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Abstract

Loop Quantum Gravity is the most developed canonical quantization of General
Relativity1 based on Ashtekar’s connection formulation of classical General Rel-
ativity and is as such a diffeomorphism-invariant SU(2)-gauge theory together
with a set of scalar constraints that constrain the total Hamiltonian to vanish.
The elementary degrees of freedom are Wilson lines of the Ashtekar connec-
tion and fluxes of the conjugated electric field through surfaces. The theory is
constructed as a mathematically consistent generalization of lattice gauge the-
ories that supports the diffeomorphisms as unitary transformations. The states
of Loop Quantum Gravity are linear combinations of spin network functions,
which describe microscopic gravity. It turns out that the geometry of the spin
network states is highly distributional: quanta of area are carried on edges of
the spin network function and quanta of volume on its vertices. It is conjec-
tured that fine weaves of spin network functions could give rise to semiclassical
geometries, but this picture is still under development.

This thesis is concerned with the description of macroscopic geometries
through Loop Quantum Gravity, and there particularly with the description
of cosmology within full Loop Quantum Gravity. For this purpose we depart
from two distinct (classically virtually equivalent) ansätze: One is phase space
reduction and the other is the restriction to particular states. It turns out that
the quantum analogue of these two approaches are fundamentally different:

The quantum analogue of phase space reduction needs the reformulation in
terms of the observable Poisson algebra, so it can be applied to the noncom-
mutative quantum phase space: It rests on the observation that the observable
Poisson algebra of classical canonical cosmology is induced by the embedding of
the reduced cosmological phase space into the phase space of full General Rela-
tivity. Using techniques related to Rieffel-induction, we develop a construction
for a noncommutative embedding that has a classical limit that is described by
a Poisson embedding (chapter 4).

To be able to use this class of noncommutative embeddings for Loop Quan-
tum Gravity, one needs a complete group of diffeomorphisms for the quantum
theory, which is constructed (chapter 3). These two results are applied in chap-
ter 5 to construct a quantum embedding of a cosmological sector into full Loop
Quantum Gravity. The embedded cosmological sector turns out to be discrete,
like standard Loop Quantum Cosmology2 and can be interpreted as a super-
selection sector thereof; however due to pathologies of the dynamics of full Loop
Quantum Gravity, one can not induce a meaningful dynamics for this cosmo-
logical sector.

1M-theory, as a theory of everything, is also a very far developed quantum theory, which
does however not represent a canonical quantization of General Relativity, but a theory, which
as a conjectured theory of everything has to describe classical gravity in a suitable limit.

2Standard Loop Quantum Cosmology is a loop quantization of classical cosmology that
implements many features of full Loop Quantum Gravity.
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The quantum analogue of restricting the space of states is achieved by ex-
plicitly constructing states for Loop Quantum Gravity with smooth geometry in
chapter 6. These states do not exist within the Hilbert space of Loop Quantum
Gravity, but as states on the observable algebra of Loop Quantum Gravity. This
observable algebra is built from spin network functions, area operators and a
restricted set of fluxes. For this algebra to be physically complete, we needed to
construct a version of Loop Quantum Geometry based on a fundamental area
operator. This version of Loop Quantum Geometry is constructed in chapter 8.

Since the smooth geometry states are not in the Hilbert space of standard
Loop Quantum Gravity, we needed to calculate the Hilbert space representa-
tion that contains them using the GNS construction. This representation of
the observable algebra can be illustrated as a classical condensate of geometry
with quantum fluctuations thereon. Using these representations we construct
a quantum-minisuperspace in chapter 7, which allows for an interpretation of
standard Loop Quantum Cosmology in terms of these states and led us to con-
jecture a new approach for the implementation of dynamics for Loop Quantum
Gravity.
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Zusammenfassung

Die Schleifenquantengravitation ist die am weitesten entwickelte kanonische
Quantisierung der Allgemeinen Relativitätstheorie3, die auf der Ashtekar Zusam-
menhangsformulierung der klassischen Allgemeinen Relativitätstheorie basiert
und ist als solche eine diffeomorphismusinvariante SU(2)-Eichtheorie mit einem
Satz von skalaren Zwangsbedingungen, welche bewirken, dass der Gesamthamil-
tonian verschwindet. Die elementaren Freiheitsgrade sind Wilsonlinien des Ash-
tekar Zusammenhanges und Flüsse des konjugierten elektrischen Feldes durch
Oberflächen. Die Theorie ist als eine mathematisch konsistente Verallgemeiner-
ung von Gittereichtheorien konstruiert, welche die Diffeomorphismen als unitäre
Transformationen trägt. Die Zustände der Schleifengravitation sind Linearkom-
binationen von Spinnetzwerkfunktionen, welche Mikrogravitation beschreiben.
Es stellt sich heraus, dass die Geometrie der Spinnetzwerke hochgradig entartet
ist: Flächenquanten werden auf Kanten des Spinnetzwerkes getragen, wogegen
Volumensquanten an den Vertizes residieren. Es wird vermutet, das ein feines
Gewebe von Spinnetzwerkfunktionen semiklassiche Geometrie erzeugen kann,
aber dieses Bild ist noch unvollständig.

Die vorliegende Arbeit ist mit der Beschreibung makroskopischer Geome-
trien durch Schleifengravitation befasst und zwar insbesondere mit der Beschrei-
bung von Kosmologie innerhalb der vollen Schleifengravitation. Für dieses Ziel
verwenden wir zwei unterscheidliche (jedoch auf klassischem Level scheinbar
äquivalente) Ansätze: Einerseits betrachten wir die Reduktion des Phasen-
raumes und andererseits die Beschränkung auf bestimmte Zustände. Es stellt
sich jedoch heraus, dass sich die Quantenanaloga dieser beiden Zugänge funda-
mental unterscheiden:

Das Quantenanalogon der Phasenraumreduktion muss als Aussage über die
Observablen-Poissonalgebra umformuliert werden bevor sie auf den nichtkom-
mutativen Phasenraum von Quantentheorien angewendet werden kann: Die
zugrundeliegende Beobachtung ist, dass die Observablen-Poissonalgebra von
klassischer kanonischer Kosmologie durch die Einbettung des kosmologischen
Phasenraumes in den Phasenraum der Allgemeinen Relativitätstheorie induziert
wird. Damit können wir eine Technik, die von der Rieffelinduktion abgeschaut
ist, anwenden um die Konstruktion einer nichtkommutativen Einbettung zu en-
twickeln, welche sich im klassischen Limes zu einer Poissoneinbettung reduziert
(Kapitel 4).

Um diese Konstruktion der Einbettung auf die Schleifenquantengravitation
anwenden zu können benötigt man eine vollständige Diffeomorphismengruppe
für die Quantentheorie, welche in Kapitel 3 erarbeitet wird. Diese beiden Ergeb-
nisse werden in Kapitel 5 angewendet um die Quanteneinbettung eines kosmolo-

3Die M-Theorie, als eine Theorie von Allem, ist eine ebenfalls sehr weit entwickelte Quan-
tentheorie, welche aber keine kanonische Quantisierung der Allgemeinen Relativitätstheorie
darstellt, sondern eine Theorie, die als vermutliche Theory of Everything auch klassische
Gravitation in einem geeigneten Limes beschreiben muss.
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gischen Sektors in die volle Schleifengravitation zu konstruieren. Dieser ist, wie
die standard Schleifenkosmologie4 diskret und kann als Auswahlsektor dersel-
ben interpretiert werden; aufgrund von Pathologien in der Dynamik der vollen
Schleifengravitation lässt sich aus dieser jedoch keine sinnvolle Dynamik für den
kosmologischen Sektor induzieren.

Das Quantenanalogon der Beschränkung des Raumes der Zustände basiert
auf der expliziten Konstruktion von Zuständen, die eine glatte räumliche Ge-
ometrie beschreiben (Kapitel 6). Diese Zustände existieren zwar nicht im Hilber-
traum der Schleifenquantengravitation, aber als Zustände auf der Observable-
nalgebra der Schleifenquantengravitation. Diese Observablenalgebra wird aus
den Spinnetzwerken, den Flächenoperatoren und einer eingeschränkten Menge
der Flüsse konstruiert. Um zu zeigen, dass diese Observablenalgebra physikalisch
vollständig ist benötigen wir eine Schleifenquantengeometrie, die auf einem fun-
damentalen Flächenoperator aufbaut. Diese Schleifenquantengeometrie wird in
Kapitel 8 konstruiert.

Nachdem die Zustände mit glatter Geometrie nicht im Hilbertraum der stan-
dard Schliefengravitation liegen, müssen wir aus diesen Zuständen Hilbertraum-
darstellungen der Observablenalgebra durch die GNS-Konstruktion erschaffen.
Diese Darstellung kann mit dem Bild eines klassichen Kondensats von Geome-
trie, um welches Quantenfluktuationen existieren, illustriert werden. Ausge-
hend von diesen Darstellungen konstruieren wir in Kapitel 7 einen Quanten-
Minisuperraum, welcher eine Interpretation der standard Schleifenkosmologie
durch diese Zustände erlaubt. Dieser Zugang gab uns ausserdem den Hinweis
auf eine mögliche Konstruktion einer Dynamik für die volle Schleifenquanten-
gravitation.

4Die standard Schleifenkosmologie ist eine Schleifenquantiserung der klassichen Kosmolo-
gie, die viele Eigenschaften der vollen Schleifengravitation besitzt.
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Chapter 1

Introduction

There are two very well tested fundamental theories that are used to describe
modern physics: On one side there is General Relativity (GR) describing gravity
through curvature of space-time, whose source is the energy momentum density,
and on the other side there are Quantum Field Theories (QFTs) describing
elementary particles and their interactions as the dynamics of excitations of
quantum fields. These two theories have rather separated domains of validity
in everyday life: GR describes gravity from sub-millimeter scale up to the size
of the universe, QFTs on the other hand describe the dynamics of sub-atomic
particles. The real world does of course not distinguish between these domains
of validity. The very early universe for example had to go through an era where
the excitations of quantum fields reached very high energy momentum densities,
so the interaction with gravity must have been important at this stage. From a
philosophical perspective one would say there is only one physics and both GR
and QFTs should come out of a theory that describes this physics. This theory
of Quantum Gravity (QG) is however not yet discovered, partly because GR
and QFTs are formulated in two different branches of mathematics:

GR is formulated using differential geometry, particularly pseudo-Riemannian
manifolds and fiber bundles thereon. The inherent diffeomorphism symmetry
of GR is encoded in the coordinate independence of differential geometry. Al-
though there are fundamental difficulties in constructing interacting Lorentz
invariant QFTs in more than 2+1 dimensions, one has the standard model of
particle physics formulated as a perturbation series for interacting QFTs around
free QFTs which is tested with remarkable precision, so there is good evidence
for the validity of QFTs. The mathematical description of QFTs is however for-
mulated in terms of operator algebras on Hilbert spaces and unitary covariant
actions of the symmetry groups on this Hilbert space. The progress in Noncom-
mutative Geometry (see e.g. [1]) made a description of differential geometry on
Riemannian spin manifolds in terms of operator algebras available, and allows
for the formulation of a classical field for gravity in terms of operator algebras.

There is however evidence form quantum information theory that suggests
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that a quantum system can not consistently interact with a classical system1,
so QG is expected to be a QFT as well. Loop Quantum Gravity (LQG) is an
approach to construct a canonical QFT using the SU(2) connection formulation
[2] of gravity (For further information on LQG see [3, 4, 5]). It is formulated as
a Hilbert space representation of an operator algebra built from holonomies of
the SU(2)-gauge field and the fluxes of the conjugate su(2)-electric field. The
ground state is a diffeomorphism invariant generalization of the ground state
of a lattice gauge field theory, which turns out to correspond to a ”no geome-
try” state. The guiding principle for the construction of the kinematics of LQG
is the consistent implementation of the group of kinematic gauge transforma-
tions of GR, which consists of the usual SU(2)-gauge transformations and the
spatial diffeomorphisms. There is another set of gauge transformations gener-
ated by scalar constraints, which constrain the total Hamiltonian to vanish. A
phenomenologically acceptable implementation of this set of ”dynamical” con-
straints is ongoing research despite recent advances [6, 7].

Unlike super-string theory, LQG does not attempt to provide a unification
of all matter and force fields coming from one fundamental object, but LQG
can be adapted to carry all standard matter. There are however ideas that
standard model matter and forces may already be present but disguised in pure
LQG [8, 9, 10, 11]. The highly distributional character of geometry in LQG
suggests that a smooth geometry as we experience it in everyday life arises
under some coarse graining that corresponds to the experimental resolution
of geometry; small scale fluctuations that can not be resolved experimentally
can have properties of elementary particles. Before this idea can be put on
a firm basis, one needs to understand smooth geometries in LQG. It is the
purpose of this thesis to contribute to this understanding and providing a general
construction of smooth sectors of LQG and to apply it in particular to extract
a cosmological sector from LQG.

Loop Quantum Cosmology (LQC) has been pioneered by Bojowald [12, 13,
14] and is in analogy to Bianchi cosmology, which is a symmetry reduction of
classical GR, a symmetry reduced model of LQG. It is often presented as a toy
model, but the elementary operators of LQC are constructed by symmetrizing
the respective LQG operators [14, 15]. The particular aim of this thesis is to
provide an embedding of LQC into LQG. This is a nontrivial issue, because the
kinematic quantum configuration space2 of LQC can not be embedded into the
kinematic quantum configuration space of LQG [17]. This thesis is concerned
with two approaches for this embedding: The first is concerned with embedding
the observable algebra, which amounts to the direct construction of a reduced
observable algebra; the second is concerned with constructing a Hilbert space
with state vectors that have the desired symmetry properties.

To explain the idea behind the construction of the reduced observable al-
gebra, it is useful to consider the symmetry reduction of a classical Hamilto-

1A quantum system can be coupled to a classical external source, but the back-reaction of
the quantum field onto the source is problematic.

2The quantum configuration space is the spectrum of the C∗-completion of the algebra
generated by the configuration observables.
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nian field theory: Let us denote the fields on the Cauchy surface Σ by φi and
the canonically conjugated momentum densities πj , so the pairs of field- and
momentum density-configurations (φi, πj) furnish canonical phase space coor-
dinates. Assuming a Lie-algebra L of vector fields vk on Σ, one can search for
solutions to Lv(φi, πj) = 0, which defines the symmetric subspace Γsym of the
full phase space Γ. Moreover, let χa be a set of constraint functions on the
phase space, so the constraint surface χa = 0 defines the physical phase space
Γphys. The intersection Γsym ∩ Γphys of the symmetric phase space Γsym and
the physical phase space Γphys is the desired physical symmetric phase space Γo
of the reduced theory.

A quantum theory is defined on a noncommutative phase space. To be more
precise, we call a Hilbert space representation (H, π) of a C∗-algebra A of quan-
tum observables together with a unitary covariant representation U of the group
of gauge transformations and symmetries onH a quantum theory. The Gel’fand-
Naimark theorem states that any commutative C∗-algebra is isomorphic to an
algebra of continuous complex valued functions on a locally compact Hausdorff
space, which is isomorphic to the spectrum of the C∗-algebra when endowed
with the Gel’fand topology. The quantum observable algebra A is a completion
of the classical observable algebra A∞ = C∞(Γ) consisting of smooth functions
on phase space. The rays in the Hilbert space H are the sates that the quantum
system can attain, which correspond classically to probability measures on the
classical phase space. The restriction to an embedded subspace i : Γo → Γ
implies a pull-back of the observable algebra A∞o := i∗A∞ to an observable
algebra on the reduced phase space Γo. The induced Poisson structure on A∞o
implies that i is a Poisson embedding. The desired quantum embedding is thus
a generalization of Poisson embeddings for noncommutative algebras.

The direct construction of such an embedding does not exist for noncom-
mutative algebras, but one can take a slight detor that can be applied to the
noncommutative case as well: Consider a vector bundle (E, π,Γ) over Γ and
a second vector bundle (Eo, πo,Γo) over Γo and consider a vector bundle mor-
phism η, such that the projection π of η(Eo) to Γ is a Poisson embedding i,
so i is encoded in η. The Serre-Swan theorem states the equivalence of cat-
egories between vector bundles and finitely generated projective modules over
the commutative C∗-algebra of continuous complex valued functions on the base
space. Going to the completions reveals that noncommutative vector bundles
are nothing else than Hilbert-C∗-modules over the respective noncommutative
C∗-algebra that serves as the noncommutative base space. We thus have to con-
struct embeddings of Hilbert-C∗-modules that preserve the algebraic structure
for a dense set of operators, because the commutators of the quantum theory
reflect the classical Poisson bracket.

It turns out that Hilbert-C∗-modules for a large class of physically interest-
ing C∗-algebras are generated by commutative C∗-algebras C(X). This allows
for the construction of noncommutative vector bundle morphisms through em-
beddings of the spectra i : Xo → X in these special cases. It turns out that these
ebeddings preserve the algebraic structures and that a generalization of Rieffel
induction allows for calculating the induced representation for the embedded
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algebra. We thus define a quantum Poisson embedding using this embedding of
Hilbert-C∗-modules. Moreover, it turns out that the continuous complex valued
functions on the quantum configuration space furnish such a module for many
interesting applications.

However, due to the nonembeddability of the kinematic quantum configura-
tion space of LQC into the kinematic configuration space of LQG it is impossible
to construct an embedding of the noncommutative vector bundles in this fash-
ion. The reduced phase space Γo however is the intersection of the constraint
surface Γphys with the symmetric sector of the phase space Γsym. The idea is
thus to apply our construction to the diffeomorphism constraint surface. Thus,
after defining a suitable gauge for the diffeomorphisms, we are able to construct
a quantum Poisson embedding for a cosmological sector into full LQG.

The application of this quantum Poisson embedding provides a setting for a
systematic study of the interplay between diffeomorphism invariance and sym-
metry reduction. The non-triviality of this relation is shown by the result that
the extracted cosmological system has configurations variables that are very
similar to the ones of a super-selection sector of standard Loop Quantum Cos-
mology, but its full operator algebra turns out to be different from standard
Loop Quantum Cosmology. The homogeneous isotropic sector of pure gravity
turns out to be quantum mechanics on a circle and a simple matter model turns
out to be quantum mechanics on a torus. The dynamics of our system seems
pathological at first sight, and we give both mathematical and physical reasons
for this behavior and we explain a strategy to cure these pathologies.

The idea behind the construction of states that have expectation values for
geometric operators that satisfy certain symmetry properties is to directly con-
struct the respective positive linear functionals on the full observable algebra
of Loop Quantum Gravity and to perform the GNS-construction to obtain a
Hilbert space representation thereof. It turns out that a slight modification of
the observable algebra of Loop Quantum Gravity, that still contains all con-
nection operators and all geometric operators of the full theory, allows for the
construction of states with vacuum expectation values for the geometric opera-
tors that match the classical expectation values for these geometric observables
in a given classical geometry. The defining equation for these state functionals
is a slight adaption of the state equation for harmonic oscillator coherent states
ωα(a) := 〈α, πo(a)α〉 for Weyl-operators to the adapted observable algebra that
underlies Loop Quantum Gravity. It turns out that the GNS-ground states
ΩEo are eigenstates of the geometric observables with eigenvalues described by
a classical 3-geometry Eo.

The GNS-construction from these states yields spin network functions that
are embedded into classical geometric backgrounds. To obtain a unitary rep-
resentation of the gauge- and diffeomorphism transformations, one needs to
consider the direct sum of these GNS representations over all densitized inverse
triads φ(Λ−1EoΛ) that describe the same geometry as Eo. The gauge- and dif-
feomorphism invariant Hilbert space can be obtained using the group averaging
procedure and turns out to contain gauge-invariantly coupled gauge invariant
spin network functions that are embedded into a background geometry modulus
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isometries of the background geometry. Moreover, it turns out that the classical
Eo-geometry can be recovered from each normalized vector of the GNS Hilbert
space through quantum measurements, which is the reason for calling it the
”essential geometry”.

Using these states, one can consider a classical minisuperspace and take
all occurring 3-geometries Eo and build a quantum minisuperspace by taking
the direct sum over the GNS-ground state vectors ΩEo . It turns out that these
states are in a one-one correspondence to Bojowalds µo-states for Loop Quantum
Cosmology. One is thus able to impose the Loop Quantum Cosmology dynamics
on this minisuperspace. The new feature in this case is however that one has a
representation of the full observable algebra of Loop Quantum Gravity available,
so one can consider genuine ”Loop” fluctuations around these states without
having to model them beforehand. A different approach to the dynamics of
these states can be obtained as follows [20]:

The gauge-variant embedded spin network functions are eigenstates of the
geometric operators, so there is a distributional geometry Eo that describes their
geometry. The dynamics of Quantum Gravity is solved by the construction of
the mutual kernel of the constraints. The existence of classical solutions with
particular geometries Esol.o suggests to construct the mutual kernel as the closure
of the span of the ΩEo states for which there is a point (Ao, Eo) on the classical
constraint surface. To determine which embedded spin network states lie in the
kernel, one can use the existence of the essential geometry and define it to lie in
the kernel if the distributional geometry describing the embedded spin network
state is attained as the limit of a sequence (Ao, Eo)n of points on the constraint
surface as n→∞.

This thesis is organized as follows:

• In section 1 of chapter 2, we will consider classical Hamiltonian Bianchi I
cosmology as the example of choice for symmetry reduction in this thesis
and make the case for reducing a quantum theory using quantum embed-
dings. This chapter also serves as an introduction into the cosmological
background that is needed for the rest of the text. The rest of chapter 2 is
devoted to explain the problem of symmetry reducing a quantum theory.

• Chapter 3 is concerned with constructing the complete group of gauge
transformations. The main result is that Loop Quantum Gravity should
be invariant under an extension of the group of analytic diffeomorphisms,
that is large enough to map any graph onto any other graph in the same
iso-knot class. This result is necessary for the later construction of the
quantum Poisson embedding.

• We describe the physical ideas behind and the actual implementation of
our construction of quantum Poisson embeddings in chapter 4. A detailed
description of this procedure can be found in [21].

• We construct a quantum Poisson embedding for cosmological sectors in
LQG in chapter 5. The main result of this construction is that there is an
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embedding of cosmological sectors into LQG and that the super-selection
sectors in standard LQC can be interpreted as such embedded sectors. An
expanded discussion is contained in [22].

• The construction of the states with smooth geometries is performed in
chapter 6, which contains a discussion of the kinematics of this represen-
tation of Loop Quantum Gravity as well.

• These states are used to construct minisuper-spaces in chapter 7 and the
implementation of the dynamics of standard Loop Quantum Cosmology
as well as an idea for the construction of a fundamental dynamics for these
states are discussed.

• We supplement the construction of smooth geometry states with the con-
struction of a version of quantum geometry that is based on a fundamental
area operator. This version of geometry is essential for the construction
of the adapted observable algebra used to construct the smooth geometry
states in chapter 6 and justifies the adaption of the observable algebra
from a physical perspective.

• These results are summarized in chapter 9.

• We supplement the thesis with appendices that provide the necessary
background on C∗-algebras, Hilbert-C∗-modules and Rieffel induction (These
mathematical issues are covered in appendix A).

• The necessary background about GR in Ashtekar variables, a useful defi-
nition of quantum field theories and standard Loop Quantum Gravity as
such a quantum field theory as well as standard Loop Quantum Cosmology
is provided in appendix B.

• Geometric operators are essential for a theory of quantum gravity. We
thus devote appendix C to length-, area- and volume operators.

Chapters 3 to 8 contain the individual results of this work and are written with
the intention to present these results as self contained as it is possible in a thesis.
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Chapter 2

Explanation of the Problem

To expose the problem considered in this thesis, we give an overview of classical
Hamiltonian cosmology (sections 2.1.1, 2.1.2). Applied to considering observ-
ables, this raises the question of how to impose spatial symmetry on the observ-
ables in General Relativity, which we consider classically in section 2.1.3. We
use the effects of different operator orderings (section 2.2) and the fact that only
a few operator orderings are admissible in quantum field theories to make the
case for applying a symmetry reduction directly to the quantum theory (section
2.3).

2.1 Classical Hamiltonian Cosmology

Cosmology is usually discussed in the Lagrangian setup, however in order to
gain insight into cosmological sectors of LQG we look at canonical GR and its
symmetry reduction.

2.1.1 Hamiltonian General Relativity

Given a globally hyperbolic four-dimensional pseudo-Riemannian manifold X4,
it is topologically equivalent to R × Σ, where Σ is a Riemannian manifold. A
foliation X : R×Σ→ X4 allows to split the metric g on X4 into a spatial metric
q together with a lapse function N and a shift vector field Na on Σ, such that
the metric g can be expressed (in chart (t, xa) := X(to, σa)) as

g = (qabNaN b −N2)dt⊗ dt+ qabN
bdt ∨ dxa + qabdx

a ⊗ dxb. (2.1)

Using Σ as a Cauchy surface, we use q,N,Na as configuration variables and
denote the conjugate momenta by P ab,Π,Πa, such that the Einstein Hilbert
action S = 1

κ

∫
X4

√
−|g|d4xR[g] can be rewritten in these canonical variables

as S = 1
κ

∫
R×Σ

dtd3σ
(
q̇abP

ab + ṄΠ + ṄaΠa − (NaVa + |N |C) + λΠ + λaΠa
)

,
where λ, λa are Lagrange multipliers constraining Π and Πa, such that the equa-
tions of motion for N and Na are just integrals of these Lagrange multipliers,
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so we can turn them into Lagrange multipliers themselves yielding the ADM
action

S =
1
κ

∫
R×Σ

(
q̇abP

ab − (NaVa + |N |C)
)
, (2.2)

where N and Na are now considered as Lagrange multipliers and V a and C
denote the vector- and scalar- constraint respectively, whose expression is:

Va = qacDbP
bc

C = 1√
|q|
qacqbdP

abP cd − 1

2
√
|q|

(qabP ab)2 −
√
|q|R[q], (2.3)

where R denotes the curvature and D the covariant derivative w.r.t. the spatial
metric q. The first summand in equation 2.2 is a symplectic potential im-
plying the Poisson bracket {F (q), P (f)} = −κF (f) and the second summand
denotes the total Hamiltonian that is constrained to vanish, where F (g) =∫

Σ
d3σF ab(σ)qab(σ) and P (f) :=

∫
Σ
d3σP ab(σ)fab(σ) for a symmetric co-tensor

valued density F and a symmetric tensor valued scalar f . A classical trajec-
tory g(t) is evolved using the Hamiltonian H =

∫
Σ
d3σ (NaVa + |N |C) using

equation 2.1 and treating N,Na as Lagrange multipliers.

2.1.2 Bianchi Cosmology

Many aspects of cosmology are due to spatial homogeneity of the universe.
These geometries are classified in Bianchi types. The notion of homogeneity is
introduced by a group G of isometries φ : Σ → Σ, i.e. we assume φ∗q = q.
The 3-dimensional symmetry group shall act freely and transitively on Σ, such
that the spatial manifold equals the group manifold (Σ = G). The invariance
condition can be written as:LXg = 0, where X denotes the Killing vector-field,
whose action generates the flow φt, then it is obvious, that the Killing vector-
fields X generate the Lie-algebra G of G, such that the Lie-algebra G of G is
given by the Lie-bracket of the vector fields X:

[Xi, Xj ] = CkijXk, (2.4)

for i, j, k = 1, 2, 3. For any globally hyperbolic manifold and three-dimensional
Lie-group, acting freely and transitively on the spacelike hypersurfaces, it turns
out that the unit normal vector n of the spacelike hypersurfaces (now consid-
ered as group orbits) yield a natural choice for a timelike vector-field, which is
constant under orbits of G:

LXn = 0∀X ∈ G. (2.5)

Let us then use triads ea, that commute with the Killing-vectorfields [ea, Xi] = 0.
Bundling these three vector-fields with n, we obtain four linearly independent
vector fields eµ, such that we can use their integrals as coordinates and we
obtain a line-element ds2 = dt2 − (gijdxidxj). It turns out, that all the com-
mutation relations [eα, eβ ] = γµαβeµ are purely functions of time (which is the
coordinate obtained as the integral of n). This implies that we can classify all
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the Bianchi-cosmologies by the commutation relations of the frames eµ, since
the the ei furnish an equivalent Lie-algebra in each spatial hypersurface. The
standard classification of Bianchi types is then usually stated in terms of the
decomposition:

γijk = εjkln
il + ajδ

i
k − akδij , (2.6)

where n, a are constants in the group-invariant frame satisfying nijaj = 0. Type
A cosmologies arise for ai = 0 (no shift) and type B stands for nonvanishing ai.
Using the signs of the eigenvalues n1, n2, n3, we can classify the Bianchi-type A
cosmologies by:

Bianchi type A n1 n2 n3

I 0 0 0
II +1 0 0
V Io 0 +1 −1
V IIo 0 +1 +1
V III −1 +1 +1
IX +1 +1 +1.

(2.7)

It turns out, that the type B Bianchi cosmologies are classified on terms of a
the sign of h defined by a2 = hn2n3, where a = (1, 0, 0), such that:

Bianchi type B n1 n2 n3

V 0 0 0
IV 0 0 +1
V Ih 0 +1 −1
V IIh 0 +1 +1,

(2.8)

where h stands short for the sign of h.
We can further simplify these models by assuming local rotational symmetry
(LRS) (i.e. rotational symmetry w.r.t one fixed axis) or by assuming com-
plete isotropy (i.e. rotational symmetry w.r.t. all rotations). This is done by
the introduction of symmetry transformations corresponding to the respective
rotations, which amounts to the introduction of one or three additional Killing-
vector fields.
Let us now consider the simplest case: Let Σ = R3 and let the group R3 act
on Σ by translation. Moreover consider the action of SO(3) by rotations on
Σ. Taking a global chart (xi), we can consider these two group actions to be
generated by the vector fields:

Xi = ∂i,
Yi = εijkxj∂k,

(2.9)

where i = 1, 2, 3. The combined group is the Euclidean group E(3) and the
vector fields (Xi, Yi) are a particular representation of their Lie-algebra acting
on the homogeneous space R3. The E(3)-invariant line-element is then given
by:

ds2 = dx2
1 + dx2

2 + dx2
3, (2.10)
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where (xi) denote cartesian coordinates on R3.
Taking the three homogeneous spaces: the flat R3, the open three hyperboloid
H3 and the closed sphere S3, which we obtain as the Bianchi types I, IX and
V respectively, which can each be considered in the homogeneous, locally rota-
tionally symmetric and isotropic case. The isotropic line-element is given by:

ds2 = dt2 − a(t)((1− kr2)dr2 + r2(dθ2 + sin(θ)dφ2)), (2.11)

where k = 0 represents isotropic type I, k = 1 isotropic type V and k = −1
isotropic type IX and (r, θ, φ) denote global coordinates. Throughout this thesis
we are mostly concerned with type I cosmologies to avoid technical difficulties.

2.1.3 Imposing Symmetry on the Observables

The symmetry reduced physical phase space is the intersection of the symmetric
part of the phase space and the constraint surface. In order to be able to transfer
the symmetry reduction of the classical system to the quantum theory, we will
consider the symmetry reduction of the observable algebra, whose noncommu-
tative quantum analogue replaces the classical phase space. We will therefore
proceed as follows: We calculate the symmetric phase space (we denote its ele-
ments (qsym, Psym)) and evaluate the dependence of a given observable on the
symmetric phase space. This generates equivalence classes of full observables
that depend in the same way on the reduced phase space. This is the quotient of
the full observable algebra by the ideal of phase space functions that vanish on
the symmetric phase space. A Dirac observable depends on the physical phase
space only, so the equivalence classes of functions on the symmetry reduced
physical phase space are labeled by equivalence classes of Dirac observables,
that depend equivalently on the symmetry reduced phase space.

This procedure is usually evaded by constructing a reduced set of constraints
that define the reduced physical phase space as a constraint surface of the re-
duced phase space. This is a classically equivalent procedure, but the quantum
analogue of this procedure is not unambiguous.

Let us consider isotropic Bianchi I cosmology, so the expression for the metric
in the symmetric chart is qsym(t) = a(t)(dx2

1 +dx2
2 +dx2

3) and the expression for
the isotropic momentum is in this chart P absym(t) = p(t)δab. A general observable
is a function O(q, P ). Let us introduce (local) canonical phase space coordinates
(a, q⊥, p, P⊥) such that (a, p) furnish coordinates for the symmetric phase space
and (q⊥, P⊥) for the complement of the symmetric phase space, so {a, p} =
−Vκ and {a, c⊥} = 0 = {p, c⊥} for all coordinates c⊥ of the complement. A
symmetric observable is a function O(q, P ) = f(a, p) and since the symmetric
phase space satisfies q⊥ = 0 = P⊥, one has equivalence classes of observables
O(q, P ) =

∑
i fi(a, p)gi(q⊥, P⊥) which coincide on the symmetric phase space,

i.e.
∑
i f

(1)
i (a, p)g(1)

i (0, 0) =
∑
j f

(2)
j (a, p)g(2)

j (0, 0).
Finding Dirac observables in the reduced phase space simplifies significantly

due to the fact that (a, p) Poisson commute with the (q⊥, P⊥) and the gauge
transformation equations turn into the usual Friedman equations after choos-
ing a suitable matter extension of the phase space, introducing symmetric
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coordinates thereon and using a suitable matter Hamiltonian. The symme-
try reduced observable algebra is given by phase space functions of the form
O(a, q⊥, p, P⊥) = f(a, p), but this is the same as the quotient of the full ob-
servable algebra by the ideal of functions on phase space F (a, q⊥, p, P⊥) −
F (a, 0, p, 0), that vanish at the symmetric phase space. The same argument
holds for the constraint surface.

Using an expansion F =
∑
ijKL fijKLa

ipjqK⊥P
L
⊥ and f := F (a, q⊥, p, P⊥)−

F (a, 0, p, 0) =
∑
ij fij00a

ipj for the associated elements of the quotient, where
K,L are multi indices, we can calculate the restriction of the Poisson bracket
of F1, F2 to the symmetric phase space as {F1, F2}|Γsym = {f1, f2}, where we
used that q⊥ = 0 = P⊥ on Γsym. The symmetry reduction is thus a Poisson
embedding, because the Poisson bracket for the elements f of the quotient
algebra is independent of the particular representative F in the full observable
algebra. We can thus induce the Poisson structure for the symmetry reduced
observable algebra by defining it as the full Poisson bracket of the equivalence
classes of observables that depend equivalently on the symmetry reduced phase
space.

The time evolution of the Dirac observables is trivial, all Dirac observables
are constants of motion, since GR is a constrained Hamiltonian theory, so we
have solved the symmetry reduced model once we have calculated the Dirac
observables of the reduced system. The quantum analogue of this idea is the
first approach used in this thesis.

2.2 The Case for Quantum Symmetry Reduc-
tion

The main point of this section is that symmetry reduction of a quantum theory
generally differs from the quantization of a classically reduced system, even if the
same quantization map is used. This is due to the factor ordering ambiguities
that are fixed as long as one works purely at the quantum level, but that arise
as soon as one leaves the quantum regime. We will use a very simplified picture
in this section, that still makes the essential point:

Suppose there is a full quantum theory (H, π,A, H) consisting of a Hilbert
space representation (H, π) of the C∗-algebra A of quantum observables and
a Hermitian operator H that serves as the Hamiltonian of the system. Fur-
thermore, suppose that there is a projection P on H that projects down to the
symmetric part of the theory. Then we can induce a reduced observable algebra
Asym := {PaP : a ∈ A} and an induced representation of Asym on P (H) by
πsym(PaP )Pv := Pπ(a)v. The induced dynamics of this theory is then gov-
erned by the Hamiltonian Hsym = PHP . This Hamiltonian still has the factor
ordering that is dictated by the full theory. Since finding the right factor order-
ing is essential for the existence of a quantum theory with an infinite number of
degrees of freedom, we can not overestimate the importance of keeping it fixed.
However, if one performs a symmetry reduction at the classical level and then
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quantizes (even when using the same quantization map) the particular induced
factor ordering of the full quantum theory is lost. We will therefore consider
the consequences of choosing different factor orderings in the quantization of a
classical system.

Factor ordering ambiguities arise whenever one quantizes a classical system.
Let us consider quantum mechanics in one dimension and adopt a quantization
map .̂ : f(p, q) 7→ f(p̂, q̂), where f is analytical, and such that [p̂, q̂] = i. Let us
then consider two one dimensional distinct classical systems, whose dynamics
is governed by H1 = p2 + V1(q) and H2 = p2 + V2(q) respectively, where we
assume that {p, q} = 1 in both cases and without loss of physical generality
assume that both potentials are C1 and positive, but finite for any finite q. Let
us rewrite the Hamilton function H2 as

H2 =
1

f(q)
pf2(q)p

1
f(q)

+ V2(q) + c,

which is an equivalent classical Hamiltonian, if f vanishes nowhere and c is a
constant.

Let us now apply the quantization map .̂ to both Hamiltonians:

Ĥ1 = p̂2 + V1(q̂)
Ĥ2 = 1

f(q̂) p̂f
2(q̂)p̂ 1

f(q̂) + V2(q̂) + c

=
(
p+ 1

f(q̂) [p̂, f(q̂)]
)(

p̂+ f(q̂)[p̂, 1
f(q̂) ]

)
+ V2(q̂) + c

= p̂2 − i
[
p̂, f

′(q̂)
f(q̂)

]
+
(
f ′(q̂)
f(q̂)

)2

+ V2(q̂) + c

= p̂2 + f ′′(q̂)
f(q̂) + V2(q) + c.

(2.12)

Hence, if the solution f of the ODE

f ′′(q) + (V2(q)− V1(q) + c)f(q) = 0

vanishes nowhere, then because of the assumed properties of the potential, we
obtain an analytic function f(q) that is finite for every q. Thus, if V2 − V1 is
bounded from below on R then we can choose a c such that V2 − V1 + c ≥ 0,
which implies that the solution f(q) to the ODE with the initial condition
f(0) = 1, f ′(0) = 0 satisfies ∞ > f(q) ≥ 1 for all values of q.

Thus, if V2−V1 is bounded from below, then we can use the factor ordering
ambiguity to obtain a quantization of H2 that equals H1:

Ĥ2 = p̂2 +
f ′′(q̂)
f(q̂)

+ V2(q) + c = p̂2 + V1(q̂) = Ĥ1. (2.13)

This disturbing feature of factor ordering ambiguities obviously carries through
to quantum mechanics on Rn for arbitrary n. We are thus not able to recover
the ”correct quantum potential” from the classical theory, thus whenever we
reduce a theory classically and quantize it again, even when we are able to use
the same quantization map, we are not able to predict the reduced quantum
theory unambiguously. This is the reason, why we consider a quantum version
of symmetry reduction in this thesis.
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2.3 Symmetry Reduction of a Quantum Theory

We reduced the observables of a classical system in section 2.1.3 and saw that
the reduced observable algebra coincides with the quotient of the full observable
algebra over the ideal of observables that vanish at the symmetric phase space.
The symmetry reduced phase space Γsym is naturally embedded into the full
phase space Γ by an identity map i : Γsym → Γ and we saw that the embedding
i (Γsym, {., .}sym) on the symmetry reduced phase space satisfies the condition
{f ◦ i, g ◦ i} = {f, g}sym ◦ i, so i is a Poisson embedding. The pull-back un-
der i furnishes the symmetry reduction of the Poisson algebras, so a quantum
symmetry reduction is precisely a non-commutative Poisson embedding, i.e. the
reduction of the observable algebra A yields the symmetry reduced observable
algebra Ared = {i∗f : f ∈ A}.

Before we explain the strategy for the construction of non-commutative Pois-
son embeddings, let us consider the physical interpretation of reducing an ob-
servable algebra as a reduced sensitivity of the measurements in a classical
system: An element f of the observable algebra corresponds to the operation of
a measurement on the system, i.e. given the state of the system which is given
by a distribution d on phase space, then the expectation value d(f) =

∫
Γ
µdf

represents the expectation value of the outcome of our measurement. The pull-
back under a Poisson embedding is then the restriction of the sensitivity of our
measurement.
Mathematically, we say that our reduced observables are those that are insen-
sitive to precisely those observables, that vanish at the embedded phase space.
Using this point of view lets us generalize the reduction problem to quantum
systems. The general strategy to ”quantize a statement” is to formulate the
statement for a Poisson system, i.e. stating it as a problem on the algebra of
observables and to reformulate this statement in such a way that the commu-
tativity of the observable algebra becomes irrelevant.
With our classical preparations, we have already stated the problem in terms
of the observable algebra, and we want to construct the quantum analogue of
the pull-back under a Poisson embedding. The problem with this statement is
however that the ”phase space of quantum mechanics is noncommutative”, i.e.
it is not a topological space but rather a noncommutative algebra of observables,
which is thought of as the algebra of continuous functions on a noncommutative
phase space.
If we naively apply the Gel’fand-Naimark theorem we proceed as follows: A
commutative C∗-algebra is isomorphic to the algebra of continuous functions
on its spectrum, which is a locally compact Hausdorff space in the Gel’fand
topology. Thus we could conclude that we are looking for the pullback under
an embedding of spectra. This procedure is however flawed as we can see by
considering a rather simple example: Take the C∗-algebra of ordinary quan-
tum mechanics on any locally compact group, then by the Stone-von Neumann
theorem we know, that there is only one unitary equivalence class of regular
irreducible representations of this algebra, thus the spectrum consists of only
one point. This means that this quantum system is embeddable into any other
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C∗-algebra, particularly into C, which we view as a degenerate quantum sys-
tem, whose phase space consists of one point only. Moreover D2, the algebra
of diagonal 2 × 2-matrices, is ”larger” than any Heisenberg system. This is
in clear contradiction to the idea that embeddability defines a partial ordering
corresponding to the size of the associated classical phase space.
We have a much better understanding using the reduced sensitivity point of
view: We are able to define an ideal of observables that our measurements are
insensitive to such that the observable algebra of the reduced quantum system
arises as the quotient of the full observable algebra by this ideal. This would
allow to define the observable algebra, however other than in a classical the-
ory, where all pure states are evaluations at points in phase space, we need a
Hilbert-space representation for the observable algebra in addition to the alge-
bra itself, whose elements represent the pure states of the system. Furthermore,
we know that there are in general many inequivalent representations of a given
C∗-algebra. This shows that we can not separate the reduction of the observable
algebra from the reduction of its Hilbert space representation.
A strategy that we could follow to construct a reduced quantum algebra and its
Hilbert-space representation is to ”try to read the rules of quantization off”, then
to reduce the classical theory using the pull-back under a Poisson embedding
and then quantizing this system ”using the extracted rules for quantization”.
But, we will not be able to find the induced operator ordering for the reduced
system, hence using the argument of section 2.2 there are many inequivalent
ways of constructing a C∗-algebra and its Hilbert-space representation from a
given classical system, and it is in no way clear that using two sets of rules
that yield the same full quantum system yield equivalent quantum systems for
a reduced system.
Consequently, we do not want to ”reduce and quantize again”, but we want to
reduce a quantum system, i.e. given a triple (A, π,H), where A is a C∗-algebra
representing the quantum observables of a system and π is a representation of
this algebra as a subset of the bounded operators on a Hilbert-space H, we seek
the construction E of the reduced system (Ao, πo,Ho) directly from (A, π,H).
Let us now formalize the requirements of the quantum Poisson map Ei, corre-
sponding to a classical Poisson embedding i:
First, we want that the construction reproduces the right classical limit, i.e. we
want for the observable algebras that the following diagram commutes:

E
A −→ Ao

~→ 0 ↓ i∗ ↓ ~→ 0
C∞c (Γ) −→ C∞c (Γo).

(2.14)

Here Γ,Γo are the full and reduced phase space respectively, i denotes the em-
bedding of the reduced into the full phase space and A,Ao are the C∗-algebras
that represent the quantum observables of the associated quantum systems.
This diagram needs some explanation: We need to specify the way in which we
take the classical limit indicated by ~→ 0. Our notion of classical limit will be
fixed when we restrict ourselves to transformation group systems, i.e. classical
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systems in which we give a polarization, such that we are able to talk about a
configuration space and second by considering the group generated by the ex-
ponentiated Poisson action of the momenta. There is a simple correspondence
between the classical Poisson systems and the associated C∗-algebras, such that
taking the classical limit is an easy procedure.
Second, we want to construct the ”right Hilbert space representation”: Phys-
ically we want that the expectation values of our observables are matched by
corresponding expectation values in the full theory. We can reduce the number
of assumptions by noticing that any representation of a C∗-algebra arises as a di-
rect sum of cyclic representations out of vacuum states Ωi, where the summands
are of the kind 〈ψa, π(b)ψc〉i = Ωi(a∗bc). This allows us to restrict our attention
to vacuum expectation values, thus we demand that there is a dense subset D
in the reduced C∗-algebra and that there is a vacuum state ωi, corresponding to
Ωi, on the reduced quantum algebra such that a map E : D ⊂ Ao → A matches
vacuum expectation values:

ωi(a) = Ωi(E(a)) ∀a ∈ D. (2.15)

This condition ensures that expectation values of the reduced Hilbert space
representation is a subset of the expectation values in the full theory, as we
would expect it from being a subsystem.
Third, one would like to constrain the dynamics to coincide with the dynamics
of the full theory. Let us consider the corresponding classical situation: Given
a Poisson submanifold embedded into a larger Poisson manifold, it is generally
not the case that the Hamilton vector field of the full Hamiltonian will be
tangential to the submanifold. The situation for quantum theories is analogous:
Consider the von-Neumann equation for a density operator ρ, which reads using
the correspondence map E :

i∂tE(ρ) = [H, E(ρ)], (2.16)

which implies that if H contains ”mixing matrix elements” one obtains a dy-
namics that moves away from the image of E . This forces us to use the reduced
sensitivity interpretation, which tells us that our measurements are insensitive
to an ideal of observables, and that our dynamics has to be corrected by build-
ing the quotient. Since the ultimate goal of this work is the extraction of a
sector from Quantum Gravity, which is a theory with constrained dynamics, we
will not discuss details about dynamics but rather focus on the imposition of
constraints.
Our strategy to construct a quantum Poisson embedding will be as follows:
We will restrict our attention to Lie-transformation group systems and use
groupoids as the linking structure between classical and quantum systems. Lie-
transformation groupoids are very useful for this purpose, because they are
on the one hand classical spaces, which we are able to treat with methods of
topology, but on the other hand, one can define a noncommutative algebra of
functions on a groupoid using the convolution product, which is precisely the
product of the corresponding quantum algebra. Another feature of groupoids
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is that they act on spaces in a way very similar to the representation of a
C∗-algebra on a Hilbert-space. This allows one to use Morita theory, i.e. the
theory of categories of isomorphism classes of representations of groupoids. It
turns out that Morita theory for groupoids with Haar measures induces the
Morita theory for the corresponding groupoid C∗-algebras. Thus we use the
structure of a groupoid as a commutative space on the one hand, which allows
us to construct embeddings, and constructions similar to Morita theory on the
other hand to construct an equivalent notion of embedding, such that it can be
applied to C∗-algebras. The resulting procedure will be the noncommutative
version of constructing an embedding by embedding a vector bundle over the
reduced phase space into a larger vector bundle over the unreduced phase space
and recovering the phase space embedding using the bundle projection of the
embedded subbundle in the full vector bundle. This procedure is developed in
chapter 4 and applied to extract a cosmological sector from LQG in chapter 5.
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Chapter 3

Physical Diffeomorphisms
in Loop Quantum Gravity

General Relativity is a theory of the dynamics of geometry and as such invariant
under diffeomorphisms which are physically nothing else than gauge transfor-
mations in the sense of Dirac. The quantum theory should thus implement
the diffeomorphisms as unitary transformations. The configuration space of the
quantum theory (i.e. the spectrum of the configuration observable algebra) is
however a distributional extension of the classical configuration space, so one
needs to carefully extend the action of the diffeomorphisms to the quantum
theory. Dirac’s procedure of postponing the imposition of gauge invariance un-
til after quantization is expected to yield a quantization of the gauge orbits of
the classical theory. We show in this section however that one has to use an
extension of the diffeomorphism group for this expectation to hold. This result
is important for the course of this thesis, because the precise ”size” of the gauge
group is very important for the cosntruction of the quantum reduction.

3.1 Explanation of the Problem

Quantization of a classical Hamiltonian system requires a system of real ”ele-
mentary” variables that separate points in classical phase space, which is closed
under taking Poisson brackets, so the elementary variables form a Lie-algebra
under the Poisson bracket. Quantization is then the procedure of embedding
this Lie-algebra into an associative algebra, such that the Poisson-bracket is
mapped to i~ times the commutator and finding an involution such that the
elementary variables are self-adjoint.

The elementary Poisson variables that underlie the Loop Quantization Pro-
gramme of diffeomorphism invariant gauge theories are holonomies of the con-
nection and fluxes through the conjugated electric field, which seenm to form a
closed Poisson system at first sight. Upon closer inspection however, one discov-
ers that the Poisson bracket of smooth cylindrical functions, which by definition
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depend only on a finite number of holonomies, with an arbitrary flux can not be
expressed as a cyindrical function anymore, because the graph underlying the
cylindrical function may intersect the surface an infinite number of times, thus
resulting in a function that depends on an infinite number of holonomies, which
can in general not be reexpressed as a function of a finite number of holonomies.

A simple resolution for this problem is to restrict oneself to analytic edges and
analytic surfaces, because an analytic edge that intersects an analytic surface an
infinite number of times has to lay inside the surface and is hence not affected
by the Poisson action of the flux-variable on this surface, so cylindrical functions
defined as functions of finitely many holonomies along piecewise analytic paths
and fluxes through piecewise analytic surfaces define a closed Poisson system of
variables that separates the points in the classical phase space.

Dirac quantization of a constrained theory requires a unitary representation
of the group of gauge transformations generated by the constraints, which in the
case of Loop Quantum Gravity amounts to an implementation of the ordinary
gauge transformations generated by the Gauss-constraint, the diffeomorphisms
generated by the vector constraint and transformations generated by the scalar
constraint. Using the group averaging procedure to solve the diffeomorphism
constraint leads to the problem that the category of piecewise analytic paths
is not left invariant by general C2-diffeomorphisms, so we need to restrict the
group of classical gauge transformations to the subgroup that contains only
piecewise analytically invertible piecewise analytic diffeomorphisms.

Using this group, in fact using any subgroup of the classical diffeomrophisms,
and solving the diffeomorphism constraint by group averaging yields a nonsep-
arable Hilbert space, due to the existence of cylindrical functions depending on
graphs with arbitrarily valent vertices, so the orbits of diffeomorphisms, which
by definition can only act as linear transformations on the tangent space at a
point, are labeled by continuous moduli built from GL(3)-invariants constructed
from the tengent vectors adjacent to a vertex1.

Desiring a separable diffeomorphism-invariant Hilbert space for Loop Quan-
tum Gravity2, Fairbairn and Rovelli [26] observed that a seemingly harmless ex-
tension of the diffeomorphism group yields a separable diffeomorphism-invariant
Hilbert space, while allowing for a well defined version of quantum geometry
thereon. It is the purpose of this chapter to provide a framework that gives
on the one hand a physical reason for this extension and on the other hand to
address the issue of a closed system of elementary Poisson variables.

We first give a ”quick fix” for the problem by constructing the desired sub-
groupoid of the double-groupoid of piecewise analytic graphs whose induced
action on cylindrical functions on piecewise analytic graphs yields precisely the

1Notice that diffeomorphism covariance forces one to allow for cylindrical functions with
vertices of arbitrary valence: Given a cylindrical function Cγ depending on closed loops only
(so there are no true vertices in the underlaying graph γ), one can pick an arbitrary point
in γ and one will find an infinite number of diffeomorphism φi that fixes this point, but acts
nontrivially on all other points. Then Cγ +

∑N
i=1 Cφi(γ) will in general have at least one

2N -valent vertex.
2One point made by many critics of Loop Quantum Gravity has been the fact that Loop

Quantum Gravity was defined on a non-separable Hilbert space.
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Fairbairn-Rovelli diffeomorphism orbits of the respective cylindrical function on
a piecewise analytic graph. We present then a physical reason, why precisely
this set of transformations should be implemented in the quantum theory. The
underlying idea is that the gauge-invariant Hilbert space, that is constructed
as a GNS-representation of a configuration algebra (cylindrical functions) us-
ing a faithful gauge-invariant Schrödinger type state should be a completion
of the gauge-orbits of the associated classical configuration algebra. The Pois-
son bracket of classical Ashtekar General Relativity does however not support
holonomies of the connection, but only three-dimensionally smeared variables.
Holonomies on the other hand arise as distributional extensions of the classical
connection variables. We therefore consider one-parameter families of classical
connection variables that approximate a holonomy when the parameter goes to
zero. Applying the orbit argument to this setting means that the diffeomorphism
invariant Hilbert space should consist of a completion of the diffeomorphisms
of orbits of the one-parameter families of classical observables that approximate
the respective cylindrical function. This provides a notion of completeness of
the group of quantum gauge transformations, which we impose on Loop Quan-
tum Gravity. It turns out that the completely diffeomorphism-invariant Hilbert
space of Loop Quantum Gravity is precisely the Hilbert space that we con-
structed using the groupoid approach.

3.1.1 Problem of the Fairbairn-Rovelli Construction

Fairbairn and Rovelli consider an arbitrary smoothness class for the edges of
a graph, somewhere between C1 and Cω without specifying it, because the
smoothness class in their paper is assumed to be the same as the one considered
for the field configurations in the classical theory. Moreover, they assume that
for each vertex v in a chart there is a coordinate length ro in this chart such
that each edge penetrated the coordinate sphere S(r, v) of radius r < ro around
v exactly once. We will prove that this assumption fails for C1, ..., C∞-edges by
constructing a C∞ counterexample in this section.

Consider the three curves e1, e2, e3 intersecting only at the vertex v =
(0, 0, 0)T , which are parameterized by:

e1(t) =

 t
0
0

 ,

e2(t) = exp(−t−2)

 t
sin( 1

t )
cos( 1

t )

 ,

e3(t) = exp(−t−2)

 t+ 1
5t

sin( 1
t ) + sin(1/5t)

5

cos( 1
t ) + cos(1/5t)

5

 .

(3.1)

e1 is a coordinate line, e2 is a coordinate spiral, that winds finer and finer
around e1, such that it winds infinitely often around e1 as t → 0 and e3 is
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a spiral winding finer and finer around e2 such that it winds infinitely often
around e2 as t→ 0. All three curves are however C∞ on t ∈ [0, 1], but e3 has an
accumulation point of fold-backs at the vertex v, thus violating the Fairbairn-
Rovelli assumption. We conclude:

Lemma 1 The Fairbairn-Rovelli assumptions are inconsistent.

3.2 Groupoid Approach to the Diffeomorphism
Group

The action of a continuously invertible homeomorphism φ : Σ → Σ on a cylin-
drical function Cylγ depending on a graph γ is U∗φCylγUφ = Cylφ(γ). Using
the notion of an ordered graph γ, which is a set of oriented edges with a linear
order among them, we can investigate the action of any subgroup of the homeo-
morphism group by its action on ordered graphs, i.e. we consider φ : γ → φ(γ).

Let us for this purpose denote the set of all ordered graphs by Γ and the
double groupoid Γ×Γ by D(Γ). The elements (γ, γ′) of D(Γ) are pairs of ordered
graphs, the source map is s(γ, γ′) = γ while the range map is r(γ, γ′) = γ′ and
the object inclusion map is e(γ) = (γ, γ) together with the composition law
(γ, γo) ◦ (γo, γ′) = (γ, γ′). This groupoid acts on Γ with the moment map
µ(γ) = γ and the action (γ, γ′) . γ′ = γ.

Each pair of an ordered graph γ and a homeomorphism φ defines an element
of D(Γ) by pairing (γ, φ(γ)).

Definition 1 Given a subgroup G of the homeomorphism group, we denote the
smallest subgroupoid of D(Γ) that contains {(γ, φ(γ)) : γ ∈ Γ, φ ∈ G} by DG(Γ).

Lemma 2 The orbits of the groupoid action of DG(Γ) in Γ are isomorphic to
orbits of the group action of G in Γ.

proof: If γo is in the G-orbit of γ, then there exists a homeomorphism φ ∈ G such
that γo = φ(γ) and hence (γo, γ) ∈ DG(Γ). Since the inverse φ−1 of a homeo-
morphism φ induces the existence of (φ(γ), φ−1(φ(γ))) = (φ(γ), γ) = (γ, φ(γ))−1

and the groupoid composition (γ, φo(γ)) ◦ (φo(γ), φ(φo(γ))) = (γ, φ(φo(γ))) re-
duces to the composition law for homeomorphisms, we see that DG(Γ) contains
precisely the elements {(γ, φ(γ)) : γ ∈ Γ, φ ∈ G}. �

Using the induced action of DG(Γ) on cylindrical functions by the moment
map µ(Cylγ) = γ and action (γo, γ) . Cylγ = Cylγo , we see:

Corollary 1 The G-orbit of a cylindrical function coincides with the DG(Γ)-
orbit for any subgroup G of the homeomorphism group.

Given any ordered graph γ and any subgroup G of the homeomorphisms, we
use the notion Gγ for the subgroup of G whose action on γ coincides with a
permutation of the edges of γ and we denote the subgroup of G that acts trivially
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on γ by TGγ . Then the group of graph symmetries of γ is SGγ := Gγ/TGγ .
This allows us to define a projection map Pγ through

Pγ Cylγ :=
1

|SGγ |
∑

φ∈SGγ

Cylφ(γ),

because the action of SGγ on Cylγ is independent of the representative in G.
The G analogue of the antilinear rigging map η used to construct the dif-

feomrophism invariant Hilbert space of Loop Quantum Gravity is

η[Cylγ ] : Cyl′γ′ 7→
∑

φ∈G/Gγ

〈φ . PγCylγ , Cyl′γ′〉,

which is also well defined, because the action of G/Gγ on PγCylγ is again
independent of the representative.

This rigging map can be formulated using the respective groupoids only: Let
SGγ be the groupoid whose object set consists of all ordered graphs that have
the same edge set as γ and whose morphisms are the permutations of edges,
acting on cylindrical functions with graph γ by permuting the arguments. Then
PγCylγ := 1

|SGγ |
∑
φ∈SGγ Cylφ(γ). Let DG denote the smallest subgroupoid

of the double groupoid of unordered graphs that contains all {(γ, φ(γ)) : φ ∈
G, γ = unordered graph}, then η[Cylγ ] : Cyl′γ′ 7→

∑
φ∈DG〈φ . PγCylγ , Cyl′γ′〉,

where the action of DG on Γ needs the definition of a linear ”standard” order
for every graph (which exists by the axiom of choice). Given any ordered graph
γ one needs to use an element g ∈ SGγ to order γ to obtain the standard
order. The action of the unordered graph groupoid is then defined by mapping
a standard ordered graph to a standard ordered graph and subsequently acting
on the resulting graph with g−1.

Having the rigging map and thus the construction of the diffeomorphism-
invariant Hilbert space cast using groupoids only, we have an immediate solution
for the problem of reconciling the use of the piecewise analytic category of edges
with the desire for a separable diffeomorphism invariant Hilbert space through
defining the optimal diffeomorphism groupoid:

Definition 2 The optimal diffeomorphism groupoid consists of the small-
est subgroupoid of D(Γ) that contains all pairs (γ, γ′) of piecewise analytic graphs
that can be mapped onto each other by a homeomorphism.

Using the optimal diffeomorphism groupoid, we see that the η-image of the spin
network function SNFγ on the graph γ depends only on the knot class of γ,
implying:

Lemma 3 The optimal diffeomorphism-invariant Hilbert-space of Loop Quan-
tum Gravity is separable.

proof: Density of the spin network functions in the kinematic Hilbert space of
Loop Quantum Gravity allows us to find a dense set in the optimal diffeomor-
phism invariant Hilbert space by applying the rigging map η using the optimal
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difeomorphism groupoid. The η-image of a spin network function depends only
on the knot-class of the underlying graph which is a countable set as well as the
spin labels, so the η-image of the spin network functions is countable as well. �

Notice that the cylindrical functions on piecewise analytic graphs separate
the points in configuration space, and that any two lie in the same classical
diffeomorphism orbit if and only if the there exists a C2-diffeomorphism φ and
hence a groupoid element (γ, φ(γ)) that relates the underlying graphs. This
allows us to factor all classical C2-diffeomorphisms out, even when we are work-
ing in the piecewise analytic category. Thus using the groupoid method we can
extend the classical group of diffeomorphisms without having to restrict it first
to the piecewise analytic category.

Let us now prove that the optimal diffeomorphism groupoid and the complete
quantum extension of the diffeomorphism group yield identical rigged Hilbert
spaces.

3.3 Quantum Completion of a Group of Gauge
Transformations

Let us take a step back and consider the quantization of a classical field the-
ory defined as a Hamiltonian system (Γ, {., .}, H, {χi}i∈I) on a phase space
Γ = T ∗(C), which is the cotangent bundle over a configuration space C, with
canonical Poisson bracket {., .}, Hamiltonian H : Γ → R and a set of con-
straints {χi}i∈I . The configuration space is often chosen to be some category
of field configurations, where the precise choice is due to mathematical conve-
nience but usually not motivated by physical considerations. The elements of
C turn out to be morphisms from a groupoid to a group under rather general
circumstances: Given a scalar field theory one can consider the group of modes
(with addition as composition), so each field configuration φ gives a morphism
φ : m 7→

∫
d3xm(x)φ(x). Let us furthermore assume that the constraints are at

most linear in the momenta, so their action closes on the configuration space.
The quantum theory requires a Hilbert space representation of the com-

mutative algebra of configuration variables, which is usually constructed as an
algebra of cylindrical functions of groupoid morphisms. The quantum configu-
ration space X is the spectrum of the C∗-completion of the algebra of cylindrical
functions. This completion generally enlarges the configuration space C to X,
because although each element of C defines an element of the spectrum of the
quantum configuration algebra by the evaluation functor, there are elements in
X that can only be written as a distributional field configuration. The topol-
ogy of X is given as the Gel’fand topology for the spectrum of the configuration
algebra. It is natural to implement the gauge transformations that act as homeo-
morphisms on C as quantum gauge transformations that act as homeomorphisms
on X.

This quantum enlargement C → X however has an important consequence
for the representation of the group T of gauge transformations: Let q : C → X be
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the appropriate embedding of the classical configuration space into the quantum
configuration space, which is assumed to be dense in the Gel’fand topology, since
C(X) is a C∗-completion of the classical configuration algebra C. Notice that the
action of the gauge group is so far only defined on q(C) ⊂ X, so the question we
have to consider here is how to extend the action of the gauge transformations
to all of X. There is however a deeper problem concerned with the quantum
gauge transformations:

Following the Dirac procedure we postponed the construction of gauge-
invariant so called Dirac observables to the quantum theory, due to technical
obstructions that inhibited us to achieve this implementation at the classical
level, which would have left us with the gauge-invariant classical configuration
space Cinv. The implementation of the gauge group is thus only a step in con-
structing the quantum completion Xinv of Cinv. A gauge-invariant classical
observable is a function f : C → R, such that

f(x) = f(τx)∀x ∈ C, τ ∈ T ,

so classical gauge-invariant observables f : Cinv → R are functions that are
constant on the gauge orbits Ox := {τx : τ ∈ T }. This means in turn that we
are interested in the quantum completion of the space Cinv of gauge orbits Ox.
To achieve this, we have to construct a group of quantum gauge transformations
Tq with action on X, such that X/Tq is a cylindrical completion of Cinv.

Let us now consider a Schrödinger type state on the quantum configuration
algebra C(X) given by ω(f) :=

∫
X dµ(x)f(x), and thus a Hilbert-space repre-

sentation of C(X) on H := L2(X, dµ) as multiplication operators. It will be our
strategy to solve for the gauge-invariant Hilbert space using the group-averaging
procedure. Since the Hilbert-space H is a completion of C(X), we can state the
requirement for Tq for H and require that the gauge transformations equivalence
vectors of H that can be obtained as limits of a gauge-equivalent sequences of
elements of the classical configuration algebra. Formally we define for a unitary
representation U of Tq on H (which assume to be implemented as the pull-back
under an isometry of µ) the notion of an incompleteness:

Definition 3 An incompleteness is a pair of elements h1, h2 ∈ H that are the
limits of two sequences, which are element-wise gauge-equivalent (at the classical
level), for which there is no element τ ∈ T such that h1 = U(τ)h2.

We then require that the group Tq of quantum gauge transformations contains
enough gauge transformations such that there is no incompleteness left.

To put our requirement into a picture, let us consider any pair v1
n, v

2
n of

sequences, whose limits (for n → ∞) are the Hilbert space elements v1 and
v2 respectively and assume that for every n ∈ N there exists a classical gauge
transformation τ ∈ T (the upper line in the diagram), then the requirement
implies the existence of an element τq that relates the limits (the lower line in
the diagram), meaning that the following diagram commutes:

τn : v1
n → v2

n

n→∞ ↓ ↓
τq : v1 → v2.

(3.2)
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We call the sequences in 3.2 regularizations of their respective limits.
This picture may be misleadingly interpreted as defining an equivalence re-

lation, but this is not the case, since there may be sequences relating v1 and
v2 as well as v2 and v3, but since these sequences may be different, it is not
implied that v1 and v3 must be related. To obtain an equivalence relation, we
can proceed as follows: Let B be a Hilbert-basis for H and consider the smallest
subgroupoid of the double groupoid D(B) that contains any pair of elements of
B that is related by a regularization 3.2. In terms of groups, we define:

Definition 4 A group Tq (containing all τq) is complete, whenever there ex-
ists a regularization such that 3.2 commutes.

Since we developed our notion of completeness purely on the physical principle
that the Dirac procedure of solving the constraints at the quantum level should
commute with quantizing the gauge invariant Dirac observables, we have a found
a physical requirement that can be applied to diffeomorphisms in Loop Quantum
Gravity, which satisfy the technical assumptions made above.

3.4 Regularized Cylindrical Functions

Let us construct a regularization for cylindrical functions by giving a one-
parameter family of classical functions, which for each classical field configu-
rations converge to the respective cylindrical function for ε → 0. The regular-
ization sequences are then obtained by taking e.g. εn = 1

n .

3.4.1 Regularized Holonomies

The cylindrical functions used to construct Loop Quantum Gravity are functions
of a finite number of holonomies along piecewise analytic curves, which are dis-
tributional functionals of the Ashtekar connection and are as such not supported
by the classical Poisson bracket. To find an expression for the classical Pois-
son bracket involving a holonomy h(e) = Pt{exp(

∫ 1

0
dtėa(t)Aia(e(t))τ i)}, where

Pt denotes path-ordering, e an analytic curve, A the pull-back of the Ashtekar
connection to Σ and τ i i

2 times the Pauli-matrices, one has to consider the
regularized expression:

hεe(A) := Pt

{
exp

(∫ 1

0

dt

∫
reg(e)

δε0(σ)δεt (s)ṗ
a(s, σ)Aia(p(s, σ))τi

)}
, (3.3)

where p(s, σ) denotes a smooth 2-parameter family of mutually non-intersecting
path, that coincide with e for σ = (0, 0) and the expressions δε. denote one- resp.
two-dimensional regularizations of the Dirac delta. The regularized region of
integration is assumed to be open and centered around e: Let us give a precise
definition thereof:

Definition 5 Let e be an edge, then a continuous one-parameter family of open
sets σεe is called a regulator of e, if:
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1. ∂e is in ∂σεe for all ε > 0

2. the interior of e is inside σεe for all ε > 0

3. for all x outside e there exists t > 0, such that x is outside σεe for all ε < t.

• Let σεe be a regulator of e, then a continuous one-parameter family iε(σεe) is
an internal approximation of e, if:

1. for all ε > 0: ∂iε(σ) ∪ iε(σ) is a subset of σεe

2. for all x in the interior of e there exists t > 0 such that x ∈ iε(σ) for all
ε < t.

• A regularization of an edge is a pair (σεe, iε(σ)) consisting of a regulator σεe
of e and an internal approximation i(σ) of σ.

We will now suppose that the region of integration in equation 3.3 is regε :=
iε(σεe) for some regularization of e and that the occurring regularized delta
functions vanish at the boundary of regε.

Let us now verify that equation 3.3 really converges to the holonomy for
every classical connection A. The pull-back to Σ of a classical connection is
a smooth function and hence continuous. Thus, using the standard argument
that for any continuous function f that is averaged over an open ball of radius r
around xo converges to f(xo) gives the approximation property for any classical
connection. (See figure 3.1 for an illustration of a regularization.) Notice that
our definition of a regularization is background independent.

3.4.2 Regularized Cylindrical Functions

In the previous section we gave a prescription for regulating a holonomy; the fun-
damental configuration variables of Loop Quantum Gravity are however cylin-
drical functions depending on the holonomies on a graph, so we need a regu-
larization for cylindrical functions that depend on a minimal graph γ, which
consists of a compatible regularization of all the edges in γ. The regularized
cylindrical function then depends on the regularized holonomies (equ. 3.3),
where the regions rege satisfy the compatibility that we construct in this sec-
tion.

A graph γ = (E, V ) consisting of a set E of edges and a set V of vertices,
which satisfy ∀e ∈ E : x ∈ ∂e ⇔ x ∈ V and ei ∩ ej ⊂ ∂ei. The cylindrical
functions depend on the connection through the holonomies, which are inde-
pendent degrees of freedom, so we want that the regularization of a graph is
a regularization of each edge, such that two different edges test the connection
in two disjoint regions for every ε > 0. To be able to approximate the entire
graph however, one needs that the vertices are elements of the boundaries of
the regulators σεe of the adjacent edges e. This leads us to the definition for a
regularization of a graph:

Definition 6 A regularization of a graph (E, V ) is a set (R, V ), where for
each edge e ∈ E there is a regularization i(σe), such that ∀ε > 0:
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Figure 3.1: Regularization of an edge: the first line depicts an unregularized
edge, the second line depicts the regularization of an edge with say ε = 1 and
the last line depicts the regularization with ε < 1. The grey region denotes iε(σ)
and can be seen to spread out over the entire edge towards the boundary points,
while at the same time shrinking down to the edge.

1. for each vertex v ∈ V and all adjacent edges e(v): v ∈ ∂σe

2. for any two non-parallel edges e1, e2, the intersection (∂σe1∪σe1)∩(∂σe2∪
σe2) contains either one or two common vertices or is empty.

3. for each v ∈ V there is a vertex regularization vε consisting of an approx-
imation of v by a one-parameter family of open sets

4. for a set of edges intersecting parallel at a vertex v there exists a vertex
regularization vε, is such that the σe of the parallel edges intersect just
inside vε.

5. the σεe ∩ σεe′ = ∂σεe ∩ ∂σεe′ for any two edges e, e′

6. for 1 > ε > 0 blurred graph3 obtained by the union of vε, σεe has the same
iso-knot class as γ

Lemma 4 Given a graph γ = (E, V ) in a manifold, there exists a regularization
γr = (R, V ).

3There is an intuitive picture for the construction of the iso-knot class of a blurred graph:
(1) For each vertex regularization, fix a point x therein; (2) For each edge regularization span
an infinitely thin rubber from the x in the initial vertex regulatization to the x in the final
vertex regularization being able to move only within the union of the vertex-regularization
and the edge regularization. Letting all rubber bands relax defines a graph whose iso-knot
defines the iso-knot class of the blurred graph.
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Figure 3.2: Regularization of a graph consisting of two edges: Here we depict
the problematic situation, where two edges E1, E2 arrive with the same tangent
vector at the vertex V . However, due to analyticity, there is no finite region,
where E1 and E2 coincide. In this case, we allow, that the boundaries of the
regions σEi partially coincide inside a regularization of the vertex (from K to
V ), which is indicated by the thin lined circle around the vertex V

proof: The requirements for a regularization can be fulfilled in R3. Since they
are local requirements, one can fulfill them chart by chart and patch them
together. �
Now, the obvious definition for a regularized cylindrical function is:

Definition 7 Given a cylindrical function a representative f ◦ h(γ), we call
f ◦ hr(γr) a regularization of a cylindrical function, iff hr is the expression of a
regularized holonomy and γr is a regularization of γ.

(See figure )
Notice, that our definition of a regularized cylindrical function does not

imply a particular regularization, but leaves way to take any representative
of the equivalence class of regularizations, that result in the same cylindrical
function in the limit ε→ 0.

Notice that this definition of a regularized graph is diffeomorphism covariant,
which means that if γ can be mapped onto γ′ by a diffeomorphism φ, then
φ(R, V ) is a regularization of γ′.
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3.4.3 Nicely Stratified Diffeomorphisms

Let us consider the regularizations for a given cylindrical function depending on
a graph γ and investigate its transformation properties under a special class of
γ-nicely stratified diffeomorphisms. These are defined as follows:

Definition 8 A stratification M in the d-dimensional manifold in which γ is
embedded into is called γ-nice, iff

1. the interior of each edge is completely contained in a 3-dimensional stra-
tum

2. all of γ (including the vertices) lies in the stratification (i.e. the vertices
are allowed to lie in less than d-dimensional strata).

• A graph γ′ is a decomposition of a graph γ, if the set of points contained in
γ and γ′ coincide and each edge of γ is equal to the composition of one or more
edges of γ′.

It follows immediately:

Corollary 2 There exists a minimal subgroupoid of D(Γ) that contains all pairs
of graphs (γ1, γ2) for which there is a pair of decompositions γ′1, γ

′
2 and a γ′1-

nicely stratified analytic diffeomorphism φ mapping γ′1 onto γ′2.

Let us now consider the construction of a particular set of γ-nice stratifications
that we want to use in this chapter:

Construction 1 Given an analytic graph γ, let us label its edges e1, ..., en.
Given a atlas A of Σ, let us label its charts C1, ..., Ck = (U1, φ1), ..., (Uk, φk).

1. For an edge ei denote Cj(ei) := {Cn : 0 < n < j and ei ∩ Cnnonempty}.
Then for each ei there exists a smallest ji such that Cji covers ei. We
denote A(ei) := Cji(ei).

2. There exists an analytic coordinate function φij for each edge ei and each
chart Cj ∈ A(ei), such that φ−1

ij (ei|Cj ) = {(0, 0, t) : 0 < t < 1} due to the
analyticity of ei and A.

3. For each vertex vm there exists take the smallest n, such that Cn =
(Un, φn) ∈ A contains a neighborhood of vm and fix a ∆m > 0 such
that the open coordinate ball (in the chart Cn) B(vm,∆m) contains only
adjacent edges and no other vertices.

4. Due to analyticity of γ, there exist 0 < δm < ∆m for each vertex vm, such
that the coordinate sphere S(vm, r) is penetrated by each adjacent edge
exactly once for all 0 < r < δm.

5. (For illustration only:) For each vertex vm and each adjacent edge ei
denote the Voronoi-region of points inside B(vm, δm) \ {vm} that are clos-
est of the edge ei (in the coordinate system given by the chart Cn) by
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Vmi. Denote the connected components of the two-dimensional surfaces
of points that have equal Cn-coordinate distance to the edges ei and ej
by {Skmij}ak=1. Denote the one-dimensional curves that have equal Cm
coordinate distance to ei1 , ..., ein by Lmi1...in . By choosing a suitable co-
ordinate function, one can achieve that these curves are equidistant to
precisely three edges ei, ej , ek, so without loss of generality we can label
the equidistant lines by Lmijk.

6. (For illustration only:) Due to the analyticity of the edges adjacent to
vm, one can find δm > εm > 0 such that the restriction of each Skmij to
B(vn, ε) \ {vm} contains vm as a boundary point and that the restriction
S̃kmij of Skmij to B(vn, ε)\{vm} is either diffeomorphic to a punctured disk
or a triangle. Denote the intersection point of Lmijk with the coordinate
sphere S(vm, ε) by Mmijk.

7. It is the purpose of the S̃kmij to separate the edges ei and ej in a small
neighborhood of vm. Let us now construct analytic surfaces that achieve
the same: For each ei, ej adjacent to vm with i < j we construct a coordi-
nate function φmij such that ei(t) = φmij(0, 0, t) and ej(t) = φmij(0, c(t),±t)
for some analytic function c(t). One can choose triangular subsets of the
surfaces S1

mij = {φ−1
mij(a, a, t) : a, t ∈ R} and S2

mij = {φ−1
mij(a,−a, t) :

a, t ∈ R} as well as the two surfaces S3
mij = {φ−1

mij(a,± 1
2c(t), t) : a, t ∈ R}

and S4
mij = {φ−1

mij(a,±2c(t), t) : a, t ∈ R}, so both ei and ej are separated
by the boundaries of coordinate pyramids. Denote these triangular subsets
of the surfaces collectively by S′.

8. Let us start with ei for which the label i is minimal: There is a subset
of the set of all surfaces S′ such that ei is separated from all other edges
by choosing subsets of the surfaces S′. Denote this set of subsets of the
surfaces S′ by Si and the neighborhood ei∩B(vm, ε)\{vm} that is bounded
by Si by Ni. Notice that Ni does not contain the interior of any other edge.

9. Proceed with the edge ej with next higher label j: There is a subset of the
set of all surfaces S′ such that ej is separated from all other edges and
the region Ni by choosing subsets of the surfaces S′. Denote this set of
subsets of the surfaces S′ by Sj and the neighborhood ej ∩B(vm, ε) \ {vm}
that is bounded by Sj by Nj. Notice that Ni does not contain the interior
of any other edge or the region Ni. Repeat this step analogously for all
k > j until the edge with the highest label is reached. This constructs sets
Sk, Nk for each adjacent edge ek, which are mutually disjoint.

10. For each adjacent edge ei choose an analytic coordinate function φmi,
such that ei(t) = (0, 0, t). The surface pieces sil in Si have the form
sil = {(a(t, c), b(t, c), t) : (t, c) ∈ Uil ⊂ R2}. Consider the surfaces s′il =
{( 1

2a(t, c), 1
2b(t, c), t) : (t, c) ∈ Uil ⊂ R2} and collect their set as S ′i. There

exists an ε′i > 0 such that the surfaces S ′i separate the edge ei form all
other adjacent edges inside the ball B(vm, ε′i). The minimum of the ε′i is
denoted by ε′.
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11. The neighborhoods of ei∩B(vm, ε′) that are bounded by the S ′i are denoted
by Ri. The boundary lines of the surfaces in S′i are analytic because they
are intersection lines of analytic surfaces and we denote the set containing
these by Li. The set of boundary points of the Li shall be denoted by Pi.

This construction yields an analytic stratificationMm of the balls φ−1
m (B(vm, ε′))

around the vertex by taking the Ri, the S ′i, the Li, the Pi and the complement
of these in φ−1

m (B(vm, ε′)) and the partition of the sphere φ−1
m (S(vm), ε′) into an-

alytic surfaces Em and analytic lines Jm, that arises by partitioning this sphere,
into surfaces that are bounded by elements of the Li. Let us now construct an
adapted stratification of Σ\(∪mφ−1

m (B(vm, ε′))) Let us for this purpose consider
the restriction γo of graph γ to Σ \ (∪mφ−1

m (B(vm, ε′))), which is a graph that
is completely separated:

Construction 2 For each edge ei in γo there exists a narrow tubular region Ti
which are bounded by analytic boundary Bi surfaces in Σ \ (∪mφ−1

m (B(vm, ε′)))
together with elements of Li ∩ Jm and elements S ′i ∩ Em. The tubular regions
are supposed to be chosen narrow enough, so they do not mutually intersect.

Definition 9 The elements of the Mm and the Ti, Bi together with the com-
plement of all these sets in Σ define the adapted stratification Mγ .

Since the constructions 1 and 2 are entirely analytic:

Corollary 3 Mγ is an analytic stratification.

Construction 3 For each graph γ with graph γo(as used in construction 2),
there is a graph γ′ containing all the vertices of γ and γo and replacing each
edge ei ∈ γ with the three pieces e1

i , e
2
i ∈ γo and e3

i , such that ei = e1
i ◦ e2

i ◦ e3
i .

By construction we have: The stratificationMγ is γ′-nice and γ′ is a decompo-
sition of γ.

Corollary 4 For each graph γ there exists a decomposition γ′ and a γ′-nice
analytic stratification of Σ.

3.4.4 Adapted Regularization

Given a graph γ, we can reuse the constructions constructions 1 and 2 to furnish
a regularization of γ:

Construction 4 1. Assume that each edge in γ is contained in a single
chart, if not, then refine γ so each edge in the refinement is contained in
one chart.

2. Define the regulator σ1
e for each edge e as the composition of the two

regions Ri containing the initial and final part of e and the tubular region
Ti containing the middle part of e as well as the boundary surfaces of
between the Ri and Ti.
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3. Since e is contained in a single chart, we can choose a coordinate function
φi, such that e = {(0, 0, t) : 0 < t < 1} using cylindrical coordinates
(r, θ, t). The regulator takes the form σ1

e = {(a, b, t) : 0 ≤ a ≤ r(θ, t), 0 ≤
θ < 2π, 0 ≤ t ≤ 1}.

4. Define σεe = {(εa, b, t) : 0 ≤ a ≤ r(θ, t), 0 ≤ θ < 2π, 0 ≤ t ≤ 1} and
i′ε(σ

ε
e) := {(εa, b, t) : 0 ≤ a ≤ r(θ, t)(1− ε

3 ), 0 ≤ θ < 2π, ε3 ≤ t ≤ 1− ε
3}.

5. Using the coordinate balls φ−1
m (B(vm, ε′m)) of construction 1, we can define

vertex regulators vε := φ−1
m (B(vm, ε′mε)).

6. The σεe, iε(σ
ε
e) := i′ε(σ

ε
e) \ (∪mvεm) for each edge in γ together with the vε

for each vertex in γ define the regularization R(γ).

Since the σεe are mutually disjoint we have by construction:

Corollary 5 R(γ) is a regularization of γ.

Combining these constructions and observing that each stratum contains at
most the regulator of one edge, we see:

Corollary 6 For a graph γ there exists a decomposition γ′ of γ, a γ′-nice strat-
ification Mγ and a regularization R of γ′ such that each stratum contains at
most the regulator of one edge.

3.4.5 Action of Nicely Stratified Analytic Diffeomorphisms

Let us now consider the action of diffeomorphisms on regularized cylindrical
functions fγ , fδ depending on minimal graphs γ, δ. For fγ and fδ and a reg-
ularization for γ, δ, we have physical requirements for calling these functions
diffeomorphism-equivalent: There exists a diffeomorphism φε for all ε > 0 such
that (1) the regularized dependence of fγ on the connection has to be mapped
onto the regularized dependence of fδ on the connection, so both functions have
the same dependence on the connection and (2) the regularization of each ver-
tex in γ has to be mapped onto a regularization of the corresponding vertex in
δ and the regions σεe outside the vertex regularizations of γ have to be mapped
onto the regions σεe outside the vertex regularizations of δ, so the limit ε → 0
can eventually be taken. This leads to the refinement of definition 3:

Definition 10 We call two graphs γ, δ physically diffeomorphic, if there
exists a regularization R(γ) of γ and for each 1 > εo > 0 there is a family of
diffeomorphisms φε : 1 > ε > εo such that there is a regularization R(δ) of δ
and for all 1 > ε > εo:

1. φε(iεe(γ)) = iεe(δ), for each internal approximation iεe(γ) ∈ R(γ)

2. φε(σεe \ ∪m(vεm(γ))) = σεe \ ∪m(vεm(δ)) for all regulators σεe ∈ R(γ) and all
vertex regularizations vε(γ) ∈ R(γ)

3. φε(vεm(γ)) = vε(δ) for all vertex regularizations vε(γ) ∈ R(γ).
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Given a graph γ, we have the adapted stratification M(γ). Let us denote by
N (γ) the stratification that is obtained from M(γ) by combining the stratifi-
cation of the vertex balls φ−1

m (B(vm, ε′m)) into a single 3-dimensional stratum
for each vertex. Using the vertex constructions of the previous sections, we are
able to show:

Lemma 5 Given a graph γ and the adapted stratification N (γ), which is γ′-
nice, and a let δ be the image of γ under an N (γ)-stratified analytic diffeomor-
phism, then γ and δ are physically diffeomorphic.

proof: Perform the construction 4 for γ to obtain a regularization R(γ), such
that each stratum contains at most the regularization of one edge. For any 1 >
ε > εo > 0, the regulators σεe are tubular regions containing tubular subregions
iε(σεe) contained in a single stratum each. The vertex regularizations vε are
balls around the vertices also contained in a single stratum each. Thus, the M
stratified analytic diffeomorphism acts on the regularization R(γ) by mapping
analytic tubes onto analytic tubes, analytic subtubes onto analytic subtubes
and analytic balls onto analytic balls without changing the topological relations
amongst these. Since for the regulated graph R(γ) with ε > 0, there are at most
three measurable tangent vectors at each point, because at most an analytic ball
touches an analytic tube, one can achieve this action also by a diffeomorphism.
�
This lemma does not help us to get rid of the complications associated to the
tangent space structure at the vertex, but the observation that the regulated
graph has at most three independent tangent vectors at each point hints:

Lemma 6 If two analytic graphs γ, δ are isomorphic as knots, then they are
physically equivalent.

proof: Because γ and δ are isomorphic as knots, there exists a homeomorphism
h that maps γ onto δ. The problematic points are only the vertices; in other
words: except for a small region around the vertices there is no obstruction for
a diffeomorphism to map an analytic graph onto a graph in the same iso-knot
class. The proof rests now on the observation that R(γ) is a regularization of
every graph γ′ and for εn > 0 as long as γ′ lies in R(γ), so taking a suitably
adapted diffeomorphism φ we can achieve φ−1(β) = γ′ for a suitable γ′ that is
regularized by R(γ) for ε > εo > 0. �

Let us now focus on the minimal extension of the analytic diffeomorphisms
to obtain a physical diffeomorphism group: As a preparation we need:

Lemma 7 Given a stratification M, a M-stratified analytic diffeomorphism φ
and an analytic graph γ, there exists a decomposition γ′ of γ, a γ′-nice stratifica-
tionM′ and aM′ stratified analytic diffeomorphism φ′ such that φ′(γ′) = φ(γ).

proof: Any edge e ∈ γ can be decomposed into a finite number of pieces {ei}ni=1

which are each contained in a single stratum due to analyticity of both e and the
strata inM and the local finiteness ofM; moreover one can refine this decompo-
sition, such that each ei is contained in a single chart. Compactness of the edges
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yields that this refinement is finite. Then γ′ contains the edges ∪e∈γ{ei}nei=1 and
vertices ∪e∈γ{∂ei}nei=1. Since each ei lies in a single chart we can use an analytic
local coordinate function φi such that ei = φ−1

i ({(0, 0, t) : 0 < t < 1}). For
every 0 < t < 1 let di(t) denote the coordinate distance in φi-coordinates of
φ−1(ei(t)) to the closest point in γ \ ei, which is a piecewise analytic function
with d(t) > 0 for all 0 < t < 1 due to analyticity of γ′. Denote the finite
number of points t at which di(t) is not analytic by {tij}Nj=1. Construct the
region Ri := φ−1

i ({(x, y, t) : x2 + y2 < di(t)/ai, 0 < t < 1}). ∂Ri can be decom-
posed into two zero-dimensional strata Zi1 = φ−1(0, 0, 0), Zi2 = φ−1(0, 0, 1), N
analytic one-dimensional strata Oij (the coordinate circles around φ−1(0, 0, tij)
with coordinate radius di/ai(tij) and N + 1 analytic two-dimensional strata Tik
for the rest. Due to analyticity of γ′, one can choose the ai such that these
strata do not mutually intersect for different edges in γ′. The stratification M′
contains the Zij , Oij , Tik and Ri for each edge in γ′ as well as the complement
of the union of all these sets in Σ. M′ is by construction γ′ nice. The action
of φ on each ei ∈ γ′ is analytic by construction, so for each ei there exists a co-
ordinate function ψi, such that φ(ei) = ψ−1

i ({(0, 0, t) : 0 < t < 1}). Since each
ei lies in a 3-dimensional stratum of M′, we can use the restriction of ψ−1

i ◦ φi
to Ri to patch an M′-stratified analytic diffeomorphism φ′ together such that
φ′(γ′) = φ(γ). �
Using this lemma, we can practically drop the attribute nice for stratifications
when talking about the action of stratified analytic diffeomorphisms on analytic
graphs. The proof of lemma 6 tells us in light of this that the complete diffeomor-
phism group contains an extension of the stratified analytic diffeomorphisms.
Let us give a precise definition of this extension and prove its validity:

Definition 11 Let {pi}Ni=1 be a finite set of points and let vεi be a vertex-
regularization of pi, such that the vεi do not mutually intersect for ε ≤ 1. Let
M be a stratification of Σ that contains the points pi as strata. Let 1 > δ > 0
and φδε be a family 1 > ε > δM stratified analytic diffeomorphism on Σ\ (∪iviε)
satisfying φε(x) = φδ(x) for all 1 > ε > δ > 0 and all x in Σ \ (∪iviδ). Then
a homeomorphism ψ is called an extended stratified analytic diffeomor-
phism if for any 1 > δ > 0 there exists a family φδε that coincides with ψ on
Σ \ (∪iviε).

Lemma 8 The complete diffeomorphism group for Loop Quantum Gravity con-
tains the extended stratified analytic diffeomorphisms.

proof: For the set {pi}Ni=1 and a graph γ there are two possibilities: (1) pi ∈ γ
then we decompose γ to γ′ such that pi is a vertex, (2) otherwise there will be
an ε > 0 such that vεi ∩ γ = ∅, so the action of the extension of ψ does not act
on γ. The proof is now given by observing that there is a regularization of γ′

such that the vεi are vertex regularizations. �

Lemma 9 If two analytic graphs γ, δ are isomorphic as knots, then there is an
extended stratified analytic diffeomorphism φ s.t. φ(γ) = δ.
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proof: Construct the adapted stratification M(γ) and regularization R(γ) as
described in the previous section. Using an adapted coordinate function φe s.t.
each edge e ∈ γ is e = φ−1

e {(0, 0, t) : 0 < t < 1} and φd for each edge d ∈ δ
analogously. The family φε is then constructed by patching the φ−1

d ◦φe together
and restricting them to the outside of the vertex regularizations. �

Corollary 7 Physical diffeomorphisms can not change the iso-knot class of a
graph.

proof: By definition, one can reconstruct the iso-knot class of a graph γ regu-
larized by Rε(γ) for any 1 > ε > 0. �

Putting these lemmata together and observing that an extended stratified
analytic diffeomorphism coincides is in particular a homeomorphism, so it can
not change the iso-knot class of a graph, we conclude:

Corollary 8 Two analytic graphs γ, δ are physically equivalent iff there is an
extended stratified analytic diffeomorphism φ with φ(γ) = δ.

3.5 Loop Quantum Diffeomorphism Groupoid

Since we are interested in the complete diffeomorphism orbits of analytic graphs,
we can use corollary 8 which tells us that we have to only consider extended
stratified analytic diffeomorphism for this purpose.

3.5.1 Definition of the System

Using corollary 8 we can define the complete diffeomorphism group for Loop
Quantum Gravity as the smallest group generated by the extended stratified
analytic diffeomorphisms. At the beginning of this chapter however, we intro-
duced a subgroupoid of the double groupoid D(Γ) of the set of all analytic
graphs Γ as a replacement for a specific diffeomorphism group. We are thus
able to define the complete diffeomorphism groupoid:

Definition 12 The smallest subgroupoid of D(Γ) that contains all pairs (γ, φ(γ)),
where γ is an analytic graph and φ is an extended stratified analytic diffeomor-
phism is the complete diffeomorphism groupoid of Loop Quantum Gravity.

Using corollary 8 and the recalling the definition of the optimal diffeomorphism
groupoid, we see

Corollary 9 The complete diffeomorphism groupoid coincides with the optimal
diffeomorphism groupoid.

The spin network functions are a Hilbert-basis for L2(X, dµAL). Using these,
we are able to construct a basis for the diffeomorphism invariant Hilbert space.
Using corollary 9 and applying lemma 3 yields:

Theorem 1 The diffeomorphism invariant Hilbert space of Loop Quantum Grav-
ity is separable.
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Chapter 4

Reduction of a Quantum
Observable Algebra

In this chapter, we will construct the framework for extracting cosmology from
full Loop Quantum Gravity, which we will apply in the next chapter. This
chapter is however more general and focuses on the observation that the extrac-
tion of a subsystem from a classical system is conveniently described through
the pullback under a Poisson embedding of a reduced classical system into the
phase space of a full classical system as described in section 2.1.3. A quantum
theory on the other hand is a noncommutative analogue of the classical phase
space, so the notion of extracting a subsystem translates roughly into the em-
bedding of noncommutative spaces. (Notice that the C-functor is contravariant,
so a noncommutative embedding acts as a pullback.)

We construct a general prescription for the quantization of embeddings of
integrable classical systems and then focus on transformation group systems,
which may not necessarily be Lie-algebroids. The observation behind this is that
an integral groupoid of an integrable Lie-algebroid may be constructed through
a groupoid induction module. This procedure is analoguous to the embedding
of a space through embedding a vector bundle over that space into a larger
vector bundle and then recovering the embedded space using the projection
in the larger vector bundle. This can be understood as follows: The quantum
description of a vector bundle is given by Hilbert-C∗-modules over a C∗-algebra,
which is the quantum analogue of a space. We will then provide a construction
of a ”sub”-module thereof that is compatible with the Hermitian structure and
use the Hermitian structure (which is in physicists terms an operator-valued
sesquilinear form) to construct a reduced C∗-algebra.

We keep this chapter largely self-contained, further details on representation
theory for C∗-algebras, Morita-equivalence and groupoids can be found in ap-
pendix A. For more details on the construction presented in this chapter, we
refer to [21], which evolved from this work.
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4.1 Reduction of Classical Systems

A quantum reduction should admit a classical limit in which it amounts to a
the reduction of classical systems. We will therefore review the reduction of
classical systems in this section focusing on Poisson systems, whose description
is very similar to the canonical description of quantum systems.

4.1.1 Classical Kinematics

Given a smooth manifold Γ used as phase space, one can define a Poisson struc-
ture {., .} : C∞(γ)×C∞(Γ)→ C∞(Γ) thereon as a bilinear, antisymmetric map
that satisfies Jacobi identity and defines through g 7→ {f, g} a (Hamiltonian)
vector field for each f ∈ C∞(Γ). For two Poisson manifolds (Γi, {., .}i)i=1,2, one
calls an immersion i : Γ1 → Γ2 a Poisson map (and Γ1 a Poisson submanifold)
if

{f ◦ i, g ◦ i}2 = {f, g} ◦ i. (4.1)

It follows that the Poisson structure {., .}1 of a Poisson submanifold is deter-
mined by the Poisson structure {., .}2 and that the Hamilton vector fields on Γ1

coincide with the push-forward on Γ2, implying the physical consequence that
the kinematics of the embedded system coincides with the kinematics of the full
system, yielding:

Definition 13 Classical reduction of a full system (Γ2, {., .}2) to a reduced sys-
tem (Γ1, {., .}1) is the pull-back under a a Poisson map.

There are however many physically uninteresting reductions, which for example
are the embedding of a configuration space into the full phase space without
embedding the respective momenta. To define the physically interesting Poisson
embeddings, it is useful to describe Poisson manifolds through Lie-algebroids.

4.1.2 Lie-algebroids

Lie-algebroids are the generalization of Lie-algebras in very much the same way
as groupoids generalize groups. They are dual to Poisson manifolds, so one can
describe a Poisson system through a Lie-algebroid:

Definition 14 A vecor bundle E over a manifold X together with a bracket
[., .]E on Γ∞(E) is called a Lie-algebroid iff there is a vector bundle morphism
ρ : E → T (X) satisfying Leibnitz rule for all r, s ∈ Γ∞(E) and f ∈ C∞(X):

[r, fs]E = f [r, s]E + (ρ(r) f)s,

where ρ(r) is the section ρ ◦ r in T (X) and ρ is called the anchor map.

The precise formulation of the duality is: Given a Lie-algebroid (E, [., .]E) over X
with anchor ρ then E∗ is a graded Poisson manifold with {Poln(E∗), Polm(E∗)} →
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Poln+m−1(E∗) with {., .} being determined through linearity, Leibnitz rule and
the relations

{π∗f, π∗g} = 0, {π∗f, I(r)} = π∗(ρ(r)f), {I(r), I(s)} = I([s, r]E),

where f, g ∈ C∞(X), r, s ∈ Γ∞(E) and I denotes the canonical graded morphism
between the symmetric tensor product on E and the polynomials of equal degree
on E∗.

This duality can be extended to Poisson maps: If φ is a Lie-algebroid mor-
phism1 then φ∗ is a Poisson-map on E∗. Not all Poisson maps are Lie-algebroid
morphisms, but only those that map the base space (or physically speaking
the configuration space) into the base space. Moreover, we are able to define
the physically interesting embeddings (called full embeddings) in terms of Lie-
algebroids:

Definition 15 A Lie-algebroid morphism φ : E1 → E2 is full, iff every section
in E2, whose anchor is tangential to the image of the base space of E1, is in the
image of E1.
A Poisson map i between E∗1 and E∗2 is full, iff it is dual to a full Lie-algebroid
morphism.

This notion ensures physically that all momentum variables that are relevant
for the embedded system are included tehrein.

4.1.3 Reduction and Poisson Embeddings and Reduced
Sensitivity

The isomorphism classes of Lie-algeboids together with full Lie-algebroid mor-
phisms is a partially ordered set, which extends (by duality) to graded Poisson
systems. We call the embedded Lie-algebroid ”smaller”, while the Lie-algebroid
that it is embedded into is called ”larger”. Similarly, we call the to the larger
Lie-algebroid dual Poisson system ”full system”, while we call the to the smaller
Lie-algebroid dual Poisson system ”reduced system”.

Poisson systems are formulated in terms of observable algebras. While there
is a freedom of choice at the classical level whether one considers the phase space
and Poisson structure thereon or the algebra of smooth functions on the phase
space together with the Poisson bracket between them, it is necessary in to con-
sider the observable algebra in quantum theories due to the noncommutativity
of the quantum mechanical phase space. Let us now consider the implications
of phase space reductions for observable algebras:

Given an observable f of the full system, one can construct an observable of
the reduced system (that is embedded into the full system by i) by considering
the pull-back of f under i. This can be applied to the entire observable algebra A

1A Lielagebroid morphism is a vector bundle morphism φ : E1 → E2, such that ρ2 ◦φ = ρ1
and φ([r, s]E1 ) = [φ(r), φ(s)]E2 for all r, s ∈ Γ∞(E1).
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and the reduced algebra Ared can be recovered using the argument from section
2.3 as:

Ared = {i∗f : f ∈ A}. (4.2)

This is the quotient of the algebra A by the ideal of functions that vanish at the
embedding, and as such Ared inherits the algebraic structure from A.

We argued in section 2.3 that the physical interpretation of an observable
is the outcome of a measurement (that corresponds to the observable) on the
physical system. The pull-back under a Poisson-embedding of an observable
algebra amounts therefore to restricting the sensitivity of our measurements to
the measurements that are available in the embedded system. This allows for
a simple interpretation of the embedded system as the by the considered set of
measurements ”accessible” part of the system while the ideal of observables that
vanish at the embedding is precisely the by the considered set of measurements
”inaccessible” part of the physical system. The active process of performing
the pull-back can therefore be interpreted as reducing the sensitivity of the
measurements to the respective subsystem.

4.2 Quantization Strategy

Groupoids are a natural link between classical and quantum systems: A clas-
sical system, described by an integrable Lie-algebroid, can be integrated to a
Lie-groupoid and the appropriately constructed groupoid C∗-algebra serves as
the quantum observable algebra, while the groupoid itself encodes the classical
integrable system.

4.2.1 Integrable Lie-algebroids

Given a Lie-groupoid G over X, we define the vector bundle E = Lie(G), whose
fibre at x is the tangent space at e(x) of the s-fiber at x. The Lie-bracket of
vector fields on X reduces to a Lie-bracket between the sections in E and the
bundle map ρ : E → T (X) obtained by restricting the canonical map T (G) →
T (X) to E serves as an anchor map. This ”taking the derivative at the source
unit” defines the Lie-algebroid associated to the Lie-groupoid G. G is called
s-simply connected, iff the s-fibres of G are simply connected.

A Lie-algebroid E is called integrable, if it is the Li-algebroid of a Lie-
groupoid. Then there exists a unique s-simply-connected Lie-groupoid G that
integrates E. The integrating groupoid of an integrable Lie-algebroid2 E can
be constructed as a certain homotopy quotient of the path groupoid P (E) of
E. We will from now on assume that the classical system can be described by
an integrable Lie-algebroid, so we have a unique s-simply connected integrating
Lie-groupoid at our disposal.

2Notice that although this construction can be performed for any Lie-algebroid E, it does
not mean that the such obtained groupoid integrates E.
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4.2.2 Quantum Algebras

Let G integrate the classical system described by the Lie-algebroid E. The
unit space of G is the base space of E, which can be physically interpreted as
the configuration space X of the system. The sections in E are momentum
vector fields on X, generated by the Poisson action of observables linear in the
momenta. The elements of the groupoid are then finite transformations of a
point in X generated by a momentum vector field, which is the generalization of
the action of the momentum-Weyl-operators. The quantum algebra is therefore
a groupoid C∗-algebra. For finite dimensional Lie-groupoids, one can construct
the groupoid C∗-algebra canonically, while one generally needs a Haar system
on the groupoid for its definition. Let us focus on the general case:

Let dν be a Haar system on a (locally) compact groupoid G and consider
two continuous functions f1, f2 ∈ Cc(G) of compact support. Then

f1 ? f2 : g 7→
∫
g1◦g2=g

dνf1(g1)f2(g2) (4.3)

defines a noncommutative convolution product. This algebra can be equipped
with an involution given by

f∗ : g 7→ f(g−1). (4.4)

One can define a C∗-norm for this ∗-algebra by considering all ∗-representations
π on Hilbert spaces Hπ of this ∗-algebra and defining:

||f || := sup
π
||π(f)||Hπ . (4.5)

The completion of the above defined ∗-algebra in this norm is a C∗-algebra,
wich we define as the groupoid C∗-algebra. As the natural generalization of the
Weyl-algebra of ordinary quantum mechanics, we define this C∗-algebra as the
quantum observable algebra associated to the classical Lie-algebroid E that was
integrated by G. The construction ensures that there exists a classical limit that
recovers E.

4.2.3 Requirements for Quantum Embeddings

An embedding i of a locally compact Hausdorff space X into a locally compact
Hausdorff space Y defines the pull-back i∗ : C(Y) → C(X), which is the key
observation that we use to construct reduced classical systems. Algebraically,
one can describe i as an embedding of the spectrum on C(X) into the spectrum
of C(Y). Although it is tempting to use this algebraic statement and replace
the commutative algebras with noncommutative quantum observable algebras
to construct a quantum embedding, such an embedding has certain pathologies
that we described in section 2.3, where we considered examples of this type of
embedding that produced counterintuitive results.

However, the conditions for a quantum embedding as explained in section
2.3 resolve these pathologies. Quantum systems are not only determined by an
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observable algebra, but one needs a Hilbert space representation of the observ-
able algebra to do physics. The matching condition for the vacuum expectation
values3 set out in section 2.3 will turn out to resolve the problem of finding an
induced representation of the reduced observable algebra.

The classical limit that is needed in section 2.3 will here be obtained as
follows:

G module X
Haar syst. C∗(G, ν) → representation

ν ↑ ~
G ↓
↓ 0
A(G) → P(G)

dualization

(4.6)

This diagram starts from a Lie-groupoid G with a Haar system ν, from which
one can immediately construct a C∗-algebra C∗(G, ν). We assume a faithful
representation of this algebra. The classical limit ~→ 0 can then be obtained by
reversing the top arrow and forgetting about the Haar system ν, while following
the downward arrow from the groupoid to arrive at the Lie-algebroid A(G) and
its dual graded Poisson system P(G). Given a general quantum system (A, π,H)
of an observable algebra A together with a Hilbert space representation (H, π)
thereof, we need to assume that A is the C∗-algebra of a Lie-groupoid and that
(H, π) is faithful.

4.3 General Construction

The observation that allows for the general construction outlined in this section
is the close link between Morita-equivalence for groupoids and Morita equiva-
lence for C∗-algebras, which was developed in [18]. If two (transitive) locally
compact groupoids with Haar systems are Morita equivalent as groupoids, then
the respective groupoid C∗-algebras are Morita equivalent as well. The proof in
[18] consists of constructing a Morita-equivalence bimodule for the C∗-algebras
as a completion of Cc(X), where X is the equivalence bimodule for the groupoids.
This suggests to construct the reduced observable algebra as a reduced groupoid
algebra and using the techniques form Morita theory for C∗-algebras to induce
a representation. To line out the general construction, we need two additional
observations:

First, if X is a groupoid induction module for a groupoid G(X) and if i
embeds Y as a subspace of X, then one can induce a subgroupoid G(Y) of G(X).

3Every representation of a C∗-algebra can be decomposed into cyclic representations. This
decomposition is however not unique. Each cyclic representation can be thought of as a GNS-
representation, so when discussing representations of C∗-algebras, we do not loose generality
if we restrict ourselves to sums of GNS-representations. Since a GNS-representation is (by
definition) already completely determined by the vacuum expectation values of the observable
algebra, one can ensure that the representation properties are taken into account, when the
vacuum expectation values (in each cyclic summand) coincide for a dense set of elements of
the quantum observable algebra.
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For the cosntruction, let us revisit the induction of G(X) form X:
Notice that X is a space with a groupoid H acting thereon by an action µ

with momentum map ρ. G(X) is then X ∗ X/H, where X ∗ X = {(x1, x2) ∈
X×X : ρ(x1) = ρ(x2)} and H acts thereon by the diagonal action h. (x1, x2) =
(µh(x1), µh(x2)). The unit space is X/H and the groupoid composition is
[x1, x2]H ◦ [x2, x3]H = [x1, x3]H. Let us now consider Xo = i(Y): Denote the
largest subgroupoid of H with ρ(s(ho)), ρ(r(ho)) ∈ Xo by Ho, which has a well
defined action µo, ρo on Xo defined by restricting µ to Ho×Xo and ρ to Ho. We
can now construct G(Y) as Xo ∗Xo/Ho, where Xo ∗Xo = {(y1, y2) ∈ Xo ×Xo :
ρo(y1) = ρo(y2)} and Ho acts by the diagonal action on Xo × Xo. The unit
space is Xo/Ho and the groupoid composition law [y1, y2]Ho ◦ [y2, y3]Ho is well
defined, since it is independent of the representatives (yi, yj).

Let us now verify that I : [y1, y2]Ho → [i(y1), i(y2)]H is a well defined embed-
ding of groupoids: Independence of Representatives: Assume that [y1, y2]Ho =
[y3, y4]Ho then there exists ho ∈ Ho such that y1 = ho . y3 and y2 = ho . y4.
Since µo and ρo are restrictions of µ and ρ and since ho as an element of a
subgroupoid if H is in particular an element of H, we see that [i(y1), i(y2)]H =
[ho . i(y2), ho . i(y2)]H = [i(ho . y1), i(ho . y2)]H = [i(y3), i(y4)]H. Matching:
A similar argument can then be used to see that I(go1 ◦ go2) = I(go1) ◦ I(go2),
since I([y1, y2]Ho ◦ [y2, y3]Ho) = I([y1, y3]Ho) = [i(y1), i(y3)]H and on the hand
I([y1, y2]Ho) ◦ I([y2, y3]Ho) = [i(y1), i(y2)]H ◦ [i(y2), i(y3)]H = [i(y1), i(y3)]H.

Now, since a viable observable algebra can be constructed as an algebra of
functions on the groupoid, it is suggestive to construct subalgebras as functions
on the subgroupoid.4

Second, let G be a Lie-groupoid integrating a Lie-algebroid E over a base
manifold X and let Y be a submanifold of X. One can then very often turn X into
an induction module for G. If we now construct the embedded subgroupoid then
it will contain all transformations in G that transform a point of Y into a point
in Y. The associated Lie-algebroid of the embedded groupoid thus contains all
vector-fields that close on Y, so the such constructed embedding is full. Meaning
that if X can be turned into an induction-module for G then the embedding of
the classical system obtained by taking the Lie-algebroid that generates the
embedded subgroupoid is full, which we considered as the physically interesting
kind of embedding.

4.3.1 Reduced Algebra

The groupoid structure served only as link between the classical and quantum
structure, which we want to forget about at the end, so the only data for the
quantum system that we consider is (A, π,K), where A denotes the quantum
observable algebra and (π,K) a (faithful) Hilbert-space representation thereof.

4In fact for a system of n paricles in one dimension, one obtains a transformation groupoid
G(Rn,Rn) of Rn acting as translations on Rn. This groupoid can be induced using Rn together
with the trivial groupoid as an induction module. Then embedding any Rm into Rn, one
obtains by this procedure a transformation groupoid of m particles, whenever m < n. Similar
results hold for more complicated classical systems.
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The first step into this direction is to follow [18] and turn the groupoid induction
module X into a quantum induction module by completing Cc(X). For its
description, let us adopt the notion {νx}x∈G(o) for the Haar system, where νx
is a translation invariant measure on the s-fibre of x as well as denoting the
induction module space by X, the groupoid thereon by H and the Haar system
on H by {µy}y∈H(o) :

The action of a ∈ C∗(G) on f ∈ E := Cc(X) is

a . f : x 7→
∫
G
a(g)f(µg−1x)dνρ(x)(g).

The C∗(G)-valued inner product of two elements f1, f2 ∈ Cc(X) turns out to be:

〈f1, f2〉A : g 7→
∫
H
f1(xh−1)f2(µg(x)h−1)dµρ(y)(h),

where the integration ranges over all composable elements.
The embedding i : Y→ X admits a pull-back i∗, which (under the technical

assumptions of continuity and properness) extends to a pull-back from i∗ :
Cc(X) → Cc(Y). Since our goal is to forget about the underlying groupoid
structure, we will keep the algebraic data (E, 〈., .〉A), that encodes the quantum
algebra through the action of the span of 〈., .〉A on E. The pull-back i∗ is a linear
map5 between the induction module E and a reduced induction module Eo.
Since we forgot about the groupoid H, we need to find a structure that allows
for the transfer of 〈., .〉A as a Hermitian inner product on Eo. If Eo = Cc(Y)
and E = Cc(X) then one needs a continuous compact extension P : Eo → E of
the functions of compact support on Y, which is a linear map, such that

i∗ ◦ P = idEo and P ◦ i∗ = idimgP (Eo), (4.7)

where obviously Eo = img(i∗). Using this map P , we can induce a Hermitian
operator-valued inner product for fo1 , f

o
2 , f ∈ Eo through:

〈fo1 , fo2 〉Ao : f 7→ i∗(〈P (fo1 ), P (fo2 )〉AP (f)). (4.8)

We are thus able to recover the reduced algebra through its action on Eo,
whereas Eo can ne recovered as the image of i∗. This allows us to define:

Definition 16 A quantum embedding of a C∗-algebra A obtained through
an induction module (E, 〈., .〉A) is a pair of maps (i∗ : E → imgi∗ , P : imgi∗ →
E) satisfying equation 4.7. The embedded pre-C∗-algebra Ao is obtained as the
span of the operators defined in equation 4.8.

To complete this subsection, let us establish the operator correspondence E
between the elements of A and Ao that we postulated in chapter 2.3:

5The map i∗ is not only linear but in particular a pre-C∗-algebra morphism, which of
course ensures the existence of an embedding map i of the spectra in the commutative case.
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For fo1 , f
o
2 ∈ Eo, the inner product (equation 4.8) defines an operator Tfo1 ,fo2 :=

〈fo1 , fo2 〉Ao and this set of operators is by construction dense in Ao. On the other
hand:

O : (fo1 , f
o
2 ) 7→ Ofo1 ,fo2 := 〈P (fo1 ), P (fo2 )〉A

defines an operator in A, so we have a natural association:

Tfo1 ,fo2 ↔ Ofo1 ,fo2 . (4.9)

While the range of T is dense in Ao, this is in general not the case for the
range of O in A. However if f1, f2 ∈ E, then Uf1,f2 := 〈f1, f2〉A is again by
construction dense in A. On the other hand using i∗ one can associate a T with
each U by: Uf1,f2 ↔ Ti∗f1,i∗f2 , so the map E can be defined as the elementary
map

E : Uf1,f2 7→ Ti∗f1,i∗f2 , (4.10)

defining the quantum reduction map.

4.3.2 Induced Representation

The strength of Morita theory is to induce representations; the similarity of the
quantum symmetry reduction to Rieffel induction allows for the application of
analogous techniques:

Let us consider a (vacuum) state ω(a) := 〈ψ, π(a)ψ〉H for A, where (π,H)
is a representation of A on H. This defines in particular a representation of
the operators 〈f1, f2〉A. Hence, one can define the functional for the dense set
Tfo1 ,fo2 in Ao as:

ωo(Tfo1 ,fo2 ) := ω(Ofo1 ,fo2 ). (4.11)

This functional is linear by construction and can be extended to Ao by density.
To verify positivity, we consider a positive element a∗oao, where ao ∈ Ao as the
limit of ak =

∑k
n=1 λnTfon1,f

o
n2

. Let us consider the associated operators E(ak),
so

ωo(a∗kak) = ω(E(a∗k)E(ak)) ≥ 0, (4.12)

because E(a∗k) =
∑k
n=1(λnOfon1,f

o
n2

)∗ =
∑k
n=1 λnOfon2,f

o
n2

= E(ak)∗. Meaning
that ωo extends to a sate on Ao.

Since any representation of a C∗-algebra can be decomposed into a direct
sum of cyclic representations, one can induce a representation of Ao from any
representation of A.

Notice that the very definition of the state ωo ensures that the matching
condition (equation 2.15) is satisfied, when the dense set is taken to be the span
of 〈fo1 , fo2 〉A. The verification of the classical limit condition needs the choice of
a particular induction module. Will will complete this in section 4.4.3 for the
physically important case of transformation group C∗-algebras.
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4.4 Construction for Transformation Group Sys-
tems

The structure that underlies many physical systems is a group G of momen-
tum transformations (the flow generated by the Poisson action of momenta)
that acts freely and properly as translations on a locally compact configura-
tion space X. Let us denote this action by .. The underlying groupoid struc-
ture is a transformation groupoid G(X, G), whose elements can be denoted as
G = {(x, g) : x ∈ X, g ∈ G} (for further details on transformation groupoids and
their C∗-algebra see appendix A.3.1).

4.4.1 Reduced Algebra

A very useful induction module for the groupoid C∗-algebra C∗(X, G) of a trans-
formation groupoid G(X, G) is E = Cc(X). The operator-valued inner product
for f1, f2 ∈ Cc(X) is

〈f1, f2〉A : (x, g) 7→ ∆−
1
2 (g)f1(x)f2(g−1 . x), (4.13)

where ∆ denotes the modular function on G. The action of these operators on
f ∈ E is

〈f1, f2〉Af : x 7→ f1(x)
∫
G

dµH(g)∆−
1
2 (g)f2(g−1 . x)f(g−1 . x). (4.14)

Let now i : Xo → X be an embedding, and let i∗ : E → Cc(Xo) and let P satisfy
equation 4.7, then the span of the operators defined in equation 4.8 define the
reduced pre-C∗-algebra as operators on Eo = Cc(Xo) for all fo1 , f

o
2 , f ∈ Eo by:

〈fo1 , fo2 〉Aof : xo 7→ 〈P (fo1 ), P (fo2 )〉AP (f)) (i(xo)). (4.15)

4.4.2 Induced Representation

It is a result of Rieffel induction that any representation of C∗(X, G) is unitarily
equivalent to a direct sum of the fundamental representations of C∗(X, G) (as
convolution operators) on L2(X, dµ), where the measure dµ is invariant under
the action of G. We can therefore provide a very specific discussion of the in-
duced representations by considering these summands, which can be constructed
from the vacuum states ωµ.

It turns out, due to the existence of an approximate identity of the form
idε =

∑
i〈f εi , f εi 〉A that any positive element a∗a ∈ A can be written as

a∗a = lim
ε

∑
i

a∗〈f εi , f εi 〉Aa = lim
ε
〈gεi , gεi 〉A,

characterizing positive elements of A as the closed span of 〈f, f〉A, so one can
find a representation of the Hilbert-basis for the GNS-representation in terms
of a (completion of) E. The analogue argument holds of for Ao, since positivity
is transferred by equation 4.12.
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4.4.3 Properties of Quantum Embeddings

The matching condition (equation 2.15) is satisfied for the transformation groupoid
case, because it constitutes a special case of groupoid C∗-algebras described in
the previous section. The explicit induction module Cc(X) for transformation
groupoid C∗-algebras C∗(X, G) allows us to investigate the quantum embed-
dings obtained from a classical embedding i : Xo → X very specifically, par-
ticularly the classical limit condition (equation 2.14). Since X,Xo are assumed
locally compact, one can approximate them with a net of increasing compact
subsets. The assumption that G acts freely and properly on X assures that we
can define smaller and smaller neighborhoods of the identity in G as those sets
of elements of G that transform at least one point in the neighborhood Ux of x
into Ux by making these neighborhoods smaller and smaller. This allows for a
construction of an approximate identity (first used in [19]) in C∗(X, G) indexed
by a compact set C ⊂ X, a neighborhood U ⊂ G of the unit element and ε > 0
with the properties:

idC,U,ε(x, g) = 0 ∀g outside U
|idC,U,ε − 1| < ε ∀x ∈ C (4.16)

where a triple (C1, U1, ε1) ≥ (C2, U2, ε2) if C1 ⊇ C2 and U1 ⊆ U2 and ε1 ≤ ε2. It
follows that the limit w.r.t. ≥ over these triples furnishes an approximate iden-
tity in C∗(X, G). The key is that this approximate identity can be constructed
as

idα =
nα∑
i=1

〈fαi , fαi 〉A, (4.17)

where fαi ∈ Cc(X). For the construction of the fαi it is important to notice
that for any C,U there is a covering Ui of C by a finite number of precompact
sets, such that g outside U transfroms any point of Ui outside of Ui. Then there
exist continuous functions fαi with support on Ui, such that |

∑
i〈fαi , fαi 〉A−1| <

ε∀x ∈ C.
The transformation groupoid G(X, G) can be induced using the groupoid

module X as follows: Denote the trivial groupoid consisting of the G-orbits [x]G
in X with s([x]G) = r([x]G) = [x]G by H; this groupoid acts trivially on X using
the momentum map µ(x) = [x]G. Then X ? X/H = G, thus H, µ together with
the trivial action provides the groupoid induction structure on X. Let us now
consider an embedded subspace i : Y → X, then H acts on i(Y) and induces
the reduced groupoid over Y whose arrows are the transformations of G on i(Y)
that close on i(Y). Assuming compatibility of the embedding with the groupoid
action turns the reduced groupoid into a transformation groupoid G(Y, Go); we
will assume this compatibility from now on.

To verify that the desired classical limit is attained, we need to verify that
the reduced C∗-algebra is C∗(Y, Go). To do this we use the above described
approximate identity and apply the quantum reduction E directly to each sum-
mand 〈fαi , fαi 〉A. The reduced summands are of the form 〈fo, fo〉Ao and if P
is chosen compatibly, one can use them to construct an approximate identity
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for C∗(Y, Go). The appropriate choice for P is performed in [21], however a
complete proof of general existence is still missing.

4.5 Imposing Constraints

From the point of view of a physicist trying to construct a quantum theory, a
constrained quantum theory is a replacement of solving a classical constraint
system and finding a quantization thereof by finding an annomaly-free quan-
tization of the classical system together with the constraints, as it was first
proposed by Dirac. All representations of transformation group systems are
unitraily equivalent to direct sums of fundamental representations of L2(X, dµ),
which is in turn a completion of the induction module Cc(X).

More specifically, the gauge transformations generated by the constraints are
implemented as a group G of unitary transformations on the kinematic Hilbert
space K, represented by U . The group-averaging proposal then constructs the
inner product by integrating with a translation-invariant measure dµ over G to
obtain a gauge-invariant inner product for φ, ψ ∈ K as:∫

G

dµ(g)
1
V
〈φ,Ugψ〉K =: 〈η(φ), η(ψ)〉inv. (4.18)

defining the gauge-invariant inner product for the gauge orbits η(φ), η(ψ) of φ, ψ
respectively, where V denotes a normalization constant given by the size of the
orbit. However, if K splits into a direct sum ⊕αKα, so Ug : Kα → Uαg Kg(α) and
if one fixes precisely one αo in each G-orbit, and if Rα(φα) is the Uα-average of
φα, then

η′(φα) := Rαo(φαo) (4.19)

allows for a description of the gauge-invariant product in terms of the kinematic
inner product:

〈η(φ), η(ψ)〉inv. = 〈η′(φ), η′(ψ)〉K. (4.20)

Let us now consider the gauge-invariant matrix elements of 〈., .〉A. The structure
of the fundamental representation of 〈., .〉A is

〈f1, f2〉Aψ : x 7→ f1(x)
∫
G

dµH(g)f2(g−1 . x)ψ(g−1 . x),

using equation 4.20 and the fundamental representation on L2(X, dν) yields:

〈η(φ), πo(〈f1, f2〉A)η(ψ)〉inv.
=
∫

X dν(x)(η′(φ))(x)f1(x)
∫
G
dµ(g)f2(g−1 . x)(η′(ψ))(g−1 . x),

(4.21)

which vanishes, whenever
∫
G
dµ(g)f2(g−1 . x)(η′(ψ))(g−1 . x) = 0 for all x.

Moreover, if one finds a set J = {ψi ∈ Cc(X)}i∈I dense in L2(X, dν) and Cc(X)
such that

∫
G
dµ(g)ψi(g−1 . x)(η′(ψj))(g−1 . x) is independent of x, then one

obtains that the matrix element vanishes if
∫

X dν(x)φ(x)f1(x) vanishes. Having
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a Hilbert-basis for L2(X, dµ) then allows for the split of the induction module
E = E1⊕E2 such that F1(f) ∈ E1 is orthogonal to the span of η′(K), then one
can cnstruct the gauge-invariant observables through the span of

〈F1(f), ψi〉A, where f ∈ E1 and ψi ∈ J. (4.22)

The Gauss- and diffeomorphism- constraint in Loop Quantum Gravity can be
treated precisely in this way. The procedure described here can of course be
generalized for the case that

∫
G
dµ(g)ψi(g−1 . x)(η′(ψj))(g−1 . x) is not inde-

pendent of x, in which case one has a split E = Ei1 ⊕ Ei2 depending on the
function ψi.

Having such a characterization of the gauge-invariant observables, one can
construct the gauge invariant reduced algebra by restricting the f1, f2 in equa-
tion 4.8 to E1 and J repsectively. The application to the scalar constraint
proceeds along the same line, the only difference is that instead of using the
group averaging procedure, one inserts the joint kernel projection P for the
scalar constraint set explicitly, i.e. one considers 〈u, P 〈f1, f2〉APv〉diff . It then
turns out that split E into E1 ⊕ E2 resp J ⊕ J⊥ is possible.
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Chapter 5

Cosmological Reduction of
Loop Quantum Gravity

We will now apply the quantum reduction technique developed in the previous
chapter to Loop Quantum Gravity and extract a cosmological sector. For this
procedure to be applicable to Loop Quantum Gravity, we need to slightly modify
Fleischhacks Weyl-algebra. This modification is however only technical, the
representations are on the same Hilbert space and any finite number of matrix
elements of this algebra coincides with Fleischhacks Weyl-algebra. The resulting
theory shares the discrete structure with standard Loop Quantum Cosmology,
we are however not able to induce a meaningful dynamics through the procedure
described in the previous chapter for the treatment of constraints. We interpret
this as a shortcoming of the dynamics of standard Loop Quantum Gravity,
which we used for the induction.

5.1 Considerations

Standard Loop Quantum Cosmology can be obtained as follows: One starts
with the classical gravitational phase space, imposes Bianchi symmetry on the
classical phase space, uses the remaining kinematic gauge symmetries to fix a co-
ordinate system for the reduced phase space and to induce the Poisson structure
in terms of these coordinates. The second step is ambiguous: One chooses a set
of elementary observables in the full theory, whose classical counterparts sepa-
rate the points in the reduced phase space and whose Poisson brackets matche
the reduced Poisson bracket. Third, one uses the Hilbert-space representation
of the full theory and the correspondence of observables between reduced and
full theory to induce a Hilbert space representation of the observables of the
reduced theory. Finally, one quantizes the scalar constraint for the reduced the-
ory using the same methods as in the quantization of the full theory, which is
again an ambiguous procedure.
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Goal

The goal of this chapter is to introduce more structure into the construction of
the reduced quantum theory and induced Hilbert space representation thereof
by applying the construction that we developed in the previous chapter. This
construction puts the noncommutative quantum phase (i.e. the observable al-
gebra) into the foreground and therefore separates the process of ”quantizing”
from the process of ”symmetry reducing”. We are therefore able to consider the
ambiguities in the process of symmetry reduction without having the picture
blurred by the effects of quantization (compare subsection 5.4.2). At the end of
the construction we want to identify standard Loop Quantum Cosmology with
a way of imposing Bianchi symmetry in the quantum theory and thus explicitly
see the choices that may be possible.

Strategy

The strategy used in this section differs from the one we presented in [22]:
The technical problem that we are faced with is that we need an observable
algebra that can be constructed as the induced algebra of an induction mod-
ule constructed on (a possible enlargement of) an algebra of functions on a
quantum configuration space. There is however no known way to construct a
viable kinematic observable algebra for Loop Quantum Gravity, that can be in-
duced in this fashion. There is however an algebra of diffeomorphism invariant
observables that can be induced in this way. We will therefore first carefully
construct this algebra denoted by Bo in section 5.3.2. This construction needs
a partial gauge fixing of the diffeomorphism symmetry of cylindrical functions,
which will allow us to fix them to have graphs that are embedded into a scaffold
consisting of a countable set of edges. We are then able to use the span of a
subset of the cylindrical functions on the scaffold as an induction module for
the diffeomorphism-invariant algebra of Loop Quantum Gravity.

The construction of the quantum embedding is then based on the observa-
tion that spin network functions on the scaffold are in particular functions on
the classical configuration space. Using the pull-back under the embedding of
the reduced configuration space into the full configuration space and partially
inverting this linear map lets us thus construct a quantum embedding of the
type considered in the previous chapter. We will use this embedding to apply
the construction considered in the previous chapter to construct the reduced
algebra and an induced representation thereof.

5.2 Adapted Observable Algebra for Loop Quan-
tum Gravity

Fleischhack’s Weyl-algebra for Loop Quantum Gravity is generated by elements
of the form f ◦ w, where f is a cylindrical function of the connection and w
is a unitary element (w∗w = 1) of the group of exponentiated momentum ob-
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servables. The set {f ◦w : f cylindrical function, w momentum Weyl operator}
turns out to be dense in the observable algebra A, because the momentum Weyl
operators act as pull-backs under homeomorphisms in the quantum configura-
tion space X on cylindrical functions (w∗fw = θ∗wf). This algebra is repre-
sented on H = L2(X, dµAL), where dµAL is the Ashtekar-Lewandowski mea-
sure, by representing the cylindrical functions as multiplication operators and
the momentum Weyl-operators as the aforementioned pullbacks under home-
omorphisms on X. The gauge-variant spin network functions SNF furnish a
Hilbert-basis in H. A more detailed description of Fleischhack’s algebra can be
found in appendix B.3.

This algebra has (heuristically) a resolution of unity in terms of gauge-variant
spin network functions given by the observation that for ψ ∈ L2(X, dµAL) one
has ψ(A) = idψ(A) =

∑
T∈SNF T (A)

∫
X dµ(A)T ∗(A)ψ(A) =

∑
T∈SNF |T ∗〉〈T ∗, ψ〉.

This resolution of unity however extends over an over-countable sum, making it
unusable for our purposes. One can however use this insight to construct an ap-
proximate identity using the partially ordered set consisting of the pairs (γ, n),
where γ is a graph and n is the maximum spin label and (γ1, n1) ≥ (γ2, n2) iff
γ1 ≥ γ2 and n1 ≥ n2, so

id = lim
←(γ,n)

idγ,n = lim
←(γ,n)

∑
T∈SNF (γ,n)

|T ∗〉〈T ∗|, (5.1)

where SNF (γ, n) denotes the spin network functions (including the trivial ones)
on γ, with maximal spin label n, which is a finite set for each (γ, n). This
approximate identity allows us to write an element A as a = lim←(γ,n) a id(γ,n),
so:

a = lim
←(γ,n)

∑
T∈SNF (γ,n)

|aT ∗〉〈T ∗|, (5.2)

where we observe that for every element a in the dense subalgebra of A con-
sisting of a =

∑n
i=1 fγi ◦ wi every graph γ there exists always a graph γa ≥ γ,

such that aSNFγa ⊆ SNFγa . Since the action of a on SNF (γa) reduces to a
transformation groupoid action, and due to the convergence of the expansion of
cylindrical functions on γa in SNFγa,n for n → ∞, we obtain that we are able
to write a as:

a = lim
←γ

∑
f1
γ ,f

2
γ∈Cyl(γ)

|f1
γ 〉〈f2

γ |. (5.3)

The algebra B of all elements onH that can be obtained as finite-norm operators
through equation 5.3 contains A, it is however not A. This is due to the fact that
the operators in A act cylindrically consistent and the following: The momentum
Weyl-group contains Weyl-operators across zero-dimensional quasi-surfaces Sx
(at a point x) that can be thought of as elementary. These Weyl-operators act
the same on all edges ex that originate at x and have the same linear structure
at x. These two conditions constrain the projective limit ← γ. Since A is a
closed linear subspace of B, we can formally write B = A ⊕ C and formally
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define a linear restriction map R : B→ A, such that R|A = idA and R|C = 01.
The action of the diffeomorphisms D on A is explained in appendix B.3, and

we are able to define an action of D on B, whose restriction to A coincides with
the action on A, by defining for a diffeomorphism φ:

U∗φbUφ := lim←γ
∑
f1
γ ,f

2
γ∈Cyl(γ) U

∗
φ |f1

γ 〉〈f2
γ |Uφ

= lim←γ
∑
f1
γ ,f

2
γ∈Cyl(γ) |f1

φ−1(γ)〉〈f
2
φ−1(γ)|.

(5.4)

This allows us to calculate the matrix-elements of diffeomorphism-invariant ob-
servables, which are constructed from elements of A, but generally lie outside A,
but if bounded within B. There are many other physically interesting operators
that are not in A, but in B, e.g. the family of exponentiated volume operators.
This is the physical reason, why we will consider B in this chapter. In the next
section, we will construct diffeomorphism-invariant elements of B (i.e. elements
in B/D) and construct a cosmological quantum embedding for these thereafter.

5.3 Scaffold for Loop Quantum Gravity

We are interested in constructing an embedding for Bianchi I cosmology, so the
spatial topology of Σ = R3, and we fix once and for all global homogeneous
chart (U, φ) in which the generators of the translation invariance are supposed
to take the form {∂i}3i=1 as well as a number lo > 0.

5.3.1 Construction of the Scaffold

The scaffold is a lattice that is large enough, so any knot-class of any graph
can be constructed as a combination of edges in the scaffold. Let us use the
shorthand

((i1, i2, i3), (f1, f2, f3)) := {φ(ia + t(fa − ia)) ∈ Σ : 0 ≤ t ≤ 1} (5.5)

to quickly describe the edges of the scaffold. The first set is

e1
abc := ((loa, lob, loc), (loa+ lo, lob, loc))
e2
abc := ((loa, lob, loc), (loa, lob+ lo, loc))
e3
abc := ((loa, lob, loc), (loa, lob, loc+ lo)),

(5.6)

where a, b, c ∈ Z. These edges form a regular cubical lattice and meet at the
vertices vabc = φ(loa, lob, loc). To accommodate for vertices with valence higher
than six, we need to introduce ”extra bridges” labcn (where a, b, c ∈ Z and a >
n ∈ N), which can be constructed as a rotation of the following concatenation

babcn := e2
abc ◦ e1

a,b+1,c ◦ e1
a+1,b+1,c ◦ ... ◦ e1

a+n,b+1,c ◦ e2
a+n,b,c

around the axis x2 = blo, x3 = clo with the angle αan = π
2
n
a2 . Clearly, all

αan : 0 < n < a are distinct and so none of he bridges labcn will have interior
intersections with one another or with the lattice.

1The particular choice of C is ambiguous and hence is the choice of R. Knowing a particular
map R would reveal considerable insight into the representation theory of A.
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Definition 17 The scaffold consists of all vertices vabc and of all edges eiabc, labcn,
where a, b, c ∈ Z, a > n ∈ N and i = 1, 2, 3.

We need four important observations about the scaffold: (1) it is not a graph,
because it consists of an infinite number of edges and (2) for every n,m > 0
there is a set of m vertices in the scaffold with valence greater than m and (3)
the scaffold does not contain an accumulation point of edges or vertices and
(4) the edges of the path groupoid are oriented, i.e. ((xi, yi, zi), (xf , yf , zf )) is
understood to go from (xi, yi, zi) to (xf , yf , zf ).

Let us prove that any knot-class of a graph can be embedded into the scaffold
by giving an explicit construction for a graph γ by considering a projection of
γ:

1. Choose an explicit enumeration for the vertices and edges of γ, i.e. Vγ =
{v1, ..., vn} and Eγ = {e1, ..., em}.

2. Let k = n+ 2m and embed the vertices as i : vn 7→ vk+n,0,0.

3. Split each edge ea ∈ Eγ into three parts ea = eia ◦ ema ◦ efa . This splitting
can be chosen such that in the considered projection of γ, there are only
crossings of sections ema , but no crossings involving eia or efa .

4. Now one can extend i such that the additional vertices vai and vaf (aris-
ing as the endpoints of the eia and efa respectively) of additional vertices
are embedded into vk+n+1,0,0, ..., v2k,0,0. Moreover, one can find unique
bridges labcn to connect i(vai) with i(va) and i(vaf ) with i(vi), which de-
fines the embedding i of the eia and efa .

5. Define a parallel projection P : (x, y, z) 7→ (x, y) that assigns an over-
pass of an edge segment that contains (x1, y1, z1) over an edge segment
that contains (x2, y2, z2) whenever x1 = x2, y1 = y2 and z1 > z2. Calcu-
late the projection of the embedding i(eia), i(efa), which generally contains
nontrivial overpasses. This defines a braid B1 of the i(eia), i(efa).

6. Consider the original projection of γ with very small balls around the
vertices of γ removed. This defines a braiding B2 of the ema .

7. Notice that any braid with fixed boundaries can be embedded into a cu-
bical lattice. So attach such an embedding of to the inverse braid of B1

and then B2 in the cubical lattice part of the scaffold, thus extending i to
an embedding of the pieces ema .

This construction shows that there exists an embedding of the knot-class of any
graph into γ. This implies that for any γ there exists a smallest coordinate cube
R(γ) with center at the coordinate origin that contains a knot-class embedding
of γ.
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5.3.2 Diffeomorphism-invariant Observable Algebra

Let us now apply the construction described in 4.5 for the diffeomorphism-
invariant observables in B using the result of chapter 3, i.e. that for any pair
(γ1, γ2) of graphs there exists an element φ of the complete diffeomorphism
group mapping φ(γ1) = γ2 if and only if γ1 and γ2 are equivalent as knots.
Denoting the Hilbert-space completion of the span of nontrivial2 spin network
functions on a graph γ by Kγ , one can split the action U of a diffeomorphism
φ on ψγ ∈ Kγ into a graph-changing action U c : Kγ → Kφ(γ) and a subsequent
graph symmetry Us : Kφ(γ) → Kφ(γ), so we can use equation 4.20 to represent
the diffeomorphism-invariant matrix element of an element a ∈ B between two
diffeomorphism-averaged spin network functions η(Tγ) and η(T ′γ′) by

〈η(Tγ), aη(T ′γ′)〉inv. = 〈η′(Tγ), aη′(T ′γ′)〉K (5.7)

where we observe that the graph symmetries of γ are a finite group, so η′ reduces
to averaging over this finite group. Let Hγ denote the η′-image of Kγ , then the
spin network functions sSNFγ , that assign the same spin quantum numbers to
each graph-symmetry-related edge (and vertex) in γ, is a Hilbert-basis for Hγ .
Thus, fixing precisely one γ′ in each knot class, one has a construction for the
image of η′ through:

η′Kγ = Hγ . (5.8)

The matrix elements of an element a = lim←γ
∑
f1
γ ,f

2
γ∈Cyl(γ) |f1

γ 〉〈f2
γ | in B in

the inner product (equation 5.7) coincide with the matrix-elements of a∞ =
limn→∞

∑
f1,f2∈⊕ni=1Hγ′(n)

|f1〉〈f2|, where we used the observation that the knot
classes of graphs are countable, thus allowing for an numberable set of represen-
tatives γ′(n). Thus, using equation 5.7 for the diffeomorphism-invariant Hilbert
space, we can represent the diffeomorphism-invariant elements of B as the clo-
sure of the finite sums

an =
∑

f1,f2∈⊕ni=1Hγ′(n)

|f1〉〈f2| (5.9)

in the Hilbert norm defined through the inner product of equation 5.7 as n→∞.
This algebra Bo is the diffeomorphism-invariant observable algebra of Loop
Quantum Gravity, that we want to consider subsequently. We could have boldly
defined the diffeomorphism-invariant algebra Bo as a starting point, but then
the relation to the standard algebra of Loop Quantum Gravity would not have
been clear.

Let us consider an induction module for Bo: sSNFγ′(n) is dense in Hγ′(n),
so let us define E as the subspace of K given by the span of the sSNFγ′(n) for
all n ∈ N, then E together with the operator-valued inner product:

〈e1, e2〉Bo
: e3 7→ e1〈e2, e3〉K (5.10)

2I.e. precisely those spin network functions that assign a nontrivial representation to each
edge of γ.
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is an induction module for Bo, which follows directly from the construction of
Bo. Notice: The elements of E are in particular functions of the connection.

We will now make use of the scaffold for an explicit construction of η′: Let
us consider a graph γ, then we saw in the previous section that there exists
a smallest coordinate cube R(γ) centered around the coordinate origin, such
that the knot-class of γ can be embedded into the restriction of the scaffold to
R(γ). We can therefore fix an embedding i for each knot-class into the scaffold
into the vicinity of the coordinate origin. This is practically only feasible for
certain small graphs, for large graphs Γ, we will have to assume that we take
the average over all possible embeddings i(Γ)1, ..., i(Γ)n(Γ) into R(Γ). The map
η′ then acts on fΓ by:

η′(fγ) :=
1

n(Γ)

n(Γ)∑
k=1

fik(Γ), (5.11)

which is automatically symmetric under graph symmetries.

5.4 Quantum Embedding for Cosmology

Having an induction module for the diffeomorphism invariant observable algebra
of Loop Quantum Gravity, we can apply the construction for quantum embed-
dings defined in the previous chapter. Moreover having a scaffold depending
on straight lines, one can calculate the dependence of the matrix-elements of
holonomies along scaffold elements on the isotropic resp. locally rotationally
symmetric connection component explicitly. Using (1) the embedding of these
symmetric connections into the full configuration space and (2) viewing the
elements of the induction module for the diffeomorphism-invariant algebra in
the previous section as functions of the connection, we are able to construct a
quantum embedding. We will construct the simplest one of these embeddings.

5.4.1 Embedding Maps

We continue to use the global homogeneous chart. In this chart, a symmetric
connection takes the form:

Ahom = ΛIadx
aτI . (5.12)

Given a straight line segment e = ((i1, i2, i3), (f1, f2, f3)), we calculate the holon-
omy along this line as

he(Ahom) = I cos(
L

2
) + 2n̂IτI sin(

L

2
), (5.13)

where
L =

√∑3
I=1 ((fa − ia)ΛIa)2 = ||eaΛa||

n̂I = (fa−ia)ΛIa
L = êaΛIa.
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This expression can be used to evaluate the dependence of all holonomies along
elements of the scaffold. Given a general homogeneous connection, we can
always rotate the chart and apply a gauge transformation, such that it takes
diagonal form:

Adiaghom = a dx1τ1 + b dx2τ2 + c dx3τ3.

Assuming local rotational symmetry around the x1-axis resp. isotropy, one can
further simplify the connection:

ALRS = a dx1τ1 + c dx2τ2 + c dx3τ3,
Aiso = c dx1τ1 + c dx2τ2 + c dx3τ3.

Notice that the graphs in the scaffold can be decomposed into a finite set of
straight elementary pieces of coordinate length lo that are either parallel to
the x1-axis or inside a x1 = const. plane. The matrix-elements calculated
in equation 5.13 for these elementary pieces are then linear combinations of
products of e±

i
2 loc and e±

i
2 loa. Since the holonomy along the concatenation

of elementary paths is matrix product of the holonomies along the elementary
paths and the holonomy along the inverse path is the inverse matrix of the
holonomy, we obtain that the dependence of a holonomy along any finite path
e in the scaffold depends on the symmetric connections as a finite sum of the
form

he(ALRS) =
∑N,M
n,m=1 ξnme

i
2 lo(ma+nc)

he(Aiso) =
∑N
n=1 ξne

i
2 lo nc,

(5.14)

with normalization constants ξ and n,m ∈ Z.
These preparations allow us to construct a map p, for the cylindrical func-

tions on the scaffold. The quantum embedding map p will then be the restriction
of this map to the induction module E for the algebra Bo of diffeomorphism
invariant observables of Loop Quantum Gravity, using that E is a subset of the
cylindrical functions on the scaffold. We will work with the dense set of gauge-
variant spin network functions on the scaffold. We defined a spin network func-
tion to be a function on the connection of the form Tγ =

∏
e∈γ ρ

je
mene(he(A)).

Since any matrix element of representation ρjmn is a polynomial of the matrix
elements of the fundamental representation, we can use equation 5.14 to deter-
mine the dependence of Tγ on the symmetric connection, whenever γ is in the
scaffold as finite sums:

Tγ(ALRS) =
∑N,M
n,m=1 ξnme

i
2 lo(ma+nc)

Tγ(Aiso) =
∑N
n=1 ξne

i
2 lonc,

(5.15)

which is of the same form as equation 5.14. We may however have restrictions
in the normalization constants ξ. It will turn out to be convenient to use an
embedding of the knot classes of graphs into the scaffold, where the ξs in equa-
tion 5.15 are unity. This is easily achieved for the isotropic connection by using
any embedding of the simplest nontrivial graph that consists of one edge only
into eo = ((0, 0, 0), (0, 0, 1)), because ρn±n,±n(heo(A)) = e±

i
2 lonc. Here, we used

the indexing of the matrix elements of the SU(2)-representations ranging over
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n,m = −j,−j + 1, ...,+j. The situation for the locally rotationally symmetric
connection is a little more complicated. Here we need to use a totally discon-
nected graph of two edges, which we embed as eo = ((0, 0, 0), (0, 0, 1)) and e1 =
((0, 0, 2), (1, 0, 2)) respectively. Whereas e±

i
2nloc is then represented through

the matrix-elements of the n-th representation of heo as before, and e±
i
2mloa

is presented as a more complicated linear combination
∑
kl aklρ

m
kl(he1) of the

matrix elements of ρm(he1), which can be obtained as ρm±m,±m(U†he1(A)U),
where U is the internal SU(2)-rotation of the 1-direction into the 3-direction.
We want to remark that these spin network functions are not yet elements of
E, because we still have to average over the graph symmetries, which we will
do in section 5.4.3, where we consider gauge- and diffeomorphism- invariance.
For a cylindrical function Tγ with γ in the scaffold, we define p as the pull-back
under the embedding of the symmetric connection into the phase space, wich
we define explicitly as the extension by density of:

pLRSTγ : (a, c) 7→ Tγ(ALRS(a, c))
pisoTγ : c 7→ Tγ(Aiso(c)),

(5.16)

where we used the explicit expressions for ALRS and Aiso in the symmetric
chart. Equation 5.15 then yields the image of p, so we can construct the quantum
embedding by constructing an inverse q, such that p◦q = id and q◦p = idimg(q).
We construct this map first for the exponential functions and then extend it by
linearity, for the isotropic case we may choose:

qiso : e
i
2 lonc 7→ ρn±n,±n(heo), (5.17)

using the above observations. Using
∑
kl aklρ

m
kl(he1) as above, we can define the

locally rotationally symmetric embedding as the extension by linearity of:

qLRS : e
i
2 lo(ma+nc) 7→ ρn±n,±n(heo)(

∑
kl

aklρ
m
kl(he1)), (5.18)

which satisfies the consistency conditions for quantum embeddings.

5.4.2 Ambiguities

The construction of the scaffold is ambiguous and with this the construction of
the algebra Bo, because the only demand for the the scaffold is that a graph of
any knot class can be embedded into it. The construction presented here was
guided by computability and simplicity. The holonomy differential equation

ḣ(t) = (e∗A)(t)h(t) (5.19)

for SU(2) reduces to a set of two second order differential equations for the two
independent matrix elements of a special unitary 2 × 2-matrix. Apart from a
few special cases, one can not find exact solutions to these. The reason, why
we restricted ourselves to piecewise linear edges is that equation 5.19 can be
exactly solved in this case. If we had used a different scaffold, then we would

56



most likely not have had a chance to solve equation 5.19, meaning that we
would have obtained a different dependence of the spin network functions on
the scaffold on the connection degrees of freedom3.

This raises the question: What is the physical significance of this ambiguity?
Let us argue that the ambiguity is the choice of gauge for the diffeomor-

phisms: We have chosen a global chart (U, φ) in which the homogeneous con-
nection takes the form of equation 5.12. If we reexpress this the homoge-
neous connection in a chart (U,ψ), then we have to pull-back the expression
for the connection under the diffeomorphism ρ = ψ ◦ φ−1 : U → U . Since
he(ρ∗A) = hρ(e)(A), we see that this new choice of chart has the same effect as
mapping the scaffold under the diffeomorphism ρ.

The procedure presented here can also be understood as a method to im-
pose Bianchi symmetry in a quantum theory. Since there are many families
{Xi}i=1,2,3 of globally commuting vector fields, each related as the push-forward
under a diffeomorphism ρ, we can state the observation that different ρ lead to
different quantum theories as: Different choices for {Xi}i=1,2,3 may lead to dif-
ferent quantum theories. As of now, we do not see fundamental reasons (other
than computability) that imply a ”correct choice” or at least point out some
”wrong choices”.

One fundamental reason could turn out to be the topology of the reduced
configuration space. We simply assumed here that it was irrelevant, but a pre-
ferred topology would put very tight restrictions on the gauge fixing of the
diffeomorphisms, because the topology should arise as the Gel’fand topology of
the spectrum of the reduced configuration algebra. Finding a preferred topology
is however not simple: The classical theory assumes the topology of R, which is
however noncompact, so it can not be continuously embedded into the compact
quantum configuration space. The universal Stone-Čhech topology βR, also
seems to be ruled out, because the Liouville-Green-expansion[24] of the holon-
omy differential equation has only solutions that become almost periodic in c as
c→∞, which does not allow for the constructions of functions like c 7→ sin(c2)
as a uniform limit of linear combinations thereof.

5.4.3 Gauge- and Diffeomorphism-Invariance

We will implement the gauge- and diffeomrophism invariant observable algebra
using equation 4.22. Its implementation is hugely simplified due to the or-
thogonality and density of both the gauge-variant and gauge-invariant spin net-
work functions in the kinematic Hilbert space and the gauge-invariant Hilbert
space respectively. The image of a cylindrical function under the map η′ for
SU(2)-gauge- transformations and diffeomorphisms4, can be expanded in gauge-
invariant spin network functions on the scaffold, which are (1) on the graphs in

3If we had used a scaffold with two incommensurable length lo, l1 for each direction, then,
using a result of Velinho[27], we would have obtained that the spin network functions would
be almost periodic functions of the symmetric connection degrees of freedom.

4We defined the map η′ in equation 4.19 and endowed with a Hermitian structure in
equation 4.20.
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the image of the embedding of knot-classes and (2) the spin labels are symmet-
ric under graph symmetries. We denote the set of spin network functions that
satisfies these conditions by S. Hence it is sufficient for the implementation of
equation 4.22 to investigate the matrix elements between gauge-invariant spin
network functions S1, S2, T1, T2 ∈ S that satisfy these two conditions:

〈S1, 〈T1, T2〉Bo
S2〉 = 〈S1, T1〉〈T2, S2〉, (5.20)

which shows that the spaces E1 and J in equation 4.22 are one-dimensional
complex linear spaces. The implementation of the kinematic constraints can
therefore be applied to the observable algebra and we obtain that the gauge-
invariant elements of Bo are obtained as (limits of sequences of) the sums:

a =
N∑
n=1

〈Tn1 , Tn2 〉A

∣∣∣∣∣
T i1 ,T

j
2∈S

. (5.21)

Let us now investigate the structure of the elements of S, so we are able to
explicitly calculate their dependence on the symmetric connection, to be able
to construct the gauge- and difeomorphism invariant quantum embedding.

The gauge-invariant spin network functions are linear combinations of prod-
ucts of traces of holonomies of closed loops. Thus, we calculate the holonomies
around closed loops in the scaffold. These can all be generated by the three
elementary loops ((0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0)),
((0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1), (0, 0, 0)) and ((0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 0, 0),
(0, 0, 0)); the other elementary loops coincide due to homogeneity. The traces
of these holonomies are all even periodic functions in a, c with periodicity lo:

Tr(h((000)(100)(110)(010)(000))) = 2 cos(alo) + sin2(alo)
Tr(h((000)(010)(011)(001)(000))) = 2 cos2(alo/2) + 2 cos(clo) sin2(alo/2)
Tr(h((000)(001)(101)(100)(000))) = 2 cos2(alo/2) + 2 cos(clo) sin2(alo/2).

(5.22)
But the ”Wilson loops around these elementary plaquettes” contain all the
gauge invariant information of the homogeneous connection, because there are
no ”smaller plaquettes” in our scaffold. This means that all solutions to the
Gauss constraint are even functions of periodicity lo. This suggests to fix the
embedding of ”disjoint loop graphs” lk, which are graphs that consists of k
disjoint unknotted loops αnk , into the scaffold as elementary loops as k disjoint
elementary loops around ((00n)(10n)(11n)(01n)(00n)). Since we restrict the
domain of piso to S to obtain the gauge-invariant pinviso , it suffices to define qinviso

as the extension by linearity of:

qinviso : (2 cos(clo) + sin2(clo))k 7→ N

k∏
n=1

Tr(ρ
1
2 (hαnk )), (5.23)

where N is a normalization constant. This choice is already invariant under
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graph symmetries, since all loops have the same spin quantum number assigned5.
The analogue construction for LRS-symmetry is a little more involved and

requires to fix an embedding of disconnected one- and two-loop graphs: Notice
that two loop graphs, apart from a possible knotting, come in two different
diffeomorphism classes: the 8-configuration joins the two individual loops at a
vertex and the B-configuration joins the two loops at an edge. We want to im-
plement

(
2 cos(alo) + sin2(alo)

)n (
2 cos2(alo/2) + 2 cos(clo) sin2(alo/2)

)m
, so we

use for m ≥ n a totally disjoint graph that consists of n B-type graphs and m−n
single loops, whereas for n > m we use a totally disjoint graph that contains m
8-type loops and n−m single loops, so the graph can in both cases be decom-
posed into the single loops (αinm)ni=1(βjnm)mi=1, which are lattice translations of
((000)(100)(110)(010)(000)) and ((000)(010)(011)(001)(000)) respectively. We
can therefore construct qinvLRS as the extension by linearity of:

qinvLRS :
(
2 cos(alo) + sin2(alo)

)n (
2 cos2(alo/2) + 2 cos(clo) sin2(alo/2)

)m
7→ N

∏n
r=1 Tr(ρ

1
2 (hαrnm))

∏m
s=1 Tr(ρ

1
2 (hβsnm)),

(5.24)
where N is a normalization constant. To obtain a readable computation of
the reduced algebra and its induced representation in the next section, we
will introduce the short-hands (k) for (2 cos(clo) + sin2(clo))k and (n,m) for(
2 cos(alo) + sin2(alo)

)n (
2 cos2(alo/2) + 2 cos(clo) sin2(alo/2)

)m
respectively.

5.4.4 Embeddable Loop Quantum Cosmology

In the previous section, we obtained a quantum embedding of the LRS- resp.
isotropic Bianchi I cosmology using induction modules given by the span of
{(n,m) : n,m ∈ N} and {(n) : n ∈ N} respectively. Let us now calculate
the reduced algebra using equation 4.8. Using the orthogonality of cylindrical
functions on a different graph w.r.t. integration over the Ashtekar-Lewandowski
measure, we obtain

〈(n1,m1), (n2,m2)〉LRS : (n3,m3) 7→ δn2,n3δm2,m3(n1,m1)
〈(k1), (k2)〉iso : (k3) 7→ δk2,k3(k1), (5.25)

which are precisely the Fourier-decomposition induction modules of quantum
mechanics on a 2-torus and on a circle respectively.

Using equation 4.12, we can use these operators to induce a vacuum state
through the vacuum state on full Loop Quantum Gravity. Using the above

5There is a subtle point about the graph symmetries that we did not address yet, because
two loops are also diffeomorphic, if their orientation is opposite, but:

Lemma 10 Tr(he) = Tr(he−1 ) for all edges e.

proof: an element of SU(2) can be written as he =

(
ae be
−b̄e āe

)
, so Tr(he−1 ) =

Tr((he)−1) = Tr((he)†) = ae + āe = Tr(he). �
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orthogonality again, we obtain:

ωLRS(〈(n1,m1), (n2,m2)〉LRS) = δn1,0δn2,0δm1,0δm2,0

ω(〈(k1), (k2)〉iso) = δk1,0δk2,0,
(5.26)

which coincides with the canonical vacuum state of quantum mechanics on the
2-torus resp. the circle. Since the Hilbert-space representation of Loop Quan-
tum Gravity is cyclic, we conclude that the induced LRS-symmetric sector is
equivalent with quantum mechanics on the 2-torus and the induced isotropic
sector is equivalent with quantum mechanics on the circle.

5.5 Tentative Dynamics

Let us now use the set of scalar constraints to induce a dynamics for the reduced
system constructed in the previous subsection. We thus search for those ele-
ments aLRS =

∑
i ai〈(ni1,mi

1), (ni2,m
i
2)〉LRS of the induced algebra, for which

the corresponding operator a =
∑
i ai〈q(ni1,mi

1), q(ni2,m
i
2)〉Bo commutes with

the set of scalar constraints (we denote the elements of this set by H here). We
therefore calculate matrix elements between any two cylindrical functions ψ, φ
on the scaffold:

〈ψ, [H, a]φ〉 =
∑
i ai〈ψ, (H〈q(ni1,mi

1), q(ni2,m
i
2)〉Bo

− 〈q(ni1,mi
1), q(ni2,m

i
2)〉Bo

H)φ〉
=

∑
i ai〈ψ,Hq(ni1,mi

1)〉〈Hq(ni2,m1
2), φ〉,

where we used that the set of scalar constraints is Hermitian. However, any
matrix-element of any scalar constraint H with graph that has at most trivalent
vertices vanishes. Since the q(n,m) contain only such graphs, we conclude

〈ψ, [H, a]φ〉 = 0∀ψ, φ, (5.27)

which implies that any a in the reduced algebra commutes with any scalar
constraint H. This means that the scalar constraint is empty for the reduced
algebra, which is the reason, why we titled this section ”tentative” dynamics.
This pathology is imposed to the vanishing of the constraint operator in full
Loop Quantum Gravity on graphs with vertices with valence of at most three.

5.6 Meaning for Standard Loop Quantum Cos-
mology

The differences between the cosmology constructed in this chapter and stan-
dard Loop Quantum Cosmology is mainly due to the different treatment of the
diffeomorphism constraint: Standard Loop Quantum Cosmology is constructed
as a quantization of a classically reduced model, in which the diffeomorphism
constraint is empty. The construction here uses the full quantum theory and
imposes the full diffeomorphism constraint. The use of the full quantum com-
pletion of the group of diffeomorphisms gave us the freedom to choose a rep-
resentative graph for every knot class of graphs, which is the technical reason
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for any difference with standard Loop Quantum Cosmology, which are obvious
since we obtain an isotropic sector that is equivalent to quantum mechanics on
a circle, while standard Loop Quantum Cosmology is equivalent to quantum
mechanics on the Bohr-compactification of the real line.

We see this work however as a strengthening of the results of standard
Loop Quantum Cosmology, because the super-selection sectors of standard Loop
Quantum Cosmology, i.e. those spaces that are left invariant by its Hamilton
constraint and the fundamental momentum operator, are equivalent to quantum
mechanics on a circle. The argument is therefore as follows: The construction
presented here shows how one of these sectors can be induced from the full
quantum theory without going the intermediate step of classical symmetry re-
duction. We thus propose to view standard Loop Quantum Cosmology, which
is a direct sum of these super-selection sectors, as a direct sum of quantum
reductions of full Loop Quantum Gravity. One of the main technical results of
standard Loop Quantum Cosmology is its kinematic discreteness. This discrete-
ness allows for the decomposition of standard Loop Quantum Cosmology into
its super-selection sectors. Many physical results about the evolution through
the big bang rely on this discreteness and the possibility to perform this de-
composition. We thus understand our construction as a strengthening of these
particular results.
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Chapter 6

Smooth Geometries for
Loop Quantum Gravity

This chapter and the following take a different view of constructing a relation
between Loop Quantum Gravity and cosmological sectors thereof. Previously,
we focused on constructing a reduced quantum observable algebra from the
full observable algebra of Loop Quantum Gravity and we induced a Hilbert
space representation thereof from full Loop Quantum Gravity. Now we will
consider an adjustment of the observable algebra of Loop Quantum Gravity
and construct states thereon that have the smooth geometry of classical spaces.
Using the GNS construction, we construct a Hilbert space representation of the
observable algebra underlying Loop Quantum Gravity and impose the Gauss-
and diffeomorphism constraint on states in this representation.

6.1 Mathematical Setup and Ideas

This section contains the lemmata and proofs that we refer to in the subsequent
sections.

6.1.1 Definition of the C∗-algebra

Let us slightly generalize the notation of [23] and let us consider a compact
Hausdorff space X and a regular Borel probability measure µ thereon. The
(possibly distributional) integral kernels K on X, whose action on C(X) defined
through (Kf)(x) =

∫
dµ(x′)K(x, x′)f(x′) leaves C(X) invariant and is invertible

(on a common dense domain) in C(X) form a group G. We denote the subgroup
of elements of G, that leave µ invariant, i.e.

∫
dµ(x)(Kf)(x) =

∫
dµ(x)f(x) for

all f ∈ C(X), by G(µ). Moreover, we denote the ”unitary” subgroup of G(µ)
(called unitary due to their unitary action on L2(X, dµ)), i.e. elements of G
with

∫
dµ(x)(Kf)(x)(Kg)(x) =

∫
dµ(x)f(x)g(x) for all pairs f, g ∈ C(X), by

U(µ). For ψ ∈ L2(X, dµ) and f ∈ C(X acting as multiplication operators in
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B(L2(X, dµ)), we denote w(f)w(ψ) by w(fψ) for all w ∈ U(µ). As operators in
B(L2(X, dµ)), we have for w ∈ U(µ) and f ∈ C(X): wfw∗ = w(f) and similarly
for w1, w2 ∈ U(µ): w1w2w

∗
1 = w1(w2).

Canonical ∗-algebra

Given a compact Hausdorff space X and a regular Borel probability measure µ
thereon and a subgroup W of U(µ), we are able to define a ∗-algebra:

Definition 18 Given X, µ,W, we denote the finite sums of ordered elements
f ◦ w, where f ∈ C(X) and w ∈ W, by Ao(X, µ,W).

Generalizing lemma 2.1 of [23] to this case yields:

Lemma 11 Given X, µ,W, then Ao(X, µ,W) is an algebra generated by ele-
ments of the form f ◦ w, where f ∈ C(X) and w ∈ W.

proof: Notice that w ◦ f = w(f)w for all f ∈ C(X) and w ∈ W. Moreover,
(f1 ◦ w1)(f2 ◦ w2) = f1w1(f2)(w1w2) implies that for any a1, a2 ∈ Ao(X, µ,W)
a1a2 is again in Ao(X, µ,W), because all a ∈ Ao(X, µ,W) are of the form

ai =
n∑
j=1

fijwij

which is preserved, since wij(fkl) ∈ C(X) and (wijwkl) ∈ W. �
Using the relations that are induced for the elements of Ao(X, µ,W), we

equip Ao(X, µ,W) with an involution:

Lemma 12 For a =
∑n
i=1 fiwi ∈ Ao(X, µ,W) we have an involution given by

a∗ =
∑n
i=1 w

−1
i (fi)w∗i .

proof: Using the adjoint in B(L2(X, dµ)) gives

(
∑n
i=1 fiwi)

∗ =
∑n
i=1(fiwi)∗ =

∑n
i=1 w

∗
i f
∗
i

=
∑n
i=1 w

∗
i fiwiw

∗
i =

∑n
i=1 w

−1
i (fi)w∗i .

Since the adjoint is an involution that closes on Ao(X, µ,W), it defines an invo-
lution on Ao(X, µ,W). �

Corollary 10 Ao(X, µ,W) is a ∗-subalgebra of B(L2(X, dµ)).

Given Ao(X, µ,W) there is a natural C∗-algebra A(X, µ,W), which is the C∗-
closure of Ao(X, µ,W) in B(L2(X, dµ)).

Definition 19 Given X, µ,W, we call A(X, µ,W) the canonical C∗-algebra as-
sociated to (X, µ,W) and the fundamental representation on L2(X, dµ) the canon-
ical representation of A(X, µ,W), which we denote by πo.

Lemma 13 If the canonical representation πo of Ao(X, µ,W) is non-degenerate,
then ||πo(f ◦ id)||H = ||f ||∞ and ||πo(id ◦ w)||H = 1.

proof: ||f ||H = ||f ||∞ for a non-degenerate representation of C(X). The unitar-
ity of the representation of W gives the second assertion. �
We will later require this equality to hold for non-canonical representations.
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6.1.2 Unitaries

Let us now consider the definition of unitaries. Recall the definition of a con-
tinuous measure generating system from [23]: A subset E of C(X) is called a
continuous µ generating system, if the span of E is dense in C(X) and L2(X, dµ)
and if id ∈ E and all other elements of e are orthogonal to id in L2(X, dµ). It
follows that if 〈e, ψ〉L2(X,dµ) = 0 for all e ∈ E \ {id}, then ψ = eiφ||ψ||id. Let us
refine this definition:

Definition 20 E is called a Hermitian measure generating system, iff E is
a continuous measure generating system and if there is a set H of Hermitian
operators on B(L2(X, dµ)) such that all the elements of E are mutual eigenvec-
tors of the elements of H and any elements of E can be distinguished by the
eigenvalues w.r.t. elements of H. We call H the labeling set.

Notice, that without loss of generality we are able to assume that h id = 0 for
all h ∈ H, since we would simply redefine h′ := h − hid1B(L2(X,dµ)), where hid
denotes the eigenvalue of id. We assume from now on that this re-normalization
is carried out. We call the collection of all eigenvalues of an element e ∈ E w.r.t
the labeling set H the label of e and denote it by H(e).

Definition 21 Given a function f from the set of all labels to R. Define the
transformation τf : L2(X, dµ) → L2(X, dµ) as the linear extension from E to
L2(X, dµ) of:

τfe := exp(i f(H(e)))e.

Lemma 14 τf leaves µ invariant, if f(H(id)) = 0.

proof: E is dense in C(X), hence for all g ∈ C(X) there is a uniformly convergent
series gi such that g(x) =

∑
i giei(x).∫

dµ(x)g(x) =
∑
i

gi

∫
dµ(x)ei(x) = gH(id),

where we used the uniform convergence. On the other hand:∫
dµ(x)(τfg)(x) =

∑
i

gi

∫
dµ(x) exp(i f(H(ei)))ei = gH(id) exp(i f(H(id))),

which gives the assertion by comparing the right hand sides. �

Lemma 15 If f(H(id)) = 0, then τf extends to a unitary operator on L2(X, dµ).

proof: Notice that f(Ĥ) is an operator with real eigenvalues on the domain
E. Since E is dense in L2(X, dµ), we consider the Hermitian extension of f to
L2(X, dµ). Then f(Ĥ) is the generator of a unitary one-parameter group on
L2(H, dµ), which coincides on E with τλf for λ = 1. This defines the desired
unitary extension. �

Corollary 11 If f(H(id)) = 0 then τf is in U(µ).
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Let us consider the integral kernel for the τf .

Lemma 16 The integral kernel Kτf (x, x′) of τf has the form Kτf (x, x′) =∑
i∈I gi(x)fi(x′).

proof: Since E is dense in L2(X, dµ), we can find a dense subset Eo of E that
is linearly independent; this generally reduces the label set to a subset, that
we denote by I. Eo can then be orthonormalized (using Grahm-Schmidt). We
denote the elements of Eo by eo. Then (τfe)(x) =

∑
i∈I(τfeoi )(x)〈eoi , e〉L2(X,dµ);

the extension by density gives the integral kernel. �

6.1.3 States and C∗-algebra

For the practical definition of a C∗-closure of a ∗-algebra Ao(X, µ,W), it is
useful define a state on Ao(X, µ,W), to calculate the GNS representation and
then to calculate the C∗-closure in this representation. We will also require the
weakening of the non-degeneracy condition ||πGNS(f ◦ id)||H = ||f ||∞, ||id ◦
w||H = 1.

Definition 22 For a map F :W → U(1) and regular Borel probability measure
ν on X define the functional ωF : Ao(X, µ,W)→ C by

ωF,ν(
n∑
i=1

fiwi) :=
n∑
i=1

F (wi)
∫
dν(x)fi(x).

Lemma 17 If F is a group morphism, then ωF,µ is a state on Ao.

proof: We need to show, that ω is a positive linear functional.
bound: For all f ∈ C, ||f ||∞ is finite by construction, thus for all {fi}ni=1 there
exists a finite M s.t.

∑n
i=1 ||fi||∞ ≤M . Then

|ωEo(b)| = |
∑n
i=1 F (wi)

∫
dµ(A)fi(A)|

≤ |
∑n
i=1 F (wi)

∫
dµ(A)||fi||∞|

≤ |
∑n
i=1 F (wi)||fi||∞|

≤
∑n
i=1 |F (wi)||fi||∞| =

∑n
i=1 ||fi||∞ ≤M.

We used that dµ is a probability measure on Ā for the second inequality. lin-
earity:

ωF,µ(b1 + αb2) =
∑n1
i=1 F (w1,i)

∫
dµAL(A)f1,i(A)

+α
∑n2
i=1 F (w2,i)

∫
dµAL(A)f2,i(A)

= ωF,µ(b1) + αωF,µ(b2).
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positivity:

ωF,µ(b∗b) = ωF,µ ((
∑n
i=1 fiwi)

∗(
∑n
i=1 fiwi))

=
∑n
i,j=1 ωF,µ

(
(w∗j (fj)∗fiwi

)
=

∑n
i,j=1 ωF,µ ((wj)∗(fj)∗fiwi)

=
∑n
i,j=1 ωF,µ

(
(wj)∗fjwj(wj)∗fiwj(wj)∗wi

)
=

∑n
i,j=1 ωF,µ

(
(K−1

j fj)(K−1
j fi)(wj)∗wi

)
=

∑n
i,j=1 F

∗
j Fi

∫
dµ(x)(K−1(fjfi))(x)

=
∑n
i,j=1 F

∗
j Fi

∫
dµ(x)fj(x)fi(x)

=
∫
dµ(x)

∑n
i,j=1 (Fjfj(x))(Fifi(x))

=
∫
dµ(x)|

∑n
i=1 Fifi(x)|2 ≥ 0,

where we used that F is a group morphism of W into U(1) and that for all
F ∈ U(1) : F ∗ = F−1 as well as that w ∈ W leaves µ invariant. �

Definition 23 The GNS-representation of Ao(X, µ,W) is denoted by (HF , πF ).

It is in general rather difficult to find the Gel’fand ideal for a general state ω,
it is in general much simpler to construct the Gel’fand ideal for a Schrödinger
state ων on Ao(X, µ,W) defined using the measure ν:

ων(
n∑
i=1

fiwi) :=
n∑
i=1

∫
dν(x)fi(x). (6.1)

Definition 24 Given a morphism F from W to U(1), we define the map κF :
Ao(X, µ,W)→ Ao(X, µ,W) by:

κF :
n∑
i=1

fiwi 7→
n∑
i=1

F ∗i fiwi.

Lemma 18 κF is an automorphism of Ao(X, µ,W). The inverse is given by

κ−1
F :

n∑
i=1

fiwi 7→
n∑
i=1

Fifiwi.

proof: C-linearity of κF as well as κ−1
F κF b = κFκ

−1
F b = b for all b ∈ Ao(X, µ,W)

follows immediately. Moreover simple insertion reveals κ−1
F (κF (b1)κF (b2)) =

b1b2. �

Lemma 19 The algebra element κF (b) is in the Gel’fand ideal of ωF,µ if and
only if b is in the Gel’fand ideal of ων .

proof: ων(
∑n
i=1 fiwi) =

∑n
i=1

∫
dµ(x)fi(x) =

∑n
i=1 Fi

∫
dµ(x)F ∗i fi(x) = ωF,µ(κF

∑n
i=1 fiwi).

�
Using this simple relation between the Gel’fand ideals, we find the relation

between the GNS representations. Recall that the GNS-Hilbert space Hω con-
sists of the equivalence classes of limits of those sequences (an)∞n=1 of elements of
Ao for which limn→∞ ω(a∗nan) converges, where equivalence is taken by factoring
the Gel’fand ideal.
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Lemma 20 If N is a of representatives of Hωµ in Ao (corresponding to the
Schrödinger functional ωµ), then κ−1

F (N ) is a set of representatives of HωF,µ .

proof: We have for a, a′ ∈ Ao and iF ∈ IωF,µ , i ∈ Iωµ : a ∼ a′ + iF = a′ + κF (i),
hence κ−1

f (a) ∼ κ−1
F (a′) + i. �

Using the observation that Hω can be represented as a completion of C(X)
for any Schrödinger functional ωµ, we conclude:

Corollary 12 There is a dense set of representatives of HωF,µ , given by ele-
ments of C(X).

Using the density of a Hermitian measure generating system E in L2(X, µ) and
the linearity of κF , we conclude:

Corollary 13 There is a dense set of representatives of HωF,µ , given by ele-
ments of E.

Definition 25 The completion of the Ao(X, µ,W) in the GNS-representation
w.r.t. the state ωF,µ is the C∗-algebra AF (X, µ,W).

Lemma 21 If the canonical representation πo of Ao(X, µ,W) is non-degenerate,
then ||πF (f ◦ id)||HF = ||f ||∞ and ||πF (id ◦ w)||HF = 1.

proof: Using the representation on the Hermitian generating system E gives the
equality. �

Let us collect the results of this subsection:

Theorem 2 Given an algebra Ao(X, µ,W), a Hermitian generating system E
for µ and a F : H(E) → R with F (H(id)) = 0, then ωF,µ is a state on
Ao(X, µ,W), there is a C∗-completion AF (X, µ,W) and a GNS-representation
(HF , πF ), that satisfies ||πF (f ◦ id)||HF = ||f ||∞, ||πF (id ◦ w)||HF = 1, and E
is dense in HF .

6.1.4 Regularity

We recall the regularity definition (definitions 2.7-2.9 in [23]): The homeomor-
phisms R → W, that lie in a subset R are one parameter R subgroups of W.
We call a one parameter subgroup ofW regular iff it is weakly continuous. Let π
be representation of Ao(X, µ,W) on a Hilbert space H. We call π regular w.r.t.
R, iff π maps regular one parameter subgroups of R to weakly continuous one
parameter subgroups π(R) ⊂ π(W) ⊂ B(H).

It is practically easier to check regularity in a Schrödinger representation
than in a more general GNS representation.

Lemma 22 If F |R is continuous and if the GNS representation through ωµ is
regular w.r.t. R, then ωF,ν is regular w.r.t. R.
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proof: use a continuous measure generating system E, such that for all e1, e2 ∈ E
and all one parameter subgroups (t 7→ wt) ∈ R:

limt→to |〈π(e1)ΩF,µ, (wt − wto)π(e2)ΩF,µ〉F,µ|
= limt→to |ωF,µ(e∗1(wt − wto)e2)|
= limt→to |ωF,µ(e∗1wte2)− ωF,µ(e∗1wtoe2)|
= limt→to |ωF,µ(e∗1Kt(e2)wt)− ωF,µ(e∗1Kto(e2)wto)|
= limt→to |F (wt)

∫
dµ(x)e1(x)(Kte2)(x)− F (wto)

∫
dµ(x)e1(x)(Ktoe2)(x)|

= limt→to |F (wt)ωµ(e∗1wte2)− F (wto)ωµ(e∗1wtoe2)|
= 0,

where we used the continuity of F and the regularity of ωµ w.r.t. R, which
implies limt→to |ωµ(e∗1wte2)− ωµ(e∗1wtoe2)| = 0, as well as the continuity of the
product of two continuous functions on R. �

6.2 Adjusted Observable algebra of Loop Quan-
tum Gravity

Although Fleischhacks formulation of the Weyl algebra for Quantum Geometry[23]
arises naturally from Loop Quantum Gravity, it turns out to be more convenient
to work with a slightly modified version of the Weyl groupW. The usual defini-
tion of the Schrödinger state ωo of Loop Quantum Gravity is only well defined,
because it does not depend on the ordering of the Weyl operators. As soon
as one wants to construct a a state on the Weyl algebra that gives nontrivial
vacuum expectation values to the electric field, one needs to fix this operator
ordering ambiguity if one wants to be able to define the state in the same way
as introduced in section 6.1. This is a nontrivial task, and we circumvent it by
using a reformulation of the Weyl algebra that is such that the commutators of
the new Weyl operators obtain vanishing vacuum expectation values.1

6.2.1 Quasi-Surfaces

Although the exponential action of fluxes through two-dimensional surfaces gen-
erates the Weyl group of Loop Quantum Geometry, it turns out that the Weyl
group contains more general objects, which correspond to exponential actions
through quasi-surfaces. Let us recall the definition of a quasi-surface form [23]:

A decomposition of an edge e is a finite collection of edges (e1, ..., en), such
that e1 ◦ ... ◦ en = e. Given a subset S of Σ, we call an edge e S-admissible,
iff e ∩ S = ∅ or e ∩ S = e or e ∩ S = i(e) or e ∩ S = f(e). An element of
this decomposition is called S-simple. A quasi-surface is a subset S of Σ, such
that every edge e ∈ P(Σ) has a minimal decomposition into S-admissible pieces
ei. The particular category of 2-dimensional surfaces, that we have in mind

1Because the configuration algebra and the action of the diffeomorphisms thereon is very
similar to the observable algebra of Loop Quantum Gravity, we omit those elements here and
refer to chapter 8.
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consists of stratified analytic surfaces. The orientation of a surface is captured
by its (incoming) intersection function with paths: An intersection function σS
for a surface S is a function σS : P(Σ) → {−1, 0,+1} that vanishes, whenever
{i(e), f(e)} ∩ S = ∅, satisfying σS(e1) = σS(e2), whenever either i(e1) = i(e2)
and e1 ↑↑ e2 or f(e1) = f(e2) and e1 ↓↓ e2. The orientation of an oriented
surface S in Σ defines a natural intersection function through: σS(e) = 0,
whenever {i(e), f(e)} ∩ S = ∅ or ė is tangent to S at the respective boundary
point and σS(e) = +1 if i(e) ∈ S and ė above S or b(e) ∈ S and ė beneath S.
Furthermore, σS(e) = −1 whenever σS(e) = +1 if i(e) ∈ S and ė beneath S
or b(e) ∈ S and ė above S. This is precisely the way in which the orientation
of S is encoded in the intersection function σS . To generalize the concept of
an oriented surface, one defines: An oriented quasi-surface is a quasi-surface
together with an intersection function.

Given a subset of a quasi-surface that is itself a quasi-surface, we call it
a quasi-subsurface and if the intersection function of an oriented quasi-surface
coincides with the restriction of the intersection function of the quasi-surface
then we call the orientation induced. An important lemma form [23] is that
given two quasi surfaces S1 and S2, then there are is an induced intersection
function σS1∩S2 for S1 ∩ S2 and σS1∪S2 for S1 ∪ S2.

6.2.2 Weyl-operators

Having quasi-surfaces at our disposal, we are in the position to recall the defi-
nition of quasi-fluxes and Weyl operators [23]. Given an oriented quasi-surface
(S, σS), we define for each S-simple e ∈ P(Σ) and each map µ : Σ→ G the map
κS,σ,µ:

(κS,σ,µA)(e) :=
{

(µ(i(e)))σS(e)A(e)(µ(f(e)))σS(e) if {i(e), f(e)} ⊂ S ∩ e
A(e) if e ⊂ S ∨ e ∩ S = ∅

Since all e ∈ P can have a minimal decomposition (e1, ..., en) into S-simple
pieces, we extend the map κS,σ,µ to all elements of A by defining the map
Θ : A → A:

ΘS,σ,µ(A) : e 7→ (κS,σ,µA)(e1)...(κS,σ,µA)(e1).

This defines the action of the Quasi-flux Θ on A. This action is a homeomor-
phism on A, that leaves the canonical measure µo invariant. It is important to
notice, that given two quasi-surfaces S1 and S2 and two functions µ1, µ2, that
commute on S1 ∩ S2, then using

µ :=

 µ1 for S1 \ S2

µ1µ2 for S1 ∩ S2

µ2 for S2 \ S1

we obtain that ΘS1,σ1,µ1ΘS2,σ2,µ2 = ΘS2,σ2,µ2ΘS1,σ1,µ1 = ΘS1∪S2,σS1∪S2 ,µ
.

Since each Θ is a continuous map A → A, one obtains a pull-back under
this homeomorphism Θ∗ : C(A)→ C(A). Θ∗ is surjective, since A is compact,
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and extends to a unitary operator on L2(A, dµo), since it leaves the canonical
measure µo invariant. This is the definition of the usual Weyl-operators WS,σ,µ:

WS,σ,µ := (ΘS,σ,µ)∗.

Given a constant function µ, it turns out, that this representation of the Weyl-
operators is regular w.r.t. the topology induced by the one on G. The action
of a diffeomorphism φ on a Weyl-operator WSo,µ, where So denotes an oriented
surface, is αφ(WSo,µ) := Wφ(So),µ, such that the unitary action of the diffeo-
morphism becomes:

U∗φWSo,µUφ := αφ(WSo,µ) = Wφ(So),µ.

Although the fluxes generate the Weyl group of Loop Quantum geometry, it is
difficult to describe the Weyl group, due to the non-commutativity of the Weyl
operators. To be able to construct a modified (almost commutative) Weyl group,
we need to introduce the area operator of an oriented quasi-surface S, σS2: The
area operator is Hermitian and it is our strategy to define an operator first on a
dense domain given by the spin network functions and to define the Hermitian
completion of this operator as the area Weyl-operator.

For the definition of the area operator see appendix C. This area operator AS
is self-adjoint on the gauge-variant spin network functions, so we can define its
unique Hermitian extension by density in L2(A, dµo). It is important to notice,
that the gauge-variant spin network functions based on admissible graphs3 are
eigenfunctions of AS ! Let us now consider the exponentiated action WA

S of this
operator on gauge-variant spin network functions Tγ (viewed as an element of
L2(A, dµo)):

WA
S (λ)Tγ := eiλASTγ =

∑
i

aiTγS ,ie
iλAS(TγS,i) =: αAS,λ(Tγ), (6.2)

where AS(TγS ,i) denotes the S-area eigenvalue of TγS ,i. Notice, that the second
equality ensures that the first one is well defined. Notice moreover, that the
action of the operator WA

S (λ) is unitary on gauge-variant spin network functions
and weakly continuous in λ, since WA

S furnishes a unitary representation of R
generated by a Hermitian operator. Thus, we can consider the unique unitary
extension to all of L2(A, dµo). Using the unitarity of the representation of
the diffeomorphism group on L2(A, dµo), we find the expected diffeomorphism
transformation properties for the area operators:

U∗φW
A
S Uφ = WA

φ(S).

Definition 26 The abstract operators WA
S (λ), that are defined by (WA

S (λ))∗ =
WA
S (−λ) together with the action on elements of C(A), given by (WA

S )∗FWA
S :=

αAS (T ) and vanishing commutation relations with the (ordinary) Weyl-operators
are the area Weyl Operators, which generate the area Weyl group.

2Although the area of a surface S is independent of its orientation, it is useful to have the
intersection function σS available.

3A graph is admissible to a surface, if the only transversal intersections of the surface with
the graph are bi-valent vertices with gauge-invariant intertwiner.
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Let us now include the operatorsWA
S (λ) as additional elements of the C∗-algebra

of Loop Quantum Geometry.

Lemma 23 The unitary extension of the action defined in equation 6.2 of the
area Weyl operators is regular.

proof: We already established weak continuity in the parameter λ, so using the
topology induced by R gives regularity. �

It may be useful to have an explicit expression for the action of WA
S on

L2(A, dµo):

WA
S : Ψ 7→

∑
T∈SNF

αAS (T )
∫
A
dµ(A)T (A)Ψ(A),

where the sum extends over all gauge variant spin network functions.

6.2.3 Definition of the adjusted Algebra

Let us collect some data, which we need to give a precise definition of Loop
Quantum Geometry: First, we assume an analytic three-dimensional spin man-
ifold Σ, which provides the classical topology. The gauge group for Loop
Quantum Geometry is SU(2), which acts naturally on the spin bundles over
Σ. Given Σ, we consider only piecewise analytical path, hence the underlying
path groupoid P(Σ) consists is generated by analytical path in Σ and consists
of all finite piecewise analytical paths in Σ. We assume a unitary represen-
tation of the extended stratified analytical diffeomorphisms, which we denote
by D4, which leaves the groupoid P(Σ) invariant. Constructing A as well as
the canonical representation of C(A) on L2(A, dµo) and the canonical action of
the diffeomorphisms on L2(A, dµo) from the data (Σ,P(Σ),D′), we obtain the
canonical representation of the configuration algebra of Loop Quantum Grav-
ity. Form now on, we will depart from this canonical representation and assume
structural data that differs from [23]:

Let eo be a triad field on Σ, stemming from a (classical) Riemannian metric
q. Denote the the densitized inverse of the triad e by Eo. Moreover, let τ be
a (not necessarily continuous) global section in the trivial Lie-algebra vector
bundle of SU(2) over Σ, that is normalized at each point: kijτiτj = 1. These
two structures provide the classical background, that we will incorporate in the
next section. Denote the set of stratified analytic two-surfaces in Σ by S(Σ)
and associate to each oriented S ∈ S(Σ) its natural intersection function σS .
Denote the set of piecewise constant real functions on f : Σ → R by K5. Let
us now use the data (Eo, τ,S,K) to define the Weyl group, that we want to
consider:

4If necessary, we complete D to a groupoid D′ by considering the action on P(Σ) and taking
the smallest subgroupoid of the double groupoid of the set P(Σ), that contains all elements of
D. This definition ensures, that D′ still preserves P(Σ), but providing the inverses whenever
necessary. The precise construction is explained in chapter 3.

5With piecewise constant we mean that when restricted to any quasi-surface, we demand
that there is a locally finite decomposition of the quasi-surface into quasi-subsurfaces, such
that f is constant on the quasi-subsurfaces in this decomposition.
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For each S ∈ S and each constant f ∈ K6 consider the three unitary rep-
resentations of R on L2(A, dµo), denoted by their action on gauge variant spin
network functions considered as a dense set in L2(A, dµo):

WA
S (f) : T 7→ αAS,λ(f)(T )

W+
S (f) : T 7→ (ΘS,σ,exp(λ(f)τ))∗T

W−S (f) : T 7→ (ΘS,σ,exp(λ(f)τ))∗T,
(6.3)

where λ(f) denotes the constant value of f on S and σ denotes the intersection
function corresponding to the opposite orientation of S 7. We notice, that these
almost commute: First, any two the operators on any two disjoint surfaces com-
mute as well as the operators on coinciding surfaces, because the area operator
commutes with with the flux operators on the same surface and there is only
one flux operator per surface. Given any two surfaces two-dimensional S1 and
S2, then [WS1 ,WS2 ] is an operator that acts nontrivially only on a quasi-surface
that is contained in a one-dimensional quasi-surface. Thus measuring the area
of the base space support of the commutator with and classical Eo will give a
vanishing result, hence commutativity.

Definition 27 The group generated by the elements WA
S (f),W+

S (f),W−S (f),
where f varies over K, S varies over S(Σ) is called the Weyl group of Loop
Quantum Geometry, denoted by W.)

We define the involution for W (λ) ∈ W by W ∗(λ) = W (−λ). A simple
application of the definition of the three families of Weyl operators reveals
W (−λ)W (λ)T = T for all gauge variant spin network functions and hence:

Corollary 14 W ∗(λ) = (W (λ))−1.

Moreover:

Corollary 15 W is commutative.

This definition, which depends on τ differs from the definition of Loop Quan-
tum Geometry in [23]. Although we are not able to recover all Weyl-operators
in Fleischhacks definition, we claim that this definition contains ”enough” all
gauge-invariant quantum geometry:

Lemma 24 The generators of the one parameter subgroups of the Weyl group
furnish a Hermitian labeling set.

proof: Recall from [23], that the gauge variant spin network functions are a
generating set for µo. Given a spin network function Tγ based on a graph
γ, notice that the geometry of each edge can be determined through the area
operators: For any edge e ∈ γ, choose an affine parametrization e(t), consider

6The operators corresponding to nonconstant f ∈ K arise as products of operators defined
on quasi-subsurfaces in the decomposition of S in which f is constant in each quasi-subsurface.

7Of course, W+
S is the same operator as W−

S
and WA

S = WA
S

and we will identify them

with each other.
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two one-parameter families of surfaces Se(t) and Soe (t), where Se(t) intersects
e only at e(t), and does not intersect any other edge in γ; Soe (t) := Se(t) \
{e(t)}. Since e carries a nontrivial representation, ASe(t)T 6= 0, but ASoeT = 0.
Moreover the representation on e is unambiguously determined by ASe(t), for
any t.

For each analytic edge e ∈ γ consider the two stratified analytic ”umbrella-
shaped” surfaces Sie and Sfe at i(e) and f(e) respectively, which are constructed
such that only e is ”above” them and all other other edges e ∈ γ are either
completely outside or tangential to Si,fe . These act as left- and right-invariant
vector fields on the matrix element corresponding to e. Thus, all quantum
numbers carried on T can be determined. �

Definition 28 Given the data (Σ,P(Σ),D′, Eo, τ,S,K), and after construct-
ing the canonical representation of C(A), W, D′ on L2(A, dµo), we define the
C∗-algebra of Loop Quantum Geometry as the closure of the span of the represen-
tation f ◦w ◦φ in the canonical representation on L2(A, dµo), where f ∈ C(A),
w ∈ W and φ ∈ D′. We denote this algebra by A or A(Eo, τ), whenever we
want to point to the explicit dependence.

Although this algebra is smaller than the standard definition, we saw by lemma
24, that it is large enough to encode quantum geometry. It will however turn
out that it is very useful to have all flux operators available; let us therefore
construct them:

The construction will not be through homeomorphisms on A, but to define
the fluxes that generate them through the commutators with gauge variant spin
network functions. It will turn out that these form a dense set in each sum-
mand of the Hilbert space that we will construct and we are thus later able to
to extend their action by density. The important initial observation is that the
generators of the W+

S (λ),W−S (λ),WA
S (λ), i.e. the flux-operators parallel and

antiparallel to τ and the area operators, act on a gauge variant spin network
function Tγ by splitting the edges e ∈ γ at the intersections e ∩ S and insert-

ing the respective vertex operators J (u)
v,e , J

(d)
v,e ,

√
J2
v,e at all intersection vertices.

Thus the description of their action involves two steps: first the splitting and
second the action as the respective SU(2)-operator on the pieces of the splitting.

Let us first consider the splitting of an edge e ∈ γ: The splitting occurs
either at a boundary point or in the interior of the edge. If S ∩ interior(e) = ∅,
then the splitting is trivial, i.e. the edge e is not changed. If the splitting
occurs in the interior of e, then the edge e is replaced with e 7→ (e1, e2), where
e1 ◦ e2 = e and S ∩ e = f(e1) = i(e2), and ujnm(he(A)), where ujnm is the
nm-matrix element in the j representation of SU(2), is replaced with

ujnm(he(A)) 7→
j∑

k=−j

ujnk(he1(A))ujkm(he(A)).

This splitting procedure has to be performed for all edges.
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Let us now consider the insertion of the operators J (u)
v,e , J

(d)
v,e ,

√
J2
v,e: Consider

the insertion into the splitting of ujnm(he(A)). This amounts to inserting the
respective matrix:

j∑
k,l=−j

ujnk(he1(A))M j
klu

j
lm(he(A)).

Since the necessary quantum number j, that we need to determine the represen-
tation matrix M j of J (u)

v,e , J
(d)
v,e ,

√
J2
v,e is determined by

√
J2
v,e and the necessary

quantum numbers, that we need to determine k, l in the splitting of ujnm(he(A))
are determined by J

(u)
v,e , J

(d)
v,e , which are available as fundamental operators in

our theory, we can construct an arbitrary flux operator as a self-adjoint operator
whose domain is given by the gauge-variant spin network functions. The Her-
mitian extension defines the respective flux operator, which is constructable due
to the density of the gauge-variant spin network functions in each summand of
the representation, that we will construct. Exponentiating these operators then
gives the desired Weyl-operators, which act precisely as Fleischhack’s homeo-
morphisms on the gauge-variant spin network functions. So, all Weyl-operators
used by Fleischhack are present in our algebra. But when we want to represent
them, then we have to first reexpress them in terms of the fundamental Weyl
operators.

6.3 Definition of DQG States, GNS-Representation
and kinematic constraints

Using the mathematical preparations of section 6.1 we define a state on the
modified algebra of Loop Quantum Geometry that we defined in section ??.
These sates are labeled by 3-geometries, which we encoded in a densitized inverse
triad Eo in the structure data quoted in the previous section, particularly the
map τ . This amounts to an application of the results of section 6.2.3, so we are
only left with the performing the work programme for the algebra described in
definition 28.

6.3.1 Definition of DQG states

The finite sums of a =
∑n
i=1 fi ◦wi ◦ φi, where fi ∈ C(A), wi ∈ W and φi ∈ D′

are dense in A by definition 28. Let us define the state ωEo on these finite sums
as:

ωEo(a) :=
n∑
i=1

FEo(wi)
∫
A
dµo(A)f(A), (6.4)
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where FEo(WS) = 1 whenever S is contained in a less than two-dimensional
subset of Σ and otherwise

FEo :


WA
S (λ) 7→ exp(iλ

∫
S
|Eo|)

W+
S (λ) 7→ exp(iλ

∫
S
Eo)

W−S (λ) 7→ exp(iλ
∫
S
Eo).

(6.5)

Lemma 25 W leaves dµo invariant.

proof: The gauge-variant spin network functions furnish a Hermitian measure
generating system with labeling set given by the area- and ”allowed flux”-
operators8 by lemma 24. Moreover, for all elements H in the labeling set,
we have H id = 0. Noticing that all W ∈ W act on the gauge variant spin
network functions as exp(iλH) lets us apply lemma 14. �

Lemma 26 ωEo is a state on A (for now defined without including diffeomor-
phisms).

proof: To apply lemma 17, we need to prove that FEo is a group morphism:
From lemma 15 we see that all elements of W, that arise as commutators are
mapped to 1. Moreover, W (λ)−1 = W (−λ) and equation 6.5 reveals that
F (W (λ))−1 = F (W (−λ)). The rest of the group morphism follows from a
direct check of F (W1)F (W2) = F (W1W2) by inserting the nine qualitatively
different possibilities into equation 6.5. �

It is quite simple to verify that the W extend to unitary operators in the
GNS representation constructed from ωEo using W ∗(λ) = W (−λ), because for
any a, b ∈ A one has:

ωEo((W (λ)a)∗(W (λ)b)) = ωEo(a
∗W (−λ)W (λ)b) = ωEo(a

∗b).

Having a state on A lets us construct the corresponding GNS representation:

6.3.2 GNS-representation

Using the Schrödinger state ωo(
∑
i fi ◦wi) =

∑
i

∫
A dµo(A)fi(A) for fi ∈ C(A),

wi ∈ W and knowing that the gauge-variant spin network functions are a Her-
mitian generating set for dµo, we explicitly construct the GNS-representation
for ωEo . Let us now apply definition 24 to F given by equation 6.5, then lemma
18 tells us κF is an automorphism of A.

Our strategy is to use this automorphism to construct the GNS-representation
corresponding to ωEo directly from the GNS representation corresponding to ωo,
along the lines outlined in lemma 20 and the subsequent construction. Let us
therefore describe the canonical GNS-representation. Let aj =

∑N
i=1 fijwij be

an element of A, then ηo : A → (A)/No ⊂ Ho, where No denotes the Gel’fand
ideal corresponding to ωo, πo : A→ B(H) and 〈., .〉o are determined by requiring

ωo(a∗1a2a3) = 〈ηo(a1), πo(a2)ηo(a3)〉o
8We call a flux operator ”allowed” if it is parallel to the restriction of τ to the respective

quasi-surface.
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to hold for all ai. The canonical Schrödinger representation satisfies this condi-
tion and can be denoted as the dense extension of:

ηo(a) : A 7→
∑
i fi

πo(a)φ : A 7→
∑
i fi(A)(αwi(φ))(A)

〈φ, φ′〉o :=
∫
A φ(A)φ′(A),

where a =
∑N
i=1 fi ◦ wi with fi ∈ C(A), wi ∈ W and φ, φ′ ∈ C(A) ∼ (A)/No.

Let us consider ωEo(κF (a)):

ωEo(κF (a)) = ωEo(
∑
i fiF

−1(wi)wi)
=

∑
i F (wi)

∫
dµo(A)fi(A)F−1(wi)

=
∑
i

∫
dµo(A)fi(A) = ωo(a),

from which we deduce that we have to only insert κF into the definitions of ηo
and πo to obtain ηEo and πEo , because we have

ωEo(κF (a∗1)κF (a2)κF (a3)) = ωEo(κF (a∗1a2a3)) = ωo(a∗1a2a3).

So we can construct the the GNS-representation by using this identity and
κ−1
F (κF (a)) = a for all a ∈ A and obtain:

ηEo(a) = ηo(κF (a)) : A 7→
∑
i F (wi)fi

πEo(a)φ = πo(κF (a)) : A 7→
∑
i F (wi)fi(A)(αwi(φ))(A)

〈φ, φ′〉Eo = 〈φ, φ′〉o :=
∫
A φ(A)φ′(A).

We denote the Eo-GNS-vacuum state corresponding to the cyclic vector η(id)
by ηEo(id) =: ΩEo . We will denote the GNS-representation constructed from
ωEo by (HEo , πEo).

6.3.3 Implementation of the Diffeomorphisms

We know by lemma 22 that this representation is regular, because F is con-
tinuous and the canonical representation of the algebra A of Loop Quantum
Geometry is regular. Let us now introduce a unitary representation of D. This
means, that we seek a Uφ for all φ ∈ D, such that:

ωEo(a) = 〈ΩEo , πEo(a)ΩEo〉Eo
= 〈UφΩEo , Uφπo(a)ΩEo〉Eo
= 〈UφΩEo , Uφπo(a)U∗φUφΩEo〉Eo
= 〈UφΩEo , πo(αφ(a))UφΩEo〉Eo
= ωφEo(αφ(a)),

where we assumed a covariant action αφ of the diffeomorphisms φ ∈ D on the
elements of A, defined through the extension by density of:

αφ(a) = αφ(
∑
i

fi,γiwi,Si) =
∑
i

fiφ(γi)wi,φ(Si).
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Let us now determine the state ωφEo by considering:

ωφ−1(Eo)(αφ−1(a)) = ωφ(Eo)(
∑
i fi,γiwi,Si)

=
∑
i Fφ−1(Eo)(wi,Si)

∫
A dµo(A)fi,γi(A)

=
∑
i F(Eo)(wi,φ(Si))

∫
A dµo(A)fi,φ(γi)(A)

= ωEo(αφ(a)) = 〈ΩEo , πEo(αφ(a))ΩEo〉Eo
= ωEo(αφ(a)) = 〈ΩEo , U∗φπEo(a)UφΩEo〉Eo
= ωEo(αφ(a)) = 〈UφΩEo , πEo(αφ(a))UφΩEo〉Eo ,

where we used the diffeomorphism invariance of dµo in the third line. Comparing
these two calculations lets us conclude that

UφΩEo = Ωφ(Eo),

so we have to consider a direct sum of GNS-representations, one for each distinct
inverse triad φ(Eo) in the diffeomorphism orbit of Eo.

6.3.4 Implementation of SU(2)-gauge Transformations

Let us now consider SU(2)-gauge transformations: Let there be a map Λ : Σ→
SU(2), then for each A ∈ A we have an action of the gauge transformation αΛ

acting as:
αΛA : e 7→ Λ−1(i(e))he(A)Λ(f(e)).

The action on the triads E is similarly:

αΛE = Λ−1EΛ,

where the action is taken pointwise in Σ. Using the linearity of the of the
integrals we obtain the gauge action on the area- and flux- Weyl operators.
Moreover, using the precise analogue of the two previous calculations we obtain
that requiring a unitary covariant representation of the gauge transformations,
i.e. for all Λ there is a UΛ = (U∗Λ)−1 with U∗Λπ(a)UΛ := αΛ(a), means that
we have to extend the representation constructed from Eo to a direct sum of
GNS-representations for every distinct αΛ(φ(Eo)) in the gauge×diffeomorphism
orbit of Eo. Let UΛ denote the unitary representation of the SU(2)-gauge
transformation Λ, then the unitary action on the vacuum vector ΩEo is

UΛΩEo = ΩαΛ(Eo).

There is one caveat stemming from the SU(2)-gauge transformation properties
of the electric fields: We constructed the quantum algebra using only those flux-
Weyl-operators, that correspond to exponentiated fluxes parallel to the structure
τ . This structure τ then transforms under the SU(2)-gauge transformations as

αΛ(τ) : x ∈ Σ 7→ Λ(x)τ(x),

so τ varies among the summands. Since the definition of the algebra A depends
on τ , one may worry whether the representation is then well defined at all. But

77



as we saw at the end of subsection 6.2.3, there are Flux-Weyl-operators available
for any internal direction in the gauge group not just those parallel to τ . Thus,
there is no problem with the definition of the direct sum of representations9.

Taking the direct sum of GNS-representations is nothing else than to say
that the gauge- and diffeomorphism variant representations are labeled by clas-
sical Riemannian geometries G and we construct them as the direct sum of
GNS-representations of ωEo states, where we take the sum over all Eo that de-
scribe Go, i.e. G(Eo) = Go. Since the representation depends on the structure
τ , which needs to be provided for precisely one Eo, we will spell this out ex-
plicitly by writing πGo,τ . This is to say that we use the following Hilbert space
representation:

(HGo , πGo,τ ) := ⊕{Eo:G(Eo)=Go}(HEo , πEo,τG),

where τG denotes the gauge transformed structure τ .
Since the gauge-variant spin network functions are a Hermitian generating

set for the measure µo, we can apply corollary 12 and obtain that the gauge-
variant spin network functions are dense in A. But the gauge-variant spin
network functions are also orthogonal in the Eo-representation, because for any
two gauge-variant spin network functions T1, T2 we have:

〈T1, T2〉Eo = 〈π(T1)ΩEo , π(T2)ΩEo〉Eo
= ωEo(T

∗
1 T2) =

∫
A dµo(A)T1(A)T2(A)

= ωo(T ∗1 T2) = 〈T1, T2〉o
together with the orthogonality of the gauge-variant spin network functions
in the LOST/F-representation. Moreover, we saw that one can include the
diffeomorphisms and SU(2)-gauge transformations as unitary transformations,
if we take the direct sum of ωEo -GNS-representations, with G(Eo) = Eo. Since
the vectors in different summands are orthogonal to each other, we find that a
dense orthogonal set of HGo is given by the gauge variant spin network functions
T ∈ SNF times Eo ∈ {Eo : G(Eo) = Go}, which we denote by T ◦ Eo. The
HGo inner product for two elements T1 ◦ E1

o , T2 ◦ E2
o , where Ti is a normalized

gauge-variant spin network function, is:

〈T1 ◦ E1
o , T2 ◦ E2

o〉Go =
{

1 for: T1 = T2 ∧ E1
o = E2

o

0 otherwise.

Let us summarize these observations:

Lemma 27 Let nSNF denote the set of normalized gauge variant spin network
functions, then nSNF ×{Eo : G(Eo) = Go} is a dense orthonormal set in HGo .

6.3.5 Solution of the kinematic Constraints

Having a unitary representation of of the SU(2)-gauge transformations and
diffeomorphisms on HGo at our disposal we can construct the gauge- and dif-
feomorphism invariant states. The knowledge of a dense orthonormal set saves

9These operators are however in general not generated by Hermitian operators.
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a considerable amount of work, because we have to only construct the group
average of these vectors and extend the construction by density. It will turn out
that the coupling between the spin network function and Eo leads to nontrivial
modifications compared to the LOST/F-representation.

The construction of the solutions to the Gauss constraint uses the observa-
tion that SNF×{Eo : G(Eo) = Go} is dense in HGo by splitting the construction
of the solutions to the Gauss constraint into three steps:

1. We classify all gauge invariant couplings of Tγ ∈ SNF to the background
Eo.

2. For each possible gauge invariant coupling between the Tγs and Eo, we
write down the gauge invariant linear combinations of gauge variant spin
network functions. This amounts to ”closing the color lines in γ” that do
not end at a gauge invariant coupling. This yields ”partial solutions” to
the Gauss constraint.

3. We restrict ourselves to the partial solutions and solve the Gauss constraint
using the group averaging procedure.

Given a gauge variant spin network function Tγ depending on a graph γ, in
particular:

Tγ : A 7→
∏
e∈γ

ujeme,ne(he(A)).

The basic observation that we need is that for edges (y, x), (x, z) with f(y, x) =
x = i(x, z) objects of the form:

Oa := Tr
(
((someth.)(A,Eo))(y, z)(h(y,x)(A))Eoai (x)τ i(hx,z(A))

)
are gauge invariant, because (he(A))n,m 7→

(
Λ−1(i(e))he(A)Λ(f(e))

)
n,m

and
Eo(x) 7→ Λ−1(x)Eo(x)Λ(x), but obviously not diffeomorphism invariant. More-
over, all nontrivial representations of SU(2) arise as (symmetrized) tensor prod-
ucts of the spin-1/2 representation, which can be coupled to the appropriate ten-
sor product of Eo(x). This is however only a special case of the general picture:
Any function Fx(Eo) built from Eo(x) that transforms under some representa-
tion of SU(2) can be gauge invariantly coupled to a spin network function T
with vertex x by constructing a gauge-invariant intertwiner between the rep-
resentation of Fx(Eo) and representations adjacent to x in T . Thus, given a
gauge-variant spin network Tγ on a graph γ, then we can couple it gauge invari-
antly to Eo by assigning a function Fv(Eo) and an gauge-invariant intertwiner
Mv between the representation of Fv(Eo) and adjacent spins to each vertex v
of γ.

Having a gauge-invariant coupling {(Fv(Eo),Mv)}v∈V (γ) for spin networks
to Eo, we can easily classify the gauge-invariant spin networks on γ that cou-
ple gauge invariantly to E through {(Fv(Eo)}v∈V (γ): These are labeled by an
irreducible representation of SU(2) for each edge e ∈ γ and a gauge-invariant
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intertwiner between all representations at the vertices for all vertices v ∈ V (γ).
We call the set of these functions coupled gauge invariant spin network functions.

Notice that the inner product of two coupled gauge invariant spin network
functions T1(A,Eo), T2(A,Eo) depends only on the representation space ele-
ments evaluated at Eo of representations under which the Fv(Eo) and the value
Πv∈V (γ)Fv(Eo) transform and not on the precise function, because:

〈T1(A,Eo), T2(A,Eo)〉Eo =
∫
A
dµo(A)

 ∏
v∈V (γ1)

Fv(Eo)


~m,~n

T1(A)~m,~n

 ∏
v∈V (γ2)

Fv(Eo)


~k,~l

T2(A)~k,~l,

which leads to new normalizations of the coupled gauge invariant spin network
functions.

Let us now solve the remaining gauge-variance of the states π(T (Eo))ΩEo ,
where TEo is a coupled gauge invariant spin network function10, using the group
averaging procedure: The group of all gauge transformations G splits into a
subgroup tGT,Eo , consisting of the gauge transformations that act trivially on
π(T (Eo))ΩEo and the quotient group nGT,Eo = G/tGT,Eo , i.e. the group of
gauge transformations that act nontrivially on π(T (Eo))ΩEo . This allows us to
define the anti-linear rigging map η:

η(π(T (Eo))ΩEo) : π(T ′(E′o))ΩE′o 7→
∑

Λ∈nGT,Eo

〈UΛπ(T (Eo))ΩEo , π(T ′(E′o))ΩE′o〉Go .

Notice that the inner product in HGo vanishes, whenever Eo 6= E′o due to the
construction of HGo as a direct sum of GNS-Hilbert spaces HEo . Since the
nontrivial action of nGT,Eo transforms the background only, there is only one
contributing summand in the rigging map. Hence, the effect of the group av-
eraging is to map the label Eo of the state π(T (Eo))ΩEo into its gauge orbit
O(Eo). The dependence of any of the functions Fv(E) on the gauge orbit is the
same as the dependence of Fv on the group average of E. Thus using the group
average G(F (E)) =

∫
SU(2)

dµH(g)Fv(g−1Eg) of the vertex functions and defin-
ing the action on a coupled spin network function as the direct tensor product of
the action on all occurring vertex functions, the gauge-invariant inner product
becomes:

〈η(π(T (Eo))ΩEo), η(π(T ′(E′o))ΩE′o)〉O(Eo)

:= η(π(T (Eo))ΩEo)[π(T ′(E′o))ΩE′o ]

=
{ ∫

A dµo(A)G(T (Eo, A))G(T ′(Eo, A)) forE′o ∈ O(Eo)
0 otherwise.

Hence this Hilbert space is a direct sum of Hilbert spaces indexed by gauge
orbits O(Eo), so we denote a dense set by the elements π(T (R(Eo)))ΩO(Eo),
where ΩO(Eo) denotes the SU(2)-gauge group average of ΩEo .

10This of course implies that the gauge transformations act nontrivially only on the back-
ground Eo.
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Let us conclude the discussion of the SU(2)-gauge invariant Hilbert space
with noticing that the area-Weyl operator is gauge invariant and is hence ”un-
changed by the group averaging”.

Let us now construct the solutions to the diffeomorphism constraint: This
construction will be split into two steps, first we construct diffeomorphism-scalar
couplings to the background and then we solve the diffeomorphism constraint
by group-averaging the diffeomorphism-scalar coupled gauge-invariant spin net-
work functions over the diffeomorphism group:

Noticing that the E is a vector valued density of weight one, or a dual
two form, we know the transformation properties of any Fv(E). We call those
Fv(E), that transform as scalars, scalar couplings. We will from now on restrict
our attention to those coupled gauge invariant spin network function for which
all couplings to the background are scalar couplings, even if it is not explicitly
stated.

The action of a diffeomorphism φ ∈ D on a Hilbert space element π(Tγ)ΩO(Eo),
where Tγ is a coupled gauge invariant spin network function based on the graph
γ, is Uφπ(Tγ)ΩO(Eo) = π(Tφ(γ))Ωφ(O(Eo)). Denote by tDγ,O(Eo) the subgroup
of diffeomorphisms that act trivially on π(Tγ)ΩO(Eo), and denote by Dγ,O(Eo)

the group of diffeomrphisms that maps γ into itself and at the same time O(Eo)
into itself, i.e. those invariances of O(Eo), that map γ onto itself11. Then

Symγ,O(Eo) := Dγ,O(Eo)/tDγ,O(Eo)

is a finite group consisting of the graph symmetries of γ that leave O(Eo) in-
variant. Then define Pγ,O(Eo) through its action:

Pγ,O(Eo) : π(Tγ)ΩO(Eo) 7→
1

|Symγ,O(Eo)|
∑

φ∈Symγ,O(Eo)

Tφ(γ)ΩO(Eo).

With these preparations, we are able to define the antilinear rigging map ηdiff (π(Tγ)ΩO(Eo))
through its action on any coupled gauge invariant spin network function π(T ′γ′)ΩO(E′o):

ηdiff (π(Tγ)ΩO(Eo)) : π(T ′γ′)ΩO(E′o) 7→
∑

φ∈D/Dγ,O(Eo)

〈π(Tφ(γ))Ωφ(O(Eo)), π(T ′γ′)ΩO(E′o)〉Go .

Notice that, there is only one summand that can contribute, i.e. when φ(γ) =
γ′ ∧ φ(O(Eo)) = O(E′o), due to orthogonality in HGo and the fact that we fac-
tored the subgroup of diffeomorphisms that preserve O(Eo), γ out in our averag-
ing sum. The diffeomorphism invariant inner product between η(π(Tγ)ΩO(Eo))
and η(π(T ′γ′)ΩO(E′o)) is

〈ηdiff (π(Tγ)ΩO(Eo)), ηdiff (π(T ′γ′)ΩO(E′o))〉Go
:= ηdiff (π(Tγ)ΩO(Eo))[ηdiff (π(T ′γ′)ΩO(E′o))].

(6.6)

11Notice that there may be no diffeomorphisms that act trivially on a given state, e.g. for
nontrivial O(Eo).
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The justification for indexing this inner product by three geometries Go rests on
calculating the diffeomorphism group averaged inner product explicitly:

〈ηdiff (π(Tγ)ΩO(Eo)), ηdiff (π(T ′γ′)ΩO(E′o))〉Go

=
{ ∑

φ∈Sym(O(Eo))

∫
A dµo(A)Tφ(γ)(A)T ′γ′(A) for: O(E′o) ∈ G(O(Eo))

0 otherwise,

where Sym(O(Eo)) denotes the subgroup of D that contains the symmetries of
O(Eo). These results allow us to characterize the elements of a dense set in the
gauge- and diffeomorphism invariant Hilbert space:

Lemma 28 Given a three-geometry Go, there is a dense set in the gauge- and
diffeomorphism invariant Hilbert space HGo given by the gauge invariantly scalar
coupled gauge invariant spin network functions and the inner product of HGo
coincides with equation 6.6 on this set.

Let us close by commenting on spaces with symmetry, e.g. spaces with constant
curvature: The diffeomorphism average procedure yields embedded spin net-
works. These are however ”smeared” by the symmetry group of the geometry.
It may thus be practically useful to divide the diffeomorphisms by this symme-
try group, so one can work with embedded spin network functions and to keep
in mind that the solutions to the diffeomorphism constraint are constructed by
averaging over Sym(O(Eo)).

6.4 Essential Geometry

We define the essential geometry of a representation of the algebra of Loop
Quantum Geometry, which is similar to a ”static semiclassical background ge-
ometry”. Our definition does not need the notion of a vacuum vector, i.e. it
can be recovered from the representation itself. We go on to show that the
essential geometry of the GNS-representation of ωEo is precisely given by the
Riemannian structure corresponding to Eo. Moreover, the essential geometry
of the analogous state ωo to the LOST/F-vacuum state has the degenerate es-
sential geometry g = 0, and can thus be regarded as a degenerate extension of
the family of ωEo states.

6.4.1 Definition of the Essential Geometry

Classical areas and volumes on a three-dimensional manifold Σ are integrals
over two- and three-forms (e.g. the induced area- and volume-form on a Rie-
mannian manifold) respectively and their value does not change when a less
than two-dimensional submanifold is removed from Σ, due to the continuity of
the forms. The Riemannian structure can on the other hand be recovered form
the knowledge of the areas and volumes of each surface and region respectively.
The situation in the LOST/F-representation of Loop Quantum Geometry is
quite different: The quanta of area are distributions concentrated on the edges
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of a graph of a spin network state and the quanta of volume are distributions
concentrated on the respective vertices. Both sets are of Riemannian measure
zero for any Riemannian structure on Σ and there seems to be an ”excess of
geometry” concentrated on the edges and vertices.

Definition 29 Given a state ω on the algebra of Loop Quantum Geometry, the
excess E(ω) of ω is the smallest set of zero- and one-dimensional embedded
submanifolds of Σ, such that the expectation values of the area and volume
operators measuring surfaces and regions in Σ \ E(ω) do not change whenever
countable number of zero- and one-dimensional subsets is removed from them.

The stability of classical areas and volumes under the removal of zero- and
one-dimensional subsets motivates:

Definition 30 The stable geometry of a state ω is given by the geometry
reconstructed from the expectation values ω(A(S \ E(ω))) and ω(V (R \ E(ω)))
of all surfaces S resp. regions R.

This motivates the definition of something similar to the ”static classical back-
ground” for any representation (H, π) of A:

Definition 31 For any representation (H, π) we define the essential geome-
try as the geometry reconstructed from the areas and volumes

A(S) = supv∈H〈v, π(A(S \ E(ω)))v〉
V (R) = supv∈H〈v, π(V (R \ E(ω)))v〉,

where S varies over all surfaces and R over all regions in Σ.

6.4.2 Essential Vacuum Expectation Values

Let us consider the essential expectation values of π(T1)ΩEo and π(T2)ΩEo for
two distinct spin network functions T1, T2. Let us now prove that the essential
geometry coincides for these two states:

The excess of these two states is precisely given by the minimal graphs
γ1, γ2 upon which the two spin-network functions depend. So we can calculate
the essential area expectation values of a surface S′ in Σ as the area expectation
value of S \ γi of:

〈π(Ti)ΩEo , A(S)π(Ti)ΩEo〉 = 〈π(Ti)ΩEo , A(S\γi)π(Ti)ΩEo〉 = 〈ΩEo , A(S\γi)ΩEo〉,
(6.7)

where we used the regularity, i.e. non-distributionality, of Eo. Let us calculate
these vacuum expectation values:

〈A(S)〉Eo = limt→0
1

2it

(
ωEo(W

S
A (t))− ωEo(WS

A (−t))
)

= ∂
∂t exp(tAEo(S))|t=0 = AEo(S),

so the essential expectation values of the area operators coincide with the clas-
sical areas of S calculated in the geometry described through Eo. Calculating
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higher derivatives reveals that there are no fluctuations in the essential expec-
tation values for the area operators. Moreover it turns out that the action on
the ground state ΩEo of any two area operators commutes. This allows us to
calculate the essential expectation values of the volume operator without further
effort: The expectation values for the volume operator of a region is

〈V (R)〉Eo = V (R) = 〈ΩEo , limε→0

∑
C∈LU,ε V (Aa(C), ..., Bc(C))ΩEo〉

= VEo(R),

which is independent of the choice of chart (U, φ). Thus, the essential geometry
turns out to be precisely the geometry that is described through the classical
densitized inverse triad Eo.

Since the essential geometry can be recovered from any state in the GNS-
representation and is fixed by the Eo-geometry, we have a geometric background
in the Eo-geometry that can be determined operationally, since the effect of a
state can be determined operationally and coincides with the geometry recon-
structed from the area- and volume expectation values of the vacuum vector,
which is precisely the geometry encoded in Eo.

6.4.3 Relation to the LOST/F-Representation

Let us compare this situation with the GNS-representations constructed from
grand canonical equilibrium states on the observable algebra of a free Klein-
Gordon quantum field theory: These states are distinguished by the inverse tem-
perature β and chemical potential µ. If the values of β, µ are sufficiently small
(compared to the energy gap), then the state ωβ,µ describes a Bose-Einstein
condensate in which the ground state is macroscopically occupied, such that in
the thermodynamical limit there is no possibility that fluctuations can change
the overall occupation density ρo of the ground state. This in turn means that
a similar definition of essential-ρo distinguishes these thermodynamical states
and representations of the CCR constructed from them. Thus, one can compare
the nontrivial essential geometry of a state to a ”condensate of Loop Quantum
Geometry”.

This insight together with the result of subsection 6.4.2, i.e. that the vacuum
expectation values of the geometric operators coincide with the classical values
in the geometry of Eo, suggests to consider the G(Eo) states as a particular
(non-normalizable) limit of states in the LOST/F representation: Let T (M)
be a one parameter family of scale M -dependent simplicial decompositions of
Σ, such that the mean length of each edge 〈L(M)〉 = M−1 and the standard
deviation of the length is minimized. Calculate the classical area A(fi) of all
faces fi and the classical volumes V (cj) for each cell cj for a value of M given
the geometry G(Eo). Then consider the state:

ωO(Eo),M (a) := lim
←γ

lim
i→∞

1
|GeomSNF iγ |

∑
Tγ∈GeomSNF iγ

CTγ 〈Tγ , πo(a)Tγ〉o, (6.8)
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where the geometric constraint is that the expectation value of the areas of
all faces fi match A(fi) and the expectation value of the volumes of each cell
is V (cj) in a compact region of Σ. The finite set GeomSNF iγ is a set that
contains ”enough” cylindrical functions Tγ with base graph γ that carry at
most representation i and such that the vacuum expectation values satisfy the
geometrical constraint. These states lead outside the LOST/F-representation,
but approximate ωEo at least on the lattice T (M). One can of course put this
approximation statement on its head and assert: The G(Eo)-states approximate
a one parameter family of LOST/F states, which arise, when both limits in
equation 6.8 are truncated.
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Chapter 7

Smooth Loop Quantum
Cosmology

Having the states of chapter 6 which describe a smooth geometry at our dis-
posal, we can naturally view them as the states describing an extended geom-
etry, e.g. the universe. We will construct a correspondence between standard
Loop Quantum Cosmology and a mini-superspace constructed from ΩEo-states.
We implement Bojowalds dynamics for Loop Quantum Cosmology thereon and
explain a road map towards a fundamental dynamics for ΩEo states.

7.1 General Idea

Bojowald initially constructed symmetric spin network functions [12] as spin
network functions that depend on a symmetric connection. The interpretation
of the states constructed this way was explained in [45] as equivalence classes
of spin network functions on a piecewise straight graph that depend, where the
equivalence was taken with respect to the dependence on symmetric connec-
tions. The general idea that we propose in this short chapter is to depart from
considering explicit functionals of the symmetric connection resp. equivalence
classes of functionals of the complete connection and to consider the ΩEo-states
as the states that correspond to a symmetry reduction:

We saw that the essential geometry of a vacuum vector ΩEo is precisely
the geometry described by the classical densitized inverse dreibein Eo. This
suggests the use of these states with symmetric Eo as states describing spatially
symmetric geometries as they are usually used in a minisuperspace construction.
Establishing a correspondence between the symmetric Eo and Bojowalds states
gives these an interpretation as states on full Loop Quantum Geometry. In
turn, one can use this correspondence to use the well understood dynamics of
Loop Quantum Cosmology as a ”cosmologically induced” dynamics for the Eo-
states. The construction of such a correspondence does however require the
introduction of degrees of freedom that correspond to Bojowalds inflaton field

86



in the framework introduced in the previous chapter, which we will construct
at the end of the next section.

7.2 Construction of a Cosmological Quantum Mini-
superspace

Neglecting the discussion of a differentiability class, the construction of De-
Witt’s superspace starts with fixing a topology for the Cauchy surface Σ and
considering the set Q of all Euclidean 3-metrics q on Σ. The superspace is then
the quotient of Q by the group D of diffeomorphisms that are generated by
the diffeomorphism constraints. One then expects that a quantum theory can
be constructed using wave functions on the superspace; a (geometrically) semi-
classical wave package is then one that is strongly peaked around a particular
classical geometry, so neglecting fluctuations it is very close to an eigenstate of
geometry. Since the ΩEo-states are eigenstates of the geometry, we can natu-
rally replace the semiclassical states with ΩEo-states. Let us now revisit the
construction of the minisuperspace of standard Loop Quantum Cosmology and
then apply this replacement:

For the construction of a minisuperspace in connection variables (compare
appendix B.4), we assumed a symmetry group and worked the symmetric phase
space out, which is constructed as follows: Given a symmetry group S, we call
a phase space point (A,E) symmetric, if for all s ∈ S there exists a local gauge
transformation gs : Σ→ SU(2), such that

s∗(A,E) = (g−1
s Ags + g−1

s dgs, g
−1
s Egs).

For the purpose of isotropic cosmology we fix the gauge- and diffeomorphism
invariance by introducing a triad eai and a co-triad ωia which are invariant under
S. Then every symmetric point (Ao, Eo) that satisfied the Gauss- and diffeo-
morphism constraint can be mapped into an equivalent pair of the form:

(As, Es) = (cωiτi, p
√
|q(e)|eiτ i).

In standard Loop Quantum Cosmology, one builds wave functions of the sym-
metric connection and constructs an inner product for these from the inner
product of Loop Quantum Gravity. Bojowalds procedure yields a Hilbert space
that is the span of states ψµ : µ ∈ R, which turn out to be eigenstates of the
symmetric triad, and he induces an inner product 〈ψµ, ψµ′〉 = δKron.µ,µ′ . The
ΩEo -states with symmetric Eo(p) = p

√
|q(e)|eiτ i are eigenstates of the geomet-

ric observables that satisfy these symmetry relations. The inner product is,
according to the construction in the previous chapter, induced as:

〈ΩEo(µ),ΩEo(µ′)〉 = δKron.µ,µ′ ,

which matches the inner product of standard Loop Quantum Cosmology if we
use the replacement:

ψµ → ΩEo(µ). (7.1)
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We thus construct the geometric sector of the cosmological quantum Hilbert
space Hcosm.grav as the span of the states ΩEo(µ) : µ ∈ R and use their inner
product as constructed in the previous chapter.

To construct a nontrivial cosmological model, one needs to introduce a sym-
metric matter degree of freedom and construct a cosmological Hilbert space
Hcosm. = Hcosm.grav. ⊗ Hcosm.matter. Since isotropic matter distributions are not in-
cluded in the matter states developed for standard Loop Quantum Gravity, we
have to apply the construction of the previous chapter to the matter degrees of
freedom:

7.2.1 Smooth Matter for Loop Quantum Gravity

Loop Quantum Gravity naturally incorporates Higgs fields with compact gauge
group. A single real scalar field φ can be modeled as the gauge-variant sector of
a Higgs field theory with gauge group R̄Bohr. The fundamental observables are
the point holonomies Ux(λ) := exp(iλφ(x)) and the conjugated momenta, which
are densities of weight one, can be integrated over regions R to give the funda-
mental momentum variables πR :=

∫
R
π, where π denotes the field momentum.

The fundamental Weyl-operators V (R) are constructed from the exponentiated
Poisson action of the πR on the Ux(λ)1 corresponding to VR(µ) := exp(iµπR).
This yields the Weyl commutation relations V ∗R(µ)Ux(λ)VR(µ) = eiλµδx∈RUx(λ).
Thus, the fundamental observable algebra consists of the finite sums a :=∑N
i=1 aiUxi(λi)VRi(µi). Since the classical φ, π Poisson-commute with the grav-

itational degrees of freedom, we are lead to implement the sums a as opera-
tors that commute with all gravitational observables. The fundamental observ-
able algebra for the gravity+scalar system is thus generated by the finite sums
b :=

∑N
i=1 CyliUx1

i
(λ1
i )...Uxnii (λnii )WiVR1

i
(µ1
i )...VRmii (µmii ), where Cyli denotes

cylindrical functions of the Ashtekar connection and Wi the adjusted Weyl-
operators. Using matter-cylindrical functions Cylmatt. as functions of the scalar
field that can be written as Cylmatt. = F (Ux1(λ1), ..., Uxn(λn)), where F :
R̄nBohr → C is continuous and almost periodic, we can extend the fundamental
observable algebra to finite sums b :=

∑N
i=1 CyliCylmatt.i(λi)WiVR1

i
(µ1
i )...VRmii (µmii ).

The canonical Ashtekar-Lewandowski state ωo on these sums b is defined
(analogous to a lattice gauge theory with scalars) as

ωo(b) :=
∑N
i=1

∫
dµAL(A)dµBohr(y1i)...dµBohr(yni)Cyli(A)Fi(y1i , ..., yni)

=:
∑N
i=1

∫
dµAL(A, φ)Cyli(A)Cylmatt.i(φ),

(7.2)
defining the extended Ashtekar-Lewandowski measure. Using this measure we
are in the position to apply lemma 17 after noticing that the operators Wi and
VR1

i
(µ1
i )...VRmii (µmii ) commute with each other, so the combined momentum

Weyl-group is the direct product of the gravitational momentum Weyl-group
and the matter momentum Weyl-group. This means that we can define a group
morphism F : W → U(1) as the product of Fgrav. acting on the gravitational

1The considered Poisson bracket is {πR, Ux(λ)} = iλUx(λ) if x ∈ R and vanishes otherwise.
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part only and Fmatt. acting on the matter part only. We have specified Fgrav.
already in the construction of the ΩEo-states, so we only have to construct Fmatt.
here.

The nontrivial group relations are: VR(µ1)VR(µ2) = VR(µ1+µ2), (VR(µ))−1 =
(VR(µ))∗ = VR(−µ) ⇒ VR(0) = id and VR1(µ)VR2(µ) = VR1∪R2(µ) for all dis-
joint regions R1, R2. Thus, defining Fmatt. as

Fmatt.(VR1(µ1)...VRm(µm)) := exp
(
i

(
µ1

∫
R1
πo + ...+ µm

∫
Rm

πo

))
(7.3)

for some classical density πo on Σ satisfies the group relations and thus furnishes
a group morphism into U(1).

To define a state using this relation, we need to verify that the extended
Ashtekar-Lewandowski measure is left invariant under the extended momentum
Weyl-group. This is most easily verified using the observation that the functions
of the form Ux1(λ1)...Uxn(λn) are an orthonormal set in the extended Hilbert
space and dense in the matter configuration variables and thus in the tensor
factorMmatt. of the extended Hilbert space. Using these ”scalar network func-
tions” and that the gravitational operators commute with the matter operators,
we calculate∫

dµo(A, φ)Ux1(λ1)...Uxn(λn) =
{

1 if all λi vanish
0 otherwise.

Using the density of the scalar network functions we can expand any configura-
tion observable as f(φ) =

∑N
i=1 fiUx1

i
(λ1
i )...Uxnii (λnii ) and calculate the action

of any momentum-Weyl-operator∫
dµo(A, φ)VR(µ)∗f(φ)VR(µ) =

∫
dµo(A, φ)VR(µ)∗f1VR(µ)

= f1

=
∫
dµo(A, φ)f(φ),

(7.4)

where we have assumed without loss of generality that there is precisely one
constant term, which is the first summand f1 in the expansion of f ; yielding the
invariance of the extended measure under the extended momentum-Weyl-group.

Using lemma 17 for the matter part, lemma 26 for the gravitational part we
can use equation 7.3 to define a state ωEo,πo for any classical densitized inverse
triad Eo and any density πo through:

ωEo,πo(b) :=
N∑
i=1

F (Wi)Fmatt.(VR1
i
(µ1
i )...VRmii (µmii ))

∫
dµo(A, φ)Cyli(A)Cylmatt.i(φ)

(7.5)
Inserting π(R) := −i ∂∂tVR(µ)|t=0 and using linearity of the state ωEo,πo , we
obtain the vacuum expectation values for π(R):

ωEo,πo(π(R)) =
∫
R

πo, (7.6)
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which coincides with the classical values πo(R), which is precisely the desired
behavior as a quasilocal eigenstate of the field momentum corresponding to a
classical field momentum πo.

Let us construct the matter part of the GNS-representation out of this state
using the κF -map for the matter extended F to relate this representation to the
canonical Schrödinger representation (constructed as the GNS-representation of
ωo) for the matter part. The Gel’fand ideal reduces for pure matter observables
a =

∑N
i=1 Cylmatt.iVR1

i
(µ1
i )...VRmii (µmii ) to the set {a :

∑N
i=1 Cylmatt.i = 0}, so

we have the canonical GNS-representation for the matter part as the extension
of the representation πo:

ηo(a) : A 7→
∑N
i=1 Cylmatt.i

πo(a)χ : A 7→
∑N
i=1 Cylmatt.iαVR1

i
(µ1
i )

(...αV
RN
i

(µNi )(χ)...)(A)

〈χ1, χ2〉o =
∫
dµo(A, φ)χ1(φ)χ2(φ).

Using lemma 20, we can immediately construct the GNS-representation ππo
for the matter part of ωEo,πo and obtain a kinematic matter Hilbert space
Hkin.matt.(πo) with the following representation of the matter observables:

ηπo(a) = ηo(κF (a)) A 7→
∑N
i=1 Cylmatt.iF (VR1

i
(µ1
i )...VRmii (µmii ))

ππo(a)χ = πo(κF (a))χ : A 7→
∑N
i=1 Cylmatt.iF (VR1

i
(µ1
i )...VRmii (µmii ))

αV
R1
i
(µ1
i )

(...αV
RN
i

(µNi )(χ)...)(A)

〈χ1, χ2〉πo = 〈χ1, χ2〉o =
∫
dµo(A, φ)χ1(φ)χ2(φ).

(7.7)
Using the action of a diffeomorphism ϕ on πR induces the action on VR(µ). The
same reasoning as in the previous chapter then yields that one has to sum over all
GNS-representations constructed form all distinct smooth densities ρ = ϕ∗πo in
the diffeomorphism class of πo to obtain a unitary action of the diffeomorphisms.
The action of the Gauss constraint on the matter part is trivial, since φ is a
scalar under the SU(2)-gauge transformations.

To put it in a nutshell, we obtain a matter Hilbert space Hmatt. that is
the direct sum of the GNS-Hilbert spaces Hmatt. = ⊕ρ∈D(πo)Hkin.matt.(ρ) for all
distinct ρ in the diffeomorphism class of πo. The Hilbert space for the matter-
gravity system is then the tensor product of the gravitational and the matter
Hilbert space and the representation of the gravity and matter observables act
on the respective tensor factor as constructed above, while leaving the other
factor invariant.

7.2.2 Matter-Gravity Minisuberspace

Following the strategy outlined at the beginning of this section, we construct a
minisuperspace consisting of precisely those GNS-vacuum vectors that are sym-
metric eigenstates of the geometric operators and the matter-momenta. Thus,
taking πo to be homogeneous, i.e. πo(x) = πo(xo) = ν in the homogeneous
chart, we build the matter part of the cosmological minisuperspace by taking
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the direct sum of the matter GNS-vacua Ωπo for all homogeneous πo. Using
the construction in the previous section, this induces the inner product for the
matter part:

〈Ωπo(ν1),Ωπo(ν2)〉 = δKron.ν1,ν2
. (7.8)

This induces the representation of the homogeneous matter observables on
Hcosm.matter = L2(R̄Bohr, dµBohr) ∼ ⊕ν∈RΩπo(ν). The combined gravity-matter sys-
tem is then represented on the cosmological Hilbert space Hcosm. = Hcosm.grav. ⊗
Hcosm.matter.

Choosing the isotropic cosmological chart, we can take any geometric ob-
servable that coincides classically with the volume density as a representative
operator for the volume density. Since all classical representatives yield the
same volume density (as we see by applying the results of section 6.4.2), we are
able to introduce an unambiguous volume density operator ρ̂. Evaluating this
using any representative yields:

〈µ⊗ ν, ρ̂µ⊗ ν〉 = ρoµ. (7.9)

The same argument of course applies for the field momentum density, so we are
able to introduce an unambiguous operator π̂ with expectation values

〈µ⊗ ν, π̂µ⊗ ν〉 = coν. (7.10)

This argument can of course not be applied for the construction of connection
respectively field strength operators.

Using these expectation values and their spatial symmetry, we have a precise
correspondence between the states constructed here and the standard Loop
Quantum Cosmology states:

ψµ,ν ↔ ΩEo(µ),πo(ν). (7.11)

7.3 Implementation of the Loop Quantum Cos-
mology Dynamics

Using the correspondence (equation 7.11), we can relate Bojowalds states to
states on the full observable algebra of Loop Quantum Gravity. Using this
relation from left to right allows us to investigate generic perturbations around
these states without having to model the perturbation before, because the states
on the right are states on the full observable algebra of Loop Quantum Gravity.
Using the relation from the right to the left allows us on the other hand to define
a dynamics for the cosmologically interesting states by using the established
Loop Quantum Cosmology dynamics. Using this cosmological dynamics is an
approximation only, but may lead to new insight since the dynamics of full Loop
Quantum Gravity is an unresolved issue.

Let us put the induction of a dynamics for the ΩEo,πo-states on a firmer basis
by comparing them with coherent states: Let qi, pi be canonically conjugate
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phase space coordinates and let ωo be a Gaussian ground state with vanishing
vacuum expectation values for all qi and pi. Then one can define a coherent state
ω~xo,~po by setting for the elementary Weyl operators Ui(λ) = eiλxi , Vi(µ) = eiµpi :

ω~xo,~po(Ui(λi)Vi(µi)) := eiµix
i
oeiλip

i
oωo(Ui(λi)Vi(µi))eiφ, (7.12)

where φ depends on the chosen operator ordering. The definition of this state as
the linear extension of equation 7.12 is completely analogous to the definition of
the Eo, πo-states, which we can thus view as kinematic coherent states for Loop
Quantum Gravity. In may systems, one has a time evolution of coherent states
that is very close to a classical evolution and some decoherence. Assuming such
an action of the constraint operator(s) on the Eo, πo-states justifies the use of
the right-to-left direction of the correspondence 7.11.

Standard (flat space) Loop Quantum Cosmology uses a single scalar con-
straint acting on the basis vectors ψµ,ν as:

Ĉgravψµ,ν = (Vµ+5µo − Vµ+3µo)ψµ+4µo,ν − 2(Vµ+µo − Vµ−µo)ψµ,ν
+(Vµ−3µo − Vµ−5µo)ψµ−4µo,ν

= − 1
38πGι3µ3

ol
2
PlĈmatt(µ)ψµ,ν ,

(7.13)

where Vµ =
(
|µ| ι6

) 3
2 is the volume eigenvalue for ψµ and Ĉmatt is the matter part

of the scalar constraint, which depends on the matter and potential considered
in the specific model. Using the correspondence, we find the from standard
Loop Quantum Cosmology induced dynamics for the cosmologically interesting
ΩEo,πo (by simple substitution):

ĈgravΩEo(µ),πo(ν) = (Vµ+5µo − Vµ+3µo)ΩEo(µ+4µo),πo(ν)

−2(Vµ+µo − Vµ−µo)ΩEo(µ),πo(ν)

+(Vµ−3µo − Vµ−5µo)ΩEo(µ−4µo),πo(ν)

= − 1
38πGι3µ3

ol
2
PlĈmatt(µ)ΩEo(µ),πo(ν),

(7.14)

The phenomenology of this dynamics by itself is of course the same as the
phenomenology of standard Loop Quantum Cosmology. It is however applied
to a subspace of a full theory of quantum gravity and may as such be used to
shed light on the dynamics thereof.

7.4 Towards a Fundamental Dynamics for DQG

The main problem of constructing a complete anomaly-free implementation of
the scalar constraint (resp. the master constraint) for full Loop Quantum Grav-
ity is the difficulty in finding phenomenologically acceptable diffeomorphism co-
variant regulators for the classical constraints in terms of loop variables. These
regulators are necessary due to the singular smearing of the loop variables and
anomaly-freeness rules out most regulators. In ordinary quantum field theory
on a background on the other hand one constructs various regulators through
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point-splitting the operator products that depend in the same points. In stan-
dard Loop Quantum Gravity there is however no intrinsic notion of distance
outside the graph, so one can not split points, let them approach each other
again and then renormalize the observables that emerge in the limit of coin-
ciding points. Using an Eo-representation however, one has an intrinsic notion
of distance (w.r.t. the essential geometry), suggesting that one can use very
similar techniques as in a background dependent field theory. In short: The
Eo-geometry opens the door for the application of a wide range of (common)
regularization techniques.

Other than background dependent quantum field theories however, one does
not have to implement the entire set of Hamiltonian constraints, but it is suf-
ficient for the construction of a physical theory to construct the kernel. Since
we are using the idea of Dirac to postpone the imposition of the constraints un-
til after quantization, we have to ensure that the so constructed kernel-Hilbert
space is a quantization of the classical constraint surface. This means that for
each point (A,E) on the classical constraint surface, there is a coherent state
peaked around this point. We saw in the previous section that the ΩEo states
are coherent states, which are due to diffeomorphism covariance sharp in the
densitized inverse triad E and infinitely wide in the connection A. Moreover, all
spin network excitations around ΩEo are still sharp in E, but with distributional
spatial eigen-geometries2. This suggests the construction of the constraint ker-
nel through regularizing the distributional spatial eigen-geometries stemming
from the spin-network excitations by point splitting techniques in the essential
Eo-geometry.

Viewing the ΩEo states not only as kinematic coherent states, but as dy-
namic coherent states3, one can describe a programme to construct the kernel

2Using the volume operator defined in the next chapter, we have a set of geometric ob-
servables that is (1) large enough to reconstruct the geometry and (2) when using an external
regularization has the spin network functions as eigenfunctions.

3There is a nice motivation for considering the Eo-states as dynamic coherent states: har-
monic oscillator coherent states |(xo, po)w〉 with the matching width parameter w transform
classically under time evolution, i.e. Ut|(xo, po)w〉 = eiφ(t)|(x(xo, po, t), p(xo, po, t))w〉, where
x(xo, po, t), p(xo, po, t) are the classical trajectories, otherwise they obtain a time-dependent
width w(t). The Eo-states transform classically under the spatial diffeomorphisms, i.e.
Uφ|ψγ〉Eo = |ψφ(γ)〉Eo , which is a subset of the four-diffeomorphisms chosen by the folia-
tion of space-time. To put all four-diffeomorphisms on an equal footing implies to consider
the Eo-states as dynamical coherent states as well as kinematic coherent states.
To show that this argument does not only work for a harmonic oscillator, let us assume
that |α〉 are coherent states, i.e. a|α〉 = α|α〉 with the phase space peakedness property,
i.e. α 7→ |〈β, α〉|2 falls off rapidly as β departs from α. These states are assumed to evolve
classically under the phase space flow σt, so |α(t)〉 = |σt(α)〉. The condition for the scalar
product so this action is unitary is: 〈σ−t(α), β〉 = 〈α, σt(β)〉. A scalar product that has the
phase space peakedness property and supports this flow unitarily can be defined as follows:
Denote the σ-trajectory that contains α by T (α) and choose a hypersurface that intersects
each trajectory precisely once at a base point αo. Then each point α can be given coordinates
(αo(α), t(α)), where t(α) is defined through σt(αo(α)) = α and αo(α) is the base point of the
trajectory that contains α. Choose a metric d on the hypersurface, which extends to a metric
on the trajectories. Then for suitable flows,

〈α, β〉 := exp
(
−d2(αo, βo) + iφ(αo, βo, t(α), t(β))− c2(t(α)− t(β))

)
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projection operator as follows:
For this purpose, we first define a notion of closeness for regions R,R′ us-

ing the essential geometry Eo of the vacuum state ΩEo by defining a distance
between them through the difference of essential areas:

dEo(R,R
′) := (VEo(R) + VEo(R

′))− 2VEo(R ∩R′). (7.15)

For every gauge-invariant embedded spin network function ψ = πEo(SNF )ΩEo ,
we define a sequence of smooth densitized inverse triads {En}∞n=1 to be a regu-
lator of ψ, if for every region R in Σ and every ε > 0 there exists an no > 1 and
a region R′ with dEo(R,R

′) ≤ ε, such that

〈ψ, V (R′)ψ〉 − VEn(R) ≤ εl3Pl ∀n > no. (7.16)

The regulator sequences {En}∞n=1 tend towards the distributional quantum ge-
ometry of ψ in the limit n→∞, but each element is a smooth densitized inverse
triad. This allows us to evaluate functions of each element of the sequence clas-
sically in a way very analogous to point-splitting techniques.

Let us now consider sequences of phase space points {(An, En)}∞n=1 consist-
ing of pairs of smooth connections and smooth densitized inverse triads. We
define this sequence to be a constraint solution for ψ, if all elements (An, En)
are solutions to the (diffeomorphism-extended) master constraint

M =
∫

Σ

d3σ√
|q|
(
C2(σ) + qabD

a(σ)Db(σ)
)

and {En}∞n=1 by itself is a regulator of ψ.
Using the density of the gauge-invariant embedded spin network functions

in the gauge-invariant Hilbert space, we are able to define the kernel of the
master constraint operator through the extension by density of the action on
gauge-invariant embedded spin network functions ψ:

P̂ψ := ψ

{
1 if ∃ a constraint solution {(An, En)}∞n=1 for ψ
0 otherwise. (7.17)

It follows immediately from the construction that there is a state ΩEo for each
classical solution to the master constraint (Ao, Eo), that is peaked around the
classical 3-geometry of the solution.

defines a scalar product on the span of the states |α〉 whenever φ is antisymmetric and the
inner product satisfies positivity, which supports Ut|α〉 := |σt(α)〉 as a unitary representation
of the flow σt. The commutation relation of a, a∗ will however in general fail to be canonical.
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Chapter 8

Loop Quantum Geometry
based on a fundamental
Area Operator

This chapter is devoted to a version of quantum geometry that is based entirely
on the existence of a fundamental area operator. Since the area operator is
viewed as fundamental, it remains to construct a volume and a length operator;
we start with the construction of the volume operator. This work was triggered
by the discovery of the smooth geometry sates (chapter 6) and it is due to the
existence of this version of quantum geometry that the algebra used in chapter
6 is physically complete.

8.1 Volume Operator with a Fundamental Area
Operator

The quantization strategy is analogous to the one applied in section C.3: We
use the classical expression for the volume functional of a region, reexpress it
as a limit of cell volumes of a family of partitions of the region, which we then
reexpress using classical areas. Then we replace the classical area variables with
the corresponding area operators and take the limit on spin network functions.
We then use a similar averaging procedure to obtain a background independent
volume operator for spin network functions. The final operator is then the Her-
mitian extension of the essentially self-adjoint operator defined on spin network
functions.

8.1.1 Classical Volume Functional

Given a three-dimensional Riemannian manifold (Σ, q) with metric q, we derive
a functional for the volume of a three-dimensional region R ⊂ Σ as the limit
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of Riemann sums over volumes of cells in a homogeneous metric. Each cell is
a parallelepiped and its volume is expressed through the six independent area
measurements in the parallelepiped. This is a three-dimensional generalization
of Heron’s formula, however the derivation is much more involved.

Volume of a Parallelepiped in a homogeneous Metric

Consider a parallelepiped Po in a homogeneous metric background on R3: More
concretely, consider a homogeneous metric qoab. Then due to homogeneity we
can assume without loss of generality that the parallelepiped P (~ao,~bo,~co) is
spanned by three (linearly independent) vectors at the origin. Let us change
into the Riemannian normal coordinate system at the origin, so the transformed
metric is Euclidean qab = δab due to homogeneity. The coordinate transform
amounts to the multiplication by a constant invertible matrix. The transformed
parallelepiped P (~a,~b,~c) is then spanned by the three (linearly independent)
transformed vectors ~a,~b,~c.

Using the rotational freedom of Euclidean R3, we can assume without loss
of generality that the three spanning vectors take the form:

~a = (a1, 0, 0), ~b = (b1, b2, 0), ~c = (c1, c2, c3). (8.1)

The volume of P (~a,~b,~c) is

V (P ) = det(~a,~b,~c) = a1b2c3. (8.2)

There are six independent area measurements at this parallelepiped, the three
independent face areas (denoted by

√
Aa)1 and three independent diagonal cross

cuts (denoted by
√
Ba). There is an ambiguity about which three of the six

possible diagonal cross cuts one should choose, which we fix by choosing the
three that contain the origin. Having fixed the three diagonals, we may move
the surface areas to the center, which is an isometry due to homogeneity, so all
six areas intersect at the center of P . The resulting surfaces are depicted in
figure 8.1. The squares of the areas have the following expression on terms of
the components of ~a,~b,~c:

Aa = |~b× ~c|2 = (b2c1 − b1c2)2 +
(
b21 + b22

)
c23

Ab = |~a× ~c|2 = a2
1

(
c22 + c23

)
Ac = |~a×~b|2 = a2

1b
2
2

Ba = |(~b+ ~c)× ~a|2 = a2
1

(
(b2 + c2)2 + c23

)
Bb = |(~a+ ~c)×~b|2 = (b2 (a1 + c1)− b1c2)2 +

(
b21 + b22

)
c23

Bc = |(~a+~b)× ~c|2 = (b2c1 − (a1 + b1) c2)2 +
(

(a1 + b1)2 + b22

)
c23.

(8.3)

1It turns out to much more convenient to express the square of the area rather than the
area itself, which is the reason for the notation

√
Aa and

√
Ba for the respective areas.
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Figure 8.1: The six surfaces of the parallelepiped spanned by the vectors (ar-
rows) containing the origin (solid dot) with independent areas. The top line
contains the translated faces, the bottom line the diagonal cross sections.

Inverting equation 8.2 for a1 = V
b2c3

and inserting into equation 8.3 yields the
system of six independent equations, which we want to solve for V while elimi-
nating the remaining vector components b1, b2, c1, c2, c3:

Aa = (b2c1 − b1c2)2 +
(
b21 + b22

)
c23

Ab = (c22+c23)V 2

b22c
2
3

Ac = V 2

c23

Ba = ((b2+c2)2+c23)V 2

b22c
2
3

Bb =
(
b21 + b22

)
c23 + (b2c1c3−b1c2c3+V )2

c23

Bc =
(
b2c1 − c2

(
b1 + V

b2c3

))2

+ c3
2

(
b22 +

(
b1 + V

b2c3

)2
)

(8.4)

Solving this system of equations is possible and was carried out, however it
amounts to very messy algebraic manipulations. (It turned out to be necessary
to map out the solution strategy and to implement it in computer algebra, due
to the size of the appearing terms, which seemed unfeasible on paper.) The final
result is:

V =
∣∣∣∣ a b2 c2 dAb

4 (b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2)
+ b4 d e2 Ab

16 (b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2)

− b4 d2 f Ab
16 (b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2)

− a c4 Ac
b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2

+ b2 c2 e2 Ac
4 (b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2)

+ b2 c2 d f Ac
4 (b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2)

+
√
a b6 c2 d2 e2 Ab2−4 a b4 c4 d e2 Ab Ac+b6 c2 d e4 Ab Ac−b6 c2 d2 e2 f Ab Ac+4 b4 c4 d e2 f Ac2

4 (b4 d2 Ab2−8 b2 c2 dAb Ac+16 c4 Ac2)

∣∣∣∣ 1
4

(8.5)
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where:

a =
(
−Ab2 − (Ac −Ba)2 + 2Ab (Ac +Ba)

) (
Aa

2 + (Ac −Bb)2 − 2Aa (Ac +Bb)
)

b =
√
Ab

2 + (Ac −Ba)2 − 2Ab (Ac +Ba)

c = Ab

(
Ab

2 + (Ac −Ba)2 − 2Ab (Ac +Ba)
)

d = (Ab +Ac −Ba)2
(
Ab

2 + (Ac −Ba)2 − 2Ab (Ac +Ba)
)

e =
(
−Ab2 − (Ac −Ba)2 + 2Ab (Ac +Ba)

) 3
2

(Aa +Ab −Bc)

f =
(
−Ab2 − (Ac −Ba)2 + 2Ab (Ac +Ba)

) (
Aa

2 + (Ab −Bc)2 − 2Aa (Ab +Bc)
)

Classical Volume of a Region

Let (Σ, q) be a three-dimensional Riemannian manifold with analytic atlas
{(Ui, φi)}Ni=1 for Σ and regular metric q thereon. With regular, we mean that
given any analytic chart (U, φ) and any coordinate cube C(ε) of coordinate size
ε in this chart that the expression ε−3V (C(ε)), where V denotes the volume,
converges with a positive power of ε as ε→ 0. This condition is obviously satis-
fied by smooth classical metrics. Our task is to calculate the volume of a given
pre-compact region R ⊂ Σ,i.e. an open region that is contained in a compact
set, which we assume to be an open sub-manifold, so there is a neighborhood of
each point x ∈ R, that is isomorphic to a simply connected open subset of R3.
So, we are classically led to consider:

V (R) :=
∫
R

√
|q|d3x. (8.6)

Since the density
√
|q|d3x is bounded, i.e. for any compact set C the functional

V (C) <∞, we can insert a partition of unity R = {Ri, ρi}ki=1 for the region R
to obtain:

V (R) =
k∑
i=1

V (Ri). (8.7)

Without loss of generality, the resolution of unity R can be chosen to consist
of sets that are topologically equivalent to open balls in R3, which additionally
can be assumed to be completely contained in one chart of Ui of the given atlas
of Σ. So, using equation 8.7 we have to only consider equation 8.6 for regions E
that are topologically equivalent an open ball and which are coordinized using
a single chart.

Our strategy to construct an equivalent expression to equation 8.6 using a
limit of Riemann sums over a cell decomposition of E, where each cell is assumed
to be a parallelepiped in the chart containing E. The summands in the Riemann
sums are then expressed, using the result of the previous section, in terms of the
six independent areas of each cell. To do this, we need to calculate the q-volume
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of a parallelepiped P (xo,~a,~b,~c) at base-point xo, spanned by ~a,~b,~c:

ε−3V (P (xo, ε~a, ε~b, ε~c)) = ε−3
∫
P (ε)

d3u
√
|φ∗q|(u)

−→ ε−3
∫
P (ε)

d3u
√
|φ∗q|(xo) as: ε→ 0

(8.8)

where the constant approximation for ε→ 0 is due to the regularity assumption
on our metric. The number of cubical cells in the decomposition of E on the
other hand grows as C(E)ε−3 as ε → 0, where CU (E) denotes the coordinate
volume of E in the chart (U, φ).

Let us be more specific about the cubical decomposition of Σ: Given a region
E that is topologically equivalent to an open ball, ε > 0 and a chart (U, φ)
containing E, we can apply a translation in U , moving the coordinate center of
mass of E to the origin of U . We then use a piecewise stratified diffeomorphism
that makes E to a coordinate cube of side length 2nε with n ∈ N large enough
such that the coordinate center of mass is again at the origin of the transformed
chart. We denote the transformed chart again by (U, φ). Then we take the
cubical lattice fixed at the origin of U , such that for all (n1, n2, n3) ∈ Z we have
a coordinate cell:

Cεn1,n2,n3
= {(u1, u2, u3) : n1 < ε−1u1 < n1+1, n2 < ε−1u2 < n2+1, n3 < ε−1u3 < n3+1}.

Denote the set of all cells C for which C ∩ φ(E) = C by Dε
U . Clearly, LεU :=

φ−1(Dε
U ) defines a cubical decomposition of E, and the number of elements of

grows as
|LεU | → CU (E)ε−3 as: ε→ 0.

So, we are able to approximate the volume as a sum over the volumes of C ∈ LεU
with homogeneous metric inside C, such that this approximation becomes exact
in the limit ε→ 0.

Internal versus External Regularization

Given a cellular decomposition LεU of E, we need to specify which surfaces we
want to use in equation 8.5, to calculate the volume of a cell. There are two
very distinct ways to proceed and a few ”middle-roads”:

The first, which is closest to [40] can be called internal regularization, because
one chooses only surfaces ”inside” the cell. This can be achieved by moving the
three faces, that one uses to calculate the volume, to the ”coordinate center of
mass” (see figure 8.2, left). Since all areas are measured using open sets, there
is no measurement on the boundary of the cell and hence the approximation is
”internal”. This divides the cell into 24 distinct regions (see figure 8.2, right).
Gauge invariance seems to have been the reason for using an internal regular-
ization in [40]. The area measurements that we use here are however already
gauge invariant and we are thus free to use a more general approach.

The second, which is closest to [41] can be called external regularization,
because there is an open region around the ”coordinate center of mass” of the
cell that contains no surface. The construction can be described as follows: cut
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Figure 8.2: The left side shows areas, which are isometric to the faces in a
homogeneous metric, that are used in the internal regularization. All six surfaces
in the internal regularization meet at the ”coordinate center of mass” of C (solid
dot). The right side shows the net of the cell with the 24 distinct regions in the
internal regularization.

the cubical cell into the six square pyramids that meet at the ”coordinate center
of mass” of the cell. Each square pyramid has one face as boundary. Move the
tip of the square pyramids to the opposite face, so the center of the bottom
square of the square pyramid is at the ”coordinate center of mass” of the cell.
The set of the six times four triangular faces of the six moved square pyramids
will be referred to as ”moved diagonal cross sections”. Figure 8.3 shows the six
times four resulting surfaces on the left of each half of the figure. The relation
to the diagonal cross cuts is indicated on the right hand side of figure 8.3. As
such figure 8.3 provides the graphical proof of the equality between the area of
the shaded regions of the moved diagonals and the diagonal cross section, which
was already evident from our construction.

It turns out that the treatment of the diffeomorphisms is less ambiguous in
the external regularization, because in the quantum theory we want to capture
vertices of a spin network at the coordinate center of mass to ensure convergence
of the limit of Riemann sums. In the internal regularization one uses surfaces
which intersect precisely at the ”coordinate center of mass” and we have to
carefully work the action of the diffeomorphisms on the vertex out, which on
the other hand depends heavily on the class of diffeomorphisms that one chooses.
Hence, let us describe the external regularization in a little more detail:

Given a cell φ(Cεk,l,m) in a chart (U, φ), then additional faces of the external
square pyramids that are added are denoted by φ(F εk,l,m,i,j), where the indices
k, l,m denote the cell that they are attached to, i = 1, ..., 6 is a label that
denotes the face that the pyramid originated from and j = 1, ..., 4 is a label
that labels the triangular face of the the moved pyramid. A particular labeling
(i, j) is provided in figure 8.4. Since one only needs three out of the six diagonal
cross sections to calculate the volume in a homogeneous metric, one will also
only need twelve out of the 24 faces to calculate the volume of the respective
cell in a homogeneous metric. The correspondence between the faces and the
respective diagonals is illustrated in figure 8.4.
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Figure 8.3: This figure shows the six times four pieces of the ”moved” diagonal
cross sections on the left and provides a graphical proof of the equality of the
area of a diagonal cross section and the sum of the shaded areas of the ”moved
diagonals”: Both lines illustrate the equality between twice the respective half of
the diagonal cross section area and the shaded surfaces of the ”moved” diagonals
on the left.
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Figure 8.4: This figure illustrates the relation between the ”used diagonal cross
sections” and the ”used faces” in the moved diagonals. The numbers indicate
the pair (i, j) in the labeling of the face Fk,l,m,i,j . The coordinate chart U is
assumed to be right-handed cartesian and the 1-direction is assumed to be going
from left to right.

There are six distinct diagonal cross sections, however one only needs three to

calculate the volume. Thus there are
(

6
3

)
= 20 choices, but only those choices

that provide a cross section for each face of the cubical cell are permissible, thus
there are only 23 = 8 permissible choices, because after fixing one vertex of
the cell there are two possibilities for the cross sections through the three faces
adjacent to the vertex. These possibilities are illustrated in figure 8.5. The
choice for the diagonal cross section that contains the chosen vertex is labeled
with 0, the one that avoids the respective vertex is labeled by 1. After choosing
an ordering for the adjacent faces, one obtains a binary number that encodes
the permissible choice of diagonal cross sections.

The particular choice of faces is irrelevant for the classical volume functional.
For the quantum theory it will however turn out to be important, so let us fix
the choice of faces to be 000 form now on.2 We will use the arithmetic mean
for the surface areas Aa = 1

2 (A1
a(C) +A2

a(C)), where A1
a(C) denotes the C-face

with the lower coordinate value for the a-component and A2
a the component

with the higher coordinate value, and the moved C-diagonals Ba,000(C), which
we add to the respective area of the diagonal cross section as indicated in figure
8.5. Inserting this into equation 8.5 yields the regulated expression:

V (C) := V (
1
2

(A1
1(C) +A2

1(C)), ..., B3,000(C)). (8.9)

It will turn out that diffeomorphism covariance of the quantum operator requires
a kind of averaging that removes the particular choice of faces.

2We have provided a volume functional only for choices that are labeled by a ”Y ”, but it
is not difficult to reexpress the volume functional for a ”∆” choice.
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Figure 8.5: This figure illustrates the relation between the ”used diagonal cross
sections” and the ”used faces” in the moved diagonals. The coordinate chart
U is assumed to be right-handed cartesian and the 1-direction is assumed to be
going from left to right.

Approximation of the Classical Volume

Classical densities are smooth and so their restriction to compact sets are in
particular continuous and bounded and is thus Riemann integrable. So, if we
have a chart (U, φ) and a cubical partition LεU , which has the property that the
maximal coordinate volume of a cell C in LεU goes to zero as ε→ 0, we are able
to define the Riemann integral as the limit of the Riemann sums, labeled by the
partition LεU :

V (LεU ) :=
∑
C∈LεU

V (C) =
∑
C∈LεU

V (
1
2

(A1
1(C) +A2

1(C)), ..., B3,000(C)), (8.10)

where the volume of a cell is still given by equation 8.9. Continuity and compact
support of the integral ensure the convergence for all classical metrics, we are
thus able to identify the classical relation between the volume of a region R,
which is still assumed to be contained in a single chart:

V (R) = lim
ε→0

V (LεU ) = lim
ε→0

∑
C∈LεU

V (C). (8.11)

For regions that are not contained in a single chart, we will use a partition of
unity R that consists of regions that are contained in a single chart and write
the volume as a sum over the volumes of the elements of R.

Notice that this classical definition of a volume depends on a particular atlas
{(Uiφi)}ni=1 for Σ. While differential geometry and convergence of the Riemann
integral imply that volume functional (equation 8.11) is independent of the atlas
for any classical Riemann metric, we will have to pay special attention to this
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issue when quantizing equation 8.11, due to the singular nature of quantum
geometries.

Averaging

Although equation 8.11 converges to the volume of R independent of the chart,
we have to consider how to get rid of the chart dependence. The approach
taken in [40] is to take a given chart and average over a sufficient set of trans-
formations of this chart so the average becomes independent of the particular
choice made for the initial chart. Due to the tangent space sensitivity of the
Ashtekar-Lewandowski volume operator they where forced to average over the
action of diffeomorphisms on the tangent space of the intersection point of the
internal regularization. Our regularization procedure however uses an external
regularization, which is not sensitive to the tangent space structure.

So let us consider a possible averaging procedure, although the averaging
procedure is trivial at the classical level: Let (U, φ) be a chart containing R and
let LεU be the cubical partitioning of R induced by the chart. Given a finite set
of piecewise analytic diffeomorphisms φi : R3 → R3, then the volume defined in
equation 8.11 can be modified to

V (R) = lim
ε→0

1
k

k∑
i=1

V (Lεφi(U)). (8.12)

Equation 8.12 will still converge to the classical volume of R.
Let us consider a particular set of diffeomorphisms: Let vj be a finite set

of points in R and let cj be a sphere of coordinate radius ε
3 around vj and

let pij be a set of points on the coordinate sphere cj . For each pair of sets
{vj , {pij}

mj
i=1}nj=1 and {vj , {p1

ij}
mj
i=1}nj=1 there is a piecewise analytic diffeomor-

phism φ leaving the vj invariant and mapping φ : pij 7→ p1
ij , and given k sets

{vj , {prij}
mj
i=1}nj=1 there are k piecewise analytic diffeomorphisms leaving the vj

invariant while mapping φr : pij 7→ prij . We will use a similar set of k such dif-
feomorphisms in the operator version of equation 8.12 to perform the averaging
in the quantum theory that results in removing the dependence of the operator
version of equation 8.12.

8.1.2 Volume Operator

We will now give a definition of a volume operator based on equation 8.12. We
will give the definition of a self-adjoint operator on the domain of spin network
functions and consider its Hermitian completion from this dense domain.

Adaption to the Graph

One has the freedom to adapt the precise action of the volume operator to
the graph of the spin network, but such an adaption must be diffeomorphism
covariant, so we obtain a diffeomorphism covariant operator in the limit ε →
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Figure 8.6: Adaption to a graph: left: a sample cubical decomposition, center:
a sample refinement of a cell, right: a sample split of a cubical cell into two cells
that are diffeomorphic to a cube.

0. The definition of diffeomorphism covariance, that we use here is due to J.
Lewandowski and first appeared in [44]: If there is a diffeomorphism relating
two cylindrical functions Cylγ , Cylγ′ , then there must be a diffeomorphism that
maps the adaption to Cylγ to the adaption of Cylγ′ . We can construct such an
adaption as follows:

We assume a chart (U, φ) that contains R and a suitably small ε > 0. For
each vertex v ∈ V (γ) remove a coordinate cube cv of size ε3 with coordinate
center of mass v from R. ε is assumed to be small enough, such that all cv
are disjoint. Then decompose R \ (∪vcv) into coordinate cubes LεU as described
in section 8.1.13. The left picture in figure 8.6 depicts an example cubical
decomposition. The cells in Lεu may still contain more than one edge. Since the
neighborhoods cv of the vertices v of γ are removed from R, we can always find
a refinement, decomposing a cubical cell of Lεu into several cubical cells, such
that each cell contains only one edge. A sample refinement is depicted in central
picture in figure 8.6. These refined cells contain at most one edge. Each cell that
contains an edge can be split into two cells, that are each diffeomorphic to a cube
and which contain the edge in their mutual boundary. A sample decomposition
is depicted in the right picture of figure 8.6. This refined decomposition of
R \ (∪vcv) together with the set {cv}v∈V (γ) defines the partition P γo (R).

We then define the refinement process of the partition P γn → P γn+1 as follows:
For each cell that does not contain a vertex is split into 3 × 3 × 3 cells by
dividing it at the coordinate thirds in each direction in the chart used to define
the parent cell. Each cell that contains a vertex is refined in the same way,
such that the vertex lies in the central cell. However, the adjacent cells may

3In section 8.1.1, we assumed that the considered region is topologically equivalent to
an open ball. This is in general not the case for R \ (∪vcv). We will therefore have to
decompose R \ (∪vcv) into regions that are topologically equivalent to an open ball to apply
this construction.

105



contain edges going through their interior, so we subsequently apply the step
previously described for LεU , such that cells that do not contain a vertex have
edges only running through their boundary. Packaging the partitions P γn (R)
together defines the family Fγ(R). For each family F we have the classical
identity:

VF (R) = lim
n→∞

∑
c∈Pn

V (c). (8.13)

Due to the sensitivity of the quantum volume cell V̂ (cv) to the topological
relations between the edges adjacent to the vertex v and the surfaces used to
measure the cell volume, we have to constrain the partition process to a process
that preserves these topological relations for all n ≥ no to ensure convergence.
This is possible due to piecewise analyticity of γ, which ensures that all edges
are outgoing form v for small enough ε > 0.

Averaging

Using the quantum version of equation 8.13 as a basis for our quantization,
we see that we have to only consider the volume of an individual cell. Due to
the sensitivity of the quantum volume cell V̂ (cv) to the topological relations
between the edges adjacent to the vertex v and the surfaces used to measure
the cell volume, we have a sensitivity to the chart used to define the cell, which
introduces a background dependence.

Using the piecewise analyticity of γ we know that all edges adjacent to v are
outgoing from v for ε > 0 small enough. Thus, we can get rid of this background
dependence by averaging over all possible topological relations between purely
outgoing edges and the surfaces used to measure the cell volume. To be more
specific: Let T (v) denote the set of topological relations that exist for any
ε > 0. Since the edges are all outgoing for small enough ε, there are only
three possible relations between a measuring surface and an edge: (1) the edge
avoids the surface, (2) the edge penetrates the surface transversally or (3) the
edge is tangent to the surface. Since there is only a finite number of edges,
only six surfaces and a finite number of relations between each edge and each
surface, we conclude that T (v) is a finite set, moreover the number of topological
relations is bounded by 36×valence of v. However, not all topological relations
can be achieved by a diffeomorphism4, leaving us with a nontrivial combinatorial
problem. Let A(v) ⊂ T (v) denote the set of possible topological relations that
can be achieved between φ(γ) and the set of measuring surfaces by applying an
appropriate diffeomorphism φ. We can therefore equivalently describe A(v) by
a set of representative diffeomorphisms that achieve these topological relations.

4The sensitivity to the tangent space structure in the internal regularization is the source
for additional complications because a diffeomorphism acts only as a linear transformation
on the tangent space yielding additional constraints for the topological relations that can be
achieved with a diffeomorphism. Using extended diffeomorphisms, that do not act as linear
transformations on the tangent space, we can remove some of these constraints.
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We are now able to refine the definition of the cell volume Vγ(cv) by using the
adaption to the graph and the averaging over the possible topological relations:

Vγ(cv) :=
1

|A(v)|
∑

φ∈A(v)

V (cv) ◦ φ. (8.14)

Definition of the Volume Operator

We have now collected all the ingredients needed for the definition of a volume
operator, so we can finally insert equation 8.14 into equation 8.13 and insert
equation 8.5, where we replace the area functionals with the respective area
operator. To be able to use equation 8.5 however, we have to ensure that there
exists a parallelepiped with the squared surface areas Aa, ..., Bc. To truncate
the data Aa, ..., Bc correctly, we define the function

θ(Aa, ..., Bc) :=
{

1 if ∃ paralleepiped with suqred areasAa, ..., Bc
0 otherwise

(8.15)
This makes V (Aa, ..., Bc)θ(Aa, ..., Bc) a positive semi-definite function for all
6-tuples (Aa, ..., Bc). Using the observation that the gauge-variant spin network
functions are eigenfunctions of the area operator, we are able to define for any
gauge-variant spin network function SNFγ on graph γ:

V̂ (R)SNFγ := V̂Fγ (R)SNFγ = lim
n→∞

∑
c∈Pn

V̂ (c). (8.16)

Using the observation that all area operators vanish when there is no edge in
the cell, we observe that the sum has to be taken only over the calls containing
vertices, so:

V̂ (R)SNFγ := V̂Fγ (R)SNFγ = lim
n→∞

∑
v∈V (γ∩R)

V̂ (cv), (8.17)

where:

V̂ (cv)SNFγ :=
∑
φ∈A(v)

1
|A(v)|θ((Â(Aa(cv)))2, ..., (Â(Bc(cv)))2)

V ((Â(Aa(cv)))2, ..., (Â(Bc(cv)))2)SNFφ(γ),
(8.18)

and where V (...) is given by equation 8.5. The gauge-variant spin network
functions are eigenfunctions of the volume operator, since the gauge-variant spin
network functions are eigenfunctions of the mutually commuting area operators,
so we can make sense of equation 8.5 through a spectral definition. We also see
that this operator is positive semi-definite for all gauge-variant spin network
functions, because it is the sum over averages of positive semi-definite values.

8.1.3 Properties of the Volume Operator

Let us now collect some important properties that we need to prove that equa-
tion 8.17 defines a positive semi-definite Hermitian operator, that is gauge in-
variant and transforms covariantly under diffeomorphisms.
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Cylindrical Consistency

Any cylindrical function can be expanded in gauge-variant spin network func-
tions, so using linearity of the volume operator, we can prove that V̂ (R) is non-
graph-changing and cylindrically consistent by showing this for gauge-variant
cylindrical functions:

non graph-changing: The gauge-variant spin network functions are eigen-
functions of the volume operator, thus the action is non-graph changing.

cylindrical consistency: A gauge-variant cylindrical function SNFγ ∝
∏
e∈γ ρ

je
mene(he(A))

has a minimal graph γo, which consists precisely of the edges e for which je 6= 0.
So enlarging the graph γo adds only edges with representation 0, which do not
contribute to an area measurement. Hence V (R)SNFγ = V (R)SNFγo , since
we expressed the volume operator only through area operators.

Positivity, Symmetry and Hermitian Extension

We already saw that the gauge-variant spin network functions are eigenfunctions
of our volume operators V̂ (R) with positive semi-definite eigenvalues. Moreover,
since the gauge-variant spin network functions form a complete orthogonal set
in L2(X, dµAL), we see that all operators V̂ (R) are real-symmetric and positive
semi-definite in this dense domain. Hence there is a unique unbounded Her-
mitian operator on L2(X, dµAL), that coincides with our definition of V (R) for
any gauge-variant spin network function.

This Hermitian extension is the volume operator V̂ (R) for any region R.

Covariance with respect to the Kinematical Constraints

Gauge-invariance: The volume operator is a spectral function of area operators,
which are gauge-invariant, implying its gauge invariance.

Covariance under Diffeomorphisms: We have to show that U∗φ V̂ (R)Uφ =
V (φ−1(R)) for any diffeomorphism φ. Consider therefore two spin network
functions fγ and gδ depending on the minimal graphs γ and δ respectively:

〈fγ , U∗φ V̂ (R)Uφgδ〉 = 〈Uφfγ , V̂ (R)Uφgδ〉
= 〈fφ(γ), V̂ (R)gφ(δ)〉
= V

gφ(δ)

R 〈fφ(γ), gφ(δ)〉,

since the gauge-variant spin network functions are eigenfunctions of our volume
operator. The eigenvalue however is a sum over eigenvalues associated with the
vertices of δ, so we have to only consider the eigenvalues V̂ (cvφ)gφ(δ) associated
to the vertices vφ ∈ V (φ(δ)). Notice that φ−1vφ = v ∈ V (γ). There are now
two cases (1) vφ ∩ R = ∅ then the eigenvalue vanishes, which is also implied
by v ∩ φ−1(R) = ∅; (2) vφ ∩ R = vφ, which is equivalent to v ∩ φ−1(R) =
v, in which case the result is non vanishing. The volume eigenvalue of the
unaveraged cell volume depends on the germ of edges at the vertex, which is
altered by the diffeomorphism. However, since we averaged over all possible
topological relations that can be achieved using a diffeomorphism, we see that
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the eigenvalue is unchanged. This implies the covariance of the volume operator
under diffeomorphisms.

8.2 Length Operator

Having a volume operator based on area measurements at our disposal, we apply
our presentation of Thiemanns length operator (section C.4) with one small
modification, which is due to the unknown behavior of our volume operator on
tri-valent vertices. Since Thiemanns argument (footnote 3) can be applied to the
trivalent as a special case of case 5, we can immediately use the gauge invariance
of our volume operator and insert this volume operator into the formula equation
C.8 for Thiemanns length operator to obtain a length operator in terms of area
operators. Since our volume operator acts nontrivial at vertices only, we see
that the simplification (equation C.9) holds as well.
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Chapter 9

Conclusion

Standard Loop Quantum Cosmology has turned out to be a valuable tool to in-
vestigate Quantum Gravity effects. It is a quantum cosmological model that has
many features induced from Loop Quantum Gravity and shares in particular its
discreteness. The results of this thesis, which is concerned with broadening the
understanding of the relation between macroscopic models and Loop Quantum
Gravity itself, can therefore be used in particular to ”sharpen” this tool. The
technical problem attacked in this thesis is twofold:

(1) Loop Quantum Gravity is a continuum theory arising from a lattice gauge
theory on a floating or changing lattice therefore inherits lattice discreteness for
the geometric observables. This discreteness obstructs the construction of a
smooth classical geometry, while it is widely assumed to provide mechanisms
for singularity avoidance.

(2) The states of Loop Quantum Gravity depend on particular classes of
lattices, which generically resolve only a compact spatial topology and make
the predictions vulnerable to lattice effects.

To overcome these technical problems, we looked at the relation of classical
cosmology and General Relativity and tried to read off mechanisms that could
be applied to the quantum theory, very often using hints from noncommutative
geometry. This lead to the following main results:

1. Construction of the quantum analogue of a phase space embedding: In

analogy to using the pull-back under a Poisson-embedding of a reduced system

into a full classical system, we demanded that a quantum embedding provides

(1) reduces to the pull-back under such an embedding in a suitable classical

limit and that (2) the expectation values of the reduced system are matched by

expectation values in the full system. Using the noncommutative analogue of

embedding a vector bundle over the reduced phase space into a vector bundle

over the full phase space and recovering the embedding using the bundle pro-

jection, we construct a quantum embedding as follows: The noncommutative

analogue of a vector bundle is a Hilbert-C∗-module (induction module) and for

transformation group systems there exists an induction module given by func-
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tions on the configuration space. Having a pair of linear maps p, q1 from the

reduced configuration observables into the full configuration observables, that

satisfy certain consistency conditions, we are able to use methods similar to

Rieffel induction to construct a quantum embedding prescription that satisfies

our demands.

2. The extended Diffeomorphism-group is physically relevant: It was conjec-

tured by Fairbairn and Rovelli [26] that the gauge-group of Loop Quantum

Gravity contains certain extended diffeomorphisms. The authors did however

not consider problems arising form piecewise analyticity of the path groupoid

used to construct Loop Quantum Gravity, which is vital to obtain a closed ob-

servable algebra. Since the existence of this extension was important for the

application of quantum embeddings to Loop Quantum Gravity, we formulated a

physical completeness argument for the gauge group of a quantum theory. Using

this completeness argument, we showed that the diffeomorphism-orbits of spin

network functions are labeled by the knot-class of the underlying graph.

3. There is an embeddable cosmological sector in Loop Quantum Gravity de-
scribing discrete cosmology: Using the previous two results, we constructed an

algebra for diffeomorphism invariant observables in Loop Quantum Gravity. We

carefully constructed an observable algebra for diffeomorphism-invariant observ-

ables in Loop Quantum Gravity and constructed an induction module therefore

using the span of a subset of spin network functions. Since the spin network

functions are particular functions on the configuration space, that underlies Loop

Quantum Gravity, we used an explicit expression for homogeneous connections

to construct a quantum embedding from this induction module. The reduced

observable algebra and its induced representation turned out to be equivalent to

a super selection sector of standard Loop Quantum Cosmology. The construc-

tion presented in this thesis is however not unique and we traced the ambiguities

back to finding a gauge for the diffeomorphisms.

4. There are states on the algebra of Loop Quantum Gravity describing smooth
spatial geometries: For each classical geometry, we constructed positive linear

functionals on a tailored version of the Weyl-algebra of Loop Quantum Gravity,

which turn out to be eigenstates of the geometric observables with eigenval-

ues that match the classical values of the corresponding geometric observables

in this given geometry. Using these states to perform a GNS-construction we

find new families of representations of the algebra of Loop Quantum Gravity

with diffeomorphism-variant vacua, which is an instance in which the celebrated

LOST/F uniqueness result does not hold. These representations turn out to be

labeled by the classical geometry they where constructed from. Summing over

orbits of these GNS-representations, we construct a Hilbert space that carries

a unitary covariant representation of the SU(2)-gauge transformations and dif-

feomorphisms. Using the group-averaging procedure, we constructed the gauge-

1The map p can be constructed as the pull-back under an embedding of the reduced
configuration space, while q is a partial inverse of p.
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and diffeomorphism-invariant Hilbert space, which turns out to contain a basis

given by gauge-invariantly coupled spin-networks that are embedded modulus

isometries.

5. One can interpret standard Loop Quantum Cosmology in terms of the
aforementioned states: Using the aforementioned states on Loop Quantum

Gravity, one can build mini-Hilbert spaces to model symmetric geometries by

constructing the Hilbert-completion of the span of the symmetric vacuum states.

Since the vacuum states transform coherently under spatial diffeomorphisms, we

conjecture coherence under all diffeomorphisms, allowing us to conjecture a dy-

namics that has a viable classical limit.

Constructing the mini-Hilbert space for standard cosmology, we obtain a kine-

matic equivalence with standard Loop Quantum Cosmology. This was used to

transfer Bojowald’s dynamics to our model. This gives an interpretation to stan-

dard Loop Quantum Cosmology in terms of states on the full theory, opening

the door for the study of fluctuations.

6. We constructed a volume operator based on fundamental area operators:
This volume operator is a quantization of the classical volume functional
when this is reexpressed as the limit of Riemann sums which extend over
cell volumes expressed as functions of areas in cells and thus physically
justifies the adjustment of the observable algebra of Loop Quantum Grav-
ity.

This work is obviously only a first step towards the understanding of the re-
lation between Loop Quantum Gravity and cosmology, leading to further ques-
tions:

1. Can one invert the quantum symmetry reduction to learn lessons for the
full theory? The suggestion that the lessons learned from Loop Quantum Cos-

mology could be applied to complete the full theory is a widely used motivation

for the study of standard Loop Quantum Cosmology. Since our construction

presented in this thesis establishes a concrete link between the full theory and

the reduced model, one has reasonable hope to ”invert” this link so one can

apply results from cosmology (or other symmetric models) to the full theory.

2. Is there a criterion for the selection for ”the correct way” to impose
Bianchi symmetry in the quantum theory? Particularly: (1) Is there a math-

ematical reason for ruling some choices out and (2) is there a physical reason

ruling other choices out?

3. Are there even more states on the observable algebra of Loop Quantum
Gravity? The states constructed in chapter 6 are eigenstates of the momentum

operators of Loop Quantum Gravity. They are semiclassical in the sense that

they describe classical spatial geometries as opposed to the ”bumpy” weave

geometries of spin network states. There are ansätze for the construction of

further states that are also labeled by classical fields, which do not describe

spatial geometries. It seems that if these conjectured states exists then they are
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due to lattice effects of the floating lattice of Loop Quantum Gravity, which could

give new ansätze for the application of Smolin et al.’s programm of constructing

a standard model as lattice effects in Loop Quantum Gravity.

4. Can the dynamics conjectured in chapter 7 be implemented successfully?

5. Can one find a way to induce a nontrivial dynamics for the reduced model?

There are many more questions that we omit for the sake of brevity.
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Appendix A

C∗-algebras and strong
Morita Equivalence

This is appendix is intended to serve as a lexicon that fixes the notation that we
use in the treatment of C∗-algebras. In section A.1 we included only definitions
and theorems, because the field of C∗-algebras is readily available in textbooks
[29, 30, 31] and [1]. The following section, which is concerned with Morita
equivalence and Rieffel induction for C∗-algebras, includes instructive proofs
that are meant to illustrate methods that are used in this field. This is necessary,
beacuse this field is not very much known among physicists and most of the
background has to be extracted from original works in this field of mathematics,
e.g. [35, 36, 19, 37, 38]. The final section contains two applications of the Morita
theory for C∗-algebras, which have physical significance. These are directly
taken from original literature [19, 18, 32] and include the important steps of
the proofs, that play a role in the construction of quantum embeddings and in
proving their properties.

A.1 Preparations

This section quotes basic definitions and central theorems about the theory of
C∗-algebras without proving these. It is intended to fix notation and to quote
theorems for so we can refer to them elsewhere.

A.1.1 Foundations

We introduce the abstract concept of a C∗-algebra without referring to a par-
ticular representation as bounded operators on a Hilbert space. This allows us
to abstractly discuss representations of C∗-algebras.

Definition 32 1. An operator on a Banach space B is bounded, if it is a
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linear map O : B → B with finite operator norm:

||O|| := sup{||Ob|| : b ∈ B; |b| ≤ 1}.

2. A Banach space B is a Banach algebra if B is an algebra and if for all
b1, b2 ∈ B:

||b1b2|| ≤ ||b1|| ||b2||.

3. An involution on an algebra A is a antilinear map ∗ : A → A, such that
for all a, a1, a2 ∈ A:

(a1a2)∗ = a∗2a
∗
1 and a∗∗ = a.

4. A C∗- algebra is a Banach algebra with involution satisfying

||aa∗|| = ||a||2

for all a ∈ A.

5. A linear map l : B → C on a Banach algebra B is called a functional,
iff it has finite norm:

||l|| := sup{|l(b)| : b ∈ B; ||b|| = 1}.

The dual B∗ of a Banach space B is the space of all functionals.

6. A linear map m : A → B between two C∗-albegras A and B is called a
morphism if for all a, a1, a2 ∈ A

m(a1a2) = m(a1)m(a2) and m(a∗) = m(a)∗

7. Given a b ∈ B, the set σ(b) := {z : b − zI is not invertible in B} is called
the spectrum of the element b of the unitial Banach algebra B.

8. A closed linear subspace I of a Banach algebra B is an ideal if for any
b ∈ B and all i ∈ I: bi ∈ I and ib ∈ I. An ideal I of B is maximal, if
there is no proper ideal of B that contains I as a proper subspace.

Let us quote some important theorems about Banach spaces and C∗-algebras
whose proofs can be found in various textbooks:

Theorem 3 1. Hahn-Banach: Each functional on a linear subspace Bo of
a Banach space B has a norm-equivalent extension to B.

2. Every morphism m of C∗-algebras A,B satisfies ||m(a)|| ≤ ||a|| for all
a ∈ A.

3. For each Banach algebra B there exists a morphism into a unitial Banach
algebra Bu such that Bu/B = C.
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4. The spectrum σ(b) is a nonempty, compact subset of {z ∈ C : |z| ≤ ||b||}
for each element b of a Banach algebra.

5. Gel’fand-Mazur: If every nontrivial element of a unitial Banach algebra
B is invertible, then B is isomorphic to C.

6. The spectral radius r(b) := sup{|z| : z ∈ σ(a)} of an element b of a unitial
Banach algebra is:

r(b) = lim
n→∞

||bn|| 1n .

7. Given an ideal I of a Banach algebra B, then B/I is a Banach algebra
with norm and multiplication:

||[b]|| := inf{||b+ i|| : i ∈ I} and [b1][b2] = [b1b2],

where [b] denotes the equivalence class of elements of B under b ∼ b + iif
i ∈ I.

One can unitialize C∗-algebras A in the following way: Consider each element
a ∈ A as an operator O(a) : A→ A by b 7→ ab. Then the algebra A1 = {a+ zI :
a ∈ A, z ∈ C} with multiplication (a1 + z1I)(a1 + z2I) = (a1a2 + z1a2 + z2a1) +
(z1z2)I and natural involution and operator norm is a unitial C∗-algebra, whose
spectrum ∆(A1) is the one point compactification of ∆(A).

Lemma 29 To each C∗-algebra A there exists a C∗-algebra A1 with A1/A = C.

To each element a of a C∗-algebra A, there exists a smallest C∗-algebra C(a, I),
which is generated by a and the unit element I, which turns out to be the norm
closure of the polynomials in a. C(a, I) is commutative for all normal elements
a.

Definition 33 1. An element a of a C∗-algebra is called normal if it com-
mutes with a∗. It is self-adjoint if a = a∗.

2. An element a of a C∗-algebra is called positive, if it is self-adjoint and if
its spectrum σ(a) is positive. Positive elements are denoted by a ≥ 0 and
A+ := {a ∈ A : a ≥ 0}.

Theorem 4 1. Given a self-adjoint element a in a C∗-algebra A, then its
spectrum is real and coincides with the spectrum of a in C(a, I). Moreover,
∆(C(a, I)) is homeomorphic to σ(a), such that the Gel’fand transform
becomes the identity.

2. For each self-adjoint element a of a C∗-algebra A and for each f ∈
C(σ(a)), there exists an operator F (a) ∈ A, such that σ(F (a)) = f(σ(a))
and ||F (a)|| = ||f ||sup.

3. Given a C∗-algebra A then each norm ||.||s on A for which ||a∗a|| = ||a||2
coincides with the C∗-norm on A.

4. The set of positive elements A+ is a convex cone for each C∗-algebra A.

5. A+ = {a∗a : a ∈ A} for each C∗-algebra A.
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A.1.2 Commutative C∗-algebras

Let us now consider commutative algebras, i.e. ab = ba for all elements of these
algebras. We start with some standard definitions:

Definition 34 1. Given a Banach algebra B, the set ∆(B) consisting of the
nontrivial functionals ω which satisfy for all b1, b2 ∈ B is called its spec-
trum:

ω(b1b2) = ω(b1)ω(b2).

2. The Gel’fand topology of ∆(B) is the restriction of weak ∗-topology to
the spectrum ∆(B) of the Banach algebra B. I.e. ωn → ω in the Gel’fand
topology iff ωn(b)→ ω(b) for all b ∈ B.

3. Given a locally compact Hausdorff space X, the ∗-algebra of all continuous
complex valued functions on X, which vanish at infinity, with pointwise
multiplication, pointwise addition and pointwise involution is denoted by
Co(X). If X is compact then vanishing at infinity is waived and the algebra
is denoted by C(X).

4. The sup-norm on Co(X) is given by

||f || := sup{|f(x)| : x ∈ X}.

Given a Banach algebra B, we can embed B into B∗∗ by the following construc-
tion:

.̂ : B → B∗∗ by b̂ : ω 7→ ω(b). (A.1)

Taking ω ∈ ∆(B), then b̂ defines a function on ∆(B), which is continuous in the
Gel’fand topology on ∆(B). This lets us define the Gel’fand transform as a
map from B to C(∆(B)) by:

.̂ : B → C(∆(B)) : b 7→ b̂.

There are various consequences of this construction, we quote some here and
refer to standard literature for the proofs:

Theorem 5 1. Each ω ∈ ∆(B) is continuous and of unit norm and satisfies
for unitial B: ω(I) = 1, ||ω|| = 1⇒ |ω(b)| ≤ ||b||∀b ∈ B.

2. Given a commutative unitial Banach algebra B: For each ω ∈ ∆(B) there
is a maximal ideal Iω := ker(ω) and for each maximal ideal Im there is
an ωIm ∈ ∆(B) such that Im = ker(ωIm). Moreover, I1 = I2 if and only
if ω1 = ω2.

3. For any commutative Banach algebra B: ∆(B) is a compact Hausdorff
space in the Gel’fand topology.

4. Given a locally compact Hausdorff space X, then Co(X) is a C∗-algebra
whose norm is the sup-norm.
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5. Given a commutative unitial Banach algebra B, the Gel’fand transform
is a homomorphism from B to C(∆(B)), whose image separates points in
∆(B). Moreover, ||b̂||sup ≤ ||b|| for all b ∈ B.
For a nonunitial commutative Banach algebra B ∆(B) is locally compact
and Hausdorff and the one point compactification of ∆(B) for Bu. The
Gel’fand transform is a homomorphism from B to Co(∆(B)) whose image
separates points in ∆(B) and ||b̂||sup ≤ ||b||∀b ∈ B.

6. Given a commutative C∗-algebra A then if A is unitial there is a compact
Hausdorff space X such that A = C(X) and if A is nonunitial, then there
is a locally compact Hausdorff space X such that A = Co(X).

7. Stone-Weierstrass: Given a compact space X and a unitial C∗-algebra
A of functions on X, which separates points in X, then A = C(X).

8. Any locally compact Hausdorff space X is homeomorphic to ∆(C(X)) with
its Gel’fand topology.

We refer to the one-one correspondence between commutative C∗-algebras and
locally compact Hausdorff spaces as the Gel’fand theory for C∗-algebras.

A.1.3 Approximate Units and Ideals

C∗-algebras do not generally have units, neither do proper ideals of a C∗-algebra
contain unit elements. The study of ideals of commutative C∗-algebras is equiv-
alent to the study of functions vanishing on open sets. A useful concept for this
study is given by approximate identities, which exist also for nonunitial C∗-
algebras and proper ideals.

Definition 35 1. Given a nonunitial C∗-algebra A, a directed set (N,≤) and
a family {In}n∈N of elements of A indexed by elements of the directed set,
then we call {In}n∈N an approximate identity if each In is self-adjoint
with

σ(In) ⊂ [0, 1]

and for each a ∈ A:

lim
←n
||a− Ina|| = 0 = lim

←n
||a− aIn||.

2. A C∗-algebra is called separable, if it contains a countable dense set.

Approximate units always exist:

Lemma 30 1. A nonunitial C∗-algebra has an approximate identity.

2. A separable C∗-algebra has an approximate identity with countable directed
set (N,≤).

Using approximate identities one can prove important results for ideals of C∗-
algebras, which we quote without proof:
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Theorem 6 1. Every ideal of a C∗-algebra is self-adjoint, i.e. it contains
the adjoints of all its elements.

2. The quotient of a C∗-algebra by an ideal I is a C∗-algebra with the induced
algebraic operations [a1][a2] := [a1a2], induced norm ||[a]|| := inf{||a+ i|| :
i ∈ I} and induced involution [a]∗ := [a∗].

3. For any ideal I of a C∗-algebra A and a ∈ A and any approximate identity
{In}n∈N for I, one has

||[a]|| = lim
←n
||a− aIn||.

4. Every ideal in a C∗-algebra A is the kernel of some C∗-algebra morphism
m : B→ A.

5. An injective morphism of C∗-algebras is isometric.

6. Let m : A → B be a morphism of C∗-algebras, then m(A) is a C∗-
subalgebra of B.

A.1.4 Representations and GNS-construction

For the purpose of doing quantum mechanics, one needs to construct particular
Hilbert space representation for a given C∗-algebra of quantum observables.

Definition 36 1. Given a C∗-algebra and a Hilbert space H, we call a linear
map π : A→ B(H) a representation of A on H if for all a, a1, a2 ∈ A:

π(a1a2) = π(a1)π(a2) and π(a∗) = π(a)∗.

2. Two representations (H1, π1) and (H2, π2) of a C∗-algebra A are called
equivalent, iff there is a unitary map U : H1 → H2 such that for all
a ∈ A:

Uπ1(a)U∗ = π2(a).

3. A representation (H, πA) is called cyclic, if there exists an element Ω ∈ H
such that π(A)Ω is dense in H. The vector Ω is then called cyclic vector.

4. A functional ω on a C∗-algebra A is called a state, iff it is (1) positive,
i.e. ω(a+) ≥ 0∀a+ ∈ A+, and (2) normalized, i.e. ||ω|| = 1. The set of
all states is denoted by S(A).

5. A linear map m : A→ B between two C∗-algebras is positive, iff for all
a+ ∈ A+ : m(a+) ∈ B+.

Let us recall some results about representations and states:

Theorem 7 1. Riesz: Every state on C(X) is a probability measure on X.

2. A bounded functional ω on a unitial C∗-algebra is positive, iff ||ω|| = ω(I).
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3. Every positive map between C∗-algebras is continuous.

4. Cauchy-Schwartz: A positive linear functional on a C∗-algebra A sat-
isfies: |ω(a∗b)|2 ≤ ω(a∗a)ω(b∗b) for all a, b ∈ A.

5. Given a nonunitial C∗-algebra A and a state ω thereon, then ω1 : a+zI 7→
ω(a) + z is the unique extension of ω to A1.

6. Given an element a of a C∗-algebra A and z ∈ σ(a), then there exists a
state ωa on A with ωa(a) = z.

7. The set of states on a C∗-algebra A is a convex space and is compact, if
A is unitial.

8. Every nondegenerate representation of a C∗-algebra is a direct sum of
cyclic representations.

A very important tool in the representation theory of C∗-algebras is the GNS
construction which works as follows:
Given a state ω on a C∗-algebra A, one can define a sesquilinear form on A by
setting for a1, a2 ∈ A:

(a1, a2) := ω(a∗1a2). (A.2)

For all a ∈ A: (a, a) = ω(a∗a) ≥ 0, i.e. (., .) is positive semi-definite. Consider
the null space:

Iω = {a ∈ A : ω(a∗a) = 0}, (A.3)

which turns out to be a closed left ideal of A, which we call the Gel’fand ideal
of ω. The space Ho := A/Iω consists of the equivalence classes [a] under the
equivalence relation a ∼ b iff ∃i ∈ Iω : a = b+ i. The sesquilinear structure (., .)
induces an inner product (., .)ω on Ho defined for any a1, a2 ∈ A by:

([a1], [a2])ω := (a1, a2)o. (A.4)

The completion of Ho in the inner product (., .)ω is a Hilbert space denoted
by Hω. This Hilbert space carries a natural representation πω of A defined for
a ∈ A and [b] ∈ Ho by:

πω(a)[b] := [ab], (A.5)

which is continuous and can thus be extended by density to all of Hω. Finally,
Ωω := [I] obviously defines a cyclic vector and hence for all a ∈ A:

ω(a) = (Ωω, πω(a)Ωω)ω. (A.6)

Thus, given a state ω on a C∗-algebra A, we have a cyclic representation
(Hω, πω,Ωω) of A on Hω.
This construction can be used to prove very important properties of represen-
tations of C∗-algebras:
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Theorem 8 1. Given a C∗-algebra and two cyclic representations (H1, π1,Ω1)
and (H2, π2,Ω2) which satisfy ω1(a) := (Ω1, π1(a)Ω2) = ω2(a), then the
map U : π1(a)Ω1 7→ π2(a)Ω2 extends to a unitary equivalence between the
two representations.

2. Every C∗-algebra is isomorphic to a norm closed subalgebra of B(H) for
some Hilbert space H. Particulary, there exists a faithful representation
for each C∗-algebra.

3. An element a of a C∗-algebra is positive iff πω(a) ≥ 0 for all cyclic repre-
sentations.

There is an important generalization to the GNS construction, which needs the
following notation:

Definition 37 1. Given a C∗-algebra A, for each n ∈ N, the C∗-algebra
Mn(A) denotes the matrix algebra of n× n -matrices with entries in A.

2. Let A and B be C∗-algebras and let m : A → B be linear. m is called
completely positive, iff for all n ∈ N the induced map mn(M)ij =
m(Mij) between the matrix algebras Mn(A) and Mn(B) is positive.

3. A linear map W between two Hilbert spaces H1 and H2 is called a partial
isometry, iff the W pre-image of H2 is closed in H1 and for all elements
v1, w1 in the W -pre-image: (v1, w1)1 = (W (v1),W (w1))2 and W = 0
outside the W -pre-image.

Let us now assume a completely positive map m : A → B between two C∗-
algberas and given a faithful representation (H, ρ) of B, we can modify the GNS-
construction to the Stinespring construction to construct a partially isometric
representation of A as follows:
We start with defining a sesquilinear form (., .)o on A⊗H by setting for a1, a2 ∈ A
and h1, h2 ∈ H:

(a1 ⊗ h1, a2 ⊗ h2)o := (h1, π(m(a∗1a2))h2), (A.7)

which is positive semidefinite since m is completely positive. The null space

I := {v ∈ A⊗H : (v, v)o = 0} (A.8)

can be factored out of A ⊗ H, i.e. we define the space Ho := (A ⊗ H)/I, on
which the sesquilinear structure (., .)o is nondegenerate through the equivalence
classes [v] of the equivalence relation v1 ∼ v2 iff ∃i ∈ I such that v1 = v2 + i.
This is used to define the inner product 〈., .〉 for all a1, a2 ∈ A and all h1, h2 ∈ H
by:

〈[a1 ⊗ h1], [a2 ⊗ h2]〉 := (a1 ⊗ h1, a2 ⊗ h2). (A.9)

The Hilbert space H is the completion of Ho in the sesquilinear form 〈., .〉. The
representation π of A on H is defined on Ho for all a, b ∈ A and all h ∈ H
through:

π(a)[b⊗ h] := [ab⊗ h], (A.10)
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which is well defined because π(a)I is contained in I. Moreover π is continuous,
since ||π(a)|| ≤ ||a|| for all a ∈ A, such that we can extend π by density to all of
H. We can build a partial isometry W between H and H, which is defined for
all h ∈ H by:

Wh := [I⊗ h]. (A.11)

The adjoint W ∗ of W is given by the extension of the structure that acts for
each a ∈ A and each h ∈ H as:

W ∗[a⊗ h] := m(ρ(a))h. (A.12)

The extension by density clearly satisfies: W ∗W = I. This can be summarized
as:

Theorem 9 Given a completely positive map m : A → B between two unitial
C∗-algebras with m(I) = I and given a representation (H, ρ) of B, Then there
exists a Hilbert space representation (H, π) of A and a partial isometry W such
that ρ(m(a)) = W ∗π(a)W .

A.1.5 C∗-algebra of compact operators on a Hilbert space

An important C∗-algebra is the algebra of compact operators on a Hilbert space.
This very special C∗-algebra is explained in this section, because Morita theory
for C∗-algebras views general C∗-algebras in a similar way.

Definition 38 1. The finite rank operators on a Hilbert space H is the
finite span of the rank one projections in H, i.e. those projections on
H that do not have a proper subprojection. The algebra of finite rank
operators is denoted by Bf (H).

2. The norm closure of Bf (H) is the C∗-algebra of compact operators
on H, i.e. the smallest C∗-algebra that contains Bf (H). The algebra of
compact operators is denoted by Bo(H).

3. The algebra of Hilbert-Schmidt operators consists of the operators
with finite Hilbert-Schmidt norm: ||a||2 :=

√∑
i ||aei||2, where ei is an

arbitrary orthonormal basis of H. The algebra of Hilbert-Schmidt operators
is denoted by B2(H).

4. The algebra of trace class operators consists of the operators for which
the trace norm ||a||1 :=

∑
i((a

∗a)
1
2 ei, ei), where ei is an arbitrary or-

thonormal basis of H, is finite. The algebra of trace class operators is
denoted by B1(H).

Let us now review some properties of the algebra of compact operators and its
subalgebras B2, B1, Bf :

Theorem 10 1. An operator lies in Bo(H), iff it can be norm-approximated
by finite rank operators.
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2. The unit operator lies in Bo(H), iff H is finite dimensional.

3. The Bo(H) is an ideal of B(H).

4. Let B be the unit ball in H and let a ∈ Bo(H), then aB is compact.

5. Denote the rank one projection with image v by Pv. An self-adjoint oper-
ator a is compact, iff there is a sequence λn ∈ R whose only accumulation
point is zero and a =

∑
n λnPvn , where vn is an orthonormal set of ele-

ments of H.

6. Every bounded operator a on H has a polar decomposition

a := U |a| = U
√
a∗a,

where U is a partial isometry, whose kernel coincides with the kernel of a.

7. For H infinite dimensional one has

Bf (H) ⊂ B1(H) ⊂ B2(H) ⊂ Bo(H) ⊂ B(H).

8. The state space of Bo(H) consists of all positive elements of the algebra of
trace class operators ρ ∈ B1(H) with unit trace. (density matrices)

9. The pure states of the algebra of compact operators consists of all rank
one projections.

10. There is exactly one unitary equivalence class of irreducible representa-
tions of the algebra of compact operators. I.e. every representation of
the algebra of compact operators is unitarily equivalent to the fundamental
representation on H.

A.2 Morita Equivalence of C∗-algebras and Ri-
effel Induction

This section serves as a briefing on Hilbert C∗-modules and related structures.
This subject is not widely known amongst physicists, thus although the proofs
are all available in the literature, we include the proofs of certain fundamental
theorems, mainly to explain the techniques used in this field of mathematics. If
it becomes too technical, we rather sketch the proof and focus on the underlying
construction.

A.2.1 Preparations

Gel’fand theory for commutative C∗-algebras tells us that commutative C∗-
algebras are equivalent to locally compact Hausdorff spaces, since ∆(C(X)) = X
as a topological space and C(∆(A)) = A as a C∗-algebra for any locally compact
Hausdorff space X and any commutative C∗-algebra A. There is an analogous
correspondence for vector bundles:
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Definition 39 1. A vector bundle is a bundle E(π,X, F ) in which each
fibre is a finite dimensional vector space, such that the subspace topology
of each fibre is the topology of this linear space, particularly that each
trivialization T : π−1(x)→ F is a linear map.

2. A vector bundle is complex, if the typical fibre F = Cm for some finite
number m.

The space of sections Γ(E) of a a complex vector bundle E over the base space
X has the remarkable property that it can be written as a finitely generated
projective module:

Γ(E) = p(⊕mC(X)) (A.13)

for some idempotent matrix p2 = p in Mmm(C(X)). On the one hand each
finitely generated projective module p(⊕mC(X)) over C(X) corresponds to a
space of sections in a complex vector bundle Γ in a canonical way. Each complex
vector bundle on the other hand defines a finitely generated projective module.
Thus:

Theorem 11 Serre-Swan: There is the analogue correspondence between the
finitely generated projective modules M = p(⊕mA) over a commutative C∗-
algebra A and the space of sections Γ(E) of fibre bundles E over ∆(A), which
means that every finitely generated projective module over a commutative C∗-
algebra is a space of sections in a complex vector bundle over its spectrum.

A Hermitian structure over a complex vector bundle E over X is a map (., .)x
that defines an inner product on each fibre π−1(x), such that x 7→ (fx, gx)x ∈
C(X).

Definition 40 A Hilbert bundle H is a projective module over a commu-
tative C∗-algebra C(X) such that the typical fibre F is a Hilbert space with
Hermitian structure x 7→ 〈., .〉x, with values in C(X).

Finitely generated projective modules with Hermitian structure are clearly Hilbert
bundles with a canonical Hermitian structure; general Hilbert bundles do how-
ever not necessarily possess a finite dimensional fibre, but their fibres are allowed
to be arbitrary Hilbert spaces. An important step in the understanding of non-
commutative geometry is done by generalizing Hilbert-bundles to modules over
not necessarily commutative C∗-algebras:

A.2.2 Hilbert bundles and Hilbert C∗-modules

A Hilbert-bundle is a generalization of a complex vector bundle, in the sense
that we take an arbitrary Hilbert space as fibre.
In a similar way, one can view a Hilbert C∗-module as a generalization of a
Hilbert bundle, just that its base algebra is not commutative C(X) anymore,
but a generally noncommutative C∗-algebra. Let us prepare the definition of a
Hilbert C∗-module:
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Definition 41 We call a triple (E, 〈., .〉A, π) consisting of a complex linear
space E together with a right action (π,A) of a C∗-algebra A on E (i.e. π(ab)e =
eab = π(b)π(a)e) and a bilinear structure 〈., .〉A : E × E → A a semi Hilbert
C∗-module, iff for all e, e1, e2 ∈ E, a ∈ A:

1. 〈., .〉A is linear in the second slot

2. 〈e1, e2〉∗A = 〈e2, e1〉A

3. 〈e1, e2a〉A = 〈e1, e2〉Aa

4. 〈e, e〉A ≥ 0,

where we used the notation π(a)e = ea.

For a semi Hilbert C∗-module, one can introduce a semi-norm, which is defined
for e ∈ E:

||e|| := ||〈e, e〉A||
1
2 =

√
sup{ω(〈e, e〉A) : ω ∈ E(A)}, (A.14)

which is obviously a semi-norm, since 〈e, e〉A ≥ 0. By factoring out the zero-
space of this norm, we obtain a pre-Hilbert C∗-module:

Definition 42 A semi Hilbert C∗-module (E, 〈., .〉A, π) is called a pre-Hilbert
C∗-module, if for all e ∈ E: 〈e, e〉A = 0⇔ e = 0.

In the definition of a semi Hilbert C∗-module, we can actually allow any Ao to
be a pre-C∗-algebra and use the C∗-norm to complete this algebra to A.

Lemma 31 If E is a pre-Hilbert C∗-module, then ||.|| is a norm on E.

proof: ||e|| is clearly a semi-norm, since 〈e, e〉A ≥ 0. Since 〈e, e〉A = 0 ⇔ e = 0
and since for any a > 0 there exists a state s.t. ω(a) > 0, we see that ||e|| = 0
implies e = 0. �

Definition 43 A pre-Hilbert C∗-module is a Hilbert-C∗-module (E, 〈., .〉A, π)
over a C∗-algebra A, such that E is complete in ||.||.

Lemma 32 Any pre-Hilbert C∗-module over a pre-C∗-algebra Ao can be com-
pleted to a Hilbert C∗-module over the C∗-completion A.

proof:

1. E can be completed in ||.||.

2. Since ||ea|| =
√
||〈ea, ea〉A|| =

√
||a∗〈e, e〉Aa||, and since 〈e, e〉 ≥ 0, we can

use a∗b∗ba ≤ ||b||2a∗a, which implies:

||ea|| ≤
√
||||〈e, e〉A||2a∗a|| =

√
||〈e, e〉A||||a∗a|| = ||e||||a||

. Now suppose any pair of sequences Ao 3 an → a ∈ A and Eo 3 en →
e ∈ E, we can extend π(an)en = enan from Ao and Eo to A and E by
continuity, since the inequality implies convergence.
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3. Consider e, f ∈ Eo, a ∈ Ao: 0 ≤ 〈e − fa, e − fa〉 = 〈e, e〉A − a∗〈f, e〉A −
〈e, f〉Aa + a∗〈f, f〉Aa, since setting a = 〈f, e〉A||f ||−2 is in Ao for f 6= 0,
we have

〈e, f〉A||f ||−2〈f, e〉A+〈e, f〉A〈f, e〉A||f ||−2−〈e, e〉A ≥ ||f ||−4〈e, f〉A〈f, f〉A〈f, e〉A

Since 〈f, f〉 ≥ 0: c∗〈f, f〉Ac ≥ c∗||〈f, f〉A||, which implies:

〈e, f〉A〈f, e〉A ≤ 〈e, e〉A||f ||2,

which implies 〈e, f〉A ≤ ||e||||f ||.
Using this analogue to the Chauchy-Schwarty inequality, we see that for
any two Eo 3 en, fn → e, f ∈ E the 〈en, fn〉A → 〈e, f〉A lies in the norm-
completion A of Ao.

4. Obviously for any two sequences Eo 3 en, fn →, 〈e, f〉∗A = 〈f, e〉A holds
by continuity as well as for ao 3 an → a ∈ A 〈e, fa〉A = 〈e, f〉Aa holds
by continuity. Moreover, the positivity and nondegeneracy of 〈e, e〉A also
obviously hold.

�
If we allow the base algebra of a semi Hilbert C∗-module to be a pre-C∗-algebra
Ao, then we can again complete it in the norm to a C∗-algebra and conclude:

Corollary 16 Any semi Hilbert C∗-module Eo over a pre C∗-algebra Ao can
be turned into a Hilbert C∗-module E over the C∗-completion A.

proof: First factor the zero-space of the Eo-norm out to obtain a pre C∗-module
E and use then the previous lemma. �
The practical value of this is, that one can construct Hilbert C∗-modules from
dense subalgebras and that one does not have to worry about nondegeneracy and
completeness, which can be achieved after a module with the desired properties
is constructed.

A.2.3 Adjoinable Maps

One important property of a Hilbert C∗-module E is, that it defines a certain
C∗-algebra, which we want to describe in the following: Let us consider the
linear maps A : E → E, then we can look for the subset of these maps, that is
adjoinable in 〈., .〉A:

Definition 44 A linear map A : E → E is called adjoinable, iff there exists
a linear map A∗ : E → E, such that for all e, f ∈ E:

〈e,Af〉A = 〈A∗e, f〉A.

Since E is a Banach space, we can define a norm on for the adjoinable maps by

||A|| := sup{||Ae|| : e ∈ E, ||e|| ≤ 1}. (A.15)

This algebra is actually a C∗-algebra, whose involution is given by the adjoining.
We call this algebra C∗(E,A) and note the following properties:
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Lemma 33 Let C∗(E,A) be the algebra of adjoinable maps on a Hilbert C∗-
module E over A, together with the above defined norm and the adjoining as
involution, then

1. The C∗(E,A)-action on E is compatible with the action of A, i.e. (Ae)a =
A(ea)∀a ∈ A, e ∈ E.

2. The action of C∗(E,A) is bounded.

3. The adjoint of an element A is unique and defines an involution.

4. C∗(E,A) is a C∗-algebra.

5. All A ∈ C∗(E,A) satisfy 〈Ae,Ae〉A ≤ ||A||2〈e, e〉A for all e ∈ E.

6. The action of C∗(E,A) on E is nondegenerate.

proof:

1. To show that A(ea) = (Ae)a for all e ∈ E, a ∈ A and A ∈ C∗(E,A)
consider:

〈f,A(ea)〉A = 〈A∗f, ea〉A = 〈A∗f, e〉Aa = 〈f, (Ae)〉A = 〈f, (Ae)a〉A,

which holds for all e, f ∈ E and thus implies A(ea) = (Ae)a due to
||〈f, e〉A|| = 0∀finE ⇒ e = 0.

2. To show that A is bounded we define the form Tf : E → A : e 7→
〈A∗Af, e〉A. Then:

||Tf || = sup{||Tfe|| : ||e|| ≤ 1} = sup{||〈A∗Af, e〉A|| : ||e|| ≤ 1}

≤ sup{||A∗Af || ||e|| : ||e|| ≤ 1} = ||A∗Af || <∞,

which shows the boundedness of Tf from the fact that A∗Af ∈ E.
On the other hand:

||Tf || = sup{||〈f,A∗Ae〉A|| : ||e|| ≤ 1} ≤ ||f || sup{||A∗Ae|| : ||e|| ≤ 1}

Using ||Tf || < ∞ implies sup{||A∗Ae|| : ||e|| ≤ 1} ≤ 1 and the Banach
Steinhaus theorem1, we see that sup{||Tf || : ||f || ≤ c} < ∞ for all finite
values of c ≥ 0. Thus,

||A|| = sup{||Ae|| : ||e|| ≤ 1} = sup{||〈Ae,Ae〉A|| : ||e|| ≤ 1}

≤ sup{||〈Af,Ae〉A|| : ||e|| ≤ 1, ||f || ≤ 1} = sup{||Tf || : ||f || ≤ 1} <∞.
1The Banach Steinhaus Theorem states that if X is a Banach space, Y is a normed linear

space and if {Ti : X → Y}i∈I is a family of bounded linear maps such that for each i ∈ I :
sup{||Ti(x)|| : x ∈ X, ||x|| ≤ 1} is bounded, then sup{||Ti|| : i ∈ I} is bounded.

127



3. • Assume ∃B 6= A s.t. 〈Be, f〉A = 〈e,Af〉A∀e, f ∈ E. Then 〈(B −
A∗)e, f〉A 6= 0 for some e, f ∈ E

⇒ 〈Be, f〉A − 〈A∗e, f〉A = 〈e,Af〉A − 〈e,Af〉A = 0

⇒ contradiction! → A∗ is unique for each A.

•
〈Ae, f〉A = (〈f,Ae〉A)∗ = 〈e,A∗f〉A = 〈A∗∗e, f〉A,

which is true for all e, f ∈ E and hence A∗∗ = A.

•
〈e,A(Bf)〉A = 〈A∗e,Bf〉A = 〈B∗A∗e, f〉A,

which is true for all e, f ∈ E and hence (AB)∗ = B∗A∗.
⇒ the adjoint map defines an involution.

4. We first show that C∗(E,A) is a Banach algebra that is closed under the
involution:
For a Cauchy sequence {An} there and each ε > 0 there is an N(ε) such
that

sup{||Ane−Ame|| : ||e|| ≤ 1} < ε,

which implies that em := Ame converges in E to Ae due to completeness
of E. Hence there is an map A : E → E defined by the linear extension
of Ae for all e in the unit ball ⇒

sup{||Ane−Ae|| : ||e|| ≤ 1} < ε∀n > N(ε).

Thus, An → A. Let us consider

||〈e,Anf〉A − 〈e,Af〉A|| < ε ∀n > N(ε)

⇒ ||〈e, (An −A)f〉A|| < ε

⇒ ||〈(A∗n −A∗)e, f〉A|| < ε,

thus A∗n converges to A∗. To prove ||A||2 ≤ ||A∗A||, consider

||A||2 = sup{||〈Ae,Ae〉A|| : ||e|| ≤ 1}
= sup{〈e,A∗Ae〉A : ||e|| ≤ 1}
≤ sup{||A∗Ae|| ||e|| : ||e|| ≤ 1} = ||A∗A||,

which makes C∗(E,A) a C∗-algebra.

5. To show the bound 〈Ae,Ae〉A ≤ ||A||2〈e, e〉A, we consider A ≥ 0 ⇒ ∃B
s.t. A = B∗B:

⇒ ∀A ≥ 0 : 〈e,Ae〉A = 〈Be,Be〉A ≥ 0,

which considering that ||A∗A||I−A∗A ≥ 0 implies:

〈e, (||A∗A||I−A∗A)e〉A = ||A∗A||〈e, e〉A − 〈Ae,Ae〉A ≥ 0.
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6. To prove nodegeneracy, assume there is e 6= 0 ∈ E such that e is annihi-
lated by all A ∈ C∗(E,A) and consider A : e 7→ e1〈e2, e〉A:

⇒ e1〈e2, e〉A = 0∀e1, e2 ∈ E
⇒ 〈e2, e〉A = 0∀e2 ∈ E
⇒ 〈e, e〉A = 0
⇒ e = 0.

�
Given a Hilbert C∗-module E over A, there is an obvious subalgebra of C∗(E,A),
that is particularly easy to construct. Let us consider the linear maps t : E → E,
which are labeled by two elements e, f ∈ E and act on g ∈ E as:

te,f : g 7→ e〈f, g〉A, (A.16)

which is obviously an adjoinable map. The similarity to the rank one-operators
on a Hilbert-space suggests:

Definition 45 The C∗-subalgebra Co(E,A) of C∗(E,A), which is the subalge-
bra generated by the operators tef , is called the algebra of ”compact opera-
tors”.

From the properties of Hilbert-C∗-modules, we obtain the following properties
for the operators t, by simply inserting the definition of tef and using the prop-
erties quoted above:

t∗ef = tfe
atef = tae,f
tefa = te,a∗f
||tef || ≤ ||e||||f ||.

(A.17)

With these two constructions we are able to associate two important C∗-algebras
to each Hilbert C∗-module E over A, namely C∗(E,A) and Co(E,A), where it
is obvious, that the later is a two-sided ideal of the first.

A.2.4 Full Hilbert C∗-modules

In order to become able to start viewing Hilbert C∗-modules E as structures,
that mediate between the C∗-algebras A and C∗(E,A) resp. Co(E,A), let us
apply the concept of denseness to Hilbert C∗-modules:

Definition 46 We call a pre-Hilbert C∗-module E over A full, iff span{〈e, f〉A :
e, f ∈ E} is dense in A.

To a given Hilbert C∗-module, we can associate its conjugate Ē:

Definition 47 To a given Hilbert C∗-module (E, 〈., .〉A, π) we associate the
conjugate Hilbert C∗-module Ē consisting of the complex conjugate bundle to-
gether with the right action π̄(a)e := a∗eand the Co(E,A)-valued bilinear form
〈e, f〉Co(E,A) := te,f .

129



Lemma 34 For a given full Hilbert C∗-module E over A, Ē is a full Hilbert
C∗-module over Co(E,A) with compatible left A action πl(a)e := ea∗.

The proof consists of checking the various properties of full Hilbert-C∗-modules
through the already established properties of the operators Tef , e.g.:

T ∗ef = Tfe ⇒ 〈e, f〉∗Co = 〈f, e〉Co
T ∗e,fa = Te,fa ⇒ 〈e, fa〉Co = 〈e, f〉Coa

||T ∗ee|| = 0↔ e = o ⇒ ||〈e, e〉Co || = 0 ↔ e = 0
(A.18)

We will not quote the entire proof here, since another more adapted technique
is more useful in the cases that we consider later.
The proof of the next corollary is rather technical such that we omit it here.

Corollary 17 For a given full Hilbert C∗-module E over A, Co(Ē, Co(E,A))
is isomorphic to A.

This establishes full Hilbert C∗-modules over a C∗-algebra A as structures link-
ing this algebra with Co(E,A) in the sense, that both algebras can be calculated
from this module and its conjugate respectively.
We are now in the position to define Morita equivalence for C∗-algebras:

Definition 48 Let E be a full Hilbert C∗-module over A. Then E is called a
Morita equivalence bimodule between A and Co(A, E). Moreover two C∗-
algebras A,B are called Morita equivalent if there exists a Morita equivalence
bimodule E linking A with B = Co(A, E).

The following lemma lets us construct an equivalence relation given by the
existence of a full Hilbert C∗-module linking two algebras:

Lemma 35 Given two full Hilbert C∗-modules E1, E2 linking the C∗-algebras
A, B and B and C, one can construct a full Hilbert C∗-module E linking A and
C.

Rather working through the proof of this lemma, let us consider the main idea:
Given a Morita equivalence bimodule E1 linking A to B and given a Morita
equivalence bimodule E linking B with C, we can build the tensor product
E1⊗B E2 as the quotient of E = E1⊗E2 by the ideal I = {e1b⊗ e2− e1⊗ be2 :
b ∈ B}. The space E carries a left action of A which is given by:

πl(a)e1 ⊗B e2 := ae1 ⊗B e2. (A.19)

Let us now define the sesquilinear map with values in A by

〈e1 ⊗ e2, f1 ⊗ f2〉o := 〈e1〈f2, e2〉B , f1〉A. (A.20)

It is easily checked that E together with the structure 〈., .〉o is a full Hilbert
C∗-module over A. Using the analogue of the rank one operators Tf,g on E:

Te,fh := e〈f, h〉o (A.21)

it turns out that the linked C∗-algebra Co(A, E) is indeed C. This tensor product
construction is essential for the proof of:
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Theorem 12 Morita equivalence is an equivalence relation for C∗-algebras.

proof: Reflexivity: Given a C∗-algebra A, it is easy to verify that E = A together
with 〈a1, a2〉A := a∗1a2 satisfies the axioms for a Hilbert C∗-module with values
in A and that the rank one operators Ta1,a2 : b 7→ a1a

∗
2b span exactly A.

Symmetry is clear from the construction of Ē, which links Co(A, E) with A
exactly inverse to E which links A with Co(A, E).
Transitivity is due to the previous lemma and is achieved through the tensor
product construction. �
As we have seen earlier, we can construct Hilbert C∗-modules over a C∗-algebra
from pre-Hilbert-C∗-modules over a dense pre-C∗-algebra. Let us now collect
the analogous properties, that are necessary to link two C∗-algebras with a
full pre-Hilbert-C∗-module. This is a very practical way to construct Morita
equivalence bimodules.

Lemma 36 Given

1. a pre-Hilbert C∗-module E over a C∗-algebra A,

2. a left action of a C∗-algebra B on Ē, such that E is a full Hilbert-pre
C∗-module over B, such that for all e1, e2, e3 ∈ E :

〈e1, e2〉Be3 = e1〈e2, e3〉A

3. which satisfy for all e ∈ E, e ∈ A and b ∈ B:

〈ea, ea〉B ≤ ||a||2〈e, e〉B
〈be, be〉A ≤ ||b||2〈e, e〉A,

then E can be completed to a Morita equivalence bimodule linking the C∗-
algebras A,B.

The proof consists of checking the properties of a Morita equivalence bimodule
for the completion of E and its conjugate Ē directly and is not instructive.

A.2.5 Induced Representations for C∗-algebras (Rieffel In-
duction)

Given a Hilbert space representation (H, π) of C∗-algebra A, it is the purpose of
this subsection is to construct induced representations for a Morita equivalent
C∗-algebra B using the Morita equivalence bimodule E that links the two C∗-
algebras. This is done by a generalization of the GNS construction known as
Rieffel induction:

Given a full Hilbert C∗-module E over A, let us first describe the induction
out of a state ω on A to a representation of Co(E,A):

For a given state ω on A, we define the sesquilinear form (., .)o on E by
defining for e1, e2 ∈ E:

(e1, e2)o := ω(〈e1, e2〉A). (A.22)
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This sesquilinear form is positive semidefinite, since 〈e, e〉A ≥ 0 for all e ∈ E
and since ω : A+ → R+

o . For each element E in its null space

Nω = {e ∈ E : (e, e)o = 0} (A.23)

it is implied that (e, f)o = 0, since

0 = ω(〈e, e〉A)ω(〈f, f〉A)o ≥ |(e, f)o|2 (A.24)

by the Cauchy Schwartz inequality for states.
The form (., .)o can be turned into an inner product (., ) on E/Nω, which

using the equivalence classes [e] ∈ E/Nω is defined by:

([e], [f ]) := (e, f)o. (A.25)

This structure is actually well defined since for all e1, e2 ∈ Nω and all f1, f2 ∈ E:

(e1 + f1, e2 + f2)o = ω(〈e1 + f1, e2 + f2〉A) = ω(〈f1, f2〉A) + 0 + 0 + 0 = (f1, f2)o.
(A.26)

The closure of E/Nω defines the Hilbert space H.
The induced representation ρ of Co(E,A) on H is first defined on the dense

subspace E/Nω through:
ρ(A)[e] := [Ae], (A.27)

which turns out to be continuous because ||ρ(A)|| = sup{||ρ(A)[e]|| : ||e|| ≤ 1},
which can be estimated to be ||ρ(A)|| ≤ ||A||, since

||ρ(A)[e]||2 ≤ sup
e∈[e]

ω(〈ρ(A)e, ρ(A)e〉A) ≤ sup
e∈[e]

ω(||A||2〈e, e〉A) ≤ ||A|| sup
e∈[e]

||e||2.

(A.28)
The continuous extension from the dense set E/Nω to H defines the represen-
tation ρ, which clearly satisfies ρ(a)ρ(b) = ρ(ab) and ρ(a∗) = ρ(a)∗ as can be
checked by direct computation. This completes the induction of a representation
(H, ρ) of Co(E,A) from a state ω on A.

This construction can be extended to general representations (H, π) of A,
which are necessarily direct sums of cyclic representations:

Given a representation (K, π) of A and given a full Hilbert C∗-module E
over A, let us define the sesquilinear form (., .)o on E ⊗ K for e1, e2 ∈ E and
v1, v2 ∈ K by the linear extension of:

(e1 ⊗ v1, e2 ⊗ v2)o := 〈v1, π(〈e1, e2〉a)v2). (A.29)

This form is again positive semi-definite since the inner product of K and 〈., .〉A
are positive semi-definite. Its null space

NK := {t ∈ E ⊗K : (t, t)o = 0} = {t ∈ E ⊗K : (t, s) = 0∀s ∈ E ⊗K}, (A.30)

where the second equation follows form the Cauchy Schwartz inequality.
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Using the canonical equivalence classes [e] in E ⊗ K/NK, one can define an
inner product (., .) by setting for t, s ∈ E ⊗K:

([t], [s]) := (t, s)o, (A.31)

which turns out to be well defined using a similar argument as in the GNS
construction. Thus, the completion of E ⊗ K/NK in (., .) defines a Hilbert
space, say H.

This Hilbert space H carries a natural representation ρ of C∗(E,A), which
we define for t ∈ E ⊗K as:

ρ(A)[t] := [(A⊗ I)t]. (A.32)

The extension to H by density is well defined and possible, since ||ρ(A)|| ≤ ||A||
using a similar argument as before.

Rieffel induction has an important consequence:

Theorem 13 Given two Morita equivalent C∗-algebras A and B, then:

1. Each representation of A induces a representation of B by Rieffel induc-
tion and vice versa.

2. The from (H, π,A) induced representation of B using the equivalence mod-
ule E induces a representation of A which is unitarily equivalent to (H, π)
using Rieffel induction by the conjugate equivalence module Ē.

3. The induced representation of an irreducible representation is irreducible.

4. The induced representation of a direct sum of representations is the direct
sum of the induced representations.

The proof consists of direct construction of the unitary intertwiners.
The irreducible representations of a commutative algebra A are given by

the GNS constructions through the states that are given by the evaluation at
points in the spectrum X = ∆(A). This lets us consider Rieffel induction as
maps between the spectra, which also applies to noncommutative C∗-algebras.
This is the idea behind the construction of noncommutative embeddings using
a construction similar to Rieffel induction.

A.2.6 Linking Algebra

Given two Morita equivalent C∗-algebras A and B, there is always a C∗-algebra
C such that A and B are complementary full corners of C. Let us introduce
some notation:

Definition 49 1. A subalgebra B of a C∗-algebra A is hereditary if for all
b1, b2 ∈ B and all a ∈ A: b1ab2 ∈ B.

2. A subalgebra B of a C∗-algebra A is called full, if there is no proper
two-sided ideal in A that contains B.
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3. A subalgebra B of a C∗-algebra A is a corner, if there is a projection p in
the multiplier algebra M(A), such that B = {pap : a ∈ A}. pAp is dense
in A if the corner is full.

4. Two corners pAp and p′Ap′ are complementary, if p+ p′ = I.

5. Two C∗-algebras A,B are stably isomorphic if A ⊗ K is isomorphic to
B⊗K, where K is the algebra of compact operators on a separable infinite
dimensional Hilbert space.

Given a full hereditary subalgebra B of a C∗-algebra A, one can construct

BA = {ba : b ∈ B, a ∈ A},

which is a left-B-right-A-module. It is easily seen that the closed span AB
extends to a Morita-equivalence bimodule between B and A, since

〈b1a1, b2a2〉A := a∗1b
∗
1b2a2,

〈b1a1, b2a2〉B := b1a1a
∗
2b
∗
2

(A.33)

are dense in A and B respectively.

Theorem 14 1. Two C∗-algebras are Morita equivalent if and only if there
exists a C∗-algebra such that the two Morita equivalent algebras are com-
plementary full corners.

2. If two C∗-algebras are stably isomorphic, then they are Morita equivalent.

proof:

Definition 50 The C∗-algebra that contains two Morita equivalent C∗-algebras
is called their linking algebra.

If two C∗-algebras are complementary full corners, then there exist a projections
p, q in the multiplier algebra M(A) of the linking algebra such that the first
B = pAp and the second is C = qAq. The module

E = qAp := {qap : a ∈ A}

is easily verified to be a left-C-right-B-module, with the inner products:

〈qa1p, qa2p〉B := pa∗1qqa2p,
〈qa1p, qa2p〉A := qa1ppa

∗
2q,

(A.34)

which are easily verified to satisfy the conditions for a Morita equivalence bi-
module.

On the other hand, if there is a Morita equivalence bimodule E between C
and B, then one can construct the linking algebra A directly as follows:

Let Ē be the adjoint equivalence bimodule, and consider the matrix algebra
Ao of the following form:

Ao :=
{(

c e
f̄ b

)
: c ∈ C, b ∈ B, e ∈ E, f̄ ∈ Ē

}
, (A.35)
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together with the matrix product:(
c e
f̄ b

)(
c′ e′

f̄ ′ b′

)
:=
(
cc′ + 〈e, f ′〉C ce′ + eb′

f̄ e′ + bf̄ ′ bb′ + 〈f, e′〉B

)
(A.36)

and the involution: (
c e
f̄ b

)∗
:=
(
c∗ f
ē b∗

)
. (A.37)

The Hilbert-C∗-module E ⊕B carries a natural B-valued inner product

〈(e1, b1), (e2, b2)〉B := 〈e1, e2〉B + b∗1b2,

upon which A acts faithfully by(
c e
f̄ b

)
(e′, b′)T := (ce′ + eb′, bb′ + 〈f, e′〉B).

It is easily seen that this action is bounded by verifying this for the for matri-
ces with one nonvanishing entry separately. Using the operator norm for this
representation lets us complete Ao to the linking algebra A.

One can then verify that the two operators

p :=
(

IE 0
0 0

)
, q :=

(
0 0
0 IB

)
are projections in the multiplier algebra of A, such that pAp and qAq are corners
of A, which turn out to be full.

The second statement follows from considering the linking algebra B ⊗ K,
such that B is isomorphic to B ⊗ p for any rank-one projection p in K, which
makes it into a full corner of the linking algebra. This makes B ⊗ K Morita
equivalent to B. The same argument applies to C, such that the stable isomr-
phism implies that B is Morita equivalent to C. �
If we consider a locally compact space X and hence a commutative C∗-algebra
C(X) and we want to factor the free and proper action of a transformation
group G out, then we can consider the transformation group algebra C∗(X,G)
and try to find the unique commutative C∗-algebra that is Morita equivalent to
C∗(X,G), which is precisely C(X/G).

A.3 Two Important Examples of Morita Equiv-
alence of C∗-algebras

This section contains two examples of explicit Morita equivalence bimodules,
that have significance for physical systems.

The first are transformation group systems. A transformation group C∗-
algebra C∗(X,G) of a locally compact space X and a locally compact group G
is particularly interesting, since C(X) can serve as the algebra of configuration
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variables for a physical system and the contained unitary action of G can be
interpreted as the Weyl-group consisting of an extension of the exponentiated
Poisson actions of momentum vector fields.

Groupoid C∗-algebras on the other hand arise naturally as quantum algebras
in the quantization of integrable Poisson systems.

A.3.1 Transformation Group algebras

Let us consider two locally compact groups G,H, which are both supposed
to act freely on a locally compact Hausdorff space X, such that the actions
commute (gx)h = g(xh) for all g ∈ G, x ∈ X and h ∈ H and wandering, which
means that the set WC := {g ∈ G : (xG)∩G 6= ∅} for any compact set C ⊂ X is
precompact and similarly if G is replaced by H. The wandering condition has the
consequence that X/G and X/H are both locally compact and Hausdorff. The
transformation group C∗-algebras based on the occurring spaces have physical
interpretations: let G be the group of gauge transformations and H be a group of
gauge invariant Weyl operators, then C∗(X/G,H) is a gauge invariant quantum
algebra. For these algebras there is a theorem by Green:

Theorem 15 Give a locally compact Hausdorff space X and two groups G,H
whose actions on X are free and wandering and commute with each other, then
C∗(X/G,H) is Morita equivalent to C∗(X/H,G).

proof: We construct an explicit pre-Hilbert-C∗-bimodule between A := Cc(X/G,H)
and B := Cc(X/H,G) and prove the conditions in lemma 36.

Consider the function space E = Cc(X), upon which both G and H act
”unitarily” by:

Uge : x 7→ ∆G(g)
1
2 e(g−1x)

Vhe : x 7→ ∆H(h)−
1
2 e(hx),

(A.38)

where g ∈ G, h ∈ H, e ∈ E and x ∈ X and ∆G and ∆H denote the modular
function in G and H respectively. A function f ∈ C(X/G) defines a function
on F ∈ C(X) as the constant extension of f along the orbits of G. The same
applies to f ∈ C(X/H). Thus, there is a ”covariant” representation of A and of
B on E given by:

ae : x 7→
∫
H
dµH(h)e(hx)a(x, h)∆H(h)−

1
2

be : x 7→
∫
G
dµG(g)b(x, g)∆G(g)

1
2 e(g−1x),

(A.39)

where a ∈ A, b ∈ B, g ∈ G, h ∈ H, e ∈ E and dµH , dµG denote the Haar
measure in H and G respectively. The commutativity of the actions of G and
H then implies that the actions of A and B commute, which makes E into an
A-B-bimodule. The algebra-valued inner products are defined by:

〈e1, e2〉A(h, [x]G) := ∆H(h)−
1
2
∫
G
dµG(g)e1(g−1x)e2(h−1g−1x)

〈e1, e2〉B(g, [x]H) := ∆G(g)−
1
2
∫
H
dµH(h)e1(h−1x)e2(h−1gx),

(A.40)

where g ∈ G, h ∈ H, x ∈ X, e1, e2 ∈ E and [x]G and [x]H denote the G−
resp. H−orbit that contains x. It is clear that 〈e1, e2〉Ae3 = e1〈e2, e3〉B . Thus
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one needs to check that the inner products are positive and dense in A and B
respectively and the continuity, i.e. 〈ae, ae〉B ≤ ||a||2〈e, e〉B for a ∈ A, e ∈ E
and the converse for 〈., .〉A. Since the roles of A and B can be interchanged by
switching the groups G and H, we have to only prove the situation for A:

The tool for proving these properties is an approximate identity of the form
idi =

∑
j〈eij , eij〉A. This approximate identity shall be of the form idC,U(e),ε,

where U(e) are decreasing neighborhoods of the identity in H, C are increasing
compact subsets of X/G and decreasing ε > 0, such that:

idC,U(e),ε = 0 ∀h ∈ G \ U(e)
|
∫
H
dµH(h)∆(h)12idC,U(e),ε(h, [x]G)− 1| ≤ ε ∀[x]G ∈ C

(A.41)

Such an net will converge in the inductive limit topology on A.
A key ingredient in the construction of this approximate identity is the

observation that the freeness and wandering property of the action of H implies
that for each x ∈ X and neighborhood U(e) of the identity of H, there is a
neighborhood NU (p) such that the wandering set WN := {h ∈ H : hNU (p) ∩
NU (p) 6= ∅} is a subset of NU (p). In other words if we shrink the neighborhood
of a point x closer and closer to x itself then the set elements of H that transform
at least one element of this neighborhood inside the neighborhood has to shrink
closer and closer to the identity element of H.

Thus, for each C and U(e), we can find a finite covering of C by open sets
Ni := NU (pi). Moreover we can choose ei ∈ C+

c (NU (pi)), such that
∑
i ei ∈

Cc(C) is positive definite on C. By group-averaging with respect to G, we can
turn these functions into functions on X/G. Thus, we have a net that satisfies
idC,U(e),ε = 0∀h ∈ G \ U(e).

Using the observation that of the form x 7→ f(x)
∫
G
dµH(g)f(g−1x) with

g ∈ C+
c (X) are dense in C+

c (X), we can for every ε > 0 approximate ei by func-
tions of this form. We can particularly find continuous regularizations ei of the
characteristic functions of NU (pi) such that

∫
G
dµh(g)

∑
i ei(g

−1x) = 1 inside
C and approximate them by functions of this form. Thus using these fi(x), we
have an approximate identity

∑
i〈fi, fi〉A that satisfies all three conditions.

The convergence of id in the inductive limit topology implies that id e con-
verges to e for all e ∈ E, such that

〈ide, e〉B =
∑
i〈〈fi, fi〉Ae, e〉B =

∑
i〈fi〈fi, e〉B , e〉B

=
∑
i〈fi, e〉∗B〈fi, e〉B ≥ 0, (A.42)

which implies the positivity of the inner product.
Moreover, since for all a ∈ A: a id→ a, we have

a id =
∑
i

〈afi, fi〉A → a,

which implies the density of the inner product in A.
The operators Vh are ”unitary” for 〈., .〉A as seen by direct calculation.
Moreover using the positivity of 〈e, e〉A, we can reuse the proof of the continuity
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of the representation of C(X) on L2(X), since the operator ||f ||2I − f∗f has a
positive square root as a multiplication operator on C(X), which implies that
〈fe, fe〉A ≤ ||f ||2〈e, e〉A, when X is replaced by X/G. Combining these two to
an integrated a =

∫
H
dµ(h)a(x, h)Vh, we obtain that for all a ∈ A and e ∈ E:

〈ae, ae〉A ≤ ||a||2〈e, e〉A. �
We saw the important role of the approximate identity in the above proof.

Reusing exactly the same reasoning as in the proof above, we obtain the corol-
lary:

Corollary 18 Let E be a pre-Hilbert-C∗-bimodule between two pre-C∗-algebras
A and B with two sesquilinear forms: 〈., .〉A : E×E → A and 〈., .〉B : E×E →
B, which satisfy:

〈e1, e2〉Ae3 = e1〈e2, e3〉B
for all e1, e2, e3 ∈ E, and let there be approximate identities idA =

∑
i〈ei, ei〉A

and idB =
∑
j〈fj , fj〉B, where ei, fj ∈ E which are both approximate identities

for the C∗completions and the action of the C∗-completions on E, then:
E extends to an Morita-equivalence bimodule between the C∗-completions of A
and B.

This way of constructing an approximate identity makes this example very use-
ful.

A.3.2 Groupoid C∗-algebras

It was proven by Muhly, Renault and Williams [18]that a C∗-algebra of two
Morita equivalent groupoids with Haar system are themselves Morita equivalent.
This example is actually a generalization of the previous example, which can be
viewed as the special case of a transformation groupoid G(X,G).

We will focus on the Muhly-Renault-Williams theorem in the context of finite
dimensional Lie groupoids, which always posses Haar systems and follow[32].

Definition 51 1. A Lie groupoid is a topological groupoid G such that G
and the unit space G(o) are manifolds and such that the range and source
map are surjective submersions.

2. A left action of a Lie groupoid G on a manifold X is given by a smooth
momentum map µ : X → G(o) and a smooth map α : G ? X := {(g, x) ∈
G × X : s(g) = µ(x)} → X, such that αg1g2x = αg1(αg2x), whenever
(g1, αg2x) ∈ G ? X and µ(αgx) = t(g)forallg ∈ G ? X. A right action is
defined similarly with reversed order of multiplication and toggled roles of
s and t. Left and right actions are shorthanded by ., / respectively.

3. A manifold X is a G − H-bimodule, if it carries a left G-action and a
right H-action, such that (g . x) / h = g . (x / h), whenever (g, x) ∈ G ?X
and (x, h) ∈ X ? G.

4. A left action (µ, α) of G on X is principal, if the momentum map µ is a
surjective submersion and the action α is free, i.e. g . x = x implies that
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g ∈ G(o), and proper as a map form G ? X→ X× X. Reversing the order
of the components gives the definition for a principal right action.

5. A left- and right principal G−H-bimodule X is a equivalence bimodule,
if the left momentum map reduces to an isomorphism of X/H → G(o) and
if the right momentum map reduces o an isomorphism of G \ X→ H(o).

6. Two Lie-groupoids are called Morita equivalent as Lie groupoids, if
there is an equivalence bimodule between them.

Let us review some facts about Lie groupoids before we state the main theorem
of this section:

Theorem 16 Let G be a Lie groupoid, then:

1. The object inclusion map e is an immersion of G(o) → G and the inversion
g 7→ g−1 is a diffeomorphism of G.

2. G ? G is a closed submanifold of G × G and the fibres s−1(u) and r−1(u)
are submanifolds of G for each u ∈ G(o).

The Muhly-Renault-Williams theorem states that if two Morita equivalent groupoids,
mediated by X, have Haar systems, i.e. a system of measures µu on each fibre
s−1(u) : u ∈ G(o) which is invariant under the groupoid operations, then the
convolution C∗-algebras, i.e. the algebra functions on the groupoids with prod-
uct f1 ∗ f2(g) :=

∫
µ(g′)f1(g′)f2((g′)−1 ◦ g) and involution f∗(g) := f(g−1), of

the two groupoids are Morita equivalent as C∗-algebras. The pre-equivalence
bimodule for this case is Cc(X). Lie groupoids allow for the definition of half
densities [1] and thus possess a canonical convolution algebra. This allows the
restatement of the theorem as[32]:

Theorem 17 Given two Morita equivalent Lie groupoids, then their convolu-
tion C∗-algebras are Morita equivalent.

In order to prove this theorem, let us review the theory of half-densities on a
Lie groupoid:

Definition 52 1. Given a finite dimensional (n dimensional) vector bundle
E over a manifold X, we denote the n-fold antisymmetric tensor product
without the zero section of E by A(E), on which C \ {0} acts by pointwise
multiplication.

2. An α-density is a section in the line bundle ∧α(E) associated to A(E)
through the representation of C \ {0} by: c 7→ |z|α. These sections define
maps s : A(E)→ C, which satisfy s(ca) = |c|αs(a), for any c ∈ C\{0}, a ∈
A(E).

Notice the isomorphisms ∧α(E) ⊗ ∧β(E) = ∧α+β(E) and ∧α(E1 ⊕ E2) =
∧α(E1)⊗ ∧α(E2).
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Theorem 18 1. Special case: using ∧ 1
2 (T (X)) and consider two smooth sec-

tions s1, s2 of compact support therein. Then
∫

X s1s2 is well defined and
independent of a measure on X.

2. Let π−1 : X → E be a surjectively submersing fibration and Tπ(X) be the
subbundle of T (X) that is tangent to the fibres π−1, then for each smooth
section s in ∧1Tπ(X) of compact support in X,

∫
X s is well defined and

for each pair of smooth sections sections s1, s2 in ∧ 1
2Tπ(X) with compact

support in X,
∫

X s1s2 is well defined.

Let us denote the smooth sections of ∧α(Tπ(X)) with compact support in X by
C∞c (X,∧α(Tπ(X))) and for short by Γαπ(X).

Let us define the category of principal G-bundles. Given a principal left G-
bundle X with momentum map µ and action α, we consider the pull-back under
the action of G on sections in ∧ 1

2T (X), which turns Γα(X) into a principal
left-G-space itself. Let us consider C∞cG(X,∧ 1

2Tµ(X)) the G-equivariant sections
of compact support on the space of G-orbits in X in the part of T (X) that is
tangent to the momentum map µ. It is canonically isomorphic to C∞c (G \X,G \
(∧ 1

2Tµ(X))) by identifying a section constant along a G-orbit with the section
in the bundle over the orbit space.

Given a second principal left-G-bundle Y with momentum map ν, then we
can construct X ?Y := {(x, y) ∈ X×Y : µ(x) = ν(y)}, which carries a diagonal
action of G given by g . (x, y) := (g . x, g . y). Let us now define (X,Y)G by

(X,Y)G := C∞c (X ? Y,∧ 1
2Tµ(X)⊗ T ν(Y)). (A.43)

Using the isomorphism T
µ(x)=ν(y)
(x,y) (X ? Y) = Tµx (X) ⊕ T νy (Y), we obtain the

induced isomorphism for the space of sections:

(X,Y)G = C∞cG(X ? Y,∧ 1
2Tµ=ν(X ? Y)). (A.44)

The spaces (., .)G are the morphisms in the category of principal G bundles, and
their composition is defined as follows:

Having a principal left-G-space Z, we can compose (X,Y)G with (Y,Z)G by
composing the sections s1 ∈ (X,Y)G and s2 ∈ (Y,Z)G to obtain s1∗s2 ∈ (X,Z)G
as:

s1 ∗ s2(x, z) :=
∫
ν−1(µ(x))

s1(x, .)⊗ s2(., z). (A.45)

This category is actually involutive; using the toggle map τ : E1⊗E2 → E2⊗E1

by e1 ⊗ e2 7→ e2 ⊗ e1 we define the involution .∗ mapping (X,Y)G into (Y,X)G
by:

s∗(x, y) := τ(s(x, y)). (A.46)

The pre-C∗-algebra C∞c (G) arises as a special element of this category. First we
consider G as a left G-bundle with the range map providing a momentum map
and the G-action given by left translation in the groupoid. Then, using again
T
µ(x)=ν(y)
(x,y) (X?Y) = Tµx (X)⊕T νy (Y), we apply the observation G \(G ?X) = X by
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the map [g, x]G 7→ g−1 . x for any principal G-bundle X. Taking the derivative
maps this yields

(G,X)G = C∞cG(G ? X,∧ 1
2G ? X) = C∞c (X,∧ 1

2TG(X)⊗ ∧ 1
2Tµ(X)), (A.47)

where TG(X) denotes the fibering induced by the derivative of the action of G
on X. The special case of this isomorphism is given by considering:

(G,G)G = C∞cG(G ? G,∧ 1
2T r=r(G ? G))

= C∞c (G \ (G ? G),G \ ∧ 1
2T r=r(G ? G))

= C∞c (G,∧ 1
2T r(G)⊗ ∧ 1

2T r(G))
= C∞c (G),

(A.48)

which turns out to be the convolution algebra of smooth half-densities with
compact support on G, which itself is dense in the C∗-algebra C(G) if the Lie-
groupoid is locally compact.

A principal G-module X with surjective momentum map induces a Morita
equivalent groupoid H in a canonical way, i.e. one can construct a groupoid
H such that X is a left-G-right-H-module, which is principal for both actions
with surjective momentum maps. This groupoid is constructed from the double
space X ? X := {(x, y) ∈ X × X : µ(x) = µ(y)}, where the left G-orbits are
factored out by the diagonal action of G on X ? X. The orbits [x, y]G carry a
natural composition law [x, y]G ◦ [y, z]G := [x, z]G, which turns H := X ? X/G
into a groupoid over H(o) = X/G. The right action of H on X is x. [x, y]G := y.
In the case of Lie groupoids it turns out that H is again a Lie groupoid.

We can now rerun the steps that we have constructed for left-G-bundles for
right-H-bundles, which done by only changing names and reversing the order of
the action of the groupoid. Thus, we can construct:

(X,H)H = C∞cH(X ?H,∧ 1
2T ν=s(X ?H))

= C∞c (X ∧ 1
2 T ν(X)⊗ ∧ 1

2TH(X)),
(A.49)

for which the definition of a G-H-bimodule X imply that Tµ(X) = TH(X) and
T ν(X) = TG(X). The pull-back under this equivalence lets us identify:

(G,X)G = (X,H)H , (A.50)

which is indeed a bimodule connecting the pre-C∗-algebras C∞C (G) and C∞C (H)
by defining the operator-valued inner product 〈., .〉G and 〈., .〉H by:

〈s1, s2〉G := s1 ∗ s∗2
〈s1, s2〉H := s∗1 ∗ s2,

(A.51)

which are valued in (G,G)G and (H,H)H respectively and thus have a canonical
interpretation as elements of C(G), C(H) respectively. The compatibility of
elements of the two inner products and the compatibility with the action of the
two C∗-algebras are easily calculated using the associativity of the convolution
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product. Positivity and density of the inner product are proven in a similar
way as in the case of transformation group C∗-algebras. Continuity of the inner
product requires a further technical step that we omit here.

Thus, we have established that (G,X)G is indeed a pre-Morita equivalence
bimodule between C(G) amd C(H).

Finally, we want to remark that the result in the previous subsection are
obtained whenever X is a manifold and G is a Lie group acting freely and
properly by diffeomorphisms on X, so we have the associated transformation
groupoid G(X,G). Given X = Y/H for some free and proper action of a Lie
group H that commutes with the action of G, we turn Y into a Lie groupoid
bimodule connecting G(Y/H,G) and G(Y/G,H), which using the result of this
subsection implies the Morita equivalence in the previous subsection.
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Appendix B

Background on Ashtekar
Variables, Quantum Field
Theory and Loop Quantum
Gravity and Cosmology

This appendix shall serve as a gentle briefing on the ideas that underlie stan-
dard Loop Quantum Gravity and standard Loop Quantum Cosmology. Loop
Quantum Gravity is formulated in terms of the Ashtekar variables for General
Relativity, which are introduced in section B.1. A fruitful approach to con-
structing quantum field theories is to construct theories of groupoid morphisms
explained in section B.2, which provides the construction principle used in this
thesis. Loop Quantum Gravity viewed as a theory of morphisms form the path
groupoid into the Ashtekar-Barbero gauge group is very analogous (section B.3,
which however present using the standard approach used in most of the litera-
ture). We then present standard Loop Quantum Cosmology in section B.4.

B.1 General Relativity and Connection Dynam-
ics

We gave the Hamiltonian formulation of GR in chapter 2, but the formulation
of LQG rests on Ashtekar’s [2] connection formulation of GR, which we review
in this appendix. The derivation of the connection dynamics from the usual
metric dynamics is not important for this thesis, so we present only the final
result and explain its relation to the metric formalism.

We used the foliation of X4 = R × Σ in section 2.1.1 to express the metric
g on X4 in terms of a lapse function N , a shift vector field Na and a spatial
metric q on the Cauchy surface Σ (see equation 2.1). Let us consider a dreibein
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e on Σ, such that qab = δije
i
ae
j
b, so we can define the densitized inverse dreibein:

Eaj :=
1
2ι
εabcεjkle

k
b e
l
c, (B.1)

where ι denotes the Immirzi parameter. Using the spin connection

Γia =
1
2
εijkebk

(
∂[be

j
a] − e

c
je
l
aδlm∂be

m
c

)
, (B.2)

we find that the Ashtekar-gauge field which is a linear combination of the spin
connection and the extrinsic curvature K

Aia = Γia + ιKi
a (B.3)

is canonically conjugate to the desnitized inverse dreibein. The ADM action
(equation 2.2) reads in these variables:

S =
1
κ

∫
dtd3σ

(
ȦiaE

a
i −

(
ΛiGi +NaVa +NC

))
, (B.4)

where Λ is a Lagrange multiplier for the SU(2)-gauge transformations generated
by Gi. The first term is the symplectic potential implying the only non vanishing
canonical Poisson bracket among the Ashtekar variables (A,E):

{Eaj (x), Akb (y)} = κδab δ
k
j δ(x, y), (B.5)

where κ is the coupling constant of GR. The second summand is the total
Hamiltonian H =

∫
d3σ(ΛiGi +NaVa +NC), which is a linear combination of

the three sets of constraints:
Gj = DaE

a
j

Va = F iabE
b
i

C =
(
F jab + (ι2 + 1

4 )εjmnKm
a K

n
b

)
εjklE

a
kE

b
l√

|q|
,

(B.6)

whereD denotes the covariant derivative w.r.t. the connectionA, F = dA+A∧A
denotes the curvature two-form of A. The constraint G is the Gauss constraint
generating ordinary SU(2)-gauge transformations, the constraint V is the diffeo-
morphism constraint generating the spatial diffeomorphisms and the constraint
C is the scalar (or Hamiltonian) constraint constraining the dynamics. Notice
that the extrinsic curvature K is expressed in terms of E.

The classical smearing is achieved using a densitized su(2)-valued vector field
F ai and an su(2)-valued co-vector field f jb , such that the smearing

F (A) :=
∫
d3σAia(σ)F ai (σ) , E(f) :=

∫
d3σEbj (σ)f jb (σ) (B.7)

can be used to give a precise definition of the Poisson bracket:

{E(f), F (A)} = F (f). (B.8)

However, since A transforms as a connection, we see that this smearing is not
gauge covariant, although it is diffeomorphism covariant. This is the reason, why
quantization is based on the holonomy variables, which are one-dimensionally
smeared.
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B.2 Field Theories of Groupoid Morphisms

Let us recall the definition of a groupoid as a small category in which each
morphism is invertible. This category theoretic definition can be made more
explicit:

Definition 53 A pair of two collections G and U respectively, together with
two maps r, s : G → U , a map e : U → G and a composition map ◦ : G(2) :=
{(g1, g2) ∈ G2 : r(g1) = s(g2)} → G is called a groupoid, iff

r(g1 ◦ g2) = r(g2) s(g1 ◦ g2) = s(g1)
r(e(u)) = u s(e(u)) = u

g ◦ e(r(g)) = g e(s(g)) ◦ g = g

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3

∀g ∈ G : ∃ g−1s.t. g−1 ◦ g = e(r(g)) , g ◦ g−1 = e(s(g))

Each group H is a groupoid with G = H U = {e}, r(g) = e = s(g), g1◦g2 = g1g2

and e(e) = e. Given a groupoid G and a group H, one has thus a natural
notion of groupoid morphisms, i.e. maps such that A : G → H satisfy A(e) =
e, A(g1 ◦ g2) = A(g1)A(g2) and A(g−1) = A(g)−1. We will now associate a
quantum field theory for each pair G, H.

B.2.1 Decompositions

Elements of groupoids are naturally decomposed into into sequences of groupoid
elements: A decomposition of a groupoid element g is a finite ordered set
(g1, ..., gn) such that g = g1 ◦ ... ◦ gn. The set of all finite decompositions of
elements of a groupoid G is denoted by Dec(G). A decomposition d1 of g is
finer than a decomposition d2 of g if for each element of d2g there is a subset of
elements in d1g that furnish a decomposition of this element.

Definition 54 Given a groupoid G, we call a function d : G → Dec(G) a
decomposition function if ◦ dg = g for all g ∈ G and dg1 ∪ dg2 contains all
elements of d(g1g2).

Given two decomposition functions d1, d2, we call d1 finer than d2 (denoted by
d1 ≥ d2) if d1g is finer than d2g for all g ∈ G. Notice that ≥ defines a partial
order on the set of decomposition functions. Moreover, the set of decomposition
functions defines a semigroup through their action on G. Given a semigroup D
of decomposition functions, it turns out handy to consider D-hereditary subsets
of G, which are subsets H of G, such that each D-decomposition of an H element
consists of H-elements only. A D hereditary set H is called G-complete, if every
element of G can be decomposed into elements of H.

Let us now turn Dec(G) into a group by considering the enlarged groupoid
associated to G, that is constructed as follows: To each element u ∈ U , we
associate the set of elements {(t, u, t) : t ∈ R} and the enlarged unit set consists
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of the union of all {(t, u, t) : t ∈ R}1. To each groupoid element g, we associate
the set {(t1, g, t2) : t1, t2 ∈ R} and the enlarged groupoid set consists of the
union of all these sets. The source and range maps of the enlarged groupoid are
defined by s(t1, g, t2) := (t1, s(g), t1), r(t1, g, t2) := (t2, r(g), t2) and the object
inclusion map is e(t, u, t) := (t, e(u), t).This is compatible with the composition:

(t1, g1, t2) ◦ (t2, g2, t3) := (t1, g1 ◦ g2, t3),

whenever g1, g2 are composable. This enlarged groupoid is called the (R-)
weighted groupoid. Let us now define weighted decomposition functions,
whose action on the weighted groupoid naturally form groups:

Given a decomposition d of a groupoid element g and a bounded function
f : U → R, we have an associated weighted decomposition function df defined
through:

df(t1, g, t2) := ((t1+f(s(dg1)), dg1,−f(r(dg1))), ..., (f(dgn), dgn, t2−f(r(dgn)))).

This definition extends to decomposition functions D in a natural way, since
Dg is a decomposition of g to which we can apply the definition. This defines
a weighted decomposition function Df associated to each pair of a decom-
position function D and bounded function f : U → R. Let us now define an
equivalence relation between weighted decompositions through:

((t1, g1, s1), ..., (tk, gk, 0), (0, gk+1, sk+1), ..., (tn, gn, sn))
∼ ((t1, g1, s1), ..., (tk, gk ◦ gk+1, sk+1), ..., (tn, gn, sn)),

whenever gk and gk+1 are composable. This relation implies further equiva-
lences and moreover it implies that there is a shortest representative for each
weighted decomposition. The action of weighted decomposition functions on
these equivalence classes of weighted decompositions extends to a group action.
We will use this group as the momentum group.

B.2.2 Configuration Space

The quantum configuration space X is defined as the space of all groupoid
morphisms Hom(G, H). To define a suitable topology we need the notion of
graphs and to define an action of the group of weighted decomposition functions,
we need the definition of a weighted graph.

A finite set γ of groupoid elements (which are not necessarily composable)
is a graph. An element of γ may be called an edge of γ. The set V = {r(g) :
g ∈ γ} ∪ {s(g) : g ∈ γ} is called the vertex set of γ. This allows for the
definition of weighted graphs: A weighted graph is a triple consisting of a graph
γ and two functions f1, f2 : V → R, so to each edge g in γ there is a triple
(f1(s(g)), g, f2(r(g))). A vertex is called bi-valent, if there are precisely two
adjacent edges. A weighted graph is called reducible, if it contains a bi-valent

1Instead of R, one could take a different group, but R is the only case necessary to be
considered here.
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vertex v with adjacent weights f1(v) = 0 = f2(v). A reducible graph is defined
to be equivalent to a graph that is obtained by composing the adjacent edges
and removing the vertex (this may require the inversion of one edge!). The
action of weighted decomposition functions on equivalence classes of weighted
graphs is obtained by applying the decomposition function to each weighted
edge (f1(s(g)), g, f2(r(g))) separately modulus graph equivalences.

Let now H be a Lie group, such that a map λ : U → L(G) together with a
weighted decomposition function D defines a transformation of groupoid mor-
phisms through:

λDA : g 7→
exp(fλ(s(g1)))A(g1) exp(−fλ(r(g1)))... exp(fλ(s(gn)))A(gn) exp(−fλ(r(gn))),

(B.9)
which will be the action of a momentum variable on a groupoid morphism
A ∈ Hom(G, H).

Assuming that H is compact and Hausdorff, we can apply Tychonov theory
to equip X with a compact Hausdorff topology, even when G is not countable:
A graph γ is called larger than γ′ if each edge of γ′ is contained in γ and we
denote γ ≥ γ′. The set of all graphs on a groupoid is clearly a directed set w.r.t.
≥.
Given a directed set S, a projective family (Xs, prs) consists of a collection of
sets Xs (one for each s ∈ S) together with a collection of surjective functions
prs : Xr → Xs, whenever r ≥ s, which satisfy the compatibility condition
prs ◦ ptr = pts. Having a projective family, one can define the projective limit
X̄ of (Xs, prs) as the space that contains all equivalence classes that are defined
through xr ∼ xs whenever ∃xt with xr = prtxt and xs = pstxt.

Since the set of graphs is a directed set, one can follow the following strat-
egy to equip X with a Tychonov topology by using the graphs as a directed
set. The spaces Xγ are then the morphisms form the subgroupoid of G gener-
ated by the elements of the graph γ to the gauge group H. The compactness
and Hausdorffness of the gauge group then implies that the direct product of
spaces X∞ = ×g∈GH is compact and Hausdorff in the Tychonov topology. This
topology is characterized as the weakest topology for X∞ for which all pγ are
continuous, where pγA : g ∈ γ 7→ A(g) with A ∈ X∞ and g ∈ γ is the restriction
of a map A to a domain given by the groupoid generated by γ. This topolo-
gizes X∞ as a compact Hausdorff space, but X∞ is generally much larger than
X = Hom(G, H), because not all elements of X∞ have the groupoid morphism
structure.

Let us consider X̄, the projective limit of theXs, where s runs over all graphs.
Then the map M : X = Hom(G, H) → X̄ given by M : A 7→ (γ 7→ A(γ)) is a
bijection by construction, so X̄ = X. By considering a net An of elements of X̄
that converges to a limit element A ∈ X̄ and using the continuity of the prs in
the Tychonov topology reveals that X̄ is a closed subspace of X∞ and hence X
is a closed subspace of X∞. This means that the quantum configuration space
X, given by the groupoid morphisms form G to the gauge group, is a compact
Hausdorff space in the Tychonov topology. This compactness and Hausdorffness

147



is necessary for the construction of a C∗-algebra of configuration variables.
Using the Gel’fand Naimark correspondence between commutative C∗-algebras

and the algebra of continuous functions on a locally compact Hausdorff space
or in turn the spectrum of a commutative C∗-algebra in the Gel’fand topology
and a locally compact Hausdorff space, we could have defined the C∗-algebra,
which will serve as the configuration algebra of the quantum theory, and then
calculated its spectrum as the quantum configuration space. We will here only
show how this C∗-algebra can be constructed but not prove the isomorphism
of its spectrum and X, which is an adaption of the proofs found in standard
literature (e.g. [3]) to this situation.

We achieve this by constructing cylindrical functions and completing their
algebra in a suitable C∗-norm. Let Γ denote the set of all graphs, then we define
the space of superficial functions as

Supf := ∪γ∈ΓC(Xγ).

This means a superficial function can be viewed as a function on X̄ of the form
fγ = f ◦ pγ , where f ∈ C(G|γ|). To factor the redundancies of these functions
that have equal dependence on the elements of X̄, we define the equivalence
relation f1

γ ∼ f2
γ′ iff ∀δ ≥ γ, γ′: p∗γδf1

γ = p∗γ′δf
2
δ .

Definition 55 A cylindrical function is a ∼ equivalence class of superficial
functions.

In other words: The space of cylindrical functions is Cyl(X̄) = Supf/ ∼. The
algebraic operations for cylindrical functions are given through the operations of
superficial functions, particularly pointwise addition, pointwise multiplication,
pointwise scalar multiplication and pointwise complex conjugation. These op-
erations are cylindrically consistent, i.e. they respect the ∼-equivalence classes.
the unit element of this algebra is the equivalence class of functions id : Aγ 7→ 1.
A C∗-norm is given by the sup-norm:

||f || := sup
γ∈Γ
{||fγ ||∞}. (B.10)

The completion of this algebra in this norm is a commutative C∗-algebra and
it turns out that its spectrum is isomorphic to X. The cylindrical functions are
by construction a dense set in this C∗-algebra, which serves as the quantum
configuration algebra.

B.2.3 Quantum Observable Algebra

The algebra of configuration variables is C(X), but we have not yet specified the
action of the momentum Weyl-algebra. As in ordinary quantum mechanics, we
will consider a subset of the homeomorphisms h on the quantum configuration
space and define the unitary momentum Weyl-operators wh to act adjointly as
pull-backs under this homeomorphism, i.e. w∗hwh = 1 = whw

∗
h and w∗hfwh =

h∗f for f ∈ C(X). We saw how the finite weighted decomposition functions D
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where turned into a transformation of elements of X using a map λ : U → L(H)
(equation B.9). It turns out that the transformations λD are homeomorphisms
of X for any finite weighted decomposition function D and any bounded λ, as
is easily verified using the continuity of the group product and considering the
transformation of a net An converging to A. We are thus able to define (a
subgroup of) the finite weighted decomposition functions λD as the momentum
Weyl-group W. For any ξ ∈ W we have the canonical action on f ∈ C(X)
defined through:

w−1
ξ fwξ = wξ(f) := ξ∗f. (B.11)

This allows for the definition of an action of elements of the form f ◦ w on
elements g ∈ C(X):

f ◦ w . g : A 7→ f(A)(ξ∗g)(A).

The involution for these elements is dictated by the involution in C(X) and the
”unitarity” of the action of W:

f∗ := f w∗ = w−1.

Notice that the algebra generated by the finite sums a =
∑n
i=1 fn◦wn does again

contain only finite sums of this form, because (f1 ◦ w1)(f2 ◦ w2) = f1w
−1
1 (f2) ◦

w1w2. We thus have a closed noncommutative *-algebra Ao(X,W) of finite sums
a with a norm that is constrained by

||f ◦ 1|| = ||f || ||1 ◦ w|| = 1.

Let us now define the canonical representation of this algebra to explicitly com-
plete Ao(X,W) to a C∗-algebra.

B.2.4 Canonical Representation

Given a compact group H, there is a canonical representation of C(Hn) on
L2(Gn,⊗ndµH), where dµH is the unique normalized Haar measure. This allows
for the definition of a state ωo on C(X) through

f = fγpγ
ωo(f) :=

∫
⊗|γ|dµH(g1, ..., g|γ|)fγ(g1, ..., g|γ|).

(B.12)

This definition is independent of the cylindrical representative fγpγ of f due
to the normalization of the Haar measure. Performing the GNS-construction
from this Schrödinger-type state yields a Hilbert space H, which turns out to
be L2(X, dµo), where dµo is the canonical Ashtekar-Lewandowski measure on
X (compare e.g. [3]). This measure is characterized as the unique measure in
X, whose push-forward under any pγ coincides with ⊗|γ|dµH . We thus have
a C∗-representation of C(X) on L2(X, dµo) as multiplication operators, which
turns out to be faithful.

The state ωo can be extended to a state ω on Ao(X,W):

a =
∑n
i=1 fi ◦ wi

ω(a) =
∑n
i=1

∫
dµo(A)fi(A). (B.13)
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Since the Haar measure is invariant under group translations, we obtain that
the Ashtekar-Lewandowski measure is invariant under the transformations λD,
which is necessary for the positivity proof of ω. Performing the GNS-construction
from this state yields the canonical representation π of Ao(X,W) on L2(X, dµo),
which can be characterized through:

π(f)ψ = (A 7→ f(A)ψ(A))
π(w)ψ = ξ∗ψ.

(B.14)

The norm of f ◦ 1 as well as 1 ◦ w is clearly satisfied as well as the involution
by this representation and we thus have a ∗-representation of Ao(X,W) on
L2(X, dµo). The closure of this algebra in the Hilbert-space norm then defines
the C∗-completion A(X,W) of quantum observables.

Let us summarize: For any groupoid G and compact Lie group H, we have a
canonical compact Hausdorff quantum configuration space X. For any subset S
of the finite weighted decompositions, we have a momentum Weyl groupW gen-
erated by the transformations λD, which act as homeomorphisms on X. Thus,
we have a canonical pre-C∗-algebra Ao(X,W) which is faithfully represented on
L2(X, dµo), where dµo is the canonical measure on X induced from the Haar
measure on H. Thus, the structural data for this quantum field theory consists
of the triple (G, H, S).

B.2.5 Unitary Transformations

The momentum Weyl-transformations λD where implemented as unitary oper-
ators on L2(X, dµo). The deeper reason for their unitarity is twofold: (1) these
transformations are homeomorphisms of X and (2) these transformations leave
the canonical Ashtekar-Lewandowski measure invariant:

〈wφ,wψ〉 =
∫
dµo(A)φ(ξ−1(A))ψ(ξ−1(A))

=
∫
dµo(ξ(A)) dµo(A)

dµo(ξ(A))φ(A)ψ(A)
=

∫
dµo(A)φ(A)ψ(A) = 〈φ, ψ〉,

(B.15)

where dµo(A)
dµo(ξ(A)) denotes the Radon derivative of dµo and we used the invariance

of dµo under the momentum Weyl-transformations.
Given the structure X = Hom(G, H), we can find two other sets of transfor-

mations that act as homeomorphisms on X, that leave dµo invariant, so we can
use the calculation equation B.15 to show that their pull-backs act as unitary
operators on L2(X, dµo):

For the first set of transformations consider an automorphism φ of the
groupoid G, i.e. a map φ : (U,G) → (U ′, G′) that preserves the groupoid
operations. This can be turned into a transformation ζφ on X by

ζφA : g 7→ A(φ(g)).

This transformation is continuous, as is easily verified by considering the action
on a net An converging to A ∈ X. Moreover we see that ζφ leaves dµo invariant,
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since (pγ)∗dµo = ⊗|γ|dµH = (pφ(γ))∗dµo. Thus extending the action of ζ∗φ to
L2(X, dµo) defines a unitary operator (due to equation B.15) as:

Uφψ : A 7→ (ζ∗φψ)(A). (B.16)

To construct the second set of transformations, consider a map Λ : U → H.
We can use this map to define a transformation ζΛ on X through:

ζΛA : g 7→ Λ−1(s(g))A(g)Λ(r(g)).

Clearly ζΛA(g1 ◦ g2) = ζΛA(g1)ζΛA(g2). Moreover, using a net An converging
to A ∈ X we see that ζΛ is continuous due to the continuity of the product in H.
The translation invariance of the Haar measure implies that (pγ)∗dµo(ζΛA) =
⊗|γ|dµH = (pγ)∗dµo(A), so ζΛ leaves dµo invariant. We thus have the assocaited
unitary operator on L2(X, dµo) defined through:

UΛψ : A 7→ (ζ∗Λψ)(A). (B.17)

These two sets of transformations allow the unitary implementation of diffeo-
morphisms and gauge transformations in Loop Quantum Gravity.

The procedure described here can be used to construct an ”ordinary” background-
dependent quantum field theory, by taking a suitable set of modesM = {fn}∞n=1

and considering the single groupoid defined through G = U = M r(fn) =
fn, s(fn) = fn, e(fn) = fn, f

−1
n = fn and fn ◦ fn = fn. Ordinary Klein-Gordon

field theory can be constructed as above as the QFT of groupoid morphisms
into R, C respectively.

B.3 Loop Quantum Gravity

The construction of standard Loop Quantum Gravity uses Ashtekar variables
and introduces the holonomies he(A) of the connection along piecewise analytic
curves e as well as the fluxes Ef (S) of the conjugated electric field through
piecewise analytic surfaces S as fundamental variables:

he(A) = P{exp(
∫
e
τ∗A)}

Ef (S) =
∫
S
σ∗fiE

i,
(B.18)

where τ and σ denote the embedding of e resp. S into Σ and f : S → L(SU(2)).
The transformation properties of these observables under spatial diffeomor-
phisms φ are rather simple:

φ . he(A) = hφ(e)(A) and φ . Ef (S) = Eφ∗f (φ(S)).

To be able to construct Loop Quantum gravity along the programme outlined
in the previous section, we notice that a classical Ashtekar connection A defines
a groupoid morphism from the path groupoid P(Σ) into the gauge group SU(2)
by assigning the parallel transport A : e 7→ he(A). Let us describe the path
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groupoid in a little more detail: The unit set is Σ and it turns out handy to
work with a groupoid set that consists precisely of piecewise analytic paths
modulus zero paths. A path is a piecewise analytic directed curve c : [0, 1] →
Σ modulus orientation-preserving reparametrizations. A zero path is a closed
(sub)path that does not encircle any area. The object inclusion map is given by
e : x ∈ Σ 7→ [t 7→ x], the source- and range- maps are s([c]) = c(0), r([c]) = c(1)
and the composition law is given by the concatenation of paths, while the inverse
map is given by reversing the direction of the path.

Using the holonomy- and flux-variables as elementary variables, whose Pois-
son brackets are implemented as commutators, we obtain that the Poisson-
bracket of any two holonomies vanishes. To calculate the Poisson-bracket of a
holonomy he(A) and a flux Ef (S) we introduce a decomposition of e into pieces
ei, which are either completely inside S, completely outside S or have one
boundary point on S, so he(A) = he1(A)he2(A)...hen(A). The Poisson-bracket
of a holonomy hei with Ef (S) is then

{hei(A), Ef (S)} = κ(e,S)
2

{
hei(A)τ ifi(e(0)) if S ∩ ei = e(0)
−fi(e(1))τ ihei(A) if S ∩ ei = e(1),

where κ(e, S) =
{ + e above S

0 e inside or outside S
− e beneath S.

(B.19)

The Jacobi-identity and equation B.19 imply that the Poisson-bracket between
two fluxes fails to vanish. A detailed calculation [46] using three-dimensional reg-
ularizations of the fluxes reveals that the Poisson-bracket of fluxes satisfy a Lie-
algebra structure, that includes one- and zero-dimensional quasi-surfaces. We
see by inspecting equation B.19 that the action of the fluxes on the holonomies
is precisely the derivative of a finite weighted decomposition function on the
morphisms from the path groupoid to the gauge group. If we exponentiate this
action, then we obtain Fleischacks Weyl-algebra for Loop Quantum Gravity and
apply the construction precisely as in the previous section. For this exposition
of Loop Quantum Gravity, we will however follow the standard approach, used
in most of the literature:

B.3.1 Kinematics

Let us begin by introducing the elementary configuration variables called cylin-
drical functions. A cylindrical function Φ of the connection A is a function that
can be constructed as follows. Given a smooth function φ : SU(2)N → C and
set of piecewise analytic paths γ = (e1, ..., eN ), we define a cylindrical function
through

Φγ(A) = φ(he1(A), ..., heN (A)).

The space of cylindrical functions on γ will be called Cylγ . Notice that the
same function Φ(A) can be constructed as a function on any graph γ′ that
contains a decomposition of all edges of γ. This defines an equivalence relation
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∼ between cylindrical functions that depend indistinguishably on A. The space
of cylindrical functions is then

Cyl := (∪γCylγ)/ ∼ .

There is a natural gauge-invariant inner product on each Cylγ , given by the
lattice inner product on γ:

〈Φ1
γ ,Φ

2
γ〉 :=

∫
dµH(g1)...dµH(gN )φ1(g1, ..., gN )φ2(g1, ..., gN ), (B.20)

where dµH denotes the unique normalized Haar measure on SU(2). The nor-
malization and translation-invariance of the Haar measure implies that this
inner product respects the cylindrical equivalence classes. This allows for the
definition of an inner product between any two cylindrical functions Φ1

γ1 ,Φ2
γ2 ,

because there always exists a class of graphs γ3 that contains a decomposition
of all edges of γ1 as well as for all of γ2. Then equation B.20 can be used on
γ3, because there are functions φ1, φ2 with Φi(A) = Φiγ3(A), so

〈Φ1,Φ2〉 := 〈Φ1
γ3 ,Φ2

γ3〉 (B.21)

defines a Hermitian inner product, which is independent of the particular rep-
resentative γ3 due to the normalization and translation-invariance of the Haar
measure.

Since a measure on an infinite dimensional space is conveniently defined as
consistent family of cylindrical measures, let us define a measure dµo(A) on the
space of connections by defining the push-forward dµγ(A) onto each Cylα to
be the product measure of Haar measures on the holonomies on each edge of
γ. The normalization and translation invariance of the Haar measure ensure
the cylindrical consistency of the family dµγ , thus defining dµo unambiguously.
Equation B.21 then reduces to

〈Cyl1, Cyl2〉 :=
∫
dµo(A)Cyl1(A)Cyl2(A).

The Hilbert-space completion of Cyl in this inner product defines the Hilbert
space H = L2(A, dµo). The occurring quantum configuration space A is pre-
cisely the space of groupoid morphisms form the groupoid of piecewise analytic
paths to the gauge group SU(2), given the weakest topology such that all cylin-
drical functions are continuous.

The algebra of elementary quantum operators contains the fluxes as well.
The cylindrical functions are represented on H as multiplication operators:

π(Cyl)Φ : A 7→ Cyl(A)Φ(A),

whereas the fluxes are represented through the action of their respective Hamil-
ton vector-fields:

π(Ef (S))Φ : A 7→ i{Ef (S),Φ}(A),
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which implements the elementary commutator:

[π(Ef (S)), π(Cyl)] = i{Ef (S), Cyl}

as we desired.
Defining a normal-ordering : ... : of products of these elementary operators

by ordering all configuration operators to the left and all flux operators to the
right, allows us to identify the vacuum state:

ω(: Cyl E1...En :) :=
∫
dµo(A)Cyl(A).

The connection representation, that we just constructed, arises as the GNS-
representation of the ∗-algebra generated by the commutative algebra of cylin-
drical functions and i-times the Poisson action of the fluxes as self-adjoint ele-
ments.

Let us now construct a convenient Hilbert-basis for H: Let us first recall
the Peter-Weyl theorem, which states that the matrix elements u(g) of the
irreducible representations of a compact group G furnish a Hilbert-basis for
L2(G, dµH), which are normalized, when divided by the square root of the
dimension of the representation. The matrix-elements of a Lie-group are repre-
sented by the eigenvalues of the Casimir operators (labeling the representation)
and by the eigenvalues of a maximal commuting set of left-/right- invariant vec-
tor fields (labeling the matrix element), so for SU(2), there is a nonnegative
half-integer j for the representation and two labels n,m = −j,−j + 1, ...,+j
giving basis φjnm = ujnm(g)/

√
2j + 1.

A gauge-variant spin network function SNF is a special cylindrical func-
tion on a graph γ that can be written as a product of normalized nontrivial
representation matrix elements:

SNFγ(A) =
∏
e∈γ

φjemene |je 6=0.

It follows that all gauge-variant spin network functions are orthogonal and nor-
malized in H and that together with the trivial spin network function A 7→ 1
they are dense in H. For the construction of the gauge-invariant Hilbert-space
it is however useful to consider a different spin network decomposition: Let us
consider the Hilbert space completion Hγ of Cylγ and let us fix a group element
g(v) ∈ SU(2) for each vertex v ∈ γ and consider the gauge transformations UΛ:

UΛCylγ : A 7→ Cylγ(g−1(i(e1))he1(A)g(f(e1)), ..., g−1(i(eN ))heN (A)g(f(eN ))).

This operation is a unitary representation of GM in H due to the translation
invariance of the Haar measure, so one can write Hγ as a direct sum over
irreducible representations of the edges (labeled by half-integers ~j) and vertices
(labeled by half-integers ~l) under UΛ, hence:

Hγ = ⊕~j,~lHγ,~j,~l. (B.22)

154



Notice that each Hγ,~j,~l is finite-dimensional. To implement a decomposition of
H, let us introduce the auxiliary Hilbert space H′γ as the closure of the span of
all Hγ,~j,~l, where no representation is trivial. Then H can be decomposed into
finite dimensional Hilbert-spaces:

H = ⊕γHγ , (B.23)

where the span of the trivial spin network function A 7→ 1 is the summand that
corresponds to the trivial graph.

B.3.2 Kinematic Constraints

Classical general relativity (in terms of Ashtekar variables) is invariant under
all fibre-bundle morphisms; this group is a semidirect product of the local gauge
transformations and spatial diffeomrophisms. Let us now investigate the action
of these transformations on holonomies of the Ashtekar connection along piece-
wise analytic curves. A gauge transfromation is labeled by a map Λ : Σ→ SU(2)
and its classical action on a holonomy he(A) is:

Λ . he(A) = Λ(i(e))he(A)Λ−1(f(e)), (B.24)

where i(e), f(e) denote the initial and final point of e. This allows us to imple-
ment the action of gauge transformations on cylindrical functions as a pull-back
under this transformation:

UΛφ(he1(A), ..., heN (A)) := φ(Λ(i(e1))he1(A)Λ−1(f(e1)), ...,Λ(i(eN ))heN (A)Λ−1(f(eN ))),
(B.25)

which turns out to be unitary in H due to the translation invariance of the Haar
measure. Cylindrical consistency is provided by the trivial action on the interior
of decompositions and the trivial action of a pull-back under a variable that the
cylindrical function is independent of.

A spatial diffeomorphism φ : Σ→ Σ acts classically on a holonomy he(A) of
the Ashtekar connection as:

φ . he(A) = hφ(e)(A). (B.26)

Again, one can implement the action on a cylindrical function Cyl as a pull-back
under the classical action on holonomies:

Uφψ(he1(A), ..., heN (A)) = ψ(hφ(e1)(A), ..., hφ(eN )(A)). (B.27)

This action is unitary due to the invariance of dµo(A) under diffeomorphisms,
as can be checked directly∫

dµo(A)UφCylγ(A) =
∫
dµo(A)Cylφ(γ)(A)

=
∫
dµH(g1)...dµH(gN )φ(g1, ..., gN )

=
∫
dµo(A)Cylγ(A).
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The strategy is now to solve the kinematic constraints using the group averaging
procedure. It turns however out that it is rather simple to solve the Gauss
constraint directly, which is what we want to do here:

As we saw in the previous section, there is a decomposition ofH = ⊕γ,~j,~lHγ,~j,~l.
Since a gauge transformation acts on the vertices of a graph, we see that the
gauge-invariant states are precisely those, that lie in the summands with ~l = 0,
thus the gauge invariant Hilbert space is:

HGauss = ⊕γ,~jHγ,~j,0. (B.28)

These states are precisely the product states of traces over holonomies of closed
loops, where the spins on each edge on γ are symmetrized giving the spin jk
representation for the k-th edge. It follows that the vertices furnish gauge-
invariant inter-twiners between the adjacent jk-representations. The gauge-
invariant spin network states are thus of the form:

Tγ =

(∏
e∈γ

ρje(he(A))me,ne

)
Mme1ne1 ,...,meN neN

, (B.29)

where M is a direct product of gauge-invariant inter-twiners.
Let us now solve the diffeomorphism constraint with the group-averaging

procedure. Using the observation that H = ⊕γHγ , we can split the group
averaging: Let Iγ be the subgroup of the diffeomorphisms that maps γ onto
itself and let Tγ be the subgroup of the diffeomorphism group that acts trivially
on γ, then the group of graph symmetries Sγ := Iγ/Tγ is a finite group. This
allows us to define the operator P̂γ on Hγ defined as:

P̂γCylγ :=
1
|Sγ |

∑
φ∈Sγ

Cylφ(γ). (B.30)

We are now able to define the anti-linear rigging map η(Cylγ) through:

η(Cylγ) : Ψ 7→
∑

φ∈Diff/Iγ

〈UφP̂γCylγ ,Ψ〉, (B.31)

which is well defined and finite despite the over-countability of the diffeomor-
phisms in φ ∈ Diff/Iγ , because the only contributing summand in this sum
is the one that maps γ onto the graph that underlies Ψ. The rules for group
averaging then imply that the diffeomorphism invariant Hilbert space is made
up of the completion of the image of the cylindrical functions under the rigging
map η, i.e. η : Cyl ⊂ H → Hdiff.. This Hilbert space carries the implied inner
product 〈., .〉diff.:

〈η(φ), η(ψ)〉diff. := η(φ)[ψ], (B.32)

which is Hermitian by construction and well defined since it is independent of the
particular representative φ used to define η(φ). For diffeomorphism-invariant
operators O we have that:

η(φ)[Oψ] =: 〈O∗η(φ), η(ψ)〉diff.
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is independent of the representative of ψ used to define η(ψ), which yields the
involution in the algebra of diffeomorphism invariant operators.

B.3.3 Dynamics

In contrast to the mathematically well defined kinematics and implementation
of the kinematic constraints of Loop Quantum Gravity, the dynamics (i.e. the
imposition of the set of scalar constraints) is still unsatisfactory. There is how-
ever a proposal by Thiemann, that anomaly-freely implements the set of scalar
constraints, which we want to present here. This idea rests on a number of
observations that we have to explain first:

First of all, one needs to take care of the square root of the determinant of
E, which is non-polynomial in the flux operator. This can be taken care of by
realizing that

eia =
√
ι

2
ηabcε

ijk
EbjE

c
k√
|E|

=
2
κι
{Aia, V }, (B.33)

so one can express the troublesome non-polynomial expression in the momen-
tum variables as a Poisson-bracket, which will be implemented as i-times the
commutator in the quantum theory. The same trick can be used to imple-
ment the intrinsic curvature K as a Poisson-bracket expressed using K̄ :=
ι−3/2{CEucl.(1), V }:

Ki
a =

1
κι

{
Aia, K̄

}
. (B.34)

Second, one can split the scalar constraint into two summands: C(N) =
CEucl.− 2(ι2 + 1)T (N), where CEucl. is the constraint of the Euclidean theory:

CEucl.(N) =
2
κ2ι

∫
Σ

d3xN(x)ηabcTr (Fab(x){Ac(x), V }) , (B.35)

whereas the second summand can be expressed as:

T (N) = − 2
κ4ι3

∫
Σ

d3xN(x)Tr
(
{Aa(x), K̄}{Ab(x), K̄}{Ac(x), V }

)
. (B.36)

Third, for any small line segment s of coordinate length ε and for the bound-
ary curve β of any coordinate square of area ε2, we have the approximations:

{
∫
s
A, V } = −(hs(A))−1{hs(A), V }+O(ε)

{
∫
s
A, K̄} = −(hs(A))−1{hs(A), K̄}+O(ε)∫

q
F = 1

2

(
hβ−1(A)− hβ(A)

)
+O(ε2),

(B.37)

which allow us to regularize the expressions B.35, B.36 in terms of the regulator
ε using a partition Pε of Σ into coordinate cells of coordinate size approximately
ε3. 2 This allows us to use a Riemann sum approximation for the expressions

2The simplest such partition is a partition of R3 into regular coordinate cubes of size ε3,
but any partition that will for a general open region R of coordinate volume Vc(R) yield that
the number of cells in R is approximately Vc(R)/ε3 as ε→ 0 is admissible.
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B.35, B.36, so in the limit ε→ 0 one has the regulated expressions:

CEucl.ε (N) =
∑
c∈Pε N(c)CEucl.c

CEucl.c = 1
κ2ι

∑
iJ C

iJTr
(

(ρ(hβi)− ρ(hβ−1
i

)ρ(hs−1
J

)){ρ(hsj , V )}
)

Tε(N) =
∑
c∈Pε N(c)Tc

Tc = 1
κ2ι3

∑
IJK T

IJK

Tr
(
ρ(hs−1

I
){ρ(hsI ), K̄}ρ(hs−1

j
){ρ(hsj ), K̄}ρ(hs−1

K
){ρ(hsK ), V }

)
K̄ = ι−3/2{CEucl.(1), V },

(B.38)
where sK and βi are coordinate line segments into the K-direction and loops
around coordinates squares in j × k-direction and CiJ and T IJK are constants
depending on the representation ρ used, yield suitably regularized expressions.
The freedom in the choice of the regulator is then used to find a family of parti-
tions Pε together with line segments sK and loops βi such that (1) the family of
scalar constraints is cylindrically consistent (2) it transforms covariantly under
diffeomorphisms and (3) it leaves the domain of cylindrical functions invariant.
Then replacing i~{., .} with the respective commutator gives a densely defined
set of scalar constraints, which define the Hermitian set of constraints. We will
not quote a particular family of partitions, but rather focus on the last two key
observations that are necessary for Thiemanns construction:

Fourth, due to the decomposition of the Hilbert space of Loop Quantum
Gravity into H = ⊕γHγ , we can adapt the construction of the regulator to the
graph γ and define one regulator P γε for each graph. Cylindrical consistency
gives restrictions on these regulators that can be resolved easily. Diffeomor-
phism covariance on the other hand poses the restriction that if γ and γ′ are
diffeomorphic then their regulators have to be diffeomorphic. Amazingly, one is
able to construct such families of regulators e.g. [44]. The resulting regulated
scalar constraints generally act only on the vertices of γ for t(γ) > ε > 0 for
some t(γ) and add line-segments sk and loops βi that contain only one vertex
of γ.

Fifth, one has to remove the regulator. This is possible on the diffeomor-
phism invariant Hilbert space, due to the observation that

η(Cyl1γ1
)[Ĉε(N)Cyl2γ2

] = 〈C∗ε (N)η(Cyl1γ1
), η(Cyl2γ2

)〉diff , (B.39)

so as soon as the resulting graph of Ĉ(N) acting on Cyl2γ2
does not change its

diffeomorphism class as ε, one has already obtained the limit ε → 0. Meaning
that the regulator ε can be removed trivially on the diffeomorphism invariant
Hilbert space, which is the domain for Thiemanns set of scalar constraints.

B.4 Loop Quantum Cosmology

This section serves to introduce standard Loop Quantum Cosmology.
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B.4.1 Classical Symmetry Reduction

We already introduced the classical symmetry reduction used to construct Bianchi
cosmologies in chapter 2.1.2. Let us now consider Bianchi I cosmology in terms
of Ashtekar variables:

This means we assume a base-manifold Σ = R3, fix a global chart (U, φ),
and a symmetry group G = R3 acting transitively on Σ, generated by the three
vector fields ∂i (we will always use the global chart (U, φ) for all vector fields). To
further reduce the symmetry, let us assume local rotational symmetry, generated
by ε3jkxj∂k as well as complete rotational symmetry generated by all three
εijkxj∂k.

Since Loop Quantum Gravity is constructed as a theory of connections,
we have to classify G-symmetric connections. Following [16] we decompose
a G-symmetric connection on a fibre bundle over Σ into a connection on a
reduced bundle over Σ/G plus a G-multiplet of scalars on Σ/G. We first use
their classification of G-symmetric principal fibre bundles and then consider
connections thereon:

Connections are by definition invariant under vertical bundle morphisms,
i.e. gauge transformations. Moreover, let G act on a principal fibre bundle
P (Σ, H, π) as a group of bundle morphisms, such that all G orbits are iso-
morphic. Σ/G is reductive and I is the isotropy group of a point, such that
Σ = (Σ/G) × (G/I), then Σ can be considered an orbit bundle over Σ/G.
Notice that each point in p ∈ P defines a morphism ρ : I → H by:

ρp : i 7→ αi(p),

where α commutes with the right action in the fibre, such that

ρph = Adh−1ρp.

If we now fix one particular ρ, we can construct a symmetric subbundle

Psym(Σ/H,CH(ρ(I)), π|sym)

over Σ/H with the reduced structure group given by the centralizer of the image
of I under ρ, which is isomorphic to any other subbundle constructed using a
ρ in the same conjugacy class. This means that the G-symmetric fibre bundles
are completely classified by the reduced bundle Psym and the conjugacy class
[ρ]conj of the map ρ.

Having the symmetric bundles classified by the data (Psym, [ρ]conj), we need
to consider a symmetric connection ω on P , which by restriction defines a con-
nection ωsym on Psym but it also defines a linear map Lp : L(G) → L(H)
through:

Lp : V 7→ ωp(V ).

The image of the orthogonal complement of L(I), i.e. L(I⊥), under the map L
is horizontal in the full bundle, so it contains information about the connection,
but not tangential to any direction in Σ/G. Since a connection is invariant under
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vertical bundle morphisms, we obtain that not any linear map L can arise, but
only those that satisfy:

Lp(Adi V ) = Adρ(i)(Lp(V )),

for all i ∈ I, which we can take as the definition of the transformation law
of the ”Higgs-field” L under gauge transformations. Using the invariance of
the Maurer-Cartan form on G as well as the embedding e : G/I → G, we can
decompose any symmetric connection into the part parallel to Σ/G, i.e. the
symmetric connection on Psym, and the part parallel to the G-orbits in Σ as:

ω = ωsym + L ◦ i∗θMC , (B.40)

where θMC denotes the Maurer-Cartan form on G and ωsym is the connection
on Psym.

Following [13], we can apply this classification to Binachi I cosmologies in
terms of the Ashtekar connection. The assumed base manifold Σ = R3, and the
symmetry group G = R3 acting on Σ as translations. Since the left-invariant
1-forms on G are dxi, we can express θMC = gidx

i. The Isotropy group of a
point is trivial, so there is only the identity embedding i : R3 → R3. The orbit
space Σ/G consists of one orbit xo only, so the the reduced fibre bundle is a
fibre bundle over the trivial space.The linear map becomes a matrix over this
point, meaning that we can express the symmetric connection as:

ω = L ◦ θMC = AIaτIdx
a,

where τ I denotes the I-th generator of the gauge group SU(2) and A is a
constant matrix. The transformation constraint (of the Higgs field under gauge
transformations or of the linear map under vertical bundle morphisms) is trivial,
so it is satisfied by all matrices A. Moreover, using the dual basis Xi to ωi = dxi,
we can give the symmetric Ashtekar variables (A,E) for Bianchi I cosmologies:

A = AIaτIdx
a E = EaI τ

IXa. (B.41)

Let us now impose the local rotational constraint around the 3-axis: The
isotropy-group of a point is U(1), so ρn : U(1) → SU(2) can be chosen to
be ρn(eaY ) = eaτ3 , where Y denotes the generator of U(1). The only integer n
for which the Higgs constraint is satisfied is n = 1 and the matrices A turn out
to be of the form:

A =
( a b 0
−b a 0
0 0 c

)
, (B.42)

where a, b, c are real parameters.
Imposing complete rotational symmetry, we obtain the isotropy group of a

point to be SU(2), which can be embedded into the gauge group by the identity
embedding. The solutions to the Higgs constraint are of the form:

A =
( c 0 0

0 c 0
0 0 c

)
, (B.43)
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for a real parameter c.
Let us form now on assume complete rotational invariance, so we can con-

struct a chart and a gauge such that the Ashtekar varibales take the form:

A(x) = c̃τIδ
I
adx

a E = p̃τ IδaIXa.

To be able to convert the gravitational Poisson bracket into a finite Poisson
bracket for these remaining degrees of freedom, we consider these in a cell of
volume Vo and use the densities: c := V

1
3
o c̃ and p := 8πGιV

2
3
o p̃, so the grav-

itational Poisson bracket induces the Poisson bracket between p and c. The
classical Hamilton constraint (with constant laps) takes in these variables the
form

− 6
ι2
c2sgn(p)

√
|p|+ Cmatt = 0.

Notice that the physical triad and cotriad have to be scaled with Vo.

B.4.2 Kinematics

Standard Loop Quantum Cosmology uses the holonomies along straight lines as
the fundamental configuration variables, which are in the global chart (U, φ) of
the form:

e = {ea(0) + lėat : 0 ≤ t ≤ 1},

and the holonomies of the symmetric connection along these straight lines can
be calculated directly:

he = cos(
lc

2
) + 2ėaδIaτI sin(

lc

2
). (B.44)

The algebra of configuration variables is generated by the matrix elements of
these holonomies, so it consists of the span of the exponentials e

i
2 lc, and a

cylindrical function is thus:

Cyl(A) =
∑
k

ξk exp(
i

2
lkc). (B.45)

The smallest C∗-algebra that contains all these cylindrical functions is the alge-
bra of almost periodic functions on R, and its spectrum is the Bohr-compactification
R̄B of R. Let us now consider p as the flux through a unit square and calculate
its Poisson bracket with cylindrical functions by calculating the Poisson action
of fluxes through a unit square on the cylindrical functions:

{Cyl(A), p} =
8πιG

6

∑
k

i

2
lkξk exp(

i

2
lkc), (B.46)

which we now want to represent on a Hilbert space. Since each e
i
2 lc can be

obtained as a matrix element of a holonomy over along edge of parameter
length l, we can induce a scalar product for these functions by 〈e i2 l1c, e i2 l2c〉 :=
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〈(he(l1))11, (he(l2))11〉 = δKron.l1,l2
, which is precisely the scalar product of the

Hilbert space L2(R̄B , dµH), which has the representation:

〈e i2 l1c, e i2 l2c〉 = lim
T→∞

1
2T

∫ T

−T
dce

i
2 l1ce

i
2 l2c = δKron.l1,l2 . (B.47)

This nonseparable Hilbert space has the Hilbert basis 〈c|µ〉 := e
i
2µc and the

cylindrical functions are represented thereon as multiplication operators. The
fluxes through unit squares on the other hand are represented by −i~ times the
Poisson action B.46:

〈c, π(Cyl)µ〉 = Cyl(A)e
i
2µc

〈c, π(p)µ〉 = 8πµιl2Pl.
6 e

i
2µc,

(B.48)

where lPl.denotes the Planck length. This shows that the states |µ〉 are eigen-
states of the triad operator, meaning that they measure the physical size of
the cell. Homogeneity and isotropy lets us find a simple operator for the cell
volume:

V |µ〉 =
(

8πι|µ|
6

) 3
2

l3Pl.|µ〉 =: Vµ|µ〉. (B.49)

For the purpose of conatructing a dynamics analogous to Thiemanns dynamics
in the full theory, one needs inverse powers of the flux operators, which we do
using the Poisson bracket {c, V 1

3 } = sgn(p)|p|− 1
2 . Replacing the i~ times the

Poisson bracket with the respective commutator yields:

sgn(p)√
|p|
|µ〉 =

6
8πιl2Pl.

(
V

1
3
µ+1 − V

1
3
µ−1

)
|µ〉. (B.50)

B.4.3 Dynamics

The classical Hamilton constraint can be constructed for constant lapse, which
is precisely the constraint that is implemented in standard Loop Quantum
Cosmology. Using the observation that the full scalar constraint reduces to
C = − Vo√

8πGι2
F ijab

EaiEbj√
det(E)

, we proceed as in the Thiemann quantization of the

scalar constraint and express the curvature part as the holonomy around a
closed square loop �(lo) of side length lo, i.e. F iabτi ∼ 1

l2oV
2
3
o

(
h�(lo) − 1

)
, where

h�(lo) = hei(lo)hej(lo)h
−1
ei(lo)h

−1
ej(lo) with the edges ei(lo) starting at a fixed point

and extending for background length lo into direction i. Using the construction
of equation B.50, we obtain the regularized classical expression for the scalar
constraint as:

C(lo) = − 4
8πGι3l3o

∑
ijk

Tr
(
hei(lo)hej(lo)h

−1
ei(lo)h

−1
ej(lo)hek(lo)

{
h−1
ek(lo), V

})
.

(B.51)
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Replacing i~times the Poisson bracket with the commutator and the classical
quantities with the respective elementary operators yields the constraint oper-
ator:

Clo |µ〉 =
3

8πGl3oι3l2Pl.
(Vµ+lo − Vµ−lo) (|µ+ 4lo〉 − 2|µ〉+ |µ+ 4lo〉) . (B.52)

This is the pure gravitational constraint, a matter cosmological model will have
additional degrees of freedom (let us assume that |ν〉 form a dense set in the
matter Hilbert space), so a state in a matter model will have the form |ψ〉 =∑
k a(µk, νk)|µk〉 ⊗ νk〉. Denoting the matter part of the scalar constraint by

Cmatt. yields the full constraint:

(Vµ+5lo − Vµ+3lo)a(µ+ 4lo, ν)− 2(Vµ+lo − Vµ−lo)a(µ, ν)+
(Vµ−3lo − Vµ−5lo)a(µ− 4lo, ν) = − 8πGι3l3ol

2
Pl.

3 Ĉmatt.(µ)a(µ, ν)
(B.53)

Physical states have to satisfy the full constraint, so a(µ, ν) has to satisfy this
equation. Notice, that the regulator can not be removed from standard Loop
Quantum Cosmology, due to the fixing of the diffeomorphisms at the classical
level.
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Appendix C

Loop Quantum Geometry

This appendix serves as an overview over Loop Quantum Geometry. Technical
reasons suggest the use of the stratified analytic category, which is described
in section C.1. Thereafter we review the standard theory of Loop Quantum
Geometry (sections C.2,C.3 and C.4). This appendix introduces the ”standard”
version of Loop Quantum Geometry andS serves as the background for the
construction of the altered version of Loop Quantum Geometry constructed in
chapter 8.

C.1 Stratified Analytic Diffeomorphisms

This thesis uses a subgroup of the stratified analytic homeomorphisms as an
extension of the diffeomorphism group of Loop Quantum Gravity. We are fol-
lowing Fleischhack [23], who himself was following Hardt [25]. The reason for
considering this class of mappings is the desire to conserve the nice properties
of analytic curves, surfaces and maps while still being able to work locally, i.e.
not having a global structure dictated by local properties of a curve, surface or
mapping.

Definition 56 Let X be a differential manifold with differentiability class p=
(n, ∞ or ω) and let U be a subset of X.
ThenM is called a stratification, iff it is a locally finite, disjoint decomposition
of X into connected embedded Cp manifolds Xi ⊂ X, such that

Xi ∩ ∂Xj 6= ∅ → Xi ⊆ ∂Xj and dim(Xi) < dim(Xj).

The elements Xi of the decomposition are called strata.
M is called a stratification of U , iff U is the union of some elements of M.

Having a notion of stratification, we can define stratified analytic curves as
finite 1-dimensional submanifolds c ⊂ X that are can be composed from a finite
number of elements of an analytic stratification M of X. A stratified analytic
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surface is a 2-dimensional submanifold S ⊂ X that can be composed from a
finite number of elements of an analytic stratification M of X.

Moreover, we use the the notion of a stratification to define stratified maps
and particularly stratified Cp-diffeomorphisms:

Definition 57 Let f be a continuous map from a Cp-manifold X to a Cp-
manifold Y (p=n, ∞ or ω). Then f is called

• a stratified map, iff there is a pair of stratificationsM,N of X,Y respec-
tively and for each stratum Xi there exists an open neighborhood Ui and
a Cp-map fi : Xi ⊆ Ui → X satisfying Xi ⊆ Ui, fi|Xi = f |Xi , fi(Xi) ∈ N
and rank(f |Xi) = dim(f(Xi)).

• a stratified diffeomorphism iff f |Xi is injective and the restriction of
each fi to the respective Ui is a Cp-diffeomorphism.

C.2 Area Operators

We will follow [39] to construct an area operator for each closed 2-dimensional
submanifold surface that is embedded by τ : S → Σ. Let us re-express the
classical area functional A(S) =

∫
S
d2x
√
|τ∗h| in terms of the fundamental flux

operators P iS(E) = Ef (S) where f = τ i = const.:

A(S) := 8πιG lim
←P(S)

∑
Sk∈P(S)

√
ηijP iSk(E)P jSk(E), (C.1)

where P(S) denotes a projective family of partitions of S and the projective
limit is taken w.r.t. the partial ordering of partitions given by P1 ≥ P2 iff each
element of P2 is a composition of elements of elements of P1. Where we have
to use a family of partitions that satisfies a density condition, i.e. for each open
subset U ⊂ S and each N ∈ N there is PUN in this family, such that the number
of cells inside U is greater or equal to N .

The strategy is to define this operator on the set of spin network functions
as an essentially self-adjoint operator and to use its unique Hermitian extension
as the respective area operator. Let us adapt the family of partitions P(S) to
the graph γ of a spin network function SNFγ as follows:
There exists a partition Pγo such that each transversal puncture of γ through S
is in a separate cell. Then for each n+ 1 ∈ N let there be a partition Pγn+1 such
that each cell of Pγn is the composition of 3×3 cells of Pγn+1 with the constraint
that if the cell Pγn contains a transversal puncture of γ, then this puncture lies in
the central cell of the 3× 3 decomposition of this cell. Since the area functional
does not depend on the particular family if partitions, we can define one for
each graph γ:

A(S) := 8πιG lim
n→∞

∑
Sk∈Pγn(S)

√
ηijP iSk(E)P jSk(E). (C.2)
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Replacing the classical flux variables with the quantum flux operators yields an
area operator for each spin network function SNFγ . Notice that each cell Sk
contains at most one transversal intersection point with the graph γ. Let us con-
sider the equivalent graph γ′ that contains a vertex at each intersection point,
so the operator ηijP̂ iSk P̂

j
Sk

acts on SNFγ′ precisely the same way as the vertex
Laplace operator ∆v,S,γ′ = −ηij(Ĵv,S,upi − Ĵv,S,downi )(Ĵv,S,upj − Ĵv,S,downj ), where
v denotes the vertex at the transversal intersection point; the J-operators act
only as left-invariant vector fields on the components of the spin network func-
tion, and ηijP̂ iSk P̂

j
Sk

acts trivially on SNFγ′ , if Sk does not contain a transversal

intersection point of γ′. This means that each element
∑
Sk∈Pγn(S)

√
ηijP̂ iSk P̂

j
Sk

acts on SNFγ′ in precisely the same way, meaning that the limit is attained
already for n = 0. The operator is cylindrically consistent, as can be verified by
using different representatives of the same cylindrical function.

We are thus able to define the action of the area operator on a spin network
function SNFγ as:

Â(S)SNFγ := 4πιl2Pl
∑

v∈S∩γtransv.

√
−∆v,S,γSNFγ . (C.3)

Using the spectral root, we can apply this operator to twice differentiable cylin-
drical functions immediately. Density of the essential domain and essential
self-adjointness defines the unique Hermitian extension of the area operator as
an unbounded Hermitian operator on L2(X, µAL). This operator extends to
quasi-surfaces as well: Given an open 2-dimensional surface S and divide it
into two open 2-dimensional surfaces S1, S2 and one open 1-dimensional quasi-
surface S3 then A(S3) := A(S)−A(S1)−A(S2) is a nonzero operator. The same
procedure applied to 1-dimensional quasi-surfaces defines the area operator for
zero-dimensional quasi-surfaces.

Working with spin network functions, we can calculate the eigenvalues of
the area operator: Writing ∆v,S,γ = (JS,v,up + JS,v,down)2 − 2(JS,v,up)2 −
2(JS,v,down)2, we obtain that the eigenvalues of the area operator are given
by:

λ = 4πιl2Pl
∑√

2jup(jup + 1) + 2jdown(jdown + 1)− jup+down(jup+down + 1),

so the smallest nonzero value is 2πl2Pl
√

3.

C.3 Volume Operators

The quantization strategy for the volume operator of an open region R is pre-
cisely the same as for the area operator of a surface: We use the classical
expression for the volume functional of a region, reexpress it as a limit of cell
volumes of a family of partitions of the region, which we then reexpress using
the classical flux variables. Then we replace the classical flux variables with
the corresponding flux operators and take he limit on spin network functions.
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There is however one additional caveat: We have to ensure that the partitioning
is defined background independently. Since it is much simpler to define the par-
tition using a chart, we will have to average over a background-independent set
of families of partitions to obtain a background independent result. The final
operator is then the Hermitian extension of the essentially self-adjoint operator
defined on spin network functions.

We follow [40] and consider the classical volume functional V (R) of an open
region R:

V (R) =
∫
R

det q = (
√

8πιG)3

∫
R

d3x
√
|detP |.

We assume without loss of generality that R is contained in one chart, if this is
not the case the we use a partition of unity to write R = ∪iRi, where each Ri is
contained in a single chart. We will again adapt the partition P(R) to the graph
γ by starting with a cubical partition1 P γo (R), such that each cell contains at
most one vertex of γ which is supposed to be located at the coordinate center of
mass of the cell, and each cell that does not contain a vertex contains at most
one edge of γ. For each n + 1 ∈ N we define P γn+1 as a partition that contains
a 3 × 3 × 3-decomposition of each cell of P γn , such that a cell that contains a
vertex contains it at its coordinate center of mass2. For each cubical cell define
three surfaces S1, S2, S3 as the surfaces that go through the coordinate center
of mass of the cell which are subsets of the xi = const.-surfaces for the ith chart
coordinate.

Using the average cell volume density for the cell c ∈ Pn(R):

qc =
(8πιG)3

3!
εijkηabcP

i
Sa(E)P jSb(E)P kSc(E)

and the expression for the approximate volume of R in terms of these:

Vn(R) =
∑

c∈Pn(R)

√
|qc|

we are able to identify the classical volume functional with the limit:

V (R) = lim
n→∞

Vn(R), (C.4)

which we are able to quantize immediately by replacing the classical flux vari-
ables with the respective flux operators q̂c = (8πιG)3

3! εijkηabcP̂
i
Sa
P̂ jSb P̂

k
Sc

. Hence
the definition of the volume operator associated to a family F of partitions
Pn(R) is

V̂F (R) lim
n→∞

∑
c∈Pn(R)

√
|q̂c|. (C.5)

1Each cell in the partition is assumed to be a coordinate rectangle and two cells share at
most one face. We assume that the boundaries of the rectangles are subsets of xi = 0 for the
ith chart coordinate.

2We assume that the refinement of the cells is achieved by cutting the cell into subcells at
coordinate thirds in each direction.
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It turns out that this volume operator depends on the chart used to define the
family F of partitions. Let us remove this dependence by averaging over a
diffeomorphism invariant set of families of partitions. The final result is:

q̂c,γ =
(8πιlPl)3

48

∑
all triples of edges

εijkκ(e1, e2, e3)Ĵv,e1i Ĵv,e2j Ĵv,e3k , (C.6)

where κ = +1 if the ordered triple of tangent vectors at the vertex is right
handed −1 if left handed and 0 if degenerate.

A different quantization strategy yields a volume operator [41, 42] based on
the cell volume density

q̂RSc,γ =
(8πιlPl)3

48

∑
all triples of edges

εijkĴ
v,e1
i Ĵv,e2j Ĵv,e3k .

C.4 Length Operators

A length operator [43] was constructed by Thiemann using the observation
that 1

κ{A
i
a, V } = sgn|e|

2 eia. Using the volume operator Thiemann quantized the
length functional L(c) =

∫
c
dx
√
ċa(x)ċb(x)qab(c(x)) in terms of commutators of

holonomies with the total volume operator. We present a slight modification of
[43] in this section, that will prove useful in chapter 8.

Thiemanns ansatz for the classical length functional L(c) of a piecewise
analytic curve c requires a family F of partitions P of the curve c with the
density property: for open subset ci of c and each n ∈ N there is a partition P in
in F such that the open set contains at least n pieces of the partition P in. Using
such a family one can rewrite the classical length functional as:

LF = lim
n→∞

1
κ

∑
ci∈Pn

√
2Tr({hci , V }{h−1

ci , V }), (C.7)

where hci denotes the holomony along the curve ci ∈ P . Thiemann quantizes
this length functional by replacing the holomomies with holonomy operators, the
volume functionals with the volume operator and i~ times the Poisson bracket
with the commutator of the respective quantities, yielding the length operator:

L̂F = lim
n→∞

2lPl
∑
ci∈Pn

√
−2Tr([ĥci , V̂ ][ĥ−1

ci , V̂ ]). (C.8)

To be able to take the limit in the quantum theory, we have to adapt the family
of partitions again to the graph γ of the spin network function SNFγ that
L̂(c) acts upon. Using piecewise analyticity of both c and γ, we know that for
each graph γ there is an appropriate partition P γ , such that there are only five
topological relations that a segment ci may have with γ and that each ci is
analytic:
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1. γ ∩ ci = ∅

2. γ ∩ ci is an interior point of an edge of γ

3. γ ∩ ci is contained in the interior of an edge of γ

4. γ ∩ ci is one vertex of γ

5. γ ∩ ci = ci and contains both one vertex and the interior of an edge of γ

Using the observation that the volume operator acts nontrivially only at vertices
and that a vertex of γ ∪ ci is either a vertex of γ or a boundary point p ∈ ∂ci,
we can rewrite the commutator

[ĥ−1
ci , V̂ ]Cylγ =

 ∑
v∈(V (γ)∪∂ci)

[ĥ−1
ci , V̂v]−

∑
v∈(V (γ∩ci)\V (γ))

V̂vh
−1
ci

Cylγ ,

where V (γ) denotes the set of vertices of γ and Vv denotes the volume operator
acting only at vertex v and the germ of the edges adjacent to this vertex.
Case 1: The first term vanishes because there is no vertex of γ that coincides
with a boundary point of ci, the second term vanishes because γ ∩ ci = ∅.
Case 2: The first term vanishes because there is no vertex of γ that coincides
with a boundary point of ci, the second term contains a trivalent vertex, so the
second term vanishes by gauge invariance.
Case 3: The first term vanishes because there is no vertex of γ that coincides
with a boundary point of ci, the second term vanishes because the vertices in
V (γ ∩ ci) = ∂ci are bi-valent.
Case 4: Generally, the first term does not vanish because there is one vertex of
γ that coincides with a boundary point of ci, the second term vanishes because
V (γ ∩ ci) \ V (γ) = ∅.
Case 5: Generally, the first term does not vanish because there is one vertex of
γ that coincides with a boundary point of ci, generally the second term does
not vanish because V (γ ∩ ci) \ V (γ) 6= ∅.
Thus, we can use a partition P γo = P γ and use a refinement procedure P γn →
P γn+1 that splits pieces of case 1 into pieces of case 1, pieces of case 2 into pieces
of case 2, pieces of case 3 into pieces of case 1 and one endpiece of case 3, pieces
of case 4 into pieces of case 1 and one endpiece of case 4 and pieces of case 5
into pieces of case 2 and one endpiece of case 5. This defines the adapted family
of partitions Fγ = {P γn }∞n=0. Observing for cases 3,4 and 5 that [ĥ−1

ci , V̂ ]Cylγ
depends only on the germ of ci at the endpoint and that cases 1 and 2 do not
contribute, we conclude that the limit n → ∞ of LFγ (c) is already attained
with the first partition P γo . Using this observation and the observation that the
volume operator acts only nontrivially on V (γ) ∪ (∪i∂ci), we are able to write
the action of the length operator on an spin network function as the operator:

L̂(c) := 2lPl
∑

v∈V (gamma)

∑
ci∈Po:v∈∂ci

√
−2Tr([ĥci , V̂ ][ĥ−1

ci , V̂ ]) (C.9)
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Cylindrical consistency of the definition of this operator is easily checked by
verifying that the action of the length operator on different representatives for
the same cylindrical function is independent of the representative.

Observing that the length-segment-squared operator l2ci := −8lPl[hci , Vv][h
−1
ci , Vv] =

8lPl
∑
ABK

†
ABKAB , because [(hci)AB , Vv]

† = −[(h−1
ci )TAB , Vv] by the unitarity

of the SU(2)-holonomy matrix (hs)ABfor any curve s. This implies that l2ci is
positive semi-definite on the domain SNFγ . To show that l2ci is self-adjoint on
gauge-invariant spin network functions, we observe that the only graph-changing
cases are 1, 2, 4 and 5. However [ĥ−1

ci , V̂ ]Cylγ always vanishes for case 1 and van-
ishes by gauge invariance for case 2, so gauge-invariance ensures for the length
operator to be non-graph changing for gauge-invariant states in these cases. The
resolution of cases 4 and 5 needs the gauge invariance of the length operator,
which maps gauge-invariant states to gauge invariant states; which makes the
argument for the non-graph changing action of l2ci more complicated3.

Since cylindrical functions with nontrivial dependence on two different graphs
are always orthogonal, we conclude that l2ci is a positive semi-definite symmetric
operator on the gauge-invariant spin network functions, implying after using the
spectral root for the definition of the length operator, that the length opera-
tor is a positive semi-definite real symmetric operator on the gauge-invariant
spin network states. Density of the gauge-invariant spin network states in the
gauge-invariant Hilbert space yields the existence of a Hermitian length operator
thereon.

3Let us quote Thiemanns proof that if a gauge-invariant cylindrical function Cylγ depends
nontrivially on every edge in a graph γ then l2ci Cylγ depends at most on γ: l2ci Cylγ is gauge

invariant, since l2ci is gauge invariant and depends at most on γ ∪ ci. Decomposing l2ci Cylγ
into gauge-invariant spin network functions yields:
Case 4: There is no gauge-invariant spin network function that depends nontrivially on the
extra edge ci.
Case 5: ci coincides with the initial segment of an edge, say e ∈ γ. γ ∪ ci does not contain e,
but ci and e\ci and the additional bivalent vertex v between these two edges. The only gauge-
invariant two-valent intertwiner is the trivial one, so the only gauge-invariant spin network
functions that depend nontrivially on ci, e \ ci depend on e only

170



Bibliography

[1] A. Connes: ”Noncommutative Geometry”, Associated Press, 1994

[2] A. Ashtekar: ”New Hamiltonian formulation of general relativity”, Phys.
Rev. D 36 No.6, 1587-1602, 1987

[3] T. Thiemann: ”Introduction to Modern Canonical Quantum General Rel-
ativity”, [arXiv:gr-qc/0101054]

[4] C. Rovelli: ”Quantum Gravity”, Cambridge University Press, 2004

[5] A. Ashtekar, J. Lewandowski: ”Background independent Quantum Grav-
ity: A Status Report”, Class. Quant. Grav. 21: R53,2004; [arXiv:gr-
qc/0404018]

[6] T. Thiemann: ”The Phoenix Project: Master Constraint Programme
for Loop Quantum Gravity”, Class.Quant.Grav. 23 (2006) 2211-2248
,[arXiv:gr-qc/0305080]

[7] T. Thiemann: ”Quantum Spin Dynamics VIII. The Master Constraint”,
Class.Quant.Grav. 23 (2006) 2249-2266 , [arXiv:gr-qc/0510011]

[8] S. Bilson-Thompson: ”A topological model of composite preons”,
[arXiv:hep-ph/0503213]

[9] S. Bilson-Thompson, F. Markopoulou, L. Smolin: ”Quantum gravity and
the standard model”, [arXiv:hep-th/0603022]

[10] T. Konopka, F. Markopoulou, L. Smolin: ”Quantum Graphity”,
[arXiv:hep-th/0611197]

[11] L. Smolin, Y. Wan: ”Propagation and interaction of chiral states in quan-
tum gravity”, [arXiv:0710.1548]

[12] M. Bojowald, H. Kastrup: ”Quantum Symmetry Reduction for Diffeo-
morphism Invariant Theories of Connections”, Class. Quant. Grav. 17
(2000) 3009-3043, [arXiv:gr-qc/9907042]

[13] M. Bojowald: ”Loop Quantum Cosmology I: Kinematics”, Class. Quant.
Grav. 17 (2000) 1489-1508

171



[14] M. Bojowald: ”Loop Quantum Cosmology”, Living Rev.Rel. 8 (2005) 11,
[arXiv:gr-qc/0601085]

[15] M. Bojowald: ”Loop quantum cosmology and inhomogeneities”,
Gen.Rel.Grav. 38 (2006) 1771-1795, [gr-qc/0609034]

[16] O. Brodbeck: ”On symmetric Gauge Fields for arbitrary Gauge and
Symmetry Groups”, Helv. Phys. Acta 69 (1996), 321-324, [arxiv:gr-
qc/9610024]

[17] J. Brunnemann, C. Fleischhack: ”On the Configuration Spaces of Ho-
mogeneous Loop Quantum Cosmology and Loop Quantum Gravity”,
[arXiv:0709.1621]

[18] P. Muhly, J. Renault, D. Williams: ”Equivalence and Isomorphism for
Groupoid C∗-algebras”, J. Oper. Theo. 17 (1987), 3-22

[19] M. Rieffel: ”Applications of strong Morita equivalence to transformation
group C∗-algebras” Proc. Symp. Pure Math. 38 (1982), 299-310

[20] T. Koslowski: ”Dynamical Quantum Geometry (DQG Programme)”,
[arXiv:0709.3465]

[21] T. Koslowski: ”Reduction of a Quantum Theory”, [arXiv:gr-qc/0612138]

[22] T. Koslowski: ”A Cosmological Sector in Loop Quantum Gravity”,
[arXiv:0711.1098]

[23] C. Fleischhack: ”Representations of the Weyl algebra in quantum geom-
etry”, [arXiv:math-ph/0407006]

[24] T. Koslowski: ”Holonomies of isotropic connections on R3”, in preparation

[25] R.M. Hardt: ”Stratification of Real Analytic Mappings and Images”, In-
vent. Math. 28 (1975) 193-208

[26] W. Fairbairn, C. Rovelli: ”Separable Hilbert Space in Loop Quantum
Gravity” J. Math. Phys. 45: 2802-2814, [arXiv:gr-qc/0403047]

[27] J.M. Velhinho: ”Comments on the kinematical structure of loop quantum
cosmology”, Class. Quant. Grav. 21 (2004) L109, [arXiv:gr-qc/0406008]

[28] J. Engle: ”On the physical interpretation of states in loop quantum cos-
mology”, [arXiv:gr-qc/0701132]

[29] O. Bratteli, D. Robinson: ”Operator Algebras and Quantum Statistical
Mechanics 1”, Springer, Berlin Heidelberg, 1979

[30] O. Bratteli, D. Robinson: ”Operator Algebras and Quantum Statistical
Mechanics 2”, Springer, Berlin Heidelberg, 1981

172



[31] N. Landsman: ”C∗-algebras, Hilbert C∗-modules and Quantum Mecah-
nics”, [arXiv:math-ph/9807030]

[32] N. Landsman: ”The Muhly-Renault-Williams theorem for Lie groupoids
and its classical counterpart”, Lett. in Math. Phys. 54 (2001) 43-59,
[arXiv:math-ph/0008005]

[33] R. Meyer: ”Morita Equivalence in Algebras and Geometry”, Berkeley,
1997

[34] J. Renault: ”A Groupoid Approach to C∗-algebras”, LNM 793, Springer,
Berlin, 1980

[35] M. Rieffel: ”Induced Representations of C∗-algebras”, Adv. Math. 13
(1974), 176-257

[36] M. Rieffel: ”Morita Equivalence for C∗-algebras and W ∗-algebras”, J.
Pure Appl. Alg. 5 (1974), 51-96

[37] M. Rieffel: ”Morita Equivalence for Operator Algebras”, Proc. Symp.
Pure Math. 38 (1982) Part 1, 285-298

[38] L. Brown, P. Green, M. Rieffel: ”Stable Isomorphism and Strong Morita
Equivalence of C∗-algebras”, Pacific J. Math. 71 No. 2 (1977), 349-363

[39] A. Ashtekar, J. Lewandowski: ”Quantum Theory of Geometry I: Area
Operators”, Class. Quant. Grav. 14 (1997) A55-A81

[40] A. Ashtekar, J. Lewandowski: ”Quantum Theory of Geometry II: Volume
Operators”, Adv. Theo. Math. Phys. 1 (1997) 388-429

[41] C. Rovelli, L. Smolin: ”Discreteness of area and volume in quantum grav-
ity”, Nucl. Phys. B442 (1995) 492-622 and Erratum Nucl. Phys. B456
753

[42] R. DePetrini, C. Rovelli: Phys. Rev. D54 2664-2690

[43] T. Thiemann: ”A length operator for canonical quantum gravity”, J.
Math. Phys. 39 (1998) 3372-3392

[44] T. Thiemann: ”Quantum Spin Dynamics (QSD)”, Class. Quant. Grav.
15 (1998) 839-873, [arXiv:gr-qc/9606089]

[45] A. Ashtekar, M. Bojowald, J. Lewandowski: ”Mathematical Structure of
Loop Quantum Cosmology”, Adv. Theor. Math. Phys. 7 (2003) 233-268,
[arXiv:gr-qc/0304074]

[46] A. Ashtekar, A. Corichi, J. Zapata: ”Quantum Theory of geometry
III: Noncommutativity of Riemann structures”, Class. Quant. Grav. (15)
2955-2972 (1998)

173



Acknowledgements

It is legitimate to thank many people who helped me with their encouragement,
support, love, openness, knowledge of physics and mathematics and other skills
through the years. These acknowledgements are due to my insufficient rec-
ollection of the various different ways that I experienced support necessarily
incomplete.

Let me start by thanking my supervisors, my initial supervisor Prof. Jens
Niemeyer, who took the risk and gave me the freedom to seek ”unexplored
territory” and who applied for a grant at the Deutsche Forschungsgemeinschaft,
that gave me the financial stability to do this research; my now main supervisor
Prof. Thorsten Ohl, whose friendliness, knowledge in theoretical physics and
interest in mathematical physics inspired me already years before he undertook
me as his PhD student; and Prof. Martin Bojowald, who supported me as good
as it was humanly possible over the long distance from State College, PA to
Würzburg.

Let me thank many people without naming all their merits. I divide them
into three groups and list them in alphabetical order, which does not reflect the
order of my appreciation for them and their help:

First: Loop Quantum Gravity researchers, whom I had useful discussions
with: Benjamin Bahr, Dr. Johannes Brunnemann, Dr. Florian Conrady, Dr.
Bianca Dittrich, Dr. Jonathan Engle, Dr. Christian Fleischhack, Prof. Laurent
Freidel, Mikhal Kagan, David Sloan, Prof. Lee Smolin, Victor Taveras and Prof.
Thomas Thiemann.

Second: People at the Universität Würzburg, who supported me: Julian
Adamek, Dr. Richard Greiner, Dr. Alexander Mück, Dennis Simon, Prof.
Georg Reents and Marco Wagner.

Third: I want to also thank my family, particularly my wife Joy and my
parents, as well as Nathanael and Nicolas for their significant material and
much greater loving immaterial support.

174



Curriculum Vitae

Personal Information

Name: Tim Andreas Koslowski
Date of Birth: March 3rd, 1975
Place of Birth: Düsseldorf, Germany
Marital Status: married
Nationality: German
Hobbies: Amateur Radio, Cosyanna
Languages: German, English, Latin, Ancient Greek

Education

Sep. 1981 - Jul. 1985 Grundschule Ochsenfurt
Aug. 1985 - Jul. 1986 Hauptschule Ochsenfurt
Aug. 1986 - Jul. 1995 Egbert-Gymnasium Münsterschwarzach
Jul. 1995 Abitur
Jul. 1995 - Sep. 1995 compulsory military service as conscious objector
Sep. 1995 - Aug. 1996 civil service as conscious objector
since Oct. 1996 student of physics at Julius-Maximilians-Universität

Würzburg
Oct. 1998 Vordiplom
Aug. 1999 - Dec. 2000 graduate student at The University of Texas at

Austin
Dec. 2000 Master of Arts (supervisor: C. DeWitt-Morette)
Mar. 2002 - May 2003 diploma thesis research (supervisor: H. Fraas)
May 2003 Diplom
since Jun. 2003 PhD studies (initially: noncommutative geometry in

cosmology)
since Jun. 2005 PhD studies refocused on Loop Quantum Gravity

(co-supervision by M. Bojowald, Pennsylvania State
University)

since Oct. 2005 member of Research training group 1147

175



List of Publications

1. T. Koslowski: ”Physical Diffeomorphisms in Loop Quantum Gravity”,
[arXiv:gr-qc/06100017]

2. T. Koslowski: ”Reduction of a Quantum Theory”, [arXiv:gr-qc/0612138]

3. T. Koslowski: ”Dynamical Quantum Geometry (DQG Programme)”, [arXiv:0709.3465]

4. T. Koslowski: ”A Cosmological Sector in Loop Quantum Gravity”, [arXiv:0711.1098]

176



Erklärung
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