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Introduction

Finite automata were introduced in the 1940s as a mathematical model for nervous systems
in living creatures. In course of time they were considered more and more as a fundamental
model of computation. This led to the so-called theory of finite automata and regular
languages which is one of the oldest theories in computer science.

In general, computer science investigates the computational possibilities of machines.
In order to come close to reality one chooses machines that consist of a control unit and
a memory. While the theory of Turing machines considers very powerful objects having
an infinite memory, the theory of finite automata deals with very simple and restricted
machines without memory. So in this sense we can say that (the power of)) a real computer
is something between a finite automaton and a Turing machine.

The concept of a finite automaton is a very simple one, and it can be explained even
to a nonspecialist: We can think of a finite automaton as a machine that consists of some
light bulbs (more precisely, one blue, some red and some green light bulbs) and a keypad.
This machine behaves in such a way that at any point in time there is exactly one bulb
that is on. When we switch on this machine then the blue bulb is on. When we press a key
on the keypad then the automaton either does nothing or it switches to some other bulb
(i.e., the current bulb is switched off and at the same time a new bulb is switched on).
This behavior is exactly determined by the key that was pressed and by the bulb that was
on. So whenever bulb X is on and key Y is pressed then always the same happens. Hence,
when we switch on this machine and when we press a sequence of keys then we end in a
situation where exactly on bulb is on. If this bulb is green then we say that this sequence
of keys (i.e., this sequence of letters) is accepted, otherwise we say that it is rejected.

From the theoretical point of view finite automata can be characterized in many differ-
ent ways. Among other things, the following characterizations are known: Kleene’s theorem
[Kle56] states that a languages can be described by a regular expression if and only if it is
recognizable by a finite automaton (which in turn is equivalent to saying that this language
is accepted by a finite monoid). Therefore, languages accepted by a finite automaton are
called regular languages. Biichi and Trakhtenbrot [Biic60, Tra61] showed that these are ex-
actly the languages that can be described by a sentence of a certain monadic second-order
logic.

In this thesis we consider permutationfree automata—a certain type of finite automata.
Correspondingly, they have stronger characterizations than finite automata: McNaughton
and Papert [MPT71] showed that a minimal finite automaton is permutationfree if and
only if its syntactic monoid is aperiodic. Schiitzenberger’s theorem [Sch65] states that
this is equivalent to saying that the accepted language can be described by a starfree
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regular expression. Here, in contrast to general regular expressions, the iteration (Kleene
star) is not allowed, i.e., these expressions consist only of letters, Boolean operations
and concatenations. The subclass of regular languages that can be described by starfree
regular expressions is called the class of starfree languages (for an overview we refer to
[Pin95, Pin96b, Tho96]). This is exactly the class of languages that are definable by a
sentence of a certain first-order logic [MP71].

Hence, by [Sch65, MP71] a regular language is starfree if and only if its minimal finite
automaton is permutationfree. So for a given finite automaton we can compute the minimal
equivalent automaton and we can test whether it is permutationfree. Since all these steps
are effective this shows that one can decide whether a given finite automaton accepts a
starfree language. In other words, the class of starfree languages is decidable.

We already mentioned that starfree languages are built up from letters by the use
of Boolean operation on the one hand and concatenation on the other hand. Here the
Boolean operations represent the combinatorial aspect and concatenations are responsible
for the sequential aspect of the language. So in general, a starfree language is defined
by the alternating use of both aspects. Brzozowski and Cohen [CB71] had the idea to
count the minimal number of alternations that are inevitable to define a certain starfree
language. This natural complexity measure of starfree languages is called the dot-depth.
The corresponding question whether there exists an algorithm that determines the dot-
depth of a given starfree language is known as the dot-depth problem.

Although finite automata—and in particular permutationfree automata—has this sim-
ple structure and although the membership problem for starfree languages is decidable,
the dot-depth problem is still open. It is considered as one of the most famous and most
difficult problems in the theory of finite automata [Pin98].

If we combine all languages with dot-depth n to a class B,, (which is also called the
n-th level) then this leads to the so-called dot-depth hierarchy [CB71]. In addition to this
hierarchy we consider also the closely related Straubing-Thérien hierarchy [Str81, Thé81,
Str85]. Since both hierarchies emerge when counting nested concatenations in starfree
regular expressions they are also called concatenation hierarchies.

We state one of the many possibilities to define these concatenation hierarchies. Let A
be some finite alphabet with |A| > 2 (the hierarchies collapse in the unary case). The set
of all words (respectively, nonempty words) over A is denoted by A" (respectively, A").
For a class C of languages let Pol (C) be its polynomial closure, i.e., the closure under finite
union and concatenation, and denote by BC(C) its Boolean closure (taking complements
w.r.t. A" since we consider languages from A"). The classes £,, /2 of the Straubing-Thérien
hierarchy and the classes B,, /5 of the dot-depth hierarchy are defined as follows.

Ly =aef POl({A'aA" :a € A}Y) By —aef Pol ({{a} : a € A}U{A'})
L1 =det BC(Ly11/2) Bnt1 =det BC(Bpy1/2) forn >0
£n+3/2 —def Pol (£n+1) Bn+3/2 —def Pol (Bn+1) for n > 0

By definition, all these classes are closed under union and it is known that they are also
closed under intersection and under taking residuals [Arfdl, PW97|. Both hierarchies are
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strict [BK78, Tho84], closely related to each other [BK78, Str85, PW97, Sch01, PW01], and
both exhaust the class of starfree languages [Eil76]. They formalize the dot-depth problem
in terms of their hierarchy classes, i.e., the minimal level containing a given language.

If we consider a fixed class in these hierarchies then again the question for the decidabil-
ity of the corresponding membership problems arises. Up to now, only the levels 1/2, 1 and
3/2 of both hierarchies are known to be decidable [Sim75, Kna83, Arf91, PW97, GS00a],
while the question is open for any other level. Partial results are known for level 2 and level
5/2 of the Straubing-Thérien hierarchy—both levels are decidable if a two-letter alphabet
is considered [Str88, GS00b].

So at the moment one cannot answer the decidability of a level n/2 for n > 4. Nev-
ertheless, the answer for a dot-depth class is the same as for a Straubing-Thérien class.
More precisely, Straubing [Str85] showed that level n of the dot-depth hierarchy is decid-
able if and only if level n of the Straubing-Thérien hierarchy is decidable (for integers n).
Recently, Pin and Weil [PWO01] proved that this is also true for the levels n + 1/2.

Corresponding to the various characterizations of regular languages and starfree lan-
guages there are also characterizations for the single levels of the dot-depth hierarchy and of
the Straubing-Thérien hierarchy. The dot-depth hierarchy is related to the first-order logic
FO[<, min, max, S, P], and the Straubing-Thérien hierarchy corresponds to the first-order
logic FO[<] in the following sense. Both logics have the unary relations for the alphabet
symbols from A and the binary relation <. Moreover, S (respectively, P) is the successor
(respectively, predecessor) function and min, max are constants. For a fixed first-order
logic let X, be the class of languages that can be described by a sentence with at most
n — 1 quantifier alternations, starting with an existential quantifier. It has been proved by
Thomas [Tho82], and Perrin and Pin [PP86] that ¥, formulas of FO[<, min, max, S, P]
(respectively, FO[<]) describe just the languages from B,,_; /» (respectively, £,,_;/2).

Once again let us return to the characterization of starfree languages by permutationfree
automata [Sch65, MP71]. We say that a finite automaton has a nontrivial permutation if
and only if there exist a nonempty word w, an integer [ > 2 and distinct states r1,72,...,7;
such that on input w the automaton moves from r; to r1 and from r; tor;1 for 1 <7 <[—1.
A minimal automaton is called permutationfree if and only if it does not have a nontrivial
permutation. So [Sch65, MP71] shows a characterization of starfree languages in terms
of structural properties in the transition graphs of automata. More precisely, a language
accepted by a finite automaton M is starfree if and only if M does not have a nontrivial
permutation. Hence the characterization is such that a certain pattern is forbidden in
the automata, and therefore this is called a forbidden-pattern characterization of starfree
languages.

Usually, forbidden-pattern characterizations imply the decidability of the characterized
class, since we only have to test whether the forbidden-pattern occurs in an automaton. So
a forbidden-pattern characterization says more than just decidability. It relates the absence
of a certain pattern in the automaton with the existence of an expression describing the
accepted language. This means that such a characterization shows us the structure in the
automaton that cannot be expressed by the characterized class (and therefore what causes
a language to be not in this class).
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Interestingly, most of the decidability results for classes of concatenation hierarchies
go along with forbidden-pattern characterizations. In this thesis we follow this idea and
introduce two hierarchies that consist of classes of starfree languages, so-called forbidden-
pattern classes. These are decidable classes since they are defined via forbidden-patterns.
Then we show that these decidable forbidden-pattern classes contain the classes of the dot-
depth hierarchy and the classes of the Straubing-Thérien hierarchy. Using the technique
of word extensions we prove that the classes By /3, B3/2, £1/2 and L3/, even coincide with
the respective forbidden-pattern classes. This implies their decidability. Moreover, with
the same technique we also show that the Boolean hierarchies over £/, and over B/, are
decidable.

At this point we want to make a general bibliographic remark. The sections 1.1 and
1.2 introduce basic definitions and concepts which are known from the literature. The
remaining parts of chapter 1 (i.e., the sections 1.3 and 1.4) consist of work done by the
author. Chapter 2 summarizes known results for concatenation hierarchies. The theory
of forbidden-patterns in chapter 3 was developed by the author in joint work with Heinz
Schmitz, Wiirzburg, and it is also part of his thesis [Sch01].

The main results in chapter 4 go back to the following authors: The decidability of
Bija, L1/ and L3/ were first shown in [Arf91, PW97]. For the Boolean hierarchy over
Ly /5 this is known from [SW98], and for the Boolean hierarchy over B/, this is due to
the author [Gla99]. The decidability of B3/, was shown by the author in joint work with
Heinz Schmitz [GS00a] and it is also part of his thesis [Sch01]. However, in chapter 4 we
use a new approach which differs from [Arf91, PW97, GS00a, Sch01]. More precisely, we
develop a technique of word extensions which makes it possible to obtain all 6 decidability
results in a uniform way.

Chapter One

At the beginning of this introductory chapter we give some basic definitions and notations.
Then we define the fundamental notion of well partial ordered sets and prove some of their
properties.

Another part of this chapter provides a combinatorial tool that allows to partition
words of arbitrary length into factors of bounded length such that every second factor «
leads to a loop with label u in a given finite automaton. So from an algebraic point of
view these words u are idempotents with respect to the given finite automaton.

Finally, we introduce the word extensions <" and <!*. We prove some basic proper-
ties and investigate the <* upward closure of certain languages. These and other word
extensions will play a central role in the forthcoming proofs for decidability results.

Chapter Two

Here we give definitions for the dot-depth hierarchy and for the closely related Straubing-
Thérien hierarchy. We formulate the dot-depth problem, prove some easy inclusion rela-
tions and state that both hierarchies exhaust the class of starfree languages.
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We also discuss the use of alternative definitions for the considered concatenation hi-
erarchies. It will turn out that this makes no difference when looking at the essential
decidability questions of these hierarchies.

Finally, we mention known decidability results and known forbidden-pattern charac-
terizations. We compare the known forbidden-patterns of the lower levels to get an idea
of how a general structure for concatenation hierarchies could look like.

Chapter Three

This chapter is devoted to forbidden-pattern characterizations which are results of the
following type: “A language L belongs to a class C if and only if the accepting finite
automaton does not have subgraph P in its transition graph”.

If we compare the known forbidden-pattern characterizations for L£q,5 and L3/, we
observe that the patterns for £/, act as building blocks in the patterns for £3/5. We find
this observation confirmed, if we compare the patterns for B3y 5 with the characterization of
Bs 5. This motivates the introduction of an iteration rule I'T on patterns, which continues
the observed formation procedure.

Starting from an initial class of patterns our iteration rule IT generates classes of more
complicated patterns. If we forbid these classes of patterns in finite automata then this
defines classes of language—the so-called forbidden-pattern classes. The main technical
result of this chapter relates in a general way the iteration rule IT to the polynomial
closure operation Pol.

We apply our results to particular initial classes of patterns which correspond to the
first levels of the dot-depth hierarchy and the Straubing-Thérien hierarchy, respectively. We
obtain strict and decidable hierarchies of forbidden-pattern classes FP(P%) and FP(P%)
which exhaust the class of starfree languages. Then we prove that these classes of languages
contain the corresponding classes of the concatenation hierarchies.

Finally, we provide more structural similarities between the classes of the concatena-
tion hierarchies and the forbidden-pattern classes: All hierarchies show the same inclusion
structure. Moreover, typical languages that separate the classes of the concatenation hi-
erarchies also separate levelwise our forbidden-pattern classes.

Chapter Four

In this chapter we restrict ourselves to the levels n + 1/2 of the dot-depth hierarchy
and of the Straubing-Thérien hierarchy. We prove the decidability of the levels 1/2 and
3/2 of both hierarchies in terms of forbidden-pattern characterizations for these classes.
Furthermore, we show the decidability of the Boolean hierarchies over By, and L 5.
More precisely, from chapter 3 we know the inclusions B,, 1/, € FP(P;) and L,/ C
FP(P%). For the reverse inclusions (i.e., the more difficult ones in our forbidden-pattern
characterizations) we use a technique which is based on word extensions. With this tech-
nique it is possible to treat the classes Ly /5, By 2, L3/ and By, in a uniform way. Moreover,
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we can use these word extensions to prove the decidability of the above mentioned Boolean
hierarchies.

Summary

Forbidden-patterns combined with word extensions turn out to be a useful tool to attack
the decidability of the dot-depth classes. With it we are able to prove the decidability of
B3/, and the decidability of the Boolean hierarchy over By ,—two results which were not
known before.

The disadvantages of this approach are its cumbersome notations and proofs. It seems
to be likely that the forbidden-patterns for higher levels of the dot-depth hierarchy (if they
exist at all) become more and more complex. So we have to expect that the forbidden-
pattern approach, applied to higher levels, will lead to even more cumbersome proofs. Un-
fortunately, the same holds for the algebraic automata theory since patterns in automata
and equations/inequalities in semigroups are basically the same things. However, up to
now the algebraic approach and the forbidden-pattern approach are the most successful
approaches to decidability results for the dot-depth classes.

Recently, a new, purely logical approach to decidability questions for concatenation
hierarchies was proposed in [Sel01]. With this approach it is possible to give short proofs
for the decidability of £y/5, £1, Bi, and the classes of the Boolean hierarchy over L .

The theory of word extensions for B;/, in section 4.1 led to the decidability of the
Boolean hierarchy over this class (see section 4.2). In section 4.3 we develop a very similar
theory, this time for Bz /5. This could be a promising starting point to attack the decidabil-
ity of the Boolean hierarchy over Bj/,. Note that this would be a remarkable step towards
the decidability of Bs.

Publications

Parts of this thesis are published in the following papers.

[GS00a]  C. GlaBer and H. Schmitz, Languages of dot-depth 3/2. Proceedings of the
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1. Preliminaries

This chapter has an introductory character. We start in section 1.1 with some basic def-
initions and notations. Then in section 1.2 we deal with the fundamental notion of well
partial ordered sets.

Section 1.3 provides a combinatorial tool that allows to partition words of arbitrary
length into factors of bounded length such that every second factor w is an idempotent,
i.e., u leads to a loop with label u in a given finite automaton.

Finally, in section 1.4 we introduce the word extensions <%* and <'*. Both can be also
considered as binary relations on the set of all words. These and other word extensions
will play a central role in the forthcoming proofs for decidability results. The major part
of this section investigates the <!* upward closure of certain languages.

1.1 Definitions and Notations

Throughout this thesis we fix some arbitrary finite alphabet A with |A| > 2. The empty
word is denoted by €, the set of all words over A (including the empty word) is denoted
by A* and the set of all nonempty words over A is denoted by A". The length of a word
w is denoted by |w|. Moreover, for k > 0 we use the following notations for sets of words.

AF =g {w e A w| =k}
A=k —i {we & |jw <k}
AZF =g {we A | |w| >k}
ATF =g {we A | |w| <k}

AT=F —def {w €A+’ |w| > /{3}

Languages are considered as subsets of A", and therefore complementation is taken
with respect to A". So for a class C of languages of A", coC =qe { A"\ L| L € C } denotes
the set of complements w.r.t. A".

Let ¥ > 0 and w € A" with w = ay---a, for alphabet letters a; € A. If v =
aja;y1---aj—1 for 1 < i < j < n+1 then we call v a factor of w. If v = a;,a;, ---a;,,
for m > 0and 1 < i1 < 49 < -+ < 4, < n then v is called a subword of w
(in this case we write v =< w for short). Define ai(w) to be the set of factors of
length k£ + 1 that occur in w, i.e., agp(w) =qef {v € A1y is a factor of w } For a
language L C A", let w 'L =qot {v € A" |wv € L} be the left residual of L, and let
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Lw™! =4t {v € A |vw € L} be the right residual of L. With A~w (respectively, wA /)
we denote the word that emerges from w when deleting the first j (respectively, last j)
letters of w. If 7 > |w| then we set A~'w = wA™! = . The k-prefix and the k-suffix of w
are defined as follows.

- k<
() aer { aias - - - ag ifk<n

€ : otherwise
s (W) =qef Un—k410n—kt2 - Qn ik <n
¢ e : otherwise

Moreover, for 1 <i < j <n+1let wi,j] =def @i@it1---aj_1.

Regular languages are build up from the empty set and the singletons {a;} for a; € A
using Boolean operations, concatenation and iteration. Of particular interest for us is the
subclass of starfree languages, denoted as SF. Here the iteration operation is not allowed.
Since we look at languages of A" we take complements with respect to A".

A deterministic finite automaton (DFA) M is given by M = (A, S, 4, s, S’), where A
is its input alphabet, S is its set of states, d : A x § — S is its total transition function,
sp € S is the initial state and S” C S\ {sp} is the set of accepting states. We denote by
L(M) the language accepted by M (note that L(M) C A" since we demand sg ¢ S’). As
usual, we extend transition functions to input words, and we denote by | M| the number of
states of M. For a word z € A" we use s; % s9 as an abbreviation for d(sy, z) = s2. With
$1 — 89 we mean that there exists some z € A" such that s; —%, so. Moreover, we write
s1 -2+ (respectively, s; —%, —) if there exists a state so € S’ (respectively, so € S\ S')
with s; %, so. A minimal DFA M is a DFA such that for all M’ with L(M) = L(M’) it
holds that M| < |M'|.

We say that a state s € S has a loop v € A" (has a v-loop, for short) if and only if
d(s,v) = s. Every w € A" induces a total mapping 0% : S — S with 6*(s) =ger I(s,w). Say
that a total mapping ¢’ : S — S leads to a v-loop (respectively, leads to some structure) if
and only if §'(s) has a v-loop (respectively, has this structure) for all s € S. We may also
say for short that a word w € A" leads to a v-loop (respectively, leads to some structure)
if 6% does so. Moreover, for v,w € A" we write v ~,, w if and only if §* = §*. A word
u € A" is called an idempotent for M if and only if §* = §**.

As usual let P (respectively, NP) be the class of languages that can be accepted by
a Turing machine in deterministic polynomial time (respectively, nondeterministic poly-
nomial time). Moreover, the class of languages that can be accepted in nondeterministic
logarithmic space (respectively, deterministic logarithmic space, deterministic polynomial
space) is denoted by NL (respectively, L, PSPACE). For more information about these
complexity classes see, e.g., [Pap94].

An obvious property of DFAs is that they run into loops after a small number of
successive w’s in the input.

Proposition 1.1. Let w € A* and r > 1, then w" leads to a w" -loop in every DFA M
with (M| < r.

Proof. Observe that w” leads to a w-loop for some 1 < i < |M|. The proposition follows
since every such wi-loop can be considered as a w"'-loop. a
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We recall the following fundamental theorem concerning starfree languages.

Theorem 1.2 ([Sch65, MP71]). Let M = (A4,S,9,s0,5") be a minimal DFA. Then
L(M) is not starfree if and only if there exist a word w € A", some | > 2 and distinct
states r1,79,...,1 € S such that

7'1_>w 7"2_>w "~_>w 7“1_>w ri.

We call a minimal DFA M permutationfree if it has the above property. Deciding this
property for a given M is known to be PSPACE-complete [CH91] (in Remark 3.31 we
make precise how we think of a DFA as an input to a Turing machine).

Let w € A" with w = ay---a, for alphabet letters a; € A. If w = zvz for words
z,v,z € A then we call zvz a decomposition of w. If we speak about the “factor v of
the decomposition w = zvz” then of course we do not mean an arbitrary appearance of
v in w but exactly that appearance starting at the (|z| + 1)-st letter and ending at the
(|z] + |v])-th letter of w. Let w = a’v'z’ be another decomposition. Then the formulations
given in the table below have the following meaning.

Formulation Meaning

“the factor v of the decomposition w = zvz is contained | |z| > |2/| and |z| > |Z/|

in the factor v’ of the decomposition w = z'v'2"”

“the factor v of the decomposition w = zvz overlaps the | |zv| > |2/| and |2/v'| > |z|

factor v’ of the decomposition w = z'v'z"”

We write P(B) for the power set of an arbitrary set B. When we speak about finite
unions of sets then this includes the empty union (which yields the empty set). For a
rational number r we define [r] as the greatest integer that is less than or equal to 7.

Definition 1.3 ([KSW87, CGH"88]). Let C be a class of languages closed under union
and intersection. The Boolean hierarchy over C is the family of classes C(l) and coC(l) for
[ > 1, where C(1) is the class of languages L that can be written as L = L1\ (L2 \ (---\ L))
for some L1,Lo,...,Li € C with L1 2 Lo D --- D L.

Lemma 1.4 ([KSW87, CGH"88]). LetC be closed under union and intersection. Then
C(l)UcoC(l) CC(I+1)NcoC(l+1) forl > 1 and the Boolean closure BC(C) = ;5 C(1).

It is known from these papers that every class defined via a fixed but arbitrary Boolean
combination of the languages from C coincides with one of the classes C(I) or coC().
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1.2 Well Partial Ordered Sets

In order to prove decidability results for concatenation hierarchies we will introduce word
extensions (see chapter 4). They can be also considered as binary relations on the set of
words A*. Since these relations are reflexive, transitive and antisymmetric they make the
set of words to a partial ordered set. We will show that some of these relations make A
even to a well partial ordered set. This means that for every nonempty subset of A* the set
of minimal elements in this subset is nonempty and finite. Below we give formal definitions
for co-ideals and well partial ordered sets. We show that every co-ideal of a well partial
ordered set is finitely generated (this fact is important for the proofs of the decidability
results in chapter 4).

Definition 1.5. Let S be a set and let < be a binary relation on S. A subset I C S is
called a < co-ideal if and only if for all s € S and x € I with x < s it holds that s € I.

Definition 1.6. Let S be a set and let < be a binary relation on S. For s € S andT C S
we define the < upward closure of s and T as

(s)« =qet {s}U{te€S|(Tn>0,tg,...,th €S)[s<to<---<tp,=t]} and

(e =ar Js)<.

teT

We refer to the < upward closure of s and T also as the < co-ideal generated by s and
T. Correspondingly, we say that a < co-ideal I C S is finitely generated if and only if
I = (D). for a finite set D C S. Note that if < is reflexive and transitive then we can
simplify the definition above and we obtain (s). ={t € S|s <t }.

Definition 1.7. Let (S, <) be an ordered set (i.e., < is a binary, reflexive and transitive
relation on S ). We call (S, <) a well partial ordered set (wpos, for short) if and only if all
T C S satisfy the following conditions.

1. T does not have an infinite, strictly descending chain (i.e., elements to,t1,... € T such
that tz’+1 < tz‘ and ti+1 ;é ti fOT‘i > 0).

2. T does not have an infinite set of pairwise incomparable words (i.e., an infinite D CT
such that t; £ty for all t1,ta € D with t1 # t2).

This is equivalent to saying that for every nonempty subset of S the set of minimal elements
with respect to < is nonempty and finite [CK96]. For several equivalent properties, which
may be used for the definition of well partial ordered sets, see [SS83, CK96].

Proposition 1.8. Let (S, <) be an ordered set andT C S. Then (T')< is finitely generated
if it satisfies the following conditions.

1. T does not have an infinite, strictly descending chain.
2. T does mot have an infinite set of pairwise incomparable words.
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Proof. Let M be the set of minimal elements in 7. Since different minimal elements of T'
are incomparable it holds that M is finite.

Suppose (M)< # (T')<. Since (M )< C (T')< there exists an s € (T)< \ (M)<. Hence
there exists some tg € T'\ (M)< with tp < s (note that < is reflexive and transitive). It
follows that to is not a minimal element in 7". This implies that there exists a ¢; € T\ (M )<
with ¢; # to and ¢; < tp. Analogously we obtain elements t3,t3,... € T'\ (M)< such that
tit1 # t; and ;41 < t; for i > 0. So we have found an infinite, strictly descending chain.
This contradicts our assumption and it follows (M)< = (T')<. O

Proposition 1.9. If (S, <) is a wpos and T C S then (T')< is finitely generated.

Proof. This follows from Definition 1.7 and Proposition 1.8. g

1.3 The Loop-Lemma

Let M be a DFA and consider an arbitrary decomposition w = vgvs - - - v, of a nonempty
word w (we demand also that the words v; are nonempty). A useful tool in further proofs
is the fact that if n is large enough then we can find a factor u =qer v;vi41 - - - vj that leads
to u-loops in M. This can be compared to the algebraic notion of idempotents in finite
semigroup theory. In particular, if we state the result for factors of length one (i.e., all
v; € A), this means that in every sufficiently ‘long’ word w we find a ‘short’ nonempty
factor uw such that w is an idempotent for M (i.e., §"* = 6* where § is the transition
function of M).

It is important here to analyze the number of blocks needed to find such a factor (i.e.,
n + 1 in our example). We will prove that this number can be bounded by a function in
|M|. For this end, we define the following function.

Definition 1.10. For a DFA M let Ty, =qef (M| + 1)(MIFDIHFL

We first show with a rather rough estimation, that Z,, does not become too small if
we repeatedly divide it by [M|[M]. This will make the proof of Lemma 1.13 below better
readable.

Proposition 1.11. Let M be a DFA, n =gt |M|, m1 =qet |Zm/2| and mit1 =get
|mi/n"| —1 fori>1. For 1 <i<n"+1 it holds that

mi > (2n")" 30,

Proof. We will prove the lemma by induction on ¢ with 1 <7 < n” + 1. For the induction
base let i = 1. We distinguish two cases, first suppose n = 1. By definition of Z,,, we have
my =8 = (2n™)""+3=1_ Now let n > 2. By the binomial theorem we have in this case
(n+ )"t >0 p(n+ 1) n"+(n+1)n+1>n""142n+2 and n"+n-n"1 < (n+1)"
So the following estimation shows the induction base.
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(2n")(”n+3_1) = (n" +n- n”_l)(nn+3_1) < (n+ 1)”(”7l+2)
< (n+1)(EH0™-2)
< (n+ 1)((n+1)(n+1)_1) 1
(o )H0)

N
<
~
S
Il
E

For the induction step, suppose that we have already shown myj > (2n”)("n+3_k) with
1 < k < n™+ 1. By definition, my4; = [mg/n"] — 1. From the induction hypothesis we

obtain
(277,”) (n"+3—k)

Mi41 = - 2.

nn
Since n > 1 and k < n™ 4+ 1 we have (2n")("+3=(:+1) /pn > 4 Tt follows that

(2nn)(n"+3—k)

M1 2 —2=2.(2p™) (" H3=(k+D)) _ 9 > (o) (" F3=(k+1)),

nn
U

The key argument for Lemma 1.13 below is the iterated use of the fact that there is
only a finite number of mappings &' : S — S when a finite set S is given. We isolate
the iteration step in the following lemma. Let a word v be given with a decomposition
v = vguy - - - vy for sufficiently large I. Among the mappings §V* % some coincide if [ is large
enough. Suppose for instance, there are x,y, z, v’ such that v = zyzv’ and §* = §*¥ = §*¥=.
Then 6% leads to a y-loop and also to a z-loop. We repeat this selection procedure on the
now coarser decomposition zyzv’ = v = vivy---v;, and collect the hereby encountered
mappings in the set A.

In order to make this precise, let v, vy, ...,v; € A" and define v(7, j) =def Vivit1 - - Ui
for all 0 < ¢ < j < 1+ 1. We work with indices ig,...,%, in order to allow iterated
applications.

Lemma 1.12. Let M = (A, S,6,50,S5") be a DFA and let vy, v1,...,v € A" be given.
Furthermore, let 0 < ig < i1 < -+ < iy <[ and suppose that A is a set of total mappings
8" S — S such that every 0’ € A leads to a v(ij,ij41)-loop for all 0 < j < m. Then there
exist indices iy < i < --- < i\, with n =qer |m/(|S|°1)] such that

1. {i iy C fioyits o im])s
2. if n > 1 then every §' € A leads to a v(if, 1})-loop, and
3. if n > 1 then every & € AU {5”(i6’ill)} leads to a v(i}, 1}, |)-loop for all1 < j <n.

Proof. First, set i{, =qef i9. In particular this shows the lemma for n = 0. If n = 1 we
set i) =ger 11 and we are done. Suppose n > 2 and set 0i; =def §vliosis) for 1 < j < m.
Since there are at most |S|I%| total mappings S — S, there exist mappings that appear
several times in the list &;,,d;,,...,d;, . From these mappings we choose a mapping &
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that appears most frequently, say & appears n’ times. So n’ > |m/(|S|®)] = n. Let
iy, ...yl € {i1,42,...,im} such that i) < i) <--- <4/ and 6§ = (51-; for 1 <j <n.

Since {#},4,...,i,} C {i1,i2,...,%m} we see the first statement. By assumption, every
¢ € A leads to a v(ij,ij41)-loop for all 0 < j < m. It follows that every &' € A leads also
to a u-loop, where u is an arbitrary concatenation of words v(ij,7;41) with 0 < j < m.
Particularly, every ¢’ € A leads to a v(¢ 05545 . +1)-loop for all 0 < j < n. Thus the second
statement follows, and we obtain also the third statement for ¢’ € A.

It remains to show that 6*(0%) leads to a (i i,4%1)-loop for all 1 < j < n. By the

choice of § we have that 6"(0%) = § = §°(0%+1) for all 1 <j < n and we see that 0 leads
to an (i, 4}, 1)-loop for all 1 < j < n. Since 6v(i0:11) = § the third statement follows. [

Note that the second statement in the previous lemma and also third statement for
8" € A follow immediately from the first statement. We explicitly state them here to
focus on what is important in the following proof. We use the same finiteness argument
as before: the mapping we add to A in Lemma 1.12 cannot always be a new mapping.
So if the number of factors we start with is large enough to allow many applications of
Lemma 1.12, then we find a mapping é“ that has already been added to § before, say ¢'.
But this means by the second statement of Lemma 1.12 that ¢’ leads to a w-loop, and
hence ¢’ = 6% = §4%.

Lemma 1.13. For every DFA M = (A, S,6,50,5") and for all vo,v1,...,vp € A" with
l =qet |Zr/2] there exist 0 < g < h <1 such that 6" = 6" with u =def VgUg41 -+ Vh—1-

Proof. Let n =qef |M|. Initially, let m® =ger 1, A =45 0 and 7,( ) =gof 7 Tor 0 < r <.
We apply Lemma 1.12 the first time and obtain for n®) =4¢¢ [m /n™| indices i £ ) with
0 <r < n® such that

L. {ilgl) 0<r<n® } C {Z}(})wgrﬁm(l) } and

2. if ) > 1 then 52051 Teads to a v(7). ), ’£,+)1) loop for all 1 <7 < n),

We start over after position i’gl) and set m® =4 nW -1, A@ =, AD Y {(5” " '(1))}
and i =def i/7(~21 for 0 < r < n. We apply Lemma 1.12 again.
In general, after the j-th application of Lemma 1.12, we obtain for n\9) =4 |m0U) /n"|

the indices i’gj) with 0 < r < nU) such that
1. {i’gj)|0§7"§n(j) } C {i,ﬁj)\ogrgm(j) }7
2. if nU) > 1 then every & € AY) leads to a v(i’(j) "(j))—loop, and
3. if n) > 1 then every &' € AW U {5@(1/(]) (J))} leads to a v(i'; /) /7(21) loop for all
1<r< n\.
Moreover, with mUtY = n@) — 1, AUTD = AU U {6”(1 §’ '(J))} and iV = dof ilfﬁl
for 0 < r < n\Y) we can carry out the (j + 1)-st application of Lemma 1.12.

We chose [ at the beginning large enough such that we can apply Lemma 1.12 sufficiently
often to face the same mapping twice. This can be seen as follows. By Proposition 1.11
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we have that m0U) > (2n™)(""+3-3) for 1 < j < n™ + 1. It follows that n() = |m) /n"| >
(2n™)(""+2=7) — 1 > 1 for 1 < j < n" + 1. Particularly, the indices 7’ (()j ) and #/ gj ) exist for
1<j<n™+1.

On the one hand, at the end of each step j we take 0V to AU and obtain
AUt On the other hand, there are at most n” total mappings S — S. Therefore, there

. . = 0 (t) ()Y,
exists a step t with 1 < ¢ < n”+1 such that § =gef 6°C o #1") is already an element of A®).

From the second statement of Lemma 1.12 it follows that & leads to a v(4’ ((]t),i’ gt))—loop.

With g =gef i’ét), h =qet i’gt) and u =qef UgUg4+1 - Up—1 We have u = v(i’ét),i’gt)). Thus

6 = 0" leads to a u-loop and hence 6%* = §%. O

(i/éj),i/gj))

Now we are able to prove Theorem 1.14. If we do not have the particular number [ of
words, but factors vg, vy, ..., v, for arbitrary n, then we can partition them in a number
of factors such that in each factor there are only Z,, words v;, and every second factor u
has in fact the property §“* = §“.

Theorem 1.14. For every DFA M = (A, S,6,s0,5") and for all vy, ...,v, € A" there
exist an m > 0 and indices 0 = 19 < 11 < -+ - < igm41 = n + 1 such that

1. ij41 —ij < Iy for 0 < j < 2m and
2. 0" =46" for all u = vi;vi, 41+ vi;,, -1 with 1 < j <2m and j =1 (mod 2).

Proof. Let | =qef |Zp/2]). If n < I, then we set m =qef 0, 10 =qef 0, 11 =det 7 + 1
and we are done. Otherwise, we disregard vy and partition the list vy,...,v, from left
to right into factors such that every factor contains | + 1 words v;. We obtain m > 1
such factors By, ..., B, and r <[ remaining words vp—,41,...,vUn. For every factor By =
(Vj,Vj415 -+, 0j4q) With j = (t —=1)({+ 1)+ 1 and 1 <t < m we apply Lemma 1.13 and
we obtain indices j < g¢ < hy < j + 1 such that 6 = 0" with u =qer Vg, Vg, 41 - Un,—1-
Now let 49 =det 0, tom+1 =def  + 1 and 49— 1 =def G¢, 42t =det Pt for 1 <t < m. Observe
that 0 = ig < i1 < --- < 1tom+1 = n + 1. Moreover, we already have the second statement
of Theorem 1.14.

It remains to show the first statement. For 1 < ¢t < m it holds that ig — 91 =
hi —gr <1 < Iy For1 <t < m we have B; = (vj,vj41,...,vj41) and By =
(’Uj+1+1, Vjgl42y - - ,’Uj+2[+1) with j = (¢t —1)(l + 1) + 1. Since

JSg<h<j+l < jHl+1<gin<hr<j+20+1

it follows that g1 —he < (j+21)—(j+1) =2l —1 < Z,,. Moreover i1 —ig = g1 <1 < Iy,
so we have shown ij11 —i; <Zy, for 0 < j <2m — 1.

We are left with i9y,41 — 92, Observe that By, = (Vp—r—1, Un—r—i41s - - - , Un—r) and that
fom = hyy >n —1 — 1. So

omel —lom =n+1—tdoy < n+l—-n+r+l=r+l+1<204+1<7Z+1

and hence iom41 — tom < Zu. O
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Corollary 1.15. For every DFA M = (A, S, 4, 50, 5’) and every w € A" there exist words

W05 -+ vy Wiy ULy - -+ Upy € ATSIM with w = wouqgwy - - - UmWp, and 6% = §%% for 1 <i<m.
Proof. This follows from Theorem 1.14 when considering letters vy, ..., v, € A such that
W=110"Up. O

Corollary 1.16. For every DFA M = (A, S,6,50,5") and for all vy,...,v, € A" with
n > Iy there exist i, with 1 < ¢ < j < n and j —1 < I, such that 0** = " for
U =def ViVit1 """ Vj.

Proof. Let vy =gef a for some letter a. If we apply Theorem 1.14 to vy, ..., v, then we
obtain an m > 0 and indices 0 = ip < i1 < - -+ < t9m+1 = n + 1 such that

1. dj41 —ij < Iy for 0 < j < 2m and
2. 0" =¢" for all u = v, vi; 11+ v, ;1 with 1 < j <2mand j =1 (mod 2).

If m = 0 then it follows that i1 = n+ 1 and iy —i9 = n+ 1 > Z,,. This contradicts
the first statement and it follows that m > 1. In particular, there exist indices 0 = ig <
i1 < 12 < i3 < n+ 1 with ia —i; < Ty and 0" = 0% for u =qef Vi;Vij+1 """ Vig—1-
Therefore, with i =qer 71 and j =gef 42 — 1 we have found indices with 1 < i < j <n and
Jj—1=13 — 1 —1i1 <Zy such that 0"" = " for u = v;v;41- - v;. O

Corollary 1.17. For every DFA M = (A, S,8,50,5") and every w € A*ZIM there exist
words u, w1, wg € A* such that 1 < |u| < Iy, §* = 6" and w = wiuw;.

Proof. This follows from Corollary 1.16 when considering letters v1,...,v, € A such that
W=V Vp. O

1.4 <‘1’7’“ and <f;’“ Word Extensions

In our approach we use word extensions to prove decidability results for concatenation
hierarchies. These word extensions can be also considered as binary relations on the set
of words. Roughly speaking, they are such that a certain factor is inserted at a certain
position in an initial word. Here the emphasis is on “certain position” which means a
position where a special word—a so-called context word—appears. So our word extensions
are determined by two things: (i) by the “certain position” where an extension is allowed,
i.e., by the possible context words, and (ii) by the “certain factor” that is inserted.

In this section we introduce the word extensions <" and <!*. They should be considered
as elementary extensions, since in chapter 4 we will use them as building blocks to define
more complicated extensions. More precisely, <%* (respectively, <)*) will be used to define
the extensions <} (respectively, <%¥) which in turn are used to prove the decidability of
the levels 1/2 (respectively, the levels 3/2) of the dot-depth hierarchy and of the Straubing-
Thérien hierarchy (see chapter 2).

After proving some basic properties of <** and <'* we introduce classes of languages
B for k > 0. From their definition it will be easy to see that By is contained in level 3 /2
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of the Straubing-Thérien hierarchy, and that By is contained in level 3 /2 of the dot-depth
hierarchy for all £ > 0. The main result in this section is Theorem 1.30 which says that
the <* upward closure of a language from By, is in By again.

1.4.1 Basic Definitions

We start with the definition of <%/ and <* and prove some basic properties of these word
extensions.

Definition 1.18. Let k > 0 and v,w,w’ € A*.

w < w' =ge  there exist words z,z € A* and u € AZFTY such that
w = zvz and W = xvuvz

w < w' e=ger  there exist words z,z € A* and u € AL such that
w = vz, W = zvuvz and ag(vuv) C ag(v)

Note that for <}* we always have |v| > k + 1 because ai(vuv) C ag(v) and |u| > k + 1.
Moreover, <" and <!* are not reflexive and not transitive. However, in chapter 4 we will
introduce reflexive and transitive word extensions <3; and =<}; which are sequences of <%*
and <'* extensions. We state the following easy facts about <®* and <“* which says in
particular they are stable.

Proposition 1.19. For k > 0 and v,w,w’ € A" the following holds.

Lo Ifw <Fw' orw <Fw' then p,(w) = ppy(w') and s, (w) = sy (w').
2. If w <*F W' then zwz <°F zw'z for all x,z € A",

3. If w <k w' then xwz <V xw'z for all x,z € A"

4. If w <5 w' then ag(w) = ag(w').

Proof. These are easy consequences of Definition 1.18 (note that |v| > k + 1 in state-
ment 4). O

Proposition 1.20. For k>0, v,w € A and v’ € (w><1,k the following holds.
P(w) = ppp(w') and s, (w) = s, (w')

(xw)<1,k C z A= gng (wz><1,k C A=y for x, 2 € Al

(zwz) ax C 2 A= for z,z € Al

zw'z € (vwz) ax for v,z € A"

ag(w) = ag(w')
<L1><bk . (L2><1v,k . <Ln><£,k C(LiLy-- 'Ln><hk forn>1and Ly,...,L, C A

S v o o =

Proof. This follows from Proposition 1.19 (note that w = w' if |v| < k). 0

We introduce classes of languages By,. Later we will see that they are contained in the
level 3/2 of the dot-depth hierarchy.
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Definition 1.21. For k >0, 3,0 € A* and T' C A**1 we define the following.

(BITI) =aer {0 € AZF py(w) = f, s1(w) = 5, ax(w) C T }

By =ar Pol ({ (8ITI8)s| 5.6 € 4T c a1 b U{{a}|ac A})

From Definition 1.18 we see that in <)* extensions not all words u can be used for
insertions but only words u € A*2*! with ay(vuv) C ag(v). In the proofs we will often
need these words, and therefore we make the following definition.

Definition 1.22. For k > 0 and v € A=FT1 et

Lyp =def U (Blok(v)]6) -

B,JEAk such that
ap(vB),ap(6v)Cay (v)

Note that Ly, € By for k> 0 and v € A=F1,

Proposition 1.23. For k > 0 and v € A% it holds that
Ly, = {w e A2 ap (vwv) = oy (v) } = {w e ALy (vwo) C ag(v) } )

Proof. This follows from Definition 1.22. O

This means that Ly, is exactly the set of words u that can be inserted by <!* extensions
(see Definition 1.18). In particular it holds that zvz <'* zvuvz for all k > 0, v € A*=k+1
xz,z € A" and u € Ly,.

In chapter 4 we will investigate the upward closure of a word y € A" under word
extensions <, <*, ..., <;». This means the set of words that can be reached from y by
the (repeated) use of these extensions for certain words vy, va, . . ., v,. There we will need to
show that this set is contained in By (and therefore in level 3/2 of the dot-depth hierarchy).
To prepare this result we show in the following subsections that the <* upward closure of
languages from By, is in By, again. In order to do this we refine the class By, in the following

subsection.

1.4.2 The Classes lgk,m

For k£ > 0 we introduce classes ma that refine the class Bk We show that all classes lf;’;@m
are closed under concatenation with words and under intersection with A*w and wA* for
w € A*. The latter means that we can test for certain prefixes and suffixes.

Definition 1.24. Let k > 0 and m > 1. Define Bk,m as the class of finite (possibly empty)
unions of languages L = L1Loy--- L, C A" with 1 <n <m and for 1 < i < n it holds that

L = {w} forw; € A", or
Li = x(Bi|Tildi)wz  for wi, 2 € A, Bi,8; € A¥ and T; C AFFL.
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As an easy consequence of this definition we obtain that the union of the classes Bk m OVer
m > 1 is equal to Bj,. Moreover, By, .m has the following closure properties.

Proposition 1.25. Let k>0, m>1, L € Bk,m, and w € A*. Then it holds that

1. LwEBkm, wLEBkm,
2. LﬂA*weBkm, andLﬂwA*EBkm

Proof. Statement 1 follows immediately from the definition of l’;’km For the second state-
ment we need the following claim which can be easily verified.

Claim. Let n =gof max{|w|,k}, 3,6 € A¥ and T C A**L. Then it holds that

iy = U s u (U w).

B!,6'€ Ak, zeBA*, z€A*5 such that w/€(B|T|8)), with
|z|=|z|=n, aj(zB")CT, ay(§'z)CT |w! | <k+2n
= (BITjg) N APzhELezn = (BITja) N ASkERn

From this claim it follows that L can be written as a finite union of languages L' =
LiLy---Ljsuch that 1 < j <m and for 1 <¢ < j it holds that either L; = {w;} for some
w; € A, or L; = x;(Bi|Ti]6i)k2i for z;, 2 € A=l 55, € AF and T; C AL, It suffices
to show that LiLy--- L N A'w € Bkm

Case 1: Assume that L; = {w;} for all 1 <¢ < j. Then LiLy---L; = {w'} for some
w' € A", and it follows that either L1 Lo ---L; N A'w = {w'} or L1Ly---Lj N A'w = 0. So
in this case we have L1Ly---L; N A'w € l?km

Case 2: Assume that not all L; are of the form L; = {w;}. Then there exists a maximal
[ with 1 <1 < j such that L; = z;(5;|1]6;) 2z and L; = {w;} for all | < i < j. In this case
it holds that LlLQ ce Lj = LlLQ cee Ll,lxl(ﬂl\l“l\él)kzlw/ where u/ =def Wi41Wi42 - Wy.
Since |z;| > |w| we obtain

--Lj : if wis a suffix of zw’

e ) LiLle-
LiLy---LynAw = { 0 : otherwise.

So also in this case we obtain LyLy---L; N Aw e l?km It follows that L N A'w € Bkym,
and analogously we show L NwA" € By, . O

1.4.3 The <* Upward Closure of a Word

We want to show that the <!* upward closure of a nonempty word is in Bj;. The idea is
as follows: Let y be a word and let y" € (y)_1x. This means that y' emerges from y by
a sequence of <!* extensions. By definition, a single <)* extension is such that a given
word is modified by inserting some letters at exactly one position in this word. With the
following lemma we show that in the sequence leading from y to 3’ one can trace back
these positions. This yields a list of positions in y that can be used to transform y into
y' in a single step (where <* extensions are carried out, in parallel, at several positions
in y). The fact that the number of these positions is < |y| + 1 means that there exists a
sequence of length < |y| + 1 leading from y to y’. This implies (y) Ak € By,.
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Lemma 1.26. For k>0, y € A, v € A2 and n =y |v| it holds that

() aw = {y} U (Jyll,p1 +n] - Liw - ylpr,p2 + 1] - Ly - ylp2, p3 + 1] (1.1)
e Lk:,v : y[pm—lapm + n] : Lk,v : y[prm ’y‘ + 1]

where the union ranges over allm > 1 and all positions 1 < p; < py < -+ < ppy < |y|—n+1
with ylpi,pi +n] =v for 1 <i < m.

Proof. The idea behind the union above is illustrated in the following picture. It shows the
factors that emerge when we consider the positions pi,p2,...,p7 in y. The upper part of
the picture shows the v-blocks that appear at the positions p; and that have to be doubled
when making <'* extensions at p;. In the lower part we see the factors of y that remain
connected. Note that in the lower part, neighboring factors overlap in exactly n = |v|
letters and all these overlapping parts are equal to v.

U
B e —
l v |
l v |
| S B |
| | w T ] w Y
p1 D2 P3 pa y4s Pe p7
l y[p1,p2 + 1] |
y[p2, ps + 1]
y[p3, pa + 1] |
y[pa,ps +n] |
l y[p57p6+n] ‘
y[ps, 7 + 1] ‘
ylp7, |y + 1

In the proof we denote the right-hand side of (1.1) by L. At first we show (y) 1x C L.
For this we assume that (y) e Z L, this will lead to a contradiction. Since at least y is in
L, there exist words w,w’ € A* such that w € L, w' ¢ L and w <* w'. Hence there exist
words z,z € A" and u € Ly, such that w = zvz and v’ = zvuvz.

If w =y then with p; =gef || + 1 we obtain y[1,p1 + n] = zv and y[p1, |y| + 1] = vz.
Therefore, we get w' € y[1, p1+n]- Ly -y[p1, |y|+1] € L which contradicts our assumption.

Assume now w # y. Then there exist an m > 1, positions 1 < p; < -+ < pp, < |y|—n+1
and words u1,...,un € L, such that

w=y[l,p1 +n]-ur - ylp1,p2 + n] -uz - y[p2,p3 + 1) U - Y[Pm, [y| + 1] (1.2)
—_——
V0=def V1=def V2=def Um=def

For 0 < i < m define v; as above and note that |v;| > n (for 1 <7 < m — 1 it even holds
that |v;| > n + 1). Now we compare the decompositions (1.2) and w = zvz.
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Case 1: Assume that the factor v of the decomposition w = zvz is contained in
some factor s,(v;) - wit1 - Pr(viy1) of the decomposition (1.2). Then we have the following
situation.

| w
‘ ‘ Sn(vi) Pn(Vit1) ‘ ‘
VoUl - - - Vi—1U; Vi Ui+1 Vi+1 Ui42 * " UmUm
| | i DR | i
‘ ‘ 5nivi} En( Vi1 ) ‘ ‘
VoUL * - Vi—1Uj V5 Vit Ui4+2 ** * UmUm,
’_
U =def

Define v’ as in the picture above and note that w' = voujvy - - - w;v;u' Vi1 -+ * Uy V. More-
over, it holds that s,(v;)u;r1pn(vir1) <t* sp(vi)u'pr(vit1), and therefore vu; v <2* vu'v.
From Proposition 1.19.4 it follows that ag(vu;+1v) = ax(vu'v). By Proposition 1.23 we
have oy (vuip1v) = o (v) because u;jpq € Ly . Therefore, ay(vu'v) = ay(v) and it follows
that ' € Ly, (note that |u'| > k + 1). This shows

w' € y[1,p1 +n] - Liy - y[p1,p2 +n] - Liy - y[p2, p3 +n] - Liw - y[pm, |y| + 1]

and we get a contradiction to the assumption w’ ¢ L.

Case 2: Assume now that the factor v of the decomposition w = zwvz is not contained in
some factor §,(v;) - uit+1 - Pn(vit1) of the decomposition (1.2). Since all 8,,(v;) - wit1 - Pn(vit1)
are of length > n = |v|, it must be that one of the following subcases occurs.

Case 2a: v is contained in some factor A~ 1v; A1 for 1 <i<m —1

Case 2b: v is contained in vgA™!

Case 2¢: v is contained in A vy,

We will only treat the Case 2a, the other cases are analogous. Hence our current situation
is as follows.

x =def 2’ =def
—_——
| v | W
‘ 1(vs) 1(vs) ‘
VoUL -+ - Vi—1Us v; Uit1 "+ UmUm
P’ =det Pi + |2'|

| S | "
‘ 1(v:) (v ‘

VoUL * * * Vi—1Uj Uit1 " UmUm
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Define p’ as in the picture. Since 2/, 2’ are nonempty we have 1 < |2'| < |v;|—n—1. Together
with |v;| = pi41 — pi +n this implies 1 < |2/| < p;11 — p; — 1, and therefore p; < p’ < piy1.
We obtain y[p/,p’ + n] = v because v; = y[pi, piy1 + n] and v;[|2’| + 1, |2'| + 1 + n] = v.
Now consider the term of the union in L that takes the positions

1<p < - <pi<p <pip1 < <pm <yl —n+1

into account. Since y[p;,p’ + n] = 2'v and y[p’, pi+1 + n] = vz’ this term is equal to

/ / /
L' =get o Lgy v1 Ly Vi1 Ligy 20 Ly vz - Liy - vig1
Ly Viga - Liy - Vm—1-Liy - Um.
Since w' = voujviug - - - Vi—1U; - TV U VZ UL 1041 Upp— 1 Upn— 1 Um Uy, and since u € Ly,
we get w’ € L' C L which contradicts our assumption.

So in all considered cases we get contradictions. Therefore, our assumption was false
and it follows that (y) 1x C L. So we have shown that the left-hand side is a subset of the

right-hand side in (1.1).

We turn to the proof of the reverse inclusion. Clearly, it holds that (y) k2 {y}. So
let m > 1 and choose positions 1 < p; < -+ < py, < |y| —n + 1 with y[p;, p; +n] = v for
1 <4 < m. It follows that

y[1,pi] - v =y[1,pi1] - ylpi-1,pi +n] for 2 <i <m. (1.3)
In order to show that y' € (y) i for all y’ € L\ {y} we choose arbitrary ui,...,um € Ly,
and let
Y =det Y[1, p1+n]-u1-y[p1, pa+n]-uz-y[pe, p3+n] - - Um—1-Y[Pm—1, P A1) Ui Y [Py [y +1].

From Proposition 1.23 it follows that ay(vu;v) = ag(v) for 1 < ¢ < m. Since y can be
written as y = y[1,pm] - Y[pm, |y| + 1] and since y[pn, |y| + 1] has the prefix v, we get
y <UF yp, for
Ym =def y[lypm] U Um - y[pmv |y| + 1]'
By (1.3), ym can also be written as ym, = y[1, Pm—1] - Y[Pm—1, Pm + 1| - U - Y[Pm, ly| + 1].
Since y[pm—1,Pm + n| has the prefix v we obtain yy, <}* yp,—1 for
Ym—1 =def Y[1, Pm—1] * U+ Um—1 - Y[Pm—1,Pm + 0] - U - Y[Pm, [y + 1.

We continue this argumentation until we obtain yo <!* y; for
Y1 =det Y[1, p1]-v-u1-ylp1, p2+nl-uz-ypa, p3+n] -+ wn—1-Y[Pm—1, Pm+n] U y[Pm, [y|+1].
Since y[1, p1]-v = y[1, p1 +n] we have y; = ¢/, and therefore y <2* y,,, < - <F gy <P o/

This shows ' € (y)_1x and it follows that in (1.1) the right-hand side is a subset of the

left-hand side. 0
Corollary 1.27. For k>0, y € A" and v € A=F it holds that (y) .« € By.

Proof. This follows from Lemma 1.26 and Definition 1.21 since the union in (1.1) is fi-
nite. O
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1.4.4 The <* Upward Closure of Languages from B~k,1

We still prepare the proof of Theorem 1.30 where we will show that the <* upward closure
of a language from By, is in By, again. Since we already know that the classes [S’km exhaust
the class By we can prove this by induction on m > 1. In this subsection we show the
corresponding induction base, i.e., we show that the <)* upward closure of languages from
BkJ is in Bk

Lemma 1.28. Let k >0, v € A2k and L € Byy. Then it holds that (L) 1p € By.

Proof. By Definition 1.24, it suffices to show the lemma for languages L that are either
of the form L = {w} or of the form L = z(B|T|6)gz. If L = {w} for some w € A" then
<L><£,k € By, by Corollary 1.27.

Assume now that L = x1(B|T'|0)r21 for 8,06 € AF, T C A*! and 21,2 € A*. By
Corollary 1.27, it suffices to show (LﬂA*2”><%j,k € By, where n =qef 2|v| 4 |@1| + |21| + k + 1.
So it is enough to prove that

(LNA=") 4 = U (122) ap - (BD10")k - (2221) an. (1.4)

zocAlvInga*, zocalvina®s, g s5'cak
such that ap(zgB/)CI and ap(6'29)CT

To see this inclusion from right to left we observe that zyxo- (3'|T|0")k - 2221 € LN A= for
all zy € AVl N BA*, 29 € AN A6 and 3,0 € AF with oy (x28), a(6'2z0) C T. Together
with Proposition 1.20.6 this implies (z122) s - (B'|T'[0") - (2221) e C (LN A*>”><

We turn to the other inclusion, i.e., the 1nclu51on from left to rlght We assume that the
inclusion does not hold, this will lead to a contradiction. Observe that L N A*=" is a subset
of the right-hand side of (1.4). It follows that there exist words w,w’ € (L N A*=") Ak
such that (i) w belongs to the right-hand side of (1.4), (ii) w’ does not belong to the
right-hand side of (1.4) and (iii) w <}* w'. This means w = zvz and w' = zvuvz for
suitable x,z € A* and u € AZF! with ap(vuv) C ag(v). On the other hand, since w
is an element of the right-hand side of (1.4), there exist suitable xs, 29, 3,d" such that
w € (T172) 1k - (B8 - (2221) 1. So we have w = Z0Z for suitable & € (z122) 1k,
0 € (BT0") and Z € (2221) ax. Now we compare the decompositions w = zvz and
w = TVZ.

Case 1: The factor v of the decomposition w = xvz is contained in Z or in Z of the
decomposition w = z0Zz. Without loss of generality we assume that v is a factor of Z.
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Note that Z <'* &’ where &’ is defined as in the picture above. It follows that &’ € (z1x2) ks
and therefore w’ is an element of the right-hand side of (1.4). This is a contradiction.

Case 2: The factor v of the decomposition w = zwvz is neither contained in Z nor
contained in 2. Hence, v is contained in §,(%) © p|,((Z). By Proposition 1.20 it holds that
5)y|(Z) = w2 and pj,|(2) = 22. This yields the following decompositions of w and w’.

Y =def

[72 | y
. B, B B |

Clearly, it holds that y <’* 3 where y and y’ are defined as in the picture. By assumption
we have ay(z2') C T, ag(d’z2) CT and v € (B'|T'|¢"). This shows |y| > 2|v| + k + 1 and
ar(y) CT'. Hence, from Proposition 1.20 it follows that ay(y') = ax(y) C I'. In particular
there exist §”,0” € A* with oy (z28"), a(6"29) C T such that y' € xo(8"|T'|0")22. This
means that v’ € Z(8"|T'[0"),z, and it follows that w' € <3§'1x2><%k (B0 g - <Z22’1><bk.
This is a contradiction since we assumed that w’ does not belong to the right-hand side

of (1.4).
So in all possible cases we obtain contradictions. Hence, our assumption was false and
equation (1.4) follows. Together with Corollary 1.27 we get (L N A™=") 1k € By. 0

1.4.5 The <* Upward Closure of Languages from By

With Lemma 1.28 we prepared the induction base for Theorem 1.30—the main result of
this section. The corresponding induction step is prepared with the following decomposi-
tion lemma.

Lemma 1.29. Let k > 0, v € A% and Ly, Ly C A*. Then it holds that

<L1L2><hk = <L1><}U,k‘<L2><%k U U <(L1QA*U1)UQ><1HJC'L/§7U-<U1(L2ﬂ1)2A*)> k. (1.5)

V1,09 € A* s
v=v1vg

1,
<

Proof. We start with the proof showing that the right-hand side is contained in the left-
hand side. By Proposition 1.20.6 we have <L1L2><}jk D <L1><1U,k . <L2><1v,k. So it remains to
show that <L1L2><%k 2 (L1 N A*’Ul)’l)2><bk Ly - (v1(L2 N 'UQA*)><%I€ for vy, v € A" with
v = v1ve. Since (L1Ls) Ak is closed under <'* it suffices to show

<L1L2><L,k D) (Ll N A*Ul)vg . Lkﬂ, . Ul(LQ N 'UQA*). (1.6)
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If w' € (Li N A1 )vg - Ly - v1 (L2 Nva A") then there exist u € Ly ,, @, 2 € A" with zvy € Ly
and vez € Lo such that w' = zvivauvivez. It follows that w =gef xv1v22z € LiLs. Since
w = zvz, w' = zvuvz and u € Ly, we obtain w <* w’. This shows (1.6).

We turn to the inclusion from left to right in equation (1.5). Assume that this inclusion
does not hold, this will lead to a contradiction. We choose a word w’ of minimal length
such that w' € <L1L2><%k and w’ does not belong to the right-hand side of (1.5). Since
Li1Ly C (L1)<1v,k- (L2)<1v,k, we have w' ¢ LqLo. Hence there exists a word w € <L1L2><hk
with w <)% w’. From the minimal choice of w’ it follows that w is an element of the right-
hand side of (1.5). So there exist words x,z € A" and u € Ly, such that w = zvz and
w' = zvuvz.

Case 1: Assume that w € <L1><%k. <L2><%k. Let o’ € <L1><%),k and 2’ € <L2><%k such
that w = 2’2/,

Case 1a: Assume that the factor v of the decomposition w = zwvz is either contained in
the factor 2’ or is contained in the factor 2z’ of the decomposition w = z’z’. Without loss
of generality we assume here that v is contained in the factor z’.

Let 2 as in the picture. We obtain 2/ <* 2, and it follows that v’ € (L1) an- (L) .
This contradicts our assumption.

Case 1b: Assume that the factor v of the decomposition w = xwvz overlaps both factors
z' and 2’ of the decomposition w = x’z’. Then there exists a decomposition v = v1vy such
that vy is the prefix of v that overlaps z’, and vy is the suffix of v that overlaps z’. So we
have the following situation.

x z
| | | w
[ v ]
x z
—_——AN——
U1 V2
x' V22UV 2/
| | | | ’
[ v ] [ v ] v
x u z
" / 1" /
T =def T V2 Z =def V1%

Since 2’ € (L1) 1 there exists a y' € Ly with ' € (y) _
that 3y’ has the suffix v; and that z'vy € (y’v2><1,k. Hence 2" = 2'vy € ((L1 N A*'Ul)'l)2><1,k,

v

1. From Proposition 1.20 it follows
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and analogously we obtain 2" € (vi(Lg Nv2A")) k. From u € Ly, it follows that

w =a2"ud e <(L1 N A*Ul)v2><%;k . Lk,v . <Ul <L2 N UQA*)><;I;k.

This contradicts the assumption that w’ does not belong to the right-hand side of (1.5).
Case 2: Assume that w € ((L1 N A'v1)v2) an- Liy - (01(Le Nv2A%)) 1k for suitable
vi,v9 € A" with v = vjvy. Let 2/ € (L1 N A*Ul)v2><%k, 2 e (v(La N UQA*)><%IC and
u' € Ly, such that w = 2'u/7’.
Case 2a: Assume that the factor v of the decomposition w = xvz is either contained
in the factor 2’ or is contained in the factor 2’ of the decomposition w = z'u’2’. Without

loss of generality we assume here that v is contained in the factor z’.

Define z” as in the picture, and observe that 2’ <’* 2”. Hence 2" € ((L1 N A*Ul)U2><%k,
and it follows that w’ € ((Ly ﬂA*vl)v2><%k-Lk7U (v1(La DUQA*>><1;I¢. This is a contradiction
to our assumption.

Case 2b: Assume that the factor v of the decomposition w = xvz is contained in the
factor s, (2")u'p},|(2") of the decomposition w = 2'u'z’. Since 2" € ((L; NAv1)vz) an there
exists a y' € (L1 N Av1)vp such that o’ € (y') ix. Note that y' has the suffix v. From
Proposition 1.20 it follows that also 2’ has the suffix v, and analogously we get that 2’ has
the prefix v. So the following situation emerges.

Since v’ € Ly, we have ag(vu'v) = ay(v). Moreover, we see from the picture above that
vu'v <5 vu'v. From Proposition 1.20 it follows that ay(vuv) = ag(vu'v) = ag(v). So we
obtain v” € Ly, and w’ € ((L1 N A'v)vz) g Ly - (v1(Lz Nv2A")) 1. This contradicts
our assumption that w’ does not belong to the right-hand side of (1.5).

We have seen that in all possible cases we get contradictions. So our assumption was
false, and it follows that in (1.5) the left-hand side is a subset of the right-hand side. 0O
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Finally, we state the main theorem of this section. It says that the <\* upward closure
of a language from By, is in By. As a corollary we obtain the following: If we start from
a single word w and if we take several <'* upward closures then we are still in By, (and
therefore, as we will see in chapter 4, we are in the level 3/2 of the dot-depth hierarchy).

Theorem 1.30. Let k>0, v e A2 and L € By. Then it holds that <L><1,k € By.

Proof. Since the classes Bkm exhaust l’;’k it suffices to show the following claim.
Claim. Let m > 1 and L € By,,. Then it holds that (L) ax € By..

We prove the claim by induction on m. The induction base (i.e., the case m = 1) follows
from Lemma 1.28. So we assume that the lemma has been proved for m =1 > 1, and we
want to show it for m =1+ 1.

By definition, languages from l”;’km are finite unions of languages L = L1 Ly --- L,, with
1 <n <1+1 such that for 1 < i < n it holds that either L; = {w;} for some w; € A",
or L; = z;(3i|T:]0;)x2i for x;, z; € A", B;,0; € AF and I'; C A*+1. Therefore, it suffices to
show (L) Ak € Bj. For n < [ this follows from the induction hypothesis. So we assume
that n = [ + 1. Let L' =qef L1L2 -+~ L; and observe that L', L;y; € Bg;. By Lemma 1.29
we have

<L><1),k = <L,><bk <Ll+1><bk U U <(L, N A*Ul)v2><1;k . Lkﬂ, . <Ul (Ll+1 N UQA*)>

v1,v9 EA*,
’U:Ul ’U2

1k.
<v

From the induction hypothesis it follows that (L') _x-(Li41) 1x € By.. Let vy, vy € A* with

v = v1vy. By Proposition 1.25 we have (L'NA"vy)vy € [;’k,aand v1(Lip1Nue A%) € Bk,l- From
the induction hypothesis we obtain ((L'N A"v1)va) 1x € By and (v1(Li+1 Nv2A”)) 1k € By.

With Ly, € Bk,‘,l - Bk this implies ((L' N A*Ul)’l)2><1,k' Ly - (v1(Ljx1 N UQA*)><1,k S Bk,
and we conclude that (L) _ix € By.. 0

Corollary 1.31. Let k,n >0, vg,...v, € A2 and w € AT, Then it holds that
(oo () g i) € By

Proof. This follows from Theorem 1.30 since {w} € By. 0



2. Concatenation Hierarchies

This chapter introduces the notion of concatenation hierarchies and in particular that of
the famous dot-depth hierarchy. For this we start in section 2.1 with the definition of
the polynomial closure of a class of languages. Then we define the dot-depth hierarchy
and the Straubing-Thérien hierarchy which are well-known concatenation hierarchies. We
prove easy inclusion relations and state that both hierarchies exhaust the class of starfree
languages.

In section 2.2 we discuss alternative definitions for the considered concatenation hi-
erarchies. It will turn out that the use of alternative definitions lead to minor changes
which can be neglected. In particular, the essential decidability questions concerning these
hierarchies remain the same.

In section 2.3 we give some useful normalforms for concatenation hierarchies, and in
section 2.4 the famous dot-depth problem is stated.

Finally, section 2.5 introduces the notion of forbidden-pattern characterizations and
summarizes known characterizations for the levels n + 1/2 of concatenation hierarchies.
We compare the corresponding patterns to get an idea of their general structure.

2.1 Definitions of Concatenation Hierarchies

Regular languages are constructed from alphabet letters by the use of Boolean operations
(i.e., finite union, finite intersection and complementation), concatenation and iteration.
Ignoring iterations, the class of starfree languages (SF for short) is defined as the smallest
class of languages that contains the atomic languages {a} for a € A and that is closed
under finite Boolean operations and concatenation.

A systematic way to examine this class is to count the number of alternating uses of
Boolean operations on the one hand and concatenations on the other hand. This means
that for a starfree language we consider the number of unavoidable alternations between
combinatorial and sequential aspects in the definition of the language. For a given language
we call this number the concatenation complexity.

Grouping together languages of similar concatenation complexity leads in a natural way
to the definition of concatenation hierarchies that exhaust the class of starfree languages.
Prominent examples are the dot-depth hierarchy (DDH), first studied in [CB71], and
the Straubing-Thérien hierarchy (STH) [Str81, Thé81, Str85]. In contrast to the original
definitions for the DDH and STH, in this thesis we use alternative (slightly modified)
versions. See section 2.2 for a discussion of this.
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For a class C of languages we denote its closure under finite (possibly empty) union by
FU(C). The polynomial closure of C is defined as

Pol (C) =def FU({LoLl Lp:n>0and L; € C}) .

Note that Pol (C) is exactly the closure of C under finite (possibly empty) union and finite
(nonempty) concatenation. Observe that C is a subset of the polynomial closure of C. For
a second closure operation we consider Boolean operations. We take A" as our universe
and denote the Boolean closure of a class C of languages of A* by BC(C) (this means that
we take complements with respect to A").

Definition 2.1 (DDH). The classes of the dot-depth hierarchy are defined as

81/2 —def Pol ({ {CL} ’a €A }U{A+})7
B =def BC(B41/2) forn >0 and
Bhy32 =det Pol(Bny1) forn > 0.

Definition 2.2 (STH). The classes of the Straubing-Thérien hierarchy are defined as

L2 =gt Pol({AaA" |a€ A}),
Lny1 =det BC(Lpy1/2) forn >0 and
L3/ =det Pol(Lpi1) forn > 0.

Note that this defines indeed classes of starfree languages since A" is the complement
of the empty set, and since A*aA" is equal to {a} U A"a U aA™ U ATaA". We call the
introduced classes also the levels of the DDH and STH where B,,, £, are the full levels
and B,,_1/2, L£,_1/2 are the half levels for integers n > 1. From the definitions above we
immediately obtain the following inclusion structure.

Proposition 2.3. Forn > 0 the following holds.

1. Byy1jpUcoB 12 C Buyr C Byyzge Neoby 3/
2. Loy1pUcoLyy1/2 © Lnt1 © LyyzpNcoly 3

Moreover, we have also inclusion relations between both hierarchies.

Proposition 2.4. Forn > 1 the following holds.

1 Ly 12CBy1/2C Ly
2. C0£n_1/2 - COBn_l/Q - C0£n+1/2
3. ['n - Bn - En—l—l

Proof. Since A"aA" = {a} U A"a UaA" U A"aA" for all a € A we get Ly, C By Note
that A" = (J,c g A"aA" € Ly/5 € L3/5. Moreover, for w € A” with w = ay ---a, for n > 1
and letters a; € A we obtain

{w} = A A - a, A" m(A*\ U  Aba bn+1A*> € L1 C Ly,
~—_———

Gﬁl/g bi,...,bn+1€A

6[,1/2
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Fig. 2.1. Inclusion Relations of the DDH and STH

It follows that By, C L3/5. So we have seen Ly, C By C L35 and the proposition
follows from the monotony of Pol (-), BC(-), and complementation. O

The classes B,, for n > 1 coincide with the ones studied in [Eil76]. In [Eil76, chap-
ter I1X.4] it is shown that (J,~, By, = SF. Together with Proposition 2.4 this shows the
following.

Theorem 2.5 ([Eil76]). Unzl Lo = Un21 B, /s = SF

Figure 2.1 shows the inclusion relations that we obtained so far. Beside the inclusion
relations there are also strictness results. In [BK78, Tho84, Str85] it is shown that the DDH
and the STH are strict. This implies the strictness of all inclusions shown in Figure 2.1.
Moreover, several characterizations for these hierarchies are known, e.g., in the theory of
finite semigroups, in finite model theory, and in complexity theory. For an overview of this
rich field of current interest and research see, e.g., [Brz76, Pin96a, Pin96b).
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2.2 Alternative Definitions

The DDH and the STH have gained much attention due to the still pending dot-depth
problem (see Problem 2.12). The purpose of this section is to make our work comparable
to other investigations, i.e., it relates our alternative definitions of the DDH and STH to
the ones known from literature. We will see that in the case of the DDH our definition
describes exactly the original classes. For the STH these classes (except level 1/2) differ
in exactly the empty word.

Essentially, there are three differences between the original definitions and our alterna-
tive ones. First, the STH is defined a way such that their languages may contain the empty
word. A second point is that one uses other versions of the polynomial closure operation.
Finally, the original definitions of both hierarchies start with level 0 (and not with level
1/2) which is defined as the class that contains the empty language and the language of
all words (either A" or A%). So the latter difference is a minor one and we will neglect it in
the further considerations. In particular we will give the original definitions only for levels
greater than or equal to 1/2.

Let C be a class of languages. In the literature, the DDH contains languages from A"
and the STH contains languages from A*. Because of this difference one has to use different
versions of the polynomial closure operation.

Pol” (C) =def FU({L0a1L1 ~rapLly:n>0,L; € C and a; € A})
Pol® (C) =qet FU({uoLiuy - Lyun :n>0,L; € C,u; € A" and if n = 0 then ug # €})

It is pointed out, e.g., in [Pin95] that this is a crucial point in the theory of varieties
of finite semigroups. Since many results in the field were obtained via this theory, the
following definitions of concatenation hierarchies are widely used. We denote the Boolean
closure of a class D of languages from A" by BC*(D) (i.e., we take complements with
respect to A*). Moreover, let ¢c6*D =4 { A"\ L|L € D } denote the set of complements
with respect to A*.

Definition 2.6 (DDH due to [Pin96b]). Let BT/Q be the class of all languages of A"
which can be written as finite unions of languages of the form ugA uy--- AT, where

m >0 and u; € A*. Forn >0 let B:{_H =dof BC(B:H/z) and B:+3/2 =gof Pol® (BL_I).

Also the definition above differs a bit from those given in earlier literature. The levels
n+ 1/2 extend the corresponding classes defined in [CB71], however the levels n coincide.

Definition 2.7 (STH due to [Str81, Thé81]). Let L35 be the class of all languages
of A* which can be written as finite unions of languages of the form A*a1 A" - - - a A* where
m >0 and a; € A. Forn >0 let L | =qet BC*(,C;_H/Q) and L7, s/5 =def Pol® (L%, 1).

The theorem below shows that the classes B:/z from Definition 2.6 and our classes B, /5
coincide, and that for n > 2 the languages from L /2 are up to the empty word the
languages from L, /.
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Theorem 2.8 ([GS00b]). The following holds for n > 1 and m > 2.
B:{/2 = B2

COB:'L_/2 = coB,, /2

LYy =Ly U {4}

‘C:(n/Q :Em/QU {LU{E}‘L € ‘Cm/2 }

ALy, 5 = COLp 0 U {LuU{e} } L€ coLlyiy)o }

G o e =

2.3 Normalforms and Closure Properties

With help of Theorem 2.8 we can take over existing normalforms and closure properties
for the DDH and STH.

Theorem 2.9 ([Arf91]). L3/, =Pol({ Bf |[BC A}U{{a}|ac A}).
Theorem 2.10 ([Gla98]). Forn > 1 the following holds.

1. Ly11/2 = Pol (C05n71/2)
2. Byy1/2 = Pol (coB,,_1/2)

Finally, with Theorem 2.8 we can translate the following facts from [Arf91, PW97].
Theorem 2.11. Letn > 1 and a € A.

1. By, 2, c0B,, 9, Ly /2 and coL,, /o are closed under finite union and finite intersection.
2. If C is one of the classes By, j3,c0B,, /3, Ly,2 0T 0Ly, o then for all L € C it holds that
a'LNA"€C and La ' N A" € C.

2.4 The Dot-Depth Problem

The main motivation for dealing with concatenation hierarchies like the DDH and STH
comes from an easy explainable problem.

Problem 2.12 (dot-depth problem). Does there exist an algorithm that computes on
input of a given starfree language L € A" the minimal n > 1 such that L € B, /27

A lot of effort in different approaches has been invested to solve this problem. However,
30 years after its discovery, the dot-depth problem is still open. Not least owing to this,
it is sometimes called the P-NP problem of the automata theory. It remains an extremely
difficult problem even if we restrict it in such a way that we ask for an algorithm that
decides the membership problem for a single class (e.g., B2).

In section 2.1 we have seen structural similarities and inclusion relations of the DDH
and the STH. The following theorem shows that both hierarchies are also similar when
looking at the decidability of their membership problems.

Theorem 2.13 ([Str85]). For everyn > 1, L,, is decidable if and only if B,, is decidable.
Recently, it was shown in [PWO01] that this theorem even holds for all levels n + 1/2.
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Theorem 2.14 ([PWOL1]). For everyn >0, L,,41/5 is decidable if and only if B, 15 is
decidable.

Until recently, only the levels 1/2 and 1 of the DDH [Kna83, PW97], and the levels
1/2, 1 and 3/2 of the STH [Sim75, Arf91, PW97] were known to be decidable.

The decidability of level 3/2 of the DDH can now be obtained in three ways. First, by
an automata-theoretic approach using forbidden-patterns [GS00a]. At second, using the
decidability of level 3/2 of the STH together with Theorem 2.14 from [PWO01]. In this
thesis we offer a third approach which is also of automata-theoretic nature but which uses
word extensions.

For a detailed overview on the strong influence of the long-standing open decidability
questions and on the continuously ongoing research see [Pin95, Pin96b].

2.5 Known Forbidden-Pattern Characterizations

Most of the known decidability results for the classes of the DDH and STH are of the fol-
lowing type: “L belongs to the class if and only if the accepting DFA does not have subgraph
P in its transition graph”. Results of this type are called forbidden-pattern characteriza-
tions, and usually they imply the decidability of the characterized classes (see chapter 3).
To our knowledge such forbidden-pattern characterizations are known for Ly, L1, L33,
By /o and By [Sim75, Kna83, Arfdl, PW97], and in chapter 4 we will prove one for Bs/,
[GS00a].

In this thesis we restrict our attention to characterizations of the levels n+1/2 (these are
the levels that are closed under concatenation). The Figures 2.2-2.4 show the forbidden-
pattern characterizations for £, 5, By /2 and L35 [Arf91, PW97]. In Figure 2.5 we anticipate
the characterization for Bs/, which we will prove in chapter 4.

O Ol ®
© ©

Fig. 2.2. Forbidden-pattern for £/, [Arf9l, PW97] with initial state so,
accepting state sT, rejecting state s~ and words z,w, z € A"

If we compare the patterns in the Figures 2.2-2.5 then we observe that they are of the
following form (cf. Figure 2.6): There appear states s1, s2 and words z, z € A" such that
(i) z leads from the initial state to si, (ii) 2 leads from s; to an accepting state s™ and
from ss to a rejecting state s~ and (iii) we find a certain structure between s; and sy (the
gray area in Figure 2.6). Hence in order to define a certain pattern it suffices to describe
the structure between s; and s9, i.e., the gray area in the picture. Therefore, form now on
we will neglect the words x, z and the states sg,s™,s™.
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CJ, ()

v
R OR O
Fig. 2.3. Forbidden-pattern for B, ;o [PW97] with initial state so, accepting
state s, rejecting state s~ and words z, z € A", v,w € A'.

v
z

Fig. 2.4. Forbidden-pattern for L3/, [PW97] with m > 0, initial state so,
accepting state st, rejecting state s~ and words x, z,b; € A", w; € AT,

39
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Fig. 2.5. Forbidden-pattern for B3/, [GS00a] with m > 0, initial state so,
accepting state s*, rejecting state s~ and words @,z € A", by, l;,w; € A"

(RN

A
© ©

Fig. 2.6. General structure of the forbidden-patterns for £;,2, L3/2, B1/2
and 83/2.
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In chapter 2 we defined the DDH and the STH. The classes of both concatenation hi-
erarchies formalize the famous dot-depth problem in terms of the decidability of their
membership problems. The difficulty of finding decision algorithms for the single classes
is that one has to find an effective criterion relating the structure of a given DFA with
the descriptional complexity of the accepted language. A certain kind of these criteria are
forbidden-pattern characterizations which are results of the following type: “A language
L belongs to the class C if and only if the accepting DFA does not have subgraph P in
its transition graph”. Usually it is easy to test whether a DFA has a certain subgraph P
which in turn implies the decidability of the class C. Moreover, forbidden-pattern charac-
terizations relate the absence of a certain subgraph in the DFA with the existence of an
expression describing the accepted language. So not only is it true that forbidden-pattern
characterizations provide decidability, be in fact they even show us the structure (in the
DFA) that causes to be a language not in C. This antagonism is used in [BKS98] to obtain
a gap theorem for leaf-language definable classes between P, NP, and coNP.

So forbidden-pattern characterizations are very powerful characterizations which makes
them difficult to find and to prove. Fortunately, such characterizations exist for Ly /5, L1,
L35, Bijp and By [Sim75, Kna83, Arf9l, PW97], and we will prove one for Bs/. In
this chapter we observe how the patterns that characterize £y, act as building blocks
in the patterns characterizing L3/9. Surprisingly, we find this observation confirmed, if
we compare the pattern for By, with the characterization of B3/, which will be proved
in chapter 4. This motivates the introduction of an iteration rule IT on patterns, which
continues the observed formation procedure.

In general, starting from an initial class of patterns Z (fulfilling some reasonable weak
assumptions), our iteration rule generates for n > 0 classes of patterns PZ which in turn de-
fine language classes FP(P?) if we forbid the patterns PZ in the transition graphs of DFAs
(see Definition 3.5). We prove that FP(P}) UcoFP(PL) € FP(Pr,,) NcoFP(Pr,,) and,
as the main technical result, that Pol (coFP(P},)) € FP(P}_ ;) holds (see Theorem 3.16).
With the latter we relate in a general way Boolean operations and concatenation to the
structural complexity of transition graphs.

We apply our results to particular initial classes of patterns B and L corresponding
to the DDH and the STH, respectively. As a consequence, we obtain strict and decidable
hierarchies of classes FP(Pr) and FP(P5) which exhaust the class of starfree languages
and for which it holds that:
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Buii2 C
-

En+1/2

These inclusions imply in particular a lower bound algorithm for the dot-depth of a given
language L. One just has to determine the class FP(PE) or FP(P%) for minimal n to
which L belongs and it follows that L has at least dot-depth n.

It remains to argue that the forbidden-pattern classes are not too large, e.g., if they all
equal SF nothing is won. For this end, we provide more structural similarities between the
DDH, the STH and the forbidden-pattern classes: All hierarchies show the same inclusion
structure (see Figure 3.13) and, interestingly, the typical languages that separate the
levels of the DDH and the STH also separate levelwise our forbidden-pattern classes. In
particular, it holds that FP(PP;) (just as L, 11/2) does not capture B, /.

3.1 Looking for an Iteration Rule

Considering the known forbidden-pattern characterizations for By, L1/ and L35 from
[Arf9l, PWO7] (cf. Figures 3.1, 3.3 and 3.4), one observes that both states s; and sz have
a loop of the same structure (in case of the pattern for £, this is an e-loop). We call this
the loop-structure of the respective pattern.

First of all, in Figure 3.1 we recall the class of patterns By, which characterizes the
class of languages By /3. The loop-structure of a pattern p € By, is just the v-loop at s
and at ss.

Fig. 3.1. A pattern p € By,2 with v,w € A" and loop-structure p’. It is shown in
[PW97] that B, ,, characterizes the class By /s.

In chapter 4 we will prove a forbidden-pattern characterization for Bs/,. In order to
illustrate our iteration rule we anticipate the emerging class of patterns B3/, in Figure 3.2.
Here the loop-structure p’ of some p € Bj /2 1s more complex: it is the sequence of words
wo, W1, - - - , Wy, for m > 0 such that between each w;,w;+1 we find some pattern p; from
B /2. Moreover, we get from s; with wows - - - wyy, to s9 and after each prefix wows - - - w;
we reach a state with the loop-structure p) (corresponding to the pattern p; between w;
and wi+1).

If we generalize the just observed iteration procedure then the next iteration step
produces a pattern consisting of two states s; and s both having the same loop-structure
as follows. There are words wg, w1, ..., ws, such that between each w;,w;11 there is a
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Fig. 3.2. A pattern p € By with w; € AT ps € Bi/2 and loop-structure p’. In
chapter 4 we will prove that B3/, characterizes the class Bs/s.

pattern p; now from Bj/,. Furthermore, going from s; to sz we should find after every
prefix wowy ---w; a state with the loop-structure p, of the respective pattern p; € By /2
that appeared between w; and w;41. This iteration rule is made precise in the next section.

Surprisingly, we find our iteration rule confirmed if we compare the forbidden-pattern
characterizations for £y /5 and L3/5. The class of patterns L 5 is given in Figure 3.3. The
loop-structure of a pattern p € ILy 5 is just an e-loop at s1 and at s.

g

oo

Olaa©

Fig. 3.3. A pattern p € Ly, with w € A" and loop-structure p’. It is shown in
[Arf91, PW97] that L, ), characterizes the class Ly 5.

The known forbidden-pattern characterization for L3/, [PW97] can be rewritten as the
class of patterns L3/, which is given in Figure 3.4. In fact, the patterns from Lj/, looks
very similar to those of B3 /5. The only difference is that for all p; € L; s, the loop-structure
P} is an e-loop.

3.2 Forbidden-Pattern Hierarchies

We define the iteration rule IT and provide some useful constructions that let us handle
the resulting pattern classes.
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p

Fig. 3.4. A pattern p € LLg/, with w; € A pi € L /2 and loop-structure p’. Note that
the loop-structures of all p; are e-loops. From [PW97] it follows that L35 characterizes
the class L3/5.

3.2.1 How to Define Forbidden-Pattern Hierarchies

In order to give an inductive definition for iterated patterns we start with the definition
of level 0, i.e., the class of initial patterns. Since this definition should capture the classes
of patterns By 5 and L /5 (cf. Figures 3.1 and 3.3), we define a class of initial patterns T
to be a set of patterns consisting of two states s; and s2 such that (i) s; and sy have some
v-loop and (ii) some word w leads from s; to ss. So in order to describe a single pattern
from Z it suffices to give the pair (v, w). Observe that if a DFA has the pattern given in
Figure 3.1, then it has also the following “pumped up” patterns:

1. the pattern from Figure 3.1 where v, w are replaced by v", wv"
2. the pattern from Figure 3.1 where v, w are replaced by v, v

The second pattern can be found for instance between the states s1, s1. We demand that
a class of initial patterns Z is closed under this kind of pumping transformation. The
following definition makes this precise.

Definition 3.1. We define a class of initial patterns I to be a subset of A" x A* such that
forallr > 1 and v,w € A" it holds that (v,w) € T = (v,v), (v",w-v") € T.

In Definition 3.5 below we define what it means that a DFA M has a pattern from P. For
this purpose we introduce certain reachability conditions, namely that the loop-structure
of some pattern p € P appears at some state and that two states are connected by some
pattern p € P. This is consistent with our intuition of finding patterns in transition graphs
since the witnessing states are all existentially quantified. As the first step of an inductive
definition we consider a class of initial patterns.
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Definition 3.2. Let T be a class of initial patterns. For p = (v,w) € T and given states
s, 1, S2 of some DFA M we say

— p appears at s <= qet S has a v-loop and
— $1, S2 are connected via p (in notation 1 b s2) <=rqef P appears at sy and at s2, and

S1 LSQ.

For example we consider the class of patterns By /, which is given in Figure 3.1. Since v and
w are existentially quantified, B; /5 can be described in our notations by the class of initial
patterns B with B = AT x A*. As in Figure 3.1 let p = (v,w) € B for words v,w. Then
p appears at some state if and only if this state has a v-loop (which is the loop-structure
of pattern p). Furthermore, two states s1, so are connected via p if and only if both states
have a v-loop and w leads from s; to ss. This shows that the notion of connecting two
states fits to our intuition of finding a certain structure between these states. Now we
formalize the iteration rule.

Definition 3.3. For every set P we define
IT(P) =qet { (wo,P0, - - -, Wi, Pm) |m > 0,p; € P,w; € A" }.

If we start with a class of initial patterns Z and if we apply the iteration rule repeatedly
then we obtain a hierarchy of pattern classes. For patterns p of these classes we have to

say what it means that p connects two states (respectively, appears at a state) of some
DFA.

Definition 3.4. For a class of initial patterns T we set P§ =qef T and P}, | =qer IT(IP},)
forn > 0. For p = (wg,po, - .-, W, pm) € IT(PL) and given states s, s1, sa of some DFA
M we say

—p appears at state s <=-qof there exist states qo,7T0,---,qm,"m of M such that
8 05 G0 oes T0 —5 1 o> T1 25+ -+ 0 Gy 225 Ty, = 8

— $1, S2 are connected via p (in notation 1 b s2) <=>qef P appears at sy and at s2, and
there exist states qo,...,qm of M such that p; appears at state q; for 0 < i < m and

slﬂ)qoﬂ)qlﬂ---w_m)qm:@

Again, let us comment on this definition and see how we can understand it with the known
results at hand. Consider the class of initial patterns B = AT x A" and some p € P§. This
means that p = (wo, po, - - ., Wm, pm) for words w; and patterns p; € P§ = B. The loop-
structure described by p is a loop with factors of words wq, w1, . . . , Wy, in this ordering such
that between each w;, w;y1 we find the pattern p;. Here we see how elements of P§ appear
as building blocks in the loop-structure of elements of P§. The pattern p connects two
states s1, s if and only if we find the loop-structure of p at both states and it holds that
51 WL%m g9 such that after each prefix wq - - - w; we reach a state where the loop-structure
of p; (i.e., p; in Figure 3.2) appears. Finally, we define in a formal way what it means that

some DFA has a pattern from PZ.

Definition 3.5. For a DFA M = (4, 5,4, s0,5"), a class of initial patterns T and n > 0
we say that M has a pattern from P% if and only if there exist states s1,s2 € S, a word
z € A" and a pattern p € PL such that s — S1, S1 wbe S2, 51 25+ and sg 2,5 —.
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3.2.2 Transformations of Patterns

To handle patterns p € P% in a better way, we define a word 7° obtained from the loop-
structure of p (call this the loop-word), and a word P obtained from the subgraph that
bridges from s; to so (bridge-word). With these words we are able to give two useful
constructions to obtain from a given pattern p € P} a new pattern from P7 having certain
nice properties.

Definition 3.6. LetZ be a class of initial patterns. Forp = (v,w) € P we define p =qef w
and P° =gef v. Forn >0 and p = (wo, po, - - -, Wi, Pm) € Pr,, we define p =qgef wo - - - Wi
and ]_30 =def WOPO * * * WmPm -

In order to establish a relation between the polynomial closure operation and the iteration
rule the following two constructions are needed. First, for p € P7, some A(p) € P} can
be defined such that if p appears at some state s then s,s are connected via \(p) (see
Definition 3.8 and Lemma 3.9). Secondly, in Definition 3.10 we pump up the loop-structure
of p to construct for given r > 3 some 7(p,r) € PZ such that:

—if two states are connected via p, then they are also connected via m(p,r) (see
Lemma 3.11)

— in every DFA M with |[M| < r the words 7(p, ) and 7 (p, r)o lead to states where 7(p, 1)
appears (see Lemma 3.12)

— in every DFA M with |[M| < r the words 7(p,7) and 7(p,7) m(p,r) lead to states that
are connected via 7(p,r) (see Lemma 3.12)

First of all in the following proposition we state some basic properties of loop-words,
bridge-words and patterns p € PL.

Proposition 3.7. Let T be a class of initial patterns, n > 0, p € P% and let s, s1,s2 be
states of some DFA.
1. If n>1 then p,7° € A"
2. If s1 525 59 then s1 2, s9 and p appears at s1 and at s3.
3. If p appears at state s then s P, s.
4. If p appears at state s and if p = (wo, po, - - ., W, Pm) with p; € PL_, forn > 1, then
also p., appears at state s.

Proof. All statements are immediate from the definitions. a

We give the construction of A(p) which connects the states s, s if p appears at s.

Definition 3.8. Let 7 be a class of initial patterns. For p = (v,w) € P§ we define
Ap) =det (v,v). Forn > 1 and p = (wo,P0s- - Wm,Pm) € PL we define A(p) =qet
(2, AMpm))-

The following lemma states the announced property of A(p).

Lemma 3.9. For every class of initial patterns Z, n > 0 and p € P}, we have \(p) € P

Moreover, if p appears at state s of some DFA then s, s are connected via \(p), i.e., s ﬁﬁ}jl S.
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Proof. We prove the lemma by induction on n. For n = 0 we have p = (v,w) € P§ = Z.
By Definition 3.1 it holds that A(p) = (v,v) € Z = P{. If p appears at some state s we
have §(s,v) = s by definition. Therefore, the states s, s are connected via A(p) = (v,v) by
Definition 3.2.

Assume the lemma holds for some n > 0 and we want to prove it for n+1. Let p € P,
such that for some m > 0, p; € P% and w; € A™ we have p = (wo,po, - - - , W, Pm)- By
Proposition 3.7.1 we have p° € A" and from induction hypothesis we know that A(p,,) €
IP7. So with Definition 3.3 we see that A(p) = (p°, A(pm)) € IT(P}) =P} ;.

It remains to show that the states s, s are connected via A\(p) = (p°, AM(py,)) in some
DFA if p appears at state s. By Proposition 3.7.4 we know that p,, appears at state s. So
we get from the induction hypothesis and Proposition 3.7.3 that

s P, gAem) g

It follows that \(p) appears at state s. Now let s; =get S, S2 =det s and gop =qer S. Then
go = s2 and since p appears at state s it follows from Proposition 3.7.3 that s; £, gg. We
have already seen that s,s are connected via A(p.,), particularly \(p,,) appears at state

s = qo by Proposition 3.7.2. This shows that s, s are connected via A(p). 0

The second construction, i.e., the construction of 7(p,r) is more involved.

Definition 3.10. Let I be a class of initial patterns and r > 3. For p = (v,w) € P§
let w(p, ) =qet (V" w-v™). Forn > 1 and p = (wo,Po, - - -, Wi, Pm) € PZ we define the
following:

P =def m(pi,v) for0<i<m

_ VAN AR PV
W =def W0 Py "Pp-W1-P1 P Wm Py " Pm
—o0 —0 —0
ﬂ-(pv T) —def (wO p6 ,p6,UJ1 pll 7p/17 <oy Wm p;n 7p;n’w7>‘(p;n)a s 7w7)‘(p;n))

(r! — 1) times “w, \(pjn)”

Next we show that 7(p,r) is equivalent to p, i.e., it appears at a state and connects
states in some DFA if p does.

Lemma 3.11. Let T be a class of initial patterns, r > 3, n > 0, p € P; and let s, s1, s2
be states of some DFA.

1. It holds that w(p,r) € PL.

2. If p appears at some state s then also w(p,r) appears at s.
3. If 51 .2, s then s1 2(5;,9 59.

Proof. Let 7 be a class of initial patterns and r > 3. We will prove the lemma by induction
on n.

Induction base:

For n =0 and p = (v, w) € P we have 7(p,r) = (v, w-v"™). From Definition 3.1 it follows
that m(p,r) € P§. Let M = (A, S, 9, s0,5") be a DFA and s, 51,52 € S. If p appears at state
s, then we have §(s,v) = s. Hence 6(s,v™) = s and it follows that 7(p, r) appears at state
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s. If s1, s9 are connected via p, then s; = 0(s1,v) and sg = d(s1,w) = d(s2,v). It follows
that s; = d(sq,v"") and sy = d(s1,w - v”) = (5(32,1}“). Thus s1, s9 are also connected via
7(p, 7). This shows the induction base.

Induction step:

Suppose now that we have proven the lemma for n = [ and we want to show it for
n =1+1 Let p € P[, p’ =get 7(p,7) and choose suitable m > 0, p; € P}, w; € A"
such that p = (wo,po, - .., Wm, Pm). As in Definition 3.10 let p, =qer 7(p;, ) and w =gef
wo ~p_60 -p_{]‘ . -wm-]ﬂo -pl.. Moreover, let M = (A, S, §,s0,S’) be a DFA and s, s1,52 € S.
First of all let us show the following claim.

Claim. Let s’ € S such that p appears at s'. Then it holds that §(s',w) = s'.

If p appears at s’, then there exist states qo, 0, .- -, Gm, m of M such that
5" 20, g0 2 10 L q1 b 71 250 2, gy Dty =

By induction hypothesis, ¢;,r; are also connected via p} for 0 < i < m. From Propo-
sition 3.7 it follows that ¢; has a Eo—loop and d(g;,p;) = r; for 0 < i < m. Hence we
have

s’ 00, g0 PO gy POy W, gy gy PLopy W2, W g P g P gy =
which proves our claim.

By induction hypoiliesis and Eomma 3.9 we have pp,...,p,, € P} and A(p},) € P.
Since w € A" and wopj, , ..., wmp),, € A", it follows that 7(p,r) € IT(P}) = P}, ;. This
shows statement 1.

For the proof of statement 2 we assume that p appears at state s. Thus there exist

states qo, 70, - -+ @m, Tm € S such that
519, qo oo 1o U 1 ks 1 2 - U gy By = .

Using the additional states q; =get s and 7 =qef s for m+1 < j < m+r! —1 we will show
that also p’ appears at state s. With m’ =gt m + r! — 1 we have to show the following.

—° ’ 7° / 7° 7° /
wop b wip p w2p Wmp —
S —>O qO‘o‘o'Oo—)’rO —)1 ql m‘}:ﬁrl —)2 m—>m Qm ‘O_D”r_g_)/,«m =S
w Ap, w w A, _
Y N

Since q; &2, rj for 0 < j < m, we have by induction hypothesis that ¢; b, rjfor0 < j <m.
From Proposition 3.7 we obtain that p; appears at ¢; and that 5(qj,p_g.o) =g;jfor0 <j <m.
This shows

wo P/ pl w1 Pl pl w2 p/ w p/ p/
) m
0 qo 0 T‘O 1 q 1 r e m m

S dm <oo> T'm = S.

Since p appears at s, we have by Proposition 3.7.4 that p,, appears at s. From Lemma 3.9
we obtain that s, s are connected via \(py, )-loop. Together with our claim from above this
shows
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Ap! Ap!
S W g1 )y W W g AR

For statement 3 we assume that the states s1, so are connected via p. It follows that p

appears at s; and at sg, and there exist states qg, ..., ¢, € S with
51 2% g0 “hqn 22 B gy = 8o

such that p; appears at ¢; for 0 < j < m. From statement 2 we obtain that also p’
appears at s; and at sp. So using the additional states gj =qer 52 for m+1 < j < m’ with
m' =gof m + 1! — 1, it suffices to show that

S1 QmLQm+1"'l>Qm’:52

such that p;- appears at ¢; for 0 < j < m, and A\(p],) appears at ¢; for m < j <m/.
Since p; appears at ¢; we have by induction hypothesis that also p;- appears at g; for

0 < j < m. From Proposition 3.7.3 it follows that ¢; has a p_;.O-loop. This shows

O

7/0
wop
—3 gm = 52

s 0 gy gy e
such that p} appears at g;j for 0 < j < m. Note that s has a w-loop which follows from
our claim. So it remains to show that A(p,) appears at sa. For this we observe that p/,
appears at so which follows from the i/nduction hypothesis and Proposition 3.7.4. Moreover,
from Lemma 3.9 it follows that s Aéffg) so. Together with Proposition 3.7.2 this yields that

A(p),) appears at s. O

The nice thing about the construction of m(p,r) is that in every DFA of size < r the
bridge-word and the loop-word of 7(p, ) lead to states where 7(p,r) appears. So we have
obtained a possibility to find patterns in DFAs for which we only require that their size is
< r. Note in particular that we do not require a minimal or permutationfree DFA.

Lemma 3.12. Let 7 be a class of initial patterns, r > 3, n >0, p € P, and let M be a
DFA with |M| < r. It holds that

1. w(p,r) leads to states in M where w(p,r) appears,
2. w(p,r) leads to states in M where 7(p,r) appears,

3. w(p,r) and 7(p,r) w(p,r) lead to states in M that are connected via w(p,r) and
4. m(p,r) and w(p,r) m(p,r) lead to states in M that are connected via 7(p,r).

Proof. We prove the lemma by induction on n.
Induction base. Let M = (A4, 5,0, 5s0,5’) be some DFA with |[M| < r. If n = 0 then
we have p = (v,w) € P% and n(p,r) = (v"",w - v"™). Since v" leads to v"-loops in M

rl—r

(Proposition 1.1) we obtain that 7(p,r) = v -v" and 7w(p,r) = w-v" " 0" lead to

states where m(p,r) appears. Hence (p, 7“)0 and 7(p, 7“)0 7(p,r) lead to states which are
connected via 7(p,r), and the same holds also for 7(p,r) and =« (p,r) w(p,7).

Induction step. Suppose we have shown the lemma for some n > 0 and we want to
show it for n + 1. Let M = (A, S, 9, s9,S’) be some DFA with |[M| < r. Furthermore, let
p = (wo,po, - - -, Wm,Pm) € Pp; and assume that w, p; are as in Definition 3.10. First we
show the following claim.
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Claim. It holds that w™ ™" leads to states in M where 7(p,r) appears.

Observe that w1 = w™~1="w" leads to a w™'-loop in M by Proposition 1.1 since r! > r+1
for > 3. So let s be a state of M that has a w™-loop, we will show that 7(p,r) appears

at s. Let m' =qef m + 1! — 1 and define the witnessing states qg, 70, .. ., Gm’, Ty as follows.
wopy Py . wip, Py waph  wmp Prn
s —8 qo—r0 — 11 23 TR g Ty

Tm — Gm+1 = Tm+1 — @m+2 = Tm+2 — " * —— G/ = Ty

It follows from the induction hypothesis that ¢;,r; are connected via p} for 0 < i < m.
Moreover, the hypothesis also shows that p], appears at ¢; for m +1 < j < m/ since o,
is a suffix of w. From Lemma 3.9 we get that g;,r; are connected via A(p},). Finally, by
the definition of w we have r,,, = §(s,w) and 7y = §(7, w™ 1) = §(s,w™) = 5. Hence we
have shown that

wO'p/ p, wl'p, p/ w2'p’ w 'ply p,
m
S Q qO 0 /’no 1 ql 1 /,11 2 ... n q moor and
A p/ A p/ A p/
w w w w m p— 9
Tm — qurl ‘D‘D‘D_)( m) 7 m+1l —> qm+2 ‘U‘Uc—)( m) m+2 — " —— Qm/ U‘D‘G_>( Tm’ .

So 7(p,r) appears at s which completes the proof of our claim.

We come to the proof of the statements 1 and 2. Since p/,, is a suffix of w it follows
from the induction hypothesis that w leads to states where p/, appears. From Lemma 3.9
and Proposition 3.7.2 we obtain that w leads to a A(p/,,)-loop in M. Hence our claim holds

also for (w - )\(p’m))r!f1 instead of w. By definition we have

rl—1

w(p,r) = wo-p_{)o---wm-ﬁ-w and
— —0 —F —F—0 —F —\ -1
") = w0y o wm P (0 NGR))

So the claim says that 7(p,r) and m(p, T)o lead to states in M where 7(p,r) appears. This
shows the statements 1 and 2 of the lemma.
——0
We turn to statement 3 and choose an arbitrary state s of M. For s; =qef d(s, 7(p,7) )

and sy =qgef 8(s,7(p,7) - 7(p,7)) we show that s1, s are connected via 7(p, 7). Again let

m’' =gt m + r! — 1 and define the witnessing states qo, ..., g as follows.
wo-ITO wl'ITO w2-p_'o W, P
S1 ) Lq 2 .. UmPn g me+1 W W og

We have already seen in the proof of the statements 1 and 2 that m(p,r) appears at s;
and at sa. Observe that ¢,y = d(s1,7(p,r)) = s2. So it remains to show that p) appears
at g; for 0 < i < m and that \(p},) appears at g; for m+1 < j <m/.

By induction hypothesis we have that ]7;0 leads to states in M where p; appears. Hence
p, appears at state ¢; for 0 < ¢ < m. Since pl, is a suffix of w the induction hypothesis
shows that p{, appears at ¢; for all j with m +1 < j < m’. With Lemma 3.9 we see
that g;, ¢; are connected via A(pl,), so in particular A(p;,) appears at state ¢;. This shows
statement 3. Analogously we prove statement 4, for this we only have to replace the terms

w(p,7) by m(p, 7). O
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3.3 Pattern Iterator versus Polynomial Closure

We relate in this section in a general way Boolean operations and concatenation to the
structural complexity of transition graphs. More precisely in Theorem 3.16 we show that
a complementation followed by a polynomial closure operation on the language side is
captured by our iteration rule on the pattern side.

With Lemma 3.15 we isolate the main argument of the proof of Theorem 3.16. It says
that under certain assumptions we can replace bridge-words by their respective loop-words
without leaving the language of some DFA.

First of all we use our pattern classes in a forbidden-pattern sense to define language
classes which we call forbidden-pattern classes. In particular, this implies that each class
of initial patterns induces a hierarchy of forbidden-pattern classes. In Proposition 3.14 we
show that these classes are well-defined.

Definition 3.13. Let Z be a class of initial patterns and n > 0.
FP(PL)=qet {L C A" | L = L(M) for a DFA M that does not have a pattern from P%}

Proposition 3.14. Let I be a class of initial patterns, n > 0 and let M1 and My be two

DFAs such that L(My) = L(Ms). Then it holds that My has a pattern from PZ if and
only if Ma has a pattern from P%.

Proof. It suffices to show one implication. So suppose M has a pattern from P?, and
denote by sy the starting state of M. Then there are states sq, s9 in M1, a word z € A
and some p € P? such that the following holds in M;.

50— 81, Slob 82, S1—sF, S2-"5—
Let 1 =qef |[Ma| and p’ =ger 7(p,r). We obtain from Lemma 3.11 that sq, s, in M are
also connected via p’ € P7. So by Proposition 3.7 we have xp’ z € L(M;) = L(My) and
xp” p'z ¢ L(M;) = L(Ms). Denote by s}, the initial state of My and define states s} and
sh in My as follows.
50 o 56 w R

By Lemma 3.12.3 we obtain that s} and s} are connected via p’ in Ma. Since s} 2, +
and s, 2, — this shows that My has a pattern from P7. O

Lemma 3.15. Let 7 be a class of initial patterns, n > 0, r > 3, p € P}, and P =det
7(p,r). Moreover, let M = (A, S, 9, so,S") with |M| <r be a DFA which does not have a
pattern from PL. Then for all x,z € A" we have

xp'z € LM) = xp/ 2 € L(M).

Proof. We choose suitable m > 0, wy,...,w, € A" and py,...,pm € P5 such that p =
(Wo, POy - -+ Winy D)~ Let ]iémd_w be as in_Doeﬁn_ition 3.10, i.e., for 0 < i < m let p; =ger
m(pi,r) and w =gef Wo - P{ - Py Wm - Phy - Phy,. From Definition 3.10 it follows that
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P = (wo - Dy 0py--- W -])Tmo,p;n,w,)\(p’m), .., w,\(pl.)) where the term “w, A(p),)”

appears (r! — 1) times. Let x, z € A* such that zp'z € L(M). Thus we have

—o —o°

—0° 7 ° -1
Twy Py wip) waph - wmpl, w" Tz € L(M).

T’ =def Z/;,def
We want to show that x'p_f)op_’oz’ € L(M). From Lemma 3.12.3 it follows that the states
—0 —o— .
$1 =det 0(S0,2'p}y ) and sz =qef (S0, x'pf, pfy) are connected via pj. Note that pj, € P% by
Lemma 3.11.1. If x’p_{)opgz’ ¢ L(M) then we have the following in M.

0T 51, 51 ss, s, sy -
Hence M has a pattern from P? which is a contradiction to the assumption. Thus starting
from
ﬁUwop_f)o wiph waply - WP, w2 € LIM)
we have shown
xwop_60p_6w1p_/10w2p_’20 Wl w2 € LIM).

Analogously we obtain:

—o  —o = —0

—o— —0° —0 -1
Twoply phwip)  wophy wsphy  waply o0 wmpl, w" 'z € L(M)
—o0— —O0— —0 —0 —0 —0 -1
Twopl PHwip] Plwephy  waph  wapy o0 wppl, W'z € L(M)
—0— —O0—F —O0—f —0 —0 —0 _
zwoply Phwip)| Piweph, pywspy  wapy, - wmp,  w" 'z € LIM)
— 00— — 00— — 00— — 00— —0 —a0 |_1
Twoply powip| Piweph phwspsy pywaply -+ wmph, w" "z € L(M)
—o0— —0— —0— —0— —0 ——o—— ,l_1
zwop) pywip| piweph phwspy phwapl -+ wmpl, plaw”z € L(M) (3.1)

By definition, p/, is a suffix of w. From Lemma 3.12.2 it follows that w leads to states
in M where p/, appears. Together with Lemma 3.9 we obtain that for all s’ € S with
s =qef 0(s',w) it holds that s, s are connected via A(p,). Now from Proposition 3.7.2 it
follows that w leads to states in M that have a A(p!,)-loop. Thus from equation (3.1) we
obtain

—0— —50—F —50—F —O0—F —5O0—f —o0—— ri-1
T WPy PyW1P| PiWaph Phwsph Pywapy Py WmDh, P (wk(pén)> z € L(M).
v
This proves the lemma. a

We come to the main result of this chapter, i.e., the theorem connecting the polynomial
closure operation and our iteration rule.

Theorem 3.16. Let 7 be a class of initial patterns and let n > 0.

Pol (coFP(P})) C FP(P;,,)
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Proof. We assume that there is an L € Pol (coFP(P},)) which is not in FP(PP;, ;) and
show that this leads to a contradiction. From L € Pol (coFP(P%)) it follows that

k

L= U LioLi1--+ L,
i=1
for k,k; > 0 and L;; € coFP(P}). Let M = (A, S,6,50,5") be a DFA with L(M) = L
For 1 <i<kand0<j <k let M;; bea DFA with L(M; ;) = L;; and let M;
a DFA with L(M} ;) = A"\ L; ;. Furthermore, in order to choose r sufficiently large we
define

r =det max ({ M|, M [11<i<k0<j<k }U{M3pU{ki+1]1<i<k}).
The DFA M has a pattern from P}, | since L ¢ FP(P; ) by assumption. So there exist
states s1,s89 € S, words x,z € A and some p € P7 | such that

50 2551, S1omsS2, S1—»+ and sp -2, —.

It follows that L # () and k > 1. By Lemma 3.11 the states si, s2 are also connected via
pattern p’ =gt 7(p, 7). From Proposition 3.7 it follows that x(g?o)lz € L for all ¢ > 0.
Thus there exists an i’ with 1 < ¢’ < k such that

x(F)TZ € LyoLig---Lig,.
Since r > ky + 1, it follows from a pigeon hole argument that if we decompose the
word x(ﬁo)rz with respect to Ly gL 1 - - Lk, then there is at least one language Ly j/

whose corresponding factor is of the form {E/FZ/ . In other words, there exist some ;7 with
0 < j' < ki and words 2/, 2", 2/, 2" € A" such that the following holds.

1. The word x(_’o)rz can be decomposed as :c(p’ ) z=a2p 2
2. 22 = m(p )Z and 22" = (]70)],2 for some 7,5 > 0.
3. " c Li’,OLi’,l .. Li’,j’—l; $/]702:/ c Li’,j' and 2" c Li’,j’+1Li’,j’+2 e Li’,ki/'

An example for this decomposition is shown in Figure 3.5.

| @ IS A T 2 o PPz

[ I I I I I I l I I I |

Liro Lirg Ly Linz Lya Lis Li s Lir7 Lirg Ly Lir 10
z" ' 170 o 2

Fig. 3.5. Decomposition of the word 33(170)5,2 € Ly oLy1--- Ly 1.

Since [My /| < r the word ]70 leads to states in M, ;» where p’ appears by Lemma 3.12.
In particular, such a state has a F—loop by Proposition 3.7.3. From m’]?oz’ € Ly j it follows
that for all 7 > 1 we have
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2 (P°)'2 € Ly . (3.2)

Because s1, s9 are connected via p’ in M we have by Proposition 3.7 that d(sg, z"2") = s1,

8(s9,2'2") = 6(s2,2) and 8(s1,p/) = so. Assume that z/p/ p/z' € L; j». Then we obtain

2P p 22" € L. It follows that
8(s2,2) = 8(s9,2'2") = 6(s1,p'2'2") = 5(31,]70]72’2") = 5(so,a:"x’170]72/z") 9.
This is a contradiction since d(s2, z) ¢ S’. So we have seen that
2PV ¢ Ly,
In other terms, it holds that
a'pp'e € AT\ Ly j = L(M ;) (3.3)

because |z'p”p'z'| > |2/p"2'| > 1 (Proposition 3.7.1). Recall that LM ;) € FP(PL)
and hence the DFA M., ; does not have a pattern from IPj. Since | M, sl < 7 we can
apply Lemma 3.15, and together with (3.3) we obtain 2/p/ p/ 2’ € L(M, ). 1t follows
that /p”p" 2" ¢ A"\ L(M; ;) = Ly jr. This is a contradiction to (3.2). 0

3.4 Inclusion Structure of the Forbidden-Pattern Classes FP(IP?)

In this section we define a relation < between pattern classes. If two pattern classes are in
this relation then this means that every pattern from the second class can be interpreted as
a pattern from the first class. This is made precise in Definition 3.17. The main result of this
section is stated in Theorem 3.21. It says that for any class of initial patterns Z satisfying
the weak assumption Pj <P7 the corresponding language classes form a hierarchy which
shows the same inclusion structure as the DDH and the STH.

Definition 3.17. For classes of initial patterns I1,Zs and ni,ne > 0 we define IP’,Ifl jIP’,If2
if and only if for every py € Pr2 there exists a py € Pyl such that for every DFA M and
all states s, s1,s2 of M the following holds.

1. If po appears at s, then p1 appears at s.
2. If s1 22, 59 then s1 2L, s9.

First of all let us prove that our iterator IT respects the relation .

Proposition 3.18. For classes of initial patterns I1,Zs and ni,no > 0 the following holds.

T Z 71 Zo
Pnll j ]anQ = Pnl—i—l j Png-{—l

Proof. Let Z1,Z, be classes of initial patterns and n1,ns > 0 such that Py} <P;2. Hence
for a given ps = (w2,0,p2,0,-- -, W2,m,P2,m) € IP’I22+1 there exist p1o,...,P1.m € P, such

n

that for every DFA M and all states s, s1, s of M the following holds.
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(a) If po; appears at s, then p;; appears at s for 0 <i < m.
(b) If 51 22 59 then s1 DL 5o for 0 < i < m.

We define p1 =qef (w2,0,01,0,-- -, W2,m,P1,m) and we observe that p; € }P’fjﬁl. Now let M
be a DFA and let s, s1, s3 be states of M. We want to show the following.

(i) If po appears at s, then p; appears at s.

(i) If s1 £2; so then s1 EL, so.
Suppose that po appears at s, then there are states qo, g, ..., @m, m € S such that
5220 g 220 7 M2 gy 22 22 g 2 = .

From (b) it follows that ¢; £%% r; for 0 < i < m. Therefore, p; appears at s, and we have
shown statement (i).

Suppose now that s; 22, so. By definition, ps appears at the states s; and so, and there
exist states qo,...,qmn € S such that po; appears at state ¢; for 0 < i < m and
5128 qo 28 gy 223 - B2 g, = 5.

From statement (i) we obtain that p; appears at state s; and at state so. Furthermore
from (a) it follows that also p1; appears at state r; for 0 < i < m. Hence s1 b5, s and we

have shown statement (ii). It follows that P!  , <P?2 0

ni+1 — =~ no+1°

Now it is easy to see that the relation < on the pattern side implies inclusion on the
language side.

Proposition 3.19. For classes of initial patterns Z1,Zs and ny,ny > 0 the following holds.
P P2 — FP(P;) € FP(P2)

Proof. Let Iy, be classes of initial patterns and n1,ns > 0 such that Py} <P;2. For an
arbitrary language L C A" with L ¢ .7-"77( %) we want to show that L gé FP(PL). Let
M be a DFA with L(M) = L ¢ FP(P;3). Hence M has a pattern from P;%. This means
that there exist states s1,s9 € S, a word z € A" and some py € IP’n?2 such that

50— 51, S1 <2582, S1-2u+4, SpFu—.

Since Pf}l ~ Pg, there exists a p; € ]P’i such that s1 2L, s9. It follows that M has also a
pattern from Py}. This shows L ¢ FP(Py}). 0
Proposition 3.20. For a class of initial patterns T and n > 0 the following holds.

1. coFP(P}) € FP(P], )

2. FP(P}) C coFP(P; )

Proof. From Theorem 3.16 it follows that coFP(IP}) C Pol (coFP(PP})) € FP(P}, ). This
also implies FP(IP}) = co (coFP(P})) C coFP (P}, ). 0
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The following theorem states the main result of this section and is an easy consequence
of the previous propositions.

Theorem 3.21. Forn > 0 and a class of initial patterns T with P§ < PT it holds that
FP(P;)UcoFP(Py) € FP(P;, 1) NcoFP(P ).

Proof. From Proposition 3.18 we obtain P}, <P}, ; for n > 0. Now Proposition 3.19 implies
FP(P;) € FP(P;,,) for n > 0. From this we conclude coFP(P}) C coFP (P ;) for
n > 0. Together with Proposition 3.20 this proves the theorem. 0

3.5 Pattern Iteration remains Starfree

In this section we show that the pattern iterator IT can be considered as a starfree iterator.
Let Z be an arbitrary class of initial patterns and recall that SF denotes the class of starfree
languages. In Theorem 3.27 we show that for n > 1 it holds that FP(P}) C SF if and only
if U;>o FP(P7) C SF. For the proof of this theorem we need some auxiliary results on
periodic, infinite words (see Lemma 3.22) and two modifications of the characterization of
starfree languages by permutationfree DFAs (see Lemmas 3.23 and 3.25). We also make a
remark on the restriction n > 1 in Theorem 3.27.

In order to consider infinite words, we have to take over certain notions from finite
words. If w € A" with w = a1 - - - a,, for alphabet letters a;, then w™ denotes the infinite
word aj -+ amay - apy---. For m > 0 and n > 1 we use (m mod n) as an abbreviation
for m —n|m/n|.

Periodic, infinite words are infinite words that can be written as uw® with finite words
u and w. In general there are different descriptions for one periodic, infinite word, i.e.,
uiw® = ugws® for uy # ug or wy # we. We show that if we choose a shortest w; then the
length of w; divides the length of wsy. Note that for this purpose it suffices to show the
following lemma which assumes u; = €.

Lemma 3.22. Let v € A" such that v™° # u/'v'™ for all v/, v € A" with |v'| < |v|. If
v = uw™ for some u,w € A* then |w| is a multiple of |v|.

Proof. Let v be as above such that v = a7 - - - a,, for a; € A. We assume that v>° = uw™ for
some u,w € A" where n =gef |w| is not a multiple of m. This will lead to a contradiction.
First of all we define the following suffixes of v (cf. Figure 3.6).

/
U =def Q(Ju| mod m)+18(ju| mod m)+2 """ Am
"
U =def Q(juw| mod m)+12(juw| mod m)4+2 " Am

Both words v" and v” are nonempty words of length < m.

Observe that [v'| # [v”|, otherwise we would obtain (Ju| mod m) = (Juw| mod m)
which implies that |w]| is a multiple of m (a contradiction to our assumption).
Note that wv'v>® = wwv"v>® = v*° = ww™®. It follows that w>® = v'v> = v"v>.

Without loss of generality we assume that |v/| > [v”|. By Definition, v and v” are suffixes
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LY v v vy v v v v v v
U ‘ w ‘ w ‘ w ‘ w ‘ w ‘
| | |
| | |
| | |
! 1"
v v

Fig. 3.6. Decomposition of v*° = uw™

of v. So there exists a © € A" such that v' = 90”. This implies w™ = tv"v>° = Pw™ and
it follows that w™> = 9. Note that |0] < |v/| < |v|. Thus we have found u, 0 € A" with
|| < |v] and v>° = ud>. This is a contradiction to our assumption. 0

The following lemma is the first extension of Theorem 1.2, a second one is stated in
Lemma 3.25. By Theorem 1.2, we find a permutation (induced by some word w) in every
minimal DFA M if L(M) is not starfree. Here we show that this permutation can even be
chosen in a minimal way, i.e., there do not exist words z,v with |v| < |w| and W™ = zv*>°.
Note that this is not trivial, since we have to prove that the existence of such words z,v
indeed induces a permutation of distinct states.

Lemma 3.23. Let M = (A, S, 6, s0,5") be a minimal DFA.

L(M) ¢ SF <= there exist w € A", | > 2 and distinct states q1,...,q € S such that

(i) w™> # zv*>° for all z,v € A" with |v| < |w|

(1) g1 s qo - g g

Proof. “<=": This direction is an immediate consequence of Theorem 1.2.

“==": Suppose that L(M) is not starfree. Using Theorem 1.2 we choose a shortest w &
A", some | > 2 and distinct states ¢qq,...,q € S such that ¢ %, g2 %5 -+ Y q -2 q1.
We will show that if condition (i) is not satisfied then the choice of w was not minimal
which is a contradiction.

So assume that condition (i) does not hold and choose a shortest word v € A" such
that |v] < |w| and w™ = 20> for some z € A*. Hence v™>® # u/v'™ for all «/,v" € A* with
[v'| < |v]. Moreover, w™ = zv™ implies the existence of some u € A" such that v*>° = uw™>
(simply delete the prefix z of w*). So we can apply Lemma 3.22 and obtain that |w| is
a multiple of |v|. This means that |w| = n - |v| and w = v;v" vy for suitable n > 2 and
v1,v2 € A" with v = v9v1.

Now we consider the following sequence of states (r;)i>1.

q1v1T1UT2UT3U~--

-1

From w = v1v™ vy and v = vy it follows that

r g Yurg e Y, Yy and 7, 240
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Suppose that there is some ¢ > 1 with r; = r;1. It follows that r; Y r; and r; 22, q.
This implies g2 = (g1, w) = §(ri, vow) = 6(r;, v"™v2) = q1, which is a contradiction to our
assumption. So it follows that r; # ;41 for all 4 > 1.

Now choose a smallest j such that there is some ¢ < j with r; = r; (such a j exists due
to the finiteness of S). We have already seen that j —i > 2. Thus we have found a v € A*
and a list of j — 7 > 2 distinct states 7;,7;41,...,7j—1 such that

Ti_>v Ti4+1 _>U '_‘_)v Tj—l _)v Tj:TZ'.

Since |v| < |w| this is a contradiction to the choice of the shortest w € A" at the beginning
of this proof. So we conclude that w™ # zv> for all z,v € A" with |v| < |w]. 0

Suppose we are given a DFA accepting a language that is not starfree. By Lemma 3.23
this implies that this DFA has a permutation ¢; -, go % -+, q; -, q1 for some [ > 2
where w is minimal in the sense of this lemma (i.e., w>® # wv™ for all u,v € A" with
|v| < |w|). Moreover, let Z be a class of initial patterns and n > 1 such that FP(P%)
is starfree. In the following lemma we show that under these assumptions we find some
pattern p € P7 such that for all » > 3 the described permutation can be interpreted as
a permutation induced by the bridge-word of 7(p, 7). Furthermore, the pattern does not
depend on the DFA but only on the word w and on the integer [ > 2. The first statement
of this lemma says that both permutations, the one induced by w and the one induced
by the bridge-word of 7 (p,r), take the same path through the DFA. From the second
statement we obtain that the latter permutation is not trivial, i.e., it is a permutation of
length > 2.

Lemma 3.24. Let T be a class of initial patterns, n > 1, 1 > 2, w € A" such that
FP(PL) C SF and w™ # uwv™ for all u,v € A" with |v| < |w|. Then there exists a p € P%,
such that for all v > 3 the following holds.

—_—  \ O
1. w™® =u- (ﬂ'(p,r)) for some u € A*.

2. The length of m(p,r) is a multiple of |w|, but it is not a multiple of | - |w|.

Proof. In order to find the pattern p we will construct a minimal DFA M that accepts a
language which is not starfree. This implies that M has a pattern from P?. This pattern
will help to find the announced pattern p.

Let w = ay - - ay, for letters a; € A, let S =qer {551 <i<land1<j<m}U{5}
be a set of states, and let S =qe¢ S\ {s1,1} be a subset of accepting states. Then we define
the DFA M =g4¢f (A, S, 0,51,1,5") such that

A, —
s510 -2 510 225513 22, oo Mgy, 9T S0
A, —
521 2Ly 599 92,593 23, ... UTlgo, 9M s34
a a a am—1 a
811 =L 810 225813 =2 o0 TS S, 81

and all remaining transitions lead to the sink §. First of all let us determine the language
accepted by M. For this we observe that 5 is the only sink, and the initial state sy is
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the only rejecting state in the DFA M. Thus a word v € A" is not in L(M) if and only
if 51,1 -2, s1,1. Moreover, the only possible path which starts at s;; and which does not
lead to the sink § looks as follows:

511 2819 22,0 Omy g9y g9 92, Amyggy A, e Amigyy sy 92 Omg
We go along this path if and only if the input is (ay - - - a,)! = w'. Therefore, a word v € A"
is not in L(M) if and only if it is of the form w® which shows L(M) = A"\ {w'[i >1 }.

Moreover, M is a minimal DFA. Otherwise there would exist different states s1,s5 € S
with §(s1,v) € 8 <= 0(s2,v) € S’ for all v € A". Note that both states have to be different
from §, since 5 is an accepting sink and from all other states a rejecting state is reachable.
So it must be that s; = s; j and sy = sy . Let w; (respectively, w2) be a shortest nonempty
word such that s; 2L, — (respectively, so %2, —). It follows that s; 2%, 511 and sp “2, 511,
and wy,ws are the shortest such words. Observe that |wi| = (m+1—7)+ (I —1i)-|w| and
|lwa| = (m+1—4")4+ (I —17') - |w|. Furthermore, by assumption we have |w;| = |wz|. So we
obtain j +i - |w| = j + 1 - |w|. From 1 < j, ' < |w]| it follows that i = ¢’ and j = j” which
is a contradiction to the choice of s; ; and s, j. This shows that M is a minimal DFA.

So we have a minimal DFA M and aw € A" with s11 %, 591 %5+ 2, 59 2 513 for
different states s11,521,...,5;1. From Theorem 1.2 it follows that L(M) is not starfree.
Moreover, from L(M) C A" and FP(PZ) C SF we obtain that M has a pattern from PZ.
By definition there exist states s1,s2 € S, a word z € A" and some p € PZ such that

51,1 —> 51, Sl oo S2, 81—+ and s3-2,—.

Note that s; and sy are different from §, since rejecting states are reachable from both

states (e.g., the state §(s1,pz) = d(s2, 2)). So we have s = s;, j, and so = s, j, for suitable

11,72, J1, J2-

By the construction of M the following holds for any state s; ; € S and all v € A".
3(sij,v) # § if and only if v is a prefir of w; j =det AjAj41 - A - W, (3.4)

Now let » > 3. By Lemma 3.12, we have s; ™) s, and w(p,r) € PZ. Moreover, by

Proposition 3.7 we have 7(p,7), 7(p,r) € A" (here we need n > 1) and

(p,7) (p,r) (p,r)
T ' i T v '
51PN gy 51 T g 59 TN g

From (3.4) it follows that 7(p,r) is a prefix of w;, ;, and

— 0

Wiy .51 = (7T(p,7") )OO = Wiy ja -
Since 6(317 W(pa T)) = S2 we have wi1,j1 == TF(p, T') : wi2,j2' This ylelds wil,jl = 7['(p7 T') : wihjla
and we obtain

wir g = (m(p,7))™

From the definition of wj, j, it follows that w™ = u - w;, j, where u =qe¢r araz---aj,—1.

This shows w™ = u - (7(p,7))” which proves the first statement of this lemma.
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From our assumption and Lemma 3.22 it follows that the length of 7 (p, r) is a multiple
of |w|. Suppose now that the length of 7(p,r) is even a multiple of [ - |w|. Then from the
construction of M it follows that so = d(s1,7(p,7)) = s1. This is a contradiction to the
choice of s1,s9 and z such that s; £, + and s9 _2, —. This shows the second statement

of the lemma. O

In Theorem 1.2 starfree languages are characterized by permutationfree DFAs
where a permutation is a sequence of states such that for some word w we have
T g Yoo Yo Y. In Lemma 3.25 below we show an extension of this theo-
rem: One can restrict to permutations of the form r ;2,19 25+ 257 2, r1 where p is

an element of some pattern class that characterizes a class of starfree languages.

Lemma 3.25. Let M = (A, S, 6, s0,5") be a minimal DFA, T a class of initial patterns
andn > 1 with FP(PL) C SF. Then L(M) is not starfree if and only if there exist ap € PZ,

some l > 2 and distinct states r1,7r9,...,171 € S such that 11 J2s19 o2 Por 2ory.

Proof. The if-part follows from Theorem 1.2 and Proposition 3.7.2.

For the only-if-part let 7 =go¢ |[M] (if |[M] < 3 then set r =q4¢f 3) and assume that
L(M) is not starfree. By Lemma 3.23, there exist a w € A", some [ > 2 and distinct
states q1,q2,...,q € S such that (i) w™ # zv™ for all z,v € A" with |v| < |w| and
(i) ¢1 25 g0 s 2 q %5 1. By Lemma 3.24, there exists a p € PZ such that for
P’ =det m(p, ) it holds that (i) w>® = wu - (]7)00 for some u € A* and (ii) the length of p’ is

a multiple of |w|, but it is not a multiple of [ - |w|. Hence |p/| = m - |w| and p/ = wiw™ 1w,
for suitable m > 1, wy, wy € A" with w = wew; (note that m > 0 by Proposition 3.7.1).
Now we consider the following sequence of states (r;)i>1.
@ 22y Py Popg P
Suppose there is some i > 1 with r; = r;11, then for a suitable j’ it holds that
—i—1 (i
§(riywr) = 6(qr,wa - ()" wi) = 0(qr, w™ =D+ = qj-
Thus we obtain
(gjr, w™) = 8(ri, wiw™ twowr) = 8(ri, pPwr) = 8(rip1, w1) = d(ri,wr) = gjr.
Since the states q1, ..., q are pairwise different this implies that m is a multiple of [. From

|p'| = m - |w]| it follows that |p/| is a multiple of - |w|. This is a contradiction to the choice
of p and we conclude that r; # r;1q for all 7 > 1.

From the sequence (r;);>1 we choose an earliest rj such that there is some r; = r; with
1 < j. We have already seen that 7 —4 > 2. Thus we have found a list of j —¢ > 2 distinct
states r;y1,7i42,...,7; such that

/ / / /
Tiv1 Lo ripe Lo rips Lo Loy =rig.

From Lemma 3.12.4 it follows that

/ / / /

Tidt1 b Ti42 o> Tit3 o> * oo T = Ticp1.

This proves the only-if-part of the lemma. a
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The iteration rule I'T on the pattern side preserves the starfreeness of the characterized
language classes.

Lemma 3.26. If FP(P%Z) C SF for a class of initial patterns T and n > 1, then
FP(P;,,) CSF.

Proof. Let T be a class of initial patterns and n > 1 such that FP(P%) C SF. Moreover,
let M = (A4,8S,0,s0,5’) be a minimal DFA such that L(M) C A" is not starfree. We will
show that L(M) & FP(P} ;).

By Lemma 3.25, there exist a po € P?  some [ > 2 and distinct states r1,7rg,...,17 € S
such that r1 2% ro 20, ... 20y P9 r1. Now define p =gqef (p_o_ ,po) and observe that
p € P} ;. First of all we show that 71 & r;. From Proposition 3.7.2 it follows that

7y POy PO, POy POy
Hence r1 70, rl and r; 2%, r1. This shows that p appears at r1, and analogously we obtain
that p appears at r;. Moreover, from Proposition 3.7.2 it follows that pg appears at state
r;. Together with §(r1,Po' ') = 1 this shows 71 .2, ;. Analogously we obtain 7,41 -2 7;
for1<i<[]—1.

Since M is minimal, there exist 4,7 with 1 < i < j <[ and a word z € A" such that
§(ri,z) € §' <= 6(rj,2) ¢ S’. Since the states rq,...,r form a cycle, there exist also an
i with 1 < ¢ <[ such that 7,41 %, + and r; 2, — (we define 7741 =gef 71). Furthermore,
there exists an x € A" with 0(sg,x) = r;41. Since we have already seen that r; 1 o5 73, it
follows that M has a pattern from P} ;. This shows L(M) ¢ FP(P;,), and it follows
that FP(P},, ;) C SF. O

We state the main result of this section.

Theorem 3.27. For a class of initial patterns T and n > 1 the following holds.

JFP®]) CSF « FP(P;)CSF
>0

Proof. Let T be a class of initial patterns and n > 1. It suffices to show that FP(P%) C SF
implies FP(P7) C SF for all i > 0. By Lemma 3.26, this implication holds for all i > n.
If FP(PZ) C SF then also coFP(P;) C SF, since SF is closed under complementa-
tion. From Proposition 3.20.2 it follows that FP(P._;) C SF. If we use this argument
repeatedly, we obtain FP(PL) C SF = FP(P7) C SF for all 0 < i < n. 0

Remark 3.28. It is necessary that we assume n > 1 in Theorem 3.27. In fact, this
theorem does not hold for n = 0. To see this we consider a two letter alphabet A = {a, b}
and the class of initial patterns Z =g4cf {(€,¢), (¢,a), (g,b)}. With the help of the known
forbidden-pattern characterization for level 1/2 of the STH (cf. Figure 3.3) we observe
that FP(IP§) = L/ C SF. In contrast, we will see that ZP(PT)  SF. To see this we have
a look at the DFA M = (A4, S, 4, qo,S’) in Figure 3.7.

It is easy to see that M is a minimal DFA, and that it is not permutationfree. By
Theorem 1.2, this implies L(M) ¢ SF. It remains to show that L(M) € FP(P7]), i.e., we
have to see that M does not have a pattern from P7.
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@)
+

Fig. 3.7. A DFA M with L(M) € FP(P) \ SF for
I = {(67 6)7 (67 a)7 (57 b)}'

Assume that M has a pattern from P, i.e., there are states ¢’,¢”, words z,z and a
p € P such that

w-"4q, ¢ dd dZ+ and ¢ 2 -

Choose suitable w; € A" and p; € Z such that p = (wo,po,-- ., Wm,Pm). So we have
P = wo- wy and P° = wePo - - - WmPm- Note that ¢',q¢” € {qo, q1, 92,93}, since rejecting
states are reachable from ¢’ and ¢”. It follows that p and p° are alternating sequences of
letters a, b, since all other words lead to the sink g4.

Note that p; € {€,a,b} for all 0 < i < m, and assume that p; # ¢ for some 0 < j < m.
It follows that either p; is equal to the last letter of w; or it is equal to the first letter of
wj4+1. This is a contradiction to the fact that p is an alternating sequences of letters a, b.
It follows that p° = p - p,, where p,, € {a, b}, since p # p°. Without loss of generality we
assume that p,, = a. Hence 6(¢”,a) = §(¢',pa) = ¢, and it follows that §(¢’,a) = g4 and
5(¢",b) = q4. Therefore, at least one of the states ¢’ and ¢” does not have a p°-loop. This
is a contradiction to our assumption, and it follows that M does not have a pattern from
P{. This shows FP(P]) € SF.

Note that if some DFA has a pattern from P then there are states si,s2 and words
w, z such that sy — s1 %5 s9, s1 % + and s9 2, —. Hence we find states s/, s, on the
path s1 %, so and a letter ¢ € A such that s) <, s}, s§ 2, + and s, %, —. This shows
that FP(P§) C FP(PT). So we even obtain FP(P§) C SF and FP(P§) C FP(PT) £ SF.

3.6 Decidability of the Forbidden-Pattern Classes

In this section we treat the decidability aspects of the forbidden-pattern classes. It will turn
out that FP(PZ) is decidable in nondeterministic logarithmic space whenever a certain
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family of decision problems for the class of initial patterns Z (see Definition 3.30 for n = 0)
is decidable in these space bounds. This family consists of the following decision problems
for each constant k > 1: Decide on input of some DFA M, k states of M and k pairs
of states of M whether there is some p € T appearing at each of the given single states
and connecting each of the given pairs. Note that the decidability of the forbidden-pattern
classes has to depend on the class of initial patterns, since an undecidable set Z (which
can be easily constructed) leads to undecidable forbidden-pattern classes.

We start with the definition of two problems addressing the question of the existence
of paths and patterns that appear simultaneously in a given DFA. In the Lemmas 3.32
and 3.33 we investigate the decidability of these problems, and at the end this leads to a
decidability result for the forbidden-pattern classes (see Theorem 3.35).

Definition 3.29. Let k > 1. We define REACHy, to be the set of pairs (M, W) such that:

1. M= (A,8,0,s0,5") is a DFA
2. W CSxS with |[W| <k
3. There exists a word w € A" such that in M we have s “, t for all (s,t) € W.

Definition 3.30. Let 7 be a class of initial patterns, n > 0 and k > 1. We define
PATTERNik to be the set of all triples (M, Ty, Ts) such that the following holds:

1. M= (A4,8,0,s0,5") is a DFA

2. T1 g S with ‘Tl‘ S k

3. TQQSXSwith|T2|§k

4. There exists ap € PL such that p appears at s and q S 1 for all s € Ty and (q,r) € Ts.

Remark 3.31. We want to make precise how we think of a DFA as an input to a Turing
machine. Therefore, we give an explicit encoding as follows. Using the three-letter alphabet
{0, ], #} we want to encode a DFA M = (A, S, 4, s0,.5"). For this we fix arbitrary orderings
on the sets A, S and S’, such that we obtain A = {a1,...,a4/}, S = {s1,...,55/} (one
of them is the starting state sg) and S" = {s,..., S\IS'|}' Moreover, we identify elements
a; € A and s; € S with their index numbers ¢ and j. Now we can encode M in the
following way.

0141 2 oSl 2 gd(s1.01)) L d(sn.aia))|gd(s2.a1) || 0O(sis1a1a) g2 %0 %1 . .. %15
Lre | ’5 | |S/r

The sets W, S1, Se in the Definitions 3.29 and 3.30 are encoded analogous to S’ (we
encode a pair (¢,7) € S x S by 0°°151752)_ Taking the respective codes together (separated
by # signs), we obtain codes for (M, W) and (M, Sy, S3). It is easy to see that on input
of a word from {0, |,#}", we can check in deterministic logarithmic space whether this
word is a valid representation of a pair (M, W) (respectively, of a triple (M, S1,52)).
Therefore, in forthcoming investigation of algorithms we may assume that all inputs are
valid representations.

Lemma 3.32. For k > 1 we have REACH; € NL.
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Proof. We use a slight modification of the algorithm solving the graph accessibility prob-
lem. If |W| = 0 then we are done. Otherwise we assign the elements of W to program
variables s1,...,s; and t1,...,t; (some may take the same value if |W| < k). Now we
guess a word w € A" letter by letter, and we simultaneous follow the paths which start at
$1,...,Sk and which are labeled with w. Moreover, in each step we guess whether we have
already reached the end of w, and if so, we check whether s; = ¢; for all 1 <17 < k. O

We consider oracle machines working in nondeterministic logarithmic space which have
the following access to the oracle. The machine has a (read-only) input tape, a (write-only)
query tape and a (read-write) working tape which is bounded logarithmically in the input
size. Furthermore, from the moment where we write the first letter on the query tape, we
are not allowed to make nondeterministic branches until we ask the oracle. After doing
this we obtain the corresponding answer and the query tape is empty. Using this model,
introduced in [RST82], we can prove the following lemma. We assume that the machine
represents a single state of a DFA on its working tape in binary by the index number of
the state. Hence the space needed to do this is bounded logarithmically in the input size.

z
Lemma 3.33. LetZ be a class of initial patterns. Then PATTERNik € NLPATTERN 1) 55

for each n > 1 and each k > 1.

Proof. In Table 3.1 we describe a nondeterministic algorithm having access to a REACHyy,
oracle and to a PATTERN(In_l)ﬁ,c oracle. The notations in this table are adopted from the
Figures 3.8 and 3.9. We will show that this algorithm works in logarithmic space and
decides PATTERNik. By Lemma 3.32 we have REACH, € NL. Since the access to an NL

oracle does not rise the power of an NL machine, i.e., NLN* = NL [RST82, Sze87, Imm88],
we can go without the REACH,; oracle and obtain the desired algorithm.

First of all we want to observe that the algorithm accesses the oracle in the way as
described above. For this we only have to consider step 4. Since on the one hand we have
already computed the sets W, T] and Ty (they are stored on the working-tape) and on
the other hand M is stored on the input-tape, we can actually write down the queries
(M, W) and (M, T7,Ts) without making any nondeterministic branches.

Let us analyze the space on the working-tape which is needed on input (M, 77, T3). Note
that our program uses only a constant number of variables (this number can be bounded by
a function of O(k), and k is a constant). Moreover, all variables except T7, T4, W contain
index numbers of states of M, which can be stored in logarithmic space. Each of the
variables T7, Ty, W contains a set consisting of at most 4k (pairs of) index numbers of
states. Note also that we can produce the encoding of the queries as needed for the oracle
deterministically with a logarithmic space bound on the working-tape. This shows that
our algorithm works in logarithmic space.

In the remaining part of this proof we will show that our algorithm decides PATTERNi k-
First of all we want to see that the computation has an accepting path if (M, T},T5) €
PATTERN%JC. For this let p = (wo, po, - - -, Wi, Pm) € P be a witnessing pattern (see Defi-
nition 3.30.4). We denote the involved states of the appearance of p at s; as in Figure 3.8,
and we denote the involved states of the connection of g;,r; via p as in Figure 3.9. Now
consider that path of the computation where we carry out exactly m + 1 passes of the loop
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Fig. 3.8. Example for the appearance of a pattern at state s;.
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Fig. 3.9. Example for the connection of two states g;, r; via a pattern.
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Step, Command
Label
1. Let t1 = |T1‘, to = ‘T2| and let
Siy 5,75 such that Ty = {81, ey Stl}
and T = {(q1,71), -+, (Qtz, 7e2) }-
2. For 1 <i<t; and 1 <j <t let:
w;tart =g start | _ 4
i =S j =4y
5§tart =1 A;tart =g
3. loop: Guess states ¢;,1; for 1 < i < #,
states aj, B5,7;,05, A5 for 1 < j <t
and let:
T = {N[1<j<t}

Ty = {(d,)]|1<i<t; }U

{(es,B)1<j<t2}U

{('Yja Jv)|1<.]<t2}

{ @™, ¢)[1<i<t }U
{(B™ a;)[1<j<t }U
{8 y)|1<j<t }U
) [1<j <t}

4. Ask the following queries and reject
when a negative answer is given.

(M, W) € REACH4%
(M, T{,T3) € PATTERN(,, 1) g4

5. For 1 <i<t;and 1 <j <t let:
w;tart = wz /Bjs_tart = BJ
6;tart = )\jtart =)

6. Jump nondeterministically to loop

or to exit.

Accept if and only if the following
conditions hold for all 1 <4 < t; and
1< 5 < to:

Vi = 84

5j:Tj

7. exit:

Bj =4
)\j:Tj

Table 3.1. An algorithm which decides (M, Ty, T:) € PATTERN}, ; on input of a DFA M =
and sets 71 C S and T> C S x S with |T1|, |T2| < k.

Remark

Note that ¢1,t2 are bounded by the constant k. We
have to decide whether there is a p € P5 such that
(i) p appears at all s; (Figure 3.8) and (ii) all g;,r;
are connected via p (Figure 3.9).

Variables marked with ‘start’ contain the starting
point from where we have to guess and check the
next fragment of the pattern.

The guessed states correspond to Figures 3.8 and
3.9. In the I-th pass of this loop (starting with pass
0) the variables ¢;,i, «;, Bj,75,9;5,\; correspond
t0 Gi1y Wity 1, Bity Vil, 04,0, Aj,i (resp.). Moreover,
at the beginning of the [-th pass we have a cor-
respondence between 1/J“art,ﬁ;’ta” 5““ /\5tart and
Yiio1, Bpi—1,05-1, g1 (vesp.). Using T{ and T
we will ask the oracle whether there is a pattern p;
which connects (and appears at) the guessed states.
With W we will test the existence of a word w; (cf.
Figures 3.8 and 3.9).

If at least one negative answer is given then the
states guessed at the previous step do not corre-
spond to a pattern from PZ.

Here we set the next starting points.

Guess whether we have already checked the right
number of fragments of the pattern, i.e., whether
the number of passes equals m.

It remains to check whether the guessed loops have
reached their starting points, and whether the path
which was guessed via \; leads from ¢; to r;.

(A7 S7 67 50, S/)
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and where we guess the states ¢;, v, a1, 81,741,051, Aji at the beginning of the [-th
pass of the loop (starting with pass 0). It can be easily verified that this is an accepting
path.

Now suppose that the computation on input (M, T1,Ts) has accepting paths, and fix
one of them. Choose m such that on this path the loop is passed m + 1 times. Note that in
each pass of the loop we receive positive answers to the queries (M, W) € REACH4; and
(M, T}, Ty) € PATTERN(Znil)’sk (otherwise the fixed path would be rejecting). It follows
that for each pass [ there exists a word w; € A" witnessing (M, W) € REACHy, and there
exists a pattern p; € PZ_, witnessing (M, T],T3) € PATTERN(In_lmk. Now define p =gef
(W0, 0, - - -, W, Pm)- Using the states ¢; 1, i1, o1, B, V0,051, Aji which were guessed at
the beginning of the I-th pass of the loop, we can verify that (i) p appears at all s; € T}
and (ii) all ¢;,; with (g;,7;) € Ty are connected via p. O

Corollary 3.34. Let T be a class of initial patterns such that PATTERNgk € NL for all
k>1. Then PATTERNik € NL for each n > 0 and each k > 1.

Proof. We prove this by induction on n. The induction base is by assumption. The in-
duction step follows from Lemma 3.33 and the fact that NLNY = NL [RST82, Sze87,
Imm88]. O

Now it is easy to prove the main result of this section. It says that it can be efficiently
tested whether a DFA has a pattern from P} provided that efficient tests for the class
of initial patterns are available. In particular, for a suitable class of initial patterns 7
(i.e., Z satisfies the assumption of our theorem) this implies the efficient decidability of all
forbidden-pattern classes FP(PP%).

Theorem 3.35. Let Z be a class of initial patterns with PATTERNgyk € NL for each k > 1.
Then for a fited n > 0 it is decidable in nondeterministic logarithmic space whether a given
DFA has a pattern from P.

Proof. On input M = (A,S,d,50,5") we guess states s1,82,57,s7 € S and check
whether st € S and s ¢ S. Now we test (M,{(s0,s1)}) € REACH; and
(M, {(s1,5"),(s2,57)}) € REACHy which is possible in NL by Lemma 3.32. It remains
to check whether (M, 0, {(s1,s2)}) € PATTERN%}I which is also possible in NL by Corol-
lary 3.34. U

3.7 Consequences for Concatenation Hierarchies

In this section we consider two particular classes of initial patterns £ and B. We will see
that the emerging classes of languages are closely related to the DDH and the STH. In
particular we show the following for the classes FP(P%) and FP(P5).
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— Both form strict and decidable hierarchies which exhaust the class of starfree languages.

— They have the same inclusion structure as it is known from the concatenation hierarchies.

— They contain the level n41/2 and does not contain the level n+3/2 of the corresponding
concatenation hierarchy.

Moreover, in chapter 4 we show more similarities between these forbidden-pattern classes
and the concatenation hierarchies, namely that they coincide on some lower levels. We
start with the formal definition of the class of initial patterns £ and B.

Definition 3.36. We define the following classes of initial patterns.

L —def {E}XA*
B —def A+><A+

It is easy to see that £ and B are indeed classes of initial patterns.

3.7.1 Inclusion Relations between DDH, STH and Forbidden-Pattern Classes

First of all let us clarify the inclusion structure of the classes FP(P%) and FP(P2). In
Theorem 3.38 below we show that this is the same inclusion structure as in the case of
the concatenation hierarchies DDH and STH. In order to apply Proposition 3.18 we have
to show the following.

Lemma 3.37. It holds that P§ < P5, P§ < Pf, P§ <P} and P§ < Pf.

Proof. To see P§ <P5, let p1 = (v,w) € P§ = AT x A" and define ps = (¢, w). Obviously,
p2 € P§. Let M = (A, S,0,50,5") be a DFA and s,s1,s2 € S such that p; appears at
s and s1 2L, s9. Clearly, s _%, s, so also py appears at s. Moreover we have s1 %, s, so
s1 225 sp. This shows P§ < P§.

Now let p1 = (wo,pp, - - - Wm,Ppy) € Pf with w; € AT and p} = (I;,b;) € P§ for all
0 < i < m. Define ps =gef (P1°,P1). By Proposition 3.7.1 we have p; € AT x AT = P§.
Again, let M = (A, S, 6,s0,5") be a DFA and s, s1,s2 € S. First assume that p; appears
at s. By Proposition 3.7.3 we have d(s,p1°) = s, and hence also py appears at s. Now
suppose s1 L%, so. Since p; appears at s1 and at so, also py does so. Furthermore, s; g
by Proposition 3.7.2. So s1 22, s which shows Pf§ <Pf.

Analogously we prove P§ <Pf. Finally, taking together P§ <P§ and P§ <P we get
P§ <« Pf. O

Theorem 3.38. For n > 0 the following holds.

1. FP(Py) € FP(Py)

2. FP(Py) € FP(Pyriq)

3. FP(Py) UcoFP(Py) € FP(Pr, 1) NcoFP(P, 1)
4. FP(P;)UcoFP(Py) € FP(P; . ) NcoFP(Pr )

Proof. We have P§ <P§ and P§ <P{ by Lemma 3.37. By Proposition 3.18 this implies
Py, <Py and P; <Py, for all n > 0. Now Proposition 3.19 shows the statements 1 and
2. From Lemma 3.37 we also know P§ <P{ and P§ <4P;. Together with Theorem 3.21 we
get the remaining statements. a
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Note that these inclusion relations are similar to those of the concatenation hierarchies
(Propositions 2.3 and 2.4). However, the following theorem shows that the connections
between forbidden-pattern classes and classes of concatenation hierarchies are even closer.

Theorem 3.39. For n > 0 the following holds.

1. Lyi12 CFP(Py)
2. Bpy1y2 € FP(PY)

Proof. First of all we show that L/, C FP(Pg). For this let L be a regular language
such that L ¢ FP(P§). We will show that L ¢ L;/. By definition, the minimal DFA
M = (4,5,6,s0,5) with L(M) = L has a pattern from P§, i.e., there exist states s, s2,
words z, z and some p = (¢,w) € P§ such that

S0 Y581, Sl obsS2, S1 25+ and s9 Z,—.

So we have 2z € L, and from Definition 3.2 it follows that s; - so which implies zwz ¢ L.

Suppose L € Lo, this will lead to a contradiction. By definition, L is a finite union
of languages of the form A*agA*---a,, A* for alphabet letters a; € A. Since xzz € L,
there exist letters ag,...,a, € A such that xz € A*apA*---a, A* C L. This means that
there exits an increasing sequence of positions in the word xz where we find the letters
agp, - - .,y in this ordering. It follows that also the word xwz has this property. Thus
zwz € A*apA*---a, A* C L which is a contradiction, since we have already seen that
rwz ¢ L. This shows L ¢ Ly, and it follows £/, € FP(Pf).

Now let us show B; ;o € FP(Pf) where we proceed analogously to the proof above. Let
L be a regular language with L ¢ FP(P§), and let M = (A4, S, 4, so,S’) be the minimal
DFA with L(M) = L. By definition, M has a pattern from P§, i.e., there exist states
s1, S2, words z, z and some p = (v, w) € P§ such that

S0 Y581, Sl obsS2, S1 25+ and sg Z,—.
In particular we have s; -, s and there are v-loops at the states s; and so. It follows
that zv'z € L and zv'wv’z ¢ L for all 4, 7.
We assume that L € By, this will lead to a contradiction. By definition, L is a finite
union of languages of the form ugA*u; - - - A*u,, for words u; € A*. Since all words zv'z
are elements of L there exists some sufficiently large r > 2 such that

— 20"z € ugAtuy - - - Atu,, where ugATu; - ATu,, is an element of the finite union de-
scribing L and

— 20"z can be decomposed as zv"z = zv' - v/z such that 2v® € ugAtu;--- AT AT and
vz e Atu 1 Atu o - - ATy for a suitable [ > 0.

This is illustrated in Figure 3.10. Here we have zv°z € ugAtu; --- ATus and the arrow
marks the position where we have to decompose the word zv°z. On the one hand at this
position we find a border between two neighboring factors v, and on the other hand it
is located in an area that is assigned to some A™'. It follows that at this position we can
insert any word without leaving the language L. In particular this implieszviwv’z € L
which is a contradiction. This shows L ¢ By, and it follows B, 5 € FP(Pg).
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up At w1 At uz At u3 A+T us A+ us

Fig. 3.10. Decomposition of the word zv"z

Now we proceed by induction on n. So assume that we have shown the lemma for some
n > 0 and consider £,,,3/5. The induction hypothesis says that £,/ € FP(Py;) which
implies coL,,41/2 € coFP(Py). Together with Theorem 2.10 and the monotony of Pol we
get L, 43/ = Pol (coEnH /2) C Pol (coFP(P%)). Now we apply Theorem 3.16 and obtain
L3/ € FP(Pr ). Analogously we show B, 3/ € FP(P},4). 0

3.7.2 The Forbidden-Pattern Classes are Starfree

The forbidden-pattern hierarchies exhaust the class of starfree languages.
Theorem 3.40. It holds that | J,,~o FP(P;) = U, FP(P;) = SF.
Proof. From the Theorems 2.5, 3.39 and 3.38 we get

SF = | J Bysre € |J FP®E) = | FP(PE).

n>0 n>0 n>0

So it remains to show that

| FP(®;) C SF.

n>0
By Theorem 3.27 it suffices to show FP(P{) C SF. Let L be a regular language that is
not starfree, we will show that L ¢ FP(Pf). We denote by M the minimal DFA with
L(M) = L. By Theorem 1.2 we know that M is not permutationfree, i.e., there exist a
word w € AT, some | > 2 and distinct states r1,79,...,7; € S such that

7“1_>w 7"2_>w "'_>w 7"1_>w ri.

Since M is minimal there exist a word z and states r;, 7; from this cycle such that r; =, +
and r; 2, —. Since the states r1,...,r; form a cycle, there exists a & with 1 < k <[ such
that 7, 2, 4+ and 7,11 25 — (we define r;31 =gef 71). Without loss of generality we may
assume that k =1, i.e.,, 1y 25+ and ro -2, — (otherwise we rename the states).

Let po =det (€, w' ™), p =gef (w,po) and observe that pg € P5 and p € P§. We want to
show r1 42, ry. For this observe that

rYorg 20 r; and 7o %13 PO .

It follows that p appears at r1 and at ro. Moreover, 1 5 7o and po appears at 7o (since
r9 =, 19). This shows 1 .2, re and it follows that M has a pattern from Pf. This implies

L ¢ FP(P{) which shows FP(P{) C SF. 0
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3.7.3 The Hierarchies of Forbidden-Pattern Classes are Strict

We want to show the strictness of the two hierarchies {FP(P2)} and {FP(PZ)} in a
certain way, namely we take witnessing languages from [Tho84| that were used there to
separate the classes of the DDH. As remarked in [Tho84], these languages can also be used
to show that the STH is strict. A first proof of strictness was given in [BK78] using similar
languages. We could also do our separation here with these languages, but to facilitate
the exposition we stick to [Tho84] since there the DDH was defined exactly as we did here
(namely, not taking € into account).

We assume in this subsection that A = {a,b}. In Theorem 3.44 we will separate the
instances of the forbidden-pattern hierarchies defined for this alphabet. In Remark 3.45
below we show that this separation can be extended to the general case.

We start with the definition of a particular family of languages of AT from [Tho84].
Denote for w € A" by |w|, (respectively, |w|,) the number of occurrences of a (respectively,
b) in w. Now define for n > 1 the language L, to be the set of words w € A" such that
|w]q — |w|p = n and for every prefix v of w it holds that 0 < (Jv|, — |v[p) < n. It was shown
in [Tho84] that (i) L,, € By, for n > 1 and (ii) L,, ¢ By,—1 for n > 2 (there these languages
were denoted as L;). Moreover, it is easy to see that for the DFA given in Figure 3.11 it
holds that L, = L(M,).

a a a a
47@47@? 7774()—@
b a

Fig. 3.11. DFA M, where 7, is the only accepting state. It holds that L(My) = L.

Lemma 3.41 ([Tho84]). Let n > 1. Then L, € B,.

If we consider the states rg,r1,...,r, in Figure 3.11 then we see the structure in the
transition graph of M,, that is responsible for counting the difference between the numbers
of a’s and b’s that have occurred so far. We start our observations with a technical lemma
which says that we find patterns from P~ _; in this structure. In the following we will use

a . .
q <_7 r as an abbreviation for ¢ _%, r and r _%. ¢.

Lemma 3.42. For each n > 2 there exist patterns p,p’ € P5_, such that for every DFA
M= (A,85,0,s0,5") and all states ro,...,r, € S with 1o %rl % e #Tn it holds that

/
T0 woms 71 ANA T1 ohes T
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Proof. We show the lemma by induction on n. For the induction base let n = 2 and define
p —def <a7p0) a‘nd p/ —def <ab7p67 bvp{[) Wlth pO —def (87 b>7 p6 —def (67 a’) and pll —def (€76)'
Obviously, po, p; and p} are elements of P§, and it follows that p,p’ € Pf.

Let M = (A, S,6,s0,5") be a DFA and let rg, 71,72 be states of M such that

a a
0 (—T 71 <_T> 9.

Then it holds that
ro 2511 L2 ro, T1-%sre By and 1o 257y,

Since pg appears at r1 this shows that rg £ r1. Furthermore, we observe

r1 2y Koy by Blory, mg g Bory brg Brg and o 20 bl
Together with the facts that p{, appears at 71 and p} appears at r¢ it follows that 7 Uﬁ:ﬁ Q.
This shows the induction base.

Now we assume that there exist p,p’ € P£_; for some n > 2 having the properties
stated in the lemma and we want to show the lemma for n + 1. Define p =4¢¢ (a,p’) and
P =det (ab, p, b, A(p)). Since A\(p) € P~_, by Lemma 3.9 we have p,p’ € P£.

Suppose we are given a DFA M = (A4, S, 6, s0,5") and states r9,71,...,7+1 € S with

a a a
RN
If we apply the induction hypothesis to the states r¢,...,r, and also to the states
T1,..., n+1 We obtain

P i p v
0 voo> T'1,5 1 woo> 70, 1 voo> T2 and T2 w0 T'1- (35)

It follows that p appears at rg and at 7. From Lemma 3.9 we obtain
ro 2P ro and 28y (3.6)

Let us verify that rg .2, r1. Since rg —%,r1 and 71 1,{';/,_mo by (3.5), we get that p appears
at ro. Similarly, we get that p appears at r;. Moreover, g —%, 1 and p’ appears at r; by
(3.5). It follows that ro o2 7.

Now we want so see that 71 .2, 9. From (3.5) and (3.6) we get that p’ appears at
because

LS SUSLIE
Similarly, we get that p’ appears at 9. Moreover, we have r; %%, 71 %, rq. Finally we
obtain r; £, 79, since p appears at r1 by (3.5) and A(p) appears at r¢ by (3.6). O

From Lemma 3.42 we know that patterns from P5_; appear at certain states in Fig-
ure 3.11. Now we exploit this to find states in M,, that are connected via a pattern from
P~. This allows to show that M,, has a pattern from P%, i.e., L, ¢ FP(P%).
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Lemma 3.43. For n > 1 it holds that L, ¢ FP(P%).

Proof. Let n = 1. Then we have to show that M; has a pattern from P;. For this we
define p =qef (ab, po, b, p1) with po =get (£, a) and p; =get (€, €). Note that p € Pf. Now we
observe that
ro g PO ey Plirg, 1T T PO pm b T Tﬁ;l)_,r* and 79 - g L.

Together with the facts that pg appears at rg and p; appears at v~ it follows that 7o .2 7.
Since 19 —%, + and r~ %, — we obtain that M; has a pattern from P{.

Now let n > 2. Then we have to show that M, has a pattern from P%. By Lemma 3.42
there exists a pattern p € P~_; such that rg mﬁﬁ r1. Note that we have also r~ vffﬁ 7~ since
it holds that

_ a _a a _
ro—r <_T>---<_7r .

Now define p =q¢t (ab, p, b, A\(p)). Then p € P~ and we will show that rg 2. r~. Note
that p appears at 1o and at r~. So we have by Lemma 3.9 that
A(B) - @) ,.—

70 ooms o and 1T SoAT .

Hence p appears at rg and at r~ because

ab b (D)

o 22510 oo —2s 1 aed g and 1T W T PopT Oy

ab D b — A(P) ,.—
woor I -

Moreover, we have ro 2%, ro %, 7=, and we know that p appears at rg, and A\(p) appears
at 7. This shows ry -2, r~. Finally, from 79 %", + and r— 2", — it follows that M,, has
a pattern from P%. O

Taking together the Lemmas 3.41 and 3.43 we see that L,, separates B,, and FP(P5).
So we obtain the following theorem.

Theorem 3.44. Let n > 1. Then the following holds.

1. L, € B, \ FP(P%) and B, £ FP(P%)
2. fP(Pﬁq) - ]:P(]P)ﬁ) and Bn+1/2 < }-,P(ngl)
8. FP(Pr_y) S FP(PR) and Ly 1172 € FP(Pr_y)

Proof. From the Lemmas 3.41 and 3.43 we obtain statement 1. By Theorem 3.39.2 it
follows that L,, € FP(PE)\ FP(P%). By Theorem 3.38.2 we have FP(P5_,) C FP(P%).
This implies L, € FP(PE) \ FP(P5_;) which in turn shows FP(P:5_,) € FP(P%) by
Theorem 3.38.4. Now from L, € B, C B, 15 we get L, € B,ii/5 \ FP(P;_;) and
By t1/2 € FP(P;_). This shows statement 2.

For the proof of statement 3 we have to distinguish between n = 1 and n > 2. First of all
we consider the case n > 2. From statement 1 of this theorem we know that L,,—; € B,_1\
FP(Py,_y) (here we need the assumption n > 2). Since B,—1 € L, € L4172 € FP(Pr) (by
Theorem 3.39.1) we obtain Ly, —1 € Ly, 112\ FP(P;_;) and L, 1 € FP(P;) \ FP(P;_,).
This shows statement 3 for n > 2.
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{a, b}

{a, b} {a, b}
(@) —=@)—=@)

Fig. 3.12. DFA M with initial state qo and accepting state ¢ .
It holds that L(M) € B2 \ FP(PF)

Finally we have to prove statement 3 for n = 1. By Theorem 3.39.1 it suffices to
construct a language L € L35 \ FP(Pg). For this we consider the DFA M given in
Figure 3.12. The language accepted by M is L(M) = {a,b} which is in By, C L3
Moreover, for p =gef (€, a) we have

90 -2q1, Qobeq, @ -5+ and g S5 —.

Therefore, M has a pattern from P§ which shows that L ¢ FP(P§). This proves state-
ment 3 for the case n = 1. O

Remark 3.45. Suppose we deal with some alphabet A such that |A| > 2, e.g., A =
{a,b,c1,- - ,cn} for some n > 1. If we define M,, such that (s,¢;) =r~ for 1 <i <n and
for all s € S, we still find the desired patterns and we can show Lemma 3.43. This
means on the language side that we intersect the expressions for L, with {a,b}*t =
AT\ U <jcn A*ciA™ € coByjp. The latter does not increase the dot-depth since L, € By,
which is a Boolean algebra that contains coB ,. Together this allows to prove Theo-
rem 3.44 also in case of a larger alphabet.

3.7.4 The Classes FP(P;) and FP(P:) are Decidable

Next we see that our forbidden-pattern hierarchies structure the class of starfree languages
in a decidable way. Moreover, we can determine the membership to a hierarchy class even
in an efficient way.

Theorem 3.46. Fiz some n > 0. On input of a DFA M it is decidable in nondetermin-
istic logarithmic space whether L(M) is in FP(PE) (respectively, FP(P%)).

Proof. It holds that PATTERN& k> PATTERNS i € NL for each £ > 1. To see this observe
that due to the definition of the classes of initial patterns the problems PATTERN& . and

PATTERNS i are just reachability problems very similar to REACHy, which can be solved
in NL (see Lemma 3.32). Now the theorem follows from Theorem 3.35. 0

Since membership to SF is decidable, this yields an algorithm to determine the minimal
n such that L(M) is in FP(PE) (respectively, FP(Ps)). Moreover, note that although the
single classes FP(P%) and FP(PF) are decidable in NL, the decision problem for SF is
known to be PSPACE-complete [CH91].
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3.7.5 Lower Bounds for the Dot-Depth Problem

We summarize the inclusion structure of concatenation hierarchies and forbidden-pattern
hierarchies in Figure 3.13 where inclusions hold from bottom to top. Observe the struc-
tural similarities of these hierarchies. In fact we will specify the picture in chapter 4 (cf.
Figure 4.7), i.e., we will show that the levels 0 and 1 of the forbidden-pattern hierarchies
coincide with the levels 1/2 and 3/2 of the respective concatenation hierarchies. Moreover,
one can show that even L5/, = FP(P3) if we consider a two-letter alphabet [GS00D].

//\

star-free

L2

Fig. 3.13. Concatenation hierarchies and forbidden-pattern hierarchies

In fact, the inclusion B,, 1/, € FP(PP};) establishes a lower bound algorithm for the dot-
depth of a given language. This follows from the fact that we can determine the minimal
n such that a given language is in FP(P%). Moreover, if we look at the Theorems 3.44.2
and 3.39.2 we see that the pattern class FP(PE) captures B, 1 2 but not B, 3/5. This
indicates that the forbidden-pattern classes are not ‘too big’.

3.8 Summary and Discussion

We started this chapter with some observations of regularities in known forbidden-pattern
characterizations for concatenation hierarchies. From this we derived an iteration rule IT
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which led to hierarchies of pattern classes. Then we considered the classes of languages
being accepted by DFAs that does not have the patterns from these classes.

In Theorem 3.16 we compared the polynomial closure operation (which is used in the
definition of concatenation hierarchies) with our iteration rule IT (which provides decidable
classes of languages). Note that our result Pol (coFP(P})) € FP(P;, ) generalizes the
usually easier to prove inclusion in forbidden-pattern characterizations, and of course we
are interested in the reverse inclusion.

So far we were able to prove that the classes FP(P5) and FP(P%) form strict and
decidable hierarchies exhausting the class of starfree languages. Moreover, these classes
contain the respective levels of the STH and DDH, the emerging hierarchies show the
same inclusion structure as it is known from concatenation hierarchies, and we gave some
evidence that our pattern classes are not ‘too big’.

In the next chapter we show that for some lower levels the forbidden-pattern classes
coincide with the classes of concatenation hierarchies. In particular we obtain a forbidden-
pattern characterization for level 3/2 of the DDH.



4. Decidability Results for the DDH and STH

The classes of the DDH and STH formalize the famous dot-depth problem in terms of
the decidability of their membership problems. In the last 30 years it turned out that
these decidability questions are extremely difficult. So up to now, only some lower levels
of both hierarchies are known to be decidable. In this chapter we restrict ourselves to levels
n+1/2 and we (re)prove decidability results for these levels. More precisely, we prove the
decidability—in terms of forbidden-pattern characterizations—of the levels 1/2 and 3/2
of both hierarchies. Furthermore, we also show the decidability of the Boolean hierarchies
over the levels 1/2 of the STH and DDH.

To obtain these results we use a technique which is based on word extensions. Their
definitions depend on the considered level (in our case 1/2 or 3/2), on a parameter k > 0
and on a DFA M. With this technique it is possible to treat the classes Ly/9, By/a, L3/2
and Bsp in a very similar way. Moreover, the word extensions for the levels 1 /2 can be
used to prove the decidability of the corresponding Boolean hierarchies.

O 10_©

voor
O ©

Fig. 4.1. General structure of forbidden-patterns.

In Figure 4.1 we recall the general structure of forbidden-patterns from chapter 3. In a
sense, our word extensions are based on such forbidden-patterns. By their construction it
is ensured that a word w can only be extended in the following special way: If we consider
the path in a DFA induced by w then we may extend this word only at positions where
we have reached a state similar to s;, and we may insert only such words that lead to a
state similar to s3. We will exploit this connection between patterns and word extensions
in the following proofs.

At this point we want to make a remark concerning our notations: < will denote the
extensions that correspond to level 1/2, and <} will denote the extensions that correspond
to level 3/2. In this notation we use 0 instead of 1/2 and 1 instead of 3/2 because we want
to emphasize on the connection between the word extensions and the forbidden-pattern
classes. Later we will see that By, = FP(P§) and Bz, = FP(PF). This means that <t
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corresponds to FP(P§) and < corresponds to FP(P¥). Throughout this chapter we treat
the DDH and the STH in parallel, i.e., all theorems will be proved for both hierarchies.

4.1 The Levels 1/2

Here we consider the levels 1/2 of the DDH and STH, and we prove effective forbidden-
pattern characterizations for them. These results were first shown in [Arf91, PW97]. How-
ever, for reasons of methodology we give reproofs that use the technique of word exten-
sions. In section 4.3 we apply the same technique to the levels 3/2, and we obtain effective
forbidden-pattern characterizations for these levels.

We start with the definition of the word extensions <% which can be also considered
as binary, reflexive, transitive and antisymmetric relations on the set of words. Then in
subsection 4.1.2 we show that the <% upward closure of a nonempty word (in other words,
the <}t co-ideal generated by a nonempty word) is in B; /2 In subsection 4.1.3 we prove
that the set of words together with <}/ is a well partial ordered set. In particular, all <
co-ideals are finitely generated. Together with the result of subsection 4.1.2 this implies
that <}/ co-ideals are in By /2. Finally, we show that languages from the forbidden-pattern
class FP(P§) are <3 co-ideals, and therefore we obtain FP(P§) C By o. Since the reverse
inclusion is known from the pattern theory in chapter 3, we obtain the effective forbidden-
pattern characterization FP(P§) = By /o which shows that the membership problem for
By /5 is decidable in nondeterministic logarithmic space. We show analogous results for the
STH.

4.1.1 Definition of <%¥ Word Extensions

In section 1.4 we introduced <%* word extensions. By their definition they are such that
some factor is inserted at a certain position in the initial word. Here “certain position”
means a position where the word v appears. Therefore, this word v is also called a context
word. In this subsection we introduce =<}; extensions. They are defined in such a way
that <% y means that the word y results from the word z by a sequence of extensions
<5 <ury...,<4F. Here it is important that we do not fix the context word but we allow
several words vg,v1, ..., vn. However, only context words of a certain length are allowed.
Therefore, we define the set of possible context words.

Definition 4.1. For a DFA M and k > 0 let Wy =qet A* be the set of context words.

Actually the definition of W{;* does not depend on the DFA M, i.e., Wy) = WYy for
all DFAs M1, Ms. However, we use the notation above in order to stress the similarities
in the approaches for the levels 1/2 and 3/2 (in section 4.3 we will see that for level 3/2
the set of context words depends on the DFA). Now we define <} extensions as sequences
of <%* extensions with v € Wi

Definition 4.2. Let M be a DFA, k> 0 and y,y’ € A".

y 20y <=>der there exist an m > 0, words xg, ..., xm € A and vy, ... vy, € Wi
such that y = xg <?Jf 1 <?J: e <R gy, = Y
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From this definition it follows that <} is reflexive, transitive and antisymmetric. We
have already seen that the set of context words W, does not depend on the DFA M.
This carries over to <% extensions.

Proposition 4.3. For k > 0, DFAs My, My and y,y € A* it holds that

/ /
y = ¥V =y, Y-

Proof. This follows from Definition 4.2 and the fact that WYy = Wiy = A, 0

Next we prove some basic facts about <3;. In particular we show that <} are stable
word extensions which preserve the k-prefix and the k-suffix.

Proposition 4.4. Let M be a DFA, k >0, v € Wy and w,w’ € A*. Then the following
holds.

1. If w = w' then pr(w) = pr(w’) and sp(w) = sp(w').
2. If w < w' then xwz <3F xw'z for all x,z € A*.
8. Ifv <3 w then v =w or v <°F w.

Proof. Trivially, if w = w’ then the statements 1 and 2 hold. If w # w’ then by definition
there exist an m > 1, words xq, ..., 2, € A" and v1,...,v, € Wy such that w = <?Jf
1 <Ov§ oo <* gy, = w'. The statements 1 and 2 follow from Proposition 1.19 since
|vi| =k for 1 <i <m.

For statement 3 assume that v <% w. If v = w then we are done. Otherwise, statement 1
and Definition 4.2 imply that w € vA*>¥+1y. This shows v <%* w. 0

Proposition 4.5. Let M be a DFA, k > 0 and y1,y2, 2 € A" with y1yo =Xi z. Then there
exist words z1, 29 € A® such that z = 2122, |y1| < |21] and ya <% 22.

Proof. By Definition 4.2 it suffices to show the proposition for <%*. The following claim
achieves this.

Claim. Let yi, 40,2 € A" and v € A* with 11y <®* z. Then there exist words z1,zy € A*
with z = z1z9 and |y1| < |z1| such that either yo = zo or yo <°F 2.

For y =qef y1y2 there exist words 3,75 € A* and u € A*=*! such that y = y|vy, and
z = yjvuvy). Now we compare the decompositions y = y1y2 and y = yjvyh.

If yo is a suffix of vy} (i.e., |y2| < |vyh|) then there exists some w € A with vy}, = wys.
It follows that y; = yjw. Therefore, with 21 =gef yjvuw and zo =ge Y2 We obtain z = 2129,
[21] > |y1w] = |y1] and y2 = zo.

If y5 is not a suffix of vyh (i.e., |y2| > |vyh|) then yo = wovy) for some w € A™. It follows
that y] = yiw. With 21 =ger y1 and 29 =ger wouvyh we get z = 2129 and |z1] = |y1].
Moreover, it holds that yo = wvyh <%F wouvylh = zs. O
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4.1.2 The <% Upward Closure of a Word

For a nonempty word y we want to show that the <} upward closure of y is in £; /25
and that the <% upward closure of y is in B; 2 for k > 0. The idea is similar to that
in subsection 1.4.3 where we considered the <!* upward closure of nonempty words: If
y =X ¢/ then by definition ¢/ emerges from y by a sequence of <%* extensions. Remember
that a single <% extension is such that a given word is modified by inserting some letters
at exactly one position in this word. The following lemma shows that in the sequence
leading from y to 3’ one can trace back these positions. This yields a list of positions in ¥y
that can be used to transform y into ¢’ in a single step (where <°* extensions are carried
out, in parallel, at several positions in y). Since the number of these positions is < |y| + 1
there exists a sequence of length < |y| 4+ 1 leading from y to y’. At the end this will show
<y>j?\’/? € Ly and <y>ﬁ§’f € Byja.

Note that the following lemma also shows a possibility to define <} extensions directly,
i.e., without using <%" chains. The proof below is an adapted version of the proof of
Lemma 1.26 where we showed a similar result for <)* extensions.

Lemma 4.6. For every DFA M, k>0 and y € A" it holds that

() or =1y} U Uwlt,pr+#]- ADH; iy[Ph p2 + k|- A*>k+1ky1[102, 3+ k] (4.1)
A=t y[pm 1>pm+k] ARt [pm7|y‘+1]

where the union ranges over all m > 1 and all positions 1 <p; < -+ < ppy < |y| — k + 1.

Proof. The following picture illustrates the idea of the union in the lemma. It shows the
factors that emerge when we consider the positions py, ps, ..., p7 in y. The upper part of the
picture shows the blocks of length k that have to be doubled when making <%* extensions
at the positions p;. In the lower part we see the factors of y that remain connected. Note
that in the lower part, neighboring factors overlap in exactly k letters.

ylpr,pr + k
l y[p67p6+]ﬂ_,
[ylps,ps + K] |
[ y[pa, ps + K] |
[ ylps, ps + K] |
[ ylp2,p2 + K] |
| [wlpr.pr + R[] |y
\ \ { { { { { |
p1 D2 D3 yZ D5 Pe b7
l y[Lpl +k] ‘
y[p1,p2 + K] |
y[p2, ps + K] |
l y[ps, ps + K] |
ylpa,ps + K |
l y[ps, ps + K] |
y[p67p7+k]

|
y[p7, |y‘ + 1]
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In the proof we denote the right-hand side of (4.1) by L. At first we show (y) _ox C L.
M
For this we assume that (y)_ox € L, this will lead to a contradiction. Since at least y is
M

in L, there exist words w,w’ € A* and v € Wy{" such that w € L, w’ ¢ L and w <%* w'.
Hence there exist words z, z € A* and u € A*>**1 such that w = zvz and W' = zvuvz.

If w = y then with p; =qef || + 1 we obtain y[1,p; + k| = zv and y[p1, ly| + 1] = vz.
Therefore, we get w' € y[l,p1 + k] - A= ylpy, Jy| + 1] € L which contradicts our
assumption.

Assume now w # y. Then there exist an m > 1, positions 1 < p; < -+ < pp, < |y|—k+1
and words w1, ..., um € A*2**1 such that

w = y[1,p1 + k] -u1 - ylp1, pa + k] -uz - ylp2, p3 + K] - -t - ylpm, [yl +1] - (4.2)
~N~ ~\~ ~~ S—
Vo=def V1=def V2=def Um=def

For 0 < i < m define v; as above and note that |v;| > k (for 1 <i < m — 1 it even holds
that |v;| > k +1). Now we compare the decompositions (4.2) and w = zvz.

Case 1: Assume that the factor v of the decomposition w = zvz is contained in some
factor sx(v;)-wit1-pr(viy1) of the decomposition (4.2). Then we have the following situation.

| | v |

|
‘ ‘ 5k(vs) r(vit1) ‘ ‘ w

VoUL * - Vi—1Us Vi Uit1 Vi1 Ui42 ** * UmUm
| | o BRI | i
‘ ‘ 5k(vi) Pr(Vit1) ‘ ‘
VoUl - Vi—1U; Vs Vi+1 Ui+2 " UmUm
/ —
U =def

Define u' as in the picture above and observe that w' = wvouivy - - w0 Vi1 * * + Uy V.-
Since |u'| > k41 we get

w' e Z/[lapl + k] - AR 'y[Pl,P2 + k?] C AR y[P27P3 + k] S AR '?J[Pm, |y\ + 1]~

This contradicts our assumption w’ ¢ L.

Case 2: Assume now that the factor v of the decomposition w = xvz is not contained
in some factor sx(v;)-w;+1-Pr(vit1) of the decomposition (4.2). Since all sx(v;)-wit1-Pr(vit1)
are longer than k = |v|, it must be that one of the following subcases occurs.

Case 2a: v is contained in some factor A 1v; A1 for 1 <i<m —1

Case 2b: v is contained in vgA™!

Case 2¢: v is contained in A v,

We will only treat Case 2a, the other cases are analogous. Hence our current situation is
as follows.
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' =dof 2" =der
—N—
| o ] | |
‘ 1(vi) 1(V4 ‘
VoUl - Vi—1U; (% Ui+1*  UmUm
P =det pi + ||
| v u [ i
‘ 1(vi) 1(vi) \
VoU1 - - Vi—1U; Ui+1 * " UmUm

Define p’ as in the picture. Since z’, 2’ are nonempty we have 1 < |2/| < |v;|—k—1. Together
with |v;| = pi+1 — pi + k this implies 1 < |2/| < p;+1 — p; — 1, and therefore p; < p’ < piy1.
We obtain y[p',p’ + k] = v because v; = y[pi, pi+1 + k] and v;[|2'| + 1, |2'| + 1 + k] = v.
Now consider the term of the union in L that takes the positions

L<pr <+ <pi <p <pip1 <+ <pm <yl =k +1
into account. Since y[p;, p’ + k] = 2’v and y[p, pi+1 + k] = vz’ this term is equal to

L/ =def V0 - Yoa vy - AR Vi1 AL AR gL Vi1

. A*2k+1 Vjgo A*szrl - U

Since w' = vouiviug - Vi_1U; - TV U V2 U1V U2V 12 U Uy We get w' € L C L
which contradicts our assumption.

So in all considered cases we get contradictions. Therefore, our assumption was false
and it follows that (y) 0k C L. So we have shown that the left-hand side is a subset of the

right-hand side in (4.1)

We turn to the proof of the reverse inclusion. Clearly, it holds that (y) o+ 2 {y}. So let
—M

m > 1 and choose positions 1 < p; < -+ < py, < |ly| — k + 1. In order to show ¢/ € <y>j§)\,/;f

for all 4/ € L\ {y} we choose arbitrary uy, ..., u, € A=**1 and let
Y =daet Y[1, p1+E]-ur-y[p1, p2+k]-uz-y[p2, p3+k| - thm—1-Y[Pm—1, Pm K]ty [P, [y|+1].
Since y = y[1, pm] - Y[pm, |y + 1] we get y <% yp, for vm =der Pr(Y[Pm, |y + 1]) and

Ym =def Y[1, Pm] - Um * tm - y[Pm, [y + 1.

Since y,, can also be written as ym = y[1, Dm-1] - Y[Pm—1, Pm + k] - Um - Y[Pm, |y| + 1] we
obtain ym, <% Ym—1 for vm_1 =det PHY[Pm—1,Pm + k]) and

Ym—1 =def y[me—l] *Um—1 " Um—1" y[pm—hpm + k] *Um - y[pmv ‘y’ + 1]'
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We continue this argumentation until we obtain yo <3* y1 for v1 =qer Pr(y[p1,p2 + k]) and

Y1 =def Y[1, p1)-v1-u1-y[p1, p2+k|-uz-y[p2, p3+k] - - - m—1-Y[Pm—1, P+ K]ty [P |y +1].

Since y[1,p1] - v1 = y[l,p1 + k] we have y1 = ¢ and y <F ypm <38 o <Pyp Py

This shows y' € (y)_ox and it follows that in (4.1) the right-hand side is a subset of the
M

left-hand side. O

With the decomposition of Lemma 4.6 at hand we can prove that the <% upward
closure of a nonempty word is in By o (respectively, Ly, for k = 0).

Theorem 4.7. Let M = (A, S, 6, s0,S5") be a DFA and k > 0. Then for all y € A" it holds
that <y>ﬁ?\}? € Ly, and <y><?\ff € By s

Proof. Let y € A", n =qet |y| and n’ =4t |y| —k+1. Apply Lemma 4.6 and observe that (i)
the union there is finite and (ii) A*>¥*1 can be written as the (finite) union of all wA" for
w € A*. Hence (y) _ox \ {y} is a finite union of languages of the form ugAu; - - - A" uy, for

M
n>1and u; € A". Since n > 1 and A" = (J,.4({a} UaA") this can be easily transformed
to a finite union of languages of the form ugA*u; --- A*u, for n > 0 and u; € A". This
shows that (y) _ox € By /a.
Y

Now we consider the case k = 0 and set n =gef |y|. Lemma 4.6 says that

W) oo = {y} UJylL.pa] - A7 ylprpo] - A ylpa. ps] - A ylpm, n+ 1]

where the union ranges over all m > 1 and all positions 1 < p; < --- < py, < n—+1.In
other words, with the p; we guess the positions in y where we insert one or more letters,
and at all other positions we insert zero letters. This is equivalent to inserting words from
A" at all possible positions (i.e., m =get 7 + 1,01 =det 1,02 =def 2., Pm =det M). It
follows that

(y) o =y[1,1]-A"-y[1,2]- A" - y[2,3] .- A - y[n—Ln] - A yln,n+ 1A - yn+1,n+1].
—M N—— R e ——

=€ =€

This shows <y><9v(l) € Ly O

4.1.3 X0¢ Co-Ideals are Finitely Generated

In this subsection we show a fundamental property of <\t: The set of words together
with <%/ is a well partial ordered set. In particular this means that all < co-ideals are
finitely generated. The proof we give below is based on an idea from [SS83] where the
usual subword relation < is considered.

We show here that in A* there exists neither an infinite strictly descending <% chain,
nor an infinite set of pairwise incomparable elements with respect to <\r. In case k = 0
we encounter the subword relation < (also called division ordering) with its fundamental
theorem from Higman [Hig52].
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Theorem 4.8. Let M be a DFA and k > 0. It holds that (A", <y) is a wpos.

Proof. For words x,y € A* define < y if and only if y = 3192 and x <0 y» for suitable
y1 € AZHFLY (e} and yo € A*. Observe that <3F is reflexive and that <0F is a refinement
of <. Now let us see that <} is even transitive. Let z,y,z € A" with <}y y and
y <¥¥ 2. Hence we can choose y1,21 € A2 U {e} and vy, 25 € A* such that y = y1y0,
2= 2129, % =y y2 and y jﬁ,’f z2. We apply Proposition 4.5 to 4192 jﬁ,’f 29 and obtain words
291,222 € A" such that 20 = 291202, |y1]| < |221] and y2 <0f 22.9. Hence, for 2} =gef 21221
and 2}, =qer 22,2 We get z = 2125, [y1] < |21| and @ {7 yo <07 2. I 2] € A*szﬂu{a} then
o <}y z and we are done. Otherwise we have 1 < |2}| < 2k and it follows that |2;| < 2k and
|z2,1] < 2k. Since |y1]| < |22,1| we have also |y;| < 2k. Together with y;, 2 € Arz2htL {e}
this implies y; = 21 = e. Finally, from = =<3 y2 and y <3 22 we obtain = <\ y and
y =¥ 2. This shows & <3/ z and we conclude x <%} z. This proves that <}/ is transitive.
Next we want to observe the following facts about <.

1. If z <CF y for some x,y € A* then z <4F wy for all w € A=+,
2. If x <} y for some x,y € A" with pg(z) = pi(y) then x <0 y.

The first fact is easy to see from the definition of <I}f. For the second one let z,y € A*
such that <3 y and py(z) = pi(y). Hence, there exist y; € A=+ U {e}, 3o € A" with
y = 192 and x <% yo. If y; = € then = <} y and we are done. Otherwise we have
ly1| > 2k + 1 and it follows that pi(z) = pr(y) = pr(y1) and |z| > k. From z <0} y2 and
Proposition 4.4 it follows that pi(z) = pi(y2). Therefore, with v =gt pi(z) we get |v| =k,
y1 = vy; and y2 = vyh for suitable v,y € A*. Tt follows that |yj| > k + 1 and we obtain
Yo = vyh <* vylvyh = y1ya = y. Together with z <}y yo this implies # <} y which proves
the second fact.

We turn to the proof of the theorem. By a length argument (namely that u =<3 v
with u # v implies |u| < |v|) we only have to show that any set of pairwise incomparable
elements is finite. Assume to the contrary that there is an infinite L C A* such that all
elements of L are pairwise incomparable with respect to <}i. Thus there is also an infinite
L' C L such that all elements of L’ have the same prefix of length k. By the second fact,
elements of L’ are pairwise incomparable w.r.t. <\i. In particular, this set L’ witnesses the
existence of infinite sequences {f;} of words such that from i < j it follows that f; % f;.
We will show that this is not true. For this consider any such sequence { f;} and note that
all words in such a sequence must be pairwise different since <3/ is reflexive. We choose
(using the axiom of choice) from all sequences {f;} an ‘earliest’ sequence {u;} as follows:
let w1 be a shortest word beginning some sequence {f;}, then let us be a shortest second
word of any sequence uq, f2, f3, ..., then let ug be a shortest third word of any sequence
u1,u2, f3,..., and so on. Clearly, also for {u;} it holds that from i < j it follows that
u; Zytu;. Since we have a finite alphabet there are words u;, = zwgi, u;, = 2wgs, ... with
i1 < iy < ... for suitable z € A%+l w e AF g; € A",

Now we look at the sequence uy,ug, ..., u;—1,wg1, wyga, ... and denote it as {x;}. Ob-
serve that this new sequence is ‘earlier’ than {u;} since |wgi| < |u;,|. In order to obtain
a contradiction to our construction we need to show that for all i,j with ¢ < j we can
conclude z; €Y z;. This is clear if 4,5 € {1,...,i; — 1} by the same property for {u;}. Now
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suppose i € {1,...,i1—1} and j > i; and assume x; <3} xj where x; = u; and x; = wg for
some [ > 1. By the first fact about <}y we have wg; <V zwg; = u;, and together u; <y u;,
(here we use the transitivity of <V;), a contradiction. Finally let i,5 > i1 with i < j. As-
sume x; <y xj with x; = wg; and x; = wg,, for some | < m. By our second fact about <
we have wg; < wg, and with Proposition 4.4 we get zwg; <X 2wWgm, i.e., u;, <N Ui,,.
Since <% is a refinement of <% we conclude U, <% u;,,, again a contradiction. O

Interestingly, it seems to be difficult to find a direct proof that uses only <X but not
<%¥. In fact, this is the reason why we introduced the weakened relation <3y.

Corollary 4.9. Let M be a DFA, k> 0 and L C A*. If L is a <% co-ideal then it is even
finitely generated (i.e., L = (D) o for a finite D C A" ).
—M

Proof. This is an immediate consequence of Theorem 4.8 and Proposition 1.9. t

4.1.4 Languages from FP(P;) and FP(Pj) are <% Co-Ideals

So far, in this section we showed (i) that the <}{ upward closure of a nonempty word is
in By, (respectively, £/, for k = 0) and (ii) that =<%¥ co-ideals are finitely generated.
Together this implies that < co-ideals are in By /2 (respectively, Ly, for k = 0). Now we
show that the forbidden-pattern classes FP(P§) (respectively, FP(P§)) are <}y co-ideals
(respectively, <\{ co-ideals).

Theorem 4.10. Let M = (A, S, 0, s0,5") be a DFA with L(M) € FP(P§) and let k > T,,.
Then L(M) is a <3y co-ideal.

Proof. Let M and k be as above and assume that L(M) is not a <) co-ideal. By Defi-
nition 4.2 there exist words y,y’ € A" and v’ € AF such that y € L(M), y ¢ L(M) and
y <7 y/. Hence we have y = y1v'yz and y' = y1v'u/v'ys for suitable words y1, y2 € A* and
u' € AR I we apply Corollary 1.17 to the word v then we obtain words v, v1, vy € A*
with 1 < |Jo| < k, 6¥ = 6% and v/ = vjvvy. With © =gt Y1010, W =ger vou'viv and
2 =qef Voy2 We obtain y = zz and ¢y = xwz. From §Y = §v? it follows that both states
$1 =def 9(50, ) and s2 =qef d(s1, w) have v-loops. Therefore, with p =gt (v, w) € P§ = B
we obtain s1 w5 so. Since sg -2 51 -2, + and s9 %, — the DFA M has a pattern from
P§. It follows that L(M) ¢ FP(PF). This is a contradiction to the assumption. 0

Theorem 4.11. Let M = (A, S,6,5s0,5’) be a DFA with L(M) € FP(P§). Then L(M)
s a j?\;? co-ideal.

Proof. Let M be as above and assume that L(M) is not a <}{ co-ideal. By Definition 4.2
there exist words y,y’ € A" such that y € L(M), vy ¢ L(M) and y <** /. Hence
we have y = w12 and v = ywyo for suitable words yi,y2 € A" and w € A". Let
D =det (g,w) € P§ = L, s1 =def 0(50,y1) and s2 =ger 0(s1,w). It is easy to see that
S1 obys S2. Since sgp Y4, 51 %2, 4+ and s Y2, — the DFA M has a pattern from P§. This
shows L(M) ¢ FP(P§) which is a contradiction. 0
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4.1.5 L4/ and B, 5 are decidable

We combine the results of the preceding subsections and show the forbidden-pattern char-
acterizations L/, = FP(P§) and By, = FP(PF). From the theory of forbidden-patterns
in chapter 3 we obtain the decidability of £, /, and By /5. These forbidden-pattern charac-
terizations and their decidability conclusions were first shown in [Arf91, PW97] with an
algebraic approach.

Theorem 4.12. It holds that Ly, = FP(Pg) and By, = FP(PF).

Proof. By Theorem 3.39 it suffices to show FP(P§) C L/, and FP(P§) C Byj. Let
L e FP(P§), L' € FP(PF) and let M, M’ be DFAs such that L = L(M) and L' = L(M’).
By the Theorems 4.10 and 4.11, it holds that (i) L is a <} co-ideal and (ii) L is a <}7,
co-ideal for k =qet Z,. From Corollary 4.9 it follows that there exist finite sets D, D' C A"
with

L= <D>55)\/(1) = U (y>j9\,/? and L' = (DI><0,1€ = U <y><o,k.

- ! — /
yeD M yeD’ M

Finally, from Theorem 4.7 we get that <y><?\,/(l) € Lo and (y) or € By, for all y € A"
= 7M/

Since the unions above are finite, we obtain L € £, /; and L' e B /2- g

==

Fig. 4.2. Forbidden-pattern for £, ,5 [Arf91, PWI7] with w € A".

v (2

ORe
GERG

Fig. 4.3. Forbidden-pattern for B,/ [PW97] with v,w € A".

Corollary 4.13. For every DFA M = (A, S, 0, s0,5") the following holds.

L(M) € Lyjy <= there do not exist s1,s2 € S, z € A" such that s — s1 = +,
s9 25 — and we find a pattern according to Figure 4.2 between
s1 and s9.

L(M) € By, <= there do not exist 51,82 € S, z € A" such that so — s1 =+,
s9 25 — and we find a pattern according to Figure 4.3 between
s1 and s9.
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Proof. This follows from Theorem 4.12 and the definition of the forbidden-pattern classes
(see Definitions 3.1-3.5). 0

Theorem 4.14. On input of a DFA M, the questions L(M) € Ly/5 and L(M) € By,
are decidable in nondeterministic logarithmic space.

Proof. This is an immediate consequence of the Theorems 3.46 and 4.12. U

4.2 The Boolean Hierarchies over the Levels 1/2

A fundamental question came up recently in connection with complexity classes [BKS98]:

What is the minimal complexity of a given dot-depth one language in terms
of Boolean combinations w.r.t. By /7

In [BKS98] the authors define the Boolean hierarchy over Bj /5 in terms of classes Bj /5(1)
and coB; /2(1) for [ > 1, and prove a levelwise correspondence to the Boolean hierarchy
over NP via polynomial time leaf-languages. For further investigations in this direction
an effective characterization of the single classes of the Boolean hierarchy over By, is
desirable.

In this section we provide an effective characterization for all classes £y /5(1), coLy 2(1),
By /5(1) and coBy (1) of the Boolean hierarchies over L5 and By /5. A first proof for the
decidability of the Boolean hierarchy over L;/, was given in [SW98] (using an automata-
theoretic approach), a purely logical proof can be found in [Sel01].

We show even more, for a given language we can compute the exact level (i.e., the
minimal level this languages belongs to) in the Boolean hierarchies over Ly, and By s.
As a consequence, we can effectively compute an upper bound of the complexity class
defined by a leaf-language from B; in the Boolean hierarchy over NP, which is related to
the results in [BKS98].

We also show the strictness of the Boolean hierarchies over the levels 1/2 of the DDH
and STH. More general strictness results concerning Boolean hierarchies over levels of con-
catenation hierarchies can be found in [Shu98, SS00]. There it is shown that the Boolean
hierarchy over any level n + 1/2 of the DDH and STH does not collapse. ([SS00] con-
tains also a very interesting separability result: any two disjoint languages from L3/, are
separable by a language from L3/5 N coLs,.)

In this section we use the technique of alternating chains. This technique was first used
in model theory by Addison [Add65], and in recursion theory by Ershov [Ers68a, Ers68b].
Here we relate the Boolean level of a given language to the maximal number of alternations
(w.r.t. to this language) in <} chains.

Definition 4.15. For a DFA M and k > 0 we define the mazimal number of alternations
in <5 chains as

n = 0 or there exist words wo,...,w, € A" with wy € L(M), }

0k _ >
e =def sup{n = wi—1 <t w; and wi—y € LIM) <= w; ¢ L(M) for 1 <i<n
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4.2.1 my; characterizes the Boolean Hierarchies over the Levels 1/2

Let M be a DFA and choose k sufficiently large. In this subsection we show that L(M) is
in level m} + 1 but not in level m}’ of the Boolean hierarchy over B, /2. This means that
with help of the measure my} we can determine the exact location of a given language in
this hierarchy. We prove a similar result for the Boolean hierarchy over £y ;.

We start with an auxiliary result in Lemma 4.16 which is needed for the proof of
Theorem 4.17. There we show that if k is large enough then for every <}¥ chain we find
a =<u™ chain which has the same length and the same behavior w.r.t. M. In particular
this means that both chains have the same number of alternations w.r.t. L(M). Then in
Theorem 4.18 we show that if & is large enough then m} + 1 and m{} 4 1 tell us the levels
of L(M) in the Boolean hierarchies over L,/ and By o, respectively. Finally, we give a
strictness argument for these Boolean hierarchies.

Lemma 4.16. Let M = (A,S,4,50,5") be a DFA and k > 3 -Zy. Let n > 0,
Yo, Yn € AT and vi,...,v, € AF such that yq <?Jf Y1 <?j§ oo <y, Then there

exist a decomposition yn = WoUIW] - * * U Wiy, and words yjy, ...,y € A" such that:
1. W0,y Wiy Uty - e oy Uy € ATSIM gnd §% = §% for 1 <i<m
2. yb <Pyl OFT L Oyl for suitable words v, . .. v, € AR

v1 Vo Un,

3.y, = wou]f+1w1 cultl,, and 0¥ = 8% for0<i<n

Proof. We show the lemma by induction on n. For the induction base let n = 0 and
yo € A". By Corollary 1.15 there exists a decomposition yg = wouiwi - - - UmW,, such
that wo, ..., Wi, U1, -, Uy, € A™IM and 6% = §%% for 1 < i < m. Let y) =qef

! . . .
wou’f+1w1 e u,’fn“wm and observe that 6% = §%. This shows the induction base.

We assume that there is some r > 0 such that the lemma has been shown for n = r
and we want to show it for n = r + 1. So let yo, ..., yr+1 € A" and v1,...,v,.1 € A¥ such
that yo <if Y1 <(i§ <(3;f+1 Yr+1. By induction hypothesis there exist a decomposition

Yr = WoUIW] * - * Uy Wy, and words yj), ..., y. € A" such that:
LW,y Wiy Uty e ey Uy € ATSIM and 6% = %% for 1 < i <m
/ _Ok+1 7 _0Ok+1 0,k+1 |/ : / / k+1
2.y, <g <y o <g Y for suitable words vy,...,v, € A

. / .
3.y = woulf+1w1 coul iy, and 8% = §Yi for 0 <i <7

Since y, <?J’f+1 Yr41 there exist 2,z € A and w € A=K with y, = zv,412 and Yy, =
TV 41w 11 2. Hence |y, | > |vp41| = k > 3-Z,, and it follows that m > 1. If we compare the
decompositions y, = zv,412 and y, = wouiwy - - - Uy Wy, then (since |v,41| =k >3- Zy)
there exists some 1 < j < m such that u; is a factor of v,y;. This means that for
suitable 2/, 2" € A" it holds that v,41 = 2'u;2/, 22’ = wowwy -+ uj_1wj_; and 2’z =
WjUj 1 Wjg1 - UmWm. Let § =qer 2’wz’ and observe that |g| > k + 2 since |w| > k +
1, |2'uj?'| = |vpp1| = k > 3-Zy and 1 < |uj| < Zy. From Corollary 1.15 we get
a decomposition § = Wol1W; - - - Uy Wy such that Wy, . .., W, U1, . .., 45 € ATSIM and
Ol = §Ui%i for 1 <4 < 1. Therefore, y,41 can be written as
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Y+1 = T Upyp1l W Upyl 2
1) o0 / /

= Wouiwi - - Uj—1W;5j-1Uj * 12)0@1’(2)1 s ﬂm’d)m UjWjUG 1 W51 - Un Wi (4.3)

We will prove that (4.3) is the decomposition of y,;1 that is announced in the lemma. For
this let 3/, be the word that emerges when we duplicate k + 1 times the factors u; and
U; in Yr+1, i'e'a

r k+1 k+1 k+1 -~ k+1 ~k+1 ~ . k+1 k+1 k;+1
Ypi11=def WolUy W71 -*"- uj 1 Wj5— 1u woul Wy - Uyz, W u] ’wjujJrl W41+ Uy, Wy

I =def

Since for all i it holds that 6% = %% and §% = §%%  we get §¥r+! = §Yr+1. So it remains

to show y. 0,]“:1 Yyl for a suitable v/, € AFFL,

From k + 2 < |g| it follows that g A*zk”. Since |u;| > 1 we have u?“ = )., for
V). =def 5;€+1(u?+1) and a suitable 0 € A". Therefore, y,. and y,,, can be written as
o kt1 Ui / Lk k+1
Yr = wouy wiuiqwiab vy WjUT W1 - Uy, W, and
/ _ k+1 k+ / ~/ A / k+1 k+1
Yr41 = WolUp wWy- W10 Upyy Y0 Vg WG W Uy Wine
This shows y.. Of“il Y., and completes the induction step. a

Theorem 4.17. Let M = (A, S,d,50,5’) be a DFA, k > 3-Z,, n >0 and yo, . ..,yn € A"
such that yo <% y1 =X -+ = Yn. Then there exist words yj,...,y, € A" such that
yh <Nyl L and 6% = 8% for 0 < i < n.

Proof. The definition of <} implies that there exist an m > 0, words 9o, ..., Jm € A',
v, ..., 0m € A¥ and indices 0 = jo < j; <---< j, = m such that g <E g < <8E Om

and y; = y;, for 0 < i < n. Lemma 4.16 implies in particular that there exist words
Uoy ooyt € AT and o, ... v, € A1 such that ¢ <0,k+l 0y <D"+1 <(1‘fn“ 9r, and
§% = §% for 0 < i < m. Therefore, if we define y} =gef yji for 0 < i < n then we obtain
yh <Nl <L and 8% = 6% for 0 < i < n. 0

The main theorem of this subsection says that the measure m); characterizes the
Boolean hierarchies over the levels 1/2 of the DDH and STH. This means that By y(n)
is the class of languages that are accepted by a DFA M with m}; < n for a sufficiently
large k. Analogously, £ /2( n) is the class of languages that are accepted by a DFA M with
my, < n.

Theorem 4.18. Let M be a DFA and k > 3-Z,,. Then for all n > 1 it holds that

my <n <= L(M)eB(n) and
Hlj(i’,? <n <= L(M) € El/Q(’I’L)
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Proof. We start with the implications from left to right and assume that my; < n. For
m > 0 let

there exist an [ > m and words wy,...,w; € A"
L(m) =gef { w € A" |such that wy € L(M), w; <3 w, w1 <3 w; and
wi—1 € LIM) <= w; ¢ LM) for 1 <i <1

Hence it holds that L(0) 2 L(1) 2 L(2) 2 ---. Moreover, from the definition of my; (i.e.,
Definition 4.15) it follows that L(myy + 1) = (). Let us observe that

L(M) = L(O0) \ (L(1) \ (L(2) \ -\ L(m37)) - +). (4.4)

If w € L(M) then surely w € L(0). Therefore, there is some 0 < j < myy such that
w € L(5)\L(j+1). Particularly it holds that w € L(j)\(L(j+1)\(L(F+2)\---\L(myf))---).
Therefore, we obtain the following facts.

w € LEGHNELG+D\ LG +2)\ -\ L)) --)
w ¢ LG =D\ LG\ LG+ N\ -\ L) --)
w € LG=2)\ (LG =D\ (LG \ -\ L(mig)) )
w ¢ LG =3)\ (LG =2\ (LG -1\ \ L))

It follows that w € L(0)\ (L(1)\ (L(2)\ ---\ L(myy))---) if and only if j = 0 (mod 2).
Since w € L(j) there exist words wo, ..., w; € A" such that wy € L(M), w; <3 w,
wi—1 < w; and w;—1 € L(M) <= w; ¢ L(M) for 1 < i < j. Moreover, it holds that
w; € L(M) <= w € L(M) since otherwise we would obtain w € L(j + 1) by taking the
word wji1 =def w into account. Hence w; € L(M) and it follows that j = 0 (mod 2).
From this we conclude w € L(0) \ (L(1)\ (L(2)\ ---\ L(m}))---).

If we L)\ (L(1)\ (L(2)\ -\ L(m}})) - --) then we choose again some 0 < j < myyf
such that w € L(j) \ L(j +1). As above we get words wy, ..., w; € A" and it follows that

wj € L(M) <= w € L(M) and
w € L(0)\ (L) \ (L(2) \ -+ \ L(m}y)) - +) <= j =0 (mod 2).

It follows that j = 0 (mod 2). Therefore, w; € L(M) and we conclude w € L(M). This
shows equation (4.4).

By definition, L(i) is a <}y co-ideal for all i > 0. Together with L(i) C A" and Corol-
lary 4.9 this implies that for all ¢ > 0 it holds that L(i) = (D) 0 for some finite set
D C A". Now Theorem 4.7 shows that L(i) € By o for i > 0. Since myy < n it follows that
LM) = LO0) \ (L) \ (L(2) \ -+ -\ L(miy)) -+ +) € Byjo(miy +1) € By jp(n). Analogously
we obtain that L(M) € Ly/5(n) is implied by my; < n.

We turn to the proof of the implications from right to left. For this we assume that

L(M) € Byjo(n) and myy > n. This will lead to a contradiction. Our assumption implies
L(M) = Lo\ (L1 \ (L2 \ -\ L(n —1))---) for suitable languages Lo,..., L1 € By
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with Lo D L1 2 +++ D L. For 0 < i < n—1 let M; be a DFA with L; = L(M,;)
and let &' =qor max({3-Zy,|0<i<n—1}U{k}). Since myy > n > 1 there exist
words wy,...,w, € A" with wg € L(M) and wo =<3y w1 =<0 -+ =<x wy, such that
wi—1 € LIM) <= w; ¢ L(M) for 1 <i < n. If we apply Theorem 4.17 repeatedly to the
chain wo <X w1 %% -+ < wy, then we obtain a chain wy <0k w) <O O ! of
nonempty words such that wj € L(M) and w}_; € L(M) <= w, ¢ L(M) for 1 <i <n.

By Theorem 4.12 we have L(M;) € FP(P§) for 0 < ¢ < n — 1. With Theorem 4.10
and k' > Z,,, we obtain that L(M;) is a jﬂ’ff, co-ideal for 0 < i < n — 1. Moreover, from
wé-_l j?\’ff, w;- for 1 < j < n and Proposition 4.3 it follows that w;»_l j?(,'f; w} for1<j<n
and 0 < i <n — 1. Therefore, it holds that

wi; € Li=w;eL; forl<j<mnand0<i<n-—1. (4.5)

Since Lo 2 Ly D -+- D Ly—; and w{, € L(M) we have wj € Lo. From (4.5) we
get wi € Lo. If w, € Ly then also w] € L; by (4.5). If wj, ¢ Ly then it follows that
w) € Ly (otherwise we would have w(, w] € Lo\ L1 which contradicts the assumption that
w) € LIM) < w} ¢ L(M)). So in both cases we obtain w} € L, and analogously we
get w’2 € Lo, wé €Lls, ..., w;hl € L.

From w),_; € L,—; and (4.5) we get w], € L,,_;. So w],_; € L(M) < w], € L(M)
which is a contradiction. We conclude that L(M) € By jo(n) implies myy < n. Analogously
we obtain L(M) € Ly/5(n) = my{ < n. 0

A\{a} O@A\{a} O@A\{a} O@A\{a} A\ {a} O@

Fig. 4.4. Definition of the DFA M,, where n > 0, a € A and
the state s; is accepting if and only if ¢ = 0 (mod 2).

Next, we show the strictness of the Boolean hierarchies over the levels 1/2 of the DDH
and STH. These are known results from [Shu98, SS00]. There it is shown that both Boolean
hierarchies over L,, ;1o and over B, /5 are strict for all n > 0.

Corollary 4.19. The Boolean hierarchies over Ly 5 and By 5 are strict.

Proof. By Theorem 4.18 it suffices to show that for each n > 0 there exist a DFA M
such that mﬁf =n for all £ > 0. Fix some n > 0, choose different letters a,b € A and let
M =get My, be the DFA in Figure 4.4.

Let k > 0 and w; =gef a®¥(ba?*)? for 0 < i < n. It follows that w; <\f w;y 1 for 0 < i < n.
Moreover, from the definition of M in Figure 4.4 we get w; € L(M) <= i =0 (mod 2)
for 0 <4 < n. This shows m,o\’,f >n.

Suppose myf > n. This means that there exist an m > n and words 4o, ..., ym € A"
with yo <X y1 <% -+ = Ym such that for 0 < i < m it holds that y; € L(M) if and

only if i =0 (mod 2).
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Note that each state in M has an a-loop. Therefore, if we insert letters a into a given
word then the emerging word has the same acceptance behavior w.r.t. M. So if we want to
change the acceptance behavior then we have to insert at least one letter from A\ {a}. It
follows that both words y,,,—1 and y,, contain at least m —1 > n letters from A\ {a}. Now
we look at Figure 4.4 again and we see that 6(so, Ym—1) = sp = (S0, Ym ). This contradicts
the fact that y; € L(M) if and only if i = 0 (mod 2) for 0 < i < m. So we conclude that
myy; = n. g

Note that we showed more than the lemma: The Boolean hierarchies over L, /o and By /o
can be separated by the same family of languages. In particular, L(M,,) is in £y /5(n +1)
but not in By 5(n) for n > 1.

4.2.2 my; is computable

In this subsection we show that the Boolean hierarchies over L/, and over B;/ are
decidable. From the previous subsection we know that it suffices to show that the question
my; < n is decidable.

We start this subsection with two decomposition lemmas for <3 word extensions. In
both lemmas we consider different words w,w’ with w <% w’. The first lemma finds a
context word v and decompositions w = wyvwy and w' = wivuvw) such that wiv <0y wiv
and vwy =<3y vw). This means that any extension w =<} w’ can be divided into the
following independent parts: (i) v <% vuw, (i) wiv <Xy wiv and (iii) vwy <0y vw). The
second lemma strengthens the first one. There we prove that unless the extension w <% w’
has a very simple structure we can even find nonempty words wy and ws.

Then in Theorem 4.26 we show that the maximal number of alternations in <}{ chains
already appears in < chains that contain only short words. This allows to decide the
question m}f < n, and therefore this yields the decidability of the Boolean hierarchies
over the levels 1/2. Moreover, for a given language we can compute the exact level in these
Boolean hierarchies (i.e., the minimal level this languages belongs to).

Lemma 4.20. Let M be a DFA, k > 0 and w,w' € A" with w <\ w' and w # w'. Then
there exist words wy,wq, w},wy € A, v € W and u € A=Y such that w = wivws,

0,k 0,k
w' = wivuvwh, wiv <y wiv and vwe <3y vwh.

Proof. Let M be a DFA and k > 0. By the definition of <} it suffices to show the lemma
for chains of <®* extensions. Therefore, it is enough to prove the following claim.

Claim. Let n > 1, w,w', g, ..., 0, € A and v1,...,v, € Wy with w = W <?Jf w1 <?J§
s L8y, = w'. Then there exist words wy, wa, wi, wh € A, v € W and u € Vilan

such that w = wivws, W' = wivuvwl, wiv <Xy wiv and vwy <X vwh.

We prove the claim by induction on n > 1. For n = 1 we have w <}* w’. Hence there
exist words wi,ws € A" and u € AZFF1 guch that w = wiviwe and w' = wyviuviwsy. The
induction base follows with w] =qef w1, Wh =qef w2 and v =gef V1.

Assume that there is some r > 1 such that the claim has been shown for all n < r.
Now we consider w, w’, Wy, ..., Wr+1 € A" and vy, ..., v,41 € W with w = g <‘3jf w1 <?}§
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- <% 4 = w'. By induction hypothesis, there exist words wi, wa, Wy 1, W2 € A,

Ur+1
k ~ ~ ~ .~ ko~
v e WY and @ € AP such that w = wivws, W, = Wy 10TVWy 2, W1V =y Wy 0
and vwy <3y vy9. Moreover, since w, < 1,41 there exist words w1, ws € A" and

r+1
@ € A=F1 such that w, = W1Vpp1We and Wyy1 = W1Vp41U0r41Ws. In the following we
compare the decompositions w, = w,1vUVW,2 and W, = W1Vr41W2.

Case 1: Assume that the factor v, 1 of the decomposition @, = Wiv,41W2 is contained
in the factor vuv of the decomposition w, = W, VUV, 2.

g
3
i
<
=4
<
S
S
N

It follows that w,y; € Wy, - <mfw><o,k - Wy 2. Since (vav) ox C v A2k 1y there exists
Vpt1 Vg1

such that Wy41 = Wy vUVWy2. With w] =gef W1 and wh =gef Wr2 We
get w = wivws, W = wivuvwl, wiv <Ny wiv and vwy <4y vw).

Case 2: Assume that the factor v,;1 of the decomposition W, = wWiv,41We i not
contained in the factor vuwv of the decomposition w, = w, vuvw, 2. So either v,41 is a
factor of w, v or is a factor of v, 2. Without loss of generality we assume the former.

some u € A*=kt1

| [y | [, | |
Wr,1 v @ v Wr,2
=1 71 ‘ ~
| | [y | [, | | o
Wr,1 v m v Wr,2
/
w1

Hence, W, 1 € <wr,1v><%k ) - vty 2. Since <’U~)r’11)><(1)j,lc ) C A'v there exists a word w} € A"
T+ 4+

with @,11 = wjv - Wiy2 and Wy v <0 wiv. With wh =ger W2 and u =gef @ we get
w = wivws, w' = wivuvwh, wiv <X Wrqv N7 wiv and vwy <3¢ vwh. This completes the
induction step and the claim follows. a

With the following lemma we strengthen Lemma 4.20: We may assume that the words
wy and wy are nonempty unless the extension w <% w’ has a very simple structure.
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Lemma 4.21. Let M be a DFA, k > 0 and w,w' € A" withw <} w'. If w' does not belong
to (pr(w) AZFFLU {e}) -w - (A =k (w) U {e}) then there exist words wy, wa, w), wh € AT,
v € Wyt and u € A= with w = wivws, W' = wivuvwh, wiv <N wiv and vwy <3F vw).
Proof. We show the lemma by induction on |w’| > 0. First of all it is easy to see that if
w & (pp(w)AZFLU{e}) - w - (A2F s (w) U {e}) then w' # w. For the induction base we
have to consider words w,w’ € A* with w <% w’ and w’ = . This implies w = w’ which
shows the induction base.

Assume that there is some r > 0 such that the lemma has been shown for all w,w’ € A*
with |w’| < r. Now let w,w’ € A" with w <}y w’ and |w'| = r + 1. If w = w’ then we are
done. So from now on we assume that w # w'.

From Lemma 4.20 we get words wi,ws, w], why € A*, v € W and u € A=F with
w = wivwy, w = wijvuvwh, wiv <N wiv and vwy <N vwh. If wi, we € AT then it follows
that also w},w) € A" and we are done. From now on we assume that w; = ¢ (the case
where we start with the assumption we = & can be shown analogously).

If also wy = € then w = v. From w <% w’ and w # w' it follows that w’ € wA*> 1w C
(pr(w) AU {e}) - w - (A= s (w) U {e}). So if w; = wy = € then we are done. Hence
from now on we assume wy # €.

Next we want to see that we may also assume w} = e. Suppose that w] € A". By

Proposition 4.4, w’ has v as a prefix since vws = w =<3 w’. Therefore, if we define
U =got A F(wivu) and if we use ¢ instead of w| we obtain @& € A= w = cvw,,
w' = evivw), ev <Ny ev and vwe =< wvwh. Hence, from now on we assume w) = e.

Moreover, since vwy <y vwh and wy € A* it follows that w) # . So we have reached the
following situation: wq = w}] = & and weq, wh € A".

Let @ =gef vwg and @' =gef vwh. It follows that @ <3y @ and |v|+1 < @] < [@'] < |w'].
A comparison of the words w and @’ leads to two cases.

Case 1: Assume that @' € (pp() A= U {e}) - @ - (A2 Lg () U {€}). From & = w
it follows that @' € (pp(w)A=*FH U {e}) - w - (A= s (w) U {e}). Therefore, we obtain
w' = vud’ = pp(w)ud’ € (pr(w)A=FFL U {e}) - w - (A2 15 (w) U {e}) and we are done.

Case 2: Assume that @' ¢ (pu(0)A =R U{e}) - w- (A >F s () U {e}). Since |@'| < r
we can apply the induction hypothesis to @ <y @’. We obtain words 11, ws, 0}, w) € A",
v € Wof and @ € A=F with @ = w9, W' = W 0G0, W10 <Ny w0 and 9y <0f
0wh. Let Wy =qef W1, Wo =def W2, W) =def vuw) and wh =qer wh. Then it holds that
Wy, e, Wy, wh € A". Note that pg(w') = v and that wjv is a prefix of @’ with length
> 0] = k. Tt follows that v is also a prefix of w]0. Hence wjo <%* vuw|v = w}0 and we
obtain

=W = W10Ws,
I ~r P VY U
vuvwh = vud’ = vuw| VUDWY = W) VUTWY,
A~ ~ o~ ~f ~ Al ~
W10 = w0 <y wio <N wiv and

Dy = Dilg =0F Dl = 1.

This completes the induction step. 0
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In order to bound the lengths of words in alternating <% chains we define below two
bounding functions. Then in Lemma 4.24 we will show that every extension w =<3 w’
where w’ is substantial longer than w can be written as w <% @ =<\t w’ such that 1 is a
reasonable short word equivalent to w’. We will use this lemma to obtain Theorem 4.26
which shows that the maximal number of alternations in < chains already appears in <
chains containing only short words. Together with the characterizations of the Boolean
hierarchies from subsection 4.2.1 this yields the decidability of the Boolean hierarchies
over the levels 1/2.

Definition 4.22. Let M = (A, S, 6, s9,5’) be a DFA and n,k > 0.

e 2 (2k+1)- (JAF- (MM +2) + ifn=0
Dy(n) =def { 3. D}j(n —1)4+n : otherwise
DEO0) : ifn=0
k _
Eu(n) =def { Dk (5 (n—1)) : otherwise

From this definition it is easy to see that DF(-) is a monotone increasing function such
that the following holds for every DFA M and all k,n > 0.

2.2k +1)- (JAF - MM £2) + 0 > n (4.6)
2-Di(n ) + (2k+1) - (JA[F - MM 4 2) (4.7)

Dyu(n) >
DEkn+1) >

Now we are going to prove a proposition showing that every sufficiently large word w
has a proper predecessor 1 w.r.t. <\i such that both words are equivalent w.r.t. to M.

Proposition 4.23. Let M be a DFA, k > 0 and w € A" with |w| > (2k + 1) - (JA]* -
|IMIMI 1 2). Then there exists a word 1 € A* such that 3k +1 < || < |w|, ¥ <3f w and
5 = §v,

Proof. From the length of w it follows that it can be written as w = wjviwjvawy - - - Virw,,,
for m’ =qef |A[*-|M|MI4-1 and words v; € AF, w) € A=**L. Since |A¥| = | A|* there exists
some v € A such that v = v; for at least m =qer |M|™M! + 1 words v; with 1 < i < m/.
So we can choose suitable words wy, ..., w, € AR+ guch that w = wovwivws - - - VW,
For 0 < i < m —1let 6; =qet 5“’0““’1 Wi Since there are at most |M|M! dlfferent
mappings 6 for x € A" there exist indices 0 < ¢ < j < m —1 such that §; = ¢;. Hence, for
W =def WOVWY * + * VW; - VW41 * ** VWip (i.e., the word w after deleting the part vw;4q - - - ij)
we obtain 6% = §%. Moreover, with & =gef WoVWY - - - VW4, Z =def Wj41VWj42 - - - VW, and
U =def Wit+1VW;i42 -+ - vW; we have x,2,u € A*zkH, w = zvz and w = zvuvz. This shows
w <* wand 3k + 1 < || < |w]. O

Lemma 4.24. Let M be a DFA, k > 0 and w,w’' € A with w <3 w'. If |w'| > DE (Jw))
then there exists a word w € A" such that || < |w'|, w <3 w <% w' and 6% = %',

Proof. We prove the lemma by induction on |w’| > 0. If |w’| = 0 then |w'| < Df (Jw|) and
we are done.
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As induction hypothesis we assume that there is some r > 0 such that the lemma
has been shown for all w,w’ € A* with |w'| < r. Now let w,w’ € A" with w <}{ w’ and
|w'| = r + 1. If |w'| < DF(Jw]) then we are done. Otherwise, from |w’| > DF (Jw|) and
(4.6) it follows that w # w’, and therefore |w| > k. We distinguish the following cases.

Case 1: Assume that w' € (pp(w)A =1 U {e}) - w - (A=F s (w) U {€}), i.e., there
exist words x € (pp(w) AZF1U{e}) and 2 € (A=K s (w) U {e}) with w’ = zwz. Without
loss of generality we assume that |z| > |z|, the other case is treated analogously. From
the length of w’ and (4.6) it follows that |z| > (2k + 1) - (|A[F - |M|M| 4 2). Hence = # ¢
and with v =qef pr(w) it holds that = vu, w = vw and w' = xvwz for suitable words
u € AZM and w e A% So |vww| > |z| > (2k + 1) - (|A[F - IM|MI + 2) and we can
apply Proposition 4.23 to vuv. We obtain a word & € A" such that 3k + 1 < |Z| < |vuv|,
& =W vuv and 6% = V™ = 6. By Proposition 4.4, pp(#) = prvuv) = v and si(3) =
sp(vuv) = v. Together with 3k 4+ 1 < |#| this implies & € vA*>**1y, and therefore v <% &.
Let i =gef #102 and note that 0 < || < |w'| and 6% = §*". From v <0 # it follows that
vl <3¢ 2. We have already seen that & has the suffix v which implies that #w has the
suffix vi = w. Therefore, sx(2) = sp(w) = v and it follows that 2w <y #1wz. Together
with & <}¥ vuw this yields w = v <3 20 <0 20z = W <0 Vvuvdz = Twz = W',

Case 2: Assume that w' ¢ (pp(w) A= U {e}) - w- (A= s (w) U {e}). In particular
we have w # e since from w # w' it follows that w’ € A=FT!. Now we can apply
Lemma 4.21 to w <3 w’. We obtain words wy,ws, w},wh € A", v € Wi and u € A*=F+1
with w = wivws, W' = wivuvwl, wiv <k wiv and vwy <y Vvw).

Case 2a: Assume that [vuv| > (2k+1) - (|A[¥ - |M|MI 4+2). Then from Proposition 4.23
we get a word @’ € A* such that 3k 4+ 1 < |[0/| < |vuv|, @' <5F vuv and 6% = 5.
Let i =qef w)w'w) and observe that 0 < || < |w'| and 6% = §*". By Proposition 4.4,
from wiv <35 wiv and vwe <Xy vwlh we obtain wyvwy <Ny wivwy and wivwe <Xy wivwh.
Therefore, it holds that w = wivwy <3 wivwh. From 3k + 1 < |@'| and @' <3F vuw
it follows that @' € vA*>**y (by Proposition 4.4). This yields v <% ' and therefore
w =Ny wivwh <8 wiw'wh = <N wivuowh = w'.

Case 2b: Assume that |vuv| < (2k + 1) - (JA|* - IM|MI 4+ 2). Since w # ¢ and since
|w'| > DF (Jw|) we obtain from (4.7) that

[wil + [ws| = [w'] = Jvwv| > D (Jwl) — Jvuv| > 2- D (jw] - 1).

It follows that at least one of the words w}, w} is of length > DF (Jw| — 1). Without loss of
generality we assume that this holds for w}, i.e., |wjv| > |w}| > DE (jw| —1) > DE (Jwiv)).
Since |wjv| < |w'| = r + 1 we can apply the induction hypothesis to wiv < wjv. We
obtain a word w; € A" with || < |w|v|, wiv <3¢ Wy <% wiv and §%1 = 51, Hence, for
W =qef Wyuvwy it holds that 0 < |w| < |w’| and 6% = §*'. From wyv <% w; we obtain that
Wy has the suffix v which in turn implies that w; <3} wuv. This shows wiv <% Wuv and
it follows w = wivws <%y W1uvwe. Together with vwy <%f vwé we get w <) wluvwé = w.
Finally, from @7 <3 wjv it follows that w = wjuvwh <3y wivuvwh = w'. 0

Corollary 4.25. Let M be a DFA, k > 0 and w,w’ € A" with w <\ w'. Then there
exists a word W € A" such that || < DF (jw|), w <% @ < w' and 6% = 5.

Proof. This follows when we apply Lemma 4.24 repeatedly. a
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Now we are able to prove that for an arbitrary <%} chain there exists a <% chain of

‘short” words such that both chains have the same length and their words have the same
acceptance behavior w.r.t. M. Therefore, when looking for the maximal number of alter-
nations we can restrict ourselves to chains of ‘short’ words. This implies the decidability
of the classes Bj/5(n) and L;/5(n) (see Theorem 4.27).

Theorem 4.26. Let M be a DFA, k > 0 and wy <3 wy <% ... <x wy, forn >0 and
words w, . .., w, € A". Then there exist words Wy, ..., 0, € A" such that g <3 W1 <
e 2 D, | < EE(M), by =0 wh and 5% = 5% for 0 < < n.

Proof. We show the theorem by induction on n > 0. For the induction base let n = 0.
If wg < £F(0) then we are done. Otherwise we have |wo| > DF(0) > (2k + 1) - (JAJ* -
|IM|IMI 4 2). Now we apply Proposition 4.23 repeatedly to wy. We do this as long as the
emerging word has a length > DF (0). This procedure yields a word 1y € A* such that
3k +1 < |ig| < EE(0), o <XF wp and %0 = §*0. This shows the induction base.
Assume that there is some r > 0 such that the theorem has been shown for all n < r.

Let n =qef 7+ 1 and wy, ..., w41 € A" with wo <% wy <% ... <% w,41. By induction
hypothesis there exist words words 0y, ..., W, € A" such that wy <% W1 <N ... < Wy,

[, < EE(r), W, < w, and 6% = §% for 0 < 4 < r. Hence we have 1, < w,41. From

Corollary 4.25 we get a word i1 € A”with ;1] < D (4,]) < DE(EL(r) = & (r+D)
’lZ)T j-?\;lf /I‘DT+1 j.(/)\’/llC wr+l and 6ﬁjr+1 — 6U}T+1‘ D

Theorem 4.27. On input of a DFA M and n > 1 the questions L(M) € By3(n) and
L(M) € Ly/5(n) are decidable.

Proof. Let k =gef 3 - Zy,. By Theorem 4.18, it suffices to find out whether my < n
(respectively, my; < n). By definition this means that we have to decide whether there exist

words wy, . . ., w, € A" with wo <3 w1 <4 -+ =X wy, (respectively, wo <3y wy <Ny - =<
wy), wo € L(M) and w;—1 € L(M) <= w; ¢ L(M) for 1 < i < n. By Theorem 4.26,
it suffices to consider chains wy =<3 wy; =<\ -+ =N wy, (respectively, wg =<0 w1 =<0

oo =% wy) for words w; € A" with |w;| < £X(n). The theorem follows since £ (n) is
computable and finite, and since the questions w; € L(M), w; <0 wiv1 and w; <0 witq

are decidable. 0

Theorem 4.28. The following functions are computable on input of a DFA M.

mB(./\/l) =qef Inf { n>1 ‘ L(M) S Bl/g(n) }
mE(M) =qef Inf { n>1 ‘ L(./\/l) S £1/2<n) }

Proof. For this proof we need the facts that By and £ are decidable. For By this was first
shown in [Kna83] with an algebraic approach (see also [Ste85b, CH91]). The decidability
of £y is due to [Sim75].

Now the computation of mz(M) is as follows. First of all we test whether L(M) belongs
to By. If L(M) ¢ B; then mgz(M) = oo and we are done. Otherwise it follows that the value
of mu(M) is finite. In this case we carry out tests L(M) € Byjy(n) for n = 1,2,... (for
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these tests we use the procedure described in the proof of Theorem 4.27). The first n that
passes the test is the value of mz(M). Since mz(M) is finite such an n actually exists, and
therefore our algorithm terminates. Analogously we show that m,(M) is computable. [

From the proof of Theorem 4.28 we cannot derive a bound for the number of steps
needed to compute the functions mgz and m,. However, such a bound can be easily estab-
lished with the following proposition at hand.

Proposition 4.29. For every minimal DFA M and k =g4ot 3 - Ly, the following holds.

mB(M) > 22|A|k+2(k+1)2|/\/l\ +3 — mB(M)
me(M) > AP ML — (M)

o0
©.¢)

Proof. Recall the k-embedding <, from [Ste85a] (see also [Sch01, section 2.7] and [Sch01,
Definition 2.1] for a discussion and for an equivalent definition). It is easy to see that if
w <% w' for w,w’ € AZ* and v € A* then w=, w'. Since <, is reflexive and transitive
we have w=, w' for all w,w' € A>*+1 with w <% w’. Analogously we see that w < w’ for
all w,w' € A" with w <37 w'.

Assume that mu(M) > 224N 2EHDIMI L 3 and my(M) < oco. First of all, by the
definition of m;z(M) this implies L(M) € By o(m(M)) C By, i.e., L(M) belongs to dot-
depth one. From [Ste85a, Proposition 4.1] we obtain that L(M) belongs to some level
< |M|? < k of dot-depth one (see [Ste85a, section 3.3] for a definition of these levels).

Our choice of k and Theorem 4.18 imply m%¥ = myz(M) — 1 > 224N 2G+D2M] 4 o
This means that for n =gef mg(M) — 1 there exists a chain wg <y wy <% - - < wy, with
w; € L(M) <= i =0 (mod 2). In particular wy # w1, and therefore wy, ..., w, € A=k,
It follows that wy <3, we <, - - - <3, wy, which is a <3, chain with n — 1 > 92/ A2 (k+1)2 M|
alternations with respect to L(M) (in [Ste85a] such chains are called k-towers). From
[Ste85a, Theorem 3.3] we obtain that L(M) does not belong to some level < k of dot-
depth one. This is a contradiction which proves the first fact of the proposition.

For the second fact we assume m,(M) > 247IMl 4 3 and m,(M) < oco. By the
definition of m,(M) this implies L(M) € £; which is equivalent to saying that L(M) is
a piecewise testable language.

By Theorem 4.18 we have my; = m,(M) —1= 2l A% M| 4 9. S6 for n =gef m (M) —1
there exists a chain wg <37 wy <Ny -+ <X w, with w; € L(M) <= i =0 (mod 2). In
particular wg # w1, and therefore wy,...,w, € A". It follows that wq < wy < - - < w,
which is a = chain with n — 1 > 24*MI alternations with respect to L(M) (in [Ste85a]
such chains are called towers). From [Ste85a, Theorem 2.1] we obtain that L(M) is not
piecewise testable. This is a contradiction. a

4.3 The Levels 3/2

We prove effective forbidden-pattern characterizations for the levels 3/2 of the DDH and
STH. For the STH this was first shown in [PW97], the result for the DDH is due to
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[GS00a]. However, in this section we prove both results with a new technique which uses
word extensions. We proceed analogously to section 4.1 where we considered the levels
1/2.

First of all we define the word extensions <)} which can be also considered as binary,
reflexive, transitive and antisymmetric relations on the set of words. In subsection 4.3.2 we
show that the <} upward closure of a nonempty word (i.e., the <} co-ideal generated by
a nonempty word) is in Bs/o. Then in subsection 4.3.3 we prove: If the language accepted
by some DFA M is a <} co-ideal then this co-ideal is finitely generated. Together with
the result of subsection 4.3.2 this implies that these regular <} co-ideals are in Bs /2-

Note that this differs from the procedure for the levels 1/2 in section 4.1. There we
showed more, namely that the set of words together with <}/ is a well partial ordered set.
Unfortunately, this does not hold for <} (see the remark after Theorem 4.46). Therefore,
in order to prove that <}! co-ideals are finitely generated we have to restrict ourselves to
the regular case.

Finally, in this section we show that the languages L(M) that belong to the forbidden-
pattern class FP(P) are regular < co-ideals, and therefore we obtain FP(PF) C Bss.
The reverse inclusion is known from the pattern theory in chapter 3, and therefore we
obtain the effective forbidden-pattern characterization FP(IP{) = Bjs/,. In particular this
shows that the membership problem for Bj/; is decidable in nondeterministic logarithmic
space. Again, in this section we treat the DDH and the STH in parallel.

4.3.1 Definition of <;* Word Extensions

We proceed analogously to subsection 4.1.1 were the levels 1/2 of the DDH and STH were
considered. Here we introduce the notion of <} extensions. They are defined in such a way
that x <} v means that the word y results from the word x by a sequence of extensions
<ol <omye ey <yF . It is important that we do not fix the context word but we allow several
words vg, v1, . . ., Um. Since these words have to satisfy certain conditions we define the set
of possible context words for <)} extensions in Definition 4.31 below.

We start with the definition of two bounding functions which will be needed in the

proofs below.
Definition 4.30. Let M be a DFA and k > 0.

fﬁ(m) =def { k T FE —k+1 : zﬁfsz
FEm—1)- Ty +1) - (IM] - [APPeTaln=D+) 0 ifm > 0
Cé =aer FL(IAF
It can be easily verified that FAIZ() is a positive and monotone increasing function.
Definition 4.31. Let M be a DFA, k > 0 and n =qet Zn- Then we define the following

set of context words.

k
Wit =def {v e A=Cx

v=r1r9- - Tn = lplp_1 - - - 1y for suitable [, r; € A*ZF1 with
ap(A™ ), (riAT) C o (v) and ag(ri) = ap(l) = ag(v)
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We want to see that the set of context words Wy is nonempty for every DFA M and
every k > 0. For this let n =gt Z,, and let a be an arbitrary letter from A. From n > 1,
IM| > 1 and |A| > 2 it follows that C} > n(k + 1). Therefore, the word v =g a™*+1)
is an element of A*<Ci1, Moreover, if we define r; = I; = a**! then v can be written as
V=11 1y =1l Finally, from ag(r;) = ax(l;) = {1} = ag(v) and oy (A7) =
ag(r;A71) = 0 it follows that v is an element of W,;".

Definition 4.32. Let M be a DFA, k >0 and y,y' € A".

y Wy <= qer there exist an m > 0, words xg,...,Tm € A" and vy,..., vy € Wi
such that y =z <\ o1 <F -0 P wyy =y

v1

The definition of the set of context words W, seems a bit arbitrary. However, it is
guided by the following ideas (which are not obvious at the moment but which will be
proved in this section).

1. each v € W;* contains a factor u such that u is an idempotent for M and ay,(u) = ay(v)
2. words from W} are short, i.e., they are of bounded length

3. no v € W, contains a proper factor v" € W,;" unless ay(v') € ay(v)

4. Wyl is a <) order ideal, i.e., if v € W" and v/ <} v then v/ € W}*

The first property is used to prove that languages L from the forbidden-pattern class
FP(P%) are regular <} co-ideals where M is a DFA with L = L(M). The second one is
needed to show that these co-ideals are finitely generated. The remaining properties allow
to change the order of context words v; in sequences of <* extensions. This helps to show
that the <\, upward closure of a nonempty word is in By /2

In the following proposition we state some basic results about =<} extensions. In par-
ticular it holds that they are stable word extensions which preserve the k-prefix and the
k-suffix.

Proposition 4.33. Let M be a DFA, k > 0 and v,w,w’ € A*. Then the following holds.

1. If w <5 w' then pi(w) = pp(w’) and sp(w) = sp(w’).
2. If w =5 w' then zwz <3 2w’z for all z,z € A*.

3. If w =3 w' then ag(w) = ag(w').

4. If v <5 w and w € vA=F Ly then v <UF w.

Proof. Trivially, if w = w’ then the statements 1, 2 and 3 hold. If w # w’ then by definition
there exist an m > 1, words xg,..., 2, € A and context words v1,...,v,, € Wi such
that w = zo <* 21 <} -~ <F 2, = w'. Since elements of Wy;" are of length > & 4 1
we have |v;| > k+ 1 for 1 < i < m. Therefore, the statements 1, 2 and 3 follow from
Proposition 1.19.

If v <¥ wand w € vA*= 1y then there exists a w’ € A with w = vw'v. From
statement 3 it follows that ay(v) = ag(w) = ag(vw'v). This shows v <1* w. 0

One of the nice properties of W{;* is the following: No v € W* contains a proper factor
v’ € Wi unless ay(v') C ag(v). We will use this property in subsection 4.3.2 to change
the order of context words v; in sequences of <!* extensions.
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Proposition 4.34. Let M be a DFA, k > 0 and v,v' € Wy such that v’ is a factor of v
and ag(v) = ag(v'). Then it holds that v =v'.

Proof. Let n =qet Zn,. By the definition of W, we have

v = rirg--rp =lplp—1---11 and
r /W I g1 g /
Vo= gy =l

for suitable words ;, s, 1}, 7, € A*2F+1 that have the properties stated in Definition 4.31.
Since v’ is a factor of v there exist x,z € A" such that v = zv'z. Now we will compare the
decompositions v = ryrg -+ -1y, and v = zrirh -7 2.

We obtain that |x7]| > |r1| since otherwise r} would be a factor of r; A~ and we would
obtain ay(r}) C ax(v). This implies |xr]r)| > |rira| since otherwise % would be a factor of
ro A~ and we would obtain ay(r}) C ag(v). Analogously we obtain |xr] -7} > |ry -7
for 1 <i <mn. This means |zr] ---7}| > |v| and it follows that z = e.

Analogously we show = = ¢ (here we argue with the decompositions v = l,l,—1 -+ 13

and v = zl/l! _,---1}z). This shows v = v’ O

With the following proposition we show in particular that W,/ is a =<} order ideal,
ie., if v € Wi and v/ =¥ v then v' € W{*. Actually we show more than this since we
assume a condition weaker than v' <} v.

Proposition 4.35. Let M be a DFA, k > 0 and v € W*. If there exist words z,w', z € A
and v' € W with v = xv'w'v'z and ap(v'w'v') C ap(v') € a(v) then xv'z € W and
ag(zv'2) = ag(v).

Proof. Let n =qet Zy, and note that n > 16. By the definition of W we have

vo= rre-cry =lplp_1--- 1
r W /TR /
Vo= gy =l

for suitable words I, i, I}, ) € A*>*+1 that have the properties stated in Definition 4.31.

1"
We want to compare the following decompositions of v.

Vo= TiT9---Tp (4.8)

arirhrh vl w'v'z 4.9)

More precisely, we want to investigate the position of the factor 75 in the decomposition
(4.8). For this we prove the following claim.

Claim. There exists some j such that the factor rly of the decomposition (4.9) appears in
the factor r;A~! of the decomposition (4.8).

Assume that the claim does not hold. Then there exists some j with 1 < j < n such that
5 overlaps the last letter of the factor rj, i.e., the letter ¢ =qet 51(7;). So we have the
following situation.
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/ ! / 1!
xrry T3 T, WU Z
T2
{ I v

r1~~~rj,1r]~A71 c Tjt1" " Tn

Y =def

Define y as shown in the picture above, and note that y € A". Observe that r] cannot
start earlier than r;, since otherwise r; would be a factor of 74 and it would follow that
ag(rj) C ag(riry) = ax(v') € ag(v). So we obtain that 7}y is a factor of r;.

On the one hand it holds that sg1(r;) & ag(r;A') by Definition 4.31. On the other hand
si+1(r;) is certainly an element of oy (] ry) = ak( ). Since |y| > 1, 7} is a factor of 7; A7}
which implies ay(v') = ag(r]) C ag(r;AY). It follows that 5k+1(7”3) € ag(rjA~') which is
a contradiction. This shows our claim.

As an easy consequence of the claim we obtain that even the factor r4r5 - - -7, w'v’ of
the decomposition (4.9) appears in the factor r; A~ of the decomposition (4.8). Otherwise
sp41(rj) would be a factor of r4rf - - - rjw'v" and it would follow that si41(r;) € oy (v') C
ag(rjA71) which is a contradiction. Hence we have reached the following situation.

! ! / I
Ty To " TrLWV z
\ x x |
{ TT ] v
T ’I“jA71 c T4l T

Let 7j be the word that is obtained from r; if one deletes the factor w'v’. Thus we obtain
V2 =7y Tj_1TTj41 - T Since s(r],) = sp(v') and since w'v’ is a factor of 7;A7! we
obtain

Pr1(Tj) = prra(r;) and sp4a(T)) = sp4a(rj).- (4.10)

Together with ay(v'w'v") = ag(v') = ag(rh) it follows that
Oék(FjA_l) = Ozk(TjA_l) and Ozk(7j) = Oék(?"j). (4.11)

From (4.10) and (4.11) we get oy (zv'2) = ag(ri- - - 1j-1TjTj41 - ) = (- - 1m) = ag(v)
and s;41(Tj) & agp(T;A71). Now let 7; =ger 7 for 1 < i < n with i 7é j. We obtain
Tz =TTy - - T, T € AZFFL 0 (7)) = ag (a0 z) and sp,41(T;) ¢ ap(T A7) for 1 <i <n.

Analogously we show that there are words [; € A***1 such that zv'z = lpylp_1--- 1
with oy (l;) = ag(2v'2) and prr1(l;) & o (A1) for 1 < i < n. This shows zv'z € Wy, O
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4.3.2 The <}» Upward Closure of a Word

We show that the <} upward closure (respectively, <}t upward closure) of a word is in
L3/ (respectively, Bs /2 for k > 0). Most of this subsection is devoted to the preparation
for Theorem 4.40 which allows to rearrange context words in sequences of <!* extensions.
More precisely, the theorem says that if y <% 3’ then there exists pairwise different context
words vy, ve, ..., v, € Wi with |ag(v1)] > |ag(v2)] > -++ > |ag(vs)| such that there is a
sequence of the following form (where suitable words are at the * positions).

y<Ea Ea O O O I S e SR <y (412)

V9 v9 vn

Finally, from this theorem we derive that (y) 10 € L3/5 and (y) ax € By for y € A
M M

< <

and k > 0. We start with a lemma showing that every <“* chain of length two can be
transformed into this form (possibly at the cost of a lengthening of the chain).

Lemma 4.36. Let M be a DFA, k > 0, y1,y2,y3 € A" and vi,va € WY such that
lag(v1)] < |ag(v2)] and y1 <7 y2 <,) ys3. Then at least one of the following statements
holds.

1. There exists a y' € A" such that y1 <}y <\F ys.
2. There exist y',y" € A", v € Wi with ai(v') = ag(v2) and yy <7 ¢/ <y <t ys.

Proof. Let y1,y2,y3, v1, v2 as in the lemma and let n =4o¢ Zo,. Then for i € {1, 2} there exist
words z;, z; € A* and w; € A=*1 such that y; = x;vi2, Yir1 = Tivsw;viz; and ag(viwv;) C
ak(v;). We want to compare the decompositions y2 = z1vjwiv121 and yo = xove29. More
precisely we want to clarify the position of vy in the former decomposition. Observe that
vg cannot be a factor of viwivy since ag(viwivy) C ag(v1) and |ag(v1)] < |ag(v2)].

Case 1: Assume that viwiv; and vy does not overlap. Then vs is a factor of x1 or it
is a factor of z;. Without loss of generality we assume the former.

‘ X1 v w1 v Z1 ‘
1 1 y2
| 2 |

Therefore, x1 = xovoz) for a suitable word ) € A*. It follows that y; = zavazviz;
and y3 = Tovawaovexjviwiv121. Now it is easy to see that with v/ =qef xovowavaz V121 We
get y1 <\F ' <\F ys, i.e., statement 1 of the lemma.

Case 2: Assume that viwyvy and vy overlap, but none of them is a factor of the other
one. Without loss of generality we may assume that vy appears earlier than vjwiv;.

| T1 | V1w1v1 | 21 |

’ o V2 22 ‘ Yz

Since vi,v2 € Wi it holds that vy = I,---l; and v = r{---r, for suitable words
ooy T, € AP with o (A7) € og(l) = a(v1) and ag(ri A1) C ag(r;) =
ag(vg) for 1 <i < n.
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From ag(ry,) = ag(v2) and |ag(viwivr)| = |ag(v1)] < |ag(ve)] it follows that 7, is not
a factor of viwivy. Hence r,, starts earlier than vjwjvy.

I x1 ‘ V1w1v1 21 |

2
’ T2 1 Tpn—1 Tn Z2 ‘ 4

For the prefixes xjv; and xory -+ -7y, of yo we want to show that |zyvi| > |xory -« ryl.
If |x1v1| < |z2r1 - - - 7| then vy is a factor of 7, A7, and from |vy| > k + 1 it follows that
s.11(T) € ag(viwivy). This implies s 1(rn) € ar(viwivy) = ax(v1) C ap(rp A1) which
is a contradiction. This shows |xjv1| > |xory---7,| and we have reached the following
situation.

| ow e e wd] om |,

‘ T2 T Tn—-1| Tn Z2 ‘

A —
Z2 =def

Let 2z}, as in the picture and observe that y1 = xov2z521 and y3 = Tovawaovezhw vy 21.
Since vy24 has vy as a suffix we obtain y; <x Y <¥ y3 for Y =def T2v2wav22521. Therefore,
statement 1 holds also in case 2 and it remains to consider the following case.

Case 3: Assume that vywyv; is a factor of vy and define /), 2] as in the picture below.

‘ x1 V1 w1 V1 21 ‘ Y
U2

! !
X1 =def 21 =def

From Proposition 4.35 it follows that v/ =gef 2jv12] is an element of Wy;* with ay(v') =
ax(ve). Since v' and vy have zjv; as a prefix and v12] as a suffix it holds that py(v') =
pr(v2) and sp(v') = sp(v2). Therefore, we get ay(v'wav") = ag(vawave) C ag(ve) = ag (V).
Moreover, v’ <0 w2y = ve since |wi| > k+ 1 and ag(viwivr) C ag(vr). Hence, for
Y =def T20"wav' 2o and ' =qef T2v2wov 22 we obtain yy = xov'zy <y’ <Fy' <Fys. O

By definition, y <}; ¥ implies the existence of a <'* chain leading from y to y’. With
help of Lemma 4.36 we show that one can choose this chain such that for the sequence of
context words vy, v, ..., Uy, it holds that |ag(v1)| > |ag(ve)| > -+ > |ag(vm)|.

Lemma 4.37. Let M be a DFA, k> 0 and y,y' € A" with y <\ 3. Then there exist an
m >0, Yo, -, Ym € A" and v1,..., v, € Wi with |ag(v1)| > |ag(ve)] > -+ > |ar(vm)]
andy=yo <Fuyr <Fy2 <Fooo <Eym =1

m

Proof. The proof is by contradiction, i.e., we assume that there exist y,7’ € A" such that
y = v and y,7" do not have the property stated in the lemma. We choose a maximal
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m > 2 such that there exist yo, ..., yn € A" and v1,..., v, € Wi with y = 1 <y <u
Y2 <yb oo < ym =9

Define a transposition in a sequence of natural numbers nq,...,n; to be a pair of
positions (4,j) with 1 < i < j <1 and n; < nj. Now we choose yo,...,ym € A" and
V1, ..., Um € Wi such that
—y=yo <pf Y1 <F Y2 <F oo <P ym =y and
— the sequence |ag(v1)], |ak(v2)], ..., |ag(vm)| has a minimal number of transpositions.
By the assumption that y and 3 disprove the lemma there exists some 7 with 1 < j < m—1
and | (vj)] < |ag(vjs1)]- So we can apply Lemma 4.36 to the chain y;_1 <1J]’“ Yj <};]’_“+1 Yj+1
and we obtain that at least one of the following statements holds.

1. There exists a ¢’ € A" such that y;_1 <}* ¢/ <1)J’“ Yjt1-

Yi+1

2. There exist y',y” € A*, v' € W with oy (v') =ag(vj41) and yj—1 <Fy/ <}JJ’“ y” <}JJ’“ Yjti

Statement 1 causes a contradiction to the choice of yg, ..., Ym,v1,...,Um, since the se-
quence [ag(v)]; . g (v lon(wi1)]s lan(05)], Ik (742)], - .+ g (vm)] D & smaller
number of transpositions than the sequence |ag(v1)], |ax(vi)], ..., |ak(vm)]. If statement 2
holds then we obtain a contradiction to the maximal choice of m. a

By the preceding lemma, we can assume that the context words v; in <%* chains are
ordered by |ax(v;)|. Our aim is to transform these chains into the form (4.12). So it remains
to rearrange those parts of the chains whose context words v; have the same |ay(v;)|. The
following lemma shows this for <* chains of length two.

Lemma 4.38. Let M be a DFA, k > 0, y1,y2,y3 € A" and vi,vs € W' such that
lag(v1)| = [ar(ve)| and y1 <¥ ya <)% ys. Then y1 <\* y3 or there exists a yy € A" such
that 41 <t§ yé <1)’f 3.

Proof. By assumption, y1 = x1v121, Yo = T101U1V12] = ToV229 and Y3 = XoUauUs22y for
suitable z1, 21, 22, 22 € A, ug,up € AZF! with ak(viuivy) C ag(v1) and ag(vaugvy) C
ak(ve). If v1 = ve then we are done. So let us assume that vy # ve. We compare the
decompositions yo = x1viu1v121 and yo = Tov925.

Case 1: The factor vs of the decomposition yo = xsvsze is contained in the factor
viugvy of the decomposition ya = xjviujv121. This means viujvy = zjvez], ro = 17}
and zy = 2} 2; for suitable words 2, 2] € A"

I T | V1U1v1 | z1 | s
T2 v2 22
N—_—— N——
i 2

From vy # w9 and Proposition 4.34 it follows that vy is no factor of vy. Therefore, vy is
both a prefix of 2 vy and a suffix of va2]. This shows that z}vougvez] € v ARy, Since
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v <1Jf viuvy = iz <t§ Thvouguez] we have vy =y; zjvousvez]. Now from Proposi-
tion 4.33.4 we get v; <* T vaugvaz, and therefore y; = x1v121 <P T2 vaugvzi 21 = Y3
by Proposition 1.19.

Case 2: The factor ve of the decomposition yo = x2v9222 is not contained in the factor
vi1u1v] of the decomposition yo = x1viu1v121. From the assumption and Proposition 4.34
we obtain that v; can not be a factor of va. Therefore, either |z2| < |x1| and vs is a factor
of z1vy, or |2z3| < |z1] and vy is a factor of vyz;. Without loss of generality we assume that

|xa| < |z1| and that ve is a factor of zivy.

‘ 1 U1 ui V1 zZ1 ‘ Vs
| e 22 E |

’
T =def

‘ i vi | W V1 21

Y3
‘ T2 V2 us V2 z2 ‘

Observe that xjv1 <2§ z'vy where 7’ is defined as in the picture above. Moreover, since
ag(viugvr) C ag(vr) we have vyz <1vf viuiv1z1. Together with Proposition 4.33.2 this
implies y1 = T1v121 <fj§ 2’1z <1vf x'viuiv1z1 = ys. Therefore, with yh =ger ¥'v121 we
obtain y1 <\¥ y5 <\* ys. 0

As a consequence, for context words vy and v; with |ag(vg)| = |ag(vi)| we can swap
successive closure operations.

Corollary 4.39. Let M be a DFA, k > 0 and vo,v1 € W with |ag(vo)| = |a(v1)|. Then
for every set of words L C A" it holds that ({(L) x) 1k = ((L) 1x) 1k
Yo v1 v1 0
Proof. Since ((L) _1x) 1x = U, er ((y) r) 1x it suffices to show the lemma for all L = {y}
v0 v1 v0 v1
with y € A". By symmetry, it is enough to show the inclusion ((y) _1s) 16 C ((y) k) 1k
vy ' Swy vy v

This inclusion is an immediate consequence of the following claim.

Claim. Let y =z <;8 x1 <} - <Fam =20 <Fon <F - <F 2 =y form,n >0

and y,y', x;, z; € A*. Then there exist m',n’ >0 and 2}, 2, € A" such that m' <m, n' <n
o 1k 1k 1k o o Ak o Ak 1k o o]

and y = zy <5 21 <y o < 2 =T <y T <o <gp Ty =Y

We show the claim by induction on m + n where the induction base consists of the
cases m+n=0,1,2. If m+n=0orm+n =1 then m =0 or n =0 and we are done.
If m4+mn =2 and m # n then again we are done. If m +n = 2 and m = n then the claim
follows from Lemma 4.38. This proves the induction base. So let us assume that there
exists an [ > 2 such that our claim has been shown for all m,n > 0 with m + n <. Now
we have to show it for all m,n > 0 with m +n =1+ 1.

If m = 0 or n = 0 then we are done. So we can assume that m,n > 1, and moreover,
without loss of generality we may assume that n > m (the other case can be shown
analogously). Note that n > m implies that n > 2. If we apply the induction hypothesis
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to the chain y = xg <1;(’)“ e <§J§ Tm = 20 <}Jf ‘e <1}f Zn—1 then we get m,n > 0 and words
Zi, % € A" such that m <m, n <n—1 and

z 1,k 2 1,k Lk 2. _ & 1Lk = 1,k 1.k = _
y=20 <) 21 <y <) F=To <) T <y <)) T = Zn-1- (4.13)

v

We apply the hypothesis again, this time to Zg <, -+ <\* 5 = 21 <}F 2, =/ (this is
possible since n > 2 and therefore m+1<m+1<m+n—1=1). We get m’,n > 0 and
words z}, z; € A" such that m’ <m, n <1 and

To=Z20 <)) - <FZa=ap<pa) <Pt <Fany=v. (4.14)
If we merge the chains (4.13) and (4.14) at Zo then we obtain

/ /

e

_z Wk _Vk3z _ 4z Ak kg _ ) _1k . _lk
Yy =z0 <) <y B = To = 20 < <) Zn = Tg <y, <vo Tm

Let n' =qet 1 + 7, 2} =ger 2 for 0 < ¢ < n, and z,%ﬂ- =det Zj for 1 < j < n. Since

m' <m<m,n<n-—1and n <1, we obtain m' <m, n’ <n and
/ 1,k Lk ) )
1<v0”‘<v0xm/_y'

/ / /
y =2} <Lk 2, L Lk,

ok
vy vy vy “n! T xO <'u0 T

This proves the claim. a

Now we can state the main theorem concerning the rearrangement of <* chains: Every
chain leading from y to y’ can be transformed into a chain of the form (4.12). This means
that the context words in this chain are ordered by the following rules: (i) context words v;
with a large |y (v;)| appear earlier than context words v; with a small |a(v;)|, and (ii) all
equal context words appear in one block (i.e., if there is some v; between two appearances
of v; then v; = v;).

Theorem 4.40. Let M be a DFA, k > 0 and y € A*. Then it holds that

(Y = U () ) ) g ) (4.15)
where the union ranges over all m > 0 and all pairwise different words vy, ..., vm € W

with |ag(vo)| = |ar(v1)] = - -+ = |or(vm)|-
Proof. First of all let us observe the following claim.

Claim. Let m > 0 and vo,...,v,m € Wi with |ag(vg)| = -+ = |ag(vm)| such that
{vo, -, U }={T0, ..., Um} for m >0 and pairwise different words vy, . . ., vm € Wii*. Then
for all L € A" 1t holds that {--- (({L) ap) e -+ e = (- ({(D) ) ) e == ) e

This is an easy consequence of Corollary 4.39 and the fact that ((L) k) 1x = (L) ax for
all v € A" and L C A*".

We turn to the proof of the theorem. From the definition of <}y it is easy to see that
in (4.15) the right-hand side is a subset of the left-hand side. In the remaining part of the
proof we will show the reverse inclusion.



108 4. Decidability Results for the DDH and STH

Trivially, y is an element of the right-hand side of equation (4.15). So let 3y € A
with y =< ¢/ and y # ¢/. With Lemma 4.37 it follows that there exist an m > 1,
Y05 -+ Ym € A and vy, ..., vy € Wi with Jag(v1)] > ok (v2)] > -+ > |ag(vm)| such that
y=1y0 <;Fy <y <* ym =y’ We can subdivide this chain into maximal sections
such that |ag(vi)| = |og(v;)| for any 4, j in this section. This means that there exist an
[ > 1, natural numbers ng > ny > --- > n;_1 and positions 0 = ig < i1 < --- < 47 = m such
that oy (vjr)| = nj forall 0 < j <1 —1and i; < j" < ij41. Hence, for each 0 < j <1 -1
we have

Lo i € (i ap dar dan "'><1v»f_+1 and
2. nj = |ag(vij41)] = lar(vij+2)| = - = o (v,
For each 0 < j <1 — 1 we can choose some [; > 0 and suitable pairwise different words
Vj0, V515,050, € Wil such that {vi41,vi42,...,v,,,} = {vj0,v51,...,051,}. So it
holds that n; = [ag(vjo)| = -+ = |k (vjy;)|. From our claim it follows that

Yij, € (- <<<y7,‘7><1};c0><%jjkl ><252 .. ‘><%J;lj (4.16)

for 0 < j <1 —1. If we combine the facts (4.16) for 0 < j <[ — 1 then we obtain
/ pr— . DY ... . e e .. ...
y - yll E < <<<<<y><1;§,0 ><}”’(I)C,l0 ><}u’f,0 ><1’7:]l€,l1 ><}U’lkfl,0 ><}”’lkfl,ll_1 N (417)

Now we have to show that all words v; ; in (4.17) are pairwise different. For this purpose
we assume that there exist words v;; and vy j» in (4.17) such that v;; = vy . If 0 #
then ay(v;j) = ng, ag(vy j7) = ny and n; # ny. This contradicts v; j = vy j7, and it follows
that ¢ = ¢’. Since by our claim the words v; 0, v; 1, .., v, are pairwise different, we obtain
j = j'. This shows that all words v; ; in (4.17) are pairwise different. Therefore, y is an

element of the right-hand side of (4.15). O

The crucial point in Theorem 4.40 is that the context words vy, ..., v, are pairwise
different. This means that in (4.15) the union is finite and m is bounded. This allows us
to prove the main theorem of this subsection.

Theorem 4.41. Let M be a DFA, k > 0 and y € A". Then it holds that <y>'<1A’/? € L3/
and <y><}v1? € Bsa-

k€ B (here it is
M

Proof. From Theorem 4.40 and Corollary 1.31 it follows that (y)
important that (i) Wi € A*>**+1 and that (ii) the union in Theorem 4.40 is finite since
WL is finite). So it suffices to show By C L35 and By, C Bs 5.

The inclusion By C L /2 is an immediate consequence of Definition 1.21 and Theo-
rem 2.9. If we compare the Definitions 1.21 and 2.1 then we see that for the inclusion
By, C Bss it is enough to show that (B|T'|0)x € B/, for all 3,6 € AF and T € A1 (note
that {a} € By for all @ € A). It holds that (3|T'|§) is even an element of coB; /o which
can be seen as follows.
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(BIT)6)e = A"\ ( U A*yA*) U ( lJ #4a"u A*&’) U ( U {w}> ] .
yEAR+I\T p'eAk\{B} weAT=F\(B|T]6)
8’ c AR\ {8}
words of length > k + 1 words of length < k
containing a block v ¢ T’ words of length > k + 1 that are not in (B|T'6)

having a wrong prefix or suffix

all nonempty words that are not in (3|T'|6)

4.3.3 Regular <}* Co-Ideals are Finitely Generated

The main theorem of this subsection says that if the language accepted by some DFA
M is a =i co-ideal then this co-ideal is finitely generated. There we will show that
every sufficiently long word ¢/ € L(M) has a <y} predecessor in L(M). For the proof it
is necessary that in a sufficiently long word y we find ‘many’ appearances of the same
context word v (see Lemma 4.45).

So we have to find context words, and therefore we start with a lemma which says:
For a sufficiently large n and words uy,ug, . .., u, with ag(u;) = ag(uius - - - u,) we find a
factor in wujusg - - - u, which has nearly all properties of context words from W, (only the
length is an exception). If we additionally bound the length of ujus - - - u, then it contains
even a factor from W,;* (see Corollary 4.43).

Lemma 4.42. Let M be a DFA, k > 0, n =qet Zpq and w,uq, . . ., un € A= such that
w = ugug ... Uy and ag(u;) = ap(w) for 1 < i < n. Then there exist wi,we € A" and
Py oo Tos bty ey € AR such that the following holds.

1. w=wirire--- rpnWwa = wllnln_l ce l1w2
2. ap(A7) € ag(w) and ag(ri A1) € ap(w) for 1 <i<n
3. ap(ly) = ax(ri) = ag(w) for 1 <i<n

Proof. Let m =4ef |w| and choose suitable letters ay,...,a,, such that w = ajas - - am.
Next we describe a walk in the word w which has three stages and which is illustrated in
the following picture.

.o )

Po P1 P2 p3 Pn—2 Pn—1 Pn ‘
.o | w

qo q1 g2 g3 Gn—2 Gn—1 Gn |
»0- >0 o »0- >0 | w

So | s1 S2 53 n—p Sn—ft s ‘
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In the first stage we start at position py =ger 0, i.e., left to the first letter of w
(cf. the first line in the picture). We walk to the right until we reach a position
p1 > po (i.e., the pi-th letter of w) such that ax(apy+iapy+2---ap—1) € ax(w) and

ag(Apo+1apo+2 - -~ ap,) = og(w). Now we continue our walk until we reach a position
p2 > p1 such that ag(ap,+1ap,42- - ap,—1) C ar(w) and og(ap +1ap42- - ap,) = ox(w).
In a similar way we obtain positions ps, ..., pn-

In the second stage of the construction we start at position g, =gef pn and we walk
to the left until we reach a position ¢,—1 < g such that ag(aq, ,4+20p, 43 aq,) <
ap(w) and og(ag, ,+10qg, 142 aq,) = ox(w). We continue the walk to the left until
we reach a position ¢p,—2 < gn—1 such that oy(ag, ,4+2ap, o+3° - aq,_ ) & ax(w) and
ar(ag,_o410q, o422 Gq, ;) = ag(w). If we continue this procedure we obtain the positions
dn-3,---,40-

The third stage is analogous to the first one, i.e., we walk to the right. Here we start
at position sg =qef go and we obtain positions si,..., Sy.

First of all we make sure that the construction above is possible, i.e., during the con-
struction we do not walk beyond the first and last letter of the word w. In the first stage
it holds that p; < |uqug---u;| for 0 < i < n, since ax(u;) = ag(w) by assumption. This
shows that we do not walk beyond the end of the word w. Hence, it holds that

0=po<p1 <p2<--<pp < |wl (4.18)

The construction of the second stage is such that p,—1 < ¢,_1, since otherwise
the word ay, ,+1ap, 42 -ap, would be a factor of ag, 4204, ,+3°--aq, and we
would obtain ax(ap, ,+1ap, 142 ap,) T ar(w) (a contradiction to the construction
in the first stage). Moreover, it holds that ¢,—2 < pn—1, since otherwise the word
Qg o+10g, 242 " " Gq,_, Would be a factor of a;,, _,11ap, ,42---ap,—1 and we would obtain
ak(ag, o+10q, 942 aq, ) S ar(w) (a contradiction to the construction in the second
stage). Analogously one observes that ¢; < piy1 < giy1 for 0 < i < n — 1. In particu-
lar we have p1 < ¢1. So if we walk from ¢; to the left then at least at position pg we
reach a position such that ap,+1ap,+2 - - ap, is a factor of ap,+1ap,+2 - - - ag, and therefore
ak(apy+1apy+2 - - - g, ) = ag(w). This implies that py < qo, i.e., during the second stage we
do not walk beyond the beginning of the word w. So we have shown

0=po<q@<p1 <@ <p2<q@<-<pPn-1<qn-1<ppn=qy<|w. (4.19)

We use the same argumentation for the comparison of the second and the third stage and
obtain

So0=q0<51<q1<52< @<+ <Sp-1<(qn-1<5n<¢qn=pp<|wl. (4.20)

Now let us compare the first with the third stage. Immediately we obtain that p; < s; for
0 < ¢ < n, since we start the third stage at a position sg and it holds that py < gy = so.
Together with (4.20) this implies s, = g,. We define the following words.
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W1  =def a1G2---Ggqq
W2 =def Qgp+1Q0g,+2 " Ay
Ty =def 0s;_1+10s; 142" 0Ug for

1< <n
li —def aani'f‘la‘ani‘i‘Q e a‘hzfijtl for 1 S i S n

By the construction process for the positions ¢; and s; it holds that az(A™') € ax(w),
o (ri A1) € ag(w) and oy (1) = ag(r;) = ag(w) for 1 < i < n. From w € A=+ it follows
that |ag(w)| > 1 and therefore l;,r; € AR+ for 1 < 4 < n. Since so = qo and s, = gn,
we obtain w = wiriry - - - rpowy = Wilplp—1 -+ - lLws. O

Corollary 4.43. Let M be a DFA, k > 0, n =qof Zy and w, uq, ..., uy, € A= such
that w = uiug ... Uy, |w| < CF and ag(u;) = ag(w) for 1 < i < n. Then there exist
wy, we € A" and v € W such that ag(v) = ag(w) and w = wivws.

Proof. From Lemma 4.42 we obtain words wi, ws € A", r1,..., 7,11, ..., 1, € AZF such
that w = wirire - - - rpwe = Wilply_1 - - - liwa, (A1) € ag(w), ap(r; A1) € ag(w) and
ar(l;) = ag(r;) = ag(w). Let v =gef 7172 - - - 7, and observe that ag(v) = ag(w). Now the
corollary follows from Definition 4.31. O

In Corollary 4.43 we assumed a certain decomposition of the word w. Now we show
a lemma which says that in every sufficiently long word y we find a factor w and a
decomposition w = ujug - - - uy, with |w| < CE and ay(u;) = ag(w). In this lemma, m will
be substantial larger than the number n = 7, from Corollary 4.43. Moreover, the number
m depends on the length of the words w; (which will be all of the same length), and this
length depends on [ =gef g (u;)|. This is important owing to the following considerations
which will be exploit in the proof of Lemma 4.45.

— The dependence of m on |u;| ensures that m is substantial larger than | A"+ |, There-
fore, there exists a block b € A* such that |b] = Z.,-|u;| and b appears at several positions
inw=uuy...upm (i.e.,, b =ujr1uj42---ujiz,, for several indices j).

— The dependence of |u;| on | = |y (u;)| ensures that for each block b it holds that || < CE.
This makes Corollary 4.43 applicable to the blocks b.

Lemma 4.44. Let M be a DFA, k > 0 and y € A*. If ly| > FE(Jax(y)|) then there
exists an | with 1 <1 < |ag(y)| and a decomposition y = y1uiusg - - - Umyo with yi,ys € A",
m= Ty +1) - (IM] - |[APMFREDHY) and |u;] = FE(1—1) for 1 <i<m such that

1. |ag(urug -+ - up)| =1 and
2. ap(u;) = ag(uiug -+ up,) for 1 <i<m.

Proof. We show the lemma by induction on |ax(y)| > 0. The induction base (i.e., the
case |ag(y)| = 0) holds trivially, since there are no words y € A* with |ag(y)| = 0 and
lyl > F4(0) =k + 1.

Now we assume that there is some r > 0 such that the lemma has been shown for all
y € A" with |ax(y)| < r. Based on this assumption we will show the lemma for all y € A
with |ag(y)] = 7 + 1. Let m/ =gt (Tng + 1) - (M| - |[AFM TGO and let y € A* with
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loar(y)| = r+1 and |y| > FE(r+1). By definition this means that |y| > FX(r)-m/. Hence,
y can be written as y = yjuius - - - Uy for suitable y1,ys € A" and factors uq,. .., U, of
length FE (r).

If ap(u;) = ag(y) for 1 < i < m' then we define | =gef 7 + 1, m =qof m’ and we are
done. Otherwise there exists some j with 1 < j < m/ and |a(u;)| < r. So we can apply the
induction hypothesis to u;. Note that the word wu; satisfies |uj| = FE(r) > FE (Jag(uj)]).
Therefore, from the hypothesis we get an I > 1 and a decomposition u; = yjujus - - - u;,yh
with m = (Zy +1) - (M| - |APM TG 0=D+1) angd |ul| = FE(1 —1) for 1 <i < m such that
| (uyuy - -y, )| = Land ay(u) = ap(uiuy -+ ug,) for 1 < i < m. Let 1 =der u1 -~ uj—11
and ¥ =def YhUjt1 - Um. We obtain y = grujub - - ul, g2 and 1 <1 = |oy(u))] < o (y)]-
This completes the induction step. a

Next we show that for every sufficiently long word y we find a context word v that
appears several times as a factor in y.

Lemma 4.45. Let M be a DFA, r =g |[M|+ 1 and k > 0. Every y € A* with |y| > Ck,
can be written as y = xvyvys - - - yp_1vz with x,z € A, y; € ALy e WY and
ok (Vy1vY2v - - - yr—1v) = ag(v).

Proof. Observe that |y| > C{; implies that [y| > F;(|ak(y)]). So we can apply Lemma 4.44
to y. We get natural numbers [, m and words y1,y2, u1, ..., u, € A* having the properties
stated in Lemma 4.44. Note that in particular this implies u; € A=F*! for 1 <4 < m.

Let m/ =qef M| - |A[P T4 =D+1 Since m = (Tp, + 1) - m/ we can divide the sequence
U1, U2, . .., Uy into m’ blocks of Zy, + 1 elements. For this let i; =qer j - (Zy + 1) for
0 < j < m'. Therefore, if we define wj =qet wi;_,y1ui; ;42 us;—1 for 1 < j < m’ then
we obtain

Y=Y - Wil Walkjy W3lUjg - Wi/ U4, * Y2-

~~
W=def

Since ag(u;) = og(w) for 1 < @ < m we have ap(u;)) = ax(w;) for 1 < i < m and
1 < j < m'. Moreover, from |u;| = FE(l —1) for 1 < i < m it follows that |w;| =
Tv - FE(1—1) < FE() < Ck for 1 < j < m'. Therefore, we can apply Corollary 4.43 to
the words w; = Wij_y 41Uy 42 Ui—1. For 1 < j < m’ we obtain words w1, wjo € A
and v; € W, such that ag(v;) = ag(w;) = ag(w) and w; = wjvjw;2. This yields the
following decomposition for y.

Y=y1  W101WI1 U5 W2,1V2W2 2, W3 1V3W3 25+ Wiy 1V Wiy oY, - Y2.  (4.21)

Observe that |vj| < |wj| = Ty - FE(1— 1) for 1 < j < m’. On the one hand in (4.21) we
have m’ words v; € W with |v;| < Zo- FE(I—1). On the other hand the number of words
from A* with length < Z,,-F% (1—1) is less than |A[Tm F4(=D+1 Therefore, at least one of
these words, say the word v, appears more than m//(| A" F4(=D+1) = | M| times in the
decomposition (4.21). Hence there exist words z,z € A and y1,...,y,—1 € A= such
that y = xvy1vy2v - - - yr—1vz. Moreover, we have ay(vyivysv---yr—1v) = ax(w), since
VYUYV - - - Yp—1v 18 a factor of w and since ay(v) = ag(w). This proves the lemma. 0
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The main result of this section shows that if the language accepted by some DFA M
is a <\ co-ideal then this co-ideal is finitely generated. Together with Theorem 4.41 this
implies that L(M) € Bsp (and if k = 0 then L(M) € L3/5).

Theorem 4.46. Let M be a DFA and k > 0. If L(M) is a =i co-ideal then it is even
finitely generated (i.e., there exists a finite set D C A" with (D) _ix = L(M)).
Y

Proof. Let M = (A, S,6,50,5") be a DFA, k > 0 and assume that L(M) is a <} co-ideal.
It suffices to show that for every y € L(M) with |y| > CF there exists a 3/ € L(M) with
ly/| < CF and ' <% y. To see this it is enough to show the following claim.

Claim. For every y € L(M) with |y| > CF there exists a y' € L(M) with |y'| < |y| and
y =y

Let y € L(M) with |y| > CF and let » =g¢¢ |M| + 1. By Lemma 4.45, y can be
written as y = zvy vy - - - yr_1vz for words z,z € A%, y; € AZFT1 and v € WE* such
that ag(vyi1vyev -« yr—1v) = ag(v). For 1 <i < rlet §; =gef 0(S0, xVY1VY2 - - - VY;—1). Since
r > |M] there exist positions j,j with 1 < j < j' < such that §; = 5. It follows that
in y we can cut the factor vy;vy;q1---vyy_1 without leaving the language. This means
that the word y' =qer ZVY1VY2 - - - VYj—1 - VY VY141 - - - VYr—102 is still an element of L(M).
Since |y/| < |y| it remains to show that y' =<\ v.

Let o/ =qer z0y1 -+~ 0Yj—1, 2’ =def YV - Yr—102, and w =qer Y;jVYj41 - - VY —1. Hence
we have ¢y = 2'vz’ and y = 2'vwvz’. Since vwo is a factor of vy vyev -« - yr_1v it follows
that ay(vwv) = ay(v). Moreover, we have w € A*2F*! since w contains at least the factor
y; € AZFFL This shows ' <U* y and it follows that ' <X . 0

In view of Theorem 4.8, which shows that (A", <;) is a wpos, one might ask if (A", <}})
is also a wpos. Unfortunately this does not hold. To see this it suffices to construct an
infinite set of pairwise incomparable words. Choose two arbitrary letters a and b from the
alphabet. Let n =gt T, M =det C/ffl and w; =gef (a™b™)? for i > 1. We will see that
w; A wj for all i # j.

Assume that we find a context word v € W, in some w;. We want to see that v is of the
form v = a' or v = b for some [. From the definition of context words, i.e., Definition 4.31,
it follows that v = ry - - -, for suitable r; € A*=**1 with ay(r;) = ag(v). From v € W it
follows that |v| < m. So we obtain four possibilities: (i) v is a factor of ", (ii) v is a factor
of o™, (iii) v is a factor of ab™ and is neither a factor of a™ nor a factor of b, (iv) v is
a factor of b"™a"™ and is neither a factor of a™ nor a factor of b™. In the cases (i) and (ii)
we are done. Since case (iv) is analogous to case (iii), it suffices to consider case (iii). In
this case the set ay(v) contains at least one word from A*a A" and at least one word from
AbA". Since ag(v) = ag(r1) = ag(r,) there appears a letter b in 71 and there appears
a letter a in r9. This contradicts the assumption that v = r1---r, is a factor of a”b™.
Therefore, in each w; we find only context words v € W,;* that are of the form v = a! or
v =70

For <} extensions (applied to the words w;) this has the following consequence: These
extensions can only insert letters a into a-blocks and letters b into b-blocks. These exten-
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sions cannot change the number of a-blocks and b-blocks in the words w;. Since different
words w;, w; have different such numbers we obtain that w; Ay w; for i # j.

4.3.4 Languages from FP(P{) and FP(P}) are Regular <.* Co-Ideals

We already know that (i) the <} upward closure of a nonempty word is in By /2 and (ii)
if the language accepted by some DFA M is a <} co-ideal then it is finitely generated. It
follows that if L(M) is a <i{ co-ideal then L(M) € Bj/s. In this section we establish the
missing connection to the forbidden-pattern class FP(Pf). We show that if the language
accepted by the DFA M is in FP(P¥) then L(M) is a <}y co-ideal for a suitable k > 0.
For the forbidden-pattern class FP(P{) we obtain an analogous result.

So we have to connect patterns from P§ on the one hand with the word extensions
<% on the other hand. This connection is not established directly, but we introduce an
intermediate pattern. In Lemma 4.48 we show that the absence of patterns from P} implies
the absence of this intermediate pattern (Lemma 4.49 states the analogous result for Pf).
Then in the proof of Theorem 4.50 we show that the absence of the intermediate pattern
in some DFA M implies that L(M) is closed under <}; for a suitable k. The analogous
result for FP(P]) is given in Theorem 4.51.

We start with a proposition that provides a way to rewrite the intermediate pattern.

Proposition 4.47. Let M = (A, S,0,50,5") be a DFA and k =qet 3-Zy. Suppose that
there exist states si, sy and words z,z € A, v,w € AZFTL with ag(vwv) C ag(vv),
5025812581254 and 512589 Y590 %,—. Then we can choose such si, S9, T, z,v,w that
additionally satisfy v = v'u and w = w'u for v/, w' € AR oy e A=IM with §uv = §v,

Proof. We define below witnessing states §1,352 and witnessing words Z, Z, ¥, having
the required properties. By Corollary 1.17, v can be written as v = wjuws for words
wi,wy € A" and u € ATSIM with §u = §%. We make the following definitions.

T =def TWIU U =def W2VVWIU 51 =def 0(s1, w1w)
Z =def W22 W =def WoaWWIU 59 =def (2, wiu)

With v/ =gef wovvw; and W' =gef woww; we get v/, w’ € AZF1 5 = 'y and & = w'w.

In particular this shows |w| > k + 1 and |0| > k + 1. The following facts can be easily
observed.

8(51,0) = 6(s1, wiud) = (51, wivwpvvwiu) = §(sy, v:wiu) = §(s1, wiu) = 5,
8(52,) = 6(s9, wiud) = (52, wivwevvwin) = §(sz, v2wiu) = §(s9, wiu) = 5o
0(51,w) = d(s1, wiuw) = 6(s1, wiuwowwiu) = §(s1, vwwiu) = §(S2, wW1u) = So
5(31,2) = 6(s1, wruz) = §(s1, wiuwaz) = §(s1,v2) = 6(s1,2) € S’

5(32,2) = 6(s2, wruz) = §(s9, wiuwaz) = §(s9,v2) = 6(s2,2) ¢ S’

Hence we obtain sg %55, -*.5 %+ and §; -®, 5, Y, 35y %, —. Since 9w? is a factor
of vvvvwvvvy we get ag(0wv) C ag(vvvvwvvvy) C ag(vv) (for the latter inclusion we
use the facts oy (vwv) C ag(vv) and |v| > k + 1). Since vo is a factor of v it holds that
ai(vv) C ag(0) and therefore oy (01w0) C ay(00). 0
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Lemma 4.48. Let M = (A, S,0,50,S5") be a DFA and k =qet 3 - Zp(. Suppose that there
exist states si,sy and words r,z € A, vw € A such that oy (vwv) C og(vv),
so2ss1 Y51 2+ and s; Y s9 Yy sy 2, —. Then M has a pattern from Pf.

Proof. By Proposition 4.47 we may assume that v and w are of the form v = v'u and
w = w'u for v/, w € AR 4 e A<M with §** = §*. Tt follows that both states s; and
s2 have a u-loop. From Corollary 1.15 we obtain a decomposition w’ = wjujwy - - - upwl,
such that w!,u; € ATSIM and 64t = §% . Let ug =qef ¥ and U1 =det u. Then it holds
that ug, wh, U1, - . ., Wy, Umr1 € ATSIM and §%% = §% for 0 < i < m + 1.

Next we want to observe that the factors u;wiu;11 appear as factors in a loop at s;
and in a loop at sg. Note that |u;wjui1] < 3-Zy < k+ 1 for 0 < ¢ < m and that
UQWHUL * * - W U1 = uw'u = uw is a factor of vw. Hence, u;w}u; 41 appears as a factor in
some element of ay(vwv) for 0 < i < m. From ay(vwv) C ag(vv) it follows that w;wiu;i1
is a factor of vv for 0 < ¢ < m. This means that for 0 < ¢ < m there exist v}, v with
VU = viuwiui v

In order to show that M has a pattern from P§ we let m’ =gef m + 1 and we make the
following definitions.

/
WO =def U0 Po =def (o, VHuo)
Wi =def Wi_qu; for 1 <i<m/ Pi =def (ui, v qviu;) for1<i<m'—1

"
Pm/ =def (um’a Um/_lum’)

Note that w; and both components of p; are elements of A" for 0 < i < m/. From
Definition 3.36 it follows that p; € B for 0 < i < m/. Hence, in view of Definition 3.6
we can refer to the first (respectively, second) component of p; as p;° (respectively, p;) for
0 <i<m. Let p=qef (W0,P0,---,Wns,Pm) and note that p € P{¥ by Definition 3.4. In
order to show that M has a pattern from P} (see Definition 3.5) it is enough to see that
S1 vbs S2 (since we already know that sy — s1 2, + and s9 2, —).

For 0 < i <m’ let q; =qer 0(81, woPo - - - wi—1Pi—1w;) and r; =qef 0(q;, Pi). Observe that
w; and p; lead to a p;°-loop in M since both words have the suffix u; = p;° with §%% = §%i.
It follows that ¢; -2i, r; for 0 < i < m/. Moreover, we have the following decompositions.

wo PO w1 P1 wa P2 Pm Wm+1 Pm+1
/ / "o / "o/ " / / "
WoPO * * * WmA+1Pm+1 = UQ YpUp Wyl Vg V1 UL WU Uy VU2 * + * Uy 1 Vpy U Wiy U1 Uy, Un -1
/ / "ol / "o/ " / / "
= Up VyUp WUl Vg V1UL WU V) VoUQ * * * Uy 1 VU Um Wiy, Um+-1 Uy, Um+1
~— ~ ——
i v v vV u

_ u,UZ(m-i-l)u

Since s; has a u-loop and a v-loop it follows that 7, = 6(s1,weD0 - - - Wi+ 1Pm+1) = S1-
Hence we have shown that s; 9, qo 2% 79 YL q1 2iyry 22, - Ul g Pl ) = 51, By
Definition 3.4 this means that p appears at s1. Analogously we show that p appears at so.

Now define ¢; =get 0(s1,wo---w;) for 0 < i < m/. Since s; has a u-loop it holds

that @,y = d(s1,wo - wyy) = 6(s1,uw'u) = d(s1,w'u) = §(s1,w) = sy. This shows
5109, Go ML, Gy 22, .- Ul g = so. Moreover, p; appears at ¢; for 0 < i < m/ since w;

leads to a p;°-loop in M. Together with the fact that p appears at s; and at so this implies
81 by So by Definition 3.4. O
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Lemma 4.49. Let M = (A, S,9,50,S’) be a DFA. Suppose that there exist states si, so
and words z,z € A", v,w € A" such that ap(w) C ap(v), so 581 Y581 25+ and
s1 Y589 Yy 59 2, —. Then M has a pattern from Pf.

Proof. First of all we observe the following.
Claim. We may assume that pi(w) = p1(v) and that w is a subword of v.

If v and w start with different letters then we can use vwv instead of w since ag(vwv) C
ap(v) and s; 2% s5. Now assume that w and v start with the same letter, but w is not a
subword of v. The condition ag(w) C ag(v) means that all letters from w appear also in v.

Hence, w is a subword of v/*l. We can use v/l instead of v since ap(w) C ag(v) = ag(v!®)),

s1 ﬂ, s1 and s9 ﬂ, so9. This proves the claim.
Let n =ger |w| — 1 and choose suitable letters a, ...,a, € A such that w = ag-- - ay.
By our claim there exist words vg,...,v, € A such that v = agvgaivy - - a,v,. For

0 < i < nlet p; =qgef (¢,v;) and note that p; € L (see Definition 3.36). Moreover, let
D =det (@0, P0,-- -, an,Ppn) and note that p € P{ (see Definition 3.4). Now we are going to
show that s1 -2, so.

Note that by Definition 3.2, s1 ¥, s9 implies s1 S,i;gl s9 for all y € A*. Therefore, if we
define g; =gef 9(S1,a0v0 - + - aj—1vi—1a;) and r; =qer 6(qi, v;) for 0 < i < n then we obtain

a a a:
$1-2% qo L0 rg M gy Bl 22, g, Pror, = s

Hence p appears at s; by Definition 3.4. Analogously we show that p appears at ss.

Let ¢; =get 0(s1,a0---a;) for 0 < i < n and observe that s; 29, go %L, -+ - 22, G, = $o9.
It is easy to see that p; = (e,v;) appears at each state in M, and in particular at the
states ¢;. Together with the fact that p appears at s; and at s this yields s1 .2, so. From
Definition 3.5 it follows that M has a pattern from Pf. O

The main theorems of this subsection are given below. They establish the connection
between the forbidden-pattern class FP(P}) (respectively, FP(P{)) and the word exten-
sions =i (respectively, <59).

Theorem 4.50. Let M = (A, S, 6,s0,S5") be a DFA with L(M) € FP(P¥) and let k =qef
3-Zy. Then L(M) is a <y co-ideal.

Proof. Let n =gef Zp and assume that L(M) is not a <} co-ideal, this will lead to
a contradiction. Hence, there exist words y,y' € A", v € W such that y € L(M),
y ¢ L(M) and y <'* /. This means that there exist words z,z € A* and w € A*=k+1
such that y = vz, ¥ = zvwvz and ag(vwv) C ag(v). By the definition of W, there exist
words rq,. .., € AZF such that v = ryre-- -7, and ag(r;) = ag(v) for 1 <i < n. By
Corollary 1.16, there exist 7, j with 1 < ¢ < j < nsuch that 6" = 6" for u =qef 757541+ - 7j-

Let @’ =qef @11 -+ Ti—1U, 2’ =def Tj41 -+ Tnz and W' =gef 7j41 - - rpwry - - - 7i—1u. Then
y = /2" and vy = 2/w'2’. Since (i) 7; is a factor of u and (ii) u is a factor of v, it
holds that ag(u) = ax(r;) = ax(v). Moreover, since uw'u is a factor of vwv, we have
a(uw'n) = ag(vwv) = agp(v) = ag(u). So we have 2/, 2/ € A* and w',u € A>*! with
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ak(vw'u) = ag(u) C ag(uu). Note that 2’ and w' lead to a u-loop in M because both words
have u as a suffix and 6“* = §*. Therefore, with s; =ger d(80,2") and so =qef 0(s1, W) we
obtain sg AN 51 %, 81 Z 4+ and s1 W' S9 %, 89 _#, —. From Lemma 4.48 it follows that

M has a pattern from P§. By Definition 3.13 this is a contradiction to the assumption
that L(M) € FP(PY). O

Theorem 4.50 can be easily transferred to the class FP(Pf). For this we only have to
use 0 instead of k in the proof above.

Theorem 4.51. Let M = (A, S,0,5s0,5") be a DFA with L(M) € FP(Pf). Then L(M)
is a =) co-ideal.

Proof. Let n =qot Iy and assume that L(M) is not a =<} co-ideal, this will lead to
a contradiction. Hence, there exist words v,y € A", v € W, such that y € L(M),
Yy ¢ L(M) and y <'° ¢/'. This means that there exist words z,z € A" and w € A"
such that y = zvz, ¥ = zvwvz and ap(vwv) C ap(v). By the definition of Wy, there
exist words r1,...,7, € A" such that v =r1ry-- -7, and ap(r;) = ap(v) for 1 <i < n. By
Corollary 1.16, there exist 7, j with 1 < ¢ < j < nsuch that 6" = 6" for u =qef 757541+ - 7j-

Let o' =qef @11 -+ Tim1U, 2 =det Tj41 -+ Tnz and W' =gef Tjp1 - rpwry - rimu. We
obtain y = 2’2’ and ¢y = 2’'w’z’. Since (i) r; is a factor of w and (ii) u is a factor of
v, it holds that ap(u) = ap(r;) = ap(v). Moreover, since w’ is a factor of vwv, we have
ap(w') C apglvwv) C ag(v) = ap(u). This shows that 2’2" € A and w',u € A" with
ap(w") C ag(u). Note that 2/ and w' lead to a u-loop in M because both words have
u as a suffix and §** = 0. Therefore, with s1 =qef 0(s0,2’) and sy =qef 0(s1,w') we
obtain sg AN 512 81 '+ and s1 AN So Yy 89 ., —.So we can apply Lemma 4.49 and
it follows that M has a pattern from P{. By Definition 3.13 this is a contradiction to the
assumption that L(M) € FP(PT). O

4.3.5 L3/ and B3/, are decidable

We combine the results of the preceding subsections and get the inclusion relations L35 2
FP(Pf) and B3/, 2 FP(Pf). Together with the forbidden-pattern theory in chapter 3
this shows the forbidden-pattern characterizations L3/, = FP(P{) and B3/, = FP(PY).
Moreover, we obtain that the membership problems for L3/, and Bs/y are decidable in
nondeterministic logarithmic space.

The decidability of L3/, and a forbidden-pattern characterization for this class was
first given in [Arf91, PW97|. Note that the patterns given there and the patterns from Pf
can be easily transformed into each other. Recently, is was shown in [PWO01] that level
n + 1/2 of the DDH is decidable if and only if level n 4+ 1/2 of the STH is decidable (see
Theorem 2.14). Together with [Arf91, PW97] this yield another proof for the decidability
of Bg /2

Theorem 4.52. It holds that L3/, = FP(P{) and Bs ), = FP(PY).
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Proof. By Theorem 3.39 it suffices to show FP(P{) C L3/, and FP(Pf) C Bs/o. Let
L e FP(P%), L' € FP(P¥) and let M, M’ be DFAs such that L = L(M) and L' = L(M’).
By the Theorems 4.50 and 4.51, it holds that (i) L is a <{ co-ideal and (ii) L' is a <%, co-
ideal for k =gt 3-Z,,. From Theorem 4.46 it follows that there exist finite sets D, D’ C A"
with

L= <D>j}\f1] = U <y><1,o and L' = (D/>_<1,/c = U <y>_<1,k’.

M 247 >
yeD M yeD’ M

Finally, from Theorem 4.41 we get that (y) a0 € L3/5 and (y)_ux € By, for all y € A"
M =p!

Since the unions above are finite, we obtain L € L3/ and L’ € Bg/s. O

e o

@O0 - O @

Fig. 4.5. Forbidden-pattern for L3, [PW97] with b; € A" and w; € A",

Corollary 4.53. For every DFA M = (A, S, 0, s0,5") the following holds.

L(M) € L3, <= there do not exist s1,s2 € S, 2 € A" such that s — s1 = +,
So 25 — and we find a pattern according to Figure 4.5 between
s1 and s9.

L(M) € By <= there do not exist 51,82 € S, 2 € A" such that so — s1 =+,
So 2, — and we find a pattern according to Figure 4.6 between
s1 and s9.

Proof. This follows from Theorem 4.52 and the definition of the forbidden-pattern classes
(see Definitions 3.1-3.5). 0

Theorem 4.54. On input of a DFA M, the questions L(M) € L35 and L(M) € By,
are decidable in nondeterministic logarithmic space.

Proof. This is an immediate consequence of the Theorems 3.46 and 4.52. g
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lm l() ll lm— 1 lm

Fig. 4.6. Forbidden-pattern for Bs,, with b;,l;, w; € A",

4.4 Summary and Discussion

In this chapter we showed that on the lower levels the classes of the concatenation hierar-
chies in fact coincide with the classes of the forbidden-pattern hierarchies from chapter 3.
This refines our knowledge about these hierarchies and leads to Figure 4.7 which is an
updated version of Figure 3.13. In particular this implies that the classes Ly/9, L33, By /2
and Bs/y are decidable in nondeterministic logarithmic space. Moreover, in this chapter
we proved that the Boolean hierarchies over £, o and over By, are decidable.

All these results were obtained by the use of certain word extensions. The advantage
of this technique is that it makes possible to prove the decidability of the classes Lo,
By, L3/5 and Bsjp in a uniform way. Moreover, this technique in combination with the
method of alternating chains is ideally suited to attack decidability issues for the Boolean
hierarchies over these classes. A very interesting starting point for future work is to clarify
whether this approach is helpful when looking at the decidability of the Boolean hierarchy
over Bss.



120 4. Decidability Results for the DDH and STH

//—\

star-free

FP(P5) |
N |
FPE5) Bz
/ L7/2
FP(P3)
S/
FP@E5) B
\\\
Ls/2
.7-77(1["15) i 83/2
N
FP(PT) ——— L3/2
.7—'77(]11’3) B 81/2
NN
FPPy) ——— Lq)2

Fig. 4.7. Concatenation hierarchies and forbidden-pattern hierarchies
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Notations

<
B
1,k
<v
0,k
=M

1,k
=i

PN

IA

elementary word extensions which are used for the levels 1/2 of concatenation
hierarchies (see Definition 1.18), 22, 21-32, 78, 79, 88

elementary word extensions which are used for the levels 3/2 of concatenation
hierarchies (see Definition 1.18), 22, 21-32, 100, 103-105

word extensions which are used to obtain decidability results for the levels 1/2
of concatenation hierarchies (see Definition 4.2), 78, 77-98

word extensions which are used to obtain decidability results for the levels 3/2
of concatenation hierarchies (see Definition 4.32), 77, 100, 98-118

the subword relation, v < w means that v is a subword of w, 13, 83

this weakened version of the word extension <% is used in the proof of Theo-
rem 4.8, 83—85

a relation for pattern classes, Pﬁll ~ P% means that every pattern from IP’%
can be interpreted as a pattern from ]P’ill, 54, 68

the k-embedding from [Ste85a] (see also [Sch01, section 2.7] and [Sch01, Def-
inition 2.1] for a discussion and for an equivalent definition), this notation is
only used in the proof of Proposition 4.29, 98

v~y w means that 6V = §* where ¢ is the transition function of M, 14
the < upward closure of an element s for an arbitrary binary relation <, 16
the < upward closure of a set T" for an arbitrary binary relation <, 16

the <* upward closure of a word y, 25, 27-29, 32, 106, 107

the <%f upward closure of a word y, 80-83

the <¥ upward closure of a word ¥, 107, 108, 113

is defined as { w € A* ! | pp(w) = B,sx(w) = 6, an(w) C T } fork >0, 8,0 €
AR and T C A1 23

is the greatest integer that is less than or equal to r, 15

denotes the infinite word a1 - - - @ma1 - - - am - - - where the a; are alphabet letters
with w = a1 -+ - am, 56, 58

the length of the word w, 13

choose suitable letters a; € A such that w = ai1---ayn, then w[i,j] =det
aiait1--aj—1 for 1 <i<j<|w|+1,14

the right residual of L, 14

the left residual of L, 13

the word that emerges from w when deleting the first j letters, 14
the word that emerges from w when deleting the last j letters, 14

the bridge-word of a pattern p (see Definition 3.6), 46, 58



126

Notations

M
s1 25 82
51 —— S2
s1 2.+
51 ==

a
51<TS2

51 v 52

Bk,m
Bn/2

coC
co'D
DDH
s

DFA

the loop-word of a pattern p (see Definition 3.6), 46

denotes the size of the DFA M, i.e., the number of states, 14

means that §(s1,2) = s2 for a fixed DFA M with transition function §, 14
means that there exists a z € A" with s1 %, 59, 14

means that there exists an accepting state so with s; %, s5, 14

means that there exists a rejecting state so with s; %, 52, 14

abbreviation for s1 —%, s and s2 _, 51 for letters a and b, 71
means that the states s1 and sz are connected via pattern p (see Definitions 3.2
and 3.4), 45, 47, 60, 71

finite alphabet with at least two letters, 13

set of all words over A, 13

set of nonempty words over A, 13

set of words with length = &k, 13

set of words with length > &k, 13

set of words with length < &k, 13

set of nonempty words with length > k, 13

set of nonempty words with length < k, 13

set of factors of length k + 1 in w, 13, 107, 114-116

denotes the class of initial patterns that corresponds to level 1/2 of the dot-
depth hierarchy (see Definition 3.36), 68, 85

denotes the forbidden-pattern for level 1/2 of the dot-depth hierarchy (see
Figure 3.1), 42

denotes the forbidden-pattern for level 3/2 of the dot-depth hierarchy (see
Figure 3.2), 42

the Boolean closure of a class of languages C, i.e., the closure of C under union,
intersection and complementation, 8, 15, 34

alternative version of the Boolean closure of a class of languages D (here A" is
considered as the universe, i.e., complementation is taken w.r.t. A"), 36

certain classes of languages (see Definition 1.21) which are contained in level
3/2 of the dot-depth hierarchy, 23, 22-32

classes of languages that refine the classes By (see Definition 1.24), 23
the classes (levels) of the dot-depth hierarchy (DDH), 8, 34, 35, 69, 71, 73

denotes the alternative classes (levels) of the dot-depth hierarchy from the
literature, 36

this function is used to bound the length of certain words in section 4.3 (see
Definition 4.30), 99, 111, 112

class of the Boolean hierarchy over C, consists of languages L that can be
written as L = Ly \ (L2 \ ( \Ll)) for Ll,LQ,...,Ll € C with Ly DLy D
-+ D Ly, 15, 87, 89

set of complements with respect to A" of the class of languages C, 13
set of complements with respect to A" of the class of languages C, 36
abbreviation for dot-depth hierarchy, 33

this function is defined as 6% (s) =dget (s, w) for a word w and a transition
function ¢, 14, 17-21

abbreviation for deterministic finite automaton, 14
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Dk (n) this function is used to bound the length of certain words in section 4.2 (see
Definition 4.22), 95, 96

L) this function is used to bound the length of certain words in section 4.2 (see
Definition 4.22), 95, 97

e the empty word, 13

& (m) this function is used to bound the length of certain words in section 4.3 (see

Definition 4.30), 99, 111

FO[<] first-order logic with relation <, 9

FO[<, min, max, S, P] first-order logic with relation <, constants min, max and functions S (succes-
sor), P (predecessor), 9

FP(PE) class of languages that can be accepted by a DFA which does not have a pattern
from P%, this class contains the level n+1/2 of the dot-depth hierarchy, 67-75,
85-87, 114-118

FP(PE) class of languages that can be accepted by a DFA which does not have a
pattern from PZ, 51, 51-62
FP(Ps) class of languages that can be accepted by a DFA which does not have a

pattern from P, this class contains the level n+ 1/2 of the Straubing-Thérien
hierarchy, 67-75, 85-87, 114-118

FU(C) the closure of the class of languages C under finite (possibly empty) union, 34

A denotes a class of initial patterns (see Definition 3.1), 44

T is defined as (|JM| + 1)(‘MH1)(‘M‘+1) where M is a DFA, 17, 17-21, 99

IT(P) denotes an iteration rule for patterns which is defined as IT(P) =gef
{ (w0, P0, -+ - s Wi, pm) |m > 0,p; € P,w; € AT } (see Definition 3.3), 45

L class of languages that can be accepted by a Turing machine in deterministic
logarithmic space, 14

L denotes the class of initial patterns that corresponds to level 1/2 of the
Straubing-Thérien hierarchy (see Definition 3.36), 68, 85

Ly denotes the forbidden-pattern for level 1/2 of the Straubing-Thérien hierarchy
(see Figure 3.3), 43

Ls/2 denotes the forbidden-pattern for level 3/2 of the Straubing-Thérien hierarchy
(see Figure 3.4), 43

A(p) a transformation of the pattern p (see Definition 3.8), 46, 72

Li is equal to { w € A" | ay(vwv) = ar(v) } for k >0 and v € A=FH! 23

L(M) the language accepted by the DFA M, 14

L2 the classes (levels) of the Straubing-Thérien hierarchy (STH), 8, 34, 35, 69

"2 denotes the alternative classes (levels) of the Straubing-Thérien hierarchy from

the literature, 36

M denotes a deterministic finite automaton, 14

miy denotes the maximal number of alternations (with respect to L(M)) in <0f
chains (see Definition 4.15), 87, 88, 89

mg (M) the minimal number n such that the languages L(M) belongs to the n-th level
of the Boolean hierarchy over By 2, 97, 98

mg (M) the minimal number n such that the languages L(M) belongs to the n-th level
of the Boolean hierarchy over L; /2, 97, 98

(m mod n) abbreviation for m —n|m/n|, 56

NL class of languages that can be accepted by a Turing machine in nondetermin-

istic logarithmic space, 14, 62—67
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NP

P
z
PATTERN,

P(B)
P

m(p,r)
pr(w)
Pol® ©)

Pol (C)
Pol” (C)

PSPACE
REACHy

SF
si(w)
STH

v(i, )

WOk
M

WLk
M

WPpOS

class of languages that can be accepted by a Turing machine in nondetermin-
istic polynomial time, 14

class of languages that can be accepted by a Turing machine in deterministic
polynomial time, 14

this problem addresses the existence of patterns that appear simultaneously
in a given DFA (see Definition 3.30), 63, 62—67

the power set of a set B, 15

the class of patterns that is obtained from the class of initial patterns B by
applying the iteration rule IT n times (see Definition 3.4), this pattern class is
used to define classes of languages containing the level n+1/2 of the dot-depth
hierarchy, 67-75, 85, 114

the class of patterns that is obtained from the class of initial patterns Z by
applying the iteration rule IT n times (see Definition 3.4), 45, 51-61

the class of patterns that is obtained from the class of initial patterns £ by
applying the iteration rule IT n times (see Definition 3.4), this pattern class is
used to define classes of languages containing the level n41/2 of the Straubing-
Thérien hierarchy, 67-75, 85

a transformation of the pattern p (see Definition 3.10), 47, 49
the k-prefix of the word w, 14

alternative version of the polynomial closure of a class of languages C, this
version is used in the literature to define the dot-depth hierarchy, 36

polynomial closure of a class of languages C, 8, 34, 52

alternative version of the polynomial closure of a class of languages C, this
version is used in the literature to define the Straubing-Thérien hierarchy, 36

class of languages that can be accepted by a Turing machine in deterministic
polynomial space, 14

this problem addresses the existence of paths that appear simultaneously in a
given DFA (see Definition 3.29), 63, 62-67

the class of starfree languages, 33, 35, 5662, 70, 74
the k-suffix of the word w, 14
abbreviation for Straubing-Thérien hierarchy, 33

this notation is only used in section 1.3 and is defined as v;v;41---vj—1 for a
given list of words vo,v1,...,v € A", 18

set of context words for <¥¥ word extensions, 78, 92, 94
set of context words for <¥ word extensions, 99, 101, 109-113

abbreviation for well partial ordered set, 16, 17, 113



Index

acceptance by a DFA, see DFA

acceptance by a finite monoid, see finite monoid

alternating chain, 119
aperiodic syntactic monoid, 7
appearance of a pattern, see pattern appears

binary relation, 16

— on the set of words, 16, 21

Boolean closure, 15, 34

— alternative definitions, 36

Boolean combination, 15

Boolean hierarchy, 15

- over By /g, 10, 77, 87-98

—— characterization, 88, 89, 95

—— computation of the exact level, 92, 97-98
—— decidability results, see decidability
—— strictness, 87, 91

— over By41/2, strictness, 87, 91

— over Ly, 10, 77, 87-98

—— characterization, 88, 89, 95

—— computation of the exact level, 92, 97-98
—— decidability results, see decidability
—— strictness, 87, 91

— over L, 12, strictness, 87, 91
Boolean operation, 33

bounding function

- Ck,99

- D/{C/l (n)7 95

- g/\}il (’I’L), 95

— Fi(m), 99

- T, 17,1721, 99

bridge-word, 46, 49, 58

chain of word extensions, see word extension
class of initial patterns, 41, 44, 45

- B, 68

- L, 68

class of patterns, see pattern class
co-ideal, 16, see also upward closure

— finitely generated, 16, 17, 85, 109, 113
generated by a set, 16

generated by an element, 16

with respect to <}f, 83-85

— with respect to <\¥, 109, 113-117
concatenation, 33

concatenation complexity, 33

concatenation hierarchy, 8, 33, 119
— inclusion structure, 120
connected, see states are connected
context word, 21, 78, 99

— how to find, 109-113

— rearrangement, 103-107

— set of context words W;*, 78

— set of context words W.;*, 99

decidability

- By, 86, 87

~ By, 117, 118

— Boolean hierarchy over By /2, 97

— Boolean hierarchy over L, /2, 97

— forbidden-pattern classes FP(P3), 62-67
- FP(PE), 74

- FP(P5), 74

— L1z, 86, 87

— L3/9, 117, 118

— partial result for Lo, 9

— partial result for L5/9, 9

— SF, 74

decomposition of a word, 15

— into idempotents, 17-21

deterministic finite automaton, see DFA
deterministic logarithmic space L, 14, 63
deterministic polynomial space PSPACE, 14
— PSPACE-complete, 74

deterministic polynomial time P, 14
DFA, deterministic finite automaton, 7, 14
— accepted language, 14

— as input to a Turing machine, 63

— has a nontrivial permutation, 9, 15

— has a pattern, 45, 51, 67, 72

—— from P%, 115

—— from Pf, 116

— initial state, 14

— input alphabet, 14

— minimal, 14, 15

— permutationfree, 7, 9, 15

— set of accepting states, 14

— set of states, 14

— transition function, 14

dot-depth, 8

dot-depth hierarchy, 8, 33, 34

— alternative definition, 36
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— closure under intersection, 37

— closure under taking residuals, 37

— connection to Straubing-Thérien hierarchy, 35,
37, 120

— decidability results, see decidability

— exhaust the class of starfree languages, 35

— inclusion relations with respect to forbidden-
pattern hierarchies, 69

— inclusion structure, 34, 35, 75

— lower bound algorithm, 42, 75

— normalforms, 37

— separation of B,, and FP(Py), 73

— strictness, 35, 71

— upper bound for leaf-language from Bi, see
polynomial time leaf-language

dot-depth problem, 8, 37, 75, 77

empty word €, 13

factor of a word, 13

finite alphabet A, 13

finite automaton, see DFA

finite monoid, acceptance by, 7

finitely generated co-ideal, see co-ideal

first-order logic, 8

- FO[<], 9

- FO[<, min, max, S, P], 9

forbidden-pattern characterization, 9, 38, 41

— for By /2, 39, 86

— for Bs/s, 40, 117, 119

— for ,Cl/g, 38, 86

— for £3/2, 39, 117, 118

forbidden-pattern class, 10, 51

- FP(Pg), 85

- FP(PY), 114, 116

- FP(P§), 85

- FP(P{), 114, 116, 117

— decidability results, see decidability

forbidden-pattern hierarchy

— decidability results, see decidability

— exhaust the class of starfree languages, 61, 70

— inclusion relations with respect to concatenation
hierarchies, 69

— inclusion structure, 54-56, 68, 75, 120

— separation of B, and FP(P5), 73

— strictness, 71-74

forbidden-pattern theory, 41-76

full levels, 34

graph accessibility problem, 64

half levels, 34
hierarchy of pattern classes, 45

idempotent, 17-21

— decomposition of a word into idempotents, 17-21
— for a DFA, 14

infinite set of pairwise incomparable words, 16
infinite word, see periodic, infinite word

infinite, strictly descending chain, 16
initial pattern, see class of initial patterns
input tape, 64

iteration, 33

iteration rule IT, 45, 41-62

— versus polynomial closure, 52

k-prefix of a word, 14, 79, 100
k-suffix of a word, 14, 79, 100

L, see deterministic logarithmic space

language accepted by a DFA, see DFA

leaf-language, see polynomial time leaf-language

left residual, 13

length of a word, 13

loop-structure, 42, 46

loop-word, 46, 49

lower bound algorithm for the dot-depth, see
dot-depth hierarchy

mapping leads to, 14, 18
minimal DFA, see DFA
monadic second-order logic, 7

nondeterministic logarithmic space NL, 14, 64, 67,
74, 87, 118
nondeterministic polynomial time NP, 14

oracle machine, 64
ordered set, 16

P, see deterministic polynomial time

partial ordered set, 16

pattern appears at a state, 45, 46, 47

— example, 65

pattern class, 41, 45

pattern connects two states, see states are
connected

pattern iteration, see iteration rule IT

periodic, infinite word, 56

permutationfree, see DFA

polynomial closure, 8, 34, 46, 51, 52

— alternative definitions, 36

— versus pattern iteration, 52

polynomial time leaf-language, 87

— upper bound for leaf-language from B, 87

power set, 15

predecessor

— with respect to <Xf, 95

— with respect to <y, 109

prefix of a word, see k-prefix of a word

PSPACE, see deterministic polynomial space

query tape, 64

rearrangement of <* chains, see context word
rearrangement of context words, see context word
regular expression, 7

regular language, 7, 14, 33

right residual, 14



second-order logic, see monadic second-order logic

separability of L3/, 87

set of all words, 13

set of context words, see context word

set of nonempty words, 13

starfree languages, 8, 15, 33, 35, 56, 70

— decidability results, see decidability

starfree regular expression, 7

state has a loop, 14

states are connected via a pattern, 45, 46, 47

— example, 65

Straubing-Thérien hierarchy, 8, 33, 34

— alternative definition, 36

— closure under intersection, 37

— closure under taking residuals, 37

— connection to dot-depth hierarchy, 35, 37, 120

— decidability results, see decidability

— exhaust the class of starfree languages, 35

— inclusion relations with respect to forbidden-
pattern hierarchies, 69

— inclusion structure, 34, 35, 75

— normalforms, 37

— separability of L3/2, 87
— strictness, 35

subword relatlon =<, 13, 83

suffix of a word, see k-suffix of a word

swap successive closure operations, see context
word, rearrangement

syntactic monoid, see aperiodic syntactic monoid

technique of word extensions, see word extension

transformation of <* chains, see context word,
rearrangement

transformation of patterns, 46

transition function, see DFA

transposition, 105

upward closure, 16, see also co-ideal

— with respect to <”“ 21-32, 106, 107
—— of a nonempty word, 24-27

—— of languages from Bk, 29-32

—— of languages from Bk,l, 28-29

— with respect to <%, 80-83

— with respect to <%y, 103-109

well partial ordered set, 16, 83-85, 113
word extension, 10, 21, 77, 119
- <&k 22 21-32, 78-79, 88
— <Yk 22 21-32, 100-106
— <0F 78, 7798
- =, 77, 100, 98-118
— chain of <}¥ extensions, 87-88, 95, 97
—— bounding the length of Words in a chain, 97
—— increasing the parameter k, 89
—— maximal number of alternations, 87, 89, 95, 97
word leads to, 14, 49
working tape, 64
wpos, see well partial ordered set
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