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Abstract
The present thesis deals with optimisation problems with sparsity terms, either in the constraints which
lead to cardinality-constrained problems or in the objective function which in turn lead to sparse optim-
isation problems. One of the primary aims of this work is to extend the so-called sequential optimality
conditions to these two classes of problems. In recent years sequential optimality conditions have be-
come increasingly popular in the realm of standard nonlinear programming. In contrast to the more
well-known Karush-Kuhn-Tucker condition, they are genuine optimality conditions in the sense that
every local minimiser satis�es these conditions without any further assumption. Lately they have also
been extended to mathematical programmes with complementarity constraints. At around the same
time it was also shown that optimisation problems with sparsity terms can be reformulated into prob-
lems which possess similar structures to mathematical programmes with complementarity constraints.
These recent developments have become the impetus of the present work. But rather than working
with the aforementioned reformulations which involve an arti�cal variable we shall �rst directly look
at the problems themselves and derive sequential optimality conditions which are independent of any
arti�cial variable. Afterwards we shall derive the weakest constraint quali�cations associated with
these conditions which relate them to the Karush-Kuhn-Tucker-type conditions. Another equally im-
portant aim of this work is to then consider the practicability of the derived sequential optimality con-
ditions. The previously mentioned reformulations open up the possibilities to adapt methods which
have been proven successful to handle mathematical programmes with complementarity constraints.
We will show that the safeguarded augmented Lagrangian method and some regularisation methods
may generate a point satisfying the derived conditions.

Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit Optimierungsproblemen mit dünnbesetzten Termen, und
zwar entweder in der Restriktionsmenge, was zu kardinalitätsrestringierten Problemen führen, oder
in der Zielfunktion, was zu Optimierungsproblemen mit dünnbesetzten Lösungen führen. Die Herlei-
tung der sogenannten sequentiellen Optimalitätsbedingungen für diese Problemklassen ist eines der
Hauptziele dieser Arbeit. Im Bereich der nichtlinearen Optimierung gibt es in jüngster Zeit immer
mehr Interesse an diesen Bedingungen. Im Gegensatz zu der mehr bekannten Karush-Kuhn-Tucker Be-
dingung sind diese Bedingungen echte Optimalitätsbedingungen. Sie sind also in jedem lokalen Mini-
mum ohne weitere Voraussetzung erfüllt. Vor Kurzem wurden solche Bedingungen auch für mathema-
tische Programme mit Komplementaritätsbedingungen hergeleitet. Zum gleichen Zeitpunkt wurde es
auch gezeigt, dass Optimierungsproblemen mit dünnbesetzten Termen sich als Problemen, die ähnliche
Strukturen wie mathematische Programme mit Komplementaritätsbedingungen besitzen, umformulie-
ren lassen. Diese jüngsten Entwicklungen motivieren die vorliegende Arbeit. Hier werden wir zunächst
die ursprunglichen Problemen direkt betrachten anstatt mit den Umformulierungen, die eine künstli-
che Variable enthalten, zu arbeiten. Dies ermöglicht uns, um Optimalitätsbedingungen, die von künst-
lichen Variablen unabhängig sind, zu gewinnen. Danach werden wir die entsprechenden schwächsten
Constraint Quali�kationen, die diese Bedingungen mit Karush-Kuhn-Tucker-ähnlichen Bedingungen
verknüpfen, herleiten. Als ein weiteres Hauptziel der Arbeit werden wir dann untersuchen, ob die
gerade hergeleiteten Bedingungen eine praktische Bedeutung haben. Die vor Kurzem eingeführten
Umformulierungen bieten die Möglichkeiten, um die für mathematische Programme mit Komplemen-
taritätsbedingungen gut funktionierenden Methoden hier auch anzuwenden. Wir werden zeigen, dass
das safeguarded augmented Lagrangian Method und einige Regularisierungsmethoden theoretisch in
der Lage sind, um einen Punkt, der den hergeleiteten Bedingungen genügt, zu generieren.
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Introduction

Let n,m, p, s ∈ ℕ, � > 0, f ∈ C1(ℝn, ℝ), g ∈ C1(ℝn, ℝm), and ℎ ∈ C1(ℝn, ℝp). We consider optimisation
problems of the form

min
x

f (x) s.t. g(x) ≤ 0, ℎ(x) = 0, ‖x‖0 ≤ s (1.1)

and of the form
min
x

f (x) + �‖x‖0 s.t. g(x) ≤ 0, ℎ(x) = 0, (1.2)

where the mapping x ↦ ‖x‖0 denotes the number of nonzero components of a given vector x ∈ ℝ
n.

These problems are respectively known in the literature as cardinality constrained optimisation prob-
lems, CC for short, and as sparse optimisation problems, SP for short. Throughout this thesis we assume
that s < n since the cardinality constraint would be redundant otherwise.

Motivated by the desire to obtain sparse solutions in a number of application areas such as portfolio
optimisation [13, 14, 18] and statistical regression [13, 28], these two classes of problems have received
an increasing amount of interests in recent years. Unfortunately, the presence of the mapping ‖ ⋅ ‖0,
which, in spite of the notation used here, does not de�ne a norm and is not even continuous, makes
these problems di�cult to solve.

One way to attack (1.1) is to reformulate them as mixed-integer problems. This reformulation is
the backbone of many algorithms which employ ideas from discrete optimisation, see for example
[13, 14, 45, 48, 55, 56]. Nevertheless, even testing the feasibility of (1.1) is known to be NP-complete
[13].

On the other hand, a popular way to tackle (1.2) is to replace ‖ ⋅ ‖0 by the sparsity promoting l1-norm
‖ ⋅ ‖1 which is obviously convex and continuous. This leads us to the following problem

min
x

f (x) + �‖x‖1 s.t. g(x) ≤ 0, ℎ(x) = 0. (1.3)

However, a glaring problem with such approach is of course that the solution set of (1.3) may not
coincide with that of (1.2). As an example let us consider the following problem

min

x∈ℝ
(
x −

1

2
)

2

+

1

5

‖x‖0. (1.4)

It is easy to see that 1

2
is the only global minimiser of this problem. Furthermore, this problem also

admits a local minimiser in 0. Now let us take a look at the corresponding l1-minimisation problem

min

x∈ℝ
(
x −

1

2
)

2

+

1

5

|x|. (1.5)

This problem is clearly convex and hence, every local minimiser is also a global minimiser. Now it is
easy to verify that 2

5
is the only solution of (1.5). On the other hand, as we have already shown, 2

5
is not

even a local minimiser of (1.4). This illustrates the need to search for another approach to solve (1.2).
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A new approach to overcome the di�culty posed by the mapping ‖ ⋅ ‖0 was introduced very recently
in [21], see also [30] for a similar approach. To simplify the notation we de�ne

X ∶= {x ∈ ℝ
n
| g(x) ≤ 0, ℎ(x) = 0} . (1.6)

Throughout this thesis we shall assume that X ≠ ∅. Now suppose that x ∈ ℝ
n. We de�ne

I±(x) ∶= {i ∈ {1, … , n} ∣ xi ≠ 0} and I0(x) ∶= {i ∈ {1, … , n} ∣ xi = 0}.

Clearly we have {1, … , n} = I±(x) ∪̇ I0(x), where ∪̇ denotes union of two disjoint sets. Observe that

‖x‖
0
= card(I±(x)) = ∑

i∈I±(x)

1 = ∑

i∈I±(x)

(1 − 0) + ∑

i∈I0(x)

(1 − 1).

Thus, by de�ning y ∈ ℝ
n such that

yi ∶=

{

0 if i ∈ I±(x),
1 if i ∈ I0(x)

we obtain
‖x‖

0
= ∑

i∈I±(x)

(1 − yi) + ∑

i∈I0(x)

(1 − yi) =

n

∑

i=1

(1 − yi) = n − e
T
y,

where e ∶= (1, … , 1)
T
∈ ℝ

n. This leads to the following mixed-integer reformulations

min
x,y

f (x) s.t. x ∈ X , n − e
T
y ≤ s, y ∈ {0, 1}

n
, x◦y = 0 (1.7)

for (1.1) and
min
x,y

f (x) + � (n − e
T
y) s.t. x ∈ X , y ∈ {0, 1}

n
, x◦y = 0 (1.8)

for (1.2), where ◦ denotes the Hadamard product. By further relaxing the binary constraint y ∈ {0, 1}n
we obtain

min
x,y

f (x) s.t. x ∈ X , n − e
T
y ≤ s, y ≤ e, x◦y = 0 (1.9)

for (1.1) as well as
min
x,y

f (x) + � (n − e
T
y) s.t. x ∈ X , y ≤ e, x◦y = 0. (1.10)

for (1.2). Note that (1.9) slightly di�ers from the relaxed reformulation in [21] since we drop the con-
straint y ≥ 0 here which leads to a larger feasible set. Nevertheless, it is easy to see that all results
obtained in Section 3 of [21] are applicable to our reformulation here as well. Similarly, (1.10) also
slightly di�ers from the half complementarity reformulation of (1.2) considered in [30] as we drop the
constraint y ≥ 0.

The relaxed reformulations above can be seen as special cases of mathematical programmes with
switching constraints [47], MPSC for short, which in turn are closely related to mathematical pro-
grammes with complementarity constraints, MPCC for short. Hence, it is tempting to simply apply
the results known for MPSC and MPCC to derive optimality conditions for (1.9) and (1.10). However,
the thus derived conditions will then depend on the auxiliary variable y. Moreover, as noted in [23],
some of the results known for MPCC are not readily applicable to (1.9).

In this thesis we shall �rst consider (1.1) and (1.2) directly and derive �rst order optimality con-
ditions for the problems. Our derivation is based on the exterior penalty technique, cf. [12, 15]. In
order to handle the problems numerically, we will then turn our attention to the relaxed reformula-
tions (1.9) and (1.10). Let us now elaborate more on the outline and the contributions of this thesis. In
Section 3.1 we shall derive two �rst order sequential optimality conditions for (1.1). These conditions
are motivated by their nonlinear programming counterparts. Subsequently we will introduce the weak-
est strict constraint quali�cations associated with them. We shall then consider algorithms applied to
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(1.9) which can theoretically generate a point satisfying at least one of the aforementioned sequential
optimality conditions, namely the augmented Lagrangian method [15], the Kanzow-Schwartz regular-
isation method [40], and the Ste�ensen-Ulbrich regularisation method [54]. Afterwards we shall turn
our attention to (1.2). We will �rst establish the relationships between (1.1) and (1.2). Then we will
derive two �rst order sequential optimality conditions for (1.2) in Section 4.1. Subsequently we will
also introduce the weakest strict constraint quali�cations associated with them. Afterwards we shall
establish the equivalence between the minima of (1.2) and (1.10). Lastly we will consider algorithms
applied to (1.10) which can theoretically generate a point satisfying at least one of the conditions in-
troduced in Section 4.1. Some results in this thesis have found their way into the following preprints
[42, 43].
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Background Material

In this chapter we shall gather some relevant tools from the theory of smooth constrained optimisation
and from variational analysis. For a more comprehensive treatment of these two subjects we refer the
readers to [15, 29, 33, 52]. Note that throughout this thesis we shall denote by ei the i-th unit vector
and by ℝ+ ∶= [0,∞).

Consider the standard nonlinear optimisation problems, NLP for short,

min
x

f (x) s.t. x ∈ X . (2.1)

For a feasible point x̂ ∈ X we de�ne

Ig(x̂) ∶= {i ∈ {1, … ,m} | gi(x̂) = 0} .

De�nition 2.1. Let x̂ ∈ X . We say that x̂ is a complementary approximately Karush-Kuhn-Tucker
(CAKKT) point i� there exist sequences {xk} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, and {�k} ⊆ ℝ

p such that

(a) {xk} → x̂ ,

(b)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
)

}

→ 0,

(c)

{
m

∑

i=1

|
|
|
�
k

i
gi(x

k
)
|
|
|
+

p

∑

i=1

|
|
|
�
k

i
ℎi(x

k
)
|
|
|

}

→ 0.

The CAKKT condition for (2.1) was introduced in [5]. The following theorem asserts that this
condition is a genuine �rst order necessary optimality condition for (2.1).

Theorem 2.2 ([5, Theorem 3.3]). Let x̂ ∈ X be a local minimiser of (2.1). Then x̂ is a CAKKT point.

It was shown in [5] that the CAKKT condition implies another sequential optimality conditionwhose
de�nition we shall recall next.

De�nition 2.3. Let x̂ ∈ X . We say that x̂ is an approximately Karush-Kuhn-Tucker (AKKT) point i�
there exist sequences {xk} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, and {�k} ⊆ ℝ

p such that

(a) {xk} → x̂ ,

(b)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
)

}

→ 0,

(c) ∀i ∉ Ig(x̂) ∶ �
k

i
= 0 ∀k ∈ ℕ.

13
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The AKKT condition for (2.1) was introduced in [6, 15, 50], see also [9, 51] for similar concepts in
the context of MPCC. Since the CAKKT condition implies the AKKT condition, then by Theorem 2.2 the
AKKT condition is also a genuine �rst order necessary optimality condition for (2.1). This is in contrast
to the more well-known Karush-Kuhn-Tucker (KKT) condition whose de�nition we shall recall next.

De�nition 2.4. Let x̂ ∈ X . We say that x̂ is a Karush-Kuhn-Tucker (KKT) point i� there exist multipliers
� ∈ ℝ

m

+
and � ∈ ℝ

p such that

(a) 0 = ∇f (x̂) +
m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂),

(b) ∀i ∉ Ig(x̂) ∶ �i = 0.

Example 2.5 ([15, page 18]). Consider the following problem

min

x∈ℝ
n

x1 s.t. ‖x‖
2

2
= 0.

Obviously 0 is the only feasible point of the problem. Hence, it is the unique global minimiser. However,
the KKT condition clearly does not hold at 0. On the other hand, by Theorem 2.2 it is a CAKKT point and
therefore, also an AKKT point.

In order for the KKT condition to be a �rst order necessary optimality condition for (2.1) a so-called
constraint quali�cation (CQ) is needed. Let us now collect some of the known CQs for (2.1).

De�nition 2.6. Let x̂ ∈ X . We say that the linear independence constraint quali�cation (LICQ) holds
at x̂ i� the gradients

∇gi(x̂) (i ∈ Ig(x̂)), ∇ℎi(x̂) (i ∈ {1, … , p})

are linearly independent.

A weaker CQ than LICQ was introduced by Mangasarian and Fromovitz in [46].

De�nition 2.7. Let I and J be two �nite index sets. A set of vectors ai ∈ ℝ
n for i ∈ I and bi ∈ ℝ

n for i ∈ J
is called positive-linearly dependent i�

∃(�i ≥ 0 (i ∈ I ), �i ∈ ℝ (i ∈ J )) ≠ 0 ∶ ∑

i∈I

�ia
i
+∑

i∈J

�ib
i
= 0.

Otherwise these vectors are called positive-linearly independent.

De�nition 2.8. Let x̂ ∈ X . We say that the Mangasarian-Fromovitz constraint quali�cation (MFCQ)
holds at x̂ i� the gradients

∇gi(x̂) (i ∈ Ig(x̂)), ∇ℎi(x̂) (i ∈ {1, … , p})

are positive-linearly independent.

The following condition was �rst introduced by Qi and Wei in [50] and has since been shown to be
a CQ weaker than MFCQ in [3].

De�nition 2.9. Let x̂ ∈ X . We say that the constant positive linear dependence constraint quali�cation
(CPLD) holds at x̂ i� for every subsets I1 ⊆ Ig(x̂) and I2 ⊆ {1, … , p} such that the gradients

∇gi(x) (i ∈ I1), ∇ℎi(x) (i ∈ I2)

are positive-linearly dependent in x = x̂ , they are linearly dependent for all x in a neighbourhood of x̂ .
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Very recently a new CQ weaker than CPLD that is closely related to the AKKT condition was
introduced in [7, 15]. This CQ was previously called the U-condition [15] as well as the cone-continuity
property [7] and has since been renamed as AKKT-regularity [8]. To de�ne it precisely we will need the
following tool from variational analysis.

De�nition 2.10. Let l, q ∈ ℕ, Γ ∶ ℝ
l ⇒ ℝ

q be a multifunction and ẑ ∈ ℝ
l . The Painlevè-Kuratowski

outer/upper limit of Γ(z) as z → ẑ is de�ned as

lim sup

z→ẑ

Γ(z) ∶= {ŵ ∈ ℝ
q
| ∃{(z

k
, w

k
)} → (ẑ, ŵ) with wk

∈ Γ(z
k
) ∀k ∈ ℕ}.

Now let x̂ ∈ X . We de�ne for each x ∈ ℝ
n the following cone

K
x̂
(x) ∶=

{
m

∑

i=1

�i∇gi(x) +

p

∑

i=1

�i∇ℎi(x)

|
|
|
|
|

(�, �) ∈ ℝ
m

+
× ℝ

p
,

�i = 0 ∀i ∉ Ig(x̂)

}

. (2.2)

De�nition 2.11. A feasible point x̂ ∈ X for (2.1) is said to satisfy the AKKT-regularity condition i�

lim sup

x→x̂

K
x̂
(x) ⊆ K

x̂
(x̂).

The following theorem asserts that the AKKT-regularity condition is the weakest condition on the
constraints which guarantees that AKKT implies KKT, cf. [7, Theorem 3.2].

Theorem 2.12. Let x̂ ∈ X . Then x̂ is AKKT-regular i� for every continuously di�erentiable objective
function f such that AKKT holds at x̂ , the KKT condition also holds at x̂ .

Following [7], we then say that the AKKT-regularity condition is the weakest strict constraint qual-
i�cation associated with the AKKT condition.

In [8], the weakest strict constraint quali�cation associated with the CAKKT condition was intro-
duced. Let us now recall its de�nition. We de�ne for each x ∈ ℝ

n and for each r ∈ ℝ+ the following
cone

K
C
((x, r)) ∶=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

m

∑

i=1

�i∇gi(x) +

p

∑

i=1

�i∇ℎi(x)

|
|
|
|
|
|
|

(�, �) ∈ ℝ
m

+
× ℝ

p
,

m

∑

i=1

|�igi(x)| +

p

∑

i=1

|�iℎi(x)| ≤ r

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

. (2.3)

De�nition 2.13. A feasible point x̂ ∈ X for (2.1) is said to satisfy the CAKKT-regularity condition i�

lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⊆ K

C
((x̂ , 0)) = K

x̂
(x̂).

Theorem 2.14 ([8, Theorem 2]). Let x̂ ∈ X . Then x̂ is CAKKT-regular i� for every continuously di�er-
entiable objective function f such that CAKKT holds at x̂ , the KKT condition also holds at x̂ .

Two of the weakest CQs for (2.1) are the Abadie CQ (ACQ) and the Guignard CQ (GCQ) which were
introduced in [1] and [34] respectively. Let us recall their de�nitions.

De�nition 2.15. Let A ⊆ ℝ
n be a nonempty set and x̂ ∈ A.

• The polar cone of A is de�ned as A◦
∶=

{

y ∈ ℝ
n |
|
y
T
x ≤ 0 ∀x ∈ A

}

.

• The Bouligand tangent cone to A at x̂ is given by

A(x̂) ∶=
{

d ∈ ℝ
n

|
|
|
|
|

∃{x
k
} ⊆ A, {tk} ⊆ ℝ+ ∶ {x

k
} → x̂, {tk} ↓ 0,

{

x
k
− x̂

tk

}

→ d

}

.
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• The Fréchet normal cone to A at x̂ is given by  F

A
(x̂) ∶= TA(x̂)

◦
. In some literature [29, 49], this

cone is also called the Bouligand normal cone.

De�nition 2.16. Let x̂ ∈ X . The linearisation cone of X at x̂ is given by

LX (x̂) ∶=

{

d ∈ ℝ
n |
|
|
∇gi(x̂)

T
d ≤ 0 ∀i ∈ Ig(x̂), ∇ℎi(x̂)

T
d = 0 ∀i ∈ {1, … , p}

}

.

De�nition 2.17. Let x̂ ∈ X . We say that the

(a) Abadie constraint quali�cation (ACQ) holds at x̂ i� X (x̂) = LX (x̂),

(b) Guignard constraint quali�cation (GCQ) holds at x̂ i� X (x̂)◦ = LX (x̂)◦.

The following relation holds for the CQs introduced above, cf. [8, Figure 6]

LICQ ⇒ MFCQ ⇒ CPLD ⇒ AKKT-reg. ⇒ CAKKT-reg. ⇒ ACQ ⇒ GCQ.
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Cardinality Constrained Optimisation Problems

3.1 Sequential Optimality Conditions

In this chapter we shall deal with (1.1). To simplify the notation we de�ne

 ∶= {x ∈ ℝ
n
∣ ‖x‖0 ≤ s} .

Observe that since  is a level set of the lower semicontinuous function x ↦ ‖x‖0, by [29, Theorem
2.5.1] we immediately get the following result.

Lemma 3.1.  is a closed set.

Let us now consider the case where  is the only constraint present, i.e. we have the following problem

min
x

f (x) s.t. x ∈  . (3.1)

In [11], a �rst order necessary optimality condition for (3.1) called basic feasibility (BF for short) was
introduced.

De�nition 3.2 ([11, De�nition 2.1]). Let x̂ ∈  . We then say that x̂ is a BF-vector i�

(a) ‖x̂‖0 < s ⇒ ∇f (x̂) = 0,

(b) ‖x̂‖0 = s ⇒ ∇if (x̂) = 0 ∀i ∈ I±(x̂).

Theorem 3.3 ([11, Theorem 2.1]). Let x̂ ∈  be a local minimiser of (3.1). Then x̂ is a BF-vector.

Basic feasibility is closely related to the Fréchet normal cone of the cardinality constraint.

Lemma 3.4 ([49, Theorem 2.1]). Let x̂ ∈  . Then

 F

 (x̂) =

{

span{ei ∣ i ∈ I0(x̂)} if ‖x̂‖0 = s,

{0} if ‖x̂‖0 < s.

The following proposition follows immediately from De�nition 3.2 and Lemma 3.4.

Proposition 3.5. Let x̂ ∈  . Then

x̂ is a BF-vector ⇔ −∇f (x̂) ∈ B

 (x̂).

Thus, Theorem 3.3 can be viewed as a simple corollary of [29, Remark 3.1.19] and Proposition 3.5.
If f is assumed to be convex in (3.1), we can prove the converse of Theorem 3.3. We will need the

following simple observation.

17
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Lemma 3.6. Let x̂ ∈ ℝ
n. Then there exists � > 0 such that for each x ∈ B�(x̂) we have I±(x̂) ⊆ I±(x) and

hence, ‖x̂‖0 ≤ ‖x‖0.

Theorem 3.7. Assume that the objective function f of (3.1) is convex. Let x̂ ∈  be a BF-vector. If ‖x̂‖0 < s,
then x̂ is a global minimiser of (3.1). Otherwise, if ‖x̂‖0 = s, then x̂ is a local minimiser of (3.1).

Proof. The convexity of f implies that for each x ∈ ℝ
n, and therefore also for each x ∈  , we have

f (x) ≥ f (x̂) + ∇f (x̂)
T
(x − x̂).

If ‖x̂‖0 < s, we have ∇f (x̂) = 0 and hence, f (x) ≥ f (x̂) ∀x ∈  . Now if ‖x̂‖0 = s instead, let � > 0 be as in
Lemma 3.6. Then for each x ∈  ∩ B�(x̂) we have s = ‖x̂‖0 ≤ ‖x‖0 ≤ s and hence, ‖x‖0 = s = ‖x̂‖0. This
implies that I±(x̂) = I±(x) and therefore, by taking complement, I0(x̂) = I0(x). Thus,

f (x) ≥ f (x̂) +

n

∑

i=1

∇if (x̂)(xi − x̂i) = f (x̂) + ∑

i∈I±(x̂)

0 ⋅ (xi − x̂i) + ∑

i∈I0(x̂)

∇if (x̂) ⋅ (0 − 0) = f (x̂).

Let us now turn our attention to (1.1). Motivated by the CAKKT-condition for (2.1) we introduce
the following de�nition.

De�nition 3.8. Let x̂ ∈ X ∩  . We say that x̂ is CC complementary approximately M-stationary (CC-
CAM-stationary) i� there exist sequences {xk} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n such that

(a) {xk} → x̂ ,

(b)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0,

(c)

{
m

∑

i=1

|
|
|
�
k

i
gi(x

k
)
|
|
|
+

p

∑

i=1

|
|
|
�
k

i
ℎi(x

k
)
|
|
|
+

n

∑

i=1

|
|
|


k

i
x
k

i

|
|
|

}

→ 0.

The following theorem asserts that CC-CAM-stationarity is a �rst order necessary optimality condition
for (1.1).

Theorem 3.9. Let x̂ ∈ ℝ
n be a local minimiser of (1.1). Then x̂ is a CC-CAM-stationary point.

Proof. By assumption there exists � > 0 such that

f (x̂) ≤ f (x) ∀x ∈ B̄�(x̂) ∩ (X ∩ ) .

Hence, x̂ is the unique global minimiser of

min
x

f (x) +

1

2

‖x − x̂‖
2

2
s.t. x ∈ B̄�(x̂) ∩ (X ∩ ) . (3.2)

Now let {�k} ⊆ ℝ+ such that {�k} ↑ ∞. We consider for each k ∈ ℕ the partially penalised problem

min
x

f (x) +

1

2

‖x − x̂‖
2

2
+

�k

2

‖(g(x)+, ℎ(x))‖
2

2
x ∈ B̄�(x̂) ∩  . (3.3)

Observe that the objective function in (3.3) is continuously di�erentiable. Furthermore, by Lemma 3.1,
as an intersection between a closed and a compact set the feasible set B̄�(x̂) ∩  is compact. Hence, by
Weierstraß theorem, for each k ∈ ℕ (3.3) admits a global minimiser xk ∈ B̄�(x̂) ∩ . By the compactness
of B̄�(x̂) ∩  {x

k
} has a convergent subsequence in B̄�(x̂) ∩  . Thus, by passing to a subsequence we
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can assume w.l.o.g. that {xk} converges, i.e. ∃x̄ ∈ B̄�(x̂) ∩  ∶ {x
k
} → x̄ . Let us now show that x̄ = x̂ .

Obviously for each k ∈ ℕ x̂ is feasible for (3.3). Thus, by the de�nition of xk we have for each k ∈ ℕ

f (x
k
) +

1

2

‖
‖
‖
x
k
− x̂

‖
‖
‖

2

2

+

�k

2

‖
‖
‖
(g(x

k
)+, ℎ(x

k
))

‖
‖
‖

2

2

≤ f (x̂) +

1

2

‖x̂ − x̂‖
2

2
+

�k

2

‖(g(x̂)+, ℎ(x̂))‖
2

2

x̂∈X

= f (x̂). (3.4)

Dividing both sides by �k and letting k → ∞ then yields

0 ≤

1

2

‖(g(x̄)+, ℎ(x̄))‖
2

2
≤ 0

and hence,
(g(x̄)+, ℎ(x̄)) = 0 ⇔ x̄ ∈ X .

This implies that x̄ is feasible for (3.2). Now from (3.4) we also obtain that

f (x
k
) +

1

2

‖
‖
‖
x
k
− x̂

‖
‖
‖

2

2

≤ f (x̂) ∀k ∈ ℕ.

Letting k → ∞ then yields

f (x̄) +

1

2

‖x̄ − x̂‖
2

2
≤ f (x̂) = f (x̂) +

1

2

‖x̂ − x̂‖
2

2
.

Since x̂ is the unique global minimiser of (3.2), this implies that x̄ = x̂ . Thus we have {xk} → x̂ . We
can then assume w.l.o.g. that xk ∈ B�(x̂) ∀k ∈ ℕ. Hence, by the de�nition of xk this implies that for
each k ∈ ℕ x

k is a local minimiser of

min
x

f (x) +

1

2

‖x − x̂‖
2

2
+

�k

2

‖(g(x)+, ℎ(x))‖
2

2
s.t. x ∈  .

By Theorem 3.3, xk is then a BF-vector for each k ∈ ℕ. Now de�ne for each k ∈ ℕ 

k
∈ ℝ

n such that

−

k
∶= ∇f (x

k
) + x

k
− x̂ +

m

∑

i=1

�k max{0, gi(x
k
)}∇gi(x

k
) +

p

∑

i=1

�kℎi(x
k
)∇ℎi(x

k
)

= ∇f (x
k
) + x

k
− x̂ +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
),

where
�
k

i
∶= �k max{0, gi(x

k
)} ∀i ∈ {1, … ,m},

�
k

i
∶= �kℎi(x

k
) ∀i ∈ {1, … , p}.

By de�nition we clearly have {�k} ⊆ ℝ
m

+
. Next we have

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) + 


k

}

= {x̂ − x
k
} → 0.

Now let k ∈ ℕ. By De�nition 3.2, we have for each i ∈ I±(x
k
) that 
 k

i
= 0 and hence, |
 k

i
x
k

i
| = 0.

Moreover, we also have for each i ∈ I0(xk) that xk
i
= 0 and therefore, |
 k

i
x
k

i
| = 0. This then implies that

for each k ∈ ℕ we have
n

∑

i=1

|

k

i
x
k

i
| = 0.

Now from (3.4) we also obtain for each k ∈ ℕ that

f (x
k
) +

�k

2

‖
‖
‖
(g(x

k
)+, ℎ(x

k
))

‖
‖
‖

2

2

≤ f (x̂) ⇒ 0 ≤

�k

2

‖
‖
‖
(g(x

k
)+, ℎ(x

k
))

‖
‖
‖

2

2

≤ f (x̂) − f (x
k
).
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Since {f (xk)} → f (x̂), we have that
{

�k

‖
‖
‖
(g(x

k
)+, ℎ(x

k
))

‖
‖
‖

2

2

}

→ 0. Observe that for each k ∈ ℕ we
have

�k

‖
‖
‖
(g(x

k
)+, ℎ(x

k
))

‖
‖
‖

2

2

=

m

∑

i=1

�k max{0, gi(x
k
)}
2
+

p

∑

i=1

�kℎi(x
k
)
2

=

m

∑

i=1

|�k max{0, gi(x
k
)}
2
| +

p

∑

i=1

|�kℎi(x
k
)
2
|

=

m

∑

i=1

|�
k

i
max{0, gi(x

k
)}| +

p

∑

i=1

|�
k

i
ℎi(x

k
)|

=

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)|,

where the last equality follows from the fact that �k
i
max{0, gi(x

k
)} = �

k

i
gi(x

k
). Thus,

{
m

∑

i=1

|�
k

i
gi(x

k
)}| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|

}

=

{
m

∑

i=1

|�
k

i
gi(x

k
)}| +

p

∑

i=1

|�
k

i
ℎi(x

k
)|

}

→ 0.

The converse of Theorem 3.9 is false in general as the next example shows.

Example 3.10. Consider the following problem which is adapted from [5]

min

x∈ℝ
3

(x2 − 2)
2

2

s.t. x1x2 = 0, ‖x‖0 ≤ 2. (3.5)

Obviously x̂ ∶= (0, 0, 1)T is a feasible point of (3.5) which is not a local minimiser. On the other hand, it is
a CC-CAM-stationary point. Indeed, simply de�ne for each k ∈ ℕ x

k
∶= x̂ , �k ∶= 0, and 
 k ∶= (0, 2, 0)T .

Nevertheless, if the cardinality constraint is active, then under some additional assumptions we can
prove the reverse implication.

Theorem 3.11. Assume that in (1.1) the functions f as well as g1, … , gm are convex and ℎ1, … , ℎp are
a�ne-linear. Let x̂ ∈ X ∩  such that ‖x̂‖0 = s. If x̂ is a CC-CAM-stationary point, then it is a local
minimiser of (1.1).

Proof. Let � > 0 be as in Lemma 3.6. Now let x ∈ X ∩  ∩ B�(x̂). We shall prove that f (x) ≥ f (x̂).
Observe that since x ∈  ∩ B�(x̂) we have s = ‖x̂‖0 ≤ ‖x‖0 ≤ s. This implies that ‖x‖0 = s = ‖x̂‖0.
Thus we clearly have I±(x) = I±(x̂), which, by taking complement, implies that I0(x) = I0(x̂). Now let
{x

k
} ⊆ ℝ

n
, {�

k
} ⊆ ℝ

m

+
, {�

k
} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n be the corresponding CC-CAM sequences for x̂ . The

assumptions made on f , gi , and ℎi imply that for each k ∈ ℕ we have

f (x) ≥ f (x
k
) + ∇f (x

k
)
T
(x − x

k
)

gi(x) ≥ gi(x
k
) + ∇gi(x

k
)
T
(x − x

k
) ∀i = 1, … ,m,

ℎi(x) = ℎi(x
k
) + ∇ℎi(x

k
)
T
(x − x

k
) ∀i = 1, … , p.

Moreover, since x ∈ X , we have that gi(x) ≤ 0 for each i ∈ {1, … ,m} and ℎi(x) = 0 for each i ∈ {1, … , p}.
Hence, we have for each k ∈ ℕ that 0 ≥ �

k

i
gi(x) ∀i ∈ {1, … ,m} and 0 = �

k

i
ℎi(x) ∀i ∈ {1, … , p}. This

implies that

f (x) ≥ f (x
k
) + ∇f (x

k
)
T
(x − x

k
)

≥ f (x
k
) + ∇f (x

k
)
T
(x − x

k
) +

m

∑

i=1

�
k

i
gi(x) +

p

∑

i=1

�
k

i
ℎi(x) + ∑

i∈I0(x)



k

i
xi
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= f (x
k
) + ∇f (x

k
)
T
(x − x

k
) +

m

∑

i=1

�
k

i
gi(x) +

p

∑

i=1

�
k

i
ℎi(x) + ∑

i∈I0(x̂)



k

i
xi

≥ f (x
k
) + ∇f (x

k
)
T
(x − x

k
) +

m

∑

i=1

�
k

i
(gi(x

k
) + ∇gi(x

k
)
T
(x − x

k
))

+

p

∑

i=1

�
k

i
(ℎi(x

k
) + ∇ℎi(x

k
)
T
(x − x

k
)) + ∑

i∈I0(x̂)



k

i
(x

k

i
+ e

T

i
(x − x

k
))

= f (x
k
) +

(

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
ei
)

T

(x − x
k
)

+

m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
x
k

i
. (3.6)

Observe that

0 ≤

|
|
|
|
|
|

m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
x
k

i

|
|
|
|
|
|

≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| + ∑

i∈I0(x̂)

|

k

i
x
k

i
|

≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|.

Since

{
m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|

}

→ 0, sandwich theorem implies that

{
m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
x
k

i

}

→ 0.

Now let j ∈ I±(x̂). We clearly have

0 ≤ |

k

j
x
k

j
| ≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|.

Hence, it also follows that {|
 k
j
x
k

j
|} → 0. Now since {xk

j
} → x̂j ≠ 0, this implies that {
 k

j
} → 0.

Now observe that
{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
ei

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

−

{

∑

i∈I±(x̂)



k

i
ei

}

→ 0.

Thus, letting k → ∞ in (3.6) yields f (x) ≥ f (x̂). This completes the proof.

The following de�nition is motivated by the AKKT condition for (2.1).

De�nition 3.12. Let x̂ ∈ X ∩  . We say that x̂ is CC approximately M-stationary (CC-AM-stationary)
i� there exist sequences {xk} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n such that

(a) {xk} → x̂ ,
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(b)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0,

(c) ∀i ∉ Ig(x̂) ∶ �
k

i
= 0 ∀k ∈ ℕ,

(d) ∀i ∈ I±(x̂) ∶ 

k

i
= 0 ∀k ∈ ℕ.

Remark 3.13. In [44], a sequential optimality condition called AW-stationarity was introduced. It turns
out that CC-AM-stationarity is essentially equivalent to AW-stationarity, see Appendix A.

As is the case for (2.1), CC-CAM-stationarity implies CC-AM-stationarity.

Theorem 3.14. Let x̂ ∈ X ∩  . If it is a CC-CAM-stationary point, then it is also CC-AM-stationary.

Proof. Let {xk} ⊆ ℝ
n
, {�

k
} ⊆ ℝ

m

+
, {�

k
} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n be the corresponding CC-CAM sequences

for x̂ . Suppose that j ∉ Ig(x̂). Observe that

0 ≤ |�
k

j
gj(x

k
)| ≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|.

Thus, {|�k
j
gj(x

k
)|} → 0 and therefore, since {gj(xk)} → gj(x̂) < 0, {�k

j
} → 0. Now de�ne for each

k ∈ ℕ
̂
�
k such that

̂
�
k

i
∶=

{

�
k

i
if i ∈ Ig(x̂),

0 if i ∉ Ig(x̂).

Obviously we have { ̂�k} ⊆ ℝ
m

+
. Observe that

∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

= ∇f (x
k
) + ∑

i∈Ig (x̂)

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

=

(

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei
)

−

(

∑

i∉Ig (x̂)

�
k

i
∇gi(x

k
)

)

.

Thus, it follows that
{

∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0.

Suppose now that j ∈ I±(x̂). Observe that

0 ≤ |

k

j
x
k

j
| ≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|.

Thus, {|
 k
j
x
k

j
|} → 0 and therefore, since {xk

j
} → x̂j ≠ 0, {
 k

j
} → 0. Now de�ne for each k ∈ ℕ 
̂

k

such that


̂
k

i
∶=

{



k

i
if i ∈ I0(x̂),

0 if i ∈ I±(x̂).

Then we have

∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
ei
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= ∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
ei

=

(

∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei
)

−

(

∑

i∈I±(x̂)



k

i
ei
)

and therefore,
{

∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
ei

}

→ 0.

A simple corollary of Theorem 3.9 and Theorem 3.14 is the following.

Theorem 3.15. Let x̂ ∈ ℝ
n be a local minimiser of (1.1). Then x̂ is a CC-AM-stationary point.

By Example 3.10 and Theorem 3.14 we know that the converse of Theorem 3.15 is false in general.
The next example shows that the converse of Theorem 3.14 is false in general as well.

Example 3.16. Let us revisit (3.5). Every feasible point of (3.5) satis�es CC-AM-stationarity. Indeed, let
x̂ ∈ ℝ

3 be feasible for (3.5). If x̂2 = 0, we can simply de�ne for each k ∈ ℕ x
k
∶= x̂ , �k ∶= 0, and



k
∶= (0, 2, 0)

T . Otherwise, we can de�ne for each k ∈ ℕ x
k
∶= (

1

k
, x̂2, x̂3)

T , �k ∶= k(2 − x̂2), and


k
∶= (−k(2 − x̂2)x̂2, 0, 0)

T . Thus, x̂ is a CC-AM-stationary point. On the other hand, for a feasible point
x̂ ∈ ℝ

3 to be a CC-CAM-stationary point, we must have that x̂2 ∈ {0, 2}. Indeed, let x̂ ∈ ℝ
3 be feasible

for (3.5) such that x̂2 ∉ {0, 2}. Suppose that x̂ is a CC-CAM-stationary point with the corresponding
CC-CAM-sequences {xk}, {
 k} ⊆ ℝ

3 and {�k} ⊆ ℝ. The conditions in De�nition 3.8 then imply that

(a) {xk
2
} → x̂2,

(b) {xk
2
− 2 + �kx

k

1
+ 


k

2
} → 0,

(c) {�kxk1 x
k

2
} → 0,

(d) {
 k
2
x
k

2
} → 0.

(a) and (b) then imply that
{(x

k

2
− 2)x

k

2
+ �kx

k

1
x
k

2
+ 


k

2
x
k

2
} → 0.

On the other hand we have {(xk
2
− 2)x

k

2
} → (x̂2 − 2)x̂2 ≠ 0 since x̂2 ∉ {0, 2}. Thus, by (c) and (d) we have

{(x
k

2
− 2)x

k

2
+ �kx

k

1
x
k

2
+ 


k

2
x
k

2
} → (x̂2 − 2)x̂2 ≠ 0.

This leads to a contradiction.

In the rest of this section we shall revisit (3.1), i.e. we now assume that X = ℝ
n in (1.1). In this case,

CC-CAM-stationarity coincides with CC-AM-stationarity.

Theorem 3.17. Let x̂ ∈  . Then

x̂ is a CC-CAM-stationarity point ⇔ x̂ is a CC-AM-stationary point.

Proof. In light of Theorem 3.14, we only need to prove the reverse implication. Suppose that x̂ is CC-
AM-stationary and let {xk}, {
 k} ⊆ ℝ

n be the corresponding CC-AM sequences. Now if i ∈ I±(x̂), then
we know that 
 k

i
= 0 ∀k ∈ ℕ. Thus, we have for each k ∈ ℕ

n

∑

i=1

|

k

i
x
k

i
| = ∑

i∈I0(x̂)

|

k

i
x
k

i
|.

Now since {∇f (xk) + 
 k} → 0 and {∇f (xk)} → ∇f (x̂), we then have for each i ∈ I0(x̂) that {
 k
i
} →

−∇if (x̂) and therefore, {|
 k
i
x
k

i
|} → | − ∇if (x̂) ⋅ 0| = 0. Hence,

{
n

∑

i=1

|

k

i
x
k

i
|

}

=

{

∑

i∈I0(x̂)

|

k

i
x
k

i
|

}

→ 0.
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Thus, for the rest of this section a statement holds for CC-CAM-stationarity i� it holds for CC-AM-
stationarity. Let us now establish the relationship between the sequential optimality conditions intro-
duced in this section and basic feasibility, see also [19, Theorem 3.55].

Theorem 3.18. Let x̂ ∈  .

(a) If x̂ is a BF-vector, then it is also CC-AM-stationary.

(b) If x̂ is a CC-AM-stationary point with ‖x̂‖0 = s, then it is a BF-vector. Thus, if the cardinality
constraint is active, then CC-AM-stationarity coincides with basic feasibility.

Proof. (a) Simply de�ne for each k ∈ ℕ x
k
∶= x̂ and 


k
∶= −∇f (x̂) = −∇f (x

k
). Note that by De�ni-

tion 3.2, we have for each i ∈ I±(x̂) that 
 k
i
= −∇if (x̂) = 0 ∀k ∈ ℕ.

(b) By De�nition 3.12 there exist sequences {xk}, {
 k} ⊆ ℝ
n such that

(b1) {xk} → x̂ , (b2) {∇f (xk) + 
 k} → 0, (b3) ∀i ∈ I±(x̂) ∶ 
 ki = 0 ∀k ∈ ℕ.

Now let i ∈ I±(x̂). By (b2) and (b3), we have {∇if (xk)} = {∇if (xk) + 
 ki } → 0. On the other hand, by
(b1) we have {∇if (xk)} → ∇if (x̂). Consequently we have ∇if (x̂) = 0. Since, by assumption ‖x̂‖0 = s, x̂
is then a BF-vector.

The following example shows that for a feasible point x̂ of (3.1), if ‖x̂‖0 < s , then CC-AM-stationarity
does not imply basic feasibility in general.

Example 3.19. Let f ∶ ℝ
2
→ ℝ, f (x) ∶= x1 and consider

min
x

f (x) s.t. ‖x‖0 ≤ 1.

Obviously 0 is feasible for the problem. Since ∇f (0) = (1, 0)T ≠ 0, it is not a BF-vector. On the other hand,
the feasibility of 0 immediately implies that it is also CC-AM-stationary, see Remark 3.37.

3.2 Sequential Constraint Quali�cations

Let us now return to (1.1). We de�ne for each x ∈ ℝ
n and each r ∈ ℝ+

K
C
((x, r)) ∶=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩


 +

m

∑

i=1

�i∇gi(x)

+

p

∑

i=1

�i∇ℎi(x)

|
|
|
|
|
|
|
|
|
|

(�, �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n

m

∑

i=1

|�igi(x)| +

p

∑

i=1

|�iℎi(x)| +

n

∑

i=1

|
ixi | ≤ r

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

. (3.7)

Now we can translate De�nition 3.8 into the language of variational analysis.

Theorem 3.20. Let x̂ ∈ X ∩  . Then

x̂ is a CC-CAM-stationary point ⇔ −∇f (x̂) ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)).

Proof. "⇒": By assumption, there exist sequences {xk}, {
 k} ⊆ ℝ
n, {�k} ⊆ ℝ

m

+
, and {�k} ⊆ ℝ

p such
that the conditions in De�nition 3.8 hold. De�ne for each k ∈ ℕ

u
k
∶= ∇f (x

k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei
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and

rk ∶=

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|.

Then we have {uk} → 0 and {rk} → 0. Now de�ne for each k ∈ ℕ

w
k
∶= u

k
− ∇f (x

k
) =

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei .

Then {w
k
} → −∇f (x̂). Moreover, by the de�nition of rk , we clearly have for each k ∈ ℕ that wk

∈

K
C
((x

k
, rk)). Since {((xk , rk), wk

)} → ((x̂, 0), −∇f (x̂)), we can conclude that

−∇f (x̂) ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)).

"⇐": By De�nition 2.10, we know that there exist sequences {xk}, {wk
} ⊆ ℝ

n as well as {rk} ⊆ ℝ+ such
that {((xk , rk), wk

)} → ((x̂, 0), −∇f (x̂)) and w
k
∈ K

C
((x

k
, rk)) for each k ∈ ℕ. Hence, there exists for

each k ∈ ℕ a triple (�k , �k , 
 k) ∈ ℝ
m

+
× ℝ

p
× ℝ

n such that

w
k
=

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

and

0 ≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
| ≤ rk .

Then clearly we have
{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

= {∇f (x
k
) + w

k
} → 0.

Since {rk} → 0, it also follows that
{

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|

}

→ 0.

Let us now recall the CC-M-stationary concept introduced in [21].

De�nition 3.21. Let x̂ ∈ X ∩ . We then say that x̂ is CC-M-stationary i� there exist multipliers � ∈ ℝ
m

+
,

� ∈ ℝ
p , and 
 ∈ ℝ

n such that

(a) 0 = ∇f (x̂) +
m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) +

n

∑

i=1


iei ,

(b) ∀i ∉ Ig(x̂) ∶ �i = 0,

(c) ∀i ∈ I±(x̂) ∶ 
i = 0.

We then obtain the following translation.

Theorem 3.22. Let x̂ ∈ X ∩  . Then

x̂ is a CC-M-stationary point ⇔ −∇f (x̂) ∈ K
C
((x̂ , 0)).
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Proof. "⇒": Let � ∈ ℝ
m

+
, � ∈ ℝ

p , and 
 ∈ ℝ
n be the corresponding multipliers for x̂ . Then we have

−∇f (x̂) =

m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) +

n

∑

i=1


iei .

By the feasibility of x̂ we have for each i ∈ {1, … , p} that ℎi(x̂) = 0 and hence, |�iℎi(x̂)| = 0. Now we now
that ∀i ∉ Ig(x̂) ∶ �i = 0 and hence, |�igi(x̂)| = 0. Suppose now that i ∈ Ig(x̂). Then we have gi(x̂) = 0 and
hence, |�igi(x̂)| = 0. Now let i ∈ I±(x̂). Since 
i = 0 we then have |
i x̂i | = 0. Moreover, for each i ∈ I0(x̂)

we have x̂i = 0 and therefore, |
i x̂i | = 0. Thus,

m

∑

i=1

|�igi(x̂)| +

p

∑

i=1

|�iℎi(x̂)| +

n

∑

i=1

|
i x̂i | = 0.

"⇐": By (3.7) there exists a triple (�, �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n such that

−∇f (x̂) =

m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) +

n

∑

i=1


iei

and
m

∑

i=1

|�igi(x̂)| +

p

∑

i=1

|�iℎi(x̂)| +

n

∑

i=1

|
i x̂i | ≤ 0.

Suppose that i ∉ Ig(x̂). Then since gi(x̂) < 0 and |�igi(x̂)| = 0, it follows that �i = 0. Similarly, for each
i ∈ I±(x̂), since x̂i ≠ 0 and |
i x̂i | = 0, we obtain that 
i = 0. Thus, x̂ is a CC-M-stationary point.

Let us now investigate the relationship between CC-CAM- and CC-M-stationarity.

Theorem 3.23. Let x̂ ∈ X ∩  . Then

K
C
((x̂ , 0)) ⊆ lim sup

(x,r)→(x̂,0)

K
C
((x, r)).

Proof. Let ŵ ∈ K
C
((x̂ , 0)). De�ne for each k ∈ ℕ (x

k
, rk) ∶= (x̂ , 0) and w

k
∶= ŵ. This implies that

{((x
k
, rk), w

k
)} → ((x̂, 0), ŵ) with wk

= ŵ ∈ K
C
((x̂ , 0)) = K

C
((x

k
, rk)) for each k ∈ ℕ.

Corollary 3.24. Let x̂ ∈ X ∩  . Then

x̂ is CC-M-stationary ⇒ x̂ is CC-CAM-stationary.

Proof. Since x̂ is CC-M-stationary, by Theorem 3.22 we have −∇f (x̂) ∈ KC
((x̂ , 0)). Therefore, by The-

orem 3.23, −∇f (x̂) ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)). The assertion then follows from Theorem 3.20.

The converse is not true in general as the following example shows.

Example 3.25 ([21, page 423]). Consider

min

x∈ℝ
2

x1 + 10x2 s.t.
(
x1 −

1

2
)

2

+ (x2 − 1)
2
≤ 1, ‖x‖0 ≤ 1. (3.8)

Obviously (1/2, 0)T is the unique global minimiser. In particular, by Theorem 3.9, it is then also a CC-CAM-
stationary point. On the other hand, we have for any ( ̂�, 
̂ ) ∈ ℝ+ × ℝ that

(1, 10)
T
+
̂
� (2(1/2 − 1/2), 2(0 − 1))

T
+ 
̂ (0, 1)

T
= (1, 10 − 2

̂
� + 
̂ )

T
≠ (0, 0)

T
.

The following is clearly a su�cient condition for the converse of Corollary 3.24 to hold.
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De�nition 3.26. A feasible point x̂ ∈ ℝ
n of (1.1) is said to satisfy the CC-CAM-regularity condition i�

lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⊆ K

C
((x̂ , 0)).

Theorem 3.27. Let x̂ ∈ ℝ
n be a CC-CAM-stationary point of (1.1) which satis�es the CC-CAM-regularity

condition. Then x̂ is CC-M-stationary.

Proof. This follows from Theorem 3.20, De�nition 3.26, and Theorem 3.22.

Example 3.28. Suppose that 0 ∈ ℝ
n is feasible for (1.1). We then have

K
C
((0, 0)) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩


 +

m

∑

i=1

�i∇gi(0) +

p

∑

i=1

�i∇ℎi(0)

|
|
|
|
|
|
|

(�, �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n

m

∑

i=1

|�igi(0)| +

p

∑

i=1

|�iℎi(0)| ≤ 0

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

.

Clearly we have KC
((0, 0)) ⊆ ℝ

n. On the other hand, for each w ∈ ℝ
n we can simply de�ne (�, �, 
 ) =

(0, 0, w) ∈ ℝ
m

+
× ℝ

p
× ℝ

n and we immediately obtain that w ∈ K
C
((0, 0)). Hence, we have KC

((0, 0)) = ℝ
n.

Consequently, −∇f (0) ∈ ℝ
n
= K

C
((0, 0)), and therefore, by Theorem 3.22, 0 is CC-M-stationary. Corol-

lary 3.24 then implies that 0 is also a CC-CAM-stationary point. Moreover, the following inclusion also
holds

lim sup

(x,r)→(0,0)

K
C
((x, r)) ⊆ ℝ

n
= K

C
((0, 0)).

Thus, we conclude that 0 satis�es CC-CAM-regularity as well.

The next theorem states that CC-CAM-regularity is a strict constraint quali�cation with respect to
CC-CAM-stationarity.

Theorem 3.29. Let x̂ ∈ X ∩  . Suppose that for every continuously di�erentiable function f ∈ C1(ℝn, ℝ)
the following implication holds

x̂ is CC-CAM-stationary ⇒ x̂ is CC-M-stationary.

Then x̂ satis�es CC-CAM-regularity.

Proof. By Theorem 3.20 and Theorem 3.22 for each f ∈ C1(ℝn, ℝ) the implication

x̂ is CC-CAM-stationary ⇒ x̂ is CC-M-stationary.

is equivalent to
−∇f (x̂) ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⇒ −∇f (x̂) ∈ K

C
((x̂ , 0)).

Suppose now that ŵ ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)). In order to prove theorem, we then only need to �nd an

f ∈ C
1
(ℝ

n
, ℝ) such that −∇f (x̂) = ŵ . So we simply de�ne f (x) ∶= −ŵT

x . Obviously f is continuously
di�erentiable with −∇f (x̂) = ŵ . Hence we have ŵ = −∇f (x̂) ∈ K

C
((x̂ , 0)) by the above implication.

Since we can do this for every ŵ ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)), we then have lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⊆ K

C
((x̂ , 0)).

This completes the proof.

We shall now translate De�nition 3.12 into the language of variational analysis as well. Let x̂ ∈ ℝ
n

be feasible for (1.1). Then we de�ne for each x ∈ ℝ
n

K
x̂
(x) ∶=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

m

∑

i=1

�i∇gi(x) +

p

∑

i=1

�i∇ℎi(x) + 


|
|
|
|
|
|
|

(�, �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n
,

�i = 0 ∀i ∉ Ig(x̂),


i = 0 ∀i ∈ I±(x̂)

⎫
⎪
⎪

⎬
⎪
⎪
⎭

. (3.9)
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Theorem 3.30. Let x̂ ∈ X ∩  . Then

x̂ is a CC-AM-stationary point ⇔ −∇f (x̂) ∈ lim sup

x→x̂

K
x̂
(x).

Proof. "⇒": By assumption, there exist sequences {xk}, {
 k} ⊆ ℝ
n, {�k} ⊆ ℝ

m

+
, and {�k} ⊆ ℝ

p such
that the conditions in De�nition 3.12 hold. Now de�ne

u
k
∶= ∇f (x

k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + 


k
.

Then we have {uk} → 0. Next we de�ne

w
k
∶= u

k
− ∇f (x

k
) =

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + 


k
.

Clearly we have {wk
} → −∇f (x̂). Moreover, by the last two conditions in De�nition 3.12 we also have

w
k
∈ K

x̂
(x

k
) for each k ∈ ℕ. Hence we have −∇f (x̂) ∈ lim sup

x→x̂

K
x̂
(x).

"⇐": By De�nition 2.10, there exist sequences {xk}, {wk
} ⊆ ℝ

n such that {xk} → x̂ , {wk
} → −∇f (x̂),

and wk
∈ K

x̂
(x

k
) for each k ∈ ℕ. Now by (3.9), for each k ∈ ℕ there exist (�k , �k , 
 k) ∈ ℝ

m

+
× ℝ

p
× ℝ

n

such that

• wk
=

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + 


k ,

• ∀i ∉ Ig(x̂) ∶ �
k

i
= 0,

• ∀i ∈ I±(x̂) ∶ 

k

i
= 0.

Furthermore, we have
{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + 


k

}

= {∇f (x
k
) + w

k
} → ∇f (x̂) − ∇f (x̂) = 0.

The following simple observation proves to be useful.

Lemma 3.31. Let x̂ ∈ X ∩  . Then
K
C
((x̂ , 0)) = K

x̂
(x̂).

From Theorem 3.22 and Lemma 3.31 we immediately obtain the following.

Corollary 3.32. Let x̂ ∈ X ∩  . Then

x̂ is a CC-M-stationary point ⇔ −∇f (x̂) ∈ K
x̂
(x̂).

An immediate consequence of Corollary 3.24 and Theorem 3.14 is the following.

Corollary 3.33. Let x̂ ∈ ℝ
n be feasible for (1.1). Then

x̂ is CC-M-stationary ⇒ x̂ is CC-AM-stationary.

We know from Example 3.25 and Theorem 3.14 that the converse is not true in general. In light
of Theorem 3.30 and Corollary 3.32 the following is clearly a su�cient condition for the converse of
Corollary 3.33 to hold.
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De�nition 3.34. A feasible point x̂ ∈ ℝ
n of (1.1) is said to satisfy the CC-AM-regularity condition i�

lim sup

x→x̂

K
x̂
(x) ⊆ K

x̂
(x̂).

Theorem 3.35. Let x̂ ∈ ℝ
n be a CC-AM-stationary point of (1.1) which satis�es the CC-AM-regularity

condition. Then x̂ is CC-M-stationary.

Proof. Since x̂ is a CC-AM-stationary point, Theorem 3.30 then implies that

−∇f (x̂) ∈ lim sup

x→x̂

K
x̂
(x).

By De�nition 3.34, we then have −∇f (x̂) ∈ K
x̂
(x̂) and hence, by Corollary 3.32, x̂ is CC-M-stationary.

The following theorem states that CC-AM-regularity is a strict constraint quali�cation with respect
to CC-AM-stationarity. We omit the proof since it is similar to the proof of Theorem 3.29.

Theorem 3.36. Let x̂ ∈ X ∩  . Suppose that for every continuously di�erentiable function f ∈ C1(ℝn, ℝ)
the following implication holds

x̂ is CC-AM-stationary ⇒ x̂ is CC-M-stationary.

Then x̂ satis�es CC-AM-regularity.

Remark 3.37. Note that by the same reasoning as in Example 3.28, if 0 ∈ ℝ
n is feasible for (1.1), then it

is a CC-AM-stationary point which satis�es CC-AM-regularity.

Let us now establish the relationship between CC-CAM-regularity and CC-AM-regularity.

Theorem 3.38. Let x̂ ∈ X ∩  . Then

lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⊆ lim sup

x→x̂

K
x̂
(x).

Proof. Let ŵ ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)). Then there exist sequences {xk}, {wk

} ⊆ ℝ
n and {rk} ⊆ ℝ+ such

that {((xk , rk), wk
)} → ((x̂, 0), ŵ) and w

k
∈ K

C
((x

k
, rk)) for each k ∈ ℕ. Now let k ∈ ℕ. Since

w
k
∈ K

C
((x

k
, rk)), there exists a triple (�k , �k , 
 k) ∈ ℝ

m

+
× ℝ

p
× ℝ

n such that

w
k
=

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + 


k

and
m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
| ≤ rk .

Let i ∉ Ig(x̂). Since {gi(xk)} → gi(x̂) < 0, we can assume w.l.o.g. that gi(xk) < 0 ∀k ∈ ℕ. Thus,

0 ≤ |�
k

i
gi(x

k
)| ≤ rk ⇒ 0 ≤ |�

k

i
| ≤

rk

|gi(x
k
)|

.

Since {rk} → 0, we then have {�k
i
} → 0. Now let i ∈ I±(x̂). Since {xk

i
} → x̂i ≠ 0, we can assume

w.l.o.g. that xk
i
≠ 0∀k ∈ ℕ. Thus,

0 ≤ |

k

i
x
k

i
| ≤ rk ⇒ 0 ≤ |


k

i
| ≤

rk

|x
k

i
|

.
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Thus, since {rk} → 0, we also have {
 k
i
} → 0. Now de�ne ̂

�
k
∈ ℝ

m and 
̂ k ∈ ℝ
n such that

̂
�
k

i
∶=

{

�
k

i
if i ∈ Ig(x̂),

0 if i ∉ Ig(x̂)
∧ 
̂

k

i
∶=

{



k

i
if i ∈ I0(x̂),

0 if i ∈ I±(x̂).

Note that { ̂�k} ⊆ ℝ
m

+
since {�k} ⊆ ℝ

m

+
. Now de�ne

u
k
∶= w

k
− ∑

i∉Ig (x̂)

�
k

i
gi(x

k
) − ∑

i∈I±(x̂)



k

i
ei

= ∑

i∈Ig (x̂)

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
ei

=

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
ei .

Clearly we have {uk} → ŵ and uk ∈ K
x̂
(x

k
) for each k ∈ ℕ. This then proves the desired inclusion.

An immediate consequence of Lemma 3.31 and Theorem 3.38 is the following.

Corollary 3.39. Let x̂ ∈ X ∩  . The following implication then holds

x̂ satis�es CC-AM-regularity ⇒ x̂ satis�es CC-CAM-regularity.

Let us now investigate how CC-CAM-regularity and CC-AM-regularity relate to the other CC-
tailored CQs de�ned in [21, 23].

Remark 3.40. Let x̂ ∈ X ∩ . As remarked in [21], x̂ is then a CC-M-stationary point i� it is a KKT point
of the tightened nonlinear programme TNLP(x̂)

min
x

f (x) s.t. g(x) ≤ 0, ℎ(x) = 0, xi = 0 (i ∈ I0(x̂)). (3.10)

Taking a closer look at De�nition 3.8 and De�nition 3.12, then it is also clear that x̂ is a CC-CAM-stationary
point i� x̂ is a CAKKT-stationary point of (3.10) and x̂ is a CC-AM-stationary point i� x̂ is an AKKT-
stationary point of (3.10). Moreover, it is also easy to see that x̂ satis�es CC-AM-regularity i� x̂ satis�es
AKKT-regularity with respect to (3.10). Likewise, x̂ satis�es CC-CAM-regularity i� x̂ satis�es CAKKT-
regularity with respect to (3.10).

De�nition 3.41 ([23, De�nition 3.11]). Let x̂ ∈ ℝ
n be feasible for (1.1). Then x̂ satis�es

(a) CC-LICQ i� the gradients

∇gi(x̂) (i ∈ Ig(x̂)), ∇ℎi(x̂) (i ∈ {1, … , p}), ei (i ∈ I0(x̂))

are linearly independent;

(b) CC-MFCQ i� the gradients

∇gi(x̂) (i ∈ Ig(x̂)), and ∇ℎi(x̂) (i ∈ {1, … , p}), ei (i ∈ I0(x̂))

are positive-linearly independent;

(c) CC-CPLD i� for any subsets I1 ⊆ Ig(x̂), I2 ⊆ {1, … , p}, and I3 ⊆ I0(x̂) such that the gradients

∇gi(x) (i ∈ I1), and ∇ℎi(x) (i ∈ I2), ei (i ∈ I3)

are positive-linearly dependent in x = x̂ , they are linearly dependent in a neighbourhood of x̂ .
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For the CC-tailored CQs above we have the following relation

CC-LICQ ⇒ CC-MFCQ ⇒ CC-CPLD.

Now recall from [21] that a feasible point x̂ of (1.1) is said to satisfy any of the CC-tailored CQ above
i� it satis�es the corresponding CQ for TNLP(x̂). The following implication is then immediate.

Corollary 3.42. CC-CPLD⇒ CC-AM-regularity⇒ CC-CAM-regularity.

Note that if g and ℎ in (1.1) are a�ne-linear, then CC-CPLD obviously holds at every feasible point
of (1.1). Thus, by Corollary 3.42 we also obtain the following.

Corollary 3.43. If g and ℎ in (1.1) are a�ne-linear, then every feasible point of (1.1) satis�es CC-AM-
regularity, and therefore CC-CAM-regularity as well.

3.3 Relaxed Reformulation

We shall now turn our attention to the relaxed reformulation (1.9) which was introduced in [21]. Let
us �rst gather the results obtained in Section 3 of [21] which are applicable to (1.9). For proofs we refer
to [21]. Note that we will denote the feasible set of (1.9) by Z .

Theorem 3.44. [21, Theorem 3.2] Let x̂ ∈ ℝ
n. Then x̂ is feasible for (1.1) i� there exists a ŷ ∈ ℝ

n such
that (x̂ , ŷ) is feasible for (1.9).

Theorem 3.45. [21, Theorem 3.2] Let x̂ ∈ ℝ
n. Then x̂ is a global minimiser of (1.1) i� there exists a

ŷ ∈ ℝ
n such that (x̂ , ŷ) is a global minimiser of (1.9).

Theorem 3.46. [21, Theorem 3.4] Let x̂ ∈ ℝ
n be a local minimiser of (1.1). Then there exists a ŷ ∈ ℝ

n

such that (x̂ , ŷ) is a local minimiser of (1.9).

The converse of Theorem 3.46 is false in general, see [21, Example 3]. In order for the converse to hold,
we need an additional assumption.

Theorem 3.47. [21, Theorem 3.6] Let (x̂ , ŷ) ∈ ℝ
n
× ℝ

n be a local minimiser of (1.9) with ‖x̂‖0 = s. Then x̂
is a local minimiser of (1.1).

Since (1.9) is an instance of (2.1), in light of Theorem 3.46, Theorem 2.2, and [15, Theorem 3.1], for
every local minimiser x̂ ∈ ℝ

n of (1.1) there exists a ŷ ∈ ℝ
n such that (x̂ , ŷ) is a CAKKT and an AKKT

point of (1.9). Let us now establish the relationship between CC-CAM-stationarity for (1.1) and the
CAKKT condition for (1.9).

Theorem 3.48. Let (x̂ , ŷ) ∈ Z . If (x̂ , ŷ) is a CAKKT point of (1.9), then x̂ is a CC-CAM-stationary point
of (1.1).

Proof. By assumption there exist sequences {(xk , yk)} ⊆ ℝ
n
× ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , {�k} ⊆ ℝ+,
{�

k
} ⊆ ℝ

n

+
, and {
̂ k} ⊆ ℝ

n such that {(xk , yk)} → (x̂, ŷ) and

(a)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
y
k

i
ei

}

→ 0,

(b)

{
m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| + |�k(n − e

T
y
k
− s)| +

n

∑

i=1

|�
k

i
(y

k

i
− 1)| +

n

∑

i=1

|
̂
k

i
x
k

i
y
k

i
|

}

→ 0.
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De�ne for each k ∈ ℕ 

k
∈ ℝ

n such that 
 k
i
∶= 
̂

k

i
y
k

i
∀i ∈ {1, … , n}. Then we have

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0.

Moreover, since

0 ≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|

≤

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| + |�k(n − e

T
y
k
− s)| +

n

∑

i=1

|�
k

i
(y

k

i
− 1)| +

n

∑

i=1

|
̂
k

i
x
k

i
y
k

i
|,

we also have {
m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|

}

→ 0.

Theorem 3.49. Let x̂ ∈ X ∩  . If x̂ is a CC-CAM-stationary point, then there exists a ŷ ∈ ℝ
n such that

(x̂ , ŷ) is a CAKKT point of (1.9).

Proof. By assumption there exist sequences {xk}, {
 k} ⊆ ℝ
n, {�k} ⊆ ℝ

m

+
, and {�k} ⊆ ℝ

p such that the
conditions in De�nition 3.8 hold. Observe that for each i ∈ {1, … , n} we have

{

k

i
x
k

i
} → 0.

This then implies that for each i ∈ I±(x̂) we have

{

k

i
} → 0.

Now de�ne ŷ ∈ ℝ
n such that

ŷi ∶=

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).

Then (x̂ , ŷ) ∈ Z . Next we de�ne for each k ∈ ℕ ℝ
n
∋ y

k
∶= ŷ, ℝ+ ∋ �k ∶= 0, and ℝ

n

+
∋ �

k
∶= 0. Then

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
y
k

i
ei

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
ei

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

−

{

∑

i∈I±(x̂)



k

i
ei

}

→ 0.

Moreover, we also have
{

−�ke +

n

∑

i=1

�
k

i
ei +

n

∑

i=1



k

i
x
k

i
ei

}

=

{
n

∑

i=1



k

i
x
k

i
ei

}

→ 0

and
{
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∑

i=1

|�
k

i
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k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| + |�k(n − e

T
y
k
− s)| +
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∑

i=1

|�
k

i
(y

k

i
− 1)| +
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i
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i
|

}

=

{
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i=1
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i=1
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i
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k
)| + ∑

i∈I0(x̂)

|
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i
x
k

i
|

}

→ 0.
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In [44, Theorem 4.1] it was shown that every feasible point of (A.1) satis�es the AKKT condition
for (A.1). Note, however, that the AKKT condition for (1.9) di�ers from the AKKT condition used in
[44] since we drop the constraint y ≥ 0which leads to the absence of the multiplier sequence associated
with this constraint. Consequently, the conclusion of [44, Theorem 4.1] does not hold here as the next
example shows.

Example 3.50. Consider

min

x,y∈ℝ
3

x3 s.t. 3 − e
T
y ≤ 2, y ≤ e, x◦y = 0. (3.11)

Let a ∈ ℝ ⧵ {0}. De�ne x̂ ∶= (0, 0, a)T and ŷ ∶= (1, 1, 0)T . Then (x̂ , ŷ) is feasible for (3.11). We now claim
that (x̂ , ŷ) is not an AKKT point of (3.11). Indeed, suppose that it is. Let {(xk , yk)}, {�k} ⊆ ℝ+, {�k} ⊆ ℝ

3

+
,

and {
 k} ⊆ ℝ
3 be the corresponding AKKT sequences. Since 3 − eT ŷ = 1 < 2 and ŷ3 = 0 < 1, it follows

that �k = 0 = �
k

3
∀k ∈ ℕ. Now condition (b) in De�nition 2.3 then implies that {1 + 
 k

3
y
k

3
} → 0 and

{

k

3
x
k

3
} → 0. Since {xk

3
} → x̂3 = a ≠ 0, it follows that {
 k3 } → 0. But this then implies that {
 k

3
y
k

3
} → 0

and hence, {1 + 
 k
3
y
k

3
} → 1. This leads to a contradiction. Note that if we include the constraint y ≥ 0

in (3.11), which turns the problem into (A.1) instead of (1.9), then (x̂ , ŷ) is still feasible for the problem.
Hence, by [44, Theorem 4.1], in the setting of (A.1) the AKKT condition holds at (x̂ , ŷ) whereas for (1.9) it
fails as we have just shown.

Thus, in light of [44, Theorem 4.1] and Example 3.50, the constraint y ≥ 0 seems to have a severe
impact on the behaviour of the sequential optimality conditions associated with the resulting relaxed
reformulation of (1.1). This elucidates the need to look at (1.1) directly in order to derive reliable optim-
ality conditions for (1.1) which are independent of any arti�cial variable and the chosen reformulation.

In contrast to Theorem 3.48, the AKKT condition for (1.9) does not imply CC-AM-stationarity as
the following example which is taken from [44] shows.

Example 3.51. [44, Example 4.2] Consider

min

x∈ℝ
2

x2 s.t. x
2

1
≤ 0, ‖x‖0 ≤ 1 (3.12)

and the associated relaxed reformulation

min

x,y∈ℝ
2

x2 s.t. x
2

1
≤ 0, 1 − y1 − y2 ≤ 0, y ≤ e, x◦y = 0. (3.13)

Let a > 0. Then x̂ ∶= (0, a)
T is feasible for (3.12). The only possible value for ŷ ∈ ℝ

2 in order for (x̂ , ŷ)
to be feasible for (3.13) is (1, 0)T . In [44, Example 4.2] it was shown that (x̂ , ŷ) is not an AW-stationary
point. Thus, by Theorem A.4, x̂ is not a CC-AM-stationary point. On the other hand, (x̂ , ŷ) is an AKKT
point of (3.13). Indeed, we de�ne for each k ∈ ℕ ℝ

2
∋ x

k
∶= x̂ , ℝ2 ∋ yk ∶= (1, −1/k)T , ℝ+ ∋ �k ∶= 0,

ℝ+ ∋ �k ∶= ka, ℝ2+ ∋ �
k
∶= (ka, 0)

T , and ℝ2 ∋ 
 k ∶= (0, k)T . Then we have

(0, 1)
T
+ �k (2x

k

1
, 0)

T
+ 


k

1
(y

k

1
, 0)

T
+ 


k

2
(0, y

k

2
) = (0, 0)

T

and
−�k (1, 1)

T
+ �

k

1
(1, 0)

T
+ �

k

2
(0, 1)

T
+ 


k

1
(x

k

1
, 0)

T
+ 


k

2
(0, x

k

2
) = (0, 0)

T
.

In [23], CC-tailored ACQ and GCQ were introduced by utilising (1.9). Recall from the previous
chapter that for (2.1) CAKKT-regularity implies ACQ, and therefore, GCQ. Hence, ACQ and GCQ are
weaker than CAKKT-regularity. This is however not the case in the context of CC. Note that since
CC-ACQ and CC-GCQ de�ned in [23] are tailored to (1.9) rather than (1.1), their de�nitions depend on
the auxiliary variable y. Let us now recall their de�nitions.

For a given vector x ∈ ℝ
n we de�ne

I1(x) ∶= {i ∈ {1, … , n} ∣ xi = 1} .
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De�nition 3.52. Let (x̂ , ŷ) ∈ Z . The CC-linearisation cone of Z at (x̂ , ŷ) is then given by

L
CC

Z
((x̂ , ŷ)) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(dx , dy ) ∈ ℝ
n
× ℝ

n

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

∇gi(x)
T
dx ≤ 0 ∀i ∈ Ig(x̂),

∇ℎi(x)
T
dx = 0 ∀i = 1, … , p,

−e
T
dy ≤ 0, if n − eT ŷ − s = 0

e
T

i
dy ≤ 0 ∀i ∈ I1(ŷ),

e
T

i
dy = 0 ∀i ∈ I±(x̂),

e
T

i
dx = 0 ∀i ∈ I±(ŷ),

(e
T

i
dx )(e

T

i
dy ) = 0 ∀i ∈ I0(x̂) ∩ I0(ŷ)

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

Note that the de�nition above slightly di�ers from the one given in [23] since we drop the constraint
y ≥ 0 in our relaxed reformulation. Nevertheless, it is easy to see that the results obtained in [23] are
readily applicable to our reformulation as well.

De�nition 3.53. Let (x̂ , ŷ) ∈ Z . We then say that

(a) CC-ACQ holds at (x̂ , ŷ) i� Z ((x̂ , ŷ)) = LCCZ ((x̂ , ŷ));

(b) CC-GCQ holds at (x̂ , ŷ) i� Z ((x̂ , ŷ))◦ = LCCZ ((x̂ , ŷ))
◦.

From [23] we have the following implication

CC-CPLD ⇒ CC-ACQ ⇒ CC-GCQ.

Observe that CC-CAM-regularity does not depend on the auxiliary variable y . Now suppose that
(x̂ , ŷ) is feasible for (1.9). By Theorem 3.44, x̂ is then feasible for (1.1). It was shown in [23, Corollary
3.8] that CC-GCQ holds at (x̂ , ŷ) i� GCQ holds there. The next example shows that CC-AM-regularity,
and therefore also CC-CAM-regularity, may hold at x̂ even if CC-GCQ fails to hold at (x̂ , ŷ).

Example 3.54 ([21, Example 4]). We consider

min

x∈ℝ
2

x1 + x
2

2
s.t. x

2

1
+ (x2 − 1)

2
≤ 1, ‖x‖0 ≤ 1.

Then x̂ ∶= (0, 0)T is the unique global minimiser of the problem. By Remark 3.37, it also satis�es CC-AM-
regularity. On the other hand, if we let ŷ ∶= (0, 1)T , then (x̂ , ŷ) does not satisfy GCQ, and therefore also
CC-GCQ, even though (x̂ , ŷ) is a global minimiser of the corresponding reformulated problem.

To close this section we would like to remark on the relationship between CC-M-stationarity and
another stationarity concept introduced in [21] which is called CC-S-stationarity. Let us now recall the
de�nition of CC-S-stationarity.

De�nition 3.55. Let (x̂ , ŷ) ∈ Z . Then (x̂ , ŷ) is called CC-S-stationary i� there exist multipliers � ∈ ℝ
m,

� ∈ ℝ
p , and 
 ∈ ℝ

n such that

• 0 = ∇f (x̂) +
m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) +

n

∑

i=1


iei ,

• �i ≥ 0, �igi(x̂) = 0 ∀i = 1, … ,m,

• 
i = 0 ∀i ∈ I0(ŷ).

As remarked in [21], CC-S-stationarity corresponds to the KKT condition of (1.9). Suppose now
that (x̂ , ŷ) ∈ Z . By the orthogonality constraint we clearly have I±(x̂) ⊆ I0(ŷ). Hence, if (x̂ , ŷ) is a CC-S-
stationary point, then it is also CC-M-stationary. The converse is not true in general, see [21, Example
4]. However, if (x̂ , ŷ) is CC-M-stationary, then we can simply replace ŷ with another auxiliary variable
ẑ ∈ ℝ

n such that (x̂ , ẑ) is CC-S-stationary as the next proposition shows.
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Proposition 3.56. Let (x̂ , ŷ) ∈ Z . If (x̂ , ŷ) is a CC-M-stationary point, then there exists ẑ ∈ ℝ
n such that

(x̂ , ẑ) is CC-S-stationary.

Proof. By Theorem 3.44 x̂ is feasible for (1.1). Now de�ne ẑ ∈ ℝ
n such that

ẑi ∶=

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).

Then (x̂ , ẑ) ∈ Z . By assumption there exists (�, �, 
 ) ∈ ℝ
m
× ℝ

p
× ℝ

n such that (x̂ , ŷ) is CC-M-stationary.
Now since I±(x̂) = I0(ẑ), then by De�nition 3.55 we can conclude that (x̂ , ẑ) is CC-S-stationary with
(�, �, 
 ) from before as a corresponding multiplier.

In [23, Theorem 4.2] it was shown that if (x̂ , ŷ) ∈ ℝ
n
× ℝ

n is a local minimiser of (1.9) such that
CC-GCQ holds at (x̂ , ŷ), then it is a CC-S-stationary point. By Theorem 3.9, Theorem 3.27, and Propos-
ition 3.56 we immediately obtain the following result for CC-CAM-regularity.

Corollary 3.57. Let x̂ ∈ ℝ
n be a local minimiser of (1.1) such that CC-CAM-regularity holds at x̂ . Then

there exists ŷ ∈ ℝ
n such that (x̂ , ŷ) is a CC-S-stationary point of (1.9).

3.4 Numerical Methods

The relaxed reformulation (1.9) opens up the possibilities of applying methods developed for (2.1) and
MPCC to approximate a solution of (1.1). Of particular interests to us are the augmented Lagrangian
method from [4, 15], the Kanzow-Schwartz regularisation method from [40], and the Ste�ensen-Ulbrich
regularisation method from [54].

3.4.1 An Augmented Lagrangian Method

In this subsection we consider the applicability of an augmented Lagrangian method as described in
[4, 15] for (1.9). Let us �rst describe the algorithm. For a given penalty parameter � > 0 the Powell-
Hestenes-Rockafellar (PHR) augmented Lagrangian for (1.9) is de�ned as

L((x, y), �, �, � , �, 
 ; �) ∶= f (x) + ��((x, y), �, �, � , �, 
 ; �)

where (�, �, � , �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ+ × ℝ

n

+
× ℝ

n and

�((x, y), �, �, � , �, 
 ; �) ∶=

1

2

‖
‖
‖
‖
‖
‖

(

(g(x) +
�

� )+
, ℎ(x) +

�

�
,
(
n − e

T
y − s +

�

�)
+

,

(y − e +
�

� )+
, x◦y +




�

)

‖
‖
‖
‖
‖
‖

2

2

is the shifted quadratic penalty term. The algorithm is then given as follows.

Algorithm 3.58 (Augmented Lagrangian Method).

(S0) Let �max > 0, �min < �max, �max > 0, �max > 0, 
min < 
max, � ∈ (0, 1), � > 1,
̄
�
1
∈ [0, �max]

m
, �̄

1
∈

[�min, �max]
p
,
̄
�1 ∈ [0, �max], �̄

1
∈ [0, �max]

n
, 
̄

1
∈ [
min, 
max]

n
, �1 > 0, and {�k} ⊆ ℝ+ such that

{�k} ↓ 0. Set k ← 1.

(S1) Compute (xk , yk) as an approximate solution of

min
x,y

L((x, y),
̄
�
k
, �̄

k
,
̄
�k , �̄

k
, 
̄

k
; �k)

satisfying
‖∇L((x

k
, y

k
),
̄
�
k
, �̄

k
,
̄
�k , �̄

k
, 
̄

k
; �k)‖ ≤ �k . (3.14)
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(S2) Update the approximate multipliers:

• �k
i
∶= max{0, �kgi(x

k
) +

̄
�
k

i
} ∀i = 1, … ,m,

• �k
i
∶= �kℎi(x

k
) + �̄

k

i
∀i = 1, … , p,

• �k ∶= max{0, �k(n − eTyk − s) + ̄
�k},

• �k
i
∶= max{0, �k(y

k

i
− 1) + �̄

k

i
} ∀i = 1, … , n,

• 
 k
i
∶= �kx

k

i
y
k

i
+ 
̄

k

i
∀i = 1, … , n.

(S3) Update the penalty parameter:
De�ne

• U k

i
∶= min

{

−gi(x
k
),

̄
�
k

i

�k

}

∀i = 1, … ,m,

• Vk ∶= min
{

−(n − e
T
y
k
− s),

̄
�k

�k

}

,

• W k

i
∶= min

{

−(y
k

i
− 1),

�̄
k

i

�k

}

∀i = 1, … , n.

If k = 1 or

max

{

‖U
k
‖, ‖ℎ(x

k
)‖, ‖Vk‖,

‖W
k
‖, ‖x

k
◦y

k
‖

}

≤ � max

{

‖U
k−1

‖, ‖ℎ(x
k−1
)‖, ‖Vk−1‖,

‖W
k−1

‖, ‖x
k−1

◦y
k−1

‖

}

, (3.15)

set �k+1 = �k . Otherwise set �k+1 = ��k .

(S4) Update the safeguarded multipliers:
Compute ̄

�
k+1

∈ [0, �max]
m
, �̄

k+1
∈ [�min, �max]

p , ̄
�k+1 ∈ [0, �max], �̄

k+1
∈ [0, �max]

n
, 
̄

k+1
∈

[
min, 
max]
n.

(S5) Set k ← k + 1 and go to (S1).

Theorem 3.59. Suppose that the sequence {xk} generated by Algorithm 3.58 has a limit point x̂ ∈ ℝ
n,

i.e., {xk} converges on a subsequence to x̂ . Then the corresponding subsequence of {yk} is bounded. In
particular we can then extract a limit point (x̂ , ŷ) ∈ ℝ

n
× ℝ

n of {(xk , yk)}.

Proof. Let x̂ ∈ ℝ
n be a limit point of {xk}. By passing to a subsequence we can simplify the notation

and assume w.l.o.g. that {xk} → x̂ . De�ne for each k ∈ ℕ

B
k
∶= ∇yL((x

k
, y

k
),
̄
�
k
, �̄

k
,
̄
�k , �̄

k
, 
̄

k
; �k) = −�ke +

n

∑

i=1

�
k

i
ei +

n

∑

i=1



k

i
x
k

i
ei , (3.16)

where the last equality follows from (S2). By (3.14) we know that {Bk} → 0.
{y

k
} is bounded above:

We claim that
∀i ∈ {1, … , n}∃ci ∈ ℝ∀k ∈ ℕ ∶ y

k

i
≤ ci . (3.17)

Suppose not. Then
∃j ∈ {1, … , n}∀c ∈ ℝ∃k ∈ ℕ ∶ c < y

k

j
.

We can thus construct a subsequence {ykl
j
} such that {ykl

j
} → ∞. Consequently we can assume w.l.o.g.

that ykl
j
> 1 for each l ∈ ℕ. Now observe that by de�nition {�k} is a nondecreasing sequence. In

particular we then obtain for each l ∈ ℕ that

0 < �1 ≤ �kl
(3.18)

and therefore
�1(y

kl

j
− 1) + �̄

kl

j
≤ �kl

(y
kl

j
− 1) + �̄

kl

j
.
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Since �̄kl
j

is by de�nition a bounded sequence, we then obtain that

{�1(y
kl

j
− 1) + �̄

kl

j
} → ∞.

Hence, it follows that
{�kl

(y
kl

j
− 1) + �̄

kl

j
} → ∞. (3.19)

We can then assume w.l.o.g. that for each l ∈ ℕ we have

�kl
(y

kl

j
− 1) + �̄

kl

j
> 0.

This implies that
�
kl

j
= �kl

(y
kl

j
− 1) + �̄

kl

j
∀l ∈ ℕ

and hence, by (3.19), we have {�kl
j
} → ∞. Observe that for each l ∈ ℕ we have



kl

j
x
kl

j
= (�kl

x
kl

j
y
kl

j
+ 
̄

kl

j
)x

kl

j
= �kl

(x
kl

j
)
2
y
kl

j
+ 
̄

kl

j
x
kl

j
≥ 
̄

kl

j
x
kl

j
.

From (3.16) we then obtain for each l ∈ ℕ that

B
kl

j
= −�kl

+ �
kl

j
+ 


kl

j
x
kl

j
≥ −�kl

+ �
kl

j
+ 
̄

kl

j
x
kl

j

which is equivalent to
�kl

≥ �
kl

j
+ 
̄

kl

j
x
kl

j
− B

kl

j
.

Since {Bkl
j
} → 0 and {
̄ kl

j
x
kl

j
} is bounded we then have

{�
kl

j
+ 
̄

kl

j
x
kl

j
− B

kl

j
} → ∞.

Consequently we have {�kl} → ∞. By the de�nition of {�kl} we can then assume w.l.o.g. that

�kl
= �kl

(n − e
T
y
kl
− s) +

̄
�kl

∀l ∈ ℕ

and hence,
{�kl

(n − e
T
y
kl
− s) +

̄
�kl
} → ∞.

Since { ̄�kl} is a bounded sequence we then obtain

{�kl
(n − e

T
y
kl
− s)} → ∞.

We can thus assume w.l.o.g. that for each l ∈ ℕ we have

{�kl
(n − e

T
y
kl
− s)} > 0

and therefore, since �kl > 0,
n − e

T
y
kl
− s > 0. (3.20)

Observe that
n − e

T
y
kl
− s = n −

n

∑

i=1,i≠j

y
kl

i
− y

kl

j
− s.

We now claim that
∃i ∈ {1, … , n} ⧵ {j} ∶ {y

kl

i
} is unbounded below. (3.21)

Suppose not. Then
∀i ∈ {1, … , n} ⧵ {j}∃di ∈ ℝ∀l ∈ ℕ ∶ di ≤ y

kl

i
.
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We thus have for each l ∈ ℕ that
−

n

∑

i=1,i≠j

y
kl

i
≤ −

n

∑

i=1,i≠j

di

and therefore,

n −

n

∑

i=1,i≠j

y
kl

i
− y

kl

j
− s ≤ n −

n

∑

i=1,i≠j

di − y
kl

j
− s.

Since {ykl
j
} → ∞ we then have

{

n −

n

∑

i=1,i≠j

di − y
kl

j
− s

}

→ −∞

and consequently
{

n −

n

∑

i=1,i≠j

y
kl

i
− y

kl

j
− s

}

→ −∞

which implies that for all l ∈ ℕ large enough we have

n − e
T
y
kl
− s = n −

n

∑

i=1,i≠j

y
kl

i
− y

kl

j
− s < 0.

But this contradicts (3.20). Hence (3.21) holds. For this index i we can then construct a subsequence
{y

klt } such that {yklt } → −∞. We can then assume w.l.o.g. that

y
klt < 0 ∀t ∈ ℕ.

From (3.18) we then obtain for each t ∈ ℕ that

�klt
(y

klt

i
− 1) + �̄

klt

i
≤ �1(y

klt

i
− 1) + �̄

klt

i
.

Since {�̄}klt
i

is a bounded sequence, we then have

{�1(y
klt

i
− 1) + �̄

klt

i
} → −∞.

Consequently we then obtain that

{�klt
(y

klt

i
− 1) + �̄

klt

i
} → −∞.

Therefore, we can assume w.l.o.g. that

�klt
(y

klt

i
− 1) + �̄

klt

i
< 0 ∀t ∈ ℕ.

This implies that
�
klt

i
= 0 ∀t ∈ ℕ

and hence, we obtain from (3.16) that

B
klt

i
= −�klt

+ �
klt

i
+ 


klt

i
x
klt

i

= −�klt
+ 


klt

i
x
klt

i

= −�klt
+ (�klt

x
klt

i
y
klt

i
+ 
̄

klt

i
)x

klt

i

= −�klt
+ �klt

(x
klt

i
)
2
y
klt

i
+ 
̄

klt

i
x
klt

i
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≤ −�klt
+ 
̄

klt

i
x
klt

i
.

Since {
̄ klt
i
x
klt

i
} is a bounded sequence and {�kl} → ∞ we then have

{B
klt

i
} → −∞

which leads to a contradiction. Thus, (3.17) holds, which immediately implies that {yk} is bounded
above.
{y

k
} is bounded below:

We claim that
∀i ∈ {1, … , n}∃di ∈ ℝ∀k ∈ ℕ ∶ di ≤ y

k

i
. (3.22)

Suppose not. Then
∃j ∈ {1, … , n}∀d ∈ ℝ∃k ∈ ℕ ∶ y

k

j
< d.

We can thus construct a subsequence {ykl
j
} such that {ykl

j
} → −∞. Just like in the previous case, we

can then assume w.l.o.g. that for each l ∈ ℕ we have

y
kl

j
< 0 ∧ �

kl

j
= 0.

From (3.16) we then obtain

B
kl

j
= −�kl

+ �
kl

j
+ 


kl

j
x
kl

j

= −�kl
+ 


kl

j
x
kl

j

= −�kl
+ (�kl

x
kl

j
y
kl

j
+ 
̄

kl

j
)x

kl

j

= −�kl
+ �kl

(x
kl

j
)
2
y
kl

j
+ 
̄

kl

j
x
kl

j

≤ −�kl
+ 
̄

kl

j
x
kl

j

which is equivalent to
�kl

≤ 
̄
kl

j
x
kl

j
− B

kl

j
.

Since {
̄ kl
j
x
kl

j
} is bounded and {B

kl

j
} → 0, the sequence {
̄ kl

j
x
kl

j
− B

kl

j
} is bounded. This impies in

particular that {�kl} is bounded above, i.e.

∃r ∈ ℝ∀l ∈ ℕ ∶ �kl
≤ r. (3.23)

On the other hand, we have shown that

∀i ∈ {1, … , n}∃ci ∈ ℝ∀k ∈ ℕ ∶ y
k

i
≤ ci .

Consequently we have for each l ∈ ℕ that

−

n

∑

i=1,i≠j

ci ≤ −

n

∑

i=1,i≠j

y
kl

i

and hence,

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s ≤ n −

n

∑

i=1

y
kl

i
− s. (3.24)

Since {ykl
i
} → −∞, we then have

{

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s

}

→ ∞. We can thus assume w.l.o.g. that

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s > 0 for each l ∈ ℕ. From (3.18) and (3.24) we then obtain

0 < �1
(

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s

)

≤ �kl
(

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s

)

≤ �kl
(

n −

n

∑

i=1

y
kl

i
− s

)
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and therefore,

�1
(

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s

)

+
̄
�kl

≤ �kl
(

n −

n

∑

i=1

y
kl

i
− s

)

+
̄
�kl
.

Since { ̄�kl} is bounded, then

{

�1
(

n −

n

∑

i=1,i≠j

ci − y
kl

j
− s

)

+
̄
�kl

}

→ ∞. Thus, we have

{

�kl
(

n −

n

∑

i=1

y
kl

i
− s

)

+
̄
�kl

}

→ ∞. (3.25)

We can then assume w.l.o.g. that �kl
(

n −

n

∑

i=1

y
kl

i
− s

)

+
̄
�kl

> 0 for each l ∈ ℕ. By the de�nition of �kl

we then have

�kl
= �kl

(

n −

n

∑

i=1

y
kl

i
− s

)

+
̄
�kl

∀l ∈ ℕ.

Thus, we obtain from (3.25) that {�kl} → ∞ which contradicts (3.23). Hence, (3.22) holds which imme-
diately implies that {yk} is bounded below.

To measure the infeasibility of a point (x̂ , ŷ) ∈ ℝ
n
× ℝ

n for (1.9) we consider the unshifted quadratic
penalty term

�0,1((x, y)) ∶= �((x, y), 0, 0, 0, 0, 0; 1).

Clearly (x̂ , ŷ) is feasible for (1.9) i� �0,1((x̂ , ŷ)) = 0. This in turn implies that (x̂ , ŷ) minimises �0,1((x, y)).
In particular we then ought to have ∇�0,1((x̂ , ŷ)) = 0.

Theorem3.60. Let (x̂ , ŷ) ∈ ℝ
n
×ℝ

n be a limit point of the sequence {(xk , yk)} generated by Algorithm 3.58.
Then ∇�0,1((x̂ , ŷ)) = 0.

We omit the proof since it is essentially the same as [15, Theorem 6.3].
Suppose that the sequence {xk} generated by Algorithm 3.58 has a limit point x̂ . Theorem 3.59 then

suggests that we can extract a limit point (x̂ , ŷ) of the sequence {(xk , yk)}. Let us �rst consider the case
where the generalised Kurdyka-Łojasiewicz (GKL) inequality is satis�ed by �0,1 at a feasible limit point
(x̂ , ŷ) of Algorithm 3.58.

Some comments on the GKL inequality are due. The inequality was �rst introduced in [5]. A
continuously di�erentiable function F ∈ C1(ℝn, ℝ) is said to satisfy the GKL inequality at x̂ ∈ ℝ

n i� there
exist � > 0 and  ∶ B� (x̂) → ℝ such that lim

x→x̂

 (x) = 0 and for each x ∈ B� (x̂) we have |F (x) − F (x̂)| ≤

 (x) ‖∇F (x)‖. According to [5, page 3546], the GKL inequality is a relatively mild condition. For example
it is satis�ed at every feasible point of (2.1) provided that all constraint functions are analytic. Now if
we view (1.9) as a standard NLP, then all constraints involving the auxiliary variable y are polynomial
in nature and therefore analytic. Thus, if the nonlinear constraints gi and ℎi are analytic, the GKL
inequality is then automatically satis�ed. The following result is an immediate consequence of [5,
Theorem 5.1] and Theorem 3.48.

Theorem 3.61. Let (x̂ , ŷ) ∈ ℝ
n
×ℝ

n be a limit point of the sequence {(xk , yk)} generated by Algorithm 3.58
that is feasible for (1.9). Assume that �0,1 satis�es the GKL inequality at (x̂ , ŷ), i.e., there exist � > 0 and
 ∶ B� ((x̂ , ŷ)) → ℝ such that lim

(x,y)→(x̂,ŷ)

 ((x, y)) = 0 and for each (x, y) ∈ B� ((x̂ , ŷ)) we have

|�0,1((x, y)) − �0,1((x̂ , ŷ))| ≤  ((x, y))‖∇�0,1((x, y))‖. (3.26)

Then x̂ is a CC-CAM-stationary point.
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As a direct consequence of Theorem 3.61 and Theorem 3.35, we obtain the following

Corollary 3.62. If, in addition to the assumptions in Theorem 3.61, x̂ also satis�es CC-CAM-regularity,
then x̂ is CC-M-stationary.

Proposition 3.56 then implies the following.

Corollary 3.63. Under the assumptions of Corollary 3.62, there exists ẑ ∈ ℝ
n such that (x̂ , ẑ) is CC-S-

stationary.

Suppose now that we do not assume that the GKL inequality is satis�ed by �0,1 at a feasible limit
point (x̂ , ŷ) of Algorithm 3.58. By [15, Theorem 6.2] (x̂ , ŷ) is then still an AKKT point of (1.9). Unfortu-
nately, due to Example 3.51, in general we cannot expect x̂ to be a CC-AM-stationary point. Moreover,
as remarked in [23, Section 3], ACQ, and therefore, by [7, Theorem 4.4], AKKT regularity, are usually
violated at a feasible point of (1.9). In the context of MPCC, the authors of [38] proved the global con-
vergence of the augmented Lagrangian method towards an MPCC-C-stationarity point under MPCC-
LICQ. Here we would instead employ the CC-analogue of the quasinormality CQ [12], which is weaker
than CC-CPLD, to prove the global convergence of the method towards a CC-M-stationary point. Note
that even though the reformulated problems can be viewed as MPCC if nonnegativity constraints x ≥ 0

are present [23], we would not assume the presence of nonnegativity constraints here making our res-
ults applicable in the general setting. Moreover, even in the presence of nonnegativity constraints, it
was shown in [23, Remark 5.7(f)] that MPCC-LICQ, which as mentioned before was used to guarantee
convergence to a stationary point in [38], is often violated at points of interests for the reformulated
problems. Hence, our result is not a simple corollary of [38].

Utilising (3.10) let us now introduce a CC-tailored quasinormality condition.

De�nition 3.64. Let x̂ ∈ ℝ
n be feasible for (1.1). Then x̂ satis�es the CC-quasinormality condition i�

@( ̂�, �̂, 
̂ ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n
⧵ {(0, 0, 0)} such that

(a) 0 =
m

∑

i=1

̂
�i∇gi(x̂) +

p

∑

i=1

�̂i∇ℎi(x̂) +

n

∑

i=1


̂iei ,

(b) ∀i ∉ Ig(x̂) ∶ ̂
�i = 0,

(c) ∀i ∈ I±(x̂) ∶ 
̂i = 0,

(d) ∃{xk} ⊆ ℝ
n with {xk} → x̂ such that for each k ∈ ℕ we have

• ∀i ∈ {1, … ,m} with ̂
�i > 0 ∶

̂
�igi(x

k
) > 0,

• ∀i ∈ {1, … , p} with �̂i ≠ 0 ∶ �̂iℎi(x
k
) > 0,

• ∀i ∈ {1, … , n} with 
̂i ≠ 0 ∶ 
̂ix
k

i
> 0.

Obviously CC-quasinormality corresponds to the quasinormality CQ of (3.10). Furthermore, by [3],
CC-CPLD then implies CC-quasinormality.

Theorem 3.65. Let (x̂ , ŷ) ∈ ℝ
n
× ℝ

n be a limit point of {(xk , yk)} such that (x̂ , ŷ) is feasible for (1.9) and
x̂ satis�es CC-quasinormality. Then (x̂ , ŷ) is a CC-M-stationary point.

Proof. To simplify the notation, we assume, throughout this proof, that the entire sequence {(xk , yk)}
converges to (x̂ , ŷ). For each k ∈ ℕ we de�ne

A
k
∶= ∇xL((x

k
, y

k
),
̄
�
k
, �̄

k
,
̄
�k , �̄

k
, 
̄

k
; �k)

= ∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
y
k

i
ei ,
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where the last equality follows from (S2), and Bk be as in (3.16). By (3.14) and since {�k} ↓ 0 we know
that {Ak} → 0 and {Bk} → 0. Observe that by (S2) we have {�k} ⊆ ℝ

m

+
. Furthermore, by (S3) the

sequence of penalty parameters {�k} is nondecreasing. In particular we then have

�k ≥ �1 > 0 ∀k ∈ ℕ. (3.27)

Let us now di�erentiate between 2 cases.
Case 1: {�k} is bounded.
Observe that by (S3), the boundedness of {�k} implies that

∃K ∈ ℕ∀k ≥ K ∶ �k = �K .

Now let us take a closer look at (S2). The boundedness of {�k} immediately implies that

• ∀i ∈ {1, … , p} ∶ {�
k

i
} is bounded,

• ∀i ∈ {1, … , n} ∶ {

k

i
y
k

i
} is bounded.

By passing to subsequences we can assume w.l.o.g. that these sequences converge, i.e.

• ∀i ∈ {1, … , p}∃�̂i ∶ {�
k

i
} → �̂i ,

• ∀i ∈ {1, … , n}∃
̂i ∶ {

k

i
y
k

i
} → 
̂i .

Suppose now that i ∈ I±(x̂). By the feasibility of (x̂ , ŷ) we have ŷi = 0. Since in this case we have
{y

k

i
} → 0, it follows that


̂i = lim

k→∞



k

i
y
k

i
= lim

k→∞

�kx
k

i
(y

k

i
)
2
+ lim

k→∞


̄
k

i
y
k

i
= �K ⋅ 0 + lim

k→∞


̄
k

i
y
k

i
= 0.

Now observe that for each i ∈ {1, … ,m} we have

0 ≤ �
k

i
≤ |�kgi(x

k
) +

̄
�
k

i
| ∀k ∈ ℕ.

Thus, {�k
i
} is bounded as well and has a convergent subsequence. By passing to subsequences we can

assume w.l.o.g. that
∀i ∈ {1, … ,m}∃

̂
�i ∶ {�

k

i
} →

̂
�i ≥ 0.

Now the boundedness of {�k} and (S3) also imply that
{
‖
‖
‖
U
k‖
‖
‖

}

→ 0. Let i ∉ Ig(x̂). By de�nition,

{
̄
�
k
} is bounded. Thus, by (3.27)

{
̄
�
k

i

�k

}

is bounded as well and therefore has a convergent subsequence.

Assume w.l.o.g. that
{

̄
�
k

i

�k

}

converges and denote with ai its limit. We then have

0 = lim

k→∞

‖
‖
‖
U
k

i

‖
‖
‖
= ‖min{−gi(x̂), ai}‖ ⇒ min{−gi(x̂), ai} = 0.

Since −gi(x̂) > 0 we then have ai = 0. This then implies that
{

gi(x
k
) +

̄
�
k

i

�k

}

→ gi(x̂) + ai = gi(x̂) < 0.

Hence, we can assume w.l.o.g. that

gi(x
k
) +

̄
�
k

i

�k

< 0 ∀k ∈ ℕ.
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By (3.27) we then obtain

�kgi(x
k
) +

̄
�
k

i
= �k

(
gi(x

k
) +

̄
�
k

i

�k
)
< 0 ∀k ∈ ℕ.

Thus, by (S2) we have
�
k

i
= max

{

0, �kgi(x
k
) +

̄
�
k

i

}

= 0 ∀k ∈ ℕ. (3.28)

As its limit we then have ̂
�i = 0. By the de�nition of Ak , letting k → ∞ then yields

0 = ∇f (x̂) +

m

∑

i=1

̂
�i∇gi(x̂) +

p

∑

i=1

�̂i∇ℎi(x̂) +

n

∑

i=1


̂iei

and we conclude that (x̂ , ŷ) is a CC-M-stationary point.
Case 2: {�k} is unbounded.
Since {�k} is nondecreasing, we have {�k} → ∞. Now de�ne for each k ∈ ℕ


̃
k

i
∶= 


k

i
y
k

i
∀i ∈ {1, … , n}.

We claim that
{

(�
k
, �

k
, 
̃

k
, �

k
, �

k

)

}

is bounded. Suppose not. By passing to a subsequence we can as-
sume w.l.o.g. that

{
‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

}

→ ∞. Consequently, the normed sequence
{
(�

k
,�
k
,
̃
k
,�
k
,�
k
)

‖(�
k
,�
k
,
̃
k
,�
k
,�
k
)‖

}

is bounded with a constant length 1. Therefore, it has a convergent subsequence. Again, by passing to
a subsequence we can assume w.l.o.g. that the whole sequence converges, i.e.

∃ (
̃
�, �̃, 
̃ ,

̃
� , �̃) ≠ 0 ∶

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(�
k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

⎫
⎪
⎪

⎬
⎪
⎪
⎭

→ (
̃
�, �̃, 
̃ ,

̃
� , �̃) .

Observe that for each i ∈ {1, … ,m} we have

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

≥ 0 ∀k ∈ ℕ.

As such
̃
�i ≥ 0 ∀i ∈ {1, … ,m} (3.29)

Now suppose that i ∉ Ig(x̂). Then gi(x̂) < 0. By de�nition,
{
̄
�
k

i

}

is a bounded sequence. Consequently
we have

{

�kgi(x
k
) +

̄
�
k

i

}

→ −∞.

We can thus assume w.l.o.g. that
�kgi(x

k
) +

̄
�
k

i
< 0 ∀k ∈ ℕ

which immediately implies that
�
k

i
= 0 ∀k ∈ ℕ.

As such we have
̃
�i = lim

k→∞

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

0 = 0. (3.30)

Now suppose that i ∈ I±(x̂). Since (x̂ , ŷ) is feasible, then we have ŷi = 0. Furthermore, by de�nition
{�̄

k

i
} is bounded. Consequently we have

{

�k (y
k

i
− 1) + �̄

k

i

}

→ −∞.
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We can thus assume w.l.o.g. that

�k (y
k

i
− 1) + �̄

k

i
< 0 ∀k ∈ ℕ

which then implies that
�
k

i
= 0 ∀k ∈ ℕ. (3.31)

Now we claim that 
̃i = 0. Suppose not. Since
{


̃
k

i

‖(�
k
,�
k
,
̃
k
,�
k
,�
k
)‖

}

→ 
̃i we can then assume w.l.o.g. that

̃
k

i
≠ 0 ∀k ∈ ℕ. Since 
̃ k

i
= 


k

i
y
k

i
, this then implies that yk

i
≠ 0 ∀k ∈ ℕ. We then have

B
k

i
= −�k + �

k

i
+ 


k

i
x
k

i

(3.31)
= −�k + 


k

i
x
k

i
= −�k +


̃
k

i

y
k

i

x
k

i
. (3.32)

Rearranging and dividing (3.32) by ‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

then gives us

B
k

i
+ �k

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

=


̃
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

⋅ x
k

i
⋅

1

y
k

i

. (3.33)

Observe that the left hand side of (3.33) converges. On the other hand, since
⎧
⎪
⎪

⎨
⎪
⎪
⎩


̃
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

x
k

i

⎫
⎪
⎪

⎬
⎪
⎪
⎭

→ 
̃i x̂i ≠ 0

and {yk
i
} → 0, the right hand side diverges. This leads to a contradiction. Hence we have


̃i = 0 ∀i ∈ I±(x̂). (3.34)

Now we claim that ( ̃�, �̃, 
̃ ) ≠ 0. Suppose not. Then since (
̃
�, �̃, 
̃ ,

̃
� , �̃) ≠ 0, it follows that ( ̃� , �̃) ≠ 0.

Suppose now that i ∈ I0(ŷ). Since {y i
k
} → ŷi and {�̄k

i
} is a bounded sequence, we then have

{

�k (y
k

i
− 1) + �̄

k

i

}

→ −∞.

Just like before, we can then assume w.l.o.g. that

�
k

i
= 0 ∀k ∈ ℕ (3.35)

and thus,

�̃i = lim

k→∞

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

0 = 0.

Hence, we have
(� , �i (i ∈ I±(ŷ))) ≠ 0. (3.36)

Now let i ∈ I±(ŷ). Since ŷi ≠ 0 and {yk
i
} → ŷi , we can assume w.l.o.g. that yk

i
≠ 0 ∀k ∈ ℕ. We then

have for each k ∈ ℕ that
B
k

i
= −�k + �

k

i
+ 


k

i
x
k

i
= −�k + �

k

i
+


̃
k

i

y
k

i

x
k

i
. (3.37)

Rearranging and dividing (3.37) by ‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

then yields

B
k

i
+ �k

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

=

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

+


̃
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

⋅ x
k

i
⋅

1

y
k

i

. (3.38)
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By assumption, 
̃i = 0. Consequently, letting k → ∞ in (3.38) yields

̃
� = �i + 0 ⋅ x̂i ⋅

1

ŷi

= �̃i . (3.39)

From (3.36) we then obtain
̃
� ≠ 0 ∧ �̃i =

̃
� ≠ 0 ∀i ∈ I±(ŷ).

Observe that since by de�nition �k ≥ 0 ∀k ∈ ℕ and
{

�k

‖(�
k
,�
k
,
̃
k
,�
k
,�
k
)‖

}

→
̃
� , it follows that ̃� ≥ 0. Thus

we have ̃
� > 0. Furthermore, we can then assume w.l.o.g. that �k > 0 ∀k ∈ ℕ. This implies that

�k = �k (n − e
T
y
k
− s) +

̄
�k .

We then have

0 <
̃
� = lim

k→∞

�k

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�k (n − e
T
y
k
− s)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

+ lim

k→∞

̄
�k

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�k (n − e
T
y
k
− s)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

,

since { ̄�k} is bounded by de�nition. Consequently we can assume w.l.o.g. that

�k (n − e
T
y
k
− s) > 0 ∀k ∈ ℕ

and therefore, since �k > 0,
n − e

T
y
k
− s > 0 ∀k ∈ ℕ. (3.40)

By assumption (x̂ , ŷ) is feasible and hence, n−eT ŷ −s ≤ 0. Thus, we obtain from (3.40) that n−eTyk −s >
n − e

T
ŷ − s and therefore,

e
T
ŷ > e

T
y
k

∀k ∈ ℕ. (3.41)

Furthermore, since ̃
� > 0, by (3.39) we also have that �̃i > 0 ∀i ∈ I±(ŷ). Now since

{

�
k

i

‖(�
k
,�
k
,
̃
k
,�
k
,�
k
)‖

}

→

�̃i , we can then assume w.l.o.g. that �k
i
> 0 ∀k ∈ ℕ. This then implies that

�
k

i
= �k (y

k

i
− 1) + �̄

k

i
∀k ∈ ℕ.

We then have

0 < �̃i = lim

k→∞

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�k (y
k

i
− 1)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

+ lim

k→∞

�̄
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�k (y
k

i
− 1)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

,

since {�̄k
i
} is bounded by de�nition. Hence, we can assume w.l.o.g. that

�k(y
k

i
− 1) > 0 ∀k ∈ ℕ
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and therefore, since �k > 0 we have
y
k

i
> 1 ∀k ∈ ℕ. (3.42)

Now by the feasibility of (x̂ , ŷ) we have ŷi ≤ 1 ∀i ∈ {1, … , n}. From (3.42) we then obtain

ŷi < y
k

i
∀i ∈ I±(ŷ)∀k ∈ ℕ. (3.43)

Now we claim that
∀k ∈ ℕ∃jk ∈ I0(ŷ) ∶ y

k

jk
≤ 0. (3.44)

Suppose not. Then

∃l ∈ ℕ∀i ∈ I0(ŷ) ∶ 0 < y
l

i
⇔ ∃l ∈ ℕ∀i ∈ I0(ŷ) ∶ ŷi < y

l

i
.

From (3.43) we then obtain for l that

ŷi < y
l

i
∀i ∈ {1, … , n}

and hence,
e
T
ŷ < e

T
y
l

which contradicts (3.41). Thus, (3.44) holds. Since {jk} ⊆ I0(ŷ) and I0(ŷ) is a �nite set, then there exists
j ∈ I0(ŷ) such that j = jk in�nitely often. By passing to a subsequence, we can therefore assume w.l.o.g.
that j = jk ∀k ∈ ℕ. Now since j ∈ I0(ŷ), by (3.35) we have �k

j
= 0 ∀k ∈ ℕ and hence,

B
k

j
= −�k + 


k

j
x
k

j
⇔ B

k

j
+ �k = 


k

j
x
k

j
.

Since yk
j
≤ 0 we then have



k

j
x
k

j
= (�kx

k

j
y
k

j
+ 
̄

k

j ) x
k

j
= �k(x

k

j
)
2
y
k

j
+ 
̄

k

j
x
k

j
≤ 
̄

k

j
x
k

j
.

Consequently we have
B
k

j
+ �k ≤ 
̄

k

j
x
k

j

and therefore,
B
k

j
+ �k

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

≤


̄
k

j
x
k

j

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

.

Since {
̄ k
j
x
k

j
} is bounded, letting k → ∞ then yields

0 < � ≤ 0,

which leads to a contradiction. Hence we have

(
̃
�, �̃, 
̃ ) ≠ 0.

Dividing Ak by ‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

and letting k → ∞ then yields

0 =

m

∑

i=1

̃
�i∇gi(x̂) +

p

∑

i=1

�̃i∇ℎi(x̂) +

n

∑

i=1


̃iei

where ( ̃�, �̃, 
̃ ) ≠ 0 and by (3.29), (3.30), (3.34) ̃� ∈ ℝ
m

+
, ∀i ∉ Ig(x̂) ∶ ̃

�i = 0, as well as ∀i ∈ I±(x̂) ∶ 
̃i = 0.
Now suppose that i ∈ {1, … ,m} such that ̃�i > 0. Since

{

�
k

i

‖(�
k
,�
k
,
̃
k
,�
k
,�
k
)‖

}

→
̃
�i , we can assume

w.l.o.g. that �k
i
> 0 ∀k ∈ ℕ and thus, �k

i
= �kgi(x

k
) +

̄
�
k

i
. Consequently we have

0 <
̃
�i = lim

k→∞

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖
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= lim

k→∞

�kgi(x
k
)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

+ lim

k→∞

̄
�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�kgi(x
k
)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

by the boundedness of { ̄�k
i
}. Hence, we can assume w.l.o.g. that

�kgi(x
k
) > 0 ∀k ∈ ℕ

and therefore, since �k > 0
gi(x

k
) > 0 ∀k ∈ ℕ.

This then implies that
̃
�igi(x

k
) > 0 ∀k ∈ ℕ.

Now let i ∈ {1, … , p} such that �̃i ≠ 0. Assume w.l.o.g. that �̃i > 0. The other case can be handled
analogously. Here we have by the boundedness of {�̄k

i
} that

0 < �̃i = lim

k→∞

�
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�kℎi(x
k
)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

+ lim

k→∞

�̄
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�kℎi(x
k
)

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

.

Hence, we can assume w.l.o.g. that
�kℎi(x

k
) > 0 ∀k ∈ ℕ

and therefore, since �k > 0
ℎi(x

k
) > 0 ∀k ∈ ℕ.

This then implies that
�̃iℎi(x

k
) > 0 ∀k ∈ ℕ.

Suppose now that i ∈ {1, … , n} such that 
̃i ≠ 0. Assume w.l.o.g. that 
̃i > 0. The other case can be
handled analogously. By the boundedness of {
̄ k

i
} that

0 < 
̃i = lim

k→∞


̃
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞



k

i
y
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

(�kx
k

i
y
k

i
+ 
̄

k

i
)y

k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�kx
k

i
(y

k

i
)
2

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

+ lim

k→∞


̄
k

i
y
k

i

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

= lim

k→∞

�kx
k

i
(y

k

i
)
2

‖
‖
‖
(�

k
, �

k
, 
̃

k
, �

k
, �

k

)

‖
‖
‖

.



48 CHAPTER 3. CARDINALITY CONSTRAINED OPTIMISATION PROBLEMS

Hence, we can assume w.l.o.g. that

�kx
k

i
(y

k

i
)
2
> 0 ∀k ∈ ℕ.

Consequently
x
k

i
> 0 ∀k ∈ ℕ.

and therefore

̃ix

k

i
> 0 ∀k ∈ ℕ.

This contradicts the CC-quasinormality of x̂ . Thus,
{

(�
k
, �

k
, 
̃

k
, �

k
, �

k

)

}

is bounded and therefore has
a convergent subsequence. Assume w.l.o.g. that the whole sequence converges, i.e.

∃
(

̂
�, �̂, 
̂ ,

̂
� , �̂

)
∶

{

(�
k
, �

k
, 
̃

k
, �

k
, �

k

)

}

→
(

̂
�, �̂, 
̂ ,

̂
� , �̂

)
.

Observe that since {�k} ⊆ ℝ
m

+
, then we have ̂

� ∈ ℝ
m

+
. Suppose now that i ∉ Ig(x̂). Then just like for

̃
�i we can show that ̂�i = 0. Similarly, for i ∈ I±(x̂), just like for 
̃i , we can show that 
̂i = 0. From the
de�nition of Ak we then obtain by letting k → 0 that

0 = ∇f (x̂) +

m

∑

i=1

̂
�i∇gi(x̂) +

p

∑

i=1

�̂i∇ℎi(x̂) +

n

∑

i=1


̂iei

where ∀i ∉ Ig(x̂) ∶ ̂
�i = 0 and ∀i ∈ I±(x̂) ∶ 
̂i = 0.

A direct consequence of Proposition 3.56 is the following

Corollary 3.66. Under the assumptions of Theorem 3.65, there exists ẑ ∈ ℝ
n such that (x̂ , ẑ) is an S-

stationary point.

3.4.2 Regularisation Method of Kanzow-Schwartz

We adapt here the regularisation method from [40] for (1.9). De�ne

' ∶ ℝ
2
→ ℝ, '((a, b)) ∶=

{

ab if a + b ≥ 0
−
1

2
(a
2
+ b

2
) if a + b < 0.

Let us now collect some important properties of '. For proofs we refer to [40, Lemma 3.1]

Lemma 3.67 ([40, Lemma 3.1]). (a) ' is an NCP-function, i.e. '((a, b)) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

(b) ' is continuously di�erentiable with

∇'((a, b)) =

{

(b, a)
T if a + b ≥ 0,

(−a, −b)
T if a + b < 0.

Now let t > 0 be a regularisation parameter. In order to relax the constraint x◦y = 0 in (1.9) we
de�ne for each i ∈ {1, … , n} the following four functions

• ΦKS
1,i
((x, y); t) ∶= '((xi − t, yi − t)) =

{

(xi − t)(yi − t) if xi + yi ≥ 2t,
−
1

2
((xi − t)

2
+ (yi − t)

2
) if xi + yi < 2t,

• ΦKS
2,i
((x, y); t) ∶= '((xi − t, −yi − t)) =

{

(xi − t)(−yi − t) if xi − yi ≥ 2t,
−
1

2
((xi − t)

2
+ (−yi − t)

2
) if xi − yi < 2t,
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• ΦKS
3,i
((x, y); t) ∶= '((−xi − t, −yi − t)) =

{

(−xi − t)(−yi − t) if − xi − yi ≥ 2t,
−
1

2
((−xi − t)

2
+ (−yi − t)

2
) if − xi − yi < 2t,

• ΦKS
4,i
((x, y); t) ∶= '((−xi − t, yi − t)) =

{

(−xi − t)(yi − t) if − xi + yi ≥ 2t,
−
1

2
((−xi − t)

2
+ (yi − t)

2
) if − xi + yi < 2t.

These functions are continuously di�erentiable and their derivatives with respect to (x, y) are given
in the following lemma.

Lemma 3.68. • ∇ΦKS
1,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

[

(yi − t)ei

(xi − t)ei]

if xi + yi ≥ 2t,

[

(−xi + t)ei

(−yi + t)ei]

if xi + yi < 2t,

• ∇ΦKS
2,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

[

(−yi − t)ei

−(xi − t)ei]

if xi − yi ≥ 2t,

[

(−xi + t)ei

−(yi + t)ei]

if xi − yi < 2t,

• ∇ΦKS
3,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

[

(yi + t)ei

(xi + t)ei]

if − xi − yi ≥ 2t,

[

−(xi + t)ei

−(yi + t)ei]

if − xi − yi < 2t,

• ∇ΦKS
4,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

[

−(yi − t)ei

(−xi − t)ei]

if − xi + yi ≥ 2t,

[

−(xi + t)ei

(−yi + t)ei]

if − xi + yi < 2t.

The proof of the preceeding lemma follows from straightforward computation and is therefore
omitted. For t > 0 we can now formulate the regularised problem NLP

KS
(t) as

min
x,y

f (x) s.t. gi(x) ≤ 0 ∀i = 1, … ,m,

ℎi(x) = 0 ∀i = 1, … , p,

n − e
T
y ≤ s,

yi ≤ 1 ∀i = 1, … , n,

Φ
KS

j,i
((x, y); t) ≤ 0 ∀i = 1, … , n ∀j = 1, … , 4.

(3.45)

(t, t)

(t, −t)(−t, −t)

(−t, t)

xi

yi

1

Figure 3.1: Illustration of the Kanzow-Schwartz’s relaxation method



50 CHAPTER 3. CARDINALITY CONSTRAINED OPTIMISATION PROBLEMS

Note that our regularised problem slightly di�ers from the one used in [21] since we drop the constraint
y ≥ 0 here. In the exact case we obtain the following convergence result.

Theorem 3.69. Let {tk} ↓ 0, x̂ ∈ ℝ
n, and {((xk , yk), �k , �k , �k , �k , 
 1,k , 
 2,k , 
 3,k , 
 4,k)} be a corresponding

sequence of KKT-points of NLPKS(tk) such that {xk} → x̂ . Then x̂ is a CC-AM-stationary point of (1.1).

The proof of the preceeding theorem is similar to the inexact case which we will handle next. Hence,
we omit it and refer the readers to the proof of Theorem 3.71. Now in order to tackle the inexact case,
we �rst need to de�ne inexactness. Consider (2.1). The following de�nition of inexactness is taken
from [41, De�nition 1].

De�nition 3.70. Let x ∈ ℝ
n and � > 0. We then say that x is an �-stationary point of (2.1) i� there exists

(�, �) ∈ ℝ
m
× ℝ

p such that

• ‖
‖
∇f (x) + ∑

m

i=1
�i∇gi(x) + ∑

p

i=1
�i∇ℎi(x)

‖
‖
≤ �,

• �i ≥ −�, gi(x) ≤ �, |�igi(x)| ≤ � ∀i = 1, … ,m,

• |ℎi(x)| ≤ � ∀i = 1, … , p.

In the context of MPCC it is known that inexactness destroys the convergence theory of the method,
see [41]. This is not the case here.

Theorem 3.71. Let {tk} ↓ 0, {�k} ↓ 0, and {(xk , yk)} be a sequence of �k-stationary points of NLPKS(tk).
Suppose that {xk} → x̂ . Then x̂ is a CC-AM-stationary point.

Proof. By assumption, there exists {(�k , �k , �k , �k , 
 1,k , 
 2,k , 
 3,k , 
 4,k)} ⊆ ℝ
m
× ℝ

p
× ℝ × (ℝ

n
)
5 such that

(ks1)
‖
‖
‖
‖
‖

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk)

‖
‖
‖
‖
‖

≤ �k ,

(ks2)
‖
‖
‖
‖
‖

−�ke +

n

∑

i=1

�
k

i
ei +

n

∑

i=1

4

∑

j=1



j,k

i
∇yΦ

KS

j,i
((x

k
, y

k
); tk)

‖
‖
‖
‖
‖

≤ �k ,

(ks3) �
k

i
≥ −�k , gi(x

k
) ≤ �k , |�

k

i
gi(x

k
)| ≤ �k ∀i = 1, … ,m,

(ks4) |ℎi(x
k
)| ≤ �k ∀i = 1, … , p,

(ks5) �k ≥ −�k , n − e
T
y
k
− s ≤ �k , |�k(n − e

T
y
k
− s)| ≤ �k ,

(ks6) �
k

i
≥ −�k , y

k

i
− 1 ≤ �k , |�

k

i
(y

k

i
− 1)| ≤ �k ∀i = 1, … , n,

(ks7) 

j,k

i
≥ −�k , Φ

KS

j,i
((x

k
, y

k
); tk) ≤ �k , |


j,k

i
Φ
KS

j,i
((x

k
, y

k
); tk)| ≤ �k ∀j = 1, … , 4, ∀i = 1, … , n.

Let us now prove that {yk} is bounded. By (ks6) we have for each i ∈ {1, … , n} that

y
k

i
≤ 1 + �k ∀k ∈ ℕ.

Since {1 + �k} is a convergent sequence, it is bounded. In particular, there exists d ∈ ℝ such that

1 + �k ≤ d ∀k ∈ ℕ.

Thus, it follows that
y
k

i
≤ d ∀k ∈ ℕ.

We now claim that
∀i ∈ {1, … , n}∃ci ∈ ℝ∀k ∈ ℕ ∶ ci ≤ y

k

i
. (3.46)
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Suppose not. Then
∃î ∈ {1, … , n}∀c ∈ ℝ∃k ∈ ℕ ∶ y

k

î
< c.

We can thus construct a subsequence
{

y
kl

î

}

such that
{

y
kl

î

}

→ −∞. On the other hand, by (ks5) we
have

n − s − �kl
≤ e

T
y
kl
=

n

∑

i=1

y
kl

i
=

n

∑

i=1,i≠î

y
kl

i
+ y

kl

î

≤ (n − 1)d + y
kl

î

which leads to a contradiction, since the leftmost part tends to n − s whereas the rightmost part con-
verges to −∞. Thus, (3.46) holds. De�ne

c ∶= min
i=1,…,n

ci ∈ ℝ.

Then we have
c ≤ y

k

i
∀i = 1, … , n ∀k ∈ ℕ

and therefore
{y

k
} ⊆ [c, d]

n

which proves the boundedness of {yk}. Since {yk} is bounded, it has a convergent subsequence. By
passing to a subsequence we can assume w.l.o.g. that the whole sequence converges, i.e.

∃ŷ ∈ ℝ ∶ {y
k
} → ŷ.

In particular, we then have {(xk , yk)} → (x̂, ŷ). Let us now prove that (x̂ , ŷ) is feasible for (1.9). By
(ks3) - (ks6) we obviously have

• gi(x̂) ≤ 0 ∀i = 1, … ,m,

• ℎi(x̂) = 0 ∀i = 1, … , p,

• n − eT ŷ ≤ s,

• ŷ ≤ e.

Hence, it remains to prove that x̂◦ŷ = 0. Suppose that this is not the case. Then

∃i ∈ {1, … , n} ∶ x̂i ŷi ≠ 0.

So we need to consider 4 separate cases.
Case 1: x̂i > 0 ∧ ŷi > 0

Since {xk
i
+ y

k

i
} → x̂i + ŷi > 0 and {tk} ↓ 0, we can assume w.l.o.g. that xk

i
+ y

k

i
≥ 2tk ∀k ∈ ℕ. Hence

we have ΦKS
1,i
((x

k
, y

k
); tk) = (x

k

i
− tk)(y

k

i
− tk). By (ks7) we then have x̂i ŷi ≤ 0 for the limit which yields a

contradiction since x̂i ŷi > 0 in this case.
Case 2: x̂i < 0 ∧ ŷi < 0

Since {−xk
i
−y

k

i
} → −x̂i − ŷi > 0 and {tk} ↓ 0, we can assume w.l.o.g. that −xk

i
−y

k

i
≥ 2tk ∀k ∈ ℕ. Hence

we have ΦKS
3,i
((x

k
, y

k
); tk) = (−x

k

i
− tk)(−y

k

i
− tk). By (ks7) we then have x̂i ŷi ≤ 0 for the limit which yields

a contradiction since x̂i ŷi > 0 in this case.
Case 3: x̂i > 0 ∧ ŷi < 0

Since {xk
i
− y

k

i
} → x̂i − ŷi > 0 and {tk} ↓ 0, we can assume w.l.o.g. that xk

i
− y

k

i
≥ 2tk ∀k ∈ ℕ. Hence we

have ΦKS
2,i
((x

k
, y

k
); tk) = (x

k

i
− tk)(−y

k

i
− tk). By (ks7) we then have −x̂i ŷi ≤ 0 for the limit which yields a

contradiction since −x̂i ŷi > 0 in this case.
Case 4: x̂i < 0 ∧ ŷi > 0

Since {−xk
i
+y

k

i
} → −x̂i + ŷi > 0 and {tk} ↓ 0, we can assume w.l.o.g. that −xk

i
+y

k

i
≥ 2tk ∀k ∈ ℕ. Hence

we have ΦKS
4,i
((x

k
, y

k
); tk) = (−x

k

i
− tk)(y

k

i
− tk). By (ks7) we then have −x̂i ŷi ≤ 0 for the limit which yields

a contradiction since −x̂i ŷi > 0 in this case.
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Hence we can conclude that x̂◦ŷ = 0 and therefore, (x̂ , ŷ) is feasible for (1.9). By Theorem 3.44 x̂ is then
feasible for (1.1). Now de�ne

w
k
∶= ∇f (x

k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk). (3.47)

By (ks1) we know that {wk
} → 0. Suppose now that i ∉ Ig(x̂). Since {gi(xk)} → gi(x̂) < 0, we can

assume w.l.o.g. that
gi(x

k
) < 0 ∀k ∈ ℕ.

This implies that
|gi(x

k
)| > 0 ∀k ∈ ℕ

and hence,
0 ≤ |�

k

i
| ≤

�k

|gi(x
k
)|

∀k ∈ ℕ.

Letting k → ∞ we then obtain {�k
i
} → 0 and therefore, {�k

i
∇gi(x

k
)} → 0. Reformulating (3.47) we

then obtain for each k ∈ ℕ

w
k
− ∑

i∉Ig (x̂)

�
k

i
∇gi(x

k
) = ∇f (x

k
) + ∑

i∈Ig (x̂)

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
)

+

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk) (3.48)

where the left hand side tends to 0. Now de�ne for each k ∈ ℕ

̂
�
k

i
∶=

{

�
k

i
+ �k if i ∈ Ig(x̂),

0 else.
(3.49)

By (ks3) we then have { ̂�k} ⊆ ℝ
m

+
. Since {�k} → 0 we then have {�k∇gi(xk)} → 0 for each i ∈ Ig(x̂) as

well. Reformulating (3.48) then yields

w
k
− ∑

i∉Ig (x̂)

�
k

i
∇gi(x

k
) + ∑

i∈Ig (x̂)

�k∇gi(x
k
) = ∇f (x

k
) + ∑

i∈Ig (x̂)

(�
k

i
+ �k)∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
)

+

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk)

= ∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
)

+

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk)

where the left hand side converges to 0. Suppose now that i ∈ I±(x̂). By the feasibility of (x̂ , ŷ) for (1.9)
we then have ŷi = 0. Assume �rst that x̂i > 0. Since {tk} ↓ 0 and {sgn1xk

i
+sgn2yk

i
} → sgn1x̂i+sgn2ŷi =

sgn1x̂i where sgn1, sgn2 ∈ {+, −}, we can assume w.l.o.g. that for each k ∈ ℕ we have

• xk
i
+ y

k

i
≥ 2tk

⇒ Φ
KS

1,i
((x

k
, y

k
); tk) = (x

k

i
− tk)(y

k

i
− tk)

⇒ ∇xΦ
KS

1,i
((x

k
, y

k
); tk) = (y

k

i
− tk)ei ,
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• xk
i
− y

k

i
≥ 2tk

⇒ Φ
KS

2,i
((x

k
, y

k
); tk) = (x

k

i
− tk)(−y

k

i
− tk)

⇒ ∇xΦ
KS

2,i
((x

k
, y

k
); tk) = (−y

k

i
− tk)ei ,

• −xk
i
− y

k

i
< 2tk

⇒ Φ
KS

3,i
((x

k
, y

k
); tk) = −

1

2
((−x

k

i
− tk)

2
+ (−y

k

i
− tk)

2
)

⇒ ∇xΦ
KS

3,i
((x

k
, y

k
); tk) = −(x

k

i
+ tk)ei ,

• −xk
i
+ y

k

i
< 2tk

⇒ Φ
KS

4,i
((x

k
, y

k
); tk) = −

1

2
((−x

k

i
− tk)

2
+ (y

k

i
− tk)

2
)

⇒ ∇xΦ
KS

4,i
((x

k
, y

k
); tk) = −(x

k

i
+ tk)ei .

By (ks7) we have

• |

1,k

i
Φ
KS

1,i
((x

k
, y

k
); tk)| = |


1,k

i
(x

k

i
− tk)(y

k

i
− tk)| ≤ �k .

Now since {xk
i
− tk} → x̂i > 0, we can assume w.l.o.g. that |xk

i
− tk | > 0 ∀k ∈ ℕ. We then have

0 ≤ |

1,k

i
(y

k

i
− tk)| ≤

�k

|x
k

i
− tk |

.

By sandwich theorem we obtain

{

1,k

i
(y

k

i
− tk)} → 0 ⇒ {


1,k

i
∇xΦ

KS

1,i
((x

k
, y

k
); tk)} → 0.

• |

2,k

i
Φ
KS

2,i
((x

k
, y

k
); tk)| = |


2,k

i
(x

k

i
− tk)(−y

k

i
− tk)| ≤ �k .

Using a similar argument as before we obtain

{

2,k

i
(−y

k

i
− tk)} → 0 ⇒ {


2,k

i
∇xΦ

KS

2,i
((x

k
, y

k
); tk)} → 0.

• |

3,k

i
Φ
KS

3,i
((x

k
, y

k
); tk)| = |


3,k

i
(−

1

2
)((−x

k

i
− tk)

2
+ (−y

k

i
− tk)

2
)| ≤ �k .

To simplify the notation let

�k ∶= | −

1

2

((−x
k

i
− tk)

2
+ (−y

k

i
− tk)

2
)|.

Observe that {�k} →
1

2
x̂
2

i
> 0. Hence we can assume w.l.o.g. that �k > 0 for each k ∈ ℕ. We

then have
0 ≤ |


3,k

i
| ≤

�k

�k

.

Applying sandwich theorem yields

{

3,k

i
} → 0 ⇒ {


3,k

i
∇xΦ

KS

3,i
((x

k
, y

k
); tk)} = {


3,k

i
(−(x

k

i
+ tk))ei} → 0.

• |

4,k

i
Φ
KS

4,i
((x

k
, y

k
); tk)| = |


4,k

i
(−

1

2
)((−x

k

i
− tk)

2
+ (y

k

i
− tk)

2
)| ≤ �k .

Using a similar argument as before we obtain that

{

4,k

i
} → 0 ⇒ {


4,k

i
∇xΦ

KS

4,i
((x

k
, y

k
); tk)} → 0.

Similarly, for the case where x̂i < 0 we can also prove that

{

j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk)} → 0 ∀j = 1, … , 4.

Putting things together we obtain

lim

k→∞

∑

i∈I±(x̂)

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk) = 0.
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De�ning

A
k
∶= w

k
− ∑

i∉Ig (x̂)

�
k

i
∇gi(x

k
) + ∑

i∈Ig (x̂)

�k∇gi(x
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) − ∑

i∈I±(x̂)

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk)

for each k ∈ ℕ we obtain

A
k
= ∇f (x

k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
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i∈I0(x̂)

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk)

and {Ak} → 0. Now by Lemma 3.68 we know that for each i ∈ I0(x̂) we have

∇xΦ
KS

j,i
((x

k
, y

k
); tk) ∈ span{ei} ∀j = 1, … , 4

and hence,
4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk) ∈ span{ei}.

In particular, there exists then 
̂ k
i
∈ ℝ such that

4

∑

j=1



j,k

i
∇xΦ

KS

j,i
((x

k
, y

k
); tk) = 
̂

k

i
ei .

Then we have

A
k
= ∇f (x

k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)


̂
k

i
ei .

Now de�ne for each i ∈ I±(x̂) 
̂ ki ∶= 0. Then we have for each k ∈ ℕ

A
k
= ∇f (x

k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
ei .

By (3.49) and since {Ak} → 0, it then follows that x̂ is a CC-AM-stationary point.

An immediate consequence of Theorem 3.71 and Theorem 3.35 is the following

Corollary 3.72. If, in addition to the assumptions in Theorem 3.71, x̂ also satis�es CC-AM-regularity,
then x̂ is CC-M-stationary.

Proposition 3.56 then immediately implies the following

Corollary 3.73. Under the assumptions of Corollary 3.72, there exists ẑ ∈ ℝ
n such that (x̂ , ẑ) is CC-S-

stationary.

In light of Corollary 3.42, the result obtained here is stronger than the result from [21], not only
because we take inexactness into account, but also because in [21] the authors used a stronger constraint
quali�cation.
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3.4.3 Regularisation Method of Ste�ensen-Ulbrich

Let us now adapt the regularisation method from [54] for (1.9). In the context of MPCC it is known
that in the exact case this method theoretically has a weaker convergence property compared to the
regularisation method of Kanzow-Schwartz, see [36]. As we shall see later, this is not the case here. The
method from [54] is theoretically just as strong as the method from [40]. We begin with a de�nition.

De�nition 3.74 ([54, Assumption 3.1]). Let D ⊆ ℝ be an open set containing [−1, 1]. A function � ∶

D → ℝ is called a regularisation function i� it satis�es the following properties:

(a) � is twice continuously di�erentiable on [−1, 1],

(b) �(−1) = �(1) = 1,

(c) � ′(−1) = −1, � ′(1) = 1,

(d) � ′′(−1) = � ′′(1) = 0,

(e) � is strictly convex on [−1, 1].

Two examples of such functions are

�(z) ∶=

2

�

sin
(

�

2

z +

3�

2
)
+ 1 and �(z) ∶=

1

8

(−z
4
+ 6z

2
+ 3),

where the second function is the Hermite interpolation polynomial satisfying the requirements from
De�nition 3.74, see also [35]. We recall now a useful property of a regularisation function.

Lemma 3.75 ([54, Lemma 3.1]). Let � be a regularisation function. Then we have for each z ∈ (−1, 1) that
�(z) > |z|.

Suppose now that we have a regularisation function � . Let t > 0 be a regularisation parameter.
Following [54] we next de�ne

'( ; t) ∶ ℝ → ℝ, '(u; t) ∶=

{

|u| if |u| ≥ t,
t� (

u

t )
if |u| < t.

Let us gather some properties of this function.

Lemma 3.76 ([35, Lemma 4.4]). The following properties hold for '

(a) '(u; t) > |u| ∀u ∈ (−t, t) ∀t > 0,

(b) '(u; t) = |u| ∀|u| ≥ t ∀t > 0,

(c) lim
t→0

'(u; t) = |u| ∀u ∈ ℝ,

(d) '( ; t) is twice continuously di�erentiable for all t > 0.

In order to relax the orthogonality constraint x◦y = 0, we de�ne for each i ∈ {1, … , n} the following
four functions

• ΦSU
1,i
((x, y); t) ∶= xi + yi − '(xi − yi ; t),

• ΦSU
2,i
((x, y); t) ∶= xi − yi − '(xi + yi ; t),

• ΦSU
3,i
((x, y); t) ∶= −xi − yi − '(−xi + yi ; t),

• ΦSU
4,i
((x, y); t) ∶= −xi + yi − '(−xi − yi ; t).
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Straightforward computations then yield

Lemma 3.77. • ΦSU
1,i
((x, y); t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

2yi if xi − yi ≥ t,
2xi if xi − yi ≤ −t,
xi + yi − t� (

xi−yi

t ) if xi − yi ∈ (−t, t),

∇Φ
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1,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[

0

2ei]

if xi − yi ≥ t,

[

2ei

0 ]

if xi − yi ≤ −t,

[

(1 − �
′

(

xi−yi

t ))ei

(1 + �
′

(

xi−yi

t ))ei]

if xi − yi ∈ (−t, t),

• ΦSU
2,i
((x, y); t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−2yi if xi + yi ≥ t,
2xi if xi + yi ≤ −t,
xi − yi − t� (

xi+yi

t ) if xi + yi ∈ (−t, t),

∇Φ
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2,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩
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0
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if xi + yi ≥ t,
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if xi + yi ≤ −t,
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(1 − �
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(
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t ))ei

(−1 − �
′

(

xi+yi

t ))ei]

if xi + yi ∈ (−t, t),

• ΦSU
3,i
((x, y); t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−2yi if − xi + yi ≥ t,
−2xi if − xi + yi ≤ −t,
−xi − yi − t� (

−xi+yi

t ) if − xi + yi ∈ (−t, t),

∇Φ
SU

3,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪
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⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[

0

−2ei]

if − xi + yi ≥ t,

[
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0 ]

if − xi + yi ≤ −t,

[

(−1 + �
′

(

−xi+yi

t ))ei

(−1 − �
′

(

−xi+yi

t ))ei]

if − xi + yi ∈ (−t, t),

• ΦSU
4,i
((x, y); t) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

2yi if − xi − yi ≥ t,
−2xi if − xi − yi ≤ −t,
−xi + yi − t� (

−xi−yi

t ) if − xi − yi ∈ (−t, t),

∇Φ
SU

4,i
((x, y); t) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[

0
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if − xi − yi ≥ t,

[

−2ei

0 ]

if − xi − yi ≤ −t,

[

(−1 + �
′

(

−xi−yi

t ))ei

(1 + �
′

(

−xi−yi

t ))ei ]

if − xi − yi ∈ (−t, t).
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We can now formulate the regularised problem NLP
SU
(t) as

min
x,y

f (x) s.t. gi(x) ≤ 0 ∀i = 1, … ,m,

ℎi(x) = 0 ∀i = 1, … , p,

n − e
T
y ≤ s,

yi ≤ 1 ∀i = 1, … , n,

Φ
SU

j,i
((x, y); t) ≤ 0 ∀i = 1, … , n ∀j = 1, … , 4.

(3.50)

(0, t)

(t, 0)

(0, −t)

(−t, 0)

xi

yi

1

Figure 3.2: Illustration of the Ste�ensen-Ulbrich’s relaxation method

For the exact case we obtain the following convergence result, which parallels the result obtained
for the regularisation method of Kanzow-Schwartz.

Theorem3.78. Let {tk} ↓ 0 and {((xk , yk), �k , �k , �k , �k , 
 1,k , 
 2,k , 
 3,k , 
 4,k)} be a corresponding sequence
of KKT-points of NLPSU (tk) such that {xk} → x̂ . Then x̂ is a CC-AM-stationary point of (1.1).

The proof of the theorem is similar to the inexact case. Hence, we omit it and refer the readers to
the proof of Theorem 3.79. As we shall see, unlike in MPCC [41], here the method of Ste�ensen-Ulbrich
retains its convergence property in the inexact case as well.

Theorem 3.79. Let {tk} ↓ 0, {�k} ↓ 0, and {(xk , yk)} be a sequence of �k-stationary points of NLPSU (tk).
Suppose that {xk} → x̂ . Then x̂ is a CC-AM-stationary point.

Proof. By assumption, there exists {(�k , �k , �k , �k , 
 1,k , 
 2,k , 
 3,k , 
 4,k)} ⊆ ℝ
m
× ℝ

p
× ℝ × (ℝ

n
)
5 such that

(su1)
‖
‖
‖
‖
‖

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

SU

j,i
((x

k
, y

k
); tk)

‖
‖
‖
‖
‖

≤ �k ,

(su2)
‖
‖
‖
‖
‖

−�ke +

n

∑

i=1

�
k

i
ei +

n

∑

i=1

4

∑

j=1



j,k

i
∇yΦ

SU

j,i
((x

k
, y

k
); tk)

‖
‖
‖
‖
‖

≤ �k ,

(su3) �
k

i
≥ −�k , gi(x

k
) ≤ �k , |�

k

i
gi(x

k
)| ≤ �k ∀i = 1, … ,m,

(su4) |ℎi(x
k
)| ≤ �k ∀i = 1, … , p,

(su5) �k ≥ −�k , n − e
T
y
k
− s ≤ �k , |�k(n − e

T
y
k
− s)| ≤ �k ,

(su6) �
k

i
≥ −�k , y

k

i
− 1 ≤ �k , |�

k

i
(y

k

i
− 1)| ≤ �k ∀i = 1, … , n,

(su7) 

j,k

i
≥ −�k , Φ

SU

j,i
((x

k
, y

k
); tk) ≤ �k , |


j,k

i
Φ
SU

j,i
((x

k
, y

k
); tk)| ≤ �k ∀j = 1, … , 4, ∀i = 1, … , n.
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Using the same argument as in the proof of Theorem 3.71, we can show that {yk} is bounded. Hence,
we can assume w.l.o.g. that there exists ŷ ∈ ℝ

n such that {(xk , yk)} → (x̂, ŷ). Let us now prove that
(x̂ , ŷ) is feasible for (1.9). By (su3) - (su6) we clearly have

g(x̂) ≤ 0, ℎ(x̂) = 0, n − e
T
ŷ ≤ s, ŷ ≤ e.

Hence, it remains to show that x̂◦ŷ = 0. Suppose not. Then

∃i ∈ {1, … , n} ∶ x̂i ŷi ≠ 0.

We thus have four cases to handle, namely

xi > 0 ∧ yi > 0, xi < 0 ∧ yi < 0, xi > 0 ∧ yi < 0, xi < 0 ∧ yi > 0.

Here we shall derive a contradiction only for the case where x̂i > 0 ∧ ŷi > 0. The other three cases can
be dealt with analogously. Since {�k} ↓ 0, {xki } → x̂i > 0, and {yk

i
} → ŷi > 0 we can assume w.l.o.g.

that
x
k

i
>

�k

2

∧ y
k

i
>

�k

2

∀k ∈ ℕ. (3.51)

We now claim that
|x
k

i
− y

k

i
| < tk ∀k ∈ ℕ. (3.52)

Suppose not. Then
∃l ∈ ℕ ∶ |x

l

i
− y

l

i
| ≥ tl .

This then implies that
'(x

l

i
− y

l

i
; tl ) = |x

l

i
− y

l

i
|

and hence, by (su7) and (3.51)

�l ≥ Φ
SU

1,i
((x

l
, y

l
); tl ) = x

l

i
+ y

l

i
− |x

l

i
− y

l

i
| = 2min{x

l

i
, y

l

i
} > �l ,

which is a contradiction. Thus, (3.52) holds. Consequently, by (su7) and Lemma 3.77, we have for each
k ∈ ℕ

�k ≥ Φ
SU

1,i
((x

k
, y

k
); tk) = x

k

i
+ y

k

i
− tk�

(

x
k

i
− y

k

i

tk

.
)

(3.53)

Now by (3.52) the sequence
{

x
k

i
−y

k

i

tk

}

is clearly bounded and therefore, it has a convergent subsequence.
We can thus assume w.l.o.g. that the whole sequence converges, i.e.

∃a ∈ ℝ ∶

{

x
k

i
− y

k

i

tk

}

→ a.

Then letting k → ∞ we obtain from (3.53) by the continuity of �

0 ≥ x̂i + ŷi − 0 ⋅ �(a) = x̂i + ŷi > 0.

This leads to a contradiction. Thus, we conclude that x̂◦ŷ = 0 and hence, (x̂ , ŷ) is feasible for (1.9).
By Theorem 3.44 x̂ is then feasible for (1.1). Now similar to the proof of Theorem 3.71, we can de�ne
{
̂
�
k
} ⊆ ℝ

m

+
where

̂
�
k

i
∶=

{

�
k

i
+ �k if i ∈ Ig(x̂),

0 else

for each k ∈ ℕ. De�ning

w
k
∶= ∇f (x

k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

SU

j,i
((x

k
, y

k
); tk)
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just like in the proof of Theorem 3.71 we then obtain

w
k
− ∑

i∉Ig (x̂)

�
k

i
∇gi(x

k
) + ∑

i∈Ig (x̂)

�k∇gi(x
k
) = ∇f (x

k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
)

+

n

∑

i=1

4

∑

j=1



j,k

i
∇xΦ

SU

j,i
((x

k
, y

k
); tk)

where the left hand side converges to 0. Suppose now that i ∈ I±(x̂). Since (x̂ , ŷ) is feasible for (1.9) we
then have ŷi = 0. Assume �rst that x̂i > 0. Since {xk

i
} → x̂i , we can assume w.l.o.g. that xk

i
> 0 ∀k ∈ ℕ.

Furthermore, since {tk} ↓ 0 and {sgn1xk
i
+ sgn2yk

i
} → sgn1x̂i + sgn2ŷi = sgn1x̂i where sgn1, sgn2

∈ {+, −}, by Lemma 3.77 we can assume w.l.o.g. that for each k ∈ ℕ we have

• xk
i
− y

k

i
≥ tk

⇒ ∇xΦ
SU

1,i
((x

k
, y

k
); tk) = 0,

⇒ {

1,k

i
∇xΦ

SU

1,i
((x

k
, y

k
); tk)} = {0} → 0,

• xk
i
+ y

k

i
≥ tk

⇒ ∇xΦ
SU

2,i
((x

k
, y

k
); tk) = 0,

⇒ {

2,k

i
∇xΦ

SU

2,i
((x

k
, y

k
); tk)} = {0} → 0,

• −xk
i
+ y

k

i
≤ −tk

⇒ Φ
SU

3,i
((x

k
, y

k
); tk) = −2x

k

i
.

By (su7) we then have
|

3,k

i
(−2x

k

i
)| ≤ �k ⇒ |


3,k

i
| ≤

�k

2x
k

i

.

Letting k → ∞ then yields

{

3,k

i
} → 0 ⇒ {


3,k

i
∇xΦ

SU

3,i
((x

k
, y

k
); tk)} = {


3,k

i
(−2ei)} → 0.

• −xk
i
− y

k

i
≤ −tk

Using a similar argument as in the previous case then yields

{

4,k

i
∇xΦ

SU

4,i
((x

k
, y

k
); tk)} → 0.

Similarly we can also prove that for x̂i < 0 we have

{

j,k

i
∇xΦ

SU

j,i
((x

k
, y

k
); tk)} → 0 ∀j = 1, … , 4.

Putting things together we obtain

lim

k→∞

∑

i∈I±(x̂)

4

∑

j=1



j,k

i
∇xΦ

SU

j,i
((x

k
, y

k
); tk) = 0.

The rest of the proof is then essentially the same as in the proof of Theorem 3.71. We can therefore
conclude that x̂ is a CC-AM-stationary point.

As a direct consequence of Theorem 3.79 and Theorem 3.35 we obtain the following

Corollary 3.80. If, in addition to the assumptions in Theorem 3.79, x̂ also satis�es CC-AM-regularity,
then x̂ is CC-M-stationary.

Proposition 3.56 then implies the following.

Corollary 3.81. Under the assumptions of Corollary 3.80, there exists ẑ ∈ ℝ
n such that (x̂ , ẑ) is CC-S-

stationary.
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3.5 Numerical Experiments

In this section we shall compare the performance of ALGENCAN with the Scholtes regularisation
method from [18] as well as the Kanzow-Schwartz regularisation method from [21]. All experiments
were conducted using Python together with the Numpy library. We used ALGENCAN 2.4.0 compiled
with MA57 library [37] and called through its Python interface with user-supplied gradients of the ob-
jective functions, sparse Jacobian of the constraints, as well as sparse Hessian of the Lagrangian. As a
subsolver for the regularisation methods of Scholtes and Kanzow-Schwartz we used the for academic
use freely available ESA SQP solver WORHP version 1.14 [22] called through its Python interface. For
the Scholtes regularisation method WORHP was called with user-supplied sparse gradients of the ob-
jective functions, sparse Jacobian of the constraints, as well as the sparse Hessian of the Lagrangian.
On the other hand, for the Kanzow-Schwartz regularisation method, since the analytical Hessian does
not exist as the corresponding NCP-function is not twice di�erentiable, we called WORHP with user-
supplied sparse gradients of the objective functions and sparse Jacobian of the constraints only. The
Hessian of the Lagrangian was then approximated using the BFGS method. Throughout the experi-
ments both ALGENCAN and WORHP were called using their respective default settings. We applied
ALGENCAN directly to the relaxed reformulations of the test problems as in (1.9), i.e. without the lower
bound for the auxiliary variable y . In contrast, following [18] and [21], for both regularisation methods
we bounded y from below by 0. Next, for each test problem we started both regularisation methods
with an initial regularisation parameter t0 = 1.0 and decreased tk in each iteration by a factor of 0.01.
The regularisation methods were terminated if either tk < 10−8 or ‖‖

‖
x
k
◦y

k‖
‖
‖∞

≤ 10
−6.

3.5.1 Pilot Test

Let us begin by considering the following academic example

min

x∈ℝ
2

x1 + 10x2 s.t.
(
x1 −

1

2
)

2

+ (x2 − 1)
2
≤ 1, ‖x‖0 ≤ 1

which is taken from [21]. This problem has a local minimiser in (0, 1 −
1

2

√

3) and an isolated global
minimiser in (

1

2
, 0). Following [21], we discretised the rectangle [−1, 32]×[−

1

2
, 2] resulting in 441 starting

points for the considered methods. For each of these starting pointsALGENCAN converged towards the
global minimiser ( 12 , 0). The same behaviour was also observed for the Scholtes regularisation method.
On the other hand, the Kanzow-Schwartz regularisation method was slightly less succesful, converging
in 437 cases towards the global minimiser. In the other 4 cases the method converged towards the local
minimiser. This behaviour might be due to the performance of the BFGS method used by WORHP
in approximating the Hessian of the Lagrangian. Indeed, running the Scholtes regularisation method
without user-supplied Hessian of the Lagrangian, letting the Hessian be approximated by the BFGS
method instead, yielded in a convergence towards the global minimiser in only 394 cases. In the other
47 cases the Scholtes regularisation method only managed to �nd the local minimiser.

3.5.2 Portfolio Optimisation Problems

Following [21] we consider a classical portfolio optimisation problem

min

x∈ℝ
n

x
T
Qx s.t. �

T
x ≥ �, e

T
x ≤ 1, 0 ≤ x ≤ u, ‖x‖

0
≤ s, (3.54)

where Q and � are the covariance matrix as well as the mean of n possible assets and e
T
x ≤ 1 is the

budget constraint, see [14, 26]. We generated the test problems using the data from [32], considering
s = 5, 10, 20 for each dimension n = 200, 300, 400 which resulted in 270 test problems, see also [21].
Note that due to the constraint x ≥ 0 in (3.54), if we include the lower bound 0 for y in the relaxed
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reformulation as in (A.1), then the feasible set actually has the classical MPCC structure. Thus, for
each regularisation method, one regularisation function in the �rst quadrant actually already su�ces.
Moreover, for comparison purpose, we also applied ALGENCAN to the relaxed reformulations of the
problems as in (A.1). Hence, we considered a total of six approaches:

• ALGENCAN without a lower bound on y

• ALGENCAN with an additional lower bound y ≥ 0

• Scholtes and Kanzow-Schwartz regularisation for cardinality-constrained problems [18, 21] with
a regularisation of both upper quadrants

• Scholtes and Kanzow-Schwartz regularisation for MPCCs [40, 53] with a regularisation of the
upper right quadrant only.

For each test problem, we used the initial values x0 = 0 and y0 = e. As a performance measure for the
considered methods we compared the attained objective function values and generated a performance
pro�le as suggested in [27], where we set the objective function value of a method for a problem to be
∞ if the method failed to �nd a feasible point of the problem within a tolerance of 10−6.

As can be seen from Figure 3.3, ALGENCAN worked very reliably with regard to the feasibility of
the solutions. It often outperformed the regularisation methods in terms of the objective function value
of the solution, especially for larger values of s. Lastly we note that although introducing the lower
bound y ≥ 0 does not have any theoretical e�ect on ALGENCAN, the numerical results suggest that it
could bring slight improvements to ALGENCAN’s performance.
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Figure 3.3: Comparing the performance of ALGENCAN and the regularisation methods for (3.54)
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Sparse Optimisation Problems

In this chapter we shall deal with (1.2). Some of the results in this chapter, particularly those concerning
the equivalence between the minima of (1.2) and (1.10), are taken by the author from the unpublished
manuscript [20] by Oleg P. Burdakov, Christian Kanzow, and Alexandra Schwartz. It is one of the
aims of this thesis to extend [20] by proving some additional results, in particular those pertaining
to sequential optimality conditions and the numerical behaviour of the considered algorithms. The
results which are taken from the original manuscript [20] have been labelled as such in this thesis and
the author would like to take this opportunity to express his gratitude to Oleg P. Burdakov, Christian
Kanzow, and Alexandra Schwartz for coming up with these important results and permitting the author
to use them in his work.

Let us begin by investigating how (1.2) relates to (1.1). In our subsequent analyses we would also
let s to be in {0, n}.
Theorem 4.1. Let x̂ ∈ ℝ

n be a local minimiser of (1.1). Then it is also a local minimiser of (1.2).
Proof. By assumption x̂ ∈ X ∩  and there exists �1 > 0 such that for each x ∈ X ∩  ∩ B�1

(x̂) we
have f (x̂) ≤ f (x). Furthermore, by the lower semicontinuity of f there exists �2 > 0 such that for each
x ∈ B�2

(x̂) we have f (x̂) < f (x) + �. Moreover, by Lemma 3.6, there exists �3 > 0 such that for each
x ∈ B�3

(x̂) we have ‖x̂‖0 ≤ ‖x‖0. De�ne � ∶= min
i=1,2,3

�i > 0. Now let x ∈ X ∩ B�(x̂). Then x ∈ B�3
(x̂). We

di�erentiate between 2 cases.
Case 1: ‖x‖0 = ‖x̂‖0

Since by assumption ‖x̂‖0 ≤ s, we then also have x ∈  . Thus, x ∈ X ∩  ∩ B�1
(x̂). This implies that

f (x̂) ≤ f (x) and hence,
f (x̂) + �‖x̂‖0 ≤ f (x) + �‖x̂‖0 = f (x) + �‖x‖0.

Case 2: ‖x‖0 > ‖x̂‖0

By the de�nition of ‖ ⋅ ‖0 we then have ‖x̂‖0 + 1 ≤ ‖x‖0. Since x ∈ B�2(x̂) we then have

f (x̂) + �‖x̂‖0 < f (x) + � + �‖x̂‖0 ≤ f (x) + �‖x‖0.

Observe that Theorem 4.1 holds irrespective of the choice of � and s. However, it should be noted
that a global minimiser of (1.1) is not necessarily a global minimiser of (1.2).
Example 4.2 ([20, Example 3.1]). Consider the cardinality-constrained problem

min f (x) ∶= ‖Ax − b‖
2 s.t. ‖x‖0 ≤ 2

where

A ∶=

⎡

⎢

⎢

⎣

0 3 −3

3 2 2

3 3 3

⎤

⎥

⎥

⎦

∧ b ∶=

⎡

⎢

⎢

⎣

0

0

6

⎤

⎥

⎥

⎦

.

The optimal value of f respective to the value of ‖ ⋅ ‖0 is given as follows:

63
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‖ ⋅ ‖0 0 1 2 3

Opt. value of f 36 18 ≈ 11.08 0

Due to the cardinality constraint, the optimal value of the problem is then ≈ 11.08 and for the corresponding
global minimiser x̂ we have ‖x̂‖0 = 2. Now for a given sparsity parameter � > 0, consider the sparse
optimisation problem

min F�(x) ∶= f (x) + �‖x‖0.

In light of the above table, the optimal value of F� respective to the value of ‖ ⋅ ‖0 is then given by

‖ ⋅ ‖0 0 1 2 3

Opt. value of F� 36 18 + � ≈ 11.08 + 2� 3�

Suppose that � < ≈ 11.08. Then clearly we have 3� < ≈ 11.08 + 2� and hence, since ‖x̂‖0 = 2, x̂ cannot be a
global minimiser of F� . Suppose now that � ≥ ≈ 11.08. Then

≈ 11.08 + 2� − (18 + �) = � − ≈ 6.92 > 0.

Hence, x̂ cannot be a global minimiser of F� . Thus, we conclude that there is no � > 0 such that x̂ is a
global minimiser of F� .

Suppose that 0 ∈ X . Letting s ∶= 0 in (1.1), we then clearly have for each x ∈ ℝ
n that ‖x‖0 ≤ s i�

x = 0. Hence, 0 is the only feasible point of (1.1) and thus, a global minimiser of (1.1). Inspecting the
proof of Theorem 4.1 we then immediately obtain the following result.

Proposition 4.3. Let 0 ∈ X . Then it is a strict local minimiser of (1.2).

Now let us consider (2.1). Letting s ∶= n in (1.1), obviously (2.1) is then equivalent to (1.1). The-
orem 4.1 subsequently implies the following.

Proposition 4.4. Let x̂ ∈ X be a local minimiser of (2.1). Then x̂ is also a local minimiser of (1.2).

Note, however, that a global minimiser of (2.1) is not necessarily a global minimiser of (1.2).

Example 4.5. Consider

min

x∈ℝ
(
x −

1

2
)

2

. (4.1)

Obviously 1

2
is the only global minimiser of this problem. However, it is not a global minimiser of

min

x∈ℝ
(
x −

1

2
)

2

+ ‖x‖0. (4.2)

Indeed, it is easy to see that 0 is the only global minimiser of (4.2).

Moreover, the converse of Proposition 4.4 is false in general.

Example 4.6. Consider again (4.1) and (4.2). As we have seen before, 0 is a global minimiser of (4.2).
However, it is obviously not a stationary point of (4.1). Thus, it cannot be a local minimiser of (4.1).

As a direct consequence of Proposition 4.4 we obtain the following

Corollary 4.7. Let x̂ ∈ X . Then x̂ is a local minimiser of

min

x∈ℝ
n

�‖x‖0 s.t. x ∈ X . (4.3)

Proof. We consider the special case where f ≡ 0, the constant zero function. Then every feasible point
x̂ ∈ X is a local minimiser of (2.1). Therefore, by Proposition 4.4, it is also a local minimiser of (4.3).
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Example 4.8. Corollary 4.7 immediately implies that every feasible point of the compressive sensing
problem

min

x∈ℝ
n

‖x‖0 s.t. Ax ≥ b,

Cx = d,

where A ∈ ℝ
m×n

, C ∈ ℝ
k×n

, b ∈ ℝ
m, and d ∈ ℝ

k for k,m, n ∈ ℕ is a local minimiser of the problem.

This extends the result obtained in [30, page 283].
For the converse of Theorem 4.1 we obtain the following two results.

Proposition 4.9. Let x̂ ∈ X be a local minimiser of (1.2). Then for s ∶= ‖x̂‖0 x̂ is also a local minimiser
of (1.1).

Proof. By assumption, there exists �1 > 0 such that for each x ∈ X ∩ B�1
(x̂) we have f (x̂) + �‖x̂‖0 ≤

f (x) + �‖x‖0. Moreover, by Lemma 3.6 there exists �2 > 0 such that for each x ∈ B�2
(x̂) we have

‖x̂‖0 ≤ ‖x‖0. De�ne � ∶= min
i=1,2

�i > 0. Then for each x ∈ X ∩  ∩ B�(x̂) we have

‖x̂‖0

�≤�2

≤ ‖x‖0 ≤ s = ‖x̂‖0 ⇒ ‖x‖0 = ‖x̂‖0 ⇒ f (x̂) + �‖x̂‖0

�≤�1

≤ f (x) + �‖x‖0 = f (x) + �‖x̂‖0 ⇒ f (x̂) ≤ f (x).

Proposition 4.10 ([20, Proposition 3.2]). Let x̂ ∈ X be a global minimiser of (1.2). Then for s ∶= ‖x̂‖0 x̂

is also a global minimiser of (1.1).

Proof. By assumption we have for each x ∈ X that f (x̂) + �‖x̂‖0 ≤ f (x) + �‖x‖0. Now let x ∈ X ∩ . Then
we have

f (x̂) + �‖x̂‖0

x∈X

≤ f (x) + �‖x‖0

‖x‖0≤s

≤ f (x) + �s
s=‖x̂‖0

= f (x) + �‖x̂‖0 ⇒ f (x̂) ≤ f (x).

Note that if s = n, then (1.1) is equivalent to (2.1). Proposition 4.9 and Proposition 4.10 then lead to
the following result.

Proposition 4.11. Let x̂ ∈ X be a local (global) minimiser of (1.2) such that ‖x̂‖0 = n. Then it is a local
(global) minimiser of (2.1).

4.1 Sequential Optimality Conditions

The mapping �‖ ⋅ ‖0 is obviously lower semicontinuous. Let us now compute its Fréchet subdi�erential.

De�nition 4.12 ([29, Theorem 5.2.11]). Let � ∶ ℝ
n
→ ℝ and x̂ ∈ ℝ

n. Then the Fréchet subdi�erential
of � at x̂ is de�ned as

)
F
�(x̂) ∶=

{


 ∈ ℝ
n

|
|
|
|
|

lim inf

ℎ→0,ℎ≠0

�(x̂ + ℎ) − �(x̂) − 

T
ℎ

‖ℎ‖

≥ 0

}

.

Lemma 4.13. Let x̂ ∈ ℝ
n. Then

)
F
(�‖x̂‖0) = {
 ∈ ℝ

n
∣ 
i = 0 ∀i ∈ I±(x̂)}.

Proof. "⊆": Suppose that 
 ∈ )
F
(�‖x̂‖0). Let i ∈ I±(x̂). Pick a sequence {�k} ⊆ ℝ+ such that {�k} ↓ 0.

Since x̂i ≠ 0 and {�k} ↓ 0, we can assume w.l.o.g. that for each k ∈ ℕ we have |x̂i | >
�k

2
. By the reverse

triangle inequality we then have

|
|
|
|

x̂i + sgn

�k

2

|
|
|
|

≥ |x̂i | −

|
|
|
|

sgn

�k

2

|
|
|
|

= |x̂i | −

�k

2

> 0 ∀k ∈ ℕ
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where sgn ∈ {+, −}. In particular, this implies that

x̂i + sgn

�k

2

≠ 0 ⇔ i ∈ I±
(
x̂ + sgn

�k

2

ei
)

⇒

‖
‖
‖
‖

x̂ + sgn

�k

2

ei

‖
‖
‖
‖0

= ‖x̂‖0 (4.4)

for each k ∈ ℕ. Now observe that for each k ∈ ℕ we also have sgn �k
2
ei ∈ B�k

(0). Hence,

inf

ℎ∈B�
k
(0)⧵{0}

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

≤

�
‖
‖
‖
x̂ +

�k

2
ei

‖
‖
‖0
− �‖x̂‖0 − sgn

�k

2


T
ei

‖
‖
‖
sgn

�k

2
ei

‖
‖
‖

(4.4)
=

−sgn
�k

2

i

�k

2

= −sgn
i . (4.5)

Letting k → ∞ we then obtain

0 ≤ lim inf

ℎ→0,ℎ≠0

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

[52,De�nition 1.5]
= lim

k→∞(
inf

ℎ∈B�
k
(0)⧵{0}

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖ )

(4.5)
≤ −sgn
i .

Since sgn ∈ {+, −}, this implies that


i ≥ 0 ∧ −
i ≥ 0 ⇔ 
i = 0.

"⊇": Let 
 ∈ ℝ
n such that 
i = 0 ∀i ∈ I±(x̂). Suppose that � > 0 be given as in Lemma 3.6. Now pick a

sequence {�k} ⊆ ℝ+ such that {�k} ↓ 0. Since � > 0 and {�k} ↓ 0, we can assume w.l.o.g. that �k ≤ � for
each k ∈ ℕ. We di�erentiate between two cases.
Case 1: 
 = 0
Let k ∈ ℕ and ℎ ∈ B�k

(0) ⧵ {0}. Clearly we have x̂ + ℎ ∈ B�k
(x̂) ⊆ B�(x̂) and hence, by Lemma 3.6,

� ‖x̂ + ℎ‖
0
≥ �‖x̂‖0. This implies that

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖


=0

≥ 0.

Since this holds for each ℎ ∈ B�k (0) ⧵ {0}, we then have

inf

ℎ∈B�
k
(0)⧵{0}

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

≥ 0.

Letting k → ∞ then yields

lim inf

ℎ→0,ℎ≠0

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

[52,De�nition 1.5]
= lim

k→∞(
inf

ℎ∈B�
k
(0)⧵{0}

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖ )

≥ 0.

Case 2: 
 ≠ 0

In this case we have ‖
 ‖ > 0. Since {�k} ↓ 0 we can then assume w.l.o.g. that �k < �

‖
 ‖
for each k ∈ ℕ.

Now let k ∈ ℕ and ℎ ∈ B�k (0) ⧵ {0}. By Cauchy-Schwarz inequality we obtain

|
|
|


T
ℎ
|
|
|
≤ ‖
 ‖‖ℎ‖ < ‖
 ‖�k < � ⇒ 


T
ℎ < � (4.6)
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Since �k ≤ �, by Lemma 3.6 we have
I±(x̂) ⊆ I±(x̂ + ℎ).

Case 2.1: I±(x̂) = I±(x̂ + ℎ)
Here we have

‖x̂‖0 = ‖x̂ + ℎ‖0 ∧ I0(x̂) = I0(x̂ + ℎ).

Now let i ∈ I0(x̂), Then, since I0(x̂) = I0(x̂ + ℎ),

0
i∈I0(x̂+ℎ)

= (x̂ + ℎ)i = x̂i + ℎi

i∈I0(x̂)

= ℎi . (4.7)

Thus,



T
ℎ =

n

∑

i=1


iℎi = ∑

i∈I±(x̂)


iℎi + ∑

i∈I0(x̂)


iℎi = 0

by the de�nition of 
 and (4.7). This then implies that

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

= 0.

Case 2.2: I±(x̂) ( I±(x̂ + ℎ)

Since I±(x̂ + ℎ) contains at least one more element compared to I±(x̂) we then have

‖x̂ + ℎ‖0 ≥ ‖x̂‖0 + 1 ⇒ �‖x̂ + ℎ‖0 − �‖x̂‖0 ≥ �.

This then implies that
�‖x̂ + ℎ‖0 − �‖x̂‖0 − 


T
ℎ

‖ℎ‖

≥

� − 

T
ℎ

‖ℎ‖

(4.6)
> 0.

In both cases we have
�‖x̂ + ℎ‖0 − �‖x̂‖0 − 


T
ℎ

‖ℎ‖

≥ 0

and therefore
inf

ℎ∈B�
k
(0)⧵{0}

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

≥ 0.

Letting k → ∞ we then obtain by [52, De�nition 1.5]

lim inf

ℎ→0,ℎ≠0

�‖x̂ + ℎ‖0 − �‖x̂‖0 − 

T
ℎ

‖ℎ‖

≥ 0.

Thus, we conclude that 
 ∈ )F (�‖x̂‖0)).

Motivated by the CAKKT-condition for (2.1) and the CC-CAM-stationarity for (1.1) we introduce
the following de�nition.

De�nition 4.14. Let x̂ ∈ X . We say that x̂ is an SP complementary approximately Karush-Kuhn-Tucker
(SP-CAKKT) point i� there exist sequences {xk} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n such that

(a) {xk} → x̂ ,

(b)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0,

(c)

{
m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|

k

i
x
k

i
|

}

→ 0.
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The next theorem states that SP-CAKKT is a �rst-order necessary optimality condition for (1.2).

Theorem 4.15. Let x̂ ∈ X be a local minimiser of (1.2). Then x̂ is an SP-CAKKT point.

Proof. By assumption, there exists � > 0 such that

f (x̂) + �‖x̂‖0 ≤ f (x) + �‖x‖0 ∀x ∈ B̄�(x̂) ∩ X .

In particular, x̂ is then the unique global minimiser of

min
x

f (x) + �‖x‖0 +

1

2

‖x − x̂‖
2 s.t. x ∈ B̄�(x̂) ∩ X . (4.8)

Now pick a sequence {�k} ⊆ ℝ+ such that {�k} ↑ ∞ and consider for each k ∈ ℕ the following penalised
problem

min
x

f (x) +

�k

2

‖(g(x)+, ℎ(x)‖
2
+

1

2

‖x − x̂‖
2
+ �‖x‖0 s.t. x ∈ B̄�(x̂). (4.9)

Observe that x ∈ X i� ‖(g(x)+, ℎ(x)‖ = 0. Moreover, the objective function of (4.9) is lower semicon-
tinuous for each k ∈ ℕ. Furthermore, the feasible set B̄�(x̂) is compact. Hence, by [29, Theorem 2.5.3],
for each k ∈ ℕ (4.9) admits a global minimiser xk ∈ B̄�(x̂). Now since x̂ ∈ B̄�(x̂) ∩ X we then have for
each k ∈ ℕ

f (x
k
) +

�k

2

‖(g(x
k
)+, ℎ(x

k
)‖
2
+

1

2

‖
‖
‖
x
k
− x̂

‖
‖
‖

2 �‖x
k
‖0≥0

≤ f (x
k
) +

�k

2

‖(g(x
k
)+, ℎ(x

k
)‖
2
+

1

2

‖
‖
‖
x
k
− x̂

‖
‖
‖

2

+ �‖x
k
‖0

≤ f (x̂) + �‖x̂‖0. (4.10)

Moreover, by the compactness of B̄�(x̂) the sequence {xk} has a convergent subsequence in B̄�(x̂).
Assume w.l.o.g. that the whole sequence converges, i.e. ∃x̄ ∈ B̄�(x̂) ∶ {x

k
} → x̄ . We shall now show

that x̄ = x̂ . Dividing both sides of (4.10) by �k and taking the limit as k → ∞ yields 0 ≤ ‖(g(x̄)+, ℎ(x̄))‖ ≤

0. This implies that x̄ ∈ X ∩ B̄�(x̂) and therefore, it is feasible for (4.8). Furthermore, we also obtain from
(4.10) that

f (x
k
) +

1

2

‖
‖
‖
x
k
− x̂

‖
‖
‖

2

+ �‖x
k
‖0 ≤ f (x̂) + �‖x̂‖0

and hence,

f (x̄) +

1

2

‖x̄ − x̂‖
2
+ �‖x̄‖0

[29,Theorem 2.5.2]
≤ f (x̄) +

1

2

‖x̄ − x̂‖
2
+ lim inf

k→∞

�‖x
k
‖0

= lim

k→∞
(
f (x

k
) +

1

2

‖x
k
− x̂‖

2

)
+ lim inf

k→∞

�‖x
k
‖0

[2,Aufgabe 2d Abschnitt II.5]
= lim inf

k→∞

f (x
k
) +

1

2

‖x
k
− x̂‖

2
+ �‖x

k
‖0

[2,Aufgabe 2e Abschnitt II.5]
≤ lim inf

k→∞

f (x̂) + �‖x̂‖0

= f (x̂) + �‖x̂‖0 +

1

2

‖x̂ − x̂‖0.

But since x̂ is the unique global minimiser of (4.8), it follows that x̄ = x̂ . Hence we have {xk} → x̂ . We
can then assume w.l.o.g. that xk ∈ B�(x̂) for each k ∈ ℕ. Then for each k ∈ ℕ x

k is a local minimiser of

min
x

f (x) +

�k

2

‖(g(x)+, ℎ(x))‖
2
+

1

2

‖x − x̂‖
2
+ �‖x‖0.

Hence,

0

[29,Theorem 5.2.23]
∈ )

F

((
f (x

k
) +

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
) +

1

2

‖x
k
− x̂‖

2

)
+ �‖x

k
‖0)
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[29,Proposition 5.2.30]
= ∇

(
f (x

k
) +

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
) +

1

2

‖x
k
− x̂‖

2

)
+ )

F
(�‖x

k
‖0)

= ∇f (x
k
) +

m

∑

i=1

(�k max{0, gi(x
k
)}) ∇gi(x

k
) +

p

∑

i=1

(�kℎi(x
k
)) ∇ℎi(x

k
) + x

k
− x̂ + )

F
(�‖x

k
‖0). (4.11)

De�ne for each k ∈ ℕ

�
k

i
∶= �k max{0, gi(x

k
)} ∀i = 1, … ,m,

�
k

i
∶= �kℎi(x

k
) ∀i = 1, … , p.

Then (4.11) can be rewritten as

0 ∈ ∇f (x
k
) +

m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) + x

k
− x̂ + )

F
(�‖x

k
‖0).

Thus, for each k ∈ ℕ there exists 
 k ∈ )F (�‖xk‖0) such that

0 = ∇f (x
k
) +

m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) + x

k
− x̂ + 


k

which is equivalent to

x̂ − x
k
= ∇f (x

k
) +

m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) +

n

∑

i=1



k

i
ei .

Since {xk} → x̂ we then have
{

∇f (x
k
) +

m

∑

i=1

�
k

i
gi(x

k
) +

p

∑

i=1

�
k

i
ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0.

Observe that by de�nition we have {�k} ⊆ ℝ
m

+
. Now let k ∈ ℕ. By Lemma 4.13 we then have for

each i ∈ I±(xk) that 
 k
i
= 0 and hence, |
 k

i
x
k

i
| = 0. Moreover, we also have for each i ∈ I0(xk) that xk

i
= 0

and therefore, |
 k
i
x
k

i
| = 0. This then implies that for each k ∈ ℕ we have

n

∑

i=1

|

k

i
x
k

i
| = 0.

Now (4.10) also implies that

f (x
k
) +

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
+ �‖x

k
‖0 ≤ f (x̂) + �‖x̂‖0,

which is equivalent to
�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
+ �‖x

k
‖0 ≤ f (x̂) − f (x

k
) + �‖x̂‖0.

This then implies that

lim inf

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
+ �‖x̂‖0

[29,Theorem 2.5.2]
≤ lim inf

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
+ lim inf

k→∞

�‖x
k
‖0

[2,Aufgabe 2b Abschnitt II.5]
≤ lim inf

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
+ �‖x

k
‖0

[2,Aufgabe 2e Abschnitt II.5]
≤ lim inf

k→∞

f (x̂) − f (x
k
) + �‖x̂‖0

[2,Theorem 5.7]
= �‖x̂‖0



70 CHAPTER 4. SPARSE OPTIMISATION PROBLEMS

and hence,
lim inf

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
≤ 0.

On the other hand, since 0 ≤ �k

2
‖(g(x

k
)+, ℎ(x

k
))‖

2
∀k ∈ ℕ, by [2, Aufgabe 2e Abschnitt II.5] we also have

that
0 ≤ lim inf

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
.

Thus,
lim inf

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
= 0.

By [2, Theorem 5.5, Satz 1.17] there exists a subsequence of
{
�k

2
‖(g(x

k
)+, ℎ(x

k
))‖

2

}

which converges to
0. Hence, by passing to this subsequence we can assume w.l.o.g. that

lim

k→∞

�k

2

‖(g(x
k
)+, ℎ(x

k
))‖

2
= 0 ⇒ lim

k→∞

�k‖(g(x
k
)+, ℎ(x

k
))‖

2
= 0.

The rest of the proof is then essentially the same as in the proof of Theorem 3.9 and we can conclude
that x̂ is an SP-CAKKT point.

Remark 4.16. Note that for each s ≥ ‖x̂‖0 x̂ ∈ X is an SP-CAKKT point of (1.2) i� it is a CC-CAM-
stationary point of (1.1).

In light of Theorem 4.1 and Remark 4.16, by �xing an arbitrary � > 0 we can view Theorem 3.9
as a corollary of Theorem 4.15. On the other hand, the proofs of [21, Theorem 3.4] and Theorem 3.9
do not actually prohibit s to be in {0, n}. Thus, in light of Proposition 4.9 and Remark 4.16, by setting
s ∶= ‖x̂‖0, Theorem 4.15 can be viewed as a corollary of Theorem 3.9.

The converse of Theorem 4.15 is false in general as the next example shows.

Example 4.17. Consider the following problem which is adapted from [8]

min

x∈ℝ
2

3(x1 − 1) − 2(x2 − 1) + ‖x‖0 s.t. (x1 − 1) − (x2 − 1) exp(x2 − 1) ≤ 0, x1 − x2 = 0. (4.12)

x̂ ∶= (1, 1)
T is obviously feasible for (4.12). Let us now show that it is an SP-CAKKT point. De�ne for each

k ∈ ℕ x
k
∶= (1 + 1/k, 1 + 1/k)

T , �k ∶= (exp(1/k) + (1/k) exp(1/k) − 1)−1, �k ∶= −3 − �k , 
 k ∶= 0. Clearly
we have {xk} → x̂ . Moreover, since 1/k > 0 for each k ∈ ℕ, by the strict monotonicity of exp we have
exp(1/k) > 1 and hence, in particular, exp(1/k) + (1/k) exp(1/k) − 1 > 0. Thus, {�k} ⊆ ℝ+. Now we also
have for each k ∈ ℕ

[

3

−2]
+ �k

[

1

− exp(1/k) − (1/k) exp(1/k)]
+ �k

[

1

−1]
+ 


k
=
[

3

−2]
+ �k

[

1

−�
−1

k
− 1]

+ �k
[

1

−1]
= 0.

Furthermore, |�k(xk1 − x
k

2
)| = 0 ∀k ∈ ℕ. Note that for each k ∈ ℕ since exp(1/k) > 1 we also have

|�k(1/k − (1/k) exp(1/k))| =

|
|
|
|

1/k − (1/k) exp(1/k)

exp(1/k) + (1/k) exp(1/k) − 1

|
|
|
|

=

|
|
|
|

1 − exp(1/k)

k exp(1/k) + exp(1/k) − k

|
|
|
|

=

exp(1/k) − 1

k(exp(1/k) − 1) + exp(1/k)

≤

exp(1/k) − 1

k(exp(1/k) − 1)

=

1

k

.
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Thus, it follows that {|�k(1/k − (1/k) exp(1/k))|} → 0. Hence, we conclude that x̂ is an SP-CAKKT point.
We now claim that x̂ is not a local minimiser of (4.12). Suppose to the contrary that it is a local minimiser
of (4.12). Then, since ‖x̂‖0 = 2, by Proposition 4.11 x̂ must be a local minimiser of the following problem

min

x∈ℝ
2

3(x1 − 1) − 2(x2 − 1) s.t. (x1 − 1) − (x2 − 1) exp(x2 − 1) ≤ 0, x1 − x2 = 0. (4.13)

The objective function value of x̂ for (4.13) is 0. On the other hand, for each k ∈ ℕ (1 − 1/k, 1 − 1/k)
T is

also feasible for (4.13) since

−1/k < 0 ⇒ exp(−1/k) < 1 ⇒ (1/k) exp(−1/k) < 1/k ⇒ −1/k + (1/k) exp(−1/k) < 0.

Moreover, the objective function value of (1−1/k, 1−1k)T for (4.13) is −1/k < 0. Since {(1−1/k, 1−1/k)T} →
(1, 1)

T , this contradicts the assumption that x̂ is a local minimiser of (4.13). Thus, we conclude that x̂ is
not a local minimiser of (4.12).

Nevertheless, under some additional assumptions we can prove the following result.
Theorem 4.18. Assume that in (1.2) the functions f as well as g1, … , gm are convex and ℎ1, … , ℎp are
a�ne-linear. Let x̂ ∈ X . If it is an SP-CAKKT point, then it is also a local minimiser of (1.2).
Proof. Note that the proof of Theorem 3.11 also holds for s ∈ {0, n}. By de�ning s ∶= ‖x̂‖0, x̂ is then
feasible for (1.1). Since x̂ is an SP-CAKKT point of (1.2), it is then also a CC-CAM-stationary point of
(1.1). The assertion then follows from Theorem 3.11 and Theorem 4.1.

Motivated by the AKKT condition for (2.1) and the CC-AM-stationarity for (1.1) we introduce the
following.
De�nition 4.19. Let x̂ ∈ X . We say that x̂ is an SP approximately Karush-Kuhn-Tucker (SP-AKKT)
point i� there exist sequences {xk} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n such that

(a) {xk} → x̂ ,

(b)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

→ 0,

(c) ∀i ∉ Ig(x̂) ∶ �
k

i
= 0 ∀k ∈ ℕ,

(d) ∀i ∈ I±(x̂) ∶ 

k

i
= 0 ∀k ∈ ℕ.

Remark 4.20. Note that for each s ≥ ‖x̂‖0 x̂ ∈ X is an SP-AKKT point of (1.2) i� it is a CC-AM-stationary
point of (1.1).

Since the proof of Theorem 3.14 also holds for s ∈ {0, n}, by de�ning s ∶= ‖x̂‖0 we immediately
obtain the following result from Remark 4.16 and Remark 4.20.
Theorem 4.21. Let x̂ ∈ X be an SP-CAKKT point of (1.2). Then it is also an SP-AKKT point of (1.2).

The converse of Theorem 4.21 is false in general as the next example shows.
Example 4.22. Consider the following problem

min

x∈ℝ
3

(x2 − 2)
2

2

+ ‖x‖0 s.t. x1x2 = 0. (4.14)

Observe that for each feasible point x̂ ∈ ℝ
3 of (4.14) we have ‖x̂‖0 ≤ 2. We shall now show that every

feasible point of (4.14) is also an SP-AKKT point. To this end, let x̂ be feasible for (4.14). Then, since
‖x̂‖0 ≤ 2, x̂ is feasible for (3.5). Therefore, it is a CC-AM-stationary point by Example 3.16. By Remark 4.20,
it is then an SP-AKKT point of (4.14). On the other hand, for a feasible point x̂ ∈ ℝ

3 of (4.14) to be an
SP-CAKKT point, we must have that x̂2 ∈ {0, 2}: Suppose that x̂ ∈ ℝ

3 is an SP-CAKKT point of (4.14) such
that x̂2 ∉ {0, 2}. Since ‖x̂‖0 ≤ 2, by Remark 4.16 x̂ is then a CC-CAM-stationary point of (3.5). This leads
to a contradiction.
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By Theorem 4.15 and Theorem 4.21 we obtain the following result.

Theorem 4.23. Let x̂ ∈ X be a local minimiser of (1.2). Then it is an SP-AKKT point of (1.2).

By Example 4.17 and Theorem 4.21 we know that the converse of Theorem 4.23 is false in general.

4.2 Sequential Constraint Quali�cations

De�nition 4.19 and Theorem 4.23 naturally lead to the following exact stationarity concept for (1.2).

De�nition 4.24. Let x̂ ∈ X . We then say that x̂ is an SP-KKT point i� there exist multipliers � ∈ ℝ
m

+
,

� ∈ ℝ
p , and 
 ∈ ℝ

n such that

(a) 0 = ∇f (x̂) +
m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) +

n

∑

i=1


iei ,

(b) ∀i ∉ Ig(x̂) ∶ �i = 0,

(c) ∀i ∈ I±(x̂) ∶ 
i = 0.

Remark 4.25. Note that for each s ≥ ‖x̂‖0 x̂ ∈ X is an SP-KKT point of (1.2) i� it is a CC-M-stationary
point of (1.1).

Due to Remark 4.16, Remark 4.20, and Remark 4.25, most of the ingredients needed to establish the
relationships between the sequential optimality conditions introduced in Section 4.1 and SP-KKT can
be directly transferred from Section 3.2.

Theorem 4.26 (Theorem 3.20). Let x̂ ∈ X . Then

x̂ is an SP-CAKKT point ⇔ −∇f (x̂) ∈ lim sup

(x,r)→(x̂,0)

K
C
((x, r)).

Theorem 4.27 (Theorem 3.22). Let x̂ ∈ X . Then

x̂ is an SP-KKT point ⇔ −∇f (x̂) ∈ K
C
((x̂ , 0)).

Theorem 4.28 (Theorem 3.23). Let x̂ ∈ X . Then

K
C
((x̂ , 0)) ⊆ lim sup

(x,r)→(x̂,0)

K
C
((x, r)).

Corollary 4.29 (Corollary 3.24). Let x̂ ∈ X . Then

x̂ is an SP-KKT point ⇒ x̂ is an SP-CAKKT point.

The converse is not true in general as the following example shows.

Example 4.30 (Example 3.25). We know that (1/2, 0)T is the unique global minimiser of (3.8). Let us
now �x an arbitrary � > 0. By Theorem 4.1, (1/2, 0)T is then a local minimiser of the sparse optimisation
problem

min

x∈ℝ
2

x1 + 10x2 + �‖x‖0 s.t.
(
x1 −

1

2
)

2

+ (x2 − 1)
2
≤ 1. (4.15)

Hence, by Theorem 4.15, it is then also an SP-CAKKT point of (4.15). On the other hand, it was shown
in Example 3.25, that (1/2, 0)T cannot be a CC-M-stationary point of (3.8). Thus, by Remark 4.25, it also
cannot be an SP-KKT point of (4.15).

The following is clearly a su�cient condition for the converse of Corollary 4.29 to hold.
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De�nition 4.31 (De�nition 3.26). A feasible point x̂ ∈ ℝ
n of (1.2) is said to satisfy the SP-CAKKT-

regularity condition i�
lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⊆ K

C
((x̂ , 0)).

Theorem 4.32 (Theorem 3.27). Let x̂ ∈ ℝ
n be an SP-CAKKT point of (1.2) which satis�es the SP-CAKKT-

regularity condition. Then x̂ is an SP-KKT point.

Example 4.33 (Example 3.28). If 0 ∈ ℝ
n is feasible for (1.2), then it is an SP-KKT point and therefore,

also an SP-CAKKT point. Moreover, it also satis�es SP-CAKKT-regularity.

The next theorem states that SP-CAKKT-regularity is a strict constraint quali�cation with respect
to the SP-CAKKT condition.

Theorem 4.34 (Theorem 3.29). Let x̂ ∈ X . Suppose that for every continuously di�erentiable function
f ∈ C

1
(ℝ

n
, ℝ) the following implication holds

x̂ is an SP-CAKKT point ⇒ x̂ is an SP-KKT point.

Then x̂ satis�es SP-CAKKT-regularity.

Theorem 4.35 (Theorem 3.30). Let x̂ ∈ X . Then

x̂ is an SP-AKKT point ⇔ −∇f (x̂) ∈ lim sup

x→x̂

K
x̂
(x).

Corollary 4.36 (Corollary 3.33). Let x̂ ∈ ℝ
n be feasible for (1.2). Then

x̂ is an SP-KKT point ⇒ x̂ is an SP-AKKT point.

By Example 4.30 and Theorem 4.21 we know that the converse of Corollary 4.36 is false in general.

De�nition 4.37 (De�nition 3.34). A feasible point x̂ ∈ ℝ
n of (1.2) is said to satisfy the SP-AKKT-

regularity condition i�
lim sup

x→x̂

K
x̂
(x) ⊆ K

x̂
(x̂).

Theorem 4.38 (Theorem 3.35). Let x̂ ∈ ℝ
n be an SP-AKKT point of (1.2) which satis�es the SP-AKKT-

regularity condition. Then x̂ is an SP-KKT point.

The following theorem states that SP-AKKT-regularity is a strict constraint quali�cation with re-
spect to the SP-AKKT condition.

Theorem 4.39 (Theorem 3.36). Let x̂ ∈ X . Suppose that for every continuously di�erentiable function
f ∈ C

1
(ℝ

n
, ℝ) the following implication holds

x̂ is an SP-AKKT point ⇒ x̂ is an SP-KKT point.

Then x̂ satis�es SP-AKKT-regularity.

Remark 4.40 (Remark 3.37). Note that if 0 ∈ ℝ
n is feasible for (1.2), then it is an SP-AKKT point which

satis�es SP-AKKT-regularity.

Theorem 4.41 (Theorem 3.38). Let x̂ ∈ X . Then

lim sup

(x,r)→(x̂,0)

K
C
((x, r)) ⊆ lim sup

x→x̂

K
x̂
(x).
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Corollary 4.42 (Corollary 3.39). Let x̂ ∈ X . The following implication then holds

x̂ satis�es SP-AKKT-regularity ⇒ x̂ satis�es SP-CAKKT-regularity.

Remark 4.43 (Remark 3.40). Let x̂ ∈ X . Then it is clear that

• x̂ is an SP-KKT point i� it is a KKT point of (3.10),

• x̂ is an SP-CAKKT point i� it is a CAKKT point of (3.10),

• x̂ is an SP-AKKT point i� it is an AKKT point of (3.10),

• x̂ satis�es SP-CAKKT-regularity i� it satis�es CAKKT-regularity with respect to (3.10),

• x̂ satis�es SP-AKKT-regularity i� it satis�es AKKT-regularity with respect to (3.10).

Just like in [23, De�nition 3.11], we can now utilise (3.10) to introduce stronger constraint quali�c-
ations.

De�nition 4.44 (De�nition 3.41). Let x̂ ∈ X .Then x̂ satis�es

(a) SP-LICQ i� the gradients

∇gi(x̂) (i ∈ Ig(x̂)), ∇ℎi(x̂) (i = 1, … , p), ei (i ∈ I0(x̂))

are linearly independent;

(b) SP-MFCQ i� the gradients

∇gi(x̂) (i ∈ Ig(x̂)) and ∇ℎi(x̂) (i = 1, … , p), ei (i ∈ I0(x̂))

are positive-linearly independent;

(c) SP-CPLD i� for any subsets I1 ⊆ Ig(x̂), I2 ⊆ {1, … , p}, and I3 ⊆ I0(x̂) such that the gradients

∇gi(x) (i ∈ I1), and ∇ℎi(x) (i ∈ I2), ei (i ∈ I3)

are positive-linearly dependent in x = x̂ , they are linearly dependent in a neighborhood of x̂ .

Proposition 4.45. The following relations follow directly from their corresponding NLP relations applied
to (3.10):

SP-LICQ ⇒ SP-MFCQ ⇒ SP-CPLD ⇒ SP-AKKT-reg. ⇒ SP-CAKKT-reg.

Corollary 4.46 (Corollary 3.43). If g and ℎ in (1.1) are a�ne-linear, then every feasible point of (1.2)
satis�es SP-AKKT-regularity, and therefore SP-CAKKT-regularity as well.

4.3 Relaxed Reformulation

Let us now turn our attention to (1.10), see also [30]. We would like to show that we can solve (1.2) by
solving (1.10) instead. First we tackle feasibility.

Theorem 4.47 ([20, Lemma 3.3 (a)]). Let x̂ ∈ ℝ
n. Then x̂ is feasible for (1.2) i� there exists ŷ ∈ ℝ

n such
that (x̂ , ŷ) is feasible for (1.10).
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Proof. "⇒": Suppose that x̂ is feasible for (1.2). Then we have x̂ ∈ X . De�ne ŷ ∈ ℝ
n such that

ŷi ∶=

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).

Clearly we have ŷ ≤ e and x̂◦ŷ = 0. Hence, (x̂ , ŷ) is feasible for (1.10).
"⇐": Suppose that there exists ŷ ∈ ℝ

n such that (x̂ , ŷ) is feasible for (1.10). Then this immediately
implies that x̂ ∈ X and hence, x̂ is feasible for (1.2).

Observe that for a feasible point x̂ ∈ ℝ
n of (1.2) the corresponding vector ŷ ∈ ℝ

n such that (x̂ , ŷ)
is feasible for (1.10) is not necessarily unique. Indeed, in the proof of Theorem 4.47, for each i ∈ I0(x̂)

we can replace 1 with any number in (−∞, 1] and the resulting pair (x̂ , ŷ) would still be feasible for
(1.10). Nevertheless, the choice ŷi = 1 for each i ∈ I0(x̂) is natural since it leads to the smallest objective
function value.

Lemma 4.48 ([20, Lemma 3.3 (b)]). Let (x̂ , ŷ) ∈ ℝ
n
× ℝ

n be feasible for (1.10). Then

n − e
T
ŷ ≥ ‖x̂‖0

and equality holds i� ŷi = 1 for each i ∈ I0(x̂).

Proof. The feasibility of (x̂ , ŷ) implies that

(a) x̂◦ŷ = 0 ⇒ ŷi = 0 ∀i ∈ I±(x̂),

(b) ŷ ≤ e ⇒ 0 ≤ 1 − ŷi ∀i ∈ I0(x̂).

Hence,
‖x̂‖0 = ∑

i∈I±(x̂)

1
(a)

= ∑

i∈I±(x̂)

(1 − ŷi)

(b)

≤ ∑

i∈I±(x̂)

(1 − ŷi) + ∑

i∈I0(x̂)

(1 − ŷi) = n − e
T
ŷ.

Equality obviously holds i�
0 = ∑

i∈I0(x̂)

(1 − ŷi)

(b)

⇔ ŷi = 1 ∀i ∈ I0(x̂).

Proposition 4.49 ([20, Lemma 3.4]). Let (x̂ , ŷ) ∈ ℝ
n
× ℝ

n be a local minimiser of (1.10). Then ŷi = 1 for
each i ∈ I0(x̂) and therefore, n − eT ŷ = ‖x̂‖0.

Proof. By assumption, (x̂ , ŷ) is a local minimiser of (1.10). Hence, ŷ is a global solution of the linear
programme

max
y

e
T
y s.t. y ≤ e, x̂◦y = 0.

This implies that ŷi = 1 for each i ∈ I0(x̂) and thus, by Lemma 4.48 we also have n − eT ŷ = ‖x̂‖0.

We can now show that the local solutions of (1.2) and (1.10) are equivalent in a certain sense.

Theorem 4.50 ([20, Theorem 3.5]). Let x̂ ∈ ℝ
n. Then x̂ is a local minimiser of (1.2) i� there exists a

unique ŷ ∈ ℝ
n such that (x̂ , ŷ) is a local minimiser of (1.10). In this case the vector ŷ is given by

ŷi =

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂)

and we have
f (x̂) + �‖x̂‖0 = f (x̂) + � (n − e

T
ŷ) .
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Proof. "⇒": Assume �rst that x̂ is a local minimiser of (1.2). Then there exists � > 0 such that for each
x ∈ X with x ∈ B�(x̂) we have

f (x̂) + �‖x̂‖0 ≤ f (x) + �‖x‖0. (4.16)
Now let ŷ be de�ned as above. By the proof of Theorem 4.47 we know that (x̂ , ŷ) is feasible for (1.10).
Suppose now that (x, y) is another feasible point of (1.10) such that (x, y) ∈ B�((x̂ , ŷ)). Then we have

(x, y) ∈ B�((x̂ , ŷ)) ⇔ ‖(x, y) − (x̂ , ŷ)‖ < � ⇒ ‖x − x̂‖ < � ⇔ x ∈ B�(x̂).

Moreover, by Theorem 4.47 we also know that x is feasible for (1.2). Hence,

f (x̂) + � (n − e
T
ŷ)

Lemma 4.48

= f (x̂) + �‖x̂‖0

(4.16)
≤ f (x) + �‖x‖0

Lemma 4.48

≤ f (x) + � (n − e
T
y) .

This implies that (x̂ , ŷ) is a local minimiser of (1.10). Now suppose that there exists another y ∈ ℝ
n

such that (x̂ , y) is also a local minimiser of (1.10). But by Proposition 4.49 it follows that y = ŷ . This
proves the uniqueness of ŷ.
"⇐": Now assume that there exists ŷ ∈ ℝ

n such that (x̂ , ŷ) is a local minimiser of (1.10). By Propos-
ition 4.49 ŷ is then uniquely de�ned as above and we have ‖x̂‖0 = n − e

T
ŷ. Since (x̂ , ŷ) is feasible for

(1.10), then by Theorem 4.47 x̂ ∈ X . Furthermore, by assumption, there exists �1 > 0 such that for each
feasible point (x, y) of (1.10) with (x, y) ∈ B�1(x̂ , ŷ) we have

f (x̂) + � (n − e
T
ŷ) ≤ f (x) + � (n − e

T
y) . (4.17)

Now by Lemma 3.6 there exists �2 > 0 such that for each x ∈ B�2(x̂) we have

I±(x̂) ⊆ I±(x).

Moreover, by the lower semicontinuity of f there exists �3 > 0 such that for each x ∈ B�3(x̂) we have

f (x̂) − f (x) < � ⇔ f (x̂) < f (x) + �.

Now de�ne
� ∶= min

i=1,2,3

�i > 0.

Suppose that x ∈ X ∩B�(x̂). Since � ≤ �2 we also have x ∈ B�2(x̂). We now di�erentiate between 2 cases.
Case 1: I±(x̂) = I±(x)
In this case we have

‖x‖0 = card(I±(x)) = card(I±(x̂)) = ‖x̂‖0 = n − e
T
ŷ.

Furthermore, we also have
I0(x̂) = I0(x).

By the structure of ŷ and the proof of Theorem 4.47 (x, ŷ) is then feasible for (1.10). Now since � ≤ �1
we then have

‖(x, ŷ) − (x̂ , ŷ)‖ = ‖x − x̂‖ < � ≤ �1 ⇒ (x, ŷ) ∈ B�1
((x̂ , ŷ))

and therefore,

f (x̂) + �‖x̂‖0 = f (x̂) + � (n − e
T
ŷ)

(4.17)
≤ f (x) + � (n − e

T
ŷ) = f (x) + �‖x‖0.

Case 2: I±(x̂) ( I±(x)

In this case the index set I±(x) contains at least one more element than I±(x̂) and hence,

1 ≤ card(I±(x)) − card(I±(x̂)) ⇔ ‖x̂‖0 + 1 ≤ ‖x‖0.

Since � ≤ �3 we then have

f (x̂) < f (x) + � ⇒ f (x̂) + �‖x̂‖0 < f (x) + � (‖x̂‖0 + 1) ≤ f (x) + �‖x‖0.

Thus, we conclude that x̂ is a local minimiser of (1.2).
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Note that the equivalence of global minimisers is a direct consequence of Theorem 4.47 as well as
Lemma 4.48 which state the relations of feasible points and objective function values between (1.2) and
(1.10). Nevertheless, we state it here for completeness sake.

Theorem 4.51 ([20, Theorem 3.6]). Let x̂ ∈ ℝ
n. Then x̂ is a global minimiser of (1.2) i� (x̂ , ŷ) ∈ ℝ

n
× ℝ

n

with

ŷi ∶=

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂)

is a global minimiser of (1.10).

In the context of CC, two di�erent exact stationarity concepts were introduced in [21, De�nition
4.6]: CC-M-stationarity which corresponds to the KKT-condition of (3.10) and CC-S-stationarity which
corresponds to the KKT-condition of the relaxed reformulation. Here these two concepts coincide,
hence the single term SP-KKT. We shall now prove this.

Let z ∈ ℝ
n. Obviously we have I1(z) ⊆ I±(z). Now a point (x̂ , ŷ) ∈ ℝ

n
× ℝ

n is said to satisfy the
KKT-condition of (1.10) i� it is feasible for (1.10) and there exists (�, �, �̃, 
̃ ) ∈ ℝ

m

+
× ℝ

p
× ℝ

n

+
× ℝ

n such
that

(a) 0 =
[

∇f (x̂)

−�e ]
+

m

∑

i=1

�i
[

∇gi(x̂)

0 ]
+

p

∑

i=1

�i
[

∇ℎi(x̂)

0 ]
+

n

∑

i=1

�̃i
[

0

ei]
+

n

∑

i=1


̃i
[

ŷiei

x̂iei]
,

(b) �i = 0 ∀i ∉ Ig(x̂),

(c) �̃i = 0 ∀i ∉ I1(ŷ).

Separating the equation with respect to the x- and y-variables, we obtain

0 = ∇f (x̂) + ∑

i∈Ig (x̂)

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) + ∑

i∈I±(ŷ)


̃i ŷiei ,

�e = ∑

i∈I1(ŷ)

�̃iei + ∑

i∈I±(x̂)


̃i x̂iei .

The feasibility of (x̂ , ŷ) for (1.10) implies that I1(ŷ) ∩ I±(x̂) = ∅. Clearly I1(ŷ) ∪̇ I±(x̂) ⊆ {1, … , n}. Since
� > 0, the second equation above implies that {1, … , n} = I1(ŷ) ∪̇ I±(x̂) and hence, I1(ŷ) = I±(x̂)c = I0(x̂).
This leads to the following.

Lemma 4.52 ([20, Section 5]). Every KKT-point (x̂ , ŷ) ∈ ℝ
n
× ℝ

n of (1.10) has the property that

ŷi =

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).

The same property is satis�ed by all local minimisers of (1.10), cf. Proposition 4.49. Note also that
this property of local solutions and KKT-points is very special for sparse optimisation and does, in
general, not hold for some of the related classes of minimisation problems.

Theorem 4.53 ([20, Theorem 5.2]). Let x̂ ∈ X . Then x̂ is an SP-KKT point of (1.2) i� there exists a unique
ŷ ∈ ℝ

n such that (x̂ , ŷ) is a KKT-point of (1.10). The vector ŷ is given by

ŷi =

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).
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Proof. "⇒": Let x̂ ∈ X be an SP-KKT point of (1.2) with a corresponding multiplier triple (�, �, 
 ) ∈ ℝ
m

+
×

ℝ
p
× ℝ

n. De�ne ŷ as above. Then (x̂ , ŷ) is feasible for (1.10). Furthermore, we have I0(x̂) = I1(ŷ) = I±(ŷ).
De�ne the multipliers


̃i ∶=

{

i

ŷi

if i ∈ I0(x̂),
�

x̂i

if i ∈ I±(x̂),
and �̃i ∶=

{

� if i ∈ I0(x̂),
0 if i ∈ I±(x̂).

Then (x̂ , ŷ) together with the multiplier quadruple (�, �, �̃, 
̃ ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n

+
× ℝ

n is a KKT-point of
(1.10). Suppose now that y ∈ ℝ

n is another vector such that (x̂ , y) is a KKT-point of (1.10). Lemma 4.52
then implies that y = ŷ. This shows the uniqueness.
"⇐": Let (x̂ , ŷ) ∈ ℝ

n
×ℝ

n be a KKT-point of (1.10) with a corresponding multiplier quadruple (�, �, �̃, 
̃ ) ∈
ℝ
m

+
× ℝ

p
× ℝ

n

+
× ℝ

n. By Lemma 4.52, ŷ is uniquely de�ned as above. Furthermore, by Theorem 4.47, x̂ is
feasible for (1.2). Observe that I0(x̂) = I1(ŷ) = I±(ŷ). De�ne 
 ∈ ℝ

n such that


i ∶=

{


̃ ŷi if i ∈ I0(x̂),
0 if i ∈ I±(x̂).

Now since (x̂ , ŷ) is a KKT-point we then have �i = 0 ∀i ∉ Ig(x̂) and

0 = ∇f (x̂) +

m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

∇ℎi(x̂) + ∑

i∈I±(ŷ)


̃i ŷiei

= ∇f (x̂) +

m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

∇ℎi(x̂) + ∑

i∈I0(x̂)


iei

= ∇f (x̂) +

m

∑

i=1

�i∇gi(x̂) +

p

∑

i=1

∇ℎi(x̂) +

n

∑

i=1


iei .

Hence, x̂ is an SP-KKT point of (1.2) with a corresponding multiplier triple (�, �, 
 ) ∈ ℝ
m

+
×ℝ

p
×ℝ

n.

In the context of CC, despite being one of the weakest constraint quali�cations for NLP, ACQ is
usually violated at a feasible point of the corresponding relaxed programme, see [23, Section 3]. Hence,
a CC-tailored ACQ was introduced in [23]. Thus, it is natural to ask if there is a need to introduce
SP-tailored ACQ for (1.10) as well. It turns out that this is unnecessary. This is due to Proposition 4.49
which implies that it su�ces to only consider those feasible points (x̂ , ŷ) ∈ ℝ

n
×ℝ

n with I0(x̂)∩ I0(ŷ) = ∅.
Let us now elaborate this further. To simplify the notation we shall denote the feasible set of (1.10) by
Z .

Let (x̂ , ŷ) ∈ Z . The Bouligand tangent cone, cf. De�nition 2.15, of Z at (x̂ , ŷ) is given by

TZ ((x̂ , ŷ)) =

{

(dx , dy ) ∈ ℝ
n
× ℝ

n

|
|
|
|
|
|

∃{(x
k
, y

k
)} ⊆ Z , {tk} ↓ 0 ∶

{(x
k
, y

k
)} → (x̂, ŷ) ∧

{

(x
k
,y
k
)−(x̂ ,ŷ)

tk

}

→ (dx , dy )

}

and the corresponding linearisation cone, cf. De�nition 2.16, is given by

LZ ((x̂ , ŷ)) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

(dx , dy )

|
|
|
|
|
|
|
|
|

∇gi(x̂)
T
dx ≤ 0 ∀i ∈ Ig(x̂),

∇ℎi(x̂)
T
dx = 0 ∀i = 1, … , p,

e
T

i
dy ≤ 0 ∀i ∈ I1(ŷ),

ŷie
T

i
dx + x̂ie

T

i
dy = 0 ∀i = 1, … , n

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

.
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Suppose now that I0(x̂) ∩ I0(ŷ) = ∅. Then for each i ∈ {1, … , n} we have x̂i = 0 ∨̇ ŷi = 0 where ∨̇ denotes
exclusive or. Since {1, … , n} = I0(x̂) ∪̇ I±(x̂), the linearisation cone can then be further simpli�ed as

LZ ((x̂ , ŷ)) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

(dx , dy )

|
|
|
|
|
|
|
|
|
|
|

∇gi(x̂)
T
dx ≤ 0 ∀i ∈ Ig(x̂),

∇ℎi(x̂)
T
dx = 0 ∀i = 1, … , p,

e
T

i
dy ≤ 0 ∀i ∈ I1(ŷ),

e
T

i
dy = 0 ∀i ∈ I±(x̂),

e
T

i
dx = 0 ∀i ∈ I0(x̂)

⎫
⎪
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎪
⎭

.

By [33, Lemma 2.32], the inclusion TZ ((x̂ , ŷ)) ⊆ LZ ((x̂ , ŷ)) always holds. Now by Theorem 4.47 we have
x̂ ∈ X . Let us denote the feasible set of the corresponding TNLP(x̂), cf. (3.10), by X(x̂). The Bouligand
tangent cone of X(x̂) at x̂ is given by

T
X(x̂)

(x̂) =

{

dx ∈ ℝ
n

|
|
|
|
|

∃{x
k
} ⊆ X(x̂), {tk} ↓ 0 ∶ {x

k
} → x̂ ∧

{

x
k
− x̂

tk

}

→ dx

}

and the corresponding linearisation cone by

L
X(x̂)

(x̂) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

dx

|
|
|
|
|
|
|

∇gi(x̂)
T
dx ≤ 0 ∀i ∈ Ig(x̂),

∇ℎi(x̂)
T
dx = 0 ∀i = 1, … , p,

e
T

i
dx = 0 ∀i ∈ I0(x̂)

⎫
⎪
⎪

⎬
⎪
⎪
⎭

.

Again, by [33, Lemma 2.32] we have T
X(x̂)

(x̂) ⊆ L
X(x̂)

(x̂).

Theorem 4.54. Let (x̂ , ŷ) ∈ Z such that I0(x̂) ∩ I0(ŷ) = ∅. Then

LZ ((x̂ , ŷ)) ⊆ TZ ((x̂ , ŷ)) ⇔ L
X(x̂)

(x̂) ⊆ T
X(x̂)

(x̂).

In other words, ACQ holds for (1.10) at (x̂ , ŷ) i� ACQ holds for (3.10) at x̂ .

Proof. "⇒": Let dx ∈ LX(x̂)(x̂). De�ne dy ∶= 0. Then (dx , dy ) ∈ LZ ((x̂ , ŷ)). By assumption, we then have
(dx , dy ) ∈ TZ ((x̂ , ŷ)). Hence, in particular, there exist {(xk , yk)} ⊆ Z and {tk} ↓ 0 such that {xk} → x̂ ,
{y

k
} → ŷ , and

{

x
k
−x̂

tk

}

→ dx . For each k ∈ ℕ, since (xk , yk) ∈ Z , we then have xk ∈ X . Thus, it
remains to show that xk ∈ X(x̂) = {x ∈ X ∣ xi = 0 ∀i ∈ I0(x̂)}. Let i ∈ I0(x̂). By assumption, we then
have i ∉ I0(ŷ) and hence, ŷi ≠ 0. Since {yk

i
} → ŷi , we can assume w.l.o.g. that yk

i
≠ 0 ∀k ∈ ℕ. Then,

since (xk , yk) ∈ Z , it follows that xk
i
= 0 ∀k ∈ ℕ. Thus, we conclude that {xk} ⊆ X(x̂) and therefore,

dx ∈ TX(x̂)(x̂).
"⇐": Let (dx , dy ) ∈ LZ ((x̂ , ŷ)). Then dx ∈ LX(x̂)(x̂) and hence, by assumption, dx ∈ TX(x̂)(x̂). By de�nition,
this implies that there exist {xk} ⊆ X(x̂), {tk} ↓ 0 such that {xk} → x̂ and

{

x
k
−x̂

tk

}

→ dx . Let i ∈ I0(x̂).
By assumption we then have i ∈ I±(ŷ). Suppose further that i ∈ I±(ŷ) ⧵ I1(ŷ). Then ŷi < 1 since (x̂ , ŷ) ∈ Z .
Now since {tk} ↓ 0, we can assume w.l.o.g. that for each k ∈ ℕ we have ŷi + tkeTi dy ≤ 1. Let us now
de�ne for each k ∈ ℕ y

k
∈ ℝ

n such that

y
k

i
∶=

{

0 if i ∈ I0(ŷ),
ŷi + tke

T

i
dy if i ∈ I±(ŷ).

By the preceeding discussion, if i ∈ I±(ŷ) ⧵ I1(ŷ), then y
k

i
≤ 1. Suppose now that i ∈ I1(ŷ). Since

(dx , dy ) ∈ LZ ((x̂ , ŷ)), then e
T

i
dy ≤ 0 and hence, yk

i
= ŷi + tke

T

i
dy ≤ ŷi = 1. Thus, we conclude that yk ≤ e

for each k ∈ ℕ. Now let i ∈ I±(x̂). Then we have i ∈ I0(ŷ). Thus, we have for each k ∈ ℕ that yk
i
= 0

and therefore, xk
i
y
k

i
= 0. Furthermore, since xk ∈ X(x̂), then x

k

i
= 0 ∀i ∈ I0(x̂) and hence, xk

i
y
k

i
= 0.
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Thus, we conclude that (xk , yk) ∈ Z for each k ∈ ℕ. Since {tk} ↓ 0, by the de�nition of yk we clearly
have {yk} → ŷ. Now let i ∈ I±(ŷ). Then we have

{

y
k

i
− ŷi

tk

}

=

{

tke
T

i
dy

tk

}

= {(dy )i} → (dy )i .

Suppose now that i ∈ I0(ŷ). By assumption we then have i ∉ I0(x̂) and hence, i ∈ I±(x̂). Thus, since
(dx , dy ) ∈ LZ ((x̂ , ŷ)), it follows that (dy )i = eTi dy = 0. Hence,

{

y
k

i
− ŷi

tk

}

= {0} → (dy )i .

This implies that
{

y
k
−ŷ

tk

}

→ dy . The assertion then follows.

By Remark 4.43, [8, Theorem 6], and Theorem 4.54 we then have

Corollary 4.55. Let (x̂ , ŷ) ∈ Z such that I0(x̂) ∩ I0(ŷ) = ∅. Then

SP-CAKKT-regularity holds at x̂ ⇒ ACQ holds at (x̂ , ŷ).

Since (1.10) is an instance of (2.1), by Theorem 4.50, Theorem 2.2, and [15, Theorem 3.1], for every
local minimiser x̂ ∈ ℝ

n of (1.2) there exists a ŷ ∈ ℝ
n such that (x̂ , ŷ) is a CAKKT and an AKKT point of

(1.10). Let us now establish the relationship between the SP-CAKKT condition for (1.2) and the CAKKT
condition for (1.10).

Theorem 4.56. Let (x̂ , ŷ) ∈ Z . If (x̂ , ŷ) is a CAKKT-point of (1.10), then x̂ is an SP-CAKKT point of (1.2).

We omit the proof since it is similar to the proof of Theorem 3.48. For the converse we have the
following result.

Theorem 4.57. Let x̂ ∈ X . If x̂ is an SP-CAKKT point, then there exists a ŷ ∈ ℝ
n such that (x̂ , ŷ) is a

CAKKT point of (1.10).

Proof. By assumption there exist sequences {xk}, {
 k} ⊆ ℝ
n, {�k} ⊆ ℝ

m

+
, and {�k} ⊆ ℝ

p such that the
conditions in De�nition 4.14 hold. Observe that for each i ∈ {1, … , n} we have

{

k

i
x
k

i
} → 0.

This then implies that for each i ∈ I±(x̂) we have

{

k

i
} → 0.

Moreover, for each i ∈ I±(x̂) we can also assume w.l.o.g. that xk
i
≠ 0 ∀k ∈ ℕ. Now de�ne ŷ ∈ ℝ

n such
that

ŷi ∶=

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).

Then (x̂ , ŷ) ∈ Z . Next de�ne for each k ∈ ℕ y
k
, 
̂

k
∈ ℝ

n and �k ∈ ℝ
n

+
such that yk ∶= ŷ and


̂
k

i
∶=

{
�

x
k

i

if i ∈ I±(x̂),


k

i
if i ∈ I0(x̂)

∧ �
k

i
∶=

{

0 if i ∈ I±(x̂),
� if i ∈ I0(x̂).

Now if i ∈ I±(x̂) we then obtain

{

−� + �
k

i
+ 
̂

k

i
x
k

i

}

=

{

−� +

�

x
k

i

x
k

i

}

= {0} → 0.
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Suppose now that i ∈ I0(x̂). We then have
{

−� + �
k

i
+ 
̂

k

i
x
k

i

}

=

{

−� + � + 

k

i
x
k

i

}

=

{



k

i
x
k

i

}

→ 0.

Hence,
{

−�e +

n

∑

i=1

�
k

i
ei +

n

∑

i=1


̂
k

i
x
k

i
ei

}

→ 0.

Moreover,
{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
y
k

i
ei

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)



k

i
ei

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

−

{

∑

i∈I±(x̂)



k

i
ei

}

→ 0.

Observe that �k
i
(y

k

i
− 1) = 0 for each k ∈ ℕ and for each i ∈ {1, … , n}. Hence,
{

m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| +

n

∑

i=1

|�
k

i
(y

k

i
− 1)| +

n

∑

i=1

|
̂
k

i
x
k

i
y
k

i
|

}

=

{
m

∑

i=1

|�
k

i
gi(x

k
)| +

p

∑

i=1

|�
k

i
ℎi(x

k
)| + ∑

i∈I0(x̂)

|

k

i
x
k

i
|

}

→ 0.

In contrast to Example 3.51, the AKKT condition for (1.10) does imply the SP-AKKT condition for
(1.2) as the next theorem shows.

Theorem 4.58. Let (x̂ , ŷ) ∈ Z . If (x̂ , ŷ) is an AKKT-point of (1.10), then x̂ is an SP-AKKT point of (1.2).

Proof. By assumption there exist sequences {(xk , yk)} ⊆ ℝ
n
×ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , {�k} ⊆ ℝ
n

+
, and

{
̂
k
} ⊆ ℝ

n such that {(xk , yk)} → (x̂, ŷ) and

(a)

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
y
k

i
ei

}

→ 0,

(b)

{

−�e +

n

∑

i=1

�
k

i
ei +

n

∑

i=1


̂
k

i
x
k

i
ei

}

→ 0,

(c) ∀i ∉ Ig(x̂) ∶ �
k

i
= 0 ∀k ∈ ℕ,

(d) ∀i ∉ I1(ŷ) ∶ �
k

i
= 0 ∀k ∈ ℕ.

Suppose that i ∈ I±(x̂). Then ŷi = 0. Hence, since i ∉ I1(ŷ) we have �k
i
= 0 ∀k ∈ ℕ and therefore,

{

−� + 
̂
k

i
x
k

i

}

→ 0 ⇒

{


̂
k

i
x
k

i

}

→ � ⇒

{


̂
k

i

}

→

�

x̂i

.

Now since {yk
i
} → ŷi = 0, this implies {
̂ k

i
y
k

i
} →

�

x̂i

⋅ 0 = 0. De�ne for each k ∈ ℕ 

k
∈ ℝ

n such that



k

i
∶=

{

0 if i ∈ I±(x̂),

̂
k

i
y
k

i
if i ∈ I0(x̂).
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Then
{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) + ∑

i∈I0(x̂)


̂
k

i
y
k

i

}

=

{

∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1


̂
k

i
y
k

i

}

−

{

∑

i∈I±(x̂)


̂
k

i
y
k

i

}

→ 0.

4.4 Numerical Methods

Just like (1.9), the relaxed reformulation (1.10) enables us to apply methods developed for (2.1) and
MPCC to approximate a solution of (1.2). Here we shall concentrate on the augmented Lagrangian
method from [4, 15] and the Scholtes regularisation method from [25, 53].

4.4.1 An Augmented Lagrangian Method

Let � > 0 be a given penalty parameter. The PHR augmented Lagrangian function for (1.10) is given by

L((x, y), �, �, �, 
 ; �) ∶= f (x) + � (n − e
T
y) + ��((x, y), �, �, �, 
 ; �),

where (�, �, �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n

+
× ℝ

n and

�((x, y), �, �, �, 
 ; �) ∶=

1

2

‖
‖
‖
‖
‖
((

g(x) +

�

� )
+

, ℎ(x) +

�

�

,
(
y − e +

�

�
)
+

, x◦y +




� )

‖
‖
‖
‖
‖

2

is the shifted quadratic penalty term. The algorithm is then stated below.

Algorithm 4.59 (Augmented Lagrangian Method).

(S0) Pick �max > 0, �min < �max, �max > 0, 
min < 
max, � ∈ (0, 1), � > 1,
̄
�
1
∈ [0, �max]

m
, �̄

1
∈

[�min, �max]
p
, �̄

1
∈ [0, �max]

n
, 
̄

1
∈ [
min, 
max]

n
, �1 > 0, and let {�k} ⊆ ℝ+ such that {�k} ↓ 0. Set

k ← 1.

(S1) Compute (xk , yk) as an approximate solution of

min
x,y

L((x, y),
̄
�
k
, �̄

k
, �̄

k
, 
̄

k
; �k)

satisfying
‖∇(x,y)L((x

k
, y

k
),
̄
�
k
, �̄

k
, �̄

k
, 
̄

k
; �k)‖ ≤ �k . (4.18)

(S2) Update the approximate multipliers:

• �k
i
∶= max{0, �kgi(x

k
) +

̄
�
k

i
} ∀i = 1, … ,m,

• �k
i
∶= �kℎi(x

k
) + �̄

k

i
∀i = 1, … , p,

• �k
i
∶= max{0, �k(y

k

i
− 1) + �̄

k

i
} ∀i = 1, … , n,

• 
 k
i
∶= �kx

k

i
y
k

i
+ 
̄

k

i
∀i = 1, … , n.

(S3) Update the penalty parameter:
De�ne
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• U k

i
∶= min

{

−gi(x
k
),

̄
�
k

i

�k

}

∀i = 1, … ,m,

• W k

i
∶= min

{

−(y
k

i
− 1),

�̄
k

i

�k

}

∀i = 1, … , n.

If k = 1 or

max

{

‖U
k
‖, ‖ℎ(x

k
)‖, ‖W

k
‖, ‖x

k
◦y

k
‖

}

≤ � max

{

‖U
k−1

‖, ‖ℎ(x
k−1
)‖,

‖W
k−1

‖, ‖x
k−1

◦y
k−1

‖

}

, (4.19)

set �k+1 = �k . Otherwise set �k+1 = ��k .

(S4) Update the safeguarded multipliers:
Compute ̄�k+1 ∈ [0, �max]

m
, �̄

k+1
∈ [�min, �max]

p
, �̄

k+1
∈ [0, �max]

n
, as well as 
̄ k+1 ∈ [
min, 
max]

n.

(S5) Set k ← k + 1 and go to (S1).

Theorem 4.60. Suppose that the sequence {xk} generated by Algorithm 4.59 has a limit point x̂ ∈ ℝ
n,

i.e., {xk} converges on a subsequence to x̂ . Then the corresponding subsequence of {yk} is bounded. In
particular we can then extract a limit point (x̂ , ŷ) ∈ ℝ

n
× ℝ

n of {(xk , yk)}.

Proof. Let x̂ ∈ ℝ
n be a limit point of {xk}. By passing to a subsequence we can simplify the notation

and assume w.l.o.g. that {xk} → x̂ . De�ne for each k ∈ ℕ

B
k
∶= ∇yL((x

k
, y

k
),
̄
�
k
, �̄

k
, �̄

k
, 
̄

k
; �k) = −�e +

n

∑

i=1

�
k

i
ei +

n

∑

i=1



k

i
x
k

i
ei , (4.20)

where the last equality follows from (S2). By (4.18) and since {�k} ↓ 0 we know that {Bk} → 0. Let us
now show that {yk} is bounded. First we claim that

∀i ∈ {1, … , n}∃di ∈ ℝ∀k ∈ ℕ ∶ y
k

i
≤ di . (4.21)

Suppose not. Then there exists an index i ∈ {1, … , n} for which we can construct a subsequence {ykl
i
}

such that {ykl
i
} → ∞. We can then assume w.l.o.g. that ykl

i
> 1 for each l ∈ ℕ. Now the convergence

of {xk} implies that {xk
i
} → x̂i . Observe that by (S3), the sequence of penalty parameters {�k} is

nondecreasing. In particular this implies that

0 < �1 ≤ �kl
∀l ∈ ℕ.

Hence,
�1(y

kl

i
− 1) + �̄

kl

i
≤ �kl

(y
kl

i
− 1) + �̄

kl

i
.

Since {�̄k} is by de�nition a bounded sequence, the left hand side tends to ∞. Hence, so must the right
hand side as well. We can then assume w.l.o.g. that �kl (y

kl

i
− 1) + �̄

kl

i
≥ 0 for each l ∈ ℕ which in turn

implies that �kl
i
= �kl

(y
kl

i
− 1) + �̄

kl

i
, cf. (S2). From (4.20) and (S2) we then obtain

B
kl

i
+ �

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

→�

= �
kl

i
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kl

i
x
kl

i

= �kl
(y

kl

i
− 1) + �̄

kl

i
+ �kl
⏟⏟⏟

>0

(
x
kl

i )

2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

≥0

y
kl

i

⏟⏟⏟

>0

+
̄
kl

i
x
kl

i

≥ �kl
(y

kl

i
− 1) + �̄

kl

i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→∞

+ 
̄
kl

i
x
kl

i

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

bounded
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→∞
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which leads to a contradiction. Thus, (4.21) holds. Next we claim that

∀i ∈ {1, … , n}∃ci ∈ ℝ∀k ∈ ℕ ∶ ci ≤ y
k

i
. (4.22)

Suppose not. Then there exists i ∈ {1, … , n} for which we can construct a subsequence {ykl
i
} which

tends to −∞. As such, we can assume w.l.o.g. that ykl
i
< 0 for each l ∈ ℕ. The convergence of {xk}

implies that {xk
i
} → x̂i . Now since �1 ≤ �kl we then obtain

�kl (
y
kl

i
− 1

)
+ �̄

kl

i
≤ �1 (

y
kl

i
− 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→−∞

+ �̄
kl

i

⏟⏟⏟

bounded
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→−∞

and hence,
{

�kl (
y
kl

i
− 1

)
+ �̄

kl

i

}

→ −∞. Thus, we can assume w.l.o.g. that �kl (y
kl

i
− 1

)
+ �̄

kl

i
< 0 for

each l ∈ ℕ which, by (S2), then implies that �kl
i
= 0 ∀l ∈ ℕ. Now from (4.20) we obtain

B
kl

i
+ � = �

kl

i
+ 


kl

i
x
kl

i
= 


kl

i
x
kl

i
= �kl

(x
kl

i
)
2
y
kl

i
+ 
̄

kl

i
x
kl

i
.

Case 1: i ∈ I±(x̂)
Here we have

�1 (
x
kl

i )

2

≤ �kl (
x
kl

i )

2 y
k
l

i
<0

⇒ �kl (
x
kl

i )

2

y
kl

i
≤ �1 (

x
kl

i )

2

y
kl

i

⇒ �kl (
x
kl

i )

2

y
kl

i
+ 
̄

kl

i
x
kl

i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=

{

B
k
l

i
+�

}

→�

≤ �1 (
x
kl

i )

2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

→x̂
2

i
>0

y
kl

i

⏟⏟⏟

→−∞

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→−∞

+ 
̄
kl

i
x
kl

i

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

bounded

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→−∞

which leads to a contradiction.
Case 2: i ∈ I0(x̂)
Observe that

B
kl

i
+ �

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

→�

= �kl
⏟⏟⏟

>0

(
x
kl

i )

2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

≥0

y
kl

i

⏟⏟⏟

<0

+
̄
kl

i
x
kl

i
≤ 
̄

kl

i

⏟⏟⏟

bounded

x
kl

i

⏟⏟⏟

→0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→0

.

This yields a contradiction since � > 0. Thus, (4.22) holds. We can now de�ne

c ∶= min
i=1,…,n

ci ∧ d ∶= max
i=1,…,n

di .

Then we have {yk} ⊆ [c, d]n which implies the boundedness of {yk}. The assertion then follows from
Bolzano-Weierstraß theorem.

Just like in Section 3.4.1, we shall denote with �0,1((x, y)) the unshifted quadratic penalty term. Let
us now consider the case where the GKL inequality is satis�ed by �0,1 at a feasible limit point (x̂ , ŷ) of
Algorithm 4.59. This is for example the case if the nonlinear constraints gi and ℎi are analytic, see the
discussion preceeding Theorem 3.61. The following result is a direct consequence of [5, Theorem 5.1]
and Theorem 4.56.

Theorem 4.61. Let (x̂ , ŷ) ∈ ℝ
n
×ℝ

n be a limit point of the sequence {(xk , yk)} generated by Algorithm 4.59
that is feasible for (1.10). Assume that �0,1 satis�es the GKL inequality at (x̂ , ŷ). Then x̂ is an SP-CAKKT
point.
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As a direct consequence of Theorem 4.61 and Theorem 4.32, we obtain the following

Corollary 4.62. If, in addition to the assumptions in Theorem 4.61, x̂ also satis�es SP-CAKKT-regularity,
then x̂ is an SP-KKT point.

In the absence of the GKL inequality assumption, the following theorem states that Algorithm 4.59
may still generate an SP-AKKT point. Note that in the theorem we do not make any assumption on
{y

k
}.

Theorem 4.63. Let x̂ ∈ ℝ
n be a limit point of the sequence {xk} generated by Algorithm 4.59. If x̂ is

feasible for (1.2), then it is an SP-AKKT point of (1.2).

Proof. According to Theorem 4.60, there exists a ŷ ∈ ℝ
n such that (x̂ , ŷ) is a limit point of {(xk , yk)}

generated by Algorithm 4.59. By passing to a subsequence, we can assume w.l.o.g. that {(xk , yk)} →
(x̂, ŷ). Now de�ne for each k ∈ ℕ

A
k
∶= ∇xL((x

k
, y

k
),
̄
�
k
, �̄

k
, �̄

k
, 
̄

k
; �k) (4.23)

= ∇f (x
k
) +

m

∑

i=1

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
y
k

i
ei ,

where the last equality follows from (S2), and let Bk be as in (4.20). By (4.18) and since {�k} ↓ 0 we
know that {Ak} → 0 and {Bk} → 0. Observe that by (S2) we have {�k} ⊆ ℝ

m

+
. Furthermore, by (S3)

the sequence of penalty parameters {�k} is nondecreasing. In particular we then have

�k ≥ �1 > 0 ∀k ∈ ℕ. (4.24)

Let us now di�erentiate between 2 cases.
Case 1: {�k} is bounded.
Observe that by (S3), the boundedness of {�k} implies that

∃K ∈ ℕ∀k ≥ K ∶ �k = �K .

Now let us take a closer look at (S2). The boundedness of {�k} immediately implies that

• ∀i ∈ {1, … , p} ∶ {�
k

i
} is bounded,

• ∀i ∈ {1, … , n} ∶ {

k

i
} is bounded.

By passing to subsequences we can assume w.l.o.g. that these sequences converge, i.e.

• ∀i ∈ {1, … , p}∃�̂i ∶ {�
k

i
} → �̂i ,

• ∀i ∈ {1, … , n}∃
̂i ∶ {

k

i
} → 
̂i .

Now observe that for each i ∈ {1, … ,m} we have

0 ≤ �
k

i
≤ |�kgi(x

k
) +

̄
�
k

i
| ∀k ∈ ℕ.

Thus, {�k
i
} is bounded as well and has a convergent subsequence. By passing to subsequences we can

assume w.l.o.g. that
∀i ∈ {1, … ,m}∃

̂
�i ∶ {�

k

i
} →

̂
�i ≥ 0.

Now the boundedness of {�k} and (S3) also imply that

{‖U
k
‖} → 0 ∧ {‖x

k
◦y

k
‖} → 0.
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Let i ∉ Ig(x̂). By de�nition, { ̄�k} is bounded. Thus, by (4.24)
{

̄
�
k

i

�k

}

is bounded as well and therefore has

a convergent subsequence. Assume w.l.o.g. that
{

̄
�
k

i

�k

}

converges and denote with ai its limit. We then
have

0 = lim

k→∞

‖
‖
‖
U
k

i

‖
‖
‖
= ‖min{−gi(x̂), ai}‖ ⇒ min{−gi(x̂), ai} = 0.

Since −gi(x̂) > 0 we then have ai = 0. This then implies that
{

gi(x
k
) +

̄
�
k

i

�k

}

→ gi(x̂) + ai = gi(x̂) < 0.

Hence, we can assume w.l.o.g. that

gi(x
k
) +

̄
�
k

i

�k

< 0 ∀k ∈ ℕ.

By (4.24) we then obtain

�kgi(x
k
) +

̄
�
k

i
= �k

(
gi(x

k
) +

̄
�
k

i

�k
)
< 0 ∀k ∈ ℕ.

Thus, by (S2) we have
�
k

i
= max

{

0, �kgi(x
k
) +

̄
�
k

i

}

= 0 ∀k ∈ ℕ. (4.25)

As its limit we then have ̂
�i = 0. Now let i ∈ I±(x̂). Since {‖xk◦yk‖} → 0, we then have

0 = lim

k→∞

x
k

i
y
k

i
= x̂i ŷi ⇒ ŷi = 0.

By the de�nition of Ak , letting k → ∞ then yields

0 = ∇f (x̂) +

m

∑

i=1

̂
�i∇gi(x̂) +

p

∑

i=1

�̂i∇ℎi(x̂) +

n

∑

i=1


̂i ŷiei .

Since ̂
�i = 0 ∀i ∉ Ig(x̂) and ŷi = 0 ∀i ∈ I±(x̂), we conclude that x̂ is an SP-KKT point. By Corollary 4.36

x̂ is then an SP-AKKT point of (1.2).
Case 2: {�k} is unbounded.
Since {�k} is nondecreasing, we then have {�k} → ∞. Let us show that x̂ is an SP-AKKT point. Observe
that by (S2) we have {�k} ⊆ ℝ

m

+
. Suppose now that i ∉ Ig(x̂). Then

�kgi(x
k
) +

̄
�
k

i
≤ �k
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Hence,
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→ −∞ and we can assume w.l.o.g. that �kgi(xk) + ̄
�
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i
< 0 for each k ∈ ℕ. By

(S2) we then have �k
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= max{0, �kgi(x

k
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̄
�
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i
} = 0 for each k ∈ ℕ. Now let i ∈ I±(x̂). We �rst show that

ŷi = 0. By (S2) �ki ≥ 0 for each k ∈ ℕ. Hence,
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Since
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(x
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i )

2

}

→ (x̂i)
2
> 0, we can assume w.l.o.g. that (xki )

2

> 0 for each k ∈ ℕ. Thus,

1
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Hence, ŷi ≤ 0. Then
�k(y

k

i
− 1) + �̄

k

i
≤ �k
⏟⏟⏟
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y
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.

Thus, {�k(yki − 1) + �̄ki } → −∞ and we can therefore assume w.l.o.g. that �k(yki − 1) + �̄ki < 0 ∀k ∈ ℕ

which in turn implies that �k
i
= max{0, �k(y
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} = 0 ∀k ∈ ℕ. Now since (x
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for each k ∈ ℕ. Thus,
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Furthermore, by (S2)
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In particular we have
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k→∞
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= x̂i ŷi ⇒ ŷi = 0.

This implies that
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ŷi = 0.

Now de�ne for each i ∈ {1, … , n} and for each k ∈ ℕ


̂
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i
∶=
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i
if i ∈ I0(x̂),

0 if i ∈ I±(x̂).

Then,

A
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) +

m

∑

i=1

�
k

i
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Thus, x̂ is an SP-AKKT point.

Then as an immediate consequence of Theorem 4.63 and Theorem 4.38, we have the following
result.

Corollary 4.64. If, in addition to the assumptions in Theorem 4.63, x̂ also satis�es SP-AKKT-regularity,
then x̂ is an SP-KKT point.

Theorem 4.61 and Theorem 4.63 assume that the limit point x̂ is feasible for (1.2). The next theorem
shows that this assumption is plausible.

Theorem 4.65. Let x̂ ∈ ℝ
n be a limit point of the sequence {xk} generated by Algorithm 4.59. Then x̂ is

a stationary point of
min

x∈ℝ
n

‖ℎ(x)‖
2
+ ‖g(x)+‖

2
. (4.26)

Proof. We di�erentiate between 2 cases.
Case 1: {�k} is bounded.
By the same argument as in the proof of Theorem 4.63, the boundedness of {�k} implies that

{‖ℎ(x
k
)‖} → 0 ∧ {‖U

k
‖} → 0.
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We then have ‖ℎ(x̂)‖ = 0. Moreover, just like in Theorem 4.63 for each i ∈ {1, … ,m} we can assume
w.l.o.g. that there exists ai ∈ ℝ such that

{
̄
�
k

i

�k

}

→ ai . Thus, by the de�nition of U k

i
we then have

min{−gi(x̂), ai} = 0 which implies that

gi(x̂) ≤ 0 ⇔ gi(x̂)+ = 0.

Hence, ‖g(x̂)+‖ = 0. Consequently x̂ is a global minimiser of (4.26) and therefore also a stationary point
of the problem.
Case 2: {�k} is unbounded
By passing to a subsequence we can assume w.l.o.g. that {�k} → ∞. Furthermore, by 4.60 there exists
ŷ ∈ ℝ

n such that (x̂ , ŷ) is a limit point of {(xk , yk)}. Assume w.l.o.g. that {(xk , yk)} → (x̂, ŷ). De�ne
for each k ∈ ℕ A

k as in (4.23) and Bk as in (4.20). Then {Ak} → 0 and {Bk} → 0. By (S2) we have

0 = lim

k→∞

A
k

�k

=

m

∑

i=1

max{0, gi(x̂)}∇gi(x̂) +

p

∑

i=1

ℎi(x̂)∇ℎi(x̂) +

n

∑

i=1

x̂i (ŷi)
2
ei .

Now if i ∈ I±(x̂), then using the same argument as in the proof of Theorem 4.63 we know that ŷi = 0.
Thus, x̂i (ŷi)2 = 0 ∀i = 1, … , n. This then implies that

0 =

m

∑

i=1

max{0, gi(x̂)}∇gi(x̂) +

p

∑

i=1

ℎi(x̂)∇ℎi(x̂) ⇔ ∇(‖ℎ(x̂)‖
2
+ ‖g(x̂)+‖

2

) = 0.

Hence, x̂ is a stationary point of (4.26).

Let us now justify (S1), i.e. we would like to investigate under what conditions the subproblems
admit solutions. Our analysis follows [17, Theorem 3.3] which employs exterior penalty method, cf.
[16]. This approach was also suggested in [31, page 393]. For the remaining of this subsection we shall
assume that f , g, and ℎ are twice continuously di�erentiable.

Let x̂ ∈ X . We de�ne the SP-linearisation cone of X at x̂ as

LX (x̂) ∶=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

d ∈ ℝ
n

|
|
|
|
|
|
|

∇gi(x̂)
T
d ≤ 0 ∀i ∈ Ig(x̂),

∇ℎi(x̂)
T
d = 0 ∀i = 1, … , p,

e
T

i
d = 0 ∀i ∈ I0(x̂)

⎫
⎪
⎪

⎬
⎪
⎪
⎭

.

Suppose now that (�, �, 
 ) ∈ ℝ
m

+
× ℝ

p
× ℝ

n such that (x̂ , �, �, 
 ) is an SP-KKT tuple of (1.2). We de�ne

I
+

g
((x̂ , �)) ∶= {i ∈ Ig(x̂) ∣ �i > 0} ∧ I

0

g
((x̂ , �)) ∶= {i ∈ Ig(x̂) ∣ �i = 0}.

Clearly we have Ig(x̂) = I +g ((x̂ , �)) ∪̇ I 0g ((x̂ , �)). We de�ne the SP-critical cone as

CX ((x̂ , �, �, 
 )) ∶= {d ∈ LX (x̂) ∣ ∇gi(x̂)
T
d = 0 ∀i ∈ I

+

g
((x̂ , �))}.

De�nition 4.66. An SP-KKT tuple (x̂ , �, �, 
 ) ∈ X × ℝ
m

+
× ℝ

p
× ℝ

n of (1.2) is said to satisfy the SP second
order su�cient condition (SP-SOSC) i�

d
T

(

∇
2
f (x̂) +

m

∑

i=1

�i∇
2
gi(x̂) +

p

∑

i=1

�i∇
2
ℎi(x̂)

)

d > 0 ∀d ∈ CX ((x̂ , �, �, 
 )) ⧵ {0}.

Theorem 4.67. Let (x̂ , �, �, 
 ) ∈ X × ℝ
m

+
× ℝ

p
× ℝ

n be an SP-KKT tuple of (1.2) which satis�es SP-SOSC.
Then x̂ satis�es the quadratic growth condition, i.e.

∃c, � > 0∀x ∈ B�(x̂) ∩ X ∶ f (x) + �‖x‖0 ≥ f (x̂) + �‖x̂‖0 + c‖x − x̂‖
2
.

This then implies that x̂ is a strict local minimiser of (1.2).
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Proof. Suppose not. Then we can construct a sequence {xk} ⊆ X such that {xk} → x̂ and

f (x
k
) + �‖x

k
‖0 < f (x̂) + �‖x̂‖0 +

1

k

‖x
k
− x̂‖

2
∀k ∈ ℕ.

This then implies that xk ≠ x̂ ∀k ∈ ℕ and therefore, in particular, ‖xk − x̂‖ > 0 ∀k ∈ ℕ. Hence,
{

x
k
−x̂

‖x
k
−x̂‖

}

is well-de�ned and bounded with length 1. By passing to a subsequence we can assume w.l.o.g. that it
converges, i.e. ∃d ∈ ℝ

n
⧵ {0} ∶

{

x
k
−x̂

‖x
k
−x̂‖

}

→ d . Furthermore, by Lemma 3.6 we can assume w.l.o.g. that
‖x

k
‖0 ≥ ‖x̂‖0 ∀k ∈ ℕ. Thus,

f (x
k
) ≤ f (x

k
) + � (‖x

k
‖0 − ‖x̂‖0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

< f (x̂) +

1

k

‖x
k
− x̂‖

2
∀k ∈ ℕ.

Now by the second order Taylor expansion there exists for each k ∈ ℕ a � k ∈ Jxk , x̂K such that

1

k

‖x
k
− x̂‖

2
> f (x

k
) − f (x̂) = ∇f (x̂)

T
(x

k
− x̂) +

1

2

(x
k
− x̂)

T
∇
2
f (�

k
)(x

k
− x̂). (4.27)

By assumption (x̂ , �, �, 
 ) is an SP-KKT tuple. Hence,

∇f (x̂) = −

(

∑

i∈Ig (x̂)

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) + ∑

i∈I0(x̂)


iei
)

.

Thus, by (4.27)

1

k

‖x
k
− x̂‖

2
> −

(

∑

i∈Ig (x̂)

�i∇gi(x̂) +

p

∑

i=1

�i∇ℎi(x̂) + ∑

i∈I0(x̂)


iei
)

T

(x
k
− x̂)

+

1

2

(x
k
− x̂)

T
∇
2
f (�

k
)(x

k
− x̂). (4.28)

Now also by the second order Taylor expansion we have

• ∀i ∈ Ig(x̂)∀k ∈ ℕ ∃�
i,k
∈ Jxk , x̂K such that

0
x
k
∈X

≥ gi(x
k
) = gi(x̂) + ∇gi(x̂)

T
(x

k
− x̂) +

1

2

(x
k
− x̂)

T
∇
2
gi(�

i,k
)(x

k
− x̂)

gi (x̂)=0

= ∇gi(x̂)
T
(x

k
− x̂) +

1

2

(x
k
− x̂)

T
∇
2
gi(�

i,k
)(x

k
− x̂)

and hence, since �i ≥ 0

−�i∇gi(x̂)
T
(x

k
− x̂) ≥

�i

2

(x
k
− x̂)

T
∇
2
gi(�

i,k
)(x

k
− x̂).

• ∀i ∈ {1, … , p}∀k ∈ ℕ ∃�
i,k
∈ Jxk , x̂K such that

0
x
k
∈X

= ℎi(x
k
) = ℎi(x̂) + ∇ℎi(x̂)

T
(x

k
− x̂) +

1

2

(x
k
− x̂)

T
∇
2
ℎi(�

i,k
)(x

k
− x̂)

ℎi (x̂)=0

= ∇ℎi(x̂)
T
(x

k
− x̂) +

1

2

(x
k
− x̂)

T
∇
2
ℎi(�

i,k
)(x

k
− x̂).

Thus,
−�i∇ℎi(x̂)

T
(x

k
− x̂) =

�i

2

(x
k
− x̂)

T
∇
2
ℎi(�

i,k
)(x

k
− x̂).
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Now let i ∈ I0(x̂). We claim that we can construct a subsequence of {xk} such that the i-th component is
equal to 0. Suppose not. Then we can assume w.l.o.g. that xk

i
≠ 0 ∀k ∈ ℕ. Hence, i ∈ I±(xk) ⧵ I±(x̂) ∀k ∈

ℕ. By Lemma 3.6 we then have ‖x
k
‖0 ≥ ‖x̂‖0 + 1. Shrinking � > 0 from Lemma 3.6 and passing to

a subsequence if necessary, by the lower semicontinuity of f we also have f (x̂) < f (x
k
) +

�

2
∀k ∈

ℕ. Furthermore, since
{
1

k
‖x

k
− x̂‖

2

}

→ 0, by passing to a subsequence we can assume w.l.o.g. that
1

k
‖x

k
− x̂‖

2
<

�

2
∀k ∈ ℕ. Hence, we have

f (x̂) +

1

k

‖x
k
− x̂‖

2
< f (x

k
) + � ⇒ f (x̂) + �‖x̂‖0 +

1

k

‖x
k
− x̂‖

2
< f (x

k
) + �(1 + ‖x̂‖0) ≤ f (x

k
) + �‖x

k
‖0,

which leads to a contradiction. Thus, by passing to a subsequence, we can assume w.l.o.g. that xk
i
=

0 ∀k ∈ ℕ. This implies that
e
T

i
(x

k
− x̂) = x

k

i
− x̂i = 0 ∀k ∈ ℕ.

With these considerations we obtain from (4.28)

1

k

‖x
k
− x̂‖

2
>

1

2

(x
k
− x̂)

T

(

∇
2
f (�

k
) + ∑

i∈Ig (x̂)

�i∇
2
gi(�

i,k
) +

p

∑

i=1

�i∇
2
ℎi(�

i,k
)

)

(x
k
− x̂)

and hence,

2

k

>
(

x
k
− x̂

‖x
k
− x̂‖)

T

(

∇
2
f (�

k
) + ∑

i∈Ig (x̂)

�i∇
2
gi(�

i,k
) +

p

∑

i=1

�i∇
2
ℎi(�

i,k
)

)(

x
k
− x̂

‖x
k
− x̂‖)

.

Letting k → ∞ then yields

0 ≥ d
T

(

∇
2
f (x̂) + ∑

i∈Ig (x̂)

�i∇
2
gi(x̂) +

p

∑

i=1

�i∇
2
ℎi(x̂)

)

d

= d
T

(

∇
2
f (x̂) +

m

∑

i=1

�i∇
2
gi(x̂) +

p

∑

i=1

�i∇
2
ℎi(x̂)

)

d.

To arrive at the desired contradiction, it remains to prove that d ∈ CX ((x̂ , �, �, 
 )).
Let i ∈ Ig(x̂). Then by mean value theorem there exists for each k ∈ ℕ y

i,k
∈ Jxk , x̂K such that

0
x
k
∈X

≥ gi(x
k
) = gi(x

k
) − gi(x̂) = ∇gi(y

i,k
)
T
(x

k
− x̂). Thus, ∇gi(y i,k)T x

k
−x̂

‖x
k
−x̂‖

≤ 0. Letting k → ∞ yields
∇gi(x̂)

T
d ≤ 0.

Let i ∈ {1, … , p}. By mean value theorem there exists for each k ∈ ℕ z
i,k

∈ Jxk , x̂K such that
0

x
k
,x̂∈X

= ℎi(x
k
) − ℎi(x̂) = ∇ℎi(z

i,k
)
T
(x

k
− x̂) and hence, 0 = ∇ℎi(z

i,k
)
T x

k
−x̂

‖x
k
−x̂‖

. Letting k → ∞ yields
∇ℎi(x̂)

T
d = 0.

Let i ∈ I0(x̂). We have already shown that xk
i
= 0 ∀k ∈ ℕ. Hence, 0 = x

k

i
−x̂i

‖x
k
−x̂‖

= e
T

i

x
k
−x̂

‖x
k
−x̂‖

. Thus, letting
k → ∞ yields eT

i
d = 0.

By mean value theorem for each k ∈ ℕ there exists �k ∈ Jxk , x̂K such that 1

k
‖x

k
−x̂‖

2
> f (x

k
)−f (x̂) =

∇f (�
k
)
T
(x

k
− x̂). Thus, 1

k
‖x

k
− x̂‖ > ∇f (�

k
)
T x

k
−x̂

‖x
k
−x̂‖

. Letting k → ∞ yields 0 ≥ ∇f (x̂)Td . We have shown
that ∇gi(x̂)Td ≤ 0 ∀i ∈ Ig(x̂). Now we claim that ∇gi(x̂)Td = 0 ∀i ∈ I

+

g
((x̂ , �)). Suppose not. Then

∃j ∈ I
+

g
((x̂ , �)) ∶ ∇gj(x̂)

T
d < 0. Since (x̂ , �, �, 
 ) is an SP-KKT tuple we obtain

0 = ∇f (x̂)
T
d

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≤0

+ ∑

i∈I
+

g
((x̂ ,�))

�i∇gi(x̂) +

p

∑

i=1

�i ∇ℎi(x̂)
T
d

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+ ∑

i∈I0(x̂)


i e
T

i
d

⏟⏞⏟⏞⏟

=0

≤ ∑

i∈I
+

g
((x̂ ,�))

�i∇gi(x̂)
T
d
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= ∑

i∈I
+

g
((x̂ ,�))⧵{j}

�i∇gi(x̂)
T
d + �j

⏟⏟⏟

>0

∇gj(x̂)
T
d

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

< ∑

i∈I
+

g
((x̂ ,�))⧵{j}

�i
⏟⏟⏟

>0

∇gi(x̂)
T
d

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

≤ 0,

a contradiction. Hence, ∇gi(x̂)Td = 0 ∀i ∈ I
+

g
((x̂ , �)) and therefore, d ∈ CX ((x̂ , �, �, 
 )). This leads to

the desired contradiction and we conclude that the quadratic growth condition holds at x̂ . This further
implies that x̂ is a strict local minimiser of (1.2).

To prove the next result we follow [17, Theorem 3.3]. Some parts of the proof are adapted from [16,
Theorem 1, Theorem 2], see also [15, Theorem 5.1, Theorem 5.2]

Theorem4.68. Let (x̂ , �, �, 
 ) ∈ X ×ℝm
+
×ℝ

p
×ℝ

n be an SP-KKT tuple of (1.2)which satis�es SP-SOSC. Then
there exists �̂ > 0 such that if �1 ≥ �̂ then there exists a sequence {(xk , yk)} generated by Algorithm 4.59
such that {xk} → x̂ .

Proof. By Theorem 4.67 there exist c, � > 0 such that

f (x̂) + �‖x̂‖0 + c‖x − x̂‖
2
≤ f (x) + �‖x‖0 ∀x ∈ B�(x̂) ∩ X .

Hence, x̂ is the unique global minimiser of

min

x∈ℝ
n

f (x) + �‖x‖0 s.t. x ∈ B̄ �

2

∩ X . (4.29)

De�ne ŷ ∈ ℝ
n such that

ŷi ∶=

{

0 if i ∈ I±(x̂),
1 if i ∈ I0(x̂).

We claim that (x̂ , ŷ) is then the unique global minimiser of

min

x,y∈ℝ
n

f (x) + �(n − e
T
y) s.t. (x, y) ∈ B̄ �

2

((x̂ , ŷ)) ∩ Z (4.30)

where Z denotes the feasible set of (1.10). Since x̂ ∈ X , by the proof of Theorem 4.47 we know that
(x̂ , ŷ) ∈ Z and hence, (x̂ , ŷ) is feasible for (4.30). Now let (x, y) be another feasible point of (4.30) such
that (x, y) ≠ (x̂ , ŷ). Observe that since (x, y) ∈ Z , Theorem 4.47 then implies that x ∈ X . Moreover,
since (x, y) ∈ B̄ �

2

((x̂ , ŷ)), then x ∈ B̄ �

2

(x̂). Thus, x is feasible for (4.29). Now since (x, y) ≠ (x̂ , ŷ), then we
have x ≠ x̂ ∨ y ≠ ŷ. We di�erentiate now between 2 cases.
Case 1: x ≠ x̂

We have shown that x is feasible for (4.29). Now by Lemma 4.48 we then have

f (x̂) + �(n − e
T
ŷ) = f (x̂) + �‖x̂‖0 < f (x) + �‖x‖0 ≤ f (x) + �(x − e

T
y).

Case 2: x = x̂
Then we have y = ŷ . Let us now investigate on which components they can di�er. Observe that since
x = x̂ then we have I±(x) = I±(x̂). Thus, by the feasibility of (x, y) and (x̂ , ŷ) for (1.10) we obtain for each
i ∈ I±(x̂) that ŷi = 0 = yi . We can therefore conclude that y and ŷ di�er on I0(x̂), i.e. there exists j ∈ I0(x̂)
such that ŷj ≠ yj . By de�nition we have ŷj = 1. On the other hand, the fact that (x, y) ∈ Z implies that
yi ≤ 1 for each i ∈ {1, … , n}. In particular, by the de�nition of ŷ, this means that yi ≤ 1 = ŷi ∀i ∈ I0(x̂).
Now special for j we then must have yj < 1 = ŷj . Summing over I0(x̂) then yields ∑

i∈I0(x̂)

yi

yj<ŷj

< ∑

i∈I0(x̂)

ŷi

and therefore, since yi = ŷi = 0 ∀i ∈ I±(x̂)
n

∑

i=1

yi <

n

∑

i=1

ŷi ⇔ e
T
y < e

T
ŷ ⇔ n − e

T
ŷ < n − e

T
y.
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As such
f (x) + �(n − e

T
y) > f (x) + �(n − e

T
ŷ)

x=x̂

= f (x̂) + �(n − e
T
ŷ).

We can now conclude that (x̂ , ŷ) is the unique global minimiser of (4.30).
Shrinking � if necessary, by the continuity of g we can assume w.l.o.g. that gi(x) < 0 for each

x ∈ B�(x̂) and for each i ∉ Ig(x̂). Moreover, we can also assume w.l.o.g. that for each i ∈ I±(x̂) we
have yi < 1 for each y ∈ B�(ŷ). Now let � > 0, ̄� ∈ [0, �max]

m, �̄ ∈ [�min, �max]
p , �̄ ∈ [0, �max]

n, and

̄ ∈ [
min, 
max]

n. Consider

min

x,y∈ℝ
n

L((x, y),
̄
�, �̄, �̄, 
̄ ; �) s.t. (x, y) ∈ B̄ �

2

((x̂ , ŷ)). (4.31)

The PHR augmented Lagrangian function is clearly continuous. Moreover, the constraint set is compact.
Hence, (4.31) admits a global minimiser (x, y)( ̄�, �̄, �̄, 
̄ , �). Now we claim that there exists �̄ > 0 such
that for each � ≥ �̄ we have

(x, y)(
̄
�, �̄, �̄, 
̄ , �) ∈ B �

2

((x̂ , ŷ)). (4.32)

Suppose not. Then we can construct a sequence of penalty parameters {�k}which tends to∞ such that
for each k ∈ ℕwe have for the corresponding global minimiser (uk , wk

) ∶= (x
k
, y

k
)(
̄
�, �̄, �̄, 
̄ , �) of (4.31)

that (uk , wk
) ∈ B̄ �

2

((x̂ , ŷ)) ⧵ B �

2

((x̂ , ŷ)). This implies that ‖(uk , wk
) − (x̂ , ŷ)‖ =

�

2
. Now since {(uk , wk

)} is a
bounded sequence, by passing to a subsequence we can assume w.l.o.g. that it converges, i.e. there exists
(u, w) such that {(uk , wk

)} → (u, w). By the property of (uk , wk
)we then must have ‖(u, w)−(x̂ , ŷ)‖ =

�

2
.

This implies that (u, w) ≠ (x̂ , ŷ). Now observe that since (uk , wk
) is a global minimiser of (4.31) and

(x̂ , ŷ) is also feasible for the problem, we then have

L((u
k
, w

k
),
̄
�, �̄, �̄, 
̄ ; �k) ≤ L((x̂ , ŷ),

̄
�, �̄, �̄, 
̄ ; �k). (4.33)

Recall that (x̂ , ŷ) ∈ Z . Let i ∈ {1, … ,m}. Then

gi(x̂) ≤ 0 ⇒ gi(x̂) +

̄
�i

�k

≤

̄
�i

�k

̄
�
i

�
k

≥0

⇒ 0 ≤ max

{

0, gi(x̂) +

̄
�i

�k

}

≤

̄
�i

�k

⇒
(
gi(x̂) +

̄
�i

�k
)

2

+

≤
(

̄
�i

�k
)

2

.

This implies that
‖
‖
‖
‖
(
g(x̂) +

̄
�

�k )
+

‖
‖
‖
‖

2

≤
‖
‖
‖

̄
�

�k

‖
‖
‖

2

. Now let i ∈ {1, … , p}. We have

ℎi(x̂) = 0 ⇒ ℎi(x̂) +

�̄i

�k

=

�̄i

�k

⇒
(
ℎi(x̂) +

�̄i

�k
)

2

=
(

�̄i

�k
)

2

.

Thus, ‖‖
‖
ℎ(x̂) +

�̄

�k

‖
‖
‖

2

=
‖
‖
‖

�̄

�k

‖
‖
‖

2

. In similar fashion we obtain that
‖
‖
‖
‖
(
ŷ − e +

�̄

�k )
+

‖
‖
‖
‖

2

≤
‖
‖
‖

�̄

�k

‖
‖
‖

2

and ‖
‖
‖
x̂◦ŷ +


̄

�k

‖
‖
‖

2

=

‖
‖
‖


̄

�k

‖
‖
‖

2

. As such,

L((x̂ , ŷ),
̄
�, �̄, �̄, 
̄ ; �k) = f (x̂) + � (n − e

T
ŷ) +

�k

2

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(x̂) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(x̂) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
ŷ − e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
x̂◦ŷ +


̄

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

≤ f (x̂) + � (n − e
T
ŷ) +

�k

2 (

‖
̄
�‖
2

�
2

k

+

‖�̄‖
2

�
2

k

+

‖�̄‖
2

�
2

k

+

‖
̄ ‖
2

�
2

k
)

= f (x̂) + � (n − e
T
ŷ) +

1

2 (

‖
̄
�‖
2

�k

+

‖�̄‖
2

�k

+

‖�̄‖
2

�k

+

‖
̄ ‖
2

�k
)

From (4.33) we then obtain

f (u
k
) + � (n − e

T
w
k

) ≤ f (u
k
) + � (n − e

T
w
k

) + �k�((u
k
, w

k
),
̄
�, �̄, �̄, 
̄ , �k)
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= L((u
k
, w

k
),
̄
�, �̄, �̄, 
̄ ; �k)

≤ L((x̂ , ŷ), �̄, �̄, 
̄ ; �k)

≤ f (x̂) + � (n − e
T
ŷ) +

1

2 (

‖
̄
�‖
2

�k

+

‖�̄‖
2

�k

+

‖�̄‖
2

�k

+

‖
̄ ‖
2

�k
)
.

Letting k → ∞ yields f (u) + �(n − eTw) ≤ f (x̂) + �(n − e
T
ŷ). To arrive at the desired contradiction, it

remains to prove that (u, w) is feasible for (4.30). Recall that ‖(u, w) − (x̂ , ŷ)‖ = �

2
. Thus, we only need to

show that (u, w) ∈ Z . Suppose not. Then as measure of infeasibility we have ‖g(u)+‖
2
+ ‖ℎ(u)‖

2
+ ‖(w −

e)+‖
2
+ ‖u◦w‖

2
> 0. Since

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

‖
‖
‖
‖
(
g(u

k
) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(u

k
) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
w
k
− e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
u
k
◦w

k
+


̄

�k

‖
‖
‖

2

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

→ ‖g(u)+‖
2
+ ‖ℎ(u)‖

2
+ ‖(w − e)+‖

2
+ ‖u◦w‖

2
> 0

and
⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

‖
‖
‖
‖
(
g(x̂) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(x̂) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
ŷ − e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
x̂◦ŷ +


̄

�k

‖
‖
‖

2

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

→ ‖g(x̂)+‖
2
+ ‖ℎ(x̂)‖

2
+ ‖(ŷ − e)+‖

2
+ ‖x̂◦ŷ‖

2
= 0

we can assume w.l.o.g. that there exists d > 0 such that for each k ∈ ℕ we have

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(u

k
) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(u

k
) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
w
k
− e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
u
k
◦w

k
+


̄

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

>

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(x̂) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(x̂) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
ŷ − e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
x̂◦ŷ +


̄

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

+ d.

Thus,

L((u
k
, w

k
),
̄
�, �̄, �̄, 
̄ ; �k) = f (u

k
) + �(n − e

T
w
k
) +

�k

2

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(u

k
) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(u

k
) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
w
k
− e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
u
k
◦w

k
+


̄

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

> f (x̂) + �(n − e
T
ŷ) +

�k

2

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(x̂) +

̄
�

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(x̂) +

�̄

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
ŷ − e +

�̄

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
x̂◦ŷ +


̄

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

+

�kd

2

+ f (u
k
) + �(n − e

T
w
k
) − f (x̂) − �(n − e

T
ŷ)

= L((x̂ , ŷ),
̄
�, �̄, �̄, 
̄ ; �k) +

(

�kd

2
+ f (u

k
) + �(n − e

T
w
k
)

−f (x̂) − �(n − e
T
ŷ) )

.

Observe that
{

�kd

2
+ f (u

k
) + �(n − e

T
w
k
) − f (x̂) − �(n − e

T
ŷ)

}

→ ∞. Hence, we can assume w.l.o.g.
that it is positive for each k ∈ ℕ. Consequently,

L((u
k
, w

k
),
̄
�, �̄, �̄, 
̄ ; �k) > L((x̂ , ŷ),

̄
�, �̄, �̄, 
̄ ; �k).

Thus, (uk , wk
) cannot be a global minimiser of (4.31). This leads to a contradiction. Therefore, (u, w) ∈ Z

and we arrive at the desired contradiction since (u, w) ≠ (x̂ , ŷ) and (x̂ , ŷ) is the unique global minimiser
of (4.30). Hence, there exists �̂ > 0 such that for each � ≥ �̂ (4.32) holds. Now if we pick �1 ≥ �̂ and we
let for each k ∈ ℕ

̄
�
k
∈ [0, �max]

m, �̄k ∈ [�min, �max]
p , �̄k ∈ [0, �max]

n, 
̄ k ∈ [
min, 
max]
n, and (xk , yk) as

the global minimiser of the corresponding (4.31), then, since (4.32) holds, (xk , yk) is a local minimiser
of

min

x,y∈ℝ
n

L((x, y),
̄
�
k
, �̄

k
, �̄

k
, 
̄

k
; �k)
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as B �

2

((x̂ , ŷ)) is an open neighbourhood of (xk , yk) in which it minimises the above problem. Thus,
∇(x,y)L((x

k
, y

k
),
̄
�
k
, �̄

k
, �̄

k
, 
̄

k
; �k) = 0 and (4.18) is trivially satis�ed for any {�k} → 0.

It remains to show that {xk} → x̂ . Since {(xk , yk)} ⊆ B̄ �

2

((x̂ , ŷ)), by the compactness of B̄ �

2

((x̂ , ŷ)),
{(x

k
, y

k
)} has a convergent subsequence in B̄ �

2

((x̂ , ŷ)). By passing to this subsequence we can assume
w.l.o.g. that {(xk , yk)} converges i.e. ∃(x̄ , ȳ) ∈ B̄ �

2

((x̂ , ŷ)) ∶ {(x
k
, y

k
)} → (x̄, ȳ). Now if {�k} is unboun-

ded, then by (S3), we can assume w.l.o.g. that {�k} → ∞. Using similar argument as before we can prove
that (x̄ , ȳ) = (x̂ , ŷ). Hence, in particular {xk} → x̂ . Now consider the case where {�k} is bounded. We
shall prove that (x̂ , ŷ) = (x̄ , ȳ). Recall that (x̂ , ŷ) is the unique global minimiser of (4.30). Hence, if we
can show that (x̄ , ȳ) is also a global minimiser of (4.30), then the claim follows from the uniqueness. The
sequences { ̄�k}, {�̄k}, {�̄k}, and {
̄ k} are all bounded. Thus, by passing to an appropriate subsequence
we can assume w.l.o.g. that they all converge, i.e. ∃( ̄�, �̄, �̄, 
̄ ) ∶ {(

̄
�
k
, �̄

k
, �̄

k
, 
̄

k
)} → (

̄
�, �̄, �̄, 
̄ ). Fur-

thermore, by (S3), the boundedness of {�k} implies that there exists K ∈ ℕ such that �k = �K for each
k ≥ K . Now by (4.19) we then have that

• ℎ(x̄) = lim

k→∞

ℎ(x
k
) = 0,

• ∀i ∈ {1, … ,m} ∶ min

{

−gi(x̄),
̄
�i

�K

}

= lim

k→∞

U
k

i
= 0 ⇒ gi(x̄) ≤ 0,

• ∀i ∈ {1, … , n} ∶ min

{

−(ȳi − 1),
�̄i

�K

}

= lim k → ∞W
k

i
= 0 ⇒ ȳi ≤ 1,

• x̄◦ȳ = lim

k→∞

x
k
◦y

k
= 0.

Hence, (x̄ , ȳ) ∈ Z and is therefore feasible for (4.30). Observe that

• ‖x̄ − x̂‖ ≤ ‖(x̄ , ȳ) − (x̂ , ŷ)‖ ≤
�

2
< � ⇒ gi(x̄) < 0 ∀i ∉ Ig(x̂),

• ‖ȳ − ŷ‖ ≤ ‖(x̄ , ȳ) − (x̂ , ŷ)‖ ≤
�

2
< � ⇒ ȳi < 1 ∀i ∈ I±(x̂).

The preceeding discussion then implies that

• ∀i ∉ Ig(x̂) ∶ min
{

−gi(x̄),
̄
�i

�K

}

= 0

−gi (x̄)>0

⇒
̄
�i

�K
= 0,

• ∀i ∈ I±(x̂) ∶ min
{

−(ȳi − 1),
�̄i

�K

}

= 0

1−ȳi>0

⇒
�̄i

�K
= 0.

Now by de�nition we have for each k ∈ ℕ that

f (x
k
) + �(n − e

T
y
k
) +

�k

2

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(x

k
) +

̄
�
k

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(x

k
) +

�̄
k

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
y
k
− e +

�̄
k

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
x
k
◦y

k
+


̄
k

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

≤ f (x̂) + �(n − e
T
ŷ) +

�k

2

⎛

⎜

⎜

⎜

⎝

‖
‖
‖
‖
(
g(x̂) +

̄
�
k

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
ℎ(x̂) +

�̄
k

�k

‖
‖
‖

2

+

‖
‖
‖
‖
(
ŷ − e +

�̄
k

�k )
+

‖
‖
‖
‖

2

+
‖
‖
‖
x̂◦ŷ +


̄
k

�k

‖
‖
‖

2

⎞

⎟

⎟

⎟

⎠

Letting k → ∞ then yields

f (x̄) + �(n − e
T
ȳ) +

�K

2 (

‖
‖
‖
‖
‖
(
g(x̄) +

̄
�

�K
)
+

‖
‖
‖
‖
‖

2

+

‖
‖
‖
‖

�̄

�K

‖
‖
‖
‖

2

+

‖
‖
‖
‖
‖
(
ȳ − e +

�̄

�K
)
+

‖
‖
‖
‖
‖

2

+

‖
‖
‖
‖


̄

�K

‖
‖
‖
‖

2

)

≤ f (x̂) + �(n − e
T
ŷ) +

�K

2 (

‖
‖
‖
‖
‖
(
g(x̂) +

̄
�

�K
)
+

‖
‖
‖
‖
‖

2

+

‖
‖
‖
‖

�̄

�K

‖
‖
‖
‖

2

+

‖
‖
‖
‖
‖
(
ŷ − e +

�̄

�K
)
+

‖
‖
‖
‖
‖

2

+

‖
‖
‖
‖


̄

�K

‖
‖
‖
‖

2

)
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which leads to

f (x̄) + �(n − e
T
ȳ) +

�K

2 (

‖
‖
‖
‖
‖
(
g(x̄) +

̄
�

�K
)
+

‖
‖
‖
‖
‖

2

+

‖
‖
‖
‖
‖
(
ȳ − e +

�̄

�K
)
+

‖
‖
‖
‖
‖

2

)

≤ f (x̂) + �(n − e
T
ŷ) +

�K

2 (

‖
‖
‖
‖
‖
(
g(x̂) +

̄
�

�K
)
+

‖
‖
‖
‖
‖

2

+

‖
‖
‖
‖
‖
(
ŷ − e +

�̄

�K
)
+

‖
‖
‖
‖
‖

2

)

Recall that

• ∀i ∉ Ig(x̂):
̄
�i

�K
= 0. This implies that

– max

{

0, gi(x̂) +
̄
�i

�K

}

= max {0, gi(x̂)}

gi (x̂)<0

= 0,

– max

{

0, gi(x̄) +
̄
�i

�K

}

= max {0, gi(x̄)}

gi (x̄)<0

= 0.

• ∀i ∈ I±(x̂): �̄i

�K
= 0. This implies that

– max

{

0, ŷi − 1 +
�̄i

�K

}

= max {0, ŷi − 1}

ŷi<1

= 0,

– max

{

0, ȳi − 1 +
�̄i

�K

}

= max {0, ȳi − 1}

ȳi<1

= 0.

Hence,

f (x̄) + �(n − e
T
ȳ) +

�K

2 (

∑

i∈Ig (x̂)

(
gi(x̄) +

̄
�i

�K
)

2

+

+ ∑

i∈I0(x̂)

(
ȳi − 1 +

�̄i

�K
)

2

+
)

≤ f (x̂) + �(n − e
T
ŷ) +

�K

2 (

∑

i∈Ig (x̂)

(

̄
�i

�K
)

2

+

+ ∑

i∈I0(x̂)

(

�̄i

�K
)

2

+
)

.

Now observe that since (x̄ , ȳ) ∈ Z

• ∀i ∈ Ig(x̂) ∶ gi(x̄) ≤ 0. Thus,

– if gi(x̄) = 0 then
(
gi(x̄) +

̄
�i

�K )

2

+

=
(

̄
�i

�K )

2

+

,

– if gi(x̄) < 0 then min
{

−gi(x̄),
̄
�i

�K

}

= 0

−gi (x̄)>0

⇒
̄
�i

�K
= 0. Hence

max

{

0, gi(x̄) +

̄
�i

�K

}

= max{0, gi(x̄)}

gi (x̄)<0

= 0 = max

{

0,

̄
�i

�K

}

.

In both cases we have
(
gi(x̄) +

̄
�i

�K )

2

+

=
(

̄
�i

�K )

2

+

.

• ∀i ∈ I0(x̂) ∶ ȳi ≤ 1. Thus,

– if ȳi = 1 then
(
ȳi − 1 +

�̄i

�K )

2

+

=
(

�̄i

�K )

2

+

,

– if ȳi < 1 then min
{

−(ȳi − 1),
�̄i

�K

}

= 0

1−ȳi>0

⇒
�̄i

�K
= 0. Hence

max

{

0, ȳi − 1 +

�̄i

�K

}

= max{0, ȳi − 1}

ȳi<1

= 0 = max

{

0,

�̄i

�K

}

.
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In both cases we have
(
ȳi − 1 +

�̄i

�K )

2

+

=
(

�̄i

�K )

2

+

.

This leads to
f (x̄) + �(n − e

T
ȳ) ≤ f (x̂) + �(n − e

T
ŷ).

Since (x̂ , ŷ) is the unique global minimiser of (4.30) and (x̄ , ȳ) is feasible for (4.30), then we must have
(x̄ , ȳ) = (x̂ , ŷ). Thus, {xk} → x̂ . This completes the proof.

4.4.2 A Two-sided Scholtes Regularisation Method

To relax the orthogonality constraint x◦y = 0 of (1.10) we shall now consider a variant of a two-sided
regularisation method introduced by Scholtes, see [53], and further developed in [25]. Translating this
method to the relaxed programme (1.10) means that instead of solving the problem directly, we solve a
sequence of regularised problem NLP(T )

min
x,y

f (x) + � (n − e
T
y) s.t. gi(x) ≤ 0 ∀i = 1, … ,m,

ℎi(x) = 0 ∀i = 1, … , p,

yi ≤ 1 ∀i = 1, … , n,

xiyi ≤ t
+

i
∀i = 1, … , n,

−xiyi ≤ t
−

i
∀i = 1, … , n,

(4.34)

with a vector of regularisation parameter T = (t
+
, t
−
) ∈ (0, ∞)

2n. Thus, instead of having only one
regularisation parameter t ∈ (0, ∞) going to zero, we introduce two parameters t+

i
, t
−

i
> 0 for each pair

(xi , yi). The idea behind this is to be able to drive only those bounds t+
i
, t
−

i
to zero, which are needed

to ensure feasibility of the limit of solutions of a sequence of NLP(Tk). More precisely, let Tk > 0 and
(x

k
, y

k
) be a KKT-point of NLP(Tk) and � ∈ (0, 1). Then we update the regularisation parameter Tk as

follows:

(
t
+,k+1

i
, t
−,k+1

i )
=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

(
�t

+,k

i
, t
−,k

i )
if xk

i
y
k

i
> 0,

(
t
+,k

i
, �t

−,k

i )
if xk

i
y
k

i
< 0,

(
t
+,k

i
, t
−,k

i )
if xk

i
y
k

i
= 0.

(4.35)

The limit of such a sequence of KKT-points (xk , yk) is then feasible for (1.10). But compared to a one-
sided relaxation method, the feasible set of NLP(Tk) might possess better properties as not all parameters
t
+

i
, t
−

i
are necessarily driven to zero.

In the exact case, i.e. under the assumption that in each iteration k ∈ ℕ we are able to compute an
exact KKT-point (xk , yk) of NLP(Tk) we obtain the following convergence result.

0

xi

1

yi

xiyi ≤ t
+

i

xiyi ≤ t
+

i

xiyi ≥ −t
−

i

xiyi ≥ −t
−

i

yi ≤ 1

Figure 4.1: Illustration of the two-sided Scholtes regularisation method
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Theorem 4.69. Let {(xk , yk)} be a sequence of KKT-points of NLP(Tk) where Tk is updated according to
the rule (4.35). Suppose that {xk} → x̂ . Then x̂ is an SP-AKKT point of (1.2).

We omit the proof since it is similar to the inexact case which we will handle next.

Theorem 4.70. Let {�k} ↓ 0 and {(xk , yk)} be a sequence of �k-stationary points of NLP(Tk) where Tk is
updated according to the rule (4.35). Suppose that {xk} → x̂ . Then x̂ is an SP-AKKT point of (1.2).

Proof. By assumption, for each k ∈ ℕ there exists (�k , �k , �k , 
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−,k) ∈ ℝ
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Observe that since {�k} ↓ 0, by letting k → ∞ we obtain from (sc3) and (sc4) that

gi(x̂) ≤ 0 ∀i = 1, … ,m ∧ ℎi(x̂) = 0 ∀i = 1, … , p.

Hence, x̂ is feasible for (1.2). De�ne
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(4.36)

By (sc1) and (sc2) we have {Ak} → 0 and {B
k
} → 0. Now let i ∉ Ig(x̂). Then gi(x̂) < 0. Since

{gi(x
k
)} → gi(x̂) we can assume w.l.o.g. that gi(xk) < 0 for each k ∈ ℕ. This implies that |gi(xk)| > 0

and thus, from (sc3) we obtain for each k ∈ ℕ
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Observe that by de�nition we have {Āk} → 0. Now let i ∈ I±(x̂). Since x̂i ≠ 0 and {xk
i
} → x̂i , we can

assume w.l.o.g. that xk
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≠ 0 for each k ∈ ℕ. From (sc6) and (sc7) we obtain that −t−,k
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We claim that z = 0. Suppose not. We only consider the case where z > 0. The case where z < 0 can
be handled analogously. Now since {xk
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Since {Â} → 0, the assertion then follows.

An immediate consequence of Theorem 4.38 is the following
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Corollary 4.71. If, in addition to the assumptions in Theorem 4.70, x̂ also satis�es SP-AKKT-regularity,
then x̂ is an SP-KKT point of (1.2).

In order to solve the regularised problems NLP(T ), we need to make sure that they, possibly contrary
to the original relaxed problem (1.10), satisfy suitable standard constraint quali�cations. To simplify
the notation we de�ne for each feasible point (x, y) of NLP(T )

I+((x, y)) ∶= {i ∈ {1, … , n} ∣ xiyi = t
+

i
} ∧ I−((x, y)) ∶= {i ∈ {1, … , n} ∣ −xiyi = t
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i
}.

Since T > 0 obviously we have
I+((x, y)) ∩ I−((x, y)) = ∅. (4.38)

Theorem 4.72. Let x̂ ∈ X such that SP-CPLD holds at x̂ . Then there exists � > 0 such that for all T > 0

the standard CPLD for NLP(T ) is satis�ed at every feasible point (x, y) of NLP(T ) with x ∈ B�(x̂).
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Now observe that the index sets are all �nite. Hence, by passing to a subsequence we can assume
w.l.o.g. that there exist I1 ⊆ {1, … ,m}, I2 ⊆ {1, … , p}, I3, I4, I5 ⊆ {1, … , n} such that for each k ∈ ℕ we
have Ij = I kj for each j ∈ {1, … , 5}. Observe that by (4.38) we have I k
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Let i ∈ I3. We now claim that �k
i
= 0 for each k ∈ ℕ. Suppose not. Then there exists k ∈ ℕ such that
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Case 1: i ∉ I4∪̇I5
From (4.43) we then obtain �k
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Case 2: i ∈ I4∪̇I5
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This leads to a contradiction.
Hence, we conclude that �k
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= 0 for each k ∈ ℕ. Consequently, from (4.43) we then obtain
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By (4.39) we then have (�k
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Observe that since �k
i
≥ 0, we then have ̂

�i ≥ 0 as well. Dividing (4.44) by the norm and letting k → ∞

then yields
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Observe that for each k ∈ ℕ we have I1 ⊆ Ig(xk). Hence, for each i ∈ I1 we have gi(xk) = 0 and therefore,
by letting k → ∞, gi(x̂) = 0. Thus, I1 ⊆ Ig(x̂). Furthermore, by de�nition we have {uk} → x̂ and by
(4.41)

{∇gi(u
k
) (i ∈ I1), ∇ℎi(u

k
) (i ∈ I2)} is linearly independent.

This contradicts the assumption that SP-CPLD holds at x̂ . The proof is complete.

4.5 Numerical Experiments

In this section we shall benchmark the performances of ALGENCAN, the adaptation of the original
Scholtes regularisation method [53] to (1.10), and the two-sided Scholtes regularisation method from
Section 4.4.2 against the global solver CPLEX [24]. The only di�erence between the original Scholtes
regularisation method and the two-sided version from Section 4.4.2 is that for the original Scholtes
method we decrease both regularisation parameters t+ and t

− in each iteration. Hence, the proof of
Theorem 4.70 can be easily adapted for the original Scholtes method.

For our numerical tests, we consider the following sparse robust portfolio optimisation problem
which is adapted from [18, Section 4]

min

x∈ℝ
n

c�

√

x
T
Qx − �

T
x + �‖x‖0 s.t. e

T
x = 1, 0 ≤ x ≤ u, (4.45)

where Q and � are the covariance matrix as well as the mean of n possible assets, eTx = 1 is the budget
constraint, and c� is as given in [18, Table 1]. The only di�erence between (4.45) and the problem
considered in [18] is that here we instead penalise the l0-norm with a sparsity parameter �. Just like
in [18], the test problems are generated using the data from [32] and consist of 3 di�erent dimensions,
namely n = 200, 300, and 400. In our experiments we set � = 0.9 and � = 1.0 and we considered VaR,
CVaR, RVaR, and RCVaR. These result in 360 test problems. All experiments were conducted using
Python together with the Numpy and the Scipy libraries. The constant c� is computed in the case of
VaR and CVaR using Scipy. We applied ALGENCAN, the Scholtes method, and the two-sided Scholtes
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variant to the relaxed reformulation (1.10) of (4.45). In order to solve (4.45) with CPLEX, we employed
the following mixed-integer quadratically constrained reformulation of (4.45)

min
x,z,w,v

c�v − �
T
x + �e

T
z s.t. e

T
x = 1,

0 ≤ x ≤ u◦z,

z ∈ {0, 1}
n
,

0 ≤ v,

w = Q

1

2 x,

v
2
≥ w

T
w.

(4.46)

For each test problem we called CPLEX through the DocPlex interface, ran it with a time limit of 300
seconds and set cplex_parameters.emphasis.mip to 1. As a start vector, following [18] we used
x
0
= 0 and z0 = e. For each test problem we observed that CPLEX always hit the time limit. As a sub-

solver for both regularisation methods we used the for academic use freely available ESA SQP solver
WORHP version 1.14 [22] called through its Python interface. We called WORHP with user-supplied
sparse gradients of the objective functions, sparse Jacobian of the constraints, as well as the sparse
Hessian of the Lagrangian. Moreover, we set the parameter MoreRelax to True. Since eT z corres-
ponds to n − eTy in (1.10), as a start vector for both regularisation methods we used x0 = 0 and y0 = 0.
We terminated both regularisation methods if either Tk < 10−8 or ‖x

k
◦y

k
‖∞ ≤ 10

−6 and � was chosen
to be 0.1. As for ALGENCAN, we used ALGENCAN 2.4.0 compiled with MA57 library [37] and called
through its Python interface with user-supplied gradients of the objective functions, sparse Jacobian of
the constraints, as well as sparse Hessian of the Lagrangian. Throughout the experiments we skipped
the acceleration steps as these would have turned ALGENCAN into a Newton method instead of Al-
gorithm 4.59 in the vicinity of a solution. In our preliminary tests, using x0 = 0 as the initial value for
x , ALGENCAN kept generating VEVALHL warnings in the beginning even though it eventually man-
aged to converge. Indeed, if x = 0 we would then have to deal with division by 0 when evaluating the
Jacobian and the Hessian of the objective function. It seems that ALGENCAN, in contrast to WORHP,
had a hard time coping with such degenerate cases. Thus, for ALGENCAN, as a start vector we instead
used x

0
= numpy.ones(n) / numpy.nan_to_num(numpy.inf), which roughly corresponds

to 5.562684646268003 ⋅ 10−309 ⋅ e, and y0 = 0. Additionally, we converted any NaN and ±∞ encountered
by ALGENCAN into a �nite value using numpy.nan_to_num. For each test problem we also used
the keywords TRUST-REGIONS-INNER-SOLVER and HESSIAN-APPROXIMATION-IN-CG in the
ALGENCAN’s parameter speci�cation �le. This, if the author has understood correctly, means that we
set the trust-region method [10] as the default inner solver and the truncated Newton method with Hes-
sian approximation as the fallback solver if ALGENCAN encountered di�culties in computing the true
Hessian. For the most part this leads to a good result for ALGENCAN. The only exception is problem
orl400_05_b for RVaR. Hence, for this problem only we replaced HESSIAN-APPROXIMATION-IN-CG
with INCREMENTAL-QUOTIENTS-IN-CG in the parameter speci�cation �le which lead to a massive
improvement in terms of the attained objective function value. In our experiments we also observed
that ALGENCAN converged the fastest as one would expect.

Let us now present the results of our experiments. Just like in Section 3.5, as a performance meas-
ure for the considered methods we compared the attained objective function values and generated a
performance pro�le as suggested in [27], where we set the objective function value of a method for a
problem to be∞ if the method failed to �nd a feasible point of the problem within a tolerance of 10−6. As
can be seen from Figure 4.2, for n = 200, the two-sided Scholtes regularisation method seems to be the
least successful solver and ALGENCAN came as the second worst. The Scholtes regularisation method
seems to be competitive with CPLEX and even managed to clearly outperform CPLEX for RCVaR200.
Let us now consider the case where n ∈ {300, 400}. Here the two-sided Scholtes regularisation method
behaved for the most part in a similar way to its original counterpart with the two-sided variant having
the edge over the original in the cases of RCVaR300 and RCVaR400. These two methods outperformed
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both ALGENCAN and CPLEX. As for ALGENCAN, with the exceptions of VaR300 and RCVaR300, it
managed to outperform CPLEX.
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(a) VaR and n = 200
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(b) CVaR and n = 200
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(c) RVaR and n = 200
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(d) RCVaR and n = 200
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(e) VaR and n = 300
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(f) CVaR and n = 300
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(g) RVaR and n = 300
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(h) RCVaR and n = 300
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(i) VaR and n = 400
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(j) CVaR and n = 400
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(k) RVaR and n = 400

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

0.0

0.2

0.4

0.6

0.8

1.0

CPLEX
Scholtes
Two-sided Scholtes
Algencan

(l) RCVaR and n = 400

Figure 4.2: Comparing the performance of ALGENCAN, the regularisation methods, and CPLEX for
(4.45)

Since CPLEX did not perform well for n = 400 within the given 300 seconds time limit, we tried
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to increase the time limit to 600 seconds for this case to see if there is any improvement. However,
even after doubling the time limit, we observed that CPLEX seemed to mostly get stuck and could not
improve the attained objective function values. Consequently, as can be seen from Figure 4.3, CPLEX
still gets outperformed by the other solvers.
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(a) VaR and n = 400
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(b) CVaR and n = 400
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(c) RVaR and n = 400
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(d) RCVaR and n = 400

Figure 4.3: Performance plot of the objective function values for n = 400with a time limit of 600 seconds
for CPLEX

For our numerical tests, in terms of the objective function value, we can conclude that the original
Scholtes regularisation method has the best overall performance. This is even more remarkable given
that it always managed to converge to a good solution within a small fraction of the time limit that is
allocated for CPLEX.
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Final Remarks

Let us now discuss some possible future research directions for (1.1) and (1.2). In Chapter 3 we have
derived sequential optimality conditions for (1.1) and investigated some of the methods which can the-
oretically converge towards a point satisfying these conditions when applied to the relaxed reformula-
tion (1.9). As highlighted in [21], however, (1.9) has a major drawback, namely that a local minimiser
of (1.9) may not be a local minimiser of (1.1). Thus, it seems natural to ask whether we can construct
an algorithm which can be applied directly to (1.1) and produces a point satisfying at least one of the
sequential optimality conditions introduced in Chapter 3. The proof of Theorem 3.9 provides us with
an algorithmic insight, namely that we may be able to combine techniques from [11, 15] to construct
such an algorithm. In each iteration we only penalise the nonlinear constraints of (1.1). The objective
function of the resulting subproblem is continuously di�erentiable and  is the only constraint left.
Thus, the subproblem can theoretically then be handled using methods from [11]. It is then easy to see
that if we are able to compute a BF-vector of the subproblem in each iteration and the thus generated
sequence has a feasible limit point, this limit point must at least be a CC-AM-stationary point. The
question now is whether the subproblem is computationally tractable. We will leave this for future
research.

In Chapter 4 we have seen that in some cases like Example 4.8, (1.2) may possess too many local
minima. Thus, it seems natural to ask if we can derive a necessary global optimality condition for
(1.2). The relaxed reformulation (1.10) may o�er us such possibility. In Chapter 4 we have seen that the
solution sets of (1.2) and (1.10) coincide. Now observe that the constraints associated with the auxiliary
variable y in (1.10) are all polynomial in nature. Thus, if the constraints gi and ℎi are polynomial as
well, then techniques from [39] could perhaps be applied to derive global optimality conditions for
(1.2) which hopefully can then be incorporated as a stopping criterium for solvers like ALGENCAN
and WORHP to prevent convergence to a suboptimal solution. We shall leave this as future work.
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A
Equivalence of Sequential Optimality Conditions

Here we shall take a look at a sequential optimality condition called AW-stationarity which was in-
troduced in [44]. This condition was derived utilising the relaxed reformulation of (1.1) from [21], i.e.

min
x,y

f (x) s.t. x ∈ X , n − e
T
y ≤ s, 0 ≤ y ≤ e, x◦y = 0, (A.1)

which is simply (1.9) along with the constraint y ≥ 0. Let us now compare CC-AM-stationarity with
AW-stationarity. First we recall the de�nition of AW-stationarity from [44].

De�nition A.1. Let (x̂ , ŷ) ∈ ℝ
n
× ℝ

n be feasible for (A.1). We say that (x̂ , ŷ) is approximately weakly
stationary (AW-stationary) for (A.1) i� there exist sequences {(xk , yk)} ⊆ ℝ

n
× ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p ,
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n, {�k} ⊆ ℝ
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+
such that

(a)
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}
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(b)
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∇f (x
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i
∇ℎi(x

k
) +
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}

→ 0,

(c)

{

−�ke −

n

∑

i=1

�
k

i
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n

∑

i=1

�
k

i
ei

}

→ 0,

(d) ∀i ∈ {1, … ,m} ∶

{

min{−gi(x
k
), �

k

i
}

}

→ 0,

(e)
{

min{−(n − s − e
T
y
k
), �k}

}

→ 0,

(f) ∀i ∈ {1, … , n} ∶

{

min{|x
k

i
|, |


k

i
|}

}

→ 0,

(g) ∀i ∈ {1, … , n} ∶

{

min{y
k

i
, |�

k

i
|}

}

→ 0,

(h) ∀i ∈ {1, … , n} ∶

{

min{−(y
k

i
− 1), �

k

i
}

}

→ 0.

Next we derive an equivalent formulation of CC-AM-stationarity.

Proposition A.2. Let x̂ ∈ ℝ
n be feasible for (1.1). Then x̂ is CC-AM-stationary i� there exist sequences

{x
k
} ⊆ ℝ

n, {�k} ⊆ ℝ
m

+
, {�k} ⊆ ℝ

p , and {
 k} ⊆ ℝ
n such that

(a) {xk} → x̂ ,

(b)
{
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�
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i
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k
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i
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→ 0,
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(c) ∀i ∈ {1, … ,m} ∶

{

min{−gi(x
k
), �

k

i
}

}

→ 0,

(d) ∀i ∈ {1, … , n} ∶

{

min{|x
k

i
|, |


k

i
|}

}

→ 0.

Proof. "⇒": Assume �rst that x̂ is CC-AM-stationary. We only need to prove that the corresponding
sequences also satisfy conditions (c) and (d) in Proposition A.2. Let i ∉ Ig(x̂). We then have

gi(x̂) < 0 and �
k

i
= 0 ∀k ∈ ℕ.

Now since {gi(xk)} → gi(x̂), we can assume w.l.o.g. that gi(xk) < 0 ∀k ∈ ℕ. Hence,

min{−gi(x
k
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
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which immediately implies that
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Now let i ∈ Ig(x̂). Then gi(x̂) = 0. By assumption we have �
k
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≥ 0 ∀k ∈ ℕ. We now claim that
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→ 0. Let � > 0. Since {gi(xk)} → gi(x̂) = 0, there exists K ∈ ℕ such that ∀k ≥ K

we have |gi(x
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In both cases we obtain that
| min{−gi(x
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} − 0| < �.

Hence, we conclude that
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→ 0. Now let i ∈ I±(x̂). Then we have

|x̂i | > 0 and 
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Since {xk
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} → x̂i , we can then assume w.l.o.g. that |xk
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Suppose now that i ∈ I0(x̂). We claim that
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"⇐": Suppose now that there exist sequences {xk} ⊆ ℝ
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Then {Ak} → 0. Now let i ∉ Ig(x̂). Since {−gi(xk)} → −gi(x̂) > 0 and
{

min{−gi(x
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which implies that
{
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̂
�
k
∈ ℝ

m such that

̂
�
k

i
∶=

{

0 if i ∉ Ig(x̂),
�
k

i
if i ∈ Ig(x̂).

Since {�k} ⊆ ℝ
m

+
, then clearly we also have { ̂�k} ⊆ ℝ

m

+
. By de�nition we then have ∀i ∉ Ig(x̂) that

̂
�
k

i
= 0 ∀k ∈ ℕ. Next we de�ne

B
k
∶= A

k
− ∑

i∉Ig (x̂)

�
k

i
∇gi(x

k
)

= ∇f (x
k
) + ∑

i∈Ig (x̂)

�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei

= ∇f (x
k
) +

m

∑

i=1

̂
�
k

i
∇gi(x

k
) +

p

∑

i=1

�
k

i
∇ℎi(x

k
) +

n

∑

i=1



k

i
ei .

Now since by the preceeding discussion we have {�k
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} → 0 ∀i ∉ Ig(x̂), we then have {�k
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0 ⋅ ∇gi(x̂) = 0 ∀i ∉ Ig(x̂) and hence, {Bk} → 0. Next let i ∈ I±(x̂). Then since {|xk
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Observe that since by the preceeding discussion we have {
 k
i
} → 0 ∀i ∈ I±(x̂), we then have {
 k

i
ei} →

0 ∀i ∈ I±(x̂) and hence, {Ck
} → 0. Thus, we conclude that x̂ is CC-AM-stationary with the correspond-

ing sequences {xk}, { ̂�k}, {�k}, and {
̂ k}.

Recall from [21] that if (x̂ , ŷ) ∈ ℝ
n
×ℝ

n is feasible for (A.1), then x̂ is feasible for (1.1). An immediate
consequence of De�nition A.1 and Proposition A.2 is then the following.

Theorem A.3. Let (x̂ , ŷ) ∈ ℝ
n
× ℝ

n be a feasible point of (A.1). If (x̂ , ŷ) is AW-stationary, then x̂ is
CC-AM-stationary.
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For the converse we obtain the following.

Theorem A.4. Let x̂ ∈ ℝ
n be a feasible point of (1.1). If x̂ is a CC-AM-stationary point, then for any

ŷ ∈ ℝ
n such that (x̂ , ŷ) is feasible for (A.1) it follows that (x̂ , ŷ) is AW-stationary.

Proof. Assume that x̂ is CC-AM-stationary. Then there exist sequences {xk} ⊆ ℝ
n, {�k} ⊆ ℝ

m

+
, {�k} ⊆

ℝ
p , and {
 k} ⊆ ℝ

n such that conditions (a) - (d) in Proposition A.2 hold. Now let ŷ ∈ ℝ
n such that (x̂ , ŷ)

is feasible for (A.1). Then we can simply de�ne for each k ∈ ℕ
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Conditions (a) - (d) and (f ) in De�nition A.1 are trivially satis�ed. Now since (x̂ , ŷ) is feasible for (A.1),
we then have 0 ≤ −(n − eT ŷ − s) = −(n − eTyk − s) ∀k ∈ ℕ. Hence,
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and therefore,
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→ 0. Now since (x̂ , ŷ) is feasible for (A.1), we also have for
each i ∈ {1, … , n} that 0 ≤ ŷi = yki ∀k ∈ ℕ. Hence,
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→ 0. Moreover, the feasibility of (x̂ , ŷ) also implies that for each
i ∈ {1, … , n} we have 0 ≤ 1 − ŷi = 1 − yki ∀k ∈ ℕ. Hence,

min{1 − y
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and therefore,
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}

→ 0. This completes the proof.

An obvious advantage of CC-AM-stationarity over AW-stationarity is that it does not depend on
the arti�cial variable y . Indeed, as we have already shown, CC-AM-stationarity is a genuine optimality
condition for the original problem (1.1).
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