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Chapter 1

General Introduction

1.1 Preface

Everything that we can perceive around us through our eyes is matter interacting with

light. Visible light can be absorbed, causing the formation of electronically excited

states, the properties of which ultimately determine important properties of matter. In

fact, our world would be quite a lifeless place if there were no excited states.

Spectroscopy is our tool that sheds light on the properties of excited states by mea-

suring the matter response to light. A variety of spectroscopic methods have been

developed to consolidate our understanding of matter, using probes ranging from long

radio-frequency to short x-ray waves. Although visible light seems almost trivial to us

due to its omnipresence, its interaction with the electronic structure of quantum systems

is a central component of a research field at the interface between chemistry and physics.

Why do we need to develop new spectroscopic methods? We are still in the process

of deciphering the essential mechanisms that could one day give us the key to cover our

growing energy demands. With regard to the current climate debate, new concepts for

energy generation are in greater demand than ever. The field of light–matter interaction

is in this respect of particular importance for the development of photovoltaics. Building

artificial devices that efficiently produce electric energy benefits from precise knowledge

of the underlying physics. Sophisticated spectroscopic approaches help to identify and

scrutinize the crucial processes which are responsible for efficient energy conversion, such

that chemistry and material science can be inspired to design the appropriate target

systems.

Erwin Hahn’s demonstration of a spin echo in 1950 laid the foundation to develop

sequences of pulsed electromagnetic radiation, which manipulate a system in such a

sophisticated way, so that one could unveil detailed information about its intricate ge-
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2 General Introduction

ometrical properties [11, 12]. 14 years after Hahn’s experiment, the optical analogue

to the spin echo – a photon echo – was demonstrated [13]. Since then, coherent op-

tical spectroscopies have continuously been further developed as a means to study the

static and dynamical properties of the electronic structure of quantum systems. Finally,

the advent of the femtosecond laser provided the time resolution required to measure

the ultrafast processes associated with electronically excited states. Very recently, the

development of a method to generate the ultrashort high-intensity laser pulses needed

for such experiments, has been awarded with the Nobel Prize in Physics [14]. These

high-intensity laser pulses set the stage to develop nonlinear spectroscopic methods that

interrogate excitation dynamics with unprecedented detail. As such, coherent multidi-

mensional spectroscopy emerged as a method that disentangles intricate details about

ultrafast coherent dynamics, energy transport, and couplings.

The purpose of the following introduction is to give the reader an overview of the

most essential concepts needed to theoretically describe fluorescence-detected multidi-

mensional spectroscopy. In particular, we will focus on the density matrix as a basis for a

sample system description. Then, we will learn how we can reveal the system properties

by utilizing phase-coherent pulse sequences, and in turn construct two-dimensional (2D)

and three-dimensional (3D) spectra. To this end, we will introduce response function

theory, which is employed as a tool to interpret the experimental spectra presented in

this work. The last section deals with phase cycling, an experimental procedure that al-

lows us to simultaneously acquire a multitude of nonlinear signals, and which is exploited

in this work to measure novel types of nonlinear signals.
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1.2 Concepts of Coherent Multidimensional Fluorescence Spectroscopy 3

1.2 Concepts of Coherent Multidimensional Fluorescence

Spectroscopy

1.2.1 Density Matrix Formalism and Quantum Coherences

The quantum-mechanical state of an isolated microscopic system is described by the

wave function |ψ〉 in Hilbert space. The wave function is a rather abstract entity that

ultimately carries all information about the system – it can be interpreted as the ampli-

tude of a “matter wave” [15, 16]. The temporal evolution of the system is described by

the time-dependent formulation of the famous Schrödinger equation,

∂

∂t
|ψ(t)〉 = − i

~
H(t) |ψ(t)〉 , (1.1)

where H(t) denotes the Hamiltonian that governs the system dynamics.1 The connection

of |ψ(t)〉 to the molecular electronic or excitonic states, as investigated in this work, can

be found by expanding the wave function as a linear combination of stationary system

eigenstates |n〉 with frequencies ωn and expansion coefficients cn by

|ψ(t)〉 =
∑
n

cne−iωnt |n〉 , (1.2)

which is a solution for Eq. (1.1) in absence of an external field [17]. The state energies

En are then given by H0 |n〉 = En |n〉, where H0 is the stationary Hamiltonian.

While Eq. (1.1) describes dynamics of a system represented by a single wave function,

that is, a “pure” state [18], the wave function formulation lacks to describe phenomena

which a spectroscopist frequently observes in “real samples,” that is, a statistical mixture

of quantum systems. Every investigated sample system in this work is composed of

molecules or nanocrystals in a solvent. Since every component may experience a different

environment, we can not deal with an ensemble of identical components. Thus, we need

to use a system description that considers mixed states and further allows us to introduce

a suitable treatment for the system-bath interaction later on. This requirement is met

by using a statistical system formulation in terms of a density matrix ρ(t),2

ρ(t) ≡ |ψ(t)〉 〈ψ(t)| =
∑
m

∑
n

c∗meiωmtcne−iωnt |n〉 〈m| , (1.3)

1~ = 1.055× 10−34Js [17].
2The density matrix is formally an operator. As this density operator commutes with H, both ρ and

H have the same set of eigenfunctions. This means that |ψ〉 is an eigenfunction to ρ as it fulfills the

eigenvalue problem ρ |ψ〉 = |ψ〉 〈ψ|ψ〉 = 1 |ψ〉, where 1 results from the normalization of |ψ〉 [18].
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4 General Introduction

where we made use of Eq. (1.2) [17, 19]. The temporal evolution of the density matrix

can be expressed as

∂

∂t
ρ(t) =

∂

∂t

(
|ψ(t)〉 〈ψ(t)|

)
=

(
∂

∂t
|ψ(t)〉

)
〈ψ(t)|+ |ψ(t)〉

(
∂

∂t
〈ψ(t)|

)
= − i

~
H(t) |ψ(t)〉 〈ψ(t)|+ i

~
|ψ(t)〉 〈ψ(t)|H(t), (1.4)

where we used Eq. (1.1) and its complex-conjugated form to finally yield the Liouville–

von Neumann equation [17],

∂

∂t
ρ(t) = − i

~
[H(t), ρ(t)] , (1.5)

where the commutator [H(t), ρ(t)] is defined by H(t)ρ(t) − ρ(t)H(t). For purposes of

spectroscopy, we can invoke the time-dependent Hamiltonian

H(t) = H0 +Hext(t) = H0 − µE(t), (1.6)

where Hext(t) is described by the transition dipole moment operator µ and the external

electric field E(t).

An important distinction is made between diagonal and off-diagonal density matrix

elements. For the diagonal elements (n = m), we obtain [19]

ρnn(t) = 〈n| ρ(t) |n〉 = |cn(t)|2 (1.7)

with the probability density |cn(t)|2, which is equivalent to the probability of finding the

system in state |n〉. In that sense, all diagonal elements of the density matrix describe

populations of the system. Note that cn is now time-dependent due to the coupling to

an external field [17]. Off-diagonal density matrix elements (n 6= m) are given by

ρnm(t) = 〈n| ρ(t) |m〉 = c∗m(t)cn(t)ei(ωm−ωn)t, (1.8)

which represent “coherences,” that is, coherent superpositions of the system eigenstates

|m〉 and |n〉, oscillating with the difference of their frequencies ωm and ωn, respectively.

It is worth noting that the density matrix is an alternative system description that

operates in the “more directly interpretable” basis of probabilities. Hence, in contrast

to the wave function, the density matrix conveniently allows us to associate its matrix

elements with specific observables [18] using the relation

〈A〉 = Tr {Aρ} , (1.9)

where 〈A〉 is the expectation value of an operator A and “Tr” is the trace. Importantly,

the density matrix contains, like the wave function, all information about the system.
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The Liouville–von Neumann equation [Eq. (1.5)] allows us to determine the dynamical

evolution of the system under the effect of the Hamiltonian H(t). However, as seen from

Eqs. (1.7) and (1.8), populations behave as constant and coherences oscillate “forever.”

Thus, two important aspects are still missing – pure dephasing, which is phase loss of

the coherences caused by environmental fluctuations, and population decay. To include

these, Eq. (1.5) can be extended to

∂

∂t
ρ(t) = − i

~
[H(t), ρ(t)] +Dρ(t), (1.10)

where the superoperator D accounts for relaxation and dephasing processes [20]. In

particular, D can be constructed in a sophisticated manner accounting for the system-

bath interaction, resulting, for example, in the so-called Lindblad master equation [21,

22], which is further discussed in Sec. 2.5.3. For now, we shall use a phenomenological

relaxation description that utilizes exponential pure dephasing associated with a time

T ∗2 and population decay by T1 [17]. Throughout this introduction, we will exemplarily

consider a system which is described by a ground state |g〉, a first excited state |e〉 and

a doubly excited state |f〉 in Hilbert space (Fig. 1.1a). This three-level system provides

the basis to discuss the essential features of a nonlinear spectrum as it will be shown

later. Let us excite our sample system with a single optical pulse with center frequency

ω0 at t = 0 (Fig. 1.1b) using a field strength that induces a nonlinear response. For

the sake of simplicity, this pulse shall be infinitesimally short. Using Eq. (1.10), we can

calculate the resulting density matrix dynamics, as schematically illustrated in Fig. 1.1c.

Sample systemSingle system Density matrix 

a) b) c)

Figure 1.1. Propagation of the density matrix induced by a single short pulse. (a) Level scheme of

a single system with eigenstates |g〉, |e〉, and |f〉 with associated transition frequencies ωnm, transition

dipole moments µnm, population relaxation times Tnm1 , and “anharmonicity” ∆ = ωfe−ωeg. (b) Sample

system, consisting of an ensemble of quantum systems embedded in a solvent bath and interacting with

an electric field E(t), yielding (c) the dynamics of the density matrix elements. One- and two-quantum

coherences are drawn in green and blue, respectively, while populations are drawn in gray.
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6 General Introduction

The excitation by a single pulse initiates dynamics in all density matrix elements. One

can show that this is a consequence of the perturbative expansion of the density matrix,

which is discussed in the next section. For now, we shall just consider the result in terms

of the individual density matrix elements. Considering the coherences, the |e〉 〈g| matrix

element is induced by a single light-field interaction and hence oscillates with a frequency

that is close to the center frequency of the light pulse. Such a coherence represents a

so-called single-quantum (1Q) coherence (green in Fig. 1.1). Similarly, the |f〉 〈e| matrix

element oscillates with a frequency close to |e〉 〈g|, thus it also represents a 1Q coherence.

As the |f〉 〈g| matrix element oscillates at nearly twice the frequency of ω0, we speak

of a two-quantum (2Q) coherence, often also called double-quantum coherence (blue

in Fig. 1.1). The 2Q coherence belongs to the family of so-called “multiple-quantum

coherences,” referred to in the title of this thesis. Generally, multiple-quantum coherence

refers to coherent superpositions of excited electronic states with another electronic state,

which energetically differ in more than one excitation quantum of visible light.3

From the dynamical evolution of the density matrix (Fig. 1.1c), we can infer a wealth of

information about the system. In particular, population decay rates can be characterized

by the decay of the diagonal elements whereas the off-diagonal elements are damped by

the homogeneous dephasing time T2 which is given by [17]

1

T2

=
1

2T1

+
1

T ∗2
. (1.11)

In addition, the oscillation frequencies of the coherences give us access to the state en-

ergies, whereas the transition dipole moments are proportional to the initial amplitude

of each matrix element. Evidently, the system Hamiltonian imprints its information on

the density matrix elements. Hence, if we were able to completely measure the den-

sity matrix, we could ultimately reconstruct the full system Hamiltonian. How can we

accomplish this goal experimentally? Employing a single optical pulse and detecting

the system response would not be sufficient, as we can not interrogate any dynamics.

By using two time-delayed pulses, we could interrogate some dynamics, but since many

dynamical processes take place simultaneously (Fig. 1.1c), the obtained signal would

be somewhat ambiguous. Thus, let us go one step further and consider that we could

prepare correlations between density matrix elements. This is where 2D spectroscopy

sets in. By using multipulse experiments, one constructs and probes excitation path-

ways, that is, sequences of concatenated density matrix elements. As we will see in the

3The term “multiple-quantum coherence” was originally used in NMR spectroscopy to describe super-

positions between nuclear spin states that differ by more than one unit in the magnetic quantum

number, requiring multiple quanta of the excitation radio-frequency fields [23, 24].
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next sections, a particular task of 2D spectroscopy is to separate off groups of certain

excitation pathways from the nonlinear response of the system, facilitating us to study

intricate system details resulting from (dynamical) interactions between states such as

energy transfer processes and electron correlations.

1.2.2 Response Functions and Double-Sided Feynman Diagrams

In the previous section, we have seen that the density matrix provides a practical basis

for the system description, holding a wealth of information. The key to a complete

characterization of the nonlinear response of a system lies in the construction of exci-

tation pathways, the entirety of which constitute the nonlinear system response. Let

us now design an experiment that traces pathways through the system density matrix.

The basic principle is to utilize multiple consecutive interactions with a laser field to

manipulate the density matrix [17]. To accomplish this, one could plug in time-delayed

multipulse fields into Hext(t) of the Hamiltonian in Eq. (1.6) and solve the differential

equation (1.10) numerically (see Secs. 2.5.3 and 4.5.6). However, this approach demands

a relatively high computational cost, which makes approximate treatments attractive.

In order to adequately approximate the nonlinear response of open quantum systems,

perturbation theory has proven to be particularly valuable [19, 25]. As we will see in the

following, a beneficial consequence of a perturbative treatment is the ability to dissect

the nonlinear response function into intuitively understandable diagrams which represent

the individual excitation pathways.

At the beginning of each perturbative approach, one formulates a series expansion, in

this case of the system’s density matrix at a time t′ in powers n of the external field,

ρI(t
′) =

∑
n=0

ρ
(n)
I (t′), (1.12)

where we introduced the interaction picture by the subscript I. In the interaction picture,

every operator O(t′) is formulated by means of the evolution operator U(t′, t0) as [26]

OI(t′) = U †(t′, t0)O(t′)U(t′, t0) = e
i
~H0(t′−t0)O(t′)e−

i
~H0(t′−t0). (1.13)

Inserting Eq. (1.12) into the Liouville–von Neumann equation [Eq. (1.5)] using nth-order

perturbation theory [18, 27] yields a general expression for the nth-order density matrix:

ρ
(n)
I (t′) = (−1)n

(
i

~

)n t′∫
t0

dτn

τn∫
t0

dτn−1

τn−1∫
t0

dτn−2, · · ·
τ2∫
t0

dτ1

×
[
HI,ext(τn),

[
HI,ext(τn−1),

[
HI,ext(τn−2),

[
· · · ,

[
HI,ext(τ1), ρ

(0)
I (t0)

]
· · ·
]]]]

,

(1.14)
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8 General Introduction

where τn is the explicit time at which the nth interaction with the external field takes

place [26]. The zeroth-order density matrix ρ
(0)
I (t0) represents the unperturbed system

[17], which we define to be in the ground-state population. Now, we shall associate

ρ
(n)
I (t′) with an experimentally accessible observable by using Eq. (1.9). In this respect,

employing the projector A = µ on an odd density matrix order refers to detecting a

coherently emitted signal. In particular, the third-order density matrix is the one that

provides the basis to describe coherently detected 2D and transient absorption spec-

troscopy [19]. In this work, however, we will focus on fourth- and sixth-order nonlinear

signals probed via fluorescence emission. The generation of fluorescence, which is pro-

portional to an excited-state population, is associated with a density matrix of an even

order. We can access our observable by invoking a projection operator A defined as

A =
∑
m 6=g

Φm |m〉 〈m| , (1.15)

which projects onto the excited states of the system, weighted by their fluorescence

quantum yields Φm, and then use AI on ρ
(n)
I (t′) via Eq. (1.9) to obtain the nth-order

population p(n) with n = 2, 4, 6, · · · ,

p(n)(t′) ≡ 〈ρ(n)
I (t′)〉 =

∞∫
0

dtn

∞∫
0

dtn−1 · · ·
∞∫

0

dt1Q
(n) (tn, tn−1, · · · , t1)

× E(t′ − tn)E(t′ − tn − tn−1) · · ·E(t′ − tn − tn−1 · · · − t1), (1.16)

where Q(n) is the nth-order nonlinear response function [2, 19]

Q(n)(tn, · · · , t1) =

(
i

~

)n
Θ(tn)Θ(tn−1) · · ·Θ(t1)

× Tr
{
AU(tn)

[
µ, U(tn−1)

[
µ, U(tn−2) · · ·

[
µ, U(t1)

[
µ, ρ(0)(t0)

]]
· · ·
]]}

.

(1.17)

In Eqs. (1.16) and (1.17), we switched to the time differences tn between successive field

interactions as defined by the relations tn = t′ − τn, tn−1 = τn − τn−1, · · · , t1 = τ2 − τ1

(Fig. 1.2a) [2, 18, 27–29]. The Heaviside functions Θ in Eq. (1.17) account for the

causality of the response, that is, they constrain the integration in Eq. (1.16) to positive

times [2, 18]. The function Q(n) contains information about all excitation pathways that

characterize the system properties. By explicitly calculating the trace over the n-fold

commutator in Eq. (1.17), one generally obtains the sum over 2n different terms, from

which each one describes a group of excitation pathways [30]. This is a consequence of

µ acting on both sides of the density matrix ρ(t0) (i.e., either on the “ket” or on the
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1.2 Concepts of Coherent Multidimensional Fluorescence Spectroscopy 9

“bra” side), resulting in different groups of interaction patterns [27]. One can employ

an external field with K collinear pulses with phases ϕk according to

E(t′) =
K∑
k=1

[
Ek(t

′ − τk)eiω0(t′−τk)−iϕk + Ek(t
′ − τk)e−iω0(t′−τk)+iϕk

]
, (1.18)

where Ek is the pulse envelope. By inserting this field into Eq. (1.16), one would finally

obtain 2n × (2K)K terms. The number of all possible pathway terms, however, can be

greatly reduced by considering strict time ordering of the individual interactions, that

is, τ1 < τ2 < · · · < τn, and by employing the rotating-wave approximation [17, 19]. The

remaining terms can then be distinguished by their total phases ±ϕ1 ± ϕ2 ± · · · ± ϕK ,

where the sign permutations are a result of the definition of E(t′) [Eq. (1.18)] [30].

Exactly these individual terms can diagrammatically be represented as so-called double-

sided Feynman diagrams. A general example for such a diagram is shown in Fig. 1.2b.

a)

b)

Figure 1.2. Displaying the perturbation of the density matrix by double-sided Feynman diagrams. (a)

Definition of time variables. Points represent absolute times, whereas the arrows refer to time intervals.

Interaction times of the dipole operator with the density matrix are denoted by τ . (b) Anatomy of a

double-sided Feynman diagram. Such diagrams display the perturbation of the density matrix by the

phases ϕ of the interacting light fields (wavy arrows). After perturbation, the final population state

|m〉 〈m| relaxes nonradiatively (denoted by a horizontal gray dashed line) to the population of the first

excited state |e〉 〈e|, which is proportional to the fluorescence emission (dashed gray arrows). As Kasha’s

rule holds, the part of the diagram depicted in gray is usually omitted.

Based on Ref. [19], the essential rules for these diagrams are the following:

• Time proceeds from the botton to the top.

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



10 General Introduction

• An interaction with a light field is represented by an arrow (drawn as wavy arrows

in Fig. 1.2). The arrow direction denotes the sign of the phase that the system ac-

quires. An arrow pointing to the right denotes an interaction with exp (−iω0t
′ + ϕ),

whereas an arrow pointing to the left stands for exp (+iω0t
′ − ϕ).

• An arrow pointing towards a “ket” or “bra” represents excitation, whereas an

arrow pointing away represents de-excitation.

• Each diagram ends in an excited state population (e.g., |m〉 〈m| in Fig. 1.2b).

• The sign of each diagram is determined by (−1)j, where j is the number of light-

field interactions from the right side.

The part depicted in gray in Fig. 1.2b can usually be omitted since every system investi-

gated in this work emits fluorescence from its first-excited electronic state (Kasha’s rule

[31]) and thus, every higher excited state is expected to yield fluorescence “indirectly”

via nonradiative relaxation into the emitting state, which is represented by |e〉 〈e| in

Fig. 1.2b. In such a case, Φm = Φe holds in in Eq. (1.15).

1.2.3 Multipulse Experiments

How can we now extract the excitation pathways from the nonlinear response? With

Eq. (1.16), we have an expression which connects our observable with the convolution

of the external electric field (i.e., our “experiment”) with an entity that contains the

response of the system, that is, the entirety of all pathways, which is represented by

Q(n). In other words, the fluorescence emission of the system is now a function of the

excitation fields. However, there is still some ambiguity in this relationship, as we can

not yet distinguish between different excitation pathways. We therefore make use of

the fact that coherences evolve with specific phases. In this respect, we tailor our pulse

sequence so that the individual pulse phases precisely match to those of the individual

coherences. Moreover, we exploit the circumstance that the imprinted phase information

is preserved from excitation step to excitation step, as the excitation sequence itself is

fully coherent. Thus, a pulse train with a specific phase pattern acts as a selective probe

for a certain class of excitation pathways. In other words, we encode certain classes of

excitation pathways into the fluorescence emission by judicious choice of the excitation

pulse phases. Of course, we want to receive all possible pathway classes, but this will

be the task of “phase cycling,” which we discuss at the end of this chapter [29].

For now, let us focus on the extraction of different classes of excitation pathways men-

tioned above. We shall consider the fourth-order population to introduce the concept.

The sixth-order response will be the subject of the subsequent chapters. The simplest

fluorescence-detected 2D experiment consists of a sequence of three fully collinear phase-
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1.2 Concepts of Coherent Multidimensional Fluorescence Spectroscopy 11

coherent pulses [12, 29],4

E(t′) = E1 (t′ − t− τ) e−iω0(t′−t−τ)+iαϕ1

+ E2 (t′ − t) e−iω0(t′−t)+iβϕ2

+ E3 (t′) e−iω0t′+iγϕ3 + c.c., (1.19)

where we relabeled the interpulse delays with the so-called coherence times τ and t

(Fig. 1.3). In addition, we introduced the coefficients α, β, and γ (α, β, γ ∈ Z) in order

to uniquely describe the interaction pattern of the phases ϕi (i = 1, 2, 3) acquired from

the first, the second, and the third pulse, respectively [29]. Note that, in fourth order,

the four interactions are spread over three pulses. This gives rise to three different

possibilities, in which one of the pulses interacts twice (Fig. 1.3).

a) b) c)

Figure 1.3. Interaction possibilities of a three-pulse sequence inducing a fourth-order response. The

four interactions are distributed over three pulses, whereby either (a) the middle, (b) the first, or (c)

the last pulse interacts twice. The interpulse delays τ and t correspond to the delay labeling convention

used in this thesis. Each interaction possibility can be described by a phase-specific interaction pattern,

which is represented by the phase coefficients α, β, and γ (bottom).

The absolute values of α, β and γ in Fig. 1.3 can thereby be viewed as a generalization

of the number of excitation quanta involved in a transition between electronic states [33].

We can define three different electric fields by inserting the various combinations of α, β,

and γ of Fig. 1.3 into Eq. (1.19). For simplicity, let us assume for the following that the

field envelopes are delta functions, justifying the strict time-ordering mentioned above

[18]. Then, by inserting each corresponding electric field separately into Eq. (1.16), we

obtain three different nonlinear signal contributions. Since these signals nicely illustrate

some elementary features of fluorescence-based 2D spectroscopy, we discuss them on the

example of our three-level system (Fig. 1.1a) in the following.

4Conceptually, such a sequence is analogous to the so-called COSY (correlated spectroscopy) sequence

of NMR spectroscopy, both of which generally correlate coherences [12, 32].
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12 General Introduction

Rephasing One-Quantum–One-Quantum Contribution

The first contribution can be characterized by the values α = −1, β = +2, γ = −1

(Fig. 1.3a) and visualized by double-sided Feynman diagrams in Fig. 1.4. Evidently,

the twice interacting middle pulse gives rise to three different pathways that all have a

common motif – the phase conjugation between the coherence density matrix elements.

As the conjugate of eiωt is e−iωt, such phase conjugation is equivalent to a sign change

of time. While our time always proceeds linearly forward, the time for the coherences

that evolve over t runs formally parallel “backwards.” This leads to the phenomenon

of “rephasing,” which can be understood as the inversion of dephasing, also known as

“photon echo” [13, 34]. The practical consequence of this is that the rephasing signal

allows one to separate homogeneous from inhomogeneous broadening [17]. In this thesis,

we call this signal the “rephasing 1Q–1Q signal,” because it correlates 1Q coherences,

as evident from the double-sided Feynman diagrams of Fig. 1.4.

The response function formalism allows us to calculate each pathway via

Q1(t, τ) = −2ΦeΘ(t)Θ(τ)

(
i

~

)4

µ4
ege

i(ω0−ωeg)(t−τ)LR1Q1Q, (1.20)

Q2(t, τ) = −ΦeΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee
−i(ω0−ωeg)τei(ω0−ωfe)tLR1Q1Q, (1.21)

Q3(t, τ) = ΦfΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee
−i(ω0−ωeg)τei(ω0−ωfe)tLR1Q1Q, (1.22)

where LR1Q1Q is the rephasing line shape function,

LR1Q1Q = exp

(
−γ1Q(τ + t)− 1

2
σ2(τ − t)2

)
, (1.23)

phenomenologically accounting for line broadening caused by the pure dephasing rate γ1Q

of 1Q coherences (γ1Q = 1/T ∗2 ), and inhomogeneous line broadening, which is quantified

by σ [17]. Pathway Q1 is weighted by a factor of two because of “time ordering.” This

means that there are two indistinguishable possibilities, |g〉 〈e| +ϕ2−−→ |g〉 〈g| +ϕ2−−→ |e〉 〈g|
and |g〉 〈e| +ϕ2−−→ |e〉 〈e| +ϕ2−−→ |e〉 〈g|, which is a result of the second pulse interacting both

on “bra” and “ket” simultaneously.

It can be seen that Q2 and Q3 feature quite similar expressions, but they have opposite

signs: these pathways interfere destructively. For the following, we assume µeg = µef ,

and Φe = 1 and Φf = 0.5, leading to a non-complete destructive interference of Q2 and

Q3. Using the expressions above, we can formally depict each pathway in frequency space

(Fig. 1.4, bottom) by using a 2D Fourier transform with respect to τ and t. However,

in a real experiment, one would always obtain a signal arising from the interference
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Figure 1.4. Rephasing 1Q–1Q 2D spectroscopy. The rephasing signal has the total phase ϕR1Q1Q =

−ϕ1 +2ϕ2−ϕ3. For a three-level system (Fig. 1.1a), three pathways (top) contribute to the signal, with

their weight labeled below. The representation of the real part of each pathway (normalized to Q1) in

2D frequency space is shown at the bottom. The sum over all pathways yields the real-valued rephasing

1Q–1Q 2D spectrum (bottom right, normalized to its highest absolute value). In all frequency–frequency

plots, the diagonal is drawn where ωτ = ωt.

(i.e., the sum) of all pathways, which is depicted at the bottom right of Fig. 1.4. This

rephasing 1Q–1Q 2D spectrum shows a diagonal peak, resulting from the correlation of

the resonance ωeg with itself, whereas the cross peak indicates that the resonances ωeg

and ωfe are coupled. The linewidth along the diagonal corresponds to the inhomogeneous

linewidth, whereas the antidiagonal linewidth is the homogeneous linewidth [35].

Two-Quantum–One-Quantum contribution

The second contribution corresponds to α = +2, β = −1, γ = −1 (Fig. 1.3b), and the

respective Feynman diagrams are shown in Fig. 1.5. The double interaction of the first

pulse initially creates a 2Q coherence, which is then converted to a 1Q coherence by the

second pulse. The individual pathways can be expressed as

Q4(t, τ) = −ΦeΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee

i(2ω0−ωfg)τei(ω0−ωeg)tL2Q1Q, (1.24)

Q5(t, τ) = −ΦeΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee

i(2ω0−ωfg)τei(ω0−ωfe)tL2Q1Q, (1.25)

Q6(t, τ) = ΦfΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee

i(2ω0−ωfg)τei(ω0−ωfe)tL2Q1Q, (1.26)

with the 2Q–1Q line shape function,

L2Q1Q = exp

(
−γ2Qτ − γ1Qt−

1

2
σ2(τ + t)2

)
. (1.27)
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Figure 1.5. 2Q–1Q 2D spectroscopy. The 2Q–1Q signal has the phase ϕ2Q1Q = +2ϕ1 − ϕ2 − ϕ3. For

a three-level system (Fig. 1.1a), three pathways (top) contribute to the signal. The representation of

the real part of each pathway in 2D frequency space (normalized to Q4) is shown in the panels below.

The sum over all pathways yields the real-valued 2Q–1Q 2D spectrum (bottom right, normalized to its

highest absolute value), where ∆ = ωfg − 2ωeg. In all 2D plots, the diagonal is drawn where ωτ = 2ωt.

Again, by summing over all Fourier-transformed pathways, one obtains a 2Q–1Q 2D

spectrum (Fig. 1.5, bottom right). As it correlates different coherence types, it only

contains cross peaks. A special feature of 2Q–1Q 2D spectra (sometimes called double-

quantum 2D spectra), is that they directly map out the frequency of state |f〉, which itself

is accessed by a resonant two-photon transition. Hence, if |f〉 is a true doubly excited

state (that is, it is characterized by a two-particle wave function), then the 2Q–1Q 2D

spectrum is particularly suitable to determine electron correlation energies [36–38]. The

correlation energy ∆ is then directly quantifiable by the shift of the peak along the 2Q

axis with respect to twice the energy of the first excited state (Fig. 1.1a), at least for

systems with a small number of states and relatively small linewidths [39]. For more

complex systems, the situation is often not as clear as presented in Fig. 1.5, so that one

needs to employ theoretical modeling to extract the value of ∆ (see also Chapter 3). It is

worth noting that, in contrast to the 1Q–1Q contribution, there is no phase conjugation

between the coherences, thus, this signal is classified as “nonrephasing.” This results

in resonances that are inhomogeneously broadened along both the diagonal and the

antidiagonal [compare the signs in the line shape functions of Eqs. (1.23) and (1.27)].

One-Quantum–Two-Quantum Contribution

The third fourth-order signal accessible by three excitation pulses is the 1Q–2Q signal

contribution with α = +1, β = +1, γ = −2 (Fig. 1.3c). The consequence of the double
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interaction of the last pulse is the emergence of a formally inverted 2Q–1Q process,

leading to the correlation of 1Q coherence evolving over τ , and 2Q coherence evolving

over t. The 1Q–2Q signal is composed of just two pathways (Fig. 1.6), which can be

written as

Q7(t, τ) = −2ΦeΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee

i(ω0−ωeg)τei(2ω0−ωfg)tL1Q2Q, (1.28)

Q8(t, τ) = ΦfΘ(t)Θ(τ)

(
i

~

)4

µ2
egµ

2
fee

i(ω0−ωeg)τei(2ω0−ωfg)tL1Q2Q, (1.29)

where L1Q2Q is the 1Q–2Q line shape function,

L1Q2Q = exp

(
−γ1Qτ − γ2Qt−

1

2
σ2(τ + t)2

)
. (1.30)
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Figure 1.6. 1Q–2Q 2D spectroscopy. The 1Q–2Q signal has the total phase ϕ1Q2Q = +ϕ1 +ϕ2− 2ϕ3.

For a three-level system (Fig. 1.1a), only two pathways (top) contribute to the signal. The representation

of the real parts of these pathways in 2D frequency space (normalized to Q7) is shown in the panels

below. The sum over all pathways yields the real-valued 1Q–2Q 2D spectrum (bottom right), where

∆ = ωfg − 2ωeg. In all frequency–frequency plots, the diagonal is drawn where 2ωτ = ωt.

The 1Q–2Q signal is exclusive to population-based 2D spectroscopy and there is no such

counterpart that could be constructed using coherent signal detection. Coherent signal

detection requires that a “radiative” 1Q coherence evolves over t [29], but a 2Q coherence

does not directly emit a signal field [40]. However, as we will see in this work, a general

consequence of probing nonlinear signals with an even order is the access to “1Q–NQ”-

type contributions. Such contributions seem to be equivalent to those of “NQ–1Q” type

at first sight, however, when comparing Figs. 1.5 and 1.6, it turns out that the 1Q–NQ

contributions feature a higher degree of coherence selectivity. The reason behind that
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is the sole contribution of ground–excited 1Q coherences to the signal, generally leading

to fewer pathways. (Note that the 2Q–1Q signal can also induce the excited–doubly

excited 1Q coherence |f〉 〈e|.) From a practical point of view, this property makes the

1Q–2Q signal even better suited to measure electron correlation energies, as there are

generally less resonances in the 2D spectra [9, 29]. These 1Q–2Q and 1Q–3Q 2D spectra

will be used to study exciton correlations in semiconductor quantum dots in Chapter 3.

1.2.4 From 2D to 3D Spectroscopy

In the preceding section, we have seen that a three-pulse sequence enables one to con-

struct correlations of coherences that have the same or different numbers of the excitation

quanta required to generate them. With that, we were able to probe coupling of a dou-

bly excited state to a singly excited state. However, by altering the excitation sequence,

one can also probe coupling between singly excited states [41–43].

For the following, let us consider a three-level system without a doubly excited state,

but where two singly excited states |e〉 and |e′〉 are energetically close to each other

(Fig. 1.7a). Since we employ broadband laser pulses, we can prepare superpositions of

both excited states with the ground state, which are both 1Q coherences. Employing

a rephasing 1Q–1Q sequence, that is, with three pulses, we would obtain a 1Q–1Q 2D

spectrum shown in Fig. 1.7b. This time, we choose the representation in absolute signal

values and we calculate the signal by numerical solution of the Lindblad master equation

[21] (see also below). Cross peaks above and below the diagonal result from |e〉 and |e′〉
being coupled, which is mediated by |g〉.

Let us now go one step further and employ a four-pulse sequence with the aim of

probing the same signal type (Fig. 1.7c.) Formally, we split the double interaction of

the second pulse into two consecutive interactions. For that purpose, we introduce the

middle delay T , and the additional coefficient δ for the phase coefficient of the last pulse

[29]. Now, each pulse interacts once with the system. Note that for T = 0 (Fig. 1.7b),

we obtain the same result as if we had employed a three-pulse sequence.

What do we gain by probing the fourth-order response by four pulses? By scanning

the middle delay T , also known as “population time” or “waiting time,” our experi-

ment gains sensitivity to population dynamics and coherences between electronic states,

whereas the latter can be characterized by an oscillation frequency of less than one quan-

tum of the incident photon frequency. Such coherences are called zero-quantum (0Q)

coherences. In this work, however, we will often use the term “0Q” as a general term

for both nonoscillatory population dynamics and the aforementioned oscillatory dynam-

ics. We can visualize the resulting “1Q–0Q–1Q” contribution as a series of 1Q–1Q 2D
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Figure 1.7. From 2D to 3D spectroscopy. (a) Level scheme of a three-level system with two singly

excited states |e〉 and |e′〉 and ground state |g〉. (b) Simulated rephasing 1Q–1Q 2D spectrum, shown

in absolute values (normalized to the maximum). (c) Interaction scheme of a four-pulse sequence with

delays τ , T , and t inducing a fourth-order response. The interaction pattern indicated by α, β, γ, δ

corresponds to the rephasing 1Q–0Q–1Q signal contribution. (d) Illustration of the rephasing 1Q–0Q–

1Q signal (absolute values) as 2D spectra with parametrical dependence on T , where the light blue curve

indicates cross peak modulation due to 0Q coherence. The 2D spectra are normalized to the frontal

one, which corresponds to T = 0. An additional Fourier transform (F) generates (e) the rephasing

1Q–0Q–1Q 3D spectrum. (f) Double-sided Feynman diagrams describing the 3D peaks A–F in e.
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spectra with a parametric dependence on T (Fig. 1.7d). Evidently, over the course of

T , the cross peak magnitudes oscillate with a period corresponding to the frequency

difference between |e〉 and |e′〉, which is schematically indicated by the light blue oscilla-

tion. In parallel to these coherent dynamics, there are also incoherent dynamics, that is,

population dynamics, which can be recognized by the magnitude decrease of the upper

diagonal peak and simultaneous magnitude increase of the lower cross peak over T .

Alternatively, one could perform an additional Fourier transform with respect to T

to generate a three-dimensional (3D) spectrum (Fig. 1.7e). Generally, a 3D spectrum

offers a maximum separation of the spectral signatures of the underlying excitation path-

ways and inherently includes the result of the three-pulse 2D experiment as the bottom

projection of the spectral solid (compare Figs. 1.7b and e), among other projections.

Importantly, while cross peaks in regular 2D spectra do not directly indicate if cou-

pling between two excited states originates from incoherent energy transfer or coherent

superposition between them, 3D cross peaks such as E and F in Fig. 1.7e are unique sig-

natures of coherent coupling. The 3D spectrum spectrally separates contributions from

population dynamics, which appear at ∆ωT = 0, and 0Q coherences, which are shifted

along the new frequency axis ∆ωT , whereby we can also distinguish between the sign of

the frequency of the 0Q coherences. In Chapter 4, we will employ 3D spectroscopy on a

molecular sample system, where the sign of the 0Q coherence will help us to distinguish

contributions from vibrations in the ground and the excited electronic state.

Finally, let us recall Fig. 1.1c. While the three-pulse sequences discussed in Sec. 1.2.3

can only correlate various 1Q and 2Q coherences, i.e., the off-diagonal density matrix

elements, the four-pulse sequence additionally creates dynamical correlations to diago-

nal elements. In other words, we can unfold the full dimensionality of the fourth-order

response by using four pulses. Note that, in this section, we only discussed one possible

fourth-order contribution (i.e., the one that corresponds to the phase coefficients

α = −1, β = +1, γ = +1, δ = −1). In fact, other phase sign permutations of the

excitation pulses are possible, giving rise to two other signal contributions – the “non-

rephasing” 1Q–0Q–1Q and 1Q–2Q–1Q contributions. Together, these three signal con-

tributions completely characterize the fourth-order response function. This particular

aspect is addressed in detail in Chapter 4.

Note that, although the 3D spectrum of Fig. 1.7e has been calculated using a non-

perturbative approach (see Secs. 2.5.3 and 4.5.6), we can interpret it via double-sided

Feynman diagrams (Fig. 1.7f), which result from perturbation theory. For the three-level

system of Fig. 1.7a, eight different 1Q–0Q–1Q pathways can be constructed [43] which

could have been calculated and summed up to yield a 3D spectrum. However, instead
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of bookkeeping and summing over all pathway terms, the nonperturbative treatment

inherently takes into account all contributing pathways up to an arbitrary nonlinear

order. The nonperturbative approach involves less approximations compared to a per-

turbative calculation but requires to numerically solve a differential equation, which is

computationally more expensive. In return, we can explicitly incorporate the amplitude

profile of the external laser fields which in turn captures effects stemming from finite

pulse durations such as pulse overlap, leading to an overall more realistic description

of multidimensional spectra. In this context, it was shown that the bandwidth and the

central frequency of the finite laser amplitude profile relative to the system resonances

have a major influence on the observed features on the example of coherently detected

2D spectroscopy [44–47]. In virtue of these circumstances, in this work we will use a

nonperturbative treatment to simulate 2D and 3D spectra close to the experiment, but

at the same time we keep double-sided Feynman diagrams for interpretation purposes.

1.2.5 Designing Phase-Cycling Schemes: Isolating Coherent Signals from

the Incoherent Observable

We have seen in the preceding sections that manipulating the phases of the excitation

pulses is the key to select out different classes of excitation pathways, the nonlinear signal

contributions. However, in a real experiment, just using a pulse sequence in which we

scan the delays using a single combination of phases is insufficient to isolate a certain

signal contribution. In Secs. 1.2.3 and 1.2.4, we disregarded the fact that, besides the

desired signal contribution, the much stronger lower-order fluorescence signal is always

present, preventing an unambiguous signal assignment. Thus, we need to cycle our pulse

phases to separate the desired signals from the undesired background. This means, we

repeat every 2D experiment, in which we scan the delays between the pulses, with

different sets of pulse phase combinations.

Phase-cycling procedures were originally employed as integral parts of 2D NMR exper-

iments as they efficiently suppress unwanted artifact signals [33]. In 2003, Warren and

coworkers then first demonstrated the optical analogue of phase-cycled pulse sequences

for fluorescence-detected 2D spectroscopy on rubidium vapor [48]. Later, Tan developed

a theory for the selection of phase-cycling schemes for collinear optical 2D spectroscopy

[29]. He focused on fourth-order nonlinear signals using three- and four-pulse sequences.

This phase-cycling scheme selection procedure was then extended to 2D spectroscopy in

the pump–probe geometry [49, 50]. During the creation of this thesis, the application

of phase cycling was also demonstrated in collinear coherence-detected third- [51] and

fifth-order [52] 2D electronic spectroscopy.
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Here, we focus on fourth- and sixth-order nonlinear signals. Sixth-order signals are

of particular interest because they access information which go beyond the three-level

system of Fig. 1.1a such as triply excited states, their coupling to the manifold of other

excited states, and higher-order electron correlations [53, 54]. As we will see in the

following, by cycling the phases in a sophisticated way, we are able to simultaneously

capture the signals from both nonlinear orders. In particular, we will address the question

which phase-cycling schemes for three- and four-pulse sequences are sufficient and most

economical to unambiguously recover the aforementioned signals.

Let us begin with three-pulse sequences. In Sec. 1.2.3, we have seen that nonlinear

signal contributions can generally be distinguished by unique sets of coefficients α, β,

and γ. These coefficients relate to the total phase ϕtot. = αϕ1 + βϕ2 + γϕ3 with which

each contribution is oscillating [29]. For these coefficients, two rules can be formulated:

α + β + γ = 0, (1.31)

|α|+ |β|+ |γ| ≤ 6. (1.32)

The first rule is a direct consequence of the requirement to have a final population state

in every pathway in order to probe fluorescence. This is only achieved if the number

of interactions with a negative phase sign is equal to the number of interactions with a

positive phase sign (see also the Feynman diagrams in Figs. 1.4–1.7). The second rule in

Eq. (1.32) follows from our premise to consider signals up to sixth order. Equation (1.31)

also states that α, β, and γ are dependent on each other [29]. This is useful, since we

can reference the phases of the second and third pulse to the phase of the first pulse by

ϕ21 = ϕ2 − ϕ1 and ϕ31 = ϕ3 − ϕ1. The entirety of all signals p can then generally be

formulated as a sum (i.e., a Fourier series) via

p (τ, t, ϕ21, ϕ31) =
∑
β,γ

p̃(3)(τ, t, β, γ)ei(βϕ21+γϕ31), (1.33)

where each set of β and γ is now sufficient to relate to a three-pulse-specific nonlinear

signal contribution p̃(3). A discrete 2D Fourier transformation of this series finally gives

us access to the desired nonlinear signal contributions:

p̃(3)(τ, t, β, γ) =
1

LM

M−1∑
m=0

L−1∑
l=0

p (τ, t, l∆ϕ21,m∆ϕ31) e−ilβ∆ϕ21e−imγ∆ϕ31 , (1.34)

where ∆ϕ21 = 2π/L and ∆ϕ31 = 2π/M relate to experimental phase increments. In

this respect, the double sum over p can be viewed as the “raw data” of the experiment.

Expression (1.34) determines whether a signal contribution of interest can be resolved
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on a periodic 2D phase grid with the number of experimental sample steps L and M ,

which refer to a certain phase-cycling scheme, denoted as “1×L×M .” Importantly, if

we sample ∆ϕ21 and ∆ϕ31 in sufficient steps, then we could simply weight out a desired

nonlinear signal from the raw data by inserting the signal-specific set of β and γ into

Eq. (1.34) [29]. In other words, we can decode one contribution after another from the

measured signal. But which phase-cycling scheme would be sufficient to discriminate

between the fourth-order signals and those of sixth order?

For that purpose, let us “illustrate” various phase-cycling schemes by representing the

ϕ21-space and the ϕ31-space in polar coordinates (Fig. 1.8). For each ϕ-space, we draw a

separate unit circle. The number of phase-cycling steps L and M divides the respective

circle into equally sized sections, with the peripheral portion of a section representing

a phase increment of ∆ϕ21 or ∆ϕ31. Then, we plot the signal-specific weighting factors

e−iβ∆ϕ21 and e−iγ∆ϕ31 as “signal vectors” in the polar coordinate systems of ϕ21 and ϕ31,

respectively. A positive (negative) value of β or γ thereby corresponds to a clockwise

(counter-clockwise) rotation in steps of ∆ϕ21 and ∆ϕ31 with respect to zero phase (black

line). Up to sixth order, there are 36 different second-, fourth-, and sixth-order signals

(including their conjugates), as dictated by the conditions (1.31) and (1.32) (see Table A1

in Appendix A). First, we shall only focus on the three fourth-order signals discussed in

Sec. 1.2.3, to get a grasp of the concept. Note that we consider the complex conjugated

1Q–2Q contribution (denoted with an asterisk in Fig. 1.8) for the sake of clarity.

1 × 3 × 3
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2Q–1Q
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−1

1 × 4 × 4
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Figure 1.8. Diagrammatic representation of phase-cycling schemes by using the polar coordinate repre-

sentation. Each ϕ-space is depicted as unit circles, which are sectioned into ∆ϕ-fragments according to

the number of phase steps. The black lines corresponds to 0 (= 2π). Each fourth-order signal (blue) is

characterized by the two weights e−iβ∆ϕ21 and e−iγ∆ϕ31 [compare Eq. (1.34)], which can be represented

as vectors in the ϕ21-space and the ϕ31-space, respectively. In order to discriminate between all signals,

at least one signal vector must not point in the same direction as that of another signal, which is not

the case for the 1×3×3 (indicated by red shaded planes), but for the 1×4×4 phase-cycling scheme.
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Let us start with a 1×3×3 phase-cycling scheme in Fig. 1.8 (left). This phase-cycling

scheme is not sufficient to discriminate between the fourth-order signals. This is due to

the fact that all signals share the same signal-vector directions in both ϕ-spaces, which is

indicated by the red shaded planes in Fig. 1.8. If the signal vectors of two signals coincide

in both ϕ21-space and ϕ31-space, we say that these signals are aliased. Evidently, aliasing

is an inherent consequence of the periodicity of the phase [29]. In other words, there

is an equivalence between the coefficients +2 and −1 due to insufficient phase cycling.

In order to discriminate between two signals, the vectors of one signal must not point

in the same direction as those of another signal – the vector directions have to differ

in at least one ϕ-space. We can accomplish this by increasing the phase steps. If we

increase the phase-cycling scheme to 1×4×4 (Fig. 1.8, right), we can distinguish between

all fourth-order signals. This is because, although there are still ambiguities in one ϕ-

space, as indicated by the gray shaded planes, each pair of signal vectors represents a

unique configuration.

Now we include the sixth-order signals. Let us exemplarily consider the sixth-order

3Q–1Q and 1Q–3Q signals, which we will introduce in Chapter 2. If we used the 1×4×4

phase-cycling scheme to decode sixth-order signals from the raw data, we would struggle

with aliasing, as shown in Fig. 1.9, left.
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Figure 1.9. Distinguishing fourth- and sixth-order signals by phase cycling. The fourth-order 1Q–1Q

signal, its complex conjugate 1Q–1Q* (blue), and the sixth-order 3Q–1Q and 1Q–3Q signals (red) are

exemplarily illustrated using the diagrammatic representation of phase-cycling schemes. The 1×4×4

phase-cycling scheme (left) is insufficient to discriminate between the fourth- and sixth-order signals

due to coefficient ambiguity, as indicated by the red shaded planes. The 1×6×6 scheme (right) resolves

these ambiguities so that all signals can be extracted without aliasing with another.

The 3Q–1Q and 1Q–3Q signals (red) are aliased with the fourth-order 1Q–1Q signal

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



1.3 Motivation, Goals and Structure of this Thesis 23

and the complex conjugate of the latter (blue). This time, the reason lies in the ambiguity

of +2 and −2 as well as +1 and −3. Consequently, we can only use a 1×4×4 phase-

cycling without aliasing if we choose our excitation power so that the sixth-order signal

strength is negligible.

Only when we increase the phase cycling to 1×6×6 (Fig. 1.9, right), the signal-vector

pairs correspond to unique configurations and we can discriminate between all signals.

A 1×6×6-phase cycling is actually able to discriminate between all fourth-order and

all sixth-order signals, as we will show in Chapter 2. This is because a six-step phase

cycling resolves any ambiguity between ±2,±1, and 0 in both the ϕ21-space and in the

ϕ31-space, which ensures that the signal-specific vectors of two signals never match in

both ϕ-spaces simultaneously.

We can perform the same analysis for a four-pulse sequence, which is shown in Ap-

pendix B. Using four pulses, one must use a 125-fold phase-cycling procedure in order to

discriminate between all fourth- and sixth-order signals, which is experimentally demon-

strated in Chapter 4.

1.3 Motivation, Goals and Structure of this Thesis

The traditional approach to 2D spectroscopy employs a fully noncollinear beam geometry

to induce a certain nonlinear signal contribution [19, 32]. Instead of phase-cycling, one

selects a specific signal by phase matching, that is, by choosing an appropriate excitation

direction. Although widely established for the investigation of liquid phase systems,

there are several technical difficulties [55].

Due to the coherent nature of nonresonant response of a solvent, coherent signal

detection is susceptible to unwanted signals [56]. Scattering of excitation light might

also pose an issue, which requires the use of specialized dual chopping or phase-cycling

schemes [57] in addition to a rather complex experimental apparatus with many moving

parts. Especially the latter issue is substantially crucial for the success of a coherent

multidimensional experiment, since it sensitively depends on the phase stability among

multiple beams. Maintaining phase stability is considerably challenging if one wants to

measure phase-matched higher-order signals (i.e., signals higher than the third nonlin-

ear order), as these signals principally require an increasing number of excitation beams

[58, 59]. To retrieve the actual phase information of the acquired spectra, an additional

“phasing procedure” is necessary, often carried out via a separate pump–probe measure-

ment [55, 60–62]. This phasing procedure is not trivial for multiple-quantum [39] and

higher-order signals [63, 64]. Moreover, noncollinear setups usually require a change of
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the beam geometry to collect another signal contribution [32]. However, in order to com-

pletely characterize the nonlinear response, one needs access to all signal contributions,

not just to a few. Multidimensional spectroscopy is able to unravel the comprehensive

spectroscopic information to a certain nonlinear order, but only if one has the ability to

collect all signal contributions up to this nonlinear order.

Especially the higher-order response contains exclusive and detailed information about

the excited-state landscape of a system, such as their relaxation pathways, dynamics,

interactions and correlations [52, 53, 65, 66]. In particular, the higher-order response

provides direct access to multiply excited states, which remain elusive for the lower non-

linear orders. Why are these excited states so important? Knowledge about electron

correlations is encrypted in such multiply excited states [36, 38, 53, 67]. In quantum

chemistry, electron correlation is the central component that is crucial for an accurate

system description [68]. The most accurate system description is obtained by construct-

ing a wavefunction which includes all determinants describing excited-state configura-

tions. In the same sense, by measuring the properties of the manifold of high-excited

states through the high-order nonlinear response, we can measure such electron correla-

tions and in turn construct a comprehensive picture of the system of interest.

Coherent fluorescence-detected 2D spectroscopy is a rather young addition to the fam-

ily of coherent multidimensional spectroscopies. Although the first fluorescence-detected

2D experiment was carried out in 2003 [48], it has only recently become increasingly

popular. This may primarily be the result of continuous further development of pulse

shaping technology, which are an essential part of every fluorescence-detected 2D experi-

ment due to the necessity to perform phase modulation [69] or phase cycling [48, 70–72].

Noteworthily, the interpretation of fluorescence-detected 2D spectra has recently been

the subject of debate [73, 74], with a particular focus on 2D spectra of light-harvesting

systems [75–77]. For fluorescence-detected 1D multiple-quantum signals of gas-phase

systems [78], it was even claimed that these signals would be the result of collective ex-

citations rather than microscopic multiple-quantum coherence [79]. This raises the ques-

tion whether multiple-quantum signals detected by fluorescence could generally have a

microscopic origin at all. Most importantly, higher-order multidimensional fluorescence

spectroscopy is not yet an established technique although fluorescence-based approaches

offer the best technical prerequisites like inherent phase stability, sensitive and selective

signal detection, and the possibility to acquire multiple signals at once through phase cy-

cling [9, 71, 72], which is all in contrast to the challenges of noncollinear 2D spectroscopy

mentioned above.

Thus, the aim of this thesis is to establish the concept of “multiple-quantum multi-
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dimensional fluorescence spectroscopy.” For that purpose, phase-cycled pulse-sequences

are developed, which systematically resolve and acquire multiple novel nonlinear signals

in two and three spectroscopic dimensions in a single measurement. In view of the nov-

elty of the obtained high-order nonlinear signals, i.e., signals that result from more than

four interactions with the electric light field, a particular emphasis is placed on the anal-

ysis and interpretation of the obtained spectra. Hence, the use of theoretical modeling

that validate and support the findings of the experiments reported in this thesis, is in-

dispensable. The interpretation of the obtained multidimensional spectra thereby takes

place in the context of the novel information content they add to the toolkit of multi-

dimensional spectroscopy. This work shall also provide general interpretation strategies

for high-order multidimensional spectra. To this end, it shall be verified that the ob-

tained high-order fluorescence-detected multidimensional spectra contain signatures of

microscopic multiple-quantum coherence.

The developed approaches in this work pursue the guiding vision of obtaining max-

imum amount of information about the nonlinear response up to a certain nonlinear

order. This work therefore focuses especially on higher-order nonlinear signals, which

are shown to be suited to analyze properties of high-excited states in molecules (Chapter

2 and 4), multiexcitonic states in semiconductor nanocrystals (Chapter 3) and ultrafast

exciton–exciton annihilation in molecular heterodimers (Chapter 5). Nonetheless, the

approaches in this work inherently include the previously established fourth-order non-

linear signals from the same experiments at the same time, with which couplings and

dynamics of lower excited states can be investigated as well. In essence, this work ad-

dresses the question “Can we design a single, systematic approach that gives us maximum

information about the nonlinear response of a system?”

A graphical outline of this thesis is given in Fig. 1.10. This thesis is organized as

follows. Chapter 2 deals with the evaluation of the novel technique of multiple-quantum

2D fluorescence spectroscopy, which is based on a three-pulse sequence with 36-fold

phase-cycling. This phase-cycling procedure allows one to access three fourth- and six

sixth-order nonlinear signals in a single experiment (Fig. 1.10, top left). The approach

is demonstrated and evaluated on a laser dye. The molecular multiple-quantum signals

contain information about the properties and couplings of singly, doubly and triply

excited electronic states, and are interpreted with aid of nonperturbative simulations.

In addition, the potential occurrence of nonlinear wave-mixing cascades, which pose an

undesired signal contamination, is also discussed and evaluated [3].

On the basis of the results of Chapter 2, Chapter 3 deals with the application of

multiple-quantum 2D fluorescence spectroscopy on colloidal semiconductor quantum
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dots (Fig. 1.10, top right). Here, the potential of the technique in terms of determining

properties of multiexciton states is demonstrated. In that sense, multiple-quantum 2D

fluorescence spectroscopy is generalized as “multiexciton 2D spectroscopy” for excitonic

systems. Theoretical modelling is utilized to interpret signatures of correlations between

excitons, which manifest in the observed peak patterns and line shapes [1].

In Chapter 4, the concept of multiple-quantum 2D fluorescence spectroscopy is then

extended into a third spectroscopic dimension (Fig. 1.10, bottom left) by using four-

pulse sequences in combination with 125-fold phase-cycling. This approach aims to

obtain maximum information from a single rapid experiment by providing up to 15

different fourth- and sixth-order 3D signals. The rapid acquisition is therefore highly

beneficial for the investigation of samples with limited chemical stability such as the

molecular dianion of TIPS-tetraazapentacene. In particular, this four-pulse experiment

unfolds the full dimensionality of the fourth-order response, enabling one to isolate

spectral signatures of excited-state wave-packet dynamics, and to measure properties of

two-photon excited states [4].

The approach discussed in Chapter 4 provides the technical basis for the selective

study of the dynamics of interacting excitons such as in molecular aggregates, for which

a sixth-order nonlinear process is required in case of fluorescence detection. Chapter 5

thus focuses on the theory and experimental demonstration of fluorescence-detected

exciton–exciton interaction (FDEEI) 2D spectroscopy (Fig. 1.10, bottom right). The

technique of FDEEI2D spectroscopy is applied on squaraine heterodimers, where the

feasibility of tracking ultrafast exciton–exciton annihilation is demonstrated [2].

Finally, the last chapter features a general discussion of all chapters with an out-

look on further advanced experiments. In particular, two new experimental techniques,

multiexciton-generation 3D fluorescence spectroscopy (MEG3DFS), and five-dimensional

fluorescence-detected all-resonant electronic spectroscopy (5D FLARES) are proposed

and their concepts are briefly outlined.
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Figure 1.10. Graphical outline of this thesis. Phase-cycled three- and four-pulse sequences are de-

veloped, which systematically disentangle the electronic state landscape of molecules and nanocrystals.

Chapter 2 (top left) introduces multiple-quantum 2D fluorescence spectroscopy on a molecular dye.

This approach is applied to semiconductor quantum dots in Chapter 3 (top right) to systematically

disentangle the manifolds of excitons, biexcitons and triexcitons. Chapter 4 (bottom left) deals with

the implementation of multiple-quantum 3D fluorescence spectroscopy as a means to rapidly acquire

multiple 3D spectra of molecular samples with limited chemical stability. In Chapter 5 (bottom right),

a novel sixth-order nonlinear signal is developed which directly resolves ultrafast exciton–exciton an-

nihilation in a molecular heterodimer. Reprinted in part with permission from Ref. [3]. Copyright

c© (2020) American Chemical Society.
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Chapter 2

Molecular Coherent Three-Quantum

Two-Dimensional Fluorescence

Spectroscopy

We introduce molecular coherent three-quantum (3Q) two-dimensional (2D) fluorescence

spectroscopy with phase cycling via shot-to-shot pulse shaping at a 1 kHz repetition rate.

This allows us to acquire simultaneously, within a single scan, three fourth-order and six

sixth-order signals correlating various one-quantum, two-quantum, and 3Q coherences.

We demonstrate the approach on the dye molecule rhodamine 700 and reproduce all nine

2D data sets, including their absolute signal strengths, with simulations using a single,

consistent set of model parameters. We observe a linear concentration dependence of all

nonlinear signals, evidencing the absence of cascades and many-particle signals of non-

interacting molecules. The single-beam, background-free implementation allows direct

comparability between various nonlinear signal types and provides information about

multiple excited states. Apart from molecules, the method is expected to be applica-

ble to supramolecular systems, polymers, and solid-state materials with the prospect of

revealing signatures of bi- and triexcitonic states.

Reprinted with permission from S. Mueller and T. Brixner, The Journal of Physical Chemistry Letters

11, 5139–5147 (2020). Copyright c© (2020) American Chemical Society.
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2.1 Introduction

Coherent two-dimensional (2D) electronic spectroscopy has become a standard tool for

studying ultrafast dynamics of molecular systems and is used, for example, to unveil

electronic couplings, exciton dynamics, charge and energy transport, or photochemical

reactions [32, 53, 80–86]. Beyond chemistry, 2D spectroscopy is applied in physics,

biology, and material science, for example, to characterize dynamic processes in solar

cells and organic semiconductors [87–90].

In a 2D experiment, the investigated system is irradiated by a sequence of ultrashort

laser pulses triggering a multitude of excitation pathways through the excited-state

manifold. These pathways carry the information about the nonlinear response of the

system. Most common 2D experiments detect third-order nonlinear signals [91, 92]

in a phase-matching geometry and correlate excitation and detection frequency after a

certain waiting time. Because the correspondingly excited and detected coherences occur

between levels that are one quantum of the incident photon energy apart, this approach

delivers a time sequence of “one-quantum–one-quantum” (1Q–1Q) 2D correlation maps.

Additional information can be obtained by probing two-quantum (2Q) coherences

between levels that are two quanta of the photon energy apart [36]. This can be applied

for vibrational [93–96] and electronic [39, 40, 53, 67, 97–100] excitations. Employing

fluorescence detection [48, 69, 71, 75] in this context is particularly helpful as it removes

scattering artifacts and nonresonant solvent contributions that are problematic in the

coherence-detected variants [56].

Additional information is also gained by probing higher orders in the perturbation

expansion of light–matter interaction. For example, for coherence-detected spectroscopy,

moving from a third-order to a fifth-order response one can unveil electronic–vibrational

coupling with great detail and selectivity [59, 101], directly measure exciton–exciton

annihilation dynamics [66, 102, 103], or obtain signatures of states beyond the doubly

excited level such as second vibrational overtones in the infrared [104] or triexcitonic

states in the visible spectral domain [53]. Moreover, the characterization of such highly

excited states is relevant for tailoring many-body interactions in quantum information

technology [105]. Several experiments probe highly excited states by fifth-order or even

seventh-order coherent signals [53, 54, 57], and a few population-based experiments on

atoms in the gas phase were reported [78, 106, 107].

Each separately obtained signal contribution, as in the examples cited above, maps

the nonlinear response to a certain extent. For a comprehensive, systematic approach,

it would be beneficial to collect as many signals as possible under identical excitation
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conditions, preferably simultaneously, because a direct comparison of the different signals

including their absolute magnitude provides additional information. Recently, three

different third-order signal contributions were acquired simultaneously on the example

of GaAs quantum wells [108], and we reported the simultaneous acquisition of molecular

fourth-order and sixth-order three-dimensional electronic spectra using 125-fold phase

cycling of four-pulse sequences and fluorescence detection [4]. In that paper, we analyzed

various zero-quantum (0Q), 1Q, and 2Q correlations.1

In this work, we extend the concept to three-quantum (3Q) coherences by using 36-

fold phase cycling of three-pulse sequences. While electronic 3Q coherences have been

reported for solid-state and gas-phase systems [53, 78, 106, 107], we here introduce molec-

ular 3Q signals. The interpretation of fluorescence-detected multidimensional spectra,

especially those emerging from multiple-quantum signals, is currently under debate,

which further motivates our study [74, 77–79]. We report the simultaneous isolation

of three different fourth-order and six sixth-order 2D spectra and find overall excellent

correspondence with simulations, including the comparison of absolute signal levels. Po-

tential cascading contributions and many-particle signals are also investigated but found

to be absent.

2.2 Results and Discussion

We analyze the various signal contributions of the experiment (Fig. 2.1a) by considering

a minimal four-level energy scheme (Fig. 2.1b) with ground (|g〉), first excited (|e〉), dou-

bly excited (|f〉), and triply excited (|t〉) electronic states. In this basis, the fluorescent

electronic state of a generic molecule (S1 in the common notation) corresponds to state

|e〉. For the sake of simplicity, the scheme in Fig. 2.1b shows labels only for electronic

states that represent, in fact, products of electronic-state and vibrational wave func-

tions. All possible corresponding 1Q, 2Q, and 3Q coherences that can be constructed

as superpositions among these four electronic states via one-, two-, and three-photon

transitions, respectively, are displayed in Fig. 2.1b.

In the 2D experiment (Fig. 2.1c), we generate and probe correlations among the vari-

ous types of coherences by phase-cycled three-pulse sequences with delays of τ (between

the first and second pulses) and t (between the second and third pulses). A 36-fold

(1×6×6) phase-cycling protocol allows us to simultaneously resolve and acquire nine

different nonlinear signal contributions that are schematically shown in a time-domain

representation in Fig. 2.1a. These contributions can be extracted according to their

1See Chapter 4.
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Figure 2.1. Molecular three-quantum 2D fluorescence spectroscopy. (a) Schematics of the nine

multiple-quantum 2D signals that can be resolved simultaneously with 36-fold phase cycling of a three-

pulse sequence, three of fourth order (left column) and six of sixth order (middle and right columns),

listed along with their respective phase signatures. The prefix “R.” in a corresponding color indicates

rephased quantum coherences. (b) Four-electronic-level energy scheme with ground |g〉, first excited

|e〉, doubly excited |f〉, and triply excited |t〉 states. Possible coherences among these states are in-

dicated by colored double arrows, i.e., one-quantum coherences (1Q, green), two-quantum coherences

(2Q, blue), and the three-quantum coherence (3Q, purple). (c) Collinear single-beam three-pulse exci-

tation sequence (green) created by a pulse shaper and resulting fluorescence (red). Interpulse phases

are sampled by scanning the absolute phases of the second and third pulses with respect to the first.

(d) Linear absorption (black) of rhodamine 700 perchlorate in ethanol (0.1 mM solution), fluorescence

(red), and laser spectrum (green shaded area). Reprinted with permission from Ref. [3]. Copyright

c© (2020) American Chemical Society.

unique phase signatures from the acquired fluorescence signal by a postprocessing rou-

tine (see Sec. 2.4) [29].

Throughout this paper, we label these signal contributions as “X Q–Y Q”, where X and

Y represent the quanta (X, Y = 1, 2, or 3) of coherences (in units of photon energy)

that evolve over τ and t, respectively. If the pulse-specific interaction phases generate
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phase conjugation between the correlated coherences, we additionally label the signal

with “R.” (rephasing), whereas no additional label corresponds to a nonrephasing con-

tribution. Rephasing techniques unveil inhomogeneous broadening [32, 109]. Note that

an additional feature of population-based detection in contrast to coherent detection is

the ability to detect signals in which the time ordering between coherences X Q and Y Q

is reversed, enabling us to further decongest overlapping quantum coherence signatures.

Differences between these X Q–Y Q and Y Q–X Q (e.g., 2Q–1Q and 1Q–2Q) 2D spectra

reveal information about relaxation pathways of higher excited states [9]. The acquisi-

tion of 1Q–2Q and 1Q–3Q 2D spectra is only possible by fourth-order and sixth-order

nonlinear processes, respectively, because 2Q and 3Q coherences, which are generated

in third- and fifth-order processes, cannot be detected as coherent signals as these co-

herences are naturally nonradiative [57]. In contrast, using fluorescence detection, the

additional last pulse interaction converts the high-order quantum coherence into a pop-

ulation state that can fluoresce directly or indirectly via consecutive internal conversion

(IC) and subsequent emission. The additional pulse interaction further enables us to

exclusively acquire 3Q–2Q and 2Q–3Q signals that selectively probe couplings between

doubly and triply excited states. Such signals are impossible to measure with coherent

detection schemes.

For the experiment, we chose the fluorescent dye rhodamine 700 perchlorate in ethanol,

which has its absorption maximum at 1.91 eV (Fig. 2.1d, black), corresponding to the

S0–S1 electronic transition, and has a fairly high fluorescence quantum yield of 36%

with a fluorescence spectrum (Fig. 2.1d, red) peaking at 1.85 eV [110]. We cover the

main absorption band by sub-20 fs laser pulses with a Gaussian energy spectrum (green

shaded area in Fig. 2.1d).

In Fig. 2.2, we present the real parts of all experimental 2D spectra of rhodamine 700

in ethanol that were extracted from a single scan with 36-fold phase cycling (with 150-

fold averaging), shown along with simulated spectra. The arrangement of panels is the

same as that of the pulse sequences in Fig. 2.1a. The real part of a 2D spectrum displays

important properties because it carries the phase information about the nonlinear signal

and predominantly features absorptive components. In coherently detected approaches,

so-called “phasing” must be carried out to receive the correct phase of a 2D spectrum

[39]. In our case, however, correct phasing is automatically and implicitly included

through the phase-cycling procedure. The sign of the real part corresponds to the overall

sign of the nonlinear response, which can be interpreted as the sum of all double-sided

Feynman diagrams that are involved for a given phase signature within the framework of

perturbation theory. We provide a Liouville pathway analysis of each signal in Fig. 2.5.
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Figure 2.2. Experimental (Exp.) and simulated (Sim.) multiple-quantum 2D fluorescence spectra (real

part) of rhodamine 700 in ethanol. All spectra are normalized to their respective highest absolute value.

The 2D spectra are grouped into fourth-order (a-c) and sixth-order (d-i) contributions, arranged in the

same order as the schematics in Fig. 2.1a, and labeled according to the type of quantum coherences that

evolve during the time intervals τ (first label) and t (second label). Each spectrum is drawn with nine

linearly spaced contour lines. Reprinted with permission from Ref. [3]. Copyright c© (2020) American

Chemical Society.

While the fourth-order spectra in Fig. 2.2a–c feature predominant negative signals (blue-

colored central peak), the sign change in the sixth-order spectra (Fig. 2.2d–i, red-colored

central peak) is consistent with the additional factor of i2 in the perturbative expansion
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[102]. Due to dispersive contributions to the response, all line shapes appear to be phase-

twisted (that is, the main signal amplitude is flanked with opposite-signed features of a

lower amplitude). All observed maximum signal amplitudes are close to the diagonal line,

but small peak shifts from the diagonal on the order of a few tens of millielectronvolts

to lower detection energies ~ωt are visible. In addition, the R. 1Q–1Q, 2Q–1Q, 3Q–1Q,

and R. 1Q–2Q 2D spectra exhibit unequal amplitudes of the flanking opposite-signed

features, which further indicates the existence of resonances that are red-shifted by

a magnitude that is smaller than the homogeneous line width [108]. To explain the

appearances of all spectra in detail, we illustrate them in terms of the involved Liouville

pathways (Fig. 2.6). As a further visualization aid, we compare the respective projections

onto the 1Q mutual energy axes of the 2Q–1Q and 1Q–2Q as well as the 3Q–1Q and

1Q–3Q 2D spectra (see Sec. 2.5.2 of the Supporting Information).

For simulations, we solve the Lindblad master equation numerically [4, 21]. The

optimal simulation result is approached by systematic variation of parameters, whereas

we use the root-mean-square difference between experimental and simulated real-value

2D spectra as a criterion that represents the quality of the simulated line shapes and the

maximal magnitudes of these spectra (normalized to the rephasing 1Q–1Q signal) as a

further quantitative feedback (for details about the simulation procedure, see Sec. 2.5.3 of

the Supporting Information). We vary the transition energies among level pairs, the pure

dephasing times of electronic coherences that govern the lineshapes of all 2D spectra, and

the transition moments between the levels that determine the relative signal magnitudes

of the 2D spectra and compare the top spectra with the bottom ones. Because we

compare nine different spectra in parallel and aim to derive a model that reproduces all

spectra simultaneously, a high level of confidence in determining a system description

is granted, further minimizing ambiguities in signal interpretation. We observe that

variations in transition energy gaps influence the asymmetry of the phase-twisted line

shapes and affect their tilt relative to the diagonal. As one can clearly see in Fig. 2.2, the

simulation reproduces the sign of all signals and their energetic positions, line shapes,

and tilt toward the diagonals very well. In addition, the relative maximal magnitudes

between the various simulated contributions (Fig. 2.3a, marked by lines) correspond

very well with experiment (Fig. 2.3a, marked by “x”), except for a moderate deviation

of the relative magnitude of the R. 2Q–1Q signal. Note that the model was kept as

simple as possible to illustrate the general behavior of the signals. Small deviations

between the experiment and simulation are found, e.g., in the rephasing 1Q–1Q spectrum

(Fig. 2.2a) at 1Q energies above 2.0 eV, where one diagonal and two cross peaks arise

as weak features in the experimental spectrum because of coupling to a high-frequency
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vibrational mode (see also the progression band in Fig. 2.1d). Such features are not

visible in the simulation because we did not implement additional vibrational sublevels.
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Figure 2.3. Results from theoretical modeling of the experimental data. (a) Experimental (marked by

“x”) and simulated (marked by lines) maximal signal magnitudes of each nonlinear signal contribution,

all normalized to the magnitude of the rephasing (R.) 1Q–1Q signal. (b) Proposed model scheme for

rhodamine 700 in ethanol (structural formula shown at the bottom). We assume that one particular

vibrational level of each of the electronic levels (black lines) that are labeled as |g〉 (ground), |e〉 (first

excited), |f〉 (doubly excited), and |t〉 (triply excited) can be predominantly accessed. Gray lines il-

lustrate the increasing density of electronic states with an increase in energy. Vertical transitions are

indicated by green arrows and corresponding transition dipole moments. Population decay between |t〉
and |f〉 is modeled via fast relaxation, whereas the population of state |f〉 is predominantly transferred

to a photoproduct that itself has a low fluorescence quantum yield Φ in the ultraviolet and is not de-

tected. The detected fluorescence signal (red arrow) is proportional to the population of state |e〉 before

relaxation sets in, where the quoted number is the fluorescence lifetime. Reprinted with permission

from Ref. [3]. Copyright c© (2020) American Chemical Society.

From the simulation result, we derive several conclusions about the investigated system

as illustrated in Fig. 2.3b. The transition energy between |e〉 and |f〉 is red-shifted by

∼50 meV compared to the |g〉 → |e〉 transition. A somewhat larger red-shift of the

|e〉 → |f〉 transition (62 meV) was found via coherently detected 2Q spectroscopy of the

related dye rhodamine 6G [39]. To reproduce the line shapes of the 2Q-associated 2D

spectra, the pure dephasing time of the 2Q coherences is set to 65 fs, which is smaller

than that of the fundamental |e〉 〈g| 1Q coherence (75 fs), thus reflecting a slightly

larger energy gap fluctuation amplitude between |g〉 and |f〉 than between |g〉 and |e〉.
Considering the relaxation dynamics of higher excited states in the system presented

here, the comparison between 2Q–1Q and 1Q–2Q 2D spectra indicates that state |f〉
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transfers almost its entire population not to |e〉 but to a different state. By inspecting

the respective pathways in panels b and c of Fig. 2.5, one sees that the 2Q–1Q process

captures a convolution of both |e〉 〈g| and |f〉 〈e| 1Q coherence dynamics, whereas the

1Q–2Q process probes only the |e〉 〈g| coherence that oscillates at 1.91 eV. Thus, due to

the |f〉 〈e| coherence oscillating at 1.86 eV, the 2Q–1Q signal appears to be red-shifted

along the 1Q axis compared to the 1Q–2Q signal (see also Fig. 2.7). However, such

signatures from |f〉 〈e| can be visible at all only if state |f〉 has a negligible quantum yield.

In other words, if |f〉 had a quantum yield similar to that of |e〉, indicating |f〉 → |e〉
relaxation, then contributions from the |f〉 〈e| coherence would be absent due to pathway

cancellation. There can be several reasons for the negligibly small quantum yield of |f〉.
We find that the most likely reason is a photoreaction of the doubly excited rhodamine

700 molecule with solvent molecules forming an adduct (Fig. 2.3b, right) because of the

highly electron-withdrawing trifluoromethyl group [111]. Further possible reasons that

we deem to be less likely are a high rate of intersystem crossing from |f〉 to a highly

excited triplet state with subsequent relaxation to the ground state (however, potential

phosphorescence cannot be captured because emission can be detected only in an interval

of <1 ms in our experiment) and other fast nonradiative deactivation pathways via

multiple intermediate excited singlet states, possibly via conical intersections. In the

model, all three cases are simulated in an effective way by employing a fully nonradiative

relaxation channel from |f〉 to |g〉, where time constants of this channel above 4 ps lead

to the best results. Indeed, we find a photoreaction of the doubly excited molecule to be

most likely, also because we observed a nearly complete discoloration of the originally

blue rhodamine 700 solution after several 2D experiments that can be reversed by adding

some drops of concentrated sulfuric acid to the colorless solution. Moreover, the energy

of state |f〉 is in the vicinity of the first excited singlet state of the possible adduct that

is facilitating population transfer to adduct states. We do not observe resonances of

the photoproduct in the experimental 2D spectra because of its very low fluorescence

quantum yield of 0.06 with a fluorescence spectrum located in the ultraviolet (around

350 nm) [111], where the employed photodetector has a low responsivity.

Focusing specifically on the novel molecular 3Q signals, we find the probed |t〉 state

of rhodamine 700 manifests as a resonance at ∼5.7 eV in all 3Q-associated spectra

(Fig. 2.2f–i). We estimate relaxation between |t〉 and |f〉 to proceed very fast within

∼80 fs, possibly via intermediate excited singlet states. From the simulation, we also

find that the optical dephasing time of the 3Q coherence is only ∼15 fs, leading to line

broadening along the 3Q energy axes, which also can be interpreted phenomenologically

as a result of the high density of states at such a high energy.
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With regard to relative transition dipole moments, we observe that those between

excited states are larger than the S0–S1 transition dipole moment µeg. Using 3Q 2D

spectroscopy, we here also access such information on the |t〉 state. In particular, we

find that µfe is 1.35 µeg and µtf is 1.90 µeg. These values lead to the overall smallest

deviations in relative signal magnitudes (see Fig. 2.3a). It is worth noting that con-

ventional attempts to measure such highly excited states in solution are exacerbated by

the fact that multiphoton absorption of the ubiquitous solvent molecules might generate

coherent signals in the same energy range as the 3Q states of the system of interest,

generating strong background signals that superimpose the desired high-order quantum

coherence. However, considering our experimental results, the advantage of fluorescence

detection is that only the fluorescent components of the sample, i.e., the rhodamine 700

molecules, contribute to the final signal.

We now discuss the relevance of unwanted contributions such as multiparticle exci-

tations or wave-mixing cascades that could potentially contaminate the signal and lead

to erroneous conclusions. Let us first consider the case in which multiple independent

1Q coherences reside on particles of the ensemble such that the resulting undesired sig-

nal might appear in the same way as the desired multiple-quantum signal from one

single particle. Such a possibility was recently discussed for phase-sensitive detection

by Mukamel [79]. For nonlinear signals that contain interactions by a laser pulse with

phase ±nϕ, this pulse would not act on a single molecule as discussed above, but in-

stead the n interactions would be spread over n individual noninteracting molecules.

It was concluded that the magnitudes of these many-particle signals scale nonlinearly

with concentration, e.g., following a multiplicative N(N − 1) dependence for the case

of two-quantum signals, where N is the number of molecules [79]. With regard to the

second detrimental effect, cascaded signals can be an issue in high-order nonlinear spec-

troscopy as discovered for nonresonant fifth-order Raman experiments [58, 112]. While

the potentially detrimental multiparticle signal discussed above arises from noninter-

acting particles, the cascading signal arises from interacting particles in the sense that

they exchange photons, resulting in so-called parallel or sequential cascaded pathways

that mimic a high-order signal from one molecule via two lower-order signals from dis-

tinct molecules [58, 112]. Such signals would scale quadratically with concentration for

a cascade consisting of two steps. Thus, to assess the significance of both detrimental

effects for the present sample, we carried out concentration-dependent measurements

[58, 59, 63, 94, 113]. We show the results for three exemplary sixth-order 2Q- and 3Q-

containing signals in Fig. 2.4. Results of all other nonlinear signals are shown in Fig. 2.9.
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Figure 2.4. Concentration dependence of three exemplary sixth-order nonlinear signals. The data

points were obtained from a single multiple-quantum 2D fluorescence measurement (with 50-fold av-

eraging) for each concentration. The signal strength was taken as the highest absolute value in the

respective time-domain data of the sixth-order (a) rephasing 2Q–1Q, (b) 3Q–1Q, and (c) 3Q–2Q signals.

The error bars represent the standard deviation. Reprinted with permission from Ref. [3]. Copyright

c© (2020) American Chemical Society.

From Fig. 2.4, it is evident that the sixth-order signals follow a linear concentration

dependence. The slight signal decrease at the highest concentration of 0.10 mM can

be attributed to reabsorption [59, 63]. Consequently, possible contamination by either

multiparticle signals or cascading contributions is not significant in our experiment.

2.3 Conclusion

In conclusion, we presented 3Q molecular 2D electronic spectroscopy that simultaneously

acquires four different sixth-order 2D maps containing 3Q coherences, two sixth-order

2D maps containing 2Q coherences, and three fourth-order 2D maps containing 1Q and

2Q coherences. This was achieved using a single excitation beam, 36-fold (1×6×6) phase

cycling using shot-to-shot pulse shaping at a repetition rate of 1 kHz, and fluorescence

detection. The pulse shaper automatically leads to optimal spatiotemporal overlap of
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all pulses and removes the need for geometrical beam splitting, mechanical delay stages,

and elaborate measures for ascertaining phase stability between the excitation pulses.

The total time window for the pulse sequence is limited to 8 ps by the current pulse

shaper, but this is sufficient to record 2D maps at a spectral resolution of ≈1 meV in

each dimension. We illustrated the capabilities of the method on the dye rhodamine 700

and found excellent simultaneous agreement with simulations of all nine recorded 2D

maps, based on a single, consistent set of model parameters. The model also reproduced

the total signal strengths of the nine 2D maps relative to each other. This enabled us

to determine quantitatively the relative transition dipole moments and to estimate re-

laxation pathway rate constants between the excited states. We emphasize that further

studies of similar or different molecular systems could provide a benchmark for semiem-

pirical quantum-chemical methods to accurately calculate highly excited states, which

is still a challenging task that is computationally costly. By studying the concentration

dependence of both fourth- and sixth-order signals, we found no evidence for either cas-

cading lower-order or multiparticle contributions, confirming our interpretation in terms

of multiple-quantum signals.

Apart from applications in molecular systems, 3Q 2D fluorescence spectroscopy is

suitable for studying bi- and triexcitonic states in organic and other semiconductor

materials to obtain insight into many-body physics with high sensitivity and selectivity

and without a spurious background.

2.4 Methods

The experimental implementation of the setup was described elsewhere [4, 9]. Briefly, a

1 kHz Ti:Sa chirped-pulse amplifier system (Spitfire Pro, Spectra-Physics, 800 nm, 35

fs) pumped a hollow-core fiber (Ultrafast Innovations GmbH) filled with 1.1 bar of Ar.

The resulting white-light continuum was then guided through a dual grism compressor

(Fastlite) to precompensate the chirp introduced by an acousto-optical programmable

dispersive filter (Dazzler, Fastlite). The pulse shaper generated phase-cycled three-pulse

trains at 1 kHz shot-to-shot modulation. The output beam was focused into a capillary

flow cuvette with a square cross section of 250 µm × 250 µm (131.310-QS, Hellma),

through which the sample volume (50 mL) was pumped by a microannular gear pump

(mzr-2942-cy, HNP Mikrosysteme GmbH). To acquire the multiple-quantum 2D spectra

of Fig. 2.2, we used a 0.1 mM solution of rhodamine 700 perchlorate (Radiant Dyes Laser

Acc. GmbH) in ethanol (analytical grade, Fisher Scientific UK). Scanning of coherence

times τ and t, both from 0 to 80 fs, was performed in steps of 2 fs while operating in
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a fully rotating frame of the laser reference frequency of 468 THz (1.94 eV). The pulse

duration at the sample position was 17 fs (determined by collinear frequency-resolved

optical gating), whereas the excitation energy was 180 nJ at maximum constructive

interference of all three excitation pulses. The fluorescence signal was attenuated to a

linear detector response level by neutral density filters (Newport) and detected via an

avalanche photodiode (APD410A2, Thorlabs). The acquisition time of a single full raw

data set was approximately 1 min (without averaging). From the resulting single raw

data set, we extracted each complex-valued nonlinear signal contribution p̃XQ–YQ that

probes X -quantum coherence over τ and Y -quantum coherence over t via [29]

p̃XQ–YQ (τ, t, β, γ) =
1

36

5∑
l=0

5∑
m=0

p (τ, t, l∆ϕ21,m∆ϕ31) e−ilβ∆ϕ21e−imγ∆ϕ31 , (2.1)

where we chose the following corresponding values for β and γ: rephasing 1Q–1Q,

β = +2, γ = −1; 2Q–1Q, β = −1, γ = −1; 1Q–2Q, β = +1, γ = −2, rephasing

2Q–1Q, β = +3, γ = −1; rephasing 1Q–2Q, β = +3, γ = −2; 3Q–1Q, β = −2, γ = −1;

1Q–3Q, β = +2, γ = −3; 3Q–2Q, β = −1, γ = −2; and 2Q–3Q, β = +1, γ = −3.

The obtained time-domain maps were apodized by a Hann window before 5-fold zero

padding. To exclude artificial signals that may arise from pulse shaper nonlinearities, we

conducted a full 2D measurement over 100 averages without a sample but focusing the

pulse trains directly on the APD. By using neutral density filters, we ensured the same

signal level on the detector as in an actual 2D experiment with fluorescence detection of

the sample. The resulting 2D spectra without a sample consisted of noise only, without

recognizable features above the signal-to-noise floor except for a minor signal from a

pulse shaper nonlinearity in the rephasing 1Q–1Q 2D spectrum (Fig. 2.10). This veri-

fied that the nonlinear signals observed in the experiment with the sample were indeed

of a molecular origin. For the investigation of the concentration dependence of the non-

linear signals, we maintained identical excitation and detection parameters over all five

subsequent measurements and employed 50-fold averaging each. After isolation of each

signal contribution via Eq. (2.1), no further postprocessing of the data was carried out.

All experiments were conducted under ambient conditions. Simulations were carried out

with MatLab R2018a using the parallel computing toolbox on a 72-core cluster. For

details about the simulation procedure, see Sec. 2.5.3 of the Supporting Information.
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2.5 Supporting Information

2.5.1 Pathway Analysis of the Nonlinear Signals

In this section, we provide a detailed analysis of the experimental signals from the main

manuscript. We start with the complete set of double-sided Feynman diagrams of a

four-level electronic system with ground state |g〉, first excited state |e〉, two- and three-

quantum excited states |f〉 and |t〉, respectively, that can be accessed by 36-fold phase

cycling of a three-pulse sequence with interpulse delays τ and t (Fig. 2.5).

Each pathway in Fig. 2.5 is labeled at the top with the phase signature used for its

extraction via phase cycling, and at the bottom as follows: the sign of the pathway,

according to the Feynman rules [19], that is positive for an even number and negative

for an odd number of interactions on the right side of the diagram; a natural number

denoting the weight of the pathway due to time ordering; the imaginary number i to

the fourth power (i.e., +1, for fourth-order contributions) or to the sixth power (i.e.,

−1, for sixth-order contributions); the fluorescence quantum yield Φa, with a = {e, f, t},
associated with fluorescence from the final population state |a〉 〈a| reached within each

pathway; and finally a label using the letter Q according to the notation of Perdomo-

Ortiz et al. [26] for which the subscript denotes the number of the pathway for a given

signal and the superscript denotes the coherences evolving over the first and second

coherence time periods as defined in Fig. 2.1a of the main paper (same color coding).

Let us discuss further some of these quantities. The factors i4 or i6 result from the

perturbative expansion to either fourth or sixth order in the interaction with the electric

light field. Multiplying the pathway sign from the Feynman diagram rules with the

corresponding i4 or i6 explains why fourth-order signals appear with negative sign while

sixth-order signals appear with positive sign in our chosen sign convention (see Fig. 2.2 in

the main manuscript). The additional natural number denotes the weight of a pathway

due to time ordering. Whenever a pulse interacts with phase ±nϕ, where n>1, on

both bra and ket elements simultaneously, this results in n different possibilities of

time ordering of individual interactions, leading to a multiplication of each pathway

according to the number of n. The consideration of time ordering holds for pulses with

finite duration such as those employed in our experiments. For instance, the prefactor 2

in pathway Q1Q–2Q
1 of Fig. 2.5c (top graph) results from two possibilities of time ordering

that transfer the 2Q coherence to the final |e〉 〈e| population at the end of the t interval:

|f〉 〈g| → |f〉 〈e| → |e〉 〈e| and |f〉 〈g| → |e〉 〈g| → |e〉 〈e|.
In addition to all these prefactors, each pathway is further weighted with the product

of the involved transition dipole moments between each bra and ket element which is
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Figure 2.5. Possible multiple-quantum pathways for an electronic four-level system with ground state

|g〉, first excited state |e〉, doubly excited state |f〉, and triply excited state |t〉 that can be accessed

by three-pulse sequences with 36-fold phase cycling. Φe, Φf , and Φt denote the fluorescence quantum

yields of respective pathways determined by the actual relaxation process of the final population state.

The phase signature of each nonlinear signal is denoted on the top of each panel. Pathways that do

not contribute to the observed experimental signals in the case of rhodamine 700 are denoted by gray

bottom labels. Reprinted with permission from Ref. [3]. Copyright c© (2020) American Chemical

Society.

We now explain the appearance of all 2D spectra in terms of these pathways. Due to

very low fluorescence quantum yield of the higher excited state |f〉, we consider many

pathways to have a negligible contribution to the final signal. From assuming Φf ≈ 0

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



44 Three-Quantum 2D Fluorescence Spectroscopy

directly follows that Φt ≈ 0 because of the nonradiative relaxation channel |t〉 → |f〉.
We denote non-contributing pathways by displaying the corresponding pathway label

in gray in Fig. 2.5. Hence, only pathways with nonzero quantum yield Φe contribute

to the observed signals. Considering the remaining pathways, we illustrate schematic

2D spectra in Fig. 2.6. Here, each contributing pathway signature in frequency space

is represented as a semi-transparent colored circle, centered at its expected position in

frequency space, where red denotes positive and blue denotes negative pathway sign.

In this representation, dispersive components of the response, which manifest as phase

twists in the experimental spectra, are neglected.

For each signal contribution, the small shifts of the maximum signal amplitude from

the diagonals that we observe experimentally can either arise from a single pathway

(like in the 1Q–2Q process) or the interference (or overlap in the spectral domain) of

two pathway signals. For instance, in the rephasing 1Q–1Q spectrum (Fig. 2.6a), the

maximum amplitude appears redshifted from the diagonal along ~ωt which is due to the

interference of the pathways Q1 and Q2 and indicated by a white cross (note that these

schematics do not represent the actual line shapes observed in the experiment). Such

pathway overlap signatures are also observed in the (rephasing) 2Q–1Q (Figs. 2.6b,d)

and 3Q–1Q spectra (Fig. 2.6f).

A common quantity that can be accessed from multiple-quantum 2D spectra is the

energy shift of a higher excited state excited by Y photons relative to Y times the energy

of the first excited state. In our case, we define energy shifts of the doubly excited state,

∆f = Efg − 2Eeg, and of the triply excited state, ∆t = Etg − 3Eeg, where Eab is the

energy difference between states a and b. The quantity ∆f was previously associated

with the electron correlation energy [36]. Indeed, these energy shifts have been success-

fully assigned to many-body interaction energies (binding energies) in excitonic systems

like quantum wells by coherently detected approaches [53, 81]. However, care must be

taken if one wants to designate these energy shifts as molecular electron correlation

energies in our case. The term “electron correlation” can only be used if the |f〉 and

|t〉 states we observe are of true multi-electron rather than of single-electron character,

which is per se unknown and difficult to ascertain experimentally. High-level quantum-

chemical calculations with proper treatment of electron correlation (like multi-reference

or coupled-cluster approaches) may elucidate whether multiple electrons are involved

upon excitation into the |f〉 or |t〉 level. However, such a task requires enormous com-

putational cost and is beyond the scope of our work.

We note that in contrast to coherently detected 2D spectroscopy, the 1Q–2Q, rephasing

1Q–2Q, 2Q–3Q, and 1Q–3Q contributions (Figs. 2.5c, e, g, and i, respectively) are only
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Figure 2.6. Schematic representation of the real-valued multiple-quantum 2D fluorescence spectra in

terms of involved quantum pathways of Fig. 2.5. The schematics are arranged in the same order as the

experimental and simulated 2D spectra in Fig. 2.2 in Sec. 2.2. In each plot, the spectral shift of the

maximum amplitude from the diagonal is denoted by a white cross. ∆f and ∆t denote the energy shifts

of the two-quantum and the three-quantum excited states, respectively, from corresponding multiples

of the one-quantum excited state with energy Eeg. Reprinted with permission from Ref. [3]. Copyright

c© (2020) American Chemical Society.

accessible by population-based 2D spectroscopy because two- and three-quantum coher-

ences are nonradiative and thus cannot be detected coherently. As it can be seen from

the Feynman diagrams, the 1Q-2Q, rephasing 1Q-2Q, and 1Q-3Q processes probe fewer

pathway types (which in turn means a higher quantum coherence selectivity) compared

to the 2Q–1Q, rephasing 2Q–1Q, and 3Q–1Q processes, respectively. Fig. 2.6 illustrates

why it is beneficial to determine the energy shifts ∆f and ∆t from action-based 1Q–Y Q

contributions, because then only one pathway contributes to the signal and the peak

shifts along the 2Q (or 3Q) axis are not perturbed by other pathways such as in Y Q–1Q
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signals.

2.5.2 1Q Projections of 2Q and 3Q 2D Spectra
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Figure 2.7. Projections of real-valued experimental nonrephasing 2D spectra of (a) the 2Q-associated

fourth-order contributions (2Q–1Q and 1Q–2Q) and (b) the 3Q-associated sixth-order 2D contributions

(3Q–1Q and 1Q–3Q) onto their mutual 1Q axes. The energies of the individual 1Q transitions Eeg

and Efe are indicated by dashed lines, where the color of the dashed lines matches the signal type in

which these transitions can be observed. Reprinted with permission from Ref. [3]. Copyright c© (2020)

American Chemical Society.

In Fig. 2.7, we show the one-dimensional projections of the experimental 2Q–1Q and

1Q–2Q (Fig. 2.7a) as well as the 3Q–1Q and 1Q–3Q (Fig. 2.7b) 2D spectra onto their mu-

tual 1Q axes, respectively. This representation illustrates that the line shapes of Y Q–1Q

contributions are caused by overlapping quantum pathways, while 1Q–Y Q contributions

do not exhibit such an effect (see also Fig. 2.6). In the fourth-order 2Q–1Q process, the

second pulse is able to create either |e〉 〈g| or |f〉 〈e| 1Q coherences (see also Fig. 2.5b),

which both contribute to the line shape of the 1Q projection, causing its overall asym-

metric appearance, where the peak value of the red curve is somewhat redshifted relative

to Eeg (Fig. 2.7a). This redshift results from the contribution of the |f〉 〈e| coherence

which oscillates at an energy of 1.86 eV, being lower in energy than the |e〉 〈g| coherence

with Eeg = 1.91 eV. The emergence of these |f〉 〈e| coherence signatures is determined

by the degree of interference between the 2Q–1Q pathways Q2 and Q3 (Fig. 2.5b) which

in turn is dictated by the quantum yield of state |f〉. In the present case, Φf is negligible

which leads to the observed red-shift in the 2Q–1Q 2D spectrum. In the 1Q–2Q process,

however, due to a single interaction with the first pulse, the only possible 1Q coher-

ence is the fundamental |e〉 〈g| coherence (see also Fig. 2.5c), leading to the symmetric

peak around Eeg which matches the linear absorption maximum energy of the molecule

(Fig. 2.7a, blue).
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In a similar manner, Fig. 2.7b shows that the sixth-order 3Q–1Q process (red curve)

probes both |e〉 〈g| and |f〉 〈e| 1Q coherences (see also Fig. 2.5f), while the 1Q–3Q

process (blue curve) can only generate the fundamental |e〉 〈g| coherence, again due to

the single interaction with the first pulse (Fig. 2.5g), simplifying the analysis. Note that

no |t〉 〈f | 1Q coherence signatures are observed because the |t〉 〈f |-probing pathways do

not contribute due to the negligible quantum yields of states |t〉 and |f〉.

2.5.3 Simulation Details

We consider a four-level system that gives rise to a density matrix with elements

ρ(t′) =
∑4

m

∑4
n Pnm |m〉 〈n| with n,m ∈ {g, e, f, t} and treat the description of the

density matrix dynamics by the Lindblad master equation [21],

∂

∂t′
ρ(t′) = − i

~
[H(t′), ρ(t′)] +

∑
j

1

Tj

(
Ljρ(t′)L†j −

1

2
L†jLjρ(t′)− 1

2
ρ(t′)L†jLj

)
, (2.2)

where the Lindbladians Lj describe the relaxation processes, that is, population relax-

ation Lrel
j and pure dephasing Ldeph

j , which are induced by coupling to the bath. These

processes are associated with respective times Tj. Population relaxation and pure de-

phasing can be expressed by Lrel
j = a†nam (n 6= m) and Ldeph

j = a†nan by using the creation

and annihilation operators a† and a, respectively. In Eq. (2.2), the total Hamiltonian is

defined as

H(t′) = ~ωn
4∑

n=1

|n〉 〈n| + γextE(t′)
∑
n6=m

µnm (|n〉 〈m|+ |m〉 〈n|) , (2.3)

where the left time-independent term contains the eigenstates |n〉 with state energies ~ωn
and the time-dependent term on the right side describes the interaction of the system

with the external electric fields E(t′), where µnm are the transition dipole moments. The

external field strength scaling γext is set to 0.7×10−3. The electric fields are expressed as

three-pulse sequences with time delay τ between the first two pulses and delay t between

the second and the last pulse, where each pulse has the pulse duration τp and individual

phase ϕi (i = 1, 2, 3):

E(t′) = exp

(
−4ln2

τ 2
p

(t′ − t0)2

)
exp (iω0(t′ − γ0t0)− iϕ1)

+ exp

(
−4ln2

τ 2
p

(t′ − t0 + τ)2

)
exp (iω0(t′ − γ0(t0 + τ))− iϕ2)

+ exp

(
−4ln2

τ 2
p

(t′ − t0 + τ + t)2

)
exp (iω0(t′ − γ0(t0 + τ + t))− iϕ3) .

(2.4)
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In Eq. (2.4), we choose γ0 to be zero (fully rotating frame), whereas ω0 is set to the

laser reference frequency of the experiment. The temporal offset t0 is set to 100 fs. The

pulse duration τp is set to 15 fs, corresponding to the transform limit of the employed

experimental Gaussian laser spectrum. In order to resolve all nine signal contributions,

the phases ϕ2 and ϕ3 are cycled 6 times each. The time-dependent interaction of the

external electric fields with the system is calculated within the rotating-wave approxi-

mation. The final simulated signal is obtained by integrating over the time-dependent

population density matrix elements according to Tr {Πρ(t′)}, where Π is a projection

operator onto the excited population density matrix elements.

We now turn to describing our procedure to determine an optimal set of simulation

parameters, which simultaneously fit all nine 2D spectra. Since a simultaneous optimiza-

tion of all parameters is difficult to carry out in a multidimensional parameter space,

our general strategy follows an optimization of one parameter at a time in sequential

manner. As a starting point, we take a four-level system in an ideal “harmonic” case,

i.e., with equal transition dipole moments and transition energies between each pair of

states. The energy of the first excited state, Eeg is taken from the maximum of the

linear absorption spectrum (1.91 eV). Therefore, our model neglects (dynamic) Stokes

shift effects. For the starting point model, we estimate the 1Q pure dephasing time T eg
deph

to be 75 fs which is based on prior findings on similar dyes in the literature [114]. In

addition, we assume that 2Q dephasing proceeds at twice the rate of 1Q dephasing and

3Q dephasing occurs at three times the rate of 1Q dephasing. Further, we assume that

the different 1Q dephasing times are equal
(
T eg

deph = T fe
deph = T tf

deph

)
, and analogously for

the 2Q dephasing times
(
T fg

deph = T te
deph

)
. The population relaxation time of state |f〉 is

chosen to be 4 ps, where a relaxation channel |f〉 → |g〉 is implemented in order to re-

produce the experimental finding of differing 2Q–1Q and 1Q–2Q spectra (see Sec. 2.5.2).

The relaxation time between |t〉 and |f〉 is first assumed to be 100 fs.

Based on this “harmonic” electronic four-level system, we carry out successive vari-

ations of certain parameters (Fig. 2.8). Whenever an optimal parameter is found, it

is incorporated into the existing model before we continue to vary the next parameter.

In order to quantify the quality of the simulation, we consider two important criteria:

(1) the root-mean-squared difference between experimental and simulated 2D spectra,

RMSD(2D), which corresponds to the pixel-by-pixel deviation and somewhat quantifies

the precision of the parameter in relation to the simulated line shape and (2) the squared

difference between the relative experimental and simulated signal magnitudes (normal-

ized to the R. 1Q–1Q contribution), SQD(Sig.). Depending on the adjusted parameter,

either one or the other of the two criteria is better suited. Table 2.1 summarizes the
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optimal parameters for the simulations shown in the main manuscript (Sec. 2.2) and the

criteria that were employed to reach them. For example, we determine the optimal value

for the transition energy Efe by considering the minimal value for the sum of RMSD(2D)

of the R. 1Q–1Q, 2Q–1Q and 1Q–2Q signals (Fig. 2.8a) because the resonance position

of Efe significantly governs the asymmetry of the line shape of these three signals.
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Figure 2.8. Determination of the optimal set of simulation parameters. Certain parameters were varied

with regard to either the root-mean-squared difference between experimental and simulated 2D spectra

[RMSD(2D)] or the squared difference between experimental and simulated relative signal magnitudes

[SQD(Sig.)]. The panels show these quantities under the variation of (a) the transition energy between

states |f〉 and |e〉, Efe, (b) the transition dipole moment µfe, (c) the relaxation time between |f〉 and

|g〉 (which models the nonradiative relaxation behavior of |f〉), (d) the transition energy between states

|t〉 and |f〉, Etf , (e) the transition dipole moment µtf , (f) the relaxation time between |t〉 and |f〉, (g)

the pure dephasing time of 2Q coherences T 2Q
deph, and (h) the pure dephasing time of 3Q coherences

T 3Q
deph. Reprinted with permission from Ref. [3]. Copyright c© (2020) American Chemical Society.

Taking the optimal value for Efe into account, we approach the optimal parameter

for µfe by evaluating its dependence on the sum of SQD(Sig.) of the 2Q–1Q and 1Q–2Q

signals (whereas µeg is fixed), due to the strong influence of the transition dipole moment
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µfe on the amplitude of these signals as shown in Fig. 2.8b. Next, in order to estimate

a value for the relaxation time of state |f〉, we varied Trel (f → g) between 200 fs and

4 ps, where the resulting curve in Fig. 2.8c tends to an asymptotic behavior for longer

relaxation times, hence we estimate Trel (f → g)>4 ps to be a valuable result. Because

Trel (f → g) strongly influences the line shapes of the 2Q–1Q and 1Q–2Q contributions,

we evaluated the sum of RMSD(2D) of these two signal contributions for this purpose. In

principle, the more precise value of Trel (f → g) can be found by varying it beyond 4 ps,

however, this is beyond the scope of our simulations because we are mainly interested

in short-time dynamics, which are the ones that have a significant effect on RMSD(2D).

Having completed the optimization of parameters that largely influence the properties

of the doubly excited state, we proceed with varying parameters that are connected with

the triply excited state and thus have most influence on the 3Q-associated sixth-order

spectra. The evaluation criteria with respect to the parameter type are analogously

chosen as stated above [considering RMSD(2D) for variation of Etf and Trel (t→ f),

whereas considering SQD(Sig.) for varying µtf ], leading to the plots of Figs. 2.8d–f. At

the end, we do a refinement of the 2Q and 3Q coherence dephasing times, see Figs. 2.8g

and h, respectively.
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Table 2.1. Final simulation parameters, shown along with the respective method of determination.

Optimal simulation parameters are found by evaluating the dependence on either the root-mean-squared

difference between simulated and experimental spectra [RMSD(2D)], or on the squared deviation of

experimental and simulated relative maximal signal magnitudes [SQD(Sig.)]. Confidence intervals for

the parameters that were varied are visible in Fig. 2.8. Reproduced from Ref. [3].

Quantity Value Determination method

Transition energies Eeg 1.91 eV Maximum of linear absorption

Efe 1.86 eV Min. [RMSD(R. 1Q–1Q)

+ RMSD(2Q–1Q) + RMSD(1Q–2Q)]

Etf 1.95 eV Min. [RMSD(3Q–1Q) + RMSD(1Q–3Q)

+ RMSD(3Q–2Q) + RMSD(2Q–3Q)]

Transition dipole

moments

µeg 0.66 a.u. From linear absorption data according to Ref. [115]

µfe 1.35 µeg Min. [SQD(2Q–1Q) + SQD(1Q–2Q)]

µtf 1.90 µeg Min. [SQD(3Q–1Q) + SQD(1Q–3Q)

+ SQD(3Q–2Q) + SQD(2Q–3Q)]

Population

relaxation times

Trel(e→ g) 2.65 ns Taken from Ref. [110]

Trel(f → g) 4 ps Min. [RMSD(2Q–1Q) + RMSD(1Q–2Q)]

Trel(t→ f) 80 fs Min. [RMSD(3Q–1Q) + RMSD(1Q–3Q)

+ RMSD(3Q–2Q) + RMSD(2Q–3Q)]

Pure dephasing

times

T eg
deph 75 fs Estimated on the basis of Ref. [114]

T fe
deph 75 fs Assumed T fe

deph = T eg
deph

T tf
deph 75 fs Assumed T tf

deph = T eg
deph

T fg
deph 65 fs Min. [RMSD(2Q–1Q) + RMSD(1Q–2Q)

+ RMSD(R. 2Q–1Q) + RMSD(R. 1Q–2Q)

+ RMSD(3Q–2Q) + RMSD(2Q–3Q)]

T te
deph 65 fs Assumed T te

deph = T fg
deph

T tg
deph 15 fs Min. [RMSD(3Q–1Q) + RMSD(1Q–3Q)

+ RMSD(3Q–2Q) + RMSD(2Q–3Q)]

2.5.4 Concentration Dependence of Sixth-Order Signals

In addition to the concentration dependence of the three exemplary sixth-order signals

that are presented in Fig. 2.4 in the main manuscript, we here provide the concentration

dependence of all the other nonlinear signal contributions, including those of all fourth-

order signals, in Fig. 2.9.
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Figure 2.9. Concentration dependence of fourth-order and sixth-order nonlinear signals not shown in

the main manuscript. The signal strength was taken as the highest absolute value in the respective

time-domain map of each signal contribution. The data shown here originate from the same dataset

from which the data of Fig. 2.4 in the main manuscript were taken. Reprinted with permission from

Ref. [3]. Copyright c© (2020) American Chemical Society.

2.5.5 2D Measurement Without Sample

The fourth- and sixth-order 2D spectra shown in the main manuscript are expected to

arise from a convolution of the respective molecular nonlinear response function with the

external electric fields. However, any other nonlinearity of the employed instrumentation,

i.e., arising from the pulse shaper or the detector, could in principle be convolved with

the external light fields as well and in turn produce artificial signals that would survive

the phase-cycling procedure. Thus, care must be taken in order to verify the origin of

the observed spectral signatures. To address this, we conducted a full 2D measurement

without sample, but with direct focusing of the pulse trains on the avalanche photodiode

(APD). By attenuation with neutral density filters, we ensured the same signal level on

the APD as in the case of fluorescence detection of a sample. The 2D spectra of all nine

signal contributions from this measurement are displayed in Fig. 2.10. It is evident that

no artificial signals above the noise-floor are observed except for a diagonal “stripe” in the

fourth-order rephasing 1Q–1Q 2D spectrum. This “stripe” is caused by a nonlinearity
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Figure 2.10. Experimental 2D spectra (real parts) which were obtained by direct focusing of the

pulse sequences on the employed avalanche photodiode (APD). The same signal level on the APD as

in an actual 2D experiment with fluorescence detection of the sample was maintained. Reprinted with

permission from Ref. [3]. Copyright c© (2020) American Chemical Society.

from the pulse shaper and is observed occasionally because it strongly depends on the

exact shape of the acoustic wave within the shaper crystal in combination with the input

light power. In comparison to the maximal signal level in the actual measurement of

the sample (180327 arb. u.), this isolated “stripe artifact” is much smaller in magnitude

(7717 arb. u.).

Summarizing, two important conclusions can be drawn: (1) Nonlinearities of the

photodetector are absent and (2) except for a slight contamination of the rephasing 1Q–

1Q spectrum (∼4%), pulse-shaper-associated artifacts do not significantly contaminate

the observed signals, especially not those of the sixth-order response.

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).





Chapter 3

Observing Multiexciton Correlations in

Colloidal Semiconductor Quantum Dots via

Multiple-Quantum Two-Dimensional

Fluorescence Spectroscopy

Correlations between excitons, that is, electron–hole pairs, have a great impact on the

optoelectronic properties of semiconductor quantum dots and thus are relevant for ap-

plications such as lasers and photovoltaics. Upon multiphoton excitation, these cor-

relations lead to the formation of multiexciton states. It is challenging to observe

these states spectroscopically, especially higher multiexciton states, because of their

short lifetimes and nonradiative decay. Moreover, solvent contributions in experiments

with coherent signal detection may complicate the analysis. Here we employ multiple-

quantum two-dimensional (2D) fluorescence spectroscopy on colloidal CdSe1−xSx/ZnS

alloyed core/shell quantum dots. We selectively map the electronic structure of mul-

tiexcitons and their correlations by using two- and three-quantum 2D spectroscopy,

conducted in a simultaneous measurement. Our experiments reveal the characteristics

of biexcitons and triexcitons such as transition dipole moments, binding energies, and

correlated transition energy fluctuations. We determine the binding energies of the first

six biexciton states by simulating the two-quantum 2D spectrum. By analyzing the line

shape of the three-quantum 2D spectrum, we find strong correlations between biexciton

and triexciton states. Our method contributes to a more comprehensive understand-

ing of multiexcitonic species in quantum dots and other semiconductor nanostructures.

Reprinted with permission from S. Mueller, J. Lüttig, L. Brenneis, D. Oron, and T. Brixner, ACS Nano

15, 4647–4657 (2021). Copyright c© (2021) American Chemical Society.
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3.1 Introduction

Microscopic correlations can significantly affect the optoelectronic properties of a quan-

tum system. In a semiconductor quantum dot, optical excitation creates a confined

electron–hole pair. Coulomb interactions between the charge carriers have a great im-

pact on the resulting particle complex, the exciton, and determine its energy and lifetime.

Apart from the lowest-energy exciton, commonly referred to as the band-edge exciton,

quantum confinement gives rise to a spectrum of singly excited excitons that can be

created under linear excitation conditions [116].

Under saturated excitation conditions, multiple excitons are generated in the same

quantum dot via multiphoton processes. Because of confinement, these excitons are

forced to interact strongly. Thus, higher particle complexes form, consisting of four

particles (two electron–hole pairs) called biexcitons or six particles (three electron–hole

pairs) called triexcitons. These multiexcitonic species form as a result of equilibrated

Coulomb interactions between the electron–hole pairs of the constituent excitons. In

other words, these excitons are correlated. The precise physics of such correlations fa-

cilitate quantum dot applications such as nanocrystal lasers, quantum dot solar cells

exceeding the Shockley–Queisser limit, and quantum-logic gates [117–121]. The proper-

ties of multiexcitonic states in semiconductor quantum dots can vary drastically across

different quantum dot classes. For example, single, epitaxially grown quantum dots

can be utilized as sources for highly correlated [122] or even entangled photon pairs

due to the cascaded emissive decay of biexciton states [123]. In contrast, in colloidal

quantum dots like the ones investigated in this paper, multiexcitons usually relax via

nonradiative Auger recombination [124]. Besides the excellent processability of colloidal

quantum dots, the great tunability of their optical properties through nanocrystal size

and composition makes them particularly suitable for various device applications.

Similar to the occurrence of a spectrum of single excitons, there is a spectrum of

multiexcitonic states. The most prominent multiexciton is the lowest energy biexci-

ton, also called ground-state biexciton, which can be formed upon double excitation of

the lowest single-exciton transition. Higher biexciton states, which are also called the

excited states of the biexciton, are discussed to be involved in the mechanism of mul-

tiexciton generation, a process by which a single photon having more than twice the

band edge energy excites multiple excitons and which can enhance solar cell efficien-

cies [121]. However, these excited biexciton states are poorly understood, mostly due

to their short-lived and nonradiative decay character, exacerbating their spectroscopic

characterization. Detailed characterization of all states of the manifold of multiexci-

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



3.1 Introduction 57

tons is required to gain a deeper understanding of exciton correlations and to decipher

mechanisms such as carrier relaxation and multiplication, thus highlighting the need for

specialized experimental probes.

Multiexcitonic states in colloidal quantum dots are usually studied by time-resolved

photoluminescence and transient absorption spectroscopy [120, 125–136]. These tech-

niques enable one to measure, for example, the energies and dynamics of biexciton

states. There are also some drawbacks, however. Time-resolved photoluminescence is

only sensitive to the ground-state biexciton and cannot reveal information about the

higher biexcitons; transient absorption may suffer from overlapping signal contributions

that lead to barely visible biexciton-associated features. This overlap is particularly

strong in scenarios where the biexciton binding energies, that is, the energy shift of the

biexciton state with respect to the sum of the energies of the constituent independent

single-exciton transitions, are much smaller than the homogeneous line width [126].

Since multiexcitonic states strongly dictate the nonlinear optical response of quantum

dots, coherent two-dimensional (2D) spectroscopy is an excellent tool to study them

[137, 138]. Coherent 2D spectroscopy disentangles the nonlinear response over several

frequency axes. Thus, 2D spectroscopy reveals correlation functions with high spectral

and high temporal resolution, being further ideally suited to probe coherent superposi-

tions of single excitons [138–145]. Coherent 2D spectroscopy was previously applied to

colloidal quantum dot systems by detecting coherent third-order nonlinear signals, which

correlate the single-exciton states of the system to each other [137–141, 144, 146–155].

This method enables one to probe multiexciton states indirectly by resolving the tran-

sitions from single-exciton states to the respective multiexciton states. Conceptually,

this is similar to transient absorption spectroscopy, however with the advantage of an

additional spectrally resolved pump axis [55]. In contrast to both techniques, the most

direct measurement of multiexciton states can be realized by probing multiple-quantum

coherences, that is, coherent superpositions of the ground state with biexciton and triex-

citon states [53]. These multiple-quantum 2D spectroscopies have been demonstrated on

solid-state semiconductors using coherent signal detection [40, 53, 57, 99, 156, 157]. Co-

herently detected fifth-order two-quantum 2D spectroscopy on colloidal CdSe quantum

dots was reported very recently [52]. However, the application of multiple-quantum 2D

spectroscopy to colloidal quantum dots is generally challenging because of solvent arti-

facts. Fluorescence-based 2D spectroscopy is an alternative to coherently detected 2D

spectroscopy [48, 69, 158]. We have analyzed similarities and differences and compared

the advantages of the two methods [2, 7]. With fluorescence detection, solvent contri-

butions can be minimized or even removed entirely. This approach is perfectly suited to
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study colloidal semiconductor quantum dots but was so far only demonstrated on PbS

quantum dots [87]. To the best of our knowledge, three-quantum 2D spectroscopy has

not been reported on any colloidal quantum dot sample.

In this work, we employ multiple-quantum 2D fluorescence spectroscopy to mea-

sure biexciton and triexciton spectra directly and to observe multiexciton correlations

in colloidal quantum dots. We choose a fluorescent core/shell quantum dot system,

CdSe1−xSx/ZnS, in which several excitonic transitions can be simultaneously excited by

our broadband laser spectrum. We carry out a three-pulse 2D experiment with which we

simultaneously acquire one-quantum–two-quantum (1Q–2Q) and one-quantum–three-

quantum (1Q–3Q) 2D spectra that reveal biexciton and triexciton states of the system,

respectively. We show that our measurements are sensitive to multiexciton correlations

and help to characterize highly excited states in colloidal quantum dots.

3.2 Results and Discussion

In Fig. 3.1, we review the linear exciton properties of the CdSe1−xSx/ZnS quantum

dots. These are capped with oleic acid ligands to be soluble in toluene (Fig. 3.1a).

Their linear absorption is shown in Figure 3.1b. Because of the absorption profile being

close in shape to the one of pure CdSe, the percentage of sulfur in the core alloy can

be roughly estimated to be below 20% [159, 160]. Because ZnS and oleic acid both

absorb in the UV [161, 162], the first five exciton transitions can be assigned to those

of the core. We employ multi-Gaussian fitting according to established procedures in

the literature to determine the amplitudes and energetic positions of the underlying

exciton transitions [131, 138, 154, 163]. We use a cubic background function according

to Norris and Bawendi [163]. From the fit, we obtain the energies of the first five exciton

transitions: E (X1) = 1.865 eV, E (X2) = 1.898 eV, E (X3) = 1.973 eV, E (X4) =

2.081 eV, and E (X5) = 2.207 eV. The bandwidth of these peaks increases as transition

energy increases, which is in agreement with previous work [131, 138, 141, 154, 163].

Because of a comparably large average quantum dot diameter of 6 nm, the exciton

progression is energetically dense such that the shown exciton bands overlap significantly

[129]. We assign the extracted peaks to specific transitions between electron–hole levels

considering CdSe as the host lattice (Fig. 3.1c, left) [131, 164]. It is important to

separate the electron–hole basis and the exciton basis. While the electron–hole basis is

useful to descriptively explain quantum dot properties, the exciton basis is the energy

eigenbasis of the system and thus a suitable basis to discuss the spectroscopic properties

of quantum dots [138]. For the remainder, we will use the exciton basis (Fig. 3.1c, right)
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Figure 3.1. Single-exciton properties of the quantum dot system measured in this work. (a) Schematic

representation of a CdSe1−xSx/ZnS alloyed core/shell quantum dot. The quantum dots are capped with

oleic acid and dispersed in toluene. (b) Linear absorption (black line, normalized to 1.0) and emission

spectrum (pink shaded, normalized to 0.5) of CdSe1−xSx/ZnS quantum dots in toluene. Individual

excitonic transitions into single-exciton states |X1〉 (purple line), |X2〉 (orange), |X3〉 (green), |X4〉 (light

blue), and |X5〉 (yellow) can be inferred from multi-Gaussian fitting (red dashed), with the dark blue

curve representing a cubic background. (c) Energy level scheme of the first three excitations in the

electron–hole basis (left) and the exciton basis (right), with the color code of the arrows corresponding

to panel b. Note that the “ket” notation indicates the eigenbasis of the system. The manifold of

single-exciton statesis denoted as |X〉. Reprinted with permission from Ref. [1]. Copyright c© (2021)

American Chemical Society.

and mainly consider the first three excitons, |X1〉
(
1S3/2 → 1Se

)
, |X2〉

(
2S3/2 → 1Se

)
,

and |X3〉
(
1P3/2 → 1Pe

)
, because these are the ones that we predominantly cover with

our fs laser excitation spectrum (see below for more details). Note the comparably

small amplitude of the |X2〉 peak (Figure 1b, orange), which can be explained by the

smaller overlap between the 2S3/2 hole with the 1Se electron wave function, compared

to the overlap of the 1S3/2 hole with the 1Se electron wave function, resulting in a

transition dipole moment smaller than for the |X1〉 transition [165, 166]. The fluorescence

probed in our experiments (Fig. 3.1b, pink shaded area) originates from the band-edge

exciton (Fig. 3.1b, purple line). We discuss separately acquired 1Q–1Q 2D spectra in

Sec. 3.5.1 in the Supporting Information. These 2D spectra feature coherent phonon

oscillations that can be attributed to the longitudinal optical (LO) phonons of CdSe
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[139, 148, 152, 153, 155] and the ZnS shell [167], in agreement with previous reports.

Having determined some single-exciton characteristics, we turn now to probing prop-

erties of multiexcitonic states. Let us first focus on biexciton states |XnXm〉. Coulomb

interactions between the constituent charge carriers lead to a shift of the energy of the

biexciton state E(XnXm) with respect to the sum of the resonance energies of the two

independent single-exciton transitions E(Xn) and E(Xm) that comprise the biexciton.

This shift is quantified by the biexciton binding energy ∆(XnXm), which we define as

∆(XnXm) = E(Xn) + E(Xm) − E(XnXm). The biexciton binding energy is an impor-

tant quantity as it provides a measure for the interaction strength between correlated

single excitons. Usually, the biexciton is a bound state, which can be characterized by

a positive binding energy [128, 168]. In some cases, negative binding energies were also

observed [119, 169]. Because the biexciton consists of a manifold of fine-structure states,

a distinction is further made between absorptive and emissive biexciton binding energies

[170]. These binding energies relate to spectroscopic transitions into the absorbing and

transitions from the emitting biexciton fine-structure states, respectively, which are in

turn spectrally separated by a biexciton Stokes shift. Absorptive and emissive biexciton

binding energies can be distinguished experimentally, because, for example, transient

absorption measures absorptive transitions, whereas time-resolved photoluminescence

measures emissive ones [138]. However, since we time-integrate our fluorescence signal

in our experiments below, all the biexciton binding energies we determine are considered

as absorptive. The most prominent biexciton in CdSe quantum dots, typically measured

in time-resolved fluorescence experiments, is the ground-state biexciton |X1X1〉, where

both underlying single-exciton transitions correspond to the 1S3/2 → 1Se band-edge

transition [168, 171].

In our experiment, we measure the biexciton spectra by projecting the biexciton states

onto the single-exciton states. Technically, this is realized by encoding coherent superpo-

sitions of both single-exciton states and biexciton states with the ground state (Fig. 3.2a)

into a phase-coherent pulse sequence (Fig. 3.2b). For that purpose, we employed three-

pulse sequences scanning interpulse delays τ and t, and 36-fold phase cycling. As we

demonstrated recently [3],1 this phase-cycling protocol also enables us to access the

triexciton manifold, which we will discuss later. In Fig. 3.2b, the first pulse creates the

ground–exciton 1Q coherence that oscillates over τ (gray line), which is subsequently

converted into a ground–biexciton 2Q coherence, evolving over t, by the second pulse

(blue line). This 2Q coherence is then converted into a single-exciton population that

leads to fluorescence being emitted over t′ over which we time-integrate.

1See Chapter 2.
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Figure 3.2. Measuring the ground-state biexciton by 1Q–2Q 2D fluorescence spectroscopy. (a) Energy

scheme of exciton (|X〉) and biexciton (|BX〉) manifolds. (b) Pulse sequence corresponding to the

1Q–2Q contribution. (c) Double-sided Feynman diagram that contributes to the 1Q–2Q 2D spectrum.

Fluorescence emission over the detection time t′ is denoted by wavy arrows. (d) Top: overlay of the laser

spectrum (red shaded area) with the linear absorption spectrum of CdSe1−xSx/ZnS quantum dots in

toluene (black line, with individual excitonic transitions in the same color code as in Fig. 3.1b). Bottom:

experimental 1Q–2Q 2D spectrum of the ground-state biexciton (absolute magnitude, normalized). The

black diagonal line is drawn where the 2Q energy corresponds to twice the 1Q energy. The purple

dashed line indicates the energy of the band-edge exciton state |X1〉. (e) Top: energy-level scheme

used to simulate the 1Q–2Q 2D spectrum of the ground-state biexciton (bottom, absolute magnitude,

normalized), with individual transition dipole moments µ(g → X1) and µ(X1 → X1X1), and the

biexciton binding energy ∆(X1X1). The blue dashed line indicates the energy of the ground-state

biexciton that is employed in the simulation and the purple dashed line again the energy of the band-

edge exciton state |X1〉. (f) Fitness landscape for the determination of µ(X1 → X1X1) and ∆(X1X1).

The lowest root–mean–squared deviation (RMSD) between experiment and simulation is obtained for

∆(X1X1) = 16 meV and µ(X1 → X1X1) = 1.06 µ(g → X1), as indicated by the black dashed lines.

Reprinted with permission from Ref. [1]. Copyright c© (2021) American Chemical Society.

By appropriate weighting of the experimental data using the phase signature shown in

Fig. 3.2b (see also Sec. 3.4) [3, 29], we isolate this so-called nonrephasing 1Q–2Q contri-
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bution, which corresponds to a fourth-order nonlinear process. The action of the pulse

phases corresponding to this phase signature is depicted as a double-sided Feynman dia-

gram in Fig. 3.2c [19], which remains after pathway cancellation (see also Sec. 3.5.3 in the

Supporting Information) [3, 87], showing that in principle the whole biexciton manifold

can be probed as |BX〉 〈g| 2Q coherences. By performing a 2D Fourier transformation of

the 1Q–2Q signal with respect to τ and t, we encode spectral correlations among exci-

tons and biexcitons onto a 2D frequency grid. Note that because the 1Q–2Q signal (and

also the 1Q–3Q signal, which we discuss later) is a nonrephasing signal, it contains both

the absorptive and the dispersive components of the complex-valued nonlinear response,

leading to phase-twisted peaks in the real part of the resulting 2D spectrum, which are

difficult to interpret. We thus choose magnitude spectra in the following to avoid the

phase-twisted representation [17]. Dispersive components can in principle be eliminated

by summing the real parts of both rephasing and nonrephasing 2Q contributions, lead-

ing to purely absorptive 2Q spectra, which necessitates the measurement of higher-order

processes [2, 52].

In the experiment shown in Fig. 3.2d, we chose our excitation spectrum (top, red

shaded area) to selectively excite |X1〉 (purple), which in turn leads to the formation

of the ground-state biexciton |X1〉 through double excitation. The resulting 1Q–2Q 2D

spectrum (bottom) thus shows a single feature at the resonance energy of |X1〉 (purple

dashed line) along the 1Q energy axis, being slightly shifted below the diagonal as is

typical for a bound biexciton. Apart from the biexciton binding energy, another im-

portant quantity that is otherwise difficult to access experimentally is the transition

dipole moment from |X1〉 into |X1X1〉, µ(X1 → X1X1). In the first approximation, it

was previously considered that µ(X1 → X1X1) is equal to the transition dipole mo-

ment from the ground state to |X1〉, µ(g→ X1) [137, 172]. By systematic simulation of

our experimental 2D spectrum (Fig. 3.2e, see Sec. 3.5.2 in the Supporting Information

for details), we verified that such an assignment is indeed valid in the present system.

To determine ∆(X1X1) and µ(X1 → X1X1), we conducted a series of simulations, si-

multaneously varying both quantities, and compared the root–mean–squared deviation

(RMSD), which describes the pixel-by-pixel deviation in the 2D spectra, between ex-

periment and simulation. The resulting fitness landscape (Fig. 3.2f) shows a global

minimum at µ(X1 → X1X1) = 1.06 µ(g→ X1) and ∆(X1X1) = 16 meV. Consequently,

the energy of the ground-state biexciton is determined to be 3.714 eV (blue dashed line

in Fig. 3.2e). The value for ∆(X1X1) is in excellent agreement with previous observa-

tions on CdSe quantum dots of similar radii [126, 173]. Further, this finding indicates

that alloying the core with sulfur does not lead to strong changes of Coulomb interac-
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tions between the charge carriers constituting the ground-state biexciton, compared to

CdSe quantum dots. The simulation result using the optimized parameters is shown in

Fig. 3.2e and shows excellent agreement with experiment.

It was also shown that, similar to the single-exciton manifold, there is a manifold of

biexciton states, that is, having a spectrum that results from exciting different combina-

tions of excitons [126, 128, 138]. Because of the transient nature of excited multiexcitons,

however, it is difficult to observe these species. In experiments with coherent signal de-

tection, one can reveal information about excited biexcitons by modeling excited-state

absorption features with a series of Gaussians at pump energies moderately above the

band-edge exciton energy [126, 131, 138]. However, these features may strongly overlap

with other single-excitonic resonances, complicating the interpretation. The particular

strength of our technique is that it is free of overlapping features because it directly

spectrally resolves the energies of the biexciton states along the 2Q axis. To access the

manifold of excited biexcitons, we conducted a second experiment by shifting the excita-

tion laser spectrum to higher energies. Thus, the laser acquires substantial overlap with

the |g〉 → |X2〉 and |g〉 → |X3〉 transitions, and the 1Q–2Q spectrum becomes clearly

dominated by excited biexcitons (Fig. 3.3a).

Because of the comparably large oscillator strength of the |g〉 → |X3〉 transition, the

most prominent features mainly originate from the |X3〉-associated biexciton states, that

is, |X1X3〉, |X2X3〉, and |X3X3〉. Simulating the 1Q–2Q spectrum (Fig. 3.3b), however,

we conclude that the pattern of features indeed results from many overlapping biexciton

states as depicted in Fig. 3.3c (for simulation details, see Sec. 3.5.2 in the Supporting

Information). We aimed for a minimal model description and hence only included the

states with largest spectral overlap with the laser spectrum, |X1〉, |X2〉, |X3〉, and the

corresponding biexciton states, leading to a very good reproduction of the experimental

spectrum. Note that we rationalize our results in terms of effective mass theory states

and thus use a rather simplistic picture featuring a coarse manifold of discrete biexci-

ton states. Indeed, theoretical treatment using the atomistic approach delivers a more

realistic description of the electronic structure of quantum dots [139, 174]. However,

atomistic calculations predict a complicated quasi-continuum of fine-structure electron

and hole states. On the other hand, at least for the lowest exciton states, both atom-

istic and effective mass theory yield comparable results [138, 175, 176]. Epecially for

well-passivated quantum dots with a ZnS shell like in our case, it turns out that low-

est electron and hole levels are well separated [175], which justifies the use of a model

with the first three single-exciton states (and the biexciton states resulting from these

states) as discrete states. Small deviations between experiment and simulation in the
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Figure 3.3. Measuring excited biexciton spectra by 1Q–2Q 2D fluorescence spectroscopy. (a) Top:

overlay of the laser spectrum (red shaded area) with the linear absorption spectrum of CdSe1−xSx/ZnS

quantum dots in toluene (black line, with individual excitonic transitions in the same color code as

in Fig. 3.1b). Bottom: experimental 1Q–2Q 2D spectrum of excited biexcitons (absolute magnitude,

normalized). The resonance energies of the first three single-exciton transitions are indicated as colored

dashed lines. The black diagonal line is drawn where the 2Q energy corresponds to twice the 1Q energy.

(b) Simulated 1Q–2Q 2D spectrum of excited biexcitons (absolute magnitude, normalized). The blue

dashed lines indicate the energies of the biexciton states employed in the simulation and the other

colored lines again the energies of the first three single-exciton transitions. (c) Energy level scheme

used in the simulation including all possible biexciton states that can be constructed from |X1〉, |X2〉,
and |X3〉. Solid arrows signify that the transition dipole moments for the |X〉 → |BX〉 transitions are

equal to the dipole moments of the respective |g〉 → |X〉 transitions; dashed arrows into several biexciton

states represent 60% magnitude of the transition dipole moments of the |X〉 → |BX〉 transitions relative

to those of the respective |g〉 → |X〉 transitions. Reprinted with permission from Ref. [1]. Copyright

c© (2021) American Chemical Society.

high-energy region along both 1Q and 2Q dimensions can be explained by a contribution

of |X4〉 (and possibly |X4〉-associated biexcitons) to the observed signal since there is at

least a small overlap of the laser with the |X4〉 band (Fig. 3.3a, top panel). Note that

in Fig. 3.3a, the ground-state biexciton is not visible as a clear resonance such as in

Fig. 3.2d. Instead, due to the large contribution of the excited biexcitons, the ground-

state biexciton now merely contributes to the shoulder of the 1Q–2Q spectrum at lower

2Q energies.

We were able to obtain a good agreement to the experimental 1Q–2Q spectrum

(RMSD ∼ 0.03) by systematic variation of the individual binding energies ∆(XnXm)
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for each state of the biexciton manifold, and by scaling the dipole moments of the tran-

sitions into the mixed biexciton states ((|Xn〉 → |XnXm〉, with n 6= m) by 0.6 (Fig. 3.3c,

dashed arrows). We show the root–mean–squared deviations for other scaling values

in Fig. 3.7c in Sec. 3.5.2 in the Supporting Information, demonstrating the sensitiv-

ity of 1Q–2Q 2D spectra toward the dipole moments of the biexciton transitions. In

contrast to biexcitons that involve a double excitation of the same single exciton (e.g.,

|g〉 → |X1〉 → |X1X1〉), there are always two excitation pathways that lead to a mixed

biexciton. The mixed biexciton |X1X3〉, for example, can be accessed by the two ex-

citation pathways |g〉 → |X1〉 → |X1X3〉 and |g〉 → |X3〉 → |X1X3〉. Because of the

occurrence of these two possibilities, one expects the transition dipole moments between

the single-exciton states and the respective mixed biexciton states to be only half as large

as those to the nonmixed biexciton states, at least in the case that the first transition

step does not influence the second one. This is close to our finding, from the simulation,

of a scaling value of 0.6 for the exciton-to-biexciton transition dipole moment.

Concerning the biexciton binding energies, our estimates of ∆(|X1X2〉) = 127 meV and

∆(|X1X3〉) = 23 meV are significantly larger than the ground-state biexciton binding

energy (16 meV), which reproduces a trend in accordance with previous observations

on CdSe quantum dots [126–128, 138]. For the other excited biexcitons, the simulation

yields ∆(|X2X2〉) = 23 meV, ∆(|X2X3〉) = 39 meV, and ∆(|X3X3〉) = −1 meV. Hence,

our results indicate that biexcitons that comprise the same exciton types, that is, with

similar electron and hole wave functions involved, have a smaller binding energy than

mixed biexcitons. The uncertainties of the biexciton binding energies can be estimated

from their RMSD curves in Fig. 3.7 in the Supporting Information. Note that the

parameters determined here may not necessarily represent the ones that correspond

to the global RMSD minimum. As indicated in the example above concerning the

determination of the binding energy of the ground-state biexciton and the dipole moment

into the ground-state biexciton, it is not straightforward to find the global minimum of

the deviation between experiment and simulation because binding energies and transition

dipole moments are not independent of each other with regard to the precise amplitude

distribution of the 1Q–2Q 2D spectrum. The problem of the mutual optimization of

transition dipole moments and binding energies of excited biexcitons should be treated,

in principle, in a hyper-dimensional parameter space, which is, however, computationally

intractable within our simulation framework. (Note further that our simulations include

pulse-shape effects, which are crucial for the accurate reproduction of peak shapes,

but enormously increase computational cost.) The parameters we determined could

represent a local minimum on the RMSD hypersurface and possibly reflect a trend
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rather than explicit binding energies. Moreover, we emphasize that our model uses

a minimal number of exciton states so that fine-structure biexciton states and higher

biexciton states are neglected. In particular, the almost negligible binding energy of

|X3X3〉 could be the result of the presence of the |X4〉-associated biexcitons mentioned

above, which are expected in the energetic vicinity of |X3X3〉. Nevertheless, our results

strongly suggest that the peak pattern observed in the 1Q–2Q 2D spectrum of excited

biexcitons is the result of the interplay of many overlapping discrete biexciton states,

which have distinct binding energies and transition dipole moments.

As mentioned above, our phase-cycling scheme also grants us access to a sixth-order

nonlinear signal, which projects the triexciton states onto the single-exciton states

(Fig. 3.4a) [3]. We can extract this signal from the same data set of the three-pulse

experiment by weighting with the 1Q–3Q signal-specific phase signature, as depicted in

Fig. 3.4b. The 1Q–3Q signal has the phase-specific interaction pattern shown in the

Feynman diagram in Fig. 3.4c, which is the one that remains after pathway cancel-

lation due to Auger relaxation of the multiexcitons (see Sec. 3.5.3 in the Supporting

Information).

Upon first inspection of the experimental 1Q–3Q 2D spectrum in Fig. 3.4d, it is ap-

parent that it is dominated by excited triexcitons. The ground-state triexciton |X1X1X3〉
[177, 178], which is, under the assumption of a binding energy of ∼100 meV [138], ex-

pected at a 3Q energy of ∼5.6 eV, does not appear as a clear resonance. The peak of

the largest-magnitude feature at a 3Q energy of ∼5.9 eV is somewhat shifted away from

the |X3〉 1Q energy (green dashed line in Fig. 3.4d), which might be an indication for a

non-negligible contribution of the |X4〉 exciton (and |X4〉-associated triexcitons).

The most striking features of the 1Q–3Q spectrum are the significantly negatively

tilted peak shapes as indicated by the white line for the higher-energy feature in Fig.3.4d.

While positive peak tilts were previously observed in 2Q spectra [179] of semiconductor

quantum wells [99] and a laser dye [56], we here observe, in contrast, a negative peak

tilt in 3Q 2D spectra. One of the great strengths of 2D spectroscopy, which we want to

exploit in the following, is its ability to probe frequency–frequency correlation functions

[180–182]. We sought to model the origin of this peak tilt by a simple response-function

calculation (Fig. 3.4e). For the sake of simplicity, we only modeled the feature with

the largest magnitude in the 1Q–3Q spectrum, which we mainly attribute to the ex-

cited triexciton |X3X3X3〉. We estimate a binding energy of ∆(|X3X3X3〉) ≈ 50 meV.

Following a similar modeling strategy as described in the literature [67], we modeled

(anti)correlated transition energy fluctuations (see Sec. 3.4) and assumed that fluctua-

tion bandwidths associated with biexciton and triexciton states are two- and three-times
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Figure 3.4. Measuring triexciton spectra by 1Q–3Q 2D fluorescence spectroscopy. (a) Energy level

scheme of exciton (|X〉), biexciton (|BX〉), and triexciton (|TX〉) manifolds. (b) Pulse sequence of the

1Q–3Q process. (c) Double-sided Feynman diagram contributing to the 1Q–3Q process. (d) Top:

overlay of the laser spectrum (red shaded area) with the linear absorption spectrum of CdSe1−xSx/ZnS

quantum dots in toluene (black line, with individual excitonic transitions in the same color code as in

Fig. 3.1b). Bottom: experimental 1Q–3Q 2D fluorescence spectrum. The first three single-excitonic

transitions are indicated as colored dashed lines. (e) Response-function calculation of the higher-

energy feature only. (f) Energy level scheme displaying transition energy fluctuations with Gaussian

bandwidths δX,g, δBX,X, and δTX,BX. (g) Response-function calculations of the higher-energy feature

only, for uncorrelated (left) and various other scenarios of (anti)correlated transition-energy fluctuations

as labeled on the top. In panels d, e, and g, the black diagonal line is drawn where the 3Q energy

corresponds to three-times the 1Q energy, whereas white solid lines indicate the line-shape tilt. All

2D spectra are shown in normalized absolute magnitudes. Reprinted with permission from Ref. [1].

Copyright c© (2021) American Chemical Society.

larger, respectively, than the ground-state to single-exciton transition fluctuation band-

width δX,g (Fig. 3.4f). If two transition energy fluctuations are correlated (positive
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sign), then both transition energies are blue- or red-shifted. In the anticorrelated case

(negative sign), the red-shift of one of the transitions causes a blue-shift of the other

transition and vice versa. We tested and plot in Fig. 3.4g, from left to right, different

scenarios of uncorrelated, fully correlated, and two alternatives of anticorrelated fluctu-

ations and found that the peak tilt observed in the experiment is only reproduced by

setting δX,g = −δBX,X = −δTX,BX (Fig. 3.4e). In all other cases as shown in Fig. 3.4g, the

direction of the tilt is wrong. Thus, we deduce a pattern of anticorrelated fluctuations

to be the most accurate description. Indeed, strongly (anti)correlated behavior can be

expected regarding the fact that all (multi)excitons are confined over the same core vol-

ume. In particular, the anticorrelation between δX,g and δBX,X as well as between δX,g and

δTX,BX can be viewed as an intrinsic feature of the quantum dot to adapt to bath-induced

transition energy fluctuations. In other words, every transition energy fluctuation of the

single exciton will directly affect the energies of the states of the multiexciton mani-

folds. These fluctuations result from local changes in the dielectric constant or the local

electric field and thus modify the Coulomb interactions between the charge carriers of

each exciton. In turn, the fluctuation pattern we observe indicates that, depending on

the amplitude of the single-exciton transition energy fluctuation δX,g, the corresponding

multiexciton is stabilized (increased binding energy) or destabilized (decreased binding

energy or even repulsive interaction energy). Interestingly, we here observe correlations

between multiexcitons. Stabilizing (or destabilizing) the biexciton causes a stabilization

(or destabilization) of the corresponding triexciton as well. One potential mechanism

that could induce this type of dependence is the quantum confined Stark effect. Under

the effect of an external electric field, there is an increase (or decrease) in the Coulomb

repulsion of all multiexcitonic states if the electric field is directed along (or against) the

permanent dipole of the excited single exciton [183, 184].

3.3 Conclusion

We have demonstrated that multiple-quantum two-dimensional (2D) fluorescence spec-

troscopy gives direct access to the spectra of biexciton and triexciton states in col-

loidal semiconductor quantum dots. Our method directly resolves the energies of the

biexciton and triexciton states without further overlapping features or solvent contribu-

tions. This represents an advantage for probing multiexciton correlations compared to

time-resolved photoluminescence, transient absorption, or one-quantum–one-quantum

2D spectroscopy. On the example of alloyed CdSe1−xSx/ZnS core/shell quantum dots,

signatures of multiexciton correlations were observed as resonances in one-quantum–
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two-quantum (1Q–2Q) and one-quantum–three-quantum (1Q–3Q) 2D spectra. While

the 1Q–2Q 2D experiment revealed correlations between single excitons in terms of biex-

citon binding energies, in the 1Q–3Q 2D experiment, significant correlations between

biexcitons and triexcitons manifested as correlated transition energy fluctuations.

We showed that upon broadband excitation of the first three single-exciton transi-

tions, the 1Q–2Q and 1Q–3Q 2D spectra become dominated by many overlapping peaks

stemming from various excited multiexciton states. By analyzing 1Q–2Q 2D spectra

with different laser spectra, we determined the binding energy of the lowest biexciton

to be 16 meV and estimated the binding energies of the first five excited biexcitons.

Our results indicate that mixed biexcitons, in which the electrons and holes occupy

states of different symmetry, have the largest binding energies. Through simulation of

the obtained spectra, we also determined relative exciton-to-biexciton transition dipole

moments. We found that biexciton states that do not involve a double excitation of the

same excitonic transition have a significantly lower exciton-to-biexciton dipole moment

than biexciton states involving a double excitation of the same exciton transition.

Results from 3Q 2D spectroscopy revealed triexciton excited states with significant

peak tilts with negative sign. We interpreted these tilts as a signature of strongly anti-

correlated transition energy fluctuations, being a consequence of interparticle Coulomb

interactions between the charge carriers that constitute the multiexcitons. Altogether,

we demonstrated that our technique elucidates the highly correlated character of exci-

tons across various multiexciton states. We believe that the technique can be applied to

many other fluorescent nanomaterials as well, and knowledge gained from these experi-

ments will help to manipulate and tailor multiexciton correlations, which is essential for

the development of the next generation of quantum dot devices.

3.4 Methods

Experimental Setup and Data Processing

All experiments were conducted at room temperature. The experimental implemen-

tation of the setup was described in detail previously [3, 4]. Briefly, we used a Ti:Sa

chirped-pulse amplifier system (Spitfire Pro, Spectra-Physics, 800 nm, 35 fs) at 1 kHz.

We generated a white-light continuum by a hollow-core fiber (Ultrafast Innovations

GmbH) filled with 1.1–1.4 bar of argon. The white light was shaped by an acousto-

optical programmable dispersive filter (AOPDF, Dazzler, Fastlite) to produce phase-

cycled three- and four-pulse sequences (for the measurements reported in the Support-

ing Information) on a shot-to-shot basis. Dispersion management was done by a dual
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grism compressor (Fastlite) and the AOPDF. The output beam was focused into a capil-

lary flow cuvette with square cross-section of (250 µm)2 (131.310-QS, Hellma), through

which the sample volume (10 mL) was continuously pumped by a microannular gear

pump (mzr-2942-cy, HNP Mikrosysteme GmbH) to suppress photocharging effects. The

sample was commercially purchased from Sigma-Aldrich and consisted of a 1 mg/mL

solution of CdSe1−xSx/ZnS alloyed core/shell quantum dots with an average diameter of

6 nm, functionalized with (9Z)-octadec-9-enoic acid ligands (oleic acid) and dispersed in

toluene. In all experiments, the fluorescence signal was attenuated to a linear detector

response level by neutral density filters (Newport) and detected via an avalanche pho-

todiode (APD410A2, Thorlabs) with aid of a pair of microscope objectives (04OAS010,

CVI Melles Griot). Potential scattering contributions of the excitation pulses were pre-

vented by detecting the fluorescence at an angle of 90◦ with respect to the excitation

beam while using an excitation polarization that points into the detection direction [72],

and by employing an RG645 color filter. The 2D experiments were carried out on differ-

ent sample batches on different days to ensure reproducibility. For the three-pulse 2D

experiment that probed the ground-state biexciton, we scanned both coherence times

τ and t from 0 to 120 fs in 4 fs steps in a fully rotating frame of 441 THz (1.82 eV).

The pulse duration was <33 fs (intensity fwhm) and the excitation energy was 60 nJ (at

maximum pulse overlap). For the experiment that measured the manifolds of biexcitons

and triexcitons, the reference frequency was changed to 468 THz (1.94 eV) whereas the

pulse duration was <18 fs and the excitation energy was 180 nJ. For all three-pulse

experiments, we employed 36-fold (1×6×6) phase cycling. Averaging was performed to

increase data quality, leading to a normalized standard deviation of the maximal signal

magnitudes of the 1Q–2Q signal of the ground-state biexciton 2D measurement of 4.5%.

In case of the 2D experiment probing of the biexciton and triexciton manifolds, the

normalized standard deviations of the 1Q–2Q and 1Q–3Q signals are 2.5% and 4.5%,

respectively. For each 2D experiment, a control measurement was further carried out to

check for unwanted signals arising from detector or pulse-shaper nonlinearities. These

control measurements were conducted as a full 2D measurement over several averages

without a quantum dot sample but direct focusing of the excitation pulse trains on the

APD. The same APD signal level as in case of fluorescence detection of the quantum

dots was adjusted by using neutral density filters. For details, see Sec. 3.5.4 in the SI.

After the 2D experiments, we isolated the complex-valued contributions p̃1Q–NQ with

N = 2, 3 from the same raw data set by using

p̃1Q–NQ (τ, t, β, γ) =
1

36

5∑
l=0

5∑
m=0

p (τ, t, l∆ϕ21,m∆ϕ31) e−ilβ∆ϕ21e−imγ∆ϕ31 (3.1)
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where we set β = +1, γ = −2 for the extraction of the 1Q–2Q contribution [29], and

β = +2, γ = −3 for the 1Q–3Q contribution [3].

Response-Function Calculations

For modeling the line shape tilt in the 1Q–3Q 2D spectra, we calculated the sixth-order

1Q–3Q response function in the impulsive limit based on the Feynman diagram shown

in Fig. 3.4c, which can be expressed as a 2D Lorentzian function in frequency domain:

Q̃1Q–3Q(~ωτ , ~ωt) =
µ2

TX,BXµ
2
BX,Xµ

2
X,g

~(ωτ − ω′X,g) + iΓX

× 1

~(ωt − ω′TX,g) + iΓTX

(3.2)

where ω′X,g and ω′TX,g are the modified frequencies of the exciton and triexciton state,

respectively. We set all transition dipole moments µn,m between the exciton states to one

(arbitrary units) for simplicity and estimated the line widths to be ΓX = 50 meV and

ΓTX = 80 meV. The modified transition frequencies are defined as ω′X,g = ωX,g + δX,g/~
and ω′TX,g = ωTX,g + δTX,g/~, thus arising from energy offsets δn,m, which we modeled

in the following way. Over the course of 2000 iterations, we sampled random offsets δ1,

δ2, and δ3 from a Gaussian distribution and employed two correlation parameters a and

b that describe the degree of correlation between the transition energies. In terms of

correlated transition energy fluctuations, we obtain the following set of equations:

δX,g = δ1 (3.3)

δBX,X = 2 [aδ1 + (1− |a|) δ2] (3.4)

δBX,g = δ1 + δBX,X (3.5)

δTX,BX =
3

2
[bδBX,X + (1− |b|) δ3] (3.6)

δTX,g = δ1 + δBX,X + δTX,BX (3.7)

where we set a fluctuation bandwidth of 50 meV (fwhm) for δX,g and further assumed that

the fluctuation bandwidth of the exciton–biexciton transition and biexciton–triexciton

transition were two- and three-times larger than δX,g, respectively. In Eqs. (3.3)–(3.7),

a controls the degree of correlation between the transition energy fluctuations δX,g and

δBX,X, whereas b controls the respective degree between δBX,X and δTX,X. The parameters

a and b were both chosen to be 0 (uncorrelated) or different combinations of 1 (fully

correlated) and −1 (fully anticorrelated) to produce the 2D spectra corresponding to the

scenarios that are shown in Fig. 3.4. The displayed calculated 2D spectra correspond to

the average over the response functions from all 2000 iterations.
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3.5 Supporting Information

3.5.1 1Q–1Q 2D Fluorescence Spectroscopy

In this section we describe a fourth-order 1Q–1Q 2D experiment that is employed to

measure phonon coherences in CdSe1−xSx/ZnS quantum dots. We use a four-pulse se-

quence scanning interpulse delays τ , T , and t and 27-fold phase cycling to extract the

rephasing and nonrephasing 1Q–0Q–1Q nonlinear signal [29]. The pulse sequence is

schematically shown in Fig. 3.5a. The first pulse creates a ground–exciton 1Q coherence

that oscillates over τ (gray line), which is then converted into a population or a 0Q

coherence (red line) by the second pulse. The 0Q coherence evolves over the delay T

before it is again transformed into a 1Q coherence by the third pulse (gray line). The

fourth pulse converts this coherence into a population that leads to fluorescence over

which we integrate in time.

In the experiment, we employed compressed pulses with 15 fs duration (intensity

fwhm, determined by collinear frequency-resolved optical gating). At maximum pulse

overlap, the excitation energy is 170 nJ. The delays τ and t are scanned from 0 to

84 fs in 15 steps while operating in a fully rotating frame of 468 THz. The delay T

is scanned from 0 to 400 fs in 21 steps. Potential artifacts in the rephasing signal,

which might originate from pulse shaper nonlinearities, are corrected by applying scal-

ing factors to the radio-frequency signal amplitude of the acousto-optical programmable

dispersive filter for each pulse sequence. These scaling values are determined by pre-

vious separate measurements of the output powers of all pulse sequence configurations

directly on the avalanche photodiode. In particular, the scaling value for each pulse

shape configuration is determined by the ratio of the respective powers measured in the

nonlinear to those in the linear pulse-shaper operation regime [185]. After the experi-

ment, the complex-valued 1Q–0Q–1Q signals p̃(τ, T, t, β, γ, δ) are isolated from the raw

data p(τ, T, t, l∆ϕ21,m∆ϕ31, n∆ϕ41) via

p̃(τ, T, t, β, γ, δ) =
1

27

2∑
l=0

2∑
m=0

2∑
n=0

p(τ, T, t, l∆ϕ21,m∆ϕ31, n∆ϕ41)

× e−ilβ∆ϕ21e−imγ∆ϕ31e−inδ∆ϕ41 , (3.8)

where we employed contribution-specific weights β = +1, γ = +1, δ = −1 for the

rephasing and β = −1, γ = +1, δ = −1 for the nonrephasing contribution. The ab-

sorptive 1Q–0Q–1Q signal is then obtained by adding the nonrephasing to the rephasing

signal [29]. By performing a 2D Fourier transformation of the absorptive signal with

respect to τ and t, we encode the 0Q coherences along T onto a 1Q–1Q 2D frequency
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grid which maps spectral correlations among the single excitons.

The first three exciton bands are well covered by the employed laser spectrum, hav-

ing largest overlap with the |X3〉 band and partial overlap with the broad |X4〉 band

(Fig. 3.5b, top). The absorptive 1Q–1Q 2D spectrum at T = 20 fs is shown in Fig. 3.5b,

bottom. As a reference, we plot the linear absorption spectrum with an overlay of the

laser spectrum on the top of the 2D spectrum and further indicate the excitonic reso-

nance energies by dashed lines as a guide for the eye. The individual colored excitonic

transitions are depicted as the Gaussian components that have been obtained from fit-

ting the linear absorption spectrum, as discussed in the main manuscript (Fig. 3.1b).

The absorptive 1Q–1Q 2D spectrum features a rectangular shape, being a result of

the superposition of several overlapping diagonal and cross peaks. Cross peaks emerge

because the exciton eigenstates are coupled to their common ground state.
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Figure 3.5. Phonon coherences in 1Q–1Q 2D spectroscopy of CdSe1−xSx/ZnS quantum dots in toluene.

(a) Scheme of a four-pulse sequence corresponding to the 1Q–0Q–1Q-type signal contributions, with

electronic coherences in gray and phonon 0Q coherence highlighted in red. (b) Top: linear absorption

spectrum of CdSe1−xSx/ZnS quantum dots in toluene (black line). The individual excitonic transitions,

which were obtained from the fit of the linear absorption spectrum as described in the manuscript,

are indicated by colored lines. The employed laser spectrum is shown as a red dashed area. Bottom:

experimental 1Q–1Q 2D spectrum at T = 20 fs (normalized to its highest absolute value), obtained

after 2D Fourier transformation of the absorptive 1Q–0Q–1Q signal with respect to the delays τ and

t. The resonance energies of the individual excitonic transitions are indicated as dashed lines. The

solid diagonal line is drawn along ~ωτ = ~ωt. The red square marks the region of interest (ROI)

chosen to monitor oscillations over T . (c) Absolute magnitude of the oscillatory trace resulting from

integration of the ROI for each population time step. The Fourier transformation of this trace after

removal of incoherent population dynamics is shown in the inset. Reprinted with permission from

Ref. [1]. Copyright c© (2021) American Chemical Society.
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In Fig. 3.5c, we show an oscillatory trace taken at a diagonal peak position (red square

in Fig. 3.5b) that can be attributed to coupling to coherent phonons. We remove the

incoherent population decay by subtracting a bi-exponential fit and Fourier transforming

the result (using a Tukey window to suppress truncation artifacts) to obtain the beating

spectrum shown in the inset of Fig. 3.5c. We find a strong peak at 25.8 meV, which can

be attributed to the well-known longitudinal optical (LO) phonon of CdSe [139, 148,

152, 153, 155], and a weaker peak at 43.4 meV, which corresponds to the LO phonon

of the ZnS shell [167]. Potential CdS LO phonon bands could not be resolved. Due to

the fluorescence detection, the assignment of 0Q coherence peaks is not perturbed by

solvent background (note that toluene also has Raman active modes within 0–100 meV

that may complicate the analysis [186]).

3.5.2 Simulation Details

General

We calculate the dynamical evolution of the density matrix ρ(t′) by the master equation

in the Lindblad formalism [21], as we employed on other model systems previously [3, 4].

The master equation is

∂

∂t′
ρ(t′) = − i

~
[H(t′), ρ(t′)] +

∑
j

1

Tj

(
Ljρ(t′)L†j −

1

2
L†jLjρ(t′)− 1

2
ρ(t′)L†jLj

)
, (3.9)

where the Lindbladians Lj describe the relaxation processes, that is, population relax-

ation Lrel
j and pure dephasing Ldeph

j which are induced by coupling to the bath. These

processes are associated with respective times Tj. Population relaxation and pure de-

phasing can be expressed by Lrel
j = a†nam (n 6= m) and Ldeph

j = a†nan by using the

creation and annihilation operators a† and a, respectively. In Eq. (3.9), the excitonic

Hamiltonian corresponding to N states is defined as

H(t′) = ~ωn
N∑
n=1

|n〉 〈n| + γextE(t′)
∑
n6=m

µnm (|n〉 〈m|+ |m〉 〈n|) , (3.10)

where the first, time-independent, term contains the eigenstates |n〉 with state ener-

gies ~ωn and the second, time-dependent, term describes the interaction of the system

with the (normalized) external electric field E(t′), where µnm are the transition dipole

moments and γext is the external field amplitude. The electric fields are expressed as

three-pulse sequences, in the case of the experiments discussed in the main manuscript,

with time delay τ between the first two pulses and delay t between the second and the last
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pulse, where each pulse has the pulse duration τp and individual phase ϕi (i = 1, 2, 3),

E(t′) = E0(t′ − t0)exp (iω0(t′ − γ0t0)− iϕ1)

+ E0(t′ − t0 + τ)exp (iω0(t′ − γ0(t0 + τ))− iϕ2)

+ E0(t′ − t0 + τ + t)exp (iω0(t′ − γ0(t0 + τ + t))− iϕ3) ,

(3.11)

with E0 being an envelope function. In Eq. (3.11), the value of γ0 is chosen to be

zero (fully rotating frame) in all simulations, whereas ω0 is set to the laser reference

frequency of the respective experiment that shall be simulated. The temporal offset

of the first pulse of the sequence, t0, is set to 100 fs in all simulations. The pulse

duration τp is set to the respective experimental value. In order to save computation

time, we employ a 16-fold (1×4×4) phase-cycling scheme, i.e., the phases ϕ2 and ϕ3

are cycled four times each, which was previously shown to be sufficient to isolate the

1Q–2Q nonlinear signal contribution [29]. (Note, however, that in the experiment we

employed 36-fold phase cycling to additionally resolve the 1Q–3Q signal.) The sampling

steps for the coherence times τ and t (0–120 fs with a step size of 4 fs in a fully rotating

frame of the laser reference frequency) are set identically to the experiment. The time-

dependent interaction of the external electric fields with the system is calculated within

the rotating-wave approximation. The detection of fluorescence is simulated by time-

integrating over the population density matrix elements according to Tr {Πρ(t′)}, where

Π is a projection operator onto the excited population density matrix elements.

Simulation of the 1Q–2Q 2D Spectrum of the Ground-State Biexciton

We now describe in detail how we determined the transition dipole moment from the

band-edge exciton state |X1〉 to the ground-state biexciton |X1X1〉, µ(X1 → X1X1), as

well as the binding energy of the ground-state biexciton ∆(X1X1). For that purpose, we

simulated the experimental 1Q–2Q 2D spectrum of the ground-state biexciton (Fig. 3.2d

in the paper). As a minimal basis for the simulation, we incorporated a three-level

Hamiltonian with ground, exciton and biexciton states into Eq. 3.10. A corresponding

energy level scheme is shown in Fig. 3.6a.

The energy of |X1〉 was set to the value determined by the fit of the linear absorption

spectrum [E(X1) = 1.865 eV] (Fig. 3.1b in the paper). In order to fit the experimental

line shape, we set the pure dephasing time of the 1Q coherences to be 100 fs and the

2Q coherence to be 70 fs. The population relaxation times of |X1〉 and |X1X1〉 were

set to 10 ns and 140 ps, respectively, according to the lifetimes of these states from the

literature [187]. In the experiment, we employed super-Gaussian amplitude modulation

by the pulse shaper in order to selectively excite the |X1〉 band (Fig. 3.6b, red curve).
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Figure 3.6. Energy-level scheme and excitation spectrum used for simulating the 1Q–2Q 2D spectrum

of the ground-state biexciton. (a) Energy scheme for a three-level system consisting of a ground state

(|g〉), single-exciton state (|X1〉) and ground-state biexciton state (|X1X1〉) with individual transition

dipole moments µ (purple). The biexciton binding energy, ∆(X1X1), is denoted as the energy shift of the

biexciton state with respect to twice the single-exciton energy, whereas the latter is denoted as a gray

dashed line. (b) Experimental laser spectrum (red, normalized), fitted with a super-Gaussian function

(black dashed) which is used in the simulation. Reprinted with permission from Ref. [1]. Copyright

c© (2021) American Chemical Society.

Hence, in the simulation, the temporal excitation electric field envelopes of Eq. (3.11)

were constructed to correspond to the Fourier transform of the spectral electric field that

was calculated from a super-Gaussian fit of the excitation spectrum (Fig. 3.6b, black

dashed curve). The external field amplitude was set to γext = 0.3× 10−3.

The position of a peak in a 1Q–2Q 2D spectrum gives access to the energy of a biexci-

ton state and thus information about the biexciton binding energy. In our simulations,

we noticed that the deviation between experimental and simulated 1Q–2Q 2D spectrum

mainly depended on the actual binding energy, while the value for the transition dipole

moment µ(X1 → X1X1) also influenced both the peak position and its shape. Hence,

we conducted a series of simulations in which we varied systematically the magnitude

of µ(X1 → X1X1) and the value of ∆(X1X1). For each simulation, we calculated the

root–mean–squared deviation of the 2D spectra between simulation and experiment.

The values for µ(X1 → X1X1) were varied from 0.7 to 1.3 in steps of 0.04 [in units of

µ(g → X1)], whereas ∆(X1X1) was varied from 0 to 50 meV in steps of 2 meV, thus

leading to 416 simulations for the total fitness landscape. This landscape is presented

as Fig. 3.2f in the main paper.
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Simulation of the 1Q–2Q 2D Spectrum of the Biexciton Manifold

In order to simulate the 1Q–2Q 2D spectrum that maps the biexciton manifold (Fig. 3.3a

in the paper), we employed a ten-level Hamiltonian corresponding to the energy-level

scheme shown in Fig. 3.7a. We incorporated all possible biexciton states that can be
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Figure 3.7. Simulation of the 1Q–2Q 2D spectrum of excited biexciton states. (a) Energy scheme for a

ten-level system consisting of one ground state (|g〉), three single-exciton states (|Xn〉) and six biexciton

states (|XnXm〉) with individual transition dipole moments µ. Excitonic transitions between the states

have the same color code as in Fig. 3.1b of the paper. Solid arrows signify that the transition dipole

moments µ(Xn → XnXn) are equal to the dipole moments µ(g → Xn); dashed arrows into several

biexciton states indicate scaled transition dipole moments into mixed biexciton states [µ(Xn → XnXm),

where n 6= m]. (b) Experimental laser spectrum (red, normalized), fitted with a Gaussian function

(black dashed) which is used in the simulation. (c) Root–mean–squared deviation (RMSD) between

experimental and simulated normalized absolute magnitude spectra for various scaling values of the

transition dipole moments into mixed biexciton states. (d)–(h) RMSD values with respect to the

variation of the binding energies of the biexciton states (d) ∆(X2X3), (e) ∆(X2X2), (f) ∆(X1X3),

(g) ∆(X3X3), and (h) ∆(X1X2) in coarse steps of 10 meV. The insets show the respective RMSD values

for a variation in steps of 1 meV around the minimum of each coarse scan. Reprinted with permission

from Ref. [1]. Copyright c© (2021) American Chemical Society.
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constructed from the exciton states |X1〉, |X2〉, and |X3〉, giving rise to a total of six

different biexciton states. For the simulation, the single-exciton parameters were taken

from the fit of the linear absorption spectrum (Fig. 3.1b in the paper). In particular,

we took the square root of the individual Gaussian amplitudes obtained from the multi-

Gaussian fit as the values for transition dipole moments into the single-exciton states

(Table 3.1). The single-exciton transition energies were taken as the energies at the

maxima of the respective Gaussian components of the linear absorption fit. The laser

excitation fields employed in the simulation corresponded to the Fourier transform of

the spectral electric field that was calculated from a Gaussian fit of the experimental

laser spectrum (Fig. 3.7b).

Since we experimentally operate in a regime with high excitation energy where exciton

and biexciton populations are near equilibrium [138], we adjusted the external field

amplitude to γext = 10−3. At such a high excitation energy regime like in our experiment,

one has to consider contaminations by signals which are of higher nonlinear orders and

cannot be separated from the desired signal via phase cycling [188]. Note, however, that

our nonperturbative treatment inherently captures effects caused by such contaminations

with higher nonlinear orders.

Charge cooling was modeled as a population relaxation process with an estimated

time constant of 300 fs. We assumed the same times of charge cooling for each down-

ward transition within the single-exciton and biexciton manifolds. The lifetimes of |X1〉
and |X1X1〉 were set to 10 ns and 140 ps, respectively. The pure dephasing times of

the |X1〉 〈g|, |X2〉 〈g|, and |X3〉 〈g| coherences were set to 100, 90, and 80 fs, respectively,

and all pure dephasing times related to the biexciton manifold were set to 70 fs, to fit

the observed line shapes. Note that the values set for the pure dephasing times do not

inevitably represent the actual pure dephasing times. The necessity to use the values

above might be a result of line-shape effects due to correlated transition energy fluctu-

ations, as discussed for the 1Q–3Q 2D spectra in the main paper. We did not explicitly

incorporate these fluctuation effects here because we rather focused on a reproduction

of the shape of the 1Q–2Q 2D spectrum in terms of energy shifts of the various states of

the biexciton manifold and transition dipole moments from the exciton to the biexciton

manifold. Incorporating correlated transition energy fluctuations would have made the

simulation intractable. Thus, the pure dephasing times we employed in the simulations

have to be viewed as phenomenological. The same holds for the simulation of the 1Q–2Q

2D spectrum of the ground-state biexciton.

Our model neglects potential effects related to multi-exciton generation (MEG). The

presence of MEG would presuppose interaction between high-lying states of single-
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exciton manifold with energetically close biexciton states. However, MEG has an energy

threshold of 2.5 times the bandgap energy in CdSe [121], which would be outside the

energy range of the biexciton states we probe in our experiment. More importantly, the

MEG efficiency in CdSe (and CdSe/ZnS) quantum dots was found to be extremely low

[189], giving rise to MEG rates in the order of several ps. Hence, due to its low efficiency,

MEG does not have a disturbing influence on our 1Q–2Q 2D spectra. Note further that

the timescale of our experiment is much shorter than the timescale of MEG. In our exper-

iment, we excite the quantum dots with a three-pulse sequence with maximum interpulse

delays of 120 fs. Thus, the perturbation by the excitation pulses is carried out within

a window of 240 fs, meaning that probing coherent dynamics is already accomplished

before MEG contributes significantly. Nonetheless, if there were interaction and thus

mixing between high-lying single-exciton states and biexciton states, one would expect

additional broadening and distortion along the 2Q energy axis, which would perturb the

assignment of individual biexciton states and in turn exacerbate the determination of

state-specific binding energies.

In order to find optimal parameters for the simulated 1Q–2Q 2D spectrum, we follow

the general strategy of optimizing one parameter after another. Whenever we find an

optimal value for a specific parameter, we incorporate it into the model before varying

the next one. We started with a model in which all exciton-to-exciton transition dipole

moments are equal to the respective ground-to-exciton dipole moments, which is based

on our finding from the simulation of the 1Q–2Q 2D spectrum of the ground-state

biexciton. Further, we employed biexciton binding energies of ∆(X1X1) = 16 meV,

∆(X1X2) = 30 meV, ∆(X2X2) = 16 meV, ∆(X1X3) = 50 meV, ∆(X2X3) = 30 meV, and

∆(X3X3) = 10 meV as an initial guess. Based on these parameters, we first simulated the

1Q–2Q 2D spectrum with different scaling values for the transition dipole moments into

mixed biexciton states, µ(Xn → XnXm) (where n 6= m) and calculated the root–mean–

squared deviation (RMSD) between experiment and simulation for each scaling value

(Fig. 3.7c). The resulting curve demonstrates that the similarity between simulated and

experimental spectra increases significantly if one scales the transition dipole moments

into mixed biexciton states by 0.6.

Next, we varied each binding energy separately, while leaving the others constant.

Whenever an optimal parameter was found, it was incorporated into the model before

varying the next parameter. As the binding energy of |X1X1〉 was determined through the

simulation of a separate experiment (see above), we set ∆(X1X1) = 16 meV constant

throughout. For the determination of the other biexciton binding energies, we first

performed a coarse scan of each binding energy in 10 meV steps followed by a scan
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with 1 meV steps around the RMSD minimum (Fig. 3.7d–h). The resulting simulation

parameters for the 2D spectrum of Fig. 3.3b in the paper are summarized in Table 3.1.

Table 3.1. Simulation parameters for the energies of the single-exciton and biexciton states as well

as transition dipole moments and binding energies used to produce the simulated 1Q–2Q 2D spectrum

shown in Fig. 3.3b of the paper. Reproduced from Ref. [1].

Quantity Value

Energies of the single-exciton states (eV) E(X1) 1.865

E(X2) 1.898

E(X3) 1.973

Energies of the biexciton states (eV) E(X1X1) 3.714

E(X1X2) 3.636

E(X2X2) 3.773

E(X1X3) 3.815

E(X2X3) 3.832

E(X3X3) 3.947

Ground-state-to-exction transition µ(g→X1) 0.491

dipole moments (arb. u.) µ(g→X2) 0.372

µ(g→X3) 0.633

Exction-to-biexciton transition µ(X1→X1X1) 0.491

dipole moments (arb. u.) µ(X1→X1X2) 0.223

µ(X1→X1X3) 0.380

µ(X2→X1X2) 0.294

µ(X2→X2X2) 0.372

µ(X2→X2X3) 0.380

µ(X3→X1X3) 0.294

µ(X3→X2X3) 0.223

µ(X3→X3X3) 0.633

Biexciton binding energies (meV) ∆(X1X1) 16

∆(X1X2) 127

∆(X2X2) 23

∆(X1X3) 23

∆(X2X3) 39

∆(X3X3) −1
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3.5.3 Double-Sided Feynman Diagrams of the 1Q–2Q and 1Q–3Q Signals

We provide all possible double-sided Feynman diagrams [19] corresponding to Liouville

pathways contributing to the nonrephasing 1Q–2Q and 1Q–3Q signals in Fig. 3.8. For

simplicity, we formulate the diagrams for a system in the manifold picture, where |g〉
denotes the ground state, |X〉 the single-exciton manifold, |BX〉 the biexciton manifold,

and |TX〉 the triexciton manifold. These diagrams display particular elements of the

density matrix which evolve over certain time intervals. Time is running from bottom

to top, where the delay between the first two pulses is denoted by τ , the delay between

the second and the third pulse by t, and the fluorescence detection time by t′. The

interaction of a specific coherent light field m (m = 1, 2, 3) is denoted by solid arrows,
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Figure 3.8. Complete set of double-sided Feynman diagrams for (a) the fourth-order 1Q–2Q contribu-

tion and (b) the sixth-order 1Q–3Q contribution on the basis of a ground state |g〉, the single-exciton

manifold |X〉, the biexciton manifold |BX〉 and the triexciton manifold |TX〉. Time delays between the

pulses are denoted as τ and t, whereas t′ is the detection time. Each diagram is labeled according to

its sign (note that the in prefactor, where n is the order of nonlinearity, is excluded) and its weight

due to time ordering. Incident coherent light fields are represented by solid arrows whereas incoherent

emission is denoted by wavy arrows. Dashed lines between population density matrix elements sig-

nify nonradiative relaxation. Reprinted with permission from Ref. [1]. Copyright c© (2021) American

Chemical Society.
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where an arrow pointing to the right (left) corresponds to a phase of +ϕm (−ϕm).

Incoherent fluorescence emission is denoted as wavy arrows. Each diagram is labeled

with its sign determined by the number of coherent interactions occurring on the right

side of the diagram. Note that we omit the prefactor of in, where n is the total number

of interactions for a given signal contribution.

In addition, each diagram is labeled with an integer denoting its weight due to time

ordering. Because the multiexciton populations decay via Auger relaxation into the |X〉
manifold, each diagram is further considered to yield the same fluorescence yield.

The manifold representation gives rise to two diagrams for the 1Q–2Q signal (Fig. 3.8a)

and three diagrams for the 1Q–3Q signal (Fig. 3.8b). Due to the different signs of the

diagrams, cancellation effects occur. For example, diagram +Q2 is cancelled by −2Q1,

leaving −Q1 as the sole contribution to the 1Q–2Q signal. In case of the 1Q–3Q signal,

diagrams −Q3 and +Q4 completely cancel, leading to diagram −Q5 as the remaining

one.

3.5.4 Control 2D Measurement

In order to exclude signal contaminations by contributions arising from potential nonlin-

earities of the experimental setup, such as detector and/or pulse-shaper nonlinearities,

we performed control measurements of the complete pulse sequence of the 2D measure-

ments (that is, without any sample). For that purpose, we directly focus the excitation

beam on the avalanche photodiode at a signal level that is analogous to the case of flu-

orescence detection using identical sampling parameters as in the actual 2D experiment

performed on the quantum dot sample. After the measurement of the pulse sequences,

we then process the data analogous to the experiment, that is weighting the raw data

by phase factors that are unique for each nonlinear signal contribution of interest. If

there were any detector nonlinearity contributing, distinct signals would appear after

this weighting procedure. Assuming perfect detector linearity at the employed maximal

detector signal level, only noise is expected. Since no detector has perfect linearity, it is

important to ensure that the signal strength arising from potential detector nonlinearity

is at least on the order of magnitude of the noise level. Otherwise, the 2D measurements

on the sample could indeed be perturbed by such unwanted nonlinear signals.

As we carried out two separate multiple-quantum 2D measurements with different

laser spectra (compare Fig. 3.2d and Fig. 3.3a in the manuscript), we performed two

separate control measurements. The 1Q–2Q 2D spectrum of the control measurement

for Figure 3.2d is thus shown in Fig. 3.9a, whereas the 1Q–2Q and 1Q–3Q 2D spectra

of the control measurement for Figs. 3.3a and 3.4d are presented in Figs. 3.9b and 3.9c,
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respectively.

The resulting 2D spectra all show noise and no significant signals above the noise

floor. In relation to the respective 2D measurements performed on the quantum dot

sample, the absolute maximal signal levels of the control 2D spectra are lower by factors

of 13.8 (Fig. 3.9a), 24.9 (Fig. 3.9b), and 15.7 (Fig. 3.9c). We thus conclude that detector

nonlinearities significantly do not contaminate the nonlinear signals of the quantum dot

sample.
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Figure 3.9. Absolute-valued control 2D spectra obtained by direct focusing of the excitation pulse

sequences on the employed avalanche photodiode (APD), normalized to their respective highest absolute

values. The signal level on the APD was adjusted to the signal level of an actual 2D experiment

with fluorescence detection. a) Control 1Q–2Q 2D spectrum for the measurement of Fig. 3.2d in

the manuscript. b) 1Q–2Q and c) 1Q–3Q 2D control spectra for the measurements reported in the

manuscript in Figs. 3.3a and 3.4d, respectively. Reprinted with permission from Ref. [1]. Copyright

c© (2021) American Chemical Society.

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).





Chapter 4

Rapid Multiple-Quantum

Three-Dimensional Fluorescence

Spectroscopy Disentangles

Quantum Pathways

Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quan-

tum dynamics in complex systems. Several variants offer different types of information

but typically require distinct beam geometries. Here we introduce population-based

three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all

fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold

(1×5×5×5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and

shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of

the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient

conditions. From this, we recover previously unknown characteristics of its electronic

two-photon state. Rephasing and nonrephasing sixth-order contributions are measured

without additional phasing that hampered previous attempts using noncollinear geome-

tries. We systematically resolve all nonlinear signals from the same dataset that can be

acquired in 8 min. The approach is generalizable to other incoherent observables such

as external photoelectrons, photocurrents, or photoions.

Reprinted under the terms of the Creative Commons CC BY license from S. Mueller, J. Lüttig, P. Malý,

L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, Nature

Communications 10, 4735 (2019). Copyright c© (2019), The Authors.
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4.1 Introduction

Inspired by multidimensional nuclear magnetic resonance (NMR) experiments that give

extraordinary insight into chemical structure, optical multidimensional spectroscopic

techniques reveal vibrational and electronic structure and dynamics employing sequences

of ultrashort laser pulses. The enhanced dimensionality within these experiments enables

the observation of cross peaks in the spectral domain. These may represent signatures of

coupling phenomena, energy or charge transfer [84, 190–192], photochemical reactions

[193, 194], vibrational or electronic coherences [195–201], or many-body interactions

[40, 53, 81, 98]. The great versatility of multidimensional techniques results from their

ability to distinguish between specific nonlinear signal contributions. These contribu-

tions correspond to different subsets of optically driven quantum pathways through the

excited-state manifold of a system.

In a two-dimensional (2D) experiment, a first laser pulse creates a coherence that

evolves during the coherence time τ . In one exemplary pathway, the interaction with

a second pulse can lead to a population evolving during population time T , and the

interaction with a third pulse to another coherence. The latter gives rise to a macro-

scopic polarization that emits a coherent electric field during the final time t. In the

most common approach, this coherent field is heterodyne detected with a reference pulse

to yield the amplitude-resolved and phase-resolved nonlinear optical signal. 2D Fourier

transformation with respect to τ and t results in a 2D spectrum as a function of frequen-

cies ωτ and ωt, respectively, retaining a parametric dependence on T . This approach

has been used extensively to investigate one-quantum (1Q) coherences, that is, coherent

superpositions between states which oscillate at a frequency covered by the employed

laser spectrum, and to decipher energy transfer mechanisms [85, 202–204]. Broadband

excitation in the visible may also generate superpositions of energetically close-lying

states within one electronic manifold, also called zero-quantum (0Q) coherences, which

are observed as oscillations as a function of T . In molecules, this often signifies nuclear

wavepacket dynamics, oscillating on ground-state or excited-state electronic potential

energy surfaces [195, 205]. It is challenging to identify uniquely the origin of all oscilla-

tory signals due to their spectral overlap. Using a third dimension may resolve some of

the peaks [42, 206–208]. Thus, one can distinguish vibrational coherence in ground and

excited electronic states in molecules [205], unravel hidden vibrational couplings [63], or

study ultrafast photochemistry [194]. Such 3D spectra may be used to isolate quantum

coherence selectively, allowing for the possibility to reconstruct the Hamiltonian of a

system [41, 209].
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Apart from higher dimensionality, higher orders of nonlinearity unveil further details

that cannot directly be ascertained from lower-order signals. For instance, nonlinear sig-

nals that are of higher than third order in the interaction with the electric field enabled

studying intricate details about electronic correlations in semiconductor nanostructures

[53], tracking multistep energy transfer in light-harvesting complexes [210], and observing

exciton–exciton annihilation in molecular aggregates [102]. While useful, it is challenging

to capture all contributions with conventional noncollinear techniques because one must

ensure phase stability between various optical beams. In addition, each signal contribu-

tion has to be measured separately by choosing the corresponding phase-matching condi-

tion, and scattering of excitation pulses as well as the nonresonant response from the en-

vironment leads to artifacts [56]. In this context, it was previously shown that a partially

collinear pump–probe geometry offers many advantages due to its inherent phase stabil-

ity, and the capability to isolate several, directly phased signals at once [50, 211–214]. As

another alternative that also preserves these advantages, one can employ phase modu-

lation or phase cycling with fluorescence detection [48, 51, 69, 71, 75, 86, 158, 215–217].

Fluorescence detection reveals features that would be hidden with coherent detection

[75, 218]. Another key feature of fluorescence-based detection is the excellent sensitivity

for higher-order signal contributions [107], since scattered excitation light does not con-

tribute. Most fluorescence-based multidimensional experiments focus on fourth-order

nonlinear signals, while studies of high-order population-based spectroscopy are scarce

[78, 106, 107]. Apart from that, it is desirable to design a versatile and convenient ap-

proach to gain maximum nonlinear information content from a single data set in order to

investigate systems with limited (photo)chemical stability without the need to carry out

separate multi-dimensional experiments for each signal contribution. Such an approach

should offer direct comparability between different signal contributions that is beneficial

for interpretation purposes, especially because nonlinear signals show a strong depen-

dence on the employed excitation conditions that might not be identical throughout

separate measurements.

In this work, we address the aspect of gaining multiple nonlinear signals from a single

rapid measurement and demonstrate this by recording a variety of multiple-quantum,

fourth- and sixth-order 3D spectra simultaneously. This allows us to extract certain

sets out of a vast manifold of quantum pathways where each set provides rich and

selective information about correlations between excited states, vibrational coherences,

and excited-state dynamics. We show how to obtain the information systematically from

only one raw data set by appropriate weighting with Liouville pathway-specific phase

factors. Thus we can assign 0Q, 1Q, and two-quantum (2Q) coherence dynamics to the
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three conjugate time delays employed in the experiment. For demonstration, we choose

the dianion of the bis(triisopropylsilyl)ethynyl-substituted symmetric tetraazapentacene

TIPS–TAP2− [219, 220], dissolved in tetrahydrofuran (THF), which nicely illustrates the

application potential of the technique because the highly reduced compound is extremely

sensitive toward traces of oxygen and moisture, thus having limited stability at ambient

conditions, and all data from two different orders of nonlinearity are obtained within

only a few minutes of measurement time. The TIPS–TAP compound and related species

are of considerable interest for use in organic field effect transistors (OFETs) due to their

ability to serve as efficient negative charge carriers. In addition, and of specific relevance

to this study, the TIPS–TAP dianion, formed by two-electron reduction of the neutral

compound, has a remarkably high fluorescence quantum yield of 95% in Et2O solution

[219, 220].

4.2 Results

4.2.1 Method Development

We employ a single-beam geometry and thus cannot use phase matching to distin-

guish between various signal contributions. Instead, we employ phase cycling (Fig. 4.1)

[29, 48, 50, 51, 71, 72, 214]. The key idea is to vary the phases of the excitation pulses

with step sizes fine enough to resolve different signal contributions without aliasing. Be-

cause the laser is not carrier-envelope phase-stabilized, it is adequate to operate with

AOPDF

pulse shaper

@ 1 kHz

Capillary

flow 

cuvette

125-fold phase cycling

Figure 4.1. Scheme of the experiment. An acousto-optic programmable dispersive filter (AOPDF)

creates a phase-coherent pulse sequence with individual pulse phases ϕi (i = 1, 2, 3, 4) that is employed

in the multidimensional experiment. Besides scanning the interpulse delays τ , T , and t, we further

sample the phases of the second, third, and fourth pulse five times each and finally detect the integrated

fluorescence intensity from the sample as a function of these excitation pulse sequence parameters.

Reproduced from Ref. [4].
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interpulse phases ∆ϕi1 (i = 1, 2, 3) that are cycled in discrete steps between 0 and

2π with a pulse shaper (DAZZLER, Fastlite). Thus, the raw data matrix p obtained

from the experiment represents integrated fluorescence intensities as a function of sam-

pled time delays and interpulse phases. Various phase-cycling schemes for fourth-order

population-based 2D spectroscopy were discussed in the literature, aiming to preserve an

experimentally manageable amount of phase steps [29]. Phase-cycling protocols employ-

ing an increased number of phase steps generate a denser grid in phase space resolving

more nonlinear signal contributions within a single experiment. The associated signifi-

cant increase in acquisition time can be compensated by our rapid-scan approach [72].

In our experiment, we sampled, in addition to the time delays τ , T , and t between the

pulses, the interpulse delays by means of a 125-fold (1×5×5×5) phase-cycling scheme

(Fig. 4.1), where the phases of the second, third, and fourth pulse were sampled in five

steps each. A detailed schematic of the experimental setup is given in Supplementary

Fig. 4.7 and described in Supplementary Sec. 4.5.1.

After the experiment, the raw data p is decoded by weighting it with phase factors

which recover complex-valued nonlinear signal contributions p̃ by using

p̃ (τ, T, t, β, γ, δ) =
1

125

4∑
l=0

4∑
m=0

4∑
n=0

p (τ, t, T, l∆ϕ21,m∆ϕ31, n∆ϕ41)

× exp (−ilβ∆ϕ21) exp (−imγ∆ϕ31) exp (−inδ∆ϕ41) ,

(4.1)

where ∆ϕij denotes interpulse phases between pulses i and j, and β, γ, and δ are the

weighting parameters [29]. According to phase-cycling theory and double-sided Feynman

diagram analysis (see Supplementary Sec. 4.5.2) [19, 29], we identified that this scheme

is able to resolve and distinguish between three fourth-order and twelve sixth-order

contributions (Table 4.1), all of them simultaneously, i.e., from the same raw data set.

With 125-fold phase cycling, five-step phase sampling ensures discrimination between

integer values ranging from −2 to +2 for β, γ, and δ so that all listed fourth-order and

sixth-order contributions are obtained simultaneously, but can be resolved individually.

Besides the fourth-order contributions, the selection of the sixth-order contributions is

dictated by choosing the weights of β, γ, and δ themselves because at the moment

one of the factors is set to ±2, the weighting will uniquely pick a contribution which

originates from a pulse sequence in which two of the four pulses interact twice, resulting

in six interactions in total. Performing 3D Fourier transforms of each contribution with

respect to τ , T , and t generates 3D spectra as will be shown below using our experimental

data.

All contributions are inherently phased correctly with respect to each other. This
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Table 4.1. Summary of fourth-order and sixth-order nonlinear signal contributions. The signal con-

tributions listed here can be resolved and isolated from a 125-fold (1×5×5×5) phase-cycling scheme

using incoherent detection. The first four columns on the left give the label of the nonlinear signal

contribution that probes specific types of quantum coherence over the three temporal dimensions τ , T ,

and t. Their respective weight factors β, γ, and δ are listed on the right. All contributions can further

be classified as either fully nonrephasing (NR, no phase conjugation between coherences) or rephasing

(R), whereas for the latter the superscripts denote which particular dimensions hold the phase conju-

gation that is introduced during a rephasing pulse sequence; a: between τ and t, b: between τ and T ,

c: between T and t. Reproduced from Ref. [4].

Fourth-order contributions p̃(4) Weights

τ T t β γ δ

Ra 1Q 0Q 1Q +1 +1 −1

NR 1Q 0Q 1Q −1 +1 −1

NR 1Q 2Q 1Q +1 −1 −1

Sixth-order contributions p̃(6)

Rb,c 1Q 1Q 1Q +2 −2 +1

Ra 2Q 0Q 1Q +2 +1 −1

NR 2Q 0Q 1Q −2 +1 −1

Ra 1Q 0Q 2Q +1 +2 −2

NR 1Q 0Q 2Q −1 +2 −2

Ra,c 2Q 1Q 1Q +1 +2 −1

Ra,b 1Q 1Q 2Q +2 +1 −2

NR 2Q 1Q 2Q −1 +1 −2

NR 1Q 3Q 1Q +2 −2 −1

NR 2Q 3Q 1Q +1 −2 −1

NR 1Q 3Q 2Q +2 −1 −2

NR 2Q 3Q 2Q +1 −1 −2

is an advantage compared with noncollinear coherence-detected multidimensional spec-

troscopy, for which one must usually perform an auxiliary procedure, such as an addi-

tional pump–probe experiment, in order to assign the correct phase information [39].

However, analogously to coherently detected experiments [102], if the excitation density

is high enough to generate sixth-order signals, these may also contaminate the fourth-

order ones. Hence, whenever we use the term fourth-order signal, we mean a nonlinear

signal that is predominantly of fourth order (see Supplementary Sec. 4.5.3). Apart from
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that, an advantage of our technique is that we are able to simultaneously isolate the

higher-order contribution by appropriate phase cycling.

We sampled every temporal dimension in steps of 6 fs utilizing the fully rotating frame

of the pulse shaper’s reference frequency of 508.1 THz (2.1 eV) in order to find a com-

promise regarding acquisition time with respect to the limited sample stability. In total,

15×15×15×125 = 421, 875 different pulse trains were streamed in order to acquire a full

3D data set. At the 1 kHz repetition rate of our setup, the pure acquisition time for the

full multidimensional data set is only 8 min (without averaging). In our sampling proto-

col, we first sample through all phase-cycling steps for fixed interpulse delays to prevent

errors in reconstructing the phase-sensitive nonlinear signal contributions by Eq. (4.1)

(for further details see Supplementary Sec. 4.5.1). With the broad spectral bandwidth

(70 nm) of the employed laser pulses, we resolve high-frequency vibrational coherence

in the 0Q domain, 1Q coherence between ground- and singly-excited electronic states as

well as between singly- and higher-excited states, and 2Q coherences between ground-

and higher-excited electronic states via multiphoton processes. Li et al. previously in-

troduced multiphoton 2D fluorescence spectroscopy, where signatures of one-photon and

two-photon transitions into the same electronic state could be obtained [221]. In this

work, however, we will consider one-photon and two-photon transitions into different

electronic states. Probing 3Q coherences would lead to aliasing artifacts in the present

example. Therefore, we will restrict the discussion below to the signal contributions that

did not involve any 3Q coherence. However, using more temporal sampling steps would

allow the unique recovery of 3Q contributions as well with the same setup, again within

one unified measurement protocol.

Our technique is currently limited to a maximum temporal shaping window of 8 ps

for every pulse sequence according to the length of the chosen AOPDF crystal. At

such delays, one can measure electronic and vibrational coherence dynamics of dis-

solved molecular systems that proceed on time scales up to several picoseconds. In cases

of much slower dephasing, such as in some semiconductor nanostructures [40, 53, 57],

measurements of all relevant dynamics becomes challenging. Another example of slow

dynamics proceeding at the 10 to 100 ps time scale is exciton diffusion dynamics in some

molecular aggregates [102]. Nevertheless, because of the absence of spurious coherent

artifacts for early population times, our technique has great application potential to

study ultrafast processes such as rapid exciton–exciton annihilation in many classes of

molecular aggregates,1 and the single-beam geometry provides a compact, stable, and

convenient access.

1See Chapter 5.
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4.2.2 Fourth-Order 3D Spectra

The linear absorption [220] and fluorescence spectra of TIPS–TAP2− are shown in

Fig. 4.2a together with the laser spectrum. The dianion features well-resolved peaks

in both absorption and fluorescence spectra together with a small Stokes shift. The

main band of the S0 → S1 π–π∗ transition [219] at 2.06 eV is well covered by the laser

spectrum, having further very small amplitude in the region of the main vibrational pro-

gression band, which is located at 2.23 eV. This progression is assigned to a ≈1400 cm−1

(≈0.17 eV) vibrational mode of the conjugated system [220]. Based on that and on

experimental observations, we construct an energy-level scheme depicted in Fig. 4.2b,

incorporating the single 0.17 eV mode being coupled to the electronic singlet states S0,

S1 as well as to a highly excited two-photon singlet state Sx with different displacements

along the vibrational coordinate (see also below). For the following, we use the labels

|gv〉, |ev〉, and |fv〉 to denote electronic ground-, first excited, and doubly excited states,

respectively, where the subscript v denotes the quantum of vibrational excitation.

In Fig. 4.3a (left), we present the experimental absolute-valued rephasing 1Q–0Q–1Q

3D spectrum, which we extracted from the raw data by using the weights from Table 4.1

according to its phase signature [29] of ϕR1Q0Q1Q = −ϕ1 +ϕ2 +ϕ3−ϕ4. Throughout this
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Figure 4.2. Sample spectra and energy scheme. (a) Linear absorption (black, determined via spectro-

electrochemistry in THF/N(n-Bu)4PF6 of TIPS–TAP2− (molecular structure shown in the inset). The

laser spectrum employed in the multidimensional experiment is displayed as an orange shaded area.

The emission spectrum of TIPS–TAP2− in THF, which was acquired immediately before the multidi-

mensional experiment, is shown as a red dashed line. Absorption and emission spectra are normalized

to their respective maximum value. The black dashed line at 4.1 eV marks the energy of the doubly

excited state Sx. (b) Energy-level scheme used for interpreting the 3D spectra with the dashed gray

arrow denoting internal conversion (IC) and the red arrow the observed fluorescence. Reproduced from

Ref. [4].
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section, we display the 3D spectral solids with three isosurfaces of varying transparency,

visualizing the signal amplitude. In addition, we project the solid onto 2D frequency

planes, which are represented as contour plots that are normalized to the highest absolute

value each. Thus, different types of 2D spectra can be extracted as well. In case of the

rephasing 1Q–0Q–1Q spectrum, the 2D projections deliver the photon-echo (1Q–1Q)

spectrum for T = 0 on the bottom (~ωτ , ~ωt) plane, the 1Q–0Q spectrum at t = 0 on the

(~ωτ ,∆~ωT ) plane, and the 0Q–1Q spectrum at τ = 0 on the (~ωt,∆~ωT ) plane. The 3D

solid displays a dominating feature centered around a coordinate of (~ωτ ,∆~ωT , ~ωt) =

(2.06, 0, 2.06) eV that exhibits a characteristic star-shaped lineshape [41, 43]. This

peak coordinate corresponds exactly to the maximum of the linear absorption spectrum,

which is attributed to the transition from state |g0〉 to |e0〉 in the model (Fig. 4.2b).

It is accompanied by a much weaker feature at (2.23, 0, 2.23) eV, which corresponds to

the transition from |g0〉 to |e1〉. The overall amplitude of the 3D solid is determined

by the multiplication of |e0〉 and |e1〉 with the laser spectrum. The solid is elongated

toward higher 1Q energies which reflects coupling to the progression band |e1〉 at 2.23 eV,

mediated by the common ground state |g0〉. Mediation by a hot ground state |g1〉 can be

excluded because this would involve an |e0〉 → |g1〉 transition with a transition energy of

1.89 eV, where the laser spectrum has no intensity. As further shown in Supplementary

Sec. 4.5.5 and Supplementary Fig. 4.13 and discussed in a similar scenario [222], the

filtering effect by the laser spectrum removes from the complete manifold a number of

pathways that involve the transition between |e0〉 and |g1〉, also in the nonrephasing

1Q–0Q–1Q contribution. This simplifies the interpretation.

Apart from these features being located within the ∆~ωT = 0 plane, which reflects the

fact that the system evolves in a population state during T , we observe two additional

weak cross peaks A and B. In order to separate them from the dominating peaks, we

isolate the voxels within the spectral volumes that span the regions in the vicinity of

peak A and B, which is indicated by red and blue cuboids, respectively (Fig. 4.3a, right).

By determining the coordinates of the maximum amplitude of each isolated cross peak,

we find that these are shifted along the ∆~ωT axis by +188 meV (A) and −172 meV (B).

In view of the effective spectral resolution (15.7 meV), these values are in fair agreement

with the energy spacing ~ω0Q ≈ 0.17 eV between vibrational levels within S0 and S1,

and thus they originate from vibrational coherence. These cross peaks can be described

by double-sided Feynman diagrams [19] (Fig. 4.3b), where the wavy arrows pointing to

the right (left) denote the laser fields, interacting with a phase of +ϕ (−ϕ). The sign

of the 0Q coherence frequency determines whether the coherence oscillates positively,

e.g., |e1〉 〈e0| ∝ exp (−iω0QT ), or negatively with |e0〉 〈e1| ∝ exp (+iω0QT ) [41, 222]. As
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Figure 4.3. Fourth-order rephasing 1Q–0Q–1Q 3D spectrum of TIPS–TAP2− in THF. (a) Experimen-

tal and (c) simulated rephasing 1Q–0Q–1Q 3D spectra, shown in absolute values. The energies of the

main absorption band at 2.06 eV and the progression band at 2.23 eV are indicated as dashed black

lines in the ∆~ωT = 0 plane as a guide for the eye. Red and blue dashed vertical lines mark positive

and negative shifts of 0.17 eV, respectively, along the 0Q axis ∆~ωT . Isosurfaces are drawn at 2.3, 9.0,

and 35% of the maximal signal amplitude. Contour lines of the 2D projections of the spectral solids
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are drawn at linearly spaced levels of the normalized signal amplitude with an additional contour line

at 0.05. The spectral volumes inside the red and blue cuboids, which are centered around peaks A and

B are isolated and shown on the right. There, isosurfaces are drawn at 50, 70, and 90% of the isolated

maximal signal amplitudes whereas the color bars indicate the signal levels (normalized to the highest

absolute value of the respective full 3D spectrum) for each contour line. (b) Double-sided Feynman

diagrams that describe the peaks A (red) and B (blue). Reproduced from Ref. [4].

previously demonstrated, analyzing these oppositely signed signatures has proven to be

a powerful tool to decipher the origin of the underlying quantum coherences [223, 224].

Peak A is described by a single Feynman diagram involving vibrational coherence in

the first excited electronic state that oscillates with a positive frequency. In contrast,

Peak B can be described by two diagrams that include vibrational wavepacket evolu-

tions oscillating with a negative frequency within both the ground and the first excited

electronic state. There is no way to construct a diagram in which a positively oscillat-

ing |g1〉 〈g0| coherence is created, except if one assumes that the system is initially in

a vibrationally excited electronic ground state which is unlikely because the amount of

thermal energy that was present at the experiment (≈26 meV) is much less than the 0Q

energy (≈170 meV). Interestingly, although two pathways could contribute to peak B in

principle, its amplitude is nearly identical to peak A (Fig. 4.3a, right), indicating that

only one of the two pathways for peak B contributes significantly. Taking into account

the Huang–Rhys factor of the ≈170 meV mode, which we estimated to be SHR ≈0.6

from linear absorption, leads to a low transition strength for the |g1〉 → |e1〉 transi-

tion that is involved twice in the right B pathway in Fig. 4.3b, strongly diminishing

its contribution to the peak. Thus, while peak A represents an isolated single Liouville

pathway, peak B predominantly bears the signature of the excited-state vibrational co-

herence over T . As evident from Fig. 4.3, the experimental results (Fig. 4.3a) can be

very well reproduced by simulations (Fig. 4.3c) using Lindblad theory [21], in terms of

peak positions as well as their shapes and amplitudes, even for the peaks A and B (for

details about the simulation model see below and Supplementary Sec. 4.5.6). Overall,

this successfully demonstrates the decongestion that 3D spectroscopy offers, yielding a

separation of population and wavepacket contributions in the studied molecule which in

turn enables us to isolate signatures of vibrational coherence in the excited electronic

state and distinguish them from vibrations in the electronic ground state.

While 1Q–0Q–1Q spectra give extensive information about the manifold of singly ex-

cited states, it is difficult to reveal direct signatures involving higher excited states which

could be accessed via excited-state absorption (ESA). This issue is a complication for
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interpreting any type of third-order spectroscopy, be it pump–probe transient absorption

or conventional electronic 2D spectroscopy, i.e., it is challenging to assess the influence

of higher excited states on the observed transient spectra because, typically, not much is

known about them. Thus, it is desirable to design nonlinear spectroscopy experiments

that specifically address these higher lying states. We will turn to such experiments

now and implement 1Q–2Q–1Q 3D spectroscopy. The results obtained therein will also

justify why, while discussing the 1Q–0Q–1Q spectra, we neglected any ESA signatures

that could potentially contribute to the 1Q–0Q–1Q signals. (However, we already in-

corporated the higher excited state into the simulation model, but the 1Q–0Q–1Q ESA

pathways cancel in pairs, as also discussed in Supplementary Sec. 4.5.4.)

In order to probe highly excited states, it is necessary to prepare them as a 2Q coher-

ence via an interaction phase ±2ϕ by a single laser pulse [9, 29] or by ±ϕ from two pulses

each [225]. Concerning the latter, applying the weights that correspond to the phase

signature ϕ1Q2Q1Q = +ϕ1 + ϕ2 − ϕ3 − ϕ4 (Table 4.1) extracts all nonrephasing fourth-

order pathways in which a 2Q coherence evolves during T and that can be visualized as

the experimental 1Q–2Q–1Q 3D spectrum (Fig. 4.4a).

Now, the ~ωT axis contains information about electronic states that lie within two

quanta of the excitation laser spectrum so that one can probe how these states are

coupled to the manifold of singly excited states. The 3D signal peaks at 4.10 eV along

the 2Q axis, indicating the presence of a higher-excited electronic state Sx. The solid

shows further a vibrational shoulder along ~ωT with a higher magnitude compared with

the 1Q progression band, resulting from the multiplication with the laser spectrum which

has its maximum at ≈4.20 eV in the 2Q domain. The linear absorption spectrum in

the UV range (see Fig. 4.2a) does not exhibit a significant absorption band at 4.10 eV,

suggesting that the probed 2Q state is a two-photon allowed (but one-photon forbidden)

state, which is reasonable considering the inversion symmetry of the molecule. Time-

dependent density-functional theory calculations (TD–DFT) also support such a two-

photon state which can be attributed to S74 and that is accessed by two consecutive

nearly degenerate one-photon transitions S0 → S1 and S1 → S74, respectively, both

having high oscillator strengths, whereas the direct S0 → S74 transition has zero oscillator

strength (see Supplementary Sec. 4.5.7 and Figs. 4.14 and 4.15). We sought a separate

experimental signature of the 2Q state by performing a two-photon absorption (2PA)

measurement. The strong one-photon absorption, however, superimposes any potential

2PA signal so that it is impossible to extract the 2PA spectrum of this compound by

conventional 2PA techniques. Nevertheless, this underlines the significant advantage of

the use of phase cycling and two-quantum 3D spectroscopy, because here the desired
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Figure 4.4. Fourth-order three-dimensional 1Q–2Q–1Q spectrum of TIPS–TAP2− in THF. (a) Exper-

imental and (c) simulated 3D spectra, both shown in absolute values. Isosurfaces are drawn at 11, 25,

and 60% of the maximal signal. Contour lines of the 2D projections are drawn at linearly spaced levels

of each normalized projection. (b) Double-sided Feynman diagrams that correspond to the 1Q–2Q–1Q

process, highlighting the coherence density matrix elements that are relevant for 1Q–2Q and 2Q–1Q 2D

spectra in green and pink, respectively. Each pathway is labeled according to its sign, where Φ denotes

the pathway-specific fluorescence quantum yield that is dependent on the finally prepared population

state (marked by the index). Reproduced from Ref. [4].

nonlinear signal is isolated unambiguously by its unique phase signature.

The 1Q–2Q–1Q spectral solid can be projected onto the three 2D planes to extract a

nonrephasing 1Q–1Q spectrum at T = 0 along (~ωτ , ~ωt), the 2Q–1Q spectrum along

(~ωT , ~ωt), and the 1Q–2Q spectrum along (~ωτ , ~ωT ) [206]. Fluorescence-detected 2Q

spectroscopy is sensitive to relaxation channels of highly excited states because all re-

laxation processes that happen after the perturbation by the light fields until the final

emission of fluorescence in fact matter, which is in contrast to coherently detected multi-

dimensional spectroscopy [27, 218]. In that sense, a cross check between the 2Q–1Q and

1Q–2Q 2D spectra offers the ability to draw conclusions about the relaxation pathways

of the 2Q manifold [9]. From Fig. 4.4a, it is apparent that these 2D projections are
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nearly identical in relative signal amplitude, which is an indication of highly efficient

internal conversion from Sx to S1 as expected for a system with such a high fluores-

cence quantum yield (95% in Et2O [219, 220]). The double-sided Feynman diagrams in

Fig. 4.4b explain that the equality of both projections results from a total cancellation

of the opposite-signed excited-state absorption pathways QB and QC. Due to a complete

nonradiative population transfer from |fv〉 〈fv| to |ev〉 〈ev|, the pathway-specific quantum

yield [26] Φf is equal to Φe. This erases any signal stemming from |fv〉 〈ev| coherences so

that both 2D projections only feature |ev〉 〈g0| coherence signals along their respective

1Q axes. Contributions from |fv〉 〈ev| coherences would lead to an asymmetry of the 3D

solid. Consequently, the whole 3D spectrum can be described by pathway type QA only.

Thus, the 1Q–2Q–1Q 3D spectrum delivers detailed information on the highly excited

2Q state and its relaxation dynamics.

The simulated 1Q–2Q–1Q spectrum (Fig. 4.4c) reproduces well the overall symmetric

shape of the solid, reflecting identical 2Q–1Q and 1Q–2Q projections, where we estimated

an internal conversion time constant of 100 fs. In the simulation model, we derived

the transition strengths into the Sx state with the aid of TD–DFT calculations (see

Supplementary Sec. 4.5.6). In addition, by performing simulations with varying Huang–

Rhys factor of the ≈0.17 eV mode between S1 and Sx, we found that a SHR of ≈0.05 best

reproduces the experiment (especially the lineshape along the 2Q axis). This reflects a

much smaller displacement between the two-photon and the first excited state compared

with that between first excited state and ground state. Furthermore, a pure dephasing

time for all |fv〉 〈ev| coherences of 300 fs yields good reproduction, which is much higher

than those of the |ev〉 〈gv| coherences (90 fs), thus indicating a lower transition energy

fluctuation between S1 and Sx compared with S0 and S1. It is also worth noting that in

coherently detected 2Q spectroscopy, when |ev〉 〈gv| and |fv〉 〈ev| coherence energies are

nearly degenerate as in the present system, the signal would vanish due to destructive

interference of the involved pathways [36]. In contrast, the 2Q-associated pathways in

population-based detection differ due to the additional order in perturbation, so that

the signal is preserved by a single pathway type [26]. In the present case, this is an

advantage because one can then analyze the signal, whereas the vanishing signal of

coherently detected 2Q spectra obviously could not be analyzed. To conclude, these

results demonstrate that our approach provides rich information about the electronic

structure of the system that can otherwise be obscured in other methods.
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4.2.3 Sixth-Order 3D Spectra

While the previous discussion involved responses from fourth-order nonlinear processes,

in which each pulse interacts once with the system, the employed phase cycling also

selectively captures processes in which six light-field interactions are distributed over

four pulses. For the following, we want to focus on sixth-order processes that probe

0Q, 1Q, and 2Q coherences simultaneously, such as the rephasing 2Q–0Q–1Q contri-

bution. Compared with the fourth-order 1Q–2Q–1Q process, in a sixth-order process

the generation of the 2Q coherence results from a double interaction of a single laser

pulse. The overall six-fold interaction pattern allows us to rephase a 2Q coherence by

means of a 1Q coherence, thus the homogeneous linewidth of both 1Q and 2Q coherences

contribute to the spectral response. Therefore, this sixth-order sequence is analogous

to the coherently detected fifth-order rephasing 2Q sequence, which was first designed

by Fulmer, Ding, and Zanni for 2D IR spectroscopy [64, 94], but here carried out using

fluorescence. There are also other coherently detected signal variants that employ this

process in the optical regime [57, 102]. However, extending the earlier work we are able

to isolate both rephasing and nonrephasing 2Q–0Q–1Q as well as 1Q–0Q–2Q contribu-

tions directly in amplitude and phase without the need of additional phasing. Analogous

to the common procedure for lower-order 2D spectra, adding the real parts of the prop-

erly rotated rephasing and nonrephasing 2Q–0Q–1Q contributions with phase signatures

ϕR2Q0Q1Q = −2ϕ1 + 2ϕ2 +ϕ3−ϕ4 and ϕNR2Q0Q1Q = +2ϕ1− 2ϕ2 +ϕ3−ϕ4, respectively,

enables us to receive purely absorptive 2Q–1Q spectra. The 2Q–1Q spectrum at T = 0

can be extracted by taking the bottom projection of the 3D spectrum in Fig. 4.5.

As is typical for a higher-order nonlinear signal, the overall signal amplitude is much

lower than in the fourth-order spectra, which manifests as increased noise compared

with the fourth-order spectra. Still, the signal quality is quite good due to the use

of fluorescence as an observable that excludes artifacts from nonresonant solvent con-

tributions and scattered excitation light, and also to the shot-to-shot rapid scanning

implementation. Thus, even this sixth-order signal shows a remarkable agreement with

the theoretical prediction (Fig. 4.5b).

We observe features at positions A and C signifying that |e0〉 and |e1〉 are coupled to

the lowest level of the doubly excited manifold, |f0〉, whereas features B and D indicate

that the singly excited manifold is coupled to |f1〉 as well. This leads to a rectangular

arrangement of features in the ∆~ωT = 0 plane which is also well reproduced by the sim-

ulation (Fig. 4.5b), further verifying the absence of lower-order cascaded contributions.

Additional unwanted signals, such as those originating from many-particle excitations of

noninteracting molecules [79] are not present in our experiment (for a detailed discussion
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Figure 4.5. Sixth-order 2Q–0Q–1Q three-dimensional (3D) spectrum (real part) of TIPS–TAP2− in

THF. The 3D spectra shown are obtained by the sum of the rephasing and nonrephasing 2Q–0Q–1Q

contributions. (a) Experimental and (b) simulated 3D spectra. Isosurfaces are drawn at −12, −10, −7,

7, 11, and 35% of the normalized signal amplitude. Contour lines are drawn at 0.1 steps as indicated

by the color bar. The bottom projections of the solids show the purely absorptive 2Q–1Q 2D spectrum

at T = 0 fs. The dashed lines in the ∆~ωT = 0 plane denote the energies of the main absorption band

at 2.06 eV and the progression band at 2.23 eV along ~ωt and the energies of the 2Q levels at 4.10 and

4.27 eV along ~ωτ . The letters A, B, C, D mark peaks, which are discussed in the text. Reproduced

from Ref. [4].

see Supplementary Sec. 4.5.9). Another source for unwanted signals is so-called incoher-

ent population mixing, that is, signals arising from interacting excited-state populations,

as discussed by Grégoire et al., which was observed in solid-state semiconductors under

high excitation densities [74]. In our experiment, we determined the number of absorbed

photons per molecule [102] to be 0.26, which would in principle facilitate the generation

of such incoherent signals by bimolecular processes. Considering the relevance of this

value for multiparticle interactions, however, we have to take into account the relative

distance of chromophores because for systems that do not form aggregates (such as in

the present case), the probability of bimolecular processes is generally low. According to

the suggestion of Tiwari et al., we have estimated the effect of multiparticle interactions

for the present sample using Förster resonance energy transfer (FRET) as a crucial

step that would facilitate the interaction of populations of two distinct molecules by

subsequent exciton–exciton annihilation [216]. We calculated the Förster critical con-

centration [226, 227] for this effect to be 0.54 mM, which is above our concentration

(0.40 mM) so that we expect such contributions in our experiment not to be present.
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Besides the inverted sign in the 3D solid compared with fourth-order contributions

(see also Supplementary Sec. 4.5.8), strong evidence for the isolation of sixth-order sig-

nals is presented in Fig. 4.6, where we compare transients over T of the rephasing

fourth-order 1Q–0Q–1Q (Fig. 4.6a) and the rephasing sixth-order 2Q–0Q–1Q contribu-

tions (Fig. 4.6b), taken at above-diagonal cross-peak positions. The respective Liouville

pathways (Fig. 4.6c, d) that contain these 0Q coherences only differ in the type of

electronic quantum coherence that evolves during τ , but the coherence evolution dur-

ing T is the same (marked in blue and red, respectively). The 0Q oscillation period

(≈24 fs) corresponds well to the 0.17 eV vibrational mode in both cases. In principle,

sixth-order 2Q–0Q–1Q processes are capable of tracking 0Q coherence dynamics within

higher-excited electronic states. This is impossible to see with lower-order spectroscopic

techniques. However, we attribute the present oscillation to 0Q coherence within the S1

state because all pathways that bear possible 0Q coherence in Sx cancel due to internal

conversion (see Supplementary Sec. 4.5.10 and Fig. 4.18). Importantly, we observe a

phase shift of exactly π between Fig. 4.6a, b. This demonstrates the isolation of the

sixth-order nonlinear signal from unwanted lower-order contributions such as cascade

processes [101]. The phase shift results from the different prefactors of the perturbative

expansion, i.e., i4 = 1 versus i6 = −1. This finding is also in excellent agreement with the
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Figure 4.6. Comparison of fourth- and sixth-order 0Q coherence signatures of TIPS–TAP2− in THF.

(a) Real part of a cross-peak transient of the rephasing 1Q–0Q–1Q contribution
(
p̃(4)
)

at (~ωτ , ~ωt) =

(2.06, 2.23) eV, along with (c) a respective double-sided Feynman diagram. (b) Real part of a cross-

peak transient of the rephasing 2Q–0Q–1Q contribution
(
p̃(6)
)

at (~ωτ , ~ωt) = (4.27, 2.23) eV with (d)

a respective double-sided Feynman diagram. Reproduced from Ref. [4].
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simulations using identical parameters with the same model as above (see Supplementary

Sec. 4.5.11 and Fig. 4.19).

We further note that the rephasing and nonrephasing 2Q–0Q–1Q signals represent

the direct population-based analogues of the coherently detected signals employed in the

recently introduced exciton–exciton-interaction (EEI) 2D spectroscopy [102]. Thus, we

deem that these sixth-order signals are also susceptible to exciton–exciton annihilation

dynamics over T for excitonic systems.2

4.3 Conclusion

We introduced three-dimensional (3D) fluorescence-detected coherent spectroscopy and

demonstrated the potential of the technique on a dianionic molecule in solution. By

using shot-to-shot pulse shaping in a fully collinear single-beam setup, nearly half a

million pulse trains were streamed in just 8 min. This time scale is short enough to

capture rich information about a molecular system with limited chemical stability. A

125-fold phase-cycling procedure enabled us systematically and simultaneously to ac-

quire multiple fourth- and sixth-order 3D spectra that were encoded into the monitored

fluorescence signal, offering access to various kinds of high-order nonlinear signal con-

tributions. From these, we obtained the characteristics of a two-photon allowed state,

such as its energy, vibrational displacement, and highly efficient internal conversion to

S1. We also find a significantly longer dephasing time of 1Q coherences between the

first and the two-photon excited state, reflecting a degree of correlation between the

energy fluctuations of these two excited states, relative to the ground state. In ad-

dition, the simultaneous acquisition of rephasing and nonrephasing sixth-order signal

contributions allowed us to obtain purely absorptive 2Q spectra from the same mea-

surement. Our approach does not necessitate changing any physical setup component

in order to obtain a certain nonlinear signal contribution, and can readily be upscaled

in terms of even further extended phase cycling and dimensionality. The possibility to

acquire multiple-quantum signals in a systematic fashion by phase cycling underlines the

enormous versatility of this technique which can also be employed for other incoherent

detection modes such as the detection of electrons or ions [228, 229]. From a total of

15 different signal contributions for the phase-cycling scheme illustrated herein, some

of the nonlinear signals may prove useful, especially in excitonic systems, to decipher

multiexcitonic coupling patterns, to determine bi- and triexciton binding energies, or to

track selectively exciton–exciton annihilation, all from a single measurement.

2This aspect is discussed in detail in Chapter 5.
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4.4 Methods

Sample Preparation and Handling

The sample is a 0.4 mM solution of the potassium salt of the dianion of

6,13-bis((triisopropylsilyl)ethynyl)quinoxalino[2,3-b]phenazine (TIPS–TAP2−) in THF.

The compound was synthesized by reducing the respective neutral species with two

equivalents of [K(18-crown-6)(THF)2] anthracenide, as previously described [219, 220].

The preparation was conducted in an argon-filled glove box. THF was stored over NaK

inside the glove box and filtered several times through alumina. After preparation,

the dark-red solution of TIPS–TAP2− was transferred into a home-built sealed tubing

system under inert conditions. During the multidimensional experiment, the sample

was continuously pumped through a capillary flow cuvette with (250 µm)2 cross-section

(131.310-QS, Hellma) by a peristaltic pump (Masterflex L/S model 7518-00). Fluores-

cence spectra were recorded immediately before and after the multidimensional exper-

iment, confirming that no possible decay products contaminated the nonlinear signals

(see also Supplementary Sec. 4.5.1 and Fig. 4.9).

Experimental Procedure and Data Processing

The experimental setup for single-beam shot-to-shot multidimensional fluorescence spec-

troscopy has been reported elsewhere [9, 72]. For a detailed schematic, see Fig. 4.7 in

Supplementary Sec. 4.5.1. Briefly, an argon-filled (1.3 bar absolute pressure) hollow-

core fiber was used in combination with an acousto-optical programmable dispersive fil-

ter (DAZZLER, Fastlite) to produce broadband phase-modulated four-pulse sequences

with variable time delays and variable phases between all four pulses. We used a dual

grism compressor for dispersion compensation. Collinear frequency-resolved optical gat-

ing (cFROG) [230] yielded a temporal pulse duration of <21 fs (intensity FWHM),

whereas the excitation energy is 200 nJ (determined at maximum temporal overlap and

complete constructive interference of all four excitation pulses). In the multidimensional

experiment we employed 125-fold phase cycling, allowing us to extract the various signal

contributions out of the raw data by employing interpulse phase weights as described

in the Results section. The excitation pulse trains were focused into the sample cuvette

via a f = −150 mm focusing mirror. Fluorescence was collected perpendicular to the

direction of the incoming laser beam by two 0.25-NA microscope objectives which were

coupled to an avalanche photodiode (APD) via a 400-µm core-diameter multi-mode

fiber. In order to avoid nonlinear contributions from the APD, the fluorescence signal

was attenuated to a signal level within the linear detection regime via neutral density
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filters. To improve data quality, we averaged over four raw data sets. Each signal contri-

bution was extracted by employing phase weights according to Eq. (4.1) and Table 4.1.

In order to avoid truncation artifacts stemming from long-lived dynamics that evolve

during T , the respective signal contribution was first apodized with a Hanning window.

Before 3D Fourier transformation, the initial time-domain values of all temporal dimen-

sions were scaled by a factor of 0.5 to suppress spurious peak-shape artifacts [231] and

further three-fold zero-padded in every temporal dimension.

4.5 Supplementary Information

4.5.1 Details of the Experiment

Ti:Sa CPA

800 nm, 1 kHz, 35 fs

MM1

PAD

MM2

BS

FL

HCF (Ar, 1.3 bar abs)GP

GC

AOPDF

HWP

FM

SS

ND

MO1

MO2

APD

MMF

Figure 4.7. Schematic of shot-to-shot single-beam multidimensional fluorescence spectroscopy. CPA:

chirped-pulse amplifier; BS: beam splitter; MM1, MM2: motorized mirrors; FL: fused-silica focusing

lens (f = 120 cm); PAD: position and angle detector; GP: fused-silica glass plate; HCF: hollow-core

fiber (filled with argon); GC: dual grism compressor; AOPDF: acousto-optic programmable dispersive

filter; HWP: half-wave plate; FM: focusing mirror (f = −15 cm); S: sample, being pumped through a

capillary flow cuvette; MO1, MO2: microscope objectives, ND: neutral density filter; MMF: multimode

fiber; APD: avalanche photodiode. Reproduced from Ref. [4].

The schematic layout of our experimental apparatus is shown in Fig. 4.7. We guide a

fraction (0.4 mJ) of the 35 fs pulses (as confirmed by intensity autocorrelation) of a com-

mercial Ti:Sa chirped-pulse amplifier laser system (Spitfire Pro, Spectra Physics) with

1 kHz repetition rate through a beam-stabilization system (Aligna, TEM Messtechnik

GmbH). The latter consists of two motorized mirrors which are controlled via a feedback

from a combined angle and position detector. This detector tracks the spatial properties
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of a weak reflection of the fundamental beam that is produced by a fused-silica glass

plate and led into the detection unit. With that, a stabilized beam pointing into the

argon-filled fused-silica hollow-core fiber with a length of 110 cm and an inner diameter

of 250 µm (HCF, Ultrafast Innovations GmbH) via a lens with f = 120 cm is ensured,

providing long-term stability of the fiber output. The argon pressure inside the fiber

is kept constant at 1.3 bar (absolute). Dispersion management is provided by a dual

grism compressor (Fastlite), especially in order to pre-compensate the dispersion which

is introduced by the 2.5 cm long TeO2 crystal of the pulse shaper. The pulse shaper is

an acousto-optic programmable dispersive filter (AOPDF, DAZZLER, Fastlite) which

operates directly at the repetition rate of the laser on a shot-to-shot basis. With that,

we generate collinear four-pulse trains which are then focused via a focusing mirror

(f = −15 cm) into the sample. The sample is pumped through a capillary-type flow cell

with square cross section of (250 µm)2 (131.130-QS, Hellma), which is placed vertically

into the focus position. We use a peristaltic pump (Masterflex L/S model 7518-00). The

tubing circuit is connected to a reservoir with ∼25 mL sample volume, where the concen-

tration of 6,13-bis((triisopropylsilyl)ethynyl)quinoxalino[2,3-b]phenazine (TIPS–TAP2−)

in THF is 0.4 mM. Filling the reservoir and sealing the tubing circuit is conducted inside

an argon-filled glove box. The excitation energy is 200 nJ at maximum temporal overlap

and complete interference of all four excitation pulses. At an angle of 90◦ with respect

to the excitation direction, two microscope objectives with 0.25-NA (04OAS010, CVI

MellesGriot) collect the fluorescence light which is then guided into a 0.22-NA multi-

mode glass fiber (QP400-2-SR, Ocean Optics, core diameter 400 µm). The detection

of stray light is efficiently avoided by utilizing the 90◦ detection geometry in combina-

tion with a horizontal excitation beam polarization which is generated via a half-wave

plate after the AOPDF. For the detection of fluorescence spectra and confirmation of

the absence of any stray light (see also Fig. 4.9), we plug the fiber into a spectrometer

(HR 4000, Ocean Optics, not shown in Fig. 4.7). In order to perform multidimensional

experiments, the fiber is plugged into an avalanche photodiode (APD410x, Thorlabs).

The fluorescence is attenuated by an absorptive neutral density filter (FS-3R, Newport)

with OD = 1.8 to a suitable signal level to avoid artifacts stemming from saturation

of the APD. The analog fluorescence signal is finally digitized by a 14 bit 1 GS/s digi-

tizer card (ADQ14, Signal Processing Devices Sweden AB). The data presented in the

manuscript were averaged over four complete datasets. In Fig. 4.8, we show exemplarily

the fourth-order 1Q–0Q–1Q and the sixth-order 2Q–0Q–1Q 3D spectra resulting from

a single data set without averaging. The same plotting parameters were used as those

described in the captions of manuscript Figs. 4.3 and 4.5, respectively.
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Figure 4.8. 3D spectra obtained after a single measurement without averaging. (a) Rephasing 1Q–0Q–

1Q and (b) 2Q–0Q–1Q 3D spectra, generated by the sum of real-valued rephasing and nonrephasing

2Q–0Q–1Q contributions. Reproduced from Ref. [4].

It is evident that an excellent signal-to-noise ratio is achieved for the fourth-order

3D spectrum after only a single run, i.e., without any averaging. For the sixth-order

contribution that is much weaker, the noise is significantly higher compared to the four-

times averaged data in Fig. 4.5 of the manuscript. Nevertheless, relevant signal features

are already visible. This shows that it is indeed possible to obtain all fourth-order signals

in 8 min, while for the sixth-order signals additional averaging is helpful.

We want to turn now to a discussion regarding the sample stability and the effect

of its degradation on the acquired data. As a dianionic compound, TIPS–TAP2− is

extremely sensitive towards even traces of oxygen and moisture. Although care was

taken during preparation, i.e., flame-drying of the sample reservoir flask and assembly

of the tubing circuit inside the glove box, it was not possible to achieve stability of the

compound within the tubing circuit over several hours. We believe that either residual

traces of oxygen and moisture inside the tubing circuit or an insufficient sealing of the

latter caused the sample decay. Fluorescence spectra of TIPS–TAP2− in THF, taken

immediately before and after the multidimensional experiment and normalized to the

maximal value of the former are presented in Fig. 4.9. Both spectra are acquired by

using the same excitation energy. The fluorescence peaks at 603 nm and 656 nm feature

a well-resolved vibrational progression. We do not observe any scattered light of the ex-

citation spectrum which spans the region between 550 and 635 nm, peaking at 590 nm,

nor any additional fluorescence bands of possible decay products. Moreover, we do not

observe any additional peaks that do not belong to the dianionic species in all three-

dimensional (3D) spectra. Thus, we conclude that we measured the nonlinear response
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Figure 4.9. Fluorescence spectra of TIPS–TAP2− in THF. The spectra shown are measured immedi-

ately before (red) and after (blue) the three-dimensional experiment with the same excitation power

and normalized to the maximal value of the red curve. Reproduced from Ref. [4].

of TIPS–TAP2− selectively in our 3D experiment. We note further that fluorescence

detection here selectively captures the nonlinear signals from the highly-fluorescent di-

anion only, while in an approach using coherence detection, one cannot exclude signals

from non-fluorescent decay products.

The question arises if the sample degradation would affect the reconstruction of non-

linear signals. We will now discuss why our sampling scheme avoids to first order those

errors that might be connected with sample decay.

The most crucial criterion for extracting nonlinear contributions according to their

phase signatures by Eq. (4.1) in the manuscript is that the signal level should not drop

dramatically within the phase-cycling procedure for any particular given setting of time

delays. Hence, it would be detrimental if we had sampled the phase-cycling steps after

scanning the complete manifold of interpulse time delays. In our sampling scheme, how-

ever, we first acquire all the phase-cycling steps for any given combination of interpulse

delays before we change the latter to different settings. Due to the availability of shot-

to-shot pulse-shape modulation, acquiring a 125-step phase-cycling set takes 125 ms at

1 kHz repetition rate. This time scale is significantly smaller than the time scale on

which the sample degrades, so that the phase-cycling procedure is not compromised by

sample degradation.

We characterize the sample degradation during the measurement by recording several

“reference” data points, consisting of a repetition (for averaging) of a single, compressed,

but otherwise unshaped laser pulse. This reference measurement corresponds effectively

to setting all interpulse time delays and interpulse phase differences to zero. These

reference data are acquired at the beginning and the end of the full dataset as well

as before any population time increment. Thus, between two averaged reference data
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measurements, the 125-step phase cycling is conducted for all delay increments of τ and

t at a given, fixed T . The resulting reference data points are shown in Fig. 4.10.
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Figure 4.10. Reference measurements. The plot shows time-integrated fluorescence signals that were

acquired as reference data (by averaging over a repetition of a single laser pulse) during the multidi-

mensional experiment. Between any two reference points, 125 different phase-cycled data points for

each τ and t delay are acquired (not shown). Reproduced from Ref. [4].

In our specific case, analyzing the decay of the reference measurements, we find that

the signal changes on average by 3.5% between two reference measurements, so that the

claim of constant intensity for any given phase-cycling set is fulfilled up to that precision

throughout all τ and t combinations for any T , and the intensity decreases by less than

0.02% for a 125-step phase cycling protocol at any fixed τ and t combination.

The signal decays for instable samples throughout the sampling of T steps because

these are sampled last. The degradation acts then as an additional damping of the

actual dephasing dynamics of coherences that evolve during T . This has most effects

on the 0Q coherence dynamics which usually dephase within several picoseconds. The

sample decay then manifests as an additional broadening of the 3D line shapes along

the ωT axis in the 3D spectra. However, a broadening along ωT for 0Q coherences is

introduced anyway by the Hann window we applied in order to avoid truncation artifacts

from Fourier transform. Hence, this additional broadening by sample decay might be

present but it does not change the spectral position of 0Q features.

Finally, we point out that a sample decay over the course of the acquisition time is

not particular in any way to the present technique, but would rather occur with any

other approach. On the contrary, using the present shot-to-shot modulation technique,

the effect of sample degradation can be reduced as far as possible and thus facilitates

measurement of unstable species that are not amenable to analysis with conventional

means.
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4.5.2 Liouville Pathways Accessible by 125-fold Phase Cycling

1Q-0Q-1Q

(rephasing)

Fourth-order signal contributions

1Q-0Q-1Q

(nonrephasing)

1Q-2Q-1Q

Sixth-order signal contributions

1Q-1Q-1Q 2Q-0Q-1Q

(rephasing)

1Q-0Q-2Q

(rephasing)

2Q-0Q-1Q

(nonrephasing)

1Q-0Q-2Q

(nonrephasing)

2Q-1Q-1Q 1Q-1Q-2Q 2Q-1Q-2Q

1Q-3Q-1Q 2Q-3Q-1Q 1Q-3Q-2Q 2Q-3Q-2Q

E
n
e
rg
y

Figure 4.11. Double-sided Feynman diagrams for all signal contributions that can be accessed via

125-fold phase cycling. On the basis of a four-level system (top left), one exemplary diagram for each

fourth- and sixth-order nonlinear signal contribution is shown. The respective weighting factors β, γ,

and δ are denoted on the top of each diagram. Reproduced from Ref. [4].

We list double-sided Feynman diagrams [19] corresponding to Liouville pathways that

can be accessed by (1×5×5×5)-fold phase cycling in Fig. 4.11. For the sake of simplicity,
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we only show one exemplary diagram per nonlinear signal contribution that leaves the

system in an |e〉 〈e| population state after the final laser-field interaction. For that

purpose, we consider a simple four-level electronic system consisting of a ground state

|g〉, a one-quantum state (1Q) |e〉, a two-quantum state (2Q) |f〉, and a three-quantum

state (3Q) |t〉 (top left in Fig. 4.11). Each diagram is labeled at the top with the

weighting parameters β, γ, and δ which are needed for its extraction from the raw data

(via Eq. (4.1) of the main manuscript). Although all shown pathways exhibit a negative

sign according to the Feynman diagram rules [19], the real part of all sixth-order signals

is predominantly positive (with weak negative phase twists, see also Fig. 4.16). This is

due to the additional factor i2 from the perturbative expansion that must be multiplied

with each sixth-order diagram, as noted in the main manuscript.

We now point out some benefits of particular signals. With 125-fold phase cycling, one

is able to generate purely absorptive sixth-order 2Q–1Q (Fig. 4.5 in the main manuscript)

and 1Q–2Q 2D spectra (by adding the real parts of rephasing and nonrephasing contri-

butions), where 2Q population dynamics as well as 0Q coherence between 2Q states can

in principle be observed over T . Similarly as in the fourth-order regime, the sixth-order

1Q–2Q 2D spectrum may be less congested because the generation of 1Q coherences

is restricted to superpositions between the ground and the first electronic excited state

[29]. Sixth-order contributions may further probe 3Q coherences and how they couple

to other states of the excited-state manifold by the sixth-order 1Q–3Q–1Q, 2Q–3Q–1Q,

1Q–3Q–2Q, and 2Q–3Q–2Q contributions.3 In the latter one, as well as in the sixth-order

2Q–1Q–2Q 3D spectrum, the bottom projection of the 3D solid yields the nonrephasing

2Q–2Q 2D correlation spectrum that may indicate coupling within the 2Q manifold by

means of cross peaks.

4.5.3 Contamination of Fourth-Order Signals

A common fundamental assumption in third-order nonlinear spectroscopic experiments

employing coherent detection is that the third-order signals dominate over the higher

nonlinear orders (e.g., fifth-order signals). However, once fifth-order signals are present,

these contaminate the third-order signals. This results from the emission of the signal

of both nonlinear orders into the same phase matched direction, because one can in

principle add zero to the wave vector of any of the incident beams (e.g., 0 = k1–k1).

Due to the similar nature of phase matching and phase cycling, this effect is also expected

in our experiment, meaning that for any pulse, interaction phases of, e.g., 0 = ϕ1 − ϕ1

3The sixth-order contributions discussed in Chapter 2 correspond in principle to various 2D projections

of such 3D multiple-quantum response signals.
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can be added. As a result, fourth-order signals can be contaminated by sixth-order

signals, analogously to the case that third-order signals can be contaminated by fifth-

order ones. We have discussed the latter previously in the context of our development

of exciton–exciton-interaction 2D (EEI2D) spectroscopy [102]. In that work, we showed

that the contamination of third-order signals, due to exciton–exciton annihilation, for

example, can be characterized by separately and simultaneously measuring a fifth-order

EEI2D signal.

In the present work, we compare the absolute-valued signal magnitudes of the fourth-

order rephasing 1Q–0Q–1Q and sixth-order rephasing 2Q–0Q–1Q signals that we also

simultaneously measure and find that the sixth-order signal has only 4.96% of the magni-

tude of the fourth-order one. Hence, because the sixth-order signal is over one magnitude

weaker than the fourth-order one, any possible distortion would be at the 5% level or

lower.

Considering all the evidence enables us to assign the nominally labeled “fourth-order

spectra” indeed to result predominantly from the fourth-order nonlinear response.

4.5.4 Pathway Cancellation in the Fourth-Order Rephasing 1Q–0Q–1Q 3D

Spectrum

The rephasing 1Q–0Q–1Q signal can in essence be described by depicting the response

by double-sided Feynman diagrams which are shown in Fig. 4.12. Considering the phase

signature of the signal, ϕR1Q0Q1Q = −ϕ1 + ϕ2 + ϕ3 − ϕ4, there are four pathway types

Q1, Q2, Q3, and Q4 that can be constructed.

Cancellation

–i4ΦeQ3 +i4ΦfQ4–i4ΦeQ2

|evev|
|evgv|
|g0gv|
|g0ev|
|g0g0|

τ

T

t

–i4ΦeQ1

Figure 4.12. Double-sided Feynman diagrams describing rephasing 1Q–0Q–1Q Liouville pathways.

Each diagram is labeled according to its sign, where Φ denotes the pathway-specific fluorescence quan-

tum yield that depends on the finally-prepared population state (subscript e or f). Reproduced from

Ref. [4].

Here, the subscript “v” in the bra’s and ket’s denotes the quantum of vibrational

excitation, so that these pathway types can either be static (same vibrational quanta
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over the population time T ) or oscillating (different sets of vibrational quanta over T ).

The pathway types Q1 and Q2, both having a negative sign, end in a |ev〉 〈ev| population

and contain the |ev〉 〈gv| coherences that evolve over t. In contrast, pathway Q3 and

Q4 probe the |fv〉 〈ev| coherence dynamics over t. Hence, Q3 and Q4 would principally

manifest as excited-state absorption (ESA) contributions along ωt in a respective 3D

spectrum. However, these two pathways are opposite in sign. In the present case, fast

internal conversion (IC) leads to identical weights Φe and Φf of pathways Q3 and Q4,

respectively, because, if the system is left in a |fv〉 〈fv| population, also one photon is

emitted in the downward decay pathway |fv〉 → |ev〉 → |gv〉. Thus, ESA contributions

cannot be observed because of complete pathway cancellation. A similar situation is

also evident regarding the 1Q–2Q–1Q pathways in Fig. 4.4b of the main manuscript.

Consequently, pathways Q1 and Q2, to which the pathways in Fig. 4.3 of the manuscript

also belong, represent the pathway types that entirely express the signal.

4.5.5 Experimental and Simulated Fourth-Order Nonrephasing 1Q–0Q–1Q

3D Spectra

We provide an exemplary detailed pathway analysis on the fourth-order nonrephasing

1Q–0Q–1Q 3D spectrum in Fig. 4.13. In principle, this kind of analysis can be conducted

for every signal contribution that can be extracted from the raw dataset. Such a full

analysis of all signal contributions is, however, beyond the scope of this work. We ex-

tract the nonrephasing 1Q–0Q–1Q signal contribution from the raw data by employing

weights corresponding to its phase signature [29] of ϕNR1Q0Q1Q = +ϕ1−ϕ2 +ϕ3−ϕ4. In

order to discuss its peak positions, we choose the absolute-valued representation. The

experimental and simulated 3D spectra are displayed in Fig. 4.13a and b, respectively,

whereas corresponding double-sided Feynman diagrams are shown in Fig. 4.13c. We

do not consider diagrams involving the higher excited state because every negatively

signed excited-state absorption (ESA) pathway has a positively signed analogue [26]

which leads to destructive interference of these pathways due to the high internal con-

version rate as employed in the model. A similar situation is evident in the rephasing

1Q–0Q–1Q spectra (see also Sec. 4.5.4). In general, the 1Q–0Q–1Q pathways can further

be classified as either “static” or “beating”, depending on whether the dynamic evolu-

tion of a population density matrix element (highlighted in green) or a 0Q coherence

density matrix element (red and blue, corresponding to positive and negative frequency

shift, respectively) is probed over T .

Overall, the nonrephasing 1Q–0Q–1Q 3D spectrum shows a similar peak arrangement

as its rephasing analogue (Fig. 4.3 in the main manuscript). It features two diagonal
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(A, D) and two cross peaks (B, C) in the ∆~ωT = 0 plane. In contrast to the pos-

itively and negatively shifted 0Q peaks in the rephasing 1Q–0Q–1Q 3D spectrum of

the main manuscript (Fig. 4.3), in the nonrephasing 1Q–0Q–1Q 3D spectrum, a peak

E that is shifted by +0.17 eV on the 0Q axis appears above the diagonal peak D in

the (~ωτ ,∆~ωT , ~ωt) plane. However, it is so weak in magnitude that it can only be
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Figure 4.13. Fourth-order nonrephasing 1Q–0Q–1Q 3D spectrum of TIPS–TAP2− in THF. (a) Ex-

perimental 3D spectrum shown along with (b) the simulated 3D spectrum. Within both experimental
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and simulated 3D spectra, the energies of the levels |e0〉 (2.06 eV) and |e1〉 (2.23 eV) are indicated by

dashed black lines. Isosurfaces are drawn at 3.9, 12, and 35% of the maximal signal amplitude. Contour

lines of the 2D projections of the spectral solids are drawn at linearly spaced levels of the normalized

signal amplitude with an additional contour line at 0.05. The spectral volume inside the black cuboid,

which is centered around peak D, is isolated and shown on the right. There, isosurfaces are drawn at 40,

70, and 90% of the isolated maximal signal amplitude and the red dashed line denotes an energy shift

of +0.17 eV. (c) Possible double-sided Feynman diagrams that contribute to the signal. Non-oscillatory

density matrix elements are highlighted in green whereas oscillatory 0Q coherence is highlighted in

red and blue, according to positive and negative oscillation frequency, respectively. Certain pathways

are grouped under the letters A to E in order to label the respective features observed in the 3D

spectra. Non-contributing pathways, which involve a transition between |e0〉 and |g1〉, are crossed out.

Reproduced from Ref. [4].

visualized if we mask out the strong feature A at lower 1Q energies. Thus, we isolate

the voxels within the spectral volume that spans the region in the vicinity of peak D

(Fig. 4.13a and b, right) to make peak E visible. The latter reflects a superposition of

two pathways that probe 0Q coherence both in S0 and S1 (see diagrams Q13 and Q14 in

Fig. 4.13c). The amplitude of this peak is so low because the energies of the involved

electronic transitions are only poorly covered by the employed laser spectrum. Diagram

Q10 corresponds to an additional 3D peak which is expected to appear at a coordinate

of (~ωτ ,∆~ωT , ~ωt) = (2.06,−0.17, 2.06) eV, where the negative 0Q coherence shift cor-

responds to excited-state vibrational coherence. However, it is masked by the lineshape

of the dominating peak A.

Spectral filtering was shown to be a useful method to eliminate certain Liouville

pathways [222]. In our experiments, we did not utilize it on purpose. However, because

the laser spectrum is blue-shifted from the main absorption band, some pathways are

also eliminated. This means, because the laser spectrum does not cover the energy of the

transition between |e0〉 and |g1〉 (1.89 eV), pathways that involve this transition do not

contribute to the signal. Apparently, this mostly affects beating pathways. We indicate

this by red crosses in Fig. 4.13c.

4.5.6 Description of the Simulation Model

For simulations, we solve the Lindblad master equation [21], which can be written in a

superoperator form,
∂

∂t′
ρ(t′) = −iL0ρ(t′)− LSOρ(t′). (4.2)

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



4.5 Supplementary Information 115

In terms of the density matrix ρ(t′), the first term on the right side of Eq. (4.2) is

L0ρ(t′) =
1

~
[H(t′), ρ(t′)] , (4.3)

and the second term reads

LSOρ(t′) =
∑
j

1

Tj
Ljρ(t′)L†j −

1

2
L†jLjρ(t′)− 1

2
ρ(t′)L†jLj, (4.4)

with Tj as the time being associated with a dissipation process that induces decoherence

by pure dephasing and population relaxation. The Lindblad operators Lj are defined as

Lj = a†nan for pure dephasing and Lj = a†nam with n 6= m for a population relaxation

process, where a† and a denote the creation and annihilation operators, respectively

[89, 225]. The superoperator formulation leads to a reduction of computational cost of

calculations with a large amount of external light fields, which is 421875 in the present

case.

The Hamiltonian H(t′) in Eq. (4.3) is given by

H(t′) = H0 +HI(t
′), (4.5)

where the time-independent Hamiltonian H0 is

H0 = ~ωn
N∑
n

|n〉 〈n| (4.6)

with energy eigenstates |n〉 and associated frequencies ωn. The interaction Hamiltonian

HI(t
′) is

HI(t
′) = γextE(t′)

∑
n 6=m

µnm (|n〉 〈m|+ |m〉 〈n|) , (4.7)

with the external field coupling strength γext = 0.3×10−3 and transition dipole moments

µnm between states |n〉 and |m〉. In Eq. (4.7), the external light fields E(t′) are four-pulse

sequences with pulse-specific phases ϕk and defined as

E(t′) = exp

(
−4ln2

τ 2
p

(t′ − t0)2

)
exp (iω0(t′ − γ0t0)− iϕ1)

+ exp

(
−4ln2

τ 2
p

(t′ − t0 + τ)2

)
exp (iω0(t′ − γ0(t0 + τ))− iϕ2)

+ exp

(
−4ln2

τ 2
p

(t′ − t0 + τ + T )2

)
exp (iω0(t′ − γ0(t0 + τ + T ))− iϕ3)

+ exp

(
−4ln2

τ 2
p

(t′ − t0 + τ + T + t)2

)
exp (iω0(t′ − γ0(t0 + τ + T + t))− iϕ4) ,

(4.8)
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where t0 is an offset (set to 100 fs), τ , T , and t are the interpulse delays, which are sam-

pled identical to the experimental parameters, ω0 is the central frequency (3.19 rad/fs,

corresponding to 2.10 eV), and τp is the pulse duration given by the intensity full width

at half maximum, which is set to 17 fs. The parameter γ0 is set to zero (fully rotating

frame), allowing to take larger sampling steps like in the experiment. We employ a six-

level energy level scheme, representing a model with three electronic states, where each

state is coupled to a single vibrational mode with an energy of 0.17 eV, assuming equal

vibrational frequencies in all electronic states (see Fig. 4.2b in the main manuscript).

The model neglects solvent and dynamic Stokes shift effects as well as possible singlet

fission mechanisms. It was previously reported that TIPS-pentacene exhibits singlet

fission in highly concentrated solutions [232]; however, even if we assume that such a

process could be present in the dianionic tetraaza-compound, it is improbable regarding

the comparably low concentration regime (0.4 mM) we used in our experiment.

For calculating the transition dipole moments, we estimate the Huang–Rhys factor

SHR of the 0.17 eV mode that is coupled to the S0 → S1 transition to be 0.6 from linear

absorption data. The transition dipole moments µnm between electronic level pairs |an〉
and |bm〉 with vibrational quanta n and m are thereby defined as [233]

µb0a0 = µ exp (−SHR/2) , (4.9)

µb1a0 = µb0a1 =
√
SHRµ exp (−SHR/2) , (4.10)

µb1a1 = (1− SHR)µ exp (−SHR/2) , (4.11)

with an “overall” transition dipole moment µ. In order to estimate SHR of the same mode

coupled to the S1 → S74 transition, we carry out a screening of SHR until best agreement

between the experimental and the simulated 1Q–2Q–1Q 3D spectrum is achieved, where

we vary SHR from 0.6 to 0.05 in steps of 0.05. A SHR of 0.05 reproduces the 3D solid best,

especially the amplitude of the shoulder above 4.10 eV along the 2Q axis (see Fig. 4.4

in the main manuscript). Further, we scale the strengths of the |en〉 → |fn〉 transitions

relative to the |gn〉 → |en〉 transitions according to the ratio of oscillator strengths f as

received from the TD–DFT calculation (see Sec. 4.5.7),

fS0→S1

fS1→S74

=
|µeg|2
|µfe|2

, (4.12)

which leads to µfe = 0.64 µeg. The resulting transition moments are summarized in

Table 4.2.

We employ a ladder-type population relaxation down to the global ground state |g0〉,
where we set the relaxation constant of |e0〉 to lower states to 6.1 ns according to the
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experimentally determined fluorescence lifetime of the molecule [220]. For internal con-

version, we assume a 100 fs relaxation time where we further estimate a 6 ps relaxation

time for vibrationally excited populations in each electronic state.

The general procedure for estimating the pure dephasing times is as follows. First,

a minimal four-level system with the levels |g0〉, |g1〉, |e0〉, and |e1〉 is considered and

the rephasing and nonrephasing 1Q–0Q–1Q signals are simulated and compared to the

experimental result. A manual adjustment of the pure 1Q dephasing time in steps of 10 fs

is then performed until best agreement with experimental data. This value is also used as

a starting value for the dephasing time of coherences between the |en〉 and |fn〉 as well as

the |gn〉 and |fn〉manifold. Then, a comparison between experimental and simulated 1Q–

2Q–1Q 3D spectra is used as an additional feedback for the iterative manual refinement of

the |fn〉 〈en| and |fn〉 〈gn| dephasing times, leading to the parameters given in Table 4.2.

All calculations were conducted on a CPU cluster with 72 cores and 1 TB RAM using

the parallel computing toolbox in MatLab R2018a, where the calculation for each pulse

sequence is conducted separately on a single core, so that a full simulation dataset is

generated in approximately 2 hours.

Table 4.2. Simulation parameters. Table showing transition moments and pure dephasing times be-

tween the states employed in the model. Reproduced from Ref. [4].

Transition moments

S0 → S1 S1 → S74 S0 → S74

µe0g0 0.74 µf0e0 0.62 µf0g0 0

µe1g0 0.57 µf1e0 0.14 µf1g0 0

µe0g1 0.57 µf0e1 0.14 µf0g1 0

µe1g1 0.27 µf1e1 0.59 µf1g1 0

Pure dephasing time constants

|en〉 〈gn| 90 fs |fn〉 〈en| 300 fs |fn〉 〈gn| 100 fs

4.5.7 Quantum-Chemical Calculations

In order to evaluate the origin of the two-quantum (2Q) resonance at 4.10 eV in the

2Q-associated 3D spectra, we performed quantum chemical calculations by using density

functional theory (DFT) and time-dependent density functional theory (TD–DFT). All

calculations were carried out with the Gaussian program package [234]. The ground state
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equilibrium structure of TIPS–TAP2− was optimized with DFT/CAM-B3LYP/6-311G**

and employing a polarizable continuum solvent model for tetrahydrofuran (THF) sol-

vation. TD–DFT calculations were performed on the optimized structure with BLYP

functional and 6-31+G* basis set for the first 100 vertical transitions (S0 → Sn). Sub-

sequently, S1 → Sn transitions were obtained by computing transition dipole moments

between excited states. In the S0 → Sn spectrum (Fig. 4.14), the S0 → S1 transition

energy (590 nm, 2.10 eV) is in good agreement with the experimentally observed peak

(602 nm, 2.06 eV). There are some higher excited states with nonzero oscillator strength.

However, at nearly twice the energy of the S0 → S1 transition (295 nm, 4.20 eV) there

is no transition with significant oscillator strength present in the calculation which is

analogous to experimental observations. Thus, this reflects that the experimentally ob-

served 2Q state at 4.10 eV is unlikely to be excited via a single one-photon transition

due to inversion symmetry of the molecule.

Figure 4.14. Calculated S0 → Sn (n = 1, ..., 100) absorption spectrum of TIPS–TAP2−. The spectrum

is broadened using Gaussian functions with a full width at half maximum of 0.33 eV. Reproduced from

Ref. [4].

In contrast, the S1 → Sn absorption spectrum (Fig. 4.15) features a transition into

S74 (579 nm, 2.14 eV) with relatively high oscillator strength at nearly the same energy

as the S0 → S1 transition. There is also a second optically bright transition at 1157 nm

(1.07 eV) which is not of relevance within our experiments because it is not covered by

the employed laser spectrum. Hence, we conclude that the 2Q resonance at 4.10 eV in

the 3D spectra origins from S74 which is only accessible via two consecutive one-photon
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transitions S0 → S1 → S74. The calculated oscillator strength of the direct S0 → S74

one-photon transition is zero which further underlines that S74 is a two-photon allowed

but a one-photon forbidden electronic state.

Figure 4.15. Calculated S1 → Sn (n = 2, ..., 100) absorption spectrum of TIPS–TAP2−. The spectrum

is broadened using Gaussian functions with a full width at half maximum of 0.33 eV. Reproduced from

Ref. [4].

4.5.8 Experimental and Simulated Rephasing Fourth- and Sixth-Order 2D

Spectra

Figure 4.16 shows a comparison between experimental (top row) and simulated (bottom

row) rephasing 1Q–1Q (left column) and rephasing 2Q–1Q (right column) 2D spectra

at T = 18 fs. While the rephasing 1Q–1Q spectrum has a predominant negative signal,

which corresponds to a fourth-order response, the rephasing 2Q–1Q spectrum is opposite

in sign because it stems from a sixth-order response. Both lineshapes are phase-twisted

and elongated along the diagonal line as typical for rephasing signals. While in the

fourth-order process, 1Q coherences are rephased to each other, in the sixth-order process

the 2Q coherence is rephased after conversion into a 1Q coherence, thus both the 1Q

and 2Q inhomogeneity are convoluted into the response [57]. We observe that the

antidiagonal linewidth is similar in both spectra, indicating that the 2Q states do not

contribute any substantial inhomogeneity in addition to the pure 1Q inhomogeneity.

When further comparing the spectra, the largely different Huang–Rhys factors between

different electronic states (see also Sec. 4.5.6) is reflected by means of different peak
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amplitudes of the sidepeaks in the 1Q and 2Q domain. These cross peaks correspond to

coupling to vibrationally excited states. The cross peak at (~ωτ , ~ωt) = (2.06, 2.23) eV in

the fourth-order signal is much lower in amplitude than the cross peak at (4.27, 2.23) eV.

At first glance, this seems contradictory though, however, one must take into account

that the laser spectrum has its maximum amplitude at 2.10 eV (see Fig. 4.2a in the

main manuscript). Thus, in the two-photon domain, 2Q features in the vicinity of twice

that energy will be enhanced compared to 2Q resonances at lower energies. This is

further increased because of an overall six-fold multiplication of the laser spectrum into

the signal.
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Figure 4.16. Rephasing fourth- and sixth-order 2D spectra of TIPS–TAP2− in THF. Experimental

(top) and simulated (bottom) real-valued fourth-order rephasing 1Q–1Q (left column) and sixth-order

rephasing 2Q–1Q (right column) 2D spectra, shown at T = 18 fs each. All spectra are normalized to their

respective maximal absolute value. Contour lines are drawn at identical values in both experimental and

simulated spectra. Black dashed lines denote the energies of the |ev〉 and |fv〉 states that are considered

in the model. Reproduced from Ref. [4].

4.5.9 Many-Particle Excitations

In a recent communication, it was shown that to achieve many-particle signal detec-

tion of non-interacting particles, phase-sensitive detection such as phase cycling, phase
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modulation or photon coincidence detection can be utilized [79]. In this respect, the

detection of fluorescence of N non-interacting particles, excited by a pair of pulses with

mutual phase ϕ21 = ϕ1 − ϕ2 and separated by delay T , is considered. By extracting,

for instance, from the detected fluorescence the part oscillating at ±ϕ21 over T , the dis-

cussion can be restricted to the observation of two-particle operators. Starting from a

single particle with a ground state |g〉 and an excited state |e〉, we can thus formulate a

two-particle system in a collective basis with the resulting energy-level scheme depicted

in Fig. 4.17a. In the language of Liouville-space pathways, the contributions oscillating

at ±2ϕ21 correspond to the pathways where both particles j and k are in the optical

coherence during T , which is expressed as the two-quantum coherence |ejek〉 〈gjgk| in

Fig. 4.17b–e. Within the two-particle basis, the two-particle projection operators can

be expressed as:

Aeejk = |ej〉 〈ej| ⊗ |ek〉 〈ek| , (4.13)

Aegjk = |ej〉 〈ej| ⊗ |gk〉 〈gk| , (4.14)

Agejk = |gj〉 〈gj| ⊗ |ek〉 〈ek| , (4.15)

Aggjk = |gj〉 〈gj| ⊗ |gk〉 〈gk| , (4.16)

b ca

d eE
n
e
rg
y

Figure 4.17. Many-particle excitation pathways. (a) Energy-level scheme of two non-interacting two-

level systems in a collective basis. (b–e) Double-sided Feynman diagrams that can be accessed by

extracting a signal contribution oscillating with +2ϕ21 over T by a two-pulse experiment with fluo-

rescence detection. Here, pathways that result from all possible two-particle projection operators are

drawn, where the respective fluorescence yield is indicated by a prefactor denoted at the bottom of each

diagram. Reproduced from Ref. [4].
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where the resulting double-sided Feynman diagrams are shown in Fig. 4.17b–e, respec-

tively. In Ref. [79], it is argued that the only operator observed is Aeejk which corresponds

to pathway Qee
jk in Fig. 4.17b. In that case, both particles are in their excited state which

results in a weight of two because of the emission of two photons by fluorescence. We be-

lieve that it depends on the type of detection which two-particle operators are observed.

While in the case of two-photon coincidence detection, contributions from only Qee
jk could

indeed be observed. In the case of conventional, non-coincidence, fluorescence detection

as in the present work, we also detect one-photon contributions, that is, Aeejk, A
eg
jk, and

Agejk all contribute. Depicting the respective parts of the response by Liouville-space

pathways, we find that while Qee
jk contributes with +2, Qeg

jk and Qge
jk contribute each by

−1 (Qgg
jk does not contribute at all because Aggjk projects to the ground state of both

particles which does not generate any fluorescence). As a result, the pathways cancel

each other, leaving no contribution from the multi-particle states.4 In Ref. [79], this

issue is addressed in the discussion in the last paragraph, arguing that the two-particle

contribution does not affect the one-particle fluorescence. Our argumentation is not in

contradiction with this statement; we rather argue that one has to consider all observable

two-particle operators and not select just one of them.

The assertions made above can directly be transferred to the case of our sixth-order

signals where the respective diagrams would display extended versions in terms of ad-

ditional delays and pulses of those depicted in Fig. 4.17b–d. Formulating, e.g., the

sixth-order rephasing 2Q–0Q–1Q pathways by employing a collective basis and the two-

particle projector Aeejk, the sign of the resulting pathway would be negative (that is,

because of four interactions from the right in the corresponding double-sided Feynman

diagrams, giving an initially positive sign which is then multiplied by the prefactor of

i6 = −1 from the perturbative expansion). In our experiment, however, we observe a

positive phase in the real part of the sixth-order signals which can only be explained by

considering single-particle excitations, as it is displayed by the double-sided Feynman

diagram of Fig. 4.6d of the main manuscript. Moreover, for our simulations we explic-

itly formulate our model in a single-particle basis and use parameters from TD–DFT

calculations that confirmed the presence of a single-particle doubly excited state |f〉.
Regarding the excellent agreement with the simulation (see manuscript Fig. 4.5), we

4Kühn, Mančal and Pullerits concluded one year later that a similar pathway cancellation effect leads

to vanishing cross peaks in the nonrephasing 1Q–0Q–1Q signal. They considered the example of

two independent chromophores with different energies of their singly excited states [77]. In the

present case, however, we consider 2Q-type signals, such as the 2Q–0Q–1Q signal, which are cross-

peak signals. Thus, as a general conclusion, all cross-peak signals vanish for independent two-level

chromophores.
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conclude that the single-particle model is fully valid.

In conclusion, many-particle excitations do not contribute to the signals we acquired

in our experiment because of complete cancellation of pathways corresponding to the

complete manifold of two-particle projection operators. Thus, our signals must stem

from microscopic quantum coherence of individual molecules that can be described in a

single-particle basis as it is treated in the main manuscript.

4.5.10 Cancelling Sixth-Order Rephasing 2Q–0Q–1Q Pathways

We show double-sided Feynman diagrams of the rephasing 2Q–0Q–1Q process that probe

0Q coherence within the 2Q state over T in Fig. 4.18. It is evident that each positive

diagram has an oppositely signed pendant. These two diagrams only differ in their final

population state. As noted in the main manuscript, internal conversion from the 2Q-

excited states to the 1Q-excited states leads to Φe = Φf , meaning that each diagram

contributes with equal magnitude to the signal. Thus, both the dynamic evolution of

the |f1〉 〈f0| (highlighted in red) and |f0〉 〈f1| (highlighted in blue) coherences cannot be

probed because the underlying pathways cancel in pairs. This is also valid for diagrams

that contain the population density matrix elements |f0〉 〈f0| and |f1〉 〈f1| over T (not

shown).5

–i6FeQ1

Cancellation Cancellation

+i6FfQ2
–i6FeQ3 +i6FfQ4

Figure 4.18. Cancelling sixth-order diagrams. Double-sided Feynman diagrams are displayed of the

sixth-order rephasing 2Q–0Q–1Q process that include 0Q coherence between vibrational levels of the

2Q state (highlighting in red and blue denotes positive and negative oscillation frequency, respectively).

Due to internal conversion, the pathway-specific quantum yields are Φe = Φf , so that the diagrams Q1

and Q2 as well as Q3 and Q4 cancel in pairs. Reproduced from Ref. [4].

5The situation is different in case of ultrafast exciton–exciton annihilation in a molecular dimer, which

leads to the emergence of an additional pathway including the annihilation dynamics of the biexciton

state, as further discussed in Chapter 5.

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



124 Multiple-Quantum 3D Fluorescence Spectroscopy

4.5.11 Simulated Fourth- and Sixth-Order 0Q Transients

In order to evaluate the phase-shifted 0Q coherence dynamics from fourth-order rephas-

ing 1Q–0Q–1Q and sixth-order rephasing 2Q–0Q–1Q contributions in Fig. 4.6 of the

main manuscript, we show the respective result from a simulation in Fig. 4.19, where

we employed 43 steps along T in order to receive higher-resolved transients. The tran-

sients were taken at above-diagonal cross-peak positions in the 1Q–1Q and 2Q–1Q 2D

projections of the 3D contributions, which is identical to those positions taken in the

experimental ones. The same oscillation period ≈24 fs and the π phase shift between the

transients of different orders are in excellent agreement with experimental observations.
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Figure 4.19. Simulated fourth- and sixth-order 0Q coherence dynamics of TIPS–TAP2−. The real-

valued 0Q coherence signatures over T which are received from (a) the simulated fourth-order rephasing

1Q–0Q–1Q
(
p̃(4)
)

and (b) sixth-order rephasing 2Q–0Q–1Q contributions
(
p̃(6)
)

show a π phase shift.

Reproduced from Ref. [4].
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Chapter 5

Fluorescence-Detected

Exciton–Exciton-Interaction

Two-Dimensional Spectroscopy

Interactions between photoexcited charge carriers influence the conversion efficiency of

light into electrical energy. Under high irradiance, multiple excitons form within a

complex, they diffuse through the system and when they meet, they may annihilate,

leading to less excitons in the system. This process, also known as exciton–exciton

annihilation, poses a loss mechanism that reduces efficient light harvesting. Spectro-

scopic characterization of these multiexciton-related dynamics is challenging, since sig-

nals from single-exciton dynamics strongly contribute to the nonlinear response. In this

respect, coherently detected exciton–exciton interaction two-dimensional (EEI2D) spec-

troscopy has proven to be suitable to isolate signals stemming from the dynamics of

exciton–exciton annihilation. Nonetheless, this technique has the drawback that ultra-

fast annhilation events may be obscured by early-time coherent artifacts and nonresonant

response. In this chapter, a novel approach to EEI2D spectroscopy is introduced that

employs fluorescence detection. This fluorescence-detected EEI2D (FDEEI2D) spec-

troscopy is suitable to directly temporally resolve sub-100 fs annihilation dynamics due

to the exclusion of nonresonant signals. The developed approach is based on a specific

post-processing routine of two different sixth-order nonlinear signals that are acquired

by four-pulse sequences with 125-fold phase cycling. It is investigated how annihilation

dynamics manifest in sixth-order nonlinear signals. After introducing the theoretical

concept, FDEEI2D spectroscopy is experimentally demonstrated by measuring ultrafast

exciton–exciton annihilation in a squaraine heterodimer. It is shown that the obtained

results agree well with that of a coherently detected EEI2D experiment.
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5.1 Introduction

5.1.1 Exciton–Exciton Annihilation

Under high light irradiance, the interaction between multiple excitons poses an impor-

tant aspect for light-harvesting systems, both for natural complexes and for their artifical

imitator devices. This is because these interactions strongly affect the energy transfer

dynamics and, in turn, how efficiently photon energy is converted into electrical energy

[102, 235]. Once multiple excitons are generated due to high light irradiance, the inter-

action between these excitons depends, among other factors, strongly on the coupling

between the individual system subunits, the degree of exciton mobility as well as the

spatial dimensions of the system [66, 102]. We have seen in Chapter 3 on the example

of confined nanosystems, that this interaction can be quasi-static, that is, the excitons

(which are generated within the same spatial volume) form a long-living, stable particle

complex immediately after photoexcitation, which can be characterized by an interac-

tion energy. However, in more extended systems in which multiple absorbing units are

in close proximity to each other, like molecular aggregates, there is a probability that

multiple excitons may be photogenerated in a large distance to each other. These exci-

tons may then diffuse through the system and when they meet, they interact and may

ultimately annihilate, leading to less excitons in the system. This interaction process,

also known as exciton–exciton annihilation (EEA), predominantly poses a mechanism

that reduces efficient conversion of excitation quanta into electrical energy. In contrast

to Chapter 3, this chapter thus focuses on the dynamics of the interaction between

multiple excitons, rather than the interaction strength.

Microscopically, the process of EEA is described as the fusion of at least two excitons

with the direct consequence of resonant energy transfer to a single site, followed by

nonradiative relaxation within this site [236]. This process can be illustrated by a dimer

consisting of two molecules “A” and “B” in the basis of localized states, which describe

excitations residing on specific molecular sites (site basis), as shown in Fig. 5.1, left

[7, 235]. Each molecule has a ground state |gN〉, a singly excited state |eN〉 and a

higher excited state |fN〉, where N ∈ {A,B}. As we will focus on heterodimers in

this chapter, let us consider that A and B correspond to different molecules, such as the

squaraines “SQA” and “SQB,” respectively, and thus have distinct transition frequencies.

Now we consider that both sites are simultaneously excited to their |eN〉 states (e.g.,

by absorption of two photons). As there is an interaction between the molecules, the

presence of one exciton has a direct effect on the other one [102]. Depending on the size

of the interaction radius and the spatial extent of the system, there might be a diffusion
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process before the actual exciton fusion process (not shown). However, in case of our

small heterodimer, the diffusion process is not existent and the fusion process can be

considered as an instantaneous event [237]. Once the excitons fuse, the total excitation

energy is resonantly transferred to an |f〉 state of one of the molecules, depending on

which site the fusion took place, whereas the other molecule is de-excited to the ground

state. In Fig. 5.1, we exemplarily consider that energy is transferred to molecule A.

The annihilation process is then completed by nonradiative relaxation within the single

site, arriving at just one singly excited molecule (Fig. 5.1, middle). Note that, in an

exciton–exciton annihilation process, an excitation quantum is not annihilated in the

literal sense of the wording, but rather dissipated into heat.

1.) Fusion 2.) Nonradiative
 relaxation

Site basis  Exciton basis

Figure 5.1. Exciton–exciton annihilation in a heterodimer. Two covalently coupled molecules A (blue)

and B (red) can be described by using the localized site basis with electronic states |gN 〉, |eN 〉, and |fN 〉
(left). Exciton–exciton annihilation can then be depicted as a two step process – first, two excitations,

which reside on different molecules, instantaneously fuse. Resonant energy transfer leaves one molecule

in a high excited state, while the other one is transferred to its ground state (black arrows). Second,

nonradiative relaxation (gray dashed arrow) leads to one remaining exciton. The same process can be

depicted in the delocalized exciton basis (right), where |a〉 and |b〉 denote single-exciton states and greek

letters signify doubly excited states. In the exciton basis, the biexciton state |ε〉 transfers energy to the

high excited state |α〉, followed by internal conversion into |a〉.

For purposes of spectroscopy and theoretical modeling, it is adequate to use the basis

of delocalized exciton states (exciton basis), as we will do in the following. Let us again

consider the same heterodimer as above, but we now distinguish between a single ground

state |g〉, the singly excited manifold consisting of |a〉 and |b〉 as well as the doubly

excited manifold which comprises |α〉, |β〉, and |ε〉 (Fig. 5.1, right). In the exciton

basis, the states |a〉 and |b〉 are single-exciton states with predominant localization on

a specific site, the extent of which is determined by the coupling strength between the

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



128 Exciton–Exciton-Interaction 2D Fluorescence Spectroscopy

molecules and the energy difference between the singly excited states of the monomers

[238]. Analogously, higher excited states with predominant localization on one of the

monomers are denoted by |α〉 and |β〉. In addition, the simultaneous excitation of both

sites gives rise to a delocalized biexciton state |ε〉. The exciton fusion and resonant

energy transfer step is then rather indicated by a single arrow that denotes an energy

transfer from the biexciton state to one of the states within the doubly excited manifold

[218]. Consecutive nonradiative relaxation (internal conversion) from the doubly to the

singly excited manifold then embodies exciton “loss” through dissipation.

On the one hand, such an effective loss of an excitation quantum can be viewed as

an undesired mechanism which reduces the conversion efficiency of light into electrical

energy, on the other hand, this mechanism can be considered as deliberately efficient

dissipation that down-regulates excitation caused by an undesirable excess of photons.

Nonetheless, one has to take into account that in natural light-harvesting complexes,

the annihilation of excitons takes place under rather “unnatural” conditions [239, 240].

Especially in such extended systems, however, it takes some time until some excitons

fuse, which is significantly determined by the exciton diffusion constant. Consequently,

by studying exciton annihilation dynamics, one can also ascertain quantitative informa-

tion about exciton migration [102, 239, 241]. From a general point of view, measuring

annihilation dynamics therefore allows us to derive structure–property relationships,

knowledge of which enables us to ultimately realize artificial, loss-free energy transfer on

a molecular scale. Essentially, characterizing the interactions between excitons is a key

competence that helps to understand how to get the most out of sunlight, something

nature has been doing with unprecedented efficiency for millions of years.

5.1.2 Measuring Annihilation Dynamics

As indicated in Fig. 5.1 (right), the key to measure exciton–exciton annihilation is to

probe the dynamical evolution of the biexciton state |ε〉. For that purpose, one needs

to interrogate a biexciton population. To accomplish this experimentally, the first step

is to create the biexciton population by four interactions with a light field (that is, by

two interactions from both the right and the left side on the ground-state population

density matrix element |g〉 〈g|). Second, in order to induce a detectable coherent signal

field, an additional interaction after some delay T is required. Thus, the lowest order of

nonlinearity needed for the direct observation of EEA is five.

Earlier spectroscopic studies about EEA usually involved pump–probe spectroscopy

[242–245]. In these experiments, the fifth-order biexciton-associated EEA dynamics

are measured indirectly, that is, as a signal contamination of the dominant third-order
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single-exciton-associated signal. This means, in the transient absorption spectra, EEA

manifests as an intensity-dependent component, which has a faster time constant than

the single-exciton lifetime [242, 245, 246].

An approach with enhanced selectivity is population-period transient spectroscopy

(MUPPETS) [247]. A MUPPETS experiment can be viewed as a fifth-order “pump–

pump/dump–probe” experiment, where the use of the additional “pump/dump” pulse

pair gives rise to two population times. In addition to the possibility to separate homo-

geneous and heterogeneous rate dispersion [248, 249], the use of two population times

allows one to separate single-exciton and biexciton dynamics [247]. However, since MUP-

PETS does not scan coherence times, it is not sensitive to the frequencies and spectral

correlations of the biexciton manifold. Moreover, the emergence of a MUPPETS signal

is not unique to EEA because pump–dump processes can not be excluded, and even

systems without biexciton states already give rise to a signal [102, 250].

As the most selective approach, one can employ fifth-order 2D spectroscopy to “spec-

trally” separate the EEA dynamics from the undesired single-exciton dynamics and to

access spectral correlations within the biexciton manifold. [7, 66, 102, 103, 241, 251].

The “spectral” discrimination is achieved by scanning a coherence time between the first

two pairs of light-field interactions, with which one can distinguish between 1Q and 2Q

excitation, whereas the latter is exclusive to the fifth-order signal.

The fifth-order excitation sequence is schematically shown in Fig. 5.2a. The first

pulse pair is separated by delay τ , followed by a third pulse delayed with T . The

first pulse interacts twice and prepares 2Q coherences of the doubly excited manifold

with the ground state, which oscillate at roughly two times the single-exciton energies

(Fig. 5.2b). Then, a biexciton (and/or doubly excited state) population is induced

by a second double-interacting pulse, and this population evolves over T (Fig. 5.2a,

yellow). In principle, it is also possible to create single-exciton populations (Fig. 5.2a,

light blue), however, it can be shown that the underlying pathways cancel each other

out [102, 103]. A subsequent single light-field interaction by k3 converts the population

into a 1Q coherence, that itself is radiative and thus emits the nonlinear signal during t,

which can finally be interferometrically measured by a local oscillator on a spectrometer.

According to the species of quantum coherences evolving over τ , T , and t, this fifth-order

signal can be classified as a 2Q–0Q–1Q-type signal. In particular, two fifth-order 2Q–

0Q–1Q signal contributions can be distinguished according to their wave vectors – the

rephasing 2Q–0Q–1Q contribution with −2k1 +2k2 +k3, and the nonrephasing 2Q–0Q–

1Q contribution with +2k1 − 2k2 + k3. In both contributions, the desired information

about EEA is contained within the evolution of the biexciton manifold over T .
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This work

Heshmatpour et al. 

125-fold phase cycling

Dostál et al. d)

c)

f)

–φ4

2Q–0Q–1Q (5th) 2Q–0Q–1Q (6th)a) e)

LO+k3 2k22k1 1| |1
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2| |2
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Figure 5.2. Accessing biexciton dynamics by higher-order 2D spectroscopy. (a) Scheme of the coher-

ently detected fifth-order 2Q–0Q–1Q signal. Each pulse interacts with a wave vector k. (b) Energy

level scheme of a system consisting of a ground state |g〉, a single-exciton manifold |1〉, and a biex-

citon manifold |2〉. Gray double arrows denote coherences whereas yellow and blue arrows signify

single-exciton and biexciton population transfer, respectively. Biexciton dynamics can experimentally

be measured by using (c) a pulse-shaper-assisted pump–probe geometry [102], where the fifth-order

signal is self-heterodyned with the third pulse, or (d) in a fully noncollinear geometry [251], where the

local oscillator (LO) is a separate pulse. (e) Scheme of the fluorescence-detected sixth-order 2Q–0Q–

1Q signal, which is the fluorescence-detected analog of the fifth-order 2Q–0Q–1Q signal. Here, each

pulse interacts with a phase ϕk. (f) The experimental approach developed in this work utilizes 125-fold

phase cycling of fully collinear four-pulse sequences and fluorescence detection to access the biexciton

dynamics. Adapted in part and modified from Ref. [2].

Experimentally, such fifth-order signals can be measured in a fully non-collinear ge-

ometry with heterodyne detection, as proposed by Brüggemann and Pullerits [252] and

implemented by Heshmatpour et al. [251] (Fig. 5.2c), or in a pump–probe geometry with

self-heterodyned detection, as experimentally realized by Dostál et al. [102] (Fig. 5.2d).

The pump–probe 2D approach offers the advantage of inherent phasing together with

the simultaneous acquisition of purely absorptive third- and fifth-order 2D signals. In

contrast, using a fully noncollinear setup, rephasing and nonrephasing signals must be

measured separately by altering the time ordering of the excitation pulses [61]. Further,

a phasing procedure is required to obtain the phase information of the signals. While

third-order signals are usually phased with aid of a separate pump–probe measurement,

it is more challenging to phase 2Q-associated signals [39] and in particular fifth-order

signals. Concerning the latter, one possible approach is to phase the coherently detected

2Q–0Q–1Q signal to a pump–dump–probe experiment [251]. Both the fully noncollinear
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and the pump–probe approach have the advantage that the fifth-order signal is highly

selective to EEA, that is, they feature background-free signatures [102, 103, 251]. As

a disadvantage, however, the detection of a coherent signal makes the methods prone

to contamination with nonresonant signals, which especially occur at early population

times.

In a similar fashion, one can seek to access biexciton dynamics using fluorescence-

detected 2D spectroscopy. It was previously suggested to utilize time-gating of the

fluorescence stemming from fourth-order 1Q–0Q–1Q signal contributions to isolate the

annihilation dynamics [76, 218]. However, since 2Q coherences can not be probed, such

a signal does not facilitate one to directly spectrally resolve the manifold of doubly

excited states, but especially couplings within this manifold pose an important aspect

for EEA. Moreover, in view of the moderate fluences needed to induce EEA, fourth-

order signals can be contaminated by sixth-order signals which generally complicates

the interpretation.

Analogous as in the case with coherent detection, it can be expected that selective

information about EEA can be accessed by isolating the higher-order response using

fluorescence detection. Thus, the sixth-order 2Q–0Q–1Q signal (Fig. 5.2e) is expected

to contain analogous information like the fifth-order 2Q–0Q–1Q signal [4]. The close

analogy of these signals becomes clear when comparing Figs. 5.2a und 5.2e. Both exper-

iments probe the same coherences and populations and merely differ in the final signal

generation and detection. We can also distinguish between the rephasing and nonrephas-

ing signals via their phase signatures −2ϕ1 + 2ϕ2 + ϕ3 − ϕ4 and +2ϕ1 − 2ϕ2 + ϕ3 − ϕ4,

respectively. Indeed, because the sixth-order 2Q–0Q–1Q signal also probes doubly ex-

cited populations, the prerequisites for the measurement of EEA are in principle given.

However, as it will be analyzed in the next section, it turns out that the sixth-order

2Q–0Q–1Q signal has insufficient selectivity towards EEA, as this signal contains a

“background” which contains single-exciton dynamics as well. Nonetheless, by using

the approach developed in the previous chapter, we take advantage of the fact that with

125-fold phase cycling, we can measure different 2Q-associated sixth-order signals under

identical experimental conditions (Fig. 5.2f). This provides the foundation to develop

an approach which will be introduced as “fluorescence-detected exciton–exciton inter-

action 2D” (FDEEI2D) spectroscopy in the following. It will be shown that FDEEI2D

spectroscopy eliminates unwanted contributions – including nonresonant signals – by

subtracting specific sixth-order signals to ultimately yield EEA-exclusive information.

Noteworthily, FDEEI2D spectroscopy only operates with a single excitation beam, which

poses a significant technical advantage.
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In the next section, the theoretical concept of FDEEI2D spectroscopy is discussed.

The approach is introduced as a means to study ultrafast EEA in molecular dimers.

FDEEI2D spectroscopy is then experimentally demonstrated in Sec. 5.3 on a squaraine

heterodimer. The signal obtained is verified with aid of the previously established ap-

proach of coherently detected EEI2D spectroscopy. In fact, coherently detected EEI2D

and FDEEI2D spectroscopy are experimentally closely related to each other, as both

techniques require pulse shaping (compare Figs. 5.2d and 5.2f). Hence, both experi-

ments are performed within a single setup using common beam paths and optics.

5.2 Theoretical Concept

In this section, we shall analyze the sixth-order 2Q–0Q–1Q signal in more detail and, in

this respect, to what extent EEA contributes to this signal. Then, we discuss how we

can isolate the EEA dynamics by the construction of the FDEEI2D signal. To this end,

a mathematical expression for the FDEEI2D signal is derived.

As we have seen in Chapter 1, the use of response functions allows us to dissect

a nonlinear signal contribution into the individual excitation pathways. This in turn

enables one to trace the dynamical evolution of concatenated density matrix elements

resulting from a multipulse excitation field. Let us now dissect the rephasing sixth-order

2Q–0Q–1Q signal (Fig. 5.2e). Let us further consider a heterodimer in the exciton basis,

which was introduced in Fig. 5.1. For the sake of simplicity, we use the manifold notation

“|2〉” as a generalization of the doubly excited states, i.e., |2〉 ∈ {|α〉 , |β〉 , |ε〉}, while

retaining the individual states |a〉 and |b〉 of the single-exciton manifold (Fig. 5.3a). We

assume weak electronic coupling between the monomers, which leads to µ2b = µag (solid

black arrow) and µ2a = µbg (dotted black arrow), where µ denotes the transition dipole

moment. EEA (yellow arrows) occurs via the two channels |2〉 → |a〉 and |2〉 → |b〉,
both having the rate kA, whereas transfer between the single exciton states, |a〉 → |b〉
(light blue arrow), is described by the rate kT .

Based on this model system, we consider only those pathways that feature population

dynamics. This helps us to significantly reduce the number of pathways without ne-

glecting essential pathway types. Let us further assume that the fluorescence quantum

yield ΦN (N ∈ {a, b, 2}) of each pathway is unity. This assumption is also justified for

those pathways that end in the |2〉 manifold due to fast annihilation of the biexciton

state (and internal conversion of the higher excited states), which is expected in a dimer

[7, 218]. The resulting seven pathways are shown in Fig. 5.3b–d. Note that, in addi-

tion those shown in Fig. 5.3c–d, there are in principle pathways in which +ϕ3 could
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interact from the left side, i.e., |a〉 〈a| +ϕ3−−→ |2〉 〈a| and |b〉 〈b| +ϕ3−−→ |2〉 〈b|. However, as

discussed in Sec. 4.5.10, pathways that contain biexciton–single-exciton coherences, such

as |2〉 〈a| and |2〉 〈b|, always occur in oppositely signed pairs and, since the weights of

these pathways are identical due to fast annihilation, these pathways cancel.

The pathways shown in Fig. 5.3 can be grouped into three categories according to

type of dynamics which evolves over the population time T . Pathways that feature the
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Figure 5.3. Dissecting the rephasing sixth-order 2Q–1Q signal. (a) Effective energy level scheme of a

weakly coupled heterodimer with ground state |g〉, single-exciton states |b〉 and |a〉, and a doubly excited

(biexciton) state |2〉. Transitions between the states with dipole moments µag (µbg) are indicated by

solid (dotted) black arrows. Exciton–exciton annihilation (yellow arrows) occurs with rate kA whereas

energy transfer between the single-exciton states (light blue arrow) has the rate kT . The contributing

pathways can be grouped into (b) ground-state bleach (GSB) pathways, (c) pathways that contain

single-exciton dynamics (SED), and pathways which probe exciton–exciton annihilation (EEA). The

sum over each pathway group is illustrated in 2D frequency space at T = 20 fs (real part). On the

right, the waiting time dynamics of the individual pathways are plotted. Adapted in part and modified

from Ref. [2].
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dynamics of the ground-state population over T are ground-state bleach (GSB) pathways

(Fig. 5.3b). Pathways that feature single-exciton dynamics (SED) are shown in Fig. 5.3c

(highlighted in light blue). Finally, we have the EEA pathways (Fig. 5.3d). There are

two EEA pathways because of the two annihilation channels (Fig. 5.3a, yellow arrows).

Let us now formulate these pathways mathematically. As a starting point, we can

utilize the 2Q–1Q response function in the impulsive limit, which was introduced in

Eqs. (1.24)–(1.26) in Sec. 1.2.3, and incorporate the population time dynamics. Under

the assumption that the surrounding bath has no memory between successive time in-

tervals, i.e., the dynamics occurring over T do not influence the line shapes,1 we can

factorize the response function. Accordingly, we can formulate each rephasing 2Q–0Q–

1Q pathway, for which we shall use the shorter notation “2Q–1Q” in the following, as

a product of a rephasing sixth-order 2Q–1Q response function, which describes the dy-

namics of the coherences over τ and t, and a propagator Ujjkk(T ), which describes the

dynamics between states k and j over T . If we neglect inhomogeneous broadening, which

means that the line shape is only governed by one- and two-exciton pure dephasing rates

γ2g and γ1g, respectively, we obtain the general expression

Q2Q–1Q(t, T, τ) = Ujjkk(T )×±ΦNΘ(t)Θ(τ)

(
i

~

)6

µnagµ
m
bg

× e−i(2ω0−ω2g)τei(ω0−ω1g)te−γ2gτe−γ1gt, (5.1)

where ω2g and ω1g are the one- and two-exciton transition frequencies, respectively. In

our example, we shall employ the individual one-exciton frequencies ωag/2πc = 15.2 ×
103 cm−1 and ωbg/2πc = 13.9 × 103 cm−1, whereas the dephasing rates are set to

γag/2πc = γbg/2πc = 0.3 × 103 cm−1 = 0.5γ2g/2πc. Then, we can recast Eq. (5.1) into

2D frequency space by using a 2D Fourier transformation,

S2Q–1Q(ωτ , T, ωt) =

∫∫
dτdt Q2Q–1Q(t, T, τ)eiωτ τeiωtt. (5.2)

An analytical solution to the integral of Eq. (5.2) is a 2D Lorentzian function [17, 27, 43],

S2Q–1Q(ωτ , T, ωt) = Ujjkk(T )
µnagµ

m
bg

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ω1g)− γ1g

. (5.3)

Henceforth, we consider rephasing 2Q–1Q 2D spectra which propagate with Ujjkk(T ).

By formulating Eq. (5.3) for each pathway of Fig. 5.3b–d explicitly, we obtain

S2Q–1Q
GSB1 (ωτ , T, ωt) = 4Θ(T )

µ4
agµ

2
bg

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωag)− γag
, (5.4)

1A consequence of this assumption is that spectral diffusion can not be described [17]. Such an

assumption, however, is justified if the bath reorganization occurs on a time scale much longer than

kA and kT .
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S2Q–1Q
GSB2 (ωτ , T, ωt) = 4Θ(T )

µ4
bgµ

2
ag

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωbg)− γbg
, (5.5)

S2Q–1Q
SED1 (ωτ , T, ωt) = 4Θ(T )e−kTT

µ4
agµ

2
bg

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωag)− γag
, (5.6)

S2Q–1Q
SED2 (ωτ , T, ωt) = 4Θ(T )

(
1− e−kTT

)
×
µ4
bgµ

2
ag

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωbg)− γbg
, (5.7)

S2Q–1Q
SED3 (ωτ , T, ωt) = 4Θ(T )

µ4
bgµ

2
ag

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωbg)− γbg
, (5.8)

S2Q–1Q
EEA1 (ωτ , T, ωt) = −4Θ(T )

[
kA

−kA + kT

(
e−kAT − e−kTT

)]
×
µ4
agµ

2
bg

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωag)− γag
, (5.9)

S2Q–1Q
EEA2 (ωτ , T, ωt) = −4Θ(T )

[
1− e−kAT +

kT
−kA + kT

(
1− e−kAT

)
− kA
−kA + kT

(
1− e−kTT

)]
×
µ4
bgµ

2
ag

~6

1

i(−ωτ + ω2g)− γ2g

× 1

i(ωt − ωbg)− γbg
, (5.10)

where the prefactors of four are a result of time ordering. Note that S2Q–1Q
GSB1 , S2Q–1Q

GSB2 , and

S2Q–1Q
SED3 propagate stationary with unity throughout positive T delays, that is, Ubbbb(T ) =

Ugggg(T ) = Θ(T ), which is due to the life time of the lowest excited state |b〉 (and in turn

the repopulation time of the ground state) being usually a few nanoseconds [253]. The

propagators of S2Q–1Q
EEA1 and S2Q–1Q

EEA2 result from the solution of coupled rate equations,

since the populations |a〉 〈a| and |b〉 〈b| depend both on the rates kT and kA.

The sum over each pathway group is illustrated in 2D frequency space at T = 20 fs

on the right side in Fig. 5.3b–d, accompanied with plots of the waiting time propagators

of each individual pathway. It is evident that the 2Q–1Q signal in principle holds

the information about the EEA dynamics (Fig. 5.3d), however, this information is on

top of an oppositely signed background of other pathways which contain single-exciton

dynamics as well (5.3b and c). Note that oscillatory SED pathways, i.e., those that

oscillate due to coherence between |a〉 and |b〉 are neglected here, however, these would

also superimpose with the EEA dynamics. Altogether, these circumstances make it

difficult to infer the annihilation time from the 2Q–1Q signal kinetics. In other words,

the 2Q–1Q signal is annihilation sensitive but not annihilation selective. Hence, one has

to seek for a strategy to eliminate the GSB and SED pathways from the 2Q–1Q signal.

As shown in Chapter 4, the 125-fold phase-cycling protocol gives access to many other
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sixth-order signals. Are there any other signals that feature a higher degree of selectivity

towards EEA? The answer is no, since the sixth-order 2Q–1Q signal is the only one that

probes biexciton populations over T . Nonetheless, let us focus on the “inverted” 2Q–1Q

signal – the 1Q–2Q signal. It is “inverted” in a sense that the phase-specific interaction

pattern, −ϕ1 + ϕ2 + 2ϕ3 − 2ϕ4, is exactly the reverse of that of the 2Q–1Q signal.

In the sixth-order 1Q–2Q process, the first two pulses contribute both by a single

interaction, which only gives rise to ground- or single-exciton state populations evolving

over T . The 1Q–2Q signal can thus be described by only the five pathways shown in

Fig. 5.4. Here, we have only GSB (Fig. 5.4a) and SED pathway types (Fig. 5.4b). Similar

to above, we can formulate each pathway in 2D frequency space:

S1Q–2Q
GSB1 (ωτ , T, ωt) = 4Θ(T )

µ4
agµ

2
bg

~6

1

i(−ωτ + ωag)− γag
× 1

i(ωt − ω2g)− γ2g

, (5.11)

S1Q–2Q
GSB2 (ωτ , T, ωt) = 4Θ(T )

µ4
bgµ

2
ag

~6

1

i(−ωτ + ωbg)− γbg
× 1

i(ωt − ω2g)− γ2g

, (5.12)

S1Q–2Q
SED1 (ωτ , T, ωt) = 4Θ(T )e−kTT

µ4
agµ

2
bg

~6

1

i(−ωτ + ωag)− γag
× 1

i(ωt − ω2g)− γ2g

, (5.13)

S1Q–2Q
SED2 (ωτ , T, ωt) = 4Θ(T )

(
1− e−kTT

)
×
µ4
agµ

2
bg

~6

1

i(−ωτ + ωag)− γag
× 1

i(ωt − ω2g)− γ2g

, (5.14)

S1Q–2Q
SED3 (ωτ , T, ωt) = 4Θ(T )

µ4
bgµ

2
ag

~6

1

i(−ωτ + ωbg)− γbg
× 1

i(ωt − ω2g)− γ2g

. (5.15)

The sum over the individual pathway groups is illustrated at T = 20 fs on the right side

of Fig. 5.4. It is evident from the propagators of the individual pathways, which are also

plotted in Fig. 5.4 (right), that the 1Q–2Q signal is completely insensitive to EEA.

Nonetheless, note the close relation between the 2Q–1Q and 1Q–2Q pathways. At first

glance, only the roles of τ (ωτ ) and t (ωt) seem to be interchanged. Most importantly,

the propagators of the GSB and the SED pathways of both signals are identical [compare

Eqs. (5.4)–(5.8) with Eqs. (5.11)–(5.15), and the right sides of Figs. 5.3 and 5.4]. It is

precisely the latter which shall be exploited to eliminate the GSB and SED pathways by

subtracting the 1Q–2Q signal from the 2Q–1Q signal. Before we do so, however, we have

to perform an appropriate procedure to “visually transform” the 1Q–2Q 2D spectrum

to match the 2Q–1Q representation, which is described in the following.

The concept is essentially based on the fact that the inversion of an inverted process

again corresponds to the process itself. To illustrate this, let us consider the sixth-order

2Q–1Q process, which is schematically shown in Fig. 5.5a, top. The sixth-order 1Q–2Q

process (Fig. 5.5b, top left), which is formally the inversion of the 2Q–1Q process, can
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Figure 5.4. Dissecting the rephasing sixth-order 1Q–2Q signal. The contributing pathways can be

grouped into (b) ground-state bleach (GSB) pathways and (b) pathways that contain single-exciton

dynamics (SED). The sum over each pathway group is illustrated in 2D frequency space at T = 20 fs

(real part). On the right, the waiting time dynamics of the individual pathways are plotted. Adapted

in part and modified from Ref. [2].

effectively be transformed into the 2Q–1Q process (Fig. 5.5b, top right) by inverting the

order of the phase-specific interactions (red double arrows). To achieve the same effect

in frequency domain (bottom panels of Fig. 5.5a and b), we can employ a mathematical

operation Ô that flips the 1Q–2Q spectrum along the diagonal (that is, exchanging ωτ

and ωt) and performs a complex conjugation. The complex conjugation is necessary to

resolve the mismatch of the coherence phases between the two sixth-order signals. In

general terms, the operation Ô acting on S1Q–2Q can be formulated as

Ô
(
S1Q–2Q(ωτ , T, ωt)

)
= Ô

(
Ujjkk(T )

µnagµ
m
bg

~6

1

i(−ωτ + ω1g)− γ1g

× 1

i(ωt − ω2g)− γ2g

)
,

= Ujjkk(T )
µnagµ

m
bg

~6

1

i(ωt − ω1g)− γ1g

× 1

i(−ωτ + ω2g)− γ2g

, (5.16)

which apparently yields an expression corresponding to that of the 2Q–1Q representation

of Eq. (5.3). Note that the propagators are real valued, i.e., Ujjkk(T ) = U∗jjkk(T ).

Finally, we can subtract the thus-transformed 1Q–2Q signal from the 2Q–1Q signal

to yield the FDEEI signal,

SFDEEI(ωτ , T, ωt) = S2Q–1Q(ωτ , T, ωt)− Ô
(
S1Q–2Q(ωτ , T, ωt)

)
. (5.17)

By formulating S2Q–1Q and S1Q–2Q as the sums over Eqs. (5.4)–(5.10) and Eqs. (5.11)–

(5.15), respectively, the following expression for the integrated FDEEI signal amplitude
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can be constructed:

SFDEEI(T ) ∝ −4
(
µ4
agµ

2
bg + µ2

agµ
4
bg

)
+ 4

(
µ4
agµ

2
bg − µ4

bgµ
2
ag

)(
1 +

kA
−kA + kT

)
e−kTT

+ 4µ2
bgµ

2
ag

[
µ2
bg

(
1 +

kT
−kA + kT

)
− µ2

ag

kA
−kA + kT

]
e−kAT .

(5.18)

From Eq. (5.18), we can derive important properties of the FDEEI signal. Most

importantly, the contribution of the actual annihilation kinetics to the FDEEI signal
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Figure 5.5. Construction of the fluorescence-detected exciton–exciton interaction (FDEEI) signal. (a)

Top: pulse sequence of the sixth-order 2Q–1Q process, which probes both single-exciton dynamics (light

blue) and biexciton dynamics (yellow) over T . Bottom: real part of the calculated 2Q–1Q 2D spectrum

at T = 0 of the dimer system of Fig. 5.3a with µag = µbg. (b) Top: pulse sequence of the sixth-

order 1Q–2Q process, which only probes single exciton dynamics over T . The 1Q–2Q signal can be

visually transformed into the “2Q–1Q” fashion by inverting the phase-specific interaction sequence (red

arrows). In the spectral domain (bottom, 2D spectra are shown at T = 0), this procedure is effectively

carried out using a transformation operator Ô (see text). The subtraction of the sixth-order 2Q–1Q

and the transformed 1Q–2Q signal yields (c) the FDEEI signal. The real parts of the FDEEI2D spectra

are shown at four different T steps (normalized to the highest absolute value of the 2D spectrum at

T = 60 fs). The integrated FDEEI2D spectrum (rightmost panel) exclusively decays with the rate kA

of exciton–exciton annihilation from zero. The annihilation time τA = k−1
A is here set to 25 fs.
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depends on the magnitudes of the transition dipole moments µag and µbg. If they are

the same, i.e., µag = µbg = µ, then the integrated FDEEI signal reduces to

SFDEEI(T ) ∝ 8µ6
[
−1 + e−kAT

]
, (5.19)

which means that the FDEEI signal exclusively decays with the annihilation rate from

zero. This scenario is illustrated in Fig. 5.5c. Note that the FDEEI vanishes at T = 0,

since the 2Q–1Q and 1Q–2Q 2D spectra have identical amplitude, as shown in the

bottom panels of Fig. 5.5a and b.

The situation is different if µag ≈ µbg. The reason lies in the second term of Eq. (5.18),

which contains transfer dynamics between the single-exciton states and somewhat scales

with the difference of the transition dipole moments. Thus, the weight of this term

increases with increasing difference between the transition dipole moments µag and µbg.

This poses a limiting factor with regard to the meaningfulness of the FDEEI signal, as

the signal is contaminated with single-exciton dynamics in case of systems with largely

differing transition dipole moments. In fact, the ratio of the rates kT and kA quanti-

tatively influences the degree of this contamination as well. Using the second and the

third term of Eq. (5.18) while assuming that kA > kT , a landscape can be calculated

that quantifies to which extent the FDEEI signal describes EEA kinetics (Fig. 5.6).
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Figure 5.6. Quantifying the contamination of the FDEEI signal by single-exciton dynamics. Contri-

butions of EEA kinetics are expressed as percentages of the total FDEEI signal while the contour lines

are drawn at the percentages indicated. The FDEEI signal fully describes annihilation dynamics in

case of equal transition dipole moments µag = µbg for all ratios between the single-exciton population

transfer rate kT and the exciton–exciton annihilation rate kA.

Accordingly, the FDEEI signal is most contaminated by single-exciton dynamics in

systems in which kA is close to kT and where the transition dipole moments differ by

more than one order of magnitude at the same time. Note, however, that the FDEEI
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signal almost completely describes EEA kinetics for the total range of kT/kA in case of

µag ≈ µbg. Even for many heterodimers, µag ≈ µbg often holds, such that the subtraction

procedure of Eq. (5.17) will yield an FDEEI signal which is practically entirely governed

by EEA. Nevertheless, in cases where single-exciton dynamics still substantially con-

tribute to the integrated FDEEI signal, the contamination landscape of Fig. 5.6 can

be used to determine fixed parameters or at least reasonable fitting constraints for a

biexponential fitting model.

Summarizing, in this section, the FDEEI signal, a sixth-order nonlinear signal which

selectively propagates with the biexciton dynamics, was constructed. The applicability

of the approach was quantitatively assessed in terms of residual contributions from single-

exciton dynamics, whereas the latter is found to pose a considerably low contribution in

a wide range of small aggregates. In case of equal excitonic transition dipole moments,

the FDEEI signal can be utilized as a background-free probe for ultrafast exciton–exciton

annihilation kinetics using fluorescence detection. The approach proposed herein thus

features analogous selectivity as coherently detected EEI2D spectroscopy [102] towards

annihilation kinetics. In the next section, the approach proposed herein is demonstrated

on the example of squaraine heterodimers.

5.3 Experimental Demonstration

5.3.1 Setup

In order to validate the FDEEI 2D experiment, we additionally carry out a coherently

detected EEI2D experiment. From a technical point of view, FDEEI2D spectroscopy

is most closely related to coherently detected EEI2D spectroscopy in the pump–probe

geometry (see Fig. 5.2d and f), whereas we refer to the latter approach as “CDEEI2D”

spectroscopy in the following. Both experiments can thus be realized in a single setup, as

shown in Fig. 5.7. The setup is essentially based on the fluorescence-based setup shown

in Fig. 4.7 (for further details see Sec. 4.5.1), with the difference of an additional probe

beam and a second detection path for the coherently emitted signal of the CDEEI2D

experiment, as indicated by the dashed lines.

In brief, the spatially stabilized laser beam of a Ti:Sa chirped-pulse amplifier system

is focused into a hollow-core fiber (HCF), which is filled with a mixture of argon and

neon, to generate a coherent supercontinuum. The supercontinuum pulses are subse-

quently compressed by chirped mirrors (CMC, Ultrafast Innovations). The near-IR part

of the supercontinuum spectrum is removed by a 750 nm shortpass filter (SP, FESH750,

Thorlabs). A part of the resulting beam is then split off by a pair of thin wedges (WP)
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Figure 5.7. Setup of coherently (CD) and fluorescence-detected (FD) EEI2D spectroscopy. CPA:

chirped-pulse amplifier; BS: beam splitter; MM1, MM2: motorized mirrors; FL: fused-silica focusing

lens (f = 120 cm); PAD: position and angle detector; GP: fused-silica glass plate; HCF: hollow-core

fiber (filled with a mixture of argon and neon); CMC: chirped mirror compressor; SP: short-pass filter;

WP: pair of wedges; CH: chopper; DS: delay stage; GC: dual grism compressor; AOPDF: acousto-optic

programmable dispersive filter; FM: focusing mirror; M: flippable mirror; S: sample, being pumped

through a flow cell; SPM: spectrometer; MO1, MO2: microscope objectives, LP: long-pass filter; MMF:

multimode fiber; FPD: fast photodiode. The supercontinuum beam generated by the HCF is drawn

in yellow, whereas the pump beam paths are drawn in green (solid: FDEEI2D; dashed: CDEEI2D).

The excitation sequences for CDEEI2D and FDEEI2D spectroscopy are shown the red and blue pan-

els, respectively, at the bottom left. In CDEEI2D spectroscopy, the coherently emitted signal is self-

heterodyned with the probe beam (dashed yellow line) whereas in FDEEI2D spectroscopy, fluorescence

is measured instead.

to serve as the probe beam for the CDEEI2D experiment, where a motorized delay stage

(DS, Newport) is employed to scan the population time T . The majority of the HCF

output is guided through a grism compressor (GC) to pre-compensate the dispersion of

the acousto-optic disersive filter (AOPDF). The AOPDF generates two-pulse sequences

with delay τ in case of the CDEEI2D experiment or phase-cycled four-pulse sequences

with delays τ , T , and t for the FDEEI2D experiment (Fig. 5.7, bottom left panels).

The duration of each excitation pulse is 12 fs, as determined by collinear SHG-FROG.

For both FDEEI2D and CDEEI2D spectroscopy, the sample solution of squaraine het-

erodimers SQA–SQB in toluene with an optical density of 0.1 (at 200µm path length) is
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continuously pumped through a 200µm thin flow cell at a rate of approximately 2µL/s.

In the FDEEI2D experiment, the single excitation beam (solid green line in Fig. 5.7)

is focused on the flow cell, which is oriented at an angle of ≈45◦ relative to the incident

beam. The excitation energy is 150 nJ at maximum pulse overlap. The fluorescence is

collected at a right angle by a pair of microscope objectives (MO), filtered by a 750 nm

long-pass filter (LP, FELH750, Thorlabs), and then guided by an optical fiber to a

fast photodiode (FPD, model FPD610-FC-VIS, Menlo systems) for detection. In the

FDEEI2D excitation sequence, a 1×5×5×5 phase-cycling scheme is employed [4], while

the coherence times τ and t are scanned from 0 to 84 fs in 6 fs steps in a fully rotating

frame of 438 THz (685 nm). The population time T is scanned from 0 to 60 fs in 4 fs

steps. After the experiment, the rephasing and nonrephasing 2Q–0Q–1Q as well as the

rephasing 1Q–0Q–2Q contributions are extracted by using Eq. (4.1) together with the

weighting factors listed in Table 4.1 (see Chapter 4). The obtained data is corrected

for a slight detector nonlinearity according to a previously reported procedure [254]. To

yield the 2D spectra S(ωτ , T, ωt) of the individual signal contributions, a 2D Fourier

transformation with respect to τ and t of each contribution is performed.

In the CDEEI2D experiment, the pump beam (green dashed line in Fig. 5.7) is in-

stead reflected by the flippable mirror (M). The pump beam has an energy of 110 nJ

(at maximum pulse overlap) and is focused on the flow cell, which is perpendicularly

oriented relative to the pump beam. The probe beam (yellow dashed line) is focused on

the sample in a small angle relative to the pump beam. Residual chirp results in a probe

pulse duration of 22 fs, as determined by cross-correlation SFG-FROG, where the prior

characterized pump pulse served as a reference. Pump and probe pulses are chopped

at 100 Hz and 200 Hz, respectively, in order to separate the differential signal and to

suppress pump scattering, according to a previously reported procedure [102]. The co-

herently emitted signal field is self-heterodyned with the probe pulse, i.e., the probe

pulse acts both as the third excitation pulse and a local oscillator (LO) which measures

the signal emitted in k3 direction by interference. The resulting interference spectra in

the ωt domain are measured on a spectrometer (SPM), which is composed of a spectro-

graph (Acton SP2500, Princeton Instruments) and a CCD camera (Pixis 2K, Princeton

Instruments). The delay τ between the pump pulses is scanned via the AOPDF from 0

to 88 fs in 0.44 fs steps in the laboratory frame. The population time T is varied from

−42 to 120 fs in 6 fs steps using the delay stage. To obtain the 2D spectra S(ωτ , T, ωt),

the obtained interferograms S(τ, T, ωt) are Fourier transformed with respect to delay τ .
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5.3.2 Results and Discussion

The chemical structure of the SQA–SQB heterodimers investigated in this work is shown

in Fig. 5.8a. The SQA (blue) and SQB (red) monomers are connected by a phenyl spacer.

According to a previous finding on directly covalently linked SQA–SQB dimers, the

dimer structure can be considered as linear [253]. The monomeric dipole moments of the

S0 → S1 transitions are approximately oriented along the length of each monomer [255],

giving rise to J-type electronic coupling [256] with a coupling constant of J = −240 cm−1

in toluene [257].2 In comparison to similar squaraine heterodimers, which feature spacers

resulting in smaller distances between the chromophores and thus stronger coupling, the

coupling strength in the dimers considered here can be regarded as relatively weak,

resulting in exciton states with partially localized character [7, 257].
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R N
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Transfer
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Figure 5.8. Properties of the investigated sample. (a) Chemical structure of the SQA–SQB squaraine

heterodimer. The heterodimer is composed of a SQA (blue) and a SQB (red) monomer, which are

linked with a phenyl group. (b) Linear absorption (green) and fluorescence (red) spectra of the SQA–

SQB dimer in toluene. The pump spectrum in the CDEEI2D experiment, which is also employed in

the FDEEI2D experiment for excitation, is shown as a red shaded area. The spectrum drawn as a

gray shaded area is used as the probe spectrum in the CDEEI2D experiment. Reprinted in part from

Ref. [2], with the permission of AIP Publishing.

2The electronic coupling strength is given by J =
~µag~µbg

r3 − 3(~µag~r)(~µbg~r)
r5 , where r is the distance

between the monomers. In addition to r, the coupling strength thus crucially depends on the

relative orientation of the monomeric transition dipole moments [256].
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The splitting between the single-exciton states is 1290 cm−1 [257], as assessable from

the linear absorption spectrum in Fig. 5.8b. The absorption maximum of the single-

exciton state |b〉 is at 13950 cm−1 whereas the maximum at 15240 cm−1 is assigned

to |a〉. Both absorption bands have nearly identical intensity, which indicates that the

transition dipole moments µbg and µag have approximately the same magnitude. The

linear absorption spectrum in the region between 25000 cm−1 and 30000 cm−1 features

additional absorption bands which can be attributed to those of the doubly excited

exciton states |α〉, |β〉 and |ε〉 (see Appendix C).

The energy level scheme of the dimer in the exciton basis is shown in Fig. 5.8c and

essentially corresponds to the one introduced in Fig. 5.1. The exciton states can be

grouped into the singly excited manifold |1〉 (light blue) and the doubly excited mani-

fold |2〉 (yellow). Due to delocalization, the states of the respective manifolds mix, as

indicated by the light blue and yellow ellipses in Fig. 5.8c. According to Kasha’s rule [31],

fluorescence is emitted from the single-exciton state |b〉. The fluorescence quantum yield

is Φ = 0.81 and the emission spectrum is shown in Fig. 5.8b. The lifetime of state |b〉 is

2.83 ns [257], which can be considered as constant in relation to the scanned time scale of

the population time T . Energy transfer within the single-exciton manifold proceeds fast

with a time constant of about 30 fs, as confirmed by third- and fourth-order 2D spec-

troscopy [2, 7]. Apart from the excitonic states depicted in Fig. 5.8c, there are additional

vibronically excited states resulting from a dominant intramolecular vibrational mode

with ν̃vib = 1220 cm−1, as evident by the vibronic progression band in the absorption

spectrum (Fig. 5.8b). Due to ν̃vib being near-resonant with the excitonic splitting, this

mode plays an important role in the energy transfer between the single-exciton states

[253]. However, as we focus on EEA dynamics in the following, the effective excitonic

model of Fig. 5.8c is sufficient to describe the EEA kinetics and the essential features

observed in the 2D spectra. Because of the mixing of the higher excited states |α〉 and

|β〉 with the biexciton state |ε〉, EEA proceeds via ultrafast energy transfer within the

|2〉 manifold with consecutive internal conversion into the |1〉 manifold (yellow arrows

in Fig. 5.8c). In the manifold picture, both processes can be combined to a single step,

i.e., |2〉 → |1〉, which is associated with the annihilation rate kA.

Let us now compare the obtained experimental fifth- and sixth-order 2Q–1Q 2D spec-

tra in order to illustrate the difference between these two signals, before we proceed

to extract the annihilation dynamics from both. In the pump–probe geometry, both

rephasing and nonrephasing fifth-order 2Q–1Q contributions are inherently acquired as

a sum [211], resulting in the purely absorptive 2Q–1Q spectrum, i.e., the CDEEI2D

spectrum, the real part of which is shown at T = 30 fs in Fig. 5.9a (top left). In the
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fluorescence-detected case, the real parts of the separately isolated rephasing and non-

rephasing sixth-order 2Q–1Q 2D spectra are added to produce the purely absorptive

2Q–1Q spectrum (Fig. 5.9a, top right).
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Figure 5.9. Fifth-order coherently detected and sixth-order fluorescence-detected 2Q–1Q 2D spectra

of the squaraine heterodimer SQA–SQB in toluene. (a) Top left: real part of the experimental purely

absorptive fifth-order 2Q–1Q 2D spectrum (i.e., the CDEEI2D spectrum). Top right: real part of

the purely absorptive sixth-order 2Q–1Q 2D spectrum. Bottom: simulated 2D spectra. The dashed

diagonal line is drawn at ν̃τ = 2ν̃t. The 2D spectra are shown at T = 30 fs and normalized over

all population times. (b) Spectral dynamics over T (top: experiment, bottom: simulation), obtained

from integrating over certain respective regions of interest which are indicated as colored boxes in (a).

Adapted and modified from Ref. [2].

Both fifth- and sixth-order 2D spectra map spectral correlations between the doubly

excited manifold and the singly excited manifold. The CDEEI2D spectrum features a

strong peak at around ν̃τ = 29000 cm−1 and ν̃t = 13500 cm−1, whereas ν̃τ is close to the

sum of the single-exciton frequencies and can thus be assigned to the biexciton state |ε〉.
The line shape of the peak is substantially broadened along the ν̃τ -axis, which is due to

the fast dephasing of the |g〉 〈2| coherences. The mixing of the higher excited states |α〉
and |β〉 with the biexciton state poses an additional source of line-shape elongation along

the ν̃τ -axis. The minor vertical ripples in the CDEEI2D spectrum can be attributed to

truncation artifact, which is a result of the detected signal not completely decaying until

zero within the coherence time τ .

The sixth-order 2Q–1Q 2D spectrum exhibits more distinct features, being aligned at

the frequencies of the single-exciton states along the ν̃t-axis. Both peaks appear at the

frequency of the biexciton state along ν̃τ whereas the lower peak is “pulled” to lower

ν̃τ frequencies and the upper peak features a tail towards higher ν̃τ frequencies. This
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distortion along the ν̃τ -axis can also be attributed to mixing within the |2〉 manifold.

The population time dynamics of the fifth- and sixth-order 2D spectra (Fig. 5.9b) are

remarkably different. The CDEEI2D spectrum shows an instantaneous signal rise up

to a constant signal level. This rise is entirely attributed to EEA, as further discussed

below. In stark contrast to that, both peaks of the sixth-order 2Q–1Q 2D spectrum are

strongly modulated by coherent oscillations which occur with an oscillation period of

about 25 fs. The oscillation frequency of ≈1300 cm−1 is close to ν̃vib, such that the origin

of these oscillations can be attributed to vibronic coherence. Evidently, the evolution of

the sixth-order 2Q–1Q signal during T is dominated by single-exciton dynamics, which

is in line with the theoretical expectation (see Sec. 5.2).

Both signals can be simulated within the framework of time-dependent Redfield theory

in the secular approximation (Fig. 5.9a, bottom) using the Frenkel-exciton model of

Fig. 5.8c (for further details see Appendix C). The simulation reproduces the line shape

and peak positions of the positive and negative signal features in the fifth-order 2Q–1Q

2D spectrum very well. Moreover, the simulated spectral population time dynamics

(Fig. 5.9b, bottom) are in good agreement with the experimental data. The simulated

CDEEI2D signal also shows an almost instantaneous rise around T = 0 fs. Deviations

between experimental and simulated 2D spectra may arise due to the neglection of

structural disorder in the simulations, which is a source of inhomogeneous broadening

in such dimers [253]. Furthermore, additional vibronically excited states not accounted

in the model may have an effect of the precise line shape observed in the experiment.

Another source of line shape deviations between experiment and simulation could be

an overestimated coupling strength to the vibrational bath. Discrepancies between the

behavior of the experimental and simulated CDEEI2D transients can be ascribed to

the use of unchirped probe pulses in the simulation. In particular, the residual probe

chirp in the experiment may affect the structure of the coherent artifact near time zero

and at which time the signal begins to rise. Noteworthily, toluene was employed as a

solvent, which has a large nonresonant response that substantially contributes to early-

time coherent artifacts [186, 258]. In contrast, coherent artifacts are completely absent

in the transients of the sixth-order spectra, since the signal is measured by incoherent

fluorescence. The simulated sixth-order 2Q–1Q 2D spectrum excellently reproduces the

oscillatory behavior of the experimental signal. Overall, in view of the reproduction

of essential spectral features, peak distortions and the behavior of the population time

dynamics, the experimental data can be well described using the excitonic model of

Fig. 5.8c.

Let us now focus on the EEA dynamics. The experimental integrated CDEEI transient
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of Fig. 5.9b is replotted in Fig. 5.10a, shown along with the two double-sided Feynman

diagrams in the manifold basis which describe the signal behavior, and which result after

cancellation of other pathways [102]. The signs of these pathways take into account the

nature of the differential pump–probe 2D signal. The propagation of RGSB can be

considered as constant during T whereas REEA evolves with the biexciton population

dynamics. At T = 0, both pathways have identical weight and cancel each other.

However, as T progresses, population is continuously removed from |2〉 〈2| due to EEA.

Accordingly, the interference between these two pathways is responsible for the signal

rise on a constant background over T . In the case of µbg = µag = µ, the dynamics of the

integrated CDEEI signal can thus be expressed in the impulsive limit as

SCDEEI(T ) ∝ −8µ6
[
−1 + e−kAT

]
, (5.20)

which is, in magnitude, identical to the signal dynamics of the integrated FDEEI signal

[Eq. (5.19)]. Note that Eq. (5.20) only holds in the impulsive limit. In real experiments,

however, one has to consider the finite duration of the laser pulses, which is described

by the instrumental response function (IRF). To extract the annihilation time τA from

the CDEEI transient, the data must thus be fitted by means of a convolution of the IRF

with the EEA propagator U1122(T ) = aΘ(T )
(
b− exp(−T−T0

τA
)
)

. In order to construct

an analytical fit expression, the IRF is assumed to be Gaussian with width σ, leading to

f(T ) = a

[
−1

2
exp

(
−T − T0

τA
+

σ2

2τ 2
A

)(
1 + erf

{
1√
2

(
T − T0 − σ2

τA

σ

)})

+
1

2
b

(
1 + erf

{
1√
2

(
T − T0

σ

)})]
. (5.21)

Taking into account the fourfold convolution of the pump electric field with the twofold

convolution of the probe electric field, the fit shown in Fig. 5.10a (middle), yields an

annihilation time of τA = 28 fs.

As mentioned above, in case of the fluorescence-detected sixth-order 2Q–1Q signal,

the single-exciton dynamics considerably obscure the underlying annihilation dynamics

which hampers the extraction of the annihilation time from this signal alone. However, as

shown in Sec. 5.2, the single-exciton contributions can be eliminated by the construction

of the FDEEI signal. For that purpose, we take the real parts of the rephasing sixth-

order 2Q–1Q and 1Q–2Q 2D spectra and perform the transformation and subtraction

procedure of Eq. (5.17), as illustrated in Fig. 5.10b (top). In view of the nearly identical

magnitude of the transition dipole moments µag and µbg, it can be expected that the

FDEEI signal reflects EEA dynamics in the order of 95% (see Fig. 5.6).
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Figure 5.10. Extracting the annihilation time from the CDEEI and the FDEEI signals. (a) Top:

real part of the CDEEI spectrum at T = 30 fs, normalized to the maximal value, with the region of

interest considered for signal integration denoted by the yellow rectangle. The annihilation time τA is

determined by fitting the obtained data using Eq. (5.21), as shown in the middle panel. The CDEEI

signal can be described by the double-sided Feynman diagrams shown at the bottom, with diagram

signs according to the pump–probe convention. (b) Top: real parts of the rephasing sixth-order 2Q–1Q

and 1Q–2Q 2D spectra at T = 20 fs (normalized to their maximal absolute values). The subtraction

according to Eq. (5.17) yields the FDEEI signal, which is shown in absolute values in the middle panel,

and can be fitted using the same fit expression of Eq. (5.21). Bottom: double-sided Feynman diagram

describing the FDEEEI signal. Adapted and modified from Ref. [2].

Analogously to the CDEEI signal, the FDEEI rises in magnitude from zero with the

annihilation time. Note that the magnitude representation of the FDEEI signal further

allows us to use the same fit function as the one used for fitting the CDEEI signal. In

contrast to the CDEEI signal, where probe chirp may shift the rising signal relative to

T = 0 fs [259], the FDEEI signal begins to rise closer to T = 0 fs because all excita-

tion pulses are compressed. Hence, taking into account that the FDEEI signal results
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from a six-fold convolution with the excitation field, fitting the FDEEI transient with

Eq. (5.21) yields an annihilation time of τA = 24 fs, which is in fair agreement with the

time determined from the CDEEI signal. The annihilation times determined from both

experiments are further in accordance with previous findings [7, 241] and, moreover, with

the recently reported annihilation time of 30 fs in squaraine trimers, which was deter-

mined by noncollinear coherently detected fifth-order 2D spectroscopy [251]. Generally,

both time constants determined here provide experimental evidence that exciton–exciton

annihilation occurs almost instantaneously in the SQA–SQB heterodimer, which is most

reasonably due to the creation of these excitons in close proximity to one another.

5.4 Conclusion

Summarizing, a novel nonlinear signal that selectively probes the dynamics arising

from exciton–exciton annihilation, the fluorescence-detected exciton–exciton interaction

(FDEEI) signal, was introduced. The proposed FDEEI2D spectroscopy is based on a

four-pulse sequence with 125-fold phase cycling and can be performed by only using a

single excitation beam. A post-processing strategy to isolate the exciton–exciton annihi-

lation contribution from two sixth-order nonlinear signals was developed. This strategy

relies on the subtraction of a suitably transformed sixth-order 1Q–2Q 2D spectrum from

the sixth-order 2Q–1Q 2D spectrum for each population time step. To explore the limits

of the approach, a mathematical expression for the FDEEI signal amplitude was derived

and it was quantified, to which extent annihilation kinetics contribute to the FDEEI

signal. As long as the single-exciton transition dipole moments have approximately

the same magnitude, the FDEEI signal practically entirely describes the annihilation

kinetics.

The applicability of the approach was verified on an exemplary squaraine heterodimer

with aid of coherently detected EEI2D spectroscopy, acquired in a setup with as much

common beam paths and optics as possible. The annihilation times determined from

these two experiments are in mutual agreement and in accordance with recent observa-

tions on related squaraine trimers in the literature.

Altogether, FDEEI2D spectroscopy enables one, under certain approximations, to

directly temporally resolve nearly instantaneous annihilation dynamics, analogously to

coherently detected EEI2D spectroscopy, but here using an incoherent observable. As

an advantage, FDEEI2D spectroscopy is free of undesired solvent signals and coherent

artifacts which perturb the analysis of early population time dynamics.
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Chapter 6

General Discussion and Outlook

6.1 Discussion

In the past, optical coherent multidimensional spectroscopy has undoubtedly proven

useful for studying details about the electronic structure of quantum systems. Many

variants of coherently detected multidimensional spectroscopy have been developed to

investigate the spectral and dynamical properties of the landscape of electronically ex-

cited states. This work adds several new approaches to the toolkit of coherent multidi-

mensional spectroscopy, which, in fact, can all be performed with a unified, systematic

experimental procedure.

In this work, the concept of coherent multiple-quantum multidimensional fluorescence

spectroscopy was established. The measurement of several novel sixth-order nonlinear

signals has been demonstrated in order to characterize high-excited electronic states in

molecules [3, 4], molecular aggregates [2], and semiconductor nanocrystals [1] in the

liquid phase. The experiments reported herein demonstrate that one can acquire a

high density of information about the nonlinear response of a quantum system – en-

closing multiple nonlinear orders – in just a single experiment, and with just a single

excitation beam. Thus, the approaches of this work mark a significant step towards

fulfilling the vision of a complete characterization of the nonlinear response of a sys-

tem. The developed approaches pose complementary or even exclusive additions to the

family of coherent multidimensional spectroscopies. From a technical viewpoint, fluo-

rescence detection provides significant advantages such as interpulse phase stability due

to the single-beam fashion, the absence of nonresonant response and scattering, and

the simultaneous acquisition of multiple nonlinear signals under identical experimental

conditions.

As shown in this work, the essential requirement to resolve a multitude of nonlinear
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signals at once is to systematically extend the sampling space of interpulse phases,

that is, the use of special phase-cycling procedures. Two new phase-cycling schemes

have been developed, which have been shown to isolate selectively information about

high-excited electronic states such as their energies, correlations and ultrafast dynamics

[1–4]. In Sec. 1.2.5 of Chapter 1, a diagrammatic approach to phase-cycling schemes

was introduced on the basis of the mathematical theory developed by Tan [29]. With

such an approach, one can conveniently determine which nonlinear signal contributions

are aliased in case of insufficient phase cycling. In turn, it is envisioned that these

diagrams may be of practical use to determine suitable phase-cycling schemes, which

resolve nonlinear signals up to an arbitrary order of nonlinearity without aliasing.

In Chapter 2, multiple-quantum 2D fluorescence spectroscopy was developed as a

means to investigate the excited-state landscape of molecular systems in the liquid phase

[3]. For that purpose, a 36-fold phase-cycling scheme was implemented to discriminate

against three fourth- and six sixth-order signals. A particular goal was to prove that the

obtained nonlinear signals are free of unwanted wave-mixing cascades or other signals

that would potentially emulate multiple-quantum coherence such as previously debated

collective excitations [79]. The absence of these unwanted signals was verified by mea-

suring the concentration dependence of all nine fourth- and sixth-order nonlinear signals,

which was found to be linear for all signals. Besides that, a general simulation strategy

for multiple-quantum 2D spectra was developed. When simulating the data, one can

take advantage of the fact that nine different signals are simultaneously acquired. Sim-

ulating with respect to a mutual agreement with the experimental data poses a reliable

approach to minimize ambiguity in the system description. This is especially important

for multiple-quantum 2D spectroscopy, as the experiment actually probes 2D projections

of a fourth- and sixth-order response function, which have in fact a higher dimensional-

ity than two. This projective ambiguity was overcome by approximating a best possible

description of all projections at the same time. Although the simulation of the experi-

mental data was achieved by varying one simulation parameter of another, however, the

underlying problem has actually to be treated on a multidimensional parameter space,

which is a challenging task. A multidimensional parameter optimization with aid of

neural networks may help to address these concerns [260].

In Chapter 3, the concept of multiple-quantum 2D fluorescence spectroscopy was

generalized as multiexciton 2D fluorescence spectroscopy. On the example of colloidal

semiconductor quantum dots, it was shown that multiexciton 2D spectroscopy system-

atically dissects the manifold of multiexciton states [1]. In this respect, the 1Q–2Q and

1Q–3Q signals were utilized as selective probes for biexciton and triexciton states. These
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signals facilitate one to directly spectrally resolve the electronic structure of biexcitons,

and, in general, to understand the highly correlated nature of excitons in such confined

nanosystems. Distinct spectral signatures witnessed the existence of strong anticorre-

lations between energy fluctuations of the transitions into excitons and biexcitons. On

the other hand, transition energy fluctuations between biexcitons and triexcitons were

found to be strongly correlated. These findings may have important implications for the

design of novel quantum dot materials, since the obtained results indicate that changes

in the single-exciton structure has a significant effect on the multiexciton structure. An

extension of the approach described therein to quadexcitons, that is, particle complexes

consisting of four electron–hole pairs, is in principle realizable with the currently exist-

ing setup. To isolate such eight-order quadexciton 2D spectra, a 64-fold phase-cycling

scheme (1×8×8) would be necessary.

While the approach of Chapters 2 and 3 yielded 2D projections of both the fourth-order

and the sixth-order nonlinear responses, which both actually have higher dimensionality,

the extension into a third spectral dimension via addition of a fourth laser pulse achieves

spectral decongestion. With that, one can visualize the full dimensionality of at least the

fourth-order nonlinear response. Moreover, by introducing an additional time delay into

the pulse sequence, the sixth-order signals now become susceptible to the population

dynamics of doubly excited states. This three-dimensional coherent fluorescence spec-

troscopy was developed by using a 125-fold phase-cycling scheme and demonstrated as a

means to obtain a maximum density of nonlinear signals of multiple orders in a short pe-

riod of acquisition time [4]. In this respect, the short acquisition time facilitated to study

the nonlinear response of a molecular system with limited stability, such as the dianion

of TIPS-tetraazapentacene. Sample degradation was found to have a minor effect on the

obtained data, since the sampling of experimental delays and phases occurs on a much

faster time scale due to 1 kHz shot-to-shot acquisition. 3D fluorescence spectroscopy was

shown to resolve signal ambiguity by an increased overall frequency resolution through

the third spectral dimension. This is especially advantageous for liquid phase systems

as their spectra are often congested with overlapping features due to relatively broad

linewidths caused by the solvent environment. By unfolding the fourth-order response

into three frequency dimensions, all possible permutations of 0Q, 1Q, and 2Q coherence

correlations could be constructed. Moreover, any possible fourth-order 2D spectra with

parametric dependence on any of the three time-delays can be obtained via projecting

the 3D dataset onto certain frequency axes. Notably, also those projections that evolve

with the “detection time” t can be obtained in 3D fluorescence spectroscopy as well.

Such projections are not accessible in coherently detected spectroscopy, since the “de-
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tection axis” is directly acquired in frequency space due to heterodyne detection. The

experimental 3D spectra were evaluated with aid of quantum chemical calculations and

quantum dynamical simulations of the 3D spectra close to the experiment. The spectra

analysis revealed properties of a two-photon excited singlet state of a dianionic molecule.

A π phase-shift of excited-state wave-packet oscillations was observed between fourth-

and sixth-order signals, further validating the isolation of cascade-free sixth-order sig-

nals. Additional theoretical analysis led to the conclusion that many-particle signals do

not contribute to the signal as long as no coincidence detection is employed. Thus, Chap-

ters 2 to 4 together provide strong evidence that fluorescence-detected multidimensional

spectroscopy is able to probe multiple-quantum coherences.

In Chapter 5, the four-pulse sequence with 125-fold phase cycling was utilized to con-

struct a novel nonlinear signal, which exclusively probes exciton–exciton annihilation in

molecular aggregates. As shown in Chapters 2 and 3, population-based detection grants

access to 1Q–NQ type signals, which represent the inverted signals of NQ–1Q contri-

butions. However, 1Q–NQ signals generally feature fewer pathways. This circumstance

was particularly exploited in Chapter 5, where the use of the 125-fold phase-cycled four-

pulse sequence led to the isolation of both 2Q–0Q–1Q and 1Q–0Q–2Q signals, where the

former is annihilation sensitive, and the latter is annihilation insensitive, however, both

signals probe single-exciton dynamics. In order to remove single-exciton contributions,

a post-processing strategy was developed, which effectively produced an annihilation-

selective sixth-order signal. This was made possible by the simultaneous acquisition of

multiple sixth-order signals under identical experimental conditions. Due to the rapid

acquisition, experimental drifts in spatial and energetic laser properties do not diverge

among the various nonlinear contributions, which would otherwise have a detrimental

effect on the subtraction procedure. An analytic expression of the thus-constructed

fluorescence-detected exciton–exciton annihilation 2D (FDEEI2D) signal was derived,

and the limits of the approach were discussed. The approach was demonstrated on a

squaraine heterodimer and verified by a control experiment with previously established

coherently detected EEI2D spectroscopy. The obtained annihilation time of 24 fs was

in line with previous observations in the literature [241, 251]. It was concluded that

FDEEI2D spectroscopy can be best applied to molecular aggregates, in which the exci-

tonic transition dipole moments are nearly the same. Nonetheless, many systems such

as homo-oligomers and homo-polymers are included in this category and could thus be

investigated in future experiments. Importantly, FDEEI2D spectroscopy is suitable to

directly temporally resolve nearly-instantaneous exciton–exciton annihilation dynamics

due to the absence of coherent artifacts.
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In this work, a central aspect for signal evaluation and interpretation was the use

of nonperturbative simulations. The simulation strategies presented in this work may

provide guidance for the interpretation of high-order multidimensional spectra of similar

systems. Apart from that, the framework for the simulation of multidimensional spectra

based on the numerical solution of the Lindblad equation was prepared in a form that

could be used by the general public [5]. This “quantum dynamics toolbox” (QDT) has

been further developed as a modular MATLAB program which performs mathematical

procedures like operator constructions and Hilbert space expansions automatically and

further features a minimized user input [5]. Tutorials and code examples can be found at

qd-toolbox.org, which sets the stage to utilize QDT for teaching purposes. In particular,

QDT was modified to be executed on large CPU clusters by parallelization of compu-

tation tasks in MATLAB. Beyond that, in future, further runtime optimization could

be achieved by implementing the central routine which solves the differential equations,

i.e., the fourth-order Runge–Kutta solver, into a computationally more efficient external

C++ interface in order to further significantly increase computation speed [261].

In general terms, all experimental approaches discussed in this work can be directly

transferred to the detection of other incoherent signals, facilitating multiple-quantum

2D and 3D spectroscopy in all states of matter, just by modifying the detecting part

of the setup. In particular, solid-state samples could also be measured in combination

with fluorescence microscopy in order to characterize correlations, binding energies and

dynamics of multiexcitonic states. Especially the method of FDEEI2D spectroscopy

developed in this thesis (Chapter 5) offers new perspectives for the characterization of

ultrafast exciton–exciton annihilation in solid-state samples. Importantly, FDEEI2D

spectroscopy is a single-beam technique. This aspect makes the approach particu-

larly suitable for combination with ultrafast 2D microscopy, as demonstrated earlier

for fourth-order signals [158, 217]. Future experiments could address the measurement

of ultrafast exciton–exciton annihilation processes in solid-state materials with combined

spatial resolution, which enables one to investigate the impact of structural factors on the

annihilation dynamics. Moreover, instead of fluorescence detection, internal photocur-

rents [87, 89, 262, 263], photoelectron emission of solid-state samples [228], or mass-

resolved photoions of gas-phase systems [86, 229] are further suitable population-based

signals being analogous to fluorescence, since all these observables have in common that

they originate from an excited-state population. The concepts presented in this thesis

can thus be utilized to develop related methods like “multiple-quantum multidimensional

nanoscopy” or “multiple-quantum multidimensional mass spectrometry.”
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6.2 Outlook

The seeds of scientific progress are elaborated concepts for novel approaches. The

development of new spectroscopic methods, as discussed in this work, benefits enor-

mously from theoretical predictions, with the help of which potential experimental chal-

lenges can be addressed in a more targeted manner. The following sections briefly

outline the concepts of two novel approaches that shall add to the toolkit of coherent

fluorescence-detected multidimensional spectroscopy. These proposed techniques are

multiexciton-generation three-dimensional fluorescence spectroscopy (MEG3DFS) and

five-dimensional fluorescence-detected all-resonant electronic spectroscopy (5D FLARES).

6.2.1 Multiexciton-Generation Three-Dimensional Fluorescence

Spectroscopy (MEG3DFS)

Semiconductor nanocrystals feature bound particle complexes that consist of multiple

electron–hole pairs, i.e., multiexcitonic states, which can be generated via multiphoton

excitation, as discussed in Chapter 3. Under certain conditions, however, these multiex-

citonic states can be generated even though only a single photon is used for excitation.

This process, also known as multiexciton generation (MEG), which has been first ob-

served in PbSe nanocrystals [264], brought nanocrystals into the focus of artificial solar

energy conversion [265–267]. Since then, the mechanism behind MEG has been discussed

controversially in the literature. In particular, several mechanisms have been suggested

[267, 268]: incoherent models, such as impact ionization (i.e., an inverse Auger process)

[264, 269] and Coulomb coupling of virtual single-exciton states to multiexciton states

[121], and a coherent model, which considers that coherent superpositions of multiexci-

ton and single-exciton states are involved [270, 271]. To date, the detailed mechanism

behind MEG has not yet been fully deciphered – both coherent and incoherent models

are still the subject of discussion in recent literature [272–276].

The potential existence of coherent superpositions between single-exciton and biexci-

ton states should in principle give rise to oscillatory signatures, which may be measurable

by femtosecond spectroscopy [270]. However, specific spectroscopic tools that provide

unambiguous proof for coherences between single-exciton and biexciton states are scarce,

possibly due to the lack of experimental selectivity and the high time resolution needed

to resolve such coherences, which decay within 100 fs [272]. Here, a concept for a novel

sixth-order 3D experiment is proposed, which is expected to shed light on the role of

quantum coherence in MEG, since this experiment has extraordinary selectivity to only

those pathways, that result from coherences between single-exciton and biexciton states.
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The core idea of multiexciton 3D fluorescence spectroscopy (MEG3DFS) is based on

two-color 2D spectroscopy [207, 212, 277]. However, the novel aspect of MEG3DFS is

the combination of two-color excitation with one-photon and two-photon selection rules

in quantum dots. In this respect, considering that one-photon processes only excite

single-exciton states and two-photon processes only excite biexciton states, the use of

both UV (“one-photon”) and VIS (“two-photon”) pulses within the excitation sequence

(Fig. 6.1a) enables one to construct and probe correlations between high-excited single-

exciton and biexciton states. This shall be shown on the example in Fig. 6.1b, which

resembles a generic energy level scheme of a quantum dot in the exciton basis.
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Figure 6.1. Concept of multiexciton generation (MEG) 3D fluorescence spectroscopy (MEG3DFS).

(a) Pulse sequence of MEG3DFS. The combined use of ultraviolet (UV, violet) and visible (VIS, green)

pulses gives rise to a “1Q”–0Q–2Q-type contribution with phase signature as indicated on top of the

pulses. (b) Energy level scheme of an exemplary semiconductor quantum dot in the exciton basis with

ground state |g〉, low-energy single-exciton states |X1〉 and |X2〉, a high-energy single-exciton state |Xh〉,
and the biexciton states |X1X1〉, |X1X2〉 and |X2X2〉. Hot exciton cooling is indicated by gray solid

arrows, whereas Auger relaxation is drawn as a black dashed arrow. Fluorescence emission is denoted by

a red wavy arrow. An exemplary MEG channel is shown in blue. (c) Double-sided Feynman diagram

which corresponds to the only pathway contributing to the MEG3D signal. The biexciton–single-

exciton coherence is highlighted in blue. (d) Experimental schematic of MEG3DFS. BS: beam split-

ter; SHG: second-harmonic generation crystal; AOPDF: acoust-optic programmable dispersive filter;

DCM: dichroic mirror; S: sample; MO: microscope objective; MMF: multimode fiber; APD: avalanche

photodiode. (e) Simulated MEG3D spectrum in absolute values. Peaks A, B, and C correspond to

biexciton–single-exciton coherences |X2X2〉 〈Xh|, |X1X2〉 〈Xh|, and |X1X1〉 〈Xh|, respectively.
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The transitions between the ground state |g〉 and the single exciton states |X1〉 and

|X2〉 as well as the transitions between the single-exciton states and the biexciton states

|XnXm〉 (n,m = 1, 2) are caused by the visible pulses (green in Fig. 6.1). On the other

hand, the excitation from the ground state to the high-excited single-exciton state |Xh〉
is accomplished by the UV pulses (violet). The detailed action of the MEG3D pulse

sequence is visualized by the double-sided Feynman diagram given in Fig. 6.1c. The

first UV pulse creates a coherence between |g〉 and |Xh〉, which evolves over τ . The

second pulse is a VIS pulse and thus converts this coherence into a biexciton–single-

exciton coherence |XnXm〉 〈Xh| by a resonant two-photon transition from |g〉 via the

single-exciton states. The resulting |XnXm〉 〈Xh| coherence evolves over T . The third

pulse, also a VIS pulse, converts this coherence back into the coherence between the |g〉
and |Xh〉, evolving during t, before the last UV pulse creates an excited-state population,

which nonradiatively decays into |X1〉 with subsequent fluorescence emission.

Due to the first UV and the second double-VIS interaction, it is not possible to

generate a single-exciton population or a biexciton population that would evolve over

T . In other words, given by the one- and two-photon selection rules, the MEG3DFS

sequence features a high selectivity towards the single class of Liouville pathways shown

in Fig. 6.1c, and thus, MEG3DFS is quantum-coherence selective. As a consequence,

there is only a signal if a coherent superposition between single-exciton and biexciton

states is present.

Experimentally, MEG3DFS can be realized using a setup with two acousto-optic pro-

grammable dispersive filters (AOPDFs), which create time-delayed VIS and UV pulse

pairs, as schematically shown in Fig. 6.1d. The first AOPDF creates visible two-pulse

sequences, separated by delay T . The second AOPDF creates an UV pulse pair sep-

arated by delay θ = t + T + τ . The input UV beam can be created, for example, by

second-harmonic generation (SHG) of the visible pulses. Both AOPDF’s are synchro-

nized with respect to the repetition rate of the laser. To isolate the MEG3D contribution

with phase −ϕ1 + 2ϕ2− 2ϕ3 +ϕ4, a 1×5×3×2 phase-cycling scheme is sufficient accord-

ing to the phase-cycling scheme selection procedure [29]. By using a dichroic mirror

(DCM), the UV and VIS beams are collinearly recombined and focused on a sample (S).

Fluorescence detection can be carried out analogously as previously described [1].

The MEG3D spectrum of the model system of Fig. 6.1b is displayed in Fig. 6.1e. This

spectrum was simulated using the Lindblad master equation (see Sec. 2.5.3) by employing

an external electric field with ω0 = 2.0 eV/~, but in which the first and the last pulse

are frequency doubled with respect to the two middle pulses (Fig. 6.1a). Deviating

from Fig. 6.1b, coherences of |Xh〉 with all biexciton states are imposed in the model
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to illustrate the general selectivity towards all biexciton–single-exciton coherences. The

MEG3D spectrum only features three peaks, which are precisely aligned at the energies

of the biexciton–single-exciton 0Q coherences |X2X2〉 〈Xh| (A), |X1X2〉 〈Xh| (B), and

|X1X1〉 〈Xh| (C) along the ∆~ωT axis. The arrangement of the MEG3D peaks further

gives insight into the electronic structure of the biexciton states relative to the high

single-exciton state accessed by the UV pulse. On the one hand, the 3D peak A is

shifted to a positive 0Q energy, which indicates that |X2X2〉 is energetically above |Xh〉.
On the other hand, the peaks B and C are shifted to negative 0Q energies, signifying

that |X1X2〉 and |X1X1〉 have a lower energy than |Xh〉. The bottom projection of the

MEG3D solid is rather featureless due to the fast dephasing of |Xh〉, which gives rise

to a broad line shape. It can be expected that the line shape of a MEG3D peak along

∆~ωT is further a sensitive probe for the MEG efficiency, since MEG is connected to the

dephasing of the biexciton–single-exciton coherence [278].

Concluding, MEG3DFS spectroscopy is proposed as a means to investigate selectively

coherent superpositions between high-excited single-exciton states and biexciton states

and thus may contribute to unravel the microscopic origin behind MEG in semiconductor

nanocrystals.

6.2.2 Five-Dimensional Fluorescence-Detected All-Resonant Electronic

Spectroscopy (5D FLARES)

In this thesis, it was shown that the sixth-order nonlinear response bears exclusive

information about the electronic structure and dynamics of high-excited electronic states.

However, a general problem of higher-order spectroscopies is the exponential increase

of the number of pathways with the number of interactions [279], leading to many

overlapping pathways and in turn signal ambiguities. These ambiguities, for example,

may complicate the identification of the origin of 0Q coherences [208, 280, 281]. Apart

from signal subtraction strategies such as the one presented in Chapter 5, the problem of

spectral congestion can be solved by matching the dimensionality of a multidimensional

spectrum to the dimensionality of the response.1

In Chapter 4 of this thesis, it was shown that 3D fluorescence spectroscopy provides

the maximum pathway separation of the fourth-order nonlinear response by unfolding

the complete dimensionality of the response. In the limit of strict time ordering, complete

in this case means that all dynamic events which occur between four successive light-field

1In NMR spectroscopy, an increased spectroscopic dimensionality provides sufficient resolution and

selectivity to facilitate the determination of the geometrical structure of complex proteins [282–284].

In Ref. [282], a single 4D NMR experiment “only” took 6 days.
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interactions can be separately resolved over three distinct time intervals. In other words,

the general requirement is one excitation per pulse. In an analogous way, the complete

measurement of the sixth-order response function can be achieved by using a six-pulse

sequence which unfolds the dynamics evolving between the pulses over five temporal

dimensions. In virtue of the fact that the experimental setup used in this work offers an

inherent phase stability, it makes sense to logically extend the approaches described in

this thesis to higher spectral dimensions.

Recent work by Harel et al. has shown that it is indeed possible to conduct 4D

spectroscopy using optical pulses [101, 285]. Their approach is based on nonresonant

pre-pumping using two near-IR pulses, followed by a visible three-pulse sequence, which

yields a fifth-order nonlinear signal that encodes electronic and Raman coherences over

two dimensions each [101]. Exorbitant acquisition times are avoided by using a single-

shot acquisition scheme, where tilted pulse fronts are employed to spatially encode a

continuous range of interpulse delays into the sample [286].

Here, a fluorescence-detected approach is proposed which employs an all-resonant

excitation sequence, and completely unfolds the sixth-order response over five tempo-

ral dimensions. This method shall be called five-dimensional fluorescence-detected all-

resonant electronic spectroscopy (5D FLARES). The FLARES sequence is shown in

Fig. 6.2a. To acquire a 5D dataset, six collinear phase-coherent pulses with delays τ , T ,

t, Θ , and ϑ are employed. By using a 1×3×3×3×3×3 = 243-fold phase-cycling scheme,

a multitude of different sixth-order signal contributions can be distinguished. To il-

lustrate the concept of FLARES, we shall only consider the “1Q–0Q–1Q–0Q–1Q”-type

contribution with phase signature −ϕ1 +ϕ2 +ϕ3−ϕ4 +ϕ5−ϕ6 in the following. Apart

from this signal, the 243-fold phase cycling resolves three additional 1Q–0Q–1Q–0Q–

1Q-type contributions which can be added to obtain a purely absorptive 5D dataset,

as demonstrated for fifth-order spectroscopy [113, 214]. Moreover, if time delays are

sampled appropriately with regard to the Nyquist limit [287], multiple-quantum con-

tributions such as “1Q–2Q–3Q–2Q–1Q” can be resolved as well. A challenge for the

feasibility of a FLARES experiment lies in the vast amount of sampling steps. However,

the reduction of acquisition times can be accomplished by utilizing high-repetition-rate

shot-to-shot pulse shaping with rotating frame acquisition [288], possibly in combination

with cogwheel phase cycling [57, 289], whereas the latter would lead to less necessary

phase-cycling steps, ultimately yielding acquisition times in the order of minutes.

We shall not discuss all features of the method in detail but rather focus on a few new

aspects that 5D FLARES offers us. For that purpose, the sensitivity of a 5D FLARES

spectrum towards (i) changes in the curvature of the electronically excited state potential

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



6.2 Outlook 161

1Q 1Q0Q 1Q0Q

0.2

0

−0.20.2
0

−0.2
0

0.5

1

0.2

0

−0.20.2
0

−0.2

1

0

0.5

0.2

0

−0.20.2
0

−0.2

1

0

0.5

1.9 2.0 2.11.9
2.0

2.1

1.9

2.0

2.1

1.9 2.0
2.1

1.9
2.0

2.1

1.9

2.0

2.1

1.9 2.0
2.1

1.9
2.0

2.1

1.9

2.0

2.1

0.05 0.10 0.15

−0.15

−0.05

−0.10

0Q

1Q

0Q

0Q

1Q

0Q

0Q

0Q

1Q

(1Q) [eV]
(1Q) [eV]

(1
Q

) [
eV

]

N
or

m
. m

ag
ni

tu
de

(0Q) [eV]

(0Q) [e
V]

(0Q) [eV]

(0
Q

) [
eV

]

(1Q) [eV]
(1Q) [eV]

(1
Q

) [
eV

]

(1Q) [eV]
(1Q) [eV]

(1
Q

) [
eV

]

N
or

m
. m

ag
ni

tu
de

(0Q) [eV]

(0Q) [e
V]

N
or

m
. m

ag
ni

tu
de

(0Q) [eV]

(0Q) [e
V]

0.05 0.10 0.15

−0.15

−0.05

−0.10

(0Q) [eV]

(0
Q

) [
eV

]

0.05 0.10 0.15

−0.15

−0.05

−0.10

(0Q) [eV]

(0
Q

) [
eV

]

1Q–1Q–1Q 0Q–0Q (Magnitude) 0Q–0Q (Phase)

a)

b)

c)

d)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2. Five-dimensional fluorescence-detected all-resonant electronic spectroscopy (5D FLARES).

(a) FLARES pulse sequence with coherence times τ , t, and ϑ, and population times T and Θ . The

phase signature of one possible FLARES contribution is indicated on top of the pulses. (b–d) Calculated

FLARES spectra of three different model systems (far left column), separated into the absolute-valued

1Q–1Q–1Q electronic 3D spectrum at (T = 0 fs, Θ = 0 fs) (middle left column), and a 0Q–0Q 2D

spectrum (absolute values, middle right column), taken at the voxel marked by the green dot in the 3D

spectrum. The phase of the peak highlighted by a blue arrow is shown in the far right column where

the dashed line indicates the tilt of the phase twist. The model systems are (b) two displaced electronic

states, consisting of ground |gv〉 and excited state |ev〉 (v = 0, 1), both with a single vibrational mode

with the same frequencies, (c) two displaced electronic states in which the excited electronic state has a

vibrational mode with a frequency lower than that of the electronic ground state, and (d) an excitonic

model system with a vibration in the ground-state and two different excitonic states |e〉 and |e′〉.
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and (ii) the manifestation of interexcitonic coherence is illustrated by means of the three

model systems shown in the far left column of Fig. 6.2b–d. Similar analysis was discussed

in detail with regard to coherently detected 4D spectroscopy by Harel [279]. Figure 6.2b

features a displaced electronic model consisting of a ground state |gv〉 and an electronic

state |ev〉 (v = 0, 1) with a single vibrational sublevel having identical frequencies in the

ground and electronic state. Figure 6.2c corresponds to same displaced electronic model

but where the excited state vibration is softened relative to the ground-state vibration.

In Fig. 6.2d, an excitonic model with a vibrationally excited electronic ground state and

two single-exciton states |e〉 and |e′〉 is considered.

The 5D sixth-order response function for all systems can be calculated by construct-

ing all pathways for a generic four-level system, which can be performed similar to

Eqs. (1.20)–(1.23) in Sec. 1.2.3, and by summing over all these pathways. In the re-

sponse function calculation, inhomogeneous broadening with σ = 50 meV is incorpo-

rated and the dephasing time of 1Q coherences is 20 fs. In the three model systems, the

|g0〉 → |e0〉 and |g0〉 → |e〉 transition has an energy of 2.0 eV. The Huang–Rhys factor

for Fig. 6.2b and c is chosen to be 0.8, and the transition dipole moment scalings for all

other electronic transitions is calculated according to Eqs. (4.9)–(4.11). In the excitonic

model (Fig. 6.2d), the transition dipole moments into the excitonic states |e〉 and |e′〉
are chosen so that they correspond to those of the other two model systems. For all

model systems, the energy of the ground-state vibration is 100 meV. The excited state

vibration is set to 100 meV in Fig. 6.2b and to 75 meV in Fig. 6.2c, whereas the latter

is identical to the excitonic splitting of |e〉 and |e′〉 in Fig. 6.2d. Vibrational dephasing

is modeled to be 2 ps in the ground state and 1 ps in the excited state, while excitonic

dephasing proceeds with 25 fs.

Let us now discuss the 5D FLARES spectra of these model systems. How can we

visualize a 5D dataset? At least for humans, the visualization of multidimensional spec-

tra beyond three frequency dimensions can only be accomplished by means of suitable

lower-dimensional projections, which virtually calls the sense of 5D spectroscopy into

question. Nonetheless, as demonstrated by Spencer et al. on 4D data [101], we can

preserve a high informative content of the dataset by “slicing” it with regard to the

individual coherence types, which effectively yields a “spectrum within a spectrum.”

Thus, one possible way to visualize 5D FLARES data S(6)(τ, T, t,Θ , ϑ) is to perform

a 3D Fourier transformation with respect to the coherence times τ , t, and ϑ to yield

the sixth-order 1Q–1Q–1Q 3D electronic spectrum S(6)(ωτ , T, ωt,Θ , ωϑ), which is shown

in the middle left column of Fig. 6.2 at (T = 0 fs, Θ = 0 fs). Then, for each voxel,

i.e., each triple of electronic transition frequencies, a 0Q–0Q 2D spectrum can be con-
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structed by 2D Fourier transformation of S(6)(ωτ , T, ωt,Θ , ωϑ) with respect to T and

Θ . Hence, a 5D FLARES spectrum can be visualized as a “2D spectrum within a 3D

spectrum.” In the middle right column of Fig. 6.2b–d, an exemplary 0Q–0Q 2D spec-

trum is shown, which is taken at the high-energy region of the 3D electronic spectrum

(~ωτ = ~ωt = ~ωϑ = 2.08 eV), as indicated by the green dot on the spectral solid. Pop-

ulation dynamics were removed by subtracting the pathways which are non-oscillatory

during T and Θ from the total response function. Such 0Q–0Q 2D spectra are exclusive

to spectroscopy beyond three frequency dimensions [101, 290]. In molecular systems, the

0Q–0Q 2D spectra display coupling among different vibrations, vibrational combination

bands as well as vibrational anharmonicity [279].2

The electronic 3D spectra of the three model systems (Fig. 6.2b–d, middle left column)

are very similar, however, their 0Q–0Q 2D spectra (Fig. 6.2b–d, middle right column)

are significantly different. Let us put particular emphasis on these 0Q–0Q 2D spectra. In

case all 0Q frequencies are the same, the 0Q–0Q 2D spectrum features a single narrow

diagonal peak in each quadrant (Fig. 6.2b). In case the vibrational frequency of the

excited electronic state differs, such as in Fig. 6.2c, the 0Q–0Q peaks split, which is

a consequence of the fact that the transitions between the electronic states mediate

coupling between the higher-frequency ground-state vibration and the lower-frequency

excited-state vibration. Similarly, such peak splitting is also observable in the 0Q–0Q

2D spectrum of the excitonic system (Fig. 6.2d).

Now, let us focus on the phase of the peak in the lower right (∆~ωT ,∆~ωΘ)-quadrant

(far right column in Fig. 6.2b–d), which is marked by a blue arrow in the 0Q–0Q 2D

spectrum. The “purely vibrational” systems (Fig. 6.2b and c) exhibit a very similar

phase profile, both with a phase twist oriented parallel to the spectral diagonal. How-

ever, in the excitonic system (Fig. 6.2d), the coupling of the long-living ground-state

vibrational coherence with the short-lived interexcitonic coherence results in a differ-

ent characteristic phase profile which has a significantly tilted phase twist. Hence, the

phase of the 0Q–0Q 2D spectrum provides a unique signature to identify excitonic coher-

ences. In turn, with 5D FLARES, one can distinguish excitonic coherence from vibra-

tional coherence, a problem which has been subject to numerous examples in literature

[80, 197, 223, 291–293].

2Alternatively, a 5D FLARES spectrum can be visualized as a “3D beating surface” after direct 5D

Fourier transformation of S(6)(τ, T, t,Θ , ϑ), displaying which triples of electronic transition frequen-

cies mediate coupling between a pair of given 0Q coherence frequencies ωT and ωΘ within or between

the ground and excited electronic state. Another possibility to analyze FLARES data is to trace the

temporal evolution of S(6)(ωτ , T, ωt,Θ , ωϑ) with respect to T and Θ , with which cascaded energy

transfer can be followed [210].
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Coherently detected 4D spectroscopy provides quantum-coherence selectivity with re-

spect to the first population time interval due to the first two nonresonant interactions

[101]. However, exactly this poses a limitation of coherently detected 4D spectroscopy,

as correlations between vibrations in the excited electronic state cannot be constructed.

In contrast, as a fully resonant technique, 5D FLARES is capable of measuring corre-

lations between vibrational states within both the electronic ground and excited elec-

tronic states. In this respect, an advantage of the high spectral resolution for electronic

transitions is the ability to select electronic transition frequency coordinates, which are

selectively associated with either vibrations in the ground or the excited electronic state.

Essentially, FLARES features extraordinary decongestion of the electronic and vibra-

tional substructure of molecular systems and provides a sensitive probe for interexcitonic

coherence. Moreover, 5D FLARES may generally be useful to investigate systems which

exhibit a multipoint correlation function.
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Summary

This thesis describes novel concepts for the measurement of the static and dynamic

properties of the electronic structure of molecules and nanocrystals in the liquid phase

by means of coherent fluorescence-detected spectroscopy in two and three frequency

dimensions. These concepts are based on the systematic variation (“phase cycling”) of

a sequence of multiple time-delayed femtosecond excitation pulses in order to decode

a multitude of novel nonlinear signals from the resulting phase-dependent fluorescence

signal. These signals represent any permutation of correlations between zero-, one-, two-,

and three-quantum coherences. To this end, two new phase-cycling schemes have been

developed which can simultaneously resolve and discriminate several nonlinear signals

of sixth order, including those of the fourth order of nonlinearity.

By means of the sixth-order signals recorded in this work, static properties of highly

excited electronic states in molecules such as their energies, transition dipole moments,

and relative displacement of electronic potential surfaces, as well as dynamic properties

in terms of their relaxation kinetics, can be ascertained. Furthermore, it was shown

that these signals are suitable for the characterization of exciton–exciton correlations in

colloidal quantum dots and for the measurement of ultrafast exciton–exciton annihilation

in molecular aggregates.

The experiments performed in this thesis mark an important step towards the com-

plete characterization of the nonlinear response of quantum systems. In view of this,

the concept of fluorescence-detected multiple-quantum coherence multidimensional spec-

troscopy introduced here offers a unified, systematic approach.

In virtue of the technical advantages such as the use of a single excitation beam and

the absence of nonresonant contributions, the measurement protocols developed here can

be directly transferred to other incoherent observables and to sample systems in other

states of matter. Furthermore, the approaches presented here can be systematically

extended to higher frequency dimensions and higher orders of nonlinearity.
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Zusammenfassung

Diese Arbeit beschreibt neuartige Konzepte zur Messung der statischen und dynamischen

Eigenschaften der elektronischen Stuktur von Molekülen und Nanokristallen in der flüssi-

gen Phase mittels kohärenter Fluoreszenz-detektierter Spektroskopie in zwei und drei

Frequenzdimensionen. Diese Konzepte beruhen auf der systematischen Phasenvariation

(“Phase Cycling”) einer Sequenz mehrerer zeitverzögerter Femtosekunden-Anregepulse,

um aus dem resultierenden phasenabhängigen Fluoreszenzsignal eine Vielzahl von neuar-

tigen nichtlinearen Signalen zu dekodieren. Diese Signale stellen jegliche Permutationen

von Korrelationen zwischen Null-, Ein-, Zwei- und Drei-Quantenkohärenzen dar. Hierzu

wurden zwei neue Phase-Cycling Schemata entwickelt, welche gleichzeitig mehrere nicht-

lineare Signale der sechsten Ordnung auflösen und voneinander unterscheiden können,

inklusive der Signale der vierten nichtlinearen Ordnung.

Mit den in dieser Arbeit aufgenommenen Signalen der sechsten Ordnung können statis-

che Eigenschaften hoch-angeregter elektronischer Zustände in Molekülen wie deren En-

ergien, Übergangsdipolmomente, relative Verschiebung elektronischer Potentialflächen

zueinander, sowie dynamische Eigenschaften in Bezug auf deren Relaxationskinetik er-

mittelt werden. Ferner wurde gezeigt, dass diese Signale zur Charakterisierung von

Exziton–Exziton-Korrelationen in kolloidalen Quantenpunkten sowie zur Messung ul-

traschneller Exziton–Exziton-Annihilierung in molekularen Aggregaten geeignet sind.

Die Experimente dieser Arbeit markieren einen wichtigen Schritt in Richtung der

vollständigen Charakterisierung der nichtlinearen Antwort von Quantensystemen. Das

hier eingeführte Konzept der Fluoreszenz-detektierten multidimensionalen Multiquan-

tenkohärenz-Spektroskopie bietet hierfür einen vereinheitlichten, systematischen Ansatz.

In Hinblick auf technische Vorteile wie der Verwendung eines einzigen Anregestrahls

und der Abwesenheit von nichtresonanten Beiträgen lassen sich die hier entwickelten

Messprotokolle direkt auf andere inkohärente Observablen und auf Probesysteme in

anderen Aggregatszuständen übertragen. Ferner lassen sich die vorgestellten Ansätze

systematisch auf höhere Frequenzdimensionen und nichtlineare Ordnungen erweitern.
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Appendices

A Nonlinear Signals Accessible by Three Pulses

The following table summarizes all second-, fourth- and sixth-order nonlinear signals

accessible by a three-pulse sequence. All these signals can be discriminated against each

other without aliasing by using a 1×6×6 phase-cycling scheme.

Table A1. Complete list of second-, fourth- and sixth-order sig-

nals p̃(n) with their specific signal-phase coefficients α, β, and γ.

Two-pulse contributions are indicated as “TP” whereas three-pulse

contributions are denoted as correlations between quantum coher-

ences (1Q: one-quantum, 2Q: two-quantum, 3Q: three-quantum).

For the three-pulse contributions, the asterisk signifies the complex

conjugate, whereas the additional label “R” denotes a rephasing

signal contribution.

n p̃(n) α β γ

2 TP −1 +1 0

2 TP −1 0 +1

2 TP 0 −1 +1

2 TP 0 +1 −1

2 TP +1 −1 0

2 TP +1 0 −1

4 TP −2 +2 0

4 TP −2 0 +2

4 TP 0 −2 +2

4 TP 0 +2 −2

continues on next page
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4 TP +2 −2 0

4 TP +2 0 −2

4 1Q–1Q (R) −1 +2 −1

4 2Q–1Q +2 −1 −1

4 1Q–2Q +1 +1 −2

4 1Q–1Q* +1 −2 +1

4 2Q–1Q* −2 +1 +1

4 1Q–2Q* −1 −1 +2

6 TP −3 +3 0

6 TP −3 0 +3

6 TP 0 −3 +3

6 TP 0 +3 −3

6 TP +3 −3 0

6 TP +3 0 −3

6 2Q–1Q (R) −2 +3 −1

6 1Q–2Q (R) −1 +3 −2

6 3Q–1Q +3 −2 −1

6 3Q–2Q +3 −1 −2

6 1Q–3Q +1 +2 −3

6 2Q–3Q +2 +1 −3

6 2Q–1Q* (R) +2 −3 +1

6 1Q–2Q* (R) +1 −3 +2

6 3Q–1Q* −3 +2 +1

6 3Q–2Q* −3 +1 +2

6 1Q–3Q* −1 −2 +3

6 2Q–3Q* −2 −1 +3

B Phase-Cycling Diagrams of a Four-Pulse Sequence

Similar to Eq. (1.34) in Sec. 1.2.5, we can formulate a general expression for a nonlinear

signal contribution p̃(4), which is acquired by four pulses (Fig. 1.7c),

p̃(4)(τ, T, t, β, γ, δ) =
1

LMN

N−1∑
n=0

M−1∑
m=0

L−1∑
l=0

p (τ, T, t, l∆ϕ21,m∆ϕ31, n∆ϕ41)

× e−ilβ∆ϕ21e−imγ∆ϕ31e−inδ∆ϕ41 , (B.1)
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where the experimental phase increments are defined as ∆ϕ21 = 2π/L, ∆ϕ31 = 2π/M

and ∆ϕ41 = 2π/N , and where L×M×N corresponds to the phase-cycling scheme [29].

For four pulses, the rules for the signal-specific coefficients α,β, γ, and δ are

α + β + γ + δ = 0, (B.2)

|α|+ |β|+ |γ|+ |δ| ≤ 6, (B.3)

whereas for the latter we imposed to consider signals up to the sixth order of nonlinearity.

For a four-pulse sequence, we can now depict three different ϕ-spaces, ϕ21, ϕ31 and ϕ41

(see Fig. B.1), analogous to the diagrams shown in Figs. 1.8 and 1.9. For that purpose,

let us exemplarily consider the fourth-order rephasing 1Q–0Q–1Q signal (blue), and the

sixth-order nonrephasing 1Q–0Q–2Q signal (red), the signal-specific coefficients of which

are taken from Table 4.1 [4].

1 × 3 × 3 × 3

φ
21 

φ
31 

R. 1Q–0Q–1Q

+1

−1

+1

φ
41 

+2

−2+1

NR. 1Q–0Q–2Q*

+1

+1 +1

−1

−2

+2

1 × 5 × 5 × 5

φ
21 

φ
31 

φ
41 

+1

Figure B.1. Distinguishing fourth- and sixth-order signals in a four-pulse sequence by phase cycling.

The fourth-order rephasing (R) 1Q–0Q–1Q signal (blue) and the complex conjugate of the nonrephasing

(NR) 1Q–0Q–2Q signal are exemplarily illustrated using the diagrammatic representation of phase-

cycling schemes (see also Sec. 1.2.5). The 1×3×3×3 phase-cycling scheme (left) leads to aliasing between

the fourth- and sixth-order signals because of simultaneous coefficient ambiguity in all ϕ-spaces, as

indicated by the red shaded planes. The 1×5×5×5 scheme (right) is sufficient in order to discriminate

them, since each signal now has a unique configuration of signal vectors.

A 1×3×3×3-fold phase-cycling scheme was previously demonstrated to be appropriate

to distinguish between various fourth-order signals [29, 71]. However, as exemplarily

shown by the phase-cycling diagram of Fig. B.1, left, there is aliasing between the

fourth- and sixth-order signals. This is because of coefficient ambiguity of +1 (−1)

and −2 (+2). By increasing the phase-cycling scheme to 1×5×5×5, the five-step phase

cycling in each ϕ-space effectively resolves these coefficient ambiguities, and the signals

can be distinguished from one another. This is because each signal contribution can now

be represented by a unique set of signal vectors (Fig. B.1, right).
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C Simulation Parameters of the Squaraine Dimer

The 2D spectra of the squaraine heterodimer SQA–SQB investigated in Chapter 5

(Fig. 5.9) were calculated by numerical solution of the Redfield master equation,

∂

∂t′
ρ(t′) = − i

~
[H0, ρ(t′)]−Rρ(t′) +

i

~
[µ, ρ(t′)]E(t′), (C.1)

where H0 is the stationary Hamiltonian in the exciton basis (see Fig. 5.8c for an energy-

level scheme), and R is the Redfield relaxation superoperator (a tensor) that takes into

account the system-bath interaction. The external electric field E(t′) is explicitly in-

corporated as a multipulse sequence with parallelly polarized pulses, and the transition

dipole moments of the dimer are approximated to be parallel. The dynamics are calcu-

lated in the secular approximation, and the system–bath interaction is treated within

second-order perturbation theory. The bath is described as an ensemble of overdamped

harmonic oscillators. The relaxation of the higher excited states |α〉 and |β〉 to the

single-exciton states |a〉 and |b〉 is modelled using the Lindblad formalism [2].

For the simulation of the fifth-order CDEEI2D experiment, the nonlinear polarization

P is calculated via

P (t′, T, τ) = Tr {µρ(t′, T, τ)}, (C.2)

where τ corresponds to the delay between the two pump pulses, and T is the delay

between the last pump pulse and the probe pulse (see also Fig. 5.7). The CDEEI2D

signal is obtained via the differential calculation of the pumped/un-pumped polarization.

In order to isolate the signal in the probe direction, a two-step phase cycling of the probe

pulse is carried out [2].

In case of the simulation of the fluorescence-detected sixth-order 2D experiment, the

fluorescence intensity IFL is given by

IFL(t, T, τ,ϕ) ∝
∑
i>0

ρii(t, T, τ,ϕ), (C.3)

where ρii is an excited-state population density matrix element, τ is the delay between

the first two pulses, T the delay between the second and third pulse, and t the delay

between the last two pulses (see also Fig. 5.7). The vector ϕ contains the individual

pulse phases. The fluorescence quantum yield is assumed to be the same in the excited

states, which is justified through efficient exciton–exciton annihilation. The excited-

state population density matrix elements are obtained by Eq. (C.1) after the action of

the external field.

The simulation parameters are summarized in Table C.1 and correspond to those of

previous work [2, 7].
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Table C.1. Simulation parameters for the simulations of the fifth- and sixth-order 2D spectra.

Reprinted from Ref. [2], with the permission of AIP Publishing.

Quantity Variable Value

SQA, SQB transition energy eB, eA 13950 cm−1, 15240 cm−1

Transition energy between first

and higher excited monomer state

Ef 12500 cm−1

Electronic coupling between one-exciton

transitions

JAB −350 cm−1

Scaling of transition coupling into

higher excited states

ζ = Jfe/Jeg 0.8

One-exciton transition dipole moment scaling µA, µB 1.15, 1.0

Scaling of transition dipole moments to

higher excited states

µf
A,B/µA,B 0.66

Scaling of coupling to the bath νA, νB 1.0, 1.46

Scaling of coupling to the bath for

higher excited states

νf
A,B/νA,B 1.8

Bath reorganization energy λ 240 cm−1

Bath inverse correlation time Λ 666 cm−1

Strong vibrational mode parameters:

frequency, damping, Huang–Rhys factor

Ω, γ, S 1220 cm−1, 50 cm−1, 0.15

Internal conversion time τIC 30 fs

Pulse duration (intensity FWHM),

central frequency

tpulse, ω0 12 fs, 14700 cm−1

The extended absorption spectrum of the SQA–SQB dimer in toluene is shown in

Fig. C.1. As a reference, the spectrum obtained by probing the transitions from the

single-exciton states pumped by the pump pulse is shown as a yellow shaded area,

demonstrating that the higher excited states |β〉 and |α〉 are not directly probed.
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Figure C.1. Absorption spectrum of the SQA–SQB dimer in toluene (recorded using a 200µm cuvette),

covering high optical frequencies. The absorption peaks are denoted by single-exciton states |b〉 and

|a〉, higher-excited states |β〉 and |α〉, and a biexciton state |ε〉. The red shaded area denotes the pump

spectrum used in the fifth-order experiment as well as the excitation spectrum used in the sixth-order

experiment, whereas the gray shaded area corresponds to the probe spectrum used in the fifth-order

experiment. The effective spectral region obtained by first pumping into the single-exciton states and

subsequent probing (“pump–probe”) is indicated by a yellow shaded area. Adapted and modified from

Ref. [2].



List of Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

5D five-dimensional

0Q zero-quantum

1Q one-quantum

2Q two-quantum

3Q three-quantum

AOPDF acousto-optic programmable dispersive filter

APD avalanche photodiode

CDEEI coherently detected exciton–exciton interaction

COSY correlated spectroscopy

EEA exciton–exciton annihilation

EEI exciton–exciton interaction

ESA excited-state absorption

FDEEI fluorescence-detected exciton–exciton interaction

FLARES fluorescence-detected all-resonant electronic spectroscopy

GSB ground-state bleach

IC internal conversion

IRF instrumental response function

LO longitudinal optical

MEG multiexciton generation

NMR nuclear magnetic resonance

NR nonrephasing

QDT quantum dynamics toolbox

R rephasing

RMSD root–mean–squared difference
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ROI region of interest

SED single-exciton dynamics

SHG second-harmonic generation

SQD squared difference

TAP tetraazapentacene

TIPS triisopropylsilyl

UV ultraviolet

VIS visible

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



References
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[44] V. Perĺık, J. Hauer, and F. Šanda.
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[89] E. Vella, H. Li, P. Grégoire, S. M. Tuladhar, M. S. Vezie, S. Few, C. M. Bazán, J. Nelson,

C. Silva-Acuña, and E. R. Bittner.

Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells.

Sci. Rep. 6, 29437 (2016).
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C. Strüber, P. Tuchscherer, and D. V. Voronine.

Coherent two-dimensional nanoscopy.

Science 333, 1723–1726 (2011).

[229] S. Roeding and T. Brixner.

Coherent two-dimensional electronic mass spectrometry.

Nat. Commun. 9, 2519 (2018).

[230] I. Amat-Roldán, I. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas.

Ultrashort pulse characterisation with SHG collinear-FROG.

Opt. Express 12, 1169–1178 (2004).

[231] G. Otting, H. Widmer, G. Wagner, and K. Wüthrich.
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[236] B. Brüggemann and V. May.

Exciton exciton annihilation dynamics in chromophore complexes. I. Multiexciton density matrix

formulation.

J. Chem. Phys. 118, 746–759 (2003).
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[253] M. I. S. Röhr, H. Marciniak, J. Hoche, M. H. Schreck, H. Ceymann, R. Mitric, and C. Lambert.

Exciton dynamics from strong to weak coupling limit illustrated on a series of squaraine dimers.

J. Phys. Chem. C 122, 8082–8093 (2018).

S. Müller, Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy, Dissertation, University of Würzburg (2021).



202 References

[254] S. Draeger.

Rapid Two-Dimensional One-Quantum and Two-Quantum Fluorescence Spectroscopy.

Ph.D. thesis, Würzburg (2019).

[255] C. Zhong, D. Bialas, C. J. Collison, and F. C. Spano.

Davydov splitting in squaraine dimers.

J. Phys. Chem. C 123, 18734–18745 (2019).

[256] M. Kasha, H. Rawls, and M. A. El-Bayoumi.

The exciton model in molecular spectroscopy.

Pure Appl. Chem. 11, 371–392 (1965).

[257] M. H. Schreck.

Synthesis and Photophysics of Linear and Star-Shaped Oligomers of Squaraine Dyes.

Ph.D. thesis, Würzburg (2018).

[258] M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki, and A. Maciejewski.

Artifacts in femtosecond transient absorption spectroscopy.

Appl. Phys. B 74, 19–27 (2002).
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