of MINIMUM LABEL PATH)
Unless NP ⊆ DTIME(Npolylog(N)), for any ε > 0, problem MINIMUM LABEL

PATH can not be approximated to within a factor of O(2(lnk)1−ε
), where k ∈

Ω(n1/4), and n denotes the number of nodes of the input graph.

Proof. The proof uses a reduction from problem RED-BLUE SET COVER. Let
I ′ = (R, B, S) be an instance of RED-BLUE SET COVER, where R denotes the set
of red elements, B the set of blue elements, and S ∈ 2R∪B the family of subsets.

v0 v1 v|B|

b2b1 b|B|· · ·

FIGURE 2.5: Reduction from RED-BLUE SET COVER to MINIMUM LABEL PATH.

We setup an instance I for MINIMUM LABEL PATH. The construction is il-
lustrated in Figure 2.5. For each blue element bi, create a node vi. Add another
node v0. For each blue element bi and each set s ∈ S where bi ∈ s, create a
new path, called (bi, s)-representing, between vi−1 and vi. This path consists of
|s ∩ R| edges and |s ∩ R| − 1 new nodes.

Finally we have to color the edges of instance I. To this end, choose a unique
color for each red element. Then, for each (bi, s)-representing path, find an
arbitrary bijection between its edges and the red elements of set s, and color the
edges according to that bijection.

Denote by n the number of nodes of the constructed instance I. Following
the construction as described above, one observes that

n =

|B|∑
i=1

(
1+
∑
s∈S
s3bi

(|s ∩ R| − 1)

)
+ 1 . (2.5)

40 CHAPTER 2 EDGE LABELED GRAPHS

If we presume the restrictions of Theorem 2.14, we have

|S ∩ R| ≤ 2 and |s ∩ B| = 1 (2.6)

for all sets s ∈ S. Consequently,

|S| ≥ |B| . (2.7)

Plugging (2.6) and (2.7) into (2.5), we can conclude

n =

|B|∑
i=1

(
1+
∑
s∈S
s3bi

(|s ∩ R| − 1)

)
+ 1

=

(
|B|∑
i=1

1

)
+

(
|B|∑
i=1

∑
s∈S
s3bi

|s ∩ R|

)
−

(
|B|∑
i=1

∑
s∈S
s3bi

1

)
+ 1

=

(
|B|∑
i=1

1

)
+

(∑
s∈S

|s ∩ B| · |s ∩ R|

)
−

(∑
s∈S

|s ∩ B|

)
+ 1

≤ |B| + 2|S| − |S| + 1

≤ 3|S| .

(2.8)

It is easy to see that there is a one-to-one correspondence between a v0-v|B|-
path using k colors and a cover of B using sets with a total of k different red
elements. Moreover, any approximation of MINIMUM LABEL PATH with perfor-
mance α immediately yields an approximation of RED-BLUE SET COVER with
the same factor. Using the hardness result from Theorem 2.14 and the observa-
tion in (2.8) the claim follows. �

2.6 Concluding Remarks

In Table 2.6 we briefly summarize the results on the MINIMUM LABEL SPAN-
NING TREE problem obtained in this chapter. The running time is formulated
for graphs with n nodes and m edges of l different colors. The lower bound on
the approximability assumes NP 6⊆ DTIME(NO(log logN)).

We close this chapter with pointing to some problems related to MINIMUM LA-
BEL PATH. The first problem, RESTRICTED LABEL PATH, is basically the decision
version of MINIMUM LABEL PATH.

2.6 CONCLUDING REMARKS 41

Approach Performance Reference

Algorithm 2.3 2 lnn+ 1 Theorem 2.8
running time
O(m+ α(m,n) · l ·min{ln,m})

polynomial time algorithm (1+ ε) lnn Theorem 2.9
for any ε > 0

lower bound 6/31 · lnn Theorem 2.11

TABLE 2.6: Summary of results on the MINIMUM LABEL SPANNING TREE problem pre-
sented in this chapter.

Definition 2.17 (RESTRICTED LABEL PATH problem)
Let G = (V, E, c) be an edge labeled graph, v,w ∈ V two distinguished nodes,
k ∈ N an integer. Is there a path in G from v to wwhich is k-labeled?

This problem is NP-complete, as follows from the NP-hardness results for
MINIMUM LABEL PATH (Theorem 2.16 on page 39). An alternative and maybe
more straightforward proof for this fact follows from the observation that prob-
lem HAMILTONIAN PATH can be reduced to RESTRICTED LABEL PATH: Con-
sider an instance of HAMILTONIAN PATH. Assign each edge a unique color.
Now it suffices to check all O(|V |2) pairs of nodes for a (|V | − 1)-labeled path in
order to solve HAMILTONIAN PATH.

Another related problem is MAXIMUM LABEL PATH. Here, the minimization
objective from MINIMUM LABEL PATH is exchanged with a maximization ob-
jective: The goal is to find a path between two specified nodes which uses as
many different colors as possible. Of course the path should be restricted to be
a simple path in that case.

Definition 2.18 (MAXIMUM LABEL PATH problem)
Let G = (V, E, c) be an edge labeled graph, v,w ∈ V two distinguished nodes.
The goal is to find a k-labeled simple path in G from v to w where k is maxi-
mized.

A very easy reduction shows that this problem is NP-hard. Moreover, one
can conclude a lower bound on the approximability similar to that of MINIMUM
LABEL PATH.
Corollary 2.19
Unless NP ⊆ DTIME(2O(log1/εN)), for any ε > 0, problem MAXIMUM LABEL

PATH can not be approximated to within a factor of O(2(lnn)1−ε
).

42 CHAPTER 2 EDGE LABELED GRAPHS

Proof. In [KMR97] the stated lower bound has been shown for the LONGEST
PATH problem. An instance of LONGEST PATH is given by an undirected graph,
and the goal is to find a simple path with as many edges as possible. The re-
duction from LONGEST PATH to MAXIMUM LABEL PATH can be carried out
similarly to the reduction from HAMILTONIAN PATH mentioned above: Assign
each edge a unique color, check O(|V |2) instances for a maximum label path,
and return the best solution. �

43

Chapter 3

Reload Costs

Minimum label subgraph problems considered in the preceding chapter have
reasonable applications in the area of transportation problems. Other applica-
tions include the design of communication networks. The minimization of the
total number of colors used in a subgraph is a useful tool for network design
questions of static nature.

Consider for example a problem of transporting goods through a heteroge-
neous network which is composed of subnetworks. The reader may imagine
several flight, truck, and railway subnetworks connected to the overall trans-
portation network. Each subnetwork is run by an independent carrier. In the
graph it is represented by edges of a color which is chosen unique for each sub-
network. If transportation requests are scheduled in such a network, then the
organization effort for planning and scheduling the request directly depends on
the number of carriers involved at the desired route. This motivates the aim to
keep this number small. This kind of optimization is well handled by the search
for a minimum label subgraph discussed in the previous chapter.

Other applications put the main focus on the dynamic view of routing prob-
lems. Consider the transportation problem mentioned above. If a good is trans-
ported along a scheduled route through the network of different carriers, then
the good has to be reloaded at each node where the active carrier changes. This
reloading procedure may induce storage cost and time needed for repacking.
We subsume all those types of cost by the notion reload cost further.

Obviously, a minimum label subgraph is not necessarily an optimal solution
for a problem where the reload costs are to be minimized: Even if a path uses
two different colors only, it may be the case that the two colors are alternating
along the path, increasing the total sum of reload cost at each node. This obser-
vation motivates the formulation and examination of network design problems
under a reload cost model.

44 CHAPTER 3 RELOAD COSTS

carrier a

carrier b

carrier c

node v

v

FIGURE 3.1: Node with three incident carrier edges. The reload costs (thick edges) sat-
isfy the triangle inequality.

A pure reload cost model can be applied to problems of transmitting data
through incompatible communication networks. In this area, time and cost
for routing data within a particular subnetwork are negligible compared to the
effort needed for converting data at gateways. Other types of applications re-
quest for a mixed model where reload costs at nodes and classical costs at edges
are treated at the same time. We will argue in Section 3.1.4 on page 48 that the
suggested model of reload costs is strong enough to handle also problems with
this mixed cost structure.

For natural applications it is useful to assume that for each node the reload
cost function satisfies the triangle inequality (see Definition 3.3 for a formal defi-
nition). Figure 3.1 shows a magnification of a node which is incident with three
different carriers. A violation of the triangle inequality would imply that the
cost of reloading a good between two carriers, say directly from carrier a to car-
rier b, would be larger than to involve a third party c and perform two reload
operations a–c and c–b. It is obvious that this cost structure is very unlikely in
practice.

We investigate three problems in this chapter. The first problem, MINIMUM
RELOAD COST PATH, consists of finding a path of minimum reload costs con-
necting two given nodes. The ideas are further used as a basis for develop-
ing an algorithm for MINIMUM RELOAD COST RADIUS SPANNING TREE. This
problem consists in finding a spanning tree with minimal reload cost radius
with respect to a given center node. Such a tree can be used as a replacement
for a “shortest reload cost path tree”, since we will show that the latter struc-
ture does not exist. Finally, we investigate MINIMUM RELOAD COST DIAMETER
SPANNING TREE, which consists in the search for a spanning tree of minimum
diameter with respect to reload costs. This is motivated by the fact that the di-
ameter of the tree is an upper bound on the reload costs between an arbitrary
pair of nodes.

3.1 PRELIMINARIES AND PROBLEM FORMULATION 45

3.1 Preliminaries and Problem Formulation

3.1.1 Reload Costs

The model of reload costs differs from classical edge or node cost models in
the following way: Classical cost functions map single objects (edges or nodes)
to costs. In contrast to that, reload costs (which arise at nodes) depend on the
pair of colors of incoming and outgoing edges used by a traversal through the
node. For technical reasons, we require reload cost functions to satisfy some
conditions:
Definition 3.1 (Reload Cost Function)
Let X be a finite set of colors. A function c : X2 → N0 is called a reload cost
function, if for all pairs x1, x2 ∈ X

1. c(x1, x2) = c(x2, x1),
2. x1 = x2 =⇒ c(x1, x2) = 0,
3. x1 6= x2 =⇒ c(x1, x2) > 0.

Reload costs are defined on a set of colors. In order to make reload costs
useable for graphs it is necessary to have a graph with edge colors.

Definition 3.2 (Graph with Reload Costs)
LetG = (V, E) be an undirected graph with parallel edges allowed. Let χ : E→ X

be a mapping from the set of edges to a finite set X of colors. Let c : X2 → N0 be
a reload cost function. Then we write G = (V, E, X, χ, c) and name this tuple a
graph with reload costs.

As noted before, a natural requirement on reload cost functions is that they
satisfy the triangle inequality at each node.

Definition 3.3 (Reload Costs with Triangle Inequality)
LetG = (V, E, X, χ, c) be a graph with reload costs. Reload cost function c is said
to satisfy the triangle inequality, if for all e1, e2, e3 ∈ E which are incident in
one single node,

c(χ(e1), χ(e3)) ≤ c(χ(e1), χ(e2)) + c(χ(e2), χ(e3)) .

Observe that Definition 3.3 does not imply that the triangle inequality must
hold for all triples of colors.

We continue with a notational convention. Even if reload costs are defined
on pairs of colors and not on pairs of edges, it is more convenient to have a
notation for costs on pairs of edges. To this end we will use the shorter notation

c(e1, e2) := c(χ(e1), χ(e2))

46 CHAPTER 3 RELOAD COSTS

throughout this work if there are no ambiguities. Similarly, we use the abbrevi-
ation of a quadrupleG = (V, E, χ, c) for a graph with reload costs. However, we
keep in mind that the costs can not be chosen arbitrarily for each pair of edges,
but still depend on the pair of colors.

3.1.2 Reload Cost Distance

We are now ready to use the notion of reload costs to define reload costs of paths
and induced reload cost distances in graphs. Reload costs on a path arise at a
node where two consecutive edges have different colors. The total reload costs
of a path are determined by summing up all reload costs arising at inner nodes
in the path. Consequently, a path of one edge only has reload cost zero.

Definition 3.4 (Reload Costs of a Path)
Let G = (V, E, χ, c) be a graph with reload costs. Let p = (e1, . . . , ek) be a path
in G. The reload costs of path p are determined by

c(p) :=

k−1∑
i=1

c(ei, ei+1) .

Naturally, these costs induce a distance function on the graph:

Definition 3.5 (Reload Cost Distance)
Let G = (V, E, χ, c) be a graph with reload costs. By

distcG(v,w) := min{ c(p) | p is a path from v to w in G }

we define the induced reload cost distance function.

In contrast to that, we recall that for a classical edge length function l : E →
N0, the length of a path p is given by

l(p) :=

k∑
i=1

l(ei) ,

and the induced length distance function is determined by

distlG(v,w) := min{ l(p) | p is a path from v to w in G } .

Notice that we use character “c” to tag functions related to reload costs while
we use an “l” to tag functions related to classical lengths.

3.1 PRELIMINARIES AND PROBLEM FORMULATION 47

3.1.3 Problem Formulation

From the motivation of reload costs as discussed in the introduction to this
chapter it is strongly recommended that input graphs may contain parallel
edges of different color. So we do not assume that the graphs are simple
throughout this chapter. Without loss of generality we assume that the graph
does not contain parallel edges of the same color.

We are now ready to define the problems under investigation. The first question
is to find a path of minimum reload costs between two distinguished nodes of
a graph.

Definition 3.6 (MINIMUM RELOAD COST PATH Problem)
An instance of MINIMUM RELOAD COST PATH, MRPATH for short, consists of
a graph G = (V, E, χ, c) with reload costs, and two distinct nodes s, t ∈ V . The
goal is to find a path p from s to t of minimum reload costs c(p).

By M∆RPATH we denote the problem where the reload cost function satisfies
the triangle inequality. It will turn out that this problem can be solved in poly-
nomial time.

The second question is to find a spanning tree with minimum reload cost radius
with respect to some given root node.

Definition 3.7 (MINIMUM RELOAD COST RADIUS SPANNING TREE Problem)
An instance of MINIMUM RELOAD COST RADIUS SPANNING TREE, MRRADT
for short, is given by a graph G = (V, E, χ, c) with reload costs and a root
node r ∈ V . The goal is to find a spanning tree T v G of the graph, such
that the radius with respect to the reload costs, i. e.,

radc(T, r) := max
v∈V

distcT (r, v) ,

is minimized among all spanning trees of G.

By M∆RRADT we denote the problem where the reload cost function satisfies
the triangle inequality.

Observe that a tree with minimal reload cost radius is not an analogon to a
shortest path tree for classical edge lengths. Moreover, the notion of a shortest
path tree is meaningless for reload costs: Consider the graph G displayed in
Figure 3.2. It consists of edges of three different colors with pairwise reload
cost as depicted in the figure. Clearly, the distance from r to w is zero, and the
distance from r to v equals 2. Obviously there is no way to construct a tree T @ G
which reflects both distances at the same time.

48 CHAPTER 3 RELOAD COSTS

r v

3

1

1

w

FIGURE 3.2: Graph of maximal degree 3 where the set of shortest paths from the root r
is not a tree.

The last problem investigated in this chapter is to find a spanning tree with
minimum reload cost diameter. We will give a characterization of both instances
where this problem can be solved in polynomial time and NP-hard cases.

Definition 3.8 (MINIMUM RELOAD COST DIAMETER SPANNING TREE)
An instance of MINIMUM RELOAD COST DIAMETER SPANNING TREE, MRDIAT
for short, is given by a graph G = (V, E, χ, c) with reload costs. The goal is to
find a spanning tree T v G of the graph, such that the diameter with respect to
the reload costs, i. e.,

diamc(T) := max
v,w∈V

distcT (v,w) ,

is minimized among all spanning trees of G.

By M∆RDIAT we denote the problem where the reload cost function satisfies
the triangle inequality.

3.1.4 Combining Reload Cost and Length

Reload costs can be combined with classical edge lengths. Assume that there is
a graph with reload cost function c and edge length function l. Naturally, the
combined length d of a path p is defined to be

d(p) := c(p) + l(p) .

This combined length function induces a distance function distcl on the graph
in the usual way:

distclG(v,w) := min{d(p) | p is a path from v to w in G } .

3.2 RELATED WORK 49

w
v

wwe

c2
c1

v ve

l(e)

e

FIGURE 3.3: Reduction from combined length function (left) to sole reload cost function
(right). Adjustment l(e) = c1 + c2 can be guaranteed.

The combined length distance distcl admits to reformulate variants of all
problems noted above. We argue that these variants can be reduced to the case
with solely reload costs.

The reduction can be performed in the following way (confer Figure 3.3):
For each edge e = (v,w), place two new nodes ve, we onto the edge. This pro-
cedure replaces each edge by a path of three edges. Let the color of the two
border edges (v, ve) and (we, w) be the color of the original edge, and introduce
a new unique color for the central edge (ve, we). Then augment the reload cost
function such that the sum of the reload costs arising at the inner nodes ve, we
reflects the length of the original edge. Since the augmentation of the reload
cost function only takes place at the new nodes of degree 2, it is easy to see that
the triangle inequality is not violated by the reduction.

Notice that the resulting graph size is still polynomial in the input size: If
the initial graph consists of n nodes,m edges, and k colors, then the new graph
contains n + 2m nodes and 3m edges with k +m colors. Hence the reduction
does not affect the hardness of the problems. Therefore we will stick to the
problems with sole reload cost functions in the remainder of this chapter.

3.2 Related Work

The problem corresponding to MINIMUM RELOAD COST DIAMETER SPAN-
NING TREE with respect to classical edge lengths is called MINIMUM DIAM-
ETER SPANNING TREE and well known in literature. It has been shown that
even for general edge lengths, the problem is equivalent to the ABSOLUTE
1-CENTER problem [KH79a, Ple81, HT95]. For the geometric case, there has
been reported an exact algorithm with running time in O(|V |3) [HL+91]. Sub-
sequently, following the above mentioned equivalence, there has been found
an algorithm with running timeO(|E||V |+ |V |2 log |V |) for general (nonnegative)
edge lengths [HT95].

50 CHAPTER 3 RELOAD COSTS

A two criteria variant with both edge lengths and costs is the MINIMUM
DIAMETER problem suggested by Plesník [Ple81]. He proved that given a con-
straint on the total cost of a subgraph it is NP-hard to approximate the optimal
diameter within a factor 5/4. This hardness remains valid even for the special
cases that l(e) ≡ l for all edges e, or that l(e) = c(e) for all edges e.

3.3 Minimum Reload Cost Path

A first approach to deal with new types of problems is to try to reduce them to
a problem which is already known. In the case of reload costs we try to map
the reload cost structure to classical edge lengths. It will turn out that this idea
works well for the MINIMUM ∆-RELOAD COST PATH problem.

v

w

E(w)

E(v)

FIGURE 3.4: Reduction from reload costs on a path between v and w (top, thick edges)
to edge lengths in the line graph (bottom, solid edges).

3.3 MINIMUM RELOAD COST PATH 51

Consider a single node in a graph with reload costs. Each pair of edges
incident to that node induces reload costs. If we replace the node by a clique
whose order equals the degree of the node, then there is a one-to-one correspon-
dence between pairs of edges of the original graph and the edges of the clique.
Now we can map the reload costs to a length function on the clique edges. (See
Figure 3.4 on the facing page for an illustration of the idea.) Then we can use
classical algorithms to determine a shortest path in the new graph. After that,
we must retransform the path in the new graph to a path in the original graph.
The clue of this transformation is, that the length of the path in the new graph
equals the reload cost of the transformed path in the original graph. Below we
will argue that this claim is correct. The graph which is constructed above is
well known in literature as the line graph.

Definition 3.9 (Line Graph)
Let G = (V, E) be a graph. The line graph H = (VH, EH) of G is defined by

VH := E

EH := { (e1, e2) | e1 and e2 are incident in G } .

To complete the construction we must describe how the reload costs are
transformed to edge lengths in the line graph. This transformation is straight-
forward. Let G = (V, E, χ, c) be a graph with reload costs, H = (VH, EH) its line
graph. For each edge (e1, e2) ∈ EH, define its length to be

l((e1, e2)) := c(e1, e2) . (3.1)

Observe that each node in G is represented by a clique in H. For each node
v ∈ V , denote by

E(v) := { e ∈ E | e is incident with v }

the edges of G which are incident on v. Then the node set E(v) ⊆ VH describes
the clique which represents node v in the line graph.

The correlation between distances in G and H is shown by the following
lemma.
Lemma 3.10
Let G = (V, E, χ, c) be a graph with reload costs, H its line graph with edge
length function l as described above. Then for each pair v1, v2 ∈ V of nodes, we
have

distlH(E(v1), E(v2)) = distcG(v1, v2) , (3.2)

52 CHAPTER 3 RELOAD COSTS

where the l-distance between sets of nodes is defined as usual by

distlH(S1, S2) := min{ distlH(s1, s2) | s1 ∈ S1, s2 ∈ S2 } .

Proof. We show (3.2) by proving two inequalities.

1. distcG(v1, v2) ≤ distlH(E(v1), E(v2)):
Let p = (e1, e2, . . . , eq), ei ∈ VH, be the sequence of nodes visited by a
shortest path in H between the node sets E(v1) and E(v2). By construction
of the line graph, for all i = 2, . . . , q the edges ei−1 and ei are incident inG,
therefore the sequence pwhen viewed as a sequence of edges in E is a path
in G. Since e1 ∈ E(v1), we can assume that the start node of path p is v1
(otherwise remove the first edge and relabel the edges). Similarly, we can
assume that the end node of p is v2. By construction of the length function
we have l((ei−1, ei)) = c(ei−1, ei) for each i = 2, . . . , q. Summing over all
edges yields

distcG(v1, v2) ≤ c(p) = l(p) = distlH(E(v1), E(v2)) ,

which proves the first claim.
2. distlH(E(v1), E(v2)) ≤ distcG(v1, v2):

Let p = (e1, . . . , eq) be the sequence of edges of a reload cost shortest
path in G from v1 to v2. Then p is the sequence of nodes of a path in H
from E(v1) to E(v2). By construction of l, we have l(p) = c(p). Hence

distlH(E(v1), E(v2)) ≤ l(p) = c(p) = distcG(v1, v2)

as stated above. �

The observations noted above and the result of Lemma 3.10 admit to con-
struct a simple and in particular polynomial time algorithm for solving MINI-
MUM ∆-RELOAD COST PATH. The algorithm basically reduces the problem to
the problem of finding a shortest path with respect to classical edge lengths. A
detailed description is noted in Algorithm 3.5 on the next page.

We estimate the running time of Algorithm 3.5. Let n and m be the number
of nodes and edges of G, respectively. The line graph H consists of m nodes
and O(n3) edges. The main effort of Algorithm 3.5 is the computation of a
shortest path in Step 3. If we employ Thorup’s algorithm [Tho97], this step can
be accomplished in time O(|E(H)| + |V(H)|) ⊆ O(n3 +m). This is summarized
in the following corollary:

Corollary 3.11 (Solution of M∆RPATH)
Problem MINIMUM ∆-RELOAD COST PATH can be solved by Algorithm 3.5 in
polynomial time O(n3 +m). �

3.3 MINIMUM RELOAD COST PATH 53

Input: A graph G = (V, E, χ, c) with reload costs, two nodes s, t ∈ V

1 Construct line graph H
2 Setup edge length function l on H as described in (3.1)
3 Compute a shortest path with respect to l from E(s) to E(t)

4 Transform resulting path to a path in G { described in the proof of Lemma 3.10 }

Output: resulting path

ALGORITHM 3.5: Algorithm for solving MINIMUM ∆-RELOAD COST PATH.

FIGURE 3.6: Basic example of a graph (left) with its line graph (center). The reduction of
a tree in the line graph (thick lines) is not necessarily a tree in the original
graph (right).

If the underlying graph class is more complicated than the class of paths, the
idea of reducing reload cost problems to problem versions with classical edge
lengths does no longer work. In particular, for the case of spanning trees there
are mainly two reasons why this approach must fail.

The first reason is the fact that the reduction from a tree in the line graph
to a subgraph in the original graph according to the construction described in
the proof of Lemma 3.10 does not necessarily yield a tree. In Figure 3.6 we give
a brief counter example for the case where the resulting subgraph contains a
cycle.

Secondly, the line graph contains much more nodes than the original graph.
In order to get a spanning tree in the original graph after a supposed reduction,
it is sufficient to compute a tree in the line graph which spans at least one node
of each clique. If one computed a tree spanning all nodes, the algorithm could
be directed to a completely wrong track since the weight of idle leaf edges af-
fects the shape of the tree substantially. For the case of paths we could deal with
this problem by letting the path originate in an arbitrary node of the clique as-
sociated to the starting node. The computation of a tree spanning only one node

54 CHAPTER 3 RELOAD COSTS

per clique is known as the GROUP STEINER TREE problem. Since this problem is
known to be NP-hard and hard to approximate [GKR98], there is no advantage
in using this approach for solving the original problem.

After that considerations it is not surprising that MINIMUM RELOAD COST
RADIUS SPANNING TREE and MINIMUM RELOAD COST DIAMETER SPANNING
TREE turn out to be intractable. In particular we will show in Section 3.6 that
these problems are NP-hard for graphs of maximal degree 5. Nevertheless, for
graphs with maximal degree 3we provide polynomial time algorithms for both
problems in the sequel.

3.4 Minimum Reload Cost Radius Spanning Tree

We continue with problem MINIMUM ∆-RELOAD COST RADIUS SPANNING
TREE restricted to graphs of maximal degree 3. We argue that the problem can
be solved by applying a shortest path algorithm on the line graph and perform-
ing a simple post-processing in order to construct a tree in the original graph.

LetG = (V, E) be the input graph (with root node r ∈ V) andH0 = (VH0 , EH0)

its line graph. We add to the line graph the root node r and up to three edges
{ (r, e) | e ∈ E(r) } of zero length which connect r to the neighborhood E(r).

Let H be the resulting graph. From Lemma 3.10 we can conclude that

distlH(r, E(v)) = distcG(r, v) (3.3)

for all nodes v ∈ V .
Now compute a shortest path tree T of graph H with root r. Consequently,

for each node v ∈ V we have

distlT (r, E(v)) = distlH(r, E(v))
(3.3)
= distcG(r, v) . (3.4)

Let v0 ∈ V be a node where distlT (r, E(v0)) is maximized. By (3.4), this node de-
termines the reload cost radius of graph G with root r. The goal is now to con-
struct a subtree S ofGwhich constitutes a path from r to v0 of length equal to the
radius distlT (r, E(v0)), and connects all remaining nodes by paths whose reload
cost length does not exceed this length. We claim that this task is performed by
Algorithm 3.7 on the next page. We refer also to Figure 3.8 on page 56 for an
illustrating example of the algorithm.

The algorithm maintains for each node v ∈ V a pointer pS(v) to a node from V .
Denote by

Sp := { (v, pS(v)) | v ∈ V and pS(v) is currently defined }

3.4 MINIMUM RELOAD COST RADIUS SPANNING TREE 55

Input: Graph G = (V, E, χ, c) with reload cost,
maximum node degree 3
root node r ∈ V

1 Let H be the line graph of G, augmented by node r and
up to three edges connecting r to E(r) as described in the text

2 Compute a shortest path tree T in graph H with root r
3 Assume that T is directed towards the root.

For each node e 6= r of T , let pT (e) be the ancestor in T
4 for v ∈ V do
5 Call RELAX(v)
6 end for

Output: Tree Swith edge set { (v, pS(v)) | v ∈ V \ {r} }

RELAX(v ∈ V)
11 if v 6= r and pS(v) not defined yet then
12 Choose e ∈ E(v) which minimizes distlT (r, e).

If this is not unique, assure that pT (e) /∈ E(v)

13 This defines pv ∈ V via e = (pv, v)

14 Set pS(v) := pv
15 Call ENFORCE(pv VIA e)
16 end if

ENFORCE(v ∈ V VIA s ∈ E)
21 if v 6= r and v not marked as enforced yet then
22 Let e := pT (s)

If also pT (pT (s)) ∈ E(v), then let e := pT (pT (v))

{ Observe that pT (e) /∈ E(v) now }

23 This defines pv ∈ V via e = (pv, v)

24 Set pS(v) := pv
25 Mark v as enforced
26 Call ENFORCE(pv VIA e)
27 end if

ALGORITHM 3.7: Algorithm solving M∆RRADT.

56 CHAPTER 3 RELOAD COSTS

v

2

2

4

r

1

1

3

5+ ε4

3

00

2 2+ ε

0 2+ ε

4+ 2ε

53

0 0

0
1

2 1 3

2+ ε

4

2

3 53

w0

FIGURE 3.8: Example of Algorithm 3.7. — Top left: Initial graph. Its edges have pair-
wise different colors. Reload costs between equal shaped edges equal 1,
reload cost between different shaped edges equal 2 + ε. — Top right: Re-
sulting line graphH. Thick edges have length 2+ε. — Bottom right: Short-
est path tree with node distances. Solid lines are considered within a se-
quence of calls to ENFORCE. Observe further that mine∈E(v) distlH(r, e) =

2 + ε < 3 (set E(v) is marked black). — Bottom left: Resulting solution.
Since vwas enforced by its right neighbor, the distance of v is not optimal.

3.4 MINIMUM RELOAD COST RADIUS SPANNING TREE 57

the subset of the edges of the initial graph G which is induced by those nodes
where the pointer pS is currently defined. We first state an easy observation:

Observation 3.12
If a node v ∈ V is marked enforced, subsequently it remains marked enforced,
and the pointer pS(v) remains unchanged.

Notice that the pointer pS(v) may change after assigned in procedure RELAX for
the first time.

When the algorithm terminates, we claim that the output set Sp is a tree. To this
end, we first prove the following statement:

Lemma 3.13
At no time, Sp contains a cycle.

Proof. Assume for contradiction that Sp contains a cycle. Since set Sp is induced
by the pointers pS : V → V , the cycle must in fact be a directed cycle.

Consider an arbitrary edge e = (v, p(v)) in Sp where p(v) 6= r. After this edge
is added to Sp (Step 14 or Step 24), procedure ENFORCE is called for node p(v).

Procedure ENFORCE(p(v) VIA e) adds an edge f = (p(v), p(p(v))) to Sp. This
edge does not depend on e due to the selection in Step 22. Hence, all obser-
vations on the properties of ENFORCE are true regardless whether ENFORCE is
actually executed at this time or is skipped since it has already been executed
before.

By selection of f in Step 22 it is guaranteed that the tree T contains a directed
path from node e to f.

We turn back to graph G: edge e was chosen arbitrarily on the cycle in Sp.
Hence, the above argument can be applied to each pair e, f of subsequent edges
on the directed cycle in Sp. This implies a directed cycle in tree T . �

Since at the end of the algorithm, procedure RELAX has been called for
all nodes v ∈ V \ {r} (Step 5), the pointers pS(v) have been defined for all
nodes v ∈ V \ {r}. Thus, the out-degree equals 1 for each node except the root.
From Lemma 3.13 we conclude:

Corollary 3.14
When Algorithm 3.7 terminates, then Sp is a directed spanning tree in G rooted
towards r. �

We will now estimate the distances in Sp from particular nodes to the root.

58 CHAPTER 3 RELOAD COSTS

Lemma 3.15
If for some v,w ∈ V , e ∈ E, e = (v,w), procedure ENFORCE(v VIA e) is called
within procedure ENFORCE (Step 26), then at the end of the algorithm,

distcSp(r,w) = distlT (r, e) .

Proof. The proof is by induction on the number k of edges on the path from r

to e in T . If k = 1, then v = r, and the claim is trivial.
Assume that the claim is true for k. Consider a call to ENFORCE(v VIA s)

where the path from r to s ∈ E in T uses k+1 edges. Then, edge s in finally added
to Sp and in Step 26, procedure ENFORCE(pv VIA e) is called for an ancestor e
of s in T . Hence, we can apply the induction hypothesis, and get

distcSp(r,w) = distcSp(r, v) + c(e, s)

= distcSp(r, v) + l((e, s))

= distlT (r, v) + l((e, s))

= distlT (r,w)

(3.5)

when the current chain of calls to ENFORCE terminates. Since we have assumed
that the initial call to ENFORCE(v VIA s) is within ENFORCE, nodew gets marked
as enforced. By Observation 3.12 it follows that (3.5) holds true until the total
algorithm terminates. �

Lemma 3.16
Let v ∈ V be a node where pS(v) is not defined at the beginning of Step 5. Then,
at end of Step 5, we have

distcSp(r, v) = distcG(r, v) .

Proof. The proof for distcSp(r, v) = distlT (r, E(v)) is the same as the proof of
Lemma 3.15, since the minimization over E(v) takes place in Step 12. (Observe
that in contrast to the proof of Lemma 3.15, in the current situation node v is not
marked as enforced. Hence we can not guarantee that the distance of node v
remains unchanged until the algorithm terminates.) With (3.4) the claim fol-
lows. �

We point out that the above result does not mean that the distance relation holds
for all nodes v ∈ V at the end of the algorithm: If a node v is marked enforced
later on, the distance distcSb(r, v) may increase. However, we can guarantee that
this is not the case for all nodes which determine the reload cost radius of the
spanning tree:

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 59

Theorem 3.17 (Correctness of Algorithm 3.7)
Let w0 ∈ V be a node where distcG(r,w0) is maximized. Then,

distcSp(r,w0) = distcG(r,w0)

at the end of the algorithm.

Proof. Observe that since the algorithm calls RELAX for each node except the
root, the claim immediately follows from Lemma 3.16 if we can rule out a call
to ENFORCE(w0 VIA e) where distlT (r, e) > distcG(r,w0).

Assume for the sake of a contradiction that a call to ENFORCE(w0 VIA e)
happens where distlT (r, e) > distcG(r,w0). Let v be the current node when this
call is performed in Step 15 or Step 26. Then,

distcG(r, v) = distlT (r, e) > distcG(r,w0)

contradicting the fact that node w0 maximizes the distance distc in G. �

The correctness of the algorithm follows with Corollary 3.14 which guaran-
tees that the solution is in fact a tree.

Theorem 3.18 (Solution of M∆RRADT)
Algorithm 3.7 solves M∆RRADT on graphs with maximal degree 3 in linear
time O(|V |).

Proof. It remains to estimate the running time of the algorithm. Let G = (V, E)

be the input graph with maximal degree 3. One observes easily that

2|E| =
∑
v∈V

d(v) ≤ 3|V | . (3.6)

The line graph H0 consists of |E| ≤ 3/2 · |V | nodes and 3|V | edges. The shortest
path tree algorithm of Thorup runs in timeO(|E(H)|+ |V(H)|) ⊆ O(|V |) [Tho97].
The further calculations of Algorithm 3.7 on page 55 can be estimated as fol-
lows: Each execution of RELAX or ENFORCE needs constant time. Moreover,
it is guaranteed that the procedures are not executed more than once for each
node. Hence the overall time needed is in O(|V |). �

3.5 Minimum Reload Cost Diameter Spanning Tree

In this section we provide an algorithm which solves M∆RDIAT on graphs with
maximal degree 3. Notice that we assume that the reload costs satisfy the trian-
gle inequality.

60 CHAPTER 3 RELOAD COSTS

The main idea is a refinement of the mapping idea explained in Lemma 3.10.
In Section 3.3 on page 50 we argued that the idea can not be transferred from
paths to the general case of trees. However, a careful analysis of the problem
shows how to apply the idea in the special case of degree-3 bounded graphs.

The key point of the idea of mapping reload costs to edge lengths is to re-
place each node by a clique. A similar approach which works for graphs of low
degree is to leave the edges unchanged and try to set the edge length function
in such a way that the sum of the edge lengths on a path equals the sum of the
reload cost along that path. The algorithm for solving M∆RDIAT has three main
steps:

1. Setup an auxiliary graph whose edge lengths
reflect the reload cost of the original graph.

2. Solve problem MINIMUM DIAMETER SPANNING TREE
on the auxiliary graph.

3. Transform the resulting tree into a tree in the original graph.

We outline the details in the following.

3.5.1 Setting Up the Auxiliary Graph

Given a graph G = (V, E), we construct an auxiliary graph H by placing a new
node on each edge. Formally, we create a graphHwith node set V(H) := V∪Eϕ,
where Eϕ is a set of (new) nodes with cardinality |Eϕ| = |E|. In this notation we
useϕ to denote the fact that there is a suitable bijection between the correspond-
ing sets. The edge set E(H) of the auxiliary graph is constructed as follows: For
each edge e = (v,w) ∈ E, graph H contains the two edges (v, eϕ), and (eϕ, w).
The construction is illustrated in Figure 3.9 (b).

The length of edges incident to a node from set V is adjusted such that the
sum of the edge lengths on a walk through the node equals the reload costs of
the related walk in the original graph, i.e.,

l(eϕ1 , v) + l(v, eϕ2) = c(e1, e2) for all v ∈ V , ei incident to v. (3.7)

For a node v of degree d, the set of equations (3.7) consists of
(
d
2

)
equations with

d variables. Unfortunately the system of equations will not have a solution in
general if d > 3. This is the main reason why we restrict the graph class to
graphs of maximum degree 3.

However, for degrees d ≤ 3, (3.7) implies that the edge length function l is
well defined. We use the case d = 3 to show this proposition: Assume that there
is a node v ∈ V which is incident to exactly three edges e1, e2, e3 ∈ E. Then (3.7)

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 61

(a) (c)(b)

v
eϕ

w
v

e
w

v
vϕ wϕ

eϕ

w

FIGURE 3.9: The original graph (a), and two steps of the construction of the auxiliary
graph (b,c).

becomes

2 · l(eϕ1 , v) = c(e1, e2) − c(e2, e3) + c(e1, e3)

2 · l(eϕ2 , v) = c(e2, e3) − c(e3, e1) + c(e2, e1)

2 · l(eϕ3 , v) = c(e3, e1) − c(e1, e2) + c(e3, e2) .

(3.8)

It remains to state a relation between the distances in terms of reload costs
in G and the distances in terms of edge lengths in the auxiliary graph H. The
goal is to find a formulation similar to that of Lemma 3.10 on page 51. To this
end, we complete the construction of the auxiliary graph (see Figure 3.9 (c)):
The node set ofH is augmented by set Vϕ which is a copy of the node set V . For
each edge (v, eϕ), add a new edge (vϕ, eϕ) to the edge set.

Recall from Lemma 3.10 that distcG(v1, v2) = distlH(E(v1), E(v2)) for all nodes
v1, v2 ∈ V . This shows that the mapping of reload cost distances to length dis-
tances is easy with the exception of the two endpoints of a path: the minimiza-
tion over the sets E(vi) is unwieldily for applying known algorithms.

This is the reason why we introduced the new level Vϕ of nodes. Each node
from vϕ is connected to all nodes from E(v). For convenience, we refer to those
connecting edges, i. e., all edges incident with nodes from Vϕ, as Ω-edges in
the sequel. Assume for now that one can assure that Ω-edges appear only at
endpoints of paths. Then from the observation

distlH(vϕ1 , v
ϕ
2) = distlH(vϕ1 , E(v1)) + distlH(E(v1), E(v2)) + distlH(E(v2), v

ϕ
2) (3.9)

one can derive a relationship between distlH(vϕ1 , v
ϕ
2) and distcG(v1, v2). The rela-

tionship cannot be equality: From (3.9) and Lemma 3.10 one would conclude
that the weight of all Ω-edges equals zero. It is easy to observe that in this case

62 CHAPTER 3 RELOAD COSTS

all distances in the line graph become zero as well. However, it will turn out
that setting the length of theΩ-edges to some large constant

Ω > 2 ·max{ c(x, x ′) | x, x ′ ∈ X } . (3.10)

is sufficient to recover the suggested approach:

Lemma 3.19 (Distance mapping)
Let G = (V, E) be a graph with reload cost function c. Let H be the auxiliary
graph constructed as described above, and l be the computed edge length func-
tion. Then for each pair v,w ∈ V ,

distcG(v,w) = distlH(vϕ, wϕ) − 2Ω .

Further, if c satisfies the triangle inequality, then l ≥ 0.

Proof. The proof of the first claim uses arguments very similar to that of the
proof of Lemma 3.10 on page 51. There are only small changes necessary: Equa-
tion (3.1) must be replaced by (3.7). The mechanism of Lemma 3.10 where the
path is allowed to start in any node from set E(v) is reflected in the current
lemma by using an arbitraryΩ-edge incident to node vϕ. This implies an addi-
tive offset of 2Ω between path length and its reload cost. Notice that due to the
constructionΩ-edges appear never inside a path of minimal length.

To prove the second claim, namely l ≥ 0, it suffices to plug in the triangle
inequality of Definition 3.3 into the solution of (3.7). For the case of degree d = 3

the result is immediate from (3.8). The remaining cases d = 1, 2 are easy. �

We remark that from (3.8) we can conclude that for each non-Ω-edge e in the
auxiliary graph its length satisfies

l(e) < 1/2 ·Ω. (3.11)

This completes the construction of the auxiliary graph. Algorithm 3.10 on
the next page summarizes the construction.

Lemma 3.19 implies that the reload costs can be reduced to classical edge
lengths. This suggests to call known algorithms for the problem of finding a
minimum diameter spanning tree of the auxiliary graph at this point. A suitable
and efficient algorithm for this task has been reported by Hassin and Tamir
[HT95].

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 63

Input: Graph G = (V, E, χ, c) with reload cost,
maximum node degree 3

1 Let Vϕ and EΦ be copies of V and E, respectively
2 Let V(H) := V ∪ Vϕ ∪ Eϕ
3 Let E(H) := ∅

4 for each edge e ∈ E, e = (v,w) do
5 Add edges (v, eϕ), (eϕ, w) of length l(.) according to (3.7) to edge set E(H)

6 Add edges (vϕ, eϕ), (eϕ, wϕ) of length l(.) = Ω to edge set E(H)

7 end for
Output: Auxiliary graph H = (V(H), E(H)) with edge lengths l

ALGORITHM 3.10: Setting up the auxiliary graph.

Φ̌ Φ̂

eϕ

vϕ

veϕ

vϕ

v

FIGURE 3.11: Images under functions Φ̌ and Φ̂.

3.5.2 Projections

In this section we introduce the notion of projection. A projection is a mapping
from a subset of the auxiliary graph into the original graph. We will use this
projection later on to transform the solution found in the auxiliary graph into a
solution in the original graph.

The notion “projection” comes from a point of view where we identify two
layers in the auxiliary graph: the lower layer consists of the edges incident with
nodes from V , while the upper layer contains all Ω-edges. A natural transfor-
mation from the auxiliary graph to the original graph is to insert an edge into
the original graph whenever the solution in the auxiliary graph contains a cor-
responding edge from lower or upper layer. The resulting solution can be seen
as a kind of “shadow” of the auxiliary solution.

To be more formally, we introduce two functions Φ̂, Φ̌ on the set of edges of
the auxiliary graph (see Figure 3.11) which establish a correspondence between

64 CHAPTER 3 RELOAD COSTS

the edges of the two layers:

Φ̌((v, eϕ)) := (v, eϕ) Φ̂((v, eϕ)) := (vϕ, eϕ)

Φ̌((vϕ, eϕ)) := (v, eϕ) Φ̂((vϕ, eϕ)) := (vϕ, eϕ)

where e = (v,w) is an arbitrary edge in the original graph with endpoints v,w ∈
V , and corresponding nodes vϕ, wϕ ∈ Vϕ.

The projection of an edge set from the auxiliary graph into the original graph
is performed in two steps: First the application of Φ̌ projects the edge set into
one layer. Then we consider for each edge e = (v,w) of the original graph
the corresponding node eϕ ∈ Eϕ: Edge e is added to the solution if and only
if node eϕ is incident with two edges after applying Φ̌. This is stated in the
following definition. Figure 3.12 illustrates the construction.

Definition 3.20 (Projection)
Let A be an edge subset of the auxiliary graph. By

prj(A) :=
{
e = (v,w) | (v, eϕ) ∈ Φ̌(A) ∧ (w, eϕ) ∈ Φ̌(A)

}
we define an edge subset of the original graph. This subset prj(A) is called the
projection of A.

There is no well-defined inverse mapping of the projection. We decided to
choose the following definition:

Definition 3.21 (Lifting)
Let A be an edge subset of the original graph. By

lift(A) := { (v, eϕ), (eϕ, w) | e = (v,w) ∈ A }

we define an edge subset of the auxiliary graph. This subset lift(A) is called the
lifting of A.

In the remaining part of this section we make the projection useable as a tool
for problem reduction. This is done by stating a correlation between the diam-
eter of a spanning tree in the auxiliary graph and the diameter of its projection.
As one could expect, it will turn out that there is an offset of 2Ω under certain
conditions. We introduce the notion of a dangling edge before we formulate the
main theorem of this section.

Definition 3.22 (Dangling edge, Hook)
An Ω-edge in a tree T is called dangling edge, if its image under Φ̌ is not con-
tained in T . A node from Eϕ is called a hook, if the set of incident non-Ω-edges
contains exactly one edge.

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 65

FIGURE 3.12: Tree in the auxiliary graph (solid lines, left) and its projection in the orig-
inal graph (solid lines, right).

FIGURE 3.13: Tree in the auxiliary graph (left, solid lines). Its projection (right, solid
lines) may contain cycles.

Observe that a tree without dangling edges has a special structure: all nodes
from Vϕ appear as leaves. The proof is easy: Assume there is a node from Vϕ of
degree 2 or greater. Consider two incidentΩ-edges. Since there are no dangling
edges, the images of the incident edges under Φ̌ must also be contained in the
tree. Moreover, the four edges form a cycle.

Observation 3.23
If a tree contains no dangling edges, then all nodes from Vϕ are leaves of the
tree. �

The projection of a tree is not necessarily a tree. In fact, it may induce a cycle.
An example is given in Figure 3.13. However, we can formulate conditions
where the projection of a tree is itself a tree.

Lemma 3.24
Let Taux be a tree in the auxiliary graph spanning Vϕ. Assume that Taux contains
no dangling edges. Then the projection T := prj(Taux) is a spanning tree.

Proof. Observe that since Taux spans Vϕ and does not contain dangling edges,
Taux must span node set V also.

66 CHAPTER 3 RELOAD COSTS

We first argue that T is connected. Consider an arbitrary pair vϕ, wϕ of
nodes. Let p be the connecting path in Taux. Since Taux contains no dangling
edges, the edge set Φ̌(p) is part of Taux and is itself a tree. Let p ′ be the path
between v andw in Φ̌(p). Then prj(p ′) is a path in the original graph between v
and w. Since vϕ, wϕ were chosen arbitrarily, this shows that T is connected.

It remains to show that T is cycle free. Assume there is a cycle c in T . Let
c ′ := lift(c) be the lifting of cycle c. Since Taux is cycle free, there is a lower layer
edge (v, eϕ) ∈ c ′ which is not in Taux. Since c is part of the projection of Taux, Taux

must contain the corresponding upper layer edge (vϕ, eϕ). This contradicts the
fact that Taux does not contain dangling edges. �

The correlation between the diameter of a tree and that of its projection is
stated by Theorem 3.25.

Theorem 3.25 (Distance Mapping on the Tree)
Let Taux be a tree in the auxiliary graph spanning node set Vϕ. Assume that Taux

contains no dangling edges and no hooks. Then

diamc(prj(Taux)) = diaml(Taux) − 2Ω .

Proof. Let T := prj(Taux). Let p be a longest path in T , i. e., c(p) = diamc(T).
Denote by v,w ∈ V the endpoints of p (see Figure 3.14 (a)). Since Taux contains
no dangling edges, the lifting lift(p) must be part of Taux. Take the path lift(p),
remove one edge at each end, and name the resulting path q. Then

l(q) = c(p) (3.12)

by construction of l (see Figure 3.14 (b)).
Consider the path from v to vϕ in Taux (see Figure 3.14 (c)). This path must

meet the endpoint eϕ of q: Otherwise it would have to visit a node fϕ different
from all nodes of q. Since this node is not a hook, it must be incident with
another non-Ω-edge to a node x ∈ V . The projection of those two edges would
yield an edge (x, v) which would augment path p in T . This is a contradiction
to the fact that pwas a longest path.

The same argument applies to the other endpoint of q. Hence we can aug-
ment path q in Taux by one Ω-edge at each side. Call the resulting path q ′.
Therefore,

diamc(prj(Taux)) = c(p) = l(q) = l(q ′) − 2Ω ≤ diaml(Taux) − 2Ω .

To prove equality, observe that v (and also w) is a leaf in Taux, otherwise either
Taux contains a hook or p was not a longest path. From Observation 3.23 it
follows that even vϕ and wϕ are leaves. Consequently the augmented path q ′

constructed above is a longest path in Taux. �

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 67

(a)

(b)

(c)

(d)

v
w

v

v

v

w

w

w

vϕ

vϕ

vϕ

wϕ

wϕ

wϕ

eϕ

x
fϕ

FIGURE 3.14: Illustration on the proof of Theorem 3.25. (a) initial path p in prj(Taux).
(b) path q in Taux (thick edges). (c) forbidden situation: the path in Taux
from v to vϕ does not meet q. (d) augmented path q ′ (thick edges).

68 CHAPTER 3 RELOAD COSTS

3.5.3 Transformation of the Solution to Original Graph

Let T1 be the spanning tree of the auxiliary graph as computed by the algorithm
of Hassin and Tamir [HT95]. In order to apply Theorem 3.25, we show that T1
can be transformed into a tree T2 which obeys the prerequisites of Theorem 3.25
without increasing the diameter.

Lemma 3.26
Let H be the auxiliary graph constructed from a graph G = (V, E) with |V | ≥ 2.
Let T1 be a spanning tree in H. Then there is a tree T2 in H spanning all nodes
from node set Vϕ with

diaml(T2) ≤ diaml(T1) ,

such that T2 has no dangling edges and no hooks.

Proof. We give a constructive proof. Algorithm 3.15 on the facing page per-
forms the transformation. The algorithm consists of a loop where in each itera-
tion exactly one of six possible modifications is executed. We show that in each
iteration the diameter of the tree does not increase. All edge swaps operate on a
local region which consists of a corresponding pair {v, vϕ} and the three neigh-
bor nodes from set Eϕ. In order to verify that the diameter does not increase it
suffices to check the pairwise distance of the three nodes from Eϕ and—if there
are new leaves—additionally the distance from each new leaf to each of those
nodes. See Figure 3.16 on page 70 for an illustration.

1. The first case is easy. Removal of a leaf (Line 3) cannot increase the diam-
eter. Moreover, the tree spans Vϕ if this was true before the operation.

2. Case 2 applies to nodes in Vϕ of degree 3. Since the tree spans V ∪Vϕ and
does not contain a cycle, it follows that exactly two of the incident edges
are dangling. The edge swap (Line 5) does neither increase the diameter
nor affect the connectivity.

3. Case 3 applies to nodes in Vϕ of degree 2 where not both incident edges
are dangling. There are only the two cases possible which are depicted
in Figure 3.16. The operation in Line 8 does not increase the diameter or
change the connectivity.

4. We have two different situations to consider in case 4. The situation de-
picted in the left hand side of the figure is easy: Since the whole tree is
connected and |V | ≥ 2, there must be anotherΩ-edge in the subtree hang-
ing from eϕ. Hence the new inserted edge ψ := (v, eϕ) does not dominate
the diameter.
The situation depicted at the right hand side is more difficult. If the sub-
tree hanging from eϕ contains an Ω-edge, the arguments from above can

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 69

Input: A spanning tree T1 in the auxiliary graph

1 repeat
2 if there is a leaf eϕ ∈ Eϕ in the tree then { case 1 }

3 Remove eϕ from the tree
4 else if there is a node vϕ ∈ Vϕ with degree d(vϕ) = 3 then { case 2 }

5 Replace the two incident dangling edges by their projections
6 else if there is a node vϕ ∈ Vϕ with degree d(vϕ) = 2 then { case 3 }

7 if only one incident edge is dangling then
8 Replace the incident dangling edge by its projection
9 end if

10 else if there is a dangling edge (vϕ, eϕ) such that v is a leaf then { case 4 }

11 Replace the edge connecting v to the tree by edge (v, eϕ)

12 else if there is a dangling edge δ := (vϕ, eϕ) such that v is not a leaf then
13 Let ψ be an edge incident with v { case 5 }

14 Replace δ by Φ̂(ψ)

15 else if there is a hook eϕ then { case 6 }

16 Let vϕ be the adjacent node from Vϕ

17 Remove the hook and both incident edges
18 Connect vϕ by another non-dangling edge to the tree
19 end if
20 until no more changes have been made
Output: A tree T2 spanning Vϕ without dangling edges and without hooks

ALGORITHM 3.15: Algorithm constructing a tree without dangling edges and hooks.

70 CHAPTER 3 RELOAD COSTS

eϕ

δ

fϕ
ψ

case 2 case 3 case 4

δ

r
ψ

vϕ

eϕ
case 5 case 6

eϕ

FIGURE 3.16: Illustration to the proof of Lemma 3.26. We display a node v ∈ V (white),
the corresponding node vϕ ∈ Vϕ (black), and the three adjacent nodes
from Eϕ (gray).

3.5 MINIMUM RELOAD COST DIAMETER SPANNING TREE 71

be applied. Otherwise, the new edge ψ may be longer than the subtree,
and we cannot prove that the diameter does not increase.
Notice that in this situation the next operation is the removal of leaf fϕ. Af-
ter that, case 3 applies, and the Ω-edge δ is replaced by its projection. As
a result, the former longest path using two Ω-edges and the subtree is re-
placed by edges Φ̌(δ),ψ, and the remainingΩ-edge. The weight reduction
of the two operations is at least Ω − l(Φ̌(δ)) − l(ψ) which is nonnegative
due to Equation (3.11) on page 62.

5. Notice that if this point is reached then all nodes from Vϕ are leaves. Thus
we have only one case to consider.
We prove now that the operation in Line 14 does not increase the diameter
of the tree. Let r be the endpoint of edge ψ different from v. Assume that
the current tree (before the operation) is rooted at r. Node r is not a leaf,
otherwise it would have been removed in Line 3. Hence there are at least
two subtrees hanging from r.
Each of the subtrees must contain at least oneΩ-edge: otherwise all leaves
of the subtree must be either from set Eϕ (and would have been removed
in case 1) or from set V (where case 4 would have been applied). Adding
theΩ-edge Φ̂(ψ) as a new subtree to r does not increase the diameter.

6. If this point is reached, there are no dangling edges. Hence the hook is
exactly of degree 2 and we have only the two cases depicted in the fig-
ure. In the second case, the distance between vϕ and eϕ may increase, but
arguments similar to the previous case show that the new edge does not
dominate the diameter. �

To show the optimality of our algorithm, we need to compare the reload cost
diameter of arbitrary trees with the solution produced by our algorithm. The
missing chain link in the proof is contributed by the following lemma.

Lemma 3.27
Let T be an arbitrary spanning tree in G. There is a spanning tree Taux in H with

diaml(Taux) = diamc(T) + 2Ω . (3.13)

Proof. Start with the tree defined by lift(T). Connect each node from Vϕ to the
tree via anΩ-edge which is not dangling. This is possible since the tree spans V .
The resulting tree satisfies the condition (3.13) due to Theorem 3.25. It remains
to connect the nodes from node set Eϕ which are not already spanned.

Consider one such node eϕ. Connect eϕ by edge (eϕ, v) to an arbitrary one of
its neighbors v ∈ V . Since the sum of each pair of edges incident with v is domi-
nated byΩ, the new added edges do not appear in longest paths. Therefore the
diameter of the resulting tree Taux does not increase. �

72 CHAPTER 3 RELOAD COSTS

Input: Graph G = (V, E, χ, c) with reload costs obeying the triangle ineq.,
maximum node degree 3

1 Construct auxiliary graph H with edge lengths l
2 Compute a minimum diameter spanning tree T1 in H with respect to

edge lengths l
3 Call Algorithm 3.15 to compute tree T2 out of T1
4 Let T := prj(T2)

Output: tree T

ALGORITHM 3.17: Algorithm for problem M∆RDIAT on graphs with maximum de-
gree 3.

We now summarize the results of this section.

Theorem 3.28 (Solution of M∆RDIAT)
Algorithm 3.17 solves M∆RDIAT on graphs with degree bound 3. The running
time is within O(|V |2 log |V |).

Proof. Let T be the final solution found by the algorithm. We prove optimality
by showing

diamc(T) ≤ diamc(T ′) (3.14)

for arbitrary spanning trees T ′ of the graph.
Let T1 and T2 be the trees as computed by the algorithm. Notice that T2 con-

tains no dangling edges and no hooks. By Theorem 3.25 and Lemma 3.26 we
have

diamc(T) = diaml(T2) − 2Ω ≤ diaml(T1) − 2Ω . (3.15)

Let T ′ be an arbitrary spanning tree of the graph. Apply Lemma 3.27 to T ′ in
order to construct a spanning tree T0 in H. By optimality of T1 and Lemma 3.27,
we can conclude

diaml(T1) − 2Ω ≤ diaml(T0) − 2Ω = diamc(T ′) . (3.16)

Hence (3.14) holds and the correctness of the algorithm is shown.
It remains to show the claim on the running time. Let G = (V, E) be the

input graph. From the degree constraint we have |E| ≤ 3/2 · |V | (confer (3.6)
on page 59). The auxiliary graph H has 2|V | + |E| ≤ 7/2 · |V | nodes and 4|E| ≤
6|V | edges.

3.6 HARDNESS RESULTS 73

From [HT95] it follows that the computation of a minimum diameter span-
ning tree in a graph with n nodes and m edges can be accomplished in time
O(mn + n2 logn). This yields a running time of O(|V |2 log |V |) for the compu-
tation of the tree in the auxiliary graph. Algorithm 3.15 runs O(|V |) iterations
since it reduces the number of dangling edges or the number of edges by at
least one in each iteration. The running time in each iteration does not exceed
O(|V | log |V |) since only standard data structures are needed. Hence the total
running time is within O(|V |2 log |V |) as claimed. �

3.6 Hardness Results

In this section we show that MRDIAT and even M∆RDIAT are NP-hard. Addi-
tionally we provide inapproximability results. We will show that the hardness
results extend to graphs where the node degree is bounded by 5. This com-
plements the results from before where a polynomial time algorithm was given
which solves the problem on graphs with maximal degree 3. Some of the hard-
ness results can easily be extended to problems MRRADT and M∆RRADT.

3.6.1 General Reload Cost Functions
Theorem 3.29 (Hardness of MRDIAT)
Unless P = NP, MRDIAT is not approximable within any factor f(n) on a graph
with n nodes. Here, f is any polynomial time computable function.

Proof. We perform a reduction from 3-SATISFIABILITY [GJ79, Problem LO2].
An instance π of 3-SATISFIABILITY is given by a set A = {a1, a2, . . . , an} of vari-
ables and a set C = {C1, . . . , Ck} of clauses over A. Each clause Ci is of the form
Ci = {li1, li2, li3}, where lij is a literal, i.e., a variable a or its negation ā. The goal
is to find a truth assignment satisfying all clauses.

We now construct an instance π ′ of MRDIAT. The construction of the graph
G = (V, E) is illustrated in Figure 3.18. Set V := {s}∪A∪C. For each variable a ∈
A, we introduce two colors xa, xā representing the positive and negative literal.

For each variable a ∈ A, insert two parallel edges between the nodes a and s
of color xa and xā, respectively. For each literal l of a clause Ci ∈ C, where l is
the positive or negative variable a, add an edge between nodes Ci and a of
color xl to the graph.

Let the reload cost function c be given as

c(xl1 , xl2) :=

K, if l1 = l̄2,

0, if l1 = l2,

1, otherwise,
(3.17)

74 CHAPTER 3 RELOAD COSTS

s

a

clause nodes

variable nodes

root node

CjCi

· · ·

· · ·
Ck

xa

xā

xa

xa

xā

xā

FIGURE 3.18: Reduction from 3-SATISFIABILITY to MINIMUM RELOAD COST DIAME-
TER SPANNING TREE used in the proof of Theorem 3.29.
We assume for the example that Ci 3 a, Cj 3 a, ā, and Ck 3 ā.

where K > 1 is some large constant. Informally, the reload costs are expensive
if a pair of incident edges represents a variable and its negation, while they are
low if the edges represent different variables.

Assume that there is a spanning tree T of G such that each clause node Ci is
connected by a path of cost strictly less than K to the root s. Without increasing
path lengths to the root, one can enforce that each of the clause nodes is a leaf.
Therefore, the path from a clause node to the root uses exactly one variable
node and is in fact of cost 0. Consequently, none of the auxiliary clause nodes is
incident to edges of more than one color, and the diameter of the tree equals 1.
Moreover, the colors of the edges adjacent to the variable nodes induce a valid
assignment for π. Conversely, it is easy to see that a valid solution for π can be
used to construct a spanning tree with diameter 1.

As a consequence, if π has a valid solution, then an optimal spanning tree
has diameter 1. On the other hand, the diameter is at least K + 1 if π admits no
valid assignment.

Assume that there is an approximation algorithm for MINIMUM RELOAD
COST DIAMETER SPANNING TREE with performance f(n). Choose K > f(n).
Then the algorithm must solve the instance π ′ exactly which is equivalent to
solving 3-SATISFIABILITY by our observations. �

3.6 HARDNESS RESULTS 75

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �s

a variable nodes· · ·

root node

clause nodes
CjCi

· · ·
Ck

auxiliary clause nodes

FIGURE 3.19: Modification of the reduction for degree 5 bounded graphs.

The construction in the proof of Theorem 3.29 can be slightly modified to guar-
antee that the constructed graph is of bounded degree 5 (confer Figure 3.19).
There are only a few changes necessary:

Consider variable a. Instead of connecting the clause nodes directly to vari-
able node a, we introduce auxiliary nodes which can be connected to node a
by a subgraph of maximum degree 5. To avoid a root node of high degree, we
choose a new color and replace the root by a suitable (with respect to the de-
gree bound) tree of edges of the new color. Notice that all the modifications are
acceptable for the reduction since they keep the graph in polynomial size.

Similar to the above proof, assume that there is a spanning tree T of G such
that each clause node Ci is connected by a path of cost strictly less than K + 1

to the root s. Without increasing path lengths to the root, one can enforce that
each of the clause nodes is a leaf. Therefore, the path from a clause node to
the root uses exactly one variable node and is of cost 1. Consequently, none of
the auxiliary clause nodes is incident to edges of more than one color. Hence
the colors of the edges adjacent to the variable nodes induce a valid assignment
for π. Conversely, it is easy to see that a valid solution for π can be used to
construct a spanning tree with the property that each clause node is connected
by a path of cost one to the root.

76 CHAPTER 3 RELOAD COSTS

As a consequence, if π has a valid solution, then an optimal spanning tree
has diameter 2. On the other hand, the diameter is at least K + 2 if π admits no
valid assignment. Thus we can conclude:

Corollary 3.30 (Hardness of MRDIAT with bounded degree)
Unless P = NP, MRDIAT is not approximable within any factor f(n) on a graph
with n nodes, even when restricted to graphs of maximum degree 5. Here, f is
any polynomial time computable function. �

It is easy to observe that the same construction can be used to show the hardness
of problem MRRADT if the root of the instance is chosen to be the root s used
in the construction. Therefore the same hardness results as before hold also for
the reload cost radius problem.

Corollary 3.31 (Hardness of MRRADT with bounded degree)
Unless P = NP, MRRADT is not approximable within any factor f(n) on a graph
with n nodes, even when restricted to graphs of maximum degree 5. Here, f is
any polynomial time computable function. �

3.6.2 Reload Cost Functions with Triangle Inequality

For the remaining part of this section we turn over to the problems where the
reload cost functions obeys the triangle inequality as defined in Definition 3.3
on page 45. This case is much more interesting for practical applications than
the general case without triangle inequality as pointed out in the introduction.
Moreover, this metric case enabled us to design efficient algorithms for solving
the problems on graphs with bounded degree.

A first inapproximability result for M∆RDIAT can directly be derived from The-
orem 3.29 and Corollary 3.30. Consider the definition of reload cost function c
in (3.17). In order to obey the triangle inequality, one must restrict K to satisfy

K ≤ 2 . (3.18)

This immediately yields a lower bound of 2 for the approximability of problem
M∆RDIAT. The same arguments can be applied to problem M∆RRADT. We
state this fact in the following:

Corollary 3.32 (Hardness of M∆RRADT with bounded degree)
Unless P = NP, M∆RRADT is not approximable within any factor α < 2 on a
graph with n nodes, even when restricted to graphs of maximum degree 5. �

3.6 HARDNESS RESULTS 77

We will show now how the construction given above can be modified in order
to slightly increase the lower bound for problem M∆RDIAT. The general idea
behind the modification is to increase the gap of K in the reduction.

We start with the construction for the problem without degree constraints
as given in the proof of Theorem 3.29. Setup two identical copies G1, G2 of the
graph given above and connect the graphs by identifying the root nodes. See
Figure 3.20 (left) for an illustration.

Now consider there is a spanning tree of diameter strictly less than 2K + 1.
Observe that the longest paths in the tree, which determine its diameter, visit
the root node. The root node contributes reload cost 1 to these paths. Divide
the tree at the root node so that the tree decomposes into two components: one
component in G1 and a second component in G2. By an averaging argument it
is evident that in at least one of the partial trees the maximal distance from any
leaf to the root node is strictly less than K. This means that each clause node is
connected to the root by a path of cost < K, hence the underlying instance of
3-SATISFIABILITY must have a solution.

Conversely, if the underlying instance of 3-SATISFIABILITY has a valid as-
signment, then in each copyGi we can construct a spanning tree which connects
each clause node to the root by a path of reload cost zero. Joining the two trees
at the root node causes additional reload costs of 1. Hence the diameter of the
spanning tree is equal to 1.

We have observed by now that the construction guarantees a gap between
2K + 1 (where we can make no prediction on the existence of a solution) and 1
(where the 3-SATISFIABILITY instance is to be solved exactly). Recall that K ≤ 2
from (3.18). This implies a lower bound of

2K+ 1

1
≤ 5

on the approximability of M∆RDIAT.
We set down this result in the following corollary.

Corollary 3.33 (Hardness of M∆RDIAT)
Unless P = NP, M∆RDIAT is not approximable within any factor α < 5. �

The analysis is only slightly different for the case of the reduction where the
degree of the graph is restricted. See Figure 3.20 (right) for an illustration.

By arguments similar to those given above one can show the following: If
there is a spanning tree with diameter strictly lower than 2K+2, then one of the
trees induces a solution to the 3-SATISFIABILITY instance. Conversely, if there

78 CHAPTER 3 RELOAD COSTS

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

1

0

0

0

1

1

≥ K

≥ K

0

1

1

0

0

1

≥ K

≥ K ···

···

· · ·

· · ·

a···

···

a · · ·

· · ·

FIGURE 3.20: Construction of an approximability gap for the general case (left) and the
degree constrained case (right). Numbers denote the cost for the case
where the instance of 3-SATISFIABILITY is not solvable (left to the graph)
or is solvable (right to the graph).

is a solution to 3-SATISFIABILITY, then one can construct a tree with diameter 2.
From these observation it follows that

2K+ 2

2
≤ 3

is a lower bound on the approximability of M∆RDIAT with degree constraint.
We summarize these results in the following corollary.

Corollary 3.34 (Hardness of M∆RDIAT with bounded degree)
Unless P = NP, M∆RDIAT is not approximable within any factor α < 3 when
restricted to instances with maximum node degree 5. �

In the remaining part of this section we will use an alternative reduction to
strengthen the result of Corollary 3.33. However, this result holds on general
graphs only, and we can not use it to improve the lower bound on the approx-
imability for degree bounded graphs.

Theorem 3.35 (Hardness of M∆RDIAT)
Unless NP ⊆ DTIME(NO(log logN)), M∆RDIAT is not approximable within any
factor α < 1/4 · lnn on a graph with n nodes.

3.6 HARDNESS RESULTS 79

Layer V∗

Layer V

FIGURE 3.21: Illustration of the main idea of the proof of Theorem 3.35: Example of a
graph (left). Constructed instance (center) with spanning tree consisting
of stars (solid edges) and joining path (dashed edges). Resulting domi-
nating set (right, black nodes).

Proof. We use a reduction from MINIMUM DOMINATING SET [GJ79, Problem
GT 2]. Given a graph G = (V, E), a node set D ⊆ V is called dominating, if
each node v ∈ V \ D is adjacent to a node from D. A minimum dominating set
is a dominating set of minimum cardinality. It is known that for any ε > 0

it is impossible to approximate MINIMUM DOMINATING SET within a factor
(1− ε) ln |V | unless NP ⊆ DTIME(NO(log logN)) (confer Theorem 1.8 on page 17).

Let G ′ = (V ′, E ′) be an instance of MINIMUM DOMINATING SET, V ′ =

{v ′1, . . . , v
′
n}. In the following we will construct an instance of M∆RDIAT fromG ′

where the spanning tree is related to a dominating set and the reload cost diam-
eter to the cardinality of this set.

We first outline the main idea behind the construction. See Figure 3.21 for
an illustration. Start with a graph consisting of two layers, V and V∗, each being
a copy of node set V ′, i. e., V := { vi | v ′i ∈ V ′ } and V∗ := { v∗i | v ′i ∈ V ′ }. Make
layer V to be a complete graph. Then insert edges (vi, v

∗
j) between the layers

if and only if v ′j is adjacent to v ′i in G ′. These edges form stars with centers in
layer V and leaves in V∗.

Each of the stars is assigned a unique color. Observe that stars of different
colors touch each other in layer V . Assume that one can assure that the reload
costs between stars of different colors are large. Then a spanning tree of mini-
mum reload cost diameter must prefer nodes of V∗ to be leaves. So it appears
that this tree is in fact a collection of stars joined by some edges in layer V .
Moreover, the set of centers of those stars form a dominating set in the original
graph.

80 CHAPTER 3 RELOAD COSTS

vj vjk vk

vkl

vl
vi

vij

FIGURE 3.22: Graph used in the reduction of Theorem 3.35. The upper layer shows
nodes from V in black and nodes from V× in white. The display is re-
stricted to two stars Sikj (thin lines) and Sjlk (thick lines). Path colors are
shown by dashed lines.

Assume for now that we can guarantee that the edges which join the stars
in layer V form in fact a simple path. Then it is easy to see that the diameter of
the tree is related to the number of joining edges which is again related to the
cardinality of the dominating set. We now describe how this path property can
be enforced.

For each edge (vi, vj) in layer V place a node vij in the center of that edge.
For each node vk ∈ V , replace the star around vk by multiple copies, one copy
for each pair vi, vj. Assure that reload costs between stars with identical centers
are large, while costs equal 1 at those nodes which are placed in the middle of
edges. This construction enforces that star centers are incident to edges of one
color only, and hence the joining edges described above form a path in layer V .

We will now present a formal description of the details. Given G ′ = (V ′, E ′),
construct a graph G with node set V ∪ V× ∪ V∗, where

V := { vi | v ′i ∈ V ′ } ,
V× := { vij | vi, vj ∈ V, i 6= j } , with vij and vji identified
V∗ := { v∗i | v ′i ∈ V ′ } .

See Figure 3.22 for an illustration of the construction. For any pairwise disjoint

3.6 HARDNESS RESULTS 81

1 ≤ i, j, k ≤ n, add a star Sikj with center vj and fingers

{ v∗ | v ′ ∈ N(v ′j) } ∪ (V \ {vj}) ∪ (V× \ {vij, vjk})

of color cikj . Again, identify colors cikj and ckij , and remove parallel edges of the
same color. Now complete star Sikj by fingers vij and vjk of color c ′j

ik. Call a color
of that type a path-color.

Finally, for 1 ≤ i, j, k, l ≤ n, pairwise disjoint, i = l allowed, set the reload
costs

c(cikj , c
′
j
ik) := 1,

c(c ′j
ik, c ′k

jl) := 1,

otherwise set the reload costs to some large constantΩ > n+ 1.
Notice that the resulting graph is of size polynomial in the size ofG ′. In fact,

if n ′ = |V ′| is the number of nodes of G ′, then the constructed graph consists of

n = 1/2 · (n ′2 + 3n ′) ≤ n ′2 (3.19)

nodes (the inequation holds for all n ′ ≥ 3).
We claim that the triangle inequality is satisfied. Consider a node from V∗.

Since there are no path-colored edges incident, for all pairs of incident edges
the reload costs are equal toΩ and the triangle inequality is satisfied. Consider
a node vjk ∈ V×. The set of incident colors contains a set of path colors with
pairwise reload cost 1. All remaining costs equal Ω. Therefore the triangle
inequality holds even in this case. Finally, consider a node vj ∈ V . There are no
three (pairwise different) incident colors such that two of the pairs have reload
cost 1 each. Hence the triangle inequality is satisfied even in this remaining
case.

We remark that the graph induced by node set V ∪V× is independent on the
structure of G ′. Observe that there is always a spanning tree with diameter at
most n+1: Choose a path-colored path in the graph induced by V∪V× such that
the two edges adjacent to a node vj ∈ V are of the same color, say c ′j

ik. Connect
the remaining nodes from V∗ to the tree by edges of the star Sikj . Consequently,
in any optimum solution to M∆RDIAT there is no node at which reload costsΩ
arise.

Consider a spanning tree with no node where reload cost Ω appear. This
tree must consist of a path-colored path in the graph induced by V ∪ V×, sup-
plemented by some stars with fingers in V ∪ V× ∪ V∗. If K, K ⊆ V , is the set
of nodes from V on the path, then the diameter of the tree is at most |K| + 1.

82 CHAPTER 3 RELOAD COSTS

Moreover, the corresponding set K ′ is a dominating set in G ′. Conversely, it is
easy to construct a spanning tree of diameter at most |K ′| + 1 in graph G out of
a dominating set K ′ in graph G ′.

Let OPT be the diameter of an optimum solution in G, then the optimal
dominating set in G ′ has size OPT ′ = OPT − 1. Assume that there is an approx-
imation algorithm for M∆RDIAT with performance c · (1 − ε) lnn. Then from
the approximate solution on G we can construct a dominating set in G ′. Using
(3.19) we can conclude that the size of the dominating set in G ′ is at most

c · (1− ε) lnn ·OPT − 1 ≤ 2c · (1− ε) lnn · (OPT − 1)

≤ 4c · (1− ε) lnn ′ ·OPT ′

If c < 1/4 this would imply a contradiction to Theorem 1.8 on page 17. �

3.7 Concluding Remarks

To our knowledge, a cost structure similar to reload costs has not been con-
sidered in the literature so far. This cost structure is related to node weighted
graphs, but the new aspect is that the cost at a node depend on the edges used
by the walk through that node.

Table 3.23 shows a summary of results presented in this chapter. The notion
“approximability” refers to the existence of a polynomial time approximation
algorithm with the specified performance, assuming that the inclusion NP ⊆
DTIME(NO(log logN)) is not true. As usual, V denotes the set of nodes of the
graph. Function f is any function which can be evaluated in polynomial time.
The complexity of the problem for graphs with degree bound 4 has not yet been
determined.

As noted in Section 3.1.4 on page 48, the complexity of the problem does not
change if reload costs are combined with classical edge lengths.

3.7 CONCLUDING REMARKS 83

Lower bound
Problem Degree bound on approximability Reference

M∆RPATH none solvable in O(|V |3 + |E|) Corollary 3.11

MRRADT 5 any f(|V |) Corollary 3.31
M∆RRADT 5 2 Corollary 3.32

3 solvable in O(|V |) Theorem 3.18

MRDIAT 5 any f(|V |) Corollary 3.30
M∆RDIAT none 1/4 · ln |V | Theorem 3.35

5 3 Corollary 3.34
3 solvable in O(|V |2 log |V |) Theorem 3.28

TABLE 3.23: Summary of results presented in this chapter.

84

85

Chapter 4

Dial a Ride

We conclude the part on network design problems with a chapter on a family
of problems motivated from the area of transportation problems. The scenario
we have in mind is a discrete metric space where objects are to be transported
between given sources and destinations. Applications include the routing of
pick-up-and-delivery vehicles, the control of automatic storage systems and
scheduling of elevators.

The transportation job is executed by a server moving between the points of
the space. The server can carry one good at a time. Given a set of transportation
requests, the goal is to find a shortest transportation schedule which serves all
requests.

We use an edge weighted graph to represent the metric space. Depending
on the underlying graph structure the complexity of the problem changes from
polynomially solvable cases up to NP-hard cases.

The basic problem is extended to the case where precedence relations be-
tween the particular requests specify a partial order in which the requests have
to be performed. Of particular interest is the restriction where precedence con-
straints only appear between jobs which start at the same node. This is moti-
vated by problems with (first-in first-out) waiting queues such as cargo elevator
systems where at each floor conveyor belts deliver the goods to be transported.
Elevators also motivate the restriction of the problem to paths and a variant of
the problem with additional start and stop penalties.

It turns out that the problems can equivalently be formulated as graph aug-
mentation problems. In this case, an optimal transportation schedule correlates
with an Eulerian graph of minimum weight. We will prove structural facts
about Eulerian cycles in a graph that respects precedence constraints on the
arcs and use the results for designing the algorithms.

86 CHAPTER 4 DIAL A RIDE

4.1 Preliminaries and Problem Formulation

4.1.1 Basic Problem

In the DIAL A RIDE problem we are given a finite transportation network and a
finite set of transportation jobs. Each job specifies the source and target location
which are both part of the network. A server moves on the transportation net-
work to process the transportation requests. All goods have the same weight,
and the server has unit capacity, i. e., it can carry one object at most at a time.
The problem DIAL A RIDE consists of finding a shortest transportation for the
jobs. Additionally, the tour is requested to start and end at a designated start
location.

We model the transportation network by an edge weighted undirected
graph. The length of an edge corresponds to the time or cost the server needs
while traversing that edge. Each job request is modeled by an arc from its source
node to its target node. The length of the arc is adjusted to reflect the length of a
shortest path in the network connecting its endpoints. A transportation sched-
ule is valid if each of the requests is satisfied. A valid solution corresponds to a
closed walk in the mixed graph which traverses each of the arcs. More formally,
we define DIAL A RIDE as follows:

Definition 4.1 (DIAL A RIDE Problem)
The input for DIAL A RIDE consists of a finite mixed graph G = (V, E,A), an
origin vertex o ∈ V and a nonnegative weight function c : E → R

+
0 . The weight

function c is extended to arc set A by defining

c(a) := distE(v,w) for all a ∈ A, a = (v,w) ,

i. e., the length of each arc equals the length of a shortest path along G[E] be-
tween the arc’s endpoints. The goal of DIAL A RIDE is to find a closed walk
in G of minimum cost which starts (and ends) in origin o and traverses each arc
in A.

It turns out that for the purpose of stating the algorithms in a more conve-
nient way, it is helpful to use an equivalent formulation of DIAL A RIDE as a
graph augmentation problem (cf. [AK88]). This formulation uses another view at
the problem: A feasible solution can be constructed starting with the sole arc
set. Then it is augmented using a multi-subset of the edges such that the re-
sulting graph admits a closed walk. At this point the resulting graph must be
Eulerian.

To this end consider the arc set E� defined in (1.1) on page 3. Let the cost of
each arc in E� equal the cost of the corresponding edge in E.

4.1 PRELIMINARIES AND PROBLEM FORMULATION 87

Definition 4.2 (Graph augmentation version of DIAL A RIDE)
Given a mixed graph G = (V, E,A), origin o ∈ V , and cost function c : E → R

+
0 ,

extend c to A + E� as described in Definition 4.1 and the previous paragraph.
The goal is to find a multi-set R, R @ E�, of minimum cost such that graph
G[A+ R] is Eulerian and contains o.

We argue that this is an equivalent formulation of DIAL A RIDE. In the se-
quel, we will also use the shorter notation DARP for the problem.

Observation 4.3
Definition 4.1 and Definition 4.2 are equivalent formulations of the same prob-
lem.

Proof. Let W be a feasible solution for DARP as stated in Definition 4.1, that is,
a closed walk that starts in o and traverses each arc in A. Construct a multi-set
R @ E� of arcs in the following way: Traverse edges and arcs alongW. For each
time an undirected edge e ∈ E, e = [u, v], is traversed from u to v, add a copy of
the directed arc (u, v) to multi-set R. Then graph G[A+ R] contains o, and since
W defines a cycle, graph G[A+ R] must be Eulerian.

Conversely, let R @ E� be a multi-set of arcs such that G[A + R] is Eulerian
and includes the origin o. Construct a walk W as follows: Traverse an Eulerian
cycle C in G[A + R] starting in o. If the current arc r from C is in A then add r
to walk W, otherwise add the undirected edge corresponding to r. By this con-
struction, W is a closed walk in G traversing each arc from A and including o.
In both cases we have c(W) = c(A+ R), i. e., the cost of walk W equals the cost
of multi-set R plus cost of arc set A. �

It turns out that the complexity of the problem family depends highly on the
structure of the graph G[E] induced by the edge set. We use the notion DARP on
paths, on trees, on general graphs to denote the fact that the underlying graphG[E]

is restricted to the respective graph class.

Throughout the chapter we will use S∗ @ E� to denote an optimal solution of
the investigated problem, i. e., an augmentation set. By

OPT := c(A+ S∗)

we denote the cost of an optimal solution. Recall that by mE := |E| and mA :=

|A| we denote the cardinalities of the edges and arcs of the input graph G =

(V, E,A).

88 CHAPTER 4 DIAL A RIDE

4.1.2 Precedence Constraints

In real applications of DIAL A RIDE there are often additional constraints on
the order of the execution of transportation requests. This can be modeled by
introducing a partial order ≺ on the set of arcs. For arbitrary arcs a, b ∈ A, the
relation a ≺ b means that arc a must be traversed before arc b by a feasible
walk.

In some transportation networks there is a “waiting pool” at each node
where transportation requests originate. Each of the pools constrains the order
of execution of requests starting from this node while requests starting from
other nodes are not affected. For instance there might be waiting pools with
first-in first-out queues or waiting stacks (last-in first-out). This motivates the
definition of a source order, which is a partial order where only arcs originating
at the same node are compared to each other.

Definition 4.4 (Source Order, Total Source Order)
A partial order ≺ on the set of arcs is called source order, if

a ≺ b =⇒ a and b share the same source node .

Moreover, if for a source order ≺,

a and b share the same source node =⇒ a ≺ b∨ b ≺ a ,

then the source order is called total.

This definition leads to SOURCE ORDER DIAL A RIDE problem (SOURCE-
DARP for short) which is the main focus of this chapter.

Definition 4.5 (SOURCE ORDER DIAL A RIDE Problem)
An instance of SOURCE-DARP consists of an instance of DIAL A RIDE, together
with a source order ≺ on the arc set A. The goal is to find a closed walk satis-
fying the requirements specified in Definition 4.1 and the precedence constraint
given by ≺.

Problem SOURCE-DARP is indeed different from DIAL A RIDE. Figure 4.1
on the next page shows an example where an optimal source order respecting
transportation schedule starting at node o1 is strictly longer than an optimal
schedule neglecting the precedences: If no constraints have to be obeyed, then
the jobs can be served traversing along the arcs without using an edge. If the
constraint b ≺ amust be obeyed then two additional empty moves along undi-
rected edges are necessary. (Notice that this does not happen if we choose o2 to
be the start point of the tour.)

For the sake of presentation it will be useful to formulate SOURCE-DARP as a
graph augmentation problem. To this end it is necessary to introduce the notion
of an Eulerian cycle which respects the precedence constraints.

4.1 PRELIMINARIES AND PROBLEM FORMULATION 89

a

b

o1 o2

FIGURE 4.1: Precedence constraint b ≺ a increases the cost.

Definition 4.6 (≺-respecting Eulerian Cycle,≺-Eulerian)
Let H = (V, R) be a directed graph, ≺ be a source order on the arc set R, and
o ∈ V . A ≺-respecting Eulerian cycle in H with start o is a Eulerian cycle C
in G such that a ≺ b implies that in the walk from o along C the arc a appears
before b. The graph H is then called ≺-Eulerian with start o.

We emphasize that—in contrast to the case of classical Eulerian cycles—for
≺-respecting Eulerian cycles it is meaningful to specify a start node explicitly.
Consider the example depicted in Figure 4.1, restricted to the set of arcs. Given
precedence constraint b ≺ a, it is easy to see that there is a≺-respecting Eulerian
cycle starting in o2, but there is no feasible solution with start point o1.

Definition 4.7 (Graph Augmentation Version of SOURCE-DARP)
An instance of the problem SOURCE-DARP consists of the same input as for
DARP and additionally a source order ≺ on the arc set A. The goal is to find
a multi-set S of arcs from E� minimizing the weight c(A + S) such that the
graph G[A + S] is ≺-Eulerian with start o, and to determine a ≺-respecting
Eulerian cycle in G[A+ S].

4.1.3 Basic Observations

We continue with some technical assumptions about input instances of problem
SOURCE-DARP. While all these assumptions are without loss of generality they
greatly simplify the presentation of our algorithms. Recall that an instance is
given in the form (G = (V, E,A), c, o,≺).

Definition 4.8 (Essential Node)
A node is called essential if it is incident with an arc from set A.

Consider the problem on trees. We argue that we can assume that most of
the nodes are essential. Let v 6= o be a node of degree two which is not essential.
Let [u, v] and [v,w] be the two incident edges. Obviously one can replace that
edges by the single edge [u,w] of cost equal to the sum of the two edges and

90 CHAPTER 4 DIAL A RIDE

afterwards remove vwithout affecting the length of an optimal solution. If v 6= o

is a non-essential leaf, it can be removed anyway (cf. [FG93] for DARP on trees).

Assumption 4.9 (Technical assumption for SOURCE-DARP on trees)
Each vertex of degree one or two in G[E], except for the origin, is essential.

If G[E] is a path there are no nodes with degree three of higher in G[E]. This
is the reason why we can make an even stronger assumption without loss of
generality (cf. [AK88] for DARP on paths):

Assumption 4.10 (Technical assumption for SOURCE-DARP on paths)
Each vertex is essential.

We now turn to SOURCE-DARP on general graphs.

Assumption 4.11 (Tech. assumption for SOURCE-DARP on general graphs)
1. Each vertex is essential.
2. G[E] is complete.
3. The cost function c obeys the triangle inequality, i. e., for any edge e ∈ E,
e = [u, v], the cost c(e) equals distE(u, v).

Assumption 4.11 can be enforced without increasing the value of an optimal
solution. If the start vertex o is not essential, insert a new vertex o ′ joined by a
dummy arc (o, o ′) and edge [o, o ′] to the start vertex, each of cost zero. To satisfy
the triangle inequality, for every pair u, v of nodes add a new edge [u, v] of cost
equal to the shortest path in G[E] between u and v. Afterwards each bundle of
parallel edges can be replaced by retaining the cheapest edge of the bundle, and
nodes which are not incident to an arc can be removed safely (cf. [FHK78] for
DARP.

However, Assumption 4.11 can not be made without loss of generality for
SOURCE-DARP on trees, since the suggested modification of the graph destroys
the “tree-property”.

4.2 Related Work

The problem DARP is also known as the STACKER CRANE problem. In [FG93]
it is shown that the problem is NP-hard even on trees. In [FHK78] the authors
present a 9/5-approximation algorithm for the problem on general graphs. An
improved algorithm for trees with performance 5/4 is given in [FG93]. On paths
DIAL A RIDE can be solved in polynomial time [AK88].

4.3 BALANCING 91

The extension of DIAL A RIDE where a vehicle of capacity C > 1 is used
to serve the transportation jobs has been addressed in [Gua98, CR98]. For ca-
pacity C > 1 the problem becomes NP-hard even on paths. In [CR98] an ap-
proximation algorithm for the single server dial-a-ride problem with perfor-
mance O(

√
C logn log logn) has been given, where C denotes the capacity of

the server and n denotes the number of nodes in the graph.

Precedence constraints have been studied in the case of chinese postman tours
[DST87]. The CHINESE POSTMAN problem consists of finding a shortest walk
in a graph that traverses all edges and arcs. The authors show that for general
precedence relations it is NP-hard to determine a chinese postman tour of min-
imum length. Under strong restrictions on the precedence relation the problem
can be solved in time O(n5), where n denotes the number of nodes in the input
graph.

Online variants of DIAL A RIDE have been investigated in [AKR98, AKR00,
FS01]. All of the known competitive algorithms have to solve offline instances
of DIAL A RIDE during their run. The performance of the employed offline
algorithm directly affects the competitive ratio of the online algorithm. If a ρ-
approximation algorithm for DIAL A RIDE is given, there is a polynomial time
algorithm for ONLINE-DIAL A RIDE with competitive ratio ρ+1/4+1/4·

√
1+ 8ρ

[AKR00].

4.3 Balancing

The formulation of SOURCE ORDER DIAL A RIDE as a graph augmentation
problem (see Definition 4.7 on page 89) suggests to investigate the structure
of Eulerian graphs. Confer [FG93] for the following observations.

A necessary condition for a graph to be Eulerian is that for each node its
in-degree equals its out-degree. It turns out to be helpful for solving SOURCE-
DARP to search for augmenting sets which guarantee the resulting graph to be
balanced in that way.

Definition 4.12 (Balancing set)
Let G = (V, E,A) be a mixed graph. A multi-set B @ E� of arcs is called a
balancing set if

d+
A+B(v) = d−

A+B(v)

for all nodes v ∈ V .

92 CHAPTER 4 DIAL A RIDE

Suppose that G[E] is a tree and that Assumption 4.9 is satisfied. We now try
to identify a multi-set of edges which is necessarily contained in every optimal
solution of SOURCE ORDER DIAL A RIDE.

Consider an arbitrary edge e ∈ E, e = [x, y]. This edge implies in a natural
way a partition V = X ∪ Y of the node set: X and Y are defined as the two
connected components which result from a removal of edge e. Now define the
cut δ(X) to consist of all edges and arcs from E+A with one endpoint in X and
the other one in Y, formally

δ(X) := { [v,w] ∈ E | v ∈ X∧w /∈ X }

∪ { (v,w), (w, v) ∈ A | v ∈ X∧w /∈ X }

Observe that for a partition V = X ∪ Y, we have δ(X) = δ(Y) by definition.
Obviously, the cut δ(X) must be traversed by any closed walk W the same

number of times in each direction. If the walk is feasible, then some of the
traversals are predefined by the set of arcs in the cut. To achieve equal num-
bers of traversals forward and backward, the remaining traversals must use the
underlying edge.

We formalize the above observation. For an arbitrary cut δ(X) induced by an
edge e of the tree G[E], denote by

ϕ+(X) :=
∣∣{ (x, y) ∈ A | x ∈ X∧ y /∈ X }

∣∣
ϕ−(X) :=

∣∣{ (y, x) ∈ A | y /∈ X∧ x ∈ X }
∣∣

the number of arcs emanating from (respectively, entering) X. Notice that
ϕ+(X) = ϕ−(Y) for a partition V = X ∪ Y. Then a feasible walk traverses
edge [x, y] in direction from x to y at leastϕ−(X)−ϕ+(X) times. This is an empty
proposition if this number is non-positive. However, if ϕ−(X) = ϕ+(X) = 0,
then edge [x, y] must be traversed at least once: This is true due to the fact that
the walk must traverse both components of the cut, which is an immediate con-
sequence of Assumption 4.9. Hence, edge [x, y] must be traversed in direction
from x to y at least b(x, y) times, where

b(x, y) :=

ϕ−(X) −ϕ+(X) if ϕ−(X) > ϕ+(X)

1 if ϕ+(X) = ϕ−(X) = 0

0 otherwise.

This observation has consequences for the graph augmentation version of prob-
lem SOURCE-DARP: Assume that we have a multi-set B @ E� which contains
exactly b(x, y) copies of each directed arc (x, y). Then this solution does not con-
tain dispensable edges, i. e., it can be augmented to build an optimal solution.
This yields the following result:

4.4 EULER CYCLES RESPECTING SOURCE ORDERS 93

Lemma 4.13 (Construction of an Optimal Balancing Set)
Let (G, c, o) be an instance of DARP such that G[E] is a tree. Then one can find
in time O(nmA) a balancing set B @ E� such that B ⊆ S∗ for some optimal
solution S∗. If G[E] is a path, the procedure can be carried out in time O(n +

mA). �

The lemma is proven in [AK88, FG93]. For trees one must take some care to
compute function b efficiently. For paths, it is sufficient to employ a sweep-line
approach to compute b(e) for each edge e ∈ E. Notice that the solutions do
not actually create the balancing arcs (this would be too time consuming) but
instead provide a counter for each bundle of parallel arcs. As is also shown
in [AK88, FG93], even for trees the time bound of O(nmA) can be improved
to O(n +mA) by allowing balancing arcs to be from V × V instead of just E�.
This does not change the problem: the cost function c can basically be extended
from E� to V × V by the length of shortest paths.

Notice that Lemma 4.13 remains valid even in the presence of source orders.

4.4 Euler Cycles Respecting Source Orders

Assume that ≺ is a total source order. Then it is easy to decide whether a
given graph H is ≺-Eulerian with start o: The ≺-respecting cycle (if it exists)
is uniquely determined. It can be found by a walk through the graph where
at each vertex v we always choose among the yet unused arcs from Av an arc
which is minimal with respect to ≺.

In the sequel we prove a necessary and sufficient condition on the graph for the
analogous question for general source orders.

Consider an Eulerian cycle in a connected directed graph. The cycle visits
each node, and by this it defines for each node an arc which is last used.

Definition 4.14 (Set of Last Arcs)
Let C be an Eulerian cycle with start o. By LC we denote the set of last arcs
of C. LC contains for each node v ∈ V the unique arc emanating from vwhich is
traversed last by C.

Observation 4.15 (Characterization of a Set of Last Arcs)
Let C be an Eulerian cycle with start o, let LC be the set of last arcs. Then LC con-
sists of a spanning tree rooted towards o, extended by one single arc emanating
from o.

Proof. Denote by T the set LC without the arc emanating from o. Since |T | =

|V | − 1 it suffices to show that T contains for each v ∈ V a path from v to the

94 CHAPTER 4 DIAL A RIDE

origin o. Assume for the sake of a contradiction that this is not true. Since the
out-degree of each node v 6= o equals 1, the set T must contain a cycle t. Let v ∈ t
be the node from the cycle which is visited for the last time by C. Let (v,w) be
the arc in t emanating from v. Since (v,w) is a last arc, node w is visited later
than v by C. This contradicts that vwas the last node from t visited by C. �

In the following we will explain the situation for source order respecting Eule-
rian cycles. We define maximal elements with respect to a source order in the
usual way:

Definition 4.16 (Maximal Elements)
Let ≺ be a source order. Denote by

M≺ := {a ∈ A : there is no arc b ∈ A such that a ≺ b }

the set of maximal elements with respect to ≺.

It will turn out that it is helpful to search for a set of arcs which is of the
structure noted in Definition 4.14. Any such set can appear as a set of last arcs
of an appropriate cycle. We will denote an arc set of that type as a possible set of
last arcs in the sequel.

Definition 4.17 (Possible Set of Last Arcs)
Let H = (V, R) be a directed graph and o ∈ V be a distinguished vertex. A
set L ⊆ R is called a possible set of last arcs, if it satisfies the following condi-
tions:

1. d+
L (v) = 1 for all v ∈ V , and

2. for each v ∈ V there is a path from v to o in H[L].

We remark that this definition is equivalent to the following: a set L is a
possible set of last arcs, ifH[L] is a directed spanning tree rooted towards o, plus
one arbitrary arc emanating from o. This has been shown in Observation 4.15.

The use of a possible set of last arcs is justified by the following theorem. A
possible set of last arcs can be used to construct a closed walk as described in
the introduction to the current section. It is easy to see that for existence of a
≺-respecting solution it is a necessary condition that the set of last arcs does not
contain arcs which are dominated by other arcs. The following theorem shows
that this condition is already sufficient.

4.4 EULER CYCLES RESPECTING SOURCE ORDERS 95

Theorem 4.18 (Construction of a≺-respecting Eulerian cycle)
Let H = (V, R) be a directed Eulerian graph with a distinguished vertex o ∈ V .
Let ≺ be a source order with maximal elements M≺. Suppose that a possible
set L of last arcs satisfies L ⊆M≺.

Then there exists an≺-respecting Eulerian cycleCwith start o inH such that
LC = L, i. e., such that L is the set of last arcs of C. This cycle can be found in
time O(|V | + |R|).

Proof. Color the arcs from L red and the arcs in R \ L blue. We claim that by
the following procedure we construct an Eulerian cycle C in Hwith the desired
properties.

Start with current vertex o. As long as there is a blue untraversed arc em-
anating from the current vertex, choose one which is not ≺-preceeded by any
other untraversed arc, otherwise choose the red arc. Traverse the chosen arc, let
its target be the new current vertex, and repeat the iteration. Stop, if there is no
untraversed arc emanating from the current vertex.

Call the resulting path of traversed arcs C. Since H is Eulerian by assump-
tion, for each vertex its in-degree equals its out-degree. Therefore, C must end
in the origin o and forms in fact a cycle. Moreover, C is ≺-respecting by con-
struction since L ⊆ M≺. Hence, if we can show that C traverses all arcs from R

then this implies L = LC and the proof is complete.
To this end, define for each node v ∈ V , the value dist(v, o) to be the distance

(i. e., the number of arcs) on the shortest path from v to o in the subgraph H[L].
We show by induction on dist(v, o) that all arcs emanating from v are contained
in C.

If dist(v, o) = 0 then v = o. Since our procedure stopped, all arcs emanating
from o are contained in C. This proves the induction basis. Assume that the
claim holds true for all nodes with distance t ≥ 0 and let v ∈ V with dist(v, o) =

t+1. Let a = (v,w) be the unique red arc emanating from v. Then dist(w,o) = t

and by the induction hypothesis all arcs emanating from w are contained in C.
Since d+

H(w) = d−
H(w), it follows that all arcs enteringw are also contained in C,

in particular arc a is. Since red arc a is chosen last by our procedure, all other
arcs emanating from vmust be contained in C. This completes the induction.

Hence, the path C is actually an Eulerian cycle with the claimed properties.
The claim on the running time follows immediately from the construction de-
scribed above. �

We summarize the results of this section in the following characterization of
graphs which are ≺-Eulerian:

96 CHAPTER 4 DIAL A RIDE

Theorem 4.19 (Characterization of≺-Eulerian graphs)
Let H = (V, R) be a graph, o ∈ V and ≺ a source order. Then the following two
statements are equivalent:

1. H is ≺-Eulerian with start o.
2. H is Eulerian and the set M≺ of maximal elements with respect to ≺ con-

tains a possible set of last arcs.

Proof. Suppose that H is ≺-Eulerian with start o, and let C be an ≺-respecting
Eulerian cycle with start o in H. Then LC ⊆ M≺. Thus Statement 1 implies 2.
The other direction is an immediate consequence of Theorem 4.18. �

The above Theorem 4.19 implies an efficient algorithm for deciding whether
a given graph H is ≺-Eulerian with start o. Provided H is Eulerian it suffices
to check whether the subgraph formed by the arcs fromM≺ contains a possible
set of last arcs. By the remark from above this task can be performed by testing
whether M≺ contains a directed spanning tree rooted towards o (which can be
done in linear time).

4.5 A Polynomial Time Algorithm for Source-Darp
on Paths

We now present an algorithm which solves SOURCE-DARP on paths. The in-
stance of the problem is given by a mixed graph G = (V, E,A) such that G[E] is
a path, additionally a source order ≺ and a start o ∈ V . We assume throughout
this section that Assumption 4.10 on page 90 holds. See Algorithm 4.2 for the
details. An illustration of the computation can be found in Figure 4.3.

The algorithm starts in Step 2 by determining a balancing set B @ E�. Fol-
lowing the results of Lemma 4.13, it is guaranteed that B is contained in some
optimal solution. At this point, the graph G[A + B] is degree balanced but may
consist of several connected components. (See Figure 4.3 (center) for an exam-
ple.)

In order to turn the graph ≺-Eulerian with start o, the idea is to connect the
components by pairs of antiparallel arcs from set E� and in the same moment
ensuring the existence of a possible set of last arcs.

This task is performed in two parts by the algorithm: In Step 3, a directed
spanning tree rooted towards o of minimum cost is computed with respect to
an auxiliary cost function. The cost function c ′ is adjusted to measure only the
additional arcs which are not yet contained in A + B. In Step 5 an auxiliary
arc set N is defined which contains those additional arcs together with their

4.5 A POLYNOMIAL TIME ALGORITHM FOR SOURCE-DARP ON PATHS 97

Input: A mixed graph G = (V, E,A), such that G[E] is a path, a cost
function c on E, a start node o ∈ V , and a source order ≺

1 LetM≺ ⊆ A be the set of maximal elements with respect to ≺.
{ Notice that each node is essential. }

2 Compute a balancing set B @ E� such that B ⊆ S∗
for some optimal solution S∗.

3 Compute a directed spanning tree D rooted towards o in G[B +M≺ + E�]

of minimum weight c ′(D), where cost function c ′ is defined as follows:

c ′(r) =

{
0 if r ∈ B+M≺ ,

c(r) if r ∈ E� \ (B+M≺) .

4 Define a possible set L of last arcs by adding an arbitrary arc
from Ao ∩ (M≺ + B) to tree D { Such an arc must exist since o is essential

and G[A+ B] is degree-balanced. }
5 Let D+ := D− (B+M≺) and N := E� ∩ (D+ ∪D−1

+) .
{ The set N contains the set D+ of “new arcs”

from the tree D and their inverses D−1
+ . }

6 Use the method from Theorem 4.18 to find a ≺-respecting Eulerian cycle C
with start o in G[A+ B+N] such that L is the set of last arcs of C.

Output: the multi-set B+N and the cycle C

ALGORITHM 4.2: Algorithm for solving SOURCE-DARP on paths.

inverse arcs. This guarantees that G[A + B + N] is in fact ≺-Eulerian. (See
Figure 4.3 (bottom).)

Lemma 4.20
The set B+N returned by Algorithm 4.2 is a feasible solution for SOURCE-DARP.
In other words, G[A+ B+N] is ≺-Eulerian with start o.

Proof. Since G[A + B] is degree balanced by construction and N consists of
pairs of anti-parallel arcs, also G[A + B + N] is degree balanced. On the other
hand, graph G[A + B +N] contains a directed spanning tree rooted towards o,
namely the tree D computed in Step 3. Hence the graph is strongly connected
and Eulerian.

The set L of arcs determined in Step 4 satisfies the conditions of Defini-
tion 4.17, hence it is a possible set of last arcs. The claim now follows from
Theorem 4.18. �

98 CHAPTER 4 DIAL A RIDE

o

o

o

FIGURE 4.3: Steps of Algorithm 4.2. Initial instance (top), graphG[A+B] after comput-
ing a balancing set (center), final solution (bottom).

4.5 A POLYNOMIAL TIME ALGORITHM FOR SOURCE-DARP ON PATHS 99

It remains to show that the solution produced by Algorithm 4.2 is not only
feasible but also of minimum cost.

Theorem 4.21 (Solution of SOURCE-DARP on paths)
Algorithm 4.2 finds an optimal solution for SOURCE-DARP on paths. It needs
running time O(n+mA + min{(mA + n) logn,n2}).

Proof. Let S∗ be an optimal solution such that B ⊆ S∗ (by Lemma 4.13 such a
multi-set S∗ exists). By feasibility of S∗ the graph G[A + S∗] is ≺-Eulerian with
start o.

Consider the multi-set Z

Z := (A+ S∗) − (A+ B) = S∗ − B

which contains the arcs from the optimal solution S∗ which are not contained in
the current intermediate balanced graph G[A+B]. We show that the sum of the
weight which the algorithm adds in the remaining steps is bounded by c(Z).
This shows that the solution is optimal.

Observe that both graphs G[A+B] and G[A+ S∗] = G[A+B+Z] are degree
balanced. Since Z ∩ (A + B) = ∅, also G[Z] must be degree balanced and we
can decompose the set Z into arc disjoint cycles. From Z @ E� and the property
that G[E] is a path it follows that

r ∈ Z =⇒ r−1 ∈ Z for all r ∈ Z . (4.1)

Let C be a ≺-respecting Eulerian cycle in G[A+ S∗] and let L be its set of last
arcs. Notice that L ⊆ B + M≺ + Z, where M≺ is the set of maximal elements
with respect to ≺ as defined in Step 1 of the algorithm.

The set L must contain a directed tree D ′ rooted towards o. This tree spans
at least all those components which contain essential nodes. Since by Assump-
tion 4.10 all nodes are essential, we can conclude that treeD ′ is a spanning tree.
Now we can compare its weight to the weight of tree D which is computed in
Step 3 of the algorithm. We have easily

c ′(D ′) ≥ c ′(D) , (4.2)

since D is of minimum weight.
We partitionD ′ into the two setsD ′1 := D ′ ∩ Z andD ′0 := D ′ ∩ (B+M≺). By

construction of weight function c ′ in Step 3, we have c ′(D ′0) = 0 and c ′(D ′1) =

c(D ′1). From (4.1) and the fact that D ′1 does not contain a pair of anti-parallel
arcs we conclude c(Z) ≥ 2c(D ′1). Summarizing the results yet yields

c(Z) ≥ 2c(D ′1) = 2c ′(D ′1) + 2c ′(D ′0) = 2c ′(D ′)
(4.2)
≥ 2c ′(D) . (4.3)

100 CHAPTER 4 DIAL A RIDE

The set N computed in Step 5 has cost

c(N) = 2c(D− (B+M≺)) = 2c ′(D− (B+M≺)) = 2c ′(D)
(4.3)
≤ c(Z) . (4.4)

Using this result yields that

c(A+ B+N) = c(A+ B) + c(N)

= c(A+ (S∗ − Z)) + c(N)

(4.4)
≤ c(A+ (S∗ − Z)) + c(Z)

= c(A+ S∗) .

Thus, B+N is an optimal solution as claimed.

We briefly comment on the running time of Algorithm 4.2. A balancing set B
can be found in time O(n+mA) as argued in Lemma 4.13 on page 93. A rooted
spanning tree of minimum weight in a graph with n nodes and m arcs can
be computed in time O(min{m logn,n2}) by the algorithm from [Tar77]. Thus,
the problem SOURCE-DARP on the class of paths can be solved in total time
O(n+mA + min{(mA + n) logn,n2}) by Algorithm 4.2. �

4.6 An Approximation for Source-Darp on General
Graphs

In this section we present an approximation algorithm for SOURCE-DARP on
general graphs. We use an approach similar to that of [FHK78]. Throughout
this section we will assume tacitly that Assumption 4.11 on page 90 is satisfied.

The final algorithm actually consists of two different sub-algorithms. The
first of the sub-algorithms uses the observation that a cycle in the graph de-
scribing a transportation schedule is somehow related to a traveling salesper-
son tour. The second sub-algorithm is a slight modification of the algorithm
presented in the previous section. The final algorithm simply runs both sub-
algorithms and picks the best solution.

4.6.1 TSP-based Algorithm

A necessary condition for a solution to be valid is that the tour visits the source
of each arc at least once. Denote by Vsource ⊆ V the set of nodes which is defined
by

Vsource := { v ∈ V | d+
A(v) > 0 } ,

4.6 AN APPROXIMATION FOR SOURCE-DARP ON GENERAL GRAPHS 101

FIGURE 4.4: Illustration of Algorithm 4.5. Instance with marked nodes from Vsource
(left), resulting solution (right) consisting of TSP-tour (thick lines) and
loops (arcs and thin lines).

i. e., Vsource contains the nodes which are sources of arcs from A. The algorithm
first computes (an approximation of) a TRAVELLING SALESPERSON instance
with set Vsource to be visited. Then the solution is augmented at each node from
Vsource by traversing a number of loops. Each loop consists of one outgoing arc
and returns to the current node using edges of the graph. An illustration can be
found in Figure 4.4. The details are displayed in Algorithm 4.5.

We now prove a bound on the quality of the solution found by the TSP-based
Algorithm 4.5.

Theorem 4.22 (Performance of TSP-based Algorithm)
Let ρTSP be the performance of an approximation algorithm for TRAVELLING
SALESPERSON. Assume we employ that algorithm in Step 3 of Algorithm 4.5.
Then Algorithm 4.5 finds a solution of cost at most

ρTSP ·OPT + 2c(A) .

Proof. Let S∗ be an optimal augmenting set and C∗ be a ≺-respecting Eulerian
cycle in G[A+ S∗] starting at o. Recall that per definition, c(C∗) = OPT.

Let l be the length of an optimal TSP tour visiting all nodes from Vsource.
Clearly l ≤ OPT since even C∗ must visit at least all nodes from Vsource.

Let C be the approximate TSP tour computed in Step 3 of Algorithm 4.5.
Then

c(C) ≤ ρTSP · l ≤ ρTSP ·OPT .

The additional cost incurred in Step 9 is bounded by 2c(A): each path added
has the weight of the corresponding arc from A, which is a consequence of the
definition of cost function c (see Definition 4.1 on page 86). �

102 CHAPTER 4 DIAL A RIDE

Input: A mixed graph G = (V, E,A), a cost function c on E, an initial
node o ∈ V , and a source order ≺

1 Let Vsource be the set of nodes which are sources of arcs from A.
2 Compute a complete undirected auxiliary graph U with node set Vsource.

Set the weight d(v,w) of each edge [v,w] to

d(v,w) := distE(v,w) .

3 Find an approximately shortest TSP tour p in U.
Assume that p visits the nodes of Vsource in order (v0, v1, . . . , vs, vs+1)

where v0 = vs+1 = o.
4 Construct a feasible tour C for SOURCE-DARP as follows:
5 Start with the empty tour C.
6 for i := 0, . . . , s do
7 Consider current node vi.

Assume that Avi = {a1, . . . , ak} with a1 ≺ · · · ≺ ak.
8 For j = 1, . . . , k, let pj be a directed shortest path in G[E�]

from the endpoint of aj back to current node vi.
9 Add the k loops a1p1, . . . , akpk to C.

10 Append to C the directed shortest path in G[E�] from vi to vi+1.
11 end for
12 Let S← C−A.
Output: the set S and the cycle C

ALGORITHM 4.5: TSP-based algorithm for SOURCE-DARP.

4.6 AN APPROXIMATION FOR SOURCE-DARP ON GENERAL GRAPHS 103

Obviously the cost of an optimal tour serving all jobs is at least c(A). Thus,

ρTSP ·OPT + 2c(A) ≤ (ρTSP + 2) ·OPT .

This means, that Algorithm 4.5 approximates SOURCE-DARP with approxima-
tion factor ρTSP + 2. Using Christofides’ algorithm for approximating TRAVEL-
LING SALESPERSON [Chr76] we have ρTSP = 3/2 and thus a final performance
of 7/2.
Corollary 4.23 (Performance of TSP-based Algorithm)
Algorithm 4.5 has a performance of

ρTSP + 2 ≤ 7/2

for approximating SOURCE-DARP. �

4.6.2 Algorithm Based on Set of Last Arcs

We now describe Algorithm 4.6. This algorithm is based on similar ideas as
Algorithm 4.2 from Section 4.5 for SOURCE-DARP on paths. It first computes a
set B of balancing arcs which makesG[A+B] degree balanced. Then it computes
a rooted tree directed towards the origin o of minimum cost. After that the new
arcs which are not yet in A + B, together with their inverse arcs, are added to
the solution.

The difference between the current problem on general graphs and the prob-
lem on paths from the section before is that the computation of a balancing set
is more complicated. Particularly, Lemma 4.13 on page 93 is no longer true, i. e.,
we can not guarantee that a specific balancing set is a subset of an appropriate
optimal solution. This enforces to use a different analysis of the quality of the
solution found by the algorithm.

At first it is easy to see that the set B + N found by Algorithm 4.6 is indeed
a feasible solution. The proof of this claim parallels that of Lemma 4.20 on
page 97.

We now formulate some statements on the quality of the solution. We start
with an estimation of the weight of the balancing set computed at the beginning.
Lemma 4.24
The balancing setB found in Step 1 of Algorithm 4.6 has cost at most OPT−c(A).

Proof. Let S∗ @ E� be an optimal solution. Recall that OPT = c(A) + c(S∗).
Since solution S∗ is feasible, graph G[A + S∗] is ≺-Eulerian with start o. In par-
ticular, it is degree balanced. Therefore

OPT − c(A) = c(S∗) ≥ c(B) ,

since B is chosen as a balancing set of minimal weight. �

104 CHAPTER 4 DIAL A RIDE

Input: A mixed graph G = (V, E,A), a cost function c on E, an initial
node o ∈ V , and a source order ≺
{ Recall that Assumption 4.11 holds, in particular, each vertex is essential. }

1 Compute a balancing multi-set B @ E� of minimum cost.
{ How this step can be accomplished with the help of a

minimum cost flow computation is described in detail in Lemma 4.27. }
2 Follow Steps 1 and 3 to 6 of Algorithm 4.2 to compute a set N of arcs

and a ≺-respecting Eulerian cycle Cwith start o.
Output: the set B+N and the cycle C

ALGORITHM 4.6: Algorithm for SOURCE-DARP based on a set of last arcs.

We continue to prove an upper bound on the cost of the set N of new arcs
added in Step 2 of Algorithm 4.6 to the solution.

Lemma 4.25
The cost of the arc set N computed by Algorithm 4.6 is at most 2(OPT − c(A)).

Proof. The proof of the claim is similar to the one for Theorem 4.21 on page 99.
The major difference is that in general we cannot assure that the balancing set B
computed in Step 1 is a subset of an optimal solution. Therefore we use another
approach for the analysis.

Let S∗ be an optimal augmenting set and L be the set of last arcs of a ≺-
respecting Eulerian cycle in G[A+ S∗]. Then L ⊆M≺ + S∗ ⊆ A+ S∗ and hence

OPT − c(A) = c(S∗) ≥ c(L− (A+ B)) .

Clearly, L contains no elements from A \M≺. This implies that L − (A + B) =

L− (M≺ + B) and

c(L− (A+ B)) = c(L− (M≺ + B)) = c ′(L) .

The latter equality follows from the definition of cost function c ′. Since tree D
was of minimal weight, we have

c ′(L) ≥ c ′(D) .

Using the same arguments as in Equation (4.4) from Theorem 4.21 on page 99
we conclude that

2c ′(D) = c(N) ,

which shows the claim. �

4.6 AN APPROXIMATION FOR SOURCE-DARP ON GENERAL GRAPHS 105

We are now ready to estimate the weight c(A + B +N) of the solution pro-
duced by our algorithm. By Lemma 4.24, c(A + B) ≤ OPT. Lemma 4.25 estab-
lishes that c(N) ≤ 2 ·OPT − 2c(A). Thus c(A+ B+N) ≤ 3 ·OPT − 2c(A).

Theorem 4.26 (Performance of Algorithm Based on Set of Last Arcs)
Algorithm 4.6 finds a solution of cost at most 3 ·OPT − 2c(A). �

We conclude this section with implementation details on the computation of the
balancing set.

Lemma 4.27 (Construction of a Balancing Set)
Step 1 of Algorithm 4.6 can be accomplished in the time needed for one mini-
mum cost flow computation on a graph with n nodes and 2mE arcs.

Proof. We setup an auxiliary graph F = (V, E�). A node v ∈ V has charge
d−
A(v) − d+

A(v). The cost of sending one unit of flow over arc r ∈ E� equals its
cost c(r). Let t : E → N0 be an arbitrary feasible integral flow in F, and define
the multi-set B via

B(e) := t(e) for all e ∈ E� .

Then B is a balancing set. Conversely, any balancing set implies a feasible inte-
gral flow in the graph of equal cost by applying the same rule backwards. Hence
the cost of the balancing set and the flow are minimized at the same time. �

4.6.3 Combining Both Algorithms

As noted before, the final algorithm just runs both Algorithm 4.5 and Algo-
rithm 4.6 and picks the better solution. The following analysis shows that by
this approach one can gain an overall approximation factor which improves the
performance of each sub-algorithm.

Theorem 4.28 (Approximability of SOURCE-DARP on General Graphs)
The combined algorithm has a performance of 1/2 · (ρTSP + 3).

Proof. The result is obtained by comparing the approximation guarantees of
both algorithms. Recall from the previous sections that there are the following
bounds on the weight of a solution:

Algorithm 4.5 yields a solution of maximal weight ρTSP ·OPT + 2 · c(A) (see
Theorem 4.22 on page 101), while Algorithm 4.6 provides a solution of maximal
weight 3 ·OPT − 2 · c(A) (see Theorem 4.26).

106 CHAPTER 4 DIAL A RIDE

Factor ρTSP is a constant. Observe that if the quotient c(A)/OPT is small, the
first estimation provides the better result, while in case that c(A)/OPT is large,
the second algorithm is superior.

Let β := 1/4 · (3 − ρTSP). If c(A)/OPT ≤ β, then the first result is bounded
from above as

ρTSP ·OPT + 2 · c(A) ≤ (ρTSP + 2β) ·OPT

=

(
ρTSP + 2 · 3− ρTSP

4

)
OPT

=
ρTSP + 3

2
·OPT .

Otherwise, if c(A)/OPT > β, then the second bound can be estimated as

3 ·OPT − 2 · c(A) ≤ (3− 2β) ·OPT

=

(
3− 2 · 3− ρTSP

4

)
OPT

=
ρTSP + 3

2
·OPT .

Since the combined algorithm takes the best solution out of the two results, the
final solution is bounded by 1/2 · (ρTSP + 3) ·OPT in each case. �

Using Christofides’ algorithm [Chr76] with ρTSP = 3/2 results in a perfor-
mance guarantee of 9/4 for the combined algorithm.

Theorem 4.29 (Approximability of SOURCE-DARP on general graphs)
There is an approximation algorithm for SOURCE-DARP with performance

1

2
(ρTSP + 3) ≤ 9

4
.

This algorithm can be implemented to run in time

O(max{n3 +mAmE +mAn logn,m2
E logn+mEn log2 n}) .

Proof. The performance has already been proven. The running time of Algo-
rithm 4.5 is dominated by that of Christofides’ approximation algorithm for
TRAVELLING SALESPERSON, which can be implemented to run in time O(n3),
and the time needed for the addition of the paths in Step 9 which can be done
in total timeO(mAmE+mAn logn). The running time of Algorithm 4.6 is dom-
inated by the minimum cost flow computation which can be accomplished in
timeO(m2

E logn+mEn log2 n) by using Orlin’s enhanced capacity scaling algo-
rithm [AMO93]. �

4.7 IMPROVED APPROXIMATION FOR SOURCE-DARP ON TREES 107

4.7 Improved Approximation for Source-Darp on
Trees

Theorem 4.29 immediately implies a sharper approximation result on graph
classes where TRAVELLING SALESPERSON can be approximated within factors
better than 3/2. In particular, TRAVELLING SALESPERSON can be solved in poly-
nomial time on trees, which means that ρTSP = 1 in that case. This implies the
following result:

Corollary 4.30
There is an approximation algorithm for SOURCE-DARP on trees with perfor-
mance 2. �

However, this factor can be improved by techniques analogously to the ap-
proach in the previous section. As before, we run two algorithms on the same
instance. The first algorithm, namely Algorithm 4.5 which is based on the
TSP approach, is employed without any changes here. The second algorithm,
namely Algorithm 4.7, is a modified version of Algorithm 4.6 on page 104 from
the previous section which is based on the set of last arcs.

We describe the modifications. The removal of non-essential nodes and the
completion of G via shortest paths is deferred until after the balancing step. In
contrast to the general case and similarly as for paths, even in the case of trees
we can find a balancing set Bwhich satisfies B @ S∗ as described in Lemma 4.13
on page 93. After the balancing we remove all nodes which are not incident to
the arcs in A + B. At this point each node is in some sense “essential”, i. e., it
is incident with either an arc from A or an arc from B. From this situation on,
the algorithm continues in the same manner as the algorithm from the previous
section.

Input: A mixed graph G = (V, E,A) where E is a tree,
a cost function c on E, an initial node o ∈ V , and a source order ≺

1 Compute a balancing multi-set B @ E� such that B ⊆ S∗ for some optimal
solution S∗

2 Complete the graph and remove all nodes not incident with arcs fromA+B

3 Follow Steps 1 and 3 to 6 of Algorithm 4.2 to compute a set N of arcs
and a ≺-respecting Eulerian cycle Cwith start o.

4 return the set B+N and the cycle C

ALGORITHM 4.7: Algorithm for SOURCE-DARP on trees based on set of last arcs.

108 CHAPTER 4 DIAL A RIDE

Theorem 4.31 (Performance of Algorithm Based on Set of Last Arcs)
Algorithm 4.7 finds a solution of cost at most 2 ·OPT − 2 · c(A).

Proof. We estimate the weight of the solution produced by Algorithm 4.7.
Let I = (G = (V, E,A), c, o,≺) be the original instance such that G[E] is a tree.
Consider the instance I ′ = (G = (V, E,A+B), c, o,≺) which results from adding
the balancing arcs B as new transportation jobs. Obviously I ′ is still an instance
on a tree. By Lemma 4.13 it follows that any feasible solution to I will have to
use the arcs from B anyway. Therefore we get that

OPT(I) = OPT(I ′) .

Denote by I ′′ the instance of SOURCE-DARP which is obtained from in-
stance I ′ by completing G along shortest paths and removing non-essential
nodes as in Step 2 of Algorithm 4.7. It is easy to see that

OPT(I ′) = OPT(I ′′) .

Instance I ′′ is no longer an instance on a tree, but it still obeys Assumption 4.11
for general graphs. Notice also that we can transform any feasible solution of I ′′

to a feasible solution of I ′ of the same weight: simply replace each arc which is
not in E� by the shortest path between its endpoints.

Denote by S∗ an optimal solution for instance I. Define multi-set Z := S∗ \B.
Similarly, let S ′′ be an optimal solution of I ′′. Since the multi-set A + B consists
of a collection of balanced strongly connected components and the instance is
a complete graph obeying the triangle inequality, we can assume that S ′′ does
not contain arcs with both endpoints in the same component. Consequently,
S ′′ ∩ (A+ B) = ∅. Since

c(A+ B) + c(Z) = OPT(I) = OPT(I ′′) = c(A+ B) + c(S ′′) ,

we have that

c(Z) = c(S ′′) . (4.5)

Let A+ B+N be the solution of instance I found by Algorithm 4.7. Then,

c(A+ B+N) = c(A+ B) + c(N) = c(S∗) − c(Z) + c(N) . (4.6)

Now we follow the arguments of Lemma 4.25 on page 104 but take into account
that in the current situation of instance I ′′, set S ′′ is the optimal augmenting set.
Thus the mentioned result reads

c(N) ≤ 2c(S ′′) (4.5)
= 2c(Z) (4.7)

4.7 IMPROVED APPROXIMATION FOR SOURCE-DARP ON TREES 109

in the current context. Hence the right hand side of (4.6) can be further bounded
from above by

c(S∗) − c(Z) + c(N)
(4.7)
≤ c(S∗) + c(Z)

= OPT(I) − c(A) + OPT(I) − c(A+ B)

≤ 2 ·OPT(I) − 2 · c(A) ,

and the claim is shown. �

Recall that from Theorem 4.22 on page 101 with the observation that ρTSP = 1

on trees we conclude that the first Algorithm 4.5 produces a solution of weight
no more than

OPT + 2 · c(A)

when restricted to tree instances. Running both algorithms and picking the best
solution yields the following result similarly to the proof of Theorem 4.28:

Theorem 4.32 (Approximability of SOURCE-DARP on Trees)
There exists a polynomial time approximation algorithm for SOURCE-DARP on
trees with performance 3/2. This algorithm can be implemented to run in time
O(nmA + n2 logn).

Proof. If c/OPT ≤ 1/4, then the cost of the solution produced by Algorithm 4.5
is bounded by

OPT + 2c(A) ≤ OPT +
1

2
OPT =

3

2
OPT .

Otherwise, when c/OPT > 1/4, from Theorem 4.31 we know that the cost of the
solution produced by Algorithm 4.7 is bounded by

2 ·OPT − 2 · c(A) ≤ 2 ·OPT −
1

2
OPT =

3

2
OPT .

This yields an overall performance of 3/2 as claimed.
The time bound for the algorithm is derived as follows: We can solve TRAV-

ELLING SALESPERSON on the metric space induced by G[E] in time O(n). We
then root the tree G[E] at an arbitrary node. With O(n) preprocessing time,
the least common ancestor of any pair of nodes can be found in constant time
(see [HT84, SV88]). Thus, we can implement Algorithm 4.5 in such a way that
the invocations of Step 9 take total timeO(nmA). This means that Algorithm 4.5
can be implemented to run in time O(nmA).

110 CHAPTER 4 DIAL A RIDE

The balancing in Algorithm 4.7 can be accomplished in time O(n + mA)

(see Lemma 4.13 on page 93). Completion of the graph by computing all-
pairs shortest paths can be done in time O(nmE + n2 logn) ⊆ O(n2 logn)

[CLR90, AMO93]. All other steps can be carried out in time O(n2) where again
the algorithm from [Tar77] is employed for computing a minimum weight di-
rected spanning tree. �

4.8 Source-Darp with Start and Stop Penalties

In this section we show how to extend our results to the case when there are
start- and stop-penalties for the service vehicle. The approach with penalties
makes the problem more realistic in view of applications. In elevator systems
the time that the elevator needs to accelerate or decelerate in order to pick up or
deliver its load can usually not be neglected. Thus, it is natural to penalize each
stop and start of the server on its route.

Start- and stop-penalties do not introduce a completely new situation: the
problem with penalties can be modeled as DARP on a slightly larger graph.
However, the structure of the graph may be destroyed.

Particularly the penalties change the complexity of the problem when re-
stricted to the simplest class of graphs. We prove that the problem with penal-
ties becomes NP-hard even on paths without any precedence constraints, which
contrasts with the polynomial solvability of the problem without penalties.

The problem SOURCE-DARP with penalties is denoted by PENALTY-SOURCE-
DARP. An instance of PENALTY-SOURCE-DARP is specified by the same input
as for SOURCE-DARP, and it defines additionally two nonnegative penalty func-
tions p+ and p− on the set of nodes. Here, p+(v) is the time penalty for starting
from a node and p−(v) is the penalty for stopping at the node. The objective is
to find a closed walk serving all requests, such that the cost of the walk plus the
cost of starting and stopping is minimized.

As also in the preceding sections we formulate PENALTY-SOURCE-DARP as
a graph augmentation problem. In order to perform this in a meaningful way,
we have to allow augmenting arcs from V × V and not just from E�, since
each arc corresponds to a move and incurs a start and stop penalty. The cost
function c : E→ R

+
0 is extended by defining the cost of arc (v,w) to be the length

of a shortest path from v to w in G[E].

Definition 4.33 (Graph Augmentation Version of PENALTY-SOURCE-DARP)
An instance of problem PENALTY-SOURCE-DARP consists of the same input
as for SOURCE-DARP (see Definition 4.5 on page 88) together with additional

4.8 SOURCE-DARP WITH START AND STOP PENALTIES 111

penalty functions p+, p− : V → R
+
0 on the set V of nodes. The objective is to find

a multi-set S of arcs, S @ V × V , minimizing the weight

c(A+ S) +
∑
u∈U+

d+(u)p+(u) +
∑
u∈U−

d−(u)p−(u)

such that G[A + S] is ≺-Eulerian with start o. Here, U+ is the set of sources of
arcs in A+ S and U− is the set of targets of arcs in A+ S.

In the sequel we show that problem PENALTY-SOURCE-DARP can be reduced to
SOURCE-DARP. We emphasize that by the reduction the restriction on the shape
of the underlying graph class may be violated. Therefore we cannot transfer the
results from previous sections directly to the case with penalties.

Let I = (G = (V, E,A), c, o,≺, p−, p+) be an instance of PENALTY-SOURCE-
DARP. We construct an instance I ′ = (G ′ = (V ′, E ′, A ′), c ′, o ′,≺ ′) of SOURCE-
DARP on a slightly larger graph G ′. For each node v ∈ V we add both v and a
new node v(±) to V ′. Node v(±) is used to model starting or stopping at node v.
The set E ′ consists of the edges in E and an additional edge ev between v and
v(±) for each node v ∈ V . The cost of the new edges is c ′(ev) = (p+(v)+p−(v))/2.
The cost function c ′ coincides with c on the set E. For each arc a = (u, v) ∈ A
we add an arc a ′ = (u(±), v(±)) to A ′ (the arcs in A are not contained in A ′). The
partial order on the set A ′ is induced naturally by that on A. Finally, the start
node o ′ equals o.

Lemma 4.34 (Reducibility of PENALTY-SOURCE-DARP)
Let I = (G, c, o,≺, p+, p−) be an instance of PENALTY-SOURCE-DARP and I ′ =
(G ′,≺, c ′, o ′) be the instance of DARP constructed by the above method. Then,
I and I ′ are equivalent in the following sense: Any feasible solution for I ′ can be
transformed into a feasible solution for I of the same cost and vice versa. This
transformation can be accomplished in polynomial time.

Proof. Let S ′ be a valid solution for instance I ′ of SOURCE-DARP where S ′ is an
augmenting set of arcs. Let C ′ be a ≺-respecting Eulerian cycle in G ′[A ′ + S ′]

with start o ′.
We first construct an auxiliary set M of arcs by traversing C ′ and replacing

all chains of arcs from S ′ with a single arc from the start node of the chain to its
end node. Notice that all endpoints of arcs in M are contained in V ′ \ V . We
now construct a solution S by replacing each arc (u(±), v(±)) by (u, v). It is easy
to see that S is in fact a valid solution for I of cost equal to that of S ′.

Conversely, let S be a feasible solution for I. We can construct a solution S ′

for I ′ with equal cost by adding for each arc (u, v) in S the arc (u(±), v(±)) to S ′.
The polynomial time bound is obvious from the construction. �

112 CHAPTER 4 DIAL A RIDE

When drawing consequences from Lemma 4.34 must must take into account
that the graphs G[E] and G ′[E ′] used in the reduction do not necessarily belong
to the same graph class. It follows from the construction that if G[E] is a tree
then G ′[E ′] is also a tree. Thus, Lemma 4.34 implies that approximation results
for SOURCE-DARP on trees can be applied directly to PENALTY-SOURCE-DARP
on trees. Similarly, approximation results for general graphs carry over imme-
diately. Hence, we obtain the following result:

Corollary 4.35 (Approximability of PENALTY-SOURCE-DARP)
The problem PENALTY-SOURCE-DARP can be approximated on trees with per-
formance 3/2 and on general graphs with performance 9/4. �

However, transforming an instance of PENALTY-SOURCE-DARP where G[E]

is a path yields an instance of SOURCE-DARP whereG ′[E ′] is a caterpillar graph.
In Theorem 4.36 we will show that SOURCE-DARP is NP-hard to solve on cater-
pillars. Unless we can give a better transformation, we can conjecture that even
PENALTY-SOURCE-DARP on paths is NP-hard to solve. In the next section we
will give a proof for this fact.

4.9 Hardness Results

Since SOURCE-DARP generalizes DARP, it follows from the hardness result in
[FG93] that SOURCE-DARP is NP-hard even on trees. We show that this hard-
ness continues to hold even if the source order ≺ is a total source order.

We can also strengthen the hardness result of [FG93] and show that DARP is
hard on caterpillar graphs. This is in contrast to an application of DARP in the
next section where caterpillar graphs naturally arise.

Recall the definition of a caterpillar graph (see page 5): A caterpillar graph
consists of the backbone, which is a simple path, and the feet, which are additional
leaves adjacent via hair edges to the backbone. We restrict the class of caterpil-
lars further to those graphs where no two hairs are incident. Equivalently, the
nodes on the backbone are of maximum degree 3.

Theorem 4.36 (Hardness of DARP)
DARP on caterpillars is NP-hard to solve. This result continues to hold, if the
transportation jobs are restricted to have sources and targets only in the feet of
the caterpillar.

Proof. The hardness is shown by a reduction from BIPARTITE STEINER TREE.
An instance of BIPARTITE STEINER TREE consists of a bipartite graph H = (X ∪
Y, F) and a nonnegative number k ≤ |F|. It is NP-complete to decide whether

4.9 HARDNESS RESULTS 113

there exists a subtree of H that spans all the nodes in Y and has at most k edges
[GJ79, Problem ND12].

One can make two assumptions on H without loss of generality: First, each
node in Y has degree at least two. Otherwise, for a node y ∈ Y with degree one,
there is no other choice besides including the unique edge incident on y in the
Steiner tree. The second assumption is that H is connected. Otherwise, either
there is a connected component containing Y, or there is no feasible solution at
all.

Let H = (X ∪ Y, F) be an instance of BIPARTITE STEINER TREE. We create an
instance I = (G = (V, E,A), c, o) of DARP. The construction of graph G is illus-
trated in Figure 4.8. Start with a graph consisting of 2|F| nodes and |F| pairwise
non-incident edges. For each edge [x, y] ∈ Fwhere x ∈ X and y ∈ Y, choose a yet
unlabeled edge in G and label its endpoints by x and y, respectively. Now cre-
ate the backbone of the caterpillar graph by inserting a path of |F|− 1 additional
edges. These backbone edges are inserted between nodes with labels from X in
such a way that for each x ∈ X the graph induced by the nodes labeled x in G is
a connected path, denoted by P(x).

Set the weight of a backbone edge with two endpoints sharing the same label
to 0, and the weight of backbone edges with two different labels to some large
numberM := 2|F| + 1. Set the weight of a hair to 1.

The arc set A is constructed as follows: For y ∈ Y denote by S(y) the set of
foot nodes in G labeled with y. Then, for each y ∈ Y, choose a directed sim-
ple cycle connecting S(y) and add its arc set to A. Finally, the origin o of the
server is chosen to be the source of an arbitrary arc in A. Observe that by con-
struction the graph G[A] is degree balanced. It consists of the set of connected
components {S(y) | y ∈ Y }. Each of the components is strongly connected and
Eulerian.

Let C =
∑
a∈A c(a). We claim that H contains a Steiner tree with at most k

edges if and only if there is a feasible solution to the instance I of DARP with cost
at most C+ 2k. This statement will be established in Claim 4.37 and Claim 4.38,
and this completes the proof. �

Claim 4.37
Assume that graphH contains a Steiner tree with at most k edges. Then there is
a feasible solution to the instance I with cost at most C+ 2k.

Proof. Suppose that T is a Steiner tree in H with at most k edges connecting
the nodes in Y. We construct a multi-set S of arcs, S @ E�, such that G[A + S]

is Eulerian and contains o and c(A + S) ≤ C + 2k: For each x ∈ X spanned
by T , add all arcs from the set P(x)� to S (these arcs are of cost 0). For each
edge [x, y] ∈ T , add a pair of anti-parallel arcs between the endpoints of the

114 CHAPTER 4 DIAL A RIDE

P(b) P(c)

f g h

X

Y

a b c
· · · · · ·

S(f)

S(h)

S(g)

FIGURE 4.8: Transformation of BIPARTITE STEINER TREE into DARP on a caterpillar in
Theorem 4.36. Thick lines represent a valid solution and its transforma-
tion.

unique hair labeled [x, y] to multi-set S (these arcs are of cost 1 each). By this
construction, graph G[A + S] is degree balanced. Since T was spanning Y and
connected, G[A+ S] is strongly connected and hence Eulerian. By construction,
c(A+ S) ≤ C+ 2k. �

Claim 4.38
Assume that there is a feasible solution to the instance Iwith cost at mostC+2k.
Then graph H contains a Steiner tree with at most k edges.

Proof. Assume that S, S @ E�, is a feasible solution for instance I, and its cost
satisfies c(A+ S) ≤ C+ 2k. Then G[A+ S] is Eulerian and contains o. The set S
cannot contain any arc of cost M, since otherwise c(A + S) = c(A) + c(S) ≥
C+M = C+ 2|F| + 1 > C+ 2k.

We now define a subgraph T of H as follows: For each x ∈ X, y ∈ Y, if S
contains (at least one copy) of an arc between a node in P(x) and S(y) in arbi-
trary direction, then the edge [x, y] is included in T . Since G[A] and G[A+S] are
degree balanced and S ∩ A = ∅, we can decompose S into arc disjoint cycles.
Since S @ E� and G[E] is a tree it follows that r ∈ S implies that the inverse arc
r−1 must also be contained in S. Hence, T consists of at most c(S)/2 = k edges.

It remains to show that T is connected and spans the nodes in Y. To this end,
let y1 and y2 be two arbitrary nodes from Y. Since y1, y2 are incident with arcs
from A, and G[A + S] is strongly connected, there is a directed path (r1, . . . , rt)

from a node labeled y1 to one labeled y2 in G[A+ S]. The node labels along this
path change only when ri is of type ri = (x, y) or ri = (y, x) for suitable x ∈ X

4.10 CONCLUDING REMARKS 115

and y ∈ Y. By construction, tree T contains edge [x ′, y ′] in this case. Hence, T
connects y1 and y2. �

Corollary 4.39 (Hardness of SOURCE-DARP)
All hardness results given in Theorem 4.36 for DARP remain true for SOURCE-
DARP. This is true even if the source order is restricted to be total.

Proof. Observe that in the construction used above, |Av| ≤ 1 for all nodes v.
So we can choose ≺ to be the empty relation and the claim immediately fol-
lows. �

We now turn over to problem PENALTY-SOURCE-DARP. The caterpillar con-
structed in the proof of Theorem 4.36 has the property that jobs have sources
and targets only in the feet of the caterpillar. In fact, every instance of SOURCE-
DARP on caterpillars with these properties can be transformed into an equiv-
alent instance of PENALTY-SOURCE-DARP on a path: Let f be a foot and v be
its unique adjacent node on the backbone. We replace all arcs from A which
are incident with f by corresponding arcs with source or target v. We then re-
move foot f. The start- and stop-penalty on v is set to the length c(f, v) of the
hair between v and the foot f. It follows by arguments similar to those given
in Lemma 4.34 that the constructed instance of PENALTY-SOURCE-DARP on the
path (which corresponds to the former backbone) is in fact an equivalent in-
stance to the instance of SOURCE-DARP on the caterpillar. Thus, we obtain the
following result which contrasts with the polynomial solvability of SOURCE-
DARP on paths:

Theorem 4.40 (Hardness of PENALTY-SOURCE-DARP)
PENALTY-SOURCE-DARP is NP-hard even on paths. �

4.10 Concluding Remarks

We have contributed several versions of a dial-a-ride problem with additional
precedence constraints on the transportation jobs. Originally this research was
motivated by the performance analysis of a large distribution center of one of
the leading manufacturers of office products in Central Europe [AG+98].

We have shown that even in the presence of source order constraints for
the transportation jobs the problem can be solved in polynomial time on paths
which generalizes the result of [AK88]. On trees, however, the problem is NP-
hard. The application to realistic elevator systems with non-negligible accelera-
tion of the moving server motivates the formulation of a problem variant with
start and stop penalties. Table 4.9 gives an overview on the results.

116 CHAPTER 4 DIAL A RIDE

Graph class DARP SOURCE-DARP PENALTY-
SOURCE-DARP

paths polynomial time
solvable [AK88]

polynomial time
solvable

(Theorem 4.21)

NP-hard
(Theorem 4.40)

approximable
within 5/3

(Corollary 4.35)

trees NP-hard, even on
caterpillars

(Theorem 4.36)

NP-hard, even on
caterpillars

(Theorem 4.36)

NP-hard

approximable
within 5/4 [FG93]

approximable
within 3/2

(Theorem 4.32)

approximable
within 5/3

(Corollary 4.35)

general graphs NP-hard [FHK78] NP-hard NP-hard

approximable
within 9/5

[FHK78]

approximable
within 9/4

(Theorem 4.29)

approximable
within 9/4

(Corollary 4.35)

TABLE 4.9: Complexity and approximation results for DARP and related problems.

117

Part II

Network Upgrade Problems

119

Chapter 5

Node Upgrade Problems

In the remaining part of the thesis we turn over to network upgrade problems
as opposed to the network design problems examined in the first part. In this
chapter we examine a network upgrade problem under a node upgrade model.
The node upgrade model admits to distribute a budget among the nodes of the
graph in order to upgrade a subset of the nodes. Upgrading a particular node
results in decreasing the length of all incident links.

Our first problem can be characterized as a bottleneck problem. The final so-
lution is (a subgraph of) a bottleneck graph which is constructed from a graph
by deleting all links whose length exceeds the bottleneck value. By this oper-
ation it is guaranteed that each link length which appears in the final solution
is bounded by a global constant. Problems of bottleneck type have applications
e. g. in communication networks with electrical signal transmission: Given the
fact that the resistance of cables is greater than zero, the quality of signals de-
creases along the cable. There is a reverse dependency between the signal qual-
ity and the length of a link. By this relation, a minimum requirement on the sig-
nal quality (which is itself determined by the parameters of amplifiers used and
additional factors including maximal error rate) immediately induces a bound
on the maximal length of a link.

The underlying network design problem is to find a constrained forest as in-
troduced in [GW95]. The concept of constrained forests is a generalization of
subgraph classes including spanning trees, Steiner trees, or s-t-paths.

The problem we concentrate on in this chapter is called NODE UPGRADE CON-
STRAINED FOREST: The goal is to find a minimum cost set of nodes, such that
the bottleneck graph which results from the upgrade contains a constrained for-
est. The constrained forest is implicitly specified by a proper function. We prove
that the problem is NP-hard to solve. Moreover, we provide both logarithmic
lower bound and logarithmic upper bound on the approximability of NODE
UPGRADE CONSTRAINED FOREST in this chapter.

120 CHAPTER 5 NODE UPGRADE PROBLEMS

5.1 Preliminaries and Problem Formulation

5.1.1 Node Upgrade Model

At first we start with a description of the network upgrade model used in this
chapter. Initially we are given an edge weighted graph and additionally a bud-
get. The budget can be spent to improve the network in order to reduce the
weight of some edges.

The upgrade model is node based. This means, that the upgrade operation
takes places at the nodes of the graph. We use a discrete upgrade model: for
each node we can either choose to upgrade it or to leave it in the original state.
The effect of upgrading a particular node is that the weight of all edges incident
with that node is reduced. The amount of reduction is computed as follows:
The input instance specifies for each edge e three integer numbers

d0(e) ≥ d1(e) ≥ d2(e) ≥ 0 .

Number d0(e) represents the initial weight of edge e. If one of the endpoints
of e is upgraded, the weight falls to d1(e). If both endpoints are upgraded, the
weight of the edge is determined by d2(e).

The cost of an upgrade strategy is determined by an additional integer val-
ued function c on the set of nodes. For each node v ∈ V the value c(v) specifies
how expensive it is to upgrade the node.

Any upgrade strategy is uniquely determined by specifying a subsetW ⊆ V
of the set V of nodes which contains all upgraded nodes. The cost c(W) of an
upgrade strategy is defined in an obvious way as

c(W) :=
∑
v∈W

c(v) .

The edge weight function resulting from an upgrade strategy W is denoted
by dW . It is defined to be

dW(e) :=

d0(e), if |{v,w} ∩W| = 0

d1(e), if |{v,w} ∩W| = 1

d2(e), if |{v,w} ∩W| = 2

for each edge e ∈ E, e = (v,w).

5.1.2 Constrained Forest Problems

Constrained forests are used to characterize certain well known subgraph struc-
tures including the family of spanning trees, the familiy of Steiner trees (with

5.1 PRELIMINARIES AND PROBLEM FORMULATION 121

respect to a given set of terminals), or the family of s-t-paths (for a given pair
s, t of nodes) in a unified way.

Constrained forest problems were introduced by Goemans and Williamson
in [GG+94, GW95]. An instance specifies a graph and a family of cuts in the
graph. A subgraph is a feasible solution for the problem if it intersects each of
the cuts in the family, i. e., it contains at least on edge out of each cut. The goal
is to find a minimum weight feasible subgraph. For the following observations
we refer the reader also to [GW97].

Consider a graph G = (V, E). Observe that each node subset U ⊂ V which is
neither the empty set nor the set V itself defines a cut

δ(U) := { (v,w) ∈ E | v ∈ V , w /∈ V }

which contains all edges with exactly one endpoint in U. We can use a charac-
teristic function f : 2V → {0, 1} to define a family of cuts: f(U) = 1 if and only if
δ(U) is a member of the family. A cut δ(U) where f(U) = 1 is called active.

A cut δ(U) is called intersected by an edge set F ⊆ E, if δ(U)∩ F 6= ∅. Observe
that there is the symmetry

δ(U) = δ(V \U)

for all subsets U ∈ 2V \ {∅, V}. Moreover, for arbitrary disjoint subsets U1, U2 ∈
2V \ {∅, V}, we have

δ(U1 ∪U2) ⊆ δ(U1) ∪ δ(U2) .

It is clear that whenever the cut δ(U1∪U2) is intersected by an edge set F, then at
least one of the cuts δ(U1) or δ(U2) must also be intersected by F as well. These
observations motivate the restriction of the characteristic functions to proper
functions:
Definition 5.1 (Proper Function)
A function f : 2V → {0, 1} is called proper, if it satisfies:

1. Symmetry:

f(U) = f(V \U) for all U ∈ 2V

2. Disjointness: For any U1, U2 ∈ 2V \ {∅, V},(
U1 ∩U2 = ∅ ∧ f(U1) = f(U2) = 0

)
=⇒ f(U1 ∪U2) = 0 .

A subgraph which intersects all active cuts as specified by a proper function
is called a constrained forest. By this understanding one can use a proper function
to define a family of subgraphs.

122 CHAPTER 5 NODE UPGRADE PROBLEMS

Definition 5.2 (Constrained Forest)
Let G = (V, E) be a graph, f : 2V → {0, 1} be a proper function. Consider a subset
F ⊆ E such that

|F ∩ δ(U)| ≥ f(U), for all U ∈ 2V \ {∅, V} .

Then the induced graph G[F] is termed a constrained forest with respect to f.

Any vertex v ∈ V such that f({v}) = 1 is called a terminal. In the sequel we
denote by K := { v ∈ V | f({v}) = 1 } the set of terminals given by the proper
function f.

Many interesting families of problems can be formulated as constrained forest
problems with proper functions. We give three examples.

Example 5.3 (Spanning Tree). In the most basic case, the proper function f is
defined by

f(U) = 1 for all U ∈ 2V \ {∅, V} .

This means that the constrained forest must contain at least one edge of each
cut in the graph. Therefore, the corresponding subgraph is connected. The
inclusion-wise minimal constrained forests are the spanning trees of the input
graph, while a weight minimal constrained forest is a minimum spanning tree.

Example 5.4 (s-t-Path). Assume that there are two distinct nodes s, t ∈ V given.
Define the proper function f to be

f(U) = 1 for all U ∈ 2V where |U ∩ {s, t}| = 1 .

Obviously f makes exactly those cuts active which separate s from t. Hence
each constrained forest contains a path between s and t, and a weight minimal
constrained forest is a shortest path connecting the two nodes.

Example 5.5 (Steiner Tree). Another example of the use of proper functions is
the application to STEINER TREE. Let K ⊆ V be a set of terminals. The problem
STEINER TREE is to find a minimum weight connected subgraph that spans all
the terminals. The corresponding proper function f is defined by

f(U) =

{
1 if 0 < |U ∩ K| < |K|

0 otherwise.

This choice of f means that each cut separating the set of terminals is an active
cut. Therefore a constrained forest spans all terminals, and a weight minimal
constrained forest is a solution to STEINER TREE.

5.1 PRELIMINARIES AND PROBLEM FORMULATION 123

Notice that the cardinality of the power set of V is of size exponential in |V |. If a
proper function were given by explicitly quoting all values in a table, then the
size of an input instance would no longer remain polynomial in the size |V |. This
would imply that the complexity results could not be compared to results on
other problems in a meaningful sense (see also the discussion on the encoding
of input instances in Section 1.2).

A way out of this dilemma is to use an implicit specification of the proper
function. The three examples above show how to use this implicit represen-
tation. In general it is sufficient that the proper function is specified in such
a way that for each particular subset of the nodes we can compute its value in
polynomial time.

Before continuing with the formulation of the main problem we report the fol-
lowing result which has been proven in [GW95].

Lemma 5.6
Let f be a proper function. If f(U) = 0 and f(B) = 0 for some B ⊆ U, then
f(U \ B) = 0. �

5.1.3 Problem Formulation

As noted in the introduction to this chapter, we will investigate a bottleneck
constrained forest problem under the node upgrade model introduced in Sec-
tion 5.1.1. The bottleneck value is a number D ∈ R+ specified by the problem
instance. Given a graph G = (V, E) with edge weight function d, we define the
bottleneck graph

Bottleneck(G,dW, D)

to contain all edges e ∈ Ewith dW(e) ≤ D.
Given a bottleneck value, we partition the set of edges into four sets. This

partition is performed according to how many of the endpoints must be up-
graded in order to decrease the delay of an edge below the threshold D:

• uncritical edges: An edge of delay d0(e) ≤ D is called uncritical because it
is part of the bottleneck graph regardless whether an upgrade happens or
not.
• 1-critical edges: An edge e is said to be 1-critical, if d0(e) > D ≥ d1(e).

Those edges need at least on endpoint to be selected for upgrading until
they get included into the bottleneck graph.

124 CHAPTER 5 NODE UPGRADE PROBLEMS

• 2-critical edges: Similarly, an edge e is called 2-critical, if d1(e) > D ≥ d2(e).
In this case it is necessary to upgrade both endpoints before the edge gets
part of the bottleneck graph.
• useless edges: Finally, if d2(e) > D, the edge e is called useless, since no up-

grade strategy can cause those edges to be added to the bottleneck graph.
Without loss of generality we assume that the graph does not contain any
useless edges.

We are now ready to formulate the problem NODE UPGRADE CONSTRAINED
FOREST under study.

Definition 5.7 (NODE UPGRADE CONSTRAINED FOREST Problem)
Given a graph G = (V, E) with nonnegative edge weights d0 ≥ d1 ≥ d2, node
weights c as before, a boundD and a proper function f, find a minimum cost set
W ⊆ V of nodes such that the resulting graph with edges weights given by dW
has a constrained forest (with respect to f) of bottleneck delay at most D.

Notice that the condition just stated is equivalent to saying that after the up-
grade operation the set of all edges of weight at most D forms a constrained
forest. The canonical notation of the problem as a two-criteria optimization
problem is

(MIN: NODE UPGRADE, CONSTRAINED FOREST BOTTLENECK WEIGHT) .

It will turn out in Section 5.5 that NODE UPGRADE CONSTRAINED FOREST
is NP-hard to solve. This motivates the contruction of an approximation algo-
rithm in the following sections.

Observe that given a vertex set W ⊆ V it can be easily checked in polynomial
time whetherW is a valid upgrading set. This can be achieved by computing the
bottleneck graphH := Bottleneck(G,dW, D) and evaluating the proper function
for each connected component of H. In fact, we claim that W is valid if and
only if f evaluates to zero on each component of H: Clearly, if f(C) = 1 for a
connected component C of H then H can not contain a constrained forest, since
any such forest must have an edge with exactly one endpoint in C. Assume
conversely that f(C) = 0 for each connected component C of H. If H contained
no constrained forest, there would be a set U ∈ 2V \ {∅, V} with f(U) = 1 and
δ(U) ∩H = ∅. But then U was the disjoint union of components of H and from
the disjointness property of fwe obtain the contradiction that f(U) = 0.

5.2 RELATED WORK 125

5.2 Related Work

The problem NODE UPGRADE CONSTRAINED FOREST generalizes the problem
of finding a node-weighted Steiner tree of minimum cost. An instance of NODE
WEIGHTED STEINER TREE is given by a graph G = (V, E) with edge weights l
and node weights w. For a subset K ⊆ V of terminals, the problem consists of
finding a connected subgraph ofG spanning all the terminals. The optimization
objective is to minimize the total sum of node and edge weights of the subgraph.

Let an instance of NODE WEIGHTED STEINER TREE be given. Notice that
without loss of generality we can assume that all edge weights are zero: If not,
we can replace each edge (u, v) by two new edges (u, x) and (x, v), where x
is a new vertex of weight l(u, v). We can now construct an instance of NODE
UPGRADE CONSTRAINED FOREST by taking the graph G specified in the NODE
WEIGHTED STEINER TREE instance and defining edge weights

d0(e) := d1(e) := 2

d2(e) := 1 .

We set the bottleneck thresholdD to be 1. The cost of upgrading a vertex v is set
to c(v) := w(v). The proper function f is defined as in Example 5.5 on page 122
to reflect Steiner trees for the terminal set K.

For each solution of NODE WEIGHTED STEINER TREE the vertices in the tree
induce a upgrading set whose cost equals that of the tree. Moreover, all edges
of the solution have both endpoints upgraded, hence the bottleneck graph con-
tains the tree. Conversely, the bottleneck graph solution of NODE UPGRADE
CONSTRAINED FOREST is also a solution of NODE WEIGHTED STEINER TREE,
and the sum of the node weights in the latter does not exceed the upgrade cost
of the first.

The problem of finding a node-weighted Steiner tree of minimum cost has been
introduced in [Seg87]. By a reduction from MINIMUM SET COVER there is a
lower bound of ln |K| for approximating a |K|-terminal instance, unless NP ⊆
DTIME(NO(log logN)). Klein and Ravi [KR95] obtained an approximation with
performance 2 ln |K|. This approximation result has been improved by Guha
and Khuller [GK99b] to 1.35 ln |K| for weighted nodes and to ln |K| for nodes
with unit weights.

The generalized problem of finding a minimum node weight constrained
forest (specified by proper functions) has also been addressed by Guha and
Khuller in [GK99b] where they provide an approximation with performance
1.6103 ln |K|.

The concept of constrained forests is due to Goemans and Williamson [GW95,
GW97]. They have shown that finding a minimum weight constrained forest in

126 CHAPTER 5 NODE UPGRADE PROBLEMS

an edge weighted graph is NP-hard, and gave a 2-approximation algorithm for
the problem.

A simpler node upgrade model was suggested by Paik and Sahni [PS95]: Their
model uses as input a graph with nonnegative edge weight function d ≥ 0

and a global constant α ∈ R with 0 < α < 1. The weight of an edge remains
untouched if none of its endpoints are upgraded. If one or both of its endpoints
are selected for upgrading, the weight d(e) of an edge e falls down to α · d(e)
or α2 · d(e), respectively. It is easy to see that the model used in this thesis is a
generalization of the Paik-Sahni model.

5.3 The Algorithm

In this section we provide the approximation algorithm for NODE UPGRADE
CONSTRAINED FOREST. The analysis and proof of the performance will follow
in the next section.

We first give a brief overview of our algorithm. A detailed description can
be found in Algorithm 5.1 on the next page. Initially the set W of upgraded
nodes is empty.

Our algorithm maintains the connected components of the bottleneck graph
with respect to the current weight function dW . Such a connected component C
is called active, if f(C) = 1. The algorithm terminates with a feasible solution if
no active component remains.

In each iteration the algorithm merges at least two active components. This
is performed by upgrading some nodes in the network which actually adds
new edges to the bottleneck graph. Notice that from the properties of proper
functions it is not possible that there is a situation where exactly one component
is active: This would interfere with the disjointness property in Definition 5.1.

The basic rule of which nodes to upgrade in an iteration is to select a set that
gives the best improvement ratio. This ratio is measured by the quotient of the
cost of the vertices and the decrease of the number of active components.

5.3.1 Quotient Costs

Consider the situation at the beginning of an iteration, where some components
are active. By upgrading nodes, in fact we add edges to the bottleneck graph.
As more and more nodes get upgraded, more and more edges are added to the
bottleneck graph. At some point we obtain new paths which join some of the
active components.

5.3 THE ALGORITHM 127

Input: A graph G = (V, E) with a proper function f : 2V → {0, 1},
three edge weight functions d0 ≥ d1 ≥ d2 ≥ 0,
a node weight function c, and a number D

1 W ← ∅

2 G ′ ← Bottleneck(G,dW, D)

3 while G ′ contains at least one active connected component do
4 Assume that C = {C1 . . . , Cq} is the set of active components
5 for all v ∈ V , C ∈ C do

{ Compute c−(v, C) and c+(v, C) as described in Section 5.3.2 }

6 c−(v, C)←minimum upgrading cost to obtain a path from v to C
of bottleneck delay at most D where v is not upgraded

7 c+(v, C)←minimum upgrading cost to obtain a path from v to C
of bottleneck delay at most D where v is upgrade (this cost does not
include the upgrading cost of v)

{ Observe that c+(v, C) = c−(v, C) = 0 if v ∈ C }

8 end for
9 Find a node v ∈ V in the graph G with minimum quotient cost q(v)

{ See Section 5.3.1 for definition and a description of how to accomplish this }

Let U be the upgraded vertices on the paths from v to the clusters
C1, . . . , Cr chosen for optimal v

10 LetW ←W ∪U
11 Recompute the edge weights dW ,

the bottleneck graph G ′ = Bottleneck(G,dW, D),
and the connected components of G ′

12 end while
Output: Upgrade setW

ALGORITHM 5.1: Node upgrading for constrained forests.

128 CHAPTER 5 NODE UPGRADE PROBLEMS

Assume that there is a distinguished node v ∈ V . Then we can count how
many active components are connected to v by the current upgrade strategy.
On the other hand we have the cost of the current ugprade set. The minimal
ratio between these cost and the number of components joined to v is called the
quotient cost of v. The decision for an upgrade strategy is based on minimizing
the quotient cost over all nodes v ∈ V .

More formally, let W ⊆ V be the current set of already upgraded nodes and
C = {C1, . . . , Cp} be the current set of active components. Let v ∈ V be a vertex.
For technical reasons we perform a distinction of cases according to the fact
whether v gets selected for upgrading in the current iteration.

We define c−(v, Cj) to be the minimum cost c(U) of an upgrading set U ⊆
V \W \ {v} such that v and Cj are connected in the bottleneck graph. If no such
upgrading set exists, we define c−(v, Cj) := +∞. Moreover, if v ∈ Cj, then
c−(v, Cj) = 0. Similarly, we define c+(v, Cj) to be the minimum cost c(U \ {v})

of an upgrading set U ⊆ V \W with v ∈ U such that v and Cj are connected in
the bottleneck graph. Notice that the cost c(v) itself is not taken into account by
the minimization. The computation of the values c+(v, Cj) and c−(v, Cj) can be
performed in polynomial time, which will be shown in the next section.

With

q+(v) := min
2≤r≤p

min
C ′⊆C
|C ′|=r

c(v) +
∑
C ′∈C ′ c

+(v, C ′)

r

q−(v) := min
2≤r≤p

min
C ′⊆C
|C ′|=r

∑
C ′∈C ′ c

−(v, C ′)

r

we are enabled to define the quotient cost of v by

q(v) := min {q+(v), q−(v)} . (5.1)

The quotient cost of a node can be computed easily, if all values c+(v, Ci)

and c−(v, Ci) are already available. We explain how to calculate the value q+(v)

efficiently. Assuming that the values c+(v, Ci) are given for the active compo-
nentsCi, it is not necessary to check all

∑p
r=2

(
p
r

)
combinations for minimization.

Renumber the active components such that

c+(v, C1) ≤ c+(v, C2) ≤ · · · ≤ c+(v, Cp) .

Then a minimum over all r-element subsets of C is obviously attained by the
subset {C1, C2, . . . , Cr}. Hence for computing q+(v) it suffices to check p subsets

{C1, C2, . . . , Cr}, for r = 1, . . . , p .

5.3 THE ALGORITHM 129

The same approach works for computing the value q−(v). The additional
time effort for this operation is in O(p logp) which is needed for sorting the
O(p) numbers.

5.3.2 Computing the Best Upgrading Paths

In this section we show that for each vertex v and active component C we can
compute the values c−(v, C) and c+(v, C) in polynomial time. This is done by
two single source shortest paths computations on an auxiliary graph H, where
the length of a path is defined to be the node costs of the nodes on the path
excluding the source vertex.

For each vertex v ∈ V the auxiliary graph H contains two vertices v+ and
v− representing the upgraded and the untouched version of v. The vertex set is
augmented by one node for each active component. The cost of each vertex v−

is set to zero. The cost of each v+ is set to zero for v ∈W, and to c(v) for v /∈W.
Also, the cluster nodes have zero cost.

Informally the idea is as follows: For each edge (u, v) in G, the graph H
contains the four edges with one endpoint in {u+, u−} and the other endpoint
in {v+, v−}. Therefore there is a one-to-one correspondence of paths in G and H
as long as the marks “+” and “−” are ignored. By blocking edges incident
with v− in the auxiliary graph we can enforce that a path must use the corre-
sponding node v+ instead, which involves the upgrade cost c(v). This mech-
anism is used to assure that critical edges are not considered as long as the
necessary number of endpoints has been upgraded.

Formally, the edge set of H is determined as follows (the construction is il-
lustrated in Figure 5.2): If (u, v) ∈ E is uncritical, then H contains all four edges
(u+, v+), (u+, v−), (u−, v+) and (u−, v−). If (u, v) ∈ E is 1-critical, thenH contains
(u+, v+), (u+, v−), and (u−, v+). For 2-critical edge (u, v) ∈ E, graph H contains
only (u+, v+). (Recall that we have assumed without loss of generality that there
are no useless edges.) For all nodes v ∈W, i. e., the nodes which are already up-
graded, we remove the corresponding vertices v− and incident edges from H.
Finally, each active cluster C is joined to all the vertices v+ and v− where v ∈ C.

For a vertex v and an active cluster C let c(v−, C) and c(v+, C) denote the
length of shortest paths with respect to node weights from v− and v+ to C in H,
respectively, not including the cost of the source vertex. Thus, the cost c(v+, C)

does not contain the cost of v.
Lemma 5.8 (Determining the Best Upgrading Set)
For each vertex v ∈ V and each active cluster C the minimum cost c−(v, C) of
an upgrading set not containing v such that the resulting bottleneck graph has
a path from v to a node in C equals the node weighted distance c(v−, C) in the
auxiliary graph H.

130 CHAPTER 5 NODE UPGRADE PROBLEMS

u v w x

uncritical 1-critical 2-critical edge
G

H

v+ w+ x+

u− v− w− x−

u+

FIGURE 5.2: A graph G and the constructed auxiliary graph H.

Proof. Let S be an upgrading set of minimum cost such that the upgraded
graph contains a bottleneck path (v0 = v, v1, . . . , vt) from v to some node vt ∈ C.
Clearly, S ⊆ {v1, . . . , vt}.

Then, the path (v−, vσ11 , . . . , v
σt
t , C) where we define σi := + whenever vi ∈ S

and σi := − otherwise, is a path in H from v− to C of cost at most c(S). Thus,
c(v−, C) ≤ c(S).

We will now argue that c(S) ≤ c(v−, C) proving the claim of the lemma.
To this end let (v−, vσ11 , . . . , v

σt
t , C) be a least cost path in H. By upgrading the

vertices vi where σi = +, we obtain a bottleneck path in G. �

The following lemma can be proven similarly.

Lemma 5.9
For each v ∈ V and each active cluster, c+(v, C) = c(v+, C). �

5.3.3 Running Time

We briefly argue that our algorithm can be implemented to run in polynomial
time. Notice that for a terminal set K the algorithm performs at most |K| iter-
ations. In each iteration we must solve O(n) single-source shortest-path prob-
lems to compute the best upgrading paths. Each of these shortest-path trees can
be computed by Dijkstra’s algorithm in time O(n logn +m). For a fixed node
its quotient cost can then be determined in O(n logn) time. This leads to a to-
tal time of O(n2 logn) per iteration neglecting the time needed to update the
weights and the bottleneck graph.

The latter task needs total time O(m) over all iterations, since each edge
weight is updated at most twice. Thus, the algorithm can be implemented to
run in time O(|K|n2 logn).

5.4 PERFORMANCE GUARANTEE 131

5.4 Performance Guarantee

The proof of the performance guarantee uses the notion of a spider covering,
which extends the definitions given in [KR95]. Informally a spider covering is
a partition of the graph into subgraphs, where the shape of each subgraph is
similar to a spider. Since the structure used for computing the quotient cost is
similar in appearance like a spider, we can use the existence of a spider covering
in connection with an averaging argument to find a lower bound on the quotient
cost of the upgrade strategy chosen in an iteration.

5.4.1 Spider Decompositions and Coverings

We first recall the definition of a spider and a spider decomposition. Although
the definition is essentially taken from [KR95] we point out that the notion of a
foot is used slightly different in our setting.

Definition 5.10 (Spider)
A spider is a tree with at most one node of degree greater than two. A center
of a spider is a node from which there are edge-disjoint paths to the leaves of
the spider. If a spider has at least three leaves, then its center is unique. A foot
is a leaf, and the path from the center to a non-center foot is called a leg of the
spider. A nontrivial spider is a spider with at least two leaves.

Definition 5.11 (Spider Decomposition)
Let G = (V, E) be a graph and M ⊆ V . A spider decomposition of M in G is
a set of node-disjoint nontrivial spiders which are all subgraphs of G such that
the union of the feet and the centers of the spiders containsM.

For illustration we give an example of a spider decomposition in Figure 5.3
on the following page. Klein and Ravi proved that a spider decomposition ex-
ists almost always (with the exception of the pathological case |V | = 1 which
per definition does not admit a nontrivial spider as a subgraph) [KR95].

Lemma 5.12 (Existence of a Spider Decomposition)
Let G = (V, E) be a connected graph with |V | > 1, and let M ⊆ V be an arbi-
trary nonempty subset of its nodes. Then G contains a spider decomposition
ofM. �

We now introduce the notion of a spider covering which will be used in the
sequel. While a spider decomposition requires a collection of nodes to be over-
lapped by the spiders, a spider covering assumes that a collection of node sub-
sets are covered by the spiders. An example of a spider covering is displayed in
Figure 5.4.

132 CHAPTER 5 NODE UPGRADE PROBLEMS

FIGURE 5.3: Example of a spider decomposition. Graph with marked nodes (left), valid
spider decomposition (right).

FIGURE 5.4: Example of a spider covering. Graph with marked node sets (left), valid
spider covering (right).

Definition 5.13 (Spider Covering)
Let G be a connected graph, and let there be a collection {M1, . . . ,Mp} of dis-
joint node sets, where each Mi induces a connected subgraph of G. A spider
covering of {M1, . . . ,Mp} in G is a collection of node disjoint nontrivial spiders
which are all subgraphs of G such that:

1. each setMi contains a foot or a center of a spider, and
2. if a set Mi contains a foot, then Mi does not contain any other foot or

center.

We now show that each graph and collection of node sets admits at least one
valid spider covering.

Theorem 5.14 (Existence of a Spider Covering)
Let G = (V, E) be a connected graph with |V | > 1 and {M1, . . . ,Mp} be a collec-
tion of disjoint node sets each inducing a connected subgraph in G. Then there
is a spider covering of {M1, . . . ,Mp} in G.

5.4 PERFORMANCE GUARANTEE 133

(a) (b) (c)

M S ′

FIGURE 5.5: Illustration on the proof of Lemma 5.14. (a) No super node appearing as
a body. (b) One super node as body. Solid lines represent second spider
decomposition. (c) Resulting set of spiders.

Proof. If p = 1, the claim is trivial. So we assume that p > 1. Let G̃ = (Ṽ, Ẽ) be
the graph created from G by aggregating each node set Mi to a super node Mi.
By Lemma 5.12 there is a spider decomposition of the set {M1, . . . ,Mp} in G̃.

All super nodes appear as feet or centers in the spider decomposition. Let us
first assume that none of the super nodes is a center of a spider (see Figure 5.5–
a). Then, unfold each super node Mi and choose a node mi ∈Mi to connect as
a foot to the corresponding leg of the spider in G. The modified spider decom-
position then forms a collection of spiders with the desired properties.

Now we consider the case that there is a super node M which is the cen-
ter of a spider S in the decomposition. Unfold the super node M and replace
it by the corresponding subgraph. Denote by M ′ the set of nodes in the sub-
graph G[M] in which the legs of spider S are rooted. Then, perform a second
spider decomposition ofM ′ in G[M] (see Figure 5.5–b).

Let S ′ be one of the spiders of that decomposition. For each foot m ′ ∈ M ′

of S ′ in which paths to two or more super nodes are rooted, disconnect m ′

from S ′, and declare m ′ as the body of a new spider. After this procedure, we
are left over with the body of S ′ and a set of feet each rooting the path to exactly
one super node.

If this remaining part of S ′ connects zero or more than one super nodes, then
it can be discarded or it forms a nontrivial spider, respectively. Otherwise, the
single remaining super node can be connected through edges of S ′ to any of the
just constructed new spiders (Figure 5.5–c).

The given construction can be performed for each spider inM and again for
each super node appearing as a center of a spider in the first spider decomposi-
tion. The resulting set of spiders is then a spider covering as desired. �

134 CHAPTER 5 NODE UPGRADE PROBLEMS

5.4.2 An Averaging Lemma

We now claim that in each iteration of the algorithm we choose a node whose
quotient cost is bounded from above by the total upgrade cost of an optimal
solution divided by the number of active components at the beginning of the
iteration. This averaging result will be used in the next section to establish the
result on the performance guarantee of our algorithm.

Lemma 5.15 (Estimation of Average Costs)
Let v be a node chosen in Step 9 of Algorithm 5.1 on page 127 and let c(U)

denote the total cost of the nodes added to the solution set W in this iteration.
Let there be p active clusters before v is chosen and assume that in this iteration
r clusters are merged. Then

c(U)

r
≤ OPT

p
.

Proof. Let W∗ be an optimal upgrading set of cost OPT := c(W∗) and F∗ be a
constrained forest of bottleneck delay at mostD after the upgrade of the vertices
inW∗. Let C1, . . . , Cp be the active components at the beginning of the iteration.
Notice that from the symmetry of f it follows that p ≥ 2. Also, let W be the
upgrading set constructed by the algorithm so far and F ⊂ E be the set of edges
whose delay has already been decreased to be at most D.

Assume in the first case that the graph F ′ consisting of the edges of F∗ ∪ F is
connected.

We now apply Lemma 5.14 to the graph F ′ with M := {C1, . . . , Cp} to obtain
a spider covering ofM in F ′. Let P1, . . . , Pk be the spiders in the decomposition.
We define the cost c(Pi) of spider Pi to be the sum of the cost of the vertices from
W∗ \W that are contained in Pi, i. e., the cost of the vertices from the optimum
solution that have not been upgraded yet. Since the spiders are node disjoint
we have

k∑
i=1

c(Pi) ≤ c(W∗) − c(W) ≤ OPT. (5.2)

Let M ′ ⊂ M denote those clusters which are not covered by the feet of the
spiders. Notice that for each such cluster C ∈ M ′ we have at least one spider
that contains a node fromM ′ as a center.

Denote the number of feet in spider Pi by fi. Then by Lemma 5.14 we have

|M ′| +

k∑
i=1

fi ≥ p. (5.3)

5.4 PERFORMANCE GUARANTEE 135

We will now show the following: If vi is the center of spider Pi and is contained
in an active component C which is not covered by the feet of the spiders in the
cover, then the quotient cost of vi is at most c(Pi)/(fi + 1). Otherwise we show
the slightly weaker estimate that the quotient cost is bounded by c(Pi)/fi.

Let C1, . . . , Cfi be the active clusters covered by the feet of the spider cen-
tered at vi.

In the first case we have vi /∈W∗ \W. Then, the upgraded vertices fromW∗ \

W on the path from vi to the foot covering Cj are an upgrading set resulting in a
bottleneck path of delay at mostD from vi to some node in Cj. Thus, their costs
are at least c−(v, Cj). Since the legs are node disjoint (except for the center vi
which by assumption does not belong toW∗ \W), we get that

fi∑
j=1

c−(vi, Cj) ≤ c(Pi). (5.4)

Since the quotient cost of vi is at most
∑fi
j=1 c(v

−
i , Cj)/fi, this implies that the

quotient cost of vi is bounded from above by c(Pi)/fi. Moreover, if vi ∈ C and
C is not covered by the feet of the spider in our collection, then in particular
C does not occur in the sum on the left hand side of (5.4). Since c−(vi, C) = 0we
get

c−(vi, C) +

fi∑
j=1

c−(vi, Cj) ≤ c(Pi)

and, consequently, the quotient cost of vi is at most c(Pi)/(fi + 1).
In the second case the vertex vi is contained in W∗ \ W. In this case, the

upgrading vertices from W∗ \W on the leg to Cj excluding vi have cost at least
c+(vi, Cj). Again, by the node disjointness of the legs we get that

c(vi) +

fi∑
j=1

c+(vi, Cj) ≤ c(Pi).

Since the quotient cost of vi is also at most c(vi) +
∑fi
j=1 c

+(vi, Cj) divided by fi,
we obtain again that the quotient cost of vi is at most c(Pi)/fi.

The same arguments as above show that if vi ∈ C andC is not covered by the
feet of the spiders then the quotient cost of vi can be bounded by c(Pi)/(fi + 1).

Let v be the node chosen in Step 9 in the current iteration. Then the quotient
cost q(v) of v satisfies q(v) ≤ q(vi) for i = 1, . . . , k. Thus we get

q(v∗) · f ′i ≤ c(Pi), for i = 1, . . . , k, (5.5)

136 CHAPTER 5 NODE UPGRADE PROBLEMS

where f ′i ∈ {fi, fi + 1} is chosen as above such that the quotient cost of the cen-
ter vi of spider Pi is bounded by c(Pi)/f ′i.

Summing up the inequalities in (5.5) and using (5.2) and (5.3) the claim of
the lemma follows in this case.

It remains to consider the case that the graph F ′ consisting of the edges from F∗∪
F is not connected. Notice that if we show that each connected component of F ′

contains either none or at least two active clusters, we can apply our arguments
from above to each of the connected components and the claim of the lemma
will follow by summing up over those components that contain active clusters.

Let C1, . . . , Cp be the active components and Z1, . . . , Zt be the inactive com-
ponents at the beginning of the iteration. Notice that each connected component
of F ′ is the disjoint union of some components Ci and Zj. Assume for the sake
of a contradiction that component Z of F ′ contains exactly one active cluster, say
C1. As noted above, F ′ can be written as the disjoint union of the connected
components at the beginning of the current iteration, so F ′ = C1 ∪ Z1 ∪ · · · ∪ Zt ′
for some inactive components Zj.

Clearly f(Z) = 0, since otherwise one connected component of F∗ (and thus
of F ′) would contain vertices from Z as well as from V \Zwhich is not possible.
Moreover, f(Zj) = 0, by definition of an inactive component. By the disjointness
of the Zj we have for B := Z1∪ · · ·∪Zt ′ that f(B) = 0. Now applying Lemma 5.6
for U := Z and B as defined above yields that f(C) = 0 which contradicts the
fact that Cwas an active component. �

5.4.3 Potential Function Argument

We can now use a proof technique based on a potential function [KR95] to prove
the main result on the performance of our approximation algorithm.

Theorem 5.16 (Approximability of NODE UPGRADE CONSTRAINED FOREST)
Algorithm 5.1 on page 127 is an approximation algorithm for NODE UPGRADE
CONSTRAINED FOREST with a performance guarantee of (2 ln(

√
e/2 · |K|), 1).

Here

K := { v | f({v}) = 1 }

is the set of terminals given by the proper function f.

Proof. Let the algorithm use l iterations. Notice that l ≤ n. We let the potential
function ϕj denote the number of active components at the end of iteration j.

5.5 HARDNESS RESULTS 137

Then ϕl−1 ≥ 2 since the algorithm does not terminate before iteration l and
ϕl = 0. Now let rj denote the number of active components merged during
iteration j, and let cj be the cost spent in that iteration. Then, the statement of
Lemma 5.15 reads

rj ≥
cj ·ϕj−1

OPT
. (5.6)

Hence,

ϕj ≤ ϕj−1 − (rj − 1) ≤ ϕj−1 −
1

2
rj

(5.6)
≤ ϕj−1

(
1−

cj

2OPT

)
.

Solving this recurrence yields

ϕl−1 ≤ ϕ0
l−1∏
j=1

(
1−

cj

2OPT

)
.

Taking natural logarithms and using the estimate ln(1− τ) ≤ −τ, we get
l−1∑
j=1

cj ≤ 2OPT · ln ϕ0

ϕl−1
≤ 2OPT · ln(|K|/2) (5.7)

as a bound for the cost of the upgraded vertices in all but the last iteration. Also,
by Lemma 5.15 the cost of the vertices upgraded in the last iteration is at most

OPT
ϕl−1 −ϕl

·ϕl−1 = OPT (5.8)

(recall that ϕl = 0 per definition of l). Summing up the right hand sides of (5.7)
and (5.8) provides an upper bound on the total cost which is

OPT ·
(
2 ln(|K|/2) + 1

)
= OPT ·

(
2 ln

(√
e/2 · |K|

))
as claimed. �

5.5 Hardness Results

This section contains our hardness results for the node upgrading problem un-
der study.

Theorem 5.17 (Hardness of NODE UPGRADE CONSTRAINED FOREST)
Let ε > 0 be arbitrary and the proper function f specify Steiner trees. Un-
less NP ⊆ DTIME(NO(log logN)), there is no approximation algorithm for NODE
UPGRADE CONSTRAINED FOREST (with proper function f) with performance
((1 − ε) ln |K|, 1), where K is the set of terminals. This result continues to hold
even if c(v) = 1 for all vertices v ∈ V .

138 CHAPTER 5 NODE UPGRADE PROBLEMS

Proof. We perform a reduction from MINIMUM SET COVER. Given an instance
with element set Q and subset collection R ⊆ 2Q, we set up a bipartite graph
with node set Q ∪ R. For Q ′ ∈ R and q ∈ Q ′, we add an edge e between
node q and Q ′ of weight d0(e) = 2 and d1(e) = d2(e) = 1. We add a root node
connected to all set nodes through edges e of weight d0(e) = d1(e) = d2(e) = 1.
The proper function f is chosen to reflect a Steiner tree with terminal setQ. The
bottleneck constraint is chosen to be 1. All nodes have equal upgrade cost 1.

root node

set nodes

element nodes

Q ′

q

d0 = 2

d0 = 1

· · ·

FIGURE 5.6: Illustration on the reduction from MINIMUM SET COVER.

It is easy to see that a set cover of some size implies a valid upgrade set
of the same cost. Conversely, notice that there is no advantage in prefering
the root node or element nodes for upgrading rather than adjacent set nodes.
Hence we can assume that a minimum cost upgrade set consists only of set
nodes. Consequently, it implies a set cover of size equal the upgrade costs.

Since the reduction is approximation preserving, we can apply the non-
approximability result for MINIMUM SET COVER (see Theorem 1.6 on page 17)
and the claim follows. �

The preceding result was formulated with a performance guarantee of 1 for
the bottleneck delay. Indeed, the result holds even if we allow the contraint
on the bottleneck delay to be violated by any factor f(n), where f is an arbitrary
polynomial time computable function. This follows immediately from the proof
of Theorem 5.17 where the definition d0(e) := 2 is replaced by d0(e) := f(n) + 1.
Corollary 5.18 (Hardness II)
For any polynomial time computable function f(n), the hardness result from
Theorem 5.17 continues to hold if performance guarantee ((1 − ε) ln |K|, 1) is
weakened to ((1− ε) ln |K|, f(|V |)). �

5.6 Concluding Remarks

We have argued that NODE UPGRADE CONSTRAINED FOREST is a generaliza-
tion of NODE WEIGHTED STEINER TREE. Moreover, we have justified the ap-

5.6 CONCLUDING REMARKS 139

proximability of NODE UPGRADE CONSTRAINED FOREST by proving the fol-
lowing bounds:

lower bound (ln |K|, 1) (Theorem 5.17)
(ln |K|, f(|V |)) (Corollary 5.18)

upper bound (2 ln(
√
e/2 · |K|), 1) (Theorem 5.16)

Here, K is the set of terminals induced by a proper function specifying Steiner
trees, and f is any polynomial time computable function. The lower bound is
valid under the assumption NP 6⊆ DTIME(NO(log logN)).

140

141

Chapter 6

Arc Upgrade Problems

The concept of a flow in a graph is a very natural way to model transportation
and logistics problems where a special focus lies on the simultaneous flow of
multiple goods. To this end, goods which are to be transported through the
network are represented by items of unit size. The flow properties (see defini-
tion on page 5) guarantee that the flow is conserved and there are no sources or
sinks where goods are created or vanish.

Flows can be formulated and investigated on undirected graphs as well as
on directed graphs. We are going to assume that all graphs are directed in this
chapter. Nevertheless, most of the results are also valid on undirected graphs.
This is mainly a consequence of the fact that the graph structure which is most
relevant in this chapter, namely the class of series-parallel graphs, can be han-
dled with the same effort both on directed and undirected graphs.

In the flow model all items are treated equally, i. e., one can not distinguish
between the several items. Problems which involve different types of goods—
where each type has its own demands and constraints—-are known as multi
commodity flow problems in literature. This kind of problems are not investi-
gated in this thesis. We refer the reader e. g. to [GCF99] for a survey on multi
commodity flows.

When looking at practical applications one observes that often there is for each
link an upper bound on the amount of flow which can be transported along this
link in one unit of time. This fact is incorporated into the model by furnishing
the arcs with numbers which represent the upper capacity of the particular arc.

More complex applications come up with questions on the cost of transporta-
tion of some goods through the network. For this sake one introduces a cost
function for each arc. The cost function maps the amount of flow to the trans-
portation cost emerging from the flow. There are several types of cost functions
whose properties are compiled in Section 6.1.1.

142 CHAPTER 6 ARC UPGRADE PROBLEMS

Capacities and costs as described above are statically given numbers. A main
focus of this chapter lies on problems under a model where those numbers are
subject to change. We use an arc upgrade model. The upgrade of a particular
arc is performed by investing a budget on that arc. As a result, the available
capacity increases, or the cost per unit of flow decreases, or both happens at the
same time.

6.1 Preliminaries and Problem Formulation

Throughout this chapter we assume that the underlying graph is a directed
graph.

6.1.1 Flow Cost Functions

For cost flow problems each arc r ∈ R is furnished with a cost function

cr : t 7→ cr(t) .

The value cr(t) of the cost function on arc r specifies the transportation cost
emerging from the transportation of t units of goods along arc r. Thus, if x : R→
R

+
0 is a flow then the total cost of flow x is given by∑

r∈R

cr(x(r)) .

We make two assumptions on cost functions:

1. cr(0) = 0

2. cr is non-decreasing

The first assumption is made without loss of generality: If it is not satisfied, we
replace cost function cr by the function c ′r defined by c ′r(t) := cr(t)−cr(0). Since
cost cr(0) incurs anyway, we can subtract it from the available flow cost budget
a priori. Albeit the second assumption may be considered as a restriction, we
remark that it is strongly motivated from practical applications.

We give a brief overview on several special types of cost functions which are
common in literature and also utilized in this chapter (confer Figure 6.1): The
first type of cost function is defined by

cr(t) :=

{
0, if t = 0,
cr, if t > 0

6.1 PRELIMINARIES AND PROBLEM FORMULATION 143

t t t

cr(t)cr(t)cr(t)

FIGURE 6.1: Typical cost functions: fixed charge (left), linear (center), piecewise linear
convex (right).

for a constant cr ∈ R+ and called fixed charge arc cost function. A cost function
of this type is a good approximation to the case where the costs for setting up
a link dominate the costs for the actual transportation. In such a scenario one
is charged the activation costs of a link whenever there is a positive flow on the
link regardless of the actual amount of flow.

Another well-motivated type of cost functions are linear transportation costs
which are defined by

cr(t) := cr · t

for a constant cr ∈ R+. Functions of this type deal with the fact that several
costs are directly proportional to the amount of flow on an arc: Here one may
consider a transportation scenario where cargo is measured in units of trucks.
If cr is the cost needed for moving one truck along the road, then the resulting
transportation costs are crt as a first approximation.

More complicated cost functions include combinations of functions of the
above mentioned types. Of particular interest are continuous functions which
are piecewise linear and convex. These can be decomposed into a finite collection
of linear parts with increasing slope. Cost of this type can arise in networks with
constrained resources: as long as the supply exceeds the demand, the costs will
be low. On the other hand, if the workflow is near the limit of the network
(or beyond that, i. e., the demand exceeds the supply), the costs will increase
disproportionally.

144 CHAPTER 6 ARC UPGRADE PROBLEMS

6.1.2 Improvement of Capacity

Upgrade Model

In this section we describe the first arc upgrade model applied in this chapter.
It is assumed that a capacitated graph is given. The arc capacities are subject to
change: The model admits to distribute a given budget among the arcs in order
to increase the capacity of several arcs.

From the practical point of view the capacities can not be increased to in-
finity in realistic applications. This is reflected in the model by the fact that
each arc r ∈ R is furnished with two numbers, ur, Ur ∈ Q+

0 , where Ur ≥ ur for
each r ∈ R. Number ur denotes the initial capacity of arc r. This capacity may
be increased up to Ur, which is the maximal capacity beyond which no further
upgrade is allowed.

The actual amount of upgrade is notated by a function i : R → Q
+
0 , which is

called the upgrade strategy function. For each arc r ∈ R, the value i(r) denotes
the amount of capacity increase on that arc, i. e., the resulting capacity is given
by ur + i(r). Notice that a valid upgrade strategy must satisfy

ur + i(r) ≤ Ur

for each arc r ∈ R.
Although there may be an arbitrary relation between the amount of budget

invested on an arc and the resulting increase of capacity, we restrict this relation
to linear functions. Therefore the relation can be described by one numerical pa-
rameter per arc: We use br ≥ 0 to denote the slope of the upgrade cost function
for arc r.

The budget consumed by a valid upgrade strategy i is denoted by B(i). It is
computed by summing up the spent budget over all arcs of the graph. Thus,

B(i) :=
∑
r∈R

br · i(r)

is the total amount of budget used for upgrade strategy i.

Discussion of Boundary Conditions

At first we point out that one can assume without loss of generality that br > 0
holds for all arcs r ∈ R: Assume there was an arc r with zero upgrade cost,
then the situation does not change when this arc is upgraded to its maximal
capacity Ur before starting any further task.

A second remark is on applications where from the outset there is no bound
on the amount of upgrading the capacities. This would imply that Ur = ∞ on

6.1 PRELIMINARIES AND PROBLEM FORMULATION 145

some arcs. Usually we have br > 0 for arcs of this type. Therefore the available
upgrade budget is actually a limiting factor. If B denotes the total budget, it is
sufficient to set Ur := ur + B/br to handle this unlimited case.

If there is a graph where only a (proper) subset of the arcs is eligible for
upgrading, one can choose Ur := ur for the remaining arcs and thus prevent to
upgrade those fixed capacity arcs.

We do not prohibit the case ur = 0. This means that an arc is actually not
present in the initial graph, but it may be included by the upgrade procedure.

We distinguish further according to the granularity of upgrade strategies. A
continuous upgrade strategy allows function i to take on any real (or any ra-
tional) value. An integer strategy restricts the values to integer numbers. Last,
a zero-one strategy requires value i(r) to be chosen from the two element set
{0,Ur − ur}, i. e., for each arc one can only decide between upgrading the arc in
full or leaving it in the initial state.

Problem Formulation

We formulate now the first flow problem investigated in this chapter. The prob-
lem utilizes the arc upgrade model described above.

Definition 6.1 (MAXFL-CPI Problem)
An instance of MAXFL-CPI specifies:

• a graph G = (V, R) with source s ∈ V and sink t ∈ V ,
• nonnegative arc function ur (initial capacities),
• arc function Ur ≥ ur (maximal capacities),
• positive arc function br (upgrade costs),
• an integer B (budget).

The goal is to find a valid improvement strategy i : E → Q
+
0 of bounded total

cost
∑
r∈R br · i(r) ≤ B, such that the flow from s to t in the upgraded graph is

maximized.

The canonical notation of this two-criteria optimization problem is

(MAX: FLOW, CAPACITY IMPROVEMENT COST) .

The dual of the problem which is generated by interchanging the two optimiza-
tion objectives is denoted by MINCPI-FL and has the canonical notation

(MIN: CAPACITY IMPROVEMENT COST, FLOW VALUE) .

It is defined as follows:

146 CHAPTER 6 ARC UPGRADE PROBLEMS

Definition 6.2 (MINCPI-FL Problem)
An instance of MINCPI-FL specifies:

• a graph G = (V, R) with source s ∈ V and sink t ∈ V ,
• nonnegative arc function ur (initial capacities),
• arc function Ur ≥ ur (maximal capacities),
• positive arc function br (upgrade costs),
• an integer F (flow value).

The goal is to find a valid improvement strategy i : E → Q
+
0 of minimum total

cost
∑
r∈R br · i(r), such that the flow from s to t in the upgraded graph is at

least F.

We further distinguish the problem MAXFL-CPI according to granularity of
the improvement strategy as described above. Problem variants CONTINUOUS-
MAXFL-CPI and INTEGER-MAXFL-CPI (continuous and integer upgrade strat-
egy) turn out to be solvable in polynomial time which is written down in Sec-
tion 6.3. Problem 0/1-MAXFL-CPI under the zero-one upgrade strategy turns
out to be intractable. This variant is investigated in Section 6.4.

Fixed Arc Charge

The following pair of dual problems is from the area of network design prob-
lems, i. e., they are no upgrade problems. Nevertheless it will turn out that they
are closely related to the above stated problem. The problems are formulated
using a fixed arc cost function. This means that an arc is charged a fixed budget
as soon as there is a positive flow on it.

Definition 6.3 (MAXFL-ARCWT Problem)
An instance of MAXFL-ARCWT specifies:

• a graph G = (V, R) with source s ∈ V and sink t ∈ V ,
• nonnegative arc function ur (capacities),
• nonnegative arc function cr (costs),
• an integer B (budget).

The goal is to determine an arc subsetA ⊆ R of total cost
∑
r∈A cr ≤ B, such that

in G[A] the flow from the source s to the sink t is maximized.

The canonical notation of MAXFL-ARCWT is

(MAX: FLOW, TOTAL ARC WEIGHT).

The dual problem, denoted by MINARCWT-FL, and with canonical notation

6.1 PRELIMINARIES AND PROBLEM FORMULATION 147

(MIN: TOTAL ARC WEIGHT, FLOW VALUE),

is defined as follows:

Definition 6.4 (MINARCWT-FL Problem)
An instance of MINARCWT-FL specifies:

• a graph G = (V, R) with source s ∈ V and sink t ∈ V ,
• nonnegative arc function ur (capacities),
• nonnegative arc function cr (costs),
• an integer F (flow value).

The goal is to find a minimum cost subset A ⊆ E of the arcs such that the flow
in G[A] from the source s to the sink t is at least F.

As stated before, the above problems are actually not arc upgrade problems.
The reason why they are included here is that they are equivalent to arc upgrade
problems under a zero-one upgrade strategy as shown below. Moreover, for
the sake of clarity we use the fixed cost variants to design the approximation
algorithm in Section 6.4.

The equivalence between 0/1-MINCPI-FL and MINARCWT-FL is easy to see.
To reduce 0/1-MINCPI-FL to problem MINARCWT-FL, we use the following
idea [AMO93]: Each arc r ∈ Rwith initial capacity ur, maximal capacity Ur and
upgrade cost br is replaced by two parallel arcs. The first of them has capacity ur
and zero flow cost. The second supplies the remaining capacityUr−cr. Its fixed
flow cost is set to br · (Ur − ur).

We describe the reduction in the reverse direction: Each arc with zero flow
cost is included in the instance of 0/1-MINCPI-FL with retaining its initial ca-
pacity and preventing any upgrade possibility. If an arc r has positive flow
cost br and capacity u, we include the arc in the instance by setting its initial
capacity ur := 0, the maximum capacity to u, and the upgrade cost to br/u.

Since a zero-one upgrade strategy is employed here, the decision for upgrad-
ing an arc in 0/1-MINCPI-FL is equivalent to the decision for using the corre-
sponding arc in MINARCWT-FL. Obviously the construction can be performed
in polynomial time. Thus the stated equivalence is immediate.

Theorem 6.5 (Equivalence of Problems)
0/1-MINCPI-FL is equivalent to MINARCWT-FL. �

148 CHAPTER 6 ARC UPGRADE PROBLEMS

6.1.3 Improvement of Unit Flow Cost

Upgrade Model

In the sequel we describe the second upgrade model utilized by problems inves-
tigated in the current chapter. In this model there is a graph with arc capacities
and unit flow costs as usually used for modeling cost flow problems. In addi-
tion, the unit flow cost on each arc is subject to change: By investing (a part of)
the given budget on an arc, the unit flow costs can be decreased.

The parameters of the model are justified by the following values for each
arc r: Value c(r) is the initial cost for a unit of flow. Value p(r) specifies the price
for purchasing an “upgrade unit”, and value d(r) specifies the discount of each
upgrade unit, i. e., the amount of decrease of unit flow costs per upgrade unit.
As usual, parameter u(r) specifies the capacity of the arc which is fixed in the
current model.

An upgrade strategy is described by an integer function y on the arcs. A
value y(r) > 0 denotes the fact that the arc r is upgraded by y(r) upgrade units.
Assume that there is a flow of value x on arc r. The effect of upgrading the arc
by y(r) units is, that the flow costs reduce from initially c(r) · x to(

c(r) − y(r)d(r)
)
· x

after the upgrade. The cost of upgrading this arc is given by y(r)p(r). An addi-
tional arc function cmin specifies a lower bound on the flow costs to deal with the
fact that in realistic applications it is unlikely that unit flow costs can be made
to vanish.

Discussion of Boundary Conditions

We briefly discuss some assumptions on the parameters and argue that they can
be made without loss of generality.

• At first we assume u(r) > 0 for all arcs r. This is permitted since arc
capacities can not be changed in the model and an arc with capacity zero
is useless.
• We also assume c(r) > 0. The case c(r) = 0 means that the flow cost

of an arc vanishes. This can be modeled by setting c(r) := 1, d(r) := 1

and p(r) := 0 which means that the initial non-zero unit flow cost can be
reduced to zero for free.

6.1 PRELIMINARIES AND PROBLEM FORMULATION 149

• Next we assume c(r) > cmin(r): equality would mean that the flow cost is
not subject to change. This can be handled by choosing a very large price
p(r) which exceeds the given budget.
• Assumption d(r) > 0 on the discount can be supposed by the same argu-

ments.
• Last we assume that d(r) ≤ c(r) − cmin(r). This can be achieved by assign-

ing d(r) to max{d(r), c(r) − cmin(r)} since a reduction of the unit flow cost
below cmin(r) is not allowed anyway.

We further assume that all parameters are integer numbers. This can be
achieved by multiplying rational numbers by a suitable common denominator.
As noted in the introduction in the discussion of the complexity of computa-
tions (Section 1.2 on page 5), this normalizing is permissible without affecting
the estimations on the running time.

For simplicity we would like to have another step of normalizing which
would make one of the parameters p and d to be equal 1. Unfortunately it is
not possible to guarantee this normalizing and the integer assumption at the
same time, so we do not make further assumptions on the price and discount
values.

Problem Formulation

We now describe the problem formulated under the current arc upgrade model.
It is best described as a problem where the flow value is maximized while the
costs shall remain below given limits.

Notice that we must now distinguish carefully between the budget available
for upgrading the arcs and the budget from which we pay the actual flow in the
upgraded network. A solution σ = (x, y) specifies a flow x and an upgrade
strategy y on the graph. By

B(σ) :=
∑
r∈R

y(r)p(r)

we denote the total upgrade cost needed for the upgrade strategy, while

C(σ) :=
∑
r∈R

(
c(r) − y(r)d(r)

)
x(r)

denotes the resulting flow cost in the network. With F(σ) we term the net flow
through the network from s to t.

With these definitions we are ready to formulate the next problem:

150 CHAPTER 6 ARC UPGRADE PROBLEMS

Definition 6.6 (MAXFL-COI-FC Problem)
An instance of MAXFL-COI-FC specifies:

• a graph G = (V, R) with source s ∈ V and sink t ∈ V ,
• positive arc function u (capacities),
• nonnegative arc functions c and cmin with c > cmin ≥ 0 (costs),
• nonnegative arc function p (prices),
• positive arc function d (discount),
• integers B (budget) and C (flow budget)

The goal is to find a solution σ = (x, y), specified by a feasible flow x and an
upgrade strategy y on the arcs, such that

1. B(σ) ≤ B
2. C(σ) ≤ C
3. F(σ) is maximized.

The canonical notation of this problem is

(MAX: FLOW, COST IMPROVEMENT, TOTAL FLOW COST) .

6.1.4 Improvement of Both Capacity and Unit Flow Cost

Upgrade Model

The two upgrade models described so far suggest to set up a combined model
where both arc capacities and unit flow costs can be improved by investing the
upgrade budget on the graph. In this section we describe one type of such a
combined model.

As before, the upgrade in unit flow costs is performed by purchasing upgrade
units. The effect of an upgrade unit is described by the discount d. Its price is
denoted by pd. The first part of the upgrade strategy is denoted by value yd.

Similarly, the improvement of capacity is performed in upgrade units: one up-
grade unit increases the capacity of the arc by the augmentation a and incurs the
price pa. The amount of upgrade units for this part of the upgrade strategy is
denoted by ya. A value umax denotes the maximal capacity beyond which no
further upgrade is allowed.

We illustrate this model with an example. Assume that there is a flow of value x
on arc r. The effect of upgrading the arc by ya(r) + yd(r) units is, that for each
arc r ∈ R the flow costs reduce from initially c(r) · x to(

c(r) − y(r)d(r)
)
· x

6.1 PRELIMINARIES AND PROBLEM FORMULATION 151

while the arc capacity increases from initially u(r) to

u(r) + a(r) · ya(r)

after the upgrade. The term

ya(r)pa(r) + yd(r)pd(r)

specifies the cost of upgrading this particular arc.

This model makes no qualitative distinction between capacity and flow cost
improvement. It uses only one combined budget for both kinds of upgrade.

Further it is presumed that the two types of upgrade do not interfere with
each other. This means, that the model assumes that the effort for lowering the
unit flow costs is independent from the capacity improvement on the particular
arc. This may be considered as a unnatural restriction but it helps to keep the
model smooth enough to be capable within the framework.

Problem Formulation

We are now ready to describe the problem which is formulated under the com-
bined arc upgrade model. Similar to the problem suggested in the previous
section, the goal is to maximize the flow while the upgrade costs and flow costs
are limited.

A solution σ = (x, ya, yd) of the problem is given by three arc functions,
where x denotes the flow, ya the improvement of capacity and yd the improve-
ment of unit flow costs. The total upgrade costs needed by σ are given by

B(σ) :=
∑
r∈R

ya(r)pa(r) + yd(r)pd(r) .

The resulting flow costs are

C(σ) :=
∑
r∈R

(
c(r) − yd(r)d(r)

)
x(r)

The flow is valid, if the capacity constraints

0 ≤ x(r) ≤ u(r) + ya(r)a(r) ≤ umax(r)

hold for each arc r ∈ R in the network. As before, with F(σ) we term the net
flow through the network from s to t.

With these definitions we are ready to formulate the next problem:

152 CHAPTER 6 ARC UPGRADE PROBLEMS

Definition 6.7 (MAXFL-COCPI-FC Problem)
An instance of MAXFL-COCPI-FC specifies:

• a graph G = (V, R) with source s ∈ V and sink t ∈ V ,
• positive arc function u and umax with umax > u (capacities),
• nonnegative arc functions c and cmin with c > cmin ≥ 0 (costs),
• nonnegative arc function pd (prices for cost improvement),
• positive arc function d (discount),
• nonnegative arc function pa (prices for capacity augmentation),
• positive arc function a (augmentation),
• integers B (upgrade budget) and C (flow cost budget)

The goal is to find a solution σ = (x, ya, yd), specified by a feasible flow x, a
capacity upgrade strategy ya and a cost upgrade strategy yd on the arcs, such
that

1. B(σ) ≤ B
2. C(σ) ≤ C
3. F(σ) is maximized.

The canonical notation of this problem is

(MAX: FLOW, COST AND CAPACITY IMPROVEMENT, TOTAL FLOW COST) .

6.2 Related Work

Series-parallel graphs are a special case of decomposable graphs [BLW87]. Ini-
tially series-parallel graphs were motivated from electrical networks consist-
ing of resistors [Duf65]. If the terminals are not pre-determined, then the class
of undirected series-parallel graphs includes the class of outer-planar graphs
[Duf65].

A series-parallel graph can be described by a decomposition tree which is of
size linear in the number of edges or arcs. Algorithms for recognizing series-
parallel networks and constructing a decomposition tree in linear time (with
respect to the size of the edge or arc set) have been described in [VTL82, Sch95].

In [Woe99] there is introduced the notion of benevolent problems which de-
scribes a further characterized class of problems which are solvable by a dy-
namic programming approach. It is shown that there exists an FPAS for all
benevolent problems.

6.3 SOLVING CAPACITY IMPROVEMENT PROBLEMS 153

There are other applications of edge upgrade models in literature. In [KN+98]
the authors use a model where edge weights can be reduced by the upgrade.
They give among other results approximation algorithms for the problem of
minimizing the weight of a spanning tree (while the available budget is con-
strained) with a performance of (1 + ε, 1 + 2/ε). A related problem where the
diameter of the spanning tree is to be minimized is approximated with perfor-
mance (O(logn), O(logn)).

The problem of minimizing the bottleneck delay of a spanning tree in the
upgraded graph is solvable in polynomial time [KM+98a]. An algebraic frame-
work which generalizes budget constrained bottleneck capacity upgrade prob-
lems and provides polynomial time algorithms has been developed in [BKZ00].

The problem of minimizing the shortest path tree weight of a given tree by
decreasing the edge weights has been shown to be polynomially solvable in
[Ber92].

An opposite upgrade model has been considered e. g. in [FSO96]. Here the
model admits edge weights to be increased with linear costs. The authors give a
polynomial time algorithm to the problem of finding an upgrade strategy such
that the weight of a minimum spanning tree in the resulting graph is maxi-
mized.

A problem where upgrading an edge means decreasing its capacity is the
network inhibition problem [Phi93]. Here the goal is to find an upgrade strategy
such that the total flow through the upgraded graph is minimized. There is
an FPAS on planar graphs [Phi93] as well as an approximation algorithm on
general graphs [KM+00].

6.3 Solving Capacity Improvement Problems

In this section we describe those variants of MAXFL-CPI which can be solved
optimally in polynomial time.

6.3.1 Continuous Upgrade Strategy

Problem CONTINUOUS-MAXFL-CPI can be solved optimally in polynomial
time with a linear programming approach. The linear program depicted in
Figure 6.2 on the following page is a formulation of CONTINUOUS-MAXFL-
CPI. It is an easy extension of the well known linear programming formulation
for the MAXIMUM FLOW problem.

Theorem 6.8 (Solution of CONTINUOUS-MAXFL-CPI)
CONTINUOUS-MAXFL-CPI can be solved in polynomial time. �

154 CHAPTER 6 ARC UPGRADE PROBLEMS

maximize F
subject to ∑

w:(s,w)∈R

x(s,w) −
∑

u:(u,s)∈R

x(u, s) = +F

∑
w:(v,w)∈R

x(v,w) −
∑

(u,v)∈R

x(u, v) = 0 for all v ∈ V \ {s, t}

∑
w:(t,w)∈R

x(t,w) −
∑

u:(u,t)∈R

x(u, t) = −F

0 ≤ x(r) ≤ ur + i(r) for all r ∈ R
0 ≤ ur + i(r) ≤ Ur for all r ∈ R∑
r∈R

br · i(r) ≤ B .

FIGURE 6.2: Linear programming formulation of CONTINUOUS-MAXFL-CPI.

Notice that this approach does not work for integral or zero-one upgrade
strategies, since with these additional restrictions one cannot expect that the
resulting linear program can be solved in polynomial time.

6.3.2 Integer Upgrade Strategy

The main contribution of this section is to show that MAXFL-CPI can also be
solved optimally in polynomial time even if we require the improvement strat-
egy to be integral.

The main idea is a transformation of INTEGER-MAXFL-CPI into a minimum
cost flow problem with additional budget constraint. Subsequently we give an
algorithm to the latter problem.

Consider an instance of INTEGER-MAXFL-CPI. Assume that i∗ is an optimal im-
provement strategy and x∗ is a corresponding maximal flow. Since the upgrade
strategy does not waste money, each arc is not upgraded unless the flow on it
exceeds the initial capacity. This means, we have i∗(r) = max{0, x∗(r) − ur} for
each arc r.

This behavior can be modeled by a flow cost function cr defined as follows.
As long as one sends flow along an arc r of value at most ur, there are no costs. If
one wants to send more flow along this arc, one has to pay br units of money for

6.3 SOLVING CAPACITY IMPROVEMENT PROBLEMS 155

each unit of flow exceeding the initial capacity ur. This results in the following
flow cost function cr:

cr(x) =

{
0 if 0 ≤ x ≤ ur
br · (x− ur) if ur < x ≤ Ur

Notice that the flow cost functions are piecewise-linear and convex.
Consider a graph with flow cost functions as described before and upper

capacities Ur. It is easy to see that a minimum cost flow of flow value F and
flow cost B corresponds to a flow of the same flow value and upgrade cost B:
simply use for each arc the same flow value in both instances.

To apply well known algorithms for the minimum cost flow problem, the cost
functions must be linear. This can easily be achieved by a method described in
[AMO93]: each arc r ∈ R is replaced by two parallel arcs r0 and r1. Arc r0 has
capacity ur and zero flow cost, while arc r1 gets the remaining capacity Ur − ur
and flow cost br. The validity of the transformation follows easily from the
convexity of the flow cost functions cr.

To solve the budget constrained maximum flow problem one seeks the max-
imal flow value F∗ which can be achieved with a flow of cost B. This can be
determined by a binary search for F∗ on the integer interval I := [0, Fmax], where
Fmax is an upper bound on the total flow value. A suitable value for this maxi-
mal value is Fmax := n · Umax, where Umax := maxr∈R ur is the maximal capacity
of an arc.

For a test value F ∈ I one computes a solution to the classical minimum
cost flow problem using well known efficient algorithms (see [AMO93]). After
that, one can decide whether the resulting flow cost exceeds the budget B and
continue with the binary search.

The above discussion shows that problem INTEGER-MAXFL-CPI (on a graph
with m arcs) can be reduced to a budget constrained minimum cost flow prob-
lem (on a graph with at most 2m arcs). This problem in turn can be solved by
O(log(nUmax)) minimum cost flow computations.

Theorem 6.9 (Solution of INTEGER-MAXFL-CPI)
INTEGER-MAXFL-CPI can be solved in polynomial time. This can be achieved
by O(log(nUmax)) minimum cost flow computations on a graph which consists
of 2m arcs. �

Approximate Solution

The algorithm for solving the budget constrained minimum cost flow problem
described in the previous section can be speeded up for the price of accuracy

156 CHAPTER 6 ARC UPGRADE PROBLEMS

by a general technique. Instead of performing a binary search on the interval
[0, nUmax] we can search the interval only in multiplicative steps of 1+ ε, where
ε > 0 is a fixed accuracy parameter. More formally, we find the largest value

F ′ ∈ { (1+ ε)i | i = 0, 1, . . . dlog1+ε(nUmax)e }

such that there exists flow of value F ′ of cost at most B. If OPT denotes the
optimal flow value, the value F ′ found by this modified binary search satisfies
F ′ ≥ OPT/(1 + ε). Thus, the modified algorithm computes a solution with
performance 1+ ε.

Theorem 6.10 (Approximation of INTEGER-MAXFL-CPI)
For any fixed ε > 0, there is a (1 + ε)-approximation algorithm for INTEGER-
MAXFL-CPI. This algorithm needs the time of O(log log1+ε(nUmax)) minimum
cost flow computations on a graph with 2m arcs. �

Nonlinear Cost Functions

It should be noted that the techniques presented above can be extended to the
case when the original cost functions given in the specification of MAXFL-CPI
are piecewise-linear convex functions instead of linear functions. If there are
g linear pieces and g− 1 breakpoints in a cost function of a certain arc, then this
arc can be replaced by g parallel arcs where each arc is furnished with a linear
cost function. Thus, Theorem 6.9 and 6.10 carry over to the more general case
of piecewise-linear convex cost functions. However, each of the minimum cost
flow computations must now be performed on a graph with up to gmax ·m arcs,
where gmax is the maximum number of breakpoints occurring in the piecewise-
linear cost functions.

6.4 Approximating Capacity Improvement
Problems

In Section 6.3 we provided polynomial time solutions to MAXFL-CPI for con-
tinuous and integer upgrade strategies. In the current section we investigate
the remaining upgrade strategy, namely the zero-one strategy. This problem
variant is denoted by 0/1-MAXFL-CPI.

For the sake of an easier presentation of the approximation algorithms we
switch now to the dual problem, 0/1-MINCPI-FL, and recall from Theorem 6.5
that this problem is in fact equivalent to problem MINARCWT-FL. So we will
actually deal with problem MINARCWT-FL in this section.

6.4 APPROXIMATING CAPACITY IMPROVEMENT PROBLEMS 157

It will turn out in Section 6.5 that MINARCWT-FL is NP-hard even on series-
parallel graphs. Therefore we develop in the sequel an approximation algo-
rithm on series-parallel graphs. The current section is concluded with a sugges-
tion on an approach approximating the problem on general graphs.

6.4.1 An mFPAS on Series-Parallel Graphs

We assume without loss of generality that the terminals of a series-parallel
graph coincide with the pair {s, t} of source and target. This assumption is ad-
missible due to the following observation: If there is a series-parallel graph and
two arbitrary nodes s, t in that graph where t can be reached from s, then the
subgraph induced by the set of those nodes which can both be reached from s

and reach t is itself series-parallel (with terminals s and t).
Let I = (G,ur, cr, F) be an instance of MINARCWT-FL. We denote by

Cmax := max
r∈R

cr

the maximal arc cost appearing in the input instance.

Auxiliary Algorithm

We continue with developing an auxiliary algorithm. This algorithm solves the
dual problem, namely MAXFL-ARCWT, and is employed afterwards within a
binary search to solve the first problem. A detailed description can be found in
Algorithm 6.3 on the next page.

The idea of Algorithm 6.3 is as follows: For an arbitrary series-parallel
graph H with two terminals we define

FH(β)

to be the maximal flow in graph H between the terminals after upgrading the
graph with budget β. Thus, number FG(B) is the value of an optimal solution
for MAXFL-ARCWT.

We can now exploit the fact that series-parallel graphs are decomposable.
Starting with single arcs we evolve a dynamic programming scheme to compute
the set { FH(β) | β = 1, . . . , B } for all subgraphs H of the decomposition of G.

Clearly, for a single arc r, the value Fr(β) attains only two values: as long
as β < cr, we cannot afford to buy the arc, and hence Fr(β) = 0. Otherwise, if
β ≥ cr, we have Fr(β) = ur.

Now consider the case that H is the series composition of H1 and H2, and
that the sets {FH1(β)} and {FH2(β)} are already computed. In order to compute

158 CHAPTER 6 ARC UPGRADE PROBLEMS

Input: A series-parallel graph G with terminals s, t,
arc capacities ur,
arc costs cr,
budget constraint B

1 if G is a single arc r then
2 for β = 1, . . . , B do

3 Assign FG(β) :=

{
0, if β < cr
ur, otherwise

4 end for
5 else
6 G decomposes into G1 and G2
7 Call algorithm recursively on G1 and G2
8 if G is series composition of G1 and G2 then
9 for β = 1, . . . , B do

10 assign FG(β) := max0≤i≤β min{FG1(β), FG2(β− i)}

11 end for
12 else

{G is parallel composition of G1 and G2 }

13 for β = 1, . . . , B do
14 assign FG(β) := max0≤i≤β FG1(β) + CG2(β− i)

15 end for
16 end if
17 end if

ALGORITHM 6.3: Auxiliary algorithm solving the dual problem MAXFL-ARCWT.

6.4 APPROXIMATING CAPACITY IMPROVEMENT PROBLEMS 159

value FH(β), it suffices to try all possible distributions of budget β on the two
graphs H1 and H2 and respect the fact that the resulting flow must not exceed
the capacity constraints of both graphs. Therefore, by

FH(β) := max
0≤i≤β

min{FH1(i), FH2(β− i)} (6.1)

the value FH(β) can be computed. Similarly, if H is the parallel composition of
H1 and H2, then by

FH(β) = max
0≤i≤β

FH1(i) + FH2(β− i) (6.2)

the value FH(β) can be computed.
Assuming that all numbers for a decomposition are already computed, the

running time for calculating one value FH(β) is in O(β) ⊆ O(B). Hence the set
{ FH(β) | β = 1, . . . , B } can be computed in time O(B2) per arc. Since the size
of the decomposition tree is O(m), the total running time of Algorithm 6.3 is in
O(mB2). Notice that the algorithm can also keep track of the respective arc sets,
such that it can also output the arc set of the optimal solution.

Scaling

The bound on the running time of Algorithm 6.3 shows that the algorithm is
pseudopolynomial. Therefore we scale down the time-limiting budget value in
order to get a polynomial running time. Since we want to apply the algorithm
unchanged, the costs of the arcs should be scaled down by the same ratio.

The scale factor should be a number in the same order of magnitude than
budget constraint B. This constraint is not known in advance. We can only
figure out that B must be a number within the interval [1,mCmax]. To this end,
we choose an arbitrary test parameter M ∈ [1,mCmax]. We will show later how
to determine the correct parameter.

Let ε > 0 be a given accuracy requirement. Now we construct an instance I ′

by scaling the budget constraint and all arc costs in the graph by the same factor
Mε/m. The resulting scaled costs are defined to be

cMr :=

⌈
cr
Mε
m

⌉
=
⌈crm
Mε

⌉
.

We now use Algorithm 6.3 to perform a test whether parameterM is a good
guess value for the budget constraint. The algorithm, when run on I ′ with bud-
get constraint (1 + 1/ε)m, has a polynomial running time of O(m3(1 + 1/ε)2).
We call the test successful, if the computed arc set A ′ admits a flow of value at

160 CHAPTER 6 ARC UPGRADE PROBLEMS

least F. The main idea is that we simply use arc set A ′ as a solution on the
unscaled instance I.

Denote by A∗ the arc set of an optimal solution to MINARCWT-FL on the un-
scaled instance I, and let OPT := c(A∗) be its cost. We now show for which
cases the above test is successful:

Lemma 6.11 (Test Success)
The test is successful ifM ≥ OPT.

Proof. Consider the optimal arc set A∗. We argue that A∗ is a feasible solution
on the scaled instance: Its total cost is given by∑

r∈A∗
cMr ≤

∑
r∈A∗

(mcr
Mε

+ 1
)
≤ m

Mε

∑
r∈A∗

cr + |A∗|

=
m

ε
· OPT
M

+ |A∗| ≤ m
ε

+ |A∗|

≤ (1+ 1/ε) ·m.

Thus the arc set A∗ is a feasible solution for the scaled instance. By definition,
A∗ admits a flow of value F. Since Algorithm 6.3 computes a feasible solution
with maximal flow, this flow is at least F and hence the test is successful. �

We now use a binary search to find the smallest integer M ′ ∈ [0,mCmax]

such that the test described above succeeds. From Lemma 6.11 we conclude that
M ′ ≤ OPT. Let A ′ be the corresponding arc set found on scaled instance I ′. We
now estimate the quality of arc set A ′, when used as a solution on the original
instance.

Lemma 6.12 (Cost Bound)
The cost c(A ′) is bounded by (1+ ε)OPT.

Proof. The proof uses an easy calculation:

∑
r∈A ′

cr ≤
M ′ε

m

∑
r∈A ′

cM
′

r

≤ M
′ε

m
· (1+ 1/ε) ·m

≤ (1+ ε) ·OPT .

This shows the claim. �

6.4 APPROXIMATING CAPACITY IMPROVEMENT PROBLEMS 161

Input: A series-parallel graph G with terminals s, t,
arc capacities ur,
arc costs cr,
minimal flow value F

1 Let Cmax := maxr∈R cr
2 for test valueM ∈ [1,mCmax] with binary search do
3 Compute scaled costs cM

4 Call Algorithm 6.3 on the scaled instance
5 Decide whether resulting flow is at least F
6 end for
7 LetM ′ be the smallest test value with successful test

Let A ′ be the corresponding set of arcs
8 return A ′ as a solution set

ALGORITHM 6.4: Algorithm for approximating MINARCWT-FL.

The complete algorithm is depicted in Algorithm 6.4. The running time of
Algorithm 6.4 can be bounded as follows: We run O(logmCmax) tests on scaled
instances, each of which needs O(m3(1 + 1/ε)) time. Thus, the total running
time is O(m3(1 + 1/ε) logmCmax). This is a polynomial both in the input size
and 1/ε. Hence we have constructed an FPAS.

Theorem 6.13 (Approximation of MINARCWT-FL)
For any ε > 0, MINARCWT-FL can be approximated with performance (1+ε, 1)

on series-parallel graphs. The corresponding uni-criterion problem admits an
FPAS. �

With the help of Theorem 1.3 on page 14 one can obtain a similar result for
the dual problem:

Corollary 6.14 (Approximation of MAXFL-ARCWT)
There is an mFPAS for the problems MAXFL-ARCWT and 0/1-MAXFL-CPI
when restricted to series-parallel graphs. �

6.4.2 Towards an Approximation on General Graphs

In the sequel we present an approach to approximating MINARCWT-FL on gen-
eral graphs. This algorithm works both for the directed as well as for undirected
graphs. We stress that the result is not very strong, since we can only show a
performance guarantee of F for the cost, where F is the flow value to achieve.

162 CHAPTER 6 ARC UPGRADE PROBLEMS

We describe the algorithm. Given an instance I = (G,ur, cr, F) of problem
MINARCWT-FL, we construct an instance I ′ of MINIMUM COST FLOW: The
capacities u ′r are set in instance I ′ equal to those of instance I. The unit flow cost
on each arc r are set to c ′r := cr/ur. Now compute an integral minimum cost
flow with value F on instance I ′. Let x ′ be the resulting flow.

At this point, define a solution A to MINARCWT-FL. An arc r is a member
of the solution, if it has positive flow on instance I ′. Formally, we define

A := { r ∈ R | x(r) > 0 } .

Obviously, the set A admits a flow of value at least F and is therefore a feasible
solution.

Notice that the total cost C(x) of the flow x on instance I ′ which is given by

C(x) =
∑
r∈R

cr

ur
x(r)

is bounded from above by OPT. Here, OPT denotes the cost of an optimal solu-
tion on instance I. This is true due to the fact that this optimal solution is also a
feasible solution on I ′.

It remains to estimate the cost of the arc set A. The total cost are given by∑
r∈A

cr =
∑
r∈A

ur
cr

ur
≤ F ·

∑
r∈A

cr

ur

≤ F ·
∑
r∈A

cr

ur
· x(r)

= F · C(x) ≤ F ·OPT .

Thus, the set A has total cost at most F ·OPT.
Theorem 6.15 (Approximation of MINARCWT-FL)
Problem MINARCWT-FL can be approximated with performance (F, 1) on gen-
eral graphs where F is the flow value to be achieved. �

The approximation can be performed in time O(m + TMCF), where TMCF is
the time needed to compute a minimum cost flow of value F in the input graph
with capacities ue and per unit flow costs of ce/ue.

6.5 Hardness of Capacity Improvement Problems

It is already known in literature that the decision version of the dual problem,
namely MAXFL-ARCWT, is NP-complete [GJ79, Problem ND32]. By duality,
this hardness result holds even for MINARCWT-FL. We will give a proof which
shows the hardness even for the restriction to series-parallel graphs.

6.5 HARDNESS OF CAPACITY IMPROVEMENT PROBLEMS 163

Theorem 6.16 (Hardness of MINARCWT-FL)
MINARCWT-FL is NP-hard even on series-parallel graphs.

Proof. We show the claim by a reduction from KNAPSACK. An instance of
KNAPSACK is given by a finite set A = {a1, . . . , ak} of items, each item with
weight w(ai) ≥ 0 and value l(ai) ≥ 0, and two integers W and L. It is NP-
complete to decide whether there is a subset A ′ ⊆ A such that w(A ′) ≤ W and
l(A ′) ≥ L [GJ79, Problem MP9].

Given an instance of KNAPSACK, we construct a graph with vertex set {s, t}

joined by |A| parallel arcs. For item ai, arc ri has cost w(ai) and capacity l(ai).
We set the flow constraint to the minimum value L of the knapsack.

It is easy to see that the instance of KNAPSACK has a solution if and only if
there is a solution of MINARCWT-FL by a selection of arcs of cost at mostW. �

The above proof says nothing on the hardness of approximating the problem
MINARCWT-FL. At least for bipartite graphs we can provide a nontrivial lower
bound:

Theorem 6.17 (Hardness of MINARCWT-FL)
MINARCWT-FL is strongly NP-hard even on bipartite graphs. Unless NP ⊆
DTIME(NO(log logN)), for any ε > 0 there is no approximation algorithm for
MINARCWT-FL on bipartite graphs with performance of ((1−ε) ln F, 1), where F
is the given flow value to be achieved.

Proof. We show the theorem by providing an approximation preserving reduc-
tion from MINIMUM SET COVER. Given an instance of MINIMUM SET COVER
with ground set Q = {q1, . . . , qk} and family of subsets {Q1, . . . , Ql}, we first
construct the natural bipartite graph, one side of the partition for set nodes and
the other for element nodes. We insert an arc (Qi, qj) if and only if qj ∈ Qi. All
these arcs have capacity 1 and zero costs.

We now add a source node s and a sink node t to the graph. The source
node is joined to all the set nodes via arcs (s,Qi) of capacity |M| and cost 1. For
each element qj ∈ Q there is an arc (qj, t) from q to the sink with capacity 1 and
cost 0. Let us denote the resulting graph by G. Finally, we set the flow value F
to be the size |M| of the ground set.

Since the cost of any selection A ′ of arcs is exactly the number of arcs in E ′

emanating from the source, we can assume without loss of generality that each
such set A ′ contains all zero-cost arcs between sets and elements and the ele-
ments and the sink.

It is now easy to see that the sets {Qi | (s,Qi) ∈ A ′ } form a cover of M
if and only if the flow in G[A ′] has value (at least) |M|. Thus, a set cover of

164 CHAPTER 6 ARC UPGRADE PROBLEMS

size K transforms into a feasible solution for MINARCWT-FL of the same cost
and vice versa. By applying the hardness result of MINIMUM SET COVER (see
Theorem 1.6 on page 17) the claim follows. �

6.6 Approximating Unit Flow Cost Improvement
Problems

We now turn over to the second arc upgrade model defined in Section 6.1.3.
The problem to investigate is (MAX: FLOW, COST IMPROVEMENT, TOTAL FLOW
COST), denoted by MAXFL-COI-FC for short. We briefly recall the definition
of the problem (confer Definition 6.6 on page 150): An upgrade budget can be
spent to reduce the unit flow cost on the graph. The total flow cost is limited by
a budget. The goal is to maximize the flow through the graph.

In the current section, we give an approximation of the problem on series-
parallel graphs. The technique used for the approximation is at a first glance
identical to the approach in Section 6.4, but in the current situation one must at-
tach more importance to correctly rounding the fractional values. The hardness
of the problem is shown in Section 6.7.

6.6.1 An mFPAS on Series-Parallel Graphs

We start with some notational conventions. The instance I of MAXFL-COI-FC
is given by a series-parallel graph G with two terminals and arc attributes as
specified in Definition 6.6: each arc is furnished with capacity u, unit flow cost c,
minimum unit flow cost cmin, discount d and price p. Additionally there is a
bound B on the upgrade budget and a bound C on the total flow cost.

We assume that the budget available for upgrading the graph satisfies B > 0.
We can make this assumption without loss of generality, since in the case B = 0

the problem falls back to the well studied MINIMUM COST FLOW problem.
Similarly, we consider the case C = 0 separately. In this case, no budget is

available for driving the flow. Obviously a valid solution can only use arcs with
zero flow cost. Thus for each arc we have only two cases: Either the arc has
initially positive flow cost and is not part of the solution, or the arc is upgraded
exactly until it has zero flow cost and is part of the solution. When consider-
ing an optimal solution, in the first case the arc is not at all upgraded since an
optimal solution does not waste budget. Hence the problem is equivalent to
MAXFL-ARCWT in this case. So we assume from now on that C > 0 is true.

6.6 APPROXIMATING UNIT FLOW COST IMPROVEMENT PROBLEMS 165

Pseudopolynomial Algorithm

By exploiting the fact that series-parallel graphs can be easily decomposed one
can construct an exact algorithm for the problem. This algorithm has pseu-
dopolynomial running time.

The main idea is similar to the approach given before. If H is an arbitrary
series-parallel graph with two terminals, we define

FH(β, γ)

to be the maximal flow value inH between the terminals which can be achieved
within two restrictions: The total flow cost must not exceed γ, while the budget
for upgrading the graph is bounded by β. Obviously, value FG(B,C) is the
overall solution on instance I.

A solution is denoted by

σ = (x, y) ,

where x is the flow on the arc and y is the upgrade strategy. Further we write

OPT := F(σ∗)

where σ∗ = (x∗, y∗) denotes an optimal solution.

In the following we describe the dynamic programming scheme employed to
solve the problem. Consider a single arc r and arbitrary bounds β, γ with 0 ≤
β ≤ B and 0 ≤ γ ≤ C. The maximal improvement y(r) is given by

y(r) = min
{⌊

β

p(r)

⌋
,

⌊
c(r) − cmin(r)

d(r)

⌋}
. (6.3)

The maximal flow x(r) which equals Fr(β, γ) is restricted by both the available
flow cost budget and the capacity of the arc. Hence

Fr(β, γ) = x(r) = min
{⌊

γ

c(r) − d(r)y(r)

⌋
, u(r)

}
. (6.4)

Notice that the above expressions are well-defined and yield finite numbers
even if one of the denominators equals zero.

To compute numbers FG for composite graphs we can apply the same argu-
ments as in (6.1) and (6.2) (see page 159). If H is the series composition of two
subgraphs H1 and H2, then

FH(β, γ) = max
0≤i≤β
0≤j≤γ

min{FH1(i, j), FG2(β− i, γ− j)} . (6.5)

166 CHAPTER 6 ARC UPGRADE PROBLEMS

If H is the parallel composition of H1 and H2, then

FH(β, γ) = max
0≤i≤β
0≤j≤γ

FH1(i, j) + FH2(β− i, γ− j) . (6.6)

The running time of the algorithm is estimated as follows: If the table is al-
ready completed with numbers for all subgraphs, then the computation of each
value FH(β, γ) needs at most O(β, γ) ⊆ O(BC) time. Since m is the size of the
decomposition tree, the overall running time of the algorithm can be bounded
by O(mB2C2). Notice that this is a pseudopolynomial running time.

Scaling

At this point we perform a scaling. Starting with instance I, we construct a
scaled instance I ′ by dividing both the improvement budget and the flow cost
bound such that the resulting bounds admit a polynomial running time. The
corresponding costs and prices on the arcs must be scaled down by the same
factor, such that the ratio between all parameters remains essentially within
the same order of magnitude. Then the algorithm is applied to I ′. The solution
found on the scaled instance I ′ is used as an approximate solution in the original
instance I.

Let δ, ε > 0 be arbitrary constants. These will be used as approximation ratio of
our approach.

In order to keep the rounding errors small we start with a preprocessing
on the instance. The background is the following: Assume that we would
directly continue with a scaling procedure. Then we would construct scaled
prices p ′ and discounts d ′ by dividing the initial values by appropriate factors
and rounding the quotient to an integer. This means that for each arc we have a
worst case error of (almost) one per unit of upgrade. If ỹ is the maximal upgrade
permitted by the instance, then the error sums up to ỹ on the single arc. It has
turned out that this result is too weak and can not be used for analysis. So we
decided to multiply prices and discounts for each arc separately by ỹ before the
scaling. By this we can keep a maximal rounding error of one per whole arc. Of
course the new parameters imply slight changes on the algorithm.

We now describe the preprocessing step in detail. With respect to the problem
discussed in Section 6.8, we use a more general notation which can also be ap-
plied to the case where capacities can be upgraded. To this end, we set

x̃(r) := u(r) and ỹ(r) :=

⌊
c(r) − cmin(r)

d(r)

⌋
(6.7)

6.6 APPROXIMATING UNIT FLOW COST IMPROVEMENT PROBLEMS 167

for each arc r. Value x̃(r) is the maximal flow on arc r. Value ỹ(r) denotes
the maximal improvement on arc r, which is only restricted by the boundary
conditions on the arc but not regarding any budget constraints. We continue
with defining

c̃(r) := c(r) · x̃(r) · ỹ(r) ,
d̃(r) := d(r) · x̃(r) · ỹ(r) ,
p̃(r) := p(r) · ỹ(r) .

(6.8)

The algorithm must be trimmed only where values FH are computed forH being
a single arc: To compute Fr(β, γ) on arc r, we replace (6.3) by the computation

y(r) = min
{⌊
β · ỹ(r)
p̃(r)

⌋
, ỹ(r)

}
(6.9)

and replace (6.4) by

Fr(β, γ) = x(r) = min
{⌊

γ · x̃(r) · ỹ(r)
c̃(r) − d̃(r) · y(r)

⌋
, x̃(r)

}
. (6.10)

It is immediate from (6.8) that these modifications are valid.

At this point we can construct the scaled instance I ′. For the sake of easier to
read formulae we omit the argument r of all functions in the sequel, i. e., we
write c instead of c(r) for example.

Parameter δ adjusts the quality of the algorithm with respect to the bound
on the upgrade budget. We scale down both the budget and the related arc
properties, namely the price, by essentially a factor of Bδ/3m:

B ′ := b(1+ 1/δ) · 3mc

p ′ :=

⌈
3mp̃

Bδ

⌉
Observe that p ′ = 0 if and only if p̃ = 0.

Similarly, parameter ε adjusts the excess in the total flow cost constraint. The
arc properties related to the flow cost constraint are the unit flow cost c and the
discount d. All those figures are scaled down by essentially a factor of Cε/3m.
For technical reasons only, we work with ε ′ := 3/4 · ε in the sequel.

C ′ := b(1+ 1/ε ′) · 3mc

c ′ :=

⌈
3mc̃

Cε ′

⌉
d ′ :=

⌈
3md̃

Cε ′

⌉

168 CHAPTER 6 ARC UPGRADE PROBLEMS

Notice that the boundary conditions c ′ > 0 and d ′ > 0 (see page 148) still hold.
Thus it is admissible to apply the (modified) algorithm to the scaled instance.
At this point the construction of the scaled instance I ′ is complete.

We now run the modified algorithm on the scaled instance I ′. Due to the new
budget constraints the running time of the algorithm is inO(m5(1+ 1

δ
)2(1+ 4

3ε
)2)

and in particular polynomial.

Approximation Algorithm

Let σ = (x, y) be a valid solution found on the scaled instance I ′. We simply
plug σ into the initial instance I and take it as an approximation of the problem.
Lemma 6.18 and Lemma 6.19 show that σ is an almost feasible solution.

Lemma 6.18 (Bound on Upgrade Budget)
Solution σ satisfies B(σ) ≤ (1+ δ)B.

Proof. The proof is by a simple analysis. Consider a single arc. By definition
of p ′ we have

p ′ =

⌈
3m · p̃
Bδ

⌉
≥ 3m
Bδ
· p̃ . (6.11)

Hence

B(σ) =
∑
r∈R

yp ≤
∑
r∈R

yp̃
(6.11)
≤ Bδ

3m

∑
r∈R

yp ′ (6.12)

Since the algorithm computes a solution which is feasible within the scaled
boundaries, we have

∑
r∈R yp

′ ≤ B ′. Therefore we continue estimation (6.12)
and conclude

B(σ) ≤ Bδ

3m
· B ′ ≤ Bδ

3m
·
(
1+

1

δ

)
3m = (1+ δ)B .

This shows the claim. �

Lemma 6.19 (Bound of Flow Cost)
Solution σ satisfies C(σ) ≤ (1+ ε)C.

Proof. From the definition we observe for a single arc

c ′ =

⌈
3m · c̃
Cε ′

⌉
≥ 3m

Cε ′
· c̃ and d ′ =

⌈
3m · d̃
Cε ′

⌉
≥ 3m

Cε ′
· d̃ .

6.6 APPROXIMATING UNIT FLOW COST IMPROVEMENT PROBLEMS 169

Further notice that
∑
r∈R x(c

′ − d ′y) ≤ C ′ since the algorithm is correct. Hence

C(σ) =
∑
r∈R

x · (c− dy) =
∑
r∈R

x
c̃− d̃y

x̃ỹ

≤ Cε
′

3m
·
∑
r∈R

x · c
′ − (d ′ − 1)y

x̃ỹ

=
Cε ′

3m

∑
r∈R

(
x · c

′ − d ′y

x̃ỹ
+
xy

x̃ỹ

)
≤ Cε

′

3m
(C ′ +m)

≤ Cε
′

3m

((
1+

1

ε ′

)
3m+m

)
=

(
1+

4

3
ε ′
)
C = (1+ ε)C .

We remark that at this point we profit from the preprocessing step, since the
rounding error per arc, namely xy/x̃ỹ ≤ 1, is not greater than one per arc. �

It remains to show that the overall flow value is at least the flow value of an
optimal solution.

Lemma 6.20 (Optimality of Flow Value)
For solution σ, we have F(σ) ≥ FG(B,C).

Proof. Let σ∗ = (x∗, y∗) be an optimal solution of the original (unscaled) in-
stance. This solution exists since MAXFL-COI-FC always has a feasible solution,
e. g. the trivial solution (x ≡ 0, y ≡ 0).

We first show that there is a feasible solution σ0 = (x0, y0) on the scaled
instance which satisfies x0 ≥ x∗. This is done by specifying an appropriate
distribution (β0, γ0) of budget and flow cost.

To this end, let

β0 :=

⌈
p ′

ỹ
y∗
⌉

and γ0 :=

⌈
x∗ (c ′ − d ′y∗)

x̃ỹ

⌉
(6.13)

for each arc. Clearly, ỹ ≥ y∗. If p ′ > 0, we have

y0
(6.9)
≥
⌊
β0ỹ

p ′

⌋
=

⌈
p ′

ỹ
y∗
⌉

p ′
ỹ

 ≥ ⌊ p ′ỹ y∗
p ′
ỹ

⌋
= y∗ .

Otherwise, if p ′ = 0, then p̃ = 0 as observed above. In this case, y0 ≥ y∗ follows
directly from (6.9). Thus we have that y0 ≥ y∗ in all cases.

170 CHAPTER 6 ARC UPGRADE PROBLEMS

On the other hand, from definition we have x̃ ≥ x∗. Moreover,

x0
(6.10)
≥
⌊
γ · x̃ · ỹ
c ′ − d ′y0

⌋
=

⌈
x∗(c ′−d ′y∗)

x̃ỹ

⌉
x̃ỹ

c ′ − d ′y0

 y0≥y∗
≥

⌊
x∗(c ′−d ′y∗)

x̃ỹ
· x̃ỹ

c ′ − d ′y∗

⌋
= x∗ .

Since the source s has no incoming arcs, this implies that

F(σ0) ≥ F(σ∗) = OPT .

It remains to show that σ0 is a feasible solution on the scaled instance.

B(σ0)
(6.13)
=
∑
r∈R
β6=0

⌈
p ′

ỹ
y∗
⌉

≤
∑
r∈R
β6=0

(
3m·p̃
Bδ

+ 1

ỹ
y∗ + 1

)
=
∑
r∈R
β6=0

(
3m · p̃y∗

Bδ · ỹ
+
y∗

ỹ
+ 1

)

≤ 3m
δ

∑
r∈R
β6=0

p̃y∗

Bỹ

+ 2m

≤ 3m
δ

+ 2m ≤
⌊(
1+

1

δ

)
3m

⌋
= B ′ .

On the other hand,

C(σ0)
(6.13)
=
∑
r∈R

⌈
x∗c ′ − d ′x∗y∗

x̃ỹ

⌉

≤
∑
r∈R

((
3mc̃
Cε ′

+ 1
)
x∗

x̃ỹ
−

3mc̃
Cε ′
x∗y∗

x̃ỹ
+ 1

)

=
∑
r∈R

(
3mc̃x∗

Cε ′x̃ỹ
+
x∗

x̃ỹ
−
3md̃x∗y∗

Cε ′x̃ỹ
+ 1

)

≤ 3m
ε ′

(∑
r∈R

c̃x∗ − d̃x∗y∗

Cx̃ỹ

)
+ 2m

=
3m

ε ′
+ 2m ≤

⌊(
1+

1

ε ′

)
3m

⌋
= C ′ .

6.6 APPROXIMATING UNIT FLOW COST IMPROVEMENT PROBLEMS 171

Hence, solution σ0 is also feasible for the scaled instance. Since the algorithm
tries all possible distributions of budget and costs this is true in particular for
(β0, γ0). Finally we can conclude

F(σ) ≥ F(σ0)

since the algorithm is optimal. This shows the claim. �

We summarize the results obtained in this section:

Theorem 6.21 (Approximability of MAXFL-COI-FC)
For any δ, ε > 0, there is an approximation algorithm for MAXFL-COI-FC on
series-parallel graphs with performance (1, 1 + δ, 1 + ε). Its running time is in
O(m5(1+ 1

δ
)2(1+ 4

3ε
)2). �

6.6.2 Towards an Approximation on General Graphs

In this section we switch over to the related problem (MIN: FLOW COST, FLOW
VALUE, COST IMPROVEMENT) and present an approach to an approximation
on general graphs. The problem is denoted by MINFC-FL-COI for short. This
problem consists in minimizing the flow cost with respect to constraints on flow
value and upgrade investment. As noted in Theorem 1.3 on page 14, the approx-
imation results carry over to the initial problem, MAXFL-COI-FC, by a general
binary search technique.

The main idea of the approach consists in setting up a function of compound
costs which combines unit flow costs and improvement costs at the same time.
(We refer to [MR+95, KN+98, MR+98] for further applications of this approach.)

The compound cost function is made up of a linear combination of the two
cost values which is weighted by a test parameter K. The shape of the com-
pound cost function hK is shown in Figure 6.5. It is a nondecreasing (piecewise)
linear function with minimum cmin and maximum c. The slope of the function
depends on the price and discount value on the arc.

Assume that the algorithm computes a minimal cost flow with respect to the
compound costs. One may observe the following: The smaller the test parame-
ter is, the more the algorithm tends to overlook upgrade costs and hence it uses
more upgraded arcs. On the other hand, if the test parameter gets larger and
larger, the upgrade effort is weighted more and more and the algorithm prefers
to use arcs with low initial weight.

In this sense the test parameter describes a compromise between upgrading
arcs and leaving them in the initial state. Moreover, a minimum cost flow with
respect to the compound cost function can be used in combination with the test
parameter to generate improvement and flow strategies on the original graph.

172 CHAPTER 6 ARC UPGRADE PROBLEMS

K

hK(r)

cmin(r)

c(r)

FIGURE 6.5: Shape of combined cost function hK on arc r.

The quality of the solution determined by this approach depends on how good
the test parameter was chosen. At this point, a binary search is applied in order
to find a suitable test parameter.

Input: A graph G = (V, R) with terminals s ∈ V and t ∈ V ,
arc capacities u
arc costs c and minimal arc costs cmin

upgrade prices p and discount d
flow constraint F, improvement budget B
accuracy parameters ε1, ε2 > 0

1 Let Cmax := 1
ε2

∑
r∈R cu.

2 Perform a search on the set

M := { (1+ ε1)
i | i = 0, 1, . . . , dlog1+ε1 Cmaxe }

to find the smallest test parameter K ′ ∈ M such that Algorithm 6.7 returns
a valid solution σ and does not return COF.

Output: Approximate solution σ

ALGORITHM 6.6: Approximation algorithm for MINFC-FL-COI.

The main procedure is depicted in Algorithm 6.6 which uses Algorithm 6.7
as a subroutine. Notice that we omit the arguments r to all functions in order to
improve the readability of the formulae. The algorithm is given two accuracy
parameters ε1, ε2 > 0which adjust the performance of the produced solution.

Reasonable values for the test parameter lie between 1 and roughly the max-
imal conceivable total flow cost, denoted by Cmax := 1

ε2

∑
r∈R cu. This interval is

furnished with a grid of exponentially growing steps { (1 + ε1)
i | i ∈ N0 }. This

keeps the number of test values polynomial.

6.6 APPROXIMATING UNIT FLOW COST IMPROVEMENT PROBLEMS 173

Input: Same input as for Algorithm 6.6,
additionally a test parameter K

1 for all r ∈ R do
2 if K

B
< d · u

p
then

3 Let y := c−cmin
d

4 Let hK(r) := cmin + K
B
· c−cmin

d
· p
u

5 else
6 Let y := 0

7 Let hK(r) := c

8 end if
9 end for

10 Let x be a minimum cost flow of value F with respect to cost function hK
11 if

∑
r∈R x · hK(r) ≤ (1+ ε2) · K then

12 return σ = (x, y)

13 else
14 return COF { certificate of failure }

15 end if
Output: Solution σ or COF

ALGORITHM 6.7: Test procedure used in Algorithm 6.6.

174 CHAPTER 6 ARC UPGRADE PROBLEMS

In the following we establish the result that there is a test parameter where the
test in Line 11 of Algorithm 6.7 succeeds and the algorithm returns a solution.

We denote by σ∗ = (x∗, y∗) an optimal solution with flow x∗ and improve-
ment strategy y∗. The resulting flow cost is denoted by

OPT :=
∑
r∈R

x∗ · (c− dy∗) .

Since the solution is feasible, we have
∑
r∈R py

∗ ≤ B.

Lemma 6.22 (Test Success)
] Let K̃ := OPT/ε2. Algorithm 6.7 does not return a “certificate of failure” (COF)
when called with a parameter K ≥ K̃.

Proof. By construction of hK (confer Step 4 and Step 7 of Algorithm 6.7), we
have for each arc r ∈ R

hK(r) = min
y is feasible

(
c− d · y+

K

B
· p
u
· y
)
.

Consider the optimal flow x∗. Then the flow cost with respect to cost function hK
are given by ∑

rinR

x∗ · hK(r) ≤
∑
r∈R

x∗ · (c− d · y∗) +
K

B
·
∑
r∈R

x∗

u
· py∗

≤ OPT +
K

B
· B = OPT + K

≤ ε2K+ K = (1+ ε2) · K .

Thus x∗ is a witness for a successful test with cost function hK. Since the al-
gorithm computes a minimum cost flow under that cost function, its total cost
would not exceed the cost of x∗. Hence the test is successful. �

It is not necessary that value K̃ actually appears in the setM of test parame-
ters. Nevertheless, sinceM is furnished with a grid where the ratio of each two
subsequent points equals 1 + ε1, we can conclude that the parameter K ′ found
by the algorithm satisfies

K ′ ≤ (1+ ε1)K̃ . (6.14)

At this point we estimate the performance of the algorithm with respect to the
resulting total flow cost. To this end, we denote by

MCF(η)

6.6 APPROXIMATING UNIT FLOW COST IMPROVEMENT PROBLEMS 175

the cost of a flow of value Fwith minimum cost with respect to an arbitrary cost
function η.

Let K ′ be the smallest successful test parameter found by Algorithm 6.7. let
σ ′ = (x ′, y ′) be the corresponding solution with flow x ′ and upgrade strategy y ′.
Notice that the cost of x ′ equals MCF(c− dy ′).

Lemma 6.23 (Bound on Flow Costs)
The total costs of flow x ′ are bounded as follows:

MCF(c− dy ′) ≤
(
1+

1

ε2

)
(1+ ε1) ·OPT .

Proof. At first we have∑
r∈R

x ′ · hK ′(r) =
∑
r∈R

x ′ ·
(
c− dy ′ +

K ′

B
· p
u
· y ′
)

≥
∑
r∈R

x ′ · (c− dy ′)

≥MCF(c− dy ′) .

Now notice that both x ′ and x∗ are flows with flow value F. Since x ′ is a mini-
mum cost flow with respect to cost function hK ′ , we can conclude that∑

r∈R

x ′ · hK ′(r) ≤
∑
r∈R

x∗ · hK ′(r) .

Following the proof of Lemma 6.22, this yields∑
r∈R

x∗ · hK ′(r) ≤ OPT + K ′ .

Moreover, using (6.14) we proceed

OPT + K ′ ≤ OPT + K̃(1+ ε1)

≤
(
OPT + K̃

)
(1+ ε1)

= OPT
(
1+

1

ε2

)
(1+ ε1) .

This shows the claim. �

It remains to show the performance of the resulting upgrade strategy with re-
spect to the given budget. Let umax := maxr∈R u(r) be the maximal capacity
specified by the instance. Notice that we can assume that umax ≤ F.

176 CHAPTER 6 ARC UPGRADE PROBLEMS

Lemma 6.24 (Bound on Upgrade Costs)
The upgrade costs of solution σ ′ satisfy∑

r∈R

y ′p ≤ (1+ ε2)umaxB .

Proof. The costs of flow x ′ satisfy

MCF(hK ′) =
∑
r∈R

x ′ ·
(
c− dy ′ +

K ′

B
· p
u
· y
)

≥ K
′

B
·
∑
r∈R

x ′

u
· py .

Since x ′/u ≥ 1/umax, the right hand side can further be bounded by

K ′

B
·
∑
r∈R

x ′

u
· py ≥ K

′

B
·
∑
r∈R

py .

On the other hand, since the test was successful, we have

MCF(hK ′) ≤ (1+ ε2)K
′ .

Multiplying the chain of inequalities by B/K ′ yields the claim. �

The following theorem summarizes the results of the current section. Notice
that the result is not quite satisfying unless for those instances where umax is
small.
Theorem 6.25 (Approximation of MINFC-FL-COI on general graphs)
For any constant ε1, ε2 > 0, problem MINFC-FL-COI can be approximated with
performance ratio (

(1+ 1/ε2)(1+ ε1), 1, (1+ ε2)umax
)
,

where umax = maxr∈R u(r) is the maximal capacity. �

At the end we estimate the running time of the algorithm. Algorithm 6.6
performs at most log1+ε1 Cmax iterations where Cmax = 1

ε2

∑
r∈R cu. The running

time of the test algorithm (Algorithm 6.7) is dominated by the time TMCF needed
for a minimum cost flow computation. Thus we have

O

(
log1+ε1

(
1

ε2
ncmaxumax

)
· TMCF

)
as a bound on the overall running time.

6.7 HARDNESS OF UNIT FLOW COST IMPROVEMENT PROBLEMS 177

6.7 Hardness of Unit Flow Cost Improvement
Problems

When attempting to apply a programming approach to the family of problems
one gets the easy insight that MINFC-FL-COI can be written as a bilinear pro-
gram with disjoint constraints. This means, it can be written as a program

minimize xMy
subject to

Ax ≤ b
Cy ≤ d

Since it is known that programs of this type are NP-hard to solve [FV94], this
can be considered as a hint to the fact that even MINFC-FL-COI and the related
problems are intractable. Instead of tracking this approach we directly provide
non-approximability results by using other reductions in the sequel.

Theorem 6.26 (Non-approximability of MAXFL-COI-FC)
For any (polynomial time computable) function f(n), the existence of an ap-
proximation algorithm for MAXFL-COI-FC with performance (1, 1, f(n)) on
series-parallel graphs with n nodes implies P = NP.

Proof. We show the hardness by a reduction from KNAPSACK [GJ79, Problem
MP9]. An instance of KNAPSACK is given by a finite set A = {a1, . . . , ak} of
items, each of weight w(ai) ≥ 0 and value v(ai) ≥ 0, and two numbers W,V ∈
N. It is NP-complete to decide whether there is a subset A ′ ⊆ A such that
w(A ′) ≤W and v(A ′) ≥ V .

Assume there is a (1, 1, f)-approximation algorithm for MAXFL-COI-FC.
Given an instance of KNAPSACK, we construct a graph with vertex set {s, t}

joined by k parallel arcs. For item ai, arc ri has capacity u(ri) := v(ai), and price
p(ri) := w(ai). Further, for all arcs set the initial flow cost c(r) := f · V + 1, the
minimal flow cost cmin(r) := 1, and the discount d(r) := f · V . Finally, set the
flow cost constraint C := V , and the budget constraint B := W.

We claim that there is a solution of the MAXFL-COI-FC instance with flow
value at least V if and only if there is a solution to the KNAPSACK instance.

Assume that there is a solution of MAXFL-COI-FC with flow value F ≥ V

obeying both constraints. Let R ′ be the set of upgraded arcs, choose A ′ to be the
corresponding set of items. Due to the flow cost constraint it is easy to see that
the solution of MAXFL-COI-FC uses only upgraded arcs. Then

∑
a ′∈A ′ v(a

′) =∑
r ′∈R ′ u(r ′) ≥ F ≥ V and

∑
a ′∈A ′ w(a ′) =

∑
r ′∈R ′ p(r

′) ≤ B = W, therefore A ′

178 CHAPTER 6 ARC UPGRADE PROBLEMS

is a solution for KNAPSACK. Conversely, constructing a solution for MAXFL-
COI-FC out of a solution of KNAPSACK is easily achieved by upgrading the
arcs corresponding to the items of the solution.

Since the flow cost of an arc r which is not upgraded exceeds f · V , any
(1, 1, f)-approximation algorithm for MAXFL-COI-FC must in fact solve the un-
derlying KNAPSACK problem exactly. �

We briefly compare this result to Theorem 6.21 on page 171. The approxi-
mation violates both constraints (albeit by small factors only). The above result
shows, that at least the violation of the improvement budget is necessary in or-
der to get a good approximation. We supplement a non-approximability result
for the class of bipartite graphs.

Theorem 6.27 (Non-approximability of MAXFL-COI-FC)
For any ε > 0 and any (polynomial time computable) function f(n), the exis-
tence of a (1, (1−ε) lnn, f(n))-approximation algorithm for MAXFL-COI-FC on
bipartite graphs with n nodes implies NP ⊆ DTIME(NO(log logN)).

Proof. The proof uses a reduction from MINIMUM DOMINATING SET [GJ79,
Problem GT2]. An instance of MINIMUM DOMINATING SET is given by a
graph G = (V, E) and a number K ∈ N. A subset V ′ ⊆ V is called dominat-
ing, if each node in V is either contained in V ′ or incident to a node from V ′. It
is NP-complete to decide whether G admits a dominating set of size at most K.

Given an instance G ′ = (V ′, E ′) of MINIMUM DOMINATING SET with n ′ :=
|V ′| nodes, construct a graph G with node set V1 ∪ V2 ∪ {s, t}, where each Vi
is a copy of V ′. Insert an arc between v ∈ V1 and w ∈ V2 if and only if w is
dominated by v in the original graph. For each v ∈ V1 insert an arc (s, v) of cost
c := f + 1, discount d := f, minimum cost cmin := 1 and price p := 1. For each
w ∈ V2 add an arc (w, t) of capacity u := 1. If not specified yet, set the capacity
on the remaining arcs to u := n ′, and the costs and prices to zero. Notice that
the resulting graph is bipartite, and only the arcs incident to s cause flow costs.

Observe that due to the capacity constraint, a flow with flow value n ′ in-
duces a flow of value 1 through each of the nodes in layer V2. Therefore the set
of vertices in layer V1 with nonzero flow form a dominating set in the original
graph. The cost of the flow is equal to n ′ if it does not use an arc incident to s
which is not upgraded; otherwise the costs are strictly larger than f.

Let OPT be the size of a minimum dominating set in the original graph.
Perform for each i ∈ {1, . . . , n} a test Ti as follows: Run the approximation algo-
rithm for MAXFL-COI-FC on graph G with bound i on the upgrade costs and
bound n on the flow costs, and check whether the resulting flow value is not
less than n ′.

6.8 COMBINED IMPROVEMENT 179

Assume there is a (1, (1 − ε) lnn, f)-approximation algorithm for MAXFL-
COI-FC. Consider instance TOPT. By our observation, there is a feasible solution
for TOPT with flow value n ′. Since the approximation ratio with respect to the
flow cost is f, the algorithm must in fact produce a solution which does not
use an arc incident to s which is not upgraded. By the performance bound
on the improvement cost, the algorithm must find a dominating set of size at
most (1− ε) lnn ·OPT. Finally, the resulting flow value is n ′.

After performing all tests Ti for i = 1, . . . , n ′ and taking the upgrade budget
minimal solution out of those solutions which achieve a flow value of n ′, the
final solution induces a dominating set of size at most (1 − ε) lnn · OPT. Ob-
serve that the number n of nodes in the constructed graph satisfies n = 2n ′+ 2.
If n ′ is large enough (this depends solely on ε), there is an ε ′ > 0 such that
(1 − ε) lnn ≤ (1 − ε ′) lnn ′. Hence the algorithm induces an approximation
of MINIMUM DOMINATING SET with performance (1 − ε ′) lnn ′ which implies
NP ⊂ DTIME(NO(log logN)) in accordance with the result of Theorem 1.8 on
page 17. �

6.8 Combined Improvement

In this section we turn over to problem MAXFL-COCPI-FC (see Definition 6.7
on page 152). This problem is formulated under the combined upgrade model
which admits both improvement of unit flow costs and improvement of capac-
ities at the same time.

6.8.1 Approximating Combined Improvement Problems

We now argue that the methods from Section 6.6.1 for approximating MAXFL-
COI-FC on series-parallel graphs can be successfully applied also to MAXFL-
COCPI-FC with only small changes. This enables us to derive similar approxi-
mation results.

Pseudopolynomial Algorithm

Recall from Section 6.6.1 that for arbitrary series-parallel graph H,

FH(β, γ)

denotes the maximal flow between the terminals of H where the improvement
budget is restricted to β and the total flow cost are bounded by γ.

180 CHAPTER 6 ARC UPGRADE PROBLEMS

For a single arc r, value Fr(β, γ) is determined as follows: assume for the mo-
ment that we know how the budget is distributed between cost improvement
and capacity improvement. Let β = βa + βd be the partition of the budget.
Clearly, the optimal upgrade strategy is then defined by

ya(r) = min
{⌊

βa

pa(r)

⌋
,

⌊
umax(r) − u(r)

a(r)

⌋}
and

yd(r) = min
{⌊

βd

pd(r)

⌋
,

⌊
c(r) − cmin(r)

d(r)

⌋}
.

The optimal flow Fr(β, γ) is computed by trying all possible distributions of the
budget into the two types of improvement. Thus,

Fr(β, γ) = x(r) = max
βa+βd=β

min
{⌊

γ

c(r) − d(r)yd(r)

⌋
, u(r) + a(r)ya(r)

}
.

The computations for interior nodes of the decomposition tree are exactly as
rules (6.5) and (6.6) described on page 165 for the variant under the simpler
cost improvement model. Thus, the desired value FG(B,C) can be computed in
pseudopolynomial running time O(mB2C2) as before.

Scaling

The idea behind the scaling are directly derived from Section 6.6.1. At first, we
introduce upper bound functions x̃, ỹa, and ỹd similar to (6.7). In the current
context, this reads

ỹa(r) :=

⌊
umax(r) − u(r)

a(r)

⌋
ỹd(r) :=

⌊
c(r) − cmin(r)

d(r)

⌋
x̃(r) := ỹa(r)a(r) + u(r)

Analogously to (6.8), we set

c̃(r) := c(r) · x̃(r) · ỹd(r)
d̃(r) := d(r) · x̃(r) · ỹd(r)
p̃a(r) := pa(r) · ỹa(r)
p̃d(r) := pd(r) · ỹd(r) .

6.8 COMBINED IMPROVEMENT 181

After that, the calculations (6.9) and (6.10) for Fr(β, γ) on a leaf of the decompo-
sition tree are changed to

ya := min
{⌊
βaỹa

p̃a

⌋
, ỹa

}
yd := min

{⌊
βdỹd

p̃d

⌋
, ỹd

}
Fr(β, γ) = x(r) := max

βa+βd=β
min
{⌊

γ · x̃ · ỹd
c̃− d̃ · yd

⌋
, u+ a · ya

}

At this point, the scaled instance can be constructed. Given accuracy parameters
δ, ε > 0, the budget related values are scaled as

B ′ :=

⌊(
1+

1

δ

)
· 5m

⌋
pa :=

⌈
5m · p̃a
Bδ

⌉
pd :=

⌈
5m · p̃d
Bδ

⌉
.

The cost related values are scaled like (using ε ′ := 5/6 · ε)

C ′ :=

⌊(
1+

1

ε

′)
· 5m

⌋
c ′ :=

⌈
5m · c̃
Cε ′

⌉
d ′ :=

⌈
5m · d̃
Cε ′

⌉
.

Approximation Algorithm

As before, the algorithm is run on the scaled instance and the solution is used
as an approximation to the initial problem on the unscaled instance. The cal-
culations from Lemma 6.18, Lemma 6.19, and Lemma 6.20 can immediately be
carried out in the current situation without major changes. Thus we can con-
clude the following result:

Theorem 6.28 (Approximability of MAXFL-COCPI-FC)
For any δ, ε > 0, there is an approximation algorithm for MAXFL-COCPI-FC on
series-parallel graphs with performance (1, 1 + δ, 1 + ε). Its running time is in
O(m5(1+ 1

δ
)2(1+ 6

5ε
)2).

182 CHAPTER 6 ARC UPGRADE PROBLEMS

6.8.2 Hardness of Combined Improvement Problems

It is easy to see that MAXFL-COCPI-FC contains MAXFL-COI-FC as a special
case: A reduction can be achieved by choosing the price pa(r) for upgrading
the capacity of arc r to a constant exceeding the available budget. Therefore all
hardness and non-approximability results derived in Section 6.7 immediately
carry over to MAXFL-COCPI-FC.

6.9 Concluding Remarks

A summary of the explicit results obtained in this chapter is displayed in Ta-
ble 6.8 on the next page. The results carry over to the family of related problems
according to Theorem 1.3 on page 14.

All negative results, i. e., results on hardness and lower bounds on the
approximability, rely upon the widely believed assumptions P 6= NP and
NP 6⊆ DTIME(NO(log logN)). For some problems there has been provided a
(multi-criteria) fully polynomial approximation scheme which means that the
running time of the approximation algorithm is both polynomial in the size of
the graph and in 1/δ and 1/ε (see page 15 for definition).

6.9 CONCLUDING REMARKS 183
Pr

ob
le

m
Po

si
ti

ve
R

es
ul

ts
N

eg
at

iv
e

R
es

ul
ts

M
A

X
FL

-C
P

I
C

O
N

T
IN

U
O

U
S

po
ly

no
m

ia
l

(T
he

or
em

6.
8)

IN
T

E
G

E
R

po
ly

no
m

ia
l

(T
he

or
em

6.
9)

0/
1

du
al

pr
ob

le
m

0/
1-

M
IN

C
P

I-
FL

is
eq

ui
va

le
nt

to
M

IN
A

R
C

W
T
-F

L
(T

he
or

em
6.

5)

M
IN

A
R

C
W

T
-F

L
FP

A
S

(1
+
ε
,1

)-
ap

pr
ox

im
ab

le
on

se
ri

es
-p

ar
al

le
lg

ra
ph

s
(T

he
or

em
6.

13
)

N
P-

ha
rd

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
16

)

(F
,1

)-
ap

pr
ox

im
ab

le
on

ge
ne

ra
lg

ra
ph

s
(T

he
or

em
6.

15
)

lo
w

er
bo

un
d

(l
n
F,
1
)

on
bi

pa
rt

it
e

gr
ap

hs
(T

he
or

em
6.

17
)

M
A

X
FL

-C
O

I-
FC

m
FP

A
S

(1
,1

+
δ
,1

+
ε
)-

ap
pr

ox
im

ab
le

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
21

)

lo
w

er
bo

un
d

(1
,1
,α

)

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
26

)

re
la

te
d

pr
ob

le
m

M
IN

FC
-F

L
-C

O
I

((
1

+
1
/
ε
)(
1

+
δ
),
1
,(
1

+
ε
)u

m
ax

)-
ap

pr
ox

im
ab

le
on

ge
ne

ra
lg

ra
ph

s
(T

he
or

em
6.

25
)

lo
w

er
bo

un
d

(1
,l

n
n
,α

)

on
bi

pa
rt

it
e

gr
ap

hs
(T

he
or

em
6.

27
)

M
A

X
FL

-C
O

C
P

I-
FC

m
FP

A
S

(1
,1

+
δ
,1

+
ε
)-

ap
pr

ox
im

ab
le

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
28

)

as
le

as
ta

s
ha

rd
as

M
A

X
FL

-C
O

I-
FC

TABLE 6.8: Summary of explicit results presented in this chapter.

184

185

Synopsis

This chapter is intended as a brief reference for the results obtained in this thesis.
It consists mainly of an uncommented compilation of facts.

Minimum Label Spanning Tree

Approach Performance Reference

Algorithm 2.3 2 lnn+ 1 Theorem 2.8
running time
O(m+ α(m,n) · l ·min{ln,m})

polynomial time algorithm (1+ ε) lnn Theorem 2.9
for any ε > 0

lower bound 6/31 · lnn Theorem 2.11

Minimum Reload Cost Subgraphs

Lower bound
Problem Degree bound on approximability Reference

M∆RPATH none solvable in O(|V |3 + |E|) Corollary 3.11

MRRADT 5 any f(|V |) Corollary 3.31
M∆RRADT 5 2 Corollary 3.32

3 solvable in O(|V |) Theorem 3.18

MRDIAT 5 any f(|V |) Corollary 3.30
M∆RDIAT none 1/4 · ln |V | Theorem 3.35

5 3 Corollary 3.34
3 solvable in O(|V |2 log |V |) Theorem 3.28

186 SYNOPSIS

Dial a Ride

Graph class DARP SOURCE-DARP PENALTY-
SOURCE-DARP

paths polynomial time
solvable [AK88]

polynomial time
solvable

(Theorem 4.21)

NP-hard
(Theorem 4.40)

approximable
within 5/3

(Corollary 4.35)

trees NP-hard, even on
caterpillars

(Theorem 4.36)

NP-hard, even on
caterpillars

(Theorem 4.36)

NP-hard

approximable
within 5/4 [FG93]

approximable
within 3/2

(Theorem 4.32)

approximable
within 5/3

(Corollary 4.35)

general graphs NP-hard [FHK78] NP-hard NP-hard

approximable
within 9/5

[FHK78]

approximable
within 9/4

(Theorem 4.29)

approximable
within 9/4

(Corollary 4.35)

Node Upgrade Constrained Forest

lower bound (ln |K|, 1) (Theorem 5.17)
(ln |K|, f(|V |)) (Corollary 5.18)

upper bound (2 ln(
√
e/2 · |K|), 1) (Theorem 5.16)

187

Arc Upgrade Problems

Pr
ob

le
m

Po
si

ti
ve

R
es

ul
ts

N
eg

at
iv

e
R

es
ul

ts

M
A

X
FL

-C
P

I
C

O
N

T
IN

U
O

U
S

po
ly

no
m

ia
l

(T
he

or
em

6.
8)

IN
T

E
G

E
R

po
ly

no
m

ia
l

(T
he

or
em

6.
9)

0/
1

du
al

pr
ob

le
m

0/
1-

M
IN

C
P

I-
FL

is
eq

ui
va

le
nt

to
M

IN
A

R
C

W
T
-F

L
(T

he
or

em
6.

5)

M
IN

A
R

C
W

T
-F

L
FP

A
S

(1
+
ε
,1

)-
ap

pr
ox

im
ab

le
on

se
ri

es
-p

ar
al

le
lg

ra
ph

s
(T

he
or

em
6.

13
)

N
P-

ha
rd

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
16

)

(F
,1

)-
ap

pr
ox

im
ab

le
on

ge
ne

ra
lg

ra
ph

s
(T

he
or

em
6.

15
)

lo
w

er
bo

un
d

(l
n
F,
1
)

on
bi

pa
rt

it
e

gr
ap

hs
(T

he
or

em
6.

17
)

M
A

X
FL

-C
O

I-
FC

m
FP

A
S

(1
,1

+
δ
,1

+
ε
)-

ap
pr

ox
im

ab
le

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
21

)

lo
w

er
bo

un
d

(1
,1
,α

)

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
26

)

re
la

te
d

pr
ob

le
m

M
IN

FC
-F

L
-C

O
I

((
1

+
1
/
ε
)(
1

+
δ
),
1
,(
1

+
ε
)u

m
ax

)-
ap

pr
ox

im
ab

le
on

ge
ne

ra
lg

ra
ph

s
(T

he
or

em
6.

25
)

lo
w

er
bo

un
d

(1
,l

n
n
,α

)

on
bi

pa
rt

it
e

gr
ap

hs
(T

he
or

em
6.

27
)

M
A

X
FL

-C
O

C
P

I-
FC

m
FP

A
S

(1
,1

+
δ
,1

+
ε
)-

ap
pr

ox
im

ab
le

on
se

ri
es

-p
ar

al
le

lg
ra

ph
s

(T
he

or
em

6.
28

)

as
le

as
ta

s
ha

rd
as

M
A

X
FL

-C
O

I-
FC

188

189

Bibliography

[AA+95] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala · Improved approximation guarantees
for minimum-weight k-trees and prize-collecting salesmen · Proceedings of the 27th
Annual ACM Symposium on the Theory of Computing (STOC’95), 1995, pp. 277–
283.

[AC+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi · Complexity and approximation · Springer, Berlin, Heidelberg, New York,
1999.

[AF+95] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo · Competitive
algorithms for the traveling salesman · Proceedings of the 4th Workshop on Algorithms
and Data Structures (WADS’95), Lecture Notes on Computer Science, vol. 955,
August 1995, pp. 206–217.

[AG+98] N. Ascheuer, M. Grötschel, S. O. Krumke, and J. Rambau · Combinatorial online
optimization · Proceedings of the International Conference of Operations Research
(OR’98), Springer, 1998, pp. 21–37.

[AK88] M. J. Atallah and S. R. Kosaraju · Efficient solutions to some transportation problems with
applications to minimizing robot arm travel · SIAM Journal on Computing 17 (1988),
no. 5, 849–869.

[AKR98] N. Ascheuer, S. O. Krumke, and J. Rambau · Competitive scheduling of elevators ·
Preprint SC 98-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Novem-
ber 1998, An improved version appears as [AKR00].

[AKR00] N. Ascheuer, S. O. Krumke, and J. Rambau · Online dial-a-ride problems: Minimizing
the completion time · Proceedings of the 17th International Symposium on Theoretical
Aspects of Computer Science (STACS’00), Lecture Notes on Computer Science, vol.
1770, Springer, 2000, pp. 639–650.

[AL97] S. Arora and C. Lund · Hardness of approximations · in [Hoc97], 1997.

[AMN98] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan · Resource-constrained geometric
network optimization · Proceedings of the ACM Symposium on Computational
Geometry, June 1998, pp. 307–316.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin ·Network flows · Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

[Arc00] A. Archer · Two O(log∗ k)-approximation algorithms for the asymmetric k-center prob-
lem · talk given at 17th International Symposium on Mathematical Programming
(ISMP 2000), Atlanta GA, August 2000.

190 BIBLIOGRAPHY

[ARR98] S. Arora, P. Raghavan, and S. Rao · Approximation schemes for Eucledian k-medians and
related problems · Proceedings of the 30th Annual ACM Symposium on the Theory
of Computing (STOC’98), 1998, pp. 106–113.

[BCV95] A. Blum, P. Chalasani, and S. Vempala · A constant-factor approximation for the k-MST
problem in the plane · Proceedings of the 27th Annual ACM Symposium on the
Theory of Computing (STOC’95), 1995, pp. 294–302.

[Ber92] O. Berman · Improving the location of minisum facilities through network modification ·
Annals of Operations Research 40 (1992), 1–16.

[BJG00] J. Bang-Jensen and G. Gutin · Digraphs: Theory, algorithms and applications · Springer,
2000.

[BKZ00] R. E. Burkard, B. Klinz, and J. Zhang · Bottleneck capacity expansion problems with
general budget constraints · Tech. Report SFB-Report 189, Institute of Mathematics,
TU Graz, March 2000.

[BLW87] M. W. Bern, E. L. Lawler, and A. L. Wong · Linear-time computation of optimal
subgraphs of decomposable graphs · Journal of Algorithms 8 (1987), 216–235.

[BRV96] A. Blum, R. Ravi, and S. Vempala · A constant factor approximation for the k-MST
problem · Proceedings of the 28th Annual ACM Symposium on the Theory of
Computing (STOC’96), 1996, pp. 442–448.

[BRV99] A. Blum, R. Ravi, and S. Vempala · A constant-factor approximation algorithm for the
k-MST problem · Journal of Computer and System Sciences 58 (1999), 101–108.

[CD+00] R. D. Carr, S. Doddi, G. Konjevod, and M. Marathe ·On the red-blue set cover problem ·
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), 2000, pp. 345–353.

[CG99a] M. Charikar and S. Guha · Improved combinatorial algorithms for facility location and
k-median problems · 40th Annual Symposium on Foundations of Computer Science
(FOCS’99), 1999, pp. 378–388.

[CG+99b] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys · A constant factor approximation
algorithm for the k-median problem · Proceedings of the 31st Annual ACM Symposium
on the Theory of Computing (STOC’99), 1999.

[CGR98] S. Chaudhuri, N. Garg, and R. Ravi · The p-neighbor k-center problem · Information
Processing Letters 65 (1998), no. 3, 131–134.

[CGS98] S. Chopra, I. Gilboa, and S. T. Sastry · Source sink flows with capacity installation in
batches · Discrete Applied Mathematics 85 (1998), 165–192.

[Cha00] B. Chazelle · A minimum spanning tree algorithm with inverse-ackermann type complex-
ity · Journal of the ACM (2000), no. 47, 1028–1047.

[Chr76] N. Christofides · Worst-case analysis of a new heuristic for the traveling salesman
problem · Tech. report, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA, 1976.

[CK] P. Crescenzi and V. Kann · A compendium of NP optimization problems · http://www.

nada.kth.se/theory/compendium/ , snapshot version appeared in [AC+99].

[CL97] R.-S. Chang and S.-J. Leu · The minimum labeling spanning trees · Information Pro-
cessing Letters 63 (1997), 277–282.

http://www.nada.kth.se/theory/compendium/
http://www.nada.kth.se/theory/compendium/

BIBLIOGRAPHY 191

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest · Introduction to algorithms · MIT
Press, 1990.

[CM+86] P. M. Camerini, F. Maffioli, S. Martello, and P. Toth ·Most and least uniform spanning
trees · Discrete Applied Mathematics 15 (1986), 181–187.

[CR98] M. Charikar and B. Raghavachari · The finite capacity dial-a-ride problem · Proceedings
of the 39th Annual IEEE Symposium on the Foundations of Computer Science
(FOCS’98), 1998.

[Dem00] I. Demgensky · Netzwerkoptimierung – Flussausbauprobleme, Flusskostensenkungs-
probleme (network optimization by augmenting capacities and decreasing flow costs, in
German) · Diploma Thesis, University of Würzburg, January 2000.

[DF85] M. E. Dyer and A. M. Frieze · A simple heuristic for the p-center problem · Operations
Research Letters 3 (1985), no. 6, 285–288.

[Die96] R. Diestel · Graphentheorie · Springer, 1996.

[Dij59] E. W. Dijkstra · A note on two problems in connexion with graphs · Numerische Mathe-
matik 1 (1959), 269–271.

[DK99] Y. Dodis and S. Khanna · Designing networks with bounded pairwise distance · Proceed-
ings of the 31st Annual ACM Symposium on the Theory of Computing (STOC’99),
1999, pp. 750–759.

[DNW00] I. Demgensky, H. Noltemeier, and H.-C. Wirth · Optimizing cost flows by modifying
arc costs and capacities · Proc. 26th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG’00), Lecture Notes in Computer Science, vol.
1928, Springer, 2000, pp. 116–126.

[DS99] I. Dinur and S. Safra · On the hardness of approximating label cover · Electronic
Colloquium on Computational Complexity (ECCC), TR 99–015, Tel Aviv University,
April 1999.

[DST87] M. Dror, H. Stern, and P. Trudeau · Postman tour on a graph with precedence relation on
the arcs · Networks 17 (1987), 283–294.

[Duf65] R. J. Duffin · Topology of series-parallel networks · Journal of Mathematical Analysis
and Applications 10 (1965), 303–318.

[EG00] M. Ehrgott and X. Gandibleux · An annotated bibliography of mulitobjective combi-
natorial optimization · Report in Wirtschaftsmathematik Nr. 62/2000, Universität
Kaiserslautern, April 2000.

[Ehr00] M. Ehrgott ·Multicriteria optimization · Springer, Berlin, 2000.

[EJ73] J. Edmonds and E. L. Johnson · Matching, Euler tours and the Chinese postman ·
Mathematical Programming 5 (1973), 88–124.

[ESW98] S. Eidenbenz, C. Stamm, and P. Widmayer · Positioning guards at fixed height above
a terrain – an optimum inapproximability result · Proceedings of the 6th Annual
European Symposium on Algorithms, Lecture Notes in Computer Science, vol.
1461, 1998, pp. 187–198.

[ET76] K. P. Eswaran and R. E. Tarjan ·Augmentation problems · SIAM Journal on Computing
10 (1976), no. 2, 270–283.

192 BIBLIOGRAPHY

[Fei96] U. Feige · A threshold of lnn for approximating set cover · Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (STOC’96), 1996, pp. 314–
318.

[FG93] G. N. Frederickson and D. J. Guan ·Nonpreemptive ensemble motion planning on a tree ·
Journal of Algorithms 15 (1993), 29–60.

[FHK78] G. N. Frederickson, M. S. Hecht, and C. E. Kim · Approximation algorithms for some
routing problems · SIAM Journal on Computing 7 (1978), no. 2, 178–193.

[Fre79] G. N. Frederickson · Approximation algorithms for some postman problems · Journal of
the ACM 26 (1979), no. 3, 538–554.

[FS01] E. Feuerstein and L. Stougie · On-line single server dial-a-ride problems · Theoretical
Computer Science (2001), To appear.

[FSO96] G. N. Frederickson and R. Solis-Oba · Increasing the weight of minimum spanning trees ·
Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’96), January 1996, pp. 539–546.

[FV94] C. A. Floudas and V. Visweswaran · Quadratic optimization · in [HP94], 1994.

[GCF99] B. Gendron, T. G. Crainic, and A. Frangioni · Multicommodity capacitated network
design · in [SS99], 1999.

[GG+94] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D. P.
Williamson · Improved approximation algorithms for network design problems · Proceed-
ings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94),
January 1994, pp. 223–232.

[GJ79] M. R. Garey and D. S. Johnson · Computers and intractability (a guide to the theory of
NP-completeness) ·W.H. Freeman and Company, New York, 1979.

[GK99a] S. Guha and S. Khuller · Greedy strikes back: Improved facility location algorithms ·
Journal of Algorithms 31 (1999), no. 1, 228–248.

[GK99b] S. Guha and S. Khuller · Improved methods for approximating node weighted Steiner trees
and connected dominating sets · Information and Computation 150 (1999), 57–74.

[GKR98] N. Garg, G. Konjevod, and R. Ravi · A polylogarithmic approximation algorithm for the
group Steiner tree problem · Proceedings of the 9th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’98), 1998.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver · Geometric algorithms and combinatorial
optimization · Springer-Verlag, Berlin Heidelberg, 1988.

[GM97] M. Goldwasser and R. Motwani · Intractability of assembly sequencing: Unit disks in the
plane · Proceedings of the Workshop on Algorithms and Data Structures (WADS’97),
Lecture Notes on Computer Science, vol. 1272, 1997, pp. 307–320.

[GS88] Z. Galil and B. Schieber · On finding most uniform spanning trees · Discrete Applied
Mathematics 20 (1988), 173–175.

[Gua98] D. J. Guan · Routing a vehicle of capacity greater than one · Discrete Applied Mathe-
matics 81 (1998), no. 1, 41–57.

[GW95] M. X. Goemans and D. P. Williamson · A general approximation technique for con-
strained forest problems · SIAM Journal on Computing 24 (1995), no. 2, 296–317.

BIBLIOGRAPHY 193

[GW97] M. X. Goemans and D. P. Williamson · The primal-dual method for approximation
algorithms and its application to network design problems · in [Hoc97], 1997.

[Har72] F. Harary · Graph theory · Addison-Wesley Publishing Company, Inc., 1972.

[HK+99] D. Hauptmeier, S. O. Krumke, J. Rambau, and H.-C. Wirth · Euler is standing in
line · Proc. 25th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’99), Lecture Notes in Computer Science, vol. 1665, Springer, 1999,
pp. 42–54.

[HK+01] D. Hauptmeier, S. O. Krumke, J. Rambau, and H.-C. Wirth · Euler is standing in line.
Dial a ride problems with precedence constraints ·Discrete Applied Mathematics (2001),
to appear.

[HL+91] J. M. Ho, D. T. Lee, C. H. Chang, and C. K. Wong ·Minimum diameter spanning trees
and related problems · SIAM Journal on Computing 20 (1991), 987–997.

[Hoc97] D. S. Hochbaum (ed.) · Approximation algorithms for NP-hard problems · PWS Publish-
ing Company, Boston, 1997.

[HP94] R. Horst and P. M. Pardalos (eds.) ·Handbook of global optimization ·Kluwer Academic
Publishers, 1994.

[HS85] D. S. Hochbaum and D. B. Shmoys · A best possible heuristic for the k-center problem ·
Mathematics of Operations Research 10 (1985), no. 2, 180–184.

[HT84] D. Harel and R. E. Tarjan · Fast algorithms for finding nearest common ancestors · SIAM
Journal on Computing 13 (1984), no. 2, 338–355.

[HT95] R. Hassin and A. Tamir ·On the minimum diameter spanning tree problem · Information
processing letters 53 (1995), 109–111.

[HT97] S. E. Hambrush and H.-Y. Tu · Edge weight reduction problems in directed acyclic graphs ·
Journal of Algorithms 24 (1997), 66–93.

[JK+99] R. Jacob, G. Konjevod, S. O. Krumke, M. Marathe, R. Ravi, and H.-C. Wirth ·
The minimum label path problem · Unpublished manuscript, Los Alamos National
Laboratory, 1999.

[JV99] K. Jain and V. Vazirani · Primal-dual approximation algorithms for metric facility location
and k-median problems · Manuscript, March 1999. Available at http://www.cc.

gatech.edu/fac/Vijay.Vazirani/k-median.ps , 1999.

[JV00] K. Jain and V. V. Vazirani · An approximation algorithm for the fault tolerant metric fa-
cility location problem · Third International Workshop on Approximation Algorithms
for Combinatorial Optimization (APPROX 2000), Lecture Notes in Computer Sci-
ence, vol. 1913, Springer, 2000, pp. 177–183.

[KH79a] O. Kariv and S. L. Hakimi · An algorithmic approach to network location problems, part I:
The p-center · SIAM Journal of Applied Mathematics 37 (1979), 513–537.

[KH79b] O. Kariv and S. L. Hakimi · An algorithmic approach to network location problems,
part II: p-medians · SIAM Journal of Applied Mathematics 37 (1979), 539–560.

[KM+98a] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S. S. Ravi · Approxima-
tion algorithms for certain network improvement problems · Journal of Combinatorial
Optimization 2 (1998), no. 3, 257–288.

http://www.cc.gatech.edu/fac/Vijay.Vazirani/k-median.ps
http://www.cc.gatech.edu/fac/Vijay.Vazirani/k-median.ps

194 BIBLIOGRAPHY

[KM+98b] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S. S. Ravi · Network
improvement problems · in [PD98], 1998, pp. 247–268.

[KM+99a] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi, R. Sundaram, and
H. C. Wirth · Improving minimum cost spanning trees by upgrading nodes · Journal of
Algorithms 33 (1999), no. 1, 92–111.

[KM+99b] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi, R. Sundaram, and
H. C. Wirth · Improving spanning trees by upgrading nodes · Theoretical Computer
Science 221 (1999), no. 1–2, 139–156.

[KM+00] S. O. Krumke, M. V. Marathe, C. Phillips, and E. Sundberg · A new algorithm
for the network inhibition problem · talk given at 17th International Symposium on
Mathematical Programming (ISMP 2000), Atlanta GA, August 2000.

[KM+01] S. O. Krumke, M. V. Marathe, H. Noltemeier, S. S. Ravi, and H.-C. Wirth · Upgrading
bottleneck constrained forests · Discrete Applied Mathematics 108 (2001), 129–142.

[KMR97] D. Karger, R. Motwani, and G. D. S. Ramkumar · On approximating the longest path
in a graph · Algorithmica 18 (1997), 82–98.

[KN+98] S. O. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and K. U. Drangmeister ·
Modifying networks to obtain low cost subgraphs · Theoretical Computer Science 203
(1998), no. 1, 91–121.

[KN+99] S. O. Krumke, H. Noltemeier, R. Ravi, S. Schwarz, and H.-C. Wirth · Flow im-
provement and flows with fixed costs · Proceedings of the International Conference of
Operations Research Zürich (OR’98), Editors: H.-J. Lüthi and P. Kall, Operations
Research Proceedings, Springer, 1999.

[KPR00] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman · Analysis of a local search heuristic
for facility location problems · Journal of Algorithms 37 (2000), 146–188.

[KPS00] S. Khuller, R. Pless, and Y. Sussmann · Fault tolerant k-center problems · Theoretical
Computer Science 242 (2000), no. 1–2, 237–245.

[KR95] P. Klein and R. Ravi · A nearly best-possible approximation for node-weighted Steiner
trees · Journal of Algorithms 19 (1995), 104–115.

[Kru56] J. B. Kruskal · On the shortest spanning subtree of a graph and the traveling salesman
problem · Proceedings of the American Mathematical Society 7 (1956), 48–50.

[Kru95] S. O. Krumke · On a generalization of the p-center problem · Information Processing
Letters 56 (1995), 67–71.

[KW98] S. O. Krumke and H.-C. Wirth · On the minimum label spanning tree problem · Infor-
mation Processing Letters 66 (1998), no. 2, 81–85.

[KZ97] Marek Karpinski and Alexander Zelikovski ·New approximation algorithms for Steiner
tree problems · Journal of Combinatorial Optimization 1 (1997), 1–19.

[Law76] E. L. Lawler · Combinatorial optimization: Networks and matroids · Holt, Rinehart and
Winston, 1976.

[LV92] J.-H. Lin and J. S. Vitter · Approximation algorithms for geometric median problems ·
Information Processing Letters 44 (1992), 245–249.

BIBLIOGRAPHY 195

[LY93] C. Lund and M. Yannakakis ·On the hardness of approximating minimization problems ·
Proceedings of the 25th Annual ACM Symposium on the Theory of Computing
(STOC’93), May 1993, pp. 286–293.

[MF90] P. B. Mirchandani and R. L. Francis · Discrete location theory · Wiley-Interscience
Series in Discrete Mathematics and Optimization, 1990.

[Mit96] J. S. B. Mitchell · Guillotine subdivisions approximate polygonal subdivisions: A simple
new method for the geometric k-MST problem · Proceedings of the 7th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’96), 1996, pp. 402–408.

[Mit98] J. S. B. Mitchell · Guillotine subdivisions approximate polygonal subdivisions: Part II –
a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems · SIAM Journal on Computing (1998).

[Mit00] J. S. B. Mitchell · Geometric shortest paths and network optimization · 2000, in: [SU00].

[MM93] T. L. Magnanti and P. Mirchandani · Shortest paths, single origin-destination network
design and associated polyhedra · Networks 23 (1993), no. 2, 103–121.

[MN99] K. Mehlhorn and S. Näher · The LEDA platform of combinatorial and geometric comput-
ing · Cambridge University Press, 1999.

[MR+95] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B.
Hunt III · Bicriteria network design problems · Proceedings of the 22nd International
Colloquium on Automata, Languages and Programming (ICALP’95), Lecture Notes
in Computer Science, vol. 944, 1995, pp. 487–498.

[MR+98] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B.
Hunt III · Bicriteria network design problems · Journal of Algorithms 28 (1998), no. 1,
142–171.

[NMK99] H. Noltemeier, C. Mauckner, and A. Kaußner · Polynomial time approximation schemes
for the median tour problem and the newspaper delivery problem in the eucledian plane ·
Tech. report, University of Würzburg, Germany, 1999, To appear.

[Nol76] H. Noltemeier · Graphentheorie: mit Algorithmen und Anwendungen · de Gruyter
Lehrbuch, 1976.

[Pap94] C. M. Papadimitriou · Computational complexity · Addison-Wesley Publishing Com-
pany, Inc., Reading, Massachusetts, 1994.

[PD98] P. M. Pardalos and D. Du (eds.) · Network design: Connectivity and facilities location ·
AMS-DIMACS Volume Series on Discrete Mathematics and Computer Science,
vol. 40, American Mathematical Society, 1998.

[Phi93] C. Phillips · The network inhibition problem · Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing (STOC’93), May 1993, pp. 776–785.

[Ple81] J. Plesník · The complexity of designing a network with minimum diameter ·Networks 11
(1981), 77–85.

[PS82] C. H. Papadimitriou and K. Steiglitz · Combinatorial optimization · Prentice-Hall, Inc.,
1982.

[PS95] D. Paik and S. Sahni · Network upgrading problems · Networks 26 (1995), 45–58.

196 BIBLIOGRAPHY

[PY91] C. H. Papadimitriou and M. Yannakakis ·Optimization, approximation, and complexity
classes · Journal of computer and system sciences 43 (1991), 425–440.

[SC+98] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian · Buy-at-bulk network design:
Approximating the single-sink edge installation problem · Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98), 1998, pp. 619–
628.

[Sch95] B. Schoenmakers · A new algorithm for the recognition of series parallel graphs · Tech.
Report CS-R9504, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
1995.

[Seg87] A. Segev · The node-weighted Steiner tree problem · Networks 17 (1987), 1–18.

[Shm00] D. B. Shmoys · Approximation algorithms for facility location problems · Third Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX 2000), Lecture Notes in Computer Science, vol. 1913, Springer, 2000,
pp. 27–33.

[SS99] B. Sanso and P. Soriano (eds.) · Telecommunications network planning · Kluwer Aca-
demic Publishers, Boston, 1999.

[STA97] D. Shmoys, E. Tardos, and K. Aardal · Approximation algorithms for facility location
problems · Proceedings of the 29th Annual ACM Symposium on the Theory of
Computing (STOC’97), 1997, pp. 265–274.

[Ste99] J. Steffan · Umladeprobleme · Diplomarbeit, Universität Würzburg, Lehrstuhl Infor-
matik I, Januar 1999.

[SU00] J. R. Sack and J. Urrutia · Handbook of computational geometry · Elsevier Science, 2000.

[SV88] B. Schieber and U. Vishkin · On finding lowest common ancestors: Simplification and
parallelization · SIAM Journal on Computing 17 (1988), no. 6, 1253–1262.

[Tar77] R. E. Tarjan · Finding optimum branchings · Networks 7 (1977), 25–35.

[Tho97] M. Thorup · Undirected single source shortest paths in linear time · Proceedings of the
38th Annual IEEE Symposium on the Foundations of Computer Science (FOCS’97),
1997, pp. 426–435.

[Vis97] S. Vishwanathan · An O(log∗) approximation algorithm for the asymmetric p-center
problem · Indian Institute of Technology, Bombay, 1997.

[VTL82] J. Valdes, R. E. Tarjan, and E. L. Lawler · The recognition of series-parallel digraphs ·
SIAM Journal on Computing 11 (1982), no. 2, 298–313.

[WCT00] B. Y. Wu, K.-M. Chao, and C. Y. Tang · Approximation algorithms for the shortest total
path length spanning tree problem ·Discrete Applied Mathematics 105 (2000), 273–289.

[WL+98] B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C. Y. Tang · A polynomial time
approximation scheme for minimum routing cost spanning trees · Proceedings of the 9th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98), 1998.

[Woe99] G. J. Woeginger ·When does a dynamic programming formulation guarantee the existence
of an FPTAS? · Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’99), 1999, pp. 820–829.

BIBLIOGRAPHY 197

[WS99] H.-C. Wirth and J. Steffan · On minimum diameter spanning trees under reload costs ·
Proc. 25th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’99), Lecture Notes in Computer Science, vol. 1665, Springer, 1999,
pp. 78–88.

[WS01] H.-C. Wirth and J. Steffan · Reload cost problems: Minimum diameter spanning tree ·
Discrete Applied Mathematics (2001), to appear.

[WW85] K. Wagner and G. Wechsung · Computational complexity · Mathematics and its
applications, D. Reidel Publishing Company, Kluwer Academic Publishers, 1985.

198

199

Index

If there is more than one reference, the underlined page number refers to the definition
of the entry.

SYMBOLS

2S . 1
≺ . 89, 95
≤L . 16
b.c and d.e . 1
@ (multi-set) . 1
@ (subgraph) . 3
⊂, ⊆ . 2
α(m,n) . 9
Av . 3
B(i), B(σ) 144, 149, 151
c(e1, e2) . 46
Cmax . 157, 172
cr . 142
C(σ) . 149, 151
c−(v,Cj), c

+(v,Cj) 128
diamc, distc, distl, radc 46–48
DTIME, NTIME . 9
δ(U) . 92, 121
d(v), d+(v), d−(v), dH(.) 2, 3
dW . 120
E, E(G), R, V , V(G) 2
E� . 3
E(v) . 51
F∗ . 134
FH(β), FH(β, γ) 157, 179
F(x), F(σ) . 5, 149, 151
G, (V, E), (V, R), (V, E,A) 2, 3
G[E], G[V] . 3
lift(T), prj(T) . 64
log(n) . 8
M≺ . 94
m,mA,mE, n . 2, 3
MCF(η) . 175
N, N0 . 1
n,m,mA,mE . 2, 3
NTIME, DTIME . 9
N(v),N+(v) . 2
Ω . 62
O(n),Ω(n), o(n), Θ(n) 8
OPT 28, 87, 134, 160, 165, 174
prj(T), lift(T) . 64
Q, Q+, Q+

0 . 1
q(v), q+(v), q−(v) 128
R, E, E(G), V , V(G) 2

R, R+, R+
0 . 1

r, r−1, (v,w), (v,w)−1 2
radc, diamc, distc, distl 46–48
S∗ . 87
SOL . 9
Θ(n),O(n),Ω(n), o(n) 8
Umax . 155
umax . 175
V , V(G), E, E(G), R 2
(V, E), (V, R), (V, E,A), G 2, 3
(v,w), [v,w] . 2, 3
(v,w), (v,w)−1, r, r−1 2
W∗ . 134

A

ABSOLUTE 1-CENTER 49
absolute error . 11
Ackerman’s function 8, 33
acronym . 14
active

∼ component 126, 134–136
∼ cut . 121

adjacent . 2
almost feasible solution 12, 168
analysis, worst case ∼ 8, 11
AND-OR SCHEDULING 37
approximation

∼ algorithm 10, 11, 13
∼ preserving reduction 16
∼ scheme . 11

APX . 11
arc . 2

source of an ∼ 2, 111
target of an ∼ 2, 111
∼ upgrade model 142, 144, 148, 150

ASSIGNMENT, MINIMUM MONOTONE SATISFYING ∼
37

assumption, technical ∼ 90
attributed graph . 5
augmentation . 150

graph ∼ 86, 89, 92, 110
auxiliary

∼ algorithm . 157
∼ graph 60, 63, 129

200 INDEX

B

backbone . 5, 113, 115
balanced, degree ∼ 2, 91, 99, 114
balancing set 91, 93, 103, 107
binary search . 14
bipartite graph 112, 163, 178
BIPARTITE STEINER TREE 112, 114
blue arc . 95
BLUE, RED-BLUE SET COVER 36, 37, 38
bottleneck graph 123, 124, 126, 129, 135, 153
boundary conditions 148
budget 12, 120, 142, 144, 146, 149, 150, 152, 154

C

canonical notation of multi-criteria problems . . . 14
carrier . 43
caterpillar graph 5, 112
center of a spider 131, 133–136
1-CENTER, ABSOLUTE ∼ 49
CHINESE POSTMAN 91
clique . 3, 51
closed

∼ path 4, see also cycle
∼ walk 4, 86–88, 92

cluster see component
color . see label
combined length function 48
complete graph . 3
complexity classes 9–11, 37
component

active ∼ 126, 134–136
connected ∼ 4, 28, 96, 108

composition
parallel ∼ . 4
series ∼ . 4

compound cost . 171
computation, model of ∼ 6
conditions, boundary ∼ 148
connected

∼ component 4, 28, 96, 108
∼ graph . 4, 25
strongly ∼ . 4

constrained forest 122, 120–123, 125
CONSTRAINED FOREST, NODE UPGRADE ∼ 124, 125,

126, 136–138
constraint, precedence ∼ 88, 110
cost

compound ∼ . 171
flow ∼ function 142
minimum ∼ flow 154, 171
quotient ∼ 128, 135

COST, MINIMUM ∼ FLOW 162, 164
COVER

MINIMUM SET ∼ 17, 37, 138, 163
RED-BLUE SET ∼ 36, 37, 38

SYMMETRIC LABEL ∼ 38
covering, spider ∼ 132, 134
CRANE, STACKER CRANE 90
critical edge 123, 124, 129
cut . 92, 121

active ∼ . 121
cycle . . . 4, 26, 53, 57, 65, 66, 68, see also closed walk

Eulerian ∼ . 93
≺-respecting Eulerian 89

D

dangling edge 64, 68–71
DARP 86, 87, 89, 90, 110, 112, 116, 186, see also

Source-Darp and Penalty-Source-Darp
∼ on a graph class 87
∼ on caterpillar 112
∼ on general graph 90
∼ on path . 90
∼ on tree . 90

decomposition
spider ∼ . 131
∼ tree . 152

degree
∼ balanced 2, 91, 99, 114
∼ of a node . 2, 3

depth first search . 34
design, network ∼ . 18
DIAL A RIDE see DARP
DIAMETER

MINIMUM ∼ . 50
MINIMUM RELOAD COST ∼ SPANNING TREE 48,

72, 73, 76–78, 83, 185
MINIMUM ∼ SPANNING TREE 49

directed graph . 2, 141
discount 148–150, 166, 171, 177
disjointness of proper function 121, 124, 126
distance

induced ∼ 46, 86, 109
reload cost ∼ . 46

dominating set . 17
DOMINATING SET, MINIMUM ∼ 17, 79, 178
DTIME . 9
dual problems, pair of ∼ 14
dynamic programming 157, 165

E

edge . 2
critical ∼ 123, 124, 129
dangling ∼ 64, 68–71
endpoint of an ∼ 2
label vs. numerical attribute 23, 26
∼ labeled graph 24
loop ∼ . 2
Ω-edge . 61
parallel ∼ . 2
uncritical ∼ . 123
∼ upgrade model 19, 153

INDEX 201

useless ∼ 124, 129
element, maximal ∼ 94, 95, 99
emanating arcs . 3
encoding scheme, reasonable 7
endpoint of an edge 2
enforce . 55
error

absolute ∼ . 11
performance ratio 10
relative ∼ . 11

essential node 89, 99, 107
Eulerian

∼ cycle . 93
∼ graph 86, 91, 113
≺-respecting ∼ cycle 89
≺-respecting ∼ graph 95

F

family of related problems 14
feasible

almost ∼ solution 12, 168
∼ flow . 5, 150
∼ solution . 12

FLOW
MAXIMUM ∼ . 153
MINIMUM COST ∼ 162, 164

flow . 5, 142
∼ cost function 142
feasible ∼ . 5, 150
minimum cost ∼ 105, 154, 171
multi commodity ∼ 141
∼ value 5, 149, 151

foot
∼ of a caterpillar 5, 113, 115
∼ of a spider 131, 133–136

forest . 4
constrained ∼ 122, 120–123, 125
spanning ∼ . 25, 34

formula, monotone ∼ 37
FPAS, mFPAS 11, 153, 157, 161, 164, 183, 187
function

Ackerman’s ∼ 8, 33
combined length ∼ 48
flow cost ∼ . 142
logarithm ∼ . 8
objective ∼ . 12
potential ∼ 30, 136
proper ∼ . 121
reload cost ∼ . 45
running time ∼ . 6

G

graph
attributed ∼ . 5
∼ augmentation 86, 89, 92, 110
auxiliary ∼ 60, 63, 129
bipartite ∼ 112, 163, 178

bottleneck ∼ 123, 124, 126, 129, 135, 153
caterpillar ∼ . 5, 112
complete ∼ . 3
connected ∼ . 4, 25
directed ∼ . 2, 141
edge labeled ∼ . 24
Eulerian ∼ 86, 91, 113
line ∼ . 51, 54
mixed ∼ 3, 97, 102, 104, 107
representation of graphs 7
≺-respecting Eulerian 95
series-parallel ∼ 4, 152
simple ∼ . 2, 24, 47
undirected ∼ . 2
wheel ∼ . 26
∼ with reload cost 45

H

hair . 5, 113, 114
HAMILTONIAN PATH 41
hardness 17, 34, 39, 73, 76–78, 112, 115, 137, 163, 177,

178, 182
hook . 64, 66, 68–71

I

improvement ratio 126
in-degree . 2
incident . 2
inclusion of complexity classes 11
induced

∼ distance 46, 86, 109
∼ subgraph 3, 81, 122, 157

inequality, triangle ∼ 44, 45, 59, 62, 76, 81, 86, 90, 108
inner node . 4
integer numbers . 1, 8

J

joke . 201

K

KNAPSACK . 163, 177

L

L-reduction . 16
LABEL

MAXIMUM ∼ PATH 41
MINIMUM ∼ PATH 25, 39, 40
MINIMUM ∼ SPANNING TREE . . . 24, 29, 32, 34
RESTRICTED ∼ PATH 41

202 INDEX

SYMMETRIC ∼ COVER 38
label

edge ∼ed graph 24
minimum ∼ subgraph 24
∼ vs. numerical attribute 23, 26

language, programming ∼ 6
last arcs, set of ∼ 93, 94, 99, 103–105, 108
leaf 4, 65, 68–71, 79, 131
leg of a spider 131, 133
length . 5

combined ∼ function 48
lifting . 64
line graph . 51, 54
log-cost model . 6
logarithm function 8
LONGEST PATH . 42
loop edge . 2

M

mapping cost to length 51, 62
MAXFL-ARCWT 146, 158, 161, 164
MAXFL-COCPI-FC 152, 181–183, 187
MAXFL-COI-FC 150, 171, 177, 178, 183, 187
MAXFL-CPI 145, 153–156, 161, 183, 187
maximal element 94, 95, 99
MAXIMUM

∼ FLOW . 153
∼ LABEL PATH . 41

mFPAS, FPAS 15, 153, 157, 161, 164, 183, 187
MINARCWT-FL 147, 161–163, 183, 187
MINCPI-FL 145, 146, 147, 183, 187
MINFC-FL-COI 172, 176, 183, 187
MINIMUM

∼ COST FLOW 162, 164
∼ DIAMETER . 50
∼ DIAMETER SPANNING TREE 49
∼ DOMINATING SET 17, 79, 178
∼ LABEL PATH 25, 39, 40
∼ LABEL SPANNING TREE 24, 29, 32, 34
∼ MONOTONE SATISFYING ASSIGNMENT . . . 37
∼ RELOAD COST DIAMETER SPANNING TREE 48,

72, 73, 76–78, 83, 185
∼ RELOAD COST PATH 47, 52, 83, 185
∼ RELOAD COST RADIUS SPANNING TREE 47, 59,

76, 83, 185
∼ SET COVER 17, 37, 138, 163

minimum
∼ cost flow 105, 154, 171
∼ label subgraph 24
∼ path . 122

mixed graph 3, 97, 102, 104, 107
MLST see MINIMUM LABEL SPANNING TREE
MMSA see MINIMUM MONOTONE SATISFYING

ASSIGNMENT
model

arc upgrade ∼ 142, 144, 148, 150
edge upgrade ∼ 19, 153
node upgrade ∼ 19, 120, 126
∼ of computation 6

reload cost ∼ . 43
monotone formula 37
MONOTONE, MINIMUM ∼ SATISFYING ASSIGNMENT

37
MOST UNIFORM SPANNING TREE 25
MRDT, M∆RDT see MINIMUM RELOAD COST

DIAMETER SPANNING TREE
multi commodity flow 141
multi-criteria optimization problem 12
multi-set . 1, 108

N

natural numbers . 1, 8
neighborhood . 2
network

∼ design . 18
∼ upgrade . 19

node . 2
degree of a ∼ . 2, 3
essential ∼ 89, 99, 107
∼ upgrade model 19, 120, 126

NODE UPGRADE CONSTRAINED FOREST . 124, 125,
126, 136–138

non-approximability 17
nontrivial spider . 131
notation of multi-criteria problems 14
NP and P . 9
NP-completeness . 9
NP-hardness . 10
NPO and PO . 10
numbers . 1, 8
numerical attribute vs. label 23, 26

O

O-notation . 8
objective function . 12
Ω-edge . 61
online . 91
optimization problem 9

multi-criteria ∼ . 12
OR, AND-OR SCHEDULING 37
order, source ∼ . 88, 93
out-degree . 2

P

P and NP . 9
padding . 6
pair of dual problems 14
parallel see also series-parallel

∼ composition . 4

INDEX 203

∼ edge . 2
parameter, test ∼ 159, 171
pareto optimal . 12
partition . 2
PATH

HAMILTONIAN ∼ 41
LONGEST ∼ . 42
MAXIMUM LABEL ∼ 41
MINIMUM LABEL ∼ 25, 39, 40
MINIMUM RELOAD COST ∼ 47, 52, 83, 185
RESTRICTED LABEL ∼ 41

path . 4
closed ∼ 4, see also cycle
minimum ∼ . 122
path-color . 81
reload cost of a ∼ 46
representing ∼ . 39
simple ∼ . 4

penalty . 110
PENALTY-SOURCE-DARP 110, 115, 116, 186

∼ on graph . 112
∼ on path 110, 115
∼ on tree . 112

performance . 10, 11, 13, 14, 26, 32, 105, 109, 112, 136,
156, 171, 176, 181

PO and NPO . 10
POSTMAN, CHINESE ∼ 91
potential function 30, 136
power set . 1
precedence constraint 88, 110
preserving, approximation ∼ reduction 16
price 148, 150, 166, 171, 177
problem

multi-criteria optimization ∼ 12
optimization ∼ . 9

problems
ABSOLUTE 1-CENTER 49
AND-OR SCHEDULING 37
BIPARTITE STEINER TREE 112, 114
CHINESE POSTMAN 91
DARP 86, 87, 89, 90, 110, 112, 116, 186
HAMILTONIAN PATH 41
KNAPSACK 163, 177
LONGEST PATH 42
MAXFL-ARCWT 146, 158, 161, 164
MAXFL-COCPI-FC 152, 181–183, 187
MAXFL-COI-FC 150, 171, 177, 178, 183, 187
MAXFL-CPI 145, 153–156, 161, 183, 187
MAXIMUM FLOW 153
MAXIMUM LABEL PATH 41
MINARCWT-FL 147, 161–163, 183, 187
MINCPI-FL 145, 146, 147, 183, 187
MINFC-FL-COI 172, 176, 183, 187
MINIMUM COST FLOW 162, 164
MINIMUM DIAMETER 50
MINIMUM DIAMETER SPANNING TREE 49
MINIMUM DOMINATING SET 17, 79, 178
MINIMUM LABEL PATH 25, 39, 40
MINIMUM LABEL SPANNING TREE 24, 29, 32, 34
MINIMUM MONOTONE SATISFYING ASSIGNMENT

37

MINIMUM RELOAD COST DIAMETER SPANNING
TREE 48, 72, 73, 76–78, 83, 185

MINIMUM RELOAD COST PATH . . 47, 52, 83, 185
MINIMUM RELOAD COST RADIUS SPANNING TREE

47, 59, 76, 83, 185
MINIMUM SET COVER 17, 37, 138, 163
MOST UNIFORM SPANNING TREE 25
NODE UPGRADE CONSTRAINED FOREST 124, 125,

126, 136–138
PENALTY-SOURCE-DARP 110, 115, 116, 186
RED-BLUE SET COVER 36, 37, 38
RESTRICTED LABEL PATH 41
3-SATISFIABILITY 73, 77, 78
SOURCE-DARP 88, 89, 91, 115, 116, 186
STACKER CRANE 90
STEINER TREE 54, 122, 125, 138
SYMMETRIC LABEL COVER 38
TRAVELLING SALESPERSON . . . 101, 103, 106, 107

programming
dynamic ∼ 157, 165
∼ language . 6

projection . 63, 64
proper function . 121

Q

quotient cost 128, 135

R

RADIUS, MINIMUM RELOAD COST ∼ SPANNING TREE
47, 59, 76, 83, 185

ratio, improvement ∼ 126
rational numbers 1, 8
real numbers . 1, 8
reasonable encoding scheme 7
red arc . 95
RED-BLUE SET COVER 36, 37, 38
reduction . 9
reduction, approximation preserving ∼ 16
related problems, family of ∼ 14
relative error . 11
relax . 55
RELOAD COST

MINIMUM ∼ DIAMETER SPANNING TREE 48, 72,
73, 76–78, 83, 185

MINIMUM ∼ PATH 47, 52, 83, 185
MINIMUM ∼ RADIUS SPANNING TREE 47, 59, 76,

83, 185
reload cost

combined length function 48
∼ distance . 46
∼ function . 45
graph with ∼ . 45

representation of graphs 7
representing path . 39
≺-respecting

∼ Eulerian cycle 89

204 INDEX

∼ Eulerian graph 95
RESTRICTED LABEL PATH 41
rung . 26
running time function 6

S

3-SATISFIABILITY 73, 77, 78
SATISFYING ASSIGNMENT, MINIMUM MONOTONE ∼

37
scaling . 159, 166
SCHEDULING, AND-OR ∼ 37
scheme

approximation ∼ 11
dynamic programming ∼ 157, 165
reasonable encoding ∼ 7

search, binary ∼ . 14
series composition 4
series-parallel

∼ decomposition tree 152, 166
∼ graph . 4, 152

server 86, 91, 110, 113
set

balancing ∼ 91, 93, 103, 107
dominating ∼ . 17
multi-set . 1
∼ of last arcs 93, 94, 99, 103–105, 108
power ∼ . 1
proper subset . 2

SET COVER
MINIMUM ∼ 17, 37, 138, 163
RED-BLUE ∼ 36, 37, 38

shortest path tree 26, 47, 54, 129, 153
simple

∼ graph . 2, 24, 47
∼ path . 4

SOL . 9
solution

almost feasible ∼ 12
feasible ∼ . 12

source
∼ of an arc . 2, 111
∼ order . 88, 93
∼ terminal . 4

SOURCE-DARP 88, 89, 91, 115, 116, 186
∼ on caterpillar 115
∼ on general graph 90, 100–106
∼ on path 90, 96–100
∼ on tree 90, 107–110

spanning
∼ forest . 25, 34
∼ subgraph . 4
∼ tree 93, 97, 122, 153

SPANNING TREE
MINIMUM DIAMETER ∼ 49
MINIMUM LABEL ∼ 24, 29, 32, 34
MINIMUM RELOAD COST DIAMETER ∼ 48, 72, 73,

76–78, 83, 185
MINIMUM RELOAD COST RADIUS ∼ 47, 59, 76, 83,

185

MOST UNIFORM ∼ 25
spider 4, 131, 134–136

center of a ∼ 131, 133–136
∼ covering 132, 134
∼ decomposition 131
foot of a ∼ 131, 133–136
leg of a ∼ 131, 133
nontrivial ∼ . 131

STACKER CRANE . 90
star . 4, 79
STEINER TREE 54, 122, 125, 138

BIPARTITE ∼ 112, 114
Steiner tree 113, 122, 125, 138
strategy

upgrade ∼ . 150
strategy, upgrade ∼ 120, 144, 145, 148
strongly connected 4
subgraph . 3, 24

induced ∼ 3, 81, 122, 157
minimum label ∼ 24
spanning ∼ . 4

successful test 160, 174
SYMMETRIC LABEL COVER 38
symmetry of proper function 121, 134

T

target
∼ of an arc . 2, 111
∼ terminal . 4

technical assumption 90
terminal . 4, 122, 136
test

∼ parameter 159, 171
successful ∼ 160, 174

TRAVELLING SALESPERSON 101, 103, 106, 107
TREE

BIPARTITE STEINER ∼ 112, 114
MINIMUM LABEL SPANNING ∼ . . . 24, 29, 32, 34
MOST UNIFORM SPANNING ∼ 25
STEINER ∼ 122, 125, 138

tree . 4
decomposition ∼ 152
shortest path ∼ 26, 47, 54, 129, 153
spanning ∼ 93, 97, 122, 153
Steiner ∼ 113, 122, 125, 138

triangle inequality . . 44, 45, 59, 62, 76, 81, 86, 90, 108
Turing machine . 6, 9

U

uncritical edge . 123
undirected

∼ graph . 2
UNIFORM, MOST ∼ SPANNING TREE 25
unit-cost model . 6
upgrade

arc ∼ model 142, 144, 148, 150
edge ∼ model 19, 153

INDEX 205

network ∼ . 19
node ∼ model 19, 120, 126
∼ strategy . 150

upgrade strategy 120, 144, 145, 148
UPGRADE, NODE ∼ CONSTRAINED FOREST 124, 125,

126, 136–138
useless edge 124, 129

V

value of a flow 5, 149, 151

W

walk . 4
closed ∼ 4, 86–88, 92

wheel . 26
worst case analysis 8, 11

	Titlepage
	Contents
	Preface
	1 Introduction
	1.1 Definitions
	1.2 Complexity of Computation
	1.3 Optimization Problems
	1.3.1 Uni-criterion Optimization
	1.3.2 Multi-criteria Optimization Problems
	1.3.3 Reductions and Hardness of Approximation

	1.4 Network Design and Network Upgrade
	1.5 Literature

	I Network Design Problems
	2 Edge Labeled Graphs
	2.1 Preliminaries and Problem Formulation
	2.2 Related Work
	2.3 Approximating Minimum Label Spanning Tree
	2.3.1 The Algorithm
	2.3.2 Performance Guarantee
	2.3.3 Asymptotic Performance Guarantee
	2.3.4 Running Time

	2.4 Hardness of Minimum Label Spanning Tree
	2.5 Hardness of Minimum Label Path
	2.5.1 Red-Blue Set Cover
	2.5.2 Hardness of Red-Blue Set Cover
	2.5.3 Hardness of Minimum Label Path

	2.6 Concluding Remarks

	3 Reload Costs
	3.1 Preliminaries and Problem Formulation
	3.1.1 Reload Costs
	3.1.2 Reload Cost Distance
	3.1.3 Problem Formulation
	3.1.4 Combining Reload Cost and Length

	3.2 Related Work
	3.3 Minimum Reload Cost Path
	3.4 Minimum Reload Cost Radius Spanning Tree
	3.5 Minimum Reload Cost Diameter Spanning Tree
	3.5.1 Setting Up the Auxiliary Graph
	3.5.2 Projections
	3.5.3 Transformation of the Solution to Original Graph

	3.6 Hardness Results
	3.6.1 General Reload Cost Functions
	3.6.2 Reload Cost Functions with Triangle Inequality

	3.7 Concluding Remarks

	4 Dial a Ride
	4.1 Preliminaries and Problem Formulation
	4.1.1 Basic Problem
	4.1.2 Precedence Constraints
	4.1.3 Basic Observations

	4.2 Related Work
	4.3 Balancing
	4.4 Euler Cycles Respecting Source Orders
	4.5 A Polynomial Time Algorithm for Source-Darp on Paths
	4.6 An Approximation for Source-Darp on General Graphs
	4.6.1 TSP-based Algorithm
	4.6.2 Algorithm Based on Set of Last Arcs
	4.6.3 Combining Both Algorithms

	4.7 Improved Approximation for Source-Darp on Trees
	4.8 Source-Darp with Start and Stop Penalties
	4.9 Hardness Results
	4.10 Concluding Remarks

	II Network Upgrade Problems
	5 Node Upgrade Problems
	5.1 Preliminaries and Problem Formulation
	5.1.1 Node Upgrade Model
	5.1.2 Constrained Forest Problems
	5.1.3 Problem Formulation

	5.2 Related Work
	5.3 The Algorithm
	5.3.1 Quotient Costs
	5.3.2 Computing the Best Upgrading Paths
	5.3.3 Running Time

	5.4 Performance Guarantee
	5.4.1 Spider Decompositions and Coverings
	5.4.2 An Averaging Lemma
	5.4.3 Potential Function Argument

	5.5 Hardness Results
	5.6 Concluding Remarks

	6 Arc Upgrade Problems
	6.1 Preliminaries and Problem Formulation
	6.1.1 Flow Cost Functions
	6.1.2 Improvement of Capacity
	6.1.3 Improvement of Unit Flow Cost
	6.1.4 Improvement of Both Capacity and Unit Flow Cost

	6.2 Related Work
	6.3 Solving Capacity Improvement Problems
	6.3.1 Continuous Upgrade Strategy
	6.3.2 Integer Upgrade Strategy

	6.4 Approximating Capacity Improvement Problems
	6.4.1 An mFPAS on Series-Parallel Graphs
	6.4.2 Towards an Approximation on General Graphs

	6.5 Hardness of Capacity Improvement Problems
	6.6 Approximating Unit Flow Cost Improvement Problems
	6.6.1 An mFPAS on Series-Parallel Graphs
	6.6.2 Towards an Approximation on General Graphs

	6.7 Hardness of Unit Flow Cost Improvement Problems
	6.8 Combined Improvement
	6.8.1 Approximating Combined Improvement Problems
	6.8.2 Hardness of Combined Improvement Problems

	6.9 Concluding Remarks

	Synopsis
	Bibliography
	Index

