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Abstract: Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent
in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to
determine the dominating filamentous fungi causing eye infections in Germany and their antifungal
susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic
fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that
were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and
antifungal susceptibility testing according to the EUCAST protocol was performed for common
species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus,
followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in
eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species
complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin,
and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus
flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data
underline the importance of species identification for correct treatment.

Keywords: eye infection; fungal infection; keratitis; antifungal susceptibility; natamycin; Fusarium;
Purpureocillium; Aspergillus; Alternaria; Scedosporium

1. Introduction

Eye infections caused by fungi are serious diseases that can lead to loss of vision and
blindness. Sites of exogenous infections mainly include the cornea (keratitis), but also the
vitreous body (endophthalmitis), often as consequence of progressing keratitis. According
to estimates, more than one million people are affected by fungal keratitis annually and
8–11% of the patients lose the eye [1]. The disease is most prevalent in tropical and
subtropical countries [2,3], but an increasing number of cases has also been reported in
countries with moderate climates [4–10]. Numerous fungal species are known to cause
keratitis. Clinically, wearing of soft contact lenses and ocular trauma is mostly associated
with keratitis caused by filamentous fungi, whereas keratitis caused by Candida spp. most
frequently occurs in patients with chronic eye disease, topical steroid use, or surgical
intervention. The spectrum of filamentous fungi causing keratitis differs depending on the
climate and geographic region, but Aspergillus and Fusarium species are the predominant
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causative agents worldwide [11–13]. In several countries, including India, Nepal, and the
USA (Florida), Curvularia species play an important role as the cause of keratitis [12]. Data
from the German Fungal Keratitis Registry have shown that roughly one-third of cases in
Germany are caused by Candida species, one-third is Fusarium keratitis, and one-third is
caused by other filamentous fungi, including Aspergillus spp. [14].

In the two most frequently isolated genera of filamentous fungi associated with eye
infections, Fusarium and Aspergillus, numerous new species have been described in the
last years based on DNA sequence data [15–19]. As a consequence, morphology based
approaches often only allow the identification of species complexes or sections, respectively.
Even molecular species identification by sequencing of the nuclear ribosomal internal
transcribed spacer (ITS) region that is used as a universal marker in fungi [20] cannot
discriminate all species in these genera [21,22]. Consequently, exact species identification is
often lacking in published case series of keratitis caused by filamentous fungi.

The taxonomy and nomenclature of the genus Fusarium are currently controversial.
Some authors favor the use of the name Fusarium and a wide generic concept including
the FSSC [23], while other authors support a smaller generic concept that splits the genus
Fusarium into several genera (e.g., Neocosmospora), primarily based on characteristics of
their fruiting bodies (perithecia), but also on the asexual morphs [24]. Due to the fact
that Fusarium is of great importance in medical mycology because it is one of the oppor-
tunistic fungal genera that is recognized morphologically, we use the first concept and the
nomenclature suggested by Geiser et al. [23].

Currently, the treatment of fungal keratitis is mainly based on the polyene drugs
natamycin (also known as pimaricin) or amphotericin B and the azole antifungal voricona-
zole. All three drugs can be applied topically, whereas evidence suggests that only voricona-
zole should be considered for systemic treatment [25]. Natamycin and amphotericin B
largely have good in vitro activity against Fusarium spp. [26]. Voriconazole is clinically
effective against Fusarium spp., despite variable in vitro activity. It is effective against some
species of Aspergillus [27] and Scedosporium [28]. Local natamycin was associated with
better visual acuity after infection and a reduced number of corneal perforations or the
need to perform therapeutic keratoplasty compared to monotherapy by voriconazole [25].

To assess the epidemiological situation of keratitis caused by filamentous fungi in
Germany and provide representative data on the in vitro antifungal susceptibility of the
causative agents, this study aims to answer the following questions: (1) Which filamentous
fungal species are causing keratitis in Germany? (2) What are the antifungal susceptibility
profiles of these species? (3) Is natamycin effective against all fungal taxa causing eye
infections? (4) Are there differences in the minimum inhibitory concentrations (MICs) of
natamycin among Fusarium species?

To answer these questions, we studied all filamentous fungi from eye infections that
were sent to the National Reference Center for Invasive Fungal Infections (NRZMyk)
between January 2014 and December 2020. Molecular species identification was performed
for all isolates using reliable markers established for the respective genera. Antifungal
susceptibility was tested in vitro according to the EUCAST protocol for all Fusarium strains,
as well as for other more frequent species.

On the basis of molecular species identifications, we showed that the prevalent agents
of eye infections in Germany belong to the genera Fusarium, Aspergillus, Purpureocillium,
Alternaria, and Scedosporium. The antifungal susceptibility profiles revealed that natamycin
is effective for most species but not for Aspergillus flavus or the genus Purpureocillium,
representing common agents of eye infections in Germany. Within the genus Fusarium,
only some F. solani isolates showed MICs > 16 mg/L.

2. Material and Methods
2.1. Isolates

Filamentous fungi isolated from the eye (corneal and conjunctival swabs and scrapings,
aspirates of the anterior chamber or the vitreous body) or from eye-associated materials
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such as contact lenses or cleaning solutions that were sent to the NRZMyk between January
2014 and December 2020 were included in the study of the spectrum of species involved
in eye infections. Due to research activities in this area, the NRZMyk receives a high
number of samples from cases of filamentous keratitis. In case several isolates of the
same species from the same patient were received, only the initial isolate was included.
For antifungal susceptibility testing (AFST), additional strains from other sources were
included for species represented by a small number of eye-related isolates in order to
cover the variability of the respective species. Isolates related to ocular infections, as
well as isolates from other sources that were used for AFST, were deposited in the Jena
Microbial Resource Collection (JMRC). Strain numbers, GenBank accession numbers of the
identifying sequences, sources, and the minimum inhibitory concentrations are given in
Table S1.

2.2. Molecular Species Identification

Genomic DNA was extracted from 2- to 7-day-old cultures grown on 4% malt extract
agar (Difco), as described before [9]. Depending on the genus, different markers were
amplified by PCR for species identification. Table S2 provides the primers used for PCR and
sequencing of each genus, as well as their annealing temperatures. The SeqMan program
v. 11.0.0. (DNASTAR, Lasergene, Madison, WI, USA) was used to construct consensus
sequences. Species were identified by using the BLAST tool in GenBank (Available online:
blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch, accessed on 31 March 2021). Se-
quences were deposited at GenBank (Available online: www.ncbi.nlm.nih.gov/genbank/,
accessed on 31 March 2021) and their accession numbers are listed in Table S1.

2.3. Antifungal Susceptibility Testing

In vitro antifungal susceptibilities of all Fusarium species and all other species that were
isolated at least three times from infected eyes or eye-associated material were performed
by broth microdilution technique following the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) standard methodology [29]. If the number of isolates
from eyes or eye-associated material was below 10 for a species, additional antifungal
susceptibility tests were performed with isolates of this species from other sources for a
better coverage of the variability of the species (Table S1). The following antifungals were
tested: amphotericin B (AMB; European Pharmacopoeia, Strasbourg, France); caspofungin
(CAS; MSD, Rahway, NJ, USA), isavuconazol (ISA; Basilea Pharmaceutica International
Ltd., Basel, Switzerland); itraconazole (ITZ), natamycin (NAT) (Chemicalpoint, Deisen-
hofen, Germany); posaconazole (PCZ; MSD, Rahway, NJ, USA); and voriconazole (VCZ;
Pfizer Inc., Peapack, NJ, USA).

Fungi were grown on MEA for 2 to 7 days at 35 ◦C (Aspergillus), 30 ◦C (Alternaria,
Fusarium, Scedosporium), or room temperature (Cladosporium). Spore suspensions were
counted with a hemocytometer. MIC endpoints were defined as 100% reduction in growth
and were determined visually using a mirror after 48 h of incubation at 35 ◦C, except for
Cladosporium strains, for which the endpoints were determined after 72 h at 30 ◦C due
to their lower maximum temperature of growth. For caspofungin, minimum effective
concentrations (MECs) were determined by reading the microplates with the aid of an
inverted microscope. Aspergillus fumigatus ATCC 204305 and Candida parapsilosis ATCC
22019 served as reference strains. For the calculation of geometric means, high off-scale
MICs/MECs were raised to the next higher concentration.

3. Results
3.1. Spectrum of Filamentous Fungi Causing Eye Infections in Germany

In the 7-year period from 2014 to 2020, the NRZMyk received 242 strains of 66 species
related to eye infections of 234 patients. In six cases, we received two different species from
the same patient, while in a single case we received three different species isolated from the
same patient. Of the 66 species received in total, 35 species were exclusively isolated from
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the eye, 17 species were isolated from the eye and eye-associated material, and 14 species
were isolated from eye-associated material only (Table 1 and Table S1).

Table 1. Spectrum of fungi isolated from infected eyes and associated materials (corneal and conjunctival swabs, aspirates of
the anterior chamber and the vitreous body). For the FSSC, the numbering of the phylogenetic species is given in brackets.

Species No. of Isolates from Eye No. of Isolates from Eye-Associated Materials

Total strain number 169 (100%) 73 (100%)
Alternaria 8 (4.7%) 2 (2.7%)

Alternaria alternata 8 (4.7%) 0
Alternaria hordeicola 0 1 (1.4%)

Alternaria rosae 0 1 (1.4%)
Arthrographis kalrae 2 (1.2%) 0

Aspergillus 22 (13.0%) 4 (5.5%)
Aspergillus cibarius 1 (0.6%) 0
Aspergillus flavus 6 (3.6%) 1 (1.4%)

Aspergillus fumigatus 10 (5.9%) 1 (1.4%)
Aspergillus hiratsukae 1 (0.6%) 0

Aspergillus sydowii 0 1 (1.4%)
Aspergillus terreus 1 (0.6%) 0

Aspergillus tubingensis 2 (1.2%) 1 (1.4%)
Aspergillus udagawae 1 (0.6%) 0

Aureobasidium pullulans 1 (0.6%) 0
Chaetomium anastomosans 1 (0.6%) 0

Cladosporium cladosporioides complex 3 (1.8%) 1 (1.4%)
Coprinellus domesticus 1 (0.6%) 0

Epicoccum mezzettii 1 (0.6%) 0
Fusarium 80 (47.3%) 55 (75.3%)

FDSC 1 (0.6%) 4 (5.5%)
Fusarium dimerum 0 4 (5.5%)

Fusarium sp. 1 (0.6%) 0
FFSC 12 (7.1%) 5 (6.8%)

Fusarium lactis 1 (0.6%) 0
Fusarium musae 2 (1.2%) 1 (1.4%)

Fusarium proliferatum 7 (4.1%) 3 (4.1%)
Fusarium sacchari 1 (0.6%) 0

Fusarium verticillioides 1 (0.6%) 1 (1.4%)
FIESC 1 (0.6%) 0

Fusarium equiseti 1 (0.6%) 0
FOSC 10 (5.9%) 33 (45.2%)
FRSC 0 1 (1.4%)

Fusarium redolens 0 1 (1.4%)
FSSC 56 (33.1%) 12 (16.4%)

Fusarium bostrycoides (FSSC 25 + 35) 3 (1.8%) 0
Fusarium cyanescens (FSSC 27) 1 (0.6%) 0

Fusarium falciforme (FSSC 3 + 4) 5 (3.0%) 0
Fusarium ferrugineum (FSSC 28) 0 1 (1.4%)

Fusarium keratoplasticum (FSSC 2) 13 (7.7%) 1 (1.4%)
Fusarium petroliphilum (FSSC 1) 20 (11.8%) 7 (9.6%)
Fusarium metavorans (FSSC 6) 2 (1.2%) 0

Fusarium pisi (FSSC 11) 0 1 (1.4%)
Fusarium solani (FSSC 5) 11 (6.5%) 3 (4.1%)

Fusarium stercicola (FSSC 44) 0 1 (1.4%)
Fusarium tonkinense (FSSC 9) 1 (0.6%) 1 (1.4%)

Gnomoniopsis idaeicola 0 1 (1.4%)
Lecanicillium 2 (1.2%) 2 (2.7%)

Lecanicillium attenuatum 0 1 (1.4%)
Lecanicillium coprophilum 2 (1.2%) 1 (1.4%)
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Table 1. Cont.

Species No. of Isolates from Eye No. of Isolates from Eye-Associated Materials

Lecythophora hoffmannii 1 (0.6%) 0
Lichtheimia corymbifera 1 (0.6%) 0
Lomentospora prolificans 2 (1.2%) 0

Montagnula opulenta 0 1 (1.4%)
Penicillium 3 (1.8%) 2 (2.7%)

Penicillium chrysogenum 0 1 (1.4%)
Penicillium citrinum 1 (0.6%) 0

Penicillium crustosum 1 (0.6%) 0
Penicillium rubens 1 (0.6%) 1 (1.4%)

Peniophora lycii 1 (0.6%) 0
Peroneutypa scoparia 1 (0.6%) 0

Petriella setifera 1 (0.6%) 0
Plectosphaerella 1 (0.6%) 1 (1.4%)

Plectosphaerella cucumerina 1 (0.6%) 0
Plectosphaerella sp. 0 1 (1.4%)

Pseudopithomyces sp. 1 (0.6%) 0
Purpureocillium 21 (12.4%) 0

Purpureocillium lilacinum 15 (8.9%) 0
Purpureocillium sodanum 6 (3.6%) 0

Rhinocladiella similis 1 (0.6%) 0
Sarocladium 2 (1.2%) 2 (2.7%)

Sarocladium kiliense 1 (0.6%) 1 (1.4%)
Sarocladium spinificis 1 (0.6%) 0
Sarocladium strictum 0 1 (1.4%)

Scedosporium 8 (4.7%) 1 (1.4%)
Scedosporium apiospermum 7 (4.1%) 0

Scedosporium dehoogii 1 (0.6%) 1 (1.4%)
Schizophyllum commune 1 (0.6%) 0
Scopulariopsis brevicaulis 1 (0.6%) 0

Tintelnotia destructans 2 (1.2%) 1 (1.4%)

With few exceptions we were able to identify the strains molecularly by the markers
listed in Table S2. One Fusarium strain (FDSC) could not be identified at the species level
due to a lack of reference sequences in GenBank. For one strain of Plectosphaerella sp. and
one strain of Pseudopithomyces sp., the ITS region was not discriminative enough to identify
the species.

Among the isolates from the eye, Fusarium is the dominant genus (80 strains, 47.3%),
followed by Aspergillus (22 strains, 13.0%), Purpureocillium (21 strains, 12.4%), Alternaria
(8 strains, 4.7%), and Scedosporium (8 strains, 4.7%) (Figure 1). Within the genus Fusarium,
the Fusarium solani species complex (FSSC) is predominant, while the Fusarium fujikuroi
species complex (FFSC) is the second most common and the Fusarium oxysporum species
complex (FOSC) is the third most common (Table 1). With 8 species isolated from the eye,
the FSSC is represented by the highest number of species. The most prevalent FSSC species
are F. petroliphilum, F. keratoplasticum, and F. solani. Predominant species in the remaining
genera are Purpureocillium lilacinum, Aspergillus fumigatus, A. flavus, Alternaria alternata, and
Scedosporium apiospermum. Beside Purpureocillium lilacinum, the recently described sibling
species Purpureocillium sodanum was identified in 6 cases.
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Fusarium is also the dominant genus among isolates from eye-associated materials
(75.3%). Isolates of Aspergillus and Purpureocillum that make up high proportions of iso-
lates from the eye are only rarely or not isolated from eye-associated materials (Table 1,
Figure 1). In Fusarium, most of the species that are commonly isolated from the eye, such
as F. petroliphilum or F. solani, were also isolated from eye-associated materials in higher
proportions than other species, but in numbers that were distinctly lower than those from
the eye. An exception was the FOSC. In this complex, the number of isolates from eye-
associated materials was more than three times higher than the number of isolates from
the eye (Table 1, Figure 1).

3.2. Antifungal Susceptibility Testing Profiles of Eye-Infecting Fungal Species

In total, AFST was performed for 257 strains of the 33 species that are considered to
be eye pathogens, because they were repeatedly isolated from the infected eye. Strains
isolated from eye samples and related materials exhibit similar profiles to strains from
other sources (Table S1). The AFST profiles of the species causing eye infections differ
strongly. None of the tested antifungals is effective against all species studied: species
of the genera Purpureocillium, Lomentospora, Scedosporium, and Scopulariopsis show high
MICs for amphotericin B; Aspergillus flavus and Purpureocillium spp. show high MICs
for natamycin; while Fusarium species, especially of the FSSC, exhibit high MICs for
isavuconazole, itraconazole, posaconazole, voriconazole, and caspofungin (Tables 2 and 3).

Table 2. Antifungal susceptibility of species isolated from infected eyes against amphotericin B (AMB), natamycin (NAT),
and caspofungin (CAS). For the FSSC, the numbering of the phylogenetic species is given in the first bracket.

Species MICs in mg/L

AMB NAT CAS

Range GM M50/M90 Range GM M50/M90 Range GM M50/M90

Alternaria alternata (10) 0.125–1 0.33 0.25/1 2–4 2.46 2/4 ≤0.06–0.5 0.18 0.25/0.25

Aspergillus flavus (12) 1–4 1.89 2/4 >32 50.8 >32/>32 0.03–0.25 0.096 0.125/0.25

Aspergillus fumigatus (18) 0.125–1 0.31 0.25/1 2–4 2.62 2/4 ≤0.06–0.5 0.15 0.125/0.25

Aspergillus tubingensis (12) 0.06–0.5 0.14 0.125/0.25 2–4 2.83 2/4 ≤0.016–0.5 0.12 0.125/0.5

Fusarium

FDSC

F. dimerum (4) 0.5–2 1.19 n.a. 2–4 3.36 n.a. >8 16 n.a.

Fusarium sp. (FDSC) (1) 0.5 n.a. n.a. 2 n.a. n.a. >8 n.a. n.a.
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Table 2. Cont.

Species MICs in mg/L

AMB NAT CAS

Range GM M50/M90 Range GM M50/M90 Range GM M50/M90

FFSC

F. lactis (1) 1 n.a. n.a. 4 n.a. n.a. 8 n.a. n.a.

F. musae (3) 1–4 2 n.a. 2–4 3.17 n.a. >8 16 n.a.

F. proliferatum (10) 1–4 1.62 2/2 4–8 6.96 8/8 8–>8 14.9 >8/>8

F sacchari (2) 1–2 1.41 n.a. 4 4 n.a. >8 16 n.a.

F. verticillioides (2) 1–2 1.41 n.a. 4 4 n.a. >8 16 n.a.

FIESC

F. equiseti (1) 2 n.a. n.a. 4 4 n.a. 0.25 n.a. n.a.

F0SC (43) 0.25–8 1.39 2/2 2–8 4.41 4/8 >8 16 >8/>8

FRSC

F. redolens (1) 1 n.a. n.a. 4 n.a. n.a. >8 n.a. n.a.

FSSC

F. cyanescens (FSSC 27) (1) 0.5 n.a. n.a. 4 n.a. n.a. >8 n.a. n.a.

F. falciforme (FSSC 3+4) (5) 1–2 1.15 n.a. 8 n.a. n.a. >8 n.a. n.a.

F. ferrugineum (FSSC 28) (1) 1 n.a. n.a. 4 n.a. n.a. >8 n.a. n.a.

F. keratoplasticum (FSSC 2) (14) 1–4 2.56 2/4 4–8 5.12 4/8 >8 16 >8/>8

F. metavorans (FSSC 6) (2) 1–8 2.83 n.a. 4–8 5.66 n.a. 8–>8 11.3 n.a.

F. pisi (FSSC 11) (1) 2 n.a. n.a. 8 n.a. n.a. >8 n.a. n.a.

F. petroliphilum (FSSC 1) (27) 0.5–8 1.29 2/2 2–8 5.04 4/8 8–>8 15.5 >8/>8

F. solani (FSSC 5) (21) 0.5–8 1.39 1/2 4–32 9.59 8/16 >8 16 >8/>8

F. bostrycoides(FSSC 25+35) (3) 1 1 n.a. 2–4 2.83 n.a. >8 16 n.a.

F. stercicola (FSSC 44) (1) 2 n.a. n.a. 4 n.a. n.a. >8 n.a. n.a.

F. tonkinense (FSSC 9) (2) 2–4 2.83 n.a. 48 5.66 n.a. >8 16 n.a.

Purpureocillium lilacinum (15) >16 32 >8/>8 >32 64 >32/>32 0.125–>8 0.87 1/>8

Purpureocillium sodanum (7) >16 32 n.a. >32 64 n.a. 0.25–>8 0.91 n.a.

Lomentospora prolificans (11) 4–>16 26.5 >8/>8 2–8 5.84 8/8 1–8 2.83 4/8

Scedosporium apiospermum (17) 1–>16 6.26 8/>8 2–4 2.55 2/4 0.125–2 0.82 1/1

Scedosporium aurantiacum (1) >16 n.a. n.a. 2 n.a. n.a. 4 n.a. n.a.

Scedosporium dehoogii (4) 8–>16 13.5 n.a. 2 2 n.a. 1–>8 5.66 n.a.

Scopulariopsis brevicaulis (2) 8–>16 16 n.a. 4 4 n.a. 0.5 0.5 n.a.

Tintelnotia destructans (3) 0.5–1 0.63 n.a. 1–2 1.41 n.a. ≤0.016–0.25 0.06 n.a.

Amphotericin B and natamycin are both polyene antifungals. However, high MICs for
amphotericin B did not necessarily correspond to high natamycin MICs in all taxa. Species
of Scedosporium, Lomentospora prolificans, and Scopulariopsis brevicaulis have high MICs for
amphotericin B but low MICs for natamycin (Table 2). In contrast, Purpureocillium spp.
show high MICs for amphotericin B and for natamycin (Table 2). While this may suggest
differential activity of the two agents, it remains unclear how this translates into clinical
treatment response.
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Table 3. Antifungal susceptibility of species isolated from infected eyes against isavuconazole (ISA), itraconazole (ITZ),
posaconazole (PCZ), and voriconazole (VCZ). For the FSSC, the numbering of the phylogenetic species is given in the
first bracket.

Species MICs in mg/L

ISA ITZ PCZ VCZ

Range GM M50/M90 Range GM M50/M90 Range GM M50/M90 Range GM M50/M90

A. alternata (10) 0.5–16 3.03 4/8 0.25–16 0.93 0.5/1 ≤0.016–0.5 0.10 0.125/0.5 0.5–4 1.74 2/2

A. flavus (12) 0.5–2 0.75 0.5/2 0.25–2 0.47 0.5/1 0.125–0.5 0.177 0.125/0.5 0.5–1 0.59 0.5/1

A. fumigatus (18) 0.125–8 0.71 0.5/8 0.125–>8 0.68 0.5/>8 ≤0.016–2 0.06 0.06/0.5 0.25–4 0.58 0.5/2

A. tubingensis (12) 1–8 2.92 4/4 1–>8 4 2/>8 0.06–1 0.26 0.25/0.5 0.5–2 1.19 1/2

Fusarium

FDSC

F. dimerum (4) >8 16 n.a. >8 16 n.a. >8 16 n.a. 4–8 6.73 n.a.

Fusarium sp. (FDSC) (1) 8 n.a. n.a. >8 n.a. n.a. >8 n.a. n.a. 4 n.a. n.a.

FFSC

F. lactis (1) >8 n.a. n.a. >8 n.a. n.a. >8 n.a. n.a. 8 n.a. n.a.

F. musae (3) 4 4 n.a. >8 16 n.a. 1–2 1.26 n.a. 2–4 2.52 n.a.

F. proliferatum (10) >8 16 >8/>8 >8 16 n.a. 4–>8 6.06 >8/>8 4–8 5.66 4/8

F sacchari (2) 2–4 2.83 n.a. >8 11 n.a. 0.5 0.5 n.a. 2 2 n.a.

F. verticillioides (2) 2–4 2.83 n.a. 2–>8 5.7 n.a. 0.25–1 0.5 n.a. 1–2 1.41 n.a.

FIESC

F. equiseti (1) 2 n.a. n.a. 1 n.a. n.a. 0.5 n.a. n.a. 1 n.a. n.a.

F0SC (43) 4–>8 13.0 >8/>8 >8 16 >8/>8 1–>8 12.77 >8/>8 2–>8 4.78 4/>8

FRSC

F. redolens (1) >8 n.a. n.a. >8 n.a. n.a. >8 n.a. 4 n.a. n.a.

FSSC

F. cyanescens (FSSC 27) (1) >8 n.a. n.a. >8 n.a. n.a. >8 n.a. n.a. >8 n.a. n.a.

F. falciforme (FSSC 3+4) (5) >8 16 n.a. >8 16 >8/>8 >8 16 n.a. >8 16 n.a.

F. ferrugineum (FSSC 28) (1) >8 n.a. n.a. >8 n.a. n.a. >8 n.a. n.a. 4 n.a. n.a.

F. keratoplasticum
(FSSC 2) (14) >8 16 >8/>8 >8 16 >8/>8 >8 16 >8/>8 4–>8 12.50 >8/>8

F. metavorans (FSSC 6) (2) 8–>8 11.3 n.a. 8–>8 11 n.a. 8–>8 11.3 n.a. 4–8 5.66 n.a.

F. pisi (FSSC 11) (1) >8 n.a n.a. >8 n.a n.a. >8 n.a n.a. >8 n.a n.a.

F. petroliphilum (FSSC 1) (27) >8 16 >8/>8 >8 16 >8/>8 >8 16 >8/>8 4–>8 14.4 >8/>8

F. solani (FSSC 5) (21) >8 16 >8/>8 >8 16 >8/>8 >8 15.5 >8/>8 4–>8 12.7 >8/>8

F. bostrycoides (FSSC 25+35)
(3) >8 16 n.a. >8 16 n.a. >8 16 n.a. 1–>8 4 n.a.

F. stercicola (FSSC 44) (1) >8 n.a n.a. >8 n.a n.a. >8 n.a n.a. >8 n.a n.a.

F. tonkinense (FSSC 9) (2) >8 16 n.a. >8 16 n.a. >8 16 n.a. >8 16 n.a.

P. lilacinum (15) 0.06–2 0.34 0.5/1 1–>8 5.79 >8/>8 0.06–1 0.16 0.125/0.5 0.125–0.5 0.24 0.25/0.5

P. sodanum (7) 0.125–1 0.35 n.a. 2–>8 ### n.a. 0.06–0.5 0.15 n.a. 0.125–0.5 0.25 n.a.

L. prolificans (11) 4–>8 12.40 >8/>8 >8 16 >8/>8 >8 16 >8/>8 4–>8 13.2 >8/>8

S. apiospermum (17) >8 11.60 >8/>8 2–8 12 n.a. 1–>8 5.77 4/>8 0.5–1 0.75 1/1

S. aurantiacum (1) 8 n.a n.a. >8 n.a n.a. 2 n.a n.a 0.5 n.a n.a

S. dehoogii (4) 2–8 4 n.a. 1–>8 2 n.a. 0.25–2 0.71 n.a 0.25–0.5 0.42 n.a

Scopulariopsis brevicaulis (2) >8 16.00 n.a. >8 16 n.a. >8 16 n.a >8 16 n.a

Tintelnotia destructans (3) 4–8 6.35 n.a. 0.25–0.5 0.40 n.a. 0.06–0.125 0.10 n.a 0.5–1 0.79 n.a

Within the genus Fusarium, the studied species complexes did not differ regarding their
susceptibility to amphotericin B, natamycin, itraconazole, and caspofungin (Tables 2 and 3).
In vitro, amphotericin B was the most effective drug. The MICs for natamycin ranged
between 2 and 8 mg/L, except for F. solani, with natamycin MICs of up to 32 mg/L. Species
of the FSSC had high MICs for the azoles tested (ISA, ITZ, PCZ, VCZ), with the lowest MICs
found for voriconazole. Slightly lower MICs for voriconazole were found in the FOSC. The
species of FFSC possessed specific profiles—F. musae, F. sacchari, and F. verticillioides were
more susceptible to azoles, especially posaconazole and voriconazole, while F. proliferatum
and F. lactis had MICs similar to the FSSC (Tables 2 and 3).

Purpureocillium lilacinum and P. sodanum, as well as Tintelnotia destructans, had char-
acteristic AFS profiles for azoles. The two Purpureocillium species showed high MICs



J. Fungi 2021, 7, 511 9 of 14

for itraconazole but low MICs for isavuconazole, posaconazole, and voriconazole, while
Tintelnotia destructans exhibited high MICs for isavuconazole but low MICs for itraconazole,
posaconazole, and voriconazole.

All three studied species of Scedosporium showed low MICs for voriconazole, in con-
trast to the closely related Lomentospora prolificans, which showed high MICs for voricona-
zole as well (Tables 2 and 3).

4. Discussion

This study presents the first spectrum of filamentous fungi isolated from infected eyes
that are molecularly identified by the use of the ID markers established in the respective
genera. Sample submission to the NRZMyk is non-systematic and likely biased towards
clinically relevant isolates and isolates that are not easily identified.

Fifty-two species were isolated from the eye and eye-associated materials, while 14
species were restricted to eye-associated materials only. Chaetomium anastomosans, Coprinel-
lus domesticus (syn. Hormographiella verticillata), Eppicoccum mezzettii, Fusarium stercicola,
Lecanicillium coprophilum, Penicillium crustosum, Petriella setifera, Purpureocillium sodanum,
Rhinocladiella similis, and Sarocladium spinificis have not been reported to cause eye infections.
Chaetomium anastomosans (sibling species of C. globosum) [30] and Purpureocillium sodanum
(sibling species of P. lilacinum) [31] are recently described species, cases of which might
have previously been assigned to their sibling species. Other species such as Aspergillus
cibarius [32], A. udagawae [33], Fusarium bostrycoides (as FSSC 25), F. tonkinense (as FSSC
9) [9], Penicillium rubens [34], and Scedosporium dehoogii [35] have been reported only once
before in connection with eye infections.

Among all filamentous fungi associated with eye infections, Fusarium is the dominat-
ing genus, at nearly 47.3%. In the genus Fusarium, species of the FSSC (F. petroliphilum, F.
keratoplasticum, and F. solani) are most frequently isolated from the infected eye, in agree-
ment with former studies [9,36–39]. Studies in France and the Netherlands found higher
proportions of the FFSC (47%) and the FOSC (41%) [40] or the FOSC (24.7%) [10], respec-
tively. FOSC from contact lenses and their cleaning solution suggests that this species is a
frequent contaminant of eye-associated materials, which is supported by a previous case
study [9]. Some studies have shown a lower pathogenic potential of the FOSC compared
to the FSSC [41–43]. On the other hand, this observation could mean that the cultivation of
the FOSC from infected tissue fails more often, e.g., because its viability is more affected by
antifungal treatment.

Compared to species of Aspergillus (5.5%) and Purpureocillium (0%), Fusarium spp.
were more frequently isolated from contact lenses or their cleaning solutions (75.3% in total:
FOSC 45.2%, remaining Fusarium species 30.1%; Table 1, Figure 1). One reason could be that
Aspergillus spp. and Purpureocillium spp. grow better from eye samples, making isolations
from eye-associated materials unnecessary. Another reason could be that the antimicrobial
agents of the cleaning solutions are less effective against Fusarium species; thus, the reduced
activity of alexidine in contact lens cleaning solutions after heating caused a worldwide
outbreak of Fusarium keratitis, while cases of keratitis caused by other fungal genera did
not increase markedly [44,45].

Other important eye-infecting genera are Aspergillus (13.0%), Purpureocillium (12.4%),
Alternaria (4.7%), and Scedosporium (4.7%). Strikingly, dematiaceous genera such as Al-
ternaria and Cladosporium contribute to a smaller extent compared to studies of tropical
and subtropical regions with more intensive UV radiation [2,12,36,46–50]. Dematiaceous
genera such as Bipolaris and Curvularia, which are important eye pathogens in the tropics
and subtropics, were not sent to the NRZMyk.

The high proportion of Purpureocillium species in eye infections in Germany is remark-
able. Purpureocillium lilacinum used to be named Paecilomyces lilacinus. Paecilomyces spp.
are mentioned as causative agents in several studies of fungal keratitis [46,48,49], but the
percentage of the Purpureocillium species included is unknown. In the Assam region of
North India, Purpureocillium lilacinum is causative in 1.6% of fungal keratitis cases [51],
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while in the USA it accounts for 4.4% [52]. One of the major risk factors for infections by
P. lilacinum is the use of contact lenses [52,53], which might explain its high proportion in
Germany, where wearing contact lenses is popular [54]. Purpureocillium lilacinum and its
sibling species P. sodanum [31] are morphologically similar but their ITS sequences differ
only by a single base pair. As a consequence, it is more likely that P. sodanum has been
overlooked than that it is emerging.

The important keratitis-causing fungi in Germany show diverse antifungal suscepti-
bility profiles and include taxa with high MICs for all antifungals tested. Amphotericin
B was the antifungal agent with the lowest MICs for Fusarium spp. and with low MICs
for several other species (Tables 2 and 3); however, eye pathogens such as Purpureocillium
spp., Lomentospora prolificans, Scedosporium spp., and Scopulariopsis brevicaulis exhibit high
amphotericin B MICs, which is in agreement with previous studies [28,55–59]. Natamycin
MICs are usually higher compared to amphotericin B MICs, but isolates with natamycin
MICs of ≤16 mg/L are considered susceptible because this concentration is reached in
the eye during therapy [60,61]. The ineffectiveness of natamycin for Aspergillus flavus and
Purpureocillium spp. has been reported previously [52,55].

Some of the Fusarium solani strains tested in our study had reduced susceptibility for
natamycin (MIC > 16 mg/L). Although members of the FSSC exhibit similar AFS profiles,
we found MIC > 16 mg/L only for this species of the FSSC. In a Dutch study, MICs of 16
mg/L for some strains of F. solani and F. falciforme were observed [62]. An Indian study
found natamycin MICs for the FSSC ranging between 8–128 mg/L [55]. To date, we do not
know if these results of in vitro tests have an impact on the outcome of F. solani infections,
but in keratitis cases caused by this species that do not respond to natamycin, a switch of
the therapeutic agent should be considered.

The genera included in our study showed different susceptibilities concerning the
polyenes—Purpureocillium spp. were not susceptible to amphotericin B or natamycin, As-
pergillus flavus showed reduced MICs for amphotericin B but high MICs for natamycin and
Scedosporium spp., Lomentospora prolificans and Scopulariopsis brevicaulis exhibited normal
MICs for natamycin but high MICs for amphotericin B. These results are in concordance
with the finding that natamycin has a different mode of action. As all polyene drugs,
natamycin binds to ergosterol; however, in contrast to amphotericin B, it does not change
the permeability of the plasma membrane, resulting in the leakage of essential components;
rather, it impairs the membrane fusion [63,64].

The susceptibility levels for azoles determined in this study show differences among
the species complexes that are in agreement with former studies [65–67], with high MICs
for all azoles, including voriconazole in the FSSC; slightly lower MICs for voriconazole in
the FOSC; and lower MICs for isavuconazole, posaconazole and voriconazole for most of
the FFSC species. One exception to this is Fusarium proliferatum, which also had high MICs
for isavuconazole, posaconazole, and voriconazole, although it belongs to the FFSC. By
using the CLSI protocol, lower posaconazole MICs were found for this species [26].

In conclusion, in Germany the predominant filamentous fungi infecting eyes belong to
the genera Fusarium, Aspergillus, Purpureocillium, Alternaria, and Scedosporium. Differences
in their AFS profiles, which include high MICs for all important antifungals in keratitis
treatment (natamycin, amphotericin B, voriconazole), favor combined therapy and under-
line the importance of the identification of the aetiological agent. Some strains of Fusarium
solani exhibited natamycin MICs > 16 mg/L. Although amphotericin B and natamycin
are both polyenes, the levels of MIC values of amphotericin B of a certain species are not
predictive of MIC values of natamycin, and vice versa.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7070511/s1, Table S1: Strains studied. their strain numbers. sources. GenBank accession
numbers. and antifungal susceptibilities for amphotericin B (AMB). natamycin (NAT). isavuconazole
(ISA). itraconazole (ITZ). posaconazole (PCZ). voriconazole (VCZ) and caspofungin (CAS). Strains
from the same patient are marked. Table S2: Markers amplified for the identification of eye infecting
filamentous fungi, primers and annealing temperatures used for PCR.
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