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Abstract
This thesis is concerned with applying the total variation (TV) regularizer to surfaces and
different types of shape optimization problems. The resulting problems are challenging
since they suffer from the non-differentiability of the TV-seminorm, but unlike most other
priors it favors piecewise constant solutions, which results in piecewise flat geometries for
shape optimization problems.The first part of this thesis deals with an analogue of the TV
image reconstruction approach [Rudin, Osher, Fatemi (Physica D, 1992)] for images on
smooth surfaces. A rigorous analytical framework is developed for this model and its
Fenchel predual, which is a quadratic optimization problem with pointwise inequality
constraints on the surface. A function space interior point method is proposed to solve it.
Afterwards, a discrete variant (DTV) based on a nodal quadrature formula is defined for
piecewise polynomial, globally discontinuous and continuous finite element functions on
triangulated surface meshes. DTV has favorable properties, which include a convenient
dual representation. Next, an analogue of the total variation prior for the normal vector
field along the boundary of smooth shapes in 3D is introduced. Its analysis is based on a
differential geometric setting in which the unit normal vector is viewed as an element of
the two-dimensional sphere manifold. Shape calculus is used to characterize the relevant
derivatives and an variant of the split Bregman method for manifold valued functions is
proposed. This is followed by an extension of the total variation prior for the normal
vector field for piecewise flat surfaces and the previous variant of split Bregman method
is adapted. Numerical experiments confirm that the new prior favours polyhedral shapes.

Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit der Anwendung der totalen Variation (TV) als
Regularisierung auf Oberflächen und in verschiedenen Problemen der Formoptimierung.
Die daraus entstehenden Optimierungsprobleme sind aufgrund der TV-Seminorm nicht
differenzierbar und daher eine Herausforderung. Allerdings werden dadurch, im Gegen-
satz zu anderen Regularisierungen, stückweise konstante Lösungen favorisiert. Dies führt
bei Problemen der Formoptimierung zu stückweise flachen Geometrien. Der erste Teil
dieser Arbeit widmet sich der Erweiterung des Ansatzes zur mathematischen Bildverar-
beitung [Rudin, Osher, Fatemi (Physica D, 1992)] von flachen Bildern auf glatte Ober-
flächen und deren Texturen. Für das damit verbundene Optimierungsproblem wird das
Fenchel präduale Problem hergeleitet. Dies ist ein quadratisches Optimierungsproblem
mit Ungleichungsrestriktionen für dessen Lösung ein Innere-Punkte-Verfahren in Funk-
tionenräumen vorgestellt wird. Basierend auf einer Quadraturformel, wird im Anschluss
eine diskrete Variante (DTV) der TV-Seminorm für global unstetige und stetige Finite-
Elemente-Funktionen auf triangulierten Oberflächen entwickelt. (DTV) besitzt positive
Eigenschaften, wie eine praktische duale Darstellung. Im letzten Teil wird zuerst ein
TV-Analogon für die Oberflächennormale von glatten Formen in 3D gezeigt und mit
Hilfe von Differentialgeometrie analysiert. Danach wird eine mögliche Erweiterungen
für stückweise glatte Oberflächen vorgestellt. Zur Lösung von beiden Regularisierungen
wird eine Variante des Split-Bregman-Verfahrens für Funktionen mit Werten auf Mannig-
faltigkeiten benutzt.
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List of Symbols and Abbreviations

Abbreviations

a.e. almost everywhere
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| · |2 euclidean 2-norm
| · |TV total variation seminorm for finite elements
| · |DTV discrete total variation seminorm for finite elements
Pr space of polynomials of maximum degree r
CGr continuous Lagrange finite element space of order r
DGr discontinuous Lagrange finite element space of order r
RTr Raviart-Thomas finite element space of order r
S2 manifold 2-sphere
TsS2 tangent space of S2 at s ∈ S2

g( · , · ) Riemannian metric
| · |g norm induced by Riemannian metric
dJ[V ] directional shape derivative of functional J in direction V
dg[V ] material derivative of function g
g′[V ] local shape derivative of function g
DΓ derivative in tangential directions
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CHAPTER 1

INTRODUCTION

Rudin, Osher, and Fatemi [139] proposed to estimate the denoised image u as the solution
of the minimization problem

Minimize
1
2

∫
Ω
|Ku− f |2 ds + β

∫
Ω
|Du|

over u ∈ BV(Ω),
(1.1)

with K = id, where BV(Ω) is the space of functions with bounded variation and the total
variation (TV) seminorm ∫

Ω
|∇u| (1.2)

was used as a regularizing functional. The TV-seminorm in the minimization problem
discourages the solution from having oscillations, yet it does allow it to have discontinu-
ities and favours it to be piecewise constant. Due to the choice of norms in the fidelity and
regularization terms, problem (1.1) is also termed a TV–L2 model (by contrast to TV–L1,
where the fidelity term consists of a L1-norm). A large body of literature on this topic has
emerged; see for instance [44,46,49,148,160] and the references therein. The operator K
appearing in (1.1) expresses available a-priori knowledge about the relation between the
image u to be reconstructed and the observed data f . Common examples include K = id
for classical image denoising, K = masking for inpainting problems [52, Chapter 6.5],
K = blur for deblurring problems [39, 71], and K = coarsen for un-zooming prob-
lems [118].

The first two Chapters of this thesis deal with the extension of (1.1) to closed surfaces
Γ ⊂ R3 and its discretization. The increasing interest in studying image processing
problems on surfaces is due to its numerous applications, for instance, in computer vi-
sion [102] and geophysics [101]. This is accompanied by the ongoing development in
3D scanning, remote sensing and other data acquisition hardware. In the applications
mentioned unavoidable sampling errors from the imaging equipment, or the need to com-
press large-scale images, e.g., for limited-bandwidth Internet applications, are potential
sources of noise, necessitating post processing. The predominant approach in surface im-
age processing so far is based on extensions of the nonlinear, anisotropic diffusion method
going back to [127]. In particular, we mention [12, 57, 67] for surface intrinsic concepts,
and [29, 30, 122] for volume-based formulations. We also point out [19] who consider
an extension of the Mumford–Shah image segmentation problem using the active contour
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2 1. Introduction

method on surfaces, with a subsequent restoration phase on the segmented parts driven by
linear isotropic diffusion.
As an alternative to diffusion driven image restoration the focus of Chapter 2 is on an
analog of the TV–L2 reconstruction model for images defined on smooth surfaces, which
was recently proposed in [108]. We establish a rigorous relation between the primal and
dual problems in appropriate function spaces. To be precise, we formulate the predual,
which is a quadratic convex problem with pointwise bound constraints in H(div; Γ), the
analog on surfaces of the space of vector-valued L2 functions whose divergence is like-
wise square integrable. The distinction between dual and predual problems is necessary
due to BV(Γ) being non-reflexive. A similar analysis has previously been pursued in [99]
for the ’flat’ case. Notice however that in [99] the TV-seminorm is defined in a way which
is not rotationally invariant but has the advantage of leading to pointwise simple bounds.
By contrast, we propose to use an interior-point method, which deals nicely with point-
wise nonlinear constraints of the form |p|2 ≤ β arising in the coordinate free setting that
naturally comes with surfaces. While Cartesian grids are natural in ‘flat’ image process-
ing tasks and lend themselves to finite difference approximations, surfaces are naturally
triangulated, for instance by 3D scanner software. Based on the rigorous formulation of
the predual problem we are led to choose a conforming finite element discretization of
the space H(div; Γ) by the surface analogue of (possibly higher-order) Raviart–Thomas
finite element spaces introduced in [133]. When it comes to discretization we observe
the inconsistency that the discretization of the primal problem is no longer the dual of the
discretization of the predual problem.
To overcome this issue, we present in Chapter 3 a discrete formulation of the TV-seminorm
(DTV) based on a nodal quadrature formula, which is defined for piecewise polynomial,
globally discontinuous and continuous finite element functions on triangulated surface
meshes. We establish that optimization problems utilizing the discrete TV-seminorm as a
regularizer, like TV-L2 and TV-L1, possess a discrete dual problem with very simple con-
straints. The structure of the primal and dual problems is in turn essential for the efficient
implementation of appropriate solution algorithms. We are able to show that a variety
of popular algorithms for TV-L2 and TV-L1, originally developed in the context of finite
difference discretizations on Cartesian grids, apply with little or no changes to discretiza-
tions with low or higher-order finite elements. Specifically, we consider the split Bregman
algorithm [85], the primal-dual method of [47] and Chambolle’s projection method [44]
for TV-L2 for denoising and inpainting problems, as well as the primal-dual method and
the ADMM of [152] for TV-L1.

In the second half of this thesis we apply our experiences about the total variation frame-
work, received in the previous chapters, to surfaces. Our main goal is archiving a regu-
larization functional for shape optimization problems that favours polyhedral shapes and
discrete surface meshes. Meshes are widely employed in computer graphics and computer
vision, where they are utilized to model arbitrary shapes and real geometries. Meshes can
be produced by 3D scanners and can be efficiently processed numerically with appro-
priate software. Unfortunately, the process of geometry acquisition by scanning leads to
unavoidable errors in the form of noise or missing parts. The process of removing such
noise while preserving relevant features is known as mesh denoising. When missing parts
of the geometry must be reconstructed we speak of mesh inpainting. The main difficulty



3

in removing undesired noise from a mesh is that both noise and sharp geometric features
can be considered high frequency signals. This makes it difficult to distinguish between
them. The aforementioned problem has been of interest in the community of image pro-
cessing since late in the 1980s; see for instance [43]. Also for mesh denoising, many
algorithms exist and we refer the reader, e.g., to [34] for a survey.
In Chapter 4, we introduce the total variation of the normal field

|n|TV(Γ) :=
∫

Γ

(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

) 1
2 ds (1.3)

along a smooth surface Γ in analogy to (1.2), where n is the outer unit normal vector field
along Γ and {ξ1(s), ξ2(s)} denotes an orthonormal basis of the tangent spaces TsΓ. A
thorough introduction to |n|TV(Γ) and its properties will be given in Chapter 4. Neverthe-
less we wish to point out already at this point a number of properties of (1.3) which set it
apart from the (1.2):

1. The variable on which (1.3) depends is the surface Γ. Since the normal vector
field n in turn depends on Γ, both the integration domain and the integrand in (1.3)
have relevant dependencies for shape optimization. By contrast, Ω is fixed in (1.2),
where u is the variable.

2. The normal vector field, whose pointwise variation the total variation functional
(1.3) seeks to capture, is manifold-valued with values in S2. By contrast, the func-
tion u in (1.2) is real-valued.

3. It is well known that the TV functional penalizes jumps and non-zero gradients of
BV functions. Consequently, the minimization of (1.2) avoids unnecessary vari-
ations of u and thus favors piecewise constant minimizers in BV. Generally, it
does not admit minimizers in spaces of functions of higher smoothness, such as
W1,1(Ω). The situation is slightly different for (1.3) since we are considering
closed surfaces Γ, which yields a periodicity constraint for the normal vector field
n. In this setting, unnecessary variations of n correspond to non-convex regions
of the enclosed body of Γ. Consequently, the minimization of (1.3) favors convex
shapes and, more precisely, spheres; see Theorem 4.9.

Since (1.3) is non-smoothness and most of its variables are manifold-valued or live in
tangent spaces, solving shape optimization problems containing (1.3) is challenging. Al-
though many optimization algorithms have recently been generalized to Riemannian man-
ifolds [10, 25, 26], the split Bregman method for manifolds proposed in Chapter 4 is new
to the best of our knowledge. For a general overview of optimization on manifolds, we
refer the reader to [1].
In Chapter 5, we discuss a discrete variant of (1.3) tailored to piecewise flat surfaces Γh,
where (1.3) does not apply. In contrast with the smooth setting, the total variation of the
piecewise constant normal vector field n is concentrated in jumps across edges between
flat facets. We therefore propose the following discrete total variation of the normal

|n|DTV(Γh)
:= ∑

E
d(n+

E , n−E ) |E| , (1.4)
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where E denotes an edge of length |E| between facets of Γh. Here, d(n+
E , n−E ) is the

geodesic distance, which denotes the shortest distance between the two neighboring nor-
mal vectors on S2. Similarly as for the case of smooth surfaces, solving discrete shape
optimization problems is challenging, but can be approached with a discrete version of
the split Bregman method for smooth surfaces.
The aforementioned split Bregman method for the discrete total variation of the normal
will be used in Chapter 6 to solve three different shape optimization problems. We present
numerical results for an Electrical impedance tomography (EIT) problem, mesh denoising
and mesh inpainting.
Finally in Chapter 7 we summarize our results and list some possible extensions and
modifications for future research.



CHAPTER 2

TOTAL VARIATION IMAGE
RECONSTRUCTION ON SMOOTH

SURFACES

This Chapter parallels [96], where the image reconstruction problem Minimize
1
2

∫
Γ
|Ku− f |2 ds +

α

2

∫
Γ
|u|2 ds + β

∫
Γ
|∇u|

over u ∈ BV(Γ)
(2.1)

is considered. Here, Γ ⊂ R3 is a smooth, compact, orientable and connected surface
without boundary. BV(Γ) denotes the space of functions of bounded variation on the
surface Γ, and

∫
Γ |∇u| is the surface analog of the total-variation seminorm, both of which

are introduced in Section 2.1. Furthermore, the observed data f ∈ L2(Γ), parameters
β > 0, α ≥ 0 and the observation operator K ∈ L(L2(Γ)) are given. By K∗ ∈ L(L2(Γ))
we denote the Hilbert space adjoint of K. It will be shown that BV(Γ) ↪→ L2(Γ) so that
the integrals in (2.1) are well defined. We assume throughout that either α > 0 holds, or
else that K is injective and has closed range, i.e., there exists a constant γ > 0 such that
‖Ku‖L2(Γ) ≥ γ ‖u‖L2(Γ) for all u ∈ L2(Γ). This second case is equivalent to K∗K being
a coercive operator in L(L2(Γ)); see for instance [76, Chapter A.2].
This Chapter is organized as follows. In Section 2.1 we introduce the proper functional
analytic framework for the discussion of (2.1) and its predual. In particular, we recall the
definition of the spaces BV(Γ) and H(div; Γ) on a smooth surface Γ. Section 2.2 is de-
voted to the study of the Fenchel predual problem. In Section 2.3 we formulate a function
space interior point approach for the solution of the predual problem, analyze the well-
posedness of the barrier approximations, and provide necessary and sufficient optimality
conditions. Details concerning the discretization by Raviart–Thomas surface finite ele-
ments and the implementation of our method are also given in that section. Subsequently,
numerical results are presented in Section 2.4. While the presentation focuses on denois-
ing and inpainting of scalar (gray-scale) image data, an extension to multi-channel (color)
images is rather straightforward.

5



6 2. Total Variation Image Reconstruction on Smooth Surfaces

2.1 Functional Analytic Framework for Smooth Surfaces
In the following we introduce the necessary analytical framework to extend the definition
of functions of bounded variation (BV) as well as functions in H(div) on an open subset
of Rn to functions defined on smooth surfaces.

2.1.1 Concepts of Differential Geometry
In a nutshell, a smooth surface Γ is a two-dimensional manifold of class C∞ embedded in
R3. In the interest of keeping this thesis self-contained, we briefly summarize the required
concepts from differential geometry. The interested reader is referred, for instance, to
[70, 106, 130] for further background material.

Definition 2.1. A subset Γ ⊂ R3, endowed with the relative topology of R3, is a smooth
surface if for every point s ∈ Γ there exists an open set V ⊂ Γ containing s, an open
set U ⊂ R2 and a homeomorphism x : U → V with the additional properties that
x ∈ C∞(U; R3) holds and that the Jacobian of x has rank 2 on U.

A mapping x as above is called a parametrization at s. A collection of parametrizations
covering all of Γ is said to be an atlas of Γ. We will always associate with a smooth
surface an atlas of parametrizations, and it will not matter throughout this thesis which
particular atlas is being used. Coordinates in the parameter domain U of a chart x will be
denoted by ζ1 and ζ2.

Assumption 2.2. Throughout this thesis we will assume that the smooth surface Γ ⊂ R3

is compact and connected.

It can be shown that for smooth surfaces, connectedness implies that any two points can
be joined by a smooth path. As a further consequence of Assumption 2.2 the surface Γ
is also orientable; cf. [9, Prob. 2.43]. That is, the Jacobian of the transition map x−1 ◦ y
between any two intersecting parametrizations has positive determinant on its domain of
definition.
A function

f : Γ→ R

is said to be of class Ck if, for any parametrization x in the atlas, the function

f ◦ x : R2 ⊃ U → R

is of class Ck. Similarly, this notion can be defined for functions f defined only on an open
subset of Γ by appropriately restricting those parametrizations, whose image intersects the
domain of definition of f .
We continue with the notions of tangent vectors and the tangent space at a point s ∈ Γ.
Consider a differentiable curve

γ : (−ε, ε)→ Γ, γ(0) = s.

Then X := γ̇(0) ∈ R3 is said to be the tangent vector to the curve γ at s. The tangent
space at s, denoted by TsΓ, consists of all tangent vectors of such curves γ at s. It is a
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vector space of dimension 2. If s belongs to the image of some parametrization x, then it
is easy to verify that {

∂x
∂ζ1

(x−1(s)),
∂x
∂ζ2

(x−1(s))
}

constitutes a basis for TsΓ. Therefore, any tangent vector X at s can be represented as

X = Xi ∂x
∂ζi

(x−1(s)). (2.2)

Here and in the sequel we use Einstein’s summation convention. The coefficients Xi

are the components of the tangent vector X ∈ TsΓ in the local basis induced by the
parametrization x.
For a given parametrization x at s ∈ Γ we define the metric tensor G by its entries

(gij)(s) :=
(

∂x
∂ζi

(x−1(s))
)>( ∂x

∂ζ j
(x−1(s))

)
,

where a>b denotes the Euclidean inner product in the ambient space R3. Since the
vectors ∂x

∂ζi
(x−1(s)), i = 1, 2 are linearly independent, G(s) is positive definite and also

symmetric.
Due to the fact that every tangent space to a point s on the surface inherits the standard
inner product from the ambient space R3, we can introduce the inner product of two
vectors X, Y ∈ TsΓ as

(X, Y)2 := X>Y = gij Xi Y j,

where the last equation holds if X and Y are given by representations of type (2.2) w.r.t. a
parametrization x. Moreover, the 2-norm of a vector X ∈ TsΓ will be denoted by

|X|2 := (X, X)1/2
2 .

Definition 2.3. The tangent bundle of Γ is defined as T Γ :=
⋃

s∈Γ{s} × TsΓ. A (tangen-
tial) vector field of class Ck (k ≥ 0) is a map X : Γ→ T Γ with the following properties:

(i) X(s) ∈ {s} × TsΓ for all s ∈ Γ, i.e., X is a section.

(ii) For any parametrization x : U → V, the component functions s 7→ Xi(s) in the
representation

X(s) = Xi(s)
∂x
∂ζi

(x−1(s)), s ∈ V (2.3)

are of class Ck on V.

Finally we recall the notion of divergence and gradient on a surface Γ, see for instance
[93, 138].

Definition 2.4. Let be f : Γ → R a Ck function for k ≥ 1. Define the differential
operators (∂i ·)(s), i = 1, 2, by

(∂i f )(s) :=
∂( f ◦ x)

∂ζi
(x−1(s))
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and the gradient of f by

(∇ f )(s) := gij(s) (∂i f )(s)
∂x
∂ζ j

(x−1(s))

for s ∈ V. Here, gij are the components of the inverse of the metric tensor G = (gij).

The gradient assigns to each point s ∈ S a vector (∇ f )(s) in TsΓ ⊂ R3 verifying(
(∇ f )(s), v

)
2 = vi(∂i f )(s)

for all v = vi ∂x
∂ζi

(x−1(s)) ∈ TsΓ.

Definition 2.5. Let be X a vector field of class Ck for k ≥ 1 with representation (2.3)
w.r.t. the parametrization x. We define the divergence operator by

(div X)(s) :=
1√

det G(s)
∂i

(
Xi
√

det G
)
(s), s ∈ V. (2.4)

Notice that the notions of gradient, tangent space, tangent bundle, vector fields and their
divergence, as well as the inner product (·, ·)2 and the norm | · |2 are intrinsic quantities,
i.e., independent of the atlas used to describe the surface Γ.

2.1.2 Sobolev Functions and Functions of BV

In this part we recall the notions of Lebesgue and Sobolev spaces Lp(Γ) and H1,p(Γ) on
the surface Γ, as well as the spaces H(div; Γ) and BV(Γ) required for the subsequent
analysis.
For m ∈ N0, Cm(Γ) denotes the space of Cm functions on the surface Γ. Moreover,
Cm(Γ; T Γ) denotes the space of Cm vector fields. As usual, the support of a function f
is defined as

supp f := cl {s ∈ Γ : f (s) 6= 0}
with cl C denoting the closure of a set C ⊂ Γ.
We begin with the recollection of the spaces Lp(Γ). Let f be a continuous function on Γ
with support in the range V of a parametrization x : U → V. Then, we have by definition∫

Γ
f ds :=

∫
U

f (x(u))
√

det G(x(u)) du, (2.5)

where the measure ds is defined as ds =
√
(det G) ◦ x du, with du denoting the Lebesgue

measure in R2. This definition of the integral extends to arbitrary continuous functions
on Γ by using a partition of unity; cf. [94, Ch. 1.2]. As it is shown there the integrability
of a function and the value of its integral over Γ depend neither on the atlas nor on the
partition of unity used.
For 1 ≤ p < ∞ the space Lp(Γ) is defined as the completion of C∞(Γ) w.r.t. the norm

‖ f ‖Lp(Γ) :=
(∫

Γ
| f |p ds

)1/p
. (2.6)
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We also recall that L∞(Γ) is defined as the space of functions such that

‖ f ‖L∞(Γ) := ess sup
s∈Γ

| f (s)| < ∞.

Naturally, these definitions extend to vector fields f ∈ Lp(Γ; T Γ). For instance, we have

‖ f‖Lp(Γ;T Γ) :=
(∫

Γ
| f |p2 ds

)1/p
.

The spaces L2(Γ) and L2(Γ; T Γ) are Hilbert spaces w.r.t. the usual inner products (·, ·)L2(Γ)
and (·, ·)L2(Γ;T Γ).
We are now in the position to define functions of bounded variation on surfaces satisfying
Assumption 2.2. Background material on BV functions on flat domains can be found,
for instance, in [83], [174, Ch. 5] or [8, Ch. 10]. For the definition of BV functions on
surfaces, see also [108, Sect. 3.1] or [17, Sect. 4].

Definition 2.6. A function u ∈ L1(Γ) belongs to BV(Γ) if the TV-seminorm defined by∫
Γ
|∇u| := sup

{∫
Γ

u div p ds : p ∈ V
}

(2.7)

is finite, where

V := {p ∈ C∞(Γ; T Γ) : |p(s)|2 ≤ 1 ∀s ∈ Γ} . (2.8)

We equip the space BV(Γ) with the norm

‖u‖BV(Γ) = ‖u‖L1(Γ) +
∫

Γ
|∇u| , u ∈ BV(Γ). (2.9)

It is worth remarking that, as in the planar case,∫
Γ
|∇u| =

∫
Γ
|∇u|2 ds

holds for all functions u ∈ C∞(Γ) and indeed for u ∈ H1,1(Γ); see [138, p.18]. Notice
that both contributions to the norm ‖ · ‖BV(Γ) are independent of the parametrization. We
also remark that the space C∞(Γ; T Γ) can be replaced by C1(Γ; T Γ) without affecting
the definition; compare [8, Def. 10.1.1], [174, p.221] or [17].
According to Definition 2.6, it is clear that the embedding

BV(Γ) ↪→ L1(Γ)

holds. Next, we are going to prove that even

BV(Γ) ↪→ L2(Γ)

is valid, as is known for two-dimensional flat domains; see for instance [8, Th. 10.1.3].
This result is essential to establish the well-posedness of (2.1) in the sequel. Its proof
requires the notion of intermediate convergence of BV(Γ) functions as well as the concept
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of first-order Sobolev spaces H1,p(Γ). We summarize only the essential concepts and
refer the reader to [93, 94] for an in-depth introduction to Sobolev spaces on manifolds.
For 1 ≤ p < ∞ and a function u ∈ C∞(Γ), define the norm

‖u‖H1,p(Γ) :=
(
‖u‖p

Lp(Γ) +
∫

Γ
|∇u|p2 ds

)1/p
. (2.10)

The Sobolev space H1,p(Γ) is then given by

H1,p(Γ) := cl (C∞(Γ))

where the closure is w.r.t. the norm (2.10).
The counterpart of the following definition in the classical framework can be found in [8,
Definition 10.1.3].

Definition 2.7. Let {un} be a sequence of functions in BV(Γ) and suppose u ∈ BV(Γ).
We say that un → u in the sense of intermediate convergence if

(i) un → u strongly in L1(Γ) and

(ii)
∫

Γ
|∇un| →

∫
Γ
|∇u|.

The following lemma can be proved analogously as in [8, Th. 10.1.2]. The proof uses a
partition-of-unity argument as well as mollification.

Lemma 2.8. For any u ∈ BV(Γ), there exists a sequence {uk} ⊂ C∞(Γ) with uk → u
in the intermediate sense.

To proof the next theorem, we need the following proposition, see [8, Prop. 10.1.1.]:

Proposition 2.9. Let {un} be a sequence of functions in BV(Γ), which strongly converges
to some u ∈ L1(Γ) and satisfies

sup
n∈N

∫
Γ
|∇un| < ∞.

Then u ∈ BV(Γ) and ∫
Γ
|∇u| ≤ lim inf

n→∞

∫
Γ
|∇un|

holds.

Proof. For p ∈ V as defined in (2.8), we have∫
Γ

u div pds = lim
n→∞

∫
Γ

un div pds

≤ lim inf
n→∞

∫
Γ
|∇un| .

By taking the supremum over all p ∈ V , we proof our claim.
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Theorem 2.10. The space BV(Γ), equipped with the norm (2.9), is a Banach space and
the embedding

BV(Γ) ↪→ Lp(Γ)
holds for all 1 ≤ p ≤ 2.

Proof. The proof proceeds along the lines of [8, Th. 10.1.1. and Th. 10.1.3.]. For some
Cauchy sequence {un} in BV(Γ), it holds that {un} is also a Cauchy sequence in L1(Γ)
and there exists u ∈ L1(Γ) with un → u strongly in L1(Γ). Consequently,

up − uq → u− uq

strongly in L1(Γ) for some q ∈ N when p goes to +∞. On the other hand, for all ε > 0
there exists some Nε ∈N such that∫

Γ

∣∣∇up −∇uq
∣∣ < ε ∀p, q > Nε.

Applying Proposition 2.9 on up − uq for q > Nε yields∫
Γ

∣∣∇(u− uq)
∣∣ ≤ lim inf

p→∞

∫
Γ

∣∣∇(up − uq)
∣∣

< ε.

Consequently, u ∈ BV(Γ) and

lim
q→∞

∫
Γ

∣∣∇(u− uq)
∣∣ = 0

holds and un → u strongly in BV(Γ) follows.
Now, let us focus on the proof of the second claim. To this aim, let us define {un} ⊂
C∞(Γ) which converges to u ∈ BV(Γ) in the sense of intermediate convergence. Due
to [94, Th. 2.6], we have that the embedding

H1,q(Γ) ↪→ Lp(Γ)

is continuous for all q ∈ [1, 2) and p = 2q
2−q . In particular, for q = 1 and p = 2 we have

H1,1(Γ) ↪→ L2(Γ),

so there exists c > 0 such that(∫
Γ
|un|2 ds

)1/2

≤ c
(∫

Γ
|un| ds +

∫
Γ
|∇un|2 ds

)
since {un} ⊂ C∞(Γ) ⊂ H1,1(Γ). The sequence on the right hand side is bounded, and
thus a subsequence of {un} convergences weakly in L2(Γ). Since un → u in L1(Γ), we
must have un ⇀ u in L2(Γ). By weak sequential lower semicontinuity of the norm,(∫

Γ
|u|2 ds

)1/2

≤ lim inf
n→∞

(∫
Γ
|un|2 ds

)1/2

≤ lim inf
n→∞

c
(∫

Γ
|un| ds +

∫
Γ
|∇un|2 ds

)
= c

(
‖u‖L1(Γ) +

∫
Γ
|∇u|

)
= c ‖u‖BV(Γ).
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Then, applying [94, Cor. 2.1], we have that BV(Γ) ↪→ Lp(Γ) holds for all p ∈ [1, 2].

To close this section we introduce the following space of vector fields, which will play a
fundamental role throughout the thesis,

H(div; Γ) :=
{

v ∈ L2(Γ; T Γ) : div v ∈ L2(Γ)
}

.

We equip this space with the norm

‖v‖H(div;Γ) :=
(
‖v‖2

L2(Γ;T Γ) + ‖div v‖2
L2(Γ)

)1/2
, (2.11)

which is induced by the inner product

(v, w)H(div;Γ) := (v, w)L2(Γ;T Γ) + (div v, div w)L2(Γ).

H(div; Γ) is a Hilbert space.

2.2 The Fenchel Predual on Surfaces

The dual problem of TV–L2 has been stated in various references; see for instance [41,
44, 51]. In particular, it appears in [108] exactly for problem (2.1) on smooth surfaces.
However, the arguments used to derive the dual problem in these references were all
formal, and in particular no function space was assigned to the problem. To the best of
our knowledge [99] is the only reference where this analysis is made rigorously, but only
for the flat case. Due to the lack of reflexivity of BV spaces, the dual and predual problems
are different. As has been shown in [99] the predual, posed as a problem in H(div), is
the appropriate concept.
In this section we adapt this rigorous analysis to problem (2.1) on the surface Γ. As
expected from [108] the predual problem is a quadratic optimization problem for the
predual tangent field p ∈ H(div; Γ) with pointwise constraints on the surface. We will
show that both problems are equivalent and that the primal solution can be recovered from
the predual solution. We wish to point out that the constraints

|p(s)|2 ≤ β ∀s ∈ Γ

arising in our setting are nonlinear. This is in contrast with [99, eq. (2.1)], where simple
bounds

−β 1 ≤ p(s) ≤ β 1 ∀s ∈ Γ

were obtained due to a slightly different definition of the TV-seminorm, which is, how-
ever, not invariant under changes of the parametrization.
Solving the predual problem has a number of advantages compared to solving the primal
problem directly. First, we do not have to deal with the discretization of the nonsmooth
term

∫
Γ |∇u| in the finite element context, nor employ an optimization algorithm for the

nonsmooth problem (2.1); we mention however that such a program was carried out in a
different context in [13]. Second, as was pointed out in [14], the finite element solution of
minimization problems in BV spaces may suffer from low convergence rates. Finally, as
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was observed previously in [41,44,51,99], we mention that the predual variable p serves
as an edge detector in the image.
Let us recall some preliminary results from convex analysis; see for instance [169, Ch. 2.8].
Given two locally convex Hausdorff spaces X, Y, two proper convex functions

F : X → R∪ {∞}, G : Y → R∪ {∞}

as well as a bounded linear map Λ : X → Y we have, due to the Fenchel-Young inequal-
ity, the relation of weak duality

inf
x∈X
{F(x) + G(Λx)} ≥ sup

y∗∈Y∗
{−F∗(Λ∗y∗)− G∗(−y∗)} . (2.12)

Here F∗ : X∗ → R and G∗ : Y∗ → R are the Fenchel conjugates of F and G, defined by

F∗(x∗) = sup
x∈X
{〈x, x∗〉 − F(x)}

G∗(y∗) = sup
y∈Y
{〈y, y∗〉 − G(y)}

and X∗ and Y∗ are the topological dual spaces of X and Y. Moreover Λ∗ : Y∗ → X∗

stands for the adjoint operator of Λ. Under the assumption

Λ(dom F) ∩ {y ∈ Y : G is continuous in y} 6= ∅, (2.13)

strong Fenchel duality holds, i.e.,

inf
x∈X
{F(x) + G(Λx)} = max

y∗∈Y∗
{−F∗(Λ∗y∗)− G∗(−y∗)} . (2.14)

We now apply this to our specific setting. As in [99], we define the operator B as

B := α id+K∗K ∈ L(L2(Γ)), (2.15)

where id is the identity mapping. Furthermore, we define

‖w‖2
B−1 := (w, B−1w)L2(Γ) =: (w, w)B−1

for any w ∈ L2(Γ). Notice that in view of our standing assumptions (α > 0 or K∗K
coercive), ‖w‖B−1 is a norm equivalent to the standard norm of L2(Γ).

Theorem 2.11. The Fenchel dual problem of
Minimize

1
2
‖div p + K∗ f ‖2

B−1

over p ∈ H(div; Γ)
subject to |p|2 ≤ β a.e. on Γ

(2.16)

is equivalent to the optimization problem (2.1). In other words, (2.16) can be seen as the
predual of the primal problem (2.1).
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Proof. The proof proceeds along the lines of [99, Th. 2.2]. We invoke the Fenchel duality
theory in the setting

X = H(div; Γ),

Y = L2(Γ),

Λ = − div : H(div; Γ)→ L2(Γ).

It is convenient to identify Y with Y∗ so that

Λ∗ = −div∗ : L2(Γ)→ X∗.

Define the functions F : H(div; Γ)→ R and G : L2(Γ)→ R as

F(p) :=

{
0 if |p|2 ≤ β a.e. on Γ,
∞ otherwise,

G(v) :=
1
2
‖v− K∗ f ‖2

B−1 .

(2.17)

From [99] we have

G∗(v∗) = sup
v∈L2(Γ)

{
(v, v∗)L2(Γ) − G(v)

}
=

1
2
‖Kv∗ + f ‖2

L2(Γ) +
α

2
‖v∗‖2

L2(Γ) −
1
2
‖ f ‖2

L2(Γ)

(2.18)

for v∗ ∈ L2(Γ). With regard to F∗ : H(div; Γ)∗ → R it is clear that

F∗(p∗) = sup
p∈B0

〈p, p∗〉H(div;Γ),H(div;Γ)∗ (2.19)

holds, where
B0 := {p ∈ H(div; Γ) : |p|2 ≤ β a.e. on Γ} .

Next we argue that the set

B1 := {p ∈ C∞(Γ; T Γ) : |p|2 ≤ β a.e. on Γ}

is dense in B0 in the topology of H(div; Γ). In fact, in the case Γ = Rn and in the
absence of bounds |p|2 ≤ β, the result is classical; see for instance [82, Theorem I.2.4].
The proof can be done by mollification. Given p ∈ H(div; Rn), define

pε := p ? ηε,

where {ηε} is a family of Friedrichs mollifiers and ? denotes convolution. Since mollifi-
cation preserves pointwise bounds, the convergence

pε → p in H(div; Rn)

remains true under the constraint |p|2 ≤ β. In case that Γ is a compact surface, consider
a finite atlas {x`}N

`=1 of parametrizations

x` : U` → V`.
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Moreover, let {θ`}N
`=1 denote a partition of unity subordinate to {U`}. Consider p ∈ B0

and write

p =
N

∑
`=1

p θ`.

Then
[(p θ`) ◦ x`]ε → (p θ`) ◦ x` in L2(R2),

which is enough to confirm the convergence

pε =
N

∑
`=1

[(p θ`) ◦ x`]ε ◦ x−1
` →

N

∑
`=1

[(p θ`) ◦ x`] ◦ x−1
` = p

in L2(Γ) due to the boundedness of det(G(x`)) for all ` = 1, . . . , N; see (2.5). By
applying an analogous argument, div pε can likewise be shown to converge to div p in
L2(Γ), which proves the density of B1 in B0.
Consequently, it is enough to take the supremum over p ∈ B1 in (2.19). Hence, for every
u ∈ L2(Γ) we obtain

F∗((−div)∗u) = sup{〈p, (−div)∗u〉H(div;Γ),H(div;Γ)∗ : p ∈ B1}
= sup{(u,−div p)L2(Γ) : p ∈ B1}
= β sup{(u, div p)L2(Γ) : p ∈ C∞(Γ; T Γ) : |p|2 ≤ 1 a.e. on Γ}.

According to Definition 2.6, we get

F∗((−div)∗u) =

β
∫

Γ
|∇u| if u ∈ BV(Γ),

∞ otherwise.
(2.20)

Thus, since F and G are proper and convex and condition (2.13) is fulfilled for them, there
is no duality gap between the optimal values of (2.1) and (2.16), i.e., (2.12) becomes an
equality and

inf
p∈H(div;Γ)

{F(p) + G(−div p)}

= sup
u∈L2(Γ)

{−F∗((−div)∗u)− G∗(−u)}

= sup
u∈BV(Γ)

{−F∗((−div)∗u)− G∗(−u)}

= sup
u∈BV(Γ)

{
−1

2
‖Ku − f ‖2

L2(Γ) −
α

2
‖u ‖2

L2(Γ) − β
∫

Γ
|∇u |

}
+

1
2
‖ f ‖2

L2(Γ). (2.21)

Finally, it is immediate to check that (2.21) is in turn equivalent to (2.1) .

Corollary 2.12. Problem (2.1) and its predual (2.16) are solvable.

Proof. It is easy to see that the objective 1
2‖div p + K∗ f ‖2

B−1 is bounded below by 0. Let
us consider a minimizing sequence {pn}. Owing to the boundedness of the objective as
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well as |pn|2 ≤ β, {pn} is bounded in H(div; Γ). Hence, there exists a subsequence
(again denoted by {pn}) such that

pn ⇀ p in L2(Γ; T Γ)

holds with |p|2 ≤ β a.e. on Γ, as well as

div pn ⇀ div p in L2(Γ).

By weak sequential lower semicontinuity of H(p) := 1
2‖div p + K∗ f ‖2

B−1 ,

1
2
‖div p + K∗ f ‖2

B−1 ≤ lim inf
n→∞

1
2
‖div pn + K∗ f ‖2

B−1

holds. This implies that (2.16) has the (global) minimizer p and is solvable.
Regarding the solvability of (2.1), since condition (2.13) is fulfilled for F and G defined
in the proof of Theorem 2.11, we conclude that the supremum in the RHS of (2.21) is
attained, so (2.14) holds and the optimization problem (2.1) is solvable.

The following theorem shows how the optimal solutions to (2.1) and (2.16) are related to
each other.

Theorem 2.13. Suppose that p is an optimal solution to (2.16) and u is optimal to (2.1).
Then

B u = div p + K∗ f . (2.22)

Proof. Suppose that p and u are optimal to (2.16) and (2.1), respectively. Then the fol-
lowing conditions are fulfilled, see for instance [73, Prop. 4.1],

(−div)∗u ∈ ∂F(p) in H(div; Γ)∗,

−div p ∈ ∂G∗(−u) in L2(Γ),
(2.23)

where ∂F stands for the standard representation of the subdifferential of the convex func-
tion F : H(div; Γ)→ R, and ∂G∗ is defined analogously. The second condition in (2.23)
is equivalent to

G∗(−u) + G(−div p)− (−div p, −u)L2(Γ) = 0,

see [73, Prop. I.5.1]. Using the expressions (2.17) and (2.18) for G and G∗, this becomes

1
2
‖K(−u)+ f ‖2

L2(Γ)+
α

2
‖u‖2

L2(Γ)−
1
2
‖ f ‖2

L2(Γ)+
1
2
‖div p+K∗ f ‖2

B−1 = (div p, u)L2(Γ),

or equivalently,

1
2
‖Ku‖2

L2(Γ) +
α

2
‖u‖2

L2(Γ) +
1
2
‖div p + K∗ f ‖2

B−1 = (div p + K∗ f , u)L2(Γ).

Applying the definition of B, see (2.15), we obtain

1
2

∥∥∥u− B−1(div p + K∗ f )
∥∥∥2

B
= 0

and (2.22) follows.
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2.3 Algorithmic Approach
In this section we describe a novel approach for solving (2.1) via its predual (2.16). Once
again, recall that the pointwise constraints |p|2 ≤ β are nonlinear. This is in contrast
with |p|∞ ≤ β obtained in [99] due to a slightly different definition of the TV-seminorm.
The nonlinearity of the constraint would render the analysis and application of a primal-
dual active set method more challenging although this has been successfully pursued, for
instance, in [98] in different contexts.
Our solution approach is based on a logarithmic barrier method to deal with the inequality
constraints. Consequently, we consider the following family of convex problems for a
decreasing sequence of barrier parameters µ↘ 0:

Minimize
1
2
‖div p + K∗ f ‖2

B−1 − µ
∫

Γ
ln
(

β2 − |p|22
)

ds

over p ∈ H(div; Γ)
subject to |p|2 ≤ β a.e. on Γ.

(2.24)

Notice that the constraint |p|2 ≤ β is explicitly kept in (2.24) for mathematical conve-
nience and it avoids the need to define the logarithmic barrier term for negative arguments.
For any fixed barrier parameter µ > 0, problem (2.24) will be solved using Newton’s
method. The constraint |p|2 ≤ β is not enforced explicitly but its satisfaction will be
monitored throughout the Newton iterations. More details concerning the implementa-
tion are given in Section 2.4.
For convenience, we use the abbreviations

H(p) :=
1
2
‖div p + K∗ f ‖2

B−1

b(p) := − µ
∫

Γ
ln
(

β2 − |p|22
)

ds
(2.25)

in the sequel.

2.3.1 Existence and Uniqueness for the Predual Barrier Problem
The analysis of interior point methods in Lp spaces including a convergence analysis
of the central path has been addressed in [131, 156] in the context of optimal control
problems. Notice that the presence of the logarithmic barrier term helps to overcome the
lack of strict convexity of the objective in (2.16). We therefore obtain the following result.

Proposition 2.14. For every µ > 0, problem (2.24) possesses a unique solution p ∈
H(div; Γ).

Proof. It is easy to check that the objective H(p) + b(p) is bounded below by

b(0) = −µ |Γ| ln(β2),

but it may attain the value ∞. Here, |Γ| denotes the area of Γ. Let us consider a minimizing
sequence {pn}. Owing to the boundedness of both terms in the objective as well as
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|pn|2 ≤ β, {pn} is bounded in H(div; Γ). Hence, there exists a subsequence (again
denoted by {pn}) such that

pn ⇀ p in L2(Γ; T Γ)

holds with |p|2 ≤ β a.e. on Γ, as well as

div pn ⇀ div p in L2(Γ).

By weak sequential lower semicontinuity of H,

H(p) =
1
2
‖div p + K∗ f ‖2

B−1

≤ lim inf
n→∞

1
2
‖div pn + K∗ f ‖2

B−1

holds. Let us argue that b is also weakly sequentially lower semicontinuous w.r.t. L2(Γ; T Γ).
To this end, it suffices to show that b is sequentially lower semicontinuous w.r.t. the strong
topology of L2(Γ; T Γ) on

B := {q ∈ L2(Γ; T Γ) : |q|2 ≤ β a.e. on Γ},

since B is closed and convex and b is convex in B. Arguing similarly as in the proof
of [156, Proposition 2], suppose that

qn → q in L2(Γ; T Γ)

holds, where qn ∈ B, and thus q ∈ B holds as well. We have to show that

b(q) ≤ lim inf
n→∞

b(qn),

which is clear if the right hand side is ∞. In case

lim inf
n→∞

b(qn) < ∞,

we can select a subsequence, denoted by {qj}, such that

lim
j→∞

b(qj) = lim inf
n→∞

b(qn)

and
lim
j→∞

qj(s) = q(s) a.e. on Γ. (2.26)

In particular, the sequence {b(qj)} is bounded and we have

b(qj) ≤ C1 (2.27)

with C1 ≥ 0. Let us define

gn(s) := −µ ln max{β2 − |qn(s)|
2
2 , 1},

g(s) := −µ ln max{β2 − |q(s)|22 , 1},
hn(s) := −µ ln min{β2 − |qn(s)|

2
2 , 1},

h(s) := −µ ln min{β2 − |q(s)|22 , 1}.
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for s ∈ Γ. Since ln(x) < x− 1 for x > 1, we have

|gn| ≤ µ
∣∣∣max{β2 − |qn|

2
2 , 1} − 1

∣∣∣
≤ µ

∣∣∣max{β2 − |qn|
2
2 − 1, 0}

∣∣∣
≤ µ

∣∣∣β2 − |qn|
2
2 − 1

∣∣∣ .

(2.28)

Notice that (2.26) and (2.28) imply the pointwise convergence limj→∞ gj = g as well as
the estimate |gn| ≤ C2 for some C2 ≥ 0 both a.e. on Γ. Hence Lebesgue’s dominated
convergence theorem can be applied and gives

lim
j→∞

∫
Γ

gj ds =
∫

Γ
g ds.

Consequently,

lim
j→∞

∫
Γ

hj ds = lim
j→∞

b(qj)− lim
j→∞

∫
Γ

gj ds

exists as well. Using hn ≥ 0, (2.27) and (2.28), we obtain

0 ≤
∫

Γ
hj ds

≤ C1 −
∫

Γ
gj ds

≤ C1 + µ
∫

Γ

∣∣∣∣∣∣∣qj

∣∣∣2
2
− β2 − 1

∣∣∣∣ ds

≤ C

with some C ≥ 0 and for all j. By Fatou’s lemma, we thus conclude

0 ≤
∫

Γ
h ds

=
∫

Γ
lim
j→∞

hj ds

≤ lim
j→∞

∫
Γ

hj ds

≤ C.

This implies
lim inf

n→∞
b(qn) = lim

j→∞
b(qj)

= lim
j→∞

∫
Γ
(gj + hj) ds

≥
∫

Γ
(g + h) ds

= b(q).

Consequently, both summands H and b in the objective are weakly sequentially lower
semicontinuous, which implies that p is a (global) minimizer of (2.24).
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To show its uniqueness, we verify that the second part of the objective b is strictly convex
where it is finite. To this end, let p1, p2 ∈ B with

b(p1), b(p2) < ∞

and p1 not equal to p2 a.e. on Γ. Then by classical arguments there exists a set E ⊂ Γ of
positive surface measure and ε > 0 such that

|p1 − p2|2 ≥ ε a.e. on E.

Let us define

g(p) := |p|22 ,

h(z) := −µ ln(β2 − z),

whence
b(p) =

∫
Γ

h(g(p)) ds

holds. On the set E, we have the following pointwise estimate due to the strong convexity
of g,

g
(
λ p1 + (1− λ) p2

)
− λ g(p1)− (1− λ) g(p2) = − λ (1− λ) |p1 − p2|

2
2

≤ − λ (1− λ) ε2
(2.29)

for all λ ∈ [0, 1]. Next we use that h is convex and strictly increasing on [0, β2). Its
minimal slope is attained at z = 0 so we have

h′(z) ≥ h′(0) = µ/β2 ∀z ∈ [0, β2).

Consequently, we have

h(r) ≥ h(`) + h′(`)(r− `)

≥ h(`) + h′(0)(r− `)

for all 0 ≤ ` ≤ r < β2. Applying this estimate with ` = g
(
λ p1 + (1− λ) p2

)
and

r = λ g(p1) + (1− λ) g(p2) and using (2.29), we obtain

h
(

g
(
λ p1 + (1− λ) p2

))
≤ h

(
λ g(p1) + (1− λ) g(p2)

)
− µ

β2 λ (1− λ) ε2.

Using the convexity of h we can estimate further

h
(

g
(
λ p1 + (1− λ) p2

))
≤ λ h

(
g(p1)

)
+ (1− λ) h

(
g(p2)

)
− µ

β2 λ (1− λ) ε2,

which holds a.e. on E. Similarly, we obtain the same estimate without the last term on
Γ \ E. Integrating these inequalities over Γ, we finally obtain the estimate

b
(
λ p1 + (1− λ) p2

)
≤ λ b(p1) + (1− λ) b(p2)−

µ

β2 λ (1− λ) ε2 |E| ,

which confirms the strict convexity of b on its domain.
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Next we address the first-order necessary and sufficient optimality conditions for (2.24).
The main difficulty compared to finite dimensional barrier methods is that one cannot
a-priori exclude that the minimizer approaches the bound of the constraint

|p|2 ≤ β

on parts of the surface, which complicates the discussion of differentiability of the barrier
term. The proof uses techniques introduced in [143], where optimal control problems
with pointwise simple bounds on the control and also the state were discussed. Although
the present problem is generally simpler due to the absence of state constraints, but the
nonlinearity of the constraint requires modifications.

Theorem 2.15. The vector field p ∈ H(div; Γ) is the unique solution for (2.24) if and
only if |p|2 ≤ β holds a.e. on Γ and

(
div p + K∗ f , div δp

)
B−1 + µ

∫
Γ

2 (p, δp)2

β2 − |p|22
ds = 0 (2.30)

for all δp ∈ H(div; Γ).

Before stating the proof of Theorem 2.15 we require some preliminary results. For sim-
plicity, we denote by

`(p) :=
{
−µ ln

(
β2 − |p|22

)
if |p|2 < β

∞ otherwise

the pointwise barrier term and by

∇`(p) = 2 µ
p

β2 − |p|22

its gradient1, defined for p ∈ R3 with |p|2 < β and in particular for p in the tangent
space TsΓ of the surface Γ at some point. Moreover, let

b(p) :=
∫

Γ
`(p) ds

denote the integrated barrier term, like in (2.25), and

〈b′(p), δp〉 :=
∫

Γ

(
∇`(p), δp

)
2 ds

its formal derivative for vector fields p, δp ∈ L2(Γ; T Γ). Let us recall from the proof of
Proposition 2.14 that b is convex and it can take values in R∪ {∞}. We denote by

∂b(p) ⊂ L2(Γ; T Γ)∗

the convex subdifferential of b at p. Notice that L2(Γ; T Γ)∗ can be identified with
L2(Γ; T Γ∗) and also with L2(Γ; T Γ).
The following lemma parallels [143, Lemma 3.3].

1This should not be confused with the gradient of a scalar function on S in Definition 2.4. In the present
context the gradient ∇`(p) is the transpose of the derivative of the function ` : R3 → R.
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Lemma 2.16. Consider p, δp ∈ L2(Γ; T Γ) such that all of b(p), b(p+ δp) and 〈b′(p), δp〉
are finite. Then b is directionally differentiable at p in the direction δp, and its directional
derivative satisfies

b′(p; δp) = 〈b′(p), δp〉 ≥
∫

Γ
(m, δp)2 ds for all m ∈ ∂b(p), (2.31)

where the subdifferential is considered a subset of L2(Γ; T Γ).

Proof. To proof the first claim, we have to show that

b(p + hδp)− b(p)
h

→ 〈b′(p), δp〉

for h↘ 0. Because of the convexity of `(p),(
∇`(p), δp

)
2 ≤

`(p + hδp) + `(p)
h

holds pointwise almost everywhere and the RHS is monotonically increasing in h. Since
b(p), b(p + δp) and 〈b′(p), δp〉 are finite, the function

r(s, h) :=
`(p(s) + hδp(s)) + `(p(s))

h
−
(
∇`(p(s)), δp(s)

)
2

is well defined and non-negative almost everywhere. For every fixed h ∈]0, 1], r ∈ L1(Γ)
holds and r(s, h) is dominated by r(s, 1) by monotonicity of the difference quotient.
Since `(p) is differentiable with respect to p a.e.,

lim
h↘0

r(s, h) = 0

holds pointwise almost everywhere. By applying the convergence theorem of Lebesgue,
we obtain

lim
h↘0

∫
Γ

r(s, h) ds = 0.

This shows directional differentiability of b and the relation

b′(p; δp) = 〈b′(p), δp〉.

In particular,
b(p + hδp)− b(p) = 〈b′(p), hδp〉+O(h)

holds. To show the remaining part of (2.31) let m ∈ ∂b(p) and we assume that∫
Γ
(m, δp)2 ds ≥ 〈b′(p), δp〉.

Then there exists ε > 0 such that∫
Γ
(m, hδp)2 ds ≥ 〈b′(p), hδp〉+ εh

≥ b(p + hδp)− b(p)−O(h) + εh

But this implies
∫

Γ(m, hδp)2 ds ≥ b(p + hδp) − b(p) for sufficiently small h. This
excludes m from the subdifferential and completes our proof.
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The next result is equal to [143, Prop. 3.4] but the proof requires a number of modifica-
tions.

Proposition 2.17. Let p ∈ L2(Γ; T Γ) be given. Then we have:

(i) If ∇`(p) belongs to L2(Γ; T Γ), then ∂b(p) = {∇`(p)}.

(ii) If ∇`(p) does not belong to L2(Γ; T Γ), then ∂b(p) = ∅.

Proof. The proof is split into three parts, which combine to yield the result.
Part A: We begin by considering the case b(p) < ∞, which implies |p|2 < β a.e. on Γ.
By convexity of `, we obtain

(∇`(p), δp)2 ≤ `(p + δp)− `(p)

a.e. on Γ and therefore ∫
Γ

(
∇`(p), δp

)
2 ds = 〈b′(p), δp〉

≤ b(p + δp)− b(p)

for all δp ∈ L2(Γ; T Γ), provided that ∇`(p) ∈ L2(Γ; T Γ) holds. This shows ∇`(p) ∈
∂b(p) in this case.
Part B: Now suppose that m ∈ ∂b(p) holds and let M ⊂ Γ be an arbitrary measurable
subset and v : Γ → T Γ be a vector field of class C0. Due to the compactness of Γ,
‖v‖L∞(Γ;T Γ) is finite. We are going to show that necessarily∫

M

(
∇`(p), v

)
2 ds =

∫
M
(m, v)2 ds (2.32)

holds, which then implies m = ∇`(p) and ∇`(p) ∈ L2(Γ; T Γ). To this end, let

Mδ := {s ∈ M : β− |p(s)|2 > δ}

for δ > 0. Next we define
vk := χM1/k v

and
εk := (2 k ‖v‖L∞(Γ;T Γ))

−1

for k ∈N, where χM1/k denotes the characteristic function of M1/k. Then, since

∇`(p) = 2 µ
p

β2 − |p|22
∈ L∞(Mδ; T Γ)

for any δ > 0, we have

∣∣〈b′(p), ±εkvk〉
∣∣ = ±2 µ εk

∫
M1/k

(p, vk)2

β2 − |p|22
ds < ∞.
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Moreover,
b(p± εkvk) = − µ

∫
S\M1/k

ln
(

β2 − |p|22
)

ds

− µ
∫

M1/k

ln
(

β2 − |p± εkvk|22
)

ds.
(2.33)

The first integral is finite since b(p) is. For the second integral, we use that

β− |p± εkvk|2 ≥ β− |p|2 − εk‖v‖L∞(Γ;T Γ)

≥ 1
k
− 1

2 k

=
1

2 k

holds a.e. on M1/k. Hence by multiplication with β + |p± εkvk|2 ≥ β we conclude

β2 − |p± εkvk|22 ≥
β

2 k
a.e. on M1/k

and thus the second integral in (2.33) is finite as well. So we have shown that for δp =
±εkvk, the terms b(p), b(p + δp) and 〈b′(p), δp〉 are all finite. Hence Lemma 2.16
yields

〈b′(p), ±εkvk〉 ≥ ±εk

∫
Γ
(m, vk)2 ds for all m ∈ ∂b(p).

This implies ∫
Γ

(
∇`(p), vk

)
2 ds = 〈b′(p), vk〉

=
∫

Γ
(m, vk)2 ds

(2.34)

for all m ∈ ∂b(p), k ∈N. It remains to pass to the limit in (2.34) to show (2.32). Let us
begin with the second term in (2.34) and observe that

χM v = lim
k→∞

vk

holds a.e. on Γ since the set where |p|2 = β holds has zero measure. Moreover, the
integrand is dominated pointwise by

|(m, vk)2| ≤ |m|2 ‖v‖L∞(Γ;T Γ) ∈ L2(Γ).

Thus by Lebesgue’s dominated convergence theorem we obtain

lim
k→∞

∫
Γ
(m, vk)2 ds =

∫
M
(m, v)2 ds.

We now address the first term in (2.34). Since it is not clear whether or not∇`(p) belongs
to L2(Γ; T Γ), we cannot argue by dominated convergence. Instead, let us define

Γ+ := {s ∈ Γ : (p(s), v(s))2 ≥ 0}
Γ− := Γ \ Γ+.



2.3. Algorithmic Approach 25

Then

χΓ+

(
∇`(p), vk

)
2 =

2 µ
(p, v)2

β2−|p|22
≥ 0 on Γ+ ∩M1/k

0 elsewhere

and therefore {χΓ+

(
∇`(p), vk

)
2}k∈N is non-negative and monotone increasing on Γ+

with pointwise limit χΓ+∩M
(
∇`(p), v

)
2. By the monotone convergence theorem,

lim
k→∞

∫
Γ+

(
∇`(p), vk

)
2 ds =

∫
Γ+∩M

(
∇`(p), v

)
2 ds

holds. Similarly, this result can be shown with Γ− as well. We can therefore pass to
the limit in (2.34) and conclude (2.32), which in turn proves m = ∇`(p) as well as
∇`(p) ∈ L2(Γ; T Γ).
Part C: If b(p) = ∞, then by definition ∂b(p) = ∅ holds.
The result now follows easily by combining Parts A–C.

So far we have considered the subdifferential of the barrier term b w.r.t. the L2(Γ; T Γ)
topology. This is however not sufficient since problem (2.24) is posed in H(div; Γ) and
further modifications of the arguments in [143] are required. Let us define by b̃ the re-
striction of b to H(div; Γ), and let

∂b̃(p) :=
{

m̃ ∈ H(div; Γ) : b̃(q) ≥ b̃(p) + (m̃, q− p)H(div;Γ) ∀q ∈ H(div; Γ)
}

(2.35)
denote the subdifferential of b̃ at p ∈ H(div; Γ). Finally,

Π : L2(Γ; T Γ)→ H(div; Γ)

denotes the H(div; Γ)-orthogonal projector, defined by

m̃ = Π m ⇔ (m̃, z)H(div;Γ) = (m, z)L2(Γ;T Γ) ∀z ∈ H(div; Γ).

Corollary 2.18. Let p ∈ H(div; Γ) be given. Then we have ∂b̃(p) = Π ∂b(p) and
consequently:

(i) If ∇`(p) belongs to L2(Γ; T Γ), then ∂b̃(p) = {Π∇`(p)}.

(ii) If ∇`(p) does not belong to L2(Γ; T Γ), then ∂b̃(p) = ∅.

Proof. Let
Λ : H(div; Γ)→ L2(Γ; T Γ)

denote the continuous embedding, and let

Λ∗ : L2(Γ; T Γ)∗ → H(div; Γ)∗

denote its adjoint. Since by definition b̃(p) = b(Λp) and Λp = p holds for all p ∈
H(div; Γ), we conclude from the chain rule that

RH(div;Γ)∂b̃(p) = Λ∗RL2(Γ;T Γ)∂b(Λp)

= Λ∗RL2(Γ;T Γ)∂b(p)
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holds; see for instance [73, Prop. I.5.7]. Notice that the Riesz maps

RH(div;Γ) : H(div; Γ)→ H(div; Γ)∗

and
RL2(Γ;T Γ) : L2(Γ; T Γ)→ L2(Γ; T Γ)∗

are present here since we identify the subdifferential in both Hilbert spaces with elements
from the Hilbert space itself, see (2.35). We have thus shown that

∂b̃(p) = R−1
H(div;Γ)Λ

∗RL2(Γ;T Γ)∂b(p)

holds for all p ∈ H(div; Γ). It is now an easy exercise to verify that

R−1
H(div;Γ)Λ

∗RL2(Γ;T Γ) = Π

.

Now we can state the proof of Theorem 2.15.

Proof of Theorem 2.15. Recall from (2.25) the definition of H and b and let us denote,
as above, by b̃ the restriction of b to H(div; Γ). The (unique) minimizer of (2.24) is
characterized by

0 ∈ ∂
(

H(p) + b̃(p)
)
. (2.36)

The function H is convex and continuous on all of H(div; Γ). Moreover, recall from the
proof of Proposition 2.14 that b is convex and weakly sequentially lower semicontinuous
w.r.t. L2(Γ; T Γ), and thus b̃ has the same property w.r.t. H(div; Γ). In addition, b̃ is finite
e.g., at p ≡ 0. Therefore (2.36) is equivalent to

0 ∈ ∂H(p) + ∂b̃(p)

by the sum rule of subdifferentials; see for instance [73, Prop. I.5.6]. Notice that this also
implies |p|2 ≤ β a.e. on Γ since otherwise b̃(p) = ∞ and the subdifferential is empty.
Having characterized ∂b̃(p) in Corollary 2.18 and using the obvious Fréchet differentia-
bility of H, we can write equivalently (using the notation from Corollary 2.18)

0 = R−1
H(div;Γ)H

′(p) + Π∇`(p)

⇔ 0 = R−1
H(div;Γ)H

′(p) +R−1
H(div;Γ)Λ

∗RL2(Γ;T Γ)∇`(p)

⇔ 0 = H′(p) δp + 〈Λ∗RL2(Γ;T Γ)∇`(p), δp〉H(div;Γ)∗,H(div;Γ) ∀δp ∈ H(div; Γ)

⇔ 0 = H′(p) δp + 〈RL2(Γ;T Γ)∇`(p), Λδp〉L2(Γ;T Γ)∗,L2(Γ;T Γ) ∀δp ∈ H(div; Γ)

⇔ 0 = H′(p) δp + (∇`(p), Λδp)L2(Γ;T Γ) ∀δp ∈ H(div; Γ).

This is precisely (2.30).
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2.3.2 Implementation Details
All numerical studies are based on two different geometries obtained by scanning physical
objects with the Artec Eva 3D scanner. The scanner software provides Wavefront .obj
files, which contain a description of the geometry via vertices and triangles. In both
examples the surface of the scanned object is closed, i.e., without boundary, in accordance
with our analysis. The surface texture is provided by the scanner software as a 2D flat
bitmap file, see Figure 2.1, together with a mapping of each physical surface triangle into
said bitmap. Thus, originally the textured object is described by a varying number of
pixels glued onto each surface triangle. Due to the impossibility of continuously mapping
a closed surface onto the flat bitmap, there are necessarily discontinuities in the bitmap
and there may also be regions which do not appear on the physical surface. Essentially,
two adjacent triangles on the surface can be part of discontinuous regions in the texture
file. This data is shown in Figure 2.1 for our first test case.

Figure 2.1: Left: Texture bitmap as delivered by the scanner software. Right: Texture
mapped onto the geometry.

In order to apply our novel solution scheme, the above mentioned Wavefront object in-
cluding the texture needs to be made available to the finite element library which is used
to discretize the predual barrier problems (2.24). One way of achieving this is to pro-
vide the texture data f at each quadrature point. However, for ease of implementation
and processing within the finite element framework FENICS [4], we instead converted
the textured object into the finite element setting by interpolation. To account for both
natural discontinuities in the texture as well as the discontinuity of the surface-to-texture
mapping, we chose a discontinuous Lagrange (DG) finite element representation of the
texture data f . To be more precise, let Pr define the space of polynomials of maximum
degree r, then the texture f and the final output u of our scheme are to fulfill f|K, u|K ∈ Pr
for all triangles K of the scanned surface. Thus, u and f are elements of the DGr finite
element space on the surface. The image data f is always scaled to the interval [0, 1].
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To carry out the texture preprocessing, we compute the spatial location for each degree
of freedom of the surface DG function f within the texture bitmap and use the respective
gray value at the nearest pixel. For color textures, this is realized via a vector valued DG
function on the surfaces with values in the RGB color space. In the original Wavefront
object each surface triangle usually obtains data from multiple texture pixels. Thus, in
order to maintain an appropriate quality of the texture in the DG setting, higher order
finite element spaces are needed, depending on the quality of the scan. Although in the
original Wavefront object the number of pixels per triangle may vary significantly, we use
a constant finite element order r = 2 or r = 3 in our examples.

2.3.3 Discretization of the Predual Variable
Before recovering the image u we determine the predual (edge detector) vector field
p ∈ H(div; Γ) via a sequence of barrier problems (2.24). For the latter we employ
a conforming discretization by surface Raviart–Thomas (RT) finite elements. Although
this choice of discretization is natural from the analytical point of view, RT elements
seem to be rarely used in the context of image processing; see, however, [14, 68]. We
therefore provide details in this section, focusing first on flat domains and later on gen-
eral orientable surfaces. Notice that a discretization by continuous Lagrangian elements
as in [108] would also be conforming but it does not exhaust the space H(div; Γ) under
mesh refinement. By contrast, only functions in the closed subspace of H1 vector fields
can be approximated.
The Raviart–Thomas element space RTr+1 (r ≥ 0) on a triangle T is designed to be the
smallest vector valued polynomial space with

[Pr]
2 ⊂ RTr+1|T ⊂ [Pr+1]

2

such that the divergence maps onto Pr; see [133], [76, Chapter 1.4.7] or [4, Ch. 3.4.1]. In
more explicit terms, the polynomial space for theRTr+1 FE over a flat triangle T is given
by

[Pr]
2 + xPr,

where x ∈ R2 denotes the spatial coordinate. The dimension of this space is

(r + 1)(r + 3) = 3, 8, 15, 24, . . .

In order to obtain an H(div)-conforming approximation, continuity of the normal com-
ponent across all inter-element edges E must be ensured. Let us consider a triangulated
flat domain Ω ⊂ R2 endowed with a conforming simplicial triangulation, i.e., any two
intersecting triangles intersect either in a common vertex or a common edge. Then the
globalRTr+1 space on Ω is defined as{

p ∈ [L1(Ω)]2 : p|T ∈ RTr+1|T for all triangles T,

Jp · nKE = 0 for all interior edges E
}

.

Here Jp · nKE = p|T1
· n1 + p|T2

· n2 denotes the jump of p · n across the edge E between
elements T1 and T2 with edge normals n1 and n2, respectively. Continuity of the normal
components, i.e., Jp · nKE = 0, is conveniently achieved by observing that the restriction
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(p · n)|E of any p ∈ RTr+1|T to an edge E is a scalar polynomial of degree r in a single
variable. (p · n)|E is therefore determined by r + 1 point values along the edge, and the
continuity of p · n across E amounts to a coincidence of the degrees of freedom (up to
sign) on neighboring triangles. The remaining

(r + 1)(r + 3)− 3 (r + 1) = r (r + 1)

degrees of freedom on each triangle are defined as evaluations of p at points inside the
triangle.2 In practical computations, each element T ⊂ R2 is obtained as an affine copy
of a reference cell T0 ⊂ R2 via the affine map F : T0 → T. Local basis functions must be
mapped via the associated contravariant Piola transformation in order to preserve normal
traces; see [137] for details.
The transition from the RTr+1 space over a flat domain Ω ⊂ R2 to one over a two-
dimensional surface Γ is conceptionally straightforward by allowing F to be an affine
map of rank 2 from T0 to a surface triangle T ⊂ Γ ⊂ R3. We refer the reader to [136]
for details. A similar construction has been described in [108] for the case of linear
continuous Lagrange elements, which do not require the Piola transform but which are
not dense in H(div; Γ). For the purpose of illustration, Figure 2.2 depicts a number of
typical basis functions from the lowest-order space RT1 (r = 0) on a flat and spherical
mesh.
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Figure 2.2: Left: global basis function p fromRT1 associated with the degree of freedom
located on the edge E adjacent to both triangles in R2. One clearly sees that (p · n)|E
is constant, i.e., of degree r = 0, and continuous, i.e., Jp · nKE = 0 holds. On all other
edges we have p · n = 0. Middle: the same situation on a spherical mesh of topological
dimension 2 in R3. Right: detail.

Recovery of the Image
The last step is to recover the image u from p. As proved in Theorem 2.13 we have the
relation

u = B−1(div p + K∗ f ). (2.37)

2Integral moments of p over the edges and triangles are sometimes used as degrees of freedom, in place
of point evaluations. This does not change the space RTr+1 but only its representation in terms of global
basis functions.
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In our examples, which demonstrate denoising and inpainting, K, K∗ and therefore

B = α id+K∗K

are all pointwise operations, which do not involve differentiation. We therefore choose
matching polynomial degrees, i.e., u ∈ DGr, p ∈ RTr+1 and f ∈ DGr. In terms of
finite element functions, (2.37) is realized by solving an orthogonal projection problem
in L2(Γ), which is represented by a block-diagonal mass matrix in DGr and therefore
inexpensive to solve.

2.4 Numerical Results

2.4.1 Gray-Scale Denoising
In this section we consider the classical denoising problem with K = id. The initial test
case is the scanned terracotta duck from Figure 2.1 but with the texture data converted to
a gray scale. Recall that our image data is scaled to a range [0, 1]. The geometry consists
of 354 330 triangles and 177 167 vertices. The surface texture is mostly uniform, however
there are some details around the eye and a second order DG function (r = 2) manages to
resolve these quite well. Also there are sharp interfaces between body, beak and feet. As
such, this object provides an excellent first test case and we expect that these interfaces
are preserved by the total variation approach.
We added artificial noise based on a normal distribution with standard deviation σ = 0.1
and zero mean to each entry in the coefficient vector representing the image data f . For
this and the subsequent color denoising problem described in the following subsection,
the value α = 0.0 is used and we consider only variations in β. Notice that B in (2.15) is
boundedly invertible even for α = 0 since K = id holds.
The denoising results shown in Figure 2.3 were obtained by a rather basic yet effective
interior point approach, in which a sequence of barrier approximations (2.24) to the pre-
dual problem (2.16) are solved. Each instance of (2.24) is solved by applying Newton’s
method to the optimality system (2.30); see Algorithm 1. Based on numerical experience
and the progress observed in the image u recovered from (2.37), we used µstart = 1.0,
µend = 0.02 and Nmax = 8 in our study. The adjustment of the barrier parameter µ is
based on a simple backtracking strategy, depending on the number of Newton iterations
necessary to reach the termination criterion ‖δp‖L2(Γ;T(Γ)) ≤ 10−5. Here δp denotes the
update calculated in each Newton step.
For both β = 0.1 and β = 0.3 the terminal value for µ was reached after 4 reduc-
tions, necessitating the solution of 5 instances of problem Equation (2.24) with a Newton
scheme. As shown in Figure 2.4 each of these required between 3 and 5 Newton steps
and this behavior is typical for primal interior point methods. The total wall-clock time on
four non-hyper threaded cores of an Intel i5-4690 CPU running at 3.50 Ghz was slightly
less than 40 minutes. Comparing the results shown in Figure 2.3 one can see that—as
expected—with increasing values of β, the noise is reduced more effectively and although
the object looks progressively smoother due to a reduction in contrast, sharp corners are
preserved. The convergence plots for different values of β are also shown in Figure 2.4.
We expect that the efficiency can be improved and the number of Newton steps reduced
by employing a primal-dual interior point method. This is left to future research.
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Figure 2.3: Duck test case: noise free and noisy originals (top row) and denoising re-
sults for β = 0.1 and β = 0.3 (bottom row). The object was kindly scanned by the
Rechenzentrum of Würzburg University.

2.4.2 Color Denoising
The second test case consists of a scanned shoe, whose data is provided by the Artec
Group Inc.3 under the Creative Commons Attribution 3.0 Unported License. The shoe
consists of exactly 100 000 triangles and 50 002 vertices. It provides an excellent second
test case because of discontinuous color changes given by the stripes, while at the same
time there are also very fine features on the sole and a leathery texture on the outside.
Noise is added in the same way to each of the RGB channels as described for the gray-
scale test case above. In this example we chose to represent the color texture in terms of a
vector valued discontinuous Galerkin function of order r = 3. This amounts to problems
with 1.8 million degrees of freedom for the predual variable p associated with a single
color channel.
The denoising procedure was conducted individually per RGB channel. Initial, noisy

3https://www.artec3d.com

https://www.artec3d.com
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Algorithm 1 Basic interior point method

1: Set µ := µstart, dµ := 0.6, p := 0
2: while µ > µend do
3: repeat
4: Perform at most Nmax steps of Newton’s method to solve (2.30) for pnew, given

the current value of µ, starting from initial guess p
s← number of Newton iterations
µ := 1.2 µ, dµ := min{0.9, 1.2 dµ}

5: until Newton’s method did converge in Nmax steps
6: p := pnew (accept new approximation)
7: if 4 < s then
8: dµ := 1.1 dµ

9: else
10: dµ := 0.9 dµ

11: end if
12: µ := dµ µ (adapt µ for next instance of (2.30))
13: end while

and denoised objects are shown in Figure 2.5. The sharp edges between the stripes are
preserved for different values of β. Details of the leather’s structure, most prominently
visible in the yellow stripes in the noise-free image, start reappearing after the bulk of the
noise is removed for β = 0.5. Notice however that some of these features are part of
the geometric resolution and not just the texture. On the other hand, the dotted texture in
the interior and part of the stitchings seem less discernible due to the reduced contrast for
β = 0.5. As was noted earlier, the predual vector field p can be interpreted as an edge
detector, which is shown in Figure 2.6 for each RGB channel.
We also conducted experiments using the joint BV-norm, cf. [31]

∫
Γ
|∇u| = sup

{∫
Γ

3

∑
j=1

uj div pj ds : p ∈W

}

of the vector-valued unknown u = (u1, u2, u3) ∈ [BV(Γ)]3. In contrast to the scalar
case the test space is now defined as

W :=

{
(p1, p2, p3) ∈ [C∞(Γ; T Γ)]3 :

3

∑
j=1

∣∣∣pj(s)
∣∣∣2
2
≤ 1 ∀s ∈ Γ

}
,

compare [37,72]. It can be expected that this modification better suppresses color fringes
(similar to chromatic aberration), which occur when the value of two or more color chan-
nels have jump discontinuities at neighboring pixels. We refer the reader to [36, Chap-
ter 6.3.4] for a discussion of alternative definitions of vector-valued BV norms in the
context of color image restoration.
Use of the joint BV norm leads to the following modified predual problem compared to
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Figure 2.4: Convergence of the inner (Newton) and outer iterations of the interior
point method (Algorithm 1) for the duck denoising example. Different colors denote
outer iterations and their decreasing barrier parameter µ with a stopping criterion of
‖δp‖L2(S;T(S)) ≤ 10−5 for Newton’s method. Different subplots for respective denoising
parameters β = 0.1, 0.2, 0.3, 0.5.

(2.16), 

Minimize
1
2

∥∥∥∥∥∥
div p1

div p2

div p3

+ K∗ f

∥∥∥∥∥∥
2

B−1

over (p1, p2, p3) ∈ [H(div; Γ)]3

subject to
3

∑
j=1

∣∣∣pj
∣∣∣2
2
≤ β2 a.e. on Γ,

see also [37]. Notice that the variables pj in this problem are coupled through the in-
equality constraints even if — as is the case in our examples — K and K∗ act on each
color component separately. This leads to an increased complexity of the problem. The
conversion of the inequality constraints into a barrier term as in (2.24) is straightforward.
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Figure 2.5: Shoe test case: noise free and noisy originals (top row) and denoising results
for β = 0.2 and β = 0.5 (bottom row).
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Figure 2.6: Shoe test case: |p|2 acts as an edge detector for each RGB channel. Solid
black corresponds to a value of |p|2 ≥ 0.4. Final results for β = 0.5 are shown. Take
note of the different jump amplitudes and positions for each color channel.

In our numerical experiments, we did not experience significantly improved results using
this model and therefore do not pursue this further here.

2.4.3 Color Inpainting
The problem of not being able to scan an object completely is quite common, as there
might be areas the scanner cannot look into due to its size and the non-convexity and
curvature of the object. The inside of the tip of a shoe might be such an example. Data
corruption can be another reason for lack or loss of data. Although these issue concern
both geometry and texture, the focus of this subsection is on the reconstruction of missing
texture information alone.
We simulate the loss of texture data during the scan process on the outside of an object
by setting to zero all degrees of freedom in the image data which belong to cells with
indices in the range 30 000 to 33 000. This corresponds to a data loss of 3%. We denote
this erased image region by Γ0 ⊂ Γ. Due to the apparently layered scan process the index
range chosen corresponds to bands or “stripes” as shown in Figure 2.7, which are better
visible than unreachable areas inside the tip.
As usual for TV inpainting problems the mapping K is now chosen so as to ignore the
corrupted data. This leads to

(Ku)(s) := χΓ\Γ0
(s) u(s), (2.38)

where χ is an indicator function with value 1 in the uncorrupted area Γ \ Γ0. Since K is
self-adjoint and idempotent,

K∗(Ku) = K(Ku) = Ku.

(Ku)(s) − f (s) = 0 holds for all s ∈ Γ0 and the (corrupted) value of f|Γ0
does not

increase the data fidelity part of the objective in Equation (2.1).
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Figure 2.7: Shoe with missing texture (top left) and TV-inpainting solutions for β = 0.5,
β = 0.7 and β = 1.0.

Contrary to the denoising situation, K∗K is no longer invertible and α > 0 is required.
Using the definition of K one easily deduces the formula

(B u)(s) =

{
α u(s) for s ∈ Γ0

(α + 1) u(s) for s ∈ Γ \ Γ0.

The results of the inpainting test case are shown in Figure 2.7 for different values of β and
with α = 0.1 constant for each case.



CHAPTER 3

DISCRETE TOTAL VARIATION WITH
FINITE ELEMENTS

The total-variation (TV)-seminorm | · |TV is ubiquitous as a regularizing functional in
image analysis and related applications; see for instance [45, 50, 77, 139]. When Γ ⊂ R3

is a smooth surface, which is also compact and connected, this seminorm is defined as
in (2.7). It has been observed in [60] that “the rigorous definition of the TV for discrete
images has received little attention.” In this chapter, which is based on [97], but extends it
to surfaces, we go one step further by proposing and analyzing a discrete analogue of (2.7)
for functions u belonging to a space DGr(Γh) or CGr(Γh) of globally discontinuous or
continuous finite element functions of polynomial degree1 0 ≤ r ≤ 4 on a geometrically
conforming, simplicial triangulation of Γ, consisting of triangles T and interior edges E.
In this case, it is not hard to see that the TV-seminorm (2.7) can be evaluated as

|u|TV(Γh)
= ∑

T

∫
T
|∇u|2 ds + ∑

E

∫
E

∣∣u−E − u+
E

∣∣ ds, (3.1)

where
∣∣u−E − u+

E

∣∣ denotes the absolute value of the jump of a function across an edge of
the triangulation.
It is intuitively clear that when u is confined to a finite element space such as DGr(Γh) or
CGr(Γh), then it ought to be sufficient to consider the supremum in (2.7) over all vector
fields p from an appropriate finite dimensional space as well. Indeed, we show that this
is the case, provided that the TV-seminorm (3.1) is replaced by its discrete analogue

|u|DTV(Γh)
:= ∑

T

∫
T
IT
{
|∇u|2

}
ds + ∑

E

∫
E
IE
{∣∣u−E − u+

E

∣∣} ds, (3.2)

which we term the discrete TV-seminorm. Here IT and IE are local interpolation op-
erators into the polynomial spaces Pr−1(T) and Pr(E), respectively. Therefore, (3.2)
amounts to the application of a nodal quadrature formula for the integrals appearing in
(3.1). In the lowest-order case (r = 0) of piecewise constant functions, the first sum in
(3.2) is zero and only edge contributions appear. Moreover, in this case (3.1) and (3.2) co-
incide since

∣∣u−E − u+
E

∣∣ is constant on edges. In general, we will show that the difference
between (3.1) and (3.2) is of the order of the mesh size, see Proposition 3.4.

1It will become clear in Section 3.2 why the discussion is restricted to polynomial degrees at most 4.
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Using (3.2) in place of (3.1) in optimization problems in imaging offers a number of
significant advantages. Specifically, we will show in Theorem 3.2 that (3.2) has a discrete
dual representation

|u|DTV(Γh)
= max

{ ∫
Γh

u div p ds : p ∈ RTr+1(Γh)

s.t. a number of simple constraints

} (3.3)

for u ∈ DGr(Γh), where RTr+1(Γh) denotes the space of Raviart–Thomas finite ele-
ment functions of order r + 1. As a consequence of (3.3), we establish that optimization
problems utilizing the discrete TV-seminorm (3.2) as a regularizer possess a discrete dual
problem with very simple constraints.
This Chapter is structured as follows. We collect some background material on finite el-
ements in Section 3.1. In Section 3.2 we establish the dual representation of the discrete
TV-seminorm (3.2). We also derive an estimate of the error between (3.2) and (3.1). We
present discrete TV-L2 and TV-L1 models along with their duals in Section 3.3. In Sec-
tion 3.4 we show that a variety of well known algorithms for TV-L2 image denoising and
inpainting can be applied in our (possibly higher-order) finite element setting with little
or no changes compared to their classical counterparts in the Cartesian finite difference
domain. Further implementation details in the finite element framework FENICS are
given in this section. Afterwards, numerical results for TV-L2 denoising and inpainting
are presented in Section 3.5. In Section 3.6 we briefly also consider two methods for the
TV-L1 case. In Section 3.7 we comment on extensions such as Huber regularized variants
of TV-L2 and TV-L1, as well as on the simplifications that apply when images belong to
globally continuous finite element spaces CGr(Γh).

3.1 Finite Element Spaces

Suppose that Γh is a triangulated discrete representation of a surface Γ ⊂ R3 by a geo-
metrically conforming mesh (no hanging nodes) consisting of non-degenerate triangular
cells T and edges E. For every edge E we refer with an upper index + and − on the
two adjacent triangles T+ and T−, where the orientation is arbitrary, but connected to the
definition of Raviart-Thomas degrees of freedom given in (3.7b). Also for a finite element
function g, we denote with g±E the restriction g|T± . Throughout, r ≥ 0 denotes the degree
of certain polynomials.

3.1.1 Lagrangian Finite Elements

Let Pr(T) denote the space of scalar, bivariate polynomials on T with total maximal
degree r. The dimension of Pr(T) is (r + 1) (r + 2)/2. Let {ΦT,k} denote the standard
nodal basis of Pr(T) with associated Lagrange nodes {XT,k}, k = 1, . . . , (r + 1) (r +
2)/2. In other words, each ΦT,k is a function in Pr(T) satisfying

ΦT,k(XT,k′) = δkk′ ,
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where δkk′ is the Kronecker Delta. We denote by

DGr(Γh) :=
{

u ∈ L2(Γh) : u|T ∈ Pr(T)
}

, r ≥ 0, (3.4)

CGr(Γh) :=
{

u ∈ C(Γh) : u|T ∈ Pr(T)
}

, r ≥ 1, (3.5)

the standard finite element spaces of globally discontinuous (L2-conforming) or contin-
uous (H1-conforming) piecewise polynomials of degree r. A finite element function
u ∈ DGr(Γh) or CGr(Γh), restricted to T, is represented by its coefficient vector w.r.t.
the basis {ΦT,k}, which is simply given by point evaluations. We use the notation

uT,k = u|T(XT,k)

to denote the elements of the coefficient vector of a function u ∈ DGr(Γh) or CGr(Γh).
Frequently, we will also work with the space Pr−1(T), whose standard nodal basis and
Lagrange nodes we denote by {ϕT,i} and {xT,i}, i = 1, . . . , r (r + 1)/2. The interpola-
tion operator into this space (used in the definition (3.2) of |u|DTV(Γh)

) is defined by

IT{v} :=
r (r+1)/2

∑
i=1

v(xT,i) ϕT,i.

Similarly, Pr(E) denotes the space of univariate scalar polynomials on E of maximal
degree r, which has dimension r+ 1. Let {ϕE,j} denote the standard nodal basis of Pr(E)
with associated Lagrange nodes {xE,j}, j = 1, . . . , r + 1. The associated interpolation
operator becomes

IE{v} :=
r+1

∑
j=1

v(xE,j) ϕE,j.

3.1.2 Raviart–Thomas Finite Elements
For r ≥ 0, we denote by

RTr+1(Γh) :=
{

p ∈ [L1(Γh)]
2 : p|T ∈ Pr(T)3 + xPr(T) for all triangles T,

p+
E · µ

+
E = −p−E · µ

−
E for all edges E

} (3.6)

the (H(div)-conforming) Raviart–Thomas finite element space of order r + 1.2 Here,
we denote with µ±E the co-normal of the triangle T± at edge E; see also Figure 5.2. No-
tice again that in order to obtain an H(div)-conforming approximation, continuity of the
co-normal component across all edges E must be ensured. The dimension of the poly-
nomial space on each cell is (r + 1) (r + 3). Notice that several choices of local bases
forRTr+1(T) are described in the literature, based on either point evaluations or integral
moments as degrees of freedom (dofs). Clearly, a change of the basis does not alter the
finite element space but only the representation of its members, which can be identified
with their coefficient vectors w.r.t. a particular basis. For the purpose of this chapter, it

2Notice that while denote the lowest-orderRT space byRT1, some authors useRT0 for this purpose.
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is convenient to work with the following global degrees of freedom of integral type for
p ∈ RTr+1(Γh); see [114, Ch. 3.4.1]:

σT,i(p) :=
∫

T
ϕT,i p ds, i = 1, . . . , r (r + 1)/2, (3.7a)

σE,j(p) :=
∫

E
ϕE,j (p+

E · µ
+
E ) ds, j = 1, . . . , r + 1. (3.7b)

We will refer to (3.7a) as triangle-based dofs or interior dofs and to (3.7b) as edge-based
dofs. Notice that while the edge-based dofs are scalar, the triangle-based dofs have values
in R3 for notational convenience. The global basis functions for the spaceRTr+1(Γh) are
denoted by ψT

i and ψE
j , respectively. Notice that ψT

i is R3×3-valued. As is the case for
all finite element spaces, any dof applied to any of the basis functions evaluates to zero
except

σT,i(ψ
T
i′ ) =

( 1 0 0
0 1 0
0 0 1

)
δii′ and σE,j(ψ

E
j′) = δjj′ . (3.8)

Let us emphasize that for any function p ∈ RTr+1(Γh), the dof values (3.7) are precisely
the coefficients of p w.r.t. the basis, i.e.,

p = ∑
T

r (r+1)/2

∑
i=1

ψT
i σT,i(p) + ∑

E

r+1

∑
j=1

σE,j(p)ψE
j . (3.9)

3.1.3 Index Conventions
In order to reduce the notational overhead, we are going to associate specific ranges for
any occurrence of the indices i, j and k in the sequel:

i ∈ {1, . . . , r (r + 1)/2} as in the basis functions
ϕT,i of Pr−1(T) and dofs σT,i inRTr+1(Γh),

j ∈ {1, . . . , r + 1} as in the basis functions
ϕE,j of Pr(E) and dofs of σE,j inRTr+1(Γh),

k ∈ {1, . . . , (r + 1)(r + 2)/2} as in the basis functions
ΦT,k of Pr(T).

For instance, (3.9) will simply be written as

p = ∑
T,i

ψT
i σT,i(p) + ∑

E,j
σE,j(p)ψE

j

in what follows. For convenience, we summarize the notation for the degrees of freedom
and basis functions needed throughout this chapter in Table 3.1.

3.2 Properties of the Discrete Total Variation
In this section, we investigate the properties of the discrete total variation seminorm

|u|DTV(Γh)
:= ∑

T

∫
T
IT
{
|∇u|2

}
ds + ∑

E

∫
E
IE
{∣∣u−E − u+

E

∣∣} ds
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FE space local dimension dofs basis functions global dimension

CGr(Γh) (r + 1)(r + 2)/2 eval. in XT,k {ΦT,k} NT (r− 2)+(r− 1)/2
(r ≥ 1) + NE (r− 1)+ + NV

DGr(Γh) (r + 1)(r + 2)/2 eval. in XT,k {ΦT,k} NT (r + 1)(r + 2)/2

DGr−1(Γh) r (r + 1)/2 eval. in xT,i {ϕT,i} NT r (r + 1)/2

DGr(∪E) r + 1 eval. in xE,j {ϕE,j} NE (r + 1)

RTr+1(Γh) (r + 1)(r + 3) σT,i, see (3.7a) {ψT
i } NT r (r + 1)

σE,j, see (3.7b) {ψE
j } + NE (r + 1)

Table 3.1: Finite element spaces, their degrees of freedom and corresponding bases. Here
NT, NE and NV denote the number of triangles, edges and vertices in the triangular mesh.
A term like (r− a)+ should be understood as max{r− a, 0}.

for functions u ∈ DGr(Γh). Recall that IT and IE are local interpolation operators into
the polynomial spaces Pr−1(T) and Pr(E), respectively. In terms of the Lagrangian
bases {ϕT,i} and {ϕE,j} of these spaces, we have

∫
T
IT
{
|∇u|2

}
ds =

r (r+1)/2

∑
i=1

∣∣∇u
∣∣
2(xT,i) cT,i, (3.10a)

∫
E
IE
{∣∣u−E − u+

E

∣∣} ds =
r+1

∑
j=1

∣∣u−E − u+
E

∣∣(xE,j) cE,j, (3.10b)

where the weights are given by

cT,i :=
∫

T
ϕT,i ds

cE,j :=
∫

E
ϕE,j ds.

(3.11)

Figure 3.1 provides an illustration of the difference between the contributions∫
E

∣∣u−E − u+
E

∣∣ ds

and ∫
E
IE
{∣∣u−E − u+

E

∣∣} ds

to |u|TV(Γh)
and |u|DTV(Γh)

. In virtue of the fact that

∇u|T ∈ Pr−1(T)3

and
(u−E − u+

E ) ∈ Pr(E),
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Figure 3.1: Illustration of typical edge-jump contributions to |u|TV(Γh)
and to |u|DTV(Γh)

.
The green and red curves show (u−E − u+

E ) and
∣∣u−E − u+

E

∣∣, respectively, and the blue
curve shows IE

{ ∣∣u−E − u+
E

∣∣ } for polynomial degrees r = 1 (left) and r = 2 (right). The
left picture also confirms |u|TV(Γh)

≤ |u|DTV(Γh)
when r = 1, see Corollary 3.5, while

|u|TV(Γh)
may be larger or smaller than |u|DTV(Γh)

when r ∈ {2, 3, 4}.

it is clear that | · |DTV(Γh)
is indeed a seminorm onDGr(Γh), provided that all weights cT,i

and cE,j are non-negative. The following lemma shows that this is the case for polynomial
degrees 0 ≤ r ≤ 4.

Lemma 3.1 (Lagrange basis functions with positive integrals).

(i) Let T ⊂ R3 be a triangle and 1 ≤ r ≤ 4. Then cT,i ≥ 0 holds for all i =
1, . . . , r (r + 1)/2. When r 6= 3, then all cT,i > 0.

(ii) Let E ⊂ R2 be an edge and 0 ≤ r ≤ 7. Then cE,j > 0 holds for all j =
1, . . . , r + 1.

Proof. Given that the Lagrange points form a uniform lattice on either T or E, the values
of cT,i and cE,j are precisely the integration weights of the closed Newton–Cotes formulas.
For triangles, these weights are tabulated, e.g., in [145, Tab. I] for orders 0 ≤ r ≤ 8, and
they confirm the first part. For edges (intervals), we refer the reader to, e.g., [63, Ch. 2.5]
or [62, Ch. 5.1.5], which confirms the second part.

We can now give a precise formulation of the dual representation of the discrete TV-
seminorm (3.2).

Theorem 3.2 (Dual Representation of |u|DTV(Γh)
). Suppose 0 ≤ r ≤ 4. Then for any

u ∈ DGr(Γh), the discrete TV-seminorm (3.2) satisfies

|u|DTV(Γh)
= sup

{ ∫
Γh

u div p ds : p ∈ RTr+1(Γh),

|σT,i(p)|2 ≤ cT,i ∀T, i = 1, . . . , r (r + 1)/2,∣∣σE,j(p)
∣∣ ≤ cE,j ∀E, j = 1, . . . , r + 1

}
.

(3.12)
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Proof. We begin with the observation that integration by parts and continuity of the co-
normal component across all edges E, see (3.6), yields

−
∫

Γh

u div p ds = −∑
T

∫
T

u div p ds

= ∑
T

∫
T
∇u · p ds−∑

E

(∫
E

u+
E
(

p+
E · µ

+
E
)
+ u−E

(
p−E · µ

−
E
)

ds
)

= ∑
T

∫
T
∇u · p ds + ∑

E

∫
E

(
u−E − u+

E
) (

p+
E · µ

+
E
)

ds

(3.13)
for any u ∈ DGr(Γh) and p ∈ RTr+1(Γh).
Let us consider one of the edge integrals first. Notice that(

u−E − u+
E
)
∈ Pr(E)

holds and thus (
u−E − u+

E
)
= ∑

j
vj ϕE,j

with coefficients
vj =

(
u−E (xE,j)− u+

E (xE,j)
)

.

By the definition (3.7b) of the basis ofRTr+1(Γh), we obtain∫
E

(
u−E − u+

E
) (

p+
E · µ

+
E
)

ds = ∑
j

vj

∫
E

ϕE,j
(

p+
E · µ

+
E
)

ds

= ∑
j

vj σE,j(p).

The maximum of this expression w.r.t. p verifying the constraints in (3.12) is attained
when

σE,j(p) = sgn(vj) cE,j

holds. Here we are using the fact that cE,j > 0 holds; see Lemma 3.1. Choosing p as the
maximizer yields∫

E

(
u−E − u+

E
) (

p+
E · µ

+
E
)

ds = ∑
j

∣∣vj
∣∣ cE,j

= ∑
j

∫
E

∣∣vj
∣∣ ϕE,j ds

=
∫

E
IE
{∣∣u−E − u+

E

∣∣} ds,

where we used that ∣∣vj
∣∣ = ∣∣u−E (xE,j)− u+

E (xE,j)
∣∣

=
∣∣u−E − u+

E

∣∣(xE,j)

in the last step.
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Next we consider an integral over a triangle, which is relevant only when r ≥ 1. Since
u ∈ Pr(T) holds, we have

∇u ∈ Pr−1(T)3

and thus
∇u = ∑

i
ϕT,i wi

with vector-valued coefficients
wi = ∇u(xT,i).

Using again the definition of the basis ofRTr+1(Γh) (3.7b), we obtain∫
T
∇u · p ds = ∑

i
wi ·

∫
T

ϕT,i p ds

= ∑
i

wi · σT,i(p).

By virtue of Hölder’s inequality, the maximum of this expression w.r.t. p satisfying the
constraints in (3.12) can be characterized explicitly. When wi 6= 0, then the maximum is
attained when

σT,i(p) =
wi

|wi|2
cT,i.

When wi = 0 holds, σT,i(p) can be chosen arbitrarily but subject to

|σT,i(p)|2 ≤ cT,i.

In any case, we arrive at the optimal value

wi · σT,i(p) = cT,i |wi|2 .

As before, we are using here the fact that cT,i ≥ 0 holds; see again Lemma 3.1. For an
optimal p, we thus have ∫

T
∇u · p ds = ∑

i
|wi|2 cT,i

= ∑
i

∫
T
|wi|2 ϕT,i ds

=
∫

T
IT
{
|∇u|2

}
ds,

where we used

|wi|2 = |∇u(xT,i)|2
in the last step.
Finally, we point out that each summand in (3.13) depends on p only through the dof
values σT,i(p) or σE,j(p) associated with one particular triangle or edge. Consequently,
the maximum of (3.13) is attained if and only if each summand attains its maximum
subject to the constraints on the dof values set forth in (3.12). Since −p verifies the same
constraints as p, the maxima over

±
∫

Γh

u div p ds

coincide and (3.12) is proved.
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Remark 3.3 (The lowest-order case). In the lowest-order case r = 0, the only basis
function on any edge E is ϕE,1 ≡ 1 so that cE,1 = |E| holds. Consequently, (3.12)
reduces to

|u|DTV(Γh)
= max

{ ∫
Γh

u div p ds : p ∈ RT1(Γh),
∫

E

∣∣p+
E · µ

+
E

∣∣ ds ≤ |E| ∀E

}
.

It may appear peculiar that the constraints for the edge dofs in (3.12) are scalar and lin-
ear, while the constraints for the triple-wise triangle dofs σT,i(p) ∈ R3 are generally
nonlinear. Notice, however, that it becomes evident in the proof of Theorem 3.2 that the
edge dofs are utilized to measure the contributions in |u|DTV(Γh)

associated with the edge
jumps of u, while the triangle dofs account for the contributions attributed to the gradient
∇u. Since the edge jumps are maximal in the direction normal to the edge, scalar dofs
suffice in order to determine the unknown jump height. On the other hand, both the norm
and direction of the gradient are unknown and must be recovered from integration against
suitable functions p. To this end, a variation of σT,i(p) within a three-dimensional ball
(w.r.t. the | · |2-norm) is required, leading to constraints |σT,i(p)|2 ≤ cT,i on triple of
coefficients of p. Notice that those constraints appear for polynomial degrees r ≥ 1 and
they are nonlinear.
We conclude this section by comparing the TV-seminorm (3.1) with our discrete variant
(3.2) for DGr(Γh) functions. For the purpose of the following result, let us denote by(

u−E − u+
E
)′

the tangential derivative (in arbitrary direction of traversal) of the scalar jump of u along
an edge E. For a function u ∈ DGr(Γh), we define

|u|W1,∞(T) = max
x∈T

{∣∣∇u(x) · ξT,1
∣∣}+ max

x∈T

{∣∣∇u(x) · ξT,2
∣∣}

|u|W2,∞(T) = max
x∈T

{∣∣ξT,1 ·H(u(x))ξT,1
∣∣}+ max

x∈T

{∣∣ξT,2 ·H(u(x))ξT,2
∣∣}

+ max
x∈T

{∣∣ξT,1 ·H(u(x))ξT,2
∣∣}

the W1,∞ and W2,∞-seminorm of u on T. Here, H(u) denotes the hessian of u and ξT,1
and ξT,2 are two orthogonal tangential vectors of the triangle T with∣∣ξT,1

∣∣
2 =

∣∣ξT,2
∣∣
2 = 1.

Moreover, we recall that the diameter hT of a triangle T is the euclidean length of its
longest edge.

Proposition 3.4. There is a constant C > 0 such that∣∣|u|TV(Γh)
− |u|DTV(Γh)

∣∣ ≤ C h
(

max
T
|u|W2,∞(T) + ∑

E

∥∥(u−E − u+
E
)′∥∥

L1(E)

)
(3.14)

holds for all u ∈ DGr(Γh), 0 ≤ r ≤ 4, where

h := max
T

hT

is the mesh size. The constant C depends only on r and |Γh|.
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Proof. Within the proof, C > 0 denotes a generic constant which may change from
instance to instance. Note that for r = 0, (3.1) and (3.2) are equal, which makes (3.14)
true. In case r ≥ 1, we use (3.10) to interpret the discrete TV-seminorm as a quadrature
rule applied to the TV-seminorm (3.1), which yields∣∣|u|TV(Γh)

− |u|DTV(Γh)

∣∣ ≤ ∣∣∣∣∣∑T
(∫

T
|∇u|2 ds−∑

i

∣∣∇u(xT,i)
∣∣
2 cT,i

)∣∣∣∣∣
+

∣∣∣∣∣∑E
(∫

E

∣∣u−E − u+
E

∣∣ ds−∑
j

∣∣u−E (xE,j)− u+
E (xE,j)

∣∣ cE,j

)∣∣∣∣∣
≤ ∑

T

∣∣∣∣∣
∫

T
|∇u|2 ds−∑

i

∣∣∇u(xT,i)
∣∣
2 cT,i

∣∣∣∣∣
+ ∑

E

∣∣∣∣∣
∫

E

∣∣u−E − u+
E

∣∣ ds−∑
j

∣∣u−E (xE,j)− u+
E (xE,j)

∣∣ cE,j

∣∣∣∣∣ .

(3.15)
For the triangle related summand in (3.15) we use [76, Lem. 8.4] with d = 2, p = ∞,
kq = 0, and s = 1 therein. This result yields the existence of a constant C > 0 such that∣∣∣∣∣

∫
T
|∇u|2 ds−∑

i

∣∣∇u(xT,i)
∣∣
2 cT,i

∣∣∣∣∣ ≤ C hT |T|
∣∣|∇u|2

∣∣
W1,∞(T).

Summing over T, we find

∑
T

∣∣∣∣∣
∫

T
|∇u|2 ds−∑

i

∣∣∇u(xT,i)
∣∣
2 cT,i

∣∣∣∣∣ ≤ C h |Γh| max
T

∣∣|∇u|2
∣∣
W1,∞(T)

≤ C h |Γh| max
T
|u|W2,∞(T) ,

(3.16)

where the last estimate holds due to v 7→ |v|2 being globally Lipschitz continuous and
therefore ∣∣|∇u|2

∣∣
W1,∞(T) ≤ C |u|W2,∞(T) .

Similarly, for each edge related summand in (3.15), we will apply [76, Lem. 8.4] in
(3.10b) (using d = 1, p = 1, kq = 0, and s = 1 therein); note that the proof carries
over to this limit case with p = 1 and d = s. This implies the existence of C > 0 such
that ∣∣∣∣∣

∫
E

∣∣u−E − u+
E

∣∣ ds−∑
j

∣∣u−E (xE,j)− u+
E (xE,j)

∣∣ cE,j

∣∣∣∣∣ ≤ C h ‖
(
u−E − u+

E
)′‖L1(E)

holds. Notice that ∥∥∣∣(u−E − u+
E
)∣∣′∥∥

L1(E) =
∥∥(u−E − u+

E
)′∥∥

L1(E)

holds. Summing over E yields

∑
E

∣∣∣∣∣
∫

E

∣∣u−E − u+
E

∣∣ ds−∑
j

∣∣u−E (xE,j)− u+
E (xE,j)

∣∣ cE,j

∣∣∣∣∣ ≤ C h ∑
E

∥∥(u−E − u+
E
)′∥∥

L1(E).

By combining this estimate and (3.16), we obtain the desired error bound.
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Corollary 3.5 (Low Order Polynomial Degrees).

(i) For r = 0, we have |u|TV(Γh)
= |u|DTV(Γh)

∀u ∈ DGr(Γh).

(ii) For r = 1, we have |u|TV(Γh)
≤ |u|DTV(Γh)

∀u ∈ DGr(Γh).

Proof. In case of r = 0, the right-hand side of the estimate in Proposition 3.4 vanishes.
In case of r = 1,∇u is piecewise constant and the corresponding terms in (3.1) and (3.2)
coincide. Moreover, for affine functions v : E→ R it is easy to check that∫

E
|v| ds ≤ 1

2

(∣∣v(xE,1)
∣∣+ ∣∣v(xE,2)

∣∣) ∫
E

1 ds,

where xE,1 and xE,2 are the two end points of E. This yields the claim in case r = 1.

We also mention that the boundary perimeter formula

Per(U) := |χU|TV(Γh)
= |χU|DTV(Γh)

holds when U is a union of triangles and thus the characteristic function χU belongs to
DG0(Γh).

3.3 Discrete Dual Problem
In this section we revisit the classical image denoising and inpainting problems,

Minimize
1
2
‖u− f ‖2

L2(Γ0
h)
+ β |u|TV(Γh)

, (TV-L2)

Minimize ‖u− f ‖L1(Γ0
h)
+ β |u|TV(Γh)

, (TV-L1)

see [45, 50, 77, 123, 139]. We introduce their discrete counterparts and establish their
Fenchel duals. Here Γ0

h ⊂ Γh is the domain where data is available, and β is a positive
parameter. For simplicity, we assume that the inpainting region Γh \ Γ0

h is the union of a
number of triangles in the discrete problems.

3.3.1 The TV-L2 Problem
The discrete counterpart of (TV-L2) we consider is

Minimize
1
2
‖u− f ‖2

L2(Γ0
h)
+ β |u|DTV(Γh)

. (DTV-L2)

The reconstructed image u is sought in DGr(Γh) for some 0 ≤ r ≤ 4. We can assume
that the given data f belongs to DGr(Γ0

h) as well, possibly after applying interpolation or
quasi-interpolation. Notice that we use the discrete TV-seminorm as regularizer.
The majority of algorithms considered in the literature utilize either the primal or the dual
formulations of the problems at hand. The continuous (pre-)dual problem for (TV-L2) is
well known, see for instance [99]:

Minimize
1
2
‖div p + f ‖2

L2(Γ0
h)

s.t. |p|2 ≤ β,
(TV-L2-D)
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with p ∈ H(div; Γh). Our first result in this section shows that the dual of the discrete
problem (DTV-L2) has a very similar structure as (TV-L2-D), but with the pointwise
constraints replaced by coefficient-wise constraints as in (3.12). For future reference, we
denote the associated admissible set by

P :=
{

p ∈ RTr+1(Γh) : |σT,i(p)|2 ≤ cT,i ∧
∣∣σE,j(p)

∣∣ ≤ cE,j ∀T, E, i, j
}

. (3.17)

Theorem 3.6 (Discrete dual problem for (DTV-L2)). Let 0 ≤ r ≤ 4. Then the dual
problem of (DTV-L2) is

Minimize
1
2
‖div p + f ‖2

L2(Γ0
h)

s.t. p ∈ βP.
(DTV-L2-D)

Here p ∈ βP means that p satisfies constraints as in (3.17) but with cT,i and cE,j replaced
by β cT,i and β cE,j, respectively.

Proof. We cast (DTV-L2) in the common form F(u) + β G(Λu). Let us define

U := DGr(Γh)

and
F(u) :=

1
2
‖u− f ‖2

L2(Γ0
h)

.

The operator Λ represents the gradient of u, which consists of the triangle-wise contribu-
tions plus measure-valued contributions due to (normal) edge jumps. We therefore define

Λ : U → Y := ∏
T
Pr−1(T)2 ×∏

E
Pr(E). (3.18a)

The components of Λu will be addressed by (Λu)T and (Λu)E respectively, and they are
defined by

(Λu)T := ∇u|T
(Λu)E := (u−E − u+

E ).
(3.18b)

Finally, the function G : Y → R is defined by

G(d) := ∑
T

∫
T
IT
{
|dT|2

}
ds + ∑

E

∫
E
IE
{
|dE|

}
ds. (3.19)

A crucial observation is that now the dual space Y∗ of Y can be identified withRTr+1(Γh)
when the duality product is defined as

〈p, d〉 := ∑
T

∫
T

p · dT ds + ∑
E

∫
E
(p+

E · µ
+
E ) dE ds. (3.20)

In fact, RTr+1(Γh) has the same dimension as Y and, for any p ∈ RTr+1(Γh), (3.20)
clearly defines a linear functional on Y. Moreover, the mapping

p 7→ 〈p, ·〉
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is injective since
〈p, d〉 = 0 ∀d ∈ Y =⇒ p = 0,

see (3.7). With this representation of Y∗ available, we can evaluate

Λ∗ : RTr+1(Γh)→ U,

where we identify U with its dual space using the Riesz isomorphism induced by the
L2(Γh) inner product. Consequently, Λ∗ is defined by the condition

〈p, Λu〉 = (u, Λ∗p)L2(Γh)

for all p ∈ RTr+1(Γh) and all u ∈ DGr(Γh). The left hand side is

〈p, Λu〉 = ∑
T

∫
T

p · ∇u ds + ∑
E

∫
E
(p+

E · µ
+
E ) (u

−
E − u+

E ) ds

= −∑
T

∫
T
(div p) u ds + ∑

T

∫
∂T
(p · µT) u ds

−∑
E

(∫
E

u+
E
(

p+
E · µ

+
E
)
+ u−E

(
p−E · µ

−
E
)

ds
)

= −
∫

Γh

(div p) u ds,

(3.21)

hence Λ∗ = −div holds. Here µT denotes the outward co-normal along the triangle
boundary ∂T.
The dual problem can be cast as

Minimize F∗(−Λ∗p) + β G∗(p/β). (3.22)

Similar to (2.18), we have that the convex conjugate of

F(u) =
1
2
‖u− f ‖2

L2(Γ0
h)

is
F∗(u) =

1
2
‖u + f ‖2

L2(Γ0
h)
− 1

2
‖ f ‖2

L2(Γ0
h)

. (3.23)

It remains to evaluate

G∗(p) = sup
d∈Y
〈p, d〉 − G(d)

= sup
d∈Y

{
∑
T

∫
T

(
p · dT − IT

{
|dT|2

})
ds

+ ∑
E

∫
E

(
(p+

E · µ
+
E ) dE − IE

{
|dE|

})
ds

}
.

Let us consider the contribution from

dE = α ϕE,j
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for some α ∈ R on a single edge E, and d ≡ 0 otherwise. By (3.7b) and (3.11), this
contribution is

α σE,j(p)− |α| cE,j,

which is bounded above if and only if∣∣σE,j(p)
∣∣ ≤ cE,j.

In this case, the maximum is zero. Similarly, it can be shown that the contribution from

dT =
( α1

α2

)
ϕT,i

remains bounded above if and only if

|σT,i(p)|s∗ ≤ cT,i,

in which case the maximum is zero as well. This shows that

G∗ = χP

is the indicator function of the constraint set P defined in (3.17), which combined with
(3.23) and (3.22) concludes the proof.

Notice that the discrete dual problem (DTV-L2-D) features the same, very simple set of
constraints, which already appeared in (3.12). As is the case for (TV-L2-D), the solu-
tion of the discrete dual problem (DTV-L2-D) is not necessarily unique. However its
divergence is unique on Γ0

h due to the strong convexity of the objective in terms of div p.
Although not needed for Algorithms 2 and 3, we state the following relation between the
primal and the dual solutions for completeness.

Lemma 3.7 (Recovery of the Primal Solution in (DTV-L2)). Suppose that p ∈ RTr+1(Γh)
is a solution of (DTV-L2-D) in case Γ0

h = Γh. Then the unique solution of (DTV-L2) is
given by u ∈ DGr(Γh) with

u|T = div p|T + f |T ∀T ∈ Γh. (3.24)

Proof. From (3.22), the pair of optimality conditions to analyze is

−Λ∗p ∈ ∂F(u)
p ∈ ∂(β G)(Λu),

(3.25)

see [73, Ch. III, Sect. 4]. Here it suffices to consider the first condition, which by [73,
Prop. I.5.1] is equivalent to

F(u) + F∗(−Λ∗p)− (u, −Λ∗p)L2(Γh)
= 0.

This equality can be rewritten as

‖u− f ‖2
L2(Γh)

+ ‖div p + f ‖2
L2(Γh)

− ‖ f ‖2
L2(Γh)

− 2 (u, div p)L2(Γh)
= 0.
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Developing each summand in terms of the inner product (·, ·)L2(Γh)
and rearranging ap-

propriately, we obtain

0 = (u− f − div p, u)L2(Γh)
+ (−u + f + div p, f )L2(Γh)

+ (div p + f − u, div p)L2(Γh)
,

which amounts to
‖u− f − div p‖2

L2(Γh)
= 0,

and (3.24) is proved.

Remark 3.8. In case Γ0
h ( Γh, the solution of the primal problem will not be unique in

general. An inspection of the proof of Lemma 3.7 shows that in this case, one can derive
the relation

‖u− f − div p‖2
L2(Γ0

h)
= 2

∫
Γh\Γ0

h

u div p ds.

3.3.2 The TV-L1 Problem
The continuous (pre-)dual problem associated with

Minimize ‖u− f ‖L1(Γ0
h)
+ β |u|TV(Γh)

(TV-L1)

can be shown along the lines of [99, Thm. 2.2] to be

Minimize
∫

Γ0
h

(div p) f ds

s.t. |div p| ≤ χΓ0
h

and |p|2 ≤ β
(TV-L1-D)

with p ∈ H(div; Γh), where χΓ0
h

is the characteristic function of Γ0
h.

The definition of an appropriate discrete counterpart of (TV-L1) deserves some attention.
Simply replacing |u|TV(Γh)

by |u|DTV(Γh)
would yield a discrete dual problem with an

infinite number of pointwise constraints

|div p| ≤ χΓ0
h

as in (TV-L1-D), which would render the problem intractable. We therefore advocate to
consider

Minimize ∑
T⊂Γ0

h

∫
T
JT
{
|u− f |

}
ds + β |u|DTV(Γh)

(DTV-L1)

as an appropriate discrete version of (TV-L1) with u ∈ DGr(Γh). Here JT denotes the
interpolation operator into Pr(T), i.e.,

JT
{
|u− f |

}
= ∑

k
|u− f | (XT,k)ΦT,k.

This choice of applying an interpolatory quadrature formula to the data fidelity (loss) term
as well is a decisive advantage, yielding a favorable dual problem.
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Theorem 3.9 (Discrete dual problem for (DTV-L1)). Let 0 ≤ r ≤ 3. Then the dual
problem of (DTV-L1) is

Minimize
∫

Γ0
h

(div p) f ds

s.t.
∣∣∣∣∫T

(div p)ΦT,k ds
∣∣∣∣ ≤ CT,k for T ⊂ Γ0

h

and
∣∣∣∣∫T

(div p)ΦT,k ds
∣∣∣∣ = 0 for T ⊂ Γh \ Γ0

h

and p ∈ βP.

(DTV-L1-D)

Proof. We proceed similarly as in the proof of Theorem 3.6. The functions G, G∗ and Λ
remain unchanged, and we replace F by

F(u) = ∑
T⊂Γ0

h

∫
T
JT
{
|u− f |

}
ds

= ∑
T⊂Γ0

h,k

|u− f | (XT,k)CT,k,
(3.26)

where
CT,k :=

∫
T

ΦT,k ds

is non-negative due to Lemma 3.1. We identify again

U = DGr(Γh)

with its dual but this time not via the regular L2(Γh) inner product but via its lumped
approximation, i.e.,

(u, v)lumped := ∑
T,k

u(XT,k) v(XT,k)CT,k (3.27)

for u, v ∈ DGr(Γh). Notice that this choice first of all affects the representation of

Λ∗ : RTr+1(Γh)→ U.

Indeed, using (3.21) it follows that
v = Λ∗p

is now defined by

(u, v)lumped = −
∫

Γh

(div p) u ds ∀u ∈ DGr(Γh). (3.28)

For the particular choice u = ΦT,k, this yields

v(XT,k) = (Λ∗p)(XT,k)

= − 1
CT,k

∫
T
(div p)ΦT,k ds

(3.29)
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when CT,k > 0. As a side remark, we mention that (3.29) means that Λ∗p is given locally
by Carstensen’s quasi-interpolant of −div p into Pr(T); see [40]. When CT,k = 0, then
(3.28) can only be satisfied when∫

T
(div p)ΦT,k ds = 0

holds, in which case v(XT,k) is arbitrary.
Next, since F from (3.26) is a weighted `1-norm, its convex conjugate can be easily seen
to be

F∗(u) = ∑
T⊂Γ0

h,k

u(XT,k) f (XT,k)CT,k

if
|u(XT,k)| ≤ χΓ0

h
(XT,k)

for all triangles T and k s.t. CT,k > 0; and

F∗(u) = ∞

otherwise. Consequently, by (3.29),

F∗(−Λ∗p) = ∑
T⊂Γ0

h,k

∫
T
(div p)ΦT,k ds f (XT,k)

= ∑
T⊂Γ0

h

∫
T
(div p) f ds

=
∫

Γ0
h

(div p) f ds

holds when ∣∣∣∣∫T
(div p)ΦT,k ds

∣∣∣∣ ≤ CT,k χΓ0
h
(XT,k)

is satisfied, and
F∗(−Λ∗p) = ∞

otherwise. Plugging this into (3.22) concludes the proof. Notice that in case

T ⊂ Γh \ Γ0
h,

the constraints ∫
T
(div p)ΦT,k ds = 0 ∀k

imply that
div p ≡ 0 on T

since div p ∈ Pr(T); see (3.6).

Remark 3.10 (Discrete dual problem (DTV-L1-D)).
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(a) The replacement of ‖ · ‖L1(Γh)
in the objective as well as of the L2(Γh) inner product

in U by lumped versions obtained by interpolatory quadrature has been successful
in other contexts before; see for instance [42]. Here, it is essential in converting
the otherwise infinitely many pointwise constraints

|div p| ≤ χΓ0
h

into just finitely many constraints on div p.

(b) Notice that the dual (DTV-L1-D) is a linear program.

(c) One may ask what would have happened if we had applied the same quadrature for-
mula to the L2(Γh) inner product already in (DTV-L2). It can be seen by straight-
forward calculations that the objective in (DTV-L2-D) would have been replaced
by

1
2 ∑

T⊂Γ0
h,k

(
1

CT,k

∫
T
(div p)ΦT,k ds + f (XT,k)

)2

CT,k

with summands involving CT,k = 0 omitted. There is, however, no structural ad-
vantage compared to (DTV-L2-D).

3.4 Algorithms for DTV-L2
Our goal in this section is to show that two standard algorithms developed for images on
Cartesian grids, with finite difference approximations of gradient and divergence opera-
tions, are implementable with the same efficiency in our framework of higher-order finite
elements on triangular surface meshes. Specifically, we consider in the following the split
Bregman iteration [85] and the primal-dual method of Chambolle and Pock [47]. We
refer the reader to the extended preprint [97] for a additional discussion of Chambolle’s
projection method [44] and a primal-dual active set method similar to [99]. Since these
algorithms are well known, we only focus on the main steps in each case. Let us recall
that we are seeking a solution u ∈ DGr. For simplicity, we exclude the case r = 3, i.e.,
we restrict the discussion to the polynomial degrees r ∈ {0, 1, 2, 4} so that all weights
cT,i and cE,j are strictly positive.

3.4.1 Split Bregman Method
The split Bregman method (as a special case of the alternating direction method of mul-
tipliers (ADMM)) considers the primal problem (DTV-L2). It introduces an additional
variable d so that (DTV-L2) becomes

Minimize
1
2
‖u− f ‖2

L2(Γ0
h)
+ β ∑

T,i
cT,i
∣∣dT,i

∣∣
2 + β ∑

E,j
cE,j

∣∣dE,j
∣∣

s.t. d = Λu
(3.30)

and enforces the constraint d = Λu = ∇u by an augmented Lagrangian approach.
As detailed in (3.18), d has contributions ∇u|T per triangle, as well as contributions
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(u−E − u+
E ) per edge. We can thus express d through its coefficients {dT,i} and {dE,j}

w.r.t. the standard Lagrangian bases of Pr−1(T)2 and Pr(E),

d = ∑
i

dT,i ϕT,i + ∑
j

dE,j ϕE,j. (3.31)

Using (3.10) and (3.11), we rewrite the discrete total variation (3.2) in terms of d and
adjoin the constraint d = ∇u by way of an augmented Lagrangian functional,

1
2
‖u− f ‖2

L2(Γ0
h)
+ β ∑

T,i
cT,i
∣∣dT,i

∣∣
2 + β ∑

E,j
cE,j

∣∣dE,j
∣∣+ λ

2
‖d−Λu− b‖2

Y. (3.32)

Here b is an estimate of the Lagrange multiplier associated with the constraint

d = ∇u ∈ Y,

and b is naturally discretized in the same way as d.

Remark 3.11 (Inner product on Y).
So far we have not endowed the space

Y = ∏
T
Pr−1(T)2 ×∏

E
Pr(E)

with an inner product. Since elements of Y represent (measure-valued) gradients of
DGr(Γh) functions, the natural choice would be to endow Y with a total variation norm
of vector measures, which would amount to

∑
T

∫
T
|dT|2 ds + ∑

E

∫
E
|dE| ds

for d ∈ Y. Clearly, this L1-type norm is not induced by an inner product. Therefore
we are using the L2 inner product instead. For computational efficiency, it is crucial to
consider its lumped version, which amounts to

(d, e)Y := S ∑
T,i

cT,i dT,i eT,i + ∑
E,j

cE,j dE,j eE,j (3.33)

for d, e ∈ Y. The associated norm is denoted as

‖d‖2
Y = (d, d)Y.

Notice that S > 0 is a scaling parameter which can be used to improve the convergence
of the split Bregman and other iterative methods.

The efficiency of the split Bregman iteration depends on the ability to efficiently minimize
(3.32) independently for u, d and b, respectively. Let us show that this is the case.

The Gradient Operator Λ

The gradient operator Λ evaluates the cell-wise gradient of u ∈ DGr(Γh) as well as the
edge jump contributions, see (3.18). These are standard operations in any finite element
toolbox. For computational efficiency, the matrix realizing u(xT,i) and u(xE,j) in terms
of the coefficients of u can be stored once and for all.
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Solving the u-problem

We consider the minimization of (3.32), or equivalently, of

1
2
‖u− f ‖2

L2(Γ0
h)
+

λS
2 ∑

T,i
cT,i
∣∣dT,i −∇u(xT,i)− bT,i

∣∣2
2

+
λ

2 ∑
E,j

cE,j
∣∣dE,j − (u−E − u+

E )(xE,j)− bE,j
∣∣2 (3.34)

w.r.t. u ∈ DGr(Γh). This problem can be interpreted as a DG finite element formulation
of the elliptic partial differential equation

−λ ∆u + χΓ0
h
u = χΓ0

h
f + λ div(b− d) on Γh.

More precisely, it constitutes a nonsymmetric interior penalty Galerkin (NIPG) method;
compare for instance [135] or [134, Ch. 2.4, 2.6]. Specialized preconditioned solvers for
such systems are available, see for instance [6]. However, as proposed in [85], a (block)
Gauss–Seidel method may be sufficient. It is convenient to group the unknowns of the
same triangle together, which leads to local systems of size (r + 1)(r + 2)/2.

Solving the d-problem

The minimization of (3.32), or equivalently, of

β ∑
T,i

cT,i
∣∣dT,i

∣∣
2 +

λS
2 ∑

T,i
cT,i
∣∣dT,i −∇u(xT,i)− bT,i

∣∣2
2

+ β ∑
E,j

cE,j
∣∣dE,j

∣∣+ λ

2 ∑
E,j

cE,j
∣∣dE,j − (u−E − u+

E )(xE,j)− bE,j
∣∣2 (3.35)

decouples into the minimization of

β
∣∣dT,i

∣∣
2 +

λS
2

∣∣dT,i −∇u(xT,i)− bT,i
∣∣2
2 (3.36a)

and
β
∣∣dE,j

∣∣+ λ

2

∣∣dE,j − (u−E − u+
E )(xE,j)− bE,j

∣∣2 (3.36b)

w.r.t. dT,i ∈ R2 and dE,j ∈ R, respectively.
It is well known that the scalar problem (3.36b) is solved via

dE,j = shrink
(
(u−E − u+

E )(xE,j) + bE,j,
β

λ

)
,

where
shrink(ξ, γ) := max {|ξ| − γ, 0} sgn ξ,

while the minimization of (3.36a) defines the (Euclidean) prox mapping of | · |2 and thus
we have

dT,i = proxβ/(λS)| · |2

(
∇u(xT,i) + bT,i

)
,
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where

proxβ/(λS)| · |2
(ξ) = ξ − β

λS
projB| · |2

(
λS
β

ξ

)
.

Here projB| · |2
is the Euclidean orthogonal projection onto the closed | · |2-norm unit ball;

see or instance [16, Ex. 6.47]. Similar to (3.36b), we have closed-form solutions of
(3.36a):

dT,i = max
{∣∣∇u(xT,i) + bT,i

∣∣
2 −

β

λS
, 0
}
· ∇u(xT,i) + bT,i∣∣∇u(xT,i) + bT,i

∣∣
2

When ∇u(xT,i) + bT,i = 0, the formula is understood as dT,i = 0.

Updating b

This is simply achieved by replacing the current values for bT,i and bE,j by

bT,i +∇u(xT,i)− dT,i

and
bE,j + (u−E − u+

E )(xE,j)− dE,j,

respectively.
The quantities bT,i and bE,j represent discrete multipliers associated with the components
of the constraint

d = Λu.

Here we clarify how these multipliers relate to the dual variable p ∈ RTr+1(Γh) in
(DTV-L2-D). In fact, let us interpret bT,i as the coefficients of a function bT ∈ Pr−1(T)
and bE,j as the coefficients of a function bE ∈ Pr(E) w.r.t. the standard nodal bases, just as
in (3.31). Moreover, let us define a function p̄ ∈ RTr+1(Γh) by specifying its coefficients
as follows,

σT,i(p̄) := λS bT,i cT,i

σE,j(p̄) := λ bE,j cE,j.
(3.37)

Then ∫
T

p̄ · (∇u− dT) ds = ∑
i

∫
T

p̄ ϕT,i ·
(
∇u(xT,i)− dT,i

)
ds

= λS ∑
i

cT,i bT,i ·
(
∇u(xT,i)− dT,i

)
and∫

E
(p̄+

E · µ
+
E ) ((u

−
E − u+

E )− dE) ds = ∑
j

∫
E
(p̄+

E · µ
+
E ) ϕE,j

(
(u−E − u+

E )(xE,j)− dE,j
)

ds

= λ ∑
j

cE,j bE,j ((u−E − u+
E )(xE,j)− dE,j),
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and these are precisely the terms appearing in the discrete augmented Lagrangian func-
tional (3.32). Consequently, p̄ can be interpreted as the Lagrange multiplier associated
with the components of the constraint

d = Λu,

when the latter are adjoined using the lumped L2(T) and L2(E) inner products. It can
be shown using the KKT conditions for (3.30) and the optimality conditions (3.25) that p̄
defined by (3.37) solves the dual problem (DTV-L2-D). To prove this assertion, suppose
that

(u, d)

is optimal for (3.30). We will show that

(u, p̄)

satisfy the necessary and sufficient optimality conditions (3.25). The Lagrangian for
(3.30) can be written as

F(u) + β G(d) + 〈p̄, Λu− d〉
and the optimality of (u, d) implies

p̄ ∈ ∂(β G)(d) = ∂(β G)(Λu).

On the other hand, u is optimal for (DTV-L2), which implies

0 ∈ ∂F(u) + Λ∗∂(β G)(Λu)

and thus
−Λ∗ p̄ ∈ ∂F(u).

Altogether, we have verified (3.25), which is necessary and sufficient for p̄ to be optimal
for (DTV-L2-D).
For convenience, we specify the split Bregman iteration in Algorithm 2.

Algorithm 2 Split Bregman algorithm for (DTV-L2)

1: Set u(0) := f ∈ DGr(Γh), b(0) := 0 ∈ Y and d(0) := 0 ∈ Y
2: Set n := 0
3: while not converged do
4: Minimize (3.34) for u(n+1) with data b(n) and d(n)

5: Minimize (3.36) for d(n+1) with data u(n+1) and b(n)

6: Set b(n+1)
T,i := b(n)

T,i +∇u(n+1)(xT,i)− d(n+1)
T,i

7: Set b(n+1)
E,j := b(n)E,j + (u−E − u+

E )
(n+1)(xE,j)− d(n+1)

E,j
8: Set n := n + 1
9: end while

10: Set p(n) by (3.37) with data b(n)
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3.4.2 Chambolle–Pock Method
The method by [47], also known as primal-dual extragradient method, see [92], is based
on a reformulation of the optimality conditions in terms of the prox operators pertaining
to F and G∗. We recall that F is defined by

F(u) =
1
2
‖u− f ‖2

L2(Γ0
h)

on U = DGr(Γh). Moreover, G∗ is defined on Y∗ ∼= RTr+1(Γh) by

G∗ = IP,

the indicator function of P, see (3.17).
Notice that prox operators depend on the inner product in the respective space. We recall
that U has been endowed with the (regular, non-lumped) L2(Γh) inner product, see the
proof of Theorem 3.6. For the space Y we are using again the inner product defined in
(3.33). Exploiting the duality product (3.20) between Y and Y∗ ∼= RTr+1(Γh) it is then
straightforward to derive the Riesz map

R : Y 3 d 7→ p ∈ Y∗.

In terms of the coefficients of p, we have

σT,i(p) = cT,iS dT,i

σE,j(p) = cE,j dE,j.
(3.38)

Consequently, the induced inner product inRTr+1(Γh) becomes

(p, q)Y∗ := ∑
T,i

1
cT,iS

σT,i(p) · σT,i(q) + ∑
E,j

1
cE,j

σE,j(p) σE,j(q). (3.39)

To summarize, the inner products in Y, Y∗ as well as the Riesz map are realized efficiently
by simple, diagonal operations on the coefficients.

Solving the F-prox

Let σ > 0. The prox-operator of σF, denoted by

proxσF(ū) : U → U,

is defined as u = proxσF(ū) if and only if

u = arg min
v∈DGr(Γh)

1
2
‖v− ū‖2

L2(Γh)
+

σ

2
‖v− f ‖2

L2(Γ0
h)

.

For given data ū ∈ DGr(Γh) and f ∈ DGr(Γ0
h), it is easy to see that a necessary and

sufficient condition is u − ū + σ (u − f ) = 0, which amounts to the coefficient-wise
formula

uT,k =
1

1 + σT,k

(
ūT,k + σT,k fT,k

)
, (3.40)

where σT,k = σ if T ⊂ Γ0
h and σT,k = 0 otherwise.
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Solving the G∗-prox

Let τ > 0. The prox-operator

proxτG∗ : Y∗ ∼= RTr+1(Γh)→ Y∗

is defined as p = proxτG∗(p̄) if and only if

p = arg min
q∈RTr+1(Γh)

1
2
‖q− p̄‖2

Y∗ s.t. q ∈ P. (3.41)

Similarly, the prox operator for (β G)∗ is obtained by replacing P by βP, for any τ > 0.
Due to the diagonal structure of the inner product in Y∗, this is efficiently implementable.
When p̄ ∈ RTr+1(Γh), then we obtain the solution in terms of the coefficients, similar to
(3.36), as

σT,i(p) = projβ cT,iB| · |2
(σT,i(p̄))

= min
{
|σT,i(p̄)|2 , β cT,i

} σT,i(p̄)
|σT,i(p̄)|2

(3.42a)

and

σE,j(p) = min
{ ∣∣σE,j(p̄)

∣∣ , β cE,j
} σE,j(p̄)∣∣σE,j(p̄)

∣∣ . (3.42b)

Both formulas are understood as σT,i(p) = 0 and σE,j(p) = 0, respectively, when
|σT,i(p̄)|2 = 0 or

∣∣σE,j(p̄)
∣∣ = 0. An implementation of the Chambolle–Pock method is

given in Algorithm 3. Notice that the solution of the proxτG∗ problem is independent of
the scaling parameter S > 0. However S enters through the Riesz isomorphism (3.38).

Algorithm 3 Chambolle–Pock algorithm for (DTV-L2)

1: Set u(0) := f ∈ DGr(Γh), p(0) := 0 ∈ RTr+1(Γh) and p̄(0) := 0 ∈ RTr+1(Γh)
2: Set n := 0
3: while not converged do
4: Set v(n+1) := div p̄(n) ∈ DGr(Γh)

5: Set u(n+1) := proxσF(u
(n) + σ v(n+1)), see (3.40)

6: Set d(n+1) := Λu(n+1) ∈ Y
7: Set q(n+1) := R d(n+1) ∈ RTr+1(Γh), where R is the Riesz map (3.38)
8: Set p(n+1) := proxτ(βG)∗(p(n) + τ q(n+1)), see (3.42)

9: Set p̄(n+1) := p(n+1) + θ (p(n+1) − p(n))
10: Set n := n + 1
11: end while

3.4.3 Chambolle’s Projection Method
Chambolle’s method was introduced in [44] and it solves (DTV-L2) via its dual (DTV-L2-D).
We also require Γ0

h = Γ here. Squaring the constraints pertaining to p ∈ βP, we obtain
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the Lagrangian

1
2
‖div p + f ‖2

L2(Γh)
+∑

T,i

αT,i

2

(
|σT,i(p)|22 − β2c2

T,i

)
+∑

E,j

αE,j

2

(∣∣σE,j(p)
∣∣2 − β2c2

E,j

)
,

(3.43)

where αT,i and αE,j are Lagrange multipliers. Consequently, the KKT conditions associ-
ated with this formulation of (DTV-L2-D) are

(div p + f , div δp)L2(Γh)
+∑

T,i
αT,i σT,i(p) · σT,i(δp)

+∑
E,j

αE,j σE,j(p) σE,j(δp) = 0
(3.44)

for all δp ∈ RTr+1(Γh), together with the complementarity conditions

0 ≤ αT,i ⊥ |σT,i(p)|2 − β cT,i ≤ 0 ∀T, i (3.45a)

0 ≤ αE,j ⊥
∣∣σE,j(p)

∣∣− β cE,j ≤ 0 ∀E, j (3.45b)

Let us observe that the first term in (3.44) can be written as

−〈Λ(div p + f ), δp〉Y,Y∗ ,

and hence as

−∑
T

∫
T
∇u|T · δp ds−∑

E

∫
E
(δp+

E · µ
+
E ) (u

−
E − u+

E ) ds,

where we set u := div p + f as an abbreviation in accordance with (3.24). By selecting
directions δp from the collections {ψT

i } and {ψE
j } of RTr+1(Γh) basis functions, see

Section 3.1, we infer that (3.44) is equivalent to

−∇u(xT,i) + αT,i σT,i(p) = 0 ∀T, i (3.46a)

−(u−E − u+
E )(xE,j) + αE,j σE,j(p) = 0 ∀E, j. (3.46b)

A simple calculation similar as in [44] then shows that (3.45) and (3.46) imply

β αT,i cT,i = |∇u(xT,i)|2 ,

β αE,j cE,j =
∣∣(u−E − u+

E )(xE,j)
∣∣. (3.47)

In order to re-derive Chambolle’s algorithm for the setting at hand, it remains to rewrite
the directional derivative (3.44) in terms of the gradient g ∈ Y∗ w.r.t. the Y∗ inner product
(3.39). We obtain that g is given by its coefficients

σT,i(g) = cT,i
(
αT,i σT,i(p)−∇u(xT,i)

)
, (3.48a)

σE,j(g) = cE,j
(
αE,j σE,j(p)− (u−E − u+

E )(xE,j)
)
. (3.48b)
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Given an iterate for p, the main steps of the algorithm are then to update the auxiliary
quantity

u = div p + f

as well as the multipliers αT,i and αE,j according to (3.47), and take a semi-implicit gra-
dient step with a suitable step length to update p. Since all of these steps are inexpensive,
Chambolle’s method can be implemented just as efficiently as its finite difference version
originally given in [44]. For the purpose of comparison, we point out that one step of the
method can be written compactly as

σT,i(p(n+1)) :=
σT,i(p(n)) + τ cT,i∇(div p(n) + f )(xT,i)

1 + τ β−1
∣∣∇(div p(n) + f )(xT,i)

∣∣
2

,

σE,j(p(n+1)) :=
σE,j(p(n)) + τ cE,jJdiv p(n) + f K(xE,j)

1 + τ β−1
∣∣Jdiv p(n) + f K(xE,j)

∣∣ .

for all T and i, and for all E and j, respectively. Let us mention that our variable p differs
by a factor of β from the one used in [44]. Moreover, in the implementation given as
Algorithm 4, we found it convenient to rename αT,i cT,i as γT,i, and similarly for the edge
based quantities. Notice that γT,i and γE,j can be conveniently stored, for instance, as the
coefficients of a DGr−1(Γh) function, and another DGr function on the skeleton of the
mesh, i.e., the union of all interior edges.

Algorithm 4 Chambolle’s algorithm for (DTV-L2) with s = 2

1: Set p(0) := 0 ∈ RTr+1(Γh)
2: Set n := 0
3: while not converged do
4: Set u(n) := div p(n) + f ∈ DGr(Γh)

5: Set γT,i := β−1
∣∣∣∇u(n)(xT,i)

∣∣∣
2

// γT,i = αT,i cT,i, see (3.47)

6: Set γE,j := β−1
∣∣∣(u−E − u+

E )
(n)(xE,j)

∣∣∣ // γE,j = αE,j cE,j, see (3.47)

7: Set σT,i(p(n+1)) :=
σT,i(p(n)) + τ cT,i∇u(n)(xT,i)

1 + τ γT,i

8: Set σE,j(p(n+1)) :=
σE,j(p(n)) + τ cE,j(u−E − u+

E )
n(xE,j)

1 + τ γE,j
9: Set n := n + 1

10: end while

3.4.4 Implementation Details
Our implementation was carried out in the finite element framework FENICS (version
2017.2). We refer the reader to [4, 114] for background reading. FENICS supports finite
elements of various types on simplicial meshes, including CGr, DGr andRTr+1 elements
of arbitrary order. Although we focus on this piece of software, the content of this section
will apply to other finite element frameworks as well.
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While the bases for the spaces CGr and DGr in FENICS are given by the standard nodal
basis functions as described in Section 3.1, the implementation of RTr+1 elements in
FENICS uses degrees of freedom based on point evaluations of p and p+

E · µ
+
E , rather than

the integral-type dofs in (3.7). Since we wish to take advantage of the simple structure
of the constraints in the dual representation (3.12) of |u|DTV(Γh)

however, we rely on the
choice of dofs described in (3.7). In order to avoid a global basis transformation, we
implemented our own version of theRTr+1 finite element in FENICS.
Our implementation uses the dofs in (3.7) on the reference cell T̂. As usual in finite ele-
ment methods, an arbitrary cell T is then obtained via an affine geometry transformation,
i.e.,

GT : T̂ → T, GT(x̂) := BT x̂ + bT,

where BT ∈ R3×2 is a matrix of rank 2 and bT ∈ R3. By defining the matrix

B̃T = (BT|nT) ∈ R3×3,

where the oriented normal vector nT of the triangle T is added as a third column to the
matrix BT, we are able to state GT differently

GT(x̂) := B̃T

(
x̂
0

)
+ bT.

It is easy to see that √
det B>T BT =

∣∣det B̃T
∣∣ ,

but the sign
(
det B̃T

)
, which shows if GT is orientation preserving, will be important

below. Therefore, we can define the matrix

B−1
T ∈ R2×3

through
B−1

T y = x ⇐⇒ BTx = y ∀y ∈ Im BT.

In a similar way, the inverse mapping G−1
T of GT is defined. We mention that the transfor-

mation GT may not necessarily be orientation preserving. In contrast to CG and DG ele-
ments, a second transformation is required for the (H(div; Γh)-conforming)RT space to
define the dofs and basis functions on the world cell T from the dofs and basis functions on
T̂. This is achieved via the (contravariant) Piola transform; see for instance [76, Ch. 1.4.7]
or [137]. In terms of functions p̂ from the local polynomial space, we have

PT : Pr(T̂)2 + x̂Pr(T̂)→ Pr(T)2 + xPr(T),

PT(p̂) =
1

det B̃T
BT [p̂ ◦ G−1

T ].

The Piola transform preserves tangent directions on edges, as well as co-normal traces of
vector fields, up to edge lengths. It satisfies∣∣Ê∣∣ p̂Ê · µ̂Ê = ± |E| p+

E · µ
+
E∣∣T̂∣∣ BT p̂ = ± |T| p,

(3.49)
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where Ê is an edge of T̂, µ̂Ê is the corresponding co-normal and E = GT(Ê); see for
instance [76, Lem. 1.84]. The correct choice of the sign in (3.49) depends on orientation
preserving of GT and the relative orientations of PT(µ̂Ê) and µ+

E . However the sign is not
important since all operations depending on the dofs or coefficients, such as σT,i(p), are
sign invariant, notably the constraint set in (3.17).
We denote by σ̂ T̂,i and σ̂Ê,j the degrees of freedom as in (3.7), defined in terms of the

nodal basis functions ϕ̂T̂,i ∈ Pr−1(T̂) and ϕ̂Ê,j ∈ Pr(Ê) on the reference cell. Let us
consider how these degrees of freedom act on the world cell. Indeed, the relations above
imply

σ̂ T̂,i(p̂) :=
∫

T̂
ϕ̂T̂,i p̂ dx̂

= sign
(
det B̃T

) ∫
T

ϕT,i B−1
T p dx (3.50a)

= sign
(
det B̃T

)
B−1

T σT,i(p),

σ̂Ê,j(p̂) :=
∫

Ê
ϕ̂Ê,j (p̂Ê · µ̂Ê) dŝ

= ±
∫

E
ϕE,j (p+

E · µ
+
E ) ds (3.50b)

= ± σE,j(p),

where we used that Lagrangian basis functions are transformed according to

ϕT,i = ϕ̂T̂,i ◦ G−1
T ,

and similarly for the edge-based quantities.
Notice that while (3.50b) agrees (possibly up to the sign) with our preferred set of edge-
based dofs (3.7b), the interior dofs σ̂ T̂,i are related to the desired dofs σT,i from (3.7a)
via

σT,i(p) = sign
(
det B̃T

)
BT σ̂ T̂,i(p). (3.51)

Notice that this transformation is impossible to avoid since the dofs (3.7a) are not invariant
under the Piola transform. However, (3.51) is completely local to the triangle and inex-
pensive to evaluate. Although not required for our numerical computations, we mention
for completeness that the corresponding dual basis functions are related via

ψT
i =

1
det B̃T

BT ψ̂
T
i B−1

T . (3.52)

To summarize this discussion, functions p ∈ RTr+1(Γh) will be represented in terms
of coefficients w.r.t. the dofs {σE,j} and {σ̃T,i} in our FENICS implementation of the
RT space. Transformations to and from the desired dofs {σT,i} will be performed for
all operations manipulating directly the coefficients of an RTr+1 function. For instance,
the projection operation in (3.42) for the Chambolle–Pock Algorithm 3 would be imple-
mented as

σ̂ T̂,i(p) = sign
(
det B̃T

)
B−1

T min
{∣∣BT σ̂ T̂,i(p̄)

∣∣
2, β cT,i

}
·

BT σ̂ T̂,i(p̄)∣∣BT σ̂ T̂,i(p̄)
∣∣
2

.
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3.5 Numerical Results
In this section we present some numerical results for (DTV-L2). Our goals are to demon-
strate computational efficiency of Algorithm 2 w.r.t. varying polynomial degree r ∈
{0, 1, 2}, and to exhibit the benefits of polynomial orders r ≥ 1 for image quality, both
for denoising and inpainting applications. For results of Algorithm 3, we refer to [97].

Figure 3.2: Non-discrete test texture (left), which will be projected on the sphere mesh
(right) and interpolated into DGr with r = 0, 1, 2.

In our tests, we use the a sphere mesh with texture as displayed in Figure 3.2, which has
data in the range [0, 1]. The sphere mesh has radius 1 and consists of 14448 cells and 7226
vertices. In all of the following tests, noise is added to each degree of freedom in the form
of a normally distributed random variable with standard deviation σ = 1× 10−1 and zero
mean. Our implementation uses the finite element framework FENICS (version 2017.2)
and the visualization was achieved in PARAVIEW.

A stopping criterion for Algorithms 2 to 4 can be based on the primal-dual gap

F(u) + β G(Λu) + F∗(Λ∗p) + β G∗(p/β). (3.53)

Notice that since G∗ = χP is the indicator function of the constraint set P, the last term
is either 0 or ∞, and (3.53) can therefore not directly serve as a meaningful stopping
criterion. Instead, we omit the last term in (3.53) and introduce a distance-to-feasibility
measure for p as a second criterion. For the latter, we utilize the difference of p and its
Y∗-orthogonal projection onto βP, measured in the Y∗-norm squared. Straightforward
calculations then show that we obtain the following specific expressions:

GAP(u, p) :=
1
2
‖u− f ‖2

L2(Γ0)
+

1
2
‖div p + f ‖2

L2(Γ0)

− 1
2
‖ f ‖2

L2(Γ0)
+ β ∑

T

∫
T
IT
{
|∇u|2

}
ds + β ∑

E

∫
E
IE
{∣∣u−E − u+

E

∣∣
2

}
ds
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and
INFEAS(p) := ∑

T,i

1
cT,iS

max
{
|σT,i(p)|2 − β cT,i, 0

}2

+∑
E,j

1
cE,j

max
{ ∣∣σE,j(p)

∣∣− β cE,j, 0
}2

In our numerical experiments, we stop either algorithm as soon as the iterates (u, p)
satisfy the following conditions:

|GAP(u, p)| ≤ εrel GAP( f , 0)

INFEAS2(p) ≤ 1× 10−20 (3.54)

with εrel = 1× 10−3.

3.5.1 Denoising of DGr-Images
This section addresses the denoising of DGr images. We represent (interpolate) the non-
discrete texture displayed in Figure 3.2 in the space DGr(Γ) for r = 0, 1, 2. Noise is
added to each degree of freedom as described above. We show the denoising results
for the split Bregman method (Algorithm 2) in Figure 3.3, where the noise is removed
successfully.
Figure 3.3 visualizes the benefits of higher-order finite elements in particular in the case
where the discontinuities in the image are not resolved by the computational mesh. In
addition, the DG1 and DG2 solutions exhibit less staircasing.
Before continuing, we mention that all results in DG1 were interpolated onto DG0 on
a twice refined mesh merely for visualization since DG1 functions cannot directly be
displayed in PARAVIEW. Likewise, results inDG2 were interpolated ontoDG0 on a three
times refined mesh for visualization.

3.5.2 Inpainting of DGr-Images
In this and the following section we demonstrate the utility of higher-order polynomial
function spaces for the purpose of inpainting. To this end, we consider the same sphere
setting as before and randomly delete 70% of all cells, which subsequently serve as the in-
painting region Γ \ Γ0. Again, problem (DTV-L2) is solved in DGr(Γh) for r ∈ {0, 1, 2}
with Algorithm 2; see Figure 3.4.
The results for this inpainting problem are similar to those for the pure denoising case in
Figure 3.3. Clearly, the higher-order results produce images closer to the original than the
recovery in DG0.

3.6 Solving the (DTV-L1) Problem
We briefly discuss the implementation of two algorithms for

Minimize ∑
T⊂Γ0

h

∫
T
JT
{
|u− f |

}
ds + β |u|DTV(Γh)

. (DTV-L1)
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Figure 3.3: Original, noisy and denoised images (top to bottom) for DG0 (left col-
umn), DG1 (middle column) and DG2 (right column) for (DTV-L2) with parameters
β = 1× 10−2, λ = 1× 10−1 ans S = 1× 10−2.
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Figure 3.4: Inpainting with 70% of the cells erased (shown in black in the upper left
image). Inpainting results for DG0 (upper right), DG1 (lower left) and DG2(lower right)
for (DTV-L2) with parameters β = 1× 10−3, λ = 1× 10−1 ans S = 1× 10−3.
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They too can be realized equally efficiently as their original counterparts devised for
images on Cartesian grids with low-order finite difference approximations of the gra-
dient and divergence. For simplicity, we restrict the discussion to the polynomial degrees
r ∈ {0, 1} in this section so that all weights cT,i, cE,j as well as CT,k are strictly positive.
The cases r = {2, 3} can be included provided that zero weights are properly treated and
we come back to this in Section 3.7.2.

3.6.1 Chambolle–Pock Method
We focus on the changes compared to the method for (DTV-L2) discussed in Section 3.4.2.
As in Section 3.3.2, we need to replace F by (3.26) and use the lumped inner product
(3.27) in

U = DGr(Γh).

Due to the diagonal structure of both F and the inner product, the F-prox operator is easily
seen to be

u = proxσF(ū)

if and only if
uT,k = fT,k + shrink

(
|ūT,k − fT,k| , σ

)
, (3.55)

in case
T ⊂ Γ0

h,

similarly as in [47, Sect. 6.2.2]. In case

T ⊂ Γh \ Γ0
h,

we have
uT,k = ūT,k.

The remaining steps in Algorithm 3 are unaffected.

3.6.2 ADMM Method
Finally we consider the Alternating Direction Method of Multipliers (ADMM) for the
primal problem (DTV-L1) as in [152]. In our context, similar as for the split Bregman
method (Section 3.4.1), one introduces variables

u ∈ DGr(Γh)

and
d, b ∈ Y.

A second splitting
e = u− f

is required, so we additionally introduce

e ∈ DGr(Γh)

as well as a multiplier
g ∈ DGr(Γh).
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The corresponding augmented Lagrangian functional reads

∑
T⊂Γ0

h,k

CT,k |eT,k|+β ∑
T,i

cT,i
∣∣dT,i

∣∣
s + β ∑

E,j
cE,j

∣∣dE,j
∣∣+ λ

2
‖d−Λu− b‖2

Y

+
λS
2 ∑

T,k
CT,k

∣∣eT,k − uT,k + fT,k − gT,k
∣∣2.

(3.56)

Let us briefly consider the individual minimization problems w.r.t. u, d, and e. The u-
problem is to minimize

λS
2 ∑

T,k
CT,k

∣∣eT,k − uT,k + fT,k − gT,k
∣∣2 + λS

2 ∑
T,i

cT,i
∣∣dT,i −∇u(xT,i)− bT,i

∣∣2
2

+
λ

2 ∑
E,j

cE,j
∣∣dE,j − (u−E − u+

E )(xE,j)− bE,j
∣∣2 (3.57)

w.r.t. u ∈ DGr(Γh). This problem is similar to (3.34) and it leads to a coupled linear
system for u. The minimization of (3.56) w.r.t. d ∈ RTr+1(Γh) is identical to (3.35) and
the e-problem is to minimize

∑
T⊂Γ0

h,k

|eT,k| CT,k +
λS
2 ∑

T,k
CT,k

∣∣eT,k − uT,k + fT,k − gT,k
∣∣2. (3.58)

This problem can be easily solved via shrinkage, cf. (3.36b). Finally, the multiplier update
for b is as in Section 3.4.1, and the update for g is similar; see Algorithm 5. Once again,
the solution p of the dual (DTV-L1-D) can be recovered from the multipliers bT,i and bE,j
as in (3.37). Moreover, it can be easily checked that

λ gT,k =
1

CT,k

∫
T
(div p)ΦT,k ds (3.59)

holds, where the quantity on the right appears as a constraint in (DTV-L1-D) and thus it
satisfies

|λ gT,k| ≤ 1

in the limit where T ⊂ Γ0
h and

|λ gT,k| = 0

where T ⊂ Γh \ Γ0
h.

3.7 Extensions
In this section we collect a number of extensions showing that problems more general
than those based on the TV-L2 and TV-L1 models and discontinuous functions can be
dealt with efficiently by generalizations of the respective algorithms to our higher-order
finite element setting.



3.7. Extensions 71

Algorithm 5 ADMM algorithm for (DTV-L1)

1: Set u(0) := f ∈ DGr(Γh), b(0) := 0 ∈ Y and d(0) := 0 ∈ Y
2: Set e(0) := 0 ∈ DGr(Γh) and g(0) := 0 ∈ DGr(Γh)
3: Set n := 0
4: while not converged do
5: Minimize (3.57) for u(n+1) with data b(n), d(n), e(n) and g(n)

6: Minimize (3.36) for d(n+1) with data u(n+1) and b(n)

7: Minimize (3.58) for e(n+1) with data u(n+1) and g(n)

8: Set b(n+1)
T,i := b(n)

T,i +∇u(n+1)(xT,i)− d(n+1)
T,i

9: Set b(n+1)
E,j := b(n)E,j + Ju(n+1)K(xE,j)− d(n+1)

E,j

10: Set g(n+1)
T,k := g(n)T,k + u(n+1)

T,k − fT,k − e(n+1)
T,k

11: Set n := n + 1
12: end while
13: Set p(n) by (3.37) with data b(n)

3.7.1 Huber TV-Seminorm
We consider the replacement of the TV-seminorm by its ‘Huberized’ variant; see for in-
stance [107, 124] and [142, Ch. 4]. Here, function G in (3.19) can be written as

G(d) =∑
T

∫
T
IT
{
|dT|2

}
ds + ∑

E

∫
E
IE
{
|dE|

}
ds

=∑
T,i

cT,i
∣∣dT,i

∣∣
2 + ∑

E,j
cE,j

∣∣dE,j
∣∣ .

(3.60)

The corresponding Huber functional with parameter ε > 0 then becomes

Gε(d) =∑
T,i

cT,i max
{
|dT,i|2 −

ε

2
,

1
2 ε
|dT,i|22

}
+ ∑

E,j
cE,j max

{
dE,j −

ε

2
, −dE,j −

ε

2
,

1
2 ε

(dE,j)
2
}

.
(3.61)

It can be shown by straightforward calculations that the convex conjugate of Gε is

G∗ε (p) = χP(p) +
ε

2
‖p‖2

Y∗ . (3.62)

We recall that χP is the indicator function of the constraint set P in (3.17).
The ‘Huberized’ discrete TV-seminorm is thus defined by Gε(Λu) where Λ is given in
(3.18). It can be combined with both the L2 and L1 loss terms,

F(u) =
1
2
‖u− f ‖2

L2(Γ0
h)

and
F(u) = ∑

T⊂Γ0
h

∫
T
JT
{
|u− f |

}
ds.
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We refer to the corresponding primal problems, i.e., the minimization of

F(u) + β Gε(Λu),

as (DTVε-L2) and (DTVε-L1). The specific form of corresponding dual problems, where

F∗(−Λ∗p) + β G∗ε (p/β)

is minimized, should now also be clear.
The Chambolle–Pock method (Algorithm 3) can be adapted in a straightforward way by
replacing the G∗-prox by the one involving G∗ε , i.e., by replacing (3.41) by

p = arg min
q∈RTr+1(Γh)

1
2
‖q− p̄‖2

Y∗ +
ε

2
‖q‖2

Y∗ s.t. q ∈ P. (3.63)

This amounts to

σE,j(p) = min
{

1
1 + ε

∣∣σE,j(p̄)
∣∣ , β cE,j

}
σE,j(p̄)∣∣σE,j(p̄)

∣∣ ,
σT,i(p) = min

{
1

1 + ε
|σT,i(p̄)|2 , β cT,i

}
σT,i(p̄)
|σT,i(p̄)|2

(3.64)

in place of (3.42). Chambolle’s projection method (Algorithm 4) can also be adapted to
(DTVε-L2) by modifying (3.47) and (3.48). Similarly, the Chambolle–Pock method for
(DTV-L1) (Section 3.6.1) can be adapted to solve (DTVε-L1) with the same modification
as above.

3.7.2 Polynomial Degrees
We recall that we restricted the discussion of algorithms for (DTV-L2) and its dual (DTV-L2-D)
in Section 3.4 to the cases

r ∈ {0, 1, 2, 4},
each of which ensures that cT,i and cE,j are strictly positive; see Lemma 3.1. In the case
r = 3, three of the six weights cT,i on each triangle are zero. This is not a major issue but
it requires some care when formulating the algorithms in Section 3.4 in this case. Briefly,
when cT,i = 0, quantities bearing the same index (T, i) are to be ignored. This applies, in
particular, to the inner product (·, ·)Y∗ in (3.39).
Similarly, we excluded the cases r ∈ {2, 3} in the discussion of algorithms for (DTV-L1)
and its dual problem (DTV-L1-D) in Section 3.6 so that the weights

CT,k :=
∫

T
ΦT,k ds

pertaining to the basis {ΦT,k} of Pr(T) are strictly positive as well. In case r = 3, we
proceed as discussed above, ignoring terms for which the corresponding weights cT,i = 0.
When r = 2, we instead ignore terms for which CT,k = 0 in any of the algorithms in
Section 3.6.
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3.7.3 Textures in CGr(Γh)

While we believe that the representation of images as discontinuous functions is rather
natural, it is certainly useful to consider also the case when u ∈ CGr(Γh). This situation
is meaningful only for r ≥ 1, and hence we consider

r ∈ {1, 2, 3, 4}

in this section. Clearly, for u ∈ CGr(Γh), the TV-seminorm (3.1) and its discrete coun-
terpart (3.2) reduce to

|u|TV(Γh)
= ∑

T

∫
T
|∇u|2 ds (3.65a)

|u|DTV(Γh)
= ∑

T

∫
T
IT
{
|∇u|2

}
ds (3.65b)

since the terms related to edge jumps disappear. As was mentioned in the introduction,
the lowest-order case r = 1 has been considered in [13, 15, 28, 58, 74, 78]. In this case,

|u|TV(Γh)
= |u|DTV(Γh)

holds. Similarly as in Corollary 3.5, a simple convexity argument shows that

|u|TV(Γh)
≤ |u|DTV(Γh)

holds for all u ∈ CG2(Γh).
Since CGr(Γh) is a proper subspace of DGr(Γh), it can be expected that it is enough to
take the supremum in Theorem 3.2 over a smaller set of test functions. Indeed, as the
image of the gradient operator

Λ : U = CGr(Γh)→ Y

reduces to
Y = ∏

T
Pr−1(T)2,

the edge-based dofs of p ∈ RTr+1(Γh) that can be dispensed with since no edge jumps
need to be measured. We thus obtain the following corollary of Theorem 3.2.

Corollary 3.12 (Dual Representation of |u|DTV(Γh)
for u ∈ CGr(Γh)). Suppose r ∈

{1, 2, 3, 4}. Then for any u ∈ CGr(Γh), the discrete TV-seminorm (3.2) reduces to (3.65)
and it satisfies

|u|DTV(Γh)
= sup

{ ∫
Γh

u div p ds : p ∈ RTr+1(Γh),

|σT,i(p)|2 ≤ cT,i ∀T, i = 1, . . . , r (r + 1)/2,

σE,j(p) = 0 ∀E, j = 1, . . . , r + 1

}
. (3.66)
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It is straightforward to adopt the algorithms presented in Sections 3.4 and 3.6 to this
simpler situation. In a nutshell, all edge-based quantities (such as dE,j and bE,j in the split
Bregman method, Algorithm 2) can be ignored, and the edge-based coefficients σE,j(p)
of any function p ∈ RTr+1(Γh) would be left at zero.
We remark, however, that the gradient operator is not surjective onto Y so that the set of
test functions p in (3.66) is unnecessarily large. A more economical formulation for these
cases remains open for future investigation.

3.7.4 The 3D-Volume Case

When Γh ⊂ R3 is a volume mesh consisting of tetrahedra K and interior facets F, then the
former replace triangles T and the latter replace interior edges E throughout the chapter.
For instance, the definition (3.2) of the discrete total variation becomes

|u|DTV(Γh)
:= ∑

K

∫
K
IK
{
|∇u|2

}
ds + ∑

F

∫
F
IF
{
(u−F − u+

F )
}

ds. (3.67)

The finite element spaces involved remain the same, except that their respective cell do-
mains and thus their dimensions change; see Table 3.2.

FE space local dimension global dimension

CGr(Γh) (r + 1)(r + 2)(r + 3)/6 NK (r− 3)+(r− 2)(r− 1)
(r ≥ 1) + NF (r− 2)+(r− 1)/2

+ NE (r− 1)+ + NV

DGr(Γh) (r + 1)(r + 2)(r + 3)/6 NK (r + 1)(r + 2)(r + 3)/6

DGr−1(Γh) r (r + 1)(r + 2)/6 NK r (r + 1)(r + 2)/6

DGr(∪F) (r + 1)(r + 2)/2 NF (r + 1)(r + 2)/2

RTr+1(Γh) (r + 1)(r + 2)(r + 4)/2 NK r (r + 1)(r + 2)/2
+ NF (r + 1)(r + 2)/2

Table 3.2: Finite element spaces, their degrees of freedom and corresponding bases in 3D.
Here NK, NF, NE and NV denote the number of tetrahedra, interior facets, interior edges
and vertices in the triangular mesh; compare Table 3.1.

The operator Λ, which represents the gradient and was defined in (3.18), now maps the
space

U = DGr(Γh)

onto
Y = ∏

K
Pr−1(K)3 ×∏

F
Pr(F).

It is important to realize for our approach that Y∗ can still be identified with RTr+1(Γh)
with the duality product given by (3.20), mutatis mutandis. From here, all results can be
derived as in the surface case. We only mention that the analogue of Lemma 3.1 in 3D
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limits the polynomial degrees with non-negative weights to r ∈ {0, 1, 2, 4} in case of
(DTV-L2); see [145, Tab. II]. When (DTV-L1) is considered, only the choices r ∈ {0, 1}
remain.





CHAPTER 4

TOTAL VARIATION OF THE NORMAL
VECTOR FIELD ON SMOOTH

SURFACES

The total variation (TV) functional is popular as a regularizer in imaging and inverse
problems; see for instance [11, 51, 110, 139] and [157, Chapter 8]. For a real-valued
function u ∈ W1,1(Ω) on a bounded domain Ω in R2, the total variation seminorm is
defined as

|u|TV(Ω) :=
∫

Ω
|∇u|2 ds

=
∫

Ω

(
|(Du) e1|2 + |(Du) e2|2

) 1
2 .

(4.1)

Notice that we restrict the discussion to the isotropic case here, i.e., | · |2 denotes the
Euclidean norm. Moreover, Du is the derivative of u and {e1, e2} denotes the standard
Euclidean basis. The seminorm (4.1) extends to less regular, so-called BV functions
(bounded variation), whose distributional gradient exists only in the sense of measures.
We refer the reader to [8, 83] for an extensive discussion of BV functions. The utility of
(4.1) as a regularizer, or prior, lies in the fact that it favors piecewise constant solutions.

This chapter parallels [24], where we introduce a novel regularizer based on the total
variation, which can be used, for instance, in shape optimization applications as well as
geometric inverse problems. In the latter class, the unknown, which one seeks to recover,
is a shape Ω ⊂ R3, which might represent the location of a source or inclusion inside a
given, larger domain, or the geometry of an inclusion or a scatterer. The boundary of Ω
will be denoted by Γ.
The novel functional, which we term the total variation of the normal field along a smooth
surface Γ, is defined by

|n|TV(Γ) :=
∫

Γ

(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

) 1
2 ds (4.2)

in analogy to (4.1). In (4.2), n is the outer unit normal vector field along Γ, i.e., n be-
longs to the manifold S2 = {v ∈ R3 : |v|2 = 1} pointwise. Moreover, DΓn denotes
the derivative (push-forward) of the normal vector field, and {ξ1(s), ξ2(s)} denotes an

77
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orthonormal basis (w.r.t. the Euclidean inner product in the embedding Γ ⊂ R3) of the
tangent spaces TsΓ along Γ. Finally, | · |g denotes the norm induced by a Riemannian
metric on S2. We will consider the metric induced from embedding S2 in R3, i. e., the
distance induced by this metric is the arc length distance and the curvature is 1. We write
| · |g for the norm induced by the Riemannian metric g(·, ·) on the tangent spaces of S2.

We are also considering the total variation of the normal (4.2) as a prior in shape opti-
mization problems, which may involve a partial differential equation (PDE). The afore-
mentioned problem can be cast in the form

Minimize `(u(Ω), Ω) + β |n|TV(Γ)

w.r.t. Ω in a suitable class of domains.
(4.3)

Here u(Ω) denotes the solution of the problem specific PDE, which depends on the un-
known domain Ω. Moreover, ` represents a loss function, such as a least squares function.
The coupling between Ω and its normal vector field n makes the minimization of (4.3)
algorithmically challenging. Moreover, since the integrand in (4.2) is zero on flat regions
(with constant normal) of Γ, (4.2) and thus (4.3) cannot be expected to be shape differen-
tiable, although the first (loss function) part pertaining to the PDE often is. We therefore
resort to a splitting approach in the spirit of [85] to overcome this issue.

The structure of the chapter is as follows. In Section 4.1 we provide an analysis of (4.2)
and its properties. We also compare (4.2) to geometric functionals appearing elsewhere
in the literature. In Section 4.2 we discuss the role of (4.2) in optimization problems.
Section 4.3 is devoted to the formulation of an ADMM method which generalizes the
split Bregman algorithm to the manifold-valued problem (4.3).

4.1 Total Variation of the Normal
In this section we discuss our proposal (4.2) for the total variation of the normal on smooth
surfaces in detail and relate it to other geometric functionals used previously in the liter-
ature. A minimal background in differential geometry of surfaces is required, which we
recall here and refer the reader to [69, 87, 106] for a thorough introduction.

4.1.1 Preliminaries
From this section onwards we assume that the boundary Γ of the unknown bounded do-
main Ω is a smooth, compact, orientable manifold of dimension 2 without boundary,
embedded in R3. Therefore we can think of tangent vectors at s ∈ Γ to be elements of the
appropriate two-dimensional subspace (the tangent plane) of R3. This tangent plane at s
is denoted by TsΓ. Each tangent plane is endowed with the Riemannian metric furnished
by the embedding via the pull-back of the Euclidean metric in R3. In other words, the
inner product of two vectors

ξ1, ξ2 ∈ TsΓ

is simply given by
g(ξ1, ξ2) = ξ>1 ξ2.
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In what follows,
{ξ1(s), ξ2(s)}

denotes an orthonormal basis in TsΓ. As the following remark shows, the choice of this
basis and how it varies with s will not matter.
Outward pointing unit normal vectors n along Γ will be considered elements of the two-
dimensional smooth manifold S2. The derivative or push-forward of the normal map n is
denoted by DΓn. At a given s ∈ Γ, DΓn thus maps tangent vectors ξ ∈ TsΓ into tangent
vectors

(DΓn) ξ ∈ Tn(s)S2.

In what follows, we will suppress the dependence on the point s ∈ Γ where possible.

Remark 4.1. The total variation of the normal (4.2) is independent of the choice of the
orthonormal basis in the tangent spaces TsΓ. To show this, it is enough to consider a
point s ∈ Γ and suppose that {ξ1, ξ2} and {η1, η2} are two orthonormal bases of TsΓ.
Then there exists an orthogonal matrix Q ∈ R3×3 such that

ηi = Q ξi

holds for i = 1, 2. For
J :=

[
(DΓn) ξ1 (DΓn) ξ2

]
the integrand in (4.2) satisfies

|(DΓn) ξ1|2g + |(DΓn) ξ2|2g = trace(J>J)

= trace(J>J Q Q>)

= trace(Q> J>J Q)

= |(DΓn) Q ξ1|2g + |(DΓn) Q ξ2|2g
= |(DΓn) η1|

2
g + |(DΓn) η2|

2
g.

Similarly, as we do for Γ, we consider S2 embedded into R3 and therefore we can con-
ceive the tangent space Tn(s)S2 as a two-dimensional plane in R3 tangent to the sphere
S2. We endow Tn(s)S2 with the Riemannian metric furnished by the pull-back of the Eu-
clidean metric as well, which we denote by g(·, ·) to distinguish it from the Riemannian
metric on TsΓ. In fact, Tn(s)S2 is clearly parallel to TsΓ, see Figure 4.1. We can therefore
identify the two tangent spaces and we write

Tn(s)S2 ∼= TsΓ

to indicate this.

4.1.2 Relation to Curvature
In order to relate (4.2) with regularizing geometric functionals appearing elsewhere in the
literature, we take a second look at the integrand. To this end, we recall that the normal
field operator

NΓ : Γ→ S2
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Figure 4.1: The figure shows part of a smooth surface Γ and a representation of its tangent
spaces at three points s (light gray). The normal vectors are shown as well. The figure
also illustrates that Tn(s)S2 is parallel to TsΓ.

is also known as the Gauss map; see for instance [106, Chapter 3]. Its derivative at s ∈ Γ
maps tangent directions in TsΓ into tangent directions in

Tn(s)S2 ∼= TsΓ.

With the latter identification, the derivative of the Gauss map is known as the shape oper-
ator

S : TsΓ→ TsΓ.

Notice that S is self-adjoint, i.e.,

(Sξ1)
>ξ2 = (Sξ2)

>ξ1

holds for all s ∈ Γ and all ξ1, ξ2 ∈ TsΓ; see for instance [87, Lemma 13.14]. The two
eigenvalues of S are the principal curvatures of the surface Γ at s, denoted by k1 and k2.
This insight allows us to interpret the integrand in (4.2) differently.

Proposition 4.2. The integrand in (4.2) satisfies(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

)1/2
=
(

k2
1 + k2

2

)1/2
. (4.4)

Proof. Consider the square of the integrand,

|(DΓn) ξ1|2g + |(DΓn) ξ2|2g = (Sξ1)
>(Sξ1) + (Sξ2)

>(Sξ2).

Due to Remark 4.1 we can choose ξ1, ξ2 to be normalized eigenvectors in TsΓ corre-
sponding to the eigenvalues k1, k2, respectively. Therefore we get

|(DΓn) ξ1|2g + |(DΓn) ξ2|2g = k2
1|ξ1|2g + k2

2|ξ2|2g
= k2

1 + k2
2.
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4.1.3 Comparison with Prior Work
The representation of the integrand from Proposition 4.2 allows us to rewrite (4.2) as the
integral over the root mean square curvature,

|n|TV(Ω) =
∫

Γ
(k2

1 + k2
2)

1/2 ds, (4.5)

and compare it with related functionals appearing in the literature. The quantity∫
Γ
(k2

1 + k2
2) ds (4.6)

is known as the integral over the total curvature (although this term is also used for other
quantities in the literature). The functional (4.6) has a long tradition in surface fairing
applications and can be interpreted as a surface strain energy, see for instance [88–90,
116, 153, 163, 164]. In imaging applications, (4.6) corresponds to

∫
Ω |∇u|22 ds and it

takes the role of a Tikhonov regularization term. Due to the presence of the gradient, the
Laplacian appears in the optimality conditions associated with minimization problems
involving (4.6), as well as in the corresponding L2-gradient flow, leading to a smoothed
image; see for instance [103], where smoothing by diffusion was employed to S1-valued
images via a mean curvature flow. Similarly, (4.6) tends to smooth the surface and its
features.
By contrast, the functional (4.5) seems to have made very few appearances in the math-
ematical literature. We are aware of the PhD thesis [117, Chapter 6] and the subsequent
book publication [125] where it was used to guide mesh generation. In [7,119] the point-
wise root mean square curvature is used as a measure of flatness in biomedical classifi-
cation problems, in [132] for the purpose of surface segmentation and in [166] it is used
as an aid to visualize vascular structures. We also mention that the logarithm of the root
mean square curvature is known as the curvedness and it plays a role in the classifica-
tion of intermolecular interactions in crystals; see for instance [120]. We are however
not aware of any use of (4.2) or its equivalent form (4.5) as a prior in shape optimization
problems.
We regard (4.2) as a natural extension of the total variation seminorm (4.1) to the normal
vector on surfaces, measuring surface flatness, but other extensions are certainly possible.
Notably, the authors in [75] propose the total absolute Gaussian curvature∫

Γ
|k1 k2| ds (4.7)

for the same purpose. From the Gauss–Bonnet theorem (see for instance [87, Chapter 27]
or [106, Chapter 4F]) it follows that the boundaries Γ of convex domains Ω will be the
global minimizers of (4.7), and they yield a value of 4π. Thus (4.7) promotes domains
which are “as convex as possible”.
It should be noted that the classical total variation seminorm (4.1) is not invariant with
respect to scale. In fact, it is easy to see that when the domain Ω ⊂ Rd is replaced by
δΩ, and u(x) is replaced by uδ(x) := u(x/δ), then |uδ|TV(δΩ) = δd−1 |u|TV(Ω) holds.
Similarly, we can show that the total variation on a 2-dimensional surface Γ scales as
follows.
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Lemma 4.3. Suppose that δ > 0. Then

|nδ|TV(δΓ) = δ |n|TV(Γ) . (4.8)

Lemma 4.3 implies that the total variation of the normal (4.2) will go to zero when the
domain Ω degenerates to a point as δ→ 0. This is to be expected since the total variation
(4.1) behaves in the same way. In practice, this will not be an issue since (4.2) will always
be combined with other, e.g., data fidelity terms. By contrast (4.7) proposed in [75] is
invariant w.r.t. scaling and thus, in this particular respect, does not generalize (4.1).

4.2 Analysis of the Total Variation of the Normal
In this section we discuss some properties of the total variation of the normal functional
(4.2). To this end, we begin by briefly recalling some elements of shape calculus, as
necessary in order to study optimization problems in which the domain Ω ⊂ R3 appears
as an optimization variable. Then we discuss properties of (4.2). In Section 4.2.3 we
briefly comment on the case of curves, i.e., when Ω ⊂ R2 and its boundary Γ is a one-
dimensional manifold.

4.2.1 Elements of Shape Calculus
Here we follow common practice and define transformations of Ω in terms of perturba-
tions of identity. That is, we consider families of perturbed domains Ωε whose material
points are given by

xε = T ε(x)
:= x + εV(x).

(4.9)

Here
V : D → R3

is some smooth vector field defined on a hold-all D ⊃ Ω. Suppose that J is a functional
depending on the domain. Then we denote by

dJ(Ω)[V ]

the directional shape derivative (also known as Eulerian derivative) of J in the direction
of V , i.e.,

dJ(Ω)[V ] = lim
ε↘0

J(Ωε)− J(Ω)

ε
.

Likewise, we write
dJ(Γ)[V ]

for functionals J depending on the surface Γ of Ω. In particular, when g is a smooth
function and

J(Γε) =
∫

Γε

g(ε, sε) dsε, (4.10)

the directional shape derivative is given by [146, Eq. (2.172)]

dJ(Γ)[V ] =
∫

Γ
g(0, s)divΓ V(s) + dg[V ](0, s) ds, (4.11)
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where the material derivative dg[V ] is defined as the total derivative

dg[V ](0, s) =
d
dε

∣∣∣∣
ε=0

g(ε, sε) =
d
dε

∣∣∣∣
ε=0

g(ε, T ε(s))

and divΓ V denotes the (tangential) divergence of V along Γ. It is related to the divergence
in R3 via

divΓ V =
2

∑
i=1

ξ>i (DV) ξi = div V − n>(DV) n.

In the following, we simply write g instead of g(0, ·) and in addition to the material
derivative, we also introduce the (local) shape derivative as the partial derivative

g′[V ] := (∂/∂ε)|ε=0 g(ε, ·).

Hence, both are related to each other via

g′[V ] = dg[V ]− (Dg)V . (4.12)

See for instance [146, Eq. (2.163)]. If the shape derivative g′[V ] exists, the shape deriva-
tive dJ(Γ)[V ] can alternatively be expressed as

dJ(Γ)[V ] =
∫

Γ
V>n [(Dg)n + (k1 + k2) g] + g′[V ] ds, (4.13)

see [146, Eq. (2.174)]. Furthermore, spatial derivatives and material derivatives of differ-
entiable fields F fulfill

D(dF[V ]) = D(F ′[V ]) + D((DF)V)

= (DF)′[V ] + D((DF)V)

= (DF)′[V ] + (D(DF)V) + (DF)(DV)

= d(DF)[V ] + (DF)(DV).

(4.14)

The symbol Dg in (4.13), which we will need occasionally, stands for the “full” derivative
(in all three spatial directions) of a function g defined in a neighborhood of Γ. We recall
that we are denoting the derivative in tangential directions of functions defined on Γ by
the symbol DΓ. Notice that Dg and DΓg are related by

Dg = DΓg + (Dg)nn>.

Lemma 4.4. Suppose that a, b are C1-vector fields on Γ with values in R3, and that V is
a C1-vector field which is normal, i.e.,

V = (V>n) n

holds on Γ. Then we have∫
Γ

a>(DΓV) b ds

=
∫

Γ
V>n

[
−divΓ((a>n) b) + (a>n)(b>n) (k1 + k2) + a>(DΓn) b

]
ds. (4.15)
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Proof. The general tangential Stokes formula [65, Eq. (5.27)] states that∫
Γ

c divΓ V ds =
∫

Γ
V>n c (k1 + k2) ds−

∫
Γ
(DΓc)V ds (4.16)

holds for all C1-vector fields V . We split V into its normal and tangential components
according to

V = (V>n) n +
2

∑
i=1

(V>ξi) ξi

and arrive at∫
Γ

a>(DΓV) b ds =
∫

Γ
a>DΓ((V>n) n) b +

2

∑
i=1

a>DΓ((V>ξi) ξi) b ds

=
∫

Γ
DΓ(V>n)(a>n) b + (V>n) a>(DΓn) b

+
2

∑
i=1

DΓ(V>ξi)(a>ξi) b + (V>ξi) a>(DΓξi) b ds (by the product rule)

=
∫

Γ
V>n

[
(a>n)(n>b) (k1 + k2)− divΓ((a>n) b) + a>(DΓn) b

]
+

2

∑
i=1

V>ξi

[
a>(DΓξi) b− divΓ((a>ξi) b)

]
ds (by (4.16))

=
∫

Γ
V>n

[
(a>n)(n>b) (k1 + k2)− divΓ((a>n) b) + a>(DΓn) b

]
.

In the last step we used that V is normal and thus V>ξi = 0 holds.

4.2.2 Properties of the Total Variation of the Normal
As part of this section, we seek to establish shape differentiability of our novel objec-
tive (4.2). To this end, we use that (4.2) is a composition of smooth functions except in
the presence of flat regions of positive measure on Γ. Hence, we first present some re-
sults of the material derivatives for the quantities involved, which by themselves are also
interesting for a wide variety of other problems.
With respect to the outer normal n, we first note that under an appropriate regularity
assumption, the material derivative exists and is given by

dn[V ] = −(DΓV)>n. (4.17)

This result can be found, for instance, in [146, Eq. (3.168)] or [144, Lemma 3.3.6]. Notice
that dn[V ] is tangential because

−n>dn[V ] = n>(DΓV)>n

= n>
[
(DV)> − nn>(DV)>

]
n

= 0.

(4.18)
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Theorem 4.5. Suppose that the orthonormal basis components ξ1 and ξ2 are smooth
vector fields on a relatively open part Γ0 ⊂ Γ. Then they are shape differentiable and
their material derivatives are given by

dξ1[V ] = (DV) ξ1 − (ξ>1 (DV) ξ1) ξ1

dξ2[V ] = (DV) ξ2 − (ξ>2 (DV) ξ2) ξ2 − (ξ>1 (DV + DV>) ξ2) ξ1.
(4.19)

The requirement that ξ1,2 be smooth is not restrictive. The asymmetry in (4.19) stems
from the fact that we chose to transform the first basis vector ξ1 along with (4.9) and then
to orthogonalize the second basis vector ξ2 w.r.t. the first.

Proof. The proof is by construction. Beginning from a local parametrization h of the
surface, we give an explicit formula for the tangent basis. The perturbed surface Γε is
then expressed via a perturbed parametrization

hε := T ε ◦ h,

where T ε is given by (4.9). We derive a formula for the perturbed tangent basis via
the Gram–Schmidt process. The desired material derivatives are then given by the total
derivative w.r.t. ε = 0.
Let

h : U ⊂ R2 → R3

be a local smooth orthogonal parametrization of Γ0, i.e., the derivative Dh is a matrix
with orthonormal columns, such that s ∈ Γ is locally given by

s = h(x)

for some x ∈ U. Hence, we can define a smooth, orthonormal set of tangent vectors
ξ1, ξ2 via

ξi(s) :=
Dh(x) ei

|Dh(x) ei|2
, i = 1, 2, (4.20)

where ei is the i-th canonical basis vector of R3. With respect to ξ1, we arrive at the
normalized tangent vector of the perturbed surface as

ξ1,ε(sε) :=
DxT ε(h(x)) e1

|DxT ε(h(x)) e1|2

=
DsT ε(s)Dh(x) e1

|DsT ε(s)Dh(x) e1|2

=
DsT ε(s) ξ1(s)
|DsT ε(s) ξ1(s)|2

=
(id+ε DV(s)) ξ1(s)
|(id+ε DV(s)) ξ1(s)|2

.

(4.21)
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Regarding ξ2, we proceed in a similar way, but have to apply a Gram–Schmidt step to
obtain an orthonormal set of perturbed tangent vectors. Hence, ξ2,ε is given by

ξ2,ε(sε) :=
DsT ε(s) ξ2 − (ξ>1,εDsT ε(s) ξ2) ξ1,ε∣∣∣DsT ε(s) ξ2 − (ξ>1,εDsT ε(s) ξ2) ξ1,ε

∣∣∣
2

=
(id+ε DV(s)) ξ2 − (ξ>1,ε(id+ε DV(s)) ξ2) ξ1,ε∣∣∣(id+ε DV(s)) ξ2 − (ξ>1,ε(id+ε DV(s)) ξ2) ξ1,ε

∣∣∣
2

.

(4.22)

A straightforward differentiation with respect to ε = 0 results in the material derivatives
given in (4.19).

Theorem 4.6. Under the assumptions of the previous theorem, the derivative DΓn of the
normal is shape differentiable. The material derivatives of the directional derivatives of
n in the directions of ξ1,2 are

d ((DΓn) ξi) [V ] = DΓ(dn[V ]) ξi − (DΓn)(DΓV) ξi + (DΓn) (dξi[V ]). (4.23)

Proof. With the material derivative of both the normal (4.17) and tangent (4.19) at hand,
we apply the chain rule and due to the relationship between spatial and material deriva-
tives (4.14) we arrive at

d ((DΓn) ξi) [V ] = d ((Dn) ξi) [V ]

= d(Dn)[V ] ξi + (Dn) (dξi[V ])

= D(dn[V ]) ξi − (Dn)(DV) ξi + (Dn) (dξi[V ]).

Because dξi[V ] is tangential due to (4.19), the reduction of the full derivative D to the
intrinsic derivative DΓ on the surface is straightforward provided that n is assumed to be
extended constantly into a tubular neighborhood of Γ, i.e.,

(Dn)n = 0.

Theorem 4.7. Suppose that the principal curvatures do not vanish simultaneously on Γ
except possibly on a set of measure zero. Then (4.2) is shape differentiable.

Proof. Using [146, Sec 2.18 and Sec 2.33], shape differentiability of (4.2) can be estab-
lished for Γ of class C1 if the integrand of (4.2), i.e.,

g(ε, sε) :=
(

k2
1,ε(sε) + k2

2,ε(sε)
)1/2

=
(
|(DΓnε) ξ1,ε|2g + |(DΓnε) ξ2,ε|2g

)1/2
(4.24)

fulfills
g(ε, ·) ∈ L1(Γε).

Likewise, the material and local derivatives have to satisfy

dg[V ] ∈ L1(Γ)
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and
g′[V ] ∈ L1(Γ)

for all sufficiently smooth vector fields V with compact support in the hold-all D.
Since we consider Γ to be a smooth surface and

V : D → R3

a smooth vector field,
Γε := Tε[V ](Γ)

is smooth. Moreover, since Γε is compact, g(ε, ·) is bounded, and one easily deduces

g(ε, ·) ∈ L1(Γε).

The shape differentiability of the tangent basis is considered in Theorem 4.5 and of the
derivative of the normal in Theorem 4.6. Hence, we establish the material derivative of
the expression under the square root in (4.24) via the chain rule for a composition of
smooth functions. Notice that the local character of the results in Theorems 4.5 and 4.6
is sufficient since (4.24) is independent of the choice of the orthonormal basis, as es-
tablished in Remark 4.1. Since, by assumption, both principal curvatures do not vanish
simultaneously, we have g 6= 0 almost everywhere and we arrive at

dg[V ] =
1

g(s)

2

∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
, (4.25)

from where we conclude
dg[V ] ∈ L1(Γ).

To establish
g′[V ] ∈ L1(Γ),

we use (4.12). To this end, we extend g constantly in normal direction into a tubular
neighborhood of Γ. As a composition of smooth functions, we conclude g′[V ] ∈ L1(Γ).

Remark 4.8. As per [146, Eq. (2.172)], the requirement g′[V ] ∈ L1(Γ) can be omitted
if one is only interested in the representation (4.11) of the shape derivative and not in
formulation (4.13).

We are now in the position to address the minimization of (4.2). In view of Lemma 4.3,
this is meaningful only when additional terms are present which prevent the degeneration
of the surface to a point. We choose to impose a constraint on the surface area here. We
have the following partial result.

Theorem 4.9. Spheres are stationary points for (4.2) among all surfaces Γ of constant
area.
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Proof. We consider the minimization of (4.2) or equivalently, (4.5), subject to the con-
straint that the surface area equals the constant A0 > 0. The Lagrangian associated with
this problem is given by∫

Γ

(
k2

1(s) + k2
2(s)

)1/2
ds + µ

(∫
Γ

1 ds− A0

)
.

Here µ ∈ R is the Lagrange multiplier to be determined below. The differentiability of
the first summand has been considered in Theorem 4.7. On the perturbed domain with
surface Γε with the perturbation according to (4.9), the Lagrangian reads

L(ε, µ) :=
∫

Γε

(
k2

1,ε(sε) + k2
2,ε(sε)

)1/2
dsε + µ

(∫
Γε

1 dsε − A0

)
=
∫

Γε

[(
k2

1,ε(sε) + k2
2,ε(sε)

)1/2
+ µ

]
dsε − µ A0.

We use the same abbreviation as before in (4.24). The above integral is of type (4.10) and
its shape derivative at the unperturbed surface, according to (4.13), is given by

dL(0, µ)[V ] =
∫

Γ
V>n [(Dg)n + (k1 + k2) (g + µ)] + g′[V ] ds

because µ is a constant.
When Ω is a sphere of radius r, we are going to show that

dL(0, µ)[V ] = 0

holds for all perturbation fields V in normal direction and with

µ = −1/(
√

2 r).

In this setting, the principal curvatures are

k1(s) = k2(s) ≡ 1/r;

see for instance [87, Chapter 13]. Consequently,

g(s) =
(

k2
1(s) + k2

2(s)
) 1

2 ≡
√

2/r

is spatially constant and thus Dg ≡ 0 holds. We obtain from (4.13)

dL(0, µ)[V ] =
∫

Γ
V>n

2
r

(√
2

r
+ µ

)
ds +

∫
Γ

g′[V ] ds.

Hence, by (4.12), we also have
dg[V ] = g′[V ].

Using (4.25), we arrive at

g′[V ] = dg[V ]

=
1

g(s)

2

∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
.

(4.26)
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In order to complete the proof of Theorem 4.9, we need to show that

∫
Γ

1
g(s)

2

∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
ds = c0

∫
Γ

V>n ds (4.27)

holds with

c0 = −
√

2
r2 .

To this end, we need a tangential Stokes formula as given in Lemma 4.4.
We shall also exploit that

g(s) =
√

2/r

is a constant on the sphere of radius r. Finally, we use

(Dn)(s) ≡ id
r

and (DΓn)(s) =
id
r

(
id−nn>

)
(4.28)

and thus
(DΓn) ξ = ξ/r

holds for i = 1, 2.
The three terms contributing to the material derivative

d[(DΓn) ξi][V ]

in (4.27) are given in (4.23) and we consider them individually. We use that the Rieman-
nian metric on S2 is the Euclidean inner product of the ambient R3, i.e.,

g(a, b) = a>b.

As noted in Theorem 4.6, there is no need to distinguish between the full derivative D or
the intrinsic derivative DΓ, because they are always actions on objects from the tangent
space. As such, we use the symbols in a manner to make the expressions most inline with
the previous results.
First Term. The insertion of the first term in (4.23) into the left hand side of (4.27) leads
to the expression

r√
2

∫
Γ

2

∑
i=1

[(DΓn) ξi]
> DΓ(dn[V ]) ξi ds

=
r√
2

1
r

∫
Γ

2

∑
i=1

ξ>i DΓ(dn[V ]) ξi ds by (4.28)

=
1√
2

∫
Γ

divΓ dn[V ] ds (4.29)

= 0. (4.30)

The last step follows from (4.16) with c = 1. Recall from (4.18) that dn[V ] is tangential.
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Second Term. Inserting the second term in (4.23) into the left hand side of (4.27) leads
to the expression

−
∫

Γ

1
g(s)

2

∑
i=1

[(DΓn) ξi]
> (DΓn)(DΓV) ξi ds

= − r√
2

1
r2

∫
Γ

2

∑
i=1

ξ>i (DΓV) ξi ds by (4.28)

= − 1√
2 r

∫
Γ

2

∑
i=1

V>n
[
ξ>i (DΓn) ξi

]
ds by (4.15)

= −
√

2
r2

∫
Γ

V>n ds by (4.28). (4.31)

Third Term. Finally, inserting the third term in (4.23) into the left hand side of (4.27)
yields ∫

Γ

1
g(s)

2

∑
i=1

[(DΓn) ξi]
> (DΓn) (dξi[V ]) ds. (4.32)

The first summand (i = 1) leads to∫
Γ

1
g(s)

[(DΓn) ξ1]
> (DΓn) (dξ1[V ]) ds

=
r√
2

∫
Γ
[(DΓn) ξ1]

> (DΓn)
[
(DV) ξ1 − (ξ>1 (DV) ξ1) ξ1

]
ds by (4.19)

=
r√
2

1
r2

∫
Γ

ξ>1

[
(DV) ξ1 − (ξ>1 (DV) ξ1) ξ1

]
ds

= 0.

For the second summand (i = 2), we get one additional term:∫
Γ

1
g(s)

[(DΓn) ξ2]
> (DΓn) (dξ2[V ]) ds

=
r√
2

∫
Γ
[(DΓn) ξ2]

> (DΓn)
[
(DV) ξ2 − (ξ>2 (DV) ξ2) ξ2

]
ds

− r√
2

∫
Γ
[(DΓn) ξ2]

> (DΓn) (ξ>1 (DV + DV>) ξ2) ξ1 by (4.19)

= 0− r√
2

1
r2

∫
Γ

ξ>2

[
ξ>1 (DV + DV>) ξ2

]
ξ1 ds

= 0.

Hence expression (4.32) is zero. Collecting terms (4.30)–(4.32), we have shown that the
left hand side in (4.27) amounts to

∫
Γ

1
g(s)

2

∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
ds = −

√
2

r2

∫
Γ

V>n ds.
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Therefore, (4.27) is fulfilled with

c0 = −
√

2
r2 .

As a consequence of (4.27) we obtain the representation

dL(0, µ)[V ] =

[
2
r

(√
2

r
+ µ

)
+ c0

] ∫
Γ

V>n ds

=

[
2
r

(
1√
2 r

+ µ

)] ∫
Γ

V>n ds

for all perturbation fields V parallel to n. Clearly, the term in brackets vanishes when

µ = −1/(
√

2 r)

holds. This concludes the proof.

4.2.3 The Case of Curves

When Ω ⊂ R2 and Γ is a one-dimensional manifold, (4.2) and thus (4.5) reduce to the
total absolute curvature ∫

Γ
|k| ds,

where k is the single curvature. It is well known that this integral has a minimal value
of 2π, which is attained precisely for the boundaries Γ of convex, smoothly bounded
domains Ω ⊂ R2; see [54, Chapter 21.1] or [38]. This case is thus different in two
aspects from our setting Ω ⊂ R3. On the one hand,

∫
Γ |k| ds is invariant to scale while

(4.2) is not, as was shown in (4.8). On the other hand, (4.2) appears to have a much
smaller set of minimizers; see Theorem 4.9.

4.3 Split Bregman Iteration
In this section we propose an Alternating Direction Method of Multipliers (ADMM) itera-
tion, which generalizes the split Bregman algorithm for total variation problems proposed
in [85]. As is well known, ADMM methods introduce a splitting of variables so that
minimization over individual variables becomes efficient.
There is very little prior work on ADMM involving manifolds. We are aware of [105,
109,161,171], all of which consider particular manifolds and their embeddings into some
vector space in order to formulate the splitting constraint. By contrast, in our setting the
constraint is formulated pointwise in the tangent bundle of S2. In addition, and even
though we do not emphasize this aspect throughout the chapter, the primary variable Ω in
problem (4.33) lives on a manifold of shapes. That said, we will not attempt a convergence
proof for the proposed split Bregman iteration here but leave it for future research.
In our setting, the primary variable is the unknown domain Ω. Notice that Ω also deter-
mines its boundary Γ as well as its normal vector field n, and we will always consider
Γ and n as a function of Ω. The splitting is achieved through the introduction of a new
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variable d, which is independent of Ω, Γ and n. At the solution, we require the coupling
condition

d = DΓn

to hold across Γ. We recall that DΓn denotes the derivative (push-forward) of n. At the
point s ∈ Γ, (DΓn)(s) maps TsΓ into Tn(s)S2. Written in terms of Ω and the secondary
variable

d = (d1, d2) : Γ→ Tn(·)S2,

problem (4.3) becomes

Minimize `(u(Ω), Ω) + β
∫

Γ

(
|d1|2g + |d2|2g

)1/2
ds

s.t. di = (DΓn) ξi on Γ for i = 1, 2.
(4.33)

Notice that for convenience of notation, we represent DΓn in terms of its actions on the
two basis vectors ξi.
Note also that at the point s ∈ Γ, the equality

di = (DΓn) ξi

is in the tangent space Tn(s)S2. We therefore introduce Lagrange multipliers λ = (λ1, λ2),
belonging to the same space, and define the augmented Lagrangian associated with (4.3)
as follows,

L̂(Ω, d1, d2, λ1, λ2) := `(u(Ω), Ω) + β
∫

Γ

(
|d1|2g + |d2|2g

)1/2
ds

+
2

∑
i=1

(∫
Γ
g
(
λi, di − (DΓn) ξi

)
ds

+
λ

2

∫
Γ
g
(
di − (DΓn) ξi, di − (DΓn) ξi

)
ds
)

.

(4.34)

Here λ > 0 is the augmentation parameter. After the usual re-scaling bi := λi/λ, we can
rewrite (4.34) as

L(Ω, d1, d2, b1, b2) := `(u(Ω), Ω) + β
∫

Γ

(
|d1|2g + |d2|2g

)1/2
ds

+
λ

2

2

∑
i=1

∫
Γ

∣∣di − (DΓn) ξi − bi
∣∣2
g

ds.
(4.35)

The main difference to an ADMM method in Euclidean or Hilbert spaces is that the vector
fields di and bi have values in the tangent space Tn(·)S2. Hence they must be updated
whenever Ω and thus the normal vector field n are changing.
We outline our proposed method for (4.33) as Algorithm 6. As expected for methods of
the ADMM class, we successively optimize with respect to the variables Ω and (d1, d2)
independently and then perform a simple update step for the multiplier (b1, b2). We
address each of these steps in the following subsections.
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Algorithm 6 Split Bregman method for (4.33)

Require: Initial domain Ω(0)

Ensure: Approximate solution of (4.33)
1: Set b(0) := 0, d(0) := 0
2: Set k := 0
3: while not converged do
4: Perform some gradient steps for Ω 7→ L(Ω, d(k), b(k)) starting from Ω(k), to

obtain Ω(k+1)

5: Parallely transport the multiplier estimate b(k) pointwise from Tn(k)(·)S2 to

Tn(k+1)(·)S2 along the geodesic from n(k) to n(k+1)

6: Parallely transport the basis vectors ξi pointwise from Tn(k)(·)S2 to Tn(k+1)(·)S2

along the geodesic from n(k) to n(k+1) for i = 1, 2
7: Set d(k+1) := arg minL(Ω(k+1), d(k), b(k)), see (4.41)
8: Update the Lagrange multipliers, i.e., set b(k+1)

i := b(k)
i + (DΓn(k+1)) ξi− d(k+1)

i
for i = 1, 2

9: Set k := k + 1
10: end while

4.3.1 The Shape Optimization Step
We first address the minimization of (4.35) w.r.t. the shape Ω, while the quantities d1, d2,
b1 and b2 are fixed, or, more precisely, passively transformed along with Ω. The main
effort is to calculate the shape derivative of (4.35).
The derivative of the first term in (4.35), i.e., d`(u(Ω), Ω)[V ], is not specified here since
it depends on the particular PDE underlying the solution operator u(Ω) and the loss func-
tion ` considered. This derivative can be obtained by standard shape calculus techniques,
which are not our concern here. A concrete example is considered in Section 6.1.
Next we consider the second term in (4.35). Due to the chosen splitting, the vector fields
di are merely transformed along with Ω according to the perturbation (4.9) and thus we
define their perturbed counterparts as

di,ε(sε) := di(T−1
ε (sε))

= di(s)
(4.36)

and likewise for bi and (
|d1|2g + |d2|2g

)1/2
.

As a consequence, their material derivatives vanish and the directional derivative of the
second term of (4.35) becomes

d
(∫

Γ

(
|d1|2g + |d2|2g

)1/2
ds
)
[V ] =

∫
Γ
(divΓ V)

(
|d1|2g + |d2|2g

)1/2
ds.

Finally we address the terms ∫
Γ

∣∣di − (DΓn) ξi − bi
∣∣2
g

ds



94 4. Total Variation of the Normal Vector Field on Smooth Surfaces

for i = 1, 2. The vector fields di and bi are transformed according to (4.36) and thus we
need not consider their material derivatives. However, we do need to track the dependen-
cies of (DΓn) ξi. The respective shape derivative is given in (4.23).
We summarize these findings in the following theorem.

Theorem 4.10. Suppose that the (d1, d2) do not vanish simultaneously on Γ except pos-
sibly on a set of measure zero, and that the loss term `(u(Ω), Ω) is shape differentiable.
Then the augmented Lagrangian (4.35) is shape differentiable and its shape derivative is
given by

dL(Ω, d1, d2, b1, b2)[V ]

= d`(u(Ω), Ω)[V ] + β
∫

Γ
(divΓ V)

(
|d1|2g + |d2|2g

)1/2
ds

+
λ

2

2

∑
i=1

∫
Γ
(divΓ V)

∣∣di − (DΓn) ξi − bi
∣∣2
g

ds

+ λ
2

∑
i=1

∫
Γ
g
(

di − (DΓn) ξi − bi, −d ((DΓn) ξi) [V ]
)

ds (4.37)

with d ((DΓn) ξi) [V ] from (4.23).

The shape derivative in (4.37) is the basis of any shape optimization procedure. After
all, the minimization of (4.35) w.r.t. the domain Ω represents a fairly standard shape
optimization problem. We convert the shape derivative (4.37) into a shape gradient vector
field U by means of an appropriate inner product. Then, instead of minimizing (4.35)
w.r.t. Ω to a certain accuracy, in practice we only perform a few gradient steps per ADMM
iteration. This is in line with [85], where a Gauss–Seidel sweep is proposed instead of an
exact solve.
Still, the terms in (4.23) would be tedious to implement by hand. In our implementation,
which is detailed in the next chapter, the shape derivative (4.37) is conveniently evaluated
by algorithmic differentiation techniques on the discrete level.

4.3.2 The Total Variation Minimization Step
Before addressing the minimization of (4.35) w.r.t. d we must note that the data bi at any
point s ∈ Γ has to belong to the tangent space Tn(s)S2. Since the surface Γ and hence
the field of normal vectors is changing during the shape optimization step, we must first
move the data bi into the new tangent space. This is achieved via parallel transport along
geodesics on S2. Suppose for brevity of notation that n− denotes the old normal vector
field along the boundary Γ− of the previous iterate Ω−. Then

b−i ∈ Tn−(·)S2

needs to be parallely transported into

bi ∈ Tn(·)S2

along the geodesic from n− to n. This step is inexpensive since the parallel transport

Pn−→n : Tn−S2 → TnS2
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on S2 is available in terms of the following explicit formula

Pn−→n(b
−
i ) = b−i −

b−i
>
(logn− n)

arccos2(n>n−)
(logn− n + logn n−), (4.38)

whenever n 6= −n− holds, see for instance [100] and [128, Section 2.3.1], respectively.
Here logn+

E
n−E denotes the logarithmic map

loga b := arccos(a>b)
b− (a>b) a
|b− (a>b) a|g

, (4.39)

which specifies the unique tangent vector at the point n+
E such that the geodesic departing

from n+
E in that direction will reach n−E at unit time. The logarithmic map on S2 is well-

defined also whenever
n+

E 6= −n−E .

Since we explicitly refer to them, also the basis vectors ξ−i need to be parallely transported
into ξi in the same way as above.
We can now address the minimization of (4.35) w.r.t. the field d = (d1, d2). Since the
first term in (4.35) does not depend on d, we are left with the minimization of

β
∫

Γ

(
|d1|2g + |d2|2g

)1/2
ds +

λ

2

2

∑
i=1

∫
Γ

∣∣di − (DΓn) ξi − bi
∣∣2
g

ds, (4.40)

where d1, d2 are sought pointwise in the tangent spaces Tn(·)S2. We recall that the latter
are two-dimensional subspaces of R3. At this point it is important to note that the data

(DΓn) ξi + bi

belongs to the same tangent spaces. Therefore, just like in the Euclidean setting, the min-
imizer of (4.40) can be evaluated explicitly and inexpensively via a pointwise, vectorial
shrinkage operation, i.e.,

d =

(
d1
d2

)
:= max

{∣∣(DΓn) ξ + b
∣∣
g
− β

λ
, 0
}

(DΓn) ξ + b∣∣(DΓn) ξ + b
∣∣
g

∈
[
Tn(·)S2

]2
.

(4.41)

Here we abbreviated

(DΓn) ξ :=
(
(DΓn) ξ1
(DΓn) ξ2

)
and ∣∣(DΓn) ξ + b

∣∣
g
=
(
|(DΓn) ξ1 + b1|2g + |(DΓn) ξ2 + b2|2g

)1/2
.

4.3.3 The Multiplier Update

An update of the Lagrange multiplier fields (b1, b2) is achieved, analogously to the Eu-
clidean setting, by replacing bi with

bi + (DΓn) ξi − di, i = 1, 2.

Notice again that all quantities belong to the subspace Tn(·)S2 of R3.





CHAPTER 5

DISCRETE TOTAL VARIATION OF THE
NORMAL FOR TRIANGULATED

SURFACES

In this chapter, we discuss a discrete variant of (4.2) tailored to piecewise flat surfaces Γh,
where (4.2) does not apply. In contrast with the smooth setting, the total variation of the
piecewise constant normal vector field n is concentrated in jumps across edges between
flat facets. We therefore propose the following discrete total variation of the normal,

|n|DTV(Γh)
:= ∑

E
d(n+

E , n−E ) |E| . (5.1)

Here E denotes an edge of length |E| between facets, and d(n+
E , n−E ) is the geodesic dis-

tance between the two neighboring normal vectors.

We investigate (5.1) in Section 5.1. It turns out to coincide with the discrete total mean
curvature known in discrete differential geometry. Subsequently, we discuss the utility of
this functional as a prior in shape optimization problems cast in the form

Minimize `(u(Ωh), Ωh) + β |n|DTV(Γh)

w.r.t. the vertex positions of the discrete shape Ωh with boundary Γh.
(5.2)

Here u(Ωh) denotes the solution of the problem specific partial differential equation
(PDE), which depends on the unknown domain Ωh. Moreover, ` represents a loss func-
tion, such as a least squares function. In particular, (5.2) includes geometric inverse prob-
lems, where one seeks to recover a shape Ωh ⊂ R3 representing, e.g., the location of a
source or inclusion inside a given, larger domain, or the geometry of an inclusion or a
scatterer. Numerical experiments in Chapter 6 confirm that |n|DTV(Γh)

, as a shape prior,
can help to identify polyhedral shapes.

This chapter is based on [23] and has a similar structure. In the following section we
provide an analysis of the discrete total variation of the normal (5.1) and its properties.
We also compare it to geometric functionals appearing elsewhere in the literature. In
particular, we provide a numerical comparison between (5.1) and surface regularization
for a mesh denoising problem. Section 5.2 is devoted to the formulation of an ADMM
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method which generalizes the split Bregman algorithm to the manifold-valued problem
(5.2).

5.1 Discrete Total Variation of the Normal

From this section onwards we assume that Γh ⊂ R3 is a piecewise flat, compact, ori-
entable surface without boundary, which consists of a finite number of flat facets with
straight sided edges between facets. Consequently, Γh can be thought of as a mesh con-
sisting of polyhedral cells with a consistently oriented outer unit normal. We also assume
this mesh to be geometrically conforming, i.e., there are no hanging nodes. A frequent
situation is that Γh is the boundary mesh of a geometrically conforming volume mesh
with polyhedral cells, representing a volume domain Ωh ⊂ R3. In our numerical exam-
ple in Chapter 6, we will use a volume mesh consisting of tetrahedra, whose surface mesh
consists of triangles; see Figure 5.1.

Figure 5.1: Volume mesh of a cube domain Ωh consisting of tetrahedra (left) and corre-
sponding triangular mesh of the boundary Γh (right).

Since the surface Γh is non-smooth, the definition (4.2) of the total variation of the normal
proposed in Chapter 4 for smooth surfaces does not apply. Since the normal vector field
n is piecewise constant here, its variation is concentrated in spontaneous changes across
edges between facets, rather than gradual changes expressed by the derivative DΓn. We
therefore propose to replace (4.2) by (5.1), where E denotes an edge of Euclidean length
|E| between facets. Each edge has an arbitrary but fixed orientation, so that its two neigh-
boring facets can be addressed as F+

E and F−E . The normal vectors, constant on each facet,
are denoted by n+

E and n−E . Moreover,

d(n+
E , n−E ) = arccos

(
(n+

E )
>n−E

)
= ^

(
n+

E , n−E
) (5.3)

denotes the geodesic distance on S2, i.e., the angle between the two unit vectors n+
E and

n−E ; see also Figure 5.2.
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F+
E

F−E

n+
E

n−E

µ−E

−µ−E

µ+
E

E

Figure 5.2: The geodesic distance between normals n+
E and n−E (shown in black) of two

Facets F+
E , F−E which share the edge E agrees with the geodesic distance between the

co-normals µ+
E and −µ−E (shown in orange).

Compared to the common definition of the discrete total variation semi-norm in imaging,
which involves the absolute value of the difference of neighboring function values, the
arccos in (5.3) appears to be highly non-linear. However, it agrees with the geodesic
distance and is thus the natural extension of the absolute value of the difference for S2-
valued data. To illustrate this behavior, let α ∈ (−π, π) be the angle between the normal
vectors of two neighboring facets F+ and F−, such that α = 0 refers to the case where
the two facets are co-planar, α < 0 represents the concave situation and α > 0 the convex
one. Without loss of generality, the two normal vectors can be parametrized by

n+ = (sin α, cos α, 0)> and n− = (0, 1, 0)>,

which yields
µ+ = (− cos α, sin α, 0)>.

Then (5.3) is simplified to

arccos
(
n+ · n−

)
= arccos (cos α) = |α|

To motivate the definition (5.1), consider a family of smooth approximations Γε of the
piecewise flat surface Γh. The approximations are supposed to be of class C2 such that
the flat facets are preserved up to a collar of order ε, and smoothing occurs in bands of
width 2ε around the edges. Such an approximation can be constructed, for instance, by a
level-set representation of Γh by means of a signed distance function Φ. Then a family of
smooth approximations Γε can be obtained as zero level sets of mollifications

Φ ~ ϕε

for sufficiently small ε. Here ϕε is the standard Friedrichs mollifier in 3D and ~ denotes
convolution. A construction of this type is used, for instance, in [33, 86]. An alternative
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to this procedure is the so-called Steiner smoothing, where Γε is taken to be the boundary
of the Minkowski sum of Ωh with the ball

Bε(0) ⊂ R3;

see for instance [151, Section 4.4].

Figure 5.3: Illustration of the approximation of a portion of a triangulated surface Γh (left)
by a family of smooth surfaces Γε (right). Two vertex caps BV,ε and one transition region
along an edge IE,ε are highlighted, see the proof of Theorem 5.1.

Theorem 5.1. Let {Γε} denote a family of smooth approximations of Γh obtained by
mollification, with normal vector fields nε. Then

|nε|TV(Γε)
→ |n|DTV(Γh)

as ε↘ 0. (5.4)

Proof. Let us denote the vertices in Γh by V and its edges by E. Since mollification is
local, the normal vector is constant in the interior of each facet minus its collar, which is
of order ε. Consequently, changes in the normal vector are confined to a neighborhood of
the skeleton. We decompose this area into the disjoint union⋃̇

E
IE,ε ∪̇

⋃̇
V

BV,ε.

Here IE,ε are the transition regions around edge E where the normal vector is modified
due to mollification, and BV,ε are the regions around vertex V. On IE,ε, we can arrange
the basis ξ1,2 to be aligned and orthogonal to E so that∫

IE,ε

(
|(DΓε nε) ξ1|2g + |(DΓε nε) ξ2|2g

)1/2
ds =

∫
IE,ε

|(DΓε nε) ξ1|g ds

holds, which can be easily evaluated as an iterated integral. In each stripe in IE,ε perpen-
dicular to E, nε changes monotonically along the geodesic path between n+

E and n−E , so
that the integral along this stripe yields the constant d(n+

E , n−E ). Since the length of IE,ε
parallel to E is |E| up to terms of order ε, we obtain∫

IE,ε

(
|(DΓε nε) ξ1|2g + |(DΓε nε) ξ2|2g

)1/2
ds = d(n+

E , n−E ) (|E|+O(ε)) .
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The contributions to |nε|TV(Γε)
from integration over BV,ε are of order ε since(

|(DΓε nε) ξ1|2g + |(DΓε nε) ξ2|2g
)1/2

is of order ε−1 and the area of BV,ε is of order ε2. This yields the claim.

5.1.1 Comparison with Prior Work for Discrete Surfaces
The functional (5.1) has been used previously in the literature. We mention that it fits
into the framework of total variation of manifold-valued functions defined in [81, 112].
Specifically in the context of discrete surfaces, we mention [150] where the term

HE := |E| ΘE

appears as the total mean curvature of the edge E. Here ΘE is the exterior dihedral angle,
which agrees with d(n+

E , n−E ), see (5.3). Consequently, (5.1) can be written as

∑
E

HE.

Moreover, (5.1) appears as a regularizer in [167] within a variational model for mesh de-
noising but the geodesic distances are approximated for the purpose of numerical solution.
We also mention the recent [126] where (5.1) appears as a measure of visual smoothness
of discrete surfaces. Particular emphasis is given to the impact of the mesh connectivity.
In our study, the mesh connectivity will remain fixed and only triangular surface meshes
are considered in the numerical experiments.
In addition, we are aware of [170, 173], where

∑
E

∣∣n+
E − n−E

∣∣
2 |E| , (5.5)

was proposed in the context of variational mesh denoising. Notice that in contrast to
(5.1), (5.5) uses the Euclidean as opposed to the geodesic distance between neighboring
normals and is therefore an underestimator for (5.1).
Once again, we are not aware of any work in which (5.1) or its continuous counterpart
(4.2) were used as a prior in shape optimization or geometric inverse problems involving
partial differential equations.

5.1.2 Properties of the Discrete Total Variation of the Normal
In this section we investigate some properties of the discrete total variation of the normal.
As can be seen directly from (5.1), a scaling in which Γh is replaced by δΓh for some
δ > 0 yields

|nδ|DTV(δΓh)
= δ |n|DTV(Γh)

.

This is the same behavior observed, e.g., for the total variation of scalar functions defined
on two-dimensional domains. Consequently, when studying optimization problems in-
volving (5.1), we need to take precautions to avoid that Γh degenerates to a point. This
can be archived either by imposing a constraint, e.g., on the surface area, or by considering
tracking problems in which an additional loss term appears.
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Simple Minimizers of the Discrete Total Variation of the Normal

In this section, we investigate minimizers of |n|DTV(Γh)
subject to an area constraint.

More precisely, we consider the following problem. Given a triangulated surface mesh
consisting of vertices V, edges E and facets F, find the mesh with the same connectivity,
which

minimizes ∑
E

d(n+
E , n−E ) |E|

s.t. ∑
F
|F| = A0.

(5.6)

To the best of our knowledge, a precise characterization of the minimizers of (5.6) is
an open problem and the solution depends on the connectivity; compare the observations
in [126, Section 4]. That is, different triangulations of the same (initial) mesh, e.g., a cube,
may yield different minimizers. We also refer the reader to [2] for a related observation
in discrete mean curvature flow.
We do have, however, the following partial result. For the proof, we exploit that (5.1)
coincides with the discrete total mean curvature and use results from discrete differential
geometry. The reader may wish to consult [32, 61, 121, 129, 162].

Theorem 5.2. The icosahedron and the cube with crossed diagonals are stationary for
(5.6) within the class of triangulated surfaces Γh of constant area and identical connec-
tivity.

Proof. Let us consider the Lagrangian associated with (5.6),

L(x1, . . . , xNV , µ) := ∑
E

d(n+
E , n−E ) |E|+ µ

(
∑
F
|F| − A0

)
. (5.7)

Here xi ∈ R3 denote the coordinates of vertex #i and NV is the total number of vertices of
the triangular surface mesh. Notice that the normal vectors n±E , edge lengths |E| and facet
areas |F| depend on these coordinates. The gradient of (5.7) w.r.t. xi can be represented
as

∇xiL(x1, . . . , xNV , µ) = ∑
j∈N (i)

(
d(n+

Eij
, n−Eij

)∣∣Eij
∣∣ +

µ

2
(

cot αij + cot βij
))

(xi − xj),

(5.8)

see for instance [61]. Here N (i) denotes the index set of vertices adjacent to vertex #i.
For any

j ∈ N (i),

Eij denotes the edge between vertices #i and #j. Moreover, αij and βij are the angles as
illustrated in Figure 5.4.
For the icosahedron with surface area A0, all edges have length∣∣Eij

∣∣ = ( A0

5
√

3

)1/2.

Moreover, since all facets are equilateral triangles,

αij = βij = π/3
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holds. Finally, the exterior dihedral angles are all equal to

d(n+
Eij

, n−Eij
) = arccos(

√
5/3) ≈ 41.81◦.

Consequently, the Lagrangian is stationary for the Lagrange multiplier

µ = −
√

3 arccos(
√

5/3)
(5
√

3
A0

)1/2.

We remark that (5.1) and thus (5.8) is not differentiable when one or more of the angles
d(n+

Eij
, n−Eij

) are zero. This is the case for the cube with crossed diagonals, see Figure 5.4.
However, the right hand side in (5.8) still provides a generalized derivative of L in the
sense of Clarke.
In contrast to the icosahedron, the cube has two types of vertices. When xi is the center
vertex of one of the lateral surfaces, then

d(n+
Eij

, n−Eij
) = 0

and
αij = βij = π/4

for all j ∈ N (i). Moreover, since

∑
j∈N (i)

(xi − xj) = 0

holds, 0 is an element of the generalized (partial) differential of L at

(x1, . . . , xNV , µ)

w.r.t. xi, independently of the value of the Lagrange multiplier µ. Now when xi is a vertex
of “corner type”, we need to distinguish two types of edges. Along the three edges leading
to neighbors of the same type, we have an exterior dihedral angle of

d(n+
Eij

, n−Eij
) = π/2,

length ∣∣Eij
∣∣ = (A0/6)1/2

and
αij = βij = π/2.

Along the three remaining edges leading to surface centers, we have

d(n+
Eij

, n−Eij
) = 0

and
αij = βij = π/4.

Thus for vertices of “corner type”, it is straightforward to verify that 0 belongs to the
generalized (partial) differential of L at

(x1, . . . , xNV , µ)
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unit cube tetrahedron icosahedron

edge length |E| 1 ≈ 1.8612 ≈ 0.8324
number of edges 12 6 30
exterior dihedral angle π/2 ≈ 1.9106 ≈ 0.7297

|n|DTV(Γh)
6π ≈ 18.8496 ≈ 21.3365 ≈ 18.2218

Table 5.1: Values of the discrete total variation of the normal functional (5.1) for the cube
with edge length 1, as well as the regular tetrahedron and the icosahedron with the same
surface area as the cube.

w.r.t. xi if (
π
√

2/2
(A0/6)1/2 + 2 µ

)1
1
1

 = 0

holds, which is true for the obvious choice of µ.

Numerical experiments indicate that the icosahedron as well as the cube are not only
stationary points, but also local minimizers of (5.6). We can thus conclude that the dis-
crete objective (5.1) exhibits different minimizers than its continuous counterpart (4.2)
for smooth surfaces. In particular, (5.1) admits and promotes piecewise flat minimizers
such as the cube. This is in accordance with observations made in [126, Section 3.2] that
optimal meshes typically exhibit a number of zero dihedral angles. This property sets
our functional apart from other functionals previously used as priors in shape optimiza-
tion and geometric inverse problems. For instance, the popular surface area prior is well
known to produce smooth shapes; see the numerical experiments in Section 5.1.2 below.

αij

βij

E ij

Figure 5.4: The icosahedron and the cube with crossed diagonals, two stationary surfaces
for (5.6). The highlighted regions as well as the figure on the right illustrate the proof of
Theorem 5.2.

Comparison of Discrete and Continuous Total Variation of the Normal

In this section we compare the values of (4.2) and (5.1) for a sphere Γ, and a sequence of
discretized spheres Γh. For comparison, we choose Γ to have the same surface area as the



5.1. Discrete Total Variation of the Normal 105

cube in the previous section, i.e., we use r =
√

3/(2π) as the radius. It is easy to see
that since the principal curvatures of a sphere Γ of radius r are

k1 = k2 = 1/r,

(4.2) becomes

|n|TV(Γ) =
∫

Γ

(
k2

1 + k2
2

)1/2
ds

= 4 π r2
√

2
r

= 4
√

2 π r

= 4
√

3π

≈ 12.2799.

To compare this to the discrete total variation of the normal, we created a sequence of
triangular meshes Γh of this sphere with various resolutions using GMSH and evaluated
(5.1) numerically. The results are shown in Table 5.2. They reveal a factor of approx-
imately

√
2 between the discrete and continuous functionals for the sphere. To explain

this discrepancy, recall that the principal curvatures of the sphere are

k1 = k2 = 1/r.

This implies that the derivative map DΓn has rank two everywhere. Discretized surfaces
behave fundamentally different in the following respect. Their curvature is concentrated
on the edges, and one of the principal curvatures (the one in the direction along the edge)
is always zero. So even for successively refined meshes, e.g., of the sphere, one is still
measuring only one principal curvature at a time. We are thus led to the conjecture that
the limit of (5.1) for successively refined meshes is the “anisotropic”, yet still intrinsic
measure ∫

Γ
|k1|+ |k2| ds,

whose value for the sphere in Table 5.1 is

4
√

6π ≈ 17.3664

The factor
√

2 can thus be attributed to the ratio between the `1- and `2-norms of the
vector (1, 1)>. This observation is in accordance with the findings in [126, Section 1.2].
One could consider an “isotropic” version of (5.1) in which the dihedral angles across
all edges meeting at any given vertex are measured jointly. These alternatives will be
considered elsewhere.

Discrete Total Variation Compared to Surface Area Regularization

In this section we consider a specific instance of the general problem (5.2) and compare
our discrete TV functional with the surface area regularizer. We begin with a triangular
surface mesh Γh of a box

Ω = (−1, 1)× (−1.5, 1.5)× (−2, 2)
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NV NE NT |n|DTV(Γh)
|n|DTV(Γh)

/ |n|TV(Γh)

54 156 104 17.01045 1.38522
270 804 536 17.47614 1.42315
871 2,607 1,738 17.34861 1.41276

1,812 5,430 3,620 17.35852 1.41357
3,314 9,936 6,624 17.36350 1.41398

9,530 28,584 19,056 17.36855 1.41439
82,665 247,989 165,326 17.37524 1.41493

101,935 305,799 203,866 17.37341 1.41478
335,216 1,005,642 670,428 17.37389 1.41482
958,022 2,874,060 1,916,040 17.37410 1.41484

Table 5.2: Various triangulations Γh of a sphere Γ with radius r =
√

3/(2π), their
values of (5.1) and the ratio between (5.1) and (4.2). The value of the latter is |n|TV(Γ) =

4
√

3π ≈ 12.2799. NV , NE and NT denote the number of vertices, edges, and triangles
of the respective mesh.

and add normally distributed noise to the coordinate vector of each vertex in average
normal direction of the adjacent triangles with zero mean and standard deviation

σ = 0.2

times the average edge length. We denote the noisy vertex positions as x̃V and use a
simple least-squares functional as our loss function and consider the following mesh de-
noising problem,

Minimize
1
2 ∑

V
|xV − x̃V |22 + β |n|DTV(Γh)

w.r.t. the vertex positions xV of the discrete surface Γh.
(5.9)

Here the sum runs over the vertices of Γh. For comparison, we also consider a variant

Minimize
1
2 ∑

V
|xV − x̃V |22 + γ ∑

F
|F|

w.r.t. the vertex positions xV of the discrete surface Γh,
(5.10)

where we use the total surface area as prior.
A numerical approach to solve the non-smooth problem (5.9) will be discussed in Sec-
tion 5.2. By contrast, problem (5.10) is a fairly standard smooth discrete shape opti-
mization problem and we solve it using a simple shape gradient descent scheme. The
details how to obtain the shape derivative and shape gradient are the same as described in
Section 6.1.2 for problem (5.9).
Figure 5.5 shows the numerical solutions of (5.9) and (5.10) for various choices of the
regularization parameters β and γ, respectively. The initial guess for both problems is
a sphere with the same connectivity as Γh. We can clearly see that our functional (5.1)
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achieves a very good reconstruction of the original shape for a proper choice of β. By
contrast, the surface area regularization requires a relatively large choice of γ in order to
reasonably reduce the noise, which in turn leads to a significant shrinkage of the surface
and a rounding of the sharp features.

Figure 5.5: Top row: original box and desired outcome of the noise reduction, noisy
box with vertex coordinates x̃V used for the data fidelity term, and sphere with same
connectivity used as the initial guess; middle row: results for total variation of the normal
(5.9) with β = 10−2, 10−3, 10−4; bottom row: results for surface area regularization
(5.10) with γ = 0.02, 0.01, 0.005.

5.2 Discrete Split Bregman Iteration
In this section, we develop an optimization scheme to solve the non-smooth problem (5.1).
To this end, we adapt the well-known split Bregman method to our setting. This leads to
a discrete realization of the approach presented in Section 4.3, which will be slightly sim-
plified to make the parallel transport unnecessary. Recall that combining (5.1) with (5.2)
results in the problem

Minimize `(u(Ωh), Ωh) + β ∑
E

d(n+
E , n−E ) |E|

w.r.t. the vertex positions of Ωh,
(5.11)

where E are the edges of the unknown part Γh of the boundary ∂Ωh. We will consider a
concrete example in Section 6.1.
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Notice that the second term in the objective in (5.11) is non-differentiable whenever

n+
E = n−E

occurs on at least one edge. Following the classical split Bregman approach, we introduce
a splitting in which the variation of the normal vector becomes an independent variable.
Since this variation is confined to edges, where the normal vector jumps (without loss of
generality) from n+

E to n−E , this new variable becomes

dE = logn+
E

n−E ∈ Tn+
E
S2. (5.12)

Here logn+
E

n−E denotes again the logarithmic map as in (4.39). Moreover,

|logn+
E

n−E |g = d(n+
E , n−E )

holds. Together with the set of Lagrange multipliers

bE ∈ Tn+
E
S2,

we define the Augmented Lagrangian pertaining to (5.2) and (5.12) as

L(Ωh, d, b) := `(u(Ωh), Ωh) + β ∑
E
|dE|g |E|

+
λ

2 ∑
E
|E|
∣∣dE − logn+

E
n−E − bE

∣∣2
g
.

(5.13)

Here λ > 0 is the augmentation parameter. The vectors d and b are simply the collections
of their entries

dE, bE ∈ Tn+
E
S2,

three components per edge E. Hence, since the tangent space Tn+
E
S2 changes between

shape updates, the respective quantities have to be parallely transported, see (4.38), which
is a major difference to ADMM methods in Euclidean or Hilbert spaces.

We state the split Bregman iteration in Algorithm 7 and address now its individual steps
in more detail, i.e., the successive minimization with respect to the unknown vertices of
Ωh and d, followed by an explicit update for the multiplier b.

Step 4 is the minimization of (5.13) with respect to the unknown vertex positions of Ωh.
To this end, we employ a gradient descent scheme, where we compute the sensitivities
with respect to those node positions discretely, see Section 6.1.2 for more details. Follow-
ing [85], an approximate minimization suffices, and thus only a certain number of steepest
descent steps are performed.
After Ω(k)

h has been updated to Ω(k+1)
h , the quantity b(k)

E ∈ T
n+,(k)

E
S2 has to be parallely

transported into the new tangent space T
n+,(k+1)

E
S2, see step 5.

Step 6 is the optimization of (5.13) with respect to d, which is a non-smooth problem. It
can be solved explicitly by one vectorial shrinkage operation per edge E. Given the data
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Algorithm 7 Split Bregman method for (5.2)

Require: Initial domain Ω(0)
h

Ensure: Approximate solution of (5.2)
1: Set b(0) := 0, d(0) := 0
2: Set k := 0
3: while not converged do
4: Perform several gradient steps for Ωh 7→ L(Ωh, d(k), b(k)) at Ω(k)

h to obtain

Ω(k+1)
h

5: Parallely transport the multiplier estimate b(k)
E on each edge E from T

n+,(k)
E
S2 to

T
n+,(k+1)

E
S2 along the geodesic from n+,(k)

E to n+,(k+1)
E , see (4.38)

6: Set d(k+1) := arg minL(Ω(k+1)
h , d(k), b(k)), see (5.14)

7: Update the Lagrange multipliers, i.e., set
b(k+1)

E := b(k)
E + log

n+,(k+1)
E

n−,(k+1)
E − d(k+1)

E for all edges E

8: Set k := k + 1
9: end while

Ω(k+1)
h and associated normal field n(k+1), as well as multiplier b(k)

E parallely transported
into T

n+,(k+1)
E

S2, the minimizer of (5.13) is given by

d(k+1)
E := max

{∣∣wE + b(k)
E

∣∣
g
− β

λ
, 0
}

wE + b(k)
E∣∣wE + b(k)

E

∣∣
g

(5.14)

for each edge E with
wE = log

n+,(k+1)
E

n−,(k+1)
E .

Notice that (5.14) is independent of the previous value d(k)
E and thus a parallel transport

of d(k)
E into the updated tangent space is not necessary.

Step 7 is the multiplier update for b, which is done explicitly via

b(k+1)
E = b(k)

E + log
n+,(k+1)

E
n−,(k+1)

E − d(k+1)
E

for each edge E.





CHAPTER 6

APPLICATIONS USING THE DISCRETE
TOTAL VARIATION OF THE NORMAL

In this Chapter we present some numerical results for three different type of problems
applied to Algorithm 7. First, we introduce an Electrical impedance tomography (EIT)
problem, which is in a prototypical class of inverse problems and we show the results for
our new shape prior (5.1) compared to the well known surface area regularization. Sec-
ond, we focus on mesh denoising, which is the process of removing noise while preserving
relevant features like edges and corners. The main difficulty in removing undesired noise
from a mesh is that both noise and sharp geometric features can be considered high fre-
quency signals. This makes it difficult to distinguish between them. Finally, we apply
Algorithm 7 on two mesh inpainting problems, where vertex positions of some mesh ar-
eas are corrupted and therefore unknown. The mesh inpainting problem deals with the
reconstruction of these vertex positions.

6.1 An EIT Model Problem and its Implementation in
FENICS

In the following, we address some details concerning the implementation of Algorithm 7
in the finite element framework FENICS (version 2018.2.dev0), [4, 114]. For concrete-
ness, we elaborate on a particular reduced loss function `(u(Ωh), Ωh) where the state
u(Ωh) arises from a PDE modeling a geological electrical impedance tomography (EIT)
problem with Robin-type far field boundary conditions. We introduce the problem under
consideration first and discuss implementation details and derivative computations later
on, completed by some numerical results.

6.1.1 EIT Model Problem
Electrical impedance tomography problems are a prototypical class of inverse problems.
Common to these problems is the task of reconstructing the internal conductivity inside a
volume from boundary measurements of electric potentials or currents. These problems
are both nonlinear and severely ill-posed and require appropriate regularization; see for
instance [55, 56, 140].

111
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Figure 6.1: The left plot shows the domain Ωh considered in the numerical example.
Each colour on the outer boundary represents the support of one out of r = 48 electric
sources fi. The right figure shows a wireframe plot revealing the true inclusion Γ1, i.e.,
the boundary of the cube.

Traditionally, EIT problems are modeled with Neumann (current) boundary conditions
and the internal conductivity is an unknown function across the entire domain. In order
to focus on the demonstration of the utility of (5.1) as a regularizer in geometric inverse
problems, we consider a simplified situation in which we seek to reconstruct a perfect
conductor inside a domain of otherwise homogeneous electrical properties.
Consequently, the unknowns are the vertex positions of the interface of the inclusion. As
a perfect conductor shields its interior from the electric field, there is no necessity to mesh
and simulate the interior of the inclusion. However, we mention that our methodology
can be extended also to interface problems, non-perfect conductors and other geometric
inverse problems.
The perfect conductor is modeled via a homogeneous Neumann condition on the unknown
interior boundary Γ1 of the domain Ωh. To overcome the non-uniqueness of the electric
potential, we employ Robin boundary conditions on the exterior boundary Γ2. The use
of homogeneous Robin boundary conditions to model the far field is well-established for
geological EIT problems; see, e.g., [95]. We use them here also for current injection.
The geometry of our model is shown in Figure 6.1, where Γ1 is the unknown bound-
ary of the perfect conductor and Γ2 is a fixed boundary where currents are injected and
measurements are taken. We assume that

i = 1, . . . , r ∈N

experiments are conducted, each resulting in a measured electric potential zi ∈ CG1(Γ2),
the finite element space consisting of piecewise linear, globally continuous functions on
the outer boundary Γ2. Experiment #i is conducted by applying the right hand side source
fi ∈ DG0(Γ2), which is the characteristic function of one of the colored regions shown
in Figure 6.1. Here, DG0 denotes the space of piecewise constant functions. We then
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seek to reconstruct the interface of the inclusion Γ1 by solving the following regularized
least-squares problem of type (5.2),

Minimize
1
2

r

∑
i=1

∫
Γ2

|ui − zi|2 ds + β |n|DTV(Γ1)

s.t.


−∆ui = 0 in Ωh,

∂ui

∂n
= 0 on Γ1,

∂ui

∂n
+ α ui = fi on Γ2

(6.1)

with respect to the vertex positions of Γ1. Here ui ∈ CG1(Ωh) is the computed electric
field for source fi. Hence, the problem features r PDE constraints with identical operator
but different right hand sides.
As detailed in Section 6.1.2, we compute the shape derivative of the least-squares ob-
jective and the PDE constraint separately from the shape derivative of the regularization
term. To evaluate the former, we employ a classical adjoint approach. To this end, we
consider the Lagrangian

F(u1, . . . , ur, p1, . . . , pr, Ωh) :=
r

∑
i=1

[∫
Γ2

1
2
|ui − zi|2 ds +

∫
Ωh

∇pi · ∇ui dx +
∫

Γ2

pi(α ui − fi) ds
]

(6.2)

for pi ∈ CG1(Ωh). The differentiation w.r.t. ui leads to the following adjoint problem for
pi: 

−∆pi = 0 in Ωh,
∂pi

∂n
= 0 on Γ1,

∂pi

∂n
+ α pi = −(ui − zi) on Γ2.

(6.3)

The above adjoint PDE was implemented by hand. Since all forward and adjoint problems
are governed by the same differential operator, we assemble the associated stiffness ma-
trix once and solve the state and adjoint equations via an ILU-preconditioned conjugate
gradient method.
Provided that ui and pi solve the respective state and adjoint equations, the directional
derivative of `(u(Ωh), Ωh) coincides with the partial directional derivative of

F(u1, . . . , ur, p1, . . . , pr, Ωh),

both with respect to the vertex positions. In practice, we evaluate the latter using the
coordinate derivative functionality of FENICS as described in the following subsection.

6.1.2 Discrete Shape Derivative
We now focus on computing the sensitivity of finite element functionals, when mesh
vertices x of Ωh are moved in accordance to

xε = x + εV Ωh
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with
V Ωh ∈ CG

3
1(Ωh).

As discussed in [91], a convenient way to compute this within the finite element world is
by tapping into the transformation of the reference element to the physical one. Hence,
we use the symbol

d`(u(Ωh), Ωh)[V Ωh ]

for this object and we obtain it using the coordinate derivative functionality, first intro-
duced in FENICS release 2018.2.dev0.
Our split Bregman scheme requires the shape derivative of (5.13), which is given by

dL(Ωh, d, b)[PΩh(V Γ1)] = d`(u(Ωh), Ωh)[PΩh(V Γ1)] + dm(Γ1)[V Γ1 ], (6.4)

where
m(Γ1) := β ∑

E
|dE|g |E|+

λ

2 ∑
E
|E|
∣∣dE − logn+

E
n−E − bE

∣∣2
g

(6.5)

originates from the splitting approach (5.13). Because our design variable is Γ1 only, we
introduce the extension

PΩh(V Γ1)

of V Γ1 ∈ CG3
1(Γ1) to the volume Ωh by padding with zeros. Furthermore, a reduction to

boundary only sensitivities can also be motivated from considering shape derivatives in
the continuous setting, see [22, Section 3].
The term

d`(u(Ωh), Ωh)[PΩh(V Γ1)]

is computed via the adjoint approach as explained above,

d`(u(Ωh), Ωh)[PΩh(V Γ1)] = ∂Ωh F(u1, . . . , ur, p1, . . . , pr, Ωh)[PΩh(V Γ1)].

In order to employ this AD functionality, (6.5) needs to be given as a form in Unified
Form Language (UFL), a domain specific language based on Python, which forms the
native language of the FENICS framework, see [5]. Such a UFL representation is easy
to achieve if all mathematical expressions are finite element functions. Notice that d and
b in (6.5) are constant functions on the edges of the boundary mesh representing Γ1. We
can thus represent them in the so called HDivTrace space of lowest order in FENICS.
From the directional derivatives (6.4), we pass to a shape gradient on the surface w.r.t. a
scaled H1(Γ1) scalar product by solving a variational problem. This problem involves
the weak form of a Laplace–Beltrami operator with potential term and it finds

WΓ1 ∈ CG1(Γ1)
3

such that∫
Γ1

10−4(∇WΓ1 ,∇V Γ1)2+(WΓ1 , V Γ1)2 ds

= d`(u(Ωh), Ωh)[PΩh(V Γ1)] + dm(Γ1)[V Γ1 ]
(6.6)

holds for all test functions V Γ1 ∈ CG1(Γ1)
3.
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The previous procedure provides us with a shape gradient WΓ1 on the surface Γ1 alone.
In order to propagate this information into the volume Ωh, we solve the following mesh
deformation equation: find

WΩh ∈ CG1(Ωh)
3

such that ∫
Ωh

(∇WΩh ,∇V Ωh)2 + (WΩh , V Ωh)2 ds = 0 (6.7)

for all test functions
V Ωh ∈ CG1(Ωh)

3

with zero Dirichlet boundary conditions, where WΩh is subject to the Dirichlet boundary
condition

WΩh = WΓ1

on Γ1 and
WΩh = 0

on Γ2. Subsequently, the vertices of the mesh are moved in the direction of WΩh .

6.1.3 Intrinsic Formulation Using Co-Normal Vectors
We recall that our functional of interest (5.1) is formulated in terms of the unit outer
normal n of the oriented surface Γ1. This leads to the term (6.5) inside the augmented
Lagrangian (5.13). In order to exploit the differentiation capability of FENICS w.r.t.
vertex coordinates, we need to represent (6.5) in terms of an integral. Since the edges
are the interior facets of the surface mesh for Γ1, and d and b can be represented as
constant on edges as explained above, (6.5) can indeed be written as a UFL integral w.r.t.
the so-called interior facet measure dS on Γ1. Then, however, the outer normal vectors
appearing in the term logn+

E
n−E are not available. We remedy the situation by observing

that the geodesic distance between two normal vectors n+
E and n−E on the two triangles T1

and T2 sharing the edge E can also be expressed via the co-normal (or in-plane normal)
vectors µ+

E , µ−E , as is shown in Figure 5.2. Indeed, one has∣∣logn+
E

n−E
∣∣
g
=
∣∣logµ+

E
(−µ−E )

∣∣
g
.

Since the co-normal vectors are intrinsic to the surface Γ1, they are available on Γ1 while
n+

E and n−E are not.

6.1.4 Numerical Results
In this section we present numerical results obtained with Algorithm 7 for the geological
impedance tomography model problem described before. The data of the problem are
given in Table 6.1 and the initial guess of the inclusion Γ1, as well as the true inclusion,
are shown in Figure 6.2. The state u and adjoint state p were discretized using piecewise
linear, globally continuous finite elements on a tetrahedral grid of Ωh minus the volume
enclosed by Γ1. The mesh has 4429 vertices and 19 384 tetrahedra. Regarding the shape
optimization problem of Algorithm 7, we perform 10 gradient steps per split Bregman
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domain Ωh unit sphere B1(0) \ [−0.4, 0.4]3 ⊂ R3

measurement boundary Γ2 boundary of Ωh
boundary of true inclusion Γ1 boundary of [−0.4, 0.4]3

initial guess for Γ1 boundary of B0.5(0) ⊂ R3

number of measurements r = 48
Robin coefficient in (6.1) α = 10−5

split Bregman parameter λ = 10−5

standard deviation of noise σ = 0 or σ = 0.34 · 10−2

regularization parameter . . .
for total variation regularization β = 10−6

for surface area regularization γ = 5 · 10−5, 2 · 10−5

shape step size 102

Table 6.1: Setting of the numerical experiments for (6.1).

iteration combined with an Armijo linesearch with starting step size of 102. Also, we
stop the whole algorithm, i.e., the outer Bregman iteration, when the initial gradient of
the above mentioned shape optimization problem has a norm below 10−7 in the sense of
(6.6).
In Figure 6.3, we show the results obtained in the noise-free setting (top row) and with
noise (bottom row). In the latter case, normally distributed random noise is added with
zero mean and standard deviation σ = 0.34 · 10−2 per degree of freedom of zi on Γ2
for each of the r = 48 simulations of the forward model (6.1). The amount of noise is
considerable when put in relation to the average range of values for the simulated states,
which is

∑r
i=1
(

maxs∈Γ2 zi(s)−mins∈Γ2 zi(s)
)

r
≈ 0.34, i = 1, . . . , r.

Due to mesh corruption, we have to remesh Ωh at some point in the cases with noise.
Afterwards, we start again Algorithm 7 with the remeshed Ωh as new initial guess.
For comparison, we also provide results obtained for a related problem in Figure 6.3, using
the popular surface area regularization with the same data otherwise. For the surface area
regularization, β |n|TV(Γ1)

is replaced by

γ
∫

Γ1

ds = γ ∑
F
|F| ,

where F are the facets of Γ1. Because the problem is smooth in this case, we apply a
shape gradient scheme directly rather than a split Bregman scheme and terminate as soon
as the norm of the gradient falls below 5 · 10−8. The regularization parameters β and γ
are selected by hand in each case. Automatic parameter selection strategies can clearly be
applied here as well, but this is out of the scope of the present thesis. We refer the reader
to [64, 110] for examples of such strategies.
As is expected and well known, the use of surface area regularization leads to results in
which the identified inclusion Γ1 is smoothed out. This can be explained by the observa-
tion that the gradient based minimization of the surface area yields a mean curvature flow.
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Figure 6.2: Initial guess for the inclusion Γ1 on the left and the true inclusion on the right.

Figure 6.3: Top row: setting without noise; left: total variation regularization, β = 10−6

and 90 iterations; middle: surface area regularization with γ = 5 · 10−5 and 1129 itera-
tions; right: surface area regularization with γ = 2 · 10−5 and 978 iterations. Bottom row:
setting with noise; left: total variation regularization with β = 10−6 and 173 iterations
with remeshing after iteration 121; middle: surface area regularization with γ = 5 · 10−5

and 1016 iterations with remeshing after iteration 539; right: surface area regularization
with γ = 2 · 10−5 and 987 iterations with remeshing after iteration 308.
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By contrast, our novel prior (5.1) allows for piecewise flat shapes and thus the interface
Γ1 is closely reconstructed in the noise-free situation. Even in the presence of noise, the
reconstruction is remarkably good. In particular, the flat lateral surfaces and sharp edges
can be identified quite well.

6.2 Mesh Denoising
In this section we consider an analogue of the ROF model for mesh denoising. The vertex
positions xV ∈ R3 serve as optimization variables, and they implicitly determine the
facets’ normal and co-normal vectors. We consider the following variational model:

Minimize
1
2 ∑

V
|XV − xV |22 + β ∑

E
|logn+

E
n−E |g |E|2 . (6.8)

Here XV ∈ R3 are the given, noisy vertex positions which serve as data in the fidelity
term in (6.8) and therefore, the associated augmented Lagrangian reads

L(x, d, b) :=
1
2 ∑

V
|XV − xV |22 + β ∑

E
|dE|g |E|2

+
λ

2 ∑
E

∣∣dE − logn+
E

n−E − bE
∣∣2 |E|2 .

(6.9)

Figure 6.4 shows two denoising results obtained using (6.8) and Algorithm 7. For the
first result, noise at a vertex was added in average normal direction using a Gaussian
distribution with standard deviation σ = 0.2 times the average length of all edges. 100
outer iterations were needed, while performing one gradient step with step length 0.01 per
outer iteration. In the second result, noise was added in arbitrary direction and it took 200
outer iterations. Never the less, Algorithm 7 removed noise very well, while preserving
sharp features like edges and corners.

6.3 Mesh Inpainting
This section is devoted to a modification of (6.8) for mesh inpainting problems. These
problems differ from (6.8) in that there is no fidelity term. Instead, the exact positions of
a number of vertices are given beforehand, while the positions of the remaining vertices
are unknown and there is no reference value known for them. In this setting, (6.9) is
replaced by

L(x, d, b) := β ∑
E
|dE|g |E|2 +

λ

2 ∑
E

∣∣dE − logn+
E

n−E − bE
∣∣2
g
|E|2 . (6.10)

Step 4 in Algorithm 7 now minimizes only w.r.t. the unknown vertex positions. Note that
this assumes that a mesh connectivity is either given or has been constructed to span the
missing parts as well. Usually, unknown vertex positions come in contiguous sections
rather than single vertices.
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Figure 6.4: Mesh denoising using the split Bregman iteration on (6.8) with β = 10−2 and
λ = 10−1. Original geometry (top left), with noise in normal direction (top middle) and
reconstruction (top right). Geometry with noise in arbitrary direction (bottom left) and
reconstruction (bottom right).

As a first test we consider a unit cube mesh with 10× 10× 2 triangles on each side. After
selecting a subdomain to simulate the loss of data, a surface area minimization problem
is solved on this subdomain, which ensures that geometric information from the original
mesh is removed. Note that the original mesh connectivity is maintained in this process,
which might possibly add information that would help the reconstruction. Since usually
such information is not available, the affected area is, for the purpose of this test, remeshed
using the open source software Gmsh (version 3.0.6). The inpainting results obtained
using FENICS, once starting from the original and once from the newly generated mesh,
are shown in Figure 6.5. To show the performance of our algorithm, another inpainting
problem is solved on the more complex geometry fandisk. The corresponding results are
shown in Figure 6.6.
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Figure 6.5: Using Algorithm 7 for mesh inpainting, based on (6.10) with β = 10−3 and
λ = 10−2. Starting mesh with original mesh connectivity (top left) and corresponding
reconstruction (top right), previous starting mesh after remesh with Gmsh (bottom left)
and corresponding reconstruction (bottom right). The step size was 10−1 and it took 3000
outer iterations for the first and 900 for the second result with 10 inner iteration per outer
iteration.
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Figure 6.6: Using Algorithm 7 for mesh inpainting, based on (6.10) with β = 10−3 and
λ = 10−2, after an initial remeshing was done on the affected area. Starting mesh (left)
and reconstruction (right). The step size was 10−2 and it took 3500 outer iterations with
10 inner iteration per outer iteration.





CHAPTER 7

CONCLUSION

We successfully investigated the well-known total variation regularizer on surfaces in the
context of textures and introduced an extension for shape optimization problems. In this
chapter, we conclude the thesis by summarizing the main results and discussing possible
topics of future research.

The Total Variation on Surfaces

We considered an analogue of the TV–L2 image reconstruction approach for images on
smooth surfaces. Complementary to [108], we proved the well-posedness of the model
and its predual, and rigorously established strong duality with the predual in function
space. The predual problem is a quadratic optimization problem for the vector field
p ∈ H(div; Γ) with pointwise nonlinear inequality constraints on the surface. As in
the flat case, p serves as an edge detector. We proposed and analyzed a function space
interior point method for the predual problem. Based on the finding that the latter is posed
in H(div; Γ), we are led to choose a conforming finite element discretization by the sur-
face analogue of first- or higher-order Raviart–Thomas finite element spaces. In contrast
to linear Lagrangian elements employed in [108], our discretization exhausts the space
when the surface mesh is refined. Numerical examples, which comprise denoising and
inpainting problems, show the viability of the approach for real-world geometries con-
sisting of more than 350 000 and 175 000 vertices. Our method can be easily adapted to
surfaces with boundary, by replacing H(div; Γ) with H0(div; Γ). This amounts to im-
posing the boundary condition p · µ = 0 along the boundary ∂S. The analysis presented
carries over with minor changes.
There is room for improvement in various directions. For instance, the polynomial or-
der r of the finite element space DGr for the image data f could be adjusted locally to
reflect the level of detail present in each surface cell. This would then naturally lead to
discretizations of p and u with varying polynomial degree as well. Moreover, we have
so far been solving the predual problem with a basic primal interior point approach, run-
ning Newton’s method to convergence for each value of the barrier parameter µ. A more
sophisticated primal-dual interior-point method with inexact system solves might help
reduce the computational cost for high-dimensional problems. While we are exploiting
the MPI-based parallelism of the FENICS library for system assembly and direct sys-
tem solves already, more efficiency might be gained by preconditioned iterative solvers
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with tailored preconditioners. This appears particularly promising in order to treat also
problems with non-local operators K efficiently. This is left for future research.
Since we admit higher-order polynomial functions, it would be natural to extend our anal-
ysis to a discrete version of the total generalized variation (TGV) functional introduced
in [35]. Another generalization that could be of interest is to consider finite element func-
tions defined on more general cells than the simplices considered here. Clearly rectangles
are of particular interest in imaging applications, but also hexagons; see [59,104], as men-
tioned in the introduction. We remark that RT finite element spaces on parallelograms
were already discussed in the original contribution [133], and we refer to [111] for an
application to imaging, but only for the lowest-order case. The generalization to higher-
order finite elements, as well as to more general element geometries, is left for future
research.

Afterwards, we have introduced a discrete version (DTV) of the TV-seminorm for glob-
ally discontinuous (DGr) Lagrangian finite element functions on triangulated surface
meshes in R3. Since continuous (CGr) functions form a subspace of DGr, all consid-
erations apply to images represented as continuous finite element functions as well. We
have shown that | · |DTV(Γh)

has a convenient dual representation in terms of the supre-
mum over the space of Raviart–Thomas finite element functions, subject to a set of sim-
ple constraints. This allows for the efficient realization of a variety of algorithms, e.g.,
(DTV-L2-D) and (DTV-L1-D) for image denoising and inpainting, both with low and
higher-order finite element functions available in finite element libraries.
The polynomial degree in our study was limited to 0 ≤ r ≤ 4 (or 0 ≤ r ≤ 3 for
(DTV-L1)), which should be sufficient for most applications. The limitation in the degree
arises due to the requirement that the quadrature weights, i.e., the integrals over the stan-
dard Lagrangian basis functions, have to be non-negative; see Lemma 3.1. This brings up
the question whether a Lagrangian basis for higher-order polynomial functions on trian-
gles or tetrahedra exists, such that the integrals of the basis functions are (strictly) positive.
This is answered in the affirmative by results in [155, 159] for the triangle and [80, 172]
for tetrahedra, where interpolatory quadrature formulas with positive weights are con-
structed. However, it remains to be investigated whether a Lagrangian finite element with
a modified basis admits an appropriate Raviart–Thomas type counterpart such that a dual
representation of | · |DTV(Γh)

parallel to Theorem 3.2 continues to hold. Moreover, such
non-standard finite element spaces certainly incur an overhead in implementation.
One may also envision applications where it would be beneficial to allow for locally vary-
ing polynomial degrees and mesh sizes in imaging applications, so that the resolution can
be chosen adaptively. Finally, we mention possible extensions to vectorial TV-seminorms,
see for instance [84]. These topics remain for future research.

The Total Variation of Surfaces
In the second part of this thesis, we introduced an analogue of the total variation prior for
the normal vector field (4.2) defined on the boundary Γ of smooth domains Ω ⊂ R3. This
functional is also known as the total root mean square curvature (4.5). We have shown
in Theorem 4.9 that it admits spheres as stationary points under an area constraint and
we conjecture that spheres are in fact global minimizers. We proposed a split Bregman
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(ADMM) scheme for the numerical solution of shape optimization problems (4.3) involv-
ing the total variation of the normal. In contrast to a Euclidean ADMM, as proposed for
instance in [85], the normal vector data belongs to the sphere S2. Therefore, the formula-
tion of the ADMM method requires concepts from differential geometry. An analysis of
the Riemannian ADMM scheme is beyond the scope of this thesis and will be presented
elsewhere.

Finally, a discrete analogue of the total variation prior for the normal vector field was
presented. While we are currently unable to characterize all minimizers of its discrete
counterpart, we showed that the icosahedron and a cube with crossed diagonals are sta-
tionary under an area constraint. We conjecture that the full set of minimizers is much
richer than this, in particular when the connectivity is included as design unknown. It has
been argued in [126, Section 3.3] that minimal energy is achieved for meshes which are
not triangular, but whose faces are approximately rectangular.
We proposed, described and implemented a split Bregman (ADMM) scheme, similar to
the continuous case, for the numerical solution of shape optimization problems involving
the discrete total variation of the normal.
We demonstrate the utility of the discrete total variation of the normal as a shape prior in
a geometric inverse problem, in which we aim to detect a polyhedral inclusion. Unlike
the popular surface area regularization, our prior allows for piecewise flat shapes.
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