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A B S T R A C T

Genome Wide Association Studies (GWAS) have revolutionized the way on

how genotype-phenotype relations are assessed. In the 20 years long history

of GWAS, multiple challenges from a biological, computational, and statistical

point of view have been faced. The implementation of this technique using

the model plant species Arabidopsis thaliana, has enabled the detection of many

association for multiple traits. Despite a lot of studies implementing GWAS

have discovered new candidate genes for multiple traits, different samples are

used across studies. In many cases, either globally diverse samples or samples

composed of accessions from a geographically restricted area are used. With

the aim of comparing GWAS outcomes between populations from different

geographic areas, this thesis describes the performance of GWAS in different

European samples of A. thaliana. Here, association mapping results for flowering

time were compared. Chapter 2 describes the analyses of random resampling

from this original sample. The aim was to establish reduced subsamples to

later carry out GWAS and compare the outcomes between these subsamples.

In Chapter 3, the European sample was split into eight equally-sized local

samples representing different geographic regions. Next, GWAS was carried

out and an attempt was made to clarify the differences in GWAS outcomes.

Chapter 4 contains the results of a collaboration with Prof. Dr. Wolfgang Dröge-

Laser, in which my mainly task was the analysis of RNAseq data from A.

thaliana plants infected by pathogenic fungi. Finally, Appendix A presents a very

short description of my participation in the GHP Project on Access to Care for

Cardiometabolic Diseases (HPACC) at the university of Heidelberg.
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Z U S A M M E N FA S S U N G

Die genomweiten Assoziationsstudien (GWAS) haben die Art und Weise rev-

olutionierten, wie genotypische-phänotypische Zusammenhänge untersucht

werden. In der 20-jährigen Geschichte dieser Analysen, gab es zahlreiche biolo-

gische, mathematische und statistische Herausforderungen. Die Anwendung

dieser Methodik in der Modellpflanze Arabidopsis thaliana ermöglichte die Erken-

nung neuer Zusammenhänge für zahlreicher Merkmale. Obwohl viele Studien,

die GWAS implementieren, neue Kandidatengene für verschiedene Merkmale

entdeckt haben, werden in den verschiedenen Analysen oft unterschiedliche

Populationen verwendet. Es werden entweder global unterschiedliche Acces-

sionen oder alternative welche aus einem geografisch begrenzten Gebiet als

Population für die Anaylsen verwendet. Mit dem Ziel, GWAS-Ergebnisse zwis-

chen Populationen aus verschiedenen geografischen Gebieten zu vergleichen,

beschreibt diese Arbeit die Eigenschaften der Analyse in verschiedenen eu-

ropäischen Populationen von A. thaliana. Verglichen wurden die Ergebnisse der

Assoziationskartierung für die Blütezeit. Kapitel 2 beschreibt die Analysen von

zufälligen Populationen im Vergleich zur gesamten europäischen Population.

Ziel war es, reduzierte Stichproben zu erstellen, um später GWAS durchzuführen

und die Ergebnisse zwischen diesen Stichproben zu vergleichen. In Kapitel 3

wurde die europäische Population in acht gleich große lokale Subpopulatio-

nen aufgeteilt. Diese repräsentieren verschiedene geografische Regionen. Als

nächstes wurde GWAS durchgeführt und die Unterschiede in den jeweilgen

GWAS-Ergebnissen beschrieben. Kapitel 4 behinhaltet die Ergebnisse aus einer

Zusammenarbeit mit Prof. Dr. Wolfgang Dröge-Laser: Hier war meine Haup-

taufgabe die Analyse von RNAs Sequenzierungsdaten von mit pathogenen

Pilzen befallenen A. thaliana-Pflanzen. Schließlich enthält Anhang A eine zusam-

menfassende Beschreibung meiner Mitarbeit am GHP-Projekt zum Zugang zur

Versorgung bei kardiometabolischen Erkrankungen (HPACC) an der Universität

Heidelberg.
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Science knows no country,

because knowledge belongs to humanity,

and is the torch which illuminates the world.

— Louis Pasteur
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1
T H E R E L AT I O N S H I P B E T W E E N G E N O T Y P E A N D

P H E N O T Y P E

1.1 variability in biology

Variability is an intrinsic property of all living organisms. During most of

human history, species were seen as static and immutable groups of individuals.

However, humankind has been taking advantages from this intrinsic variability

to improve important traits in agronomy and animal breeding (Hickey et al.,

2017). Multiple hypotheses trying to explain the origin and maintenance of this

variability have been proposed, but it was not until the publication of "On the

origin of species" that a single unifying theory could reasonably explain that

this variability itself is responsible for the formation of new species (Darwin,

1859). Back then, this statement contradicted the notion of immutability of

species, and deconstructed the idea of species as discrete entities, or even more

that this interpretation of discrete entities is the result of the temporal scale

in which they are being studied. This idea of slow, gradual, and continuous

changes being under natural selection makes the experimental proof of species

formation challenging, since a geological scale must be considered. Fortunately,

fossil register has been supporting the theory of evolution (Prothero, 2007). Even

though Darwin was not aware of genetics, it was clear for him that an inner force

in all individuals was responsible for the modifications to be put under natural

selection. Nowadays, 150 years later, we not only know where this variation

come from, but also how it is inherited.

Although it is meanwhile known how this variability arises, after the publi-

cation of "On the origin of species", an extended explanation about this matter

was demanded and at that time far for being elucidated. Initially, most of the

first attempts were restricted to a philosophical discussion. However, multiple

authors agreed that biology should move to more mechanistic explanations and

that the main feature of biology is change. So, it was recognized that the only

way biology might progress is through the clarification on how variability arises

and fluctuates over time. In fact, some authors went even further : "...Meanwhile,

1
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we may safely predict that the biology of the immediate future will be the

science of variation"1. Nowadays, we can entirely agree with this statement, as

biology is still and will remain the science of variation.

Discussions about Variation and heredity held the attention of many re-

searchers and triggered one of the most famous debates, namely, between

Mendelians and Biometricians, and more precisely on a personal level between

William Bateson and Karl Pearson (Farrall, 1975; Gillham, 2015; Morrison, 2002).

Fortunately, R.A Fisher took advantage of both opposing points of view to

reconcile biometry and mendelism (Fisher, 1918). This effort ratified the crucial

role mathematics has in the integration of evolution and genetics (Cohen, 2004).

At that point, genetics was in its infancy and was often seen as a discipline

dealing with aberrant characters. However, among geneticists it was clear that

genetics had to face critical challenges in order to survive (Punnett et al., 1950).

Thomas Hunt Morgan stated for one of those challenges, which is still of high

priority: "The relation of genes to characters. This is the explicit realization of the

implicit power of the genes, and includes the physiological action of the gene

on the rest of the cell. This is the gap in our knowledge to which I have referred

already at some length"2. Currently, many of these "initial challenges" are still

being addressed, nevertheless progress has been made due to technological de-

velopments. Some of these scientific advancements enables the precise mapping

of genetic variability in populations using molecular markers. To summarize, we

are still addressing some of the initial question of genetics but using different

approaches due to the knowledge and technologies accumulated throughout

the last century.

1.2 where does this variability come from? genotype-phenotype

relationship

At this point, I referred to variability as the spectrum of observable variation

between individuals. This can be in fact documented as phenotypic variability.

How this phenotypic variability arises has remained a major question in biology

in the last century. The relationship and "opposite" characteristic of genotype and

phenotype was first proposed by Wilhelm Johannsen back in 1909 (Johannsen,

1909, 1911). Initially, this distinction was not accepted in the new field of genetics,

1 Fothergill, WE (1888). “The Biology of the Future.” In: The Hospital 3.68, p. 274

2 Morgan, Thomas H (1932). “The rise of genetics.” In: Science 76.1969, pp. 261–267
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however its importance was recognized later (Churchill, 1974) and since then

a lot of effort has been made to elucidate this intricate relationship. Back then,

it was not possible to characterize the genetic part of the genotype-phenotype

relationship and it was not until the emergence of molecular biology that further

progress in this matter was made. Human genetic studies using molecular mark-

ers as Restriction Fragment Length Polymorphisms (RFLP’s) and microsatellites

were able to link genetic variation in certain regions of the genome to specific

diseases (Botstein et al., 1980; Wooster et al., 1995). However some of these initial

reports raised doubts, whether these analyses actually revealed causation or

were merely spurious. The fear that these associations might be spurious was

mainly grounded in the fact that only short genomic regions were analyzed

which can led to the detection of associations due to evolutionary history rather

than recombination. That is, these associations would be the result of linkage

disequilibrium which refers to the non-randomly assortment of alleles at two

or more loci. Consequently, the magnitude of linkage disequilibrium of the

associated maker would reflect the temporal position of a mutational event

rather than its exact physical location (Templeton, 1998).

Later in the early 2000’s, with the emergence of high-throughput sequencing

(also known as Next Generation Sequencing-NGS), it was possible to produce an

enormous amount of genomic data enabling the genotyping of Single Nucleotide

Polymorphisms (SNPs) along the whole genome. This genotype information

allows an direct association between phenotypes and genomic markers. However,

this approach assumes that the phenotype is regulated only through additive

genetic effects, as each marker is tested separately. Multiple studies have reported

evidence that phenotypic variability is a result of intricate interactions including

gene-environment interaction, gene-gene interaction (also known as epistasis),

epigenetic effects and pleiotropy (Chiang et al., 2013; W. Huang et al., 2020;

Huo, Wei, and Bradford, 2016; X. Li et al., 2018; Stinchcombe et al., 2004).

Although this would contradict the basic ideas of the above described approach,

many phenotypes are still governed by major polymorphisms of additive effect.

In addition, for some studies it is enough to track down polymorphisms of

large effect and the goal is not to explain the complete phenotypic variance. In

this sense, Genome-Wide Association Studies (GWAS), an approach for testing

association of a marker with a phenotype, have revolutionized the study of

genotype-phenotype relationship. Since this was the principal methodology
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underlying these thesis, I will expand this topic in the next section, certainly

with major focus on plant genetics.

1.3 connecting genotypes to phenotypes : genome-wide associa-

tion studies (gwas)

The idea behind GWAS was already discussed before the methodology was

implementable, back in the middle-90s (E. Lander and Kruglyak, 1995; E. S.

Lander and Schork, 1994; Risch and Merikangas, 1996), even though sequencing

the genome of multiple individuals was unreachable at that time (the first

platforms for high-throughput sequencing were fist available in 2000) (Kulski,

2016). Later, in 2002 the first GWAS paper was published (Ozaki et al., 2002), and

since then this methodology has been successfully identifying associations in

the field of human (Buniello et al., 2019) and plant genetics (X. Huang and Han,

2014). Before NGS was extended in the field of plant genetics, SNPs were initially

genotyped in a population via arrays. This strategy allowed the genotyping

of thousands SNPs. For species with a small genome, this methodology made

SNP panels suitable for GWAS. More precisely, such SNP panels were used to

implement GWAS on different traits of A. thaliana, which led to the successful

detection of associated markers (Aranzana et al., 2005; Atwell et al., 2010).

At the same time as the implementation of GWAS were steadily growing,

concerns about spurious associations began to emerge, primarily due to the

inflated results most GWAS were delivering. GWAS test for association between

SNPs with a phenotype each marker at a time under the null hypothesis of

no effect of SNPs on the phenotype. This results in a high number of tested

hypotheses making it necessary to correct for multiple testing. Under the null

hypothesis pvalues are uniformly distributed, which means all are equally

likely to be found. Assuming the null hypothesis is true, a type I error of 0.05

indicates that in 5% of the times (trials) a pvalue lower than 0.05 would be

found just by chance, and so a false association would be detected. To better

exemplify the effect of multiple testing, a GWAS run using 1 million SNPs would

associate 50000 SNPs just by chance at a nominal pvalue = 0.05, because pvalues

are normally distributed under the null hypothesis (Hung et al., 1997). The

two most widely used methods to account for multiple testing are Bonferroni

correction (Bonferroni, 1935) and False Discovery Rate (FDR) (Benjamini and

Hochberg, 1995). Bonferroni correction controls for multiple testing by dividing
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the nominal pvalue by the number of tests to be made. In GWAS this number of

tests corresponds to the number of markers for which association is evaluated.

This method is considered to be very stringent since it controls for false positives

among all tests and assumes that all markers are independent. However, in

some occasions it would be useful to accept a small proportion of false positives

in order to increase the total number of associations. This proportion of false

positives in relation to the total number of associations is called the FDR. After

performing GWAS, estimations of effect size and pvalue for each SNP are obtain.

Commonly, pvalues for all SNPs are visualized using a manhattan plot. On this

plot the SNP position (on the x-axis) is plotted against the negative logarithm

(base 10) of the pvalue (on the y-axis) for each tested association. Usually a

significant threshold is also plotted to indicated where the significant SNPs are

located. Figure 1.1 is a manhattan plot representing GWAS results from a linear

mixed model accounting for population structure (an extended explanation

about the model will be later provided).

Figure 1.1: Manhattan plot representing GWAS results. Genomic location of SNPs on

the x-axis is plotted against the negative logarithm (base 10) of the pvalue

for each SNP on the y-axis. Horizontal dash-dotted line indicates the value

for the Bonferroni correction

Although Bonferroni correction and FDR are widely used to define significant

levels, other strategies can be implemented in order to control for multiple

testing including permutation and Bayesian approaches. While Bonferroni cor-

rection and FDR are easily obtain, permutation test and Bayesian approaches are

computational time consuming. Permutation testing allows to generate an em-

pirical distribution of pvalues under the null hypothesis. To do so, phenotypes

are randomly shuffle between individuals to unlink the genotype-phenotype

relationship present in the data. This process is repeated N times and then the
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significance level is define according to the type I error (Bush and Moore, 2012).

For the Bayesian approach both the null and the alternative hypothesis are ad-

dressed. The Bayes factor represents the ratio of the probability of the data under

the null to the probability of the data under the alternative hypothesis. This ratio

provides evidence of the data being better predicted by one of the hypotheses

and is not affected by the number of test to be considered (Wakefield, 2012).

The discussion about how to define a significance level is not only important

to limit the type I error, but also to estimate the theoretical power of a GWAS

experiment. Statistical power is calculated as 1− β, where β is the type II error.

Type I and Type II errors have an inverse relationship and can never be avoid.

Once type I error is set, type II error can be reduced (and so statistical

power increased) by enlarging the sample size (at a minimal detectable effect

size). This is a very important issue when designing GWAS, since knowing the

minimal sample size required to detect a minimal expected effect size can save

time and money. Even knowing that high sample sizes can led to a sufficient

statistical power, there are other factors affecting statistical power in GWAS.

Allele frequency has a direct effect in statistical power, since the estimation of

the effect size depends on the variance at each locus. For that reason estimations

of effect size are more precise in common than in low-frequency variants. So, in

order to detect low-frequency variants at the same statistical power as common

variants, larger samples sizes are needed. GWAS basically test the association

between a phenotype and the allele frequency of each marker genotyped in

the sample, and this association is estimated using a linear model. In the first

years of GWAS, a large number of associations were successfully reported even

considering the stringent significance levels established by multiple testing

correction. Concerns began to emerge about the validity of these associations

and the possibility of detecting many of them due to inflated results. Later the

effect of population structure on GWAS was demonstrated and the Q + K linear

mixed model was proposed to account for relatedness between individuals (Yu

et al., 2006). In fact, it has been shown that accounting for population structure

reduces type II error dramatically (M. Wang and Xu, 2019). Figure 1.2 shows the

effect on GWAS results when population structure is not taken into account. In

this example, GWAS results based on a linear model detected a high number

of association, while most of them were not significant when implementing the

Q + K linear mixed model. This contrasting results exemplify how population

structure can lead to false associations.
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Figure 1.2: Manhattan plots showing the effect of population structure on GWAS results.

(A) Manhattan plot displaying GWAS results based on a linear model. (B)

Manhattan plot displaying GWAS results based on the Q + K linear mixed

model.

This new approach in GWAS resulted in an increase of computational time

making it impracticable for many experiments. Thus, the increasing amount

of genomic data made it possible to design experiments with thousands of

individuals genotyped for millions of SNPs, demanding the develop of new

models to speed up the computational time of GWAS. There is an important

number of models which facilitate the implementation of GWAS even for huge

experiments. Efficient mixed-model association (EMMA) was the first method

of this type to be proposed (M. Kang et al., 2008). In the subsequent years an

important number of method were proposed, highlighting EMMAX (Efficient

Mixed-Model Association eXpedited), a method build on EMMA which dra-

matically reduces its computational time (H. Kang et al., 2010) and GEMMA

(Genome-wide Efficient Mixed Model Analysis) (Zhou and Stephens, 2012).

Soon after, the first GWAS in A. thaliana were published. There were an

accelerated interest in such studies and the execution of the 1001 genomes

project (Alonso-Blanco et al., 2016; Weigel and Mott, 2009) fueled the idea of

creating a publicly available source for all GWAS using A. thaliana, the AraGWAS

catalog (Togninalli et al., 2020). This source contains 462 GWAS (as of May 26th

2021) and is constantly growing. Even more interesting, the availability of

this type of data has allowed the re-analysis. In addition, the 1001 genomes

project (Alonso-Blanco et al., 2016; Weigel and Mott, 2009) enabled the calling of

more than 10 million SNPs, which results in a high coverage with an average
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occurrence of SNPs nearly every 10-20 base pair (bp). This deep SNP coverage

facilitates the detection of responsible makers via GWAS. The reason is the

extend of linkage disequilibrium decay, which was firstly estimated to be around

250 kb (Nordborg et al., 2002), but current reports estimate it to be around 10 kb

(S. Kim et al., 2007)).

In contrast with this characteristics, which facilitates the implementation of

GWAS using A. thaliana, many agronomic important species are more challeng-

ing given that their genomes are more complex. Examples of this are: wheat

(Triticum aestivum), canola (Brassica napus), potato (Solanum tuberosum), just to

name some examples (polyploidy is common in plants with a high proportion of

the angiosperm species displaying at least some ploidal level in their evolution-

ary history (Meyers and Levin, 2006)). On the other hand, most of the agronomic

important traits are quantitative and therefore display a very complex genetic

architecture with a lot of alleles having middle-to small effects (Yang et al.,

2010). In fact, after the first years of GWAS implementation, it was clear that

only a small proportion of the expected genetic variation in most of the studied

organisms was being discovered (such observations were based on intensively

validated heritability estimates). So the question arose: where is the missing

heritability? (Gibson, 2010; Manolio et al., 2009). This question can be answer

through several sources including: rare variants, gene-gene interactions (also

known as epistasis), genetic heterogeneity, epigenetic effects (Brachi, Morris, and

Borevitz, 2011) or gene-by-environment interactions (Thomas, 2010). GWAS on

plant species can be challenging due to sample size. The detection of variants

with low effect via GWAS might demand sample sizes not available in plant

genetics studies. Despite this disadvantage, GWAS in plants have been able to

explain a much greater proportion of the phenotypic variation than in humans.

Although human height is a high heritable trait (heritability estimates around

80%), early GWAS found significant variants explaining only around 3.7% of the

phenotypic variation (Gudbjartsson et al., 2008). In contrast, GWAS on flowering

time have detected variants explaining up to half of the total heritable variation

(Yan Li et al., 2010).

Over the past 20 years, GWAS have faced multiple challenges from whether

a biological, statistical or computational perspective (Korte and Farlow, 2013;

McCarthy et al., 2008; Moore, Asselbergs, and Williams, 2010; Visscher et al.,

2017), as well as bitter criticism by researchers from diverse fields (Manolio et al.,

2009; McClellan and King, 2010). Under powered GWAS, biased sampling, low
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heritable traits, among others are all problems which still occur. So, some of the

criticism is based on poorly design studies whose conclusion are, of course, a

priori invalid. On the other hand, it is important to keep in mind what GWAS

can actually tell us, in other words that this methodology intends to statistically

associate genetic markers (SNPs) with a trait under the assumption that the

effect of all marker is independent and additive. But, how could we look into

the dark side?

1.4 Arabidopsis thaliana as model organism

A. thaliana is probably the best known plant model organism. This species

has been playing a decisive role in all fields of plant biology since it was

suggested as an ideal model organism (Laibach, 1943). This section is not

intended to give an extended description of the characteristics that took A.

thaliana to its present position (see (Koornneef and D. Meinke, 2010)), but

highlights those enabling its use for GWAS and evolutionary studies. Contrary

to many angiosperms, A. thaliana has a small diploid genome (approx. 135 MB)

and occurs predominantly as inbred lines, due to its self-compatibility, across

its distribution range (D. W. Meinke et al., 1998). These two characteristics are

probably the most important ones when implementing GWAS. As mentioned

before, the available SNP panel for A. thaliana covers the genome at a larger

extent than the linkage disequilibrium decay requests (in average at least one

SNP per 10 kb (S. Kim et al., 2007)). In addition, its very low outcrossing rate

(Abbott and Gomes, 1989) and self-fertilization allow to maintain accessions

as inbred lines, making possible to phenotype genetically identical individuals

(which have to be therefore genotyped only once) multiple times, in order to

implement GWAS. This possibility of replicating enables less biased estimates

of the phenotypes.

As already mentioned, the first GWAS in A. thaliana used a 250K SNP array

(M. W. Horton et al., 2012) to test for associations and were able to detect

significant association for diverse traits. The first GWAS, using this genotypic

data showed that highly significant associations were most frequently located

within or near to known candidate genes (Atwell et al., 2010). Later, after the

execution of the 1001 Genomes project, it was possible to genotype more than 10

million SNPs (Togninalli et al., 2020), which enabled a even higher SNP density
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improving the chances to detect the exact physical position of responsible

markers.

Flowering time is one of the most extensively studied traits in A. thaliana, with

more than 300 genes reported to be involved in its regulation (Bouché et al.,

2016). Contrary to other species in the genus, A. thaliana is an annual plant

with some accessions displaying very short life cycles (Krämer, 2015). GWAS

have successfully detected markers within or near to genes previously related

to flowering time. This is in agreement with the idea that flowering time is

regulated by relative stable major genes (Srikanth and Schmid, 2011). However,

as aforementioned, markers detected in these studies could explain only half

of the heritable variation. So, due to the complex genetic architecture of this

trait, underlying phenomena (as those responsible for the "missing heritability")

remain hidden after GWAS. Thus, since flowering time is an adaptive trait with

wide natural variation across the A. thaliana distribution (Agren et al., 2017), one

could hypothesize that this trait is regulated by a combination of multiple factor

as epistasis, genetic heterogeneity, gene-by-environment interaction, among

others. This might also be true for other traits, for example seed dormancy, a

fitness-related trait which co-varies with flowering time (Debieu et al., 2013). The

implementation of GWAS for such traits is challenging and solving the problem

of the hidden phenomena requires much more than just increasing the sample

size.

1.5 signatures of local adaptation in Arabidopsis thaliana

Evolution is responsible for biological diversity on earth and the major mecha-

nism shaping this biological diversity is natural selection (Arnegard et al., 2014;

Schluter and Conte, 2009). Initially, natural selection was understood as a single

mechanism operating over populations, however, we know to date that this term

refers to a compendium of processes which we are still trying to understand

(Hanson et al., 1999). The complete history of past natural selection is what

we see today as adaptation. However, the comparison between ancestral and

derived populations might require a geological time scale (Knoll and Nowak,

2017). In contrast, local adaptation can be detected between populations on a

much short time scale. This evolutionary process refers at the outcome where

individuals in their native population display a higher fitness when compare

with individuals coming from a foreign population (Kawecki and D. Ebert,
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2004). Local adaptation can be mainly explained by genetic trade-off (with al-

leles at a single locus contrary affecting fitness when compared on alternative

environments) or conditional neutrality (with alleles having a positive effect

on fitness on the adapted environment but non on a contrasting environment)

(Anderson et al., 2013). Therefore, if a trait is under local adaptation, variation

at major genes controlling the trait should cause phenotypic variation between

populations.

For this phenomenon to occur, the absence of the constrain of some evolu-

tionary forces like gene flow or genetic drift is necessary. These forces allow

shuffling of local polymorphims between populations or can lead to the random

loss or fixation of polymorphism (Kawecki and D. Ebert, 2004). Despite local

adaptation has been extensively documented in animals and plants, the latter

are best suitable to study this phenomenon since they can not migrate, at least

actively, and therefore forced to face the local environmental conditions. In

addition, plants with a wide geographic distribution represent a valuable source

to study local adaptation. In fact, the most classic experiment to prove local

adaptation was carried out by transplanting plants into different environments

(Turesson, 1922). Since then, reciprocal transplant experiments have been used

to appeal for local adaptation in a high number of plant species (Leimu and

Fischer, 2008). Given its wide geographic distribution across contrasting envi-

ronments, local adaptation for many traits in A. thaliana might be expected,

highlighting flowering time (Agren et al., 2017; Fournier-Level et al., 2011) and

seed dormancy (Kronholm et al., 2012; Postma and Ågren, 2016). These two

traits have an enormous impact on fitness due to the importance of fine-tuning

of germination to avoid desiccation and flower formation in order to ensure

reproduction. Reciprocal transplant experiments in A. thaliana brought important

evidence for local adaptation and the major role played by the climate gradients

present along the geographic distribution of this species (Agren et al., 2017;

Fournier-Level et al., 2011; Hancock et al., 2011; Postma and Ågren, 2016; Price

et al., 2018).

The wide geographic distribution of A. thaliana across contrasting environ-

ments has finely tuned flowering time, which traduces not only in a latitudinal

cline (Stinchcombe et al., 2004) across Europe but in an altitudinal one on the

Iberian Peninsula (Méndez-Vigo et al., 2011). Ågren and Schemske, 2012 were

the first to report evidence for local adaptation in A. thaliana by doing reciprocal

transplant experiments between populations representing the extremes of A.
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thaliana geographic distribution. In their experiments, in 80% of all possible site

x year comparisons the native population displayed a higher fitness than the

foreign. Along with this seminal work many other studies have highlighted

the relevance of A. thaliana for ecological and evolutionary studies (Krämer,

2015). Given that this species is not of agronomic importance, and thus it has

never been actively selected by humans, the phenotypes collected reflect its

natural variation instead the variation of interest for breeders. In addition, the

unparalleled availability of genomic data makes A. thaliana an ideal species to

elucidate the genetic base of local adaptation. In this way, Fournier-Level et al.,

2011 provided strong molecular evidence for local adaptation in A. thaliana by

using a genome-wide approach. Fitness associated alleles at specific sites (four

European sites) tend to distribute more locally (be more locally abundant) in

comparison with genomic controls (Fournier-Level et al., 2011). In addition,

multiple studies by Agren have addressed local adaptation in A. thaliana using

different approaches (Ågren, Oakley, et al., 2017; Ågren and Schemske, 2012;

Oakley et al., 2014; Postma and Ågren, 2016; Postma, Lundemo, and Ågren,

2016; Price et al., 2018)

Considering these facts, local adaptation appears as an important barrier to

recovery the same GWAS results when using different samples coming from

the same population. This characteristic is still considered as an important

signal for reliability (Chanock et al., 2007). Under this assumption, strikingly

different results between samples might invalidate a lot of experiments. However,

considering the existing evidence of local adaptation for flowering time, it would

not be precipitate to predict that GWAS on geographically distant samples

should point to dissimilar associations.

Therefore, sampling might be decisive to find signature for local adaptation

when implementing GWAS. Including a large number of individuals from very

diverse populations in a single sample could hinder the detection of adaptation

patterns closely dependent on particular alleles. In this case a more locally

restricted sampling could enable the detection of local adapted alleles. However

by extreme locally defined sampling one could neglect a wider picture of the

genetic architecture of the trait. Thus, under this scenario, differences in GWAS

results between geographically distant samples should be considered as evidence

for such hidden processes, like local adaptation, rather than a lack of reliability.

In fact, there is enough evidence for local adaptation even at smaller geographic
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scales (Frachon et al., 2018). Despite all these evidence for local adaptation, the

genetic basis underlying this process remains hidden.

1.5.1 Aims of the study

GWAS are a well established methodology to map the genotype-phenotype rela-

tionship. By means of GWAS many associations have been detected for multiple

traits in the model plant A. thaliana, however most of these studies have used

samples either from a wide or a restricted geographical area. In the specific case

of flowering time, multiple associations have been detected directly in or near to

genes already related to flowering time. However, most of these candidate genes

have been characterized using only the reference accession col-1. For that reason

and considering that flowering time is a trait presumably under local adaptation,

differences in the genetic architecture of this trait should be expected along the

geographic distribution of A. thaliana. Therefore, the aim of this study was to

performed GWAS on different populations of A. thaliana in order to see how the

outcomes vary according to the geographic distribution. Additionally, multiple

strategies were implemented in order to track the phenomena responsible for

the differences in GWAS outcomes: gene-gene interaction, allelic heterogeneity

and effect of genetic background. Finally, based on these assumptions, we used

the compendium of results to point out the following: 1. The regulatory network

of flowering time in A. thaliana based on col-1 should be reevaluated with the

aim of including geographically-dependent regulations, 2. GWAS reliability,

understood as the recovery of GWAS results when using different samples from

the same population, is not necessary expected for adaptive traits, and 3. dis-

similar GWAS outcomes between geographically distant populations constitute

evidence for a more complex and geographically-dependent regulatory network

for flowering time. Basically, we addressed a very fundamental question in

GWAS design: how should a sample be define?, however we approached it not

only from a statistical but also from a biological point of view.





2
G WA S A N D T H E C H A L L E N G E O F S A M P L I N G

2.1 introduction

Sampling is a major issue when designing GWAS. Defining the appropriate

number and origin of the individuals to be included in the analysis not only has

important implication due to statistical power but also due to budget. Intuitively,

to opt for a sample as large as possible would be the best choice from a statistical

point of view, however in most cases economical limitations do not make this

possible. On the other hand, the genetic composition of the sample can affect

GWAS, as already mentioned in Chapter 1. In most cases samples are defined

randomly, which could lead to under-representation of low-frequency variants

in the experiment. Of course, this is an expected outcome during sampling

and differences in GWAS results when comparing different subsamples could

be explained through allele frequency. However, in cases when low-frequency

variants are locally distributed or alleles of globally distributed variants have

different effects depending on geographic location, important associations could

be neglected.

In contrast to GWAS design in human genetics, plant geneticist might not

have a huge amount of individuals suited for GWAS. Besides, in many cases

well-known phenotypes are consider for GWAS. In this field, sufficient statistical

power to detect meaningful effects has been reported using samples fewer than

100 individuals (Atwell et al., 2010). In fact, an important proportion of GWAS in

the plant model species Arabidopsis thaliana have been performed using samples

below 200 individuals (158 from a total of 462 up-to-date stored studies on

AraGWAS Catalog (Togninalli et al., 2020)). In these cases, common variants

with middle to large effects could be detected at a very high statistical power. On

the other hand, low-frequency variants with large effects or common variants

with small effects still represent a challenge for such studies (Korte and Farlow,

2013).

In order to practically see how subsampling affect GWAS results, we took

advantage of the publicly available genomic and phenotypic data of A. thaliana

15
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stored in AraPheno (https://arapheno.1001genomes.org/). We selected

flowering time at 10 °C. This adaptive trait has been broadly studied not only

in A. thaliana but also in agronomic important species. In addition, this trait is

of paramount importance for flowering plants once its exact timing determines

the success of the next generation. To performed GWAS, we used 888 A. thaliana

accessions distributed across Europe, and created random subsamples, coming

from this original sample, varying in size from 800 to 110.

2.2 methodology

Flowering time at 10 °C of 888 A. thaliana accessions, distributed across Europe,

was used to run GWAS. This phenotypic data was filter from a global sample

containing 1163 A. thaliana accessions, available on the public database AraPheno

((Seren et al., 2016), https://arapheno.1001genomes.org/phenotype/261/).

Genotypic data, represented by more than 10 million SNPs, for these 888 A.

thaliana accessions was obtain from the 1001 genomes project (Alonso-Blanco

et al., 2016). Initially, GWAS were run on the complete sample represented by all

European accessions and significant associations were defined using Bonferroni

correction, which corrects the nominal pvalue (0.05) for multiple testing (Bon-

ferroni, 1935). Next, the complete sample was randomly reduced under three

scenarios: filtering randomly out 11, 44 and 88 accessions from the complete

sample. For each scenario 100 subsamples were produced and GWAS were

performed on all subsamples. As for the initial GWAS run, significant SNPs

were defined using Bonferroni correction. Additionally to these 300 reduced

subsamples we randomly generated subsamples containing 200 and 110 acces-

sion from the complete sample. Same as for the three mentioned scenarios 100

subsamples were generated and GWAS were performed on each of them. In all

GWAS runs a linear mixed model accounting for population structure was used:

y = Xβ + Zµ + e

y is a vector containing the observed phenotypes, X is a matrix (No. of Individu-

als x No. of SNPs) of fixed effects, β is a vector representing the effect sizes, Z is a

matrix of random effect represented by the kinship matrix, µ is the random effect

and e is a matrix containing the residuals. All Parameters were estimated using

a customized R script (available at: https://github.com/arthurkorte/GWAS

https://arapheno.1001genomes.org/
https://arapheno.1001genomes.org/phenotype/261/
https://github.com/arthurkorte/GWAS
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implementing a fast approximation of the mixed model as described in H. Kang

et al. 2010. The kinship matrix was inferred from genome wide markers. Theo-

retical powers were estimated using a derived non-centrality parameter for the

Wald test statistic (M. Wang and Xu, 2019):

δ = n0(λ + 1)
h2

QTL

1− h2
QTL

n0 is the effective sample size estimated from the eigenvalues of the kinship

matrix

n0 =
n

∑
i=1

(diλ + 1)−1(λ + 1)

d are the eigenvalues of the kinship matrix and λ is the ratio of the genetic

variance to the residual variance from the null model

λ =
Varg

Vare

Finally theoretical power was define as:

Power = 1− Fχ2(χ2
α−1|1, δ)

2.3 results and discussion

A European sample of 888 A. thaliana accession that had been phenotyped for

flowering time at 10°C was used for the purpose of assessing how the reduction

in sample size affects GWAS outcomes. Therefore, GWAS were carried out in

randomly reduced samples coming from the original European sample. This

re-sampling was implemented by randomly filtering out 11, 44 and 88 A. thaliana

accession until 100 samples per group were obtained. We refer to these three

groups of re-sampling as RM11, RM44 and RM88. Later, we compared GWAS

summary statistics coming from these three groups of re-sampling. Reduction in

sample size resulted in a lower statistical power (Figure 2.1, Table 2.1). Standard

deviation of pvalues for all SNPs increased as the samples size decreased

(Figure 2.1 D). However, the three randomly reduced groups show a similar

trend of GWAS results when compared with the complete sample (Figure 2.1).

When looking at the highest pvalues for RM11, RM44 and RM88, only the two

most significant association would be significant for RM11 and no significant

association would be detected for RM44 and RM88 (Figure 2.1 C). In the same
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way, all reduced groups show extreme pvalues when looking at the lowest

pvalues compared to the complete sample (Figure 2.1 B). These results are in

agreement with the observed standard deviations (Figure 2.1 D), and suggest

that more extreme pvalues can be found in a reduced sample albeit at a very low

frequency. Conversely, as Figure 2.1 A shows, a clear trend with more reduced

subsamples displaying higher pvalues, due to lower power, is expected.

Figure 2.1: Summary of GWAS results for the reduced subsamples RM11, RM44 and

RM88 (SNPs with a pvalue ≤ 0.01 were plotted). (A) Plot of the mean pvalue

of each SNP for RM11, RM44 and RM88 against the pvalue in the complete

sample. (B) Plot of the minimum pvalue of each SNP for RM11, RM44 and

RM88 against the pvalue in the complete sample. (C) Plot of the maximum

pvalue of each SNP for RM11, RM44 and RM88 against the pvalue in the

complete sample. (D) Comparison of the standard deviation of pvalues

between RM11, RM44 and RM88

GWAS on the original European sample (from now on complete sample)

detected 8 significant associations. These associations were considered as those

to be recover after implementing GWAS on the subsamples. Table 2.1 contains

the empirical power to retrieve these associations in the subsamples. For some

SNPs a 1% reduction from the original sample size was enough to decrease

the frequency of detection by 25%. In addition, only two SNPs (1- 24339560

and 5- 18590501) were frequently detected in the RM88 subsamples (more than

85%), while for the rest the frequency of detection varied between 33% and 71%.

To appropriately compare these results, the theoretical power for the complete

sample and for the reduction of the complete sample was calculated (M. Wang

and Xu, 2019). For these calculations the proportion of the variance explained
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for a SNP was set to 0.04, which was the mean of the proportion of variance

explained from the significant SNPs in the complete sample. The theoretical

power for all sample sizes ranged between 0.83 (complete sample) and 0.73

(RM88). For the reduced samples the power decreased 2% (RM11), 6% (RM44)

and and 12% (RM88) in relation to the theoretical power for the complete sample.

These proportions are very closed to the obtained proportion for the SNP 5-

18590501, however most of the SNPs show a lower proportion of detection

compared to the decrease of theoretical power.

SNP RM11 RM44 RM88

1- 24337820 100 69 47

1- 24339560 100 99 92

1- 24342759 76 42 33

5- 3188327 97 78 66

5- 18590327 97 86 71

5- 18590501 99 95 87

5- 18590741 74 56 51

5- 18590743 74 56 51

Table 2.1: Significant SNPs in the complete sample and their percentage of detection in

RM11, RM44, RM88.

Allele frequency is one of the factors affecting GWAS results (Tabangin, Woo,

and L. J. Martin, 2009; Zan and Carlborg, 2019). Figure 2.2 shows the change in

allele frequency for the significant SNPs in the complete sample for each reduced

re-sampling. Allele frequency remained almost unchanged for all reduced re-

sampling (all t-test were non-significant) (Figure 2.2 A), which suggests that

allele frequency had no major role in the reduction of power in these cases. As

showed in Table 2.1 these SNPs were not detected in all reduced samples. For

that reason, allele frequency for each SNP was compared between subsamples

were the SNP was either significant or non-significant (Figure 2.2 B-C). This

comparison revealed no differences in allele frequency for all re-samplings.

These results support the idea that the differences in flowering time observed

in the subsamples could be explained due to alleles with a moderate effect and

being distributed over a wide geographical range (Zan and Carlborg, 2019).
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Figure 2.2: Allele frequency variation of significant SNPs in the subsamples RM11,

RM44 and RM88. (A) Comparison of minor allele frequency (MAF) between

all random subsamples for each significant SNP. (B-C) Comparison of MAF

for GWAS results divided into two groups: SNPs being either significant or

non-significant associated. To facilitate the comparison SNPs with MAF >

0.4 wer plotted in B while SNPs with MAF < 0.25 were plotted in C.
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In contrast to these subtle differences in allele frequency, more noticeable

differences in the proportion of the variance explained by a SNP are expected.

When comparing the variance explained for each SNP between RM11, RM44

and RM88, no difference was observed for the SNPs on chromosome 1, however

there was a slight increase for the SNPs on chromosome 5 (Figure 2.3 A).

Nevertheless, this increase would not be enough to explain the low proportion

of detection especially for 5- 3188327, 5- 18590741 and 5- 18590743. For that

reason, we compared the proportion of variance explained by each SNP between

significant and non-significant samples for RM11, RM44 and RM88 (Figure 2.3

B). In all cases, the proportion of variance explained in samples were the SNP

was non-significantly associated, was lower. This reduction in the proportion

of variance explained led to a lack of power in these samples. Such a lack

of power has been extensively reported (Zhu and Zhou, 2020). Even in cases

where the marker has a middle size effect on the phenotype, this could be

significantly associated if it explains an important proportion of the variance

of the phenotype. This scenario reinforces the need for larger samples in cases

where the effect size and the proportion of variance explained are expected

to be low. In this respect, case-control studies for rare deceases are even more

sampling demanding (Momozawa and Mizukami, 2020; Nishino et al., 2018).

Although small sample sizes could be problematic due to reduced power,

158 (from a total of 462) studies reported on AraGWAS Catalog (https://ar

agwas.1001genomes.org/#/) performed GWAS on samples containing 200

accessions or less. Moreover, sufficient power when using reduced sample sizes,

in studies looking at adaptive traits, has been already reported (Atwell et al.,

2010). Defining the sample size can affect directly the time execution and budget

of GWAS. For such reason, for some GWAS it would be helpful to use small

sample sizes, but with sufficient power to detect the lowest expected effect.

Taking into account these factors, we randomly produced subsamples with

110 and 200 accessions (each 100 times) from the complete sample and run

GWAS. Unlike the results reported for RM11, RM44 and RM88, no similar

trend of GWAS results was obtain when comparing the subsamples and the

complete sample (Figure 2.4). Whereas, the significant associations found in

the complete sample were detected in some randomly subsamples, a large

number of makers were significantly associated in the subsamples but not in the

complete sample (Figure 2.4 B). More interestingly, a closer look at the GWAS

results for the significant associations in the complete sample shows that only

https://aragwas.1001genomes.org/#/
https://aragwas.1001genomes.org/#/
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Figure 2.3: Differences in variance explained between random subsamples. (A) Com-

parison of variance explained between RM11, RM44, and RM88 for each

significant SNP. (B) Comparison of variance explained for GWAS results

divided into two groups: SNPs being either significant or not significant

associated.
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two of them were detected in the subsamples (5- 18590501 and 5- 3188237).

Under a less stringent pvalue (10−4) both were detected in 39% and 42% of the

runs respectively (Table 2.2).

Figure 2.4: Summary of GWAS results for the random 110 and 200 subsamples (SNPs

with a pvalue ≤ 0.01 were plotted). (A) Plot of the mean pvalue of each

SNP against the pvalue in the complete sample. (B) Plot of the minimum

pvalue of each SNP against the pvalue in the complete sample. (C) Plot of

the maximum pvalue of each SNP against the pvalue in the complete sample

SNP MAF ≥ 0.05 Significant pvalue ≤ 10
−4

1- 24337820 100 0 9

1- 24339560 100 0 10

1- 24342759 100 0 11

5- 3188327 100 3 39

5- 18590327 100 0 24

5- 18590501 100 4 42

5- 18590741 100 0 30

5- 18590743 100 0 30

Table 2.2: Significant SNPs in the complete sample and their proportion of detection

in the random 110 subsamples at two significance thresholds: Bonferroni

correction and pvalue ≤ 10
−4
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As previously shown for RM11, RM44 and RM88, we expected the variance

explained of 5- 18590501 and 3- 3188237 to be higher in the runs in which

these SNPs were significantly associated. Based on the parameters used to

calculate the theoretical power for the complete sample, we estimated the lowest

proportion of variance explained to be detected with a power of 0.8 for a sample

size of 110 A. thaliana accessions. Based on this estimation, only SNPs explaining

at least 0.27 of the variance would be detected at a power of 0.8. Figure 2.5

shows the differences in variance explained when SNPs are either significant or

non-significant for all SNPs which were significant in the complete sample. As

predicted, in the samples where the SNPs were significant they explained a high

proportion of the variance, ranging from 0.25 to 0.29. In contrast, in the runs in

which the SNPs were not significant we found values of variance explained as

extreme as 2.2x10−5.

Figure 2.5: Comparison of variance explained for GWAS results from the random 110

subsamples. GWAS results are divided into two groups: SNPs being either

significant or non-significant associated.

Flowering time in A. thaliana displays a latitudinal cline (Stinchcombe et

al., 2004) with early flowering accession mainly distributed in latitudes closer

to the Mediterranean Sea. Based on this trend it would be relevant to see if

geographic patterns, that randomly appears, could have some effect on the

variance explained. By comparing the geographic distribution of the accession

in the random samples in which the SNP 5- 18590501 presented the highest and

the lowest pvalue, we were not able to distinguish a specific geographic pattern

as the accessions belonging to both samples were distributed all over Europe
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(Figure 2.6 A). The same broad geographical distribution was observed for the

subsamples where this SNP was significantly associated (Figure 2.6 B).

Figure 2.6: Geographic location of A. thaliana accessions in 5 random 110 subsamples.

(A) Geographic distribution of accessions present in both the subsample

with the lowest (red) and highest pvalue (blue) for 5- 18590501. (B) Geo-

graphic distribution of accessions representing the three subsamples where

5- 18590501 was significant.

Nonetheless, it would be more enlightening to compare the geographic distri-

bution of the alleles for this SNP in the already mentioned subsamples. Such

comparison could reveal a specific distribution pattern correlating with the

geographic cline observed for flowering time. Through this comparison, we

were able to recognize that the alternative allele in the significant subsamples is

mainly present in southern Sweden and northern Spain. Even more remarkable

was the fact that in the significant samples the alternative allele was predom-

inantly present in northern Spain (Figure 2.7). By removing these accessions

from the original subsamples (which has a negligible impact on the theoretical

statistical power) the proportion of variance explained decreases by 63% and the

SNP is no longer significantly associated.

These results suggests that markers globally distributed can display a mixture

of middle to low effect in a global context, and a more pronounced effect in more

locally contexts. These differences could be attributed to the effect of the genetic

background. We can think of this as epistasis with the genetic background.

Looking more closely at the accessions carrying the alternative allele for 5-

18590501, we found that these accessions tend to flower later (Figure 2.8 A),

especially those distributed on the Iberian peninsula. Even though these findings
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Figure 2.7: Geographic location of A. thaliana accessions in 4 random 110 subsamples. (A-

C) Geographic distribution of alternative and reference allele for 5-18590501

in subsamples where this SNP was significant. (D) Geographic distribution

of alternative and reference allele for 5-18590501 in a subsample where this

SNP was non-significant.

seems unusual once the latitudinal cline for flowering time would predict an

earlier flowering in Iberian accessions, the Iberian peninsula has a heterogeneous

climate ranging from regions with hot and dry summers and mild winters with

variable rainfall peaks, through regions where temperatures can fall to 0 °C

in winter and rainfall peaks occurring in spring and fall, to regions at higher

altitudes where the winters are colder and A. thaliana populations require strict

vernalization to flower, which resembles conditions from more northern latitudes

(Exposito-Alonso, 2020). Also, there is a correlation between flowering time and

elevation when filtering for Iberian accessions. To see if the effect of the alleles

differ depending on geographic location, we compared the flowering time of the
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accessions carrying the alternative allele between these two separated locations

(Figure 2.8 B). On average, accessions carrying the alternative allele in Spain

flower later than those located in southern Sweden. These differences in allele

effect between distant locations have been already reported in A. thaliana (Agren

et al., 2017).

Figure 2.8: Differences in flowering time between accession carrying the alternative

or reference allele of 5-18590501. (A) Comparison of the effect of the alter-

native allele in four 110 random subsamples. (B) Differences in flowering

time between Iberian accessions and south Swedish accessions carrying the

alternative allele of 5-18590501.

The above reported phenomenon for 5- 18590501 seems not to be true for the

SNPs on chromosome 1. First, for these SNPs the overall proportion of variance

explained was less variable compared to 5- 18590501, in subsamples where

the pvalue were lower than 10−4. Second, the differences in pvalue between

subsamples were mainly explained due to changes in MAF. Summarizing,
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the results for the SNPs on chromosome 1 suggest a trend more oriented

to a marker with a stable overall allele frequency and a moderate effect on

global contexts. The differences between these two groups of markers are even

more relevant considering that both are located in candidate genes already

associated to flowering time. The SNP 5- 18501590 is located in DOG1 (DELAY

OF GERMINATION), a major gene affecting both germination and flowering

time in A. thaliana (Huo, Wei, and Bradford, 2016; Kerdaffrec et al., 2016).

On the other hand, 1- 24339560 is located in the extensively studied gene FT

(FLOWERING LOCUS T) (Corbesier et al., 2007), which mediates floral transition

at the shoot apical meristem through the formation of the florigen activation

complex (Kinoshita and Richter, 2020).

Taking in mind the genetic complexity of adaptive traits, it would be straight-

forward to anticipate that this phenomenon is not restricted to these loci for

flowering time, or even for this trait. These results reinforce how challenging

the selection of a sample to implement GWAS can be. In experiments with

thousands of individuals, a lack of power due to sample size would not be

expected, however through random selection the effect of some locally adapted

alleles might be undetectable. But in cases where local effects are of interest,

it would be advisable to consider the life history of the species. In addition to

the classic random sampling strategy, other approaches have been successfully

implemented, such as the extreme study design (Berndt et al., 2013; Padmanab-

han et al., 2010). In this design, the sampling process is focused on the extremes

of the phenotypic distribution, resulting in two extreme samples which are

consider as case-control when later implementing GWAS. As well as for the clas-

sical sampling strategies, theoretical and empirical power have been estimated

under different conditions for this design (Yi Li et al., 2019; Schork et al., 2000).

However, despite the availability of alternative sampling strategies, some GWAS

still demand large sample sizes to obtain a sufficiently high statistical power

(Momozawa and Mizukami, 2020; Nishino et al., 2018). An example for that

would be the analysis of rare variants association.

Finally, the results presented in this chapter highlight the necessity of rethink-

ing how to judge GWAS results. The reliability of GWAS does not necessarily

rely on the recovery of identical results when comparing different samples from

the same population. According to our results, even small sample reductions

(10% of the total individuals) can have a strong effect on GWAS outcomes. In

more extreme cases, when new small samples are derived from a global sample,
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completely different GWAS results can be expected. These differences might

be detected even if these new small samples have enough theoretical statistical

power to detect polymorphisms with middle-to strong effect. Although random

sampling is regularly implemented for most GWAS, our results highlight that

this might not be the best strategy when implementing GWAS on complex traits.

This strategy can effectively catch overall variation but ignore markers with

more local effect. So, besides taking into account the theoretical statistical power,

it would be even more enlightening to consider additional biological information

related to the species and the trait. In cases when strictly Mendelian traits are

considered, ensuring enough statistical power should be sufficient to implement

GWAS. However when studying more complex traits possible scenarios like

gene-gene interaction, allelic heterogeneity, pleiotropy and local adaption, or

even a combination of those, should be contemplated. Summarizing, designing

a robust sample to implement GWAS depends not only one the size.





3
G L O B A L G E N E T I C H E T E R O G E N E I T Y I N A D A P T I V E

T R A I T S

3.1 introduction

This chapter is based on results reported in the following manuscript "Global

genetic heterogeneity in adaptive traits". This manuscript is available at: https:

//www.biorxiv.org/content/10.1101/2021.02.26.433043v1 and currently

under review at Molecular Biology and Evolution. The introduction is meant to

contextualize how challenging the implementation of GWAS on adaptive traits

can be.

Elucidating the genetic architecture of complex traits by means of GWAS

presents multiple challenges since hidden phenomena, as gene-gene interaction,

pleiotropy, genetic heterogeneity that have been described in more detail in

the previous chapter, can affect GWAS results. Thus, many complex traits are

under local adaption. This will not only affects allele frequency but also the

effect of the alleles depending on geographic location. This scenario is certainly

expected when assessing the genetic architecture of flowering time, in fact

multiple studies reported sound evidences for local adaptation in this trait

using the model organism A. thaliana (Agren et al., 2017; Ågren and Schemske,

2012; Fournier-Level et al., 2011; Postma and Ågren, 2016). Adding to these

evidences the fact that A. thaliana occurs predominantly as inbred lines across its

geographic distribution (D. W. Meinke et al., 1998) and that flowering time has

a huge impact on fitness (Price et al., 2018), the comparisons of GWAS results

from populations geographically distant should point to a dissimilar genetic

architecture. Such differences should be seen as pieces of a much more complex

regulatory network rather than be considered as lack of power or reliability.

In order to asses to which extent local adaptation affects GWAS results, we

used publicly available data for flowering time at 10 °C of a dense European

sample. This sample was split into 8 almost equally-sized geographic subsamples.

Later, GWAS were performed on the whole sample as well as on the subsamples

and summary statistics were compared. On the assumption of local adaptation,

31
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differences in allele frequency are expected between the mentioned subsamples

for loci under selection. In the same way, differences in allele frequency in

populations without migration can result from genetic drift. So, also neutral

loci can display differences in allele frequency just by chance. It has been

assumed that these differences account for most of the deviation in GWAS

results when comparing different populations (Zan and Carlborg, 2018, 2019).

Nonetheless, taking into account the most likely mechanisms explaining local

adaptation, a combination of other factors should be considered to be responsible

for these differences as well. GWAS results were used to compare differences

in allele effects between subsamples, to detect allelic heterogeneity in major

polymorphisms and to assess the effects of the genetic background. Also, GWAS

on two additional traits which are presumably under local adaptation as well,

namely cauline leaf number and stomata size, were carried out to see if varying

GWAS results between populations are the rule rather than the exception. Finally

two complementary data sets were use to carried out GWAS. First, simulated

phenotypes using accessions from two geographically distinct samples were

used in order to see if responsible markers with middle-to-high global effect can

be detected via GWAS regardless of the population. Next, GWAS using gene

expression as phenotype (eGWAS) were implemented in two geographically

distant samples with the aim of testing if gene expression is globally or locally

regulated.

3.2 methodology

3.2.1 Plant material and phenotypic data

Phenotypic and genotypic data were obtained as described in Chapter 2. Phe-

notypic traits used in the present study include flowering time at 10°C (FT10

,https://arapheno.1001genomes.org/phenotype/261/), flowering time at

16°C (FT16, https://arapheno.1001genomes.org/phenotype/262/), stomata

size (ST, https://arapheno.1001genomes.org/phenotype/750/) and cauline

leaf number (CL, https://arapheno.1001genomes.org/phenotype/705/). Ara-

Pheno stores 1,163 Arabidopsis thaliana ecotypes, distributed around the world,

for which FT10 has been measured. Taking advantage of the dense sampling

in Europe, we resized the original data set to 888 Arabidopsis thaliana ecotypes

distributed across the European continent. This sample of 888 ecotypes was

https://arapheno.1001genomes.org/phenotype/261/
https://arapheno.1001genomes.org/phenotype/262/
https://arapheno.1001genomes.org/phenotype/750/
https://arapheno.1001genomes.org/phenotype/705/


3.2 methodology 33

split into eight, approximately equally-sized (103-119 ecotypes) subsamples,

ranging longitudinally from the Iberian Peninsula to Russia and latitudinal from

Southern Italy to Northern Sweden (Table 3.1, Figure 3.1). These subsamples

are named according to their geographic location as follow: Southern Iberian

Peninsula (SIP), Northern Iberian Peninsula (NIP), Germany, France and UK,

Central Europe, Skane, North Sweden and eastern Europe. For ST and CL, the

total number of ecotypes used in our analyses was 240. For both traits, the initial

group of 240 ecotypes was split into two geographic subsamples, one contain-

ing Iberian ecotypes (IP, 109 ecotypes) and the other containing Scandinavian

ecotypes (SW, 131 ecotypes).

In addition to these traits, we used publicly available RNA expression data

((Kawakatsu et al., 2016), also available via AraPheno (https://arapheno.100

1genomes.org/study/52/)) that contain gene expression data for 24,175 genes

measured in 727 different ecotypes. We filtered for ecotypes, where also full

sequence exist (665) and created two distinct-subsamples following the logic

applied before. One subsample is from Scandinavia (termed SW, which contains

70 ecotypes from Sweden, 2 ecotypes from Denmark and 2 ecotypes from

Norway), while the second subsample is from the Iberian Peninsula (termed IP,

containing 83 ecotypes from Spain and 8 ecotypes from Portugal). The RNAseq

data have been generated in two distinct batches, but ecotypes from both

subpopulations were predominantly present in the second batch, minimizing

potential batch effects in the analyses of the two subsamples1. As a control, we

also performed GWAS in two random, non-local samples of 91 and 74 ecotypes,

respectively, that were sampled from the 165 ecotypes used

3.2.2 GWAS

GWAS were performed on the entire European sample, as well as in all subsam-

ples using a linear mixed model (MLM) to account for population structure. The

genotype-phenotype correlation was estimated as described in Chapter 2. Signif-

icance thresholds were defined using both, Bonferroni and permutation-based

threshold. The Bonferroni threshold was obtained dividing the significance level

(α = 0.05) by the number of SNPs with minor allele count greater than five in

each GWAS run. Permutation-based thresholds were derived from running 100

1 Arthur Korte, personal communication, February 2021

https://arapheno.1001genomes.org/study/52/
https://arapheno.1001genomes.org/study/52/
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MLMs per phenotype with a random reordering of the phenotypic values, using

a fast implementation of the above mentioned model (Freudenthal et al., 2019).

3.2.3 Candidate gene enrichment

To look for an enrichment of potential candidate genes, the regions identified for

being significantly associated with flowering time have been cross-referenced

with a list of 306 known flowering time genes (Bouché et al., 2016). All genes that

are within 10 kb of an associated regions have been considered. This analysis

was conducted with the 74 regions that are associated in at least two subsamples

with flowering time. 22 of these overlap with known flowering time genes.

Permutation analysis by re-sampling random regions of the same size across

the genome leads to 18.9 + 3.2 regions that overlap the candidate gene list. The

slightly higher enrichment of the shared region is not statistically significant.

Both, changing the window size between the regions and the candidate genes

or restricting the analysis to region that are shared in three or more subsamples

had no effect on these results.

3.2.4 Simulations

In order to obtain simulated data that mimic local and global effects, we chose

the same subsamples used for the anaylsis of ST and CL and established three

different scenarios: 1. A single marker explaining a certain amount of variance

in the sample containing all 240 ecotypes, 2. A single marker explaining the

respective amount of variance only in the IP subsample (109 ecotypes) and

3. A single marker explaining the respective amount of variance only in the

SW subsample (131 ecotypes). In each scenario, the responsible marker was

chosen randomly from all markers having a minor allele count greater five and

set to explain 20%, 15% and 10% of the phenotypic variance, respectively. To

mimic population structure, 1,000 random markers were additionally assigned

random small effects that are zero-centered. For each possible combination 1,000

simulated phenotypes with different causative markers were generated. This

resulted in a total of 9,000 simulated phenotypes that were analyzed in all three

different populations. All simulated data were generated using a custom R script

(https://github.com/arthurkorte).

https://github.com/arthurkorte
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When the simulated causative marker explained 20% of the phenotypic vari-

ation, GWAS performed using all ecotypes resulted in the detection of this

causative marker in 96.4% of the cases, albeit at a high false discovery rate (FDR)

of 18.9%. Here, we consider an association as false, if it is more then 100 kb

apart from the simulated causal marker. This high FDR dropped dramatically

when a more stringent threshold of 10−9 was applied. Even with this more

stringent threshold, a power of 87.6% was reported, while the FDR dropped to

8.4 %. We observed a reduced power in GWAS when using the two different

subsamples (24.6% in IP and and 39% in SW). The reduced rate of detection

of the responsible marker in IP and SW is caused by a reduced power due

to the smaller sample size. If the simulations mimics a scenario of a marker

having a local effect, it was only detected in the respective local subsample (42%

in SW and 27.4% in IP) and - with a reduced power - in the analyses using

all available ecotypes (6.5% and 27%, respectively) (Table 3.7). Representative

GWAS results of the simulated phenotypes are presented in Figure 3.11. The

analyses of simulations with a reduced effect size of the causative marker, led to

similar results, albeit at a reduced power (Table 3.7).

3.2.5 Polygenic overlap

First, we estimated the polygenic overlap among all subsamples by comparing

lists of significant SNPs. Since the comparison of significant SNPs between

subsamples showed no shared signals, we set a less stringent pvalue threshold

(10−4) and generated a new list of SNPs for comparing subsamples. Additionally,

we looked at shared significant genomic regions. For this, we summarized all

SNPs (10−4) with either r2>0.9 or located within a 10 kb window for each sub-

sample and compared significant genomic regions. The same procedure has been

performed for the respective GWAS results of the subsamples, as well as with

GWAS results from permutations within the respective subsample to compare

the overlap to the expected overlap in a scenario where no causal markers

are present. Next, we estimated the polygenic overlap using the statistical tool

MiXeR (Frei et al., 2019), which overcomes the intrinsic problem of detecting the

exact location of shared causal variants. In short, a summary table containing

SNP information, genomic location, beta estimates, and z-scores for each sub-

population was created and used to estimate the proportion of shared causal

SNPs between subsamples based on their beta and z-score distributions.
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3.2.6 RNA expression data

The available RNAseq data contain transcription levels of 24,175 genes. Before

performing GWAS on the RNA expression data, we removed transposable

elements and genes that are encoded by the organelle genomes, leaving 23,021

nuclear genes for the further analyses. Next we used only genes where the

heritability estimate was above 0.5 and a statistical power analysis indicates the

power to be above 0.9 in all three samples analyzed. Heritability was estimated

for all genes using the above mentioned implementation of the mixed model. The

power of each data set was calculated using the pwr.p.test function implemented

in R package pwr (Champely et al., 2017). This filtering led to a set of 2,237

genes for which GWAS were performed in both subsample and the combined

sample. We only considered markers with a minor allele count of more than

five in the respective subsample. Given the amount of tests we performed, we

used a very stringent multiple-testing threshold of 10−10 to term an association

as significant, but similar results have been reproduced with threshold ranging

from 10−8 to 10−12.

Significant associations were grouped into regions, if they occur within 50 kb

of each other. Genes showing inflated GWAS results (which quite often co-occurs

with a non-normal distribution of the expression values), have been filtered out,

if the number of associated genomic region was greater than three in either the

Iberian (IP) or the Scandinavian (SW) subsample. This procedure left us with

a set of 1,982 genes for the analyses. From this set, significant genome-wide

associations, at least in one of the subsample, were detected for 780 genes at a

significance threshold of 10−10. For genes, where the same region was associated,

we defined genes having a global genetic regulation as genes displaying the

same significant marker in both subsamples (110), while we excluded genes

where the same region but different markers are associated in the subsamples

(potential allelic heterogeneity). Genes, that show a local genetic regulation were

defined as genes having a significant association either in IP or SW, but not in

the other subsamples. This led to the identification of 377 genes displaying an

association only in IP and 176 genes displaying an association only in SW. We

filtered these genes for genes, where the respective pvalue was lower in the

analysis of the respective subsample compared to the results of the combined

sample. We argues that a true local association should be more significantly

associated in the local subsample.
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Additionally, we also excluded genes, where different regions had been as-

sociated in the analysis of the combined sample then in the respective local

subsample. This procedure led to a set of 118 genes displaying a local association

only in IP and 64 gens for SW. Next, we took all significant association in these

three groups of genes, having the same association in both subsamples, a local

association only in IP or a local association only in SW, and verified, if the

associated SNP was in cis, aka the same genomic region (defined by a maximum

distance of the associated region of 100 kb to the respective gene) where the gene

is located, or if the associated marker is in trans. As a control, we also performed

the same analysis described above with two random, non-local samples of 91

and 74 accessions, respectively, that had been sampled from the merged sample

of 165 accessions.

3.3 results and discussion

3.3.1 Complex genetic architecture and local adaptation affect GWAS results

Since A. thaliana was proposed as a suitable model plant for genetics (Laibach,

1943), scientists have been trying to elucidate the underlying mechanisms con-

trolling flowering time. To date, more than 300 candidate genes involved in

flowering time have been reported (Bouché et al., 2016). For our study, we took

publicly available data of flowering time measured in growth chamber at 10 °C

using a globally distributed sample. In order to compare flowering time between

more locally defined samples, we restricted our analysis to an European sample

containing 888 A. thalina accessions. As the latitudinal cline for flowering time

in A. thaliana predicts (Stinchcombe et al., 2004), this European sample shows a

phenotypic distributions with both early flowering accessions mostly distributed

at lower latitudes (near to the Mediterranean sea) and later flowering accessions

distributed at more northern latitudes (Scandinavia) (Figure 3.1 C). From this

European sample, we defined eight approximately equally-sized (n = 103 - 109

subsamples (Southern Iberian Peninsula, Northern Iberian Peninsula, Germany,

France UK, Central Europe, Skane, North Sweden and Eastern Europe) using

geographic information (Figure 3.1 A). The most variation in flowering time

was observed in the Iberian subsamples (SIP nad NIP) and France/UK, while

Germany and Central Europe displayed the lowest variation (Figure 3.1 B).

As already mentioned in Chapter 1, this higher variation of flowering time in



38 global genetic heterogeneity in adaptive traits

Iberian subsamples is in agreement with the heterogeneous climatic regions

present on the Iberian peninsula, in addition to a clear correlation between

flowering time and elevation (Figure 3.1 D).

Figure 3.1: Flowering time and geographic distribution of 888 A. thaliana accessions

across Europe. (A) Geographic distribution of the eight European subsam-

ples. (B) Phenotypic distribution across the eight European subsamples. (C)

Correlation between latitude and flowering time. (D) Correlation between

Elevation and flowering time of accessions from the Iberian Peninsula

Since the results presented in Chapter 2 showed strong variation in GWAS re-

sults when comparing randomly defined subsamples, a similar or even stronger

trend when comparing GWAS results between these eight European subsamples

could be expected. These subsamples were geographically defined and therefore

with a greater tendency to display non-shared local associations. To initially

verify to what extend GWAS results differ, manhattan plots displaying GWAS

results for the European sample and the eight subsamples were compared

(Figure 3.2). This visual comparison uncover strikingly different associations

between subsamples and even when comparing with the European sample.

Genome-wide significant associations (or just below the significance level) were

detected in the European sample, SIP, NIP, North Sweden and East Europe.

These associations were defined using both a permutation based threshold

(Freudenthal et al., 2019) and Bonferroni correction (Bonferroni, 1935). The first

explanation that comes to mind for these differences is the reduced statistical

power in the subsamples compared to the European sample. However, flowering

time is a trait with high heritability (Table 3.1) and it is believed that major
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polymorphisms are common (Mouradov, Cremer, and Coupland, 2002). Addi-

tionally, enough statistical power to detect meaningful associations has been

reported in samples just over 100 individuals (Atwell et al., 2010).

Figure 3.2: Manhattan plots showing GWAS results obtained from the European sample

and from its eight derived subsamples. Dashed lines and dash-dotted lines

indicate 5% permutation-based and Bonferroni threshold, respectively.

Estimates of pseudo-heritability and power to detect major effects (markers

explaining at least 10% of the phenotypic variation) for the eight subsamples are

present in Table 3.1. All European subsamples have sufficient statistical power

to detect major polymorphisms. Based on this, similar GWAS results could

be expected across subsamples. However, as already illustrated, manhattan

plots showed a dissimilar distribution of association when comparing across

subsamples and with the complete sample (Figure 3.2). These dissimilar results

can not be explain through subtle differences in statistical power. In such a case

it would be expect a similar distribution of association with some of them being

below the significance threshold due to a lower proportion of variance explained

in the smaller subsamples.

Beyond the statistical power, it will be necessary to consider other factors

that could enlighten the source for the observed differences. Taking in mind

the latitudinal cline and being aware of the extreme phenotypic variation for

flowering time when comparing accessions from different geographic locations,

it would not be wrong to think that strong differences in allele frequency

between subsamples might be one of these factors. In contrast to other studies,

where allele frequency was the more relevant factor to explain differences in
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Table 3.1: Geographic location of the European subpopulations.

Subsets No. accessions min_lat max_lat min_lon max_lon ĥ2
a power

SIP 107 36.52 41.48 -8.54 4.25 0.99 1.00

NIP 108 41.50 47.45 -7.80 6.13 0.91 0.99

Germany 107 48.39 55.67 8.00 13.73 0.99 1.00

France/UK 107 47.50 57.97 -5.98 7.50 0.95 0.99

Central Europe 106 37.30 49.37 6.08 17.31 0.66 0.99

Skåne 119 55.38 56.10 13.10 14.78 0.91 0.99

North Sweden 118 56.10 68.80 6.19 18.52 0.75 0.99

Eastern Europe 116 37.07 61.36 38.28 38.28 0.91 0.99

Europe 888 36.52 68.80 -8.54 38.28 0.86 1.00

a ĥ2: pseudo-heritability estimate

GWAS results using flowering time as a trait (Zan and Carlborg, 2019), here it is

considered as one more player affecting GWAS results in different samples. In

order to provide a more clear example, the allele frequency of the significant

associations was compared between subsamples. The SNP 5- 23100540 represents

a clear case with allele frequency being the most grounded explanation for the

observed differences. This SNP was significant associated in the European

sample and in North Sweden, with a marginal proportion of the alternative

allele in SIP and NIP. This extreme case shows how the alternative allele of this

marker is almost restricted to north Sweden (Figure 3.3).

Figure 3.3: Violin plots comparing flowering time between accessions carrying the

reference or alternative allele for SNP 5:23100540. Stars represent the -log10

of the pvalue and a red colored star indicates a significant association.
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This scenario is in accordance with previous observations that key genes for

local adaptation are mostly local and specific to certain environments (Fournier-

Level et al., 2011). Additionally, it is important to note that this SNP is located

in VIN3 (VERNALIZATION INSENSITIVE 3), a gene already reported to be

involved in the control of flowering time in A. thaliana (D.-H. Kim and Sung,

2013; Sung and Amasino, 2004). Table 3.2 contain the location of the significant

associations and the closest gene already reported affecting flowering time in A.

thaliana. Despite this clear example of allele frequency affecting GWAS results, in

most cases allele frequency failed as an explanation for the dissimilar association

peaks between subsamples.

Table 3.2: Significant SNPs (chromosome:position) in the GWAS of different subpop-

ulations. Entries are pvalue (minor allele frequency), with genome-wide

significance using a 5%-permutation-based threshold shown in red. Candi-

date genes were assigned to the SNPs from a list of 306 flowering time genes

(Bouché et al., 2016) using 10 kb window.

SNP 1:24339560 3:3458977 4:10949262 4:11016778 5:18590501 5:23100540 5:23234243

Candidate gene FTa TSFb, JMJ14c TSF, JMJ14 DOG1d CIR1e, VIN3f CIR1, VIN3

Europe 2.4e-10 (0.44) 4.3e-03 (0.18) 4.1e-01 (0.34) 1.4e-04 (0.25) 1.7e-09 (0.20) 9.9e-10 (0.03) 1.4e-06 (0.07)

SIP 1.7e-02 (0.45) 5.1e-02 (0.47) 9.3e-01 (0.19) 2.0e-09 (0.12) 2.9e-02 (0.03) 5.2e-01 (0.01) 7.4e-01 (0.04)

NIP 1.2e-02 (0.35) 1.2e-01 (0.35) 8.2e-01 (0.32) 6.8e-02 (0.22) 1.8e-08 (0.14) 5.2e-01 (0.04) 5.8e-01 (0.10)

Germany 3.1e-02 (0.28) 9.3e-01 (0.05) 6.4e-01 (0.49) 9.4e-01 (0.28) 2.6e-02 (0.06) 2.4e-01 (0.06)

France/UK 7.0e-04 (0.41) 2.9e-01 (0.08) 6.4e-01 (0.50) 9.5e-01 (0.17) 1.4e-01 (0.05) 8.2e-01 (0.08)

Central Europe 7.4e-02 (0.46) 4.1e-08 (0.22) 1.2e-08 (0.37) 1.1e-01 (0.12) 8.2e-02 (0.05)

Skåne 5.1e-02 (0.24) 2.1e-01 (0.12) 5.7e-01 (0.36) 8.5e-02 (0.49) 1.5e-01 (0.33) 2.7e-01 (0.01)

North Sweden 3.1e-01 (0.20) 9.7e-01 (0.13) 9.1e-01 (0.22) 4.2e-01 (0.37) 1.0e-01 (0.48) 9.8e-10 (0.20) 4.3e-09 (0.24)

Eastern Europe 2.6e-01 (0.44) 6.2e-01 (0.09) 7.4e-01 (0.26) 2.8e-01 (0.14) 7.4e-08 (0.08) 4.1e-01 (0.01)

a FT (FLOWERING LOCUS T, Corbesier et al. 2007)
b TSF (TARGET OF FLC AND SVP1, Yamaguchi et al. 2005)
c JMJ14 (JUMONJI 14, Lu et al. 2010)
d DOG1 (DELAY OF GERMINATION 1, Huo, Wei, and Bradford 2016)
e CIR1 (CIRCADIAN 1, X. Zhang et al. 2007)
f VIN3 (VERNALIZATION INSENSITIVE 3, Sung and Amasino 2004)

This trend of an alternative allele being almost restricted to a geographic

region was only found in a handful of markers. The significant associations on

chromosome 5 (5- 18590501 and 5- 18590247) represent a clear example of an

opposite trend. Both SNPs are located in DOG1 (DELAY OF GERMINATION),

an extensively studied gene involved in the regulation of seed dormancy (Huo,

Wei, and Bradford, 2016; Kerdaffrec et al., 2016), which has been also reported

to affect flowering time (Alonso-Blanco et al., 2016). The alternative alleles of
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these SNPs ares present across Europe, mainly on the Iberian Peninsula, Sweden

and Eastern Europe (Figure 3.4, Figure 3.5). In this case, allele frequency seems

not to be the main factor affecting GWAS results. Here, it is more important the

differences of allele effect on flowering time when comparing NIP and eastern

Europe with Skane and Norht Sweden. This type of differences in allele effect

have been already reported (Agren et al., 2017), and this case in particular was

also detected using random subsamples (see Chapter 2). The extreme differences

in allele effect between these distant subsamples suggest a strong effect of

the genetic background on this locus. In addition to these differences between

distant subsamples, more local differences in seed dormancy between accessions

distributed on the Iberian Peninsula have been reported (Exposito-Alonso, 2020;

Martınez-Berdeja et al., 2020). The more late flowering accessions carrying the

alternative allele on the Iberian Peninsula are mainly distributed in climate

regions which resemble more northern latitudes and some of them require

strict vernalization to flower (especially those located over 900 meter above the

see level). Considering some evidence that flowering time and seed dormancy

co-vary (Debieu et al., 2013), the differences in allele frequency observed for

these SNPs could be the result of the fine-tuning of both traits instead of just

one of them, suggesting a pleitropic effect of this gene on flowering time (Auge,

Penfield, and Donohue, 2019).

Figure 3.4: Violin plots comparing flowering time between accessions carrying reference

and alternative allele for the SNP 5:18590501. Stars represent the -log10 of

the pvalue and a red colored star indicates a significant association.

The SNP 4- 11016778 represents an example, where both alleles are present in

all subsamples. This SNP displays slightly differences in allele frequency between
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Figure 3.5: (A) Geographic distribution of the alleles for the SNP 5:18590247 and their

proportion in the different subsamples. (B) Violin plots comparing flowering

time between accessions carrying reference and alternative allele for the SNP

5:18590247. Stars represent the -log10 of the pvalue and a red colored star

indicates a significant association.

subsamples and was significant associated only in SIP (Figure 3.6). As well as the

aforementioned SNPs, it locates near to genes reported to affect flowering time,

namely TSF (TARGET OF FLC AND SVP1, Yamaguchi et al. 2005) and JMJ14

(JUMONJI 14, Lu et al. 2010). At this point all associations were located directly

in (or near to) a gene already reported to affect flowering time. These results

support the idea that the reported associations are true discoveries. However,

when comparing all significant association across subsamples none of them

were found to be shared between subsamples. This lack of shared associations

could be the result of loci with middle-to-low effect being undetectable due to

small sample size (Korte and Farlow, 2013). To uncover these possible hidden

shared associations, SNPs with pvalues below 10−4 were compare between all

subsamples. Although this less stringent significance level could go along with

it a high number of false associations, the number of truly shared associations

should be higher than the number of shared association expected only by

chance, since false positives at this significance level are uncorrelated, as shown

by comparing permutation results.
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Figure 3.6: Violin plots comparing flowering time between accessions carrying reference

and alternative allele for the SNP 4:11016778. Stars represent the -log10 of

the pvalue and a red colored star indicates a significant association.

Table 3.3: Shared SNPs between subpopulations at significance level of p < 10−4

Associated markera
1:29186215 1:29199833 3:20379636 4:6781375 5:18589998 5:18590247 5:18590501 5:18590591

Candidate geneb SMZc DOG1d DOG1d DOG1d DOG1d

SIP 3.75e-05 (0.06) 3.75e-05 (0.06) 6.22e-01 (0.04) 1.15e-02 (0.02) 1.38e-01 (0.04) 2.92e-02 (0.03) 2.92e-02 (0.03) 2.92-02 (0.03)

NIP 4.80e-01 (0.12) 4.80e-01 (0.12) 2.51e-01 (0.06) 9.45e-01 (0.06) 1.83e-08 (0.14) 1.83e-08 (0.14) 1.83e-08 (0.14) 1.83e-08 (0.14)

Germany 1.55e-01 (0.10) 1.04e-01 (0.10) 9.06e-05 (0.07) 3.88e-01 (0.07) 8.28e-03 (0.05) 2.73e-01 (0.05) 2.58e-02 (0.05) 6.30e-01 (0.03)

France/UK 7.34e-01 (0.29) 7.34e-01 (0.29) 4.52e-01 (0.20) 7.75e-05 (0.08) 1.74e-03 (0.019) 1.86e-02 (0.03) 1.43e-01 (0.05) 5.53e-03 (0.03)

Central Europe 5.90e-01 (0.03) 5.9e-01 ( 0.03) 2.70e-02 (0.13) 2.60e-01 (0.05) 4.60e-01 (0.05) 8.15e-02 (0.05)

Skåne 8.55e-01 (0.25) 8.55e-01 (0.25) 4.35e-02 (0.10) 4.44e-01 (0.45) 8.00e-01 (0.23) 9.86e-02 (0.32) 1.51e-01 (0.33) 1.80e-01 (0.37)

North Sweden 4.61e-01 (0.5) 4.78e-01 (0.5) 4.49e-01 (0.43) 7.04e-01 (0.36) 5.12e-01 (0.34) 4.59e-01 (0.48) 1.03e-01 (0.48) 5.75e-10 (0.36)

Eastern Europe 2.85e-05 (0.05) 2.85e-05 (0.05) 9.29e-05 (0.05) 9.62e-05 (0.06) 7.43-08 (0.08) 1.05e-06 (0.09) 7.43e-08 (0.08) 7.43e-08 (0.08)

a represented as "chromosome:position"
b known flowering time gene within a 10 kb window around the associated marker using a list of 306 flowering time genes from Bouché et al. 2016

c SMZ (SCHLAFMÜTZE), Mathieu et al. 2009

d DOG1 (DELAY OF GERMINATION), Huo, Wei, and Bradford 2016

Even under this relaxed significance level, the same trend was observed, with

most of the associations being unique in a subsample and only eight associations

being shared out of a total of more than 5700 associations (Figure 3.7 A). More

interesting, all shared associations were present only between two subsamples,

and the higher overlap size matches with the already mentioned associations

in DOG1 (Table 3.3). Although the number of shared associations remains low,

it is higher than the shared associations expected only by chance (in this case

no shared associations are expected) (Figure 3.8 A), which supports the idea

that the observed shared associations were not produce due to false positives.

One might hypothesize that the low number of shared associations could be

explained through different SNPs tagging the same causal polymorphism in
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the subsamples, however the high SNP density used in this study, with approx-

imately one SNP per 10 bp, does not support this explanation. In fact, if this

phenomenon occurs in such a dense SNP panel, it would be more likely as an

effect of allelic heterogenity which is consistent with local adaptation (Atwell

et al., 2010; Kerdaffrec et al., 2016; P. Li et al., 2014; L. Zhang and Jiménez-Gómez,

2020). In order to address this explanation and at the same time because of the

reduced number of shared association detected after comparisons on a single

marker level, a strategy based on associated genomic regions was implemented.

Figure 3.7: Sharing of sub-significant (p < 10−4) associations. (A) Histogram of the

number of associated SNPs in each subpopulation and shared between

subpopulations. (B) Histogram of the number of associated genomic regions

in each subpopulation and shared between subpopulations.
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Figure 3.8: Sharing of sub-significant (p < 10−4) associations for permuted phenotypes.

(A) Histogram of the number of associated SNPs in each subpopulation

and shared between pairs of subpopulations. (B) Histogram of the number

of associated regions in each subpopulation and shared between pairs of

subpopulations.

The implementation of this strategy leaded to a slightly increased number

of shared genomic regions between subsamples, but more remarkable was the

fact that shared genomic regions were not only found being shared between

two subsamples (as was the case for the above mentioned shared associations),

but also between three and up to seven subsamples. However from a overall

view, the trend of most genomic regions being unique in a subsample remained

(Figure 3.7 B). As in the comparison at single marker level, shared genomic
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regions between at least four subsamples contained genes previously associated

with flowering time (Table 3.4).

Table 3.4: Overlap of candidate genes with shared genomic regions

Regiona
1:(26151612–26570642) 4:(192421–572878) 5:(22786643 23605491)

Candidate geneb CDF5c FRIdLIF2eMED12f COL5gMSI1hVIN3iZTLj

SIP 0 0 1

NIP 1 1 1

Germany 1 1 1

France/UK 1 1 1

Central Europe 1 0 1

Skåne 0 1 0

North Sweden 1 1 1

East Europe 1 0 1

a represented as "chromosome:(start–stop)
b known flowering time gene within the detected region using a list of 306 flowering time

genes from Bouché et al. 2016

c CDF5 (CYCLING DOF FACTOR 5), Fornara et al. 2009

d FRI (FRIGIDA), Stinchcombe et al. 2004

e LIF2 (LHP1-INTERACTING FACTOR 2), Latrasse et al. 2011

f MED12 (MEDIATOR 12), Imura et al. 2012

g COL5 (CONSTANS-LIKE 5), Hassidim et al. 2009

h MSI (MULTICOPY SUPRESSOR OF IRA1), Bouveret et al. 2006

i VIN3 (VERNALIZATION INSENSITIVE 3), Sung and Amasino 2004

j ZTL (ZEITLUPE), W.-Y. Kim et al. 2007

Again, the number of observed shared regions was higher than expected only

by chance (Figure 3.8 B), which supports the thought that these shared regions

were not originated by false associations. The detected overlaps highlight the

amount of genetic heterogeneity within different loci, where different alleles

of the same gene are present in different local subsamples. The finding of

this type of region containing the gene FRI (FRIGIDA) is in agreement with

previous reports where the effect of different natural alleles on flowering time

was already extensively studied (P. Li et al., 2014; L. Zhang and Jiménez-Gómez,

2020). Beyond FRI, this seems to be truth for the other genomic regions as well.

The comparison of shared genomic regions has the advantage of not being re-

stricted to the exact position of the associated SNP. Continuing with this strategy,
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Figure 3.9: Density plots comparing effect sizes estimates and Venn diagrams showing

estimated polygenic overlap using MiXeR. (A-B) The comparison between

flowering time at 10°C and 16 °C in the complete European population.

(C-D) Comparison of FT10 between the Northern Iberian Peninsula (NIP)

and Southern Iberian Peninsula (SIP) subsamples. (E-F) Comparison of FT10

between the Eastern Europe and German subsamples.

MIXeR was implemented to estimate shared causal variants between subsamples,

since this statistical tool overcomes the intrinsic problem of detecting the exact

locations of such associations (Frei et al., 2019). Initially, the proportion of shared

causal variants between to highly correlated traits (flowering time at 10 °C and

16 °C) in the European sample was estimated. As expected most of the estimated

causal variants were shared between these traits with both a high genetic and

effect size correlation (Figure 3.9 A, Table 3.5).
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Table 3.5: Shared causal variants estimation using MIXeR

Subsample 1 Subsample 2 s1_s2
a cv_1

b cv_2
c rho1_2

d rge

FT16 FT10 154 0 2 0.95 0.94

Europe SIPf
45 131 88 0.75 0.22

Europe NIPg
29 133 95 0.39 0.08

Europe Germany 19 12 231 0.03 0.01

Europe North Sweden 35 70 4 0.55 0.3

Europe Eastern Europe 103 59 111 0.55 0.3

SIP NIP 122 6 8 0.81 0.77

SIP Germany 29 107 185 0.42 0.07

SIP France + UK 1 178 3 -0.02 -0.01

SIP North Sweden 26 114 11 -0.26 -0.09

SIP Eastern Europe 52 87 194 -0.20 -0.06

NIP Germany 116 11 81 -0.85 -0.62

NIP France UK 1 135 1 0.79 0.06

NIP North Sweden 29 105 6 -0.13 -0.05

NIP Eastern Europe 76 56 153 0.31 0.14

Germany France UK 14 318 1 0.89 0.17

Germany North Sweden 31 164 2 0.90 0.35

Germany Eastern Europe 32 155 177 -0.59 -0.10

France UK North Sweden 27 113 17 -0.01 -0.01

France UK Eastern Europe 1 0 238 0.99 0.07

North Sweden Eastern Europe 26 7 195 0.58 0.18

a s1_s2: Estimated number of shared causal variants
b cv_1: Estimated causal variants only present in subsample 1

c cv_2: Estimated causal variants only present in subsample 2

d rho1_2: Estimated effect size correlation between shared causal variants
e rg: Estimated genetic correlation
f SIP: Southern Iberian Peninsula
g NIP: Norhtern Iberian Peninsula

This high degree of shared effects is consistent with the fact that the effect of

major markers affecting flowering time is stable (Srikanth and Schmid, 2011).
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On the other hand, the reduced number of shared causal variants between

geographically distant subsamples indicates the importance of markers with

smaller effects in different geographic regions. Besides the geographic loca-

tion, the genetic background plays an important role in defining the effect of

these markers too. When comparing the correlation of shared causal variants

between SIP and the remaining subsamples it is possible to recognized how

the correlations of effect sizes decreased when the subsamples are more distant

(Table 3.5). This indicates a high genetic heterogeneity within subsamples and

highlights that markers can have a different or even opposite effect depending

on the geographic location and genetic background of the analyzed populations.

In summary, this analysis confirms the GWAS results shown before, without

explicitly looking at distinct markers.

All the aforementioned results are in agreement with the findings presented in

Chapter 2, but at a more complex level since these subsamples are defined using

geographically restricted areas, which increases the probability of detecting

markers with local effect. The complex architecture of flowering time and its

suggested genetic heterogeneity leaded to high dissimilar association between

European subsamples, reinforcing the idea that replicating genome-wide associ-

ations in different samples when analyzing adaptive traits is unlikely or indeed

unexpected. This scenario would be more likely when analyzing traits, in which

only a few markers explain most of the phenotypic variation and are not under

local adaptation.

3.3.2 GWAS on further adaptive traits

Assuming that the above described phenomenon is not restricted to flowering

time but detectable in different adaptive traits, we carried out the same analyses

of performing GWAS in distinct local subsamples for two additional traits,

stomata size and cauline leaf number. The adaptive importance of stomatal traits

for the fine-tuning of water-use efficiency has also been suggested previously

(Dittberner et al. 2018). In addition, the number of cauline leaves is linked to

photomorphogenesis (Pouteau and Albertini 2009) and therefore it could be

under local adaptation too and being optimized by distinct genes or pathways

in different subsamples. In this case, two geographically far apart subsamples,

namely Iberian Peninsula (IP) and Sweden (SW), which overlap with those used
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for flowering time, were utilized (Figure 3.10 A). For both traits, only slight

phenotypic differences were detected (Figure 3.10 B).

Figure 3.10: Analyses of stomata size and cauline leaf number. (A) Geographic dis-

tribution of the used 240 Arabidopsis thaliana ecotypes. (B) Phenotypic

distribution of stomata size and cauline leaf number in the Iberian (IP) and

Scandinavian (SW) subsamples. (C-F) Manhattan plots of GWAS results

from the different subsamples. Dashed lines and dash-dotted lines indicate

permutation-based threshold and Bonferroni threshold, respectively.

Similar as the GWAS results for flowering time, manhattan plots of GWAS

results for these subsamples show dissimilar association peaks for both traits.

Despite the fact that heritability estimates and theoretical statistical power to

detect major polymorphisms suggested that these subsamples were suitable for

GWAS (Table 3.6), only one significant association was detected (Figure 3.10

C-F). Again, presuming that poylmorphisms with middle-to-low effect could be

undetectable, SNP overlap at a less stringent pvalue (10−4) was estimated. In this

case, there was no overlap between subsamples for both traits. This repetitive

scenario suggests that replication of GWAS results in different samples using

traits with complex genetic architecture or even involved in local adaptation, as

is the case for adaptive traits, is unlikely. Additionally, it has to be noted that the

fact of GWAS being under-power to detect causal variants suggests that both

traits might not be regulated for major polymorphisms but for a combination of

variants with middle-to-low effect.
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Table 3.6: Geographic limits, pseudo-heritability and power estimation of the IP and

SW subpopulation used for the analyses of stomata size (ST) and cauline leaf

number (CL).

Trait Source No. accessions min_lat max_lat min_lon max_lon ĥ2 Power

ST

ALL 240 39.66 63.02 -7.80 18.52 0.56 1.00

IP 109 39.66 43.40 -7.80 4.25 0.27 0.81

SW 131 55.38 63.02 11.2 18.52 0.54 0.99

CL

ALL 240 39.66 63.02 -7.80 18.52 0.78 1.00

IP 109 39.66 43.40 -7.80 4.25 0.9 1.00

SW 131 55.38 63.02 11.2 18.52 0.85 1.00

3.3.3 Can Polymorphisms with global effects be detected regardless of the population ?

With the aim of verify if major polymorphisms can be detected with the afore-

mentioned subsamples (IP and SW) used for stomata size and cauline leaf

number, phenotypes under control of major polymorphisms were simulated.

GWAS were performed on a total of 27000 simulated phenotypes and power to

detected the simulated polymorphism as well as the proportion of false positives

based on Bonferroni correction were estimated. Results presented in Table 3.7

support the thought that these subsamples have power enough to detect major

polymorphisms.

More exactly, global polymorphisms explaining 20% of the phenotypic varia-

tion were detected in 96.4% of the cases in the whole sample and as expected

in a lower proportion in the subsamples due to reduced power produced by a

smaller sample size (Korte and Farlow, 2013). However a high false discovery

rate was detected. Because the number of simulations made it impracticable to

calculate permutation based threshold (it would have been 27 million GWAS

runs), this false discovery rate was based on Bonferroni correction. Due to this

high discovery rate, a more stringent significance threshold of 10−9 (just below

the Bonferroni correction 2.7x10−8) were considered. This slight reduction in

the significance threshold resulted in a dramatic decrease of the false discovery

rate, while the empirical power still remained high (Table 3.8).

For the scenario where major polymorphisms with local effect were simulated

a reduced empirical power was observed, however more importantly, these

simulated polymorphisms were detected only in the respective subsample for



3.3 results and discussion 53

Table 3.7: Overview of the sensitivity of the different simulation scenarios.

Variance explained Sensitivity

ALL IP SW

20%

ALL 0.964 0.264 0.390

IP 0.027 0.274 0.000

SW 0.065 0.000 0.420

15%

ALL 0.265 0.130 0.250

IP 0.050 0.000 0.230

SW 0.020 0.140 0.000

10%

ALL 0.170 0.000 0.20

IP 0.010 0.000 0.020

SW 0.000 0.000 0.000

Table 3.8: Summarized GWAS results from simulated data. True positives (TP), false

positives (FP) and false discovery rate (FDR) are reported for 1,000 simulations

per scenario with GWAS performed either in all 240 accessions (ALL) or only

in the IP or SW subpopulation.

Variance explained TPa FDRa TPb FDRb

ALL IP SW ALL IP SW All IP SW All IP SW

20%

ALL 964 264 390 0.19 0.22 0.27 876 118 217 0.08 0.01 0.03

IP 27 274 0 0.14 0.07 0.04 5 101 0 0.02 0.02 0.00

SW 65 0 420 0.19 0.00 0.15 20 0 226 0.04 0.00 0.03

a Bonferroni correction
b α = 10e− 9

which the local effect was simulated (Table 3.7). Figure 3.11 presents GWAS

results for the three scenarios in all samples. Simulated phenotypes with a major

global effect generated repetitive GWAS results only differing in a higher pvalue

of the causal variant in the subsamples, which constitute a clear example of

reduced power (but still significant at Bonferroni correction) (Figure 3.11). These

results suggests that replication of GWAS results in different samples for traits

under such type of regulation would be expected. In contrast to these results,

divergent GWAS results were observed for simulated phenotypes with a major

local effect (Figure 3.11). Unlike to the above mentioned trend, differences in

GWAS results can neither be explain through statistical power nor through
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allele frequency. All the describe results are based on simulated phenotypes

with a causal variant explaining 20% of the phenotypic variance. Results for

the remaining simulations show how the empirical power goes sharply down

when causal variants explain only a low proportion of the phenotypic variance,

which is in agreement with the results observed for stomata size and cauline leaf

number, where a presumed polygenic regulation (with a lot of causal variant

explaining only a marginal proportion of the phenotypic variation) might have

produced under-powered GWAS results. All the results presented indicate that

GWAS in these subsamples have enough power to identify major polymorphisms

with both global and specific local effects, in addition to reinforce the presumed

local adaption for flowering time.

Figure 3.11: Manhattan plots of GWAS results from three different simulations. The

causative markers were simulated to have an effect in all accessions (left

panel), only in IP (middle panel) or only in SW (right panel). The respective

population for GWAS are displayed in the different rows, where for the

results in the top row, the SW subpopulation has been used, the IP subpop-

ulation has been used to generate the results in the middle row and the

bottom row displays the results in the merged population of 240 accessions.

Dashed lines indicate the Bonferroni threshold used in the simulations.

3.3.4 Detection of global and local regulation patterns via eGWAS

After having successfully simulated phenotypes regulated either by major global

or local effects, the next step was to find real traits under these regulation

patterns. However, finding phenotypic data for such traits is not an easy task,
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even for A. thaliana. First, it would be necessary to find phenotypes whose

variation is mainly explained by few or even a single common causal variant.

But most of the data available on AraPheno consists of phenotypes presumably

under polygenic regulation or even involved in local adaptation, as in the case

of the phenotypes already analyzed. Nevertheless, expression data (Kawakatsu

et al., 2016) available on AraPheno (https://arapheno.1001genomes.org/stu

dy/52/) emerged as a candidate data set to reproduce patterns of global and

local regulation. It would not be wrong to hypothesize that expression levels of

more "structural" genes should be consistent between accessions regardless of

their geographic origin, moreover one might predict that major polymorphisms

directly located in the gene would be responsible for its regulation (Signor and

Nuzhdin, 2018). On the other hand, genes involved in pathways finely tuned

through environmental cues or even implicated in secondary metabolism, might

tend to show a more local and polygenic regulation.

Table 3.9: Overview of RNA expression data. This table shows the filters applied to the

whole data. GWAS were performed on 2,483 genes.

Filter Sample size

Total RNA expression data 24,175

Nuclear genes 23,021

ĥ2 > 0.5 4,873

ĥ2 > 0.5 & power > 0.9 2,483

ĥ2 > 0.5 & power > 0.9 and not inflated 1,982

Grounded on these hypotheses, eGWAS were carried out on 2483 molecular

traits for the Iberian, the Scandinavian and the whole sample (Table 3.9). This

number represents about 10% of the total of genes for which expression data

is available (Kawakatsu et al., 2016), and was obtain after filtering out genes

with low estimated heritability and insufficient statistical power to detected

major effects (Table 3.9). Significant genome-wide associations, at least in one

of the subsample, were detected for 780 genes at a significance threshold of

10−10. Evidence for global and local regulation patterns were found in 282 genes

and typical GWAS results are exemplify in Figure 3.12. The tendency of these

manhattan plots is completely comparable with that obtain from GWAS results

of simulated phenotypes (Figure 3.11). These results confirm the occurrence of

https://arapheno.1001genomes.org/study/52/
https://arapheno.1001genomes.org/study/52/
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global and local genetic architecture in real traits, in addition that these samples

are powered to detect major polymorphisms.

Figure 3.12: Manhattan plots from GWAS of expression levels for three different genes.

The Columns show the results from genes representing different scenarios.

The rows display the GWAS results of the analysis in the two subpopula-

tions (SW and IP, respectively), or in the merged population (ALL). Hori-

zontal dash-dotted lines indicate the significance threshold of p < 10−10.

Vertical dashed lines show the position of the gene whose expression is

being used as a molecular phenotype.

As shown in Figure 3.12, some of the associated markers are directly found

in (or close to) the gene whose expression level was used as phenotype. This

kind of regulation is known as cis. Conversely, trans regulation refers to genes

whose expression levels are regulated by markers that are not located in close

proximity to the respective gene. A pattern of cis and trans-regulation for the

above mentioned genes was found. Almost all associations (about 99%) shared

between IP and SW presented cis-regulation, whereas mainly trans-association

were detected for unique associations both in IP and SW (Figure 3.13). Assuming

that globally regulated genes under a cis-regulation pattern should be persistent

regardless of the subsamples to be compare and, in contrast, that local regulated

genes under trans-regulation should be highly dependent of the subsamples to

be consider, equally-sized (91 accessions as IP and 74 accessions as SW) random

subsamples (by randomizing the subsample lables) were produced. eGWAS were

carried out on these random subsamples and the resulting regulation patterns

were compared (Figure 3.14). As expected, shared association were mostly under

cis-regulation, with almost 80% of the shared genes between IP and SW being
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recovered between these random subsamples. In a similar way, non-shared

associations were predominantly trans-regulated, and in a considerably smaller

number than the detected in IP and SW.

Figure 3.13: Summary of the difference between shared and non-shared GWAS results

for expression data. Plots show the position (x-axis) of significant associa-

tions for each expressed gene (y-axis). Associations shared between sub-

populations (top panel) are almost all in cis, whereas associations specific

to one subpopulation (bottom panels) are mostly found in trans. Pie-charts

show the number of genes in each category.

Moreover, GO enrichment analysis using the shared genes between IP and SW

detected significant enrichment for molecular functions associated with primary

metabolism (Table 3.10). Additionally, highly conserved genes as those involved

in glycolysis (G6PD4 (NADP-dependent glucose-6-phosphate dehydrogenase)),

tricarboxylic acid cycle (SDH3-2 (succinate dehydrogenase)) and the shikimato

pathway (MEE32) were detected. In the same way, genes required for growth and

development in A. thaliana were found too (EMB2739 (EMBRYO DEFECTIVE

2739) and EMB3127 (EMBRYO DEFECTIVE 3127) (D. W. Meinke, 2020)). Added

to these genes, genes like RPS5 (RESISTANT TO P. SYRINGAE 5), which is linked

to bacterial and downy mildew resistance (Warren et al. 1998), and which is

likely to be under global balancing selection (Tian et al. 2002) were also detected

(a complete list can be found in: https://www.biorxiv.org/content/10.110

1/2021.02.26.433043v1). In contrast, the group of genes under presumably

local adaptation are related for example to flowering time (AGL-20 (AGAMOUS-

LIKE 20) (H. Lee et al., 2000)), stress response (RCAR5/PYL11 (REGULATORY

https://www.biorxiv.org/content/10.1101/2021.02.26.433043v1
https://www.biorxiv.org/content/10.1101/2021.02.26.433043v1
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COMPONENT OF ABA RECEPTOR 5/ PYRABACTIN RESISTANCE-LIKE 11)

(Lim and S. C. Lee, 2020), and HDA9 (HISTONE DEACETYLASE 9) (Zheng et al.,

2016)), secondary metabolism (ST4B (brassinolide sulfotransferase)(Hashiguchi

et al., 2014)) and salt tolerance (ALDH10A8 (ALDEHYDE DEHYDROGENASE)

(Jacques et al., 2020)) (a complete list can be found in: https://www.biorxiv.or

g/content/10.1101/2021.02.26.433043v1).

Figure 3.14: Summarized GWAS results for the analyses of RNA expression data in

A. thaliana in random subpopulations. Genes are grouped in three cat-

egories: 1) Shared random_91/random_74, where the same association

for a gene is recapitulated in the GWAS of both subpopulations. 2) Only

random_91, where a significant association is only found using the ran-

dom subpopulation containing 91 accessions. 3) Only random_74, where

a significant association is only found using the random subpopulation

containing 74 accessions. Scatter plots show the genomic location of the

respective associated markers per gene for each class, where cis-regulatory

variants are colored in orange, while variants in trans are shown in purple.

Pie charts display the amount of genes per class that have cis, cis and trans

or only trans-associations.

Our finding of more structural genes being under cis-regulation is in agree-

ment with multiple studies (A. Martin and Orgogozo, 2013; Romero, Ruvinsky,

and Gilad, 2012). Changes in this regulation pattern should be less pleiotropic,

since these genes do not directly affect the expression of other genes (as would

be the case of transcription factors for example), but rather their own expres-

sion level (Prud’homme, Gompel, and Carroll, 2007). Additionally, the fact to

having found most cis-regulation in both subsamples supports the idea that

https://www.biorxiv.org/content/10.1101/2021.02.26.433043v1
https://www.biorxiv.org/content/10.1101/2021.02.26.433043v1
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cis-regulated loci are less affected by genetic background, moreover the expected

higher additivity of cis-regulated loci makes it easier to detect them by means

of GWAS (Lemos et al., 2008). On the other hand, Clauw et al. 2016 found that

cis-regulatory variants had the same effect in different environments, suggesting

that they could only be involved in local adaptation through highly polygenic

allele-frequency changes.

Table 3.10: GO enrichment analysis using shared genes between the Iberian and Scandi-

navian subsamples.

Ontology ID Description p.adjust qvalue

BP GO:0006730 one-carbon metabolic process 0.04 0.04

BP GO:0035999 tetrahydrofolate interconversion 0.19 0.18

MF GO:0043531 ADP binding 0.00 0.00

MF GO:0032559 adenyl ribonucleotide binding 0.00 0.00

MF GO:0016616 oxidoreductase activity, acting on the

CH-OH group of donors, NAD or

NADP as acceptor

0.03 0.02

MF GO:0019238 cyclohydrolase activity 0.03 0.03

MF GO:0016614 oxidoreductase activity, acting on CH-

OH group of donors

0.03 0.03

MF GO:0016646 oxidoreductase activity, acting on the

CH-NH group of donors, NAD or

NADP as acceptor

0.04 0.03

MF GO:0050661 NADP binding 0.05 0.04

In contrast to cis-regulatory patterns, trans-regulations tend to explain a less

proportion of the variance (Lemos et al., 2008). This makes their detection

through GWAS more challenging. However we were able to detect such a

regulation pattern using two geographically wide separated subsamples. The

important role of trans-regulation in local adaptation has been already reported

(Clauw et al., 2016). Having found these type of regulation majorly as unique

depending of the subsample is consistent with the idea that this type of regula-

tion involve a more polygenic architecture (Signor and Nuzhdin, 2018), which is

more affected by genetic background.

The presented results supports the idea that replicating GWAS results in dif-

ferent samples as a signal of reliability has to be reconsidered. In fact, our results
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suggest that when considering adaptive traits, GWAS results can extremely

vary between samples, mostly due to local adaptation. In General, more widely

distributed samples might uncover associations with a more global effect, but

neglect associations affecting the phenotype more locally, and the contrary is

true when considering geographically more restricted samples. In both cases

conclusions should reflect the nature of the samples used. According to the

differences observed between the Iberian subsamples, a strikingly different

profile of associations might be obtain even when comparing geographically

close samples. Additionally, we could exemplify the effect of the genetic back-

ground on a significant association when comparing to geographically distant

samples (5 – 18590501). Finally, we were able to detect cis and trans regulation

via eGWAS. These regulation patterns followed a very specific trend with shared

associations being mostly in cis and unique associations being mostly in trans. It

would be interesting to test whether genes under cis-regulation present different

epigenetic regulation between subsamples, or even whether these genes could

be under a combination of cis-trans regulation (associations in trans with a very

low effect, might not have been detected in our study).



4
R N A - S E Q D ATA A N A LY S I S

4.1 introduction

The content presented in this chapter is the result of a collaboration with the

group of Prof. Dr. Wolfgang Dröge-Laser from the department of pharmaceu-

tical biology of the university of Würzburg. This introduction describes the

biological question underlying the analysis of the RNA sequencing (RNAseq),

which I performed. Although my part was restricted to the analysis of the data, I

highlight why the obtained results are relevant to understand host-pathogen in-

teraction. These results are published in: Fröschel, Christian, Jaqueline Komorek,

Agnès Attard, Alexander Marsell, Lopez-Arboleda, William.A, Joëlle Le Berre,

et al. (2021). “Plant roots employ cell-layer-specific programs to respond to

pathogenic and beneficial microbes.” In: Cell Host & Microbe 29.2, pp. 299–310.

doi: https://doi.org/10.1016/j.chom.2020.11.014.

Roots play multiple functions in plants, as anchoring, storage and for the

uptake of water and nutrients. Roots face both biotic and abiotic stress (Eshel and

Beeckman, 2013). A part of the biotic stresses is caused by the interaction with

pathogens. Some of the most abundant pathogens in soil are fungi. Fungi display

a broad spectrum of lifestyles including biotrophic (interacting with plants and

utilizing their living tissue), necrotrophic (killing plants and feeding on the

resulting dead tissue) and saprophytic (surviving and feeding on dead plants).

According to the different fungal lifestyles, fungal pathogens produce diverse

virulence factors, which could be involved in host penetration, suppression of

host defense and nutrient acquisition (Doehlemann et al., 2017). In the same way,

in the presence of a pathogen plants produce an immune reaction in response

to the infection (Ryan et al., 2016). Depending on the pathogen’s lifestyle, the

colonization of roots could take place at different cell-layers, and allows to track

specific modifications in gene expression. Since roots are build of concentric cell

layers performing specific functions, it could be hypothesized that these layers

differ in their responses towards microorganisms.
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In order to prove such a hypothesis, three fungal species (more precisely one

fungus-like organism and two fungal species) displaying different lifestyles were

used to inoculate Arabidopsis thaliana roots:

• Verticillium longisporum (Ascomycota): V. longisporum is a soil-borne vascu-

lar pathogen whose infection produce symptoms like wilting, chlorosis,

vascular discoloration and early senescence. The life cycle of V. longispo-

rum begins as microsclerotia, which are resistant structures waiting for

a new host (sclerotia can survive up to 10 years in soil). Microsclerotia

germination is stimulated through exudates from plants, resulting in hy-

phae growth and colonization of the root surface. As a result, hyphae

growth across all root cell layers until reaching the xylem. At this stage, V.

longisporum acts as an endophytic-biotrophic fungus, changing to a more

saprophytic style with microsclerotia formation due to plant senescence

(Depotter et al., 2016)

• Phytophthora parasitica (Ooomycota): P. parasita is a soil-borne pathogen

which causes root and stem rot in over 70 species. Zoospores play a major

role during infection reaching plant surfaces and becoming immobile

cyst to subsequently germinate. After root colonization, by means of the

secretion of a range of degradative enzymes that break down physical

barriers to infection, and an initial biotrophic state, P. parasitica switches to

a necrotrophic state resulting in severe plant damage (Y. Meng et al., 2014).

The Arabidopsis-Phytophtora pathosystem has been extensively described.

In this species, infection process occurs in a similar way as in the natural

host, however disease severity can vary depending on A. thaliana ecotypes

and P. parasita strains, suggesting variation in host specificity (Y. Wang

et al., 2011).

• Serendipita indica (Basidiomycota): S. indica is an endophytic, mutualistic

species which can act as growth promoter, immune modulator, phytoreme-

diator among others. The root colonization takes place after a biotrophic

growth phase, and develops in a cell dead-dependent phase. This cell

dead-dependent phase is a result of the suppression of the root innate

immune system and the induction of endoplasmic reticulum stress, whose

adaptive pathway response is at the same time inhibited. This root colo-

nization is limited to the rhizodermis and cortex, and rarely extended at

the root meristematic and elongation zones (Qiang et al., 2012).
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In order to compared gene expression across cell layers after the inocula-

tion with the different pathogens, cell-layer-specific translatomes were obtain

(described as an infection-based TRAP-seq). Briefly, TRAP-seq (translating ribo-

some affinity purification followed by RNA sequencing) allows the isolation of

ribosome-mRNA complexes via immunoprecipitaion, resulting in a subsequent

data set of expression at a cell-layer resolution (Mustroph et al., 2009; Sorenson

and Bailey-Serres, 2015). In contrast to the nuclear RNAseq, TRAP-seq separates

the actually translating mRNA from the total mRNA. The cell-layer resolution is

achieved by using transgenic lines expressing FLAG-tagged ribosomal proteins.

It is expected that the divergent lifestyles of pathogens might trigger differential

profile expressions at root cell layer. Therefore, expression across cell layers

between mock and infected plants was compared. Through these comparisons,

clusters of genes according to pathogen lifestyle were found. In summary, after

the expression data analysis, reported plant responses were confirmed and

hypotheses related to endodermis as a barrier against pathogen invasion could

be tested at gene expression level and later confirmed via fluorescence con-

focal microscospy and A. thaliana mutant infection (these later confirmation

was motivated by the results from the expression analysis and was carried

out by Christian Fröschel, department of Pharmaceutical Biology, University of

Würzburg). .

4.2 methodology

4.2.1 Transcript quantification

To experimentally detect differential expression, Transcripts Per Million (TPM)

were compared between mock and infected plants for each cell layer at the

presence of each pathogen. In average 10-20 million reads were yielded after

RNAseq for each sample. Reads coming from each samples were mapped to the

reference genome of A. thaliana (TAIR 10 genome release) using Salmon v0.7.2

(Patro et al., 2017). Only reads, which could be unambiguously mapped to the

reference genome were used to estimate the TPM. To do so, the transcriptome

of A. thalina was downloaded and indexed using the flag index of salmon tools.

After the index was built, quantification of samples for each pathogen was

carried out using a bash script (a detailed description can be found in Appendix

B).
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4.2.2 Differential expression analysis

The resulting data frame containing TPM estimation for all genes across samples

was used to assess gene differential expression between mock and infection

treatments for each pathogen in each cell type. In order to do so, columns

were filtered according to pathogen and cell type, and the resulting data frame

was formatted applying the DESeqDataSetFromMatrix function and before to

being passed to the DESeq function (both from the DESeq2 package (Love, Huber,

and Anders, 2014)), all genes with counts lower than 10 were filtered out. A

gene was considered as differentially expressed if both the pvalue based on

independent hypothesis weighting (Ignatiadis et al., 2016) was lower than 0.05 and

the absolute value of log2FoldChange was bigger than 1. After applying this

workflow for all possible mock-infected comparisons, volcano plots (Figure 4.1)

were created to visualize the magnitude and distribution of expressed genes.

To better compare up-und-down regulated genes either between pathogen

in each cell layer or across cell layers of plants infected by each pathogen

Venn diagrams (using custom functions of the VennDiagram package (Chen and

Boutros, 2011)) were generated. For an overall visualization of the differentially

expressed genes, a heatmap was created. This heatmap represented the total

number of diffentially expressed genes across cell layer for each pathogen. Next,

Hierarchical cluster (applying functions from the pheatmap package (R. Kolde

and M. R. Kolde, 2015)) was implemented in order to find patterns of common

or unique responses of these genes. Finally, Gene Ontology (GO) and KEGG

(Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were carried

out (using the clusterProfiler package).

4.3 results and discussion

4.3.1 Comparison of differentially expressed genes

The magnitude of differential expression was initially visualized using volcano

plots. On these plots, differentially expressed genes are colored to separate them

from no differentially expressed ones. Volcano plots showed a major proportion

of up-regulated genes in all cell layers (log2FoldChange > 1) under treatment
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with V. longisporum as well as under treatment with P. parasitica (Figure 4.1 A-B).

(a) V. longisporum.

(b) P. parasitica.

(c) S. indica.

Figure 4.1: Volcano plots highlighting differentially expressed genes (DEGs) in each

root cell layer in the presence of three fungal (one fungus-like) species.

As expected a marginal proportion of differentially expressed genes was

present in both the rhizodermis and the cortex of plants treated with S. indica

(Figure 4.1 C). Most studies indicate that this mutualistic endophytic fungus

does not colonize beyond the cortex, with rare cases reporting colonization of
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meristematic and elongation zones (Qiang et al., 2012). The high proportion of

differentially expressed genes in all cell layer of plants treated with V. longisporum

and P. parasitica suggests an active dynamic with plants responding to the attack

and pathogens inhibiting these responses (Qi et al., 2018). This overview is in

agreement with the three different lifestyles of the pathogens, hence the next step

was to compared differentially expressed genes across layers for each pathogen

and across pathogens for each cell layer.

Venn diagrams were generated to visualize the aforementioned comparisons.

Infection by V. longisporum seems to trigger a core reaction in all cell layers,

with 200 up-regulated genes shared between cell layers (Figure 4.2 A). However

most of the differentially expressed genes were cell-dependent. Additionally,

the high number of up-regulated genes in the stele might be related to vascular

colonization (Depotter et al., 2016). Unlike V. longisporum, P.parasitica seems to

trigger a more overall reaction with most of the up-regulated genes (Figure 4.2

B) being shared between cell layers. This is in agreement with a necrotrophic

lifestyle, resulting in plant damage across root cell layers (Y. Meng et al., 2014).

Plants treated with S. indica display all of the differential expression in the

cortex with a marginal proportion in the rhizodermis. This set of up- and down-

regulated genes might be the result of the suppression of the root innate immune

response and the establishment of the cell dead-dependent phase (Qiang et al.,

2012).

Comparison across pathogens in each cell layer reveled a markedly differential

induction with a lower number of genes being shared between pathogens (Fig-

ure 4.3). Infection by P. parasitica led to the major number of up-regulated genes

in all cell layers, whereas down-regulation was higher in the rhizodermis and the

endodermis of plants infected by V. longisporum. In general, both comparisons

supported the hypothesis that roots display a cell-layer and pathogen-specific

response. Grounded on this evidence, the following question was: which genes

are involved in common or unique responses.

4.3.2 Gene clustering and hypotheses formulation

Heatmaps and hierarchical clustering were generated in order to separate genes

displaying common or unique responses. Figure 4.4 present 15 demarcated

clusters with either up- or -down regulated genes. Cluster 1 contains genes

involved in common response to pathogens (with an insignificant induction in
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(a) V. longisporum.

(b) P. parasitica.

(c) S. indica.

Figure 4.2: Venn diagrams comparing the distribution of differentially expressed genes

(DEGs) across root cell layers.

the presence of S. indica), some of these genes are involved in the biosynthesis of

secondary antimicrobial compounds and ethylene biosynthesis. Cluster 7 lists

genes down-regulated in the endodermis of roots infected by V. longisporum.
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Figure 4.3: Venn diagrams comparing the response of each root cell layer against the

fungal (one fungus-like) species

This induction could be related with pathogen mechanisms that enable the

colonization of root vascular system.

Together with this hierarchical clustering KEGG enrichment analysis was

carried out. These analyses provided an overall view of the type of genes being

differentially expressed in the presence of each microbe. KEGG enrichment

of down-regulated genes in roots infected by V. longisporum point to the hy-

pothesized function of genes present in cluster number 7 (Figure 4.5). In a

similar way, genes grouped in cluster 1 probably correspond to the pathogen

defense response pathway enriched in the presence of V. longisporum and P.

parasitica (Figure 4.5, Figure 4.6). Additionally, pathways involved in pathogen

responses were significantly enriched for up-regulated genes in all root cell

layers infected by P. parasitica, which was expected due its necrotrophic life

style (Figure 4.6). The large amount of dead cells resulting from this life style

triggers an overall defense response across cell layers. On the other hand, as

anticipated up-regulated genes in the cortex of root colonized by S. indica point

to pathways related to pathogen defense response. This response is related to the

endoplasmic reticulum (ER) stress induced in the early stages of the colonization
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Figure 4.4: Hierarchical clustering of differentially expressed genes (DEGs). Blue and

rot color scales represent down-and up-regulation respectively. Asterisks

mark genes to be studied in more detail.

(after three days). Later, S. indicia suppresses the adaptive ER stress response in

order to facilitate root colonization (Qiang et al., 2012). Therefore, since the gene

induction was evaluated after a short time colonization, no genes related to this

posterior adaptive ER stress response were found among the down-regulated

genes (Figure 4.7).
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Figure 4.5: KEGG enrichment of down-and up-regulated genes across root cell layers of

plants infected by V. longisporum. Letter R, C, E and S refer to rhizodermis,

cortex, endodermis and stele respectively
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Figure 4.6: KEGG enrichment of down-and up-regulated genes across root cell layers

of plants infected by P. parasitica. Letter R, C, E and S refer to rhizodermis,

cortex, endodermis and stele respectively

Figure 4.7: KEGG enrichment of down-and up-regulated genes across root cell layers of

plants infected by S. indica. Letter C refers to cortex

For a better visualization of the pathways in which differentially expressed

genes were located, path viewers were generated. It is important to note that

down-regulated genes in the endodermis of roots colonized by V. longisporum

matched with both, suberin formation pathway and acid fatty elongation. The

latter supply the initial blocks for suberin deposition, which plays an important

role as a barrier against pathogens. These results highlight the strong effect on
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this process by V. longisporum colonization (Figure 4.8, Figure 4.9). Contrasting

with this lifestyle, and as noted through the KEGG analysis, reaction towards

P. parasitica took place across root cell layers, with groups of genes being up-

regulated in all cell layers (Figure 4.10, Figure 4.11, Figure 4.12, Figure 4.13). All

these previous explorations gave us clues to select the clusters to be examined

in more detail.
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Figure 4.8: Inductions of genes involved in cutin, suberin and wax biosynthesis in the

endodermis of root colonized by V. longisporum. Green and rot boxes indicate

down-and up-regulated genes respectively.
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Figure 4.9: Inductions of genes involved in the biosynthesis of unsaturated fatty acids

in the endodermis of root colonized by V. longisporum. Green and rot boxes

indicate down-and up-regulated genes respectively.
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Figure 4.10: Inductions of genes involved in plant-pathogen interaction in the rhizo-

dermis of root colonized by P. parasitica. Green and rot boxes indicate

down-and up-regulated genes respectively.
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Figure 4.11: Inductions of genes involved in plant-pathogen interaction in the cortex

of root colonized by P. parasitica. Green and rot boxes indicate down-and

up-regulated genes respectively.



4.3 results and discussion 77

Figure 4.12: Inductions of genes involved in plant-pathogen interaction in the endo-

dermis of root colonized by P. parasitica. Green and rot boxes indicate

down-and up-regulated genes respectively.
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Figure 4.13: Inductions of genes involved in plant-pathogen interaction in the stele of

root colonized by P. parasitica. Green and rot boxes indicate down-and

up-regulated genes respectively.

Zooming into the cluster 7 (Figure 4.14), it was possible to confirm that V.

longisporum actively down-regulates genes implicated in the casparian strip

formation and suberin deposition. This induction was only detected in the

infection by this pathogen, which is supported by the fact that it penetrates

across all cell layers until reaching the pericycle. Casparian strips and suberin

deposition might act as barrier against this pathogen, if so one could hypothesize

that mutants of A. thaliana unable of establishing this barrier should be more

susceptible to V. longisporum infection. This hypothesis was later tested and

confirmed by Christian Fröschel using confocal microscopy and A. thaliana

mutants in suberin (horst-1, horst-2, and the double mutant pCASP1:CDEF1).
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Figure 4.14: Heatmap comparing gene expression of genes related to casparian strip

formation and suberin formation across root cell layers and pathogens. Blue

and rot color scales represent down-and up-regulation respectively.

In the presence of pathogens plants activated complex metabolic networks as-

sociated with the aminoacids methionine and tryptophan which lead to the pro-

duction of secondary metabolites with antimicrobial properties (Ahuja, Kissen,

and Bones, 2012). Figure 4.15 contains differential expressed genes involved

in some of these metabolic networks. A common induction of genes related

to tryptophan-derived metabolites (Figure 4.15 left side) was detected in the

presence of both V. longisporum and P. parasitica in all root cell layers suggesting

an active defense response throughout the root. In a similar way, genes related

to sulfur assimilation and indole-glucosinolate (methionine-derived metabolites)

were up-regulated in the presence of both pathogens, however a contrasting
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pattern of induction was observed in genes involved in aliphatic-glucosinolates

biosynthesis between these pathogens, with up-regulation in the cortex trig-

gered by V. longisporum and down-regulation in the stele triggered by P. parasitica

(Figure 4.15 right side). The hypothesis of susceptibility to infection by these

pathogens was later tested and confirmed by Christian Fröschel using A. thaliana

mutants and confocal microscopy.

Figure 4.15: Simplified schematic illustration of the biosynthetic pathways and enzymes

leading to aliphatic glucosinolates (AGs, blue) and the tryptophan-derived

indoleglucosinolates (IGs, purple), camalexin (green), and ICN derivatives

(red). Taken from: Fröschel et al., 2021

4.4 final comments

Results coming from RNAseq data analysis provided a general overview of gene

induction across root cell layers of A. thaliana plants infected by one mutualistic

and two pathogenic fungi. These results do not only recover previously identified

candidates genes, but shed light on the pathogen response at a cellular resolution.

The data allow the comparison of these responses across distinct root cell layers.

The results related to casparian strips formation and secondary antimicrobial

compounds provided important evidence to propose subsequent hypotheses

and design further experiments. In this respect, GO and KEGG enrichment

analysis were the first explorations to be carried out in order to gain a general
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view about how the contrasting fungal lifestyles induce differential responses

throughout the root.





A
D ATA H A R M O N I Z AT I O N

a.1 introduction

The content presented in this appendix is the result of my participation in the

GHP Project on Access to Care for Cardiometabolic Diseases (HPACC). This

project is not scientific related to my PhD, but of relevance since represented

an important source of funding during my PhD. Under the supervision of

Dr. Pascal Geldsetzer I was responsible for the data harmonization of surveys

made available by the World Health Organization (WHO), mainly based on the

STEPS strategy. This introduction is intended to give an overview about data

harmonization and its importance during the execution of a project with the

participation of multiple collaborators, and how data coming from the STEPS

strategy can be used to propose new health policies.

Digitalization of medicine has been steadily growing in the last years, which

has improved clinical, research and public health databases. This increase has

taken public health research to the level of big data and made worldwide studies

with sufficient theoretical statistical power possible. Such studies allow testing

of hypotheses in a global scale in order to drive new health polices (Auffray

et al., 2016). However, a high proportion of this data is not consistent across

countries making it necessary to adopt strategies intended to combine them in

an unified and comparable data set. In this sense, data harmonization aims to

combine data from different sources and to make it comparable and accessible

for researches, often from distinct fields. In particular for public health studies,

governments and institutions have been focusing on international comparisons,

which demands harmonized cross-national data sets (Granda, C. Wolf, and

Hadorn, 2010).

Data Harmonization can be achieved through the use of identical data col-

lection tools and procedures, which refers to the stringent approach. On the

contrary, the flexible approach does not require identical data collections, as

long as methodology ensures inferential equivalence of the harmonized data.

In terms of implementation, data harmonization can be either prospective or
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retrospective.The first implicates that researchers agree on a core set of variables

and data collection tools to ensure standard operability, while the second focuses

on information already collected by existing studies (Fortier, Doiron, et al., 2011).

The implementation of the prospective approach is in many cases not suitable

due to the difficulty of foreseeing future harmonization requirements when

planning a new study. For that reason, retrospective harmonization is in most

cases the only practicable strategy to be implemented (Fortier, Raina, et al., 2017).

In this project, we implemented a retrospective harmonization approach based

on a codebook. In data harmonization, codebooks contain accurate information

regarding the variables to be consider in a study. Highly specific and detailed

codebooks enable researchers to finely distinguish variables and labels and to

deliver consistent results. This characteristics can be fulfilled by implementing

a six-component codebook including: code name/label, brief definition, full

definition,inclusion criteria, exclusion criteria, and examples (MacQueen et al.,

1998).

Data harmonization in this project was intended to clean data coming mainly

from STEPS (STEPwise approach to surveillance) surveys made available by the

WHO. STEPS is a simple, standardized method for collecting, analyzing and dis-

seminating data in WHO member countries. Non-communicable diseases (NCD)

are the major cause of death and disability in a lot of countries and the burden

generated by this type of diseases are rapidly growing in developing countries.

Without control policies, NCD might put in check the already overwhelmed

health services in these countries (Bonita et al., 2003). In this way, WHO STEP-

wise approach to noncommunicable disease (NCD) risk factor surveillance is

aimed to help countries to collect consistent data in order to assist health services

in the planification and determination of public health priorities (World Health

Organization, 2005). In this sense, the first phase of the HPACC is to collate and

analyze existing data from nationally representative population-based surveys

under the STEPwise approach. During my participation on this project, I was

able to include more than 40 cleaned data sets to our merged data set. Thanks

to this fast production of harmonized data, one paper was already accepted

(Body mass index and diabetes risk in fifty-seven low- and middle-income countries: a

cross-sectional study of nationally representative individual-level data, at: The Lancet)

and a second is under review (Patterns of tobacco use prevalence and frequency in

70 low- and middle-income countries, at: Nature Medicine).
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a.2 methods and results

Data harmonization on 40 surveys coming from the STEPwise approach and

2 coming from the Demographic and Health Surveys (DHS) Program was

carried out by using a codebook with approx 280 variables in R (R Core Team,

2021) . This variables included demographic information, tobacco and alcohol

consume, physical activity, domestic violence, blood pressure and biochemical

parameters like blood glucose level and lipid profile. The first step was to

look for comparable variables between the codebook and the raw data of each

country data set. To do that, regular expressions were used in order to search

for compatible patterns between the question in the original surveys and the

codebook. Matches were principally defined throughout frequency of use for

tobacco and alcohol consume (for example grep("[D-d]aily") or directly by using

the name’s variable. To confirm the matches, variables codes in the raw data

were compared to the respectively question in the surveys. Once all possible

variables were matched, labels of each variable were transform according to

those contained in the codebook. Figure A.1 summarizes the process from raw

data to harmonized data. Difficulties were especially found for educational

labels since in most cases each country defined its on labels or grades, making

them not comparable between countries.

Figure A.1: Schematic representation of the steps followed during data harmonization

Additionally, an important part of the harmonization process was the assig-

nation of especial labels, namely "don’t know", "refused" and the skip patterns.

While the first two were clearly defined in the raw data, the latter were always
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store as NA and therefore mixed with real NA representing lack of information.

They were separated using Boolean operators based on the conditions contained

in the surveys. It was very important to distinguish between them given that

passing skip patterns as NA would inflate the proportion of lacking data making

difficult for latter statistical analysis. Finally, for each country a semi-automated

R script was created in order to allow the recovery of the cleaned data by all

researchers. Considering that part of the statistical analysis was carried out

using STATA, the haven package (Wickham and Miller, 2020) was used in order

to read the raw data and export the cleaned data. Finally, all cleaned data sets

were merge with the already existing master data set implementing collation in

STATA (StataCorp, 2019).

a.3 final comments

Digitalization of medicine has put within reach an unimaginable amount of data,

however in most cases this data is not consistent making it impracticable for

the use in research. Data harmonization refers to a compendium of strategies to

reconcile these inconsistencies, allowing the use of data from different sources in

order to test common hypotheses. During my participation in this project, I was

able to harmonized data coming from different types of surveys, countries and

years, with the aim of creating a master data set to be used in testing hypotheses

related to the impact of Non-communicable diseases in low-and middle-income

countries. This type of data set is of relevant importance since such diseases are

responsible for approximately two out of three deaths worldwide. Although

prolonged discussions were necessary in order to establish a final version of

our codebook, even this version was updated multiple times, which showed me

that data harmonization, at least from the retrospective approach, is dynamic

and required a constantly rethinking of the consensus in relation to meaningful

variables and labels to be taking into account in a project.



B
T R A N S C R I P T Q U A N T I F I C AT I O N

b.1 transcript quantification

To quantify TPM in each sample a customized bash script was used:

1 #!/ bin/bash

Files=’/mnt/volume/Seq_Daten_AK/Verticillium _2dpi/Verti_

fastq/*’

for f in $Files

do

samp=$f

6 echo "Processing sample ${samp}"

Name ="$( echo $Files | cut -d’/’ -f7)"

salmon quant -i athal_index -l A \

-r $f \

-p 8 -o Verticillium /${ Name}_ quant

11 done

The flag quant invokes the quantification function and the arguments -i, -

l A, -r, -p and -o tell Salmon where the index file is stored, to automatically

define the library type of the sequencing reads, to create a new folder, to

use a selected number of threads and where to save the outputs, respectively.

After quantification of all samples, quant.sf files were read into R and TPM

columns were merged between all samples to obtain a data frame containing all

quantification results without splicing variants. This data frame was later used

to performed the differential expression analysis.
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