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Abstra
t
This thesis is dedi
ated to a theoreti
al study of the 1-band Hubbard model in the strong
oupling limit. The investigation is based on the Dynami
al Cluster Approximation (DCA)whi
h systemati
ally restores non-lo
al 
orre
tions to the Dynami
al Mean Field approx-imation (DMFA). The DCA is formulated in momentum spa
e and is 
hara
terised by apat
hing of the Brillouin zone where momentum 
onservation is only re
overed betweentwo pat
hes. The approximation works well if k-spa
e 
orrelation fun
tions show a weakmomentum dependen
e.In order to study the temperature and doping dependen
e of the spin- and 
harge ex
i-tation spe
tra, we expli
itly extend the Dynami
al Cluster Approximation to two-parti
leresponse fun
tions. The full irredu
ible two-parti
le vertex with three momenta and fre-quen
ies is approximated by an e�e
tive vertex dependent on the momentum and fre-quen
y of the spin and/or 
harge ex
itations. The e�e
tive vertex is 
al
ulated by usingthe Quantum Monte Carlo method on the �nite 
luster whereas the analyti
al 
ontinua-tion of dynami
al quantities is performed by a sto
hasti
 version of the maximum entropymethod. A 
omparison with high temperature auxiliary �eld quantum Monte Carlo dataserves as a ben
hmark for our approa
h to two-parti
le 
orrelation fun
tions. Our method
an reprodu
e basi
 
hara
teristi
s of the spin- and 
harge ex
itation spe
trum. Near andbeyond optimal doping, our results provide a 
onsistent overall pi
ture of the interplaybetween 
harge, spin and single-parti
le ex
itations: a 
olle
tive spin mode emerges at op-timal doping and su�
iently low temperatures in the spin response spe
trum and exhibitsthe energy s
ale of the magneti
 ex
hange intera
tion J . Simultaneously, the low energysingle-parti
le ex
itations are 
hara
terised by a 
oherent quasiparti
le with bandwidth
J . The origin of the quasiparti
le 
an be quite well understood in a pi
ture of a more orless antiferromagneti
 ordered ba
kground in whi
h holes are dressed by spin-ex
itationsto allow for a 
oherent motion. By in
reasing doping, all features whi
h are linked to thespin-polaron vanish in the single-parti
le as well as two-parti
le spin response spe
trum.In the se
ond part of the thesis an analysis of super
ondu
tivity in the Hubbard model ispresented. The super
ondu
ting instability is implemented within the Dynami
al ClusterApproximation by essentially allowing U(1) symmetry breaking baths in the QMC 
al-
ulations for the 
luster. The super
ondu
ting transition temperature Tc is derived from3



the d-wave order parameter whi
h is dire
tly estimated on the Monte Carlo 
luster. The
riti
al temperature Tc is in astonishing agreement with the temperature s
ale estimatedby the divergen
e of the pair-�eld sus
eptibility in the paramagneti
 phase. A detailedstudy of the pseudo and super
ondu
ting gap is 
ontinued by the investigation of the lo
aland angle-resolved spe
tral fun
tion.
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Kurzfassung
In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Berei
h starkwe
hselwirkender Elektronen mit Hilfe der Dynamis
hen Cluster Approximation (DCA)untersu
ht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster,der selbst-konsistent in einem e�ektiven Medium eingebettet ist, abgebildet. Somit stelltdie DCA eine Erweiterung zur Dynamis
hen Molekularfeld-Theorie dar, indem ni
ht-lokaleKorrelationen berü
ksi
htigt werden.Ein Ziel dieser Arbeit stellt die Untersu
hung von dynamis
hen Korrelationsfunktionenfür das Hubbard Modell dar. Dazu wird die Dynamis
he Cluster Approximation aufdie Untersu
hung von Zwei-Teil
hen Korrelationsfunktionen erweitert. Der volle irredu-zible Zweiteil
hen-Vertex mit drei Impulsen und Frequenzen wird dur
h einen e�ekti-ven Vertex, dessen Impuls und Frequenzabhängigkeit dur
h das Spin- bzw. Ladungs-Anregungsspektrum gegeben ist, approximiert. Der e�ektive Vertex wird mit Hilfe derQuanten Monte Carlo Te
hnik auf einem endli
hen Cluster bestimmt, wobei die dynami-s
hen Gröÿen dur
h eine sto
hastis
he Version der Maximum Entropie Methode auf diereelle Frequenz-A
hse analytis
h fortgesetzt werden. Ein Verglei
h mit dem gewöhnli
henBSS Quanten Monte Carlo Verfahren dient als Maÿstab für unsere Näherung der Zwei-Teil
hen Korrelationsfunktionen. Der Verglei
h zeigt auf, dass unsere Methode grundlegen-de Eigens
haften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Für op-timale bzw. höhere Dotierungen erhalten wir ein übereinstimmendes Gesamtbild zwis
henLadungs-, Spin-, und Ein-Teil
hen-Anregungsspektrum: bei optimaler Dotierung und hin-rei
hend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrumauf und zeigt einen Energiezweig mit der Energieskala J , wobei J die magnetis
he Austau-s
henergie bes
hreibt. Glei
hzeitig werden die Niederenergie-Anregungen im Ein-Teil
hen-Spektrum dur
h ein Quasiteil
henband mit Bandbreite J bes
hrieben. Der Ursprung desQuasiteil
hens lässt si
h dur
h das Bild eines mehr oder weniger geordneten antiferroma-gnetis
hen Hintergrundes erklären, in dem si
h Lö
her umgeben von einer Wolke von Spin-Anregungen kohärent dur
h das Gitter bewegen. Bei zunehmender Dotierung vers
hwindensowohl im Ein-Teil
hen, als au
h im Zwei-Teil
hen Spin-Spektrum alle Anzei
hen, die imZusammenhang mit der Niederenergie-Skala J und dem oben bes
hriebenen Spin-Polaronstehen. Die Änderung der Dotierung führt des weiteren zu einem Transfer von spektralem5



Gewi
ht im Ein-Teil
hen Spektrum, der si
h ebenfalls im Ladungs-Anregungsspektrumbemerkbar ma
ht.Im zweiten Teil der Arbeit wird eine Analyse über die supraleitenden Eigens
haften desHubbard Modells präsentiert. Die supraleitende Instabilität wird im Rahmen der Dyna-mis
hen Cluster Approximation dur
h die Implementierung eines U(1)-Symmetrie bre-
henden Mediums in der Monte Carlo Re
hnung für den Cluster berü
ksi
htigt. Die su-praleitende Übergangstemperatur Tc wird von dem Wert des auf dem Cluster bestimm-ten d-Wellen Ordnungsparameters abgeleitet. Die kritis
he Temperatur Tc ist in überra-s
hend guter Übereinstimmung mit der Energieskala, die dur
h eine Divergenz der Paarfeld-Suszeptibilität in der paramagnetis
hen Phase bestimmt worden ist. Die Temperaturabhän-gigkeit der Pseudo- und supraleitenden Lü
ke wird mit der Bestimmung der Zustandsdi
hteund der Impuls-aufgelösten Spektralfunktion untersu
ht. Im Gegensatz zur der Herausbil-dung einer supraleitenden Lü
ke unterhalb der Sprungtemperatur, kann die Bildung einerPseudo-Lü
ke in der Impuls-abhängigen Spektraldi
hte ni
ht aufgelöst werden.
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Introdu
tion 1
The theoreti
al des
ription of strongly 
orrelated ele
tron systems represents one of thegreatest 
hallenges in 
ondensed matter theory. Su
h systems exhibit a variety of phenom-ena, e.g. stripe phases, high temperature super
ondu
tivity, magnetism and Mott metal-insulator transitions. The reason for this manifold behaviour has its roots in the many-body
orrelation e�e
ts between the intera
ting parti
les where the intera
tion strength is of thesame magnitude or larger than the kineti
 energy. This situation makes a perturbativehandling of the intera
ting states around the non-intera
ting limit very di�
ult or evenimpossible.In the last few years, many non-perturbative numeri
al approa
hes have been formulatedand investigated to get to the bottom of the interplay e�e
ts in 
orrelated ele
tron systems.A large group of solvers based on the renormalisation group te
hnique have been applied toone dimensional systems. The Density Matrix Renormalisation Group, for example, provesgreatly su

essfully when it is applied to resolve small energy s
ales. The appli
ation ofrenormalisation te
hniques to problems in higher dimensions still remains un
lear and is asubje
t of 
urrent resear
h. Two dimensional systems represent a wide area of appli
ationfor exa
t diagonalisation te
hniques and Quantum Monte Carlo methods whi
h representa well-
ontrolled a

ess to many-body problems. Unfortunately, these methods also reveala down side. Diagonalisation approa
hes are restri
ted to very small system sizes (up to 12sites) be
ause the ele
troni
 degrees of freedom grow rapidly with in
reasing system size.On the other hand, auxiliary �eld Quantum Monte Carlo studies su�er from the notoriousminus sign problem, whi
h prohibits, in general, the investigation of the low-temperaturephysi
s of 
orrelated ele
tron systems. Both methods are restri
ted to �nite 
lusters andtherefore one has to take �nite size e�e
ts into a

ount, whi
h 
orrupt the investigation ofthe low energy ex
itations or 
ompeting phases in the many-body systems.A new generation of approa
hes was initiated by the Dynami
al Mean-Field Theory whi
havoids the above mentioned problems. The so-
alled quantum 
luster theories map the orig-inal many-body problem onto a �nite size quantum 
luster embedded in a self-
onsistentlydetermined host. The physi
s on the 
luster is treated exa
tly and 
orrelations on longer9



1 Introdu
tionlength s
ales are taken into a

ount at mean-�eld level. One representative of the quantum
luster theories is the Dynami
al Cluster Approximation (DCA).This thesis is organised as follows:In 
hapter 2.1 we introdu
e the basi
 
on
epts of the Dynami
al Cluster Approximation(DCA) by 
onsidering it as an extension to the Dynami
al Mean-Field Theory (DMFT)where the original latti
e problem is mapped onto a Periodi
 Anderson Impurity Model(PAM). The impurity problem 
an be solved in an exa
t way by using the Hirs
h-Fyequantum Monte Carlo algorithm. For this purpose, we introdu
e, in se
tion 2.7.1, a Hub-bard Stratonovi
h (HS) �eld whi
h splits the two-parti
le intera
tion term of the impuritysites into one parti
le operators 
oupled to the HS �eld. The summation over the HS �eld
on�gurations is 
arried out by the Metropolis algorithm.The Hirs
h-Fye algorithm only provides 
orrelation fun
tions in imaginary time. In orderto 
ompare the numeri
al results with experimental data a method is needed to analyti
ally
ontinue the data from the imaginary time axis to the real frequen
y axis. This problemboils down to the inversion of a Lapla
e transformation. A straightforward inversion wouldlead to in
onsistent results due to numeri
al instabilities. A state of the art te
hnique forthis 
ontinuation problem is the Maximum entropy method whi
h is presented in 
hapter 3.Chapter 4 is dedi
ated to the tight-binding Hubbard model whi
h is intensively studied inthis work. The Hubbard model is one of the simplest models that takes the kineti
 energyand the ele
tron-ele
tron repulsion in a many-body system into a

ount. It 
onsists of akineti
 part, where ele
trons 
an gain energy by hopping between nearest-neighbour sites,and a Coulomb term, whi
h enfor
es an energy penalty if two ele
trons o

upy the samesite. Although this model has a very simple stru
ture, an analyti
al solution has only beenfound in one dimension.In 
hapter 5 we investigate the dynami
al properties of the Hubbard model within the Dy-nami
al Cluster Approximation. In this sense, we have to extend the Dynami
al ClusterApproximation to two-parti
le response fun
tions in order to a
hieve a deeper insight be-yond the s
ope of the one-parti
le level. The idea of our approximation and its appli
ationis des
ribed in detail.In 
hapter 6 we apply the DCA to the Hubbard model and in
orporate an instability to asuper
ondu
ting state. The theoreti
al investigation of super
ondu
tivity in the Hubbardmodel has been pushed immensely by the dis
overy of the high-temperature super
ondu
-tors in 1986 by Bednorz and Müller. Soon after their dis
overy, theorists and experimental-ist have tried to �nd an explanation of the physi
s of these materials. But after more than�fteen years, the mi
ros
opi
 me
hanism is still an open question. In our investigation, wefo
us on the temperature and doping dependen
e of the super
ondu
ting phase as well ason the o

urren
e of a pseudogap.The thesis �nishes with a summary of the main results.10



Dynami
al ClusterApproximation 2
Mean-�eld theories started their triumphant pro
ession many years ago. In the year 1907,P. Weiss implemented the Curie-Weiss mean-�eld theory for spin systems by mapping the
omplex latti
e problem onto a magneti
 impurity whi
h is self-
onsistent embedded in anaveraged magneti
 �eld produ
ed by the remaining spins. Hereby, non-lo
al �u
tuations aswell as temporal �u
tuations have not been taken into a

ount. The idea of the redu
tionof a given latti
e problem to an impurity problem, whi
h is embedded in a self-
onsistentbath, was refreshed by spe
ta
ular works of Metzner and Vollhardt and Müller-Hartmannas they introdu
ed the so-
alled Dynami
al Mean-Field Approa
h (DMFA) [1, 2℄. Theauthors showed, that in the limit of in�nite dimension, the self-energy be
omes purelylo
al and the many body problem 
an be mapped onto a single site impurity Andersonmodel (SIAM). The lo
al 
hara
ter of the self-energy yields from the s
aling behaviourof the hopping element tij ∝ D−1/2 with the dimensionality D. It 
an be easily shown,that any two-sites in the expansion of the 
ompa
t diagrams of the self-energy, whi
h are
onne
ted at least with two di�erent paths, 
ollapse to a single site in the limit of in�nitedimension [3℄.Thus, the dynami
al mean �eld approa
h exhibits an exa
t solution for in�nite dimensionalHubbard-type models. In 
ontrast to the Curie-Weiss mean-�eld, the DMFA 
onsist of afrequen
y dependent bath, and therefore, temporal 
orrelations 
an be taken into a

ount.Nevertheless, spatial �u
tuations are beyond its abilities. These 
orrelation are only treatedat mean-�eld level, whereas the lo
al part of the problem (the impurity problem) 
an besolved exa
tly via quantum Monte Carlo methods.The DMFA 
an be also understood as a 
oarse graining approximation whi
h 
an be seenin the language of the diagrammati
 expansion of the self-energy. In this 
ontext, we
onsider the Laue fun
tion whi
h enfor
es momentum 
onservation at ea
h vertex of thediagrammati
 expansion:

∆(k1,k2,k3,k4) =
∑

r

exp[ir · (k1 + k2 − k3 − k4)], (2.1)where k1 and k2 ( k3 and k4) are the in
oming (outgoing) momenta at every vertex. In11



2 Dynami
al Cluster Approximationthe limit of in�nite dimension, the k-dependen
e of the Laue fun
tion breaks down and
orre
tions o

ur only in the order of 1/D [4℄:
∆D→∞(k1,k2,k3,k4) = 1 + O(1/D). (2.2)The DMFA assumes that ∆DMFA(k1,k2,k3,k4) = 1 is already valid at �nite dimensional-ity. The 
onsequen
e is a violation of momentum 
onservation at ea
h vertex and a 
ollapseof the k-dependen
e of the self-energy, whi
h 
auses the lo
al 
hara
ter of the self-energy.This implies, that the Green fun
tions are repla
ed by a 
oarse-grained Green fun
tionaveraged over the entire Brillouin zone:
Ḡ(iωm) =

1

N

∑

k

G(k, iωm). (2.3)In the last years, the dynami
al mean-�eld approa
h has been applied to a broad varietyof several spin systems as well as to systems of 
orrelated ele
trons and bosons [3℄. Due tothe lo
al 
hara
ter of the theory, a detailed investigation of non-lo
al quantities, i.e. non-lo
al order parameters, lo
alisation in disordered systems or spin waves in spin systems, isimpossible. The following se
tion summarises a systemati
 extension of the DMFA whi
hremains fully 
ausal and takes non-lo
al �u
tuations into a

ount [5, 6℄.2.1 FormalismThe Dynami
al Cluster Approximation (DCA) represents a natural expansion of the DMFAwhi
h additionally takes non-lo
al �u
tuations into a

ount and systemati
ally restoremomentum 
onservation. It was �rst proposed by M. Jarrell et al. [7, 8℄. In the DCA,the original many-body problem is mapped on a �nite size quantum 
luster embedded ina self-
onsistently determined host. The best way to understand the approximation is inthe momentum spa
e. The 
oarse graining of the Green fun
tion is, as opposed to theDMFA, only performed on a �nite 
luster in the �rst Brillouin zone. A typi
al 
lusteringis depi
ted in Fig. 2.1. The re
ipro
al spa
e, whi
h 
ontains N k-points, is divided into Ncpat
hes, where ea
h pat
h is labelled by the 
luster momentum ve
tor K, i.e., in Fig. 2.1the number of 
lusters is Nc = 4 and Lc determines the linear size of the 
luster. Anarbitrary momentum ve
tor k 
an be formulated as a sum of an inter-
luster momentumve
tor K and an intra-
luster ve
tor k̃. The intra-
luster ve
tors k̃ represent the re
ipro
alve
tors of x̃ whi
h form a superlatti
e in real spa
e (see Fig. 2.1) and every real spa
e latti
eve
tor 
an be de
omposed into a superlatti
e ve
tor x̃ and an intra-latti
e ve
tor X, i.e.
x = x̃ + X. The number of latti
e sites within a real spa
e 
luster is given by N/Nc.In the limit ofNc = 1, the original latti
e problem is mapped onto a single impurity problemwhi
h is equivalent to the DMFA. Is Nc larger than one, then non-lo
al 
orre
tions of thelength ∼ π/∆k are introdu
ed. This shows us, that the approximation works well whenonly 
orrelations on short length s
ales in real spa
e play the dominant role.12



2.2 A diagrammati
 derivation
(π, π)(0, π)

(π, 0)(0, 0)

k
K

k̃

x

Lc

1.BZ

real space momentum space

X

x̃

Figure 2.1 Left: Sket
h of DCA 
luster pat
hes in real spa
e. Right: division of theBrillouin zone into Nc = 4 DCA pat
hes.2.2 A diagrammati
 derivationIn the following, we are going to present a diagrammati
 derivation of the DCA. In Se
. 2.1,we introdu
ed a segmentation of the Brillouin zone in Nc pat
hes of length ∆k = 2π/aLc,where a is the latti
e 
onstant. Momentum 
onservation is now only re
overed betweentwo pat
hes, whi
h is the 
ase if the momentum transfer k is larger than ∆k. The re-laxation of the momentum 
onservation 
an be a

ommodated for by the Laue fun
tion
∆(k1,k2,k3,k4). Therefore, we 
onsider a fun
tion M whi
h maps a given momentumve
tor k to the 
orresponding 
luster momentum ve
tor K:

M : R
2 → R

2, M(k) = K (2.4)Hen
e, we 
an rewrite the Laue fun
tion in the following form:
∆(k1,k2,k3,k4) → ∆DCA(k1,k2,k3,k4)

=
∑

r

exp[ir · (M(k1) +M(k2) −M(k3) −M(k4))]. (2.5)In the limit of an in�nite number of 
luster pat
hes, the fun
tionM redu
es to the identityfun
tion and the DCA be
omes exa
t.The approximation of the Laue fun
tion has an in�uen
e of every diagram in the skeletonexpansion of the generating fun
tional Φ1. In Fig. 2.2, we show a se
ond-order termof the generating fun
tional of the Hubbard model. The undulating lines represent theCoulomb intera
tion U and the solid lines are latti
e (
oarse-grained) single-parti
le Greenfun
tions. With the 
hoi
e of the DCA Laue fun
tion ∆DCA, the momenta of ea
h internalleg propagator may be freely summed over the 
ell momenta. The partial 
ollapse of the1Skeletal graph sum over all distin
t 
ompa
t 
losed 
onne
ted diagrams 
onstru
ted from the Greenfun
tion and the intera
tion U . 13



2 Dynami
al Cluster Approximation
Figure 2.2 Se
ond-order term of the generating fun
tional of the Hubbard model. Themomentum 
ollapse due to the inter
hange of the Laue fun
tion ∆ with the DCA Lauefun
tion ∆DCA results in the repla
ement of the latti
e Green fun
tions by the 
oarse-grained Green fun
tions.momentum 
onservation, by applying the ∆DCA to the generating fun
tional Φ, will bedemonstrated in the following 
al
ulation to whi
h purpose we 
onsider the Feynman ruleswhi
h 
an be found in every standard textbook [9℄:

2ndorder − diagram ≡
∑

σ

∑

k1,k2,k3,k4
ωk1

,ωk2
,ωk3

,ωk4

1

β2

(−1)s

h(Θ)

U2

N4
(Nδk1+k2,k3+k4)

2

(δω1+ω2,ω3+ω4)
2

︸ ︷︷ ︸

δenergies

δσ1,σ3δσ2,σ4δ−σ1,σ2
︸ ︷︷ ︸

δspin

(−Gk1(ωk1))(−Gk2(ωk2))(−Gk3(ωk3))(−Gk4(ωk4)), (2.6)where the sum goes over all internal momenta ki and frequen
ies ωi as well as all spin σdegrees of freedom. h(Θ) is a topology fa
tor and s determines the number of fermioni
loops. The delta fun
tions ensure the a

ordant 
onservation laws and the delta fun
tion
δσi,−σj

guarantees that only ele
trons with opposite spins undergo the Coulomb intera
tion.In the next step, we approximate the Laue fun
tion in the spirit of the DCA and split o�the momentum summation over ki via Eq. (2.4), whi
h give us:
2ndorder − diagram ≡

∑

σ

∑

K1,K2,K3,K4

k̃1,k̃2,k̃3,k̃4

∑

ωk1
,ωk2

,ωk3
,ωk4

1

β2

(−1)s

h(Θ)

U2

N4
δenergies δspin

(Nc δM(K1+k̃1)+M(K2+k̃2),M(K3+k̃3)+M(K4+k̃4)
)2

(−GK1+k̃1
(ωK1+k̃1

)) (−GK2+k̃2
(ωK2+k̃2

))

(−GK3+k̃3
(ωK3+k̃3

)) (−GK4+k̃4
(ωK4+k̃4

)). (2.7)14



2.3 Cluster sizes and topologiesObviously, the summation over all intra-
luster momentum ve
tors k̃i 
an be pulled infront of the Green fun
tions Gki
(ωki

):
2ndorder − diagram ≡

∑

σ

∑

K1,K2,K3,K4
ωk1

,ωk2
,ωk3

,ωk4

1

β2

(−1)s

h(Θ)

U2

N2
c

δenergies δspin (δK1+K2,K3+K4)
2

(

−Nc

N

∑

k̃1

GK1+k̃1
(ωK1+k̃1

)

) (

−Nc

N

∑

k̃2

GK2+k̃2
(ωK2+k̃2

)

)

(

−Nc

N

∑

k̃3

GK3+k̃3
(ωK3+k̃3

)

)

(

−Nc

N

∑

k̃4

GK4+k̃4
(ωK4+k̃4

)

)

, (2.8)where we 
an identify the 
oarse-grained Green fun
tion Ḡ[M(k)] as:
Ḡ(K) =

Nc

N

∑

k̃

G(K + k̃), (2.9)with the number of latti
e sites N , Nc is the number of 
lusters, and the k̃ runs over themomenta of the 
ell with 
luster momentum K. We have seen, that the diagrammati
sequen
e of the generating fun
tional remains un
hanged under the DCA approximation,but under the assumption Nc ≪ N , the 
omplexity of the problem is drasti
ally redu
ed.2.3 Cluster sizes and topologiesIn this se
tion, we are going to examine di�erent 
luster sizes and topologies of our DCAapproa
h. We have seen, that su�
iently small 
lusters enormously redu
e the 
omplex-ity of the original problem, but the remaining 
luster problem represents an exhaustingnumeri
al task. In order to take a larger variety of 
luster types into a

ount, we alsofo
us on 
luster types whi
h deviate from the usual square shaped 
luster form. A generaloverview of di�erent 
luster sizes and topologies is given in Refs. [10, 11℄. The authorsof [11℄ investigate di�er 
luster types by referring to the �nite size s
aling behaviour of theNéel temperature of the 3-dimensional Hubbard model.Lets assume, that the real spa
e 
luster is des
ribed by the prin
iple latti
e ve
tors a1and a2. They are 
orrelated to the re
ipro
al latti
e ve
tors by the expression bi =

2πai/|a1×a2| with knm = nb1+mb2 for integer n andm. We 
an distinguish three di�erentkinds of 
luster families. The �rst is des
ribed by tilings with a1x = a1y (
orrespondingto Nc = 1, 8, 18, 32, ...) where we have 
hosen the 
luster types with Nc = 1, 8 for our
al
ulations. The se
ond family exhibits real-spa
e prin
iple 
luster ve
tors with either
a1x = 0 or a1y = 0, whi
h leads to 
luster types with Nc = 1, 4, 16, 36, ... . The single15



2 Dynami
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Nc = 8Nc = 4 Nc = 10 Nc = 16Figure 2.3 Di�erent 
luster types and topologies whi
h are utilised in our study.site 
luster (see above) and the four and 16-sites 
luster were used in our 
al
ulation.Both families are basi
ally di�erent in respe
t to the angle θ between the re
ipro
al latti
eve
tors 
ompare to the prin
iple re
ipro
al latti
e ve
tors of the real system. In the �rst
ase the angle θ is π/4 whereas in the se
ond 
ase it is θ = 0. In the third 
lass of 
lustertypes, we 
ombine all other 
lusters with the property that they do not obey the point-group symmetry of the original latti
e. Starting from the Hubbard model, we assert a
C4v symmetry, whi
h is 
arried over to the 
oarse-grained 
ells in the �rst two familiesof 
luster types. The re
ipro
al prin
iple latti
e ve
tors of the third 
lass of 
luster typeswith Nc = 10, 20, 26, 34, ... do not point along a high symmetry dire
tion of the real spa
e.The 
onsequen
e will be, that in prin
iple equal points of the original latti
e will maponto di�erent 
luster pat
hes during the 
oarse-graining pro
edure. In order to obtain a
omprehensive pi
ture of the di�erent 
luster types, we take also the Nc = 10 into a

ountin our 
al
ulations. A summary of the 
lusters utilised in our investigation is depi
ted inFig. 2.3.2.4 The DCA self-
onsistent loopThe DCA algorithm basi
ally 
onsists of two parts as shown in Fig. 2.4. The main partis 
aptured by the self-
onsistent pro
edure, namely the 
oarse-graining of the latti
e andthe utilisation of the Dyson equation. This part will be explained in detail in the following.The se
ond part in
ludes the quantum Monte Carlo pro
edure to whi
h purpose we employthe Hirs
h-Fye algorithm, whi
h is explained in se
tion 2.7. The QMC pro
edure is themost time and resour
es 
onsuming part in the self-
onsistent 
ir
le and is therefore 
arriedout on a super
omputer.The DCA self-
onsistent loop:i) The DCA self-
onsistent loop starts with an initial guess of the self-energy

Σc(K, iωm). This value 
an be set to zero or to a perturbation theory result.ii) The free latti
e Green fun
tion G0(k, iωm) and the self-energy Σc(K, iωm) are usedto 
al
ulate the 
oarse-grained Green fun
tion Ḡ(K, iωm). N is the number of latti
e16



2.4 The DCA self-
onsistent loop
G−1(K, iωn) = Ḡ−1(K, iωn) + Σc(K, iωn) Σc(K, iωn) = G−1(K, iωn) −G−1

c (K, iωn)

Gc(Xi − Xj , τ)G(Xi − Xj , τ)

Ḡ(K, iωn) = Nc

N

∑

k̃

1
iωn−ǫ

K+k̃
+µ−Σc(K,iωn)

Cluster solver: Hirsch− Fye Algorithm

Figure 2.4 Sket
h of the DCA algorithm.sites and Nc de
lares the number of latti
e sites within the real spa
e 
luster:
Ḡ(K, iωm) =

Nc

N

∑

k̃

1

iωm − ǫ
K+k̃

+ µ− Σc(K, iωm)
(2.10)At this point, the DCA assumes that Σc(K, iωm) is only weakly dependent on mo-mentum, so that we may write Σ(K + k̃, iωm) ≈ Σc(K, iωm).iii) The bare host Green fun
tion is given by the Dyson Equation:

G−1(K, iωm) = Ḡ−1(K, iωm) + Σc(K, iωm) (2.11)At this point, we have to subtra
t the self-energy in order to avoid over-
ountingdiagrams and 
al
ulate the bare Green fun
tion of the 
luster problem.iv) In order to utilise the QMC pro
edure G(K, iωm) must be Fourier transformed fromthe momentum-frequen
y variables to spa
e-imaginary-time variables:
G(K, iωm) −→ G(Xi −Xj , τi − τj) (2.12)v) The intera
ting 
luster Green fun
tion Gc(Xi −Xj , τi − τj) is obtained by using theQMC algorithm. This step is the most time 
onsuming part.vi) Gc(Xi − Xj , τi − τj) is then Fourier transformed to momentum-frequen
y variables

Gc(K, iωm) and the Dyson Equation is used a se
ond time in order to 
al
ulate anew 
luster self-energy:
Σc(K, iωm) = G−1(K, iωm) −G−1

c (K, iωm) (2.13)vii) These step are repeated until Σc(K, iωm) 
onverges. 17



2 Dynami
al Cluster Approximationviii) The latti
e Green fun
tion depends on the momentum k = K + k̃ and is 
al
ulatedby:
Glat(k, iωm) =

1

iωm − ǫK+k̃ + µ− Σc(K, iωm)
(2.14)2.5 Numeri
al implementation of the Fourier transformationAs des
ribed in the previous se
tion, a Fourier transformation between Matsubara en-ergy Green fun
tions G(K, iωm) and imaginary time Green fun
tions G(K, τ) has to beperformed. In general, the Fourier transformation is nothing else but:

G(K, iωm) =

∫ β

0
dτ eiωmτG(K, τ). (2.15)The numeri
al implementation of the Fourier transformation is a 
hallenging task in orderto 
apture the 
orre
t high-frequen
y behaviour of the Green fun
tion or self-energy. TheGreen fun
tion G(K, τ) is only given on a dis
rete subset in the interval [0, β]. A simplyinterpolation strategy, i.e., an Akima spline, yields in
orre
t high-frequen
y results and the
ausality requirement:

lim
ωm→∞

G(K, iωm) ≈ 1

iωm
(2.16)would be violated. An enhan
ement of the dis
retisation in imaginary time would alleviatethis problem but it would 
ause an intra
table QMC simulation be
ause of the CPU timeand memory requirements whi
h would in
rease to the power of three with respe
t to thenumber of imaginary time sli
es. Instead of this, we use the spe
tral representation of theGreen fun
tion G(τ):

G(τ) = −
∫

dωA(ω)
e−τω

1 + e−βω
with A(ω) = − 1

π
Im[G(ω + i0+)] (2.17)The analyti
al 
ontinuation of the Green fun
tion G(τ) yields the 
orresponding spe
tralfun
tion A(ω) on a dis
rete set of real frequen
ies whi
h obeys the following identity:

G(τ) = −
∑

n

∆ωA(n∆ω)
e−τn∆ω

1 + e−βn∆ω
. (2.18)Thus, the Fourier transformation of G(τ) to G(iωm) 
an be a

omplished under 
onsider-ation of the spe
tral theorem:

G(iωm) = −
∑

n

∆ω
A(n∆ω)

iωm − n∆ω
(2.19)It has been shown, that su
h a Fourier transformation provides the 
orre
t asymptoti
behaviour of the Matsubara Green fun
tions.18



2.6 Lo
al quantitiesThe inverse Fourier transformation provides G(τ) for a given Green fun
tion G(iωm):
G(τ) =

1

β

∑

ωm

e−iωmτG(iωm) (2.20)The dis
ontinuity of G(τ)|τ=0,β 
an only be reprodu
ed when an in�nite number of Mat-subara frequen
ies are taken into a

ount in the sum of Eq. (2.20). In order to 
ir
umventthis problem, we 
onsider the asymptoti
 behaviour of the Matsubara Green fun
tion:
G(iωm) =

∫

dω
A(ω)

iωm − ω

=
1

iωm

∫

dωA(ω) +
1

(iωm)2

∫

dωA(ω)ω + O
(

1

ω3
m

) (2.21)Obviously, Eq. (2.21) exhibits the 
orre
t high frequen
y behaviour: Im[G(iωm)] =

−1/iωm + O(1/ω3
m). The real part of the Green fun
tion Re[G(iωm)] 
an be �tted bya least square �t to the form b/(iωm)2 with the abbreviation b =

∫
dωA(ω)ω. After therearrangement of the RHS of Eq. (2.20), one gets:

G(τ) =
1

β

∑

ωm

e−iωmτ

(

G(iωm) − 1

iωm
+

b

ω2
m

)

+
1

β

∑

ωm

e−iωmτ

(
1

iωm
− b

ω2
m

)

. (2.22)For su�
iently large Matsubara frequen
ies iωm, only the se
ond sum of Eq. (2.22) gives a
ontribution to G(τ), therefore, the �rst summation has to be 
arried out only on a �nitesubset of Matsubara frequen
ies iωm. The se
ond sum may be 
omputed analyti
ally. For
0 < τ < β we have:

1

β

∑

ωm

e−ωmτ

iωm
= −1

2
(2.23)

b

β

∑

ωm

e−ωmτ

(iωm)2
=

b

2
τ − b

4
β. (2.24)2.6 Lo
al quantitiesIn the following se
tion, we express some 
omments about lo
al 
luster quantities. The
onsideration below shows that lo
al latti
e quantities 
an already be 
al
ulated on theDCA 
luster. We fo
us initially on the latti
e Green fun
tion, whi
h is given by the Dysonequation:

Glat(k, iωm) =
1

iωm − (ǫ(k) − µ) − Σc(K, iωm)
(2.25)19



2 Dynami
al Cluster ApproximationThe lo
al latti
e Green fun
tion reads:
Glat

ii (iωm) =
1

N

∑

k

Glat(k, iωm) (2.26)
=

1

N

∑

K

∑

k ∈ patchK

1

iωm − (ǫ(k) − µ) − Σc(K, iωm)
(2.27)If we apply the de�nition of the 
oarse-grained Green fun
tion to the last expression inEq. (2.27) and assume that self-
onsisten
e in the DCA loop has been a
hieved, then we
an write:

Glat
ii (iωm) =

1

Nc

∑

K

Gc(K, iωm). (2.28)Hen
e, the last equality exhibits an easy a

ess to 
al
ulate lo
al quantities in the DCA
al
ulation, i.e. o

upation numbers, magnetisation or lo
al order parameters.2.7 The QMC algorithmAs des
ribed in the previous se
tion, the 
omplexity of the original latti
e problem 
an beredu
ed dramati
ally by 
oarse graining of the Green fun
tion. Hereby, the bath Greenfun
tion G(iωm), whi
h is determined from the 
oarse-grained Green fun
tion Ḡ(iωm) andthe self-energy Σc(iωm), 
an be interpreted as the non-intera
ting Green fun
tion of the
luster problem. The 
luster problem may be solved by a variety of methods. Typi
al
andidates are the quantum Monte Carlo method (QMC) [12℄, the �u
tuation ex
hangeapproximation (FLEX) [13℄, or the non-
rossing approximation (NCA) [14℄. The most ap-propriated method for our problem is the Quantum Monte Carlo te
hnique, i.e., Hirs
h-Fyealgorithm (HF). It was �rst developed in order to solve few-impurity problems and it 
on-tributes very well to the Kondo problem as well as to the impurity problem of the DMFA.Compared to the 
onventional Blankenbe
ler-Sugar-S
alapino (BSS) [15℄ algorithm, theHirs
h-Fye algorithm does not show any stabilisation problems and it is 
hara
terised bya mild minus-sign problem away from half-�lling. On the other hand, the HF algorithm ismu
h more involved with respe
t to the CPU time and memory requirements. A 
ompar-ison of the s
aling behaviour of the CPU time and memory requirements as a fun
tion ofsystem size and Trotter sli
es (whi
h are dire
tly related to the inverse temperature) respe
-tively, are shown for both methods in Tab. 2.1. It expli
itly shows, that 
al
ulations withthe Hirs
h-Fye algorithm are restri
ted to smaller 
lusters when 
ompared to BSS 
al
ula-tions due to a poorer CPU time and memory s
aling behaviour. Nevertheless, 
al
ulationswithin the DCA are 
arried out in thermodynami
 limit be
ause spatial 
orrelations whi
hex
eed the 
luster size are treated on a mean-�eld level, whereas the BSS 
al
ulations areperformed on a �nite latti
e, where �nite size problems are still present. Furthermore, oneshould keep in mind that the HF algorithm is in general an a
tion based method, whi
h20



2.7 The QMC algorithmCPU time MEMORYHF (NlNc)
3 (NlNc)

2BSS NlN
3
c NlN

2
cTable 2.1 S
aling behaviour of the CPU time and memory as a fun
tion of the number of
lusters Nc and Trotter sli
es Nl of the Hirs
h-Fye algorithm (HF) and Blankenbe
ler-Sugar-S
alapino quantum Monte Carlo (BSS) algorithm.means, that detailed knowledge of the Hamiltonian is not needed. In 
ontrast, the BSSalgorithm is a Hamiltonian based te
hnique whi
h gives the important 
onstitutional dif-feren
e between both methods and it be
omes 
ru
ial when we 
onsider that the detailedor e�e
tive form of the Hamiltonian of the 
luster problem within the DCA self-
onsistentloop is unknown. Furthermore, the Monte Carlo upgrade pro
edure of the BSS algorithmadditionally requires 
ertain stabilisation te
hniques whi
h in
rease the 
omputational ef-fort of the simulation [16℄. Finally, as we will see in the next paragraph, the measuremento� time-displa
ed quantities 
an be performed in the HF algorithm without essentiallyin
reasing of the 
omputational e�ort.In the �rst part of the next paragraph, basi
 
on
epts of auxiliary �eld Quantum MonteCarlo te
hniques are presented. With the introdu
tion of auxiliary �elds, i.e., Hubbard-Stratonovi
h �elds, it is possible to manage a de
omposition of the intera
ting term ofthe underlying Hamiltonian. In a further step, the partition fun
tion 
an be expressedby imaginary time propagators Us(β, 0) and Bs(β, 0), where the index s 
orresponds to agiven 
on�guration of the introdu
ed auxiliary �eld. Nevertheless, in order to 
al
ulate thepartition fun
tion, one has to 
apture all �eld 
on�gurations whi
h in prin
iple representsan unsolvable task. To 
ir
umvent this problem, we adobe the Hirs
h-Fye quantum MonteCarlo algorithm, whi
h allows us to redu
e the whole phasespa
e of 
on�gurations of theauxiliary �eld to a subset of 
on�gurations. The smaller 
on�guration sample is 
hosenin su
h a way that the o

urren
e of the �eld 
on�gurations are distributed a

ording totheir o

urren
e probability. The Hirs
h-Fye algorithm is presented in se
tion 2.7.3.2.7.1 Auxiliary Field Quantum Monte CarloIn the forth
oming paragraph, we introdu
e the periodi
 Anderson impurity model (PAM)[17℄ whi
h solves the 
luster problem already des
ribed above within the DCA self-
onsistent loop.The PAM is de�ned as:

H = H0 +HU (2.29)21



2 Dynami
al Cluster Approximationwith
H0 =

∑

k,σ

ǫ(k)d†kσdkσ +
∑

iσ

(ǫdd
†
iσdiσ + ǫff

†
iσfiσ)

+
∑

kσ

V (k)(d†kσfkσ + h.c.) (2.30)
HU = U

∑

i

(nfi↑ −
1

2
)(nfi↓ −

1

2
), (2.31)where diσ(fiσ)(†) destroys (
reates) a d(f) ele
tron on site i with spin σ, ǫd and ǫf arethe orbital energies of the d and f ele
trons respe
tively, V (k) is the d− f hybridisation,and U the on-site Coulomb repulsion of the f -ele
trons. The operator dkσ(fkσ)(†) destroys(
reates) a d(f) ele
tron with momentum k and spin σ. The dispersion of the d ele
tronsis given by ǫ(k). The reader is referred to [17, 18℄ for a detailed overview of the Andersonmodel.The goal of our investigation is the determination of the partition fun
tion Z =

Tr[e−β(H−µN)]. The 
luster problem of the DCA is des
ribed by the PAM with the hostGreen fun
tion G whi
h 
orresponds to the non-intera
tion Green fun
tion of the 
lusterproblem. If we introdu
e Grassmann variables γ's, we 
an rewrite the partition fun
tionas a path integral:
Z =

∫

Dγ⋆Dγe−
R β

0
dτdτ ′ P

i,j,σ γ⋆
i,j(τ)G−1(i,τ ;j,τ ′)γj,σ(τ ′)−

R β

0
dτHU (γ⋆

i,σ(τ),γi,σ(τ)) (2.32)The input (free) 
luster Green fun
tion G(i, τ ; j, τ ′) depends on the time and spatial 
o-ordinates. The de
omposition of the purely lo
al Hubbard-like intera
tion term HU isperformed in two steps. First, the exponent of the partition fun
tion is split o� by in-trodu
ing a dis
rete set of time sli
es with lengths ∆τ = β
Nl

and a positive integer Nl:
Z = Tr[e−β(H−µN)] = Tr[(e−∆τ(H0+HU ))Nl ]. (2.33)In the se
ond step, the exponential fun
tion 
an be de
omposed, by 
onsidering that for a�nite value of ∆τ a systemati
 error (∆τ)2 o

urs sin
e [H0,HU ] 6= 0:
Z = Tr[(e−∆τ(H0+HU ))Nl ] = Tr[(e−∆τH0e−∆τHU )Nl ] + O(∆τ2). (2.34)The error in ∆τ 
an only be redu
ed by an enhan
ement of the number of time sli
eswhi
h automati
ally in
reases the 
omputational e�ort of the 
al
ulation. By introdu
inga bosoni
 auxiliary �eld φ [19℄ the two-parti
le intera
tion in HU 
an be expressed as a sumover all �eld 
on�gurations φ and one-parti
le operators whi
h intera
t with the auxiliary�eld φ. In general, we 
an derive the following identity from the Gaussian integral:
eA

2/2 =
1√
2π

∫ +∞

−∞
dφe−

φ2

2
−φA. (2.35)22



2.7 The QMC algorithmThe important advantage of Eq. (2.35) lies in the fa
t, that for a given Hubbard-Stratonovi
h �eld φ the one body-problem is exa
t solvable. For a numeri
al approa
h, itis more 
onvenient to dis
retise the auxiliary �eld where ea
h 
on�guration is des
ribed bya ve
tor s. Hen
e, we 
an rewrite the exponential fun
tion of the partition fun
tion:
e∆τU

P

i(f
†
i↑fi↑− 1

2
)(f†

i↓fi↓− 1
2
) = C

∑

s=±1

eα
P

i si(f
†
i↑fi↑−f†

i↓fi↓), (2.36)with
C =

1

2Nc
e−∆τUNc/4 (2.37)

cosh(α) = e∆τU/2. (2.38)With the de
omposition of the exponential fun
tion in Eq. (2.34) and the introdu
tion ofthe Hubbard-Stratonovi
h �eld, the partition fun
tion in Eq. (2.32) may be written as:
Z ∝ Trsi,l

∫ Nl∏

l,l′

Nc∏

i,j

dγ⋆
il,σdγil,σe

−
P

il,jl′,σ γ⋆
il,σ

G−1
il;jl′γjl′,σe−

P

i,l,σ αsi,lγ
⋆
il,σ

γi(l−1),σ (2.39)The integration over the ele
troni
 degrees of freedom (Grassmann variables) yields:
Z ∝ Trsi,l

∏

σ

det(Gs,σ)−1, (2.40)where
(Gs,σ)−1

il,jl′ = G−1
il;il′ + ασsi,lδi,jδl′,l−1. (2.41)2.7.2 Numeri
al implementationThe numeri
al implementation of the Hirs
h-Fye algorithm requires a reformulation of thepartition fun
tion and the Green fun
tions respe
tively. For this purpose, we introdu
eimaginary time propagators Us and Bs in order to reformulate the partition fun
tion inEq. (2.40):

Z = CNl

∑

s

∏

σ

det[1 +Bσ
Nl
Bσ

Nl−1 . . . B
σ
1 ], (2.42)with

Bσ
n = eV

(σ)(sn)e−∆τh0 . (2.43)A detailed derivation is given in the works of F. F. Assaad [20℄ and L. C. Martin [21℄.The matri
es V (σ)(sn) have the 
omponents σαsnδi,jδi,f−sites with the auxiliary �eld sn atimaginary time step n. We also introdu
e the se
ond-quantisation time evolution operator
Uσ

s (τ2, τ1):
Us(τ2, τ1) =

∏

σ

n2∏

n=n1+1

ea
†
σV (sn)aσe−∆τa

†
σh0aσ (2.44)23



2 Dynami
al Cluster ApproximationThe operator a(†) destroys (
reates) an ele
tron on a 
ondu
tion or impurity site. Weshould keep in mind that the ele
tron intera
tion takes only pla
e on the f -sites. Whatfollows is an overview of the measurement of observables and time-displa
ed single- andtwo-parti
le Green fun
tions within the Hirs
h-Fye algorithm.ObservablesThe thermodynami
 de�nition of the expe
tation value of the variable O is given by:
〈O〉 =

Tr[e−βHO]

Tr[e−βH ]
(2.45)The evolution of the exponential fun
tion in imaginary time 
an be reformulated by theimaginary time propagators Us(τ2, τ1) (Eq.(2.44)):

〈O〉 =

∑

s Tr[Us(β, τ)OUs(τ, 0)]
∑

s

∏

σ det(1 +Bσ
s (β, 0))

=

(
∑

s

∏

σ det(1 +Bσ
s (β, 0))

∑

s

∏

σ det(1 +Bσ
s (β, 0))

)

·
(
Tr[Us(β, τ)OUs(τ, 0)]
∏

σ det(1 +Bσ
s (β, 0))

)

=

(
∑

s

∏

σ det(1 +Bσ
s (β, 0))

∑

s

∏

σ det(1 +Bσ
s (β, 0))

)

·
(
Tr[Us(β, τ)OUs(τ, 0)]

Tr[Us(β, 0)]

)

=
∑

s

Ps〈O〉s (2.46)The above equality is a result of the properties of the Slater determinants and will not bedis
ussed here. Eq. (2.46) shows, that the expe
tation value of an observable O 
an beexpressed as a weighted average of the measurement of O for a given Hubbard-Stratonovi
h�eld s. The quantity Ps 
orresponds to the density matrix whi
h, as opposed to in 
lassi
alsimulation, 
an be negative and leads to the notorious minus-sign problem. In order to seethis problem, we keep tra
k of the sign ηs of the quantity ps =
∏

σ det(1 +Bσ
s (β, 0)). Weformulate p′s = |ps| and

〈O〉p =

∑

s ps〈O〉s
∑

s ps

=

∑

s |ps|ηs〈O〉s
∑

s |ps|ηs

=

∑

s p
′
s[ηsOs]

∑

s p
′
sηs

·
∑

s p
′
s

∑

s p
′
s

=
〈ηO〉p′
〈η〉p′

. (2.47)The Boltzmann weight was written as ps = p′sηs with ηs = ±1. The last equality shows,that in the 
ase of a very small average sign, the expe
tation value of the observable Ounderlies strong �u
tuations. In order to 
ompensate for the redu
tion of the quality of thedata, one has to improve the statisti
s of the 
al
ulation by a fa
tor of 〈sign〉−2 
omparedto the situation where the minus-sign problem is absent.24



2.7 The QMC algorithmThe minus-sign problem o

urs in the repulsive Hubbard model away from half-�lling. Inthe 
ase of parti
le-hole symmetry and for the attra
tive Hubbard model, it 
an be shown,that the density matri
es for the two spin 
hannels o

ur with the same sign for any �eld
on�gurations s:
sign{det[1 +B↑

s]} = sign{det[1 +B↓
s]}, (2.48)and hen
e, no minus-sign problem o

urs.Equal-time observableWe 
an estimate the expe
tation value of a single-body observable O = c†Ac:

〈O〉s =
∂

∂α
lnTr[Us(β, τ)e

αOUs(τ, 0)]|α=0

=
∂

∂α
ln det[1 +Bs(β, τ)e

αABs(τ, 0)]|α=0

=
∂

∂α
Tr ln[1 +Bs(β, τ)e

αABs(τ, 0)]|α=0

= Tr
[
Bs(τ, 0)(1 +Bs(β, 0))

−1Bs(β, τ)A
]

= Tr
[
(1 − (1 +Bs(τ, 0)Bs(β, τ))

−1)A
] (2.49)The equal-time Green fun
tion may be written with the 
hoi
e of A: Ax1,x2 = δx1,yδx2,xas:

Gs(τ, τ)x,y = δx,y − 〈c†Ac〉s, (2.50)and with Eq. (2.49) we derive the important result:
Gs(τ, τ)x,y = [1 +Bs(τ, 0)Bs(β, τ)]

−1
x,y , (2.51)whi
h states, that any equal-time Green fun
tion 
an expressed in terms of matri
es Bs.Furthermore, it 
an be shown, that any equal-time multi-point 
orrelation fun
tion 
an beformulated in sums of produ
ts of single-parti
le Green fun
tions whi
h 
orresponds to thevalidity of Wi
k's theorem. More te
hni
al 
onsiderations 
an be found in [20℄ and willnot be repeated in this work again.Imaginary time displa
ed Green Fun
tionsImaginary time displa
ed Green fun
tions, su
h as single- and two-parti
le Green fun
-tions determine a variety of 
ru
ial properties of many parti
le systems. They 
ontaininformation about spin as well as 
harge gaps [22, 23℄. Furthermore, an inverse Lapla
etransformation, whi
h 
an be performed via the Maximum Entropy te
hnique [24, 25℄(Se
. 3.2), provides the real-energy spe
trum of the 
orresponding 
orrelation fun
tion25



2 Dynami
al Cluster Approximationand makes a dire
t 
omparison between theory and experimental measurements, su
h asphotoemission, neutron s
attering and opti
al measurements, possible.In the following paragraph, we are going to show, that the time dependen
e of Greenfun
tions 
an be absorbed in the operators Bσ
s . Furthermore, we present exemplarily forthe two-parti
le Green fun
tion, that in general, any n-point time-displa
ed 
orrelationfun
tion 
an be mapped onto n-point equal-time 
orrelation fun
tions, whi
h 
onsist of asum of produ
ts of equal-time Green fun
tions.The single-parti
le Green fun
tion is de�ned by:

G(τ1, τ2)x,y = −〈T ax(τ1)a
†
y(τ2)〉 =







−〈ax(τ1)a
†
y(τ2)〉, if τ1 ≥ τ2

〈a†y(τ2)ax(τ1)〉, if τ1 < τ2
(2.52)We negle
t in the forth
oming paragraph the minus-sign in the de�nition of the Greenfun
tion due to 
onvenien
e. By 
onsidering Eq. (2.46), the time-displa
ed Green fun
tion
an be formulated as a weighted average over the �eld 
on�gurations s:

G(τ1, τ2)x,y =
∑

s

PsGs(τ1, τ2)x,y. (2.53)Assume that β > τ1 > τ2 holds, then we 
an rewrite Gs(τ1, τ2):
〈ax(τ1)a

†
y(τ2)〉s =

Tr
[

Us(β, 0)e
Hτ1axe

−Hτ1eHτ2a†ye−Hτ2
]

Tr [Us(β, 0)]
(2.54)

=
Tr
[

Us(β, τ2)U
−1
s (τ1, τ2)axUs(τ1, τ2)a

†
yUs(τ2, 0)

]

Tr [Us(β, 0)]
(2.55)By using the de�nition of Us(τi, τj) in Eq.(2.44), the term U−1

s (τ1, τ2)axUs(τ1, τ2) 
an beexpressed as a sequen
e of imaginary time dependent operators e±∆τa†Aia:
ax(τ) = e∆τa†Ana . . . e∆τa†A2ae∆τa†A1aaxe

−∆τa†A1ae−∆τa†A2a . . . e−∆τa†Ana, (2.56)with τ1 = τ2+n·∆τ . The original Hamiltonian is en
oded in the quantities Ai via Eq.(2.44).The propagation in imaginary time of ax(τ) is des
ribed by e∆τa†A1aaxe
−∆τa†A1a and fromthis we obtain the di�erential equation:

∂ax(τ)

∂τ
= −(Aa(τ))x, (2.57)with the solution

a(τ) = (e−Aτa), and similarly a†(τ) = (a†eAτ ). (2.58)If we su

essively apply the above equation then we obtain:
U−1

s (τ1, τ2)axUs(τ1, τ2) = (Bs(τ1, τ2)a)x (2.59)
U−1

s (τ1, τ2)a
†
xUs(τ1, τ2) = (a†B−1

s (τ1, τ2))x (2.60)26



2.7 The QMC algorithmWith the last result, Eq. (2.55) may be rearranged as:
〈ax(τ1)a

†
y(τ2)〉s =

Tr
[

Us(β, τ2)[Bs(τ1, τ2)a]xa
†
yUs(τ2, 0)

]

Tr [Us(β, 0)]
(2.61)

=
∑

z

[Bs(τ1, τ2)]x,z
Tr[Us(β, τ2)aza

†
y[Us(τ2, β)]

Tr[Us(β, 0)]
(2.62)

=
∑

z

[Bs(τ1, τ2)]x,zGs(τ2, τ2)z,y (2.63)
= [Bs(τ1, τ2)Gs(τ2, τ2)]x,y, (2.64)where the matrix Bs 
an be pulled in front of the tra
e. A straightforward 
al
ulationyields the following result for the 
ase τ2 > τ1:

Gs(τ1, τ2)x,y = −[(1 −Gs(τ1, τ1))B
−1
s (τ2, τ1)]x,y. (2.65)The imaginary time dependen
ies of the Green fun
tion Gs are absorbed in the propagators

Bs(τi, τj). Equivalent to the previous 
onsiderations, a time displa
ed two-parti
le 
orre-lation fun
tion 
an be de
omposed into a sum of produ
ts of equal-time Green fun
tionsand operators Bs:
〈a†x(τ1)ax(τ1)a

†
y(τ2)ay(τ2)〉s = (2.66)

=
∑

z,z1

[B−1
s (τ1, τ2)]z,x[Bs(τ1, τ2)]x,z1〈a†z(τ2)az1(τ2)a

†
y(τ2)cy(τ2)〉s (2.67)

=
∑

z,z1

[B−1
s (τ1, τ2)]z,x[Bs(τ1, τ2)]x,z1

[

(1 −Gs(τ2, τ2))z1,z(1 −Gs(τ2, τ2))y,y

+(1 −Gs(τ2, τ2))y,zGs(τ2, τ2))z1,y

] (2.68)
= [Bs(τ1, τ2)(1 −Gs(τ2, τ2))B

−1
s (τ1, τ2)]x,x[1 −Gs(τ2, τ2)]y,y

+[(1 −Gs(τ2, τ2))B
−1
s (τ1, τ2)]y,x[Bs(τ1, τ2)Gs(τ1, τ2)]x,y (2.69)

= [1 −Gs(τ1, τ1)]x,x[1 −Gs(τ2, τ2)]y,y − [Gs(τ2, τ1)]y,x[Gs(τ1, τ2)]x,y. (2.70)In the above derivative, we used the inverse property of the Bs(τ1, τ2) matri
es:
Bs(τ1, τ2)Gs(τ2, τ2)B

−1
s (τ1, τ2) = Gs(τ1, τ1) (2.71)2.7.3 The Hirs
h-Fye algorithmThe numeri
al implementation of the time-displa
ed Green fun
tion will be dis
ussed inthe following paragraph. For theses purposes, the partition fun
tion in Eq. (2.42) Z isrewritten in terms of matri
es Oσ with the property det[Oσ] = det[1 + Bσ

Nl
Bσ

Nl−1 . . . B
σ
1 ]27



2 Dynami
al Cluster Approximationand the expli
it form:
Oσ =

















1 0 · · · Bσ
1

−Bσ
2 1 · · · 0

0 −Bσ
3 1 · · ·

· · · · · ·
· · · · · 0

0 · · 0 −Bσ
Nl

1

















(2.72)
The time-displa
ed Green fun
tion Gσ

s(τi, τj), whi
h is a fun
tion of dis
rete imaginarytime sli
es τi = i∆τ with i = 1, . . . , Nl, 
an be formulated 
ompa
tly in matrix form:
gσ =











Gσ
s(τ1, τ1) Gσ

s(τ1, τ2) · · Gσ
s(τ1, τNl

)

Gσ
s(τ2, τ1) Gσ

s(τ2, τ2) · · Gσ
s(τ2, τNl

)

· · · · ·
Gσ

s(τNl
, τ1) Gσ

s(τNl
, τ2) · · Gσ

s(τNl
, τNl

)











, (2.73)
with the relation

gσ = Oσ−1. (2.74)In Eq. (2.73), we adopt the notation that ea
h Green fun
tion Gσ(τi, τj) represents amatrix, where the indi
es x and y indi
ate the spatial dependen
e of the Green fun
tions:
Gσ(τi, τj) =











[Gσ(τi, τj)]1,1 [Gσ(τi, τj)]1,2 · · [Gσ(τi, τj)]1,Ntot

[Gσ(τi, τj)]2,1 [Gσ(τi, τj)]2,2 · · [Gσ(τi, τj)]2,Ntot

· · · · ·
[Gσ(τi, τj)]Ntot,1 [Gσ(τi, τj)]Ntot,2 · · [Gσ(τi, τj)]Ntot,Ntot











, (2.75)
where [Gσ(τi, τj)]x,y is the time displa
ed Green fun
tion and Ntot 
hara
terises the totalnumber of sites.The Green fun
tion matrix g is determined by a given Hubbard-Stratonovi
h �eld 
on-�guration s. By 
hanging the �eld 
on�guration s to a new 
on�guration s′, the Greenfun
tions matrix 
hanges as follows:

gσ = g′σ + g′σ∆σ(1 − gσ) with ∆σ = (eV
′σ
e−V σ − 1), (2.76)28



2.7 The QMC algorithmwhere g′ is the new Green fun
tion matrix 
orresponding to the new auxiliary �eld. Thematri
es V σ are de�ned in the spirit of Eq. (2.44) as:
V σ =














V σ
1 0 · · · 0

0 V σ
2 0 · · 0

0 0 V σ
3 0 · 0

· · · · · ·
0 · · · 0 V σ

Nl














. (2.77)
The validity of Eq. (2.76), whi
h relates Green fun
tions for di�erent auxiliary �elds toea
h other, 
an be shown by 
onsidering the matrix equation:

Õ = e−V σ

Oσ with g̃ = Õ−1, (2.78)so that (omitting the spin index σ):
g̃ = [Õ′ + Õ − Õ′]−1 (2.79)

= [Õ′ + e−V − e−V ′
]−1 (2.80)

= (Õ′)−1 − (Õ′)−1(e−V − e−V ′
)g̃, (2.81)where the last equality follows from the relation 1

A+B = 1
A − 1

AB
1

A+B . In the end, theDyson equation (2.76) arises from Eq. (2.81) by inserting g̃ = geV .Finally, it should be summarised, that Eq. (2.76) des
ribes the basis of the Hirs
h-Fyealgorithm and determines the upgrade s
heme of the Green fun
tion during the MonteCarlo pro
edure.Monte Carlo s
hemeWhat follows is a short overview of the Monte Carlo pro
edure in the Hirs
h-Fye algorithmand the upgrade s
heme of the Green fun
tion gσ whi
h was introdu
ed in Eq. (2.76).We have seen, that the quantum physi
al problem is redu
ed to a 
lassi
al problem byintrodu
ing a Hubbard-Stratonovi
h �eld. The �eld 
on�guration is des
ribed by si,l,where 'i' des
ribes a spatial and 'l' a time 
oordinate. For further 
onsiderations, theindi
es 'i' and 'l' are 
ombined to a superindex 'n'. A 
hange in the Hubbard-Stratonovi
h�eld sn → s′n is a

epted with the probability Rs→s′ . In Se
tion 2.7.1, we have seen thatthe probability of the o

urren
e of a given �eld 
on�guration s is given by Ps. Fromthis it follows, that the transition probability from one �eld 
on�guration s to a new �eld29



2 Dynami
al Cluster Approximation
on�guration s′ 
an be written as:
Rs→s′ =

∏

σ

det[1 +B′σ
Nl
B′σ

Nl−1 . . . B
′σ
1 ]

det[1 +Bσ
Nl
Bσ

Nl−1 . . . B
σ
1 ]

=
∏

σ

det[gσ(g′σ)−1]

=
∏

σ

det[1 + ∆σ(1 − gσ)]. (2.82)This transition probability obeys the requirement of detailed balan
e and ergodi
ity. Inthe beginning of the 
al
ulation the Hubbard Stratonovi
h �eld 
orresponds to the non-intera
ting Green fun
tion, e.g. all sn are zero. In order to update the Green fun
tion onewalk through the spa
e-time and try to �ip ea
h spin. If Rs′→s is greater than a randomnumber between zero and one, then the �eld 
on�guration 
hanges as follows:
s′n =







−sn if n = f̃

sn if n 6= f̃
(2.83)Here, n′ denotes the spa
e-time 
oordinate where the 
hange of the �eld 
on�gurationtakes pla
e. After the single-spin �ip, the quantity ∆σ exhibits only one non-zero elementwhi
h is given by:

∆σ
f̃,f̃

= e−2σαs
f̃ − 1. (2.84)This expression 
an be introdu
ed in the Dyson Eq. (2.76) whi
h now reads:

gσ
f,f ′ = g′σf,f ′ +

∑

f ′′

g′σf,f ′′∆σ
f ′′,f ′′(1 − gσ)f ′′,f ′ . (2.85)If a single spin-�ip in the Hubbard-Stratonovi
h �eld is a

epted, then we 
an use Eq. (2.76)to derive the new Green fun
tion from the old one by 
al
ulating:

g′σ = gσ[1 + ∆σ(1 − gσ)]−1. (2.86)We use the Sherman-Morrison formula in order to 
al
ulate [1+∆σ(1− gσ)]−1 whi
h givesus the �nal expression:
g′σf,f ′ = gσ

f,f ′ +
gσ
f,f̃

∆σ
f̃,f̃

(gσ − 1)f̃ ,f ′

1 + (1 − gσ)f̃ ,f̃∆σ
f̃,f̃

(2.87)The stabilisation of the Hirs
h-Fye algorithm was mentioned in one of the previous se
-tions. The reader should note at this point, that due to the knowledge of the HubbardStratonovi
h �eld 
on�guration s, the Green fun
tion gσ 
an be re
al
ulated from s
rat
hat any time. The re
al
ulation has the appealing advantage, that one 
an 
ompare there
al
ulated Green fun
tion with those whi
h are determined by su

essively applyingEq. (2.87).30



2.8 SU(2) Symmetry BreakingIn an a
tual 
al
ulation, one starts with a warmup phase, whi
h 
onsists of several hundredwalks through the spa
e-time latti
e (sweeps), until the system 
omes into equilibrium andmeasurements 
an be started. The number of sweeps has to be large enough in order totake in a

ount the auto
orrelation time. The 
omputational e�ort in the above des
ribedalgorithm is basi
ally given by the upgrading of the Green fun
tion. One upgrade of theGreen fun
tion after a single site spin �ip is an operation whi
h s
ales with (NcNl)
2. Inorder to a
hieve a 
omplete walk through the spa
e time latti
e, the numeri
al 
ost risesto (NcNl)

3. This fa
t explains, why the Hirs
h-Fye algorithm is very expensive whenit is applied to latti
e problems, i.e., the Hubbard model. Nevertheless, the Hirs
h-Fyealgorithm is a su

essful tool for appli
ation to many impurity problems.2.8 SU(2) Symmetry BreakingMagneti
 order 
an be in
orporated within the DCA 
al
ulation by allowing the host todevelop long range AF order. The te
hni
al implementation is illustrated in Fig. 2.5. Theunit 
ell in real spa
e is doubled allowing for AF order. This leads to a redu
ed (magneti
)Brillouin zone whi
h is depi
ted in Fig. 2.6 (a).
~a1

~a2

t
t
′

A.F. unit cell

dc

Figure 2.5 SU(2) symmetry broken DCA 
al
ulation. AFunit 
ell with new basis ve
tors in real spa
e. The unit
ell 
onsists of a 
- and d-orbital. t and (t′) indi
ate thenearest and next-nearest neighbour hopping.
What follows, is a s
hemati
 derivation of the Hamiltonian with respe
t to the doubled unit
ell, where we in
orporate only the hopping term with amplitude t. Later on, we add tothe 
orresponding Green fun
tion a next-nearest neighbour hopping term with amplitude
t′ (see Fig.2.5) and of 
ourse an intera
tion term, whi
h is en
oded in the self-energy Σ.Referring to Fig. 2.5, we 
onsider one unit 
ell, whi
h is 
hara
terised by the ve
tor R,then we 
an formulate the Hamiltonian with the hopping amplitude t as follows [26℄:

H0 = −t
∑

R

{

(c†RdR + h.
. ) + (c†RdR−a1 + h.
. )

+(d†RcR+a2 + h.
. ) + (d†RcR+a1+a2 + h.
. )

}

, (2.88)with the ve
tors a1 = ax − ay and a2 = ax + ay whereas ax and ay are the prin
ipleve
tors in real spa
e. A Fourier transformation provides the representation of Eq. (2.88)31



2 Dynami
al Cluster Approximation(a)
(0, 0)

(π, 0)

(π, π)(0, π)
(b)

(0, 0)

(π, 0)

(π, π)(0, π)

Figure 2.6 Sket
hes of the magneti
 Brillouin zone (BZ) for Nc = 1 (a) and Nc = 4 (b).The unit 
ell 
onsists of two-orbitals (
- and d-orbital), whi
h results in a redu
tion ofthe Brillouin zone. The 
olour 
ode indi
ates regions in the BZ, where the self-energyis 
onstant with respe
t to the momentum dependen
e.in the basis of operators c(†)K and d(†)
K with momentum ve
tor K:

H0 = −t
∑

K

(

c†K, d
†
K

)




0 Z

Z̄ 0








cK

dK



 (2.89)with Z = Z1Z2 = (1 + e−iKa1)(1 + e−iKa2). In the next step, the Hamiltonian is diago-nalised by the following unitary transformation:
U =

1√
2




1 1

e−iρ −e−iρ



 with e−iρ = e−iK(a1+a2)/2, (2.90)whi
h leads to the intermediate result:
H0 = −t

∑

K

(
1√
2
(c†K + e−iρd†K),

1√
2
(c†K − e−iρd†K

)



|Z| 0

0 −|Z̄|









1√
2
(cK + eiρdK)

1√
2
(cK − eiρdK



 (2.91)
= −t

∑

K

Z(K)γ†KγK − |Z(K)|η†KηK, (2.92)where we have introdu
ed the operators γ†K = c†K + e−iρd†K and η†K = c†K − e−iρd†K.Finally, we 
an identify these operators with the 
reation and annihilation operators of theoriginal latti
e:
γ

(†)
K = c

(†)
k (2.93)

η
(†)
K = c

(†)
k+Q, (2.94)32



2.8 SU(2) Symmetry Breakingwith Q = (π
a ,

π
a ) and a is the latti
e 
onstant. This has the 
onsequen
e, that the Hamil-tonian 
an be rewritten in the basis of the redu
ed (magneti
) Brillouin zone:

H0 = −t
∑

k ∈ mBZ ǫ(k)c†kck + ǫ(k + Q)c†k+Qck+Q. (2.95)In the spirit of the DCA approximation, the simplest realisation of the SU(2) symmetrybreaking 
ode 
an be performed by 
hoosing Nc = 1. In this 
ase, the 
oarse-grainedGreen fun
tion is the lo
al Green fun
tion and the averaging is 
arried out over the entiremagneti
 Brillouin zone (see Fig. 2.6 (a)). In order to in
lude the k-dependen
y of the self-energy on a basi
 level, we split the magneti
 Brillouin zone into four 
luster pat
hes. Onea
h 
luster pat
h, the self-energy is 
onstant with respe
t to the momentum dependen
e.This partition 
orresponds to a Nc = 8 DCA 
al
ulation for the paramagneti
 
ase.In the next step, we go beyond the non-intera
ting 
ase and in
orporate the self-energy.The starting point of our 
onsideration is the Dyson equation for the intera
ting 
lusterGreen fun
tion:
Gσ

c (K, iωm) =
1

G0
−1
c (K, iωm) − Σσ

c (K, iωm)
with

G0c(K, iωm) = (iωm + µ)




1 0

0 1





+




2t′(cos(Kx) + cos(Ky)) Z

Z̄ 2t′(cos(Kx) + cos(Ky))



 and
Σσ

c (K, iωm) =




Σσ

11(K, iωm) Σσ
12(K, iωm)

Σσ
21(K, iωm) Σσ

22(K, iωm)



 , (2.96)where Z is de�ned by Eq. (2.89). We 
onsider additionally to the Ansatz of H0, a diagonalhopping term with amplitude t′. At this point it should be mentioned, that the momentumdependen
e of Gσ
c (K, iωm) is formulated with respe
t to the Fourier transformed ve
tors

a1 and a2 and therefore, the hopping dispersion for t′ o

urs in the diagonal elements of
G0

−1
c (K, iωm). The self-
onsistent 
y
le requires an initial guess of the self-energy. We set

Σσ
c = ∆σ




1 0

0 −1



 with the spin degrees of freedom σ = ±1 and a �nite value for ∆.The appli
ation of the unitary transformation in Eq. (2.90) leads to the Green fun
tionswith the momentum ve
tors k and k + Q. Equivalent to the pro
edure in Se
tion 2.4,where the derivation of the latti
e Green fun
tion from the 
luster quantities is des
ribed,we 
an derive the intera
ting latti
e Green fun
tion by repla
ing G0c(K, iωm) by the
orresponding latti
e Green fun
tion.The Monte Carlo ratio and the upgrade equation of the Green fun
tion is in prin
iple givenby the previously presented results for the paramagneti
 
al
ulation but with a distin
tion33



2 Dynami
al Cluster Approximationof both spin 
hannels σ (see Eq. (2.87)).On the basis of equal-time 
orrelation fun
tions, the 
al
ulation of the (double) o

upationof site i or the magnetisation are determinable within the Hirs
h-Fye algorithm. They 
animplemented in their 
anoni
al form. An improvement of the a

ura
y by redu
tion of thestatisti
al error 
an be a
hieved by in
orporating the time-translational invarian
e of theGreen fun
tion G(τ = τi − τj) (see Se
tion 2.7.2).2.9 U(1) Symmetry BreakingWhat follows is a brief dis
ussion of how super
ondu
tivity 
an be taken into a

ount withina DCA 
al
ulation. In the �rst step we assume that our U(1) symmetry breaking DCA
ode 
ontains the stati
 BCS mean-�eld solution. Hereby, a parti
le-hole transformationtranslates the anomalous Green fun
tion into spin-�ip Green fun
tions and the repulsiveCoulomb intera
tion U 
hanges its sign. The te
hni
al implementation requires a refor-mulation of the Monte Carlo ratio (Eq. (2.82)) as well as the upgrade formula (Eq. (2.87))due to the o

urren
e of the spin-�ip Green fun
tions.Starting point of our 
onsideration is a general Hamiltonian with the following form [27℄:
H =

∑

σ

∫

d3rψ†
σ(r)

(

−∇2

2m
− µ

)

ψσ(r)

+
∑

σ,σ′

∫

d3r′
∫

d3rψ†
σ(r)ψ†

σ′(r
′)v(r − r′)ψσ′(r′)ψσ(r), (2.97)where the �eld operators ψ(†)

σ destroy (
reate) an ele
tron with spin σ at site r. Bardeen,Cooper and S
hrie�er proposed in their BCS theory a simpli�ed intera
tion term, whi
hin
orporates only an attra
tive short-range intera
tion. This 
onta
t intera
tion is givenby:
v(r − r′) = −g

2
δ(r − r′), (2.98)with a positive 
oupling 
onstant g. The quarti
 term in Eq. (2.97) 
an be simpli�ed by a
ommon mean-�eld de
omposition2, whi
h negle
ts �u
tuation of the form ψ†

↑ψ
†
↓−〈ψ†

↑ψ
†
↓〉.With the abbreviation ∆ = g

Ω

∑

k〈c−k↓ck↑〉, where Ω is the volume, the Hamiltonian inEq. (2.97) may be written in momentum spa
e as:
H0 =

∑

k

ǫ(k)c†k↑ck↑ + ǫ(−k)c†−k↓c−k↓ −
∑

k

∆(k)c†k↑c
†
−k↓ + h.
.. (2.99)2AB = (A − 〈A〉)(B − 〈B〉) + A〈A〉 + B〈B〉 − 〈A〉〈B〉

MF
= A〈A〉 + B〈B〉34



2.9 U(1) Symmetry BreakingThe Hamiltonian H0 suggests that we have to introdu
e additional Green fun
tions, whi
hdestroy the U(1) symmetry. An elegant notation is given by the Nambu formalism [28℄:
G(k, τ) =




−〈T ck↑(τ)c†k↑(0)〉 −〈T ck↑(τ)c−k↓(0)〉
−〈T c†−k↓(τ)c

†
k↑(0)〉 −〈T c−k↓(τ)c

†
−k↓(0)〉



 , (2.100)whi
h holds the Dyson equation:
G(k, iωm) = [iωmσ0 − (ǫk − µ)σ3 − Σc(K, iωm)]−1, (2.101)whereat σi 
orresponds to the Pauli-spin matri
es. The diagonal parts of the Nambu-matrix

Σc(K, iωm) des
ribe quasiparti
les renormalisations and the o�-diagonal parts 
ontainsinformation about the K- and frequen
y dependen
e of the pairing state. The intera
tionof the ele
trons on the f-sites are taken into a

ount by adding the Hamiltonian operator
HU = U

∑

i(c
†
i↑ci↑ − 1

2)(c†i↓ci↓ − 1
2 ) to the BCS Hamiltonian:

H = H0 +HU . (2.102)Consider now a 
anoni
al parti
le-hole transformation in one spin 
hannel:
γ†i↑ = c†i↑ (2.103)
γ†i↓ = ci↓, (2.104)whi
h leads to a reformulation of the Hamiltonian in Eq. (2.102):
H =

∑

k

ǫ(k)γ†k↑γk↑ + ǫ(−k)(1 − γ†−k↓γ−k↓)

+
∑

k

∆(k)γ†k↑γ−k↓ +
∑

k

∆(k)γ†−k↓γk↑

− U
∑

i

(γ†i↑γi↑ −
1

2
)(γ†i↓γi↓ −

1

2
). (2.105)Due to the parti
le-hole transformation the anomalous Green fun
tions are repla
ed byspin-�ip Green fun
tions and the repulsive Coulomb intera
tion be
omes an attra
tive po-tential. Naturally, these 
hanges have an in�uen
e on the Monte-Carlo ratio (see Eq. (2.82))as well as on the upgrade formula in Eq. (2.87).In the attra
tive 
ase, the Hubbard-Stratonovi
h (HS) �eld φ 
ouples to the 
harge in orderto avoid a 
omplex HS �eld. The intera
tion term may be 
ompa
tly rewritten as:

HU = γNc

∑

s

eαs(ni↑+ni↓−1)with γ =
1

2
and e∆τU/2 = cosh(α). (2.106)By regarding Eq. (2.82), the probability of a

eptan
e of a new Hubbard-Stratonovi
h
on�guration after a single-site spin �ip is determined by:

Rs→s′ = det[g(g′)−1]e±2α. (2.107)35



2 Dynami
al Cluster ApproximationThe plus(minus) sign depends on the a
tual spin �ip, i.e., a +(−) sign o

urs if one triesto �ip a down (up) spin to an up (down) spin.The evaluation of the determinant provides the �nal result for the update ratio in theHirs
h-Fye algorithm:
Rs→s′ = e±2α

{
∏

σ

(1 + ∆f̃σ)(1 − g)f̃σ,f̃σ −
∏

σ

∆f̃σ(1 − g)f̃ σ,f̃−σ,

} (2.108)where we have introdu
ed the superindex f̃ whi
h indi
ates the spa
e 
oordinate i and thetime index l where the spin �ip has taken pla
e. At this point, we would like to point out,that the above ratio boils down to the generi
 ratio in Eq. (2.82) if the spin-�ip Greenfun
tions are zero.Finally, the upgrade formula in Eq. (2.87) be
omes, of 
ourse, more 
ompli
ated due to theexisten
e of the spin-�ip Green fun
tions. Assume that a single spin �ip at superindex f̃is performed, then the upgraded Green fun
tion g′ at superindi
es f, f ′ is given as follows:
g′f,f ′ = gf,f ′ −

gf,f̃↑∆
↑
f̃ ,f̃

(1 − g)f̃↑,f ′

1 + (1 − g)f̃↑,f↑∆
↑
f̃ ,f̃

−
gf,f̃↓∆

↓
f̃ ,f̃

−
(−g)

f̃↑,f̃↓∆↓
f̃ ,f̃

1+(1−g)
f̃↑,f̃↑∆↑

f̃ ,f̃

gf,f̃↑∆
↑
f̃ ,f̃

1 + (1 − g)f̃↓,f̃↓∆
↓
f̃ ,f̃

−
(−g)

f̃↑,f̃↓∆↓
f̃,f̃

(−g)
f̃↓,f̃↑∆↑

f̃ ,f̃

1+(1−g)
f̃↑,f̃↑∆↑

f̃,f̃

·
[

(1 − g)f̃↓,f ′ −
(−g)f̃↓,f̃↑∆

↑
f̃ ,f̃

1 + (1 − g)f̃↑,f̃↑∆
↑
f̃ ,f̃

(1 − g)f̃↑,f ′

]

, (2.109)where ∆σ
f,f is de�ned by Eq. (2.84). One should keep in mind, that the de�nition of ∆σ

f,fhas to be adjusted when the simulation starts from the non-intera
ting system where allIsing spins have the value zero. Evidently, the above upgrade equation for the Greenfun
tion redu
es to Eq. (2.87) if the spin-�ip Green fun
tions are zero.ObservablesIn this se
tion, we brie�y present some generi
 observables whi
h 
ould be determinedwithin the Hirs
h-Fye algorithm. As mentioned above, the Green fun
tions in the Hirs
h-Fye algorithm are des
ribed in the basis where the anomalous Green fun
tions (c(†)-basis)are expressed by spin-�ip Green fun
tions (γ(†)-basis) whi
h of 
ourse has a dire
t in�uen
eon the observables.
• The o

upation number is given in the (γ(†)-basis) by:

〈n〉 = (1 − 〈γi↑γ
†
i↑〉)〈γi↓γ

†
i↓〉. (2.110)36



2.9 U(1) Symmetry Breaking
• The double o

upation in the (γ(†)-basis) 
an be derived from the expression

〈ni↑ni↓〉 = 〈c†i↑ci↑c
†
i↓ci↓〉. As mentioned in Se
tion 2.7.2, the fermions intera
t onlywith the auxiliary �eld, and therefore, we 
an apply Wi
ks theorem [29℄ for a �xedHubbard-Stratonovi
h �eld 
on�guration. The two-parti
le Green fun
tion redu
esto a produ
t of single-parti
le Green fun
tions (see Eq. (2.70)):

〈ni↑ni↓〉 = (1 − 〈γi↑γ
†
i↑〉)〈γi↓γ

†
i↓〉 + 〈γi↓γ

†
i↑〉〈γi↑γ

†
i↓〉. (2.111)

• The s-wave order parameter is a result of the 
orrelation fun
tions of the anomalousGreen fun
tion, whi
h 
an be readily written in the (γ(†)-basis) as:
∆s

SC = −〈γi+#x↓γ
†
i↑〉 − 〈γi↓γ

†
i+#x↑〉 − 〈γi+#y↓γ

†
i↑〉 − 〈γi↓γ

†
i+#y↑〉, (2.112)with the index #x,y whi
h represents the adja
ent latti
e sites in x- or y-dire
tionfrom latti
e site i.

• The super
ondu
ting d-wave order di�ers from the s-wave order parameter only inthe underlying symmetry. It may be written as:
∆d

SC = −〈γi+#x↓γ
†
i↑〉 − 〈γi↓γ

†
i+#x↑〉 + 〈γi+#y↓γ

†
i↑〉 + 〈γi↓γ

†
i+#y↑〉. (2.113)
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Analyti
alContinuation -Maximum EntropyMethod 3
3.1 Analyti
al ContinuationIn the following 
hapter, we are going to des
ribe the idea of analyti
al 
ontinuationof Matsubara fun
tions to the real frequen
y axis. The quantum Monte Carlo te
h-nique provides 
orrelation fun
tions as fun
tions of inverse temperature or imaginary time:
G(τ) = −〈T Ô(τ)Ô†(0)〉. In order to 
ompare the information of these 
orrelations fun
-tion with experimental data, one has to extra
t the real frequen
y dependen
ies of su
hquantities.Analyti
al 
ontinuation is based on basi
 
on
epts of the theory of analyti
al fun
tions.Let us review over
ome these 
on
epts by 
onsidering the one- and two-parti
le Greenfun
tions whi
h exhibit the following periodi
ity:

G(τ) = ∓G(τ + β), (3.1)where the upper (lower) 
ase holds for the fermioni
 (bosoni
) 
ase. The Green fun
tionis uniquely de�ned in the interval τ ∈ [0, β). The Fourier 
oe�
ients are the Matsubarafun
tions G(iωm) whi
h depend on imaginary frequen
y:
G(τ) =

1

β

∑

ωn

e−iωmτG(iωm) (3.2)
G(iωm) =

∫ β

0
dτeiωmτG(τ). (3.3)The sum is 
arried out over Matsubara frequen
ies ωm = (2m + 1)π/β for fermions and

ωm = 2mπ/β for bosons, where m ∈ Z. With the expli
it form of the spe
tral fun
tion
A(ω) in the Lehmann representation, Eq. (3.3) may be rewritten as:

G(iωm) =

∫ +∞

−∞

A(ω)

iωm − ω
dω (3.4)39



3 Analyti
al Continuation - Maximum Entropy MethodIn the following, we 
an de�ne the Green fun
tion G(z):
G(z) ≡

∫ +∞

−∞
dω′ A(ω′)

z − ω′ , (3.5)with 
omplex energies z. This Green fun
tion is an analyti
 fun
tion in the upper andthe lower 
omplex plane and exhibits poles on the real frequen
y axis. Per 
onstru
tion,
G(iωm) is 
on
ordant withG(z) at all Matsubara frequen
ies iωm whi
h allows us to apply aresult from 
omplex analysis: if two fun
tions 
oin
ide on an in�nite set of points then theyare fully identi
al fun
tions within the entire 
omplex plane [30℄. Hen
e, the Matsubarafun
tion G(iωm) or, equivalently, G(τ) 
an be uniquely extend to the whole 
omplex plane.In order to obtain the spe
tral fun
tion A(ω), we de�ne the retarded (advan
ed) Greenfun
tion GR(A)(ω) = G(ω ± iη) and the analyti
al 
ontinuation is performed by:

GR(A)(ω) = G(iωm → ω ± iη) and ∓ 1

π
Im[GR(A)(ω)] = A(ω) (3.6)The single-parti
le spe
tral fun
tion A(ω) is positive de�nite

A(ω) ≥ 0, (3.7)and a sum rules ensures the normalisation
∫ +∞

−∞
dω A(ω) <∞, (3.8)whi
h gives A(ω) the appealing property that it 
an be interpreted as a probability distri-bution. If we apply a Fourier transformation to Eq. (3.5), then we 
an write:

G(τ) = ∓
∫

dω
1

β

∑

ωn

e−iωmτ

iωm − ω
A(ω) (3.9)

=

∫

dω
e−ωτ

e−βω ± 1
A(ω) (3.10)

=

∫

dωK(τ, ω)A(ω) (3.11)In the last step, we adopt the kernel K(τ, ω):
K(τ, ω) =







e−ωτ/
(
e−ωβ + 1

)
, fermions

e−ωτ/
(
e−ωβ − 1

)
, bosons. (3.12)In prin
iple, Eq. (3.11) displays the relation between the imaginary time Green fun
tion

G(τ) and the spe
tral fun
tion A(ω). Hereby, the analyti
al 
ontinuation 
an be under-stood as an inversion of the fun
tional expression K[A(ω)] = G(τ). An analyti
al approa
hin order to perform the inverse Lapla
e transformation is not possible and from the nu-meri
al point of view, a straightforward inversion leads to unreliable results. The reason isgiven by numeri
al instabilities, whi
h 
ome from the extremely large 
ondition number of40



3.2 Maximum Entropy Methodthe kernel. This is shown by a singular value de
omposition of the kernel K = UDV intoan orthogonal matrix U, a diagonal matrix D and an upper triangular matrix V. The diag-onal matrix D exhibits very large and small eigenvalues, whi
h would be mixed up duringa simple matrix inversion of the kernel fun
tion. Additionally, the input data is in
ompleteand noisy, whi
h makes the inversion of the Lapla
e transformation even worst. Finally,
orrelation e�e
ts of the input data between di�erent bins and time sli
es 
ould 
ause anover-�tting of the data. This mean, that one extra
ts stru
tures out of the QMC spe
trum,whi
h are not a
tually present. All these arguments demonstrate why the inversion of theLapla
e transformation is an ill-de�ned numeri
al task.3.2 Maximum Entropy MethodThe state of the art strategy in order to ta
kle the inverse Lapla
e transformation is theMaximum Entropy method [24, 31, 32℄. This method was �rst introdu
ed in order toimprove noisy astronomi
al data [33℄. In the meantime, it has be
ome a standard toolfor analysis of statisti
al data [34℄. This method was also su

essfully applied to systemsof many-body problems, i.e., to the one- and two dimensional Hubbard model [35, 36,37, 38, 39, 40℄, to the single impurity Anderson model [41℄, and to spin systems like thespin-1/2-Heisenberg model [42, 43℄.In the following se
tion, we emphasise the basi
 idea of the 
lassi
al Maximum Entropymethod, before we summarise a sto
hasti
 implementation of the analyti
al 
ontinuationwhi
h was formulated by K. Bea
h. [25℄Generally, the Maximum Entropy method is based on the idea of maximising, a so-
alledaposteriori probability as a fun
tion of the given information 
ontent. This means in our
ase, that the Maximum Entropy method estimates the most probable spe
tral fun
tion Awith respe
t to the given input data G and an additional prior knowledge of the spe
tralfun
tion whi
h is en
oded in a default model m, i.e., this 
orresponds to the maximisationof the 
onditional probability of P (A|G,m). The 
onditional probability P (A|G,m) 
anbe 
omputed in the framework of Bayesian statisti
 [44℄, whi
h states that P (A|G,m) isnothing else but,
P (A|G,m) =

P (G|A,m) P (A|m)

P (G|m)
. (3.13)The right hand side of Eq. (3.13) 
onsists of the Likelihood fun
tion P (G|A,m), the en-tropi
 prior P (A|m) and the eviden
e P (G|m) whi
h 
an be written in terms of the Like-lihood fun
tion and the entropi
 prior:

P (G|m) =

∫

DA P (G|Am) P (A|m), (3.14)41



3 Analyti
al Continuation - Maximum Entropy Methodand represents only a normalisation fa
tor. The maximisation of the aposteriori probability
P (A|G,m) is, thus, equal to the simultaneous maximisation of the Likelihood fun
tion andthe entropi
 prior.Let us dis
uss the Likelihood fun
tion and the entropi
 prior in detail:P(G|A,m): Generally, the Likelihood fun
tion represents a pro
edure whi
h allows to �tparameters to a given data set. In our 
ase, this pro
edure poses the question: what isthe most probable data set Ḡ whi
h di�ers as little as possible from a data set G whi
h isextra
ted from a given spe
tral fun
tion A by appli
ation of the Eq. (3.11)? The Likelihoodfun
tion [45℄ gives us the 
orre
t answer:

P (Ḡ|A,m,α) =
1

(2π)Nl/2
√

detC
e−

1
2
χ2(A) with

χ2(A) =
∑

τ,τ ′

(

Ḡτ −
∑

i

Kτ,iAi

)

C−1
τ,τ ′

(

Ḡτ ′ −
∑

i

Kτ ′,iAi

)

. (3.15)The matrix C is the 
ovarian
e matrix and Nl represents the number of time sli
es (seeSe
. 2.7.1) and α serves as a statisti
al parameter. Obviously, χ2 in Eq. (3.15) is inde-pendent from the default model m and α and the 
onditional probability is normalised toone. In the spirit of the maximum Likelihood approa
h, the best solution of the inverseLapla
e transformation is given by the Ḡ whi
h minimises Eq. (3.15). Hereby, the aprioriknowledge is totally negle
ted and the input data will be over-�tted.P(A|m): The apriori knowledge about the input data set is en
oded in a default model m.The default model should not underlay any 
onstraints ex
ept some elementary 
onditionswhi
h ensure that the default model (or the spe
tral fun
tion A) 
an be understood as aprobability distribution. In the 
ase of non-existen
e of prior information the prior entropyis given by P (A|m) = const.On the basis of general 
onsiderations of the Maximum Entropy axioms [33℄, it is possi-ble to derive a 
lose expression for the information 
ontent of the spe
tral fun
tion withrespe
t to a default model. Hereby, the Maximum Entropy axioms 
an be summarisedby the key words: subset independen
e, 
oordinate invarian
e, system independen
e ands
aling properties. The apriori probability for a positive additive distribution fun
tion isdetermined by:
P (A|m) =

1

Zs
eαS , (3.16)with Zs serves as a normalisation fa
tor: ∫ DA P (A|m) = 1 and α is a free statisti
alparameter. The entropy 
an be written as [33℄:

S =

∫ ∞

−∞
dω

[

A(ω) −m(ω) −A(ω) ln

(
A(ω)

m(ω)

)]

. (3.17)The entropy des
ribes the di�eren
e between the spe
tral fun
tion A and the given defaultmodel m. If the default model is equal to A(ω) the entropy yields zero and be
omes42



3.2 Maximum Entropy Methodnegative otherwise. The 
ombination of the Likelihood fun
tion and the apriori entropyleads to an expression for the aposteriori probability [46, 47℄:
P (A|G) ∼ eαS−χ2/2, (3.18)whi
h exhibits a 
ompetition between P (G|A,m) and P (A|m). The �rst term in theexponent take a

ount of the information entropy, i.e., the Maximum Entropy methodwould just prioritise the spe
trum whi
h is the most inde�nite against prior knowledgeand the se
ond term prioritise the 
lassi
al minimisation of χ2, whi
h 
orresponds to a
lassi
al �t of a data set to a given model.3.2.1 Sto
hasti
 Analyti
al ContinuationAnother way to perform the 
ontinuation of 
orrelation fun
tions from imaginary timeto real frequen
ies was shown by K. Bea
h [25℄. In parti
ular, Bea
h 
ould identify themaximum entropy method as a spe
ial limit of sto
hasti
 analyti
al 
ontinuation. Hereby,the 
ontinuation problem is mapped onto a system of intera
ting 
lassi
al �elds n(x). Thethermally averaged value of this �eld is given by:
〈n(x)〉 =

1

Z

∫

Dn n(x) e−αH[n], (3.19)where Z severs as a normalisation fa
tor and the integral has to be taken over all �eld
on�gurations n(x). The underlying Hamiltonian is 
hosen in su
h a way, that the groundstate solution 
orresponds to the unregularised inversion of the input data with the regu-larisation parameter α, whi
h 
an be interpreted as a �
tive inverse temperature. In thehigh temperature limit (α→ 0), the integral in Eq. (3.19) averages all �eld 
on�gurationsand the average is independent from the input data G(τ). These two extrema obviously
orrespond to the over-�tting (Q ∼ χ2[A]) and over-smoothing limits (Q ∼ −S[A]) whi
hwere des
ribed in Se
. 3.2. The evaluation of the integral expression in Eq.(3.19) requiresa dis
retisation of Dn and a Monte Carlo te
hnique is utilised in order to ta
kle the hugephase spa
e. During the Monte Carlo pro
edure ea
h �eld 
on�guration C = {rγ , aγ}is parametrised by a set of so-
alled walkers whi
h exhibit a given residue rγ > 0 and
oordinate 0 ≤ aγ ≤ 1:
nC(x) =

∑

γ

rγ δ(x− aγ) (3.20)The Monte Carlo pro
edure starts with an arbitrary start 
on�guration and new 
on�g-urations are suggested by varying the residues and 
oordinates of the walkers. A new
on�guration 
auses an energy shift whi
h is determined by H and the a

eptan
e of anew 
on�guration is 
ontrolled with the usual Metropolis algorithm [48℄. The updatingpro
ess in
orporates the detailed balan
e 
riterion and a normalisation 
onstraint on the
lassi
al �eld (
∑

γ rγ = const) whi
h se
ures the normalisation of the spe
tral fun
tion.43



3 Analyti
al Continuation - Maximum Entropy MethodAs mentioned before, the parameter α 
an be 
onne
ted to an arti�
ial temperature. Sim-ulations for di�erent temperatures are 
arried out simultaneously with a parallel tem-pering te
hnique [49℄. Adja
ent temperature layers 
an inter
hange their 
on�gurationswhi
h leads to an e�e
tive updating s
heme. If the systems enter into equilibrium one
an starts the measurements of the internal energy with respe
t to the temperature
({U(αp) = 〈H[n]〉αp : p = 0, . . . , N}), where N 
hara
terises the number of temperaturelayers. Furthermore, the spe
i�
 heat 
an be obtained from the derivative of the internalenergy with respe
t to the temperature and a phase transition would 
ause a jump in thespe
i�
 heat at a parti
ular energy E⋆. Bea
h argues, that the 
orre
t spe
tral fun
tion
A(ω) is given by a sum over all �eld 
on�gurations 〈n(x)〉E whi
h have the energy E < E⋆.3.2.2 Analyti
al Continuation of two-parti
le 
orrelation fun
tionsThe following se
tion presents some 
omments on the usage of the Maximum Entropymethod in the 
ase of two-parti
le 
orrelation fun
tions. As we have seen in Eq. (3.11),the Kernel exhibits in the bosoni
 
ase a divergen
e for ω = 0. A simple symmetrisationof the Kernel fun
tion 
an 
ir
umvent this problem:

χ(q, ω) = −χ(q,−ω)

=
1

π

∫ ∞

−∞
dω

e−τω

1 − e−βω
χ(q, ω)

=
1

π

∫ ∞

−∞
dω

e−τω

1 − e−βω
χ(q, ω) tanh(

βω

2
) coth(

βω

2
)

=
1

π

∫ ∞

−∞
dω

e−τω

1 + e−βω
χ(q, ω) coth(

βω

2
)

︸ ︷︷ ︸

χ̃(q,ω)

(3.21)
=

1

π

[
∫ ∞

0
dω

e−τω

1 + e−βω
χ̃(q, ω) +

∫ ∞

0
dω

e(τ−β)ω

1 + e−βω
χ̃(q, ω)

]

=

∫ ∞

0
dω

e−τω + e(τ−β)ω

π(1 + e−βω)
︸ ︷︷ ︸

K(ω,τ)

χ̃(q, ω). (3.22)The symmetrisation yields a rede�nition of the sus
eptibility χ(q, ω) (Eq. (3.21)) whi
hhas to be taken into a

ount in the de�nition of the dynami
al stru
ture fa
tor S(q, ω):
S(q, ω) =

χ(q, ω)

1 − e−βω
=

χ̃(q, ω)

1 + e−βω
(3.23)Finally, some general important notes about the Maximum Entropy method should bementioned. As des
ribed in Se
. 3.2, the resulting spe
tral fun
tion should be interpretedas a probability distribution. That means in detail, that di�erent sharp stru
tures in thespe
trum indi
ate regions with high or low probability for �nding a real peak. Although44



3.2 Maximum Entropy Methodthe total weight of the spe
tral fun
tion is 
onserved, statements about the absolute valueand the shape of a peak have to be taken 
arefully. Espe
ially, the nature of broadenedand smeared out features in the spe
tra are hard to �gure out. They 
an be a 
onsequen
eof a bad resolution due to the error of the QMC data or they indeed originate from auniform distribution. In order to avoid su
h misinterpretations it is important to keep thesimulations running until no visible 
hanges in the spe
tra o

ur.
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The single-bandHubbard model 4
The single-band Hubbard model is de�ned in the language of se
ond quantisation by [50,51, 52℄

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (4.1)with the hopping amplitude tij and the Hubbard intera
tion U . In this thesis the energys
ale of the Hubbard Hamiltonian is set by the nearest-neighbour hopping amplitude t andthroughout we 
onsider U = 8t. A visualisation of the di�erent energy 
ontributions isdepi
ted in Fig. 4.1. The Hubbard model is nowadays one of the standard models used inorder to des
ribe the physi
s of strongly-
orrelated ele
tron systems. In the beginning, itwas assigned to des
ribed the magnetism of strongly 
orrelated, itinerant ele
trons in nar-row band materials. In the spe
ial 
ase of a half-�lled system with one hole and an in�nitevalue of the Coulomb intera
tion, the Hubbard model shows for d ≤ 2 a 
ompletely spin-polarised, i.e., ferromagneti
 ground state [53℄. But is was shown that the ferromagneti
solution on a primitive 
ubi
 or 
ubi
 body-
entered system does not remain 
ompletelystable. In the last several years it has be
ome more apparent, that antiferromagneti
 
or-relation plays an even more important role. Apart from a pure theoreti
al des
ription, theHubbard model is 
onsidered to des
ribe the physi
s of 3d-transition metals, su
h as high-temperature super
ondu
tors (HTSC) [54℄. These 
erami
s 
onsist in general of 
opperoxide 
ompositions. Inelasti
 neutron s
attering experiments showed that the ele
tri
alproperties of these materials are dominated by the physi
s within the two dimensional
opper oxide plans. The ele
tri
al resistivity perpendi
ular to the 
opper oxide planes is
102 − 105 order of magnitudes higher than within the planes. [55℄ This high anisotropy
an be justi�ed by the 
rystal stru
ture of these materials. The HTSCs 
onsists of layersof 
opper oxide whi
h are separated by inter-layer atoms, i.e., lanthanum or yttrium. Dueto the 
rystal stru
ture, these materials 
an be e�e
tively regarded as two dimensionalsystems. Furthermore, a detailed 
lose-up of the ele
troni
al stru
ture yields an even morebizarre property of the 
ondu
tivity of the HTSCs. In the 
ase of La2CuO4, one �nds the47



4 The single-band Hubbard model
J ∼ t2

U

U

t′

t

t

Figure 4.1 S
hemati
 presentation of the one-band Hubbard model with nearest neigh-bour hopping t, next-nearest neighbour hopping t′, on-site Coulomb intera
tion U fordouble o

upied latti
e sites and ex
hange intera
tion J ∼ t2

U .
opper atoms in the 
on�guration 3d9. Due to the 
rystal splitting of the 3d-states, oneobtains a d-
on�guration with one hole in the dx2−y2-state. This state hybridises with the
px- and py-state of the oxygen atoms and forms a band 
lose to the Fermi-energy. This
on�guration would normally lead to a metalli
 state be
ause one 
an add/remove addi-tional ele
trons/holes to the half-�lled band. But at low temperatures, the phase-diagramof su
h HTSCs exhibits an antiferromagneti
 insulating phase. Later on, we 
an justify thisbehaviour by the strong Coulomb intera
tion whi
h enfor
es a metal-insulator transition.At higher doping (see Fig. 4.2), the HTSCs are 
hara
terised by a metalli
 behaviour witha few of exoti
 properties, e.g., the existen
e of a pseudo-gap regime. The super
ondu
tingphase is lo
ated at roughly optimal doping and 
aptures a dome-like shape. By furtherdoping one rea
hes a normal metalli
 regime whi
h 
an be des
ribed by the Fermi-liquid

phase
superconducting

phase
antiferromagnetic

superconducting
phase

*T

T

chemical potentialn pFigure 4.2 Sket
h of the generi
 temperature versus doping phase-diagram of the high-temperature super
ondu
tors. The abbreviations `n' and `p' indi
ate the ele
tron and holedoping regimes, respe
tively. The pseudo-gap regime is lo
ated under the dashed-dottedline and is 
onne
ted to a typi
al temperature T ⋆.48
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Zhang-Rice

Singlet

tpd

Upd

tpp

Upp

ǫd, Ud

ǫp, Up 2px

2py

3dx2
−y2Figure 4.3 Sket
h of the intera
tion und hopping terms of the three-band Hubbard model.The 
opper dx2−y2 (oxygen 2px and 2py) orbitals are indi
ated by the red (blue) ellipses.The hopping amplitudes between the orbitals are given by tpp and tpd and Upp, Upd,

Up and Ud 
hara
terise the Coulomb intera
tion between ele
trons of the p-, pd-, andd-orbitals. The energy 
ost of adding or removing an ele
tron on the d- or p-orbitalsare de�ned by ǫd and ǫp. Holes on the oxygen and 
opper orbitals 
ould form a singlet(Zhang-Ri
e singlet) whi
h 
an move through the latti
e in a similar way as a singlehole in an e�e
tive one-band Hubbard model with strong intera
tion U [56℄.theory.A more realisti
 des
ription of the ele
troni
 stru
ture of the HTSCs 
an be a
hieved by thethree-band Hubbard model or Emery model [57℄ whi
h in
orporates the ele
troni
 degreesof freedom of the d- and p-orbitals. The dx2−y2 
opper orbitals are separated from the
2px and 2py oxygen orbitals by the 
rystal �eld. Hereby, the oxygen orbitals gather theadditional 
harge 
arriers (holes) when the system is doped away from half-�lling. Theholes on the oxygen orbitals 
ouple parallel (singlet) or anti-parallel (triplet) to the holeson the 
opper orbitals. In the strong 
oupling limit, one 
an show in the framework ofse
ond order perturbation theory, that the holes of the d- and p-orbitals build a Zhang-Ri
e singlet [56℄. This 
on�guration is energeti
ally more favoured than a triplet state. Inorder to redu
e the 
omplexity of the system, one integrates out the ele
troni
al degrees offreedom of the oxygen orbitals and 
onsiders an e�e
tive model whi
h only in
orporates thelow energy physi
s of the singlet state and negle
ts the high energy ex
itations due to thetriplet 
on�gurations. Therefore, the single-band Hubbard model is expe
ted to des
ribethe physi
s of the high-temperature super
ondu
tors. Nevertheless, the properties of the49



4 The single-band Hubbard modelHTSCs impose several requirements on the model. First, the model has to des
ribe theintera
tion of strongly 
orrelated ele
trons. Furthermore, the model should exhibit aninsulating antiferromagneti
 phase at half-�lling whi
h persists to higher dopings. Lastbut not least, it has to show a transition from the Mott-insulator to a paramagneti
 metaland super
ondu
ting state when additional 
harge 
arriers are introdu
ed. The transitionfrom the metalli
 state to the super
ondu
ting state is still not 
learly understood and isstill under investigation [11, 58℄.The single-band Hubbard model, whi
h is introdu
ed in Eq. (4.1), reveals several basi
symmetries. The Hubbard Hamiltonian is invariant under a global SU(2) and U(1) sym-metry whi
h enfor
es spin and parti
le 
onservation. In parti
ular, the z-
omponent ofthe spin is 
onserved and without lost of generality the magnetisation m 
an be set toa positive value. On the bipartite latti
e, the single-band Hubbard Hamiltonian, withonly a nearest-neighbour hopping amplitude, exhibits parti
le-hole symmetry whi
h 
anbe broken by adding a next-nearest neighbour hopping term to the Hamiltonian.The �rst term of single-band Hubbard model des
ribes the hopping of the ele
trons whereasthe se
ond term of Eq. (4.1) represents the intera
tion of the ele
trons whi
h o

upy thesame latti
e site. The model 
an be solved only in very limiting 
ases. In one dimension,the Bethe Ansatz provides an analyti
al solution whi
h was already proposed in the year1968 by Lie und Wu [59℄. In the limit of in�nite dimension the Hubbard model 
an beexa
tly mapped onto the impurity Anderson model whi
h 
an be solved with the quantumMonte Carlo te
hnique (see se
tion 2.1). This means that even in two dimension, withthe ex
eptions of the s
enarios des
ribed above, an exa
t solution has not been found.The reason is given by the 
ombination of the two parts in the Hubbard Hamiltonian.To elaborate, we 
onsider for the moment only the free motion of the ele
trons and set
U = 0 and negle
t the Coulomb intera
tion. In this limit, we 
an Fourier transform theannihilation (
reation) operators

ciσ =
1√
N

∑

k

eikRickσ, (4.2)whi
h reformulates the Hubbard Hamiltonian
H(U = 0) =

∑

k,σ

ǫ(k)nkσ with ǫ(k) = −t
∑

〈i0〉
eikRi , (4.3)where nkσ is the o

upation operator and 〈i0〉 represents all neighbours of latti
e site 0.For the two dimensional latti
e we obtain the free dispersion ǫ(k) = −2t(cos(kx)+cos(ky))and �nd a metalli
 solution for the Hubbard model. In the se
ond 
ase we 
onsider the pureCoulomb intera
tion and set t = 0. The intera
tion part is already diagonal in real spa
eand we derive two dispersionless Hubbard bands in the spe
trum whi
h are separated by theintera
tion strength U . At half-�lling, the lower Hubbard band is 
ompletely �lled whereasthe upper Hubbard band is 
ompletely empty. This situation des
ribes an insulator.50



4.1 Temperature and doping dependen
e of the Hubbard modelThe interplay of the kineti
 and the Coulomb term is responsible for the interesting many-body 
orrelation physi
s whi
h o

urs in the two-dimensional Hubbard model.4.1 Temperature and doping dependen
e of the HubbardmodelThe Hubbard model exhibits a variety of 
orrelation e�e
ts whose out
ome enormouslydepends on doping and temperature. In the strong 
oupling regime whi
h means, thatthe Coulomb intera
tion of the ele
trons is 
omparable or larger than their kineti
 energy,and half-�lling and su�
iently low temperature, the Hubbard model undergoes a metal-insulator transition. This transition is for
ed by the strong intera
tion of the ele
tronsand 
onstitutionally di�ers, therefore, from the metal-insulator transition known fromband-insulators. By introdu
ing additional 
harge 
arriers into the system, the insulat-ing behaviour vanishes due to the possibility of the ele
trons to move through the systemwithout generating additional double o

upied latti
e sites. This �rst example 
lari�es thedrasti
 
onsequen
es of the strong intera
tion of the ele
trons. The 
lassi�
ation of thedi�erent phases of the Hubbard model 
an be a

omplished by the investigation of the one-and two-parti
le Green fun
tions or their 
orresponding spe
tral fun
tions. The followingparagraph provides a short overview of the di�erent regimes of the Hubbard model andgives a basis for the 
lassi�
ation of the results of this thesis.The single-band Hubbard model is assumed to des
ribe the important properties ofthe high-temperature super
ondu
tors. Equivalent to the phase-diagram of the HTSCs(Fig. 4.2), the Hubbard model des
ribes an e�e
tive antiferromagneti
 (AF) ordered state
lose by half-�lling whi
h is driven by the interplay of the Coulomb intera
tion and thehybridisation. In parti
ular, virtual hopping pro
esses 
an redu
e the free energy of thesystem but this assumes adja
ent spins with opposite alignment due to the Pauli prin
i-ple. The reader should note, that in the 
ase of two dimensions and at �nite temperature
ontinuous symmetry breaking is prohibited by the Mermin-Wagner theorem [60℄. Never-theless, the magneti
 
orrelation length 
an approa
h the system size at su�
iently lowtemperatures and the system appears to be in an e�e
tive AF ordered state. Hen
e, sim-ulations 
lose by half-�lling seem to be performed in an AF ordered state although the
ontinuous SO(3) symmetry is not really broken. This advantage brings the simulationvery 
lose to an adequate des
ription of the high-Tc materials. Another possibility whi
h
an 
ause an antiferromagneti
 instability at half-�lling is given by perfe
t nesting. Per-fe
t nesting 
onne
ts regions of the Brillouin zone whi
h are parallel to ea
h other by a
ommensurable wave ve
tor q = (π/a, π/a). On the other hand, an AF ordered system
an be des
ribed by two sub-latti
es A and B whi
h double the unit 
ell in real spa
eand lead to a redu
ed magneti
 Brillouin zone whi
h realises the perfe
t nesting 
riteria.51



4 The single-band Hubbard modelPossible s
attering pro
esses with a momentum transfer of q = (π/a, π/a) obey the Bragg
onditions and stabilise the state with redu
ed translational symmetry. The 
onsequen
eis an insulating state whi
h is justi�ed by the nesting property and is distinguishable fromthe above des
ribed Mott-Hubbard transition.Properties of the half-�lled Hubbard modelIn addition to the presen
e of two in
oherent high energy bands, whi
h result from thestrong Coulomb intera
tion, one 
an observe low-energy ex
itations of the order of theex
hange intera
tion J in the single-parti
le spe
trum. The low energy ex
itations onlyo

ur at su�
iently low temperatures when the relevant spin degrees of freedom must betaken into a

ount and the quantum nature of the spins be
ome important. The narrowquasi-parti
le band 
an be ni
ely �tted by a tight-binding harmoni
s with dispersion ofthe form
E(k) = 2cJ(cos(kx) + cos(ky))

2, (4.4)with the 
onstant fa
tor c = 1/8. A wide variety of several methods have reprodu
ed theabove dispersion relation for di�erent models. The t-J model, whi
h 
an be derived fromthe Hubbard model in the strong 
oupling limit, was investigated by the exa
t diagonalisa-tion te
hnique [61, 62, 63℄ and by the Green fun
tion quantum Monte Carlo method [64℄.The Hubbard model also approved the above dispersion relation in exa
t diagonalisationstudies [65℄ as well as in quantum Monte Carlo simulation [66℄. The numeri
al resultsare also supported by analyti
al investigation su
h as the self-
onsistent Born approxima-tion [67, 68, 69℄ or other variational 
al
ulations based on the `string' pi
ture or seriesexpansion. All 
al
ulations 
on�rm the pi
ture of a single hole whi
h is propagating in aHeisenberg antiferromagnet or half-�lled Hubbard model. A visualisation of this s
enariois possible within a string pi
ture introdu
ed by Bulaevskii, Nagaev, and Khomskii [70℄and it is illustrated in Fig.4.4. The �gure is taken from referen
e [71℄. In the stringpi
ture, a hole is moving in an AF ordered ba
kground and 
reates a path of misalignedspins (grey shaded arrows in Fig. 4.4). The in
rease of the magneti
 energy initiates anattra
tive potential whi
h traps the hole around its starting point. A 
oherent motionof the hole be
omes impossible and instead, the hole performs an in
oherent os
illatorymotion around the point where it was originally 
reated. A 
oherent motion of the holebe
omes only possible if the spin defe
ts are healed up by spin-�ip pro
esses whi
h restorethe original AF ordered state. Thus, ea
h spin-�ip redu
es the length of the string bytwo latti
e spa
ings and shift the origin of the os
illatory motion to a se
ond-nearest orthird-nearest neighbour. Fig. 4.5 illustrates the di�erent paths whi
h are possible in orderto rea
h a se
ond-nearest (1,1) neighbour exist and a third-nearest-neighbour (2,0). Ap-parently, there exist two di�erent paths to the (1,1) neighbour but only one path to the52



4.1 Temperature and doping dependen
e of the Hubbard model

flip
Spin

flip
Spin

Distance travelled

Frustrated
bonds

Figure 4.4 Sket
h of the motion of a single hole within an AF ordered ba
kground. Thehopping of the hole leads to a tra
e of misaligned spins whi
h results in an in
rease ofthe magneti
 energy (top right) and, therefore, the motion of the hole is 
on�ned by anattra
tive potential. The only way to es
ape from this attra
tive potential is given byspin-�ips whi
h heal up the generated spin-defe
ts. The �gure is taken from [71℄.
53



4 The single-band Hubbard model
Figure 4.5 Illustration of the di�erent paths in order to rea
h a se
ond-nearest neighbour(two possibilities) or to rea
h a third-nearest neighbour (one possibility).(2,0) neighbour. After these 
onsiderations, one immediately �nds the dispersion of theabove des
ribed hopping pro
esses [71℄:

cJ [2(cos(2kx) + cos(2ky)) + 2 · 4 cos(kx) cos(ky)]

= 4cJ [(cos(2kx) + cos(2ky))
2 − 1]. (4.5)With the ex
eption of the prefa
tor c (whi
h is numeri
ally derived as 1/8) the dispersion isentirely determined by the topology of the string. Obviously, the dispersion is degeneratefor all momentum ve
tors whi
h are lying on the surfa
e of the magneti
 Brillouin zone.However, numeri
al studies on the t−J model show that the degenera
y is a
tually lifted.The observed energy di�eren
e is only small for J/t ≈ 0.4 but be
omes quite remarkable forlarger ratios of J/t. A study of the parameter dependen
e shows that the dispersion alongthe line (π/2, π/2) to (π, 0) s
ales with the hopping integral t. This observation suggestsan additional hopping pro
ess whi
h involves the hopping amplitude t. In a simple pi
ture,one 
an imagine the motion of a hole in the AF ordered ba
kground as a superposition of arapidly os
illating parti
le (i.e. on a time s
ale ∝ t−1) and a slowly moving box (i.e. times
ale ∝ J−1), whi
h represents the string in Fig. 4.4. Therefore, the box represents themisaligned spins whi
h form an attra
tive potential for the hole and might be viewed as aregion of suppressed Néel order, su
h that the pi
ture 
orresponds to the strong 
ouplinglimit of S
hrie�er's spin-bag theory [72, 73℄. Additionally, the superimposed motion of thehole and the box is sometimes referred to as a spin-polaron, where in an equivalent wayan ele
tron is moving in the presen
e of very strong ele
tron-phonon 
oupling through asystem whi
h exhibits strong latti
e distortions. Nevertheless, the string, spin-bag, andspin-polaron pi
tures des
ribe the same situation: an os
illating hole is trapped in a regionof redu
ed Néel order, with the 
onsequen
e that the entire region has to move throughthe AF ordered ba
kground thereby enhan
ing the e�e
tive mass of the quasiparti
le.The 
orrelation e�e
ts on energy s
ales J leave �ngerprints in the one- and two-parti
leex
itation spe
tra. At half-�lling we �nd the following situation: additional to the in
oher-ent Hubbard bands whi
h result from the high energy Coulomb repulsion of the ele
trons,one 
an re
ognise the low energy ex
itations of the magnitude J 
lose to the 
hemi
alpotential. The low energy quasiparti
le only o

urs at su�
iently low temperatures if thespin degrees of freedom be
ome important. Obviously, one 
an explain the origin of the54



4.1 Temperature and doping dependen
e of the Hubbard modellow-energy band by the above mentioned superposition of the motion of a hole in a redu
edNéel ordered ba
kground. Further eviden
e for the spin-nature of the quasi-parti
le bandis given by the dynami
al spin-stru
ture fa
tor. The o

urren
e of the quasiparti
le bandin the one-parti
le spe
trum is a

ompanied by the formation of a 
oherent spin-ex
itationaround the wave-ve
tor (π, π). The authors of Ref. [74℄ have �tted the 
olle
tive spin modein the spin-response fun
tion by a spin-wave dispersion:
ESW (k) = 2J

√

1 − 1

4
(cos(kx) + cos(ky))2. (4.6)Even earlier studies have shown that two-parti
le 
orrelation fun
tions su
h as the spin-response fun
tion 
an be des
ribed in the framework of the SDW approximation for largevalues of the intera
tion U [73℄. The spin response fun
tion shows a spin-wave dispersion

ESW (k) with an energy s
ale of 2J . The weight of the spin-response at k = (π, π) in
reaseswith de
reasing temperature and be
omes more and more sharp as it is predi
ted in theAF spin-wave theory.Let us dis
uss the paramagneti
 regime of the Hubbard model. This regime is mainly 
har-a
terised by the intera
tion of itinerant ele
trons due to the strong Coulomb intera
tion.Spin-
orrelation e�e
ts, su
h as those des
ribed in the previous se
tion, 
an be totally ne-gle
ted be
ause all relevant spin-degrees of freedom are thermally ex
ited. Therefore, nosign of the energy s
ale J exists. The Green fun
tions in the paramagneti
 regime 
an begiven in the Hubbard-I approximation:
GHub−I(k, ω) =

1 − n/2

ω − ǫ(k)(1 − n/2) + iη
+

n/2

ω − U − ǫ(k)n/2 + iη
, (4.7)whi
h leads to the upper and lower band in the one-parti
le spe
tral fun
tion:

EHub−I
± (k) =

1

2

(

ǫ(k) + U ±
√

ǫ(k)2 + U2
)

, (4.8)whereby n determines the �lling of the system and ǫ(k) = −2t(cos(kx) + cos(ky)) denotesthe tight-binding dispersion. The expression for the Green fun
tion in Eq. (4.7) be
omesexa
t in the limits of U = 0 and ǫ(k) = 0.The transition from the paramagneti
 high-temperature regime to the AF ordered phaseat half-�lling is a

ompanied by an in
rease of the spin-
orrelation length. The redu
tionof the Brillouin zone initiates a fundamental 
hange of the spe
tral fun
tion around theantiferromagneti
 wave-ve
tor k = (π, π) by ba
kfolding of the spe
tral fun
tion A(q, ω).In this intermediate regime, a drasti
 
hange in the dynami
al 
orrelation fun
tions o
-
urs. The transition from the SDW-like regime at half-�lling to the Hubbard-I regime isa

ompanied by losing the low energy quasiparti
le ex
itations. A similar 
hange is visiblein the two-parti
le spin-response spe
trum. The 
oherent spin-wave washes out and givesway to a broad in
oherent stru
ture. This means, in other words, that the system losesall 
hara
teristi
s linked to a hole whi
h is dressed by spin ex
itations and is moving in anAF ordered ba
kground. 55



4 The single-band Hubbard modelProperties of the doped Hubbard modelAs mentioned at the beginning of the se
tion, the density of states of the strongly intera
t-ing Hubbard model splits into two distinguishable bands, i.e., a lower (valen
e) and upper(
ondu
tive) band at half-�lling. The two-bands are separated by the Coulomb intera
tion
U be
ause the adding of further ele
trons inevitably leads to a double o

upation 
ausingan energy penalty U . If one inserts hole into the system, then the probability of doubleo

upation de
reases whi
h leads to a redu
tion of spe
tral weight of the upper Hubbardband. These states are transferred 
lose to the Fermi energy and 
ontribute to the lowerHubbard band. Hen
e, the Hubbard model does not show a rigid band shift under dopingbut rather a shift of spe
tral weight from the upper to the lower Hubbard band [23℄. Thedoping dependen
e of the single-parti
le fun
tion is depi
ted in Fig. 4.6 at an inverse tem-perature of βt = 3 and (a) at δ = 5 % doping and (b) at δ = 20 % doping. Regions withbla
k or white 
olours 
orrespond to spe
tral fun
tions with high or low spe
tral weightsrespe
tively. These 
al
ulations are 
arried out at a relatively high temperature in orderto redu
e the notorious minus-sign problem. Nevertheless, this temperature should below enough to observe possible magneti
 
orrelation e�e
ts, sin
e the magneti
 ex
hangeintera
tion is determined by the energy s
ale J = 4t2/U whi
h has the value 0.5t for anintera
tion strength of U = 8t. In the under-doped regime, the single-parti
le spe
tralfun
tion 
learly exhibits two in
oherent Hubbard-bands and a 
oherent quasi-parti
le ex-
itation with origins in the motion of a hole dressed by a 
loud of spin-ex
itations. Byin
reasing the doping, the 
hemi
al potential drops deeper into the lower Hubbard bandin the region around (π, π). In this so-
alled `optimal-doped' regime, the quasiparti
lebands with energy s
ale J are still present. The quasi-parti
le band starts to vanish aboveoptimal doping (〈n〉 = 0.86 ) and it be
omes more visible when one rea
hes the over-dopedregime with 〈n〉 = 0.80. The �ngerprints of the magneti
 
orrelations are also visible in the(a)
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.Figure 4.6 Dynami
al angle-resolved spe
tral fun
tion A(k, ω) of the 8×8 Hubbard modelat βt = 3 und U = 8t for di�erent �llings: (a) 〈n〉 = 0.95 (under-doped), 〈n〉 = 0.80(over-doped).The results are extra
ted from [74℄.56



4.1 Temperature and doping dependen
e of the Hubbard model(a)
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.Figure 4.7 Dynami
al spin-, χsz(k, ω), and 
harge-
orrelation fun
tions, χcc(k, ω), ofthe 8 × 8 Hubbard model at βt = 3 und U = 8t for di�erent �llings: (a) 〈n〉 = 0.95(under-doped), 〈n〉 = 0.80 (over-doped). The results are extra
ted from [74℄.dynami
al spin-
orrelation fun
tions χsz(k, ω) whi
h are depi
ted in Fig. 4.7 (a) and (b) onthe left hand site. In the underdoped and roughly optimal doped regime χsz(k, ω) exhibitsa well de�ned spin-wave around the antiferromagneti
 wave ve
tor k = (π, π) with theabove mentioned spin-wave dispersion ESW (k, ω) = 2J

√

1 − 1
4(cos(kx) + cos(ky))2. Theenergy s
ale J 
an be read o� at momentum ve
tor k = (π, 0) and has the value 2J . The
hara
teristi
s of the spin-response fun
tion drasti
ally 
hange if one dopes the systemfurther. Above optimal doping, the spin-wave loses its sharp stru
ture and the energys
ale 
hanges from J = 4t2/U to Ekin ∝ 8.0t. Apparently, these 
hanges 
ome along withthe loss of the quasiparti
le features in the single-parti
le spe
tral fun
tion at the samedoping. The 
harge response exhibits an overall broad stru
ture with an energy s
ale of

Echarge ∝ 12t whi
h slightly redu
es with in
reasing doping. These high energy stru
turesmainly result from the strong Coulomb intera
tion and, in parti
ular, no energy ex
itationsof the s
ale ∝ J are visible. A more detailed investigation of the 
harge-response fun
tionis presented in [74℄.At optimal doping and su�
iently low temperatures the Hubbard model exhibits a su-per
ondu
tive instability. It is assumed, that this instability is already pronoun
edby preformed 
ooper pairs above the a
tual 
riti
al temperature Tc in the pseudo-gapregime [75, 76℄. The super
ondu
tors of the 
uprates enormously di�er from the 
onven-tional super
ondu
tors whi
h 
an be des
ribed by the Bardeen-Cooper-S
hrie�er (BCS)theory. In the BSC theory, the forming of 
ooper pairs 
an be tra
ed ba
k to a Fermi sur-57



4 The single-band Hubbard modelfa
e instability. The ex
hange parti
les are phonons, the quanta of ioni
 vibrations of the
rystal, whi
h lead to an attra
tive potential between the ele
trons. The intera
tion of the
ooper pairs exhibits an s-wave symmetry due to the lo
al nature of the pairing intera
tion.S
attering pro
esses between the ele
trons leads to a redu
tion of the potential energy and,hen
e, the ele
trons may o

upy states above the Fermi sea whi
h leads to an enhan
e-ment of the kineti
 energy. This observation stands in 
ontrast to the pairing me
hanismin the high-temperature super
ondu
tors. The parent 
ompounds of the high-temperaturesuper
ondu
tors are antiferromagneti
 ordered insulators whi
h di�er from a 
onventionalFermi-liquid des
ription. On the other hand, the 
uprates exhibit enormous high 
riti
altemperatures whi
h suggests a totally di�erent pairing me
hanism in 
omparison to the
onventional super
ondu
tors. This statement is also supported by the d-wave symmetryof the pairing intera
tion in the high-Tc materials.In the forth
oming se
tion, we investigate two-parti
le 
orrelation fun
tions in the frame-work of the Dynami
al Cluster Approximation (DCA) with respe
t to the temperatureand doping dependen
e. We try to �gure out, if 
orrelation e�e
ts of the energy s
ale J ,whi
h are presented in the previous se
tion, are visible in the DCA two-parti
le 
orrelationfun
tions. Hereby, we 
an 
onsider mu
h lower temperatures be
ause the DCA does notenormously su�er from the minus sign problem. Additionally, we are going to 
he
k if�ngerprints of the two-parti
le 
orrelations are also visible in the single-parti
le spe
tralfun
tion. The main part of the next se
tion is extra
ted from [77℄.In se
tion 6, we in
orporate the super
ondu
tive instability in the framework of the Dy-nami
al Cluster approximation (DCA) and study the single-parti
le spe
tral fun
tion indetail. Our goals are the estimation of the super
ondu
ting transition temperature andthe investigation of the evolution of the pseudo- and super
ondu
ting-gap.
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Two-parti
le
orrelation fun
tionswithin the DCA 5
Two-parti
le 
orrelation fun
tions, su
h as the dynami
al spin- and 
harge 
orrelationfun
tions, determine a variety of 
ru
ial properties of many-body systems. Their poles asa fun
tion of frequen
y and momentum des
ribe the elementary ex
itations, i.e., ele
tron-hole ex
itations and 
olle
tive modes, su
h as spin- and 
harge-density waves. Furthermore,an e�e
tive way to identify 
ontinuous phase transitions is to sear
h for divergen
es ofsus
eptibilities, i.e., two-parti
le 
orrelation fun
tions. Yet, 
ompared to studies of single-parti
le Green fun
tions and their spe
tral properties, where a good overall a

ord betweentheoreti
al models (Hubbard type-models) and experiment (ARPES) has been established(see [78, 66, 23, 79℄), the situation is usually not so satisfying for two-parti
le Greenfun
tions. This is espe
ially so for the 
ase of 
orrelated ele
tron systems su
h as high-Tcsuper
ondu
tors (HTSC). The primary reason for this is that 
al
ulations of these Greenfun
tions are, from a numeri
al point of view, mu
h more involved.To expose the problem let us 
onsider the spin-sus
eptibility whi
h is given by:

χ(q) =
1

βL

∑

k,p

χk,p(q) ,with (5.1)
χk,p(q) = 〈c†k,↑ck+q,↓c

†
p,↓cp−q,↑〉Here, L 
orresponds to the latti
e size, β is the inverse temperature and q ≡ (q,Ωm), qbeing the momentum and Ωm a (bosoni
) Matsubara frequen
y. To simplify the notation,we have adopted a path integral 
oherent state notation with Grassman variables:

ck,σ ≡ ck,ωm,σ =
1√
βL

∑

r

∫ β

0
dτei(ωmτ−kr)cr,σ(τ) (5.2)The two-parti
le irredu
ible vertex, Γk′,k′′(q), is de�ned through the Bethe-Salpeter equa-tion,

χk,p(q) = χ0
k,p(q) +

∑

k′,k′′

χ0
k,k′(q)Γk′,k′′(q)χk′′,p(q), (5.3)59



5 Two-parti
le 
orrelation fun
tions within the DCA
χ

χΓ

=

+Figure 5.1 Bethe-Salpeter equation for the two-parti
le propagator.whi
h is diagrammati
ally depi
ted in Fig. (5.1).Within the Dynami
al Cluster Approximation (DCA) [7, 8℄, and see se
tion 2.1, one 
an
onsistently de�ne the two-parti
le Green fun
tions, by extra
ting the irredu
ible vertexfun
tion from the 
luster.To de�ne uniquely the DCA approximation, in parti
ular in view of two-parti
le quanti-ties, it is useful to start with the Luttinger-Ward fun
tional Φ, whi
h is 
omputed usingthe DCA Laue fun
tion. Hen
e, ΦDCA is a fun
tional of a 
oarse-grained Green fun
tion,
Ḡ(K, iωm) ≡ Ḡ(K). Irredu
ible quantities su
h as the self-energy, and the two-parti
leirredu
ible vertex are 
al
ulated on the 
luster and 
orrespond, respe
tively, to the �rst-and se
ond-order fun
tional derivatives of ΦDCA with respe
t to Ḡ. Using the 
luster irre-du
ible self-energy, Σ(K), and two-parti
le vertex, ΓK′,K′′(Q), one 
an then 
ompute thelatti
e single-parti
le and latti
e two-parti
le 
orrelation fun
tions using the Dyson andBethe-Salpeter equations. This 
onstru
tion of two-parti
le quantities has the appealingproperty that they are thermodynami
ally 
onsistent [6, 80℄. Hen
e, the spin sus
epti-bility, as 
al
ulated by using the parti
le-hole 
orrelation fun
tions, 
orresponds pre
iselyto the derivative of the magnetisation with respe
t to an applied uniform stati
 magneti
�eld. The te
hni
al aspe
ts of the above program are readily 
arried out for single-parti
leproperties. However a full 
al
ulation of the irredu
ible two-parti
le vertex -even withinthe DCA- is prohibitively expensive [81℄ and, thus, has never been 
arried out. In 
ontrastto the 
al
ulation of single-parti
le quantities, the 
oarse-grained two-parti
le 
orrelationfun
tion χ̄K,K′(Q) is after 
ompletion of the self-
onsisten
e pro
edure not equal to the
luster two-parti
le 
orrelation fun
tion χcK,K′(Q) be
ause the self-
onsisten
y is onlymade on the single-parti
le level. The following 
onsiderations will show, that the sus
ep-tibility 
an be 
al
ulated within the DCA approximation, where the irredu
ible two-parti
levertex Γ is substituted by the 
orresponding 
luster vertex Γc, whi
h leads to an inversionof the 
luster two-parti
le Bethe-Salpeter equation.For the moment, we 
onsider the bare and intera
ting 
luster sus
eptibilities as well as theirredu
ible 
luster vertex fun
tion: χ0

cK,K′(Q), χcK,K′(Q) and ΓcK,K′(Q). These quantitiesare evaluated at 
luster momentum ve
tors and they are 
orrelated by the 
luster Bethe-60



Salpeter equation,
χcK,P (Q) = χ0

cK,P (Q) +
∑

K ′,K′′

χ0
cK,K′(Q)ΓcK′,K′′(Q)χcK′′,P (Q), (5.4)where the inversion may be written in a short notation:

Γc(Q) = [χ0
c(Q)]−1 − [χc(Q)]−1. (5.5)Ea
h quantity in Eq. (5.5) represent a matrix with row and 
olumn indi
es K and K ′.The non-intera
ting two-parti
le Green fun
tion χ0

c(Q) is 
onstru
ted from a pair of fullydressed single-parti
le Green fun
tions and it is diagonal in the spin, momentum andfrequen
y labels:
χ0

c(Q) = χ0
cK,K′(Q)

= Ncδσσ′δmm′δKK′Gσ
c (K, iωm)Gσ′

c (K + Q, iωm + iν). (5.6)The 
onvolution of the 
luster Green fun
tion Gc will be 
al
ulated after the a
tual quan-tum Monte Carlo run, whereas the de
omposition of the intera
ting 
luster two-parti
leGreen fun
tion has to be performed for ea
h Hubbard-Stratonovi
h 
on�guration withinthe Monte Carlo run separately.In 
omparison with the single-parti
le quantities, the 
oarse-grained two-parti
le Greenfun
tion χ̄ 
an be de�ned in a similar way. The latti
e ve
tors k, k′ and q are de
omposedinto inter- and intra-
luster momentum ve
tors: k = K + k̃, k′ = K′ + k̃′ and q = Q + q̃(
ompare with se
tion 2.1). χ̄ may be written as follows:
χ̄(Q + q̃, iν) =

N2
c

N2

∑

k̃,k̃′

χ
K+k̃,iωm;K′+k̃′,iωm′

(Q + q̃, iν). (5.7)The de�nition of the non-intera
ting 
oarse-grained two-parti
le Green fun
tion is similarto the 
orresponding 
luster quantity. χ̄0(Q + q̃, iν) is diagonal in the spin, momentumand frequen
y labels:
χ̄0(Q + q̃, iν) = Ncδσσ′δKK′δmm′

[
Nc

N

∑

k̃

Gσ(K + k̃, iωm)

×Gσ′
(K + k̃ + Q + q̃, iωm + iν)

]

. (5.8)The DCA approximation is applied to Eq.(5.3) by repla
ing the irredu
ible vertex fun
tion
Γ by the irredu
ible 
luster vertex fun
tion Γc. The reader should take into a

ount, that
χ and χ0 on the RHS of Eq. (5.3) share no 
ommon momentum labels and, hen
e, one 
anfreely sum over the momenta k̃, whi
h gives the following identity:

χ̄K,P (q) ∼= χ̄0
K,P (q) +

∑

K′,K′′

χ̄0
K,K′(q)ΓcK′,K′′(Q)χ̄K′′,P (q), (5.9)61



5 Two-parti
le 
orrelation fun
tions within the DCAwhi
h 
an be written in a short notation:
Γc(Q) = [χ̄0(q)]−1 − [χ̄(q)]−1. (5.10)At this point, we 
an 
ombine Eq. (5.5) and Eq. (5.10) and get the result:
χ̄−1(q) = χ−1

c (Q) − χ0
c
−1

(Q) + χ̄0(q). (5.11)The 
harge (
h) and spin (sp) sus
eptibilities χch,sp are dedu
ed from χ̄ [81℄:
χch,sp(q, T ) =

(kBT )2

N2
c

∑

KK′σσ′

λσσ′ χ̄σ,σ′,K,K′(q), (5.12)where λσσ′ = 1 for the 
harge 
hannel and λσσ′ = σσ′ for the spin 
hannel. The 
omplex-ity of this approa
h lies in the inversion of the Bethe-Salpeter equation (5.5), sin
e theirredu
ible vertex 
onsists of three momentum and three frequen
y indi
es.In the present work, we would like to over
ome this situation by suggesting a s
heme wherethe K ′ and K ′′ dependen
ies of the irredu
ible vertex are negle
ted. At low temperatures,this amounts to the assumption that in an energy and momentum window around the Fermisurfa
e, the irredu
ible vertex depends weakly on K ′ and K ′′. Following this assumption,an e�e
tive two-parti
le vertex in terms of an average over the K ′ and K ′′ dependen
iesof ΓcK′,K′′(Q) is introdu
ed:
1

βL
Ueff (Q) = 〈ΓcK′,K′′(Q)〉. (5.13)As shown in an earlier Quantum Monte Carlo (QMC) study by Bulut et al. [82℄ for a singleQMC 
luster, this is reasonable for the 2D Hubbard model (on this QMC 
luster of size

8×8 with U = 8t). The authors of [82℄ investigate the question of whether the 
orrelationsbetween ele
trons 
an be des
ribed by an e�e
tive intera
tion whi
h only takes singlelongitudinal and transverse spin �u
tuations into a

ount or whether the e�e
t of higher-order multi-spin �u
tuations may not be negle
ted. Bulut et al. 
al
ulated with Ueff (Q)the e�e
tive irredu
ible ele
tron-hole vertex and 
ompared the results with 
al
ulationswhere the irredu
ible ele
tron-hole vertex was estimated via the Monte Carlo te
hnique ona 8 × 8 single QMC 
luster and via a third-order perturbation theory approa
h. Both themomentum and frequen
y dependen
e were in rather good agreement with the QMC andperturbation theory results for the e�e
tive ele
tron-hole intera
tion.By repla
ing the irredu
ible vertex by 1
βLUeff (Q) in the 
luster version of the Bethe-Salpeter Eq. (5.3) and 
arrying out the summations to obtain the 
luster sus
eptibilitygives:

Ueff (Q) =
1

χ̄0(Q)
− 1

χ(Q)
, (5.14)62



where χ 
orresponds to the fully intera
ting spin/
harge sus
eptibility on the DCA 
lus-ter in the parti
le-hole 
hannel and χ̄0 
an be derived from the free 
luster spin/
harge
orrelation fun
tion. Hereby, we 
onsider the free expe
tation value to whi
h purpose we
an apply Wi
k's theorem. The free 
luster spin sus
eptibility χ̄0(Q, iωm) 1 reads with
S(Q) = 1√

Nc

∑

j e
iQj(nj,↑ − nj,↓) in the paramagneti
 
ase 2:

χ̄0(Q, iΩm) =

∫

dτ eiΩmτ 〈Sz(Q, τ) Sz(−Q, 0)〉0 (5.15)
=

1

Nc

∑

j,j′

∫

dτ eiΩmτ ei(j−j′)Q

∑

σ,σ′

σσ′〈c†j,σ(τ) cj′,σ′(0)〉〈cj,σ(τ) c†j′,σ′(0)〉

= − 1

Nc

∑

σ
K ,K ′

∫

dτ eiΩmτ δ(Q − K + K′) Gσ
cK(τ, 0) Gσ

cK′(0, τ)

= − 1

Nc

∑

K,σ

∫

dτ eiΩmτ Gσ
cK(τ, 0) Gσ

cK−Q(0, τ)

= − 1

Nc

1

β2

∑

K ,σ
iωm,iω

m′

∫

dτ ei(Ωm−ωm+ωm′ )τ Gσ
c (K, iωm) Gσ

c (K − Q, iωm′)

= − 1

Nc

1

β

∑

K ,σ
iωm,iω

m′

δ(iωm′ − (iωm − iΩm)) Gσ
c (K, iωm) Gσ

c (K − Q, iωm′)

= − 1

Nc

1

β

∑

K ,σ
iωm

Gσ
c (K, iωm) Gσ

c (K − Q, iωm − iΩm)

= − 1

Nc

1

β

∑

K ,σ
iωm

Gσ
c (K + Q, iωm + iΩm) Gσ

c (K, iωm) (5.16)The 
al
ulation of the bubble is a

ompanied by the following transformations:
−
〈

cj,σ(τ) c†j′,σ(0)
〉

= Gσ(j, τ, j ′, 0) =
1

Nc

∑

k

e−i(j−j′)k Gσ
k(τ, 0) (5.17)with

Gk(τ, 0) =
1

β

∑

iωm

e−iωmτ G(k, iωm) (5.18)and
Gk(0, τ) =

1

β

∑

iωm

eiωmτ G(k, iωm). (5.19)1By taking N(Q) = 1√
Nc

P

j
eiQj (nj,↑+nj,↓), a similar 
al
ulation yields the same result for the free 
lus-ter 
harge sus
eptibility. The stati
 term P

σ,σ′〈c
†
j,σ(τ ) cj,σ(τ )〉〈c†

j′,σ′(0) cj′,σ′(0)〉 has to be subtra
tedfrom the RHS of Eq. (5.15) due to the Kubo formula.2In the paramagneti
 
ase is P

σ,σ′ σσ′〈c†j,σ(τ ) cj,σ(τ )〉〈c†
j′,σ′(0) cj′,σ′(0)〉 = 0. 63



5 Two-parti
le 
orrelation fun
tions within the DCA
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tive two-parti
le vertex Ueff (Q, iΩm) as a fun
tion of the bosoni
 Mat-subara frequen
y iΩm for a typi
al parameter set: βt = 6 at δ ≈ 14 % on the Nc = 8
luster at di�erent 
luster momentum ve
torsIn Eq. (5.16) we re
ognise that χ̄0 is 
onstru
ted from a pair of fully dressed single-parti
leGreen fun
tions. In order to in
orporate the 
orre
t high frequen
y behaviour of the Greenfun
tions in Eq. (5.16), one has to perform the summation over Matsubara frequen
ies fromminus in�nity to plus in�nity. This summation is performed in two steps. In a frequen
ywindow of 500 Matsubara frequen
ies around iωm = 0, the Green fun
tions in Eq. (5.16)were taken from the Monte Carlo 
al
ulation. The remaining summation is performedin an analyti
al way. Therefore, we 
onsider the high energy behaviour of the Greenfun
tions: limiωm→∞G(iωm) ∝ 1
iωm

and transform the summation in Eq. (5.16) into anintegral expression. The analyti
al treatment of the 
onvolution is 
arried out from a givenfermioni
 Matsubara frequen
y z = iωm. Hen
e, we obtain with the bosoni
 Matsubarafrequen
y a = iΩm the following relations:
∫ +∞

z
dz′

1

z′ + a

1

z′
=

1

a
log

z + a

z
(5.20)

∫ −z

−∞
dz′

1

z′ + a

1

z′
=

1

a
log

z

z − a
, (5.21)and for the 
ase a = 0:

∫ +∞

z
dz′

1

z′2
=

∫ −z

−∞
dz′

1

z′2
=

1

z
. (5.22)We have expli
itly 
he
ked, that the high frequen
y behaviour of the bubble is givenby ∝ 1

(iωm)2
. The intera
ting sus
eptibility χ obeys the same high frequen
y behaviouras the non-intera
ting sus
eptibility but with a di�erent proportionality fa
tor. Fromthis it follows that the e�e
tive intera
tion Ueff is also given by ∝ 1

(iωm)2
in the largefrequen
y limit. The situation is depi
ted in Fig. 5.2, where we use a typi
al parameterset. The e�e
tive parti
le-hole vertex is shown for di�erent 
luster momentum ve
tors and,64



obviously, the 
ontributions of Ueff be
ome more important with the in
reasing value ofMatsubara frequen
y. The reader should note, that a simple Fourier transformation of
Ueff from Matsubara frequen
ies to the imaginary time axis would 
ause in
orre
t results.We have seen, that the bubble 
an be 
onstru
ted from the 
oarse-grained Green fun
-tion, where we impli
itly in
orporate the equivalen
e of the spin up and spin down Greenfun
tions in the paramagneti
 
ase. In the 
ase of the intera
ting sus
eptibility, the de-
omposition of the two-parti
le 
orrelation fun
tion has to be performed for ea
h Hubbard-Stratonovi
h 
on�guration within the Monte Carlo pro
edure. Hereby, the equivalen
e ofthe spin up and spin down Green fun
tions is not longer guaranteed, whi
h yields additionalterms in the 
al
ulation of the sus
eptibility:

χ(Q, iΩm) =

∫

dτ eiΩmτ







〈Sz(Q, τ) Sz(−Q, 0)〉, spin
〈N(Q, τ) N(−Q, 0)〉, 
harge, (5.23)with

〈Sz(Q, τ) Sz(−Q, 0)〉s =
∑

j,j′

∑

σ,σ′

ei(j−j′)Q σσ′
{

〈c†j,σ(τ) cj,σ(τ)〉s〈c†j′,σ′(0) cj′,σ′(0)〉s

+〈c†j,σ(τ) cj′,σ′(0)〉s〈cj,σ(τ) c†j′,σ′(0)〉s
}

,and
〈N z(Q, τ) N z(−Q, 0)〉s =

∑

j,j′

∑

σ,σ′

ei(j−j′)Q

{

〈c†j,σ(τ) cj,σ(τ)〉s〈c†j′,σ′(0) cj′,σ′(0)〉s

+〈c†j,σ(τ) cj′,σ′(0)〉s〈cj,σ(τ) c†j′,σ′(0)〉s
}

,where 〈· · · 〉s denotes the expe
tation value for a given Hubbard Stratonovi
h 
on�guration
s. Finally, the 
ombination of the e�e
tive two-parti
le vertex Ueff and the bubble χ0(q) ofthe dressed latti
e Green fun
tions G(k) results in our estimate of the latti
e sus
eptibility:

χ(q) =
χ0(q)

1 − Ueff (Q) · χ0(q)
. (5.24)The bubble of the latti
e χ0(q) is given by Eq. (5.16), whereas the 
luster Green fun
tionshave to be repla
ed by the latti
e Green fun
tions whi
h are determined by the Dysonequation: G(k) = 1

G−1
0 (k)−Σ(K)

. The self-energy is self-
onsistently 
al
ulated for all 
lustermomentum ve
tors K in the DCA loop (see se
tion. 2.4). Hereby, we exploit the weakmomentum dependen
e of the self-energy. The real- and imaginary parts are depi
tedin Fig. 5.3 at the �rst Matsubara frequen
y and for di�erent �llings. The momentumdependen
e rapidly be
omes weaker if the system is doped away from half-�lling. 65



5 Two-parti
le 
orrelation fun
tions within the DCA(a)
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-16Figure 5.3 Real- and imaginary part of the self-energy for di�erent �llings at inversetemperature βt = 6 and U = 8t on the Nc = 8 
luster.In order to 
ross 
he
k our results, we slightly modify Eq. 5.24 to:
χ(q) =

χ0(q)

1 − α · Ueff (q) · χ0(q)
. (5.25)Here, we have introdu
ed an additional "
ontrolling" parameter α in the sus
eptibilitydenominator, whi
h is 
al
ulated in a self-
onsistent manner. It assures, for example inthe 
ase of the longitudinal spin response, that χ(q) obeys the following sum rule (a similaridea, to use sum rules for 
onstru
ting a 
ontrolled lo
al approximation for the irredu
ibletwo-parti
le vertex has been implemented by Vilk and Tremblay [83℄):

1

βL

∑

q

χ(q) = 〈(Sz
i )2〉. (5.26)Of 
ourse, α should be as 
lose as possible to α = 1, whi
h is indeed what we will �nd afterimplementing the sum rule (see below). At this point, it should be mentioned, that oursum rule in Eq. (5.26) or our approa
h to two-parti
le 
orrelation fun
tions is mu
h moresophisti
ated than the approximation for the two-parti
le vertex, whi
h was formulated byVilk and Tremblay [84℄. In their two-parti
le self-
onsistent approximation (TPSC), thespin χspin and 
harge sus
eptibilities χcharge are approximated by an RPA-like form withtwo di�erent intera
tions Uspin and Ucharge. The estimation of the intera
tions is performedin a self-
onsistent manner and, therefore, the TPSC notably di�ers from the standardRPA-approa
h. The ne
essity to distinguish between two di�erent e�e
tive intera
tionsfor spin and 
harge is di
tated by the Pauli ex
lusion prin
iple. It implies that both χspinand χcharge are related to only one lo
al pair 
orrelation fun
tion 〈n↑n↓〉 [85℄. The hugedi�eren
e between our approa
h to two-parti
le 
orrelation fun
tions (see Eq. 5.25) andthe TPSC is, that we regard the total frequen
y dependen
e of the e�e
tive intera
tionsand, hen
e, take retardation e�e
ts into a

ount.Our implementation of the DCA for the Hubbard model is standard. The reader should
onsult se
tion 2.1 or Ref. [8℄ for a summary. At this point, we will only dis
uss our66
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 (iΩm = 0) irredu
ible parti
le-hole intera
tion Ueff in the spin 
hannelfor di�erent 
luster momentum ve
tors and dopings at inverse temperature βt = 6 and
U = 8t.interpolation s
heme as well as the implementation of a SU(2)-spin symmetry broken al-gorithm. Sin
e the DCA evaluates the irredu
ible quantities, Σ(K) as well as Ueff (Q) forthe 
luster wave ve
tors, an interpolation s
heme has to be used. To a
hieve this, we adoptthe following strategy: for a �xed Matsubara frequen
y iΩm and for ea
h 
luster ve
tor Q,the e�e
tive intera
tion Ueff is rewritten as a series expansion:
Ueff (Q, iΩm) =

∑

i

∑

∆i

ei∆iQAi(iΩm), (5.27)with i = 0, ..., Nc − 1, where Nc is the number of the 
luster momentum ve
tors Q. Thequantity ∆i represents ve
tors, where ea
h ve
tor from the 
orresponding ∆i belongs tothe same "shell" around the origin (0, 0) in real spa
e, i.e.
∆0 =




0

0



 ; ∆1 = ±




1

0



 ,±




0

1





∆2 =




±1

±1



 ,




∓1

±1



 ; ∆3 = ±




2

0



 ,±




0

2



 ... . (5.28)With a given Ueff , Eq. (5.27) 
an be inverted to uniquely determine Ai. With these 
oe�-
ients, one 
an 
ompute the e�e
tive parti
le-hole intera
tion for every latti
e momentumve
tor q. This interpolation method works well when Ueff is lo
alised in real spa
e andthe sum in Eq. (5.27) 
an be 
ut-o� at a given shell.The e�e
tive parti
le-hole intera
tion Ueff in the spin 
hannel is shown in Fig. 5.4 for avariety of dopings at inverse temperature βt = 6, U/t = 8 and on an Nc = 8 
luster, whi
h
orresponds to the so-
alled "8A" Betts 
luster (see [10, 11℄). The Ueff -fun
tion displays67



5 Two-parti
le 
orrelation fun
tions within the DCA
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+
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+

k1↑ k2↓

k3↑ k4↓

T
+

Figure 5.5 Multi-s
attering pro
esses of two ele
trons. Kanamori s
reening leads to arenormalisation of the intera
tion strength brought by T-matrix e�e
ts.a smooth momentum dependen
e. These observations further support the interpolations
heme in (Eq. (5.27)). Thus, indeed, Ueff is rather lo
alised in real spa
e with sizableredu
tion from its bare U = 8t value for larger doping and a further slight redu
tion at
q = (π, π). The redu
tion is partly due to the self-energy e�e
ts in the single-parti
le prop-agator, whi
h redu
e χ̄0 from its non-intera
ting (U = 0) value χ(0). Partly, it also re�e
tsboth the Kanamori (see [52℄) repeated parti
le-parti
le s
attering and vertex 
orre
tions.The repeating s
attering pro
esses of two ele
trons with spin k1 and k2 are depi
ted inFig. 5.5. Hereby, Kanamori 
ompletely negle
ts the generation of ele
tron-hole ex
ita-tions out of the Fermi sea and assumes, that the s
attering pro
esses in Fig. 5.5 are thedominant ones whereby all other ele
tron-ele
tron intera
tions are negligible. By omittingvertex 
orre
tions, the T-matrix takes the form of a geometri
 series. The approximationworks well in the dilute limit, i.e., in the 
ase of an almost �lled or empty band. In sys-tems with a large value of the Coulomb intera
tion, the s
reened intera
tion is redu
ed to
Ũ ⋍ U

1+U/W ⋍ W .The stati
 irredu
ible parti
le-hole intera
tion Ueff in the spin 
hannel is depi
ted inFig. 5.6 for di�erent 
luster momentum ve
tors and 
luster sizes at δ ≈ 14 % doping. Onlymarginal di�eren
es are visible between the di�erent 
luster types. The reader should note,that the 
luster momentum ve
tor k = (π/2, π, 2) is not present on the Nc = 4 
luster.Summarising, the new approa
h to two-parti
le properties relies on two approximationswhi
h render the 
al
ulation of the 
orresponding Green fun
tion possible. Firstly, thee�e
tive parti
le-hole intera
tion Ueff (Q) depends only on the 
enter-of-mass momentumand frequen
y, i.e. Q and iΩm. Se
ondly, χ(Q), is dire
tly extra
ted from the 
luster and
χ̄0(Q) is obtained from the bubble of the 
oarse-grained Green fun
tions.To generate DCA results for the Néel temperature, we have used an SU(2) symmetrybroken 
ode. The setup is illustrated in Fig. 2.5. We introdu
e a doubling of the unit 
ell� to a

ommodate AF ordering � whi
h in turn de�nes the magneti
 Brillouin zone. Theunit 
ell is 
hara
terised by a 
- and d-orbital. The DCA k-spa
e pat
hing is 
arried outin the magneti
 Brillouin zone and the Dyson equation for the single-parti
le propagator68



5.1 AF phase transitionis given as a matrix equation:
Gσ(k) =

1

G0
−1(k) − Σσ(K)

, (5.29)with
Gσ(k) =




Gσ

cc(k) Gσ
cd(k)

Gσ
dc(k) Gσ

dd(k)



 . (5.30)The Green fun
tions with spin σ are de�ned by
Gσ

αα′(k) = −
∫ β

0
dτeiωmτ 〈Tτ{cα,σ(k, τ)c†α′,σ(k, 0)}〉 (5.31)and α,α′ indi
ate the 
- and d-orbitals. With the SU(2) symmetry broken algorithm, one
an 
ompute dire
tly the staggered magnetisation, i.e., m = 1

L

∑

j e
iQj(nj,↑ − nj,↓), andthereby determine the transition temperature. Sin
e the DCA is a 
onserving approxima-tion, the so determined transition temperature 
orresponds pre
isely to the temperatures
ale at whi
h the 
orresponding sus
eptibility, 
al
ulated without any approximations onthe irredu
ible vertex ΓK′,K′′(Q), diverges.5.1 AF phase transitionA �rst test of the validity of our new approa
h is a 
omparison with the SU(2) symmetrybroken DCA 
al
ulation on an Nc = 8 
luster at U = 8t. The idea is to extra
t theNéel temperature TN from a divergen
e in the spin sus
eptibility as 
al
ulated in theabove des
ribed (paramagneti
) s
heme � see Eq. 5.25 � and to 
ompare it to the DCA
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0Figure 5.6 Stati
 (iΩm = 0) irredu
ible parti
le-hole intera
tion Ueff in the spin 
hannelfor di�erent 
luster momentum ve
tors and 
luster sizes at δ ≈ 14 % dopings and atinverse temperature βt = 6 and U = 8t. 69



5 Two-parti
le 
orrelation fun
tions within the DCA(a)
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-2Figure 5.7 Left: Evolution of the magnetisation as fun
tion of the iterations for a typi
alsimulation whi
h was performed 
lose to the para- antiferromagneti
 phase transitionat βt = 6 and δ = 12 % for an Nc = 4 
luster (doubled unit 
ell) Right: Exemplarypresentation of the magnetisation in the presen
e of an external magneti
 �eld Hz whi
h
ouples to the spins of the systems.result as obtained from the SU(2) symmetry broken algorithm. This 
omparison providesinformation on the a

ura
y of our approximation to the two-parti
le irredu
ible vertex(see Eq. (5.13)).By using the SU(2) symmetry breaking algorithm, the magneti
 phase diagram for theone-band Hubbard model as a fun
tion of doping is shown in Fig. 5.8. The para-(antiferro)magneti
 phase transition is indi
ated here by gray (blank) 
ir
les. At half-�lling
TN ≃ 0.4t and magnetism survives up to approximately 15 % hole doping. It is know thatthe 
onvergen
e of the magnetisation during the self-
onsistent steps in the DCA approa
his extremely poor near the phase transition and, therefore, we 
annot estimate the tran-sition temperature more pre
isely than shown in Fig. 5.8. A typi
al example is depi
tedin Fig. 5.7 (a) for a simulation whi
h was performed 
lose to the para - antiferromagneti
phase transition βt = 6 and δ = 12 % for an Nc = 4 
luster (doubled unit 
ell). Itshows the evolution of the magnetisation with respe
t to the number of iterations. Theevolution of the magnetisation after approximately forty iterations steps indi
ates that themagnetisation has rea
hed a self-
onsistent solution. The result would suggest a paramag-neti
 solution. If one keeps the simulation running and redu
es the statisti
al error of theMonte Carlo 
al
ulation by the enhan
ement of the number of bins, one obtains a 
learantiferromagneti
 solution. For simulations whi
h are mu
h 
loser to the phase transition,the damping of the os
illation of the magnetisation is weaker and, therefore, no insightinto the phase transition is possible. In our investigation, we tried to avoid this problemby introdu
ing an external magneti
 �eld Hz. For small values of Hz, we know from linearresponse theory, that the answer of the system is proportional to the external ex
itation. InFig. 5.7 (b), the linear response of the magnetisation is apparent for an external magneti
�eld, whi
h is smaller than 0.1. We 
hose for the simulation in Fig. 5.7 (b) a very high tem-70



5.1 AF phase transition
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Figure 5.8 Phase diagram for the one-band Hubbard model with U = 8t with respe
t todi�erent temperatures and �llings. The 
al
ulations are 
arried out on an Nc = 8 
luster.The red and gray (blue and blank) obje
ts indi
ate the antiferromagneti
 (paramagneti
)phase. Lines and shading of AF and PM regions are a guide to the eye. Details are inthe text.perature in order to outline the prin
iple idea. In the 
ase of larger values of Hz, we 
an seea saturation e�e
t. Obviously, one has to keep the external �eld weak enough in order toexploit the linear behaviour of the magnetisation. This means, that the above mentionedos
illations of the magnetisation 
an not be redu
ed in an e�
ient way. Furthermore,one has to perform at least three simulations with di�erent external �elds Hz in order to
onsult a least square �t, whi
h enlarges the numeri
al e�ort. Hen
e, we dis
overed in ourexamination, that it is more e�e
tive, when one starts with a bad Monte Carlo statisti
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Figure 5.9 Stati
 irredu
ible parti
le-hole intera
tion Ueff for the 
luster momentumve
tor Q = (π, π). The inset shows the stati
 free latti
e sus
eptibility χ0 for the mo-mentum ve
tor q = (π, π). The bare Hubbard intera
tion strength is U = 8t. 71



5 Two-parti
le 
orrelation fun
tions within the DCAorder to bring the system 
loser to the �nal solution without loss of 
omputational time.After this start pro
edure, the pre
ision of Monte Carlo 
al
ulations 
an be 
ontinuouslyin
reased. However, we want to point out, that the pre
ision of the determination of themagnetisation is su�
ient for 
omparison with our new approa
h. We again stress thatthe so determined magneti
 phase diagram 
orresponds to the exa
t DCA result whereno approximation � apart from 
oarse graining � is made on the parti
le-hole irredu
iblevertex.In Fig. 5.8, the blue (red) triangles indi
ate the transition line for the para- to the anti-ferromagneti
 solutions extra
ted from the divergent spin sus
eptibility (Eq. 5.25) withinthe paramagneti
 
al
ulation. A pre
ise estimation of the Néel temperature requires verya

urate results and boils down to �nding the zeros of the denominator of Eq. 5.25. InFig. (5.9), we 
onsider the e�e
tive irredu
ible parti
le-hole intera
tion Ueff for the stati

ase and for the 
luster momentum Q = (π, π) relevant for the AF instability. As appar-ent, the irredu
ible parti
le-hole intera
tion be
omes weaker with in
reasing doping. Onthe other hand, the sus
eptibility χ0(q, iΩm = 0) grows with in
reasing doping. At a �rstglan
e both quantities Ueff and χ0 (see Fig. (5.9)) smoothly vary as a fun
tion of doping.However, in the vi
inity of the phase transition, signalised by the vanishing of the denomi-nator in Eq. 5.25, the pre
ise interplay between Ueff and χ0 be
omes deli
ately importantand renders an a

urate estimate of the Néel temperature di�
ult. Given the di�
ultyin determining pre
isely the Néel temperature, we obtain good agreement between bothmethods at δ & 10 %. Note that in those 
al
ulations the values of α ≈ 0.86 − 0.97 arerequired to satisfy the sum rule in Eq. (5.26). At smaller dopings, and in parti
ular at half-band �lling, the Néel temperature, as determined by the vanishing of the denominator inEq. 5.25, underestimates the DCA result. Hen
e, in this limit, the K ′ and K ′′ dependen
eof the irredu
ible vertex plays an important role in the determination of TN and 
annotbe negle
ted.Let us emphasise, that a good agreement between the Néel temperatures at δ ≃ 10 % andabove is a non-trivial a
hievement lending substantial support to the above new s
hemefor extra
ting two-parti
le Green fun
tions.
5.2 Dynami
al spin and 
harge stru
ture fa
torsTo further assess the validity of our approa
h, we 
ompare it to exa
t auxiliary-�eldBlankenbe
ler, S
alapino, Sugar (BSS) QMC results (Ref. [23℄). This method has asevere sign-problem espe
ially in the vi
inity of δ ≃ 10 % and, hen
e, is restri
ted to hightemperatures. The spin, S(q, ω) and 
harge C(q, ω) dynami
al stru
ture fa
tors are given,72



5.2 Dynami
al spin and 
harge stru
ture fa
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Figure 5.10 DCA (left) versus auxiliary �eld QMC (BSS) (right) for the dynami
al spinand 
harge stru
ture fa
tors of the Hubbard model at U/t = 8, δ ≈ 14 % and βt = 3.The BSS data on the 8 × 8 latti
e is essentially exa
t and a
ts as a ben
hmark for theDCA approa
h. The DCA 
al
ulations were 
arried out on an Nc = 8 
luster. Here wehave used α = 0.98 and α = 1.01 to satisfy the sum rule in the spin and 
harge se
tors,respe
tively.
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Figure 5.11 DCA (a) versus BSS (b) stati
 spin 
orrelation fun
tion at U/t = 8, δ ≈
14 % and βt = 3 on an Nc = 8 
luster. 73



5 Two-parti
le 
orrelation fun
tions within the DCArespe
tively, by:
〈Sz(q, τ)Sz(−q, 0)〉 =

1

π

∫

dw e−τω S(q, ω) (5.32)
〈N(q, τ)N(−q, 0)〉 =

1

π

∫

dw e−τω C(q, ω) (5.33)Here, Sz(q) = 1√
L

∑

j e
iqj (nj,↑ − nj,↓) and N(q) = 1√

L

∑

j e
iqj (nj,↑ + nj,↓). The lefthand side of the above equations are obtained from the 
orresponding sus
eptibility as
al
ulated from Eq. (5.24). Finally, a sto
hasti
 version of the Maximum Entropy method[25, 34℄ is used to extra
t the dynami
al quantities.
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Figure 5.12 Non-intera
ting dynami
al two-parti
le latti
e stru
ture fa
tor of the Hubbardmodel at βt = 6, δ ≈ 14 % and U/t = 8.
The 
omparison for the dynami
al spin, S(q, ω), and 
harge, C(q, ω) dynami
al stru
turefa
tors is shown in Fig. 5.10 at βt = 3, δ ≈ 14 % and U/t = 8. The BSS results 
orrespondto simulations on an 8 × 8 latti
e. Fig. 5.10 (b) depi
ts the BSS-QMC data in the spinse
tor. Due to short-range spin-spin 
orrelations, remnants of the spin-density-wave areobservable, displaying a 
hara
teristi
 energy-s
ale of 2J , where J is the usual ex
hange
oupling, i.e., J = 4 t2

U . The two-parti
le DCA 
al
ulations show spin ex
itations with thedominant weight 
on
entrated, as expe
ted and seen in the QMC data, around the AFwaveve
tor (π, π). As apparent from the sum-rule,
〈Sz(q)Sz(−q)〉 =

1

π

∫

dω S(q, ω) (5.34)(see Fig. 5.11 (a)), the DCA overestimates the weight at this wave ve
tor but does very wellaway from q = (π, π). The dispersion in the two-parti
le data has again a higher energyFig. 5.13 a,b 
,d e,f g,h
α (spin) 0.99 0.92 0.93 0.97
α (
harge) 0.98 1.00 1.00 1.00Table 5.1 Values of α for the spe
tra in Fig. 5.13.74



5.2 Dynami
al spin and 
harge stru
ture fa
torsbran
h around 2J , but it also shows features at J . Sin
e the total spin is a 
onservedquantity, one expe
ts a zero-energy ex
itation at q = (0, 0). This is exa
tly reprodu
ed inthe 8 × 8 QMC-BSS data, and qualitatively in the DCA results.The non-intera
ting dynami
al two-parti
le latti
e stru
ture fa
tor at βt = 6, δ ≈ 14 %and U/t = 8 is depi
ted in Fig. 5.12. The bubble shows a 
ontinuum of two-parti
leex
itations and, i.e., no 
oherent ex
itation is visible. This means in other words, that apossible 
oherent spin ex
itation must be generated by the denominator of the expressionin Eq. 5.25.As a fun
tion of de
reasing temperature, the DCA dynami
al spin stru
ture fa
tor shows amore pronoun
ed spin-wave spe
trum. This is 
on�rmed in Fig. 5.13 on the left hand side.Here, we �x the temperature to βt = 6 and keep the doping at δ ≈ 14 % but vary the 
lustersize. As apparent, for all 
onsidered 
luster sizes (Nc = 4, 8, 10, 16) a spin wave feature isindeed observable: a peak maximum at q = (π, π) is present and the 
orre
t energy s
aleat q = (π, 0) of 2J is re
overed. Additionally, we plot the spin dynami
al stru
ture fa
tor
al
ulated on the �nite Nc = 8 
luster at βt = 6 and δ ≈ 14 % in Fig. 5.14 (a) where thedis
ussed spin wave features are also existent. Unfortunately, a dire
t 
omparison of theseresults with auxiliary �eld quantum Monte Carlo 
al
ulations at lower temperature is notpossible due to the severe minus-sign problem in the BSS 
al
ulation.The investigation of the dynami
al 
harge 
orrelation fun
tion for the above parametersshows that the DCA 
al
ulations, whi
h are depi
ted in Fig. 5.10 
), 
an also reprodu
ebasi
 
hara
teristi
s of the BSS 
harge ex
itation spe
trum 5.10 d). Both 
al
ulations showex
itations at ω ≈ U whi
h are set by the remnants of the Mott-Hubbard gap. Similarresults are obtained at lower temperatures (βt = 6) on the right hand side of Fig. 5.13 fordi�erent 
luster sizes (Nc = 4, 8, 10, 16). The 
orresponding values of α are listed in Tab.5.1. These values 
on�rm the overall 
orre
tness of our approa
h in that the 
orrespondingsum rule for the 
harge response is a

urately (exa
tly for α = 1) ful�lled. For 
omparison,the dynami
al 
luster stru
ture fa
tor is presented for the Nc = 8 
luster at βt = 6 and
δ ≈ 14 % in Fig. 5.14 (b). It exhibits also ex
itations at ω ≈ U . The bad momentumresolution is be
ause of the small �nite 
luster geometry.The doping dependen
e of the spin- and 
harge-response is examined in Fig. 5.15. Here,we restri
t our 
al
ulations to the Nc = 8 
luster at βt = 6 and dopings between δ = 14 %and δ = 32 %. At δ = 14 % (see Fig. 5.13) the dynami
al spin stru
ture fa
tor displaysa spin wave dispersion with energy s
ale J . That is ESDW (π, 0) = 2J with J = 4 t2

U .As the system is further doped (δ = 27 %) the dispersion is no longer sharply peakedaround q = (π, π). The ex
itations broaden up and 
hange their energy s
ale from J = 4 t2

Uto an energy s
ale set by the non-intera
ting bandwidth. This e�e
t be
omes even morevisible with higher dopings at δ = 32 % (Fig. 5.15 (
)). Furthermore, the spe
trum of the
harge response shows a redu
tion of the weight of states at high energies (ω/t ≈ 8). This75



5 Two-parti
le 
orrelation fun
tions within the DCA(a)
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Figure 5.13 Dynami
al spin and 
harge stru
ture fa
tors of the Hubbard model at βt = 6,
δ ≈ 14 % and U/t = 8. for di�erent 
luster sizes: (a-b): Nc = 4, (
-d): Nc = 8, (e-f):
Nc = 10 and (g-h): Nc = 16.76



5.2 Dynami
al spin and 
harge stru
ture fa
tors(a)
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Figure 5.14 Dynami
al 
luster spin and 
harge stru
ture fa
tors of the Hubbard modelat βt = 6, δ ≈ 14 % and U/t = 8 on the Nc = 8 
luster.behaviour 
orresponds to the loss of weight of the upper Hubbard band with in
reasingdoping. The 
orresponding equal time spin and 
harge 
orrelation fun
tions of Fig. 5.15(
-d) are depi
ted in Fig. 5.16 (a-b). As in auxiliary-�eld QMC simulations [79℄, the equaltime spin 
orrelation fun
tion shows a set of peaks at q = (π±ǫ, π) and q = (π, π±ǫ). Here
ǫ is proportional to the doping. By redu
ing the �lling of the system, the set of peaks arealmost vanished at δ = 27 % (see Fig. 5.16). Below δ = 21 % doping one 
an only observe a
lear peak at the antiferromagneti
 wave ve
tor in the stati
 spin-response spe
trum whi
hleads to the antiferromagneti
 instability whi
h is shown in Fig. 5.8. The stati
 
harge-response spe
trum is depi
ted on the right hand site of Fig. 5.16. It shows an overallin
onspi
uous behaviour. At this point, the reader should keep in mind, that informationat momentum ve
tors k = (0, 0) is 
ompli
ated to re
over be
ause this momentum ve
tor
orresponds to large length s
ales in real spa
e whi
h 
an ex
eed the size of the utilised
luster.The overall trend of the doping dependen
e of the spin- and 
harge-responses is in goodagreement with the previous �ndings of QMC simulations (see se
tion 4.1 and [66, 23℄):there it was shown that the spin-response has a 
hara
teristi
 energy s
ale ω ≈ 2J andan SDW-like dispersion up to about δ ≈ 10 − 15 % doping, despite the fa
t that at thesedopings the spin-spin 
orrelations are very short-ranged (of order of the latti
e parameter).A lot of the features of the two-parti
le spe
tra have dire
t in�uen
e on the single-parti
lespe
tral fun
tion and vi
e-versa. At optimal doping, δ = 14 % the spe
tral fun
tion A(q, ω)in Fig. 5.17 (a) shows three distinguishing features. An upper Hubbard band (ω/t ≈ 8)and a lower Hubbard band whi
h splits in an in
oherent ba
kground and a quasiparti
leband of width set by the magneti
 s
ale J (
ompare with Fig. 4.6). In agreement withearlier QMC data [66, 23℄, we view this narrow quasiparti
le band as a �ngerprint of aspin-polaron where the bare parti
le is dressed by spin �u
tuations. The fa
t that the77



5 Two-parti
le 
orrelation fun
tions within the DCA(a)
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Figure 5.15 Spin- and 
harge stru
ture fun
tions for di�erent dopings: (a,b): 27 % and(
,d): 32 % The 
al
ulations are 
arried out on an Nc = 8 
luster at βt = 6. Here wehave used α = 0.96 (a), α = 1.00 (b), α = 0.96 (
) and α = 1.00 (d).dynami
al spin stru
ture fa
tor in Fig. 5.13 (
) shows a well de�ned magnon dispersion atthis temperature and doping, δ = 14 %, allows us to interpret the features 
entered around
q = (0, 0) and below the Fermi energy as ba
kfolding or shadows of the quasiparti
leband at q = (π, π). A 
omparison of the 
harge response spe
trum in Fig. 5.13 (d)with the 
orresponding single-parti
le spe
tra in Fig. 5.17 (a) reveals that the responsein the parti
le-hole 
hannel at almost zero energy is 
aused by parti
le-hole ex
itationsaround the quasi-parti
le spin-polaron band 
lose to the Fermi energy. The high energyex
itations, mentioned above, are due to transitions from the quasi-parti
le band to theupper Hubbard band. As a fun
tion of doping, notable 
hanges in the spe
tral fun
tionwhi
h are re�e
ted in the two-parti
le properties are apparent. On one hand, the spe
tralweight in the upper Hubbard band is redu
ed. As mentioned previously, this redu
tionin high energy spe
tral weight is apparent in the dynami
al 
harge stru
ture fa
tor. Onthe other hand, at higher dopings the magneti
 �u
tuations are suppressed. Consequently,the narrow band 
hanges its bandwidth from the magneti
 ex
hange energy J to the free78



5.2 Dynami
al spin and 
harge stru
ture fa
tors(a)
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0qx 6543210Figure 5.16 Stati
 spin (left) and 
harge (right) 
orrelation fun
tions at U/t = 8 and
βt = 6 on an Nc = 8 
luster. The di�erent dopings are δ ≈ 32 % (a-b), δ ≈ 27 % (
-d),
δ ≈ 21 % (e-f), δ ≈ 14 % (g-h).bandwidth. This evolution is 
learly apparent in Figs. 5.17 (b) and (
) and is in goodagreement with previous BSS-QMC results (see se
tion 4.1 and Ref. [23℄).
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5 Two-parti
le 
orrelation fun
tions within the DCA
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Figure 5.17 Angle-resolved spe
tral fun
tions A(q, ω) for various hole dopings: a): 14%, b): 27 % and 
): 32 %. Cal
ulations are 
arried out on an Nc = 8 
luster at βt = 6.
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d-wave super-
ondu
tivity in theHubbard model 6
The physi
s of the high-temperature super
ondu
tors (HTSC) represents, on a mi
ros
opi
level, a still unsolved mystery. Many experiments, i.e. angle resolved photoemission ex-periments [86℄, on doped super
ondu
ting 
uprates reveal 
urious properties. A d−waveanisotropy of the super
ondu
ting state and pseudogap denote a signi�
ant di�erentiationto the 
onventional BCS super
ondu
tors. The pseudogap persists even in the normal stateand is believed to 
ause the unusual non-Fermi liquid behaviour above the super
ondu
t-ing transition temperature. In the last years, several attempts have been made to explainthe pairing me
hanism of the Cooper pairs in the super
ondu
ting phase. Due to the ex-isten
e of antiferromagneti
 ordering in addition to a super
ondu
ting phase, one widelybelieves that short ranged antiferromagneti
 
orrelations are responsible for the pairing ofthe ele
trons in the 
uprates. In se
tion 4, we have shown that the motion of a hole in anantiferromagneti
 ba
kground leads to a string of broken antiferromagneti
 bonds. In thispi
ture, the magneti
 frustration due to the broken bonds 
an be avoided by a se
ond holewhi
h travels with the �rst one through the latti
e. This me
hanism leads to an attra
tivepotential for the ele
trons whi
h 
an then form 
ooper pairs [87℄. A se
ond idea to des
ribesuper
ondu
tivity goes ba
k to Anderson. He 
onsidered a spin-
harge separated resonat-ing valen
e bond (RVB) pi
ture where spins pair into short-ranged singlets due to strongantiferromagneti
 
orrelations [88, 89℄. The elementary ex
itations of this states are spin1/2 
harge neutral fermions (spinons) and spin 0 bosons (holons) whi
h re
ombine underthe super
ondu
ting transition temperature to Cooper pairs [90℄.The 
hallenge of a detailed study of the HTSC is based on the 
omplex interplay of theele
trons on several energy s
ales. This requires a te
hnique whi
h in
orporates the strongCoulomb intera
tion of the ele
trons but also enable 
al
ulations at su�
iently low tem-peratures in order to take the quantum nature of the spins into a

ount. A state of theart te
hnique in order to investigate super
ondu
tivity in systems of strongly 
orrelatedele
trons, i.e. Hubbard model, is the Dynami
al Cluster Approximation (DCA) (see se
-tion 2.1 and Refs. [8, 91, 92, 11℄). In the following paragraph, we apply the DCA to the81



6 d-wave super
ondu
tivity in the Hubbard modelHubbard model and allow an instability to a super
ondu
ting phase.6.1 DCA and super
ondu
ting phaseThe te
hni
al implementation of the super
ondu
tivity within the DCA approximationis presented in se
tion 2.9. Hereby, we a

ommodate the U(1) symmetry breaking byintrodu
ing additional anomalous Green fun
tions. A parti
le-hole transformation (seeEq. (2.104)) transforms the anomalous Green fun
tions into spin-�ip Green fun
tions. Aswe mentioned in se
tion 4, one expe
ts the order parameter of a possible super
ondu
tingphase to have d-wave symmetry. Therefore, we 
onsider an Nc = 4 
luster whi
h repre-sents the smallest 
luster to in
orporate nearest neighbour intera
tion. A sket
h of the
oarse-grained 
ells and the d-wave order parameter is depi
ted in Fig. 6.1. Due to thesymmetry of the pairing me
hanism, we expe
t that the order parameter vanishes at thezone 
enter and the point (π, π). A systemati
 study of the 
luster size dependen
e of the
(π, 0)

(π, π)
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Figure 6.1 Coarse-grained 
ells of the Nc = 4 
luster withthe 
luster momentum ve
tors (shown by red points) and asket
h of the d− wave symmetry of the order parameter.
super
ondu
tivity in the 
onventional Hubbard model was systemati
ally performed byJarrell et al. [11℄. They showed that due to the non-lo
ality of the d-wave super
ondu
tingorder parameter, large �nite size and geometry e�e
ts lead to in
on
lusive results. The
al
ulations were 
arried out from the smallest 
luster (Nc = 4) whi
h 
an in
orporate a
d−wave super
ondu
ting instability to a Nc = 26 
luster. The super
ondu
ting transitiontemperature is dramati
ally dependent on the 
luster size and geometry. In this respe
t, animportant quantity is the (in)
ompleteness of neighbouring shells of the 
lusters 
omparedto the �nite latti
e [10℄. Thus, the Nc = 4 
luster 
an 
ontain only one Cooper pair andreveals the highest transition temperature be
ause no super
ondu
ting phase �u
tuationsare in
luded. On larger 
lusters (e.g. Nc = 8), there is room for one more Cooper pairon an adja
ent plaquette. Therefore, two Cooper pairs intera
t with ea
h other in su
ha way, that phase �u
tuations 
an be repli
ated and hen
e overestimated. Jarrell et al.showed that the transition temperature of the Nc = 8, 18 
lusters are negative and be
omeslightly positive on larger 
lusters [11℄. These 
onsiderations 
ompel us to 
onsider onlythe Nc = 4 
luster whi
h exhibits the highest transition temperature. Cal
ulations at low82



6.1 DCA and super
ondu
ting phase
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Figure 6.2 Temperature-doping phase diagram of the 2D Hubbard model when theCoulomb repulsion is equal to the bandwidth U = W = 8t for the DCA 
luster size
Nc = 4. The energy s
ale is given by t = 0.25 eV. Regions of antiferromagnetism,d-wave super
ondu
tivity and pseudogap behaviour are seen. The �gure is taken fromJarrell et al. [8℄.temperatures would su�er from the severe minus-sign problem whi
h would 
onstri
t areliable investigation of the 
orrelation physi
s in 
lose proximity to the super
ondu
tingtransition temperature.Our �rst 
al
ulation serves as a test 
ase. We 
onsider the 
onventional Hubbard modelwith nearest neighbour hopping and a Coulomb intera
tion whi
h is set to U/t = 8.First, we 
al
ulate the s- and d-wave order parameter within our Monte Carlo pro
edurewith referen
e to the expressions in Eqs. (2.112) and (2.113) and 
ompare it to a DCA
al
ulation where the super
ondu
ting instability is estimated by the divergen
e of thepair-�eld sus
eptibility [8℄.The DCA phase diagram of the Hubbard model in the strong 
oupling regime U/t = 8is depi
ted in Fig. 6.2. The antiferromagneti
 and super
ondu
ting phase transitions aredetermined by the divergen
e of the 
orresponding sus
eptibilities. In our 
al
ulation,we negle
t a possible 
oexisten
e of the antiferromagneti
 and the super
ondu
ting phasebe
ause this approa
h would require an 8× 8 matrix representation of the Green fun
tionsin order to take both phases into a

ount whi
h would represent an immense 
omputationale�ort. Our results for the d-wave order parameter as a fun
tion of temperature is shownin Fig. 6.3 for the 2D Hubbard model at U/t = 8 for three di�erent dopings: δ = 5.2 %,

15.5 % and 22.5 %. A 
omparison shows a good agreement of our results with the transitiontemperatures 
al
ulated by the divergen
e of the pair-�eld sus
eptibility in Fig. 6.2. The
d-wave order parameters in Fig. 6.3 are 
al
ulated within the Monte Carlo pro
edure on83
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0Figure 6.3 d-wave order parameters ∆d
SC of the 2D Hubbard model at U/t = 8 fordi�erent temperatures and di�erent �llings: δ = 5.2 %, 15.5 % and 22.5 %. The
al
ulations are 
arried out on the Nc = 4 
luster. The next-nearest neighbour hoppingamplitude is set to zero.the �nite 
luster and, therefore, their absolute value 
an slightly di�er from the latti
equantity due to the non-lo
al 
hara
ter of the order parameter. The 
al
ulation of the

s-wave order parameter shows no indi
ation of s-wave pairing in the repulsive Hubbardmodel. In the next step, we add a next-nearest hopping amplitude t′ = −0.3t to the abovedis
ussed 
onventional Hubbard model whi
h brings the model 
loser to the physi
s of thehigh-temperature super
ondu
tors [93℄:
H = −t

∑

〈ij〉σ
c†iσcjσ − t′

∑

〈〈ij〉〉σ
c†iσcjσ + U

∑

i

ni↑ni↓ − µ
∑

i,σ

niσ, (6.1)whereat the expressions 〈ij〉 and 〈〈ij〉〉 indi
ate the summation over nearest and next-nearest neighbours, respe
tively, and µ represents the 
hemi
al potential. The resulting
d-wave order parameters as a fun
tion of temperature are presented in Fig. 6.4 for threedi�erent hole dopings: δ = 4.7 %, 7.0 % and 15.5 %. At the 
riti
al temperature, theestimation of the order parameter be
omes pretty di�
ult be
ause the 
onvergen
e in theself-
onsistent steps in the DCA approa
h is extremely poor near the phase transition. For
δ = 7.0 %, we �nd a 
riti
al temperature Tc of 0.071t (βt = 14) < Tc < 0.077t (βt =

13). The 
orresponding density of states (DOS) of the single-band Hubbard model with
t′ = −0.3t at U/t = 8 is depi
ted in Fig. 6.5 for various temperatures. The red 
urveshows the DOS at a temperature T ≈ 2.5Tc. Clearly, no indi
ations of a super
ondu
tingor pseudogap are visible in the spe
trum. The line shape is almost �at. By de
reasingthe temperature to slightly above the 
riti
al super
ondu
ting temperature (T = 0.083t),a suppression of the lo
al spe
tral fun
tion be
omes visible whi
h has to be interpretedas the o

urren
e of the pseudogap. The pseudogap 
hanges at a temperature below Tcinto a super
ondu
ting gap whi
h be
omes 
learly visible at T = 0.056t (βt = 18). The84
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ting phase
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SC of the 2D Hubbard model with nearest andnext-nearest neighbour hopping amplitude (t′ = −0.3t) at U/t = 8 for di�erent temper-atures and di�erent hole dopings: δ = 4.7 %, 7.0 % and 15.5 %. The 
al
ulations are
arried out on the Nc = 4 
luster.evolution is a

ompanied by the formation of 
oheren
e peaks at |ω|/t ≈ 0.3 whi
h arealready known from the BCS theory.In summary, our results 
on
erning the super
ondu
ting transition temperature for t′ = 0are in good agreement with previous DCA 
al
ulations from Jarrell et al. [92℄ where theyhave investigated the 2D Hubbard model with t′ = 0 in the strong 
oupling regime U/t = 8.In a se
ond step, we have introdu
ed a next-nearest neighbour hopping term t′ = −0.3t inour 
al
ulation. We dis
over that the overall evolution of the pseudo- and super
ondu
tinggap at ω = 0 
on�rms previous DCA 
al
ulations performed by Jarrell et al. who 
ouldalso demonstrate the 
reation of a 
oheren
e peak at small energies in agreement with our
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6 d-wave super
ondu
tivity in the Hubbard model
al
ulation [92℄.6.2 Angle-resolved spe
tral fun
tionTo investigate the evolution of the super
ondu
ting gap in detail, we 
onsider the momen-tum resolved one-parti
le spe
tral fun
tion. We remind the reader, that our 
al
ulationsare 
arried out on the smallest 
luster (Nc = 4) whi
h 
an in
orporate a non-lo
al inter-a
tion of the ele
trons in two dimensions. Hen
e, we 
an only estimate the self-energyon four di�erent momentum ve
tors whi
h reveals a poor resolution in momentum spa
e.Additionally, symmetry 
onsiderations redu
e further the information 
ontent of the self-energy.An interpolation s
heme is used in order to translate the irredu
ible 
luster quantities,i.e. the self-energy, to the in�nite latti
e. The idea is very similar to the approa
h whi
hwas presented by Eq. (5.27). Hereby, we 
onsider the elements of the Nambu-matrix
Σc(K, iω) where the diagonal elements des
ribe the quasiparti
le renormalisations and theo�-diagonal elements 
ontains the information about the K- and frequen
y dependen
iesof the pairing state:

Σc(K, iωm) =




Σ11(K, iωm) ∆12(K, iωm)

∆21(K, iωm) Σ22(K, iωm)



 . (6.2)In the following, we pres
ribe a series expansion (equivalent to Eq. (5.27)) in order tointerpolate the self-energy. Hereby, we fo
us only on the o�-diagonal elements of theself-energy:
− ∆(k, iωm) = ∆0(iωm) + 2∆1(iωm) (cos(kx) + cos(ky))

+ 2∆2(iωm) (cos(kx) − cos(ky))

+ 2∆3(iωm) (cos(kx + ky) + cos(kx − ky)). (6.3)For �xed Matsubara frequen
y iωm and for a given set of ∆(K, iωm) with 
luster momenta
K, Eq. (6.3) represents a set of equations whi
h uniquely determines ∆i(iωm), whereby
i = 0, . . . , Nc − 1. If the 
oe�
ients are determined, the self-energy 
an be estimated forevery latti
e momentum ve
tor k. The reader should note, that the momentum dependen
eof the self-energy is en
oded in the pre-fa
tors ∆i=0,...,Nc−1 and the interpolation has to beperformed for the real as well as for the imaginary part of ∆12. The pre-fa
tors ∆i=0,...,Nc−1are depi
ted in Fig. 6.6 for a simulation at T = 0.056t (βt = 18) below Tc and at δ ≈ 7 %hole doping. The results in Fig. 6.6 are restri
ted to the real part of ∆i=0,...,Nc−1 whi
hprovides the most important 
ontributions to Σc(K, iωm). Evidently, the d-wave symmetryorder parameter is one magnitude larger than the other 
ontributions whi
h are spe
i�edby Eq. (6.3) and, hen
e, 
on�rms the d-wave symmetry of the pairing intera
tion. The86



6.2 Angle-resolved spe
tral fun
tion
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Figure 6.6 Real part of the expansion 
oe�
ients ∆(iΩm) whi
h are de�ned by Eq. (6.3)of the Hubbard model at U/t = 8, δ = 7 %, and T = 0.056t (βt = 18). Inset: real partof the expansion 
oe�
ient ∆2(iΩm) at the Matsubara frequen
y iωm = iπT for theabove parameters but at di�erent temperatures. The 
al
ulations are 
arried out on the
Nc = 4 
luster.frequen
y dependen
e of the d-wave order parameter is evident in Fig. (6.3) and it showsthat, as opposed to the stati
 mean-�eld BCS theory, retardation e�e
ts are taken intoa

ount. The inset of Fig. 6.6 exhibits the 
oe�
ient ∆2 at the Matsubara frequen
y

iωm = iπT . The simulation is 
arried out at δ ≈ 7 % hole doping. The 
oe�
ient ∆2is zero above the super
ondu
ting transition temperature and it monotoni
ally in
reasesbelow Tc. The temperature at whi
h the phase transition takes pla
e is in astonishingly(a)
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Figure 6.7 Angle-resolved spe
tral fun
tion A(q, ω) for δ = 7 % hole doping. The
al
ulations are 
arried out on the Nc = 4 
luster at T = 0.1t (βt = 10) (a) and at
T = 0.056t (βt = 18) (b). 87



6 d-wave super
ondu
tivity in the Hubbard model(a)
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Figure 6.8 Angle-resolved spe
tral fun
tion A(q, ω) for δ = 7 % hole doping. The
al
ulations are 
arried on the Nc = 4 
luster at T = 0.071t (βt = 14) (a) and at
T = 0.063t (βt = 16) (b).good agreement with Tc whi
h was estimated in Fig. 6.3. As mentioned previously, dueto the non-lo
al 
hara
ter of the d-wave order parameter, the absolute value of ∆d

SC 
andeviate from the 
orresponding latti
e quantity. On the other hand, ∆2 is evaluated at theMatsubara frequen
y iωm = iπT whi
h 
ompli
ates a dire
t 
omparison with ∆d
SC .In the next paragraph we fo
us on the angle-resolved spe
tral fun
tion of the Hubbardmodel at δ = 7 % hole doping on the Nc = 4 
luster. Fig. 6.7 (a) shows the one-parti
lespe
trum at T = 0.1t above the super
ondu
ting transition temperature where we 
andistinguish three di�erent features. The spe
trum is dominated by an upper Hubbard band

(ω/t ≈ 8) and a lower Hubbard band whi
h are separated due to the Coulomb intera
tion.A 
oherent quasiparti
le band around the Fermi surfa
e des
ribes the low energy ex
itationsof the system. It 
rosses the Fermi surfa
e around the momentum ve
tors (π, π/4) and
(π/2, π/2). The quasiparti
le band 
an be des
ribed by the dressing of a hole with a 
loudof spin-ex
itations to allow for a 
oherent motion through an antiferromagneti
 orderedba
kground (see se
tions 4.1 and 5.2). By lowering the temperature below the 
riti
alsuper
ondu
ting temperature Tc the 
hanges in the single-parti
le spe
tral fun
tion area

ompanied by a formation of three peaks 
lose to the Fermi energy around (π, π/4).The 
enter peak disappears with lowering temperature whereas the outer peaks be
omethe 
oheren
e peaks whi
h we have previously shown in the density of states. The angle-resolved spe
tral fun
tions at δ = 7 % hole doping and at T = 0.071t and T = 0.063t aredepi
ted in Fig. 6.8 (a) and (b) respe
tively. The 
omplete opening of the super
ondu
ting88



6.2 Angle-resolved spe
tral fun
tion(a)
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Figure 6.9 Improved momentum resolution of the angle-resolved spe
tral fun
tion
A(q, ω) of Fig. 6.7 (b) for di�erent paths: X → M (a) and Γ → M (b). The 
al-
ulations are 
arried out on the Nc = 4 
luster at T = 0.056t (βt = 18) and for δ = 7 %hole doping.gap is �rst a
hieved at T = 0.056t (βt = 18). The 
orresponding spe
tral fun
tion is shownin Fig. 6.7 (b) and Fig. 6.9 where we enhan
e the resolution in momentum spa
e. Thepreviously mentioned 
oheren
e peaks 
lose to the super
ondu
ting gap slightly extendabove und below the Fermi energy. The super
ondu
ting gap 
an be explained by anadditional energy 
ost whi
h is ne
essary to break up a Cooper pair in order to transferan ele
tron from 
lose below to 
lose above the Fermi energy.We have already seen in Fig. 6.6 that the pairing intera
tion of the Hubbard model underliesa d-wave symmetry. The single-parti
le spe
tral fun
tions in Fig. 6.9 (a) and (b) 
on�rmthe d-wave symmetry of the super
ondu
ting order parameter. The gap vanishes in nodaldire
tion.The suppression of spe
tral weight, even above the super
ondu
ting transition temperature,89



6 d-wave super
ondu
tivity in the Hubbard modelwas visible in the density of states in Fig. 6.5 whi
h we have identi�ed as the opening ofa pseudogap. The investigation of the pseudogap is 
ontinued by a detailed study of
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A(q,ω) Figure 6.10 Angle-resolved spe
tral fun
tion A(q, ω)of the Hubbard model for δ = 7 % hole doping. The
al
ulation is 
arried out on the Nc = 4 
luster at T =

0.083t (βt = 12) slightly above the super
ondu
tingtransition temperature Tc.
the angle-resolved spe
tral fun
tion. Hereby, we plot A(q, ω) of the Hubbard model for
δ = 7 % hole doping at T = 0.083t (βt = 12) in Fig. 6.10. The spe
trum does not exhibita pre
ursor of a gap around the momentum ve
tor (π, π/4) where at lower temperaturesthe super
ondu
ting gap will open. Obviously, the information about the pseudogap mustbe en
oded in the self-energy whi
h is originally given only at the 
luster momenta. Theinterpolation s
heme (see Eq. (6.3)) 
annot properly transfer su
h deli
ate information
ontent, i.e. information about the pseudogap, to the intermediate latti
e momenta.Nevertheless, information about the opening of the super
ondu
ting gap and the formationof 
oheren
e bands 
lose to the super
ondu
ting gap 
an be 
learly reprodu
ed in the single-parti
le spe
trum at the intermediate latti
e momenta and at su�
iently low temperature.In order to a
hieve a deeper insight into the physi
s of the pseudogap and super
ondu
tingstate of the Hubbard model, one has to 
onsider larger 
lusters. Firstly, 
al
ulations onlarger systems repress the strong �nite size e�e
ts and, se
ondly, the transfer of the irre-du
ible quantities from the �nite 
luster to the in�nite latti
e be
omes more independentfrom the interpolation s
heme. The enhan
ement of the 
luster size has the 
onsequen
e,that the usual Hirs
h-Fye quantum Monte Carlo 
luster solver has to be repla
ed by a moree�
ient algorithm. Su
h a development is beyond the s
ope of this thesis and representsa great 
hallenge for the next several years.
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Summary
This thesis has been devoted to a study of a strongly 
orre-lated ele
tron system. Using the Dynami
al Cluster Ap-proximation (DCA), we investigate the two-dimensionalHubbard model in the strong 
oupling regime U = 8t (en-ergy s
ale t = 1). In the DCA, the original latti
e problemis mapped to a self-
onsistently embedded 
luster of size
Nc = Lc × Lc. The 
orrelations up to a range of ξ . Lcare treated a

urately, while the physi
s on longer length-s
ales are des
ribed at the mean-�eld level. The 
lusterproblem generated by the DCA is solved by the Hirs
h-Fyequantum Monte Carlo te
hnique.The 
luster irredu
ible self-energy, Σ(K), and two-parti
levertex, ΓK′,K′′ serve as an approximation of their 
orre-sponding latti
e quantities and they 
an be used to 
al
u-late the latti
e single-parti
le and latti
e two-parti
le 
orre-lations fun
tions, respe
tively. The te
hni
al implementa-tion is readily 
arried out for the single-parti
le properties.However, from a numeri
al point of view the 
al
ulation ofthe dynami
al two-parti
le 
orrelation fun
tions, i.e. ver-tex fun
tion, within the DCA is mu
h more involved.The 
omplexity of the 
luster vertex fun
tion ΓK′,K′′ 
an beredu
ed by averaging the K ′ and K ′′ dependen
ies. Hen
e,we introdu
e an e�e
tive vertex fun
tion whi
h dependsonly on the 
enter of mass momentum und frequen
y, Q =

(Q, iΩm):
1

βL
Ueff (Q) = 〈ΓK′,K′′(Q)〉.With the e�e
tive vertex fun
tion Ueff (Q) and the bubble

χ0(q), whi
h is generated by the dressed Green fun
tions,
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Spin dynami
al stru
ture fa
tor(βt = 6 and δ ≈ 14 %)

the latti
e sus
eptibility reads:
χ(q) =

χ0(q)

1 − α · Ueff (q) · χ0(q)
,where α is estimated in a self-
onsistent manner and servesas a 
ontrolling parameter.A 
omparison of our approa
h with a SU(2) symmetry bro-ken DCA 
al
ulation on an Nc = 8 
luster serves as a test
ase. By evaluating the latti
e spin sus
eptibility, a di-vergen
e would indi
ate a magneti
 phase transition whi
h
an be 
ompared with the Néel temperature, as obtainedfrom the SU(2) symmetry broken algorithm. The resultingmagneti
 phase diagram from the SU(2) symmetry broken
al
ulation 
orresponds to the exa
t DCA result where noapproximation -apart from 
oarse graining- is made on theparti
le-hole irredu
ible vertex. At half-�lling the phasediagram exhibits magnetism below T ≃ 0.4t whi
h per-sists up to approximately 15 % doping. A good agreementof both methods 
an be a
hieved at δ & 10 %. At smallerdoping, the K ′ and K ′′ play an important role in the deter-mination of the Néel temperature and 
annot be negle
ted.In a further test, we 
ompare the spin S(q, ω)- and 
harge

C(q, ω)-dynami
al stru
ture fa
tors with exa
t auxiliaryBlankenbe
ler-S
alapino-Sugar(BSS) QMC results at βt =

3, δ ≈ 14 %, and U/t = 8. The analyti
al 
ontinuationfrom the imaginary time axis to real frequen
ies is per-formed by a sto
hasti
 version of the maximum entropymethod. The spe
trum in the spin 
hannel exhibits twobran
hes at ω ≈ J and 2J , whereat J = 4t2

U representsthe usual ex
hange 
oupling. The DCA overestimates thespe
tral weight at q = (π, π) but does very well away fromthe AF wave ve
tor. At lower temperatures (βt = 6) a
lear spin wave feature is indeed observable: a peak maxi-mum at q = (π, π) is present and at q = (π, 0) the 
orre
tenergy s
ale of 2J is re
overed.
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The DCA dynami
al 
harge 
orrelation fun
tions 
an re-produ
e the basi
 
hara
teristi
s of the BSS 
harge ex
i-tation spe
trum. Ex
itations at ω ≈ U are set by theremnants of the Mott-Hubbard gap.The investigation of the spin and 
harge responses at βt =

6 on the DCA Nc = 8 
luster exhibits a strong dopingdependen
e. At δ = 27 % the spin wave dispersion is nolonger sharply peaked around q = (π, π). The ex
itationsbroaden up and 
hange their energy s
ale from J = 4t2

U toan energy s
ale set by the non-intera
ting bandwidth. The
hanges be
ome more evident at higher dopings (δ = 32 %).The 
harge response shows a redu
tion of spe
tral weight athigh energies whi
h 
an be explained by the loss of weightin the upper Hubbard band with in
reasing doping.The single-parti
le spe
trum (βt = 6, δ = 14 %, and
Nc = 8) exhibits three distinguishing features: an upperHubbard band (ω/t ≈ 8) and a lower Hubbard band whi
hrepresent the in
oherent ba
kground. A quasiparti
le bandwith energy J represents the low energy ex
itations of thesystem and results from a dressing of a hole with a 
loudof spin-ex
itations to allow for a 
oherent motion throughan antiferromagneti
 ordered ba
kground. The o

urren
eof the spin-polaron is a

ompanied by the existen
e of thespin wave features in the spin response.At higher dopings (δ ≈ 32 %) the upper Hubbard bandloses spe
tral weight and the bandwidth of the quasiparti-
les 
hanges from J to the free bandwidth and, therefore,
orresponds to the 
hanges in the two-parti
le spe
tra.In the se
ond part of the thesis, we study the super-
ondu
tivity in the 
onventional Hubbard model (t = 1,
t′ = −0.3t, and U/t = 8) within the Dynami
al ClusterApproximation. The anomalous Green fun
tions are in-
orporated in terms of the Nambu representation. Thediagonal elements of the Nambu matrix Σc(K, iωm) repre-sent the quasiparti
le renormalisations and the o�-diagonalparts 
ontain information about the K- and frequen
y de-penden
e of the pairing state.
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Summary
δ = 22.5 %

δ = 15.5 %

δ = 5.2 %
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tralfun
tion (βt = 18 and δ ≈ 7 %)

In a �rst test 
ase, we 
ompare the super
ondu
ting tran-sition temperature, indi
ated by a non-vanishing order pa-rameter, with a super
ondu
ting phase diagram of the 
on-ventional Hubbard model (for the test 
ase: t′ = 0), wherethe phase boundary is estimated by the divergen
e of thepair �eld sus
eptibility. Our 
al
ulations show a goodagreement between both methods at three di�erent dop-ings: δ = 5.2 %, 15.5 %, and 22.5 %. The pairing state
learly exhibits a pure d-wave symmetry.The density of states of the Hubbard model is studied for
δ = 7 % doping at di�erent temperatures on the Nc = 4
luster. An opening of a pseudogap is indi
ated by a slightsuppression of spe
tral weight at ω = 0 in the lo
al spe
tralfun
tion above the super
ondu
ting transition temperature
Tc. The formation of the super
ondu
ting gap below Tcis a

ompanied by the o

urren
e of 
oheren
e bands at
|ω|/t ≈ 0.3.A detailed study of the angle-resolved spe
tral fun
tionexhibits a delayed opening of the super
ondu
ting gap at
q ≈ (π/4, π) while de
reasing the temperature and showsno indi
ation of a gap in nodal dire
tions whi
h 
on�rmsthe d-wave symmetry of the super
ondu
ting order param-eter. A pre
ursor of the pseudogap at q ≈ (π/4, π) abovethe super
ondu
ting transition temperature 
annot be re-solved. The reason for this is given by the poor momentumresolution of the self-energy on the Nc = 4 DCA 
luster.The interpolation s
heme utilised for the self-energy 
an-not properly transfer the information about the pseudogapto the intermediate latti
e momentum ve
tors.
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