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Abstrat
This thesis is dediated to a theoretial study of the 1-band Hubbard model in the strongoupling limit. The investigation is based on the Dynamial Cluster Approximation (DCA)whih systematially restores non-loal orretions to the Dynamial Mean Field approx-imation (DMFA). The DCA is formulated in momentum spae and is haraterised by apathing of the Brillouin zone where momentum onservation is only reovered betweentwo pathes. The approximation works well if k-spae orrelation funtions show a weakmomentum dependene.In order to study the temperature and doping dependene of the spin- and harge exi-tation spetra, we expliitly extend the Dynamial Cluster Approximation to two-partileresponse funtions. The full irreduible two-partile vertex with three momenta and fre-quenies is approximated by an e�etive vertex dependent on the momentum and fre-queny of the spin and/or harge exitations. The e�etive vertex is alulated by usingthe Quantum Monte Carlo method on the �nite luster whereas the analytial ontinua-tion of dynamial quantities is performed by a stohasti version of the maximum entropymethod. A omparison with high temperature auxiliary �eld quantum Monte Carlo dataserves as a benhmark for our approah to two-partile orrelation funtions. Our methodan reprodue basi harateristis of the spin- and harge exitation spetrum. Near andbeyond optimal doping, our results provide a onsistent overall piture of the interplaybetween harge, spin and single-partile exitations: a olletive spin mode emerges at op-timal doping and su�iently low temperatures in the spin response spetrum and exhibitsthe energy sale of the magneti exhange interation J . Simultaneously, the low energysingle-partile exitations are haraterised by a oherent quasipartile with bandwidth
J . The origin of the quasipartile an be quite well understood in a piture of a more orless antiferromagneti ordered bakground in whih holes are dressed by spin-exitationsto allow for a oherent motion. By inreasing doping, all features whih are linked to thespin-polaron vanish in the single-partile as well as two-partile spin response spetrum.In the seond part of the thesis an analysis of superondutivity in the Hubbard model ispresented. The superonduting instability is implemented within the Dynamial ClusterApproximation by essentially allowing U(1) symmetry breaking baths in the QMC al-ulations for the luster. The superonduting transition temperature Tc is derived from3



the d-wave order parameter whih is diretly estimated on the Monte Carlo luster. Theritial temperature Tc is in astonishing agreement with the temperature sale estimatedby the divergene of the pair-�eld suseptibility in the paramagneti phase. A detailedstudy of the pseudo and superonduting gap is ontinued by the investigation of the loaland angle-resolved spetral funtion.
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Kurzfassung
In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Bereih starkwehselwirkender Elektronen mit Hilfe der Dynamishen Cluster Approximation (DCA)untersuht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster,der selbst-konsistent in einem e�ektiven Medium eingebettet ist, abgebildet. Somit stelltdie DCA eine Erweiterung zur Dynamishen Molekularfeld-Theorie dar, indem niht-lokaleKorrelationen berüksihtigt werden.Ein Ziel dieser Arbeit stellt die Untersuhung von dynamishen Korrelationsfunktionenfür das Hubbard Modell dar. Dazu wird die Dynamishe Cluster Approximation aufdie Untersuhung von Zwei-Teilhen Korrelationsfunktionen erweitert. Der volle irredu-zible Zweiteilhen-Vertex mit drei Impulsen und Frequenzen wird durh einen e�ekti-ven Vertex, dessen Impuls und Frequenzabhängigkeit durh das Spin- bzw. Ladungs-Anregungsspektrum gegeben ist, approximiert. Der e�ektive Vertex wird mit Hilfe derQuanten Monte Carlo Tehnik auf einem endlihen Cluster bestimmt, wobei die dynami-shen Gröÿen durh eine stohastishe Version der Maximum Entropie Methode auf diereelle Frequenz-Ahse analytish fortgesetzt werden. Ein Vergleih mit dem gewöhnlihenBSS Quanten Monte Carlo Verfahren dient als Maÿstab für unsere Näherung der Zwei-Teilhen Korrelationsfunktionen. Der Vergleih zeigt auf, dass unsere Methode grundlegen-de Eigenshaften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Für op-timale bzw. höhere Dotierungen erhalten wir ein übereinstimmendes Gesamtbild zwishenLadungs-, Spin-, und Ein-Teilhen-Anregungsspektrum: bei optimaler Dotierung und hin-reihend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrumauf und zeigt einen Energiezweig mit der Energieskala J , wobei J die magnetishe Austau-shenergie beshreibt. Gleihzeitig werden die Niederenergie-Anregungen im Ein-Teilhen-Spektrum durh ein Quasiteilhenband mit Bandbreite J beshrieben. Der Ursprung desQuasiteilhens lässt sih durh das Bild eines mehr oder weniger geordneten antiferroma-gnetishen Hintergrundes erklären, in dem sih Löher umgeben von einer Wolke von Spin-Anregungen kohärent durh das Gitter bewegen. Bei zunehmender Dotierung vershwindensowohl im Ein-Teilhen, als auh im Zwei-Teilhen Spin-Spektrum alle Anzeihen, die imZusammenhang mit der Niederenergie-Skala J und dem oben beshriebenen Spin-Polaronstehen. Die Änderung der Dotierung führt des weiteren zu einem Transfer von spektralem5



Gewiht im Ein-Teilhen Spektrum, der sih ebenfalls im Ladungs-Anregungsspektrumbemerkbar maht.Im zweiten Teil der Arbeit wird eine Analyse über die supraleitenden Eigenshaften desHubbard Modells präsentiert. Die supraleitende Instabilität wird im Rahmen der Dyna-mishen Cluster Approximation durh die Implementierung eines U(1)-Symmetrie bre-henden Mediums in der Monte Carlo Rehnung für den Cluster berüksihtigt. Die su-praleitende Übergangstemperatur Tc wird von dem Wert des auf dem Cluster bestimm-ten d-Wellen Ordnungsparameters abgeleitet. Die kritishe Temperatur Tc ist in überra-shend guter Übereinstimmung mit der Energieskala, die durh eine Divergenz der Paarfeld-Suszeptibilität in der paramagnetishen Phase bestimmt worden ist. Die Temperaturabhän-gigkeit der Pseudo- und supraleitenden Lüke wird mit der Bestimmung der Zustandsdihteund der Impuls-aufgelösten Spektralfunktion untersuht. Im Gegensatz zur der Herausbil-dung einer supraleitenden Lüke unterhalb der Sprungtemperatur, kann die Bildung einerPseudo-Lüke in der Impuls-abhängigen Spektraldihte niht aufgelöst werden.
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Introdution 1
The theoretial desription of strongly orrelated eletron systems represents one of thegreatest hallenges in ondensed matter theory. Suh systems exhibit a variety of phenom-ena, e.g. stripe phases, high temperature superondutivity, magnetism and Mott metal-insulator transitions. The reason for this manifold behaviour has its roots in the many-bodyorrelation e�ets between the interating partiles where the interation strength is of thesame magnitude or larger than the kineti energy. This situation makes a perturbativehandling of the interating states around the non-interating limit very di�ult or evenimpossible.In the last few years, many non-perturbative numerial approahes have been formulatedand investigated to get to the bottom of the interplay e�ets in orrelated eletron systems.A large group of solvers based on the renormalisation group tehnique have been applied toone dimensional systems. The Density Matrix Renormalisation Group, for example, provesgreatly suessfully when it is applied to resolve small energy sales. The appliation ofrenormalisation tehniques to problems in higher dimensions still remains unlear and is asubjet of urrent researh. Two dimensional systems represent a wide area of appliationfor exat diagonalisation tehniques and Quantum Monte Carlo methods whih representa well-ontrolled aess to many-body problems. Unfortunately, these methods also reveala down side. Diagonalisation approahes are restrited to very small system sizes (up to 12sites) beause the eletroni degrees of freedom grow rapidly with inreasing system size.On the other hand, auxiliary �eld Quantum Monte Carlo studies su�er from the notoriousminus sign problem, whih prohibits, in general, the investigation of the low-temperaturephysis of orrelated eletron systems. Both methods are restrited to �nite lusters andtherefore one has to take �nite size e�ets into aount, whih orrupt the investigation ofthe low energy exitations or ompeting phases in the many-body systems.A new generation of approahes was initiated by the Dynamial Mean-Field Theory whihavoids the above mentioned problems. The so-alled quantum luster theories map the orig-inal many-body problem onto a �nite size quantum luster embedded in a self-onsistentlydetermined host. The physis on the luster is treated exatly and orrelations on longer9



1 Introdutionlength sales are taken into aount at mean-�eld level. One representative of the quantumluster theories is the Dynamial Cluster Approximation (DCA).This thesis is organised as follows:In hapter 2.1 we introdue the basi onepts of the Dynamial Cluster Approximation(DCA) by onsidering it as an extension to the Dynamial Mean-Field Theory (DMFT)where the original lattie problem is mapped onto a Periodi Anderson Impurity Model(PAM). The impurity problem an be solved in an exat way by using the Hirsh-Fyequantum Monte Carlo algorithm. For this purpose, we introdue, in setion 2.7.1, a Hub-bard Stratonovih (HS) �eld whih splits the two-partile interation term of the impuritysites into one partile operators oupled to the HS �eld. The summation over the HS �eldon�gurations is arried out by the Metropolis algorithm.The Hirsh-Fye algorithm only provides orrelation funtions in imaginary time. In orderto ompare the numerial results with experimental data a method is needed to analytiallyontinue the data from the imaginary time axis to the real frequeny axis. This problemboils down to the inversion of a Laplae transformation. A straightforward inversion wouldlead to inonsistent results due to numerial instabilities. A state of the art tehnique forthis ontinuation problem is the Maximum entropy method whih is presented in hapter 3.Chapter 4 is dediated to the tight-binding Hubbard model whih is intensively studied inthis work. The Hubbard model is one of the simplest models that takes the kineti energyand the eletron-eletron repulsion in a many-body system into aount. It onsists of akineti part, where eletrons an gain energy by hopping between nearest-neighbour sites,and a Coulomb term, whih enfores an energy penalty if two eletrons oupy the samesite. Although this model has a very simple struture, an analytial solution has only beenfound in one dimension.In hapter 5 we investigate the dynamial properties of the Hubbard model within the Dy-namial Cluster Approximation. In this sense, we have to extend the Dynamial ClusterApproximation to two-partile response funtions in order to ahieve a deeper insight be-yond the sope of the one-partile level. The idea of our approximation and its appliationis desribed in detail.In hapter 6 we apply the DCA to the Hubbard model and inorporate an instability to asuperonduting state. The theoretial investigation of superondutivity in the Hubbardmodel has been pushed immensely by the disovery of the high-temperature superondu-tors in 1986 by Bednorz and Müller. Soon after their disovery, theorists and experimental-ist have tried to �nd an explanation of the physis of these materials. But after more than�fteen years, the mirosopi mehanism is still an open question. In our investigation, wefous on the temperature and doping dependene of the superonduting phase as well ason the ourrene of a pseudogap.The thesis �nishes with a summary of the main results.10



Dynamial ClusterApproximation 2
Mean-�eld theories started their triumphant proession many years ago. In the year 1907,P. Weiss implemented the Curie-Weiss mean-�eld theory for spin systems by mapping theomplex lattie problem onto a magneti impurity whih is self-onsistent embedded in anaveraged magneti �eld produed by the remaining spins. Hereby, non-loal �utuations aswell as temporal �utuations have not been taken into aount. The idea of the redutionof a given lattie problem to an impurity problem, whih is embedded in a self-onsistentbath, was refreshed by spetaular works of Metzner and Vollhardt and Müller-Hartmannas they introdued the so-alled Dynamial Mean-Field Approah (DMFA) [1, 2℄. Theauthors showed, that in the limit of in�nite dimension, the self-energy beomes purelyloal and the many body problem an be mapped onto a single site impurity Andersonmodel (SIAM). The loal harater of the self-energy yields from the saling behaviourof the hopping element tij ∝ D−1/2 with the dimensionality D. It an be easily shown,that any two-sites in the expansion of the ompat diagrams of the self-energy, whih areonneted at least with two di�erent paths, ollapse to a single site in the limit of in�nitedimension [3℄.Thus, the dynamial mean �eld approah exhibits an exat solution for in�nite dimensionalHubbard-type models. In ontrast to the Curie-Weiss mean-�eld, the DMFA onsist of afrequeny dependent bath, and therefore, temporal orrelations an be taken into aount.Nevertheless, spatial �utuations are beyond its abilities. These orrelation are only treatedat mean-�eld level, whereas the loal part of the problem (the impurity problem) an besolved exatly via quantum Monte Carlo methods.The DMFA an be also understood as a oarse graining approximation whih an be seenin the language of the diagrammati expansion of the self-energy. In this ontext, weonsider the Laue funtion whih enfores momentum onservation at eah vertex of thediagrammati expansion:

∆(k1,k2,k3,k4) =
∑

r

exp[ir · (k1 + k2 − k3 − k4)], (2.1)where k1 and k2 ( k3 and k4) are the inoming (outgoing) momenta at every vertex. In11



2 Dynamial Cluster Approximationthe limit of in�nite dimension, the k-dependene of the Laue funtion breaks down andorretions our only in the order of 1/D [4℄:
∆D→∞(k1,k2,k3,k4) = 1 + O(1/D). (2.2)The DMFA assumes that ∆DMFA(k1,k2,k3,k4) = 1 is already valid at �nite dimensional-ity. The onsequene is a violation of momentum onservation at eah vertex and a ollapseof the k-dependene of the self-energy, whih auses the loal harater of the self-energy.This implies, that the Green funtions are replaed by a oarse-grained Green funtionaveraged over the entire Brillouin zone:
Ḡ(iωm) =

1

N

∑

k

G(k, iωm). (2.3)In the last years, the dynamial mean-�eld approah has been applied to a broad varietyof several spin systems as well as to systems of orrelated eletrons and bosons [3℄. Due tothe loal harater of the theory, a detailed investigation of non-loal quantities, i.e. non-loal order parameters, loalisation in disordered systems or spin waves in spin systems, isimpossible. The following setion summarises a systemati extension of the DMFA whihremains fully ausal and takes non-loal �utuations into aount [5, 6℄.2.1 FormalismThe Dynamial Cluster Approximation (DCA) represents a natural expansion of the DMFAwhih additionally takes non-loal �utuations into aount and systematially restoremomentum onservation. It was �rst proposed by M. Jarrell et al. [7, 8℄. In the DCA,the original many-body problem is mapped on a �nite size quantum luster embedded ina self-onsistently determined host. The best way to understand the approximation is inthe momentum spae. The oarse graining of the Green funtion is, as opposed to theDMFA, only performed on a �nite luster in the �rst Brillouin zone. A typial lusteringis depited in Fig. 2.1. The reiproal spae, whih ontains N k-points, is divided into Ncpathes, where eah path is labelled by the luster momentum vetor K, i.e., in Fig. 2.1the number of lusters is Nc = 4 and Lc determines the linear size of the luster. Anarbitrary momentum vetor k an be formulated as a sum of an inter-luster momentumvetor K and an intra-luster vetor k̃. The intra-luster vetors k̃ represent the reiproalvetors of x̃ whih form a superlattie in real spae (see Fig. 2.1) and every real spae lattievetor an be deomposed into a superlattie vetor x̃ and an intra-lattie vetor X, i.e.
x = x̃ + X. The number of lattie sites within a real spae luster is given by N/Nc.In the limit ofNc = 1, the original lattie problem is mapped onto a single impurity problemwhih is equivalent to the DMFA. Is Nc larger than one, then non-loal orretions of thelength ∼ π/∆k are introdued. This shows us, that the approximation works well whenonly orrelations on short length sales in real spae play the dominant role.12



2.2 A diagrammati derivation
(π, π)(0, π)

(π, 0)(0, 0)

k
K

k̃

x

Lc

1.BZ

real space momentum space

X

x̃

Figure 2.1 Left: Sketh of DCA luster pathes in real spae. Right: division of theBrillouin zone into Nc = 4 DCA pathes.2.2 A diagrammati derivationIn the following, we are going to present a diagrammati derivation of the DCA. In Se. 2.1,we introdued a segmentation of the Brillouin zone in Nc pathes of length ∆k = 2π/aLc,where a is the lattie onstant. Momentum onservation is now only reovered betweentwo pathes, whih is the ase if the momentum transfer k is larger than ∆k. The re-laxation of the momentum onservation an be aommodated for by the Laue funtion
∆(k1,k2,k3,k4). Therefore, we onsider a funtion M whih maps a given momentumvetor k to the orresponding luster momentum vetor K:

M : R
2 → R

2, M(k) = K (2.4)Hene, we an rewrite the Laue funtion in the following form:
∆(k1,k2,k3,k4) → ∆DCA(k1,k2,k3,k4)

=
∑

r

exp[ir · (M(k1) +M(k2) −M(k3) −M(k4))]. (2.5)In the limit of an in�nite number of luster pathes, the funtionM redues to the identityfuntion and the DCA beomes exat.The approximation of the Laue funtion has an in�uene of every diagram in the skeletonexpansion of the generating funtional Φ1. In Fig. 2.2, we show a seond-order termof the generating funtional of the Hubbard model. The undulating lines represent theCoulomb interation U and the solid lines are lattie (oarse-grained) single-partile Greenfuntions. With the hoie of the DCA Laue funtion ∆DCA, the momenta of eah internalleg propagator may be freely summed over the ell momenta. The partial ollapse of the1Skeletal graph sum over all distint ompat losed onneted diagrams onstruted from the Greenfuntion and the interation U . 13



2 Dynamial Cluster Approximation
Figure 2.2 Seond-order term of the generating funtional of the Hubbard model. Themomentum ollapse due to the interhange of the Laue funtion ∆ with the DCA Lauefuntion ∆DCA results in the replaement of the lattie Green funtions by the oarse-grained Green funtions.momentum onservation, by applying the ∆DCA to the generating funtional Φ, will bedemonstrated in the following alulation to whih purpose we onsider the Feynman ruleswhih an be found in every standard textbook [9℄:

2ndorder − diagram ≡
∑

σ

∑

k1,k2,k3,k4
ωk1

,ωk2
,ωk3

,ωk4

1

β2

(−1)s

h(Θ)

U2

N4
(Nδk1+k2,k3+k4)

2

(δω1+ω2,ω3+ω4)
2

︸ ︷︷ ︸

δenergies

δσ1,σ3δσ2,σ4δ−σ1,σ2
︸ ︷︷ ︸

δspin

(−Gk1(ωk1))(−Gk2(ωk2))(−Gk3(ωk3))(−Gk4(ωk4)), (2.6)where the sum goes over all internal momenta ki and frequenies ωi as well as all spin σdegrees of freedom. h(Θ) is a topology fator and s determines the number of fermioniloops. The delta funtions ensure the aordant onservation laws and the delta funtion
δσi,−σj

guarantees that only eletrons with opposite spins undergo the Coulomb interation.In the next step, we approximate the Laue funtion in the spirit of the DCA and split o�the momentum summation over ki via Eq. (2.4), whih give us:
2ndorder − diagram ≡

∑

σ

∑

K1,K2,K3,K4

k̃1,k̃2,k̃3,k̃4

∑

ωk1
,ωk2

,ωk3
,ωk4

1

β2

(−1)s

h(Θ)

U2

N4
δenergies δspin

(Nc δM(K1+k̃1)+M(K2+k̃2),M(K3+k̃3)+M(K4+k̃4)
)2

(−GK1+k̃1
(ωK1+k̃1

)) (−GK2+k̃2
(ωK2+k̃2

))

(−GK3+k̃3
(ωK3+k̃3

)) (−GK4+k̃4
(ωK4+k̃4

)). (2.7)14



2.3 Cluster sizes and topologiesObviously, the summation over all intra-luster momentum vetors k̃i an be pulled infront of the Green funtions Gki
(ωki

):
2ndorder − diagram ≡

∑

σ

∑

K1,K2,K3,K4
ωk1

,ωk2
,ωk3

,ωk4

1

β2

(−1)s

h(Θ)

U2

N2
c

δenergies δspin (δK1+K2,K3+K4)
2

(

−Nc

N

∑

k̃1

GK1+k̃1
(ωK1+k̃1

)

) (

−Nc

N

∑

k̃2

GK2+k̃2
(ωK2+k̃2

)

)

(

−Nc

N

∑

k̃3

GK3+k̃3
(ωK3+k̃3

)

)

(

−Nc

N

∑

k̃4

GK4+k̃4
(ωK4+k̃4

)

)

, (2.8)where we an identify the oarse-grained Green funtion Ḡ[M(k)] as:
Ḡ(K) =

Nc

N

∑

k̃

G(K + k̃), (2.9)with the number of lattie sites N , Nc is the number of lusters, and the k̃ runs over themomenta of the ell with luster momentum K. We have seen, that the diagrammatisequene of the generating funtional remains unhanged under the DCA approximation,but under the assumption Nc ≪ N , the omplexity of the problem is drastially redued.2.3 Cluster sizes and topologiesIn this setion, we are going to examine di�erent luster sizes and topologies of our DCAapproah. We have seen, that su�iently small lusters enormously redue the omplex-ity of the original problem, but the remaining luster problem represents an exhaustingnumerial task. In order to take a larger variety of luster types into aount, we alsofous on luster types whih deviate from the usual square shaped luster form. A generaloverview of di�erent luster sizes and topologies is given in Refs. [10, 11℄. The authorsof [11℄ investigate di�er luster types by referring to the �nite size saling behaviour of theNéel temperature of the 3-dimensional Hubbard model.Lets assume, that the real spae luster is desribed by the priniple lattie vetors a1and a2. They are orrelated to the reiproal lattie vetors by the expression bi =

2πai/|a1×a2| with knm = nb1+mb2 for integer n andm. We an distinguish three di�erentkinds of luster families. The �rst is desribed by tilings with a1x = a1y (orrespondingto Nc = 1, 8, 18, 32, ...) where we have hosen the luster types with Nc = 1, 8 for ouralulations. The seond family exhibits real-spae priniple luster vetors with either
a1x = 0 or a1y = 0, whih leads to luster types with Nc = 1, 4, 16, 36, ... . The single15



2 Dynamial Cluster Approximation
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Nc = 8Nc = 4 Nc = 10 Nc = 16Figure 2.3 Di�erent luster types and topologies whih are utilised in our study.site luster (see above) and the four and 16-sites luster were used in our alulation.Both families are basially di�erent in respet to the angle θ between the reiproal lattievetors ompare to the priniple reiproal lattie vetors of the real system. In the �rstase the angle θ is π/4 whereas in the seond ase it is θ = 0. In the third lass of lustertypes, we ombine all other lusters with the property that they do not obey the point-group symmetry of the original lattie. Starting from the Hubbard model, we assert a
C4v symmetry, whih is arried over to the oarse-grained ells in the �rst two familiesof luster types. The reiproal priniple lattie vetors of the third lass of luster typeswith Nc = 10, 20, 26, 34, ... do not point along a high symmetry diretion of the real spae.The onsequene will be, that in priniple equal points of the original lattie will maponto di�erent luster pathes during the oarse-graining proedure. In order to obtain aomprehensive piture of the di�erent luster types, we take also the Nc = 10 into aountin our alulations. A summary of the lusters utilised in our investigation is depited inFig. 2.3.2.4 The DCA self-onsistent loopThe DCA algorithm basially onsists of two parts as shown in Fig. 2.4. The main partis aptured by the self-onsistent proedure, namely the oarse-graining of the lattie andthe utilisation of the Dyson equation. This part will be explained in detail in the following.The seond part inludes the quantum Monte Carlo proedure to whih purpose we employthe Hirsh-Fye algorithm, whih is explained in setion 2.7. The QMC proedure is themost time and resoures onsuming part in the self-onsistent irle and is therefore arriedout on a superomputer.The DCA self-onsistent loop:i) The DCA self-onsistent loop starts with an initial guess of the self-energy

Σc(K, iωm). This value an be set to zero or to a perturbation theory result.ii) The free lattie Green funtion G0(k, iωm) and the self-energy Σc(K, iωm) are usedto alulate the oarse-grained Green funtion Ḡ(K, iωm). N is the number of lattie16



2.4 The DCA self-onsistent loop
G−1(K, iωn) = Ḡ−1(K, iωn) + Σc(K, iωn) Σc(K, iωn) = G−1(K, iωn) −G−1

c (K, iωn)

Gc(Xi − Xj , τ)G(Xi − Xj , τ)

Ḡ(K, iωn) = Nc

N

∑

k̃

1
iωn−ǫ

K+k̃
+µ−Σc(K,iωn)

Cluster solver: Hirsch− Fye Algorithm

Figure 2.4 Sketh of the DCA algorithm.sites and Nc delares the number of lattie sites within the real spae luster:
Ḡ(K, iωm) =

Nc

N

∑

k̃

1

iωm − ǫ
K+k̃

+ µ− Σc(K, iωm)
(2.10)At this point, the DCA assumes that Σc(K, iωm) is only weakly dependent on mo-mentum, so that we may write Σ(K + k̃, iωm) ≈ Σc(K, iωm).iii) The bare host Green funtion is given by the Dyson Equation:

G−1(K, iωm) = Ḡ−1(K, iωm) + Σc(K, iωm) (2.11)At this point, we have to subtrat the self-energy in order to avoid over-ountingdiagrams and alulate the bare Green funtion of the luster problem.iv) In order to utilise the QMC proedure G(K, iωm) must be Fourier transformed fromthe momentum-frequeny variables to spae-imaginary-time variables:
G(K, iωm) −→ G(Xi −Xj , τi − τj) (2.12)v) The interating luster Green funtion Gc(Xi −Xj , τi − τj) is obtained by using theQMC algorithm. This step is the most time onsuming part.vi) Gc(Xi − Xj , τi − τj) is then Fourier transformed to momentum-frequeny variables

Gc(K, iωm) and the Dyson Equation is used a seond time in order to alulate anew luster self-energy:
Σc(K, iωm) = G−1(K, iωm) −G−1

c (K, iωm) (2.13)vii) These step are repeated until Σc(K, iωm) onverges. 17



2 Dynamial Cluster Approximationviii) The lattie Green funtion depends on the momentum k = K + k̃ and is alulatedby:
Glat(k, iωm) =

1

iωm − ǫK+k̃ + µ− Σc(K, iωm)
(2.14)2.5 Numerial implementation of the Fourier transformationAs desribed in the previous setion, a Fourier transformation between Matsubara en-ergy Green funtions G(K, iωm) and imaginary time Green funtions G(K, τ) has to beperformed. In general, the Fourier transformation is nothing else but:

G(K, iωm) =

∫ β

0
dτ eiωmτG(K, τ). (2.15)The numerial implementation of the Fourier transformation is a hallenging task in orderto apture the orret high-frequeny behaviour of the Green funtion or self-energy. TheGreen funtion G(K, τ) is only given on a disrete subset in the interval [0, β]. A simplyinterpolation strategy, i.e., an Akima spline, yields inorret high-frequeny results and theausality requirement:

lim
ωm→∞

G(K, iωm) ≈ 1

iωm
(2.16)would be violated. An enhanement of the disretisation in imaginary time would alleviatethis problem but it would ause an intratable QMC simulation beause of the CPU timeand memory requirements whih would inrease to the power of three with respet to thenumber of imaginary time slies. Instead of this, we use the spetral representation of theGreen funtion G(τ):

G(τ) = −
∫

dωA(ω)
e−τω

1 + e−βω
with A(ω) = − 1

π
Im[G(ω + i0+)] (2.17)The analytial ontinuation of the Green funtion G(τ) yields the orresponding spetralfuntion A(ω) on a disrete set of real frequenies whih obeys the following identity:

G(τ) = −
∑

n

∆ωA(n∆ω)
e−τn∆ω

1 + e−βn∆ω
. (2.18)Thus, the Fourier transformation of G(τ) to G(iωm) an be aomplished under onsider-ation of the spetral theorem:

G(iωm) = −
∑

n

∆ω
A(n∆ω)

iωm − n∆ω
(2.19)It has been shown, that suh a Fourier transformation provides the orret asymptotibehaviour of the Matsubara Green funtions.18



2.6 Loal quantitiesThe inverse Fourier transformation provides G(τ) for a given Green funtion G(iωm):
G(τ) =

1

β

∑

ωm

e−iωmτG(iωm) (2.20)The disontinuity of G(τ)|τ=0,β an only be reprodued when an in�nite number of Mat-subara frequenies are taken into aount in the sum of Eq. (2.20). In order to irumventthis problem, we onsider the asymptoti behaviour of the Matsubara Green funtion:
G(iωm) =

∫

dω
A(ω)

iωm − ω

=
1

iωm

∫

dωA(ω) +
1

(iωm)2

∫

dωA(ω)ω + O
(

1

ω3
m

) (2.21)Obviously, Eq. (2.21) exhibits the orret high frequeny behaviour: Im[G(iωm)] =

−1/iωm + O(1/ω3
m). The real part of the Green funtion Re[G(iωm)] an be �tted bya least square �t to the form b/(iωm)2 with the abbreviation b =

∫
dωA(ω)ω. After therearrangement of the RHS of Eq. (2.20), one gets:

G(τ) =
1

β

∑

ωm

e−iωmτ

(

G(iωm) − 1

iωm
+

b

ω2
m

)

+
1

β

∑

ωm

e−iωmτ

(
1

iωm
− b

ω2
m

)

. (2.22)For su�iently large Matsubara frequenies iωm, only the seond sum of Eq. (2.22) gives aontribution to G(τ), therefore, the �rst summation has to be arried out only on a �nitesubset of Matsubara frequenies iωm. The seond sum may be omputed analytially. For
0 < τ < β we have:

1

β

∑

ωm

e−ωmτ

iωm
= −1

2
(2.23)

b

β

∑

ωm

e−ωmτ

(iωm)2
=

b

2
τ − b

4
β. (2.24)2.6 Loal quantitiesIn the following setion, we express some omments about loal luster quantities. Theonsideration below shows that loal lattie quantities an already be alulated on theDCA luster. We fous initially on the lattie Green funtion, whih is given by the Dysonequation:

Glat(k, iωm) =
1

iωm − (ǫ(k) − µ) − Σc(K, iωm)
(2.25)19



2 Dynamial Cluster ApproximationThe loal lattie Green funtion reads:
Glat

ii (iωm) =
1

N

∑

k

Glat(k, iωm) (2.26)
=

1

N

∑

K

∑

k ∈ patchK

1

iωm − (ǫ(k) − µ) − Σc(K, iωm)
(2.27)If we apply the de�nition of the oarse-grained Green funtion to the last expression inEq. (2.27) and assume that self-onsistene in the DCA loop has been ahieved, then wean write:

Glat
ii (iωm) =

1

Nc

∑

K

Gc(K, iωm). (2.28)Hene, the last equality exhibits an easy aess to alulate loal quantities in the DCAalulation, i.e. oupation numbers, magnetisation or loal order parameters.2.7 The QMC algorithmAs desribed in the previous setion, the omplexity of the original lattie problem an beredued dramatially by oarse graining of the Green funtion. Hereby, the bath Greenfuntion G(iωm), whih is determined from the oarse-grained Green funtion Ḡ(iωm) andthe self-energy Σc(iωm), an be interpreted as the non-interating Green funtion of theluster problem. The luster problem may be solved by a variety of methods. Typialandidates are the quantum Monte Carlo method (QMC) [12℄, the �utuation exhangeapproximation (FLEX) [13℄, or the non-rossing approximation (NCA) [14℄. The most ap-propriated method for our problem is the Quantum Monte Carlo tehnique, i.e., Hirsh-Fyealgorithm (HF). It was �rst developed in order to solve few-impurity problems and it on-tributes very well to the Kondo problem as well as to the impurity problem of the DMFA.Compared to the onventional Blankenbeler-Sugar-Salapino (BSS) [15℄ algorithm, theHirsh-Fye algorithm does not show any stabilisation problems and it is haraterised bya mild minus-sign problem away from half-�lling. On the other hand, the HF algorithm ismuh more involved with respet to the CPU time and memory requirements. A ompar-ison of the saling behaviour of the CPU time and memory requirements as a funtion ofsystem size and Trotter slies (whih are diretly related to the inverse temperature) respe-tively, are shown for both methods in Tab. 2.1. It expliitly shows, that alulations withthe Hirsh-Fye algorithm are restrited to smaller lusters when ompared to BSS alula-tions due to a poorer CPU time and memory saling behaviour. Nevertheless, alulationswithin the DCA are arried out in thermodynami limit beause spatial orrelations whihexeed the luster size are treated on a mean-�eld level, whereas the BSS alulations areperformed on a �nite lattie, where �nite size problems are still present. Furthermore, oneshould keep in mind that the HF algorithm is in general an ation based method, whih20



2.7 The QMC algorithmCPU time MEMORYHF (NlNc)
3 (NlNc)

2BSS NlN
3
c NlN

2
cTable 2.1 Saling behaviour of the CPU time and memory as a funtion of the number oflusters Nc and Trotter slies Nl of the Hirsh-Fye algorithm (HF) and Blankenbeler-Sugar-Salapino quantum Monte Carlo (BSS) algorithm.means, that detailed knowledge of the Hamiltonian is not needed. In ontrast, the BSSalgorithm is a Hamiltonian based tehnique whih gives the important onstitutional dif-ferene between both methods and it beomes ruial when we onsider that the detailedor e�etive form of the Hamiltonian of the luster problem within the DCA self-onsistentloop is unknown. Furthermore, the Monte Carlo upgrade proedure of the BSS algorithmadditionally requires ertain stabilisation tehniques whih inrease the omputational ef-fort of the simulation [16℄. Finally, as we will see in the next paragraph, the measuremento� time-displaed quantities an be performed in the HF algorithm without essentiallyinreasing of the omputational e�ort.In the �rst part of the next paragraph, basi onepts of auxiliary �eld Quantum MonteCarlo tehniques are presented. With the introdution of auxiliary �elds, i.e., Hubbard-Stratonovih �elds, it is possible to manage a deomposition of the interating term ofthe underlying Hamiltonian. In a further step, the partition funtion an be expressedby imaginary time propagators Us(β, 0) and Bs(β, 0), where the index s orresponds to agiven on�guration of the introdued auxiliary �eld. Nevertheless, in order to alulate thepartition funtion, one has to apture all �eld on�gurations whih in priniple representsan unsolvable task. To irumvent this problem, we adobe the Hirsh-Fye quantum MonteCarlo algorithm, whih allows us to redue the whole phasespae of on�gurations of theauxiliary �eld to a subset of on�gurations. The smaller on�guration sample is hosenin suh a way that the ourrene of the �eld on�gurations are distributed aording totheir ourrene probability. The Hirsh-Fye algorithm is presented in setion 2.7.3.2.7.1 Auxiliary Field Quantum Monte CarloIn the forthoming paragraph, we introdue the periodi Anderson impurity model (PAM)[17℄ whih solves the luster problem already desribed above within the DCA self-onsistent loop.The PAM is de�ned as:

H = H0 +HU (2.29)21



2 Dynamial Cluster Approximationwith
H0 =

∑

k,σ

ǫ(k)d†kσdkσ +
∑

iσ

(ǫdd
†
iσdiσ + ǫff

†
iσfiσ)

+
∑

kσ

V (k)(d†kσfkσ + h.c.) (2.30)
HU = U

∑

i

(nfi↑ −
1

2
)(nfi↓ −

1

2
), (2.31)where diσ(fiσ)(†) destroys (reates) a d(f) eletron on site i with spin σ, ǫd and ǫf arethe orbital energies of the d and f eletrons respetively, V (k) is the d− f hybridisation,and U the on-site Coulomb repulsion of the f -eletrons. The operator dkσ(fkσ)(†) destroys(reates) a d(f) eletron with momentum k and spin σ. The dispersion of the d eletronsis given by ǫ(k). The reader is referred to [17, 18℄ for a detailed overview of the Andersonmodel.The goal of our investigation is the determination of the partition funtion Z =

Tr[e−β(H−µN)]. The luster problem of the DCA is desribed by the PAM with the hostGreen funtion G whih orresponds to the non-interation Green funtion of the lusterproblem. If we introdue Grassmann variables γ's, we an rewrite the partition funtionas a path integral:
Z =

∫

Dγ⋆Dγe−
R β

0
dτdτ ′ P

i,j,σ γ⋆
i,j(τ)G−1(i,τ ;j,τ ′)γj,σ(τ ′)−

R β

0
dτHU (γ⋆

i,σ(τ),γi,σ(τ)) (2.32)The input (free) luster Green funtion G(i, τ ; j, τ ′) depends on the time and spatial o-ordinates. The deomposition of the purely loal Hubbard-like interation term HU isperformed in two steps. First, the exponent of the partition funtion is split o� by in-troduing a disrete set of time slies with lengths ∆τ = β
Nl

and a positive integer Nl:
Z = Tr[e−β(H−µN)] = Tr[(e−∆τ(H0+HU ))Nl ]. (2.33)In the seond step, the exponential funtion an be deomposed, by onsidering that for a�nite value of ∆τ a systemati error (∆τ)2 ours sine [H0,HU ] 6= 0:
Z = Tr[(e−∆τ(H0+HU ))Nl ] = Tr[(e−∆τH0e−∆τHU )Nl ] + O(∆τ2). (2.34)The error in ∆τ an only be redued by an enhanement of the number of time slieswhih automatially inreases the omputational e�ort of the alulation. By introduinga bosoni auxiliary �eld φ [19℄ the two-partile interation in HU an be expressed as a sumover all �eld on�gurations φ and one-partile operators whih interat with the auxiliary�eld φ. In general, we an derive the following identity from the Gaussian integral:
eA

2/2 =
1√
2π

∫ +∞

−∞
dφe−

φ2

2
−φA. (2.35)22



2.7 The QMC algorithmThe important advantage of Eq. (2.35) lies in the fat, that for a given Hubbard-Stratonovih �eld φ the one body-problem is exat solvable. For a numerial approah, itis more onvenient to disretise the auxiliary �eld where eah on�guration is desribed bya vetor s. Hene, we an rewrite the exponential funtion of the partition funtion:
e∆τU

P

i(f
†
i↑fi↑− 1

2
)(f†

i↓fi↓− 1
2
) = C

∑

s=±1

eα
P

i si(f
†
i↑fi↑−f†

i↓fi↓), (2.36)with
C =

1

2Nc
e−∆τUNc/4 (2.37)

cosh(α) = e∆τU/2. (2.38)With the deomposition of the exponential funtion in Eq. (2.34) and the introdution ofthe Hubbard-Stratonovih �eld, the partition funtion in Eq. (2.32) may be written as:
Z ∝ Trsi,l

∫ Nl∏

l,l′

Nc∏

i,j

dγ⋆
il,σdγil,σe

−
P

il,jl′,σ γ⋆
il,σ

G−1
il;jl′γjl′,σe−

P

i,l,σ αsi,lγ
⋆
il,σ

γi(l−1),σ (2.39)The integration over the eletroni degrees of freedom (Grassmann variables) yields:
Z ∝ Trsi,l

∏

σ

det(Gs,σ)−1, (2.40)where
(Gs,σ)−1

il,jl′ = G−1
il;il′ + ασsi,lδi,jδl′,l−1. (2.41)2.7.2 Numerial implementationThe numerial implementation of the Hirsh-Fye algorithm requires a reformulation of thepartition funtion and the Green funtions respetively. For this purpose, we introdueimaginary time propagators Us and Bs in order to reformulate the partition funtion inEq. (2.40):

Z = CNl

∑

s

∏

σ

det[1 +Bσ
Nl
Bσ

Nl−1 . . . B
σ
1 ], (2.42)with

Bσ
n = eV

(σ)(sn)e−∆τh0 . (2.43)A detailed derivation is given in the works of F. F. Assaad [20℄ and L. C. Martin [21℄.The matries V (σ)(sn) have the omponents σαsnδi,jδi,f−sites with the auxiliary �eld sn atimaginary time step n. We also introdue the seond-quantisation time evolution operator
Uσ

s (τ2, τ1):
Us(τ2, τ1) =

∏

σ

n2∏

n=n1+1

ea
†
σV (sn)aσe−∆τa

†
σh0aσ (2.44)23



2 Dynamial Cluster ApproximationThe operator a(†) destroys (reates) an eletron on a ondution or impurity site. Weshould keep in mind that the eletron interation takes only plae on the f -sites. Whatfollows is an overview of the measurement of observables and time-displaed single- andtwo-partile Green funtions within the Hirsh-Fye algorithm.ObservablesThe thermodynami de�nition of the expetation value of the variable O is given by:
〈O〉 =

Tr[e−βHO]

Tr[e−βH ]
(2.45)The evolution of the exponential funtion in imaginary time an be reformulated by theimaginary time propagators Us(τ2, τ1) (Eq.(2.44)):

〈O〉 =

∑

s Tr[Us(β, τ)OUs(τ, 0)]
∑

s

∏

σ det(1 +Bσ
s (β, 0))

=

(
∑

s

∏

σ det(1 +Bσ
s (β, 0))

∑

s

∏

σ det(1 +Bσ
s (β, 0))

)

·
(
Tr[Us(β, τ)OUs(τ, 0)]
∏

σ det(1 +Bσ
s (β, 0))

)

=

(
∑

s

∏

σ det(1 +Bσ
s (β, 0))

∑

s

∏

σ det(1 +Bσ
s (β, 0))

)

·
(
Tr[Us(β, τ)OUs(τ, 0)]

Tr[Us(β, 0)]

)

=
∑

s

Ps〈O〉s (2.46)The above equality is a result of the properties of the Slater determinants and will not bedisussed here. Eq. (2.46) shows, that the expetation value of an observable O an beexpressed as a weighted average of the measurement of O for a given Hubbard-Stratonovih�eld s. The quantity Ps orresponds to the density matrix whih, as opposed to in lassialsimulation, an be negative and leads to the notorious minus-sign problem. In order to seethis problem, we keep trak of the sign ηs of the quantity ps =
∏

σ det(1 +Bσ
s (β, 0)). Weformulate p′s = |ps| and

〈O〉p =

∑

s ps〈O〉s
∑

s ps

=

∑

s |ps|ηs〈O〉s
∑

s |ps|ηs

=

∑

s p
′
s[ηsOs]

∑

s p
′
sηs

·
∑

s p
′
s

∑

s p
′
s

=
〈ηO〉p′
〈η〉p′

. (2.47)The Boltzmann weight was written as ps = p′sηs with ηs = ±1. The last equality shows,that in the ase of a very small average sign, the expetation value of the observable Ounderlies strong �utuations. In order to ompensate for the redution of the quality of thedata, one has to improve the statistis of the alulation by a fator of 〈sign〉−2 omparedto the situation where the minus-sign problem is absent.24



2.7 The QMC algorithmThe minus-sign problem ours in the repulsive Hubbard model away from half-�lling. Inthe ase of partile-hole symmetry and for the attrative Hubbard model, it an be shown,that the density matries for the two spin hannels our with the same sign for any �eldon�gurations s:
sign{det[1 +B↑

s]} = sign{det[1 +B↓
s]}, (2.48)and hene, no minus-sign problem ours.Equal-time observableWe an estimate the expetation value of a single-body observable O = c†Ac:

〈O〉s =
∂

∂α
lnTr[Us(β, τ)e

αOUs(τ, 0)]|α=0

=
∂

∂α
ln det[1 +Bs(β, τ)e

αABs(τ, 0)]|α=0

=
∂

∂α
Tr ln[1 +Bs(β, τ)e

αABs(τ, 0)]|α=0

= Tr
[
Bs(τ, 0)(1 +Bs(β, 0))

−1Bs(β, τ)A
]

= Tr
[
(1 − (1 +Bs(τ, 0)Bs(β, τ))

−1)A
] (2.49)The equal-time Green funtion may be written with the hoie of A: Ax1,x2 = δx1,yδx2,xas:

Gs(τ, τ)x,y = δx,y − 〈c†Ac〉s, (2.50)and with Eq. (2.49) we derive the important result:
Gs(τ, τ)x,y = [1 +Bs(τ, 0)Bs(β, τ)]

−1
x,y , (2.51)whih states, that any equal-time Green funtion an expressed in terms of matries Bs.Furthermore, it an be shown, that any equal-time multi-point orrelation funtion an beformulated in sums of produts of single-partile Green funtions whih orresponds to thevalidity of Wik's theorem. More tehnial onsiderations an be found in [20℄ and willnot be repeated in this work again.Imaginary time displaed Green FuntionsImaginary time displaed Green funtions, suh as single- and two-partile Green fun-tions determine a variety of ruial properties of many partile systems. They ontaininformation about spin as well as harge gaps [22, 23℄. Furthermore, an inverse Laplaetransformation, whih an be performed via the Maximum Entropy tehnique [24, 25℄(Se. 3.2), provides the real-energy spetrum of the orresponding orrelation funtion25



2 Dynamial Cluster Approximationand makes a diret omparison between theory and experimental measurements, suh asphotoemission, neutron sattering and optial measurements, possible.In the following paragraph, we are going to show, that the time dependene of Greenfuntions an be absorbed in the operators Bσ
s . Furthermore, we present exemplarily forthe two-partile Green funtion, that in general, any n-point time-displaed orrelationfuntion an be mapped onto n-point equal-time orrelation funtions, whih onsist of asum of produts of equal-time Green funtions.The single-partile Green funtion is de�ned by:

G(τ1, τ2)x,y = −〈T ax(τ1)a
†
y(τ2)〉 =







−〈ax(τ1)a
†
y(τ2)〉, if τ1 ≥ τ2

〈a†y(τ2)ax(τ1)〉, if τ1 < τ2
(2.52)We neglet in the forthoming paragraph the minus-sign in the de�nition of the Greenfuntion due to onveniene. By onsidering Eq. (2.46), the time-displaed Green funtionan be formulated as a weighted average over the �eld on�gurations s:

G(τ1, τ2)x,y =
∑

s

PsGs(τ1, τ2)x,y. (2.53)Assume that β > τ1 > τ2 holds, then we an rewrite Gs(τ1, τ2):
〈ax(τ1)a

†
y(τ2)〉s =

Tr
[

Us(β, 0)e
Hτ1axe

−Hτ1eHτ2a†ye−Hτ2
]

Tr [Us(β, 0)]
(2.54)

=
Tr
[

Us(β, τ2)U
−1
s (τ1, τ2)axUs(τ1, τ2)a

†
yUs(τ2, 0)

]

Tr [Us(β, 0)]
(2.55)By using the de�nition of Us(τi, τj) in Eq.(2.44), the term U−1

s (τ1, τ2)axUs(τ1, τ2) an beexpressed as a sequene of imaginary time dependent operators e±∆τa†Aia:
ax(τ) = e∆τa†Ana . . . e∆τa†A2ae∆τa†A1aaxe

−∆τa†A1ae−∆τa†A2a . . . e−∆τa†Ana, (2.56)with τ1 = τ2+n·∆τ . The original Hamiltonian is enoded in the quantities Ai via Eq.(2.44).The propagation in imaginary time of ax(τ) is desribed by e∆τa†A1aaxe
−∆τa†A1a and fromthis we obtain the di�erential equation:

∂ax(τ)

∂τ
= −(Aa(τ))x, (2.57)with the solution

a(τ) = (e−Aτa), and similarly a†(τ) = (a†eAτ ). (2.58)If we suessively apply the above equation then we obtain:
U−1

s (τ1, τ2)axUs(τ1, τ2) = (Bs(τ1, τ2)a)x (2.59)
U−1

s (τ1, τ2)a
†
xUs(τ1, τ2) = (a†B−1

s (τ1, τ2))x (2.60)26



2.7 The QMC algorithmWith the last result, Eq. (2.55) may be rearranged as:
〈ax(τ1)a

†
y(τ2)〉s =

Tr
[

Us(β, τ2)[Bs(τ1, τ2)a]xa
†
yUs(τ2, 0)

]

Tr [Us(β, 0)]
(2.61)

=
∑

z

[Bs(τ1, τ2)]x,z
Tr[Us(β, τ2)aza

†
y[Us(τ2, β)]

Tr[Us(β, 0)]
(2.62)

=
∑

z

[Bs(τ1, τ2)]x,zGs(τ2, τ2)z,y (2.63)
= [Bs(τ1, τ2)Gs(τ2, τ2)]x,y, (2.64)where the matrix Bs an be pulled in front of the trae. A straightforward alulationyields the following result for the ase τ2 > τ1:

Gs(τ1, τ2)x,y = −[(1 −Gs(τ1, τ1))B
−1
s (τ2, τ1)]x,y. (2.65)The imaginary time dependenies of the Green funtion Gs are absorbed in the propagators

Bs(τi, τj). Equivalent to the previous onsiderations, a time displaed two-partile orre-lation funtion an be deomposed into a sum of produts of equal-time Green funtionsand operators Bs:
〈a†x(τ1)ax(τ1)a

†
y(τ2)ay(τ2)〉s = (2.66)

=
∑

z,z1

[B−1
s (τ1, τ2)]z,x[Bs(τ1, τ2)]x,z1〈a†z(τ2)az1(τ2)a

†
y(τ2)cy(τ2)〉s (2.67)

=
∑

z,z1

[B−1
s (τ1, τ2)]z,x[Bs(τ1, τ2)]x,z1

[

(1 −Gs(τ2, τ2))z1,z(1 −Gs(τ2, τ2))y,y

+(1 −Gs(τ2, τ2))y,zGs(τ2, τ2))z1,y

] (2.68)
= [Bs(τ1, τ2)(1 −Gs(τ2, τ2))B

−1
s (τ1, τ2)]x,x[1 −Gs(τ2, τ2)]y,y

+[(1 −Gs(τ2, τ2))B
−1
s (τ1, τ2)]y,x[Bs(τ1, τ2)Gs(τ1, τ2)]x,y (2.69)

= [1 −Gs(τ1, τ1)]x,x[1 −Gs(τ2, τ2)]y,y − [Gs(τ2, τ1)]y,x[Gs(τ1, τ2)]x,y. (2.70)In the above derivative, we used the inverse property of the Bs(τ1, τ2) matries:
Bs(τ1, τ2)Gs(τ2, τ2)B

−1
s (τ1, τ2) = Gs(τ1, τ1) (2.71)2.7.3 The Hirsh-Fye algorithmThe numerial implementation of the time-displaed Green funtion will be disussed inthe following paragraph. For theses purposes, the partition funtion in Eq. (2.42) Z isrewritten in terms of matries Oσ with the property det[Oσ] = det[1 + Bσ

Nl
Bσ

Nl−1 . . . B
σ
1 ]27



2 Dynamial Cluster Approximationand the expliit form:
Oσ =

















1 0 · · · Bσ
1

−Bσ
2 1 · · · 0

0 −Bσ
3 1 · · ·

· · · · · ·
· · · · · 0

0 · · 0 −Bσ
Nl

1

















(2.72)
The time-displaed Green funtion Gσ

s(τi, τj), whih is a funtion of disrete imaginarytime slies τi = i∆τ with i = 1, . . . , Nl, an be formulated ompatly in matrix form:
gσ =











Gσ
s(τ1, τ1) Gσ

s(τ1, τ2) · · Gσ
s(τ1, τNl

)

Gσ
s(τ2, τ1) Gσ

s(τ2, τ2) · · Gσ
s(τ2, τNl

)

· · · · ·
Gσ

s(τNl
, τ1) Gσ

s(τNl
, τ2) · · Gσ

s(τNl
, τNl

)











, (2.73)
with the relation

gσ = Oσ−1. (2.74)In Eq. (2.73), we adopt the notation that eah Green funtion Gσ(τi, τj) represents amatrix, where the indies x and y indiate the spatial dependene of the Green funtions:
Gσ(τi, τj) =











[Gσ(τi, τj)]1,1 [Gσ(τi, τj)]1,2 · · [Gσ(τi, τj)]1,Ntot

[Gσ(τi, τj)]2,1 [Gσ(τi, τj)]2,2 · · [Gσ(τi, τj)]2,Ntot

· · · · ·
[Gσ(τi, τj)]Ntot,1 [Gσ(τi, τj)]Ntot,2 · · [Gσ(τi, τj)]Ntot,Ntot











, (2.75)
where [Gσ(τi, τj)]x,y is the time displaed Green funtion and Ntot haraterises the totalnumber of sites.The Green funtion matrix g is determined by a given Hubbard-Stratonovih �eld on-�guration s. By hanging the �eld on�guration s to a new on�guration s′, the Greenfuntions matrix hanges as follows:

gσ = g′σ + g′σ∆σ(1 − gσ) with ∆σ = (eV
′σ
e−V σ − 1), (2.76)28



2.7 The QMC algorithmwhere g′ is the new Green funtion matrix orresponding to the new auxiliary �eld. Thematries V σ are de�ned in the spirit of Eq. (2.44) as:
V σ =














V σ
1 0 · · · 0

0 V σ
2 0 · · 0

0 0 V σ
3 0 · 0

· · · · · ·
0 · · · 0 V σ

Nl














. (2.77)
The validity of Eq. (2.76), whih relates Green funtions for di�erent auxiliary �elds toeah other, an be shown by onsidering the matrix equation:

Õ = e−V σ

Oσ with g̃ = Õ−1, (2.78)so that (omitting the spin index σ):
g̃ = [Õ′ + Õ − Õ′]−1 (2.79)

= [Õ′ + e−V − e−V ′
]−1 (2.80)

= (Õ′)−1 − (Õ′)−1(e−V − e−V ′
)g̃, (2.81)where the last equality follows from the relation 1

A+B = 1
A − 1

AB
1

A+B . In the end, theDyson equation (2.76) arises from Eq. (2.81) by inserting g̃ = geV .Finally, it should be summarised, that Eq. (2.76) desribes the basis of the Hirsh-Fyealgorithm and determines the upgrade sheme of the Green funtion during the MonteCarlo proedure.Monte Carlo shemeWhat follows is a short overview of the Monte Carlo proedure in the Hirsh-Fye algorithmand the upgrade sheme of the Green funtion gσ whih was introdued in Eq. (2.76).We have seen, that the quantum physial problem is redued to a lassial problem byintroduing a Hubbard-Stratonovih �eld. The �eld on�guration is desribed by si,l,where 'i' desribes a spatial and 'l' a time oordinate. For further onsiderations, theindies 'i' and 'l' are ombined to a superindex 'n'. A hange in the Hubbard-Stratonovih�eld sn → s′n is aepted with the probability Rs→s′ . In Setion 2.7.1, we have seen thatthe probability of the ourrene of a given �eld on�guration s is given by Ps. Fromthis it follows, that the transition probability from one �eld on�guration s to a new �eld29



2 Dynamial Cluster Approximationon�guration s′ an be written as:
Rs→s′ =

∏

σ

det[1 +B′σ
Nl
B′σ

Nl−1 . . . B
′σ
1 ]

det[1 +Bσ
Nl
Bσ

Nl−1 . . . B
σ
1 ]

=
∏

σ

det[gσ(g′σ)−1]

=
∏

σ

det[1 + ∆σ(1 − gσ)]. (2.82)This transition probability obeys the requirement of detailed balane and ergodiity. Inthe beginning of the alulation the Hubbard Stratonovih �eld orresponds to the non-interating Green funtion, e.g. all sn are zero. In order to update the Green funtion onewalk through the spae-time and try to �ip eah spin. If Rs′→s is greater than a randomnumber between zero and one, then the �eld on�guration hanges as follows:
s′n =







−sn if n = f̃

sn if n 6= f̃
(2.83)Here, n′ denotes the spae-time oordinate where the hange of the �eld on�gurationtakes plae. After the single-spin �ip, the quantity ∆σ exhibits only one non-zero elementwhih is given by:

∆σ
f̃,f̃

= e−2σαs
f̃ − 1. (2.84)This expression an be introdued in the Dyson Eq. (2.76) whih now reads:

gσ
f,f ′ = g′σf,f ′ +

∑

f ′′

g′σf,f ′′∆σ
f ′′,f ′′(1 − gσ)f ′′,f ′ . (2.85)If a single spin-�ip in the Hubbard-Stratonovih �eld is aepted, then we an use Eq. (2.76)to derive the new Green funtion from the old one by alulating:

g′σ = gσ[1 + ∆σ(1 − gσ)]−1. (2.86)We use the Sherman-Morrison formula in order to alulate [1+∆σ(1− gσ)]−1 whih givesus the �nal expression:
g′σf,f ′ = gσ

f,f ′ +
gσ
f,f̃

∆σ
f̃,f̃

(gσ − 1)f̃ ,f ′

1 + (1 − gσ)f̃ ,f̃∆σ
f̃,f̃

(2.87)The stabilisation of the Hirsh-Fye algorithm was mentioned in one of the previous se-tions. The reader should note at this point, that due to the knowledge of the HubbardStratonovih �eld on�guration s, the Green funtion gσ an be realulated from srathat any time. The realulation has the appealing advantage, that one an ompare therealulated Green funtion with those whih are determined by suessively applyingEq. (2.87).30



2.8 SU(2) Symmetry BreakingIn an atual alulation, one starts with a warmup phase, whih onsists of several hundredwalks through the spae-time lattie (sweeps), until the system omes into equilibrium andmeasurements an be started. The number of sweeps has to be large enough in order totake in aount the autoorrelation time. The omputational e�ort in the above desribedalgorithm is basially given by the upgrading of the Green funtion. One upgrade of theGreen funtion after a single site spin �ip is an operation whih sales with (NcNl)
2. Inorder to ahieve a omplete walk through the spae time lattie, the numerial ost risesto (NcNl)

3. This fat explains, why the Hirsh-Fye algorithm is very expensive whenit is applied to lattie problems, i.e., the Hubbard model. Nevertheless, the Hirsh-Fyealgorithm is a suessful tool for appliation to many impurity problems.2.8 SU(2) Symmetry BreakingMagneti order an be inorporated within the DCA alulation by allowing the host todevelop long range AF order. The tehnial implementation is illustrated in Fig. 2.5. Theunit ell in real spae is doubled allowing for AF order. This leads to a redued (magneti)Brillouin zone whih is depited in Fig. 2.6 (a).
~a1

~a2

t
t
′

A.F. unit cell

dc

Figure 2.5 SU(2) symmetry broken DCA alulation. AFunit ell with new basis vetors in real spae. The unitell onsists of a - and d-orbital. t and (t′) indiate thenearest and next-nearest neighbour hopping.
What follows, is a shemati derivation of the Hamiltonian with respet to the doubled unitell, where we inorporate only the hopping term with amplitude t. Later on, we add tothe orresponding Green funtion a next-nearest neighbour hopping term with amplitude
t′ (see Fig.2.5) and of ourse an interation term, whih is enoded in the self-energy Σ.Referring to Fig. 2.5, we onsider one unit ell, whih is haraterised by the vetor R,then we an formulate the Hamiltonian with the hopping amplitude t as follows [26℄:

H0 = −t
∑

R

{

(c†RdR + h.. ) + (c†RdR−a1 + h.. )

+(d†RcR+a2 + h.. ) + (d†RcR+a1+a2 + h.. )

}

, (2.88)with the vetors a1 = ax − ay and a2 = ax + ay whereas ax and ay are the priniplevetors in real spae. A Fourier transformation provides the representation of Eq. (2.88)31



2 Dynamial Cluster Approximation(a)
(0, 0)

(π, 0)

(π, π)(0, π)
(b)

(0, 0)

(π, 0)

(π, π)(0, π)

Figure 2.6 Skethes of the magneti Brillouin zone (BZ) for Nc = 1 (a) and Nc = 4 (b).The unit ell onsists of two-orbitals (- and d-orbital), whih results in a redution ofthe Brillouin zone. The olour ode indiates regions in the BZ, where the self-energyis onstant with respet to the momentum dependene.in the basis of operators c(†)K and d(†)
K with momentum vetor K:

H0 = −t
∑

K

(

c†K, d
†
K

)




0 Z

Z̄ 0








cK

dK



 (2.89)with Z = Z1Z2 = (1 + e−iKa1)(1 + e−iKa2). In the next step, the Hamiltonian is diago-nalised by the following unitary transformation:
U =

1√
2




1 1

e−iρ −e−iρ



 with e−iρ = e−iK(a1+a2)/2, (2.90)whih leads to the intermediate result:
H0 = −t

∑

K

(
1√
2
(c†K + e−iρd†K),

1√
2
(c†K − e−iρd†K

)



|Z| 0

0 −|Z̄|









1√
2
(cK + eiρdK)

1√
2
(cK − eiρdK



 (2.91)
= −t

∑

K

Z(K)γ†KγK − |Z(K)|η†KηK, (2.92)where we have introdued the operators γ†K = c†K + e−iρd†K and η†K = c†K − e−iρd†K.Finally, we an identify these operators with the reation and annihilation operators of theoriginal lattie:
γ

(†)
K = c

(†)
k (2.93)

η
(†)
K = c

(†)
k+Q, (2.94)32



2.8 SU(2) Symmetry Breakingwith Q = (π
a ,

π
a ) and a is the lattie onstant. This has the onsequene, that the Hamil-tonian an be rewritten in the basis of the redued (magneti) Brillouin zone:

H0 = −t
∑

k ∈ mBZ ǫ(k)c†kck + ǫ(k + Q)c†k+Qck+Q. (2.95)In the spirit of the DCA approximation, the simplest realisation of the SU(2) symmetrybreaking ode an be performed by hoosing Nc = 1. In this ase, the oarse-grainedGreen funtion is the loal Green funtion and the averaging is arried out over the entiremagneti Brillouin zone (see Fig. 2.6 (a)). In order to inlude the k-dependeny of the self-energy on a basi level, we split the magneti Brillouin zone into four luster pathes. Oneah luster path, the self-energy is onstant with respet to the momentum dependene.This partition orresponds to a Nc = 8 DCA alulation for the paramagneti ase.In the next step, we go beyond the non-interating ase and inorporate the self-energy.The starting point of our onsideration is the Dyson equation for the interating lusterGreen funtion:
Gσ

c (K, iωm) =
1

G0
−1
c (K, iωm) − Σσ

c (K, iωm)
with

G0c(K, iωm) = (iωm + µ)




1 0

0 1





+




2t′(cos(Kx) + cos(Ky)) Z

Z̄ 2t′(cos(Kx) + cos(Ky))



 and
Σσ

c (K, iωm) =




Σσ

11(K, iωm) Σσ
12(K, iωm)

Σσ
21(K, iωm) Σσ

22(K, iωm)



 , (2.96)where Z is de�ned by Eq. (2.89). We onsider additionally to the Ansatz of H0, a diagonalhopping term with amplitude t′. At this point it should be mentioned, that the momentumdependene of Gσ
c (K, iωm) is formulated with respet to the Fourier transformed vetors

a1 and a2 and therefore, the hopping dispersion for t′ ours in the diagonal elements of
G0

−1
c (K, iωm). The self-onsistent yle requires an initial guess of the self-energy. We set

Σσ
c = ∆σ




1 0

0 −1



 with the spin degrees of freedom σ = ±1 and a �nite value for ∆.The appliation of the unitary transformation in Eq. (2.90) leads to the Green funtionswith the momentum vetors k and k + Q. Equivalent to the proedure in Setion 2.4,where the derivation of the lattie Green funtion from the luster quantities is desribed,we an derive the interating lattie Green funtion by replaing G0c(K, iωm) by theorresponding lattie Green funtion.The Monte Carlo ratio and the upgrade equation of the Green funtion is in priniple givenby the previously presented results for the paramagneti alulation but with a distintion33



2 Dynamial Cluster Approximationof both spin hannels σ (see Eq. (2.87)).On the basis of equal-time orrelation funtions, the alulation of the (double) oupationof site i or the magnetisation are determinable within the Hirsh-Fye algorithm. They animplemented in their anonial form. An improvement of the auray by redution of thestatistial error an be ahieved by inorporating the time-translational invariane of theGreen funtion G(τ = τi − τj) (see Setion 2.7.2).2.9 U(1) Symmetry BreakingWhat follows is a brief disussion of how superondutivity an be taken into aount withina DCA alulation. In the �rst step we assume that our U(1) symmetry breaking DCAode ontains the stati BCS mean-�eld solution. Hereby, a partile-hole transformationtranslates the anomalous Green funtion into spin-�ip Green funtions and the repulsiveCoulomb interation U hanges its sign. The tehnial implementation requires a refor-mulation of the Monte Carlo ratio (Eq. (2.82)) as well as the upgrade formula (Eq. (2.87))due to the ourrene of the spin-�ip Green funtions.Starting point of our onsideration is a general Hamiltonian with the following form [27℄:
H =

∑

σ

∫

d3rψ†
σ(r)

(

−∇2

2m
− µ

)

ψσ(r)

+
∑

σ,σ′

∫

d3r′
∫

d3rψ†
σ(r)ψ†

σ′(r
′)v(r − r′)ψσ′(r′)ψσ(r), (2.97)where the �eld operators ψ(†)

σ destroy (reate) an eletron with spin σ at site r. Bardeen,Cooper and Shrie�er proposed in their BCS theory a simpli�ed interation term, whihinorporates only an attrative short-range interation. This ontat interation is givenby:
v(r − r′) = −g

2
δ(r − r′), (2.98)with a positive oupling onstant g. The quarti term in Eq. (2.97) an be simpli�ed by aommon mean-�eld deomposition2, whih neglets �utuation of the form ψ†

↑ψ
†
↓−〈ψ†

↑ψ
†
↓〉.With the abbreviation ∆ = g

Ω

∑

k〈c−k↓ck↑〉, where Ω is the volume, the Hamiltonian inEq. (2.97) may be written in momentum spae as:
H0 =

∑

k

ǫ(k)c†k↑ck↑ + ǫ(−k)c†−k↓c−k↓ −
∑

k

∆(k)c†k↑c
†
−k↓ + h... (2.99)2AB = (A − 〈A〉)(B − 〈B〉) + A〈A〉 + B〈B〉 − 〈A〉〈B〉

MF
= A〈A〉 + B〈B〉34



2.9 U(1) Symmetry BreakingThe Hamiltonian H0 suggests that we have to introdue additional Green funtions, whihdestroy the U(1) symmetry. An elegant notation is given by the Nambu formalism [28℄:
G(k, τ) =




−〈T ck↑(τ)c†k↑(0)〉 −〈T ck↑(τ)c−k↓(0)〉
−〈T c†−k↓(τ)c

†
k↑(0)〉 −〈T c−k↓(τ)c

†
−k↓(0)〉



 , (2.100)whih holds the Dyson equation:
G(k, iωm) = [iωmσ0 − (ǫk − µ)σ3 − Σc(K, iωm)]−1, (2.101)whereat σi orresponds to the Pauli-spin matries. The diagonal parts of the Nambu-matrix

Σc(K, iωm) desribe quasipartiles renormalisations and the o�-diagonal parts ontainsinformation about the K- and frequeny dependene of the pairing state. The interationof the eletrons on the f-sites are taken into aount by adding the Hamiltonian operator
HU = U

∑

i(c
†
i↑ci↑ − 1

2)(c†i↓ci↓ − 1
2 ) to the BCS Hamiltonian:

H = H0 +HU . (2.102)Consider now a anonial partile-hole transformation in one spin hannel:
γ†i↑ = c†i↑ (2.103)
γ†i↓ = ci↓, (2.104)whih leads to a reformulation of the Hamiltonian in Eq. (2.102):
H =

∑

k

ǫ(k)γ†k↑γk↑ + ǫ(−k)(1 − γ†−k↓γ−k↓)

+
∑

k

∆(k)γ†k↑γ−k↓ +
∑

k

∆(k)γ†−k↓γk↑

− U
∑

i

(γ†i↑γi↑ −
1

2
)(γ†i↓γi↓ −

1

2
). (2.105)Due to the partile-hole transformation the anomalous Green funtions are replaed byspin-�ip Green funtions and the repulsive Coulomb interation beomes an attrative po-tential. Naturally, these hanges have an in�uene on the Monte-Carlo ratio (see Eq. (2.82))as well as on the upgrade formula in Eq. (2.87).In the attrative ase, the Hubbard-Stratonovih (HS) �eld φ ouples to the harge in orderto avoid a omplex HS �eld. The interation term may be ompatly rewritten as:

HU = γNc

∑

s

eαs(ni↑+ni↓−1)with γ =
1

2
and e∆τU/2 = cosh(α). (2.106)By regarding Eq. (2.82), the probability of aeptane of a new Hubbard-Stratonovihon�guration after a single-site spin �ip is determined by:

Rs→s′ = det[g(g′)−1]e±2α. (2.107)35



2 Dynamial Cluster ApproximationThe plus(minus) sign depends on the atual spin �ip, i.e., a +(−) sign ours if one triesto �ip a down (up) spin to an up (down) spin.The evaluation of the determinant provides the �nal result for the update ratio in theHirsh-Fye algorithm:
Rs→s′ = e±2α

{
∏

σ

(1 + ∆f̃σ)(1 − g)f̃σ,f̃σ −
∏

σ

∆f̃σ(1 − g)f̃ σ,f̃−σ,

} (2.108)where we have introdued the superindex f̃ whih indiates the spae oordinate i and thetime index l where the spin �ip has taken plae. At this point, we would like to point out,that the above ratio boils down to the generi ratio in Eq. (2.82) if the spin-�ip Greenfuntions are zero.Finally, the upgrade formula in Eq. (2.87) beomes, of ourse, more ompliated due to theexistene of the spin-�ip Green funtions. Assume that a single spin �ip at superindex f̃is performed, then the upgraded Green funtion g′ at superindies f, f ′ is given as follows:
g′f,f ′ = gf,f ′ −

gf,f̃↑∆
↑
f̃ ,f̃

(1 − g)f̃↑,f ′

1 + (1 − g)f̃↑,f↑∆
↑
f̃ ,f̃

−
gf,f̃↓∆

↓
f̃ ,f̃

−
(−g)

f̃↑,f̃↓∆↓
f̃ ,f̃

1+(1−g)
f̃↑,f̃↑∆↑

f̃ ,f̃

gf,f̃↑∆
↑
f̃ ,f̃

1 + (1 − g)f̃↓,f̃↓∆
↓
f̃ ,f̃

−
(−g)

f̃↑,f̃↓∆↓
f̃,f̃

(−g)
f̃↓,f̃↑∆↑

f̃ ,f̃

1+(1−g)
f̃↑,f̃↑∆↑

f̃,f̃

·
[

(1 − g)f̃↓,f ′ −
(−g)f̃↓,f̃↑∆

↑
f̃ ,f̃

1 + (1 − g)f̃↑,f̃↑∆
↑
f̃ ,f̃

(1 − g)f̃↑,f ′

]

, (2.109)where ∆σ
f,f is de�ned by Eq. (2.84). One should keep in mind, that the de�nition of ∆σ

f,fhas to be adjusted when the simulation starts from the non-interating system where allIsing spins have the value zero. Evidently, the above upgrade equation for the Greenfuntion redues to Eq. (2.87) if the spin-�ip Green funtions are zero.ObservablesIn this setion, we brie�y present some generi observables whih ould be determinedwithin the Hirsh-Fye algorithm. As mentioned above, the Green funtions in the Hirsh-Fye algorithm are desribed in the basis where the anomalous Green funtions (c(†)-basis)are expressed by spin-�ip Green funtions (γ(†)-basis) whih of ourse has a diret in�ueneon the observables.
• The oupation number is given in the (γ(†)-basis) by:

〈n〉 = (1 − 〈γi↑γ
†
i↑〉)〈γi↓γ

†
i↓〉. (2.110)36



2.9 U(1) Symmetry Breaking
• The double oupation in the (γ(†)-basis) an be derived from the expression

〈ni↑ni↓〉 = 〈c†i↑ci↑c
†
i↓ci↓〉. As mentioned in Setion 2.7.2, the fermions interat onlywith the auxiliary �eld, and therefore, we an apply Wiks theorem [29℄ for a �xedHubbard-Stratonovih �eld on�guration. The two-partile Green funtion reduesto a produt of single-partile Green funtions (see Eq. (2.70)):

〈ni↑ni↓〉 = (1 − 〈γi↑γ
†
i↑〉)〈γi↓γ

†
i↓〉 + 〈γi↓γ

†
i↑〉〈γi↑γ

†
i↓〉. (2.111)

• The s-wave order parameter is a result of the orrelation funtions of the anomalousGreen funtion, whih an be readily written in the (γ(†)-basis) as:
∆s

SC = −〈γi+#x↓γ
†
i↑〉 − 〈γi↓γ

†
i+#x↑〉 − 〈γi+#y↓γ

†
i↑〉 − 〈γi↓γ

†
i+#y↑〉, (2.112)with the index #x,y whih represents the adjaent lattie sites in x- or y-diretionfrom lattie site i.

• The superonduting d-wave order di�ers from the s-wave order parameter only inthe underlying symmetry. It may be written as:
∆d

SC = −〈γi+#x↓γ
†
i↑〉 − 〈γi↓γ

†
i+#x↑〉 + 〈γi+#y↓γ

†
i↑〉 + 〈γi↓γ

†
i+#y↑〉. (2.113)
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AnalytialContinuation -Maximum EntropyMethod 3
3.1 Analytial ContinuationIn the following hapter, we are going to desribe the idea of analytial ontinuationof Matsubara funtions to the real frequeny axis. The quantum Monte Carlo teh-nique provides orrelation funtions as funtions of inverse temperature or imaginary time:
G(τ) = −〈T Ô(τ)Ô†(0)〉. In order to ompare the information of these orrelations fun-tion with experimental data, one has to extrat the real frequeny dependenies of suhquantities.Analytial ontinuation is based on basi onepts of the theory of analytial funtions.Let us review overome these onepts by onsidering the one- and two-partile Greenfuntions whih exhibit the following periodiity:

G(τ) = ∓G(τ + β), (3.1)where the upper (lower) ase holds for the fermioni (bosoni) ase. The Green funtionis uniquely de�ned in the interval τ ∈ [0, β). The Fourier oe�ients are the Matsubarafuntions G(iωm) whih depend on imaginary frequeny:
G(τ) =

1

β

∑

ωn

e−iωmτG(iωm) (3.2)
G(iωm) =

∫ β

0
dτeiωmτG(τ). (3.3)The sum is arried out over Matsubara frequenies ωm = (2m + 1)π/β for fermions and

ωm = 2mπ/β for bosons, where m ∈ Z. With the expliit form of the spetral funtion
A(ω) in the Lehmann representation, Eq. (3.3) may be rewritten as:

G(iωm) =

∫ +∞

−∞

A(ω)

iωm − ω
dω (3.4)39



3 Analytial Continuation - Maximum Entropy MethodIn the following, we an de�ne the Green funtion G(z):
G(z) ≡

∫ +∞

−∞
dω′ A(ω′)

z − ω′ , (3.5)with omplex energies z. This Green funtion is an analyti funtion in the upper andthe lower omplex plane and exhibits poles on the real frequeny axis. Per onstrution,
G(iωm) is onordant withG(z) at all Matsubara frequenies iωm whih allows us to apply aresult from omplex analysis: if two funtions oinide on an in�nite set of points then theyare fully idential funtions within the entire omplex plane [30℄. Hene, the Matsubarafuntion G(iωm) or, equivalently, G(τ) an be uniquely extend to the whole omplex plane.In order to obtain the spetral funtion A(ω), we de�ne the retarded (advaned) Greenfuntion GR(A)(ω) = G(ω ± iη) and the analytial ontinuation is performed by:

GR(A)(ω) = G(iωm → ω ± iη) and ∓ 1

π
Im[GR(A)(ω)] = A(ω) (3.6)The single-partile spetral funtion A(ω) is positive de�nite

A(ω) ≥ 0, (3.7)and a sum rules ensures the normalisation
∫ +∞

−∞
dω A(ω) <∞, (3.8)whih gives A(ω) the appealing property that it an be interpreted as a probability distri-bution. If we apply a Fourier transformation to Eq. (3.5), then we an write:

G(τ) = ∓
∫

dω
1

β

∑

ωn

e−iωmτ

iωm − ω
A(ω) (3.9)

=

∫

dω
e−ωτ

e−βω ± 1
A(ω) (3.10)

=

∫

dωK(τ, ω)A(ω) (3.11)In the last step, we adopt the kernel K(τ, ω):
K(τ, ω) =







e−ωτ/
(
e−ωβ + 1

)
, fermions

e−ωτ/
(
e−ωβ − 1

)
, bosons. (3.12)In priniple, Eq. (3.11) displays the relation between the imaginary time Green funtion

G(τ) and the spetral funtion A(ω). Hereby, the analytial ontinuation an be under-stood as an inversion of the funtional expression K[A(ω)] = G(τ). An analytial approahin order to perform the inverse Laplae transformation is not possible and from the nu-merial point of view, a straightforward inversion leads to unreliable results. The reason isgiven by numerial instabilities, whih ome from the extremely large ondition number of40



3.2 Maximum Entropy Methodthe kernel. This is shown by a singular value deomposition of the kernel K = UDV intoan orthogonal matrix U, a diagonal matrix D and an upper triangular matrix V. The diag-onal matrix D exhibits very large and small eigenvalues, whih would be mixed up duringa simple matrix inversion of the kernel funtion. Additionally, the input data is inompleteand noisy, whih makes the inversion of the Laplae transformation even worst. Finally,orrelation e�ets of the input data between di�erent bins and time slies ould ause anover-�tting of the data. This mean, that one extrats strutures out of the QMC spetrum,whih are not atually present. All these arguments demonstrate why the inversion of theLaplae transformation is an ill-de�ned numerial task.3.2 Maximum Entropy MethodThe state of the art strategy in order to takle the inverse Laplae transformation is theMaximum Entropy method [24, 31, 32℄. This method was �rst introdued in order toimprove noisy astronomial data [33℄. In the meantime, it has beome a standard toolfor analysis of statistial data [34℄. This method was also suessfully applied to systemsof many-body problems, i.e., to the one- and two dimensional Hubbard model [35, 36,37, 38, 39, 40℄, to the single impurity Anderson model [41℄, and to spin systems like thespin-1/2-Heisenberg model [42, 43℄.In the following setion, we emphasise the basi idea of the lassial Maximum Entropymethod, before we summarise a stohasti implementation of the analytial ontinuationwhih was formulated by K. Beah. [25℄Generally, the Maximum Entropy method is based on the idea of maximising, a so-alledaposteriori probability as a funtion of the given information ontent. This means in ourase, that the Maximum Entropy method estimates the most probable spetral funtion Awith respet to the given input data G and an additional prior knowledge of the spetralfuntion whih is enoded in a default model m, i.e., this orresponds to the maximisationof the onditional probability of P (A|G,m). The onditional probability P (A|G,m) anbe omputed in the framework of Bayesian statisti [44℄, whih states that P (A|G,m) isnothing else but,
P (A|G,m) =

P (G|A,m) P (A|m)

P (G|m)
. (3.13)The right hand side of Eq. (3.13) onsists of the Likelihood funtion P (G|A,m), the en-tropi prior P (A|m) and the evidene P (G|m) whih an be written in terms of the Like-lihood funtion and the entropi prior:

P (G|m) =

∫

DA P (G|Am) P (A|m), (3.14)41



3 Analytial Continuation - Maximum Entropy Methodand represents only a normalisation fator. The maximisation of the aposteriori probability
P (A|G,m) is, thus, equal to the simultaneous maximisation of the Likelihood funtion andthe entropi prior.Let us disuss the Likelihood funtion and the entropi prior in detail:P(G|A,m): Generally, the Likelihood funtion represents a proedure whih allows to �tparameters to a given data set. In our ase, this proedure poses the question: what isthe most probable data set Ḡ whih di�ers as little as possible from a data set G whih isextrated from a given spetral funtion A by appliation of the Eq. (3.11)? The Likelihoodfuntion [45℄ gives us the orret answer:

P (Ḡ|A,m,α) =
1

(2π)Nl/2
√

detC
e−

1
2
χ2(A) with

χ2(A) =
∑

τ,τ ′

(

Ḡτ −
∑

i

Kτ,iAi

)

C−1
τ,τ ′

(

Ḡτ ′ −
∑

i

Kτ ′,iAi

)

. (3.15)The matrix C is the ovariane matrix and Nl represents the number of time slies (seeSe. 2.7.1) and α serves as a statistial parameter. Obviously, χ2 in Eq. (3.15) is inde-pendent from the default model m and α and the onditional probability is normalised toone. In the spirit of the maximum Likelihood approah, the best solution of the inverseLaplae transformation is given by the Ḡ whih minimises Eq. (3.15). Hereby, the aprioriknowledge is totally negleted and the input data will be over-�tted.P(A|m): The apriori knowledge about the input data set is enoded in a default model m.The default model should not underlay any onstraints exept some elementary onditionswhih ensure that the default model (or the spetral funtion A) an be understood as aprobability distribution. In the ase of non-existene of prior information the prior entropyis given by P (A|m) = const.On the basis of general onsiderations of the Maximum Entropy axioms [33℄, it is possi-ble to derive a lose expression for the information ontent of the spetral funtion withrespet to a default model. Hereby, the Maximum Entropy axioms an be summarisedby the key words: subset independene, oordinate invariane, system independene andsaling properties. The apriori probability for a positive additive distribution funtion isdetermined by:
P (A|m) =

1

Zs
eαS , (3.16)with Zs serves as a normalisation fator: ∫ DA P (A|m) = 1 and α is a free statistialparameter. The entropy an be written as [33℄:

S =

∫ ∞

−∞
dω

[

A(ω) −m(ω) −A(ω) ln

(
A(ω)

m(ω)

)]

. (3.17)The entropy desribes the di�erene between the spetral funtion A and the given defaultmodel m. If the default model is equal to A(ω) the entropy yields zero and beomes42



3.2 Maximum Entropy Methodnegative otherwise. The ombination of the Likelihood funtion and the apriori entropyleads to an expression for the aposteriori probability [46, 47℄:
P (A|G) ∼ eαS−χ2/2, (3.18)whih exhibits a ompetition between P (G|A,m) and P (A|m). The �rst term in theexponent take aount of the information entropy, i.e., the Maximum Entropy methodwould just prioritise the spetrum whih is the most inde�nite against prior knowledgeand the seond term prioritise the lassial minimisation of χ2, whih orresponds to alassial �t of a data set to a given model.3.2.1 Stohasti Analytial ContinuationAnother way to perform the ontinuation of orrelation funtions from imaginary timeto real frequenies was shown by K. Beah [25℄. In partiular, Beah ould identify themaximum entropy method as a speial limit of stohasti analytial ontinuation. Hereby,the ontinuation problem is mapped onto a system of interating lassial �elds n(x). Thethermally averaged value of this �eld is given by:
〈n(x)〉 =

1

Z

∫

Dn n(x) e−αH[n], (3.19)where Z severs as a normalisation fator and the integral has to be taken over all �eldon�gurations n(x). The underlying Hamiltonian is hosen in suh a way, that the groundstate solution orresponds to the unregularised inversion of the input data with the regu-larisation parameter α, whih an be interpreted as a �tive inverse temperature. In thehigh temperature limit (α→ 0), the integral in Eq. (3.19) averages all �eld on�gurationsand the average is independent from the input data G(τ). These two extrema obviouslyorrespond to the over-�tting (Q ∼ χ2[A]) and over-smoothing limits (Q ∼ −S[A]) whihwere desribed in Se. 3.2. The evaluation of the integral expression in Eq.(3.19) requiresa disretisation of Dn and a Monte Carlo tehnique is utilised in order to takle the hugephase spae. During the Monte Carlo proedure eah �eld on�guration C = {rγ , aγ}is parametrised by a set of so-alled walkers whih exhibit a given residue rγ > 0 andoordinate 0 ≤ aγ ≤ 1:
nC(x) =

∑

γ

rγ δ(x− aγ) (3.20)The Monte Carlo proedure starts with an arbitrary start on�guration and new on�g-urations are suggested by varying the residues and oordinates of the walkers. A newon�guration auses an energy shift whih is determined by H and the aeptane of anew on�guration is ontrolled with the usual Metropolis algorithm [48℄. The updatingproess inorporates the detailed balane riterion and a normalisation onstraint on thelassial �eld (
∑

γ rγ = const) whih seures the normalisation of the spetral funtion.43



3 Analytial Continuation - Maximum Entropy MethodAs mentioned before, the parameter α an be onneted to an arti�ial temperature. Sim-ulations for di�erent temperatures are arried out simultaneously with a parallel tem-pering tehnique [49℄. Adjaent temperature layers an interhange their on�gurationswhih leads to an e�etive updating sheme. If the systems enter into equilibrium onean starts the measurements of the internal energy with respet to the temperature
({U(αp) = 〈H[n]〉αp : p = 0, . . . , N}), where N haraterises the number of temperaturelayers. Furthermore, the spei� heat an be obtained from the derivative of the internalenergy with respet to the temperature and a phase transition would ause a jump in thespei� heat at a partiular energy E⋆. Beah argues, that the orret spetral funtion
A(ω) is given by a sum over all �eld on�gurations 〈n(x)〉E whih have the energy E < E⋆.3.2.2 Analytial Continuation of two-partile orrelation funtionsThe following setion presents some omments on the usage of the Maximum Entropymethod in the ase of two-partile orrelation funtions. As we have seen in Eq. (3.11),the Kernel exhibits in the bosoni ase a divergene for ω = 0. A simple symmetrisationof the Kernel funtion an irumvent this problem:

χ(q, ω) = −χ(q,−ω)

=
1

π

∫ ∞

−∞
dω

e−τω

1 − e−βω
χ(q, ω)

=
1

π

∫ ∞

−∞
dω

e−τω

1 − e−βω
χ(q, ω) tanh(

βω

2
) coth(

βω

2
)

=
1

π

∫ ∞

−∞
dω

e−τω

1 + e−βω
χ(q, ω) coth(

βω

2
)

︸ ︷︷ ︸

χ̃(q,ω)

(3.21)
=

1

π

[
∫ ∞

0
dω

e−τω

1 + e−βω
χ̃(q, ω) +

∫ ∞

0
dω

e(τ−β)ω

1 + e−βω
χ̃(q, ω)

]

=

∫ ∞

0
dω

e−τω + e(τ−β)ω

π(1 + e−βω)
︸ ︷︷ ︸

K(ω,τ)

χ̃(q, ω). (3.22)The symmetrisation yields a rede�nition of the suseptibility χ(q, ω) (Eq. (3.21)) whihhas to be taken into aount in the de�nition of the dynamial struture fator S(q, ω):
S(q, ω) =

χ(q, ω)

1 − e−βω
=

χ̃(q, ω)

1 + e−βω
(3.23)Finally, some general important notes about the Maximum Entropy method should bementioned. As desribed in Se. 3.2, the resulting spetral funtion should be interpretedas a probability distribution. That means in detail, that di�erent sharp strutures in thespetrum indiate regions with high or low probability for �nding a real peak. Although44



3.2 Maximum Entropy Methodthe total weight of the spetral funtion is onserved, statements about the absolute valueand the shape of a peak have to be taken arefully. Espeially, the nature of broadenedand smeared out features in the spetra are hard to �gure out. They an be a onsequeneof a bad resolution due to the error of the QMC data or they indeed originate from auniform distribution. In order to avoid suh misinterpretations it is important to keep thesimulations running until no visible hanges in the spetra our.
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The single-bandHubbard model 4
The single-band Hubbard model is de�ned in the language of seond quantisation by [50,51, 52℄

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (4.1)with the hopping amplitude tij and the Hubbard interation U . In this thesis the energysale of the Hubbard Hamiltonian is set by the nearest-neighbour hopping amplitude t andthroughout we onsider U = 8t. A visualisation of the di�erent energy ontributions isdepited in Fig. 4.1. The Hubbard model is nowadays one of the standard models used inorder to desribe the physis of strongly-orrelated eletron systems. In the beginning, itwas assigned to desribed the magnetism of strongly orrelated, itinerant eletrons in nar-row band materials. In the speial ase of a half-�lled system with one hole and an in�nitevalue of the Coulomb interation, the Hubbard model shows for d ≤ 2 a ompletely spin-polarised, i.e., ferromagneti ground state [53℄. But is was shown that the ferromagnetisolution on a primitive ubi or ubi body-entered system does not remain ompletelystable. In the last several years it has beome more apparent, that antiferromagneti or-relation plays an even more important role. Apart from a pure theoretial desription, theHubbard model is onsidered to desribe the physis of 3d-transition metals, suh as high-temperature superondutors (HTSC) [54℄. These eramis onsist in general of opperoxide ompositions. Inelasti neutron sattering experiments showed that the eletrialproperties of these materials are dominated by the physis within the two dimensionalopper oxide plans. The eletrial resistivity perpendiular to the opper oxide planes is
102 − 105 order of magnitudes higher than within the planes. [55℄ This high anisotropyan be justi�ed by the rystal struture of these materials. The HTSCs onsists of layersof opper oxide whih are separated by inter-layer atoms, i.e., lanthanum or yttrium. Dueto the rystal struture, these materials an be e�etively regarded as two dimensionalsystems. Furthermore, a detailed lose-up of the eletronial struture yields an even morebizarre property of the ondutivity of the HTSCs. In the ase of La2CuO4, one �nds the47



4 The single-band Hubbard model
J ∼ t2

U

U

t′

t

t

Figure 4.1 Shemati presentation of the one-band Hubbard model with nearest neigh-bour hopping t, next-nearest neighbour hopping t′, on-site Coulomb interation U fordouble oupied lattie sites and exhange interation J ∼ t2

U .opper atoms in the on�guration 3d9. Due to the rystal splitting of the 3d-states, oneobtains a d-on�guration with one hole in the dx2−y2-state. This state hybridises with the
px- and py-state of the oxygen atoms and forms a band lose to the Fermi-energy. Thison�guration would normally lead to a metalli state beause one an add/remove addi-tional eletrons/holes to the half-�lled band. But at low temperatures, the phase-diagramof suh HTSCs exhibits an antiferromagneti insulating phase. Later on, we an justify thisbehaviour by the strong Coulomb interation whih enfores a metal-insulator transition.At higher doping (see Fig. 4.2), the HTSCs are haraterised by a metalli behaviour witha few of exoti properties, e.g., the existene of a pseudo-gap regime. The superondutingphase is loated at roughly optimal doping and aptures a dome-like shape. By furtherdoping one reahes a normal metalli regime whih an be desribed by the Fermi-liquid

phase
superconducting

phase
antiferromagnetic

superconducting
phase

*T

T

chemical potentialn pFigure 4.2 Sketh of the generi temperature versus doping phase-diagram of the high-temperature superondutors. The abbreviations `n' and `p' indiate the eletron and holedoping regimes, respetively. The pseudo-gap regime is loated under the dashed-dottedline and is onneted to a typial temperature T ⋆.48
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−y2Figure 4.3 Sketh of the interation und hopping terms of the three-band Hubbard model.The opper dx2−y2 (oxygen 2px and 2py) orbitals are indiated by the red (blue) ellipses.The hopping amplitudes between the orbitals are given by tpp and tpd and Upp, Upd,

Up and Ud haraterise the Coulomb interation between eletrons of the p-, pd-, andd-orbitals. The energy ost of adding or removing an eletron on the d- or p-orbitalsare de�ned by ǫd and ǫp. Holes on the oxygen and opper orbitals ould form a singlet(Zhang-Rie singlet) whih an move through the lattie in a similar way as a singlehole in an e�etive one-band Hubbard model with strong interation U [56℄.theory.A more realisti desription of the eletroni struture of the HTSCs an be ahieved by thethree-band Hubbard model or Emery model [57℄ whih inorporates the eletroni degreesof freedom of the d- and p-orbitals. The dx2−y2 opper orbitals are separated from the
2px and 2py oxygen orbitals by the rystal �eld. Hereby, the oxygen orbitals gather theadditional harge arriers (holes) when the system is doped away from half-�lling. Theholes on the oxygen orbitals ouple parallel (singlet) or anti-parallel (triplet) to the holeson the opper orbitals. In the strong oupling limit, one an show in the framework ofseond order perturbation theory, that the holes of the d- and p-orbitals build a Zhang-Rie singlet [56℄. This on�guration is energetially more favoured than a triplet state. Inorder to redue the omplexity of the system, one integrates out the eletronial degrees offreedom of the oxygen orbitals and onsiders an e�etive model whih only inorporates thelow energy physis of the singlet state and neglets the high energy exitations due to thetriplet on�gurations. Therefore, the single-band Hubbard model is expeted to desribethe physis of the high-temperature superondutors. Nevertheless, the properties of the49



4 The single-band Hubbard modelHTSCs impose several requirements on the model. First, the model has to desribe theinteration of strongly orrelated eletrons. Furthermore, the model should exhibit aninsulating antiferromagneti phase at half-�lling whih persists to higher dopings. Lastbut not least, it has to show a transition from the Mott-insulator to a paramagneti metaland superonduting state when additional harge arriers are introdued. The transitionfrom the metalli state to the superonduting state is still not learly understood and isstill under investigation [11, 58℄.The single-band Hubbard model, whih is introdued in Eq. (4.1), reveals several basisymmetries. The Hubbard Hamiltonian is invariant under a global SU(2) and U(1) sym-metry whih enfores spin and partile onservation. In partiular, the z-omponent ofthe spin is onserved and without lost of generality the magnetisation m an be set toa positive value. On the bipartite lattie, the single-band Hubbard Hamiltonian, withonly a nearest-neighbour hopping amplitude, exhibits partile-hole symmetry whih anbe broken by adding a next-nearest neighbour hopping term to the Hamiltonian.The �rst term of single-band Hubbard model desribes the hopping of the eletrons whereasthe seond term of Eq. (4.1) represents the interation of the eletrons whih oupy thesame lattie site. The model an be solved only in very limiting ases. In one dimension,the Bethe Ansatz provides an analytial solution whih was already proposed in the year1968 by Lie und Wu [59℄. In the limit of in�nite dimension the Hubbard model an beexatly mapped onto the impurity Anderson model whih an be solved with the quantumMonte Carlo tehnique (see setion 2.1). This means that even in two dimension, withthe exeptions of the senarios desribed above, an exat solution has not been found.The reason is given by the ombination of the two parts in the Hubbard Hamiltonian.To elaborate, we onsider for the moment only the free motion of the eletrons and set
U = 0 and neglet the Coulomb interation. In this limit, we an Fourier transform theannihilation (reation) operators

ciσ =
1√
N

∑

k

eikRickσ, (4.2)whih reformulates the Hubbard Hamiltonian
H(U = 0) =

∑

k,σ

ǫ(k)nkσ with ǫ(k) = −t
∑

〈i0〉
eikRi , (4.3)where nkσ is the oupation operator and 〈i0〉 represents all neighbours of lattie site 0.For the two dimensional lattie we obtain the free dispersion ǫ(k) = −2t(cos(kx)+cos(ky))and �nd a metalli solution for the Hubbard model. In the seond ase we onsider the pureCoulomb interation and set t = 0. The interation part is already diagonal in real spaeand we derive two dispersionless Hubbard bands in the spetrum whih are separated by theinteration strength U . At half-�lling, the lower Hubbard band is ompletely �lled whereasthe upper Hubbard band is ompletely empty. This situation desribes an insulator.50



4.1 Temperature and doping dependene of the Hubbard modelThe interplay of the kineti and the Coulomb term is responsible for the interesting many-body orrelation physis whih ours in the two-dimensional Hubbard model.4.1 Temperature and doping dependene of the HubbardmodelThe Hubbard model exhibits a variety of orrelation e�ets whose outome enormouslydepends on doping and temperature. In the strong oupling regime whih means, thatthe Coulomb interation of the eletrons is omparable or larger than their kineti energy,and half-�lling and su�iently low temperature, the Hubbard model undergoes a metal-insulator transition. This transition is fored by the strong interation of the eletronsand onstitutionally di�ers, therefore, from the metal-insulator transition known fromband-insulators. By introduing additional harge arriers into the system, the insulat-ing behaviour vanishes due to the possibility of the eletrons to move through the systemwithout generating additional double oupied lattie sites. This �rst example lari�es thedrasti onsequenes of the strong interation of the eletrons. The lassi�ation of thedi�erent phases of the Hubbard model an be aomplished by the investigation of the one-and two-partile Green funtions or their orresponding spetral funtions. The followingparagraph provides a short overview of the di�erent regimes of the Hubbard model andgives a basis for the lassi�ation of the results of this thesis.The single-band Hubbard model is assumed to desribe the important properties ofthe high-temperature superondutors. Equivalent to the phase-diagram of the HTSCs(Fig. 4.2), the Hubbard model desribes an e�etive antiferromagneti (AF) ordered statelose by half-�lling whih is driven by the interplay of the Coulomb interation and thehybridisation. In partiular, virtual hopping proesses an redue the free energy of thesystem but this assumes adjaent spins with opposite alignment due to the Pauli prini-ple. The reader should note, that in the ase of two dimensions and at �nite temperatureontinuous symmetry breaking is prohibited by the Mermin-Wagner theorem [60℄. Never-theless, the magneti orrelation length an approah the system size at su�iently lowtemperatures and the system appears to be in an e�etive AF ordered state. Hene, sim-ulations lose by half-�lling seem to be performed in an AF ordered state although theontinuous SO(3) symmetry is not really broken. This advantage brings the simulationvery lose to an adequate desription of the high-Tc materials. Another possibility whihan ause an antiferromagneti instability at half-�lling is given by perfet nesting. Per-fet nesting onnets regions of the Brillouin zone whih are parallel to eah other by aommensurable wave vetor q = (π/a, π/a). On the other hand, an AF ordered systeman be desribed by two sub-latties A and B whih double the unit ell in real spaeand lead to a redued magneti Brillouin zone whih realises the perfet nesting riteria.51



4 The single-band Hubbard modelPossible sattering proesses with a momentum transfer of q = (π/a, π/a) obey the Braggonditions and stabilise the state with redued translational symmetry. The onsequeneis an insulating state whih is justi�ed by the nesting property and is distinguishable fromthe above desribed Mott-Hubbard transition.Properties of the half-�lled Hubbard modelIn addition to the presene of two inoherent high energy bands, whih result from thestrong Coulomb interation, one an observe low-energy exitations of the order of theexhange interation J in the single-partile spetrum. The low energy exitations onlyour at su�iently low temperatures when the relevant spin degrees of freedom must betaken into aount and the quantum nature of the spins beome important. The narrowquasi-partile band an be niely �tted by a tight-binding harmonis with dispersion ofthe form
E(k) = 2cJ(cos(kx) + cos(ky))

2, (4.4)with the onstant fator c = 1/8. A wide variety of several methods have reprodued theabove dispersion relation for di�erent models. The t-J model, whih an be derived fromthe Hubbard model in the strong oupling limit, was investigated by the exat diagonalisa-tion tehnique [61, 62, 63℄ and by the Green funtion quantum Monte Carlo method [64℄.The Hubbard model also approved the above dispersion relation in exat diagonalisationstudies [65℄ as well as in quantum Monte Carlo simulation [66℄. The numerial resultsare also supported by analytial investigation suh as the self-onsistent Born approxima-tion [67, 68, 69℄ or other variational alulations based on the `string' piture or seriesexpansion. All alulations on�rm the piture of a single hole whih is propagating in aHeisenberg antiferromagnet or half-�lled Hubbard model. A visualisation of this senariois possible within a string piture introdued by Bulaevskii, Nagaev, and Khomskii [70℄and it is illustrated in Fig.4.4. The �gure is taken from referene [71℄. In the stringpiture, a hole is moving in an AF ordered bakground and reates a path of misalignedspins (grey shaded arrows in Fig. 4.4). The inrease of the magneti energy initiates anattrative potential whih traps the hole around its starting point. A oherent motionof the hole beomes impossible and instead, the hole performs an inoherent osillatorymotion around the point where it was originally reated. A oherent motion of the holebeomes only possible if the spin defets are healed up by spin-�ip proesses whih restorethe original AF ordered state. Thus, eah spin-�ip redues the length of the string bytwo lattie spaings and shift the origin of the osillatory motion to a seond-nearest orthird-nearest neighbour. Fig. 4.5 illustrates the di�erent paths whih are possible in orderto reah a seond-nearest (1,1) neighbour exist and a third-nearest-neighbour (2,0). Ap-parently, there exist two di�erent paths to the (1,1) neighbour but only one path to the52



4.1 Temperature and doping dependene of the Hubbard model
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Figure 4.4 Sketh of the motion of a single hole within an AF ordered bakground. Thehopping of the hole leads to a trae of misaligned spins whih results in an inrease ofthe magneti energy (top right) and, therefore, the motion of the hole is on�ned by anattrative potential. The only way to esape from this attrative potential is given byspin-�ips whih heal up the generated spin-defets. The �gure is taken from [71℄.
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4 The single-band Hubbard model
Figure 4.5 Illustration of the di�erent paths in order to reah a seond-nearest neighbour(two possibilities) or to reah a third-nearest neighbour (one possibility).(2,0) neighbour. After these onsiderations, one immediately �nds the dispersion of theabove desribed hopping proesses [71℄:

cJ [2(cos(2kx) + cos(2ky)) + 2 · 4 cos(kx) cos(ky)]

= 4cJ [(cos(2kx) + cos(2ky))
2 − 1]. (4.5)With the exeption of the prefator c (whih is numerially derived as 1/8) the dispersion isentirely determined by the topology of the string. Obviously, the dispersion is degeneratefor all momentum vetors whih are lying on the surfae of the magneti Brillouin zone.However, numerial studies on the t−J model show that the degeneray is atually lifted.The observed energy di�erene is only small for J/t ≈ 0.4 but beomes quite remarkable forlarger ratios of J/t. A study of the parameter dependene shows that the dispersion alongthe line (π/2, π/2) to (π, 0) sales with the hopping integral t. This observation suggestsan additional hopping proess whih involves the hopping amplitude t. In a simple piture,one an imagine the motion of a hole in the AF ordered bakground as a superposition of arapidly osillating partile (i.e. on a time sale ∝ t−1) and a slowly moving box (i.e. timesale ∝ J−1), whih represents the string in Fig. 4.4. Therefore, the box represents themisaligned spins whih form an attrative potential for the hole and might be viewed as aregion of suppressed Néel order, suh that the piture orresponds to the strong ouplinglimit of Shrie�er's spin-bag theory [72, 73℄. Additionally, the superimposed motion of thehole and the box is sometimes referred to as a spin-polaron, where in an equivalent wayan eletron is moving in the presene of very strong eletron-phonon oupling through asystem whih exhibits strong lattie distortions. Nevertheless, the string, spin-bag, andspin-polaron pitures desribe the same situation: an osillating hole is trapped in a regionof redued Néel order, with the onsequene that the entire region has to move throughthe AF ordered bakground thereby enhaning the e�etive mass of the quasipartile.The orrelation e�ets on energy sales J leave �ngerprints in the one- and two-partileexitation spetra. At half-�lling we �nd the following situation: additional to the inoher-ent Hubbard bands whih result from the high energy Coulomb repulsion of the eletrons,one an reognise the low energy exitations of the magnitude J lose to the hemialpotential. The low energy quasipartile only ours at su�iently low temperatures if thespin degrees of freedom beome important. Obviously, one an explain the origin of the54



4.1 Temperature and doping dependene of the Hubbard modellow-energy band by the above mentioned superposition of the motion of a hole in a reduedNéel ordered bakground. Further evidene for the spin-nature of the quasi-partile bandis given by the dynamial spin-struture fator. The ourrene of the quasipartile bandin the one-partile spetrum is aompanied by the formation of a oherent spin-exitationaround the wave-vetor (π, π). The authors of Ref. [74℄ have �tted the olletive spin modein the spin-response funtion by a spin-wave dispersion:
ESW (k) = 2J

√

1 − 1

4
(cos(kx) + cos(ky))2. (4.6)Even earlier studies have shown that two-partile orrelation funtions suh as the spin-response funtion an be desribed in the framework of the SDW approximation for largevalues of the interation U [73℄. The spin response funtion shows a spin-wave dispersion

ESW (k) with an energy sale of 2J . The weight of the spin-response at k = (π, π) inreaseswith dereasing temperature and beomes more and more sharp as it is predited in theAF spin-wave theory.Let us disuss the paramagneti regime of the Hubbard model. This regime is mainly har-aterised by the interation of itinerant eletrons due to the strong Coulomb interation.Spin-orrelation e�ets, suh as those desribed in the previous setion, an be totally ne-gleted beause all relevant spin-degrees of freedom are thermally exited. Therefore, nosign of the energy sale J exists. The Green funtions in the paramagneti regime an begiven in the Hubbard-I approximation:
GHub−I(k, ω) =

1 − n/2

ω − ǫ(k)(1 − n/2) + iη
+

n/2

ω − U − ǫ(k)n/2 + iη
, (4.7)whih leads to the upper and lower band in the one-partile spetral funtion:

EHub−I
± (k) =

1

2

(

ǫ(k) + U ±
√

ǫ(k)2 + U2
)

, (4.8)whereby n determines the �lling of the system and ǫ(k) = −2t(cos(kx) + cos(ky)) denotesthe tight-binding dispersion. The expression for the Green funtion in Eq. (4.7) beomesexat in the limits of U = 0 and ǫ(k) = 0.The transition from the paramagneti high-temperature regime to the AF ordered phaseat half-�lling is aompanied by an inrease of the spin-orrelation length. The redutionof the Brillouin zone initiates a fundamental hange of the spetral funtion around theantiferromagneti wave-vetor k = (π, π) by bakfolding of the spetral funtion A(q, ω).In this intermediate regime, a drasti hange in the dynamial orrelation funtions o-urs. The transition from the SDW-like regime at half-�lling to the Hubbard-I regime isaompanied by losing the low energy quasipartile exitations. A similar hange is visiblein the two-partile spin-response spetrum. The oherent spin-wave washes out and givesway to a broad inoherent struture. This means, in other words, that the system losesall harateristis linked to a hole whih is dressed by spin exitations and is moving in anAF ordered bakground. 55



4 The single-band Hubbard modelProperties of the doped Hubbard modelAs mentioned at the beginning of the setion, the density of states of the strongly interat-ing Hubbard model splits into two distinguishable bands, i.e., a lower (valene) and upper(ondutive) band at half-�lling. The two-bands are separated by the Coulomb interation
U beause the adding of further eletrons inevitably leads to a double oupation ausingan energy penalty U . If one inserts hole into the system, then the probability of doubleoupation dereases whih leads to a redution of spetral weight of the upper Hubbardband. These states are transferred lose to the Fermi energy and ontribute to the lowerHubbard band. Hene, the Hubbard model does not show a rigid band shift under dopingbut rather a shift of spetral weight from the upper to the lower Hubbard band [23℄. Thedoping dependene of the single-partile funtion is depited in Fig. 4.6 at an inverse tem-perature of βt = 3 and (a) at δ = 5 % doping and (b) at δ = 20 % doping. Regions withblak or white olours orrespond to spetral funtions with high or low spetral weightsrespetively. These alulations are arried out at a relatively high temperature in orderto redue the notorious minus-sign problem. Nevertheless, this temperature should below enough to observe possible magneti orrelation e�ets, sine the magneti exhangeinteration is determined by the energy sale J = 4t2/U whih has the value 0.5t for aninteration strength of U = 8t. In the under-doped regime, the single-partile spetralfuntion learly exhibits two inoherent Hubbard-bands and a oherent quasi-partile ex-itation with origins in the motion of a hole dressed by a loud of spin-exitations. Byinreasing the doping, the hemial potential drops deeper into the lower Hubbard bandin the region around (π, π). In this so-alled `optimal-doped' regime, the quasipartilebands with energy sale J are still present. The quasi-partile band starts to vanish aboveoptimal doping (〈n〉 = 0.86 ) and it beomes more visible when one reahes the over-dopedregime with 〈n〉 = 0.80. The �ngerprints of the magneti orrelations are also visible in the(a)
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4.1 Temperature and doping dependene of the Hubbard model(a)
.

Spin-Wave
χsz(k;ω )hni = 0:95

ω
=t

4

2

χcc(k;ω )

ω

=t

14

12

10

8

6

4

2

.(b)
.

χsz(k;ω )hni = 0:80

k

ω

=t

Γ(0;0)M(π ;π )X(π ;0)Γ(0;0)
4

2

0

χcc(k;ω )
k

ω

=t
Γ(0;0)M(π ;π )X(π ;0)Γ(0;0)

14

12

10

8

6

4

2

0
.Figure 4.7 Dynamial spin-, χsz(k, ω), and harge-orrelation funtions, χcc(k, ω), ofthe 8 × 8 Hubbard model at βt = 3 und U = 8t for di�erent �llings: (a) 〈n〉 = 0.95(under-doped), 〈n〉 = 0.80 (over-doped). The results are extrated from [74℄.dynamial spin-orrelation funtions χsz(k, ω) whih are depited in Fig. 4.7 (a) and (b) onthe left hand site. In the underdoped and roughly optimal doped regime χsz(k, ω) exhibitsa well de�ned spin-wave around the antiferromagneti wave vetor k = (π, π) with theabove mentioned spin-wave dispersion ESW (k, ω) = 2J

√

1 − 1
4(cos(kx) + cos(ky))2. Theenergy sale J an be read o� at momentum vetor k = (π, 0) and has the value 2J . Theharateristis of the spin-response funtion drastially hange if one dopes the systemfurther. Above optimal doping, the spin-wave loses its sharp struture and the energysale hanges from J = 4t2/U to Ekin ∝ 8.0t. Apparently, these hanges ome along withthe loss of the quasipartile features in the single-partile spetral funtion at the samedoping. The harge response exhibits an overall broad struture with an energy sale of

Echarge ∝ 12t whih slightly redues with inreasing doping. These high energy struturesmainly result from the strong Coulomb interation and, in partiular, no energy exitationsof the sale ∝ J are visible. A more detailed investigation of the harge-response funtionis presented in [74℄.At optimal doping and su�iently low temperatures the Hubbard model exhibits a su-perondutive instability. It is assumed, that this instability is already pronounedby preformed ooper pairs above the atual ritial temperature Tc in the pseudo-gapregime [75, 76℄. The superondutors of the uprates enormously di�er from the onven-tional superondutors whih an be desribed by the Bardeen-Cooper-Shrie�er (BCS)theory. In the BSC theory, the forming of ooper pairs an be traed bak to a Fermi sur-57



4 The single-band Hubbard modelfae instability. The exhange partiles are phonons, the quanta of ioni vibrations of therystal, whih lead to an attrative potential between the eletrons. The interation of theooper pairs exhibits an s-wave symmetry due to the loal nature of the pairing interation.Sattering proesses between the eletrons leads to a redution of the potential energy and,hene, the eletrons may oupy states above the Fermi sea whih leads to an enhane-ment of the kineti energy. This observation stands in ontrast to the pairing mehanismin the high-temperature superondutors. The parent ompounds of the high-temperaturesuperondutors are antiferromagneti ordered insulators whih di�er from a onventionalFermi-liquid desription. On the other hand, the uprates exhibit enormous high ritialtemperatures whih suggests a totally di�erent pairing mehanism in omparison to theonventional superondutors. This statement is also supported by the d-wave symmetryof the pairing interation in the high-Tc materials.In the forthoming setion, we investigate two-partile orrelation funtions in the frame-work of the Dynamial Cluster Approximation (DCA) with respet to the temperatureand doping dependene. We try to �gure out, if orrelation e�ets of the energy sale J ,whih are presented in the previous setion, are visible in the DCA two-partile orrelationfuntions. Hereby, we an onsider muh lower temperatures beause the DCA does notenormously su�er from the minus sign problem. Additionally, we are going to hek if�ngerprints of the two-partile orrelations are also visible in the single-partile spetralfuntion. The main part of the next setion is extrated from [77℄.In setion 6, we inorporate the superondutive instability in the framework of the Dy-namial Cluster approximation (DCA) and study the single-partile spetral funtion indetail. Our goals are the estimation of the superonduting transition temperature andthe investigation of the evolution of the pseudo- and superonduting-gap.
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Two-partileorrelation funtionswithin the DCA 5
Two-partile orrelation funtions, suh as the dynamial spin- and harge orrelationfuntions, determine a variety of ruial properties of many-body systems. Their poles asa funtion of frequeny and momentum desribe the elementary exitations, i.e., eletron-hole exitations and olletive modes, suh as spin- and harge-density waves. Furthermore,an e�etive way to identify ontinuous phase transitions is to searh for divergenes ofsuseptibilities, i.e., two-partile orrelation funtions. Yet, ompared to studies of single-partile Green funtions and their spetral properties, where a good overall aord betweentheoretial models (Hubbard type-models) and experiment (ARPES) has been established(see [78, 66, 23, 79℄), the situation is usually not so satisfying for two-partile Greenfuntions. This is espeially so for the ase of orrelated eletron systems suh as high-Tcsuperondutors (HTSC). The primary reason for this is that alulations of these Greenfuntions are, from a numerial point of view, muh more involved.To expose the problem let us onsider the spin-suseptibility whih is given by:

χ(q) =
1

βL

∑

k,p

χk,p(q) ,with (5.1)
χk,p(q) = 〈c†k,↑ck+q,↓c

†
p,↓cp−q,↑〉Here, L orresponds to the lattie size, β is the inverse temperature and q ≡ (q,Ωm), qbeing the momentum and Ωm a (bosoni) Matsubara frequeny. To simplify the notation,we have adopted a path integral oherent state notation with Grassman variables:

ck,σ ≡ ck,ωm,σ =
1√
βL

∑

r

∫ β

0
dτei(ωmτ−kr)cr,σ(τ) (5.2)The two-partile irreduible vertex, Γk′,k′′(q), is de�ned through the Bethe-Salpeter equa-tion,

χk,p(q) = χ0
k,p(q) +

∑

k′,k′′

χ0
k,k′(q)Γk′,k′′(q)χk′′,p(q), (5.3)59



5 Two-partile orrelation funtions within the DCA
χ

χΓ

=

+Figure 5.1 Bethe-Salpeter equation for the two-partile propagator.whih is diagrammatially depited in Fig. (5.1).Within the Dynamial Cluster Approximation (DCA) [7, 8℄, and see setion 2.1, one anonsistently de�ne the two-partile Green funtions, by extrating the irreduible vertexfuntion from the luster.To de�ne uniquely the DCA approximation, in partiular in view of two-partile quanti-ties, it is useful to start with the Luttinger-Ward funtional Φ, whih is omputed usingthe DCA Laue funtion. Hene, ΦDCA is a funtional of a oarse-grained Green funtion,
Ḡ(K, iωm) ≡ Ḡ(K). Irreduible quantities suh as the self-energy, and the two-partileirreduible vertex are alulated on the luster and orrespond, respetively, to the �rst-and seond-order funtional derivatives of ΦDCA with respet to Ḡ. Using the luster irre-duible self-energy, Σ(K), and two-partile vertex, ΓK′,K′′(Q), one an then ompute thelattie single-partile and lattie two-partile orrelation funtions using the Dyson andBethe-Salpeter equations. This onstrution of two-partile quantities has the appealingproperty that they are thermodynamially onsistent [6, 80℄. Hene, the spin susepti-bility, as alulated by using the partile-hole orrelation funtions, orresponds preiselyto the derivative of the magnetisation with respet to an applied uniform stati magneti�eld. The tehnial aspets of the above program are readily arried out for single-partileproperties. However a full alulation of the irreduible two-partile vertex -even withinthe DCA- is prohibitively expensive [81℄ and, thus, has never been arried out. In ontrastto the alulation of single-partile quantities, the oarse-grained two-partile orrelationfuntion χ̄K,K′(Q) is after ompletion of the self-onsistene proedure not equal to theluster two-partile orrelation funtion χcK,K′(Q) beause the self-onsisteny is onlymade on the single-partile level. The following onsiderations will show, that the susep-tibility an be alulated within the DCA approximation, where the irreduible two-partilevertex Γ is substituted by the orresponding luster vertex Γc, whih leads to an inversionof the luster two-partile Bethe-Salpeter equation.For the moment, we onsider the bare and interating luster suseptibilities as well as theirreduible luster vertex funtion: χ0

cK,K′(Q), χcK,K′(Q) and ΓcK,K′(Q). These quantitiesare evaluated at luster momentum vetors and they are orrelated by the luster Bethe-60



Salpeter equation,
χcK,P (Q) = χ0

cK,P (Q) +
∑

K ′,K′′

χ0
cK,K′(Q)ΓcK′,K′′(Q)χcK′′,P (Q), (5.4)where the inversion may be written in a short notation:

Γc(Q) = [χ0
c(Q)]−1 − [χc(Q)]−1. (5.5)Eah quantity in Eq. (5.5) represent a matrix with row and olumn indies K and K ′.The non-interating two-partile Green funtion χ0

c(Q) is onstruted from a pair of fullydressed single-partile Green funtions and it is diagonal in the spin, momentum andfrequeny labels:
χ0

c(Q) = χ0
cK,K′(Q)

= Ncδσσ′δmm′δKK′Gσ
c (K, iωm)Gσ′

c (K + Q, iωm + iν). (5.6)The onvolution of the luster Green funtion Gc will be alulated after the atual quan-tum Monte Carlo run, whereas the deomposition of the interating luster two-partileGreen funtion has to be performed for eah Hubbard-Stratonovih on�guration withinthe Monte Carlo run separately.In omparison with the single-partile quantities, the oarse-grained two-partile Greenfuntion χ̄ an be de�ned in a similar way. The lattie vetors k, k′ and q are deomposedinto inter- and intra-luster momentum vetors: k = K + k̃, k′ = K′ + k̃′ and q = Q + q̃(ompare with setion 2.1). χ̄ may be written as follows:
χ̄(Q + q̃, iν) =

N2
c

N2

∑

k̃,k̃′

χ
K+k̃,iωm;K′+k̃′,iωm′

(Q + q̃, iν). (5.7)The de�nition of the non-interating oarse-grained two-partile Green funtion is similarto the orresponding luster quantity. χ̄0(Q + q̃, iν) is diagonal in the spin, momentumand frequeny labels:
χ̄0(Q + q̃, iν) = Ncδσσ′δKK′δmm′

[
Nc

N

∑

k̃

Gσ(K + k̃, iωm)

×Gσ′
(K + k̃ + Q + q̃, iωm + iν)

]

. (5.8)The DCA approximation is applied to Eq.(5.3) by replaing the irreduible vertex funtion
Γ by the irreduible luster vertex funtion Γc. The reader should take into aount, that
χ and χ0 on the RHS of Eq. (5.3) share no ommon momentum labels and, hene, one anfreely sum over the momenta k̃, whih gives the following identity:

χ̄K,P (q) ∼= χ̄0
K,P (q) +

∑

K′,K′′

χ̄0
K,K′(q)ΓcK′,K′′(Q)χ̄K′′,P (q), (5.9)61



5 Two-partile orrelation funtions within the DCAwhih an be written in a short notation:
Γc(Q) = [χ̄0(q)]−1 − [χ̄(q)]−1. (5.10)At this point, we an ombine Eq. (5.5) and Eq. (5.10) and get the result:
χ̄−1(q) = χ−1

c (Q) − χ0
c
−1

(Q) + χ̄0(q). (5.11)The harge (h) and spin (sp) suseptibilities χch,sp are dedued from χ̄ [81℄:
χch,sp(q, T ) =

(kBT )2

N2
c

∑

KK′σσ′

λσσ′ χ̄σ,σ′,K,K′(q), (5.12)where λσσ′ = 1 for the harge hannel and λσσ′ = σσ′ for the spin hannel. The omplex-ity of this approah lies in the inversion of the Bethe-Salpeter equation (5.5), sine theirreduible vertex onsists of three momentum and three frequeny indies.In the present work, we would like to overome this situation by suggesting a sheme wherethe K ′ and K ′′ dependenies of the irreduible vertex are negleted. At low temperatures,this amounts to the assumption that in an energy and momentum window around the Fermisurfae, the irreduible vertex depends weakly on K ′ and K ′′. Following this assumption,an e�etive two-partile vertex in terms of an average over the K ′ and K ′′ dependeniesof ΓcK′,K′′(Q) is introdued:
1

βL
Ueff (Q) = 〈ΓcK′,K′′(Q)〉. (5.13)As shown in an earlier Quantum Monte Carlo (QMC) study by Bulut et al. [82℄ for a singleQMC luster, this is reasonable for the 2D Hubbard model (on this QMC luster of size

8×8 with U = 8t). The authors of [82℄ investigate the question of whether the orrelationsbetween eletrons an be desribed by an e�etive interation whih only takes singlelongitudinal and transverse spin �utuations into aount or whether the e�et of higher-order multi-spin �utuations may not be negleted. Bulut et al. alulated with Ueff (Q)the e�etive irreduible eletron-hole vertex and ompared the results with alulationswhere the irreduible eletron-hole vertex was estimated via the Monte Carlo tehnique ona 8 × 8 single QMC luster and via a third-order perturbation theory approah. Both themomentum and frequeny dependene were in rather good agreement with the QMC andperturbation theory results for the e�etive eletron-hole interation.By replaing the irreduible vertex by 1
βLUeff (Q) in the luster version of the Bethe-Salpeter Eq. (5.3) and arrying out the summations to obtain the luster suseptibilitygives:

Ueff (Q) =
1

χ̄0(Q)
− 1

χ(Q)
, (5.14)62



where χ orresponds to the fully interating spin/harge suseptibility on the DCA lus-ter in the partile-hole hannel and χ̄0 an be derived from the free luster spin/hargeorrelation funtion. Hereby, we onsider the free expetation value to whih purpose wean apply Wik's theorem. The free luster spin suseptibility χ̄0(Q, iωm) 1 reads with
S(Q) = 1√

Nc

∑

j e
iQj(nj,↑ − nj,↓) in the paramagneti ase 2:

χ̄0(Q, iΩm) =

∫

dτ eiΩmτ 〈Sz(Q, τ) Sz(−Q, 0)〉0 (5.15)
=

1

Nc

∑

j,j′

∫

dτ eiΩmτ ei(j−j′)Q

∑

σ,σ′

σσ′〈c†j,σ(τ) cj′,σ′(0)〉〈cj,σ(τ) c†j′,σ′(0)〉

= − 1

Nc

∑

σ
K ,K ′

∫

dτ eiΩmτ δ(Q − K + K′) Gσ
cK(τ, 0) Gσ

cK′(0, τ)

= − 1

Nc

∑

K,σ

∫

dτ eiΩmτ Gσ
cK(τ, 0) Gσ

cK−Q(0, τ)

= − 1

Nc

1

β2

∑

K ,σ
iωm,iω

m′

∫

dτ ei(Ωm−ωm+ωm′ )τ Gσ
c (K, iωm) Gσ

c (K − Q, iωm′)

= − 1

Nc

1

β

∑

K ,σ
iωm,iω

m′

δ(iωm′ − (iωm − iΩm)) Gσ
c (K, iωm) Gσ

c (K − Q, iωm′)

= − 1

Nc

1

β

∑

K ,σ
iωm

Gσ
c (K, iωm) Gσ

c (K − Q, iωm − iΩm)

= − 1

Nc

1

β

∑

K ,σ
iωm

Gσ
c (K + Q, iωm + iΩm) Gσ

c (K, iωm) (5.16)The alulation of the bubble is aompanied by the following transformations:
−
〈

cj,σ(τ) c†j′,σ(0)
〉

= Gσ(j, τ, j ′, 0) =
1

Nc

∑

k

e−i(j−j′)k Gσ
k(τ, 0) (5.17)with

Gk(τ, 0) =
1

β

∑

iωm

e−iωmτ G(k, iωm) (5.18)and
Gk(0, τ) =

1

β

∑

iωm

eiωmτ G(k, iωm). (5.19)1By taking N(Q) = 1√
Nc

P

j
eiQj (nj,↑+nj,↓), a similar alulation yields the same result for the free lus-ter harge suseptibility. The stati term P

σ,σ′〈c
†
j,σ(τ ) cj,σ(τ )〉〈c†

j′,σ′(0) cj′,σ′(0)〉 has to be subtratedfrom the RHS of Eq. (5.15) due to the Kubo formula.2In the paramagneti ase is P

σ,σ′ σσ′〈c†j,σ(τ ) cj,σ(τ )〉〈c†
j′,σ′(0) cj′,σ′(0)〉 = 0. 63



5 Two-partile orrelation funtions within the DCA
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-180000Figure 5.2 E�etive two-partile vertex Ueff (Q, iΩm) as a funtion of the bosoni Mat-subara frequeny iΩm for a typial parameter set: βt = 6 at δ ≈ 14 % on the Nc = 8luster at di�erent luster momentum vetorsIn Eq. (5.16) we reognise that χ̄0 is onstruted from a pair of fully dressed single-partileGreen funtions. In order to inorporate the orret high frequeny behaviour of the Greenfuntions in Eq. (5.16), one has to perform the summation over Matsubara frequenies fromminus in�nity to plus in�nity. This summation is performed in two steps. In a frequenywindow of 500 Matsubara frequenies around iωm = 0, the Green funtions in Eq. (5.16)were taken from the Monte Carlo alulation. The remaining summation is performedin an analytial way. Therefore, we onsider the high energy behaviour of the Greenfuntions: limiωm→∞G(iωm) ∝ 1
iωm

and transform the summation in Eq. (5.16) into anintegral expression. The analytial treatment of the onvolution is arried out from a givenfermioni Matsubara frequeny z = iωm. Hene, we obtain with the bosoni Matsubarafrequeny a = iΩm the following relations:
∫ +∞

z
dz′

1

z′ + a

1

z′
=

1

a
log

z + a

z
(5.20)

∫ −z

−∞
dz′

1

z′ + a

1

z′
=

1

a
log

z

z − a
, (5.21)and for the ase a = 0:

∫ +∞

z
dz′

1

z′2
=

∫ −z

−∞
dz′

1

z′2
=

1

z
. (5.22)We have expliitly heked, that the high frequeny behaviour of the bubble is givenby ∝ 1

(iωm)2
. The interating suseptibility χ obeys the same high frequeny behaviouras the non-interating suseptibility but with a di�erent proportionality fator. Fromthis it follows that the e�etive interation Ueff is also given by ∝ 1

(iωm)2
in the largefrequeny limit. The situation is depited in Fig. 5.2, where we use a typial parameterset. The e�etive partile-hole vertex is shown for di�erent luster momentum vetors and,64



obviously, the ontributions of Ueff beome more important with the inreasing value ofMatsubara frequeny. The reader should note, that a simple Fourier transformation of
Ueff from Matsubara frequenies to the imaginary time axis would ause inorret results.We have seen, that the bubble an be onstruted from the oarse-grained Green fun-tion, where we impliitly inorporate the equivalene of the spin up and spin down Greenfuntions in the paramagneti ase. In the ase of the interating suseptibility, the de-omposition of the two-partile orrelation funtion has to be performed for eah Hubbard-Stratonovih on�guration within the Monte Carlo proedure. Hereby, the equivalene ofthe spin up and spin down Green funtions is not longer guaranteed, whih yields additionalterms in the alulation of the suseptibility:

χ(Q, iΩm) =

∫

dτ eiΩmτ







〈Sz(Q, τ) Sz(−Q, 0)〉, spin
〈N(Q, τ) N(−Q, 0)〉, harge, (5.23)with

〈Sz(Q, τ) Sz(−Q, 0)〉s =
∑

j,j′

∑

σ,σ′

ei(j−j′)Q σσ′
{

〈c†j,σ(τ) cj,σ(τ)〉s〈c†j′,σ′(0) cj′,σ′(0)〉s

+〈c†j,σ(τ) cj′,σ′(0)〉s〈cj,σ(τ) c†j′,σ′(0)〉s
}

,and
〈N z(Q, τ) N z(−Q, 0)〉s =

∑

j,j′

∑

σ,σ′

ei(j−j′)Q

{

〈c†j,σ(τ) cj,σ(τ)〉s〈c†j′,σ′(0) cj′,σ′(0)〉s

+〈c†j,σ(τ) cj′,σ′(0)〉s〈cj,σ(τ) c†j′,σ′(0)〉s
}

,where 〈· · · 〉s denotes the expetation value for a given Hubbard Stratonovih on�guration
s. Finally, the ombination of the e�etive two-partile vertex Ueff and the bubble χ0(q) ofthe dressed lattie Green funtions G(k) results in our estimate of the lattie suseptibility:

χ(q) =
χ0(q)

1 − Ueff (Q) · χ0(q)
. (5.24)The bubble of the lattie χ0(q) is given by Eq. (5.16), whereas the luster Green funtionshave to be replaed by the lattie Green funtions whih are determined by the Dysonequation: G(k) = 1

G−1
0 (k)−Σ(K)

. The self-energy is self-onsistently alulated for all lustermomentum vetors K in the DCA loop (see setion. 2.4). Hereby, we exploit the weakmomentum dependene of the self-energy. The real- and imaginary parts are depitedin Fig. 5.3 at the �rst Matsubara frequeny and for di�erent �llings. The momentumdependene rapidly beomes weaker if the system is doped away from half-�lling. 65



5 Two-partile orrelation funtions within the DCA(a)
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χ(q) =

χ0(q)

1 − α · Ueff (q) · χ0(q)
. (5.25)Here, we have introdued an additional "ontrolling" parameter α in the suseptibilitydenominator, whih is alulated in a self-onsistent manner. It assures, for example inthe ase of the longitudinal spin response, that χ(q) obeys the following sum rule (a similaridea, to use sum rules for onstruting a ontrolled loal approximation for the irreduibletwo-partile vertex has been implemented by Vilk and Tremblay [83℄):

1

βL

∑

q

χ(q) = 〈(Sz
i )2〉. (5.26)Of ourse, α should be as lose as possible to α = 1, whih is indeed what we will �nd afterimplementing the sum rule (see below). At this point, it should be mentioned, that oursum rule in Eq. (5.26) or our approah to two-partile orrelation funtions is muh moresophistiated than the approximation for the two-partile vertex, whih was formulated byVilk and Tremblay [84℄. In their two-partile self-onsistent approximation (TPSC), thespin χspin and harge suseptibilities χcharge are approximated by an RPA-like form withtwo di�erent interations Uspin and Ucharge. The estimation of the interations is performedin a self-onsistent manner and, therefore, the TPSC notably di�ers from the standardRPA-approah. The neessity to distinguish between two di�erent e�etive interationsfor spin and harge is ditated by the Pauli exlusion priniple. It implies that both χspinand χcharge are related to only one loal pair orrelation funtion 〈n↑n↓〉 [85℄. The hugedi�erene between our approah to two-partile orrelation funtions (see Eq. 5.25) andthe TPSC is, that we regard the total frequeny dependene of the e�etive interationsand, hene, take retardation e�ets into aount.Our implementation of the DCA for the Hubbard model is standard. The reader shouldonsult setion 2.1 or Ref. [8℄ for a summary. At this point, we will only disuss our66
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U = 8t.interpolation sheme as well as the implementation of a SU(2)-spin symmetry broken al-gorithm. Sine the DCA evaluates the irreduible quantities, Σ(K) as well as Ueff (Q) forthe luster wave vetors, an interpolation sheme has to be used. To ahieve this, we adoptthe following strategy: for a �xed Matsubara frequeny iΩm and for eah luster vetor Q,the e�etive interation Ueff is rewritten as a series expansion:
Ueff (Q, iΩm) =

∑

i

∑

∆i

ei∆iQAi(iΩm), (5.27)with i = 0, ..., Nc − 1, where Nc is the number of the luster momentum vetors Q. Thequantity ∆i represents vetors, where eah vetor from the orresponding ∆i belongs tothe same "shell" around the origin (0, 0) in real spae, i.e.
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 ... . (5.28)With a given Ueff , Eq. (5.27) an be inverted to uniquely determine Ai. With these oe�-ients, one an ompute the e�etive partile-hole interation for every lattie momentumvetor q. This interpolation method works well when Ueff is loalised in real spae andthe sum in Eq. (5.27) an be ut-o� at a given shell.The e�etive partile-hole interation Ueff in the spin hannel is shown in Fig. 5.4 for avariety of dopings at inverse temperature βt = 6, U/t = 8 and on an Nc = 8 luster, whihorresponds to the so-alled "8A" Betts luster (see [10, 11℄). The Ueff -funtion displays67



5 Two-partile orrelation funtions within the DCA
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Figure 5.5 Multi-sattering proesses of two eletrons. Kanamori sreening leads to arenormalisation of the interation strength brought by T-matrix e�ets.a smooth momentum dependene. These observations further support the interpolationsheme in (Eq. (5.27)). Thus, indeed, Ueff is rather loalised in real spae with sizableredution from its bare U = 8t value for larger doping and a further slight redution at
q = (π, π). The redution is partly due to the self-energy e�ets in the single-partile prop-agator, whih redue χ̄0 from its non-interating (U = 0) value χ(0). Partly, it also re�etsboth the Kanamori (see [52℄) repeated partile-partile sattering and vertex orretions.The repeating sattering proesses of two eletrons with spin k1 and k2 are depited inFig. 5.5. Hereby, Kanamori ompletely neglets the generation of eletron-hole exita-tions out of the Fermi sea and assumes, that the sattering proesses in Fig. 5.5 are thedominant ones whereby all other eletron-eletron interations are negligible. By omittingvertex orretions, the T-matrix takes the form of a geometri series. The approximationworks well in the dilute limit, i.e., in the ase of an almost �lled or empty band. In sys-tems with a large value of the Coulomb interation, the sreened interation is redued to
Ũ ⋍ U

1+U/W ⋍ W .The stati irreduible partile-hole interation Ueff in the spin hannel is depited inFig. 5.6 for di�erent luster momentum vetors and luster sizes at δ ≈ 14 % doping. Onlymarginal di�erenes are visible between the di�erent luster types. The reader should note,that the luster momentum vetor k = (π/2, π, 2) is not present on the Nc = 4 luster.Summarising, the new approah to two-partile properties relies on two approximationswhih render the alulation of the orresponding Green funtion possible. Firstly, thee�etive partile-hole interation Ueff (Q) depends only on the enter-of-mass momentumand frequeny, i.e. Q and iΩm. Seondly, χ(Q), is diretly extrated from the luster and
χ̄0(Q) is obtained from the bubble of the oarse-grained Green funtions.To generate DCA results for the Néel temperature, we have used an SU(2) symmetrybroken ode. The setup is illustrated in Fig. 2.5. We introdue a doubling of the unit ell� to aommodate AF ordering � whih in turn de�nes the magneti Brillouin zone. Theunit ell is haraterised by a - and d-orbital. The DCA k-spae pathing is arried outin the magneti Brillouin zone and the Dyson equation for the single-partile propagator68



5.1 AF phase transitionis given as a matrix equation:
Gσ(k) =

1

G0
−1(k) − Σσ(K)

, (5.29)with
Gσ(k) =




Gσ

cc(k) Gσ
cd(k)

Gσ
dc(k) Gσ

dd(k)



 . (5.30)The Green funtions with spin σ are de�ned by
Gσ

αα′(k) = −
∫ β

0
dτeiωmτ 〈Tτ{cα,σ(k, τ)c†α′,σ(k, 0)}〉 (5.31)and α,α′ indiate the - and d-orbitals. With the SU(2) symmetry broken algorithm, onean ompute diretly the staggered magnetisation, i.e., m = 1

L

∑

j e
iQj(nj,↑ − nj,↓), andthereby determine the transition temperature. Sine the DCA is a onserving approxima-tion, the so determined transition temperature orresponds preisely to the temperaturesale at whih the orresponding suseptibility, alulated without any approximations onthe irreduible vertex ΓK′,K′′(Q), diverges.5.1 AF phase transitionA �rst test of the validity of our new approah is a omparison with the SU(2) symmetrybroken DCA alulation on an Nc = 8 luster at U = 8t. The idea is to extrat theNéel temperature TN from a divergene in the spin suseptibility as alulated in theabove desribed (paramagneti) sheme � see Eq. 5.25 � and to ompare it to the DCA
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5 Two-partile orrelation funtions within the DCA(a)
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5.1 AF phase transition
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5 Two-partile orrelation funtions within the DCAorder to bring the system loser to the �nal solution without loss of omputational time.After this start proedure, the preision of Monte Carlo alulations an be ontinuouslyinreased. However, we want to point out, that the preision of the determination of themagnetisation is su�ient for omparison with our new approah. We again stress thatthe so determined magneti phase diagram orresponds to the exat DCA result whereno approximation � apart from oarse graining � is made on the partile-hole irreduiblevertex.In Fig. 5.8, the blue (red) triangles indiate the transition line for the para- to the anti-ferromagneti solutions extrated from the divergent spin suseptibility (Eq. 5.25) withinthe paramagneti alulation. A preise estimation of the Néel temperature requires veryaurate results and boils down to �nding the zeros of the denominator of Eq. 5.25. InFig. (5.9), we onsider the e�etive irreduible partile-hole interation Ueff for the statiase and for the luster momentum Q = (π, π) relevant for the AF instability. As appar-ent, the irreduible partile-hole interation beomes weaker with inreasing doping. Onthe other hand, the suseptibility χ0(q, iΩm = 0) grows with inreasing doping. At a �rstglane both quantities Ueff and χ0 (see Fig. (5.9)) smoothly vary as a funtion of doping.However, in the viinity of the phase transition, signalised by the vanishing of the denomi-nator in Eq. 5.25, the preise interplay between Ueff and χ0 beomes deliately importantand renders an aurate estimate of the Néel temperature di�ult. Given the di�ultyin determining preisely the Néel temperature, we obtain good agreement between bothmethods at δ & 10 %. Note that in those alulations the values of α ≈ 0.86 − 0.97 arerequired to satisfy the sum rule in Eq. (5.26). At smaller dopings, and in partiular at half-band �lling, the Néel temperature, as determined by the vanishing of the denominator inEq. 5.25, underestimates the DCA result. Hene, in this limit, the K ′ and K ′′ dependeneof the irreduible vertex plays an important role in the determination of TN and annotbe negleted.Let us emphasise, that a good agreement between the Néel temperatures at δ ≃ 10 % andabove is a non-trivial ahievement lending substantial support to the above new shemefor extrating two-partile Green funtions.
5.2 Dynamial spin and harge struture fatorsTo further assess the validity of our approah, we ompare it to exat auxiliary-�eldBlankenbeler, Salapino, Sugar (BSS) QMC results (Ref. [23℄). This method has asevere sign-problem espeially in the viinity of δ ≃ 10 % and, hene, is restrited to hightemperatures. The spin, S(q, ω) and harge C(q, ω) dynamial struture fators are given,72



5.2 Dynamial spin and harge struture fators(a)
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Figure 5.10 DCA (left) versus auxiliary �eld QMC (BSS) (right) for the dynamial spinand harge struture fators of the Hubbard model at U/t = 8, δ ≈ 14 % and βt = 3.The BSS data on the 8 × 8 lattie is essentially exat and ats as a benhmark for theDCA approah. The DCA alulations were arried out on an Nc = 8 luster. Here wehave used α = 0.98 and α = 1.01 to satisfy the sum rule in the spin and harge setors,respetively.
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5 Two-partile orrelation funtions within the DCArespetively, by:
〈Sz(q, τ)Sz(−q, 0)〉 =

1

π

∫

dw e−τω S(q, ω) (5.32)
〈N(q, τ)N(−q, 0)〉 =

1

π

∫

dw e−τω C(q, ω) (5.33)Here, Sz(q) = 1√
L

∑

j e
iqj (nj,↑ − nj,↓) and N(q) = 1√

L

∑

j e
iqj (nj,↑ + nj,↓). The lefthand side of the above equations are obtained from the orresponding suseptibility asalulated from Eq. (5.24). Finally, a stohasti version of the Maximum Entropy method[25, 34℄ is used to extrat the dynamial quantities.
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Figure 5.12 Non-interating dynamial two-partile lattie struture fator of the Hubbardmodel at βt = 6, δ ≈ 14 % and U/t = 8.
The omparison for the dynamial spin, S(q, ω), and harge, C(q, ω) dynamial struturefators is shown in Fig. 5.10 at βt = 3, δ ≈ 14 % and U/t = 8. The BSS results orrespondto simulations on an 8 × 8 lattie. Fig. 5.10 (b) depits the BSS-QMC data in the spinsetor. Due to short-range spin-spin orrelations, remnants of the spin-density-wave areobservable, displaying a harateristi energy-sale of 2J , where J is the usual exhangeoupling, i.e., J = 4 t2

U . The two-partile DCA alulations show spin exitations with thedominant weight onentrated, as expeted and seen in the QMC data, around the AFwavevetor (π, π). As apparent from the sum-rule,
〈Sz(q)Sz(−q)〉 =

1

π

∫

dω S(q, ω) (5.34)(see Fig. 5.11 (a)), the DCA overestimates the weight at this wave vetor but does very wellaway from q = (π, π). The dispersion in the two-partile data has again a higher energyFig. 5.13 a,b ,d e,f g,h
α (spin) 0.99 0.92 0.93 0.97
α (harge) 0.98 1.00 1.00 1.00Table 5.1 Values of α for the spetra in Fig. 5.13.74



5.2 Dynamial spin and harge struture fatorsbranh around 2J , but it also shows features at J . Sine the total spin is a onservedquantity, one expets a zero-energy exitation at q = (0, 0). This is exatly reprodued inthe 8 × 8 QMC-BSS data, and qualitatively in the DCA results.The non-interating dynamial two-partile lattie struture fator at βt = 6, δ ≈ 14 %and U/t = 8 is depited in Fig. 5.12. The bubble shows a ontinuum of two-partileexitations and, i.e., no oherent exitation is visible. This means in other words, that apossible oherent spin exitation must be generated by the denominator of the expressionin Eq. 5.25.As a funtion of dereasing temperature, the DCA dynamial spin struture fator shows amore pronouned spin-wave spetrum. This is on�rmed in Fig. 5.13 on the left hand side.Here, we �x the temperature to βt = 6 and keep the doping at δ ≈ 14 % but vary the lustersize. As apparent, for all onsidered luster sizes (Nc = 4, 8, 10, 16) a spin wave feature isindeed observable: a peak maximum at q = (π, π) is present and the orret energy saleat q = (π, 0) of 2J is reovered. Additionally, we plot the spin dynamial struture fatoralulated on the �nite Nc = 8 luster at βt = 6 and δ ≈ 14 % in Fig. 5.14 (a) where thedisussed spin wave features are also existent. Unfortunately, a diret omparison of theseresults with auxiliary �eld quantum Monte Carlo alulations at lower temperature is notpossible due to the severe minus-sign problem in the BSS alulation.The investigation of the dynamial harge orrelation funtion for the above parametersshows that the DCA alulations, whih are depited in Fig. 5.10 ), an also reproduebasi harateristis of the BSS harge exitation spetrum 5.10 d). Both alulations showexitations at ω ≈ U whih are set by the remnants of the Mott-Hubbard gap. Similarresults are obtained at lower temperatures (βt = 6) on the right hand side of Fig. 5.13 fordi�erent luster sizes (Nc = 4, 8, 10, 16). The orresponding values of α are listed in Tab.5.1. These values on�rm the overall orretness of our approah in that the orrespondingsum rule for the harge response is aurately (exatly for α = 1) ful�lled. For omparison,the dynamial luster struture fator is presented for the Nc = 8 luster at βt = 6 and
δ ≈ 14 % in Fig. 5.14 (b). It exhibits also exitations at ω ≈ U . The bad momentumresolution is beause of the small �nite luster geometry.The doping dependene of the spin- and harge-response is examined in Fig. 5.15. Here,we restrit our alulations to the Nc = 8 luster at βt = 6 and dopings between δ = 14 %and δ = 32 %. At δ = 14 % (see Fig. 5.13) the dynamial spin struture fator displaysa spin wave dispersion with energy sale J . That is ESDW (π, 0) = 2J with J = 4 t2

U .As the system is further doped (δ = 27 %) the dispersion is no longer sharply peakedaround q = (π, π). The exitations broaden up and hange their energy sale from J = 4 t2

Uto an energy sale set by the non-interating bandwidth. This e�et beomes even morevisible with higher dopings at δ = 32 % (Fig. 5.15 ()). Furthermore, the spetrum of theharge response shows a redution of the weight of states at high energies (ω/t ≈ 8). This75



5 Two-partile orrelation funtions within the DCA(a)
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Figure 5.13 Dynamial spin and harge struture fators of the Hubbard model at βt = 6,
δ ≈ 14 % and U/t = 8. for di�erent luster sizes: (a-b): Nc = 4, (-d): Nc = 8, (e-f):
Nc = 10 and (g-h): Nc = 16.76



5.2 Dynamial spin and harge struture fators(a)
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Figure 5.14 Dynamial luster spin and harge struture fators of the Hubbard modelat βt = 6, δ ≈ 14 % and U/t = 8 on the Nc = 8 luster.behaviour orresponds to the loss of weight of the upper Hubbard band with inreasingdoping. The orresponding equal time spin and harge orrelation funtions of Fig. 5.15(-d) are depited in Fig. 5.16 (a-b). As in auxiliary-�eld QMC simulations [79℄, the equaltime spin orrelation funtion shows a set of peaks at q = (π±ǫ, π) and q = (π, π±ǫ). Here
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5 Two-partile orrelation funtions within the DCA(a)
 0.1  1

S(q,ω)

(0,0) (π,0) (π,π) (0,0)

 0

 1

 2

ω
/t

(b)
 0.001  0.01  0.1

C(q,ω)

(0,0) (π,0) (π,π) (0,0)

 0

 4

 8

 12

 16

ω
/t

()
 0.1  1

S(q,ω)

(0,0) (π,0) (π,π) (0,0)

 0

 1

 2

ω
/t

(d)
 0.001  0.01  0.1

C(q,ω)

(0,0) (π,0) (π,π) (0,0)

 0

 4

 8

 12

 16

ω
/t

Figure 5.15 Spin- and harge struture funtions for di�erent dopings: (a,b): 27 % and(,d): 32 % The alulations are arried out on an Nc = 8 luster at βt = 6. Here wehave used α = 0.96 (a), α = 1.00 (b), α = 0.96 () and α = 1.00 (d).dynamial spin struture fator in Fig. 5.13 () shows a well de�ned magnon dispersion atthis temperature and doping, δ = 14 %, allows us to interpret the features entered around
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5.2 Dynamial spin and harge struture fators(a)
 0  1  2  3  4  5  6qx  0

 1
 2

 3
 4

 5
 6

qy

 0.2

 0.5

 0.8

 1.1

〈Sz(q)Sz(-q)〉
(b)

 0  1  2  3  4  5  6qx  0
 1

 2
 3

 4
 5

 6

qy

 0.1

 0.2

 0.3

 0.4

〈N(q)N(-q)〉

()
〈Sz(q)Sz(−q)〉

1.4
1.2

1
0.8
0.6
0.4
0.2

qy

6
5

4
3

2
1

0qx 6543210

(d)
〈N(q)N(−q)〉

0.36
0.32
0.28
0.24
0.2

0.16
0.12

qy

6
5

4
3

2
1

0qx 6543210(e)
〈Sz(q)Sz(−q)〉

3.5
3

2.5
2

1.5
1

0.5
0

qy

6
5

4
3

2
1

0qx 6543210

(f)
〈N(q)N(−q)〉

0.3
0.27
0.24
0.21
0.18
0.15
0.12

qy

6
5

4
3

2
1

0qx 6543210(g)
〈Sz(q)Sz(−q)〉

25

20

15

10

5

0

qy

6
5

4
3

2
1

0qx 6543210

(h)
〈N(q)N(−q)〉

0.25

0.2

0.15

0.1

qy

6
5

4
3

2
1

0qx 6543210Figure 5.16 Stati spin (left) and harge (right) orrelation funtions at U/t = 8 and
βt = 6 on an Nc = 8 luster. The di�erent dopings are δ ≈ 32 % (a-b), δ ≈ 27 % (-d),
δ ≈ 21 % (e-f), δ ≈ 14 % (g-h).bandwidth. This evolution is learly apparent in Figs. 5.17 (b) and () and is in goodagreement with previous BSS-QMC results (see setion 4.1 and Ref. [23℄).

79



5 Two-partile orrelation funtions within the DCA
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Figure 5.17 Angle-resolved spetral funtions A(q, ω) for various hole dopings: a): 14%, b): 27 % and ): 32 %. Calulations are arried out on an Nc = 8 luster at βt = 6.
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d-wave super-ondutivity in theHubbard model 6
The physis of the high-temperature superondutors (HTSC) represents, on a mirosopilevel, a still unsolved mystery. Many experiments, i.e. angle resolved photoemission ex-periments [86℄, on doped superonduting uprates reveal urious properties. A d−waveanisotropy of the superonduting state and pseudogap denote a signi�ant di�erentiationto the onventional BCS superondutors. The pseudogap persists even in the normal stateand is believed to ause the unusual non-Fermi liquid behaviour above the superondut-ing transition temperature. In the last years, several attempts have been made to explainthe pairing mehanism of the Cooper pairs in the superonduting phase. Due to the ex-istene of antiferromagneti ordering in addition to a superonduting phase, one widelybelieves that short ranged antiferromagneti orrelations are responsible for the pairing ofthe eletrons in the uprates. In setion 4, we have shown that the motion of a hole in anantiferromagneti bakground leads to a string of broken antiferromagneti bonds. In thispiture, the magneti frustration due to the broken bonds an be avoided by a seond holewhih travels with the �rst one through the lattie. This mehanism leads to an attrativepotential for the eletrons whih an then form ooper pairs [87℄. A seond idea to desribesuperondutivity goes bak to Anderson. He onsidered a spin-harge separated resonat-ing valene bond (RVB) piture where spins pair into short-ranged singlets due to strongantiferromagneti orrelations [88, 89℄. The elementary exitations of this states are spin1/2 harge neutral fermions (spinons) and spin 0 bosons (holons) whih reombine underthe superonduting transition temperature to Cooper pairs [90℄.The hallenge of a detailed study of the HTSC is based on the omplex interplay of theeletrons on several energy sales. This requires a tehnique whih inorporates the strongCoulomb interation of the eletrons but also enable alulations at su�iently low tem-peratures in order to take the quantum nature of the spins into aount. A state of theart tehnique in order to investigate superondutivity in systems of strongly orrelatedeletrons, i.e. Hubbard model, is the Dynamial Cluster Approximation (DCA) (see se-tion 2.1 and Refs. [8, 91, 92, 11℄). In the following paragraph, we apply the DCA to the81



6 d-wave superondutivity in the Hubbard modelHubbard model and allow an instability to a superonduting phase.6.1 DCA and superonduting phaseThe tehnial implementation of the superondutivity within the DCA approximationis presented in setion 2.9. Hereby, we aommodate the U(1) symmetry breaking byintroduing additional anomalous Green funtions. A partile-hole transformation (seeEq. (2.104)) transforms the anomalous Green funtions into spin-�ip Green funtions. Aswe mentioned in setion 4, one expets the order parameter of a possible superondutingphase to have d-wave symmetry. Therefore, we onsider an Nc = 4 luster whih repre-sents the smallest luster to inorporate nearest neighbour interation. A sketh of theoarse-grained ells and the d-wave order parameter is depited in Fig. 6.1. Due to thesymmetry of the pairing mehanism, we expet that the order parameter vanishes at thezone enter and the point (π, π). A systemati study of the luster size dependene of the
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Figure 6.1 Coarse-grained ells of the Nc = 4 luster withthe luster momentum vetors (shown by red points) and asketh of the d− wave symmetry of the order parameter.
superondutivity in the onventional Hubbard model was systematially performed byJarrell et al. [11℄. They showed that due to the non-loality of the d-wave superondutingorder parameter, large �nite size and geometry e�ets lead to inonlusive results. Thealulations were arried out from the smallest luster (Nc = 4) whih an inorporate a
d−wave superonduting instability to a Nc = 26 luster. The superonduting transitiontemperature is dramatially dependent on the luster size and geometry. In this respet, animportant quantity is the (in)ompleteness of neighbouring shells of the lusters omparedto the �nite lattie [10℄. Thus, the Nc = 4 luster an ontain only one Cooper pair andreveals the highest transition temperature beause no superonduting phase �utuationsare inluded. On larger lusters (e.g. Nc = 8), there is room for one more Cooper pairon an adjaent plaquette. Therefore, two Cooper pairs interat with eah other in suha way, that phase �utuations an be repliated and hene overestimated. Jarrell et al.showed that the transition temperature of the Nc = 8, 18 lusters are negative and beomeslightly positive on larger lusters [11℄. These onsiderations ompel us to onsider onlythe Nc = 4 luster whih exhibits the highest transition temperature. Calulations at low82
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15.5 % and 22.5 %. A omparison shows a good agreement of our results with the transitiontemperatures alulated by the divergene of the pair-�eld suseptibility in Fig. 6.2. The
d-wave order parameters in Fig. 6.3 are alulated within the Monte Carlo proedure on83



6 d-wave superondutivity in the Hubbard model
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s-wave order parameter shows no indiation of s-wave pairing in the repulsive Hubbardmodel. In the next step, we add a next-nearest hopping amplitude t′ = −0.3t to the abovedisussed onventional Hubbard model whih brings the model loser to the physis of thehigh-temperature superondutors [93℄:
H = −t

∑

〈ij〉σ
c†iσcjσ − t′

∑

〈〈ij〉〉σ
c†iσcjσ + U

∑

i

ni↑ni↓ − µ
∑

i,σ

niσ, (6.1)whereat the expressions 〈ij〉 and 〈〈ij〉〉 indiate the summation over nearest and next-nearest neighbours, respetively, and µ represents the hemial potential. The resulting
d-wave order parameters as a funtion of temperature are presented in Fig. 6.4 for threedi�erent hole dopings: δ = 4.7 %, 7.0 % and 15.5 %. At the ritial temperature, theestimation of the order parameter beomes pretty di�ult beause the onvergene in theself-onsistent steps in the DCA approah is extremely poor near the phase transition. For
δ = 7.0 %, we �nd a ritial temperature Tc of 0.071t (βt = 14) < Tc < 0.077t (βt =

13). The orresponding density of states (DOS) of the single-band Hubbard model with
t′ = −0.3t at U/t = 8 is depited in Fig. 6.5 for various temperatures. The red urveshows the DOS at a temperature T ≈ 2.5Tc. Clearly, no indiations of a superondutingor pseudogap are visible in the spetrum. The line shape is almost �at. By dereasingthe temperature to slightly above the ritial superonduting temperature (T = 0.083t),a suppression of the loal spetral funtion beomes visible whih has to be interpretedas the ourrene of the pseudogap. The pseudogap hanges at a temperature below Tcinto a superonduting gap whih beomes learly visible at T = 0.056t (βt = 18). The84



6.1 DCA and superonduting phase
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6 d-wave superondutivity in the Hubbard modelalulation [92℄.6.2 Angle-resolved spetral funtionTo investigate the evolution of the superonduting gap in detail, we onsider the momen-tum resolved one-partile spetral funtion. We remind the reader, that our alulationsare arried out on the smallest luster (Nc = 4) whih an inorporate a non-loal inter-ation of the eletrons in two dimensions. Hene, we an only estimate the self-energyon four di�erent momentum vetors whih reveals a poor resolution in momentum spae.Additionally, symmetry onsiderations redue further the information ontent of the self-energy.An interpolation sheme is used in order to translate the irreduible luster quantities,i.e. the self-energy, to the in�nite lattie. The idea is very similar to the approah whihwas presented by Eq. (5.27). Hereby, we onsider the elements of the Nambu-matrix
Σc(K, iω) where the diagonal elements desribe the quasipartile renormalisations and theo�-diagonal elements ontains the information about the K- and frequeny dependeniesof the pairing state:

Σc(K, iωm) =




Σ11(K, iωm) ∆12(K, iωm)

∆21(K, iωm) Σ22(K, iωm)



 . (6.2)In the following, we presribe a series expansion (equivalent to Eq. (5.27)) in order tointerpolate the self-energy. Hereby, we fous only on the o�-diagonal elements of theself-energy:
− ∆(k, iωm) = ∆0(iωm) + 2∆1(iωm) (cos(kx) + cos(ky))

+ 2∆2(iωm) (cos(kx) − cos(ky))

+ 2∆3(iωm) (cos(kx + ky) + cos(kx − ky)). (6.3)For �xed Matsubara frequeny iωm and for a given set of ∆(K, iωm) with luster momenta
K, Eq. (6.3) represents a set of equations whih uniquely determines ∆i(iωm), whereby
i = 0, . . . , Nc − 1. If the oe�ients are determined, the self-energy an be estimated forevery lattie momentum vetor k. The reader should note, that the momentum dependeneof the self-energy is enoded in the pre-fators ∆i=0,...,Nc−1 and the interpolation has to beperformed for the real as well as for the imaginary part of ∆12. The pre-fators ∆i=0,...,Nc−1are depited in Fig. 6.6 for a simulation at T = 0.056t (βt = 18) below Tc and at δ ≈ 7 %hole doping. The results in Fig. 6.6 are restrited to the real part of ∆i=0,...,Nc−1 whihprovides the most important ontributions to Σc(K, iωm). Evidently, the d-wave symmetryorder parameter is one magnitude larger than the other ontributions whih are spei�edby Eq. (6.3) and, hene, on�rms the d-wave symmetry of the pairing interation. The86



6.2 Angle-resolved spetral funtion
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Nc = 4 luster.frequeny dependene of the d-wave order parameter is evident in Fig. (6.3) and it showsthat, as opposed to the stati mean-�eld BCS theory, retardation e�ets are taken intoaount. The inset of Fig. 6.6 exhibits the oe�ient ∆2 at the Matsubara frequeny

iωm = iπT . The simulation is arried out at δ ≈ 7 % hole doping. The oe�ient ∆2is zero above the superonduting transition temperature and it monotonially inreasesbelow Tc. The temperature at whih the phase transition takes plae is in astonishingly(a)
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6 d-wave superondutivity in the Hubbard model(a)
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Figure 6.8 Angle-resolved spetral funtion A(q, ω) for δ = 7 % hole doping. Thealulations are arried on the Nc = 4 luster at T = 0.071t (βt = 14) (a) and at
T = 0.063t (βt = 16) (b).good agreement with Tc whih was estimated in Fig. 6.3. As mentioned previously, dueto the non-loal harater of the d-wave order parameter, the absolute value of ∆d

SC andeviate from the orresponding lattie quantity. On the other hand, ∆2 is evaluated at theMatsubara frequeny iωm = iπT whih ompliates a diret omparison with ∆d
SC .In the next paragraph we fous on the angle-resolved spetral funtion of the Hubbardmodel at δ = 7 % hole doping on the Nc = 4 luster. Fig. 6.7 (a) shows the one-partilespetrum at T = 0.1t above the superonduting transition temperature where we andistinguish three di�erent features. The spetrum is dominated by an upper Hubbard band

(ω/t ≈ 8) and a lower Hubbard band whih are separated due to the Coulomb interation.A oherent quasipartile band around the Fermi surfae desribes the low energy exitationsof the system. It rosses the Fermi surfae around the momentum vetors (π, π/4) and
(π/2, π/2). The quasipartile band an be desribed by the dressing of a hole with a loudof spin-exitations to allow for a oherent motion through an antiferromagneti orderedbakground (see setions 4.1 and 5.2). By lowering the temperature below the ritialsuperonduting temperature Tc the hanges in the single-partile spetral funtion areaompanied by a formation of three peaks lose to the Fermi energy around (π, π/4).The enter peak disappears with lowering temperature whereas the outer peaks beomethe oherene peaks whih we have previously shown in the density of states. The angle-resolved spetral funtions at δ = 7 % hole doping and at T = 0.071t and T = 0.063t aredepited in Fig. 6.8 (a) and (b) respetively. The omplete opening of the superonduting88



6.2 Angle-resolved spetral funtion(a)
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6 d-wave superondutivity in the Hubbard modelwas visible in the density of states in Fig. 6.5 whih we have identi�ed as the opening ofa pseudogap. The investigation of the pseudogap is ontinued by a detailed study of
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A(q,ω) Figure 6.10 Angle-resolved spetral funtion A(q, ω)of the Hubbard model for δ = 7 % hole doping. Thealulation is arried out on the Nc = 4 luster at T =

0.083t (βt = 12) slightly above the superondutingtransition temperature Tc.
the angle-resolved spetral funtion. Hereby, we plot A(q, ω) of the Hubbard model for
δ = 7 % hole doping at T = 0.083t (βt = 12) in Fig. 6.10. The spetrum does not exhibita preursor of a gap around the momentum vetor (π, π/4) where at lower temperaturesthe superonduting gap will open. Obviously, the information about the pseudogap mustbe enoded in the self-energy whih is originally given only at the luster momenta. Theinterpolation sheme (see Eq. (6.3)) annot properly transfer suh deliate informationontent, i.e. information about the pseudogap, to the intermediate lattie momenta.Nevertheless, information about the opening of the superonduting gap and the formationof oherene bands lose to the superonduting gap an be learly reprodued in the single-partile spetrum at the intermediate lattie momenta and at su�iently low temperature.In order to ahieve a deeper insight into the physis of the pseudogap and superondutingstate of the Hubbard model, one has to onsider larger lusters. Firstly, alulations onlarger systems repress the strong �nite size e�ets and, seondly, the transfer of the irre-duible quantities from the �nite luster to the in�nite lattie beomes more independentfrom the interpolation sheme. The enhanement of the luster size has the onsequene,that the usual Hirsh-Fye quantum Monte Carlo luster solver has to be replaed by a moree�ient algorithm. Suh a development is beyond the sope of this thesis and representsa great hallenge for the next several years.
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Summary
This thesis has been devoted to a study of a strongly orre-lated eletron system. Using the Dynamial Cluster Ap-proximation (DCA), we investigate the two-dimensionalHubbard model in the strong oupling regime U = 8t (en-ergy sale t = 1). In the DCA, the original lattie problemis mapped to a self-onsistently embedded luster of size
Nc = Lc × Lc. The orrelations up to a range of ξ . Lcare treated aurately, while the physis on longer length-sales are desribed at the mean-�eld level. The lusterproblem generated by the DCA is solved by the Hirsh-Fyequantum Monte Carlo tehnique.The luster irreduible self-energy, Σ(K), and two-partilevertex, ΓK′,K′′ serve as an approximation of their orre-sponding lattie quantities and they an be used to alu-late the lattie single-partile and lattie two-partile orre-lations funtions, respetively. The tehnial implementa-tion is readily arried out for the single-partile properties.However, from a numerial point of view the alulation ofthe dynamial two-partile orrelation funtions, i.e. ver-tex funtion, within the DCA is muh more involved.The omplexity of the luster vertex funtion ΓK′,K′′ an beredued by averaging the K ′ and K ′′ dependenies. Hene,we introdue an e�etive vertex funtion whih dependsonly on the enter of mass momentum und frequeny, Q =

(Q, iΩm):
1

βL
Ueff (Q) = 〈ΓK′,K′′(Q)〉.With the e�etive vertex funtion Ueff (Q) and the bubble

χ0(q), whih is generated by the dressed Green funtions,
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the lattie suseptibility reads:
χ(q) =

χ0(q)

1 − α · Ueff (q) · χ0(q)
,where α is estimated in a self-onsistent manner and servesas a ontrolling parameter.A omparison of our approah with a SU(2) symmetry bro-ken DCA alulation on an Nc = 8 luster serves as a testase. By evaluating the lattie spin suseptibility, a di-vergene would indiate a magneti phase transition whihan be ompared with the Néel temperature, as obtainedfrom the SU(2) symmetry broken algorithm. The resultingmagneti phase diagram from the SU(2) symmetry brokenalulation orresponds to the exat DCA result where noapproximation -apart from oarse graining- is made on thepartile-hole irreduible vertex. At half-�lling the phasediagram exhibits magnetism below T ≃ 0.4t whih per-sists up to approximately 15 % doping. A good agreementof both methods an be ahieved at δ & 10 %. At smallerdoping, the K ′ and K ′′ play an important role in the deter-mination of the Néel temperature and annot be negleted.In a further test, we ompare the spin S(q, ω)- and harge

C(q, ω)-dynamial struture fators with exat auxiliaryBlankenbeler-Salapino-Sugar(BSS) QMC results at βt =

3, δ ≈ 14 %, and U/t = 8. The analytial ontinuationfrom the imaginary time axis to real frequenies is per-formed by a stohasti version of the maximum entropymethod. The spetrum in the spin hannel exhibits twobranhes at ω ≈ J and 2J , whereat J = 4t2

U representsthe usual exhange oupling. The DCA overestimates thespetral weight at q = (π, π) but does very well away fromthe AF wave vetor. At lower temperatures (βt = 6) alear spin wave feature is indeed observable: a peak maxi-mum at q = (π, π) is present and at q = (π, 0) the orretenergy sale of 2J is reovered.
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The DCA dynamial harge orrelation funtions an re-produe the basi harateristis of the BSS harge exi-tation spetrum. Exitations at ω ≈ U are set by theremnants of the Mott-Hubbard gap.The investigation of the spin and harge responses at βt =

6 on the DCA Nc = 8 luster exhibits a strong dopingdependene. At δ = 27 % the spin wave dispersion is nolonger sharply peaked around q = (π, π). The exitationsbroaden up and hange their energy sale from J = 4t2

U toan energy sale set by the non-interating bandwidth. Thehanges beome more evident at higher dopings (δ = 32 %).The harge response shows a redution of spetral weight athigh energies whih an be explained by the loss of weightin the upper Hubbard band with inreasing doping.The single-partile spetrum (βt = 6, δ = 14 %, and
Nc = 8) exhibits three distinguishing features: an upperHubbard band (ω/t ≈ 8) and a lower Hubbard band whihrepresent the inoherent bakground. A quasipartile bandwith energy J represents the low energy exitations of thesystem and results from a dressing of a hole with a loudof spin-exitations to allow for a oherent motion throughan antiferromagneti ordered bakground. The ourreneof the spin-polaron is aompanied by the existene of thespin wave features in the spin response.At higher dopings (δ ≈ 32 %) the upper Hubbard bandloses spetral weight and the bandwidth of the quasiparti-les hanges from J to the free bandwidth and, therefore,orresponds to the hanges in the two-partile spetra.In the seond part of the thesis, we study the super-ondutivity in the onventional Hubbard model (t = 1,
t′ = −0.3t, and U/t = 8) within the Dynamial ClusterApproximation. The anomalous Green funtions are in-orporated in terms of the Nambu representation. Thediagonal elements of the Nambu matrix Σc(K, iωm) repre-sent the quasipartile renormalisations and the o�-diagonalparts ontain information about the K- and frequeny de-pendene of the pairing state.
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Summary
δ = 22.5 %

δ = 15.5 %

δ = 5.2 %

T

∆
d S

C

0.110.10.090.080.070.060.050.040.03

0.2
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0.1

0.05

0

d-wave order parameter (t′ = 0)
T = 0.056

T = 0.063

T = 0.071

T = 0.083

T = 0.1

T = 0.2Nc = 4, δ = 7 %

ω/t

N
(ω

)
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Angle-resolved spetralfuntion (βt = 18 and δ ≈ 7 %)

In a �rst test ase, we ompare the superonduting tran-sition temperature, indiated by a non-vanishing order pa-rameter, with a superonduting phase diagram of the on-ventional Hubbard model (for the test ase: t′ = 0), wherethe phase boundary is estimated by the divergene of thepair �eld suseptibility. Our alulations show a goodagreement between both methods at three di�erent dop-ings: δ = 5.2 %, 15.5 %, and 22.5 %. The pairing statelearly exhibits a pure d-wave symmetry.The density of states of the Hubbard model is studied for
δ = 7 % doping at di�erent temperatures on the Nc = 4luster. An opening of a pseudogap is indiated by a slightsuppression of spetral weight at ω = 0 in the loal spetralfuntion above the superonduting transition temperature
Tc. The formation of the superonduting gap below Tcis aompanied by the ourrene of oherene bands at
|ω|/t ≈ 0.3.A detailed study of the angle-resolved spetral funtionexhibits a delayed opening of the superonduting gap at
q ≈ (π/4, π) while dereasing the temperature and showsno indiation of a gap in nodal diretions whih on�rmsthe d-wave symmetry of the superonduting order param-eter. A preursor of the pseudogap at q ≈ (π/4, π) abovethe superonduting transition temperature annot be re-solved. The reason for this is given by the poor momentumresolution of the self-energy on the Nc = 4 DCA luster.The interpolation sheme utilised for the self-energy an-not properly transfer the information about the pseudogapto the intermediate lattie momentum vetors.
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