One- and Two-Particle Correlation
Functions in the Dynamical Quantum

Cluster Approach

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universitdt Wiirzburg

25. Juli 2008

vorgelegt von

Stephan Hochkeppel

aus Haan

Wiirzburg 2008



Eingereicht am: 25. Juli 2008
bei der Fakultit fiir Physik und Astronomie

1. Gutachter: Prof. Dr. Werner Hanke
2. Gutachter: Prof. Dr. Fakher Assaad

der Dissertation

1. Priifer: Prof. Dr. Werner Hanke
2. Priifer: Prof. Dr. Fakher Assaad
3. Priifer: Prof. Dr. Ralph Claessen

im Promotionskolloquium

Tag des Promotionskolloquiums: 15.09.2008

Doktorurkunde ausgehandigt am:



Abstract

This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong
coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA)
which systematically restores non-local corrections to the Dynamical Mean Field approx-
imation (DMFA). The DCA is formulated in momentum space and is characterised by a
patching of the Brillouin zone where momentum conservation is only recovered between
two patches. The approximation works well if k-space correlation functions show a weak
momentum dependence.

In order to study the temperature and doping dependence of the spin- and charge exci-
tation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle
response functions. The full irreducible two-particle vertex with three momenta and fre-
quencies is approximated by an effective vertex dependent on the momentum and fre-
quency of the spin and/or charge excitations. The effective vertex is calculated by using
the Quantum Monte Carlo method on the finite cluster whereas the analytical continua-
tion of dynamical quantities is performed by a stochastic version of the maximum entropy
method. A comparison with high temperature auxiliary field quantum Monte Carlo data
serves as a benchmark for our approach to two-particle correlation functions. Our method
can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and
beyond optimal doping, our results provide a consistent overall picture of the interplay
between charge, spin and single-particle excitations: a collective spin mode emerges at op-
timal doping and sufficiently low temperatures in the spin response spectrum and exhibits
the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy
single-particle excitations are characterised by a coherent quasiparticle with bandwidth
J. The origin of the quasiparticle can be quite well understood in a picture of a more or
less antiferromagnetic ordered background in which holes are dressed by spin-excitations
to allow for a coherent motion. By increasing doping, all features which are linked to the
spin-polaron vanish in the single-particle as well as two-particle spin response spectrum.
In the second part of the thesis an analysis of superconductivity in the Hubbard model is
presented. The superconducting instability is implemented within the Dynamical Cluster
Approximation by essentially allowing U(1) symmetry breaking baths in the QMC cal-

culations for the cluster. The superconducting transition temperature 7T, is derived from



the d-wave order parameter which is directly estimated on the Monte Carlo cluster. The
critical temperature T, is in astonishing agreement with the temperature scale estimated
by the divergence of the pair-field susceptibility in the paramagnetic phase. A detailed
study of the pseudo and superconducting gap is continued by the investigation of the local

and angle-resolved spectral function.



Kurzfassung

In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Bereich stark
wechselwirkender Elektronen mit Hilfe der Dynamischen Cluster Approximation (DCA)
untersucht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster,
der selbst-konsistent in einem effektiven Medium eingebettet ist, abgebildet. Somit stellt
die DCA eine Erweiterung zur Dynamischen Molekularfeld-Theorie dar, indem nicht-lokale
Korrelationen berticksichtigt werden.

Ein Ziel dieser Arbeit stellt die Untersuchung von dynamischen Korrelationsfunktionen
fiir das Hubbard Modell dar. Dazu wird die Dynamische Cluster Approximation auf
die Untersuchung von Zwei-Teilchen Korrelationsfunktionen erweitert. Der volle irredu-
zible Zweiteilchen-Vertex mit drei Impulsen und Frequenzen wird durch einen effekti-
ven Vertex, dessen Impuls und Frequenzabhéngigkeit durch das Spin- bzw. Ladungs-
Anregungsspektrum gegeben ist, approximiert. Der effektive Vertex wird mit Hilfe der
Quanten Monte Carlo Technik auf einem endlichen Cluster bestimmt, wobei die dynami-
schen Grofen durch eine stochastische Version der Maximum Entropie Methode auf die
reelle Frequenz-Achse analytisch fortgesetzt werden. Ein Vergleich mit dem gewdhnlichen
BSS Quanten Monte Carlo Verfahren dient als Mafstab fiir unsere Naherung der Zwei-
Teilchen Korrelationsfunktionen. Der Vergleich zeigt auf, dass unsere Methode grundlegen-
de Eigenschaften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Fiir op-
timale bzw. hohere Dotierungen erhalten wir ein {ibereinstimmendes Gesamtbild zwischen
Ladungs-, Spin-, und Ein-Teilchen-Anregungsspektrum: bei optimaler Dotierung und hin-
reichend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrum
auf und zeigt einen Energiezweig mit der Energieskala J, wobei J die magnetische Austau-
schenergie beschreibt. Gleichzeitig werden die Niederenergie-Anregungen im Ein-Teilchen-
Spektrum durch ein Quasiteilchenband mit Bandbreite J beschrieben. Der Ursprung des
Quasiteilchens ldsst sich durch das Bild eines mehr oder weniger geordneten antiferroma-
gnetischen Hintergrundes erkléren, in dem sich Locher umgeben von einer Wolke von Spin-
Anregungen kohérent durch das Gitter bewegen. Bei zunehmender Dotierung verschwinden
sowohl im KEin-Teilchen, als auch im Zwei-Teilchen Spin-Spektrum alle Anzeichen, die im
Zusammenhang mit der Niederenergie-Skala JJ und dem oben beschriebenen Spin-Polaron

stehen. Die Anderung der Dotierung fiihrt des weiteren zu einem Transfer von spektralem



Gewicht im Ein-Teilchen Spektrum, der sich ebenfalls im Ladungs-Anregungsspektrum
bemerkbar macht.

Im zweiten Teil der Arbeit wird eine Analyse iiber die supraleitenden Eigenschaften des
Hubbard Modells prasentiert. Die supraleitende Instabilitdt wird im Rahmen der Dyna-
mischen Cluster Approximation durch die Implementierung eines U(1)-Symmetrie bre-
chenden Mediums in der Monte Carlo Rechnung fiir den Cluster beriicksichtigt. Die su-
praleitende Ubergangstemperatur T, wird von dem Wert des auf dem Cluster bestimm-
ten d-Wellen Ordnungsparameters abgeleitet. Die kritische Temperatur 7T, ist in iiberra-
schend guter Ubereinstimmung mit der Energieskala, die durch eine Divergenz der Paarfeld-
Suszeptibilitéit in der paramagnetischen Phase bestimmt worden ist. Die Temperaturabhén-
gigkeit der Pseudo- und supraleitenden Liicke wird mit der Bestimmung der Zustandsdichte
und der Impuls-aufgeldsten Spektralfunktion untersucht. Im Gegensatz zur der Herausbil-
dung einer supraleitenden Liicke unterhalb der Sprungtemperatur, kann die Bildung einer

Pseudo-Liicke in der Impuls-abhéngigen Spektraldichte nicht aufgeldst werden.
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Introduction

The theoretical description of strongly correlated electron systems represents one of the
greatest challenges in condensed matter theory. Such systems exhibit a variety of phenom-
ena, e.g. stripe phases, high temperature superconductivity, magnetism and Mott metal-
insulator transitions. The reason for this manifold behaviour has its roots in the many-body
correlation effects between the interacting particles where the interaction strength is of the
same magnitude or larger than the kinetic energy. This situation makes a perturbative
handling of the interacting states around the non-interacting limit very difficult or even
impossible.

In the last few years, many non-perturbative numerical approaches have been formulated
and investigated to get to the bottom of the interplay effects in correlated electron systems.
A large group of solvers based on the renormalisation group technique have been applied to
one dimensional systems. The Density Matrix Renormalisation Group, for example, proves
greatly successfully when it is applied to resolve small energy scales. The application of
renormalisation techniques to problems in higher dimensions still remains unclear and is a
subject of current research. Two dimensional systems represent a wide area of application
for exact diagonalisation techniques and Quantum Monte Carlo methods which represent
a well-controlled access to many-body problems. Unfortunately, these methods also reveal
a down side. Diagonalisation approaches are restricted to very small system sizes (up to 12
sites) because the electronic degrees of freedom grow rapidly with increasing system size.
On the other hand, auxiliary field Quantum Monte Carlo studies suffer from the notorious
minus sign problem, which prohibits, in general, the investigation of the low-temperature
physics of correlated electron systems. Both methods are restricted to finite clusters and
therefore one has to take finite size effects into account, which corrupt the investigation of
the low energy excitations or competing phases in the many-body systems.

A new generation of approaches was initiated by the Dynamical Mean-Field Theory which
avoids the above mentioned problems. The so-called quantum cluster theories map the orig-
inal many-body problem onto a finite size quantum cluster embedded in a self-consistently

determined host. The physics on the cluster is treated exactly and correlations on longer



1 Introduction

length scales are taken into account at mean-field level. One representative of the quantum
cluster theories is the Dynamical Cluster Approximation (DCA).

This thesis is organised as follows:

In chapter 2.1 we introduce the basic concepts of the Dynamical Cluster Approximation
(DCA) by considering it as an extension to the Dynamical Mean-Field Theory (DMFT)
where the original lattice problem is mapped onto a Periodic Anderson Impurity Model
(PAM). The impurity problem can be solved in an exact way by using the Hirsch-Fye
quantum Monte Carlo algorithm. For this purpose, we introduce, in section 2.7.1, a Hub-
bard Stratonovich (HS) field which splits the two-particle interaction term of the impurity
sites into one particle operators coupled to the HS field. The summation over the HS field
configurations is carried out by the Metropolis algorithm.

The Hirsch-Fye algorithm only provides correlation functions in imaginary time. In order
to compare the numerical results with experimental data a method is needed to analytically
continue the data from the imaginary time axis to the real frequency axis. This problem
boils down to the inversion of a Laplace transformation. A straightforward inversion would
lead to inconsistent results due to numerical instabilities. A state of the art technique for
this continuation problem is the Maximum entropy method which is presented in chapter 3.
Chapter 4 is dedicated to the tight-binding Hubbard model which is intensively studied in
this work. The Hubbard model is one of the simplest models that takes the kinetic energy
and the electron-electron repulsion in a many-body system into account. It consists of a
kinetic part, where electrons can gain energy by hopping between nearest-neighbour sites,
and a Coulomb term, which enforces an energy penalty if two electrons occupy the same
site. Although this model has a very simple structure, an analytical solution has only been
found in one dimension.

In chapter 5 we investigate the dynamical properties of the Hubbard model within the Dy-
namical Cluster Approximation. In this sense, we have to extend the Dynamical Cluster
Approximation to two-particle response functions in order to achieve a deeper insight be-
yond the scope of the one-particle level. The idea of our approximation and its application
is described in detail.

In chapter 6 we apply the DCA to the Hubbard model and incorporate an instability to a
superconducting state. The theoretical investigation of superconductivity in the Hubbard
model has been pushed immensely by the discovery of the high-temperature superconduc-
tors in 1986 by Bednorz and Miiller. Soon after their discovery, theorists and experimental-
ist have tried to find an explanation of the physics of these materials. But after more than
fifteen years, the microscopic mechanism is still an open question. In our investigation, we
focus on the temperature and doping dependence of the superconducting phase as well as
on the occurrence of a pseudogap.

The thesis finishes with a summary of the main results.

10



Dynamical Cluster

Approximation

Mean-field theories started their triumphant procession many years ago. In the year 1907,
P. Weiss implemented the Curie-Weiss mean-field theory for spin systems by mapping the
complex lattice problem onto a magnetic impurity which is self-consistent embedded in an
averaged magnetic field produced by the remaining spins. Hereby, non-local fluctuations as
well as temporal fluctuations have not been taken into account. The idea of the reduction
of a given lattice problem to an impurity problem, which is embedded in a self-consistent
bath, was refreshed by spectacular works of Metzner and Vollhardt and Miiller-Hartmann
as they introduced the so-called Dynamical Mean-Field Approach (DMFA) [1, 2]. The
authors showed, that in the limit of infinite dimension, the self-energy becomes purely
local and the many body problem can be mapped onto a single site impurity Anderson
model (SIAM). The local character of the self-energy yields from the scaling behaviour
of the hopping element ¢;; oc D~1/2 with the dimensionality D. It can be easily shown,
that any two-sites in the expansion of the compact diagrams of the self-energy, which are
connected at least with two different paths, collapse to a single site in the limit of infinite
dimension [3].
Thus, the dynamical mean field approach exhibits an exact solution for infinite dimensional
Hubbard-type models. In contrast to the Curie-Weiss mean-field, the DMFA consist of a
frequency dependent bath, and therefore, temporal correlations can be taken into account.
Nevertheless, spatial fluctuations are beyond its abilities. These correlation are only treated
at mean-field level, whereas the local part of the problem (the impurity problem) can be
solved exactly via quantum Monte Carlo methods.
The DMFA can be also understood as a coarse graining approximation which can be seen
in the language of the diagrammatic expansion of the self-energy. In this context, we
consider the Laue function which enforces momentum conservation at each vertex of the
diagrammatic expansion:

Aky ko, ks, ka) = explir - (ki + ka — ks — ky)], (2.1)

r

where ki and ko ( k3 and ky4) are the incoming (outgoing) momenta at every vertex. In

11



2 Dynamical Cluster Approximation

the limit of infinite dimension, the k-dependence of the Laue function breaks down and

corrections occur only in the order of 1/D [4]:
Ap—oo(ki, k2, ks, ki) =1+ O(1/D). (2.2)

The DMFA assumes that Apprpa(k1, k2, k3, ks) = 1 is already valid at finite dimensional-
ity. The consequence is a violation of momentum conservation at each vertex and a collapse
of the k-dependence of the self-energy, which causes the local character of the self-energy.
This implies, that the Green functions are replaced by a coarse-grained Green function

averaged over the entire Brillouin zone:
=/ 1 .
G(iwp,) = N ZG(k,zwm). (2.3)
k

In the last years, the dynamical mean-field approach has been applied to a broad variety
of several spin systems as well as to systems of correlated electrons and bosons [3]. Due to
the local character of the theory, a detailed investigation of non-local quantities, i.e. non-
local order parameters, localisation in disordered systems or spin waves in spin systems, is
impossible. The following section summarises a systematic extension of the DMFA which

remains fully causal and takes non-local fluctuations into account [5, 6].

2.1 Formalism

The Dynamical Cluster Approximation (DCA) represents a natural expansion of the DMFA
which additionally takes non-local fluctuations into account and systematically restore
momentum conservation. It was first proposed by M. Jarrell et al. [7, 8]. In the DCA,
the original many-body problem is mapped on a finite size quantum cluster embedded in
a self-consistently determined host. The best way to understand the approximation is in
the momentum space. The coarse graining of the Green function is, as opposed to the
DMFA, only performed on a finite cluster in the first Brillouin zone. A typical clustering
is depicted in Fig. 2.1. The reciprocal space, which contains N k-points, is divided into N,
patches, where each patch is labelled by the cluster momentum vector K, i.e., in Fig. 2.1
the number of clusters is N, = 4 and L. determines the linear size of the cluster. An
arbitrary momentum vector k can be formulated as a sum of an inter-cluster momentum
vector K and an intra-cluster vector k. The intra-cluster vectors k represent the reciprocal
vectors of & which form a superlattice in real space (see Fig. 2.1) and every real space lattice
vector can be decomposed into a superlattice vector £ and an intra-lattice vector X, i.e.
x = & + X. The number of lattice sites within a real space cluster is given by N/N,.

In the limit of N, = 1, the original lattice problem is mapped onto a single impurity problem
which is equivalent to the DMFA. Is IV, larger than one, then non-local corrections of the
length ~ 7/Ak are introduced. This shows us, that the approximation works well when

only correlations on short length scales in real space play the dominant role.

12



2.2 A diagrammatic derivation
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Figure 2.1 Left: Sketch of DCA cluster patches in real space. Right: division of the
Brillouin zone into N, =4 DCA patches.

2.2 A diagrammatic derivation

In the following, we are going to present a diagrammatic derivation of the DCA. In Sec. 2.1,
we introduced a segmentation of the Brillouin zone in N, patches of length Ak = 27 /aL,,
where a is the lattice constant. Momentum conservation is now only recovered between
two patches, which is the case if the momentum transfer k is larger than Ak. The re-
laxation of the momentum conservation can be accommodated for by the Laue function
A(kq, ko, ks, k). Therefore, we consider a function M which maps a given momentum

vector k to the corresponding cluster momentum vector K:
M: R* - R* Mk)=K (2.4)
Hence, we can rewrite the Laue function in the following form:

A(ki, ko, k3, k) — Apca(ki, ka, k3, ky)
= explir - (M(ky) + M(ko) — M(ks) — M(k4))].  (2.5)

In the limit of an infinite number of cluster patches, the function M reduces to the identity
function and the DCA becomes exact.

The approximation of the Laue function has an influence of every diagram in the skeleton
expansion of the generating functional ®'. In Fig. 2.2, we show a second-order term
of the generating functional of the Hubbard model. The undulating lines represent the
Coulomb interaction U and the solid lines are lattice (coarse-grained) single-particle Green
functions. With the choice of the DCA Laue function Apca, the momenta of each internal

leg propagator may be freely summed over the cell momenta. The partial collapse of the

!Skeletal graph sum over all distinct compact closed connected diagrams constructed from the Green

function and the interaction U.

13



2 Dynamical Cluster Approximation

k; K+Q
@ Apca= NeBnig,) +Ma) Miks) + M) @
= —>
BT T s
K’+Q

Figure 2.2 Second-order term of the generating functional of the Hubbard model. The
momentum collapse due to the interchange of the Laue function A with the DCA Laue
function Apca results in the replacement of the lattice Green functions by the coarse-

grained Green functions.

momentum conservation, by applying the Apca to the generating functional ®, will be
demonstrated in the following calculation to which purpose we consider the Feynman rules

which can be found in every standard textbook [9]:

1 (~-1)°U?
d : — 2 E 2
2% order — dlagram = _QWW(Nékl+k2’k3+k4)
o k1,k2,k3,ka
wkl 7wk27wk3 7wk4

2
(5w1 +wa2,w3+ws ) 501 ,03 502 ,04 5—01 ,02

5energies 5spin

(_G/ﬂ (w/ﬂ))(_G/Q (waQ))(_GkB (wk3))(_Gk4 (wk4))’ (26)

where the sum goes over all internal momenta k; and frequencies w; as well as all spin o
degrees of freedom. h(©) is a topology factor and s determines the number of fermionic
loops. The delta functions ensure the accordant conservation laws and the delta function
d0;,—0; guarantees that only electrons with opposite spins undergo the Coulomb interaction.
In the next step, we approximate the Laue function in the spirit of the DCA and split off

the momentum summation over k; via Eq. (2.4), which give us:

1 (~=1)°U?

nd : —
2"%rder — diagram = E E E @—h(G) N1 Oenergies Ospin
0 Ki1,K2,K3,K4 Wk Wiy Wiz Why
k1,k2,ks3,ka

2
(Ve 6M(K1+151)+M(K2+/~€2),M(K3+/~€3)+M(K4+l;‘4))
(_GK1+/~€1 (wK1+/~€1)) (_GKQ—H}Q (ng-H}g))

(_GK3+/~€3(wK3+/~€3)) (_GK4+/~€4(wK4+/~€4))' (2'7)

14



2.3 Cluster sizes and topologies

Obviously, the summation over all intra-cluster momentum vectors k; can be pulled in
front of the Green functions Gy, (wg, ):

. 1 (-1)*U? 5
order — diagram = Z Z ? no) Fg Jenergies Ospin (0K +Ko, K3+Ky1)

o Ki,K2,K3,K4
Wk Wko Wkg,Wky

N, Ne
<_W Z GK1+1~€1(WK1+1~61)> <_W Z GK2+I%2(WK2+I~92)>
]~<:1 ];72
N,
<_W Z GK3+1~€3(WK3+I~93)>
k3

<_% %: Gt (‘”K4+1%4)> ; (2.8)

21’1d

where we can identify the coarse-grained Green function G[M (k)] as:

G(K) = % > G(K +k), (2.9)
k

with the number of lattice sites NV, N, is the number of clusters, and the k runs over the
momenta of the cell with cluster momentum K. We have seen, that the diagrammatic
sequence of the generating functional remains unchanged under the DCA approximation,

but under the assumption N. < N, the complexity of the problem is drastically reduced.

2.3 Cluster sizes and topologies

In this section, we are going to examine different cluster sizes and topologies of our DCA
approach. We have seen, that sufficiently small clusters enormously reduce the complex-
ity of the original problem, but the remaining cluster problem represents an exhausting
numerical task. In order to take a larger variety of cluster types into account, we also
focus on cluster types which deviate from the usual square shaped cluster form. A general
overview of different cluster sizes and topologies is given in Refs. [10, 11]. The authors
of [11] investigate differ cluster types by referring to the finite size scaling behaviour of the
Néel temperature of the 3-dimensional Hubbard model.

Lets assume, that the real space cluster is described by the principle lattice vectors a;
and ao. They are correlated to the reciprocal lattice vectors by the expression b; =
21a;/|ay x as| with k,,,,, = nb;+mbs for integer n and m. We can distinguish three different
kinds of cluster families. The first is described by tilings with a1, = a1, (corresponding
to N, = 1,8,18,32, ...) where we have chosen the cluster types with N. = 1,8 for our
calculations. The second family exhibits real-space principle cluster vectors with either
a1z = 0 or a1y = 0, which leads to cluster types with N. = 1,4,16,36, ... . The single

15



2 Dynamical Cluster Approximation

N. =14 N. =38 N. =10 N. =16

Figure 2.3  Different cluster types and topologies which are utilised in our study.

site cluster (see above) and the four and 16-sites cluster were used in our calculation.
Both families are basically different in respect to the angle 6 between the reciprocal lattice
vectors compare to the principle reciprocal lattice vectors of the real system. In the first
case the angle 6 is m/4 whereas in the second case it is § = 0. In the third class of cluster
types, we combine all other clusters with the property that they do not obey the point-
group symmetry of the original lattice. Starting from the Hubbard model, we assert a
Cy, symmetry, which is carried over to the coarse-grained cells in the first two families
of cluster types. The reciprocal principle lattice vectors of the third class of cluster types
with NV, = 10, 20, 26, 34, ... do not point along a high symmetry direction of the real space.
The consequence will be, that in principle equal points of the original lattice will map
onto different cluster patches during the coarse-graining procedure. In order to obtain a
comprehensive picture of the different cluster types, we take also the N, = 10 into account
in our calculations. A summary of the clusters utilised in our investigation is depicted in
Fig. 2.3.

2.4 The DCA self-consistent loop

The DCA algorithm basically consists of two parts as shown in Fig. 2.4. The main part
is captured by the self-consistent procedure, namely the coarse-graining of the lattice and
the utilisation of the Dyson equation. This part will be explained in detail in the following.
The second part includes the quantum Monte Carlo procedure to which purpose we employ
the Hirsch-Fye algorithm, which is explained in section 2.7. The QMC procedure is the
most time and resources consuming part in the self-consistent circle and is therefore carried
out on a supercomputer.

The DCA self-consistent loop:

i) The DCA self-consistent loop starts with an initial guess of the self-energy

Yo(K,iwy,). This value can be set to zero or to a perturbation theory result.

ii) The free lattice Green function G°(k,iw,,) and the self-energy ¥.(K,iw,,) are used

to calculate the coarse-grained Green function G(K,iw,y,). N is the number of lattice

16



2.4 The DCA self-consistent loop

f |Cluster solver: Hirsch— Fye Algorithn+ \

G(X; — X;,7) G (X; — X;,7)

! l

G HK iwy) = GHK iwy) + Se(K , iw,) YK iwy) = G YK iw,) — G K, iwy,)
K G(K,iw,) =

Figure 2.4 Sketch of the DCA algorithm.

% ¥ 1
N k iwn—sK+,~c+;L—EC(K,iwn)

sites and NN, declares the number of lattice sites within the real space cluster:

N = iwm — €pe i+ 10— Se(Kiwn,)

G(K,iwy,) =

(2.10)
At this point, the DCA assumes that 3.(K,iw,,) is only weakly dependent on mo-
mentum, so that we may write S(K + k, iwp) ~ S (K, iwpy ).

iii) The bare host Green function is given by the Dyson Equation:
G HK iwn) = GH K iwy,) + Se(K ,iwy,) (2.11)

At this point, we have to subtract the self-energy in order to avoid over-counting

diagrams and calculate the bare Green function of the cluster problem.

iv) In order to utilise the QMC procedure G(K,iw,,) must be Fourier transformed from

the momentum-frequency variables to space-imaginary-time variables:
(K, iwm) — G(X; — Xj,7i — 75) (2.12)

v) The interacting cluster Green function G.(X; — X, 7; — 7;) is obtained by using the
QMC algorithm. This step is the most time consuming part.

vi) Go(X; — X, 7 — 7;) is then Fourier transformed to momentum-frequency variables
G.(K,iwy,) and the Dyson Equation is used a second time in order to calculate a
new cluster self-energy:

YK iwn) = GHK iwn,) — G YK iwy,) (2.13)

vii) These step are repeated until X.(K,iw,,) converges.

17



2 Dynamical Cluster Approximation

viii) The lattice Green function depends on the momentum k = K + k and is calculated
by:

Gt (K, o) = - !

, (2.14)
Wm — €tk +p— EC(K? Zwm)

2.5 Numerical implementation of the Fourier transformation

As described in the previous section, a Fourier transformation between Matsubara en-
ergy Green functions G(K,iwy,) and imaginary time Green functions G(K,7) has to be

performed. In general, the Fourier transformation is nothing else but:
B A
G(K i) = / dr “m™ (K, 7). (2.15)
0

The numerical implementation of the Fourier transformation is a challenging task in order
to capture the correct high-frequency behaviour of the Green function or self-energy. The
Green function G(K, 1) is only given on a discrete subset in the interval [0, 3]. A simply
interpolation strategy, i.e., an Akima spline, yields incorrect high-frequency results and the

causality requirement:

1
lim G(K,iwy,)~ — (2.16)

Wy, —00 m

would be violated. An enhancement of the discretisation in imaginary time would alleviate
this problem but it would cause an intractable QMC simulation because of the CPU time
and memory requirements which would increase to the power of three with respect to the
number of imaginary time slices. Instead of this, we use the spectral representation of the
Green function G(7):
e v 1

G(r) = —/de(w)1er with A(w) = - Im[G (w +30™)] (2.17)
The analytical continuation of the Green function G(7) yields the corresponding spectral
function A(w) on a discrete set of real frequencies which obeys the following identity:

—TnAw

G(r) == AwA(nAw) (2.18)

1+ e—ﬁnAw :

Thus, the Fourier transformation of G(7) to G(iwy,) can be accomplished under consider-

ation of the spectral theorem:

A(nAw
Gliwnm) = ZA _nA)w (2.19)

It has been shown, that such a Fourier transformation provides the correct asymptotic

behaviour of the Matsubara Green functions.
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2.6 Local quantities

The inverse Fourier transformation provides G(7) for a given Green function G (iwy,):
1 ,
G(r)==) e “"G(iw 2.20
(7) =3 %‘j (iwm) (2.20)

The discontinuity of G(7)|,=o 3 can only be reproduced when an infinite number of Mat-
subara frequencies are taken into account in the sum of Eq. (2.20). In order to circumvent

this problem, we consider the asymptotic behaviour of the Matsubara Green function:

G(iwm) = /dwmi(%

Obviously, Eq. (2.21) exhibits the correct high frequency behaviour: Im|[G(iwy,)] =
—1/iwm + O(1/w3,). The real part of the Green function Re[G (iwy,)] can be fitted by
a least square fit to the form b/(iwy,)? with the abbreviation b = [ dwA(w)w. After the
rearrangement of the RHS of Eq. (2.20), one gets:

G(r) = %Zeiw’” <G(z’wm) - % + %)

2
m m
1 —iwm T 1 b
- mhf— — — . 2.22
% (2 (222)

For sufficiently large Matsubara frequencies iw,,, only the second sum of Eq. (2.22) gives a
contribution to G(7), therefore, the first summation has to be carried out only on a finite
subset of Matsubara frequencies iw,,. The second sum may be computed analytically. For
0 < 7 < 3 we have:

1 e~ wmT 1
b e~wmT b b
52 Gp ~ 21 220

2.6 Local quantities

In the following section, we express some comments about local cluster quantities. The
consideration below shows that local lattice quantities can already be calculated on the
DCA cluster. We focus initially on the lattice Green function, which is given by the Dyson

equation:

at . _ 1
G (k,iwm) = o — (k) = 1) = Su(E o) (2.25)
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2 Dynamical Cluster Approximation

The local lattice Green function reads:

Gl (iwn,) = %ZGl“t(kz,z’wm) (2.26)
k

1 1
SR PNID DI ey v pyr eyt oy (221)

K k€ patchK

If we apply the definition of the coarse-grained Green function to the last expression in
Eq. (2.27) and assume that self-consistence in the DCA loop has been achieved, then we

can write:
1
lat (: - .
Gii (Zwm) = Fe ; Gc(Ka Zwm)- (2.28)

Hence, the last equality exhibits an easy access to calculate local quantities in the DCA

calculation, i.e. occupation numbers, magnetisation or local order parameters.

2.7 The QMC algorithm

As described in the previous section, the complexity of the original lattice problem can be
reduced dramatically by coarse graining of the Green function. Hereby, the bath Green
function G (iwy, ), which is determined from the coarse-grained Green function G (iw,,) and
the self-energy X.(iw,,), can be interpreted as the non-interacting Green function of the
cluster problem. The cluster problem may be solved by a variety of methods. Typical
candidates are the quantum Monte Carlo method (QMC) [12], the fluctuation exchange
approximation (FLEX) [13], or the non-crossing approximation (NCA) [14]. The most ap-
propriated method for our problem is the Quantum Monte Carlo technique, i.e., Hirsch-Fye
algorithm (HF). It was first developed in order to solve few-impurity problems and it con-
tributes very well to the Kondo problem as well as to the impurity problem of the DMFA.
Compared to the conventional Blankenbecler-Sugar-Scalapino (BSS) [15] algorithm, the
Hirsch-Fye algorithm does not show any stabilisation problems and it is characterised by
a mild minus-sign problem away from half-filling. On the other hand, the HF algorithm is
much more involved with respect to the CPU time and memory requirements. A compar-
ison of the scaling behaviour of the CPU time and memory requirements as a function of
system size and Trotter slices (which are directly related to the inverse temperature) respec-
tively, are shown for both methods in Tab. 2.1. Tt explicitly shows, that calculations with
the Hirsch-Fye algorithm are restricted to smaller clusters when compared to BSS calcula-
tions due to a poorer CPU time and memory scaling behaviour. Nevertheless, calculations
within the DCA are carried out in thermodynamic limit because spatial correlations which
exceed the cluster size are treated on a mean-field level, whereas the BSS calculations are
performed on a finite lattice, where finite size problems are still present. Furthermore, one

should keep in mind that the HF algorithm is in general an action based method, which
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2.7 The QMC algorithm

CPU time MEMORY
HF (N;N.)? (N;N.)?
BSS NN? N, N?

Table 2.1 Scaling behaviour of the CPU time and memory as a function of the number of
clusters N. and Trotter slices Ny of the Hirsch-Fye algorithm (HF) and Blankenbecler-
Sugar-Scalapino quantum Monte Carlo (BSS) algorithm.

means, that detailed knowledge of the Hamiltonian is not needed. In contrast, the BSS
algorithm is a Hamiltonian based technique which gives the important constitutional dif-
ference between both methods and it becomes crucial when we consider that the detailed
or effective form of the Hamiltonian of the cluster problem within the DCA self-consistent
loop is unknown. Furthermore, the Monte Carlo upgrade procedure of the BSS algorithm
additionally requires certain stabilisation techniques which increase the computational ef-
fort of the simulation [16]. Finally, as we will see in the next paragraph, the measurement
off time-displaced quantities can be performed in the HF algorithm without essentially
increasing of the computational effort.

In the first part of the next paragraph, basic concepts of auxiliary field Quantum Monte
Carlo techniques are presented. With the introduction of auxiliary fields, i.e., Hubbard-
Stratonovich fields, it is possible to manage a decomposition of the interacting term of
the underlying Hamiltonian. In a further step, the partition function can be expressed
by imaginary time propagators Ug(/3,0) and Bg(3,0), where the index s corresponds to a
given configuration of the introduced auxiliary field. Nevertheless, in order to calculate the
partition function, one has to capture all field configurations which in principle represents
an unsolvable task. To circumvent this problem, we adobe the Hirsch-Fye quantum Monte
Carlo algorithm, which allows us to reduce the whole phasespace of configurations of the
auxiliary field to a subset of configurations. The smaller configuration sample is chosen
in such a way that the occurrence of the field configurations are distributed according to

their occurrence probability. The Hirsch-Fye algorithm is presented in section 2.7.3.

2.7.1 Auxiliary Field Quantum Monte Carlo

In the forthcoming paragraph, we introduce the periodic Anderson impurity model (PAM)
[17] which solves the cluster problem already described above within the DCA self-
consistent loop.

The PAM is defined as:

H = Hy+ Hy (2.29)
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2 Dynamical Cluster Approximation

with

Hy = > e(k)d dio+ Y (cadl,dig + erf] fio)

k,o io
+ 3" V(k)(d], fro + h.c.) (2.30)
ko
1 1
Hy = UZ(nfiT - 5)(”,%1 - 5), (2.31)

where dig(fir)P) destroys (creates) a d(f) electron on site i with spin o, e¢; and €f are
the orbital energies of the d and f electrons respectively, V (k) is the d — f hybridisation,
and U the on-site Coulomb repulsion of the f-electrons. The operator dj,( fka)(ﬂ destroys
(creates) a d(f) electron with momentum & and spin o. The dispersion of the d electrons
is given by €(k). The reader is referred to [17, 18] for a detailed overview of the Anderson
model.

The goal of our investigation is the determination of the partition function Z =
Trle~BH=#N)] The cluster problem of the DCA is described by the PAM with the host
Green function G which corresponds to the non-interaction Green function of the cluster
problem. If we introduce Grassmann variables ’s, we can rewrite the partition function

as a path integral:

z = /D’}/*D’Ye_ foﬁ drdr’ Zi,j,g 'yl?ij(T)g*1(i,T;j,T’),yj’U('r/)_ 0@ dTHU(’YZ:U(T)y'Yi,U(T)) (232)

The input (free) cluster Green function G(i,7;7,7’) depends on the time and spatial co-

ordinates. The decomposition of the purely local Hubbard-like interaction term Hy is

performed in two steps. First, the exponent of the partition function is split off by in-
8

troducing a discrete set of time slices with lengths A7 = N and a positive integer N;:

Z= Tr[e_ﬁ(H_“N)] = Tr[(e_AT(H°+HU))Nl]. (2.33)

In the second step, the exponential function can be decomposed, by considering that for a

finite value of AT a systematic error (A7)? occurs since [Ho, Hy] # 0:
Z = Tr[(eAmHotHU) YN — [ (e~ ATHO~ATHUYN] L O(A7?), (2.34)

The error in A7 can only be reduced by an enhancement of the number of time slices
which automatically increases the computational effort of the calculation. By introducing
a bosonic auxiliary field ¢ [19] the two-particle interaction in Hy can be expressed as a sum
over all field configurations ¢ and one-particle operators which interact with the auxiliary

field ¢. In general, we can derive the following identity from the Gaussian integral:

A2/2 1 oo —¢—2—¢A
e = \/—2_7T d¢€ 2 . (235)
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2.7 The QMC algorithm

The important advantage of Eq. (2.35) lies in the fact, that for a given Hubbard-
Stratonovich field ¢ the one body-problem is exact solvable. For a numerical approach, it
is more convenient to discretise the auxiliary field where each configuration is described by

a vector s. Hence, we can rewrite the exponential function of the partition function:

AU (=Dl F-3) — o 3 T silflifa=1 1), (2.36)
s==+1
with
1 — AT
C=xe ATUNc/4 (2.37)
cosh(a) = 27V/2, (2.38)

With the decomposition of the exponential function in Eq. (2.34) and the introduction of
the Hubbard-Stratonovich field, the partition function in Eq. (2.32) may be written as:

Nl Ne¢
* —1
Z o« Tr,, /HHd%'*l i pe Dt VoG Nt e ¢~ Tito @7 Yi-10 (2,39)
L i

The integration over the electronic degrees of freedom (Grassmann variables) yields:

Z o Try,, [ [ det(Goo) ™, (2.40)

where

(Gso)igr = Gaay + 08,101,300, 1. (2.41)

2.7.2 Numerical implementation

The numerical implementation of the Hirsch-Fye algorithm requires a reformulation of the
partition function and the Green functions respectively. For this purpose, we introduce
imaginary time propagators Ug and Bg in order to reformulate the partition function in
Eq. (2.40):

2z =My T[detlt + BB, - B, (2.42)
S (e
with
BY = V7 (sm)g=ATho, (2.43)

A detailed derivation is given in the works of F. F. Assaad [20] and L. C. Martin [21].
The matrices V(U)(sn) have the components oas,d; j0; r—sites With the auxiliary field s, at
imaginary time step n. We also introduce the second-quantisation time evolution operator
UZ (12, m1):

7_2’ 7_1 H H aUV(sn agefATazhoacr (244)

o n=ni+1
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2 Dynamical Cluster Approximation

The operator a(f) destroys (creates) an electron on a conduction or impurity site. We
should keep in mind that the electron interaction takes only place on the f-sites. What
follows is an overview of the measurement of observables and time-displaced single- and

two-particle Green functions within the Hirsch-Fye algorithm.

Observables

The thermodynamic definition of the expectation value of the variable O is given by:

Trle PHO]

O T

(2.45)

The evolution of the exponential function in imaginary time can be reformulated by the

imaginary time propagators Us(72,71) (Eq.(2.44)):

) — ZeTrlUs(8.1)0U,(7.0)
> o1, det(1 4+ B3(5,0))

Z [1, det(1 + BZ(8,0)) .<TT[Us(ﬁa7—)OUs(Ta0)]>
>[I, det(1 + BZ(5,0)) [1, det(1 + BZ(5,0))
Z [1, det(1 + BZ(8,0)) ( r[Us(8, 7)OUs(T, 0)])
>[I, det(1 + Bg(5,0)) Tr[Us(B,0)]
= ZPS s (2.46)

The above equality is a result of the properties of the Slater determinants and will not be

discussed here. Eq. (2.46) shows, that the expectation value of an observable O can be
expressed as a weighted average of the measurement of O for a given Hubbard-Stratonovich
field s. The quantity Pg corresponds to the density matrix which, as opposed to in classical
simulation, can be negative and leads to the notorious minus-sign problem. In order to see
this problem, we keep track of the sign 7, of the quantity ps = [[, det(1 + BZ(3,0)). We

formulate p), = [ps| and

> sPs(0)s _ > s IPsIns(0) s
Zs Ps Zs |ps|775
Zspfs[nsOS] ] Zsp;
> s DlsTs D s Ds
_ % (2.47)

The Boltzmann weight was written as ps = pins with ns = £1. The last equality shows,

<O>p =

that in the case of a very small average sign, the expectation value of the observable O
underlies strong fluctuations. In order to compensate for the reduction of the quality of the

-2

data, one has to improve the statistics of the calculation by a factor of (sign)~* compared

to the situation where the minus-sign problem is absent.
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2.7 The QMC algorithm

The minus-sign problem occurs in the repulsive Hubbard model away from half-filling. In
the case of particle-hole symmetry and for the attractive Hubbard model, it can be shown,
that the density matrices for the two spin channels occur with the same sign for any field

configurations s:
sign{det[1 + B]]} = sign{det[1 + B}]}, (2.48)

and hence, no minus-sign problem occurs.

Equal-time observable

We can estimate the expectation value of a single-body observable O = cf Ae:

0
(O)s = 5= Tr[Us(8,7)e"Us(7,0)]la=0

= (33 Indet[1 4 Bs(3,7)e* Bs(7,0)]|a=0
a

= 2 Trinf1 + By(B, 7)™ Ba(r, 0)llaco

= Tr[Bs(r,0)(1 + Bs(3,0)) ' Bs(8,7)A]
= Tr[(1— (14 Bs(1,0)Bs(8,7)) 1) A] (2.49)

The equal-time Green function may be written with the choice of A: Ay, 4, = 04y 4002

as:
Gs(T7 T)J:,y = 5x,y - <CTAC>37 (2.50)
and with Eq. (2.49) we derive the important result:

Gs(T,7)2y = [1 + Bs(7,0)Bs(3,7)]; . (2.51)

'T7y )

which states, that any equal-time Green function can expressed in terms of matrices Bsg.
Furthermore, it can be shown, that any equal-time multi-point correlation function can be
formulated in sums of products of single-particle Green functions which corresponds to the
validity of Wick’s theorem. More technical considerations can be found in [20] and will

not be repeated in this work again.

Imaginary time displaced Green Functions

Imaginary time displaced Green functions, such as single- and two-particle Green func-
tions determine a variety of crucial properties of many particle systems. They contain
information about spin as well as charge gaps [22, 23]. Furthermore, an inverse Laplace
transformation, which can be performed via the Maximum Entropy technique [24, 25]

(Sec. 3.2), provides the real-energy spectrum of the corresponding correlation function
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2 Dynamical Cluster Approximation

and makes a direct comparison between theory and experimental measurements, such as
photoemission, neutron scattering and optical measurements, possible.

In the following paragraph, we are going to show, that the time dependence of Green
functions can be absorbed in the operators BJ. Furthermore, we present exemplarily for
the two-particle Green function, that in general, any n-point time-displaced correlation
function can be mapped onto n-point equal-time correlation functions, which consist of a
sum of products of equal-time Green functions.

The single-particle Green function is defined by:

—<am(7'1)a;5(7'2)>, ifrp >7o

G(T1,72)ay = —<Taz(7'1)a;',(7'2)> = (2.52)

<aL(T2)aJ;(T1)>, if <

We neglect in the forthcoming paragraph the minus-sign in the definition of the Green
function due to convenience. By considering Eq. (2.46), the time-displaced Green function

can be formulated as a weighted average over the field configurations s:

G(Tla 7—2):1:,3; = Z PsGs(le T2):v,y- (253)

Assume that 8 > 71 > 75 holds, then we can rewrite Gg(71, 72):

Tr [Us(ﬁ, 0)ellm axe_HTleHmaLe_HT?]

(az(m1)af(m2))s = T 0.0 (2.54)
Tr [Us(ﬁ,TQ)Ugl(Tl,Tg)axUs(Tl,Tg)a;r/Us(TQ,0)}
= (2.55)
Tr[Us(8,0)]

By using the definition of Us(7;, 7;) in Eq.(2.44), the term U (71, 72)a,Us(m1,72) can be
expressed as a sequence of imaginary time dependent operators etAraldia,

aI(T) — eATaTAna o eATaTAgaeATaTAlaaxefATaTAlaefATaTAga o efATaTAna, (256)

with 71 = 79+n-A7. The original Hamiltonian is encoded in the quantities A; via Eq.(2.44).

AT(ITAlaa$efATaTA1 a

The propagation in imaginary time of a,(7) is described by e and from

this we obtain the differential equation:

Oay(T) B

—, = —(Aa(m))s, (2.57)
with the solution

a(t) = (e *7a), and similarly a'(7) = (a'e7). (2.58)

If we successively apply the above equation then we obtain:

Ug ' (11,m2)a,Us(11,72) = (Bs(11,72)a), (2.59)
Uy (1, m)alUs(m,m2) = (a'BSH (11, 7))a (2.60)
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2.7 The QMC algorithm

With the last result, Eq. (2.55) may be rearranged as:

Tr [Us(ﬁ,72)[35(71,Tz)a]xaLUs(TQ,O)]

(az(n)al(r2))s = T 0.0 (2.61)

TrUs(8, TQ)GZGL [Us(72,8)]

B e (262
= Z[BS(TL TQ)]x,st(T% TZ)z,y (263)
= [BS(Tla 7—2)Gs(7—2, TQ)]z,ya (264:)

where the matrix Bs can be pulled in front of the trace. A straightforward calculation

yields the following result for the case 7 > 7:

Gs(7—1,7—2)z,y = —[(1 — Gs(Tl,Tl))Bsil(TQ,Tl)]I’y. (265)

The imaginary time dependencies of the Green function G4 are absorbed in the propagators
Bg(i, 7). Equivalent to the previous considerations, a time displaced two-particle corre-
lation function can be decomposed into a sum of products of equal-time Green functions

and operators Bg:

(al(m1)ax(r1)al (r2)ay(72))s = (2.66)
= > BN m)]ew[Bs(11, 72)]am (al (T2) az, (12)al (72)cy (72)) o (2.67)
= Z[B;l(ﬁ, 72)]2,2[Bs (71, 72) 2,21 [(1 — Gs(12,72))2,2(1 = Gs(72,72))yy

+(1 - Gs(7'2,7'2))y,st(7'2,7'2))z1,y:| (2.68)
= [Bs(m1,72)(1 = Go(72,72)) B3 (71, 72)|ea[l = Gs (72, 72)lyy

+[(1 = Gs(72, 7)) B L (11, 72)]y.2 [ Bs (11, 72)Gs (71, 72) |y (2.69)
= [1 - GS(TlaTl)]mw[l - G3(7'277'2)]y,y - [G3(7'27Tl)]yw[GS(Tl?TZ)]%y- (2.70)

In the above derivative, we used the inverse property of the Bg(71,2) matrices:

Bs(11,72)Gs(72,72) By (11, 72) = Gs(71,71) (2.71)

2.7.3 The Hirsch-Fye algorithm

The numerical implementation of the time-displaced Green function will be discussed in
the following paragraph. For theses purposes, the partition function in Eq. (2.42) Z is
rewritten in terms of matrices O7 with the property det|O?] = det[l + BY, BY, ;... BY]
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2 Dynamical Cluster Approximation

and the explicit form:

1 o - - . BY
—Bg 1 .o . 0
0 -BJ 1
07 = 3 (2.72)
0
0 . -0 -Bf, 1

The time-displaced Green function Gg(7;,7;), which is a function of discrete imaginary

time slices 7; = {A7 with ¢ = 1,..., N;, can be formulated compactly in matrix form:
Gi(m,m)  Gi(mm) - - GE(T,7N)
ga _ Gg(7—2’7—1) GZ(T%TQ) o Gg(7—2’TNl) ’ (273)
G3 (TNle) GZ(TNHT?) T Gg(TNHTNL)

with the relation
¢ =01, (2.74)

In Eq. (2.73), we adopt the notation that each Green function G(r;,7;) represents a

matrix, where the indices  and y indicate the spatial dependence of the Green functions:

G (ri,m)hin (GO, - o (G273 N
G (72, 7) — (GO (mi, )l [GO(mimi)lee -+ (G (Ti T5)]2,Nior @273)
[GO(Ti’Tj)]Ntot,l [GU(Ti’Tj)]Ntot,Q o [GO(Ti’Tj)]Ntot,Ntot

where [G7(7;,7j)]z,y is the time displaced Green function and N, characterises the total
number of sites.

The Green function matrix ¢ is determined by a given Hubbard-Stratonovich field con-
figuration s. By changing the field configuration s to a new configuration s’, the Green

functions matrix changes as follows:

g% =g+ ¢ A (1 —g°%) with A7 = (V7 eV —1), (2.76)
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2.7 The QMC algorithm

where ¢’ is the new Green function matrix corresponding to the new auxiliary field. The
matrices V7 are defined in the spirit of Eq. (2.44) as:

Ve oo - - -0
0 V& 0 - - 0
Vi=lo0 0 VW 0 - 0 . (2.77)
0 . . -0 V]%l

The validity of Eq. (2.76), which relates Green functions for different auxiliary fields to

each other, can be shown by considering the matrix equation:

O =eV"0° with § =071, (2.78)

so that (omitting the spin index o):

g = [0+0-07" (2.79)
= [Ol + e_v — e_vl]_l (280)
= (O) = (O eV =V, (2.81)

where the last equality follows from the relation ﬁ = % — %Bﬁ. In the end, the

Dyson equation (2.76) arises from Eq. (2.81) by inserting § = ge" .
Finally, it should be summarised, that Eq. (2.76) describes the basis of the Hirsch-Fye
algorithm and determines the upgrade scheme of the Green function during the Monte

Carlo procedure.

Monte Carlo scheme

What follows is a short overview of the Monte Carlo procedure in the Hirsch-Fye algorithm
and the upgrade scheme of the Green function ¢° which was introduced in Eq. (2.76).
We have seen, that the quantum physical problem is reduced to a classical problem by
introducing a Hubbard-Stratonovich field. The field configuration is described by s,
where i’ describes a spatial and '’ a time coordinate. For further considerations, the
indices 1" and '’ are combined to a superindex 'n’. A change in the Hubbard-Stratonovich
field s,, — s/, is accepted with the probability Rs .. In Section 2.7.1, we have seen that
the probability of the occurrence of a given field configuration s is given by Ps. From

this it follows, that the transition probability from one field configuration s to a new field
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2 Dynamical Cluster Approximation

configuration s’ can be written as:

det[1 + B B _, ... BY]

[
Re s = 1;[ det[l + B, B, _, .. BY]
— Hdet[g”(gw)_l]
= J[detlt +A7(1 - g%)]. .

This transition probability obeys the requirement of detailed balance and ergodicity. In

the beginning of the calculation the Hubbard Stratonovich field corresponds to the non-

interacting Green function, e.g. all s,, are zero. In order to update the Green function one

walk through the space-time and try to flip each spin. If Ry _. 4 is greater than a random

number between zero and one, then the field configuration changes as follows:

-5 ifn=7f

sl = " f (2.83)
Sn ifn#f

Here, n’ denotes the space-time coordinate where the change of the field configuration

takes place. After the single-spin flip, the quantity A? exhibits only one non-zero element

which is given by:

o _ _—2o0as;
P e ! 1. (284)
This expression can be introduced in the Dyson Eq. (2.76) which now reads:
g?w = g;co;f/ + Zg}o;f//A;//,f//(l — go—)f//J/, (285)
f//

If a single spin-flip in the Hubbard-Stratonovich field is accepted, then we can use Eq. (2.76)

to derive the new Green function from the old one by calculating:
97 =g’ +A(1—g7)] " (2.86)

We use the Sherman-Morrison formula in order to calculate [1+ A%(1—g?)]~! which gives

us the final expression:

o o o _ _
95785797 — Vg p

1+(1—g‘7)f’];A

g}‘ff/ = g;‘c,f/ + T (287)
Ihf
The stabilisation of the Hirsch-Fye algorithm was mentioned in one of the previous sec-
tions. The reader should note at this point, that due to the knowledge of the Hubbard
Stratonovich field configuration s, the Green function ¢° can be recalculated from scratch
at any time. The recalculation has the appealing advantage, that one can compare the

recalculated Green function with those which are determined by successively applying
Eq. (2.87).
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In an actual calculation, one starts with a warmup phase, which consists of several hundred
walks through the space-time lattice (sweeps), until the system comes into equilibrium and
measurements can be started. The number of sweeps has to be large enough in order to
take in account the autocorrelation time. The computational effort in the above described
algorithm is basically given by the upgrading of the Green function. One upgrade of the
Green function after a single site spin flip is an operation which scales with (N.N;)2. In
order to achieve a complete walk through the space time lattice, the numerical cost rises
to (N.N;)3. This fact explains, why the Hirsch-Fye algorithm is very expensive when
it is applied to lattice problems, i.e., the Hubbard model. Nevertheless, the Hirsch-Fye

algorithm is a successful tool for application to many impurity problems.

2.8 SU(2) Symmetry Breaking

Magnetic order can be incorporated within the DCA calculation by allowing the host to
develop long range AF order. The technical implementation is illustrated in Fig. 2.5. The
unit cell in real space is doubled allowing for AF order. This leads to a reduced (magnetic)

Brillouin zone which is depicted in Fig. 2.6 (a).

Figure 2.5 SU(2) symmetry broken DCA calculation. AF
unit cell with new basis vectors in real space. The unit
cell consists of a c- and d-orbital. t and (') indicate the

nearest and next-nearest neighbour hopping.

What follows, is a schematic derivation of the Hamiltonian with respect to the doubled unit
cell, where we incorporate only the hopping term with amplitude t. Later on, we add to
the corresponding Green function a next-nearest neighbour hopping term with amplitude
t' (see Fig.2.5) and of course an interaction term, which is encoded in the self-energy X.
Referring to Fig. 2.5, we consider one unit cell, which is characterised by the vector R,

then we can formulate the Hamiltonian with the hopping amplitude ¢ as follows [26]:
Hy = —tZ{(deR—i— h.c. )+(c}dR_a1 + he.)
R

H(dcRia + hc ) + (dhcRriariay + hoc. )}, (2.88)

with the vectors a; = a, — ay and ay = a; + a, whereas a, and a, are the principle

vectors in real space. A Fourier transformation provides the representation of Eq. (2.88)

31



2 Dynamical Cluster Approximation

(0,m) (m, 7)
@ o
° ® (7.0
(0,0)

Figure 2.6 Sketches of the magnetic Brillowin zone (BZ) for N. =1 (a) and N. =4 (b).
The unit cell consists of two-orbitals (c- and d-orbital), which results in a reduction of
the Brillouin zone. The colour code indicates regions in the BZ, where the self-energy

18 constant with respect to the momentum dependence.
in the basis of operators c(I? and d(I? with momentum vector K:

o= 5 (Gt
K

with Z = 7175 = (1 + e a1)(1 4 ¢~Ka2)_ In the next step, the Hamiltonian is diago-

nalised by the following unitary transformation:

0 Z CK

B (2.89)
Z 0 dr

R B T (2:90

V2 e TP

which leads to the intermediate result:

1 , 1 ‘ Z] 0
Hy = —t (_(CT + e gt ), —(cT _ gt > )
; \/5 K K \/5 K K 0 —‘Z‘
va(ex e (2.91)
%(CK — ePdy
=—t> Z(K)gkvk — | Z(K) ik, (2.92)
K

where we have introduced the operators ’y;{ = ck- + eii”d}{ and n;{ = ck- — e*ipd}{.

Finally, we can identify these operators with the creation and annihilation operators of the

original lattice:

ygp = CS) (2.93)
W = o (2.94)
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2.8 SU(2) Symmetry Breaking

with @ = (%, %) and a is the lattice constant. This has the consequence, that the Hamil-

a’

tonian can be rewritten in the basis of the reduced (magnetic) Brillouin zone:

Hy=—t Z e(k)chk +e(k + Q)CL+Qck+Q. (2.95)
k € mBZ
In the spirit of the DCA approximation, the simplest realisation of the SU(2) symmetry
breaking code can be performed by choosing N, = 1. In this case, the coarse-grained
Green function is the local Green function and the averaging is carried out over the entire
magnetic Brillouin zone (see Fig. 2.6 (a)). In order to include the k-dependency of the self-
energy on a basic level, we split the magnetic Brillouin zone into four cluster patches. On
each cluster patch, the self-energy is constant with respect to the momentum dependence.
This partition corresponds to a N, = 8 DCA calculation for the paramagnetic case.
In the next step, we go beyond the non-interacting case and incorporate the self-energy.
The starting point of our consideration is the Dyson equation for the interacting cluster
Green function:
1

GO (K, iwy) = ith
SEotem) =GR o) — S (K ion)
] ] 1 0
Goo(K iwy) = (iwm + 1)
0 1
2t/ (cos(Ky) + cos(Ky)) Z
_ and
Z 2t' (cos(K3) + cos(Ky))

$9(K iwy) = YK iwn) X99(K,iwy,) 7 (2.96)

Y5 (K iwn) X55(K,iwn,)
where Z is defined by Eq. (2.89). We consider additionally to the Ansatz of Hy, a diagonal
hopping term with amplitude #’. At this point it should be mentioned, that the momentum
dependence of GZ (K ,iwy,) is formulated with respect to the Fourier transformed vectors
ai and ay and therefore, the hopping dispersion for ¢’ occurs in the diagonal elements of
Go: (K, iwy,). The self-consistent cycle requires an initial guess of the self-energy. We set

1 0
37 =Ac with the spin degrees of freedom o = £1 and a finite value for A.

0 -1
The application of the unitary transformation in Eq. (2.90) leads to the Green functions
with the momentum vectors k and k + . Equivalent to the procedure in Section 2.4,
where the derivation of the lattice Green function from the cluster quantities is described,
we can derive the interacting lattice Green function by replacing Go.(K,iw,,) by the
corresponding lattice Green function.
The Monte Carlo ratio and the upgrade equation of the Green function is in principle given

by the previously presented results for the paramagnetic calculation but with a distinction
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2 Dynamical Cluster Approximation

of both spin channels o (see Eq. (2.87)).

On the basis of equal-time correlation functions, the calculation of the (double) occupation
of site ¢ or the magnetisation are determinable within the Hirsch-Fye algorithm. They can
implemented in their canonical form. An improvement of the accuracy by reduction of the
statistical error can be achieved by incorporating the time-translational invariance of the

Green function G(1 = 7; — 7;) (see Section 2.7.2).

2.9 U(1) Symmetry Breaking

What follows is a brief discussion of how superconductivity can be taken into account within
a DCA calculation. In the first step we assume that our U(1) symmetry breaking DCA
code contains the static BCS mean-field solution. Hereby, a particle-hole transformation
translates the anomalous Green function into spin-flip Green functions and the repulsive
Coulomb interaction U changes its sign. The technical implementation requires a refor-
mulation of the Monte Carlo ratio (Eq. (2.82)) as well as the upgrade formula (Eq. (2.87))
due to the occurrence of the spin-flip Green functions.

Starting point of our consideration is a general Hamiltonian with the following form [27]:

> [ it (—— ) )
+ Z / d’r’ / gl ()l (r)o(r — ) (7 (), (2.97)

where the field operators 1/)((,-“ destroy (create) an electron with spin o at site r. Bardeen,
Cooper and Schrieffer proposed in their BCS theory a simplified interaction term, which
incorporates only an attractive short-range interaction. This contact interaction is given
by:

v(r — 'r/) = —g(S(’r — T/), (2.98)

with a positive coupling constant g. The quartic term in Eq. (2.97) can be simplified by a
common mean-field decomposition?, which neglects fluctuation of the form w}LwI — (wJTer
With the abbreviation A = &>, (c_g|crr), where Q is the volume, the Hamiltonian in

Eq. (2.97) may be written in momentum space as:

Hy = Z e(k:)cLTckT +e(—k kic k| — Z Ak cch g, the. (2.99)
k

PAB = (A= (A))(B = (B)) + A{A) + B(B) — (A)(B) " A(A) + B(B)
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2.9 U(1) Symmetry Breaking

The Hamiltonian Hy suggests that we have to introduce additional Green functions, which

destroy the U(1) symmetry. An elegant notation is given by the Nambu formalism [28]:

(T (r)cf; (0))  —(Teny(T)e—py (0))

G(k,7) = T T T , (2.100)
_<TC_1¢1(7')CM(0)> _<Tc—kl(7)0_kl(0)>
which holds the Dyson equation:
Gk, iwn) = [iwnmoo — (e — p)o3 — Be( K, iwm)] 7, (2.101)

whereat o; corresponds to the Pauli-spin matrices. The diagonal parts of the Nambu-matrix
Y.(K,iwy,) describe quasiparticles renormalisations and the off-diagonal parts contains
information about the K- and frequency dependence of the pairing state. The interaction
of the electrons on the f-sites are taken into account by adding the Hamiltonian operator
Hy = UZZ-(CITC” - %)(c;rlcil — 3) to the BCS Hamiltonian:

H = Hy + Hy. (2.102)
Consider now a canonical particle-hole transformation in one spin channel:

W= (2.103)

%Tl = (2.104)
which leads to a reformulation of the Hamiltonian in Eq. (2.102):

H o= etk +e(—k)1 =+ 7))

k
+ > ARkl + > AR e
k k

1

1
= U Ol = )0 - 5)- (2.105)

Due to the particle-hole transformation the anomalous Green functions are replaced by
spin-flip Green functions and the repulsive Coulomb interaction becomes an attractive po-
tential. Naturally, these changes have an influence on the Monte-Carlo ratio (see Eq. (2.82))
as well as on the upgrade formula in Eq. (2.87).

In the attractive case, the Hubbard-Stratonovich (HS) field ¢ couples to the charge in order
to avoid a complex HS field. The interaction term may be compactly rewritten as:

Hy = ’VNC Z 6as(nﬁ+nil—1)

S

1
with v = 5 and €27U/2 = cosh(w). (2.106)

By regarding Eq. (2.82), the probability of acceptance of a new Hubbard-Stratonovich

configuration after a single-site spin flip is determined by:

Ry g = det[g(g') e (2.107)
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2 Dynamical Cluster Approximation

The plus(minus) sign depends on the actual spin flip, i.e., a +(—) sign occurs if one tries
to flip a down (up) spin to an up (down) spin.
The evaluation of the determinant provides the final result for the update ratio in the

Hirsch-Fye algorithm:

o

Rs_ .o = ei2a {H(l + Afo)(l — g)fo,fo — HAfo(l — g)fo,ffo’ } (2.108)

where we have introduced the superindex f which indicates the space coordinate i and the
time index [ where the spin flip has taken place. At this point, we would like to point out,
that the above ratio boils down to the generic ratio in Eq. (2.82) if the spin-flip Green
functions are zero.

Finally, the upgrade formula in Eq. (2.87) becomes, of course, more complicated due to the
existence of the spin-flip Green functions. Assume that a single spin flip at superindex f

is performed, then the upgraded Green function ¢’ at superindices f, f’ is given as follows:

AT 1
9.7 A5 =9 g

/ — _
R L+ (=97 1185 ;
). - AL
908 %gﬁf@}f
EEUEN|
(1_g)fl,f/_ | g)foTAf’f (1—g)ﬁ,f/ ) (2.109)

L+ (=07 72} 5

where A% . is defined by Eq. (2.84). One should keep in mind, that the definition of A% ,
has to be adjusted when the simulation starts from the non-interacting system where all
Ising spins have the value zero. Evidently, the above upgrade equation for the Green

function reduces to Eq. (2.87) if the spin-flip Green functions are zero.

Observables

In this section, we briefly present some generic observables which could be determined
within the Hirsch-Fye algorithm. As mentioned above, the Green functions in the Hirsch-
Fye algorithm are described in the basis where the anomalous Green functions (c(f)-basis)
are expressed by spin-flip Green functions (W(T)—basis) which of course has a direct influence

on the observables.

e The occupation number is given in the (y(P-basis) by:

(n)=(1- <'7iT'7;rT>)<'7il'7;rl>- (2.110)
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2.9 U(1) Symmetry Breaking

e The double occupation in the (y(f-basis) can be derived from the expression
(nipnqy) = (c}LTCiTchiQ. As mentioned in Section 2.7.2, the fermions interact only
with the auxiliary field, and therefore, we can apply Wicks theorem [29] for a fixed
Hubbard-Stratonovich field configuration. The two-particle Green function reduces

to a product of single-particle Green functions (see Eq. (2.70)):

(mipnap) = (1= (v vl + Qardy) and)- (2.111)

The s-wave order parameter is a result of the correlation functions of the anomalous

Green function, which can be readily written in the (")/(T)—ba.SiS) as:

ASo = —irttal V) — itV 1) — i, 1) — <%wf+#y¢>a (2.112)

with the index #,, which represents the adjacent lattice sites in x- or y-direction

from lattice site 7.

The superconducting d-wave order differs from the s-wave order parameter only in

the underlying symmetry. It may be written as:

Ao = =t M) = i gear) + it ) + itV 1) (2.113)
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Analytical
Continuation -

Maximum Entropy
Method

3.1 Analytical Continuation

In the following chapter, we are going to describe the idea of analytical continuation
of Matsubara functions to the real frequency axis. The quantum Monte Carlo tech-
nique provides correlation functions as functions of inverse temperature or imaginary time:
G(t) = —(TO(T)O1(0)). In order to compare the information of these correlations func-
tion with experimental data, one has to extract the real frequency dependencies of such
quantities.

Analytical continuation is based on basic concepts of the theory of analytical functions.
Let us review overcome these concepts by considering the one- and two-particle Green

functions which exhibit the following periodicity:
G(r) = ¥G(7 + B), (3.1)

where the upper (lower) case holds for the fermionic (bosonic) case. The Green function
is uniquely defined in the interval 7 € [0,3). The Fourier coefficients are the Matsubara

functions G(iwy,) which depend on imaginary frequency:

Gr) = %Zeiw’”TG(iwm) (3.2)
B .
G(iwm) = /OdTeW’”TG(T). (3.3)

The sum is carried out over Matsubara frequencies w,, = (2m + 1)7/3 for fermions and
wm = 2mn /[ for bosons, where m € Z. With the explicit form of the spectral function
A(w) in the Lehmann representation, Eq. (3.3) may be rewritten as:

400 w
Cliwn) = / AW g, (3.4)

oo MWy —w
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3 Analytical Continuation - Maximum Entropy Method

In the following, we can define the Green function G(z):

+oo UJ,
G(z) E/ dw’ AW) (3.5)

17
PSS z—w

with complex energies z. This Green function is an analytic function in the upper and
the lower complex plane and exhibits poles on the real frequency axis. Per construction,
G(iwp,) is concordant with G(z) at all Matsubara frequencies iw,, which allows us to apply a
result from complex analysis: if two functions coincide on an infinite set of points then they
are fully identical functions within the entire complex plane [30]. Hence, the Matsubara
function G(iwy,) or, equivalently, G(7) can be uniquely extend to the whole complex plane.
In order to obtain the spectral function A(w), we define the retarded (advanced) Green

function G#4)(w) = G(w =+ in) and the analytical continuation is performed by:

GPA () = Giwn — w + in) and T %Im[GR(A) ()] = A(w) (3.6)
The single-particle spectral function A(w) is positive definite

A(w) >0, (3.7)
and a sum rules ensures the normalisation

+00
/ dw Aw) < oo, (3.8)
—0o0

which gives A(w) the appealing property that it can be interpreted as a probability distri-

bution. If we apply a Fourier transformation to Eq. (3.5), then we can write:

Gir) = ¥ / dw%Z%A(m) (3.9)
- /dwe_‘;Tw;lA(w) (3.10)

= /dwK(T,w)A(w) (3.11)
In the last step, we adopt the kernel K (7,w):

e/ (e7“P +1), fermions

K(Ta w) =
e 7/ (e7“# —1), bosons.

(3.12)
In principle, Eq. (3.11) displays the relation between the imaginary time Green function
G(7) and the spectral function A(w). Hereby, the analytical continuation can be under-
stood as an inversion of the functional expression K[A(w)] = G(7). An analytical approach
in order to perform the inverse Laplace transformation is not possible and from the nu-
merical point of view, a straightforward inversion leads to unreliable results. The reason is

given by numerical instabilities, which come from the extremely large condition number of
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3.2 Maximum Entropy Method

the kernel. This is shown by a singular value decomposition of the kernel K = UDV into
an orthogonal matrix U, a diagonal matrix D and an upper triangular matrix V. The diag-
onal matrix D exhibits very large and small eigenvalues, which would be mixed up during
a simple matrix inversion of the kernel function. Additionally, the input data is incomplete
and noisy, which makes the inversion of the Laplace transformation even worst. Finally,
correlation effects of the input data between different bins and time slices could cause an
over-fitting of the data. This mean, that one extracts structures out of the QMC spectrum,
which are not actually present. All these arguments demonstrate why the inversion of the

Laplace transformation is an ill-defined numerical task.

3.2 Maximum Entropy Method

The state of the art strategy in order to tackle the inverse Laplace transformation is the
Maximum Entropy method [24, 31, 32]. This method was first introduced in order to
improve noisy astronomical data [33]. In the meantime, it has become a standard tool
for analysis of statistical data [34]. This method was also successfully applied to systems
of many-body problems, i.e., to the one- and two dimensional Hubbard model [35, 30,
37, 38, 39, 40], to the single impurity Anderson model [11], and to spin systems like the
spin-1/2-Heisenberg model [12, 43].

In the following section, we emphasise the basic idea of the classical Maximum Entropy
method, before we summarise a stochastic implementation of the analytical continuation
which was formulated by K. Beach. [25]

Generally, the Maximum Entropy method is based on the idea of maximising, a so-called
aposteriori probability as a function of the given information content. This means in our
case, that the Maximum Entropy method estimates the most probable spectral function A
with respect to the given input data G and an additional prior knowledge of the spectral
function which is encoded in a default model m, i.e., this corresponds to the maximisation
of the conditional probability of P(A|G, m). The conditional probability P(A|G,m) can
be computed in the framework of Bayesian statistic [41], which states that P(A|G,m) is
nothing else but,

P(G|A,m) P(Alm)

P(A|G,m) = PG

(3.13)
The right hand side of Eq. (3.13) consists of the Likelihood function P(G|A,m), the en-

tropic prior P(A|m) and the evidence P(G|m) which can be written in terms of the Like-

lihood function and the entropic prior:

P(Glm) = / DA P(G|Am) P(A|m), (3.14)
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3 Analytical Continuation - Maximum Entropy Method

and represents only a normalisation factor. The maximisation of the aposteriori probability
P(A|G,m) is, thus, equal to the simultaneous maximisation of the Likelihood function and
the entropic prior.

Let us discuss the Likelihood function and the entropic prior in detail:

P(G|A,m): Generally, the Likelihood function represents a procedure which allows to fit
parameters to a given data set. In our case, this procedure poses the question: what is
the most probable data set G which differs as little as possible from a data set G which is
extracted from a given spectral function A by application of the Eq. (3.11)? The Likelihood
function [15] gives us the correct answer:

1
(2m)Ni/24/det C

X*(A) = Z (GT - ZKT,iAi> C;i/ (GT' - ZKT/,iA’i> . (3.15)

7,7’

P(G|A,m, ) = e 34 ith

The matrix C is the covariance matrix and N; represents the number of time slices (see
Sec. 2.7.1) and « serves as a statistical parameter. Obviously, x? in Eq. (3.15) is inde-
pendent from the default model m and « and the conditional probability is normalised to
one. In the spirit of the maximum Likelihood approach, the best solution of the inverse
Laplace transformation is given by the G which minimises Eq. (3.15). Hereby, the apriori
knowledge is totally neglected and the input data will be over-fitted.
P(A|m): The apriori knowledge about the input data set is encoded in a default model m.
The default model should not underlay any constraints except some elementary conditions
which ensure that the default model (or the spectral function A) can be understood as a
probability distribution. In the case of non-existence of prior information the prior entropy
is given by P(A|m) = const.
On the basis of general considerations of the Maximum Entropy axioms [33], it is possi-
ble to derive a close expression for the information content of the spectral function with
respect to a default model. Hereby, the Maximum Entropy axioms can be summarised
by the key words: subset independence, coordinate invariance, system independence and
scaling properties. The apriori probability for a positive additive distribution function is
determined by:

P(Alm) = 5, (3.16)

Zs

with Z serves as a normalisation factor: [DA P(Ajm) = 1 and « is a free statistical

parameter. The entropy can be written as [33]:
& A
S = /OO dw [A(w) —m(w) — A(w) In (%)] . (3.17)
The entropy describes the difference between the spectral function A and the given default

model m. If the default model is equal to A(w) the entropy yields zero and becomes
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negative otherwise. The combination of the Likelihood function and the apriori entropy

leads to an expression for the aposteriori probability [16, 47]:

P(A|G) ~ e5~X°/2, (3.18)

which exhibits a competition between P(G|A,m) and P(A|lm). The first term in the
exponent take account of the information entropy, i.e., the Maximum Entropy method
would just prioritise the spectrum which is the most indefinite against prior knowledge
and the second term prioritise the classical minimisation of y?, which corresponds to a

classical fit of a data set to a given model.

3.2.1 Stochastic Analytical Continuation

Another way to perform the continuation of correlation functions from imaginary time
to real frequencies was shown by K. Beach [25]. In particular, Beach could identify the
maximum entropy method as a special limit of stochastic analytical continuation. Hereby,
the continuation problem is mapped onto a system of interacting classical fields n(z). The

thermally averaged value of this field is given by:

(n(z)) = % / D n(x) e, (3.19)

where 7 severs as a normalisation factor and the integral has to be taken over all field
configurations n(z). The underlying Hamiltonian is chosen in such a way, that the ground
state solution corresponds to the unregularised inversion of the input data with the regu-
larisation parameter «, which can be interpreted as a fictive inverse temperature. In the
high temperature limit (v — 0), the integral in Eq. (3.19) averages all field configurations
and the average is independent from the input data G(7). These two extrema obviously
correspond to the over-fitting (Q ~ x?[A]) and over-smoothing limits (Q ~ —S[A]) which
were described in Sec. 3.2. The evaluation of the integral expression in Eq.(3.19) requires
a discretisation of Dn and a Monte Carlo technique is utilised in order to tackle the huge
phase space. During the Monte Carlo procedure each field configuration C' = {r,,a}
is parametrised by a set of so-called walkers which exhibit a given residue r, > 0 and

coordinate 0 < a, < 1:

ne(z) = Z’I“»Y dx —a,) (3.20)

gl
The Monte Carlo procedure starts with an arbitrary start configuration and new config-
urations are suggested by varying the residues and coordinates of the walkers. A new
configuration causes an energy shift which is determined by H and the acceptance of a
new configuration is controlled with the usual Metropolis algorithm [48]. The updating
process incorporates the detailed balance criterion and a normalisation constraint on the

classical field (. 7y = const) which secures the normalisation of the spectral function.
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As mentioned before, the parameter « can be connected to an artificial temperature. Sim-
ulations for different temperatures are carried out simultaneously with a parallel tem-
pering technique [19]. Adjacent temperature layers can interchange their configurations
which leads to an effective updating scheme. If the systems enter into equilibrium one
can starts the measurements of the internal energy with respect to the temperature
({U(ayp) = (H[n])a, : p=0,...,N}), where N characterises the number of temperature
layers. Furthermore, the specific heat can be obtained from the derivative of the internal
energy with respect to the temperature and a phase transition would cause a jump in the
specific heat at a particular energy E*. Beach argues, that the correct spectral function

A(w) is given by a sum over all field configurations (n(z)) g which have the energy E < E*.

3.2.2 Analytical Continuation of two-particle correlation functions

The following section presents some comments on the usage of the Maximum Entropy
method in the case of two-particle correlation functions. As we have seen in Eq. (3.11),
the Kernel exhibits in the bosonic case a divergence for w = 0. A simple symmetrisation

of the Kernel function can circumvent this problem:

x(gw) = —x(q,—w)
1 [ee] e—TW
= ;/ dw 1_cFw x(q,w)
R Y o e Ow bw
= 7T/_Ood(,u = x(q,w) tanh( 5 ) coth( 5 )
1 [ e v Bw
- - _ h(== 21
~ et vaw) ) (3.21)
xX(qw)
1 e’} e TwW oo 6(7'—/6)
= — d d
T [/(; w 1+6fﬁu} X(q,W) +/0 w 1—}—67'&"} X(q7 )
0 e*Tu)_i_e(Tfﬁ)u} ~
K(w,r)

The symmetrisation yields a redefinition of the susceptibility x(q,w) (Eq. (3.21)) which

has to be taken into account in the definition of the dynamical structure factor S(q,w):

~ xlqw)  X(q,w)
S(q,w) = e o =14 e e (3.23)

Finally, some general important notes about the Maximum Entropy method should be
mentioned. As described in Sec. 3.2, the resulting spectral function should be interpreted
as a probability distribution. That means in detail, that different sharp structures in the

spectrum indicate regions with high or low probability for finding a real peak. Although
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the total weight of the spectral function is conserved, statements about the absolute value
and the shape of a peak have to be taken carefully. Especially, the nature of broadened
and smeared out features in the spectra are hard to figure out. They can be a consequence
of a bad resolution due to the error of the QMC data or they indeed originate from a
uniform distribution. In order to avoid such misinterpretations it is important to keep the

simulations running until no visible changes in the spectra occur.
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The single-band
Hubbard model

The single-band Hubbard model is defined in the language of second quantisation by [50,
51, 52]

H= - Ztijc%c]'o +U Z niMil, (4.1)
ijo i

with the hopping amplitude ¢;; and the Hubbard interaction U. In this thesis the energy
scale of the Hubbard Hamiltonian is set by the nearest-neighbour hopping amplitude ¢ and
throughout we consider U = 8t. A visualisation of the different energy contributions is
depicted in Fig. 4.1. The Hubbard model is nowadays one of the standard models used in
order to describe the physics of strongly-correlated electron systems. In the beginning, it
was assigned to described the magnetism of strongly correlated, itinerant electrons in nar-
row band materials. In the special case of a half-filled system with one hole and an infinite
value of the Coulomb interaction, the Hubbard model shows for d < 2 a completely spin-
polarised, i.e., ferromagnetic ground state [53]. But is was shown that the ferromagnetic
solution on a primitive cubic or cubic body-centered system does not remain completely
stable. In the last several years it has become more apparent, that antiferromagnetic cor-
relation plays an even more important role. Apart from a pure theoretical description, the
Hubbard model is considered to describe the physics of 3d-transition metals, such as high-
temperature superconductors (HTSC) [54]. These ceramics consist in general of copper
oxide compositions. Inelastic neutron scattering experiments showed that the electrical
properties of these materials are dominated by the physics within the two dimensional
copper oxide plans. The electrical resistivity perpendicular to the copper oxide planes is
102 — 10° order of magnitudes higher than within the planes. [55] This high anisotropy
can be justified by the crystal structure of these materials. The HTSCs consists of layers
of copper oxide which are separated by inter-layer atoms, i.e., lanthanum or yttrium. Due
to the crystal structure, these materials can be effectively regarded as two dimensional
systems. Furthermore, a detailed close-up of the electronical structure yields an even more

bizarre property of the conductivity of the HT'SCs. In the case of LasCuQy, one finds the
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4 The single-band Hubbard model

Figure 4.1  Schematic presentation of the one-band Hubbard model with nearest neigh-
bour hopping t, next-nearest neighbour hopping t', on-site Coulomb interaction U for

double occupied lattice sites and exchange interaction J ~ %

copper atoms in the configuration 3d”. Due to the crystal splitting of the 3d-states, one
obtains a d-configuration with one hole in the d,2_,2-state. This state hybridises with the
pz- and py-state of the oxygen atoms and forms a band close to the Fermi-energy. This
configuration would normally lead to a metallic state because one can add/remove addi-
tional electrons/holes to the half-filled band. But at low temperatures, the phase-diagram
of such HT'SCs exhibits an antiferromagnetic insulating phase. Later on, we can justify this
behaviour by the strong Coulomb interaction which enforces a metal-insulator transition.
At higher doping (see Fig. 4.2), the HTSCs are characterised by a metallic behaviour with
a few of exotic properties, e.g., the existence of a pseudo-gap regime. The superconducting
phase is located at roughly optimal doping and captures a dome-like shape. By further

doping one reaches a normal metallic regime which can be described by the Fermi-liquid

antiferromagnetic
phase

N

superconducting

. phase

superconducting
phase

n o p chemical potentic

Figure 4.2  Sketch of the generic temperature versus doping phase-diagram of the high-
temperature superconductors. The abbreviations ‘n’ and ‘p’ indicate the electron and hole
doping regimes, respectively. The pseudo-gap regime is located under the dashed-dotted

line and is connected to a typical temperature T,
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Figure 4.3  Sketch of the interaction und hopping terms of the three-band Hubbard model.
The copper dy2_,2 (ozygen 2p, and 2p,) orbitals are indicated by the red (blue) ellipses.
The hopping amplitudes between the orbitals are given by t,, and t,q and Uy,, Upq,
U, and Uq characterise the Coulomb interaction between electrons of the p-, pd-, and
d-orbitals. The energy cost of adding or removing an electron on the d- or p-orbitals
are defined by eq and €,. Holes on the oxygen and copper orbitals could form a singlet
(Zhang-Rice singlet) which can move through the lattice in a similar way as a single

hole in an effective one-band Hubbard model with strong interaction U [50].

theory.

A more realistic description of the electronic structure of the HT'SCs can be achieved by the
three-band Hubbard model or Emery model [57] which incorporates the electronic degrees
of freedom of the d- and p-orbitals. The d,2_,» copper orbitals are separated from the
2p, and 2p, oxygen orbitals by the crystal field. Hereby, the oxygen orbitals gather the
additional charge carriers (holes) when the system is doped away from half-filling. The
holes on the oxygen orbitals couple parallel (singlet) or anti-parallel (triplet) to the holes
on the copper orbitals. In the strong coupling limit, one can show in the framework of
second order perturbation theory, that the holes of the d- and p-orbitals build a Zhang-
Rice singlet [56]. This configuration is energetically more favoured than a triplet state. In
order to reduce the complexity of the system, one integrates out the electronical degrees of
freedom of the oxygen orbitals and considers an effective model which only incorporates the
low energy physics of the singlet state and neglects the high energy excitations due to the
triplet configurations. Therefore, the single-band Hubbard model is expected to describe
the physics of the high-temperature superconductors. Nevertheless, the properties of the
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4 The single-band Hubbard model

HTSCs impose several requirements on the model. First, the model has to describe the
interaction of strongly correlated electrons. Furthermore, the model should exhibit an
insulating antiferromagnetic phase at half-filling which persists to higher dopings. Last
but not least, it has to show a transition from the Mott-insulator to a paramagnetic metal
and superconducting state when additional charge carriers are introduced. The transition
from the metallic state to the superconducting state is still not clearly understood and is
still under investigation |11, 58].

The single-band Hubbard model, which is introduced in Eq. (4.1), reveals several basic
symmetries. The Hubbard Hamiltonian is invariant under a global SU(2) and U(1) sym-
metry which enforces spin and particle conservation. In particular, the z-component of
the spin is conserved and without lost of generality the magnetisation m can be set to
a positive value. On the bipartite lattice, the single-band Hubbard Hamiltonian, with
only a nearest-neighbour hopping amplitude, exhibits particle-hole symmetry which can
be broken by adding a next-nearest neighbour hopping term to the Hamiltonian.

The first term of single-band Hubbard model describes the hopping of the electrons whereas
the second term of Eq. (4.1) represents the interaction of the electrons which occupy the
same lattice site. The model can be solved only in very limiting cases. In one dimension,
the Bethe Ansatz provides an analytical solution which was already proposed in the year
1968 by Lie und Wu [59]. In the limit of infinite dimension the Hubbard model can be
exactly mapped onto the impurity Anderson model which can be solved with the quantum
Monte Carlo technique (see section 2.1). This means that even in two dimension, with
the exceptions of the scenarios described above, an exact solution has not been found.
The reason is given by the combination of the two parts in the Hubbard Hamiltonian.
To elaborate, we consider for the moment only the free motion of the electrons and set
U = 0 and neglect the Coulomb interaction. In this limit, we can Fourier transform the

annihilation (creation) operators
1 R

Cioc = \/—N Zk: elkR’LCkza, (42)
which reformulates the Hubbard Hamiltonian

HU=0)=Ye(k)ng, with e(k) = —t »_ ™™, (4.3)

k.o (10)

where ng, is the occupation operator and (i0) represents all neighbours of lattice site 0.
For the two dimensional lattice we obtain the free dispersion e(k) = —2t(cos(ky) +cos(ky))
and find a metallic solution for the Hubbard model. In the second case we consider the pure
Coulomb interaction and set ¢ = 0. The interaction part is already diagonal in real space
and we derive two dispersionless Hubbard bands in the spectrum which are separated by the

interaction strength U. At half-filling, the lower Hubbard band is completely filled whereas

the upper Hubbard band is completely empty. This situation describes an insulator.
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4.1 Temperature and doping dependence of the Hubbard model

The interplay of the kinetic and the Coulomb term is responsible for the interesting many-

body correlation physics which occurs in the two-dimensional Hubbard model.

4.1 Temperature and doping dependence of the Hubbard

model

The Hubbard model exhibits a variety of correlation effects whose outcome enormously
depends on doping and temperature. In the strong coupling regime which means, that
the Coulomb interaction of the electrons is comparable or larger than their kinetic energy,
and half-filling and sufficiently low temperature, the Hubbard model undergoes a metal-
insulator transition. This transition is forced by the strong interaction of the electrons
and constitutionally differs, therefore, from the metal-insulator transition known from
band-insulators. By introducing additional charge carriers into the system, the insulat-
ing behaviour vanishes due to the possibility of the electrons to move through the system
without generating additional double occupied lattice sites. This first example clarifies the
drastic consequences of the strong interaction of the electrons. The classification of the
different phases of the Hubbard model can be accomplished by the investigation of the one-
and two-particle Green functions or their corresponding spectral functions. The following
paragraph provides a short overview of the different regimes of the Hubbard model and
gives a basis for the classification of the results of this thesis.

The single-band Hubbard model is assumed to describe the important properties of
the high-temperature superconductors. Equivalent to the phase-diagram of the HTSCs
(Fig. 4.2), the Hubbard model describes an effective antiferromagnetic (AF) ordered state
close by half-filling which is driven by the interplay of the Coulomb interaction and the
hybridisation. In particular, virtual hopping processes can reduce the free energy of the
system but this assumes adjacent spins with opposite alignment due to the Pauli princi-
ple. The reader should note, that in the case of two dimensions and at finite temperature
continuous symmetry breaking is prohibited by the Mermin-Wagner theorem [60]. Never-
theless, the magnetic correlation length can approach the system size at sufficiently low
temperatures and the system appears to be in an effective AF ordered state. Hence, sim-
ulations close by half-filling seem to be performed in an AF ordered state although the
continuous SO(3) symmetry is not really broken. This advantage brings the simulation
very close to an adequate description of the high-T,. materials. Another possibility which
can cause an antiferromagnetic instability at half-filling is given by perfect nesting. Per-
fect nesting connects regions of the Brillouin zone which are parallel to each other by a
commensurable wave vector ¢ = (7/a,7/a). On the other hand, an AF ordered system
can be described by two sub-lattices A and B which double the unit cell in real space

and lead to a reduced magnetic Brillouin zone which realises the perfect nesting criteria.
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4 The single-band Hubbard model

Possible scattering processes with a momentum transfer of ¢ = (7 /a, 7 /a) obey the Bragg
conditions and stabilise the state with reduced translational symmetry. The consequence
is an insulating state which is justified by the nesting property and is distinguishable from
the above described Mott-Hubbard transition.

Properties of the half-filled Hubbard model

In addition to the presence of two incoherent high energy bands, which result from the
strong Coulomb interaction, one can observe low-energy excitations of the order of the
exchange interaction J in the single-particle spectrum. The low energy excitations only
occur at sufficiently low temperatures when the relevant spin degrees of freedom must be
taken into account and the quantum nature of the spins become important. The narrow
quasi-particle band can be nicely fitted by a tight-binding harmonics with dispersion of

the form
E(k) = 2cJ (cos(kz) + cos(ky))?, (4.4)

with the constant factor ¢ = 1/8. A wide variety of several methods have reproduced the
above dispersion relation for different models. The t-J model, which can be derived from
the Hubbard model in the strong coupling limit, was investigated by the exact diagonalisa-
tion technique [61, 62, 63] and by the Green function quantum Monte Carlo method [64].
The Hubbard model also approved the above dispersion relation in exact diagonalisation
studies [65] as well as in quantum Monte Carlo simulation [66]. The numerical results
are also supported by analytical investigation such as the self-consistent Born approxima-
tion [67, 68, 69] or other variational calculations based on the ‘string’ picture or series
expansion. All calculations confirm the picture of a single hole which is propagating in a
Heisenberg antiferromagnet or half-filled Hubbard model. A visualisation of this scenario
is possible within a string picture introduced by Bulaevskii, Nagaev, and Khomskii [70)]
and it is illustrated in Fig.4.4. The figure is taken from reference [71].  In the string
picture, a hole is moving in an AF ordered background and creates a path of misaligned
spins (grey shaded arrows in Fig. 4.4). The increase of the magnetic energy initiates an
attractive potential which traps the hole around its starting point. A coherent motion
of the hole becomes impossible and instead, the hole performs an incoherent oscillatory
motion around the point where it was originally created. A coherent motion of the hole
becomes only possible if the spin defects are healed up by spin-flip processes which restore
the original AF ordered state. Thus, each spin-flip reduces the length of the string by
two lattice spacings and shift the origin of the oscillatory motion to a second-nearest or
third-nearest neighbour. Fig. 4.5 illustrates the different paths which are possible in order
to reach a second-nearest (1,1) neighbour exist and a third-nearest-neighbour (2,0). Ap-

parently, there exist two different paths to the (1,1) neighbour but only one path to the
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Figure 4.4  Sketch of the motion of a single hole within an AF ordered background. The

hopping of the hole leads to a trace of misaligned spins which results in an increase of

the magnetic energy (top right) and, therefore, the motion of the hole is confined by an
attractive potential. The only way to escape from this attractive potential is given by

spin-flips which heal up the generated spin-defects. The figure is taken from [71].
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4 The single-band Hubbard model
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Figure 4.5  Illustration of the different paths in order to reach a second-nearest neighbour

(two possibilities) or to reach a third-nearest neighbour (one possibility).

(2,0) neighbour. After these considerations, one immediately finds the dispersion of the

above described hopping processes [71]:

cJ[2(cos(2ky) + cos(2ky)) 4+ 2 - 4cos(ky) cos(ky)]
= 4cJ[(cos(2k,) + cos(2k,))* — 1]. (4.5)

With the exception of the prefactor ¢ (which is numerically derived as 1/8) the dispersion is
entirely determined by the topology of the string. Obviously, the dispersion is degenerate
for all momentum vectors which are lying on the surface of the magnetic Brillouin zone.
However, numerical studies on the ¢ — J model show that the degeneracy is actually lifted.
The observed energy difference is only small for J/t ~ 0.4 but becomes quite remarkable for
larger ratios of J/t. A study of the parameter dependence shows that the dispersion along
the line (7/2,7/2) to (m,0) scales with the hopping integral ¢. This observation suggests
an additional hopping process which involves the hopping amplitude ¢. In a simple picture,
one can imagine the motion of a hole in the AF ordered background as a superposition of a
rapidly oscillating particle (i.e. on a time scale oc ~1) and a slowly moving box (i.e. time
scale oc J~1), which represents the string in Fig. 4.4. Therefore, the box represents the
misaligned spins which form an attractive potential for the hole and might be viewed as a
region of suppressed Néel order, such that the picture corresponds to the strong coupling
limit of Schrieffer’s spin-bag theory [72, 73]. Additionally, the superimposed motion of the
hole and the box is sometimes referred to as a spin-polaron, where in an equivalent way
an electron is moving in the presence of very strong electron-phonon coupling through a
system which exhibits strong lattice distortions. Nevertheless, the string, spin-bag, and
spin-polaron pictures describe the same situation: an oscillating hole is trapped in a region
of reduced Néel order, with the consequence that the entire region has to move through
the AF ordered background thereby enhancing the effective mass of the quasiparticle.

The correlation effects on energy scales J leave fingerprints in the one- and two-particle
excitation spectra. At half-filling we find the following situation: additional to the incoher-
ent Hubbard bands which result from the high energy Coulomb repulsion of the electrons,
one can recognise the low energy excitations of the magnitude J close to the chemical
potential. The low energy quasiparticle only occurs at sufficiently low temperatures if the

spin degrees of freedom become important. Obviously, one can explain the origin of the
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4.1 Temperature and doping dependence of the Hubbard model

low-energy band by the above mentioned superposition of the motion of a hole in a reduced
Néel ordered background. Further evidence for the spin-nature of the quasi-particle band
is given by the dynamical spin-structure factor. The occurrence of the quasiparticle band
in the one-particle spectrum is accompanied by the formation of a coherent spin-excitation
around the wave-vector (7, 7). The authors of Ref. [71] have fitted the collective spin mode

in the spin-response function by a spin-wave dispersion:

ESW (k) = 2J\/1 - i(cos(kzz) + cos(ky))2. (4.6)

Even earlier studies have shown that two-particle correlation functions such as the spin-
response function can be described in the framework of the SDW approximation for large
values of the interaction U [73]. The spin response function shows a spin-wave dispersion
ES W(k;) with an energy scale of 2J. The weight of the spin-response at k = (, 7) increases
with decreasing temperature and becomes more and more sharp as it is predicted in the
AF spin-wave theory.

Let us discuss the paramagnetic regime of the Hubbard model. This regime is mainly char-
acterised by the interaction of itinerant electrons due to the strong Coulomb interaction.
Spin-correlation effects, such as those described in the previous section, can be totally ne-
glected because all relevant spin-degrees of freedom are thermally excited. Therefore, no
sign of the energy scale J exists. The Green functions in the paramagnetic regime can be
given in the Hubbard-I approximation:

1—n/2 n n/2

w—ek)(1—n/2)+in w—U—elk)n/2+in’

which leads to the upper and lower band in the one-particle spectral function:

EHub1 (1) — % (ctk) + U+ VR T T2, (4.8)

whereby n determines the filling of the system and e(k) = —2t(cos(k;) + cos(k,)) denotes

GHu (g, ) = (4.7)

the tight-binding dispersion. The expression for the Green function in Eq. (4.7) becomes
exact in the limits of U = 0 and €(k) = 0.

The transition from the paramagnetic high-temperature regime to the AF ordered phase
at half-filling is accompanied by an increase of the spin-correlation length. The reduction
of the Brillouin zone initiates a fundamental change of the spectral function around the
antiferromagnetic wave-vector k = (m, ) by backfolding of the spectral function A(q,w).
In this intermediate regime, a drastic change in the dynamical correlation functions oc-
curs. The transition from the SDW-like regime at half-filling to the Hubbard-I regime is
accompanied by losing the low energy quasiparticle excitations. A similar change is visible
in the two-particle spin-response spectrum. The coherent spin-wave washes out and gives
way to a broad incoherent structure. This means, in other words, that the system loses
all characteristics linked to a hole which is dressed by spin excitations and is moving in an
AF ordered background.
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4 The single-band Hubbard model

Properties of the doped Hubbard model

As mentioned at the beginning of the section, the density of states of the strongly interact-
ing Hubbard model splits into two distinguishable bands, i.e., a lower (valence) and upper
(conductive) band at half-filling. The two-bands are separated by the Coulomb interaction
U because the adding of further electrons inevitably leads to a double occupation causing
an energy penalty U. If one inserts hole into the system, then the probability of double
occupation decreases which leads to a reduction of spectral weight of the upper Hubbard
band. These states are transferred close to the Fermi energy and contribute to the lower
Hubbard band. Hence, the Hubbard model does not show a rigid band shift under doping
but rather a shift of spectral weight from the upper to the lower Hubbard band [23]|. The
doping dependence of the single-particle function is depicted in Fig. 4.6 at an inverse tem-
perature of §t = 3 and (a) at 6 = 5 % doping and (b) at § = 20 % doping. Regions with
black or white colours correspond to spectral functions with high or low spectral weights
respectively. These calculations are carried out at a relatively high temperature in order
to reduce the notorious minus-sign problem. Nevertheless, this temperature should be
low enough to observe possible magnetic correlation effects, since the magnetic exchange
interaction is determined by the energy scale J = 4t2/U which has the value 0.5t for an
interaction strength of U = 8t. In the under-doped regime, the single-particle spectral
function clearly exhibits two incoherent Hubbard-bands and a coherent quasi-particle ex-
citation with origins in the motion of a hole dressed by a cloud of spin-excitations. By
increasing the doping, the chemical potential drops deeper into the lower Hubbard band
in the region around (7,7). In this so-called ‘optimal-doped’ regime, the quasiparticle
bands with energy scale J are still present. The quasi-particle band starts to vanish above
optimal doping ((n) = 0.86 ) and it becomes more visible when one reaches the over-doped

regime with (n) = 0.80. The fingerprints of the magnetic correlations are also visible in the
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Figure 4.6  Dynamical angle-resolved spectral function A(k,w) of the 8x8 Hubbard model
at ft = 3 und U = 8t for different fillings: (a) (n) = 0.95 (under-doped), (n) = 0.80
(over-doped). The results are extracted from [7]].

26
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Figure 4.7  Dynamical spin-, xs.(k,w), and charge-correlation functions, x..(k,w), of
the 8 x 8 Hubbard model at St = 3 und U = 8t for different fillings: (a) (n) = 0.95
(under-doped), (n) = 0.80 (over-doped). The results are extracted from [7]].

dynamical spin-correlation functions xs,(k,w) which are depicted in Fig. 4.7 (a) and (b) on
the left hand site. In the underdoped and roughly optimal doped regime x,(k,w) exhibits
a well defined spin-wave around the antiferromagnetic wave vector k = (m,7) with the
above mentioned spin-wave dispersion B (k,w) = 2J\/1 — X(cos(ks) + cos(ky))?. The

energy scale J can be read off at momentum vector k = (m,0) and has the value 2J. The

characteristics of the spin-response function drastically change if one dopes the system
further. Above optimal doping, the spin-wave loses its sharp structure and the energy
scale changes from J = 4t2/U to Ej;, o< 8.0t. Apparently, these changes come along with
the loss of the quasiparticle features in the single-particle spectral function at the same
doping. The charge response exhibits an overall broad structure with an energy scale of
Echarge o 12t which slightly reduces with increasing doping. These high energy structures
mainly result from the strong Coulomb interaction and, in particular, no energy excitations
of the scale o J are visible. A more detailed investigation of the charge-response function
is presented in [74].

At optimal doping and sufficiently low temperatures the Hubbard model exhibits a su-
perconductive instability. It is assumed, that this instability is already pronounced
by preformed cooper pairs above the actual critical temperature 7. in the pseudo-gap
regime [75, 76]. The superconductors of the cuprates enormously differ from the conven-
tional superconductors which can be described by the Bardeen-Cooper-Schrieffer (BCS)

theory. In the BSC theory, the forming of cooper pairs can be traced back to a Fermi sur-
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4 The single-band Hubbard model

face instability. The exchange particles are phonons, the quanta of ionic vibrations of the
crystal, which lead to an attractive potential between the electrons. The interaction of the
cooper pairs exhibits an s-wave symmetry due to the local nature of the pairing interaction.
Scattering processes between the electrons leads to a reduction of the potential energy and,
hence, the electrons may occupy states above the Fermi sea which leads to an enhance-
ment of the kinetic energy. This observation stands in contrast to the pairing mechanism
in the high-temperature superconductors. The parent compounds of the high-temperature
superconductors are antiferromagnetic ordered insulators which differ from a conventional
Fermi-liquid description. On the other hand, the cuprates exhibit enormous high critical
temperatures which suggests a totally different pairing mechanism in comparison to the
conventional superconductors. This statement is also supported by the d-wave symmetry
of the pairing interaction in the high-T, materials.

In the forthcoming section, we investigate two-particle correlation functions in the frame-
work of the Dynamical Cluster Approximation (DCA) with respect to the temperature
and doping dependence. We try to figure out, if correlation effects of the energy scale J,
which are presented in the previous section, are visible in the DCA two-particle correlation
functions. Hereby, we can consider much lower temperatures because the DCA does not
enormously suffer from the minus sign problem. Additionally, we are going to check if
fingerprints of the two-particle correlations are also visible in the single-particle spectral
function. The main part of the next section is extracted from [77].

In section 6, we incorporate the superconductive instability in the framework of the Dy-
namical Cluster approximation (DCA) and study the single-particle spectral function in
detail. Our goals are the estimation of the superconducting transition temperature and

the investigation of the evolution of the pseudo- and superconducting-gap.
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Two-particle

correlation functions
within the DCA

Two-particle correlation functions, such as the dynamical spin- and charge correlation
functions, determine a variety of crucial properties of many-body systems. Their poles as
a function of frequency and momentum describe the elementary excitations, i.e., electron-
hole excitations and collective modes, such as spin- and charge-density waves. Furthermore,
an effective way to identify continuous phase transitions is to search for divergences of
susceptibilities, i.e., two-particle correlation functions. Yet, compared to studies of single-
particle Green functions and their spectral properties, where a good overall accord between
theoretical models (Hubbard type-models) and experiment (ARPES) has been established
(see [78, 66, 23, 79]), the situation is usually not so satisfying for two-particle Green
functions. This is especially so for the case of correlated electron systems such as high-T,
superconductors (HTSC). The primary reason for this is that calculations of these Green
functions are, from a numerical point of view, much more involved.

To expose the problem let us consider the spin-susceptibility which is given by:

1 )
@) =37 ;X&,g(ﬂ) , with (5.1)

o f
Xkp(@) = <CE7TCE+g,lCQ,lCQfg7T>

Here, L corresponds to the lattice size, 3 is the inverse temperature and ¢ = (q,), q
being the momentum and 2, a (bosonic) Matsubara frequency. To simplify the notation,

we have adopted a path integral coherent state notation with Grassman variables:

1 Bk
Ch,o = Chwm,o = N/ z,,:/o drellwnT—k )c,w(T) (5.2)

The two-particle irreducible vertex, I'ys .#(q), is defined through the Bethe-Salpeter equa-

tion,

Xkp(q) = Xk,p ) + Z Xk & OTw (@)X p(a), (5.3)
kK
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Figure 5.1  Bethe-Salpeter equation for the two-particle propagator.

which is diagrammatically depicted in Fig. (5.1).

Within the Dynamical Cluster Approximation (DCA) [7, 8], and see section 2.1, one can
consistently define the two-particle Green functions, by extracting the irreducible vertex

function from the cluster.

To define uniquely the DCA approximation, in particular in view of two-particle quanti-
ties, it is useful to start with the Luttinger-Ward functional ®, which is computed using
the DCA Laue function. Hence, ®pc4 is a functional of a coarse-grained Green function,
G(K ,iwy,) = G(K). Irreducible quantities such as the self-energy, and the two-particle
irreducible vertex are calculated on the cluster and correspond, respectively, to the first-
and second-order functional derivatives of ® pc 4 with respect to G. Using the cluster irre-
ducible self-energy, X (K), and two-particle vertex, I'gs g (Q), one can then compute the
lattice single-particle and lattice two-particle correlation functions using the Dyson and
Bethe-Salpeter equations. This construction of two-particle quantities has the appealing
property that they are thermodynamically consistent [0, 80]. Hence, the spin suscepti-
bility, as calculated by using the particle-hole correlation functions, corresponds precisely
to the derivative of the magnetisation with respect to an applied uniform static magnetic
field. The technical aspects of the above program are readily carried out for single-particle
properties. However a full calculation of the irreducible two-particle vertex -even within
the DCA- is prohibitively expensive [$1] and, thus, has never been carried out. In contrast
to the calculation of single-particle quantities, the coarse-grained two-particle correlation
function X g (Q) is after completion of the self-consistence procedure not equal to the
cluster two-particle correlation function x.r g/(Q) because the self-consistency is only
made on the single-particle level. The following considerations will show, that the suscep-
tibility can be calculated within the DCA approximation, where the irreducible two-particle
vertex I' is substituted by the corresponding cluster vertex I'., which leads to an inversion

of the cluster two-particle Bethe-Salpeter equation.

For the moment, we consider the bare and interacting cluster susceptibilities as well as the
irreducible cluster vertex function: X(C]K (@), Xex i/ (Q) and T' i ;/(Q). These quantities

are evaluated at cluster momentum vectors and they are correlated by the cluster Bethe-
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Salpeter equation,

Xek,P(Q) = XcKP Z XCK K/ Lo xr(@)Xex p(Q), (5.4)

K{ K”

where the inversion may be written in a short notation:

Le(Q) = D (@)™ = Ixe(@]7" (5.5)

Each quantity in Eq. (5.5) represent a matrix with row and column indices K and K'.
The non-interacting two-particle Green function x2(Q) is constructed from a pair of fully
dressed single-particle Green functions and it is diagonal in the spin, momentum and

frequency labels:

XS(Q) = XSK,K'(Q)
= Neboor Omm Ok k' G (K L iw )GT (K + Q, iwy, + iv). (5.6)

The convolution of the cluster Green function G¢ will be calculated after the actual quan-
tum Monte Carlo run, whereas the decomposition of the interacting cluster two-particle
Green function has to be performed for each Hubbard-Stratonovich configuration within
the Monte Carlo run separately.

In comparison with the single-particle quantities, the coarse-grained two-particle Green
function ¥ can be defined in a similar way. The lattice vectors k, k' and g are decomposed
into inter- and intra-cluster momentum vectors: k=K +k, k' = K' + k' and ¢ = Q + §

(compare with section 2.1). Y may be written as follows:

_ . N? .
MQ+0) = T5 D Xicihiwnitcr o, (Q + 4 0) (5.7)
kK&
The definition of the non-interacting coarse-grained two-particle Green function is similar
to the corresponding cluster quantity. x°(Q + §,iv) is diagonal in the spin, momentum

and frequency labels:

N, -
0 ~ . . ¢ o )
X (Q + Qaly) = Ncdoo' OK K Omm |:N 2 G (K + k,’me)
k

xG” (K +k+Q + q,iwm + iy)} . (5.8)

The DCA approximation is applied to Eq.(5.3) by replacing the irreducible vertex function
I' by the irreducible cluster vertex function I'.. The reader should take into account, that
x and xo on the RHS of Eq. (5.3) share no common momentum labels and, hence, one can

freely sum over the momenta k, which gives the following identity:

Xk.p(q) = XKP Z XKK/ e k(@)X p(q), (5.9)
K/ K”
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which can be written in a short notation:

Ie(@) = (9] ~ x(@)] ™ (5.10)

At this point, we can combine Eq. (5.5) and Eq. (5.10) and get the result:

) =@ - TN + ¥(g). (5.11)

The charge (ch) and spin (sp) susceptibilities X sp are deduced from yx [81]:

(ksT)? _
Xch,sp(% T) = N2 Z )‘UU/XJ,U’,K,K'(q)a (512)
¢ EK'oo

where \,,» = 1 for the charge channel and \,,» = oo’ for the spin channel. The complex-
ity of this approach lies in the inversion of the Bethe-Salpeter equation (5.5), since the
irreducible vertex consists of three momentum and three frequency indices.

In the present work, we would like to overcome this situation by suggesting a scheme where
the K’ and K" dependencies of the irreducible vertex are neglected. At low temperatures,
this amounts to the assumption that in an energy and momentum window around the Fermi
surface, the irreducible vertex depends weakly on K’ and K”. Following this assumption,
an effective two-particle vertex in terms of an average over the K’ and K” dependencies

of T'ogr j(Q) is introduced:

imMszﬂw@» (5.13)

As shown in an earlier Quantum Monte Carlo (QMC) study by Bulut et al. [32] for a single
QMC cluster, this is reasonable for the 2D Hubbard model (on this QMC cluster of size
8 x 8 with U = 8t). The authors of [32] investigate the question of whether the correlations
between electrons can be described by an effective interaction which only takes single
longitudinal and transverse spin fluctuations into account or whether the effect of higher-
order multi-spin fluctuations may not be neglected. Bulut et al. calculated with Uesr(Q)
the effective irreducible electron-hole vertex and compared the results with calculations
where the irreducible electron-hole vertex was estimated via the Monte Carlo technique on
a 8 x 8 single QMC cluster and via a third-order perturbation theory approach. Both the
momentum and frequency dependence were in rather good agreement with the QMC and
perturbation theory results for the effective electron-hole interaction.

By replacing the irreducible vertex by ﬁLLUeff(Q) in the cluster version of the Bethe-
Salpeter Eq. (5.3) and carrying out the summations to obtain the cluster susceptibility

gives:

1 1
= G) — @, (5.14)

Uerr(Q)
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where y corresponds to the fully interacting spin/charge susceptibility on the DCA clus-
ter in the particle-hole channel and yo can be derived from the free cluster spin/charge
correlation function. Hereby, we consider the free expectation value to which purpose we
can apply Wick’s theorem. The free cluster spin susceptibility ¥o(Q,iwm,) ' reads with

S(Q) = \/LNT > '@ (n;; —n; ) in the paramagnetic case %:

Qi) = [ dr ™ (S(Q.) S(-Q.0) (5,15
1 iQmT i(j—7"
= EZ/deQ eHd=3"RQ
ZJU J U CJ' o’ (0)><Cj,a(7—) 03,70/(0»

= Z /dT e §(Q — K + K') G7x(7,0) G (0,7)

K, K’
1
= _FZ/dT T G (7, 0) Geg—q(0,7)
(&
K.o

11 )
= _ﬁ? Z /dT el(meu}erwm/)T Gg(K,iwm) Gg(K — Q,iwm,)
¢ K,o

= ——= Z d(iwpy — (iwm — 1)) GZ(K,iwn) GZ(K — Q,iw,,)

Wi, W m!

= ———Z GI (K, iwp) GI(K — Q,iwn, — iQy,)

11
= — 7Y GIUE +Q iy + i) GI (K iwp) (5.16)

The calculation of the bubble is accompanied by the following transformations:

~(5.0(7) ¢}y ,(0)) = G7(j.7,5,0) Ze*m ik g (7,0) (5.17)
with

G(r,0) = %%; e T Gk, iwy,) (5.18)
and

Gr(0,7) =3 %ew’” Gk, iwp,). (5.19)

!By taking N(Q) = \/7 > e’ (nj ++n4.), asimilar calculation yields the same result for the free clus-
ter charge susceptibility. The static term ) ( o(T) Cio(T ))(cT, 0(0) ¢j7,5+(0)) has to be subtracted
from the RHS of Eq. (5.15) due to the Kubo formula

%In the paramagnetic case is Yoo O'O'/<C;[’0 (1) ¢j o (T))(C;[,’U,(O) ¢jr.0r(0)) = 0.
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5 Two-particle correlation functions within the DCA
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Figure 5.2 Effective two-particle vertex Ueqrf(Q,i8)y,) as a function of the bosonic Mat-
subara frequency i€, for a typical parameter set: Gt = 6 at § ~ 14 % on the N. = 8

cluster at different cluster momentum vectors

In Eq. (5.16) we recognise that x( is constructed from a pair of fully dressed single-particle
Green functions. In order to incorporate the correct high frequency behaviour of the Green
functions in Eq. (5.16), one has to perform the summation over Matsubara frequencies from
minus infinity to plus infinity. This summation is performed in two steps. In a frequency
window of 500 Matsubara frequencies around iw,, = 0, the Green functions in Eq. (5.16)
were taken from the Monte Carlo calculation. The remaining summation is performed

in an analytical way. Therefore, we consider the high energy behaviour of the Green
1

TWm

functions: limy,,, —co G(iwn,) and transform the summation in Eq. (5.16) into an
integral expression. The analytical treatment of the convolution is carried out from a given
fermionic Matsubara frequency z = iw,,. Hence, we obtain with the bosonic Matsubara

frequency a = i€, the following relations:

Foo 1 1 1. z+a
/ dZI Z/ + 4 ; = a lOg > (520)
4
-z 1 1 1 z
/ dz,z’—i—a? - EIng—a’ (5:21)
— 0o

and for the case a = 0:
too 1 o1 1
/ dz' — :/ dz/— = —. (5.22)
z 2! -0 2! z
We have explicitly checked, that the high frequency behaviour of the bubble is given
—L . The interacting susceptibility x obeys the same high frequency behaviour

(iwm)
as the non-interacting susceptibility but with a different proportionality factor. From

by o

this it follows that the effective interaction U,y is also given by o< m in the large
frequency limit. The situation is depicted in Fig. 5.2, where we use a typical parameter

set. The effective particle-hole vertex is shown for different cluster momentum vectors and,
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obviously, the contributions of U.sy become more important with the increasing value of
Matsubara frequency. The reader should note, that a simple Fourier transformation of
Ueyy from Matsubara frequencies to the imaginary time axis would cause incorrect results.
We have seen, that the bubble can be constructed from the coarse-grained Green func-
tion, where we implicitly incorporate the equivalence of the spin up and spin down Green
functions in the paramagnetic case. In the case of the interacting susceptibility, the de-
composition of the two-particle correlation function has to be performed for each Hubbard-
Stratonovich configuration within the Monte Carlo procedure. Hereby, the equivalence of
the spin up and spin down Green functions is not longer guaranteed, which yields additional

terms in the calculation of the susceptibility:

(S*(Q, ) S*(—Q,0)), spin

X(Q,iQy,) = /dT et
<N(Q, T) N(_Q? 0)>’ Cha‘rgea

(5.23)

with

(5%(Q,7) 5*(—Q Zze i) {< ¢l (7) 5.0 (P)slch 1 (0) oo (0))

7.7 00
el (1) ejror(0))s(cjo () C;,,o,(o»s},

and

(N*(Q,7) N*(-Q ZZ =0 {C~,J(T) C.o(T))s (el 51(0) cjr.01(0))s

3,3’ o0’
+Hch (7) ¢j,0(0))s(cs0(T) C;/,JI(O»S},

where (- - - )s denotes the expectation value for a given Hubbard Stratonovich configuration
s. Finally, the combination of the effective two-particle vertex Uy and the bubble xo(g) of

the dressed lattice Green functions G(k) results in our estimate of the lattice susceptibility:

Xo(ﬂ)
1= Uess(Q) - xo(q)

The bubble of the lattice xo(q) is given by Eq. (5.16), whereas the cluster Green functions

x(a) = (5.24)

have to be replaced by the lattice Green functions which are determined by the Dyson
. . _ 1

equation: G(k) = T

momentum vectors K in the DCA loop (see section. 2.4). Hereby, we exploit the weak

The self-energy is self-consistently calculated for all cluster
momentum dependence of the self-energy. The real- and imaginary parts are depicted

in Fig. 5.3 at the first Matsubara frequency and for different fillings. The momentum

dependence rapidly becomes weaker if the system is doped away from half-filling.
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5 Two-particle correlation functions within the DCA
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Figure 5.3 Real- and imaginary part of the self-energy for different fillings at inverse
temperature St = 6 and U = 8t on the N. = 8 cluster.

In order to cross check our results, we slightly modify Eq. 5.24 to:

. Xo(g)
X0 =74 Uers(q) - xo0(q) (5.25)

Here, we have introduced an additional "controlling" parameter « in the susceptibility
denominator, which is calculated in a self-consistent manner. It assures, for example in
the case of the longitudinal spin response, that x(¢) obeys the following sum rule (a similar
idea, to use sum rules for constructing a controlled local approximation for the irreducible

two-particle vertex has been implemented by Vilk and Tremblay [83]):
1 z
3L Z x(@) = ((57)%). (5.26)
q

Of course, « should be as close as possible to « = 1, which is indeed what we will find after
implementing the sum rule (see below). At this point, it should be mentioned, that our
sum rule in Eq. (5.26) or our approach to two-particle correlation functions is much more
sophisticated than the approximation for the two-particle vertex, which was formulated by
Vilk and Tremblay [34]. In their two-particle self-consistent approximation (TPSC), the
Spin Xspin and charge susceptibilities Xcparge are approximated by an RPA-like form with
two different interactions Uspi, and Ucparge- The estimation of the interactions is performed
in a self-consistent manner and, therefore, the TPSC notably differs from the standard
RPA-approach. The necessity to distinguish between two different effective interactions
for spin and charge is dictated by the Pauli exclusion principle. It implies that both xpin
and Xcharge are related to only one local pair correlation function (nyn) [85]. The huge
difference between our approach to two-particle correlation functions (see Eq. 5.25) and
the TPSC is, that we regard the total frequency dependence of the effective interactions
and, hence, take retardation effects into account.

Our implementation of the DCA for the Hubbard model is standard. The reader should

consult section 2.1 or Ref. [8] for a summary. At this point, we will only discuss our
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Figure 5.4  Static (i€, = 0) irreducible particle-hole interaction Uy in the spin channel
for different cluster momentum vectors and dopings at inverse temperature ft = 6 and
U = 8t.

interpolation scheme as well as the implementation of a SU(2)-spin symmetry broken al-
gorithm. Since the DCA evaluates the irreducible quantities, ¥(K') as well as U,y¢(Q) for
the cluster wave vectors, an interpolation scheme has to be used. To achieve this, we adopt
the following strategy: for a fixed Matsubara frequency €2, and for each cluster vector @,

the effective interaction Uy is rewritten as a series expansion:
Uep £(Q, i) =Y > e 194,(iy,), (5.27)
N

with ¢ = 0,..., N. — 1, where N, is the number of the cluster momentum vectors Q. The
quantity A; represents vectors, where each vector from the corresponding A; belongs to

the same "shell" around the origin (0,0) in real space, i.e.

0 0
AQ - 3 Al =+ ,i
0 0 1
+1 1 2 0
AQ = y i N Ag =+ ,i cee e (528)
+1 +1 0 2

With a given U.yf, Eq. (5.27) can be inverted to uniquely determine A;. With these coeffi-
cients, one can compute the effective particle-hole interaction for every lattice momentum
vector q. This interpolation method works well when Uy is localised in real space and
the sum in Eq. (5.27) can be cut-off at a given shell.

The effective particle-hole interaction Uy in the spin channel is shown in Fig. 5.4 for a
variety of dopings at inverse temperature t = 6, U/t = 8 and on an N, = 8 cluster, which

corresponds to the so-called "8A" Betts cluster (see [10, 11]). The U.s¢-function displays
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5 Two-particle correlation functions within the DCA
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Figure 5.5  Multi-scattering processes of two electrons. Kanamori screening leads to a

renormalisation of the interaction strength brought by T-matriz effects.

a smooth momentum dependence. These observations further support the interpolation
scheme in (Eq. (5.27)). Thus, indeed, Ucsy is rather localised in real space with sizable
reduction from its bare U = 8t value for larger doping and a further slight reduction at
q = (m, 7). The reduction is partly due to the self-energy effects in the single-particle prop-
agator, which reduce Y( from its non-interacting (U = 0) value 9. Partly, it also reflects
both the Kanamori (see [52]) repeated particle-particle scattering and vertex corrections.
The repeating scattering processes of two electrons with spin k; and ke are depicted in
Fig. 5.5. Hereby, Kanamori completely neglects the generation of electron-hole excita-
tions out of the Fermi sea and assumes, that the scattering processes in Fig. 5.5 are the
dominant ones whereby all other electron-electron interactions are negligible. By omitting
vertex corrections, the T-matrix takes the form of a geometric series. The approximation
works well in the dilute limit, i.e., in the case of an almost filled or empty band. In sys-
tems with a large value of the Coulomb interaction, the screened interaction is reduced to
U= ﬁ = W.

The static irreducible particle-hole interaction U.ss in the spin channel is depicted in
Fig. 5.6 for different cluster momentum vectors and cluster sizes at 6 ~ 14 % doping. Only
marginal differences are visible between the different cluster types. The reader should note,
that the cluster momentum vector k = (7/2,m,2) is not present on the N, = 4 cluster.
Summarising, the new approach to two-particle properties relies on two approximations
which render the calculation of the corresponding Green function possible. Firstly, the
effective particle-hole interaction Uesr(Q) depends only on the center-of-mass momentum
and frequency, i.e. @ and i€,,. Secondly, x(Q), is directly extracted from the cluster and

X0(Q) is obtained from the bubble of the coarse-grained Green functions.

To generate DCA results for the Néel temperature, we have used an SU(2) symmetry
broken code. The setup is illustrated in Fig. 2.5. We introduce a doubling of the unit cell
— to accommodate AF ordering — which in turn defines the magnetic Brillouin zone. The
unit cell is characterised by a c- and d-orbital. The DCA k-space patching is carried out

in the magnetic Brillouin zone and the Dyson equation for the single-particle propagator
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5.1 AF phase transition

is given as a matrix equation:

1

G (k) = , 5.29
TR ARSI o2
with
G°.(k) G7,(k
GO’(E) — cc(—) cd(—) (530)
Gdc(k) ng(ﬁ)
The Green functions with spin ¢ are defined by
B .
Go (k) = — / drd“n ™ (T, {can (ks T)e, (k,0)}) (5.31)
0 K

and «, o’ indicate the c- and d-orbitals. With the SU(2) symmetry broken algorithm, one
can compute directly the staggered magnetisation, i.e., m = %ZJ '@ (nj+ —nj ), and
thereby determine the transition temperature. Since the DCA is a conserving approxima-
tion, the so determined transition temperature corresponds precisely to the temperature
scale at which the corresponding susceptibility, calculated without any approximations on

the irreducible vertex I' g g (Q), diverges.

5.1 AF phase transition

A first test of the validity of our new approach is a comparison with the SU(2) symmetry
broken DCA calculation on an N, = 8 cluster at U = 8t. The idea is to extract the
Néel temperature T from a divergence in the spin susceptibility as calculated in the

above described (paramagnetic) scheme — see Eq. 5.25 — and to compare it to the DCA

6
Bt=6,5~14% P Ne=d——.
No=8 bo-3mmd
_ Ne=161:--9K--
il :
2:5 %—.—.1:.-:.-.'.:_'.'.'_'.?.‘.‘.‘.'.?.'.'.'.'.T;ﬁ_’.‘.f._._.‘._.f._.—____.? ___________ >
Q; ---------- i*
So2r 7
0 !
(0,0) (n/2,7/2) (m,7)
Q

Figure 5.6  Static (i€, = 0) irreducible particle-hole interaction Ueyy in the spin channel
for different cluster momentum wvectors and cluster sizes at 0 ~ 14 % dopings and at

imverse temperature Bt = 6 and U = 8t.
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5 Two-particle correlation functions within the DCA
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Figure 5.7 Left: Evolution of the magnetisation as function of the iterations for a typical
simulation which was performed close to the para- antiferromagnetic phase transition
at Bt = 6 and 6 = 12 % for an N. = 4 cluster (doubled unit cell) Right: Exemplary
presentation of the magnetisation in the presence of an external magnetic field H, which

couples to the spins of the systems.

result as obtained from the SU(2) symmetry broken algorithm. This comparison provides
information on the accuracy of our approximation to the two-particle irreducible vertex
(see Eq. (5.13)).

By using the SU(2) symmetry breaking algorithm, the magnetic phase diagram for the
one-band Hubbard model as a function of doping is shown in Fig. 5.8. The para-
(antiferro)magnetic phase transition is indicated here by gray (blank) circles. At half-filling
Ty =~ 0.4t and magnetism survives up to approximately 15 % hole doping. It is know that
the convergence of the magnetisation during the self-consistent steps in the DCA approach
is extremely poor near the phase transition and, therefore, we cannot estimate the tran-
sition temperature more precisely than shown in Fig. 5.8. A typical example is depicted
in Fig. 5.7 (a) for a simulation which was performed close to the para - antiferromagnetic
phase transition ft = 6 and § = 12 % for an N, = 4 cluster (doubled unit cell). It
shows the evolution of the magnetisation with respect to the number of iterations. The
evolution of the magnetisation after approximately forty iterations steps indicates that the
magnetisation has reached a self-consistent solution. The result would suggest a paramag-
netic solution. If one keeps the simulation running and reduces the statistical error of the
Monte Carlo calculation by the enhancement of the number of bins, one obtains a clear
antiferromagnetic solution. For simulations which are much closer to the phase transition,
the damping of the oscillation of the magnetisation is weaker and, therefore, no insight
into the phase transition is possible. In our investigation, we tried to avoid this problem
by introducing an external magnetic field H,. For small values of H,, we know from linear
response theory, that the answer of the system is proportional to the external excitation. In
Fig. 5.7 (b), the linear response of the magnetisation is apparent for an external magnetic

field, which is smaller than 0.1. We chose for the simulation in Fig. 5.7 (b) a very high tem-
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Figure 5.8 Phase diagram for the one-band Hubbard model with U = 8t with respect to

different temperatures and fillings. The calculations are carried out on an N. = 8 cluster.

The red and gray (blue and blank) objects indicate the antiferromagnetic (paramagnetic)

phase. Lines and shading of AF and PM regions are a guide to the eye. Details are in

the text.

perature in order to outline the principle idea. In the case of larger values of H,, we can see

a saturation effect. Obviously, one has to keep the external field weak enough in order to

exploit the linear behaviour of the magnetisation. This means, that the above mentioned

oscillations of the magnetisation can not be reduced in an efficient way. Furthermore,

one has to perform at least three simulations with different external fields H, in order to

consult a least square fit, which enlarges the numerical effort. Hence, we discovered in our

examination, that it is more effective, when one starts with a bad Monte Carlo statistic in

Bt = I
T At=6 05 I I
= o 04 gk T
G =03 g + % 4
. &
S 5L g 02 |2 i
= I ;o1 T
b T L _
£ I S 0 005 01 0.15 0.2
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3 ] .
<5 ' 4 sites cluster H %XX+ K
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o 1 110 sites cluster =K. B
1 16 sites cluster f-F ‘
0 e N | |
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4

Figure 5.9 Static irreducible particle-hole interaction Ugsy for the cluster momentum

vector Q = (m,m). The inset shows the static free lattice susceptibility xo for the mo-

mentum vector q = (mw, ). The bare Hubbard interaction strength is U = 8t.
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5 Two-particle correlation functions within the DCA

order to bring the system closer to the final solution without loss of computational time.
After this start procedure, the precision of Monte Carlo calculations can be continuously
increased. However, we want to point out, that the precision of the determination of the
magnetisation is sufficient for comparison with our new approach. We again stress that
the so determined magnetic phase diagram corresponds to the exact DCA result where
no approximation — apart from coarse graining — is made on the particle-hole irreducible

vertex.

In Fig. 5.8, the blue (red) triangles indicate the transition line for the para- to the anti-
ferromagnetic solutions extracted from the divergent spin susceptibility (Eq. 5.25) within
the paramagnetic calculation. A precise estimation of the Néel temperature requires very
accurate results and boils down to finding the zeros of the denominator of Eq. 5.25. In
Fig. (5.9), we consider the effective irreducible particle-hole interaction U,y for the static
case and for the cluster momentum @ = (7, ) relevant for the AF instability. As appar-
ent, the irreducible particle-hole interaction becomes weaker with increasing doping. On
the other hand, the susceptibility xo(q, €2, = 0) grows with increasing doping. At a first
glance both quantities U.y and xo (see Fig. (5.9)) smoothly vary as a function of doping.
However, in the vicinity of the phase transition, signalised by the vanishing of the denomi-
nator in Eq. 5.25, the precise interplay between U,y and xo becomes delicately important
and renders an accurate estimate of the Néel temperature difficult. Given the difficulty
in determining precisely the Néel temperature, we obtain good agreement between both
methods at § 2 10 %. Note that in those calculations the values of o ~ 0.86 — 0.97 are
required to satisfy the sum rule in Eq. (5.26). At smaller dopings, and in particular at half-
band filling, the Néel temperature, as determined by the vanishing of the denominator in
Eq. 5.25, underestimates the DCA result. Hence, in this limit, the K’ and K" dependence
of the irreducible vertex plays an important role in the determination of T and cannot

be neglected.

Let us emphasise, that a good agreement between the Néel temperatures at 6 ~ 10 % and
above is a non-trivial achievement lending substantial support to the above new scheme

for extracting two-particle Green functions.

5.2 Dynamical spin and charge structure factors

To further assess the validity of our approach, we compare it to ezract auxiliary-field
Blankenbecler, Scalapino, Sugar (BSS) QMC results (Ref. [23]). This method has a
severe sign-problem especially in the vicinity of § ~ 10 % and, hence, is restricted to high

temperatures. The spin, S(g,w) and charge C(q,w) dynamical structure factors are given,
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Figure 5.10 DCA (left) versus auziliary field QMC (BSS) (right) for the dynamical spin
and charge structure factors of the Hubbard model at U/t = 8, 6 =~ 14 % and [t = 3.
The BSS data on the 8 x 8 lattice is essentially exact and acts as a benchmark for the
DCA approach. The DCA calculations were carried out on an N, = 8 cluster. Here we
have used o = 0.98 and o = 1.01 to satisfy the sum rule in the spin and charge sectors,

respectively.

(a) (b)

[S%()S*(-a)0 [S%()S*(-a)0

Figure 5.11 DCA (a) versus BSS (b) static spin correlation function at U/t = 8, 0 ~
14 % and Bt = 3 on an N. = 8 cluster.
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5 Two-particle correlation functions within the DCA

respectively, by:

(@05 (-a.0) = + [dweT Sgw) (5.32)
(V@ N-g.0) =  [dwe™ Clgw) (5.33)

Here, 5%(q) = ﬁ >j €' (nj1—ny,) and N(q) = % > €9 (n; 1 +nj ). The left
hand side of the above equations are obtained from the corresponding susceptibility as
calculated from Eq. (5.24). Finally, a stochastic version of the Maximum Entropy method

[25, 34] is used to extract the dynamical quantities.

So(a,w) l:ﬂ:m Figure 5.12  Non-interacting dynamical two-
.01 0.1 1

0 particle lattice structure factor of the Hubbard
16 : : : model at St =6, 6 ~ 14 % and U/t = 8.
12 —
5 8 4 2
4 - L
0 — T T T

0,0 (mo) (mm (0.0

The comparison for the dynamical spin, S(g,w), and charge, C(q,w) dynamical structure
factors is shown in Fig. 5.10 at 5t = 3, 6 =~ 14 % and U/t = 8. The BSS results correspond
to simulations on an 8 x 8 lattice. Fig. 5.10 (b) depicts the BSS-QMC data in the spin
sector. Due to short-range spin-spin correlations, remnants of the spin-density-wave are
observable, displaying a characteristic energy-scale of 2J, where J is the usual exchange
coupling, i.e., J = 4%. The two-particle DCA calculations show spin excitations with the
dominant weight concentrated, as expected and seen in the QMC data, around the AF

wavevector (m, 7). As apparent from the sum-rule,

(@S (-a) = [ dw S(a.w) (5.3

(see Fig. 5.11 (a)), the DCA overestimates the weight at this wave vector but does very well

away from g = (m,7). The dispersion in the two-particle data has again a higher energy

Fig. 5.13 a,b c,d e,f g,h
a (spin) 0.99 0.92 0.93 0.97
a (charge) 0.98 1.00 1.00 1.00

Table 5.1 Values of o for the spectra in Fig. 5.13.
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5.2 Dynamical spin and charge structure factors

branch around 2.J, but it also shows features at J. Since the total spin is a conserved
quantity, one expects a zero-energy excitation at ¢ = (0,0). This is exactly reproduced in
the 8 x 8 QMC-BSS data, and qualitatively in the DCA results.

The non-interacting dynamical two-particle lattice structure factor at gt = 6, § ~ 14 %
and U/t = 8 is depicted in Fig. 5.12. The bubble shows a continuum of two-particle
excitations and, i.e., no coherent excitation is visible. This means in other words, that a
possible coherent spin excitation must be generated by the denominator of the expression
in Eq. 5.25.

As a function of decreasing temperature, the DCA dynamical spin structure factor shows a
more pronounced spin-wave spectrum. This is confirmed in Fig. 5.13 on the left hand side.
Here, we fix the temperature to St = 6 and keep the doping at § ~ 14 % but vary the cluster
size. As apparent, for all considered cluster sizes (N. = 4,8,10,16) a spin wave feature is
indeed observable: a peak maximum at g = (w, ) is present and the correct energy scale
at ¢ = (m,0) of 2J is recovered. Additionally, we plot the spin dynamical structure factor
calculated on the finite N. = 8 cluster at §t = 6 and 6 ~ 14 % in Fig. 5.14 (a) where the
discussed spin wave features are also existent. Unfortunately, a direct comparison of these
results with auxiliary field quantum Monte Carlo calculations at lower temperature is not

possible due to the severe minus-sign problem in the BSS calculation.

The investigation of the dynamical charge correlation function for the above parameters
shows that the DCA calculations, which are depicted in Fig. 5.10 ¢), can also reproduce
basic characteristics of the BSS charge excitation spectrum 5.10 d). Both calculations show
excitations at w ~ U which are set by the remnants of the Mott-Hubbard gap. Similar
results are obtained at lower temperatures (3t = 6) on the right hand side of Fig. 5.13 for
different cluster sizes (N, = 4,8,10,16). The corresponding values of « are listed in Tab.
5.1. These values confirm the overall correctness of our approach in that the corresponding
sum rule for the charge response is accurately (exactly for o = 1) fulfilled. For comparison,
the dynamical cluster structure factor is presented for the N. = 8 cluster at Gt = 6 and
0 ~ 14 % in Fig. 5.14 (b). It exhibits also excitations at w ~ U. The bad momentum

resolution is because of the small finite cluster geometry.

The doping dependence of the spin- and charge-response is examined in Fig. 5.15. Here,
we restrict our calculations to the N, = 8 cluster at t = 6 and dopings between § = 14 %
and 0 = 32 %. At 0 = 14 % (see Fig. 5.13) the dynamical spin structure factor displays
a spin wave dispersion with energy scale J. That is ESPW (x,0) = 2J with J = 4%.
As the system is further doped (6 = 27 %) the dispersion is no longer sharply peaked
around g = (m, ). The excitations broaden up and change their energy scale from J = 4%
to an energy scale set by the non-interacting bandwidth. This effect becomes even more
visible with higher dopings at § = 32 % (Fig. 5.15 (c¢)). Furthermore, the spectrum of the

charge response shows a reduction of the weight of states at high energies (w/t ~ 8). This
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Figure 5.13 Dynamical spin and charge structure factors of the Hubbard model at 5t = 6,
0~ 14 % and U/t = 8. for different cluster sizes: (a-b): N. =4, (c-d): N. =8, (e-f):
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Figure 5.14  Dynamical cluster spin and charge structure factors of the Hubbard model
at ft =6, 6 =~ 14 % and U/t = 8 on the N. = 8 cluster.

behaviour corresponds to the loss of weight of the upper Hubbard band with increasing
doping. The corresponding equal time spin and charge correlation functions of Fig. 5.15
(c-d) are depicted in Fig. 5.16 (a-b). As in auxiliary-field QMC simulations [79], the equal
time spin correlation function shows a set of peaks at ¢ = (r+¢,7) and ¢ = (7, 7+¢). Here
€ is proportional to the doping. By reducing the filling of the system, the set of peaks are
almost vanished at § = 27 % (see Fig. 5.16). Below § = 21 % doping one can only observe a
clear peak at the antiferromagnetic wave vector in the static spin-response spectrum which
leads to the antiferromagnetic instability which is shown in Fig. 5.8. The static charge-
response spectrum is depicted on the right hand site of Fig. 5.16. It shows an overall
inconspicuous behaviour. At this point, the reader should keep in mind, that information
at momentum vectors k = (0,0) is complicated to recover because this momentum vector
corresponds to large length scales in real space which can exceed the size of the utilised
cluster.

The overall trend of the doping dependence of the spin- and charge-responses is in good
agreement with the previous findings of QMC simulations (see section 4.1 and [66, 23]):
there it was shown that the spin-response has a characteristic energy scale w ~ 2J and
an SDW-like dispersion up to about § ~ 10 — 15 % doping, despite the fact that at these
dopings the spin-spin correlations are very short-ranged (of order of the lattice parameter).
A lot of the features of the two-particle spectra have direct influence on the single-particle
spectral function and vice-versa. At optimal doping, § = 14 % the spectral function A(q,w)
in Fig. 5.17 (a) shows three distinguishing features. An upper Hubbard band (w/t ~ 8)
and a lower Hubbard band which splits in an incoherent background and a quasiparticle
band of width set by the magnetic scale J (compare with Fig. 4.6). In agreement with
earlier QMC data [66, 23], we view this narrow quasiparticle band as a fingerprint of a

spin-polaron where the bare particle is dressed by spin fluctuations. The fact that the
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Figure 5.15 Spin- and charge structure functions for different dopings: (a,b): 27 % and
(c,d): 32 % The calculations are carried out on an N. = 8 cluster at t = 6. Here we
have used o = 0.96 (a), « =1.00 (b), « =0.96 (c) and o = 1.00 (d).

dynamical spin structure factor in Fig. 5.13 (c) shows a well defined magnon dispersion at
this temperature and doping, 6 = 14 %, allows us to interpret the features centered around
g = (0,0) and below the Fermi energy as backfolding or shadows of the quasiparticle
band at ¢ = (m, 7). A comparison of the charge response spectrum in Fig. 5.13 (d)
with the corresponding single-particle spectra in Fig. 5.17 (a) reveals that the response
in the particle-hole channel at almost zero energy is caused by particle-hole excitations
around the quasi-particle spin-polaron band close to the Fermi energy. The high energy
excitations, mentioned above, are due to transitions from the quasi-particle band to the
upper Hubbard band. As a function of doping, notable changes in the spectral function
which are reflected in the two-particle properties are apparent. On one hand, the spectral
weight in the upper Hubbard band is reduced. As mentioned previously, this reduction
in high energy spectral weight is apparent in the dynamical charge structure factor. On
the other hand, at higher dopings the magnetic fluctuations are suppressed. Consequently,

the narrow band changes its bandwidth from the magnetic exchange energy J to the free
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d-wave super-

conductivity in the
Hubbard model

The physics of the high-temperature superconductors (HTSC) represents, on a microscopic
level, a still unsolved mystery. Many experiments, i.e. angle resolved photoemission ex-
periments [$6], on doped superconducting cuprates reveal curious properties. A d—wave
anisotropy of the superconducting state and pseudogap denote a significant differentiation
to the conventional BCS superconductors. The pseudogap persists even in the normal state
and is believed to cause the unusual non-Fermi liquid behaviour above the superconduct-
ing transition temperature. In the last years, several attempts have been made to explain
the pairing mechanism of the Cooper pairs in the superconducting phase. Due to the ex-
istence of antiferromagnetic ordering in addition to a superconducting phase, one widely
believes that short ranged antiferromagnetic correlations are responsible for the pairing of
the electrons in the cuprates. In section 4, we have shown that the motion of a hole in an
antiferromagnetic background leads to a string of broken antiferromagnetic bonds. In this
picture, the magnetic frustration due to the broken bonds can be avoided by a second hole
which travels with the first one through the lattice. This mechanism leads to an attractive
potential for the electrons which can then form cooper pairs [387]. A second idea to describe
superconductivity goes back to Anderson. He considered a spin-charge separated resonat-
ing valence bond (RVB) picture where spins pair into short-ranged singlets due to strong
antiferromagnetic correlations [88, 89]. The elementary excitations of this states are spin
1/2 charge neutral fermions (spinons) and spin 0 bosons (holons) which recombine under
the superconducting transition temperature to Cooper pairs [90].

The challenge of a detailed study of the HTSC is based on the complex interplay of the
electrons on several energy scales. This requires a technique which incorporates the strong
Coulomb interaction of the electrons but also enable calculations at sufficiently low tem-
peratures in order to take the quantum nature of the spins into account. A state of the
art technique in order to investigate superconductivity in systems of strongly correlated
electrons, i.e. Hubbard model, is the Dynamical Cluster Approximation (DCA) (see sec-
tion 2.1 and Refs. [8, 91, 92, 11]). In the following paragraph, we apply the DCA to the
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6 d-wave superconductivity in the Hubbard model

Hubbard model and allow an instability to a superconducting phase.

6.1 DCA and superconducting phase

The technical implementation of the superconductivity within the DCA approximation
is presented in section 2.9. Hereby, we accommodate the U(1) symmetry breaking by
introducing additional anomalous Green functions. A particle-hole transformation (see
Eq. (2.104)) transforms the anomalous Green functions into spin-flip Green functions. As
we mentioned in section 4, one expects the order parameter of a possible superconducting
phase to have d-wave symmetry. Therefore, we consider an N. = 4 cluster which repre-
sents the smallest cluster to incorporate nearest neighbour interaction. A sketch of the
coarse-grained cells and the d-wave order parameter is depicted in Fig. 6.1. Due to the
symmetry of the pairing mechanism, we expect that the order parameter vanishes at the

zone center and the point (7, 7). A systematic study of the cluster size dependence of the

ke Figure 6.1  Coarse-grained cells of the N, = 4 cluster with
N Ji.i 7777777 /, the cluster momentum vectors (shown by red points) and a
A k /(/W’ W) sketch of the d — wave symmetry of the order parameter.

superconductivity in the conventional Hubbard model was systematically performed by
Jarrell et al. [11]. They showed that due to the non-locality of the d-wave superconducting
order parameter, large finite size and geometry effects lead to inconclusive results. The
calculations were carried out from the smallest cluster (N, = 4) which can incorporate a
d—wave superconducting instability to a N. = 26 cluster. The superconducting transition
temperature is dramatically dependent on the cluster size and geometry. In this respect, an
important quantity is the (in)completeness of neighbouring shells of the clusters compared
to the finite lattice [10]. Thus, the N. = 4 cluster can contain only one Cooper pair and
reveals the highest transition temperature because no superconducting phase fluctuations
are included. On larger clusters (e.g. N. = 8), there is room for one more Cooper pair
on an adjacent plaquette. Therefore, two Cooper pairs interact with each other in such
a way, that phase fluctuations can be replicated and hence overestimated. Jarrell et al.
showed that the transition temperature of the N, = 8, 18 clusters are negative and become
slightly positive on larger clusters [11]. These considerations compel us to consider only

the N, = 4 cluster which exhibits the highest transition temperature. Calculations at low
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Figure 6.2  Temperature-doping phase diagram of the 2D Hubbard model when the
Coulomb repulsion is equal to the bandwidth U = W = 8t for the DCA cluster size
N, = 4. The energy scale is given by t = 0.25 eV. Regions of antiferromagnetism,
d-wave superconductivity and pseudogap behaviour are seen. The figure is taken from

Jarrell et al. [8].

temperatures would suffer from the severe minus-sign problem which would constrict a
reliable investigation of the correlation physics in close proximity to the superconducting

transition temperature.

Our first calculation serves as a test case. We consider the conventional Hubbard model
with nearest neighbour hopping and a Coulomb interaction which is set to U/t = 8.
First, we calculate the s- and d-wave order parameter within our Monte Carlo procedure
with reference to the expressions in Eqgs. (2.112) and (2.113) and compare it to a DCA
calculation where the superconducting instability is estimated by the divergence of the

pair-field susceptibility [8].
The DCA phase diagram of the Hubbard model in the strong coupling regime U/t = 8

is depicted in Fig. 6.2. The antiferromagnetic and superconducting phase transitions are
determined by the divergence of the corresponding susceptibilities. In our calculation,
we neglect a possible coexistence of the antiferromagnetic and the superconducting phase
because this approach would require an 8 x 8 matrix representation of the Green functions
in order to take both phases into account which would represent an immense computational
effort. Our results for the d-wave order parameter as a function of temperature is shown
in Fig. 6.3 for the 2D Hubbard model at U/t = 8 for three different dopings: § = 5.2 %,
15.5 % and 22.5 %. A comparison shows a good agreement of our results with the transition
temperatures calculated by the divergence of the pair-field susceptibility in Fig. 6.2. The

d-wave order parameters in Fig. 6.3 are calculated within the Monte Carlo procedure on
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Figure 6.3 d-wave order parameters AdSC of the 2D Hubbard model at U/t = 8 for
different temperatures and different fillings: 6 = 5.2 %, 15.5 % and 22.5 %. The
calculations are carried out on the N. = 4 cluster. The next-nearest neighbour hopping

amplitude is set to zero.

the finite cluster and, therefore, their absolute value can slightly differ from the lattice
quantity due to the non-local character of the order parameter. The calculation of the
s-wave order parameter shows no indication of s-wave pairing in the repulsive Hubbard
model. In the next step, we add a next-nearest hopping amplitude ¢’ = —0.3t to the above
discussed conventional Hubbard model which brings the model closer to the physics of the

high-temperature superconductors [93]:

H=—t Z cjo,cjo —t Z cjacj(7 + UZ”iT”il — ,uan, (6.1)
(ij)o ((ig)o i 0o
whereat the expressions (ij) and ((ij)) indicate the summation over nearest and next-
nearest neighbours, respectively, and u represents the chemical potential. The resulting
d-wave order parameters as a function of temperature are presented in Fig. 6.4 for three
different hole dopings: 6 = 4.7 %, 7.0 % and 15.5 %. At the critical temperature, the
estimation of the order parameter becomes pretty difficult because the convergence in the
self-consistent steps in the DCA approach is extremely poor near the phase transition. For
0 = 7.0 %, we find a critical temperature T, of 0.071¢t (5t = 14) < T. < 0.077t (Bt =
13). The corresponding density of states (DOS) of the single-band Hubbard model with
t' = —0.3t at U/t = 8 is depicted in Fig. 6.5 for various temperatures. The red curve
shows the DOS at a temperature T' ~ 2.57,. Clearly, no indications of a superconducting
or pseudogap are visible in the spectrum. The line shape is almost flat. By decreasing
the temperature to slightly above the critical superconducting temperature (7' = 0.083t),
a suppression of the local spectral function becomes visible which has to be interpreted
as the occurrence of the pseudogap. The pseudogap changes at a temperature below T,

into a superconducting gap which becomes clearly visible at 7' = 0.056t (5t = 18). The
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Figure 6.4 d-wave order parameters ACSlC of the 2D Hubbard model with nearest and
next-nearest neighbour hopping amplitude (t' = —0.3t) at U/t = 8 for different temper-
atures and different hole dopings: 6 = 4.7 %, 7.0 % and 15.5 %. The calculations are

carried out on the N. = 4 cluster.

evolution is accompanied by the formation of coherence peaks at |w|/t ~ 0.3 which are
already known from the BCS theory.

In summary, our results concerning the superconducting transition temperature for ¢ = 0
are in good agreement with previous DCA calculations from Jarrell et al. [92] where they
have investigated the 2D Hubbard model with ¢’ = 0 in the strong coupling regime U/t = 8.
In a second step, we have introduced a next-nearest neighbour hopping term ¢ = —0.3t in
our calculation. We discover that the overall evolution of the pseudo- and superconducting
gap at w = 0 confirms previous DCA calculations performed by Jarrell et al. who could

also demonstrate the creation of a coherence peak at small energies in agreement with our
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Figure 6.5

Density of states of the 2D Hubbard model at U/t = 8 at different temper-

atures and at § = 7 % doping. The superconducting temperature lies in the interval

0.071t < 1. < 0.077¢.
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calculation [92].

6.2 Angle-resolved spectral function

To investigate the evolution of the superconducting gap in detail, we consider the momen-
tum resolved one-particle spectral function. We remind the reader, that our calculations
are carried out on the smallest cluster (V. = 4) which can incorporate a non-local inter-
action of the electrons in two dimensions. Hence, we can only estimate the self-energy
on four different momentum vectors which reveals a poor resolution in momentum space.
Additionally, symmetry considerations reduce further the information content of the self-
energy.
An interpolation scheme is used in order to translate the irreducible cluster quantities,
i.e. the self-energy, to the infinite lattice. The idea is very similar to the approach which
was presented by Eq. (5.27). Hereby, we consider the elements of the Nambu-matrix
Y.(K,iw) where the diagonal elements describe the quasiparticle renormalisations and the
off-diagonal elements contains the information about the K- and frequency dependencies
of the pairing state:

S(K ity = Y11 (K iwm)  Ap(Kiwp) . (6.2)

Aoy (K iwn) YooK, iwp)

In the following, we prescribe a series expansion (equivalent to Eq. (5.27)) in order to
interpolate the self-energy. Hereby, we focus only on the off-diagonal elements of the

self-energy:

— Ak iwm) = Ag(iwm) + 201 (iwn,) (cos(ky) + cos(ky))
+  2As(iwp,) (cos(ky) — cos(ky))
+  2A3(iwp,) (cos(ky + ky) + cos(ky — ky)). (6.3)

For fixed Matsubara frequency iw,, and for a given set of A(K, iw,,) with cluster momenta
K, Eq. (6.3) represents a set of equations which uniquely determines A;(iwy,), whereby
1 =20,..., N, — 1. If the coefficients are determined, the self-energy can be estimated for
every lattice momentum vector k. The reader should note, that the momentum dependence
of the self-energy is encoded in the pre-factors A;—¢ . n,—1 and the interpolation has to be
performed for the real as well as for the imaginary part of Ajs. The pre-factors A;—o .. n.—1
are depicted in Fig. 6.6 for a simulation at 7" = 0.056t (5t = 18) below T, and at § =~ 7 %
hole doping. The results in Fig. 6.6 are restricted to the real part of A;—g . n.—1 which
provides the most important contributions to X.( K, iw,,). Evidently, the d-wave symmetry
order parameter is one magnitude larger than the other contributions which are specified

by Eq. (6.3) and, hence, confirms the d-wave symmetry of the pairing interaction. The
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Figure 6.6  Real part of the expansion coefficients A(i€d,,) which are defined by Eq. (6.3)
of the Hubbard model at U/t =8, 6 =7 %, and T = 0.056t (St = 18). Inset: real part
of the expansion coefficient Ay (i) at the Matsubara frequency iw,, = inT for the
above parameters but at different temperatures. The calculations are carried out on the
N. = 4 cluster.

frequency dependence of the d-wave order parameter is evident in Fig. (6.3) and it shows
that, as opposed to the static mean-field BCS theory, retardation effects are taken into
account. The inset of Fig. 6.6 exhibits the coefficient Ay at the Matsubara frequency
iwy, = irT. The simulation is carried out at § ~ 7 % hole doping. The coefficient A,
is zero above the superconducting transition temperature and it monotonically increases

below T.. The temperature at which the phase transition takes place is in astonishingly
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Figure 6.7  Angle-resolved spectral function A(q,w) for 6 = 7 % hole doping. The
calculations are carried out on the N, = 4 cluster at T = 0.1t (Bt = 10) (a) and at
T = 0.056t (Bt =18) (b).
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Figure 6.8  Angle-resolved spectral function A(q,w) for 6 = 7 % hole doping. The
calculations are carried on the N. = 4 cluster at T = 0.071t (5t = 14) (a) and at
T = 0.063t (Bt =16) (b).

good agreement with T, which was estimated in Fig. 6.3. As mentioned previously, due
to the non-local character of the d-wave order parameter, the absolute value of Agc can
deviate from the corresponding lattice quantity. On the other hand, As is evaluated at the
Matsubara frequency iw,, = i7T which complicates a direct comparison with Agc.

In the next paragraph we focus on the angle-resolved spectral function of the Hubbard
model at § = 7 % hole doping on the N, = 4 cluster. Fig. 6.7 (a) shows the one-particle
spectrum at T' = 0.1t above the superconducting transition temperature where we can
distinguish three different features. The spectrum is dominated by an upper Hubbard band
(w/t =~ 8) and a lower Hubbard band which are separated due to the Coulomb interaction.
A coherent quasiparticle band around the Fermi surface describes the low energy excitations
of the system. It crosses the Fermi surface around the momentum vectors (m,7/4) and
(m/2,m/2). The quasiparticle band can be described by the dressing of a hole with a cloud
of spin-excitations to allow for a coherent motion through an antiferromagnetic ordered
background (see sections 4.1 and 5.2). By lowering the temperature below the critical
superconducting temperature 7, the changes in the single-particle spectral function are
accompanied by a formation of three peaks close to the Fermi energy around (7, 7/4).
The center peak disappears with lowering temperature whereas the outer peaks become
the coherence peaks which we have previously shown in the density of states. The angle-
resolved spectral functions at § = 7 % hole doping and at T' = 0.071¢ and T = 0.063t are
depicted in Fig. 6.8 (a) and (b) respectively. The complete opening of the superconducting
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Figure 6.9  Improved momentum resolution of the angle-resolved spectral function
A(q,w) of Fig. 6.7 (b) for different paths: X — M (a) and T' — M (b). The cal-
culations are carried out on the N. = 4 cluster at T = 0.056t (8t = 18) and for 6 =7 %
hole doping.

gap is first achieved at T' = 0.056¢ (8t = 18). The corresponding spectral function is shown
in Fig. 6.7 (b) and Fig. 6.9 where we enhance the resolution in momentum space. The
previously mentioned coherence peaks close to the superconducting gap slightly extend
above und below the Fermi energy. The superconducting gap can be explained by an
additional energy cost which is necessary to break up a Cooper pair in order to transfer
an electron from close below to close above the Fermi energy.

We have already seen in Fig. 6.6 that the pairing interaction of the Hubbard model underlies
a d-wave symmetry. The single-particle spectral functions in Fig. 6.9 (a) and (b) confirm
the d-wave symmetry of the superconducting order parameter. The gap vanishes in nodal
direction.

The suppression of spectral weight, even above the superconducting transition temperature,
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was visible in the density of states in Fig. 6.5 which we have identified as the opening of

a pseudogap. The investigation of the pseudogap is continued by a detailed study of

(LT 75 A(Qw) Figure 6.10  Angle-resolved spectral function A(q,w)
of the Hubbard model for § = 7 % hole doping. The
(Tt 3174) = calculation is carried out on the N. = 4 cluster atT' =
I—— 0.083t (Ot = 12) slightly above the superconducting
(,T72) % transition temperature T,.
, —————
I ]
_—_— =
%\/\—,\_
N
(T0)
2-1 012

w't

the angle-resolved spectral function. Hereby, we plot A(q,w) of the Hubbard model for
0 =7 % hole doping at T' = 0.083t (5t = 12) in Fig. 6.10. The spectrum does not exhibit
a precursor of a gap around the momentum vector (m,7/4) where at lower temperatures
the superconducting gap will open. Obviously, the information about the pseudogap must
be encoded in the self-energy which is originally given only at the cluster momenta. The
interpolation scheme (see Eq. (6.3)) cannot properly transfer such delicate information
content, i.e. information about the pseudogap, to the intermediate lattice momenta.

Nevertheless, information about the opening of the superconducting gap and the formation
of coherence bands close to the superconducting gap can be clearly reproduced in the single-
particle spectrum at the intermediate lattice momenta and at sufficiently low temperature.
In order to achieve a deeper insight into the physics of the pseudogap and superconducting
state of the Hubbard model, one has to consider larger clusters. Firstly, calculations on
larger systems repress the strong finite size effects and, secondly, the transfer of the irre-
ducible quantities from the finite cluster to the infinite lattice becomes more independent
from the interpolation scheme. The enhancement of the cluster size has the consequence,
that the usual Hirsch-Fye quantum Monte Carlo cluster solver has to be replaced by a more
efficient algorithm. Such a development is beyond the scope of this thesis and represents

a great challenge for the next several years.
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Summary

This thesis has been devoted to a study of a strongly corre-
lated electron system. Using the Dynamical Cluster Ap-
proximation (DCA), we investigate the two-dimensional
Hubbard model in the strong coupling regime U = 8¢ (en-
ergy scale t = 1). In the DCA, the original lattice problem
is mapped to a self-consistently embedded cluster of size
N. = L. x L.. The correlations up to a range of £ < L.
are treated accurately, while the physics on longer length-
scales are described at the mean-field level. The cluster
problem generated by the DCA is solved by the Hirsch-Fye
quantum Monte Carlo technique.

The cluster irreducible self-energy, 3 (K), and two-particle
vertex, FK, K7 Serve as an approximation of their corre-
sponding lattice quantities and they can be used to calcu-
late the lattice single-particle and lattice two-particle corre-
lations functions, respectively. The technical implementa-
tion is readily carried out for the single-particle properties.
However, from a numerical point of view the calculation of
the dynamical two-particle correlation functions, i.e. ver-
tex function, within the DCA is much more involved.

The complexity of the cluster vertex function I'gs g can be
reduced by averaging the K’ and K" dependencies. Hence,
we introduce an effective vertex function which depends

only on the center of mass momentum und frequency, @ =

(Q,i,): )
ﬂ_LUeff(Q) = (L g (Q))-

With the effective vertex function Ues;(Q) and the bubble
Xo(q), which is generated by the dressed Green functions,

/‘/
° //a By ol
° g e|leo o' L
(0,0) (7,0} l

momentum space

DCA coarse-grained cells

N.=88t=6

0

6k

es1(Qui = 0)

U

8
4
2

]

0
0.0)

Effective particle-hole vertex
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(Bt =6 and § ~ 14 %)

the lattice susceptibility reads:

(@) = Xo(g)
XN =174~ Uers(q) - x0(q)’

where « is estimated in a self-consistent manner and serves
as a controlling parameter.

A comparison of our approach with a SU(2) symmetry bro-
ken DCA calculation on an N, = 8 cluster serves as a test
case. By evaluating the lattice spin susceptibility, a di-
vergence would indicate a magnetic phase transition which
can be compared with the Néel temperature, as obtained
from the SU(2) symmetry broken algorithm. The resulting
magnetic phase diagram from the SU(2) symmetry broken
calculation corresponds to the exact DCA result where no
approximation -apart from coarse graining- is made on the
particle-hole irreducible vertex. At half-filling the phase
diagram exhibits magnetism below 7' ~ 0.4t which per-
sists up to approximately 15 % doping. A good agreement
of both methods can be achieved at § = 10 %. At smaller
doping, the K’ and K" play an important role in the deter-
mination of the Néel temperature and cannot be neglected.
In a further test, we compare the spin S(gq,w)- and charge
C(q,w)-dynamical structure factors with ezact auxiliary
Blankenbecler-Scalapino-Sugar(BSS) QMC results at gt =
3,0 ~ 14 %, and U/t = 8. The analytical continuation
from the imaginary time axis to real frequencies is per-
formed by a stochastic version of the maximum entropy
method. The spectrum in the spin channel exhibits two
branches at w ~ J and 2J, whereat J = % represents
the usual exchange coupling. The DCA overestimates the
spectral weight at ¢ = (7, w) but does very well away from
the AF wave vector. At lower temperatures (8t = 6) a
clear spin wave feature is indeed observable: a peak maxi-
mum at ¢ = (7, 7) is present and at g = (m,0) the correct

energy scale of 2.J is recovered.



The DCA dynamical charge correlation functions can re-
produce the basic characteristics of the BSS charge exci-
tation spectrum. Excitations at w ~ U are set by the
remnants of the Mott-Hubbard gap.

The investigation of the spin and charge responses at ft =
6 on the DCA N, = 8 cluster exhibits a strong doping
dependence. At § = 27 % the spin wave dispersion is no
longer sharply peaked around q = (m, 7). The excitations
broaden up and change their energy scale from J = % to
an energy scale set by the non-interacting bandwidth. The
changes become more evident at higher dopings (6 = 32 %).
The charge response shows a reduction of spectral weight at
high energies which can be explained by the loss of weight
in the upper Hubbard band with increasing doping.

The single-particle spectrum (8t = 6, 6 = 14 %, and
N, = 8) exhibits three distinguishing features: an upper
Hubbard band (w/t ~ 8) and a lower Hubbard band which
represent the incoherent background. A quasiparticle band
with energy J represents the low energy excitations of the
system and results from a dressing of a hole with a cloud
of spin-excitations to allow for a coherent motion through
an antiferromagnetic ordered background. The occurrence
of the spin-polaron is accompanied by the existence of the
spin wave features in the spin response.

At higher dopings (6 ~ 32 %) the upper Hubbard band
loses spectral weight and the bandwidth of the quasiparti-
cles changes from J to the free bandwidth and, therefore,
corresponds to the changes in the two-particle spectra.

In the second part of the thesis, we study the super-
conductivity in the conventional Hubbard model (¢t = 1,
t' = —0.3t, and U/t = 8) within the Dynamical Cluster
Approximation. The anomalous Green functions are in-
corporated in terms of the Nambu representation. The
diagonal elements of the Nambu matrix ¥.(K,iw,,) repre-
sent the quasiparticle renormalisations and the off-diagonal
parts contain information about the K- and frequency de-

pendence of the pairing state.

SR m—

0.001 0.01 0.1
16 | | | |

0 - T T T
(0,00 (mo) (mm  (0,0)

Charge dynamical structure

factor (Bt =6 and 6 = 14 %)

SRR —

0.1 1

00 (o) (mm (0,0
Spin dynamical structure factor

(Bt =6 and § ~ 32 %)

JNCRD i m— |

0.01 0.1 1

(00) (mO) (mm (0,0
Spectral function (8t = 6 and
0~ 14 %)

(00 (mo (mm  (0,0)
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In a first test case, we compare the superconducting tran-
sition temperature, indicated by a non-vanishing order pa-
rameter, with a superconducting phase diagram of the con-
ventional Hubbard model (for the test case: ¢’ = 0), where
the phase boundary is estimated by the divergence of the
pair field susceptibility. Our calculations show a good
agreement between both methods at three different dop-
ings: & = 5.2 %, 15.5 %, and 22.5 %. The pairing state
clearly exhibits a pure d-wave symmetry.

The density of states of the Hubbard model is studied for
0 = 7 % doping at different temperatures on the N, = 4
cluster. An opening of a pseudogap is indicated by a slight
suppression of spectral weight at w = 0 in the local spectral
function above the superconducting transition temperature
T.. The formation of the superconducting gap below T,
is accompanied by the occurrence of coherence bands at
lw|/t =~ 0.3.

A detailed study of the angle-resolved spectral function
exhibits a delayed opening of the superconducting gap at
q =~ (m/4,7) while decreasing the temperature and shows
no indication of a gap in nodal directions which confirms
the d-wave symmetry of the superconducting order param-
eter. A precursor of the pseudogap at g ~ (w/4,7) above
the superconducting transition temperature cannot be re-
solved. The reason for this is given by the poor momentum
resolution of the self-energy on the N. = 4 DCA cluster.
The interpolation scheme utilised for the self-energy can-
not properly transfer the information about the pseudogap

to the intermediate lattice momentum vectors.
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