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Chapter 1

Introduction

The term cryptography is derived from the greek words κρυπτός and γράφειν, and thus trans-
lates to “secret writing”. Whenever people have been communicating in written form, con-
fidential messages were required to remain secret; i.e., if the message got into the wrong
hands, the non-intended recipient was not supposed to be able to extract the original con-
tent of the message. To this end, methods were invented that allowed for such messages
to be encrypted and decrypted only by the use of a secret that had to be initially shared
among the communicating parties. On the other hand, whoever received the encoded
message, or ciphertext, was supposed to only be able to decode the message to its plaintext
if in possession of the corresponding secret.

Among many others, examples for this approach can be found in the times of the an-
cient Greeks or Romans [141]. The Greeks used a scytale to construct a mechanical transpos-
ition cipher, which produces a permutation of the plaintext letters as ciphertext. It consists
of a cylinder and a strip of parchment, which is wound around the cylinder. The message
is written on the parchment, which is then removed from the cylinder and sent to the re-
cipient. In order to read the message, the recipient had to wound the parchment around
a cylinder of the same diameter as the original one, such that the letters aligned correctly.
The shared secret is thus given by the cylinder, resp. its diameter (see [141]).

A different method, e.g. used by the Romans and attributed to Julius Caesar, is the
Caesar cipher, a substitution cipher. In this cipher each plaintext letter is replaced by the
letter a fixed number of steps to its left side in the alphabet, e.g. substituting ‘D’ by ‘A’ for
a left shift of 3 steps. The resulting ciphertext can easily be decoded by reversing this shift,
if the number of steps is known. Thus, this number is the shared secret involved in the
Caesar cipher (see [141]).

Although these ciphers can be broken easily by today’s standards, they offered a sig-
nificant advantage over unencrypted plaintext messages in the corresponding times, es-
pecially when messages had to remain confidential only for a short time frame. Over the
centuries, more secure ciphers have been invented, e.g. the Vigenère cipher or the running
key cipher, resp. encryption machines like the Enigma have been built [141]. Despite many
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differences between these ciphers and their security, all of these ciphers share the prop-
erty of requiring a secret, or key, that the participants agree upon initially and secretly,
and which must remain confidential. Today, such schemes are collected under the name
symmetric cryptography.

Another commonality among these ciphers is that the common people rarely got in
touch with them. Instead, they were mostly deployed in a political or military context, as
e.g. the Greeks’ usage of the scytale for communication during military campaigns or the
usage of the Enigma during World War II [141]. However, the rise of the internet over the
last decades rapidly changed this picture. Although often unnoticed, our modern digital
society could hardly exist without secure cryptographic primitives such as the advanced
encryption standard (AES) [56], the most popular and commonplace modern symmetric
cipher. Thus, nowadays cryptography plays an important role in our everyday life, despite
not being explicitly visible to the user most of the time.

However, the main driving force behind this development has not been symmetric
cryptography, but the invention of asymmetric or public-key cryptography by Diffie and Hell-
man in 1976 [68]. They provide a key exchange protocol, which allows communicating
parties to establish a shared secret over an insecure channel, thus eliminating the need to
initially agree on such a secret in private, i.e., over a secure channel. Such a shared secret
can then either directly be used to encrypt or decrypt messages, or can be used to derive
a key for the deployment of a symmetric cipher. This can be achieved through the gen-
eration of a key pair for each participant, consisting of a secret private key and a publicly
available public key, from which the communicating parties can derive their shared secret.

Apart from the secrecy that key exchanges provide, Diffie and Hellman’s work builds
the basis for digital signature schemes. Digital signatures consist of data that is attached
to messages, and when verified by the recipient to match the sender’s public key and
the received message, guarantee the authenticity and integrity of the message. In other
words, a valid signature guarantees that the message has indeed been sent by the expec-
ted sender and has not been manipulated. These two primitives, key exchange schemes
and digital signatures, essentially form the whole foundation of modern communication
over the internet. Apart from the original proposals by Diffie and Hellman [68], famous
public-key encryption, key exchange, or signature schemes were given by RSA encryp-
tion and signatures by Rivest, Shamir, and Adleman [132], ElGamal encryption and signa-
tures [73], Schnorr signatures [134], and elliptic curve cryptography (ECC) as proposed by
Miller [116] and Koblitz [103].

Even though the most common requirements are covered by these primitives, there
are many other applications that require different protocols; e.g., multiparty computation,
electronic voting, blockchains and cryptocurrencies, or the very recent field of privacy-
preserving contact tracing as a means of fighting the transmission of infectious diseases.
Throughout this thesis, we will entirely focus on public-key cryptography, and mostly on
key exchange schemes.



Chapter 1. Introduction 13

1.1 Post-quantum cryptography

The aforementioned public-key schemes rely on hard computational problems to justify
their security. In particular, the hard problems corresponding to the mentioned schemes
are the integer factorization problem and the discrete logarithm problem. Over the dec-
ades, we gained sufficient confidence in their hardness to allow for their widespread us-
age.

However, this only accounts for attackers using classical computers. If we consider
an attacker with access to a large-scale quantum computer, Shor showed that both of
these problems can be solved efficiently [137]. Thus, in a quantum era, where large-
scale quantum computers exist, essentially all of the currently deployed public-key crypto-
graphy is broken. For symmetric cryptography, the situation is not as alarming; although
Grover’s algorithm [89] allows for a substantial speedup for key search attacks, it suffices
to roughly double key sizes to compensate for the faster quantum key search.

Fortunately, such large-scale quantum computers are currently not known to exist.
However, it is unclear if and when this could change. This puts us in a situation, where
potentially all of our currently deployed public-key schemes could be broken in the com-
ing years, yet without knowing an approximate time frame. It may thus be tempting to
lean back and wait for further progress in the development of quantum computers, before
starting to replace schemes like RSA or ECC by quantum-resistant alternatives. However,
in the meantime adversaries could archive confidential encrypted messages, and decrypt
them retroactively once a large enough quantum computer is available. Moreover, the
transition to quantum-resistant schemes is a complex and tedious process, which requires
the standardization of such schemes, as well as their implementation for real-world ap-
plications. Thus, such a transition cannot happen overnight once a large-scale quantum
computer is available, but requires an immense amount of preparations within a time
frame of years.

After considerable effort among the academic world, this development led the United
States National Institute of Standards and Technology (NIST), the most important organ-
ization for cryptographic standards, to initiate a standardization process for post-quantum
cryptography (PQC) in 2016 [121]. Researchers were asked to submit quantum-resistant
key encapsulation mechanisms (KEMs, variants of key exchange schemes) and digital sig-
nature schemes, with the aim of selecting and standardizing the “best” schemes among
them.1 In the first round, 69 submissions took part in the process. Over the following
years, in an effort of a transparent process, NIST narrowed down the number of poten-
tially standardized schemes through several rounds. Beginning in 2020, 15 schemes have
moved on to the final third round. NIST expects that by 2024 the standardization of a small

1The question of which scheme is the “best” mainly depends on the use case; it could for example be
required to prioritize performance, small key sizes, or confidence in the security of the scheme.
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number of these finalists will be finished [121], and deployment in practice then rapidly
follows.

Isogeny-based cryptography. As explained above, schemes that rely on the computa-
tional hardness of integer factorization or the discrete logarithm problem are not quantum-
resistant. Fortunately, other approaches have been explored over the last decades, and it
turned out that some of them are conjectured to withstand quantum attacks. In partic-
ular, the first four families of well-known quantum-resistant schemes are given by code-
based cryptography, hash-based cryptography, lattice-based cryptography, and multivariate cryp-
tography (see [12]). However, over the last decade, a fifth family of PQC schemes gained
much attention and experienced a fast-paced development: isogeny-based cryptography. It
is based on the computation of isogenies, maps between elliptic curves, and can thus be
seen as an extension of traditional ECC.

Isogeny-based cryptography has first been proposed by Couveignes in 1997 [51], but
after being rejected at a conference, his proposal only circulated privately. In 2006, Ros-
tovtsev and Stolbunov [133] independently rediscovered Couveignes’ scheme, which is
therefore often abbreviated as CRS. The major drawback of this scheme is its rather im-
practical performance, which prevented it to be considered as a serious PQC alternative.

A different line of work was initiated in 2006 by Charles, Goren, and Lauter through a
hash function (CGL) based on isogeny graphs of supersingular elliptic curves [38]. Follow-
ing this approach, in 2011 Jao and De Feo [94] proposed the Supersingular Isogeny Diffie-
Hellman (SIDH) key exchange, which uses similar isogeny graphs and achieves a much
better performance than CRS. After several improvements, e.g. [60, 47, 46], a KEM variant
of SIDH was submitted to the NIST PQC standardization process under the name SIKE in
2017 [93], and advanced to the third round as an alternate candidate.

Many other isogeny-based schemes were only invented in the last three years, and
therefore too late to participate in the NIST PQC process. The most prominent of these
schemes is the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) key exchange
scheme, published by Castryck, Lange, Martindale, Panny, and Renes [35] in 2018. It
builds upon improvements of the CRS scheme by De Feo, Kieffer, and Smith [61], and
spurred much follow-up work that exploits its commutative structure for digital signa-
tures and other advanced protocols.

Other recent isogeny-based schemes are, e.g., the key exchange scheme B-SIDH [44]
and the signature schemes SeaSign [59], CSI-FiSh [19], and SQISign [62]. We will expand
upon some of those in Chapter 2.

1.2 Organization of this thesis

As the title suggests, this thesis is focused on practical aspects of isogeny-based crypto-
graphy, in particular, implementation aspects and practical applications. Moreover, large
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parts of this thesis will focus on CSIDH. This may appear overly selective, but can be
explained by the timeline of developments in isogeny-based cryptography. This work
covers research done between 2018 and 2020, which can be placed after the numerous
improvements in the realm of SIDH/SIKE that culminated in its submission to the NIST
PQC standardization process in 2017. It is thus natural for research on implementations
and practical applications to focus on less studied topics, such as CSIDH, which was pub-
lished only in 2018, aligning with the time frame of research for this work. Three chapters
of this thesis will cover efficient and side-channel resistant implementations of CSIDH.
Thereafter, applications of general isogeny group actions and practical considerations for
setting up the very recent schemes B-SIDH and SQISign will be covered.

In Chapter 2 we introduce the mathematical background of isogeny-based crypto-
graphy. We describe the necessary theory of elliptic curves and isogenies, explain their
arithmetic in implementations, and describe three isogeny-based key exchange schemes,
namely SIDH, B-SIDH, and CSIDH. The remainder of this thesis is organized in chapters
that correspond to one academic paper, respectively. We briefly describe each chapter’s
content, and refer to the corresponding publications.

Chapter 3 is based on [114]. It reviews the variable-time implementation of CSIDH
accompanying the original CSIDH paper [35], and introduces several speedups. Firstly,
we describe how the algorithm can be reorganized in order to save a substantial amount
of computational effort for scalar multiplications. Moreover, we present a method to com-
pute isogenies exploiting the correspondence between Montgomery and twisted Edwards
curves, resulting in a significant speedup over the prior methods using only Montgomery
curves. In total, our improvements gain a speedup of 25% when plugged into the imple-
mentation of [35].

Chapter 4 is based on [113]. It analyzes how variable-time implementations of CSIDH
provide side-channel leakage, and introduces the first efficient constant-time implement-
ation of CSIDH. This is achieved through the usage of dummy isogenies, in order to allow
for a constant total number of isogenies, and through the usage of only non-negative key
elements, which prevents leakage on the sign distribution of the corresponding private
key. When implemented in a straightforward fashion, these countermeasures roughly
lead to a slowdown by a factor of 6 compared to [114]. However, we present several spee-
dups, such as a method that processes the required isogenies in batches, and achieve an
overall slowdown by a factor of 3.03, which is considerably faster than the straightforward
implementation.

Chapter 5 is based on [31]. It analyzes practical fault injection attacks on CSIDH imple-
mentations with dummy isogenies in different attacker models. In particular, an attacker
can try to determine the ratio of real vs. dummy isogenies through fault injections, or,
in a stronger attacker model, specifically aim at faulting an isogeny in order to determ-
ine whether it is a dummy computation. We simulate these attacks in order to analyze
their impact, and demonstrate the practical feasibility using only low-budget equipment.
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Furthermore, we provide countermeasures against the considered attacks, which detect
any fault injection covered by our models, and only induce a computational overhead by
a factor of 1.07. Thus, our protected algorithm is significantly faster than a variant that
avoids using dummy isogenies in order to protect against fault injection attacks.

Chapter 6 is based on [63]. It initiates the study of threshold schemes from hard ho-
mogeneous spaces (HHS). HHS have first appeared in the work of Couveignes [51] and
generalize the concept of discrete logarithm groups to cryptographic group actions. In
this chapter we analyze how threshold schemes from discrete logarithm groups can be
adapted to the HHS setting. We describe a threshold KEM and signature scheme based on
HHS and Shamir secret sharing [136], and prove their security in the honest-but-curious
adversary model. Although CSIDH uses an isogeny group action, it is not a HHS in the
strictest sense, since e.g. the group structure of the involved class group is not known in
general. However, with the tools provided by the CSI-FiSh signature scheme [19], our
HHS threshold schemes can be instantiated based on isogenies.

Chapter 7 is based on [49]. It provides a sieving algorithm for searching for prime
numbers that allow for an efficient instantiation of B-SIDH [44] or SQISign [62]. These
schemes require as parameter a prime of a certain size that lies between two integers that
are as smooth as possible. In order to efficiently search for such primes, we utilize solu-
tions to the Prouhet-Tarry-Escott (PTE) problem, which then provide pairs of polynomials
that completely split into linear factors in Z[x] and have constant differences. We explain
how searching with such polynomials improves upon the methods used in [44, 62], and
implement an efficient sieving algorithm that combines many PTE solutions into a single
search with minimal overhead. In practice, our algorithm found cryptographically sized
primes p with 2240 ≤ p ≤ 2256, where p − 1 and p + 1 are both 215-smooth. This signi-
ficantly improves upon the best previously known examples, where the best smoothness
bound was given by 219.

Remark 1. Throughout the last few years, isogeny-based cryptography, and specifically
isogeny-based group actions as in CSIDH, have gained an increased amount of attention.
This led to an especially fast-paced progress in its research, and an increasing amount of
published papers. Thus, we will comment on follow-up work referring to the content
of this thesis; in particular, some of the chapters of this thesis are concluded by such an
overview, in order to help the reader in assessing the contributions of this thesis and the
current state-of-the-art.



Chapter 2

Preliminaries

This chapter gives an introduction to isogeny-based cryptography, and as such does not
contain any novel results, but presents the necessary background for the following chap-
ters. It is loosely inspired by introductory texts by Costello [42, 43] and De Feo [57].
To fully understand the mathematics and cryptographic applications of isogenies, a vast
background in mathematics is required. Therefore, this chapter certainly cannot have the
ambition to be a complete and standalone introduction to the topic. Instead, since effi-
cient implementations play an important role in large parts of this thesis, this introduction
aims towards being an accessible entry point also for implementers and newcomers to
isogeny-based cryptography. For more mathematical background, we refer to classical
textbooks, e.g. by Silverman [140] or Washington [153], to Galbraith [79], or to De Feo’s
lecture notes [57].

The following sections briefly introduce elliptic curves and isogenies, and provide im-
portant results for cryptographic applications, mostly using definitions and results from
[140]. We review the related elliptic curve and isogeny arithmetic, and describe crypto-
graphic protocols such as SIDH, B-SIDH, and CSIDH.

2.1 Elliptic curves

Elliptic curves possess the cryptographically useful property of behaving like an abstract
type of group. In particular, for a general field K with algebraic closure K, an elliptic curve
contains points (x, y) with x, y ∈ K that satisfy the affine curve equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K, and the distinguished point ∞. An elliptic curve in this form
is called a general Weierstraß curve. The set of points on such an elliptic curve can thus be
written as

E = {(x, y) ∈ K
2 | y2 + a1xy + a3y = x3 + a2x2 + a4x + a6} ∪ {∞},

17
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where ∞ denotes the so-called point at infinity.2 Although the existence of such a point
cannot be explained from the affine curve equation, it will be required to define the elliptic
curve group law.

If the characteristic of the underlying field is not 2 or 3, there exist simple coordinate
transformations of a general Weierstraß curve that set a1, a2, a3 = 0, and thus yield an
equation of the following form [140, §III.1].

Definition 1 (Short Weierstraß curve). Over a field K of characteristic not equal to 2 or 3,
an elliptic curve can be written in the form

E : y2 = x3 + ax + b,

where 4a3 + 27b2 6= 0 in K. An elliptic curve of this form is called a short Weierstraß curve.

It is important to note that coefficients a and b only define an elliptic curve if 4a3 +

27b2 6= 0 in K, since otherwise singularities are contained in the arising curve [140, §III.1].
Throughout this thesis, only fields with large prime characteristics will appear, which
means that we can always think of elliptic curves as being representable by a short Weier-
straß equation.

For a1, a2, a3, a4, a6 ∈ K, resp. a, b ∈ K, we can further define the elliptic curve over
K instead of the algebraic closure K, such that only K-rational points (x, y) ∈ K2 will
be considered. We write E(K) in this case, unless the field of definition is clear from the
context and we can abbreviate this by only writing E.

For a given elliptic curve E(K), there exists an addition operation “+”, such that the
following holds [140, Proposition III.2.2].

• For any not necessarily distinct points P, Q ∈ E(K), we have P + Q = R ∈ E(K),
i.e., the operation is closed.

• For any not necessarily distinct points P, Q, R ∈ E(K), we have (P + Q) + R =

P + (Q + R) ∈ E(K), i.e., the operation is associative.

• The point ∞ ∈ E(K) is the neutral element; i.e., for any P ∈ E(K), we have P + ∞ =

∞ + P = P.

• For any P ∈ E(K) there is an inverse element Q ∈ E(K) such that P + Q = Q + P =

∞.

Hence, the set of points on an elliptic curve forms a group, and the addition operation
forms the group law. Since this group is written additively, we refer to the inverse point
of P ∈ E as the negative point −P. In particular, −(x, y) = (x,−y) for short Weierstraß
curves. Note that adding points on a Weierstraß curve with distinct x-coordinates requires

2In the literature this point is often denoted as O or O. Throughout this thesis we use ∞ in order to avoid
notational collisions with other occurrences of O and O.
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different formulas than adding a point to itself. For explicit formulas, we refer to [140,
Algorithm III.2.3]. When looking at elliptic curves over R, the addition and doubling of
points can be represented graphically via the chord-and-tangent-rule, see e.g. [140, §III.2].
From this, it is immediately clear that for P, Q ∈ E, it must hold that P + Q = Q + P.
This is indeed the case for any elliptic curve, which means that the group of points is
commutative, or an abelian group [140, Proposition III.2.2].

Following the group law, we can therefore add a point multiple times to itself. For any
integer m > 0, this justifies the introduction of the multiplication-by-m map [m] : E → E.
For integers m < 0, one defines [m]P = −[|m|]P, and for m = 0, we set [0]P = ∞.

If we now fix a curve E over K, we can look at the kernels of these scalar multiplication
maps, i.e., the set of points P such that [m]P = ∞.

Definition 2 (Torsion group). Let E(K) be an elliptic curve and m an integer. Then the
subgroup

E[m] = {P ∈ E(K) | [m]P = ∞}

is called the m-torsion group or m-torsion of E.

Note that the case m < 0 is equivalent to the |m|-torsion, and the case m = 0 is not par-
ticularly interesting, hence in the following we only consider positive integers m without
imposing restrictions. The occurring structures of torsion groups are presented in the fol-
lowing result.

Proposition 1 ([140, Corollary III.6.4]). Let E(K) be an elliptic curve, and m ∈ Z with m > 0.

(a) If char(K) = 0, or p = char(K) > 0 and p - m, then we have

E[m] ∼= Z/mZ×Z/mZ.

(b) If p = char(K) > 0, then one of the following is true:

(i) E[pe] = {∞} for all e = 1, 2, 3, . . . .

(ii) E[pe] = Z/peZ for all e = 1, 2, 3, . . . .

A related concept is the order of a point P ∈ E. This denotes the smallest positive
integer r such that [r]P = ∞. If no such integer exists, then we say that P has infinite order,
otherwise the point is called a torsion point. It is important to note that for positive integers
m with char(K) - m, the m-torsion group E[m] is not equal to the set of points of order m.
In particular, E[m] contains the point ∞ and all points of orders r 6= m with r | m, as well
as the points of order m.

For elliptic curves over Q, a theorem by Mazur implies that Q-rational torsion points
are rare [140, Theorem VIII.7.5]. On the other hand, the picture looks completely different
when looking at elliptic curves over finite fields. Let p be a prime and q a power of p.
Then we denote by Fq a finite field with q elements and characteristic p. Naturally, in this
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case there are only finitely many Fq-rational points on a curve E(Fq), and any such point
necessarily is a torsion point. This however does not mean that for fixed q and any integer
m with p - m the torsion group E[m] is completely contained in E(Fq). This surely is the
case when looking at E(Fq), but for the subfield curve over Fq, not all of these torsion
points must be Fq-rational. The following theory helps to make precise statements about
Fq-rational torsion points.

A very important property of an elliptic curve E(Fq) is its number of points #E(Fq),
and therefore its group order. For fixed Fq, there are relatively few possible group orders,
as a theorem by Hasse suggests.

Theorem 1 (Hasse, [140, Theorem V.1.1]). Let E(Fq) be an elliptic curve over a finite field. Then

q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q.

In other words, we have #E(Fq) = q + 1− t, where |t| ≤ 2
√

q is the so-called trace of
Frobenius (see Section 2.2 for more details). An efficient algorithm to identify the group
order of a given curve E(Fq) is Schoof’s algorithm [135], resp. its extension, the Schoof-
Elkies-Atkin algorithm [23, Chapter VII].

Since we are now able to efficiently compute the group order of a given curve E(Fq),
this immediately yields results for the occurring point orders. For a point P ∈ E(Fq),
Lagrange’s Theorem [99, §3.3.2] implies that its order divides #E(Fq). However, this still
does not directly lead to statements about torsion groups. In particular, for a fixed m > 0
that is coprime to char(Fq) = p, points of order m on E(Fq) only possibly exist if m |
#E(Fq), but this does not mean that the whole torsion group E[m] is contained in E(Fq).
We have already seen that the structure of the torsion group is E[m] ∼= Z/mZ×Z/mZ

in this case, which means that #E[m] = m2. Further, since the point ∞ must be contained
in any subgroup of E[m], this means that for primes m, which will be the most interesting
case for our purposes, E[m] contains m+ 1 cyclic subgroups of order m. It is easy to see that
E[m] can only be fully contained in E(Fq) if m2 | #E(Fq). On the other hand, if m | #E(Fq)

and m2 - #E(Fq), then there is one unique subgroup of E[m] that is contained in E(Fq) [42,
§4.1].

In the latter case, in order to see where E[m] is defined in its entirety, we can look at
the curve E over extensions of Fq. In particular, we call the smallest positive integer k such
that E[m] ⊂ E(Fqk) the embedding degree, which in general depends on q and m. In case that
k > 1, it is interesting to note that as soon as we reach a field extension Fqk , over which one
point of order m is found that is not contained in E(Fq), then already the whole torsion
group E[m] must be contained in E(Fqk). We refer to [42, §4.1] for more details.

Remark 2. Since in the remaining chapters of this thesis, and for cryptographic applica-
tions in general, we are only interested in elliptic curves over finite fields, the following
sections will mainly focus on results for this special case.
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Remark 3. We can generalize short Weierstraß elliptic curve equations to y2 = f (x), with
deg( f ) > 4, and obtain hyperelliptic curves. Also in this case, we can define a group law
for applications in cryptography. However, we cannot simply work with points here, but
have to use divisors and elements of the divisor class group or Picard group of the curve.
In principle, one could also define the elliptic curve group law in terms of divisors; in
this fortunate case however, there is a one-to-one correspondence between the divisor
class group and the points on the curve. Due to this, we can resort to describing the
elliptic curve group law entirely in terms of curve points, without using the language of
divisors and examining the related theory. Thus, compared with the hyperelliptic case,
elliptic curve arithmetic and the related theory as presented in this section appears to be
particularly simple. We refer to [140, 79] for more details, and to [42, Chapter 3] for a gentle
introduction to the topic.

2.2 Maps between elliptic curves

Up to this point, we have fixed elliptic curves, and analyzed their group structures and
multiplication maps. Moving to a higher level, we can now look at maps between elliptic
curves. In the following, we assume the occurring curves to be defined over K.

Definition 3 (Isogeny). An isogeny between two elliptic curves E1, E2 is a non-constant
morphism ϕ : E1 → E2 that satisfies ϕ(∞) = ∞. Two curves E1 and E2 are called isogenous
if there is an isogeny from E1 to E2.

In this thesis, we will only consider separable isogenies (see [140, §III.4] for details),
and oftentimes simply refer to separable isogenies as isogenies. A consequence of this is
that the degree of a separable isogeny ϕ, which is its degree as a rational map, equals the
cardinality of its kernel, i.e., # ker ϕ = deg ϕ [140, Theorem III.4.10]. Isogenies are group
homomorphisms, and the following result holds.

Proposition 2 ([140, Proposition III.4.12]). For any finite subgroup G ⊂ E1, there is, up to post-
composition with isomorphisms, a unique elliptic curve E2 and a separable isogeny ϕ : E1 → E2,
such that ker ϕ = G. The codomain curve is often written as E1/G.

Given G ⊂ E1, explicit formulas for the computation of ϕ and the codomain curve
E2 = E1/G are given by Vélu’s formulas [152].

For every isogeny ϕ : E1 → E2, there exists a unique (up to composition with iso-
morphisms) dual isogeny ϕ̂ : E2 → E1, such that ϕ̂ ◦ ϕ = [deg ϕ], i.e., the multiplication-by-
deg ϕ map on E1 [140, Theorem III.6.1]. In fact, the isogenous property is an equivalence
relation, and we call the equivalence class of the set of elliptic curves isogenous to a given
curve E the isogeny class of E. The above statements further motivate that we do not distin-
guish between isomorphic elliptic curves in an isogeny class. Over K, two elliptic curves
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are isomorphic if and only if their j-invariants are equal [140, Proposition III.1.4]. The j-
invariant of a short Weierstraß curve can be computed via

j(E) = j(a, b) =
1728(4a)3

16(4a3 + 27b2)
.

Note that j(E) is well-defined, since as described above, the parameters a, b are required
to satisfy 4a3 + 27b2 6= 0 in K in order to give rise to an elliptic curve.

If we now look at elliptic curves over a field K ( K, then curves can have equal j-
invariants, although not being isomorphic over K.

Definition 4 (Twist). For an elliptic curve E(K), the curve E′(K) is called a twist of E, if E′

is isomorphic to E over K, but not over K.

To every twisting isomorphism of a curve E(K) corresponds a specific degree, which
defines over which field extension of K the isomorphism is defined. In particular, every
curve has a quadratic twist. Some special curves further have cubic, quartic, or sextic twists,
see [57, Section 2] or [42, §4.3].

In the following we restrict to our main area of interest, namely elliptic curves over
finite fields. Again we denote by Fq a finite field with q elements of prime characteristic
p. It is worth pointing out that isogenies are surjective, but do not appear so when only
looking at curves over Fq. In particular, if ϕ : E1(Fq)→ E2(Fq) is an isogeny of degree m =

deg ϕ, then it is a m-to-1 map between points of E1(Fq) and points of E2(Fq). However, the
“missing points” of E2(Fq) in the image ϕ(E1(Fq)) eventually appear over field extensions
of Fq, so ϕ is surjective for the corresponding curves over Fq, see e.g. [82, Example 3].

Apart from isogenies, there is another type of maps of interest to us.

Definition 5 (Endomorphism). An isogeny ψ : E → E from a curve E to itself is called
endomorphism.

We have already encountered endomorphisms in Section 2.1; in particular, the multi-
plication-by-m map [m] clearly is an endomorphism for any integer m, regardless of the
field the curve is defined over. For most curves over fields of characteristic zero, there are
no other endomorphisms. For elliptic curves over finite fields Fq however, we can define
the Frobenius endomorphism, which is non-scalar in most situations.

Definition 6 (Frobenius endomorphism, [140, §III.4]). Let E(Fq) be an elliptic curve. Then
the map

π : E→ E, (x, y) 7→ (xq, yq)

is called Frobenius endomorphism.

The Frobenius endomorphism has a number of interesting properties. For example, π

acts trivially for all P ∈ E(Fq), i.e., π(P) = P for these points, but acts non-trivially on
any point defined over an extension of Fq. This further generalizes to πi(x, y) 7→ (xqi

, yqi
),
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which only acts non-trivially on points P ∈ E(Fq)\E(Fqi) [42, §2.2]. For a curve E(Fq),
this implies that ([1] − π)P = P − π(P) = ∞ if and only if P ∈ E(Fq). Thus, we can
derive that #E(Fq) = # ker([1]− π), which links the Frobenius endomorphism to Hasse’s
theorem (Theorem 1), and gives a hint on the naming of t, the trace of Frobenius (see [42,
§2.2] for details).

A theorem by Sato and Tate links the isogeny class of curves with their cardinality, and
therefore also their Frobenius endomorphisms.

Theorem 2 (Sato-Tate, [57, Theorem 12], [153, §12.5]). Two elliptic curves E1, E2 over Fq are
isogenous over Fq if and only if #E1(Fq) = #E2(Fq).

At this point, it is worth noting that formally, an isogeny (resp. an endomorphism) ϕ

between two curves E1 and E2 (where E1 = E2 in the case of endomorphisms) over Fq

is defined over Fq, if the Frobenius endomorphism on E1 stabilizes the kernel ker ϕ. In
particular, the points of ker ϕ are not necessarily defined over Fq for this to hold, see [61].

When looking at the set of endomorphisms of a given curve E over any field, one
finds that together with the zero map, it forms a ring with addition and composition, the
endomorphism ring End(E) [140, §III.4]. It is easy to see that End(E) always contains Z. For
elliptic curves over finite fields however, the endomorphism ring is strictly larger [140,
Theorem V.3.1], e.g. containing Z[π] if the Frobenius endomorphism π is non-scalar. The
possible structures of endomorphism rings are collected in the following result.

Proposition 3 ([140, Corollary III.9.4]). Let E(K) be an elliptic curve over a field K. Then the
endomorphism ring End(E) is either Z, an order in an imaginary quadratic field, or an order in a
quaternion algebra.

For elliptic curves over finite fields, we already noted that the first case cannot occur.
The other two cases define two different types of elliptic curves [140, §V.3].

Definition 7 (ordinary, supersingular). Let E be an elliptic curve over a finite field. If
End(E) is an order in an imaginary quadratic field, then E is called ordinary. If End(E) is
an order in a quaternion algebra, then E is called supersingular.

There are several different characterizations of supersingular resp. ordinary curves, as
the following result suggests, thereby linking Proposition 3 with Proposition 1 and The-
orem 1.

Theorem 3 ([79, Theorem 9.11.2], [140, Theorem V.3.1]). Let E(Fq) be an elliptic curve over a
finite field of characteristic p. Then the following are equivalent.

(a) End(E) is not commutative, i.e., following Proposition 3, an order in a quaternion algebra.

(b) E[p] = {∞}.

(c) #E(Fq) = q + 1− t, where p | t.
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It is particularly important to note that this implies that a curve E(Fq) is supersingular
if and only if #E(Fq) ≡ 1 mod p. Together with Theorem 2, this further means that the iso-
geny class of a supersingular elliptic curve only contains supersingular curves. Similarly,
the isogeny class of an ordinary elliptic curve only contains ordinary curves.

In the remainder of this section, we will analyze the structure of the occurring isogeny
classes, mostly following the exposition of Galbraith [79, §25.3]. We recall that as defined
above, the isogeny class of a given curve E(Fq) considers both elliptic curves and isogenies
over Fq. Consequently, we define the Fq-isogeny class of E(Fq) as the set of Fq-isomorphism
classes3 of elliptic curves over Fq, which are isogenous to E over Fq. Such an isogeny class
can be represented in a graph.

Definition 8 (Isogeny graph). Let E(Fq) be an elliptic curve over a finite field of charac-
teristic p, and let ` be a prime. Then we define the `-isogeny graph GE,Fq,` to be the directed
multi-graph where the vertex set is the Fq-isogeny class of E, usually represented by j-
invariants. Directed edges represent (equivalence classes of) degree ` isogenies between
curves from the corresponding vertices.

One can essentially treat the edges as being undirected, since every isogeny gives
rise to a dual isogeny, and therefore to a directed edge connecting the same vertices, but
pointing in the opposite direction. There is a special case however, when a curve E with
j(E) ∈ {0, 1728} is involved. In this case, the numbers of outgoing and incoming edges
differ, see [79, Remark 25.3.2]. Now fix a finite field Fq of characteristic p, and a prime `

with p - `. Then Proposition 1 and Proposition 2 imply that when looking at curves and
isogenies over Fq, each vertex must have `+ 1 outgoing edges, and therefore, except for
the described special cases, GE,Fq,` is (`+ 1)-regular4 for every curve E. When looking at
`-isogeny graphs over Fq, then each vertex has either 0, 1, 2, or `+ 1 outgoing edges [57,
Proposition 35].

As suggested by the results above, we will look at isogeny graphs of ordinary and
supersingular elliptic curves separately, and call the respective graphs ordinary resp. su-
persingular isogeny graphs. Note that we will focus on the supersingular case, since the
cryptographic applications in this thesis utilize supersingular curves.

In the ordinary case, the involved curves can be placed on different layers, depending
on their endomorphism rings. Isogenies between those curves then are either horizontal,
ascending, or descending isogenies, depending on which layers the involved curves lie on,
see [105, Proposition 21], [57, Proposition 36]. When putting together all the results about
these cases, one finds that there is a cycle of horizontal isogenies at the top level, the surface,
as well as trees of descending isogenies of a certain height [57, Section 9]. Due to this
structure, ordinary isogeny graphs are called isogeny volcanoes [77]. An example of such an
isogeny volcano is given in Figure 2.1.

3Two curves being in the same Fq-isomorphism class means that they are isomorphic over Fq.
4In an m-regular graph, each vertex has degree m, i.e., in our case m outgoing and incoming edges.
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Figure 2.1: The 3-isogeny graph representing the isogeny class of the curve E with j(E) =
607 over F6007, see [61, Fig. 3]. The different sizes of vertices represent different sizes of
endomorphism rings.

In the supersingular case, the arising `-isogeny graphs look substantially different. Let
E(Fq) be a supersingular elliptic curve and char(Fq) = p > 3. The first thing to note
here is that j-invariants of supersingular elliptic curves are always contained in Fp2 [140,
Theorem V.3.1], which means that it suffices to consider supersingular curves over Fp2

for the vertices of isogeny graphs. This further implies that all corresponding isogenies
are defined over Fp2 too; thus, we can choose appropriate scenarios such that the whole
required `-isogeny graph will be set up by curves and isogenies over Fp2 , see Section 2.4.

The fact that j(E) ∈ Fp2 for supersingular elliptic curves E now implies that there are
only finitely many isomorphism classes of curves, and therefore vertices in the respective
isogeny graphs. The exact number can be obtained from the following result.

Theorem 4 ([140, Theorem V.4.1]). Let Fq be a finite field of characteristic p > 3. Then the
number of Fq-isomorphism classes of supersingular elliptic curves is given by

bp/12c+


0 if p ≡ 1 mod 12,

1 if p ≡ 5 mod 12,

1 if p ≡ 7 mod 12,

2 if p ≡ 11 mod 12.

Together with the results from above, we now know the number of vertices of GE,Fq,`

for a supersingular elliptic curve E. For a prime ` such that p - `, we further know that the
graph is (`+ 1)-regular (apart from the nodes of j-invariant 0 or 1728). In addition, one
can prove that GE,Fq,` is connected [79, §25.3.3], an expander graph, and has the Ramanujan
property [126]. We will not expand upon these properties here; however, we can make
the informal statement that such a graph has excellent mixing properties. In particular, a
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random walk of length close to the diameter of the graph5 leads to any vertex with close to
uniform probabilities. We refer to [57, Section 11] or [79, §25.3] for more details.

These properties give an intuition on why such graphs are suitable for cryptographic
applications through the usage of random walks. Section 2.4.1 will present such an applic-
ation, as well as examples for supersingular isogeny graphs.

Instead of looking at the full supersingular isogeny graph, one can restrict to supersin-
gular elliptic curves and isogenies over Fp, where p > 3 is prime. While the full endo-
morphism ring of such a curve E(Fp) is an order in a quaternion algebra (see Theorem 3),
when restricting to endomorphisms over Fp, we find that this subring EndFp(E) is an or-
der in the imaginary quadratic field Q(

√−p) [65]. Related to this, the structure of isogeny
graphs GE,Fp,`, where ` is prime and p - `, is similar to the volcano structure of ordinary
isogeny graphs. In particular, these graphs mostly consist of isogeny cycles, similar to the
surface layer of ordinary isogeny volcanoes, see [65]. We expand upon this case, give ex-
amples, and describe a cryptographic application of such isogeny graphs in Section 2.4.3.

2.3 Elliptic curve models and arithmetic

An important point when it comes to cryptographic applications of elliptic curves and
isogenies is the efficiency of the involved computational operations. In particular, we
eventually want to use as few field operations as possible for implementations. When
working over a finite field Fq, the basic operations are additions, subtractions, multiplic-
ations, squarings, and inversions over Fq. As usual, we will use the abbreviations a for
both field additions and subtractions, M for multiplications, S for squarings, and I for
inversions over Fq. Usually multiplications and squarings have a similar computational
cost, while additions are significantly faster, and inversions are significantly slower. For
this reason, optimized elliptic curve and isogeny arithmetic tries to use as few inversions
as possible.

When looking at explicit formulas for point additions or doublings in the general or
short Weierstraß model with affine points as described in Section 2.1 (see, e.g. [140, Al-
gorithm III.2.3]), one finds that inversions are involved in each such operation. In practice,
it is thus more efficient to work with projective coordinates.

For an elliptic curve E(K), in Section 2.1 we have defined points in affine space, i.e.,
P ∈ E(K) with P = (x, y) ∈ A2(K), together with the abstract point ∞ ∈ E(K). However,
following [42, §2.1.1], points in the affine space A2 can be identified with lines in the
the affine space A3 passing through the origin, resp. points in the projective space P2. In
particular, a line corresponding to an affine point P = (x, y) ∈ A2(K) consists of the points
(λx, λy, λ) ∈ K3 with λ ∈ K\{0}. We thus have a congruence relation, i.e., (x, y, z) and
(x′, y′, z′) are congruent if there exists λ ∈ K\{0}, such that (λx, λy, λz) = (x′, y′, z′). This

5The diameter of a connected graph is defined as the largest distance between any two vertices, where the
distance between two given vertices is the length of the shortest path between them.
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means that P2(K) corresponds to A3(K)\(0, 0, 0) modulo this equivalence relation [42,
§2.1.1].

Instead of using affine coordinates (x, y) ∈ E, we can thus use projective coordinates,
which are written as (X : Y : Z) ∈ E, where the simple transformation x = X/Z and y =

Y/Z is used for converting the coordinates. Further, this substitution and multiplication
by Z3 translates the affine curve equation of a short Weierstraß curve E : y2 = x3 + ax + b
into the projective curve equation

E : Y2Z = X3 + aXZ2 + bZ3.

The point at infinity is given by ∞ = (0 : 1 : 0), where we note that the above transforma-
tion is not defined if Z = 0, and thus this point does not have a representation in the usual
affine coordinates.

The reason for projective coordinates being preferred in practice is that the point ad-
dition and doubling formulas can be rewritten projectively without field inversions, see
e.g. [16] for explicit formulas. In particular, roughly speaking inversions are replaced by
multiplications in the Z-coordinate. We only have to use inversions and map back to affine
coordinates whenever a unique representation of points is required.

Remark 4. The projective coordinates as described above more precisely are homogeneous
projective coordinates. There are other types of projective coordinates using transforma-
tions of the form x = X/Zi and y = Y/Zj, see [16]. However, in the context of isogeny-
based cryptography, we will only use the coordinates described above and continue to
simply call them projective coordinates.

The other main types of operations that we will encounter in this thesis, apart from
the elliptic curve group law, naturally are given by isogeny computations. In particular,
given a domain curve E1(Fq) in short Weierstraß form and a subgroup G ⊂ E1 of order
`, according to Proposition 2 we want to compute the degree ` isogeny ϕ : E1 → E2;
i.e., we want to compute the codomain curve E2 and be able to map points P ∈ E1 to
P′ = ϕ(P) ∈ E2.

Vélu’s formulas [152] suggest that we have to compute ratios of polynomials of degree
` for this, where the computational effort is linear in the degree `. For point evaluations,
projective coordinates again help to avoid inversions. On the other hand, we also have to
compute the parameters a′ and b′ of the codomain curve E2. In order to also avoid inver-
sions here, Costello, Longa, and Naehrig proposed to use a projective representation of the
curve parameters in the context of SIDH [47]. In particular, for a short Weierstraß curve
E : y2 = x3 + ax + b, we can use (A : B : C) as projective curve parameters instead of the
affine parameters (a, b), where a = A/C and b = B/C. The projective parameters of codo-
main curves can then be computed without inversions, and analogously to the projective
point coordinates, we only have to switch back to affine parameters if a unique curve rep-
resentation is required. Note that the use of projective curve parameters requires minor
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adjustments to the point addition and doubling formulas, as detailed in [47] (although for
a different curve model).

In traditional elliptic curve cryptography however, short Weierstraß curves are not the
preferred curve model. Instead, Montgomery curves or (twisted) Edwards curves are used
due to their more efficient group law operations. The same is true for isogeny-based cryp-
tography, where implementations usually utilize these two curve models. The remainder
of this section briefly introduces Montgomery [117] and twisted Edwards curves [10].

Definition 9 (Montgomery curve). Let K be a field with char(K) > 2. Then

Ea,b : by2 = x3 + ax2 + x

is an elliptic curve in Montgomery form, where a ∈ K\{−2, 2} and b ∈ K\{0}.

Following [50, §2.4], every Montgomery curve over a finite field Fq can easily be trans-
formed into a short Weierstraß curve whenever char(Fq) > 3. The converse however is
not true; for this to be possible, a short Weierstraß curve over Fq (or its twist) must have
group order divisible by 4. The j-invariant of a Montgomery curve is given by

j(Ea,b) =
256(a2 − 3)3

a2 − 4
.

The above statements about the (non-)equivalence with Weierstraß curves imply that there
exist j-invariants over Fq, for which no Montgomery curve over Fq with curve parameters
(a, b) ∈ F2

q exists. Note that the curve parameter b does not play a role for the value
of the j-invariant. Indeed, this parameter can be seen as a “twisting factor”, and can be
disregarded in implementations [50, §2.1].

Again we can use projective point coordinates (X : Y : Z) to avoid inversions in the
group law formulas, where the point at infinity is given by ∞ = (0 : 1 : 0). Moreover, the
efficient arithmetic given by Montgomery in [117] allows for disregarding the Y-coordinate
and still performing XZ-only point doublings and differential additions, which require the
knowledge of the XZ-coordinates of P, Q, and P−Q in order to compute P + Q.

As described above, we can projectivize point coordinates and curve parameters. In-
stead of a Montgomery curve of the form given above, we then work with an equation of
the form

E(A:B:C) : By2 = Cx3 + Ax2 + Cx,

where (A : B : C) ∈ P2(K), such that a = A/C and b = B/C for the corresponding curve
Ea,b. As hinted above, it furthermore suffices to work with (A : C) ∈ P1(K) in the project-
ive model, since neither the Montgomery curve arithmetic, nor the isogeny computations
require the coefficients b or B, respectively.

Following [37], doublings and differential additions in our situation can be computed
by the following formulas. Let Ea,b be a Montgomery curve over Fq with A, C satisfying
a = A/C, and P, Q ∈ Ea,b with P = (XP : ZP), Q = (XQ : ZQ), and P − Q = (XP−Q :
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ZP−Q). Then upon precomputation of A24 = A + 2C and C24 = 4C, we can compute
[2]P = (X[2]P : Z[2]P) via

X[2]P = C24(XP + ZP)
2(XP − ZP)

2,

Z[2]P = [(XP + ZP)
2 − (XP − ZP)

2] · [C24(XP − ZP)
2 + A24((XP + ZP)

2 − (XP − ZP)
2)]

at a cost of 4M + 2S + 4a. The sum P + Q = (XP+Q : ZP+Q) can be computed via the
differential addition formulas

XP+Q = ZP−Q[(XP − ZP)(XQ + ZQ) + (XP + ZP)(XQ − ZQ)]
2,

ZP+Q = XP−Q[(XP − ZP)(XQ + ZQ)− (XP + ZP)(XQ − ZQ)]
2

at a cost of 4M + 2S + 6a. Scalar point multiplications are then done via the Montgomery
ladder, which generalizes the usual square-and-multiply approach for exponentiations to
scalar multiplications of points on Montgomery curves (see e.g. [117, 50]), and requires one
combined doubling and differential addition step per bit of the involved scalar. The com-
putational effort for isogeny computations and efficient explicit formulas will be detailed
in Chapter 3.

Another form of elliptic curves was introduced by Edwards [72], resp. Bernstein, Birk-
ner, Joye, Lange, and Peters [10].

Definition 10 (Twisted Edwards curve). Let K be a field with char(K) > 2. Then

Ea,d : ax2 + y2 = 1 + dx2y2,

is an elliptic curve in twisted Edwards form, where ad 6= 0, d 6= 1, and a 6= d. For a = 1 the
twisted Edwards curve E1,d = Ed is called Edwards curve.

Again we first look at transformations between curve models.

Proposition 4 ([10, Theorem 3.2]). Let K be a field with char(K) > 2. Then every twisted
Edwards curve over K is birationally equivalent over K to a Montgomery curve. Conversely,
every Montgomery curve over K is birationally equivalent over K to a twisted Edwards curve.

The corresponding curve and point transformations are particularly simple, and will
play a major role in Chapter 3. Note that the above statement does not hold in general
for the equivalence of Montgomery curves and Edwards curves, i.e., twisted Edwards
curves with a = 1. In this case, there are some restrictions, as detailed in [10, Section 3].
The potential equivalence to Weierstraß curves follows from the corresponding results for
Montgomery curves. The j-invariant of a twisted Edwards curve is given by

j(Ea,d) =
16(a2 + 14ad + d2)3

ad(a− d)4 .

As in the above cases, the elliptic curve arithmetic with twisted Edwards curves bene-
fits from using projective coordinates. Besides the usual projective representation, there
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are certain different types of projective twisted Edwards coordinates, which can be bene-
ficial depending on the concrete application. In particular, there are inverted, extended, and
completed coordinates, as detailed in [11]. We will however only encounter the standard
projective coordinates, i.e., of the form (X : Y : Z), where x = X/Z and y = Y/Z, with
points at infinity (1 : 0 : 0) and (0 : 1 : 0), see [11]. Furthermore, we can drop the X-
coordinate altogether in this case, and only work with YZ-coordinates here. Due to the
simple transformations between twisted Edwards curves and Montgomery curves, one
can reformulate the Montgomery XZ-only doubling and differential addition formulas for
twisted Edwards YZ-coordinates, and ends up with the same costs of 4M + 2S + 4a for
point doublings, and 4M+ 2S+ 6a for differential additions. In particular, given a twisted
Edwards curve Ea,d over Fq, and points P, Q ∈ Ea,d with P = (YP : ZP), Q = (YQ : ZQ),
and P− Q = (YP−Q : ZP−Q), we precompute e = a− d and obtain [2]P = (Y[2]P : Z[2]P)

via

Y[2]P = eY2
PZ2

P − (Z2
P −Y2

P) · [eY2
P + a(Z2

P −Y2
P)],

Z[2]P = eY2
PZ2

P + (Z2
P −Y2

P) · [eY2
P + a(Z2

P −Y2
P)].

The sum P + Q = (YP+Q : ZP+Q) can be computed via

YP+Q = (ZP−Q −YP−Q)(YPZQ + YQZP)
2 − (ZP−Q + YP−Q)(YPZQ + YQZP)

2,

ZP+Q = (ZP−Q −YP−Q)(YPZQ + YQZP)
2 + (ZP−Q + YP−Q)(YPZQ + YQZP)

2.

The efficient computation of isogenies in this case will again be detailed in Chapter 3.

2.4 Cryptographic protocols

In this section we describe several popular cryptographic protocols based on supersingu-
lar isogenies. In particular, we will look at the key exchange protocols SIDH, B-SIDH, and
CSIDH, which are the main topics of interest throughout this thesis. In addition to this, we
give a short overview of other isogeny-based schemes such as digital signature schemes
in Section 2.4.4. Before going into the details, we give a high-level view of isogeny-based
key exchange protocols.

The basis for these schemes is given by the famous Diffie-Hellman key exchange [68],
which uses the discrete logarithm problem in finite fields as computationally hard under-
lying problem. Miller [116] and Koblitz [103] later introduced an analogue scheme based
on elliptic curve discrete logarithms, usually called Elliptic Curve Diffie-Hellman (ECDH).

From a high-level point of view, this scheme chooses an elliptic curve E over a finite
field Fp with a prime p, and a point P ∈ E of prime order ` as public parameters. The
participants of the key exchange, as usual called Alice and Bob, then choose an integer a
resp. b with a, b ∈ (Z/`Z)∗, which is used as private key. Alice computes and publishes
PA = [a]P as her public key, and Bob proceeds similarly, and computes his public key
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PB = [b]P. Because of the commutativity of the elliptic curve group law, both parties can
now compute [ab]P = [a]PB = [b]PA, which then is used as the shared secret. The flow of
this protocol can be summarized in the following diagram.

P [a]P

[b]P [ab]P

a

b

a

b

The security of this key exchange protocol relies on the hardness of two computational
problems. The discrete logarithm problem asks for finding the integer a when P and [a]P are
given. The computational Diffie-Hellman problem asks for finding [ab]P when P, [a]P, and
[b]P are given. Both problems are believed to be hard in general in the classical setting.
However, if large-scale quantum computers are available, these problems can be solved in
polynomial time on such a quantum computer via Shor’s algorithm [137].

Remark 5. The elliptic curve Diffie-Hellman key exchange protocol appears to be partic-
ularly simple, since only the basic group operations are involved. However, the choice of
elliptic curves for this scheme is non-trivial, since it influences both the security and per-
formance. E.g., supersingular elliptic curves, which are commonly used in isogeny-based
schemes, are not suitable for ECDH, since their discrete logarithm problem is easier to
solve than in the general case due to their small embedding degrees, see [112]. One of the
most popular curves that is secure and allows for efficient implementations is Bernstein’s
Curve25519 [9].

The main idea behind isogeny-based cryptography significantly differs from the ap-
proach in ECDH. In particular, the hard underlying problem shifts to the problem of
finding an isogeny between two given elliptic curves, instead of the discrete logarithm
problem. The high-level view of such a protocol is given in the following diagram, where
isogenies are denoted by ϕ.

E EA

EB EAB

ϕA

ϕB

ϕ′A

ϕ′B

This means that we are no longer working with a group of points on an elliptic curve,
but with the set of elliptic curves that are isogenous to a given starting curve E. This
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gives a hint on why the underlying problem could potentially be quantum resistant; Shor’s
algorithm explicitly uses the homomorphic property of the group operation to solve the
discrete logarithm problem. Resorting to a problem that does not provide this structure
thus also means that Shor’s algorithm is not applicable.

In the remainder of this section, we will describe three different approaches on how
isogeny-based key exchange schemes can be set up.

2.4.1 SIDH

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol, introduced in 2011 by Jao and De
Feo [94], uses supersingular elliptic curves over Fp2 , where p is a large prime. As discussed
in Section 2.2, the arising `-isogeny graphs are (almost) (`+ 1)-regular expander graphs.
This means that a series of random steps in such a graph has excellent mixing properties.
Due to this, Charles, Goren, and Lauter first used such isogeny graphs to define a hash
function, which exploits this rapid mixing property [38].

For the SIDH setting, we choose two distinct small primes `A and `B, and exponents
eA and eB such that `eA

A ≈ `eB
B and p = `eA

A `eB
B − 1 is prime. It is then easy to construct

a supersingular elliptic curve E over Fp2 via an efficient algorithm by Bröker [29]. In
particular, we will always use a curve E where #E(Fp2) = (p + 1)2, which means that
E(Fp2) ∼= Z/(p + 1)Z×Z/(p + 1)Z. Thus, the torsion groups E[`eA

A ] and E[`eB
B ] are com-

pletely contained in E(Fp2). Moreover, we can choose points PA, QA ∈ E(Fp2) of order `eA
A

that form a basis of E[`eA
A ], and analogously points PB, QB that form a basis of E[`eB

B ].
This setup can then be used to perform random walks of length ei in the `i-isogeny

graph, where i ∈ {A, B}. We choose a random positive integer si ≤ `ei
i , and compute

Ri = Pi + [si]Qi, which is a point of order `ei
i . Thus, Proposition 2 implies that we can

compute a unique isogeny ϕi (up to isomorphisms) of degree `ei
i and codomain curve Ei,

such that ϕi : E → Ei has ker ϕ = 〈Ri〉, and Ei = E/〈Ri〉. However, since the currently
available degree ` isogeny formulas have complexity O(`) resp. Õ(

√
`) (see Chapter 3), it

is beneficial to compute a series of ei isogenies of degree `i, instead of directly computing
the full `ei

i -isogeny.
To this end, we start by computing Ki,1 = [`ei−1

i ]Ri, which is a point of order `i. In par-
ticular, the integer si determines in which of the `i + 1 subgroups of the `i-torsion group
Ki,1 lies. We then compute the `i-isogeny ϕi,1 : E → E2 = E/〈Ki,1〉 and Ri,2 = ϕi,1(Ri) of
order `ei−1

i . In the next step, we compute Ki,2 = [`ei−2
i ]Ri,2 of order `i, and the correspond-

ing `i-isogeny ϕi,2 : E2 → E3 = E2/〈Ki,2〉 and Ri,3 = ϕi,2(Ri,2) of order `ei−2
i . This can be

repeated until ϕi,ei is computed, and the `ei
i -isogeny ϕi is the composition of the ei degree

`i isogenies. Note that all steps in the isogeny graph during this procedure are completely
determined by the integer si.

With the described procedure, Alice and Bob can compute secret isogenies ϕA resp.
ϕB using their secret keys sA resp. sB, the public starting curve, and torsion basis points.
The resulting curves EA and EB then are exchanged as public keys. However, in order to
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Alice Bob
RA = PA + [sA]QA RB = PB + [sB]QB

ker(ϕA) := 〈RA〉 ker(ϕB) := 〈RB〉
ϕA : E→ EA ϕB : E→ EB

EA, ϕA(PB), ϕA(QB)

−→
EB, ϕB(PA), ϕB(QA)

←−
R′A = ϕB(PA)+ R′B = ϕA(PB)+

[sA]ϕB(QA) [sB]ϕA(QB)

ker(ϕ′A) := 〈R′A〉 ker(ϕ′B) := 〈R′B〉
ϕ′A : EB → EBA ϕ′B : EA → EAB

j(EBA) = j(EAB)

Figure 2.2: SIDH key exchange protocol with public parameters given by a supersingular
elliptic curve E(Fp2), and torsion group basis points PA, QA resp. PB, QB.

determine a shared secret, Alice has to repeat an analogous walk through the `A-isogeny
graph starting from EB, but there are no torsion basis points on EB publicly available that
would allow for Alice to achieve this. Thus, Bob must further send the image of Alice’s tor-
sion basis points under his secret isogeny; i.e., Bob’s public key is (EB, P′A = ϕB(PA), Q′A =

ϕB(QA)), and similarly, Alice’s public key is (EA, P′B = ϕA(PB), Q′B = ϕA(QB)). In the
shared secret phase of the protocol, both parties proceed analogously; they compute R′i =
P′i + [si]Q′i, and the corresponding sequence of `i-isogenies to obtain the `ei

i -isogeny ϕ′i and
codomain curves EAB = EA/〈R′B〉 resp. EBA = EB/〈R′A〉. The resulting curves EAB and
EBA then are isomorphic to E/〈RA, RB〉, and thus the j-invariant j(EAB) = j(EBA) ∈ Fp2

can be used as the shared secret (see [94]). The resulting SIDH key exchange is summar-
ized in Figure 2.2.

Security aspects. The hard problems underlying SIDH differ from a pure isogeny prob-
lem, which would ask for finding an isogeny of smooth degree between two given curves
in our case. Instead, the images of public torsion points are included in public keys; the
underlying problems thus are the supersingular isogeny problem (SSI), which asks for re-
covering a secret key from a public key and the public parameters, and the supersingular
computational Diffie-Hellman problem, which asks for computing the shared secret from the
public keys and public parameters [94]. Cryptanalysis on SIDH usually focuses on the SSI
problem, although it is not clear whether these problems are equivalent.

The currently best known classical attacks against SSI are generic meet-in-the-middle
attacks with complexity O( 4

√
p). However, when considering concrete memory limita-

tions, [1] suggests that the van Oorschot-Wiener parallel collision finding algorithm [151]
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Figure 2.3: Isogeny graphs for degrees 2 (left) and 3 (right) of the isogeny class of the
supersingular curve E : y2 = x3 + x over F4312 .

is the best known attack, leading to a reduction of the parameter sizes initially proposed
in [94]. The classical cost for this is analyzed in detail in [48]. Similarly, it was argued
in [94] that Tani’s claw finding algorithm [149] of complexity O( 6

√
p) is the optimal choice

for solving this problem on a quantum computer. However, the concrete security analysis
in [96] suggests that, as in the classical case, the original parameters from [94, 47] reach a
higher security level than initially considered.

We remark that these cryptanalytic efforts focus on a pure isogeny finding problem,
and do not make use of the additional information provided by the published point eval-
uations, which may raise concerns about SIDH’s security. Indeed, variants of SIDH, e.g.
with highly unbalanced parameters `eA

A � `eB
B , can be attacked efficiently when exploit-

ing this additional information [125, 108]. However, if SIDH is set up as e.g. described in
[94, 47], these attacks do not apply.

On the other hand, there is an active attack on SIDH, which exploits the fact that torsion
points are included in the public keys. In particular, malicious torsion points can be sent
as part of a public key, which then allow the attacker to learn one bit of the secret key per
run, see [80]. Thus, SIDH is only secure if ephemeral keys are used.

Implementation aspects. For efficiency of the isogeny computations, implementations
of SIDH usually choose `A = 2 and `B = 3, which also means that p ≡ 3 mod 4, and the
supersingular Montgomery curve E(Fp2) : y2 = x3 + x can be chosen as starting curve.
The isogeny and elliptic curve point operations can entirely be computed using projective
coordinates and curve parameters, see [47]. A toy example of 2- and 3-isogeny graphs as
used in SIDH is given in Figure 2.3.

The strategy of computing a chain of isogenies as described above is a multiplication-
based strategy. In contrast to this, one can store an intermediate point of the involved large
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scalar multiplications, evaluate this point under the next `i-isogeny, and thus have a smal-
ler scalar multiplication in the next step at the cost of an additional isogeny point eval-
uation. In [60], optimal strategies are described, which minimize the total computational
effort by pushing such points through isogenies.

A variant of SIDH participates in the NIST standardization process, which requires key
encapsulation mechanisms (KEM) instead of key exchanges. Thus, in the Supersingular
Isogeny Key Encapsulation (SIKE) [93], a variant of the Fujisaki-Okamoto transform [78] is
applied to SIDH, and allows one of the two involved parties to reuse a long-term key pair.

SIDH and SIKE public keys contain a curve parameter and two x-coordinates of points
(resp. only three x-coordinates, see [47]), and thus three Fp2-elements or six Fp-elements,
which amounts to 6 log2 p bits. However, this key size can be further compressed to
7
2 log2 p bits as explained in [4, 46]. The computational overhead for this results in less
than a twofold slowdown, see [157, 120].

2.4.2 B-SIDH

B-SIDH is a variant of SIDH, published by Costello [44], where the naming hints on the
usage of the “twisting factor” b (resp. B) of Montgomery curves. Recall from Section 2.4.1
that the isogeny problem in SIDH significantly differs from a generic isogeny problem. In
particular, a random walk in the `i-isogeny graph as in SIDH can potentially only reach a
maximum of `ei

i ≈
√

p different vertices. However, according to Theorem 4 the full isogeny
graph contains approximately p/12 vertices, which means that only a small fraction of
nodes can be reached through an SIDH random walk. This also implies that the SIDH
isogeny problem is significantly easier to solve than a generic isogeny problem, which
asks for finding an isogeny between any two given vertices of the isogeny graph. On
the other hand, SIDH requires to define the underlying prime in a way that guarantees
the whole `ei

i -torsion of the curves in the respective isogeny class to be Fp2-rational for
i ∈ {A, B}, e.g. by fixing p = `eA

A `eB
B − 1. In a way, this makes the parameter choices of

SIDH seem to be non-optimal, since most of the existing graph structure is not even used
for the involved isogeny walks.

B-SIDH uses the observation that each curve that appears in SIDH, i.e., satisfying
#E(Fp2) = (p+ 1)2, has a quadratic twist Et with #Et(Fp2) = (p− 1)2 [44]. This means that
although both curves are supersingular due to Theorem 3, and E and Et are isomorphic
over Fp4 , they are neither isomorphic, nor isogenous over Fp2 (see Theorem 2). However,
j(E) = j(Et), and thus the nodes of the two corresponding isogeny graphs over Fp2 con-
taining E and Et have the same j-invariants. This further has to hold, since over Fp4 , these
quadratic twists are always contained in the same graph and vertex.

The key observation in B-SIDH is that we can in fact work with both sets of curves over
Fp2 . In particular, let b be a square and γ a non-square over Fp2 , and let Fp4 = Fp2(δ),
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where δ2 = γ. For a Montgomery curve

Ea,b(Fp2) : by2 = x3 + ax2 + x

such a quadratic twist is then given by

Et
a,γb(Fp2) : γby2 = x3 + ax2 + x,

and the twisting isomorphism σ : Ea,b(Fp4) → Et
a,γb(Fp4) is given by σ(x, y) = (x, δy).

However, since isogeny-based protocols use x-only and a-only arithmetic, twisting a curve
and computing the isomorphism become trivial. In fact, they would only be noticeable in
the y-coordinates and b-parameters. Given a parameter a ∈ Fp2 and a coordinate x ∈ Fp2

such that the corresponding y 6= 0, this arithmetic does not notice whether the correspond-
ing point lies on E or Et, but we can still perform point operations and isogeny computa-
tions. Thus, the SIDH setting is said to be twist agnostic [44].

In the B-SIDH protocol we now choose a prime p, and analogous to the SIDH setting, a
supersingular starting curve E(Fp2) such that E(Fp2) ∼= Z/(p + 1)Z×Z/(p + 1)Z. Alice
can now choose any M | (p + 1), and given some public M-torsion basis points, compute
a secret M-isogeny, similar to the SIDH case.6 On the other hand we have Et(Fp2) ∼=
Z/(p − 1)Z × Z/(p − 1)Z. Bob can thus choose any N | (p − 1) coprime to M, and
we are guaranteed to be able to find public N-torsion basis point, which Bob can use to
compute a secret N-isogeny.

However, in addition to the isogeny computations, both parties must evaluate the
other party’s public torsion points. For Alice, this would mean to evaluate points on
Et(Fp2) under her secret isogeny, which has E(Fp2) as domain curve. Thus, for this op-
eration to make sense, we have to lift the protocol to Fp4 , and compose the isogeny evalu-
ations with twisting isomorphisms in order to move Bob’s points to Alice’s curve. Fortu-
nately, the twist agnostic isogeny arithmetic discussed above allows Alice to simply push
Bob’s points through her isogeny, since the involved twisting operations become trivial.
Lifting the protocol to Fp4 thus becomes merely a theoretical tool that is required to define
the protocol; in practice however, this is not noticeable. Like in SIDH, the resulting eval-
uated points are included in the respective public key in order to allow both parties to
compute the shared secret.

The main advantage of B-SIDH is the possibility of working both in the (p + 1)- and
(p − 1)-torsion, and thus of choosing smaller primes p, which in turn allow for a more
efficient field arithmetic over Fp2 . However, for the isogeny computations to be efficient,
we require both p + 1 and p− 1 to contain enough small prime factors.

Remark 6. The potential usage of quadratic twists in the context of SIDH was first men-
tioned by De Feo [58], although without the construction of an explicit scheme. Prior to

6In particular, for any prime factor ` of M, we compute an `-isogeny, instead of directly computing the full
M-isogeny.
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the publication of B-SIDH, Matsuo proposed a variant of SIDH that exploits quadratic
twists [111]. However, the proposed instantiations significantly differ from Costello’s pro-
posal, see [44, §1.3].

Security aspects. Due to the above discussion, p, M, and N have to be chosen appro-
priately to achieve both security and efficiency. Analogous to the case of SIDH, collision
finding attacks still work in the same way classically and quantumly, thus forcing M ≈ N
to be of the same size as the SIDH parameters `eA

A ≈ `eB
B for reaching the same security

level.

However, when significantly reducing p compared to SIDH, generic isogeny finding
algorithms become competitive. In particular, the Delfs-Galbraith algorithm [65] tries to
find paths from the public key resp. starting curve to subfield curves with j-invariants in
Fp. When this is done, it solves the much easier isogeny problem in the isogeny graph
over Fp. The complexity of this classical algorithm is O(

√
p). The best quantum algorithm

is given in [22] and applies Grover’s algorithm [89] to Delfs-Galbraith, with a complexity
of O( 4

√
p). Thus it can be deduced that p must be slightly larger than M and N, but can be

chosen much smaller than in SIDH, see [44] for details.

Apart from this, B-SIDH inherits other security aspects from SIDH; the active attack
from [80] also applies to B-SIDH, meaning that only ephemeral keys can be used. In addi-
tion, the torsion point attacks for unbalanced parameters M� N from [125, 108] apply.

Implementation aspects. From an implementation point of view, B-SIDH works com-
pletely analogous to SIDH, except for the deviating isogeny degrees. The main problem
for efficient implementations is to find suitable parameters. Current cryptanalytic results
suggest that B-SIDH requires primes of roughly 256 bits, and M ≈ N ≈ 2216, in order to
achieve NIST level 1 security [44]. Thus, we have to find such primes, where both p + 1
and p− 1 contain smooth factors of size at least 2216. Chapter 7 will treat the question of
how to find such primes in detail.

An advantage of B-SIDH is its small public keys, which are slightly smaller than the
compressed SIDH public keys [44]. The current literature explores different scenarios for
applications of B-SIDH. If both parties must be equally fast, one can choose parameters
such that the largest prime factors of M and N are roughly of the same size, where we
recall that these prime factors will have the most influence on the total runtime due to
the isogeny computation complexity of Õ(

√
`) [13]. If the performance on one side of the

protocol is much more important than on the other side, one can e.g. find M with much
smaller prime factors, while the prime factors of N considerably grow, however without
making the runtime impractical. This scenario could be of interest if the protocol involves
communication between a server and clients, or when constrained devices are involved
(see [44]).
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2.4.3 CSIDH

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) is a key exchange protocol that
was introduced by Castryck, Lange, Martindale, Panny, and Renes [35]. Although it fol-
lows SIDH in working with supersingular elliptic curves, its mathematical background
considerably differs. In fact, CSIDH much more closely resembles the schemes using or-
dinary elliptic curves by Couveignes [51], and Rostovtsev and Stolbunov [133] (CRS). In
this section, we only give a brief introduction on the mathematical background that sets
the scene for the following chapters. For algorithmic and implementation details, we refer
to Chapter 3. A similar, but more detailed description of the mathematical background of
CSIDH in the context of hard homogeneous spaces will be given in Chapter 6. We further
refer to [52, 61, 35] for more details.

In this section, we restrict to elliptic curves over Fp, where p is prime. If E is a super-
singular curve over Fp, then necessarily #E(Fp) ≡ 1 mod p (cf. Theorem 3), and Hasse’s
theorem (cf. Theorem 1) implies that #E(Fp) = p + 1. Further recall that there are ap-
proximately p/12 isomorphism classes of supersingular elliptic curves over Fp2 (see The-
orem 4); [35] heuristically argues that there are roughly

√
p such isomorphism classes of

curves over Fp.

As noted in Section 2.2, the ring of Fp-rational endomorphisms EndFp(E) of a super-
singular curve E is isomorphic to an order O of the imaginary quadratic field Q(

√−p).
For such an order, the ideal class group cl(O) is a finite abelian group, given by the quotient
of the group of invertible ideals of O by the group of its principal ideals.

Now let È `p(O, π) be the set of supersingular elliptic curves over Fp with EndFp(E) ∼=
O ⊂ Q(

√−p). Then cl(O) acts freely and transitively on È `p(O, π) via isogenies in the
following way [35, Theorem 7]. For a given invertible ideal a ∈ O, define the a-torsion
subgroup of E as

E[a] = {P ∈ E(Fp) | α(P) = ∞ for all α ∈ a}.

This is a finite subgroup of E, and we can compute a unique isogeny ϕa : E → E/E[a]
with kernel E[a], and we write a ∗ E = E/E[a]. Further, if b is an ideal in the same class as
a, then E/E[a] ∼= E/E[b]. The degree of ϕa is the norm of a, and thus the efficiency of the
isogeny computation hinges on the ability to find a representative of a of small norm.

To this end, let ` be a prime such that the ideal (`) ∈ O splits into a product (`) = ll̄,
where l and l̄ are prime ideals of norm `, and l−1 = l̄ in cl(O). Then we aim at writing any
element a ∈ O as a product

a = ∏
i
lei
i

with such ideals li of prime norm `i, where the `i and exponents ei are sufficiently small to
make the involved isogeny computations efficient.
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The CSIDH design choices allow for this; in particular, we choose a prime of the form

p = 4
n

∏
i=1

`i − 1,

where the factors `i are small odd primes. Then we can work with the isomorphism class
of the Montgomery curve E : y2 = x3 + x over Fp which has EndFp(E) ∼= Z[π], where the
Frobenius endomorphism π can be identified with

√−p. All Fp-isomorphism classes of
this isogeny class can then be uniquely characterized by a Montgomery curve of the form
E : y2 = x3 + ax2 + x, and thus by a parameter a ∈ Fp.

Moreover, we are guaranteed that all of the `i split in Z[π] as described above, i.e.,
(`i) = li l̄i = 〈`i, π − 1〉 · 〈`i, π + 1〉. Computing the action of li on any curve E in the
isogeny class is easy, since we have E[li] = E[`i] ∩ ker(π − 1) = E[`i] ∩ E(Fp). Similarly,
we have E[l−1

i ] = E[`i] ∩ ker(π + 1). Apart from the point ∞, this amounts to Fp2-rational
points P = (x, y) of E[`i], where x ∈ Fp and y ∈ Fp2\Fp. However, due to the x-only
arithmetic, this will not be noticeable in practice, and we can entirely work over Fp. Com-
puting the action of such an a = ∏ lei

i now simply amounts to computing a sequence of
isogenies of small degree, and thus of finding E[li] resp E[l−1

i ] on the current curve E, and
computing E/E[li] resp. E/E[l−1

i ] through the usual isogeny formulas.
In spite of these desirable properties, we cannot efficiently compute the action of any

given a ∈ cl(O), since in general the cardinality and structure of cl(O) is not known,
and we cannot find a decomposition of the form a = ∏ lei

i . In CSIDH, this is solved by
instead directly sampling the integer exponents ei from small intervals [−Bi, Bi], such that
the number of possible exponent vectors is approximately #cl(O) ≈ √p. This approach
uses the heuristic that the number of exponent vectors that are equivalent is small among
these small norm vectors, and therefore almost the whole class group is represented in this
way [35].

The CSIDH key exchange protocol now is straightforward due to the commutative
group action. Alice and Bob choose a secret a resp. b through sampling such exponent
vectors. They compute the public keys EA = a ∗ E resp. EB = b ∗ E, and both parties can
compute the shared secret ab ∗ E = a ∗ EB = b ∗ EA.

Remark 7. As mentioned in Section 2.2, the isogeny graphs in the CSIDH case resemble the
isogeny volcanoes of ordinary elliptic curves. The choices made in CSIDH imply that we
work in a horizontal isogeny class, i.e., all involved isogenies are horizontal. The arising
`i-isogeny graphs then consist of isogeny cycles, resembling the top-level craters of the
ordinary case. The CSIDH specification implies that we move in a union of `i-isogeny
graphs, as depicted in Figure 2.4. Note that using j-invariants does not uniquely determine
the involved Fp-isomorphism classes here. This is due to quadratic twists, which have
the same j-invariant, but are not isomorphic over Fp, and thus are contained in distinct
vertices of the Fp-isogeny graph. We refer to [36] for more details.
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Figure 2.4: Fp-isogeny graph for degrees 3 (blue), 5 (green), and 11 (red) of the isogeny
class of the supersingular curve E : y2 = x3 + x over Fp with p = 659.

Remark 8. The Couveignes-Rostovtsev-Stolbunov key exchange scheme [51, 133] follows
the same theory, but uses ordinary elliptic curves and is much slower, if not impractical.
De Feo, Kieffer, and Smith improved this by fixing a set of small odd primes `i, searching
for primes p such that p ≡ −1 mod `i for all these `i, and finally searching ordinary curves
E such that #E(Fp) ≡ 0 mod `i for all the `i [61]. As in CSIDH, this guarantees these `i

to split, and points of orders `i are defined over Fp and can be used for efficient isogeny
computations. Thus, for these `i, the same strategy as above can be applied. However, this
search proved to be successful only for a very small number of primes `i, and the resulting
implementation performance is much worse than in CSIDH. In fact, for primes that do not
fulfill the properties above, isogenies can be computed through other means, which are
however much more expensive, and thus partly explain the slow performance of the CRS
scheme. The key observation of CSIDH is that when working with supersingular curves,
finding such desirable curves is straightforward, as described above.

Security aspects. Analogously to SIDH and B-SIDH, the same meet-in-the-middle and
claw finding attacks apply to CSIDH, both classically and quantumly.

In contrast to SIDH and B-SIDH, the underlying problem in CSIDH is a pure isogeny
finding problem, since no evaluated torsion points are included in public keys. Thus, con-
cerns about possible attack avenues using these points like in SIDH do not apply here. On
the other hand, the commutative class group action induces much more structure than in
the case of SIDH, and indeed, this allows for a subexponential quantum attack. It was first
noted by Childs, Jao, and Soukharev for the case of ordinary curves [40], and analyzed in
[35] for the case of supersingular curves, that the underlying problem can be expressed as
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an abelian hidden-shift problem. This implies that Kuperberg’s subexponential quantum
algorithm [107], as well as its variants by Regev [130] resp. Kuperberg [106], are applicable
to CSIDH.

This however does not mean that CSIDH is broken; Castryck et al. estimate that us-
ing the CSIDH-512 parameter set with an underlying 511-bit prime suffices to reach NIST
level 1 [35]. In follow-up work the costs of the quantum attack [21] and the correspond-
ing quantum oracle [17] have been analyzed in more detail. Recently, Bonnetain and
Schrottenloher [25] and Peikert [124] concluded that CSIDH-512 falls short of the desired
quantum security levels, and thus the underlying prime sizes have to be significantly in-
creased. However, these results are currently debated, mainly due to potential ambiguities
in NIST’s definition of security levels. Essentially, this means that the exact quantum se-
curity of CSIDH is not known yet.

A significant advantage of CSIDH compared to SIDH and B-SIDH is its non-interactive
structure and efficient key validation. In particular, active attacks as described for SIDH do
not apply since CSIDH public keys can be efficiently validated, which means that CSIDH
allows for the usage of static keys for all involved parties.

Remark 9. Since CSIDH-512 was the first and only implemented instantiation of CSIDH
from [35], follow-up work on efficient implementations mainly focused on CSIDH-512.
Thus, also the following chapters only consider implementations of CSIDH-512 in order
to allow for comparability. However, even if a different underlying prime is chosen, it is
straightforward to apply the corresponding approaches and optimizations to a different
instantiation of CSIDH.

Implementation aspects. For details on efficient implementations, we refer to Chapter 3
and Chapter 4, where fast isogeny computations in the context of CSIDH and efficient
constant-time implementations are treated.

It is worth to note that CSIDH’s public keys only contain a supersingular Montgomery
curve over Fp, which can be represented by a single element of Fp. Thus, when consider-
ing the security analysis from [35], the key sizes are even smaller than in the case of SIDH
or B-SIDH. On the other hand, currently CSIDH can be viewed as being roughly an order
of magnitude slower than SIDH.

2.4.4 Other protocols

Apart from the described key exchange schemes, there are various other isogeny-based
protocols. We briefly comment on some of these schemes, mainly limiting to schemes that
will become relevant throughout this thesis.

In the realm of digital signatures, SIDH-based protocols have proven to yield non-
practical signature sizes and performance [156, 81]. The CSIDH-based signature scheme
SeaSign by De Feo and Galbraith [59, 64] is similarly slow, while pointing out that a much
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more efficient signature scheme could be defined if CSIDH class group structures were
known. To this end, Beullens, Kleinjung, and Vercauteren improved the state-of-the-art of
such computations by successfully determining the CSIDH-512 class group structure, and
published CSI-FiSh [19], which is an efficient and practical signature scheme, although
being limited to the CSIDH-512 parameters as long as larger class group computations are
out of reach.

A different and promising signature scheme based on isogenies, called SQISign, has re-
cently been published by De Feo, Kohel, Leroux, Petit, and Wesolowski [62]. Remarkably,
the combined public key and signature size is much smaller than for any other signature
scheme in the NIST PQC standardization process. For efficient instantiations, SQISign
requires similar primes as B-SIDH, as discussed in Chapter 7.

Especially the non-interactive structure of CSIDH, and its similarity to traditional dis-
crete logarithm-based protocols, allows for many more advanced applications of isogeny-
based cryptography. As an example, Chapter 6 presents CSIDH- and CSI-FiSh-based
threshold schemes.



Chapter 3

A fast variable-time implementation
of CSIDH

3.1 Introduction

The Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) scheme by Castryck,
Lange, Martindale, Panny, and Renes [35] is a promising primitive due to its unique fea-
tures among quantum-resistant schemes. In particular, as described in Section 2.4, its non-
interactive structure and the possibility of using long-term static keys mean that CSIDH
could potentially be used as a drop-in replacement for currently used pre-quantum Diffie-
Hellman schemes. However, its exact quantum security is not known, and its performance
is rather slow, i.e., an order of magnitude slower than SIDH or SIKE at similar security
levels.

In this chapter we review the implementation by Castryck et al. from [35], and present
several optimizations. In particular, we explain a simple way to significantly reduce the
computational cost of point multiplications, and improve the involved isogeny compu-
tation by exploiting the well-known correspondence between Montgomery and twisted
Edwards curves. We note that the implementation from [35] is a variable-time proof-of-
concept implementation. Our improvements do not change the variable-time character of
the implementation, but naturally also apply to constant-time implementations.

Organization. In the following section we give an introduction to the algorithmic fea-
tures of CSIDH, mainly focusing on an implementer’s point of view. Section 3.3 introduces
a way to restructure the class group action algorithm, which allows for a reduction of the
computational effort of scalar point multiplications. In Section 3.4 we review some meth-
ods to compute isogenies, i.e., point evaluations and computations of the image curves. In
the first case, we employ an observation of Costello and Hisil [45] for a speed-up to the
implementation of [35], whereas in the latter case, we exploit more efficient isogeny com-
putations for twisted Edwards curves, in order to compute the Montgomery image curves

43
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Algorithm 1: Evaluating the class group action.
Input : A ∈ Fp and a list of integers (e1, . . . , en).
Output: A′ such that [le1

1 · · · · · l
en
n ] ∗ EA = EA′ .

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 + Ax2 + x is a square in Fp, else s← −1.
4 Let S = {i | sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x : 1), k← ∏i∈S `i, P← [(p + 1)/k]P.
8 foreach i ∈ S do
9 K ← [k/`i]P

10 if K 6= ∞ then
11 Compute a degree `i isogeny ϕ : EA → EA′ with ker(ϕ) = 〈K〉:
12 A← A′, P← ϕ(P), k← k/`i, ei ← ei − s.

more efficiently. We give implementation results according to our contributions in Sec-
tion 3.5. Section 3.6 concludes this chapter and presents the current state-of-the-art from
follow-up related work that was published subsequent to the publication of this chapter’s
material in [114].

3.2 Implementations of CSIDH

We recall some facts from Section 2.4 about the setup of CSIDH, and describe the al-
gorithmic design of the class group action computation. We follow the choices and im-
plementation by Castryck et al. [35] here. The algorithmic description and notation follow
along the lines of Algorithm 1.

First, we define a prime p = 4 · `1 · · · · · `n − 1, where `1, . . . , `n are small distinct odd
primes. Then we choose a supersingular curve E0 over Fp, usually we pick E0 : y2 =

x3 + x. Therefore we have #E0(Fp) = p + 1, and E0(Fp) contains points of order `i for
i = 1, . . . , n. Note that the factor 4 is required to ensure that we can use Montgomery
curves.

The private key contains n integers sampled from an interval [−B, B], i.e., has the form
(e1, . . . , en). Following Section 2.4, it determines a class group element a ∈ cl(O) through
a = ∏i l

ei
i . Thus, for each i the absolute value |ei| determines how many isogenies of degree

`i are to be computed, while the sign of ei states if we have to use points defined over Fp

or Fp2\Fp on the current curve E to generate their kernels. This corresponds to points in
ker(π − 1) resp. ker(π + 1), for which we also write E[π − 1] resp. E[π + 1].
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For the computation of isogenies, we could use a naïve approach, for each required
isogeny producing a point of suitable order on the current curve to be able to generate
the respective kernel for Vélu’s formulas. However, Algorithm 1 follows a more efficient
approach by combining several isogeny computations from only one sampled point in the
following way. At each step, we choose a random point P on the current curve by sampling
a random x ∈ Fp, and check in which of the cases above this leads us by checking the
minimal field of definition of the corresponding y-coordinate by a square root check via
a Legendre symbol computation. We then eliminate the possible unwanted factors in the
order of P by multiplying it by 4 ·∏j/∈S `j, where the set S collects all the i for which ei has
the corresponding sign.

After this, we fix an `i with i ∈ S and iterate over all `j for j ∈ S to compute k/`i =

∏j∈S,j 6=i `j, and compute the point K = [k/`i]P. In other words, we remove all possibly
remaining factors from the order of K except for `i, and check whether the resulting K has
order `i and can be used as kernel generator for computing an `i-isogeny, i.e., if K 6= ∞.
If so, we compute the corresponding isogeny ϕ and push P through via computing ϕ(P).
Then we move to the next prime from S and proceed in the same way. However, we
don’t have to consider the previously encountered `i in the multiplication that produces
the potential kernel generator point, since the isogeny evaluation of P already eliminates
the respective factor from its order, or in the other case, the order of P did not contain the
previous `i as factor in the first place. Thus, we can update k after each step via k ← k/`i,
making the required multiplications gradually smaller.

After this loop is completed, we proceed in the same way, and sample new random
points until all of the required isogenies are computed. The resulting curve then forms
the public key, or the shared secret, respectively. Note that the computational effort in
Algorithm 1 highly depends on the private key, which determines the number of required
isogenies. Therefore, for the practical usage of CSIDH, it is important to transform this
into a constant-time algorithm without adding much computational overhead.

Public keys can efficiently be validated by checking for supersingularity. We can sim-
ply sample a random point P on the curve corresponding to the received public key, and
for each `i, compute Qi = [(p + 1)/`i]P. For all i with Qi 6= ∞, we compute [`i]Qi and
d = ∏ `i. If any of these [`i]Qi 6= ∞, the curve cannot be supersingular, since #E(Fp) -
p + 1. If this is not the case, and d > 4

√
p, the curve must be supersingular, as can be seen

from the Hasse interval and Lagrange’s theorem (see [35]). Otherwise, the procedure can
be repeated with a different point P. Following this approach, it is not possible to wrongly
classify an ordinary curve as supersingular. Therefore, we can check if a public key has
been honestly generated, and thus can prevent certain kinds of active attacks.

Choice of parameters. The following discussions and implementation results refer to the
CSIDH-512 parameter set proposed in [35] for NIST’s post-quantum security level 1. In
particular, p = 4 · `1 · · · · · `74 − 1, where `1, . . . , `73 are the 73 smallest distinct odd primes
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and `74 = 587. The integer elements of the private keys (e1, . . . , e74) are chosen from the
interval [−5, 5], which means that the keyspace has size 1174 ≈ 2256 ≈ √p. Assuming that
there are not many equivalent key vectors, this heuristically covers most of the class group
since cl(O) ≈ √p. This parameter set leads to a prime size and public key lengths of 511
bit resp. 64 bytes. As mentioned before, the assessment of the exact quantum security and
thus the appropriate choice of parameters and is still an open problem.

3.3 Elliptic curve point multiplications

Let α = p+1
4 = `1 · `2 · · · · · `n. For the sake of simplicity, we consider a private key

(e1, . . . , en), where all ei > 0, and return to the general case later. We quickly reiterate the
behavior of Algorithm 1 in this case and describe a simple but effective speedup. First, we
sample random points on the current curve E0 until finding P with a y-coordinate defined
over the corresponding field Fp, and set P0 = [4]P in order to remove the possible factor 4
from its order. Then we compute K0 = [ α

`1
]P0. If K0 = ∞, the order of P does not contain

the factor `1, and we cannot use it to compute an isogeny of degree `1 and set P1 = P0 and
E1 = E0. If however K0 6= ∞, then K0 must have order `1 and can be used as generator
of the kernel of an isogeny of degree `1, mapping to a curve E1. In this case, we pull P0

through the isogeny and obtain a point P1 ∈ E1. Note that this implies that the order of
P1 is the order of P0 divided by `1. Therefore, for checking if we can use P1 to compute an
isogeny of degree `2, it suffices to compute K1 = [ α

`1·`2
]P1 and proceed as before. Following

this approach, the required factor for the scalar multiplication of Pj to obtain Kj reduces
at each step, until only the factor `n remains for the computation of Kn−1, and no more
multiplication is required for obtaining Kn.

The implementation of [35] goes through the primes in ascending order, starting with
small degree isogenies. However, we found it advantageous to change the direction of
the loop, i.e., go through the primes in descending order. By doing this, we can eliminate
the larger factors of p + 1 first, and therefore end up with multiplications by significantly
smaller factors as we proceed through the loop. Note that as soon as all isogenies of a
certain degree have been computed, e.g. |ei| isogenies of degree `i, we include the factor `i

in the first multiplication to compute P0, making sure that the order of P0 is not divisible by
`i. We can then ignore the factor `i in the loop, which slightly reduces the advantage of our
approach every time this occurs. However, we note that our approach is advantageous as
long as at least two factors are left in the loop.

Figure 3.1 shows the effect of our approach, compared to the implementation of [35].
Note that per bit of the factor of an elliptic curve point multiplication one step in the
Montgomery ladder is carried out, i.e., one combined doubling and differential addition.
Therefore, in the first loop, at each multiplication the computational effort is reduced by δi

times the cost of a ladder step, where δi is the difference between the two plots for a given



Chapter 3. A fast variable-time implementation of CSIDH 47

Figure 3.1: Bitlengths of factors during the first loop, when all ei have the same sign. The
red line follows the algorithm of [35], the blue line follows our described approach.

i < n, and hence δi · (8M + 4S + 8a). As discussed before, the number of saved operations
may reduce in the following loops.

In the general case, our assumption that all elements of the private key share the same
sign obviously does not hold. However, the described effect will translate at a lower scale
to both of the distinct computations for the sets S+ = {`i | ei > 0} and S− = {`i | ei <

0} corresponding to the private key (e1, . . . , en). Indeed, when plotting the bitlengths of
the factors in the respective first loops in such cases, this leads to two plots similar to
Figure 3.1, only at a lower scale.

3.4 Isogeny computations

The algorithm of [35] uses isogeny formulas for Montgomery curves by Costello and Hisil
[45] and Renes [131]. We will treat point evaluations and computations of coefficients of
image curves separately. First, we present the isogeny formulas of [45], which can be used
for the computation of isogenies in CSIDH.

Let K be a point of order ` = 2d + 1 on a Montgomery curve E : by2 = x3 + ax2 + x.
Then we can compute the coordinate map of the unique (up to compositions by isomorph-
isms) `-isogeny ϕ : E→ E′ with ker ϕ = 〈K〉 by

ϕ : (x, y) 7→ ( f (x), y · f ′(x)),
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where

f (x) = x ·
d

∏
i=1

(
x · x[i]K − 1

x− x[i]K

)2

,

f ′(x) is its derivative, and x[i]K denotes the x-coordinate of [i]K. The curve parameters a′

and b′ of E′ can be computed by a′ = (6σ̃− 6σ + a) · π2 and b′ = b · π2, where we define

σ =
d

∑
i=1

x[i]K, σ̃ =
d

∑
i=1

1
x[i]K

, and π =
d

∏
i=1

x[i]K.

Note that these formulas make use of the fact that [i]K = −[`− i]K and thus x[i]K = x[`−i]K

for all k ∈ {1, . . . , (`− 1)/2}.

3.4.1 Point evaluations

Since we work with XZ-only projective Montgomery coordinates, we have to represent
f (x) projectively. This is done in [45] by writing (Xi : Zi) = (x[i]K : 1) for i = 1, . . . , d,
(X : Z) = (xP : 1) for the point P, at which the isogeny should be evaluated, and ϕ(P) =
(X′ : Z′) for the resulting point. Then

X′ = X ·
( d

∏
i=1

(X · Xi − Zi · Z)
)2

, and

Z′ = Z ·
( d

∏
i=1

(X · Zi − Xi · Z)
)2

.

The implementation of [35] makes direct use of these formulas by going through the (Xi :
Zi) for i = 1, . . . , d and computing the pairs (X · Xi − Zi · Z) and (X · Zi − Xi · Z) at a cost
of 4M + 2a per step. However, we can also use the observation by Costello and Hisil in
[45] to reduce the cost to 2M + 4a per step by

X′ = X ·
( d

∏
i=1

[
(X− Z)(Xi + Zi) + (X + Z)(Xi − Zi)

])2

, and

Z′ = Z ·
( d

∏
i=1

[
(X− Z)(Xi + Zi)− (X + Z)(Xi − Zi)

])2

,

assuming that X + Z and X − Z are precomputed, and hence save d · (2M− 2a) per iso-
geny evaluation.

3.4.2 Computing the codomain curve

An efficient computation of the codomain curve parameters is not as straightforward as
for the point evaluations. This is due to the fact that the required parameters σ and σ̃

consist of sums of fractions. Therefore, Costello and Hisil give two different approaches
to compute the isogenous curve [45].
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The first approach uses the fact that the projective parameters (a′ : 1) = (A′ : C′) of
the isogenous curve E′ can be recovered from the knowledge of the three 2-torsion points
of E′. Therefore, it is possible to recover the required curve parameters of E′ by computing
the 2-torsion points of E and pushing one of these points through the odd-degree isogeny,
which preserves its order on the image curve. However, in contrast to SIDH, we only work
over the field Fp instead of Fp2 , while the required points of order 2 are not defined over
Fp in the CSIDH setting.

Their second approach uses the fact that the curve parameters can be recovered from
the knowledge of the x-coordinates of two points on the curve and their difference. While
these points are typically available in SIDH during the key generation phase, this is not
the case for CSIDH, where we only want to compute the isogenous curve and evaluate
one point.

In [35], Castryck et al. compute the image curve by defining cj ∈ Fp such that

`−1

∏
i=1

(Ziw + Xi) =
`−1

∑
j=0

cjwj

as polynomials in w. Then they observe that

(A′ : C′) = (π̂(a− 3σ̂) : 1) = (ac0c`−1 − 3(c0c`−2 − c1c`−1) : c2
`−1),

following the formulas and notation from Renes [131], where

π̂ =
`−1

∏
i=0

x[i]K, and σ̂ =
`−1

∑
i=0

(
x[i]K −

1
x[i]K

)
.

In their implementation, this is computed iteratively, going through the (Xi : Zi) for i =
2, . . . , d, updating the required values at a cost of 6M+ 2a per step. The final computations
then take further 8M + 3S + 6a to compute the curve parameters (A′ : C′).

Using twisted Edwards curves for the codomain curve computation. Our approach
to speed up this computation exploits the well-known correspondence between Mont-
gomery and twisted Edwards curves. Given a Montgomery curve EA,B : Bv2 = u3 + Au2 +

u, we can switch to a birationally equivalent twisted Edwards curve Ea,d : ax2 + y2 =

1 + dx2y2, where

A =
2(a + d)

a− d
and B =

4
a− d

,

via the coordinate map

(u, v) 7→ (x, y) =
(

u
v

,
u− 1
u + 1

)
,

and back via its inverse

(x, y) 7→ (u, v) =
(

1 + y
1− y

,
1 + y

(1− y)x

)
.
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In [115] it is shown how to switch to and from twisted Edwards curves in the SIDH setting,
which also applies to CSIDH, where Montgomery XZ-only coordinates and projective
curve parameters (A : C) are used, ignoring the Montgomery parameter b. Following
this and [34], a Montgomery point (XM : ZM) can be transformed to the corresponding
Edwards YZ-coordinates (YE : ZE) by the map

(XM : ZM) 7→ (YE : ZE) = (XM − ZM : XM + ZM),

and the Montgomery parameters (A : C) to the corresponding twisted Edwards parame-
ters (aE, dE) by

aE = A + 2C and dE = A− 2C.

Since this allows us to switch efficiently between equivalent Montgomery and twisted
Edwards curves in CSIDH at a cost of 3a for the curve parameters and 2a for point co-
ordinates, we may as well use isogeny formulas for twisted Edwards curves. Therefore,
we state the twisted Edwards isogeny formulas given by Moody and Shumow in [118].

Let K be a point of order ` = 2d + 1 on a twisted Edwards curve E : aEx2 + y2 =

1 + dEx2y2. Then we can compute the coordinate map of the unique (up to compositions
by isomorphisms) `-isogeny ϕ : E→ E′ with ker(ϕ) = 〈K〉 by

ϕ(P) =

(
∏

Q∈〈K〉

xP+Q

yQ
, ∏

Q∈〈K〉

yP+Q

yQ

)
.

The curve E′ is defined by the parameters

a′E = a`E and d′E = π8
yd`E, where πy =

d

∏
i=1

y[i]K.

Since the coordinate map is not as simple to compute as for Montgomery curves, we
are only interested in the computation of the image curve parameters. Writing (YE

i : ZE
i )

for the projective coordinates of [i]K for i = 1, . . . , d, we can transform the formulas from
above to the projective case by

a′E = a`E · π8
Z and d′E = d`E · π8

Y,

where

πY =
d

∏
i=1

YE
i and πZ =

d

∏
i=1

ZE
i .

We can therefore use these formulas to compute the curve parameters of the image
curves in CSIDH by switching to twisted Edwards coordinates and points, and switch
back to the corresponding Montgomery curve after the isogeny computations by

(A′ : C′) = (2(a′E + d′E) : a′E − d′E),

again at a cost of 3a.
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Figure 3.2: Costs of different prime-degree isogeny computations. The red line uses Mont-
gomery point evaluations from [45] and codomain curve computations from [35], while
the blue line uses the same Montgomery point evaluations and twisted Edwards codo-
main curve computations.

Note that the parameters a′E and d′E can be computed efficiently: While going through
the (Xi : Zi) on the Montgomery curve for i = 1, . . . , d, we can compute the corresponding
Edwards coordinates (YE

i : ZE
i ) at a cost of 2a. However, the required sums and differences

naturally occur at the point evaluation part, and hence do not introduce any computational
overhead. We can then compute πY and πZ iteratively by 1M each per step. Compared
to the algorithm of [35], this saves 4M + 2a per step. Furthermore, we have to compute
π8

Y and π8
Z by three squarings each, and a`E and d`E, which can be done efficiently, e.g.

via a square-and-multiply approach. We further note that the latter computation does
not require any values generated during the loop through the (Xi : Zi). This means that
especially hardware architectures that allow for parallel computations would benefit from
this, since the computation of a`E and d`E can be done in parallel to the loop through the
(Xi : Zi).

Figure 3.2 compares the costs of a combined image curve computation and point eval-
uation for different prime degrees, where the red line arises from using the Montgomery
isogenies from [35], including the optimizations from [45], and the blue line from using
our approach utilizing twisted Edwards curves to compute the isogenous curve. The cost
is measured in field multiplications, assuming that 1S = 0.8M and 20a = 1M. In this
case, we can derive a reduction of the costs by approximately 25% for the largest primes
in the CSIDH-512 parameter set. We note that the speedup with different ratios of field
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operations does not significantly differ from this, since the main difference between the
approaches lies in the number of multiplications. To obtain the cost of the computations
of a`E and d`E, we used a square-and-multiply approach. Since the exponents `i are small
fixed numbers, it is also possible to precompute the optimal addition chains, and therefore
save some computational effort compared to square-and-multiply. However, we found
that even for the largest `i from the current parameter set, this saves at most four multi-
plications. Hence, the benefit of this is rather small compared to the increased length of
the code and the more complicated implementation.

Note that for ` ≤ 5, our approach is slightly more expensive than the Montgomery
approach. Therefore, in this case the Montgomery approach can be used. However, the
benefit of this is very small compared to the total computational effort. Thus, for the sake
of simplicity, it might be better to use our approach for all involved `i.

It is further noted in [35] that for a fixed prime ` one could reduce the computational
effort by finding an appropriate representative of the isogeny modulo (a factor of) the `-
division polynomial ψ`, as done in [47] for 3- and 4-isogenies. However, every required
isogeny degree would have to be implemented separately, resulting in major complica-
tions for implementations.

3.5 Implementation results

As proof-of-concept and for measuring the efficiency of our work, we took the mentioned
implementation of Castryck et al. [35] as reference, and added our optimizations. The
implementation is written in C and uses Fp-arithmetic in assembly. The parameters in use
are the CSIDH-512 parameters described in Section 3.2. The validation of public keys is
not included in the following discussion and results.

The first optimization is the precomputation of the curve parameters (A + 2C : 4C)
each time before entering the Montgomery ladder, as also done in SIDH [47]. This only
saves a few additions per ladder step, which however overall add up to a significant
amount of field additions.

The other optimizations are as described above; one results from rearranging the fac-
tors in the class group action evaluation algorithm, and the other from more efficient iso-
geny computations by using the point evaluation from [45] and our twisted Edwards ap-
proach for the codomain curve computations.

Table 3.1 lists the influence of the different optimizations on the overall performance.
In the respective implementations, only the mentioned optimization was used, while leav-
ing other parts of the reference implementation from [35] unchanged. For the last entry,
we combined all the described optimizations and achieved a reduction of the total com-
putational effort by 25%, yielding a speed-up factor of 1.33. The latter implementation is
available at https://github.com/michael-meyer/phdthesis-code.

https://github.com/michael-meyer/phdthesis-code
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Table 3.1: Performance comparison of the class group action evaluation in CSIDH with dif-
ferent optimizations applied. All timings are given in 106 clock cycles and were measured
on an Intel Core i7-6500 Skylake processor, averaged over 10 000 runs.

Clock cycles ×106 Speedup factor

Castryck et al. [35] 138.6 -

Rearranging factors 126.5 1.096

Isogeny optimization 118.2 1.173

Combination of all optimiza-
tions

103.9 1.334

3.6 Conclusion and current state-of-the-art

In this chapter we presented ways to speed up the class group action evaluation used in
CSIDH. However, for practical applications an efficient constant-time implementation is
required in order to avoid leakage of information on the private key from the runtime of
CSIDH. Such an implementation is presented in Chapter 4. Note that all the algorithmic
improvements from this chapter also apply to this constant-time implementation.

Subsequent to the publication of the material presented in this chapter in [114], more
work on efficient implementations of CSIDH’s main operations has been published. We
briefly review the current state-of-the art.

For the scalar multiplications in CSIDH, Cervantes-Vázquez, Chenu, Chi-Domínguez,
De Feo, Rodríguez-Henríquez, and Smith observe that instead of using the Montgomery
ladder, one can use optimal differential addition chains [37]. This is due to the fact that
only scalar multiplications by the involved `i and 4 take place, which means that differ-
ential addition chains can be precomputed for each `i, resulting in an average speedup of
25%. Note that this improvement is compatible with the multiplication speedup obtained
in this chapter.

In [37] it is further proposed to entirely work with twisted Edwards curves. Recall
from Section 2.3 that we can define YZ-only twisted Edwards differential addition and
doubling formulas that arise from transforming points to the Montgomery model, apply
the efficient Montgomery operations, and map the results back to the twisted Edwards
model. The same can be done with the Montgomery isogeny point evaluation formulas
from [45], which are used in this chapter. Remarkably, this approach is slightly faster, sav-
ing (4d− 4)a for an isogeny of degree ` = 2d + 1 when working with twisted Edwards
coordinates. Other publications suggest that different approaches to construct CSIDH en-
tirely with Edwards curves does not lead to significant speedups [119, 101].

A more significant speedup for large-degree isogeny computations has been achieved
by Bernstein, De Feo, Leroux, and Smith [13]. For a prime degree ` and kernel gener-
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ator K, the isogeny codomain curve and point evaluation formulas used in this chapter
can be rewritten in terms of the kernel polynomial hS(x) = ∏s∈S(x − x[s]K) with S =

{1, 3, 5, . . . , `− 2}. Thus, computing isogenies efficiently hinges on the ability of evaluating
this polynomial efficiently. Inspired by integer factoring algorithms due to Strassen [148]
and Pollard [127], Bernstein et al. make use of a baby-step giant-step approach that reduces
from the linear complexity of a naïve computation to an asymptotic complexity of Õ(

√
`).

Further, in practice their approach outperforms the usual isogeny formulas already at iso-
geny degrees in the range of 100 [13, 2].

Isogenies of degree 2 are not available in the CSIDH setting, however Castryck and
Decru [32] show that when using a prime with p ≡ 7 mod 8 and moving to the surface
of the isogeny graph, horizontal 2-isogenies are available, and can be computed determ-
inistically, i.e., without sampling points of order 2. Similarly, in [33], Castryck, Decru,
and Vercauteren show how to compute isogenies of odd prime degree deterministically,
obtaining a speedup for degrees ` ≤ 13.



Chapter 4

An efficient constant-time
implementation of CSIDH

4.1 Introduction

As mentioned in Chapter 3, constant-time algorithms are required for most real-world
applications of cryptosystems, since otherwise the runtime may leak information on the
respectively utilized private key. In this chapter we present the first practical constant-time
implementation of CSIDH, including many optimizations that reduce the computational
effort. Our implementation induces a relatively small slowdown by a factor of 3.03 com-
pared to the average runtime of the fastest variable-time implementation from [114]. On
the other hand, the worst-case runtime of the variable-time implementation from [114] is
slightly slower than our constant-time implementation. As in Chapter 3 we restrict to an
implementation of CSIDH-512, but note that the same ideas can be applied to different
parameter sets.

Note that there are two different notions of constant-time implementations, as ex-
plained in [17]. In our case, it suffices to work with the notion stating that the running
time does not depend on the choice of the private key, but may vary due to randomness.
The second notion specifies strict constant time, meaning that the running time must be
the same for every execution of the algorithm, independent of private keys or randomness.
Throughout this thesis, “constant time” refers to the first notion described above.

Related work. In [17], Bernstein, Lange, Martindale, and Panny describe constant-time
implementations in the second notion from above, which is required for running the
quantum oracle in a quantum attack. In this chapter, we follow the mentioned different
approach for an efficient constant-time implementation, but reuse some of the techniques
from [17].

55



56 4.2. Leakage scenarios

Organization. The rest of this chapter is organized as follows. The following section
briefly recalls the CSIDH class group action algorithm and presents leakage scenarios
based on time, power analysis, and cache timing. In Section 4.3 we suggest different
methods to avoid these leakages and propose a constant-time implementation. Section 4.4
contains a straightforward application of our suggested methods, and various optimiza-
tions. Thereafter, we provide implementation results in Section 4.5. Section 4.6 concludes
this chapter and presents the current state-of-the-art from follow-up related work that was
published subsequent to the publication of this chapter’s material in [113]. Details on para-
meters and the full algorithms of our approach are given in Section 4.A and Section 4.B,
respectively.

4.2 Leakage scenarios

Recall from Chapter 3 that we choose a prime of the form p = 4 · `1 · · · · · `n − 1, where the
`i are small distinct odd primes, and a supersingular starting curve E0(Fp). A private key
consists of a tuple (e1, . . . , en), where the integers ei are sampled from an interval [−B, B].
The absolute value |ei| specifies how many `i-isogenies have to be computed, and the sign
of ei determines whether points on the current curve or on its twist have to be used as ker-
nel generators. For the full CSIDH class group action evaluation, we refer to Algorithm 1.

It is obvious and already noted in [35] that the variable-time CSIDH implementations
of [35, 114] are not side-channel resistant. In this chapter we focus on three scenarios
that can leak information on the private key. Note that the second scenario features a
stronger attacker than the first. Further, there will naturally be many more scenarios for
side-channel attacks.

Timing leakage. Since the private key in CSIDH specifies how many isogenies of each
degree have to be computed, it is obvious that this (up to additional effort for point mul-
tiplications due to the random sampling of points) determines the running time of the
algorithm. As stated in [114], the worst-case running time occurs for the private key
(5, 5, . . . , 5), and is more than 3 times slower than in the average case. The other extreme is
the private key (0, 0, . . . , 0), which would require no computations at all. However, in an
implementation protected against timing attacks, the running time should be independent
of the private key.

Power analysis. Instead of focusing on the running time, we now assume that an at-
tacker can measure the power consumption of an execution of the algorithm. We further
assume that from the measurement, the attacker can determine blocks which represent the
two main primitives in CSIDH, namely point multiplications and isogeny computations,
and can distinguish these from each other. Now assume that the attacker can distinguish
the loop iterations in line 1 of Algorithm 1. Then the attacker can determine which private
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key elements share the same sign from the isogeny blocks that are performed in the same
loop, since they have variable running time based on the isogeny degree. This significantly
reduces the possible key space and therefore also the complexity of revealing the correct
key.

Cache timing attacks. In general, data flow from the secret key to branch conditions and
array indices must be avoided in order to achieve protection against cache timing attacks
[14]. Our implementation follows these guidelines to avoid vulnerabilities against the
respective possible attacks.

4.3 Mitigating leakage

In this section we present ideas on how to fix these possible leakages in an implementation
of CSIDH. We outline the most important ideas here, and give details on how to implement
them efficiently in CSIDH-512 in Section 4.4.

Dummy isogenies. It seems obvious that one should compute a constant number of iso-
genies of each degree `, and discard the results of those not required by the private key, in
order to obtain a running time independent of the private key. However, if we compute
a dummy isogeny, i.e., compute an `-isogeny and discard the results, an additional scalar
multiplication [`]P is required, since P only loses the factor ` from its order if it gets pushed
through an isogeny. Thus, if utilized isogenies and dummy isogenies are computed in the
same loop,7 each dummy isogeny must be followed by such a scalar multiplication. In
order to avoid leakage from this, we thus have to perform a scalar multiplication by ` after
each `-isogeny, which induces some computational overhead.

However, we can design a dummy isogeny algorithm that allows for avoiding such
an additional multiplication. In particular, the `-isogeny algorithm must update the curve
parameters and evaluate the curve point P in case of a real isogeny, and compute [`]P in
the dummy case. For this, a unified algorithm that computes both cases with the same
number and sequence of operations is required to achieve side-channel resistance. This
can be done as follows.

Since the isogeny algorithm computes all scalar multiples of the kernel generator K up
to [ `−1

2 ]K, one can initially replace K by P, and perform two more differential additions
to compute [`]P, while the curve parameters remain unchanged. In consequence, such a
dummy isogeny implicitly simply performs a scalar multiplication by `. Therefore, the
order of the output point [`]P is not divisible by ` then, which is important for using this
point to compute correct kernel generators in following iterations. Note that since we
require a unified isogeny algorithm, the two extra differential additions also have to be

7This is required, since otherwise, an attacker in the second leakage scenario can determine the private key
easily.
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performed for utilized isogenies. Thus, this introduces a minor computational overhead
compared to the isogenies from [114], but in general this is cheaper than an additional
scalar multiplication by `.

The only ingredient we need to ensure the constant-time property is a side-channel
resistant way to replace a point K by P. As usual, this is realized in practice via a constant-
time swap function, which swaps two inputs in constant time if a decision bit is set, or
leaves them unchanged if the decision bit is not set. Note that also the determination of
the required decision bit, which indicates if a dummy or real isogeny has to be computed,
is performed in constant time in our implementation. We refer to Chapter 5 for more
details on this.

Balanced vs. unbalanced private keys. Using dummy isogenies to spend a fixed time
on isogeny computations is not enough for a constant-time implementation, however. An-
other problem lies in the point multiplications in line 7 and 9 of Algorithm 1. We illus-
trate the potential timing leakage through an example. When considering the private keys
(5, 5, 5, . . . ) and (5,−5, 5,−5, . . . ), we observe that for the former key the running time is
50% higher than for the latter key, even though the number of isogenies is equal in both
computations. The reason for this is that in the first case, in order to compute one isogeny
of each degree, the multiplication in line 7 is only a multiplication by 4, and the multiplic-
ation in line 9 has a factor of bitlength 509 in the first iteration, 500 in the second iteration,
etc.

For the second key, following Algorithm 1, we have to perform one loop through the
odd i and one through the even i in order to compute one isogeny of each degree `i. There-
fore, the multiplications in line 7 have 254-bit resp. 259-bit factors, while the bitlengths
of the factors in the multiplications in line 9 are 252, 244, . . . , resp. 257, 248, . . . (see Fig-
ure 4.1). In total, adding up the bitlengths of all factors, we can measure the cost of all
required point multiplications for the computation of one isogeny per degree, since one
Montgomery ladder step is performed per bit. For simplicity, we assume that the condi-
tion in line 10 of Algorithm 1 never fails. For the former key, we end up with 16813 bits,
while for the latter key we only have 9066 bits.

This can be generalized to any private key; the more unbalanced the key elements (or
the products of the respective `i) are, i.e., many of them share the same sign, the more
the computational effort grows, compared to the perfectly balanced case from above. This
behavior depends on the private key and can therefore leak information. Hence, it is clear
that we have to prevent this in order to achieve a constant-time implementation.

One way to achieve this is to use constant-time Montgomery ladders that always run to
the maximum bitlength, no matter how large the respective factor is. However, this would
lead to a massive increase in running time. Another possibility for handling this is to only
choose key elements of a fixed sign. Then we have to adjust the interval from which we
sample the integer key elements, e.g. from [−5, 5] to [0, 10] in CSIDH-512, in order to reach
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Figure 4.1: Bitlengths of the factors of the involved scalar multiplications for computing
one isogeny per degree for the keys (5, 5, . . . , 5) (left) and (5,−5, 5,−5, . . . ) (right).

an equally large keyspace. This however doubles the computational effort for isogenies
(combined normal and dummy isogenies). However, this will be the countermeasure of
our choice, since also in a different leakage scenario, information on the sign distribution
may leak.

Determining the sign distribution. In our second leakage scenario, featuring a power
analysis attack, an attacker might determine the sign distribution of the key elements by
identifying blocks of isogeny resp. dummy isogeny computations that are performed in
the same loop of Algorithm 1. The sign distribution then trivially leaks, since the running
time of an isogeny depends on its degree, and thus if some `i-isogenies are located in the
same loop, the respective key elements ei share the same sign. One way to mitigate this at-
tack is to let each degree `i isogeny run as long as an `max-isogeny, where `max is the largest
involved isogeny degree. As utilized in [17], this is possible because of the Matryoshka-
doll structure of the isogeny algorithms. This would allow an attacker in the second leak-
age scenario to only determine the number of positive resp. negative elements, but not
their exact distribution, at the cost of a large increase of computational effort. We can also
again restrict to the case that we only choose non-negative (resp. only non-positive) key
elements. Then there is no risk of leaking information about the sign distribution of the
elements, since in this setting the attacker knows this beforehand, at the cost of twice as
many isogeny computations.

Limitation to non-negative key elements. Since this choice eliminates both of the afore-
mentioned possible leakages, we use the mentioned different interval to sample private
key elements from. In CSIDH-512, this means using the interval [0, 10] instead of [−5, 5].
As before, there are 1174 different key vectors to choose from. Castryck et al. argue in
[35] that usually there are multiple vectors (e1, e2, . . . , en), which represent the same ideal
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class, meaning that the respective keys are equivalent. However, they assume by heuristic
arguments that the number of short representations per ideal class is small, i.e., the 1174

different keys (e1, e2, . . . , en), where all ei are sampled from the interval [−5, 5], represent
not much less than 1174 ideal classes. If we now have two equivalent keys e 6= f sampled
from [−5, 5], then we have a collision for our shifted interval as well, since shifting all ele-
ments of e and f by +5 results in equivalent keys e′ 6= f ′ with elements in [0, 10], and vice
versa. Therefore, the keyspace of our shifted version is equivalent to the one in CSIDH-512
as defined in [35].8

In the following sections we focus on optimized implementations, using the mentioned
countermeasures against attacks, i.e., sampling key elements from the interval [0, 10] and
using dummy isogenies.

4.4 Efficient implementation

4.4.1 Straightforward implementation

Firstly, we describe the straightforward implementation of the evaluation of the class
group action in CSIDH-512 with the choices from above, before applying various optimiz-
ations. We briefly go through the implementation aspects of the main primitives, i.e., point
multiplications, isogenies and dummy isogenies, and explain why this algorithm runs in
constant time, and does not leak information about the private key. Algorithm 2 presents
the straightforward implementation of our constant-time approach.

Parameters. As described in [35], we have a prime number p = 4 · `1 · `2 · · · · · `n − 1,
where the `i are small distinct odd primes. We further assume that we have `1 > `2 >

· · · > `n. In CSIDH-512 we have n = 74, and we sample the elements of private keys
(e1, e2, . . . , en) from [0, 10].

Handling the private key. Similar to the original implementation of Castryck et al., we
copy the elements of the private key in an array e = (e1, e2, . . . , en), where ei determines
how many isogenies of degree `i we have to compute. Furthermore, we set up another
array f = (10− e1, 10− e2, . . . , 10− en), to determine how many dummy isogenies of each
degree we have to compute. As we go through the algorithm, we compute all the required
isogenies and dummy isogenies, reducing ei resp. fi by 1 after each degree `i isogeny resp.
dummy isogeny. We therefore end up with a total of 10 isogeny computations (counting
isogenies and dummy isogenies) for each `i.

8One could also think of using the starting curve E′, which is the result of applying the key (5, 5, . . . , 5) to
the curve E0. Then for a class group action evaluation, using key elements from [−5, 5] and the starting curve
E′ is equivalent to using key elements from [0, 10] and the starting curve E0.
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Algorithm 2: Constant-time evaluation of the class group action in CSIDH-512.

Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, and a list of
integers (e1, . . . , en) with ei ∈ {0, 1, . . . , 10} for all i ≤ n.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Initialize k = 4, e = (e1, . . . , en) and f = ( f1, . . . , fn), where fi = 10− ei.
2 while some ei 6= 0 or fi 6= 0 do
3 Sample random values x ∈ Fp until we have some x where x3 + ax2 + x is a

square in Fp.
4 Set P = (x : 1), P← [k]P, S = {i | ei 6= 0 or fi 6= 0}.
5 foreach i ∈ S do
6 Let m = ∏j∈S,j>i `j.
7 Set K ← [m]P.
8 if K 6= ∞ then
9 if ei 6= 0 then

10 Compute a degree `i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉:
11 a← a′, P← ϕ(P), ei ← ei − 1.

12 else
13 Compute a degree `i dummy isogeny:
14 a← a, P← [`i]P, fi ← fi − 1.

15 if ei = 0 and fi = 0 then
16 Set k← k · `i.

Sampling random points. In line 3 of Algorithm 2, we have to find curve points on the
current curve that are contained in ker(π − 1). As in [35] this can be done by sampling a
random x ∈ Fp, and computing y2 by the curve equation y2 = x3 + ax2 + x. We then check
if y is defined over Fp by a Legendre symbol computation, i.e., by checking if (y2)(p−1)/2 ≡
1 (mod p). If this is not the case, we simply repeat this procedure until we find a suitable
point. Note that we require the curve parameter a to be in affine form. Since a will typically
be in projective form after isogeny computations, we therefore have to compute the affine
parameter each time before sampling a new point.

Elliptic curve point multiplications. Since we work with Montgomery curves, using
only projective XZ-coordinates and projective curve parameters a = A/C, we can use the
standard Montgomery ladder as introduced in [117], adapted to projective curve paramet-
ers as in [47]. This means that per bit of the factor, one combined doubling and differential
addition is performed.
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Isogenies. For the computation of isogenies, we use the formulas presented in [114].
They combine the Montgomery isogeny formulas by Costello and Hisil [45], and Renes
[131] with the twisted Edwards formulas by Moody and Shumow [118], in order to obtain
an efficient algorithm for the isogeny computations in CSIDH. For an `i-isogeny, this re-
quires a point K of order `i as kernel generator, and the projective parameters A and C of
the current curve. It outputs the image curve parameters A′ and C′, and the evaluation of
the point P. As mentioned before, the algorithm computes all multiples of the point K up
to the factor `i−1

2 . See e.g. [17] for more details.

Dummy isogenies. As described before, we want the degree `i dummy isogenies to out-
put the scalar multiple [`i]P instead of an isogeny evaluation of P. Therefore, we inter-
change the points K and P in the original isogeny algorithm, such that it computes [ `i−1

2 ]P.
We then perform two more differential additions, i.e., compute [ `i+1

2 ]P from [ `i−1
2 ]P, P, and

[ `i−3
2 ]P, and compute [`i]P from [ `i+1

2 ]P, [ `i−1
2 ]P, and P.

As mentioned before, we want isogenies and dummy isogenies of degree `i to share
the same code in order to avoid conditional branches. Hence, the two extra differential
additions are also performed in the isogeny algorithm, without using the results. In our
implementation, a conditional point swap based on a decision bit ensures that the correct
input point is chosen. This avoids conditional branches that depend on the private key in
line 9 of Algorithm 2.

If one is concerned that a side-channel attacker can detect that the curve parameters A
and C are not changed for some time (meaning that a series of dummy isogenies is per-
formed), one could further rerandomize the projective representation of the curve para-
meter A/C by multiplying A and C by the same random number9 1 < α < p.

4.4.2 Constant-time property

We now explain why this algorithm runs in constant time. As already explained, we per-
form 10 isogeny computations (counting isogenies and dummy isogenies) for each degree
`i. Furthermore, for a given degree `i, isogenies and dummy isogenies have the same run-
ning time, since they share the same code, and conditional branches are avoided. There-
fore the total computational effort for isogenies is constant, independent of the respective
private key. We also set the same condition (line 8 of Algorithm 2) for the kernel generator
for the computation of a dummy isogeny, in order not to leak information.

Sampling random points and finding a suitable one does not run in constant time in
Algorithm 2. However, the running time only depends on randomly chosen values, and
does not leak any information on the private key.

Now for simplicity assume that we always find a point of full order, i.e., a point that
can be used to compute one isogeny of each degree `i. Then it is easy to see that the total

9One could actually use an intermediate value α ∈ Fp\{0, 1} of the isogeny computation, since the factor
is not required to be truly random.
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computational effort for scalar multiplications in Algorithm 2 is constant, independent of
the respective private key. If we now allow random points, we will typically not satisfy the
condition in line 8 of Algorithm 2 for all i. Therefore, additional computations (sampling
random points, and point multiplications) are required. However, this does not leak in-
formation about the private key, since this only depends on the random choice of curve
points, but not on the private key.

Hence, we conclude that the implementation of Algorithm 2 as described here prevents
the leakage scenarios considered in Section 4.2. It is however rather slow compared to the
performance of variable-time CSIDH-512 in [114, 35]. In the following section we focus on
ways to optimize and speed up the implementation.

4.4.3 Optimizations

Sampling points with Elligator. In [17], Bernstein, Lange, Martindale, and Panny poin-
ted out that Elligator [15], specifically the Elligator 2 map, can be used in CSIDH in order
to sample points over the required field of definition. Since we only need points defined
over Fp, this is especially advantageous in our situation. For a 6= 0 the Elligator 2 map
works as follows (see [17]):

• Sample a random u ∈ {2, 3, . . . , (p− 1)/2}.

• Compute v = a/(u2 − 1).

• Compute e, the Legendre symbol of v3 + av2 + v.

• If e = 1, output v. Otherwise, output −v− a.

Therefore, for all a 6= 0 we can replace the search for a suitable point in line 3 of Al-
gorithm 2 at the cost of an extra inversion. However, as explained by Bernstein et al.,
one can precompute 1/(u2 − 1) for some values of u, e.g. for u ∈ {2, 3, 4, . . . }. Then the
cost is essentially the same as for the random choice of points, but we always find a suit-
able point in this way, compared to the probability of 1/2 when sampling random points.
However, Cervantes-Vázquez, Chenu, Chi-Domínguez, De Feo, Rodríguez-Henríquez,
and Smith [37] pointed out that applying the method from [17] may leak information in
our case if not applied correctly, i.e., trying for all precomputed values u to result in a point
of desired order.10 Thus, they describe a projective version of the Elligator 2 map, which is
equally efficient, and mitigates this leakage, see [37] for details. Note that the probability
for actually finding points of suitable order appears to be almost unchanged when using
Elligator instead of random points, as discussed in [17].

For a = 0, Bernstein et al. [17] and Cervantes-Vázquez et al. [37] describe similar meth-
ods to exploit the Elligator 2 map in the respective scenarios.

10Note that the original version of [113], where this chapter’s material was published, was vulnerable to
this potential leakage, since it departed from [17] in only trying potential values u until the first succeeds in
finding a point of desired order.
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Table 4.1: Number of Montgomery ladder steps for computing one isogeny of each degree
in CSIDH-512 for different numbers of batches m.

m 1 2 3 4 5 6 7

Ladder steps 16813 9066 6821 5959 5640 5602 5721

SIMBA (Splitting Isogenies into Multiple BAtches). In Section 4.3, we analyzed the
running time of the variable-time CSIDH-512 algorithm for the keys e1 = (5, 5, . . . , 5) and
e2 = (5,−5, 5,−5, . . . ). For the latter, the running time is significantly faster, because of the
smaller multiplications during the loop (line 9 of Algorithm 1), see Figure 4.1. We adapt
and generalize this observation here, in order to speed up our constant-time implementa-
tion.

Consider for our setting the key (10, 10, . . . , 10) and assume for simplicity that we can
again always choose points of full order. In order to split the indices in two sets (exactly
as Algorithm 1 does for the key e2), we define the sets S1 = {1, 3, 5, . . . , 73} and S2 =

{2, 4, 6, . . . , 74}. Then the loops through the `i for i ∈ S1 resp. i ∈ S2 require significantly
smaller multiplications, while only requiring to compute [4k]P with k = ∏i∈S2

`i resp.
k = ∏i∈S1

`i beforehand. We now simply perform 10 loops for each set, and hence this
approach achieves exactly the same speedup over Algorithm 2, as Algorithm 1 does for
the key e2 compared to e1, by using two batches of indices instead of only one.

A natural question is whether splitting the indices in two sets already results in the best
possible speedup. We generalize the observation from above, now splitting the indices
into m batches, where S1 = {1, m + 1, 2m + 1, . . . }, S2 = {2, m + 2, 2m + 2, . . . }, etc.11

Before starting a loop through the indices i ∈ Sj with 1 ≤ j ≤ m, one now has to compute
[4k]P with k = ∏h/∈Sj

`h. The number and size of these multiplications grows when m
grows, so we can expect that the speedup turns into a slowdown when m is too large.

In order to find the best choice for m, we computed the total number of Montgomery
ladder steps during the computation of one isogeny of each degree in CSIDH-512 for dif-
ferent m, with the assumptions from above. We did not take into account here that when
m grows, we will have to sample more points (which costs at least one Legendre sym-
bol computation each), since this depends on the cost ratio between Montgomery ladder
steps and Legendre symbol computations in the respective implementation. Considering
this potential overhead, Table 4.1 shows that the optimal choice is expected to be in the
range m ∈ {4, 5, 6}.

If we now come back to the choice of points through Elligator, our assumption regard-
ing kernel generator rejections does not hold anymore, and with very high probability, we
will need more than 10 loops per index set. Typically, after 10 loops through each batch the

11Note that in [17] a similar idea is described. However, in their algorithm only two isogeny degrees are
covered in each iteration. Our construction makes use of the fact that we restrict to intervals of non-negative
numbers for sampling the private key elements.
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large degree isogenies will be finished due to their small failure rate of 1/` for an `-isogeny,
while there are some small degree isogenies left to compute. In this case our optimization
backfires, since in this construction the indices of the missing `i will be distributed among
the m different batches. We therefore need large multiplications in order to only check a
few small degrees per batch. Hence, it is beneficial to define a number µ ≥ 10, and merge
the batches after µ steps, i.e., simply going back to Algorithm 2 for the computation of the
remaining isogenies. We dub this construction SIMBA-m-µ.

Sampling private key elements from different intervals. Instead of sampling all private
key elements from the interval [0, 10], and in total computing 10 isogenies of each degree,
one can sample the key elements from different intervals for each isogeny degree, as done
in [61]. For a private key e = (e1, e2, . . . , en), we can choose an interval [0, Bi] for each ei, in
order to e.g. reduce the number of expensive large degree isogenies at the cost of comput-
ing more small degree isogenies. We require ∏i(Bi + 1) ≈ 1174 in order to obtain the same
security level as before. For the security implication of this choice, similar arguments as in
Section 4.3 apply.
Trying to find the optimal parameters Bi leads to a large integer optimization problem,
which is not likely to be solvable exactly. Therefore, we heuristically searched for para-
meters that are likely to improve the performance of CSIDH-512. We present them in
Section 4.5 and Section 4.A.

Note that if we choose B = (B1, . . . , Bn) different from B = (10, 10, . . . , 10), the benefit
of our optimizations above will change accordingly. Therefore, we adapted the parameters
m and µ in our implementation according to the respective choice of B.

Skip point evaluations. As described before, the isogeny algorithms compute the image
curve parameters, and push a point P through the isogeny. However, in the last isogeny
per loop, the latter is unnecessary, since we choose a new point after the isogeny compu-
tation anyway. Therefore, skipping the point evaluation part in these cases saves some
computational effort.

Application to variable-time CSIDH. Note that many of the optimizations from above
are also applicable to variable-time CSIDH-512 implementations as in [114] or [35]. We
could therefore also speed up the respective implementation results using the mentioned
methods.

4.5 Implementation results

We implemented our optimized constant-time algorithm in C, using the implementation
accompanying [114], which is based on the implementation from the original CSIDH pa-
per by Castryck et al. [35]. For example, the implementation of the field arithmetic in
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Table 4.2: Performance of one class group action evaluation in CSIDH-512 with the men-
tioned parameters. All timings were measured on an Intel Core i7-6500 Skylake processor,
averaged over 1 000 runs.

Clock cycles ×106 Wall clock time

314.5 121.3 ms

assembly is the same as in [35]. Our final algorithm, containing all the optimizations from
above, can be found in Section 4.B.

Since we described different optimizations that can influence one another, it is not
straightforward to decide which parameters B, m, and µ to use. Therefore, we tested
various choices and combinations of parameters B, m, and µ, assuming `1 > `2 > · · · >
`n. The parameters and implementation results can be found in Section 4.A. The best
parameters we found are given by

B = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

using SIMBA-5-11, where the key element ei is sampled from [0, Bi]. We do not claim that
these are the best parameters; there might be better choices that we did not consider in our
experiments.

We further tried to rearrange the order of the primes `i in the different loops. As poin-
ted out in [114], it is beneficial to go through the `i in descending order. However, if we
suppress isogeny point evaluations in the last iteration per loop, this means that these
savings refer to small `i, and therefore the impact of this is rather small. Hence, we put
m large primes at the end of the list of primes `i, therefore requiring more computational
effort for point multiplications, which is however in some situations outweighed by the
larger savings from not evaluating points.

In this way, the best combination we found for CSIDH-512 is `1 = 349, `2 = 347, `3 =

337, . . . , `69 = 3, `70 = 587, `71 = 373, `72 = 367, `73 = 359, and `74 = 353, using SIMBA-5-
11 and B from above, where the Bi are reordered accordingly to the `i.

In Table 4.2, we give the cycle count and running time for the implementation using the
parameters from above.12 The code is available at https://github.com/michael-meyer/
phdthesis-code.

To give a comparison that mainly shows the impact of SIMBA and the different choice
of B, we also ran the straightforward implementation according to Algorithm 2 with B =

12Note that this implementation uses the described version of Elligator that is potentially vulnerable to
timing leakage. However, the performance of the Elligator usage from [37] roughly equals the performance
of the version used in [113]. Thus, the impact on the total running times is negligible.

https://github.com/michael-meyer/phdthesis-code
https://github.com/michael-meyer/phdthesis-code
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[10, 10, . . . , 10], also using Elligator. In this case, we measured 621.5 million clock cycles in
the same setting as above.

Compared to the average performance of the variable-time implementation from [114],
the results from Table 4.2 mean a slowdown by a factor of 3.03. However, as mentioned,
also the variable-time implementation can benefit from the optimizations from this chap-
ter.

We emphasize that although our results depend on the CSIDH-512 parameter set, it is
clear that the described optimizations can be easily adapted to other parameter sets and
security levels.

4.6 Conclusion and current state-of-the-art

This chapter presented the first practical constant-time implementation of CSIDH with a
relatively small overhead by a factor of 3.03 compared to the average running time of the
variable-time implementation from [114]. However, despite being efficient, this imple-
mentation is orders of magnitude slower than other quantum-resistant schemes. In order
to further improve the performance of CSIDH, the following extensions of our ideas and
other approaches for constant-time implementations have been published after the pub-
lication of this chapter’s content in [113].

Onuki, Aikawa, Yamazaki, and Takagi [122] show that negative exponents in a CSIDH
constant-time implementation can be allowed in our approach by always keeping an ad-
ditional point, i.e., always having points P+ ∈ E[π − 1] and P− ∈ E[π + 1] available on
the current curve E. This allows to choose the correct point to compute the order-`i ker-
nel generator K via constant-time point swaps prior to computing an `i-isogeny, such that
K ∈ E[π− 1] if the corresponding ei > 0 (resp. fi > 0 for the dummy case), or K ∈ E[π + 1]
if ei < 0 (resp. fi < 0 for the dummy case). This means that we always have to push a
second point through isogenies, which induces computational overhead compared to our
approach. On the other hand, exponents can e.g. be chosen from the intervals [−5, 5] in-
stead of [0, 10], and thus we only have to compute half as many isogenies in total. Overall,
[122] reports a speedup of 29%, using SIMBA and other optimizations from this chapter.

Apart from several speedups as described in Section 3.6, Cervantes-Vázquez, Chenu,
Chi-Domínguez, De Feo, Rodríguez-Henríquez, and Smith [37] propose a dummy-free
variant of the constant-time implementation from [122] that e.g. only allows for even key
elements ei ∈ [−10, 10]. The required |ei| isogenies can then be computed as usual, fol-
lowed by (10 − |ei|)/2 isogenies in both positive and negative direction. Thus, instead
of using dummy isogenies, we compute an equal number of isogenies in both directions,
such that they effectively cancel each other. This allows for an increased side-channel pro-
tection, e.g. against fault attacks. However, it is easy to see that the increased number of
total isogenies leads to a slowdown by a factor of 2 compared to the approach from [122].
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Furthermore, [37] proposes a derandomized version of CSIDH. For this cause, the un-
derlying prime p must be increased such that enough `i are available to cover a keyspace
of size 2256 with exponents in {−1, 0, 1}, resp. {−1, 1} for a dummy-free variant. Then it
suffices to have full order points P+ and P− available in order to compute the class group
action without randomly sampling points. Note that the generation of such points for a
public curve can be combined with the key validation process, see [37].

A different approach on setting up a constant-time CSIDH algorithm has been given
by Chi-Domínguez and Rodríguez-Henríquez [39]. They adapt the notion of optimal
strategies from SIDH, and apply this idea to CSIDH. In particular, during the computa-
tion of the kernel generator, intermediate points can be stored and pushed through the
following isogeny, therefore potentially requiring much smaller multiplications in order
to compute the next kernel generators. Compared to the implementation from [122] us-
ing SIMBA, [39] reports a speedup of 3.3%. A slightly larger speedup has been obtained
by Hutchinson, LeGrow, Koziel, and Azarderakhsh [92] by systematically investigating
optimal SIMBA strategies.

All of the aforementioned implementations use the traditional isogeny formulas for
Montgomery resp. twisted Edwards curves. However, the recent squareroot complexity
formulas [13] can be used to speed up constant-time implementations (see [2]). The same
is true for the deterministic isogenies of small degrees [32, 33], which have not yet been
analyzed in this setting.

While all these implementations are secure against certain side-channel attacks, e.g.
aiming at running time leakage, other approaches such as fault injections have received re-
latively little attention. In the following chapter we describe practical fault attacks against
the implementation from [122] and present countermeasures.
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4.A Detailed implementation results

We tested several parameters in a dynamical implementation, as explained in this chapter.
The setting is the same as in Section 4.5. As parameters B0, . . . , B4 we chose

B0 = [10, 10, 10, . . . , 10],

B1 = [1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12,

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14],

B2 = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13,

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13],

B3 = [2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16],

B4 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 12, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20].

We measured many different combinations with different m and µ in a dynamic version of
our implementation, running SIMBA-m-µ as described above, averaging the running time
over 1000 runs per parameter set, given in 106 clock cycles. For each Bi, we present the
three best combinations we found in Table 4.3.

Table 4.3 does not include speedups from rearranging the order of the primes `i for
the different parameters in order to take advantage of the skipped point evaluations, as
described in Section 4.5. However, all parameter sets seem to benefit equally from this,
which means that the ranking of the parameters from Table 4.3 stays unchanged.

4.B Algorithms

In this section we describe our constant-time algorithm, containing the optimizations from
above. We split the application of SIMBA in two parts: SIMBA-split (Algorithm 3) splits
the isogeny computations in m batches, and SIMBA-merge (Algorithm 4) merges them
after µ rounds.

Algorithm 5 shows the full class group action evaluation. We recommend to addition-
ally analyze our implementation, provided in Section 4.5.
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Table 4.3: Performance of one class group action evaluation in CSIDH-512 with different
combinations of parameters. All timings are given in 106 clock cycles, and were measured
on an Intel Core i7-6500 Skylake processor, averaged over 1000 runs.

B 1st 2nd 3rd

0
µ=10

338.1
µ=10

343.5
µ=11

343.7
m=5 m=6 m=5

1
µ=12

329.3
µ=14

330.6
µ=13

330.8
m=4 m=4 m=4

2
µ=11

326.5
µ=12

327.0
µ=11

327.6
m=5 m=5 m=4

3
µ=16

333.8
µ=17

337.6
µ=16

339.3
m=4 m=4 m=3

4
µ=20

397.5
µ=20

399.0
µ=21

399.5
m=3 m=4 m=3

Algorithm 3: SIMBA-split.
Input : e = (e1, . . . , en), B = (B1, . . . , Bn), m.
Output: ei = (ei

1, . . . , ei
n), f i = ( f i

1, . . . , f i
n), ki for i ∈ {0, . . . , m− 1}.

1 Initialize ei = f i = (0, 0, . . . , 0) and ki = 4 for i ∈ {0, . . . , m− 1}.
2 foreach i ∈ {1, . . . , n} do
3 ei mod m

i ← ei

4 f i mod m
i ← Bi − ei

5 foreach j ∈ {1, . . . , m} do
6 if j 6≡ i mod m then
7 ki ← ki · `i

Algorithm 4: SIMBA-merge.

Input : ei = (ei
1, . . . , ei

n) and f i = ( f i
1, . . . , f i

n) for i ∈ {0, . . . , m− 1}, m.
Output: e = (e1, . . . , en), f = ( f1, . . . , fn), and k.

1 Initialize e = f = (0, 0, . . . , 0), and k = 4.
2 foreach i ∈ {1, . . . , n} do
3 ei ← ei mod m

i
4 fi ← f i mod m

i
5 if ei = 0 and fi = 0 then
6 k← k · `i
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Algorithm 5: Constant-time evaluation of the class group action in CSIDH-512.

Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, a list of integers
(e1, . . . , en) with 0 ≤ ei ≤ Bi for all i ≤ n, B = (B1, . . . , Bn), m, µ.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Run SIMBA-split(e, B, m).
2 foreach i ∈ {1, . . . , µ} do
3 foreach j ∈ {1, . . . , m} do
4 Run Elligator to find a point P, where yP ∈ Fp.
5 P← [k j]P

6 S = {ι | ej
ι 6= 0 or f j

ι 6= 0}
7 foreach ι ∈ S do
8 α = ∏κ∈S,κ>ι `κ

9 K ← [α]P
10 if K 6= ∞ then
11 if ej

ι 6= 0 then
12 Compute a degree `ι isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉:
13 a← a′, P← ϕ(P), ej

ι ← ej
ι − 1.

14 else
15 Compute a degree `ι dummy isogeny:

16 a← a, P← [`ι]P, f j
ι ← f j

ι − 1.

17 if ej
ι = 0 and f j

ι = 0 then
18 Set k j ← k j · `ι.

19 Run SIMBA-merge on inputs ei and f i for i ∈ {0, ..., m− 1}, and m.
20 while some ei 6= 0 or fi 6= 0 do
21 Run Elligator to find a point P, where yP ∈ Fp.
22 Set P = (x : 1), P← [k]P, S = {i | ei 6= 0 or fi 6= 0}.
23 foreach i ∈ S do
24 Let m = ∏j∈S,j<i `i.
25 Set K ← [m]P.
26 if K 6= ∞ then
27 if ei 6= 0 then
28 Compute a degree `i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉:
29 a← a′, P← ϕ(P), ei ← ei − 1.

30 else
31 Compute a degree `i dummy isogeny:
32 a← a, P← [`i]P, fi ← fi − 1.

33 if ei = 0 and fi = 0 then
34 Set k← k · `i.
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Chapter 5

Practical fault injection attacks on
CSIDH

5.1 Introduction

As seen in the previous chapters, isogeny-based cryptography, and in particular SIDH
and CSIDH, are promising candidates for quantum-resistant schemes. However, it seems
that until now, isogeny-based PQC schemes have not received much attention in the im-
plementation attack literature [41]. Only few fault-injection attacks on SIDH and more
general investigations [83, 150, 80] have been discussed and published in the community
so far. In [37] fault-injection attacks on a constant-time implementation of CSIDH have
been discussed. However, all previous publications only consider attacks on a theoretical
level and omit discussing a particular fault model, fault-attack method, and fault-injection
technique. To the best of our knowledge in none of the publications the practical execution
of fault-injection attacks has been investigated. Therefore, this is the first work on prac-
tical evaluations of the feasibility of fault attacks on an implementation of the CSIDH key
exchange protocol.

In this chapter we focus on CSIDH, for which there are currently two proposals to de-
sign constant-time implementations. One approach uses dummy computations to achieve
a running time independent of secret data [113, 122, 37], while the other is dummy-free
[37]. The former approach is believed to be less secure against fault attacks, but is twice as
fast as the latter. In this work we evaluate practical fault attacks on the former approach
and present countermeasures, leading to a relatively small slowdown by a factor of 1.07,
which yields a significantly better performance than the dummy-free alternative.

The contributions of this chapter are as follows: Firstly, we discuss practical attacker
models for fault attacks and side-channel assisted fault attacks on constant-time CSIDH
implementations with dummy isogenies. We then simulate all discussed attack models
and perform practical experiments with low-budget attack equipment, namely a Chip-
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Whisperer-Lite board, which includes a 32-bit ARM Cortex-M4 processor as target core.
Lastly, we practically evaluate the performance of the proposed countermeasures.

We place the code used for this work in the public domain; it is available at https:
//github.com/michael-meyer/phdthesis-code. It includes the CSIDH implementation
with and without countermeasures, the attack-simulation scripts, and attack scripts.

Remark 10. The majority of this work was done prior to the publication of asymptotically
faster isogeny formulas by Bernstein, De Feo, Leroux, and Smith [13]. Some of our coun-
termeasures rely on the structure of the isogeny computations in the implementations of
[37, 113, 122]. Since this is significantly altered in the formulas from [13], it is unclear
whether they can be protected by similar countermeasures. However, for small degrees
the formulas used in this work are still faster, and it is yet unclear for which threshold the
new formulas become faster in a constant-time implementation. Even if there are no sim-
ilar countermeasures for [13], one could design a hybrid implementation, where the small
degrees use protected dummy computations, while the larger degrees use the dummy-free
approach.

Organization. This chapter is structured as follows. Section 5.2 provides details about
isogenies and constant-time implementations of CSIDH. In Section 5.3 we introduce and
discuss the different attack models before providing simulations and practical evaluation
results in Section 5.4 and Section 5.5. Countermeasures against the discussed attacks are
proposed in Section 5.6. Before we conclude the chapter in Section 5.8, we provide per-
formance results of an implementation containing the proposed countermeasures in Sec-
tion 5.7.

5.2 Preliminaries

We briefly review CSIDH and the computation of isogenies, expand upon dummy iso-
genies, and report on existing constant-time implementations of CSIDH.

5.2.1 CSIDH and isogenies

Recall from the previous chapters that in CSIDH, we define a prime of the form p = 4 · `1 ·
· · · · `n − 1, where `1, . . . , `n are small distinct odd primes, and work with supersingular
elliptic curves in Montgomery form Ea : y2 = x3 + ax2 + x over Fp. A private key is
given by a vector of integers (e1, . . . , en), where the entry ei determines that |ei| isogenies
of degree `i have to be computed, and the sign of ei determines if an order-`i point on the
current curve or its twist has to be taken as input. The entries are sampled from a small
interval [−B, B] to obtain an efficient computation. This class group action evaluation thus
takes as input a curve Ea, computes the required chain of isogenies, and outputs a different
curve Ea′ .

https://github.com/michael-meyer/phdthesis-code
https://github.com/michael-meyer/phdthesis-code
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Isogenies. As presented in Chapter 3, an `-isogeny ϕ can be computed as follows. Let
K ∈ E be a point of order ` = 2d + 1, and denote by (Xi : Zi) the projective coordinates of
the point [i]K. Then [45] shows that

ϕ : (X : Z) 7→

X

(
d

∏
i=1

(X− Z)(Xi + Zi) + (X + Z)(Xi − Zi)

)2

:

Z

(
d

∏
i=1

(X− Z)(Xi + Zi)− (X + Z)(Xi − Zi)

)2
 .

(5.1)

The projective codomain curve parameter a′ = (A′ : C′) of Ea′ can be computed by
exploiting the birational equivalence to a twisted Edwards curve [114]

(A′ : C′) =
(

2 ·
(
(A + 2)`π8

+ + (A− 2)`π8
−

)
: (A + 2)`π8

+ − (A− 2)`π8
−

)
, (5.2)

where

π+ =
d

∏
i=1

(Xi + Zi) and π− =
d

∏
i=1

(Xi − Zi).

Dummy isogenies. As suggested in Chapter 4, constant-time algorithms of CSIDH often
use dummy isogenies, since otherwise the running time is correlated to the secret key,
which specifies the number of isogenies to be computed. These dummy computations
perform the same instructions as real isogeny computations, but discard the results. Thus,
they allow for a fixed number of isogeny computations, independent of the respective
private key.

In order to speed up computations, dummy isogenies are designed to compute [`]P for
the input point P. This has to be done, since for a real isogeny of degree `, the order of P
loses the factor ` by being pushed through if the kernel generator K was computed from
P. Therefore, a dummy isogeny would require a subsequent multiplication [`]P, which
is prevented by performing this computation inside the dummy algorithm. To this end,
a dummy isogeny swaps the input points K (kernel generator point) and P (point to be
evaluated), to compute [(` − 1)/2]P in the kernel computation part. Then two further
differential additions suffice to compute [`]P. However, this method requires to perform
these two further additions in a real isogeny as well, and discard their results, in order to
achieve a constant-time behavior.

Figure 5.1 and Figure 5.2 show the different computation blocks that are contained
in the degree ` isogeny algorithm. For real and dummy isogenies, the green blocks are
necessary computations in order to produce a valid output, while the red blocks entirely
consist of dummy computations, whose results are discarded. Note that these figures do
not show conditional swaps, which are necessary to avoid conditional branches based on
the private key. We refer to [113] and the accompanying implementation for more details.
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K, P
compute kernel:

[2]K, ..., [ `−1
2 ]K

compute a′

compute ϕ(P)

compute [`]K

a′

ϕ(P)

Figure 5.1: Real isogeny

K, P
compute kernel:

[2]P, ..., [ `−1
2 ]P

compute a′

compute ϕ(P)

compute [`]P
[`]P

a

Figure 5.2: Dummy isogeny

5.2.2 Constant-time algorithms

As presented in Chapter 4, Meyer, Campos, and Reith (MCR) [113] pointed out that in
addition to the variable number of isogenies, also the sign distribution of the key elements
may leak information through the running time. Thus, they proposed a constant-time
algorithm of CSIDH by using dummy isogenies, and by changing the secret key intervals
from [−B, B]n to [0, 2B]n. As a result, for any secret key the performance is the same as
for the action of the integer vector (2B, . . . , 2B). This cost is about twice as much as that
of the action of (B, . . . , B), which is the worst case in the variable-time algorithm. Further,
they proposed several optimizations, such as the batching technique SIMBA or the usage
of the point sampling method Elligator [15], which was first used in the context of CSIDH
in [17], and obtain a speedup factor of roughly 2.

Onuki, Aikawa, Yamazaki, and Takagi (OAYT) [122] proposed an idea for mitigating
the increase of the computational cost due to the key interval [0, 2B]. By keeping two
points P0 ∈ E[π + 1] and P1 ∈ E[π − 1] in each step in the algorithm, where π denotes
the Frobenius endomorphism, one can compute isogenies for positive signs and negative
signs of a secret key in the same loop. By always choosing the point Ps that suits the sign
of ei for computing the kernel generator of an `i-isogeny, the correlation between running
time and sign distribution is eliminated. Thus, this method allows for the use of the secret
key intervals [−B, B]n, and therefore halves the number of total isogenies at the cost of
an additional point evaluation per isogeny. We describe their approach in Algorithm 6.
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Algorithm 6: Constant-time class group action (OAYT approach)
Input : a ∈ Fp s.t, Ea is supersingular, m ∈N,

(e1, . . . , en) s.t. −m ≤ ei ≤ m for i = 1, . . . , n.
Output: a′ ∈ Fp s.t. Ea′ = (le1

1 · · · l
en
n ) ∗ Ea.

1 Set e′i = m− |ei| for i = 1, . . . , n.
2 while some ei 6= 0 or e′i 6= 0 do
3 Set S = {i | ei 6= 0 or e′i 6= 0}.
4 Set k = ∏i∈S `i.
5 Generate P0 ∈ Ea[π + 1] and P1 ∈ Ea[π − 1] by Elligator.
6 Let P0 ← [(p + 1)/k]P0 and P1 ← [(p + 1)/k]P1.
7 for i ∈ S do
8 Set s the sign bit of ei.
9 Set K = [k/`i]Ps.

10 Let P1−s ← [`i]P1−s.
11 if K 6= ∞ then
12 if ei 6= 0 then
13 Compute ϕ : Ea → Ea′ with ker ϕ = 〈K〉.
14 Let a← a′, P0 ← ϕ(P0), P1 ← ϕ(P1), and ei ← ei − 1 + 2s.
15 else
16 Compute dummy isogeny:
17 Let a← a, Ps ← [`i]Ps, and e′i ← e′i − 1.

18 Let k← k/`i.

19 return A.

Note that, for the sake of simplicity, optimizations such as SIMBA are not described in
Algorithm 6. We refer to [113, 122] for more details.

In [37], Cervantes-Vázquez, Chenu, Chi-Domínguez, De Feo, Rodríguez-Henríquez,
and Smith (CCCDRS) obtained a speedup for the MCR and OAYT implementations by
using twisted Edwards curves. Further, they proposed a dummy-less implementation in
order to improve the resistance against fault attacks, at the cost of a slowdown by a factor
of 2.

5.3 Attacker models

The attacker we are modeling in this work is deploying safe-error analysis to detect the
dummy isogenies within CSIDH, i.e., they inject a single fault during the computation of
the CSIDH group action and observe if an occurring fault impacts the shared secret. An
adversary who can reliably skip or corrupt an isogeny computation of a chosen degree at
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a chosen index can easily recover the full secret key with a relatively small number of fault
injections. However, due to various sources of randomness during the execution, it is im-
possible to always corrupt the intended operation, and without side-channel information
an adversary cannot know which isogeny was affected. Therefore, we propose three dif-
ferent attacker models with increasing capabilities to evaluate the impact of the resulting
attacks.

In general, we assume that an adversary is able to repeatedly trigger an evaluation
of the group action using the same secret key. The input curve may be the same for all
evaluations, but may also be different. As CSIDH allows a static-static key exchange, this
is likely how a key exchange is implemented. The attacker is able to inject faults that
will set variables to random values or skip instructions. An attacker is limited to observe
whether both parties obtained the same shared secret, e.g., by observing failure later in
the protocol. Expressed in a more formal way, this model is the same as the second oracle
from [80]. We propose the following three attackers with increasing capabilities. Attacker
1 and Attacker 2 are limited to fault injection, while Attacker 3 can also obtain additional
side-channel information.

• Attacker 1: Shotgun at the CSIDH. Our weakest adversary model assumes that
the attacker can reliably cause a fault during the computation of the CSIDH group
action, but has no control over the location of the fault. They can then observe how
often this leads to a wrong shared secret. This proportion of failures intuitively is
depending on the ratio of real vs. dummy isogenies. While this is a rather weak
adversary model, it nicely demonstrates the inherent problem of dummy operations
in the context of fault injection attacks.
The main limitation of Attacker 1 is that they have no control over the operation that
is affected. Since the isogeny computations make up about 42% of cycles during the
group action on the Cortex-M4, the attacker is likely to hit an isogeny computation
relatively often. However, they have no knowledge of the order of the faulty isogeny
computation which limits the information they can learn about the secret key.

• Attacker 2: Aiming at isogenies at index i. A slightly more powerful adversary can
target isogeny computations at positions of their choice. This does not fully allow to
target isogenies of a chosen degree, as the isogenies may be evaluated out of order
due to point rejections. However, since the first evaluated isogenies have relatively
large orders `i, and the point rejection probability is 1/`i, the sequence of the first
isogenies is almost deterministic and the individual isogenies can be targeted easily.
We evaluate how many isogenies the adversary can realistically attack in Section 5.4.
For all entries of the secret key with ei = 0, the injected fault will not change the
result, and an adversary immediately knows this part of the secret key. For the re-
maining ei the adversary has reduced the search space.
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• Attacker 3: Aiming at isogeny computations and tracing the order. Our most
powerful attacker model complements Attacker 2 by additionally allowing the ad-
versary to trace the faulty isogeny computation to determine the degree of the iso-
geny that the fault was injected into. Since the isogeny order determines the running
time of the isogeny computation, the order might be recovered from a power trace,
e.g., using Simple Power Analysis [104].

One could imagine yet another adversary who is capable of setting certain ei of the
secret key to a chosen value. A possible attack would be as follows: For each ei try all
possible values and observe for which value the derived shared secret is correct. For the
CSIDH-512 parameters proposed in [122], this would require at most 882 successful fault
injections for fully recovering the secret key. This attack would also apply to dummy-free
implementations like [37]. Note, however, that this adversary is overly powerful espe-
cially when assuming the low-cost fault injection equipment we are targeting in this work.
Therefore, we focus on more realistic fault models for the remainder of this chapter which
can be achieved using relatively cheap clock-glitching equipment.

5.4 Simulation

To gain a better understanding of how many fault injections an adversary would require
to obtain a certain key space reduction or key recovery, we simulate the three previously
defined adversary models and mount practical experiments on them. By using simula-
tions, we can run much more experiments than when running the actual CSIDH imple-
mentation on a microcontroller target that would be suitable for fault injection attacks.

5.4.1 Attack 1

For the simulation of Attack 1, we implemented a Python script that simulates all opera-
tions that are performed within CSIDH-512 in the OAYT implementation. Our approach
works as follows: We use our implemented cost-simulation to output a transcript contain-
ing each point multiplication, isogeny computation, etc., in addition to their cost measured
in Fp-multiplications. We then select a fault position using the strategy corresponding to
the attack model (e.g., a uniformly random number between 0 and the total number of
measured Fp-multiplications for Attacker 1) and determine the impact of a fault occurring
at that position. This script is parameterized by the relative cost of each field operation
over Fp, which we experimentally determine for our target implementation.

In general there can be two outcomes of a simulated fault injection:

• A fault was injected into an operation that was not a dummy operation which will
lead to a wrong shared secret in most cases, which can be observed by the adversary.
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Figure 5.3: Simulation results for Attack 1 using 100 random CSIDH-512 secret keys.
500,000 faults are injected into random operations during the group action.

• A fault was injected into a dummy operation, i.e., there is no change in the shared
secret. This can be considered an ineffective fault.

Note that there are some special cases, where a fault can be injected into a non-dummy
operation, but the resulting shared secret is not influenced by this. Although these cases
are rather rare, our simulation still considers them, in order to give more realistic results.

In Attack 1, the adversary simply observes the percentage of fault injections that yield
a wrong shared secret. This proportion depends on the secret key as it correlates with the
proportion of real versus dummy operations.

Results. We simulated the attack for 100 randomly selected CSIDH-512 keys and per-
formed 500,000 runs with a single fault injection at a random location during the entire
group action per key. Figure 5.3 shows the plot of the probability of an ineffective fault in
relation to the weighted sum of the secret key. As the runtime of an individual isogeny is
linear in its degree, the time spent in `i-isogenies is proportional to |ei| · `i. Therefore, we
compute the weighted sum as ∑ |ei|`i which corresponds to the approximate time spent in
real isogenies. From the simulation, it is easy to see that the probability of seeing a faulty
shared secret is correlated with the secret key. An adversary learning this probability, can
also infer information about the secret key. The more faults are injected, the more evident
this relationship becomes.

Impact. After obtaining the percentage of ineffective faults for a large enough number
of rounds, the attacker now wants to gain information on the used secret key. However,
we provide an example to show that this does not lead to a large reduction of the possible
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key space. Suppose the attacker obtains a percentage that allows them to assume that the
weighted sum of the secret key is less than 24,000. Then, by a Monte Carlo method, we
can estimate that roughly 1% of all the possible CSIDH-512 keys satisfy this condition.
This means that the search space reduces from 2256 to roughly 2249. Since the measured
correlation between the obtained percentage and weighted sum of the key is not even
strong enough to allow for an assumption as in this example, we conclude that this attack
is not able to significantly reduce the respective search space.

5.4.2 Attack 2

In the proposed constant-time implementations based on dummy isogenies (MCR and
OAYT), the calculation for a certain ei from the secret key vector (e1, . . . , en) follows a cer-
tain pattern. In particular, first real and then dummy isogenies are calculated (see lines 12
- 17 in Algorithm 6). Thus, it is sufficient to determine within this calculation sequence
where the first dummy isogeny occurs, in order to obtain the absolute value of each ei.

In Attack 2 and Attack 3, we assume that the attacker knows spots in the isogeny
computation for the respective degree which reveal whether it is a real or dummy isogeny
with a single fault injection. Such critical spots (according to Figure 5.1 and Figure 5.2)
in the code can be empirically determined in advance with manageable effort. In our
experiments, we achieved an accuracy of over 95% with a single fault injection.

Results. For the second attack, it suffices to simply determine up to which isogeny com-
putation the algorithm is likely to be deterministic, i.e., no points are going to be re-
sampled. Since the probability of point rejection for a given degree `i is 1/`i, the sequence
of the first isogeny computations is deterministic with high probability, due to the relat-
ively large degrees. For example, the attacker knows with a probability of 71% that the
first 23 isogeny computations run without point rejection in the OAYT implementation.
This makes it easy to target these first 23 isogenies and find out whether they are real
or dummy computations with relatively few fault attempts. Extending this number of
23 isogenies leads to a quickly increasing probability for point rejections, thus preventing
unambiguous results for later isogenies.

Impact. Assuming that the first 23 isogenies are attacked, the space reduction achieved in
this attack model is from 2256 to 2177 in the best case, where all the respective key elements
are 0, and roughly to 2244 in the average case. For the average case, we assume that 1/11 of
the respective key elements, which lie in the range [−5, 5] resp. [0, 10], are 0. In the worst
case, i.e., none of the respective key elements being 0, the keyspace is reduced to 2253.
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5.4.3 Attack 3

Since in this attack model the attacker is also able to trace the order of the isogeny calcula-
tion, a divide-and-conquer approach provides the most effective strategy.

Results. Both constant-time implementations (MCR and OAYT) use a bound vector B =

(B1, B2, . . . , Bn) defining the intervals from which each secret exponent ei must be sampled.
The number of fault injections required to obtain the absolute value of a certain ei depends
on the corresponding Bi from the bound vector and on the number of attempts needed to
distinguish a real from a dummy isogeny. For each individual degree, the attacker simply
performs a binary search until the calculation of the first dummy isogeny is identified.

For a specific ei, the adversary proceeds as follows. They first attack the dBi/2e-th iso-
geny calculation. If this is a dummy isogeny, they can simply perform a binary search
through the lower half of the list by attacking the dBi/4e-th isogeny, etc., until the pre-
cise position of the first executed dummy isogeny is identified. Likewise, if the dBi/2e-th
calculation is not a dummy isogeny, they can perform a binary search through the upper
half. Thus, for a given secret key the worst-case number of required injections Γ can be
calculated by

Γ =
n

∑
i=1

(dlog2(Bi)e · γi) ,

where γi is the number of necessary injections to identify the type (dummy or real) of a
single `i-isogeny, depending on the practical setup.

Impact. In the case of the MCR implementation with secret key vector entries ei ∈ [0, 10],
this means that at most 296 injections are required in the worst case for a full key recovery,
where we assume the optimal case of γi = 1 for all i. In the case of the OAYT imple-
mentation with secret key vector entries ei ∈ [−5, 5], our strategy requires at most 222
injections,13 but only determines the private key entries up to their sign, and thus leads to
a space reduction to 274 in the worst case and to 267.06 in the average case. The remaining
search complexity can be further reduced to roughly 238 in the worst case resp. 234.5 in the
average case by a meet-in-the-middle approach as follows (see [35]).

Let E be the initial curve and E′ the public key curve. Assume that the attacker knows
the degree `

|e1|
1 · · · · · `|e74|

74 of the secret isogeny, i.e., knows the key up to the signs of
the ei. For simplicity, we assume all the exponents ei are non-zero, so there are 274 pos-
sible keys. Further, we initially consider all ei to be positive. Then the attacker computes
[`s1e1

1 , . . . , `s37e37
37 ] ∗ E for all (s1, . . . , s37) ∈ {−1, 1}37 and stores all the resulting curves. This

costs 237 group action executions and uses storage of 237 Fp-elements. Next, they com-
pute [`−s38e38

38 , . . . , `−s74e74
74 ] ∗ E′ for (s38, . . . , s74) ∈ {−1, 1}37 and check whether the resulting

13For the deviating bound vectors used in the implementations of [113] and [122] the worst-case number of
fault injections is 268 resp. 192.
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curve equals a previously stored curve. If [`s1e1
1 , . . . , `s37e37

37 ] ∗ E = [`−s38e38
38 , . . . , `−s74e74

74 ] ∗ E′

for some choice of the si, then the secret key is given by (s1e1, . . . , s74e74). In the worst case,
this computation costs 2 · 237 group actions and 237 equivalence checks of Fp-elements,
and uses storage of 237 Fp-elements.

5.5 Practical experiments

All our fault-injection experiments were performed on a ChipWhisperer-Lite (CW1173) 32-
bit basic board, which includes a 32-bit STM32F303 ARM Cortex-M4 processor as the tar-
get core. The attacks were implemented in Python (version 3.6.9) using the ChipWhisperer
open source toolchain14 (version 5.1.3). An ARM plain C implementation of CSIDH, based
on the implementation by Onuki, Aikawa, Yamazaki, and Takagi (OAYT) [122], was im-
plemented for our project.

To reduce the time required for all experiments on the target board, we reduced the key
space from 1174 to 32, i.e., our secret consists of two elements in {−1, 0, 1}. Furthermore, in
Attack 1 we only compute isogenies with the smallest degrees (3 and 5). The practical ex-
periments can thus be seen as a simplified demonstration of the feasibility of the described
attacks.

In all implemented attacks, the isogenies are calculated without randomness, i.e., suit-
able points and private keys were precomputed. To require only one CSIDH action call
per experiment, Bob’s public key and the resulting shared secret for Alice’s given pub-
lic key were calculated in advance. Specifically, in all the implemented scenarios Alice’s
computation of the shared secret is attacked.

In our setup the fault is injected by suddenly increasing the clock frequency, hence,
forcing the target core to skip an instruction.

Table 5.1 shows the results for the practical attacks. While the rate for Attack 1 increases
slightly for keys containing more real isogenies, the increase for random-based (without
knowledge of critical points) Attack 2 is much higher. The results for Attack 2 also apply
to Attack 3.

5.6 Countermeasures

We describe countermeasures for the OAYT implementation, but note that this also ap-
plies to MCR, and, with slight modifications, to the CCCDRS implementation containing
dummy computations.

It is evident that Attack 3 is the main threat that should be considered for countermeas-
ures. Thus, we analyze the required countermeasures for the involved dummy computa-
tions during isogenies. However, the simulation of Attack 1 shows that there are other

14https://github.com/newaetech/chipwhisperer, commit 887e6c7

https://github.com/newaetech/chipwhisperer
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Table 5.1: Results for Attack 1 and Attack 2

type key # of trials faulty shared secret

Attack 1

{0,0} 5000 19.8%

{0,1} 5000 27.3%

{-1,1} 5000 32.8%

Attack 2
{0,1} 5000 2.1%

{-1,1} 5000 16.4%

parts of the CSIDH algorithm that could leak some information on the private key, if spe-
cifically attacked as in the Attack 3 model. Therefore, we describe the further required
countermeasures, such that the resulting implementation is secure against leakage in all
three attack models.

A rather simple countermeasure would be to randomize the order in which real and
dummy isogenies for a specific degree are computed, instead of always computing the real
ones first. However, Attacker 3 can still attack this with a slightly larger number of faults,
using a probabilistic method to obtain the key elements. In contrast to this, our idea for
countermeasures against the described fault injection attacks is to redesign the algorithm
such that any fault injection will lead to the output of an error instead of the output curve.
This means that an attacker does no longer see if the injected fault affected a real or a
dummy operation, and is thus effective against all three attack models we described.

A key function that is frequently used is a check for equality. This is performed in
constant time and therefore does not leak any information. The presented countermeas-
ures are designed for our described specific attack model, i.e., the adversary is limited to
injecting exactly one fault, which can either be a random fault or an instruction skip.

5.6.1 Isogenies

In order to reach security against Attack 3, we have to be able to detect faults during the
dummy computations of isogenies. However, we stress that we require a unified isogeny
algorithm, which computes a real isogeny or dummy isogeny of given degree in constant
time, based on a decision bit b ∈ {0, 1}. This means that countermeasures for one of the
two cases must be executed in both cases to maintain the constant-time property. However,
it must be ensured that the verifications only lead to the output of an error in the relevant
case. This is implemented via the function cverify(x, y, b), which always checks whether
x = y via the constant-time check for equality, but only outputs the result if b = 1.

Throughout this section, we assume that the decision bit is set as b = 0 if a dummy
isogeny is to be computed, and b = 1 for the real isogeny case.
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Real isogenies. As depicted in Section 5.2, the two additionally required differential ad-
ditions (DADDs) are the only dummy computations in a real isogeny. Since their output
is discarded, we have to validate that no fault has been injected during their execution.
However, in this case the validation is straightforward. The DADDs are designed to com-
pute K′ = [`]K for an `-isogeny (see Section 5.2). Thus, in real isogenies, the result must be
the point ∞, since K has order `. This means that we can simply call cverify(K′, ∞, b), in
order to perform this validation only in the case of real isogenies.

Dummy isogenies. In dummy isogenies, the dummy computations are given by the
codomain curve computation and the point evaluation, as described in Section 5.2. How-
ever, in this case the involved dummy computations do not allow for an elegant verifica-
tion of point orders or supersingularity as in all the other cases in this section. Instead, we
will make use of a conditional addition function cadd(x, y, b), which outputs x + by, i.e., x
if b = 0 or x + y if b = 1. This function is implemented by first calling a conditional set
function, which takes as input y and b, is initialized by the output value 0, and overwrites
this output by y if b = 1. Note that this function is implemented to run in constant time, in
order to prevent leakage. Then, we call the usual addition function for Fp-elements, and
obtain the desired output in constant time.

While we have to maintain the structure of computations in the case of real isogenies
(i.e., for b = 1), we have to make changes to them in order to obtain verifiable results in the
dummy case (i.e., for b = 0). In order to achieve this in a constant-time manner, we make
use of the conditional add function. Analogously, we define a conditional subtraction
csub(x, y, b), and can compute cadd2(x, y, b) with result bx + by through two calls to the
conditional set function.

Dummy codomain curve computation. Instead of using multiples of the kernel gener-
ator K, dummy isogenies use multiples of the input point Ps. Thus, the output does not
refer to a special type of curve or follow any other special property that can be validated.

Recall that the codomain curve parameters are computed by Equation (5.2). It is evid-
ent that different steps during the computations of A′ and C′ contain similar terms, and
mostly differ in sign changes. Therefore, our strategy to evaluate these computations in
the dummy case is to manipulate some of them with conditional additions, in order to
obtain A′ = C′. To reach this, our algorithm is designed in a way such that a fault injection
in any line of code leads to A′ 6= C′ in the dummy case. On the other hand, it obviously
computes the correct output parameters in the case of real isogenies. Algorithm 7 details
this method. Again we make use of the conditional verify function, to only possibly raise
an error if b = 0.
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Algorithm 7: Protecting the codomain curve computation
Input : Curve parameters A, C ∈ Fp, degree `, kernel points (Xi : Zi) for

1 ≤ i ≤ (`− 1)/2, decision bit b ∈ {0, 1}.
Output: Curve parameters A′, C′ ∈ Fp, error variable error.

1 Set π+ ← 1, π− ← 1.
2 for i ∈ {1, . . . , (`− 1)/2} do
3 t0 ← cadd(Xi, Zi, b) // t0 = Xi | t0 = Xi + Zi

4 t1 ← csub(Xi, Zi, b) // t1 = Xi | t1 = Xi − Zi

5 π+ ← π+ · t0 // π+ = ∏ Xi | π+ = ∏(Xi + Zi)

6 π− ← π− · t1 // π− = ∏ Xi | π− = ∏(Xi − Zi)

7 t0 ← cadd2(C, C, b) // t0 = 0 | t0 = 2C
8 t1 ← (A− t0)` · π8

− // t1 = A` · π8
− | t1 = (A− 2C)` · π8

−
9 t0 ← (A + t0)` · π8

+ // t0 = A` · π8
+ | t0 = (A + 2C)` · π8

+

10 A′ ← cadd(t1, t0, b) // A′ = t1 | A′ = t0 + t1

11 A′ ← cadd(A′, A′, b) // A′ = t1 | A′ = 2(t0 + t1)

12 C′ ← csub(t0, t1, b) // C′ = t0 | C′ = t0 − t1

13 error ← cverify(A′, C′,¬b) // if b = 0: verify that A′ = C′

14 return A′, C′, error.

Dummy point evaluation. Analogously to the codomain curve computation, there is no
possibility to check for the correct executions of this part through point order checks in the
dummy case. Thus, we resort to the same strategy as for the codomain curve computation.

The output points are computed by Equation (5.1). We analogously manipulate the
computations to output values satisfying X′ = Z′ in the dummy case. As above, a fault to
any line of code will result in output values with X′ 6= Z′, and in the real isogeny case, the
original algorithm stays unchanged. This method is detailed in Algorithm 8. Note that we
are required to run this algorithm twice per isogeny, since both points P0 and P1 must be
pushed through an isogeny at each step.

Non-dummy computations. In addition to the faults aiming at dummy computations,
we need to be able to detect faults in non-dummy computations as well, in order to output
an error instead of the output at the end of the algorithm. Otherwise, the attacker could
still observe the difference between these cases.

To this end, we note that the output of an isogeny consists of the codomain curve
parameters and the evaluated points. If a fault is injected during the computation of the
codomain curve, then (with very high probability) the resulting parameters will not refer
to a supersingular curve anymore. This can be deduced from the fact that the probability
of a random parameter a = A/C to define a supersingular curve is roughly 1/

√
p, and

therefore negligible [35]. Thus, the resulting curve at the end of the algorithm will most
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Algorithm 8: Protecting the point evaluation
Input : Input point (X : Z), degree `, kernel points (Xi : Zi) for

1 ≤ i ≤ (`− 1)/2, decision bit b ∈ {0, 1}.
Output: Output point (X′ : Z′), error variable error.

1 t+ ← cadd(X, Z, b) // t+ = X | t+ = X + Z
2 t− ← csub(X, Z, b) // t− = X | t− = X− Z
3 Set πX ← 1, πZ ← 1.
4 for i ∈ {1, . . . , (`− 1)/2} do
5 t0 ← cadd(Xi, Zi, b) // t0 = Xi | t0 = Xi + Zi

6 t1 ← csub(Xi, Zi, b) // t1 = Xi | t1 = Xi − Zi

7 t0 ← t− · t0 // t0 = X · Xi | t0 = (X− Z)(Xi + Zi)

8 t1 ← t+ · t1 // t1 = X · Xi | t1 = (X + Z)(Xi − Zi)

9 t2 ← cadd(t1, t0, b) // t2 = t1 | t2 = t0 + t1

10 t3 ← csub(t0, t1, b) // t3 = t0 | t3 = t0 − t1

11 πX ← πX · t2

12 πZ ← πZ · t3 // if b = 0: πX = πZ

13 X′ ← cadd(¬b, X, b) // X′ = 1 | X′ = X
14 Z′ ← cadd(¬b, Z, b) // Z′ = 1 | Z′ = Z
15 X′ ← X′ · π2

X // X′ = π2
X | X′ = X · π2

X
16 Z′ ← Z′ · π2

Z // Z′ = π2
Z | Z′ = Z · π2

Z
17 error ← cverify(X′, Z′,¬b) // if b = 0: verify that X′ = Z′

18 return X′, Z′, error.

likely not be supersingular. It therefore suffices to perform a single supersingularity check,
e.g. as done in the public key validation in [35], at the end of the algorithm, and output
an error in case of a non-supersingular curve. Instead of using the validation from [35],
we use a different, slightly relaxed approach. We simply sample a random point Q on the
curve, and check that [p + 1]Q = ∞. This method is much faster, but has a small chance to
output false positives, so is not usable as public key validation. However, we heuristically
checked the probability for false positives, and found that in 108 experiments with random
curve parameters, our method and the rigorous verification always produced the same
result. Thus, it seems to be infeasible for an attacker to exploit this relaxed supersingularity
check.

The case of output points will be handled in detail in the following section.

5.6.2 Point orders and scalar multiplications

Scalar multiplications take place in line 6 and 9–10 in Algorithm 6, and are intended to
produce points of the desired orders. If during such a multiplication a fault is injected
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randomly, i.e., not aiming to produce a specific faulty output, then the probability for
still generating a point of desired order is negligible.15 The same is true for faults injected
during the point evaluation of a real isogeny. For detecting such a fault, it therefore suffices
to check if the output point P has the required order ` by verifying that [`]P = ∞.

However, it is not required to perform such a check after each scalar multiplication
resp. isogeny. Indeed, it suffices to check point orders in the two following situations.

• At the end of each run through a batch of isogenies, if all computations are running
correctly, then both points P0 and P1 must be the point at infinity ∞ at the end of
the for-loop in line 7 of Algorithm 6. Thus, if we verify this at the end of each run
through a batch, we are able to detect faults even if the respective faulty point Ps is
not used to generate a kernel input point for an isogeny anymore after the fault is
injected. This ensures the correctness of the scalar multiplications in lines 6 and 10
of Algorithm 6, and of the involved isogeny point evaluations.

• In order to validate the scalar multiplication in line 9 of Algorithm 6, we need to
verify that K indeed has the correct order ` for each isogeny. This is done by calcu-
lating [`]K and verifying that the result equals ∞ for each isogeny. Note that in the
case of real isogenies, a faulty point K leads to wrong results that can be detected
anyway; however, in the dummy case, the input point K is discarded, so this order
check is indeed required. In order to keep our algorithm constant-time, this therefore
has to be done in both cases.

All other scalar multiplications do not require separate order checks, since faults can be
detected by the mentioned verifications.

Remark 11. Theoretically, the attacker could try to inject a fault such that a specific out-
put point is produced, although this is not possible in our attacker model. In particular,
the above verification does not detect a fault, if the order of the output point divides the
desired order. If the attacker produces a point that lies on the same curve as the correct
output point would (i.e., not on its twist), then this does not lead to a wrong computa-
tion, and therefore does not lead to possible leakage. Note that in CSIDH any point K of
order ` on the same curve produces the same `-isogeny codomain curve. It only makes a
difference if K ∈ E[π − 1] or K ∈ E[π + 1].

This also explains a possible attack strategy: The adversary forces the output of a point
on the twist with order dividing the expected order. Thus, the respective isogenies are
computed with the wrong direction in the isogeny graph, which leads to leakage.

However, this is only a theoretical attack. Indeed, the chance for this to happen by ac-
cident is negligible, and to specifically map a point to a point on the twist of the same

15This follows since the required orders are always small, and for each prime factor `i|#E[π − 1] = #E[π +

1] = p + 1, the probability for the order of a random point with x-coordinate in Fp to contain the factor `i is
1− 1/`i.
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order, with an unknown curve, seems infeasible. Even computing such a point with
known curve would require to compute an irrational endomorphism, which, if possible
in general, would completely break CSIDH on its own [36]. Computing small prime or-
der points, thus possibly having an order dividing the expected order, could otherwise be
done through division polynomials. However, as explained above, the attacker does not
know the current curve (except for the starting curve) when injecting a fault, which means
that division polynomials cannot be computed.

However, there is a simple, but rather costly, countermeasure to prevent attacks of this
fashion. It suffices to check if the input kernel generator K lies on the correct curve via a
Legendre symbol computation for each isogeny, and output an error otherwise. Although
this seems not to be necessary for the reasons above, we report on the performance implic-
ations for this in Section 5.7.

5.6.3 Other functions

The CSIDH constant-time algorithms from [113, 122] feature some more functions out-
side of the scope of the analysis above. Compared to isogeny computations and scalar
multiplications, their share of the total running time is small. Nevertheless, we review if
countermeasures against fault injections for these functions are required.

The mentioned functions include the Elligator map [15], a method for efficient point
sampling. For our discussion and in our implementation, we use the projective Ellig-
ator implementation from [37]. Further, the constant-time conditional point swap function
cswap plays an important role in all current constant-time CSIDH implementations, and
we review a method to prevent obvious loop-abort faults.

Apart from these functions, there are different functions such as integer multiplica-
tions. However, we disregard them here, since any fault to these functions is detectable
through our described methods, e.g. through point order checks.

Conditional point swaps. The cswap function takes two Fp-values and a decision bit
b ∈ {0, 1} as input, and swaps the input values if b = 1. However, this is performed in
constant time, independent of the value of b. The swapping of two elliptic curve points
therefore requires two separate executions of cswap for their two coordinates.

If one of these swaps is skipped or subject to a fault injection, this means that the
respective X- and Z-coordinates of the two points no longer fit together as before if b =

1. An attacker could thus distinguish the cases b = 0 and b = 1, and therefore gain
information. An easy mitigation is to replace each such pair of swaps by four swaps, such
that each of them must be correctly executed in order to produce the valid resulting point.
Thus, a fault injection would be detected by the methods from above, at a negligible cost.

Elligator. The Elligator map as used in [37] efficiently samples projective points P0 ∈
Ea[π + 1] and P1 ∈ Ea[π − 1] on the current curve Ea, where the cost is dominated by
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one Legendre symbol calculation. However, if a fault is injected there, we can no longer
guarantee that indeed P0 ∈ Ea[π + 1] and P1 ∈ Ea[π− 1]. Deviating from this would mean
that we compute isogenies with a wrong sign, and therefore obtain a wrong output curve,
which can cause leakage.

We mitigate this by computing the Legendre symbol for both of these output points,
and thereby making sure that P0 ∈ Ea[π + 1] and P1 ∈ Ea[π − 1] is satisfied.

Loop-abort faults. As mentioned in [37] and also applied to SIDH in [83], loop-abort
faults can lead to a stopping of the algorithm, although not all required isogenies have
been computed. In the CSIDH implementation featuring dummy isogenies, this can lead
to leakage, since a correctly established shared secret in this case means that all the skipped
isogenies would have been dummy computations. As usual, this can be prevented by us-
ing multiple counters, in order to make it much harder for the attacker to achieve an un-
detected loop-abort. In the CSIDH implementations from MCR and OAYT, there already
are several counters, so it suffices to compare them before outputting the resulting curve,
and thereby checking if one of them has been manipulated to abort the loop.

Decision bits. In many cases, decision bits must be set, such as b, which decides whether
a real or dummy isogeny must be computed, or a decision bit that decides if P0 or P1 is used
to compute the kernel generator for an isogeny. For our attack models, we could disregard
these parts because of the low computational cost and the attacker’s limited accuracy, but
anyway we provide a simple countermeasure for leakage through an injected fault here.
Since in our model the attacker only performs one fault injection, we can simply compute
the respective bit twice, check if both computations obtained the same result, and output
an error otherwise.

Remark 12. We note that also the dummy-free implementation of [37] offers attack sur-
face; e.g. it is vulnerable to attacks aiming at the cswap function, Elligator, or some of the
decision bit choices, which means that our discussion on these functions also applies to
the dummy-free implementation.

5.7 Performance results

We implemented the countermeasures described in Section 5.6 into the implementation
that was used in Section 5.5 to investigate the performance overhead of the proposed coun-
termeasures. Like most previous work on CSIDH implementations, we entirely focus on
the CSIDH-512 parameter set. The proposed attacks and countermeasures, however, apply
to other parameter sets as well. The code was compiled with arm-none-eabi-gcc16 Version
10.1.0. Table 5.2 contains the performance results without and with the countermeasures

16https://developer.arm.com/

https://developer.arm.com/
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Table 5.2: Performance results for one group action for the CSIDH-512 implementation on
the ARM Cortex-M4 without and with countermeasures (CM). Averaged over 10 evalu-
ations. Countermeasures for the theoretical twist attack are evaluated separately.

STM32F407 (24 MHz) STM32F303 (7.4 MHz)

[clock cycles] [clock cycles]

w/o CM 15 523M 15 721M

w/ CM (w/o twist) 16 322M 16 751M

overhead 804M +5% 1 030M +7%

w/ CM (w/ twist) 20 907M 21 486M

overhead 5 384M +35% 5 765M +37%

implemented. We report cycle counts for both the STM32F303, which is the core on the
32-bit ChipWhisperer Lite, and the STM32F407 which is used in various post-quantum
cryptography implementations in the literature and the benchmarking project PQM4 [97].
Our benchmarking code is primarily based on PQM4 and we follow the common prac-
tice of down-clocking the STM32F407 to 24 MHz to avoid flash wait states impacting the
performance results. We report the average over 10 evaluations of the group action. The
overhead of the presented countermeasures is 5% to 7%, and therefore relatively small
compared to generic countermeasures like duplicating isogeny computations. The cost
for the described twist attack countermeasures is slightly larger, namely 35% to 37% in
total, including all other countermeasures. However, as described above, this attack is
only of theoretical nature, which means that the former implementation suffices in prac-
tice. Note that the implementation of the arithmetic is a portable C implementation that
was not heavily optimized for performance for this platform yet. It is therefore expected
that all implementations can be further improved in terms of speed.

5.8 Conclusion

In this chapter we provided the first practical discussion on fault injection attacks on
CSIDH. We introduced several attack models using low-budget equipment, simulated the
impact of the attacks, and demonstrated the feasibility in a simplified experiment. We
provided countermeasures against the proposed attacks and showed that the correspond-
ing overhead falls well short of the twofold slowdown of dummy-free implementations.

However, there are several other topics to discuss in this context. Firstly, it is not clear
whether similar countermeasures can be applied to the new asymptotically faster isogeny
formulas from [13]. Furthermore, it remains an open task to investigate stronger attack
models and different side-channel attacks.



92 5.8. Conclusion



Chapter 6

Threshold schemes from isogeny
assumptions

6.1 Introduction

Threshold cryptography and secret sharing are large areas of interest in the cryptographic
community since the late 1970s, when Shamir [136] and Blakley [24] published the first se-
cret sharing schemes. In 1989, Desmedt and Frankel [66] constructed a practical threshold
cryptosystem based on Shamir’s secret sharing and ElGamal encryption [73].

The goal of a k-out-of-n, or (k, n)-threshold scheme is to split a secret key into multiple
shares and distribute them among n parties, each party receiving one share. Then, for a
certain threshold k ≤ n, any k collaborating parties must be able to compute the crypto-
graphic operation, e.g. decrypt or sign, without learning the secret key, while any set of
less than k parties must be unable to do so.

After the publication of Desmedt and Frankel’s scheme, several other threshold proto-
cols were proposed; among others, a threshold variant of ElGamal signatures by Harn [90],
a threshold DSA scheme by Gennaro, Jarecki, Krawczyk, and Rabin [85], and Desmedt and
Frankel’s and Shoup’s threshold RSA signature schemes [67, 138]. More recently, applic-
ations of threshold schemes in the context of blockchains and cryptocurrencies led to a
renewed interest in threshold ECDSA schemes [70, 84].

However, all of these schemes are either based on discrete logarithm or integer fac-
torization problems, and are thus not quantum-resistant, since they fall prey to Shor’s
algorithm [137]. Only very recently, Cozzo and Smart [53] reviewed the post-quantum sig-
nature schemes that entered the second round of the NIST PQC standardization process
[121] for threshold variants. Their main observation is that only the multivariate-based
schemes LUOV [20] and Rainbow [69] allow for a natural threshold construction.

Another popular family of post-quantum schemes is provided by isogeny-based cryp-
tography [94, 93]. While this family is not represented in the NIST PQC track for signa-
tures, isogeny-based signatures have recently attracted much attention [59, 64, 19]. In this
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chapter we introduce the first isogeny-based threshold encryption and signature schemes,
based on Shamir’s secret sharing.

Our schemes are simple adaptations of Desmedt and Frankel’s and related schemes
to the Hard Homogeneous Spaces (HHS) framework. This framework was introduced by
Couveignes [51], to generalize both discrete logarithm and isogeny-based schemes. En-
cryption schemes for HHS were first proposed by Couveignes [51] and Rostovtsev and
Stolbunov [133], then improved by De Feo, Kieffer and Smith [61], and eventually led to
the development of CSIDH by Castryck, Lange, Martindale, Panny, and Renes [35].

The possibility of signature schemes based on HHS was first suggested by Couvei-
gnes [51] and Stolbunov [145, 146], although no instantiation was known until recently,
when Beullens, Kleinjung, and Vercauteren introduced CSI-FiSh [19]. Before that, an al-
ternative signature scheme based on a weaker notion of HHS, named SeaSign, was presen-
ted by De Feo and Galbraith [59].

Our Contributions. We introduce threshold variants of the Couveignes-Rostovtsev-Stol-
bunov encryption and signature schemes, based on Shamir’s secret sharing. To make
the results more easily accessible to non-experts, we first present our schemes in an ab-
stract way, using the language of HHS, and only later we analyze their instantiation using
CSIDH / CSI-FiSh.

The encryption scheme is a direct adaptation of [66]; the signature scheme is similar to
threshold versions of Schnorr signatures [134]. Both schemes can only be proven secure in
a honest-but-curious security model [28]; we skip the easy proof for the encryption scheme,
and we focus on the more technical one for the signature scheme, which we prove secure
in a static corruptions model, under a generalization of the Decision Diffie-Hellman Group
Action (DDHA) assumption of Stolbunov.

We conclude with an analysis of the instantiations of the schemes based on isogeny
graphs, in particular on the supersingular isogeny graphs used in CSIDH and CSI-FiSh.

We view this work as an initial step towards practical threshold schemes based on
HHS and isogenies. Several technical improvements, such as better security properties
and proofs, are necessary before these protocols can be considered truly practical. We
discuss these issues at the end of this chapter.

Organization. Section 6.2 recalls basic facts on secret sharing, threshold cryptography,
and HHS. Section 6.3 then introduces threshold encryption and signature schemes based
on HHS, and reviews their security features. In Section 6.4 we give details about the in-
stantiation of these threshold schemes using isogeny graphs. In Section 6.5 we conclude
by summarizing open problems towards practical applications of our schemes, and review
follow-up work that was published after the publication of this chapter’s material in [63].
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6.2 Preliminaries

We briefly recall two fundamental constructions in group-theoretic cryptography. The
first, Shamir’s secret sharing [136], lets a dealer split a secret s into n shares, so that any k
shares are sufficient to reconstruct s; it is a basic primitive upon which several threshold
protocols can be built.

The second, Couveignes’ Hard Homogeneous Spaces (HHS) [51], is a general framework
that abstracts some isogeny protocols, and that eventually inspired CSIDH [35]. Although
most popular isogeny-based primitives are not, strictly speaking, instances of HHS, the
protocols introduced in this work require an instance of an HHS in the strictest sense, and
will thus be presented using that formalism.

6.2.1 Shamir’s secret sharing & threshold cryptosystems

Shamir’s scheme relies on polynomial interpolation to construct a k-out-of-n threshold
secret sharing, for any pair of integers k ≤ n.

Concretely, a prime q > n is chosen, and the secret s is sampled from Z/qZ. To break
the secret into shares, the dealer samples random coefficients c1, . . . , ck−1 ∈ Z/qZ and
forms the polynomial

f (x) = s +
k−1

∑
i=1

cixi;

then they form the shares s1 = f (1), . . . , sn = f (n) and distribute them to the n partici-
pants, denoted by P1, . . . ,Pn. We shall call i the identifier of a participant Pi, and si their
share.

Any k participants, but no less, can reconstruct f using Lagrange’s interpolation for-
mula, and then recover s by evaluating f at 0. Explicitly, a set of participants Pi, with
indices taken from a set S ⊂ {1, . . . , n} of cardinality at least k, can recover the secret s in a
single step through the formula

s = f (0) = ∑
i∈S

f (i) ·∏
j∈S
j 6=i

j
j− i

.

Shamir’s secret sharing enjoys perfect or information theoretic security, meaning that less
than k shares provide no information on the secret. Indeed, assuming that k − 1 parti-
cipants, w.l.o.g. P1, . . . ,Pk−1, put their shares together, the map

(s, c1, . . . , ck−1) 7→
(

f (0), f (1), . . . , f (k− 1)
)

is, by Lagrange’s formula, an isomorphism of (Z/qZ)-vector spaces; hence, each tuple(
s = f (0), f (1), . . . , f (k− 1)

)
is equally likely to occur.
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Threshold schemes. A major step towards practical threshold schemes based on Sha-
mir’s secret sharing was Desmedt and Frankel’s threshold variant of ElGamal decryp-
tion [66]; a similar approach to design threshold signatures was proposed by Harn [90].
Many other threshold protocols follow a similar pattern, colloquially referred to as secret
sharing in the exponents, that we are now going to briefly recall.

Let the secret s ∈ Z/qZ and the shares si be distributed as above. Let G be a cyclic
group of order q, and let g be a generator. Assuming that discrete logarithms are hard in
G, the participants’ goal is to compute the shared key gs without letting anyone learn the
secret s. We can again use Lagrange interpolation, but this time in the exponent:

gs = g∑ si ∏ j
j−i .

To make this idea into a protocol, each party computes gsi from its share si, and sends
it to all other parties. Given at least k shares si of the key with i ∈ S and #S ≥ k, any party
can then compute the shared key as

gs = ∏
i∈S

(gsi)LS
0,i ,

where the exponents

LS
l,i = ∏

j∈S
j 6=i

j− l
j− i

mod q (6.1)

can be precomputed from public information.
If broadcasting the shares gsi to all participants is too expensive, an alternative is to

send them to a central combiner, who is then in charge of computing gs and finalizing the
protocol. As we shall see later, this flexibility will be lost in our setting.

Secret sharing in rings. The proof of perfect security of Shamir’s secret sharing scheme
fundamentally relies on Z/qZ being a field. For reasons that will become apparent later,
we shall need to adapt the scheme to non-prime q, and thus to general rings of modular
integers. This presents two problems: ensuring that no impossible inversions happen
when computing the coefficients LS

l,i in Equation (6.1), and proving security in the more
general setting. These obstacles are not difficult to overcome, as already highlighted in,
e.g., RSA-based threshold schemes [138]; we briefly explain how this is done.

Impossible inversions arise during the reconstruction of the shared secret whenever one
of the denominators (j − i) in Lagrange’s formula is not coprime to q. If q1 is the smal-
lest prime factor of q, then there can be at most q1 distinct values modulo q1; however,
any identifier i congruent to 0 modulo q1 must be prescribed, since otherwise f (i) mod q1

would leak information on s mod q1. Hence, at most q1 − 1 participants can take part to
Shamir’s scheme in Z/qZ; for example, using 1, 2, . . . , q1− 1 as identifiers ensures that no
difference of two of them shares a common factor with q.
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Perfect security of the scheme is also achieved by restricting the identifiers to 1, 2, . . . ,
q1 − 1, or any other set of integers distinct and non-zero modulo all divisors of q, thus
restricting the number of participants to n < q1. We formally prove this below.

Proposition 5. Let q be an integer with prime factorization q = ∏ qei
i . Assume q1 is the smallest

of the prime factors, let k ≤ n < q1, and sample s, c1, . . . , ck−1 ∈ Z/qZ uniformly at random. Let

f (x) = s +
k−1

∑
i=1

cixi

and let x1, . . . xk−1 ∈ Z/qZ be distinct and non-zero modulo all qi. Associate a random variable
S to s, and random variables Yi to each f (xi).

The random variables S, Y1, . . . Yk−1 are independent; in particular Shamir’s (k, n)-secret shar-
ing scheme over Z/qZ is perfectly secure, in the sense that, given the shares f (x1), . . . , f (xk−1),
every secret s is equally likely to have originated them.

Proof. Consider the map

ρ : (s, c1, . . . , ck−1) 7→
(

f (0), f (x1), . . . , f (xk−1)
)
;

since all xi mod qj are distinct and non-zero, its reduction modulo qj is an isomorphism of
Z/qjZ-vector spaces; thus, by the Chinese Remainder Theorem, ρ is an isomorphism of
Z/qZ-modules.

Introducing random variables Y0 for f (0) and Ci for the ci’s, we have that

P{Y0 = f (0), Y1 = f (x1), . . . , Yk−1 = f (xk−1)}
= P{S = s, C1 = c1, . . . , Ck−1 = ck−1} = q−k,

from which we deduce that P{Yi = f (xi)} = q−1. In particular, since s = f (0),

P{S = s, Y1 = f (x1), . . . , Yk−1 = f (xk−1)}
= P{S = s} · P{Y1 = f (x1)} · · · P{Yk−1 = f (xk−1)}

for any s, f (x1), . . . , f (xk−1), implying that S and the Yi’s are independent.

6.2.2 Hard homogeneous spaces

Hard Homogeneous Spaces (HHS) were introduced by Couveignes in [51] as a general-
ization of Diffie-Hellman schemes. A principal homogeneous space, or G-torsor is a set E
endowed with a faithful and transitive group action by a group G.17 In other words, it is
defined by a mapping

G × E → E ,

g ∗ E = E′,

satisfying the following properties:
17The reader will excuse our extravagant font choices for set and group elements: our goal is to be consistent

with the notation used in Section 6.4 for isogeny-based HHS.
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• Compatibility: g′ ∗ (g ∗ E) = (g′g) ∗ E for any g, g′ ∈ G and E ∈ E ;

• Identity: e ∗ E = E if and only if e ∈ G is the identity element;

• Transitivity: for any E, E′ ∈ E there exists a unique g ∈ G such that g ∗ E = E′;

In particular, if G is finite, these axioms imply that #G = #E .
Couveignes defines a HHS as a finite principal homogeneous space with some ad-

ditional algorithmic properties. He requires that the following problems can be solved
efficiently (e.g., in polynomial time):

• Group operations: decide whether a string g represents an element of G, decide whe-
ther g = g′, compute g−1 and gg′;

• Sampling: sample uniformly random elements from G;

• Membership: decide whether a string E represents an element of E , decide whether
E = E′;

• Action: Given g and E, compute g ∗ E.

Furthermore, the following problems should be hard (e.g., not known to be solvable in
polynomial time):

• Vectorization: Given E, E′ ∈ E , find g ∈ G such that g ∗ E = E′;

• Parallelization: Given E, E′, F ∈ E , such that E′ = g ∗ E, find F′ = g ∗ F.

As a simple example, let E be a group of prime order q, then G = (Z/qZ)× acts on
E \ {1} by a ∗ g = ga. In this case, the Vectorization problem is the discrete logarithm prob-
lem in E , and the Parallelization problem is the Computational Diffie–Hellman problem.
Hence any discrete logarithm group is also a HHS.

Couveignes’ original proposal used as HHS sets of ordinary elliptic curves over finite
fields, with complex multiplication by a quadratic imaginary order O; indeed, these are
torsors for the class group cl(O), and the Vectorization and Parallelization problems are
not known to be easily solvable. Based on this HHS, he defined key exchange as a straight-
forward generalization of the Diffie-Hellman protocol, and he also sketched an interactive
identification scheme.

However, Couveignes’ proposal presents several difficulties, as neither the group ac-
tion nor random sampling are known to be easily computable. Independently from Cou-
veignes, Rostovtsev and Stolbunov [133, 145] proposed a key exchange scheme based on
the same group action, but with a different representation of elements of cl(O). This pro-
posal had the benefit of making key exchange feasible, if not practical, and subsequent
research [61] eventually led to the development of CSIDH [35], an efficient key exchange
scheme based on the action of a quadratic class group on a set of supersingular curves.
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Nevertheless, none of these constructions satisfies exactly the axioms of a HHS, since,
for example, the cost of evaluating g ∗ E in CSIDH is in the worst case exponential in
the size of g. While every group element has an equivalent representation that permits
to efficiently evaluate the action, computing such a representation is difficult in general.
This is not a problem for key-exchange schemes based on CSIDH, but, for example, it
makes identification and signature schemes more involved and less efficient than what
Couveignes had originally envisioned [59, 64].

The roadblock in all these constructions is the fact that the structure of the class group
cl(O) is unknown, and it is thus impossible to have a unique representation for its ele-
ments. The best algorithm for computing the class group structure runs in sub-exponential
time, and is thus neither practical nor scalable; nevertheless the application to isogeny-
based signatures motivated Beullens, Kleinjung, and Vercauteren [19] to run an intensive
computation for the CSIDH-512 parameter set, which allowed them to construct CSI-FiSh,
an efficient isogeny-based signature scheme.

Currently, CSI-FiSh is the only known instance of HHS based on isogenies: group ele-
ments have unique representation, the group action can be evaluated efficiently, and the
Vectorization and Parallelization problems are believed to be hard, both classically and
quantumly. Unfortunately, parameter generation requires exponential time in the security
parameter, thus CSI-FiSh is a HHS only in a practical sense for a specific security level, but
not in the asymptotic sense.

In the next sections we are going to introduce threshold schemes based on HHS; then
we will give more details on CSI-FiSh, and look at how the threshold schemes can be
instantiated with it.

6.3 Threshold schemes from HHS

We now present threshold schemes based on Hard Homogeneous Spaces.
Let a group G and a set E be given, such that G acts faithfully and transitively on E

and the HHS axioms are satisfied. We are going to require an additional property: that an
element g ∈ G of order q is known, and we shall write q1 for the smallest prime divisor of
q. In particular, these hypotheses imply that there is an efficiently computable embedding
Z/qZ ↪→ G defined by a 7→ ga, which we are going to exploit to embed Shamir’s secret
sharing in the HHS.

Notation. From now on we will use capital letters E, F, . . . to denote elements of the HHS
E , and gothic letters a, b, g, . . . to denote elements of the group G. Following [19], it will be
convenient to see Z/qZ as acting directly on E : we will write [a]for ga, and [a]E for ga ∗ E,
where g is the distinguished element of order q in G.18 Be wary that under this notation
[a][b]E = [a + b]E.

18Note that this action is only transitive if g generates G.
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Remark 13. The additional hypothesis excludes, in particular, HHS of unknown order,
such as CSIDH (outside of the parameter set shared with CSI-FiSh).

Note that, assuming the factorization of q is known, given any element of G it is easy
to test whether it is of order q. Nevertheless, in some instances it may be difficult to decide
whether an element g′ ∈ G belongs to 〈g〉; this may happen, for example, if G ' (Z/qZ)2.
This will not impact the protocols we define here, but is an important property to consider
when designing threshold protocols in the general HHS setting. At any rate, for instanti-
ations based on CSI-FiSh it is always easy to test membership of 〈g〉.

On the other hand, unless G = 〈g〉, it is a well known hard problem (exponential in
log q) to decide whether given E, E′ ∈ E there exists a ∈ Z/qZ such that E′ = [a]E. Indeed,
a generic solution to this problem would imply an efficient generic algorithm for solving
many instances of discrete logarithms [35].

We now describe a distributed algorithm to compute the group action of 〈g〉 on E in a
threshold manner, and explain how it impacts the communication structure of threshold
protocols. Then we present two simple threshold protocols, a KEM and a signature, dir-
ectly adapted from their non-threshold counterparts.

6.3.1 Threshold group action

Like in Section 6.2, we assume that the participants P1,P2, . . . possess shares si = f (i) of
a secret s ∈ Z/qZ; their goal is to evaluate the group action [s]E0 for any given E0 ∈ E ,
without communicating their shares si.

Let S ⊂ {1, . . . , n} be a set of cardinality at least k, and recall the definition of the
Lagrange coefficients in Equation (6.1):

LS
l,i = ∏

j∈S
j 6=i

j− l
j− i

mod q.

Then the participants Pi for i ∈ S determine the shared secret by s = ∑i∈S si · LS
0,i. For the

sake of simplicity, we will assume that S = {1, . . . , k}.
The participants coordinate as follows. First, E0 is sent to P1, who starts by computing

E1 =
[
s1 · LS

0,1

]
E0.

The resulting E1 is passed on to P2, who continues by computing

E2 =
[
s2 · LS

0,2

]
E1 =

[
s2 · LS

0,2 + s1 · LS
0,1

]
E0.

This procedure repeats analogously for the partiesP3, . . . ,Pk−1, and at lastPk can compute

Ek =
[
sk · LS

0,k

]
Ek−1 =

[
∑
i∈S

si · LS
0,i

]
E0 = [s]E0.
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Algorithm 9: Threshold variant of the group action computation.
Input : E0 ∈ E , set of participants S.
Output: [s]E0.

1 Set E← E0.
2 foreach i ∈ S do
3 If E /∈ E , participant Pi outputs ⊥ and the algorithm stops.

4 Participant Pi outputs E←
[
si · LS

0,i

]
E.

5 return E.

Communication structure. Comparing the algorithm to classical threshold Diffie-Hell-
man protocols as in Section 6.2.1, it is obvious that there are differences in their structures.
There, each party Pi computes gi = gsi from its secret share si and a common generator g.

Anyone can then compute g
LS

0,i
i for each i ∈ S, and multiply the results to obtain gs.

In our HHS setting, the situation is different. First,
[
si · LS

0,i

]
E cannot be computed

from the knowledge of [si]E and LS
0,i, thus only Pi can compute it. Consequently, each

participant has to know in advance the set S of parties taking part to the computation, in
order to apply LS

0,i.
Further, it is not possible to introduce a combiner, who could proceed as in the classical

case by receiving the different
[
si · LS

0,i

]
E0 and combining them to obtain [s]E0, since in

general the set E is not equipped with a compatible group operation E ×E → E . Therefore,
it is necessary to adopt a sequential round-robin communication structure:

E0,S−→ P1
E1,S−→ P2

E2,S−→ . . .
Ek−1,S−→ Pk

[s]E0−→ .

Note that the order of the Pi can be changed without affecting the final result.
However, this means that Pk is the only party who ends up knowing the result of

the group action. If a cryptographic protocol needs to handle this element secretly, our
algorithm is only suitable for situations where only one participant is required to know
the secret result. Algorithm 9 summarizes the described approach in the general case.

In a different setting where all participants are required to secretly know the final res-
ult, several modifications are possible. For example, when encrypted channels between
the participants exist, the last participant can simply distribute through them the resulting
[s]E0.

Alternatively, k parallel executions of Algorithm 9, each arranging the participants in
a different order, let all participants know the final result. The cost of this modification is
rather high: O(k2) elements of E need to be transmitted, and O(k2) group actions evalu-
ated. This can be improved to O(k log k) transmitted elements of E (but still O(k2) group
actions) using a binary splitting strategy.
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Remark 14. Algorithm 9 does nothing to prevent corrupted participants from leading to
an incorrect output. While threshold schemes based on discrete logarithms can often de-
tect and correct malicious behavior (using, e.g., error correcting codes [85]), this is more
difficult for HHS. Indeed, there seems to be no way for a participant to verify the previous
participant’s output in Algorithm 9, outside of generic zero-knowledge techniques.

6.3.2 Threshold HHS ElGamal decryption

The first application we present for our threshold group action is threshold decryption, a
direct adaptation of [66].

Inspired by the classical ElGamal encryption scheme [73], a PKE protocol in the HHS
settings was first introduced by Stolbunov [133, 145, 146]. We briefly recall it here, using
the terminology of KEMs.

Public parameters: A HHS (E ,G), a starting element E0 ∈ E , and a hash function H from
E to {0, 1}λ.

Keygen: Sample a secret key a ∈ G, output a and the public key Ea = a ∗ E0.

Encaps: Sample b ∈ G, output K = H(b ∗ Ea) and Eb = b ∗ E0.

Decaps: Given Eb, if Eb ∈ E output K = H(a ∗ Eb), otherwise output ⊥.

The Decaps routine is easily adapted into a threshold algorithm requiring k parti-
cipants to collaborate in order to recover the decryption key K. This also requires modi-
fying Keygen, which must now be executed by a trusted dealer and integrate Shamir’s
secret sharing.

Public parameters: A HHS (E ,G) with a distinguished element g ∈ G of order q, a starting
element E0 ∈ E , and a hash function H from E to {0, 1}λ.

Keygen:

• Sample a secret s ∈ Z/qZ and generate shares si ∈ Z/qZ using Shamir’s secret
sharing;

• Distribute privately si to participant Pi;

• Output public key Ea = [s]E0.

Encaps: Sample b ∈ G, output K = H(b ∗ Ea) and Eb = b ∗ E0.

Decaps: Given Eb and a set S of participants, #S ≥ k, run Algorithm 9 to compute E =

[s]Eb; output ⊥ if the algorithm returns ⊥, otherwise output K = H(E).
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The asymmetry of the scheme will not be lost on the reader: while the shared secret for
the threshold group is restricted to be in 〈g〉, there are no restrictions for Encaps. Although
it would be completely possible (maybe even desirable for practical reasons) to restrict
secrets to 〈g〉 also in the encapsulation, we do not do so because there is no known way
for decapsulation to test whether Eb has been generated this way.

It is clear that this scheme achieves the stated goal of threshold decryption: upon re-
ceiving a ciphertext, at least k participants must agree to decrypt in order to recover the
key K; only the last participant in the chain learns K. If less than k participants agree to
decrypt, the key K cannot be recovered; however this security property is only guaranteed
when all participants behave honestly.

When allowing for corruptions, the scheme immediately becomes broken. Indeed in
Algorithm 9, when a participant beyond the first receives an input, they are unable to
link it to the ciphertext Eb. This makes it possible to trick an unwilling participant P into
helping decrypt a message: let c be such a message, a group of k− 1 participants only has
to wait for a message c′ that P is willing to decrypt; when P agrees, they submit to it an
intermediate value of a computation for c, which P is unable to distinguish from one for c′.
Contrast this to the original ElGamal threshold decryption of Desmedt and Frankel [66],
where each participant performs its computation directly on the input.

Because of this, the security of the protocol can only be proven in a honest-but-curious
model. We skip the easy security proof, and leave the search for more refined threshold
decryption protocols for future work.

6.3.3 Threshold signatures

An identification scheme in the HHS framework was first sketched by Couveignes [51];
in his PhD thesis [146] Stolbunov also suggested applying the Fiat-Shamir transform [76]
to it to obtain a signature scheme. Nevertheless these schemes stood out of reach until
recently, when the class group computation for CSIDH-512 was completed [19]; CSI-FiSh is
effectively Stolbunov’s scheme, combined with optimizations introduced in SeaSign [59].

CSI-FiSh and its ancestors can be easily adapted into threshold protocols. We start
by recalling the basic interactive zero-knowledge identification scheme: a prover Peggy
wants to convince a verifier Vic that she knows a secret element a ∈ G such that Ea = a∗E0.
They proceed as follows:

• Peggy samples a random b ∈ G and commits to Eb = b ∗ E0.

• Vic challenges with a random bit c ∈ {0, 1}.

• If c = 0, Peggy replies with z = b; otherwise she replies with z = ba−1.

• If c = 0, Vic verifies that z ∗ E0 = Eb; otherwise, he verifies that z ∗ Ea = Eb.
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It is immediately seen that the scheme is correct, thanks to the properties of homogen-
eous spaces, and that it has soundness 1/2. For the zero-knowledge property, it is crucial
that elements in G can be sampled uniformly, and that they have unique representation.
See [146, 59, 19] for detailed proofs.

We now adapt this scheme into a threshold signature by applying the Fiat-Shamir
transform and Shamir’s secret sharing as before.

We let again (E ,G) be a HHS with a distinguished element g of order q, we fix a start-
ing element E0 ∈ E , and a hash function H : {0, 1}∗ → {0, 1}λ. We assume that a trusted
dealer has sampled a random secret s ∈ Z/qZ, securely distributed shares si to the parti-
cipants Pi, and published the public key Es = [s]E0.

Here is a sketch of how participants P1, . . . ,Pk can cooperate to sign a message m:

• In the commitment phase, the participants collaborate to produce a random element
[b]E0 in a way similar to Algorithm 9, by producing each a random value bi ∈ Z/qZ

and evaluating Ei = [bi]Ei−1.

• Once Ek = [b]E0 is computed, the challenge bit c is obtained from the hash H(Ek, m).

• If c = 0, each Pi outputs zi = bi, else each Pi outputs zi = bi − si · LS
0,i.

• The signature is (c, z = ∑ zi).

To verify the signature it suffices to check that H([z]E0, m) = 0 . . . , if c = 0, or that
H([z]Es, m) = 1 . . . , if c = 1. Of course, this sketch must be repeated λ times, in order
to ensure the appropriate level of security.

The complete signing algorithm is summarized in Algorithm 10. As presented there, it
is rather inefficient in terms of signature size and signing/verification time. However, all
the key/signature size compromises presented in CSI-FiSh [19] are compatible with our
threshold adaptation, and would produce a more efficient signature scheme. The details
are left to the reader.

Security analysis

We conclude with a study of the security of the threshold signature scheme. Like the other
schemes presented here, it is only secure against (static) honest-but-curious adversaries;
however the security proof is more technical, and we give it in more detail. Since our
threshold signature has the same public key and produces the same signatures as the
Stolbunov/CSI-FiSh non-threshold scheme, we are able to use Gennaro et al.’s security
model [85], with the appropriate modifications to handle a trusted dealer. In a nutshell,
security in this model is proven by showing that the transcript of the threshold protocol
can be simulated given only the signature, even in presence of up to k− 1 corrupted par-
ticipants; then, security follows from the unforgeability of the non-threshold signature
scheme. We start with a brief description of the model.
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Algorithm 10: Threshold HHS signature.
Input : Message m, participant set S.
Output: A signature on m.

1 Set (E0
1, . . . , E0

λ)← (E0, . . . , E0).
2 Let k← 0.
3 foreach i ∈ S do
4 Let k← k + 1.
5 foreach 1 ≤ j ≤ λ do
6 If Ej /∈ E , participant Pi outputs ⊥ and aborts the protocol.
7 Pi samples bi,j ∈ Z/qZ uniformly at random.
8 Pi outputs Ek

j ←
[
bi,j
]
Ek−1

j .

9 Let c1 · · · cλ ← H(Ek
1, . . . , Ek

λ, m).
10 foreach i ∈ S do
11 foreach 1 ≤ j ≤ λ do
12 if cj = 0 then
13 Pi outputs zi,j = bi,j.

14 else
15 Pi outputs zi,j = bi,j − si · LS

0,i.

16 foreach 1 ≤ j ≤ λ do
17 Let zj = ∑i∈S zi,j.

18 return the signature (c1 · · · cλ, z1, . . . , zλ).

Communication model. We assume the n parties P1, . . . ,Pn have access to a broadcast
channel they use to exchange messages when executing the signature protocol. On top of
that, each participant has access to a private channel with the trusted dealer T , that they
use to receive the secret shares.

The adversary. We consider a static honest-but-curious adversary, i.e., one that chooses up
to k− 1 players to corrupt at the beginning of the unforgeability game, and then observes
all their communications, including the secret shares received from the dealer; other than
that, all parties strictly follow the protocol. In the literature, this type of adversary is often
also called semi-honest or passive.

The view of an adversary is the probability distribution on the transcript of all the in-
formation seen by it during the protocol execution: this includes secret shares, the message
m to sign, the messages received from other parties, and the resulting signature.
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Unforgeability. A threshold signature scheme is unforgeable if no polynomial-time ad-
versary A can produce a signature for a previously unsigned message m, given the view
of A for adaptively chosen messages m1, ..., mQ. This definition is analogous to the usual
notion of UF-CMA. In other words, this means that A does not learn enough information
from transcripts of protocol executions to forge a valid signature.

Simulatability. Gennaro et al. proved that a threshold signature scheme is unforgeable
if the underlying signature scheme is, and the threshold scheme is simulatable. This is
defined as there being a polynomial-time simulator S that takes as input a message m, the
public key Es, a valid signature on m, and the shares of the corrupted participants, and
outputs transcripts that are computationally indistinguishable from the view of the ad-
versary. Intuitively, this means that the adversary gains no more information from seeing
the transcript, than from the signature alone.

The trusted dealer. Unlike the threshold scheme of Gennaro et al., our signature scheme
does not feature a distributed key generation. We thus adopt a hybrid model, where the
generation of the trusted shares is modeled by an ideal functionality FT , that executes
Shamir’s secret sharing, publishes the public key, and distributes the secret shares to each
participant through the private channel.

In particular, the adversary is not able to tamper with FT , and the distinguisher has
no knowledge of the master secret generated by it.

We will prove simulatability under a new assumption that we call Power-DDHA. This
decision version of the Scalar-HHS problem of Felderhoff [75] is a generalization of the
Decision Diffie–Hellman Group Action (DDHA) introduced by Stolbunov [145], and is
related to the P-DDH assumption introduced by Kiltz for discrete logarithm groups [100].

Problem 1 (Power-DDHA problem). Let (E ,G) be a HHS. Let E ∈ E and 1 < a < #G
an integer; let s be a uniformly random element in G. The a-Power-DDHA problem is: given
(a, E, s ∗ E, F), where F ∈ E is an element, either sampled from the uniform distribution on E , or
F = sa ∗ E, decide from which distribution F is drawn.

Remark 15. The special case of (−1)-Power-DDHA where the HHS is instantiated with
a graph of Fp-isomorphism classes of supersingular curves, and E is the special curve
E : y2 = x3 + x, is known to be solvable efficiently. Other “special” curves in the graph
also enjoy this property, see [36].

This obstacle is easy, but tedious, to circumvent in the proof of the next theorem. We
leave the details to the reader.

Felderhoff proved that the search version of Power-DDHA (Scalar-HHS) is equivalent
to Parallelization whenever the order of G is known and odd [75]. We also recall the formal
definition of the Vectorization problem, also known as Group Action Inverse Problem [145].
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Problem 2 (GAIP). Let (E ,G) be a HHS, let E, F be uniformly random elements of E . The Group
Action Inverse Problem asks to compute a ∈ G such that E = a ∗ F.

It is clear that GAIP is harder than Power-DDHA: given a GAIP solver one can simply
apply it to (E, s ∗ E), and then use the answer to solve Power-DDHA.

Theorem 5. Under the Power-DDHA assumption, the signature scheme of Algorithm 10 is sim-
ulatable.

Stolbunov’s signature scheme is proven secure in the ROM under GAIP (see [146, 59,
19]); since GAIP is harder than Power-DDHA, we immediately get the following theorem.

Corollary 1. Under the Power-DDHA assumption, the signature scheme of Algorithm 10 is un-
forgeable, when the hash function H is modeled as a random oracle.

Proof of Theorem 5. Observe that the public key Es = [s]E0 uniquely determines s; but
that, together with the k − 1 corrupted shares, uniquely determines the polynomial f in
Shamir’s secret sharing, and thus all other shares. We shall denote by s1, . . . , sn these
uniquely determined shares, note however that the simulator only knows the corrupted
ones.

Let (c1 · · · cλ, z1, . . . , zλ) be a signature, and let S be the set of k signers (who signs
a given message is decided by the adversary). To simulate a transcript, the simulator
draws integers zi1,j, . . . , zik−1,j ∈ Z/qZ at random, for any 1 ≤ j ≤ λ, and sets zik ,j =

zj − zi1,j − · · · − zik−1,j. Since zj is uniformly distributed, it is clear all zi,j also are. These
values make the second part of the transcript (lines 12–15 in Algorithm 10).

To complete the transcript, the simulator now needs to output commitments Eki
j (line

8), where for each i ∈ S we denote by 1 ≤ ki < k the position of i in S. We start with the
case where S contains only one uncorrupted participant, which can be simulated perfectly.

If cj = 0 the simulator simply sets

Eki
j =

[
bk1,j + bk2,j + · · ·+ bki ,j

]
E0 =

[
zk1,j + zk2,j + · · ·+ zki ,j

]
E0,

as in Algorithm 10. If cj = 1, define the sequence

E0
s = E0,

Eki
s =

[
si · LS

0,i

]
Eki−1

s ,

so that Es = Ek
s . The simulator can compute all curves Eki

s as follows: assume the uncor-
rupted participant Pi is in position ki in S, for any k′ < ki it computes Ek′

s directly:

Ek′
s =

[
∑

i∈S,ki≤k′
si · LS

0,i

]
E0,

whereas for all k′ ≥ ki it computes it backwards from Es:

Ek′
s =

[
∑

i∈S,ki>k′
−si · LS

0,i

]
Es.
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E0 E1
s E2

s Es

E1
j

E2
j

E3
j

• •

•

s1LS
0,1 s2LS

0,2 −s3LS
0,3

b1

b2

b3

z1 z1

z2

z1

z2

z3

Figure 6.1: Recomputation of Eki
j given zi,j.

Then, the commitments are computed as

Eki
j =

[
zk1,j + zk2,j + · · ·+ zki ,j

]
Eki

s ,

which is immediately seen as being the same as in Algorithm 10, thanks to bi,j = zi,j +

si · LS
0,i. An example of this computation where participants P1 and P3 are corrupted and

participant P2 is not is pictured in Figure 6.1.
Because all the choices are uniquely determined once the values zi,j have been chosen,

it is clear that this transcript is perfectly indistinguishable from a real one, even for a com-
putationally unbounded distinguisher.

We are left with the case where the set S contains more than one uncorrupted parti-
cipant; in this case, we will resort to random sampling. For simplicity, we will assume that
sets S are always sorted in increasing order, so that the relative order of the participants’
actions does not change from one signature to another.

Like above, we start one direct chain from E0, and one backwards from Es; both chains
stop when they encounter an uncorrupted participant Pi. Now, let Eki−1

s be the last curve
in the direct chain, we set the next curve Eki

s = [ri]E0, where ri is sampled uniformly from
Z/qZ. We also store ri in association with S, and keep it for reuse the next time the
adversary queries for the set S.

We continue the direct chain from Eki
s , either using the knowledge of si · LS

0,i for corrup-
ted participants, or sampling a random ri for uncorrupted ones; we stop when we meet
the backwards chain. An example of this process is pictured below:

E0 E1
s E2

s E3
s E4

s Es
r1 s2LS

0,2 r3 r4 s4LS
0,4

we write in bold data that is obtained through random sampling; the value r4 is implicitly
determined by the other four values. After we have determined this data, we compute the
Eki

j ’s and complete the transcript as before.



Chapter 6. Threshold schemes from isogeny assumptions 109

Now, this transcript is no longer indistinguishable from the real view of the adver-
sary, however we argue that it still is computationally indistinguishable assuming Power-
DDHA. Indeed, when cj = 1, the distinguisher is able to recover Eki

s from Eki
j as Eki

s =[
−zk1,j − zk2,j − · · · − zki ,j

]
Eki

j . This means that the distinguisher will collect many pairs of

the form
(

E,
[
si · LS

0,i

]
E
)

(in queries wherePi is the only uncorrupted participant in S), and

many others of the form (E′, [ri]E′) (where the expected relation would be
(

E′,
[
si · LS′

0,i

]
E′
)

instead). In general, it will be the case that E′ = [b]E for some b ∈ Z/qZ not necessar-
ily known to the distinguisher; however, by subtracting known factors coming from cor-
rupted players, the distinguisher can reduce to a distinguishing problem between tuples
([∑ s′i]E0, [∑ s′iai]E0) and ([∑ s′i]E0, [r]E0), where the s′i are unknowns related to uncorrup-
ted shares si, the ai are known (and possibly 0), and r is random. This is an instance of a
problem more general than Power-DDHA, and is thus at least as hard as Power-DDHA.

Hence, assuming Power-DDHA is hard, no polynomial time algorithm can distinguish
between the simulated transcript and the real interaction, thus proving that the threshold
scheme is simulatable.

Remark 16. It is evident from the proof that the security of the (n, n)-threshold signature
scheme can be proven without assuming Power-DDHA. The appearance of this surprising
assumption seems an artifact related to the limitations of the HHS framework; indeed,
the analogous scheme based on discrete logarithms can be proven as hard as standard
Schnorr signatures without additional assumptions [144]. We hope that further research
will improve the state of security proofs for HHS threshold schemes.

Remark 17. Although our scheme is unforgeable in a (static) honest-but-curious model,
it is obviously non-robust: any participant can lead to an invalid signature without being
detected. Robustness can be added using generic zero-knowledge techniques, however it
would be interesting to achieve it in a more efficient bespoke fashion.

Another desirable improvement would be to prove security in a stronger adaptive cor-
ruptions model, where the adversary can query the signing oracle before choosing which
participants to corrupt.

6.4 Instantiations based on isogeny graphs

We now describe an instantiation of the previous schemes based on a principal homogen-
eous space of supersingular elliptic curves defined over a finite field Fp. To this end, we
recall the description of CSIDH from Section 2.4.3, put in the context of HHS.

It was first observed by Delfs and Galbraith [65] that the set of all supersingular curves
defined over a prime field Fp partitions into one or two levels, each level being a prin-
cipal homogeneous space for the class group of an order of the quadratic imaginary field
Q(
√−p), in a way analogous to the well known theory of complex multiplication.
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These principal homogeneous spaces were first used for a cryptographic purpose in
CSIDH [35], however only the precomputation performed recently by Beullens et al. for
the signature scheme CSI-FiSh [19] permits to turn one of these into a true HHS.

We now briefly recall some key facts on CSIDH and CSI-FiSh, before turning to the
instantiation of our threshold schemes.

6.4.1 Supersingular complex multiplication

From now on we let p be a prime, Fp the field with p elements, and Fp an algebraic closure.
An elliptic curve E defined over Fp is said to be supersingular if and only if #E(Fp) = p+ 1.
It is well known that there are approximately p/12 isomorphism classes of supersingular
curves, all defined over Fp2 ; of these, O(

√
p) are defined over Fp.

Let E be a supersingular curve defined over Fp, an endomorphism is an isogeny from E
to itself, and it is said to be defined over Fp (or Fp-rational) if it commutes with the Frobenius
endomorphism π. The Fp-rational endomorphisms of E form a ring, denoted by EndFp(E),
isomorphic to an order19 of Q(

√−p); more precisely, it is isomorphic to either Z[
√−p] or

Z[(
√−p + 1)/2]. LetO be such an order, the class group cl(O) is the quotient of the group

of invertible ideals of O by the group of its principal ideals; it is a finite abelian group.
The set of all supersingular curves with EndFp(E) isomorphic to a given order O ⊂

Q(
√−p) is called the horizontal isogeny class associated to O. A straightforward extension

to the theory of complex multiplication states that the horizontal isogeny class of O, up to
Fp-isomorphism, is a principal homogeneous space for cl(O). To make this into a HHS,
an efficient (e.g., polynomial in log(p)) algorithm to evaluate the action of cl(O) is needed.
This is where isogenies play an important role. Fix an isomorphism EndFp(E) ' O, for
any invertible ideal a, the action a ∗ E can be computed as follows: first define the a-torsion
subgroup of E as

E[a] = {P ∈ E(Fp) | α(P) = 0 for all α ∈ a},

this is a finite subgroup of E, and it is stabilized by the Frobenius endomorphism π; then
the unique isogeny ϕ : E → E/〈E[a]〉 with kernel E[a] is such that a ∗ E = E/〈E[a]〉. It
follows that, if a and b are two ideals in the same class, i.e., such that a = (α) · b for some
element α ∈ O, then E/〈E[a]〉 ' E/〈E[b]〉.

The curve E/〈E[a]〉 can be efficiently computed using an isogeny evaluation algo-
rithm [152, 74], however the complexity of this operation is polynomial in the degree of
the isogeny, or, equivalently, in the norm N(a) = #(O/a). This implies that the action
of an element a ∈ cl(O) can only be efficiently computed when a representative of small
norm of a is known, or, more generally, when a decomposition

a = ∏
i
li

with all li of small norm is known.
19In this context, an order is a Z-module isomorphic to Z⊕ωZ ' Z[ω] for some ω /∈ Q.
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Now, for any prime `, the ideal (`) ⊂ O is either prime, or it splits into a product of
two (possibly equal) conjugate prime ideals ll̄ = (`) of norm `. In the former case, there
are no invertible ideals of norm ` in O; in the latter, l and l̄ are the only ideals of norm `,
and they are the inverse of one another in cl(O). Asymptotically, about 50% of the primes
` split, thus we may hope to form a basis of generators of cl(O) of norms bounded by
polylog(p), such that any element of cl(O) can be represented as a product of polylog(p)
elements of the basis.20

This representation for the elements of cl(O) using a smooth basis is at the heart of
the Couveignes–Rostovtsev–Stolbunov key exchange scheme, and of CSIDH. However,
having a smooth basis may not be enough: to have a HHS, one still needs to be able to
rewrite any element of cl(O) as a compact product of smooth elements. This is the key
difference between CSIDH and CSI-FiSh, as we shall see next.

6.4.2 CSIDH and CSI-FiSh

CSIDH was designed to make evaluating the group action of cl(O) as efficient as possible.
To this end, a prime p of the form

p + 1 = 4
n

∏
i=1

`i

is selected, where `1, . . . , `n−1 are the first n− 1 odd primes, and `n is chosen so to make p
prime. This choice guarantees several desirable properties:

• The curve E : y2 = x3 + x has Fp-rational endomorphism ring isomorphic to Z[π],
where π =

√−p is the image of the Frobenius endomorphism of E;

• All curves in the horizontal isogeny class of Z[π] can be written in the form y2 =

x3 + Ax2 + x, and the coefficient A uniquely characterizes the Fp-isomorphism class;

• All `i split in Z[π] as (`i) = li l̄i = 〈`i, π − 1〉 · 〈`i, π + 1〉;

• For any curve E, the li-torsion subgroup is easily found as E[li] = E[`i] ∩ E(Fp).

The first two properties ensure that supersingular isomorphism classes are easy to con-
struct and represent uniquely, the third guarantees21 that a number exponential in n of
ideal classes of Z[π] can be efficiently represented and its action evaluated, the fourth
enables some important optimizations for computing isogenies of degree `i.

In CSIDH and optimized variants [114, 113, 122, 37], all ideal classes are implicitly
represented as products

a =
n

∏
i=1

lei
i ,

20Jao, Miller and Venkatesan [95] showed that it is indeed possible to bound the norms by O(log2(p)),
assuming the Generalized Riemann Hypothesis.

21This guarantee is only heuristic: it is possible, although unlikely, that all li have small order in cl(Z[π]),
and thus generate a small subgroup.
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with the exponents ei in some box [−Bi, Bi] (negative exponents are interpreted as powers
of l̄i). Explicitly, the representation of an ideal class a is simply the vector of exponents
(e1, . . . , en). The action of such ideals can be evaluated in time poly(Bi, ei, n) using isogeny
formulas.

In practice, a single parameter set has been fully specified for CSIDH, corresponding
to the NIST post-quantum level 1.22 The set has n = 74, `73 = 373, and `74 = 587, yielding
a prime p of approximately 512 bits; we shall refer to it as CSIDH-512. Protocols based
on CSIDH-512 usually sample exponents in a box [−5, 5], which heuristically covers al-
most all the class group, and which permits to evaluate one class group action in under
30ms [114].

However, based on this data only, CSIDH is not a HHS. Indeed, all axioms of an HHS
are satisfied but two: it is not possible to efficiently evaluate the action of any element of
cl(Z[π]), and it is not always possible to test equality of two elements of cl(Z[π]). Take
for example the exponent vector (2128, 0, . . . , 0), corresponding to the ideal a = 〈3, π −
1〉2128

; this is a valid element of cl(Z[π]), however without further knowledge its action
can only be evaluated through 2128 isogeny evaluations. Hopefully, a has an equivalent
representation on the basis l1, . . . , ln with much smaller exponents, however we have no
way to compute it and, even if we were given it, we could not test their equality.

These problems go away once we have computed the group structure of cl(Z[π]).
More precisely, we need to know the relation lattice of l1, . . . , ln, i.e., the lattice

Λ =

{
(e1, . . . , en)

∣∣∣∣∣ n

∏
i=0

lei
i = 1

}
,

which yields a representation of the class group as cl(Z[π]) ' Zn/Λ. Now, equality of
two exponent vectors e, f can be tested by checking that e − f ∈ Λ, and any exponent
vector e can be evaluated efficiently by finding an (approximate) closest vector f ∈ Λ and
evaluating e− f instead.

Neither computing the relation lattice, nor computing a good reduced basis for it are
easy tasks: the former requires subexponential time in log(p), and the latter exponential
time in n.23 Nevertheless, the computation for the CSIDH-512 parameter set happens to
be just within reach of contemporary computers, as proven by Beullens et al. [19]: they
managed to compute the structure of the class group, which happens to be cyclic of order

#cl(Z[π]) = 3 · 37 · 1407181 · 51593604295295867744293584889 ·
31599414504681995853008278745587832204909 ≈ 2257.136,

(6.2)

and a BKZ-reduced basis for the relation lattice. In particular, they found out that the ideal
l1 = 〈3, π − 1〉 generates cl(Z[π]).

22NIST defines the security of level 1 as being equivalent to AES-128.
23Using a quantum computer, the relation lattice can be computed in polynomial time, however lattice

reduction still requires exponential time.
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Thanks to CSI-FiSh, we thus dispose of a HHS with quantum security estimated at the
NIST-1 security level, although scaling to higher security levels currently looks problem-
atic.

6.4.3 Instantiation of the threshold schemes

Given the CSI-FiSh data, we can now instantiate our threshold schemes. However, it is
evident by Equation (6.2) that the full group 〈l1〉 = cl(Z[π]) is not suitable for them,
because the smallest prime factor of its order is 3, thus limiting the schemes to just 2 par-
ticipants. We may instead choose as generator l31, which limits the schemes to 36 parti-
cipants, or l111

1 , allowing more than a million participants.24

Efficiency. The performance of our schemes can be readily inferred from that of the CSI-
FiSh signature scheme.

To evaluate the action of an ideal in cl(Z[π]), CSI-FiSh first solves an approximate
closest vector problem using Babai’s nearest plane algorithm [5], and an algorithm by
Doulgerakis, Laarhoven, and de Weger [71]; then uses the isogeny evaluation algorithm
of CSIDH. The average cost for one evaluation is reported to be 135.3 · 106 cycles (40–50ms
on a commercial CPU), which is only 15% slower than the original CSIDH evaluation.25

In the encryption scheme, each participant computes exactly one class group action.
Since the participants must do their computations sequentially, the total time for decryp-
tion is multiplied by the number of participants; the time for encryption, on the other hand,
is unaffected by the number of participants, indeed the threshold nature of the protocol is
transparent to the user.

In the signature scheme, using the optimization described in [19], depending on the
choice of parameters each participant computes between 6 and 56 group actions. Since
the group action largely dominates the cost of the whole signing algorithm, we can expect
to complete a (k, n)-threshold signature in approximately k · t · 135.3 · 106 cycles, where
6 ≤ t ≤ 56. However, the t group actions by each participant are independent and can
be computed in parallel; since the round-robin evaluation in the threshold scheme leaves
plenty of idle cycles for participants while they wait for other participants’ results, by
carefully staggering the threshold group evaluations the k participants can evaluate the t
group actions with the same efficiency as the non-threshold scheme, as long as k ≤ t. Ac-
cording to [19, Tables 3,4], this would provide, for example, quantum-resistant threshold
signatures for up to 16 participants in under 1 second, with public keys of 4 KB and signa-

24An alternative way to allow up to 36 participants is to use the action of cl(Z[(π + 1)/2]) on the horizontal
isogeny class of y2 = x3 − x: the class group is 3 times smaller than cl(Z[π]), and still generated by 〈3, π− 1〉.
Because the two class group actions are compatible, the CSI-FiSh data can easily be repurposed for this variant
without additional computations. This approach is detailed in [32].

25Benchmarks in [19] are based on the original CSIDH implementation [35]. A speed-up of roughly 30% is
to be expected using the techniques in [114].
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ture size of only 560 B. Another example are 1880 B signatures with public key size of 128
B and k up to 56 in under 3 seconds; other interesting compromises are possible. These
numbers compare favorably to other post-quantum threshold signatures that are expec-
ted to run in seconds [53], and may be especially interesting for side-channel protected
implementations of CSI-FiSh.

Attacks. The security of the threshold schemes is essentially the same as that of the ori-
ginal single-participant signature and encryption schemes.

The fact that secrets are sampled in a subgroup of cl(Z[π]) of index 3 or 111 has a
minor impact on security, as cryptanalyses can exploit this information to speed up their
searches.

In the classical setting, the best algorithm for both Vectorization and Parallelization
is a random-walk approach [65] that finds a path between two supersingular curves in
O(
√

#cl(Z[π])) = O( 4
√

p). If, like in our case, we restrict to a vertex set that is x times
smaller, the random walk algorithm will find a collision approximately

√
x times faster.

Hence, we expect a loss in classical security of less than 4 bits.26

Note that this gain is optimal: if an algorithm could solve the Vectorization problem
in a subgroup of size N/x more than O(

√
x) times faster, then by a divide and conquer

approach the Vectorization problem in the full group of size N could be solved in less than
O(
√

N) operations.
A similar gain can also be obtained in the best quantum algorithm for solving the

Vectorization problem [107, 106, 130]. However, since its complexity is sub-exponential,
the final gain is even less than 4 bits. The exact quantum security of CSIDH and CSI-FiSh
is currently debated [35, 17, 21, 25, 124], nevertheless whatever the final consensus turns
out to be, the quantum security of our threshold schemes will be extremely close to it.

6.5 Conclusion and current state-of-the-art

We introduced threshold variants of encryption and signature schemes based on Hard
Homogeneous Spaces, and efficient quantum-safe instantiations thereof based on isogeny
graphs of supersingular curves (CSIDH).

Our schemes are similar to well known Diffie–Hellman-style threshold schemes, how-
ever they are sharply different in the communication structure: whereas classical schemes
have participants output messages in parallel with little coordination, our schemes impose
a strictly sequential round-robin message passing style. Apparently, this limitation trickles
down, negatively affecting many aspects: security properties, security proofs, efficiency.

In our ElGamal-style decryption algorithm, only one participant learns the cleartext,
and we are only able to prove security in a honest-but-curious setting. While the commu-

26In reality, it is well known that the size of the search space can also be reduced by 3 in the original CSIDH,
by walking to the surface. Thus, the only reduction in security comes from the factor of 37.
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nication structure is slightly less problematic for the signature scheme, its security too can
only be proven in a honest-but-curious setting with static corruptions. Interesting questions
for future research are efficient protocols where all participants learn the cleartext, or with
stronger security properties, such as the ability to detect malicious participants.

Finally, the instantiation of our schemes is limited by the feasibility of parameter gen-
eration: to the present date the only available parameter set is the CSIDH-512 HHS, as
computed by Beullens et al. Higher security levels would require extremely intensive
computations that are currently out of reach.

Follow-up work. In [54] Cozzo and Smart propose Sashimi, an alternative threshold sig-
nature scheme based on HHS. Instead of using Shamir secret sharing, they utilize replic-
ated secret sharing, and achieve active security via zero-knowledge proofs. However, this
leads to a much slower performance; in particular, [54] reports running times of roughly
5 minutes per party in the case of a threshold scheme instantiation using CSI-FiSh and
CSIDH-512. Cozzo and Smart also define an actively secure distributed key generation
(DKG) protocol which is not robust, however.

This is mitigated by Beullens, Disson, Pedersen, and Vercauteren [18]. They propose
CSI-RAShi, a robust and actively secure DKG protocol in the context of HHS using Shamir
secret sharing. In particular, they propose replacements for components of the discrete
logarithm-based DKG from Gennaro et al. [86] that do not generalize to the HHS setting;
for example, Beullens et al. introduce the piecewise verifiable proofs primitive, which is used
to replace the Pedersen commitments [123] from the DKG of [86]. The resulting DKG runs
in roughly 4.5 + 18n seconds when instantiated with CSIDH-512, where n is the number
of participants.
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Chapter 7

Searching parameters for B-SIDH and
SQISign

7.1 Introduction

In this chapter we study the problem of finding twin smooth integers, i.e., finding two
consecutive integers of a given size, m and m + 1, whose product is as smooth as possible.
Though the literature on the role of smooth numbers in computational number theory and
cryptography is vast (see for example the surveys by Pomerance [128] and Granville [88]),
the problem of finding consecutive smooth integers of cryptographic size has only been
motivated very recently: optimal instantiations of the key exchange scheme B-SIDH [44]
and the digital signature scheme SQISign [62] require a large prime that lies between two
smooth integers, and this is a special case of the twin smooth problem in which 2m + 1 is
prime.

This chapter presents a sieving algorithm for finding twin smooth integers that im-
proves on the methods used in [44] and [62]. The high-level idea is to use two monic
polynomials of degree n that split in Z[x] and that differ by a constant, i.e.,

a(x) =
n

∏
i=1

(x− ai) and b(x) =
n

∏
i=1

(x− bi), (7.1)

where a(x)− b(x) = C for C ∈ Z. Whenever ` ∈ Z such that a(`) ≡ b(`) ≡ 0 mod C, it
follows that the integers a(`)/C and b(`)/C differ by 1.

Assume that |`| � |ai| and |`| � |bi| for 1 ≤ i ≤ n, and fix a smoothness bound
B. Rather than directly searching for two consecutive B-smooth integers m and m + 1,
roughly of size N, the search instead becomes one of finding a value of ` such that the 2n
(not necessarily distinct) integers

`− a1, . . . , `− an, `− b1, . . . , `− bn, (7.2)

each of size roughly N1/n, are B-smooth. For n > 1, and under rather mild heuristics,
the probability of finding twin smooth integers in this fashion is significantly greater than

117
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the searches used in [44] and [62]. Put another way, the same computational resources
are likely to succeed in finding twin smooth integers subject to an appreciably smaller
smoothness bound.

To search for ` ≈ N1/n such that the 2n integers in (7.2) are B-smooth, we adopt the
simple sieve of Eratosthenes as described by Crandall and Pomerance [55, §3.2.5]; this
identifies all of the B-smooth numbers in an arbitrary interval. If w is the largest difference
among the 2n integers in {ai} ∪ {bi}, then a sliding window of size |w| can be used to
scan the given interval for simultaneous smoothness among the integers in (7.2). This
approach has a number of benefits. Firstly, smooth numbers in a given interval can be
recognized once-and-for-all, meaning we can combine arbitrarily many solutions to (7.1)
into one scan of the interval. Secondly, different processors can scan disjoint intervals
in parallel, and each of the interval sizes can be tailored to the available memory of the
processor. Finally, the simple sieve we use to identify the smooth numbers in an interval
(which is the bottleneck of the overall procedure) is open to a range of modifications and
improvements – see Section 7.7.

The approach in this paper hinges on being able to find solutions to (7.1). Such solu-
tions are related to a classic problem in Diophantine Analysis.

7.1.1 The Prouhet-Tarry-Escott problem

The Prouhet-Tarry-Escott (PTE) problem of size n and degree k asks to find two distinct
multisets of integers {a1, . . . , an} and {b1, . . . , bn} for which

a1 + · · ·+ an = b1 + · · ·+ bn,

a2
1 + · · ·+ a2

n = b2
1 + · · ·+ b2

n,
...

...
...

ak
1 + · · ·+ ak

n = bk
1 + · · ·+ bk

n.

The most interesting case is k = n− 1, which is maximal (see Section 7.3), and such ideal
solutions immediately satisfy (7.1). For example, when n = 4, the sets {0, 4, 7, 11} and
{1, 2, 9, 10} are such that

0 + 4 + 7 + 11 = 1 + 2 + 9 + 10 = 22,

02 + 42 + 72 + 112 = 12 + 22 + 92 + 102 = 186,

03 + 43 + 73 + 113 = 13 + 23 + 93 + 103 = 1738,

from which it follows (see Proposition 6) that

a(x) = x(x− 4)(x− 7)(x− 11) and b(x) = (x− 1)(x− 2)(x− 9)(x− 10)

differ by a constant C ∈ Z. Indeed, a(x)− b(x) = −180.



Chapter 7. Searching parameters for B-SIDH and SQISign 119

Origins of the PTE problem are found in the 18th century works of Euler and Goldbach,
and it remains an active area of investigation [27, 26, 30]. In 1935, Wright [154] conjectured
that ideal solutions to the PTE problem should exist for all n, but at present this conjecture
is open: for n = 11 and for n ≥ 13, no ideal solutions to the PTE problem have been found,
see [26, p. 94] and [30, p. 73]. However, Borwein states that “heuristic arguments suggest
that Wright’s conjecture should be false. [...] It is intriguing, however, that ideal solutions
exist for as many n as they do” [26, p. 87].

The PTE solutions that are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12} are a nice fit for
our purposes. If we were to fix a smoothness bound, B, and then search for the largest
pair of consecutive B-smooth integers we could find, having PTE solutions for n as large
as possible would be helpful. But for our cryptographic applications (see Section 7.1.3),
we will instead fix a target range for our twin smooth integers to match a given security
level, and then aim to find the smoothest twins within that range. In this case, the degree
n of a(x) and b(x) cannot be too large, since a larger n means fewer ` ∈ Z to search
over. Ideally, n needs to be large enough such that the splitting of a(x) and b(x) into
n linear factors helps with the smoothness probability, but small enough so that we still
have ample ` ∈ Z to find a(`) and b(`) such that

(i) a(`) ≡ b(`) ≡ 0 mod C,

(ii) (m, m + 1) = (b(`)/C, a(`)/C) are B-smooth, and (optionally)

(iii) 2m + 1 is prime.

It turns out that those n ≤ 12 for which PTE solutions are known are the sweet spot for our
target applications, where 2240 ≤ m ≤ 2512.

7.1.2 Prior methods of finding twin smooth integers

After defining twin smooth integers for concreteness, we recall previous methods used to
find large twin smooth integers.

Definition 11 (Twin smooth integers). For a given B > 1, we call (m, m + 1) with m ∈ Z

a pair of twin B-smooth integers or B-smooth twins if m · (m + 1) contains no prime factor
larger than B.

As Lehmer notes in [109], consecutive pairs of smooth integers have occurred in 18th
century works and have been mentioned by Gauss in the context of computing logarithms
of integers.

Hildebrand [91, Corollary 2] has shown that there are infinitely many pairs of consecut-
ive smooth integers (m, m + 1), however this result notably holds for a smoothness bound
that depends on m. More precisely, there are infinitely many such pairs of mε-smooth in-
tegers for any fixed ε > 0. An analogous result holds for tuples of k consecutive smooth
integers (for any k), as shown by Balog and Wooley [6].
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For a fixed, constant smoothness bound B, the picture is different. A theorem by
Størmer [147] states that there is only a finite number of such pairs. We begin with some
historical results which show that deterministically computing the largest pair of consec-
utive B-smooth integers requires a number of operations that is exponential in the number
of primes up to B.

Solving Pell equations. Fix B, let {2, 3, . . . , q} be the set of primes up to B with cardinal-
ity π(B), and suppose that m and m + 1 are both B-smooth. Let x = 2m + 1, so that x− 1
and x + 1 are also B-smooth, and let D be the squarefree part of the product (x− 1)(x + 1),
so that x2 − 1 = Dy2 for some y ∈ Z. Since the product (x− 1)(x + 1) is B-smooth, it fol-
lows that Dy2 is B-smooth, which (since D is squarefree) means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities for D, an
effective theorem of Størmer [147] (and further work by Lehmer [109]) reverses the above
argument and proposes to solve the 2π(B) Pell equations

x2 − Dy2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the complete
set of B-smooth consecutive integers m and m + 1.

Ideally, this process could be used to deterministically find optimally smooth consec-
utive integers at any size, by increasing B until the largest pair of twin smooths is large
enough. For example, the largest pair of twin smooth integers with B = 3 is (8, 9), the
largest pair of twin smooth integers with B = 5 is (80, 81), and the largest pair of twin
smooth integers with B = 7 is (4374, 4375). Unfortunately, solving 2π(B) Pell equations
becomes infeasible before the size of m grows large enough to meet our requirements. For
B = 113, [44] reports that the largest twins (m, m+ 1) found upon solving all 230 Pell equa-
tions have m = 19316158377073923834000 ≈ 274, and the largest twins found among the
set when adding the requirement that 2m + 1 is prime have m = 75954150056060186624 ≈
266.

The extended Euclidean algorithm. One naïve way of searching for twin smooth in-
tegers is to compute B-smooth numbers m until either m − 1 or m + 1 also turns out to
be B-smooth. A much better method, which was used in [44, 13, 62], is to instead choose
two coprime B-smooth numbers α and β that are both of size roughly the square root of
the targets m and m + 1. Since α and β are coprime, Euclid’s extended GCD algorithm
outputs two integers (s, t) such that αs + βt = 1 with |s| < |β/2| and |t| < |α/2|. We can
then take {m, m + 1} = {|αs|, |βt|}, and the probability of m and m + 1 being B-smooth is
now the probability that s · t is B-smooth. The key observation here is that the product s · t
with s ≈ t is much more likely to be B-smooth than a random integer of similar size. In
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Section 7.2 we will develop methods and heuristics that allow us to closely approximate
these probabilities.

Searching with m = xn − 1. The method from [44] that proved most effective in finding
twin smooth integers with 2240 ≤ m ≤ 2256 is by searching with (m, m + 1) = (xn − 1, xn)

for various n, where the best instances were found with n = 4 and n = 6. Our approach
can be seen as an extension of this method, where the crucial difference is that for n > 2
the polynomial xn − 1 does not split in Z[x], and the presence of higher degree terms
significantly hampers the probability that values of `n − 1 ∈ Z are smooth. For example,
with n = 6 we have m = (x2 − x + 1)(x2 + x + 1)(x − 1)(x + 1) and, assuming B � `,
the probability that integer values of this product are B-smooth is far less than if it was
instead a product of six monic, linear terms. On the other hand, the probability that m + 1
is B-smooth for a given ` is the probability that ` itself is B-smooth, which works in favor
of the non-split method. However, as we shall see in the sections that follow, this is not
enough to counteract the presence of the higher degree terms. Furthermore, several of the
PTE solutions we will be using also benefit from repeated factors.

7.1.3 Cryptographic applications of twin smooth integers

As described in Section 2.4, two supersingular isogeny-based schemes have recently been
proposed that require a new type of instantiation. Rather than defining primes p for which
either p− 1 or p + 1 is smooth (as in SIDH/SIKE), the key exchange scheme B-SIDH [44]
and the digital signature scheme SQISign [62] instead require primes for which (large
factors of) both p − 1 and p + 1 are smooth. As both of those papers discuss, finding
primes that lie between two smooth integers is not an easy task, but the practical incent-
ive to do this is again related to the compactness of these schemes: B-SIDH’s public keys
are even smaller than the analogous SIDH/SIKE compressed public keys, and the sum of
the SQISign public key and signature sizes is significantly smaller than those of all of the
remaining NIST signature candidates.

In both B-SIDH and SQISign, the overall efficiency of the protocol is closely tied to the
smoothness of p− 1 and p + 1. Roughly speaking, any prime ` appearing in the factoriza-
tions of these two integers implies that an `-isogeny needs to be computed somewhere in
the protocol. Such `-isogenies have traditionally been computed in O(`) field operations
using Vélu’s formulas [152], but recent work by Bernstein, De Feo, Leroux, and Smith [13]
improved the asymptotic complexity to Õ(

√
`) by clever use of a baby-step giant-step

algorithm. Nevertheless, the large `-isogenies that are required in these protocols domin-
ate the runtime, and the best instantiations of both schemes will use large primes p lying
between two integers that are as smooth as possible.

In this chapter we will view the search for such primes as one that imposes an addi-
tional stipulation on the more general problem of finding twin smooth integers: crypto-
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graphically useful instances of the twin smooth integers (m, m + 1) are those where the
sum 2m + 1 is a prime, p.

Security analyses of B-SIDH and SQISign suggest that it is possible to relax the re-
quirements and to tolerate cofactors that divide either or both of p− 1 and p + 1 and have
prime factors somewhat larger than the target smoothness bound, such that (the size of)
any primes dividing these cofactors have no impact on the efficiency. For simplicity and
concreteness, we will focus our analysis on the pure problem of finding twin smooth in-
tegers that disallows any primes larger than our smoothness bound, but we will oftentimes
point out the modifications and relaxations that account for cofactors; this is discussed in
Section 7.7.

The heuristic analysis summarized in Table 7.3 predicts that sieving with PTE solutions
finds twin smooth integers (m, m + 1) that are smoother than one expects to find using the
same computational resources and the prior methods described in Section 7.1.2. Indeed, in
Section 7.6 we present a number of examples we found with our sieve whose largest prime
divisors are several bits smaller than the largest prime divisors in instantiations found in
the literature. In reference to Table 7.3, we briefly sketch some intuition on how these
smoother examples translate into practical speedups. For example, the best prior instanti-
ation of a prime p with 2240 ≤ p < 2256 found that (p− 1) and (p + 1) are simultaneously
219-smooth, whereas our sieve found a similarly sized p subject to a smoothness bound of
215. Given the current (square root) complexity of state-of-the-art `-isogeny computations,
this suggests that the most expensive isogeny computed in our example will be roughly 4
times faster than that of the prior example.

Organization. First time readers may benefit from first jumping straight to Section 7.5,
where all the theory developed in Sections 7.2–7.4 is put into action by way of a full worked
example. Section 7.2 gathers some results that allow us to approximate the smoothness
probabilities of both integers and integer-valued polynomials. 7.3 starts by making the
connection between our method of finding twin smooth integers and the PTE problem,
before going into the theory of the PTE problem and showing how to generate infinitely
many solutions for certain degrees. Section 7.4 describes our sieving algorithm. Section 7.6
presents some of the best examples found with our sieve and compares them with the pre-
vious examples in the literature. Section 7.7 discusses a number of possible modifications
and improvements to the sieve.

7.2 Smoothness probabilities

In this section we recall some well-known results concerning smoothness probabilities
that will be used to analyze various approaches throughout the paper: Section 7.2.1 shows
how to approximate the probability that m� B is B-smooth using the Dickman–de Bruijn
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function; Section 7.2.2 shows how to approximate the probability that integer values of a
polynomial f (x) ∈ Z[x] are B-smooth.

7.2.1 Smoothness probabilities for large N

Recall that an integer is said to be B-smooth if it does not have any prime factor exceeding
B. Let

Ψ(N, B) = #{1 ≤ m ≤ N | m is B-smooth}

be the number of positive B-smooth integers. For each real number u > 0, Dickman’s
theorem [55, Theorem 1.4.9] states that there is a real number ρ(u) > 0 such that

Ψ(N, N1/u)

N
∼ ρ(u) as N → ∞. (7.3)

Dickman described ρ(u) as the unique continuous function on [0, ∞) that satisfies ρ(u) = 1
for 0 ≤ u ≤ 1, and ρ′(u) = − ρ(u−1)

u for u > 1. For 1 ≤ u ≤ 2, ρ(u) = 1− ln(u), but for
u > 2 there is no known closed form for ρ(u). Nevertheless, it is easy to evaluate ρ(u) (up
to any specified precision) for a given value of u, and popular computer algebra packages
(like Magma and Sage) have this function built in.

In this chapter we will be using (7.3) to approximate the probability that certain large
numbers are smooth. For example, with N = 2128 and u = 8, the value ρ(8) ≈ 2−25

approximates the probability that a 128-bit number is 216-smooth. With u fixed, this ap-
proximation becomes better as N tends towards infinity. Using ρ(u) as the smoothness
probability assumes the heuristic that N1/u-smooth numbers are uniformly distributed in
[1, N].

While there are methods to more precisely estimate Ψ(N, B), see e.g. [143] and [7], we
are content with the simple approximation given by ρ. Using a basic sieve to identify
smooth integers, we have counted all B-smooth integers up to N = 243 for B up to 216 and
compared their numbers with those predicted by the Dickman–de Bruijn function. Except
for the lower end of the studied interval and for very small smoothness bounds, we have
found the approximation by ρ to be sufficiently close to the actual values.

7.2.2 Smoothness heuristics for polynomials

For a polynomial f (x) ∈ Z[x], define

Ψ f (N, B) = #{1 ≤ m ≤ N | f (m) is B-smooth}.

Throughout the paper we will use the following conjecture (see [110, Eq. 1.4] and [88, Eq.
1.20]) as a heuristic to estimate the probability that f (N) is N1/u-smooth.
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Heuristic 1. Suppose that the polynomial f (x) ∈ Z[x] has distinct irreducible factors over Z[x]
of degrees d1, d2, . . . , dk ≥ 1, respectively, and fix u > 0. Then

Ψ f (N, N1/u)

N
∼ ρ(d1u) · · · · · ρ(dku) (7.4)

as N → ∞.

With B = N1/u, Heuristic 1 says that for m ≤ N, the probability of f (m) being B-
smooth is the product of the probabilities of each of its factors being B-smooth (these are
computed via (7.3)). Martin proved this conjecture for a certain range of u [110, Theorem
1.1] that does not apply in our case. Heuristic 1 inherently assumes that the smoothness
probabilities of each of the factors are independent of one another; here, the roots of our
split polynomials all lie in relatively short intervals, and thus are not uniformly distributed
in, say, [1, N]. For example, with f (m) = ∏1≤i≤d(m− fi) ∈ Z, any prime q that divides
m − f1 only divides m − fi for some 1 < i ≤ d if q | fi − f1, which in particular means
that any prime which is larger than the interval size can divide at most one of the (unique)
m− fi. Nevertheless, our experiments have shown Heuristic 1 to be a very useful approx-
imation for our purposes; we simply use it as a means to approximate how many values
of m ∈ Z need to be searched before we can expect to start finding twin smooth integers,
and to draw comparisons between approaches for various target sizes.

7.3 Split polynomials that differ by a constant

Henceforth we will use a(x) and b(x) to denote two polynomials of degree n > 1 in Z[x]
that differ by an integer constant C ∈ Z, i.e., a(x)− b(x) = C. Moreover, unless otherwise
stated, both a and b are assumed to split into linear factors over Z, i.e.,

a(x) = ∏
1≤i≤n

(x− ai) and b(x) = ∏
1≤i≤n

(x− bi),

where the ai and bi (which are not necessarily distinct) are all in Z.
The core idea of this paper is to search for twin smooth integers by searching over

` ∈ Z such that
a(`) ≡ b(`) ≡ 0 mod C.

Then, the two polynomials aC(x) := a(x)/C and bC(x) := b(x)/C ∈ Q[x] evaluate to
integer values aC(`) and bC(`) at `, and moreover

aC(`) = bC(`) + 1.

Since a and b split into n linear factors over Z, aC(`) and bC(`) necessarily contain n integer
factors of approximately the same size. In Section 7.4.4 we approximate the probability
that aC(`) and bC(`) are B-smooth, and show that these probabilities are favorable (in the
ranges of practical interest) compared to the previously known methods of searching for
large twin smooths.
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7.3.1 The Prouhet-Tarry-Escott problem

For degrees n ≤ 3, infinite families of split polynomials a(x) and b(x) with a(x)− b(x) =
C ∈ Z can be constructed by solving the system that arises from equating all but the con-
stant coefficients. Although there are n equations in 2n unknowns, for n > 3 this process
becomes unwieldy; the equations are nonlinear and we are seeking solutions that assume
values in Z. Moreover, relaxing the monic requirement (which permits 4n unknowns) and
allowing for solutions in Q does not seem to help beyond n > 3. Fortunately, finding
these pairs of polynomials is closely connected to the computational hardness of solving
the PTE problem of size n.

Definition 12 (The Prouhet-Tarry-Escott problem). The Prouhet-Tarry-Escott (PTE) problem
of size n and degree k asks to find distinct multisets of integers A = {a1, . . . , an} and
B = {b1, . . . , bn}, such that

n

∑
i=1

aj
i =

n

∑
i=1

bj
i

for j = 1, . . . , k. We abbreviate solutions to this problem by [a1, . . . , an] =k [b1, . . . , bn] or
A =k B.

A classic result that links PTE solutions to polynomials is the following [27, Proposition
1].

Proposition 6. The following are equivalent:

n

∑
i=1

aj
i =

n

∑
i=1

bj
i for j = 1, . . . , k. (7.5)

deg

(
n

∏
i=1

(x− ai)−
n

∏
i=1

(x− bi)

)
≤ n− (k + 1). (7.6)

Proposition 6 implies that for any PTE solution of size n and degree k = n − 1, the
polynomials a(x) = ∏n

i=1(x− ai) and b(x) = ∏n
i=1(x− bi) differ by a constant. For a given

n, this choice for k is the maximal possible choice [27, Proposition 2], hence the respective
solutions are called ideal solutions. Ideal solutions are known for n ≤ 10 and n = 12, but
it remains unclear if there are ideal solutions for other sizes [30]. Unless stated otherwise,
henceforth we will only speak of PTE solutions that are ideal solutions.

As we will see later, the most useful PTE solutions for our purposes are those for which
the constant C is as small as possible. We now recall some useful results from the literature
concerning the constants that can arise from PTE solutions.

Definition 13 (Fundamental constant Cn). Let n be a positive integer, and write Cn,A,B for
the associated constant of an ideal PTE solution A =n−1 B of size n. Then we define

Cn = gcd{Cn,A,B | A =n−1 B}

as the fundamental constant associated to ideal PTE solutions of size n.
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Table 7.1: Divisibility results for the PTE problem

n Lower bound for Cn Upper bound for Cn

2 1 1

3 22 22

4 22 · 32 22 · 32

5 24 · 32 · 5 · 7 24 · 32 · 5 · 7

6 25 · 32 · 52 25 · 32 · 52

7 26 · 33 · 52 · 7 · 11 26 · 33 · 52 · 7 · 11

8 24 · 33 · 52 · 72 · 11 · 13 28 · 33 · 52 · 72 · 11 · 13

9 27 · 33 · 52 · 72 · 11 · 13 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29

10 27 · 34 · 52 · 72 · 13 · 17 211 · 36 · 52 · 72 · 11 · 13 · 17 · 23 · 37

11 28 · 34 · 53 · 72 · 11 · 13 · 17 · 19 none known

12 28 · 34 · 53 · 72 · 112 · 17 · 19 212 · 38 · 53 · 72 · 112 · 132 · 17 · 19 · 23 · 29 · 31

A result by Kleiman [102] gives a lower bound on the fundamental constant.

Proposition 7. Let n be a positive integer. Then (n− 1)! | Cn.

For concrete choices of n, more divisibility results are presented in the work of Rees
and Smyth [129], and Caley [30]. These results form sharper bounds for Cn, and thus
for constants arising from any given PTE solution. Upper bounds for Cn can be directly
computed by taking the GCD of all known solutions of size n. This is detailed in [30],
where for example it is stated that for n = 9 we have

27 · 33 · 52 · 72 · 11 · 13 | C9 and C9 | 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29.

Table 7.1 is an updated version of [30, Table 3.2], and gives an overview of the bounds
for the fundamental constants Cn. These results give estimates for the optimal choices of
solutions for our searches. In particular, choosing solutions with associated constants close
to the upper bound for Cn yields the best preconditions for finding twin smooth integers.

For our application of finding twin smooth integers, it may seem unnecessarily restrict-
ive to only make use of PTE solutions, yielding monic polynomials a and b with integer
roots. However, it can be proven that all polynomials that are split over Q and that dif-
fer by a constant arise from PTE solutions. In order to prove this, we make use of the
following result ([27, Lemma 1], [30, Proposition 2.1.2]).

Proposition 8. Let [a1, . . . , an] =k [b1, . . . , bn] with associated constant C and M, K arbitrary
integers with M 6= 0. Define a linear transform h(x) = Mx+K and let a′i = h(ai) and b′i = h(bi)

for i = 1, . . . , n. Then [a′1, . . . , a′n] =k [b′1, . . . , b′n], and the associated constant is C′ = C ·Mn.
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Two such solutions that are connected through a linear transform are called equivalent.
Note that Proposition 8 also holds for the PTE problem over rational numbers instead of
integers.

Corollary 2. Let a(x) and b(x) be non-monic polynomials of degree n with rational roots A =

{a1, . . . , an} and B = {b1, . . . , bn}, such that a(x)− b(x) = C ∈ Q. Then A =n−1 B for the
PTE problem over Q, and there is an equivalent solution A′ =n−1 B′ to the PTE problem over Z.

Proof. Since deg(a(x)− b(x)) = 0, Proposition 6 implies that A =n−1 B. Let M ∈ Z be a
common denominator of a1, . . . , an, b1, . . . , bn and define the linear transform h(x) = Mx.
Let a′i = h(ai) and b′i = h(bi) for i = 1, . . . , n. Then A′ = {a′1, . . . , a′n} and B′ = {b′1, . . . , b′n}
consist of integers, and by Proposition 8, A′ =n−1 B′ is a solution for the PTE problem
over Z.

Corollary 2 allows us to focus entirely on integer PTE solutions without imposing any
further restrictions. For our search for smooth values of the polynomials, Proposition 8
further implies that we only have to search with one polynomial per equivalence class.

Corollary 3. Let A = {a1, . . . , an}, B = {b1, . . . , bn} with A =n−1 B, and A′ = {a′1, . . . , a′n},
B′ = {b′1, . . . , b′n} with A′ =n−1 B′ be equivalent ideal PTE solutions. Let a(x), b(x), and a′(x),
b′(x) be the respective polynomials such that a(x)− b(x) = C ∈ Z resp. a′(x)− b′(x) = C′ ∈ Z,
and h(x) be the associated linear transform. Then for given xmin and xmax, aC(x) and bC(x) take
on the same integer values for x ∈ I = [xmin, xmax] as a′C′(x) and b′C′(x) for x ∈ h(I).

In order to efficiently identify equivalent solutions, we make use of Proposition 8 to
define a representation of equivalence classes, which we call the normalized form of a class
of solutions.

Definition 14 (Normalized form of PTE solutions). A normalized form of a given PTE solu-
tion is a solution such that a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bn, 0 = a1 < b1, and
gcd(a1, . . . , an, b1, . . . , bn) = 1.

Another classification of solutions, which is of importance for our searches, is the dis-
tinction between symmetric and non-symmetric solutions [26].

Definition 15 (Symmetric PTE solutions). For n even, an even ideal symmetric solution to the
PTE problem is of the form

[±a1,±a2, . . . ,±an/2] =n−1 [±b1,±b2, . . . ,±bn/2].

For n odd, an odd ideal symmetric solution to the PTE problem is of the form

[a1, a2, . . . , an] =n−1 [−a1,−a2, . . . ,−an].
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It can immediately be seen that the normalized form of a symmetric solution is unique,
but no longer has the form satisfying Definition 15. However, as is usual, we will still be
calling these solutions symmetric, since they are symmetric with respect to the integer
K (instead of symmetric with respect to 0, as in the classic formulation of Definition 15),
where h(x) = Mx + K is the linear transform connecting these solutions. Thus, we define
solutions as non-symmetric if and only if their equivalence class does not contain a sym-
metric solution according to Definition 15.

Note that in the special case of non-symmetric solutions, the normalized form is not
unique. In particular, if [a1, . . . , an] =n−1 [b1, . . . , bn] is a non-symmetric normalized solu-
tion, then so is the solution arising from the linear transform h(x) = Mx + K, where
M = −1 and K = max{an, bn}. In this case, we take the solution with minimal b1 to rep-
resent the normalized solution, and refer to the second normalized solution as the flipped
solution.

Finally, in Section 7.4.4 we will see that PTE solutions with repeated factors have higher
probabilities (than those without repeated factors) of finding twin smooth integers. The
following result [30, Theorem 2.1.3] shows that repeated factors can only occur with mul-
tiplicity at most 2.

Proposition 9 (Interlacing). Let A = {a1, . . . , an} and B = {b1, . . . , bn} be an ideal PTE
solution, where a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn, and w.l.o.g., we assume that
a1 < b1. Then, a1 6= bj for all j. If n is odd, we have

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−1 ≤ an < bn,

and if n is even, then

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−2 ≤ an−1 < bn−1 ≤ bn < an.

7.3.2 PTE solutions

An important prerequisite for searching for twin smooth integers is a large number of
normalized ideal PTE solutions with relatively small associated constants. To this end, we
briefly review solutions from the literature as well as methods to construct ideal solutions.
Henceforth, we will refer to normalized ideal PTE solutions only as PTE solutions.

A database of Shuwen collects several PTE solutions, both symmetric and non-sym-
metric [139]. In particular, special solutions, such as the smallest solutions with respect to
the associated constants, and the first solutions found for each size, are presented there.

Apart from this, several methods for generating PTE solutions have been found. Para-
metric solutions are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 12}, and these can be used to gen-
erate infinitely many symmetric solutions [30]. However, the number of solutions with
small associated constants is limited. For n = 9, only two non-equivalent solutions are
known.
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For n ∈ {5, 6, 7, 8}, we implemented the methods from [26] to generate as many sym-
metric solutions with small associated constants as possible. For n = 10 and n = 12, there
are parametric symmetric solutions due to Smyth [142] and Choudhry and Wróblewski
[155], resp., both following an earlier method from Letac [87]. In both methods, the two
parameters that form solutions come from a quadratic equation in two variables. This
equation can be transformed into an elliptic curve equation, and thus finding suitable
parameters is equivalent to finding rational points on this elliptic curve. In [30, Section
6], Caley implements these methods by adding multiples of a non-torsion point, P, to the
eight known torsion points.27 However, it is evident from the underlying transforms that
PTE solutions with small constants can only arise from rational elliptic curve points with
small denominators in their coordinates. Caley’s approach thus proves to be non-optimal
for our aims, as the denominators in the coordinates of [i]P become too large already for
very small i, resulting in PTE solutions with huge constants. We implemented these meth-
ods with the curves and transforms from [30], but deviated from Caley’s approach by
first searching for non-torsion points with integer coordinates, resp. coordinates with very
small denominators. We then followed Caley’s algorithm and computed small multiples
of these points and their sums with torsion points. Despite finding many PTE solutions,
none of them proved to have an associated constant close to the upper bound for C10 resp.
C12. Further, taking the GCD of all found solutions, we did not succeed in reducing the
known upper bounds for C10 resp. C12.

For each size n, we identified an upper bound for constants that permit acceptable
success probabilities for our searches, and collected as many solutions as possible up to
this value. Table 7.2 reports on the numbers of solutions we found, including solutions
from [139].

7.4 Sieving with PTE solutions

Our sieving algorithm consists of two phases. The first phase identifies the B-smooth
numbers in a given interval (Section 7.4.1). The second phase then scans the interval us-
ing either a single PTE solution (Section 7.4.2) or the combination of many PTE solutions
(Section 7.4.3).

7.4.1 Identifying smooth numbers in an interval

We follow the exposition of Crandall and Pomerance [55, §3.2.5] and adopt the simple
sieve of Eratosthenes to identify the B-smooth integers in an interval [L, R). We set up
an array of R− L integers corresponding to the integers L, L + 1, . . . , R− 1, and initialize
each entry with 1. For all primes with p < B, we identify the smallest non-negative i ∈ Z,

27The elliptic curves that arise for n = 10 and n = 12 have Mordell-Weil-groups Z/4Z×Z/2Z×Z resp.
Z/4Z×Z/2Z×Z×Z. Thus there are eight torsion points in each case, and the non-torsion groups are
generated by one resp. two non-torsion points.
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Table 7.2: Number of PTE solutions up to an upper bound for the constants. Cmin,n denotes
the smallest constant known for each degree.

n dlog2(Cmin,n)e Bitlength of upper bound # of solutions

5 13 50 49

6 14 50 2438

7 33 60 8

8 31 60 51

9 52 60 2

10 73 100 1

12 76 100 1

for which L + i ≡ 0 mod p, and multiply the array elements at positions i + jp by p for
all j ∈ Z such that L ≤ i + jp < R. Additionally, for all primes with p <

√
R, we have

to identify the maximal exponent e such that pe < R, and analogously perform sieving
steps with the relevant prime powers, where further multiplications by p take place. After
this process is finished, the B-smooth integers in the interval are precisely those for which
the number at position i is L + i. Subsequently, we transform this array of integers into
a bitstring, where a ‘1’ indicates a B-smooth number, while a ‘0’ represents a non-smooth
number.

This simple approach allows for several optimizations and modifications, some of
which are discussed further in Section 7.7.

7.4.2 Searching with a single PTE solution

Assume that we are searching with a normalized ideal PTE solution of size n, writing
a(x) = ∏n

i=1(x− ai) and b(x) = ∏n
i=1(x− bi), together with C ∈ Z such that a(x)− b(x) =

C. We will assume C > 0, since a(x) and b(x) can otherwise swap roles accordingly, and
as usual we write aC(x) = a(x)/C and bC(x) = b(x)/C as the two polynomials in Q[x].

We are searching for ` such that m + 1 = aC(`) and m = bC(`) are both B-smooth and
of a given size, and thus the size of the constant C affects the size of the ` we should search
over. Moreover, we only wish to search over the values of ` for which aC(`) and bC(`)

are integers, and we determine this set of residues (modulo C) as follows. If C = ∏ pei
i is

the prime factorization of the constant, then for each prime-power factor we determine all
residues ri mod pei

i for which a(ri) ≡ b(ri) ≡ 0 mod pei
i (note that it is sufficient to check

that one of a(ri) or b(ri) is a multiple of pei
i ). We then use the Chinese Remainder Theorem

(CRT) to reconstruct the full set of residues {r mod C} for which a(r) ≡ b(r) ≡ 0 mod C.
Depending on the size of the constant, the full list of suitable residues may be rather large;
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if not, they can be stored in a lookup table, but if so, only the smaller sets (i.e., the {ri}
corresponding to pei

i ) need to be stored. We can then either loop over the suitable residues
by constructing them on the fly using the CRT, or we can check whether a candidate ` is a
suitable residue by reducing it modulo each of the pei

i .

It is worth pointing out that when searching for cryptographic parameters with a single
PTE solution, the condition that 2m+ 1 is prime can be used to discard the residues {r̃ mod
C} for which 2bC(r) + 1 can never be prime if r ≡ r̃ mod C. In a very rare number of
cases, the polynomial 2bC(x) + 1 = 2/C · (b(x) + C/2) in Q[x] is such that (b(x) + C/2)
is reducible in Z[x], in which case the PTE solution can be completely discarded. For
example, this happens for both of the PTE solutions with n = 9.

Recall from Section 7.3 that the constants of the PTE solutions are (for our purposes) al-
ways B-smooth. When processing an interval [L, R), the problem therefore reduces to find-
ing ` ∈ [L, R) such that all of the factors of a(`) and b(`) are marked as B-smooth. For the
PTE solution in use, these factors are given by `i = `− i, where i ∈ {a1, . . . , an, b1, . . . , bn}.
Note that since a1 = 0 for our normalized representation, we have ` = `0. Starting with
` at the left end of the interval requires some care since for a given `, we need to be able
to check for the smoothness of all `i. Hence, to be able to cover the full space when pro-
cessing consecutive intervals, we have to run the first phase of the sieve for a slightly
larger interval, namely [L − w, R) (overlapping to the left with the previous interval),
where w = max{an, bn}. This allows us to process ` ∈ [L, R) such that `w will cover
[L− w, R− w).

In the second phase of the sieve we advance ` through all of the elements in the
bitstring marked ‘1’, each time checking the bits corresponding to the remaining `i, i.e.,
i ∈ {a2, . . . , an, b1, . . . , bn}. If, at any time, we see that any of the `i corresponds to a ‘0’, we
advance ` such that it is aligned with the next ‘1’ and repeat the process until all of the `i

correspond to a ‘1’. At this point, we can then check whether ` is a suitable residue modulo
C as above; if not, ` is again advanced to the next set bit, but if so, we have found twin
smooth integers, and it is here that we can optionally check whether their sum is prime.

We note that when using a single PTE solution, the algorithm could be modified to
sieve in arithmetic progressions given by the suitable residues modulo C. We leave the
exploration of whether this can be more efficient than the above approach for future work.

In the case of a large interval [L, R), the memory requirements can be significantly re-
duced by dividing [L, R) into several subintervals, which can be processed separately. The
only downside is that a naïve implementation of the first phase processes certain intervals
twice due to the overlap of length w. This can be easily mitigated by copying the last w
entries of the previous interval at each step. However, due to both the large (sub)intervals
used in our implementation and the relatively small w’s that arise in PTE solutions, the
impact of this overlap is negligible in practice, so the naïve approach can be taken without
a noticeable performance penalty.
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Parallelization. The straightforward way to parallelize the sieve is to assign processors
distinct subintervals of [L, R), e.g. according to their own memory/performance capabil-
ities. If many processors have rapid access to the same memory, then it may be faster for
some resources being devoted to identifing smooth numbers in the next interval while the
remaining resources sieve the current interval.

Negative input values. Until now we have only considered positive input values ` ∈
[L, R), but our approach also permits negative inputs to the polynomials a(x) and b(x). For
example, for even n, this gives another pair of integers that could potentially be smooth. At
first glance, this seems to imply that each time ` is advanced, we must also check the values
`′i = `+ i with i ∈ {a1, . . . , an, b1, . . . , bn} for smoothness. Moreover, it seems that the over-
lap of size w for each search interval must also be added to both sides. We note, however,
that if the PTE solution in use is symmetric (see Definition 15), then the values `′i are the
same as the values (`+ w)i, and thus are naturally checked by our previous algorithm at
position `+ w. This is not the case for general non-symmetric solutions, but for those non-
symmetric solutions that are normalized (see Definition 14), we can instead search with
positive inputs to the flipped solution arising from the linear transform h(x) = −x + w,
which is especially beneficial when searching with many solutions simultaneously.

7.4.3 Searching with many PTE solutions

One of the main benefits of our sieve is that it can combine many PTE solutions into the
same search and rapidly process them together. Many PTE solutions tend to share at
least one non-zero element in common, and if checking this element returns a ‘0’, all such
solutions can be discarded at once. In what follows we describe a method to arrange the
set of PTE solutions in a tree, such that (on average) a minimal number of checks is used to
check the full set of solutions. Note that computing this tree is a one-time precomputation
that is performed at initialization.

Suppose we have t solutions, written as [ai,1, . . . , ai,n] =n−1 [bi,1, . . . , bi,n] for 1 ≤ i ≤ t.
Noting that ai,1 = 0 for all i, write Si = {ai,2, . . . , ai,n, bi,1, . . . , bi,n}, i.e., Si is the set of distinct
non-zero integers in the i-th PTE solution. Now, as in the single solution sieve above,
suppose we have advanced ` to a set bit at some stage of our sieving algorithm. Rather
than checking each of the PTE solutions individually, we would like to share any checks
that are common to multiple PTE solutions. The key observation is that we are highly
unlikely28 to have a PTE solution whose elements all correspond to ‘1’, so in combining
many PTE solutions we would ultimately like to minimize the number of checks required
before we can rule all of them out and move ` to the next set bit.

In looking for the minimum number of checks whose failures rule out all PTE solutions,
we are looking for a set H of minimal cardinality such that H ∩ Si 6= {∅} for 1 ≤ i ≤ t,

28We assume that the smoothness bound is aggressive enough to make the smooth integers sparse.
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i.e., the smallest-sized set that shares at least one element with each of the PTE solutions.
Finding this set is an instance of the hitting set problem; this problem is NP-complete in
general, but for the sizes of the problem in this paper, a good approximation is given by
the greedy algorithm [98]. We start by looking for the element that occurs most among all
of the Si, call this g1; we then look for the element that occurs most among the Si that do
not contain g1, call this g2; we then look for the element that occurs most among those Si

that do not contain g1 or g2, and continue in this way until we have H = {g1, g2, . . . , gh}
such that every Si contains at least one of the gj, for 1 ≤ i ≤ t and 1 ≤ j ≤ h. This
process naturally partitions the PTE solutions to fall under h different branches. For each
PTE solution in a given branch, the corresponding element of the hitting set is removed
and the process is repeated recursively until there is no common element between the
remaining solutions, at which point they become leaves. In Section 7.5.2 we give a toy
example with 20 PTE solutions that produces the tree in Figure 7.2. In this example the
first hitting set is {1, 2}; if a search was to use these 20 solutions, then most of the time
only two checks will be required before ` can be advanced to the next set bit.

At a high level, our multi-solution sieve then runs the same way as the single solution
sieve in Section 7.4.2, except that we must traverse our tree each time ` is advanced. We
do this by checking all of the elements of a the hitting set, and we only enter the branch
corresponding to a given element if the associated check finds a ‘1’ (an example sequence
of checks is included in Section 7.5.2). This is repeated recursively until we either en-
counter a leaf, where we simply check the remaining elements sequentially, or until all of
the elements in the hitting set at the current level of the tree return a ‘0’, at which point
we can move up to the branch above and continue. As mentioned above, in practice the
most common scenario is that all of the elements in the highest hitting set correspond to a
‘0’, and the number of checks performed in order to rule out the full set of PTE solutions
is minimal. Note that checking the divisibility of a(`) and b(`) by the constant C is, in
practice, best left until the point where a match is found. Since solutions have different
constants and different sets of suitable relations, it is not useful to incorporate modular
relations into the sieving step of the multi-solution algorithm.

The efficiency of checking all PTE solutions simultaneously is therefore heavily de-
pendent on the size of the first hitting set. In cases where we have many PTE solutions
(see Section 7.3.2), the first hitting set can be used to decide which PTE solutions to search
with. If a pre-existing set of PTE solutions has a hitting set H, then including any addi-
tional solutions that share at least one element with H incurs nearly no performance cost.

7.4.4 Success probabilities

In Table 7.3 we use Heuristic 1 to draw comparisons between our method of finding twin
smooth integers and the prior methods discussed in Section 7.1.2. The entries in the table
are the approximate smoothness bounds that should be used to give success probabilities
of 2−20, 2−30, 2−40, and 2−50. The term success probability is used to estimate how large
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a search space needs to be covered before we can expect to find twin smooth integers;
these probabilities are computed directly via Equation (7.4). For example (refer to the bold
element in the last row of the table), using one PTE solution with n = 8 and a smoothness
bound of B ≈ 226.9, we can expect to find a pair of twin smooth numbers in [1, N] = [1, 2384]

after searching roughly 220 inputs ` ∈ [1, N1/n] = [1, 248], for which aC(`) and bC(`) are
integers.29 To find similarly sized twin smooth integers using the XGCD approach, we
would have to search roughly 220 elements with a smoothness bound of B ≈ 241.5, or 230

elements with a smoothness bound of B ≈ 232.8; on the other hand, if we were using XGCD
with the same B ≈ 226.9 as the PTE solution, we should expect to have to search a space
larger han 240 before finding twin smooths.

We stress that Table 7.3 is merely intended as a rough guide to the size of the smooth-
ness bounds we should use in a given search, and similarly to provide an approximate
comparison between the methods. As mentioned in Section 7.2, Heuristic 1 makes the
rather strong assumption that the elements in our PTE solutions are uniform in [1, N1/n],
and using the Dickman–de Bruijn function is a rather crude blanket treatment of the con-
crete combinations of B, N and n of interest to us. Moreover, the best version of our sieve
(like the one used in Section 7.6) combines hundreds of PTE solutions into one search, and
extending a theoretical analysis to cover such a collection of solutions is unnecessary. We
point out that the application of Heuristic 1 to our scenario further assumes that the de-
nominator C gets absorbed by the different factors uniformly. In other words, we assume
that after canceling the denominator, all factors of aC(`) and bC(`) roughly have the same
size. Although this is not true in general, our experiments and the smoothness of C (see
Section 7.3.1) suggest this to be a good approximation for the average case.

The elements of the table that are faded out correspond to instances of the respective
search method where the size of the possible search space is not large enough to expect
to find solutions with the given probability. Moreover, Table 7.3 does not incorporate the
additional probabilities associated with the twin smooth integers having a prime sum.
Searches for cryptographic parameters typically need to find several twin smooth integers
before finding a pair with a prime sum, so our search spaces tend to be a little larger than
Table 7.3 suggests.30 We chose 2−20 as the largest success probability in the table under the
assumption that any search for twin smooth integers will cover a space of size at least 220.

A number of rows in the lower section of the table are marked (*) to indicate that these
are PTE solutions with repeated factors. Viewing Heuristic 1, we see that these solutions
find twin smooth integers with a higher probability than those PTE solutions without re-

29The total number of inputs required for this (including the ones which lead to non-integer polynomial
values) depends on the PTE solution and associated constant in use, and can easily be computed via the CRT
approach described before.

30It is beyond the scope of this work to make any statements about the probability of a prime sum, except
to say that in practice we observe that twin smooth sums have a much higher probability of being prime than
a random number of the same size.
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Table 7.3: Table of smoothness bounds and success probabilities for prior methods and our
method. All numbers are given as base-2 logarithms. Further explanation in text.

N

256 384 512

method
n

probability
n

probability
n

probability

−50 −40 −30 −20 −50 −40 −30 −20 −50 −40 −30 −20

naïve – 20.2 23.4 28.4 36.7 – 30.2 35.2 42.6 55.1 – 40.3 46.9 56.7 73.4

XGCD – 15.9 18.4 21.9 27.7 – 23.9 27.5 32.8 41.5 – 31.9 36.7 43.7 55.3

2xn − 1

4 15.6 17.8 20.8 25.8 6 19.9 22.6 26.4 32.3 6 26.6 30.1 35.2 43.1

6 13.3 15.1 17.6 21.6 8 20.4 23.2 27.2 33.8 12 22.0 24.9 28.9 35.2

8 13.6 15.5 18.2 22.5 10 20.3 23.1 27.2 33.8 16 25.8 29.3 34.6 43.5

9 15.4 17.7 21.0 26.4 12 16.5 18.7 21.7 26.4 18 23.3 26.3 30.9 38.4

10 13.5 15.4 18.2 22.5 16 19.3 22.0 25.9 32.7 20 23.2 26.3 31.0 38.5

12 11.0 12.4 14.5 17.6 18 17.4 19.8 23.1 28.8 24 20.2 22.9 26.7 32.8

PTE

3 20.4 23.0 26.6 32.2 3 30.6 34.5 39.9 48.4 4* 30.6 34.5 39.9 48.4

3* 16.2 18.4 21.6 26.6 3* 24.3 27.7 32.4 39.9 5 31.9 25.6 40.6 48.2

4 17.8 20.0 22.9 27.5 4 26.7 29.9 34.4 41.2 6 29.1 32.2 36.6 43.0

4* 15.3 17.2 20.0 24.2 4* 22.9 25.8 29.9 36.3 6* 25.2 28.2 32.2 38.5

5 16.0 17.8 20.3 24.1 5 24.0 26.7 30.4 36.1 7 26.8 29.6 33.5 39.0

6 14.5 16.1 18.3 21.5 6 21.8 24.2 27.5 32.3 8 24.9 27.5 30.9 35.8

6* 12.6 14.1 16.1 19.3 6* 18.9 21.1 24.2 28.9 9 23.3 25.7 28.7 33.2

7 13.4 14.8 16.7 19.5 7 20.1 22.2 25.1 29.3 10 22.0 24.1 26.8 31.1

8 12.5 13.7 15.4 17.9 8 18.7 20.6 23.2 26.9 12 19.8 21.5 23.9 27.5

peated factors, which is why they show a lower smoothness bound (for a fixed probabil-
ity). PTE solutions with repeated factors are only known for n ∈ {3, 4, 6}.

7.5 A worked example

We now give concrete examples found with the sieve described in Section 7.4, referring
back to the theory developed in Section 7.3 where applicable. We first illustrate a simple
search that uses a single PTE solution, and then move to combining many PTE solutions
into the same sieve.



136 7.5. A worked example

7.5.1 Searching with a single PTE solution

Suppose we are searching for twin smooth integers (m, m + 1) with 2240 ≤ m < 2256.
Table 7.3 suggests that the best chances of success are with n ∈ {6, 7, 8}, and in parti-
cular with the n = 6 solutions that have repeated factors. Since the search spaces using
polynomials of degree n = 7 and n = 8 are rather confined when targeting m < 2256 (see
Table 7.3), for this example we use a PTE solution of size n = 6 containing repeated factors,
namely

[1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16], (7.7)

which corresponds to the polynomials

a(x) = (x− 1)2(x− 8)2(x− 15)2, b(x) = x(x− 3)(x− 5)(x− 11)(x− 13)(x− 16).

Proposition 6 induces that a(x) and b(x) differ by an integer constant, which in this case is

C = a(x)− b(x) = 14400 = 263252.

Observe that Proposition 7 guaranteed that C was a multiple of (n− 1)! = 5!.
Given that 213 < C < 214, searching for m with 2240 ≤ m < 2256 means searching for

values ` such that a(`) and b(`) lie between 2254 and 2269, so that aC(`) and bC(`) are then of
the right size. Since a(x) and b(x) have degree 6, this means searching with 242 ≤ ` < 245.

Recall from Section 7.4 that our sieving algorithm alternates between two main phases.
The first is independent of the PTE solution(s) we are searching with, and simply involves
identifying all smooth numbers in a given interval (see Section 7.4.1). In this example, we
chose interval sizes of 220 = 1048576, so at the conclusion of this first phase, we have a
bitstring of length 1048576 to search over: a ‘1’ in this string means the number associated
with its index is B-smooth, while a ‘0’ indicates that it is not.

With B ≈ 216.1, Table 7.3 suggests that searching with the PTE solution in (7.7) will
find twin smooth integers for roughly 1 in every 230 values of ` that are tried. Thus, we
set B = 216 and started the search at ` = 242. With this ` and B, the Dickman–de Bruijn
function tells us that we can expect the proportion of B-smooth numbers to be close to
ρ(42/16) ≈ 0.103.

At the top of Figure 7.1, we give 30 bits of an interval (found after sieving for some
time) that correspond to ` = 5170314186700 + t, for t ∈ {30, 31, . . . , 59}. Here 11 of the
30 bits are 1, so the proportion of B-smooth numbers in this small interval is exceptionally
high; indeed, these are the kinds of substrings we are sieving for, in hope that our PTE
solution aligns favorably to find 1’s in all of the required places. Viewing (7.7), we write
`i = ` − i for i ∈ {0, 1, 3, 5, 8, 11, 13, 15, 16}. As depicted in Figure 7.1, each step in the
second phase starts by finding the next smooth number (i.e., the next ‘1’ in the string),
advancing ` = `0 to align there before sequentially checking from `1 through to `16. If,
at any stage, one of the `i is aligned with a ‘0’, we advance ` to the next ‘1’ in the string
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Figure 7.1: Sieving with the PTE solution [1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16] across the
subinterval ` = 5170314186700 + t for t ∈ {30, 31, . . . 59}. Further explanation in text.

t 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
smooth? 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0

...

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

3 `16 `15 `13 `11 `8 `5 `3 `1 `0

and repeat the procedure. Once we have finished processing a full interval (of size 220 in
this case), we advance to the next interval by first computing the string that identifies all
B-smooth numbers, then processing the interval by aligning `0 with the next set bit, and
checking the remaining `i.

In Figure 7.1 we see that when `0 = 5170314186747, the next bit checked reveals that
`1 corresponds to a ‘0’, so this position is immediately discarded and we advance to the
next set bit taking `0 = 5170314186750. Again, `1 discovers a ‘0’, so `0 advances to
5170314186752, and then to 5170314186754 (both of these also have `1 aligned with ‘0’).
Advancing to `0 = 5170314186755, we see that the remaining `i correspond to set bits and
are thus all smooth, namely

`0 = 5 · 29 · 31 · 211 · 557 · 9787, `1 = 2 · 71 · 919 · 1237 · 32029,

`3 = 212 · 112 · 13 · 277 · 2897, `5 = 2 · 3 · 53 · 181 · 4783 · 7963,

`8 = 32 · 23 · 41 · 83 · 1117 · 6571, `11 = 23 · 3 · 72 · 17 · 43 · 191 · 31489,

`13 = 2 · 103 · 1093 · 2663 · 8623, `15 = 22 · 5 · 1163 · 11927 · 18637,

`16 = 13 · 53 · 113 · 3347 · 19841.

The PTE solution (7.7) translates into the twin-smooth numbers

(m, m + 1) =
(
`0`3`5`11`13`16

C
,
(`1`8`15)

2

C

)
.

In this case their sum is a prime p, which lies between the B-smooth numbers 2m and
2(m + 1), namely

p = 2m + 1

= 2653194648913198538763028808847267222102564753030025033104122760223436801.

Remark 18. When searching with a single solution, in practice we only want to search
over the ` ∈ Z for which a(`) ≡ b(`) = 0 mod C. As described in Section 7.3, we use the
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CRT to find these ` by first working modulo each of the prime power factors of C. In this
case we find

• 40 residues r1 ∈ [0, 26) such that a(`) ≡ b(`) ≡ 0 mod 26 iff ` ≡ r1 mod 26;

• 9 residues r2 ∈ [0, 32) such that a(`) ≡ b(`) ≡ 0 mod 32 iff ` ≡ r2 mod 32;

• 15 residues r3 ∈ [0, 52) such that a(`) ≡ b(`) ≡ 0 mod 52 iff ` ≡ r3 mod 52.

Here we see that a(`) ≡ b(`) ≡ 0 mod 32 for all ` ∈ Z (this can be seen immediately by
looking at the expression for a(x) above), so we can ignore the factor of 32 and work with
the effective denominator C′ = 2652 = 1600. Of the 1600 possible residues in [0, 2635), we
only search over the 40 · 15 = 600 values of ` that will produce a(`) ≡ b(`) ≡ 0 mod C′. In
this case the list of residues is small enough that we can simply store them once and for all
and avoid recomputing them on the fly with the CRT at runtime. However, many of the
PTE solutions we use have much larger denominators and a much smaller proportion of
residues to be searched over, and in these cases storing residues modulo each prime power
and then using the CRT on the fly is much faster than looking up the full set of residues
(modulo C) in one huge table.

For ease of exposition, we ignored this in the above example. Returning to Figure 7.1,
we point out that none of the four values that were checked prior to finding the solution
(i.e., ` = 5170314186700 + t with t ∈ {47, 50, 52, 54}) are such that a(`) ≡ b(`) ≡ 0 mod C.
In fact, none of the other smooth `’s depicted in Figure 7.1 have this property; the previous
smooth ` that does is ` = 5170314186728, so in practice we would have advanced straight
from this ` to the successful one.

Remark 19. Since the degree of a and b is even, negative values for ` will lead to valid
positive twin smooth integers and possibly a corresponding prime sum. Negative values
can be taken into account by considering the flipped solution (as defined at the end of Sec-
tion 7.3.1). Because the solution considered here is symmetric, any pattern corresponding
to a negative value also occurs for a positive value.

7.5.2 Sieving with many PTE solutions

We now turn to illustrating the full sieving algorithm that combines many PTE solutions
into one search. The degree 6 sieves we used in practice combined hundreds of PTE solu-
tions into one search (see Table 7.2), but for ease of exposition we will illustrate using the
first 20 solutions (ordered by the size of the constant). These range from the solution S1,
which has C = 14400 = 26 · 32 · 52, to S20, which has C = 13305600 = 28 · 33 · 52 · 7 · 11.
These solutions are listed below.
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S1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15]; S2 : [0, 5, 6, 16, 17, 22] =5 [1, 2, 10, 12, 20, 21],

S3 : [0, 4, 9, 17, 22, 26] =5 [1, 2, 12, 14, 24, 25], S4 : [0, 7, 7, 21, 21, 28] =5 [1, 3, 12, 16, 25, 27],

S5 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28], S6 : [0, 5, 13, 23, 31, 36] =5 [1, 3, 16, 20, 33, 35],

S7 : [0, 8, 9, 25, 26, 34] =5 [1, 4, 14, 20, 30, 33], S8 : [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35],

S9 : [0, 9, 11, 29, 31, 40] =5 [1, 5, 16, 24, 35, 39], S10 : [0, 8, 11, 27, 30, 38] =5 [2, 3, 18, 20, 35, 36],

S11 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40], S12 : [0, 6, 17, 29, 40, 46] =5 [1, 4, 20, 26, 42, 45],

S13 : [0, 7, 14, 28, 35, 42] =5 [2, 3, 20, 22, 39, 40], S14 : [0, 10, 13, 33, 36, 46] =5 [1, 6, 18, 28, 40, 45],

S15 : [0, 9, 17, 34, 36, 46] =5 [1, 6, 24, 25, 42, 44], S16 : [0, 9, 14, 32, 37, 46] =5 [2, 4, 21, 25, 42, 44],

S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49], S18 : [0, 11, 15, 37, 41, 52] =5 [1, 7, 20, 32, 45, 51],

S19 : [0, 7, 21, 35, 49, 56] =5 [1, 5, 24, 32, 51, 55], S20 : [0, 12, 13, 37, 38, 50] =5 [2, 5, 22, 28, 45, 48].

In regards to Remark 18, recall from Section 7.4 that each PTE solution has a different
constant C and thus a different set of residues. In general these residues are incompatible
with one another, so we choose to ignore them until the sieve identifies candidate pairs
(`, Si), at which point we only mark the pair as a solution if the corresponding polynomials
have a(`) ≡ b(`) ≡ 0 mod C.

Now, recall from Section 7.4 that our sieving tree is built by recursively identifying
hitting sets among the set of solutions, and then removing the corresponding element in
the hitting set from each solution. The first hitting set is (always) {0}, which is the root of
our tree. After removing 0 from all of the solutions, we see that the next hitting set is {1, 2};
some PTE solutions contain both 1 and 2, but 1 appears in more solutions than 2 does, so
the solutions S2 and S3 occur in the branches that fall beneath 1 in the tree. Repeating this
process produces the tree in Figure 7.2. Note that this is a precomputation that is done
once-and-for-all before the sieve begins.

Again we target 2240 ≤ m < 2256 by searching with 242 ≤ ` < 245, set our smoothness
bound as B = 216, and alternate between identifying the B-smooth numbers in intervals
of size 220 = 1048576, processing each interval by advancing through all of the set bits
(smooth numbers) within it. Write `i = `− i as before. Here the hitting set has only two
elements, so given that the probability of smoothness is roughly ρ(42/16) ≈ 0.103, most
of the time we will only need to check two neighboring bits (`1 and `2) before discarding
each candidate `.

Viewing Figure 7.2, we traverse the tree by moving down the levels and processing
each subsequent hitting set from left to right. If, at any stage, we find a smooth number,
we immediately move down a level and process the numbers branching beneath it. We
are only permitted to move up a level and continue to the right once the entire hitting set
at a given level has been checked. Finally, if at any stage we arrive at a leaf and find that
all of the remaining numbers are smooth, we then identify this solution as a candidate. At
this stage we check whether a(`) ≡ b(`) ≡ 0 mod C, in which case we have found twin
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Figure 7.2: A sieving tree for 20 example PTE solutions. Further explanation in text.

smooth integers, and then optionally check whether their sum is a prime, in which case
we have found cryptographically suitable parameters.

After some time, our sieve advances to the B-smooth number

`0 = 5435932476400 = 24 · 52 · 199 · 4817 · 14177.

In this case the subsequent set of ordered checks made in traversing the tree in Fig-
ure 7.2 are given below (we use 3 to indicate that `i is B-smooth, 7 otherwise). Checking
the entire leaf marked S17 is combined into Check 5 for brevity; the remaining values here
are `i with i ∈ {9, 20, 30, 34, 41, 44, 49, 50}.

Check 1. `1 3 Check 2. `16 3 Check 3. `5 7 Check 4. `3 7

Check 5. S17 3 Check 6. `4 7 Check 7. `6 3 Check 8. `36 7

Check 9. `7 7 Check 10. `2 7

At the conclusion of Check 5, we now know that all of the elements in

S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49]

are smooth, and thus we have found a candidate solution. Checks 6–10 are included to
show how the sieve continues. It remains to check whether ` = 5435932476400 gives
a(`) ≡ b(`) ≡ 0 mod C, when

a(x) = x(x− 9)(x− 16)(x− 34)(x− 41)(x− 50)
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and

b(x) = (x− 1)(x− 6)(x− 20)(x− 30)(x− 44)(x− 49).

are such that C = 7761600. In this case we do find that a(`) ≡ 0 mod C (which is suffi-
cient), so we know that

m = `0`9`16`34`41`50/C and m + 1 = `1`6`20`30`44`49/C

are both B-smooth integers. Indeed, factoring reveals that

m = 25 · 34 · 52 · 109 · 173 · 199 · 233 · 571 · 677 · 743 · 1303 · 2351 · 2729

· 3191 · 4817 · 12071 · 12119 · 14177 · 16979 · 30389 · 37159 · 39979, and

m + 1 = 13 · 17 · 23 · 31 · 61 · 103 · 263 · 643 · 1153 · 1429 · 1889 · 2213 · 3359

· 5869 · 7951 · 9281 · 18307 · 28163 · 34807 · 41077 · 41851 · 64231.

In this case 2m + 1 is the product of two large primes, so a sieve for cryptographic para-
meters would continue by advancing to the next smooth `0 in the interval.

7.6 Cryptographic examples of twin smooth integers

We implemented the sieve including the tree structure for searching with multiple PTE
solutions in Python 3.8 and used it to run our experiments. The code takes as input the
left and right bounds of a desired interval to be searched, a size for the sub-intervals that
are processed by the sieve at a time, as well as a smoothness bound and a list of PTE
solutions. It then computes the PTE solution search tree and starts the sieve as described
in Sections 7.4 and 7.5. Another input is a desired number of threads, between which the
interval is divided and then run on the available processors in a multi-processing fashion.

After examining the PTE solution counts in Table 7.2 and the smoothness probabilities
in Table 7.3, we chose to launch a sieve with 520 PTE solutions of size n = 6 that searched
` ∈ [240, 245] with a smoothness bound of B = 216 and intervals of size 220. The 520
solutions are all the ones we found that have a constant of at most 38 bits. The first hitting
set of the PTE solutions had cardinality 13, and the Dickman–de Bruijn function estimates
that the proportion of B-smooth numbers in our interval is ρ(45/16) ≈ 0.0715. The search
ran on 128 logical processors (Intel Xeon CPU E5-2450L @1.8GHz) for just over a week
before the entire interval was scanned.

Table 7.4 reports one of the cryptographic primes that was found with our sieve for
each bitlength between 240 and 255 (excluding 251, 253 and 254, for which no primes
were found), and compares it to the primes found with prior methods in the literature.
For the primes found using PTE solutions, we give the search parameter ` together with
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the corresponding PTE solution, which is one of

S1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15],

S2 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28],

S3 : [0, 7, 33, 47, 73, 80] =5 [3, 3, 40, 40, 77, 77],

S4 : [0, 11, 24, 46, 59, 70] =5 [4, 4, 35, 35, 66, 66],

S5 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40].

For each prime we report the smoothness bound B, which is the largest prime divisor of
(p− 1)(p + 1), together with its bitlength. In the case of the 241- and 250-bit primes, we
see that B < 215. The smallest prior B corresponding to primes of around this size was
the 19-bit B = 486839 from [44]. Referring back to Table 7.3, we see that a search through
an interval of this size should find a few twin smooth integers with B < 215, but finding
enough twin smooths with B < 214 to hope for a prime sum among them may have been
out of the question.

To check whether n = 6 produces the smoothest twins of this size (as Table 7.3 pre-
dicts), we ran similar sieves using the 8 PTE solutions with n = 7 and the 51 PTE solutions
with n = 8 with B = 218, and in both cases we covered the full range of possible inputs
that would produce a p < 2256. Despite finding a handful of twin smooth integers with
B < 217, the search spaces were not large enough to find any primes among them.

As future work, we will be launching sieves that target N = 2384 and N = 2512. A
small search with degree 6 found some example primes whose neighbors are 224-smooth,
e.g. the 384-bit prime obtained with S1 above for ` = 73786976891204925015, but Table 7.3
suggests that the degree 8 PTE solutions will have a better chance of success at this level.

7.7 Relaxations and modifications

There are numerous ways to modify our sieving approach for performance reasons, or to
relax the search conditions in order to precisely match the security requirements imposed
by B-SIDH or SQISign.

Approximate sieves. There are several sieving optimizations discussed in [55, §3.2.5–3.3]
that can be applied to the sieving phase of our algorithm. For large scale searches, it could
be preferred to sacrifice the exactness of the sieve we implemented for more performant
approximate sieves. For example, the smallest primes are the most expensive to sieve with
due to the large number of multiplications. Thus, an approximate sieve can choose to skip
these small primes (but still include the larger prime powers) and choose to tag numbers
as being B-smooth as soon as the result is close enough to the expected number. This
requires to choose an error bound, which also determines if and how many false positive
and false negative results are going to occur.
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Table 7.4: A comparison between some of the best instances found with our sieve and the
best instances from the literature. Further explanation in text.

method where p (bits) B dlog2 Be

XGCD [13, App. A] 256 6548911 23

p = 2xn − 1

[44, Ex. 5] 247 652357 20

[44, Ex. 6] 237 709153 20

[44, Ex. 7] 247 745309897 30

[44, Ex. 8] 250 486839 19

PTE sieve

19798693013832 S3 240 54503 16

5170314186755 S1 241 32039 15

24924102654286 S4 242 62501 16

6781477697051 S1 243 59557 16

32519458118257 S3 244 64591 16

18675743644600 S5 245 57457 16

9244655038011 S1 246 63803 16

20173246926702 S2 247 40289 16

22687888853658 S2 248 59497 16

26042586248980 S2 249 53959 16

36144284257450 S5 250 32191 15

19052682871080 S1 252 48733 16

27071078665441 S1 255 52069 16

A standard approach for sieving algorithms is discussed by Crandall and Pomerance
[55, §3.2.5]. This approach replaces multiplications by additions in Eratosthenes-like sieves
by choosing to represent numbers as their base-2 logarithms. Moreover, sieves can use ap-
proximate logarithms, i.e., round these logarithms to nearby integers and tolerate errors in
the logarithms; for example, if we choose to tolerate errors up to log B, then we are guar-
anteed that factors that are unaccounted for in the approximation are also less than the
smoothness bound [55, p. 124]. Rather than accumulating products, we are then accumu-
lating sums of relatively small integers. We have experimented with using approximate
logarithms, but were not able to notice an improvement in our implementation when us-
ing this technique. This is probably due to our use of Python and the fact that all numbers
we considered in our experiments were small enough to fit in a 64-bit machine word. A
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more aggressively tuned implementation (e.g. a fine-grained C implementation) will most
likely gain a substantial speedup in this case.

Recall from Section 7.4.2 that when a single PTE solution is used we are only interested
to sieve the subset of integers for which a(`) ≡ b(`) ≡ 0 mod C. In this case it may be
preferable to employ Bernstein’s batch smoothness algorithm [8]; this can be used to gain
a better overall complexity (per element) when sieving through an arbitrary set.

Lastly, we point out that the set of primes used in the factor base can be tailored to our
needs. For example, if future research reveals that certain types of prime isogeny degrees
are favored over others (i.e., when invoking the Õ(

√
`) algorithm from [13]), then it may

be preferable to increase the bound B and only include those primes in our sieve.

Non-smooth cofactors vs. fully smooth numbers. The security analyses of B-SIDH or
SQISign suggest that both systems can tolerate a non-smooth cofactor in either or both
of p − 1 and p + 1. In these cases, relaxing conditions in the second part of our sieve to
allow non-smooth cofactors is straightforward. When searching with PTE solutions of
size n, we could e.g. only require n − 1 of the factors on each side to be B-smooth. The
naïve way to do this when traversing the tree would be to incorporate a counter that only
allows branches to be discarded when two non-smooth numbers have been discovered,
but this approach makes things unnecessarily complicated and significantly slower, e.g. it
no longer suffices to start the sieving procedure at each ‘1’ in the interval, since `0 is now
allowed to be non-smooth.

A much better approach can be taken by simply creating many relaxed PTE solutions
from the original solutionA =n−1 B, and including them in the solution tree. For example,
if the security analysis corresponding to a search with n = 6 suggests we only need 5
smooth factors from each side of the PTE solution, then the solution [0, 7, 11, 25, 29, 36] =5

[1, 4, 15, 21, 32, 35] can be modified into 36 relaxed solutions, each of which corresponds
from wiping out one number from A and one number from B; these new solutions only
include 10 distinct elements. By building a tree from these solutions and running the same
algorithm as in Section 7.4, we are effectively allowing for one of the factors of the original
solution to be non-smooth. The only minor modification required appears when 0 is wiped
out from a solution, in which case we have to shift all elements such that the new solution
contains 0, by the means of Proposition 8. We reiterate that all of these modifications are
a one-time precomputation before the sieve begins. In the case of the PTE solutions with
repeated factors, e.g. [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15], we may not be able to tolerate
a non-smooth cofactor that would arise from removing any of 1, 8 or 15 from the PTE
solution. On the other hand, if the security analysis does permit such a cofactor (which
appears to be the case for SQISign), then our relaxed solutions would either remove one
of the repeated numbers from B, or two of the numbers from A; the latter would have
a better success probability, but (assuming the hitting set remains unchanged) our tree
approach would not pay any noticable overhead by including all such relaxations.
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7.8 Conclusion

In this chapter we have introduced a new method for searching for twin smooth integers,
which can potentially be used for the instantiation of the isogeny-based primitives B-SIDH
[44] and SQISign [62]. Our method uses solutions to the PTE problem, which give rise to
fully split polynomials that differ by constants. Although our results outperform prior
attempts to find such numbers, we mainly focused on the lowest security level, i.e., num-
bers of roughly 256 bit. It thus remains an open task to conduct similar searches for higher
security levels.

Another open task is to adapt our searches to the exact requirements of B-SIDH or
SQISign as described in Section 7.7, and run the corresponding searches. This might lead
to parameters that outperform the ones found in this chapter when used in practice.
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Conclusion

We briefly recall the contributions of this thesis and follow-up work, and discuss open
problems and research directions in the context of the topics of this thesis.

The first part of this thesis aimed at providing efficient and side-channel resistant im-
plementations of CSIDH. In particular, we improved the efficiency of the involved compu-
tations (Chapter 3), provided an efficient constant-time implementation (Chapter 4), and
reviewed practical fault injection attacks, their impact, and countermeasures (Chapter 5).

As presented in Section 3.6, other approaches to compute isogenies have recently been
proposed; Bernstein et al. described a faster method to compute large degree `-isogenies
with an asymptotic complexity of Õ(

√
`), which outperforms earlier approaches already

for degrees in the range of 100 [13]. On the other hand, small degree isogenies can be
computed in a deterministic way [33], i.e., without the need for sampling suitable points
for each isogeny, and 2-isogenies can be used in CSIDH when moving to the surface of the
isogeny graph [32]. Although constant-time implementations of CSIDH using the isogeny
formulas from [13] have been studied in [2], it remains an open task to implement CSIDH
including all these speedups, and determine where the optimal crossover points for using
the respective isogeny approaches lie. Furthermore, it remains an open question which
algorithmic approach for constant-time implementations achieves the best performance
when combined with optimized isogeny computations; i.e., if the optimal strategy ap-
proach from [39] still outperforms SIMBA-based approaches as described in Chapter 4
and used in [113, 122, 37] when small degree isogenies are computed deterministically, or
if even better constant-time approaches can be found.

Moreover, it is an important task to study further practical side-channel attacks on
different CSIDH implementations, as e.g. initiated in Chapter 5, in order to take a step
towards real-world applications. On the other hand, also more analysis on the exact
quantum security of CSIDH is required. A major obstacle for this currently is the am-
biguous definition of quantum security levels, which allow several interpretations of the
security achieved by a certain CSIDH parameter set.

In Chapter 6 we defined threshold encryption and signature protocols based on CSIDH
[35] and CSI-FiSh [19]. These schemes achieve a relatively fast performance, but are only
secure in the rather weak honest-but-curious adversary model. As explained in Section 6.5,
this is mitigated in [54] by using zero-knowledge proofs, which however leads to a far
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worse performance. Furthermore, [18] introduced a robust and actively secure method to
generate keys in a distributed way.

An open problem in this area certainly is to find threshold protocols that achieve
both better security features than the protocols from Chapter 6, and a faster performance
than the follow-up protocols from [54, 18]. Further, these protocols require the respective
class group structure to be known, which currently limits the practical application to the
CSIDH-512 parameter set. Thus, it is a natural question if progress in this area can make
the computation of larger class groups feasible.

Apart from threshold protocols, the unique features of the group action underlying
CSIDH allow for many more advanced protocols. In [3] a framework based on group
actions is given, which allows for the simple usage of various hardness assumptions from
isogeny-based cryptography in advanced protocols. As an example this framework is
used to define isogeny-based smooth projective hashing, dual-mode PKE, two-message
statistically sender-private OT, and Naor-Reingold style PRF.

Chapter 7 discussed the question of how to set up the recent isogeny-based key ex-
change B-SIDH [44] and the signature scheme SQISign [62]. In particular, both schemes
require a large prime p, for which (large factors of) p + 1 and p− 1 are as smooth as pos-
sible. We made use of the PTE problem to obtain pairs of fully split polynomials with
constant differences, and explained how they can be used to search for such primes.

Although our results significantly improve earlier results from [44, 13, 62], there is no
reason to conclude that our search method is optimal. Moreover, we mainly restricted to
NIST level 1 parameters, which means that searches for larger parameters still have to be
conducted. When targeting primes for a specific protocol, i.e., either B-SIDH or SQISign,
one can adapt our PTE method to meet the exact requirements of this protocol, which
might lead to better results than the general purpose searches conducted in this thesis.

In a nutshell, isogeny-based cryptography provides promising tools for the design
of quantum-resistant primitives. While SIDH/SIKE resp B-SIDH allow for efficient and
very compact key exchange and key encapsulation, isogeny group actions allow for defin-
ing many more advanced protocols. Thus, compared to other post-quantum approaches,
isogeny-based cryptography has the advantage of small keys and signatures, and its ap-
plicability to many different protocols, while being at least an order of magnitude slower
than other post-quantum schemes, and having relatively new hardness assumptions. Im-
portant tasks for future work are therefore given by efficiency improvements, both for
improving existing primitives and finding new, more efficient protocols, as well as se-
curity analyses that strengthen the confidence in the hardness of the underlying isogeny
problems.
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Notation

The following lists contain symbols resp. acronyms (except for names of cryptographic
schemes) used throughout this thesis in an alphabetical order. Note that the notation from
different chapters overlaps in some cases; these will be explicitly assigned to the corres-
ponding chapters.

Symbols

[m] the multiplication-by-m map for points on elliptic curves.
∞ the point at infinity on an elliptic curve.
A a polynomial-time adversary (in Chapter 6).
A,B multisets of integers (in Chapter 7).
An affine space of dimension n.
a(x), b(x) polynomials that split in Z[x] and differ by a constant.
a, M, S, I costs for a field addition, multiplication, squaring, inversion.
a, b, g, . . . ideals resp. elements of a group G.
B a smoothness bound (in Chapter 7).
char(K) the characteristic of a field K.
cl(O) the ideal class group of O.
deg ψ the degree of a map ψ.
E a hard homogeneous space.
E an elliptic curve.
E(K) an elliptic curve over K.
E[m] the m-torsion of an elliptic curve E.
È `p(O, π) the set of supersingular elliptic curves over Fp with EndFp(E) ∼= O.
End(E) the endomorphism ring of an elliptic curve E.
EndFq(E) the Fq-rational endomorphism ring of an elliptic curve E.
Fq a finite field of q elements.
FT an ideal functionality.
G a group acting on a hard homogeneous space.
GE,K,` the `-isogeny graph of the isogeny class of the elliptic curve E over K.
H a hash function (in Chapter 6).
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H a hitting set (in Chapter 7).
j(E) the j-invariant of an elliptic curve E.
K a field.
K the algebraic closure of a field K.
ker ψ the kernel of a map ψ.
LS

l,i a Lagrange interpolation polynomial.
l, l̄ prime ideals.
O, Õ big O complexity notation.
O an order of an imaginary quadratic field.
P, Q, R points on an elliptic curve.
Pn projective space of dimension n.
Pi a participant of a threshold scheme.
π the Frobenius endomorphism (in Chapters 1-6).
π(x) the number of primes p ≤ x (in Chapter 7).
ϕ an isogeny.
Ψ(N, B) the number of positive B-smooth integers x ≤ N.
Q the field of rational numbers.
R the field of real numbers.
ρ the Dickman–de Bruijn function.
S the set of participants of a threshold scheme.
S a simulator.
T the trusted dealer in a threshold scheme.
Z the ring of integers.
Z/nZ the ring of integers modulo n.

Acronyms

CRT Chinese Remainder Theorem.
DADD differential addition.
DKG distributed key generation.
ECC elliptic curve cryptography.
GCD greatest common divisor.
HHS hard homogeneous space.
KEM key encapsulation mechanism.
NIST National Institute of Standards and Technology.
OT oblivious transfer.
PKE public-key encryption.
PQC post-quantum cryptography.
PTE Prouhet-Tarry-Escott problem.
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PRF pseudorandom function.
SIMBA splitting isogenies into multiple batches.
UF-CMA unforgeability under chosen-message attacks.
XGCD extended Euclidean algorithm.
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Abstract

This thesis aims at providing efficient and side-channel protected implementations of
isogeny-based primitives, and at their application in threshold protocols. To this end,
Chapter 1 introduces the topic and Chapter 2 provides the necessary background on el-
liptic curves, isogenies, and cryptographic protocols. The remainder of this thesis is based
on a sequence of academic papers.

• Chapter 3 reviews the variable-time proof-of-concept implementation of CSIDH as
published in [35] and introduces several optimizations. We restructure the algorithm
in order to significantly reduce the cost for the required scalar multiplications. Fur-
thermore, we show that the isogeny computations based on Montgomery curves
from [35] can be significantly improved by using both Montgomery and twisted Ed-
wards curves. In total, these improvements yield a speedup of 25% compared to the
variable-time implementation from [35]. The content of this chapter was published
in [114].

• Chapter 4 presents the first practical constant-time implementation of CSIDH. We
describe how the variable-time implementations from [35, 114] leak information on
the private key; in particular, this concerns the total number of isogenies and the
sign distribution of the private key entries. We describe how this can be mitigated
by using dummy isogenies and sampling only non-negative key elements, which
leads to a significant slowdown in a straightforward implementation. However, we
present several techniques to speed up the implementation, such as SIMBA, which
processes the isogeny computations in separate batches. In total, our constant-time
implementation achieves a rather small slowdown by a factor of 3.03 compared to
the variable-time implementation from [114]. The content of this chapter was pub-
lished in [113].

• Chapter 5 reviews practical fault injection attacks on CSIDH and presents coun-
termeasures. While [37] presents a dummy-free constant-time implementation of
CSIDH at the cost of a twofold slowdown, implementations that utilize dummy-
isogenies [113, 122] are naturally vulnerable to fault injection attacks. We evaluate
different attack models theoretically and practically, using low-budget equipment.
Moreover, we present countermeasures that mitigate the proposed fault injection

167



168 Bibliography

attacks, only leading to a small performance overhead of 7%. The content of this
chapter was published in [31].

• Chapter 6 initiates the study of threshold schemes based on the Hard Homogeneous
Spaces (HHS) framework of Couveignes [51]. Although CSIDH as defined in [35] is
not a HHS in the strictest sense, the record class group precomputation performed
for the signature scheme CSI-FiSh [19] provides a strict HHS for the CSIDH-512 para-
meter set. Using the HHS equivalent of the technique of Shamir’s secret sharing in
the exponents, we thus adapt isogeny based schemes to the threshold setting. In par-
ticular, we present threshold versions of the CSIDH public key encryption, and the
CSI-FiSh signature schemes. The main highlight is a threshold version of CSI-FiSh
which runs almost as fast as the original scheme, for message sizes as low as 1880 B,
public key sizes as low as 128 B, and thresholds up to 56; other speed-size-threshold
compromises are possible. The content of this chapter was published in [63].

• Chapter 7 gives a sieving algorithm for finding pairs of consecutive smooth numbers
that utilizes solutions to the Prouhet-Tarry-Escott (PTE) problem. Any such solution
induces two degree n polynomials, a(x) and b(x), that differ by a constant integer C
and completely split into linear factors in Z[x]. We describe how such polynomials
can be used to search for twin smooth integers. The motivation for finding large twin
smooth integers lies in their application to compact isogeny-based post-quantum
protocols, namely B-SIDH [44] and SQISign [62], which both require large primes
that lie between two smooth integers. Finding such a prime can be seen as a special
case of finding twin smooth integers under the additional stipulation that their sum
is a prime p. When searching for cryptographic parameters with 2240 ≤ p < 2256, an
implementation of our sieve found primes p where p + 1 and p− 1 are 215-smooth;
the smoothest prior parameters had a similar sized prime for which p− 1 and p + 1
were 219-smooth. The content of this chapter was published in [49].
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