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Abstract: Freely available satellite data at Google Earth Engine (GEE) cloud platform enables
vegetation phenology analysis across different scales very efficiently. We evaluated seasonal
and annual phenology of the old-growth Hyrcanian forests (HF) of northern Iran covering an
area of ca. 1.9 million ha, and also focused on 15 UNESCO World Heritage Sites. We extracted
bi-weekly MODIS-NDVI between 2017 and 2020 in GEE, which was used to identify the range
of NDVI between two temporal stages. Then, changes in phenology and growth were analyzed
by Sentinel 2-derived Temporal Normalized Phenology Index. We modelled between seasonal
phenology and growth by additionally considering elevation, surface temperature, and monthly
precipitation. Results indicated considerable difference in onset of forests along the longitudinal
gradient of the HF. Faster growth was observed in low- and uplands of the western zone, whereas
it was lower in both the mid-elevations and the western outskirts. Longitudinal range was a major
driver of vegetation growth, to which environmental factors also differently but significantly
contributed (p < 0.0001) along the west-east gradient. Our study developed at GEE provides a
benchmark to examine the effects of environmental parameters on the vegetation growth of HF,
which cover mountainous areas with partly no or limited accessibility.

Keywords: Hyrcanian forest; NDVI; phenology; Sentinel-2; TNPI; World Heritage Sites; Google
Earth Engine

1. Introduction

Studying seasonal or inter-annual phenology is among the most significant topics in
forest ecosystems, with multiple implications for both research and practice. As a result,
phenological research aims to study ecosystem behavior in relation to climatic or environ-
mental changes [1,2] and thus, the results play an important role in ecosystem management
in response to its long-term, inter-annual, or seasonal variabilities. Remote sensing data
and methods have been numerously employed to mimic phenological behavior and fluctu-
ations, often as the most efficient and practical methods for gaining a better understanding
of vegetation phenology dynamics at regional and global scales [3,4].

Optical satellite remote sensing provides information for studying large-scale forest
changes in near real-time with a comparable spatial and higher temporal resolutions
compared with field surveys, which are often constrained by logistics and difficult-to-
access terrain. Among the available methods, those based on broadband vegetation
indices (VIs) derived from multispectral data have been widely used [5–7] for vegetation
classification [8], phenological monitoring [9], change detection [10], and the retrieval of
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forest biophysical and structural attributes [11]. Since 2015, the Sentinel-2 archive has
provided continuous imaging information on the Earth’s surface, with which researchers
have lately begun to investigate ecosystem changes, inter alia using approaches based
on common broadband VIs. For vegetation-related studies, the normalized difference
vegetation index (NDVI) is the most common and commonly used metric [12,13]. The
reader is referred to [14] for a synthetic review of NDVI, including its origin, availability,
advantages, and limitations.

Statistical approaches based on time series analysis of VIs from satellite data have
been widely applied to track changes in forest and land cover dynamics in respect to their
spectral reflectance from the vegetation overstorey. Other factors such as land surface
temperature, rainfall, terrain, and soil quality were thought to be significant contributors to
changes in vegetation health [15] and can be coupled with VIs for phenology monitoring
over forest ecosystems. NDVI provides information about vegetation greenness, which
records photosynthesis activity of a plant or tree leaves [16]. To understand change in
photosynthesis activity between different seasons or vegetation growth cycle, change
in NDVI values may not be sufficient for the entire temporal sequence of a vegetation
growth period [9,17,18]. To solve this numerical limitation of NDVI, a new measure called
the temporal normalized phenology index (TNPI) was proposed and recommended as a
superior option for analyzing the temporal phenology cycle between two time steps of the
maximum and minimum plant growth period [9]. Furthermore, with time series Landsat-8
data, the sensitivity of fluctuating NDVI to individual remote sensing-derived topography
components and land surface temperature was effectively tested using TNPI, with the
main benefit that it reduced the need for long-term monthly records to understand the
forest phenology [9].

In this study, we aim to assess a recently developed remote sensing-only approach
based on TNPI to understand the phenology-based vegetation growth and the effects of
temperature, precipitation, and elevation variations on Hyrcanian forests (HF) along its
entire longitudinal gradient. Apart from areas located in the Republic of Azerbaijan, the
old-growth HF are mainly stretched as a thin belt (20–70 km wide and 800 km long) of
mostly broadleaf deciduous forests located between the northern slopes of the Alborz
Mountains and the southern coast of the Caspian Sea (CS) in Iran. They comprise an
altitudinal distribution from the sea level to over 2000 m above sea level [19,20]. Forest
vegetation above 2000 m is gradually replaced by forest/steppe or steppe vegetation in
the form of ecotones, with their extent and altitudinal level controlled by climate, an-
thropology (human settlements/cattle grazing), or both. The three northern provinces
of Guilan, Mazandaran, and Golestan (from west to east) occupy nearly 1.9 million ha
of forests in various qualitative stages from fully degraded to richly stocked stands. In
this realm, the history of HF can reveal remarkable details about past Quaternary veg-
etation of the northern hemisphere. The international attention to HF has been raised
upon the inscription of multiple sites therein as UNESCO Natural Heritages in 2019
(https://whc.unesco.org/en/list/1584/; accessed on 24 July 2021). In addition, several
long-term challenges during the recent decades, including extensive land-use conversions,
cattle grazing by local inhabitants, illegal poaching, illegal harvest, and wood smuggling,
are among the major threats to HF and thus call for their constant monitoring in terms of
structure, composition, and function, also with respect to their phenology.

To this aim, we constrained our analysis to the 15 structurally and compositionally
different sites distributed all over the HF latitudinal and longitudinal range. These sites
correspond to the full list of UNESCO-inscribed sites in 2019. We followed a two-phase
approach starting from Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI
data at 250 m spatial resolution to uncover large-scale phenological patterns and then con-
tinued with Sentinel-2 data on 10 m spatial resolution for local-scale analysis of vegetation
growth. The hypothesis was that the previously proven abilities of the TNPI in highlighting
the phenological patterns when applying Landsat-8 data [9] will be used to understand
the vegetation growth between onset and ending of phenological phases when applying
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the methodology on Sentinel-2 data with higher spatial resolution. A secondary aim was
also to concentrate a major part of the analysis on the cloud-computing capabilities of
Google Earth Engine, which would lead to developing a full remote sensing, GEE-based
workflow for future analyses with potential implications across various geographical scales
and timespans.

2. Materials and Methods
2.1. Subsection

The study areas comprise all 15 UNESCO-inscribed sites distributed across the
8000 km2 of temperate deciduous HF that run along the southern coast of the CS and
through the provinces of Guilan, Mazandaran, and Golestan. (38◦33′45′′ to 56◦11′15′′ E
and 35◦45′ to 38◦26′15′′ N) in northern Iran. The HF expand between the sea level and
approximately 2800 m a.s.l. and are home to ca. 80 different woody species (trees and
shrubs). While in Europe species like Caucasian wingnut (Pterocarya fraxinifolia (Lam.)
Spach), Persian ironwood (Parrotia persica (DC.) C.A. Mey.), and Caucasian zelkova
(Zelkova carpinifolia (Pall.) Dippel) grew in Quaternary Glacial Refugia [21–23], these
and several Arcto-Tertiary tree species are endemic to HF and still occur, including, for
example Boxwood (Buxus sempervirens L.) as the dominant species in the remnants of
HF lowlands, oriental Beech (Fagus Orientalis Lipsky) as the dominant species cover-
ing in the mid- to high-altitudinal zones, Hornbeam (Carpinus Betulus L., Carpinus
orientalis Mill., Carpinus schuschaensis H.J.P. Winkl), Oak (e.g., Quercus Castaneifolia
C.A. Mey, Q. macranthera Fisch. & C.A.Mey), Maple (e.g., Acer Velutinum Boiss., Acer
cappadocicum Gled), Alder (Alnus Glutinosa L. Gaertn and Alnus subcordata C.A.
Mey) and Wild service tree (Sorbus torminalis (L.) Cranz) occurring mostly in mixed
and occasionally in pure stands.

It is distinguished by a varied plant environment and a variety of ecological conditions.
The 15 inscribed sites (Figure 1 and Table 1) reflect the majority of compositional, structural,
and functional variations existing within the HF and are selected due to their unique
characteristics as summarized and evaluated by the International Union of Conservation of
Nature (IUCN) World Heritage Panel progress report [24], to which the reader is referred
for further information on the selection criteria.

Table 1. General characteristics of the 15 UNESCO-inscribed sites across HF shown in Figure 1.

Site Coordinate Annual Mean
Temperature (◦C) Altitude (m) Area (ha)

Golestan (North) 55◦43′27.4′′ E, 37◦25′17.3′′ N 12.40 1004 17,873.18
Golestan (South) 55◦43′32.3′′ E, 37◦20′26.4′′ N 12.58 1034 10,658.08

Abr (East) 54◦56′41.6′′ E, 36◦48′45.3′′ N 11.12 1728 6672.52
Abr (West) 55◦6′3.4′′ E, 36◦48′57.0′′ N 12.04 1134 10,991.08

Jahan Nama 54◦24′5.5′′ E, 36◦39′55.0′′ N −8.68 974 11,339.73
Boola 53◦23′37.5′′ E, 36◦5′55.8′′ N 9.70 1641 17,516.47

Alimestan 52◦24′14.2′′ E, 36◦10′24.9′′ N 10.78 1321 394.30
Vaz (East) 52◦7′30.2′′ E, 36◦16′44.8′′ N 12.78 2713 2218.16
Vaz (West) 52◦3′39.8′′ E, 36◦18′26.9′′ N 10.30 1690 4692.37

Kojoor 51◦40′3.5′′ E, 36◦32′45.7′′ N 12.30 1086 14,891.80
Chahar- Bagh 51◦13′1.7′′ E, 36◦15′30.8′′ N 9.52 1855 6886.44

Khoshk-e-Daran 51◦3′50.3′′ E, 36◦43′38.1′′ N 13.64 8 214.47
Siahroud-e-Roudbar 49◦40′19.3′′ E, 36◦53′59.2′′ N 12.08 988 11,197.40

Gasht Roudkhan 49◦9′9.9′′ E, 37◦3′56.0′′ N 10.19 1280 10,541.13
Lisar 48◦49′56.4′′ E, 37◦56′8.0′′ N 15.06 914 3397.61
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Figure 1. Vector map showing coverage area of UNESCO-inscribed sites across HF.

2.2. Data and Statistics
2.2.1. MODIS NDVI Data

We acquired time series of 250 m Terra MODIS Vegetation Indices (MOD13Q1,
version 6) NDVI provided by the NASA LP DAAC (https://lpdaac.usgs.gov/products/
mod13q1v006/; accessed on 10 July 2021), which is archived in the Google Earth Engine
(GEE) platform (https://earthengine.google.com/, Mountain View, CA, USA; accessed on
10 July 2021). The NDVI follows the basic equation

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρRed and ρNIR correspond to MODIS band 1 (620–670 nm) and band 2 (841–871 nm)
spectral reflectance values. MOD13Q1 is derived from atmospherically corrected bi-
directional surface reflectance imagery and contains VI data as well as the pixel reliability
layer required for quality checking [25]. We computed 16-days NDVI maximum composite
values for the selected sites using the JavaScript code editor in the GEE platform from 2017
to 2020. We extracted time series mean NDVI values for the selected 15 World Heritage
forest polygons within the Hyrcanian forests. We selected a time period of 4 years to
understand the general phenology pattern of each forest site.

2.2.2. Sentinel-2 Data

Sentinel-2 is a wide-swath, high-resolution, multispectral imaging mission with a
global 5-day revisit frequency. The Sentinel-2 Multispectral Instrument (MSI) samples
13 spectral bands: visible and NIR at 10 m, red-edge and SWIR at 20 m, and atmospheric
bands at 60 m spatial resolution. We selected Level-2A surface reflectance product available
at GEE and computed NDVI. This corresponded to a processed dataset made available
from European Space Agency at GEE cloud platform.

https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://earthengine.google.com/
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2.2.3. Elevation Data

A Shuttle Radar Topography Mission (SRTM)-based digital elevation model (DEM)
was used to extract the elevation information of HF [26]. We used SRTM version 4 tagged
data available on GEE, with the spatial resolution of 90 m, orthorectified and preprocessed
by the data provider.

2.2.4. NDVI Curve Fitting

Time series MODIS NDVI was fitted with a double-logistic function

f(x) = NDVImin + (NDVImax −NDVImin)×
(

1
1+exp(−slope1×(t−SOS))

)
+

(
1

1+exp(slope2×(t−EOS)) − 1
)

(2)

where NDVImin and NDVImax are the minimum and maximum values measured in the
winter and summer, respectively, start of season (SOS) and end of season (EOS) are the
inflection points when the curve rises and falls, and slope1 and slope2 are the rates of
increase and decrease of the curve at the inflection points (Figure 2) [27,28]. This function
describes asymmetrical patterns, leading to a reliable estimation of the trajectory in canopy
greenness [27]. We extracted phenology parameters based on the 4 years of time series
data. Length of growing season (LOS) was computed by calculating the difference between
SOS and EOS [28].
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2.2.5. Computation of TNPI from Multi-Temporal NDVI

We selected Sentinel-2 datasets between 2017 and 2020 for two different months
defining the maximum and minimum values from the MODIS NDVI-derived SOS and
EOS phenology parameters of each forest site. Each monthly composite dataset included
filtering and cloud-masking for the selected dates. Sentinel-2 image collections comprised
NIR and Red spectral bands at 10 m spatial resolution that were used for the computation
of the NDVI.

We computed the Temporal Normalized Phenology Index (TNPI) [9] to quantify the
change in trajectories of NDVI during two-time steps of the vegetation growth cycle. TNPI
can be computed between two NDVI images and represents changes that occurred between
two phenological growth stages of each selected forest site. Khare et al. (2017) proposed
the TNPI concept as follows:

TNPI =
NDVIMax −NDVImin

NDVIMax + NDVImin
(3)
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In this case, we considered the time between SOS and EOS, where NDVI corresponds
to SOS and EOS date of each forest site identified previously using MODIS data. Therefore,
in this case, TNPI will represent the vegetation growth period of individual forest sites.
The modified TNPI equation will be as follows:

TNPIGrowth =
NDVIEOS −NDVISOS

NDVIEOS + NDVISOS
(4)

We computed TNPIGrowth for the entire HF both (1) using MODIS NDVI data to
understand the general pattern of vegetation growth at coarser spatial resolution, and
(2) using high spatial resolution Sentinel-2 NDVI data over the selected 15 forest polygons
for spatially detailed investigation.

2.2.6. Precipitation Data

We used the GEE platform to extract precipitation chronologies from ERA-5
monthly averages (5th generation) and understand the effect of precipitation on vegeta-
tion growth. This is climate reanalysis data provided by ECMWF (European Centre for
Medium-Range Weather Forecasts) with a spatial resolution of 31 km [29]. We extracted
precipitation data by averaging the time period between 2017 and 2020 for SOS and
EOS months separately (Equation (2)). The change in precipitation (∆PP) was computed
using the following equation:

∆PP = PPEOS − PPSOS (5)

where PPEOS is precipitation at the EOS and PPSOS is the precipitation at the SOS.

2.2.7. MODIS Land Surface Temperature Data

We used the GEE platform to extract MODIS average 8-day land surface temperature
(LST) (MOD11A2 version 6, 1 km spatial resolution) data to understand the effect of
temperature on vegetation growth. We extracted LST by averaging the time period between
2017 and 2020 for SOS and EOS months separately (Equation (2)). The change in LST (∆LST)
was computed using the following formula:

∆LST = LSTEOS − LSTSOS (6)

2.2.8. Grouping Analysis

We initially studied the effect of environmental factors of elevation, LST, and precip-
itation on vegetation growth for MODIS-based TNPIGrowth covering the entire range of
HF along the west-east gradient. We randomly generated 1000 sample points and then
extracted longitude, raster data values of MODIS based TNPIGrowth, elevation, LST, and
precipitation using the point sampling tool in QGIS version 3.16 [30]. To identify the
longitudinal changes in the vegetation growth and the effects of the above-mentioned
environmental factors, exploratory cluster analysis was conducted on 1000 locations using
the Grouping Analysis tool within ArcMap version 10.7 [31]. This tool uses a K-means
algorithm to find a solution where different parameters are grouped together such that
attributes within one group are possibly similar, while groups are possibly different from
each other [32].

2.2.9. Modelling Sentinel-2-Derived TNPI Growth with Environmental Factors

HF are mainly stretched in the longitudinal direction (Figure 1), thus, the 15 inscribed
forest sites were divided into three forest zones (Figure 1): (i) the west forest (11, 12, 13, 14,
15), (ii) the east forest (1, 2, 3, 4, 5), and (iii) the middle forest (6, 7, 8, 9, 10). We randomly
generated 100 sampling points within each forest shapefile and then extracted raster
data values of elevation, LST, precipitation, and Sentinel-2-based TNPIGrowth using the
procedures described in Section 2.2.8. The extracted values were combined and categorized
for each forest zone.
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We used these extracted values to model TNPIGrowth by multiple regressions as a
function of elevation, LST, and precipitation for the west, east, and middle forest zones
separately. A global ordinary least squares (OLS) model was first developed for each forest
zone utilizing TNPIGrowth as the response variable. Elevation, ∆PP, and ∆LST were all
included as explanatory factors. A second-order polynomial form was used to express each
global model:

Y = ∝ + β1Elevation + β2∆PP + β3∆LST + β4Elevation× ∆PP + β5Elevation× ∆LST + β6∆PP× ∆LST + ε (7)

where Y represents the response variable (TNPIGrowth), α is the intercept, β1 . . . β6 are
regression coefficients of the respective explanatory variables, and ε is the random error
term. In addition to using each predictor (elevation, ∆PP, and ∆LST) as a factor, these
predictors were allowed to interact with one another [9,33] to enable including interactions
terms. Each global OLS model was screened in a thorough model selection procedure via
the repeated model fitting of all possible submodels as described by [34]. The second-order
Akaike Information Criterion (AICc) was calculated for each TNPIGrowth model between
the SOS and EOS time points to identify the submodel with the highest AICc [35,36]. The
“MuMin” package in R was applied to calculate the subsets and AICc values and to select
the submodels [34].

3. Results
3.1. Phenology Patterns Derived from MODIS NDVI

The NDVI followed a bell-shaped pattern, with a gradual increase followed by a
decline after a period of time. The NDVI was well-represented by the double-logistic
function throughout the season. On average, eastern forest’s SOS ranged from the last
week of March (DOY 83) to the first week of April (DOY 96) along the longitudinal gradient.
The western forest’s SOS ranged from the last week of March (DOY 85) to mid of April
(DOY 105). Similarly, the middle forest’s SOS ranged from the last week of March (DOY 85)
to the second week of April (DOY 100) (Figure 3, Table 2). This resulted in average SOS
length of two weeks in the eastern forest, 20 days in the western forest, and two weeks in
middle forests.

Table 2. Phenology parameters extracted using the double logistic method for combing time series data between 2017 and
2020 for each forest site using MODIS NDVI data. Site numbering from 1 to 15 corresponds to Figure 1 description of each
World Heritage Site.

Site NDVImin NDVImax SOS EOS Slope 1 Slope 2 LOS RMSE

1 0.354 0.842 90.38 308.08 0.080 0.043 217.70 0.0485
2 0.389 0.830 88.20 307.00 0.095 0.046 218.80 0.0451
3 0.346 0.868 96.09 306.04 0.074 0.034 209.94 0.0614
4 0.455 0.802 84.16 306.30 0.092 0.038 222.14 0.0374
5 0.538 0.852 83.17 310.70 0.107 0.056 227.52 0.0371
6 0.292 0.823 96.89 306.47 0.086 0.050 209.58 0.0565
7 0.286 0.716 85.25 312.78 0.096 0.025 227.53 0.0650
8 0.075 0.574 100.29 304.45 0.083 0.040 204.16 0.0710
9 0.284 0.748 95.32 311.17 0.083 0.041 215.86 0.0811
10 0.445 0.887 89.74 318.04 0.081 0.044 228.30 0.1095
11 0.202 0.713 105.16 283.35 0.056 0.034 178.19 0.0551
12 0.596 0.840 92.69 335.30 0.131 0.044 242.61 0.0357
13 0.364 0.789 85.65 303.98 0.125 0.067 218.33 0.0658
14 0.430 0.876 92.21 300.16 0.087 0.073 207.95 0.0982
15 0.372 0.870 93.95 306.48 0.060 0.045 212.53 0.0942



Remote Sens. 2021, 13, 3965 8 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

Table 2. Phenology parameters extracted using the double logistic method for combing time series data between 2017 and 
2020 for each forest site using MODIS NDVI data. Site numbering from 1 to 15 corresponds to Figure 1 description of each 
World Heritage Site. 

Site NDVImin NDVImax SOS EOS Slope 1 Slope 2 LOS RMSE 
1 0.354 0.842 90.38 308.08 0.080 0.043 217.70 0.0485 
2 0.389 0.830 88.20 307.00 0.095 0.046 218.80 0.0451 
3 0.346 0.868 96.09 306.04 0.074 0.034 209.94 0.0614 
4 0.455 0.802 84.16 306.30 0.092 0.038 222.14 0.0374 
5 0.538 0.852 83.17 310.70 0.107 0.056 227.52 0.0371 
6 0.292 0.823 96.89 306.47 0.086 0.050 209.58 0.0565 
7 0.286 0.716 85.25 312.78 0.096 0.025 227.53 0.0650 
8 0.075 0.574 100.29 304.45 0.083 0.040 204.16 0.0710 
9 0.284 0.748 95.32 311.17 0.083 0.041 215.86 0.0811 
10 0.445 0.887 89.74 318.04 0.081 0.044 228.30 0.1095 
11 0.202 0.713 105.16 283.35 0.056 0.034 178.19 0.0551 
12 0.596 0.840 92.69 335.30 0.131 0.044 242.61 0.0357 
13 0.364 0.789 85.65 303.98 0.125 0.067 218.33 0.0658 
14 0.430 0.876 92.21 300.16 0.087 0.073 207.95 0.0982 
15 0.372 0.870 93.95 306.48 0.060 0.045 212.53 0.0942 

 
Figure 3. Double logistic fitting of time series (averaging 2017 to 2020) MODIS NDVI data for the 15 forest sites. Blue dots 
represent the raw points of MODIS NDVI data, and red line is a fitted line. Site numbering from 1 to 15 corresponds to 
Figure 1 description of each World Heritage Site. 

Figure 3. Double logistic fitting of time series (averaging 2017 to 2020) MODIS NDVI data for the 15 forest sites. Blue dots
represent the raw points of MODIS NDVI data, and red line is a fitted line. Site numbering from 1 to 15 corresponds to
Figure 1 description of each World Heritage Site.

The eastern forest’s average EOS varied through the first week of November (DOY
306–310) along the longitudinal gradient. The average EOS in the western forest varied
from mid-October (DOY 283) to the beginning of December (DOY 335). Similarly, the
average EOS in the middle forest varied from the last week of October (DOY, 304) until the
mid of November (DOY 318). The average EOS length was found to be less than a week for
the eastern forest, approximately eight weeks in the western forest, and two weeks in the
middle forest. Furthermore, the average NDVI for the eastern forest ranged from 0.42 to
0.84, whereas the average NDVI for the western forest ranged from 0.39 to 0.82. Similarly,
the average NDVI range for the middle forest varied between 0.28 and 0.75. Furthermore,
the standard deviation for Slope1 was the largest in the west forest (0.031), followed by
that of the east forest (0.011) and the mid forest (0.005). Similarly, the standard deviation
for Slope2 was highest in the west forest (0.014), followed by that of the mid forest (0.008)
and the east forest (0.007) (Figure 3, Table 2).

3.2. MODIS-Based Vegetation Growth Analysis and Effects of Environmental Factors

MODIS-derived vegetation growth and effects of environmental factors along the
longitudinal direction were observed by means of grouping analysis. Overall, longitude
was a key attribute in grouping analysis, with the highest impact on all other parameters,
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including elevation, ∆PP, and ∆LST, with higher R2 (0.7203) compared to that of other
environmental factors (Figure 4, Table 3).
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Figure 4. Longitudinal variations of (a) MODIS-derived TNPIGrowth, (b) MODIS-derived change in land surface temperature
(∆LST), (c) ERA-5-derived change in precipitation ∆PP, and (d) SRTM-derived Elevation maps for Hyrcanian forest.

Table 3. Overall descriptive statistics of different attributes used in grouping analysis.

Variable Mean Std. Dev Min Max R2

Longitude 50.7655 2.3889 48.0830 56.0200 0.7203
∆PP 39.6805 53.9826 −86.7000 199.3500 0.5625

Elevation 946.1155 554.6567 −5.0000 2575.0000 0.5309
TNPIGrowth 0.0126 0.0416 −0.0954 0.1215 0.4424

∆LST −2.0399 0.9361 −4.6656 0.6304 0.2932

Results of vegetation growth-environmental factor grouping indicated that the western
forests included Groups 1–3 and 5, while the middle forests consisted of Groups 1, 4, and 5
(Figure 5, Table 3). The eastern forests were mainly dominated by Group 4 along with a
slight combination of Groups 1 and 2. According to the parallel box plot, areas of Group
4 were situated at higher altitudes with average elevation (1020.45 m), indicating that
plant growth was slowed down due to lower ∆LST (−2.62 ◦C) and ∆PP (−10.12 mm).
Group 5, on the other hand, which came at average height but elevation below the mean
value (624.71 m) grew faster than Group 4 at a higher elevation. As a result of the lower
∆LST (−1.99 ◦C) and greater ∆PP (112.05 mm), plant growth was slightly higher than
the mean value. Further, Group 1 was located at a slightly lower altitude than Group 5,
but at a higher elevation (1590 m), thus indicating a faster growth than Group 5. This
could be related to ∆LST (−2.31 ◦C) with a value lower than the mean as well as ∆PP
(41mm) with a value higher than the mean. In case of Group 2, longitude was close to the
mean value, the elevation (380.74 m) was minimal compared to that of other locations, and
∆LST (−1.18 ◦C) and ∆PP (59.51 mm) values were both higher, resulting in increased plant
growth. However, Group 3, with longitude values below the mean at moderate elevation
(1134.89 m) showed much less growth than other locations, since ∆LST (−1.93 ◦C) was
close to the mean, and ∆PP (23.99 mm) was below the mean, resulting in its poor vegetation
growth (Figure 5 and Supplementary data).
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Figure 5. Grouping analysis of five vegetation growth-environmental factor groups consisting of a
(a) box plot for MODIS-derived TNPIGrowth and environmental factors along the longitudinal di-
rection (from west to east), and (b) corresponding clusters of each group shown in the map. The
whiskers of the plot show the spread of the variable, with the left whisker being the lowest value and
the right whisker being the highest value.

3.3. Multiple Regression Relationships between Sentinel-2-Derived TNPIGrowth and
Environmental Variables

In the western forest, precipitation and elevation significantly contributed to vege-
tation growth (p < 0.0001), followed by a significant interaction between precipitation
and elevation (Adj. R2 0.5224, p < 0.0001), resulting in an increase in TNPIGrowth during
the maximum precipitation period. Therefore, change in vegetation greenness was
higher due to higher precipitation and increasing elevation. ∆LST showed no effect
on the western forest, as the interaction between ∆LST and ∆PP was insignificant
(Figures 6 and 7, Table 4).
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Table 4. The final selected models and their performances for three forest zones using Sentinel-2 NDVI data. TNPIwest,
TNPIeast, and TNPImid represent the vegetation growth model for western, eastern, and middle forest zones, respectively, as
described in Section 2.2.9.

Selected Model Total No. of
Samples R2 Adj.R2 RMSE p Value

TNPIWest = ∆PP + E + ∆PP× E + 1 500 0.5267 0.522 0.116 <0.0001
TNPIeast = ∆PP + E + ∆LST + ∆LST× ∆PP + 1 500 0.6078 0.602 0.069 <0.0001

TNPImid = ∆PP + E + ∆LST + ∆PP× E + 1 500 0.5678 0.5618 0.181 <0.0001

In the eastern forest, ∆PP, ∆LST, and elevation all showed significant influence on
TNPIGrowth (p < 0.0001). The observations also showed a significant interaction between
∆PP and ∆LST (Adj.R2 = 0.6024, p < 0.0001), resulting in a major increase in TNPIGrowth
during the minimum and medium precipitation periods (Figures 6 and 7, Table 4).

Similarly, all factors but ∆LST showed significant impact on TNPIGrowth in the
middle forest, and a significant interaction was observed between elevation and ∆PP
(Adj.R2 = 0.5618, p < 0.0001), resulting in an increasing trend of TNPIGrowth for all
precipitation categories (Figures 6 and 7, Table 4).

4. Discussion
4.1. The Observed Phenology Patterns

The observed patterns for SOS and EOS along the longitudinal gradient of HF were
in line with the observations throughout the entire region, as well as with those of the
only previously published remote sensing-based study [37], which was carried out based
on coarser-resolution GIMMS NDVI3g time series data. The latter resulted in averaged
DOY 77–158 (mean DOY 103) for SOS, as well as DOY 256–318 (mean DOY 299) for
EOS across the HF, which was close to our TNPI-based estimates, but with two major
differences: (1) the NDVI3g-based estimates did not imply any differentiation based on the
longitudinal gradient, and (2) their average estimates for vegetation onset and senescence
were generally a bit earlier than those from our analysis, which might be due to the reports
that suggested that GIMMS data return earlier phenological estimates [38]. The study
by [37] also confirmed an overall lengthening of the growing season across the entire
Hyrcanian region, mainly as a result of climate change-induced factors. Whereas this study
has been the only published example of analysis on spatiotemporal vegetation dynamics
and phenological parameters across the HF, our study succeeded to expand this into a more
spatially differentiated analysis, considering not only higher spatial resolution for the entire
Hyrcanian region, but also by further focusing on the previously described World Heritage
Sites on 10 m spatial resolution within a dense time series, which inherently contributes to
reducing the multiple caveats of coarse resolution data like NDVI3g to assess vegetation
phenology across heterogeneous landscapes, like mixed signal [39] and frequent missing
values [40]. Among other biogeographic zones, [28] also reported highly heterogeneous
patterns of forest phenology phases like bud break along the longitudinal gradients across
black spruce (Picea mariana E.E. STERNS) dominated stands in boreal Quebec-Canada
using MODIS time series, which yet cannot be directly compared with our results within a
temperate zone. This also applies to other studies encompassing multiple biogeographic
zones generally reported on a coarser spatial scale by a previous MERIS-based analysis of
vegetation phenology across Europe [41].

A striking observation was in terms of differentiated EOS observed along the west-
east gradient, where average EOS showed a reduction from east to west, from less than
a week in the eastern zone to approximately eight weeks in the west. The climate over
HF has been reported to range from warm Mediterranean in the east to Mediterranean
in the west [20], implying a variance in duration of vegetation activities from the very
eastern part (receiving ca. 700 mm precipitation) to the very western part (receiving ca.
1700 mm precipitation). Apart from that, the damming effect of the Alborz mountains for
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humidity (affecting plant activity and growth) reduces from west to east, as the distance
between the mountain and the CS gradually increases (see, e.g., the longitudinal variations
in environmental gradients in Figure 4). Previous field-based vegetation studies like [42]
and [43] have previously shown that the most influential environmental factors that drive
the floristic composition within the Hyrcanian forests include elevation above sea level,
followed by annual precipitation and temperature, while topographic features are mainly
affective within a given elevation zone or vegetation type. Other microclimatic factors, in
particular soil physical and chemical properties, are of secondary importance [42] and were
also out of the scope of our study.

4.2. MODIS-Based Vegetation Growth Analysis

Our vegetation growth-environmental factor grouping analysis on MODIS time
series data suggested the longitude to be among the most important factors controlling
the vegetation dynamics and growth across Hyrcanian forests. This was complementary
to a recently reported benchmark study on floristic composition based on detrended
correspondence analysis (DCA) and canonical correspondence analysis (CCA) of ca.
1600 vegetation plots of 802 vascular taxa covering the entire longitudinal and latitu-
dinal range of HF [43]. Whereas proving the sole the effect of altitude on vegetation
activities within the Hyrcanian zone is not new [44], the former recent study suggested
the longitudinal range from the west to the east to be a major driver of species dynamics
across the region. Our remote sensing analysis showed that it is presumably also a
driver of vegetation activities and growth. However, we absolutely suggest this to be
cautiously interpreted due to the absence of large-scale detailed field data on vegetation
growth across the region.

Moreover, the absolute domination of clustered Groups 1–3 and 5 in the western
longitudinal range generally suggested faster vegetation growth concentrated in low- and
uplands of the western zone, whereas both mid-elevations and the western outskirts of
the Hyrcanian forests (in all elevations) were associated with lower vegetation growth, i.e.,
Group 3. The higher growth observed in western longitudes can be attributed to the closer
distance between the CS and the Alborz Mountains, which fosters a higher precipitation rate
throughout the year [43]. A contrary observation was made almost homogenously across
the eastern zone, which was dominated by low-growth Group 4 (see Figure 5), regardless of
altitude. However, one may note the generally farther distance to the CS in the eastern zone
compared with other longitudinal zones. CS has been considered to be the main source of
precipitation across the region [45]. The highest level of precipitation that occurs in autumn
is caused by the higher temperature of the sea water, leading to its more rapid evaporation,
lowering air stability and thus creating a latitudinal gradient in precipitation between
lowland, mountainous, and the upper-mountainous areas [43]. Somewhat similarly, the
dominance of Groups 1,4 and 5 in the mid longitudinal range can be partially due to the
rather wide sea-mountain distance and comparably smooth latitudinal gradient (resulting
in lower ∆LST and ∆PP). This pattern showed a concentration of samples grouped in 1 in
higher altitudes, that is presumably portraying the alpine habitats of oriental beech (Fagus
orientalis Lipsky.) as the main tree community occurring in both pure and mixed forms
in the mid-longitudinal range of HF. There are indeed a few national and international
published field-based studies on the effect of elevation above sea level on tree growth
indicators (growing stock, DBH growth, aboveground biomass), which suggested its main
role on tree growth within beech communities [46,47]. However, it is rather uncertain to
fully assign the observed patterns to specific forest communities at this spatial resolution,
since the occurrence of communities and vegetation alliances in the Hyrcanian region, in
particular in latitudinal gradient, is a function of multiple environmental and anthropogenic
factors, which partly replace the tree communities with ecotonal and open-land species
as a result of climate, but also factors like grazing, upland cultivation, and eradication by
land-use conversion [47].
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4.3. Multiple Regression Results on the Sentinel-2 Level

The observations made on the MODIS level across the entire Hyrcanian region were
largely confirmed at higher spatial resolution based on spatial locations of the 15 inscribed
World Heritage locations. Although we collectively treated the sites in each of the three
longitudinal zones for our regression analysis, i.e., without differentiation among the single
inscribed sites, the conducted causal analysis returned significant relationships among
precipitation, elevation, and vegetation growth, and confirmed the previously reported
influence of these two factors on TNPIGrowth in both main and interaction terms. This was
also the case for all sites located in the mid-zone, regardless of how much precipitation
each site received. Finally, ∆LST was expectedly not an influential factor, mainly due to the
higher latitudinal gradient (sea-mountain distance) and a significantly higher receipt of
precipitation overall across the western zone. This was, however, shown to be different in
the eastern zone, in which ∆LST was influential as both the main and interaction term due
to the generally warmer climate, less precipitation, and lower regulatory effect introduced
by CS [43].

All in all, the amount of precipitation did not prove to notably contribute to
the direction of relationship between the growth rate and either elevation or ∆LST
factors, confirming that HF stands are presumably still receiving enough humidity
(both direct and indirect) to sustain their growth under current precipitation regimes.
However, recent reports confirm emerging more frequent drought events within and at
the margins of HF [48], which cause deficit of forest water content, leading to reduction
in greenness and forest growth [49]. Temporal increase in intensity and duration
of such events necessitates further remote sensing studies of their effects on forest
growth indicators, in particular, using spatially higher resolution data than that of those
applied in the mentioned former studies that made use of MODIS imagery. As such,
our workflow can be further applied to test the hypothesis whether this effect can be
shown by time series of high-resolution data, though the duration of currently available
10 m Sentinel-2 data and its limited availability due to cloud cover in many places is
still a constraint for studying long-term drought events.

5. Conclusions

Our multi-resolution, multi-temporal analysis of MODIS and Sentinel-2 data was,
to the best of our knowledge, the only study so far to combine freely available data, big
data analysis, and modeling within a remote sensing-only analysis of forest growth across
HF. Cautiously speaking, we also did not come across any other comparable study over
the temperate forests of the northern hemisphere. As such, this analysis can be regarded
as a benchmark for future analyses on comparably structured forest sites. The results
suggested that SOS and EOS both change with environmental and topographic factors.
They also showed that vegetation growth can be correlated with longitude (on larger
spatial scale) and latitude (on finer spatial scale) that were generally in-line with former
reports in terms of vegetation taxa and species associations. The results presented here
can be further augmented as larger cloud-free composites of remote sensing. Climate data
will also be available via GEE and open new horizons for both science and practice for
rapid monitoring of vegetation dynamics across these constantly changing World Heritage
ecosystems at no cost.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13193965/s1, Grouping analysis pdf file of ArcGIS has been uploaded as a supplementary
data. The GEE codes are available to the users upon request to the corresponding author.

Author Contributions: S.K. (Siddhartha Khare) and H.L. designed the research. S.K. (Siddhartha
Khare) did supervision and project administration. S.K. (Suyash Khare) and S.K. (Siddhartha Khare)
conducted the data processing, coding, result preparation. S.K. (Suyash Khare), performed the
statistical interpretation. S.K. (Suyash Khare ) wrote, introduction, method, and result sections. H.L.
wrote introduction and discussion sections. S.K. (Siddhartha Khare) and H.L. completed writing,

https://www.mdpi.com/article/10.3390/rs13193965/s1
https://www.mdpi.com/article/10.3390/rs13193965/s1


Remote Sens. 2021, 13, 3965 16 of 17

review and editing. H.L. was the corresponding author. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, Hooman Latifi (H.L.), upon reasonable request.

Acknowledgments: We thank the providers of the important public dataset in the Google Earth
Engine, in particular, NASA, USGS, and ECMWF. The KNTU part of the research was conducted
within the Research Lab “Remote Sensing for Ecology and Ecosystem Conservation (RSEEC)”
of KNTU.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess

ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [CrossRef]
2. Soudani, K.; le Maire, G.; Dufrêne, E.; François, C.; Delpierre, N.; Ulrich, E.; Cecchini, S. Evaluation of the onset of green-up in

temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote
Sens. Environ. 2008, 112, 2643–2655. [CrossRef]

3. White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van
Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from
remote sensing for 1982–2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [CrossRef]

4. Melaas, E.K.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat
TM/ETM+ data. Remote Sens. Environ. 2013, 132, 176–185. [CrossRef]

5. Lambert, J.; Drenou, C.; Denux, J.P.; Balent, G.; Cheret, V. Monitoring forest decline through remote sensing time series analysis.
Giscience Remote Sens. 2013, 50, 437–457. [CrossRef]

6. De Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land
cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [CrossRef]

7. Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely-sensed vegetation indices, canopy attributes
and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160.
[CrossRef] [PubMed]

8. Nguyen Trong, H.; Kappas, M. Land Cover and Forest Type Classification by Values of Vegetation Indices and Forest Structure of
Tropical Lowland Forests in Central Vietnam. Int. J. For. Res. 2020. [CrossRef]

9. Khare, S.; Ghosh, S.K.; Latifi, H.; Vijay, S.; Dahms, T. Seasonal-based analysis of vegetation response to environmental variables in
the mountainous forests of western himalaya using landsat 8 data. Int. J. Remote Sens. 2017, 38, 4418–4442. [CrossRef]

10. Gandhi, G.M.; Parthiban, S.; Thummalu, N.; Christy, A. Ndvi: Vegetation change detection using remote sensing and gis–A case
study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [CrossRef]

11. Freitas, S.R.; Mello, M.C.S.; Cruz, C.B.M. Relationships between forest structure and vegetation indices in Atlantic rainforest. For.
Ecol. Manag. 2005, 218, 353–362. [CrossRef]

12. Rouse, W.; Haas, H.; Deering, W. Monitoring Vegetation Systems in the Great Plains With Erts. Proc. Third ERTS Symp. 1974, 351,
309–317.

13. Ding, Y.; Zhao, K.; Zheng, X.; Jiang, T. Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI,
near infrared and red reflectance of Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 139–145. [CrossRef]

14. Pettorelli, N. The Normalized Difference Vegetation Index, 1st ed.; Oxford University Press: New York, NY, USA, 2013;
ISBN 9780199693160.

15. Nordberg, M.L.; Evertson, J. Vegetation index differencing and linear regression for change detection in a Swedish mountain
range using Landsat TM (R) and ETM+((R)) imagery. L. Degrad. Dev. 2005, 16, 139–149. [CrossRef]

16. Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: New York, NY, USA,
2015; ISBN 978-1-118-34328-9.

17. Khare, S.; Rossi, S. Phenology analysis of moist decedous forest using time series Landsat-8 remote sensing data. In Proceedings
of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor, Portici, Italy, 24–26 October
2019; pp. 127–131.

18. Khare, S.; Latifi, H.; Ghosh, K. Phenology analysis of forest vegetation to environmental variables during pre- And post-monsoon
seasons in western Himalayan region of India. In Proceedings of the International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences—ISPRS Archives, 2016. XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016.

19. Sabeti, H. Forests, Trees, and Shrubs of Iran; Iran University Science Technology Press: Tehran, Iran, 1994.

http://doi.org/10.1016/j.tree.2005.05.011
http://doi.org/10.1016/j.rse.2007.12.004
http://doi.org/10.1111/j.1365-2486.2009.01910.x
http://doi.org/10.1016/j.rse.2013.01.011
http://doi.org/10.1080/15481603.2013.820070
http://doi.org/10.1016/j.rse.2003.11.006
http://doi.org/10.3390/s8042136
http://www.ncbi.nlm.nih.gov/pubmed/27879814
http://doi.org/10.1155/2020/8896310
http://doi.org/10.1080/01431161.2017.1320450
http://doi.org/10.1016/j.procs.2015.07.415
http://doi.org/10.1016/j.foreco.2005.08.036
http://doi.org/10.1016/j.jag.2014.01.009
http://doi.org/10.1002/ldr.660


Remote Sens. 2021, 13, 3965 17 of 17

20. Sagheb-Talebi, K.; Pourhashemi, M.; Sajedi, T. Forests of Iran: A Treasure from the Past, a Hope for the Future; Springer:
Berlin/Heidelberg, Germany, 2014; ISBN 9400773706.

21. Zohary, M. Geobotanical Foundations of the Middle East; Swets & Zeitlinger: Stuttgart, Amsterdam, 1973; ISBN 9026501579.
22. Ramezani, E.; Marvie Mohadjer, M.R.; Knapp, H.-D.; Ahmadi, H.; Joosten, H. The late-Holocene vegetation history of the Central

Caspian (Hyrcanian) forests of northern Iran. Holocene 2008, 18, 307–321. [CrossRef]
23. Leroy, S.A.G.; Kakroodi, A.A.; Kroonenberg, S.; Lahijani, H.K.; Alimohammadian, H.; Nigarov, A. Holocene vegetation history

and sea level changes in the SE corner of the Caspian Sea: Relevance to SW Asia climate. Quat. Sci. Rev. 2013, 70, 28–47. [CrossRef]
24. IUCN. World Heritage Nomination-IUCN Technical Evaluation for Hyrcanian Forests (Islamic Rerublic of Iran); Eastern Azarbaijan

Province of Islamic Republic of Iran: 2019. Available online: https://whc.unesco.org/en/list/1584/ (accessed on 12 July 2021).
25. Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA: 2015. Available online:

http://dx.doi.org/10.5067/MODIS/MOD13Q1.006 (accessed on 12 July 2021).
26. Ritter, P. A vector-based slope and aspect generation algorithm. Photogramm. Eng. Remote Sens. 1987, 53, 1109–1111.
27. Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high

latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [CrossRef]
28. Khare, S.; Drolet, G.; Sylvain, J.D.; Paré, M.C.; Rossi, S. Assessment of spatio-temporal patterns of black spruce bud phenology

across Quebec based on MODIS-NDVI time series and field observations. Remote Sens. 2019, 11, 2745. [CrossRef]
29. Škerlak, B.; Sprenger, M.; Wernli, H. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set

from 1979 to 2011. Atmos. Chem. Phys. 2014, 14, 913–937. [CrossRef]
30. QGIS Development Team QGIS Geographic Information System. 2021. Available online: https://qgis.org/en/site/ (accessed on

15 July 2021).
31. ESRI, R. ArcGIS desktop: Release 10. Environ. Syst. Res. Inst. CA 2011. Available online: https://www.esri.com/en-us/arcgis/

products/arcgis-desktop/overview (accessed on 20 July 2021).
32. ESRI. How Grouping Analysis Works—ArcGIS Pro|ArcGIS Desktop. Available online: https://pro.arcgis.com/en/pro-app/

tool-reference/spatial-statistics/how-grouping-analysis-works.htm (accessed on 20 July 2021).
33. Latifi, H.; Heurich, M.; Hartig, F.; Müller, J.; Krzystek, P.; Jehl, H.; Dech, S. Estimating over- and understorey canopy density of

temperate mixed stands by airborne LiDAR data. Forestry 2016, 89, 69–81. [CrossRef]
34. Barton, K. MuMIn: Multi–Model Inference (R Package Version 1.13. 4). R–project. org/package= MuMIn. 2015. Available online:

http://CRAN (accessed on 22 July 2021).
35. Hurvich, C.; Tsai, C. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [CrossRef]
36. Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [CrossRef]
37. Kiapasha, K.; Darvishsefat, A.A.; Julien, Y.; Sobrino, J.A.; Zargham, N.; Attarod, P.; Schaepman, M.E. Trends in Phenological

Parameters and Relationship Between Land Surface Phenology and Climate Data in the Hyrcanian Forests of Iran. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4961–4970. [CrossRef]

38. Atzberger, C.; Klisch, A.; Mattiuzzi, M.; Vuolo, F. Phenological metrics derived over the European continent from NDVI3g data
and MODIS time series. Remote Sens. 2014, 6, 257–284. [CrossRef]

39. Detsch, F.; Otte, I.; Appelhans, T.; Hemp, A.; Nauss, T. Seasonal and long-term vegetation dynamics from 1-km GIMMS-based
NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sens. Environ. 2016, 178, 70–83. [CrossRef]

40. Marshall, M.; Okuto, E.; Kang, Y.; Opiyo, E.; Ahmed, M. Global assessment of vegetation index and phenology lab (VIP) and
global inventory modeling and mapping studies (GIMMS) version 3 products. Biogeosciences 2016, 13, 625–639. [CrossRef]

41. Rodriguez-Galiano, V.F.; Dash, J.; Atkinson, P.M. Characterising the land surface phenology of Europe using decadal MERIS data.
Remote Sens. 2015, 7, 9390–9409. [CrossRef]

42. Moradi, H.; Naqinezhad, A.; Siadati, S.; Yousefi, Y.; Attar, F.; Etemad, V.; Reif, A. Elevational gradient and vegetation-
environmental relationships in the central Hyrcanian forests of northern Iran. Nord. J. Bot. 2016, 34, 1–14. [CrossRef]

43. Gholizadeh, H.; Naqinezhad, A.; Chytrý, M. Classification of the Hyrcanian forest vegetation, Northern Iran. Appl. Veg. Sci. 2020,
23, 107–126. [CrossRef]

44. Naqinezhad, A.; Zare-Maivan, H.; Gholizadeh, H. A floristic survey of the Hyrcanian forests in Northern Iran, using two
lowland-mountain transects. J. For. Res. 2015, 26, 187–199. [CrossRef]

45. Khalili, A. Precipitation patterns of central Elburz. Arch. für Meteorol. Geophys. Bioklimatol. B 1973, 21, 215–232. [CrossRef]
46. Kahnamoie, M.H.M.; Bijker, W.; Sagheb–Talebi, K. The relation between annual diameter increment of Fagus orientalis and

environmental factors (Hyrcanian forest). Improv. Silvic. Beech 2004, 76. Available online: https://www.iufro.org/download/file/
5366/4507/11000-beech-proceedings-tehran-04_pdf/#page=79 (accessed on 13 July 2021).

47. Noroozi, J.; Körner, C. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alp. Bot. 2018,
128, 1–11. [CrossRef] [PubMed]

48. Abdi, O.; Shirvani, Z.; Buchroithner, M.F. Spatiotemporal drought evaluation of Hyrcanian deciduous forests and semi-steppe
rangelands using moderate resolution imaging spectroradiometer time series in Northeast Iran. L. Degrad. Dev. 2018, 29,
2525–2541. [CrossRef]

49. Abdi, O.; Shirvani, Z.; Buchroithner, M.F. Forest drought-induced diversity of Hyrcanian individual-tree mortality affected by
meteorological and hydrological droughts by analyzing moderate resolution imaging spectroradiometer products and spatial
autoregressive models over northeast Iran. Agric. For. Meteorol. 2019, 275, 265–276. [CrossRef]

http://doi.org/10.1177/0959683607086768
http://doi.org/10.1016/j.quascirev.2013.03.004
https://whc.unesco.org/en/list/1584/
http://dx.doi.org/10.5067/MODIS/MOD13Q1.006
http://doi.org/10.1016/j.rse.2005.10.021
http://doi.org/10.3390/rs11232745
http://doi.org/10.5194/acp-14-913-2014
https://qgis.org/en/site/
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/how-grouping-analysis-works.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/how-grouping-analysis-works.htm
http://doi.org/10.1093/forestry/cpv032
http://CRAN
http://doi.org/10.1093/biomet/76.2.297
http://doi.org/10.1016/j.tree.2003.10.013
http://doi.org/10.1109/JSTARS.2017.2736938
http://doi.org/10.3390/rs6010257
http://doi.org/10.1016/j.rse.2016.03.007
http://doi.org/10.5194/bg-13-625-2016
http://doi.org/10.3390/rs70709390
http://doi.org/10.1111/njb.00535
http://doi.org/10.1111/avsc.12469
http://doi.org/10.1007/s11676-015-0019-y
http://doi.org/10.1007/BF02243729
https://www.iufro.org/download/file/5366/4507/11000-beech-proceedings-tehran-04_pdf/#page=79
https://www.iufro.org/download/file/5366/4507/11000-beech-proceedings-tehran-04_pdf/#page=79
http://doi.org/10.1007/s00035-018-0202-9
http://www.ncbi.nlm.nih.gov/pubmed/29576762
http://doi.org/10.1002/ldr.3025
http://doi.org/10.1016/j.agrformet.2019.05.029

	Introduction 
	Materials and Methods 
	Subsection 
	Data and Statistics 
	MODIS NDVI Data 
	Sentinel-2 Data 
	Elevation Data 
	NDVI Curve Fitting 
	Computation of TNPI from Multi-Temporal NDVI 
	Precipitation Data 
	MODIS Land Surface Temperature Data 
	Grouping Analysis 
	Modelling Sentinel-2-Derived TNPI Growth with Environmental Factors 


	Results 
	Phenology Patterns Derived from MODIS NDVI 
	MODIS-Based Vegetation Growth Analysis and Effects of Environmental Factors 
	Multiple Regression Relationships between Sentinel-2-Derived TNPIGrowth and Environmental Variables 

	Discussion 
	The Observed Phenology Patterns 
	MODIS-Based Vegetation Growth Analysis 
	Multiple Regression Results on the Sentinel-2 Level 

	Conclusions 
	References

