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The response of populations and species to changing conditions determines how com-
munity composition will change functionally, including via trait shifts. Selection from 
standing variation has been suggested to be more efficient than acquiring new muta-
tions. Yet, studies on community trait composition and trait selection largely focus 
on phenotypic variation in ecological traits, whereas the underlying genomic traits 
remain understudied. Using a genome-explicit, niche- and individual-based model, 
we address the potential interactions between genomic and ecological traits shaping 
communities under an environmental selective forcing, namely temporal positively 
autocorrelated environmental fluctuation. In this model, all ecological traits are explic-
itly coded by the genome. For our experiments, we initialized 90 replicate communi-
ties, each with ca 350 initial species, characterized by random genomic and ecological 
trait combinations, on a 2D spatially explicit landscape with two orthogonal gradients 
(temperature and resource use). We exposed each community to two contrasting sce-
narios: without (i.e. static environments) and with temporal variation. We then ana-
lyzed emerging compositions of both genomic and ecological traits at the community, 
population and genomic levels. Communities in variable environments were species 
poorer than in static environments, and populations more abundant, whereas genomes 
had lower genetic linkage, mean genetic variation and a non-significant tendency 
towards higher numbers of genes. The surviving genomes (i.e. those selected by vari-
able environments) coded for enhanced environmental tolerance and smaller biomass, 
which resulted in faster life cycles and thus also in increased potential for evolutionary 
rescue. Under temporal environmental variation, larger, less linked genomes retained 
more variation in mean dispersal ability at the population level than at genomic level, 
whereas the opposite trend emerged for biomass. Our results provide clues to how 
sexually-reproducing diploid plant communities might react to variable environments 
and highlights the importance of genomic traits and their interaction with ecological 
traits for eco-evolutionary responses to changing climates.
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Introduction

Communities of plant species are the result of different abiotic 
and biotic conditions (Huntley 1991). Changes in those con-
ditions will therefore also reflect on communities and their 
trait composition. Response strategies that enable species sur-
vival under changing conditions may vary across species. They 
can, for instance, select for survival (Holt 1990), for lower 
body mass (Parmesan 2006), for dispersal (Berg et al. 2010) 
or for adaptation to new conditions (Joshi et al. 2001, Jump 
and Peñuelas 2005, Bell and Gonzalez 2009). Given enough 
time, this will result in the communities passing through 
ecological species successions (Huston and Smith 1987) and 
evolutionary taxon cycles (Ricklefs and Bermingham 2002). 
Even in short periods, populations within communities can 
change their traits in response to environmental variation via 
rapid evolution (Maron et al. 2004). In this case, selection on 
standing variation can be more efficient than aquiring novel 
mutations (Barrett and Schluter 2008, Bolnick et al. 2011). 
This standing variation can be both intraspecific and intra-
individual, i.e. within-genome variation. A high standing 
variation thus provides a resource for populations to quickly 
respond to changing environments (Cochrane et al. 2015). 
However, the genomic traits which enable and maintain 
standing variation remain largely understudied in ecological 
and eco-evolutionary studies (but see Schiffers  et  al. 2013, 
Matuszewski et al. 2015).

Many functional species traits are quantitative and sub-
ject to genetic interactions, such as epistasis, pleiotropy and 
genetic linkage. To infer a direct connection between pheno-
type and genotype is therefore complex (Korte and Farlow 
2013). Still, all this genomic background determines stand-
ing genetic variation, which in turn will constrain which 
individual phenotypes are possible and thus a population’s 
evolutionary potential. With the increasing availability of 
exhaustive genetic data, considering detailed genetic fac-
tors in eco-evolutionary models has become more feasible, 
especially for model species (Exposito-Alonso  et  al. 2019, 
Frachon et al. 2019). Indeed, there is an increasing amount 
of genetic data at the population or even at the individual 
level (Domingues  et  al. 2012, Alonso-Blanco  et  al. 2016). 
Nevertheless, manipulating real-world systems to conduct 
meaningful experiments to isolate factors on both func-
tional and genetic levels is difficult (but see Booth and Grime 
2003). Thus, although the importance of genetic factors for 
ecological processes has long been recognised (Holt 1990), 
investigating its effects in real-world systems remains chal-
lenging (Hughes et al. 2008).

Simulation models provide a powerful alternative to 
overcome the practical challenges of empirically investigat-
ing and manipulating genetic traits and all the trait-medi-
ated ecological functions they control. Modeling studies 
can cover any organisational level in biology, from genomes 
through species to communities (Münkemüller et al. 2012, 
Kubisch  et  al. 2014, Matuszewski  et  al. 2015, Saupe  et  al. 
2019), and thus are suitable tools to explore potential eco-
evolutionary regulations of species traits, particularly under 

fluctuating environments. To generate realistic biodiversity 
dynamics in these conditions, key eco-evolutionary processes 
are necessary, namely local population dynamics, dispersal 
connecting populations, biotic interactions (in particular, 
niche preferences and resource competition), evolution and 
environmental dynamics (Urban et al. 2016, Vellend 2016, 
Cabral  et  al. 2019a). Considering that environmental het-
erogeneity and resource competition can be associated with 
niche differences among species (Maire et al. 2012) and that 
environmental dynamics may maintain species coexistence 
for longer (Zepeda and Martorell 2019), environmental 
fluctuations must pose some expected selective pressures on 
eco-evolutionary traits. For example, empirical evidence has 
shown that demographic rates decrease with body mass and 
increase with temperature (Brown et al. 2004, Savage et al. 
2004), a decline in body mass might be advantageous in 
varying environments (Parmesan 2006), as a lower body 
mass reduces resource requirement (Savage et al. 2004) and 
increases evolutionary rates (Allen et al. 2006). Lower body 
sizes also increase reproductive rates (Savage et al. 2004) and 
thus more offspring dispersal can take place, further assist-
ing species to respond environmental change via dispersal 
(Berg et al. 2010). Additionally, theoretical evidence has sug-
gested that environmental fluctuations may select for intra-
specific variation of dispersal ability (Mathias  et  al. 2001, 
Sieger and Hovestadt 2020), constituting bet-hedging strate-
gies. Fluctuating environment may also select for increased 
niche tolerances to cope with varying conditions (Lynch and 
Gabriel 1987, Holt 1990), although this might be mostly rel-
evant for larger species (due to longer generation times) and 
poor dispersers (reviewed by Sexton  et  al. 2017). All these 
trait selection can only be possible if genetic traits and stand-
ing genetic variation allow the selective pressure to act upon 
them. For example, genetic linkage can strongly decrease evo-
lutionary rescue capabilities under climate change in hetero-
geneous landscapes (Schiffers et al. 2013). Therefore, species 
with less genetic linkage and larger standing variation might 
be in eco-evolutionary advantage in fluctuating environ-
ments (Cochrane et al. 2015), although the interplay between 
genetic and phenotypic traits remains largely understudied.

Given the above-mentioned expectations, we developed 
a genome-explicit metacommunity model (GeMM, Fig. 1) 
aimed at addressing the interplay of genomic and pheno-
typic traits in species communities under an environmental 
selective force, namely temporal stochastic auto-correlated 
environmental fluctuation (i.e. red noise; from now on ‘tem-
poral variation’ or ‘variable environments’). Specifically, we 
address the following questions. 1) Which phenotypic and 
genomic traits enable survival in temporally variable environ-
ments? 2) How do temporally variable environments shape 
standing variation (phenotypic and genetic)? We designed a 
simulation experiment under two different environmental 
scenarios, one with and one without temporal environmental 
variation (variable and static environments, respectively) and 
analyzed genomic and phenotypic trait characteristics of sur-
viving communities. We expected communities in variable 
environments to select for higher tolerances, higher dispersal 
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abilites and lower biomass and to exhibit increased standing 
variation, both phenotypic and genetic. While our expecta-
tions on trait responses were mostly confirmed, we find that 
standing variation decreases for all traits, although the relative 
loss in standing variation varied among traits and levels of 
organization. Our findings on virtual communities suggest 
how eco-evolutionary dynamics of real plant communities 
might unfold under changing environments.

Material and methods

The model

General structure
We use GeMM (ver. 1.0.0) – a genome- and spatially-
explicit, niche- and individual-based model for plant 
metacommunities written in Julia (Bezanson  et  al. 2017, 
Fig. 1). A detailed model description with justification for 
assumptions, equations and parameter values can be found 
in the Supporting information (Grimm et al. 2006, 2010). 
Model parameters are summarized in Table 1 and in the 
Supporting information. The model generates metacom-
munity dynamics (Hanski 2001, Leibold et al. 2004) and it 
considers explicit local population and community assem-
bly dynamics emerging from genomic and individual level 
processes. The model simulates discrete time steps, which 
can be translated to one year. In the model, individuals 
belong to species, which are characterized by individuals 
with identical genomic architecture (i.e. genome size and 

gene linkage), but with phenotypic traits coded by the 
individual’s genomes (i.e. seed and adult body sizes, disper-
sal ability, environmental niche preferences) falling within 
a species-specific Gaussian trait distributions (Fig. 1a). 
Thus, individuals of the same species vary slightly in their 
phenotypes, depicting intraspecific phenotypic variation. 
Note that any phenotypic trait coded by the genome and 
used as parameter in an ecological process (e.g. function) 
is by definition also functional. Dispersal of individuals 
(i.e. seeds) interconnects grid cells, while the position of 
individuals is characterized by the grid cell coordinates, 
i.e. all individuals are concentrated in the center of the  
respective grid cell.

Eco-evolutionary processes
Like some previous ecosystem models (Harfoot et al. 2014, 
Cabral et al. 2019b, reviewed by Cabral et al. 2017), yearly 
vegetative growth in biomass, fertility and mortality rates 
in the model are controlled following the metabolic theory 
of ecology (MTE, Brown  et  al. 2004, Price  et  al. 2010). 
Accordingly, the model considers discrete yearly time steps. 
In MTE, a biological rate b depends on the temperature T 
and individual mass M, scaling a base rate b0 as:

b b M ec

EA
kBT= 0

-
	  (1)

where EA is the activation energy and kB the Boltzman 
constant. The exponent c is 3
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Figure 1. Schematic of the model. (a) Individuals represent the base agents in the model. They are comprised of a phenotype which interacts 
with other individuals and the environment, and a genome. The genome is diploid and consists of maternal and paternal sets of linkage 
units, which combine genes as one hereditary unit. Each gene may code for one or more alleles of functional traits. The expressed trait in 
the phenotype results as the average of all associated alleles in the genome. The expression of some of the traits (‘variable traits’) additionally 
depends on the local current environment and may change over time. (b) Flow of processes each individual passes every year. Some of the 
processes are dependent on the local temperature and individual biomass (marked ‘metabolic’), while all processes depend on an individual’s 
phenotypic traits (see (a)). The reproduction submodel further entails the processes of gametogenesis (including gene recombination), pol-
len movement and offspring production (see Supporting information for details). Dashed arrows represent influences, solid arrows represent 
sequence of events.
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reproduction, and - 1
4

 for mortality (Brown  et  al. 2004). 
This results in smaller individuals having a higher mortality 
than bigger ones, while individuals in cooler conditions have 
a lower mortality than those in warmer conditions. Using the 
MTE means reduced parameterization effort, since b0 values 
for the different processes are global constants and thus iden-
tical for every species. Additionally, the emerging longevity-
fecundity tradeoff that comes with mass-regulated rates has 
been shown to inherently supress the evolution of ‘super-
species’ (Cabral et al. 2019b).

Over the course of a simulation, individuals thus grow in 
size, passing three life stages: 1) seed, 2) juvenile and 3) adult. 
Individuals disperse as seeds, establish, grow and become 
reproductive adults (Fig. 1b). Both seed biomass and adult 
biomass, i.e. the threshold biomass where individuals become 
reproductive, are two of the central, genetically-coded traits 
that define individuals (Fig. 1a, Table 1).

Adults are monoecious and reproduce sexually with a random 
adult of the same species within the same grid cell to produce 
new seeds (i.e. local mating). This process can be interpreted as 

search of mating partner or as pollen movement, which is the 
term used from now on. We opted for local pollen movement 
for computational efficiency and to focus on gene flow only via 
seeds (but see the Supporting information for explorative sce-
narios with global pollen movement).

Seed dispersal follows a logistic dispersal kernel with 
genetically-coded mean dispersal distance and shape param-
eter µ and s, respectively (Bullock et al. 2017). In our discrete 
landscapes, dispersal is modeled as centroid-to-area, with 
expected mean dispersal distances usually around equal to the 
length of the grid cells (cf. Chipperfield et al. 2011).

For establishment, all individuals have fundamental pref-
erences concerning two different environmental measures: 
the first, temperature, has a direct effect on biological rates, 
as described by the MTE (Brown  et  al. 2004) and affects 
density-independent mortality, while the second axis is a 
surrogate for environmental resource niche axes, e.g. nutri-
ents or precipitation. From here on this second axis is called 
’resource’ for simplicity. Individuals’ adaptation to resource 
conditions determine their competitive abilities. Both these 
preferences are characterized by an optimum and a tolerance, 

Table 1. Overview of model parameters and variables with biological relevance. Phenotypic traits y (Mr, Ms, µ, s, P , σP, T , σT) are always 
the average of all corresponding trait loci yl in the genome. Several values are arbitrary, but within empirically or theoretically supported 
ranges as indicated in the column ‘Justification’ (see main text and the Supporting information for further details) and dimensionless unless 
otherwise specified. Note that the species- and genome-specific variables allowed species and individuals to vary over replicates and to 
undergo selective pressure. Hence, the trait composition emerging from surviving individuals and species shows how selection imposed by 
the environmental scenarios acts upon a wide range of initialized species and individuals. The variability column describes whether and 
how values might change. Constant: values are global constants across scenarios; genome: values might differ within an individual’s 
genome, potentially giving rise to different phenotypes; scenario: values differ between scenarios, but stay constant within scenarios; spe-
cies: values might differ between species, but stay fixed within species. SD: standard deviation.

Parameter Value/range Justification Variability

Boltzman constant (kB) 1.38 × 10−23 J K−1  Brown et al. 2004 Constant 
Activation energy (EA) 1 × 10−19 J Adapted from Brown et al. 2004 Constant 
Base fecundity (r0) 1.4 × 1012 Modified after Brown et al. 2004 Constant 
Base growth rate (g0) 8.8 × 1010 Modified after Brown et al. 2004 Constant 
Base mortality rate (m0) 1.3 × 109 Modified after Brown et al. 2004 Constant
Carrying capacity (K) 100 kg ca 1000 m2 of grassland constant, Deshmukh 1984,  

Bernhardt-Römermann et al. 2011 
Constant 

Temporal resource SD (δP) 0.0 or 0.2 Fung et al. 2018 Scenario
Temporal temperature SD (δT) 0°C or 0.2°C Fung et al. 2018 Scenario
Number of loci (nl) 1 to 20 Fournier-Level et al. 2011, Schiffers et al. 2013 Species 
Number of linkage units (nu) 1 to nl From one single chromosome for all loci to one chromosome per locus, 

Schiffers et al. 2013 
Species 

SD among trait loci (σl) 0 to 0.1 × mean 
of trait 

Arbitrary, allowing intragenomic genome variability Genome 

Adult biomass (Mr) e3–e14 g Arbitrary, allowing a large pool genome from herbs to trees, Brown et al. 
2004, Cabral and Kreft 2012 

Genome 

Seed biomass (Ms) e−2–e10 g (< Mr) Arbitrary, allowing a wide range of seed (or propagule) sizes Genome 
Dispersal kernel mean (µ) 0–1 grid cells Arbitrary, encompassing entire spectrum of possible short-distance 

dispersal (implicitly 0–30 m, given K, covering the majority of 
empirically measured values, Thomson et al. 2011 

Genome 

Dispersal kernel shape (s) 0–1 Arbitrary, allowing no to global long-distance dispersal Genome 

Resource optimum ( P ) 0 to 10 Arbitrary, allowing a species pool beyond landscape limits to avoid 
pre-selection mid-domain effects, Colwell and Lees 2000 

Genome 

Resource tolerance (σP) 0–1 Arbitrary, allowing up to several grid cells in all directions  
beyond optimum 

Genome 

Temperature optimum (T ) 10–40°C Arbitrary, allowing a species pool beyond landscape limits to avoid 
pre-selection mid-domain effects, Colwell and Lees 2000 

Genome 

Temperature tolerance (σT) 0–1°C Arbitrary, allowing up to several grid cells in all directions  
beyond optimum 

Genome 
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which are represented as mean and standard deviation of a 
Gauss curve, respectively. The degree of mismatch between an 
individual’s preference optimum with the local environment 
(i.e. within the grid cell) determines its adaptation value (i.e. 
environmental fitness). Near their optimum, individuals with 
a greater niche tolerance have lower adaptation values than 
individuals with narrower tolerance (i.e. specialists, Griffith 
and Sultan 2012). During establishment, the adaptation val-
ues toward temperature and resource are calculated for each 
new seed based on the local conditions and phenotypic traits 
(Fig. 1b).

Furthermore, each time environmental conditions change, 
all individuals in the affected grid cell pass establishment 
again to re-calculate their adaptation values. These adaptation 
values are functional for two different subsequent processes. 
First, individuals experience a metabolic, density-indepen-
dent mortality (Brown  et  al. 2004). This mortality further 
scales with individual temperature adaptation, so that mor-
tality is higher for individuals which are poorly adapted to the 
surrounding temperature (Cook 1979). Second, all individu-
als in a cell compete for the limited available space in the grid 
cell, i.e. total sustainable biomass. If the combined biomass of 
all individuals in a cell exceeds the grid cell’s carrying capac-
ity biomass, individuals are removed from the community 
until biomass is within grid cell limits. The choice of which 
individuals to remove is based on pair-wise comparisons of 
random pairs of individuals. From any of such two individu-
als, the individual less adapted to local resource conditions is 
removed. The function of this axis as competition axis meets 
the criteria of resources in general (aboveground competition 
for light and/or belowground competition for nutrient and 
water). Because small species and juveniles are more numer-
ous, there is a higher chance of excluding smaller individuals, 
thus also implicitly accounting for self-thinning, which is a 
common phenomenon in plant communities, but difficult 
to model (Reynolds and Ford 2005, Wiegand et al. 2008). 
Moreover, this random pair lottery further allows small-sized 
species to persist longer in the community, as additional 
coexistence mechanisms are not implemented in the model 
(e.g. small-scale perturbations, pathogens, herbivores).

Genetic architecture
All of the aforementioned traits (Table 1) are coded by one 
or more genes in an individual’s diploid genome (polygenes). 
Single genes can also be associated to several traits at the same 
time (pleiotropy, Solovieff et al. 2013). Thus, each trait can 
be represented more than once in the genome (i.e. through 
different genes at different loci). Since trait representations 
are subject to species-specific variation, they can constitute 
different alleles – both within the haploid genome at differ-
ent loci, but also between the maternal and paternal haploid 
genomes or between individuals (cf. Nevo 1978). Realized 
functional traits y, i.e. phenotypic traits, are then determined 
quantitatively by considering all respective loci yl within an 
individual’s genome and taking their average. This results in a 
random degree of species-specific phenotypic and genetic, i.e. 
intra-individual or intra-genomic, trait variation (cf. Mackay 

2001). Lastly, genes may be combined to form a linkage unit, 
which represent a set of spatially close genes within the same 
chromosome arm. Linkage units thus comprise the small-
est hereditary entities (Lande 1984, Hermann et al. 2013). 
Haploid gametes receive a complete random set of those 
linkage units following a recombination process, where each 
linkage unit can originate from either the paternal or mater-
nal chromosomal complement of the individual producing 
the gamete. During reproduction, the gametes of two mating 
individuals thus form an offspring’s (i.e. seed) genome. The 
phenotypic trait values of each offspring are then calculated 
on the basis of its recombined genome and local environmen-
tal conditions (Fig. 1a). Genetic architeture does not evolve, 
but initial species have different genetic architectures within 
the ranges shown in Table 1.

Experimental design

Simulation arena
We set our simulation experiments in a rectangular landscape 
of a grid of 5 by 7 grid cells, with periodic boundaries (closed 
thorus). Each grid cell had a carrying capacity of 100 of total 
biomass, which approximately relates to 1000 m2 of grassland 
(Deshmukh 1984, Bernhardt-Römermann et al. 2011). This 
comparison to a grassland was helpful to parameterize this 
key parameter (carrying capacity), but we did not focus on 
any particular grassland type, species pool or trait composi-
tion. Landscape size was arbitrary but ensured computational 
feasibility – higher values will allow a higher number of indi-
viduals, which will at least linearly increase the total run time 
of the simulations. Two perpendicular environmental gradi-
ents (temperature and resource) ran along the long and short 
axis of the landscape, respectively. The rectangular shape of 
our simulation arena provided a longer gradient in the physi-
ologically important temperature direction.

Initialization
We initialised each grid cell of the landscape with a differ-
ent local community of random species. The species char-
acteristics (i.e. genomic and phenotypic traits) as well as 
local abundances were chosen randomly from large ranges 
of uniform-distributed values. On the genomic level, spe-
cies differed by the number of loci, nl (maximum = 20, cf. 
Fournier-Level  et  al. 2011, Schiffers  et  al. 2013), intrage-
nomic variation between trait values, i.e. genetic variation, σl 
(maximum = 0.1 × trait value), and number of linkage units, 
nu (between one and nl, Table 1). To obtain the phenotypic 
characteristics of a species, first an average phenotype was 
defined by randomly selecting a value for each phenotypic 
trait. These traits, more specifically, the adult biomass trait, 
were then used to calculate the number of offspring a single 
individual of this species would have. Given an already deter-
mined genetic architecture (i.e. nl, nu and σl), each individual 
of a species was then initialized as follows. For each trait rep-
resentation (i.e. gene) within the genome, the associated trait 
value was chosen randomly following a Normal distribution 
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with the trait value of the average phenotype as mean and 
standard deviation the product of σl and the trait value 
(Table 1). Afterwards, the initial phenotype for each indi-
vidual was calculated based on all genes in the genome. This 
resulted in varying degrees of intragenomic and intraspecific 
standing variation. We disabled mutations in our experimen-
tal design so that this standing variation was the only resource 
for selection. Grid cells were then filled with populations of 
several species until carrying capacity was reached. Because 
species vary randomly in their traits, including biomass, ini-
tial grid cell communities varied in richness. This resulted in 
initial communities with on average 10 species per grid cell 
and a total of 350 species in the landscape.

Values for simulation, global and species-specific parame-
ters that were not varied in the different experimental scenar-
ios were chosen to ensure plausible patterns, most importantly 
to achieve species co-existence by adjusting the mortality-to-
fecundity ratio. Species-specific parameter values were drawn 
at random from a range that extended beyond what would be 
realisable in simulations to reduce geometric artifacts within 
the parameter space (Table 1). This also kept the need for 
additional assumptions at a minimum, since viable species 
emerged via environmental filtering and ecological interac-
tions. Global parameter values were either adapted from the 
literature (Brown et al. 2004, Fournier-Level et al. 2011) or 
fine-tuned via trying out a range of realistic values.

Scenarios
For investigating our general study question about the inter-
play of environmental variation and phenotypic and genomic 
traits, we designed two scenarios. In the first, temperature 
and resource gradients ranged through (arbitrary) constant 
values of 16.85–22.85°C (290–296 K) and 3–7 (arbitrary 
quantity), respectively, during the entire simulation run 
(‘static environment’). In the second, initial temperature 
and resource values were the same as in static environments, 
but could change at each year (‘variable environment’). The 
change followed a gaussian random-walk trajectory to yield 
positive auto-correlation (Fung  et  al. 2018). The amount 
of change (δP and δT, Table 1) was drawn randomly from a 
Normal distribution with a standard deviation of 0.2. This 
value corresponds to a moderate rate of change of no more 
than 0.5 degrees per year in the majority (ca 99%) of cases, 
which we found by trying different values to produce note-
able environmental change that did not kill all individuals in 
a short amount of time. Since our simulation arena represents 
a small spatial scale, all grid cells changed always by the same 
value at each timestep. The change of temperature was inde-
pendent from that of resource and vice versa. Confounding 
effects, such as landscape configuration, different temporal 
dynamics, the role of both pollen- and seed-mediated gene 
flow, complex dispersal behavior and macro-evolutionary 
processes (e.g. clade diversification) have been studied else-
where and were thus not included in the present study 
(Kremer et al. 2012, Münkemüller et al. 2012, Kubisch et al. 
2014, Helsen et al. 2016, Aguilée et al. 2018). Table 1 con-
tains the parameters which were varied for the scenarios, their 

meaning and their values. Nevertheless, explorative simula-
tions with global pollen movement, which might be still rea-
sonable at least for some species due to the relatively small 
landscape area, generated qualitatively similar results (shown 
in the Supporting information). Deviations are in accordance 
for what is expected from global pollen movement, namely 
slightly more gamma richness in variable environments pos-
sibly due to increased mating success, loss of selective pressure 
on genetic linkage and overall slightly better maintenance of 
standing variation at both phenotypic and genetic levels pos-
sibly due to prolonging the presence of genotypic variants 
that would have been otherwise filtered out at environmen-
tal limits (Supporting information). Although empirical and 
modelling comparisons between pollen- and seed-mediated 
gene flow is scarce for herb species, pollen-mediated gene 
flow seems indeed to maintain genetic variation (for single 
herb species see Helsen et al. 2016, Gonçalves-Oliveira et al. 
2020). Hence, the small differences observed in these 
explorative simulations indicate promising research direc-
tions. We also performed explorative scenarios with alterna-
tive boundary conditions (reflecting and absorbing), which 
generated very similar diversity and selection relationships 
between environmental scenarios (Supporting information). 
Explorative simulations with smaller grid sizes (3 × 5 grid 
cells) supported also similar relationships between scenarios, 
but with overall lower richness, as expected for smaller areas 
(Supporting information).

We started 100 different replicates which were simulated 
for 750 years. Each replicate, i.e. each unique initial commu-
nity, was subjected to both scenarios. This yielded 200 simu-
lation runs in total. From the 100 replicates, 95 reached the 
final time step in both scenarios with surviving species and 
were retained for the analyses (i.e. 190 runs). The duration 
of 750 years was adequate to allow quasi-equilibrium and 
short enough to warrant our selection-on-standing-variation 
rationale (Hermisson and Pennings 2005). The amount of 
replicates was suficient to integrate most variation emerg-
ing from the model stochasticity as shown by the stabilizing 
trends of standard deviations of trait data obtained already 
after ca 40 replicates (Supporting information).

It is possible to increase the temporal, spatial and ecologi-
cal (i.e. number of populations or species) extents, but run-
time increases at least linearly up to quadratically with the 
number of individuals. For comparison, our scenarios took 
ca 2–5 days per simulation, with temporally varying environ-
ments and global pollen movement taking the longest (up 
to a week per simulation). In particular, pollen movement 
and seed dispersal are computationally intensive submodels, 
hence our simplifications for pollen movement in the main 
experiments. Genome size did not strongly impact runtime.

We recorded population-level statistics of the individu-
als in our simulation world at the start and every 50 years 
of a simulation run. The model does also allow yearly data 
recording but we chose 50-year intervals to speed up runtime 
(recording data to file is computationally demanding) and to 
reduce overall data size without compromising our analyses. 
This data encompassed individual phenotypic and genotypic 
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values. Thus, for each of these points in time, we tracked the 
state of local species populations including location, abun-
dance, demographics, mean adaptation and trait values for all 
phenotypic and genomic traits.

Analyses

To make the individual information more accessible, we calcu-
lated summary statistics at the population level. We defined a 
population as a group of conspecific individuals co-occurring 
in the same grid cell. For each population, we then calculated 
mean values of each phenotypic trait, the variance of each phe-
notypic trait (phenotypic intraspecific variation), and means 
of the individual genetic variation in each trait. We scaled all 
variance values by the respective population-specific means to 
get coefficients of variation. To compare emerging ecological 
patterns and identify when equilibrium is reached, we calcu-
lated a set of ecological metrics, namely species-richness, i.e. 
the average number of species per grid cell, α (α-diversity), the 
total number of species across the landscape, S (γ-diversity), 
β-diversity, β = S/α − 1 (Whittaker 1960), population demo-
graphic structure (i.e. number of juveniles and number of 
adults) and range-filling from the data on surviving commu-
nities. For diversity indices, we converted our data to commu-
nity matrices and analyzed them using vegan (Oksanen et al. 
2018) in R (<www.r-project.org>). To assess demographic 
structure within communities, we analyzed average numbers 
of juveniles and adults. Range-filling was calculated as the 
fraction of grid cells that was occupied by a species over all the 
grid cells that were potentially suitable for the given species. 
Suitability was asserted as an arbitrary cut-off where environ-
mental parameters (temperature and resource) fell within a 
species’ tolerance (optimum ± tolerance).

For our study questions, we analyzed the trait composi-
tion of surviving communities genomic trait composition 
(study question 1), and differences in phenotypic and genetic 
standing variation (study question 2) between environments. 
Since we were interested in general patterns of the effect of 
environmental variability, rather than the effects of warm-
ing or cooling trends, we excluded resource and temperature 
optimum traits from our analyses. We transformed trait and 
variation distributions before analysis and visualization using 
a log(x + 1) transformation, because values were strongly 
right-skewed and were frequently < 1. Additionally, we cal-
culated the degree of genetic linkage as nl/nu, because due to 
our method of initializing species, nu directly depended on nl.

To ascertain whether and how trait composition differs 
between environmental conditions (study question 1), we first 
compared species numbers and identities. Because each com-
munity is subjected to both environments, we analyzed what 
proportion of species was shared by both environments, and 
which were unique to one of the environments. To assess how 
phenotypic and genomic traits respond to variable environ-
ments, we compared trait characteristics between scenarios 
by performing principal component analyses on the popula-
tion trait data. This way, we were able to describe general 
patterns in trait space between scenarios by relating the total 

trait space shift to the principal components and correlated 
trait axes. Additionally, we compared community trait dis-
tributions pairwise between environments to identify trends 
in traits specific to the environments. For this, we calculated 
linear mixed models using the R package lme4 (Bates et al. 
2015) with trait as response, environment as fixed effect and 
replicate as random effect.

To find out whether there is a selective force on stand-
ing variation (both phenotypic and genetic) specific to 
environmental conditions (study question 2), we compared 
the phenotypic and genomic trait variances of surviving 
communities between scenarios for all traits separately. We 
again calculated linear mixed models, with trait variances 
as response, environment as fixed effect and replicate as  
random effect.

The model code, experiment definition files and analysis 
scripts are available at Github (<https://github.com/CCTB-
Ecomods/gemm>). Albeit reporting of significance values is 
generally inappropriate for simulation models (White et al. 
2014), we use significance here to identify which responses 
are stronger than others.

Results

Differences of ecological patterns between 
environments

Surviving communities in our simulation experiments (Fig. 1) 
differed in a number of ecological characteristics. Compared 
to communities in static environments, communities in vari-
able environments were only about half as species-rich on a 
local level (α-diversity, Fig. 2a) and exhibited less β-diversity 
(Fig. 2b), which resulted in decreased species richness on a 
regional scale (γ-diversity, Fig. 2c). Summing over all repli-
cates, a total of 121 species survived in both enviroments, 
while 588 and 58 surviving species were unique to static and 
variable environments, respectively. For communities in vari-
able environments, emerging functional differences comprised 
higher total abundances in all demographic stages (Fig. 2d–e) 
and decreased range filling (Fig. 2f ). While all aforementioned 
metrics were constantly changing during the entire simulation 
course in the variable environments, in static environments 
they reached a quasi-equilibrium by year 500.

Response of phenotypic and genomic traits

Surviving communities showed subtle differences in their 
trait syndromes combining all traits in a PCA (Fig. 3). In 
the first two principal components (40% of the variance 
explained), populations from variable environments occu-
pied for the most part a subset of the trait space of popula-
tions from static environments (mostly overlapping ellipses 
in Fig. 3). Nevertheless, the trait space of variable environ-
ment communities was shifted towards increased environ-
mental tolerances and decreased genetic linkage and number 
of genes (negative direction of second principal component 
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– Fig. 3). With the exception of these first two axes, the fol-
lowing seven principal components contributed similarly to 
the overall explained variance (contribution of each trait to 
each principal component in the Supporting information).

Focusing on single traits, communities showed several 
differences between the two types of environments (Fig. 4a, 
Supporting information). Compared to static environments, 
surviving communities in variable environments showed on 
average significantly increased mean dispersal distance (µ), 
resource and temperature tolerances (σP and σT, respectively), 
decreased long distance dispersal (s), decreased adult (Mr) and 
seed biomasses (Ms), decreased mean genetic variation (σl) 
and strongly decreased genetic linkage (nu). Number of genes 
(nl) showed a positive trend, but exhibited no significant dif-
ference (Supporting information). These trait differences are 
robust over time, as mean trait values remained fairly stable 
in the static environments already from year 100 on (period 
necessary for the metacommunitiy to reach quasi-stationary 
dynamics from initial conditions), whereas resource tolerance 
and biomasses continued to change directionally in variable 
environments (time-series of mean traits and in trait shifts in 
the Supporting information).

Differences in standing variation (phenotypic and 
genetic)

Additionally to differences in the trait composition at the 
community level, we found that phenotypic (between 
individuals) and genetic (between genes) trait variation 

(a) (b) (c)

(d) (e) (f)

Figure 2. Averaged ecological patterns across the entire simulation arena over time after initialisation. Dark/violet: static environment, light/
yellow: variable environment. Grey ribbons represent 95% confidence intervals. (a) Local species richness (α-diversity) as numbers of spe-
cies, (b) β-diversity (Whittaker 1960), (c) total species richness (γ-diversity) as numbers of species, (d) mean number of juveniles, (e) mean 
number of adults, (f ) range-filling, i.e. the percentage of potentially suitable habitat that is actually occupied. Spikes are due to single rep-
licates with extreme values.

Figure 3. Principal component analysis (PCA) showing trait space 
characteristics (phenotypic and genomic) of surviving populations. 
Biplot of surviving populations and trait axes along the first two 
principal components. Populations without temporal environmen-
tal variation (dark/violet) versus with temporal environmental vari-
ation (light/yellow). Shadowed ellipses highlight areas of 95% 
confidence.
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significantly decreased for the variable environments in all 
traits (Supporting information), although the degree of 
decrease varied among the traits and type of standing varia-
tion (Fig. 4b–c). While long-distance dispersal and mean dis-
persal distance decreased comparatively less at the phenotypic 
than at the genetic standing variation, both adult and seed 
biomasses showed a stronger decrease at the phenotypic than 
at genetic standing variation. The decreasing trends of both 
temperature and resource tolerances were very similar at the 
phenotypic and genetic levels.

Discussion

General differences between scenarios

Our results show how community trait composition of plant 
metapopulations may differ between static and temporally 
variable environments in a genomically-explicit eco-evolu-
tionary model. The changing abiotic conditions in variable 
environments act as a constant environmental filtering mech-
anism (Kraft  et  al. 2015), where only those species survive 
that are able to adapt to or track environmental changes. 
As a result, communities are poorer in species (Menge and 
Sutherland 1976). The decreased β-diversity suggests that 
these fewer species in variable environments are rather gen-
eralists, in comparison to static environments where species 
seem more specialized to local environmental conditions (cf. 
Gilchrist 1995). Furthermore, the reduced range-filling in 
variable environments is likely a mid-domain-like effect (cf. 
Colwell and Lees 2000), where due to the ongoing temporal 
variability, the margins of a potential range will often become 
unsuitable quickly, impeding establishment and survival. 
Moreover, because the environmental fluctuations in our 

simulations were stochastic rather than periodical or direc-
tional, the probability for species to find alternating suitable 
conditions is low. This alternating suitability, however, is the 
prerequisite for temporal environmental variability to favor 
species co-existence and increased species richness (cf. Tilman 
and Pacala 1993, Descamps-Julien and Gonzalez 2005). In 
contrast, most communities in static environments reached a 
quasi-equilibrium already after the first 200 years.

Study question 1. Which phenotypic and genomic 
traits enable survival in temporally variable 
environments?

The trait characteristics of communities in the respective envi-
ronments represent successful strategies in surviving random 
environmental variation. The decreased values of resource 
tolerance in communities in static environments indicate 
increased environmental specialization. This is in contrast to 
communities in variable environments, where the variability 
in resource conditions favors species with higher tolerance 
values (i.e. specialization to local conditions are maladap-
tive in variable environments, Gilchrist 1995, Kassen 2002). 
Additionally, temperature tolerance directly affects individual 
survival due to metabolic constraints (Fig. 2d). Since a high 
temperature tolerance decreases fitness, species are selected 
to keep tolerances low if they occur at their respective envi-
ronmental optimum. In variable environments, this environ-
mental optimum is hardly met. As a consequence, selection 
acts rather on enhancing temperature tolerance to gain long-
term fitness. Therefore, our experimental design captures the 
evolution towards bet-hedging strategies in terms of adapta-
tion to variable environments (Slatkin 1974).

The second aspect of survival strategies lies in the biomass 
patterns. In general, species in variable environments were 
smaller than in static environments. Since growth rates and 

(a) (b) (c)

Figure 4. Community trait responses to temporal environmental variation along three organisational levels. (a) Differences in trait means 
in variable environments compared to static environments. (b) Differences in phenotypic standing variation (i.e. trait variances between 
conspecific individuals), and (c) differences in genetic standing variation (i.e. trait variances between genes or loci) in variable environments 
compared to static environments. Error bars show standard errors. Red and blue colors indicate negative and positive differences, respec-
tively. Note the different axis scales. The abbreviation ‘n.s.’ denotes differences that are not significant (p > 0.05). ‘N.A.’ marks trait differ-
ences that are not available at the given level.
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fecundity follow MTE, smaller species are more fecund than 
bigger species at the expense of survival. A higher and more 
frequent number of offspring will spread the risk over time 
in variable environments (McGinley  et  al. 1987, Philippi 
and Seger 1989). Additionally, the larger range of differ-
ent biomasses in static environments can be interpreted as 
temporal partitioning (Pronk et al. 2007), because it means 
that co-occurring species will reproduce at different times 
and intervals. This allows species to alternate dominance 
and thus produce temporally variable biotic conditions (cf. 
Olff  et  al. 2000, Wilson and Abrams 2005). Furthermore, 
both biomass and tolerance patterns suggest that specializa-
tion to avoid competitive exclusion plays a larger role in shap-
ing communities in static environments, while communities 
in variable environments are primarily shaped by generalism 
and environmental filtering (cf. Menge and Sutherland 1976, 
Hulshof et al. 2013).

To track suitable conditions, dispersal abilities are crucial 
in changing environments (Bourne et al. 2014). While mean 
dispersal distances in our simulations showed little differ-
ences between scenarios, long-distance dispersal decreased 
and mean dispersal distance increased in variable environ-
ments. This selects for dispersal into rather neighboring grid 
cells than at longer distances, which could cause loss of seeds 
to unsuitable conditions. Besides primary dispersal traits, the 
dispersal rate also increased in variable environments via the 
indirect effect of metabolic rates: the high demographic turn-
over that comes with higher fecundity due to decreased bio-
mass leads to more frequent dispersal. This further explains 
why the change in dispersal traits between environment 
was small. With the rate of change in our simulations and 
the small spatial extent of our landscape, dispersal distance 
(which is what is controlled by dispersal traits) is less impor-
tant than dispersal rate (cf. Johst et al. 2002). However, this 
might change in fragmented landscapes, where dispersal dis-
tance is critical to connect habitable patches (Bacles  et  al. 
2006, Boeye et al. 2013, Bonte et al. 2010).

Lastly, species may survive by adapting to changing con-
ditions (Jump and Peñuelas 2005). This constant adaptation 
requires an appropriate genetic architecture: we expected 
genomes to contain a high variation of alleles (Holt 1990) 
which can be recombined to quickly respond to novel con-
ditions (Schiffers et al. 2013, Matuszewski et al. 2015) by 
producing new phenotypes. Indeed, we found increased, 
albeit not significant, gene numbers in variable environ-
ments, but a strong significant selection towards lower 
genetic linkage. This combination of genetic traits allows 
more recombination potential. The decrease in genetic link-
age for similar or slightly higher number of genes means 
an increase in linkage units. In our simulations, selection 
acted upon standing interspecific variation, as genetic archi-
tecture did not evolve. In nature, however, increased num-
ber of linkage units (e.g. chromosomes) can indeed emerge 
from chromosome fissions (a cause of ascendant dysploidy) 
or polyploidization followed by diploidization (exclusion 
of redundant gene copies). In fact, polyploidisation corre-
lates with latitude and, arguably, with environmental stress 

(Rice et al. 2019), but direct tests of this are difficult due to 
low feasibility (Van de Peer et al. 2017). Moreover, increased 
fecundity also increases adaptation potential as it leads to 
more recombination events. According to our results, the 
ecological adaptation response to variable environments also 
involved increasing environmental tolerances. However, 
the selection on genomic traits did not prevent the general 
decrease of mean genetic variation in variable conditions, 
which contradicts results from a previous modeling study 
(Matuszewski et al. 2015). With more detailed data on the 
levels of variation, we explain this contradiction in the fol-
lowing section.

Study question 2. How do temporally variable 
environments shape phenotypic and genetic 
standing variation?

Having identified survival strategies on a population pheno-
typic level, we addressed selection patterns on the standing 
variation within the populations – both at the phenotypic 
intraspecific (i.e. between individuals) and genetic (i.e. 
between genes) levels. This addressed differential selection 
depending on the level of standing variation. All traits were 
more specialized, i.e. had lower variation, in variable environ-
ments at both phenotypic and genetic levels. In fact, standing 
variation significantly decreased over time in both scenarios 
for most traits, but in particular in variable environments 
(Supporting information), which is expected due to the lack 
in metacommunity dynamics at larger scales. However, it 
appears to be beneficial for species to maintain more plastic-
ity in dispersal ability between individuals, as evidenced by 
the more moderate loss of variation at the phenotypic than at 
the genetic level when coping with temporal environmental 
variation.

Since variation in our experiments could be increased 
neither by mutation (Josephs  et  al. 2017), nor by external 
gene flow (Cornetti et al. 2016), selection could only act on 
standing variation. Under these conditions, high gene link-
age preserves variation in the linked traits (cf. Teotónio et al. 
2009), while low gene linkage allows faster specialization or 
adaptation of unlinked traits simultaneously. Indeed, the lat-
ter showed to be strongly selected in variable environments 
(Fig. 3). Ecological specialization can also be facilitated 
by low numbers of loci (Schiffers  et  al. 2014). In contrast, 
phenotypic uniformity might arise from increased number 
of loci which stabilize variation (Fraser and Schadt 2010). 
In our simulation experiments this phenotypic uniformity 
seems to be achieved by rather decreasing linkage, which 
makes loci to specialize independently. Moreover, our results 
of increased linkage units accompained by decrease in stand-
ing variation further suggest these trends as stabilizing coex-
istence mechanisms by promoting intraspecific competition 
caused by phenotypic uniformity. Our explorative scenarios 
with global pollen movement also shows that increased gene 
flow across the landscape (via pollen additionally to seeds) 
can assist in maintaining genetic linkage and standing 
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variation, although the latter most notably for genetic stand-
ing variation in variable environments (Supporting informa-
tion). Species richness was slightly higher for global pollen 
movement (Supporting information), and thus this increased 
standing variation enhanced coexistence. Future experiments 
could focus in which circumstances of gene flow pheno-
typic variation indeed impacts species coexistence negatively 
(Hart et al. 2016) or if low species numbers first allow higher 
phenotypic variation (Hulshof et al. 2013).

Our results furthermore exemplify that phenotypic and 
genetic variation do not need to be correlated, at least not 
for all traits (Fig. 4b–c; see the Supporting information for 
global movement). In the case of mean dispersal distance, 
the loss of phenotypic variation in variable environments was 
relatively lower than the loss of genetic variation (Fig. 4b–c). 
Hence, the retained phenotypic variation in mean dispersal 
distance is due to survival of different phenotypes, which, in 
turn, exhibit relatively specialized genotypes. However, the 
opposite happened for biomasses, with more specialized phe-
notypes but with more diverse genotypes. Such differential 
specialization of standing variation depending on trait, level 
and environment further stresses the essential role of ecotypes 
and different routes to achieve bethedging for species survival 
under changing environments.

Limitations and perspectives

The fact that our simulations produced low coexistence across 
the landscape might result from too large a trait space in the 
initial species pool, most of which would be filtered by the 
relatively narrow environmental conditions. Since the initial 
species pool totaled on average 350 species, the probability 
is also high for it to contain a few strong generalist species, 
which outcompete other species. Moreover, an average ini-
tial number of 10 species per grid cell means a low prob-
ability for any species to be adapted to the local conditions. 
Nevertheless, the coexistence level obtained is also in accor-
dance with theoretical expectations, considering that a niche 
partitioning along the two gradients would explain the aver-
age of a bit more than five species in static environments (i.e. 
at least one specialized species per environmental gradient 
combination, Armstrong and McGehee 1980). The filtering 
is also evidenced by the reduction of trait value ranges over 
all traits after simulation initialisation (Supporting informa-
tion). In fact, additional post hoc simulations with more con-
strained initial communities (temperature and resource niche 
optima matching landscape limits) resulted in higher surviv-
ing species numbers, particularly in α-diversity (Supporting 
information). Small-scale disturbance or trophic interac-
tions, e.g. herbivory could further increase coexistence, as 
theoretical and empirical studies suggest (Roxburgh  et  al. 
2004, Shea et al. 2004, Chesson and Kuang 2008). However, 
since these processes likely produce additional confounding 
effects, they were excluded at this stage, although they consti-
tute directions for further model development. Trophic and 
others interactions, such as mutualism, can affect species sur-
vival under climate change (Berg et al. 2010) and even lead 

to extinction cascades if keystone species are lost (Brook et al. 
2008). Since keystone species would be affected by genetic 
factors as any other species, our experiments likely underes-
timates net species loss effects mediated by genetic factors.

Further model development could make some model 
assumptions species-specific parameters (i.e. genomically 
coded), e.g. pollen movement ability, number of mates per 
pollination event, self-compatibility, dioecious reproduction, 
clonal reproduction. These specifications could be aimed at 
experiments focusing either on the role of these assumptions 
or on particular real-world communities for which such spe-
cies-specific information is available. Some of these traits are 
particularly relevant for grasslands, such as self-compatibility 
and clonality. In fact, recent model application to mimic cal-
carious grassland communities could integrate self-compat-
ibility as species-specific, with self-compatibility promoting 
evolutionary rescue in species undergoing habitat loss and 
temperature warming (Figueiredo 2021). Still, the current 
mechanistic complexity of GeMM is already useful for vari-
ous questions. For example, when applying GeMM to assess 
different scenarios promoting species invasions on oceanic 
islands, we confirmed the empirical evidence that propagule 
pressure is the key mechanism promoting island invasions, 
but could further show that invasive species have higher 
niche tolerances and dispersal ability than native species 
(Vedder et al. 2020). In such model applications, the result-
ing model runtimes must be considered during experimental 
design, as runtime increases with the number of individuals. 
For example, spatial extents larger than simulated here would 
need to be compensated by shorter temporal frameworks or 
by focusing on single species, whereas larger extents (e.g. for 
studying macroevolutionary dynamics) should rather focus 
on shorter spatial extents or smaller number of individuals. 
Nevertheless, in principle, our experiments demonstrate that 
GeMM can already be applied to the study of plant com-
munities and, as long as the processes are similar, potentially 
to other organisms (e.g. maybe terrestrial invertebrates). 
Applying the model to other organisms may require adapting 
parameter settings and processes.

Another limitation relates to the genomic traits. Our 
model simplifies complex genetic factors and dynamics 
which could potentially have confounding effects on result-
ing patterns. For instance, linkage between genes in reality is 
not a binary decision, but rather a consequence of the physi-
cal distance between those genes. The larger the distance, 
the higher the probability of crossing over during meiosis. 
Additionally, genetic architecture is dynamic, especially in 
plants. Genomes can grow, e.g. by polyploidisation (Van de 
Peer  et  al. 2017), and shrink in size, both of which affects 
genetic linkage and potentially genetic variation. Since poly-
ploidisation is often a stress response in plants it will argu-
ably affect survival (Rice et al. 2019). Subsequent gene loss 
may then even initiate speciation (Albalat and Cañestro 
2016). Our model hence represents the effects of genetic 
linkage and genome sizes without explicitly considering their 
genetic origins. Nevertheless, our findings on the interac-
tion between genetic and phenotypic traits call for empirical 
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works identifying the factors that trigger these genomic pro-
cesses and assessing their evolutionary relevance (Van de Peer  
et al. 2017).

To make our model and the findings on genomic and phe-
notypic traits under temporal evironmental variation more 
applicable and relevant to real-world systems, the model could 
be constrained by real data in further studies. For instance, 
simulation arenas can be directly derived from actual land-
scapes, including environmental conditions (Karger  et  al. 
2017). Species-specific parameters could be taken from data-
bases for phenotypic traits (Kattge et al. 2011) and occurence 
records (GBIF - <www.gbif.org/>) and enriched by genomic 
information (Dong et al. 2004, Howe et al. 2020) to con-
strain initial parameter space for the creation of random 
communities. Thus, our model represents an opportunity to 
integrate different types of datasets in a unifying mechanistic 
framework.

Even in the current state, our model addresses a number of 
eco-evo-environmental phenomena (cf. Govaert et al. 2019). 
The emerging patterns under randomly fluctuating envi-
ronments can inspire new hypotheses which can be used to 
guide fieldwork and experimental studies, thus serving as null 
expectations to empirical studies. In this respect, the model 
realism lies on the explicit connection between genomic and 
ecologically functional traits. The consideration of genomic 
traits opens up new perspectives on biodiversity dynamics 
during impending climate change (Fig. 5). For scenarios of 
short-term change of environmental conditions, i.e. warm-
ing, lower or increased resource and more frequent extreme 
events, adaptation can only exploit standing intraspecific or 
genetic variation, rather than novel mutations. Species with 
enough phenotypic variation will likely have good adaptive 
potential, regardless of genetic characteristics. For species 
with low phenotypic variation, adaptive potential depends 
on genomic traits. Species that have highly specialized, i.e. 
uniform, phenotypes and show little or no genetic variation 
will only be able to survive rapidly changing conditions by 
tracking their specific favourable conditions. Fragmented 
environments or poor dispersal abilities therefore will likely 

lead to the extinction of those species. Even if species have 
high genetic variation, genetic architecture is crucial for their 
performance. With a high degree of genetic linkage, species 
might not be able to adapt critical traits in time to react to 
changing conditions, since a beneficial trait allele might be 
linked to other disadvantageous alleles of other traits. Thus, 
net fitness is unlikely to increase. Low linkage, on the con-
trary, might enable rapid evolution to new environments, 
as genetic hitchhiking becomes less relevant. However, if 
linkage is too low, species can quickly lose genetic variation, 
rendering them unfit to react to subsequent change. Ideally, 
conservation measures targeted at particular species should 
thus consider population structure and genomic traits of 
species. The importance of genetic and functional diversity 
for species survival is already acknowledged in conservation 
biology (Diáz and Cabido 2001,  Rao and Hodgkin 2002). 
Our results now imply that genomic diversity, i.e. the genetic 
architecture, can be central to species’ adaptive success under 
impending environmental change.

When investigating real-world communities, differences 
from the expectations provided by our results in communities 
responding to warming temperatures may be highly informa-
tive to disentangle the effects of climate change compared to 
those of background environmental oscillations. Moreover, it 
should be possible to investigate how different combinations 
of environmental drivers may lead to different trends in both 
genomic and phenotypic traits. In fact, current human-driven 
changes form spatially-structured anthropogenic threat com-
plexes (Bowler et al. 2020). Simulation experiments combin-
ing habitat loss and climate change have already suggested 
potentially disastrous consequences for species survival in 
both hypothetical (Travis 2003) and real-world (Sarmento 
Cabral  et  al. 2013) systems. However, previous modelling 
studies have focused mostly on ecological processes and pat-
terns, but eco-evolutionary models may allow explicitly inte-
grating genetic patterns (Urban et al. 2016, Malchow et al. 
2020). Hence, quantifying genetic diversity and functional 
patterns of empirical communities and matching these empir-
ical patterns with simulation results varying in environmental 

Figure 5. Phenotypic and genomic factors influencing species survival under variable environmental conditions.
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scenarios could indicate the most likely scenario that the 
empirical community is undergoing (Overcast  et  al. 2019 
for genetic and ecological patterns compared to biogeo-
graphical scenarios). Hence, quantification of community-
wide, species-specific genetic and ecological patterns of 
real-world communities might be used to contrast compet-
ing hypotheses explaining empirical patterns (McGill  et  al. 
2019 for interesting questions to be answered with  
eco-evolutionary models).

Conclusion

We demonstrated complex interactions between genetic and 
ecological traits by using a simulation model that explicitly con-
siders genetic architecture of plant communities in changing 
environments. These eco-evolutionary feedbacks broaden our 
understanding of the role of trait-specific standing variation in 
species survival and adaptation (Fig. 5). This enabled identify-
ing ecological strategies of species to survive variable environ-
mental conditions. Variable environments select species with 
higher tolerances and faster life cycles while species are selected 
to maintain more phenotypic variation of dispersal abilities. 
These adaptations are, however, mostly enabled by increasing 
the number of linkage units. Furthermore, we could show that 
selection pressure differs between traits and that there might be 
selection pressure to maintain higher phenotypic variation for 
dispersal traits and genetic variation of biomass traits.

Our findings suggest that genomes are subject to opposing 
forces – especially under changing conditions. While constant 
environmental filtering impoverishes genomes, populations 
and communities, there is a selective force to maintain varia-
tion at least at one organizational level for particular traits to 
adapt for future change. This conflict can be mediated to a 
certain degree by genetic architecture, namely a higher num-
ber of linkage units which allows rapid evolution based on 
standing variation. Additionally, traits that need quick spe-
cialization might require keeping or reducing the number of 
loci while reducing linkage between them. These complex 
interdependencies of genomic traits may further promote the 
high diversity in genetic architecture and ecological strategies 
in real-world species.

Additionally, our theoretical approach provided potential 
mechanisms responsible for the incongruence of phenotypic 
and genetic variation, which is sometimes found in nature. 
A mechanistic link between differential selection in those 
types of variation means that special care is called for when 
inferring genetic variation from phenotypic variation and  
vice versa.

In summary, this study highlights the importance of 
genomic traits for the functional assessment of local popu-
lations, species and metacommunities. We hope that con-
servation studies make more use of these characteristics to 
prioritize conservation efforts and expect future studies to 
investigate the genetic architecture of specific traits in natural 
populations.
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