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Abstract

In this thesis, we investigate several topics pertaining to emergent collective quantum
phenomena in the domain of correlated fermions, using the quantum Monte Carlo
method. They display exotic low temperature phases as well as phase transitions which
are beyond the Landau-Ginzburg theory. The interplay between three key points is
crucial for us: fermion statistics, many body effects and topology. We highlight the
following several achievements: 1. Successful modeling of continuum field theories
with lattice Hamiltonians, 2. their sign-problem-free Monte Carlo simulations of these
models, 3. and numerical results beyond mean field descriptions.

First, we consider a model of Dirac fermions with a spin rotational invariant inter-
action term that dynamically generates a quantum spin Hall insulator. Surprisingly,
an s-wave superconducting phase emerges due to the condensation of topological de-
fects of the spin Hall order parameter. When particle-hole symmetry is present, the
phase transition between the topological insulator and the superconducting phase is an
example of a deconfined quantum critical point(DQCP). Although its low energy effec-
tive field theory is purely bosonic, the exact conservation law of the skyrmion number
operator rules out the possibility of realizing this critical point in lattice boson models.
This work is published in Ref. [J.

Second, we dope the dynamically generated quantum spin Hall insulator mentioned
above. Hence it is described by a field theory without Lorentz invariance due to the
lack of particle-hole symmetry. This sheds light on the extremely hot topic of twisted
bilayergraphene: Why is superconductivity generated when the repulsive Coulomb
interaction is much stronger than the electron-phonon coupling energy scale? In our
case, Cooper pairs come from the topological skyrmion defects of the spin current order
parameter, which are charged. Remarkably, the nature of the phase transition is highly
non-mean-field-like: one is not allowed to simply view pairs of electrons as single bosons
in a superfluid-Mott insulator transition, since the spin-current order parameter can not
be ignored. Again, due to the aforementioned skyrmions, the two order parameters are
intertwined: One phase transition occurs between the two symmetry breaking states.
This work is summarized in Ref. [2].

Third, we investigate the 2 + 1 dimensional O(5) nonlinear sigma model with a
topological Wess-Zumino-Witten term. Remarkably, we are able to perform Monte
Carlo calculations with a UV cutoff given by the Dirac Landau level quantization. It is a
successful example of simulating a continuous field theory without lattice regularization
which leads to an additional symmetry breaking. The Dirac background and the five
anti-commuting Dirac mass terms naturally introduce the picture of a non-trivial Berry
phase contribution in the parameter space of the five component order parameter.
Using the finite size scaling method given by the flux quantization, we find a stable
critical phase in the low stiffness region of the sigma model. This is a candidate ground
state of DQCP when the O(5) symmetry breaking terms are irrelevant at the critical
point. Again, it has a bosonic low energy field theory which is seemingly unable to be
realized in pure boson Hamiltonians. This work is summarized in Ref. [3].



Zusammenfassung

In dieser Arbeit untersuchen wir verschiedene Themen iiber emergente kollektive Quan-
tenphénomene im Bereich der korrelierten Fermionen unter Verwendung der Quanten-
Monte-Carlo-Methode. Sie zeigen sowohl exotische Tieftemperaturphasen als auch
Phasentibergiange, die jenseits der Landau-Ginzburg-Theorie liegen. Das Zusammen-
spiel von drei Schliisselpunkten ist fiir uns entscheidend: Fermionenstatistik, Vielteilch-
eneffekte und Topologie. Es sind bemerkenswerte Erfolge erzielt worden: 1. Erfolgre-
iche Modellierung mehrerer kontinuierlicher Feldtheorien tiber Gitter-Hamiltonians. 2.
Vorzeichenproblem-freie Monte-Carlo-Simulation von ihnen. 3. Numerische Ergebnisse
jenseits des Molekularfeld-Verstandnisses.

Zunéchst betrachten wir ein Modell von Dirac-Fermionen mit einem spinrotations-
invarianten Wechselwirkungsterm, der dynamisch einen Quanten-Spin-Hall-Zustand
erzeugt. Uberraschenderweise entsteht eine s-Wellen-supraleitende Phase durch die
Kondensation von topologischen Defekten des Spin-Hall-Ordnungsparameters. Wenn
Teilchen-Loch-Symmetrie vorhanden ist, ist dieser Phaseniibergang zwischen topologis-
chem Isolator und Supraleiter ein Beispiel fiir einen dekondefinierten quantenkritischen
Punkt (DQCP). Obwohl seine niedrigenergetische effektive Feldtheorie rein bosonisch
ist, schlieft der exakte Erhaltungssatz des Skyrmionenzahloperators die Moglichkeit
aus, diesen kritischen Punkt in Gitter-Boson-Modellen zu realisieren. Diese Arbeit ist
ver6ffentlicht in Ref. [I].

Zweitens dotieren wir den dynamisch erzeugten Quanten-Spin-Hall-Isolator von oben.
Er wird aufgrund der fehlenden Teilchen-Loch-Symmetrie durch eine Feldtheorie ohne
Lorenzt-Invarianz beschrieben. Dies wirft ein Licht auf das extrem heifle Thema des
verdrehten Doppelschichtgraphens: Warum wird Supraleitung erzeugt, wenn die ab-
stoflende Coulombwechselwirkung viel starker ist als die Elektron-Phonon Kopplungsen-
ergie? In unserem Fall kommen Kupferpaare aus den topologischen Skyrmiondefekten
der Parameter der Spinstromordnung, die geladen sind. Bemerkenswerterweise ist
die Art des Phaseniibergangs in hohem Mafle nicht molekularfeldartig: Es ist nicht
erlaubt, ein Elektronenpaar einfach als einzelnes Boson in einem Superfluid-Mott-
Isolator-Ubergang zu betrachten, da der Parameter der Spin-Strom-Ordnung nicht
ignoriert werden kann. Wiederum aufgrund der oben erwéhnten Skyrimionen, sind
zwei Ordnungsparameter miteinander verbunden: ein Phaseniibergang findet zwischen
den beiden Zustédnden mit gebrochener Symmetrie statt. Diese Arbeit ist in Ref. [2].

Drittens untersuchten wir das 2 4+ 1-dimensionale nichtlineare O(5)-Sigma-Modell
mit einem topologischen Wess-Zumino-Witten-Term. Bemerkenswerterweise sind wir
in der Lage, Monte-Carlo-Berechnungen durchzufiithren, mit UV-Cutoff gegeben durch
die Quantifizierung der Dirac-Landau-Ebenen. Es ist ein erfolgreiches Beispiel fiir
die Simulation einer kontinuierlichen Feldtheorie ohne Gitterregularisierung, die zu
zusatzlichen Symmetriebrechungen fiithrt. Der Dirac-Hintergrund und die 5 antikom-
mutiernenden Dirac-Massenterme fiihren natiirlich das Bild eines nicht-trivialen Berryphasen
Beitrags im Parameterraum des Ordnungsparameters mit fiinf Komponenten ein. Unter
Verwendung der Methode der endlichen GroBenskalierung, die durch Flussquantisierung
gegeben ist, fanden wir eine stabile kritische Phase im Bereich der niedrigen Steifigkeit
des Sigma-Modells. Dies ist ein Kandidat fiir den Grundzustand des DQCP, wenn
die O(5)-Symmetrie brechenden Terme am kritischen Punkt irrelevant sind. Auch hier
handelt es sich um eine niedrigenergetische bosonische Feldtheorie, die scheinbar durch
reine Boson-Hamiltonians nicht realisiert werden kann. Diese Arbeit ist in Ref. [3].
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1 Introduction

Landau-Ginzburg-Wilson theory (LGW)[M], established in 1957, has been viewed as
a useful picture to understand phase transitions. One can construct the field theory
considering a general function of fluctuating complex order parameterd’} if the fluctu-
ations are ignored, a nonzero, space and time independent order parameter indicates
a spontaneous broken symmetry. The nature of transitions into a conventional su-
perconducting state[5] or a number of magnetic systems are successfully described by
this theory. Soon people got interested in looking for the universal behavior when the
phase transition is continuous: the different transitions turned out to be classifiable
into families called ‘universality class’ based on the symmetries as well as the physical
dimensions of the system. The ‘universal’ reason why this always works originates
from a symmetry: renormalization group invariance [6]. Approaching the critical point
the characteristic length scale & diverges, and the system is invariant under scaling
transformations.

Generally, LGW phase transitions can be driven by not only temperature but also
quantum fluctuations [7]. Crossing a quantum critical point, normally there is a char-
acteristic energy gap which closes, accompanied by the divergence of the correlation
length. Thanks to the picture of path integral, one is allowed to map a D dimensional
quantum system to a D+ 1 dimensional classical system where the inverse temperature
of the quantum system plays the role of ‘length’ in the additional direction. Hence a
wide range of quantum critical points have classical analogs. However, this sounds too
good to be true: when one want to write a field theory with clean mathematics in D+1
dimension, certain approximations are required (apart from few simple examples).

On the other hand, the notion of path integral also introduces a new way of nu-
merically solving the problem of many body physics. Trying to diagonalize numeri-
cally a many body Hamiltonian is a NP-hard problem, since the dimension of Hilbert
space grows exponentially. However a path integral formulation in D 4 1 dimensional
space time allows us to sample certain ‘field’ (where its definition depends on how the
path-integration is formulated) configurations by a Markov process: the Monte Carlo
method. The possibility of using Markov processes is based on the assumption that
the field configuration have a certain Boltzmann weight. Crucially, it does not mean
that a classical model with local interaction is found in D + 1 dimension, although
the number of fields (operators) that we need to sample scale linearly as a function
of classical volume (BLP). Especially in fermionic Monte Carlo, after integrating out
variables with fermion statistics, the classical weight for an auxiliary field configuration
can not be computed locally but necessarily involves the total information of single par-
ticle propagator which diverges as a function of dimension of fermionic single particle
Hilbert space.

The LGW picture may break down in certain cases, e.g. when Fermi-statistics plays
a role. A famous example for both QCD and condensed matter communities is the
dynamical generation of massive Dirac fermions introduced by Gross and Neveu[g].
Opening of the fermionic mass gap necessarily involves a spontaneous symmetry break-
ing. But it can not be described by a LGW theory of only bosonic order parameters:
fermion statistics is necessarily involved. The failure of the LGW picture in this case is
very similar to the breaking down of classical analog in QMC simulation, in the sense
that trying to integrate out fermions will lead to a infinite complicated non-analytic
function of order parameters. We investigate an example of this critical point in 2+ 1D

'Here we explicit mean theories described by commuting c-numbers in path integrals.
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in Chapter. [3
Another case where breaking down the LGW picture happens is when topology plays
a role. The idea goes back to certain classical system: Kosterlitz—Thouless transition at
2 dimensional XY model[9]. Vortex-antivortex unbinding process explains the nature
of infinite order transition. Unlike Goldstone modes, ‘vortex’ as a topological object
is a local minimum in configurations in the sense of free energy: any smooth variation
process of vectors fields in order to destroy the vortex must cross energy barriers. The
zero temperature phenomena driven by quantum fluctuation is more exotic, and in
many cases the notion of topology is also related to the aforementioned failure of simple
quantum-classical analog in path integration: there is a phase factor contribution to
the classical Boltzmann weight, namely the Berry phase. The Berry phase may lead
to an additional global contribution which only depends on how the ‘classical spin’
configurations winds in space time. An example would be the one-dimensional SU(2)
spin chain[I0]. It turns out that its ground state strongly depends on the spin quantum
number: it is either gaped with two-fold degeneracy in the integer spin case, or critical
when the spin is half integer. The underlining story is based on the role played by a
topological theta term to the action of 1+1D: it is not only a theory where the gradients
of local order parameters contribute to the Boltzmann weight, but also depends on how
the order parameter winds in space-time. We write down the effective action of 1D
spin chain as an example:
2 1 —\ 2 it a b c
S = /d x;(@un) + g ChvCabent d,n°0,n". (1)

It is easy for a mathematician to generalize the theory from 1D to 2D quantum
systems. Take the theta term as an example, it simply means a generalization of
m(S2) in 1 4+ 1D to m3(S3) in 2 + 1D. One can view the topological invariant as a
‘magnetic monopole’ in a sphere of arbitrary dimension. However, this may not be
enough for a student of condensed matter physics: generally we need to search for a
many body Hamiltonian. We briefly discuss the underlining questions here.

Relation between lattice Hamiltonian and continuous field theories. For many de-
signed Hamiltonian based on studying quantum phase transition, some pre-assumption
is needed. One may need to know the phase diagram first by a mean field study;
or a Monte Carlo simulation. Very often, venturing an educated guess makes sense.
For example, a ‘coupled dimer’ model[II] on a 2D square lattice describes a Neel-
paramagnetic transition which is described by the field theories of 3D non-linear sigma
model: one is allowed to make this guess due to the known ground state in limiting
cases. However, there are dangerous points.

Usually we work in a 2 + 1D Euclidean space-time where we take the quantized
lattice spacing a as the regulator. In the conventional case the continuum limit is
approached in the limit of a — 0. For example, we can approximate the action of
free scalar field[12] theory from partial derivatives of fields in continuous space into
finite difference of fields in a cubic lattice. After path-integration over lattice fields of
number which is proportional to V/(a”) (V denotes the volume) the continuous limit is
reproduced. However a problem arises when we change to fermion statistics: generally
we will encounter the so called ‘fermion doubling’ if we put local fermions on a lattice.
If we perturb the lattice fermions by interaction, the doubling problem would introduce
fundamental correlation effects. For example, if one wants to work with an effective
1D field theory which reproduces the edge physics of 2D quantum spin Hall insulator,
certain technique of non-local fermions is needed to realize a single Dirac cone.

8



Mapping from a lattice Hamiltonian to local field theories with clean mathematics
is generally not exact. Taking again the 1D Heisenberg chain as an example, higher
order corrections during long wave length expansion are dropped during the deriva-
tion of Eq. [I We show in Chapter. [7] a similar derivation of effective field theory
based on integrating out gaped fermionic degrees of freedom. However a small but
RG relevant correction may drive the system to another fixed point: the ‘gaped spin
liquid’ state found in the 2D honeycomb lattice Hubbard model[I3] may be an exam-
ple, although a simple field theory based on magnetic order parameter coupled to free
Dirac fermions would lead to a direct phase transition between Dirac semi-metal and
anti-ferromagnetic state, which is described by a Gross-Neveu Heisenberg universality
class.

Normally, the minimal request is that the symmetries of the continuous field theory
are not explicitly broken by the lattice Hamiltonian. (Apart from the Poincare symme-
try of space-time) However this condition is often relaxed when considering ‘emergent’
degrees of freedom: e.g. the gauge degrees of freedom after coarse-graining a lattice
model with ‘gauge fixing’[14], in the studies of lattice gauge theories. We show in
Sec. [3|a quantum phase transition with an emergent non-compact U(1) gauge symme-
try. Global symmetries are also subtle, since in some cases they are not exactly realized
by the lattice Hamiltonian. More seriously, this symmetry breaking is often relevant
under renormalization. Hence in many studies of interesting phase transitions, ‘emer-
gence’ of global symmetries is required. In another words, the symmetry breaking field
induced by the lattice discretization is relevant in a phase but irrelevant around the
critical point. An interesting example is the thermal phase transition of 3D clock model
with Z4 anisotropy[15]: an emergent U(1) symmetry is found under renormalization
at the critical point. This Z; symmetry is built in the internal degrees of freedom re-
gardless of lattice, but several counterparts are found in 2D quantum phase transition:
the semimetal-Valence bond solid (VBS) transition via interacting fermions which is
believed to be a Gross-Neveu U(1) critical point[16]; the ‘deconfined quantum critical
point’ based on AFM-VBS transition[I7]. Both cases have VBS ordering in terms of
lattice-induced Z, symmetry breaking, and surprisingly in the vicinity of both critical
point Z, gives way to a U(1) symmetry after coarse-graining. However it is crucial to
mention that, neither of above two critical points (despite the similarity of symmetry)
are described by the field theory of 3D clock model.

All of our studies are based on numerical investigation of correlated fermions. How-
ever, most of them are described by ‘bosonic’ field theories (apart from the SM-insulator
transition in Chapter . This is because we are mainly interested in the low energy
behavior, where the energy scales are much lower than the excitation energy of sin-
gle fermions. In these cases, the low lying excitations are collective mode based on
particle-hole(particle-particle) operators (e.g, goldstone modes). Note that the above
argument does not necessarily mean that the correlated insulators in fermionic model
are well described by simple bosonic second quantized Hamiltonian with ‘local” interac-
tion. For example, it is not possible to describe magnetic systems and superconductors
in Hubbard-like models by a simple Heisenberg model: the nonzero local particle num-
ber fluctuation in Hubbard-like system introduces a different ground state as well as
excited states. However, when we turn our attention to quantum critical points, they
share the same universal behavior in most cases. Take the well-known SU(2) symmetric
Kondo lattice model[I8] as an example: the magnetic property of the anti-ferro mag-
netic state driven by the effective RKKY interaction is different from any Heisenberg
system of local interaction. However, in the vicinity of the transition point between



AFM state and Kondo insulator, the magnetization scales proportionally to §°: the
universal number (3 is equivalent to the one of 2D bilayer Heisenberg model. That is
why in many cases we can simply integrate out the fermionic degrees of freedom and
get an effective field theory with just bosons (e.g. generalization of Eq. [1] to higher
dimension).

Why don’t we just simulate continuum field theory of c-numbers (e.g action of Eq.
by a classical Monte Carlo? Two killers exist. First, as aforementioned, the topological
0 term in the example of Eq. [If contributes a global sign factor of +1 to the Boltzmann
weight of certain configurations. This is the notorious negative sign problem in Monte
Carlo simulation. Second, after discretizing the field theory on a lattice, a specific
engineering step is needed during the sampling process to keep a well-defined notion of
‘topology’. The magic of a QMC approach based on our lattice Hamiltonian is that our
c-numbers in 2 4 1D is coupled to fermion degrees of freedom with certain symmetry
(particle-hole, time reversal, etc.), such that the Boltzmann weight of all configurations
after integrating out fermions are real and positive. On the other hand, the spacial-
time distributions of our c-number configurations have no direct link to the topology:
for example, we can not observe ‘skyrmions’ directly in Monte Carlo simulations.

Numerical efficiency. We focus on correlated fermions in this thesis, and our main
method is auxiliary field quantum Monte Carlo (AFQMC) [19]. Its efficiency generally
scales proportional to 3L3?; while the stochastic series expansion(SSE) [20] method
based on bosonic models generally scales as 3L Followed by numerical simulation,
our method of ‘renormalization’ on the lattice problem is finite size scaling (FSS). In
the vicinity of a quantum critical point we assume that the free energy density as well as
other dimensionless quantities scale as a function of /L. One expect the correlation
length & to be universal as a function of the distance to the critical point. Large
system sizes are generally needed to acquire good scaling, since there are corrections to
scaling: either from the fields which are irrelevant under RG, or from the non-singular
part of the free energy, which is normally due to the short distance behavior of lattice
Hamiltonian. Hence generally it is not efficient to study a quantum critical point with
a bosonic effective field theory using fermionic Monte Carlo.

Summary of our results

During the thesis, we mainly studied two classes of lattice Hamiltonian, which are all
based on correlated fermions. In Chapter. [2| we briefly review the basic structure of
AFQMC method. The AFQMC has two approaches: fermion with thermal fluctu-
ations at certain temperature (FTQMC) in a grand canonical ensemble; the ground
state approach at a given particle number sector (PQMC), which does not reproduce
a canonical ensemble since it’s finite ‘temperature’ density matrix is projected to a
artificial trial wave function. Our work on a canonical ensemble approach of QMC
simulation at finite temperature is also briefly shown in this Chapter.

We will show several examples of non-Landau phase transition. Chapter. [3| in-
cludes two phase transitions: a Gross-Neveu critical point realized on Graphene system
where its field theories necessarily involves fermions; and a deconfined quantum critical
point [I1], which can be captured by a bosonic field theory where the order param-
eter fails as an elementary object at the critical point. Chapter. [5] gives a numerical
simulation of possible continuous field theory where the low energy cutoff is given
by the landau level localization. Chapter. 4| introduces a doping induced insulator-
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superconductor transition where the critical point is contrary to mean field behavior.

A famous example of Dirac fermions as emergent particles in 2D solid state system
is Graphene[21]. Its non-interacting picture is based on free electron in p, orbital
hoping at a two dimensional Honeycomb lattice. Hence its ground state is neither an
insulator or metallic state: low lying excitations has linear dispersion relation around
the Dirac points. This state triggers two interesting questions. The first one is the
correlation effects. At half filling, finite interaction may drive the ground state to an
AFM, superconducting or charge density wave state.[22] (Here we ignore the difficultly
of generating these phases in experimental approach.) All of these phases have gaped
excitation of single electrons: they can be characterized by Dirac mass gaps where a
certain symmetry is broken. If the interactions respect all the relevant symmetries,
these examples of ‘insulating’ phase are spontaneous symmetry broken states.

The second one is the generation of topological band structure. Due to fermion
statistics, there are complicated states of matter (i.e. topological insulator) beyond the
notion of Landau order parameter even in the non-interacting case. Graphene gives
the possibility of generating nontrivial topology without Landau quantization. Take
the quantum spin hall system(QSH)[23] as an example, one needs to generate a Dirac
mass which leads to a topological band structure. In any experimental approach of QSH
insulator, finite spin-orbital coupling (SOC) is necessary to open the band gap: Dirac
mass generation happens due to an explicit breaking of SU(2) spin rotational symmetry.
A toy model for understanding this behaviour is the Kane-Mele model, where terms of
SOC are inserted to the Hamiltonian by hand. One is allowed to understand the notion
of band topology by diagonalizing the single particle Hamiltonian and calculating the
topological invariant by integrating over the Berry curvature in the bulk; or equivalently
to understand the topological edge state by looking at a system with open boundaries.

In Chapter. |3| we show a new state of matter: topological Mott insulators[24]. Tt is
basically a quantum spin hall insulator generated from a spontaneous broken of spin
rotational symmetry. To approach this we used a spin rotational invariant interaction
by combining spin current operators, such that at the mean field level a bosonic order
parameter gaps the Dirac fermions and generate a Z; nontrivial QSH insulator. Hence
from the symmetry point of view the phase transition from the Dirac semi-metal to
QSH insulator is also described by Gross-Neveu Yukawa field theory. We will show
numerical investigation of this Gross-Neveu Heisenberg transition, which belongs to
the same universality class of the transition between semi metal and AFM driven by
Coulomb interaction. Since the QSH state is generated from spontaneous symmetry
breaking, it’s excitation are characterised by Goldstone modes; moreover there are also
skyrmions of the QSH order parameter. Remarkably a state with non-zero skyrimion
number has nontrivial quantum number in the charge sector: a skyrimion of QSH
order parameter carries charge number two. This brings interesting phenomena to two
different critical points.

The aforementioned skyrimions are gaped objects in the QSH phase. Clearly one
can destroy the QSH order by driving to another insulator state like charge density
wave order, and in this transition the characteristic energy gap will be given by the
fluctuation of spin current objects. On the other hand the notion of skyrimions will
be useless in this case since they are always gaped. There are two ways to close
this gap: either by tuning interaction (Chapter. [3] ) or doping (Chapter. [4]). Specifi-
cally, the meaning of the ‘gap’ is the energy cost of a monopole insertion process: a
monopole creates(annihilates) a skyrmion between different time slices. The fact that
QSH skyrimions carries charge 2e gives a physical meaning for the skyrmion gap closing

11



process: a phase transition towards an s-wave superconducting state (SSC).

SSC is one kind of conventional superconductor which can be described by BCS
theory[5]: singlet Cooper pairs which are time reversal invariant condenses at zero
momentum. Our two routes to superconductivity (interaction or doping induced) are
fundamentally different. The interaction induced QSH-SSC transition is one example
of deconfined critical point (DQCP). The amazing numerical evidence of a direct and
continuous phase transition between two ordered state can not be described by LGW
picture when we only consider the spin current(transverse mode) or Cooper pair as el-
ementary objects. One can view it from the opposite direction: the core of SSC vortex
has nontrivial spin quantum number of %, which is also called ‘spinons’. The gaped
spinons in the superconducting state become gapless approaching the DQCP point,
followed by their condensation into spin current objects in the QSH state. Hence the
elementary objects at the critical point are not the SO(3) and U(1) order parame-
ters(spin current and cooper pairs), but skyrimions and the spinons which are carried
by the topological defects of order parameters. This is an analog of the DQCP proposed
in AFM-VBSJ[IT] transition, where AFM state breaks spin rotational symmetry and
the VBS state breaks a 7, symmetry of the square lattice. The two critical points are
very similar in the sense that, skyrimions of AFM order parameter carries the charge
of VBS order parameter, and the VBS vortex carries spinons.

However there is a difference between the transition of AFM-VBS and the one of
QSH-SSC. The VBS state necessarily breaks the lattice Z, symmetry: in the mean field
level its ground state is always four fold degenerate. On the other hand its continuous
field theory has a U(1) symmetry. As mentioned before, the U(1) symmetry is recovered
on the lattice in an emergent way, in the sense that the Z, symmetry breaking field is
irrelevant at the critical point but relevant in the phase[I7]. The dangerously irrelevant
Z4 symmetry breaking field introduced by the lattice quantization leads to the notorious
‘two divergent length scales’. However in our case the SSC state can only spontaneously
break the U(1) charge conservation, which is an exact symmetry of our many body
Hamiltonian. Generally, we do not even need to take care if we are working on the SSC
state in a Honeycomb lattice or not. Hence in our case the lattice Hamiltonian describes
the continuous field theory exactly. Either AFM-VBS or QSH-SSC transition can be
described by bosonic field theory in the sense of finite gap of single fermions, hence one
can start a field theory formulation by Dirac fermions. We can view AFM and QSH
order parameters as O(3) order parameters coupled to fermions via Yukawa coupling in
terms of Dirac mass terms, and one can build the VBS and SSC masses in a similar way.
Then the notation of DQCP can be formulated by the competition of different masses,
since the finite modulus of local order parameter corresponds to the gap of the Dirac
fermions. Although their matrix structures are not the same, both two transitions
are described by the competition between O(3) and U(1) masses. Now we can see
the subtlety of the fermionic formulation. A quantum spin model can be viewed as a
‘gauge’ theory in the sense that fermions have a U(1) charge conservation locally. Now
we lift the local U(1) gauge redundancy by introducing hoping between fermions, such
that when we formulate leading VBS component in the Dirac background, the action
has an exact U(1) symmetry. Note that it’s only a trick of formulating field theories:
for a fermionic lattice Hamiltonian, the VBS state in the Dirac background still breaks
Z4 symmetry. So can we reproduce the interaction induced QSH-SSC transition in a
bosonic model? At a first glance, it is hard to exclude any lattice bosons in general.
However, this could be explained by recent work[25]: the monopole free realization may
necessarily requires gaped fermion degree’s of freedom due to the ‘emergent anomaly’
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in our low energy field theory.

The second route to SSC generation via closing the gap of skyrmion excitation is
by doping. This part will be shown in Chapter. 4l Unlike the aforementioned DQCP
via interaction at half filled case, tuning the chemical potential breaks the particle-
hole symmetry explicitly. Total particle number is still a good quantum number here,
hence in many cases this kind of gap closing transition is ‘trivial’ when we are tuning
the two parts of Hamiltonian which commute with each other. An example is the
transition of Bose-Hubbard model[26] tuned by chemical potential: one know that the
Mott insulator to superfluid transition is very nicely described by mean field theory
in 2 + 2 dimension. A superconductor is the same as a superfluid from the symmetry
point of view, apart from the fact that the cooper pair is written as bounded object of
two fermions. Hence a doping induced SSC state from a ‘trivial’ Mott insulator (say, a
Kane-Mele model with attractive Hubbard interaction) should fall into the mean field
category since we do not expect any intermediate metallic state.

As in the superfluid generation in the Boson-Hubbard model, the energy of exciting a
cooper pair is a characteristic energy scale in the doping induced QSH-SSC transition.
It decays linearly as a function of distance to the critical chemical potential. However it
is only one part of the story. Recall that skyrmion defects of QSH order parameter carry
charge 2. One can view the ‘preformed pairs’ by looking at excitation gaps at half filling
in the QSH insulator: the excitation gap of a cooper pair is smaller than twice the gap
of a single fermion. This is a close analog to the preformed pairs in high temperature
superconductors. Hence the two order parameters are still locked in the doped case: the
doped ground state with different particle numbers can be viewed as QSH insulators
with different skyrimion numbers. (Of course the argument above only holds near
half filling) We found by QMC study the transition is significantly different from the
mean field expectation, in the sense that the critical chemical potential where SSC
is generated is almost not distinguishable with the one where QSH ordering vanishes.
The phase transition is either a continuous or a weakly first order one. Unlike the mean
field transition in the Boson-Hubbard model, the dynamical exponent of the current
critical point is significantly larger than 2. In this interesting example, we do not even
know the nature of the field theory describing the critical point.

Now let’s turn our attention back to the DQCP at half filling. The Dirac fermion
formulation also gives a hint to a higher emergent symmetry group at the DQCP:
an O(5) symmetry written by the euclidean rotation between five component order
parameters (3 QSH and 2 SSC). Again this symmetry in the continuous field theory
is exact only for the free Dirac action as well as the Yukawa coupling term due to the
anti-commuting nature of the 5 Dirac masses: unless the interacting terms between
bosonic order parameters are tuned in a specific way. This symmetry breaking term is
important since we know that the higher symmetry is never respected by our lattice
Hamiltonian. Crucially, there seems to be an emergent O(5) symmetry right at the
critical point shown by numerical simulations[27]. This means that the symmetry
breaking term induced by the lattice might also be irrelevant: one can use an O(5)
invariant field theory to describe the critical point. Actually at this point one is allowed
to write a clean field theory which is a sigma model at 2 + 1D supplemented by a
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topological Wess-Zumino-Witten (WZW)[28] term:

1
S = g/d%(Vgo)Q + SWZW
. 2)
271 1 (
SWZW = UOZ(S4)~/U d,UJ/dQ’r/dTEabcdeQOaa:vSpbay(pcafr@dﬁugoe

The aforementioned fact of charge 2e carried by QSH skyrimions, as well as the spin 1/2
object carried by SSC vortices is encoded in this action. By the simplification based on
assuming higher symmetry in the continuum limit, one see no difference between the
AFM-VBS transition and QSH-SSC transition in this field theory. Without topological
term, above theory has a Wilson-Fisher fixed point describing a O(5) symmetry break-
ing phase transition in 3D. When the WZW term is present, the large ‘stiffness’(1/g)
limit of above theory still favors an ordered state, but the small stiffness region may
favor a stable critical phase described by fractionalized object of order parameters.

How can we simulate the O(5) invariant field theory mentioned above, since the high
symmetry is not respected by any bosonic lattice model? Chapter. |5|shows a way which
is followed by the picture of Dirac fermions: we can quench the fermions by magnetic
field, and the UV regularization is given by the zeroth Dirac Landau level. Note that
we are working in a continuum space instead of lattice Landau levels, such that the
dimension of single particle Hilbert space is defined by the number of magnetic fluxes
through the system. On the other hand, although the number of interaction operators
is not bounded, its energy scale decays exponentially in the momentum space, such that
a natural cutoff is obtained. On the other hand, the WZW topological term remains
invariant under this approach of Landau Level quenching, since the interaction is still
constructed by 5 anti-commuting Dirac masses.

When working on the interaction driven QSH-SSC transition on the lattice model,
the notion of ‘coupling’ strength 1/¢ in sigma model is not very clear. One way to ‘tune’
it is to enlarge the range of spin current interactions, since it makes the fluctuation
of spin current order parameters more energetically unfavorable. However we can not
continuously tune the stiffness in this way. More generally, one could assume that
our numerical evidence of a continuous phase transition between QSH and SSC is just
an artifact of ‘fine-tuning’: two LGW-fixed point ( a 3D O(2) and a 3D O(3) ) just
happened at the same point due to our detail designing of lattice interaction. The study
of the sigma model based on LL projection in Chapter. |5 answers this question more
generally. Here we do a have an interaction which does not change the symmetry of
Hamilton: and tuning of this interaction continuously changes the stiffness of the sigma
model. The important numerical result is that, we found numerically, the ground states
in a finite range of coupling parameters is critical: this strongly suggests the absence
of fine-tuning for DQCP.
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Figure 1: The ground-state phase diagram in Chapter. |3/ and , as a function of inter-
action strength A and chemical potential p.
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2 Methods

2.1 Auxiliary-field quantum Monte Carlo
2.1.1 General description

Generally, the starting point of quantum Monte Carlo is to write the partition function
based on a many body Hamiltonian to a path integral formalism:

Z=Tre P = /dqﬁe’s(‘z’) (3)

where ¢ = ¢(i,7) is a space and time dependent field. Specifically, we are interested
in correlated fermions: the Hamiltonian H in the above formula is a function of cre-
ation (annihilation) operators in second quantized form. We can take the well known
Hubbard model of spin % fermions as an example:

H=H,+ Hy
U 4
Hy=—tY cl,cio  Hy=_ 3 (nig+mniy—1)° @)
ije i

where the dimension of Hilbert space is 4V for a N-site lattice. Working in the grand
canonical ensemble, the definition of ‘trace’ for a second quantized operator is:

TrO => (n|O|n) 5

In) = (CiT)n” (Ch)num(cjw)”m (ij¢)an 0)

As opposed to the stochastic series expansion (SSE) [29, B0] method, we perform a
Trotter decomposition to Eq. [3}

Tr e—BH — Tr (e—ATHte—ATHU)LtT’Ot + O(A?_) (6)

The leading correction of O(A2) holds in the case of Hubbard model, but we will
show a general description in the following. For a general interaction written as the
‘perfect square’ of fermion bilinears we use an auxiliary field of four integers to perform
Hubbard Stratonovitch (HS) decomposition:

6A7A2 _ Z /y(l)emn(l)A + O(Af_) (7)
I=£1,42
where the explicit form of v and 7 is shown in Ref. [3I]. Here in the Hubbard model
A =1i,/U/2(n;+ +ni —1). Hence for a given space time configuration [(¢,7), we are
dealing with a problem of free fermion propagation. The most important identity is:

Tr(e4nc e 4€) = det(1 + et ..e™) (8)

Hence the fermion propagator after trace is simply a formula of matrices. We define
the imaginary time propagator by a simplified notation ¢V (l,)c = vVArn(l)A and
"Te=H, -
c'l1C= t -

n
Ul(re,m1) = ]__2[ ¢V ln)eg—ArctTe

n=ni+1

e (9)
Bi(ry,m) = [] ete

n=ni+1
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Hence the weight of a given auxiliary field configuration can be written as a matrix
form after tracing over the fermions:

Z =3 AcTe[Ui(B,0)] = > Acdet[l + Bi(B,0)] (10)

where C' denotes a certain distribution of [ fields in space and time, and As =
TTEet 1Y (3, 7)e™®2 (in the Hubbard example).

For a ground state study, we can also use the projector quantum Monte Carlo
(PQMC) approach. We deal with the propagation problem from a given Slater de-

terminant:
Np

) = E(CTPMW "
(e 2" hr) =3 Ac det[PTB;(20, 0) P]
C

Aim of quantum Monte Carlo is not to calculate partition function of Eq[3] We
measure expectation values of operators. Take equal time quantities as example:

Tr [e=PHO]

T e )
—©H ,—(B8—1)H —TH ,—OH

<¢)T|e € Oe € |77Z)T> PQMC

A ()

where O is a certain second quantized operator. When sampling over configuration
space in a FTQMC simulation:

Tr[e 'BHO

Tr[e Z Fel(

AC det[ + Bo(53,0)]
>c Ac det[l + Bo(,0)]

(13)
Py =

The elementary measurement is the matrix of equal time single particle Green’s func-
tion O, = cle,:

((chey))e = (1+ Bo(r,0)Be(8, 7))z, (14)

The corresponding equation for PQMC case can be found in Ref. [19]. Generally, to
detect symmetry breaking based on particle-hole(particle-particle) order parameters,
we need to measure multi-point correlation functions. They can be decoupled as prod-
ucts of single particle Green’s functions for a given configuration. The details can be
found in Ref. [31], 19)].

Thanks to the ALF package [31], the finite temperature and projective version of
AFQMC can be easily performed for a general class of lattice models. We can also
work on quantum spin models with fermion QMC: one can impose the local particle
number fluctuation exactly using onsite interactions.

2.1.2 Symmetry and sign problem

The AFQMC is sign problem free only under certain conditions. Specifically, the
determinant (det[1 4+ B;(3,0)]) in Eq. [10]is not necessarily a real and positive number
unless fermion propagators under any certain H-S field configuration respects certain
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symmetry. To have a complete description, we write the canonical fermion degree’s of
freedom in a majorana representation:

1 , 1 ,
a=s0i+id),  d =0 - (15)

All the fermion bilinears coupled to H-S fields can be written in the ~ basis. In this
basis, the tracing formula corresponding to Eq. |8 is now:

Tr(e”Th”...e”Th”...e”Th”) = \/det(l + etil etihi  edihL) (16)

where h; are always anti-symmetric ( hl = —h; ) matrices. Essentially one is dealing
with diagonalization issue of a 2N x 2N matrix. Two anti-unitary transformations
which leaves all the h; invariant are required to protect the above propagator to be
positive-definite. We write them as T} = U; K and T, = UK. Here K denotes the
complex conjugation, and U;(Us) are real orthogonal matrices. The two transforma-
tions are required to anti-commute with each other : {77, T3} = 0. General proof given
in Ref. [32], shows that there are two classes of models which are free of negative sign
problem:

Kramers class. In this case both two orthogonal matrices ( U; and U ) are anti-
symmetric:

U'=-u, T°=-1 (17)

Defining an anti-symmetric unitary transformation ¢ = 7,75, one can define an exact
U(1) charge conservation since [iQ), h;] = 0. Hence the positiveness of the determinant
in Eq. [16| follows from the general proof of Kramers degeneracy: pairs of eigenstates
with eigenvalues which are conjugate to each other.

Majorana class. Here one of two orthogonal matrices is symmetric:

Ul =—Uy (TP=—1) Uf=U, (T?=1) (18)

A symmetric unitary transformation P = U,U; can be defined, with the property of
P? = 1. Since P commutes with h;, one can diagonalize h; matrix in the eigen-basis of
P. It turns out that the 2N x 2N matrix can be written into block diagonalized form
and the two blocks are conjugate to each other.

The spinful time reversal symmetry which we apply in the model of QSH-SSC tran-
sition (as well as the doped case) is an example of Kramers class. Two anti-unitary
transformation in this cases are:

leKin®TZ TQZKY:O'y@)Tx
T"=-1 Tiy=-1 {N,T}=0 (19)
Q=0p®iTy,

Here T3 is simply the majorana version of Eq. applying Eq. () is the generator
of U(1) charge transformation:

1 : 1
) cos(f) —sin(6)) (
(’yf) — (sin(@) cos(6) V2 (20)
This holds for all the system with spin% time reversal symmetry and U(1) charge
conservation after H-S decomposition.
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2.1.3 Reweighting process

We briefly shown the reweighting process when the QMC simulation encounters a sign
problem. Generally the action for a given configuration is a complex number. Define
the weight of certain configuration as e=%(©), we know that the partition function ( in
FTQMC ) after summing up over the configurations is real:

Z =3 e =% Re[e*)] (21)
c c

although the weight e5(©) is complex in general. During the sampling we calculate
the acceptance ratio based on the absolute value of the real part of weight:
5 | Re[e= ]

PO = SRl 2

which in general breaks the detail balance. In order to ‘reweight’ back to the unbiased
measurement, we define the ‘sign’ for a given configuration as:

: _ Re[e %)
sign(C) = Rele—5O1] (23)
and the average sign after sampling as:
tsignyy = SeRele O] 2o |ReleSO)jsign(C) -
"7 Yo ReleS@] > [Re[e S]]
Hence we can represent the unbiased expectation value by:
<O> — ZC 675(0)<<O>>C
N Yo e 5O
_ , e—5(C) _
_ {Zc|Rele 5 lsign(C) g=sen ({0} Te [Rele > -

{Xc [Rele 5O[sign(C)}] Lo [Rele 5]
(gm0

(sign)p

For a measurement at certain QMC configuration we store sign(C)%((O»C.

2.2 canonical ensemble simulation of interacting fermions
2.2.1 implementation

The FTQMC approach of Eq. [12| gives the thermal expectation value of certain oper-
ators in a grand canonical ensemble (GCE). On the other hand, the PQMC approach
reproduces the ground state expectation value in a fixed particle number sector. How-
ever it is hard to justify the meaning of it’s measurements at finite projection length ©
since it depends on the overlap between the trivial wave function and the eigenstates of
Hamiltonian. A general interesting question would be, can we expand the QMC study
to a canonical ensemble (CAN) ?
Specifically, the partition function of two ensembles read:

ZGCE =Tr [6751:]]
Zean =T [5N0,N€_ﬁﬁ]
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where N is the desired particle number.
This means that we would like to constrain the particle number fluctuation (uniform
charge susceptibility):
B

xe = (N = (N)?) (27)

at a finite temperature. u here denotes the chemical potential. Our method is to work
in the grand canonical ensemble combined with a long range interaction:

H(\) = H+ H,

N N 28
Hy = \N — Ny)? 28)
such that )
Zean(n) = lim Tr {e_ﬂH()‘)} . (29)
A—00

As discussed above, in Egs. — the Hamiltonian H implicitly depends on the
chemical potential p, which needs to be tuned such that <J\7 ) = n. In practice, this
is done by computing <J\7 ) as a function of p, for a suitable interval in p, by means
of auxiliary field QMC, and then fixing p such that the equation (N) = n is satisfied
within the desired statistical accuracy; at half-filling one has exactly p = 0.

Since H conserves the particle number, one can foresee rapid convergence in A be-
cause particle-number sectors with N = N =# n have a weight suppressed by a factor
e~ M(N-n)”  The latter also shows that the relevant parameter for the convergence is

BA rather than A itself. The additional term is a perfect square term which is easily

implemented within the ALF code [31]. Since (N - N )2 effectively corresponds to a
long-ranged interaction, one may face the issue that the acceptance rate of a single HS
flip becomes excessively small on large lattices. To circumvent this problem we have
used the following decomposition:

o LT S ~ ATIfI ATIfI
67’8H — H e*ATTefATV e_ﬁ A __e—a by ) (30)

T=1

n)-times

Thereby, we need n,) fields per time slice to impose the constraint. For each field, the
coupling constant is effectively suppressed by a factor n,, thus allowing to control the
acceptance of the QMC algorithm.

In order to test the efficiency of our QMC method in the canonical ensemble, we
used the example of Hubbard model. We computed the uniform intensive charge
susceptibility y. defined in Eq. 27 In Fig. [2] we show x. for the 1D Hubbard model
as a function of S\ and n,. As shown in Fig. (a), X decays gradually from a finite
value to zero upon increasing SA. The threshold in A\ for which y. converges to zero
corresponds to the canonical ensemble. A comparison of the results for lattice sizes
L = 4,8 and 16 suggests that the charge fluctuations are easier to suppress for larger
system sizes. The dependence of x. on n) defined in Eq. is shown in Fig. (b),
which indicates the increased Trotter error for larger values of SA.

Fig. |3 shows the decay of charge susceptibility x. as a function of A in the two
dimensional Hubbard model, for U = 4.0, L = 4 and several increased temperatures
B = 0.5,2.0 and 5.0. Inspection of Fig. [3|reveals that in the grand-canonical ensemble,
the 8 = 2.0 case exhibits charge fluctuations larger than the § = 0.5 case, thereby
requiring a larger value of S\ to realize the canonical ensemble.
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Figure 2: fA— and n)—dependence of x. for the 1D Hubbard model at U = 4.0 and 8 =
0.5. (a) x. as a function of S\ for L = 4,8 and 16. For each S\ we have taken

the parameter n, large enough as to effectively suppress the discretization

error in the decomposition of the constraint. (b) x. as a function of n, for
L = 8 and two values of \.
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Figure 3: A-dependence in the x. of 2D Hubbard model for U = 4.0, L = 4, and
£ =0.5,2.0 and 5.0.
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2.2.2 Finite size corrections of canonical ensemble

Ref. [33] shows that for a quantum model at finite volume V', a leading finite-size
correction of the free energy in the canonical ensemble:

Fcan(n07 v) - Fgc<v)

I 1 | (31)
= oY)+ <ﬁ> L0 (W) ,

where Fi,,(ng, V) and F,.(V) are the free energies per volume V' and in units of kgT
in the canonical and grand-canonical ensembles, respectively, and y. is the charge
susceptibility (in the grand-canonical ensemble); the filling fraction ng in Feupn(ng, V') is
fixed to the corresponding expectation value in the grand-canonical ensemble. Eq.
provides the leading additional contribution to the free energy density due to the
particle-number constraint. As discussed towards the end of this section, Eq.
allows also to determine the leading finite-size correction of observables in the canonical
ensemble if, as expected, finite-size corrections in the grand-canonical ensemble decay
faster than 1/V.

We performed QMC simulation of the SU(2) Hubbard model in both the grand-
canonical and canonical ensemble. The Hamiltonian of the Hubbard model is defined
as:

~ 1 1
H=—t ¥ datyo U (ur - 5) (70— 5)
e el ~ " T )\ T
,J>,0 7 (32)
— Z (Rag + g y) -

The canonical ensemble is realized by adding the constraint shown in Eq. . For
such a modified Hamiltonian, the total number of particles converges quickly to n upon
increasing S\.

Here we simulated both ensembles on a 1D lattice at finite temperature, which is
known to be disordered. We mainly considered the models at half filling (n = N/2,
with N = 2L%) with zero chemical potential ;1 = 0. Our basic MC observables are:

1. Energy density:

1
E = ﬁ<H ) (33)
2. Uniform spin susceptibility:
= LX) (34
XS - Ld & ag¥)
1’7]

The QMC simulations of the one-dimensional Hubbard model are performed in both
the grand-canonical and canonical ensembles at inverse temperature g = 0.5, system
sizes L = 4, 8,12, 16, 20, 24, 28, 32, 40, 48, 64, 72, 80, and at half-filling. A comparison
of the size effect for the Energy E(L) and for the uniform spin susceptibility x,(L) in
the two ensembles is shown in Fig. 4] and Fig. [5] respectively. We observe that in the
grand-canonical ensemble both E and y, converge quickly to the thermodynamic limit
for small system sizes. This indicates a small correlation length £ at this temperature.

On the other hand, except for the smallest system sizes, in the canonical ensemble
both observables exhibit a linear-like behavior as a function of 1/L. A fit of energy
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Figure 4: Finite-size data of the Energy density E for the 1D Hubbard model in the
grand-canonical and canonical ensembles, at § = 0.5 and half-filling. The
red line is a linear fit of the canonical ensemble data to E..,,(L) = E(L —
o) — a/L, with E(L — oo) = 0.1771(2) and a = —0.738(4), where the
minimum lattice size taken into account is L,,;, = 16; the dashed green line
linking the grand-canonical data is a guide to the eye.
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Figure 5: Same as Fig. 4| for the spin susceptibility xs. The red line is the linear
fit of the canonical ensemble data to Xsecan(L) = xs(L — 00) + a/L, with
Xs(L — 00) = 0.3177(1) and a = —0.135(1), where the minimum lattice size
taken into account is L,,;, = 12

23



a A7 = 0.20, symmetric o+ A7 = 0.20, asymmetric -+ b L=6 @ L=15 i
A7 = 0.10, symmetric ~ A7 = 0.10, asymmetric L=9 v L=18
A7 = 0.05, symmetric e+ A7 = 0.05, asymmetric e L=12 re L=21 gl

0.830 T T T T 0.20

- 0.825 W—Q—Q—H—Q—Qﬂpﬁ_‘:‘_ﬁ
o3 R =

0.820 4

<c0 S e o ‘U}
0815 ¢ M e ?

'SP SSP-SP-SEP S-S -SSP S-S

0.15

(g=0,0))
Y
|
|
1
4
(g=10,0))

A ERanin on 2ot S0 S0 o0 S S S0 S0 Sn S0 S o0 40 .20 2n o
0.810

w
4 =3
[ I 005 geeeaeeeseeeseeeoetecgoesconnet?
= 0.805 | 1S SmEEEEEEE

0.800 - - - - 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5

T 7/L

=0,7)-

Figure 6: (a) Time-displaced spin correlation function at A = 0.04, § = 2, and
L = 3. The label ‘symmetric’ refers to the Trotter decomposition of
equation (35)), whereas ‘asymmetric’ refers to the alternative decomposition
7 = Tr |e~ATH: Iy, e~ ATH (i) o~ ATHY (i) o~ ATHS (i )} (b) Time-displaced spin
correlation function for the symmetric Trotter decomposition and A = 0.019,

3=L.

density in the canonical ensemble E,,, (L) to E.n(L) = E(L — o0) + aL™! exhibits a
good x?/DOF (DOF denotes the number of degrees of freedom), when the data for
the small sizes are discarded; the extrapolated value E(L — oo) matches the grand-
canonical result. Similar considerations hold for a fit of the spin susceptibility in the
canonical ensemble X can(L) t0 Xs.can(L) = Xs(L — 00) +aL ™.

Moreover, a fit of E,,(L) to E(L — co)+aL~% leaving d as a free parameter, gives
d = 1.05(2) when the smallest lattice size taken into account for the fit is L,,;, = 16.
An equivalent fit for xs(L) gives d = 1.04(2), when L,,;, = 12. This confirms that the
finite-size corrections of observables in the canonical ensemble system are o< 1/L.

Additional numerical results of 2D Hubbard model as well as the doped case pu # 0
can be found in Ref. [33].

2.3 Trotter decomposition used for the QMC simulations

Generally the leading order of trotter error in Eq. |§| does not scale as O(A7?) if the
propagator is not hermitian. We encountered this issue in the following projects of
this thesis. Take the model of QSH-SSC transition (of Eq. ) as an example for the
discussion. For a direct trotter decomposition of Eq. [37, the exponential of a plaquette
interaction does not commute with the one of it’s nearest neighbours as well as the one
of hopping matrix. To ensure hermiticity, the partition function is written as

Z =Tr

N 1 Lz
e T [ [] e ¥ B0 MOS0 T e 5 M0 e 5 MG e 5 130) | o5
. =

(35)
where H, is defined by equation (1) and the interaction (2) was partitioned into local
operators H{ (i) acting on spin component o = z, vy, z and on hexagon i. The leading
discretization error for the partition function then scales as AT2.

The Trotter decomposmon in equatlon ) breaks the global SU(2) spin rotation
symmetry. For example, [H¥ (i), HY(i)] # 0 SO that equation (35 will not be invariant
under a global SU(2) rotation. Because SU( ) symmetry breakmg is a relevant per-
turbation for both critical points considered, care has to be taken to ensure that its
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effects, which scale as A72, remain below the relevant energy scale. An explicit test
involves the total spin operator and generator of global SU(2) rotations

1
Stot = Z Z S’r,é . (36)
7,0

Here, S, 5 = ¢! 4+60C, .5 and & runs over the positions of atoms in the unit cell at
r. Fig[6] shows the associated time-displaced spin-spin correlation function. A global
SU(2) spin symmetry implies that this quantity is independent of imaginary time. The
numerical results are essentially constant in imaginary time if the symmetric Trotter
decomposition is used. Therefore, the latter was employed together with A7 = 0.2 for
all results of of Section. [3l
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3 Superconductivity from the Condensation of
Topological Defects in a Quantum Spin-Hall
Insulator

The discovery that spin-orbit coupling can generate a new state of matter in the form of
quantum spin-Hall (QSH) insulators has brought topology to the forefront of condensed
matter physics. While QSH states from spin-orbit coupling can be fully understood in
terms of band theory, fascinating many-body effects are expected if the state instead
results from interaction-generated symmetry breaking. In particular, topological de-
fects of the corresponding order parameter provide a route to exotic quantum phase
transitions. Here, we introduce a model in which the condensation of skyrmion defects
in an interaction-generated QSH insulator produces a superconducting (SC) phase.

In this chapter, we will show a new studying of the deconfined quantum critical
point (DQCP), which happens at the QSH-SC transition point where fermion particle
number is pinned at half filling. This provide an improved model with only a single
length scale that is accessible to large-scale quantum Monte Carlo simulations. This
part is published in Ref. [IJ.

3.1 Implementation of model

The Hamiltonian is setup based on spinfull fermions in the 2D Honeycomb lattice:

=B+ 0, (37)

Figure 7: Illustration of the nearest- and next-nearest neighbours and the vector R;;
on a plaquette of the honeycomb lattice.

The first part above is the well-known tight-binding model of Dirac fermions in the
form of electrons on the honeycomb lattice with nearest-neighbour hopping (see Fig. E]b
) , as described by

= —t Z éle; +He) (38)

The spinor & = (éIT,éI i)? where éig(éw) creates(annihilates) an electron at lattice
site ¢ with spin ¢. Equation yields the familiar graphene band structure with
gapless, linear excitations at the two Dirac points. [34] The second part of Eq denotes
the interaction:

2
H, = —/\Z ( Z ji’j) , j,',j = Z'l/ijéIO‘éj + H.c. (39)
(«

@) ij))€0
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The first sum is over all the hexagons of a honeycomb lattice with L x L units cells
and periodic boundary conditions. The second sum is over all pairs of next-nearest-
neighbour sites of a hexagon, see Fig. [7] The quantity v;; = £1 is identical to the
Kane-Mele model;[23] for a path from site ¢ to site j (connected by R;;, see Fig.[7b) via
site k, 15 = €, - (Rix X Ryj)/|é, - (Rir X Rkj)| with €, a unit vector perpendicular
to the honeycomb plane. Finally, o = (0%, 0¥, 0%) with the Pauli spin matrices 0. For
A > 0, the model defined by H = H, + H, can be simulated without a sign problem
by auxiliary-field quantum Monte Carlo methods.[35, 36, 19] In the following, we set
t = 1 and consider a half-filled band with one electron per site.

Without the square, and taking just one of the three Pauli matrices (say o?), above
Hamiltonian reduces to the Kane-Mele model:[23]

H=H —\ ( > iv€iote; + H.c.) (40)
((43))

where the SU(2) spin rotational symmetry is broken explicitly. Once A # 0, the spin
orbital coupling above introduce a small Dirac mass which generate a quantum spin
hall (QSH) insulator. A spin 1/2 time reversal symmetry:

Tae, T = aioyé; (41)

relate two counter propagating edge states of different spin channel. This way of cou-
pling Chern bands with opposite Chern number give a vanishing total Chern number,
but a nontrivial Z, topological index. The above time reversal symmetry is the one
which will protect our QMC simulation to be sign problem free.

In contrast, the spin SU(2) symmetry is not broken by the interacting model of
Eq[37 However, one could expect a QSH state to be generated at low temperature
due to a spontaneous symmetry breaking. This guess is not surprising if one directly
use a polarized order parameter in the SU(2) space to decouple the perfect square
terms of Eq. |39 in the mean field approach.

3.2 Theoretical expectations
3.2.1 Charged skyrimions and superconductivity

A dynamically generated topological insulator has been proposed in Ref.[24], with a
mean field calculation on an extended Hubbard model, supporting a QAH or QSH
phase in the ground state. On the other hand, a DQMC simulation of this model
would suffer from sign problem. Our Hamiltonian is built to be sign problem free,
although it seems to be far from a real material.

The Z, QSH insulator due to spontaneous spin rotational symmetry breaking adia-
batically connects to the ground state of Eq. [40] However there would be significant
differences compare to the band insulator: low lying Goldstone modes; topological de-
fects, e.g. skyrimion configurations of the O(3) order parameter. Especially the second
point is important for our discussion here: it’s proposed via Ref. [37] that the skyrimion
defects of QSH order parameter carry charge 2e.

We retell the ideas in Ref. [37]. An action in terms of Dirac fermions coupled to
fluctuating O(3) QSH order parameter

S = /dQHJdT?/JT(a}, 7) [Y0Yu(—10,) + imN(x,7) - Y7375 @ Fl(, T) (42)
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where N (x,7) is defined as a continuous and normalized vector field in space and
time, and 7, denotes the Dirac Gamma matrices which is written in the Appendix.
The number of ‘skyrimions’ is counted by the Pontryagin index which is a integration
over 2D space on a certain time slice:

Q= /f AN - 9,N x N (43)

under a imaginary time and spacial dependent local gauge transformation:
(44)

Thus Eq. [42|is identical to a ‘polarized” QSH where the Dirac fermion is in a back-
ground of a ‘spin’ gauge field:

. s ion .
S = [ e o (=i, + % AL) + im0yl
(45)

Take Eq. [44]to Eq. 5] with a direct expansion, one can see a direct mapping between
the magnetic field and curvature of O(3) order parameter:

1 - - -
—"*N . 9,N x OyN (46)

9N =

which holds locally at certain space time 7, . Integrating over 2D space on a certain
time slice gives:

/qu@£:®@ (47)

Hence we know that a ‘insertion’ of skyrmion configuration from imaginary time 7 = 0
to 7 = t; exactly maps to a insertion of total (spin) magnetic flux of 47. In another
word, a magnetic monopole of quantized flux 47 exist between 7 =0 and 7 = 7.
Recall that the electric charge current as a response to the spin gauge field: j; =
=29, A5. Hence the charge response in terms of a gradually inserting a single
Skyrlmlon into the system from imaginary time ¢ = 0 to t; is:

t1
:/ mfﬁme
0

o (h 1045
_/ dr 2 Ot rdd (48)

jf (A5(t)) — A3(to))rdo

Thus we know that a skyrimion of QSH vector order parameter carries electricity charge
2.

Now we turn to an explicit calculation for a lattice model on Graphene, to show the
relation between electricity charge and Pontryagin index:

Qe = 26@ (49)
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Our starting point is the Hamiltonian

H=—tY (é}éj + H.c.) +AY N(z)- ( 3o iyeloe; + H.c.) . (50)
0 -

(ig) ((2,3))€0 —

where N(x) = (N*(x), NY(x), N*(x)) is a unit vector at position & corresponding
to the centre of a hexagon. Since H is invariant under time reversal symmetry;,
f‘la(le)T = a(_Ang), Kramers’ theorem holds and stipulates that all eigenstates
are doubly degeneraté.

On the honeycomb lattice, the Pontryagin index is defined as

Q- 817T " N(z)-(N(z-+a1)-N(@))x[(N(z)-N(@+a))+ (N(z)-N(z—a,+as))]

(51)

with unit vectors a; = (1,0) and a, = (3, ?)

For an arbitrary vector field N (x), Hamiltonian does not preserve particle-hole
(P-H) symmetry. For example, defining the P-H transformation as

K A

A C: A~ :

lea<;’T> P, = ma( f”) , (52)
Cs —Cq,|

z J v
A s A A
b= JY (53)
p—1 7z D 2z
PZ JZ,]PZ —_— _J’Lj
A general P-H transformation can be written as
P(0,¢) = U1(0,0)P.0(0,¢) (54)

e (60/2) (0/2)e"
] ém ~ [ cos 6/2 —sin(6/2)e™ Cip
For Hamiltonian (50)), it yields

P10, ) H(N)P(0,6) = H(N') (56)
where
10 0
N'(xz) =R 1(6,9) (0 1 0 ) R(0,¢)N(x) (57)
00 —1
and
cos?(0/2) — sin?(6/2) cos(2¢) —sin?(0/2) sin(2¢) — sin(6) cos(¢)
R(6,¢) = —sin?(0/2) sin(2¢) cos?(0/2) + sin?(0/2) cos(2¢) — sin(6) sin(¢)
sin(#) cos(¢) sin(f) sin(¢) cos(0)

(58)
Thus, there is no generic P-H transformation that leaves this Hamiltonian invariant,
unless N (z) is varied in an R? space (6 and ¢ can be defined such that sin 6 cos ¢ N, +
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sin @ sin N, + cos N, = 0). Since the transformation has a determinant of —1, the
generic P-H transformation gives

Q(N'(z)) = —Q(N (). (59)

The ‘electric charge’ refers to the number of occupied states at zero temperature,
relative to half filling. The sign change of the Pontryagin index under a P-H transfor-
mation provides a natural way of understanding equation . Note that in contrast
to a skyrmion, a 2D topological defect (such as vortex) has a vanishing Pontryagin
index and carries no charge.

The argument of charged skyrmions fails when other Dirac mass terms are considered.
For example, a system with fluctuations of a three component vector field Yukawa-
coupled to the three antiferromagnetic mass terms does not break P-H symmetry.
In this case, a skyrmion configuration with nonzero Pontryagin index does not carry
electric charge.

T T T T T T T b
1.0 4 1.0
i 1 skyrmion
0s | uniform | o0s | y
3 06t 1 3 06
_ 0.4 g _ 0.4
| N N i | N N _
0.2 y y 0.2 ¥y2 ¥ 2
()[) L L L L L ()[) L L L L L L
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
w w

Figure 8: Density of states N(w) of Hamiltonian for (a) uniform polarisation, (b)
a ‘single skyrmion’ configuration with ) ~ —0.989. We have included an
artificial broadening by using the form D(w) = —77' Y, Im (w — &, + i),
where ¢, are the eigenvalues and 6 = 0.05. Here, L = 36, A = 0.5.

We diagonalised Hamiltonian on a honeycomb lattice with L = 36, setting
t =1 and A = 0.5. Supplementary Fig |8| compares the density of states for a uniform
field N (x) and for a ‘hedgehog’ configuration corresponding to a single skyrmion. On
the lattice, the Pontryagin index is not quantized and we obtain ) ~ —0.989. The
system remains gaped when one skyrmion is inserted, see Fig.[8b. The breaking of P-H
symmetry is also apparent from D(w) # D(—w). Simple number counting shows that

/O D(w)dw = N/2 + 2, /0 D(w)dw = N/2 — 2. (60)
Compared to the case of uniform polarisation in Fig. [8h, an additional charge 2e is
generated.

On a system with open boundary conditions, the Pontryagin index is not necessarily
quantized and we can investigate how charge is transferred during the insertion of a
skyrmion by varying the Pontryagin index from zero to one. Fig [0 shows that the
total charge is ‘pumped’ from 0 to 2e and we observe a step function at a non-integer
value of (). This is a consequence of the aforementioned Kramers theorem. As shown
in Fig. [I0} the bulk remains gaped during this process, while the edge stays gapless.
Thus, the charge 2e is pumped through the edge under insertion of a skyrmion.

Note that the charge 2e skyrimions suggest a way to another correlated state:
the superconductor. Normally a conventional superconducting state is one kind of
Bose-Einstein condensate while the condensed bosonic particle is written as the bounded
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Figure 9: Integrated density of states as a function of @ for open boundary conditions
and L = 36.
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Figure 10: Edge and bulk density of states for different N (x), corresponding to (a)
Q=0,(b) Q=041 (c) @ =0.72 and (d) @ = 0.99. Here, L = 36, and
D(w) was broadened as explained in Fig. .
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state of pairs of electrons. In the well-known BCS theory, the so called ‘cooper pair’
is written as a coherent state of electrons with opposite spin and momentum. Usually
the pairing comes from the effective attractive interaction mediated by the electron
phonon coupling. Our model introduces a new way towards pairing : condensation of
skyrimions of QSH vector field. The numeric investigation of this effect will be shown
in the following.

In fact the QSH-SSC transition at zero temperature is one kind of ‘deconfined quan-
tum critical point’(DQCP): a single bosonic quantum critical point between two differ-
ent symmetry broken state. It certainly breaks the Landau-Ginzburg-Wilson (LGW)
framework. Take an example of coupled LGW theory of two different order parameters:

S =54+ S+ St
Sa = [ Padr[(006) + (00) +ea?@:0) +raldP) + 24111
S5 = [ Padr[(009) + (0.,9) + x5 + ol #P) + 2 G
Siut =l B

The LGW transition points corresponds to the points where |¢| ( or |¥| ) acquire
nonzero value. Since the required coarse gaining step from lattice to field theory pa-
rameters (r4,7p and v) depends on non-universal feature, two order parameters in
terms of different symmetry breaking does not need to condense at the same point,
without certain fine tuning process.

(61)

3.2.2 Deconfined quantum critical point

We briefly introduce the idea of ‘deconfined quantum critical point’ (DQCP) in this
section as well as it’s relation to our study. It follows from the ideas of Ref.[38],[39] and
[T1]. Within in the framework of LGW theory two different symmetry broken states
are connected by intermediate phases or first order phase transitions. However, there is
interesting argument of the possibility of continuous phase transitions which belong to
the category of so called ‘deconfined quantum critical points’(DQCP). The key point for
the continuity of the transition relies on ‘deconfined’ fractionalized degrees of freedom.
The original idea of DQCP was proposed for transitions in quantum spin systems [3§]
[T1]: more specifically for a transition between an anti-ferro magnetic (AFM) ordered
state and a valence band solid (VBS) state in the 2 dimensional case. The AFM state
breaks spin rotational symmetry in SU(2) space, while the VBS breaks a discrete Z4
symmetry. The latter symmetry broken process necessarily requires a Hamiltonian on
a square lattice.
As an example describing LGW transition, the so called ‘coupled dimer’ model [40]
reads: ]
Hd:JZSZ--SjnL—JZSi-Sj (62)
(ij)eA 9 j)es
Where S; is the spin 1/2 moment on site i. On the square lattice, nearest neighbour
links of A alternately covers half of the bonds on the x direction, while the B set
denotes the rest of the links. We only consider the case ¢ > 1 and J > 0. It is clear
that the above Hamiltonian explicitly breaks the Z4 symmetry of the square lattice.
At zero temperature, an AFM state exists when g is close to 1 while a paramagnetic
ground state in terms of decoupled dimerlized singlet wave function happens in the
large g limit. It is known that at 1/g. = 0.52337(3)[41] a continues phase transition

32



between AFM and paramagnetic state which belongs to the field theory of O(n) rotor
model happens.[6]

The elementary excitation in above AFM state is the two branch of goldstone modes
around momentum () = (7, 7) of square lattice. These gapless modes has ‘elementary’
spin quantum number of 1. In the decoupled dimerlized state all the excitations are
gaped, but the lowest one among them are still the spin 1 excitations which corresponds
to a process of breaking any certain local singlet into triplet states. In both two phases
as well as the transition point, delocalized spin 1/2 ‘spinon’ excitations does not appear
(more specifically, they have much higher energies). The characteristic length scale
which diverges at this LGW transition point is the defined by the correlation of O(3)
order parameter, while the ‘confinement length scale’ in terms of the distance for pairs
of spinons stays finite crossing the transition.

A simple example of quantum spin model which does not break Z; symmetry of 2D
square lattice is the so called * J — @ " model[17]:

1 1
HJQ:JZSi'Sj‘{_QZ(Si'sj_i)(sk'sl_Z) (63)
(i5) (igkl)

where the Heisenberg interaction between nearest neighbour sites (i, j) is same as Eq.
The second part of above Hamiltonian denotes the 4 site ‘ring exchange’ interaction,
where (ijkl) are four sites on the corners for a certain plaquette of square lattice.
At zero temperature, although the AFM state in the small ) limit is adiabatically
connected to the one in coupled dimer model, the paramagnetic ordered state in the
large @ limit has a fundamental difference compare to the one of Eq[62] in large g
limit. This paramagnetic state, which is also called valence bond solid (VBS) state,
spontaneously broke the lattice Z, symmetry. Hence the present VBS ground state has
a significant difference compared to the one in coupled dimer model due to its four fold
degeneracy. To link the AFM and VBS state at zero temperature, there are several
possibilities: a finite intermediate region where both two order parameters co-exists;
an intermediate paramagnetic state which has no broken symmetry between the two
ordered state; a direct first order transition; or a deconfined quantum critical point.
Remarkably it is found that within numerical reachable system size of Monte Carlo
[17]]42], the last scenario is favored.

The four fold degeneracy of VBS ground state has an important consequence for
describing the field theory of AFM-VBS transition. One can introduce a path integral
using spin coherent state. Consider the AFM phase close to the critical point. In this
case the low-energy fluctuations of the Neel order parameter are described by the O(3)
nonlinear sigma model with a Berry phase term:

S— 219 [dr [ @rl@.87 + (V.87 +is (1A, (64)

where the three component vector field N is the eigenvalue of spin coherent state in
the spin % case. A, is the oriented area enclosed by trajectory of spin configuration
along imaginary axis at site r on the unit sphere. The last term of berry phase actually
described the monopole tunneling effects, which measures the creation or annihilation
of skyrmion configurations of O(3) order parameters:

1 L .
Q= / Po N -0,N x HhN (65)
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The monopoles, described by the summation over A, term, are not relevant unless
process of changing the number ) happens along imaginary time. Note that many
configurations of monopoles does not contribute to the action of Eq. [64] after summing
up over the configurations. A specific calculation given by Haldane[I0], shows that the
lowest skyrmion changing process on the square lattice with nonzero fugacity comes
with changing ) by £4. It is actually related to the four fold degeneracy of VBS wave
function. Indeed the VBS phase comes from the condensation of skyrimion number
changing operator.

A necessary condition of DQCP is the emergence of skyrmion number conservation at
the critical point. In another words, the monopoles which correspond to the skyrmion
number changing operator has to be absent. Actually it is not so obvious to show:
Senthil. et. al [38] argue that the single monopoles fugacity goes to zero after averaging
over the oscillations, while the quadruple ones renormalizes to zero only at the critical
point.

There is another way to look at DQCP from ‘opposite’ direction: a transition from
VBS to AFM phase. The VBS phase is a Z, symmetry breaking state, but one can
not simply interpret it’s transition toward AFM state as the one of 3D clock model.
The topological defects of the Z, clock order parameter is actually the Z vortices [43]:
An unpaired ‘spinon’ with spin quantum number 1/2 is always left at the center of a
vortex.

Recall the example of aforementioned ‘coupled dimer’ model, in the paramagnetic
(dimerized) state two unpaired spin 1/2 object would cost high excitation energy which
depends ‘linearly’ on the distance between them. Crucially it not only holds inside
dimerized state: even at O(3) critical point there are no free spin 1/2 excitations. Now
for J-Q model, although the ‘linear law’ still holds inside VBS phase, unpaired spinons
can proliferate approaching the DQCP. Finally, the spinons condense and form the
AFM order parameter across the transition point.

A field theory to describe the second order phase transition between AFM and VBS
is to rewrite the spin order parameter as a composite of spinon fields:

N = i3z (66)
where z is the two component spin 1/2 complex spinor, and ¢ denote the three com-
ponent Pauli matrices. The description of DQCP is then:

Zdeconfined = /DzaDa“e*fdzwd‘rLz
(67)

2
. 1
Lo =3 10 = iaw)zal® + 5|2 + u(|2*)* + o5 (Cunduan)®
a=1

A U(1) gauge field a, is introduced due to the U(1) local redundancy of z field in
Eq. [66f Note that field a, is defined as a compact U(1) field here. To tune the
parameter ()/J in Eq. [63|is effectively to tune s here. The key point now is to argue
that when approaching the critical point as function of s, the field a, has to become
effectively non-compact. This is a necessary condition for the skyrimion conservation
at the critical point, since the skyrimion number can also be described as :

1
gy /an:eO“”aua,, =Q (68)

if the U(1) gauge field is compact, then monopoles which can change the number of
skyrimions ( AQ = %1 ) on different time slices are allowed. Hence we require the field
to be non-compact approaching the critical point.
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Figure 11: (a). Renormalization group flows of the DQCP in terms of AFM-VBS
transition on the square lattice proposed by Ref.[I1]. Here the critical point
of ‘DQCP’ flows to fixed point corresponding to the AFM state or a U(1)
spin liquid. A4 is the strength of Z; symmetry breaking field which is only
irrelevant only at the DQCP. (b) The corresponding RG diagram of our
model. Here a Gross-Neveu Heisenberg critical point happens between the
DSM and QSH phase, while a DQCP flows to either QSH or SSC fixed
points. Our interaction strength works as the only tuning parameter, and
there is no additional dangerous irrelevant symmetry breaking field.

Although the monopoles are irrelevant around the DQCP, they are relevant at the
‘deconfined’ phase of photons. As shown before, the Z, symmetry breaking field intro-
duced by the four fold VBS degeneracy is relevant and break the conservation law of
skyrimions. A schematic flow draw in Ref. [I1] is shown in fig. [11] One could simply
take the line with zero values of A\ as the one of a pure U(1) gauge theory : the right
part of Ay = 0 line favor the phase of deconfined photon field A,. On the other hand
any nonzero values of \; field is driven the Z; symmetry breaking phase under RG,
where the spinons are confined. This necessarily leads to the argument of two divergent
length scale: a ‘spinon’ correlation length as well as the VBS correlation length. The
latter one is captured by the correlation of Z; order parameter.

Now we turn back to our model of QSH-SSC transition. There is a significant
difference compared to the AFM-VBS transition: the SSC phase breaks only the U(1)
charge conservation of fermions:

[N,H] =0 (69)

where N is the summation of particle number operator. This is not involved with any
lattice point group (say, Z;) symmetry breaking field. Thus, the skyrimion number
conservation law is exact not only at the deconfined critical point. Deep inside the
SSC phase, the excitation gap of a skyrmion, which is basically the gap of a cooper
pair, is much smaller that the finite fermionic single particle gap. Hence the absence
of monopoles is an exact statement: there is only one characteristic length scale £gg¢,
which is the one of U(1) order parameter.

The key point of our fermionic approach is that both SU(2) and U(1) symmetries are
onsite. Very recently, Thorngren et. al.[25] give an understanding of why the monopole
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free DQCP is not able to be realized in bosonic models: emergent anomaly. Here we
briefly recall their ideas. Our SU(2) and U(1) transformation also contain a (global)Z,
degree of freedom in the spin 1/2 representation, which is the fermion parity for = 7
transformation of €7’ (along any axis €). Note that this transformation acts trivially
on spin model due to the exactly constraint on charge fluctuation. In our case the Z,
transformation is charged although always gaped. The crucial point is that the low
energy effective field theory is after gaping out the fermion charge degrees of freedom
is anomalous: it can not be gauged trivially on open boundary conditions.

3.2.3 DQCP from Dirac fermions

The above discussion of DQCP based on quantum spin system has no local charge
fluctuation : one can view the J-Q like models as fermionic systems with local U(1)
gauge redundancy, such that there is effective reduction of Hilbert space.

One could also study bosonic quantum phase transition with fermionic models where
the local gauge redundancy is broken. For example, the critical point of 2+ 1D O(2)
quantum rotor model can be either realized on quantum spin or fermionic models.
An example of the second case is the QSH-AFM transition in Kane-Mele Hubbard
model[44]. Due to the finite fermionic single particle gap introduced by spin orbital
coupling, the low energy effective theory is described by the bosonic degrees of freedom.
To investigate the universality class by large scale numerical simulation, this example
of fermionic model is very inefficient.

However, the fermionic approach in our study introduces new possibilities of tackling
the DQCP. Specifically, we take Dirac fermions from the low energy effective theories
of lattice Hamiltonian : e.g. honeycomb lattice or 7 flux square lattice. As mentioned
before current work of QSH-SSC transition is based on the honeycomb lattice. Bosonic
order parameters are naturally coupled to fermion bilinears, which has matrix struc-
ture depending on the corresponding broken symmetry of the order parameter. We
are interested in the case where the coupling not only breaks a symmetry but also
introduces a gap to single fermionic excitation : Dirac masses.

One can write an effective low energy theory based on the approximation around
two dirac cones of the Honeycomb lattice. We take the Nambu notation of ¥(x, 1) =
(w(af;, ) Yi(x, 7')), such that the Hilbert space read: R* @ C2,;;,,, ® C2 11 @ €2 @
C%,c- We need the Nambu basis since to describe superconducting mass, particle-
particle (hole-hole) bilinears is necessarily involved.

Generally the action reads:

S = SDirac + S Boson - (70>

where Spirqc denotes the free dirac action as will as the the Yukawa coupling term
between bosonic order parameters and dirac fermions:

o . .
Soirae = [ dr [ dR{W! (R, ) + ivpiom © Toks + ivp9072 @ Ty U (K, 7)
+m / dq[NA(qa 7_) ' qu(k +q, T)Mqu(kv T) + NB(qa 7—) ’ \IJT(k: +4q, T)MB\IJ(kv 7—)]}

(71)

where vg is the fermion velocity. Note that we’ve take the approximations around the

two Dirac points, hence vg is proportional to the hoping pre-factor ¢ in Eq. . Na
and Np are the 3 and 2 component vector order parameters. In the case of

{M3 g0 ®@10}r=0 {M3 )02 ®7}F=0 (72)
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finite value of \]\7 A(B)| introduces Dirac mass gap.

We took the bosonic order parameters N 4 and N B as ‘soft’ vectors in the sense they
don’t have a unit module. Then we assume the bosonic part of the action to be:

SBOS(m = /d2a:d7'(7‘A|]\7A|2 + U|NA|4 + TB|NB’2 + u|]\73|4 + g|]\7,4|2|]\73|2) (73)

The crucial point of understanding the DQCP from the point of view of competing
dirac mass is that we require all the 16 x 16 matrices in the space of €2, ® C2 410 ®
Cgpm ® €%, to anti-commute with each other :

(M5, M5} = 26,5146

74
{M, M} =0 ™

Hence at the Dirac point, the mass gap opens as:
Ay ocmy/|NaJ2 + | Ngf? (75)

The fermion part of action has an exact SO(5) symmetry due to the anti-commuting
nature of 5 matrices. This symmetry is broken by Spgoson unless:

rA=TgR, A=g—2u=0 (76)

A calculation by Abanov and Wiegmann (AW)[45] shows that after integrating out
the fermionic degrees of freedom, Spj.q. Will host an O(5) non-linear sigma model in
2 + 1 dimension:

1
Soim = / Prdr[(9,7 )2 + (0,7i5)?] (77)

where

(78)

;xm |Na|2 + | Ng|? (79)

Note that we normalized Spirqec as NA(B) — Tigp) and m — my/ |]\7A|2 + |]\73|2 before
performing the AW integration, since the later calculation was performed for vectors
of unit module.

Crucially, the anti-commuting nature allows us to get a geometrical WZW term [37]
of level 1 in 24 1D:

I 1
Swzw __ / drd*x / due“deen“&EnbayncaTndaune
vol(Sy) 0

. (80)
_ BZ d d2 ! d abcde aa ba ca da e
=] & T ; ue”n*0yn’ Oyn 0 nOyn
where we could label the 5 component vector n® as:
n' =nl, n? =03, n* =n’, n' =ng, n° =03 (81)

If the above labeling is performed carelessly, there is only a sign ambiguity in front
of Eq. One the other hand, above integration process does not require the action
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SBoson 10 be SO(5) invariant: even in the case of A # 0, the topological contribution
from WZW term still exist.

The WZW term in 2 4+ 1D play a crucial role, in the sense that a critical point as a
function of r4(rg) might be stable in this case, in a finite region of 1/g. This breaks
the role of Landau-Ginsberg transition: one can also perform of reduction from the
action of Eq. [80[and extract the charge 2e response of QSH skyrimions or the spin 1/2
object from the SSC vortices.

Assume that by varying r4(rg) a deconfined quantum critical point happened at
ra = rg. It is natural that the anisotropy r4 — rg is a relevant perturbation to the
critical point: renormalzation from the parameter range |r4—rg| # 0 flows to either the
SO(3) broken phase or the U(1) broken one. Right at the critical point (|rq —rg| = 0),
there will be an emergent O(5) symmetry if

A=g—2u (82)

is irrelevant. This condition is actually not necessary for the continuous nature of tran-
sition. Numerical investigators would like to avoid this possibility since an additional
bound of the continuous nature for DQCP comes from the conformal bootstrap study
: na(np) has to be larger than 0.52 when A is irrelevant.

On the other hand, one can impose the constraint of A = 0 and try to perform a
study of O(5) non-linear sigma model with WZW term. In Section. |5 we will introduce
the numerical study of sigma model with exact O(5) symmetry by project interacting
fermions to the zeroth Landau Level of Graphene.

Amazingly, there seems to be relation between fermion statistics and the absence
of Z4 symmetry breaking field. However, this question is very hard to be answered
rigorously. We would just briefly discuss the idea of recent work in Ref. [25]. The
condensation of two SSC mass:

Mgso = 1707273 @ 0y @ Ty Mgse = 107273 ® 0y @ T, (83)

spontaneously breaks the global U(1) charge conservation of fermions:

()~ 20

which is not directly coupled to the lattice degrees of freedom. On the other hand, the
dynamical generation of two VBS mass, say:

My ps = 17073 ® 09 @ Ty My s = 17075 ® 00 ® To (85)

T i0y375 T
G- AN

which is not an exact symmetry of the lattice Hamiltonian: the unitary transformation
is not within internal degree’s of freedom when we transform the operators back to
lattice. A general understanding is formulated in the following way.

QSH and AFM order parameters break exactly the same SO(3) rotational symmetry
which is a subgroup of the SU(2) unitary group:

breaks a U(1) symmetry

SO(3) = SU(2)/Zs (87)
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for any canonical operator on a lattice, a SU(2) transformation is formulated as

05 A

éi — € C; (88)

where ¢ are the three Pauli matrices. Clearly for 8 = 7

& — —¢ o — ¢! (89)
both our spin current operator (order parameter of QSH) and the spin operator (order
parameter of SSC) are invariant. Note that here the operations above are performed
for all ¢ globally. After this two-to-one mapping both two order parameters live in the
SO(3) space. On the other hand, the Z; symmetry group are gaped at both symmetry
breaking phase and critical point:ﬂ the single fermion excitation have finite gap.

Crucially, the Zy group is also a subgroup of the U(1) transformation in Eq. . It
again leaves the SO(2) order parameters invariant since the cooper pairs are particle-
particle(hole-hole) operators.

Theories given by Ref. [25] gives a clear argument: to get rid to the lattice induced
symmetry breaking field, a ‘gaped symmetry’(in our case, the Zy symmetry) which is
the subgroup of both symmetries which are breaking at two sides of the critical points
is necessarily required. In this sense, the seemingly ‘redundant’ fermionic degrees of
freedom is important. For example, a superfluid state is very similar to our supercon-
ducting state from symmetry point of view and the symmetry breaking is also internal.
However, it lacks the gaped Z, degrees of freedom that we mentioned before.

3.3 Numerical results
3.3.1 Ground state phase diagram and observables

We show our numerical results of the model H = ]:It + H » mentioned before. As
mentioned before, the auxiliary field QMC simulation is sign problem free due to a
spin % time reversal symmetry at A > 0, which is also the physical region that we are
interested in.

As shown in Fig. [12] we found three phases as well as two phase transitions as a
function of interacting strength A\: A Dirac semimetal (DSM) state at weak interaction
(A < A\a) case; a dynamically generated QSH state at intermediate interaction range
(A1 < A < A2) ; a S-wave superconducting (SSC) state at strong interaction limit (A >
Ae2). The fermionic phase transition ( A, ) corresponds to a Gross-Neveu Heisenberg
critical point while the bosonic one is surprisingly a deconfined quantum critical point.

2A symmetry group is gaped explicitly means that all the operators which are charged under this
transformation are gaped.

Gross-Neveu DQCP
(fermionic) (bosonic)
I \C c/ >
)\cl )\CQ A
Semimetal QSH SC

Figure 12: Schematic ground-state phase diagram with semimetallic, QSH, and SC
phases.
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To detect the two symmetry broken state, we measure the corresponding order pa-
rameters: the one for QSH ordering which corresponds to the spin-orbit coupling op-
erators

OQSH = jr—&-ﬁn,r—&-nn (90)

rn

Here, r denotes a unit cell and n runs over the six next-nearest neighbor bonds of the
corresponding hexagon with legs r + §,, and r + n,,.
To detect SC order, we used the order parameter

A 1
sC N
O,5= 2 (Cr+6,T i, THeC ) (91)
where 7 + & runs over the two orbitals of unit cell 7.

To study the phase transition, we computed the associated susceptibility

A A

@) = 35 3 [ A1 0, (70 5 (0) (92)

r,r!

Here, (O, 5(7)) = 0 by symmetry for finite L and we concentrate on the largest eigen-
value of x§5(q) (see Section. ), henceforth denoted as x“(q). To detect the

transition, we consider the renormalization-group invariant correlation ratio

1-x19 ol R (1 (-2 1) (93)

with |Agq| = \/§L’ the ordering wavevector @ = 0, the correlation length exponent v,
and the leading corrections-to-scaling exponent w. Here we use susceptibilities rather
than equal-time correlators to suppresses background contributions to the critical fluc-
tuations.

Although the aim of our study is the ground state phase diagram an transitions, we
used the finite temperature version of QMC and set the inverse temperature § = L
in our simulations. It’s due to our assumption of a dynamical critical exponent z = 1
for both the SM-QSH and the QSH-SC transition. This is motivated by the Lorentz
invariance of the corresponding field theories [39] [§].

3.3.2 Advantage of susceptibilities

Generally to study a phase transition, one can take the equal time correlation functions
of the symmetry breaking operators instead of the susceptibilities based on the imagi-
nary time correlation function. Thus why do we need to compute the susceptibility 7
The key point is the scaling correction due to the non-singular part of the free energy.

Symmetry-broken states are characterised by a local order parameter OA”;, where r
denotes a unit cell and & an orbital within the unit cell. The associated time-displaced
correlation functions read

555/ q,T LQZ O

r,r!

/\

Oy 50(0)) ') (94)

For the finite-size scaling analysis, one could consider the order parameter

o Al(Sgél(O, 0))
eV
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and the equal-time correlation ratios

Al(SO, ’(A(LO))
RO —1_ A1(§§61<070)) , (96)

with |Aq| = %, the susceptibilities
XO = Al (f(]BdTStso,é' (07 T)) ) (97>
and the corresponding correlation ratios
RO _ Ay (foﬁ dTSé,(s'(AQJ)) (98)
X Ay (J§ drS¢5(0,7))

Here, A;() indicates the largest eigenvalue of the corresponding matrix in orbital space
(6 x 6 for spin currents, 2 x 2 for pairing) and the ordering wave vector is at the T'
point.

These quantities exhibit the following finite-size scaling behaviour near the critical
point:

mO(L,\) = LE==M2f (L7 /8,(A — \e)L", L7%1)

RO(L,N) = foL7/B, (A= X)LV, L72) |

XO(L,A) = L¥7f5(L7)B, (A= AJ LYY, L™

RO(L,N) = fu(L7/B, (A= ALY L71). (99)

Here, A\.,v,n, and z are the critical coupling, the correlation length exponent, the
anomalous dimension, and the dynamical critical exponent, respectively.

The correlation ratios R and Rf are both renormalization group (RG) invariant
quantities at the critical point and hence provide a simple way to estimate . and v
without any knowledge about 1. However, the generic corrections-to-scaling exponent
w is not necessarily the same for all four quantities in equation . Such corrections
generally arise from irrelevant operators of the fixed point and the analytic part of the
free energy. If the absolute value of the negative RG dimension is relatively large, the
main contribution to w will come from the background term of the free energy [46]. In
this case,

Wi=wy=2—2—1, wy3=wsg=2-—1. (100)
This suggests that the susceptibility x and the corresponding correlation ratio R, will
have smaller scaling corrections than the corresponding equal-time quantities if the
effect of the negative RG dimension is small at A..

3.3.3 Gross-Neveu Heisenberg criticality

The semimetal-QSH transition involves the breaking of spin rotation symmetry and is
expected to be in the O(3) Gross-Neveu universality class for N = 8 Dirac fermions
(two sublattices, two Dirac points, o =1, ).

The results for the semimetal-QSH transition are shown in Fig. The finite-size
estimate of the critical value, A%SH(L), corresponds to the crossing point of RSSH for
L and L + 6. Extrapolation to the thermodynamic limit (inset of Fig. ) yields
ABH — 0.0187(2). The correlation length exponent was estimated from [42]

1 1 4 RO\, rL
= lo (dﬁl XO( i >> (101)
vO(L)  logr PIRAY (A L) A=XO (L)
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Figure 13:  Gross-Neveu semimetal-QSH transition. (a) Correlation ratio

R [equation ] for different system sizes L. The extrapolation of the
crossing points of R%SH for L and L + 6 in the inset gives the critical value
A1 = 0.0187(2). (b) Finite-size scaling based on equation gives an
inverse correlation length exponent 1/v = 1.14(9). (c) Estimation of the
anomalous dimension 7 = 0.79(5).

L4-6

with r = ==, Similarly the anomalous dimension 7 can be fit via

nO(L) =2 — L yog (XO(”L)) , (102)

log r X (A, L) A=2O(L)

Aside from a polynomial interpolation of the data as a function of A for each L, this
analysis does not require any further fitting and, by definition, converges to the correct
exponents in the thermodynamic limit with rate L=%. While previous estimates of
the critical exponents vary,[46], 47, 48] the values 1/v = 1.14(9) and n = 0.79(5) from
Fig. |L3| are consistent with v = 1.02(1) and n = 0.76(2) from previous work.[47] This
suggest that the semimetal-QSH transition is in the same universality class as the
semimetal-AFM transition [49, 46, [47].

In addition to the ‘two-size crossing’ with sizes L and L+ 6, we provide a cross check
based on crossings of L and L+ 3. Fig , b and c show the crossing values of A, 1/v
and 7 at the semimetal-QSH transition in the case of r = 3.

As an independent consistency check on such a ‘two crossing’ method, we also con-
sider a collective fitting of multiple system sizes.

The collective fitting of A\. and v is based on a polynomial expansion of the scaling
function of RS(L, A) in equation . Taking § = L, we have

RO(L,XN) = Y ap(A = A)PLP" + L7 3 " by(A — A)7LY" . (103)

p=0 q=0

Here, n and m are the expansion orders for the dimensionless and the scaling correction
part of the universal function, respectively.
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Figure 14: L, L+ 3 extrapolation of Gross-Neveu semimetal-QSH transition.
(a) Extrapolation of the crossing points of R%SH for L and L + 3 gives

the critical value A&*" = 0.0186(3). (b) The inverse correlation length

exponent 1/v9! = 1.1(2). (c) Estimation of the anomalous dimension
nBH = 0.79(5). Reported errors and error bars correspond to standard
errors.
Gross-Neveu — QSH
Lin ‘ Ae ‘ RSSH()\C) ‘ 1/v ‘ w ‘ x*/DOF
6 0.01898(2) | 0.6970(6) | 1.26(2) | n/a 94.6/34
9 0.01891(2) | 0.693(1) | 1.17(3) | n/a 34.8/27
12 0.01882(4) | 0.687(2) | 1.17(5) | n/a 18.6/20
15 0.01870(7) | 0.678(5) | 1.14(11) | n/a 9.22/13
18 0.0186(2) | 0.67(2) 1.3(4) n/a 1.90/6
Gross-Neveu — QSH
Luin | 1 | X*/DOF
6 | 0.666(7) | 210/33
9 |0.70(1) |111/26
12| 0.76(2) | 28.6/18
5 [ 0.78(2) | 4.4/12
18 | 081(6) | 1.9/6

Table 1: Collective fitting for the Gross-Neveu transition. Here n = 2, while scaling
corrections are ignored. Reported errors correspond to standard errors.

To reduce the number of degrees of freedom in the fit of the anomalous dimension 7,
a substitution in terms of the scaling form for Y© and Rg in equation is performed,
using the expansion (we ignore the correction-to-scaling term)

xO(L,R) = L* "f(R) ~ L*™" zn: a,R? . (104)

p=0

A collective fit is shown in table[l Here we gradually toss small system sizes instead
of taking the scaling correction term into consideration. As can be seen, a good x?/DOF
is obtained once the L = 6 data set is neglected, and fits for L,,;, = 9,12,15 or 18
produce consistent results. Taking A, = 0.01891(2) and 1/v = 1.17(3) from L, = 9,
the results match those of the analysis from two size crossing method.

Results for the anomalous dimension at the Gross-Neveu critical point are also listed
in table . The fits yield acceptable x? values for Ly, > 12. The exponent n = 0.76(1)
from L,;, = 12 also matches previous analysis.
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3.3.4 Deconfined quantum criticality

As shown in Fig. [16] the QSH state induced by spin rotational symmetry breaking
gives way to the SC state at strong enough interaction, in the sense that the correlation
ratio of SC order parameter grows toward 1 in the large size limit at A > An. What
is surprising is the direct and continues transition between the two different broken
symmetry phase within our numerical precision. Fig shows that, within the very
small error bars, the critical value for SC order A5 = 0.0332(2) and the critical value for
the disappearance of long-range QSH order )\(%SH = 0.03322(3) are identical, suggesting
a direct QSH-SC transition.

If the QSH-SSC transition at 7" = 0 corresponds to a deconfined quantum critical
point, two necessary conditions are needed. First, the elementary excitations along the
transition point have to be bosonic and the ground state remains an insulator. Second,
the transition has to be direct and continues. The conventional Landau-Ginzburg-
Wilson framework is certainly violated when the above two conditions are satisfied:
without any fine tuning, two order parameters with different symmetries do not need
to condense at the same point.

a 1.5 - - b
A=0.032 & )\ =0.023 v
192 A=0.033 & XA =0.026 -*
< TA=0.034 A =0.029 e~
*
09 | ~<
5 7 =
< Ry
0.6 as}
2 4
v
0.3 Y
0.0 : : : 20 : : :
0.0 0.1 0.2 0.3 0.4 0.031 0.032 0.033 0.034 0.035

1/L A

Figure 15: (a) Fermionic single-particle gap and (b) free-energy derivative 0F /0O
across the QSH-SC transition at A5 = 0.0331(3). Reported errors and
error bars correspond to standard errors.

The single-particle gap Ay, is obtained from the single-particle Green function

1 A A ik-(r—r’
Gk, 7) =75 2 (@150 (T)rs5,,(0))e™ ) (105)

’
r.r’ 0,0

where 7 +  runs over the two orbitals of the unit cell located at r. The single-
particle gap is minimal at the Dirac point K = (%, 0) and is extracted by noting that
asymptotically

G(K,T) oc e” 8T, (106)

Here, we used = 36. Fig demonstrates that Ay, remains nonzero across the
QSH-SC transition at A ~ 0.033.

In order to clarify the continuity of the QSH-SC transition, we also calculated the
first partial derivative of the free energy density with respect to the coupling A

2
oF 1

O ((4.3))€O
Fig shows OF/OX for = L in the vicinity of A &~ 0.033. As expected for a

continuous transition, we observe no sign of a jump.
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Figure 16: Deconfined QSH-SC transition. (a) Correlation ratio R and (b)
correlation ratio Rio for different system sizes L. The extrapolation of the

crossing points for L and L + 6 using the form a + b/L¢ (see inset of (b))
gives ASM = 0.03322(3) and A5 = 0.0332(2).

Fig|17|shows a finite-size analysis for the correlation length exponent and the anoma-
lous dimension, as obtained either from the QSH or the SC correlation ratio. The
resulting estimates ! = 0.21(5) and 1°° = 0.22(6) are compatible with those from
loop models [50] where n*™ = 0.259(6) and nVBS = 0.25(3). Given the very simi-
lar anomalous dimensions 7" and 7°¢ of QSH and SC fluctuations, the ratio of the
QSH and SC susceptibilities is expected to be a renormalization group invariant, as
confirmed by Fig. [I7.

The equivalence of two anomalous dimensions is a necessary but not sufficient condi-
tion for an emergent SO(5) symmetry at the DQCP. For a SO(5) invariant field theory,
10 generators of the SO(5) group, which can also be written as second quantized op-
erators, are conserved quantities. In our lattice model one can measure the imaginary
time correlation function of them, in order to see the emergence of conservation in the
low energy limit.

On the other hand, we would like to avoid the possibility of high symmetry here.
The reason is that, a continuous transition with emergent SO(5) symmetry can be
essentially excluded in the light of the condition 7 > 0.52 from the conformal bootstrap
method.[51] Hence, as a way out, one can always argue that our numerical equivalence
of ¥ and 1™ is an approximate effect due to the finite error bars.

The correlation length exponent at the DQCP is also shown in Fig. [L7, with 1/15¢ =
1.8(2) and 1/v®" = 1.7(4). This number does not violate the bootstrap bound of
1/v < 1.957 for a unitary conformal field theory with only one tuning parameter [52].
However, this might be from the large error bar of our calculation. Note that in the
JQ model, a value 1/v = 2.24(4) quoted in Ref. [42] violate the bootstrap bound.

When considering the L and L + 6 crossings the estimation of A5, we are obliged
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Figure 17:  Critical exponents for the QSH-SC transition. (a), (b) Critical
exponents 1/v5¢ = 1.8(2), 1/vH = 1.7(4), n°° = 0.22(6), and n®H =
0.21(5) from finite-size scaling of the crossing points for L and L + 6. (c)
Ratio of the QSH and SC susceptibilities for different system sizes L.
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Figure 18: L, L + 3 extrapolation of deconfined QSH-SC transition. a

Estimation of the critical values A3 = 0.03317(4) and A5 = 0.0332(1). b
, ¢ Critical exponents 1/v5¢ = 2.1(7), 1/v®H = 2.0(2), °¢ = 0.21(5), and
nBH = (0.19(9) from finite-size scaling of the crossing points of L and L+ 3.
Reported errors and error bars correspond to standard errors.

to take into account the L = 6 data. Upon inspection, the fit turns out to be rather
bad since x?/DOF = 66.9. On the other hand, if we consider the L and L + 3 crossing
points, we can omit the L = 6 data and get a more acceptable x*/DOF = 6.8. As
apparent from Fig. the extrapolated value of A5 based on the crossing points of L
and L + 3 compares favourably with the L, L + 6 analysis mentioned before.

As in the Gross-Neveu transition, we also performed a collective fit using the expan-
sion form of Eq. and Eq.[104] Table [2] reports the results of fits for the two order
parameters at the DQCP, including the case with m = 1, as well as the case without
considering any scaling correction. We set n = 2 for all the fits. For m = 1, the fitting
of the QSH correlation ratio is satisfactory in terms of x?/DOF for Ly, > 9, and the
results are consistent with each other for Ly, = 9,12, 15. Taking Ao = 0.03314(5) and
1/v = 1.55(9) from the fit with Ly, = 9, we get consistency with A% = 0.03322(3)
and 1/v¥BH = 1.7(4) from the ‘two-size crossing’ analysis . The results of a fit with
a smaller data window are shown in the last three rows of table [2] revealing that the
results are stable upon variation of the number of degrees of freedom. A fit using Ric
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DQCP - QSH
Lunin | Ae | R®I(\) [1/v |w [ X*/DOF
9 ]0.03332(1) | 0.8665(4) | 2.22(5) [ n/a_ | 139/44
12 [0.03326(2) | 0.8702(8) | 2.21(7) | n/a [ 58.9/32
15 [0.03326(3) | 0.870(2) | 2.3(2
)

) [ n/a 33.4/22
I8 | 0.03321(5) | 0.875(5) | 24(3) |n/a | 13.9/12
9 | 0.3314(5) |0.80(2) | 1.55(9) | 0.9(3) | 29.1/41
12| 0.331(2) |0.92(9) | 1.5(2) | 0.49) | 24.7/29
15 [0331(2) |089(2) |L16(3) |4(3) |15.1/19
9 033155 |0.89(2) |1.5(2) |0.9(4) | 28.2/36
12 | 0.331(2) | 0.9L(8) | 1.5(2) | 0.5(9) | 23.8/26
15 | 0331(2) |089(3) |1.7(3) |33) |13.9/16

DQCP - SC

Linin ‘ Ae ‘ Ric()\c) ‘ 1/v ‘ w ‘ x%/DOF

9  ]0.032675(4) | 0.8592(4) | 1.32(3) | n/a | 1239/40
12 | 0.032791(5) | 0.8742(5) | 1.60(4) | n/a | 123/29
15 | 0.032843(8) | 0.882(1) | 1.83(6) | n/a | 15.9/18
18 | 0.03286(3) | 0.884(4
)
)

n/a 2.23/9

12 | 0.03285(3) | 0.884(5) | 2.0(3
15 | 0.0329(2) | 0.89(3

8(6) | 20.6/22
4(16) | 14.4/13

6
)
)
2.3(2) | 4.4(8) | 26.0/26
)
)
)
)

9 10.03296(5) |0.907(9) |2.1(2) | L1.7(3) | 53.8/37
12 | 0.03287(2) | 0.887(2 (
15 | 0.0329(2) |0.89(3) |2.0(4) |3(13) | 15.1/15
9 10.0331(2) ]094(4) [19(2) |1.1(5)]42.5/33
5 (
) (

Table 2: Collective fitting at the DQCP for A., 1/v, and Rg()\c) based on the correla-
tion ratios RQ(L, A) and equation . We compare the case without taking
into account scaling corrections (data rows 1-4) to the case with m = 1 (rows
5-7 correspond to a larger data window, rows 8-10 to a smaller one); in both
cases, n = 2. Reported errors correspond to standard errors.

also produces acceptable values of x?/DOF for Ly, = 9, 12 and 15 and compares
favourably with the results from the crossing analysis.

As shown in table [3], the collective fitting for both order parameters is acceptable
for Ly > 12. The corresponding values 7% = 0.194(9) and 1°¢ = 0.279(9) agree
well with the values 0.21(5) and 0.22(6) obtained with the ‘two-size crossing’ approach
mentioned before.

3.4 Discussion

Our model provides a realisation of a QSH insulator emerging from spontaneous sym-
metry breaking. The corresponding SO(3) order parameter permits both long-wavelength
Goldstone modes and topological skyrmion defects. By means of a single parameter
A, we can trigger continuous quantum phase transitions to either a semimetal or an
s-wave SC state. For the semimetal-QSH transition, the critical exponents are consis-
tent with Gross-Neveu universality [46, [47]. The QSH-SC transition is of particular
interest since it provides a monopole-free, improved model of deconfined quantum crit-
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DQCP — QSH DQCP - SC
Luin [ 1 | X*/DOF Luin | 1 | X*/DOF
6 ]0.30(2) | 990/68 6 | 0.344(8) | 525/45
9 | 0.24(1) | 249/57 9 |0.308(7) | 128/36
12 |0.19(2) | 92.0/40 12 | 0.28(2) | 65.6/26
15 | 0.24(3) | 49.8/25 15 |0.23(2) |24.2/17
18 | 0.18(6) | 12.0/12 18 | 0.19(9) | 7.47/8

Table 3: Same analysis as in table[2|but for the exponent 1 using equation ‘) Here
n = 2, while scaling corrections are ignored. Reported errors correspond to
standard errors.

icality with only one length scale. The mechanism for SC order from the QSH state
is the condensation of skyrmion defects of the QSH order parameter with charge 2e.
For the QSH-SC transition, our values of the anomalous dimension match those of
previous work on the AFM-VBS transition, [I7, [50] which are inconsistent with results
from conformal bootstrap studies if an SO(5) symmetry emerges at the critical point
(as is supported by numerical and analytical studies). One possible resolution is the
scenario of ‘pseudo-criticality’ or ‘walking coupling constant’ [53, 50} [54) 55]. In con-
trast, our estimate of 1/v is still within the conformal bootstrap bound,[52] although
a bound-violating result is not completely ruled out given the numerical uncertainty.
Consequently, it is of considerable interest to exploit the full potential of quantum
Monte Carlo methods in order to access even larger lattices.

Other promising approaches that can shed further light on DQCPs make use of a lat-
tice discretisation scheme based on projection onto a Landau level that does not break
continuum symmetries.[56][3] This approach makes the assumption of exact SO(5) sym-
metry at the critical point. Our numerical progress on this topic will be shown in the
following section.

A monopole-free realisation of DQCPs is impossible in traditional settings because of
an anomaly [54] associated with the SO(3) x U(1) symmetry. In the standard realisation,
this anomaly is matched by the non-onsite nature of lattice rotation symmetries[57],
but since lattice rotations are discrete, monopoles can never be completely suppressed.
Alternatively, the anomaly can be eliminated by properly enlarging the SO(3)xU(1)
symmetry, essentially allowing microscopic degrees of freedom that carry ‘fractional’
symmetry quantum numbers. This is what is being done in this work, where the
fermions carry half-spin and half-charge (in terms of Cooper pair charges). An even
simpler extension of the symmetry that eliminates the anomaly is SU(2)xU(1), mean-
ing that microscopically there are charged spinless bosons, together with both charged
and neutral spin-1/2 bosons. A challenge for future studies is to find a reasonably
simple Hamiltonian that realises a DQCP and is amenable to sign-free bosonic QMC
simulations in, e.g., the stochastic series expansion representation. [58]

On the other hand, the concept of ‘emergent anomaly’[25] gives us a new possibility of
understanding the critical point. Hence the low energy degrees of freedom written as an
SO(3)®U(1) action after gaping out the fermions is anomalous, it would be interesting
to look at the edge physics based on single fermion propagation in an open boundary
system. This is beyond the simple understanding based on topological insulators since
our DQCP is not a symmetry broken phase, in the sense that the QSH order parameter
is not long range ordered.
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The SC phase generated from skyrmion defects motivates further investigations. Its
vortex excitations carry a spin-1/2 degree of freedom,[37] so that in the quantum critical
fan thermal melting will yield a spin liquid [59]. It is also possible to add an indepen-
dent attractive Hubbard interaction to explore a semimetal-QSH-SC tricritical point
(as opposed to the recently discovered semimetal-AFM-VBS tricritical point[60]) with
predicted SO(5) Gross-Neveu criticality.[61] The vector form of H, makes it straight
forward to reduce the SO(3) QSH symmetry to U(1) and thereby investigate easy-plane
realisation of DQCPs with a U(1)xU(1) symmetry on the lattice. On the other hand,
a direct investigation of the fractionalization of QS H and SSC' order parameters based
on measuring the dynamical properties of the operators is in progress.
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4 Doping-induced quantum spin Hall insulator to
superconductor transition

In this Chapter, we consider aforementioned model which describes a dynamically
generated QSH insulator and investigate a new path toward superconductivity: doping.
Within the model considered in last Chapter, we observe, upon varying the chemical
potential, two transitions: An s-wave superconducting order parameter develops at a
critical chemical potential p.1, corresponding to the excitation gap of pairs of fermions,
and at .o the SO(3) order parameter of the quantum spin Hall state vanishes. Using
negative-sign-free, large-scale quantum Monte Carlo simulations, we show that p. =
[teo Within our accuracy—we can resolve dopings away from half filling down to § =
0.0017. The length scale associated with the fluctuations of the quantum spin Hall
order parameter grows down to our lowest doping, suggesting either a continuous or a
weakly first-order transition. Contrary to mean-field expectations, the doping versus
chemical potential curve is not linear, indicating a dynamical critical exponent z > 2
if the transition is continuous. This work has been published in Ref. [2].

4.1 Motivation

Here we generalize the Hamiltonian of Eq. [37 in Chapter. [3] including a chemical po-
tential:
H=H+0+pY n (108)

where 7; = é;aém denotes the particle number operator on site i. The (SU(2) invari-
ant) particle hole (P-H) symmetry defined by transformation:

o\ L 5
P la (CTT> P=na <(f”> (109)

Cil Cirl

is broken by finite chemical potential. 7; is defined as 1(—1) for 2 € A(B) sublattice.
We are interested in the effect of doping from the aforementioned QSH insulator in last
Chapter.

Recall the half-filed case, the P-H transformation is the generator of Zy subgroup
of O(3) (Zy ® SO(3)) symmetry of spin current operators: it leaves the many body
Hamiltonian H, + H,, invariant but flips the sign of the determinant in the O(3) trans-
formation of 3 component spin current. This was crucial to our discussion about
‘charged skyrimions’ at half filling: the Pontryagin index of spin current order param-
eter is odd under under P-H transformation, (which is a symmetry of our many body
Hamiltonian) such that the number of skyrmions has to be identical to the number
of anti-skyrmions. In another words, zero value of Pontryagin index is pinned at any
imaginary time. However in the doped case, the P-H symmetry is broken explicitly,
which necessarily implies a finite ‘fugacity’ of skyrimions.

What can happen in the doped case? The first guess would be a SSC ground state,
which was found in our model at half filling in the strong interaction count. As long as
finite doping exists, the pairing instability of Fermi surfaces to ‘attractive’ interactions
within the Bardeen-Cooper-Schrieffer (BCS) theory should be favored. This can be
checked in a mean field approach introduced in next section. We propose the ground
state phase diagram as a function of A\ and p in Fig. [I9 The phase diagram at half
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Figure 19: The proposed ground-state phase diagram as a function of interaction
strength A and chemical potential p.

filing is known by QMC simulation in Chapter.[3| The ground state is symmetric under
flipping sign of u due to the P-H symmetry defined by the transformation of Eq. [109]

On the other hand, we can not forget that the QSH is a symmetry broken state.
The charge 2 skyrmions of spin current order parameter would necessarily lead to the
preformed pairs in QSH state. We can gain intuition by looking at the dispersion
relation of two order parameters in the half filled case. Let’s consider ¢ = 1 and
A = 0.026, which places us in the center of the QSH phase at half-filling.

At this filling, we show in Fig. the momentum dependence of the spin-orbit
coupling gap Aqsn(g) and the SSC gap A,(q). To obtain these data, we measured
the imaginary-time displaced correlation functions of the spin-orbit coupling operators
OAQEH = Ar+5n r4m,- Here, 7 denotes a unit cell and n runs over the six next-nearest
neighbor bonds of the corresponding hexagon with legs » + d,, and r + n,,. We also
consider the s-wave pairing operators 77 5= = ¢ where 0 runs over the two

r+6,1 r+6,¢’
orbitals in unit cell ». The gaps were obtained from

$¥N(g.r) = OB RO%0) ox e Senlar

SSSC(‘L T) = Zm;g(ﬂﬁ;g(o) + ﬁ;g(T)ﬁ;g(O»
5

x e Al (110)

in the limit of large imaginary time 7. As expected for a Goldstone mode, Aqsu(q)
in Fig. (b) exhibits a gapless, linear dispersion around the ordering wave vector
g = I'. On the other hand, A,(q) remains clearly nonzero with quadratic dispersion
(see Fig. 20a)).

It is important to note that an s-wave pair has a smaller excitation energy than
twice the single-particle gap, as shown in the inset of Fig. (a). This indicates an
effective attractive interaction between the electrons. Thus, pairing is present and we
can foresee that these preformed pairs would condense and form a superconducting
state upon doping. This is a significant difference as compared to a trivial insulator.
We know that the pairing gap is exactly twice the single electron gap in a band insulator
without interaction. This is generalized to the interacting case in some numerical works.
Take a Kane-Mele model with attractive Hubbard interaction[62]ﬂ when U is not large

3Here we consider a partial particle-hole transformation to only spin up(down) channel in the S,
basis. Under this transformation the kinetic part of Hamiltonian defined in Ref. [62] is invariant
but the Hubbard term change the sign. Simultaneously the §+( S:) operator is transformed to
be the real(imaginary) part of the cooper pair operator.
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Figure 20: Momentum dependence of (a) the pairing gap and (b) the QSH gap for the
half-filled case, in the vicinity of I point along the direction towards the M
point in the Brillouin zone of the honeycomb lattice. The inset of (a) shows
the 1/L dependence of the single-particle gap Ay, and half of the s-wave
pairing gap A, /2. The inset of (b) shows the 1/L dependence of the QSH
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enough, the ground state is in a QSH state where the spin rotational symmetry is
explicitly broken. In this case, the pairing gap is smaller than twice single particle gap
at finite system sizes, but their difference 2A,,—A, scales to zero in the thermodynamic
limit[62].

Focusing on the gaped dispersion relation of pairing at Fig. we may naively
think that doping will induce a pairing condensation which follows the field theory of
Bose-Hubbard model (BHM)[26]:

E:Klklf*a—\lj+[(2]8—‘ll\2+K3|V\If\2—|—r\\11|2~|—u\\11\4 (111)

or or

for K; # 0. It will be a transition with a dynamical exponent z = 2, and one can
also consider the doped particle number (which is the density operator of boson in
BHM) as an order parameter. This assumption is simply based on viewing the pairing
operator as the creation and annihilation operators of single boson, and we know it’s
valid from the symmetry point of view. However the QSH order parameter does not
exist in above theory.

Finite chemical potential explicitly broke the Zs part of the O(3) symmetry of QSH
order parameter. Hence one may formulate a field theory based on a O(3) nonlinear
sigma model with an additional term of u@), where @) is the Pontryagin index. It’s a
theory which violate Lorenz invariance since () is not spacial-time symmetric. Note that
the U(1) charge conservation is not broken by chemical potential: @ is still conserved
along imaginary propagation.

We don’t write down this assumed theory without rigorous argument here, and es-
pecially we don’t know how to extract the order parameter of cooper pairs from the
SO(3) order parameter. Nevertheless, the evidence of preformed pairs from the our
numerical observation of A, < 2A,, at half filing is generally related to topology, and
it may bring exotic phases or phase transitions upon doping. It’s highly related to
the concept of high-temperature superconductivity in doped two-dimensional antifer-
omagnets. As documented experimentally [63], the spin dynamics is well described
by spin-wave theory that captures the Goldstone modes of the broken global SO(3)
symmetry. Upon doping, these modes can act as a glue providing the pairing for the
superconducting state [64]. Alternatively, due to the small spin quantum number and
low dimensionality, the quantum antiferromagnet could be close to a resonating valence
bond state [65] [66]. This leads to the notion of preformed pairs that are present in the
insulating phase and become charged upon doping.

4.2 Mean field

Before discussing our QMC results, it is instructive to carry out a mean-field approxi-
mation. When expanding the square in Eq. QD diagonal terms, ‘]z?,j’ contain, among
other interactions, s-wave pair hopping terms that allow us to introduce an SSC order
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Figure 21: Mean-field solution as a function of A at half-filling. (a) QSH and SSC order
parameters. (b) Fermionic single-particle gap. Blue line in (b) denotes the
gap at Dirac point.

parameter:
2
Hy =—2Y ( N ivgelat; + H.c.)
O\ (i)
==A2 > > Ty T (112)
Q ((ig)) ((#5))#((i5))
~ AN 460k 4+ he — 48, - S;
Q (i)
— by + 5(M; + ny)]
where R
(ig)) = w”é;faéj + H.c.,
0 =& en, = é%éaa (113)
~ 1.
S; = 5010'01

The self-consistent calculation is based on selecting a polarization direction for the
three (two) components of the QSH (SSC) order parameter. This is valid since the
pairing operator is invariant under the SU(2) spin rotational transformation; while the
spin current operators are invariant under U(1) charge transformation.

The calculation is done by numerically minimizing the free energy in the space of
the two order parameters

F(B)s = = In T e AH +HV) =13V Xsasn®-365V Aossc® (114)
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Figure 22: Mean field band structure at half filed case: (a) A = 0.07, (b) A = 0.12, (¢)
A =0.22 and (d) A = 0.3(coexisting region).

where
Hr=—tY (ele;+ He)+pd éle
(2,5) i

Hy =—=5X>_ > dasu - J* (i) (115)
O ((5))
—36A ) dsscily-

We consider a paramagnetic saddle point with (S;) = 0 and (7;) = 1 — §. Thus, for

.. . of of _
any local minimum of Eq. (114)) with Ddas = 0 and Bossc 0,

1 N
dasu =2 D (i)
(a3 (116)
1

A

(Nia+1;p)

Pssc = 5
which holds locally due to translational symmetry. We numerically integrated over the
Brillouin zone of an L = 120 lattice and took the zero-temperature limit § — oo.

The two order parameters as a function of A in the half-filled case are shown in
Fig. (a). We observe a semimetal (¢qsuy = ¢ssc = 0 ), a pure QSH state (pqsn #
0, pssc = 0) as well as a coexistence (QSH+SSC) state (pqsu # 0, pssc # 0). Since
charge conservation is a protecting symmetry of the QSH insulator, the transition
between the QSH and QSH+SSC states can be continuous without a closing of the
single-particle gap (see Fig. 2I|(b)).

On the other hand, it might be interesting to mention the single particle band struc-
ture at half filling. In a pure QSH state, the single particle gap at K (Dirac) point
opens proportionally to the amplitude of QSH order parameter ¢ggp; while the gap at
M point is invariant as a function of ¢gsy. Hence in Fig. we can see that the mo-
mentum of minimal gap ‘shifts’ from K point to M point as A grows. It’s interesting to
see that even in the coexisting (QSH-+SSC) phase, gap at M point is still the smallest.
We can also see this effect in Fig. (b): the plateau of gap in the intermediate region
of A happens in the pure QSH state when A, < Ag.
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Figure 23: Mean-field solution as a function of chemical potential p at A = 0.1. (a)
QSH and SSC order parameters. (b) Doping factor 4.
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Figure 24: Mean-field solution as a function of chemical potential p at A = 0.2. (a)
QSH and SSC order parameters. (b) Doping factor 4.
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Figure 25: Mean-field ground-state phase diagram. The blue and purple (green) lines
correspond to continuous (first-order) transitions.

Then we turn our attention to the doped case. Upon doping the pure QSH state, the
phase diagram exhibits two distinct mean-field scenarios. Two representative examples
at A = 0.1 and A = 0.2 are shown in Figs. and respectively. In the case of
A = 0.1 (Fig. , which is close to the Gross-Neveu transition, a clear first-order
transition between the QSH and SSC phases is observed. Doping at A = 0.2 (Fig.
leads to two phase transitions: (i) a z = 2 transition from the pure QSH state to
the coexistence state at u & 0.4, characterized by a linear growth of § and (ii) a
first-order phase transition to an SSC state at pu =~ 0.8. Such first-order transitions are
characterized by a level crossing corresponding to two local minimum in the free-energy
density in Eq. (114)).

Here we summarize the MF result in the 2D plane of A and p. As shown Fig. [25]
doping the semimetal produces the SSC. This reflects the pairing instability of Fermi
surfaces to attractive interactions within Bardeen-Cooper-Schrieffer (BCS) theory. The
protecting symmetries of the QSH state are related to time reversal and global charge
conservation. Hence, the coexistence region (QSH+SSC) is topologically trivial. Fur-
thermore, the transition at half-filling from the QSH to QSH+SSC is continuous and
does not require the closing of the single-particle gap. Upon doping, the mean-field
approximation generically supports two scenarios: (i) a continuous transition with dy-
namical exponent z = 2 from the QSH to QSH+SSC, (ii) a first-order transition from
the QSH to SSC ﬂ Our mean-field approximation provides examples of both scenar-
ios. As expected, it fails to capture the DQCP between the QSH and SSC phases at
half-filling [1].

4.3 Numerical results
4.3.1 Projective QMC approach

A natural way of achieving finite doping would be to use the FTQMC and to tune
the chemical potential u. However it is very inefficient from the numerical point of
view. First, it is not possible to take the zero temperature limit before taking infinite
system size limit: ‘infinite’ inverse temperature [ is needed once two ground state in
different particle number sectors are tuned to be nearly degenerate at a certain chemical
potential. On the other hand, a § o L? calculation is required once if we assume the
dynamical exponent z. However it’s hard to detect z without numerics: as we will
shown latter it seems that we have a transition with z > 2.

4An intermediate metallic state would be unstable to pairing and we have excluded fine-tuning
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Hence we use the PQMC method, and view the partition function of the grand
canonical ensemble as:
ZGCE(ﬁ — oo) — Z e P(Eo(n)—un)
—N=0,+1,42,%3,...

=Y B
n—N=0,£2,...

(117)

where n is the particle number (which is a good quantum number), and N = 2L2.
Ey(n) denotes the ground state energy in the sector of particle number n. The first
identity is based on ignoring the ‘excited’ state in all the particle number sectors in the
zero temperature limit. The second identity is based on the assumption that singlet
many body ground state have lowest energy. We are not able to prove this point
analytically; but we will show numerical benchmarks latter on.

We used the projective QMC algorithm of the ALF-library [31]. This canonical
algorithm filters out the ground state, |1y), from a trial wave function, |¢7), that is
required to be non-orthogonal to the ground state:

(olOl) _ . {(wrle=®"0c i)
(Yoltbo) O=co  (hp|e20H|hy)

The trial wave function |¢r) is chosen to be a Slater determinant with N, particles
( N|r) = Nplor) ). In particular,

(118)

W) = [¢]) @ [¢F) (119)
with
Np/2
W) = H (ZET Um> (120)

Ui . is the n'™ single-particle eigenstate, ordered in ascending energy eigenvalues, of the
spinless fermion Hamiltonian

H=—tY (le; + He)+ Y & j(ele; + He). (121)
i,J (4,3)

The first term corresponds to the tight-binding Hamiltonian on the honeycomb lattice.
We require the perturbing hopping matrix elements |§; ;| < ¢t and Im§; ; = 0. The
sign and modulus of &; ; are chosen randomly so that all energy eigenvalues of the
spinless Hamiltonian are non-degenerate. Our trial wave function hence breaks lattice
and point group symmetries. Crucially, however, time-reversal symmetry is present.
Since A > 0 (see Eq. (108)), we can decouple the interaction with a real Hubbard-
Stratonovich transformation such that both the imaginary time propagation and the
trial wave function are invariant under time reversal:

Ta (f“) T'=a < Cid > . (122)
Ci7¢ _C’IZT

Hence, the eigenvalues of the fermion matrix come in complex conjugate pairs and no
negative sign problem occurs.

A projection length ©® = L was found to be sufficient to converge to the finite-size
ground state for all of our system sizes. We have used an imaginary time step A, = 0.2
and a symmetric Trotter decomposition to guarantee the Hermiticity of the imaginary
time propagator.
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4.3.2 Single particle spectrum at finite doping

Why do we ignore the states in odd particle number sectors of Eq. Here we show
numerically that the single electron excitations are gaped from even particle number
sector. This also indicates that the low energy physics of doping is described by a
bosonic field theory which has only particle-hole and particle-particle excitations.

Consider the single-particle spectral function at finite doping. Away from half-filling,
particle-hole symmetry is broken and we have to separately calculate the spectra for
electron addition and removal,

Alke,w) = = (| lexl0)P6(E, — Eo — w))
4% (123)

2 S (mIch0) PO(Br — By + )

via the independent analytical continuations

(n(T)cka(0) = [ dwe™A, (@)
(h()ena(0) = [ dwe ™A (@)

with A(w) = Ay (w) + A_(—w). Here, |0) in Eq. (123) is the ground state at finite
doping and (n| is an eigenstate of the Hamiltonian with energy F, and an additional
particle (hole) relative to the ground state. In Fig. , we plot the spectral functions
for L =21 and § =0, Til? % and ﬁ (2L?— N, = 0,2,6 and 8). We see that the single
particle spectrum is gaped at finite doping.

On the other hand, the dominant feature follows the mean-field BCS form E(k) =

j:\/ (e(k) — p)? + |Al2, where £e(k) denotes the Dirac dispersion of the honeycomb
lattice. This result shows that the Goldstone modes do not strongly couple to single-
particle excitations.

In fact, the Green’s function at the I' point has a special property, due to a commu-
tation rule between the fermion operator and the interaction term of Hamiltonian (we

use the notation c;f = (ézﬁ, 6;%))

(124)

2
D> iy ( > iVijél:Uéj + H.c.) =0. (125)
i («

O ii)HeO

The above relation follows directly from

[an Y ivéloe; + He| =0 (126)

((i3)€Q

which holds for the summation of spin-orbit operators inside each hexagon and for
any vector o in the space of Pauli matrices o,, oy, 0,. Hence, the Green’s function
(él (1)¢,(0)) at the k = T point is identical to that of the non-interacting Hamiltonian.

4.3.3 Phase diagram

We turn to the ground state phase diagram by PQMC study. We focus on a line as
function of doped particle number at ¢ = 1 and A = 0.026 (which is the same parameter
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11+ The green dotted line is the chemical potential u evaluated from p =
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which will be shown latter.

as the one for Fig. 20| shown before). For the aforementioned trial wave function, we
observed that a projection parameter set by the linear length of the lattice is sufficient
to reach the ground state. We fist focus on the equal-time correlation functions of the
spin current and s-wave paring operators in momentum space, Sosu(q) and Ssse(q).

In Fig. 7, we show the momentum dependence of the equal-time QSH and SSC
structure factors at 6 = 0 and at 6 = 1/36. Upon doping, the QSH structure factor
does not develop incommensurate features. At § = 1/36, the QSH data (Fig. R7|(b))
are consistent with the absence of long-range order, whereas the SSC structure factor
(Fig. [27(d)) shows a marked increase as a function of system size.

Another important question to answer is if the onset of superconductivity is tied to
the vanishing of the QSH order parameter. To this end, we consider the renormalization-
group invariant correlation ratios (o = QSH, SSC)

~ 5%go + dq)
S*(qo)

Here, gy = (0,0) is the ordering wave vector and qo + dg a neighboring wave vector.
By definition, R, — 1 (— 0) in the ordered (disordered) state for L — oco. At a
critical point, R, is scale invariant and for sufficiently large L, one should observe a
crossing in R, for different system sizes. Figures[2§(a) and (b) show results for Rgsc
and Rggm as a function of . Due to the observed binding of electrons in the insulating
state, we expect superconductivity for any § > 0. This is confirmed by Fig. (a).
The drift in the crossings due to corrections to scaling is consistent with §5°¢ — 0 in
the thermodynamic limit. The same quantity is plotted for the QSH correlation ratio
in Fig. §(b). The data show that the QSH order parameter vanishes very rapidly as
a function of doping. Again, the drift of the crossing point as a function of system
size scales to smaller values of §. Given the data, we can provide an upper bound
695" < 0.0017 which corresponds to our resolution ﬂ On our finite systems, neither
of the correlation ratios show a discontinuity, consistent with a continuous transition.

R, =1 (127)

®Since we are working in the canonical ensemble, the smallest doping is set by 2/(2L?).
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Figure 27: Momentum dependence of the equal-time structure factor for ((a),(b)) QSH
and ((c),(d)) SSC operators for ((a),(c)) = 0 and and ((b),(d)) § = 5.

As a crosscheck, we consider the second-moment, finite-size correlation length [67]:

2 _ Lo |TPS%(r)

R .

obtained from the real-space, equal-time correlation functions ﬁ The inset of Fig. (b)
reveals the absence of saturation of the QQSH correlation length at any finite doping
0 > 0.0017. Saturation would be expected for a first-order transition.

The onset of long-range order as well as a measure for the correlation length can
be obtained by considering 1/S(Q = 0) as function of § (see Fig. 29). The SSC
ordering appears immediately at 6 > 0, characterized by the quick decay of 1/Sssc
as function of system size. In particular, 1/Sssc shows no saturation as a function of
system size. On the other hand, 1/Sqsy shows a clear saturation at large doping. For
a given doping, the lattice size at which this quantity converges is a measure of the
correlation length. Upon inspection, one will see that larger lattice sizes are required to
achieve convergence upon approaching half-filling. In particular, following the envelope
of these curves again suggests that the correlation length of the QSH fluctuations grows
continuously and diverges as 6 — 0. This is consistent with the data of correlation
ratio.

4.3.4 Nature of transition

A key quantity to understand the nature of the metal or superconductor to insulator
transition is the behavior of the chemical potential upon doping away from half-filling
[68, 169, 26]. For first-order transitions, 1 shows a jump. For continuous transitions, and
with the assumption of a single length scale, the singular part of the free energy scales as

6The fact that there is no additional phase factor in the above summations comes from the known
ordering wave vector k =T
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Figure 28: Correlation ratios for (a) SSC and (b) QSH orders as a function of doping
9. The system sizes are L = 9, 12, 15, 18, 21, and 24. The inset of (b)
shows the d-dependence of the finite-size correlation length for the QSH
order parameter.

f o |pp—pte|") with d the dimensionality and v (z) the correlation length (dynamical)

exponent. Since the doping § o« Jf/Ju and the compressibility is associated with
twisting boundaries in the imaginary-time direction, one can show that for transitions
driven via the chemical potential the hyper scaling relation vz = 1 holds. Thereby,

8 oc i — pel™. (129)

Doping a band insulator satisfies the hyper-scaling assumption. For a quadratic band,
z =2 so that § o< |y — p|*?. This scaling behavior is satisfied upon doping a bosonic
Mott insulator [26].

With the PQMC, we can compute the ground-state energy for a given, even particle
number N, and then derive the chemical potential. However, we found it more effi-
cient to extract p from an estimate of A,-(N,) by analyzing the long imaginary time

behavior of the pair correlation function ZS(ﬁ;g(T)ﬁ;g(o» ~ e %7 where ¢ =I. In

particular,
o= E(Np>_E(NP_2> _ An_<Np) ) (130)
2 2
With the doping relative to half-filling defined as 6 = 1 — ]\;"L_Ql , we obtain the data

shown in Fig. [30] Alternative ways of computing p will be shown latter.

"Here, Ny — 1 is the thermal average of particle numbers, with the N, and the N, — 2 sector tuned
to have the same ground-state energy at the chemical potential defined in Eq. (130).
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Figure 29: ¢ dependence of 1/5(Q = 0) for SSC (a) and QSH (b), as a function of ¢,
for L =29, 12, 15, 18, 21 and 24

Figure [30| plots § as a function of u. The vertical dash-dotted line corresponds to the
critical chemical potential. The data support a linear behavior for p > 0.16, but this
form would overshoot the critical chemical potential. In a narrow window of dopings,
0 < 0.01, we observe a downturn in the functional form. Within our precision, we
can offer two interpretations: a weakly first-order transition or a continuous transition
with dynamical exponent z > 2. We note that continuous metal-insulator transitions
with z > 2 have been put forward in the context of doped quantum antiferromagnets
[68, [70].

As we mentioned before, the FTQMC algorithm formulated in the grand-canonical
ensemble is quite inefficient in this case. Nevertheless we still shown the results as a
crosscheck here. Hence, for a given chemical potential p in Eq. of the main text,
we can compute the doping from

(22 i)
212

0= — 1. (131)
Figure |31| shows the corresponding result for the case where the inverse temperature
B and the system size L scale as 3 = L?/3. This implicitly makes the assumption
that z = 2. Overall, our limited data are consistent with the more efficient PQMC
calculation. At large values of §, results for L = 12 and L = 15 are consistent with a
linear dependence of § on p that overshoots the critical chemical potential and suggest
z > 2.

From the numerical point of view, the FTQMC is not as efficient as the PQMC.
The numerical cost to reach the low-temperature limit scales as V33?. We have also
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Figure 30: Doping factor d as a function of chemical potential u = Ag for sizes L =9,
12, 15, 18, and 21. The red dashed line is the critical chemical potential
from the extrapolated pairing gap A, /2 shown in Fig. .
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Figure 31: Doping factor § as a function of chemical potential p from FTQMC simu-
lations, with sizes L =9, 12 and 15, and §§ = $L°.
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18, for doped particle number N, — 2L* = 0, —2, —4, —6 and —S8.

noticed long warm-up and autocorrelation times to equilibrate the particle number in
the vicinity of p = pe.

4.3.5 Consistency check of the pairing gap

We check the consistency of our evaluation of the ground-state energy difference be-
tween different even particle-number sectors:

E(Np)_E(Np_Q) :An*(Np) =A (Np_2) (132)

nt

where E(N,) is the ground state energy measured within the PQMC in the N, particle
number sector; A,-(N,) is the s-wave pairing (7~) gap extrapolated from the time-
displaced correlation function.

The imaginary-time domain 3, in which we measure the time-displaced correlation
function, is set to 8 = L for L = 9, 12, 15, and 18, and to f = 10 for L = 21. To
extrapolate the pairing gap, we use sequential fits
(

(" (mmo + )0~ (m7y)) x e m=0,1,2,3... (133)

where 79 = 1.0 and 7 € [0, 79). The gap is extrapolated as
A, — A(m — o0) oce” ™™ (134)

where a is optimized for the best fit.

In Fig.[32] we show that the three different ways of evaluating the gap give consistent
results for L = 9, 12, 15, and 18 for several particle-number sectors near half-filling.
In particular, one can compute the ground-state energy and take the difference or
measure time-displaced correlation functions of the pair adding or removal operator.
Using the energy difference generically produces bigger error bars. Here, we carry
out two independent simulations and thereby have to add the errors on two extensive
quantities (total energies) to estimate the error on an intensive one, the total energy
difference. Hence to keep the error bar on the total energy difference, we have to scale
the error on the energy per site as 1/L%. Even taking into account self-averaging on
large system sizes, this proves to be numerically expensive.
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4.4 Discussion

Our data suggest a doping-induced, continuous and direct phase transition between the
QSH state and the SSC. Clearly, we cannot exclude the possibility of a weakly first-
order transition in which the correlation length saturates beyond our maximum system
size (L = 24). Our dynamically generated QSH state possesses Goldstone modes and
charge-2e Skyrmions of the QSH order parameter. The Goldstone modes correspond to
long-wavelength fluctuations of the spin-orbit coupling and do not break time-reversal
symmetry. Hence, single-particle spin-flip scattering off Goldstone modes—as present
in doped quantum antiferromagnets—is not allowed. Remarkably, one can also show
that [ékzo, H A} = 0, so that at the I" point the single-particle spectral function is unaf-

fected by the interaction H,. This is in strong contrast to quantum antiferromagnets,
where Goldstone modes couple to single-particle excitations to form a narrow band
of spin polarons [71], [72] [73]. These arguments suggest that Goldstone modes do not
provide the glue that leads to pairing.

We interpret our results in terms of preformed pairs, Skyrmions carrying charge 2e,
that condense upon doping. Within this picture, the correlation length that diverges
at the transition corresponds to the average distance between Skyrmions. While the
mean-field calculation produces a first-order transition or a doping range where QSH
and SSC coexist, the QMC results suggest a continuous transition across which the
single-particle gap remains nonzero. This points to the very non-mean-field character
of the transition.

There are many possible ways to check the interpretation of our results in terms of
a proliferation of charge-2e Skyrmions. We can consider an SO(2) model, as opposed
to the present SO(3) model, where only two of the three QSH masses are dynamically
generated. Such a model would be free of Skyrmions and one would expect a different
doping-induced insulator-superconductor transition. Another possibility is to energet-
ically disfavor the Skyrmions. Our model is very close to the DQCP, where Skyrmions
play a central role and have a low energy. Enhancing the spin-current stiffness, e.g.,
by using a longer-ranged spin-current interaction, will render Skyrmions smaller and
increase their energy. In the limit of infinite stiffness, the mean-field result should
emerge.

The finite-temperature phase diagram remains to be analyzed. Such calculations
could reveal pseudo-gap physics related to preformed pairs at small doping.

Finally, the condensation of charged Skyrmions has recently been proposed as a pos-
sible mechanism for superconductivity in graphene Moiré superlattice systems such as
twisted bilayer graphene [74]. Although our model differs significantly from the actual
graphene Moiré systems in terms of symmetries and interactions, it does capture the
essence of this proposal—a correlation-induced topological insulator (broadly defined)
contains Skyrmions as low-lying charged excitations, and upon doping becomes super-
conducting due to the condensation of charged Skyrmions. We therefore expect our
study, especially regarding the universal behavior near the insulator-superconductor
transition, to be relevant if Skyrmion condensation is indeed the mechanism for super-
conductivity in Moiré systems.
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5 Phases of the (241) dimensional O(5) non-linear
sigma model with topological term

In this Chapter, we use the half-filled zeroth Landau level in graphene as a regular-
ization scheme to study the physics of the SO(5) non-linear sigma model subject to
a Wess-Zumino-Witten topological term in 2+1 dimensions. This approach allows for
negative sign free auxiliary field quantum Monte Carlo simulations. The model has
a single free parameter, Uy, that monitors the stiffness. Within the parameter range
accessible to negative sign free simulations, we observe an ordered phase in the large
Uy or stiff limit. Remarkably, upon reducing U, the magnetization drops substantially,
and the correlation length exceeds our biggest system sizes, accommodating 100 flux
quanta. This work can be taken as a continuum limit of our deconfined quantum crit-
ical point in QSH-SSC (or AFM-VBS) transition shown in previous chapter, when the
assumption of a emergent SO(5) symmetry in the later model is taken. The results of
this work can be found in Ref. [3].

5.1 Landau Level projection and sigma model
5.1.1 Dirac Landau Levels

The idea of using the projected Landau Level to study the non-linear sigma model
comes from Graphene with 2 flavors of fermions. The low energy physics at half filed
case is described by Dirac cones with 8 component of fermions: the one particle Hilbert
space is described by the production of valley, sublattice, real spin and 2D Euclidean
space. Hence the half filed graphene with only kinetic energy is described by:

-EIDirac = Z 1[}1-(19) [pm,uz QR Tr ® 0g + Pylo ® Ty & 0-0]1[)(p> (135)
P
where we have set the fermion velocity v, = 1. Here a creation operator in the
momentum space is defined by:
ONP) = Vx4 By o—1) (P) (136)
Define a canonical transformation:
. . , 1
Yf — Pi(r, @ P, + P_) with Py = 5(% + 1) (137)
the Dirac Hamiltonian of Eq is transformed as:
Hpiree = Z wT (P)[p2Te + Py (P) (138)
P

the two unit matrix po and g are ignored here. Thus the global U(4) symmetry of the
low energy effective theory is more clear in this basis. ( The above Hamiltonian has
actually an O(8) symmetry when the flavor-dependent particle hole transformation is
also included, but it’s not relevant to our discussion of Landau Level projection. )

Inserting an orbital magnetic field to Graphene is basically to introduce the minimal
coupling so as to redefine the canonical momentum:

ﬁDirac = Z QZJT <p> [Ha:T:v + HyTyhﬁ(p)
p

II=p-—cA

(139)
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Figure 33: Eigenvalues of quantized Dirac LLs as a function of magics field B, taken
from Ref. [75].

where the commutation role of the canonical momentum behaves:

0A 0A h?
I,,I1,] = —ieh(—2 — —5) = —i— 140
ML IL) = —ien(52 = ) = —iy (140)
the magnetic length scale here is defined as I = %.

Note that the square of the first quantized Hamiltonian is:

(I, 70 + HyTy)2

:(HI)2 + (Hy)2 —eBT, (141)

Since the spacial part above commutes with the part of Br,, the eigenstate of Dirac
Landau Level (LL) follows the one of Schrodinger’s Landau Level. One can easily solve
the eigen equation of Eq[I39] with plus and minus eigenvalues comes in pairs:

€nt = :i:lZ\/ 2n (142)

A plot of the magnetic field B dependence of the eigenvalues is shown in Figf5.1.1]
Above n denotes the nth Dirac LL, with the wave function of:

() no s = ;ﬁ (IZE |—n§>>
[¥)n=0 = <|n 2 o>>

Here the zeroth Dirac LL has nonzero component only in the “ spin down ” component
of 7, channel. |n) is the nth Schrodinger’s Landau Level:

) = (3 ()9 ,)10) (144)

(143)

where a = 1,2, 3,4 denotes the 4 component index spanning valley(x) and real spin(o)
space. ¢F(r) indicates one of the nth Schrodinger’s LL wave function by diagnosing the
matrix of (IT,)%+ (IT,)?. The label k = 1,2, ...N, indicates the ith wave function in the
N, degenerate space, where N, is the number of magnetic flux through the 2D system:

Ny = 2'5%‘//6 The N4 degeneracy comes from the momentum ( angular momentum )
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conservation in the choice of Landau gauge ( symmetric gauge) . Including the 4 flavor
component, each Dirac LL has the degeneracy of 4Nys. We can see that due to the
magnetic field, the Dirac LL here broke the O(8) symmetry of Eq. but leaves the
U(4) global symmetry invariant.

Note that the notation of Dirac LL is only an approximation of the low energy
limit of Graphene in orbital magnetic field. However the interesting details based on
‘Hofstadter butterfly’ of Graphene is not within our consideration here. Our following
discussion based on projected interaction in LL only concentrate on the continues field
theory.

5.1.2 Projected interactions

Now consider the case of finite fermion interaction written in generic form:

ﬁ = ﬁpimc + f{[nt(qjﬁa 772) (145)

When the free Dirac Hamiltonian is diagnosed in the LL basis:

F[Dirac = QZJThDiTac"z} = Z éz (n)e(n)ék(n)

k,n

Hi (91, 4) = Hip ZZ@W ek(n), d2 D" dh(r)en(n)

(146)

where the creatlon operator in terms of a LL state is: ¢f(n) = ¥, ¢ ()], and o] =
5, T ok (r)el (n).

We consider that limit of large magnetic field and small interacting energy scale,
which perturb the half filed kinetic band (all the Dirac LL with negative eigenvalues
are filed and the zeroth LL is half filed). Hence it is safe to reduce the single particle
Hilbert space of Eqll46] to degrees of freedom which only contains the zeroth LL,
with a Hamiltonian includes only interacting part, and re-defined fermion creation-
annihilation operators:

Hlnt(wT>¢ = HInt Zﬁb(n:o)*(T ,Zﬁb(n o = O))
k

k

(147)

This projection is exact under first order perturbation, and the dimension of single
particle Hilbert space is reduced from infinity to 4N, . Note that the projected oper-
ators Qﬂi does not follow the canonical fermion commutation role since Eq. only
includes the summation over zeroth LL.

The interacting Hamiltonian that we consider to generate the non-linear sigma model
reads:

(148)

which is proposed by the work of Ippoliti et al. [56]. We consider the case of U > 0
here. Limited in the zeroth LL, now we write a simplified form of fermion annihilation
operator in Eq. recalling the component index : ,(r) = Z,ivjl ¢r(r)éar. The
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background C(r) = 2 Zgi’l |ér(7)|? ensures the particle-hole symmetry. Now we have
a Hamiltonian of continues field theory but with finite degrees of freedom.

For i = 1---5, O, are mutually anti-commuting matrices. A convenient choice
reads:

T @y, 7y @1, 7, @7 i=1,2,..5. (149)
Thus we see that our interaction of Eq. (148)) has an exact O(5) symmetry, due to the
anti-commutation of the five matrices. The 10 matrices LY = -3 [0',0%),4,7=1---5,

are the generators of the SO(5) group and commute with the Hamiltonian. On the
other hand, the Z; symmetry of the O(5) group is easily shown applying a Particle-Hole
transformation:

PHi,(r)PH ™ = i(r)
PH[(!(r)O"(r)|PH ! = =1 (r)O")(r)

which reverse the sign in front of all the five fermion bilinears. The fact that all the 5
matrices O are traceless is necessary for above calculation.

(150)

5.1.3 Sigma model

Consider the interaction without the term of Uy, the most simple mean field solution of
Eq in the half filed case is to take a polarized direction in the O(5) space, say O°.
Since the failing of fermion commutation role [¢)(r), ) (r’)] # 0, a convenient choice
would be a ferromagnetic saddle point mit(r)O)(r), requiring m = (T (r)Ol)(r)).
Crucially

/ dQ'r@bT 77% an kak (151)

Thus all the canonical degree’s of freedom of zeroth LL in the ferromagnetic saddle
point acquire a finite gap Ay, oc m. This simple mean field wave function is a half filed
Slater determinate:

H &35 10) (152)

since we took the 5th matrix in Eq. -

The many body solution of the interacting Hamiltonian will become much more
complicated as along as more than one component of masses is considered in EqJ149]
In the case that two or three masses ( O(2) or O(3) symmetric ) are considered, strong
magnetic instabilities is observed [76]. Mean field wave function of Eq. will
fail completely in this case, but system still has insulating ground state with sponta-
neous broken symmetry, leading to a “valence bond solid”(VBS) or “ anti-ferromagnetic
?(AFM) state. The low lying excitation of these states are O(2) or O(3) golden-stone
modes.

It is surprising that, when the number of masses is larger than or equal to four,
strong space-time fluctuation of the O(n) order parameter may destroy the order: not
only Goldstone mode, but also a geometric term which depends on the topology by
which the order parameter cover the space-time contributes to the Boltzmann weight
in statistics. We are mainly interested in the O(5) case in our study. Ref.[28] shows
in a Lagrangian based calculation that, by integrating out the fermionic degrees of
freedom in the Hubbard—-Stratonovich decomposed form of Eq. (such that there
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are b component order parameters which are coupled to the fermion bilinears ),

A o (. 7)°
st= [dr (=X el(nonenn) + [ da(ETE < g, 1) - v (@, 7O (@, 7))
0 = v 22Ul
(153)
one get the purely bosonic action which only contains the 5 bosonic field:
1

Note that the projection onto the lowest level reads ¥, (x) = ijﬁl or(x)cqk, With e
the variable which follows grassmann algebra.
Above topological WZW term reads:

SWZW = 27TiW[<pa]

3 1
W[Saa] = /0 dﬂ/dQ{r/dTEabcde‘;Oaaxgpbay‘pcarwda/ﬁpe
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(155)

where 1 is an additional parameter introduced for the integration, and ¢ (u,r,7) is a
continues function which connects between the physical field g(r,7) at © = 1 and a
fixed polarized field at © = 0 . Note that above integration of fermionic degree’s of
freedom is based on the space-time fluctuating bosonic field, but a gaped fermionic
spectrum is still necessary for the integration.

Without the topological term Swzw, action of Eq. is the well known sigma
model which has two attractive fixed point at strong (1/g — o0) and weak coupling
(1/g — 0) limit, separated by a Wilson-Fisher fixed point at an intermediate g..
This captures a quantum phase transition between an O(n) symmetry broken state
and an para-magnetic insulator at zero temperature, e.g. the O(n) quantum rotor
model, or equivalently, the classical phase transition at finite temperature. The so
called “stiffness” 1/¢ is the only controlling parameter in this field theory.

In the limit of large stiffness, the WZW term should not play a role since the order
parameters tend to be polarized, such that the action is reduced. In this case the
system will flow to the same symmetry broken fixed point of the sigma model without
topological term. On the other hand, in the small stiffness case, the action which
includes Swzw may not have a disordered ground state. Knowing the equivalence of
two anomalous dimensions ( of AFM and VBS ) within high numerical precision, A.
Nahum[50] expect that a SO(5) symmetric CFT which is represented by Eq[154]is a
candidate field theory for deconfined quantum critical point (DQCP). To describe a
‘AFM to VBS’ phase transition, symmetry breaking terms which explicitly break the
O(5) symmetry is necessarily to be added to the action.

Action of Eq. can not be directly mapped to the one of two-component Abelian
Higgs model mentioned in previous chapter, although both theory captures the point
that topological defect of one order parameter carries the charge of the dual one. A
key difference is that, the NCC P! field theory does not require a O(5) symmetry. It
may have a critical point where both correlation functions of AFM and VBS order
parameters have a power law decay : generally the two anomalous dimensions can be
different. The question of whether or not the critical point of NCC P! is asymptotically
O(5) symmetric could be identical to : for the action of Eq[154] is an additional term
which corresponds to a higher order symmetry breaking field irrelevant or not in the
renormalization group limit.
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Note that the above two versions of O(5) symmetry breaking terms are significantly
different to each other: the anisotropy term which drives the system to AFM or VBS
fixed point is certainly relevant under RG. This term goes:

S = Oé/d?’:v( PR PR (156)

i=1,3 i=4,5

While the higher order symmetry breaking term which could be irrelevant under RG
should be written as some cross terms between AFM and VBS order parameters.

The action of Eq[I54] has the same form as what we have for QSH-SSC transition.
This is actually not so surprising given the similar anti-commuting algebra of Dirac
masses. Recall O(5) symmetric Dirac action mentioned in the chapter of QSH-SSC
transition:

Spirae = / dr / P!z, 7) (ou0,)c(z, 7) + d(x,7) - (2, 7)Oc(z, 7)) (157)

where p = 0,1,2. We have set the Fermi velocity to unity here.

The differences between Dirac system with a finite velocity and the system which is
projected into zeroth LL are :

1. Matrix formulations. As mentioned in previous chapter, the 5 anti-commuting
mass of AFM an VBS in 2D Dirac system follows:

Tri(y'7*0'0’ 0% O O) = 8ierskin (158)

If Nambu spinor is included, e.g. in the case of QSH-SSC competition, above formalism
is generalized to 16 x 16 matrix. However, as the derivation shown in the appendix,
the bosonic action after integrating out the fermions will be the same.

When projected to the zeroth LL, the structure of 4 x 4 matrices are:

Tr*(O'0’OK O ON) = derjin (159)

Our choice of Eq. in current work is an example. A calculation in Ref. [77] explicitly
shows that the WZW term of the 5 component order parameter is equivalent to the
one derived from Dirac fermions.

2. Stiffness of sigma model. In 2D Dirac systems in terms of free Dirac fermions
coupled to bosonic order parameters in terms of Yukawa coupling, a calculation by
Abanov and Wiegmann [45] shows that after integrating out the fermions, the ‘stiffness’
(1/g) of sigma model in Eq. is proportional to the fermionic single particle gap.
The calculation holds exactly only in the limit of small but finite fermionic gap. More
precisely, it depends on the single particle gap in the unit of fermion velocity. In the
case of zeroth LL, it’s a bit tricky since there is no fermion velocity. If one only has the
U term of Eq[148] the single particle gap, which is proportional to U, simply re-scales
the bosonic velocity of sigma model without changing the stiffness.

Now we recall the interacting term of 2 [¢f(r)i(r) — C()]? in Eq. (148), which
is invariant under U(4) transformation. This term does not change the symmetry of
Hamiltonian, but tunes the “stiffness” (1/g) of sigma model[78]. We will see later that
it is shown numerically. Uy is our only tuning parameter in the following numerical
calculation.

3. The Dirac formalism of Eq[I57]is hard to be solved numerically, since it’s Hilbert
space has infinite dimension. On the other hand, it can be an effective action of a
lattice Hamiltonian, e.g. the QSH-SSC transition of previous section. However, the
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Figure 34: Possible RG flows in the Uy versus « phase. « corresponds to the amplitude
of a term that breaks down the O(5) symmetry to SO(3) x SO(2). The
horizontal line corresponds to the a = 0 or to O(5) symmetry. Red bullets,
corresponds to phases where the symmetry group is spontaneously broken.
The black bullet is an O(5) disordered phase. Blue (green) bullets denote
critical (multi-critical) points. In scenario (a) the O(5) model orders and
the shaded region depicts a slow RG flow (see text). In (b) the O(5) model
remains critical. In (c) the O(5) model has an ordered and critical phase
separated by a multi-critical point. Finally, in (d) the O(5) model shows an
order-disorder transition.

O(5) symmetry is not an exact symmetry of lattice models, in the sense that a symmetry
breaking term which doesn’t respect the O(5) symmetry is necessarily involved in the
Dirac action, as well as in the bosonic action of Eq[I54] The zeroth LL formalism, on
the other hand, is able to be simulated based on Hamiltonian of Eq[I48] with a finite
Hilbert space which does not break the O(5) symmetry.

5.1.4 RG scenario

Now we consider a phase transition which is tuned by the second axis : an anisotropy
which breaks the O(5) symmetry. In the picture of Hamiltonian a term of a(X2_, [ () Ot (r)]2—

5[ (r) O (r)]?) would play this role, where « is the relevant operator which breaks
the symmetry. Schematic RG flows for an enhanced O(5) symmetry that is broken
down to SO(3) x SO(2) are shown in Fig. [34, Here Uy/U does not change and sym-
metry, and plays the role of stiffness. If the O(5) symmetric model at a = 0 is always
ordered, the nature of AFM-VBS transition is always first order [Fig[34{(a)] . The spin-
flop transition corresponding to the field-driven reorientation of the easy axis falls into
this category. In this case the O(5) symmetric line always flow to the strong coupling
1/g — oo limit, thus the transition tuned by « is not captured by any divergence of
correlation length.

The second possibility is that a critical phase is pinned by the topological term,
regardless of stiffness. This scenario is shown in Fig. (b) As mentioned before, a
fixed point which is relevant in the direction of anisotropy but irrelevant in the direction
of 1/g exists. Thus a power law decaying of correlation function, captured by the same
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scaling dimension would always be found at all the range of Uy/U. As an example
for this scenario, we can consider the one-dimensional DQC between a dimer and Néel
state in the XXZ model considered in Refs. [79, 80] and realized in [81]. The critical
point has a U(1) symmetry that is broken by the umklapp operator that tunes through
the transition. However in our O(n) sigma model this scenario is unlikely to hold in
the limit of large stiffness: the topological defect would be expired but to large free
energy.

As a third possibility, the enhanced-symmetry model may have a relevant tuning
parameter Uy — and associated (multi) critical point — that does not break the enhanced
symmetry. Fig. (c) describes a scenario where the ordered state gives way to a critical
phase. In this case, tuning « leads to first order or continuous transitions depending
upon the value of Ujy. Finally, in Fig. (d) Uy drives an order-disorder transition. Aside
from fine tuning, the transition from the SO(3) to SO(2) broken symmetry states is
first order or separated by a disordered phase.

5.2 QMC implementation
5.2.1 Momentum space interaction

To perform a numerical simulation of Eq. (148)), recall that due to the projection to
the zeroth LL:

No
= Z ¢k(r)éa7k (160)
k=1

where the operators which annihilate(create) single LL obeys fermion canonical com-
mutation role:

{éz,m ék’,a’} = 5a,a’5k,k” {ék,m ék’,a’} = 0. (161)

while since the zeroth LL does not span the hole Hilbert space, operators zﬁa('r) does
not satisfy the canonical commutation role. To perform QMC we have to formulate
the interaction based on canonical operators.

As aforementioned, the wave-function ¢y (), of Zeroth LL of Graphene is identical
to the lowest LL of free nonrelativistic electrons in the 2D plane pieced by magnetic
field: ) ,

=5~ (P—cA(r))". (162)

We choose Landau gauge, such that A(r) = B(0,z,0) (r = (x,y, 2)), translations
along the y direction leave the Hamiltonian invariant such that the momentum in this
axis, py, is a good quantum number. On a torus of size L, x L, the wave function of
the first Landau level reads:

1 1
pry (r)=—=
i i

Here the magnetic length scale is defined as [% =

6—(x/lB—Sign(B)ple)2/2€ipyy' (163)

5 |B|, with ¢y = E and the number

of magnetic fluxes piercing the system, N, = |B|OV, is an integer so as to guarantee
uniqueness of the wave function. Finally the momentum in the y-direction is given

Py = 25" with n € 1,--- , Ny. Note that no we used p, as labeling of degenerate wave-

functlon k in Eq. - Defining the Fourier transform of the four component spinor:

1&2 = \}V/‘/dzreip"‘zﬁ(r) (164)
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Real space Hamiltonian of Eq. (148 is transformed as:
A=Y [ @r 3 m0udr) - )il

YU [ e et v @) (165

To write the interaction in a compact form we labeled tAhe interaction pre-factor as U=
—U for i = 1---5. Here, O° is the unit matrix and ¢f(r)O™)(r) = >, e 9" N(q)
fori=1---5and ¢ (r)i(r) — C(r) = T e T NO(q).

Neglecting the constant background term at ¢ = 0, the density operators N ‘(q), can
be expressed in terms of the canonical operators é;y:

Ni(q) =Y _vl0"),_,
P

1 A . A
_ ipr _—i(p—q)r’ AT ok i A
_VZ/V » Crdr' P P9 ;cquzﬁkl(’r)O ]%2 Chy O1y (77) (166)

1 @ i in
:ﬁ /4Zqucpygc qyO _ay

With the substitution k = p, + % and

Z Z F(q)e2 Pl (c] 0% -
k=1 a,b=1 ’ ! (167)

— 20,4, 000

where the background term 24, od;o can easily be verified by Fourier transform the
real space background C(r) (see main text). Now the Hamiltonian reads:

= 3 Y il)Ui'(—q) (168)

=0 q

In the above, a(b) = 1,2,3 and 4 is the flavor index, and F(q) = e —1@Ha)E | As we
will shown in the next subsection, this exponential decaying factor is essential for the
QMC simulation since it provides a natural cutoff for the momenta q. Finally, setting

the magnetic unit length to unity such that 2“ = N—¢ we obtain:
H= 169
i S @A 160

5.2.2 Fierz identity and absence of the negative sign problem

To avoid the negative sign problem in the QMC simulations we use the Fierz identity
to rewrite Eq. (165) as:

2N¢, ZZn_qgn (170)

=0 q
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Instead of the original density operators in Eq. (167), the n’(i = 0,1,2, 3) operators
are based on 4 matrix:

|47Tx ® |27 Ty ® |27Tz ® |2~ (171)
Eq. (170) is identical to Eq. (165]) when 89% =Uy+U, 8-‘% = 89% = —2U, and 89% — 9.

Here we consider the SO(5) symmetric point and set U; = —U for i € 1,--- ;4. The
absence of sign problem holds for the region of Uy > —U, follows from the work of
Ref. [82] and is discussed in detail in reference [56]. The above matrix structure also
gives an explicit SU(2) symmetry which holds for each Hubbard-Stratonovich field
configuration.

5.2.3 Trotter errors

Since n(q)" = n(—q), the exponential of operators at each time slice is given by:

COAT (ad iai s igd
2N, (gg"n’ g +7" 49'0g)

e

S 172
— Bl (@At ) g (A=l ) (172)

=€

The QMC implementation is followed by HS decomposing the “perfect square” terms
above.

Similar to the model of QSH-SSC transition which is discussed in previous chapter,
interacting operators at different momentum does not commute with each other. Thus
to ensure hemiticity, again we use a symmetric Trotter decomposition:

N . .
Z="Tr[]] e~ T Hm 11 e_%H"]LT (173)

m=1 n=N

where H,, corresponds to the N = 2 x 4 x N, operators iﬁ(ﬁfl + ﬁi_q)Q, N, is
the number of momentum points used for the simulation. As we will see below N,
scales as Ny4. The difference between current case and the QSH model is that, the
non-commutation relation here holds non-locally. We will see that here the systemic
err of free energy density is not scaling invariant but scales proportionally to Ny.

For two operators H; and H, the leading order error produced in the symmetric
Trotter decomposition reads:

~AHy - ArHy AT

e
L (174)
:e_AT(H1+H2)+ 5 [2H1+Ho,[H1,Ha| + (’)(AT4)
Iterating the above formula gives:
N AT 7 ! AT N 1 )
[[e=" [[e =M= e ATy )+ L O(ATH) (175)
m=1 n=N
where
A Ar? N N A 2 22
3= BT Y R B A0
m=1m/=m+1
o ; A o (176)
+ Z Z [Hm’a [Hm7Hm"]](1 - 5m/ m”))
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and 0, ,,» the Kronecker delta. Using time dependent perturbation theory, we then
obtain:

N 1 Lr
AT 1 AT 1y
( I | e_ QTHTVL | I 6_ 2TH7L>
m=1 n=N

. . B N
—ePH _ e’ﬁH/ dre™Xe”™ + O(AT?)
0

(177)

with L, = AﬁT the number of time slices. \ is measure of the leading order error on the
free energy density:

1 N S .
fome =— —=InTr ( H o~ B m H ef%Hn)LT
Bv m=1 n=N
1 B n .
=f+—— [ dr{e ™) 4 O(AT?)
BV Jo .
1 <
=f+ VO\) + O(AT?)
1
— A A 3
f+27rN¢< ) + O(AT?)
In the above we have set [z = 1 so as to replace V by N, and [ = _BLV InTreP2 Since

the interacting operators for different masses ¢ do not commute with each other, the
Trotter decomposition breaks the SO(5) symmetry of Hamiltonian (a SU(2) symmetry
is left due to the Fierz identity in Eq. (L70)).

To evaluate the expectation value of :\, we first evaluate the commutator of two
density operators:

[7'(q1), 7 (g2)]
—F(q1)F(q2) Y. &l {e2 Gk~ (@ytaz))ih (@retax)
k

(2c08(0gy.,42)[0i, O] + 2isin(0g, g2){Oi, Oj}) }r— (g1 +a2y) (179)
_F(q1)F(g2) ( (0.0,
- F((h + q2) {n (ql + q2)2COS<941,42)

—}—’[’L{Oi7oj}(q1 + q2)22 Sin(gql,qz)}

where Og, ¢, = %(ququ — q12G2y). Since the density operators do not commute we can
estimate the magnitude of the Trotter error as follows. Let ||A]| = maxjy),|||)||=1| |A| D).
Since the Hamiltonian Y-, H,, is an extensive quantity, || >, H,|| o< Ne. Here m runs
over a set of order Ny momenta, hence implies that typically, H,, o< N$. Using this to
estimate the systematic error, yields the result:

foue = f+ 0 (AT2N). (180)

Hence, to keep the Trotter error under control we have to scale A7 as 1/Ng.

The Trotter error in our model has a different scaling behavior, than for models with
only local interaction such as the Hubbard model. For local interactions ||A|| scales as
Ng, such the systematic error on the free energy density is size independent.

An improved estimator is introduced, based on the SO(5) invariant structure factor:

Sla) = 7+ Z(ﬁgﬁiq>. (181)
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Figure 35: Correlation ratio R of Neel, VBS order and the improved estimator for a
fix AT as 3.27% (a), and for a linear scaling of A7 = 25.67%/Ny4 (b). The
simulation is based on Uy = 1.0, of system sizes Ny = 4, 8,12, 16, ...32, with

B=1.

The magnetization and correlation ratio used for the scaling analysis in the main part
of the paper is based on the above structure factor.

Fig. shows a numerical comparison of the correlation ratio for multiple system
sizes. In Fig. 35| (a) we consider a constant A7 while in Fig. [35] (b) we scale AT with
the volume: A7 = 25.67%/N,. As mentioned previously, our Trotter decomposition
breaks the SO(5) symmetry such that a convenient measure of the finite time step
systematic error is the discrepancy between the Néel and VBS order parameters. At
constant A7 = 3.272 the correlation ratio defined from the Néel, VBS and SO(5)
order parameters progressively differ as a function of system size. On the other hand,
for simulations where we keep ATNy constant, see Fig. 35| (b), no SO(5) symmetry
breaking up to N, = 32 is apparent. In all our simulations we have kept ATN, constant.

5.2.4 Cutoff and computational difficulty

The effective interacting strength in Eq. (170]) is controlled by a momentum dependent

function F'(q) in Eq. (167)):
F(q) = o~ i (@)l (182)

The exponential decay of the interacting strength gives a natural cutoff in the momen-
tum space. In particular, we we can consider momenta satisfying F'(q) > F,. As
shown in Fig. , for N, = 4,8 and 12 at Uy = U = 1, the cutoff dependence of the
correlation ratio is negligible up to F,,;, = 0.01. In our calculations, we have chosen
Foin = 0.01. Setting I = 1 implies that the number of g-vectors we consider for a
given cutoff scales as N.

Taking all the above into account yields a computational effort that scales as Ngﬁ
where [ is the inverse temperature. This should be compared to the generic NV, ;Z’ [ scaling
for say the Hubbard model. The above explains why our simulations are limited to
N, = 100.
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Figure 36: Correlation ratio as a function of F,;, for Ny = 4,8 and 12, at Uy = U =
1,8 = 16072, At = 3.272.
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Figure 37: Temperature dependence of the uniform charge susceptibility yo for Uy =
—1.

5.3 QMC results

For the simulations we set the energy scale by choosing U = 1, the length scale by
choosing g = 1 and vary U, and the volume N4. We found that an inverse temperature
of B = 16072 suffices to obtain ground state properties on our largest system sizes,
Ny = 100. We have used the finite temperature auxiliary field algorithm [35] 36, 19] of
the algorithms for lattice fermions (ALF)-library [31].

5.3.1 Charge Susceptibility

As mentioned before, to map to the non-linear sigma model, the ground state is nec-
essary to be an insulating state. In Fig. we plot the uniform charge susceptibility,

B . R
Xc = 3 ({fig=ofig=0) — (fig=0){ig=0)). (183)
¢
The charge fluctuations decay exponentially upon reducing the temperature as ex-

pected for an insulating state of matter. Since ®'(2)O¢(x) are mass terms, any
non-vanishing expectation value of these fermion bi-linears, ;, will lead to a charge
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Figure 38: Correlation ratio R as a function of 1/Ny (a) and Uy (b).

gap. Owing to the SO(5) symmetry the single particle gap is proportional to the norm
of this five component vector, |¢|.

5.3.2 Order parameter and Correlation ratio

We compute the order parameter correlation function

1 5

=Y (Atal ). (184)
Ny i=1

S(q)

For our ordering wave vector Q = (0,0) here, the local moment reads

1
m= 3 5(@ (185)

and it is convenient to define a renormalization group invariant quantity

S(Q + Aq)
R=1—-—F1—— 186
S@) (186)
with |[Aq| = \7];—(1). In the ordered (disordered) phase R converges to unity (zero) and

the local moment takes a finite (vanishing) value. At a critical point, the correlation
ratio converges to a universal value.

In Fig. 3§(a) we plot the correlation ratio R as a function of system size for various
values of Uj. For system sizes up to N, = 20 all curves scale downwards and would
suggest a critical or disordered phase. Beyond N, = 20 and for large values of Uy the
correlation ratio changes behavior and grows. The length scale at which this crossover
occurs can naturally be interpreted as a measure of the correlation length. In Fig. (b)
we replot the correlation ratio as a function of Uy. The data is consistent with a crossing
at Uy ~ 3. Below this value, R does not scale to zero, as already seen in Fig. (a),
and hence signals a phase where the correlation length exceeds our system sizes. For
these large values of Uy, a finite size extrapolation of the square of the local moment
(see Fig.[39)) is consistent with a finite value (see inset of Fig. [39).
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Figure 39: O(5) order parameter as a function of 1/,/Ny. The dashed lines and the

inset is the extrapolation via the fitting form m(Ny)? = m3;, . +a/\/ N+
b/N,. Negative extrapolated values of m? suggest a critical or disordered
state. In both cases the polynomial, in inverse linear length, fitting form is
not justified.

5.3.3 Scaling analysis

When a critical state is assumed, the O(5) order parameter should form a power law

scaling behaviour:
_ n+z

m=aNg * (187)

We performed a finite size scaling based on the above equation, with assuming the
dynamical exponent z = 1. Since no scaling correction term is assumed on top of
Eq. , we gradually tossed small system sizes used for the fit. Surprisingly, we
didn’t observe a strong drift of n exponent as a function of minimal size of fit. On the
other hand, 1 exponent drops down dramatically as a function of U,. Since a minimal
size Npyin = 16 give an acceptable x?/D.O.F for all of the Uy in our calculation, we
show 7 exponent as a function of Uy in Fig. based on N,,;, = 16.

Apart from the last point (Uy = 4) in Fig, which is already known as an ordered
state due to the correlation ratio, a power law assumption of EqJI87]sames to be valid.
However, a drift of n exponent as a function of stiffness is hard to understand: unless
there exists a continues line of infinite number of fixed points in the case of 24+ 1D. Back
to the RG scenario of Fig. [34(c), if the parameter range of weak coupling (1/g) flow
to one fixed point of CFT, the anomalous dimension has to acquire the same value. A
possible explanation is that, a large and finite correlation length &, decays gradually as
a function of stiffness. Although ¢ is still larger than our largest system size N, = 100
when Uy < 8, it may lead to a violation of our fitting procedure.

Hence we introduced another way of fitting the order parameter:

ntz

m=mg+aN, * (188)

This is based on the assumption that we are always close to the fixed point collision
point, in the sense that we always has a finite correlation length &, which depends on
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Up in [—1,4] (a), and n exponent as a function of Uy (b), taken N,,;, = 16.
Blue dots of the DMRG calculation in (b) are taken from ref [56].

Uy. As we can see from Table , the x2/DOF of fit are acceptable, when all the system
sizes are included. The n exponent is robust as function of Uy, except the point of
Uy = 8. On the other hand, the extrapolated magnetization become nonzero within
when Uy > 0.25.

5.4 Discussion

In Fig. [34) we show possible RG flows in the Uj versus a plane where o corresponds to
the amplitude of a term that breaks down the SO(5) symmetry to SO(3) x SO(2).
Fig. [34(a) corresponds a scenario where the topological term is irrelevant and the
model orders for all values of the stiffness. Taken at face value, our results do not
support this point of view. However we cannot exclude the possibility that an ordered
phase with small magnetic moment will occur on larger system sizes. In this case, the

Uo [{m)o | nm x*/DOF
1.0 | 0.03(1) |0.33(2) | 1.51
0.5 | 0.01(1) |0.28(2) | 1.32
0.0 |0.03(1) |0.29(2) | 1.78
0.25 | 0.028(7) | 0.27(1) | 0.92
05 |0.04(1) |0.28(2) | 0.25
1.0 [ 0.05(1) | 0.28(2) | 1.17
2.0 | 0.064(7) | 0.26(2) | 0.98
40 |0.11(1) |0.26(2) | 1.75
80 |027(1) [0.38(2) | 111

Table 4: Collective fit using Eq. (188)).
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transition as a function of a from the SO(3) to SO(2) broken symmetries corresponds
to a spin-flop transition.

In contrast in Fig. [34(b) we assume that the SO(5) model corresponds to a CFT. In
this case, « is a relevant parameter, and the transition from SO(3) to SO(2) broken
symmetry phases is continuous with an emergent SO(5) CEFT at the critical point. This
SO(5) CFT could be a candidate theory for DQCP. Again in light of our data, this
scenario seems unlikely since at large values of Uy our data supports an ordered phase.

In Fig. [34(c) we assume that the observed ordered phase gives way to a critical phase
corresponding to an SO(5) CFT. Adding the « axis implies that along the SO(5) line
we have a multi-critical point as well as a critical one. Note that this two fixed point
scenario has been suggested by a € expansion of an effective theory at the boundary of
an 3+ 1 D SPT state [83]. Our data actually favors this scenario: below Uy = U§ ~ 3
the correlation ratio does not seem to scale to zero, and is hence consistent with a
critical phase. If such is the case, the nature of the transition between SO(3) and SO(2)
broken symmetry states, with emergent SO(5) symmetry, depends upon the value of
Uy and is either continuous or first order. There are a number of models that show a
transition from SO(2) (VBS/SSC) to SO(3) (AFM/QSH) broken symmetry phases and
that favor continuous or weakly first order quantum phase transitions. For instance,
3D loop models [50] (1neet = 0.259(6), nves = 0.25(3)), the J-Q model, [17, 42] as
well as transitions between quantum spin Hall insulators and s-wave superconductors,
(ngsu = 0.21(5), nssc = 0.22(6)) [84] all seem to show similar exponents and are
believed to belong to the class of DQCP with emergent spinons coupled to a non-
compact U(1) gauge field. Compelling evidence of emergent SO(5) symmetry has been
put forward for the loop model [27]. However, the value of the anomalous dimension lies
at odds with conformal bootstrap bounds, n > 0.52 [51], for emergent SO(5) symmetry.
Systematic drift in the exponents has been observed in [50]. Within the present context
one can understand the above in terms fix-point collision put forward in [54, [85] [86, [87].
Consider a third axis — the dimension — and assume that the sketch of Fig. [34[c) is
realized close to the physical dimension d = 2 but that before approaching d = 2 the
multi-critical and critical points collide and develop a complex component. In this case
we are back to the spin-flop transition of Fig. (a) but with the important insight
that the RG flow becomes arbitrarily slow due to proximity of a fix-point collision.
The shaded region in Fig. (a) schematically depicts the region where the RG flow
becomes very slow.

Proximity to a critical point motivates fitting the QMC data to the form: m =

_ntz
mo + alN, * . In the region where our correlation length exceeds the size of our

system we obtain a good fit with robust anomalous dimension 1 = 0.28(2) under the
assumption of z = 1 (see the SM). The agreement with the aforementioned QMC
results is remarkable. We note that this exponent is much larger than the one of the
3D classical O(5) critical point, with = 0.036(6) [88]. We conclude this section by
noting that Ref. [32] introduces a fermion model showing a DQCP with emergent SO(5)
symmetry and that has exponents that comply with the bootstrap bounds. This model
could be a realization of the SO(5) CFT conjectured in Fig. [34]c).

Fig. [34(d) describes the possibility of an order-disorder transition along the SO(5)
line. Note however that on the accessible system sizes, we cannot resolve the length
scale associated with the disordered state. This scenario excludes a DQCP with emer-
gent SO(5) symmetry, and the transition from the disordered to ordered phases involve
SO(3) or SO(2) critical points. As shown in Fig. [37| the insulating phase has vanishing
charge susceptibility.
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The existence and nature of an SO(5) symmetric disordered phase is intriguing.
Starting from Dirac fermions any band insulating state necessarily involves SO(5) sym-
metry breaking. Hence in the conjectured phase diagram of Fig. [34[(d) the disordered
phase is not adiabatically connected to a band insulator. In fact, if the disordered
phase preserves the particle-hole symmetry, the arguments of Ref. [54] rule out any
gaped phase (even a topological one), because the particle-hole symmetry forbids the
SO(5) Hall-conductance argued to be necessary in any such insulator.

5.5 Conclusions

Our data on systems up to Ng = 100 show that the O(5) non-linear sigma model
exhibits an ordered phase in the limit of large stiffness. Remarkably (and within the
accessible parameter range where negative sign free AFQMC simulations can be carried
out), we observe another regime characterized by a correlation length that exceeds our
system size. Given the aforementioned body of work on DQC and insights from the
conformal bootstrap approach, our results find a natural interpretation by assuming
that the model lies close to a fix-point with small complex component [54], 85| [86] such
that the RG flow becomes very slow and shows pseudo-critical behavior. Clearly larger
system sizes are desirable so as to confirm this point of view. Although very appealing,
as implemented the Landau level projection approach comes with a computational
effort that scales as NV, 35 as opposed to Ngﬁ for the generic Hubbard model. Further
improvements to the code will have to be implemented so as to reach bigger flux values.
The method can also be applied to the O(4) model with #-term at § = 7w by setting
one mass term to zero. This will have impact on our understanding of easy plane
de-confined quantum critical points with emergent O(4) symmetry.
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6 Conclusion and Outlook

We would like to briefly summarize what we have done in this thesis. We investi-
gated several models with exotic quantum critical points, which are in principle beyond
the Landau-Ginzburg paradigm. An extremely attractive topic in condensed matter
physics is the interplay between correlation effects and topology. As an example, the
field theories that we consider in the thesis require the topological contribution of field
configurations to the statistical weight. We successfully formulated the exotic field the-
ories on the basis of interacting fermions and performed large scale calculations based
on sign-problem-free auxiliary field quantum Monte Carlo method. It is amazing to
see that through numerical simulations, even a student with poor knowledge of field
theories could find something unusual in the eyes of an theoretician.

We found a dynamically generated quantum spin hall insulator (QSH) as described
in Chapter. [3] Remarkably, that phase gives way to a Dirac Semi-metal (DSM) phase
via a Gross-Neveu transition and to an s-wave superconductor (SSC) via a deconfined
quantum critical point (DQCP). The direct and continuous nature of QSH-SSC tran-
sition relies on the fact that the skyrmion configurations of the QSH order parameter
carries twice the electron charge, and vortex defects of the SSC order parameter carry
spinons. This DQCP display significant difference compare to the one between an
anti-ferromagnetic state and a valence-bond solid phase: since the broken U(1) charge
conservation is an exact symmetry of our lattice Hamiltonian, our phase transition
does not allow any quadruple monopole configurations which are irrelevant only at the
critical point along AFM-VBS transition. Therefore, only one divergent length scale
exists in our case.

SSC generation can be triggered not only by tuning the interaction but also by dop-
ing. We describe the doping induced QSH-SSC transition in Chapter.[d] This is the first
time of a sign-problem-free simulation of a doping induced insulator-superconductor
phase transition. It has a very different critical point compared to DQCP, in the
sense that the chemical potential plays the role of skyrmion fugacity. Remarkably,
it is reminiscent of the twisted bilayer graphene system around magnetic angle: an
understanding of the superconducting state beyond BCS theory could be built on the
charged skyrmions of dynamically generated topological insulator.

In Chapter. |b| we investigated the 2 + 1D nonlinear sigma model based on a Hamil-
tonian of enlarged global symmetry where the UV regulator is given by the Landau
level instead of the lattice. The low energy effective field theory of the sigma model
supported by topological WZW term is given. This is the first time that a continuous
field theory is directly simulated using a quantum Monte Carlo method. The O(5)
symmetry between order parameters, which is possible to be an emergent symmetry
of the DQCP in the low energy limit, is not broken by our Hamiltonian. We found
numerically a stable critical phase in the ‘weak coupling’ case.

Our examples of DQCP based on QSH-SSC transition at half filling and the sigma
model in Dirac landau levels are strongly connected to the notion of quantum anomaly.
Surprisingly, it seems to be related to the statistics of particles: although we are using
fermionic models to capture bosonic field theory, the fact that we have gaped fermionic
degrees of freedom is important (or necessary) for our monopole-free realization of
the deconfined quantum critical point. On the other hand, the bosonic approach of
DQCP necessarily involves a Z, dangerously irrelevant symmetry breaking field from
lattice regularization. Thus the fermionic approach has an essential meaning. Although
fermion statistics leads to a BL3? scaling in our auxiliary field approach, it is also
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necessary, in the sense that simulations based on bosonic statistics can not capture the
correct physics.
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7 Appendix

7.1 Charged skyrimion of QSH

We show the details of deriving the charge response of QSH skyrimion configuration
here. It follows from an explicit integration of fermionic degrees of freedom from an
action of Dirac fermions coupled to bosonic order parameters, as shown in Ref. [37].
We start from the case of an action based on the effective low energy theory on
Graphene in the Nambu basis, such that the 16 component of Dirac fermions are
written in the basis of Valley, sublattice, real spin, and Bogoliubov-de Gennes (BdG)

index: S = (W ¢> <§T —iT> (@%) (189)

We take the Nambu notation of ¥ (x, 7) = (¢(m, ) Yi(x, 7')), such that the Hilbert
space read: R* ® €20, ® C2 0 © €25, @ Chyq

valley
If one only needs to show the charge response from skyrmion configuration of QSH

order parameter, only 8 dimensional Hilbert space (without BAG index ) is enough.
We will discuss the reason latter. Now the action reads:

S = Sy + Sy (190)

where the Sy denotes the part of free Dirac action:

0
So = [ dr | dPxV(x, 7)[(= + icAT,
[ dr [ #2vi (@)l ) o

o . o
+(on ® To(a—gj1 + ieA17.) + Y072 ® Tz(a?? + ieAyT)) |V (2, 7)

and Sy denotes the coupling between bosonic order parameter and fermionic degrees
of freedom:

Sy = /df/demzstf(m,T) Uz, T) M (2, 7) (192)

I=1

We take the example of three QSH masses:

M'= Moy =iv073715 ® 0. @7, M? = Mgy = in0737 ® 0y @ T (193)
M? = Mjgy = 10737 ® 0. @ T,

Here A, (z,7) is the ‘Charge’ gauge field in the sense that above action is invariant
under flavor independent U(1) charge transformation locally:

U(x, 1) — P@NLON0OT (g 1), Az, 7) = Ay(z,7) — 0,0(x, 7) (194)

where left part of above transformation is simply 1 (x, 7) — /@ (x, 7).
Note that the Dirac Gamma matrices are defined as:

V=t ®Te, N=p: 0Ty, Y =fo®@Te, V=Ha®Ty, 5=y @7, (195)

where p and 7 are the Pauli matrices in the space of Valley and sublattice. For
simplification in later calculation we define:

FO = 116 Fl = Y71 ® 09 ® T FQ =72 Q@ 09 QT (196)
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We set unit of e = 1 and ¢ = 1, and perform Fourier transformation into the Mo-
mentum and Frequency space:

= ZZ [T (K, w)(iw + il k" 4 Tok¥) W (k, w)
b k

+@ZZN(q7wb)-‘1”<k+q,wb+w)M\If(k,w> (197)
+ Vb %: Zq: Au(q, o)V (k+ g wp + 0)T,7 Y (k, w))
where Vj, = BL,L,. Thus the partition function reads:
7= /H D(UH(k,w), U(k,w))eS

, - t 1 1)k .k 2 (198)
= /HD(\IJT(E),\D(E))Q ZEZ’E\P (k1) (ho+h )71’72\1/(]97)

where k = (k,w). We ignore the fluctuation of third component: N3(z,7) = N?® and
N'(N?) << N3. hy and h; are written as:

1

(ho)]LL@ = [(zwl + Z(F kx + F2k1))5k1 ko + mN M35k1 kg] ‘/E)

. 1
(hl kl k2 Z N kl kf2, w1 — WQ)M] + ZAM(kil — kz, w1 — WQ)FMTZ]f

V2 (199)
iwy — z(F k¥ + Toky) — mN3M?3
(ho)k1 ko — [ _Wl |k1‘2 m2(N3)2 (SEJQ]V{;
Recall the generalized Grassmann integration:
[aviayesp (v ) (M)axcan (ﬁ)
(G (200)

=2V det M

which holds only when matrix M is written in the formalism of Eq[I89 Now we need
to perform the expansion to third order:

Seff ~ —In \/ det(ho + hl)

1

=3 Trln (ho + ) (201)
1 1 1 1

= —5 Tr (halhl — §h61h1h61h1 + ghalhlhalhlhalhl - ) - 5 Tr h()

Note that above expansion only holds for a gaped system, in the sense that matrix
hg is has no zero eigenvalue. One can easily check that the first order term above is
traceless. The contribution from the second order term will be introduced latter. The
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topological term that we are interested in is from the third order expansion:
1 13 7-1p -1
— 6 Tr [hg “hihg hihg  hi]

ZZZZZZG+ (k1) G- (k1) G 4 (k)G - (ks) G4 (ks) G- (ks)

bk1k2k3k4k6

Tr'0(ik§T o — mN*M?)Sp > N (ky — kg) M" + 1A% (ky — k3)Tp7.]
2
(z‘lign; — N M?)Opy 5, [m Y N7 (kg — ks) M7 + iA(ky — ks)T.7]

2
(z‘ligrn — MNP M?)0py 1 [m Y N* (kg — ki) M™ + iA" (kg — k1)T 7]

I=K
—1 —1 —1
o ZZMZ A TP B (VPP R T Tal? + (N2 o oo+ (V)2
(m®€asnerszi A (—k; + ks ) (k1 7)(73—75)]\71(1{;1 ks)N (kg — )N3Tr16(1 6)
+mPesnperncsi A’ (—ks + ky) (k] — k&) (kS — k)N (ks — ks)N™ (ks — k1) N*Tr'%(154)
P eaneerrcsiAT(=ks + k) (K — k§) (k5 — k)N (ky — ks)N™ (ks — k1) N¥Tr'®(145))
(202)
We wrote the fermion Green’s function as G4 (k) = m, where £y, = \/\k|2 + (mN3)2.

Note the difference between Tr and Tr'® (trace over only 16 flavor index) above. In in
the expansion of last step, the only traceless terms are those products over three N
field as well as single A field, since:

DD MIM2M3 = 1. 7,
{(M', M7}y =0 T#J (203)
{0y, M}y =0, {Ty,M"}=0, [[o,M]=0

Allowing long wave length expansion of ky ~ ks ~ ks, with a simplified notation as
kis =k — ks ..., we get :

613 ZZZG+ (k)G (k1) Gy (k3)G - (k3) G (ks)G - (ks)

b kl k3 k5
(i€asnerssA™(—ks) kS k3N (k13) N7 (gs) N
+iesnperrs A (—ka1) ks KN (kss) N™ (ks1) N®

+ieaneem/x6<—k5g,>k% W(h@NK(@N?’) (204)
oV ZZZ G4 (k)G_(k))*3icascerssA"(—p — Qp N (p)¢’ N’ (¢) N°
_gi / e / (G (G- (D) easner s A" (@) oV (@) (e N ()N

The -+ Zk is substituted by @ | dk above. Note that we took the limit of ¢ — 0
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and p — 0, but we have to integrate over k:

1 /00 ik 8m?3
(2m)3 Jig=0 |G (k)G (B)]?
1 o0 8m?3
- / dk— m (205)
(2m)% Jigl=0 " [wi + [k[* +m?(N?)?]?
11
4 (N3)3
It is interesting to know that above integration is m independent . Re-defining the
Eq. [204] becomes:

1= [ @ [ dreasmerniAt (@) ot (2)) (o (@)

R 2 K . " _’
—Z4W6a5,€/d m/dTA (z)n’e, - (Ouit x O57)

normalized spin current field 7 = F?

(206)

In general the O(3) basis does not need to be pinned, thus the above formula becomes:

Se=ip em / & / dr AR ()i - (Buft X O57) (207)
knowing the charge current coupled to the gauge field is defined as:
0.5,
pw_ _;F¢
JH = —i A (208)
Combining this with Eq. 207, we get the charge response:
1
JH(x, T) = 28—66@77- (0aT X O511) (209)
T

where the electron charge density that we are interested in is simply the zeroth
component :

P(w,7) = 5 (W (@, 7). W, 7))

= [ DW=l (@, (7))

Note that Eq. does not include the integration over space-time. It’s a local
response between the charge current and the curvature of O(3) QSH order parameter.

The zero component of current is basically the electron charge density. Integrating
over the 2D space on a certain time slice we get the relation between the response
charge and skyrimion number:

(210)

N, = /d2wJ0(:1;,T) =2Q
' (211)
Q= cus / it - (97 X O5ii)

where () is the Potragain index in terms of QSH order parameter in any imaginary
time slice. Above formula only includes the 2d integration over space.

Apart from skyrimions, another kind of topological defect called ‘meron’ vortices is
also interesting, especially for a many body Hamiltonian which does not respect the
SU(2) spin rotational symmetry. An example of a ‘meron’ configuration is:

(n1:n27n3) :(:E/|T|,y/|7“|,0) |T| —
(0,0,1) rf=0

90
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with a smooth extrapolation of three component vectors from |r| = 0 to |r| — oc.
Hence from the view of topology, this configuration simply introduces a half integer of

Potragain index :
1 1
Q= o—cam / i - (9afi X 057) = 5

N, =20Q =1

(213)

which carries integer values of electron charge. Above identity follows from the fact
that Eq. holds locally.

Odd number of vortices make the far away |r| — oo limit ill defined. To have a
well defined field theory, with a uniform order parameter polarization in the |r| — oo
limit, one needs even numbers of vortices ( anti-vortices ) in the system. On the other
hand, the Kramers degeneracy due to the time reversal symmetry hold for any vector
order parameter configurations, thus the charge response due to the topological defects
will be quantized to only even numbers when the boundary is well defined.

On the other hand, we don’t discuss the energy scales of skyrmions or meron vortices
: whether they are low energy excitations or not. They may depends on the details of
the many body Hamiltonian.

The key point of long wave length approximation in Eq[204] requires:

by — ksl << m (214)

On a lattice we need: .
L>>— (215)

m

In this sense, we need fat Skyrimions which has sizes much larger than inverse stiffness.

Note that we didn’t write down details of the second order expansion in Eq[201] It
corresponds to the relation between the stiffness of sigma model with the mass of Dirac
fermions. Following the well known calculation of Abanov and Wiegmann [45], it gives

the term of )

g (0u17) (216)

Sy = / Lxdr

where 1/g ~ m.

We notice that in Eq. [191] there are no off diagonal elements in the matrices of
Nambu basis. Thus why we made things complicated rather than keeping the 8 x 8
matrices 7 The reason is to direct generalize above calculation to response function of
other order parameters.

Recall the five matrices including three QSH masses and two SSC masses:

M'= Moy =703 @ 0. @, M? = Mgy = i707375 @ 0y @ T
M? = Mjgy = 07375 ® 0. @1, M* = Mige = ir07273 ® 0y @ Ty (217)
M® = Mése = 107273 ® 0y @ Ty
The 5 matrices follows the rule that each two of them anticommute with each other:
r’'m’y=0 (I=1,2)
(M, M7} =0 (I#J)
DI2MIM2M3MAM® = —ilyg
TriSM M M MEMEMY) = —16ic70y - 1 =1,2,3,4,5

(218)
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One can take any three masses out of the five. Take Mpgy, Mggo and Mggo as an
example, Eq. [191] becomes:

d
_ 2 T ;
So _/dr/d 2Ul (2, 7)[(5 - +iedpX)

0 , 0
+(yo11 ® TO(T +ieA1 X) + Y072 @ To(5—

03 +ieA X)) |V (x, 7) (219)

Sy —/dT/an}mZN[ 2, 7) - U (2, ) MW (2, 7)

Here the U(1) gauge field A, is not the previous ‘charge’ gauge field, since the 16 x 16
matrix X now is defined as :

X = %[Ml, M) =1L®0 ®T, (220)
In current case the local U(1) charge transformation is redefined:
U(x, 1) — O@NUOnCny (g 1y A (x,7) = Ay (2, 7) — 0,0(x,T) (221)

This new transformation contains also no off-diagonal elements in Nambu basis. Com-

bine Eq[220| with Eq[218| one get:
TrioM M M M5 X) = —16e1;x I =3,4,5 (222)

Follow the same role of integration, one notice that above formula has the same algebra
of Eq.[203] Thus one get the general version of Eq. 209

1
T8 (@,7) = 1 -€ato / P2t - (9a7 X O5i) (223)

and Eq211}
N,- /deJO x,T)=2Q

(224)
0= 8?%0 / it - (Duit X D)

— N3,N4,N5 )

where 77 =
S

J)-(x,7) = ;@T(w T)X (2, 7)) (225)
D' )e=S ) (4 (2, 7)o, 7))

, and JY. is not the electron charge density but:

Z

Now we turn to the argument of a S-wave superconducting vortices. It is same as
the QSH meron of Eq212| up to a unitary transformation in the 5 component order
parameter space:

(n17n27n37n47n5) :(070707x/|r|7y/‘rl) |/r| — 0

226
(0,0,n3,0,0) Ir| =0 (226)

in the constraint of n;y = ny = 0 (y/n +nf+n? = 1). As long as we require the
O(3) vector to be continuously distributed, above configuration gives the contribution
of half a Pontryagin index in the space of ng, n4, ns.

1 |
Q= g-can / i - (9afi X 0571) = 5 (227)
N
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Hence
N, / L]0 (z,7) = 1 (228)

One is allowed to perform a O(3) global transformation in Eq)219 in the space of
ni,n9,n3. In another word the ‘core’ of vortex does not need to be pinned in the
polarized direction of ng:

- (nl, Noy, 715)
N, =
\/m (229)
where )
N, = [ 2ol [ D, 0)e 4=y (@, 1u(a, ) (230)

In our spin % system we have S, = %ax...:

1 (n17n27n3)
2. /n2 +n + n?

Hence, when spin SU(2) rotational symmetry is not explicitly broken, a free spin 1/2
‘spinon’ which has two fold degeneracy lies in the core of a SSC vortex.

/ Loyt (@, 7)Sv(z, 7) = (231)

7.2 WZW term

In this section we show the derivation of Wess-Zumino-Witten (WZW) topological term
based on integrating out the fermionic degrees of freedom in a action of Dirac fermions
coupled to a 5 component order parameter in 2 + 1D. The calculation is a brute-force
generalization of last section.

We take the action of fermion-boson coupling:

S =50+ Sy (232)
where
S 0 0 0
Sy = /dT/d 2V (2, 7) (5= + (N ®@To5— + 1072 .57—))¥(z, 7) (233)
or 0xy O0xs
as well as the Yukawa coupling term
5
Sy = /dT/dQJImZ Ni(x,7) - Vi(x, )M "V (z,7T) (234)
=1

We can still take the 5 dirac masses as shown in Eq. 217} as well as the same anti-
commuting relation in Eq. 218

r‘my=0 (I=1,2)

(M, M7y =0  (I#J)

DM MPMPMAM?® = —ilyg

TrS(T 2 M MY M® M*MYN) = —16ier 551N

(235)

In momentum and frequency space above action reads:

Z Z ‘IJT k,w)(iw +ivomn @ Toky 4+ iv072 @ Toky) Y (k,w)

© k 236
m . (236)
+ ZZ N(qawb> : \IJT(k: =+ q, Wy + w)M\If(k:,w)]
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Thus the partition function reads:

7= [TI DV (k). Wk, w))e

’ B Tk 1)kq,k 2 (237>
= /HD(\I]T(E),\IJ(E))B Z’LIZ’E\IJ (k1) (ho+h )71’72\1;(;97)

here we perform the expansion similar to last section: N®(x,7) = N® and NI(I =
1,2,3,4) < Ns. hg and h; are written as:

1

(hO)ﬁ,kig = [(zwl + Z(F k?m + Fle))5k1 ko + mN M55k1 kg] %

1
(P1)ky o = [0 Z N (ky — kg, w1 — wy) M —
= 45

iw1 — Z(F km + ng’y) mN5M5
—uf — [ka [ — m2 (52

(238)

(ho)iyks = | Ok ko] Vo

We take the grassmann integration of Eq.[200] Instead of the last section, now we
need to perform the expansion to fourth order:

Seff ~ —In \/ det(ho + hl)

1
= —5 TI‘hl (ho + hl)

1 1 1 1 1
=—5Tr (hgthy — §h51h1h0—1h1 + ghglmhglmhglm - Zhglhlhglhlhglhlhglhl) — 5 Trho
(239)
where £, = \/\k|2 + (mN®)2.

We write the fermion Green’s function as G4 (k) = —& B
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The topological term comes from the third order expansion:
1
§ Tr [hg thihg thahg thahg th)

QV/4 Z DY Gr(k) G- (k1) Gy (k)G (ks) G (ks) G- (ks) Gy (kr) G- (k)

bk1k2k3k4k ke kr ks

K=
4
(ik3s — mN°M®)op s [m > N* (ks — ki) M*)

4ZZZZG+ (k)G (k+p)G_(k+p)G+(k+p+q)G_(k+p+q)

G+(E+Q+g+§)G (E+p+q+s)

Tr'(ik°T, — mN°M°)] Z

(i(k° + p* )Ty — mN°M®)[m Z N7 (—q)M’)
J=1

(8 37 + 0, — VA m 3 NK ()]

4
(i(k +p" + ¢° + s")T — mN°M)| Z +5)M"]

(240)
We've used Einstein notation for §(+,d) indices but not for I(J, K, L) indices. In the
approximation of long wave length limit: |p| — 0, etc, above formula reduces to:

—162

N8Vb >_(G+ (k) ZZZZEB"/JGIJKLP 7 s
k
I K L

IJZKLN N Nt b (241)
0 0 o

2 g N X« .

_K/d”i “Z[;L“WUKL(? N'(z, >8va (z, )8%N (z,7)N"(z,7)

where terms with single £ component are odd functions and will vanish after integra-
tion. We again used the commutation role in Eq. 218, We can perform the integration:

— 2m?

(2m)* =0 (wi + [K[? +m2(N?)?)!
11
_327(]\73)4

(242)
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take this prefactor back to Eq. 240, we get the effective action:

0
Seff Zi/de2 Z 667§€]JKL7nI<w T
Lp

n'(a, 7)n"(z, 7)
1,J,K,L O

n’ 9
5 @) g

_z—/deQ > erxronl(x, 7)o’ (z, )00 (z, T)n" (2, 7)
167 I,J,K,L

(243)
This is the effective action where the 5 component vector fluctuates around one polar-
ized direction. Recall the 2+ 1d WZW term:

/ drd’x / due®ena, nba n°d-no,n

:—/d7d2w/ dueabc‘ien“f)xnb({)ync&n Oyn®
4m 0
where an extra coordinate u need to be introduced such that n*(r,z,u) at u = 1

equals the physical vector n®(7, x), whereas at u = 0 it extrapolates to a fixed value
(say 0,0,0,0,1).

Note that the action is independent of smooth path of extrapolation in the parameter
space of u. We can take the simple example of using a straight line to link: n(u =
1) = (n',n%,n3 n* 1) and n(u = 0) = (0,0,0,0, 1), such that the action of Eq.
goes back to Eq. due to a simple integration: fol duu? =

21
'Uol (S4)

=— / drd*z / due“deenaaxnb(?ync&n O,n’
T 0

/ drd’x / due®eden?Q), nbﬁ n°d,n%o,n
(245)
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