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1 Introduction

Numerical analysis and control theory are two important disciplines in mod-
ern mathematics which are closely linked in several aspects. In fact, a large
number of numerical techniques have been designed for the treatment of
control-theoretical problems. These techniques, algorithms and software
packages are necessary tools in engineering applications.

A less traveled road is the converse direction. Many numerical algo-
rithms can be interpreted as dynamical systems and can be analyzed with
the corresponding techniques. Interesting examples of such approaches are
the works of Ammar and Martin [AM86], Batterson and Smillie, [BS89a,
BS89b], Batterson [Bat95] and Shub and Vasquez [SV87], where the dy-
namics of the QR algorithm and Rayleigh iteration are explored using tools
from dynamical systems theory.

Taking one step forward, one can regard the variables of the algorithm �
such as shift parameters or step-sizes � as control parameters. Thereby we
obtain control systems, which can be studied with the various tools from
control-theory. A �rst step in this direction was established by Gusta�son
et al. [GLS88, Gus91, Gus92]. The authors apply simple control-theoretic
techniques on step-size selection, such as proportional integral control, to
improve the performance of ODE solvers. Other approaches � mainly con-
cerning system solvers, linear and quadratic programming problems and
ordinary di�erential equations � can be found in the recent book of Bhaya
and Kaszkurewicz [BK06]. The challenge remains to explore the possibilities
that emerge, by applying the full scope of methods from nonlinear control
theory.

In this work we investigate iterative numerical algorithms with shifts
as nonlinear discrete-time control systems. We emphasize the analysis of
reachable sets and their adherence structure. This task is important for
three main reasons.

First of all, the design of shift strategies for numerical algorithms often
follows heuristic ideas. The understanding of the algebraic and geometric
properties of the reachable sets allows a more systematic way of constructing
shift strategies and feedback laws.

Secondly, the dynamics of algorithms, depends both on the choice of a
particular shift strategy as well as on the initial data. Therefore, it is natural
to ask if other shift strategies exist, that force the algorithm to converge
for generic initial conditions, or if there is a fundamental limitation for the
convergence of the algorithm, independent of the choice of shift strategies.
Such a fundamental limitation might be the following: The target points are
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not in the topological closure of the initial point. In such a situation there
exists no shift strategy such that the algorithm converges.

Finally, after having understood the reasons why a speci�c algorithm
fails to converge one might be able to create new algorithms with better
convergence behavior.

In this thesis we will focus mainly on the �rst two issues, with only few
and preliminary results on the third issue.

First attempts to investigate the reachable sets of shifted iterative algo-
rithms are the works of Helmke and Fuhrmann [HF00], Helmke and Wirth
[HW01], Chu and Chu [CC06]. All three papers use very di�erent tech-
niques in their analysis. In [HF00], classical inverse iteration with complex
shifts are analyzed using polynomial models. The authors show, that there
is a bijective correspondence between the topological closures of the reach-
able sets and the A-invariant subspaces. This is not longer the case for
classical inverse iteration with real shifts ([HW01]). Here, the authors use
the concept of control sets to derive necessary and su�cient conditions for
the existence of a dense reachable set. Finally, in [CC06], the authors study
the reachable sets of the shifted QR algorithm using matrix decomposition
techniques. In particular they show, that that the QR algorithm with shift
is neither re�exive nor symmetric.

In this thesis we focus on a di�erent approach that is based on the inter-
pretation of reachable sets as orbits of the system semigroup. The relation
between reachable sets and system semigroups has been investigated by sev-
eral authors, including, e.g., Colonius and Kliemann [CK93, CK00], Mitten-
huber [Mit95, Mit01] and Kupka [Kup90] in the continuous-time case and
Fliess and Normand-Cyrot [FN81b, FN81a], Mokkabur [Mok89], Agrachev
and Gamkrelidze [AG93] and San Martin [San95] for the discrete-time case.
Nevertheless, this semigroup approach can run into technical problems. For
example, the geometric structure of the system semigroup � viewed as a
subset of the di�eomorphism group of M � can be much more complicated
than the geometry of the reachable set. Luckily, in the applications in this
thesis, the system semigroups are subsemigroups of certain �nite dimen-
sional Lie groups. Therefore, we are able to use the underlying di�erential
structure for the investigation of the reachable sets.

Since we are not interested just in reachable sets, but also their boundary
points we need to investigate the adherence structure of the system, i.e., we
analyze if a reachable set is in the topological closure of another reachable
set. For this investigation we proceed in three steps.

In the �rst step we investigate the structure of the system group orbits,
i.e., the orbits of the group generated by the system semigroup. Here,
we apply a geometrical framework, that has been developed by Jakubzyk,
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Sontag and others (see [JS90, AS91, AS93]). This expands the well-known
Lie-theoretical theory for nonlinear continuous-time systems to a discrete-
time setting.

Clearly, the reachable sets are subsets of the corresponding system group
orbits. Thus, in a second step of the analysis, we investigate the structure of
the reachable sets within a given system group orbit. In this step it is very
useful to understand the relation of the system semigroup to the system
group. The investigation of this relation will be an important topic in this
thesis.

In the case of iterative numerical methods, the target points, such as
eigenvectors or solutions of linear equations, are outside of the system group
orbit of the initial point, but lie on the boundary of this orbit. Thus, in a
third step, we investigate the adherence structure of the system group orbit
and the reachable sets. Here, so-called repelling phenomena might occur,
i.e., it can happen that the boundary of the orbit and the topological closure
of any reachable set of points in this orbit, are disjoint. In this situation
there exists no shift strategy such that the controlled sequence converges
to the desired solution, regardless how close the initial guess has been. We
derive necessary and su�cient conditions for such phenomena.

In Part II of this thesis we apply the semigroup approach to the inves-
tigation of the following four numerical iteration schemes.

Classical inverse iteration is a method for the calculation of eigenvectors
of a given matrix. Given a quadratic matrix A the dynamics of inverse
iteration is given by

xt+1 = (A− utI)
−1 · xt, x0 ∈ RPn−1. (1)

Here I is the identity matrix and (A − utI)
−1 acts canonically on the pro-

jective space of lines in Rn. Speci�c shift strategies yield well-established
numerical algorithms, such as inverse power iteration (for constant shifts)
or Rayleigh quotient iteration (for Rayleigh shifts). Although, the basic
idea of inverse iteration was already introduced by Wielandt in 1944 (see
[Wie44]), there is still a lot of active research in this area. For an overview
about the history and the state of the art see Ipsen [Ips96, Ips97]. Recent
results are e.g. Neymeyer [Ney01], Simoncini and Elden [SE02], Freitag and
Spencer [FS07]. It is well known, that inverse iteration with Rayleigh shift
converges for almost all symmetric matrices and almost all initial conditions
(see Parlett and Kahan [PK69]). In fact, Batterson and Smillie provided a
proof based on dynamical system theory, that the set of symmetric matrices
for which inverse iteration with Rayleigh shift converges is open and dense
(see [BS89a]). On the other hand, Batterson and Smillie also showed that
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inverse iteration with Rayleigh shift fails for an open set of non-symmetric
matrices [BS89b]. It is unknown if there exists a shift strategy such that
inverse iteration converges for a generic set of matrices and a generic set
of initial conditions. It is actually this lack of theoretical understanding of
the inverse iteration method, or closely related, of the QR-iteration, that
has motivated this type of research into the geometric analysis of reachable
sets. For inverse iteration with complex shifts this structure is now fully
understood. More precisely, the reachable sets coincides with the orbits of
the centralizer group action (see Helmke and Fuhrmann [HF00]). It con-
trast, the real case is much more complicated then the complex case and far
from being understood. First results for the real case, such as conditions
for almost controllability, can be found in Helmke and Wirth [HW01].

Inverse iteration schemes can also be applied to other types of mani-
folds. For example, inverse iteration on �ag manifolds and on Hessenberg
varieties are of interest from the numerical point of view, since they are
closely related to the QR algorithm (see Ammar and Martin [AM86]). Chu
and Chu pointed out, that in general a shifted QR transformation is not
invertible by a sequence of shifted QR transformations (see [CC06]). The
same phenomenon holds for other generalized inverse iteration system and
can easily be explained via the system semigroup approach, since here the
reachable sets are smaller then the system group orbits.

Rational iteration is an extension from inverse iteration, using a second
shift parameter vt. This yields the iteration scheme on projective space

xt+1 = (A− utI)
−1(A− vtI) · xt, x0 ∈ RPn−1 (2)

with two control parameters ut, vt. Rational iteration schemes have been
applied in the �eld of eigenvalue computation as well as for linear equation
solvers (see, e.g., Ruhe [Ruh84], Jahrlebring and Voss [JV05], Yong and
Vono [YV92]). A one-parameter version of rational iteration is Cayley
iteration, i.e.,

xt+1 = (A− utI)
−1(A+ utI) · xt, x0 ∈ RPn−1. (3)

Cayley iteration steps have been proposed by several authors (see, e.g.,
Meerbergen, Spencer and Roose [MSR94], Lehoucq and Meerbergen [LM98]).
If A is element of a classical Lie algebra, the Cayley-transform yields an el-
ement of the corresponding Lie group, a simple fact that streamlines the
Lie group approach to such systems. Nevertheless, to our knowledge, there
exists no systematic investigation on the reachable sets for rational itera-
tion schemes. Clearly, the reachable sets of both schemes are always group
orbits. We show that for a large set of matrices, but not for all matrices,
the reachable sets of rational iteration and Cayley iteration coincide.
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Moving from eigenvalue methods to linear equation solvers, we consider
Richardson's method

xt+1 = xt − ut(Axt − b), x0 ∈ Rn. (4)

Clearly, a �xed point of this iteration is a solution of the linear equation
Ax = b. The literature proposed di�erent shift strategies, each of them
for certain families of matrices, (see, e.g., Opfer and Schober [OS84], Smor-
laski and Saylor [SS88], Golub and Overton [GO88], Calvetti and Reichel
[CR96]). In particular, a constant shift strategy ut = u yields the trivial
splitting method, which converges if and only if Spec(I − uA) lies in the
unit disc. Another interesting shift strategy is given by the feedback law
ut = r>t Art/‖Art‖2 with rt = b − Axt. This approach yields GMRES(1)
which converges if A+A> is positive de�nite. However, a systematic anal-
ysis of the reachable sets of Richardson's methods is missing.

A generalization of Richardson's methods are restarted polynomial
iteration of order m

xt+1 = (I − pt(A)A)xt + pt(A)b, x0 ∈ Rn. (5)

Here the controls pt are polynomials of degree at most m. Polynomial
restarted iteration can be considered as restarted Krylov methods. See
Sorensen [Sor02] for an overview on Krylov methods and polynomial restart-
ing. Note that this setting includes the celebrated GMRES(m) method,
which is commonly used in praxis but only partly understood in theory (see
Eiermann, Ernst and Schneider [EES00], Joubert [Jou94]). In particular
Embree showed some simple examples where GMRES(1) converges while
GMRES(2) stagnates ([Emb03]). This phenomena can be extremely sensi-
tive subject to small changes in the initial conditions.

To improve controllability properties we introduce linear control schemes
as an alternative to the bilinear Richardson's method. Explicitly, we con-
sider

xt+1 = (I − A)xt +But + b, x0 ∈ Rn (6)

that has A−1b as an �xed point for the zero control ut = 0. Here, the choice
of B can be used to improve the convergence behavior. Linear control sys-
tems are well understood (e.g., Kailath [Kai80] and Ku�cera [Kuc79]). It is
known, that (6) is for almost all pairs (I−A,B) controllable. We show that
also in many of the uncontrollable cases the topological closure of any reach-
able set contains the solution of Ax = b. For almost all cases a convergent
shift strategy ut = Kxt can be constructed using linear quadratic controller
design, a well-known optimal control technique (see, e.g., Lancester and
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Rodman [LR95]). This yields a globally convergent iterative algorithm,
called LQRES, for solving linear systems presented by Helmke and Jordan
[HJ05].

1.1 Main results

The main achievements of this thesis are the following:

• Development of tools for the systematic analysis of the ad-
herence structure of reachable sets. We develop a framework
merging classical concepts, such as geometric control theory, semi-
groups and graphs. This framework will be helpful for the analysis of
discrete-time control systems.

• Analysis of the reachable sets of numerical iteration schemes.
We extend the known results about the reachable sets of inverse iter-
ation schemes. Moreover, we investigate the reachable sets of rational
iteration schemes, Richardson's methods and linear control schemes.

Now we give a more detailed description. This thesis is divided in two
parts. In Part I of this thesis we develop techniques to analyze the structure
of reachable sets of invertible discrete-time control systems.

In Chapter 2 we clarify de�nitions and notations which will be used
throughout this manuscript. Moreover, we present some basic observations
on discrete-time control systems. We begin with some results on system
group orbits in Section 2.1. It is well-known, that the system group orbits
of a discrete-time system are immersed submanifolds, provided the system
is smoothly invertible (see [JS90]). This fact is a discrete-time version of
the well-known orbit theorem. We show that system semigroup orbits, i.e.,
the reachable sets, are not submanifolds in general. Moreover, we show
that Mokkadem`s algebraic version of the orbit theorem (see Theorem 3 in
[Mok95]) is wrong and prove a correct version, under the additional as-
sumption, that the system group orbit is semi-algebraic (Theorem 2.7). All
systems which appear in Part II share a property, which we termed right
divisibility. To our knowledge, the concept of right divisible systems is new.
In Section 2.1.3 we show some examples and basic properties for such sys-
tems. In particular, we prove an equivalent condition for right divisibility
which is easier to verify (Theorem 2.15).

The concept of accessibility is the topic of Section 2.2. We introduce
techniques for checking whether a discrete-time system is accessible or not.
First, we brie�y recall geometric conditions for accessibility developed by
Jakubczyk and Sontag ([JS90]) and then prove an accessibility result for
systems where the system group is a Lie group (Theorem 2.23). This result
is based on elementary facts on semigroup actions on manifolds, which can
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be found in [Mit01]. In some cases, accessibility from one point already
implies accessibility on the corresponding orbit. This phenomenon is called
Chow property. In Section 2.2.2 we recall su�cient conditions for Chow
property given by Albertini and Sontag ([AS93, AS94]). We prove that any
invertible system, where the system group is a Lie group acting continuously
on the state space, has the Chow property, provided the corresponding orbit
is locally compact (Theorem 2.28).

Section 2.3 deals with the concept of controllability and the related no-
tion of weak reversibility. We easily see that a system is weakly reversible if
and only if the system group orbits coincide with the corresponding reach-
able sets. As a consequence we obtain a condition for controllability anal-
ogous to a well-known result of the continuous-time theory (see [Son98]).
Afterwards, we list some types of systems, where reachability from one point
already implies controllability. This phenomenon is well known for linear
systems. We show similar results for abelian systems, weak reversible sys-
tems and systems where the system semigroup is "large enough" in a certain
topological sense (Theorems 2.39-2.41).

We �nish Chapter 2 with some results on approximatively reachable sys-
tems and densely reachable systems. Here we focus on the abelian case.
We show that approximatively reachable systems have the property, that
for every y in the topological closure of the reachable set of x, there ex-
ists a control sequence such that the corresponding sequence converges to
y (Theorem 2.46). Moreover, we show that � unlike abelian systems which
are reachable from one point � abelian systems which are approximatively
reachable from every point, do not necessarily have the property that the
system semigroup is a group. Dense reachability is the property, that a
system is approximatively reachable from "almost every" initial state. We
show that accessibility from some point together with approximative reach-
ability from one point implies dense reachability (Theorem 2.48).

In Chapter 3 we analyze the relationship between the properties of a
given system on state space M and the properties of certain types of re-
lated systems, namely induced systems and restricted systems. Our results
are not surprising and probably not entirely unknown. However, to the
best of the authors knowledge there exists no systematic investigation for
the analysis of induced systems or restricted systems in terms of system
semigroups. Given two systems Σ, Σ̃ with the same set of control parame-
ters U , with state spaces M , and respectively, M̃ and with transition maps
f : M × U → M , and respectively, f̃ : M̃ × U → M̃ , then Σ̃ is said to be
an induced system of Σ with respect to π : M → M̃ if π is open, continuous
and surjective, and π ◦ f(·, u) = f̃(·, u) ◦ π for all u ∈ U . We compare the
corresponding system semigroups of the original system and the induced
system. Our results imply, that all basic controllability properties of Σ,
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such as weak reversibility or dense reachability, are preserved on Σ̃ (The-
orem 3.4). In Section 3.2 we analyze restricted systems, i.e, subsystems
restricted to system invariant subsets. We express the system semigroup
of the restricted system as a factor semigroup of the system semigroup of
the original system (Theorem 3.12). For abelian systems it follows, that
controllability of a restricted system on N ⊆ M implies controllability of
all systems restricted on orbits in the boundary of N (Theorem 3.13).

In Chapter 4 we discuss the question, how the adherence structure
of reachable sets provides limitations for the existence of convergent shift
strategies. For that purpose we develop a graph theoretical language which
allows us to express the adherence structure of system group orbits and
reachable sets graphically. Obviously, a point can not be reached from x, if
it is outside of the topological closure of the system group orbit of x. For
that reason we analyze systems restricted on orbits (in Section 4.2) as well
as systems restricted on the topological closure of orbits (in Section 4.3).
We show that there always exists a sequence of reachable sets such that its
union is dense in the orbit, provided the system is right divisible and the
orbit is locally compact (Theorem 4.10). Moreover, we prove some condi-
tions for the appearance of repelling phenomena for right divisible systems
and abelian systems (Theorems 4.17-4.18).

We �nish Part I with the analysis of certain families of systems on Lie
groups (Section 5.1) and on homogeneous spaces (Section 5.2). As expected,
for systems on Lie groups, we obtain similar results as in the well-known
theory on left invariant continuous-time systems by Sussmann and Jurdje-
vic [JS72, SJ72]. In particular, we show that accessible systems evolving on
connected Lie groups are densely reachable if and only if they are control-
lable (Theorem 5.4). Systems on homogeneous spaces can be regarded as
induced systems of a system on a Lie group. Thus, the controllability prop-
erties of systems on homogeneous spaces Σ̃ are linked to the controllability
properties of a certain corresponding system on a Lie group Σ. We show a
condition for weak reversibility of Σ̃ in terms of the system semigroup of Σ
(Theorem 5.8).

In the second part of this thesis we explore the structure of reachable sets of
inverse iteration systems, rational iteration systems, Richardson's iteration
systems and linear iteration systems.

We start with an investigation of classical inverse iteration systems (1)
for cyclic matrices (Chapter 6). First, we analyze the corresponding sys-
tem group. We show that the system group is an abelian Lie group which
acts on the projective space RPn−1 (Theorem 6.3). The isomorphism type
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depends on the Jordan canonical form of the system matrix A. In Section
6.2 we classify all possible isomorphism types in terms of the minimal poly-
nomial of A. In the next section we analyze the structure of the system
group orbits. We show a one-to-one relation between the adherence struc-
ture of the orbits and the lattice structure of the A-invariant subspaces
(Theorem 6.14). Moreover, we show that there exists one orbit which is
open and dense in RPn−1 (Theorem 6.15). In Section 6.4 we focus on the
system restricted to the open and dense orbit. In [HW01] it is shown,
that the restricted system is only for a certain set of matrices controllable.
We extend their results in di�erent aspects. In particular, we show that
the restricted system is controllable if and only if the matrix semigroup
S(A)R∗ := {r

∏N
t=1(A− utI) |N ∈ N, r ∈ R∗, ut ∈ R \ Spec(A)} is equal to

the centralizer group P (A) of A (Theorem 6.18). Necessary and su�cient
conditions for S(A)R∗ = P (A) are derived in Section 6.5 and Section 6.6.
One interesting byproduct is an interpolation result for linear decompos-
able polynomials (Theorem 6.32). If the restricted system is controllable,
the adherence structure of reachable sets is coincides with the adherence
structure of the system group orbits. In Section 6.7 we analyze the adher-
ence structure of reachable sets for the cases when the restricted system is
not controllable. In particular, we give conditions for the appearance of re-
pelling phenomena (Theorem 6.34). We �nish Chapter 6 with a systematic
controllability analysis for the cases n = 2, 3, 4.

In Chapter 7 we consider generalized inverse iteration systems, i.e., in-
verse iteration schemes which act on manifolds other than the projected
space. In particular we are interested in the cases when the manifold is a
complete �ag manifold (Section 7.1), a Hessenberg variety (Section 7.2), or
a vector space (Section 7.3). In the �rst case there exist in�nitely many sys-
tem group orbits and all of them have empty interior. This fact was already
pointed out by Helmke and Jordan in [HJ02]. We show that the reachable
graph and the orbit graph are equivalent if and only if S(A)R∗ = P (A) (The-
orem 7.3). The analysis of inverse iteration on Hessenberg varieties is closely
related to the QR algorithm on Hessenberg matrices (see [AM86]). We show
that there exists a dense reachable set if and only if S(A)R∗ = P (A) (The-
orem 7.8). We �nish Section 6.8 with an analysis of inverse iteration on
Rn. Again, there exists a system group orbit which is open and dense in
Rn, provided A is cyclic. We show that the system restricted to this orbit
is not controllable for an open and dense set of matrices (Theorem 7.9).
Moreover, we present a complete analysis for the case n = 2.

In Chapter 8 we explore rational iteration systems (2). Here, the system
semigroup is naturally a group isomorphic to the system group of the cor-
responding generalized inverse iteration system. Thus, the structure of the
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system group orbits is identically with the structures analyzed in Chapter
6. As a special case we consider Cayley iteration systems. We show an open
set of matrices for what the reachable sets of rational iteration and Cayley
iteration coincide (Theorem 8.5). In contrast we construct families of ma-
trices, where the reachable sets of Cayley iteration systems (3) are smaller
then the reachable sets of inverse iteration systems (Theorem 8.7). We �nish
Chapter 8 with a complete analysis of Cayley iteration systems in the plane.

In Chapter 9 we explore the reachable sets of Richardson's method (4)
and, more generally, polynomial iteration schemes (5) of degree m. Here,
the system group coincides with P (A). It follows that, if the system semi-
group is a group, the solution of Ax = b lies in the topological closure of
the reachable set of almost all initial states. We show that the system semi-
group is a group if m > 1 (Theorem 9.11). However, the situation di�ers
critically for the special case m = 1, i.e. for Richardson's systems. On the
one hand there exists an open set of matrices, where the system semigroup
is a group. For example, this is the case if A has n di�erent real eigenvalues
(Theorem 9.6). On the other hand, we construct a family of cyclic matrices
where the system semigroup is not a group. In this cases the solution of
Ax = b is repelling to a generic subset of Rn (Theorem 9.7).

In Chapter 10 we investigate linear control schemes (6). Here, the system
semigroup is right divisible but not abelian (Theorem 10.2). Moreover, the
adherence structure of reachable sets di�ers fundamentally to the adherence
structure of Richardson's systems and polynomial iteration systems. It is
well known that generically, linear control systems are controllable. We
analyze the adherence structure of reachable sets of the uncontrollable cases.
In contrast to Richardson's systems, none of the reachable sets has open
interior (Theorem 10.3). However, we show that there exists uncontrollable
cases where the topological closure of any reachable set contains the solution
of Ax = b (Theorem 10.10). A suitable shift strategy, such that the arising
sequence converges to an solution of Ax = b, is given by a linear feedback
law. The corresponding algorithm (LQRES) is the topic of Section 10.2.
LQRES is globally convergent for a generic set of pairs (A,B) (Theorem
10.8). For the special case B = 0, LQRES coincides with Richardson's
iteration for the constant shift strategy u ≡ 1. We show that in some
choices of B, LQRES converges where Richardson's method fails for all
possible shift strategies (Example 10.9). We �nish Chapter 10 with some
numerical experiments, which point out the in�uence of the choice of B on
the convergence behavior (Examples 10.12-10.13)
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Part I

Analysis of reachable sets



2 Discrete-time control systems

In this chapter we clarify de�nitions and notations which will be used
throughout this manuscript. Moreover, we present some basic observations
on discrete-time control systems. We begin with some results on system
group orbits in Section 2.1. Then, we introduce the concepts of accessibility
(Section 2.2), controllability (Section 2.3) and reachability (Section 2.4).

Iterative algorithms with shift parameters can be regarded as discrete-
time control systems. The basic idea is to express every iteration step by a
map fu := f(·, u) which can be manipulated by a shift parameter u. This
leads to the following de�nition which is fundamental in this work.

De�nition 2.1 (Discrete-time control systems) A discrete-time con-
trol system � or for short a system � is a triple Σ = (M,U, f) where

• M is a topological space (the state space)

• U is a subset of Rm (the set of control parameters)

• f : M × U →M is a continuous map (the transition map)

A system Σ is called

• abelian if fu ◦ fv = fv ◦ fu for all u, v ∈ U

• invertible if fu : M → M , x 7→ f(x, u) is a homeomorphism for all
�xed u ∈ U

• smoothly invertible, if M is a smooth manifold1 and fu : M →M is a
di�eomorphism for any u ∈ U .

• algebraically invertible, if it is invertible, M is a variety, U is a semi-
algebraic set and f : M × U →M is a semi-algebraic map 2.

Motivated by the applications on numerical iteration schemes, we focus
on invertible systems3 which are either smoothly invertible, algebraically
invertible or both.

1As a standard assumption for this thesis, a manifold is always assumed to be smooth
and of �nite dimension.

2 In Appendix A we present the de�nitions and basic properties of varieties, semi-

algebraic sets and semi-algebraic maps. Note that fu and f−1
u are semi-algebraic if Σ is

algebraically invertible (see Proposition A.1)
3see [SW98, Wir98] for the theory of non invertible systems
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A discrete-time control system Σ describes an iterative method with
parameters ut ∈ U , i.e.,

xt+1 := f(xt, ut), x0 ∈M, (7)

with t ∈ N0. In numerical linear algebra, such control parameters or input
variables ut are often called shifts and a speci�c choice of such shifts is
called a shift strategy. Formally, we de�ne a shift strategy u to be a �nite or
in�nite sequence of control parameters, i.e., u0, . . . , uT−1 ∈ UT respectively
u0, u1 · · · ∈ UN. We say y can be reached from x if there exists T ∈ N
and u = (u0, . . . , uT−1) ∈ UT such that u steers x to y, i.e., the recursion
xt+1 = f(xt, ut), x0 := x yields xT = y. Given a nonempty subset E ⊆ M
(respectively a point y ∈ M) we say that x converges to E (respectively to
y) with respect to u ∈ UN0 if the sequence given by the recursion xt+1 =
f(xt, ut), x0 = x converges to E (respectively to y), i.e., every open subset
V of M such that E ⊆ V , contains all but �nitely many elements of the
sequence (xt)t∈N. We write x

u→ E (respectively x u→ y). In applications one
wants to �nd an automatic way to obtain suitable shift strategies. If a shift
strategy is given by a map Φ : M → U , ut = Φ(xt), we call Φ a feedback
law.

2.1 Reachable sets via semigroup orbits

The basic topic of this thesis is the investigation of reachable sets and their
adherence structure. They can be described in terms of so-called system
semigroups. In the following we will give some de�nitions and basic prop-
erties which are essential in the analysis of abstract discrete-time systems
in general, as well as in the analysis of the structure of reachable sets of
iterative algorithms.

We will use the following notation. For T ∈ N we de�ne fT : M ×UT →
M by

fT : (x, u0, . . . uT−1) 7→ fuT−1
◦ · · · ◦ fu0(x) (8)

with fu : M → M given by fu := f(·, u). In other words, fT maps an
initial point x to the output after T iteration steps with shift parameters
u0, . . . , uT−1. For the following de�nition we stick to the notation in [Son98].
It is analogous to the well known concept of reachable sets in the continuous-
time case.

De�nition 2.2 (Reachable sets) The reachable set R(x) of a point x is
the set of all states which can be reached from x in �nitely many iterations,
using arbitrary controls in each step, i.e.,

R(x) := {y ∈M | ∃T ∈ N,∃u ∈ UT : y = fT (x, u)}. (9)



2.1 Reachable sets via semigroup orbits 15

In other words

R(x) =
∞⋃

T=1

RT (x) (10)

where RT (x) is the set of points which can be reached in T ∈ N steps,
i.e., RT (x) := {fT (x, u) |u ∈ UT}. We call x ∈ M a �xed point of Σ if
R(x) = {x}.

In this thesis we will extensively use the fact that reachable sets can be
interpreted as orbits of certain semigroup actions.

De�nition 2.3 (System semigroup) The system semigroup SΣ of a sys-
tem Σ = (M,U, f) is given by

SΣ :=
{
s : M →M | ∃T ∈ N,∃u ∈ UT : s = fT (·, u)

}
. (11)

Obviously, SΣ is a semigroup with respect to composition of maps, i.e.,

s1s2 : x 7→ s1(s2(x)).

Note that every element of SΣ is a continuous map s : M → M . It is easy
to see, that Σ is abelian if and only if SΣ is abelian. Moreover, if Σ is
invertible, s · x = s · y implies x = y and s1s2 = idM implies s2s1 = idM .

Canonically, the system semigroup acts on the state space via the map-
ping

SΣ ×M →M, (s, x)→ s · x := s(x). (12)

In other words, the reachable set of a discrete-time control system is the
orbit of the semigroup action (12), i.e.,

R(x) = {s(x) | s ∈ SΣ} := SΣ · x. (13)

Due to this fact, reachable sets are also called forward orbits.
The system semigroup is not a group in general. In particular, SΣ does

not always contain the identity homeomorphism idM . Therefore, we can
neither expect that x lies in R(x) nor that y ∈ R(x) implies x ∈ R(y).
Nevertheless, if the system is invertible, which will be the standard case in
this work, the system semigroup generates a group in a canonical way.

De�nition 2.4 (System group) Let Σ = (M,U, f) be an invertible sys-
tem and SΣ its system semigroup. We call the group

GΣ := 〈SΣ〉 := {gN ◦ · · · ◦ g1 | N ∈ N, gt ∈ SΣ or g−1
t ∈ SΣ

}
the system group of Σ.
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Note that GΣ is the smallest group such that SΣ is a subsemigroup of GΣ.
Every g ∈ GΣ is a �nite composition of continuous maps gi ∈ SΣ ∪ S−1

Σ

and therefore continuous. Here S−1
Σ := {s−1 | s ∈ SΣ}. It also follows, that

GΣ is abelian if and only if SΣ is abelian. The orbits of the group action
GΣ ×M → M , (g,m) 7→ g(m) contain important informations about the
structure of the reachable sets due to the trivial but signi�cant observation
that

R(x) ⊆ GΣ · x := {g(x) | g ∈ GΣ} (14)

for all x ∈M . Nevertheless, in many applications, such as inverse iteration
systems (see Section 6), SΣ is a proper subsemigroup of GΣ.

2.1.1 Orbit theorems

The system group orbits of a system Σ are usually better understood than
the reachable sets. First of all they form a partition on the state space.
Moreover, they have a natural structure of immersed submanifolds in the
state space, provided Σ is smoothly invertible. This fact is a discrete-time
version of the well-known orbit theorem of continuous time systems (see
Theorem 1, Chapter 2 in [Jur97]).

Theorem 2.5 (Orbit theorem) Let Σ be a smoothly invertible system
with U open in Rm and f : M × U → M smooth. Then any orbit GΣ · x is
an immersed submanifold of M with at most countably many components.

In other words, GΣ · x can be equipped with a manifold structure, such
that the inclusion map inc : GΣ · x → M is an immersion. See Theorem 7
in [JS90] and Proposition 8.9 in [Son86] respectively for more details and a
proof. Recall that an immersed submanifold is not necessarily a submanifold
in the common sense, i.e., the inclusion map is not necessarily an embedding.
Now we give an easy example for this phenomenon.

Example 2.6 Consider Σ = (R2,R, f) with

fu :

(
x1

x2

)
7→
(

cosαπ − sinαπ
+ sinαπ cosαπ

)(
x1

x2

)
,

where α ∈ R \Q. Then

GΣ ·
(
x1

x2

)
=

{(
cosαπ − sinαπ
sinαπ cosαπ

)z (
x1

x2

) ∣∣∣∣ z ∈ Z
}

=

{(
cos zαπ − sin zαπ
sin zαπ cos zαπ

)(
x1

x2

) ∣∣∣∣ z ∈ Z
}
,

which is a countable dense subset of

‖x‖2S :=
{
(y1, y2) ∈ R2 | y2

1 + y2
2 = ‖x‖2

}
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and therefore not a submanifold of the state space.

Mokkadem proposes an algebraic version of the orbit theorem (Theorem
3 in [Mok95]). In particular, he claims that GΣ · x is an embedded smooth
subvariety, provided M is a smooth variety and fu is a bijective regular
morphism. Note that Example 2.6 is a counterexample to this claim. Nev-
ertheless, assuming that GΣ · x is semi-algebraic4, we obtain the following
version of the orbit theorem.

Theorem 2.7 (Algebraic orbit theorem) Let Σ = (M,U, f) be smoothly
invertible such that M is a variety in Rn. If GΣ · x is semi-algebraic, then
GΣ · x is an embedded smooth submanifold of M .

Proof. If GΣ · x is semi-algebraic, it can be written as a �nite union of
disjoint submanifolds Ai, 1 = 1, . . . , l, such that each Ai is di�eomorphic to
(0, 1)di and that dim(GΣ ·x) := d := max{d1, . . . , dl} is uniquely determined
(see Theorem A.4).

Moreover, there exists y ∈ GΣ · x and an open set Uy ⊆ M , such that
y ∈ Uy ∩GΣ · x and Uy ∩GΣ · x is di�eomorphic to (0, 1)d (see Lemma A.6).

For all z ∈ GΣ · x there exists g ∈ GΣ with z = g(y). Therefore,

z ∈ g(Uy ∩GΣ · x).

Since g is bijective and g(GΣ·x) = gGΣ·x = GΣ·x, we obtain g(Uy∩GΣ·x) =
g(Uy)∩GΣ ·x. Moreover, g(Uy) is open and g(Uy∩GΣ ·x) is di�eomorphic to
(0, 1)d since g : M →M is a di�eomorphism. Hence, GΣ ·x is a submanifold
of M of dimension d. 2

In many applications, the system group GΣ carries a canonical Lie group
structure. Here, the literature on Lie group actions provides di�erent su�-
cient conditions for submanifold structure of GΣ · x.

Theorem 2.8 Let Σ = (M,U, f) be a smoothly invertible system. Assume
that GΣ carries a Lie group structure such that the group action α : GΣ ×
M →M , (g, x) 7→ g(x) is smooth. Then

a) If GΣ is compact then every orbit GΣ · x is a submanifold of M .

b) If GΣ a semi-algebraic set such that α is semi-algebraic, then every
orbit GΣ · x is a submanifold of M .

Proof. Statement a) can be found in [GOV97], Theorem 2.3 and statement
b) can be found in [HM94], page 353. Moreover, Statement b) is also a
consequence of Theorem 2.7, since GΣ · x is the image of the semi-algebraic
map αx : GΣ →M , g 7→ g · x and therefore semi-algebraic (see Proposition
A.1 and Corollary A.3). 2

4we will show conditions on Σ for which GΣ · x is semi-algebraic in Section 2.1.2
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In contrast to the system group orbits, system semigroup orbits (the
reachable sets) are not necessarily immersed submanifolds of the state space,
even if Σ is smoothly invertible. An easy example is given by Σ = (R,R, f)
with f(x, u) = x + u2. Here R(0) = [0,∞). Another example, which
additionally shows that the reachable sets might have locally di�erent di-
mensions, is the following:

Example 2.9 Consider Σ = (M,U, f) with M = R2, U = R and

fu : R2 → R2,

(
x1

x2

)
7→
(
−ux1 − cx2

cx1 − ux2

)
.

Here c is a real constant with |c| > 1. We show that the reachable set of
x = (1, 0)T is not an immersed submanifold ofM (see Figure 1). Obviously,

R1(x) = {fu(x)| u ∈ R} =
{
(−u, c)T |u ∈ R

}
is a one dimensional submanifold of M . Moreover, R1(x) and the disk

C :=
{
y = (y1, y2) ∈ R2

∣∣ ‖y‖ < c2
}
,

have nonempty intersection, since |c| > 1. On the other hand

R(x) \ R1(x) =
∞⋃

T=2

RT (x)

lies outside C as can be shown by induction on T . For all y ∈ R2(x) we
obtain

‖y‖2 = ‖fu0 ◦ fu1(x)‖2

=

∥∥∥∥( u0u1 − c2
−u0c− u1c

)∥∥∥∥
2

=
√

(u0u1)2 + c4 + (cu0)2 + (u1c)2

≥ c2.

Now for T ≥ 2 we assume that ‖y‖ ≥ c2 for all y ∈ RT (x). Recall that

RT+1(x) =
{
fuT

(
RT (x)

)
|uT ∈ R

}
.

In other words, every z ∈ RT+1(x) can be written as z = fu(y) with y ∈
RT (x) and u ∈ U . We obtain

‖z‖2 = ‖fu(y)‖2 =
√

(u2 + c2)(y2
1 + y2

2) ≥ |c| · ‖y‖2

and therefore ‖z‖2 ≥ c2. Hence, ‖z‖2 ≥ c2 for all y ∈ RT (x) with T ≥ 2.
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Under the assumption that R(x) is a manifold, we obtain

dimR(x) = 1, (15)

since R1(x) ∩Bε = R(x) ∩Bε for an open ball

Bε := {y ∈ R2 | ‖y − (0, c)T‖2 < ε}

with ε > 0 small enough. On the other handR2(x) = {fu0 ◦ fu1(x) |u0, u1 ∈ R}
has open interior, since the Jacobian of the map

R2 → R2, (u0, u1) 7→ fu0 ◦ fu1((1, 0)T )

is

D =

(
u0 u1

−c −c

)
and therefore regular for u0 6= u1. Hence, if R(x) is a manifold, it must
have dimension 2 which is a contradiction to (15).

Figure 1: A plot of (R1(x) ∪R2(x) ∪R3(x) ∪R4(x)) ∩ [−1.5, 1.5] ×
[−1.5, 1.5] for c = 1.1 and x = (1, 0)T . Any point of Rk(x) with k > 5
is outside of the square [−1.5, 1.5]× [−1.5, 1.5]. We see, that R(x) is not a
manifold, since the one dimensional line R1(x) is isolated of R(x) \ R1(x)
close enough to (0, 1.1)T . Moreover, the boundary of R2\R(x) is nonsmooth.



20 2 Discrete-time control systems

2.1.2 Semi-algebraic orbits

If Σ = (M,U, f) is algebraically invertible, then for all T ∈ N and all x ∈M
the set RT (x) is semi-algebraic, since it is the image of the semi-algebraic
set UT and the semi-algebraic map (u0, . . . , uT−1) 7→ fT (x, u0, . . . , uT−1).
Nevertheless, the reachable set R(x) =

⋃∞
t=1Rt(x) or the corresponding

system group orbit GΣ ·x is not semi-algebraic in general. An easy example
is given by Σ = (R,R, f) with f(x, u) = x+ 1. Here,

R(x) = {x+ n |n ∈ N} and GΣ · x = {x+ z |n ∈ Z}.

In the following we show some su�cient conditions which provide that the
reachable sets R(x) and the system group orbits GΣ · x of an algebraically
invertible system are semi-algebraic.

Similarly to the construction of the reachable sets, we de�ne

OT (x) :=
{
f εT

uT
◦ · · · ◦ f ε1

u1
(x) |ut ∈ U, εt ∈ {−1, 1}

}
, T ∈ N

for x ∈M and T ∈ N. Note that GΣ ·x :=
⋃∞

t=1Ot(x). Moreover, we obtain
the following lemma:

Lemma 2.10 Let Σ = (M,U, f) be an invertible system and T ∈ N. Then

a) RT+1(x) ⊆
⋃T

t=1Rt(x) if and only if R(x) =
⋃T

t=1Rt(x).

b) OT+1(x) ⊆
⋃T

t=1Ot(x) if and only if GΣ · x =
⋃T

t=1Ot(x).

c) If Σ is abelian and R(x) =
⋃T

t=1Rt(x), then R(y) =
⋃T

t=1Rt(y) for
all y ∈ GΣ · x.

d) If Σ is abelian and R(x) =
⋃T

t=1Rt(x), then GΣ · x =
⋃2T

t=1Ot(x).

Proof. a) Obviously, R(x) =
⋃T

t=1Rt(x) implies RT+1(x) ⊆
⋃T

t=1Rt(x).

Now we assume RT+1(x) ⊆
⋃T

t=1Rt(x). Then

RT+2(x) =
⋃

y∈RT+1(x)

R1(y) ⊆
T⋃

t=1

Rt+1(x) ⊆
T⋃

t=1

Rt(x),

since y ∈ RT+1(x) implies y ∈ Rt(x) for some 1 ≤ t ≤ T and therefore
R1(y) ⊆

⋃T
t=1Rt+1(x). Hence, R(x) =

⋃∞
t=1Rt(x) =

⋃T
t=1Rt(x).

b) Analogous to a), GΣ · x =
⋃T

t=1Ot(x) implies OT+1(x) ⊆
⋃T

t=1Ot(x).

Moreover, OT+1(x) ⊆
⋃T

t=1Ot(x) implies

OT+2(x) =
⋃

y∈OT+1(x)

O1(y) ⊆
T⋃

t=1

Ot+1(x) ⊆
T⋃

t=1

Ot(x),
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and therefore GΣ · x =
⋃T

t=1Ot(x).
c) Let y ∈ GΣ · x, i.e., y = g · x = g(x) for some g ∈ SΣ. Then, for any
s ∈ SΣ

s(y) = g ◦ s(x) = g ◦ fut ◦ · · · ◦ fu1(x)

for 1 ≤ t ≤ T . Therefore, s(y) = fut ◦ · · · ◦ fu1(y) ∈ Rt(y). We conclude
R(y) = SΣ · y =

⋃T
t=1Rt(y).

d) For any y ∈ GΣ · x,

y = f−1
ut1
◦ · · · ◦ f−1

u1
◦ fvt2

◦ · · · ◦ fv1(x).

Since R(x) =
⋃T

t=1Rt(x), we can replace fvt2
, . . . , fv1 by a possibly shorter

sequence fṽt̃2
, . . . , fṽ1 such that t̃2 < T . Moreover, fut1

◦ · · · ◦ fu1(y) = z ∈
SΣ · y with z := fṽt̃2

◦ · · · ◦ fṽ1(x). By c) we can replace fut1
, . . . , fu1 by a

shorter sequence fũt̃1
, . . . , fũ1 with t̃1 ≤ T . Hence,

y = f−1
ũt̃1
◦ · · · ◦ f−1

ũ1
◦ fṽt̃2

◦ · · · ◦ fṽ1(x) ∈ Ot̃1+t̃2(x)

with t̃1 + t̃2 ≤ 2T , and therefore GΣ · x =
⋃2T

t=1Ot(x). 2

From Lemma 2.10 we easily deduce su�cient conditions which provide
semi-algebraic orbits respectively semi-algebraic reachable sets.

Theorem 2.11 Let Σ = (M,U, f) be an algebraically invertible system.
Then

a) If RT+1(x) ⊆
⋃T

t=1Rt(x) for one T ∈ N, then R(x) is semi-algebraic.

b) If OT+1(x) ⊆
⋃T

t=1Ot(x) for one T ∈ N, then GΣ ·x is semi-algebraic.

c) If Σ is abelian and RT+1(x) ⊆
⋃T

t=1Rt(x) for one T ∈ N, then GΣ · x
is semi-algebraic.

Proof. a) and b) For t ∈ N and ε ∈ {−1, 1}t we de�ne

F ε
x : U t →M, (u1, . . . , ut) 7→ f εt

ut
◦ · · · ◦ f ε1

u1
(x).

Note, that Rt(x) = F
(1,...,1)
x (U t) and

Ot(x) =
⋃

ε∈{−1,1}t

F ε
x(U t).

Now we show, that for all t ∈ N and all ε ∈ {−1, 1}t the set F ε
x(U t) is

semi-algebraic. Then, under above assumptions, R(x), respectively GΣ · x,
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are � by Lemma 2.10 � �nite unions of semi-algebraic sets and therefore
semi-algebraic.

Recall that f is semi-algebraic and {x} ×U is semi-algebraic by Propo-

sition A.1. Therefore F
(1)
x (U) = f({x} × U) is semi-algebraic by Corollary

A.3. Moreover,

F (−1)
x (U) = {y ∈M | fu(y) = x for some u ∈ U }

= πM ({(y, u) ∈M × U | f(y, u) = x})
= πM

(
f−1({x})

)
,

where πM : M × U → U , (x, u) 7→ x. In other words, F
(−1)
x (U) is the

projection of the semi-algebraic set f−1({x}) and therefore semi-algebraic
(see Theorem A.2 and Corollary A.3). By induction it follows that F ε

x(U t))
is semi-algebraic, since

F (1,ε)
x (U t+1) = f(U × F (ε)

x (U t))

and

F (−1,ε)
x (U t+1) = πM

(
f−1(F (ε)

x (U t))
)
.

c) If Σ is abelian, RT+1(x) ⊆
⋃T

t=1Rt(x) implies that GΣ · x is the union
of �nitely many sets Ot(x), t ∈ N (see Lemma 2.10). Therefore, the claim
follows from b). 2

If Σ is abelian, then � by Lemma 2.10 � R(x) =
⋃T̃

t=1Rt(x) implies,
that GΣ · x is the union of �nitely many sets of the form Ot(x), t ∈ N.
The following example shows that the converse is false, i.e., that GΣ · x =⋃T

t=1Ot(x) does not imply that R(x) =
⋃T̃

t=1Rt(x) for any T̃ ∈ N.

Example 2.12 Let Σ = (R+, (1
2
,∞), f) with f : (x, u) 7→ ux. Here R+

denotes the set of positive real numbers. Then

O1(x) = (
1

2
x,∞) ∪ (0, 2x) = R+ = GΣ · x.

On the other hand, RT (x) = ( 1
2T x,∞) 6= R+. Therefore,

R(x) =
∞⋃

t=1

Rt(x) = R+ 6=
T⋃

t=1

Rt(x)

for any T ∈ N.
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2.1.3 Right divisible systems

In many important cases, the system semigroup has additional structure. In
fact, most of the systems we are analyzing in Part II have an abelian system
semigroup. Nevertheless, in Chapter 10 we deal with linear systems xt+1 =
Axt + But, where the corresponding system semigroup is not abelian, but
ful�lls weaker conditions, which we named right divisibility, and respectively
left divisibility.

De�nition 2.13 (Right divisible systems) A subsemigroup S of a group
is said to be right divisible if 〈S〉 = SS−1, i.e., every g ∈ 〈S〉 can be written
in the form g = s1s

−1
2 with s1, s2 ∈ SΣ. We say that an invertible system

Σ = (M,U, f) is right divisible if its system semigroup SΣ is right divisi-
ble. Analogously, we say an invertible system is left divisible if the system
semigroup is left divisible, i.e., 〈SΣ〉 = S−1

Σ SΣ.

Note that every abelian semigroup is right divisible and left divisible. The
following example shows, that the converse is wrong in general.

Example 2.14 Let F be a �eld and R be a subring of F. Assume that for
all f ∈ F there exists r ∈ R such that fr ∈ R. Then

S := {(ri,j)i,j=1,...,n ∈ GLn(F) | ri,j ∈ R, i, j = 1, . . . , n}

is a right divisible and left divisible semigroup. Note that S is not abelian in
general5. For any (fi,j)i,j=1,...,n ∈ GLn(F), we choose ri,j ∈ R, i, j = 1, . . . , n
such that fi,jri,j ∈ R. Then r :=

∏
i,j=1,...,n ri,j ∈ R has the property

fi,jr ∈ R for all i, j = 1, . . . , n. Therefore,

(fi,j)i,j=1,...,n = (rI)−1(fi,jr)i,j=1,...,n = (fi,jr)i,j=1,...,n(rI)−1.

We conclude GLn(F) = SS−1 = S−1S.

Obviously, a semigroup S is right divisible if the semigroup S−1 is left
divisible. The following result provides a practical method for checking if a
given system is right divisible or not, without knowing GΣ explicitly.

Theorem 2.15 An invertible system Σ = (M,U, f) is right divisible if and
only if the following condition holds:

for all sα, sβ ∈ SΣ there exists s ∈ SΣ such that s−1
α sβs ∈ SΣ. (16)

Proof. Assume that GΣ = SΣS
−1
Σ . Then for any sα, sβ ∈ SΣ there exists

s1, s2 ∈ SΣ such that s−1
α sβ = s1s

−1
2 . Hence, s−1

α sβs2 ∈ SΣ. Hence, (16) is

5In particular in the special case F = R(x) and r = R[x], x single variable, for n ≥ 2.
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ful�lled.
Conversely, let us assume that (16) is ful�lled. For any g ∈ GΣ there exists
n ∈ N, s1, . . . , sn ∈ SΣ and ε1, . . . , εn ∈ {−1, 1} such that

g = sε1
1 . . . s

εn
n .

We show that g ∈ SΣS
−1
Σ by induction. For n = 1 we have to distin-

guish between the cases g ∈ SΣ and g ∈ S−1
Σ . In the �rst case we have

g = gss−1 ∈ SΣS
−1
Σ . In the second case we choose sβ, s ∈ sΣ such that

gsβs =: s̃ ∈ SΣ. Then g = s̃(sβs)
−1 ∈ SΣS

−1
Σ .

Now let g = gns̃
ε̃ such that gn = sε1

1 . . . s
εn
n = s̃1s̃

−1
2 with s1, . . . , sn, s̃, s̃1, s̃2 ∈

SΣ and ε1, . . . , εn, ε̃ ∈ {−1, 1}. If ε̃ = −1 then

g = s̃1s̃
−1
2 s̃−1 = s̃1(s̃s̃2)

−1 ∈ SΣS
−1
Σ

and we are done. If ε̃ = 1 then g = s̃1s̃
−1
2 s̃. Now we choose s ∈ SΣ such

that s̃−1
2 s̃s ∈ SΣ. Hence,

g = s1(s̃
−1
2 s̃s)ss−1 ∈ SΣS

−1
Σ .

2

Corollary 2.16 Let S be a subsemigroup of a group G and N a normal
subgroup of G.

a) If S is right divisible, then NS is right divisible.

b) If S is left divisible, then SN is left divisible.

Proof. a) For any n1s1, n2s2 ∈ NS there exists ñ ∈ N such that

(n1s1)
−1n2s2 = (s−1

1 n−1
1 n2s1)s

−1
1 s2 = ñs−1

1 s2.

If S is right divisible then there exists s ∈ S such that ñs−1
1 s2s ∈ NS (see

Theorem 2.15). Hence, NS is right divisible. b) If S is left divisible then
S−1 and NS−1 is right divisible. Therefore, (NS−1)−1 = SN−1 = SN is
left divisible. 2

We �nish this section with two examples. In the �rst example we analyze
an explicit system which is right divisible and left divisible but not abelian.
In the second example we show a system which is neither right divisible nor
left divisible.
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Example 2.17 Let SΣ be the system semigroup of a system on M = R2

de�ned by

fu(x) = ux; u ∈ U :=

{(
a b
0 c

)∣∣∣∣ a, b, c > 0

}
.

Obviously, SΣ can be identi�ed with the non abelian matrix semigroup U .
The following calculation shows, that for every s1, s2 ∈ SΣ there exists
u ∈ SΣ such that s−1

1 s2u ∈ SΣ. Thus, SΣ is right divisible by Theorem 2.15.
Let

s1 =

(
a b
0 c

)
, s2 =

(
ã b̃
0 c̃

)
with a, b, c, ã, b̃, c̃ > 0. Then

s−1
1 s2

(
1 y
0 1

)
=

(
ã
a

y ã
a

+
(

b̃
a
− bc̃

ac

)
0 c̃

c

)
∈ SΣ

for y large enough. In particular this shows

GΣ = SΣ · S−1
Σ =

{(
a b
0 c

)∣∣∣∣ a, c > 0

}
.

Hence, Σ is right divisible. For any a1, b1, c1, a2, b2, c2 > 0 we �nd x > 0
large enough, such that y := 1

c1
(c1x + b1

a1
− b2

a2
) is positive. By construction

we obtain ( 1
a1

x

0 1
c1

)(
a1 b1
0 c1

)
=

(
a−1

2 y
0 c−1

2

)(
a2 b2
0 c2

)
.

In other words, for any s1, s2 ∈ SΣ there exists s̃1, s̃2 ∈ SΣ such that s1s
−1
2 =

s̃−1
1 s̃2 and therefore SΣS

−1
Σ ⊆ S−1

Σ SΣ ⊆ GΣ. Hence, Σ is left divisible.

Example 2.18 Consider Σ = (R2 \ {0}, U, f) given by

U =

{(
u1 u2

u3 u4

)
∈ GL2(R)

∣∣∣∣ ui > 0, i = 1, . . . , 4

}
and the transition map by f(x, U) = Ux. Obviously, the system semigroup
can be identi�ed with the matrix set

SΣ =

{(
u11 u12

u21 u22

)
∈ GL2(R)

∣∣∣∣ u11, u12, u21, u22 > 0

}
.

We show that SΣ is not right divisible using Theorem 2.15. In particular,
for

s1 =

(
2 3
1 1

)
∈ SΣ and s2 =

(
3 1
2 1

)
∈ SΣ
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there exists no u = (ui,j)i,j=1,2 ∈ SΣ such that s−1
1 s2u ∈ SΣ, since

s−1
1 s2u =

(
2 3
1 1

)−1(
3 1
2 1

)(
u11 u12

u21 u22

)
=

(
3u11 + 2u21 3u12 + 2u22

−u11 − u21 −u12 − u22

)
/∈ SΣ,

since −u11 − u21 < 0. Hence, Σ is not right divisible, since Condition (16)
is not ful�lled.

Now we show that Σ is not left divisible. With the notation above we
obtain

s−1
1 s2s

−1
1 =

(
−1 5
0 −1

)
∈ GΣ.

Assuming s−1
1 s2s

−1
1 ∈ (SΣ)−1SΣ there exists sα, sβ ∈ SΣ such that

g := sα

(
−1 5
0 −1

)
= sβ.

This is not possible, since g · (6, 1)> ⊆ R−×R− but sβ · (6, 1)> ⊆ R+×R+.
Hence, Σ is not left divisible.

Note that in all examples in this thesis the system is either right divis-
ible and left divisible or not right divisible and not left divisible. To our
knowledge, it is unknown if right divisibility implies left divisibility.
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2.2 Accessibility

Accessibility is the property that one is able to reach a set of full dimension
from a given state. More formally we de�ne:

De�nition 2.19 (Accessibility) A system Σ = (M,U, f) is said to be
accessible from x ∈ M if R(x) has nonempty interior in M . We say Σ is
accessible if intR(x) 6= ∅ for any x ∈M .

In the following subsection we brie�y describe two techniques to check
whether a system Σ is accessible from a certain point. The �rst one is a geo-
metric framework, developed by Jakubczyk and Sontag. It is similar to the
well-known Lie-theoretical approach for continuous-time systems. After-
wards we present technique which uses topological structure of the system
group and system semigroup.

In many situations, accessibility from y ∈ GΣ · x is su�cient for accessi-
bility from all z ∈ GΣ · x. This phenomena is called Chow property and will
be the topic of Subsection 2.2.2.

2.2.1 Conditions for accessibility

First of all, we want to point out a basic necessary condition for accessibility
from one point.

Proposition 2.20 Let Σ = (M,U, f) be an invertible system. If Σ is ac-
cessible from x ∈M , then the system group orbit GΣ · x is open in M .

Proof. Since R(x) = SΣ ·x has nonempty interior, there exists s ∈ SΣ such
that s · x ∈ intM(SΣ · x). For any y ∈ GΣ · x there exists g ∈ GΣ such that

y = g · x = gs−1(s · x) ⊆ gs−1 (intM R(x))︸ ︷︷ ︸
:=V

⊆ GΣ · x

Since gs−1 is a homeomorphism, V is a neighborhood of y in M . Hence,
GΣ · x is open. 2

In particular, knowing the structure of the system group orbits of Σ, it is
enough to check the elements of the open orbits for accessibility.

Now we introduce su�cient conditions for accessibility. Here we assume
that U ⊆ Rm is open and that f : M×U → U is smooth. Let Ũ be a subset
of U such that every connected component of U has at least one element
in Ũ . For u ∈ U , k ∈ N0, 1 ≤ i ≤ m and u1, . . . , uk ∈ Ũ we de�ne the Lie
derivative vector �eld

Adu1,...,uk
fu,i : M → TM
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given by

x 7→ ∂

∂vi

∣∣∣∣
v=0

(fuk
◦ · · · ◦ fu1)

−1 ◦ f−1
u ◦ fu+v ◦ (fuk

◦ · · · ◦ fu1)(x). (17)

In particular if (i) Σ is abelian or if (ii) U is connected and fu = id for some
u ∈ U , (17) reduces to

x 7→ ∂

∂vi

∣∣∣∣
v=0

f−1
u ◦ fu+v(x).

The above family of vector �elds generates a Lie-algebra LΣ, i.e., the small-
est Lie algebra which contains all elements Adu1,...,uk

fu,i, for u1, . . . , uk ∈ Ũ ,
k ∈ N0, u ∈ U , i = 1, . . . ,m. For every x ∈ M a linear space of tangent
vectors at x is given by

LΣ(x) := {X(x) |X ∈ LΣ} ⊆ TxM. (18)

The following theorem gives a necessary and su�cient condition for acces-
sibility in terms of LΣ.

Theorem 2.21 (Jakubczyk and Sontag [JS90]) Let Σ = (M,U, f) be
a smoothly invertible system, such that U is an open subset of Rm and
f : M×U →M is smooth. Then Σ is accessible if and only if dimLΣ(x) = n
for all x ∈M .

A proof of Theorem 2.21 can be found in [JS90] (See Theorem 3 for the case
where U is a connected subset of R and Theorem 9 for the generalization
to U ⊆ Rm). Note that dimLΣ(x) is independent from the choice of Ũ (see
Remark 4.5 in [JS90]).

Now we present another technique for checking accessibility, which is
particularly useful for systems Σ, where SΣ and GΣ have an additional
structure. In particular, in our applications in Part 5.2.2 we will deal with
systems, given by well-known numerical algorithms, where GΣ turns out to
be a subgroup of a Lie group G. In this situation we equip GΣ and SΣ with
the subspace topology relative to G. Obviously, accessibility properties are
linked with topological relations between SΣ and GΣ.

Lemma 2.22 Let Σ = (M,U, f) be an invertible system and GΣ equipped
with a topology.

a) If hx : SΣ → M ; s 7→ s · x is continuous, then intM R(x) 6= ∅ implies
intGΣ

SΣ 6= ∅.

b) If hx : SΣ → M ; s 7→ s · x is an open map, then intGΣ
SΣ 6= ∅ implies

accessibility for all y ∈ GΣ · x.
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Proof. a) If intM R(x) is nonempty and the map

hx : SΣ →M ; s 7→ s · x

is continuous, then h−1
x (intM R(x)) ⊆ GΣ is an open subset of SΣ.

b) Suppose y ∈ GΣ ·x and intGΣ
SΣ 6= ∅. Then there exist g ∈ GΣ such that

y = g · x. If hx is open, then also hy is open, since hy = hx ◦ rs−1g with

rs−1g : GΣ → GΣ, h→ hs−1g.

Therefore, R(y) has open interior, since

R(y) = SΣ · y ⊇ intGΣ
SΣ · y = hy (intGΣ

SΣ) .

2

In applications it is reasonable to choose a topology on GΣ such that
GΣ×M →M is continuous and therefore hx is continuous for all x ∈M . In
most important cases we obtain intGΣ

SΣ 6= ∅ (but not always, see Example
2.24). The assumption that hx is open is certainly very restrictive. On the
other hand, one can always restrict the system to the group orbit GΣ · x.
This will be the topic of Section 3.2 and Section 4.2. Then, for the restricted
system, GΣ acts transitively6 onM and � under weak assumptions on GΣ ·x
and GΣ � the map hx is open (see Theorem B.8). Using techniques from the
theory of topological semigroups, we obtain the following su�cient condition
for accessibility.

Theorem 2.23 Let Σ = (M,U, f) be a system on a manifold M and GΣ be
equipped with a Lie group structure, such that GΣ×M →M , (g, x) 7→ g(x)
is transitive and continuous. If

intGΣ
SΣ ∩ Stabx 6= ∅ (19)

for x ∈M , then Σ is accessible from x and x ∈ intM R(x).

Here Stabx denotes the stabilizer subgroup Stabx := {g ∈ GΣ | g · x = x}.

Proof. The claim follows from known results on actions of subsemigroups
of Lie groups. By Theorem B.8 the map hx : GΣ → M , g 7→ g · x is
open. Hence, Σ is accessible by Lemma 2.22. Moreover, if Condition
(19) is ful�lled, then there exists a neighborhood U of x such that SΣ

acts transitively on U . In other words for all u1, u2 ∈ U there exists
s ∈ SΣ such that s · u1 = u2 (see Proposition B.7). Hence, U ⊆ R(x)
and x ∈ intM U ⊆ intM R(x). 2

6In the literature on discrete-time systems (for example [JS90] and [AS93, AS94]),
transitivity often means, that the orbit GΣ·x has nonempty interior in M (and is therefore
open by Proposition 2.20). Nevertheless, in this work transitivity means that GΣ ·x = M
for some (and therefore for all) x ∈M .
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In order to apply part b) of Lemma 2.22 and Theorem 2.40 the system
semigroup SΣ needs to have nonempty interior with respect to the topology
of GΣ. Using exotic topologies, such as the indiscrete topology, one can
easily construct examples such that the interior of SΣ is empty. In fact the
following example shows, that this can also be done if GΣ has a Lie group
topology, provided U is su�ciently anomalous.

Example 2.24 Let us consider the following system Σ = (R, U, f) where
U ⊆ R is given by the following construction. Recall that R is a topological
Q-vectorspace, with respect to the usual topology of R. We choose a basis
{bi | i ∈ I} such that b1 = 1 and b2 = −

√
2 and de�ne

U =

∑
i∈Ĩ

λibi

∣∣∣∣∣∣ Ĩ ⊆ I, |Ĩ| <∞, λi ∈ Q+

 .

Now let f(x, u) = x+ u. Obviously we can identify the semigroup SΣ with
U . Moreover GΣ = R, since every r ∈ R is a sum of two elements, one from
SΣ and one from −SΣ. On the other hand we have

intGΣ
SΣ = ∅,

since −Q+ and
√

2Q+ are disjoint to SΣ.

2.2.2 Chow property

A useful property for analytic continuous-time systems is that every reach-
able set has nonempty interior in the corresponding system-group orbit.
This fact is known as the positive form of Chow's lemma ( See [Kre74],
Theorem 1 for a proof). In particular, a system is accessible from x ∈M if
and only if it is accessible from all y contained in the system-group orbit of
x.

For discrete-time systems � even if the transition map is analytic � it
might happen that reachable sets R(x) have empty interior in GΣ · x. An
example has been given by Albertini and Sontag in [AS93] (Example 5.1).
Using the same example, we show that accessibility from x ∈ M does not
imply accessibility from y ∈ GΣ · x (see Example 2.29 below).

Nevertheless, in the following we present some su�cient conditions on
Σ which imply the following useful property.

De�nition 2.25 (Chow property) A system Σ = (M,U, f) has the Chow
Property if accessibility from x ∈M implies accessibility from all y ∈ GΣ ·x.

We start with a trivial but important observation on systems with
abelian semigroup.
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Theorem 2.26 Every abelian invertible system has the Chow property.

Proof. If SΣ is abelian, then

R(y) = SΣ · y = SΣg · x = g(SΣ · x) ⊇ g(intM R(x)).

Hence, R(y) has nonempty interior, since g is a homeomorphism. 2

Using the geometric framework developed by Jakubczyk and Sontag
(see [JS90], respectively Theorem 2.21), Albertini and Sontag provide some
su�cient conditions for the Chow property. Recall that a point x ∈ M is
said to be positively Poisson stable if for each neighborhood V of x, there
exists an integer T ∈ N and u1, . . . , uT ∈ U such that fuT

◦ · · · ◦ fu1(x) ∈ V .

Theorem 2.27 (Albertini and Sontag [AS93, AS94]) Let Σ be an in-
vertible system with U open in Rm. We assume that M is an analytic mani-
fold and that f is analytic.

a) If x ∈M is positively Poisson stable, then accessibility from x implies
accessibility from all y ∈ GΣ · x.

b) If GΣ · x is compact and M = GΣ · x, then Σ has the Chow property.

Proof. If Σ is accessible from x ∈M , then GΣ · x, and therefore GΣ · y for
any y ∈ GΣ · x, is open in M (see Proposition 2.20). Now the claims follow
immediately from the results in [AS93] and [AS94]. In particular from the
assumptions in a) (in b)) it follows, that intM GΣ ·y 6= ∅ implies accessibility
from y, by Theorem 1 in [AS94] (by Theorem 4.4 in [AS93]). 2

In our applications in Chapters 6-10 the system semigroups carry a Lie
group structure and the system semigroups carry the topology induced by
GΣ. In particular, using Lemma 2.22, we obtain the following su�cient
condition for the Chow property.

Theorem 2.28 Let Σ = (M,U, f) be an invertible system. Assume that
GΣ is a Lie group such that the action GΣ ×M → M is continuous. Let
x ∈M such that GΣ · x is locally compact7. Then Σ has the Chow property.

Proof. Obviously, the restricted action GΣ×GΣ · x→ GΣ · x is continuous
and transitive. Recall that a Lie group is a locally compact Lindelöf space.
Now, by Theorem B.8 it follows that hx : SΣ → M , s 7→ s · x is continuous
and open. If intM R(x) 6= ∅, then intGΣ

SΣ 6= ∅ by part a) of Lemma 2.22.
Then intM R(y) 6= ∅ for all y ∈ GΣ · x by part b) of Lemma 2.22. Hence,
accessibility from x implies accessibility from all y ∈ GΣ · x.

2

7In particular, GΣ ·x is a submanifold and therefore locally compact, if Σ = (M,U, f)
is smoothly invertible and GΣ · x is semi-algebraic (see Theorem 2.7). Note that a semi-
algebraic set is not locally compact in general, see for example M = (R+×R)∪ {(0, 0)}.
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At the end of this section we show � using an example of Albertini and
Sontag � that not every analytic system has the Chow property.

Example 2.29 Let Σ = (M,U, f) be given by M = Z× R, U = R and

f : M × U →M,

((
x
y

)
, u

)
7→
(

x+ 1
y + uh(x)

)
.

Here, h : R→ R is any analytic function with h(0) = 1 and h(x) = 0 if and
only if x ∈ N. Note that f is analytic. Moreover, fu is a di�eomorphism
with

f−1
u : M →M,

(
x
y

)
7→
(

x− 1
y − uh(x− 1)

)
.

for any u ∈ R. Now we prove that Σ is accessible from (0, 0)> but not
accessible from (0, 1)> ∈ GΣ · (0, 0)>. This shows in particular, that Σ does
not have the Chow property.

(i) First we demonstrate that the system group orbit of (0, 0)> ∈M is

GΣ · (0, 0)> = Z× R,

i.e., we show that for any (x, y)> ∈ Z× R there exists g ∈ GΣ such that

g · (0, 0)> = (x, y)>. (20)

Recall that h(0) = 1 and h(−1) 6= 0. If x = 0, then (20) is ful�lled by the
choice g = f0 · f−1

u with u = −y/h(−1), since

f0 · f−1
u

(
0
0

)
= f0

(
−1

−uh(−1)

)
=

(
0
y

)
.

If x < 0, then for u = y we obtain

fu ◦ f−1
0 ◦ · · · ◦ f−1

0︸ ︷︷ ︸
−x+1 times

(
0
0

)
= fu

(
−(−x+ 1)

0

)
=

(
x

uh(0)

)
=

(
x
y

)
.

Hence, (20) is ful�lled by g = fu · fx−1
0 .

If x > 0, we choose u = y/h(0). Then (20) is ful�lled by g = fu if x = 1,
or by g = fx−1

0 ◦ fu if x > 0, since

f0 ◦ · · · ◦ f0︸ ︷︷ ︸
x−1 times

◦fu

(
0
0

)
= fx−1

0

(
1

uh(0)

)
=

(
x
y

)
.

We conclude GΣ · (0, 0)> = M . Note that in the case x > 0, it is possible
to �nd g ∈ SΣ to ful�ll (20).
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(ii) Now we show that Σ is accessible from (0, 0)>. In (i) we have seen
that every element of N×R can be reached from (0, 0)> by elements of SΣ.
Hence R((0, 0)>) ⊇ N× R and Σ is accessible from (0, 0)>.
(iii) In particular, (ii) shows that (j, 0)> ∈ R((0, 0)>) for j ∈ N. On the
other hand, Albertini and Sontag have pointed out that Σ is not accessible
from (j, 0)>, j ∈ N. In fact, we obtain

SΣ ·
(
j
0

)
=

∞⋃
i=j+1

{(
i
0

)}
,

since for all u ∈ U , j ∈ N we have fu · (j, 0) = (j + 1, 0 + uh(j)) = (j + 1, 0)
and therefore s · (j, 0) = fu1 ◦ · · · ◦ fuT

· (j, 0) = (j + T, 0).
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2.3 Controllability

In this section we introduce the concept of controllability. First we give the
classical de�nition that can be found in any textbook dealing with discrete-
time nonlinear control systems (see for example [Son98], De�nition 3.1.6).
Afterwards we show necessary as well as su�cient conditions for controlla-
bility and other related properties. Here we always emphasize the semigroup
orbit structure of the reachable sets.

De�nition 2.30 (Controllability) A system Σ = (M,U, f) is said to be

• reachable from x ∈M if for any y ∈M there exist T ∈ N and u ∈ UT

such that fT (x, u) = y.

• controllable8 if for all x, y ∈ M there exist T ∈ N and u ∈ UT such
that fT (x, u) = y.

• controllable on N ⊆ M if for all x, y ∈ N there exist T ∈ N and
u ∈ UT such that fT (x, u) = y.

Obviously a system Σ = (M,U, f) is reachable from x ∈ M if and only
if R(x) = SΣ · x = M. Moreover, the following proposition shows the basic
relation between controllability and reachability.

Proposition 2.31 For an invertible system Σ = (M,U, f) the following
statements are equivalent:

(i) Σ is controllable

(ii) Σ is reachable from every point in M

(iii) SΣ · x = GΣ · x = M for all x ∈M .

Proof. Obviously (i) ⇒ (ii) and (iii) ⇒ (ii). For any x ∈ M we have
SΣ · x ⊆ GΣ · x ⊆ M . Therefore, reachability from every point implies
SΣ · x = GΣ · x = M for all x ∈ M . This also implies controllability of Σ
since y ∈ SΣ · x for every x, y ∈M . 2

Obviously, SΣ = GΣ implies that Σ is controllable, providedM = GΣ ·x.
Nevertheless, the following example shows, that controllability does not
necessarily imply SΣ = GΣ.

8 Note that in the literature of linear systems controllability often means that every
point x can be steered to 0. In the discrete-time case this is not equivalent to De�nition
2.30, see Example 2.11 in [AM06]. Nevertheless, in the literature of nonlinear systems
De�nition 2.30 is common (see De�nition 3.1.6 in [Son98] or De�nition 9, Chapter 3 in
[Jur97]).
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Example 2.32 Let M := R, U := R and f(x, u) = x3 + u. Note that Σ =
(M,U, f) is an invertible system, because every fu is an homeomorphism.
Since

R(x) ⊇ R1(x) = {x3 + u |u ∈ R} = R

for all x ∈M it follows from Proposition 2.31 that Σ = (M,U, f) is control-
lable. On the other hand every element of SΣ is a non-constant polynomial
and therefore has no inverse in SΣ. Hence, SΣ 6= GΣ.

It is well-known, that a linear system Σ = (Rn,Rm, f), i.e., a system
given by f(x, u) = Ax + Bu with A ∈ Rn×n, B ∈ Rn×m, is controllable if
and only if the Kalman rank condition holds, i.e.,

rank[B,AB,A2B, . . . , An−1B] = n.

(see Theorem 2, [Son98], Chapter 3). The nonlinear case is more com-
plicated and requires more sophisticated techniques such as the concept
of accessibility. Moreover, we need the notion of weak reversibility and
reachability from one point which will be the topics of the following two
subsections.

2.3.1 Weak reversibility

Accessibility is a necessary but not a su�cient9 condition for controllability.
On the other hand, it is well-known that for continuous-time systems acces-
sibility implies controllability, provided that the system is weakly reversible
(see Corollary 4.3.12 in [Son98]). In the following we show a similar result
for discrete-time systems.

Analogous to the continuous-time case (see De�nition 4.3.9 in [Son98])
we de�ne weak reversibility as follows.

De�nition 2.33 (Weak reversibility) A system Σ = (M,U, f) is weakly
reversible if (i) for every x ∈M there exists y ∈M , such that x ∈ R(y) and
(ii) for all x, y ∈M either R(x) = R(y) or R(x) ∩R(y) = ∅.

In other words, Σ is weakly reversible, if the reachable sets form a partition
on the state space. Due to that, weak reversibility is also called partition
property. Note that invertible systems always ful�ll (i) since x ∈ R(s−1 · x)
for any s ∈ SΣ.

In the classical de�nition of weak reversibility in the continuous-time
case it is additionally assumed that x ∈ R(x) for all x ∈M . The following

9An example for an accessible system which is not controllabel are certain Inverse
Iteration systems (see Chapter 6)
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proposition shows that in the discrete-time case, x ∈ R(x) follows from (i)
and (ii) of De�nition 2.33.

Proposition 2.34 If Σ is weakly reversible, then x ∈ R(x) for all x ∈M .

Proof. By de�nition, weakly reversible implies x ∈ R(y) for some y ∈ M ,
i.e., x = s · y with s ∈ SΣ. Therefore,

R(x) = SΣ · x ⊆ SΣs · y ⊆ SΣ · y = R(y)

Part (ii) of the de�nition yields R(x) = R(y). Hence, x ∈ R(x). 2

The following result clari�es the term weakly reversible, i.e., it shows,
that Σ is weakly reversible if and only if any iteration step x

u→ y, u ∈ U
can be reversed by a �nite control sequence.

Lemma 2.35 Let Σ = (M,U, f) be an invertible system. Then the follow-
ing statements are equivalent.

(i) Σ is weakly reversible,

(ii) x ∈ R(y) implies y ∈ R(x) for all x, y ∈M ,

(iii) GΣ · x = R(x) for all x ∈M .

Proof. Note that x ∈ R(y) implies R(x) = SΣ · (s · y) ⊆ SΣ · y = R(y).
Assuming that Σ is weakly reversible, we obtain R(x) = R(y) and therefore
it follows from Proposition 2.34 that y ∈ R(x). Hence, (i)⇒ (ii).

Now we assume (ii) to be ful�lled. In particular we obtain s−1 ·x ∈ R(x)
for any s ∈ SΣ, since x ∈ R(s−1 · x). Moreover, s · x ∈ R(x). Recall that
GΣ = 〈SΣ〉. Therefore, for any y ∈ GΣ · x there exist g1, . . . , gn ∈ SΣ ∪ S−1

Σ

such that y = g1g2 . . . gn · x. By induction it follows that g · x ∈ R(x). We
conclude

R(x) = SΣ · x ⊆ GΣ · x =
⋃

g∈GΣ

g · x ⊆ R(x).

Now we assume that (iii) is ful�lled. Then

R(x) = GΣ · x = GΣ · y = R(y)

if y ∈ GΣ · x, or
R(x) ∩R(y) = ∅

if y /∈ GΣ · x. Moreover, x ∈ R(s−1 · x) for any s ∈ SΣ. Hence, Σ is weakly
reversible. 2

By Lemma 2.35, Σ is weakly reversible whenever SΣ is a group. The
following example shows that the converse is not true in general.
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Example 2.36 Let M = R, U = R+ := (0,∞) and

f(x, u) =

{
ux if x ≥ 0,
2ux if x < 0.

(21)

Note that fu is a homeomorphism for every u ∈ U . Every element of SΣ

has the form

s(x) =

{
ux if x ≤ 0

2kux if x < 0
(22)

with u ∈ U and k ∈ N. In particular, f−1
u /∈ SΣ and therefore SΣ is not

a group. On the other hand Σ is weakly reversible, since R(x) = R+ for
x > 0, R(0) = {0} and R(x) = R− for x < 0.

We �nish this section with a result analogous to the situation in contin-
uous time (see Corollary 4.3.12 in [Son98]).

Theorem 2.37 Let Σ = (M,U, f) be an invertible system on a connected
manifoldM . If Σ is weakly reversible and accessible such that x ∈ intM R(x)
for all x ∈M , then Σ is controllable.

Proof. For any y ∈ R(x) weak reversibility implies R(y) = R(x) and
therefore y ∈ intM R(x). Hence, R(x) is open for all x ∈ M . Again, weak
reversibility implies, that the reachable sets form a partition of open sets
on the set M . Since M is connected, M = R(y) for any y ∈ M . Hence, Σ
is controllable by Proposition 2.31. 2

2.3.2 Reachability from one point

Obviously, controllability implies reachability from one point. We will show
that the converse is false in general (see Example 2.42). Nevertheless, for
certain types of systems, reachability from one point already implies reach-
ability from every point and therefore controllability. In particular it is well
known that linear systems have this property.

Theorem 2.38 Let Σ = (M,U, f) be an invertible linear system, i.e. M :=
Rn, U = Rm and

f(x, u) := Ax+Bu, A ∈ Rn×n invertible, B ∈ Rn×m.

Then Σ is controllable if and only if Σ is reachable from one point.

See for example [AM06], Theorem 2.22, for a proof. In the sequel we list
other types of systems where reachability from one point implies controlla-
bility.

Theorem 2.39 Let Σ = (M,U, f) be an invertible system.
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a) Assume that Σ is weakly reversible. Then Σ is controllable if and only
if Σ is reachable from one point.

b) Assume that Σ is abelian. Then the following statements are equiva-
lent.

(i) SΣ = GΣ and GΣ · x = M for some x ∈M .

(i) Σ is controllable

(ii) Σ is reachable from one point.

Proof. a) The claim follows immediately from Proposition 2.35. If Σ is
weakly reversible, R(x) = GΣ · x for all x ∈ M . Hence, R(x) = M implies
R(y) = M for all y ∈ GΣ · x = M and therefore controllability (see Propo-
sition 2.31).

b) Obviously, (i) implies (ii) and (ii) implies (iii). Now we assume that
R(x) = M for one x ∈ M . Then for any g ∈ GΣ there exists s ∈ SΣ such
that

s · x = g · x. (23)

Moreover, for any y ∈M there exists sy ∈ SΣ such that y = sy ·x. Therefore,
(23) implies ss−1

y · y = gs−1
y · y for all y ∈M and thus s−1

y s · y = s−1
y g · y for

all y ∈ M . It follows that the maps s and g are identical and in particular
g ∈ SΣ. Hence, SΣ = GΣ. 2

In many applications the system group is equipped with a Lie group
structure and is therefore a topological group. In the following two theo-
rems we apply certain results of the theory of topological semigroups to our
situation.

Theorem 2.40 Let Σ = (M,U, f) be an invertible system, where GΣ is a
topological group. If f−1

u ∈ SΣ for all u ∈ U and intGΣ
SΣ 6= ∅, then

SΣ = GΣ.

In this case, Σ is controllable if and only if Σ is reachable from one point.

Proof. Let f−1
u ∈ SΣ for all u ∈ U . This implies (fu1 ◦ · · · ◦ fuT

)−1 ∈ SΣ for
any T ∈ N and u1, . . . , uT ∈ U , since SΣ is a semigroup (see Lemma B.2).
In other words, SΣ = GΣ and therefore, by Lemma B.6, SΣ = GΣ. 2

In fact, Theorem 2.39,b and Theorem 2.40 provide conditions for the
equality SΣ = GΣ and therefore for controllability on orbits. However, we
have seen, that controllability does not necessarily imply SΣ = GΣ (see
Example 2.32). The following result deals with such situations.
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Theorem 2.41 Let Σ = (M,U, f) be an invertible system on a connected
manifold M . Assume that GΣ is a Lie group such that the action (g, x) 7→
g · x is continuous. Moreover, assume that Σ is reachable from one point.
Then Σ is controllable if and only if

intGΣ
(SΣ) ∩ Stabx 6= ∅ for all x ∈M. (24)

Proof. If Σ is reachable from one point x ∈M , then the inclusion

M = SΣ · x ⊆ GΣ · x ⊆M

implies that GΣ acts transitively onM . Now the claim follows from a result
about semigroup actions on manifolds. If a Lie group G acts transitively on
a connected manifold M , then a subsemigroup S ⊆ G acts transitively on
M if for any x ∈M there exists s ∈ intG S such that s · x = x. (see Lemma
B.7).

Conversely, assuming that Σ is controllable, we obtain intGΣ
SΣ 6= ∅ by

Lemma 2.22. Now for any x ∈M and s ∈ intGΣ
SΣ there exists s̃ ∈ SΣ such

that s̃ ·(s ·x) = x. It follows that s̃s ∈ Stabx. Moreover, s̃s ∈ intGΣ
SΣ, since

SΣ intGΣ
SΣ ⊆ intGΣ

SΣ (see Lemma B.5). Hence intGΣ
(SΣ)∩ Stabx 6= ∅. 2

In this section we have shown su�cient conditions for which reachabil-
ity from one point implies controllability. The following example illustrates,
that in general, reachability from one point is not su�cient for controllabil-
ity.

Example 2.42 Let Σ = (M,U, f) be given by M = U = R and

f : R× R→ R; (x, u) 7→ (2|u|+ 1− u)x+ u.

Note that Σ is invertible and smooth, i.e., fu is a di�eomorphism for any
u ∈ U . We show that Σ is reachable from one point, but not controllable.

Obviously, R1(0) = R(0) = R, since fu(0) = u. Hence, Σ is reachable
from 0. For all x ≥ 1 we have

fu(x) = x+ u+ |u|x︸ ︷︷ ︸
≥0

+ (|u| − u)x︸ ︷︷ ︸
≥0

≥ x.

Therefore, fu0 ◦ · · · ◦ fuT−1
(1) ≥ 1 for all u0, . . . , uT−1 ∈ U . It follows that

R(1) ⊆ [1,∞). Hence, Σ is indeed not controllable.
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2.4 Approximatively reachable systems

In many applications it is impossible to reach desired points in �nitely many
steps. On the other hand it is the very nature of some algorithms to converge
to desired points without reaching them exactly. Therefore, the topological
closures of reachable sets are of interest. In particular we are interested if
there exists a point x, such that every other point can be reached approxi-
matively from x.

De�nition 2.43 A system Σ is approximatively reachable from x if any
state y ∈M can be reached arbitrarily close from x, i.e.,

R(x) = M.

Whether a desired state can be reached approximatively or not depends
on the choice of the initial state, which is often chosen randomly. Therefore
one wants to �nd conditions, under which it is possible to reach any state
approximatively from "almost all" initial states. This yields the following
de�nition.

De�nition 2.44 We say a subset N ⊆ M of a topological space M is a
generic subset of M , if int(N) = M . A system Σ = (M,U, f) is said to
be densely reachable if there exists a generic subset N ⊆ M such that Σ is
approximatively reachable from any x ∈ N .

In the following we show properties of abelian invertible systems which
are approximatively reachable. Afterwards we show su�cient conditions for
dense reachability.

2.4.1 Approximative reachability

Let Σ = (M,U, f) be a system and E ⊆ M . Obviously, the existence of a
shift strategy u ∈ UN0 such that x

u→ E implies

R(x) ∩ E 6= ∅.

The following example shows that the converse is not true in general, i.e.,
y ∈ R(x) does not necessarily imply the existence of u ∈ RN (or u ∈
RN , N ∈ N) such that x

u→ y.

Example 2.45 Let Σ = (R, U, f) be given by U = R+ and

f : R× R+ → R; (x, u) = x+ u.

Note that Σ is a smooth invertible system and R(x0) = (x0,∞) for all
x0 ∈ R. It follows

R(x0) ∩ {x0} 6= ∅.
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Nevertheless, choosing any �rst control u0 ∈ U the reachable set of x1 =
f(x0, u0) is R(x1) = (x0 + u1,∞). For any further controls we have xt ∈
R(x1) for all t ∈ N \ {1}. Hence, (xt)t∈N does not converge to x0.

Nevertheless, the following result shows that approximative reachability
from x ∈ M implies that the sequence xt+1 = f(xt, ut) can be steered
arbitrary close to any y ∈ ∂R(x) := R(x) \ R(x), provided SΣ is abelian.

Theorem 2.46 Let Σ = (M,U, f) be an invertible system with abelian sys-
tem semigroup. Moreover, let Σ be approximatively reachable from x ∈ M .
Then

a) There exists N ⊆ M with N = M such that Σ is approximatively
reachable from all y ∈ N . In particular, Σ is approximatively reachable
from y ∈ GΣ · x.

b) For any y ∈M \ R(x) and any open neighborhood U of y there exists
a control sequence u1, . . . , uN , n ∈ N such that xn ∈ U .

c) Σ is controllable on R(x) if and only if SΣ = GΣ.

Proof. a) If R(x) = M , then N := GΣ · x ⊇ SΣ · x = R(x) is dense in M .
Moreover, for any y = g · x ∈ GΣ · x we obtain

M ⊇ R(y) = SΣ · y = SΣg · x = g(SΣ · x) ⊇ g(SΣ · x) = g(M) = M,

since g ∈ GΣ is bijective and continuous.
b) Let (Un)n∈N be a sequence of neighborhoods of y ∈ M \ R(x) such that
Un+1 ⊆ Un and

⋂∞
n=1 Un = {y}. Since Σ is approximatively reachable from

x, we can choose u1, . . . , uT1 ∈ U such that xT1 := fuT1
◦ · · · ◦ fu1(x) lies

in U1. From a) we deduce that Σ is approximatively reachable from xT1 ,
since xT1 ∈ GΣ · x. Therefore, we can choose uT1+1, . . . , uT2 ∈ U such that
xT2 := fuT1+1

◦ · · · ◦ fuT2
(xT2) ∈ U2. By induction, it follows that for any Un

there exist controls uTn−1+1, . . . , uTn such that

xTn = fuTn
◦ · · · ◦ fuTn−1+1

(xTn−1)

= fuTn
◦ · · · ◦ fuTn−1+1

◦ fuTn−1
◦ · · · ◦ fu1(x)

∈ Un.

c) Obviously, GΣ = SΣ implies controllability on R(x), since for all y =
s · x ∈ R(x) we obtain

x = s−1 · y ∈ GΣ · y = R(y).

Note that this conclusion remains true if SΣ is non-abelian.
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Now we assume that Σ is controllable on R(x). Since GΣ = 〈SΣ〉 is
abelian, every element of GΣ can be decomposed in the form g = s−1

1 s2

with s1, s2 ∈ SΣ. For s1 · x, s2 · x ∈ R(x) there exists s ∈ S such that
ss1 · x = s2 · x. It follows that s · x = g · x and sg̃ · x = gg̃ · x for all
g̃ ∈ GΣ. Since GΣ acts transitively on GΣ · x, we obtain g · y = s · y for all
y ∈ GΣ · x. Therefore, the continuous maps g|GΣ·x

and s|GΣ·x
are identical.

Since GΣ · x = M , we obtain g = s.
2

In Theorem 2.39 we have seen that for systems with abelian system semi-
group reachability from one point already implies SΣ = GΣ. The following
example illustrates that approximative reachability from every point does
not imply SΣ = GΣ, even if SΣ is abelian.

Example 2.47 Let Σ = (T, U, f) be a system on the torus T := S×S given
by U = R+ and

f : T× U → T, ((x1, x2), u) = (eiux1, e
i
√

2ux2).

Note that T is a topological group and therefore

Φg : T→ T, x 7→ gx, g ∈ T
is a homeomorphism. We shall show that SΣ 6= GΣ and that Σ is approxi-
matively reachable from every point x ∈ T.

For all u1, u2 ∈ U we have fu1 ◦ fu2 = fu1+u2 and therefore

SΣ = {fu |u ∈ R+}.
Moreover, idT /∈ SΣ because fu = idT implies

u = 2k1π =
1√
2
k2π, k1, k2 ∈ Z,

which contradicts u ∈ R+. Hence, SΣ 6= GΣ.
Now we show that R(x) = T for all x ∈ T. In fact it is su�cient to show

that R(x) = T for one x ∈ T, since R(x) = T implies

T = Φyx−1

(
R(x)

)
= Φyx−1 (R(x)) = yx−1SΣ · x = SΣ · x = R(y)

for all y, x ∈ T. It is well known that the set

GΣ = {(eiu, ei
√

2u) |u ∈ R}
is a dense subgroup of the torus (see [HN91], Proposition I.3.13). Since T
is compact, SΣ ⊆ T is compact. Recall, that the closure of a subsemigroup
of a topological group is a semigroup (see Lemma B.4) and that a compact
subsemigroup of a topological group is a group (see Lemma B.2). It follows,
that SΣ is a group, and therefore s−1 ∈ SΣ for all s ∈ SΣ. We conclude that
GΣ ⊆ SΣ and

SΣ · e = SΣ = GΣ = T.
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2.4.2 Dense reachability

In general, approximative reachability does not imply dense reachability (see
Example 2.50). Nevertheless, for abelian systems we obtain the following:

Theorem 2.48 Let Σ = (M,U, f) be an aberlian invertible system and
x, y ∈M such that Σ is accessible from x and approximatively reachable from
y. Assume, that the system group is a Lie group such that GΣ ×M → M
is continuous. Then:

a) If Σ is abelian then Σ is densely reachable.

b) SΣ = GΣ,

c) Σ is controllable on GΣ · x,

Proof. a) By Proposition 2.20 the orbit GΣ · x is an open subset of M .
Moreover, for all y ∈ GΣ · x we have R(y) = M (by Theorem 2.46). Since
R(y) ⊆ GΣ · x ⊆ M , it follows GΣ · x = M . Hence, GΣ · x is a generic
subset and Σ is densely reachable. b) Since GΣ ×M → M is continuous,
accessibility from x implies

intGΣ
SΣ 6= ∅

by Lemma 2.22. Now we show that f−1
u ∈ SΣ for all u ∈ U and thus,

GΣ = SΣ by Theorem 2.40. GΣ · x is open by Proposition 2.20 and thus
locally compact. The Lie group GΣ acts transitively on GΣ · x. Following
Theorem B.8, the map hx : GΣ → GΣ · x, g 7→ g · x is open. It follows that

(GΣ \ SΣ) · x = hx(GΣ \ SΣ)

is open inGΣ·x and, by Proposition 2.20, open inM . Recall thatR(x) = M .
Assuming (GΣ \ SΣ) · x 6= ∅, we obtain

(GΣ \ SΣ) · x ∩R(x) 6= ∅.

Thus, there exists g ∈ (GΣ \ SΣ) and s ∈ SΣ such that

g · x = s · x.

Since GΣ is abelian and acts transitively on GΣ ·x, we have g ·y = s ·x for all
y ∈ GΣ · x. Therefore, the continuous maps s|GΣ·x and g|GΣ·x are identical.
Since GΣ · x = M , we obtain s = g which is a contradiction to g ∈ GΣ \SΣ.
Thus, GΣ \ SΣ = ∅ and therefore f−1

u ∈ SΣ for any u ∈ U .
c) The claim follows immediately by b) and by Proposition 2.31. 2
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Theorem 2.48 implies the following characterization of dense reachabil-
ity. This result will be essential for our analysis of Inverse Iteration systems.

Corollary 2.49 Let Σ = (M,U, f) be an abelian invertible system and x ∈
M . Assume, that the system group is a Lie group acting continuously and
transitively on M . Moreover, we assume intGΣ

SΣ 6= ∅. Then the following
statements are equivalent:

(i) Σ is approximatively reachable from some x ∈M ,

(ii) Σ is densely reachable,

(iii) SΣ = GΣ,

(iv) Σ is controllable on M .

Proof. Obviously, (iv) implies (i). Moreover, (iii) implies (iv), since GΣ

acts transitively on M . By Theorem 2.46, (i) implies R(y) = M for all y ∈
GΣ · x = M and therefore (ii). Now we assume (ii). Again, hx : GΣ → M ,
g 7→ g · x is open for all x ∈ M since GΣ acts transitively (see Theorem
B.8). Therefore, Σ is accessible by Proposition 2.22. Thus, all conditions
for Theorem 2.48 are ful�lled. In particular it follows that SΣ = GΣ. 2

The following example shows that none of the claims of Theorem 2.48
remains true if we drop the assumption that SΣ is abelian.

Example 2.50 Consider Σ = (M,U, f) of example 2.18, i.e.,M = R2\{0},

U =

{(
u1 u2

u3 u4

)
∈ GL2(R)

∣∣∣∣ ui > 0, i = 1, . . . , 4

}
and f : M × U → M , (x, U) 7→ Ux. Note that Σ is smoothly invertible,
i.e., fu is a di�eomorphism for all u ∈ U . We show that Σ is reachable
and accessible from x0 := (1,−1)>. On the other hand SΣ 6= GΣ and Σ is
neither densly reachable nor controllable on GΣ · x0.

Obviously, U is closed under matrix multiplication. Therefore, SΣ can
be identi�ed with U . This already shows SΣ 6= GΣ, since U is not a group.
Moreover we deduce intGΣ

SΣ 6= ∅, since GΣ ⊆ GL2(R) and intGL2(R) SΣ 6= ∅.
For x0 := (1,−1)> we obtain

SΣ · x0 =

{(
u1 − u2

u3 − u4

) ∣∣∣∣ ui > 0, i = 1, . . . , 4,
u1u4 6= u2u3

}
.

For any (a, b)> ∈ R2 \ {0} we choose µ, λ ∈ R such that

aµ 6= λb, λ > |a| and µ > |b|.
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Then the control parameters

u1 := λ+ a, u2 := λ, u3 := µ+ b, u4 := µ

are all positive and have the property

u1u4 − u2u3 = aµ− λb 6= 0.

Moreover, (
a
b

)
=

(
u1 − u2

u3 − u4

)
∈ SΣ · x0.

This shows that M = SΣ · x0 = GΣ · x0. Therefore, Σ is reachable and
accessible from x0.

On the other hand, for any (a, b)> ∈M with a ≥ 0, b ≥ 0 we obtain

SΣ ·
(
a
b

)
=

{(
au1 + bu2

au3 + bu4

)∣∣∣∣u1, u2, u3, u4 > 0

}
⊆ R+ × R+

This shows that Σ is neither controllable on GΣ · x0 = M nor densely
reachable.
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3 Structure theory for subsystems

In many situations, two systems Σ, Σ̃ are related via a map between the
state spaces, that preserves crucial parts of the system structure. One im-
portant example is the inverse iteration system on �ag manifolds and inverse
iteration on Hessenberg varieties (see Section 6.8). If the structure of reach-
able sets of Σ is analyzed, one can exploit this information for the analysis
of Σ̃.

In this chapter we develop a structure theory for such situations. In par-
ticular we analyze induced systems in Section 3.1 and restricted systems in
Section 3.2. The results in this chapter are probably not entirely unknown.
However, to the best of the authors knowledge, a systematic development of
a structure theory for subsystems in terms of system semigroups and system
groups is unknown.

3.1 Induced systems

De�nition 3.1 Let Σ = (M,U, f) and Σ̃ = (M̃, U, f̃) be invertible systems,
and π : M → M̃ be a surjective, continuous and open map. We say that Σ̃
is an induced system of Σ with respect to π if

π ◦ fu = f̃u ◦ π

for all u ∈ U . We say that Σ and Σ̃ are isomorphic systems if π is a
homeomorphism.

3.1.1 Reachable sets of induced systems

The following lemma shows, that the system groups of Σ and the system
group of Σ̃ are closely related.

Lemma 3.2 Let Σ̃ be an induced system of Σ with respect to π.

a) For all g ∈ GΣ, there exists a unique g̃ ∈ GΣ̃ such that

π ◦ g = g̃ ◦ π.

b) For all g̃ ∈ GΣ̃ there exists g ∈ GΣ such that

π ◦ g = g̃ ◦ π.

Proof. Since GΣ = 〈SΣ〉, every element of GΣ can be written as a product

g = f εT
uT
. . . f ε0

u0
(25)
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with T ∈ N, εk ∈ {−1, 1} and uk ∈ U for k = 0, . . . , T . Analogously, every
element in GΣ̃ can be written in the form

g̃ = f̃
ε̃T̃
ũT̃
. . . f̃ ε̃0

ũ0
∈ GΣ̃ (26)

with T̃ ∈ N, ε̃k ∈ {−1, 1} and ũk ∈ U for k = 0, . . . , T̃ . We show that

π ◦ g = g̃ ◦ π (27)

if T = T̃ and uk = ũk for k = 0, . . . , T̃ .
By assumption we obtain π ◦ g = g̃ ◦ π and therefore g̃−1 ◦ π = π ◦ g−1

for g = fu with u ∈ U . Moreover, if π ◦ gi = g̃i ◦ π holds for g1, g2 ∈ GΣ,
then

π ◦ g1g2 = g̃1 ◦ π ◦ g2 = g̃1g̃2 ◦ π.
By induction, Equation (27) follows for any product of elements f ε

u, u ∈ U ,
ε ∈ {−1, 1}, and therefore for all g ∈ GΣ.

Moreover, g̃ ◦ π = h̃ ◦ π for h̃ ∈ GΣ̃ implies g̃ = h̃ since π is surjective.
Hence, g̃ of statement a) is unique. 2

Note that the decompositions in (25) and (26) are not unique in general.
Therefore, we cannot expect uniqueness in Part b) of Lemma 3.2, i.e., g̃◦π =
π ◦ g1 = π ◦ g2 does not imply g1 = g2.

Lemma 3.3 Let Σ̃ be an induced system of Σ with respect to π : M → M̃ .
For all x ∈M we have

(i) π(GΣ · x) = GΣ̃ · π(x)

(ii) π(RΣ(x)) = RΣ̃(π(x))

(iii) π(RΣ(x)) ⊆ RΣ̃(π(x))

(iv) π(RΣ(x)) = RΣ̃(π(x)), provided M is compact.

Proof. By Lemma 3.2 it follows

π(GΣ · x) = {π(g · x) | g ∈ GΣ} = {g̃ · π(x) | g̃ ∈ GΣ̃} = GΣ̃ · π(x)

and

π(RΣ(x)) = {π(s ·x) | s ∈ SΣ} = {s̃ ·π(x) | s̃ ∈ SΣ̃} = SΣ̃ ·π(x) = RΣ̃(π(x)).

Moreover, we obtain

π(RΣ(x)) ⊆ π(RΣ(x)) = RΣ̃(π(x))

since π is continuous. If M is compact, then RΣ(x) is compact. Therefore,
RΣ̃(π(x)) is closed. It follows RΣ̃(π(x)) ⊆ π(RΣ(x)). 2
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Now we can easily show basic relations between Σ and Σ̃ concerning
controllability, accessibility, weak reversibility, approximative reachability
and dense reachability.

Theorem 3.4 Let Σ̃ be an induced system of Σ with respect to π : M → M̃ .

a) If Σ is reachable from x ∈M , then Σ̃ is reachable from π(x) ∈ M̃ .

b) If Σ is controllable, then Σ̃ is controllable.

c) If Σ is accessible from x ∈M , then Σ̃ is accessible from π(x) ∈ M̃ .

d) If Σ is weakly reversible, then Σ̃ is weakly reversible.

e) If Σ is approximatively reachable from x ∈ M , then Σ̃ is approxima-
tively reachable from π(x) ∈ M̃ .

f) If Σ is densely reachable, then Σ̃ is densely reachable.

Proof. a) If Σ is reachable from x ∈M , i.e. then RΣ(x) = M , then Lemma
3.3 implies

RΣ̃(π(x)) = π(RΣ(x)) = π(M) = M̃

since π is surjective. Hence, Σ̃ is reachable from π(x) ∈ M̃ .
b) By Proposition 2.31 a system is controllable if and only if it is reachable
from all x ∈M (from all x̃ ∈ M̃). Therefore, the claim follows from a).
c) By Lemma 3.3 it is

intM̃ RΣ̃(π(x)) = intM̃ π(RΣ(x))

⊇ intM̃ π(intM(RΣ(x)))

= π(intM(RΣ(x)))

since π is an open map. Therefore, intM(RΣ(x)) 6= ∅ implies

intM̃ RΣ̃(π(x)) 6= ∅.

d) By Lemma 2.35, Σ is weakly reversible if and only if GΣ · x = R(x) for
all x ∈M . This implies GΣ̃ · π(x) = RΣ̃(π(x)), by Lemma 3.3. Hence, Σ̃ is
weakly reversible.
e) By Lemma 3.3, RΣ(x) = M implies

RΣ̃(π(x)) ⊇ π(RΣ(x)) = π(M).

Therefore, Σ̃ is approximatively reachable from π(x) ∈ M̃ , since π(M) = M̃ .
f) If N is generic in M , i.e., intN = M , then π(N) is generic in M̃ , since π
is open, continuous and surjective. Thus,

M̃ ⊇ intπ(N) ⊇ π(intN) ⊇ π(intN) = π(M) = M̃.

From d) we conclude, that Σ̃ is approximatively reachable from all x̃ ∈ π(N).
Hence, Σ̃ is densely reachable. 2
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3.1.2 Relation between SΣ and SΣ̃

In the following we analyze the relation between the system semigroup SΣ

of system Σ and the system semigroup SΣ̃ of the induced system Σ̃. We
de�ne the core of π

Cπ := {g ∈ GΣ |π(g · x) = π(x), ∀x ∈M}. (28)

In particular Cπ = {idM} if Σ and Σ̃ are isomorphic, since g · x = x for all
x ∈ M implies g = idM . In general the core Cπ has the following useful
properties.

Lemma 3.5 Let Σ̃ be an induced system of Σ with respect to π.

a) Cπ is a normal subgroup of GΣ.

b) If GΣ is a topological group, such that hx : GΣ → M , g 7→ g · x is
continuous for all x ∈ M , then Cπ is a closed subgroup of GΣ. In
particular, Cπ is a Lie subgroup of GΣ, provided GΣ is a Lie group.

Proof. a) If f, g ∈ Cπ then g−1 and fg are elements of Cπ, since

π(x) = π(g · (g−1 · x)) = π(g−1 · x)

and
π(fg · x) = π(f · (g · x)) = π(g · x) = π(x).

Hence, Cπ is a subgroup of GΣ. Moreover, for all g ∈ GΣ, c ∈ Cπ, x ∈ M
we obtain

π ◦ gcg−1(x) = π ◦ g(cg−1(x))

= g̃ ◦ π(c(g−1 · x))
= g̃ ◦ π(g−1 · x)
= π ◦ g(g−1 · x)
= π(x).

This shows that gcg−1 ∈ Cπ for all g ∈ GΣ, c ∈ Cπ. Hence, Cπ is a normal
subgroup of GΣ.
b) Let gn be a sequence in Cπ with gn → g ∈ GΣ. Since π ◦hx is continuous,
we obtain

π(g · x) = π(hx( lim
n→∞

gn))

= lim
n→∞

π(hx(gn))

= lim
n→∞

π(gn · x)

= π(x).
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Hence, Cπ is closed. If GΣ is a Lie group, then every closed subgroup is a
Lie subgroup (see Theorem 3.6, Chapter 2 in [GOV97]). Hence, Cπ is a Lie
subgroup of GΣ. 2

Since Cπ is a normal subgroup of GΣ we obtain

g1Cπg2Cπ = g1g2 g
−1
2 Cπg2︸ ︷︷ ︸

=Cπ

Cπ = g1g2Cπ

for all g1, g2 ∈ GΣ. This allows us to de�ne a group structure (respectively
a semigroup structure) on the set of cosets

GΣ/Cπ := {gCπ | g ∈ GΣ}

(respectively the set of cosets SΣ/Cπ := {sCπ | s ∈ SΣ}) via the product

g1Cπg2Cπ := g1g2Cπ (29)

with g1, g2 ∈ GΣ (respectively g1, g2 ∈ SΣ). The following theorem shows
the relation between the system group of Σ and the system group of Σ̃.

Theorem 3.6 Let Σ̃ be an induced system of Σ with respect to π : M → M̃ .

a) GΣ̃ and GΣ/Cπ are isomorphic as groups.

b) SΣ̃ and SΣ/Cπ are isomorphic as semigroups.

a) SΣ̃ = GΣ̃ if and only if SΣCπ = GΣ.

Proof. a) Recall that GΣ = 〈SΣ〉. Therefore, every g ∈ GΣ can be written
in the form g = f εT

uT
. . . f ε0

u0
with T ∈ N, uk ∈ U , εk ∈ {−1, 1}, k = 0, . . . , T .

Moreover, g̃ = f̃ εT
uT
. . . f̃ ε0

u0
is the unique element of GΣ̃ such that π ◦g = g̃ ◦π

(see Lemma 3.2). Therefore, the map

Φ : GΣ → GΣ̃, f
εT
uT
. . . f ε0

u0
7→ f̃ εT

uT
. . . f̃ ε0

u0
(30)

is well de�ned and surjective. Moreover, Φ is a group homomorphism, since
Φ(g1g2) = g̃1g̃2 = Φ(g1)Φ(g2) for all g1, g2 ∈ GΣ.

Since π : M → M̃ is surjective we obtain

Ker(Φ) := {g ∈ GΣ |Φ(g) = idM̃}
= {g ∈ GΣ | g̃(y) = y; ∀y ∈ M̃}
= {g ∈ GΣ | g̃ ◦ π(x) = π(x); ∀x ∈M}
= {g ∈ GΣ |π(g · x) = π(x); ∀x ∈M}
= Cπ.
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By the homomorphism theorem,

Ψ : GΣ/Cπ → GΣ̃, gCπ 7→ g̃ (31)

is an isomorphism.
b) Every s̃ ∈ SΣ̃ has a preimage sCπ ∈ SΣ/Cπ such that Ψ(sCπ) = s̃.
Moreover, s ∈ SΣ implies Ψ(sCπ) = s̃ ∈ SΣ̃. Therefore, Ψ−1(SΣ̃) = SΣ/Cπ.
Hence, Ψ|SΣ/Cπ : SΣ/Cπ → SΣ̃ is an isomorphism of semigroups.

c) We have CπSΣ = GΣ if and only if for all g ∈ GΣ there exists s ∈ SΣ

such that gCπ = sCπ. In other words GΣ/Cπ = SΣ/Cπ which is equivalent
to SΣ̃ = GΣ̃ by a) and b). 2

If GΣ is a Lie group, Cπ is a closed subgroup of GΣ (see Lemma 3.5).
Moreover, the quotient group GΣ/Cπ carries a Lie group structure (See
Theorem 3.2. in [GOV97]). Here, the open sets of GΣ/Cπ are given by the
projection

p : GΣ → GΣ/Cπ, g 7→ gCπ, (32)

i.e., a subset of GΣ/Cπ is open if and only if its preimage is open in GΣ.
In particular, p is an open map and a homomorphism of Lie groups (see
Corollary 1.11.5 in [DK00]). In the following we show, that GΣ̃ carries
canonically the Lie group structure of GΣ/Cπ.

Theorem 3.7 Let Σ̃ be an induced system of Σ with respect to π : M → M̃ .
Assume that Σ and Σ̃ are smoothly invertible and that π is a submersion.
Moreover, we assume that GΣ is a Lie group such that the action

α : GΣ ×M →M, (g, x) 7→ g · x

is smooth.

a) GΣ̃ carries a Lie group structure, such that GΣ̃ and GΣ/Cπ are iso-
morphic as Lie groups and

α̃ : GΣ̃ × M̃ → M̃, (g̃, x̃) 7→ g̃ · x̃

is a smooth action.

b) There exists a group homeomorphism Φ : GΣ → GΣ̃ which is open,
continuous and surjective. In particular intGΣ̃

SΣ̃ 6= ∅ if and only if
intGΣ

SΣCπ 6= ∅.

Proof. a) Let p : GΣ → GΣ/Cπ be the homomorphism of Lie groups
de�ned in (32). By the isomorphism of groups Ψ : GΣ/Cπ → GΣ̃ given by
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(31) we de�ne a Lie group structure on GΣ̃. We have to show, that the
action α̃ : GΣ̃×M̃ → M̃ is smooth with respect to this Lie group structure.

The diagram

GΣ ×M
p×idM

��

α //M

π

��

GΣ/Cπ ×M

Ψ×π
��

GΣ̃ × M̃
α̃ // M̃

(33)

commutes, since for every (g, x) ∈ GΣ ×M we have

α̃ ◦ (Ψ× π) ◦ (p× idM)(g, x) = α̃ ◦ (Ψ× π) ◦ (gCπ, x)

= α ◦ (g̃, π(x))

= g̃ ◦ π(x)

= π(g · x)
= π ◦ α(g, x).

Recall that the maps π,Ψ and idM are submersions. Moreover, every sur-
jective homomorphism of Lie groups is a submersion, since it has constant
rank (see Theorem 2.2 in [GOV97]). Therefore, the map

∆ := (Ψ× π) ◦ (p× id |M) : GΣ ×M → GΣ̃ × M̃

is a submersion. Since α̃ ◦∆ = α ◦ π is smooth and ∆ is a submersion, we
conclude that α̃ is smooth (see Theorem 0.5 in [DP82]).
b) Consider Φ := Ψ ◦ p : GΣ → GΣ̃. Note that Φ coincides with the
homomorphism de�ned in (30). Recall that Ker(Φ) = Cπ. Therefore
Φ(SΣCπ) = Φ(SΣ) = SΣ̃. Conversely, Φ−1(SΣ̃) = SΣCπ, since Ψ ◦ p(g) ∈ SΣ̃

implies g ∈ SΣCπ. Since Ψ and p, and therefore Φ, are open and continuous
it follows Φ(intGΣ

SΣCπ) = intGΣ̃
SΣ̃. In particular, intGΣ̃

SΣ̃ 6= ∅ if and only
if intGΣ

SΣCπ 6= ∅. 2
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3.2 Restricted systems

In many applications it is not necessary to understand the dynamic of the
system on the entire state-space. Instead, the dynamic can be separated on
subsets which are invariant under all elements of the system semigroup.

3.2.1 Σ-invariant subsets

De�nition 3.8 (Restricted systems) Let Σ = (M,U, f) be an invertible
system. We say a subset N ⊆ M is Σ-invariant, if fu(N) = N and for all
u ∈ U . The system Σ|N := (N,U, f|N×U

) is called the restricted system with
respect to the Σ-invariant subset N . Here, N is equipped with the induced
topology with respect to M .

Under adequate assumptions on N , the topological, algebraic and geometric
structure of Σ transfers to the restricted system.

Proposition 3.9 Let Σ = (M,U, f) be an invertible system and N ⊆M a
Σ-invariant subset. Then

a) Σ|N is an invertible system,

b) if Σ is smoothly invertible and N is a submanifold of M , then Σ|N is
smoothly invertible,

c) if Σ is algebraically invertible and N is a semi-algebraic subset of M ,
then Σ|N is algebraically invertible.

Proof. By de�nition, fu|N (N) = N and fu|N is bijective. The �rst two
claims are obvious, since fu|N and f−1

u |N are continuous and fu|N and f−1
u |N

are smooth, if fu is a di�eomorphism and N is a submanifold. Now we
assume Σ to be algebraically invertible and N to be a semi-algebraic subset
of M . The map ıN×U : N × U → M × U , (n, u) 7→ (n, u) is semi-algebraic.
By Proposition A.1 also f|N×U

:= f ◦ ıN×U is a semi-algebraic map. Hence,
Σ|N is algebraically invertible. 2

The following observation shows, that every Σ-invariant subset can be built
up by orbits of the system group.

Proposition 3.10 Let Σ = (M,U, f) be an invertible system.

a) A subset N ⊆M is Σ-invariant if and only if N is the union of system
group orbits, i.e.,

N =
⋃
x∈L

GΣ · x

for some subset L ⊆ N .
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b) GΣ · x is Σ-invariant for all x ∈M .

c) ∂(GΣ · x) is Σ-invariant for all x ∈M .

Proof. a) Obviously, system group orbits are Σ-invariant, since fu(GΣ ·x) =
GΣ · x for any u ∈ U, x ∈ M . Moreover, unions of Σ-invariant subsets of
M are Σ-invariant. Now we assume N to be Σ-invariant. For all g ∈ GΣ it
is g(N) = N , since g = f ε1

1 f
ε2
2 · · · f εn

n for n ∈ N, fi ∈ SΣ and εi ∈ {−1, 1}.
Therefore, GΣ · x ⊆ N for all x ∈ N which yields⋃

x∈N

GΣ · x ⊆ N.

On the other hand, id ∈ GΣ and therefore

N ⊆
⋃
x∈N

GΣ · x.

b) Obviously

GΣ · x ⊆
⋃

y∈GΣ·x

GΣ · y

since id ∈ GΣ. On the other hand y ∈ GΣ · x implies

g · y ⊆ g(GΣ · x) ⊆ gGΣ · x = GΣ · x

since g : M →M is continuous. Hence, the claim follows from a).
c) Since fu is bijective, a) and b) imply

fu (∂(GΣ · x)) = fu

(
GΣ · x \GΣ · x

)
= fu

(
GΣ · x

)
\ fu (GΣ · x)

= GΣ · x \GΣ · x
= ∂(GΣ · x).

Hence, ∂(GΣ · x) is Σ invariant. 2

Corollary 3.11 Let Σ = (M,U, f) be an invertible system and N ⊆ M
such that fu(N) = N for all u ∈ U .

a) If Σ is reachable from any x ∈M then N = M .

b) If Σ is weakly reversible then Σ|N is weakly reversible.

c) If Σ is accessible from x ∈ N then Σ|N is accessible from x ∈ N .

d) If Σ is approximatively reachable then Σ|N is approximatively reach-
able.
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Proof. a) If Σ is reachable from x then GΣ ·x = M . Following Proposition
3.10, N = GΣ · x = M . b) If Σ is weakly reversible then R(x) = GΣ · x
for all x ∈ M (see Lemma 2.35). By Proposition 3.10 N is the union of
system group orbits. It follows R(x) = GΣ · x for all x ∈ N . Hence, Σ|N
is weakly reversible. c) Since R(x) ⊆ N , intM(R(x)) 6= ∅ clearly implies
intN(R(x)) 6= ∅. d) If R(x) ⊆ N is dense in M it is also dense in N ⊆ M .

2

3.2.2 System semigroup of Σ|N

If we restrict a system to a Σ-invariant subset, the system semigroup SΣ|N
of Σ|N is not necessarily isomorphic to SΣ or to one of its subsemigroups.
Nevertheless, it can be expressed as a factor semigroup of SΣ. Given a
Σ-invariant subset N of M we de�ne

CN := {c ∈ GΣ | c|N = id|N}. (34)

The group CN is a normal subgroup of GΣ, since

g−1c g(n)︸︷︷︸
∈N

= g−1g(n) = n

for all g ∈ GΣ and for all c ∈ CN . Analogously to the construction in subsec-
tion 3.1.2 we can introduce a group structure and respectively a semigroup
structure on the coset space GΣ/CN and SΣ/CN , respectively.

The following result describes the relation between the system semi-
group of a system Σ and the system semigroup of a restricted system Σ|N
corresponding to a Σ-invariant set N ⊆M .

Theorem 3.12 Let Σ = (M,U, f) be an invertible system and N a Σ-
invariant subset of M .

a) The system semigroup SΣ|N
of the restricted system Σ|N = (N,U, f|N×U

)

is isomorphic to SΣ/CN . In particular, SΣ|N
is a group if SΣ is a

group.

b) Let Σ be smoothly invertible such that GΣ is a Lie group and α :
GΣ ×M → M , (g, x) 7→ g(x) is a smooth Lie group action. If N is
a Σ-invariant submanifold, then GΣ|N

carries a Lie group structure,
such that

α̃ : GΣ|N
×N → N, (g̃, x) 7→ g̃(x)

is smooth.

c) Assume that N is dense in M . Then SΣ and SΣ|N
are isomorphic as

semigroups. In particular, SΣ is a group if and only if SΣ|N
is a group.
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Proof. a) Obviously, the map

Φ : GΣ → GΣ|N
, g 7→ g|N

is a surjective group homomorphism. Moreover,

Ker(Φ) := {g ∈ GΣ |Φ(g) = idN} = CN .

Therefore, Ψ : GΣ/CN → GΣ|N
, gCN 7→ g|N is a group isomorphism. Since,

Ψ(SΣ/CN) = SΣ|N
and Ψ−1(SΣ|N

) = SΣ/CN we conclude, that Ψ|SΣ/CN
is

an isomorphism of semigroups.
b) Note that CN is a closed subgroup of GΣ, since hx : GΣ →M , g 7→ g(x)
is continuous, and therefore, gn ∈ CN , n ∈ N and limn→∞ gn 7→ c imply

x = lim
n→∞

gn(x) = lim
n→∞

hx(gn) = hx(c) = c(x)

for any x ∈ N . Hence, c ∈ CN . It follows, that GΣ/CN carries a Lie struc-
ture and p : GΣ → GΣ/Cπ is a submersion (see Theorem 2.2 in [GOV97]).
Via the identi�cation Ψ of part a), we equip GΣ|N

with a Lie structure.
Note that the diagram

GΣ ×N
(Ψ◦p)×idN

��

α // N

GΣ|N
×N

α̃

::uuuuuuuuuu

(35)

commutes, since for any (g, x) ∈ GΣ ×N

α̃ ◦ ((ψ ◦ p)× idN)(g, x) = α̃(g|N , x) = g(x) = α(g, x).

Note that α|GΣ×N is smooth and (ψ ◦ p) × idN is a submersion. Thus,
α|GΣ×N

= α̃ ◦ ((ψ ◦ p)× idN) implies, that α̃ is smooth (see Theorem 0.5 in
[DP82])
c) Since every c ∈ GΣ is continuous, c|N = id implies c = id. Therefore,
CN = {id} and SΣ|N

∼= SΣ. The second claim follows, since GΣ = 〈SΣ〉 and
GΣ|N

= 〈SΣ|N
〉 2

We �nish this section with an interesting consequence of Theorem 3.12
for abelian systems.

Theorem 3.13 Let Σ = (M,U, f) be an abelian invertible system. Assume
that Σ|GΣ·x

is controllable for some x ∈ M . Then Σ|GΣ·z
is controllable for

any z ∈ ∂(GΣ · x).

Proof. By Theorem 3.12, the restricted systems Σ|GΣ·x
, Σ|GΣ·x

and Σ|GΣ·z

are abelian. If Σ|GΣ·x
is controllable then SΣ|GΣ·x

is a group (see Theorem

2.39). Therefore, SΣ|
GΣ·x

and SΣ|GΣ·z
are groups by Theorem 3.12. Hence,

Σ|GΣ·z
is controllable by Theorem 2.39. 2
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4 Performance limits via reachable sets

Given a control system Σ = (M, f, U) we want to design shift sequences such
that xt+1 = f(xt, ut), x0 ∈M converge to a certain set of interesting points
� such as eigenvectors or solutions of equations. The adherence structure
of reachable sets provides fundamental limitations for the existence of such
shift strategies.

Certainly, a necessary condition for the existence of u ∈ UN with x0
u→ z

is,
z ∈ GΣ · x0. (36)

Therefore, as a �rst step, we analyze the adherence structure of the system
group orbits. Nevertheless, (36) does not imply that x

u→ z for any u ∈ UN.
A stronger necessary condition10 is

z ∈ R(x0). (37)

Therefore, as a second step, one analyzes the adherence structure of the
reachable sets within GΣ · x or within GΣ · x.

Obviously, (37) implies (36). On the other hand, it is easier to check
whether or not (36) is ful�lled. This is due to the fact, that group orbits have
more pleasant properties than semigroup orbits11. Moreover, the cardinality
of the set of reachable sets might be larger than the cardinality of the set
of system group orbits.

In Section 4.1 we develop a graph-theoretical language which allows us
to express the adherence structure of the reachable sets and the system
group orbits graphically.

Even if z ∈ GΣ · x is satis�ed, it is not clear if z is reachable or ap-
proximatively reachable from x. Therefore, we focus on the properties of
the reachable structure of the restricted system to GΣ · x (in Section 4.2)
respectively of the restricted system to GΣ · x (in Section 4.3). In the latter
case it might happen that z ∈ GΣ · x is not approximatively reachable from
any initial state y ∈ GΣ · x. We show some necessary conditions for this
so-called repelling phenomenon.

4.1 Orbit graph and reachable graph

In the following we describe the adherence structure of system group orbits
and reachable sets in terms of directed graphs. See the Appendix C for a
brief summary of the basic notations concerning directed graphs.

10Note that Condition (37) is not su�cient for the existence of u ∈ UN such that x
u→ z,

see Example 2.45.
11such as the partition property and � in the case of analytic systems � a di�erential

structure as an immersed submanifold of the state space (see Theorem 2.5).
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De�nition 4.1 (Orbit graph and reachable graph) Let Σ = (M, f, U)
be an invertible system. For any pair of subsets N1, N2 ⊆ M we write
N1 ←− N2 if N1 ⊆ N2.

• The orbit graph GO(Σ) = (VO(Σ),←−) is given by the set of orbits
VO(Σ) := {GΣ · x |x ∈M} and the relation ←− restricted to VO(Σ).

• The reachable graph GR(Σ) = (VR(Σ),←−) is given by the set of orbits
VR(Σ) := {SΣ · x |x ∈M} and the relation ←− restricted to VR(Σ).

The relation←− is re�exive and transitive. As described in Appendix C we
neglect those redundant edges in �gures.

The following example is related to the well-known power iteration. It
illustrates the concept of orbit graphs and reachable graphs.

Example 4.2 Let M = RPn−1, U = N. For a matrix A ∈ Rn×n the power
iteration system Σ = (M,U, f) is given by

f(x, u) = Au · x.

Here we denote the canonical action on RPn−1 with A ·x. For simplicity we
analyze the case

A =

(
1 0
0 2

)
.

Since f(·, u1) ◦ f(·, u2) = f(·, u1 + u2) for all u1, u2 ∈ U we easily obtain

SΣ = {x 7→ Au · x, | u ∈ N}

for the system semigroup and

GΣ = {x 7→ Au · x, | u ∈ Z}

for the system group. For the eigenspaces e1 := span(1 , 0)> and e2 :=
span(0 , 1)> we obtain

R(e1) = GΣ · e1 = {e1} and R(e2) = GΣ · e2 = {e2}.

The following diagram illustrates the reachable graph of Σ. Here x, y, z
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are three di�erent initial states in RP1 \ {e1, e2}.

�� �� ��
R(A−1 · x)

��

R(A−1 · y)

��

R(A−1 · z)

��
. . .R(x) . . .

��

. . .R(y) . . .

��

. . .R(z) . . .

��
R(A · x)

++

R(A · y)

''

R(A · z)

��
R(e1) R(e2)

Note that R(e1) is not contained in the topological closure of any other
reachable set. In other words there exists no initial state x ∈ RP1 \ {e1}
and no choice of shift parameters u1, u2 · · · ∈ N such that the sequenece
An · x converges to e1. On the other hand we have GΣ · e1 ←− GΣ · x for all
x ∈M \ {e2}. For the orbit graph of Σ we obtain

GΣ · e1

. . . GΣ · x . . .

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX

22fffffffffffffffffffffffffff
. . . GΣ · y . . .

((QQQQQQQQQQQQQ

66mmmmmmmmmmmm
. . . GΣ · z . . .

��

OO

GΣ · e2

Now let N ⊆M be a Σ-invariant subset and Σ|N = (N,U, f|N×U
) be the

restricted system with respect to N . We denote the reachable graph, and
respectively the orbit graph of Σ|N with GR(Σ|N ) = (VR(Σ|N ),←−N), and
respectively with GO(Σ|N ) = (VO(Σ|N ),←−N). The following result shows
the relation between GR(Σ|N ) and GR(Σ).

Proposition 4.3 Let Σ = (M,U, f) be an invertible system and N a Σ-
invariant subset of M . Then

a) GR(Σ|N ) is an induced subgraph of GR(Σ),

b) GO(Σ|N ) is an induced subgraph of GO(Σ).

Proof. Let RΣ(x) be the reachable set of x with respect to Σ and RΣ|N
(x)

be the reachable set of x with respect to Σ|N . Since N is Σ-invariant we
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have RΣ(x) = RΣ|N
(x) for any x ∈ N . Recall that N ⊆ M is the induced

topology with respect to M . Thus,

closureN RΣ|N
(x) = closureM RΣ(x) ∩N.

Here, closureAB denotes the topological closure of B ⊆ A with respect to
the topology on A. It follows

RΣ(x)←− RΣ(y) ⇔ RΣ|N
(x)←−N RΣ|N

(y).

Thus GR(Σ|N ) is an induced subgraph of GO(Σ). The proof for claim b) is
completely analogous. 2

Example 4.4 Let Σ = (RP1,N, f) be the power iteration system of Exam-
ple 4.2. By Proposition 3.10 any Σ-invariant subset of RP1 is the union of
system group orbits. We choose x := span(1 , 1)>, e2 := span(0 , 1)> and

N := GΣ · x ∪GΣ · e2 = {span(1 , 2u)> |u ∈ Z} ∪ {e2}.

The orbit graph GO(Σ|N ) is given by

GΣ · e2 GΣ · xoo

and he reachable graph GR(Σ|N ) is given by

R(e2) oo R(A · x) R(x)oo R(A−1 · x)oo oo .

Note that the map VR(Σ) → VO(Σ), R(x) 7→ GΣ · x is well de�ned and
surjective. Therefore one might conjecture, that GO(Σ) is isomorphic to a
subgraph of GR(Σ). In fact Example 4.2 already shows, that this is not true
in general.

Example 4.5 Again, let Σ = (RP1,N, f) be the power iteration system of
Example 4.2. Obviously,

GΣ · e1

GΣ · y

%%JJJJJJJJJ

99ttttttttt
GΣ · z

yyttt
ttt

ttt
t

eeJJJJJJJJJJ

GΣ · e2

is a subgraph of GO(Σ) but not isomorphic to any subgraph of GR(Σ). Hence,
by Proposition C.4, GO(Σ) is not isomorphic to any subgraph of GR(Σ).
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In some applications the system semigroup and the system group coin-
cide. In this case also the orbit graph and the reachable graph coincide. The
converse direction is not true in general12. Nevertheless, GR(Σ) = GO(Σ)
always holds, provided Σ is weakly reversible.

Theorem 4.6 Let Σ = (M,U, f) be an invertible system. The orbit graph
and the reachable graph coincide if and only if Σ is weakly reversible.

Proof. By De�nition 4.1, GO(Σ) = GR(Σ) if and only if GΣ · x = SΣ · x for
all x ∈M . This is equivalent to weak reversibility by Proposition 2.34. 2

12 In particular, in Example 2.36 we have R(x) = GΣ · x for all x ∈M , and therefore
GR(Σ) = GO(Σ). Nevertheless we have SΣ 6= GΣ.
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4.2 Reachable sets within an orbit

Following Proposition 3.10 we can always restrict a system Σ = (M,U, f)
to any orbit13 GΣ ·x, x ∈M . In the following we analyze the reachable sets
of the restricted system Σ|GΣ·x

. Note that here, GΣ (as well as GΣ|GΣ·x
) acts

transitively on GΣ · x. In many situations it is useful to state the results in
terms of the original system Σ = (M,U, f), i.e., in terms of GΣ, SΣ instead
of GΣ|GΣ·x

and SΣ|GΣ·x
.

According to De�nition 3.8, GΣ·x is equipped with the subspace topology
with respect to M . In this section we always assume, that GΣ · x is locally
compact. Recall that this is the case if GΣ · x is a submanifold of M and
in particular if Σ is smoothly invertible and GΣ · x is semi-algebraic (see
Theorem 2.7). With the tools developed in Chapter 2 we easily obtain the
following observation.

Proposition 4.7 Let Σ = (M,U, f) be an invertible system and x ∈ M
such that GΣ · x is locally compact. Assume that GΣ is a Lie group acting
continuously on M and intGΣ

SΣ 6= ∅. Then

a) Σ|GΣ·x
is accessible.

b) For any y ∈ GΣ · x there exists an open set Oy in GΣ · x such that
y ∈ R(z) for all z ∈ Oy.

Proof. a) The restricted group action

GΣ ×GΣ · x 7→ GΣ · x; (g, h · x) 7→ gh · x

is continuous and transitive. Therefore, the map hx : GΣ → GΣ ·x, g 7→ g ·x
is open by Theorem B.8. Now it follows by Lemma 2.22 that intGΣ·xR(y) 6=
∅ for all y ∈ GΣ · x. Hence, Σ|GΣ·x

is accessible.

b) Obviously, y ∈ R(z) with z ∈ S−1
Σ · y. Therefore, it is enough to show,

that S−1
Σ · y has nonempty interior. Since ı : g 7→ g−1 is a homeomorphism,

intGΣ
S−1

Σ = ı(intGΣ
SΣ) is nonempty. Moreover, for g̃ ∈ GΣ with y = g̃ · x,

the map rg̃ : g 7→ gg̃ is a homeomorphism, and therefore hy := hx ◦ rg̃,
g 7→ g · y is open. Hence,

S−1
Σ · y = hy(S

−1
Σ ) ⊇ hy(intGΣ

S−1
Σ )

has nonempty interior. 2

For the remaining part of this section we assume, that Σ is right divisible,
left divisible or abelian.

13but not to a smaller set N $ GΣ · x.
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Theorem 4.8 Let Σ = (M,U, f) be an invertible system, x ∈M and y, z ∈
GΣ · x.

a) If Σ is right divisible, then there exists w ∈ GΣ · x such that

R(w) ⊇ R(y) ∪R(z).

b) If Σ is left divisible, then there exists w ∈ GΣ · x such that

R(w) ⊆ R(y) ∩R(z).

Proof. a) For all y, z ∈ GΣ · x there exists g ∈ GΣ such that y = g · z.
Since SΣ is right divisible, we obtain w := s−1

1 · y = s−1
2 · z with s1, s2 ∈ SΣ.

Therefore,
R(w) = SΣs

−1
1 · y ⊇ SΣ · y = R(y).

Analogously, we deduce R(w) ⊇ R(z).
b) Now we assume GΣ = (SΣ)−1SΣ. Then, g = s−1

1 s2 for some s1, s2 ∈ SΣ.
Thus R(w) ⊆ R(y) and R(w) ⊆ R(z) for w := s1 · y = s2 · z. 2

Corollary 4.9 Let Σ = (M,U, f) be an invertible system with right divisible
system semigroup SΣ. Assume that the restricted system Σ|GΣ·x

has a �nite
number of reachable sets. Then Σ|GΣ·x

is reachable from some y ∈ GΣ · x.

Proof. We assume there exists y1, . . . , yn ∈ GΣ·x such that for any y ∈ GΣ·x
R(y) = R(yi) for some i = 1, . . . , n. In particular we obtain

GΣ · x =
⋃

k=1,...,n

R(yk).

By Theorem 4.8 we deduce, that there exists y1,2 ∈ GΣ·x such thatR(y1,2) ⊇
R(y1) ∪R(y2). Then, by induction, there exists y ∈ GΣ · x such that

R(y) ⊇ R(y1) ∪ · · · ∪ R(yn) = GΣ · x = GΣ · y.

Hence, R(y) = GΣ · y. 2

Even if Σ restricted on GΣ · x is not reachable from any y ∈ GΣ · x,
then there exists a sequence (xt)t∈N in GΣ · x, such that R(xt+1) ⊇ R(xt)
(Theorem 4.8). The following result describes this phenomena in more detail
under some reasonable topological assumptions.

Theorem 4.10 Let Σ = (M,U, f) be an invertible right divisible system
evolving on a manifold M and x ∈ M such that GΣ · x is locally compact.
Assume that the system group GΣ is a Lie group acting continuously on M .
Moreover, we assume that intGΣ

SΣ 6= ∅. Then
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a) for any y ∈ GΣ · x, there exists a sequence (yt)t∈N in GΣ · x such that

(i) y1 = y

(ii) R(yt+1) ⊇ intGΣ·xR(yt); ∀t ∈ N0

(iii)
⋃∞

t=0 intGΣ·xR(yt) is dense in GΣ · x

b) Assume that the sequence (yt)t∈N in a) has a limit point ỹ ∈ GΣ · x.
Then Σ

GΣ·x
is approximatively reachable from some z̃ ∈ GΣ · x. In

particular, Σ|GΣ·x
is controllable if Σ is abelian.

Proof. a) Recall, that Σ|GΣ·x
is accessible by Proposition 4.7. In particular,

for any s ∈ intGΣ
(SΣ) and y ∈ GΣ · x, s · y is an inner point of R(y) (with

respect to GΣ · x) since hy : GΣ → GΣ · x, g 7→ g · y is open and therefore

s · y ∈ intGΣ
SΣ · y = hy(intGΣ

SΣ) ⊆ intGΣ·xR(y).

The manifold M , and therefore GΣ · x ⊆ M , is separable. In particular,
there exists a countable set

Q := {q1, q2, . . . } ⊆ GΣ · x

such that Q = GΣ · x (with respect to the topology of GΣ · x). Note that
s · Q is also countable and dense in GΣ · x, since s|GΣ·x

is continuous and
therefore

s ·Q ⊇ s ·Q = s ·GΣ · x = GΣ · x.

For an arbitrary y0 ∈ GΣ·x we construct a recursive sequence in the following
way.
If intGΣ·xR(yt) is dense in GΣ · x then the constant sequence yt+s := yt,
s ∈ N ful�lls (ii) and (iii). If intGΣ·xR(yt) is not dense in GΣ · x then we
choose it minimal, such that

s · qit /∈ intGΣ·xR(yt).

This must be possible, because s ·Q ⊆ intGΣ·xR(yt) implies intGΣ·xR(yt) =
GΣ · x. Since GΣ acts transitively on GΣ · x, there exists g ∈ GΣ such that
g · yt = qit . From GΣ = SΣS

−1
Σ it follows that gs1 = s2 for some s1, s2 ∈ SΣ.

Now we de�ne yt+1 := s−1
1 · yt. Note that yt+1 = s−1

2 g · yt = s−1
2 · qit and

therefore R(yt+1) ⊇ R(yt) and R(yt+1) ⊇ R(qit). It follows

R(yt+1) ⊇ intGΣ·xR(yt) ∪ intGΣ·xR(qit).

By construction we have s · qit /∈ intGΣ·xR(yt), but s · qit ∈ intGΣ·xR(qit).
Hence,

intGΣ·xR(yt+1) % intGΣ·xR(yt).
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Since s · q1, . . . , s · qti−1
∈ intGΣ·xR(yt−1), we obtain

s ·Q ⊆
∞⋃

t=1

intGΣ·xR(yt)

Now the claim follows, since s ·Q is dense in GΣ · x.
b) Without loss of generality we may assume that yt converges to ỹ ∈ GΣ ·x.
Then ỹ lies in the open set intGΣ

SΣs
−1 · ỹ for any s ∈ intGΣ

SΣ. It follows,
that yt ∈ R(s−1 · ỹ) for t large enough. Therefore, there exists st ∈ SΣ such
that yt = sts

−1 · ỹ. We obtain

R(yt) = R(sts
−1 · ỹ) = SΣsts

−1 · ỹ ⊆ R(s−1 · ỹ)

From (iii) it follows, that Σ
GΣ·x

is approximatively reachable from z̃ := s−1·z.
By Proposition 4.7 and Theorem 2.48, Σ|GΣ·x

is controllable provided Σ is
abelian. 2

For the rest of this subsection we deal with abelian systems. Here we
observe the following useful properties.

Theorem 4.11 Let Σ = (M,U, f) be an abelian invertible system. Then

a) Σ restricted on GΣ · x is either controllable or there exist in�nitely
many di�erent reachable sets in GΣ · x.

b) For all x1, x2 ∈ GΣ · x there exist y1, y2 ∈ GΣ · x such that

R(y1) ⊆ R(x1) ∩R(x2) and R(x1) ∪R(x2) ⊆ R(y2).

Proof. a) The statement is an immediate consequence of Corollary 4.9 and
Theorem 2.39. Assuming there exists a �nite number of reachable sets in
GΣ · x, then Σ|GΣ·x

is reachable from one point. This implies controllability
of Σ|GΣ·x

, since SΣ is abelian.
b) Recall that abelian system semigroups are right divisible and left divisi-
ble. Thus, the claim follows from Theorem 4.8.

2

Recall that GΣ · x is a Σ-invariant subset and

CGΣ·x :=
{
g ∈ GΣ

∣∣∣ g|GΣ·x
= id|GΣ·x

}
is a subgroup of GΣ.
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Theorem 4.12 Let Σ = (M,U, f) be an abelian invertible system, and
x ∈ M such that GΣ · x is locally compact. We assume that GΣ is a Lie
group acting continuously on M . For y, z ∈ GΣ · x and g ∈ GΣ such that
g · y = z we have

z ∈ R(y) if and only if g ∈ SΣCGΣ·x.

Proof. If g ∈ SΣCGΣ·x then sncn → g for a sequence (sncn)n∈N in SΣCGΣ·x.
Since hy : GΣ → GΣ ·x, g 7→ g · y is continuous we obtain sncn · y = sn · y →
g · y = z. Hence, z ∈ R(y).

Conversely, if z ∈ R(y), then there exists a sequence (sn)n∈N in SΣ such
that sn · y → z. Let us assume

g /∈ SΣCGΣ·x. (38)

By Theorem B.8 hy is an open map. It follows that z = g ·y lies in the open
set (

GΣ \ SΣCGΣ·x
)
· y = hy(GΣ \ SΣCGΣ·x).

Therefore, sn · y = g̃ · y for n large enough. Since GΣ is abelian we obtain
snĝ · y = g̃ĝ · y for any ĝ ∈ GΣ. In other words

sn|GΣ·x
= g̃|GΣ·x

.

We conclude s−1
n g̃ ∈ CGΣ·x, which is a contradiction to (38). Hence, g ∈

SΣCGΣ·x. 2

In some situations GΣ · x is dense in M . In particular this will be the
case for classical inverse iteration systems (see Section 6). By continuity,
CGΣ·x = {id} if GΣ · x = M . Assuming the conditions of Theorem 4.12 we

obtain z ∈ R(y) if and only if g ∈ SΣ for g ∈ GΣ with g · y = z.
We �nish this subsection with two examples. The �rst one shows that

the claims of Theorem 4.11 and of Theorem 4.12 become false if drop the
assumption that Σ is abelian.

Example 4.13 Consider Σ = (R× R+, U, f) with

U :=

{(
a b
0 c

)
∈ GL2(R)

∣∣∣∣ a, b, c > 0

}
and f : M × U →M , (x, U) 7→ Ux. Note that SΣ can be identi�ed with U
and that Σ is right divisible but not abelian (see Example 2.17). Moreover,
GΣ acts transitive on R× R+, since

GΣ ·
(

1
1

)
=

{(
a b
0 c

)(
ã b̃
0 c̃

)−1(
1
1

) ∣∣∣∣∣ a, b, c, ã, b̃, c̃ > 0

}

=

{(
a
ã
− ab̃

ãc̃
+ b

c̃
c
c̃

) ∣∣∣∣ a, b, c, ã, b̃, c̃ > 0

}
= R× R+.
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Hence, Σ can be regarded as the restriction on an orbit of the system in
Example 2.17.

Now we show that Σ has only two di�erent reachability sets but is not
controllable. For (α, β)> ∈ R× R+ we obtain

R
((

α
β

))
= SΣ ·

(
α
β

)
=

{(
aα+ bβ
cβ

) ∣∣∣∣ a, b, c > 0

}
(39)

=

{
R× R+ if α < 0
R+ × R+ if α ≥ 0

From (39) it follows, that there exist only two di�erent reachable sets and
that Σ is reachable from some y ∈ R × R+. Note that the latter is also a
consequence of Corollary 4.9. Nevertheless, (39) also shows, that Σ is not
controllable, since (−1, 1)> /∈ R

(
(1, 1)>

)
. In particular this shows, that

claim a) of Theorem 4.11 is not ful�lled if Σ is not abelian.
Now we show that also Theorem 4.12 becomes false if we drop the as-

sumption that Σ is abelian. Recall that

GΣ =

{(
a b
0 c

)
∈ GL2(R)

∣∣∣∣ a, c > 0

}
(see Example 2.17). In particular, GΣ is a Lie group acting continuously on
R× R+.

Let z := (0, 1)>, y := (1, 1)> and g ∈ GΣ such that g · y = z. In
(39) we have seen, that z ∈ R(y). The only linear mapf : R2 → R2 with
f|R×R+ = id|R×R+ is f : x 7→ x. In other words

CGΣ·x =
{
f ∈ SΣS

−1
Σ

∣∣ f|R×R+ = id|R×R+

}
= {id}.

Therefore,

SΣCGΣ·x =

{(
a b
0 c

)
∈ GL2(R)

∣∣∣∣ a, c > 0; b ≥ 0

}
.

On the other hand, g · y = z for g ∈ GΣ implies

g =

(
a −a
0 1

)
with a ∈ R+.

Hence, g /∈ SΣCGΣ·x but z ∈ R(y).

Theorem 4.8 shows, that reachable sets within an orbit have nonempty
intersection, provided Σ is left divisible. The following example shows, that
this is not the case for general systems.
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Example 4.14 Consider Σ = (R2 \ {0}, U, f) of Example 2.18, i.e.,

U :=

{(
u1 u2

u3 u4

)
∈ GL2(R)

∣∣∣∣ ui > 0, i = 1, . . . , 4

}
and f(x, U) = Ux. Recall that Σ is not left divisible. For

s1 =

(
2 3
1 1

)
∈ SΣ and s2 =

(
3 1
2 1

)
∈ SΣ.

we obtain

g := s−1
1 s2s

−1
1 =

(
−1 5
0 −1

)
∈ GΣ.

Therefore, (6, 1)> and g · (6, 1)> = (−1,−1)> are in the same system group
orbit. On the other hand, R((6, 1)>) ⊆ R+ × R+ and R((−1,−1)>) ⊆
R− × R−.
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4.3 Systems restricted to GΣ · x
We have seen, that the topological closure of a system group orbit is Σ-
invariant (see Proposition 3.10). In the following we focus on the analysis on
the restricted system Σ|GΣ·x

. As in Subsection 4.2 we assume that the system

semigroup is right divisible or abelian. It is easy to see that z ∈ GΣ · x does
not imply z ∈ R(x). In fact, it might happen that z /∈ R(y) for any
y ∈ GΣ · x. This phenomenon motivates the following de�nition.

De�nition 4.15 (Repelling phenomenon) Let Σ = (M,U, f) be a sys-
tem and E a subset of M . We say that E is repelling with respect to GΣ · x
if E ∩ R(y) = ∅ for all y ∈ GΣ · x.

An easy example for the repelling phenomenon is the following.

Example 4.16 Let Σ = (R, U, f) be the system given by f(x, u) = xu
with U = (1,∞) and E = {0}. Note that E ⊆ GΣ · x = R \ {0} for all
x ∈ R \ {0}. Hovever, E is repelling to Σ ·x, x ∈ R \ {0} since E ∩R(x) = ∅.
In particular, no shift strategy will steer any initial state x 6= 0 arbitrary
close to E , regardless how close the initial state was to the interesting point.

Obviously, a point z ∈ GΣ · x which is repelling to GΣ · x has to be in
the boundary of GΣ · x, since z ∈ R(s−1 · z) for all s ∈ SΣ. The next result
gives a condition for the existence of an repelling point in ∂(GΣ · x).

Theorem 4.17 Let Σ = (M,U, f) be an invertible right divisible system
and x ∈M such that ∂(GΣ · x) 6= ∅. Then one of the following alternatives
is true:

(i) There exists z ∈ ∂(GΣ · x) which is repelling with respect to GΣ · x.

(ii) For any �nite subset E ⊆ ∂(GΣ · x) there exists y ∈ GΣ · x such that
E ⊆ R(y).

Proof. Obviously, (ii) implies that (i) is false. Now we assume that state-
ment (i) is false. Then, for any �nite set E = {z1, . . . , zN} ⊆ ∂(GΣ · x)
there exists a set {y1, . . . , yN} ⊆ GΣ · x such that zn ∈ R(yn), n = 1 . . . , N .
By Theorem 4.8 there exists yT ∈ GΣ · x such that {y1, . . . , yN} ⊆ R(yT ).
Hence, E ⊆ R(yT ), since R(yn) ⊆ R(yN) for n = 1, . . . , N . 2

Now we focus on the case where Σ is abelian. Here, it is su�cient to
analyze R(y) ∩ E for one y ∈ GΣ · x to decide if a Σ-invariant subset E is
repelling to GΣ · x.

Theorem 4.18 Let Σ = (M,U, f) be an abelian invertible system and x ∈
M . For any Σ-invariant subset E ⊆ ∂(GΣ · x) the following two statements
are equivalent.
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(i) E is repelling to GΣ · x

(ii) There exists y ∈ GΣ · x such that R(y) ∩ E = ∅

Proof. a) The implication (i) ⇒ (ii) is trivial. Now we show that R(y) ∩
E 6= ∅ implies R(w) ∩ E 6= ∅ for any w ∈ GΣ · x. Recall, that there
exists g ∈ GΣ, such that g · y = w. Moreover, g · E = E for all g ∈ GΣ since
fu(E) = E for all u ∈ U . IfR(y)∩E 6= ∅ then there exists a sequence (sn)n∈N
in SΣ such that sn · y converges to E . We conclude, that R(w)∩E 6= ∅ since

sn · w = g(sn · y)→ g · E = E .

2

We �nish this section with an example which shows, that the claim of
Theorem 4.18 is wrong, if we drop the assumption that Σ is abelian, even
if Σ is right divisible.

Example 4.19 Consider Σ = (R× R+
0 , U, f) with

U =

{(
a b
0 c

)
∈ GL2(R)

∣∣∣∣ a, b, c > 0

}
and f : M × U →M , (x, U) 7→ Ux. Note that Σ is right divisible and that
GΣ · x = R× R+ for x ∈ R× R+ (see Example 4.13). Therefore, Σ can be
regarded as the restriction on GΣ · x of the system in Example 2.17. We
obtain

GΣ · z0 = {z0}, R(z0) = {z0} for z0 = (0, 0)>,
GΣ · z1 = R+ × {0}, R(z1) = R+ × {0} for all z1 ∈ R+ × {0},
GΣ · z2 = R− × {0}, R(z2) = R− × {0} for all z2 ∈ R− × {0},
GΣ · x1 = R× R+, R(x1) = R+

0 × R+ for all x1 ∈ R+
0 × R+,

GΣ · x2 = R× R+, R(x2) = R× R+ for all x2 ∈ R− × R+.

The orbit graph and the reachable graph are given by

GΣ · z1

yyssssssssss

GΣ · z0 GΣ · x1
oo

OO

��
GΣ · z2

eeKKKKKKKKKK

R(z1)

zzuuuuuuuuu

R(z0) R(x1)oo

OO

R(x2)oo

zzuuuuuuuuu

ddIIIIIIIII

R(z2)

ddIIIIIIIII

In particular we see, that Σ|GΣ·zi
, i = 1, 2, 3 is controllable, but that GΣ ·z2 =

R(z2) is not a subset of R(x1). Moreover, E := GΣ · z2 is Σ-invariant and
R(x1)∩E = ∅. However, E is not repelling to GΣ · x1 since x2 ∈ GΣ · x1 but
R(x2) ∩ E 6= ∅. This shows, that the claim of Theorem 4.18 does not hold,
if Σ is not abelian.
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5 Systems on homogeneous spaces

In the following we apply the results of the previous chapters to systems
evolving on Lie groups and homogeneous spaces. Here, the geometric frame-
work developed by Jakubczyk and Sontag (see Section 2.2.1) comes into
play. In particular, in Section 5.1, we prove discrete-time versions of results
by Jurdjevic and Sussmann on controllability of continuous-time systems
on Lie groups (see [JS72] and [SJ72]). Systems on homogeneous spaces can
be regarded as induced systems of a system on a Lie group. Thus, the
controllability properties of systems on homogeneous spaces Σ̃ are linked to
the controllability properties of certain related system on a Lie group Σ. In
Section 5.2 we show a condition for weak reversibility of Σ̃ in terms of the
system semigroup of Σ. Moreover, we investigate the situation for systems
on �ag manifolds and projective spaces.

5.1 Systems on Lie groups

De�nition 5.1 Let G be a Lie group. A smoothly invertible system Σ =
(G,U, f) is evolving on G if for any u ∈ U there exists a group element
g ∈ G such that fu · x = gx for all x ∈ G. We identify fu with g ∈ G. In
particular we write e := idG.

Note that in this case GΣ is a subgroup of G and that

R(e) =

{
T∏

t=1

fut

∣∣∣∣∣ T ∈ N, ut ∈ U

}
= SΣ.

In other words, Σ is accessible from e if and only if intG SΣ 6= ∅. In fact,
intG SΣ 6= ∅ is equivalent to accessibility from any point.

Proposition 5.2 Let Σ = (G,U, f) be a system evolving on a Lie group.
Then

a) Σ is accessible if and only if Σ is accessible from one point.

b) Σ is controllable if and only if SΣ = G.

Proof. a) Let Σ be accessible from g ∈ G. For any h ∈ G the map

rh : G→ G, x 7→ xh

is a homeomorphism. Therefore,

R(g̃) = SΣg̃ = SΣgg
−1g̃ = rg−1g̃(R(g))
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has nonempty interior.
b) Obviously, SΣ = G implies controllability. Conversely, if Σ is controllable,
for every g ∈ G there exists s ∈ SΣ such that sg−1 = e. Therefore, for any
g ∈ G we have g ∈ SΣ. Hence, SΣ = G. 2

To check if Σ is accessible or not, one can apply the geometric framework
developed by Jakubczyk and Sontag (see Theorem 2.21). We choose Ũ ⊆ U
such that every connected component of U has at least one element in Ũ .
Following the construction in Section 2.2.1, the Lie derivative vector �elds

Adu1,...,uk
fu,i : G 7→ TG, u ∈ U, k ∈ N0, u1, . . . , uk ∈ Ũ , 1 ≤ i ≤ m

given by

g 7→ ∂

∂vi

∣∣∣∣
v=0

(fuk
. . . fu1)

−1f−1
u fu+v(fuk

. . . fu1)(g)

generate the Lie algebra LΣ. We denote TeG, the Lie algebra 14 of G, with
g.

Proposition 5.3 Let Σ = (G,U, f) be a smooth system evolving on a Lie
group G with corresponding Lie algebra g. Moreover we assume, that U ⊆
Rm is open. Then, Σ is accessible if and only if LΣ(e) = g.

Proof. Obviously we have LΣ(e) ⊆ TeG = g. The case LΣ(e) 6= g imme-
diately implies dimLΣ(e) < n = dim(G). Therefore, Σ is not accessible by
Theorem 2.21.
Now we assume LΣ(e) = g. For any g ∈ G we de�ne lg : G → G,
h 7→ gh and T lg : TG → TG as the corresponding tangent map. For
any X = Adu1,...,uk

fu,i with u ∈ U, k ∈ N0, u1, . . . , uk ∈ Ũ , 1 ≤ i ≤ m we
have

T lg ◦X(e) = T lg(e,X(e)) = (g,X(g)) = X ◦ lg(e).

In other words, all vector �elds Adu1,...,uk
fu,i, and therefore all vector �elds

X ∈ LΣ, are left invariant. Moreover, for any X ∈ LΣ, the isomorphism
Telg : TeG→ TgG maps X(e) on X(g). Therefore, for any g ∈ G we obtain
dimLΣ(e) = dimLΣ(g), since

LΣ(e) = {X(e) | X ∈ LΣ} =
{
(Telg)

−1X(g)
∣∣ X ∈ LΣ

}
= (Telg)

−1LΣ(g).

Hence, Σ is accessible by Theorem 2.21, since dimLΣ(g) = n for all g ∈ G.
2

14In fact, g := TeG, equipped with the product g × g → g, (X, Y ) 7→ (adX)(Y ) is
called Lie algebra. Nevertheless, in the following we do not use the algebra structure of
TeG.
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In the following we show that for systems evolving on Lie groups, con-
trollability, approximative reachability and dense reachability are equivalent
concepts, provided Σ is accessible.

Theorem 5.4 Let Σ = (G,U, f) be a system evolving on a Lie group G.
Assume that Gi ∩ SΣ 6= ∅ for all connected components Gi of G. If Σ is
accessible, then the following statements are equivalent:

(i) SΣ is a group,

(ii) Σ is controllable,

(iii) Σ is approximatively reachable from one point g ∈ G,

(iv) Σ is densely reachable.

Proof. The implications (ii) ⇒ (iv) and (iv) ⇒ (iii) follow immediately
from the de�nition. Moreover, (ii)⇒ (i) follows from Proposition 5.2.
Now we show (i)⇒ (ii). Recall that Σ is accessible if and only Σ is accessible
from e. Assuming that SΣ is a group, i.e., SΣ = GΣ, the reachable sets R(g)
are all open in G by Proposition 2.20. In particular, it follows

e ∈ SΣ = intG(SΣ).

Therefore, SΣ = G by Lemma B.4. In particular, Σ is controllable15.
We �nish the proof by showing (iii)⇒ (i). Let g ∈ G be such that R(g) =
G. Since the map rg−1 : G→ G, x 7→ xg−1 is a homeomorphism we obtain

G = rg−1(SΣg) = rg−1(SΣg) = SΣ.

In particular this shows f−1
u ∈ SΣ for all u ∈ U . Moreover, accessibility of

Σ implies intG SΣ = intGR(idG) 6= ∅. Now SΣ = GΣ follows from Theorem
2.40. 2

Similar to the situation for continuous time systems (see Theorem 6.5
in [JS72]), accessibility implies controllability provided G is compact.

Theorem 5.5 Let Σ = (G,U, f) be a system evolving on a compact Lie
group G. Assume that Gi ∩ SΣ 6= ∅ for all connected components Gi of G.
Then Σ is controllable if and only if Σ is accessible.

15 If SΣ is a group, Σ is weakly reversible. Moreover, accessibility implies that GΣ ·g is
open (see Proposition 2.20) and therefore g ∈ intGR(g) for all g ∈ G. Hence, (i)⇒ (ii)
also follows immediately from Theorem 2.37 provided G is connected.
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Proof. Obviously, controllability implies accessibility. Now let Σ be acces-
sible and s ∈ intG SΣ. Since G is compact, SΣ is compact and therefore a
group by Lemma B.2. Lemma B.5 yields

e = s−1s ∈ SΣ intG SΣ ⊆ intG SΣ.

for any s ∈ intG SΣ.
Since Gi ∩ SΣ 6= ∅ for all connected components Gi of G, we obtain

SΣ = G by Lemma B.4. Moreover, SΣ = G and intG SΣ 6= ∅ implies SΣ = G
by Lemma B.6. Thus, Σ is controllable. 2

The assumption of accessibility in Theorem 5.4 and Theorem 5.5 cannot
be dropped. In fact, the system of Example 2.47 evolves on a compact
Lie group. Here, Σ is densely reachable but not controllable. Moreover,
SΣ 6= G.
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5.2 Homogeneous spaces

Let Σ = (G,U, f) be a system evolving on a Lie group G as introduced in
subsection 5.1, i.e., for all u ∈ U there exists g ∈ G such that fu(x) = gx
for all x ∈ G. Again we identify fu with g. Now let α : G ×M → M be
a transitive smooth group action on a set M . We choose a �xed reference
element m ∈M . Moreover, we assume, that Stabm = {g ∈ G | g ·m = m} is
a closed subgroup of G. Then M is a homogeneous space with respect to α
and it can be equipped with a canonical di�erential structure (See Appendix
F). Here, the projection πm : G → M , g 7→ g(m) de�nes the open sets in
M , i.e., U ⊆M is open if and only if U = πm(Ũ) for an open set in G.

For u ∈ U we de�ne

f̃ : M × U →M, (m,u) 7→ fu ·m.

Note that f̃u : m 7→ fu(m) is a di�eomorphism for all u ∈ U . The inverse
f̃−1

u is given by m 7→ f−1
u (m). This de�nes a smoothly invertible system

Σ̃ = (M,U, f̃) on the homogeneous space M .

Proposition 5.6 Σ̃ = (M,U, f̃) is an induced system of Σ = (G,U, f) with
respect to πm : G→M , g 7→ g(m).

Proof. By construction, π is surjective, continuous and open. Moreover,
for all g ∈ G and all u ∈ U it follows that

f̃u ◦ πm(g) = f̃u(g(m)) = fug(m) = πm(fug) = πm ◦ fu(g).

Hence, f̃u ◦ πm = πm ◦ fu for any u ∈ U . 2

Recall that the core CM =
⋂

m∈M Stabm is a normal subgroup of G. This
implies that GΣ ∩ CM is a normal subgroup of GΣ. Analogous to the con-
struction in Section 3.1.2 the product

s1(GΣ ∩ CM)s2(GΣ ∩ CM) := s1s2(GΣ ∩ CM)

de�nes a semigroup structure on the set of cosets SΣ/(GΣ ∩ CM). The
following proposition shows the relation between CM and the core of πM ,
i.e. Cπm = {g ∈ GΣ |πm(g · x) = πm(x),∀x ∈M}.

Proposition 5.7 Let Σ, Σ̃ and πm be de�ned as above. Then

Cπm = GΣ ∩ CM .

In particular, Cπm is independent of the choice of the reference pointm ∈M .
Moreover SΣ̃ and SΣ/(GΣ∩CM) are isomorphic as semigroups and GΣ̃ and
GΣ/(GΣ ∩ CM) are isomorphic as groups.
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Proof. A straightforward calculation shows

Cπm = {g ∈ GΣ |πm ◦ g = πm}
= {g ∈ GΣ |πm ◦ g(h) = πm(h), ∀h ∈ G}
= {g ∈ GΣ | gh ·m = h ·m, ∀h ∈ G}.

Since G acts transitively on M , we conclude

{g ∈ GΣ | gh ·m = h ·m, ∀h ∈ G} = {g ∈ GΣ | g · m̃ = m̃, ∀m̃ ∈M}
= GΣ ∩ CM .

By Theorem 3.6, SΣ̃ and SΣ/(GΣ∩CM), and respectively GΣ̃ and GΣ/(GΣ∩
CM) are isomorphic. 2

In particular, Proposition 5.7 shows, that Cπm is independent of the
choice of the reference point m ∈M . Therefore we write Cπ := Cπm .

Using the machinery developed in the previous sections, we can eas-
ily a�rm a reformulated version of Theorem 3.2 in [Jor06], which will be
important in our analysis of inverse iteration systems.

Theorem 5.8 Let Σ = (G,U, f) be a system evolving on a Lie group G
which acts transitively on a set M . Let Σ̃ = (M,U, f̃) be the induced system
on the homogeneous space M .

a) If GΣ = CπSΣ then Σ̃ is weakly reversible

b) If there exists a reference point in M such that Stabm ∩GΣ ⊆ CM .
Then RΣ̃(m) = GΣ̃ ·m implies GΣ = CπSΣ.

Proof. a) Assuming GΣ = CπSΣ then GΣ̃ = SΣ̃ by Theorem 3.6 and
therefore GΣ̃ ·m = RΣ̃(m) for all m ∈M . Hence, Σ̃ is weakly reversible by
Proposition 2.35.
b) We assume RΣ̃(m) = GΣ̃ ·m. In other words, for all g ∈ GΣ, there exists
s ∈ SΣ such that g−1s ∈ Stabm. Since g, s ∈ GΣ and Stabm ∩GΣ ⊆ CM we
obtain g−1s ∈ GΣ∩CM = Cπ. It follows, g = cs for some c ∈ Cπ. Therefore
GΣ ⊆ CπSΣ. Moreover, CπSΣ ⊆ GΣ since Cπ and SΣ are subsemigroups of
GΣ. Hence RΣ̃(m) = GΣ̃ ·m implies GΣ = CπSΣ. 2

We �nish this section with some observations with two special cases,
namely system on �ag manifolds and systems on projective spaces.
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5.2.1 Systems on �ag manifolds

Let Σ = (GLn(R), U, f) be a system evolving on GLn(R), i.e., fu ∈ GLn(R)
for all u ∈ U . Recall that GLn(R) acts transitively on the �ag manifold
Flag(d,Rn) (see Appendix F). We denote the identity element of GLn(R)
with I. Following the construction in Section 5.2 we de�ne a new system
on Σ̃ = (Flag(d,Rn), U, f̃) on Flag(d,Rn), with f̃ given by

f̃ : ((V1, . . . , Vk), u) 7→ (fuV1, . . . , fuVk)) .

Here, fuVi denotes the image of the di-dimensional subspace Vi under the
linear map fu. The previous results yield:

Theorem 5.9 Let Σ and Σ̃ be systems as above and V = (V1, . . . , Vk) a
reference �ag in Flag(d,Rn).

a) System Σ̃ is an induced system of Σ with respect to

πV : GLn(R) 7→ Flag(d,Rn), x 7→ (xV1, . . . , xVk) .

b) SΣ̃ is isomorphic to SΣ/Cπ and GΣ̃ is isomorphic to GΣ/Cπ Here,
Cπ = GΣ ∩ R∗I.

c) If V ful�lls Stab(V) ∩GΣ ⊆ R∗I, then RΣ̃(V) = GΣ̃ · V if and only if
RΣ̃(Ṽ) = GΣ̃ · Ṽ for all Ṽ ∈ Flag(d,Rn).

Proof. The �rst statement follows immediately from Proposition 5.6. Re-
call that the core of Flag(d,Rn) is CFlag(d,Rn) = R∗I (see Proposition F.2).
Therefore, Statement b) follows from Proposition 5.7. Finally, the third
statement follows from Theorem 5.8. since Σ̃ is weakly reversible if and
only if RΣ̃(Ṽ) = GΣ̃ · Ṽ for any Ṽ ∈ Flag(d,Rn) (see Lemma 2.35). 2

Corollary 5.10 Let Σ and Σ̃ be systems as above and V = (V1, . . . , Vk) a
reference �ag in Flag(d,Rn), such that Stab(V) ∩ GΣ ⊆ R∗I. Then Σ̃ is
reachable from V if and only if Σ̃ is controllable.

Proof. Clearly, controllability implies reachability from any point. Con-
versely, if Σ̃ is reachable from V , then RΣ̃(V) = Flag(d,Rn) = GΣ̃ · V .
By Proposition 5.9 we obtain RΣ̃(Ṽ) = GΣ̃ · Ṽ = Flag(d,Rn) for any
Ṽ ∈ Flag(d,Rn) and therefore, by Proposition 2.31, controllability. 2
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5.2.2 Systems on projective spaces

We �nish Section 5.2 with a remark on the special the case d = (1), i.e., to
systems on projective spaces. As described in the previous section, a system
evolving on GLn(R) induces a system on RPn−1. A more common way to
induce systems on RPn−1 is via time-varying linear invertible systems (see
[Hom93, Wir95]). We show that both constructions yield the same family
of systems.

An invertible system Σ̂ = (Rn, U, f̂) is time-varying linear (non-a�ne)
if f̂u : Rn → Rn is a linear map for all u ∈ U . Obviously, the set {0} ⊆ Rn is
an Σ̂-invariant subset. Therefore we focus on the restricted system Σ̂|Rn\{0}.

To shorten notations we write Σ̂ := Σ̂|Rn\{0}. Consider the map

π : Rn \ {0} → RPn−1, x 7→ span(x). (40)

For u ∈ U , x ∈ RPn−1 and v1, v2 ∈ π−1(x) it is

π(f̂u(v1)) = π(f̂u(v2)).

In other words, the map

f̃ : RPn−1 × U → RPn−1, (x, u) 7→ π(fu(v)), v ∈ π−1(x)

is well de�ned and f̃u = f̃(·, u) is bijective. This yields a new system
Σ̃ = (RPn−1, U, f̃) on RPn−1.

Proposition 5.11 Σ̃ is an induced system of Σ̂|Rn\{0} with respect to π.

Proof. Obviously, π is surjective and for any v ∈ Rn \ {0} we obtain

f̃u ◦ π(v) = span(fuv) = π ◦ fu(v).

We show that π is continuous and open. Recall, that the topology of RPn−1

is de�ned by the surjective map πV : GLn(R) → RPn−1, g 7→ g(V), for a
reference �ag V ∈ RPn−1. We choose v ∈ Rn \ {0} such that V := span(v).
Let

πv : GLn(R)→ Rn \ {0}, g 7→ g(v). (41)

The diagram
GLn(R)

πv

xxrrrrrrrrrr
πV

%%KKKKKKKKKK

Rn \ {0} π // RPn−1

commutes, since

πV(g) = g(span(v)) = span(g(v)) = π(g(v)) = π ◦ πv(g).
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The maps, πV and πv are both surjective, continuous and open. Therefore

π(O) = π(πv(π
−1
v (O))) = πV(π−1

v (O))

is for all open subsets O ⊆ Rn \ {0} open. Similarly,

π−1(U) = π−1(πVπ
−1
V (U)) = π−1ππvπ

−1
V (U) = πv(π

−1
V (U))

is open for all open subsets U ⊆ RPn−1. 2

We have seen, that there exists two canonical approaches to construct
systems on RPn−1. Now we show that both approaches yield the same
family of systems.

Proposition 5.12 Let Σ̃ = (RPn−1, U, f̃) be an invertible system and Σ̂ =
(Rn \ {0}, U, f̂) a time-varying linear system. For any u ∈ U we associate
fu ∈ GLn(R) to the linear map f̂u : Rn → Rn. Then the following statements
are equivalent.

(i) Σ̃ is an induced system of Σ̂ (with respect to π)

(ii) Σ̃ is an induced system of the system Σ = (GLn(R), U, f) evolving on
GLn(R) (with respect to πV for some reference �ag V)

Proof. For any v ∈ Rn \ {0} we de�ne πv as in (41). Obviously,

f̂u ◦ πv(g) = f̂u(g(v)) = fug(v) = πv ◦ fu(g) (42)

for any u ∈ U and any g ∈ GLn(R). In other words, Σ̂ = (Rn \ {0}, U, f̂)
is an induced system of Σ = (GLn(R), U, f) with respect to πv. Choose
v ∈ Rn \ {0} and set V = span(v). As shown before, all maps π, πv and πV
are surjective, open and continuous. We only have to show, that for any
u ∈ U , (i) π ◦ f̂u = f̃u ◦ π is equivalent to (ii) πV ◦ fu = f̃u ◦ πV .
(i)⇒ (ii) : Using π ◦ πv = πV and (42) we obtain

f̃u ◦ πV = π ◦ f̂u ◦ πv = π ◦ πv ◦ fu = πV ◦ fu.

(ii)⇒ (i): For x := π ◦ f̂u we obtain

x ◦ πv = π ◦ πv ◦ fu = πV ◦ fu = f̃u ◦ πV .

For any w ∈ Rn \ {0}, there exists g ∈ GLn(R) such that w = g(v).
Therefore,

x(w) = x ◦ πv(g) = f̃u ◦ πV(g) = f̃u(g(V)) = f̃u(span(g(v))) = f̃u ◦ π(w).

Hence, x = f̃u ◦ π. 2
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6 Classical inverse iteration

Inverse iteration is one of the oldest established methods for calculating
eigenvectors of a given matrix. Although its basic idea goes back to the
early days of numerics, inverse iteration schemes are still a topic of active
research. We refer to Ipsen [Ips96, Ips97] for an overview and the state of
the art, respectively Golub and Ye [GY00], Neymeyr [Ney05], Freitag and
Spencer [FS07] for examples of recent research. In contrast to the standard
literature, which mostly considers convergence performances for certain shift
strategies, we analyze the entire structure of reachable sets. This allows us to
formulate fundamental limitations on the convergence behavior of possible
shift strategies and feedback laws.

Let A ∈ Rn×n and denoted by Spec(A) the spectrum of A, i.e., set of
eigenvalues in C. The aim of classical inverse iteration is to �nd eigenspaces
of A. Therefore, the corresponding system evolves on the projective space
and �t in the setting of Section 5.2.

De�nition 6.1 (Classical inverse iteration system) For A ∈ Rn×n let
UA := R \ Spec(A) and

fA : RPn−1 × UA → RPn−1; (x, u) 7→ (I − uA)−1 · x.

The corresponding system ΣII(A) = (RPn−1, UA, fA) is called classical in-
verse iteration system (with respect to the system matrix A ∈ Rn×n). Here,
GLn(R)×RPn−1 → RPn−1, (B, x) 7→ B · x denotes the canonical action on
RPn−1.

In [HF00] and [HW01] the authors investigated the controllability prop-
erties of ΣII(A). We extend their work using the following strategy. First,
in Sections 6.1, 6.2 and 6.3 we analyze the system groups, and respectively,
the system group orbit structure of ΣII(A). Then, in Section 6.4, we show
certain controllability properties of ΣII(A). In particular we give necessary
and su�cient conditions for controllability of ΣII(A) (restricted on an open
system group orbit) in terms of the eigenvalue constellations of A (Sections
6.5 and 6.6). Then, in Section 6.7, we analyze the adherence structure of
reachable sets for the cases when the restricted system is not controllable.
In particular, we give conditions for the appearance of repelling phenomena.
We �nish this Chapter with a systematic analysis of the adherence structure
of the reachable sets for the cases n = 2, 3, 4.
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6.1 System group

Following De�nition 2.4 the system group GΣII(A) of the inverse iteration
system ΣII(A) is a group of homeomorphisms g : RPn−1 → RPn−1, gener-
ated by the maps x 7→ (A − uI)−1 · x, u ∈ UA. Note that ΣII(A) can be
seen as the induced system of ΣII

GLn(R)(A) = (GLn(R), U, f̂A) with respect

to πx : GLn(R) → RPn−1, g 7→ g · x for any reference point x ∈ RPn−1

(see Theorem 5.9). Here, f̂A : (A, u) 7→ (A− uI)−1. Obviously, the system
semigroup and the system group of ΣII

GLn(R)(A) is given by

SΣII
GLn(R)

(A) =

{
T∏

t=1

(A− utI)
−1

∣∣∣∣∣ T ∈ N, ut ∈ UA,

}
,

respectively

GΣII
GLn(R)

(A) =

{
T1∏
t=1

(A− utI)
−1

T2∏
t=1

(A− vtI)

∣∣∣∣∣ T1, T2 ∈ N, ut, vt ∈ UA

}
.

Note that S(A) := SΣII
GLn(R)

(A) and GΣII
GLn(R)

(A) are
16 abelian subsemigroups

of GLn(R). More precisely we have:

Proposition 6.2 Let mA be the minimal polynomial of A ∈ Rn×n. S(A)
and GΣII

GLn(R)
(A) are subsemigroups of the abelian Lie group

P (A) := {p(A) | p ∈ R[x] coprime to mA} ⊆ GLn(R).

The dimension of P (A) is deg(mA). P (A) is a closed subgroup of the cen-
tralizer group

Z(A) := {Z ∈ GLn(R) |ZA = AZ}.
In particular we have P (A) = Z(A) and dimP (A) = n if and only if A is
cyclic.

Proof. Obviously, GΣII
GLn(R)

(A) is an abelian subsemigroup of Z(A). For

every p coprime to mA there exist polynomials p̃, k such that 1 = pp̃+ kmA

(theorem of Bezout). From the Cayley-Hamilton theorem it follows, that
p(A)−1 = p̃(A). Hence, p(A)−1 is an element of P (A). Therefore, S(A) and
GΣII

GLn(R)
(A) are subsemigroups of P (A). Moreover, any p(A) ∈ P (A) can be

expressed with p̃(A) for a unique polynomial p̃ of degree at most degmA−1.
It follows, that

P (A) = GLn(R) ∩ span(I, A, . . . , Adeg(mA)−1) (43)

16The abbreviation S(A) will be very useful for the rest of the thesis. We refrain from
abbreviating GΣII

GLn(R)(A) at this point, since soon we will show GΣII
GLn(R)(A) = P (A)
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is a closed subgroup of GLn(R) and therefore a Lie group. Note that the
set P (A) is open in span(I, A, . . . , Adeg(mA)−1). Hence, dimP (A) = degmA.
If A is cyclic, the last claim follows from Proposition D.3, and respectively
Proposition D.4. 2

Now we show the main result of this subsection.

Theorem 6.3 Let ΣII(A) be the classical Inverse iteration system with re-
spect to a matrix A ∈ Rn×n.

a) SΣII(A) and S(A)/R∗I := {sR∗ | s ∈ S(A)} are isomorphic as semi-
groups.

b) GΣII(A) is a Lie group of dimension deg(mA)−1 isomorphic to P (A)/R∗I.
Moreover, GΣII(A) × RPn−1 → RPn−1, (g, x) 7→ g(x) is a smooth ac-
tion.

Proof. We show

GΣII
GLn(R)

(A) = P (A). (44)

Then, a) follows by Theorem 5.9, since Cπ = P (A) ∩R∗I = R∗I. Moreover
we obtain b) by Theorem 3.7.

To show (44) we analyze the system ΣP (A)(A) := (P (A), U2
A, f̃A) given

by U2
A = (R \ Spec(A))2 and

f̃A : P (A)× U2
A → P (A), (B, (u, v)) 7→ (A− uI)(A− vI)−1B.

Note that ΣP (A)(A) is a smoothly invertible system evolving on the Lie
group P (A). Obviously,

SΣP (A)(A) =

{
T∏

t=1

(A− utI)(A− vtI)
−1

∣∣∣∣∣ T ∈ N, (ut, vt) ∈ U2
A

}
(45)

is a group. Moreover we obtain

SΣP (A)(A) ⊆ {B1B2 | B1 ∈ S(A), B−1
2 ∈ S(A)

}
⊆ GΣII

GLn(R)
(A) ⊆ P (A). (46)

Now we show that ΣP (A)(A) is controllable. Here, we distinguish between
the case when A is cyclic and the case when A is non cyclic. Then, by
Proposition 5.2 it follows

SΣP (A)(A) = P (A) (47)

and thus (44).
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Cyclic case: Let us assume that A is a cyclic matrix. By Theorem 5.4,
ΣP (A)(A) is controllable if the following two claims are true:

Claim 1: System ΣP (A)(A) is accessible.

Claim 2: Every connected component P (A)i, i ∈ I of P (A) has nonempty
intersection with SΣP (A)(A).

Proof of Claim 1: Following Proposition 5.2 it is enough to show that
R(I) = SΣP (A)(A) has nonempty interior in P (A).

Recall that A is cyclic and P (A) is an open subset of the n dimen-
sional vectorspace span(I, A, . . . , An−1). For �xed v1, . . . , vn ∈ UA we de�ne
p(A) :=

∏n
t=1(A− vtI)

−1. Now we consider the map

Ψ : Un
A → P (A), (u1, . . . , un) 7→ p(A)

n∏
t=1

(A− utI). (48)

By construction, the image of Ψ lies in SΣP (A)(A). Using the inverse function

theorem we proof that Ψ(Un
A) has nonempty interior in span(I, A, . . . , An−1)

and therefore intP (A)R(I) 6= ∅. In particular we show, that (u1, . . . , un−1)
is a regular value of Ψ provided that ui 6= uj for i 6= j.

We express the term Ψ(u1, . . . , un) =
∏n

t=1(A− utI)p(A) by elementary
symmetric polynomials σn

i : Un
A → R, i = 0, . . . , n (see De�nition E.1). In

particular, Proposition E.5 yields

Ψ(u1, . . . , un) =
n∑

t=0

(−1)tσn
t (u1, . . . , un)et

with et := An−tp(A), t = 0, 1, . . . , n. Recall that I, A, . . . , An−1 is a basis of
span(I, A, . . . , An−1). The set {e1, . . . , en} is linearly independent, since

0 =
n∑

t=1

αtet = p(A)

(
n∑

t=0

αtA
n−t

)
⇔ αt = 0, t = 1, . . . , n.

Moreover, the Cayley-Hamilton theorem yields P (A)Ak ∈ span(I, . . . , An−1)
for all k ∈ N. It follows

span(e1, . . . , en) = p(A) span(I, . . . , An−1) ⊆ span(I, . . . , An−1).

In other words, {e1, . . . , en} is a basis of span(I, A, . . . , An−1) and e0 =∑n
t=1 αtet for some αt ∈ R, t = 1, . . . , n. With respect to this basis we

calculate the Jacobian DΨ of

Ψ(u1, . . . , un) =
n∑

t=1

(
(−1)tσn

t (u1, . . . , un) + αt

)
et
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in the point (u1, . . . , un) ∈ Un
A. For the partial derivations we obtain

∂Ψt

∂uk

=
∂ ((−1)tσn

t (u1, . . . , un) + αt)

∂uk

= (−1)t
∑

i1<···<it−1
it 6=k

ui1 · · · · · uit−1

= (−1)tσn
t−1(u1, . . . , uk−1, 0, uk+1, . . . , un).

Now we show, that the Jacobian DΦ is invertible, if and only if ui 6= uj for
i 6= j. We de�ne f : Rn → R by f(u1, . . . , un) = det(DΨ(u1, . . . , un)). Note

that deg ∂(Ψt)
∂uk

(u1, . . . , uk) = t− 1 and therefore

deg(f) = deg

 ∑
π∈Sym(n)

(−1)sgn(π)∂(Ψt)

∂uπ(t)

(u1, . . . , un)

 (49)

≤ 1 + · · ·+ n− 1.

Now let Ck(u1, . . . , un) be the k-th column vector of DΨ(u1, . . . , un), i.e.,

Ck(u1, . . . , un) =
(
(−1)tσn

t−1(u1, . . . , uk−1, 0, uk+1, . . . , un)
)

t=1,...,n

Moreover, for u = (u1, . . . , uk1 , . . . , uk2 , . . . , un) we de�ne

ũ := (u1, . . . , uk2 , . . . , uk1 , . . . , un).

Clearly Ck(u) = Ck(ũ) if k 6= k1 and k 6= k2, since all polynomials σn
t are

symmetric. Moreover, for k = k1 respectively k = k2 we obtain

Ck1(u) =

(−1)tσn
t−1(. . . , 0︸︷︷︸

k=k1

, . . . , uk2 , . . . )


t=1,...,n

=

(−1)tσn
t−1(. . . , uk1 , . . . , 0︸︷︷︸

k=k2

, . . . )


t=1,...,n

= Ck2(ũ).

It follows,

f(u) = det((C1(u), . . . , Ck1(u), . . . , Ck2(u), . . . , Cn(u)))

= − det((C1(ũ), . . . , Ck2(ũ), . . . , Ck1(ũ), . . . , Cn(ũ)))

= −f(ũ).
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In other words the polynomial f is skew-symmetric. By Proposition E.2 f
can be written in the form

f(u1, . . . , un) =
∏
i<j

(ui − uj) · g(u1, . . . , un)

with a symmetric polynomial g ∈ R[u1, . . . , un]. Note that
∏

i<j(ui−uj) has
degree 1+2+ · · ·+(n−1). By (49), f has degree 1+2+ · · ·+(n−1) and g
is constant. This shows, that DΨ is invertible, if and only if ui 6= uj, i 6= j.
Hence, DΨ is invertible in exactly those points. By the inverse function
theorem, for any u1, . . . , un ∈ UA with ui 6= uj, i 6= j there exists an
open neighborhood O ⊆ Un

A such that Ψ : O → Ψ(O) is a di�eomorphism.
Therefore, Ψ(O) is an open subset ofR(e) = SΣP (A)(A) with respect to P (A).

Proof of Claim 2: For an arbitrary B ∈ P (A)i we construct a continuous
path

ω : [0, 1]→ P (A) with ω(0) = B and ω(1) ∈ SΣP (A)(A).

For the construction we need the following technical result:

Lemma 6.4 Let A ∈ Rn×n.

a) For all r ∈ R∗ there exists u ∈ R \ Spec(A) and a continuous path
α : [0, 1]→ P (A) such that

α(0) = rI and α(1) = (A− uI).

b) For any normed quadratic polynomial p ∈ R[x] without real roots there
exists u ∈ R \ Spec(A) and a continuous path β : [0, 1] → P (A) such
that

β(0) = p(A) and β(1) = (A− uI)2.

c) For any u ∈ R\Spec(A) there exists v ∈ R\Spec(A) and a continuous
path γ : [0, 1]→ P (A) such that

γ(0) = (A− uI) and γ(1) = (A− uI)(A− vI)−1.

d) For any u ∈ R\Spec(A) there exists v ∈ R\Spec(A) and a continuous
path δ : [0, 1]→ P (A) such that

δ(0) = (A− uI)2 and δ(1) = (A− uI)2(A− vI)−2.
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Proof of Lemma 6.4: a) If r < 0 we choose u ∈ R such that u > λ for all
λ ∈ Spec(A)∩R. Otherwise we choose u < λ for all λ ∈ Spec(A)∩R. Now
we de�ne α : [0, 1]→ P (A) by

α(t) = tA+ (−ut+ (1− t)r)I

Note that α(0) = rI, α(1) = A− uI and

α(t) = t (A− (u+ r(1− 1/t))) ∈ P (A)

for t ∈ (0, 1], since 1 − 1/t < 0 and therefore u + r(1 − 1/t) > u if r < 0,
respectively, u+ r(1− 1

t
) < u if r > 0.

b) Let p(x) = (x − w)(x − w) with w ∈ C \ (R ∪ Spec(A)) We �x u ∈
R\Spec(A). Note that C\Spec(A) is pathwise connected since Spec(A) is a
�nite set. Therefore, there exists a continuous a path ζ : [0, 1]→ C\Spec(A)
such that ζ(0) = w and ζ(1) = u. For every t ∈ [0, 1] we de�ne the quadratic
polynomial

pt : x 7→ (x− ζ(t))(x− ζ(t)).
Note that pt ∈ R[x] for all t ∈ [0, 1]. Now let β : [0, 1] → P (A) be the
path t 7→ pt(A). By construction β(t) ∈ P (A) for all t ∈ [0, 1]. Moreover,
β(0) = P (A) and β(1) = (A− uI)2.

c) By a) there exists α : [0, 1] → P (A) such that α(0) = I and α(1) =
A − vI for some v ∈ Spec(A) ∩ R. Therefore, the path γ : [0, 1] → P (A),
t 7→ (A− uI)α(t)−1 ful�lls what is claimed.

d) Let γ be a path with γ(0) = (A − uI) and γ(1) = (A − uI)(A − vI)−1.
Then δ : [0, 1] → P (A), t 7→ γ(t)2 ful�lls δ(0) = (A − uI)2 and δ(1) =
(A− uI)2(A− vI)−2.

Now we continue the proof of Theorem 6.3. For any B ∈ P (A)i there
exists a polynomial p ∈ R[x] such that B = p(A). The real polynomial p
can be decomposed in the form

p(x) = rl1(x) . . . lm1(x)pm1+1(x) . . . pm2(x)

with r ∈ R∗, linear polynomials lj(x) = (x − uj), j = 1, . . . ,m1, and
quadratic polynomials pj : x 7→ (x−wj)(x−wj) with wj ∈ C\(R∪Spec(A)),
j = m1 + 1, . . . ,m2.

By Lemma 6.4 there exist u0, uj ∈ R \Spec(A), j = m1 +1 . . . ,m2, vj ∈
R\Spec(A), j = 0, . . . ,m2 and continuous paths α, βj, γj, δj : [0, 1]→ P (A)
such that

α(0) = rI, α(1) = (A− u0I);
βj(0) = pj(A), βj(1) = (A− ujI)

2, j = m1 + 1, . . . ,m2;
γj(0) = A− ujI, γj(1) = (A− ujI)(A− vjI)

−1, j = 0, . . . ,m1;
δj(0) = (A− ujI)

2, δj(1) = (A− ujI)
2(A− vjI)

−2, j = m1 + 1, . . . ,m2.
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Recall that the product of two paths α, β : [0, 1] → P (A) with β(0) =
α(1) is a path β • α : [0, 1] 7→ P (A) given by

β • α : t 7→
{

α(2t) t ∈ [0, 1
2
];

β(2t− 1) t ∈ [1
2
, 1].

Then ω : [0, 1]→ P (A), de�ned by

ω : t 7→ (γ0 • α)(t) · γ1(t) . . . γm1(t) · (δm1+1 • βm1+1)(t)

is a continuous path with ω(0) = P (A) = B and

ω(1) =

m1∏
k=0

(A− ukI)(A− vkI)
−1

m2∏
k=m1+1

(A− um1+1I)
2(A− vm1+1I)

−2.

In particular we obtain ω(1) ∈ SΣP (A)(A). Hence, every connected compo-

nent P (A)i of P (A) has an element of SΣP (A)(A).

Non cyclic case: We show that Equation (44) also holds for non cyclic
matrices. Obviously,

GΣII
GLn(R)

(TAT−1) = TGΣII
GLn(R)

(A)T
−1 and P (TAT−1) = TP (A)T−1.

In particular we can assume, that A is in block diagonal form

A =

(
A1 0
0 A2

)
such that A1 is cyclic and mA = mA1 (see Appendix D). By Proposition 6.2
it is GΣII

GLn(R)
(A) ⊆ P (A). Moreover, GΣII

GLn1 (R)
(A1) = P (A1) (cyclic case). By

Lemma D.5 Φ : P (A)→ P (A1), p(A) 7→ p(A1) is an isomorphism. Thus,

Φ|G
ΣII

GLn(R)
(A1)

: GΣII
GLn(R)

(A1) → P (A1)

is a homomorphism and by construction surjective. Therefore, P (A1) =
GΣII

GLn1 (R)
(A1) is isomorphic to a subgroup ofGΣII

GLn(R)
(A). Hence, GΣII

GLn(R)
(A) =

P (A). 2

In the sequel we point out three interesting byproducts of Theorem 6.3.
We start with an observation, which will be essential in the analysis of
rational iteration schemes in Section 8.

Corollary 6.5 For all A ∈ Rn×n we have

P (A) =

{
T∏

t=1

(A− utI)(A− vtI)
−1

∣∣∣∣∣ T ∈ N, ut, vt ∈ UA,

}
.
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The claim follows immediately from the equations (45), (46) and (47).
For some A ∈ Rn×n the system semigroup of ΣII(A) is a group, i.e.,

SΣII(A) = GΣII(A), but in general this is not the case17. Nevertheless, from
the proof of Theorem 6.3 we can deduce that the system semigroup of ΣII(A)
is large in a topological sense.

Corollary 6.6 Let A ∈ Rn×n be cyclic.

a) If u1, . . . , uN ∈ UA with at least n pairwise di�erent values then

N∏
t=1

(A− utI)
−1 ∈ intP (A) S(A).

b) intG
ΣII (A)

SΣII(A) 6= ∅,

c) e ∈ intG
ΣII (A)

SΣII(A)

Proof. a) Without loss of generality we assume ui 6= uj for all i 6= j with
i, j ≤ n. Let Ψ : Un

A → P (A) and p ∈ R[x] be de�ned as in equation (48).
Recall that for any u1, . . . , un ∈ UA with ui 6= uj, i 6= j there exists an open
neighborhood O ⊆ Un

A of
∏n

t=1(A−utI)
−1 such that Φ(O) is open in P (A).

The map Υ : P (A)→ P (A), g 7→ g−1p(A) is a homeomorphism. Therefore
Υ ◦ Φ(V ) is open in P (A). Now intP (A) S(A) 6= ∅ follows, since

Υ ◦ Φ(O) =
{
p(A)(Ψ(u1, . . . , un))−1

∣∣ (u1, . . . , un) ∈ O
}

=

{
n∏

t=1

(A− utI)
−1

∣∣∣∣∣ (u1, . . . , un) ∈ O

}
⊆ S(A).

More precisely we have shown, that every
∏n

t=1(A − utI)
−1 with ui 6= uj,

i 6= j is an interior point of S(A). Moreover,
∏N

t=n+1(A− utI)
−1 : P (A)→

P (A) is a homeomorphism. Therefore

N∏
t=1

(A− utI)
−1 ∈

N∏
t=n+1

(A− utI)
−1 (Υ ◦ Φ(O)) ⊆ S(A).

Now we prove c) which immediately implies b). Choose u1, . . . un ∈ UA\{0}
such that ui 6= uj for i 6= j. For any r ∈ R∗ large enough18 we have
Br :=

∏n
t=1(A − rutI)

−1 ∈ intP (A) S(A). Recall that ΣII(A) is an induced

17We will see examples for both cases in Sections 6.5 and 6.8
18r should be large enough such that rui 6= Spec(A) for all i ∈ UA.
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system of ΣII
GLn(R)(A) with respect to some π : GLn(R) → RPn−1. By

Theorem 5.9 and Theorem 6.3 we obtain

Cπ = P (A) ∩ R∗I = P (A) ∩ R∗I = R∗I.

By Theorem 3.7 there exists a continuous group homomorphism Φ : P (A)→
GΣII(A) such that Φ(intP (A) S(A)Cπ) = intG

ΣII (A)
SΣII(A). Therefore, Φ(Br) ∈

intG
ΣII (A)

SΣII(A) for all r ∈ R+ large enough. Following the construction of

Φ (see Theorem 3.7) it follows Φ(Bc) = Φ(B) for all B ∈ P (A) and c ∈ Cπ.
It follows

lim
r→∞

Φ(Br) = lim
r→∞

Φ

(
rn

n∏
t=1

(
1

r
A− utI

)−1
)

= Φ

(
lim
r→∞

n∏
t=1

(
1

r
A− utI

)−1
)

= Φ

(
n∏

t=1

1

ut

I

)
= e.

Hence, e ∈ intG
ΣII (A)

SΣII(A). 2

Finally, Theorem 6.3 provides an interesting property of the set of linear
decomposable polynomials, i.e., of the set

L :=

{
r

T∏
t=1

(x− ut)

∣∣∣∣∣ r ∈ R∗, ut ∈ R

}
.

Corollary 6.7 For any p,m ∈ R[x] such that p and m are coprime, there
exist q1, q2 ∈ L with deg q1 = deg q2 such that

q1p = q2 mod m

Proof. Let A ∈ Rn×n be a matrix with minimal polynomial m ∈ R[x]. By
Theorem 6.3 and Corollary 6.5 it is

P (A) =

{
T∏

t=1

(A− utI)(A− vtI)
−1

∣∣∣∣∣ T ∈ N, ut, vt ∈ UA,

}
.

For any p coprime to m it is p(A) ∈ P (A). Therefore, there exists T ∈ N
and u1, . . . , uT , v1, . . . , vT ∈ R such that

p(A) = q2(A)(q1(A))−1

with q1(x) =
∏T

t=1(x− ut) and q2(x) =
∏T

t=1(x− vt). Hence, q1p = q2 + km
for some k ∈ R[x]. 2
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6.2 Lie group types of GΣII(A)

From Theorem 6.3 we know, that GΣII(A) is a real abelian Lie group of
dimension mA−1. Therefore it must be isomorphic to D×Rk1×Tk2 with a
discrete group D (see [GOV97], Theorem 2.12). Here we denote the additive
group of real numbers with R and the k-dimensional torus with

Tk := S× · · · × S︸ ︷︷ ︸
k-times

.

Note that R∗ ∼= C2 × R and C∗ ∼= R × S where C2 denotes the group with
two elements. In this section we explicitly determine the Lie group type
of GΣII(A), in terms of the minimal polynomial mA of A. Note that parts
of this results were implicitly used (see [KM83], Theorem 1), but to our
knowledge, not explicitly written down and proved.

Theorem 6.8 Let mA = lα1
1 . . . l

αk1
k1
qβ1

1 . . . q
βk2
k2

be the minimal polynomial
of A ∈ Rn×n with coprime linear factors l1, . . . , lk1 and irreducible coprime
quadratic factors q1, . . . , qk2. The group GΣII(A) is isomorphic to

Ck1
2 × Rα1+···+αk1

+2β1+···+2βk2
−k2−1 × Tk2 .

Proof. Equivalently we show that P (A) = GΣII(A)/R∗I is isomorphic to

(R∗ × Rα1−1)× · · · × (R∗ × Rαk1
−1)× (C∗ × Cβ1−1)× · · · × (C∗ × Cβk2

−1).

It is su�cient to prove this relation for the cases mA = (t − λ)α for λ ∈ R
and mA = ((t − λ)(t − λ))β for λ ∈ C \ R. The minimal polynomial is
a product of such polynomials. Thus, the Lie group type of P (A) can be
deduced by Lemma D.5.
(i) Let mA = lα with a linear polynomial l(x) = (x − λ). Without loss of
generality we can assume, that

A =


0 1 0 . . . 0

0 1
. . . . . .

0 1
0

 ∈ Rα×α

since P (TAT−1−λI) ∼= P (A)and P (A) ∼= P (A1) if mA = mA1 (see Lemma
D.5). Recall that

P (A) = span
(
I, A, . . . , Aα−1

)
∩GLα(R).
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The matrix p(A) is invertible, if and only if l(t) = t is coprime to p, i.e.
p(0) 6= 0. Therefore, P (A) is the set of those matrices, which can be ex-
pressed in the form

B = a0I + a1A+ · · ·+ aα−1A
α−1

with α0 ∈ R∗ and αi ∈ R for i = 1, . . . , α− 1. Since Aα = 0 we get(
a0I + a1A+ . . . aα−1A

α−1
) (
b0I + b1A+ . . . bα−1A

α−1
)

= (a0b0I + (a0b1 + a1b0)A+ . . . (a0bα−1 + · · ·+ aα−1b0)A
α−1)

for the product of two elements of P (A). Therefore, P (A) can be expressed
as the abelian matrix Lie group


a0 a1 . . . aα−1

a0 · · ·
. . . a1

a0


∣∣∣∣∣∣∣∣∣ a0 ∈ R∗, αi ∈ R, i = 1, . . . , α− 1

 .

Obviously, P (A) has two connected components and dimension α. There-
fore, P (A) has to be di�eomorphic to C2 × Rα1 × Tα2 with α1 + α2 = α.
Moreover, booth components are convex subsets in Rn×n and therefore sim-
ply connected. Thus, α2 has to be zero. We conclude

P (A) ∼= R∗ × Rα−1.

(ii) Now let mA = qβ with a quadratic irreducible polynomial q. As in (i)
we apply Lemma D.5 to reduce our analysis of a certain type. Without loss
of generality we can assume, that A is a block matrix

A =


B I

B I
. . . I

B

 ∈ R2β×2β with B =

(
0 1
−1 0

)

since

P (J) = P

(
1

Im(λ)
(J − Re(λ)I)

)
for J =

(
Re(λ) Im(λ)
− Im(λ) Re(λ)

)
.

Every polynomial ofA is again a matrix of block-type, with blocks (p(A))i,j ∈
R2×2, i, j = 1, . . . , β. Obviously, (p(A))i,j = 0 for i < j. The diagonal blocks
are equal, i.e., (p(A))i,i = (p(A))j,j. They are invertible, if and only if p is
coprime to mA. By induction it can be shown, that for i > j the block
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(Ak)i,j is a polynomial of B and equal to (Ak)ĩ,j̃ if i− j = ĩ− j̃. It follows,
that

P (A) = {p(A) | p coprime x2 + 1
}

=
{
a0I + · · ·+ a2β−1A

2β−1
∣∣ a0, . . . , a2β−1 ∈ R

}
∩GL2β(R)

is a subgroup of the abelian matrix group

P̃ (A) :=




p(B) p1(B) . . . pβ−1(B)
. . . . . .

. . . p1(B)
p(B)


∣∣∣∣∣∣∣∣∣
p(B) invertible,
pi ∈ R[x]

 .

Now we show, that P̃ (A) is isomorphic to the connected Lie group S×R2β−1.
We express P̃ (A) with a semidirect product of groups isomorphic to C∗,

respectively C. We de�ne the following subgroups of GL2β(R)

P1 :=


 p(B)

. . .

p(B)


∣∣∣∣∣∣∣ p coprime x2 + 1


and for k = 2, . . . , β

Pk :=


Mp(B) :=



I 0 · · · 0
block (1,k)︷︸︸︷
p(B) 0 . . . 0 0

. . . . . .
. . . p(B)

. . .

I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
pi ∈ R[x]


.

Recall that the �eld C is isomorphic to the �eld of matrices

F :=

{(
a b
−b a

) ∣∣∣∣ a, b ∈ R
}
.

Note that {p(B) | p ∈ R[x]} coincides with the set F such that matrix
multiplication in F and {p(B) | p ∈ R[x]} are corresponding. It follows,
that the group P0 is isomorphic to C∗. Moreover, matrix multiplication in
Pk, k = 2, . . . , β corresponds to the addition of two (1, k)-block elements,
i.e., M(pa(B))M(pb(B)) = M(pa(B) + pb(B)). Therefore, Pi is isomorphic
to the additive group C. Every group Pi is a normal subgroup of P̃ (A) since
it is abelian. Moreover, from the structure of the elements it is clear that
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P̃ (A) = P0P1 . . . Pβ−1 and Pi∩Pj = {I} for i 6= j. Hence, P̃A is a semidirect
product of the groups P0, . . . , Pβ−1. We conclude

P̃ (A) ∼= C∗ × Cβ−1 ∼= S× R2β−1.

Now we show, that P̃ (A) = P (A). By Proposition 6.2 it becomes clear, that
dimP (A) = 2β = dim P̃ (A). Therefore, the factor group P̃ (A)/P (A) is
discrete and must be trivial, since P̃ (A) is connected. Hence P (A) = P̃ (A).

(iii) Now let mA = lα1
1 . . . l

αk1
k1
qβ1

1 . . . q
βk2
k2

be the minimal polynomial of A,
with li, qi as in the statement of Theorem 6.8. The Jordan canonical form
is a block matrix with blocks L1, . . . , Lk1 , Q1, . . . , Qk2 with Li ∈ Rαi×αi ,
i = 1, . . . k1 and Qj ∈ R2βj×2βj , j = 1, . . . , k2. By Lemma D.5 we conclude

P (A) ∼= P (L1)× . . . P (Lk1)× P (Q1)× · · · × P (Qk2).

Thus, the claim follows from (i) and (ii). 2
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6.3 Structure of orbits

Now we analyze the structure of system group orbits of ΣII(A). In particular
we show that, similar to the case of complex inverse iteration (see [HF00]),
there is always one "large" orbit, which is open and dense in RPn−1, provided
A is cyclic.

For inverse iteration systems ΣII(A) the state space has a canonical
decomposition in Σ-invariant subspaces. This decomposition is related with
the A-invariant subspaces. We will use the following notation:

De�nition 6.9 Let A be cyclic. We denote the set of A-invariant subspaces
with InvA. For W ∈ InvA \{0} we de�ne InvW

A := {V ∈ InvA |V ⊆ W,V 6=
W} and

NW := W \
⋃

V ∈InvW
A

V ⊆ Rn.

Let π : Rn \ {0} → RPn−1 the canonical projection, i.e. π(x) = span(x).
We de�ne

NW := π(NW ) ⊆ RPn−1.

In the case W = Rn we write NA := NRn , respectively NA := NRn .

Proposition 6.10 The set NW is Σ-invariant for all W ∈ InvA.

Proof. Recall that fu : RPn−1 → RPn−1 is bijective for all u ∈ UA. More-
over, fu(π(V )) = π ((A− uI)−1V ) = π(V ) for all V ∈ InvA. Hence,

fu(NW ) = fu(π(NW ))

= fu(π(W )) \ fu

π
 ⋃

V ∈InvW
A

V


= π

W \
 ⋃

V ∈InvW
A

fu(V )


= NW

2

Now we show, that the sets NW , W ∈ InvA are system group orbits of
ΣII(A), i.e., GΣII(A)x = NW for x ∈ NW .

Lemma 6.11 Let A be cyclic and W ∈ InvA.

a) The map P (A)×NW → NW , (B, v) 7→ Bv is a transitive group action.
Moreover, Stabv = {B ∈ P (A) |B|W = id|W }.
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b) The map GΣII(A) × NW → NW , (g, x) 7→ g · x is a transitive group
action. Moreover, Stabx = {g ∈ GΣII(A) | g|W = id|W }.

Proof. Both maps are group actions. In particular, p(A)v ∈ V for any
p(A) ∈ P (A) and any A-invariant subspace V ⊆ W . Analogously, p(A)v ∈
V implies p(A)−1p(A)v ∈ V and therefore v ∈ W \ V implies P (A)v ∈
W \ V . Hence, p(A)v ∈ NW for all v ∈ NW . Thus, p(A)NW = NW for all
p(A) ∈ P (A). Moreover, g ·NA = NA follows immediately from Proposition
6.10.

Now we show transitivity of P (A) × NW → NW . Let v ∈ NW . Since
v ∈ W , but v /∈ V ∈ InvA for V $ W we have span(v, Av, . . . , Ak−1v) = W
(k := dimW ). In other words, every w ∈ W can be written in the form

w =
k−1∑
i=0

wiA
iv = p(A)v

for some w0, . . . , wk−1 ∈ R and p(t) =
∑k−1

i=0 wit
i. Assume that w ∈ NW .

Then w,Aw, . . . , Ak−1w is a basis of W . Therefore, p(A) is invertible, since
it maps the basis v, Av, . . . Ak−1v on the basis w,Aw, . . . , Ak−1w. Hence, for
all v, w ∈ NW there exists p(A) ∈ P (A) such that p(A)v = w. Moreover, it
follows p(A)v = v if and only if p(A)|W = id|W , since p(A) maps the basis
v, Av, . . . , Ak−1v on itself.
b) For x, y ∈ NA we choose v, w ∈ NA and B ∈ P (A) such that Bv = w
and π(v) = x and π(w) = y. The map g : RPn−1 → RPn−1, z 7→ B · z is
element of GΣII(A) and we obtain

g(x) = B · π(v) = π(Bv) = π(w) = y.

Moreover, g(x) = x with x ∈ NA if and only if g|W = id|W . 2

Now we show, that the adherence structure of the system group orbits
can be described by the lattice structure of the A-invariant subspaces.

De�nition 6.12 Let InvA be the set of nontrivial A-invariant subspaces.
The subspace graph19 GA = (←, InvA \{0}) is given by the vertices InvA and
the relation

U ← V :⇔ U ⊆ V.

Note that the subspace graph of A is �nite, provided A is cyclic. The
following example illustrates this concept.

19 Note that InvA together with the relation U ← V :⇔ U ⊆ V forms a lattice
structure . The subspace graph is a subgraph of the corresponding Hasse diagram.
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Example 6.13 For

A =

 0 1 0
0 0 0
0 0 1


we obtain InvA = (span (e2), span (e3), span (e1, e2),R3). The subspace graph
is given by

span (e3) R3oo //

��

span (e3)

span (e1, e2)

77ooooooooooo

Theorem 6.14 Let A ∈ Rn×n be cyclic, ΣII(A) be the inverse iteration
system of A. The orbit graph GO(ΣII(A)) and the subspace graph GA are
isomorphic.

Proof. By Lemma 6.11 the sets NW , W ∈ InvA coincide with the system
group orbits of ΣII(A). Therefore, the map

Ψ : InvA → {GΣII(A) · x |x ∈ RPn−1}, W 7→ NW

is surjective. Moreover, Ψ is injective, since V 6= W implies NW 6= NV .
Finally we show, that Ψ preserves the graph structure, i.e. V ⊆ W if

and only if Ψ(V ) ← Ψ(W ). Let v ∈ V such that GΣII(A) · v = NV . Then

v ∈ NW and therefore

π(v) ∈ π(NW ) ⊆ π(NW ) = NW .

The set NW is a union of system group orbits (see Proposition 3.10). There-
fore,

NV = GΣII(A) · π(v) ⊆ GΣII(A) · NW = NW .

Hence, V ⊆ W implies NV ⊆ NW . Conversely, if v ∈ V \W , then there
exists an open set O ⊆ Rn/W such y ∈ O. It follows

π(v) ∈ NV ∩ π(O) ⊆ RPn−1 \ NW .

Hence, Ψ(V ) 6← Ψ(W ). 2

In particular, there is always one system group orbit of ΣII(A) which
corresponds to Rn ∈ InvA. Now we show, that this orbit is open and dense
in the state space.

Theorem 6.15 Let A ∈ Rn×n and ΣII(A) = (RPn−1, UA, fA) be the classi-
cal inverse iteration system corresponding to A.
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a) If A is cyclic then there exists one open and dense system group orbit.
More precisely, NA is open and dense in RPn−1 and GΣII(A) · x = NA

for all x ∈ NA.

b) If A is not cyclic then every system group orbit has empty interior in
RPn−1.

Proof. a) Since A is cyclic, it has �nitely many A-invariant subspaces
(see D.3). Therefore,

⋃
V ∈InvA

V is the union of �nitely many proper sub-
spaces. Hence, NA = Rn \

⋃
V ∈InvA

V is open and dense in Rn. Moreover,
NA = π(NA) is open and dense in RPn−1, since π is open, continuous and
surjective.
b) If A is not cyclic, every x ∈ Rn is element of some proper A-invariant sub-
space W . Therefore, R(x) ⊆ π(W ). The claim follows, since dim π(W ) =
dimW − 1 < dim RPn−1. 2
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6.4 Controllability properties

In this section we discuss controllability properties of ΣII(A). If W is a
proper A-invariant subspace, then x ∈ π(W ) implies R(x) ⊆ π(W ). There-
fore, ΣII(A) is not controllable, provided there exists proper A-invariant
subspaces20. On the other hand, in the previous section we have shown,
that there exists an open and dense orbit, provided A is cyclic. Following
Section 3.8 we can restrict ΣII(A) to NA.

De�nition 6.16 (Restricted inverse iteration system) Let A ∈ Rn×n

be cyclic and ΣII(A) = (RPn−1, UA, fA) be the corresponding classical in-
verse iteration system. Then

ΣII(A)|NA
= (NA, UA, fA|NA×UA

)

is the restricted inverse iteration system (with respect to NA).

Now the question arises if ΣII(A)|NA
is controllable. The analogous

question for complex arithmetic was solved by Helmke and Fuhrmann (see
[HF00]). Here, the restricted system is controllable if and only if A is
cyclic. For real arithmetic, Helmke and Wirth already pointed out, that
there exists families of cyclic matrices such that ΣII(A)|NA

is not controllable
(see [HW01]). Moreover, using a topological approach via controllable sets,
Helmke and Wirth showed the following:

Theorem 6.17 (Helmke, Wirth [HW01]) Let A ∈ Rn×n be cyclic and
mA its minimal polynomial. Then the following statements are equivalent.

(i) System ΣII(A)|NA
is controllable.

(ii) System ΣII(A)|NA
is approximatively reachable from some x ∈ NA.

(iii) There exists r ∈ R∗ and a control sequence u = (u0, . . . , uT−1) such
that

T−1∏
t=0

(A− utI) = rI

and for Φ : UT
A × NA → NA, (u0, . . . , uT−1, x) 7→

∏T−1
t=0 (A − utI) · x

the rank-condition

rank
∂Φ(x, u)

∂u
= n− 1

holds for all x ∈ NA.

(iv) There exists a polynomial k ∈ R[x] and a constant α ∈ R∗. such that
α+ kmA ∈ L and α+ km has at least n− 1 di�erent roots.

20Note that this is always the case if n ≥ 3.
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Proof. All proofs are given in [HW01]. See Theorem 3 for the implications
(i)⇔ (ii)⇔ (iii) and Theorem 5 for (i)⇔ (iv). 2

In [HW01] the authors widely neglected the fact that the reachable sets
are semigroup orbits. We are able to extend their results in di�erent as-
pects. In particular, we show equivalent conditions for controllability of the
restricted systems with respect to the properties of the entire system.

Theorem 6.18 Let A ∈ Rn×n be cyclic. Consider the inverse iteration
system ΣII(A).Then the following statements are equivalent.

(i) ΣII(A)|NA
is controllable.

(ii) SΣII(A) = GΣII(A).

(iii) ΣII(A) is approximatively reachable from some x ∈ NA.

(iv) For all x ∈ NA, all y ∈ RPn−1 and all neighborhoods U ⊆ RPn−1 of y
there exists a control sequence u0, . . . uN ∈ U such that xn ∈ U .

(v) ΣII(A) is weakly reversible.

(vi) ΣII(A) is densely reachable.

(vii) The reachable structure and the orbit structure of ΣII(A) coincide.

(viii) There exists a �nite number of di�erent reachable sets.

(ix) S(A)R∗ := {Br |B ∈ S(A), r ∈ R∗} = P (A).

Proof. (i)⇔ (ii): Since GΣII(A) acts transitively on NA, statement (ii) im-
plies controllability of ΣII(A)|NA

. Conversely, controllability of ΣII(A)|NA

implies SΣII(A)|NA

= GΣII(A)|NA

by Theorem 2.39. Recall that NA is dense in

RPn−1 (see Theorem 6.15). Therefore, SΣII(A)|NA

= GΣII(A)|NA

is equivalent

to SΣII(A) = GΣII(A) by Theorem 3.12.
(ii) ⇒ (v): Obviously, (ii) implies R(x) = GΣII(A) · x for all x ∈ RPn−1.
Now, weakly reversibility follows by Lemma 2.35.
(iv) ⇒ (iii): Obviously, (iv) implies R(x) = RPn−1 and therefore approxi-
mative reachability from x.
(i) ⇒ (iv): If y ∈ NA there exists a �nite control sequence u0, . . . , uN ,
N ∈ N such that xN = y for xt+1 = f II(xt, ut), x0 = x. If y ∈ ∂NA, then
the existence of a control sequence u0, . . . , uN with xn ∈ U is assured by
Theorem 2.46,b).
(v) ⇒ (iii): If ΣII(A) is weakly reversible, then R(x) = GΣII(A) · x for
all x ∈ RPn−1 (see Lemma 2.35). In particular SΣII(A) · x = NA for any
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x ∈ NA, since GΣII(A) acts transitively on NA. Hence, ΣII(A) is approxi-
matively reachable from x ∈ NA, since NA is dense in RPn−1.
(iii) ⇔ (i) ⇔ (vi): By Theorem 3.12, ΣII(A)|NA

is abelian and smoothly
invertible. Moreover, GΣII(A)|NA

has a Lie group structure (isomorphic to

P (A)/R∗I) such that GΣII(A)|NA

×NA → NA, (g, x) 7→ g(x) is smooth and,

by Lemma 6.11, transitive. By Corollary 6.6, we have intG
ΣII (A)

SΣII(A) 6= ∅.
By Corollary 2.49 it follows, that (i) is equivalent to dense reachability of
ΣII(A)|NA

.
(v)⇔ (vii): This equivalence is a immediate consequence of Theorem 4.6.
(vii)⇒ (viii): By Theorem 6.14 there exists a bijection between the set of
A invariant subspaces and the system group orbits of ΣII(A). Since A is
cyclic there exists a �nite number of A-invariant subspaces (see D.3). As-
suming (vii), there exist �nitely many reachable sets.
(viii)⇒ (iii): Recall that NA is a system group orbit of ΣII(A) (see Propo-
sition 6.11). If ΣII(A) has only a �nite number of reachable sets, then
ΣII(A)|NA

has only a �nite number of reachable sets. Thus, from Corollary

4.9 it follows, that ΣII(A)|NA
is reachable from one x ∈ NA. Since NA is

dense in RPn−1, system ΣII(A) is approximatively reachable from x.
(ii) ⇔ (ix) Recall that that R∗I ⊆ P (A) (see Theorem 6.3). More-
over, ΣII(A) is an induced system of ΣII

GLn(R)(A) with respect to some

π : GLn(R) → RPn−1. Here, Cπ = P (A) ∩ R∗I = R∗I (see Theorem
5.9). Now the claim follows by Theorem 3.6, i.e., SΣII (A) is a group if and
only if S(A)Cπ = P (A). 2

Note that S(A) = P (A) implies S(A)R∗ = P (A). The following example
shows, that the converse is wrong in general.

Example 6.19 Consider ΣII(A) for

A :=

(
0 −1
1 0

)
.

We show that S(A)R∗ is a group but S(A) is not. Obviously,

B :=

(
1 −1
1 1

)−1

∈

{
N∏

t=1

(
−ut −1
1 −ut

)−1
∣∣∣∣∣N <∞, ut ∈ R

}
= S(A).

We assume that B−1 ∈ S(A), i.e., there exist shift parameters u1, . . . , uN ∈
R such that B−1 =

∏N
t=1(A− utI)

−1. Then

det(B−1) = det

(
N∏

t=1

(
−ut −1
1 −ut

)−1
)

=
N∏

t=1

1

u2
t + 1

≤ 1,
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which is a contradiction to det(B) = 1
2
. We conclude, B−1 /∈ S(A). Hence,

S(A) is not a group. On the other hand, the inverse of (A− uI)−1 ∈ S(A)
is given by

A− uI = (u2 + 1)A−1A−1(A+ uI)−1 ∈ S(A)R∗.

Hence, S(A)R∗ is a group.
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6.5 Conditions for S(A)R∗ 6= P (A)

Theorem 6.18 shows, that in order to �nd out if ΣII(A)|NA
is controllable

or not, it is enough to check S(A)R∗ = P (A), which is a property of matrix
semigroups21. The question if S(A)R∗ = P (A) is given or not only depends
on the canonical form of A. More precisely we have:

Lemma 6.20 Let A ∈ Rn×n be cyclic, T ∈ GLn(R), µ ∈ R and γ ∈ R∗.
Then S(A)R∗ = P (A) if and only if S(γTAT−1−µI)R∗ = G(γTAT−1−µI)

Proof. Obviously, S(γTAT−1 − µI)R∗ = T (S(A− µ
γ
I))T−1R∗. Moreover,

S

(
A− µ

γ
I

)
=

{
N∈N∏
t=0

((A− µ

γ
I)− vtI)

−1

∣∣∣∣∣ N ∈ N, vt ∈ UA−µ
γ

I

}

=

{
N∈N∏
t=0

(A− utI)
−1

∣∣∣∣∣ N ∈ N, ut ∈ UA

}
= S(A).

Now the claim follows, since R∗I ⊆ G(B) for all B ∈ GLn(R) and therefore

G(γTAT−1 − µI) =
〈
S(γTAT−1 − µI)

〉
=

〈
S(γTAT−1 − µI)R∗〉

=
〈
T (S(A)R∗)T−1

〉
= T 〈S(A)〉T−1R∗

= TP (A)T−1.

2

Recall that every matrix A ∈ Rn×n is similar to its real Jordan canonical
form

JA =


J1

J2

. . .

Jk


21instead of SΣII (A) = GΣII (A) which is a property of a semigroup generated by maps

f : RPn−1 → RPn−1.
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such that every block Jj corresponds to the eigenvalue λj respectively to
the pair (λj, λj) and has one of the following types:

Type 1: Jj = (λj) ∈ R1×1

Type 2: Jj =


λj 1
0 λj 1

. . .

λj 1
. . . 0 λj

 ∈ Rkj×kj , kj ≥ 2

Type 3: Jj =

(
Re(λj) Im(λj)
− Im(λj) Re(λj)

)
∈ R2×2, Imλj 6= 0

Type 4: Jj =


J I

J I
. . .

J

 ∈ Rkj×kjwith J of Type 3

Proposition 6.21 Let J ∈ Rn×n be a matrix of Type k ∈ {1, 2, 3, 4}.

a) If J is of Type 1 or 3 then S(J)R∗ = G(J).

b) If J is of Type 4 then S(J)R∗ 6= G(J).

c) If J is of Type 2 then S(J)R∗ = G(J) if and only if n = 2.

Proof. (i) assume that J is of Type 1. Since S(J) = S(J − λI) we obtain
S(J) = S(J)R∗ = R∗ = G(J).
(ii) Now let n = 2 and J of Type 2. Without loss of generality we assume
λ = 0, since S(J) = S(J − λI). Recall that

G(J) = P (J) = GL2(R) ∩ span(I, A)

(see (43)). Thus

G(J) = {aI + bJ | a, b ∈ R} ∩GL2(R)

=

{(
a b
0 a

) ∣∣∣∣ a ∈ R∗, b ∈ R
}
.

For b 6= 0 we obtain (
a b
0 a

)
= b

(
0− u 1

0 0− u

)
with u := −a

b
. This shows S(J)R∗ = G(J). By Corollary 6.6 have

intP (A) S(A) 6= ∅ and therefore intP (A) S(A)R∗ 6= ∅. Thus we conclude
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S(J)R∗ = G(J) by Lemma B.6.

(iii) Now we assume, that J is of Type 3. The characteristic polynomial of
J is χJ(t) = t2 − 2 Re(λ)t+ |λ|2. We obtain

G(J) = {aI + bJ | a, b ∈ R} ∩GL2(R)

=

{(
a b
−b a

) ∣∣∣∣ a2 + b2 6= 0

}
.

For b 6= 0 we get(
a b
−b a

)
= r

(
Re(λ)− u Im(λ)
− Im(λ) Re(λ)− u

)
with r = b

Im(λ)
and u = Re(λ)− a

b
Im(λ). Again we conclude S(J)R∗ = G(J)

by Corollary 6.6 and Lemma B.6.
(iv) Let J be a matrix of Type 2 with minimal polynomial (x− λ)n, n ≥ 3.
Again we may assume that λ = 0. Assume that I ∈ (S(J)R∗)−1, i.e.,
I = q(J) for a linear decomposable polynomial q. Then

1 = q(x) + k(x)xn (50)

with k ∈ R[x]. Derivation gives us q′(x) = −xn−1(nk(x) + xk′(x)). Since
zero is a root of q′ with degree at least 2, zero is also a root of q. This
contradicts (50). Hence, I /∈ (S(J)R∗)−1 and therefore S(J)R∗ 6= P (A).
(v) Let J be of Type 4 with characteristic polynomial p(x)n such that p is
quadratic and irreducible. Assume I ∈ (S(J)R∗)−1,i.e., I = q(J) for a linear
decomposable polynomial q. Then 1 = q + kpn with k ∈ R[x] and therefore
q′ = p(k′pn−1 +nkpn−1p′). It follows q′ /∈ L. This is a contradiction to q ∈ L
(see Theorem E.4). Hence, I /∈ (S(J)R∗)−1 and therefore S(J)R∗ 6= G(J).

2

Lemma 6.22 Let A ∈ Rn×n be a block-diagonal cyclic matrix

A =

(
A1 0
0 A2

)
with A1 ∈ Rn1×n1 , A2 ∈ R(n−n1)×(n−n1).

If S(A1)R∗ 6= P (A1) then S(A)R∗ 6= P (A).

Proof. By Lemma B.5 we have P (A1) \ S(A1)R∗ 6= ∅. Choose p ∈ R[x]
such that p(A1) ∈ P (A1) \S(A1)R∗ 6= ∅. Without loss of generality22 p(A2)
is invertible. Then p(A) ∈ P (A). On the other hand, P (A) 6= S(A)R∗,
since p(A) = q(A) with q ∈ L implies p(A1) = q(A1). 2

22Recall that P (A1) = span(I,A1, . . . , A
n1−1
1 )∩GLn1(R) (see (43)). Therefore, p(A1)+

εI ∈ GLn1(R) for all except �nitely many ε ∈ R.
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In general, the assumptions S(A1)R∗ = P (A1) and S(A2)R∗ = P (A2)
for a block matrix

A =

(
A1 0
0 A2

)
do not imply S(A)R∗ = P (A). An example for this is given by

A1 = (0) and A2 =

(
0 1
−1 0

)
.

This is one of the consequences of the following theorem.

Theorem 6.23 Let A be cyclic and spec(A) ⊆ C the set of eigenvalues of
A ∈ Rn×n.

a) If there exists a real eigenvalue λ of multiplicity at least three, then
S(A)R∗ 6= P (A).

b) If there exists a pair of eigenvalues λ, λ ∈ C\R of multiplicity at least
two, then S(A)R∗ 6= P (A).

c) If there exist eigenvalues λ1, λ2 ∈ Spec(A) of multiplicity one with
Re(λ1) = Re(λ2) but Im(λ1) 6= Im(λ2), then S(A)R∗ 6= P (A).

d) If there exists eigenvalues λ1, λ2, λ3 ∈ Spec(A) of multiplicity one,
with λ1 ∈ C \ R and λ2, λ3 ∈ R such that Reλ1 = λ2+λ3

2
and λ2 <

Reλ1 + Imλ1, then S(A)R∗ 6= P (A).

e) If there exists eigenvalues λ1, λ2, λ3 ∈ Spec(A) of multiplicity one,
with Re(λ3) < Re(λ1) < Re(λ2), Re(λ2)+Re(λ3) = 2 Reλ1, Im(λ2) =
Im(λ3) and Im(λ2)

2 > (Re(λ2)−Re(λ1))
2 + (Imλ1)

2, then S(A)R∗ 6=
P (A).

Proof. a) and b) is an immediate consequence of Proposition 6.21 and
Lemma 6.22. For the proofs of c),d) and e) we show that the assumption I ∈
(S(A)R∗)−1 implies, that the eigenvalues of A do not form a constellation
as assumed. It follows, that S(A)R∗ 6= P (A).
c) We distinguish between the case where λ1 ∈ R and where λ1 6∈ R.
(i) Let λ1 ∈ R. Then in the canonical form of A is a block of the type

J =

 Re(λ2) Im(λ2) 0
− Im(λ2) Re(λ2) 0

0 0 λ1

 .

By Lemma 6.20 we can assume

J =

 0 1 0
−1 0 0
0 0 0


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since λ1 = Re(λ2). Assuming I ∈ (S(A)R∗)−1, there exist controls u1, . . . , uT ∈
R \ {0} such that both of the following equations are ful�lled.

(I) I2 = r
T∏

t=1

((
0 1
−1 0

)
− utI

)

(II) 1 = r
T∏

t=1

(−ut).

Applying the determinant function B 7→ det(B) on Equation (I) we obtain

1 = r2

T∏
t=1

(1 + u2
t ),

which is a contradiction to Equation (II), since r 6= 0. Hence, I 6∈ (S(J)R∗)−1

and by Lemma 6.22 we obtain S(A)R∗ 6= GA.
(ii) Now let λ1 ∈ C \ R. Then in the canonical form of A is a block of the
type

J =


Re(λ1) Im(λ1) 0 0
− Im(λ1) Re(λ1) 0 0

0 0 Re(λ2) Im(λ2)
0 0 − Im(λ2) Re(λ2)

 .

By Lemma 6.20 we can assume

J =


0 1 0
−1 0 0
0 0 0 β
0 0 −β 0


with β > 0 since Re(λ1) = Re(λ2). Suppose there exist controls u1, . . . , uT ∈
R \ {0} such that I = r

∏T
t=1(A − utI) for any r ∈ R∗, then both of the

following equations are ful�lled

(I) I2 = r
T∏

t=1

((
0 1
−1 0

)
− utI

)

(II) I2 = r

T∏
t=1

((
0 β
−β 0

)
− utI

)
.

As in (i) we apply the determinant function B 7→ det(B) on (I) and (II)
and we obtain

r2

T∏
t=1

(1 + u2
t ) = r2

T∏
t=1

(β2 + u2
t ).
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Since r 6= 0, we obtain β = 1. But then J is a matrix of Type 4 and
Theorem 6.21 implies S(A)R∗ 6= P (A).
d) If λ1 ∈ C \R and λ2, λ3 ∈ R with Reλ1 = λ1+λ2

2
then the canonical form

of A has a block J of the form

J =


Re(λ1) Im(λ1) 0 0
− Im(λ1) Re(λ1) 0 0

0 0 λ2 0
0 0 0 λ3

 .

By Lemma 6.20 we can assume

J =


0 1 0 0
−1 0 0 0
0 0 α 0
0 0 0 −α


with α = λ2−Re(λ1)

Im(λ1)
> 0. Note that α < 1 by assumption. Suppose there

exist controls u1, . . . , uT ∈ R \ {0} such that I = r
∏T

t=1(A − utI) for any
r ∈ R∗, then both of the following equations are ful�lled

(I) I2 = r

T∏
t=1

((
0 1
−1 0

)
− utI

)

(II) I2 = r
T∏

t=1

((
α 0
0 −α

)
− utI

)
The determinant function applied on Equation (I) and Equation (II) yields

r2

T∏
t=1

(α− ut)(−α− ut) = r2

T∏
t=1

(1 + u2
t ).

But this is a contradiction, since r 6= 0 and 1+u2
t > |u2

t −α2|. We conclude
S(A)R∗ 6= P (A).
e) (i) First we assume, that Imλ1 6= 0. Without loss of generality, A has a
block of the type

J =


Re(λ1) Im(λ1) 0 0 0 0
− Im(λ1) Re(λ1) 0 0 0 0

0 0 Re(λ2) Im(λ2) 0 0
0 0 − Im(λ2) Re(λ2) 0 0
0 0 0 0 Re(λ3) Im(λ3)
0 0 0 0 − Im(λ3) Re(λ3)


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such that Im(λ1), Im(λ2), Im(λ3) > 0 and Re(λ3) < Re(λ2) < Reλ1. Using
Lemma 6.20 we transform the problem on the matrix

J =


0 α 0 0 0 0
−α 0 0 0 0 0
0 0 1 γ 0 0
0 0 −γ 1 0 0
0 0 0 0 −1 γ
0 0 0 0 −γ −1

 .

Here, α = 2 Im(λ1)
Re(λ2)−Re(λ3)

and γ = 2 Im(λ2)
Re(λ2)−Re(λ3)

. Suppose there exist controls

u1, . . . , uT ∈ R \ {0} such that I = r
∏T

t=1(A − utI) for any r ∈ R∗, then
the following three equations are ful�lled

(I) 1 = r
T∏

t=1

((
0 α
−α 0

)
− utI

)
,

(II) I2 = r
T∏

t=1

((
1 γ
−γ 1

)
− utI

)
,

(III) I2 = r
T∏

t=1

((
−1 γ
−γ −1

)
− utI

)
.

Applying the determinant function on (I), (II) and (III) we obtain

r2

T∏
t=1

((1− ut)
2 + γ2) = r2

T∏
t=1

((1 + ut)
2 + γ2) = r2

T∏
t=1

(u2
t + α2).

In particular it holds

T∏
t=1

(
((1− ut)

2 + γ2)((1 + ut)
2 + γ2)

)︸ ︷︷ ︸
:=pγ(ut)

=
T∏

t=1

(u2
t + α2)2︸ ︷︷ ︸
:=pα(ut)

. (51)

Note that pγ(ut) > 0 and pα(ut) > 0. Moreover,

pγ(ut)− pα(ut) = u4
t − 2u2

t + 1 + γ2 + γ2u2
t + γ4 − u4

t + 2u2
t + α2 + α4

= (2γ2 − 2− 2α2)︸ ︷︷ ︸
C1

u2
t + (1 + 2γ2 + γ4 − α4)︸ ︷︷ ︸

C2

.

By assumption we have

Im(λ2)
2 > (Re(λ2)− Re(λ1))

2 + (Imλ1)
2

⇔ (2 Im(λ2))
2 − (Re(λ2)− Re(λ1))

2 > (2 Im(λ1))
2

⇔ γ2 − 1 > α2.
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Therefore, C1 > 0 and C2 > 0. It follows pγ(ut) > pα(ut) which contradicts
(51). We conclude I /∈ (S(A)R∗)−1 and therefore S(A)R∗ 6= P (A).

(ii) Now we assume, Im(λ1) = 0. Without loss of generality, A has a block
of the type

J =


0 0 0 0 0
0 1 γ 0 0
0 −γ 1 0 0
0 0 0 −1 γ
0 0 0 −γ −1

 .

Now γ = Im(λ2)
Re(λ2)−λ1

. By assumption we obtain γ ≥ 1. Suppose there exist

controls u1, . . . , uT ∈ R \ {0} such that I = r
∏T

t=1(A− utI) for any r ∈ R∗.
Then (II), (III) of (ii) are ful�lled. Moreover it is

(I∗) 1 = r
T∏

t=1

(−ut)

Applying the determinant function on (I∗), (II) and (III) we obtain

r2

T∏
t=1

((1− ut)
2 + γ2) = r2

T∏
t=1

((1 + ut)
2 + γ2) = r2

T∏
t=1

u2
t .

In particular it holds

T∏
t=1

(
((1− ut)

2 + γ2)((1 + ut)
2 + γ2)

)︸ ︷︷ ︸
:=pγ(ut)

=
T∏

t=1

u4
t

which is a contradiction, since γ ≥ 1 implies

pγ(ut) = u4
t + (1 + γ2)2 + 2u2

t (γ
2 − 1) > u4

t

We conclude S(A)R∗ 6= P (A). 2

Recall that S(A)R∗ 6= P (A) implies, that ΣII(A) restricted on NA is not
controllable. Therefore, Theorem 6.23 veri�es the following controllability
results of Helmke and Wirth (see [HW01], Proposition 8,i, Corollary 10,i
and Corollary 10,i-ii). .

Theorem 6.24 (Helmke and Wirth [HW01]) Let A ∈ Rn×n be a cyclic
matrix. If the eigenvalue constellation coincides with one of the eigenvalue
constellations in Theorem 6.23, then ΣII(A)|NA

is not controllable.
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Recall that a matrix A ∈ Rn×n is called skew-symmetric if A> = −A>,
and respectively Hamiltonian, if n is even and

A>J + JA = 0 for J =

(
0 I
−I 0

)
.

Now an immediate consequence of Theorem 6.23 is the following.

Corollary 6.25 Let A ∈ Rn×n.

a) If n ≥ 3 and A is skew-symmetric, then S(A)R∗ 6= P (A) and ΣII(A)|NA

is not controllable .

b) If A is a cyclic Hamiltonian matrix with eigenvalue λ1 ∈ iR. If there
exists λ2 ∈ Spec(A) such that Im(λ2)

2 − Re(λ2)
2 > Im(λ1)

2 then
S(A)R∗ 6= P (A) and ΣII(A)|NA

is not controllable.

Proof. Eigenvalues of skew-symmetric matrices are of the form ir with
r ∈ R. Therefore, claim a) is a consequence of statement c) in Theorem
6.23. Hamiltonian matrices have the property, that for any eigenvalue λ
also −λ is an eigenvalue. The conditions in claim b) imply, that there
exist λ2, λ3 ∈ Spec(A) such that Re(λ2) + Re(λ2) = 2 Re(λ1) = 0. and
Im(λ2)

2 −Re(λ2)
2 > Im(λ1)

2. Hence, S(A)R∗ 6= P (A) by Theorem 6.23,e).
2
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6.6 Conditions for S(A)R∗ = P (A)

Using the results of the previous section one easily construct inverse iteration
systems ΣII(A)|NA

which are not controllable. On the other hand, there
exists a large set of matrices, such that S(A)R∗ = P (A), which implies
controllability of ΣII(A)|NA

. In the following we present three su�cient
conditions for S(A)R∗ = P (A).

If A is in block diagonal form A = diag(A1, . . . , Ak), then S(A)R∗ =
P (A) implies S(Ai)R∗ = P (Ai), i = 1, . . . , k (Lemma 6.22). Note that the
converse is wrong in general. An example for that will be given in Section
6.8.2. The following result, provides a strategy, for checking if a block matrix
with S(Ai)R∗ = P (Ai), i = 1, . . . , k ful�lls S(A)R∗ = P (A).

Theorem 6.26 Let A be a cyclic block-diagonal matrix A = diag(A1, . . . , Ak)
with Ai ∈ Rni×ni and n1 + · · · + nk = n. Assume that for any i = 1, . . . , k
there exists a dense subset Mi of P (Ai) such that for any p(Ai) ∈Mi there
exists q ∈ L such that

(i) q(Ai) = p(Ai),

(ii) q(Aj) = Inj
for j 6= i.

Then S(A)R∗ = P (A).

Proof. Since A is cyclic, the minimal poynomial of A is the product of the
minimal polynomials of A1, . . . , An. Thus, P (A) ∼= P (A1) × · · · × P (Ak)
(see Lemma D.5). For any p(A) ∈M1 × · · · ×Mk we choose q1, . . . , qk such
that (i) and (ii) are ful�lled. Then

q1(A) . . . qk(A) = diag(q1(A1), I, . . . , I) . . . diag(I, . . . , I, qk(Ak)) = p(A).

Recall that intP (A) S(A)R∗ 6= ∅ (see Corollary 6.6). Moreover,M1×· · ·×Mk

is dense in P (A). Thus S(A)R∗ = P (A), by Lemma B.6. 2

For the next su�cient condition for S(A)R∗ = P (A), we use the fact,
that P (A) is a topological group.

Theorem 6.27 Let A ∈ Rn×n be cyclic. Then S(A)R∗ = P (A) if and only
if I ∈ intP (A) S(A)R∗.

Proof. We show that S(A)R∗ intersects every connected component P (A)i

of P (A) = P (A). Then, the equivalence follows from Lemma B.4. For
any B ∈ P (A)i we choose p ∈ R[x] such that B−1 = p(A). p can be
decomposed as p(x) = q(x)p1(x) . . . pm(x) with q ∈ L and pj, j = 1, . . . ,m
normed quadratic non-irreducible polynomials. By Lemma 6.4 there exists
u1, . . . , um ∈ R \ Spec(A) and continuous paths βj : [0, 1] → P (A), j =
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1, . . . ,m such that βj(0) = pj and βj(1) = (A− ujI)
2. Therefore, the path

ω̃ : [0, 1] → P (A) de�ned by ω̃ : t 7→ q(A)β1(t) . . . βm(t) ful�lls ω̃(0) =
(P (A))−1 = B and

ω̃(1) = q(A)−1

m∏
t=1

(A− utI)
−2 ∈ S(A)R∗.

2

For the remaining part of Section 6.6 we deal with matrices, where every
eigenvalue is real. We will use the following technical result.

Lemma 6.28 Let p ∈ R[x] be a polynomial of degree k − 1. For every
sequence λ1 ≤ · · · ≤ λk ∈ R there exists M ∈ R such that f(x) := p(x) −
M
∏k

i=1(x− λi) is linear decomposable.

Proof. Let q(x) :=
∏k

i=1(x − λi). We de�ne x0 < x1 < · · · < xk such
that xi /∈ {λ1, . . . , λk}. Moreover, we de�ne y0 = q(x0) and yi+1 :=
− sgn yi|q(xi+1)|, i = 0, . . . , k − 1. By construction yi 6= 0 and

sgn yi = − sgn yi+1 for i = 0, . . . , k. (52)

Now we de�ne

C := 1 + max
x∈[x0,xk]

|p(x)|, D := min
i=0,...,k

|yi|, and M := −C
D
.

Obviously, the polynomial

f := p−Mq (53)

has degree deg f = deg q = k. In the following we show, that f has k dif-
ferent real roots and therefore f ∈ L.

We have

Mq(xi) =

(
1 + max

x∈[x0,xk]
|p(x)|

)
·
(

yi

minj=0,...,k |yj|

)
and therefore Mq(xi) > p(xi) if yi > 0, respectively, Mq(xi) < p(xi) if
yi < 0. It follows sgn f(xi) = sgn yi for all i = 0, . . . , k. By (52) we obtain

sgn(f(xi)) = − sgn(f(xi+1), for i = 0, . . . , k − 1.

Now the mean value theorem yields that f has k di�erent real roots. Hence,
f ∈ L. 2
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Theorem 6.29 If all eigenvalues of A are real and have multiplicity at
most two, then S(A)R∗ = P (A).

Proof. We show, that for any p ∈ R[x] there exists q ∈ L such that
p(A) = q(A). Let λ1 ≤ · · · ≤ λn be the eigenvalues of A. By Lemma 6.20
we can assume that A is block diagonal

A =

 A1

. . .

Ak


with Ai = (λi), and respectively Ai =

(
λi 1
0 λi

)
. Note that

p(A) =

 p(A1)
. . .

p(Ak)


with p(Ai) = (p(λi)) and respectively p(Ai) =

(
p(λi) p′(λi)

0 p(λi)

)
.

By Lemma 6.28 there existsM ∈ R such that q(x) := p(x)−M
∏k

i=1(x−λi)
is linear decomposable. Note that p(λi) = q(λi). Moreover, p′(λi) = q′(λi)
if λi = λi+1. Hence, p(A) = q(A) and therefore S(A)R∗ = P (A). 2

Note that Theorem 6.29 veri�es another result of Helmke and Wirth.

Theorem 6.30 (Helmke and Wirth [HW01], Proposition 8,ii) If all
eigenvalues of a cyclic matrix are real and have multiplicity at most two,
then ΣII(A)|NA

is controllable.

Note that Theorem 6.30 shows, that ΣII(A)|NA
is controllable for an

open set of matrices A ∈ Rn×n. All conditions we have found implying
S(A)R∗ 6= P (A) assume certain symmetries in the constellation of eigenval-
ues of A and are therefore nongeneric (see Section 6.5). It remains unclear,
whether controllability of ΣII(A)|NA

holds for a generic subset of Rn.

We �nish this section with two interesting byproducts of Lemma 6.28,
which give new insight on the theory of linear decomposable polynomials.

Corollary 6.31 Every real polynomial of degree k−1 can be written as the
sum of two linear decomposable polynomials of degree k.

Proof. Let p ∈ R[x] of degree k − 1. Following 6.28 we write p = f + q
with f ∈ L and q(x) = M

∏k
i=1(x− λi) ∈ L. Moreover, deg f = deg q = k.

2
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For any λ1 < · · · < λk and b1, . . . , bk ∈ R there exists a unique polyno-
mial p ∈ R[x] of degree k−1 such that f(λi) = bi for i = 1, . . . , k. This fact
is known as the Lagrange interpolation theorem. In the following we show
a similar theorem for linear decomposable polynomials.

Theorem 6.32 (Interpolation theorem) Let λ1 < · · · < λk ∈ R and
b1, . . . , bk ∈ R. There exists a linear decomposable polynomial f ∈ L of
degree k such that f(λi) = bi.

Proof. Following the Lagrangian interpolation theorem, there exists a
unique polynomial p ∈ R[x] of degree k − 1 such that p(λi) = bi, i =
1, . . . , k. From Lemma 6.28 we deduce the existence of M ∈ R such that
f(x) := p(x)−M

∏k
i=1(x− λi) is linear decomposable. Hence, deg(f) = k

and
f(λi) = p(λi)− 0 = bi.

2
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6.7 Structure of reachable sets

In the following we analyze the adherence structure of the reachable sets for
classical inverse iteration systems. If R∗S(A) = P (A) then the adherence
structure of the reachable sets is already given by the orbit graph (see The-
orem 6.18). Therefore, we focus on the case R∗S(A) 6= P (A). Nevertheless,
our �rst observation holds in both cases.

Proposition 6.33 Let A ∈ Rn×n cyclic.

a) For any x, y ∈ NA there exists z, z̃ ∈ NA such that R(z) ⊆ R(x)∩R(y)
and R(x) ∪R(y) ⊆ R(z̃).

b) For any x ∈ NA we have x ∈ R(x).

c) If v is an eigenvector with respect to a real eigenvalue λ with multi-
plicity k, then π(v) ∈ R(x) for any x ∈ NA.

Proof. a) Recall that ΣII(A) is an abelian system and therefore right
divisible as well as left divisible. Thus, claim a) follows from Theorem 4.8.
b) Recall that NA is open and dense in RPn−1. Therefore, we obtain

CNA
= {g ∈ GΣII(A) | g|NA

= id|NA
} = {e}.

Moreover, we have e ∈ SΣII(A) by Corollary 6.6. Thus, x ∈ R(x) follows
from Theorem 4.12.
c) We choose a basis, such that

A =

(
Aλ 0

0 Ã

)
with Aλ =


λ 1

. . . . . .
. . . 1

λ

 ∈ Rk×k

and Ã ∈ R(n−k)×(n−k). Then v = (1, 0 . . . , 0)> and λ is not an eigenvalue of
Ã. Without loss of generality we assume that x0 := π

(
(1, 1 . . . , 1)>

)
∈ NA.

By choosing ut = λ− 1
t
we obtain

lim
t→∞

(A− utI)
−1 · x0 = π

(
limt→∞(Aλ − utIk)

−1ek

(Ã− λIn−k)
−1en−k

)
with ek = (1, . . . , 1)> ∈ Rk and en−k = (1, . . . , 1)> ∈ Rn−k. Since

(Aλ − utIk)
−1 = t


1 −t t2 . . . (−t)k−1

1 −t . . . (−t)k−2

. . . . . . . . .
. . . . . .

1


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it follows limt→∞ (A− utI)
−1 · x0 = π(v) Thus, π(v) ∈ R(x). By Theorem

4.18 it follows π(v) ∈ R(x) for all x ∈ NA.
2

Now we focus on the case S(A)R∗ 6= P (A). Here the complexity of the
reachable graph is much higher then the complexity of the orbit graph. In
particular, there exist in�nitely many reachable sets (see Theorem 6.18).
More precisely, the reachable sets within NA have the following structure.

Theorem 6.34 Let A ∈ Rn×n be cyclic such that S(A)R∗ 6= P (A).

a) For any y ∈ NA, there exists a sequence (yt)t∈N in NA such that

(i) y1 = y,

(ii) R(yt+1) ⊇ intNA
R(yt); ∀t ∈ N0,

(iii)
⋃∞

t=0 intNA
R(yt) is dense in NA,

(iv) intNA
(NA \ R(yt)) 6= ∅

(v) (yt)t∈N converges to some zy ∈ ∂NA.

b) If there exists z ∈ RPn−1 \ NA and x ∈ NA such that

GΣII(A) · z ∩R(x) = ∅,

then GΣII(A) · z is repelling to NA.

Proof. a) Recall that NA is open and therefore locally compact. Since
GΣII(A) acts continuously on NA and intG

ΣII (A)
SΣII(A) 6= ∅ we can apply

Theorem 4.10, a). Thus, for any y ∈ NA there exists a sequence (yt)t∈N
ful�lling (i), (ii) and (iii). Assuming that intNA

(NA \ R(yt)) = ∅ for one
t ∈ N, then ΣII(A)|NA

is approximatively reachable from yt ∈ NA. But
this implies S(A)R∗ = P (A) by Theorem 6.18. Thus (iv) is ful�lled for
all t ∈ N. Since RPn−1 is compact, (yt)t∈N has a convergent subsequence.
Since any subsequence of (yt)t∈N also ful�lls (i), (ii), (iii) and (iv) we may
assume that (yt)t∈N converges to zy ∈ RPn−1. The assumption zy ∈ NA

implies that ΣII(A)|NA
is controllable (see Theorem 4.10, b). But then

SΣII(A)|NA

= GΣII(A)|NA

by Theorem 2.39, SΣII(A) = GΣII(A) by Theorem

3.12 and S(A)R∗ = P (A) by Theorem 6.18. Thus, zy ∈ ∂NA.
b) Recall that GΣII(A)·z is Σ-invariant. SinceNA is open and dense in RPn−1

we have RPn−1\NA = ∂NA. By Theorem 4.18, GΣII(A) ·z∩R(x) = ∅ implies

GΣII(A) · z ∩ R(y) = ∅ for any y ∈ NA. Thus GΣII(A) · z is repelling to NA.
2
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In Theorem 6.23 we presented certain eigenvalue constellations where
P (A) 6= S(A)R∗. Now Theorem 6.34 implies the appearance of repelling
phenomena for these eigenvalue constellations. For a pair of complex eigen-
values λ, λ of A we call

Eλ := π
(
{x ∈ Rn \ {0} | (A2 − 2 Re(λ) + |λ|2I)x = 0}

)
⊆ RPn−1

the eigenspace corresponding to λ. Here, π : Rn \ {0} → RPn−1 denotes the
canonical projection. Note that Eλ is a Σ-invariant subspace of ΣII

A .

Corollary 6.35 Let A ∈ Rn×n be cyclic and spec(A) := {λ1, . . . λn} the set
of eigenvalues of A.

a) Let λ1 ∈ R λ2 ∈ C \R and Re(λ1) = Re(λ2), each with multiplicity 1.
Then the eigenspace corresponding to λ2, λ2, is repelling to NA.

b) Let λ1, λ2 ∈ C \ R with Re(λ1) = Re(λ2) but | Im(λ1)| < | Im(λ2)|.
Then the eigenspace corresponding to λ2 is repelling to NA.

Proof. Without loss of generality we may assume that the matrices are of
size Rn×n with n = 3, and respectively n = 4. Let x ∈ NA. All eigenspaces
of A are elements of ∂(GΣ · x), since NA is open and dense in RPn−1. By
Theorem 6.34 it is su�cient to show that R(x) ∩ E = ∅ for one E ∈ NA.
a) Let λ1 ∈ R. Then in the canonical form of A is

J =

 Re(λ2) Im(λ2) 0
− Im(λ2) Re(λ2) 0

0 0 λ1

 .

By Lemma 6.20 we can assume

J =

 0 1 0
−1 0 0
0 0 0


since λ1 = Re(λ2). Recall that

GA :=


 b c 0
−c b 0
0 0 a

∣∣∣∣∣∣ a 6= 0, b2 + c2 6= 0

 .

In Theorem 6.35 we have already seen, that not all elements of GA can be
realized with elements in S(A)R∗. In particular, assuming b c 0

−c b 0
0 0 a

 ∈ S(A)R∗
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implies that there exists T ∈ N and ut ∈ U such that

(I)

(
b c
−c b

)
= r

T∏
t=1

((
0 1
−1 0

)
− utI

)−1

(II) a = r
T∏

t=1

(−ut)
−1.

Applying the determinant function B 7→ det(B) on Equation (I) and (II)
we obtain

b2 + c2

a2
=

T∏
t=1

u2
t

1 + u2
t

.

Hence, b2 + c2 < a2. Now we show that R(x) ∩ span(e1, e2) = ∅ for x =
(1, 1, 1)>, e1 = (1, 0, 0)> and e2 = (0, 1, 0)>. Assume that there exists a
sequence snx → αe1 + βe2 6= 0 with sn ∈ S(A)R∗. Then bn + cn → α,
bn − cn → β with α2 + β2 6= 0 and an → 0. But this is impossible since

a2
n > b2n + c2n = α2 + β2.

b) By Lemma 6.20 we can assume

J =


0 1 0
−1 0 0
0 0 0 β
0 0 −β 0


with β > 1 since Re(λ1) = Re(λ2). Recall that

GA :=




a b 0 0
−b a 0 0
0 0 c d
0 0 −d c


∣∣∣∣∣∣∣∣ a

2 + b2 6= 0, c2 + d2 6= 0

 .

Suppose g ∈ GA is an element of S(A)R∗ then there exist controls u1, . . . , uT ∈
R \ {0} such that I = r

∏T
t=1(A − utI) for any r ∈ R∗, then both of the

following equations are ful�lled

(I)

(
a b
−b a

)
= r

T∏
t=1

((
0 1
−1 0

)
− utI

)

(II)

(
c d
−d c

)
= r

T∏
t=1

((
0 β
−β 0

)
− utI

)
.
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Using the determinant function it follows

a2 + b2

c2 + d2
=

T∏
t=1

β2 + u2
t

1 + u2
t

> 1.

Similar to (i) we obtain R(x) ∩ span(e3, e4) = ∅ for x = (1, 1, 1, 1)>, e3 =
(0, 0, 1, 0)> and e4 = (0, 0, 0, 1)>. Assume, that there exists a sequence
snx → γe3 + δe4 6= 0 with sn ∈ S(A)R∗. Then bn + cn → 0, bn − cn → 0,
cn + dn → γ and cn − dn → δ with γ2 + δ2 6= 0. But this is impossible since

a2
n + b2n > c2n + d2

n = γ2 + δ2.

2
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6.8 Inverse iteration on RPn−1 for small dimensions

We �nish our analysis of classical inverse iteration systems with the inves-
tigation of reachable sets for matrices A ∈ Rn×n, n = 2, 3, 4. A necessary
condition for the existence of large reachable sets, in the sense that they have
open interior in RPn−1, is that A is cyclic (see Theorem 6.15). Therefore, we
focus on systems ΣII(A) with respect to cyclic matrices A ∈ Rn×n. Recall
that the adherence structure of reachable sets of ΣII(A) is invariant to sim-
ilarity transformations. Therefore, we may assume, that A is given in Jor-
dan canonical form. Then, the A-invariant subspaces are spanned23 by the
canonical basis vectors e1, . . . , en. The orbit graph is easily obtained, since
it is �nite and isomorphic to the subspace graph (see Theorem 6.14). The
reachable graph is either isomorphic to the orbit graph (if P (A) = S(A)R∗)
or in�nite (if P (A) 6= S(A)R∗).

6.8.1 Inverse iteration on RP1

Any cyclic matrix A ∈ R2×2 has a Jordan canonical form of the following
types:

Type 1:

(
λ1 0
0 λ2

)
with λ1, λ2 ∈ R and λ1 6= λ2,

Type 2:

(
λ 1
0 λ

)
with λ ∈ R,

Type 3:

(
Reλ Imλ
− Imλ Reλ

)
with Imλ 6= 0.

By Proposition 6.21 and Theorem 6.29 we always have GΣII(A) = SΣII(A).
This veri�es the known fact, that the restricted system ΣII(A)|NA

is always
controllable, provided n = 2 (See [HW01], Proposition 12,a). Thus, the
reachable graph and the orbit graph coincide. Thus, the reachable graph
GR(ΣII(A) is given by

Nspan(e1) NA
oo // Nspan(e2)

if A is diagonalizable (Type 1),

Nspan(e1) NA
oo

if A has an real eigenvalue of multiplicity 2 (Type 2) and trivial otherwise
(Type 3).

23but not every subspace spanned by canonical basis vectors is an A-invariant subspace
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6.8.2 Inverse iteration on RP2

For the case n = 3 there exist four di�erent types of cyclic Jordan canonical
forms. More precisely, A is similar to one of the following matrices

Type 1:

 λ1 0 0
0 λ2 0
0 0 λ3

 with λ1, λ2, λ3 ∈ R and λ1 < λ2 < λ3,

Type 2:

 λ1 0 0
0 λ2 1
0 0 λ2

 with λ1, λ2 ∈ R and λ1 6= λ2,

Type 3:

 λ 1 0
0 λ 1
0 0 λ

 with λ ∈ R,

Type 4:

 λ1 0 0
0 Reλ2 Imλ2

0 − Imλ2 Reλ2

 with λ1 ∈ R and Imλ2 6= 0.

For Type 1 and Type 2 we obtain GΣII(A) = SΣII(A) by Theorem 6.29.
Thus, the reachable graph and the orbit graph coincide. If A is diagonaliz-
able (Type 1), the reachable graph is given by

NA

��vvnnnnnnnnnnnnnnnnnnnnnnnnnnnn

((PPPPPPPPPPPPPPPPPPPPPPPPPPPP

Nspan(e1,e2))

  B
BB

BB
BB

BB
BB

BB
BB

B

((PPPPPPPPPPPPPPPPPPPPPPPPPP
Nspan(e1,e3)

~~}}
}}

}}
}}

}}
}}

}}
}}

  A
AA

AA
AA

AA
AA

AA
AA

A
Nspan(e2,e3)

~~}}
}}

}}
}}

}}
}}

}}
}}

vvnnnnnnnnnnnnnnnnnnnnnnnnnn

Nspan(e1) Nspan(e2) Nspan(e3)

If A has two di�erent real eigenvalues (Type 2), the reachable graph is given
by

NA

wwpppppppppppp

''NNNNNNNNNNNN

Nspan(e1,e2)

xxppppppppppp

&&NNNNNNNNNNN
Nspan(e2,e3)

xxppppppppppp

Nspan (e1) Nspan (e2)
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If A has one real eigenvalue of multiplicity 3 (Type 3), then the orbit graph
is given by

Nspan(e1) Nspan(e1,e2)
oo NA

oo

By Theorem 6.23 we have GΣII(A) 6= SΣII(A). Thus, there exist in�nitely
many reachable sets in NA. For each of this reachable sets R(y) we have

span(e1) = Nspan(e1) ⊆ R(y) ( R(y2) ( R(y3) . . .

for a sequence (yt)t ∈ NA (see Proposition 6.33 and Theorem 6.34). Thus,
neither Nspan(e1) nor Nspan(e1,e2) is repelling with respect to NA.
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1
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Figure 2: Inverse Iteration for A ∈ R3×3 with Spec(A) = {0, i,−i}
(Type 4, Constellation 1). The picture shows possible states of the ini-
tial point x0 = span(−0.3, 0.8, 0.854) projected on the unit disk. The ori-
gin corresponds to π(span(e1)). The boundary of the disk corresponds to
π(span(e2, e3)). On the left hand side we see R1(x0), i.e., the set of all
states which can be reached using only one control. On the right hand side
we see more possible states after using more then one controls. It is not
possible to steer x0 for any sequence of shifts closer than a certain distance
(depending on x0) to π(span(e2, e3)) (see Corollary 6.35).

If A is of Type 4, then the orbit graph is given by

Nspan(e1) NA
oo // Nspan(e2,e3)

The adherence structure of reachable sets depends on the constellations of
the eigenvalues. We have to distinguish between two cases.
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Constellation 1: If λ1 = Reλ2 then P (A) 6= R∗S(A) by Theorem 6.23.
Thus, the reachable graph has in�nitely many vertices. However, for any
x ∈ NA we obtain Nspan(e1) ⊆ R(x) (see Proposition 6.33). In fact, we can
steer any initial state in NA arbitrary close to span(e1) with only one control
(see Figure 2). On the other hand Nspan(e2,e3) is repelling with respect to

NA, i.e., R(x) ∩Nspan(e2,e3) = ∅ for all x ∈ NA (see Corollary 6.35).
Constellation 2: Now let λ1 6= Reλ2. We show that SΣII(A) = GΣII(A)

and therefore GR(ΣII(A)) ∼= GO(ΣII(A)). By Lemma 6.20 we assume

A =

(
A1 0
0 A2

)
with A1 = (1) and A2 =

(
0 ω
−ω 0

)
for some ω > 0. Recall that

P (A) =
{
αI + βA+ γA2

∣∣ α, β, δ ∈ R
}
∩GL3(R)

=


 a 0 0

0 b c
0 −c b

∣∣∣∣∣∣ a 6= 0, b2 + c2 6= 0

 .

We de�ne M1 = R∗ and

M2 =

{(
b c
−c b

) ∣∣∣∣ b 6= − 1

ω
, c 6= 0, b2 + c2 6= 0

}
.

Note that M2 is dense in P (A2).
Now we apply Theorem 6.26, i.e., we show:

Statement (i) For any p(A1) ∈ M1 there exists q ∈ L such that q(A1) =
p(A1) and q(A2) = I2.
Statement (ii) For any p(A2) ∈ M2 there exists q ∈ L such that q(A2) =
p(A2) and q(A1) = 1.
(i) Let

qu(t) =
1

−(u2 + ω2)
(t− u)(t+ u) with u ∈ UA.

Then qu(A2) = I2 and qu(A1) = u2−1
u2+ω2 . Note that the image of the map

u 7→ qu(A1) is [− 1
ω2 , 0)∪ (0, 1). Thus, in the case ω < 1 there exists u ∈ UA

such that q2
u(A1) = 1 and we are done.

In the case ω ≥ 1 it is much more complicated to �nd an adequate q ∈ L
with the desired requirements. The following construction is similar to the
arguments in the proof for Proposition 12 in [HW01]. We de�ne

V :=
{
(u1, u2) ∈ (UA)2 |αu1,u2 := arg ((−u1 + iω)(−u2 + iω)) ∈ πQ

}
.

Note that V is dense in R2. Moreover, for any (u1, u2) ∈ V we have

((A2 − u1I2)(A2 − u2I2))
m = T

(
(ru1,u2e

αu1,u2 )2m 0

0 (ru1,u2e
αu1,u2 )2m

)
T−1

= r2m
u1,u2

I2
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for T ∈ GL2(C), r2
u1,u2

= |(−u1 + iω)(−u2 + iω)|2 and some m ∈ N.
Now we show the existence of a pair (u1, u2) ∈ V such that

|(1− u1)(1− u2)|2 > r2
u1,u2

. (54)

(54) is equivalent to

u1u2 >
1

2

ω4 + (ω2 − 1)(u1 + u2)
2 + 2(u1 + u2)− 1

1− (u1 + u2) + ω2
. (55)

Clearly, the set of solutions of (55) is nonempty. In particular the choice
u1 = u2 yields

0 >
1

2
(ω4 + (ω2 − 1)(2u)2 + 4u− 1− u2(ω2 + 1− 2u)

which has solutions for any ω ∈ R+. Thus, there exists (u1, u2) ∈ V such
that (54) is ful�lled.

Then, qu1,u2(t) := ((t− u1)(t− u2)) ∈ L ful�lls

1

r2m
u1,u2

qm
u1,u2

(A2) = I2 and
1

r2m
u1,u2

qm
u1,u2

(A1) > 1.

This proves that for any r > 0 (and in particular for r = 1) there exists
kr ∈ N and u ∈ UA such that(

1

r2m
u1,u2

qm
u1,u2

)kr

qu(A1) = r and

(
1

r2m
u1,u2

qm
u1,u2

)kr

qu(A2) = I2.

(ii) For any p(A2) =

(
b c
−c b

)
∈ M2 we choose q(t) = c

ω
(t− bω). Clearly

q(A2) = p(A2) and q(A1) = c
ω
(1 + bω). From (i) we know, that there ex-

ists q̃ ∈ L such that q̃(A1) = 1
c
ω

(1+bω)
and q̃(A2) = I2. Thus, qq̃ ful�lls

qq̃(A2) = p(A2) and qq̃(A1) = 1.
From (i) and (ii) we conclude S(A)R∗ = P (A) by Theorem 6.26 and there-
fore SΣII(A) = GΣII(A). In particular this shows that there exists a con-
trol sequence which steers any initial state x0 ∈ NA arbitrary close to
π(span(e2, e3)). However, from the proof it is not clear if the number of
steps is limited. In Figure 3 we see a possible trajectory for such a steering.

Recall that ΣII(A)|NA
is controllable if and only if S(A)R∗ = P (A).

Thus, the results in Section 6.8.2 verify the controllability results of Helmke
and Wirth in [HW01] (Proposition 12,b). Moreover, we have character-
ized the cases where repelling phenomena occur. The following Theorem
summerizes the results of this subsection.
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Figure 3: Inverse Iteration for A with eigenvalues λ1 = 0.1, λ2 = i
and λ3 = −i. Again we see possible states of the initial point x0 =
π(−0.3, 0.8, 0.854) projected on the unit disk. Here, there exists a sequence
of controls such that the sequence of states converges to π(span(e2, e3)).

Theorem 6.36 Consider classical inverse iteration for a cyclic matrix A ∈
R3×3.

a) The restricted system ΣII(A)|NA
is controllable if and only if A is of

Type 1, of Type 2 or of Type 4 with λ1 6= Reλ2.

b) The repelling phenomenon occurs if and only if A is of Type 4 with
λ1 6= Reλ2.
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6.8.3 Inverse iteration on RP3

In the case n = 4 any cyclic matrix is similar to one of the following types:

Type 1:


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 λ1, λ2, λ3, λ4 ∈ R,
λi 6= λj for i 6= j;

Type 2:


λ1 0 0 0
0 λ2 0 0
0 0 λ3 1
0 0 0 λ3

 λ1, λ2, λ3 ∈ R,
λi 6= λj for i 6= j;

Type 3:


λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

 λ1, λ2 ∈ R,
λ1 6= λ2;

Type 4:


λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

 λ1, λ2 ∈ R,
λ1 6= λ2;

Type 5:


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 with λ ∈ R;

Type 6:


λ1 0 0 0
0 λ2 0 0
0 Reλ3 Imλ3

0 − Imλ3 Reλ3

 λ1, λ2 ∈ R,
λ1 6= λ2,
Imλ3 6= 0;

Type 7:


Reλ1 Imλ1 0 0
− Imλ1 Reλ1 0 0

0 Reλ2 Imλ2

0 − Imλ2 Reλ2


Imλ1 6= 0,
Imλ2 6= 0,
λ1 6= λ2,

λ1 6= λ2;

Type 8:


Reλ Imλ 0 0
− Imλ Reλ 1 0

0 Reλ Imλ
0 − Imλ Reλ

 with Imλ 6= 0.

If A is of Type 1, Type 2 or Type 3, then P (A) = S(A)R∗ by Theorem
6.29. Thus, the reachable sets and their adherence structure are completely
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described by the orbit graph. If A is of Type 1, the orbit graph is given by
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If A is of Type 2, the orbit graph is given by
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If A is of Type 3, the orbit graph is given by
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If A is of Type 4, Type 5 or Type 8, then we have P (A) 6= S(A)R∗ by
Theorem 6.23. Thus the reachable graph is in�nite. Nevertheless, the cor-
responding orbit graphs are easy to deduce by Theorem 6.14. If A is of
Type 4, the orbit graph is given by
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If A is of Type 5, the orbit graph is given by
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If A is of Type 8, the orbit graph is given by
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If A is of Type 6, the orbit graph is given by
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The answer to the question if S(A)R∗ = P (A) or not, depends on the con-
stellations of the eigenvalues. By Theorem 6.23 we have S(A)R∗ 6= P (A)
if Reλ3 = λ1+λ2

2
and λ1 < Reλ3 + Imλ3. However, it is unknown if

S(A)R∗ = P (A) holds for any other constellation (of Type 6).

Now we assume that A is of Type 7. The orbit graph is given by

NA

yyssssssssss

%%KKKKKKKKKK

Nspan(e1,e2) Nspan(e3,e4)

If Reλ1 = Reλ2, then S(A)R∗ 6= P (A) by Theorem 6.23. It is unknown,
if equation S(A)R∗ = P (A) holds for any other eigenvalue constellation (of
Type 7).

The following theorem summarizes Section 6.8.3 with respect to the
controllability properties of the restricted system ΣII(A)|NA

.

Theorem 6.37 Consider classical inverse iteration on RP3 for a cyclic ma-
trix A ∈ R4×4.

a) If A is of Type 1, Type 2 or Type 3 then ΣII(A)|NA
is controllable.

b) If A is of Type 4, Type 5 or Type 8 then ΣII(A)|NA
is not controllable.

c) If A is of Type 6 with 2 Reλ3 = λ1 + λ2 and λ1 < Reλ3 + Imλ3 or of
Type 7 with Reλ1 = Reλ2 then ΣII(A)|NA

is not controllable.

In the remaining cases it is unclear, if ΣII(A)|NA
is controllable. In particular

it is unclear if the set of all cyclic matrices A ∈ R4×4, where ΣII(A)|NA
is

controllable is generic in R4×4.
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7 Generalized inverse iteration systems

Classical inverse iteration schemes are mainly designed for eigenvector com-
putation. Therefore, their dynamic naturally evolves on the projective
space. Nevertheless, di�erent generalizations appear in several situations,
such as in the dynamics of the QR algorithm. In the following we investi-
gate inverse iteration systems on �ag manifolds (Section 7.1), on Hessenberg
varieties (Section 7.2)and on real vector spaces (Section 7.3). The following
setting generalizes classical inverse iteration together with all these cases.

De�nition 7.1 (Generalized inverse iteration system) LetM be a topo-
logical space and α : GLn(R) ×M → M be a transitive group action. For
a given matrix A ∈ Rn×n, we de�ne UA := R \ Spec(A) and

f II
A : (x, u) 7→ (A− uI)−1 · x.

We call the corresponding system ΣII(A) := (M,UA, f
II
A ) the inverse itera-

tion system of A on M (with respect to α).

In particular the case M = RPn−1 with the canonical action yields classical
inverse iteration. Clearly, the system group of ΣII(A) is related to the
matrix semigroup

S(A) :=

{
T∏

t=1

(A− utI)
−1 |T ∈ N, ut ∈ UA

}
.

More precisely we obtain:

Proposition 7.2 Consider the generalized inverse iterations system ΣII(A)
:= (M,UA, f

II
A ) with respect to a group action α. The system group GΣII(A)

of an inverse iteration system of A on M with respect to α is isomorphic to
the group P (A)/(P (A) ∩ CM) where CM :=

⋂
x∈M Stabx.

Proof. Recall that 〈S(A)〉 = P (A) (see Theorem 6.3). Two matrices
B, B̃ ∈ P (A) induce the same maps x 7→ B ·x, respectively x 7→ B̃ ·x if and
only if BB̃−1 is an element of Stabx for all x ∈M . Therefore, the kernel of
the group homomorphism Φ : P (A)→ GΣ, Φ(B) : x 7→ B · x is P (A)∩CM .

2

7.1 Inverse iteration on �ag manifolds

In this section we consider inverse iteration systems on �ag manifolds, i.e.,
ΣII(A) = (Flag(d,Rn), UA, f

II
A ) with respect to the canonical group action

GLn(R)× Flag(d,Rn)→ Flag(d,Rn), g · V = (g(V1), . . . , g(Vk)))
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for V = (V1, . . . , Vk). See Appendix F for an introduction on �ag man-
ifolds and Section 5.2.1 for general results on systems on �ag manifolds.
In particular, inverse iteration systems on complete �ag manifolds, i.e.,
Flag(Rn) = Flag(d,Rn) with d = (1, 2 . . . , n−1), are of interest. In this situ-
ation, ΣII(A) is closely related to the shiftedQR algorithms. More precisely,
a QR-step applied on an operator A− uI ∈ GLn(R) with respect to a basis
e1, . . . , en of Rn is equivalent to one power iteration step xt+1 = (A−uI)xt.
See [AM86, Amm86, Wat82] for a more detailed description.

The structure of reachable sets for inverse iteration on Flag(Rn) is much
more complicated as in the classical case. The main reason lies in the fact
that the orbit graph is in�nite, even if A is cyclic.

Theorem 7.3 Consider the inverse iteration system ΣII(A) on Flag(d,Rn).

a) If n ≥ 3 and d /∈ {(1), (n − 1)} then Flag(d,Rn) is a partition of
in�nitely many di�erent systemgroup orbits.

b) If A is cyclic and d1 = 1 then the following statements are equivalent.

(i) S(A)R∗ = P (A).

(ii) The reachable structure GR(ΣII(A)) coincides with the orbit struc-
ture GO(ΣII(A)).

(iii) There exists V = (V1, . . . , Vk) ∈ Flag(d,Rn) with V1 ∈ NA such
that GΣII(A) · V = RΣII(A)(V).

Proof. Both statements can be deduced from the results of Section 3 and
Section 5.2.1. Consider

ΣII
GLn(R)(A) = (GLn(R), UA, f̂

II) with f̂ II(g, u) = (A− uI)−1g.

Recall that here GΣII
GLn(R)

(A) = S(A) and GΣII
GLn(R)

(A) = P (A). We choose

a reference �ag V = (V1, . . . , Vk). Then, ΣII(A) is an induced system of
ΣII

GLn(R)(A) with respect to πV : GLn(R) → Flag(d,Rn), x 7→ g · V (see

Theorem 5.9) and thus, CπV = R∗I. Moreover, GΣII
GLn(R)

(A) = P (A) and

thus, by Theorem 5.9, Cπ = R∗I.
a) Recall that P (A) is a Lie group of dimension m − 1 where m is the
degree of the minimal polynomial of A. Moreover, GΣII(A) carries a Lie
group structure such that GΣII(A) is isomorphic to P (A)/CπV and therefore,
dimGΣII(A) < n− 1. Thus, dimGΣII(A) · V , which is an immersed subman-
ifold by Theorem 2.5, is smaller then n − 1. Now the claim follows, since
dim Flag(d,Rn) ≥ n (see Appendix F).
b) (i)⇔ (ii): Recall that GO(ΣII(A)) coincides with GR(ΣII(A)) if and only
if ΣII(A) is weakly reversible (see Theorem 4.6). Thus, (i) ⇔ (ii) follows
from Theorem 5.8.
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(i)⇒ (iii): Assuming, S(A)R∗ = P (A) we have

RΣII(A)(V) = RΣII(A)(πV(I)) = πV(S(A)R∗I) = GΣII(A) ·πV(I) = GΣII(A) ·V

(see Lemma 3.3). Thus, (i) implies (iii).
(iii) ⇒ (ii): If g ∈ StabV , then g(V1) = V1. Thus, g ∈ R∗I by Lemma
6.11. It follows that StabV ∩P (A) ⊆ R∗I. This implies, that GΣII(A) · W =
RΣII(A)(W) for all W ∈ Flag(d,Rn) (see Theorem 5.9). Therefore, ΣII(A)
is weakly reversible by Lemma 2.35. Hence, GO(ΣII(A)) and GR(ΣII(A))
coincide. 2

Chu and Chu pointed out, that in general a shifted QR transformation,
and therefore inverse iteration on Flag(Rn), is not necessarily invertible
by a sequence of shifted QR transformations (see ([CC06]). The system
semigroup approach explains this phenomenon. In Section 6.5 we have seen
various cases, where S(A)R∗ 6= P (A). In this case, not every iteration step
is invertible, i.e., there exists u ∈ UA such that

N∏
t=1

(A− utI)
−1 · ((A− uI)−1 · V) 6= V

for any �nite control sequence u1, . . . , uN ∈ UA.
Since there exist in�nitely many system group orbits, it is useful to merge

related reachable sets to larger classes. The following de�nition provides
a coarser partition of �ag manifolds by unions of reachable sets. In the
following we focus on the case of complete �ag manifolds Flag(Rn).

De�nition 7.4 ForA ∈ Rn×n we denote the set ofA-invariant subspaces by
InvA. Two �ags V = (V1, . . . , Vn−1) ∈ Flag(Rn) and U = (U1, . . . , Un−1) ∈
Flag(Rn) are called equivalent if

dim(Uj ∩W ) = dim(Vj ∩W )

for all W ∈ InvA and all j = 1, . . . , n − 1. We denote the set of all �ags
equivalent to V by [V ]. Moreover, we de�ne a directed graph G[ ](Σ

II(A)) =
(V[ ],←−) by the set of equivalence classes V[ ] := {[V ] | V ∈ Flag(Rn)} and
the relation

[U ]←− [V ] :⇔ [U ] ⊆ [V ].

Theorem 7.5 Consider the inverse iteration system ΣII(A) on Flag(Rn).

a) Every class [V ] is the disjoint union of system group orbits.

b) Let A be cyclic. There exists one class [V ] such that [U ] ←− [V ] for
any U ∈ Flag(Rn)
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c) If [U ]←− [V ], then dim(Uj∩W ) ≥ dim(Vj∩W ) for all W ∈ InvA, j =
1, . . . , n− 1.

Proof. a) Let V ∈ Flag(Rn) and W ∈ InvA. Recall that P (A) acts transi-
tively on NW := W \

⋃
ImvW

A
V (see Lemma 6.11). It follows

dim(Vj ∩W ) = dim(p(A)Vj ∩W )

for any p(A) ∈ P (A) and any j = 1, . . . , n−1 and therefore GΣII(A) ·V ⊆ [V ].
Thus, [V ] is the union of all system group orbits GΣII(A) · U with U ∈ [V ].
b) If A is cyclic then InvA is �nite and

⋃
W∈InvA \{Rn}W is nowhere dense

in Rn. Therefore, for any U ∈ [U ], we �nd a sequence (Vt)t∈N such that
Vt → U and

dim(W ∩ V t
k ) = min{0, dimV + dimW − n} ≤ dim(W ∩ Uj)

with Vt = (V t
1 , . . . , V

t
n−1). Thus, [U ]←− [V ].

c) The projection

πj : Flag(Rn)→ Grassj(Rn), V 7→ Vi

is continuous, and the map

FW : Grassi → N0, V 7→ dim(W ∩ V )

is upper semicontinuous, i.e., Vk → V implies FW (Vk) ≤ FW (V ) for k large
enough. Therefore, the map FW,j : Flag(Rn) → N0, FW,j := FW ◦ πj is

upper semicontinuous, for all W ∈ InvA and all j = 1 . . . , n−1. If [U ] ⊆ [V ]
then every U in [U ] can be approached with a sequence (Vk)k∈N in [V ]. I.e.,
Vk → U . Thus,

FW,j(Vk) = dim(W ∩ (Vj)k) ≤ dim(W ∩ Uj)

for all W ∈ InvA and j = 1, . . . , n− 1. 2

Theorem 7.5 allows us to present information about the adherence struc-
ture of reachable sets as a �nite graph.

Example 7.6 We consider the inverse iteration system ΣII(A) on Flag(d,Rn)
with d = (1, 2) and with respect to

A =

 1 0 0
0 0 −1
0 1 0

 .

Recall that S(A)R∗ = P (A) (see Section 6.8.2). Thus the system group
orbits and the reachable sets coincide. By Theorem 7.5 every class [V ] is
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the disjoint union of reachable sets. There exist two nontrivial A-invariant
subspaces E1 := span(e1) and E2 := span(e2, e3). We identify the equiva-
lence classes [ ] with the values of the map Φ : Flag(R3)→ {0, 1, 2}4 de�ned
by

(V1, V2) 7→ (dim(V1 ∩ E1), dim(V2 ∩ E1), dim(V1 ∩ E2), dim(V2 ∩ E2)) .

Note that Φ is not surjective. Clearly, dim(V1 ∩ E1) ≤ 1, dim(V2 ∩ E1) ≤ 1
and dim(V1∩E2) ≤ 1. Moreover, easy linear algebra arguments show further
restrictions. In fact, six classes exist. With the notationNA := R3\{E1∪E2}
we obtain

Φ−1(0, 0, 0, 1) = {(span(x), span(x, y)) ∈ Flag(R3) |x ∈ NA, y ∈ NA ∪ E2},
Φ−1(0, 1, 0, 1) = {(span(x), span(x, y)) ∈ Flag(R3) |x ∈ NA, y ∈ E1},
Φ−1(1, 1, 0, 1) = {(span(x), span(x, y)) ∈ Flag(R3) |x ∈ E1, y ∈ NA ∪ E2},
Φ−1(0, 0, 1, 1) = {(span(x), span(x, y)) ∈ Flag(R3) |x ∈ E2, y ∈ NA},
Φ−1(0, 1, 1, 1) = {(span(x), span(x, y)) ∈ Flag(R3) |x ∈ E2, y ∈ E1},
Φ−1(0, 0, 1, 2) = {(span(x), span(x, y)) ∈ Flag(R3) |x ∈ E2, y ∈ E2}.

By Theorem 7.5, the graph G[ ](Σ
II(A)) is given by

(0, 0, 0, 1)

zztttttttttttttttttttt

��
(0, 1, 0, 1)

�� $$J
JJJJJJJJJJJJJJJJJJJ
(0, 0, 1, 1)

�� $$J
JJJJJJJJJJJJJJJJJJJ

(1, 1, 0, 1) (0, 1, 1, 1) (0, 0, 1, 2)
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7.2 Inverse iteration on Hessenberg varieties

In numerical computations one often transforms a matrix A �rst into Hes-
senberg form and then applies the QR algorithm to this condensed form.
Since the QR algorithm preserves the Hessenberg structure it restricts to
a control system on the set of Hessenberg �ags. This system can be in-
terpreted as an inverse iteration system on a certain subset of Flag(Rn),
the Hessenberg variety. See [AM86, Amm87, DS88] for more details. In
the following we analyze the structure of reachable sets of inverse iteration
systems on Hessenberg varieties.

For a given matrix A, the Hessenberg variety is de�ned as the set

HessA := {V ∈ Flag(Rn) |AVj ⊆ Vj+1, j = 1, . . . , n− 1}.

Here Flag(Rn) denotes the complete �ag manifold (see Appendix F).

Proposition 7.7 Let A ∈ Rn×n be invertible. The Hessenberg variety is a
Σ-invariant subset of the inverse iteration system ΣII(A) on Flag(Rn).

Proof. Obviously, AVj ⊆ Vj+1 implies A(A− uI)Vj ⊆ (A− uI)Vj+1 as well
as A(A− uI)−1Vj ⊆ (A− uI)−1Vj+1. Therefore, fu(HessA) = HessA for all
u ∈ U . 2

By Proposition 3.10, HessA must be the union of system group orbits. I.e.,

HessA :=
⋃
i∈I

GΣII(A) · V

for some Vi ∈ Flag(Rn), i in an index set I. Moreover, we can restrict
ΣII(A) to HessA. We de�ne the inverse iteration on HessA by

ΣHess(A) := ΣII(A)|HessA
.

Following Proposition 7.2 we obtainGΣHess(A) ∼ P (A)/R∗I, since CΣHess(A) =
{R∗ · I}. Therefore, GΣHess(A) = SΣHess(A) if and only if S(A)R∗ = P (A).

We have already seen, that none of the reachable sets of ΣII(A) on
Flag(Rn) is open or dense in Flag(Rn), provided n > 2. The reason for that
was, that the dimension of Flag(Rn) is much larger then the dimension of
possible group orbits. Using the system semigroup approach we show that
there exist reachable sets of ΣHess(A), which have open interior in ΣHess(A).
Moreover, ΣHess(A) is densely reachable, provided P (A) = S(A)R∗.

Theorem 7.8 Let A ∈ Rn×n cyclic and invertible. Consider the inverse
iteration system on HessA.

a) There exists a system group orbit NHess
A which is open and dense in

HessA.
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b) For all x ∈ NHess
A the reachable set of x has nonempty interior in

NHess
A .

c) The following statements are equivalent.

(i) S(A)R∗ = P (A)

(ii) Orbit graph and reachable graph of ΣHess(A) coincide.

(iii) ΣHess(A) is approximatively reachable for some x ∈ HessA.

(iv) ΣHess(A) is densely reachable.

Proof. a) Let NA be de�ned as in De�nition 6.9, i.e., the set of one dimen-
sional spaces which are not included in any A-invariant subspace. Recall
that P (A) · x = NA for all x ∈ NA. The projection

π : Flag(Rn)→ RPn−1, (U1, U2, . . . , Un−1) 7→ U1

is open and continuous. Thus, π−1(NA) ∩ HessA is open24 in HessA. Recall
that all vectors v ∈ Rn with span(v) ∈ NA are cyclic. Thus,

Kv :=
(
span(v), span(v, Av), . . . , span(v, Av, . . . , An−1v)

)
∈ HessA

for all span(v) ∈ NA. We de�ne NHess
A := {Kv ∈ HessA | span(v) ∈ NA}.

Note that

HessA = NHess
A ∪

 ⋃
W∈InvA \{Rn}

NW


with NW := {(U1, . . . , Un−1) ∈ HessA |Uj ⊆ W for some j = 1, . . . , n− 1}.
Clearly, dimNW < dim HessA. Thus, since InvA is �nite, NHess

A has open
interior. Moreover, NHess

A is dense in HessA since π is open and π(NHess
A ) =

NA is dense in RPn−1. Recall that P (A) acts transitively on NA. Therefore,
the group action

P (A)×NHess
A → NHess

A , (P (A),Kv) 7→ KP (A)v

is transitive. Thus

GΣII(A) · x = {P (A) · x |x ∈ NHess
A } = NHess

A .

By Proposition 2.20, NHess
A is open. Hence, NHess

A is an open and dense
group orbit in HessA.
b) Recall that S(A)R∗ has nonempty interior in P (A) (see Corollary 6.6).
Therefore, R(x) = S(A)R∗ · x has nonempty interior in P (A) · x = NHess

A .
Thus, intHessA

R(x) 6= ∅.
24 for the induced topology with respect to Flag(Rn).
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c) Clearly, (i)⇒ (ii), (i)⇒ (iv) and (iv)⇒ (iii). Assuming that S(A)R∗ 6=
P (A), we have intP (A)(P (A) \ S(A)R∗) 6= ∅ (see Lemma B.6) and therefore

intHessA
(HessA \R(x)) 6= ∅. It follows, R(x) 6= HessA for all x ∈ HessA.

Thus (iii) implies (i). Moreover, S(A)R∗ 6= P (A) implies that ΣHess(A) is
not weakly reversible. Thus, (ii) implies (i) by Theorem 4.6. 2

In particular, Theorem 7.8 shows, that ΣHess(A) has reachable sets which
are dense in HessA if and only if the corresponding classical inverse iteration
system ΣII(A) on RPn−1 has reachable sets which are open and dense in
RPn−1. This fact has been pointed out earlier by Helmke and Jordan (see
Theorem 5.1 in [HJ02]).
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7.3 Inverse iteration on Rn

We �nish Section 7 with an analysis of inverse iteration systems on M =
Rn, i.e., ΣII(A) = (Rn, UA, f

II
A ) with respect to the canonical group action

GLn(R) × Rn → Rn. Note that here, SΣII(A) = S(A). Again we assume
that A is cyclic. Similar to classical inverse iteration systems there exists
an open and dense Σ-invariant subset

NA := Rn \
⋃

V ∈InvA

V.

(See De�nition 6.9 and Proposition 6.10). The following result shows that
NA is a system group orbit of ΣII(A) for all cyclic matrices. On the other
hand it shows, that for an open set of matrices, NA is not a reachable set.

Theorem 7.9 Let A ∈ Rn×n be cyclic and ΣII(A) = (Rn, UA, f
II) be the

inverse iteration system on Rn \ {0} with respect to A.

a) ΣII(A)|NA
is controllable if and only if S(A) = P (A).

b) Let n ≥ 2. There exists an open set of matrices A ∈ Rn×n, such
that S(A) 6= P (A). In particular this is the case if A has a complex
eigenvalue λ with Imλ > 1.

Proof. a) Obviously, we have SΣII(A) = S(A). Recall that GΣII(A) :=
〈SΣII(A)〉 = P (A) (see Theorem 6.3) and that P (A) acts transitively on NA

(see Lemma 6.11). Thus, S(A) = P (A) implies controllability of ΣII(A)|NA
.

Recall that Stabx = {I} for all x ∈ NA. Thus, Bx = Cx with B,C ∈ P (A)
implies B = C. Hence, S(A) 6= P (A) yields R(x) ( P (A)x for any x ∈ NA.
b) We show, that for any A ∈ Rn×n with complex eigenvalue λ, Imλ > 1 the
system semigroup S(A) is not a group. Since S(TAT−1− vI) = TS(A)T−1

for T ∈ GLn(R) and v ∈ R we may assume, that

A =

(
A1 ∗
0 ∗

)
with A1 :=

(
0 Imλ

− Imλ 0

)
.

If S(A) is a group we have
∏N

t=1(A1 − utI2) = I2 for some T ∈ N and
u1, . . . , uT ∈ UA. But this is a contradiction to Imλ > 1, since

det

(
N∏

t=1

(A1 − utI2)

)
=

N∏
t=1

(u2
t + (Imλ)2) > 1 = det I2.

Thus, S(A) 6= P (A). 2
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7.3.1 Inverse iteration in the plane

We �nish this section with a complete analysis of system semigroups for
inverse iteration systems on R2. We obtain the following semigroup types
for S(A).

Theorem 7.10 Let A ∈ R2×2 be cyclic.

a) If A has two di�erent real eigenvalues, then S(A) = P (A) ∼= (R∗)2.

b) If A has one real eigenvalue with multiplicity 2, then S(A) = P (A) ∼=
R× R∗.

c) Assume, that A has a pair of complex eigenvectors λ, λ such that
Imλ 6= 0.

(i) If | Im(λ)| < 1, then S(A) = P (A) ∼= C∗.

(ii) If | Im(λ)| ≥ 1, then S(A) is not a group.

(iii) If | Im(λ)| = 1, then S(A) is isomorphic to D ∪ {1, i,−1,−i}.
Here, D denotes the open unit disc without zero in C∗.

Proof. Recall that S(TAT−1 − vI) = TS(A)T−1 for all T ∈ GL2(R) and

Figure 4: The semigroup S(A) ⊆ C∗ for the case | Im(λ)| = 1

v ∈ R. Therefore, we can restrict our analysis on the cases

a) A =

(
0 0
0 λ

)
, b) A =

(
0 1
0 0

)
and c) A =

(
0 Imλ

− Imλ 0

)
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with λ 6= 0 in case a), and respectively Imλ 6= 0 in case c).

a) According to Theorem 6.8 we have P (A) ∼= (R∗)2. Recall that S(A)R∗ =
P (A) (see Theorem 6.29). Moreover, for any r ∈ (−∞, 0) we have rI ∈
S(A), since

(A− αI)−1(A− βI)−1 = rI

with α = 1
2
(λ+

√
1− 4r) and β = x

α
. Clearly rI = (−

√
r)I(−

√
rI) ∈ S(A)

for r > 0. Thus, R∗I ⊆ S(A) and we conclude S(A) = P (A).

b) Here P (A) ∼= R∗×R (see Theorem 6.8). Again we have S(A)R∗ = P (A)
by Theorem 6.29. Moreover, for any r ∈ (−∞, 0) we have rI ∈ S(A), since(

A− 1√
−r

I

)−1(
A+

1√
−r

I

)−1

= rI.

Clearly, rI = (−
√
rI)(−

√
rI) ∈ S(A) for r > 0. Thus, R∗I ⊆ S(A) and we

conclude S(A) = P (A).

c) S(A) is not a group, if | Im(λ)| > 1 (see Theorem 7.9). Thus, we only
have to show Claim (i) and Claim (iii). We can identify A − uI with the
complex number −u + βi with β := Imλ. Note that the multiplication
of matrices A − u1I, A − u2I coincides with the multiplication in C∗. In
other words, S(A) can be regarded as a subsemigroup in C∗. Using polar
coordinates every element

∏N
t=0(−ut + iβ) ∈ (S(A))−1 can be written in the

form

x =
N∏

t=0

(
βeiαt

sinαt

)
, with tanαt =

β

−ut

, αt ∈ (0, π).

For every N ∈ N we de�ne IN := [π
2
− π

2N+2
, π

2
+ π

2N+2
] and

γN : IN → (S(A))−1, α 7→
4+4N∏
t=0

(
βeiα

sinα
).

γN is a closed curve in C∗ which is symmetric with respect to the real axis
(i.e. γN(π/2− α) = γN(π/2 + α)). For all x ∈ γN(IN) it is

β4+4N ≤ x ≤ β4+4N 1

sin(π
2
− π

2N+2
)4+4N

.

Moreover,

sin(
π

2
− π

2N + 2
) = sin(

π

2
) cos(

π

2N + 2
)− cos(

π

2
) sin(

π

2N + 2
)

= cos(
π

2 + 2N
).
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Thus, the sequence of closed curves γN(IN) ⊆ (S(A))−1 converges uniformly
to S in the case β = 1 respectively to {0} in the case β < 1.

Now let x = aeiα ∈ C∗ such that εei(α+π) ∈ (S(A))−1 for some ε < a/β2.
This is possible for all x ∈ C∗ if 0 < β < 1 and for all x ∈ C \ D if β = 1.
We show that x ∈ (S(A))−1. Choose α1 = −α2 such that εβ2/ sin(α1)

2 = a.
Then it is

εei(α+π)︸ ︷︷ ︸
(S(A))−1

βeiα1

sinα1︸ ︷︷ ︸
(S(A))−1

βeiα2

sinα2︸ ︷︷ ︸
(S(A))−1

=
εβ2ei(α+π)

− sin2 α1

=
εβ2eiα

sin2 α1

= x.

This implies Claim (i). Moreover, we can conclude (S(A))−1 ⊆ C \ D for
β = 1.

For any β ≥ 1 we can estimate the norm of an arbitrary element x ∈
(S(A))−1 by

|x| =

∣∣∣∣∣
N∏

t=0

βeiαt

sinαt

∣∣∣∣∣ ≥ |βN |.

For β = 1 it follows |x| ≥ 1. Moreover, it is |x| = 1 if and only if x =
∏N

t=0 i.
We deduce, (S(A))−1 = (C \D)∪ {i,−1,−i, 1} which yields Claim (iii). 2

In the proof of Theorem 7.10 we have shown a technical result for sub-
semigroups of C∗ which will be important in Section 9.

Corollary 7.11 Let Mβ := {iβ − u |u ∈ R}. The set of �nite products of
elements of Mβ is C∗ if 0 < β < 1 and (C∗ \ D) ∪ {1, i,−1,−i} if β = 1.

We �nish this section with a remark on the case Imλ > 1. Note that
here (S(A))−1 corresponds to the system semigroup of Example 2.9. In this
case, S(A) is neither isomorphic to C∗ nor to D ∪ {1, i,−1,−i}.

Proposition 7.12 Let A ∈ R2×2 with a pair of complex eigenvectors λ, λ
such that Imλ 6= 0. If | Imλ| > 1 then P (A) \ S(A)−1 has at least two
connected components.

Proof. We construct a closed loop in (S(A))−1 which separates two subsets
of P (A) \ (S(A))−1. Since the inversion map C∗ → C∗, z 7→ z−1 is a
homeomorphism, P (A) \ S(A) has at least two components.

Recall that P (A) ∼= C∗. The line l(u) := −u + iβ, u ∈ R describes the
set of points in S(A) which are generated by one factor. Every element
generated by more the one factor has a norm larger or equal to β2. We
construct a connected curve γ : R → (S(A))−1 which intersects the line l
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on the left and on the right half plane, but has the property |γ(u)| > β3 for
all u ∈ R.

Consider, γ : u 7→ (−u− βi)3. On the one hand,

γ(u)3 =
β3ei3α

sin3 α
, α ∈ (0, π)

shows, that |γ(u)| ≥ β3 and Im(γ(u)) > β for tanα = β
−u
. On the other

hand
Im(γ(u)) = Im

(
(−u− βi)3

)
= −u2β − β3 + 2βu

shows, that Im(λ) < β for |u| large enough. We conclude, that l and γ
intersect in the left and in the right complex plane. In particular, they
separate the sets

M1 := {z ∈ C∗ | z ∈ iR, β < Im(z) < β2}

and
M2 := {z ∈ C∗ | |z| < β2, Im(z) < β}.

Thus, P (A) \ (S(A))−1 has at least two connected components. 2

Figure 5: S(A) ⊆ C for β = 1.2. In fact the plot shows products of order
1,2,3 and 4 with elements in {(−u+ iβ)−1 |u ∈ R}. Every element of S(A)
lies inside the circle {z ∈ C | |z| = 1}. Moreover, C \ S(A) has at least two
connected components.
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8 Rational iteration

In the previous sections we have seen, that the system semigroup of inverse
iteration is not necessarily a group. This situation yields undesired con-
straints on the convergence behavior of possible shift strategies. To avoid
this phenomenon it is advisable to create alternative schemes, such that the
reachable sets become easier to investigate. Rational iteration is an exten-
sion from inverse iteration, using a second shift parameter. Here the system
semigroups are always groups. Rational iteration schemes have been applied
in the �eld of eigenvalue computation as well as linear equation solving (see
[Ros94, JV05], and respectively, [YV92]). To the authors knowledge, there
exists no systematic investigation on the adherence structure of reachable
sets of rational iteration systems. This will be the topic of the following
section. First we analyze the general setting of rational iteration systems
on manifolds (Section 8). Then, in Section 8.2, we consider a one-parameter
version of rational iteration called Cayley iteration.

8.1 Rational iteration systems

De�nition 8.1 (Rational iteration system) Let GLn(R)×M →M be
a transitive group action on a manifold M . Given A ∈ Rn×n, we de�ne

URI
A := (R \ Spec(A))2 and fRI

A (x, (u, v)) := (A− uI)−1(A− vI) · x.

We call the corresponding system ΣRI(A) := (M,URI
A , fRI

A ) the Rational
iteration system of A with respect of the group action GLn(R)×M →M .

Note that the corresponding system semigroup SΣRI(A) is a group for
any matrix A ∈ Rn×n. More precisely we obtain:

Proposition 8.2 Let A ∈ Rn×n, mA be the minimal polynomial of A and
CM :=

⋂
x∈M Stabx. The system semigroup of ΣRI(A) is a group isomorphic

to P (A)/(P (A) ∩ CM).

Proof. SΣRI(A) is a group, since the inverse of

s : x 7→
T∏

t=1

(A− utI)(A− vtI)
−1 · x

is given by x 7→
∏T

t=1(A − vtI)(A − utI)
−1 · x and therefore an element of

SΣRI(A). Recall that{
T∏

t=1

(A− utI)(A− vtI)
−1

∣∣∣∣∣ T ∈ N, (ut, vt) ∈ UA

}
= P (A)
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(see Corollary 6.5). Two matrices B, B̃ ∈ P (A) induce the same maps
x 7→ B · x, respectively x 7→ B̃ · x if and only if BB̃−1 is an element of
Stabx for all x ∈ M . Therefore, the kernel of the group homomorphism
Φ : P (A)→ SΣRI(A), Φ(B) : x 7→ B · x is P (A) ∩ CM . 2

In particular we are interested in the case when M1 = Rn, M2 = RPn−1,
M3 = HessA(Rn) and M4 = Flag(Rn), each case with respect to the cor-
responding canonical group action αi : GLn(R) ×Mi → Mi, i = 1, 2, 3, 4.
From our analysis of inverse iteration systems we easily deduce the following
results:

Theorem 8.3 Let M be a topological space, α : GLn(R) ×M → M be a
transitive group action and ΣRI(A) = (M,URI

A , fA) be the rational iteration
system of A ∈ Rn×n with respect to α.

a) The orbit graph GO(ΣRI(A)) and the reachable graph GR(ΣRI(A)) co-
incide. In particular, ΣRI(A) is weakly reversible.

b) Let αi : GLn(R)×Mi → Mi, i = 1, 2, 3 be the canonical group action
on Mi with M1 = Rn, M2 = RPn−1, M3 = HessA(Rn) and ΣRI

i (A) =
(Mi, U

RI
A , fRI

A ) the rational iteration system of A ∈ Rn×n on Mi.

(i) If A is cyclic, then Ni with N1 = NA, N2 = NA, N3 = NHess
A

coincides with one reachable set, which is open and dense in Mi.
Here NA and NA are de�ned as in De�nition 6.9 and NHess

A is de-
�ned as in Section 7.2. Moreover, the restricted system ΣRI(A)|Ni

is controllable.

(ii) If A is not cyclic, then none of the reachable sets has open interior
in Ni.

c) Let α4 : GLn(R) × Flag(Rn) → Flag(Rn), be the canonical group
action on Flag(Rn). Then any class [V ], V ∈ Flag(d,Rn) (as de�ned
in De�nition 7.4) is the disjoint union of reachable sets.

Proof. a) Since SΣRI(A) is a group, ΣRI(A) is weakly reversible by Lemma
2.35. Thus, the claim follows by Theorem 4.6.
b) and c) The reachable sets of ΣRI(A) coincide to the system group orbits
of the corresponding inverse iteration system. Thus, all claims in b) are
immediate consequences of Lemma 6.11 and Theorem 7.8. Moreover, claim
c) follows from Theorem 7.5. 2
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8.2 Cayley iteration

As a special case of rational iteration we consider systems generated by
Cayley transformations, x 7→ (A − uI)(A + uI)−1 · x. Cayley iteration
steps have been proposed by several authors (see for example [MSR94] and
[LM98]). If A is element of a classical Lie algebra, all states of Cayley
iteration remain in the corresponding Lie-group. This fact yields interesting
relations for the eigenvalue computation for speci�c matrices.

De�nition 8.4 (Cayley iteration system) Let α : GLn(R) ×M → M
be a transitive group action on a manifold M . Given a matrix A ∈ Rn×n,
we de�ne

UA := R \ ± Spec(A) and fCI(x, u) := (A− uI)(A+ uI)−1 · x.

We call the corresponding system ΣCI(A) := (M,UA, f
CI) the Cayley iter-

ation system of A with respect of α.

Again, the system semigroup is a group. Therefore, ΣCI(A) := (M,UCI
A , fCI)

is always weakly reversible. Cayley iteration systems can be considered
as rational iteration with a restriction on the allowed shift strategies, i.e.,
vt = −ut. Therefore, the system semigroup SΣCI(A) is a subgroup of SΣRI(A)

(see Proposition 8.2).

8.2.1 Conditions for SΣCI(A) = P (A)

We restrict our analysis to the case where P (A) ∩ CM is trivial 25. In this
situation we have SΣCI(A) ⊆ SΣRI(A) = P (A). In fact, for some but not for
all matrices A ∈ Rn×n, it holds that SΣCI(A) = P (A). In the following we
show a condition on A for the property SΣCI(A) = P (A).

Theorem 8.5 Let A ∈ Rn×n be invertible with n di�erent real eigenvalues
λ1, . . . , λn such that |λi| 6= |λj| for i 6= j. Then, SΣCI(A) = P (A).

Proof. Recall that the topological closure26 of SΣCI(A) is a closed subgroup
of the Lie group P (A) = {diag(a1, . . . , an) | ak ∈ R∗} (See Theorem 6.8) and
therefore a Lie group. We show the following two claims:

Claim 1: e ∈ intP (A) SΣCI(A);

Claim 2: SΣCI(A) has nonempty intersection with any connected compo-
nent of P (A).

Then, by Theorem 5.4 it follows SΣCI(A) = P (A).

25In particular this is the case if M = Rn or if M = GLn(R) (and α the corresponding
canonical group action on M).

26with respect to P (A)
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Proof of Claim 1: Without loss of generality we assume, that A =
diag(λ1, . . . , λn). We show that the map

Φ : (UCI
A )n → SΣCI(A), u 7→ diag(f1(u), . . . , fn(u)) ⊆ P (A)

with fk(u) = fk((u1, . . . , un)) =
∏n

j=1
λk−uj

λk+uj
is locally invertible, if and only

if ui 6= uj for i 6= j. For the Jacobian DΦ of Φ we obtain

DΦ(u) =

(
fk(u)

−2λk

λ2
k − u2

j

)
k,j=1,...,n

= diag(−2λ1f1(u), . . . ,−2λnfn(u))

(
1

λ2
k − u2

j

)
k,j=1,...,n

The Cauchy determinant rule (see [Fuh96], Section 3.4) yields

det

((
1

λ2
k − u2

j

)
k,j=1,...,n

)
=

∏
k>j(λ

2
k − λ2

j)(u
2
k − u2

j)∏
k,j(λ

2
k + u2

j)

This shows, that

det(DΦ(u1, . . . , un)) = (−2)n

n∏
k=1

(λkfk(u)) det

((
1

λ2
k − u2

j

)
k,j=1,...,n

)
6= 0

provided ui 6= uj. From the inverse function theorem it follows, that
Φ is locally invertible. Hence, intP (A) SΣCI(A) 6= ∅. Moreover, for any
s ∈ intP (A) SΣCI(A) we have s−1s ∈ intP (A) SΣCI(A) (see Lemma B.5). We
conclude

e ⊆ intP (A) SΣCI(A).

Proof of Claim 2: Without loss of generality we assume, that A =
diag(λ1, . . . , λn) with 0 < |λ1| < . . . , |λn|. Obviously,

P (A) = {diag(a1, . . . , an) | ak ∈ R∗}

has 2n connected components, which can be identi�ed with the sign vec-
tors (sign(a1), . . . , sign(an)) ∈ {−1, 1}n. We show, that for any sign vector
(ε1, . . . , εn) ∈ {−1, 1}n there exists diag(b1, . . . , bn) ∈ SΣCI(A) such that
sign(bk) = ek for any k = 1, . . . , n. Note that

λk − u
λk + u

=
1− u

λk

1− u
λk

> 0.

if and only if u < |λk|. Therefore, for u ∈ [|λk|, |λk+1|] we obtain

(A− uI)(A+ uI)−1 = diag(b1, . . . , bk︸ ︷︷ ︸
<0

, bk+1, . . . , bn︸ ︷︷ ︸
>0

).

Those matrices already generate matrices diag(b, . . . , bn) for any combina-
tion sign bk ∈ {−1, 1}, k = 1, . . . , n. 2
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In particular, Theorem 8.5 shows, that there exists an open set in Rn×n

such that SΣCI(A) = P (A). Now we show some conditions on A ∈ Rn×n

such that SΣCI(A) 6= P (A). We will use the following fact:

Lemma 8.6 Let Z ∈ Rn×n. If A is an element of

gZ := {B ∈ Rn×n |B>Z + ZB = 0}

then SΣCI(A) is an abelian subgroup of the group

GZ := {B ∈ GLn(R) |B>ZB = Z}.

Proof. Let A be en element of gZ , i.e. A>Z = −ZA. Straightforward
calculation yields(

(A− utI)(A+ utI)
−1
)>
Z
(
(A− utI)(A+ utI)

−1
)

=

(A+ uI)−>
(
Z(u2I − A2)

)
(A+ uI)−1 =

(A+ uI)−>Z(uI − A) =

(A+ uI)−>(uI + A>)Z = Z.

Therefore, (A− utI)
−1(A+ utI) ∈ GZ for every u ∈ UA. The claim follows,

since every B ∈ SΣCI(A) is a product of matrices of type (A−utI)
−1(A+utI).

2

Note that GZ is a Lie group and gZ is the Lie algebra of GZ . In particu-
lar, the choice Z = I yields the orthogonal group On(R) and the algebra of
skew-symmetric matrices son(R). Moreover, if n is even, the choice Z = J
with

J =

(
0 I
−I 0

)
yields the symplectic group Spn(R) and the algebra of Hamiltonian matrices
spn(R).

Theorem 8.7 Let A ∈ Rn×n and ΣCI(A) := (M,UA, f
CI) be the corre-

sponding Cayley iteration system.

a) If 0 ∈ Spec(A), then SΣCI(A) 6= P (A).

b) If λ,−λ ∈ Spec(A) ∩ R, then SΣCI(A) 6= P (A).

c) If A is skew-symmetric, then SΣCI(A) 6= P (A).

d) If n is even and A is Hamiltonian, then SΣCI(A) 6= P (A).
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Proof. a) Obviously, there exists B ∈ P (A) such that neither 1 nor −1 is
an eigenvalue of B. We show that every element of SΣCI(A) has eigenvalue

1 or −1. For any B =
∏T

t=1(A− utI)(A+ utI)
−1 ∈ SΣCI(A) we obtain

B + (−1)T I =

(
T∏

t=1

(A− utI) + (−1)T

T∏
t=1

(A+ utI)

)
T∏

t=1

(A+ utI)
−1

=
T∏

t=1

(A+ utI)
−1Ap(A)

for some p ∈ R[x]. Since det(A) = 0 it follows det(B+(−1)T I) = 0. Hence,
B has eigenvalue 1 or −1.
b) Without loss of generality we may assume

A =

(
A1 ∗
0 ∗

)
, with A1 =

(
λ 0
0 −λ

)
.

For any B =
∏T

t=1(A− utI)(A+ utI)
−1 ∈ SΣCI(A) we obtain

B =

(
B1 ∗
0 ∗

)
with B1 =

(
α 0
0 β

)
such that α =

∏T
t=1(λ−utI)(λ+utI)

−1 and β =
∏T

t=1(−λ−utI)(λ+utI)
−1.

Thus α
β

= (−1)T .
On the other hand, by the Lagrangian interpolation theorem, for any

α, β ∈ R∗ there exists p(A) ∈ P (A) such that

p(A) =

(
p(A1) ∗

0 ∗

)
with p(A1) =

(
α 0
0 β

)
.

We conclude SΣCI(A) 6= P (A).
c) If n = 1 then SΣCI(A) 6= P (A) by a). Recall that P (A) is an unbounded
subset of GLn(R) (see Theorem 6.8). If A is skew-symmetric, SΣCI(A) is
a subgroup of the compact group On(R) (see Lemma 8.6). In particular
SΣCI(A) is bounded. Hence, SΣCI(A) 6= P (A).
d) If A is Hamiltonian, then SΣCI(A) ⊆ Spn(R) by Lemma 8.6. In particular,
the determinant of any element in SΣCI(A) is 1. Hence, SΣCI(A) 6= P (A). 2

8.2.2 Cayley iteration on the plane

Now we focus on Cayley iteration systems on Rn with respect to the canoni-
cal action on Rn. Note that NA = Rn \

⋃
V ∈InvRn

A
V is a Σ-invariant subset of

Rn. Recall that P (A) acts transitively on NA and that Stabx = {I} for any
x ∈ NA (see Lemma 6.11). Thus, any subgroup G of P (A) acts transitively
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on NA if and only if G = P (A). Hence, ΣCI(A)|NA
is controllable if and only

if SΣCI(A) = P (A). In the following we classify all cyclic matrices A ∈ R2×2

with SΣCI(A) = P (A).

Theorem 8.8 Let A ∈ R2×2 be cyclic.

a) Assume that A is real diagonalizable with eigenvalues λ1, λ2 ∈ R. Then
SΣCI(A) = P (A) if and only if λ1, λ2 6= 0 and |λ1| 6= |λ2|.

b) Assume that A has a real eigenvalue λ with multiplicity two. Then
SΣCI(A) = P (A) if and only if λ 6= 0.

c) Assume that A has a pair of complex eigenvalues λ, λ (Imλ 6= 0).
Then SΣCI(A) = P (A) if and only if Reλ 6= 0.

Proof. Recall that SΣCI(TAT−1) = TSΣCI(A)T
−1 for T ∈ GLn(R). Thus we

can assume, that A is in Jordan canonical form.

a) (i) If

A =

(
λ1 0
0 λ2

)
with λ1 6= 0, λ2 6= 0, |λ1| 6= |λ2|,

then SΣCI(A) = P (A) = {diag(a1, a2) | a1, a2 ∈ R∗} by Theorem 8.5.
(ii) If

A =

(
0 0
0 λ

)
with λ 6= 0,

then SΣCI(A) ( P (A) by Theorem 8.7. More precisely we have

SΣCI(A) =

{(
ε 0
0 a

) ∣∣∣∣ ε ∈ {−1, 1}, a ∈ R∗
}
.

If

A =

(
λ 0
0 −λ

)
with λ 6= 0,

then SΣCI(A) ( P (A) by Theorem 8.7 and Lemma 8.6. We obtain

SΣCI(A) =

{(
a 0
0 εa

) ∣∣∣∣ ε ∈ {−1, 1}, a ∈ R∗,

}
.

b) If A has a real eigenvalue of multiplicity two, P (A) is given by

P (A) :=

{(
a b
0 a

) ∣∣∣∣ a ∈ R∗, b ∈ R
}
.
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(see Section 6.2). In particular, P (A) is an abelian Lie group with two
connected components.
(i) Assume that

A =

(
0 1
0 0

)
.

By Theorem 8.7 it holds that SΣCI(A) ( P (A). More precisely we obtain

(A− uI)(A+ uI)−1 =

(
−1 0
0 −1

)
for any u ∈ UCI

A . Thus, SΣCI(A) = {−I, I}.

(ii) Now we assume that

A =

(
λ 1
0 λ

)
with λ 6= 0.

Here the group SΣCI(A) is generated by the matrices

Au := (A− uI)(A+ uI)−1 =
λ− u
λ+ u

(
1 2u

(λ+u)(λ−u)

0 1

)
with u ∈ R \ {−λ, λ}. Clearly, the dimension of SΣCI(A) is larger then
two. Moreover, SΣCI(A) has nonempty intersection with both components
of P (A). By SΣCI(A) = P (A).
c) If A has a real eigenvalue of multiplicity two, P (A) is given by

P (A) :=

{(
a b
−b a

) ∣∣∣∣ a2 + b2 6= 0

}
.

(see Section 6.2).
(i) Assume

A =

(
0 Imλ

− Imλ 0

)
with Imλ 6= 0.

By Theorem 8.7 and Lemma 8.6 we have SΣCI(A) ⊆ On(R) ( P (A) and
therefore SΣCI(A) 6= P (A).

(ii) Now we assume that Reλ 6= 0. The dimension of SΣCI(A) is larger then
2. Thus, SΣCI(A) coincides with the connected Lie group P (A). 2

Recall, that any Cayley iteration system is weakly reversible (even if
SΣCI(A) 6= P (A)). Thus, the reachable sets always form a partition on R2.
As an immediate consequence of the previous proof, we obtain the adherence
structure of the reachable sets.



8.2 Cayley iteration 155

Corollary 8.9 Let A ∈ R2×2 be cyclic.

a) Assume that A = diag(λ1, λ2).

(i) If λ1, λ2 6= 0 and |λ1| 6= |λ2| then the reachable graph is given by

R((1, 1)>)

zzuuuuuuuuu

$$I
IIIIIIII

R((1, 0)>)

$$I
IIIIIIII

R((0, 1))>

zzuuuuuuuuu

R((0, 0))>

(ii) If λ1 = 0 and λ2 6= 0 then we have in�nitely many reachable sets.
In particular we obtain

R((0, 0)>) = (0, 0)>,

R((x, 0)>) = {(−x, 0)>, (x, 0)>},
R((0, y)>) = {(0, r)>, |r ∈ R∗} for y ∈ R∗,

R((x, y)>) = {(εx, r)>, |ε ∈ {−1, 1}, r ∈ R∗} for (x, y) ∈ (R∗)2.

(iii) If λ1 6= 0 and λ2 = −λ1, then we have in�nitely many reachable
sets. In particular we obtain

R((0, 0)>) = (0, 0)>,

R((x, 0)>) = {(r, 0)>, |r ∈ R∗} for x ∈ R∗,

R((0, y)>) = {(0, r)>, |r ∈ R∗} for y ∈ R∗,

R((x, y)>) = {(rx, εry)>, |ε ∈ {−1, 1}, r ∈ R∗} for (x, y) ∈ (R∗)2.

b) Assume that A has an eigenvalue of multiplicity two.

(i) If λ = 0, then R((x, y)>) = {(−x,−y), (x, y)} for all (x, y) ∈ R2.

(ii) If λ 6= 0, then there exist only three reachable sets. The reachable
graph is given by

R((0, 0)>) R((1, 0)>)oo R((1, 1)>)oo

c) Assume

A =

(
Reλ Imλ
− Imλ Reλ

)
with Imλ 6= 0.
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(i) If Reλ = 0, then

R((x, y)>) = {(a, b) ∈ R2 | a2 + b2 = x2 + y2}

for all (x, y) ∈ R2.

(ii) If Reλ = 0, then R((0, 0)>) = (0, 0)> and R((x, y)>) = R2 \
(0, 0)> for any (x, y) ∈ R2 \ (0, 0)>.

Figure 6: Left: example for case a,ii). Here A = diag(0, 1). The reachable
set of (x, y)> with y, x 6= 0 has four connected components. Moreover,
the orbit {(−x, 0)>, (x, 0)>} lies in the topological closure of R((x, y)>).
Middle: Example for case a,iii). Let A = diag(−1, 1). Again, the reachable
set of (x, y)> with y, x 6= 0 for ΣCI(A) has four connected components. The
orbit {(0, 0)>} lies in the topological closure of R((x, y)>). Right: Example
for case c,i) with Reλ = 0 and Imλ = 1. Here, none of the reachable sets
is in the topological closure of another reachable set.
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9 Richardson's method

One of the most important tasks in numerical linear algebra is to solve
systems of linear equations Ax = b with A ∈ Rn×n and b ∈ Rn. Iteration
schemes of the form

xt+1 = xt + ut(b− Axt), x0 ∈ Rn

with ut ∈ R are called Richardson methods. In this context, it is also
common to call the shift parameters ut ∈ R relaxation parameters.

The literature provides di�erent shift strategies, each of them for certain
families of matrices, see [OS84, SS88, GO88] and [CR96]. In particular, a
constant shift strategy ut = u yields the so-called trivial splitting method,
i.e.,

xt+1 = (I − uA)xt + ub.

It is easy to verify, that a trivial splitting method converges if and only if
Spec(I − uA) ⊆ D (see [Gre97], Theorem 2.1.1). Another interesting shift

strategy is given by the feedback law ut =
r>t Art

‖Art‖2 with rt = b − Axt. This

approach yields GMRES(1), i.e.,

xt+1 = arg minx∈xt+span(b−Axt)‖b− Ax‖.

It is known, that GMRES(1) converges if A + A> is positive de�nite
(see [Mei99], Theorem 4.78). Nevertheless, the convergence properties of
GMRES(1) for general matrices is far from being understood (see [Emb03]
for some notes on this topic).

The sequence (xt)t∈N converges to A−1b if and only if the sequence of
residuals rt := b−Axt converges to zero. Thus, the dynamic of the iteration
can be equivalently described in terms of the residual vectors, i.e.,

rt+1 = b−Axt+1 = b−A((I−utA)xt+utb) = (I−utA)(b−Axt) = (I−utA)rt.

This motivates the following setting.

De�nition 9.1 (Richardson system) Let A ∈ Rn×n be invertible and
UA−1 = R \ Spec(A−1). The system ΣRS(A) = (Rn, UA−1 , fRS

A ) given by
the transmission map fRS

A : (r, u) 7→ (I − uA)r is called Richardson system
(with respect to A).

Clearly, the existence of a shift strategy u = (ut)t∈N such that xt
u→ A−1b

implies that
0 ∈ R(r0) for r0 = b− Ax0. (56)

In the following we show, su�cient as well as necessary conditions for (56).
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9.1 Richardson system semigroups

For the system semigroup of ΣRS(A) = (Rn, UA−1 , fRS
A ) we obtain

SΣRS(A) =

{
T∏

t=1

(I − utA) |T ∈ N, ut ∈ UA−1

}
⊆ GLn(R).

Obviously, we have SΣRS(αTAT−1) = TSΣRS(αA)T
−1 for any T ∈ GLn(R) and

α ∈ R \ {0}. SΣRS(A) and GΣRS(A) are closely related to the corresponding
objects of inverse iteration systems. In fact, the following Proposition shows,
that the system groups of inverse iteration (with respect to A) and the
system group of Richardson systems (with respect to A) coincide.

Proposition 9.2 Let A ∈ Rn×n be invertible. Then

GΣRS(A) = P (A).

Proof. Recall that A−1 ∈ P (A) and A ∈ P (A−1). Therefore, it follows
P (A) = P (A−1). Moreover, every element B of GΣRS(A) := 〈SΣRS(A)〉 can
be written as

B =
T∏

t=1

(I − utA)︸ ︷︷ ︸
∈P (A)

T̃∏
t=1

(I − ũtA)−1

︸ ︷︷ ︸
∈P (A)

for some T, T̃ ∈ N and ut, ũt ∈ UA−1 . Thus, GΣRS(A) ⊆ P (A). With
Corollary 6.5 we obtain

P (A−1) =

{
T∏

t=1

(A−1 − utI)
T∏

t=1

(A−1 − ũtI)
−1

∣∣∣∣∣ T ∈ N, ut, ũt ∈ UA−1

}

=

{
T∏

t=1

(I − utA)
T∏

t=1

(I − ũtA)−1

∣∣∣∣∣ T ∈ N, ut, ũt ∈ UA−1

}
⊆ GΣRS(A).

Hence, GΣRS(A) = P (A). 2

In particular, Proposition 9.2 shows, that similar to the situation for
inverse iteration systems on Rn there exists an open and dense system group
orbit NA = GΣRS(A) · x, x ∈ NA. Again, NA is de�ned as

NA := Rn \
⋃

V ∈InvA

V ⊆ Rn

where, InvA denotes the proper A-invariant subspaces of A. Using the tech-
niques developed in Section 4.3 and Section 6 we easily obtain the following
result.
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Theorem 9.3 Let A be cyclic and invertible. Assume that r0 ∈ NA.

a) 0 ∈ R(r0) if and only if 0 ∈ R(r̃0) for any r̃0 ∈ NA.

b) If SΣRS(A) = P (A), then 0 ∈ R(r0) for all r0 ∈ NA.

Proof. a) Recall that P (A) acts transitively on NA (see Lemma 6.11).
Moreover, {0} is a Σ-invariant subset with {0} ⊆ NA. Thus, by Theorem
4.18, {0} ∩ R(r0) = ∅ if and only if {0} is repelling to NA.
b) SΣRS(A) = P (A) implies 0 ∈ NA = R(r0) since

R(r0) = SΣRS(A) · r0 = P (A) · r0 = NA.

2
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9.2 Conditions for SΣRS(A) = P (A)

Similar to inverse iteration systems, the system semigroup is not always a
group (see Theorem 9.8). Nevertheless, the following proposition shows,
that SΣRS(A) is a large subset of P (A) in a topological sense.

Proposition 9.4 Let A ∈ Rn×n be cyclic and invertible. Then

intP (A) SΣRS(A) 6= ∅.

Proof. We have

SΣRS(A) =

{
AT

T∏
t=1

(A−1 − utI)

∣∣∣∣∣ T ∈ N, ut ∈ UA−1

}

⊇ An

{
n∏

t=1

(A−1 − utI)

∣∣∣∣∣ ut ∈ UA−1

}
.

Recall that A is cyclic if and only if A−1 is cyclic. By Corollary 6.6, the
set {

∏n
t=1(A

−1 − utI) |ut ∈ UA−1} has open interior with respect to P (A).
Thus, intP (A) SΣRS(A) 6= ∅. 2

In Section 6, and respectively Section 7.3, we have proved a series of su�-
cient and necessary conditions, such that S(A)R∗ = P (A), and respectively,
S(A) = P (A). It turns out, that neither S(A) = P (A) nor S(A)R∗ = P (A)
implies that SΣRS(A) = P (A). Examples for that phenomenon will be given
in Section 9.3. Nevertheless, we obtain the following useful fact.

Lemma 9.5 Let A ∈ Rn×n be invertible.

a) If SΣRS(A) is a group, then S(A)R∗ is a group.

b) If R∗I ⊆ SΣRS(A), then S(A)R∗ = P (A) implies SΣRS(A) = P (A).

Proof. a) If SΣRS(A) is a group, then SΣRS(A) = P (A) by Proposition 9.2.
Hence, for all p(A) ∈ P (A) there exist N ∈ N, u1, . . . , uN ∈ UA−1 such that

p(A) =
N∏

t=1

(I − utA) =
N∏

t=1

(−ut)
N∏

t=1

(
A− 1

ut

I

)
∈ R∗(S(A))−1.

Thus, p(A) ∈ R∗(S(A))−1. It follows that, R∗(S(A))−1 is a group and
therefore R∗(S(A))−1 = S(A)R∗ = P (A).
b) Obviously, SΣRS(A) ⊆ P (A). Moreover, we have intP (A) SΣRS(A) 6= ∅ (see
Proposition 9.4). Thus, it is enough to show S(A)R∗ ⊆ SΣRS(A).
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Let B := r
∏T

t=1(A − utI) ∈ S(A)R∗, i.e., T ∈ N, ut ∈ UA and r ∈ R∗.
If ut 6= 0 for all t = 1, . . . , T , then

B = (−1)T ru1 · · · · · uT︸ ︷︷ ︸
∈R∗I⊆S

ΣRS(A)

T∏
t=1

(I − 1

ut

I)︸ ︷︷ ︸
∈S

ΣRS(A)

.

Note that {r
∏T

t=1(A− utI) ∈ S(A)R∗ |ut 6= 0} is a dense subset of S(A)R∗

and therefore, SΣRS(A) is a dense subset of S(A)R∗ = P (A). By Lemma B.6
we conclude SΣRS(A) = P (A). 2

Theorem 9.6 For any n ∈ N there exists an open set of invertible matrices,
such that SΣRS(A) = P (A). In particular SΣRS(A) = P (A) if A has n di�erent
real eigenvalues λ1, . . . , λn ∈ Rn \ {0}.

Proof. Without loss of generality we assume that A = diag(λ1, . . . , λn).
Since S(A)R∗ = P (A) (see Theorem 6.29), it is su�cient to show that
R∗I ⊆ SΣRS(A). For any r ∈ R∗ there exist shifts v1, . . . , vn+1 ∈ UA−1 such
that

n+1∏
t=1

(I − vtA) = rI.

De�ne λn+1 = 0. Let p be the unique polynomial of degree n with p(λi) = r
for i = 1, . . . , n and p(λn+1) = 1. By Lemma 6.28 there exists M ∈ R and
f ∈ L such that

p(x) = f(x)−M
n+1∏
t=1

(x− λt).

Recall that deg p = k and therefore f(x) = M
∏n+1

t=1 (x−ut) for some ut ∈ R.
Since λn+1 = 0 we obtain

1 = p(0) = f(0)− 0 = M

n+1∏
t=1

(−ut).

Moreover, f(λi) = p(λi) − 0 = r for i = 1, . . . , n. Note that ut 6= 0, since
p(0) 6= 0. Therefore, vt := 1

ut
yields

f(x) = M(−1)n+1u1 . . . un+1

n+1∏
t=1

(1− vtx) =
n+1∏
t=1

(1− vtx).

We conclude

n+1∏
t=1

(I − vtA) = f(A) = p(A)−M
n+1∏
t=1

(A− λtI) = p(A) = rI.

2
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We �nish this section with a result which shows, that SΣRS(A) is not a group
in general.

Theorem 9.7 Let A ∈ Rn be an invertible cyclic matrix with λ, λ ∈ Spec(A)such
that Imλ 6= 0 and Reλ = 0. Then

a) SΣRS(A) 6= P (A).

b) {0} is repelling to NA, i.e., {0} ∩ R(r0) = ∅ for any r0 ∈ NA. In
particular, there exists no shift strategy u = (ut)t∈N such that xt

u→
A−1b.

Proof. a) Without loss of generality we assume

A =

(
A1 ∗
0 ∗

)
with A1 =

(
0 Imλ

− Imλ 0

)
.

Assume, that SΣRS(A) is a group, i.e., SΣRS(A) = P (A). In particular, rA ∈
P (A) with r > 1

Im λ
has an inverse in SΣRS(A). Thus, there exist N ∈ N,

u1, . . . , uN ∈ UA−1 such that

I2 = rA1

N∏
t=1

(I − utA1).

But this is a contradiction to

det

(
rA1

N∏
t=1

(I − utA1)

)
= r2(Imλ)2

N∏
t=1

(1 + u2
t (Imλ)2) > 1. (57)

Hence, SΣRS(A) is not a group.
b) By Theorem 9.3 we may assume that r0 = (1, 1, 1 . . . , 1)>. Assuming
that {0} ∩ R(r0) 6= ∅. Then there exists a sequence

sn :=

(
Bn ∗
0 ∗

)
∈ SΣRS(A),

with Bn ∈ R2×2 such that Bn(1, 1)> → 0 for n→∞. Since

Bn ⊆ P (A1) :=

{(
a b
−b a

) ∣∣∣∣ a2 + b2 6= 0

}
and detBn = det

∏N
t=1(I − utA1) ≥ 1 we obtain

‖Bn(1, 1)>‖2 =
√

(a+ b)2 + (a− b)2 =
√

2 det(Bn) ≥
√

2.

Thus {0} ∩ R(r0) = ∅. 2
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9.3 Richardson's method on the plane

In this section we classify the semigroup types of SΣRS(A) for invertible cyclic
matrices A ∈ R2×2.

Theorem 9.8 Let A ∈ R2×2 be cyclic and invertible.

a) If A has two di�erent real eigenvalues, then SΣRS(A) = P (A) ∼= (R∗)2.

b) If A has one real eigenvalue with multiplicity 2, then SΣRS(A) = P (A) ∼=
R× R∗.

c) Assume, that A has a pair of complex eigenvectors λ, λ such that
Imλ 6= 0.

(i) If Re(λ) 6= 0 then SΣRS(A) = P (A) ∼= C∗.

(ii) If Re(λ) = 0 then SΣRS(A) is not a group. More precisely,

SΣRS(A)
∼= (C \ D) ∪ {1}.

Proof. a) The �rst claim follows immediately from Theorem 9.6 and The-
orem 6.8.
b) We show that R∗I ⊆ SΣRS(A). Then, the claim follows from Lemma 9.5
since S(A)R∗ = P (A) (see Theorem 6.29). If r ∈ R \ [0, 1] then the choice

v :=
1

λ

(
1− r +

√
r(r − 1)

)
; u :=

1− r
vλ2

yields

(I − uA)(I − vA) = I − (u+ v)A+ uvA2 = rI,

since uv = 1−r
λ2 and u+v = 2(1−r)

λ
. Any r = (−1)(−r) ∈ [0, 1] is the product

of elements of R \ [0, 1]. Thus, R∗I ⊆ SΣRS(A).
c) Without loss of generality we assume Imλ = 1. We identify the matrix
I − uA with the complex number z(u) := (1− uReλ)− iu. Thus,

SΣRS(A) =

{
T∏

t=1

z(ut)

∣∣∣∣∣ t ∈ N, ut ∈ R

}
.

(i) We show that Mβ := {iβ + u |u ∈ R} ⊆ SΣRS(A) for one 0 < 1 < β.
Then, the claim follows, since the set of �nite products of elements of Mβ

is C∗ (see Corollary 7.11). There exists an open set in U ⊆ R with 0 ∈ U
such that

|z(u)| =
√

1− 2uReλ+ u2|λ2| < 1 for u ∈ U.
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More precisely, |z(u)| < 1 for 0 < u < 2Re λ
|λ|2 if Reλ > 0, and respectively

|z(u)| < 1 for 2Re λ
|λ|2 < u < 0 if Reλ < 0. Therefore, we can choose u ∈ R

such that |z(u)| < 1 and arg z(u) = π
2n

for n ∈ N large enough. Then

z(u)n = βi ∈ SΣRS(A) with β = |z(u)|n.

Since Mβ = {βi(1 − ui) |u ∈ R} we obtain Mβ ⊆ SΣRS(A) and thus
SΣRS(A) = C∗.

(ii) SΣRS(A) is not a group by Theorem 9.7. Again we identify the matrices
I − uA, u ∈ R with complex numbers. Here, z(u) := 1 − iu Imλ. For any
z ∈ SΣRS(A) we have

|z| =
T∏

t=1

|1− iut|︸ ︷︷ ︸
≥1

.

It follows that |z| ≥ 1 and |z| = 1 if and only if z = 1. Thus,

SΣRS(A) ⊆ (C \ D) ∪ {1}.

Now we show that M1 := {i+ u |u ∈ R} ⊆ SΣRS(A) ∪ {1}. Then, the claim
follows, since C∗ \D lies in the set of �nite products of elements of M1 (see
Corollary 7.11).

For u ∈ R \ {0} we construct u1, . . . , uT such that z(u1) · · · · · z(uT ) =
i + u. Let un = tan π

2n
. Then z(un)n = |z(un)|ni. Moreover, |zn|n − 1

is arbitrary small (for n su�ciently large). Now we choose n such that
u2 > 4|zn|n(|zn|n − 1). Then for

v :=
1

2β
(u+

√
u2 − 4|zn|n(|zn|n − 1)), r :=

|z(un)|n − 1

v

we have

z(un)nz

(
r

|z(un)|n

)
z(v) = i|z(un)|n

(
1− i r

|z(un)|n

)
(1− iv)

= (i|z(un)|n + r)(1− iv)
= i(|z(un)|n − vr) + r + v|z(un)|n

= i+ u.

Thus, SΣRS(A) = (C \ D) ∪ {1}. 2

Corollary 9.9 Let A ∈ R2× by cyclic and invertible. 0 is repelling to NA

if and only if A has a pair of complex eigenvalues λ, λ with Reλ = 0. In
this case27 R(z) = |z|(C \ D) ∪ {z} for all z 6= 0.

27with respect to the identi�cation R2 ∼= C and I − uA ∼= (1− u Re λ)− iu).
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Figure 7: Left: System semigroup of Richardson systems embedded in C∗

for A ∈ R2×2 with SpecA = {i,−i}. Here, SΣRS(A)
∼= (C \ D) ∪ {1}. We

obtain R(z) = {zz̃ | z̃ ∈ SΣRS(A)} = |z|(C \ D) ∪ {z}. Right: Reachable set
for z = 1

2
e

π
4
i.
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9.4 Restarted polynomial iteration

Given an initial guess x0 for the solution of a linear equation Ax = b,
A ∈ Rn×n, b ∈ Rn, a restarted polynomial iteration of degreem is an iteration
scheme of the form

xt+1 = xt − pt(A)(b− Axt) (58)

where pt ∈ R[x] with deg pt < m. Restarted polynomial methods are also
called restarted Krylov methods, since

xn+1 ∈ xt +Km(A, rt)

where Km(A, rt) denotes the Krylov space with respect to A and rt := b −
Axt, i.e., Km(A, rt) := span(rt, Art. . . . , A

m−1rt) . Similar to Richardson's
method, the dynamics of the iteration can be equivalently described by the
dynamics of the residual sequence (rt)t∈N. We obtain

rt+1 = b− A(xt − pt(A)(b− Axt)) = (I − Apt(A))rt.

This motivates the following setting.

De�nition 9.10 (Polynomial iteration system) Let A ∈ Rn×n be in-
vertible and

UPI
A := {p ∈ R[x] | deg(p) < m+ 1, I − Ap(A) invertible}.

The system ΣPI(A) = (Rn, UPI
A , fPI

A ) given by the transmission map fPI
A :

(r, p) 7→ (I − Ap(A))r is called Polynomial iteration system (with respect
to A).

Note that Richardson's method and restarted polynomial iteration co-
incide for m = 1. We have seen that the Richardson system semigroups are
not necessarily groups (see Theorem 9.7). In the following we show, that
the system semigroup of polynomial iteration system is a group, provided
m ≥ 2.

Theorem 9.11 Let A ∈ Rn×n be cyclic and ΣPI(A) = (Rn, UPI
A , fPI

A ) be a
polynomial iteration system of degree m ≥ 2. Then

a) SΣPI(A)(A) = P (A).

b) ΣPRS(A) is weakly reversible.

c) ΣPRS(A)|NA
is controllable.
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Proof. a) Obviously, SΣRS(A) ⊆ SΣPI(A) ⊆ P (A). Moreover, the system
semigroup for polynomial iterations systems for polynomials of degree m
is included in the system semigroup for polynomial iterations systems for
polynomials of degree m + 1. Therefore, it is su�cient to show the claim
for m = 2. Recall that 〈SΣRS(A)〉 = P (A) by Proposition 9.2. Thus, we only
have to show that SΣPI(A) is a group, i.e., we show that for any p ∈ UPI

A

there exists k ∈ N and p1, . . . , pk ∈ UPI
A such that

fp ◦ fp1 ◦ · · · ◦ fpk
= I.

By the Cayley Hamilton theorem there exists a polynomial p̃ of degree at
most n such that

(I − p(A)A)−1 = p̃(A). (59)

We decompose p̃ in linear or quadratic polynomials, i.e.,

p̃(t) = (α1 + tr1(t)) . . . (αk + trk(t)) with deg rj ≤ 1, j = 1, . . . , k.

Since p̃(A) is invertible we have αj 6= 0, j = 1, . . . , k. Moreover, (59) implies

(1− p(t)t)p̃(t) = (1− p(t)t)(α1 + tr1(t)) . . . (αk + trk(t)) = 1 + k(t)mA(t)

for some k ∈ R[t]. Since deg(p) = m = 2, deg p̃ ≤ n and degmA(t) = n we
obtain α1 . . . αk = 1. Thus,

I = (I − Ap(A)(I − Ap1(A)) . . . (I − Apk(A))

with pj := −1
αj
rj. This proves claim a).

b) and c) Clearly, ΣPRS(A) is weakly reversible if SΣPI(A)(A) is a group.
Moreover, P (A) acts transitively on NA (see Lemma 6.11). Thus, state-
ments b) and c) are immediate consequences of statement a). 2
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Another approach to design iterative methods for solving linear equations
Ax = b is via linear control schemes, i.e., given A ∈ Rn×n and b ∈ Rn, we
want to �nd a shift sequence U = (u1, u2, . . . ), ut ∈ Rm with limt→∞ ut = 0
and B ∈ Rn×m such that the sequence

xt+1 = (I − A)xt +But + b (60)

converges. Then, the limit of (xt)t∈N is a solution of the equation Ax = b.
Without loss of generality we assume that b lies in the image space of B, i.e.,
b ∈ ImageB := {By | y ∈ Rm}. Otherwise we set B̃ := [b, B] ∈ Rn×(m+1).
Assuming that A is invertible, we have

x = A−1b =
n−1∑
j=0

αj(I − A)jb

for some αj ∈ R, j = 0, . . . , n − 1. Thus, x ∈ ImageR(I − A,B) where
R(I − A,B) is the Kalman matrix of the pair (I − A,B), i.e.,

R(I − A,B) := [B, (I − A)B, . . . , (I − A)n−1B].

This approach yields the following de�nition.

De�nition 10.1 (linear control system) Let A ∈ Rn×n, b ∈ Rn and
B ∈ Rn×m such that b ∈ ImageB. System ΣB(A) = (Rn,Rm, fB) with

fB : U × Rn → Rn; fB(u, x) = (I − A)x+Bu+ b

is called linear control system (of equation Ax = b with respect to B).

In the following we analyze the system semigroup and the reachable
structure of linear control systems (Section 10.1). Our results imply the
Kalman rank condition for controllability, a well known fact from the theory
of linear control systems. Moreover, we present a feedback law such that
(60) converges globally to a solution of Ax = b (Section 10.2).

10.1 Linear control system semigroup

Obviously, every composition of maps fB
u1
, . . . , fB

uT
is an a�ne map. There-

fore, the system semigroup SΣB(A) of the linear system ΣB(A) is a subsemi-
group of the a�ne group Affn(R), provided I−A is invertible. By induction
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we obtain

fB
u1
◦ · · · ◦ fB

uN
(x) = (I − A)Nx+

N∑
t=1

(I − A)t−1(But + b). (61)

In particular this shows, that the identity is not element of the semigroup
SΣB(A) for almost all A ∈ Rn×n. Thus, SΣB(A) is in general not a group.

In contrast to the system semigroups we have analyzed in the previous
chapters, SB

Σ (A) is not abelian. In fact equation (61) shows

fB
u1
◦ fB

u2
(x) = (I − A)2x+B(u1 + u2) + (2I − A)b− ABu2

and therefore

fB
u1
◦ fB

u2
(x)− fB

u2
◦ fB

u1
(x) = AB(u1 − u2).

In other words, fB
u1

and fB
u2

commute if and only if fB
u1

= fB
u2
, provided

rank(AB) = m. Nevertheless, it turns out, that SΣB(A) is right divisible.

Theorem 10.2 Let A ∈ Rn×n such that I −A is invertible and B ∈ Rn×m

such that b ∈ ImageB. Then ΣB(A) is right divisible and left divisible. The
system group is given by

GΣB(A) =
{
g : x 7→ (I − A)Zx+ v |Z ∈ Z v ∈ ImageR(I − A,B)

}
.

Proof. Without loss of generality we assume b = 0 (otherwise we set ũt

such that But + b = Bũt). By equation (61) we easily deduce

(fB
uN

)−1 ◦ · · · ◦ (fB
u1

)−1(x) = x 7→ (I − A)−N

(
x−

N∑
t=1

(I − A)t−1But

)
.

Obviously, every �nite product

fB
u1
◦ · · · ◦ fB

uN1
◦ (fB

w1
)−1 ◦ · · · ◦ (fB

wN2
)−1

with u1, . . . , uN1 , w1, . . . , wN2 ∈ Rm is an a�ne map and therefore contained
in the group {x 7→ (I−A)Zx+v |Z ∈ Z, v ∈ Rn} ⊆ Affn(R). More precisely,
v =

∑Z2

t=Z1
αt(I − A)tBut for some Z1, Z2 ∈ Z and αt ∈ R. Thus,

SΣB(A)(SΣB(A))
−1 ⊆ GΣB(A)

⊆ {x 7→ (I − A)Zx+ v |Z ∈ Z, v ∈ ImageR(I − A,B)}︸ ︷︷ ︸
=:G

.

Now we show that for every Z ∈ Z and every v ∈ ImageR(I − A,B) there
exists N1, N2 ∈ N and u1 . . . , uN1 , w1, . . . , wN2 ∈ Rm such that

s1s
−1
2 (x) = (I − A)Zx+ v
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for s1 := fu1 ◦ · · · ◦ fuN1
and s2 := fw1 ◦ · · · ◦ fwN2

. Then G is a subset of
SΣB(A)(SΣB(A))

−1 and thus GΣB(A) = G.

Case I: We assume that Z ≥ 0. We choose, N1 = Z + n, N2 = n and
u1, . . . , uN1 = 0. Since v ∈ ImageR(I − A,B) and ImageR(I − A,B) is
(I − A) invariant, there exists w1, . . . , wn ∈ Rm such that

−(I − A)−Zv =
n∑

t=1

(I − A)t−1Bwt.

Therefore,

s1s
−1
2 (x) = (I − A)Z+n(I − A)−n

(
x−

n∑
t=1

(I − A)t−1Bwt

)

= (I − A)Zx− (I − A)Z

n∑
t=1

(I − A)t−1Bwt

= (I − A)Zx+ v

Case II: Now we assume Z < 0. We choose w̃1, . . . , w̃n ∈ Rm such that

v =
n∑

t=1

(I − A)t−1Bw̃t.

From case I we deduce

s1s̃
−1
2 (x) = (I − A)Z̃x− (I − A)Z̃v

for Z̃ = −Z and s̃2 = fB
w̃1
◦ · · · ◦ fB

w̃N2
. Therefore,

s̃2s
−1
1 (x) =

(
s1s̃

−1
2

)−1
(x)

= (I − A)−Z̃(x+ (I − A)Z̃v)

= (I − A)Zx+ v.

Thus, in both cases x 7→ (I −A)Zx+ v is an element of SΣB(A)

(
SΣB(A)

)−1
.

We conclude
GΣB(A) = SΣB(A)

(
SΣB(A)

)−1
= G.

Hence, ΣB(A) is right divisible. Analogously, we can show that any element
of G can be written as a product s−1

1 s2 with s1, s2 ∈ SΣB(A). Thus, ΣB(A)
is also left divisible. 2

Knowing the explicit types of the system group we easily obtain the follow-
ing result on the adherence structure of the reachable sets. In particular,
we deduce the well known Kalman rank condition for controllability.
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Theorem 10.3 Let A ∈ Rn×n, b ∈ Rn and B ∈ Rn×m such that I − A is
invertible and b ∈ ImageB. Consider ΣB(A) := (Rn,Rm, fB).

a) Every reachable set is the countable union of a�ne subspaces of Rn

with dimension at most rankR(I − A,B).

b) Every system group orbit is the countable union of a�ne subspaces of
Rn with dimension rankR(I − A,B).

c) ΣB(A) restricted to GΣB(A) · 0 is controllable.

d) ΣB(A) is controllable if and only if rankR(I − A,B) = n.

Proof. a) From (61) and b ∈ ImageB it follows

R(x) =

{
(I − A)Nx+

N∑
t=1

(I − A)t−1Bvt

∣∣∣∣∣N ∈ N, vt ∈ Rm

}
(62)

=
⋃
t∈N

(
(I − A)tx+Kt

)
with Kt := {

∑t−1
j=0(I − A)jBwj |wj ∈ Rm, j = 0, . . . , t − 1}. Note that,

Kn = ImageR(I − A,B) and dimKt ≤ dimKn for any t ∈ N.
b) By Theorem 10.2 we have

GΣB(A) · x =
⋃
t∈Z

(
(I − A)tx+Kn(I − A,B)

)
. (63)

c) From (62) and (63) it follows R(x) = GΣB(A) · 0 for all x ∈ ImageR(I −
A,B). Thus, ΣB(A) restricted to GΣB(A) · 0 is controllable by Proposition
2.31.
d) Obviously, rankR(I−A,B) = n implies controllability by c). Conversely,
rankR(I − A,B) < n implies

GΣB(A) · x =
⋃
Z∈Z

(I − A)Zx+ ImageR(I − A,B) 6= Rm.

Thus, R(x) 6= Rn. 2

In the following we assume that also A is invertible. Theorem 10.3 shows,
that A−1b ∈ R(x) if and only if x ∈ ImageR(I − A,B). Note that the set
of pairs (I − A,B) ∈ Rn×n × Rn×m which satisfy rankR(I − A,B) = n, is
open and dense28 in Rn×n × Rn×m (see Proposition 3.3.12 in [Son98]). If
the Kalman rank condition does not hold, i.e., rankR(I −A,B) < n, every

28 The generaliy of this statement is not restricted by the general assumption b ∈
Image B, since rankR(I −A,B) = n implies rankR(I −A, [b, B]) = n.
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reachable set is the countable union of a�ne spaces with dimension at most
rankR(I −A,B) < n and therefore of measure zero. Nevertheless, in some
(but not all) situations we have A−1b ⊆ R(x) for some x ∈ Rn \ R(0)
(see Example 10.5). A su�cient condition for this phenomenon will be
presented in Section 10.2 (see Theorem 10.10). The following result shows,
that A−1b ⊆ R(x) is a property of the entire orbit GΣB(A) · x.

Theorem 10.4 Consider ΣB(A) := (Rn,Rm, fB) with A ∈ Rn×n, b ∈ Rn

and B ∈ Rn×m such that A and I − A is invertible and b ∈ ImageB. Let
y, z ∈ GΣB(A) · x for some x ∈ Rn. Then

A−1b ∈ R(y) if and only if A−1b ∈ R(z).

Proof. Recall that GΣB(A) is right divisible. Therefore, there exists w ∈
GΣB(A) · x such that R(y) ∪ R(z) ⊆ R(w) (see Theorem 4.8). It follows,
that z = (I − A)Nw + v for some N ∈ N and v ∈ ImageR(I − A,B). By
(63) it follows

R(w) \ R(z) ⊆
N−1⋃
t=1

(
(I − A)tz + ImageR(I − A,B)

)
.

Since (I − A)tz /∈ ImageR(I − A,B) = R(0) for any t = 1, . . . , N − 1 it
follows

R(0) ∩R(w) \ R(z) = ∅. (64)

Now we assume that A−1b ∈ R(y). Then A−1b ∈ R(w), sinceR(y)∪R(z) ⊆
R(w). By (64) it follows A−1b ∈ R(z). The converse direction follows
analogous. 2

We �nish this section with an example which shows, that there exist
linear B-systems with A−1b /∈ R(x) for some x ∈ Rn as well as systems
with A−1b ∈ R(x) for some x ∈ Rn \ R(0).

Example 10.5 Consider ΣB(Aa) = (R2,R, fB) with

I − Aa =

(
2 0
0 a

)
and B = b =

(
1
0

)
.

Clearly we have ImageR(I−A,B) = {(y, 0)> | y ∈ R} andA−1
a b ∈ ImageR(I−

A,B). For any (x1, x2)
> we have

GΣB(Aa) · x =

{(
2Zx1

aZx2

)
+ v,

∣∣∣∣ Z ∈ Z, v ∈ ImageR(I − A,B)

}
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Figure 8: Illustration to Example 10.5. The reachable sets are countable
unions of a�ne subspaces. Left: R(x) for the case 0 < a < 1. Here, R(0)
lies in the topological closure of R(x). Right: R(x) for the case |a| > 1.
Here, R(0) ∩R(x) = ∅.

and

R(x) =

{(
2Nx1

aNx2

)
+ v,

∣∣∣∣ N ∈ N, v ∈ ImageR(I − A,B)

}
.

Thus, for x = (0, 1)>, we have R(0) ⊆ R(x) if |a| < 1 and R(0)∩R(x) = ∅
if |a| ≥ 1.
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10.2 Shift strategies via quadratic controller design

In this following we introduce a method, for constructing an explicit shift
sequence such that (60) converges globally to a solution of Ax = b. We use
the following classic result by Kalman [Kal60]. A proof can be found in
[LR95], Theorem 16.6.4.

Theorem 10.6 Consider the linear control system Σ = (Rn,Rm, L), given
by

rt+1 = L(rt, ut) = Ãrt + B̃ut

and the cost functional

Jr0(u0, u1, . . . ) =
∞∑

t=0

(‖rt‖2 + ‖ut‖2). (65)

Assume that (Ã, B̃) is discrete-time stabilizable, i.e., rank[λI − Ã, B̃] = n
for any λ ∈ C with |λ| ≥ 1.

a) The algebraic Riccati equation

P = In + Ã>PÃ+ (B̃>PÃ)>(Im + B̃>PB̃)−1B̃>PÃ (66)

has an unique symmetric positive de�nite solution P ∈ Rn×n.

b) There exists a unique control sequence u = (u0, u1, . . . ) such that
Jr0(u0, u1, . . . ) is minimal. This optimal control sequence is given by
the feedback law ut = −Krt with

K = (Im + B̃>PB̃)−1B̃>PÃ. (67)

Moreover, Jr0(u0, u1, . . . ) = r>0 Pr0.

Now we apply Theorem 10.6 to ΣB(A). The dynamics of the residuals
rt := b− Axt is given by the linear system

rt+1 = b− Axt+1 = b− A((I − A)xt +But + b) = (I − A)rt − ABut.

Assume that (I−A),−AB) is discrete-time stabilizable. By Theorem 10.6,
rt converges to zero if we apply the feedback law ut = −Krt with

K = (Im + (AB)>P (AB))−1(−AB)>P (I − A).

Here P is the unique solution of (66) with Ã = I −A and B̃ = −AB. This
yields the following algorithm proposed by Helmke, Jordan and Lanzon
([HJ05, HJL06]).
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Algorithm 10.7 (LQRES)

(i) Choose B such that (I − A,−AB) is stabilizable

(ii) Calculate the unique positive de�nite solution of the Riccati Equation
(66) for Ã = I − A and B̃ = −AB.

(iii) Calculate K as in Equation (67) for Ã = I − A and B̃ = −AB.

(iv) Iterate the closed loop system

xt+1 = (I − A)xt +BK(b− Axt) + b. (68)

By Theorem 10.6 we immediately obtain the following convergence result
for LQRES.

Theorem 10.8 If (I − A,−AB) is stabilizable then (68) converges to a
solution of Ax = b.

Note that a solution to step (i) may not exist for arbitrary choices of
A. However, for generic choices of A step (i) is always solvable. Moreover,
the freedom in choosing B can be exploited to improve convergence speed
(see Example 10.12 and Example 10.13). If the eigenvalues λ of A satisfy
|1 − λ| < 1, then one can choose B = 0. Then LQRES coincides with the
Richardson's method xt+1 = (I − uA)xt + ub with constant shift strategy
u ≡ 1. The following example shows, that LQRES converges in cases, where
Richardson's iteration fails for all possible shift strategies.

Example 10.9 Consider Ax = b with

A =

(
0 −1
1 0

)
and b =

(
1
0

)
.

By Theorem 9.7 Ax = b is not solvable for any Richardson's method. How-
ever, (I − A,−AB) is stabilizable for the choice B := b. Thus LQRES
converges.

Provided the dimension of U = Rm is relatively small, step (iii) does not
cause numerical problems. However, the expensive preconditioning process
by solving the algebraic Riccati equation (66) in step (ii) is a serious nu-
merical problem. In fact, any known method is more expensive then solving
the origin equation Ax = b. Nevertheless, we believe variations of LQRES,
using suboptimal techniques for solving equation (66), yield attractive al-
ternatives to the common numerical algorithms.

Theorem 10.8 provides an interesting result on the adherence structure
of reachable sets.
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Theorem 10.10 Let A ∈ Rn×n, b ∈ Rn and B ∈ Rn×m such that I−A and
A are invertible, (I − A,−AB) is stabilizable and b ∈ ImageB. Consider
ΣB(A) = (Rn,Rm, fB). Then R(0) ⊆ R(x) for any x ∈ Rn. In particular
A−1b ∈ R(x) for any x ∈ Rn.

Proof. By Theorem 10.8 there exists a sequence (xt)t∈N with x0 = x inR(x)
which converges to A−1b ∈ R(0) = ImageR(I−A,B). Thus, A−1b ∈ R(x).
For any v ∈ ImageR(I − A,B) the sequence xt + (v − A−1b) lies in R(x)
since v − A−1b ∈ ImageR(I − A,B) and R(x) =

⋃
t∈N ((I − A)tx+Kt).

Thus, R(0) ⊆ R(x). 2

Clearly, the statement of Theorem 10.10 is trivial if the Kalman rank
condition holds. The following example shows, that the assumptions of
Theorem 10.10 do not imply rankR(I − A,B) = n.

Example 10.11 Consider ΣB(Aa) = (R2,R, fB) of Example 10.5 with a ∈
(0, 1). Recall that Aa and I − Aa are invertible. Moreover,

rank[λI − (I − Aa),−AaB] = rank

(
λ− 2 0 −2

0 λ− a 0

)
= 2

for all |λ| > 1. Thus, (I − Aa,−AaB) is stabilizable. By Theorem 10.10 it
follows, that A−1b ∈ R(x) for any x ∈ Rn. However,

rankR(I − Aa, B) = rank

(
1 2
0 0

)
< 2.

We �nish this section with some numerical experiments which demon-
strate the dependence of the convergence properties of LQRES on the choice
of the parameter B.

Example 10.12 Consider Ax = b for

A =

 1 2 −2
0 2 4
0 0 3

 and b =

 3
1
1

 .

We choose x0 = 0 as an initial guess. This example is known to produce ex-
treme behavior for restarted GMRES algorithms. In particular GMRES(2)
fails to converge while GMRES(1) converges (see [Emb03]). We choose

B1 =

 3
1
1

 , B2 =

 3 1
1 1
1 1

 , B3 =

 3 −1
1 −2
1 −3


The convergence behavior of LQRES is shown in Figure 9.
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Figure 9: LQRES in Example 10.12. We compare the relative residuals
after n outer iteration steps. The algorithm converges for all parameters
B1, B2, B3. However, the speed of convergence depends on the choice of
B.

Example 10.13 Now we consider Ax = b where b = (1, 0, 0, 0, 0)> and A
is the Hilbert matrix of order 5. The elements of the Hilbert matrices are
given by ai,j = 1

i+j−1
. It is known that this matrix is poorly conditioned

(see [FM67], Chapter 19). We choose

B1 = b, B2 =


1 1
0 −1
0 0
0 0
0 0

 , B3 =


1 1 0
0 −1 0
0 0 −1
0 0 −1
0 0 −1


The convergence behavior of LQRES with respect to B1, B2 and B3 is
shown in Figure 10.



Figure 10: LQRES applied on a Hilbert matrix of dimension 5 (Example
10.13). We compare the relative residuals after n outer iteration steps. We
observe that the speed of convergence increases when the number of columns
of B gets larger.

A Semi-algebraic sets

In Part II of this thesis, we analyze systems where the state space is a real
algebraic set and the transition map is a rational homomorphism. To take
advantage of this situation we shall use some basic concepts from algebraic
geometry. Here, we brie�y recall some basic notations and properties of
semi-algebraic sets which will be important for our analysis. See [BCR98,
CLO91] for a more detailed overview on real algebraic geometry.

We call a set A ⊆ RN a variety or a real algebraic set if there exists a
set of polynomials P ⊆ R[x1, . . . , xN ] such that

A = {x ∈ RN | p(x) = 0,∀p ∈ P}.

A variety A is called irreducible if A = A1∪A2 with varieties A1, A2 implies
A = A1 or A = A2. A set A ⊆ RN is called semi-algebraic if it can be
written as the �nite union of sets of the form

{x ∈ RN | f1(x) = · · · = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0},
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where f1, . . . , fl, g1, . . . , gm ∈ R[x1, . . . , xN ]. A map f : A → B between
semi-algebraic sets A ⊆ RM and B ⊆ RN is called semi-algebraic if

graph(f) := {(a, f(a)) | a ∈ A}

is semi-algebraic in RM+N . In particular, every regular morphism is semi-
algebraic, i.e., every map f = (f1, . . . , fM) : A → B with rational compo-
nents fk = pk/qk, k = 1, . . . ,M such that pk, qk ∈ R[x] and qk(x) 6= 0 for all
x ∈ A, is semi-algebraic.

One easily obtains the following:

Proposition A.1 a) If A,B ⊆ RN are semi-algebraic, then A∩B, A∪B
and A \B are semi-algebraic.

b) If A ⊆ RM and B ⊆ RN are semi-algebraic sets, then A×B is semi-
algebraic in RM+N .

c) If f : A → B is a semi-algebraic bijective map, then f−1 : B → A is
semi-algebraic.

d) The composition g ◦ f of semi-algebraic maps f : A→ B and g : B →
C is semi-algebraic.

e) If M and U are semi-algebraic sets and f : M × U → M is semi-
algebraic, then fu : M →M , m 7→ f(m,u) is semi-algebraic.

Proof. The proofs of claim a) and b) can be found in [BCR98], Chapter
2.1. Moreover, graph(f) is semi-algebraic if and only if

graph(f−1) = {(a, f−1(a)) | a ∈ A}
= {(f(b), b) | b := f(a) ∈ B}

is semi-algebraic. This shows c). Claim d) is proven in [BCR98], Proposition
2.2.6. Claim e) follows from d), since fu = f ◦ πu where πu : M → M × U ,
m 7→ (m,u). 2

The following fact is also known as the Tarski-Seidenberg theorem .

Theorem A.2 Let A be a semi-algebraic subset of RN+K and π : RN+K →
RN the projection on the �rst N coordinates. Then π(A) is a semi-algebraic
subset of RN .

For a proof we refer to [BCR98] (see Theorem 2.2.1).
Assume that X ⊆ RM and Y ⊆ RN are semi-algebraic sets and A ⊆ X

as well as B ⊆ Y are semi-algebraic subsets. If f : X → Y is a semi-
algebraic map, then f(A) is the image of (A × Y ) ∩ graph(f) under the
projection X × Y → Y and f−1(B) is the image of (X × B) ∩ graph(f)
under the projection X × Y → X. By Proposition A.1 and Theorem A.2
we obtain:
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Corollary A.3 Let X ⊆ RM and Y ⊆ RN be semi-algebraic sets and let
f : X → N be a semi-algebraic map. Then for all semi-algebraic sets A ⊆ X
and B ⊆ Y the sets f(A) and f−1(B) are semi-algebraic.

Another important property of semi-algebraic sets is that they can be
decomposed in manifolds.

Theorem A.4 Every semi-algebraic subset A ⊆ RN is the disjoint union
of a �nite number of semi-algebraic submanifolds Ai ⊆ RN , i = 1, . . . , l,
such that each Ai is di�eomorphic to (0, 1)di. Here (0, 1)0 is a point by
convention. Moreover, d := max{d1, . . . , dl} is unique.

See Proposition 2.9.10 in [BCR98] for the decomposition property. The
fact that d is unique follows from Corollary 2.8.9. in [BCR98]. We say d =:
dims(A) is the semi-algebraic dimension of A. Note that dims(A) = dim(A)
if A is a manifold (see Proposition 2.8.14 in [BCR98]).

Lemma A.5 Let A ⊆ RN be a semi-algebraic set with dims(A) = d. Then:

a) A is a semi-algebraic subset of RN and dims(A) = dims(A).

b) dims(A \ A) < dims(A).

c) If A is the �nite union of semi-algebraic sets A1, . . . , Ak with dimen-
sions d1, . . . , dk, then d = max{d1, . . . , dk}.

All claims are well known and can be found in [BCR98] (see Proposition
2.2.2 and Proposition 2.8.2 for claim a), Proposition 2.8.13 for claim b) and
Proposition 2.8.5 for claim c).

As a consequence of Theorem A.4 and Lemma A.5 we obtain the follow-
ing observation which is important in the proof of Theorem 2.7 (algebraic
orbit theorem).

Lemma A.6 Let A ⊆ RN be a semi-algebraic set with dims(A) = d. Then
there exists x ∈ A and a neighborhood U of x in RN such that U ∩ A is
di�eomorphic to (0, 1)d.

Proof. By Theorem A.4 we can write

A = A1 ∪ · · · ∪ Ak1 ∪ Ak1+1 ∪ · · · ∪ Ak

such that for all i = 1, . . . , k1, Ai is a submanifold of RN di�eomorphic to
(0, 1)d and for all i = k1+1, . . . , k, Ai is di�eomorphic to (0, 1)d̃i with d̃i < d.
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By Lemma A.5, the set

Â := A1 \


( ⋃

1<i≤k1

Ai

)
︸ ︷︷ ︸

=:Aα

∪

( ⋃
k1<i≤k

Ai

)
︸ ︷︷ ︸

=:Aβ

 (69)

is semi-algebraic. We shall show that dims(Â) = d.

Since dims(Aβ) = max{dims(Ak1+1), . . . , dim(Ak)} < d we have

dim((A1 \ Aβ) ∪ Aβ) = dims(A1 \ Aβ) = dim(A1) = d.

Recall that Ai, i = 1, . . . , k are disjoint. It follows

Â = (A1 \ Aβ) \ Aα = (A1 \ Aβ) \

( ⋃
1<i≤k1

(
Ai \ Ai

))
.

By Lemma A.5 we have dims

(⋃
1<i≤k1

(
Ai \ Ai

))
< dims(Ai) = d. There-

fore,

dims(A1 \ Aβ) = dims

((
(A1 \ Aβ) \

⋃
1<i≤k1

(
Ai \ Ai

))
∪
⋃

1<i≤k1

(
Ai \ Ai

))

= dims

((
(A1 \ Aβ) \

⋃
1<i≤k1

(
Ai \ Ai

)))
= dims(Â).

This shows that dims(Â) = d and in particular Â 6= ∅. Thus, for all x ∈ Â
we can �nd U ⊆ RN such that

U ∩ A = U ∩ Â = U ∩ A1.

Since A1 is di�eomorphic to (0, 1)d, we can choose U such that U ∩ A is
di�eomorphic to (0, 1)d. 2
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B Topological semigroups

System groups are often equipped with a canonical topology such that GΣ

is a topological group acting continuously on the state space. Therefore,
some basic theory on topological groups and their subsemigroups turns out
to be very helpful for the analysis of the reachable set structure of systems
and algorithms. In the following we collect some useful properties on this
subject which can be found in [Hus66, HN93, HHL89, Mit01] and [SBG+95].

De�nition B.1 A topological space G that is also a group is called a topo-
logical group if the mappings G × G → G, (g1, g2) 7→ g1g2 and G → G,
g 7→ g−1 are both continuous. Analogously, a topological space S that is
also a semigroup is called a topological semigroup if the mapping S×S → S,
(s1, s2) 7→ s1s2 is continuous.

Obviously, every subsemigroup of a topological group is a topological
semigroup. Moreover, we observe the following.

Lemma B.2 Let G be a topological group and S a nonempty subsemigroup
of G. Then

a) The topological closure of S is a subsemigroup of G.

b) If S is compact, then S is a group.

Proof. a) For any s, s̃ ∈ S there exist sequences (sn)n∈N and (s̃n)n∈N in
S such that sn → s and s̃n → s̃. Since the product in the topological
group G is a continuous map, we obtain ss̃ ∈ S. Therefore, S is a closed
subsemigroup of G.
b) Since S is compact, the sequence sn has a convergent subsequence snk .
Since limk→∞ snk = limk→∞ snk+2 it is

lim
k→∞

snk+2s−nks−1 = s−1.

From nk+2−nk > 1 we deduce snk+2s−nks−1 ∈ S and therefore s−1 ∈ S = S.
Hence, S is a group. 2

In the following we denote the neutral element of a topological group G
with e.

Theorem B.3 Let G be a connected topological group. Then for any neigh-
borhood V of e we have

G =
⋃
n∈N

V n.
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Here V n denotes the set of products of n elements vi ∈ V , i.e. V n :=
{
∏n

i=1 vi |vi ∈ V }. For a proof we refer to [Hus66], Theorem 23.6.

Lemma B.4 Let G be a topological group and S a subsemigroup of G. If
e ∈ intG S and S ∩ Gi 6= ∅ for every path-connected component Gi of G,
then S = G.

Proof. (i) First we show the claim under the assumption that G is path-
connected. Let V be an open set in intG S such that e ∈ V . Since G is a
topological group, ⋃

n∈N

V n = G (70)

by Theorem B.3.
Since S is a semigroup, it follows V n ⊆ S for all n ∈ N and therefore

S ⊆ G =
⋃
n∈N

V n ⊆ S.

(ii) Now we assume that G has di�erent path-connected components Gi,
all of them having nonempty intersection with S. We show that Gi ⊆ S
and therefore S = G.

Let Ge be the component of e and gi an element of Gi ∩ S. We de�ne
rgi

: Ge → Gi, h 7→ hgi. Note that rgi
is a homeomorphism with inverse

r−1
gi

= rg−1
i
. Since gi is an element of the semigroup S, we obtain

rgi
(Se) = Segi ⊆ S. (71)

Here Se is the identity component of S. We show that Se is a semigroup.
For any a, b ∈ Se there exists a path sa : [0, 1] → Se with sa(0) = e and
sa(1) = a and a path sb : [0, 1]→ Se with sb(0) = e and sb(1) = b. Therefore
the path s : [0, 1] → S2

e , given by s(t) := sa(t)sb(t), connects s(0) = e and
s(1) = ab. Hence, Se is a semigroup. By (i) it follows that Se = Ge, and we
conclude

Gi = rgi
(Ge) = rgi

(Se) = Segi ⊆ S, (72)

for all i ∈ I. 2

The following useful fact can be found in [HN93] (see Lemma 3.7).

Lemma B.5 Let S be a subsemigroup of a connected topological group G.
Then the following statements hold:

a) intG(S) is a semigroup ideal, i.e.,

intG(S)S ⊆ intG(S) and S intG(S) ⊆ intG(S).
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b) If e ∈ intG(S), then

S ⊆ intG(S) and intG(S) = intG(S).

c) If intG(S) 6= ∅ and S = G, then S = G

Typically, we have to deal with system groups with more than one con-
nected component. Nevertheless, statement c) of Lemma B.5 also holds if
G is not connected.

Lemma B.6 Let S be a subsemigroup of a topological group G. Assume
that intG(S) 6= ∅ and S = G. Then S = G.

Proof. (i) By assumption it follows that (intG S)−1 ⊆ S and since G→ G,
g 7→ g−1 is an open map,

(intG S)−1 ∩ S 6= ∅.

In other words, there exists s ∈ S such that s−1 ∈ intG S. We obtain

e = ss−1 ⊆ S intG S ⊆ intG S,

since intG S is an ideal of S (see Lemma B.5). Hence e is an interior point
of S, i.e.,

e ∈ intG(S).

(ii) Since S = G, there exists for any g ∈ G a sequence (sn)n∈N in S with
sn → g. In other words, the sequence s−1

n g converges to e ∈ intG(S). Thus,
g ∈ sn intG(S) ⊆ S for almost all n ∈ N. Hence, S = G. 2

Recall that Stabx := {g ∈ G | g · x = x} is a subgroup of G, the so called
stabilizer subgroup. Reachable sets are orbits of semigroup actions. We
say a semigroup SΣ acts transitively on M if for m1,m2 ∈ M there exists
s ∈ SΣ such that s ·m1 = m2. If S is a subsemigroup of a Lie group29 G,
the following condition for transitivity applies.

Proposition B.7 Let G be a Lie group and S a subsemigroup of G. We
assume that G acts continuous and transitively on a manifold M . Then:

a) If intG S ∩ Stabx 6= ∅, then there exists a neighborhood of x such that
SΣ acts transitively on U .

b) If M is connected and intG S ∩ Stabx 6= ∅ for all x ∈ M , then S acts
transitively on M .

29 A Lie group is a di�erential manifold with topological group structure such that
product and inversion are smooth maps.
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For a proof we refer to Mittenhuber [Mit01](see Proposition 3.3.4 for state-
ment a), respectively Proposition 3.3.5 for statement b).

We �nish this section with an important fact known as E�ros theorem .
Recall that a topological space is locally compact if each point is contained
in a compact neighborhood. In particular manifolds are locally compact30.
A Lindelöf space is a topological space in which every open cover has a
countable subcover. In particular, G is a Lindelöf space if G is a Lie group.

Theorem B.8 Let G be a locally compact topological group and M a locally
compact topological space. Assume that G is a Lindelöf space. If G acts
transitively and continuous on M , then the map hx : G → M , g 7→ g · x is
open.

The proof of Theorem B.8 is based on Baire's category theorem. For more
details we refer to [SBG+95] (see Theorem 96.8).

30Note that semi-algebraic sets are not locally compact in general.



187

C Directed graphs

In this work we will describe the adherence structure of the reachable sets
using a graph theoretical language. In the following we give a brief sum-
mery on the necessary notations and properties. The following de�nitions
are standard and can be found in the books of Bollobás [Bol98] or Diestel
[Die00].

De�nition C.1 (Directed graph) A directed graph G is a pair (V,←−)
containing of a set V , the set of vertices and a relation ←− on V . A pair
(v1, v2) ∈ V × V is called an edge from v1 to v2 if v2 ←− v1. We say that G
is in�nite if V has in�nitely many elements.

In this work, we only consider graphs G = (V,←−) where the relation ←−
is re�exive and transitive, i.e., where v ←− v for all v ∈ V and v2 ←− v1

and v3 ←− v2 implies v3 ←− v1. Therefore, in �gures we neglect trivial
edges, i.e., edges from v ∈ V to itself. Moreover we reduce the graph by
those edges which are already clear by transitivity. The following diagram
illustrates this reduction.

u

  A
AA

AA
AA

A




v

>>~~~~~~~
//




w




u

  A
AA

AA
AA

A

v

>>~~~~~~~
// w

u

  A
AA

AA
AA

A

v

>>~~~~~~~
w

original graph neglect trivial edges reduced graph

De�nition C.2 (Subgraph) Let G2 = (V2,←−2) and G1 = (V1,←−1) be
directed graphs such that V2 ⊆ V1. We say G2 is a subgraph of G1 if v ←−2 w
for v, w ∈ V2 implies v ←−1 w. We say G2 is an induced subgraph of G1 if
for all v, w ∈ V2: v ←−1 w is equivalent to v ←−2 w.

Let G1 = (V1,←−1) be a directed graph and V2 ⊆ V1 a subset of vertices. In
general, there exists more then one subgraph but a unique induced subgraph
with vertex set V1. In particular, the following graphs show, that not every
subgraph is an induced subgraph.

u

  A
AA

AA
AA

A

v

>>~~~~~~~

  @
@@

@@
@@

w

x

OO u

v

>>~~~~~~~

  @
@@

@@
@@

x

u

v

>>~~~~~~~

  @
@@

@@
@@

x

OO

original graph subgraph induced subgraph
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De�nition C.3 (Graph isomorphism) Let G1 = (V1,←−1) and G2 =
(V2,←−2) be directed graphs. A map Φ : V1 → V2 is called graph iso-
morphism if it is bijective and v1 ←−1 v2 for v1, v2 ∈ V1 is equivalent to
Φ(v1)←−2 Φ(v2).

If Φ is a graph isomorphism between G1 = (V1,←−1) and G2 = (V2,←−2)
and G̃ = (Ṽ ,←−1̃) is a subgraph of G1, then we write Φ(G̃) for the graph
(Φ(Ṽ ),←−2̃) de�ned by

Φ(v1)←−2̃ Φ(v2) if and only if v1 ←−1̃ v2.

Note that Φ(G̃) is a subgraph of G2. This yields the following useful propo-
sition:

Proposition C.4 G1 is isomorphic to a subgraph of G if and only if any
subgraph G̃ of G1 is isomorphic to a subgraph of G.
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D Cyclic matrices

De�nition D.1 A matrix A ∈ Rn×n is called cyclic, if there exists x ∈ Rn

such that the vectors x,Ax, . . . , An−1x form a basis of Rn. Such a vector x
is also called a cyclic vector.

First of all we want to point out, that cyclicity is a generic property.

Proposition D.2 The set of cyclic matrices is open and dense in Rn×n.

Proof. Consider the polynomial

P : Rn × Rn×n → R (x,A) 7→ det(x,Ax, . . . , An−1x). (73)

A matrix A ∈ Rn×n is not cyclic if and only if P (x,A) = 0 for all x ∈ Rn.
Therefore, if A is cyclic, there exist an x ∈ Rn such that |P (x,A)| = |c| > 0.
It follows, that also |P (x,B)| > 0 for ‖A − B‖ small enough, since P is
continuous. Hence, the set of cyclic matrices is open.

Now we show, that the map of cyclic matrices is dense in Rn×n. If A is
not cyclic, then for all x ∈ Rn we have P (x,A) = 0. Suppose there exists a
neighborhood O of A such that P (x,B) = 0 for all B ∈ O. and all x ∈ Rn.
Then polynomial P has to be constant zero, which is a contradiction to the
de�nition. 2

In the following we collect some characterizing properties of cyclic ma-
trices, which will be important in our analysis.

Proposition D.3 The following statements are equivalent:

(i) A is cyclic

(ii) For the characteristic polynomial χA(t) = det(A−tI) and the minimal
polynomial mA it is χA = (−1)nmA.

(iii) The matrix A has �nitely many A-invariant subspaces.

Proof. The equivalences of (i) and (ii) are shown in [Fuh96], Proposition
6.3.2.
(ii) ⇒ (iii): If χA = (−1)nmA then for every real eigenvalue, respectively
pair of complex eigenvalues, there exists exactly one block in the canonical
form. Every block corresponds with exactly one A-invariant subspace. The
set of invariant subspaces of A consists of all possible sums of this subspaces
and is therefore �nite.
(iii) ⇒ (ii): If A has �nite many proper A-invariant subspaces then the
union of this subspaces is strictly smaller then Rn. For any x ∈ Rn \ {0}
which does not belong to one of this invariant subspaces it is

∑n
i=1 λiA

ix = 0
if and only if λi = 0 for all i = 1, . . . , n. 2
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An immediate consequence of Proposition D.3 is the fact that A is cyclic if
and only if T (A− uI)T−1 with T ∈ GLn(R) and u ∈ R is cyclic. Moreover,
in the case that A is invertible, A is cyclic if and only if A−1 is cyclic.

Recall that the centralizer of a matrix A ∈ Rn×n is de�ned as

Z(A) := {Z ∈ GLn(R) |ZA = AZ}.

Note that Z(A) is a closed subgroup of GLn(R) and therefore a Lie group.
Obviously, every element of

P (A) := {p(A) | p ∈ R[x] coprime to mA}

lies in Z(A). The following statement and a proof can be found in [Fuh96]
(see Proposition 6.1.2).

Proposition D.4 A matrix A ∈ Rn×n is cyclic if and only if Z(A) = P (A).

Note that every matrix is similar to a block matrix(
A1 0
0 A2

)
, A1 ∈ Rn1×n1 , A2 ∈ R(n−n1)×(n−n1)

such that A1 is cyclic and mA = mA1 .

Lemma D.5 Let A ∈ Rn×n (not necessarily cyclic) and mA the minimal
polynomial of A.

a) If A is a block matrix

A =

(
A1 0
0 A2

)
, A1 ∈ Rn1×n1 , A2 ∈ R(n−n1)×(n−n1),

then P (A) is isomorphic to P (A1)×P (A2) if and only if the minimal
polynomial of A1 is coprime to the minimal polynomial of A2.

b) If A is a block matrix

A =

(
A1 0
0 A2

)
, A1 ∈ Rn1×n1 , A2 ∈ R(n−n1)×(n−n1),

such that the minimal polynomial of A is equal to the minimal poly-
nomial of A1, then P (A) and P (A1) are isomorphic.

Proof. a) Let m1, m2 respectively mA be the minimal polynomials of A1,
A2 respectively A. Obviously, m1 and m2 are divisors of mA. For every
B ∈ P (A) there exists a unique p ∈ R[x] with deg p < deg(mA), such that
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B = p(A). (i) If m1 and m2 are not coprime, then the degree of mA is
strictly smaller then degm1 + degm2. From Proposition 6.2 we deduce

dimP (A) = degmA < degm1 + degm2 = dim(P (A1)× P (A2))

Therefore P (A) 6∼= P (A1)× P (A2).
(ii) Now let m1 and m2 be coprime. This is equivalent to mA = mA1mA2 .
We show that

Φ : P (A)→ P (A1)× P (A2), p(A) 7→ (p(A1), p(A2))

is a group isomorphism.
Obviously, Φ is well de�ned and injective, since

p1(A) = p2(A) ⇔ p1 − p2 ≡ 0 mod mA

⇔ p1 − p2 ≡ 0 mod mA1

and p1 − p2 ≡ 0 mod mA2

⇔ p1(A1) = p2(A1)

and p1(A2) = p2(A2).

Moreover, Φ is a group homomorphism, since

Φ(p1(A)p2(A)) = (p1p2(A1), p1p2(A2)) = Φ(p1(A))Φ(p2(A)).

We show that Φ is surjective, if m1 and m2 are coprime. From Bezouts
theorem we know, that there exist k̃1, k̃2 ∈ R[x] such that 1 = k̃1m1 + k̃2m2.
For any pair of polynomials p1, p2 such that p1 is coprime to m1 and p2 is
coprime to p2, we de�ne k1 := (p1− p2)m2k̃1 and k2 := (p1− p2)m1k̃2. Note
that p1 − p2 = k1m1 − k2m2. Now we de�ne p := p1 − k1m1 = p2 − k2m2.
Since p1 is coprime to m1 and p2 is coprime to m2 it follows, that p is
coprime to mA = m1m2, i.e. p(A) ∈ P (A). We conclude

p(A) =

(
p(A1) 0

0 p(A2)

)
=

(
p1(A1) 0

0 p2(A2)

)
.

b) The map Φ : P (A)→ P (A1), p(A) 7→ p(A1) is a well de�ned and injective
group isomorphism, since

p1(A) = p2(A) ⇔ p1 − p2 ≡ mod mA

⇔ p1(A1) = p2(A2).

Moreover, Φ is surjective. This follows from the fact, that p(A1) is invertible
if and only if p 6≡ mA and therefore if and only if p(A) is invertible. Hence,
p(A) is the preimage of p(A1). 2
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E Real polynomials

In our analysis of inverse iteration schemes and Richardson's methods we
use certain families of real polynomials to represent the corresponding sys-
tem groups and system semigroups. In particular, we have to deal with
symmetric polynomials and linear decomposable polynomials.

De�nition E.1 (Symmetric polynomials) A polynomial f ∈ R[u1, . . . , um]
is called symmetric if, for any permutation π, we have

f(uπ(1), . . . , uπ(m)) = f(u1, . . . , um).

The elementary symmetric polynomials σm
i : Rm → R, i = 0, . . . ,m are

de�ned by

σm
0 (u1, . . . , um) = 1,

σm
1 (u1, . . . , um) =

m∑
i=1

ui,

σm
k (u1, . . . , um) =

∑
i1<···<ik

ui1 . . . uik .

Note that every symmetric polynomial f(u1, . . . , um) can be expressed as a
polynomial of elementary symmetric polynomials. More precisely,

f(u1, . . . , um) = g (σm
1 (u1, . . . , um), . . . , σm

m(u1, . . . , um))

for some g ∈ R[u1, . . . , um]. Here, g is unique (see [Pra01], Theorem 3.1.1.).
A polynomial f ∈ R[u1, . . . , um] is called skew-symmetric if

f(. . . , ui, . . . , uj, . . . ) = −f(. . . , uj, . . . , ui, . . . ), 1 ≤ i < j ≤ m

Skew symmetric polynomials can be expressed by symmetric polynomi-
als in the following way.

Theorem E.2 Every skew symmetric polynomial f(u1, . . . , um) can be rep-
resented in the form ∏

i<j

(ui − uj)g(u1, . . . , um)

where g is a symmetric polynomial.

A proof for Theorem E.2 can be found in [Pra01], Theorem 3.1.2.
Now we introduce a type of real polynomials, which will be of particular

interest in in Chapter 6 and Chapter 9.
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De�nition E.3 (Linear decomposable polynomials) A polynomial q ∈
R[x] for which every irreducible factor is linear, is called linear decomposable.
We denote the set of all linear decomposable polynomials with L.

The following useful observations can be found in [Dör55], Chapter 36.

Theorem E.4 Let f be linear decomposable of degree n.

(i) f ′ ∈ L.

(ii) For any c ∈ R the polynomial pc : t 7→ cf(t) + tf ′(t) is linear decom-
posable.

Note that every linear decomposable polynomial q can be written in the
form

q(x) = r
T∏

t=1

(x− ut)

Every q ∈ L is a symmetric polynomial in u1, . . . , ut (for �xed x) and can
be expressed as follows:

Proposition E.5 For all m ∈ N and ut ∈ R we have

m∏
t=1

(x− ut) =
m∑

t=0

(−1)tσm
t (u1, . . . , um)xm−t.

Proposition E.5 can be shown by straightforward calculation (see [CLO91],
Chapter 7.1).
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F Flag manifolds

Now we introduce some facts about �ag manifolds which will be important
in our analysis of generalized inverse iteration systems. For a more detailed
overview we refer to [BC64, HM94] and [Tay92].

Let H be a closed subgroup of a Lie group G. Recall that the map

π : G→ G/H g 7→ gH

equips the coset space G/H := {gH | g ∈ G} with a manifold structure.
The map π is a surjective submersion and therefore open and continuous.
Now let m ∈ M and G be a Lie group acting transitively on a set M such
that

Stabm := {g ∈ G | g ·m = m}

is a closed subgroup 31 of G. Then,

Φm : G/ Stabm →M ; g Stabm 7→ g ·m

is a bijective map. Therefore, we can identify M with the coset space
G/ Stab(m). This identi�cation provides a smooth structure on M . Such a
space M is called homogeneous space.

A �ag V is an increasing sequence of R-linear subspaces

{0} $ V1 $ V2 $ . . . $ Vk ⊆ Rn.

The type of the �ag V = (V1, . . . , Vk) is de�ned by the k-tuple d := (d1, . . . , dk)
of dimensions di = dimVi, i = 1, . . . , k. For any such sequence of integers
d = (d1, . . . , dk) with 1 ≤ d1 < · · · < dk ≤ n, we denote the set of all �ags
of type d with Flag(d,Rn).

The general linear group GLn(R) acts on Flag(d,Rn) via

πV : (g,V) 7→ g · V := (gV1, . . . , gVk) (74)

where gVi is the image of the space Vi under the transformation g ∈ GLn(R).
Here, the stabilizer subgroup for V ∈ Flag(d,Rn) is

Stab(V) = {g ∈ GLn(R) | g · V = V}.

Now we apply the construction above. For that purpose we need the fol-
lowing fact.

Lemma F.1 The group action (74) is transitive.

31Note that Stabm̃ = g̃−1 Stabm g̃ for g̃ ·m̃ = m. Therefore, Stabm is a closed subgroup
of G for one m ∈M if and only if it is a closed subgroup of G for any m ∈M .
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A proof can be found in [Tay92] (Page 28). In particular, Lemma F.1 yields,
that for a �xed �ag V = (V1, . . . , Vk) the map

ΦV : GLn(R)/ Stab(V)→ Flag(d,Rn), g Stab(V) 7→ (gV1, . . . , gVk).

is bijective and provides a smooth structure on Flag(d,Rn). We denote
Flag(d,Rn) as the �ag manifold of type d. It is well-known, that Flag(d,Rn)
is a compact and connected manifold of dimension d1(n−d1)+

∑k−1
i=1 (di+1−

di)(n − di+1) (see [BC64], Chapter 7.4.13). One important case is dc =
(1, 2, . . . , n− 1). The corresponding manifold Flag(Rn) := Flag(dc,Rn) is
the so called complete �ag manifold. Another special case is d = (k) yield-
ing the Grassmann manifold, and in particular Flag((1),Rn) = RPn−1, the
projective space.

Recall that the core of an homogeneous space is de�ned as

CM :=
⋂

m∈M

Stabm = {g ∈ G | g ·m = m, ∀m ∈M}. (75)

In the case M = Flag(d,Rn) we obtain:

Proposition F.2 The core of Flag(d,Rn) is CFlag(d,Rn) = R∗I. Here, I is
the identity matrix I ∈ GLn(R).

Proof. Obviously, g · V = V for all g ∈ R∗I. Conversely, if g /∈ R∗I,
then there exists w ∈ Rn such that g(w) /∈ span(w). We can always choose
V ∈ Flag(d,Rn) such that w ∈ V1 but g(w) /∈ V1. Hence g · V = V is not
ful�lled and therefore g /∈ StabV ⊆ CFlag(d,Rn). 2
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irreducible algebraic set, 179
isomorphic systems, 47

Jordan canonical form, 105

Kalman rank condition, 35, 171
Krylov space, 166
Krylov subspace methods, 166

Lagrange interpolation theorem, 117
lattice structure, 98
left divisible, 23
Lie algebra, 74
Lie derivative vector �eld, 27
Lie group, 185
Lindelöf space, 186
linear control system, 169
linear control schemes, 169
linear decomposable, 193
linear systems, 35, 37
locally compact, 186

196



INDEX 197

normal subgroup, 56

optimal control sequence, 175
orbit graph, 60
orbit theorem, 16
orthogonal group, 151
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power iteration, 60
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proportional integral control, 1
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re�exivity, 187
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relaxation parameters, 157
repelling, 71
repelling phenomena, 71
restarted polynomial iteration, 166
restricted inverse iteration, 101
restricted system, 54
Riccati equation, 175
Richardson system, 157
Richardson's method, 157
right divisible, 23
right divisible semigroup, 23
right divisible system, 23

semi-algebraic dimension, 181
semi-algebraic map, 180
semi-algebraic set, 179
shift strategy, 14
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skew-hermitian matrices, 113
skew-symmetric polynomials, 192
smoothly invertible, 13

spectrum of A, 83
splitting method, 157
stabilizable, 175
stabilizer subgroup, 185
state space, 13
subgraph, 187
subspace graph, 98
symmetric polynomials, 192
symplectic group, 151
system, 13
system group, 15
system matrix, 83
system semigroup, 15
systems evolving on Lie groups, 73

Tarski-Seidenberg theorem, 180
time-varying linear system, 80
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transitive semigroup action, 185
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trivial edge, 187
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variety, 179
vertices, 187
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Notation

Control Systems

Σ = (M,U, f) discrete-time control system De�nition 2.1

Σ̃ = (M̃, U, f̃) induced system with respect De�nition 3.1

to π : M → M̃

Σ|N = (N,U, f|N×U
) restricted system on N ⊆M De�nition 3.8

M state space De�nition 2.1

U set of control parameters De�nition 2.1

UA set of control parameters for ΣII(A) De�nition 2.1
i.e., UA = R \ Spec(A)

f transition map f : M × U →M De�nition 2.1

fu fu := f(·, u) De�nition 2.1

ΣII(A) inverse iteration system De�nition 7.1

ΣRI(A) rational iteration system De�nition 8.1

ΣCI(A) Cayley iteration system De�nition 8.4

ΣRS(A) Richardson iteration system De�nition 9.1

ΣPI(A) polynomial iteration system De�nition 9.10

ΣB(A) linear control system De�nition 10.1
with respect to B

Semigroups

SΣ system semigroup of Σ De�nition2.3
S(A) system semigroup of ΣII

GLn(R)(A) Page 84

Groups

〈S〉 soubgroup of G generated by S ⊆ G
GΣ system group of Σ De�nition 2.4
P (A) group of polynomials in A Proposition D.4

such that p(A) is invertible
Stabx stabilizer subgroup Page 29

of a group action G×M →M
GLn(R) general linear group
On(R) orthogonal group Page 151
Sp2n(R) symplectic group Page 151
GM M-orthogonal Page 151

Cπ core of π : M → M̃ Equation (28)
CM core of the homogenepous space M Equation (75)
CN core of the restricted system Σ|N Equation (34)
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Orbits

R(x) reachable set, i.e., SΣ · x Equation (9)
GΣ · x system group orbit of Σ Equation (14)
NA open orbit of ΣII(A) on Rn De�nition 6.9
NA open orbit of ΣII(A) on RPn−1 De�nition 6.9
NHess

A open orbit of ΣII(A) on Hess Theorem 7.8

Graphs

G = (V,←−) directed graph De�nition C.1
GO(Σ) orbit graph of Σ De�nition 4.1
GR(Σ) reachable graph of Σ De�nition 4.1
GA(Σ) subspace graph of Σ De�nition 6.12

Polynomials

L linear decomposable polynomials De�nition E.3
mA minimal polynomial of A
χA characteristic polynomial of A
σm

k elementary symmetric polynomial De�nition E.1

Manifolds and varieties

RPn−1 projective space Appendix 194
Flag(d,Rn) �ag manifold of type d Appendix 194
Flag(Rn) complete �ag manifold Appendix 194
HessA Hessenberg variety Chapter 138

Miscellaneous

R, real numbers
C complex numbers
D unit disc
T torus
R(I − A,B) Kalman matrix Page 169
Spec(A) spectrum of A Page 83
A> transpose of A
InvA set of A-invariant subspaces De�nition 6.9
Imλ real part of λ ∈ C
Reλ complex part of λ ∈ C
Image image space Page 169
intM N interior of N with respect to M
N topological closure of N
∂N boundary of N
son(R) skew-symmetric matrices Page 151
sp2n(R) Hamiltonian matrices Page 151
gM M-orthogonal algebra Page 151
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