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1 Introduction

Numerical analysis and control theory are two important disciplines in mod-
ern mathematics which are closely linked in several aspects. In fact, a large
number of numerical techniques have been designed for the treatment of
control-theoretical problems. These techniques, algorithms and software
packages are necessary tools in engineering applications.

A less traveled road is the converse direction. Many numerical algo-
rithms can be interpreted as dynamical systems and can be analyzed with
the corresponding techniques. Interesting examples of such approaches are
the works of Ammar and Martin [AMS86], Batterson and Smillie, [BS89al,
BS89b|, Batterson [Bat95] and Shub and Vasquez [SV87|, where the dy-
namics of the QR algorithm and Rayleigh iteration are explored using tools
from dynamical systems theory.

Taking one step forward, one can regard the variables of the algorithm —
such as shift parameters or step-sizes — as control parameters. Thereby we
obtain control systems, which can be studied with the various tools from
control-theory. A first step in this direction was established by Gustaffson
et al. |[GLS88| [Gus91l, [Gus92|. The authors apply simple control-theoretic
techniques on step-size selection, such as proportional integral control, to
improve the performance of ODE solvers. Other approaches — mainly con-
cerning system solvers, linear and quadratic programming problems and
ordinary differential equations — can be found in the recent book of Bhaya
and Kaszkurewicz [BK06|. The challenge remains to explore the possibilities
that emerge, by applying the full scope of methods from nonlinear control
theory.

In this work we investigate iterative numerical algorithms with shifts
as nonlinear discrete-time control systems. We emphasize the analysis of
reachable sets and their adherence structure. This task is important for
three main reasons.

First of all, the design of shift strategies for numerical algorithms often
follows heuristic ideas. The understanding of the algebraic and geometric
properties of the reachable sets allows a more systematic way of constructing
shift strategies and feedback laws.

Secondly, the dynamics of algorithms, depends both on the choice of a
particular shift strategy as well as on the initial data. Therefore, it is natural
to ask if other shift strategies exist, that force the algorithm to converge
for generic initial conditions, or if there is a fundamental limitation for the
convergence of the algorithm, independent of the choice of shift strategies.
Such a fundamental limitation might be the following: The target points are
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not in the topological closure of the initial point. In such a situation there
exists no shift strategy such that the algorithm converges.

Finally, after having understood the reasons why a specific algorithm
fails to converge one might be able to create new algorithms with better
convergence behavior.

In this thesis we will focus mainly on the first two issues, with only few
and preliminary results on the third issue.

First attempts to investigate the reachable sets of shifted iterative algo-
rithms are the works of Helmke and Fuhrmann [HEF00|, Helmke and Wirth
[HWO01], Chu and Chu [CCO06]. All three papers use very different tech-
niques in their analysis. In [HE00], classical inverse iteration with complex
shifts are analyzed using polynomial models. The authors show, that there
is a bijective correspondence between the topological closures of the reach-
able sets and the A-invariant subspaces. This is not longer the case for
classical inverse iteration with real shifts ([HWOI]). Here, the authors use
the concept of control sets to derive necessary and sufficient conditions for
the existence of a dense reachable set. Finally, in [CCO06], the authors study
the reachable sets of the shifted QR algorithm using matrix decomposition
techniques. In particular they show, that that the QR algorithm with shift
is neither reflexive nor symmetric.

In this thesis we focus on a different approach that is based on the inter-
pretation of reachable sets as orbits of the system semigroup. The relation
between reachable sets and system semigroups has been investigated by sev-
eral authors, including, e.g., Colonius and Kliemann [CK93| [(CK00], Mitten-
huber [Mit95 Mit01] and Kupka [Kup90] in the continuous-time case and
Fliess and Normand-Cyrot [EN81b, [FN81al|, Mokkabur [Mok89|, Agrachev
and Gamkrelidze [AG93| and San Martin [San93] for the discrete-time case.
Nevertheless, this semigroup approach can run into technical problems. For
example, the geometric structure of the system semigroup — viewed as a
subset of the diffeomorphism group of M — can be much more complicated
than the geometry of the reachable set. Luckily, in the applications in this
thesis, the system semigroups are subsemigroups of certain finite dimen-
sional Lie groups. Therefore, we are able to use the underlying differential
structure for the investigation of the reachable sets.

Since we are not interested just in reachable sets, but also their boundary
points we need to investigate the adherence structure of the system, i.e., we
analyze if a reachable set is in the topological closure of another reachable
set. For this investigation we proceed in three steps.

In the first step we investigate the structure of the system group orbits,
i.e., the orbits of the group generated by the system semigroup. Here,
we apply a geometrical framework, that has been developed by Jakubzyk,



Sontag and others (see [JS90, [AS91], [AS93|). This expands the well-known
Lie-theoretical theory for nonlinear continuous-time systems to a discrete-
time setting.

Clearly, the reachable sets are subsets of the corresponding system group
orbits. Thus, in a second step of the analysis, we investigate the structure of
the reachable sets within a given system group orbit. In this step it is very
useful to understand the relation of the system semigroup to the system
group. The investigation of this relation will be an important topic in this
thesis.

In the case of iterative numerical methods, the target points, such as
eigenvectors or solutions of linear equations, are outside of the system group
orbit of the initial point, but lie on the boundary of this orbit. Thus, in a
third step, we investigate the adherence structure of the system group orbit
and the reachable sets. Here, so-called repelling phenomena might occur,
i.e., it can happen that the boundary of the orbit and the topological closure
of any reachable set of points in this orbit, are disjoint. In this situation
there exists no shift strategy such that the controlled sequence converges
to the desired solution, regardless how close the initial guess has been. We
derive necessary and sufficient conditions for such phenomena.

In Part II of this thesis we apply the semigroup approach to the inves-
tigation of the following four numerical iteration schemes.

Classical inverse iteration is a method for the calculation of eigenvectors
of a given matrix. Given a quadratic matrix A the dynamics of inverse
iteration is given by

Ty = (A — ut])_l - Xy, X € RP™ 1 (1)

Here I is the identity matrix and (A — u;I)~! acts canonically on the pro-
jective space of lines in R"™. Specific shift strategies yield well-established
numerical algorithms, such as inverse power iteration (for constant shifts)
or Rayleigh quotient iteration (for Rayleigh shifts). Although, the basic
idea of inverse iteration was already introduced by Wielandt in 1944 (see
[Wiedd]), there is still a lot of active research in this area. For an overview
about the history and the state of the art see Ipsen [Ips96, Ips97]. Recent
results are e.g. Neymeyer [Ney01], Simoncini and Elden [SE02|, Freitag and
Spencer [FS07]. It is well known, that inverse iteration with Rayleigh shift
converges for almost all symmetric matrices and almost all initial conditions
(see Parlett and Kahan [PK69]). In fact, Batterson and Smillie provided a
proof based on dynamical system theory, that the set of symmetric matrices
for which inverse iteration with Rayleigh shift converges is open and dense
(see [BS89al). On the other hand, Batterson and Smillie also showed that
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inverse iteration with Rayleigh shift fails for an open set of non-symmetric
matrices [BS89D]. It is unknown if there exists a shift strategy such that
inverse iteration converges for a generic set of matrices and a generic set
of initial conditions. It is actually this lack of theoretical understanding of
the inverse iteration method, or closely related, of the QR-iteration, that
has motivated this type of research into the geometric analysis of reachable
sets. For inverse iteration with complex shifts this structure is now fully
understood. More precisely, the reachable sets coincides with the orbits of
the centralizer group action (see Helmke and Fuhrmann [HE00O]). It con-
trast, the real case is much more complicated then the complex case and far
from being understood. First results for the real case, such as conditions
for almost controllability, can be found in Helmke and Wirth [HWO0I].

Inverse iteration schemes can also be applied to other types of mani-
folds. For example, inverse iteration on flag manifolds and on Hessenberg
varieties are of interest from the numerical point of view, since they are
closely related to the QR algorithm (see Ammar and Martin [AM86]). Chu
and Chu pointed out, that in general a shifted QR transformation is not
invertible by a sequence of shifted QR transformations (see [CC06]). The
same phenomenon holds for other generalized inverse iteration system and
can easily be explained via the system semigroup approach, since here the
reachable sets are smaller then the system group orbits.

Rational iteration is an extension from inverse iteration, using a second
shift parameter v;. This yields the iteration scheme on projective space

w1 = (A= uD) (A= wl) -2, 2o € RP" (2)

with two control parameters wu;,v;. Rational iteration schemes have been
applied in the field of eigenvalue computation as well as for linear equation
solvers (see, e.g., Ruhe [Ruh84], Jahrlebring and Voss [JV05], Yong and
Vono [YV92]). A one-parameter version of rational iteration is Cayley
iteration, i.e.,

T = (A —u ) H(A+ud) 2, 39 € RP" L (3)

Cayley iteration steps have been proposed by several authors (see, e.g.,
Meerbergen, Spencer and Roose [MSR94], Lehoucq and Meerbergen [LM9S]).
If A is element of a classical Lie algebra, the Cayley-transform yields an el-
ement of the corresponding Lie group, a simple fact that streamlines the
Lie group approach to such systems. Nevertheless, to our knowledge, there
exists no systematic investigation on the reachable sets for rational itera-
tion schemes. Clearly, the reachable sets of both schemes are always group
orbits. We show that for a large set of matrices, but not for all matrices,
the reachable sets of rational iteration and Cayley iteration coincide.



Moving from eigenvalue methods to linear equation solvers, we consider
Richardson’s method

Ti41 = T — ut(Aﬂft — b), To € R". <4:)

Clearly, a fixed point of this iteration is a solution of the linear equation
Ax = b. The literature proposed different shift strategies, each of them
for certain families of matrices, (see, e.g., Opfer and Schober [OS84], Smor-
laski and Saylor [SS88|, Golub and Overton [GO88|, Calvetti and Reichel
[CR96]). In particular, a constant shift strategy u; = u yields the trivial
splitting method, which converges if and only if Spec(I — uA) lies in the
unit disc. Another interesting shift strategy is given by the feedback law
u; = r; Ary/||Ar¢||? with r, = b — Ax,;. This approach yields GMRES(1)
which converges if A+ AT is positive definite. However, a systematic anal-
ysis of the reachable sets of Richardson’s methods is missing.

A generalization of Richardson’s methods are restarted polynomial
iteration of order m

zi1 = (I — pi(A)A)xy + pe(A)b, 9 € R™. (5)

Here the controls p, are polynomials of degree at most m. Polynomial
restarted iteration can be considered as restarted Krylov methods. See
Sorensen [Sor(2] for an overview on Krylov methods and polynomial restart-
ing. Note that this setting includes the celebrated GMRES(m) method,
which is commonly used in praxis but only partly understood in theory (see
Eiermann, Ernst and Schneider [EES00], Joubert [Jou94]). In particular
Embree showed some simple examples where GMRES(1) converges while
GMRES(2) stagnates (JEmb03|). This phenomena can be extremely sensi-
tive subject to small changes in the initial conditions.

To improve controllability properties we introduce linear control schemes
as an alternative to the bilinear Richardson’s method. Explicitly, we con-
sider

i1 = ([ — A)xy + Buy +b, x9€R" (6)

that has A~ as an fixed point for the zero control u; = 0. Here, the choice
of B can be used to improve the convergence behavior. Linear control sys-
tems are well understood (e.g., Kailath [Kai80| and Kucera [Kuc79]). It is
known, that (6] is for almost all pairs (I — A, B) controllable. We show that
also in many of the uncontrollable cases the topological closure of any reach-
able set contains the solution of Az = b. For almost all cases a convergent
shift strategy u; = Kx; can be constructed using linear quadratic controller
design, a well-known optimal control technique (see, e.g., Lancester and
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Rodman [LR95|). This yields a globally convergent iterative algorithm,
called LQRES, for solving linear systems presented by Helmke and Jordan
[HJ05].

1.1 Main results

The main achievements of this thesis are the following:

e Development of tools for the systematic analysis of the ad-
herence structure of reachable sets. We develop a framework
merging classical concepts, such as geometric control theory, semi-
groups and graphs. This framework will be helpful for the analysis of
discrete-time control systems.

e Analysis of the reachable sets of numerical iteration schemes.
We extend the known results about the reachable sets of inverse iter-
ation schemes. Moreover, we investigate the reachable sets of rational
iteration schemes, Richardson’s methods and linear control schemes.

Now we give a more detailed description. This thesis is divided in two
parts. In Part I of this thesis we develop techniques to analyze the structure
of reachable sets of invertible discrete-time control systems.

In Chapter [2| we clarify definitions and notations which will be used
throughout this manuscript. Moreover, we present some basic observations
on discrete-time control systems. We begin with some results on system
group orbits in Section It is well-known, that the system group orbits
of a discrete-time system are immersed submanifolds, provided the system
is smoothly invertible (see [JS90]). This fact is a discrete-time version of
the well-known orbit theorem. We show that system semigroup orbits, i.e.,
the reachable sets, are not submanifolds in general. Moreover, we show
that Mokkadem'‘s algebraic version of the orbit theorem (see Theorem 3 in
[Mok95|) is wrong and prove a correct version, under the additional as-
sumption, that the system group orbit is semi-algebraic (Theorem . All
systems which appear in Part II share a property, which we termed right
divisibility. To our knowledge, the concept of right divisible systems is new.
In Section we show some examples and basic properties for such sys-
tems. In particular, we prove an equivalent condition for right divisibility
which is easier to verify (Theorem [2.15).

The concept of accessibility is the topic of Section 2.2l We introduce
techniques for checking whether a discrete-time system is accessible or not.
First, we briefly recall geometric conditions for accessibility developed by
Jakubczyk and Sontag (|JS90]) and then prove an accessibility result for
systems where the system group is a Lie group (Theorem [2.23). This result
is based on elementary facts on semigroup actions on manifolds, which can
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be found in [Mit01]. In some cases, accessibility from one point already
implies accessibility on the corresponding orbit. This phenomenon is called
Chow property. In Section we recall sufficient conditions for Chow
property given by Albertini and Sontag ([AS93|, [AS94]). We prove that any
invertible system, where the system group is a Lie group acting continuously
on the state space, has the Chow property, provided the corresponding orbit
is locally compact (Theorem [2.28)).

Section deals with the concept of controllability and the related no-
tion of weak reversibility. We easily see that a system is weakly reversible if
and only if the system group orbits coincide with the corresponding reach-
able sets. As a consequence we obtain a condition for controllability anal-
ogous to a well-known result of the continuous-time theory (see [Son98|).
Afterwards, we list some types of systems, where reachability from one point
already implies controllability. This phenomenon is well known for linear
systems. We show similar results for abelian systems, weak reversible sys-
tems and systems where the system semigroup is "large enough" in a certain
topological sense (Theorems [2.39}2.41]).

We finish Chapter [2] with some results on approzimatively reachable sys-
tems and densely reachable systems. Here we focus on the abelian case.
We show that approximatively reachable systems have the property, that
for every y in the topological closure of the reachable set of z, there ex-
ists a control sequence such that the corresponding sequence converges to
y (Theorem . Moreover, we show that — unlike abelian systems which
are reachable from one point — abelian systems which are approximatively
reachable from every point, do not necessarily have the property that the
system semigroup is a group. Dense reachability is the property, that a
system is approximatively reachable from "almost every" initial state. We
show that accessibility from some point together with approximative reach-
ability from one point implies dense reachability (Theorem .

In Chapter |3| we analyze the relationship between the properties of a
given system on state space M and the properties of certain types of re-
lated systems, namely induced systems and restricted systems. Our results
are not surprising and probably not entirely unknown. However, to the
best of the authors knowledge there exists no systematic investigation for
the analysis of induced systems or restricted systems in terms of system
semigroups. Given two systems 3, S with the same set of control parame-
ters U, with state spaces M, and respectively, M and with transition maps
f: M xU — M, and respectively, f : M x U — M, then ¥ is said to be
an induced system of X with respect to 7w : M — M if 7 is open, continuous
and surjective, and 7o f(-,u) = f(-,u) ox for all u € U. We compare the
corresponding system semigroups of the original system and the induced
system. Our results imply, that all basic controllability properties of ¥,
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such as weak reversibility or dense reachability, are preserved on % (The-
orem [3.4). In Section we analyze restricted systems, i.e, subsystems
restricted to system invariant subsets. We express the system semigroup
of the restricted system as a factor semigroup of the system semigroup of
the original system (Theorem [3.12)). For abelian systems it follows, that
controllability of a restricted system on N C M implies controllability of
all systems restricted on orbits in the boundary of N (Theorem [3.13).

In Chapter {4 we discuss the question, how the adherence structure
of reachable sets provides limitations for the existence of convergent shift
strategies. For that purpose we develop a graph theoretical language which
allows us to express the adherence structure of system group orbits and
reachable sets graphically. Obviously, a point can not be reached from =z, if
it is outside of the topological closure of the system group orbit of x. For
that reason we analyze systems restricted on orbits (in Section as well
as systems restricted on the topological closure of orbits (in Section .
We show that there always exists a sequence of reachable sets such that its
union is dense in the orbit, provided the system is right divisible and the
orbit is locally compact (Theorem [4.10). Moreover, we prove some condi-
tions for the appearance of repelling phenomena for right divisible systems
and abelian systems (Theorems [4.17}4.18).

We finish Part T with the analysis of certain families of systems on Lie
groups (Section and on homogeneous spaces (Section. As expected,
for systems on Lie groups, we obtain similar results as in the well-known
theory on left invariant continuous-time systems by Sussmann and Jurdje-
vic [JS72, [SJ72]. In particular, we show that accessible systems evolving on
connected Lie groups are densely reachable if and only if they are control-
lable (Theorem . Systems on homogeneous spaces can be regarded as
induced systems of a system on a Lie group. Thus, the controllability prop-
erties of systems on homogeneous spaces S are linked to the controllability
properties of a certain corresponding system on a Lie group ¥. We show a
condition for weak reversibility of 3 in terms of the system semigroup of ¥
(Theorem 5.8]).

In the second part of this thesis we explore the structure of reachable sets of
inverse iteration systems, rational iteration systems, Richardson’s iteration
systems and linear iteration systems.

We start with an investigation of classical inverse iteration systems
for cyclic matrices (Chapter @ First, we analyze the corresponding sys-
tem group. We show that the system group is an abelian Lie group which
acts on the projective space RP"~! (Theorem . The isomorphism type
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depends on the Jordan canonical form of the system matrix A. In Section
6.2 we classify all possible isomorphism types in terms of the minimal poly-
nomial of A. In the next section we analyze the structure of the system
group orbits. We show a one-to-one relation between the adherence struc-
ture of the orbits and the lattice structure of the A-invariant subspaces
(Theorem [6.14). Moreover, we show that there exists one orbit which is
open and dense in RP"~! (Theorem [6.15). In Section we focus on the
system restricted to the open and dense orbit. In [HWOI] it is shown,
that the restricted system is only for a certain set of matrices controllable.
We extend their results in different aspects. In particular, we show that
the restricted system is controllable if and only if the matrix semigroup
S(AR* == {r[IX, (A —ud)| N € N,r € R*,u, € R\ Spec(A4)} is equal to
the centralizer group P(A) of A (Theorem [6.18)). Necessary and sufficient
conditions for S(A)R* = P(A) are derived in Section [6.5] and Section
One interesting byproduct is an interpolation result for linear decompos-
able polynomials (Theorem [6.32). If the restricted system is controllable,
the adherence structure of reachable sets is coincides with the adherence
structure of the system group orbits. In Section we analyze the adher-
ence structure of reachable sets for the cases when the restricted system is
not controllable. In particular, we give conditions for the appearance of re-
pelling phenomena (Theorem [6.34). We finish Chapter [6| with a systematic
controllability analysis for the cases n = 2, 3, 4.

In Chapter [7] we consider generalized inverse iteration systems, i.e., in-
verse iteration schemes which act on manifolds other than the projected
space. In particular we are interested in the cases when the manifold is a
complete flag manifold (Section [7.1), a Hessenberg variety (Section [7.2), or
a vector space (Section . In the first case there exist infinitely many sys-
tem group orbits and all of them have empty interior. This fact was already
pointed out by Helmke and Jordan in [HJ02]. We show that the reachable
graph and the orbit graph are equivalent if and only if S(A)R* = P(A) (The-
orem. The analysis of inverse iteration on Hessenberg varieties is closely
related to the QR algorithm on Hessenberg matrices (see [AMS86]). We show
that there exists a dense reachable set if and only if S(A)R* = P(A) (The-
orem [7.8). We finish Section with an analysis of inverse iteration on
R™. Again, there exists a system group orbit which is open and dense in
R", provided A is cyclic. We show that the system restricted to this orbit
is not controllable for an open and dense set of matrices (Theorem [7.9).
Moreover, we present a complete analysis for the case n = 2.

In Chapter [§ we explore rational iteration systems (2). Here, the system
semigroup is naturally a group isomorphic to the system group of the cor-
responding generalized inverse iteration system. Thus, the structure of the
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system group orbits is identically with the structures analyzed in Chapter
[l As a special case we consider Cayley iteration systems. We show an open
set of matrices for what the reachable sets of rational iteration and Cayley
iteration coincide (Theorem [8.5)). In contrast we construct families of ma-
trices, where the reachable sets of Cayley iteration systems are smaller
then the reachable sets of inverse iteration systems (Theorem[8.7). We finish
Chapter 8] with a complete analysis of Cayley iteration systems in the plane.

In Chapter [9] we explore the reachable sets of Richardson’s method
and, more generally, polynomial iteration schemes of degree m. Here,
the system group coincides with P(A). It follows that, if the system semi-
group is a group, the solution of Ax = b lies in the topological closure of
the reachable set of almost all initial states. We show that the system semi-
group is a group if m > 1 (Theorem [9.11)). However, the situation differs
critically for the special case m = 1, i.e. for Richardson’s systems. On the
one hand there exists an open set of matrices, where the system semigroup
is a group. For example, this is the case if A has n different real eigenvalues
(Theorem . On the other hand, we construct a family of cyclic matrices
where the system semigroup is not a group. In this cases the solution of
Az = b is repelling to a generic subset of R™ (Theorem [9.7)).

In Chapter|10{we investigate linear control schemes @ Here, the system
semigroup is right divisible but not abelian (Theorem [10.2)). Moreover, the
adherence structure of reachable sets differs fundamentally to the adherence
structure of Richardson’s systems and polynomial iteration systems. It is
well known that generically, linear control systems are controllable. We
analyze the adherence structure of reachable sets of the uncontrollable cases.
In contrast to Richardson’s systems, none of the reachable sets has open
interior (Theorem [10.3). However, we show that there exists uncontrollable
cases where the topological closure of any reachable set contains the solution
of Az = b (Theorem [10.10). A suitable shift strategy, such that the arising
sequence converges to an solution of Ax = b, is given by a linear feedback
law. The corresponding algorithm (LQRES) is the topic of Section [10.2]
LQRES is globally convergent for a generic set of pairs (A, B) (Theorem
10.8]). For the special case B = 0, LQRES coincides with Richardson’s
iteration for the constant shift strategy v = 1. We show that in some
choices of B, LQRES converges where Richardson’s method fails for all
possible shift strategies (Example [10.9). We finish Chapter [10] with some
numerical experiments, which point out the influence of the choice of B on

the convergence behavior (Examples [10.12110.13))
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Part 1

Analysis of reachable sets



2 Discrete-time control systems

In this chapter we clarify definitions and notations which will be used
throughout this manuscript. Moreover, we present some basic observations
on discrete-time control systems. We begin with some results on system
group orbits in Section 2.1} Then, we introduce the concepts of accessibility

(Section [2.2)), controllability (Section and reachability (Section [2.4)).

Iterative algorithms with shift parameters can be regarded as discrete-
time control systems. The basic idea is to express every iteration step by a
map f, := f(-,u) which can be manipulated by a shift parameter u. This
leads to the following definition which is fundamental in this work.

Definition 2.1 (Discrete-time control systems) A discrete-time con-
trol system — or for short a system — is a triple ¥ = (M, U, f) where

e M is a topological space (the state space)

e U is a subset of R™ (the set of control parameters)

e f: M xU — M is a continuous map (the transition map)
A system ¥ is called

e abelianif f o f, = f,o f, for all u,v € U

e invertible if f, : M — M, x — f(x,u) is a homeomorphism for all
fixed u e U

e smoothly invertible, if M is a smooth manifoldﬂ and f, : M — M is a
diffeomorphism for any u € U.

e algebraically invertible, if it is invertible, M is a variety, U is a semi-
algebraic set and f : M x U — M is a semi-algebraic map |

Motivated by the applications on numerical iteration schemes, we focus
on invertible systemﬂ which are either smoothly invertible, algebraically
invertible or both.

! As a standard assumption for this thesis, a manifold is always assumed to be smooth
and of finite dimension.

2 In Appendix |A| we present the definitions and basic properties of varieties, semi-
algebraic sets and semi-algebraic maps. Note that f, and f, ! are semi-algebraic if ¥ is
algebraically invertible (see Proposition

3see [SWOR, [Wir98]| for the theory of non invertible systems
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A discrete-time control system 3 describes an iterative method with
parameters u; € U, i.e.,

Tep1 = (2, up), x9 € M, (7)

with t € Ny. In numerical linear algebra, such control parameters or input
variables u; are often called shifts and a specific choice of such shifts is
called a shift strategy. Formally, we define a shift strategy u to be a finite or

infinite sequence of control parameters, i.e., ug, ..., ur_, € U respectively
ug,uy -~ € UN. We say y can be reached from z if there exists T € N
and v = (ug,...,ur_1) € UT such that u steers x to y, i.e., the recursion

T = f(T, ), To := x yields zr = y. Given a nonempty subset &€ C M
(respectively a point y € M) we say that x converges to € (respectively to
y) with respect to u € UM if the sequence given by the recursion x,; =
f(zy, ), xog = = converges to £ (respectively to y), i.e., every open subset
VY of M such that £ C V, contains all but finitely many elements of the
sequence (z,)iey. We write 2 — & (respectively  — y). In applications one
wants to find an automatic way to obtain suitable shift strategies. If a shift
strategy is given by a map ® : M — U, u; = ®(zy), we call & a feedback
law.

2.1 Reachable sets via semigroup orbits

The basic topic of this thesis is the investigation of reachable sets and their
adherence structure. They can be described in terms of so-called system
semigroups. In the following we will give some definitions and basic prop-
erties which are essential in the analysis of abstract discrete-time systems
in general, as well as in the analysis of the structure of reachable sets of
iterative algorithms.

We will use the following notation. For T' € N we define fr : M x U7 —
M by
fT:($7u07"‘uT—1)HfuT_lo”'ofuo(x) (8)
with f, : M — M given by f, := f(-,u). In other words, fr maps an
initial point x to the output after 7T iteration steps with shift parameters
Ug, - - ., ur_1. For the following definition we stick to the notation in [Son98|.
It is analogous to the well known concept of reachable sets in the continuous-
time case.

Definition 2.2 (Reachable sets) The reachable set R(z) of a point z is
the set of all states which can be reached from z in finitely many iterations,
using arbitrary controls in each step, i.e.,

R(z):={ye M|IT €N, Juc U" :y = fr(z,u)}. (9)
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In other words

R(z) = | R"(x) (10)

where RT(z) is the set of points which can be reached in T € N steps,
ie., RT(z) :== {fr(z,u)|u € UT}. We call z € M a fized point of X if
R(z) = {z}.

In this thesis we will extensively use the fact that reachable sets can be
interpreted as orbits of certain semigroup actions.

Definition 2.3 (System semigroup) The system semigroup Sy, of a sys-
tem ¥ = (M, U, f) is given by

Sy:={s:M—M|3TeN,JuecU" 5= fr(,u)}. (11)
Obviously, Sy, is a semigroup with respect to composition of maps, i.e.,
5182 1 T — s1(s2(x)).

Note that every element of Sy, is a continuous map s : M — M. It is easy
to see, that X is abelian if and only if Sy is abelian. Moreover, if X is
invertible, s - x = s -y implies x = y and s18o = idy; implies sos1 = idyy.

Canonically, the system semigroup acts on the state space via the map-
ping

Sy XM — M, (s,x)—s-x:=s(x). (12)

In other words, the reachable set of a discrete-time control system is the
orbit of the semigroup action (12)), i.e.,

R(z) ={s(z)|s € Sg} := Sy - z. (13)

Due to this fact, reachable sets are also called forward orbits.

The system semigroup is not a group in general. In particular, Sy, does
not always contain the identity homeomorphism idy;. Therefore, we can
neither expect that z lies in R(z) nor that y € R(x) implies 2 € R(y).
Nevertheless, if the system is invertible, which will be the standard case in
this work, the system semigroup generates a group in a canonical way.

Definition 2.4 (System group) Let ¥ = (M, U, f) be an invertible sys-
tem and Sy its system semigroup. We call the group

Gy = (Sx) == {gvo---0og1| NeN,g € Sy or g;' € Sy}

the system group of X.
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Note that Gy is the smallest group such that Sy is a subsemigroup of Gy.
Every g € Gy is a finite composition of continuous maps g; € Sy U Sg*
and therefore continuous. Here Sg' := {s7!|s € Sx}. Tt also follows, that
Gy is abelian if and only if Sy, is abelian. The orbits of the group action
Gs x M — M, (g,m) — g(m) contain important informations about the
structure of the reachable sets due to the trivial but significant observation
that

R(x) € Gy -2 :={g(x)|g € Gz} (14)

for all x € M. Nevertheless, in many applications, such as inverse iteration
systems (see Section @, Sy, is a proper subsemigroup of Gy.

2.1.1 Orbit theorems

The system group orbits of a system X are usually better understood than
the reachable sets. First of all they form a partition on the state space.
Moreover, they have a natural structure of immersed submanifolds in the
state space, provided ¥ is smoothly invertible. This fact is a discrete-time
version of the well-known orbit theorem of continuous time systems (see
Theorem 1, Chapter 2 in [Jur97]).

Theorem 2.5 (Orbit theorem) Let X be a smoothly invertible system
with U open in R™ and f : M x U — M smooth. Then any orbit Gy, - x is
an immersed submanifold of M with at most countably many components.

In other words, Gy, - ¢ can be equipped with a manifold structure, such
that the inclusion map inc : Gy - * — M is an immersion. See Theorem 7
in [JS90] and Proposition 8.9 in [Son86| respectively for more details and a
proof. Recall that an immersed submanifold is not necessarily a submanifold
in the common sense, i.e., the inclusion map is not necessarily an embedding.
Now we give an easy example for this phenomenon.

Example 2.6 Consider ¥ = (R* R, f) with
Ty cosam —sinam Ty
e ()= (5 ) ()
X9 +smam  cosam Lo
where o € R\ Q. Then
G (xl) _ {(q)som —smom) (xl) L e Z}
T sinam  cosam Ty
_ {(CQS zam  —sin zonr) <x1> ‘ L c Z} ’
sin zam  coszam T
which is a countable dense subset of

|2]°S = {(y1,92) € R? |57 + 5 = [}
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and therefore not a submanifold of the state space.

Mokkadem proposes an algebraic version of the orbit theorem (Theorem
3 in [Mok95|). In particular, he claims that Gy - x is an embedded smooth
subvariety, provided M is a smooth variety and f, is a bijective regular
morphism. Note that Example is a counterexample to this claim. Nev-
ertheless, assuming that Gy - = is semi—algebraicﬂ we obtain the following
version of the orbit theorem.

Theorem 2.7 (Algebraic orbit theorem) Let ¥ = (M, U, f) be smoothly
wnvertible such that M is a variety in R™. If Gy, - x is semi-algebraic, then
Gy - © 1s an embedded smooth submanifold of M.

Proof. If Gy - x is semi-algebraic, it can be written as a finite union of
disjoint submanifolds A;, 1 = 1,...,[, such that each A; is diffeomorphic to
(0,1)% and that dim(Gx-z) := d := max{dy, ..., d;} is uniquely determined
(see Theorem [A.4).
Moreover, there exists y € G, -  and an open set U, C M, such that
y € UyNGx -z and U, N Gs -z is diffeomorphic to (0,1)? (see Lemma [A.6).
For all z € Gy, - x there exists g € Gy, with z = g(y). Therefore,

z€g(U,NGy - x).

Since ¢ is bijective and ¢(Gyx-x) = ¢Gx-x = Gx -z, we obtain ¢(U,NGy-x) =
g(U,)NGx.-z. Moreover, g(U,) is open and ¢g(U, NGy - x) is diffeomorphic to
(0,1)¢ since g : M — M is a diffeomorphism. Hence, Gy, -z is a submanifold
of M of dimension d. a

In many applications, the system group Gy, carries a canonical Lie group
structure. Here, the literature on Lie group actions provides different suffi-
cient conditions for submanifold structure of Gy, - x.

Theorem 2.8 Let X = (M, U, f) be a smoothly invertible system. Assume
that Gy, carries a Lie group structure such that the group action « : Gyx, X
M — M, (g,z) — g(z) is smooth. Then

a) If Gy, is compact then every orbit G, - x is a submanifold of M.

b) If Gx. a semi-algebraic set such that « is semi-algebraic, then every
orbit Gy, - x is a submanifold of M.

Proof. Statement a) can be found in [GOV97|, Theorem 2.3 and statement
b) can be found in [HM94], page 353. Moreover, Statement b) is also a
consequence of Theorem [2.7] since Gy, - x is the image of the semi-algebraic
map o, : Gy — M, g — g - x and therefore semi-algebraic (see Proposition

and Corollary [A.3). O

4we will show conditions on ¥ for which Gy, - x is semi-algebraic in Section m
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In contrast to the system group orbits, system semigroup orbits (the
reachable sets) are not necessarily immersed submanifolds of the state space,
even if ¥ is smoothly invertible. An easy example is given by 3 = (R, R, f)
with f(z,u) = z + u*. Here R(0) = [0,00). Another example, which
additionally shows that the reachable sets might have locally different di-
mensions, is the following:

Example 2.9 Consider ¥ = (M, U, f) with M =R?* U = R and
fu:R? = R? (xl ) — ( —u:):l—CCLQ).
i) Cr1 — UX2
Here c is a real constant with |¢| > 1. We show that the reachable set of
z = (1,0)7 is not an immersed submanifold of M (see Figure[l)). Obviously,

RY(z) = {fulz)| u e R} = {(—u, )" |u € R}
is a one dimensional submanifold of M. Moreover, R'(x) and the disk

C .= {?J = (y1,52) € R? ‘ [yl < 62} ;

have nonempty intersection, since |¢| > 1. On the other hand
( \ Rl U RT

lies outside C as can be shown by induction on 7. For all y € R?*(z) we
obtain

[ylla =1l fup © fuu ( )Hz

. UoU1 — C
—UuUgC — uyC 9

= /(upuy)? + c* + (cug)? + (uic)?
> 2

Now for T' > 2 we assume that ||y|| > ¢? for all y € R”(x). Recall that
R (z) = {fur (R"(2)) |ur € R}.

In other words, every z € RT“(x) can be written as z = f,(y) with y €
RY(z) and u € U. We obtain

12ll2 = Il fu¥)ll2 = \/(u2 +e)Wi +y3) = Iel -yl

and therefore ||z]|; > ¢®. Hence, ||z||z > ¢® for all y € RT(z) with T > 2.
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Under the assumption that R(z) is a manifold, we obtain
dimR(z) =1, (15)
since R'(z) N B. = R(x) N B, for an open ball
B.:={y € R*[|ly = (0,0)" ||z < e}

with € > 0 small enough. On the other hand R?(x) = { fu, © fu, () | uo,u; € R}
has open interior, since the Jacobian of the map

R? — RQ, (U07 ul) — fuo ° fu1((17 0)T>

D:(Uo Ul)
—c —cC

and therefore regular for uy # u;. Hence, if R(z) is a manifold, it must
have dimension 2 which is a contradiction to ([15)).

is

-1.5 -1 -05 ] 05 1 15

Figure 1: A plot of (R'(z) UR*(z) UR3(z) UR*(x)) N [~1.5,1.5] x
[—1.5,1.5] for ¢ = 1.1 and = = (1,0)". Any point of RF(x) with k > 5
is outside of the square [—1.5,1.5] x [—1.5,1.5]. We see, that R(x) is not a
manifold, since the one dimensional line R'(z) is isolated of R(z) \ R'(x)
close enough to (0,1.1)T. Moreover, the boundary of R*\R(x) is nonsmooth.
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2.1.2 Semi-algebraic orbits

If ¥ = (M, U, f) is algebraically invertible, then for all 7' € N and all z € M
the set R”(z) is semi-algebraic, since it is the image of the semi-algebraic
set UT and the semi-algebraic map (ug,...,ur_1) — fr(z, ug,...,ur_1).
Nevertheless, the reachable set R(z) = (J,o, R'(z) or the corresponding
system group orbit Gy - x is not semi-algebraic in general. An easy example
is given by ¥ = (R, R, f) with f(z,u) = x + 1. Here,

R(z)={x+n|neN} and Gy-xz={x+z|necZ}.

In the following we show some sufficient conditions which provide that the
reachable sets R(z) and the system group orbits Gy, - x of an algebraically
invertible system are semi-algebraic.

Similarly to the construction of the reachable sets, we define
O (z) := {f;; o---o fil(x)|u €U, e € {—1,1}}, TeN

for v € M and T' € N. Note that Gy -z := | J;2, O(x). Moreover, we obtain
the following lemma:

Lemma 2.10 Let ¥ = (M, U, f) be an invertible system and T € N. Then
a) R™!(x) C UL, R'(x) if and only if R(x) = UiZ, R(2).
b) O (z) C U, O (x) if and only if Gx, - & = |, O'(x).

c) If ¥ is abelian and R(z) = U], R'(z), then R(y) = U, R'(y) for
ally € Gy - x.

d) If ¥ is abelian and R(z) = J_, R!(x), then Gy, - = = U2, OYx).

Proof. a) Obviously, R(z) = J;_, R!(z) implies R"*!(z) € U, R ().
Now we assume R7 ! (z) C (J_, R*(x). Then

RM*2@) = () R'@ < R @) < R,

yERT+1 ()

since y € RTT(x) implies y € R(z) for some 1 < ¢ < T and therefore
Ri(y) € UL, R (x). Hence, R(x) = %, RY(r) = UL, R! ().

b) Analogous to a), Gy -z = |J_, O'(z) implies O+ (z) C |J]_, O%(x).
Moreover, OT+(z) C |J]_, O'(x) implies

T

o) = |J 0'clJo" (@) c|JO (),

yeOT+1(z) t=1
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and therefore Gy, -z = |J_, O'(x).
c) Let y € Gy -z, i.e., y = g -z = g(x) for some g € Sy. Then, for any
S € Sz;

S(y) :gos(x) :gOfUtO'-~0fu1($)
for 1 <t < T. Therefore, s(y) = fu,, o---o fu,(y) € R(y). We conclude
Rly) = Sx -y = U R'(y).
d) For any y € Gy, - z,

y:fu_lo---o u_llofth O"'ofm(x)‘

31

Since R(z) = Uz;l R'(z), we can replace f,,_, ..., f,, by a possibly shorter
sequence f5, ..., fz such that t, < T. Moreover, fu, 00000 fu(y) = 2 €
Sy, -y with z := fﬁgg o---o f5(x). By c) we can replace fy, ..., f, by a

shorter sequence fﬂzl’ ..., fa, with £, < T. Hence,
Y=ol oo file fu, 00 fu(x) € O ()
with ; + £, < 27, and therefore Gy, - © = le O'(x). O

From Lemma we easily deduce sufficient conditions which provide
semi-algebraic orbits respectively semi-algebraic reachable sets.

Theorem 2.11 Let X = (M, U, f) be an algebraically invertible system.
Then

a) If RTH(x) C Uthl R (x) for one T € N, then R(x) is semi-algebraic.
b) If OT+(z) C U, O'(x) for one T € N, then Gy, - is semi-algebraic.

c) If © is abelian and R (z) C U;_, R'(x) for one T € N, then Gy - x
18 semi-algebraic.

Proof. a) and b) For t € N and e € {—1,1}" we define

F;:Utﬁj\/ﬂ (ul’,._,ut>HfZiO"'O 61(1-)_

Note, that Rt(z) = FP(U) and
O'w = J FEO)
ee{—1,1}*

Now we show, that for all ¢ € N and all € € {—1,1} the set F(U") is
semi-algebraic. Then, under above assumptions, R(x), respectively Gy - z,



22 2 Discrete-time control systems

are — by Lemma — finite unions of semi-algebraic sets and therefore
semi-algebraic.

Recall that f is semi-algebraic and {z} x U is semi-algebraic by Propo-
sition Therefore F\V(U) = f({x} x U) is semi-algebraic by Corollary
[A.3]l Moreover,

FCYWU) = {ye M| fuy) =z for some u € U }
= mu ({(y,u) € M xU|[f(y,u) = x})
= M (ffl({x})) ;

where my : M x U — U, (z,u) — z. In other words, F\ (U) is the
projection of the semi-algebraic set f~'({z}) and therefore semi-algebraic
(see Theorem and Corollary [A.3)). By induction it follows that F<(U"))

is semi-algebraic, since
FROU™) = f(U x F(UY)

and
FBI U™ = my (FH(FQ(UY)).

¢) If ¥ is abelian, RT+1(z) C U, R'(x) implies that Gy, - = is the union

of finitely many sets O'(x), t € N (see Lemma [2.10)). Therefore, the claim
follows from b). O

If ¥ is abelian, then — by Lemma [2.10| - R(z) = U;‘il R'(x) implies,
that Gy, - z is the union of finitely many sets of the form O(x), ¢ € N.
The following example shows that the converse is false, i.e., that Gy -z =

UL, O'(z) does not imply that R(z) = Utle RY(z) for any T € N.

Example 2.12 Let ¥ = (RT,(5,00), f) with f : (z,u) — uz. Here RY

denotes the set of positive real numbers. Then

1
Ol (z) = (ix, ) U (0,22) =Rt =Gy - z.

On the other hand, R”(z) = (572, 00) # RT. Therefore,

R(z) = JR (z) =R" # | JR'(x)

for any T" € N.
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2.1.3 Right divisible systems

In many important cases, the system semigroup has additional structure. In
fact, most of the systems we are analyzing in Part IT have an abelian system
semigroup. Nevertheless, in Chapter [10| we deal with linear systems z;,1 =
Ax; + Buy, where the corresponding system semigroup is not abelian, but
fulfills weaker conditions, which we named right divisibility, and respectively
left divisibility.

Definition 2.13 (Right divisible systems) A subsemigroup S of a group
is said to be right divisible if (S) = SS™1, i.e., every g € (S) can be written
in the form g = s;s," with 51,5, € Sx. We say that an invertible system
Y = (MU, f) is right divisible if its system semigroup Sy, is right divisi-
ble. Analogously, we say an invertible system is left divisible if the system
semigroup is left divisible, i.e., (Sy) = S5'Ss.

Note that every abelian semigroup is right divisible and left divisible. The
following example shows, that the converse is wrong in general.

Example 2.14 Let F be a field and R be a subring of F. Assume that for
all f € F there exists r € R such that fr € R. Then

S = {(Ti,j)i,jzl,...,n & GLn(F) | Ti,j - R,i,j = 1, Ce ,n}

is a right divisible and left divisible semigroup. Note that .S is not abelian in
genera]E]. For any (fi;)ij=1,..n € GL,(F), we choose r;,; € R, 1,7 =1,...,n
such that f;;r;; € R. Then r := Hi,jzl,.‘.,n r;; € IR has the property
fijr € Rforalli,j7 =1,...,n. Therefore,

(fij)ij=1,m = (7'[>71(fi,j7')i,j:1,...,n = (fi,jr>i,j:1,...,n(7nl)71-

We conclude GL,(F) = SS~! = S715.

Obviously, a semigroup S is right divisible if the semigroup S is left
divisible. The following result provides a practical method for checking if a
given system is right divisible or not, without knowing Gy, explicitly.

Theorem 2.15 An invertible system X = (M, U, f) is right divisible if and
only if the following condition holds:

for all so,s5 € Sy, there exists s € Sz such that s, 'sgs € Sx.  (16)

Proof. Assume that Gy = SZS;. Then for any s,,sg € Sy there exists
s1,82 € Sy such that s 'ss = s1s;,'. Hence, s;'szsy € Sy. Hence, is

°In particular in the special case F = R(z) and r = R[], = single variable, for n > 2.
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fulfilled.
Conversely, let us assume that is fulfilled. For any g € Gy there exists
neN, sy,...,s, €Sy and €,...,¢, € {—1,1} such that

_ o€l €n
g=51 ...8,.

We show that g € 5’2551 by induction. For n = 1 we have to distin-
guish between the cases g € Sy and g € S5'. In the first case we have
g = gss! € SyS5'. In the second case we choose sg,s € sy such that
gsps =: 5 € Sy. Then g = 3(sgs)~! € SxSy'.

Now let g = ¢,5° such that g, = s{* ... 57 = 5,5, with s1,...,8,,3,51,8; €
Sy and €,...,6,,€ € {—1,1}. If ¢ = —1 then

g=255,"'5"=35(33)" € SgS5*

and we are done. If € = 1 then g = 5,5,'5. Now we choose s € Sy such
that 3;'3s € Sx. Hence,

g = 51(5,'5s)ss™! € Sy S5t

O

Corollary 2.16 Let S be a subsemigroup of a group G and N a normal
subgroup of G.

a) If S is right divisible, then NS is right divisible.

b) If S is left divisible, then SN is left divisible.

Proof. a) For any nys;, ngsy € NS there exists n € N such that
(n1s1) 'nase = (7' ngs1)sy tsy = Ny so.

If S is right divisible then there exists s € S such that 7is; 'sos € NS (see
Theorem [2.15). Hence, NS is right divisible. b) If S is left divisible then
S~! and NS~ is right divisible. Therefore, (NS™1)~! = SN~! = SN is
left divisible. O

We finish this section with two examples. In the first example we analyze
an explicit system which is right divisible and left divisible but not abelian.
In the second example we show a system which is neither right divisible nor
left divisible.
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Example 2.17 Let Sy, be the system semigroup of a system on M = R?

defined by
a b
fulz) = uz; uEU.—{(O c)

Obviously, Sy, can be identified with the non abelian matrix semigroup U.
The following calculation shows, that for every s;, sy € Sy there exists
u € Sy, such that sflsQu € Syx. Thus, Sy, is right divisible by Theorem m
Let

a,b,c>0}.
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for y large enough. In particular this shows

GZ—&Y%;—{(S i)am>0}

Hence, X is right divisible. For any aq,by, ¢y, a,bs,c0 > 0 we find z > 0
large enough, such that y := i(CﬂC + 2—11 — Z—z) is positive. By construction

we obtain
a_11 x ar b\ [ at oy az by
0 = 0 ¢ ) U0 ot 0 ¢ )

In other words, for any sq, sy € Sy, there exists 51, §o € Sy, such that 3132_1 =
51_152 and therefore SZS; - S;Sg C (. Hence, X is left divisible.

Example 2.18 Consider ¥ = (R?\ {0}, U, f) given by

U= {(Zi Zi)EGLQ(R)

and the transition map by f(z,U) = Uz. Obviously, the system semigroup
can be identified with the matrix set

Sizz{(1“11“2>ezGLﬂR)

U1 U2

m>0J=1V~A}

U1y, U2, U1, U2 > 0} .

We show that Sy is not right divisible using Theorem In particular,

for
2 3 3 1
51_(11)652311(182_(21)682
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there exists no u = (u;;); j=1.2 € Sy such that s;'syu € Sy, since

-1
8_18211, _ 2 3 3 1 U1 Uy2
1 11 2 1 Ug1l U
_ ( 3U11 + 2U21 3U12 + 2U22 ) Q_f SE

—U11 — U221 —Ui2 — U2

since —uy; — ug; < 0. Hence, X is not right divisible, since Condition (16])
is not fulfilled.

Now we show that X is not left divisible. With the notation above we

obtain
I -1 5
sy 'spst = ( 0 1 ) € Gy.

Assuming sy 'sys7" € (Sx) 1Sy there exists s,, 55 € Sy such that

. -1 5
g =S4 0 _1 ) =S

This is not possible, since g+ (6,1)" C R~ x R~ but sg-(6,1)" C RT x R*.
Hence, X is not left divisible.

Note that in all examples in this thesis the system is either right divis-
ible and left divisible or not right divisible and not left divisible. To our
knowledge, it is unknown if right divisibility implies left divisibility.
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2.2 Accessibility

Accessibility is the property that one is able to reach a set of full dimension
from a given state. More formally we define:

Definition 2.19 (Accessibility) A system ¥ = (M,U, f) is said to be
accessible from x € M if R(x) has nonempty interior in M. We say ¥ is
accessible if int R(x) # () for any x € M.

In the following subsection we briefly describe two techniques to check
whether a system Y is accessible from a certain point. The first one is a geo-
metric framework, developed by Jakubczyk and Sontag. It is similar to the
well-known Lie-theoretical approach for continuous-time systems. After-
wards we present technique which uses topological structure of the system
group and system semigroup.

In many situations, accessibility from y € Gy, - x is sufficient for accessi-
bility from all z € Gy, - x. This phenomena is called Chow property and will
be the topic of Subsection [2.2.2]

2.2.1 Conditions for accessibility

First of all, we want to point out a basic necessary condition for accessibility
from one point.

Proposition 2.20 Let ¥ = (M, U, f) be an invertible system. If ¥ is ac-
cessible from x € M, then the system group orbit Gy, - x is open in M.

Proof. Since R(x) = Sy, -« has nonempty interior, there exists s € Sy, such
that s -z € inty;(Sy - x). For any y € Gy, - = there exists g € Gy such that

y=g-x=gs "(s-x) Cgs'(intyy R(z)) CGx-x

~
=V

Since gs~! is a homeomorphism, V is a neighborhood of y in M. Hence,

Gy - x is open. O

In particular, knowing the structure of the system group orbits of X, it is
enough to check the elements of the open orbits for accessibility.

Now we introduce sufficient conditions for accessibility. Here we assume
that U C R™ is open and that f : M x U — U is smooth. Let U be a subset
of U such that every connected component of U has at least one element
in U. Foru € U,keNy, 1<i<manduy,...,up € U we define the Lie
derivative vector field

Adul,...,uk fu7i M —->TM
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given by
0

T —
avi v=0

(fupo-o fm)il ° f;l O futv © (fu, © 0 fu, ) (). (17)

In particular if (i) ¥ is abelian or if (ii) U is connected and f, = id for some
uweU, reduces to

0

81)@- =0

fu_l © fu+v(x)'

T —

The above family of vector fields generates a Lie-algebra Ly, i.e., the small-
est Lie algebra which contains all elements Ad,, ., fui, for ug,... u, € (7,
ke Ny,ueU,i=1,...,m. For every x € M a linear space of tangent
vectors at x is given by

Ls(x):={X(z)| X € Ls} C T, M. (18)

The following theorem gives a necessary and sufficient condition for acces-
sibility in terms of L.

Theorem 2.21 (Jakubczyk and Sontag [JS90]) Let ¥ = (M, U, f) be
a smoothly invertible system, such that U 1is an open subset of R™ and
f:MxU — M is smooth. Then ¥ is accessible if and only if dim Lx(z) = n
for all x € M.

A proof of Theorem can be found in [JS90] (See Theorem 3 for the case
where U is a connected subset of R and Theorem 9 for the generalization
to U C R™). Note that dim Ly (z) is independent from the choice of U (see
Remark 4.5 in [JS90]).

Now we present another technique for checking accessibility, which is
particularly useful for systems X, where Sy and Gy have an additional
structure. In particular, in our applications in Part we will deal with
systems, given by well-known numerical algorithms, where Gy, turns out to
be a subgroup of a Lie group G. In this situation we equip Gy and Sy, with
the subspace topology relative to G. Obviously, accessibility properties are
linked with topological relations between Sy, and Gfy.

Lemma 2.22 Let ¥ = (M, U, f) be an invertible system and Gy, equipped
with a topology.

a) If hy : Sy — M; s +— s-x is continuous, then inty R(x) # 0 implies
inta,, Sy # 0.

b) If hy : Sy, — M; s+ s-x is an open map, then intgy Sy, # 0 implies
accessibility for all y € Gy - x.
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Proof. a) If inty; R(z) is nonempty and the map
hy: Sy — M;s+— s-x

is continuous, then h_'(inty; R(z)) C Gy is an open subset of Sy.
b) Suppose y € Gy, -« and intg,, Sy # (0. Then there exist g € Gy, such that
y = g-x. If hy is open, then also h, is open, since h, = h, o ry-1, with

re-1g: Gy — Gy, h — hs™'g.
Therefore, R(y) has open interior, since
R(y) = SE Y 2 iIlthXJ SZ Y = hy (thGE Sz) .
O

In applications it is reasonable to choose a topology on Gy such that
Gs; x M — M is continuous and therefore h, is continuous for all x € M. In
most important cases we obtain intg, Sy, # () (but not always, see Example
2.24). The assumption that h, is open is certainly very restrictive. On the
other hand, one can always restrict the system to the group orbit Gy - z.
This will be the topic of Section [3.2]and Section [4.2] Then, for the restricted
system, Gy, acts transitivelyﬁ on M and — under weak assumptions on Gy - x
and Gy, — the map h, is open (see Theorem [B.8). Using techniques from the
theory of topological semigroups, we obtain the following sufficient condition
for accessibility.

Theorem 2.23 Let X = (M, U, f) be a system on a manifold M and Gy, be
equipped with a Lie group structure, such that Gz x M — M, (g,z) — g(z)
1s transitive and continuous. If

intg,, Sy, N Stab, # () (19)
for x € M, then X is accessible from x and x € inty; R(x).
Here Stab, denotes the stabilizer subgroup Stab, :={g € Gx|g -z = z}.

Proof. The claim follows from known results on actions of subsemigroups
of Lie groups. By Theorem the map h, : Gy — M, g — g-x is
open. Hence, ¥ is accessible by Lemma [2.22] Moreover, if Condition
is fulfilled, then there exists a neighborhood U of x such that Sy
acts transitively on U. In other words for all u;,us € U there exists
s € Sy such that s-u; = uy (see Proposition [B.7). Hence, U C R(z)
and z € inty; U C inty R(x). O

In the literature on discrete-time systems (for example [JS90] and [AS93, [AS94]),
transitivity often means, that the orbit Gy -2 has nonempty interior in M (and is therefore
open by Proposition [2.20). Nevertheless, in this work transitivity means that Gy,-x = M
for some (and therefore for all) « € M.
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In order to apply part b) of Lemma and Theorem the system
semigroup Sy, needs to have nonempty interior with respect to the topology
of Gx. Using exotic topologies, such as the indiscrete topology, one can
easily construct examples such that the interior of Sy, is empty. In fact the
following example shows, that this can also be done if Gy, has a Lie group
topology, provided U is sufficiently anomalous.

Example 2.24 Tet us consider the following system 3 = (R, U, f) where
U C R is given by the following construction. Recall that R is a topological
Q-vectorspace, with respect to the usual topology of R. We choose a basis
{b;|i € I} such that b; = 1 and by = —/2 and define

U= Z)\sz fg],\f]<oo,/\i6(@+

iel

Now let f(x,u) = x + u. Obviously we can identify the semigroup Sy, with
U. Moreover Gy, = R, since every r € R is a sum of two elements, one from
S5 and one from —Ssx. On the other hand we have

intGE Sz; = @,

since —Q% and v/2Q are disjoint to Ss;.

2.2.2 Chow property

A useful property for analytic continuous-time systems is that every reach-
able set has nonempty interior in the corresponding system-group orbit.
This fact is known as the positive form of Chow’s lemma ( See [Kre74],
Theorem 1 for a proof). In particular, a system is accessible from z € M if
and only if it is accessible from all y contained in the system-group orbit of
x.

For discrete-time systems — even if the transition map is analytic — it
might happen that reachable sets R(z) have empty interior in Gy - z. An
example has been given by Albertini and Sontag in [AS93| (Example 5.1).
Using the same example, we show that accessibility from = € M does not
imply accessibility from y € Gy, - = (see Example below).

Nevertheless, in the following we present some sufficient conditions on
3} which imply the following useful property.

Definition 2.25 (Chow property) A system ¥ = (M, U, f) has the Chow
Property if accessibility from z € M implies accessibility from all y € Gy - x.

We start with a trivial but important observation on systems with
abelian semigroup.
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Theorem 2.26 FEvery abelian tnvertible system has the Chow property.
Proof. If Sy is abelian, then

R(y) = Ss-y=Svg -z =g(Ss-x) 2 g(ints R(z)).
Hence, R(y) has nonempty interior, since g is a homeomorphism. O

Using the geometric framework developed by Jakubczyk and Sontag
(see [JS90], respectively Theorem [2.21)), Albertini and Sontag provide some
sufficient conditions for the Chow property. Recall that a point x € M is
said to be positively Poisson stable if for each neighborhood V' of x, there
exists an integer 7' € N and uy,...,ur € U such that f,.o---of, (z) € V.

Theorem 2.27 (Albertini and Sontag [AS93), [AS94]) Let X be an in-
vertible system with U open in R™. We assume that M is an analytic mani-
fold and that f is analytic.

a) If x € M is positively Poisson stable, then accessibility from x implies
accessibility from all y € Gy, - x.

b) If Gx, - x is compact and M = Gy, - x, then ¥ has the Chow property.

Proof. If ¥ is accessible from x € M, then Gy, - x, and therefore Gy, - y for
any y € Gy, -z, is open in M (see Proposition [2.20). Now the claims follow
immediately from the results in [AS93| and [AS94]. In particular from the
assumptions in a) (in b)) it follows, that inty; Gy -y # () implies accessibility
from y, by Theorem 1 in [AS94] (by Theorem 4.4 in [AS93]). O

In our applications in Chapters the system semigroups carry a Lie
group structure and the system semigroups carry the topology induced by
Gys. In particular, using Lemma we obtain the following sufficient
condition for the Chow property.

Theorem 2.28 Let ¥ = (M, U, f) be an invertible system. Assume that
Gy, is a Lie group such that the action Gs, x M — M 1is continuous. Let
x € M such that Gy, - x s locally compacﬂ Then > has the Chow property.

Proof. Obviously, the restricted action Gy, X Gy, - x — Gy - x is continuous
and transitive. Recall that a Lie group is a locally compact Lindel6f space.
Now, by Theorem it follows that h, : Sy — M, s — s - x is continuous
and open. If intys R(z) # 0, then intg,, Sy, # 0 by part a) of Lemma [2.22]
Then inty R(y) # 0 for all y € Gy, - x by part b) of Lemma [2.22] Hence,
accessibility from z implies accessibility from all y € Gy, - «.

(Il

In particular, Gy, - & is a submanifold and therefore locally compact, if ¥ = (M, U, f)
is smoothly invertible and Gy - x is semi-algebraic (see Theorem . Note that a semi-
algebraic set is not locally compact in general, see for example M = (Rt x R) U {(0,0)}.
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At the end of this section we show — using an example of Albertini and
Sontag — that not every analytic system has the Chow property.

Example 2.29 Let X = (M, U, f) be given by M =Z xR, U = R and

() - 250)

Here, h : R — R is any analytic function with A(0) = 1 and h(x) = 0 if and
only if x € N. Note that f is analytic. Moreover, f, is a diffeomorphism

with .
_ i r —
ful:M—>M7(y)'—> (y—uh(:p—l))'

for any u € R. Now we prove that X is accessible from (0,0)" but not
accessible from (0,1)" € G- (0,0)". This shows in particular, that 3 does
not have the Chow property.

(i) First we demonstrate that the system group orbit of (0,0)" € M is
Gy -(0,0)" =Z x R,
i.e., we show that for any (x,y)" € Z x R there exists g € Gy, such that

g-(0,0)" = (z,y)". (20)

Recall that h(0) = 1 and h(—1) # 0. If z = 0, then (20) is fulfilled by the
choice g = fo - f,7} with u = —y/h(—1), since

w0 () = (i) = ()

If x < 0, then for u = y we obtain

feogitoro it (o) =4 (70 TY) = (o) = ()

—z+1 times

Hence, (20 is fulfilled by g = f, - f§~*.
If x > 0, we choose u = y/h(0). Then is fulfilled by ¢ = f, if z = 1,

r—1

orby g=fy o f,if x>0, since

e ()1 (o))

z—1 times

We conclude Gy - (0,0)T = M. Note that in the case z > 0, it is possible
to find g € Sy, to fulfill (20).
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(i) Now we show that ¥ is accessible from (0,0)". In (i) we have seen
that every element of N x R can be reached from (0,0)" by elements of Sy.
Hence R((0,0)") D N x R and ¥ is accessible from (0,0).

(iii) In particular, (i) shows that (j,0)" € R((0,0)") for j € N. On the
other hand, Albertini and Sontag have pointed out that ¥ is not accessible
from (5,0)", j € N. In fact, we obtain

(1) - UG}

since for all u € U, j € N we have f,-(5,0) = (j + 1,0+ uh(j)) = (j+1,0)
and therefore s - (4,0) = fu, 0+ -0 fu. - (j,0) = (j + T,0).
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2.3 Controllability

In this section we introduce the concept of controllability. First we give the
classical definition that can be found in any textbook dealing with discrete-
time nonlinear control systems (see for example [Son98|, Definition 3.1.6).
Afterwards we show necessary as well as sufficient conditions for controlla-
bility and other related properties. Here we always emphasize the semigroup
orbit structure of the reachable sets.

Definition 2.30 (Controllability) A system ¥ = (M, U, f) is said to be

e reachable from x € M if for any y € M there exist T' € N and u € U”
such that fr(z,u) =y.

° controllabl if for all z,y € M there exist T € N and v € UT such
that fr(z,u) =v.

e controllable on N C M if for all x,y € N there exist T € N and
uw € UT such that fr(z,u) =y.

Obviously a system ¥ = (M, U, f) is reachable from = € M if and only
if R(x) = Sy - x = M. Moreover, the following proposition shows the basic
relation between controllability and reachability.

Proposition 2.31 For an invertible system ¥ = (M, U, f) the following
statements are equivalent:

(i) 3 is controllable
(ii) 3 is reachable from every point in M

(i1i) Sy, -x =Gx-x =M forallz € M.

Proof. Obviously (i) = (i7) and (iti) = (éi). For any x € M we have
Sy -x C Gy -x € M. Therefore, reachability from every point implies
Sy -x =Gy -x =M for all x € M. This also implies controllability of X
since y € Sy, - x for every z,y € M. O

Obviously, Sy, = Gy implies that X is controllable, provided M = Gy - x.
Nevertheless, the following example shows, that controllability does not
necessarily imply Sy = Gy.

8 Note that in the literature of linear systems controllability often means that every
point x can be steered to 0. In the discrete-time case this is not equivalent to Definition
see Example 2.11 in [AMO06]. Nevertheless, in the literature of nonlinear systems
Definition is common (see Definition 3.1.6 in [Son98] or Definition 9, Chapter 3 in
[Jur97]).
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Example 2.32 Let M :=R, U := R and f(z,u) = 2® + u. Note that ¥ =
(M,U, f) is an invertible system, because every f, is an homeomorphism.
Since

R(z) DR (z) ={2* +u|lue R} =R

for all x € M it follows from Proposition that X = (M, U, f) is control-
lable. On the other hand every element of Sy, is a non-constant polynomial
and therefore has no inverse in Sy. Hence, Sy # Gy.

It is well-known, that a linear system X = (R",R™, f), i.e., a system
given by f(x,u) = Az + Bu with A € R"*" B € R™™ is controllable if
and only if the Kalman rank condition holds, i.e.,

rank[B, AB, A’B, ..., A" 'B] = n.

(see Theorem 2, [Son98|, Chapter 3). The nonlinear case is more com-
plicated and requires more sophisticated techniques such as the concept
of accessibility. Moreover, we need the notion of weak reversibility and
reachability from one point which will be the topics of the following two
subsections.

2.3.1 Weak reversibility

Accessibility is a necessary but not a sufficient’] condition for controllability.
On the other hand, it is well-known that for continuous-time systems acces-
sibility implies controllability, provided that the system is weakly reversible
(see Corollary 4.3.12 in [Son98|). In the following we show a similar result
for discrete-time systems.

Analogous to the continuous-time case (see Definition 4.3.9 in [Son98§])
we define weak reversibility as follows.

Definition 2.33 (Weak reversibility) A system X = (M, U, f) is weakly
reversible if (i) for every x € M there exists y € M, such that x € R(y) and
(ii) for all z,y € M either R(z) = R(y) or R(z) N R(y) = 0.

In other words, X is weakly reversible, if the reachable sets form a partition
on the state space. Due to that, weak reversibility is also called partition
property. Note that invertible systems always fulfill (i) since x € R(s™! - x)
for any s € Sy.

In the classical definition of weak reversibility in the continuous-time
case it is additionally assumed that = € R(z) for all x € M. The following

9An example for an accessible system which is not controllabel are certain Inverse
Iteration systems (see Chapter [6)
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proposition shows that in the discrete-time case, x € R(z) follows from (7)
and (i) of Definition [2.33]

Proposition 2.34 If ¥ is weakly reversible, then x € R(x) for all x € M.

Proof. By definition, weakly reversible implies = € R(y) for some y € M,
i.e., x = s-y with s € Sx. Therefore,

R(z) =S5 -2 C Sxns-yC Ss-y=mR(y)
Part (ii) of the definition yields R(z) = R(y). Hence, x € R(z). O

The following result clarifies the term weakly reversible, i.e., it shows,
that ¥ is weakly reversible if and only if any iteration step z — vy, u € U
can be reversed by a finite control sequence.

Lemma 2.35 Let ¥ = (M, U, f) be an invertible system. Then the follow-
ing statements are equivalent.

(i) 3 is weakly reversible,
(it) v € R(y) implies y € R(x) for all x,y € M,
(i1i) Gx - x = R(x) for all x € M.

Proof. Note that x € R(y) implies R(z) = Sy - (s-y) C Sy -y = R(y).
Assuming that ¥ is weakly reversible, we obtain R(z) = R(y) and therefore
it follows from Proposition that y € R(x). Hence, (i) = (i1).

Now we assume (iz) to be fulfilled. In particular we obtain s™'-z € R(x)
for any s € Sy, since z € R(s™! - z). Moreover, s-x € R(z). Recall that
Gs. = (Sx). Therefore, for any y € Gy, - x there exist gi,..., g, € Sy U Sy’
such that y = ¢1g2 ... g, - . By induction it follows that g - x € R(z). We
conclude

R(x)=Sy -2 C Gy -z = U g-x CR(x).
geCGyx

Now we assume that (iii) is fulfilled. Then
R(z) =Gy v =Gy y=R(y)

ifye Gy -z, or
R(z) NR(y) =0

if y ¢ Gy, - x. Moreover, x € R(s™! - z) for any s € Sx. Hence, X is weakly
reversible. O

By Lemma [2.35] ¥ is weakly reversible whenever Sy, is a group. The
following example shows that the converse is not true in general.
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Example 2.36 Let M =R, U = R* := (0,00) and

ur if x>0,
fla,u) = { 2ur if x <0. (21)
Note that f, is a homeomorphism for every u € U. Every element of Sy
has the form
wr if <0
s(z) = { Pur if <0 (22)

with u € U and k € N. In particular, f;! ¢ Ss and therefore Sy is not
a group. On the other hand ¥ is weakly reversible, since R(x) = R" for
x>0, R(0) = {0} and R(z) = R~ for x < 0.

We finish this section with a result analogous to the situation in contin-
uous time (see Corollary 4.3.12 in [Son98]).

Theorem 2.37 Let ¥ = (M, U, f) be an invertible system on a connected
manifold M. If ¥ is weakly reversible and accessible such that x € inty; R(x)
for all x € M, then X is controllable.

Proof. For any y € R(x) weak reversibility implies R(y) = R(x) and
therefore y € inty R(x). Hence, R(z) is open for all z € M. Again, weak
reversibility implies, that the reachable sets form a partition of open sets
on the set M. Since M is connected, M = R(y) for any y € M. Hence, X
is controllable by Proposition [2.31] O

2.3.2 Reachability from one point

Obviously, controllability implies reachability from one point. We will show
that the converse is false in general (see Example . Nevertheless, for
certain types of systems, reachability from one point already implies reach-
ability from every point and therefore controllability. In particular it is well
known that linear systems have this property.

Theorem 2.38 Let X = (M, U, f) be an invertible linear system, i.e. M =
R™ U =R™ and

flx,u) := Az + Bu, A€ R"™" invertible, B € R"*™.
Then X is controllable if and only of X is reachable from one point.

See for example [AMOG], Theorem 2.22, for a proof. In the sequel we list
other types of systems where reachability from one point implies controlla-
bility.

Theorem 2.39 Let ¥ = (M, U, f) be an invertible system.
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a) Assume that ¥ is weakly reversible. Then ¥ is controllable if and only
if ¥ is reachable from one point.

b) Assume that ¥ is abelian. Then the following statements are equiva-
lent.

(i) Sy, = Gy, and G, - x = M for some x € M.
(i) 3 is controllable

(ii) X is reachable from one point.

Proof. a) The claim follows immediately from Proposition [2.35 If ¥ is
weakly reversible, R(z) = Gy, - « for all x € M. Hence, R(z) = M implies
R(y) = M for all y € Gy - © = M and therefore controllability (see Propo-

sition [2.31]).

b) Obviously, (i) implies (i¢) and (i7) implies (i7i). Now we assume that
R(x) = M for one x € M. Then for any g € Gy, there exists s € Sy, such
that

§-x=g-x. (23)

Moreover, for any y € M there exists s, € Sy, such that y = s,-x. Therefore,
implies ss, ' -y = gs, ' -y for all y € M and thus s,'s -y = s, g -y for
all y € M. It follows that the maps s and g are identical and in particular
g € Sy.. Hence, Sy, = Gy. O

In many applications the system group is equipped with a Lie group
structure and is therefore a topological group. In the following two theo-
rems we apply certain results of the theory of topological semigroups to our
situation.

Theorem 2.40 Let ¥ = (M, U, f) be an invertible system, where Gy, is a
topological group. If f,' € Sx for allu € U and intg,, Sx, # 0, then

SE = GZ~
In this case, X is controllable if and only if X is reachable from one point.

Proof. Let f;! € Sy for allu € U. This implies (fu, 0---0 fu,) ™" € Sy, for
any T' € N and Uy, ..., ur € U, since Sy is a semigroup (see Lemma .
In other words, Sy, = Gy, and therefore, by Lemma @, Sy, = Gfx. a

In fact, Theorem [2.39|b and Theorem provide conditions for the
equality Sy = Gy and therefore for controllability on orbits. However, we
have seen, that controllability does not necessarily imply Sy = Gy (see
Example [2.32). The following result deals with such situations.
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Theorem 2.41 Let ¥ = (M, U, f) be an invertible system on a connected
manifold M. Assume that Gx, is a Lie group such that the action (g,z) —
g - x is continuous. Moreover, assume that 3 is reachable from one point.
Then ¥ is controllable iof and only if

intgy, (Sx) N Stab, # 0 for all x € M. (24)
Proof. If X is reachable from one point x € M, then the inclusion
M:SEI'QGZ{L‘QM

implies that Gy, acts transitively on M. Now the claim follows from a result
about semigroup actions on manifolds. If a Lie group G acts transitively on
a connected manifold M, then a subsemigroup S C G acts transitively on
M if for any « € M there exists s € intg S such that sz = x. (see Lemma
B7).

Conversely, assuming that ¥ is controllable, we obtain intg, Sy, # 0 by
Lemma[2.22] Now for any z € M and s € intg,, Sy, there exists 5 € Sy such
that §-(s-x) = z. It follows that 3s € Stab,. Moreover, §s € intg,. Sy, since
Sy intey, Sy C intgy, Sy (see Lemma [B.5). Hence intg, (Sx) N Stab, # 0. O

In this section we have shown sufficient conditions for which reachabil-
ity from one point implies controllability. The following example illustrates,
that in general, reachability from one point is not sufficient for controllabil-

ity.
Example 2.42 Let ¥ = (M, U, f) be given by M = U = R and
f RxR—-R; (z,u)— (2ul+1—u)xr+u.

Note that X is invertible and smooth, i.e., f, is a diffeomorphism for any
u € U. We show that X is reachable from one point, but not controllable.

Obviously, R'(0) = R(0) = R, since f,(0) = u. Hence, 3 is reachable
from 0. For all x > 1 we have

fulx) =2+ u+ |ulz+ (Ju] —uw)z > .
0 >0
> >

Therefore, fu, 00 fu,_,(1) > 1 for all ug,...,ur—; € U. It follows that
R(1) € [1,00). Hence, X is indeed not controllable.
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2.4 Approximatively reachable systems

In many applications it is impossible to reach desired points in finitely many
steps. On the other hand it is the very nature of some algorithms to converge
to desired points without reaching them exactly. Therefore, the topological
closures of reachable sets are of interest. In particular we are interested if
there exists a point x, such that every other point can be reached approxi-
matively from z.

Definition 2.43 A system X is approximatively reachable from x if any
state y € M can be reached arbitrarily close from z, i.e.,

R(z) = M.

Whether a desired state can be reached approximatively or not depends
on the choice of the initial state, which is often chosen randomly. Therefore
one wants to find conditions, under which it is possible to reach any state
approximatively from "almost all" initial states. This yields the following
definition.

Definition 2.44 We say a subset N C M of a topological space M is a
generic subset of M, if int(N) = M. A system ¥ = (M, U, f) is said to
be densely reachable if there exists a generic subset N C M such that ¥ is
approximatively reachable from any x € .

In the following we show properties of abelian invertible systems which
are approximatively reachable. Afterwards we show sufficient conditions for
dense reachability.

2.4.1 Approximative reachability

Let ¥ = (M, U, f) be a system and & C M. Obviously, the existence of a
shift strategy u € UM such that = &£ implies

R(z)NE # 0.

The following example shows that the converse is not true in general, i.e.,
y € R(x) does not necessarily imply the existence of v € RN (or u €
RN N € N) such that z = y.

Example 2.45 Let X = (R, U, f) be given by U = R" and
[ RxRY - R; (z,u) =z +u.

Note that ¥ is a smooth invertible system and R(zo) = (zg,00) for all
o € R. It follows

R(xo) N {zo} # 0.
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Nevertheless, choosing any first control uy € U the reachable set of x; =
f(zo,up) is R(x1) = (zo + uy,00). For any further controls we have x; €
R(zy) for all t € N\ {1}. Hence, (z¢)teny does not converge to .

Nevertheless, the following result shows that approximative reachability
from x € M implies that the sequence z,.; = f(xy,u;) can be steered
arbitrary close to any y € OR(z) := R(z) \ R(z), provided Sy, is abelian.

Theorem 2.46 Let ¥ = (M, U, f) be an invertible system with abelian sys-
tem semigroup. Moreover, let 3 be approzimatively reachable from x € M.
Then

a) There evists N C M with N = M such that ¥ is approvimatively
reachable from ally € N. In particular, ¥ is approximatively reachable
fromy € Gy - x.

b) For anyy € M\ R(x) and any open neighborhood U of y there exists
a control sequence uy,...,uy, n € N such that x,, € U.

¢) X is controllable on R(x) if and only if Sy = Gf.

Proof. a) If R(z) = M, then N := Gy -2 2 Sy, - = R(x) is dense in M.
Moreover, for any y = g - x € Gy - © we obtain

MDOR(y)=5s-y=5u9-x=9g(Ss-x) 2 g(Sy-z)=g(M) =M,

since g € Gy is bijective and continuous.
b) Let (Uy,)nen be a sequence of neighborhoods of y € M \ R(x) such that
Up1 C U, and ()2, U, = {y}. Since ¥ is approximatively reachable from

z, we can choose uy,...,up, € U such that rp, 1= fu, oo f,,(z) lies
in U;. From a) we deduce that ¥ is approximatively reachable from x7,,
since xp, € Gy - x. Therefore, we can choose up, y1,...,ur, € U such that
TTy = fug 41 © 0 O fun, (x7,) € Us. By induction, it follows that for any U,
there exist controls up, | 41,...,up, such that
rr, = fUT,L 0---0 fuTn71+1<:CTn—l)
= fuTn -0 fuTn71+1 % fuTn71 6---0 ful(x)
€ U,.

¢) Obviously, Gy, = Sy implies controllability on R(x), since for all y =
s-x € R(x) we obtain

r=s"yeGy y="R(>y).

Note that this conclusion remains true if Sy, is non-abelian.
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Now we assume that ¥ is controllable on R(z). Since Gy = (Sy) is
abelian, every element of Gy, can be decomposed in the form g = s;'s,
with s1,80 € Sy. For s1 -z, - € R(x) there exists s € S such that
ss1 - x = sg - x. It follows that s-x = g-x and sg -z = gg - x for all
g € Gy. Since Gy, acts transitively on Gy - x, we obtain g -y = s - y for all
y € Gy, - x. Therefore, the continuous maps Yy and S|gy,e ATE identical.
Since Gy, - © = M, we obtain g = s.

O

In Theorem we have seen that for systems with abelian system semi-
group reachability from one point already implies Sy, = Gyx. The following
example illustrates that approximative reachability from ewvery point does
not imply Sy, = G&y, even if Sy, is abelian.

Example 2.47 Let X = (T, U, f) be a system on the torus T := S xS given
by U = R* and
FiTxU—=T, (z1,22),u) = (e™zy1, €V xs).
Note that T is a topological group and therefore
o, :T—Taxr—gx, geT

is a homeomorphism. We shall show that Sy, # Gy and that ¥ is approxi-
matively reachable from every point z € T.
For all uy,uy € U we have f,, o fu, = fu,+u, and therefore

Sy = {fu|ue R}
Moreover, idr ¢ Sy, because f, = idy implies
1
V2

which contradicts v € R*. Hence, Sy # Gs.

Now we show that R(x) = T for all z € T. In fact it is sufficient to show

that R(z) = T for one x € T, since R(z) = T implies
T:%f%R@Q:@WNR@»:wa&yx:&yx:R@

U:2k171': kzﬂ', kl,kg EZ,

for all y,x € T. It is well known that the set
Gy = {(e™,¢V?) | u € R}

is a dense subgroup of the torus (see [HN91], Proposition 1.3.13). Since T
is compact, Sy; C T is compact. Recall, that the closure of a subsemigroup
of a topological group is a semigroup (see Lemma and that a compact
subsemigroup of a topological group is a group (see Lemma. It follows,
that Sy is a group, and therefore s~! € Sy, for all s € Sy We conclude that
Gy, C Sy, and

Sy-e=Sy =Gy =T,
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2.4.2 Dense reachability

In general, approximative reachability does not imply dense reachability (see
Example [2.50). Nevertheless, for abelian systems we obtain the following:

Theorem 2.48 Let ¥ = (M,U, f) be an aberlian invertible system and
x,y € M such that 3. is accessible from x and approximatively reachable from
y. Assume, that the system group is a Lie group such that Gs x M — M
s continuous. Then:

a) If 3 is abelian then X is densely reachable.
b) SE = GZ}
c) ¥ is controllable on Gy, - z,

Proof. a) By Proposition [2.20] the orbit Gy, - z is an open subset of M.
Moreover, for all y € Gy, - x we have R(y) = M (by Theorem . Since
R(y) € Gy -x C M, it follows Gy -z = M. Hence, Gy - = is a generic
subset and X is densely reachable. b) Since Gy, x M — M is continuous,
accessibility from x implies

iIl’GGZ SE 7é @

by Lemma . Now we show that f;' € Sy for all u € U and thus,
Gsx. = Sy, by Theorem [2.40] Gy -z is open by Proposition [2.20] and thus
locally compact. The Lie group Gy acts transitively on Gy - x. Following
Theorem [B.8] the map h, : Gy — Gx -z, g — g - x is open. It follows that

(Gs \ Ss) - # = hy(Gs \ Ss)

is open in G-« and, by Proposition open in M. Recall that R(z) = M.
Assuming (Gy \ Sx) -« # 0, we obtain

(Gs\ Sx) -z NR(x) # 0.
Thus, there exists g € (Gx \ Sx) and s € Sy such that
g-r=s5-1.

Since Gy is abelian and acts transitively on Gx -z, we have g-y = s-x for all
y € Gy, - x. Therefore, the continuous maps s|g,,.. and g|a,,.. are identical.
Since Gy, - © = M, we obtain s = g which is a contradiction to g € Gy, \S_g
Thus, Gy \ Sy, = () and therefore f; ! € Sy, for any u € U.

¢) The claim follows immediately by b) and by Proposition [2.31] O
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Theorem implies the following characterization of dense reachabil-
ity. This result will be essential for our analysis of Inverse Iteration systems.

Corollary 2.49 Let ¥ = (M, U, f) be an abelian invertible system and x €
M. Assume, that the system group is a Lie group acting continuously and
transitively on M. Moreover, we assume intgy, Sy # 0. Then the following
statements are equivalent:

(i) 3 is approximatively reachable from some x € M,
(ii) 3 is densely reachable,
(ii1) S = G,
(iv) ¥ is controllable on M.

Proof. Obviously, (iv) implies (7). Moreover, (iii) implies (iv), since Gy
acts transitively on M. By Theorem (¢) implies R(y) = M for all y €
Gy, - x = M and therefore (i7). Now we assume (i7). Again, h, : Gy, — M,
g — g -x is open for all x € M since Gy acts transitively (see Theorem
B.8). Therefore, Y is accessible by Proposition Thus, all conditions
for Theorem [2.48] are fulfilled. In particular it follows that Sy, = Gy. O

The following example shows that none of the claims of Theorem [2.4§]
remains true if we drop the assumption that Sy, is abelian.

Example 2.50 Consider ¥ = (M, U, f) of example i.e., M = R*\ {0},

U= {(Zé Zi)GGLQ(R)

and f: M xU — M, (z,U) — Ux. Note that X is smoothly invertible,
i.e., f, is a diffeomorphism for all u € U. We show that ¥ is reachable
and accessible from g := (1,—1)". On the other hand Sy # Gy, and ¥ is
neither densly reachable nor controllable on Gfy; - xy.

Obviously, U is closed under matrix multiplication. Therefore, Sy, can
be identified with U. This already shows Sy, # G&y, since U is not a group.
Moreover we deduce intgy, Sy, # 0, since Gy, € GLy(R) and intgr,®) Ss # 0.
For zo := (1,—1)" we obtain

SZ':EO: {(Z;:Zi)

For any (a,b)" € R?\ {0} we choose p, A € R such that

U,Z>0,2:1,,4}

u; >0,0=1,...,4,
U1U47£U2U3 '

ap # Ab, A >|a| and p > |b].
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Then the control parameters
Uy :=A+a, up:=\, ug:=p+b, us:=p
are all positive and have the property

Uty — Uz = ap — \b # 0.

a\ _  ur—up .
(3)- (32 es
This shows that M = Sy, - 2o = Gyx - ©g. Therefore, Y is reachable and

accessible from xg.
On the other hand, for any (a,b)" € M with a > 0, b > 0 we obtain

g (@) _ auq + bus
= b ) aus + buy

This shows that X is neither controllable on Gy, - £g = M nor densely
reachable.

Moreover,

Uy, U, U3, Ug > 0} - Rt x Rt
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3 Structure theory for subsystems

In many situations, two systems X, 3 are related via a map between the
state spaces, that preserves crucial parts of the system structure. One im-
portant example is the inverse iteration system on flag manifolds and inverse
iteration on Hessenberg varieties (see Section [6.8). If the structure of reach-
able sets of ¥ is analyzed, one can exploit this information for the analysis
of .

In this chapter we develop a structure theory for such situations. In par-
ticular we analyze induced systems in Section and restricted systems in
Section The results in this chapter are probably not entirely unknown.
However, to the best of the authors knowledge, a systematic development of
a structure theory for subsystems in terms of system semigroups and system
groups is unknown.

3.1 Induced systems

Definition 3.1 Let X = (M, U, f) and > = (M, U, f) be invertible systems,
and 7w : M — M be a surjective, continuous and open map. We say that X
is an induced system of > with respect to w if

7Tofu:];uoﬂ'

for all u € U. We say that ¥ and Y are 1somorphic systems if w is a
homeomorphism.

3.1.1 Reachable sets of induced systems

The following lemma shows, that the system groups of X and the system
group of X are closely related.

Lemma 3.2 Let Y be an induced system of ¥ with respect to 7.

a) For all g € Gy, there erists a unique g € Gy, such that
mTog=gon.

b) For all g € Gs, there exists g € Gy, such that
mTog=gon.

Proof. Since Gy, = (Sy), every element of Gy can be written as a product

g=fL. .. f (25)
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with T € N, ¢, € {—1,1} and u, € U for k = 0,...,T. Analogously, every
element in Gy, can be written in the form

g=Ffi .. foeGs (26)
with T € N, & € {—1,1} and @, € U for k =0,...,T. We show that
mTog=gom (27)

if T=T and Up = Uy, fork::O,...,T.

By assumption we obtain 7o g = g o7 and therefore g7l om = mog~!
for g = f, with w € U. Moreover, if m o g; = g; o 7 holds for g1, 9> € Gy,
then

TOgige = g1 0O gs = (1§20 T.
By induction, Equation . 27) follows for any product of elements f¢, u € U,
e € {—1,1}, and therefore for all g € Gx.

Moreover, gom = hor for h € Gy, implies g = h since 7 is surjective.

Hence, g of statement a) is unique. 0

Note that the decompositions in and are not unique in general.
Therefore, we cannot expect uniqueness in Part b) of Lemmal[3.2] i.e., gor =
m 0 gy =T o go does not imply g; = go.

Lemma 3.3 Let 3 be an induced system of 3 with respect to w: M — M.
For all x € M we have

(i) (Gy - x) = G - ()
(it) 7(Rs(z)) = Rg(7(z))
(iii) m(Re(x)) € Rg(m(x))
(iv) (R (2)) = Re(r(@)), provided M is compact.

Proof. By Lemma it follows
m(Gy-x) ={n(g-2)|g € Gs} ={g-m(x)|g € G} = G5 - 7(x)
and
m(Ru(z)) ={n(s-z)|s € Su} ={5-7(x) |5 € S5} = S5 -7(x) = Ry (w(z)).
Moreover, we obtain
m(Rs(z)) € m(Ry(r)) = Ry (w(x))

since 7 is continuous. If M is compact, then Ry (x) is compact. Therefore,
R (m(x)) is closed. It follows Re(m(x)) C m(Rx(z)). O
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Now we can easily show basic relations between ¥ and ¥ concerning
controllability, accessibility, weak reversibility, approximative reachability
and dense reachability.

Theorem 3.4 Let X be an induced system of X with respect tow : M — M.
a) If ¥ is reachable from x € M, then X is reachable from m(z) € M.

b) If ¥ is controllable, then S is controllable.

¢) If © is accessible from x € M, then X is accessible from m(z) € M.
d) If 3 is weakly reversible, then S is weakly reversible.

e) If ¥ is approrimatively reachable from x € M, then Y is approzima-
tiwely reachable from w(x) € M.

f) If X is densely reachable, then S is densely reachable.

Proof. a) If ¥ is reachable from « € M, i.e. then Ry(x) = M, then Lemma

implies .
Rs(m(2)) = 7(Re(x)) = (M) = M

since 7 is surjective. Hence, ¥ is reachable from m(z) € M.

b) By Proposition a system is controllable if and only if it is reachable
from all x € M (from all £ € M). Therefore, the claim follows from a).

¢) By Lemma it is
int; R (n(x)) = inty m(Ry(x))
D inty; w(inty (Re()))
= 7(inty(Rs(r)))

since 7 is an open map. Therefore, inty (Rs(x)) # 0 implies

ity Ry (m(x)) # 0.

d) By Lemma [2.35 ¥ is weakly reversible if and only if Gy, - 2 = R(z) for
all z € M. This implies G - m(x) = Rs(m(z)), by Lemma Hence, ¥ is
weakly reversible.

e) By Lemma Ry (x) = M implies

Rs(m(x)) 2 7(Re(x)) = n(M).

Therefore, ¥ is approximatively reachable from 7(z) € M, since (M) = M.

f) If N is generic in M, i.e., int N = M, then 7w(N) is generic in M, since 7
is open, continuous and surjective. Thus,

M D int 7(N) D w(int N) D w(int N) = 7(M) = M.

From d)~we conclude, that ¥ is approximatively reachable from all & € m(N).
Hence, Y is densely reachable. O
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3.1.2 Relation between Sy, and S5

In the following we analyze the relation between the system semigroup Sy
of system X and the system semigroup Sy, of the induced system X. We
define the core of ™

Cr:={9€Gy|n(g-x)=mn(x), Vx € M}. (28)

In particular C, = {idy} if ¥ and ¥ are isomorphic, since g - 2 = z for all
x € M implies g = idy;. In general the core C; has the following useful
properties.

Lemma 3.5 Let Y be an induced system of X with respect to .
a) Cy is a normal subgroup of Gfy.

b) If Gy, is a topological group, such that h, : Gy — M, g — g -z is
continuous for all x € M, then C is a closed subgroup of Gx. In
particular, Cy is a Lie subgroup of Gy, provided G, is a Lie group.

Proof. a) If f,g € C, then g=! and fg are elements of C,, since

m@)=m(g (g7 @) =n(g"" 2)

and
m(fg-x)=n(f (9-z) =n(g-z)=n(z)

Hence, C is a subgroup of Gsx.. Moreover, for all g € Gy, c € C,, x € M
we obtain

mogegH(z) = mog(eg T (x))
= gom(c(g™ 1))
~ Gorlg s
= 7mog(g ' -z
= 7(x).

This shows that gecg™! € C; for all g € Gy, ¢ € C. Hence, C; is a normal
subgroup of Gy.

b) Let g, be a sequence in C;. with g, — g € Gx. Since wo h, is continuous,
we obtain

m(g-x) = m(hy(lim g,))
= lim 7(h.(g,))

= lim 7(g, - )

n—oo

= m(x).
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Hence, C}; is closed. If Gy is a Lie group, then every closed subgroup is a
Lie subgroup (see Theorem 3.6, Chapter 2 in [GOV97]). Hence, C is a Lie
subgroup of Gy. O

Since C is a normal subgroup of Gx, we obtain

91C292Cr = G192 95 ' Cr g2 Crr = g192Crr
=C

for all g1, g2 € Gx. This allows us to define a group structure (respectively
a semigroup structure) on the set of cosets

Gx/Cr = {9C,| g € Gs}
(respectively the set of cosets Sx/Cr := {sC,| s € Sg}) via the product
91C792Cr = g192Cx (29)

with g1, 9> € Gx (respectively gi,g2 € Sx). The following theorem shows
the relation between the system group of > and the system group of X.

Theorem 3.6 Let S be an induced system of ¥ with respect to m : M — M.
a) Gs, and Gx/Cr are isomorphic as groups.
b) Ss, and Sx/Cy are isomorphic as semigroups.
a) S¢ = Gy, if and only if SxC, = Gx.

Proof. a) Recall that Gy, = (Sx). Therefore, every g € Gy, can be written
in the form g = fi7 ... f* with T € N, up € U, ¢, € {~1,1}, k=0,...,T.

Moreover, g = f¢T ... f:0 is the unique element of G such that rog = gor

(see Lemma [3.2). Therefore, the map

®: Gy — Gy, [T .. fO s for . fo (30)

urt ur

is well defined and surjective. Moreover, ® is a group homomorphism, since
P(9192) = 9192 = P(g1)®(g2) for all g1, g2 € Gy

Since 7w : M — M is surjective we obtain

Ker(®) = {g€Gz|®(g) =idy}
= {9€Gs|jly) =y; Vy € M}
= {g€Gs|gon(x)=n(x); Vo € M}
= {g9€Gsln(g-z) =n(x); Vo € M}
= (.
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By the homomorphism theorem,
V:Gy/Cr — Gg,9Cr — g (31)

is an isomorphism.

b) Every § € Sg has a preimage sC, € Sy/C, such that ¥(sC,) = 5.
Moreover, s € Sy, implies ¥(sC,) = § € Sg. Therefore, U~1(Ss) = Sy /C,.
Hence, Vg, /¢, : Sy/Cr — Ss is an isomorphism of semigroups.

¢) We have C, Sy = Gy if and only if for all g € Gy, there exists s € Sy
such that gC; = sC. In other words Gy /C; = Sy /C; which is equivalent
to S, = Gy, by a) and b). O

If Gy, is a Lie group, C; is a closed subgroup of Gy (see Lemma .
Moreover, the quotient group Gy /C, carries a Lie group structure (See
Theorem 3.2. in [GOV97]). Here, the open sets of Gx/C; are given by the
projection

p: Gy — Gx/Cr, g— gChr, (32)

i.e., a subset of Gy /C; is open if and only if its preimage is open in Gfy.
In particular, p is an open map and a homomorphism of Lie groups (see
Corollary 1.11.5 in [DKO00]). In the following we show, that Gg carries
canonically the Lie group structure of Gy /C;.

Theorem 3.7 Let i~be an induced system of ¥ with respect to ™ : M — M.
Assume that X and X are smoothly invertible and that w is a submersion.
Moreover, we assume that Gy, is a Lie group such that the action

a:Gesx M — M, (g,x)—g-x
18 smooth.

a) Gs carries a Lie group structure, such that Gs, and Gx/Cy are iso-
morphic as Lie groups and

a:Gegx M — M, (§,)—§-%
18 a smooth action.

b) There ezists a group homeomorphism ® : Gy, — Gs which is open,
continuous and surjective. In particular intg, Sg # 0 if and only if

intgz Szoﬂ 7é @

Proof. a) Let p : Gy — Gx/C, be the homomorphism of Lie groups
defined in (32). By the isomorphism of groups ¥ : G5 /Cr — Gy given by
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we define a Lie group structure on Gg. We have to show, that the
action & : G5, x M — M is smooth with respect to this Lie group structure.
The diagram

Gy x M2\ (33)
leidM
Gz/cﬂ- x M ™

l@xw

Gi X ML> M
commutes, since for every (g,z) € Gx x M we have

ao(Wxmo(pxidu)(g,z) = ao(Vxmr)o (9Cy, )
= ao(g,m(r))
- gon(z)
= 7(g-7)
= mwoalg,x).

Recall that the maps 7, ¥ and id,; are submersions. Moreover, every sur-
jective homomorphism of Lie groups is a submersion, since it has constant
rank (see Theorem 2.2 in [GOV97|). Therefore, the map

A::(\IJXW)o(pxid\M):GEXMHGEX]\;[

is a submersion. Since & o A = « o 7 is smooth and A is a submersion, we
conclude that & is smooth (see Theorem 0.5 in [DP82]).

b) Consider ® := Wop : Gy — Gg. Note that & coincides with the
homomorphism defined in ([30). Recall that Ker(®) = C,. Therefore
P(SxCr) = @(Sy) = Ss. Conversely, 71(Ss) = SxC;, since Vo p(g) € S
implies g € Sy (.. Since ¥ and p, and therefore &, are open and continuous
it follows ®(intg,, SxCr) = intg_ Sg. In particular, inte, Sy # 0 if and only
if iIl'[?GE SsCr 7& 0. O
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3.2 Restricted systems

In many applications it is not necessary to understand the dynamic of the
system on the entire state-space. Instead, the dynamic can be separated on
subsets which are invariant under all elements of the system semigroup.

3.2.1 Y-invariant subsets

Definition 3.8 (Restricted systems) Let X = (M, U, f) be an invertible
system. We say a subset N C M is X-invariant, if f,(IN) = N and for all
u € U. The system X, := (N, U, f,.,) is called the restricted system with
respect to the X-invariant subset N. Here, N is equipped with the induced
topology with respect to M.

Under adequate assumptions on IV, the topological, algebraic and geometric
structure of X transfers to the restricted system.

Proposition 3.9 Let ¥ = (M, U, f) be an invertible system and N C M a
Y-invariant subset. Then

a) Xy is an invertible system,

b) if ¥ is smoothly invertible and N is a submanifold of M, then ¥, is
smoothly invertible,

¢) if ¥ is algebraically invertible and N is a semi-algebraic subset of M,
then X s algebraically invertible.

Proof. By definition, f,,(N) = N and f,, is bijective. The first two
claims are obvious, since f, and f,° 1|N are continuous and f, and f, 1‘N
are smooth, if f, is a diffeomorphism and N is a submanifold. Now we
assume Y to be algebraically invertible and N to be a semi-algebraic subset
of M. The map iyxy : N x U — M x U, (n,u) — (n,u) is semi-algebraic.
By Proposition also fiy., = fownxy is a semi-algebraic map. Hence,
Y|y is algebraically invertible. O

The following observation shows, that every -invariant subset can be built
up by orbits of the system group.

Proposition 3.10 Let ¥ = (M, U, f) be an invertible system.

a) A subset N C M is Y-invariant if and only if N is the union of system
group orbits, i.e.,

N = UG2$

z€eL
for some subset L C N.
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b) Gy, - x is X-invariant for all x € M.
¢) O(Gx, - x) is X-invariant for all x € M.

Proof. a) Obviously, system group orbits are Y-invariant, since f,(Gy-z) =
Gy, - x for any u € U,z € M. Moreover, unions of ¥-invariant subsets of
M are Y-invariant. Now we assume N to be Y-invariant. For all g € Gy, it
is g(N) = N, since g = fi'fs>-- for forn € N, f; € Sy and ¢; € {—1,1}.
Therefore, Gx, - x C N for all x € N which yields

UGglL’gN

zeN

On the other hand, id € Gy, and therefore

b) Obviously

Gy-zc |J Gs-y

yEGgw

since id € Gy On the other hand y € Gy, - = implies

g-yCg(Gs-2) CyGy-v=Gy-x

since g : M — M is continuous. Hence, the claim follows from a).
¢) Since f, is bijective, a) and b) imply

fu(0(Gs-2)) = fu(Gg-z\Gs- 1)
= fu(Gs-2)\ fu(Gs - )
= Gy -z\Gs-x
= 0(Gx-x).

Hence, 0(Gy. - z) is ¥ invariant. O

Corollary 3.11 Let ¥ = (M, U, f) be an invertible system and N C M
such that f,(N) =N for allu e U.

a) If ¥ is reachable from any x € M then N = M.
b) If ¥ is weakly reversible then ¥, is weakly reversible.
¢) If ¥ is accessible from x € N then %), is accessible from x € N.

d) If ¥ is approzimatively reachable then ¥, is approzimatively reach-

able.
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Proof. a) If ¥ is reachable from x then Gy, - = M. Following Proposition
B.10f N = Gy -z = M. b) If ¥ is weakly reversible then R(z) = Gy - ©
for all z € M (see Lemma [2.35). By Proposition N is the union of
system group orbits. It follows R(x) = Gy, -« for all + € N. Hence, X,
is weakly reversible. c¢) Since R(x) C N, inty(R(z)) # 0 clearly implies
inty(R(z)) # 0. d) If R(z) C N is dense in M it is also dense in N C M.

(]

3.2.2 System semigroup of X,

If we restrict a system to a X-invariant subset, the system semigroup SZ\N
of ¥, is not necessarily isomorphic to Sy or to one of its subsemigroups.
Nevertheless, it can be expressed as a factor semigroup of Sy. Given a
Y-invariant subset N of M we define

Cy = {CEGglc‘N:id‘N}. (34)

The group Cly is a normal subgroup of Gy, since

g leg(n) =g 'g(n) =n
<~

EN

for all g € Gy, and for all ¢ € Cy. Analogously to the construction in subsec-
tion we can introduce a group structure and respectively a semigroup
structure on the coset space Gy /Cy and Sy /Cly, respectively.

The following result describes the relation between the system semi-
group of a system ¥ and the system semigroup of a restricted system
corresponding to a Y-invariant set N C M.

Theorem 3.12 Let X = (M, U, f) be an invertible system and N a X-
invariant subset of M.

a) The system semigroup Sy, of the restricted system 3|, = (N, U, fixwo)
is isomorphic to Sx/Cn. In particular, SE\N is a group if Sy is a
group.

b) Let ¥ be smoothly invertible such that Gy is a Lie group and « :
Gs x M — M, (g,z) — g(z) is a smooth Lie group action. If N is
a X-invariant submanifold, then GE\N carries a Lie group structure,
such that
a:Gy XN —=N,(g,z)— g(z)

18 smooth.

c) Assume that N is dense in M. Then Sx and Sle are isomorphic as
semagroups. In particular, Sx, is a group if and only if SZ\N 18 a group.
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Proof. a) Obviously, the map
d: Gy — GglN, 9= Jn
is a surjective group homomorphism. Moreover,
Ker(@) = {g S GZ | (I)(g) = ldN} = CN.
Therefore, ¥ : Gy /Cy — GE\N’ gCN — gy 1s a group isomorphism. Since,
U(Sy/Cn) = S, and ‘If_l(Sg‘N) = Sx/Cy we conclude, that ¥, is
an isomorphism of semigroups.

b) Note that Cly is a closed subgroup of Gy, since h, : Gy — M, g — g(x)
is continuous, and therefore, g, € Cy, n € N and lim,, ., g, — ¢ imply

for any = € N. Hence, ¢ € Cy. It follows, that Gy /Cy carries a Lie struc-

ture and p : Gy, — Gyx/C; is a submersion (see Theorem 2.2 in [GOV9T]).

Via the identification ¥ of part a), we equip GZ\N with a Lie structure.
Note that the diagram

Gy x N2> N (35)

(\Ilop)xile /

GZ\N x N

commutes, since for any (g,z) € Gy x N

ao((¥op) xidy)(g,x) = algy,z) = g(z) = a(g, ).

Note that ajqyxn is smooth and (i) o p) x idy is a submersion. Thus,

Qg x = @0 ((¢op) xidy) implies, that & is smooth (see Theorem 0.5 in

IDP82|)

c) Since every ¢ € Gy is continuous, ¢|, = id implies ¢ = id. Therefore,

Cy = {id} and SglN = Sy.. The second claim follows, since Gy, = (Syx) and

GZ|N - <SE|N> =
We finish this section with an interesting consequence of Theorem [3.12]

for abelian systems.

Theorem 3.13 Let ¥ = (M, U, f) be an abelian invertible system. Assume
that gy, 0 controllable for some v € M. Then Yig,. .. 18 controllable for
any z € 0(Gy, - x).

Proof. By Theorem the restricted systems ¥___, &y, and Xy,
are abelian. If Y, is controllable then Sy, is a group (see Theorem
»e

Gy-x

2.39). Therefore, SE‘ and Szlc are groups by Theorem [3.12, Hence,
Gy - »2
Y, is controllable b?f Theorem W O
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4 Performance limits via reachable sets

Given a control system ¥ = (M, f, U) we want to design shift sequences such
that x4 = f(24, 1), xo € M converge to a certain set of interesting points
— such as eigenvectors or solutions of equations. The adherence structure
of reachable sets provides fundamental limitations for the existence of such
shift strategies.

Certainly, a necessary condition for the existence of u € UN with zy — 2
is,

RS GZ R (36)

Therefore, as a first step, we analyze the adherence structure of the system
group orbits. Nevertheless, does not imply that = — z for any u € UV.
A stronger necessary condition] is

Therefore, as a second step, one analyzes the adherence structure of the
reachable sets within Gy, - x or within Gy, - x.

Obviously, implies ([36). On the other hand, it is easier to check
whether or not is fulfilled. This is due to the fact, that group orbits have
more pleasant properties than semigroup orbitg'} Moreover, the cardinality
of the set of reachable sets might be larger than the cardinality of the set
of system group orbits.

In Section we develop a graph-theoretical language which allows us
to express the adherence structure of the reachable sets and the system
group orbits graphically.

Even if z € Gy - x is satisfied, it is not clear if z is reachable or ap-
proximatively reachable from x. Therefore, we focus on the properties of
the reachable structure of the restricted system to Gy - x (in Section
respectively of the restricted system to Gy - = (in Section . In the latter
case it might happen that z € Gy - = is not approximatively reachable from
any initial state y € Gy - x. We show some necessary conditions for this
so-called repelling phenomenon.

4.1 Orbit graph and reachable graph

In the following we describe the adherence structure of system group orbits
and reachable sets in terms of directed graphs. See the Appendix [C] for a
brief summary of the basic notations concerning directed graphs.

19Note that Condition is not sufficient for the existence of u € U™ such that = = z,
see Example

Mguch as the partition property and — in the case of analytic systems — a differential
structure as an immersed submanifold of the state space (see Theorem [2.5).
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Definition 4.1 (Orbit graph and reachable graph) Let ¥ = (M, f,U)
be an invertible system. For any pair of subsets N1, Ny C M we write
Nl — N2 lf N1 g NQ.

e The orbit graph Go(X) = (Vo(X),«—) is given by the set of orbits
Vo(X) :={Gs - x|z € M} and the relation «— restricted to Vp(2).

e The reachable graph Gr(2) = (Vgr(X), «—) is given by the set of orbits
Vr(X) :={Ss - x|z € M} and the relation «— restricted to Vz(2).

The relation «— is reflexive and transitive. As described in Appendix [C|we

neglect those redundant edges in figures.

The following example is related to the well-known power iteration. It
illustrates the concept of orbit graphs and reachable graphs.

Example 4.2 Let M = RP* !, U = N. For a matrix A € R™" the power
iteration system % = (M, U, f) is given by

flx,u) = A" x.

Here we denote the canonical action on RP"~! with A-x. For simplicity we

analyze the case
10
A= ( LY ) |

Since f(-,u1) o f(-,ug) = f(+,u1 + ug) for all uj,us € U we easily obtain
Sy ={x— A" -z, | ueN}

for the system semigroup and
Gy={z— A" -z, |uel}

for the system group. For the eigenspaces e; := span(1l, 0)" and ey :=
span(0, 1) we obtain

R(e1) =Gy -e1={e1} and R(ez) =Gy -ex = {ea}.

The following diagram illustrates the reachable graph of 3. Here x,y, 2
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are three different initial states in RP! \ {ey, es}.

R(A-x) R(A-vy) R(A-2)
Rier) 2 R(e)

Note that R(e;) is not contained in the topological closure of any other
reachable set. In other words there exists no initial state x € RP!' \ {e;}
and no choice of shift parameters uy,us--- € N such that the sequenece
A" -z converges to e;. On the other hand we have Gy - e; «— Gy - x for all
x € M\ {ez}. For the orbit graph of ¥ we obtain

Gg'el

]

—nErE

Gz’eg

Now let N C M be a X-invariant subset and 3, = (N, U, f|,.,) be the
restricted system with respect to N. We denote the reachable graph, and
respectively the orbit graph of 3, with Gr(X,) = (Va(¥y),<—n), and
respectively with Go(X|,) = (Vo(3),), «—n). The following result shows
the relation between Gr(X|,) and Gr(X).

Proposition 4.3 Let ¥ = (M, U, f) be an invertible system and N a -
wvariant subset of M. Then

a) Gr(¥)y) is an induced subgraph of Gr(X),
b) Go(Xy) is an induced subgraph of Go(X).

Proof. Let Ry(z) be the reachable set of « with respect to ¥ and Ry, (z)
be the reachable set of x with respect to X,. Since NN is Y-invariant we
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have Ry (z) = Ry, (z) for any z € N. Recall that N C M is the induced
topology with respect to M. Thus,

closurey RE\N () = closurey; Ry(x) N N.

Here, closure4 B denotes the topological closure of B C A with respect to
the topology on A. It follows

Rs(z) «— Rs(y) < Ry, (z) «—n Rg ()

Thus Gr(X|,) is an induced subgraph of Go(X). The proof for claim b) is
completely analogous. O

Example 4.4 Let 3 = (RP!, N, f) be the power iteration system of Exam-
ple By Proposition any Y-invariant subset of RP! is the union of
system group orbits. We choose x := span(1, 1)7, ey := span(0, 1)" and

N :=Gx -2 UGy ey = {span(1, 2)" |u € Z} U {e,}.
The orbit graph Go (%), ) is given by
Gy -e9<=—Gy-x
and he reachable graph Gr(X), ) is given by
Reg) <+ R(A 2)<—R(x)=—R(A - z) <

Note that the map Vgz(X) — Vo(2), R(z) — Gy - x is well defined and
surjective. Therefore one might conjecture, that Go(X) is isomorphic to a
subgraph of Gg(X). In fact Example already shows, that this is not true
in general.

Example 4.5 Again, let ¥ = (RP' N, f) be the power iteration system of
Example Obviously,

Gg'el
Gs -y
G

I

is a subgraph of Go(X) but not isomorphic to any subgraph of Gr(X). Hence,
by Proposition Go(2) is not isomorphic to any subgraph of Gg(X%).

\Gg~z
/

x €2
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In some applications the system semigroup and the system group coin-
cide. In this case also the orbit graph and the reachable graph coincide. The
converse direction is not true in general”} Nevertheless, Gr(X) = Go(X)
always holds, provided ¥ is weakly reversible.

Theorem 4.6 Let X = (M, U, f) be an invertible system. The orbit graph
and the reachable graph coincide if and only of X is weakly reversible.

Proof. By Definition [1.1] Go(X) = Gr(X) if and only if Gy, -z = Sy, - x for
all z € M. This is equivalent to weak reversibility by Proposition O

12 In particular, in Example we have R(z) = Gy, - = for all x € M, and therefore
Gr(X) = Go(X). Nevertheless we have Sy, # Gy.
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4.2 Reachable sets within an orbit

Following Proposition we can always restrict a system X = (M, U, f)
to any orbitfz] Gy -x, v € M. In the following we analyze the reachable sets
of the restricted system X, . Note that here, Gx (as well as Gy, ) acts
transitively on Gy, - . In many situations it is useful to state the results in
terms of the original system ¥ = (M, U, f), i.e., in terms of Gy, Sy, instead
of Gg‘cxw and SZ‘GE%.

According to Definition[3.8] G's-x is equipped with the subspace topology
with respect to M. In this section we always assume, that Gy, - x is locally
compact. Recall that this is the case if Gy - x is a submanifold of M and
in particular if ¥ is smoothly invertible and Gy - = is semi-algebraic (see
Theorem [2.7). With the tools developed in Chapter 2] we easily obtain the
following observation.

Proposition 4.7 Let ¥ = (M, U, f) be an invertible system and x € M
such that Gy, - x is locally compact. Assume that Gy, is a Lie group acting
continuously on M and intgy, Sy, # (0. Then

a) Xy, ., s accessible.
=T

b) For any y € Gy, - x there exists an open set O, in Gy - x such that
y € R(z) for all z € O,.

Proof. a) The restricted group action
Gy xGys-x—Gy-x; (g,h-x)— gh-x

is continuous and transitive. Therefore, the map h, : Gy — Gy -2, g — g-x
is open by Theorem [B.§ Now it follows by Lemma [2.22| that intg,,.. R(y) #
0 for all y € G - . Hence, X, is accessible.

b) Obviously, y € R(z) with z € S5' - y. Therefore, it is enough to show,
that Sy' - ¥ has nonempty interior. Since 2 : g — g~' is a homeomorphism,
intg, S5 = (intg,. Sx) is nonempty. Moreover, for §j € Gy, with y = § -,
the map 73 : g — g¢g is a homeomorphism, and therefore h, := h, o rg,
g — g -y is open. Hence,

Sety= hy(sgl) 2 hy(intg,, Ssh)
has nonempty interior. O

For the remaining part of this section we assume, that 3 is right divisible,
left divisible or abelian.

¥but not to a smaller set N G Gy, - .
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Theorem 4.8 Let ¥ = (M, U, f) be an invertible system, x € M and y,z €
GZ - T.

a) If 3 is right divisible, then there exists w € Gy, - x such that

R(w) 2 R(y) UR(2).

b) If ¥ is left divisible, then there exists w € Gy, - x such that

R(w) € R(y) NR(2).

Proof. a) For all y,z € Gy - x there exists g € Gy such that y = ¢ - 2.
Since Sy; is right divisible, we obtain w := 51’1 Y = s;l -z with s1, 89 € Sy..
Therefore,

R(w) = Sgs;' -y 2 Sz -y =R(y).

Analogously, we deduce R(w) 2 R(z).
b) Now we assume Gy, = (Sy)"'Sx. Then, g = s;'s, for some 51,5, € Sy.
Thus R(w) € R(y) and R(w) C R(z) for w:=s1-y = s2- 2. O

Corollary 4.9 Let Y = (M, U, f) be an invertible system with right divisible
system semigroup Sy.. Assume that the restricted system ioyw has a finite
number of reachable sets. Then Ylgy,. U8 reachable from some y € Gy, - x.

Proof. We assume there exists y1, ..., y, € Gx-x such that for any y € Gy-x
R(y) = R(y;) for some i = 1,...,n. In particular we obtain

By Theoremwe deduce, that there exists y; » € Gyx-x such that R(y; 2) 2
R(y1) UR(y2). Then, by induction, there exists y € G, - z such that

R(y) 2 R(y) U~ UR(yn) = Gz -z =G - y.
Hence, R(y) = Gx - y. O

Even if ¥ restricted on Gy - z is not reachable from any y € Gy - x,
then there exists a sequence (z;)iey in Gy - x, such that R(xi1) 2 R(xy)
(Theorem[4.8). The following result describes this phenomena in more detail
under some reasonable topological assumptions.

Theorem 4.10 Let ¥ = (M, U, f) be an invertible right divisible system
evolving on a manifold M and x € M such that Gy, - x is locally compact.
Assume that the system group G is a Lie group acting continuously on M.
Moreover, we assume that intg,. Ss, # 0. Then
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a) for any y € Gy, - x, there exists a sequence (yi)ien in Gy, - x such that

(i) y1 =y
(11) R(yi1) 2 intayx R(ye); Yt € Ny
(iii) Use o intay.o R(ye) is dense in Gy, - x

b) Assume that the sequence (y;)ien in a) has a limit point y € Gy, - x.
Then X, ., is approzimatively reachable from some z € Gx - x. In
particular, wa s controllable if 3 is abelian.

Proof. a) Recall, that ¥, is accessible by Proposition In particular,
for any s € intg,, (Sx) and y € Gy - x, s -y is an inner point of R(y) (with
respect to Gy, - x) since hy, : Gy, — Gy - x,g — ¢ -y is open and therefore

s -y € intgy, Sy - y = hy(intey, Sy) C intgy.. R(Y).

The manifold M, and therefore Gy, - x C M, is separable. In particular,
there exists a countable set

Q={q,q,...} CGs-x

such that Q = Gy - v (with respect to the topology of Gy - ). Note that
s - @ is also countable and dense in Gy - x, since S|gy,.. 18 cONtinuous and

therefore B
s:Q2Os-Q=s5-Gx-v=GCGx-x.

For an arbitrary yo € G'x-x we construct a recursive sequence in the following
way.

If intgy.. R(y:) is dense in Gy, - x then the constant sequence yiis == ¥y,
s € N fulfills (ii) and (iii). If intgy., R(y:) is not dense in Gy - x then we
choose 7; minimal, such that

S-q;, ¢ intgy.. R(yt).

This must be possible, because s-Q C intgy.. R(y;) implies intgy.. R(y:) =
Gy - x. Since Gy acts transitively on Gy - x, there exists g € Gy such that
g-Y = ¢;,. From Gy = SgSg1 it follows that gs; = sg for some sy, s € Sy.
Now we define ;.1 := s;' - 4. Note that .1 = s5'g -y, = s5* - ¢, and
therefore R(yi+1) 2 R(y:) and R(yiy1) 2 R(g;,). It follows

R(ytJrl) 2 inth-x R(%) U inth-fE R<qit)'

By construction we have s - ¢;, ¢ intgy.. R(y:), but s+ ¢, € intgy.. R(q;,)-
Hence,
intGE.x R(yt—i—l) ; intGE.x R(yt)
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Since s+ q1,...,S " q,_, € intge.. R(Yys—1), we obtain

S Q - U intG’zycc R(yt)
t=1

Now the claim follows, since s - @) is dense in Gy, - z.

b) Without loss of generality we may assume that y; converges to § € Gy - .
Then ¢ lies in the open set intg,, Sxs™! - ¢ for any s € intg, Sx. It follows,
that y, € R(s™*-7) for t large enough. Therefore, there exists s; € Sy such
that 3, = s;,57! - . We obtain

R(y) = R(sis™'-5) = Seses™ - § S R(s™' - 9)

From (iii) it follows, that X4y, is approximatively reachable from z := stz

By Proposition and Theorem Y|g,.. 1 controllable provided X is
abelian. O

For the rest of this subsection we deal with abelian systems. Here we
observe the following useful properties.

Theorem 4.11 Let ¥ = (M, U, f) be an abelian invertible system. Then

a) ¥ restricted on Gy, - x is either controllable or there exist infinitely
many different reachable sets in Gy, - x.

b) For all x1,x9 € Gy, - x there exist y1,ys € Gx, - © such that

R(y1) € R(x1) NR(x2) and R(x1) UR(x2) C R(yz).

Proof. a) The statement is an immediate consequence of Corollary and
Theorem [2.39] Assuming there exists a finite number of reachable sets in
Gy -, then X, is reachable from one point. This implies controllability
of X, ., since Sy is abelian.
b) Recall that abelian system semigroups are right divisible and left divisi-
ble. Thus, the claim follows from Theorem [4.8

O

Recall that Gy, - x is a X-invariant subset and

Capa = {g € Gy ‘g|GZ-x = id\GE-x}

is a subgroup of Gyx.
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Theorem 4.12 Let ¥ = (M,U, f) be an abelian invertible system, and
x € M such that Gy, - x is locally compact. We assume that Gy, is a Lie
group acting continuously on M. Fory,z € Gy - x and g € Gx such that
gy =z we have

z€R(y) ifand only if g€ SxuCay.s-
Proof. If g € SxCq,... then s,c, — g for a sequence ($,,¢,)nen in SCoy .z
Since hy : Gy, — Gy -2, g — g -y is continuous we obtain s,c, -y = s, -y —
g-y = z. Hence, z € R(y).

Conversely, if z € R(y), then there exists a sequence (s, )nen in Sy such
that s, -y — z. Let us assume

9 ¢ 55Cown. (38)

By Theorem h, is an open map. It follows that z = g -y lies in the open
set

(Gg \ SECGZ%) Y = hy(Gg \ SZOGE'LE)'
Therefore, s, -y = g -y for n large enough. Since Gy is abelian we obtain
sng -y = gg -y for any g € Gx. In other words

Sn\gzm = g‘sz‘

We conclude s;'g € Cg,.., which is a contradiction to . Hence, g €
SyCay.z- O

In some situations Gy - x is dense in M. In particular this will be the
case for classical inverse iteration systems (see Section @ By continuity,
Coyr = {id} if Gy - = M. Assuming the conditions of Theorem we
obtain z € R(y) if and only if g € Sy, for g € Gy with g-y = 2.

We finish this subsection with two examples. The first one shows that
the claims of Theorem and of Theorem become false if drop the
assumption that > is abelian.

Example 4.13 Cousider ¥ = (R x Rt U, f) with

U= {(g (b:) € GLy(R)

and f: M xU — M, (z,U) — Uz. Note that Sy, can be identified with U
and that X is right divisible but not abelian (see Example [2.17)). Moreover,
(s acts transitive on R x RT, since

(D) = {6 H ()

a,b,c>0}

I
—N—
Y

ISHS]

|
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_I_
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I
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X
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Jr
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Hence, ¥ can be regarded as the restriction on an orbit of the system in
Example [2.17

Now we show that X has only two different reachability sets but is not
controllable. For (a, 3)T € R x R* we obtain

o' o [« B aa + b3
*((5) == (5) = 1("5")
B RxR" if a<0
N {R*xR* if >0

a,b,c> 0} (39)

From it follows, that there exist only two different reachable sets and
that X is reachable from some y € R x R*. Note that the latter is also a
consequence of Corollary . Nevertheless, also shows, that X is not
controllable, since (—1,1)" ¢ R ((1,1)"). In particular this shows, that
claim a) of Theorem is not fulfilled if X is not abelian.

Now we show that also Theorem becomes false if we drop the as-
sumption that > is abelian. Recall that

a,c > 0}

Gz = {(8 ﬁ) € GLy(R)

(see Example . In particular, Gy is a Lie group acting continuously on
R x RT.

Let z := (0,1)", y := (1,1)" and g € Gy such that g-y = 2. In
we have seen, that z € R(y). The only linear mapf : R? — R? with
Jloper =1, o1 18 [ @ — 2. In other words

Cona = {f € 9585 | fie =i, . } = {id}.

Therefore,

S5Cy = {( g i ) € GLy(R)

a,c>0;b> O} :
On the other hand, g -y = z for g € Gy, implies

[ a —a . "
g—(o 1) with a € R™.

Hence, g ¢ SxCqy. but z € R(y).

Theorem [4.§ shows, that reachable sets within an orbit have nonempty
intersection, provided ¥ is left divisible. The following example shows, that
this is not the case for general systems.
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Example 4.14 Consider & = (R?\ {0}, U, f) of Example [2.18] i.e.,

U= {( z; Zi ) € GLy(R)

and f(z,U) = Ux. Recall that X is not left divisible. For

51—(? ?)ESZ and 5@-(2 1)652.

_ _ -1 5

Therefore, (6,1)" and g-(6,1)" = (=1,—1)" are in the same system group
orbit. On the other hand, R((6,1)") € R* x R* and R((—1,-1)") C
R™ x R™.

UZ>O,Z:1,,4}

we obtain
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4.3 Systems restricted to Gy -«

We have seen, that the topological closure of a system group orbit is X-

invariant (see Proposition [3.10). In the following we focus on the analysis on

the restricted system ¥___. Asin Subsectionwe assume that the system
E'fI)

semigroup is right divisible or abelian. It is easy to see that z € Gy, - x does
not imply z € R(z). In fact, it might happen that z ¢ R(y) for any
y € Gy - x. This phenomenon motivates the following definition.

Definition 4.15 (Repelling phenomenon) Let ¥ = (M, U, f) be a sys-
tem and £ a subset of M. We say that &£ is repelling with respect to Gy -

if ENR(y)=0for all y € Gy, - .

An easy example for the repelling phenomenon is the following.

Example 4.16 Let ¥ = (R, U, f) be the system given by f(z,u) = zu
with U = (1,00) and €& = {0}. Note that £ C Gy -z = R\ {0} for all
z € R\ {0}. Hovever, £ is repelling to s -z, € R\ {0} since ENR(z) = 0.
In particular, no shift strategy will steer any initial state x # 0 arbitrary

close to &, regardless how close the initial state was to the interesting point.

Obviously, a point z € Gy - x which is repelling to Gy - x has to be in
the boundary of Gy, - z, since 2 € R(s™! - 2) for all s € Sx. The next result
gives a condition for the existence of an repelling point in 9(Gy, - ).

Theorem 4.17 Let ¥ = (M, U, f) be an invertible right divisible system
and © € M such that O(Gyx, - x) # (0. Then one of the following alternatives
18 true:

(i) There exists z € O(Gy, - x) which is repelling with respect to Gy, - x.

(ii) For any finite subset € C O(Gx, - x) there exists y € Gy - x such that
E CR(y).

Proof. Obviously, (i) implies that (i) is false. Now we assume that state-
ment (i) is false. Then, for any finite set £ = {z1,...,2x} C I(Gx - x)
there exists a set {y1,...,yn} € Gy -z such that z, € R(y,),n=1...,N.
By Theoremhere exists yr € Gy - x such that {y1,...,yn} C R(yr).
Hence, &€ C R(yr), since R(y,) C R(yn) forn=1,...,N. O

Now we focus on the case where X is abelian. Here, it is sufficient to

analyze R(y) N & for one y € Gy - x to decide if a Y-invariant subset & is
repelling to Gy, - .

Theorem 4.18 Let ¥ = (M, U, f) be an abelian invertible system and x €
M. For any Y-invariant subset £ C O(Gyx; - x) the following two statements
are equivalent.
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(i) € is repelling to Gy, - x
(ii) There exists y € Gy, - x© such that R(y)NE =0

Proof. a) The implication (i) = (ii) is trivial. Now we show that R(y) N
E # ) implies R(w) N E # () for any w € Gy - x. Recall, that there
exists g € G, such that g -y = w. Moreover, g-& = & for all g € G since
Ju(&) =Eforallu € U. If R(y)NE # B then there exists a sequence (S, )nen
in Sy, such that s, -y converges to £. We conclude, that Wﬁ E # ) since

Snw=g(sp y) —g-E=E.
O

We finish this section with an example which shows, that the claim of
Theorem is wrong, if we drop the assumption that > is abelian, even
if > is right divisible.

Example 4.19 Consider & = (R x R{, U, f) with

U:{(g b)eGLg( )

and f: M xU — M, (x,U) — Ux. Note that 3 is right divisible and that
Gy -z =R xR" for z € R x R* (see Example [4.13). Therefore, ¥ can be
regarded as the restriction on Gy, - of the system in Example - We
obtain
Gy - 20 = {20},
GZ Tz = Rt x {O},
Gy -2 =R™ x {O},
GZ X1 = R x R+,
GZ cXog = R x R+,

The orbit graph and the reachable graph are given by

a,b,c>0}

(20) = {20} for  20=1(0,0)7,

(z1) =RT x {0} forall 2z €R*"x {0},
(20) =R~ x {0} forall 2z e€R™ x{0},
(r1) =Ry xRt forall z; € Rj x RT,
(x2) =R xR*  forall z,€R™ xRT.

20

AANIAA

Gy -z R(z1)
] IR
Gy - 2<~—0Gx - 71 R(z0) =<— R(x1) =<— R(x2)
\GELZQ \ /

In particular we see, that E|G , 1 = 1,2, 31s controllable, but that Gy-z, =

R(zz) is not a subset of R(a:l). Moreover, £ := Gy - 29 is Y-invariant and
R(z1)NE = . However, £ is not repelling to Gy, - 21 since x5 € Gy - x1 but
R(x2) N E # 0. This shows, that the claim of Theorem does not hold,
if ¥ is not abelian.
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5 Systems on homogeneous spaces

In the following we apply the results of the previous chapters to systems
evolving on Lie groups and homogeneous spaces. Here, the geometric frame-
work developed by Jakubczyk and Sontag (see Section comes into
play. In particular, in Section we prove discrete-time versions of results
by Jurdjevic and Sussmann on controllability of continuous-time systems
on Lie groups (see [IST72] and [SJ72]). Systems on homogeneous spaces can
be regarded as induced systems of a system on a Lie group. Thus, the
controllability properties of systems on homogeneous spaces ¥ are linked to
the controllability properties of certain related system on a Lie group X. In
Section we show a condition for weak reversibility of 3 in terms of the
system semigroup of X. Moreover, we investigate the situation for systems
on flag manifolds and projective spaces.

5.1 Systems on Lie groups

Definition 5.1 Let G be a Lie group. A smoothly invertible system ¥ =
(G,U, f) is evolving on G if for any u € U there exists a group element
g € G such that f, -z = gz for all x € G. We identify f, with ¢ € G. In
particular we write e := id.

Note that in this case Gy is a subgroup of G and that

R(e) = {Hfut

t=1

TGN,uteU}:Sg.

In other words, ¥ is accessible from e if and only if intg Sy # 0. In fact,
intg Sy, # () is equivalent to accessibility from any point.

Proposition 5.2 Let ¥ = (G, U, f) be a system evolving on a Lie group.
Then

a) X is accessible if and only if ¥ is accessible from one point.
b) 3 is controllable if and only if Sy, = G.
Proof. a) Let X be accessible from g € G. For any h € G the map
rn:G— G, v xh
is a homeomorphism. Therefore,

R(§) = Sxg = Sxg9'§ =r,;-15(R(g))
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has nonempty interior.

b) Obviously, Sy = G implies controllability. Conversely, if 3 is controllable,
for every g € G there exists s € Sy, such that sg~! = e. Therefore, for any
g € G we have g € Sy.. Hence, Sy = G. O

To check if ¥ is accessible or not, one can apply the geometric framework
developed by Jakubczyk and Sontag (see Theorem . We choose U C U
such that every connected component of U has at least one element in U.
Following the construction in Section the Lie derivative vector fields

Adul ukfu,i:G}_)TGa UGU,]{TEN(),Ul,...,Uk6071§i§m

77777

given by

(fur - o) o fo - fur)(9)

g —>
an =0

generate the Lie algebra L. We denote T,G, the Lie algebra [ of G, with
g.

Proposition 5.3 Let ¥ = (G, U, f) be a smooth system evolving on a Lie
group G with corresponding Lie algebra g. Moreover we assume, that U C
R™ is open. Then, ¥ is accessible if and only if Lx(e) = g.

Proof. Obviously we have Lx(e) C T.G = g. The case Lx(e) # g imme-
diately implies dim Lyx(e) < n = dim(G). Therefore, ¥ is not accessible by
Theorem 2.21]

Now we assume Ly(e) = g. For any ¢ € G we define [, : G — G,
h — gh and Tl, : TG — TG as the corresponding tangent map. For
we Jui With w € Uk € No,ug, ... u; € U,l < i< m we

.....

Tlyo X(e) = Tly(e, X(e)) = (9, X(9)) = X oly(e).

In other words, all vector fields Ad,, . 4, fui, and therefore all vector fields
X € Ly, are left invariant. Moreover, for any X € Ly, the isomorphism
T.l, : T.G — T,G maps X(e) on X(g). Therefore, for any g € G' we obtain
dim Ly (e) = dim Lx(g), since

Lr(e) = {X(e)| X € Le} = {(T.ly) ' X(9) | X € Lz} = (Tly) "' Lx(g).

Hence, ¥ is accessible by Theorem [2.21} since dim Lx(g) = n for all g € G.
(I

"n fact, g := T.G, equipped with the product g x g — g, (X,Y) — (ad X)(Y) is
called Lie algebra. Nevertheless, in the following we do not use the algebra structure of
T.G.
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In the following we show that for systems evolving on Lie groups, con-
trollability, approximative reachability and dense reachability are equivalent
concepts, provided X is accessible.

Theorem 5.4 Let ¥ = (G, U, f) be a system evolving on a Lie group G.
Assume that G*' N Sy, # 0 for all connected components G* of G. If 2 is
accessible, then the following statements are equivalent:

(i) Sx is a group,
(i1) X is controllable,
(1i1) X is approzimatively reachable from one point g € G,

(iv) ¥ is densely reachable.

Proof. The implications (i7) = (iv) and (iv) = (ii7) follow immediately
from the definition. Moreover, (ii) = (i) follows from Proposition
Now we show (i) = (i¢). Recall that X is accessible if and only ¥ is accessible
from e. Assuming that Sy, is a group, i.e., Sy = Gy, the reachable sets R(g)
are all open in G by Proposition 2.20] In particular, it follows

e €Sy = intg(SE).

Therefore, Sy, = G by Lemma . In particular, > is controllable{ﬂ
We finish the proof by showing (iii) = (7). Let ¢ € G be such that R(g) =
G. Since the map r,—1 : G — G, x — zg~ ! is a homeomorphism we obtain

G = Tg—1(§g) = 7“9—1 (Szg) = S_Z

In particular this shows f;! € Sy, for all u € U. Moreover, accessibility of
Y implies intg Sy = intg R(idg) # 0. Now Sy, = Gy, follows from Theorem
2.401 O

Similar to the situation for continuous time systems (see Theorem 6.5
in [JS72]), accessibility implies controllability provided G is compact.

Theorem 5.5 Let ¥ = (G,U, f) be a system evolving on a compact Lie
group G. Assume that G' N Sy, # 0 for all connected components G* of G.
Then 3 is controllable if and only if 3 is accessible.

15 If Sy, is a group, ¥ is weakly reversible. Moreover, accessibility implies that Gy, - g is
open (see Proposition [2.20) and therefore g € intg R(g) for all g € G. Hence, (i) = (i)
also follows immediately from Theorem provided G is connected.
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Proof. Obviously, controllability implies accessibility. Now let 3 be acces-
sible and s € intg Sy. Since GG is compact, Sy, is compact and therefore a

group by Lemma [B.2] Lemma yields
e=s's e Syinte Sy C inte Ss.

for any s € int¢ Sy.

Since G* N Sy, # O for all connected components G* of G, we obtain
Sy, = G by Lemma Moreover, Sy, = G and intg Sy, # 0 implies Sy, = G
by Lemma Thus, X is controllable. 0

The assumption of accessibility in Theorem and Theorem cannot
be dropped. In fact, the system of Example evolves on a compact
Lie group. Here, X is densely reachable but not controllable. Moreover,

Sy, # G.
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5.2 Homogeneous spaces

Let X = (G, U, f) be a system evolving on a Lie group G as introduced in
subsection [5.1] i.e., for all u € U there exists g € G such that f,(z) = gz
for all x € G. Again we identify f, with g. Now let a : G x M — M be
a transitive smooth group action on a set M. We choose a fixed reference
element m € M. Moreover, we assume, that Stab,, = {g € G|g-m = m} is
a closed subgroup of G. Then M is a homogeneous space with respect to «
and it can be equipped with a canonical differential structure (See Appendix
[F). Here, the projection m,, : G — M, g — g(m) defines the open sets in
M,ie.,Ud C M is open if and only if U = Wm(l;l) for an open set in G.
For u € U we define

fiMxU— M, (mu)— f,-m.

Note that fu:m— fu(m) is a diffeomorphism for all u € U. The inverse
[t is given by m — f-Y(m). This defines a smoothly invertible system

¥ = (M,U, f) on the homogeneous space M.

Proposition 5.6 ¥ = (M, U, f) is an induced system of ¥ = (G, U, f) with
respect to m, : G — M, g — g(m).

Proof. By construction, m is surjective, continuous and open. Moreover,
for all g € G and all u € U it follows that

fuomn(g) = fu(g(m)) = fug(m) = 7rm(fug) = T © fulg)-
Hence, f, 0 T = Tm 0 fu for any u € U. O

Recall that the core Cyy = (1,25, Staby, is a normal subgroup of G. This
implies that Gy N C); is a normal subgroup of Gx. Analogous to the con-
struction in Section the product

Sl(Gg N CM)SQ(GZ N CM) = 8152(G§; N CM)

defines a semigroup structure on the set of cosets Sy/(Gx N Chr). The
following proposition shows the relation between C); and the core of m,;,
ie. Cr, ={9€Gxs|mn(g-x)=mn(x),V € M}.

Proposition 5.7 Let &, & and 7., be defined as above. Then
Cr,, = G NCy.

In particular, C, s independent of the choice of the reference point m € M.
Moreover Ss, and Sx/(Gx N Cy) are isomorphic as semigroups and G¢ and
Gx/(Gx N Cyy) are isomorphic as groups.
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Proof. A straightforward calculation shows

Cﬂ"m - {gEG2|7TmOg:ﬂ-m}
{9 € Gs | my, 0 g(h) = mn(h), Yh € G}
= {g€Gxg|lgh-m=h-m,Vh e G}.

Since G acts transitively on M, we conclude

{9eGslgh-m=h-m VYheG} = {ge€Gsg|g-m=m,Vme M}
- GEQCM

By Theorem Ss, and Sy /(G NCyhy), and respectively G and Gy /(GxN
C)r) are isomorphic. 0

In particular, Proposition shows, that C,  is independent of the
choice of the reference point m € M. Therefore we write C := C, .

Using the machinery developed in the previous sections, we can eas-
ily affirm a reformulated version of Theorem 3.2 in [Jor06|, which will be
important in our analysis of inverse iteration systems.

Theorem 5.8 Let ¥ = (G, U, f) be a system evolving on a Lie group G
which acts transitively on a set M. Let ¥ = (M, U, f) be the induced system
on the homogeneous space M.

a) If Gy = C,Sx, then S is weakly reversible

b) If there exists a reference point in M such that Stab,, NGy C C).
Then Rs(m) = Gs, - m implies Gy, = CrSx.

Proof. a) Assuming Gy = C,Sx, then G¢ = Ss by Theorem and
therefore G - m = Ry (m) for all m € M. Hence, S is weakly reversible by
Proposition [2.35]

b) We assume Rg(m) = G -m. In other words, for all g € Gy, there exists
s € Sy, such that g='s € Stab,,. Since g,s € Gy, and Stab,, NGy, C C); we
obtain g~t's € Gy NCy = C,. It follows, g = cs for some ¢ € C. Therefore
Gy C C,Sx. Moreover, C Sy, C Gy since C; and Sy are subsemigroups of
Gy. Hence Rg(m) = G - m implies Gy = CSx. O

We finish this section with some observations with two special cases,
namely system on flag manifolds and systems on projective spaces.
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5.2.1 Systems on flag manifolds

Let ¥ = (GL,(R), U, f) be a system evolving on GL,(R), i.e., f, € GL,(R)
for all w € U. Recall that GL,(R) acts transitively on the flag manifold
Flag(d,R") (see Appendix [F]). We denote the identity element of GL,(R)
with I. Following the construction in Section we define a new system
on ¥ = (Flag(d,R"), U, f) on Flag(d,R"), with f given by

f((‘/la7vki)’u) = (fu‘/h)fu‘/;c))

Here, f,V; denotes the image of the d;-dimensional subspace V; under the
linear map f,. The previous results yield:

Theorem 5.9 Let X and X be systems as above and V = V..., Vi) a
reference flag in Flag(d, R™).

a) System S is an induced system of 3 with respect to

7y : GL,(R) — Flag(d,R"), =+ (xV4,...,2V}).

b) Ss is isomorphic to Sy/Cr and G is isomorphic to Gx/Cy Here,
C.=Gxs NR*I.

c) If V fulfills Stab(V) N G C R*I, then R (V) = G-V if and only if
Rs(V) =Gy -V for all V € Flag(d,R™).

Proof. The first statement follows immediately from Proposition 5.6l Re-
call that the core of Flag(d,R") is Cpag(arn) = R*I (see Proposition .
Therefore, Statement b) follows from Proposition Finally, the third
statement follows from Theorem since ¥ is weakly reversible if and
only if Rg(V) = G5 - V for any V € Flag(d, R") (see Lemma . O

Corollary 5.10 Let ¥ and X be systems as above and V = (V4 ..., Vi) a

reference flag in Flag(d,R"), such that Stab(V) NGy C R*I. Then X is
reachable from V if and only if 3 is controllable.

Proof. Clearly, controllability implies reachability from any point. Con-
versely, if ¥ is reachable from V), then Rg(V) = Flag(d,R") = Gy - V.
By Proposition we obtain Rg(V) = Gy -V = Flag(d,R") for any
Ve Flag(d,R™) and therefore, by Proposition controllability. O



80 5 Systems on homogeneous spaces

5.2.2 Systems on projective spaces

We finish Section with a remark on the special the case d = (1), i.e., to
systems on projective spaces. As described in the previous section, a system
evolving on GL,(R) induces a system on RP""!. A more common way to
induce systems on RP"! is via time-varying linear invertible systems (see
[Hom93, Wir95]). We show that both constructions yield the same family
of systems.

An invertible system % = (R™, U, f) is time-varying linear (non-affine)
if f, : R" — R" is a linear map for all u € U. Obviously, the set {0} C R" is
an Y-invariant subset. Therefore we focus on the restricted system 2|Rn\{0}.
To shorten notations we write 3 := f]]Rn\{o}. Consider the map

7 :R"\ {0} — RP"', x s span(z). (40)

Foru € U, v € RP" ! and vy, vy € 71 (z) it is

~

7 (fu(vr)) = 7(fulw2)).
In other words, the map
fiRP" I x U — RP" (z,u) — n(fu(v), ver )

is well defined and fu = f(-,u) is bijective. This yields a new system
S = (RP", U, f) on RP" 1.

Proposition 5.11 ¥ is an induced system of f]]Rn\{o} with respect to .

Proof. Obviously, 7 is surjective and for any v € R™\ {0} we obtain

fuom(v) = span(fuv) =7 o fu(v).

We show that 7 is continuous and open. Recall, that the topology of RP"~!
is defined by the surjective map m, : GL,(R) — RP" !, g — ¢(V), for a
reference flag V € RP"!. We choose v € R" \ {0} such that V := span(v).
Let

7o ¢ GL,(R) — R"\ {0}, g — g(v). (41)
The diagram
’ GL,(R)
R™\ {0} - RP"~1

commutes, since

mv(9) = g(span(v)) = span(g(v)) = m(g(v)) = 7 o m,(g)-
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The maps, my and 7, are both surjective, continuous and open. Therefore

7(0) = n(m(m, " (0))) = my(m,  (0))

v

is for all open subsets O C R" \ {0} open. Similarly,
T U) =77 (mymy U) = 77wyt (U) = T (myt (U)
is open for all open subsets & C RP" 1. O

We have seen, that there exists two canonical approaches to construct
systems on RP"!. Now we show that both approaches yield the same
family of systems.

Proposition 5.12 Let & = (RP1 U, f) be an invertible system and 3 =
(R™\ {0}, U, f) a time-varying linear system. For any u € U we associate
fu € GL,(R) to the linear map fu : R® — R™. Then the following statements
are equivalent.

(i) S is an induced system of 3 (with respect to )

(i) ¥ is an induced system of the system ¥ = (GL,(R), U, f) evolving on
GL,(R) (with respect to my for some reference flag V)

Proof. For any v € R™\ {0} we define m, as in (41). Obviously,

A

fuoﬂ—v(g) :fu<g(v)) :fug(v) :Wvofu(g) (42)

for any v € U and any g € GL,(R). In other words, 3 = (R™\ {0}, U, f')
is an induced system of ¥ = (GL,(R),U, f) with respect to m,. Choose
v e R"\ {0} and set V = span(v). As shown before, all maps =, 7, and
are surjective, open and continuous. We only have to show, that for any
weU, (i) mof, = fuomis equivalent to (i) myo f, = fu o my.

(1) = (i7) : Using 7w o m, = my and we obtain

quWV:WOquWU:7TO7TvOfu:7TVofu.
(ii) = (i): For 2 := 7 o f, we obtain
xoﬂ-v:Woﬂvofuzﬂvofu:fuoﬂv‘

For any w € R™\ {0}, there exists ¢ € GL,(R) such that w = g(v).
Therefore,

w(w) =z omy(g) = fuomv(g) = fulg(V)) = fulspan(g(v))) = fuo m(w).

Hence, x = f, o . O
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6 Classical Inverse iteration

Inverse iteration is one of the oldest established methods for calculating
eigenvectors of a given matrix. Although its basic idea goes back to the
early days of numerics, inverse iteration schemes are still a topic of active
research. We refer to Ipsen [Ips96, Ips97] for an overview and the state of
the art, respectively Golub and Ye [GY00], Neymeyr |[Ney05|, Freitag and
Spencer [FS07] for examples of recent research. In contrast to the standard
literature, which mostly considers convergence performances for certain shift
strategies, we analyze the entire structure of reachable sets. This allows us to
formulate fundamental limitations on the convergence behavior of possible
shift strategies and feedback laws.

Let A € R™™ and denoted by Spec(A) the spectrum of A, i.e., set of
eigenvalues in C. The aim of classical inverse iteration is to find eigenspaces
of A. Therefore, the corresponding system evolves on the projective space

and fit in the setting of Section [5.2]

Definition 6.1 (Classical inverse iteration system) For A € R™*" let
U =R\ Spec(A) and

fa:RPVU X Uy — RPY (2,u) v (1 —uA) ™o

The corresponding system N7 (A) = (RP" Uy, fa) is called classical in-
verse iteration system (with respect to the system matriz A € R"*™). Here,
GL,(R) x RP"! — RP"!', (B, z) — B -z denotes the canonical action on
RP™1,

In [HF00] and [HWO1] the authors investigated the controllability prop-
erties of X1/(A). We extend their work using the following strategy. First,
in Sections and [6.3] we analyze the system groups, and respectively,
the system group orbit structure of //(A). Then, in Section we show
certain controllability properties of ¥7/(A). In particular we give necessary
and sufficient conditions for controllability of ¥/ (A) (restricted on an open
system group orbit) in terms of the eigenvalue constellations of A (Sections
and . Then, in Section , we analyze the adherence structure of
reachable sets for the cases when the restricted system is not controllable.
In particular, we give conditions for the appearance of repelling phenomena.
We finish this Chapter with a systematic analysis of the adherence structure
of the reachable sets for the cases n = 2, 3, 4.
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6.1 System group

Following Definition the system group Gyuray of the inverse iteration
system Y/1(A) is a group of homeomorphisms g : RP*! — RP""! gener-
ated by the maps = — (A —ul)™! -2, u € Us. Note that 2/7(A) can be
seen as the induced system of EgLn(R)(A) = (GL,(R),U, f4) with respect
to m, : GL,(R) — RP"! g — ¢ - for any reference point x € RP"!
(see Theorem . Here, f4 : (A,u) — (A —ul)~!. Obviously, the system
semigroup and the system group of Zé]Ln(R)(A) is given by

T
-1
SEéILn(R)(A) = {H(A - Ut])

TEN,UtEUA,},

t=1
respectively
T T
GE{;IL,,LUR)(A) = {tl_[l(A — D) H(A —uld) | T, Ty € Nyug, v € UA} )

(R)

of GL,(R). More precisely we have:

Note that S(A) := SEéILn (1) and ngLn(R)(A) arﬁ abelian subsemigroups

Proposition 6.2 Let my be the minimal polynomial of A € R™™. S(A)

and GEéIL w(4) are subsemigroups of the abelian Lie group

P(A) :={p(A4) | p € R[z] coprime to ma} C GL,(R).

The dimension of P(A) is deg(ma). P(A) is a closed subgroup of the cen-
tralizer group

Z(A)={Z e GL,(R)| ZA = AZ}.
In particular we have P(A) = Z(A) and dim P(A) = n if and only if A is

cyclic.

Proof. Obviously, GZéIL () is an abelian subsemigroup of Z(A). For

every p coprime to my there exist polynomials p, k such that 1 = pp+ kmy
(theorem of Bezout). From the Cayley-Hamilton theorem it follows, that
p(A)~! = p(A). Hence, p(A)~! is an element of P(A). Therefore, S(A) and
GEéILn(R)(A) are subsemigroups of P(A). Moreover, any p(A) € P(A) can be
expressed with p(A) for a unique polynomial p of degree at most degm 4 — 1.
It follows, that

P(A) = GL,(R) Nspan(I, A, ..., Adeelma)=1) (43)

16The abbreviation S(A) will be very useful for the rest of the thesis. We refrain from

abbreviating GzchLn<R)(A) at this point, since soon we will show GEéILn(R)(A) = P(A)
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is a closed subgroup of GL,(R) and therefore a Lie group. Note that the
set P(A) is open in span(/, A, ..., Ad&ma)=1) Hence, dim P(A) = degm.
If A is cyclic, the last claim follows from Proposition [D.3] and respectively
Proposition [D.4] O

Now we show the main result of this subsection.

Theorem 6.3 Let 11 (A) be the classical Inverse iteration system with re-
spect to a matriz A € R"*".

a) Ssiiay and S(A)/R*I = {sR*|s € S(A)} are isomorphic as semi-

groups.

b) Gxii(ay is a Lie group of dimension deg(ma)—1 isomorphic to P(A)/R*I.
Moreover, Gsiq) X RP"™ 1 — RP"!, (g,2) — g(z) is a smooth ac-
tion.

Proof. We show

GEéILn(]R)(A) - P(A) (44)
Then, a) follows by Theorem since C, = P(A) NR*I = R*I. Moreover
we obtain b) by Theorem )

To show we analyze the system Yp4)(A4) := (P(A),U3, fa) given
by U5 = (R \ Spec(A))? and

fa: P(A) x U3 — P(A), (B, (u,v)) — (A—ul)(A—vl)"'B,
Note that ¥p(4)(A) is a smoothly invertible system evolving on the Lie

group P(A). Obviously,

T
SEP(A)(A) = {H(A — ut])(A — Ut])—l

t=1

T €N, (u,v) € Ui} (45)

is a group. Moreover we obtain

Sspa) € {B1Bs | By € S(A), By € S(A)} € Gy () € P(A). (46)

L

Now we show that ¥ p4)(A) is controllable. Here, we distinguish between
the case when A is cyclic and the case when A is non cyclic. Then, by
Proposition [5.2] it follows

Ssipen(a) = P(A) (47)

and thus (44).
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Cyclic case: Let us assume that A is a cyclic matrix. By Theorem [5.4]
Y p(a)y(A) is controllable if the following two claims are true:

Claim 1: System Yp(a)(A) is accessible.

Claim 2: Every connected component P(A)', i € T of P(A) has nonempty
intersection with SEP(A)(A)'

Proof of Claim 1: Following Proposition it is enough to show that
R(I) = Ssp 4 (a) has nonempty interior in P(A).

Recall that A is cyclic and P(A) is an open subset of the n dimen-
sional vectorspace span(l, A, ..., A"1). For fixed vy, ..., v, € Uy we define
p(A) :=[[-,(A—vI)"'. Now we consider the map

VUL — P(A), (ug,...,up) Hp(A)H(A—utI). (48)
t=1
By construction, the image of W lies in Sy, , (4). Using the inverse function
theorem we proof that U(U?%) has nonempty interior in span(/, 4, ..., A"™1)
and therefore intp(a) R(I) # 0. In particular we show, that (u1,...,up_1)
is a regular value of ¥ provided that u; # u; for i # j.
We express the term U(uy, ..., u,) = [[1_, (A —ul)p(A) by elementary
symmetric polynomials o : Ut — R, i = 0,...,n (see Definition . In
particular, Proposition yields

n

Uy, o) = Y (1)o7 (u, - un ey

t=0

with e; := A" 'p(A), t =0,1,...,n. Recall that I, A,..., A" ! is a basis of
span(l, A, ..., A" ). The set {e,...,e,} is linearly independent, since

0= Zatet =p(A) (ZatA”t> S a=0,t=1,...,n
t=1 t=0

Moreover, the Cayley-Hamilton theorem yields P(A)A* € span(/,..., A"™1)
for all £ € N. It follows

span(ey, ..., e,) = p(A)span(l,..., A" ) Cspan(l,..., A" ).

In other words, {e1,...,e,} is a basis of span(I, A,..., A" ') and ¢y =
Yo agey for some oy € R, ¢t = 1,...,n. With respect to this basis we
calculate the Jacobian DV of

n

U(up, ... uy) = Z (Do (ur,. .. up) + o) €

t=1
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in the point (uq, ...

,un) € Ul. For the partial derivations we obtain

ov, (=D o (urs - un) + )
8uk N 8uk
= (—1)t Z L T

i £k

= (=D)'o] ((ur, .o g1, 0, Upg1, .. Up).

Now we show, that the Jacobian D® is invertible, if and only if u; # u; for

i # j. We define f : R" — R by f(uy,...,u,) = det(D¥(uy,...,u,)). Note
that deg 66(5:) (u1,...,ur) =t —1 and therefore
o
aog(f) = deg | S (@0, )
8u,r(t)
mESym(n)
< l4-4n—1
Now let Ck(uy,...,u,) be the k-th column vector of DU (uy, ..., u,), ie.,
C’k(ul, Ce ,Un) = ((_1)1&0;1_1(“1’ cey Uk—1, Oa U1y - - - 7un))t:1 77777 n
Moreover, for u = (U1, ..., Uy, ..y Uy, - - -, Uy) We define
U= (Upy e vy Ukyy o v ey Uy e ey Up)-

Clearly Ci(u) = Cg(a) if k # k1 and k # ko, since all polynomials o} are
symmetric. Moreover, for k = ki respectively k = ky we obtain

Ckl (u) = (_1)t0?—1( I\ 0 ey Ukgs )
k=k1 t=1,...,n
- ( 1)t0-tn—1(' y Uky s I\ 0 PR )
k=kz t=1,....n
Ck2 (77’)
It follows,
flw) = det((Ci(w),...,Ck(u),...,Cr(u),...,Cp(u)))
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In other words the polynomial f is skew-symmetric. By Proposition f
can be written in the form

flug, ... u,) = H(ul —u;) - g(ug, ..., up)

with a symmetric polynomial g € Rlus, ..., u,]. Note that [[;_,(u; —u;) has
degree 1+2+---+(n—1). By ([49), f has degree 1+2+---+(n—1) and ¢
is constant. This shows, that DV is invertible, if and only if w; # u;,7 # j.
Hence, DV is invertible in exactly those points. By the inverse function
theorem, for any wui,...,u, € Us with u; # u;, i # j there exists an
open neighborhood O C U} such that U : O — ¥(0O) is a diffeomorphism.
Therefore, U(O) is an open subset of R(e) = S, ,,(4) With respect to P(A).

Proof of Claim 2: For an arbitrary B € P(A)" we construct a continuous
path

w:[0,1] = P(A) with w(0) =B and w(l) € Sy, (4)-
For the construction we need the following technical result:
Lemma 6.4 Let A € R™".

a) For all r € R* there exists u € R\ Spec(A) and a continuous path
a:[0,1] — P(A) such that

a(0) =rl and a(l) = (A —ul).

b) For any normed quadratic polynomial p € R|x] without real roots there
exists u € R\ Spec(A) and a continuous path (3 : [0,1] — P(A) such
that

B(0) = p(A) and B(1) = (A —ul)*.

¢) For any u € R\Spec(A) there exists v € R\ Spec(A) and a continuous
path v : [0,1] — P(A) such that

7(0) = (A—ul) and (1) = (A —ul)(A—vl)™"

d) For any u € R\Spec(A) there exists v € R\ Spec(A) and a continuous
path ¢ : [0,1] — P(A) such that

5(0) = (A—ul)?* and 6(1) = (A —ul)*(A—ovl)™2
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Proof of Lemma [6.4t a) If r < 0 we choose u € R such that u > X for all
A € Spec(A) NR. Otherwise we choose u < A for all A € Spec(A) NR. Now
we define v : [0,1] — P(A) by

a(t) =tA+ (—ut+ (1 —t)r)l
Note that «(0) =71, a(1) = A —ul and
a(t)=t(A—(u+r(l—1/t))) € P(A)

for t € (0,1], since 1 — 1/t < 0 and therefore u 4+ (1 — 1/t) > w if r < 0,
respectively, u + (1 — %) <wif r>0.
b) Let p(z) = (z — w)(x — w) with w € C\ (R U Spec(A)) We fix u €
R\ Spec(A). Note that C\ Spec(A) is pathwise connected since Spec(A) is a
finite set. Therefore, there exists a continuous a path ¢ : [0, 1] — C\Spec(A)
such that (0) = w and (1) = u. For every t € [0, 1] we define the quadratic
polynomial L

peiw e (@ = ((1)(x — (1)
Note that p; € Rlz] for all t € [0,1]. Now let § : [0,1] — P(A) be the
path t — p;(A). By construction (t) € P(A) for all t € [0,1]. Moreover,
B(0) = P(A) and B(1) = (A — ul)>
¢) By a) there exists a : [0,1] — P(A) such that «(0) = [ and a(l) =
A — vl for some v € Spec(A) NR. Therefore, the path v : [0,1] — P(A),
t — (A —ul)a(t)™! fulfills what is claimed.
d) Let v be a path with y(0) = (A —ul) and (1) = (A — ul)(A — vl)™*
Then 6 : [0,1] — P(A), t — ~(t)? fulfills 6(0) = (A — ul)? and §(1) =
(A—ul)*(A—vl)™?

Now we continue the proof of Theorem [6.3] For any B € P(A)' there
exists a polynomial p € R[z] such that B = p(A). The real polynomial p
can be decomposed in the form

p(x) = rh () -y ()P 1(2) - - Py ()

with r € R*, linear polynomials /;(z) = (v — u;), 7 = 1,...,my, and
quadratic polynomials p; : z — (x—w;)(x—w;) with w; € C\ (RUSpec(A)),
jg=mi+1,...,ms.

By Lemma [6.4] there exist ug, u; € R\ Spec(A), j =mi+1...,mg, v; €
R\ Spec(A), j =0,...,mq and continuous paths a, 5;,7;,0; : [0,1] — P(A)
such that

a(0) =rl, a(l) = (A —uol);

B;(0) = p;(A), 3;(1) = (A —u;I)?, J=mi+1,...,my;
7(0) =A—ul, (1) =(A-uyl)(A-v )™, j=0,...,mi;
6;(0) = (A—u;l)? 6;(1)=(A—u; )2(A—UJ Y72 o j=mi 41, ma.
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Recall that the product of two paths «, 5 : [0,1] — P(A) with 3(0) =
a(l) is a path fe« : [0,1] — P(A) given by

. a(2t)  te0,5);
5°O"tH{ B2t —1) ted 1]

Then w : [0,1] — P(A), defined by

w:t (oea)(t) i) Y, (8) - (Omys1 @ By 1) (2)
is a continuous path with w(0) = P(A) = B and

mi ma2

w(l)=[[(A-wDA-vD)™ [ (A= tmal)*(A=vmal)™>

k=0 k=mi+1

In particular we obtain w(1) € Sy, , (4). Hence, every connected compo-
nent P(A)’ of P(A) has an element of Sy, ,,(4)-

Non cyclic case: We show that Equation also holds for non cyclic
matrices. Obviously,

Gyu o rar-1) = TGZ&MR)(A)T—1 and P(TAT™ ') =TP(A)T .

In particular we can assume, that A is in block diagonal form

(A0
A= (7 4)

such that A4, is cyclic and m4 = my, (see Appendix D). By Proposition
it is Gy @ S P(A). Moreover, Gy (A1) = P(A;) (cyclic case). By
n nq

Lemma ®: P(A) — P(A), p(A) — p(A;) is an isomorphism. Thus,
s Gy (Al)_>P(A1)

|G2gLn () (A1) ZGL (®)

is a homomorphism and by construction surjective. Therefore, P(A;) =

ngLnl (A1) 19 isomorphic to a subgroup of GE(I}ILTL(]R) (4)- Hence, GEéILn(R) (4) =

P(A). O

In the sequel we point out three interesting byproducts of Theorem [6.3]
We start with an observation, which will be essential in the analysis of
rational iteration schemes in Section [§

Corollary 6.5 For all A € R™™"™ we have

t=1

P(A) = {H(A — ) (A — v )"

TGN,Ut,'UtE UA,}.
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The claim follows immediately from the equations , and .

For some A € R™™ the system semigroup of ¥//(A) is a group, i.e.,
Ssray = Gxir(a), but in general this is not the Casem. Nevertheless, from
the proof of Theorem|[6.3|we can deduce that the system semigroup of $77(A)
is large in a topological sense.

Corollary 6.6 Let A € R™" be cyclic.

a) If uy,...,uny € Us with at least n pairwise different values then
N
[[(A—wD)™ € intpay S(A).
t=1

b) intGEH(A) SEH(A) 7& @,

C) e c inthU(A) SEII(A)

Proof. a) Without loss of generality we assume u; # u; for all ¢ # j with
i,j <n. Let U: U} — P(A) and p € R[z]| be defined as in equation (48).
Recall that for any us, ..., u, € Us with u; # u;, ¢ # j there exists an open
neighborhood O C U of T[]}, (A —w;J)~! such that ®(O) is open in P(A).
The map T : P(A) — P(A), g — g~ 'p(A) is a homeomorphism. Therefore
T o ®(V) is open in P(A). Now intp(ay S(A) # 0 follows, since

Tod(O) = {p(A)(\I/(ul,...,un))_l| (ur,...,u,) € O}

= {H(A—utl)l (ul,...,un)EO}

t=

C S(A;.

More precisely we have shown, that every [[;_, (4 — u,J)~" with u; # uj,
i # j is an interior point of S(A). Moreover, HinH(A —u D)7 P(A) —
P(A) is a homeomorphism. Therefore

[[A-wD)™ e J] (A-ul)™ (Tod(0)) C S(A).
t=1 t=n+1

Now we prove ¢) which immediately implies b). Choose u1, ... u, € Ua\ {0}
such that u;, # u; for ¢« # j. For any r € R* large enougth_g] we have
B, =TI\ (A —ru)™" € intp(ay S(A). Recall that £/1(A) is an induced

1"We will see examples for both cases in Sections [6.5| and
181 should be large enough such that ru; # Spec(A) for all i € Uj,.
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system of EéILn(R) (A) with respect to some 7 : GL,(R) — RP""!. By
Theorem [5.9] and Theorem [6.3 we obtain

C, = P(A)NR*I = P(A) NR*I = R*].

By Theorem 3.7 there exists a continuous group homomorphism @ : P(A) —
Gs11(4) such that ®(intp 4y S(A)Cr) = intay,, , Ssrr(a). Therefore, O(B,) €
intGE”(A) Ssi1(4) for all r € R large enough. Following the construction of

® (see Theorem it follows ®(Bc) = ®(B) for all B € P(A) and ¢ € C,.
It follows

n 1 —1
lim &(B,) = lim ® (r” | | (—A — utl) )
r—00 r—00 T

=1

n ~1
= & (lim H (EA—utI) >
r—00 T
t=1

()

= €.

Hence, e € it , Ssir1(4)- O

Finally, Theorem [6.3]| provides an interesting property of the set of linear
decomposable polynomials, i.e., of the set

L= {r H(.I' — uy)

t=1

TER*,utER}.

Corollary 6.7 For any p,m € R[z] such that p and m are coprime, there
exist q1,qy € L with degq, = degqy such that

@ip = q2 mod m

Proof. Let A € R™™ be a matrix with minimal polynomial m € R[z|. By
Theorem [6.3] and Corollary [6.5] it is

P(A) = {H(A — D) (A — v, D)

t=1

TeN,Ut,UtE UA,}.

For any p coprime to m it is p(A) € P(A). Therefore, there exists 7' € N
and uqy,...,ur,v,...,vr € R such that

P(A) = ga(A) (@1 (A) ™"

with ¢ (x) = Hthl(:C — ) and go(x) = szl(x — ). Hence, ¢1p = g2 + km
for some k € R[z]. O
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6.2 Lie group types of Gy g

From Theorem we know, that Gxir(s) is a real abelian Lie group of
dimension m4 — 1. Therefore it must be isomorphic to D x R* x T*2 with a
discrete group D (see [GOVI7|, Theorem 2.12). Here we denote the additive
group of real numbers with R and the k-dimensional torus with

TF:=Sx---x8.

k-times

Note that R* = (', x R and C* 2 R x S where (5 denotes the group with
two elements. In this section we explicitly determine the Lie group type
of Gsir(yy, in terms of the minimal polynomial m4 of A. Note that parts
of this results were implicitly used (see |[KM83|, Theorem 1), but to our
knowledge, not explicitly written down and proved.

Theorem 6.8 Let my = i ... l:fl qlﬁ1 .. .q,f? be the minimal polynomial
of A € R™™ with coprime linear factors ly, ..., ly, and irreducible coprime
quadratic factors qu, ..., qr,. The group Gsiiay is isomorphic to

051 w ROtk +2014 420, —ka—1 o k2

Proof. Equivalently we show that P(A) = Gxrr(4)/R*I is isomorphic to
(R* « Rmfl) X oo X (R* % Rah*l) « (C* > Cﬁl*l) TR, ((C* « Cﬂszl).

It is sufficient to prove this relation for the cases my = (t — \)® for A € R
and ms = ((t — A)(t — X))? for A € C\ R. The minimal polynomial is
a product of such polynomials. Thus, the Lie group type of P(A) can be
deduced by Lemma [D.5]

(i) Let my = [* with a linear polynomial I(z) = (x — A). Without loss of
generality we can assume, that

0 0 ... 0
1

1
0
A= c Rox«
0 1

0

since P(TAT ' = \I) = P(A)and P(A) = P(A;) if ma = my, (see Lemma
D.5). Recall that

P(A) =span (I, A,...,A*") N GL4(R).
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The matrix p(A) is invertible, if and only if I(t) = ¢ is coprime to p, i.e.
p(0) # 0. Therefore, P(A) is the set of those matrices, which can be ex-
pressed in the form

B:a0[+a1A+"'+aa,1Aail
with ap € R* and a; e Rfori=1,...,a — 1. Since A* =0 we get

(CLQI + CL1A —+ ... aa,lAafl) (bo] —+ blA + ... baflAail)
= (Clgbof -+ (aobl + albo)A + ... (CLgba_l + -4 Cla_lbo)Aa_l)

for the product of two elements of P(A). Therefore, P(A) can be expressed
as the abelian matrix Lie group

g Ay ... QAg—1
Qo
ap ER* o, eR,1=1,...,aa—1
ax
ag

Obviously, P(A) has two connected components and dimension «. There-
fore, P(A) has to be diffeomorphic to Cy x R* x T*? with ag + ay = a.
Moreover, booth components are convex subsets in R™*" and therefore sim-
ply connected. Thus, as has to be zero. We conclude

P(A) 2 R* x R*.

(i) Now let m4 = ¢” with a quadratic irreducible polynomial q. As in (i)
we apply Lemma to reduce our analysis of a certain type. Without loss
of generality we can assume, that A is a block matrix

B I
B I

A= e R?P%28 with B:( 0 1)

] -1 0

B

since

1 Re(A)  Im(\)
P(J)=P <M(J—Re(>\)[)) for J = ( “Tm(}) Re(\) ) :

Every polynomial of A is again a matrix of block-type, with blocks (p(4));; €
R**2 4,5 =1,...,0. Obviously, (p(A));; = 0 for i < j. The diagonal blocks
are equal, i.e., (p(A));; = (p(A)),;. They are invertible, if and only if p is
coprime to my. By induction it can be shown, that for ¢ > j the block
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(A); ; is a polynomial of B and equal to (Ak)gj if i —j =1i—j. It follows,
that

P(A) = {p(A)| p coprime z* + 1}
= {CLQ[ + -+ agg_lAQﬁ_l ’ ag, ..., 0281 € R} N GLQI@(R)

is a subgroup of the abelian matrix group

p(B) pi(B) ... psg-1(B)
~ o & ' p(B) invertible,
P(A) := p1(B) pi € Rz]
p(B)

Now we show, that p(A) is isomorphic to the connected Lie group S x R?%~1,
We express P(A) with a semidirect product of groups isomorphic to C*,
respectively C. We define the following subgroups of GLog(R)

P = p coprime 2+ 1
p(B)

block 1,k)
~ =
I 0---0 p(B) 0...0 0

Pk = Mp(B) = ' ) . pi € R[[E]

\ Ve

Recall that the field C is isomorphic to the field of matrices

{5

Note that {p(B)|p € R|z]} coincides with the set F such that matrix
multiplication in F and {p(B)|p € R[z]} are corresponding. It follows,
that the group F, is isomorphic to C*. Moreover, matrix multiplication in
Py, k = 2,..., 3 corresponds to the addition of two (1, k)-block elements,
i.e., M(po(B))M(py(B)) = M(pa(B) + pp(B)). Therefore, P; is isomorphic
to the additive group C. Every group P, is a normal subgroup of P(A) since
it is abelian. Moreover, from the structure of the elements it is clear that

a,bER}.
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P(A) = PyP,... Py, and PN P; = {I} for i # j. Hence, Py is a semidirect
product of the groups F,. .., Ps_1. We conclude

P(A) = C* x CP 1 =S x R¥L,

Now we show, that P(A)f P(A). By Propositionit becomes clear, that
dim P(A) = 28 = dim P(A). Therefore, the factor group P(A)/P(A) is

discrete and must be trivial, since P(A) is connected. Hence P(A) = P(A).

(iii) Now let ma = 5" ... lgflqlﬁl . q,’sz be the minimal polynomial of A,

with [;,¢; as in the statement of Theorem [6.8] The Jordan canonical form
is a block matrix with blocks Ly,..., Lk, Q1,...,Qk, with L; € R¥*%
i=1,...k and Q; € R¥:> j =1 .. ky. By LemmalD.5we conclude

P(A) = P(Ly) X ... P(Lg,) X P(Q1) X -+ X P(Qf,)-

Thus, the claim follows from (i) and (ii). 0
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6.3 Structure of orbits

Now we analyze the structure of system group orbits of ¥/ (A). In particular
we show that, similar to the case of complex inverse iteration (see [HE00]),
there is always one "large" orbit, which is open and dense in RP"~!, provided
A is cyclic.

For inverse iteration systems Y//(A) the state space has a canonical
decomposition in Y-invariant subspaces. This decomposition is related with
the A-invariant subspaces. We will use the following notation:

Definition 6.9 Let A be cyclic. We denote the set of A-invariant subspaces
with Inv4. For W € Inv4 \{0} we define InvYy :={V € Invy |V C W,V #
W} and

Ny =W\ |J VCR"

VEInv‘;‘V

Let 7 : R"\ {0} — RP""! the canonical projection, i.e. 7(z) = span(z).
We define
Nw = 7(Nyw) C RP* .

In the case W = R"™ we write Ny := Ngn, respectively Ny := Ngn.
Proposition 6.10 The set Ny is Y-invariant for all W € Inv 4.

Proof. Recall that f, : RP"~! — RP"! is bijective for all v € Uy. More-
over, fu(r(V)) =7 ((A—ul)"*'V) =r(V) for all V € Inv,4. Hence,

fulNw) = fu(m(Nw))

— LAl U v

VGInvZV

= r|lwN[ U M

VEIHVE/
= Nw

O

Now we show, that the sets Ny, W € Inv, are system group orbits of
EH(A>, ie., GEH(A)ZL‘ = NW for x € NW

Lemma 6.11 Let A be cyclic and W € Inv 4.

a) The map P(A)X Ny — Ny, (B,v) — Buv is a transitive group action.
Moreover, Stab, = {B € P(A)|B, =id}, }.
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b) The map Gsiray X Nw — Nw, (9,2) — g - x is a transitive group
action. Moreover, Stab, = {g € Gx1a| g, = idy,, }.

Proof. Both maps are group actions. In particular, p(A)v € V for any
p(A) € P(A) and any A-invariant subspace V' C . Analogously, p(A)v €
V implies p(A)~'p(A)v € V and therefore v € W \ V implies P(A)v €
W\ V. Hence, p(A)v € Ny for all v € Ny,. Thus, p(A)Nyw = Ny for all
p(A) € P(A). Moreover, g- N4 = N4 follows immediately from Proposition
6. 101

Now we show transitivity of P(A) x Ny — Ny,. Let v € Ny,. Since
veW,butv ¢V elnvy for VG W we have span(v, Av, . .. JARL)) =W
(k :=dim W). In other words, every w € W can be written in the form

k—1
w = Z w; A'v = p(A)v
i=0

for some wy, ..., wr—1 € R and p(t) = Zf:ol w;t'. Assume that w € Ny .

Then w, Aw, ..., A*~1w is a basis of W. Therefore, p(A) is invertible, since
it maps the basis v, Av, ... A* 1y on the basis w, Aw, ..., A*1w. Hence, for
all v, w € Ny there exists p(A) € P(A) such that p(A)v = w. Moreover, it
follows p(A)v = v if and only if p(A)),, = idy, , since p(A) maps the basis
v, Av, ..., A¥ v on itself.

b) For z,y € N4 we choose v,w € Ny and B € P(A) such that Bv = w
and 7(v) = z and 7(w) = y. The map g : RP"! — RP"! 2+ Bz is
element of Gyrr(4) and we obtain

g(x) = B -w(v) = 7(Bv) = m(w) = y.
Moreover, g(x) = x with z € N if and only if g, = id,,, . O

Now we show, that the adherence structure of the system group orbits
can be described by the lattice structure of the A-invariant subspaces.

Definition 6.12 Let Inv4 be the set of nontrivial A-invariant subspaces.
The subspace grapf®|Ga = (<, Inv4 \{0}) is given by the vertices Inv,4 and
the relation

U—~V.UCV.

Note that the subspace graph of A is finite, provided A is cyclic. The
following example illustrates this concept.

19 Note that Inv, together with the relation U «— V :& U C V forms a lattice
structure . The subspace graph is a subgraph of the corresponding Hasse diagram.
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Example 6.13 For

_ o O

0 1
A=[o00

00

)

we obtain Inv4 = (span (es), span (e3), span (ey, €2), R?). The subspace graph
is given by

span (e3) R3 span (e3)

/

span (ey, e3)

Theorem 6.14 Let A € R™" be cyclic, 1 (A) be the inverse iteration
system of A. The orbit graph Go(XH(A)) and the subspace graph Ga are
1somorphic.

Proof. By Lemma the sets Ny, W € Invy coincide with the system
group orbits of X7(A). Therefore, the map

U:Invy — {Gyrrgay x|z € RP"H W — Ny

is surjective. Moreover, ¥ is injective, since V' # W implies Ny # Ny
Finally we show, that ¥ preserves the graph structure, i.e. V C W if
and only if (V) « W(W). Let v € V such that Gyrr4) - v = Ny. Then

v € Ny and therefore

7(v) € m(Nw) C m(Nw) = Nw.

The set Ny is a union of system group orbits (see Proposition . There-
fore,
Ny = Ggu(A) -m(v) C GEII(A) Ny = Ny

Hence, V' C W implies Ny € Ny. Conversely, if v € V' \ W, then there
exists an open set O C R"/W such y € O. It follows

m(v) € Ny N 7(0) C RP"! \NW
Hence, ¥(V) & ¥(W). O

In particular, there is always one system group orbit of X/7(A) which
corresponds to R™ € Inv,. Now we show, that this orbit is open and dense
in the state space.

Theorem 6.15 Let A € R™" and X! (A) = (RP"1, Uy, fa) be the classi-
cal inverse iteration system corresponding to A.
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a) If A is cyclic then there exists one open and dense system group orbit.
More precisely, N is open and dense in RP"™" and Gsrrq) - =Ny
for all z € Ny.

b) If A is not cyclic then every system group orbit has empty interior in
RP"1.

Proof. a) Since A is cyclic, it has finitely many A-invariant subspaces
(see [D.3). Therefore, (Jy ¢, , V' is the union of finitely many proper sub-
spaces. Hence, Na = R" \ Uy ¢y, V is open and dense in R". Moreover,
N = 7(Ny) is open and dense in RP""! since 7 is open, continuous and
surjective.

b) If Ais not cyclic, every x € R™ is element of some proper A-invariant sub-
space W. Therefore, R(x) C w(W). The claim follows, since dim7 (W) =
dimW — 1 < dimRP* 1. O
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6.4 Controllability properties

In this section we discuss controllability properties of X/(A). If W is a
proper A-invariant subspace, then x € 7(W) implies R(x) C m(W). There-
fore, ©1(A) is not controllable, provided there exists proper A-invariant
subspaceﬂ On the other hand, in the previous section we have shown,

that there exists an open and dense orbit, provided A is cyclic. Following
Section [3.8 we can restrict 3/7(A) to Na.

Definition 6.16 (Restricted inverse iteration system) Let A € R"*"
be cyclic and S/7(A) = (RP"!, Uy, fa) be the corresponding classical in-
verse iteration system. Then

S (A)y, = W, Un, fary o)

is the restricted inverse iteration system (with respect to Na).

Now the question arises if X'/(A), w, 1s controllable. The analogous
question for complex arithmetic was solved by Helmke and Fuhrmann (see
[HF00]). Here, the restricted system is controllable if and only if A is
cyclic. For real arithmetic, Helmke and Wirth already pointed out, that
there exists families of cyclic matrices such that X1/ (A), w, is not controllable
(see [HWO1]). Moreover, using a topological approach via controllable sets,
Helmke and Wirth showed the following:

Theorem 6.17 (Helmke, Wirth [HWO01]) Let A € R™" be cyclic and
my its minimal polynomial. Then the following statements are equivalent.

(1) System EH(A)‘NA is controllable.

(ii) System ZH(A)‘NA is approzimatively reachable from some v € Ny.

(11i) There exists r € R* and a control sequence u = (ug,...,ur—_1) such
that
T-1
H(A —ud)=rl
t=0

and for @ : U§ x Ny — Na, (ug, ..., ur_1,2) v [[1—g (A —ud) -z

the rank-condition

0P (x,u)
u

rank =n—-1

holds for all x € Ny.

(iv) There exists a polynomial k € R[z] and a constant o € R*. such that
a+kmy € L and o+ km has at least n — 1 different roots.

20Note that this is always the case if n > 3.
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Proof. All proofs are given in [HWO1|. See Theorem 3 for the implications
(1) & (ii) < (iii) and Theorem 5 for (i) < (iv). 0

In [HWO01] the authors widely neglected the fact that the reachable sets
are semigroup orbits. We are able to extend their results in different as-
pects. In particular, we show equivalent conditions for controllability of the
restricted systems with respect to the properties of the entire system.

Theorem 6.18 Let A € R™™ be cyclic. Consider the inverse iteration
system L (A). Then the following statements are equivalent.

(i) XM (A), is controllable.
(ZZ) Szll(A) — GZH(A)-
(iii) S (A) is approzimatively reachable from some x € Ny.

(iv) For all x € N4, all y € RP"™ and all neighborhoods U C RP"™! of y
there exists a control sequence ug,...uy € U such that x,, € U.

(v) SH(A) is weakly reversible.

(vi) S (A) is densely reachable.

(vii) The reachable structure and the orbit structure of X1 (A) coincide.
(viii) There ezists a finite number of different reachable sets.

(iz) S(A)R* :={Br|B e S(A),r e R*} = P(A).

Proof. (i) < (ii): Since G114y acts transitively on Ny, statement (ii) im-

plies controllability of %//(A),,, . Conversely, controllability of %//(A),,,

implies SZU(A)W = GEII(A)IN by Theorem [2.39] Recall that A4 is dense in
A A

RP"! (see Theorem [6.15)). Therefore, SE”(A)W = GEU(A)W is equivalent
A A

to Ssrr4y = G4y by Theorem 3.12

(#4) = (v): Obviously, (ii) implies R(x) = Gsxrr(y) - @ for all z € RP" 1.
Now, weakly reversibility follows by Lemma [2.35

(iv) = (4ii): Obviously, (iv) implies R(z) = RP"! and therefore approxi-
mative reachability from x.

(1) = (iv): If y € N4 there exists a finite control sequence ug, ..., uxy,
N € N such that xx = y for z,41 = f (2, us), 2o = x. If y € ON}4, then
the existence of a control sequence uyg,...,uy with x, € U is assured by

Theorem [2.46Lb).
(v) = (wi): If B'7(A) is weakly reversible, then R(z) = Gsrr(a - « for
all z € RP"™! (see Lemma [2.35). In particular Ssur(4) - 2 = Ny for any
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x € Ny, since Gyrryy acts transitively on Ny. Hence, ¥'(A) is approxi-
matively reachable from z € Ny, since N, is dense in RP"~ 1,

(iti) < (i) & (vi): By Theorem , %1(A)|, is abelian and smoothly
invertible. Moreover, Gyir(a) ) has a Lie group structure (isomorphic to
P(A)/R*I) such that GEU(A)WA X Ny — Ny, (g, 2) — g(z) is smooth and,
by Lemma ansitive. By Corollary we have intg,, , Svir(a) # 0.
By Corollary it follows, that (¢) is equivalent to dense reachability of
EII(*A)I/\fA'

(v) & (vii): This equivalence is a immediate consequence of Theorem [4.6]
(vit) = (viii): By Theorem there exists a bijection between the set of
A invariant subspaces and the system group orbits of $//(A). Since A is
cyclic there exists a finite number of A-invariant subspaces (see [D.3). As-
suming (vit), there exist finitely many reachable sets.

(viti) = (i9i): Recall that Ny is a system group orbit of ¥/ (A) (see Propo-
sition [6.11). If ¥7/(A) has only a finite number of reachable sets, then
%'1(A)),, has only a finite number of reachable sets. Thus, from Corollary
it follows, that %'7(A)|,. is reachable from one x € Ny. Since Ny is
dense in RP"!, system X;7(A) is approximatively reachable from z.

(it) < (iz) Recall that that R*] C P(A) (see Theorem [6.3). More-
over, %'/(A) is an induced system of X . (A) with respect to some
7 : GL,(R) — RP"'. Here, C, = P(A) NR*I = R*I (see Theorem
6.9). Now the claim follows by Theorem [3.6] i.e., Sxr1(A) is a group if and
only if S(A)Cy = P(A). O

Y

Note that S(A) = P(A) implies S(A)R* = P(A). The following example

shows, that the converse is wrong in general.

Example 6.19 Consider %/7(A) for
0 —1
(1)
We show that S(A)R* is a group but S(A) is not. Obviously,
-1 N -1
(1 -1 —uy -1
B‘_(1 1) E{tlj[l(1 —ut>

We assume that B! € S(A), i.e., there exist shift parameters ui, ..., uy €
R such that B~ =[], (A — u,I)~". Then

-1 N
- —up —1 1
det(B 1)=det<||( 1t —Ut) >:||u2+1§1,
¢

t=1 t=1

N < oo,u; € R} = S(A).
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which is a contradiction to det(B) = 1. We conclude, B! ¢ S(A). Hence,
S(A) is not a group. On the other hand, the inverse of (A —ul)~! € S(A)
is given by

A—ul =W+ 1D)ATA A +ul)™ ! € S(A)R".

Hence, S(A)R* is a group.
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6.5 Conditions for S(A)R* # P(A)

Theorem shows, that in order to find out if ZH(A)WA is controllable
or not, it 1s enough to check S(A)R* = P(A), which is a property of matrix
semigroups} The question if S(A)R* = P(A) is given or not only depends
on the canonical form of A. More precisely we have:

Lemma 6.20 Let A € R™" be cyclic, T € GL,(R), u € R and v € R*.
Then S(A)R* = P(A) if and only if S(WYTAT ' —ul)R* = G(YT AT —ul)

Proof. Obviously, S(WTAT " — pI)R* = T(S(A — £1))T~'R*. Moreover,

v =0 gl

— { [TA4-wn

t=

= S(A)O.

N e N,y € UA/;]}

s (A - H[) - {ﬁ((A _H )y

NEN,Ut S UA}

Now the claim follows, since R*I C G(B) for all B € GL,(R) and therefore

GWTAT ' —pul) = (S(YTAT™' — ul))
= <S(7TAT ! —MI)R>
= (T(S(ARHT)
= T(5(4 )> ”R*
= TP(A)T

Recall that every matrix A € R™" is similar to its real Jordan canonical
form

Ji
Jo

J4
Ji

Zinstead of Ssrr(A) = Gxyrr(A) which is a property of a semigroup generated by maps
f:RP"1 — Rpo-
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such that every block J; corresponds to the eigenvalue A; respectively to
the pair (A\;, A;) and has one of the following types:

Type 1: J; = ();) e R™!
A

;o1
0 A 1
Type 2: Jj = eRijkjvkj > 2
Aj
0 A
) _ Re(;)  Im();) 2%2
Type 3: Jj = ( —Im(/\j) Re<>\j) eR s Im)\j 7é 0
J 1
. X _ J I ijkj 3
Type 4: J; = ) eR with J of Type 3
J

Proposition 6.21 Let J € R™*" be a matriz of Type k € {1,2,3,4}.
a) If J is of Type 1 or 3 then S(J)R* = G(J).
b) If J is of Type 4 then S(J)R* # G(J).
c) If J is of Type 2 then S(J)R* = G(J) if and only if n = 2.

Proof. (i) assume that J is of Type 1. Since S(J) = S(J — AI) we obtain
S(J)=S(J)R* =R* = G(J).

(ii) Now let n = 2 and J of Type 2. Without loss of generality we assume
A =0, since S(J) = S(J — AI). Recall that

G(J) = P(J) = GLy(R) N'span(/, A)
(see (43). Thus

G(J) = {al +bJ]|a,beR}NGLy(R)

-1
(6 a)=2("3"0ls)

with u := —%. This shows S(J)R* = G(J). By Corollary have
intpay S(A) # 0 and therefore intp(ay S(A)R* # (. Thus we conclude

aeRﬂbeR}.

For b # 0 we obtain
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S(J)R* = G(J) by Lemma [B.6|

(iii) Now we assume, that J is of Type 3. The characteristic polynomial of
Jis xs(t) = t* — 2Re(N\)t + |A|?>. We obtain

G(J) = {al +bJ|a,be R} NGLy(R)

- a b 9 19
= {(—b a) a”+0b 750}
For b # 0 we get

(o) = (M) wei )

with r = Lﬁld u = Re(\) — ¢ Im(X). Again we conclude S(J)R* = G(J)

Im(A
by Corollary [6.6) and Lemma
(iv) Let J be a matrix of Type 2 with minimal polynomial (x — \)™, n > 3.

Again we may assume that A\ = 0. Assume that I € (S(J)R*)7!, ie,
I = q(J) for a linear decomposable polynomial ¢. Then

1 =q(z) + k(x)z" (50)

with k£ € R[z]. Derivation gives us ¢/(r) = —2" ! (nk(x) + zk'(z)). Since
zero is a root of ¢’ with degree at least 2, zero is also a root of ¢. This
contradicts (50). Hence, I ¢ (S(J)R*)~! and therefore S(J)R* # P(A).
(v) Let J be of Type 4 with characteristic polynomial p(x)™ such that p is
quadratic and irreducible. Assume I € (S(J)R*)"}i.e., I = g(J) for alinear
decomposable polynomial g. Then 1 = g+ kp"™ with k € R[z]| and therefore
q = p(K'p"t+nkp"1p). Tt follows ¢’ ¢ L. This is a contradiction to g € £
(see Theorem [E.4)). Hence, I ¢ (S(J)R*)~! and therefore S(J)R* # G(J).
(Il

Lemma 6.22 Let A € R™*" be a block-diagonal cyclic matrix

A= ( ftl)l 14(1)2 ) with Ay € R™X™, Ay € RUm)x0mm),

If S(A))R* # P(Ay) then S(A)R* £ P(A).

Proof. By Lemma IB_5| we have P(A;) \ S(A;)R* # (). Choose p € R|x]
such that p(A;) € P(A;)\ S(A1)R* # (. Without loss of generalit p(A2)
is invertible. Then p(A) € P(A). On the other hand, P(A) # S(A)R*,
since p(A) = q(A) with ¢ € £ implies p(A4;) = q(4;). a

2Recall that P(A1) = span(I, Ay, ..., A7 "H)NGL,, (R) (see (13)). Therefore, p(A;)+
el € GL,, (R) for all except finitely many € € R.
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In general, the assumptions S(A4;)R* = P(A4;) and S(A2)R* = P(As)

for a block matrix A
_ 1 0
a=(% 1)

do not imply S(A)R* = P(A). An example for this is given by

Alz(()) and A2:(_01 (1)>

This is one of the consequences of the following theorem.

Theorem 6.23 Let A be cyclic and spec(A) C C the set of eigenvalues of
A e R™ ™,

a) If there exists a real eigenvalue X\ of multiplicity at least three, then

S(A)R* £ P(A).

b) If there exists a pair of eigenvalues \, X € C\ R of multiplicity at least
two, then S(A)R* # P(A).

c) If there exist eigenvalues A\, Ao € Spec(A) of multiplicity one with
Re(\) = Re(Xo) but Im(\;) # Im(Ny), then S(A)R* # P(A).

d) If there exists eigenvalues A, Ao, A3 € Spec(A) of multiplicity one,
with Ay € C\ R and Ay, A\3 € R such that Re A\ = % and Ay <
Re A1 + Im Ay, then S(A)R* # P(A).

e) If there exists eigenvalues i, Ao, \3 € Spec(A) of multiplicity one,
with Re(>\3) < Re()\l) < Re()\g), Re()\g)+Re()\3) =2Re )\1, Im()\g) =
Im(A3) and Im(X9)?* > (Re(X2) — Re(A1))? + (Im \y)?, then S(A)R* #
P(A).

Proof. a) and b) is an immediate consequence of Proposition and
Lemmal6.22] For the proofs of ¢),d) and e) we show that the assumption I €
(S(A)R*)~! implies, that the eigenvalues of A do not form a constellation
as assumed. It follows, that S(A)R* # P(A).

¢) We distinguish between the case where A; € R and where \; ¢ R.

(i) Let Ay € R. Then in the canonical form of A is a block of the type

Re()\Q) Im(>\2) 0
J=1 —Im(Ay) Re(Xz) 0
0 0 A1

By Lemma |6.20| we can assume

0 1
J=1 -1 0
0 0

o O O
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since A\; = Re(\z). Assuming I € (S(A)R*)™!, there exist controls uy, ..., ur €
R\ {0} such that both of the following equations are fulfilled.

() I = rtli(( Y é)-WI)

Applying the determinant function B — det(B) on Equation (I) we obtain

T

1=r? H(l + u?),

t=1

which is a contradiction to Equation (17), since r # 0. Hence, I & (S(J)R*)™*
and by Lemma we obtain S(A)R* # Ga.
(ii) Now let A; € C\ R. Then in the canonical form of A is a block of the

type

Re()\l) Im()\l) 0 0
N 0 0 Re(Ag)  Im(Ag)
0 0 - Im()\g) Re(/\g)
By Lemma [6.20| we can assume
0 1 0
-1 0 0
/= 0O 0 0 g
0 0 =6 0

with 5 > 0 since Re(A;) = Re(A2). Suppose there exist controls uy, ..., ur €
R\ {0} such that I = 7 [_,(A — u,I) for any r € R*, then both of the
following equations are fulfilled

o (0 ) )
o = (0 0) )

As in (i) we apply the determinant function B +— det(B) on (I) and (I])
and we obtain
T T
1“2H (1+u}) r2H52—|—ut
t=1

t=1
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Since r # 0, we obtain § = 1. But then J is a matrix of Type 4 and
Theorem implies S(A)R* # P(A).

d)If )\ € C \R and A, A3 € R with Re \; = 21522 then the canonical form
of A has a block J of the form

Re()\l) Im()\l) 0 0
sl - Im(A;) Re(A;) 0 0
N 0 0 Ao 0
0 0 0 A3
By Lemma [6.20| we can assume
0 1.0 0
-1 0 0 O
S = 0 0 a 0
0 0 0 —«
with a = %f\g))‘l) > 0. Note that a < 1 by assumption. Suppose there

exist controls uy,...,up € R\ {0} such that I = r[[_,(A — u,I) for any
r € R*, then both of the following equations are fulfilled

(%))
(II) I, = rtlj[l((g‘ _(]a>—utl)

(1) I

The determinant function applied on Equation (I) and Equation (II) yields

T T
2 _ .2

rlla—ut a—ut—T||1+ut
t=1 t=1

But this is a contradiction, since r # 0 and 1+u? > |u? — o?|. We conclude
S(A)R* #£ P(A).
e) (i) First we assume, that Im A; # 0. Without loss of generality, A has a
block of the type

—Im(A;) Re(\) 0 0 0 0
g 0 0 Re(A2)  Im(Ag) 0 0
N 0 0 —Im(A2) Re()\2) 0 0

0 0 0 0 Re(hs) Im(\)

0 0 0 0 —Im(A3) Re()\3)
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such that Im(A;), Im(A2), Im(A3) > 0 and Re(A3) < Re(A2) < ReA;. Using
Lemma, [6.20] we transform the problem on the matrix

0O aa 0 0 O O
—a 0 0 0 0 0
J_ 0O 0 1 ~ 0 O
0 0 —v 1 0 O
0O 0 0 0 -1 v
0o 0 0 0 —y —1
Here, a = % and v = ﬁ%. Suppose there exist controls

uy,...,ur € R\ {0} such that I = rHthl(A — u ) for any r € R*, then
the following three equations are fulfilled

(% 5) ).
(IT) I, = rﬁ(( _17 ?)—uJ),
(ITT) I, = rﬁ

(% 2) )

Applying the determinant function on ([), (/1) and (/1) we obtain

T T T
r2H (1 —w) r2H 1+ uy)? 72):7«21_[(“?4_042)
=1 t=1 t=1

In particular it holds

T T
T (@ =w)® + 221 +u) = [T i +o? (51)
=1 ~~ _

=p~ (ut) =pa(ut)

Note that p,(u:) > 0 and p,(u;) > 0. Moreover,

Py (w) = pa(ur) = u?—QU?+1+72+72 Pyt 20+ o 4o
= (272—2 20%) ui + (L+29" +7" — o).
Cl CQ

By assumption we have
Im(\2)? > (Re(A2) — Re(\1))? + (Im ;)2
& (2Im(A2))? — (Re(A2) — Re(A1))? > (2Im(A1))?
s A —-1>a%
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Therefore, C; > 0 and Cy > 0. It follows p,(u;) > pa(u) which contradicts
(B1). We conclude I ¢ (S(A)R*)~! and therefore S(A)R* # P(A).

(ii) Now we assume, Im(A;) = 0. Without loss of generality, A has a block
of the type

0O 0 0 0 0
0 1 ~ 0 0
J=10 —y 1 0 0
0 0 0 -1 «
0 0 0 —y -1
Now v = ﬁ By assumption we obtain v > 1. Suppose there exist

controls uy, ..., up € R\ {0} such that I = [[,_, (A — u,I) for any r € R*.
Then (II), (III) of (ii) are fulfilled. Moreover it is

T

(M 1=r][(-w)

t=1

Applying the determinant function on (I*), (I1) and (I11) we obtain

T T
r2H 1—ut 7’2H 1+ut —i—’y =r Hut
t=1 t=1 t=1

In particular it holds

T

T
TT (@ =) + 7)1 + )’ Huf
t=1 ~

=p~ (ut)

which is a contradiction, since v > 1 implies
pw(ut)—ut—i—(l—}—y ) +2uf(72—1)>uf
We conclude S(A)R* # P(A). O

Recall that S(A)R* # P(A) implies, that 3/7(A) restricted on Ny is not
controllable. Therefore, Theorem verifies the following controllability
results of Helmke and Wirth (see [HWO01], Proposition 8,i, Corollary 10,i
and Corollary 10,i-ii). .

Theorem 6.24 (Helmke and Wirth [HWO01]) Let A € R™" be a cyclic
matriz. If the eigenvalue constellation coincides with one of the eigenvalue

constellations in Theorem then ZH(A)WA 18 not controllable.
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Recall that a matrix A € R™*" is called skew-symmetric if AT = —AT,
and respectively Hamiltonian, if n is even and

T B (0
AT+ JA=0 forJ—<_I 0 )

Now an immediate consequence of Theorem is the following.

Corollary 6.25 Let A € R™*",

a) Ifn >3 and A is skew-symmelric, then S(A)R* # P(A) and 21 (A)),,
s not controllable .

b) If A is a cyclic Hamiltonian matriz with eigenvalue A\ € iR. If there
exists Ay € Spec(A) such that Tm(\y)? — Re(M2)? > Im()\)? then
S(AR* # P(A) and X1 (A)),, is not controllable.

Proof. Eigenvalues of skew-symmetric matrices are of the form ir with
r € R. Therefore, claim a) is a consequence of statement c) in Theorem
Hamiltonian matrices have the property, that for any eigenvalue A
also —\ is an eigenvalue. The conditions in claim b) imply, that there
exist Ao, A3 € Spec(A) such that Re(A2) + Re(A2) = 2Re(A;) = 0. and
Im(A2)? — Re(A2)? > Im(\)?. Hence, S(A)R* # P(A) by Theorem [6.23]e).

([
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6.6 Conditions for S(A)R* = P(A)

Using the results of the previous section one easily construct inverse iteration
systems %/7(A)|,.  which are not controllable. On the other hand, there
exists a large set of matrices, such that S(A)R* = P(A), which implies
controllability of X/(A)|,, . In the following we present three sufficient
conditions for S(A)R* = P(A).

If A is in block diagonal form A = diag(A,,...,Ag), then S(A)R* =
P(A) implies S(4;)R* = P(A;), i =1,...,k (Lemmal6.22). Note that the
converse is wrong in general. An example for that will be given in Section
6.8.2l The following result, provides a strategy, for checking if a block matrix
with S(A4;)R* = P(A;), i = 1,...,k fulfills S(A)R* = P(A).

Theorem 6.26 Let A be a cyclic block-diagonal matriz A = diag(Ay, ..., Ax)
with A; € R™ ™ and ny + -+ + ngp = n. Assume that for any i =1,... )k
there exists a dense subset M; of P(A;) such that for any p(A;) € M; there
exists ¢ € L such that

(i) q(Ai) = p(As),
(i1) a(4)) = L, Jor j # i
Then S(A)R* = P(A).

Proof. Since A is cyclic, the minimal poynomial of A is the product of the
minimal polynomials of A;,...  A,. Thus, P(A) = P(A;) x --- x P(A)
(see Lemma [D.5). For any p(A) € M; X --- x My we choose g1, ..., g such
that (7) and (77) are fulfilled. Then

a(A) ... qe(A) = diag(q1 (A1), I,..., I)...diag(1,..., I, q(Ax)) = p(A).

Recall that intp(4) S(A)R* # () (see Corollary [6.6). Moreover, M; x - - - x M,
is dense in P(A). Thus S(A)R* = P(A), by Lemma O

For the next sufficient condition for S(A)R* = P(A), we use the fact,
that P(A) is a topological group.

Theorem 6.27 Let A € R be cyclic. Then S(A)R* = P(A) if and only
if I € intp(A) S(A)]R*

Proof. We show that S(A)R* intersects every connected component P(A)*
of P(A) = P(A). Then, the equivalence follows from Lemma [B.4 For
any B € P(A)" we choose p € R[z] such that B™' = p(A). p can be
decomposed as p(z) = ¢(z)p1(z)...pm(zr) with g€ Land p;, j=1,...,m
normed quadratic non-irreducible polynomials. By Lemma there exists
Uy, ..., Uy, € R\ Spec(A) and continuous paths §; : [0,1] — P(A4), j =
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1,...,m such that 3;(0) = p; and 3;(1) = (A — u;I)?. Therefore, the path
W : [O, 1] — P(A) defined by @ : t — q(A)Bi(t) ... 0n(t) fulfills ©(0) =
(P(A))"! = B and

- ﬁ —u )™= € S(A)R".

t=1

O

For the remaining part of Section [6.6) we deal with matrices, where every
eigenvalue is real. We will use the following technical result.

Lemma 6.28 Let p € R[z| be a polynomial of degree k — 1. For every
sequence Ay < -+ < X\ € R there exists M € R such that f(x) := p(z) —
M Hle(m — \;) is linear decomposable.

Proof. Let ¢(z) :== [[i,(x — \;). We define 2y < 21 < --- < x, such
that x; ¢ {\,...,\x}. Moreover, we define yo = ¢(x¢) and y;1 =
—sgny;lq(xii1)|,i=0,...,k —1. By construction y; # 0 and

sgny; = —sgny;11 for 1 =0,... k. (52)

Now we define

C
C:=1+ max |p(z)|, D:= min ]yl\ and M :=——.
T€[x0,7k] i=0,..., D
Obviously, the polynomial
f=p—Mq (53)

has degree deg f = degq = k. In the following we show, that f has k dif-
ferent real roots and therefore f € L.

We have

Yi
Mqg(x;) =1+ max T |
o) = (1 _mox o)) - ()

.....

and therefore Mq(xz;) > p(a;) if y; > 0, respectively, Mq(x;) < p(z;) if
y; < 0. Tt follows sgn f(x;) = sgny; for alli =0,... k. By we obtain

sgn(f(z;)) = —sen(f(zipq1), for i=0,...,k—1.

Now the mean value theorem yields that f has k different real roots. Hence,

fecL. O
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Theorem 6.29 If all eigenvalues of A are real and have multiplicity at
most two, then S(A)R* = P(A).

Proof. We show, that for any p € R[z| there exists ¢ € L such that
p(A) = q(A). Let A\; <--- < A, be the eigenvalues of A. By Lemma [6.20]
we can assume that A is block diagonal

Ay
A pu—
A
. . Ao 1
with A; = (\;), and respectively A; = < 0 )\ ) . Note that
p(A1)
p(A) =
p(Ax)
: : p'(\)
with p(A;) = (p(\;)) and respectively p(4;) = PO
By Lemma there exists M € R such that g(z ) p(x)—M H i (r—=N)
is linear decomposable. Note that p(\;) = q(\;). Moreover, P(N) = ( ;)
if \; = A\ir1. Hence, p(A) = ¢(A) and therefore S(A)R* = P(A). O

Note that Theorem verifies another result of Helmke and Wirth.

Theorem 6.30 (Helmke and Wirth [HWO01]], Proposition 8,ii) If all
eigenvalues of a cyclic matriz are real and have multiplicity at most two,
then X1 (A)|, is controllable.

Note that Theorem I@ shows, that ¥'7(A)|, is controllable for an
open set of matrices A € R™". All conditions we have found implying
S(A)R* # P(A) assume certain symmetries in the constellation of eigenval-
ues of A and are therefore nongeneric (see Section [6.5). It remains unclear,
whether controllability of $'/(A)|,;, holds for a generic subset of R".

We finish this section with two interesting byproducts of Lemma [6.28]
which give new insight on the theory of linear decomposable polynomials.

Corollary 6.31 FEwvery real polynomial of degree k—1 can be written as the
sum of two linear decomposable polynomials of degree k.

Proof. Let p € R[x] of degree k — 1. Following [6.28 we write p = f + ¢
with f € £ and ¢(x) = M]_L (x —\;) € L. Moreover, deg f = degq = k.
(Il
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For any \; < --- < Mg and by,...,b; € R there exists a unique polyno-
mial p € R[z] of degree k — 1 such that f()\;) = b; for i =1,..., k. This fact
is known as the Lagrange interpolation theorem. In the following we show
a similar theorem for linear decomposable polynomials.

Theorem 6.32 (Interpolation theorem) Let \; < -+ < Ay € R and
bi,...,br € R. There exists a linear decomposable polynomial f € L of
degree k such that f(X\;) = b;.

Proof. Following the Lagrangian interpolation theorem, there exists a
unique polynomial p € R[z] of degree k — 1 such that p(\;) = b;, i =
1,...,k. From Lemma we deduce the existence of M € R such that
f(x) = p(x) — MHle(x — \;) is linear decomposable. Hence, deg(f) = k
and
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6.7 Structure of reachable sets

In the following we analyze the adherence structure of the reachable sets for
classical inverse iteration systems. If R*S(A) = P(A) then the adherence
structure of the reachable sets is already given by the orbit graph (see The-
orem [6.18). Therefore, we focus on the case R*S(A) # P(A). Nevertheless,
our first observation holds in both cases.

Proposition 6.33 Let A € R™™" cyclic.

a) For any x,y € Ny there exists z,Z2 € Ny such that R(z) C R(x)NR(y)
and R(z) UR(y) C R(2).

b) For any © € Ny we have x € R(x).

c) If v is an eigenvector with respect to a real eigenvalue A\ with multi-

plicity k, then m(v) € R(x) for any x € Na.

Proof. a) Recall that X//(A) is an abelian system and therefore right
divisible as well as left divisible. Thus, claim a) follows from Theorem [4.§|
b) Recall that N4 is open and dense in RP"~!, Therefore, we obtain

Cny = {9 € GEU(A) |9\NA = idl/\/A} = {e}.

Moreover, we have e € Syir(4) by Corollary . Thus, = € R(x) follows
from Theorem 4.12]
¢) We choose a basis, such that

A1
(A0 . B kxk
A
and A € R("=F*(=k) Then v = (1,0...,0)" and X is not an eigenvalue of

A. Without loss of generality we assume that zo := 7 ((1, 1., 1)T) € Na.
By choosing u; = A — % we obtain

lim (A —u, Q)" -z :7T(

t—o0

limt?oo(A,\ — Ut]k)flek
(A - AIn—k)_len—k

with e, = (1,...,1)" € RFand e, = (1,...,1)" € R*7*. Since
1 —t 2 ... (=)

1 —t -, (_t)kf2
(A,\—utlk)_l =1 ’



6.7 Structure of reachable sets 119

it follows limy_o (A — u,J)~" - g = 7(v) Thus, 7(v) € R(z). By Theorem
it follows 7(v) € R(z) for all z € Ny.

O

Now we focus on the case S(A)R* # P(A). Here the complexity of the
reachable graph is much higher then the complexity of the orbit graph. In
particular, there exist infinitely many reachable sets (see Theorem .
More precisely, the reachable sets within A4 have the following structure.

Theorem 6.34 Let A € R™™™ be cyclic such that S(A)R* # P(A).

a) For any y € Ny, there exists a sequence (y;)en in Na such that

(i) 1=y,

(ii) R(ye1) 2 intar, R(y:); Yt € No,
(iii) Upeqintpr, R(ye) is dense in Na,
fiv) int, (N \ R () # 0

(v) (yi)ien converges to some z, € ONy.

b) If there exists z € RP"' \ Ny and x € Ny such that

GEII(A) -zN R(I) =0,
then Gsiray - 2 s repelling to Ny.

Proof. a) Recall that N4 is open and therefore locally compact. Since
Gyrray acts continuously on Ny and inty,, , Sviia) # () we can apply
Theorem ). Thus, for any y € N4 there exists a sequence (y;)ien
fulfilling (¢), (i7) and (¢éi). Assuming that inty, (NMa \ R(y)) = 0 for one
t € N, then E”(A)‘NA is approximatively reachable from vy, € AN4. But
this implies S(A)R* = P(A) by Theorem Thus (iv) is fulfilled for
all t € N. Since RP"! is compact, (y;)ren has a convergent subsequence.
Since any subsequence of (y;)en also fulfills (7), (i7), (i7) and (iv) we may
assume that (y;)ieny converges to z, € RP"~!. The assumption Zy € Ny
implies that %/'(A),. is controllable (see Theorem b). But then
SE”(A)\NA N by Theorem 239, SEII(A) = EII(A) by Theorem
and S(A)R* = P(A) by Theorem [6.18 Thus, z, € ON4.

b) Recall that Gs;rr(4)-2 is X-invariant. Since NV is open and dense in RP" !
we have RP" 1\ N4 = ON,. By Theorem G114 2NR(x) = 0 implies

— GE”(A)

Gsiray - 2N R(y) = 0 for any y € Ny Thus Gy - 2 is repelling to Ny.
O
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In Theorem we presented certain eigenvalue constellations where
P(A) # S(A)R*. Now Theorem implies the appearance of repelling
phenomena for these eigenvalue constellations. For a pair of complex eigen-
values A\, X of A we call

Ex:=m ({z € R"\ {0} |(A* = 2Re()\) + [A*I)z = 0}) C RP"!

the eigenspace corresponding to \. Here, m: R"\ {0} — RP"! denotes the
canonical projection. Note that £y is a Y-invariant subspace of S

Corollary 6.35 Let A € R™*" be cyclic and spec(A) := {\1,... A\, } the set
of eigenvalues of A.

a) Let \y € R Ay € C\R and Re(\1) = Re(\), each with multiplicity 1.
Then the eigenspace corresponding to Ay, X, is repelling to Ny.

b) Let M\, e € C\ R with Re(A\1) = Re(A2) but |Im(A1)| < |Im(As)].
Then the eigenspace corresponding to Ay is repelling to Ny.

Proof. Without loss of generality we may assume that the matrices are of
size R™ ™ with n = 3, and respectively n = 4. Let z € N4. All eigenspaces
of A are elements of (Gy - x), since N4 is open and dense in RP"~!. By
Theorem it is sufficient to show that R(z) N & = 0 for one £ € Ny.

a) Let Ay € R. Then in the canonical form of A is

Re(Az) Im(Xg) O
J=1 —Im(\y) Re(X2) 0
0 0 A

By Lemma [6.20| we can assume

0 10
J=| -1 0 0
0 00
since A\; = Re(Ag). Recall that
b ¢ 0
Ga = — b 0 a#0,b>+c#£0
0 0 a

In Theorem we have already seen, that not all elements of G4 can be
realized with elements in S(A)R*. In particular, assuming

b
—c

0

€ S(A)R”

S O
L O O
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implies that there exists T" € N and u; € U such that

0 (L) = () )

(I1) a= r|[(—u)"

=1

~

Applying the determinant function B +— det(B) on Equation (1) and (I1)
we obtain

T
b2 + 2 u?

a? e ek
Hence, b? + ¢* < a®. Now we show that R(z) N span(ej,ey) = () for x =
(1,1,1)", e; = (1,0,0)" and e; = (0,1,0)". Assume that there exists a
sequence s,r — aej; + fBeg # 0 with s, € S(A)R*. Then b, + ¢, — «,
b, — ¢, — (3 with o + 3% # 0 and a,, — 0. But this is impossible since

az > b2 +c2 =a* + 3%

b) By Lemma we can assume

]
o O O
o O O

5
—3 0

with 3 > 1 since Re(A;) = Re()A2). Recall that

a b 0 0
L —b a O 0 2 2 2 2
Ga = 0 0 ¢ d a“+b"#0,c"+d #0
0 0 —d ¢

Suppose g € G 4 is an element of S(A)R* then there exist controls uy, . .., ur €
R\ {0} such that I = 7 J[_,(A — u.I) for any r € R*, then both of the
following equations are fulfilled

EDEE (EHRY
0 (5 )- ()
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Using the determinant function it follows

2 4 p2 T 29 2
L:Hﬁ +u2t>1,
G+d> 3 14y

Similar to (i) we obtain W Nspan(es, eq) = 0 for x = (1,1,1,1)7, e =
(0,0,1,0)" and e, = (0,0,0,1)". Assume, that there exists a sequence
Spx — ves + dey # 0 with s, € S(A)R*. Then b, + ¢, — 0, b, — ¢, — 0,
¢, +d, — v and ¢, —d,, — § with 4% + 62 # 0. But this is impossible since

ai+bi>ci+di:72+52.
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6.8 Inverse iteration on RP" ! for small dimensions

We finish our analysis of classical inverse iteration systems with the inves-
tigation of reachable sets for matrices A € R™", n = 2,3,4. A necessary
condition for the existence of large reachable sets, in the sense that they have
open interior in RP"~! is that A is cyclic (see Theorem . Therefore, we
focus on systems Y/7(A) with respect to cyclic matrices A € R™*™. Recall
that the adherence structure of reachable sets of $/(A) is invariant to sim-
ilarity transformations. Therefore, we may assume, that A is given in Jor-
dan canonical form. Then, the A-invariant subspaces are spanned™| by the
canonical basis vectors ey, ..., e,. The orbit graph is easily obtained, since
it is finite and isomorphic to the subspace graph (see Theorem . The
reachable graph is either isomorphic to the orbit graph (if P(A) = S(A)R¥)
or infinite (if P(A) # S(A)R*).

6.8.1 Inverse iteration on RP!

Any cyclic matrix A € R**? has a Jordan canonical form of the following
types:

Type 1: ( Aol AOQ ) with Ay, Ay € R and Ay # Ag,
Type 2: ( ())\ i\ ) with A € R,

ReA  ImA .
Type 3: (—Im)\ Re)\> with Im A # 0.

By Proposition and Theorem we always have Gya) = Syira).
This verifies the known fact, that the restricted system ZH(A)‘NA is always

controllable, provided n = 2 (See [HWO01], Proposition 12,a). Thus, the
reachable graph and the orbit graph coincide. Thus, the reachable graph
Gr(XH(A) is given by
-/\/'span(el) <~ NA 4>-/\/span(ez)
if A is diagonalizable (Type 1),
-A/;pan(el) <;-/\/‘A

if A has an real eigenvalue of multiplicity 2 (Type 2) and trivial otherwise
(Type 3).

23hut not every subspace spanned by canonical basis vectors is an A-invariant subspace
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6.8.2 Inverse iteration on RP?

For the case n = 3 there exist four different types of cyclic Jordan canonical
forms. More precisely, A is similar to one of the following matrices

A0 0
Type 1: 0 X O with )\1, )\2, )\3 ceRand A\ < A < )\3,
0 0 X;
A 0 0
Type 2: 0 AQ 1 with )\1, )\2 € R and )\1 7é )\2,
0 0 X
A1 0
Type 3: 0 A 1 with A € R,
0 0 A
A1 0 0
Type 4: 0 ReXdy Im) with \; € R and Im Ay # 0.

0 —Im)\2 Re)\2

For Type 1 and Type 2 we obtain Gyii(a) = Syii(a) by Theorem [6.29]
Thus, the reachable graph and the orbit graph coincide. If A is diagonaliz-
able (Type 1), the reachable graph is given by

span(ej,e2)) span €1,e3) span €2,€3)

-/\[span(q) bpan(eg) span(eg)

If A has two different real eigenvalues (Type 2), the reachable graph is given

/\

/\/;pan (e1,e2) span(eg e3)

o

-A/;pan (e1) -/\/;pan (e2)
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If A has one real eigenvalue of multiplicity 3 (Type 3), then the orbit graph
is given by
-/\/span(el) ~ /\/;pan(el,eg) I — NA

By Theorem we have G4y # Sxrr(ay. Thus, there exist infinitely
many reachable sets in N4. For each of this reachable sets R(y) we have

Spaﬂ(€1> — J\/;pan(el) g R(y) g R(yQ) g R(y?)) s

for a sequence (y;); € N4 (see Proposition and Theorem [6.34]). Thus,
neither Mpan(e;) 00T Nypan(es e0) 18 repelling with respect to Ny.

Figure 2: [Inverse Iteration for A € R3*3 with Spec(4) = {0,1, —i}
(Type 4, Constellation 1). The picture shows possible states of the ini-
tial point xy = span(—0.3,0.8,0.854) projected on the unit disk. The ori-
gin corresponds to m(span(ey)). The boundary of the disk corresponds to
m(span(eq, e3)). On the left hand side we see R'(xg), i.e., the set of all
states which can be reached using only one control. On the right hand side
we see more possible states after using more then one controls. It is not
possible to steer xq for any sequence of shifts closer than a certain distance

(depending on xy) to w(span(es, e3)) (see Corollary[6.35).
If A is of Type 4, then the orbit graph is given by
-/\[span(q) %NA HA/SP&H(CQ,EQ,)

The adherence structure of reachable sets depends on the constellations of
the eigenvalues. We have to distinguish between two cases.
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Constellation 1: If \; = Re ), then P(A) # R*S(A) by Theorem [6.23|
Thus, the reachable graph has infinitely many vertices. However, for any
z € Ny we obtain Nypan(e;) € R(z) (see Proposition . In fact, we can
steer any initial state in N4 arbitrary close to span(e;) with only one control
(see Figure . On the other hand /\/’Span(emeg) is repelling with respect to

Na, Le, R(z) N Nopan(es,es) = 0 for all 2 € Ny (see Corollary [6.35).
Constellation 2: Now let A\; # ReXy. We show that Syira) = Gyirga
and therefore Gz (X11(A)) = Go (X (A)). By Lemma we assume

A—( 0 A2) with  A; = (1) andA2—<_w O)

for some w > 0. Recall that
P(A) = {OJ + BA +yA? } a, 3,0 € R} N GL3(R)

a 0 O
= 0 b ¢ a#0,0>+c*#0
0 —c b

We define M; = R* and

b ¢ 1 2, 2
v {( % ) |oLesaraar)

Note that My is dense in P(Ay).

Now we apply Theorem [6.20] i.e., we show:
Statement (i) For any p(A4;) € M; there exists ¢ € L such that ¢(A4,) =
p(A1) and q(Az) = L.
Statement (ii) For any p(As) € M, there exists ¢ € £ such that ¢(As) =
p(As) and ¢(A;) = 1.

(i) Let
1 .
qu(t) = m(t —u)(t+u) with w € Uy.
Then ¢,(As) = I and ¢,(A;) = % Note that the image of the map

u — qu(Ay) is [—25,0) U (0,1). Thus, in the case w < 1 there exists u € Uy
such that ¢2(A;) = 1 and we are done.

In the case w > 1 it is much more complicated to find an adequate g € £
with the desired requirements. The following construction is similar to the
arguments in the proof for Proposition 12 in [HWO01]. We define

V= {(ul,u2) € (Uy)? | Q= arg ((—uy + iw)(—ug +iw)) € 7TQ} )
Note that V is dense in R?. Moreover, for any (u1,us) € V we have
2m
Quy,ug 0
Ay — L) Ay —uslp))" = T [ Taae™) T
(( ? ul 2)( ? 2 2)) ( 0 (Tu1,u2eau1’u2>2m

_ 2m
= Ty U2 12
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for T e GLy(C), 72, ,, = |(—u1 + iw)(—uz 4 iw)|* and some m € N.
Now we show the existence of a pair (u;,us) € V such that

(1= un) (1 —u)|* > 7, (54)
(54)) is equivalent to
Lwh + (w2 — 1 249 —1
ity > L2 + (w? = 1)(ug + ug)® + 2(us + ug) . (55)
2 1 — (uy +ug) + w?

Clearly, the set of solutions of is nonempty. In particular the choice
Uy = uy yields

1
0> §(w4 + (W = 1D (2u)? +4u — 1 — v?(w* + 1 — 2u)
which has solutions for any w € R*. Thus, there exists (uj,uz) € V such

that is fulfilled.
Then, qu, u,(t) = ((t —u1)(t —ug)) € L fulfills

(N I
o qulm(AQ) =1I and —— qulm(Al) > 1.
Uul,u2 Uul,u2

This proves that for any r > 0 (and in particular for » = 1) there exists
k. € N and u € U, such that

1 kr 1 kr
(r2m q;nl,w) qu(Al) =r and ( 2m qz,uz) qu(AQ) :Iz.

u1,u2 u1,u2

(ii) For any p(As) = Z
q(Az) = p(Ay) and q(A1) = £(1 + bw). From (i) we know, that there ex-
ists ¢ € L such that g(A;) = and G(Az) = I,. Thus, ¢q fulfills
qq(Az) = p(Az) and ¢G(A;) = 1.

From (i) and (ii) we conclude S(A)R* = P(A) by Theorem and there-
fore Syiray = Gsirga). In particular this shows that there exists a con-
trol sequence which steers any initial state o € N4 arbitrary close to
m(span(eq, e3)). However, from the proof it is not clear if the number of
steps is limited. In Figure [3| we see a possible trajectory for such a steering.

€ Mj we choose q(t) = <(t — bw). Clearly

1
© (1+bw)

Recall that %'/(A)), is controllable if and only if S(A)R* = P(A).
Thus, the results in Section verify the controllability results of Helmke
and Wirth in [HWOI| (Proposition 12,b). Moreover, we have character-
ized the cases where repelling phenomena occur. The following Theorem
summerizes the results of this subsection.
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Figure 3: [Inverse Iteration for A with eigenvalues \y = 0.1, Ay = i
and N3 = —i. Again we see possible states of the initial point xy =
7m(—0.3,0.8,0.854) projected on the unit disk. Here, there exists a sequence
of controls such that the sequence of states converges to m(span(eg,e3)).

Theorem 6.36 Consider classical inverse iteration for a cyclic matrix A €
RSXS_

a) The restricted system S11(A),.. is controllable if and only if A is of
IYA
Type 1, of Type 2 or of Type 4 with Ay # Re As.

b) The repelling phenomenon occurs if and only if A is of Type 4 with
)\1 7é Re /\2.
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6.8.3 Inverse iteration on RP3

In the case n = 4 any cyclic matrix is similar to one of the following types:

A 0 0 O
. 0 A 0 O AL, A2, Az, A € R,
Type L: 0 0 /\3 0 )\z 7£ )‘j for ¢ §£ j,
0 0 0 N\
A 0 0 O
. 0 X 0 O A1, A2, A3 ER,
Type 2: 0 0 N 1 N # A, for i # i
0 0 0 X
M 1 0 O
) 0 X 0 O )\1, Ay € R,
Type 3: 0 0 N 1 M # A
0 0 0 X\
M1 0 O
. 0 N 1 0 )\1, Ay € R,
Type 4: 0 0 M\ O M # A
0 0 0 X
A1 0O
0O A1 0 .
Type 5: 00 ) 1 with A € R;
00 0 X
A 0 0 0 ALy € R,
Type 6: 0 X 0 X YE7D)
ybe b 0 Re); Ims m ; 0.
0 —ImA; Rels 87
Re )\1 Im )\1 0 0 Im )\1 7& 0,
. —Im )\1 Re /\1 0 0 Im )\2 7é 0,
Type 7: 0 Rely Im A £ N,
0 —ImMy Rels A # Aa;
ReA ImA 0 0
—ImA RelX 1 0 .
Type 8: 0 Re)  Tm\ with Im A #£ 0.
0 —ImA Rel

If Ais of Type 1, Type 2 or Type 3, then P(A) = S(A)R* by Theorem
Thus, the reachable sets and their adherence structure are completely
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described by the orbit graph. If A is of Type 1, the orbit graph is given by

AN

bpan (e1,e2,e3) bpan (e1,e2,e4) Span (e1,e3,e4) 5pan (e2,€3,e4)
-/V’spaH (e1,e2) N;pan (e1,e3) -/\/'span (e1,e4) -/\/;pan (e2,e3) -A/'span (e2,€4) /\/;pan (es,eq)
-A/;pan (e1) -A/span(eg) /\/;pan(eg) Afspan(&;)

If A is of Type 2, the orbit graph is given by

NN

Span(€1»€27€3) span e1,e3,e4) span e2,e3,64)
-/\[span (e1,e2) span €1,e3) span(ez,eg, span(eg,e4

=4

-/\[span (e1) span(eg) bpan(eg)
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If A is of Type 3, the orbit graph is given by
Na

AN
/

-A/;;pan(el,ez,eg) -A/,span(el,eg,&;)
/\/;pan(el,eg) /\/;pan(el,eg) /\/’span(eg,m)
-/\/span(el) A/span(eg)

If Ais of Type 4, Type 5 or Type 8, then we have P(A) # S(A)R* by
Theorem [6.23] Thus the reachable graph is infinite. Nevertheless, the cor-
responding orbit graphs are easy to deduce by Theorem [6.14 If A is of
Type 4, the orbit graph is given by

N,
/

A/;pan(el,ez,eg) Mpan(61,e2,€4)

'/\/’Span((ela@) A/;pan((e1,e4)

-/\/'span(e4)

span(eq)
If A is of Type 5, the orbit graph is given by

'/\[Span(el) ) span(e1,e2) < span(e1,e2,e3) = N
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If A is of Type 8, the orbit graph is given by
A/;pan(e1,eg) <;-/\/-A
If A is of Type 6, the orbit graph is given by
Ny

N~

-/\[span(eg,eg,m) -/\[Span(€1,€37€4)

|

/\/;pan(el,eg) j\/;pan(eg,e4)

J\/;pan(el) -/\/span(eg)

The answer to the question if S(A)R* = P(A) or not, depends on the con-
stellations of the eigenvalues. By Theorem we have S(A)R* # P(A)
if Rels = % and \; < RelAs + ImJA3. However, it is unknown if
S(A)R* = P(A) holds for any other constellation (of Type 6).

Now we assume that A is of Type 7. The orbit graph is given by

Na
span(eq,e2) -/V‘span(eg,a;)
If ReA; = Re g, then S(A)R* # P(A) by Theorem It is unknown,

if equation S(A)R* = P(A) holds for any other eigenvalue constellation (of
Type 7).

The following theorem summarizes Section with respect to the

controllability properties of the restricted system 3/ (A), N

Theorem 6.37 Consider classical inverse iteration on RP3 for a cyclic ma-
triz A € R4,

a) If Ais of Type 1, Type 2 or Type 3 then X' (A)|,. is controllable.
b) If A is of Type 4, Type 5 or Type 8 then X1 (A)), is not controllable.

c) If Ais of Type 6 with 2Re A3 = A\ + Ao and Ay < Re A3+ Im A3 or of
Type 7 with Re \; = Re Ay then X' (A)|,, is not controllable.

In the remaining cases it is unclear, if ZH(A)WA is controllable. In particular

it is unclear if the set of all cyclic matrices A € R**4, where X//(A)

controllable is generic in R**4,

|NA 1S
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7 Generalized inverse iteration systems

Classical inverse iteration schemes are mainly designed for eigenvector com-
putation. Therefore, their dynamic naturally evolves on the projective
space. Nevertheless, different generalizations appear in several situations,
such as in the dynamics of the QR algorithm. In the following we investi-
gate inverse iteration systems on flag manifolds (Section , on Hessenberg
varieties (Section[7.2)and on real vector spaces (Section [7.3). The following
setting generalizes classical inverse iteration together with all these cases.

Definition 7.1 (Generalized inverse iteration system) Let M be a topo-
logical space and « : GL,(R) x M — M be a transitive group action. For
a given matrix A € R™*" we define Uy := R\ Spec(A) and

W (eyu) = (A—ul)™ o

We call the corresponding system X/7(A) := (M, Uy, f41) the inverse itera-
tion system of A on M (with respect to «).

In particular the case M = RP"! with the canonical action yields classical
inverse iteration. Clearly, the system group of X!7(A) is related to the
matrix semigroup

S(A) = {H(A — )T €N,y € UA} .

t=1

More precisely we obtain:

Proposition 7.2 Consider the generalized inverse iterations system X1 (A)
= (M, Uy, fi) with respect to a group action o. The system group Gyrray
of an inverse iteration system of A on M with respect to « is isomorphic to
the group P(A)/(P(A) N Cy) where Cyp = (),eps Staby.

Proof. Recall that (S(A)) = P(A) (see Theorem [6.3). Two matrices
B,B e P(A) induce the same maps x — B -z, respectively x — Bz if and
only if BB~! is an element of Stab, for all z € M. Therefore, the kernel of
the group homomorphism ® : P(A) — Gy, ®(B) : x +— B-xis P(A)NCy.

O

7.1 Inverse iteration on flag manifolds

In this section we consider inverse iteration systems on flag manifolds, i.e.,
SI(A) = (Flag(d,R"), Uy, f41) with respect to the canonical group action

GL,(R) x Flag(d,R") — Flag(d,R"), ¢g-V = (g(V1),...,9(Vk)))
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for V = (Vi,...,Vk). See Appendix [F| for an introduction on flag man-
ifolds and Section for general results on systems on flag manifolds.
In particular, inverse iteration systems on complete flag manifolds, i.e.,
Flag(R™) = Flag(d,R") with d = (1,2...,n—1), are of interest. In this situ-
ation, X!1(A) is closely related to the shifted QR algorithms. More precisely,
a QQR-step applied on an operator A —ul € GL,(R) with respect to a basis
e, ..., e, of R™ is equivalent to one power iteration step z;.1 = (A — ul)xy.
See [AMS86, [Amm86, Wat82| for a more detailed description.

The structure of reachable sets for inverse iteration on Flag(R™) is much
more complicated as in the classical case. The main reason lies in the fact
that the orbit graph is infinite, even if A is cyclic.

Theorem 7.3 Consider the inverse iteration system X' (A) on Flag(d, R™).

a) If n > 3 and d ¢ {(1),(n — 1)} then Flag(d,R") is a partition of
infinitely many different systemgroup orbits.

b) If A is cyclic and dy = 1 then the following statements are equivalent.

(i) S(AR* = P(A).

(ii) The reachable structure Gr(X(A)) coincides with the orbit struc-
ture Go(B1(A)).

(iii) There exists V = (V1,...,V}) € Flag(d,R"™) with Vi € Na such
that GEII(A) Y = REII(A)<V).

Proof. Both statements can be deduced from the results of Section [Bl and
Section Consider

S, @ (A) = (GLa(R), Ua, /1) with  f"(g,u) = (A —ul)™'g.

Recall that here GEéILn(R)(A) = S(A) and ngLn(R)(A) = P(A). We choose

a reference flag V = (V4,...,V4). Then, /7(A) is an induced system of
S, m)(A) with respect to my : GL,(R) — Flag(d,R"), z + g -V (see
Theorem } and thus, Cr, = R*I. Moreover, ngLn a) = P(A) and
thus, by Theorem [5.9, C, = R*I.

a) Recall that P(A) is a Lie group of dimension m — 1 where m is the
degree of the minimal polynomial of A. Moreover, G4y carries a Lie
group structure such that Gyr () is isomorphic to P(A)/Cy,, and therefore,
dim Gyrrg) < n — 1. Thus, dim Gy - V, which is an immersed subman-
ifold by Theorem is smaller then n — 1. Now the claim follows, since
dim Flag(d,R") > n (see Appendix [F)).

b) (i) < (i1): Recall that Go (X' (A)) coincides with Gr(2!(A)) if and only
if ©11(A) is weakly reversible (see Theorem [4.6). Thus, (i) < (ii) follows
from Theorem [5.8]

@®(
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(1) = (4i7): Assuming, S(A)R* = P(A) we have
Ryra)(V) = Ry ay(mv(l)) = mo(S(AR]) = Geiray my(l) = GsirgayV

(see Lemma [3.3). Thus, (i) implies (iit).

(i7i) = (i1): If g € Staby, then g(V;) = V4. Thus, ¢ € R*I by Lemma
[6.11} It follows that Staby NP(A) C R*I. This implies, that Ggri(a) - W =
Rsrray(W) for all W e Flag(d, R") (see Theorem . Therefore, X1(A)
is weakly reversible by Lemma [2.35] Hence, Go(3 (A)) and Gr(X1(A))
coincide. O

Chu and Chu pointed out, that in general a shifted QR transformation,
and therefore inverse iteration on Flag(R™), is not necessarily invertible
by a sequence of shifted QR transformations (see (JCCO6]). The system
semigroup approach explains this phenomenon. In Section we have seen
various cases, where S(A)R* # P(A). In this case, not every iteration step
is invertible, i.e., there exists u € U4 such that

A—u ) - (A—ul)™H- V)£V

,:12

t=1

for any finite control sequence uq,...,uy € Uy.

Since there exist infinitely many system group orbits, it is useful to merge
related reachable sets to larger classes. The following definition provides
a coarser partition of flag manifolds by unions of reachable sets. In the
following we focus on the case of complete flag manifolds Flag(R™).

Definition 7.4 For A € R™*" we denote the set of A-invariant subspaces by
Invs. Two flags V = (V4,...,V, 1) € Flag(R") and U = (Uy,...,U, 1) €
Flag(R™) are called equivalent if

dim(U; N W) = dim(V; N W)

for al W € Invy and all j = 1,...,n — 1. We denote the set of all flags
equivalent to V by [V]. Moreover, we define a directed graph G (X! (A)) =
(V]), «—) by the set of equivalence classes V}j := {[V]|V € Flag(R")} and
the relation

U] — V] = U] € V]
Theorem 7.5 Consider the inverse iteration system L17(A) on Flag(R").
a) Every class [V] is the disjoint union of system group orbits.

b) Let A be cyclic. There exists one class [V] such that [U] «— [V] for
any U € Flag(R")
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c) If U] «— [V], then dim(U;NW) > dim(V;NW) for all W € Invy,j =
1,....,n—1.

Proof. a) Let V € Flag(R") and W € Inv,. Recall that P(A) acts transi-
tively on Ny := W\ Uy, w V' (see Lemma . It follows

dim(V; N W) = dim(p(A)V; N W)

for any p(A) € P(A) and any j = 1,...,n—1 and therefore Gyrr4)-V C [V].
Thus, [V] is the union of all system group orbits Grr(4y - U with U € [V].

b) If A is cyclic then Invy is finite and Uy cpyy ,\ gy W is nowhere dense
in R™. Therefore, for any U € [U], we find a sequence (V;)ien such that

V; — U and
dim(W NV}) = min{0,dim V + dim W — n} < dim(W N U;)

with Vt = (‘/’1157 ey VJ,1)~ Thus; V/{] — [V]
¢) The projection

m; : Flag(R") — Grass;(R"), V — V;
is continuous, and the map
Fy : Grass; — Ny, V = dim(WNV)

is upper semicontinuous, i.e., Vi — V implies Fyy (V}) < Fy (V) for k large
enough. Therefore, the map Fy,; : Flag(R") — Ny, Fy,; = Fy o is
upper semicontinuous, for all W € Invq and all j =1...,n—1. If U] C m
then every U in [U] can be approached with a sequence (Vg)ren in [V]. Le.,
Vi — U. Thus,

foral Welnvyand j=1,...,n— 1. O

Theorem 7.5 allows us to present information about the adherence struc-
ture of reachable sets as a finite graph.

Example 7.6 We consider the inverse iteration system %//(A) on Flag(d, R™)
with d = (1,2) and with respect to

0
—1

1
A=1 0
0 0

_ o O

Recall that S(A)R* = P(A) (see Section [6.8.2)). Thus the system group
orbits and the reachable sets coincide. By Theorem every class [V] is
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the disjoint union of reachable sets. There exist two nontrivial A-invariant
subspaces F; := span(e;) and E, := span(ey, e3). We identify the equiva-
lence classes [] with the values of the map @ : Flag(R?) — {0,1,2}* defined
by

(V1, Vo) = (dim(Vy N Ey), dim(Va N Ey), dim(V; N Ey), dim(Va N Ey)) .

Note that ® is not surjective. Clearly, dim(V; N E;) < 1, dim(Vo N Ey) <1
and dim(ViNE,) < 1. Moreover, easy linear algebra arguments show further
restrictions. In fact, six classes exist. With the notation N4 := R3\{E,UF,}
we obtain

®71(0,0,0,1) = {(span(x),span(z,y)) € Flag(R*) |z € Na,y € Ny U E,},
®71(0,1,0,1) = {(span(z),span(x,y)) € Flag(R®) |z € N,y € E1},
®1(1,1,0,1) = {(span(z),span(x,y)) € Flag(R®) |z € E1,y € Ny U E,},
®71(0,0,1,1) = {(span(x),span(z,y)) € Flag(R*) |z € Ey,y € N},
®71(0,1,1,1) = {(span(z),span(x,y)) € Flag(R?) |z € Ey,y € E\},
®71(0,0,1,2) = {(span(z),span(x,y)) € Flag(R®) |z € Ey,y € E»}

By Theorem the graph G;j(2/(A)) is given by

(0,0,0,1)

(0,1,0,1) (0,0,1,1)

(1,1,0,1) (0,1,1,1) (0,0,1,2)
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7.2 Inverse iteration on Hessenberg varieties

In numerical computations one often transforms a matrix A first into Hes-
senberg form and then applies the QR algorithm to this condensed form.
Since the QR algorithm preserves the Hessenberg structure it restricts to
a control system on the set of Hessenberg flags. This system can be in-
terpreted as an inverse iteration system on a certain subset of Flag(R"),
the Hessenberg variety. See [AMS6, [Amm&87, [DS88| for more details. In
the following we analyze the structure of reachable sets of inverse iteration
systems on Hessenberg varieties.
For a given matrix A, the Hessenberg variety is defined as the set

Hessy :={V € Flag(R") | AV; C V; 1, j=1,...,n—1}.
Here Flag(R™) denotes the complete flag manifold (see Appendix [I).

Proposition 7.7 Let A € R™*" be invertible. The Hessenberg variety is a
Y-invariant subset of the inverse iteration system Y11 (A) on Flag(R™).

Proof. Obviously, AV; C V,; implies A(A—ul)V; C (A—ul)Vj4; as well
as A(A —ul)™'V; C (A — ul)"'V;41. Therefore, f,(Hess,) = Hessy for all
uel. O

By Proposition [3.10, Hess, must be the union of system group orbits. L.e.,

Hessy := UGEII(A) -V

i€l

for some V; € Flag(R"), 7 in an index set I. Moreover, we can restrict
YIT(A) to Hessa. We define the inverse iteration on Hessy by

EHess(A) — ZII(A)|HCSSA'

Following Propositionwe obtain Gyaess( 4y ~ P(A)/R*I, since Cxress( 4y =
{R* - I}. Therefore, Gaess(ay = Symess(4) if and only if S(A)R* = P(A).
We have already seen, that none of the reachable sets of $/7(A) on
Flag(R™) is open or dense in Flag(R™), provided n > 2. The reason for that
was, that the dimension of Flag(R™) is much larger then the dimension of
possible group orbits. Using the system semigroup approach we show that
there exist reachable sets of ¥#¢*( A), which have open interior in 37¢55( A).
Moreover, $¢55( A) is densely reachable, provided P(A) = S(A)R*.

Theorem 7.8 Let A € R™" cyclic and invertible. Consider the inverse
iteration system on Hess 4.

a) There exists a system group orbit N'X°* which is open and dense in
Hess 4.
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b) For all x € N the reachable set of x has mnonempty interior in

Nfess'
¢) The following statements are equivalent.

(i) S(AR" = P(A)

(ii) Orbit graph and reachable graph of 31755(A) coincide.
(iii) YHess(A) is approximatively reachable for some x € Hessy.
(iv) SHe5(A) is densely reachable.

Proof. a) Let N4 be defined as in Definition [6.9] i.e., the set of one dimen-
sional spaces which are not included in any A-invariant subspace. Recall
that P(A) -z = Ny for all x € Ny. The projection

7 : Flag(R™) — RP" ', (U1, Us, ..., Up_y) — Uy

is open and continuous. Thus, 7~ 1(A) N Hessy is open@ in Hess4. Recall
that all vectors v € R™ with span(v) € Ny are cyclic. Thus,

K, := (span(v), span(v, Av), ..., span(v, Av, ..., A" 'v)) € Hesss

for all span(v) € Ny. We define N := {IC, € Hessa | span(v) € Ny}.
Note that

Hessy = N2es U U NY
Welnv 4 \{R"}
with Ny = {(U1,...,U,—1) € Hessy |U; CW for some j =1,...,n—1}.
Clearly, dim Ny < dim Hess4. Thus, since Inv, is finite, AZ°** has open
interior. Moreover, N'J¢** is dense in Hess 4 since 7 is open and 7 (N}¢5) =
Ny is dense in RP"~!. Recall that P(A) acts transitively on V4. Therefore,
the group action

P(A) X Nfess - /I‘{ess’ (P(A)> ICU) = ICP(A)’U
is transitive. Thus
Gy - o = {P(A) - |w € NJo) = Moo

By Proposition NEHess s open. Hence, N'J°* is an open and dense
group orbit in Hessy4.

b) Recall that S(A)R* has nonempty interior in P(A) (see Corollary [6.6).
Therefore, R(x) = S(A)R* - x has nonempty interior in P(A) -z = N4,
Thus, intyess, R(z) # 0.

24 for the induced topology with respect to Flag(R™).
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¢) Clearly, (i) = (it), (i) = (iv) and (iv) = (iii). Assuming that S(A)R* #
P(A), we have intp(a)(P(A) \ S(A)R*) # O (see Lemma and therefore
intpess , (Hessa \R(z)) # 0. It follows, R(x) # Hessy for all x € Hessa.
Thus (iii) implies (i). Moreover, S(A)R* # P(A) implies that X7¢5(A) is
not weakly reversible. Thus, (ii) implies (i) by Theorem [4.6] O

In particular, Theorem[7.8|shows, that %1°5( A) has reachable sets which
are dense in Hess 4 if and only if the corresponding classical inverse iteration
system Y(A) on RP"! has reachable sets which are open and dense in
RP"~!. This fact has been pointed out earlier by Helmke and Jordan (see
Theorem 5.1 in [HJ02]).
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7.3 Inverse iteration on R"

We finish Section [7] with an analysis of inverse iteration systems on M =
R", ie., S (A) = (R™, Uy, fiI) with respect to the canonical group action
GL,(R) x R" — R". Note that here, Syrr(4) = S(A). Again we assume
that A is cyclic. Similar to classical inverse iteration systems there exists
an open and dense Y-invariant subset

Na:=R"\ (] V.

Velnv 4

(See Definition [6.9] and Proposition [6.10)). The following result shows that
N, is a system group orbit of X/(A) for all cyclic matrices. On the other
hand it shows, that for an open set of matrices, N4 is not a reachable set.

Theorem 7.9 Let A € R™" be cyclic and L (A) = (R™, Uy, f11) be the
inverse iteration system on R™ \ {0} with respect to A.

a) X (A), . is controllable if and only if S(A) = P(A).

Na

b) Let n > 2. There exists an open set of matrices A € R"™ ™, such
that S(A) # P(A). In particular this is the case if A has a complex

eigenvalue A with Im A > 1.

Proof. a) Obviously, we have Syirsy = S(A). Recall that Gy s =
(Sxr(ay) = P(A) (see Theorem and that P(A) acts transitively on N4
(see Lemma. Thus, S(A) = P(A) implies controllability of %' (A),, .
Recall that Stab, = {I} for all z € N4. Thus, Bx = Cz with B,C € P(A)
implies B = C. Hence, S(A) # P(A) yields R(x) C P(A)x for any € Ng.
b) We show, that for any A € R"*™ with complex eigenvalue A\, Im A > 1 the
system semigroup S(A) is not a group. Since S(TAT! —vl) =TS(A)T™!
for T' e GL,(R) and v € R we may assume, that

(A ) o 0 Im )\
A= (A e (0, )

If S(A) is a group we have Hivzl(Al — uly) = I for some 7" € N and
uy,...,ur € Uy. But this is a contradiction to Im A > 1, since

det (H(A1 - Utlg)) = | [+ (Im\)?) > 1 = det L.

t=1 t=1

Thus, S(A) # P(A). 0
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7.3.1 Inverse iteration in the plane

We finish this section with a complete analysis of system semigroups for
inverse iteration systems on R2. We obtain the following semigroup types
for S(A).

Theorem 7.10 Let A € R**2 be cyclic.
a) If A has two different real eigenvalues, then S(A) = P(A) = (R*)%

b) If A has one real eigenvalue with multiplicity 2, then S(A) = P(A) =
R x R*.

c) Assume, that A has a pair of complex eigenvectors A\, \ such that
Im A\ # 0.
(i) If | ITm(\)| < 1, then S(A) = P(A) = C*.
(1) If | Im(N\)| > 1, then S(A) is not a group.
(iii) If |Im(N\)| = 1, then S(A) is isomorphic to D U {1,i,—1, —i}.

Here, D denotes the open unit disc without zero in C*.

Proof. Recall that S(TAT-! —vI) = TS(A)T for all T € GLy(R) and

-1

V)

i #.6..._.6..> »»» .= | Re
- GG~ ~=.n.B.G&©&
> > > ;>
.

Figure 4: The semigroup S(A) C C* for the case |Im(\)| =1

v € R. Therefore, we can restrict our analysis on the cases

a)A—(g g) b)A—(g (1)) andc)A_(_I?n)\ IHS/\)
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with A # 0 in case a), and respectively Im A # 0 in case c).

a) According to Theorem [6.8] we have P(A) = (R*)%. Recall that S(A)R* =
P(A) (see Theorem [6.29). Moreover, for any r € (—oc0,0) we have rI €
S(A), since

(A—al) M (A—-pD) =0l
with o = $(A+ 1 —4r) and 3 = 2. Cleatly rI = (—/r)I(—V7I) € S(A)
for r > 0. Thus, R*I C S(A) and we conclude S(A) = P(A).

b) Here P(A) =2 R* X R (see Theorem [6.8)). Again we have S(A)R* = P(A)
by Theorem Moreover, for any r € (—oo,0) we have 7/ € S(A), since

1\ 1\
A— I A 1 =rl.
(4-7=1) (argm) =
Clearly, rI = (—+/rI)(—+/rI) € S(A) for r > 0. Thus, R*] C S(A) and we
conclude S(A) = P(A).

¢) S(A) is not a group, if [Im(X)| > 1 (see Theorem [7.9). Thus, we only
have to show Claim (i) and Claim (iii). We can identify A — ul with the
complex number —u + 67 with § := ImA. Note that the multiplication
of matrices A — u1l, A — usl coincides with the multiplication in C*. In
other words, S(A) can be regarded as a subsemigroup in C*. Using polar
coordinates every element [, (—u;+i3) € (S(A))~" can be written in the
form

N ot
xr = H (ﬁe ) ,  with tana; = i, a; € (0,m).

sin «v —u
=0 t t

For every N € N we define Iy 1= [§ — 555, 5 + s3] and

4+4N

Iy = (S ae [

t=0

ﬁeia

sin «

).

vy is a closed curve in C* which is symmetric with respect to the real axis
(i.e. (/2 —a) =9n(7/2 + @)). For all © € yy(Iy) it is

1
sin(§ — gys) Y
Moreover,
sin(g — 2N7T+ 2) = sin(g) cos(2N7T+ 2) — Cos(g) Sm(2N7T—|— 2)
= cos( ).

2+ 2N
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Thus, the sequence of closed curves vy (Iy) C (S(A))™! converges uniformly
to S in the case 3 = 1 respectively to {0} in the case § < 1.

Now let x = ae’™ € C* such that ee’®*™ € (S(A))~! for some ¢ < a/32.
This is possible for all z € C*if 0 < 8 < 1 and for all z € C\ D if 3 = 1.
We show that z € (S(A))~!. Choose a; = —ay such that £4%/sin(a;)? = a.
Then it is

gei(aJrﬂ) Beial ﬁeiag _ 65261'(oz+7r) _ 5ﬂ26i0‘
m sin oy sin o —sin® oy sin? oy
(S(A)~(s(A)~!

= X.

This implies Claim (i). Moreover, we can conclude (S(A))~' € C\ D for
B=1.

For any § > 1 we can estimate the norm of an arbitrary element = €

(S(A)~! by
N ﬁ@iat
g sin oy

For 8 = 1t follows |z[ > 1. Moreover, it is [z| = 1 if and only if x = Hi\ioi.
We deduce, (S(A))~! = (C\D)U {i, -1, —i, 1} which yields Claim (iii). O

x| = > |8"].

In the proof of Theorem we have shown a technical result for sub-
semigroups of C* which will be important in Section [9

Corollary 7.11 Let Mg := {i# — u|u € R}. The set of finite products of
elements of Mg is C* if 0 < 8 <1 and (C*\D)U{1,i,—1,—i} of 5= 1.

We finish this section with a remark on the case Im A > 1. Note that
here (S(A))~! corresponds to the system semigroup of Example In this
case, S(A) is neither isomorphic to C* nor to DU {1,7, —1, —i}.

Proposition 7.12 Let A € R?>*? with a pair of complex eigenvectors A, A
such that Tm XA # 0. If |Im A| > 1 then P(A)\ S(A)™! has at least two
connected components.

Proof. We construct a closed loop in (S(A))~! which separates two subsets
of P(A)\ (S(A))~!. Since the inversion map C* — C*, z — 271 is a
homeomorphism, P(A) \ S(A) has at least two components.

Recall that P(A) = C*. The line I(u) := —u + i3, u € R describes the
set of points in S(A) which are generated by one factor. Every element
generated by more the one factor has a norm larger or equal to 3°. We
construct a connected curve v : R — (S(A))~! which intersects the line [
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on the left and on the right half plane, but has the property |y(u)| > 3° for
all w e R.

Consider, v : u — (—u — 37)3. On the one hand,
5 _ /636i3a

——, o€ (0,7

v(u) .
SN «

shows, that |y(u)| > 3% and Im(y(u)) > 3 for tana = _ﬁu On the other
hand

Im(y(u)) = Im ((—u — §i)°) = —u*B — ° + 20u

shows, that Im(\) < f for |u| large enough. We conclude, that [ and ~
intersect in the left and in the right complex plane. In particular, they
separate the sets

M, :={z€C"|z €iR,3 < Im(z) < 3*}

and
My = {z € C*||z| < 5% Im(z) < B}.

Thus, P(A) \ (S(A))™! has at least two connected components. O

08 e

-
08
04F 4

[ E-1 S

e
-0.4f
0.8

0.8k

2

Figure 5: S(A) C C for = 1.2. In fact the plot shows products of order
1,2,3 and 4 with elements in {(—u+1i3)~" |u € R}. Every element of S(A)

lies inside the circle {z € C||z| = 1}. Moreover, C\ S(A) has at least two
connected components.
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8 Rational iteration

In the previous sections we have seen, that the system semigroup of inverse
iteration is not necessarily a group. This situation yields undesired con-
straints on the convergence behavior of possible shift strategies. To avoid
this phenomenon it is advisable to create alternative schemes, such that the
reachable sets become easier to investigate. Rational iteration is an exten-
sion from inverse iteration, using a second shift parameter. Here the system
semigroups are always groups. Rational iteration schemes have been applied
in the field of eigenvalue computation as well as linear equation solving (see
[Ros94l, [JV05|, and respectively, [YV92]). To the authors knowledge, there
exists no systematic investigation on the adherence structure of reachable
sets of rational iteration systems. This will be the topic of the following
section. First we analyze the general setting of rational iteration systems
on manifolds (Section[8). Then, in Section [8.2] we consider a one-parameter
version of rational iteration called Cayley iteration.

8.1 Rational iteration systems

Definition 8.1 (Rational iteration system) Let GL,(R) x M — M be
a transitive group action on a manifold M. Given A € R"*" we define

URL .= (R\ Spec(A))? and  f5 (z,(u,v)) := (A —ul) (A —vl) -z

We call the corresponding system LR/(A) := (M, U, fi¥) the Rational
iteration system of A with respect of the group action GL,(R) x M — M.

Note that the corresponding system semigroup Syrir(4) is a group for
any matrix A € R™". More precisely we obtain:

Proposition 8.2 Let A € R™"™, my be the minimal polynomial of A and
Cym = (\yeps Stab,. The system semigroup of SRL(A) is a group isomorphic
to P(A)/(P(A)NCy).

Proof. Syria) is a group, since the inverse of

is given by z +— [[,_;(A — v, [)(A — uJ)~" -  and therefore an element of
Sy:ri(a). Recall that

{H(A — ) (A — v )

t=1

T e N, (u,v) € UA} = P(A)
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(see Corollary . Two matrices B, B € P(A) induce the same maps
x — B -z, respectively z — B -z if and only if BB~! is an element of
Stab, for all x € M. Therefore, the kernel of the group homomorphism
®: P(A) — Sgrigay, ®(B) 12— B-zis P(A)NCy. O

In particular we are interested in the case when M; = R", M, = RP" !,
M3 = Hessa(R"™) and M, = Flag(R"), each case with respect to the cor-
responding canonical group action «; : GL,(R) x M; — M;, i = 1,2,3,4.
From our analysis of inverse iteration systems we easily deduce the following
results:

Theorem 8.3 Let M be a topological space, o : GL,(R) x M — M be a
transitive group action and X®(A) = (M, U f4) be the rational iteration
system of A € R™™ with respect to «.

a) The orbit graph Go(XR(A)) and the reachable graph Gr(XH(A)) co-

incide. In particular, S® (A) is weakly reversible.

b) Let a; : GL,(R) x M; — M;, i = 1,2,3 be the canonical group action
on M; with My = R", My = RP" !, My = Hesss(R") and S (A) =
(M, UEL, fID) the rational iteration system of A € R™™ on M;.

(i) If A is cyclic, then N; with Ny = Ny, Ny = Ny, N3 = Niess
cotncides with one reachable set, which is open and dense in M;.
Here N4 and N4 are defined as in Deﬁnition and N is de-
fined as in Section . Moreover, the restricted system Y (A)
15 controllable.

I,

(i) If A is not cyclic, then none of the reachable sets has open interior

c) Let ay : GL,(R) x Flag(R™) — Flag(R"), be the canonical group
action on Flag(R"™). Then any class [V], V € Flag(d,R"™) (as defined
m Deﬁmtz'on s the disjoint union of reachable sets.

Proof. a) Since Syrr(y) is a group, 27/ (A) is weakly reversible by Lemma,
[2.35] Thus, the claim follows by Theorem

b) and ¢) The reachable sets of X%/ (A) coincide to the system group orbits
of the corresponding inverse iteration system. Thus, all claims in b) are
immediate consequences of Lemma and Theorem Moreover, claim
c) follows from Theorem O
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8.2 Cayley iteration

As a special case of rational iteration we consider systems generated by
Cayley transformations, z — (A — ul)(A + ul)™! - z. Cayley iteration
steps have been proposed by several authors (see for example [MSR94| and
ILMOS]). If A is element of a classical Lie algebra, all states of Cayley
iteration remain in the corresponding Lie-group. This fact yields interesting
relations for the eigenvalue computation for specific matrices.

Definition 8.4 (Cayley iteration system) Let o : GL,(R) x M — M
be a transitive group action on a manifold M. Given a matrix A € R™*",
we define

Uy :=R\ £Spec(4) and f(z,u) := (A—ul)(A+ul)™" -z

We call the corresponding system Y1 (A) := (M, Uy, f¢1) the Cayley iter-
ation system of A with respect of a.

Again, the system semigroup is a group. Therefore, S¢1(A) := (M, U{?!, f¢1)
is always weakly reversible. Cayley iteration systems can be considered
as rational iteration with a restriction on the allowed shift strategies, i.e.,
vy = —ug. Therefore, the system semigroup Syor(y) is a subgroup of Syrr(a)

(see Proposition [8.2).

8.2.1 Conditions for Sycir(4) = P(A)

We restrict our analysis to the case where P(A) N C)y is trivial P’} In this
situation we have Sycray € Syria) = P(A). In fact, for some but not for
all matrices A € R™™, it holds that Sycr4) = P(A). In the following we
show a condition on A for the property Sxcra) = P(A).

Theorem 8.5 Let A € R™ ™ be invertible with n different real eigenvalues
ALy ..oy A such that || # |Aj| for i # j. Then, Sscray = P(A).

Proof. Recall that the topological closurd®|of Sycr(4) is a closed subgroup
of the Lie group P(A) = {diag(a1, ..., a,) |ax € R*} (See Theorem [6.8) and
therefore a Lie group. We show the following two claims:

Claim 1: ¢ € intp(a) Sxora);

Claim 2: Syor(4) has nonempty intersection with any connected compo-
nent of P(A).

Then, by Theorem [5.4|it follows Sycr(4) = P(A).

%5In particular this is the case if M = R" or if M = GL,(R) (and « the corresponding
canonical group action on M).
Z6with respect to P(A)
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Proof of Claim 1: Without loss of generality we assume, that A =
diag(A1, ..., Ay). We show that the map

D1 (USTY" — Sseray, u s diag(fi(w), .., fa(u)) € P(A)

with fi(u) = fi((ur, .. un)) = [Tj-; 355 is locally invertible, if and only

if u; # u; for i # j. For the Jacobian D® of ® we obtain

—2A
Do) = (Alss)
k,j=1,....,m

J

,,,,,

1
— diag(—2\ £ (). ... —2A\, .
1ag( 1f1<u) f (u)) ()\% - u?’)]c,j:l n

.....

The Cauchy determinant rule (see [Fuh96|, Section 3.4) yields

dot ( 1 ) _ Hk>j<>‘% — N9 (g — uj)
M= itm [T, A% + )

This shows, that

det(D(I)(ul,...,un)):(—2)”H(>\kfk(u))det((Azilﬁ) | );Ao

k=1

provided u; # wu;. From the inverse function theorem it follows, that
® is locally invertible. Hence, intp(a) Sxcray # 0. Moreover, for any
s € intp(a) Ssera) we have s7's € intp(a) Sxor(ay (see Lemma [B.5). We
conclude

(& g intp(A) SECI(A).
Proof of Claim 2: Without loss of generality we assume, that A =
diag(A1, ..., Ay) with 0 < [\ ] < ..., |\,]. Obviously,

P(4) = {diag(ar, ... a,) | ax € R}
has 2" connected components, which can be identified with the sign vec-
tors (sign(ay),...,sign(a,)) € {—1,1}". We show, that for any sign vector
(€1,...,6n) € {—1,1}" there exists diag(bi,...,b,) € Syci(a) such that
sign(by) = e for any k = 1,...,n. Note that
)\k —Uu . I- )\_uk

)\k—l—u_l—A—Uk

> 0.

if and only if u < |\g|. Therefore, for u € [|A|, [A\e11]] we obtain
(A —ul)(A+ul)™ = diag(by, ..., bk, bps1,s ..., bn).
T T
< >

Those matrices already generate matrices diag(b,...,b,) for any combina-
tion signb, € {—1,1}, k=1,...,n. O
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In particular, Theorem shows, that there exists an open set in R™*"”
such that Sycr4) = P(A). Now we show some conditions on A € R™"
such that Sycra) # P(A). We will use the following fact:

Lemma 8.6 Let Z € R™*". If A is an element of

gz ={BE€R™"|B"Z+ ZB =0}
then Ssoray is an abelian subgroup of the group

Gy :={B€cGL,(R)|B"ZB = Z}.

Proof. Let A be en element of gy, ie. A'Z = —ZA. Straightforward
calculation yields
(A= uwD)(A+u)™) " Z (A= uwD)(A+ul)™") =
(A4+ul)™ " (Z(W’I — A%) (A+ul)™" =
(A+ul) " Z(ul — A) =
(A+ul) " "(ul+ANZ = Z.

Therefore, (A —u, )" (A+u, ) € Gz for every u € Uy. The claim follows,
since every B € Syci(4) is a product of matrices of type (A—u D)~ (A4ud).
O

Note that G is a Lie group and gy is the Lie algebra of Gz. In particu-
lar, the choice Z = I yields the orthogonal group O, (R) and the algebra of
skew-symmetric matrices so,(R). Moreover, if n is even, the choice Z = J

with
0 I
=(s)

yields the symplectic group Sp,,(R) and the algebra of Hamiltonian matrices
5p,,(R).

Theorem 8.7 Let A € R™V™ and XCI(A) := (M, Uy, f€) be the corre-
sponding Cayley iteration system.

a) If 0 € Spec(A), then Sscray # P(A).
b) If A, =X € Spec(A) NR, then Sxciay # P(A).
c) If A is skew-symmetric, then Sscray # P(A).

d) If n is even and A is Hamiltonian, then Sscia) # P(A).
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Proof. a) Obviously, there exists B € P(A) such that neither 1 nor —1 is
an eigenvalue of B. We show that every element of Sycr(4) has eigenvalue

1or —1. For any B = [[_ (A — u)(A+wuI)"" € Ss,c1(4) We obtain

B+ (-D)T1 = (H —ud) + (=) [J(A+ wl )HA+ut -1

t=1 = t=1

= []A+uwl)""Ap(A)

for some p € R[z]. Since det(A) = 0 it follows det(B + (—1)*T) = 0. Hence,
B has eigenvalue 1 or —1.
b) Without loss of generality we may assume

() e (20,

For any B = [[_,(A — wI)(A+u)" € Sscr(4) we obtain

. Bl *x . o a 0
B_< ’ ) with Bl_(o ﬂ)
such that a = [[_, (A=, J) A+, D)  and 8 = [[_ (=X —u, ) (A +u, )~
Thus § = (—-1)T.
On the other hand, by the Lagrangian interpolation theorem, for any
a, f € R* there exists p(A) € P(A) such that

sy = (PG D) i a5 0 )

We conclude Syoray # P(A).

c¢) If n = 1 then Sycr(ay # P(A) by a). Recall that P(A) is an unbounded
subset of GL,(R) (see Theorem . If A is skew-symmetric, Sycr(a) is
a subgroup of the compact group O,(R) (see Lemma [8.6). In particular
Ssic1(ay is bounded. Hence, Sycray # P(A).

d) If Ais Hamiltonian, then Sycr4y C Sp,(R) by Lemma In particular,
the determinant of any element in Sycr(4y is 1. Hence, Sxcriay # P(A). O

8.2.2 Cayley iteration on the plane

Now we focus on Cayley iteration systems on R™ with respect to the canoni-
cal action on R™. Note that Ny = R"\UVGInvjﬁn V is a Y-invariant subset of
R™. Recall that P(A) acts transitively on N4 and that Stab, = {I} for any
x € Ny (see Lemma [6.11). Thus, any subgroup G of P(A) acts transitively
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on Ny if and only if G = P(A). Hence, ZCI(A)WA
if Sxer(ay = P(A). In the following we classify all cyclic matrices A € R**?
with SECI(A) = P(A).

is controllable if and only

Theorem 8.8 Let A € R**? be cyclic.

a) Assume that A is real diagonalizable with eigenvalues A1, \y € R. Then
Ssicr(ay = P(A) if and only if A\, Ay # 0 and |Ai| # |Xof.

b) Assume that A has a real eigenvalue A with multiplicity two. Then
Sscray = P(A) if and only if X # 0.

c¢) Assume that A has a pair of complex eigenvalues \, X (Im X # 0).
Then Ssci ) = P(A) if and only if Re X # 0.

Proof. Recall that Sycrpar-1) = T'Sxerg)T~ ! for T € GL,(R). Thus we
can assume, that A is in Jordan canonical form.

a) (i) If

A0 :

A= with )\1#0, )\2#0, |)\1| 7é |)\2|,

0 X
then Sscr(4) = P(A) = {diag(a1,a2) | a1, as € R*} by Theorem
(ii) If

0 0 .
A= ( 0 )\) with A #0,

then Sycr4) © P(A) by Theorem More precisely we have

0
S =1{( 5 o)

A0 .
A_<O _)\) with A\ # 0,

then Sycray € P(A) by Theorem and Lemma . We obtain

a 0
SECI(A) - {( O ea)

b) If A has a real eigenvalue of multiplicity two, P(A) is given by

= {(32)

eec{-1,1},a € R*}.

If

xS {—1,1},a€R*,}.

aeR*,beR}.
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(see Section [6.2). In particular, P(A) is an abelian Lie group with two
connected components.

(i) Assume that
By Theorem [8.7]it holds that SECI(A P(A More precisely we obtain

(A —ul)(A+ul)™" (‘0 _01)
for any u € U!. Thus, Sseray ={—1,1}.
(ii) Now we assume that
Al .
A—(O A) with A\ # 0.

Here the group Syer(a) is generated by the matrices

A—u 1 ~—2
= — -1 = (>‘+u)(/\_u)
Ay = (A —ul)(A+ul) HU(O I >

with u € R\ {=A, A}. Clearly, the dimension of Sycr(a) is larger then
two. Moreover, Sycr(4) has nonempty intersection with both components
of P(A) By SECI(A) = P(A)

c¢) If A has a real eigenvalue of multiplicity two, P(A) is given by

P(A) = {(_“b 2)‘@24—()27&0}.

(see Section [6.2).

(i) Assume
A= ( o I“SA) with Tm A # 0.

By Theorem and Lemma we have Sscrqy € On(R) C P(A) and
therefore Sycray # P(A).

(ii) Now we assume that Re A # 0. The dimension of Sycr(y) is larger then
2. Thus, Sy.cr(4) coincides with the connected Lie group P(A). O

Recall, that any Cayley iteration system is weakly reversible (even if
Sscray # P(A)). Thus, the reachable sets always form a partition on R?.
As an immediate consequence of the previous proof, we obtain the adherence
structure of the reachable sets.
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Corollary 8.9 Let A € R**2 be cyclic.
a) Assume that A = diag(A1, A2).

(i) If A\, Ao # 0 and |\1| # |X2| then the reachable graph is given by

(7i) If \y = 0 and Ay # 0 then we have infinitely many reachable sets.
In particular we obtain

R((0,0)") = (0,0)",

R((2,0)") {(=2,0)", (z,0)"},

R((0,5)") = {(0,r)",|[r €R} foryeR",

R((z,y)") = {(ex,r)" Je€ {~1,1},r €R} for (z,y) € (R")™.

(iii) If Ay # 0 and Ay = —\q, then we have infinitely many reachable
sets. In particular we obtain

R((0,0)") = (0,0)7,

R((z,0)") = {(r,0)",|r € R*} forz € R*,

R((0,9)") = {(0,n)7",|r eR*} foryeR,

R((z,y)") = {(rz,ery)’,|e € {~1,1},7 € R*} for (z,y) € (R*)2

b) Assume that A has an eigenvalue of multiplicity two.

(i) IfX=0, then R((x,y)") = {(—z, —y), (x,y)} for all (z,y) € R?.

(ii) If X # 0, then there exist only three reachable sets. The reachable
graph s given by

R((0,0)") =—R((1,0)") =—R((1,1)")

c) Assume

A:< ReA ImA

~ Tm \ Re)\) with  Im A\ # 0.
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(i) If Re X\ =0, then
R((z,y)") = {(a,b) € R*|a® + b* = 2* + y°}

for all (z,y) € R?.

(ii) If ReX = 0, then R((0,0)7) = (0,0)" and R((z,y)") = R?*\
(0,0)7 for any (z,y) € R?\ (0,0)".

R((3,0)

R((1.0)

A((2,1)

Figure 6: Left: ezample for case a,ii). Here A = diag(0,1). The reachable
set of (z,y)" with y,x # 0 has four connected components. Moreover,
the orbit {(—z,0)", (x,0)"} lies in the topological closure of R((z,y)").
Middle: Ezample for case a,iii). Let A = diag(—1,1). Again, the reachable
set of (z,y)" with y,x # 0 for SCI(A) has four connected components. The
orbit {(0,0) "} lies in the topological closure of R((z,y)"). Right: Ezample
for case ¢,i) with ReA = 0 and Im A = 1. Here, none of the reachable sets
15 in the topological closure of another reachable set.
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9 Richardson’s method

One of the most important tasks in numerical linear algebra is to solve
systems of linear equations Ax = b with A € R™™ and b € R". Iteration
schemes of the form

Tyl = Tt + U,t(b — Al't), X € R"

with u; € R are called Richardson methods. In this context, it is also
common to call the shift parameters u, € R relaxzation parameters.

The literature provides different shift strategies, each of them for certain
families of matrices, see [OS84] [SS88, [GO88| and [CRI6|. In particular, a
constant shift strategy uw, = u yields the so-called trivial splitting method,
ie.,

T = (I — uA)zy + ub.

It is easy to verify, that a trivial splitting method converges if and only if
Spec(I — uA) C D (see |[Gre97|, Theorem 2.1.1). Another interesting shift

strategy is given by the feedback law u; = ﬁgv—,“:ﬁg with r, = b — Ax;. This
approach yields GMRES(1), i.e.,

Tyl = arg min

r€x+span(b—Axy) Hb - A‘Q:H :
It is known, that GMRES(1) converges if A + A" is positive definite
(see |[Mei99], Theorem 4.78). Nevertheless, the convergence properties of
GMRES(1) for general matrices is far from being understood (see [Emb03)|
for some notes on this topic).

The sequence (z;)ieny converges to A~'h if and only if the sequence of
residuals r, := b— Ax, converges to zero. Thus, the dynamic of the iteration
can be equivalently described in terms of the residual vectors, i.e.,

Tt+1 = b—AfL't+1 = b—A((I—UtA)fL't—f—Utb) = (]—utA)(b—ACL’t) = (]—UtA)Tt.
This motivates the following setting.

Definition 9.1 (Richardson system) Let A € R"*" be invertible and
Us-1 = R\ Spec(A™1). The system NE9(A) = (R*, Uy-1, f55) given by
the transmission map f%: (r,u) — (I — uA)r is called Richardson system
(with respect to A).

Clearly, the existence of a shift strategy u = (u;)en such that x; 5 A
implies that

0 € R(rg) for ro =0b— Axy. (56)

In the following we show, sufficient as well as necessary conditions for .
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9.1 Richardson system semigroups

For the system semigroup of #9(A4) = (R", U1, fI¥5) we obtain

T
SERS(A) = {H(I — UtA) | T e N, U € UAl} g GLn(R)

t=1

Obviously, we have Ssrsrar-1) = T'SsrsaT " for any T € GL,(R) and
a € R\ {0}. Syrs(q) and Gyns ) are closely related to the corresponding
objects of inverse iteration systems. In fact, the following Proposition shows,
that the system groups of inverse iteration (with respect to A) and the
system group of Richardson systems (with respect to A) coincide.

Proposition 9.2 Let A € R™" be invertible. Then
GERS(A) - P(A)

Proof. Recall that A~ € P(A) and A € P(A™!). Therefore, it follows
P(A) = P(A™"). Moreover, every element B of Gyrs 4y := (Sxrs(a)) can

be written as i
T T

B = H(I — utA H — UtA
t=1

t=1
A AN
s s

€P(A) €P(A)

for some 7,7 € N and wuy, @ € Us-1. Thus, Gyrsay € P(A). With
Corollary [6.5) we obtain

P(A™YH = {11@41-UJ)II@41-aJ)1

t=1 t=1

T T
= {H (I —uA) H (I —aA)”
t=1 t=1
- GERS(A).

TGN,Ut,ﬁtE UA—I}

TEN,Ut,ﬁJtEUAl}

Hence, Gyrs(a) = P(A). O

In particular, Proposition shows, that similar to the situation for
inverse iteration systems on R" there exists an open and dense system group
orbit Ng = Gyrs(ay - o, x € Ny. Again, Ny is defined as

Ni:=R"\ [J VcRr
Velnvy
where, Inv 4 denotes the proper A-invariant subspaces of A. Using the tech-

niques developed in Section [4.3]and Section [6] we easily obtain the following
result.
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Theorem 9.3 Let A be cyclic and invertible. Assume that ro € N4.

a) 0 € R(ro) if and only if 0 € R(7o) for any 7o € Na.

b) If Ssrs(ay = P(A), then 0 € R(ro) for all ro € Ny.

Proof. a) Recall that P(A) acts transitively on N4 (see Lemma [6.11).
Moreover, {0} is a Y-invariant subset with {0} C N,. Thus, by Theorem
{0} NR(ry) = 0 if and only if {0} is repelling to Ng.

b) Ssrs(a) = P(A) implies 0 € Ny = R(ro) since

R(?"o) = SZRS(A) *To :P(A> *To :NA.
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9.2 Conditions for Syrs(4) = P(A)

Similar to inverse iteration systems, the system semigroup is not always a
group (see Theorem [9.8). Nevertheless, the following proposition shows,
that Syrs(a) is a large subset of P(A) in a topological sense.
Proposition 9.4 Let A € R™" be cyclic and invertible. Then

intp(4) SERS(A) # ).

Proof. We have
SERS(A) = {AT H - utI
D A" {H(A-l — )

t=1

T e N u GUA—l}

Uy GUA—l}.

Recall that A is cyclic if and only if A™! is cyclic. By Corollary the
set {[]/; (A~ —w ) |u; € Us-1} has open interior with respect to P(A).
Thus, intpa) SERS(A) # (). O

In Section [6] and respectively Section we have proved a series of suffi-
cient and necessary conditions, such that S(A)R* = P(A), and respectively,
S(A) = P(A). It turns out, that neither S(A) = P(A) nor S(A)R* = P(A)
implies that Syrs(4) = P(A). Examples for that phenomenon will be given
in Section Nevertheless, we obtain the following useful fact.

Lemma 9.5 Let A € R™"™ be invertible.
a) If Ssrs(ay is a group, then S(A)R* is a group.
b) If R*I C Syrs(ay, then S(A)R* = P(A) implies Syrsay = P(A).

Proof. a) If Syrs(y) is a group, then Sgrs(4) = P(A) by Proposition [9.2]
Hence, for all p(A) € P(A) there exist N € N, uy,...,uy € Uy—1 such that

N

p(A) = [T — wA) = H H (A - ultf) e R*(S(A)™L.

t=1 t=1

Thus, p(A) € R*(S(A))~!. It follows that, R*(S(A4))~" is a group and
therefore R*(S(A))™! = S(A)R* = P(A).

b) Obviously, Syrs4y € P(A). Moreover, we have intp(a) Sxrs(ay # 0 (see
Proposition . Thus, it is enough to show S(A)R* C Syrs
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Let B :=r[[_, (A —wul) € S(A)R* ie., T €N, u; € Uy and r € R*.
Ifu, #0forallt=1,...,T, then

r 1

B=(-1)"ru; - ug [JU = =1I).
N - 7 u
ER*ICSy s 4 L_t,
€9uRs (4)

Note that {r [[_,(A —uI) € S(A)R* |u, # 0} is a dense subset of S(A)R*
and therefore, Syrs () is a dense subset of S(A)R* = P(A). By Lemma
we conclude Syrs(q) = P(A). O

Theorem 9.6 For anyn € N there exists an open set of invertible matrices,
such that Syrs 4y = P(A). In particular Sxrsay = P(A) if A hasn different
real eigenvalues Ay, ..., A\, € R™\ {0}.

Proof. Without loss of generality we assume that A = diag(Ay,..., \,).
Since S(A)R* = P(A) (see Theorem [6.29)), it is sufficient to show that
R*I C Sgrs(a). For any r € R* there exist shifts vy, ..., v,11 € Ug-1 such

that
n+1

H([ —vA)=rl.

t=1
Define A\, 11 = 0. Let p be the unique polynomial of degree n with p(X\;) =r
fori=1,...,n and p(\,4+1) = 1. By Lemma there exists M € R and
f € L such that

n+1

plx) = fla) = M [z = ).

Recall that degp = k and therefore f(x) = M [[12, (x—wu;) for some u, € R.
Since \,11 = 0 we obtain

n+1

1= p(0) = f(0) — 0= M [ (~u).

Moreover, f(\;) = p(A\;)) —0 =r for i = 1,...,n. Note that u; # 0, since
p(0) # 0. Therefore, v; := ui, yields

n+1 n+1

fla)=M(=1)""uy ot [JQ = va) = [](1 - v).

t=1 t=1

We conclude
n+1 n+1

[T = wA) = £(A) = p(A) = M [ J(A = \I) = p(A) = 1.

t=1
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We finish this section with a result which shows, that Syrs(4) is not a group
in general.

Theorem 9.7 Let A € R" be an invertible cyclic matriz with A, \ € Spec(A)such
that Im A # 0 and Re A = 0. Then

CL) SERS(A) 7é P(A)

b) {0} is repelling to Na, i.e., {0} NR(rg) = O for any ro € Na. In
particular, there exists no shift strategy u = (uy)ien Such that x, =5
A=,

Proof. a) Without loss of generality we assume

A—(O *> with Al_(—lm)\ 0 )
Assume, that Syrs(4) is a group, i.e., Sgrsay = P(A). In particular, rA €

P(A) with r > ﬁ has an inverse in Syrs(4). Thus, there exist N € N,

Uy, ..., uy € Uyg-1 such that

N

IQ = TAl H(I — UtA1>.

t=1
But this is a contradiction to
N N
det (TAI I - utA1)> *Mm A [+ wf(ImA)?) > 1. (57)
t=1 t=1

Hence, Sy.rs(4) is not a group.
b) By Theorem . we may assume that 7o = (1,1,1...,1)". Assuming
that {0} NR(rg) # 0. Then there exists a sequence

B, *
Sp ‘= ( 0 « ) S SERS(A)

with B, € R**? such that B,(1,1)" — 0 for n — oo. Since

B, C P(Ay) = {( “ 2)‘&%%&0}

and det B,, = det Hi\il(l —w; Ay) > 1 we obtain

[Ba(L1)T 2 = /@ + D2 + (a— b = /2det(By) = V2.
Thus {0} N R(ro) = 0. O
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9.3 Richardson’s method on the plane

In this section we classify the semigroup types of Sgrs 4y for invertible cyclic
matrices A € R?*2,

Theorem 9.8 Let A € R**? be cyclic and invertible.

a) If A has two different real eigenvalues, then Ssrs 4y = P(A) = (R*)2.

2

b) If A has one real eigenvalue with multiplicity 2, then Syrs 4y = P(A)
R x R*.

c¢) Assume, that A has a pair of complex eigenvectors A\, \ such that

Im A\ # 0.
(i) If Re(\) # O then Ssgrsay = P(A) = C*.
(ii) If Re(X) = 0 then Ssrs(ay is not a group. More precisely,

SZRS(A) = (C\ﬁ) U {1}

Proof. a) The first claim follows immediately from Theorem and The-
orem

b) We show that R*I C Sgrs(4). Then, the claim follows from Lemma
since S(A)R* = P(A) (see Theorem [6.29). If r € R\ [0, 1] then the choice

1 1—r
v::X(l—r—Fm); U= e

yields
(I —uA)(I —vA) =T~ (u+v)A+uwA? =rl,

since wv = 55 and u+v = @ Any r = (—1)(—r) € [0,1] is the product
of elements of R\ [0, 1]. Thus, R*I C Sgrs ().

¢) Without loss of generality we assume Im A = 1. We identify the matrix
I — uA with the complex number z(u) := (1 — uRe \) — iu. Thus,

SyRs(4) = {H z(uy)

t=1

tGN,utGR}

(i) We show that Mg := {if + u|u € R} C Syrs(4) for one 0 < 1 < 6.
Then, the claim follows, since the set of finite products of elements of My
is C* (see Corollary . There exists an open set in U C R with 0 € U
such that

|2(u)] = /1 —2uRe X +u2|\2| < 1 for u € U.
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More precisely, |z(u)| < 1 for 0 < u < Q‘P;r;/\

|z(u)| < 1 for 2|§|‘ZA < u < 0 if ReA < 0. Therefore, we can choose u € R
such that |z(u)| < 1 and arg z(u) = 5- for n € N large enough. Then

z(u)" = B1 € Sgrs(ay  with 3= [z(u)|".

Since Mg = {Bi(1 — ui)|u € R} we obtain Mg C Sgrs(a) and thus
SERS(A) - (C*

if Re XA > 0, and respectively

(ii) Sxrs(4) is not a group by Theorem Again we identify the matrices
I — uA, u € R with complex numbers. Here, z(u) := 1 —iuIm A. For any

z € Sxrs(4) We have
T

z| = 1 — 2wyl .
2| lll ¢l
_ "_’21

It follows that |z| > 1 and |z| = 1 if and only if 2 = 1. Thus,
SERS(A ((C\]D)) U{l}

Now we show that M) := {i +u|u € R} C Syrs4) U {1}. Then, the claim
follows, since C* \ D lies in the set of finite products of elements of M; (see
Corollary [7.11)).

For u € R\ {0} we construct uy,...,ur such that z(uy) - --- - z(uy) =
i +u. Let u, = tang-. Then z(u,)" = [2(un)|"i. Moreover, |z,[" —1
is arbitrary small (for n sufficiently large). Now we choose n such that
u? > 4]zn]”(|zn|” —1). Then for

n " — 1

u+ \/u2 Az (|20 = 1)), 1= —|z(u )
v

we have

2(up)"z (m) 2v) = ilz(un)" (1 - zm) (1 iv)
= (i|z(un)|" +7r)(1 —iv)
= i(|z(un)|" = or) + 7+ v]z(ua)["
= 1+ u.
Thus, Syrs(4) = (C\ D) U {1}, 0

Corollary 9.9 Let A € R?>* by cyclic and invertible. 0 4s repelling to Na
if and only if A has a pair of compler eigenvalues A\, A with ReA = 0. In
this cas R(z) = |z|[(C\D)U{z} for all z #0.

2Twith respect to the identification R? =2 C and I — uA = (1 — uRe \) — iu).
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9.4 Restarted polynomial iteration

Given an initial guess zy for the solution of a linear equation Ax = b,
A e R™™ b e R", arestarted polynomial iteration of degree m is an iteration
scheme of the form

T = xr — pe(A) (b — Axy) (58)

where p; € R[x] with degp; < m. Restarted polynomial methods are also
called restarted Krylov methods, since

Tpt1 € T + ICm(A, Tt>

where IC,,,(A,r;) denotes the Krylov space with respect to A and r, := b —
Axy, ie., K (A 1) := span(ry, Ary. ..., A 1r,) . Similar to Richardson’s
method, the dynamics of the iteration can be equivalently described by the
dynamics of the residual sequence (r;);eny. We obtain

Tty1 = b— A(.Tt — pt<A) (b — Axt)) = (I — Apt<A))7°t
This motivates the following setting.

Definition 9.10 (Polynomial iteration system) Let A € R™ " be in-
vertible and

UL = {p e R[z]| deg(p) < m + 1,1 — Ap(A)invertible}.

The system LP1(A) = (R™, ULT, fi7) given by the transmission map fi7 :
(r,p) — (I — Ap(A))r is called Polynomial iteration system (with respect
to A).

Note that Richardson’s method and restarted polynomial iteration co-
incide for m = 1. We have seen that the Richardson system semigroups are
not necessarily groups (see Theorem . In the following we show, that
the system semigroup of polynomial iteration system is a group, provided
m > 2.

Theorem 9.11 Let A € R™™ be cyclic and XP1(A) = (R, UL, f57) be a
polynomial iteration system of degree m > 2. Then

CL) SZPI(A)(A) = P(A)
b) SPRS(A) is weakly reversible.

N

¢) SPRS(A) . is controllable.
A
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Proof. a) Obviously, Syrs(ay € Syrray € P(A). Moreover, the system
semigroup for polynomial iterations systems for polynomials of degree m
is included in the system semigroup for polynomial iterations systems for
polynomials of degree m + 1. Therefore, it is sufficient to show the claim
for m = 2. Recall that (Sygrs(4)) = P(A) by Proposition Thus, we only
have to show that Syrr(4) is a group, i.e., we show that for any p € Uyt
there exists k € N and py, ..., pr € ULT such that

Joofp oo fp, =1

By the Cayley Hamilton theorem there exists a polynomial p of degree at
most n such that

(I = p(A)A)~" = p(A). (59)
We decompose p in linear or quadratic polynomials, i.e.,
p(t) = (aq +tri(t)) ... (g +tri(t)) with degr; <1,j=1,... k.
Since p(A) is invertible we have a; # 0,7 = 1,..., k. Moreover, implies
(1= pOB)F(E) = (1 = pB)) a1 +tr1(1)) . . (e + tr(8)) = 1+ k(H)ma()

for some k € R[t]. Since deg(p) = m = 2, degp < n and degmy(t) = n we
obtain aj ...a, = 1. Thus,

I = (I = Ap(A)(I — Apy(A)) ... (I — Api(A)

with p; = ;f;rj. This proves claim a).

b) and ¢) Clearly, S7#5(A) is weakly reversible if Syrr4)(A) is a group.
Moreover, P(A) acts transitively on Ny (see Lemma [6.11)). Thus, state-
ments b) and ¢) are immediate consequences of statement a). a
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Another approach to design iterative methods for solving linear equations
Ax = b is via linear control schemes, i.e., given A € R™*" and b € R", we
want to find a shift sequence U = (uy, ug, ... ), uy € R™ with limy o u; =0
and B € R™™ such that the sequence

Tir1 = ([ — A)ﬂft + But -+ b (60)

converges. Then, the limit of (x;);cy is a solution of the equation Az = b.
Without loss of generality we assume that b lies in the image space of B, i.e.,
b € Image B := {By|y € R™}. Otherwise we set B := [b, B] € R™*("+1),
Assuming that A is invertible, we have

n—1
r=A"b=> a;(I - AYb
=0
for some a; € R, j = 0,...,n — 1. Thus, z € ImageR(/ — A, B) where
R(I — A, B) is the Kalman matriz of the pair (I — A, B), i.e.,

R(I - A,B) = [B,(I-A)B,...,(I-A)"'B].
This approach yields the following definition.

Definition 10.1 (linear control system) Let A € R"*" b € R™ and
B € R™™ such that b € Image B. System XP(A) = (R",R™, fB) with

B UxR" =R, fBu,2) =1 — Az +Bu+b
is called linear control system (of equation Az = b with respect to B).

In the following we analyze the system semigroup and the reachable
structure of linear control systems (Section [10.1). Our results imply the
Kalman rank condition for controllability, a well known fact from the theory
of linear control systems. Moreover, we present a feedback law such that

converges globally to a solution of Az = b (Section [10.2)).

10.1 Linear control system semigroup

Obviously, every composition of maps f,..., fD is an affine map. There-

fore, the system semigroup Sys(4) of the linear system ¥B(A) is a subsemi-
group of the affine group Aff,(R), provided I — A is invertible. By induction
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we obtain

floofl(x)=T—-A)Nz+) (I- A (Bu+b).  (61)

UN
t=1

In particular this shows, that the identity is not element of the semigroup
Sy5(4) for almost all A € R"*". Thus, Sys(4) is in general not a group.

In contrast to the system semigroups we have analyzed in the previous
chapters, SE(A) is not abelian. In fact equation shows

fBofB(x) = — A2+ B(up +uy) + (21 — A)b — ABu,

u u2

and therefore

ﬁo 1‘2(1‘)— f;o fl(x) = AB(u; — ug).
In other words, fl and ff; commute if and only if fl = fu.,» provided

rank(AB) = m. Nevertheless, it turns out, that Sys (4 is right divisible.

Theorem 10.2 Let A € R™™" such that I — A is invertible and B € R™*™
such that b € Tmage B. Then YB(A) is right divisible and left divisible. The
system group s given by

Gysay={g:2— ([ —A)z+v|Z€ZvelmageR(I — A, B)}.

Proof. Without loss of generality we assume b = 0 (otherwise we set
such that Bu; + b = Bi;). By equation we easily deduce

U2 oo (B Ha) = e (1= A <x— zu_A)t—lBut) |

t=1

Obviously, every finite product
B B B -1 B -1
fulo.”ofUNlo(fwl) o...o(waZ)

with uy, ..., un,,wy, ..., wy, € R™ is an affine map and therefore contained
in the group {z — (I—A)?z+v|Z € Z,v € R"} C Aff,(R). More precisely,
v = ZthZl ay(I — A)'Buy for some 7y, Zy € Z and oy € R. Thus,

SEB(A)(SzB(A))_l g GZB(A)
C {a—~{I-A)?r+v|Z€ZvelmageR(I — A,B)}.

=G

Now we show that for every Z € Z and every v € Image R(I — A, B) there
exists N1, No € N and uy ..., un,, wy,...,wy, € R™ such that

5155 (2) = (I — A)?x +v
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for sy == fy,, 0---0 fuN1 and sy := f, 0---0 waQ. Then G is a subset of
SEB(A)<SZB(A))_1 and thus GEB(A) = QG.

Case I: We assume that Z > 0. We choose, Ny = Z +n, Ny = n and
Uy, ...,uy, = 0. Since v € ImageR(I — A, B) and ImageR(/ — A, B) is
(I — A) invariant, there exists wy, ..., w, € R™ such that

n

—~(I=A)7v=> (I-A)"'Bu,.

t=1

Therefore,

s155 (x) = (I —A)?T(1I - A)~ < Z[ Atlet>

= (I-A)?r—(I-A? i([ — A By,

= (I-A)?x+v
Case II: Now we assume Z < 0. We choose w1, ..., w, € R™ such that

v=> (I—A)""Bi.

t=1

From case I we deduce

$15, (x) = (I — A2z — (I — A)%v

for Z=—Zand = f8 o---0 §N2. Therefore,
Sstl(r) = (015, (@)
= (I—A)7(z+(I—A)%)
= (I —-A)?z+w.

Thus, in both cases x +— (I — A)?z + v is an element of SSEIN (SEB(A))_l

We conclude .
GEB(A) — SEB(A) (SEB(A)) — G

Hence, X5 (A) is right divisible. Analogously, we can show that any element
of G can be written as a product s 'sy with s, s, € Sy:5(ay- Thus, YB(A)
is also left divisible. O

Knowing the explicit types of the system group we easily obtain the follow-
ing result on the adherence structure of the reachable sets. In particular,
we deduce the well known Kalman rank condition for controllability.
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Theorem 10.3 Let A € R™", b € R" and B € R™™ such that I — A is
invertible and b € Image B. Consider XB(A) := (R, R™, fP).

a) Every reachable set is the countable union of affine subspaces of R"
with dimension at most rank R(I — A, B).

b) Every system group orbit is the countable union of affine subspaces of
R™ with dimension rank R(I — A, B).

¢) SP(A) restricted to Gys(ay - 0 is controllable.
d) YB(A) is controllable if and only if rank R(I — A, B) = n.
Proof. a) From and b € Tmage B it follows

R(zx) = {(I — ANz + Z(I — A) By,

t=1

— U (I —A)'z+ K;)

teN

N eNy € Rm} (62)

with K, = {}7—o(I — A Bw;|w; € R™,j =0,...,t — 1}. Note that,
K, = ImageR(I — A, B) and dim K; < dim K, for any ¢t € N.
b) By Theorem we have

Gy o= (I — A+ K,(I — A,B)). (63)

teZ

¢) From and it follows R(z) = Gxp(a) - 0 for all # € Image R(I —
A, B). Thus, X5(A) restricted to G'y:8(a) - 0 is controllable by Proposition
2311

d) Obviously, rank R(/— A, B) = n implies controllability by c¢). Conversely,
rank R(/ — A, B) < n implies

GsBay T = U (I — A)?z +ImageR(I — A, B) #R™.

ZeL

Thus, R(x) # R". O

In the following we assume that also A is invertible. Theorem[I0.3|shows,
that A~'b € R(z) if and only if x € Image R(I — A, B). Note that the set
of pairs (I — A, B) € R™"™ x R™™ which satisfy rank R(I — A, B) = n, is
open and dense®| in R™*™ x R™™ (see Proposition 3.3.12 in [Son9§]). If
the Kalman rank condition does not hold, i.e., rank R(I — A, B) < n, every

28 The generaliy of this statement is not restricted by the general assumption b €
Image B, since rank R(I — A, B) = n implies rank R(I — A, [b, B]) = n.
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reachable set is the countable union of affine spaces with dimension at most
rank R(/ — A, B) < n and therefore of measure zero. Nevertheless, in some
(but not all) situations we have A~'0 C R(z) for some = € R" \ R(0)
(see Example [10.5). A sufficient condition for this phenomenon will be
presented in Section [10.2] (see Theorem [10.10)). The following result shows,
that A'b C R(x) is a property of the entire orbit Gys (4 - .

Theorem 10.4 Consider XE(A) := (R, R™, fB) with A € R™", b € R"
and B € R™™ such that A and I — A s invertible and b € Image B. Let
Y,z € Gyp(ay - @ for some v € R". Then

A" e R(y) if and only if A7'b € R(z).

Proof. Recall that Gy is right divisible. Therefore, there exists w €
Gss(a) -« such that R(y) U R(z) € R(w) (see Theorem [4.8). Tt follows,
that z = (I — A)Mw + v for some N € N and v € ImageR(I — A, B). By
(63) it follows

N-1
R(w U (I = A)'z + ImageR(I — A, B)) .
t=1

Since (I — A)'z ¢ ImageR(I — A,B) = R(0) for any t = 1,...,N — 1 it
follows

R(0) NR(w) \ R(z) = 0. (64)

Now we assume that A='b € R(y). Then A~1b € R(w), since R(y)UR(z) C
R(w). By it follows A™'b € R(z). The converse direction follows
analogous. O

We finish this section with an example which shows, that there exist
linear B-systems with A™'b ¢ R(x) for some z € R" as well as systems
with A~'b € R(z) for some z € R" \ R(0).

Example 10.5 Consider ¥2(A4,) = (R% R, fP) with

2 0 1
I—Aa—<0 a) and B—b—<0>.

Clearly we have Image R(I—A4, B) = {(y,0)" |y € R} and A, 'b € Image R(I—
A, B). For any (z1,72)" we have

2ZZE1
GEB(AE) X = {( CLZZL‘Q ) +v

Zelve ImageR(I—A,B)}
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X R(x) X R(x)

®
®

R(O) ~ R©) ~

Figure 8: [Illustration to Example |[10.5. The reachable sets are countable
unions of affine subspaces. Left: R(x) for the case 0 < a < 1. Here, R(0)
lies in the topological closure of R(x). Right: R(x) for the case |a| > 1.

Here, R(0) N R(x) = 0.

and

ria) = { (260 ) 4o

Thus, for z = (0,1)", we have R(0) C R(z) if |a| < 1 and R(0)NR(z) =0
if |a] > 1.

N eNjve ImageR([—A,B)}.
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10.2 Shift strategies via quadratic controller design

In this following we introduce a method, for constructing an explicit shift
sequence such that converges globally to a solution of Ax =b. We use
the following classic result by Kalman [Kal60]. A proof can be found in
ILR95], Theorem 16.6.4.

Theorem 10.6 Consider the linear control system ¥ = (R™,R™ L), given

by
rey1 = L(ry, up) = Ary + Buy

and the cost functional
Trg (o, ) = (el + [lue ). (65)
t=0

Assume that (A, B) is discrete-time stabilizable, i.e., rank[\] — A, B] = n
for any A € C with |A\| > 1.

a) The algebraic Riccati equation
P=1,+A"PA+(B"PA)"(I,+ B'"PB)"'\B"PA  (66)
has an unique symmetric positive definite solution P € R™ ",

b) There exists a unique control sequence u = (ug,uy,...) such that
Jro (U0, U1, ... ) 08 minimal. This optimal control sequence is given by
the feedback law vy = —Kr, with

K = (I, +B"PB)'BTPA. (67)
Moreover, J,,(ug,u1,...) =14 Pro.

Now we apply Theorem to XB(A). The dynamics of the residuals
ry := b — Ax, is given by the linear system

Tty = b— A$t+1 =b-— A((I — A)‘Tt —+ But -+ b) = (I — A)Tt — ABut

Assume that (I — A), —AB) is discrete-time stabilizable. By Theorem
r; converges to zero if we apply the feedback law u, = —Kr; with

K = (I, + (AB)"P(AB))"'(=AB)"P(I — A).

Here P is the unique solution of with A =7 — A and B = —AB. This
yields the following algorithm proposed by Helmke, Jordan and Lanzon
(|[HJ05), [HJILOG]).
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Algorithm 10.7 (LQRES)
(i) Choose B such that (I — A, —AB) is stabilizable

(ii) Calculate the unique positive definite solution of the Riccati Equation
forA:[—AandB:—AB.

(iii) Calculate K as in Equation for A=1— Aand B=—AB.
(iv) Iterate the closed loop system

By Theorem we immediately obtain the following convergence result
for LQRES.

Theorem 10.8 If (I — A,—AB) is stabilizable then (68) converges to a
solution of Az = b.

Note that a solution to step (i) may not exist for arbitrary choices of
A. However, for generic choices of A step (i) is always solvable. Moreover,
the freedom in choosing B can be exploited to improve convergence speed
(see Example and Example [10.13). If the eigenvalues A of A satisfy
|1 — Al < 1, then one can choose B = 0. Then LQRES coincides with the
Richardson’s method z;,1 = (I — uA)z; + ub with constant shift strategy
u = 1. The following example shows, that LQRES converges in cases, where
Richardson’s iteration fails for all possible shift strategies.

Example 10.9 Consider Ax = b with

0 -1 1
(1) (1),
By Theorem [9.7 Az = b is not solvable for any Richardson’s method. How-

ever, (I — A,—AB) is stabilizable for the choice B := b. Thus LQRES
converges.

Provided the dimension of U = R™ is relatively small, step (iii) does not
cause numerical problems. However, the expensive preconditioning process
by solving the algebraic Riccati equation in step (ii) is a serious nu-
merical problem. In fact, any known method is more expensive then solving
the origin equation Ax = b. Nevertheless, we believe variations of LQRES,
using suboptimal techniques for solving equation , yield attractive al-
ternatives to the common numerical algorithms.

Theorem provides an interesting result on the adherence structure
of reachable sets.
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Theorem 10.10 Let A € R™™", b € R" and B € R™™™ such that I — A and
A are invertible, (I — A, —AB) is stabilizable and b € Image B. Consider
YB(A) = (R, R™, fP). Then R(0) C R(z) for any x € R™. In particular

Ao € R(x) for any v € R".

Proof. By Theorem[10.§|there exists a sequence (z¢)sen with 2o = 2 in R()
which converges to A~ € R(0) = Image R(I — A, B). Thus, A~'b € R(z).
For any v € Image R(I — A, B) the sequence x; + (v — A7'D) lies in R(x)
since v — A7'b € Image R(/ — A, B) and R(z) = U,y (I — A)'z + K,).

Thus, R(0) C R(x). O

Clearly, the statement of Theorem [10.10]is trivial if the Kalman rank
condition holds. The following example shows, that the assumptions of
Theorem [10.10[ do not imply rank R(/ — A, B) = n.

Example 10.11 Consider ©5(A,) = (R%, R, f?) of Example with a €
(0,1). Recall that A, and I — A, are invertible. Moreover,

A—2 0 —2
rank(\] — (I — A,), —A,B] = rank( 0 MX—a O > =2

for all |\| > 1. Thus, (I — A,, —A,B) is stabilizable. By Theorem [10.10]it
follows, that A~'b € R(x) for any = € R". However,

rankR(/ — A,, B) = rank( (1) g > < 2.

We finish this section with some numerical experiments which demon-
strate the dependence of the convergence properties of LQRES on the choice
of the parameter B.

Example 10.12 Consider Az = b for

1 2 =2 3
A= 0 2 4 and b = 1
0 0 3 1

We choose x¢y = 0 as an initial guess. This example is known to produce ex-
treme behavior for restarted GMRES algorithms. In particular GMRES(2)
fails to converge while GMRES(1) converges (see [Emb03]). We choose

3 31 3 -1
Bl=\|1}|, B2={(11], B3=|1 -2
1 11 1 -3

The convergence behavior of LQRES is shown in Figure [9]
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Figure 9: LQRES in Erample |10.12. We compare the relative residuals
after n outer iteration steps. The algorithm converges for all parameters

B1, B2, B3. Howewver, the speed of convergence depends on the choice of
B.

Example 10.13 Now we consider Az = b where b = (1,0,0,0,0)" and A
is the Hilbert matrix of order 5. The elements of the Hilbert matrices are
given by a;; = W%l It is known that this matrix is poorly conditioned
(see [EM67], Chapter 19). We choose

11 1 1 0
0 —1 0 -1 0
Bl=b B2=|0 0 |, B3=|l0 0 -1
0 0 0 0 -1
0 0 0 0 -1

The convergence behavior of LQRES with respect to Bl, B2 and B3 is
shown in Figure
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Figure 10: LQRES applied on a Hilbert matriz of dimension 5 (Example
. We compare the relative residuals after n outer iteration steps. We
observe that the speed of convergence increases when the number of columns
of B gets larger.

A Semi-algebraic sets

In Part II of this thesis, we analyze systems where the state space is a real
algebraic set and the transition map is a rational homomorphism. To take
advantage of this situation we shall use some basic concepts from algebraic
geometry. Here, we briefly recall some basic notations and properties of
semi-algebraic sets which will be important for our analysis. See [BCRIS|
CLO91] for a more detailed overview on real algebraic geometry.

We call a set A C RY a wvariety or a real algebraic set if there exists a
set of polynomials P C R[xy, ...,z x| such that

A={x e RY|p(x) =0,Vp € P}.

A variety A is called irreducible if A = AU Ay with varieties Ay, Ay implies
A=A or A=A, Aset ACRY is called semi-algebraic if it can be
written as the finite union of sets of the form

{z eRY | fi(x) == filx) =0,9:(x) >0,...,gm(z) >0},
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where fi1,...,fi,91,-..,9m € Rlz1,...,2n]. A map f: A — B between
semi-algebraic sets A C RM and B C RY is called semi-algebraic if

graph(f) := {(a, f(a)) [a € A}

is semi-algebraic in RM*V_ In particular, every regular morphism is semi-
algebraic, i.e., every map f = (f1,..., fu) : A — B with rational compo-
nents fr = pr/qr, k =1,..., M such that py, g, € R[x] and gx(z) # 0 for all
x € A, is semi-algebraic.

One easily obtains the following:

Proposition A.1  a) If A, B C RY are semi-algebraic, then ANB, AUB
and A\ B are semi-algebraic.

b) If ACRM and B CRYN are semi-algebraic sets, then A x B is semi-
algebraic in RM+N .

¢) If f : A — B is a semi-algebraic bijective map, then f~': B — A is
semi-algebraic.

d) The composition go [ of semi-algebraic maps f : A — B and g: B —
C' is semi-algebraic.

e) If M and U are semi-algebraic sets and f : M x U — M is semi-
algebraic, then f,: M — M, m+— f(m,u) is semi-algebraic.

Proof. The proofs of claim a) and b) can be found in [BCR9§|, Chapter
2.1. Moreover, graph(f) is semi-algebraic if and only if

graph(f ') = {(a,f'(a))|a € A}
= {(f(b),0)[b:= f(a) € B}
is semi-algebraic. This shows c¢). Claim d) is proven in [BCR9S], Proposition

2.2.6. Claim e) follows from d), since f, = f o, where m, : M — M x U,
m— (m,u). O

The following fact is also known as the Tarski-Seidenberg theorem .

Theorem A.2 Let A be a semi-algebraic subset of RN TE and 7w : RVtE —
RY the projection on the first N coordinates. Then m(A) is a semi-algebraic
subset of RV,

For a proof we refer to [BCR9§| (see Theorem 2.2.1).

Assume that X C RM and Y C R¥ are semi-algebraic sets and A C X
as well as B C Y are semi-algebraic subsets. If f : X — Y is a semi-
algebraic map, then f(A) is the image of (A x Y) N graph(f) under the
projection X X Y — Y and f~'(B) is the image of (X x B) N graph(f)
under the projection X x Y — X. By Proposition and Theorem
we obtain:
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Corollary A.3 Let X C RM and Y C RN be semi-algebraic sets and let
f X — N be a semi-algebraic map. Then for all semi-algebraic sets A C X
and B CY the sets f(A) and f~1(B) are semi-algebraic.

Another important property of semi-algebraic sets is that they can be
decomposed in manifolds.

Theorem A.4 Every semi-algebraic subset A C RY is the disjoint union

of a finite number of semi-algebraic submanifolds A; C RN, i = 1,...,1,
such that each A; is diffeomorphic to (0,1)%. Here (0,1)° is a point by
convention. Moreover, d := max{dy,...,d;} is unique.

See Proposition 2.9.10 in [BCR98| for the decomposition property. The
fact that d is unique follows from Corollary 2.8.9. in [BCR9§|. We say d =:
dimg(A) is the semi-algebraic dimension of A. Note that dim,(A) = dim(A)
if A is a manifold (see Proposition 2.8.14 in [BCR9S]).

Lemma A.5 Let A CRY be a semi-algebraic set with dim,(A) = d. Then:
a) A is a semi-algebraic subset of RN and dim,(A) = dim,(A).
b) dimy(A\ A) < dim,(A).

c) If A is the finite union of semi-algebraic sets Ay, ..., Ap with dimen-
sions dy, ..., dy, then d = max{dy, ..., dg}.

All claims are well known and can be found in [BCR98| (see Proposition
2.2.2 and Proposition 2.8.2 for claim a), Proposition 2.8.13 for claim b) and
Proposition 2.8.5 for claim c).

As a consequence of Theorem and Lemma we obtain the follow-
ing observation which is important in the proof of Theorem (algebraic
orbit theorem).

Lemma A.6 Let A CRY be a semi-algebraic set with dim,(A) = d. Then
there erists * € A and a neighborhood U of x in RY such that U N A is
diffeomorphic to (0,1)%.

Proof. By Theorem we can write
A:Alu---UAklUAleU---UAk

such that for all i = 1,...,ky, A; is a submanifold of RV diffeomorphic to
(0,1) and for all i = ky+1, ..., k, A; is diffeomorphic to (0, 1)% with d; < d.
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By Lemma the set

A=A\ (U E)u(U E) (69)

N J/ N J/

-

—Ag

is semi-algebraic. We shall show that dims(fl) =d.

Since dimg(Ag) = max{dimy(Ag,+1),...,dim(A;)} < d we have
dim((A; \ Ag) U Ag) = dim,(A; \ Ag) = dim(4,) =d.

Recall that A;, i = 1,...,k are disjoint. It follows

A:(Al\Aﬁ)\Aa:(Al\Aﬁ)\< U (E\&))-

1<i<ky

By Lemma we have dim, (U<, (4i \ 4i)) < dim,(A4;) = d. There-
fore, -

dim,(4; \ Ag) = dims(<(A1\A5)\ U (E\AQ)U U (E’\Ai))

- dims(<<A1\Aﬁ>\ U (E\M))
= dim,(A). _

This shows that dims(/l) = d and in particular A # (. Thus, for all z € A
we can find U C RY such that

UNA=UNA=UnNA,.

Since A, is diffeomorphic to (0,1)¢, we can choose U such that U N A is
diffeomorphic to (0, 1), O
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B Topological semigroups

System groups are often equipped with a canonical topology such that Gy
is a topological group acting continuously on the state space. Therefore,
some basic theory on topological groups and their subsemigroups turns out
to be very helpful for the analysis of the reachable set structure of systems

and algorithms. In the following we collect some useful properties on this
subject which can be found in [Hus66, HN93, HHL89, [Mit01] and [SBGT95].

Definition B.1 A topological space GG that is also a group is called a topo-
logical group if the mappings G x G — G, (g1,92) — ¢1g2 and G — G,
g — ¢! are both continuous. Analogously, a topological space S that is
also a semigroup is called a topological semigroup if the mapping S xS — 5,
(s1,82) — $189 is continuous.

Obviously, every subsemigroup of a topological group is a topological
semigroup. Moreover, we observe the following.

Lemma B.2 Let G be a topological group and S a nonempty subsemigroup
of G. Then

a) The topological closure of S is a subsemigroup of G.

b) If S is compact, then S is a group.

Proof. a) For any 5,5 € S there exist sequences (s,)neny and (3, )nen in
S such that s, — s and 5, — §. Since the product in the topological
group G is a continuous map, we obtain s5 € S. Therefore, S is a closed
subsemigroup of G.
b) Since S is compact, the sequence s™ has a convergent subsequence s"*.
Since limy_,o s = limy_ o, s™+2 it is

lim s™+2g Mgl = gL,

k—oo
From nyio —ni > 1 we deduce s™+25 " s~! € S and therefore s~ € S=2.
Hence, S is a group. O

In the following we denote the neutral element of a topological group G
with e.

Theorem B.3 Let G be a connected topological group. Then for any neigh-
borhood V' of e we have
G=Jv"

neN
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Here V™ denotes the set of products of n elements v; € V, i.e. V" =
{T1, vi lv; € V'}. For a proof we refer to [Hus66], Theorem 23.6.

Lemma B.4 Let G be a topological group and S a subsemigroup of G. If
e € intg S and SN G* # (O for every path-connected component G* of G,
then S = G.

Proof. (i) First we show the claim under the assumption that G is path-
connected. Let V be an open set in intg .S such that e € V. Since G is a

topological group,
Uvr=c¢ (70)
neN

by Theorem |B.3
Since S is a semigroup, it follows V" C S for all n € N and therefore

SQG:UV"QS.

neN

(ii) Now we assume that G has different path-connected components G°,
all of them having nonempty intersection with S. We show that G* C S
and therefore S = G.
Let G, be the component of e and g; an element of G* N S. We define
rg.  Ge — Gj;, h — hg;. Note that ry, is a homeomorphism with inverse
—1

g =T,-1. Since g; is an element of the semigroup S, we obtain
1

rgi(SE) = S.9; € S. (71)

Here S, is the identity component of S. We show that S, is a semigroup.
For any a,b € S, there exists a path s, : [0,1] — S. with s,(0) = e and
Sq(1) = @ and a path s, : [0, 1] — S, with s,(0) = e and s,(1) = b. Therefore
the path s : [0,1] — 52, given by s(t) := s,(t)s(t), connects s(0) = e and
s(1) = ab. Hence, S, is a semigroup. By (i) it follows that S. = G., and we
conclude

G = rgi(Ge) = rgz‘(Se) = Segi € 5, (72)

forall ¢ € 1. O
The following useful fact can be found in [HN93| (see Lemma 3.7).

Lemma B.5 Let S be a subsemigroup of a connected topological group G.
Then the following statements hold:

a) inte(S) is a semigroup ideal, i.e.,

inte(S)S C intg(S) and  Sintg(S) C intg(S).
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b) If e € intg(9), then

S Cintg(9) and inte(9) = intg(S).

c¢) Ifintg(S) # 0 and S = G, then S = G

Typically, we have to deal with system groups with more than one con-
nected component. Nevertheless, statement ¢) of Lemma also holds if
G is not connected.

Lemma B.6 Let S be a subsemigroup of a topological group G. Assume
that intg(S) # 0 and S =G. Then S = G.

Proof. (i) By assumption it follows that (intg S)~' C S and since G — G,
g+ g~ !is an open map,

(intg S)™' NS # (.
In other words, there exists s € S such that s™' € intg S. We obtain
e=ss1C Sintg S C inte S,

since intg S is an ideal of S (see Lemma [B.5)). Hence e is an interior point
of S, i.e.,
e € intg(9).

(ii) Since S = G, there exists for any g € G a sequence (s,)nen in S with
s, — ¢. In other words, the sequence s 'g converges to e € intg(S). Thus,
g € spintg(S) C S for almost all n € N. Hence, S = G. O

Recall that Stab, := {g € G|g -z = x} is a subgroup of G, the so called
stabilizer subgroup. Reachable sets are orbits of semigroup actions. We
say a semigroup Sy acts transitively on M if for my, my € M there exists
s € Sy, such that s-my; = my. If S is a subsemigroup of a Lie group[ﬂ G,
the following condition for transitivity applies.

Proposition B.7 Let G be a Lie group and S a subsemigroup of G. We
assume that G acts continuous and transitively on a manifold M. Then:

a) If intg S N Stab, # 0, then there exists a neighborhood of x such that
Sy, acts transitively on U.

b) If M is connected and intg S N Stab, # O for all x € M, then S acts

transitively on M.

29 A Lie group is a differential manifold with topological group structure such that
product and inversion are smooth maps.
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For a proof we refer to Mittenhuber [Mit01](see Proposition 3.3.4 for state-
ment a), respectively Proposition 3.3.5 for statement b).

We finish this section with an important fact known as Effros theorem .
Recall that a topological space is locally compact if each point is contained
in a compact neighborhood. In particular manifolds are locally Compact[?f].
A Lindeldf space is a topological space in which every open cover has a
countable subcover. In particular, G is a Lindeldf space if G is a Lie group.

Theorem B.8 Let G be a locally compact topological group and M a locally
compact topological space. Assume that G is a Lindelof space. If G acts
transitively and continuous on M, then the map h, : G — M, g— g-x s
open.

The proof of Theorem is based on Baire’s category theorem. For more
details we refer to [SBGT95| (see Theorem 96.8).

30Note that semi-algebraic sets are not locally compact in general.
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C Directed graphs

In this work we will describe the adherence structure of the reachable sets
using a graph theoretical language. In the following we give a brief sum-
mery on the necessary notations and properties. The following definitions
are standard and can be found in the books of Bollobas [Bol98| or Diestel
[Die00)].

Definition C.1 (Directed graph) A directed graph G is a pair (V,«—)
containing of a set V, the set of vertices and a relation «— on V. A pair
(v1,v2) € V x V is called an edge from v, to vy if vy «— v;. We say that G
is infinite if V' has infinitely many elements.

In this work, we only consider graphs G = (V, «—) where the relation «—
is reflerive and transitive, i.e., where v «— v for all v € V and vy «— vy
and vy «— vy implies vs «— wv;. Therefore, in figures we neglect trivial
edges, i.e., edges from v € V to itself. Moreover we reduce the graph by
those edges which are already clear by transitivity. The following diagram
illustrates this reduction.

2 N SN N

V———mmmmmm>Ww

original graph neglect trivial edges reduced graph

Definition C.2 (Subgraph) Let Gy = (V5,«—3) and G; = (V4,+—1) be
directed graphs such that V5 C Vi. We say G, is a subgraph of G if v «— w
for v,w € V5 implies v «—; w. We say G, is an induced subgraph of G if
for all v,w € V5: v «—1 w is equivalent to v «—4 w.

Let G; = (V4,<—1) be a directed graph and V5 C V] a subset of vertices. In
general, there exists more then one subgraph but a unique induced subgraph
with vertex set Vi. In particular, the following graphs show, that not every
subgraph is an induced subgraph.

N S

(%

N N N

x x x
original graph subgraph induced subgraph

u
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Definition C.3 (Graph isomorphism) Let G, = (Vj,«—) and G, =
(Va,<—3) be directed graphs. A map ® : V} — V; is called graph iso-
morphism if it is bijective and vy «—1 vy for v, v9 € Vj is equivalent to
@(Ul) 9 q)(l)g).

If ® is a graph isomorphism between G; = (Vi,«—1) and Gy = (V5, «—>)
and G = (V,«—;) is a subgraph of G, then we write ®(G) for the graph
®(V), —3) defined by

O(vy) «—35 P(v2) if and only if v «—5 va.

Note that ®(G) is a subgraph of G,. This yields the following useful propo-
sition:

Proposition C.4 G, is isomorphic to a subgraph of G if and only if any
subgraph G of Gy is isomorphic to a subgraph of G.



189

D Cyclic matrices

Definition D.1 A matrix A € R™*" is called cyclic, if there exists © € R”
such that the vectors x, Az, ..., A" 'x form a basis of R”. Such a vector x
is also called a cyclic vector.

First of all we want to point out, that cyclicity is a generic property.
Proposition D.2 The set of cyclic matrices is open and dense in R™"*",

Proof. Consider the polynomial
P:R" x R - R (z,A) — det(z, Az, ..., A" x). (73)

A matrix A € R"" is not cyclic if and only if P(xz, A) = 0 for all x € R™.
Therefore, if A is cyclic, there exist an € R" such that |P(x, A)| = |¢| > 0.
It follows, that also |P(z, B)| > 0 for ||A — BJ| small enough, since P is
continuous. Hence, the set of cyclic matrices is open.

Now we show, that the map of cyclic matrices is dense in R™*". If A is
not cyclic, then for all x € R™ we have P(z, A) = 0. Suppose there exists a
neighborhood O of A such that P(x, B) =0 for all B € O. and all z € R".
Then polynomial P has to be constant zero, which is a contradiction to the
definition. O

In the following we collect some characterizing properties of cyclic ma-
trices, which will be important in our analysis.

Proposition D.3 The following statements are equivalent:
(i) A is cyclic

(ii) For the characteristic polynomial x o(t) = det(A—tI) and the minimal
polynomial my it is xa = (—=1)"ma.

(11i) The matriz A has finitely many A-invariant subspaces.

Proof. The equivalences of (i) and (ii) are shown in [Fuh96|, Proposition
6.3.2.

(i7) = (ii3): If xa = (—1)"ma4 then for every real eigenvalue, respectively
pair of complex eigenvalues, there exists exactly one block in the canonical
form. Every block corresponds with exactly one A-invariant subspace. The
set of invariant subspaces of A consists of all possible sums of this subspaces
and is therefore finite.

(14) = (ii): If A has finite many proper A-invariant subspaces then the
union of this subspaces is strictly smaller then R™. For any x € R"\ {0}
which does not belong to one of this invariant subspaces it is ;' | \;A'z = 0
if and only if \;, =0 foralli=1,... n. O
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An immediate consequence of Proposition is the fact that A is cyclic if

and only if T(A—ul)T~* with T € GL,(R) and u € R is cyclic. Moreover,

in the case that A is invertible, A is cyclic if and only if A~! is cyclic.
Recall that the centralizer of a matrix A € R™™" is defined as

Z(A) = {Z € GL.(R) | ZA = AZ}.

Note that Z(A) is a closed subgroup of GL,(R) and therefore a Lie group.
Obviously, every element of

P(A) :={p(A) | p € R[z] coprime to m}

lies in Z(A). The following statement and a proof can be found in [Fuh96]
(see Proposition 6.1.2).

Proposition D.4 A matriz A € R™" is cyclic if and only if Z(A) = P(A).

Note that every matrix is similar to a block matrix

Al 0 nixni (n—m1)x(n—n1)
<O A2>, A eR JA € R

such that A; is cyclic and my = may,.

Lemma D.5 Let A € R™™ (not necessarily cyclic) and m, the minimal
polynomial of A.

a) If A is a block matriz

_ Al 0 nixXny (n—m1)Xx(n—mn1)
A_(O AQ)’ A eR , A €R ,

then P(A) is isomorphic to P(Ay) x P(Ay) if and only if the minimal
polynomial of Ay is coprime to the minimal polynomial of As.

b) If A is a block matrix

_ Al 0 nixXny (n—m1)X(n—mn1)
A—(O AQ)’ A eR , A € R ,

such that the minimal polynomial of A is equal to the minimal poly-
nomial of Ay, then P(A) and P(A;) are isomorphic.

Proof. a) Let my, my respectively my4 be the minimal polynomials of Ay,
As respectively A. Obviously, m; and msy are divisors of my. For every
B € P(A) there exists a unique p € Rlz| with degp < deg(m,), such that
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B = p(A). (i) If my; and my are not coprime, then the degree of my is
strictly smaller then degm, + degms. From Proposition we deduce

dim P(A) = degma < degmy + degmy = dim(P(A;) x P(A,))

Therefore P(A) 22 P(A;) X P(As).
(ii) Now let m; and mgy be coprime. This is equivalent to m4 = ma,ma,.
We show that

®: P(A) — P(A1) x P(As), p(A) — (p(A1), p(As))

is a group isomorphism.
Obviously, ® is well defined and injective, since
p(A)=p(A) & pr—p2=0 mod my
RN p1 —p2 =0 mod my,
and p; —p2 =0 mod my,
< p1(A1) = p2(41)
and pi(Az) = p2(A2).

Moreover, ® is a group homomorphism, since

D (p1(A)p2(A)) = (p1p2(Ar), p1p2(A2)) = @(p1(A))P(p2(A)).

We show that ® is surjective, if m; and moy are coprime. From Bezouts
theorem we know, that there exist kq, ko € Rlx] such that 1 = kymy + kamo.
For any pair of polynomials pi, ps such that p; is coprime to m; and py is
coprime to pe, we define ky := (p; —pg)mglgl and ks 1= (py —p2)m11~€2. Note
that p; — po = kymy — kams. Now we define p := p; — kymy = py — kames.
Since p; is coprime to m; and psy is coprime to msy it follows, that p is
coprime to my = myma, i.e. p(A) € P(A). We conclude

= ("5 )

= ("5 i )

b) The map & : P(A) — P(A1), p(A) — p(A;) is a well defined and injective

group isomorphism, since

pi(A) =pa(4) & pr—p2= mod my
& pi(dr) = p2(A2).
Moreover, ® is surjective. This follows from the fact, that p(A;) is invertible

if and only if p # m4 and therefore if and only if p(A) is invertible. Hence,
p(A) is the preimage of p(A;). O



192 E Real polynomials

E Real polynomials

In our analysis of inverse iteration schemes and Richardson’s methods we
use certain families of real polynomials to represent the corresponding sys-
tem groups and system semigroups. In particular, we have to deal with
symmetric polynomials and linear decomposable polynomials.

Definition E.1 (Symmetric polynomials) A polynomial f € Rluy, ..., up]
is called symmetric if, for any permutation 7, we have

f(uﬂ(l), e ,uw(m)) = f(ul, e ,um).

The elementary symmetric polynomials 0" : R™ — R, ¢+ = 0,...,m are

defined by
op (g, .. Uy) = 1

m
ol (ug, .o Uy) = Zui,
i=1
o (Ury .oy Upy) = Z Wiy - Uiy

i1 <<

Note that every symmetric polynomial f(uq,...,u,,) can be expressed as a
polynomial of elementary symmetric polynomials. More precisely,

flur, . oyum) = g (o7 (Ury ooy Um)y ooy T (U, ey Upy))
for some g € Rluy, ..., uy|. Here, g is unique (see [Pra01], Theorem 3.1.1.).
A polynomial f € Rluy, ..., u,] is called skew-symmetric if

f(...,ul-,...,uj,...):—f(...,uj,...,ui,...), 1§Z<j§m

Skew symmetric polynomials can be expressed by symmetric polynomi-
als in the following way.

Theorem E.2 Fuvery skew symmetric polynomial f(uq,. .., uy,) can be rep-
resented in the form

l_I(UZ —u;)g(Ug, ..., Up)

i<j
where g s a symmetric polynomial.
A proof for Theorem can be found in [Pra0l], Theorem 3.1.2.

Now we introduce a type of real polynomials, which will be of particular
interest in in Chapter [l and Chapter [0
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Definition E.3 (Linear decomposable polynomials) A polynomial g €
R[x] for which every irreducible factor is linear, is called linear decomposable.
We denote the set of all linear decomposable polynomials with L.

The following useful observations can be found in [D6r55|, Chapter 36.

Theorem E.4 Let f be linear decomposable of degree n.
(i) f € L.
(ii) For any c € R the polynomial p. : t — cf(t) + tf'(t) is linear decom-

posable.

Note that every linear decomposable polynomial ¢ can be written in the
form

T
g(z) =r [ [(x — )
t=1
Every ¢ € £ is a symmetric polynomial in uy,...,u; (for fixed z) and can

be expressed as follows:

Proposition E.5 For all m € N and u; € R we have

H(ZL’ —uy) = Z(—l)t(f{”(ul, e U )T

t=1 t=0

Proposition can be shown by straightforward calculation (see [CLO91],
Chapter 7.1).



194 F Flag manifolds

F Flag manifolds

Now we introduce some facts about flag manifolds which will be important
in our analysis of generalized inverse iteration systems. For a more detailed
overview we refer to [BC64, [HM94] and [Tay92].

Let H be a closed subgroup of a Lie group GG. Recall that the map

7:G—G/H g— gH

equips the coset space G/H := {gH|g € G} with a manifold structure.
The map w is a surjective submersion and therefore open and continuous.
Now let m € M and G be a Lie group acting transitively on a set M such
that

Stab,, :={g € G|g-m =m}

is a closed subgroup [T of G. Then,
®,, : G/ Stab,, — M ;g Stab,, — g-m

is a bijective map. Therefore, we can identify M with the coset space
G/ Stab(m). This identification provides a smooth structure on M. Such a
space M is called homogeneous space.

A flag V is an increasing sequence of R-linear subspaces

(0} SVSLS.. . STiCR

The type of the flag V = (V4, ..., Vi) is defined by the k-tuple d := (dy, . .., dy)
of dimensions d; = dimV;,2 = 1,...,k. For any such sequence of integers
d=(dy,...,dy) with 1 < dj < -+ < dp <n, we denote the set of all flags
of type d with Flag(d, R").

The general linear group GL, (R) acts on Flag(d, R") via

(g, V)= g-Vi=(gVi,...,9Vk) (74)

where ¢V is the image of the space V; under the transformation g € GL, (R).
Here, the stabilizer subgroup for V € Flag(d, R") is

Stab(V) = {g € GL,(R)|g-V = V}.

Now we apply the construction above. For that purpose we need the fol-
lowing fact.

Lemma F.1 The group action is transitive.

31Note that Staby; = §~' Stab,, § for §-m = m. Therefore, Stab,, is a closed subgroup
of G for one m € M if and only if it is a closed subgroup of G for any m € M.
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A proof can be found in [Tay92| (Page 28). In particular, Lemma[F.1] yields,
that for a fixed flag V = (V4, ..., Vi) the map

v : GL,(R)/Stab(V) — Flag(d,R"), g Stab(V) — (¢V1,...,9Vk).

is bijective and provides a smooth structure on Flag(d,R"). We denote
Flag(d, R™) as the flag manifold of type d. Tt is well-known, that Flag(d, R™)
is a compact and connected manifold of dimension dy(n—d;)+ Z;:ll(diﬂ -
d;)(n — dit1) (see [BC64|, Chapter 7.4.13). One important case is d. =
(1,2,...,n —1). The corresponding manifold Flag(R") := Flag(d.,R") is
the so called complete flag manifold. Another special case is d = (k) yield-
ing the Grassmann manifold, and in particular Flag((1),R") = RP"!, the
projective space.
Recall that the core of an homogeneous space is defined as

C’M::ﬂStabm:{gEG|g-m:m, Vm e M}. (75)

meM

In the case M = Flag(d, R™) we obtain:

Proposition F.2 The core of Flag(d,R") is Criagarn) = R*1. Here, I is
the identity matriz I € GL,(R).

Proof. Obviously, g -V = V for all ¢ € R*I. Conversely, if g ¢ R*I,
then there exists w € R” such that g(w) ¢ span(w). We can always choose
V € Flag(d,R") such that w € V; but g(w) ¢ V1. Hence g-V =V is not
fulfilled and therefore g ¢ Staby C Criag(drn)- O
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