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Abstract: Serine/threonine kinase PknB and its corresponding phosphatase Stp are important
regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S.
aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic
modelling from these data inferred metabolic adaptations. We compared wild-type to deletion
strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched
amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components.
We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino
acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine
synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB.
In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic
amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared
to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB−) validated the
predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR
regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB
phosphorylation lowered the expression of many virulence factors, and the study shed light on S.
aureus infection processes.

Keywords: metabolism; flux balance analysis; phosphorylation; regulation; riboswitch; PknB; Stp;
yvcK/glmR operon

1. Introduction

Bacteria adapt to different environments to survive changing conditions, and accord-
ingly, they possess an enormous variety of protein kinases involved in signal sensing

Microorganisms 2021, 9, 2148. https://doi.org/10.3390/microorganisms9102148 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-0540-750X
https://orcid.org/0000-0002-0206-5321
https://orcid.org/0000-0003-1886-7625
https://doi.org/10.3390/microorganisms9102148
https://doi.org/10.3390/microorganisms9102148
https://doi.org/10.3390/microorganisms9102148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9102148
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9102148?type=check_update&version=2


Microorganisms 2021, 9, 2148 2 of 30

and transduction. For pathogenic bacteria, infection is ‘growth despite stress’, meaning
adaptation to an often-poor metabolic substrate pool the host provides. The most well-
described signalling cascades in bacteria are two-component systems (TCSs), which in
general consist of a membrane histidine kinase that senses an extracellular signal, autophos-
phorylates a histidine residue and transfers the phosphate group to an aspartate residue
of a response regulator or transcription factor [1]. Ser/Thr phosphorylation, the major
regulatory mechanism for cellular functions in eukaryotes, was identified much later also
in bacteria [2,3], but it developed fast into an area of great interest due to its involvement
in virulence. Ser/Thr kinases have been described in many bacteria, regulating a wide
variety of bacterial functions, including glycolysis, protein translation, sporulation and, in
pathogenic bacteria, also virulence and antibiotic resistance. Membrane-associated Ser/Thr
kinases sense extracellular signals that lead to autophosphorylation and transfer of the
phosphate to a serine or threonine residue of a target substrate. The phosphorylation here
is not labile, and thus a phosphatase is necessary to remove the phosphate. Less frequently,
tyrosine, arginine or cysteine phosphorylation by Ser/Thr kinases has also been described.
Unlike TCSs, Ser/Thr phosphorylation integrates a complex signalling pathway in which
many biological processes are involved [4,5]. This complicates considerably the study of
its role. While the knockout of TCSs often produces a concrete phenotype in the cell, the
knockout of a Ser/Thr kinase or phosphatase results in a pleiotropic phenotype in which
different pathways are affected.

Recently, a Ser/Thr kinase (PknB, alternatively named Stk or Stk1) and its phosphatase
(Stp) were characterised in S. aureus [6], a bacterium especially known for its ability to
adapt to different environments and its resistance to many antibiotics. pknB and stp deletion
and overexpression strains have been used to study their function in in vitro and in vivo
experiments. Here, S. aureus phenotypes, such as virulence [7], antibiotic resistance [8],
cell wall synthesis [9] and different omics, such as transcriptomics [10], metabolomics [11]
and phosphoproteomics data [12], were analysed to decipher the cellular functions that
Ser/Thr phosphorylation regulates. The results revealed changes in the virulence, antibiotic
susceptibility, cell wall composition and gene expression of S. aureus. In S. aureus COL and
community-acquired MRSA (CA-MRSA) lineage USA300, PknB is a positive regulator of
SigB activity for responses to heat and oxidative stress. pknB deletion strains have been
reported to have higher sensitivity to ß-lactam antibiotics but more resistance to Triton
X-100- induced autolysis and to lysostaphin lysis. The reduced SigB activity increases the
activity of the quorum-sensing global regulatory agr-system resulting in the activation
of agr RNAII and RNAIII and hla (α-hemolysin) virulence effector expression, while spa
(protein A) is downregulated. Moreover, a pknB mutant is more virulent, as tested for a
USA300 strain in mice [8].

A number of metabolic enzymes (mainly in glycolysis) are phosphorylated by S. aureus
PknB, and its deletion affects the expression of genes that regulate central metabolic func-
tions, such as nucleotide biosynthesis, cell wall metabolism and the citrate
cycle [6,9,10,12]. According to these different studies and their phenotypic observations,
e.g., growth behavior, colony formation and structural and biochemical information, in
general the phosphatase Stp is the counter-player of the PknB kinase. Hence, a lot is known
about the phenotype of these mutations; however, the metabolic effects of their combined
knockout have not been determined yet, nor has anybody looked at the individual en-
zymes of S. aureus primary metabolism and their detailed metabolic adaptation after the
individual- or combined-knockout of ∆pknB and/or ∆stp. Direct metabolomics data on
pknB mutations are only available on cell wall metabolism [11].

Hence, for our study presented here, genome-scale microarray gene expression data
of S. aureus NewHG in the late exponential phase were collected. To reveal systematically
all pathway changes and obtain a full and far more sensitive view of all involved metabolic
changes, we inferred bioinformatically metabolic flux changes from the transcriptome
data comparing the wild type and mutations of kinase ∆pknB, phosphatase ∆stp or both
∆pknB∆stp phenotypes. The transcriptome data constrained the inferred fluxes for the full
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metabolic network and allowed inference on all fluxes calculated, even if there was no
significant gene expression change observed for a specific enzyme of the pathway studied.
Although this is not a direct metabolite measurement, the prediction error is reduced
by fulfilling all network constraints to 5–10% for individual flux predictions (validated
in [13] by measuring several metabolites). Further metabolic studies focusing on other
carbon sources and growth time points can then build on the results presented here as a
pilot study.

Our transcriptome data and the metabolic modelling show that there are many differ-
ences in peptidoglycan synthesis, amino acid catabolism and the glycolysis/
gluconeogenesis route, while the flux modes calculated allow describing the flux changes
for each enzyme of the whole network. To determine how much these mutation effects
are (NewHG; sigB+) or are not (S. aureus NCTC 8325; sigB−) strain dependent or change
with different sampling points, we adapted our metabolic model and compared results
to S. aureus NCTC 8325, for which gene expression data [10] on the key comparison pknB
mutant versus the wild type are available for the mid-exponential phase. Further, we
used interactome data to correlate our results with PknB/Stp in phosphorylation data
on cell wall biosynthesising enzymes (Fem proteins) [9]. Further analyses we present
shows a clear and strong impact of PknB regulating metabolic adaptation in S. aureus, the
importance of the yvcK/glmR regulon and the cdaA operon in these processes and delivers
after phylogenetic comparisons detailed structure models of the S. aureus GlmS protein
and GlmR riboswitch.

2. Results

The S. aureus NewHG phenotype was analysed using the wild-type as well as isogenic
mutant strains with deletions of the kinase (pknB), phosphatase (stp) or both (pknB and stp).
Strain NewHG (also called NewmanHG) is a highly virulent isolate [14], in which the point
mutated global virulence regulator saeS in strain Newman is repaired [14]. In contrast,
strain NCTC 8325 [10] carries a functional mutation of the alternative sigma factor sigB due
to a mutation in the regulatory rsbU gene and a second mutation in the regulatory gene
tcaR [15]. We chose NewHG as a background strain due to its high virulence properties
and its functional sigB operon important during stress response. In consequence, we
could compare different strain backgrounds, a virulent and a less virulent S. aureus strain.
First, analysis involved transcriptome analysis of 2414 genes in strain NewHG (Figure 1
left, top; based on the S. aureus Newman genome). Genes that were expressed significantly
higher or lower are all listed in Table S1, and specific virulence factors are listed in Table
S2 (see for both Supplementary Excel File S1). Supplementary File S2 shows the SBML
model. Table S3 in Supplementary File S3 compares the enzyme activities of each mutant
compared to the wild type, and Table S4 gives the curated NewHG gene expression raw
data of the transcriptome measured. All data used in this work, including the Ser/Thr
kinase wild type and mutations of kinase (pknB), phosphatase (stp) and double mutant,
have been deposited in the GEO repository (accession no. GSE122362). The reference data
GSE15346 used for comparison are also available from GEO [10]. The computational flux
model using the software YANAvergence is given with a stochiometric matrix (Table S11 in
Supplementary File S8), solution space (Table S12 in Supplementary File S9) and successful
convergence for the wild type and mutants (Figure S2). Detailed strain comparisons are
given for gene expression data (Tables S5–S7 in Supplementary File S5) and the genome
(Tables S8–S10 in Supplementary File S6). In addition, gene identifiers are listed in the
supplement (Table S13 in Supplementary File S10). More information regarding glmR
conservation has been described in the supplement (Supplementary Material).
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Figure 1. Study workflow of S. aureus metabolism. Left: metabolic pathway fluxes were calculated using a first gene ex-
pression dataset of S. aureus strain NewHG comparing the wild type to pknB, stp and double-knockout mutants. Validation 
data (blue boxes) included individual qRT-PCR of selected virulence and metabolic genes and a second gene expression 
dataset of S. aureus strain NCTC 8325 (global comparison). Right: the glmR/yvcK regulon and the cdaA regulon are im-
portant for this. Interactions between these regulatory proteins and PknB involve (i) interactome analysis and validation 
with published datasets and (ii) operon/regulon model as well as phylogenetic analysis (highly conserved phosphoryla-
tion sites and data from other Gram-positive bacteria, including alignment, homology model and phylogenetic tree and 
model of the riboswitch). 

The collected gene expression data indicate significant deregulated expression of sev-
eral enzymes in the mutant strains compared to the wild type, but for inference of the 
metabolic fluxes, the complete enzyme network was meticulously set up. We used path-
way information from public databases (KEGG) for S. aureus NewHG, and we corrected 
the list of the enzymes available for NewHG by sequence analysis of the genome sequence 
and by adding or modifying enzymes as apparent from this analysis (Figure 1 left, mid-
dle). Next, the set of pathways available for this enzyme network was calculated using the 
software YANA (suppl2_SBMLS1.sbml gives the model in SBML/XML format). The soft-
ware YANAsquare estimates pathway strengths: For this, the directly measured gene ex-
pression data (Figure 1 left, bottom) are mapped to the pathways, and gaps or missing 
pathway information are interpolated for the network. The estimated metabolic flux dis-
tribution is then step-by-step adapted to minimise the calculation error using the software 
YANAvergence. The complete flux distribution for the whole network was calculated. In 
this way, the pathway fluxes were inferred from the transcriptome data and results are 
shown in Figures 2 and 3. All elementary modes calculated are given in Table S3 and, 
major flux changes inferred from the transcriptome data, repeated and found in both ex-
periments, are summarised in Supplementary Material Overview.doc, Table S14. Detailed 
quality controls in Supplementary Material Figure S2 for wt, ΔpknB, Δstp and ΔpknBΔstp) 
indicate the relative changes for the different mutants compared to the wild type. Predic-
tions for expression changes of virulence factors were independently validated by qRT-
PCR (see Supplementary Material Overview.doc, Table S15). 

Figure 1. Study workflow of S. aureus metabolism. Left: metabolic pathway fluxes were calculated using a first gene
expression dataset of S. aureus strain NewHG comparing the wild type to pknB, stp and double-knockout mutants. Validation
data (blue boxes) included individual qRT-PCR of selected virulence and metabolic genes and a second gene expression
dataset of S. aureus strain NCTC 8325 (global comparison). Right: the glmR/yvcK regulon and the cdaA regulon are important
for this. Interactions between these regulatory proteins and PknB involve (i) interactome analysis and validation with
published datasets and (ii) operon/regulon model as well as phylogenetic analysis (highly conserved phosphorylation sites
and data from other Gram-positive bacteria, including alignment, homology model and phylogenetic tree and model of
the riboswitch).

The collected gene expression data indicate significant deregulated expression of
several enzymes in the mutant strains compared to the wild type, but for inference of the
metabolic fluxes, the complete enzyme network was meticulously set up. We used pathway
information from public databases (KEGG) for S. aureus NewHG, and we corrected the list
of the enzymes available for NewHG by sequence analysis of the genome sequence and
by adding or modifying enzymes as apparent from this analysis (Figure 1 left, middle).
Next, the set of pathways available for this enzyme network was calculated using the soft-
ware YANA (suppl2_SBMLS1.sbml gives the model in SBML/XML format). The software
YANAsquare estimates pathway strengths: For this, the directly measured gene expression
data (Figure 1 left, bottom) are mapped to the pathways, and gaps or missing pathway
information are interpolated for the network. The estimated metabolic flux distribution is
then step-by-step adapted to minimise the calculation error using the software YANAver-
gence. The complete flux distribution for the whole network was calculated. In this way,
the pathway fluxes were inferred from the transcriptome data and results are shown in
Figures 2 and 3. All elementary modes calculated are given in Table S3 and, major flux
changes inferred from the transcriptome data, repeated and found in both experiments,
are summarised in Supplementary Material Overview.doc, Table S14. Detailed quality
controls in Supplementary Material Figure S2 for wt, ∆pknB, ∆stp and ∆pknB∆stp) indicate
the relative changes for the different mutants compared to the wild type. Predictions for
expression changes of virulence factors were independently validated by qRT-PCR (see
Supplementary Material Overview.doc, Table S15).



Microorganisms 2021, 9, 2148 5 of 30Microorganisms 2021, 9, x FOR PEER REVIEW 5 of 30 
 

 

 
Figure 2. Flux activity changes between ΔpknB, Δstp, ΔpknBΔstp mutant and wild type. Shown is a compact but data-dense 
histogram of the flux activity changes. The modes are mathematically calculated, hence there is no statistical deviation. 
Each of the modes has to be there for metabolic balancing reasons. Some fluxes are small (e.g., fluxes of pathway number 
1 to 29). We can detect flux differences down to 5%-10% if they apply to pathways (and not a specific enzyme) [13]. The 
pathway changes are summarized in Table 1, and a central pathway map overview is given in Figure 3. The x-axis shows 
pathways according to extreme pathway calculation (as numbered and listed in detail in Table S3 in Supplementary File 
S3; in Supplementary Material Overview.doc, Table S14 gives a detailed comparison and Table S15 validates the gene 
expression data by RT-PCR). EPMs contribute to different pathways, but there is no 1:1 correspondence to textbook path-
ways. Activity changes on the y-axis. Log-fold changes in ΔpknB versus WT (blue) of Δstp versus WT (red) and ΔpknBΔstp 
versus WT (yellow) are given in the chart. Values close to 0 indicate no change, and the flux activities remain unchanged 
in the mutant. The highest flux was observed for EPM 57. It is upregulated in all the three mutants, and this mode is 
responsible for transaminase activities. The precise cause remains unknown, but the EPM confirms that all the three mu-
tants tend to maintain the pool of glutamate. 

 
Figure 3. Different metabolic pathways are altered between the WT, ΔpknBΔstp, ΔpknB and Δstp. 
The three mutants are compared to the wild type. Shown is the central metabolism and how it is 
influenced by pknB. The corresponding textbook pathways are shown. Fluxes are indicated by ar-
rows. All major (by flux strengths) EPMs that contribute to a specific textbook pathway in NewHG 
as calculated from the data are shown directly as labels for this textbook pathway. The numbering 
of the EPMs is given according to Table S3 in Supplementary File S3 (left column; followed by an 
abbreviated listing of the involved enzymes; next follows the input and output reaction catalysed 
by the EPM and on the right part the EPM flux activity compared in the wild type and mutants). 
The colour indicates an up- (green) or downregulated (red) EPM compared to the wild type. The 
pathways indicated include synthesis of peptidoglycan, nucleotide and aromatic amino acid and 
catabolism involving GOT. 

Figure 2. Flux activity changes between ∆pknB, ∆stp, ∆pknB∆stp mutant and wild type. Shown is a compact but data-dense
histogram of the flux activity changes. The modes are mathematically calculated, hence there is no statistical deviation.
Each of the modes has to be there for metabolic balancing reasons. Some fluxes are small (e.g., fluxes of pathway number 1 to
29). We can detect flux differences down to 5%-10% if they apply to pathways (and not a specific enzyme) [13]. The pathway
changes are summarized in Table 1, and a central pathway map overview is given in Figure 3. The x-axis shows pathways
according to extreme pathway calculation (as numbered and listed in detail in Table S3 in Supplementary File S3; in
Supplementary Material Overview.doc, Table S14 gives a detailed comparison and Table S15 validates the gene expression
data by RT-PCR). EPMs contribute to different pathways, but there is no 1:1 correspondence to textbook pathways. Activity
changes on the y-axis. Log-fold changes in ∆pknB versus WT (blue) of ∆stp versus WT (red) and ∆pknB∆stp versus WT
(yellow) are given in the chart. Values close to 0 indicate no change, and the flux activities remain unchanged in the mutant.
The highest flux was observed for EPM 57. It is upregulated in all the three mutants, and this mode is responsible for
transaminase activities. The precise cause remains unknown, but the EPM confirms that all the three mutants tend to
maintain the pool of glutamate.
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The numbering of the EPMs is given according to Table S3 in Supplementary File S3 (left column;
followed by an abbreviated listing of the involved enzymes; next follows the input and output
reaction catalysed by the EPM and on the right part the EPM flux activity compared in the wild type
and mutants). The colour indicates an up- (green) or downregulated (red) EPM compared to the wild
type. The pathways indicated include synthesis of peptidoglycan, nucleotide and aromatic amino
acid and catabolism involving GOT.

To investigate how general our model is with its estimated flux changes, we next
analysed the effects of a pknB knockout in a second S. aureus strain NCTC 8325 versus the
wild-type control (Figure 1, middle). We performed similar calculations for this indepen-
dent transcriptome dataset and different S. aureus strains to infer here also metabolic fluxes
(genome comparison: Tables S8–S10 in Supplementary File S6; comparative condensed
reaction model in Table S11, Supplementary File S8; extreme pathways for NewHG in
Table S12, Supplementary File S9; array and gene identifiers in Table S13, Supplemen-
tary File S10; strain comparison of fluxes in Table S14 in the Supplementary Material
Overview.doc). Note that the metabolic model used was the same for both strains; however,
the transcriptome data are strain specific and independent transcriptome datasets for each
mutant. For example, different values are presented for EPMs 14–16 comparing NewHG
and its pknB mutant. Further independent evidence from other experimental data was con-
sidered (e.g., [9]), and protein–protein interaction analysis compared also pknB knockout
in S. aureus NewHG to the wild type. Together, all these data confirm the effect of pknB
regulation on peptidoglycan structure biosynthesis, potentially with different preferences
of carbon use, which helps S. aureus to switch between the pathways, depending upon
the available nutrient source. Apart from that, we could identify growth conditions and
strain-specific differences with metabolic modelling analysis and showed in detail the
effects of counter-regulation by Stp and in the combined-knockout strain.

The role of the yvcK/glmR regulon and the cdaA operon turned out to be important for
this adaptation and was investigated closely (Figure 1, left). The analysis also included the
interactions between the regulatory proteins GlmR (Figure 4) and CdaA and PknB involved
in metabolic regulation, direct metabolic interaction (interactome analysis; but also known
from the classical operon and regulon models; Figures 4 and 5) as well as phosphorylation
of GlmR. Figure 5 shows the cell wall metabolism regulated by pknB, the cdaA operon and
the ccpA regulon. Ultimately, we found highly conserved phosphorylation sites relying
on strain-specific homology models from two GlmR crystal structures (Figure 6A), and
based on available sequence data, bioinformatics analysis was performed (Figures 6 and 7).
Furthermore, we compared S. aureus GlmR-specific data with those of other Gram-positive
bacteria by using alignments, homology models and phylogenetic trees of regulatory
structures. Moreover, we analysed the structure of the GlmS riboswitch (a self-cleaving
ribozyme) in S. aureus strain NewHG.



Microorganisms 2021, 9, 2148 7 of 30Microorganisms 2021, 9, x FOR PEER REVIEW 7 of 30 
 

 

 
Figure 4. Interactome analysis of PknB protein. The PknB molecule interacts with the proteins involved in central carbon 
metabolism, nucleic acid synthesis pathways, pentose phosphate pathway, teichoic acid synthesis and the enzymes asso-
ciated with peptidoglycan (PGN) synthesis. Shown are the different types of interactions: Experimentally verified sub-
strate for phosphorylation by PknB, experimentally verified protein–protein interaction (including data from databases 
such as the STRING database) and metabolic interactions. Proteins interacting directly with PknB are shown with a blue 
arrow, and other interactions are indicated by a black arrow. GlmS, GlmU and GlmR proteins are involved in a chain of 
reactions that regulate central carbon metabolism by interacting with PknB (marked with a maroon arrow). The interac-
tions of Fem proteins (FemA and FemB) are highlighted with an orange arrow. The doted lines indicate different substrates 
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tion with PknB (green) is shown. GlmR-GlmS-GlmU proteins participate in the cascade of reactions in response to the 
availability of a nutrient carbon source, thereby regulating different pathways, such as peptidoglycan biosynthesis. The 
proteins marked with an asterisk (*) are direct interaction partners by PknB substrate phosphorylation according to [11]. 

Figure 4. Interactome analysis of PknB protein. The PknB molecule interacts with the proteins involved in central
carbon metabolism, nucleic acid synthesis pathways, pentose phosphate pathway, teichoic acid synthesis and the enzymes
associated with peptidoglycan (PGN) synthesis. Shown are the different types of interactions: Experimentally verified
substrate for phosphorylation by PknB, experimentally verified protein–protein interaction (including data from databases
such as the STRING database) and metabolic interactions. Proteins interacting directly with PknB are shown with a blue
arrow, and other interactions are indicated by a black arrow. GlmS, GlmU and GlmR proteins are involved in a chain of
reactions that regulate central carbon metabolism by interacting with PknB (marked with a maroon arrow). The interactions
of Fem proteins (FemA and FemB) are highlighted with an orange arrow. The doted lines indicate different substrates of
PknB according to interactome analysis. In the protein interaction network, the central role played by GlmR in association
with PknB (green) is shown. GlmR-GlmS-GlmU proteins participate in the cascade of reactions in response to the availability
of a nutrient carbon source, thereby regulating different pathways, such as peptidoglycan biosynthesis. The proteins marked
with an asterisk (*) are direct interaction partners by PknB substrate phosphorylation according to [11].
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(phosphoproteome analysis and phylogenetic conservation; see [16]). The central molecule PknB (green) regulates GlmR by
direct phosphorylation as well as cell wall biosynthesis components (green asterisks). GlmR is a part of the ccpA regulon
(see [16]), which upon activation by PknB is expressed, which in turn stimulates the expression of GlmS. GlmS is a part
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dicted to interact with UDP-Glc (+/−NAc). Colour code: Thr (red), Asn (yellow), Tyr (blue) and Arg (green). We predicted 
here UDP-GlcNAc-binding residues only. NAD-binding residues are shown in MSA. (B) Identification of residues in-
volved in UDP sugar binding. Multiple sequence alignment (MSA) of GlmR/YvcK in different bacteria, including several 
S. aureus strains. The highly conserved region of the multiple alignment (residues 240–360) is shown in the figure. Con-
served residues are given in yellow. The conserved amino acids highlighted in blue are those found to interact with NAD 
in the crystal structure. Species and strain names are given on the left. Numbering according to [18]. Boxed in red are 
conserved threonine sites. A conserved threonine (Thr338 in the MSA) is known by experimental data to be phosphory-
lated in B. subtilis [16] and L. monocytogenes [19] and hence predicted by us to be phosphorylated also in S. aureus (Thr304 
in its sequence, Thr338 in the MSA). A high degree of conservation for the first part of the MSA is indicated in the bottom 
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of B. halodurans GlmR/YvcK (PDB ID: 2O2Z), S. epidermidis ATCC 12228 (PDB ID: 2PPV), S. aureus NewHG and S. aureus
8325. The residues of GlmR/YvcK predicted to interact with UDP-Glc (+/−NAc) are highlighted. The figure is visualised
with RasMOL software. The structures highlight conserved residues in S. aureus shared with B. halodurans. Residues in
B. halodurans: Thr13, Asn217, Tyr264 and Arg300. Residues in S. epidermidis ATCC 12228: Thr14, Asn217, Tyr264 and Arg302.
Residues conserved in S. aureus NewHG/NCTC 8325: Thr13, Asn216, Tyr263 and Arg301. These residues are predicted to
interact with UDP-Glc (+/−NAc). Colour code: Thr (red), Asn (yellow), Tyr (blue) and Arg (green). We predicted here
UDP-GlcNAc-binding residues only. NAD-binding residues are shown in MSA. (B) Identification of residues involved in
UDP sugar binding. Multiple sequence alignment (MSA) of GlmR/YvcK in different bacteria, including several S. aureus
strains. The highly conserved region of the multiple alignment (residues 240–360) is shown in the figure. Conserved residues
are given in yellow. The conserved amino acids highlighted in blue are those found to interact with NAD in the crystal
structure. Species and strain names are given on the left. Numbering according to [18]. Boxed in red are conserved threonine
sites. A conserved threonine (Thr338 in the MSA) is known by experimental data to be phosphorylated in B. subtilis [16] and
L. monocytogenes [19] and hence predicted by us to be phosphorylated also in S. aureus (Thr304 in its sequence, Thr338 in the
MSA). A high degree of conservation for the first part of the MSA is indicated in the bottom line by red signs: * (perfect),
: (very strong) and . (strong). The complete sequence alignment profile is enclosed in Figure S5. (C) Phylogenetic tree
of glmR (yvcK). The glmR/yvcK evolutionary history is depicted by using the maximum likelihood method. Different
bacterial species are given, and the three clades Firmicutes (blue), Actinobacteria (magenta) and Proteobacteria (green) are
distinguished on the right. The percentage of trees in which the associated taxa clustered together is shown next to the
branches (boot-strapping values through 1000 iterations). The initial tree for the heuristic search was obtained automatically
by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model and then
selecting the topology with a superior log-likelihood value. The tree is drawn to scale, with branch lengths measured in the
number of substitutions per site. There are apparently three clades in the glmR/yvcK tree.
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Figure 7. Comparison of regulatory operons in different organisms. (A) The glmR/yvcK operon composition in B. subtilis,
S. aureus, L. monocytogenes and M. tuberculosis. Three consecutive genes whiA, yvcK and yvcJ are conserved in all the four
organisms, which are core genes. Others are accessory genes located either upstream or downstream of the core gene
cassette. Arrows indicate the gene sequence strand, and numbers at the bottom are the locus tag numbers, which are
generally the sequential order in the genome. A detailed evaluation of the observed conservation is given in Figure S5.
(B) The pknB operon composition in B. subtilis, S. aureus, L. monocytogenes and M. tuberculosis. Arrows indicate the gene size
and the sequence strand, and numbers at the bottom are the locus tag values, which are generally the same as the sequential
order in the genome. The genes of the pknB operon appear to be variable in different organisms, B. subtilis, S. aureus and
L. monocytogenes are similar in the core composition of the pknB operon, whereas M. tuberculosis is relatively distinct.
(C) Comparison of the cdaA-cdaR-glmM-glmS operon structure. Compared are the operons from Bacillus subtilis 168 and S.
aureus NewHG and NCTC 8325 (both strains) including the glmS ribozyme. Four mannitol-specific transporters, enzymes
(MtlF, MtlR, MtlA, MtlD) and a methicillin-resistance determinant protein (FmtB) are specific for the S. aureus cdaA operon,
and the genes are located between glmM and glmS. The loop indicates the glmS riboswitch.

2.1. Metabolic Modelling and Pathway Changes for pknB/stp Mutations

In our study, we used transcriptome data to predict metabolic changes by modelling,
as there are no direct metabolome data for the different genetic modifications available.
We previously established the metabolic modelling method for S. aureus under different
growth conditions based on gene expression or proteome data [20]. For example, in a
S. aureus pathway modelling study involving flux estimates for nucleotide and carbohy-
drate metabolism, the inferred flux predictions from gene expression data were subse-
quently validated and shown to be correct (+/− 5–10% in flux strength) by direct metabolite
measurements of metabolite concentrations [13]. The current study relies on the same
method, and we approached the estimate of metabolic flux differences between three
mutants with genome-scale gene expression data and minimised the calculated pathway
deviations by network analysis. We further validated the metabolic network and flux
activity differences found for two mutants (pknB and stp) compared to the wild type in
another S. aureus strain with a second dataset. Moreover, the phenotype observations on
cell wall metabolism as well as protein–protein interactions directly measured in a recent
publication are highly consistent with our calculated results [9]. To derive a metabolic
model of S. aureus NewHG, first all enzymes of central metabolism according to genome
annotation and hand curation were considered. A metabolic model not just looking at the
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textbook pathways but using all extreme pathways modes (EPM) was calculated from this.
One such EPM balances all internal metabolites involved by the combination of its involved
enzymes. The EPMs show all pure (“extreme”) pathways accessible for the system and
provide hence a generating set to describe all real flux distributions by the combination of
the EPMs. EPMs give increasingly detailed information than canonical metabolic pathways.
However, they are not a 1:1 transfer of these, but rather EPMs cover often only several
enzymes of a pathway. The sum of all EPMs allows considerably more flexibility and
better metabolic buffering than just the textbook pathways could suggest. Precisely for this
reason, such an analysis is important to better understand the high metabolic adaptation
capabilities of NewHG and the detailed effects of pknB or stp mutation on metabolism.
The calculated flux strengths used the information from gene expression data as an ap-
proximation for the flux strength. This is possible, as the network and the flux strength
calculation even out errors in the individual estimates (similarly all enzymes in the same
EPM must be balanced), so low changes in fluxes can also be detected (down to just 5%).

The metabolic model [20] was hence extended to include cell wall metabolism, in par-
ticular peptidoglycan synthesis. The different pathways were all given in sufficient detail
to investigate the complex changes in enzyme activity according to the gene expression
data. Different flux modes were obtained for the metabolic model. The network input file
(with the detailed stoichiometric matrix) can be viewed as SBML S1 in SBML/XML format.
In total, 149 reactions were taken into consideration, including central carbohydrate, amino
acid and lipid metabolism, nucleic acids and peptidoglycan pathways. Next, all balanced
metabolic pathways involving this set of enzymes were calculated, which resulted in 87 ex-
treme pathways; reactions and modes are listed in the supplement (Table S3). In particular,
the flux balance analysis allows revealing hybrid pathways shared between two or more
canonical pathways. We wanted to investigate next the differences in pathway activities
under wild-type and mutant conditions. For this, the gene expression data (GSE122362)
were mapped on the pathway modes and an optimal fit was calculated using YANAsquare
and the fast convergence routine YANAvergence.

Figure 2 visualises the resulting pathway changes and activities for the three mutant
strains of NewHG compared to the wild type (for detailed activity values of the entire
pathways, see Table S3 in Supplementary Excel File S3). This compact figure is a pathway
graph, and higher and lower activities compared to the wild type are shown according to
the extreme pathways calculated. On the y-axis, the activity change is calculated, and no
change corresponds to the middle position. This is a calculation from flux balance analysis
according to the data provided; hence there is no p-value given, and the log2 fold-change
values (log2FC) are directly calculated according to the network topology. Sensitivity
according to metabolite control measurements shows that a 10% change (sometimes even
5%) for a pathway can still be detected by our flux analysis (Cecil et al., 2015) [13]. Table 1
gives an overview on the complex results, and Figure 3 summarises all in a biochemical
pathway map (next section). Positive values indicate significant upregulation of this
pathway in the corresponding mutant, pknB, stp or double mutant. The three strains thus
do not change the metabolism in the same way, though the effects of pknB and the double
knockout of the kinase and phosphatase mutants are similar for many pathways. On the
x-axis, the number of the extreme pathway modes are listed. Each number represents one
extreme pathway from our calculation, usually a modification from a textbook pathway,
and the specific enzyme combinations for each pathway for NewHG are listed in Table S3
(Supplementary Excel File S3), and flux activities compared for NewHG and NCTC8325 are
shown in Table S14 (Supplemental Material Overview.doc). The pattern shows that some
pathways change strongly, while most others change only in the medium-to-moderate
level. The biggest negative peak is caused by the regulation in glycolysis and is strongly
different. As we can clearly see from Figure 2, most of log2FC values are still close to
0, which indicates these pathway fluxes remain relatively constant in the three mutants
compared to the wild type. This observation also implies the rate that is only marginally
different by the loss of either PknB or Stp. Instead, the obvious changed modes are 57
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(transaminase reactions), 50/51 (upper glycolysis and PTS) and 10/60/63/65/70 (amino
acid metabolism).

Table 1. Significantly up- and downregulated pathways in S. auerus NewHG, pknB and stp mutants 1.

Pathways Metabolites
Effect on (Fold-Change)

Summary ∆pknB/WT ∆stp/WT ∆pknB∆stp/WT

Peptidoglycan synthesis
(modes 83, 85) - + GlcK (1.5)

−aa
+ GlcK (1.5)
−aa (2.8)

+ GlcK (1.5)
−aa (1.8)

+ GlcK (1.5)
−aa (2.5)

Pyrimidine synthesis
(modes 55, 66, 59) - NA + PTS (1.78)

−GlcK (1.8)
−aa

−GlcK (1.6)

Purine synthesis (modes 54,
56, 60, 65, 67) - + (2.2) + (1.4) + PTS (5.5)

−aa (13.3)

Nitrogen metabolism: Phe,
Tyr, Gly, Glu and Arg

metabolism (modes 46, 47, 4,
8, 12, 19, 83, 20, 49, 53, 20, 36,
37, 43, 62, 64, 70, 63, 69, 61)

Phe + GlcK
−aa

+ GlcK (3.1)
−aa (6.2)

+ GlcK (1.9)
−aa (2.6)

+ GlcK (3.3)
−aa (5)

Tyr + PTS (2.1)
−GlcK (2.1)

+ aa (2.9)
−GlcK (3.8)

+ PTS (1.7)
−aa (2.1)

Gly - - - -

Glu + aa (>30) + aa (47.5) + aa (32) + aa (55.5)

Arg −Gln (2.2) NA NA

Glycolysis (mode 50)
PTS

Glc→ Pyr - −3.3 −1.5 −4.1

GlcK
Glc→ aKG - −4.2 −3.3 −12

1 This table gives the fold-change pathway activity changes, comparing each mutant with the WT as a control. The symbol + means the
pathway is upregulated in the mutant and − means the pathway is downregulated. Major carbon sources to fuel pathways examined here
are glucose, via the glucokinase (GlcK) or phosphotransferase system (PTS), or aspartate and 2-oxoglutarate via aspartate aminotransferase
(AST/GOT). If one looks closer at individual textbook pathways, the picture becomes too complex for this table, as individual enzymes
may change differently. Using pathway calculations (elementary modes), we can show that, nevertheless, specific groups of flux modes
move and cluster consistently together. GlcK—glucokinase enzyme; PTS—phosphotransferase system; AST—aspartate transaminase
(AST/GOT); aa—amino acid. * Glycolysis/Gluconeogenesis is involved in the previous pathways. Detailed pathways and EPM flux modes
together with each enzyme and reactions are listed in Supplementary Material Overview.doc, Table S14.

2.2. Detailed Analysis of the Pathway Results

After analysing the significantly altered pathways, we created a more detailed list of
the metabolic features that changed in the mutants (Table 1; EPM denotes the calculated
extreme pathway mode): peptidoglycan synthesis (EPMs 83, 85), nucleotide synthesis
(purine and pyrimidine; EPMs 54, 56, 58, 60, 65, 67, 55), aromatic amino acid synthesis (ty-
rosine, EPMs 61, 63, 69; phenylalanine EPMs 62, 64, 70), amino acid catabolism (threonine,
EPMs 10, 11; glutamate, EPM 51; glutamine, EPM 43; aspartate, EPM 57), and pyruvate
metabolism (EPM 44) (Table S3 in Supplementary File S3). Table S14 in Supplementary
Material Overview.doc provides a detailed list of these pathway changes, enumerating
the individual enzyme pathways, comparing mutant pknB to the wild type in both strains.
These data show that the textbook pathways for primary metabolism, such as glycol-
ysis, pentose phosphate cycle and others, do not dominate the adaptation of S. aureus.
Moreover, the involved enzymes of one pathway, particularly regarding amino acid
metabolism, are not always regulated together up or down at the same time. Instead,
metabolic adaptation to PknB-dependent phosphorylation or a lack of phosphorylation
causes joined enzyme pathways that are combinations of the well-known textbook path-
ways of primary metabolism to be up- or downregulated. In general, it was observed that
either up- or downregulation of several central pathways is affected by a flux change in con-
certed metabolites. This is illustrated in Figure 3, which indicates the central metabolism
that is influenced by pknB and stp mutation. The corresponding textbook pathways and
all major EPMs that involve enzymes of specific pathways affected by the deletion are
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shown as up- (green) or downregulated (red) compared to the wild type. In particular, the
pathways for peptidoglycan, nucleotide and aromatic amino acid synthesis and catabolism
involving aspartate transaminase in the double mutations display higher activity compared
to the wild type, while others such as glycolysis are significantly stronger in the wild type.
Interestingly, pyrimidine synthesis is dramatically impaired by stp and the double mutation,
but not by the pknB mutation. Since the whole network is not yet completely described,
we can only refer to the data we obtained. Indeed, there is a lack of knowledge of which
proteins are solely phosphorylated by PknB and dephosphorylated by Stp. Interestingly,
phosphoproteome studies show that a number of proteins are still phosphorylated on
Ser/Thr residues in a PknB knockout mutant, although PknB is the only known Ser/Thr
kinase in the strains used. Moreover, textbook pathways such as pyrimidine synthesis are
not one-to-one related to the EPMs. Instead, several EPMs do involve several enzymes
of the textbook pyrimidine synthesis and hence contribute, but none of the EPMs covers
it completely. For example, regarding the pyrimidine EPMs for the pknB mutant, e.g., 55
and 66, are rather simple modes, which agrees with the simple statement on pyrimidine
metabolism, i.e., PknB mutation illustrates a similar flux activity in pyrimidine metabolism
to the wild type; however, the Stp knockout shows rather individual differences between
the modes. EPM 56 is a combination of different pathways, and there are more other
enzymes involved (27 enzymes compared to 20 enzymes), so it shows relatively more
variation compared to EPMs 55 and 66. Hence, there are clear individual differences for
EPMs 55, 56 and 66.

PknB is clearly involved in the regulation of cell wall synthesis but also in numerous
other metabolic pathway activities. It switches on, quite specifically, several pathways in-
volving glycolysis (EPMs 50-52), but certain transaminase involving pathways are switched
off (EPMs 57, 62–65). Stp, the phosphatase, takes away phosphate groups, mainly from
the PknB phosphorylation but also from other proteins (Figure 3, middle). This picture
of the Stp phosphatase function is clearly a simplification based on the collected data:
Firstly, the metabolic modelling results show that it can only partially antagonise PknB
according to our pathway flux activity comparison between different mutants. It is im-
portant to observe that this only partial antagonising effect on PknB-regulated pathways
suggests that further kinases/phosphatases may be involved (see the Discussion section).
The highly complex network leads to fast adaptation to different environmental conditions,
and the pknB/stp regulatory system is not a Boolean on/off system but rather fine-tunes
several pathways. Therefore, we could observe some opposite effects in the kinase and
phosphatase mutants. A recent identification of more than 3000 phosphosites localised on
Ser and Thr indicates that Ser/Thr kinase signalling, and activity are much higher than
previously anticipated [21].

For optimal adaptation of S. aureus to changing environmental conditions, there
are different routes to produce the same metabolite and, therefore, there are different
extreme pathways in which the products are the same. This is the case for peptidoglycan,
nucleotide and aromatic amino acid synthesis. Based on the estimated activities, the results
reveal that some pathways producing each of these molecules have more activity than
the wild type, while others have less. The main difference between these alternative
routes is using glucose as a carbon substrate through the glucokinase enzyme (GlcK) or
phosphotransferase system (PTS) or not using glucose at all by increasing the amount of
aspartate as a substrate through aspartate transaminase (AST/GOT) (Figure 3). However,
there is not a clear tendency of specific mutants to activate or inhibit the use of glucose
to produce these essential cell components. The observation that pyrimidine synthesis
pathways when compared to the wild type are not different in the pknB mutant, whereas
they are severely impaired in the stp mutant, indicates that only stp is highly involved in
pyrimidine metabolism.

Our observations suggest that the glycolysis pathway from glucose to pyruvate (EPM
44) is less active in the three mutants when compared to the wild type. In contrast, the glu-
tamate synthesis pathway from aspartate and α-ketoglutarate to glutamate and CO2 (EPM
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57) is the most upregulated pathway in the three mutants. In addition, the reactions from
glucose and glutamate to aspartate and α-ketoglutarate (EPM 51) as well as from glutamine
and ornithine to arginine and α-ketoglutarate (EPM 43) are downregulated in the two
single mutant strains, as well as in the double mutant. Unfortunately, we do not know the
exact phosphorylated substrate yet; however, this observation clearly describes the correla-
tion between the glutamate/α-ketoglutarate flux to the mutant strains. Interestingly, two
other pathways were affected, comprising just two reactions for transforming threonine
into glycine as a common step, followed by the reduction of the coproduct acetaldehyde
to ethanol (alcohol dehydrogenase) or oxidation to acetate (aldehyde dehydrogenase).
These are EPM 10 and EPM 11 pathways. These amino acid pathways are downregulated
in the three mutants and give a clear hint that acetate and glycine are used to synthe-
sise threonine. In Table S3, negative enzyme activity values are displayed for EPM 11.
This indicates that the fluxes for this EPM 11 operate in the opposite direction compared to
the other EPMs.

In conclusion, the concerted changes allow direct and rapid adaptation to different
environmental conditions, several pathways always allow the synthesis of required primary
metabolites and enzyme pathways are often jointly reprogrammed by the action of kinase
PknB or phosphatase Stp.

2.3. Validation of the Inferred Metabolic Responses and Gene Expression Changes in a Second
S. aureus Strain

For the above dataset, the flux calculations and gene expression data show that PknB is
instrumental in the adaptation to different carbon sources. However, it is not clear whether
conclusions regarding the metabolic adaptations that we observed and then translated into
flux values can be generalised for S. aureus.

To test this, we used data from a knockout strain in the gene pknB, compared to the
wild type, but considered a different S. aureus strain NCTC 8325 as the control. In this
case, the samples for gene expression analysis were taken from an earlier time point of the
exponential growth phase (GEO dataset GSE15346) [10]. We first tested by detailed genome
comparisons between a reference S. aureus strain (COL), strain NCTC8325 and Newman,
the background strain of NewHG used in this study, whether there are strain-specific
differences in the encoded proteins. The metabolic enzymes of primary metabolism are
identical among all three strains. There are just two differences from the reference strain
COL, looking at NCTC 8325 and NewHG regarding the metabolic enzymes: succinyl-
diaminopimelate desuccinylase is absent, and teichoic acid synthesis enzyme SACOL1043,
the glycosyltransferase TarM, is specifically present in the COL strain. However, there are a
few other protein differences between NCTC 8325 and NewHG that may impact regulation
(for strain-specific genes, see Tables S8–S10).

The calculation of the stoichiometric matrix is shown in Table S11 in plain-text format
and in SBML format in the file suppl2_SBMLS1. sbml for computation. The resulting
extreme pathway modes are given in Table S12. This computational result uses Table S11
as an input file with YANAsquare software and demonstrates there is no difference, as the
central metabolic enzymes are the same in NCTC 8325 and NewHG, making the data of
GSE15346 [10] an ideal dataset for such a comparison. To achieve a better comparison, the
data of the old S. aureus NCTC 8325 microarray design (Scienion, Berlin, Germany) were
mapped against the identifiers of the new microarray design (Agilent, Palo Alto, CA, USA)
in this study, applied in the NewHG study presented here (Table S13). The summarised
results for major pathways are shown in Table 2 and are listed in detail in Table S14.
Thus, pknB mediates amino acid synthesis and strengthens fluxes for this; however, the
flux in glycolysis is overall only slightly impaired in both the pknB mutation S. aureus
strains compared (7.1% in NewHG and 6.7% in NCTC 8325; Table 2; details in Table S14).
The different elementary modes are listed, as well as the calculated metabolic flux strength
in NewHG and in NCTC 8325.
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Table 2. Metabolic pathway effected by pknB mutation in S. aureus NCTC 8325 [10] and flux activity comparison with this
study (S. aureus NewHG).

Pathway EPM 1 NewHG 2 NCTC 8325 3

Glycolysis 50 −7.1% −6.7%

Pentose phosphate pathway 51 −72.7% +7.6%

TCA (cit) 81 −4.4% −4.8%

TCA (succ) 41, 42 +21.2% −1.9%

Purine metabolism 60, 65 +10.2% −20.8%

Purine metabolism 54, 56 −21.4% −17.3%

Purine metabolism 67 −10.2% +27%

Amino acid (Phe, Tyr) 62, 63, 64 +313% +17.6%

Amino acid (Phe, Tyr) 70 −96.9% −21.8%

Amino acid (Gly) 10 −41.1% 63.2%

Amino acid (Arg) 43 −0.7% −100%
1 EPM—extreme pathway mode (applies to both strains); 2 NewHG—S. aureus Newman strain derivation with allele saeSL; 3 NCTC 8325
standard laboratory strain. A positive value indicates a gene upregulated in the pknB mutant, whereas a negative value means a gene
downregulated in percentage. Compared to the wild type of NewHG and NCTC 8325, the impact of pknB mutation on central metabolism;
purine, pyrimidine and partial amino acid synthesis; and metabolism (Phe, Tyr, Gly, Arg) is fully supported and validated by this second
dataset. However, there are clear strain-specific differences in less central pathways, and detailed flux activity differences are compared in
Table S14 (Supplemental Material Overview.doc). Flux changes down to 5–10% are reliably detected by flux calculations, as validated by
direct metabolite measurements [13].

Nevertheless, looking at the inferred pathway differences, the full individual variation
between both experiments becomes obvious. Overall, a clear tendency is visible by stronger
glycolysis as well as anabolic amino acid metabolism in the NCTC 8325 dataset mediated by
PknB. Predominantly, the overall contrasts for central carbohydrate pathways, amino acid
metabolism and lipid metabolism are fully supported by this second dataset. A concerted
metabolic change in fluxes was observed in both datasets (Table 2). The pathways for
nucleotide synthesis, aromatic amino acid synthesis and catabolism involving aspartate
transaminase (AST), also known as glutamic oxaloacetic transaminase (GOT), were less
active in the pknB-knockout strain. There are still some strain-specific adaptations upon
pknB-knockout mutation, e.g., the pentose phosphate pathway is severely impaired by the
absence of PknB in NewHG but not in NCTC 8325. We think that this is due to strain-
specific differences. In particular, NCTC 8325 is defective in the alternative sigma factor B
and has also other genome differences. However, the exact mechanism for the observed
difference in the regulation of the pentose phosphate pathway is not known.

Amino acid metabolism is similarly regulated between NewHG and NCTC 8325; for
glycine, there are clear differences. Apart from strain-specific differences in metabolic regu-
lation, some observed differences in gene expression might also be caused by the sampling
time point. Though the metabolic activity changes, the central metabolism and amino acid
metabolism induced by pknB mutation remain highly identical in both S. aureus strains.

We also considered further available data, in particular protein–protein interaction
data, comparing pknB knockout in S. aureus NewHG to the wild type. Another impact
of PknB is highlighted by this analysis (and supported by the detailed experimental
investigation in [9]): PknB promotes peptidoglycan synthesis. This is also observable from
the metabolic modelling of the first dataset above, which suggests that the extreme pathway
modes for cell wall synthesis are strong in the wild type and impaired in the pknB-knockout
mutant and could be supported by these data (Table 3) as well as the predicted fluxes from
central metabolism contributing directly to cell wall growth.
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Table 3. S. aureus NewHG metabolic changes under pknB/stp mutation.

Pathway ∆stp ∆pknB ∆stp∆pknB

Pyrimidine synthesis (modes
55) 45.1% Impaired (−) 37% Lower activity as

compared to WT (−)

Purine synthesis (modes 60,
65) Higher activity (+)

Aspartate, α-ketogluarate,
glutamate (mode 57) + + +

Glutamate synthesis + + +

Peptidoglycan synthesis
(mode 83) + + +

Peptidoglycan synthesis
(mode 85) − − −

* Cell wall morphology and
thickness 1

* Logarithmic phase * Larger (7%)
Thicker (26%)

* Larger (8%)
Thinner (23%) * Larger (16%)

* Stationary phase * Smaller (4%)
Thicker (38%) * Larger (15%) * Larger (15%)

1 Data from [9]. Comparison of the flux changes in the different mutants versus the wild type. Note that there is also a strong flux into
peptidoglycan synthesis (modes 83, 85) collecting the synthesis reactions above into cell wall components. * Experimentally determined [9].

2.4. Involvement of the glmR Regulon and the cdaA Operon

Our gene expression data and the metabolic model show the role of PknB in ser-
ine/threonine phosphorylation in amino acid catabolism and the switch between glycol-
ysis (glucose as a substrate) and gluconeogenesis (aspartate as a substrate) to synthesise
different cell molecules, such as peptidoglycan, nucleotides and aromatic amino acids.
Thus, PknB/Stp modifies the carbon fluxes and cell wall synthesis fluxes.

However, studies from Gram-positive (e.g., B. subtilis and M. tuberculosis) reveal dif-
ferent regulatory proteins that are involved in this switch. The carbon storage regulator
(CsrA), a well-studied protein mainly in Gram-positive bacteria, such as M. tuberculosis,
regulates the central metabolism (activates glycolysis and inhibits gluconeogenesis) by
affecting the stability of mRNAs. CsrA also controls other aspects, such as cell surface
properties, motility, quorum sensing, virulence and interactions with animal and plant
hosts [22]. Despite these similarities to pknB/stp mutant phenotypes, the csrA gene does
not exist in S. aureus. The second candidate is YvcK, a less well-studied protein that used
to be labelled in S. aureus as a hypothetical protein (NCBI accession no. BAF67006) but
was recently identified as GlmR in B. subtilis [23]. This protein is essential for bacterial
growth under gluconeogenic conditions in B. subtilis, L. monocytogenes [19] and M. tuber-
culosis. In B. subtilis, GlmR is important for the regulation of carbon partitioning between
central metabolism and peptidoglycan biosynthesis [23]. In addition, it is also known to
be phosphorylated by a serine/threonine kinase in B. subtilis [16], L. monocytogenes and
M. tuberculosis. Thus, it represents a promising candidate to bridge the serine/threonine
phosphorylation to switching between glycolysis and gluconeogenesis.

The metabolic flux effects (flux data: see supplement; inferred from the gene ex-
pression data of S. aureus) are best condensed into the following model (Figure 5) on the
function of the glmR/yvcK regulon in S. aureus as glmR (GlmR transcriptional regulator)
and glmS (L-glutamine-D-fructose-6-phosphate aminotransferase): central for this operon
is a gene cassette comprising yvcJ (RNase adaptor), glmR/yvcK and whiA (transcription
factor). The alignment profile comprising of B. subtilis, S. aureus, L. monocytogenes and M.
tuberculosis is shown in Figure 6B and of GlmS ribozyme structure in Figure 5. In addition,
a couple of different accessory genes located either upstream or downstream are found in
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other bacteria around two neighbouring operons: sigW-rsiW and cdaA-cdaR-glmM-glmS in
B. subtilis [23]. The whiA, yvcK and yvcJ genes are highly conserved in different species,
which suggests they are core genes of the glmR/yvcK regulon that mostly act in a coordi-
nated manner.

The metabolic modelling data suggest that proteins encoded by the glmR/yvcK regulon
and the cdaA-cdaR-glmM operon might be important mediators of the PknB-regulated
adaptation (Figure 1, analysis flow) and were investigated more closely. The interactions
between these regulatory modules and PknB involve metabolic co-regulation, as well as
direct metabolic interaction via the GlmS riboswitch that binds glucosamino-6-phosphate
(Figure 5).

2.5. Detailed Interaction of PknB with GlmR

An interactome analysis (Figure 4) predicted according to the database (see the Materi-
als and Methods section) that several direct substrates of PknB interact with GlmR [14,24],
and GlmR stimulates the activity of GlmS [23], as well as cell wall metabolism proteins.
The model is based on known protein–protein interactions, including information from
databases such as STRING, experimentally proven interactions between cell wall synthesis
enzymes [9] and metabolic interactions (as changing a metabolic pathway). Moreover, we
suggest that GlmR may be a direct substrate of PknB, as has been shown in Streptococcus
pyogenes [25,26]. In B. subtilis, the sequence homologue Ser/Thr protein kinase PrkC acts as
a substrate for phosphorylation of GlmR, which plays an important role in cell morpho-
genesis [16]. In S. aureus, it has been shown that PknB (also known as Stk1) plays a role in
the regulation of cell wall biosynthesis and in drug susceptibility [27]. In M. tuberculosis,
PknB-mediated phosphorylation with various substrates has been shown [28], and based
on sequence, structure and function conservation, we predict GlmR can be indirectly in-
volved in these phosphorylation events in regulating cell shape and cell division. Therefore,
we suggest a model, shown in Figure 5, that explains how PknB contributes to cell wall
metabolism in the presence and absence of preferred carbon sources. The observed tight
metabolic co-regulation (transcriptome data, metabolic modelling; see the previous section)
follows from the mutual regulatory interactions between PknB, the GlmR regulon and
the cdaA-cdaR-glmM operon (Figure 5). This model is further supported by the genomic
organisation of pknB, the cdaA operon and the ccpA regulon. Expression of the glmS gene
can be stimulated by GlmR under a low-glucose condition or glucose depletion (see [23];
Figure 5, middle). This regulation is governed by the carbon catabolite control protein
(CcpA), and GlmR may appear abundant when CcpA activity is low [9,11]. As a result,
GlmS is activated, so the system diverts more carbon sources to peptidoglycan biosynthesis
(Figure 5, right). However, the regulation may be more complex, since PknB may be capable
of phosphorylating GlmR as a secondary regulation pathway, but this is only inferred
from our transcriptome data, though supported by published data in other Gram-positive
bacteria (Figure 5, left). The resulting effect supports the notion that CcpA may have
different isoforms [29]. In addition, as observed by Patel et al. (2018) [23] for Bacillus subtilis,
the carbon catabolite control protein CcpA represses genes for the use of non-preferred
carbon sources when glucose is available, as well as the operon encoding glmR (yvcI-yvcJ-
glmR-yvcL-crh-yvcN). As a result, GlmR should be most abundant when CcpA activity
is low. CcpA repressor activity is indirectly stimulated by elevated levels of fructose-
1,6-bisphosphate present during growth on preferred carbon sources. During growth on
non-preferred, gluconeogenic carbon sources, GlmR will be more abundant, consistent
with its role in diverting carbon to PG synthesis under these conditions. Furthermore, the
authors proposed a model in which GlmR activates GlmS, and this activity is inhibited
when GlmR is bound to the downstream metabolite UDP-GlcNAc. Further supporting
experimental observations for the role of the glmR/yvcK operon in peptidoglycan synthesis
are given in Supplementary Material.
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2.6. Conserved Sequence and Structure of GlmR

Genome sequence analysis revealed similarity in the conserved glmR gene cluster in
Gram-positive bacteria, including B. subtilis, S. aureus, S. epidermidis, Streptococcus pneumo-
niae, Lactococcus plantarum and Listeria monocytogenes (Figure 6C). However, GlmR homolo-
gous proteins are not restricted to Firmicutes and can also be found in Actinobacteria (e.g.,
M. tuberculosis) and Proteobacteria (e.g., E. coli), as shown in the phylogenetic tree of glmR
(Figure 6C). GlmR possesses probably a conserved UDP-sugar-binding site, as originally
described in B. subtilis [18], which could also be found in S. aureus strains Newman, NCTC
8325 and COL (Figure 6B). These data support that fact that in S. aureus, GlmR interacts
with NAD, UDP-Glc and UDP-GlcNAc as it does in B. subtilis, underlining its potential role
in regulating cell wall metabolism. Noteworthy, the deletion of PknB in S. aureus affects cell
wall metabolism by accumulation of peptidoglycan precursors, including UDP-GlcNAc [9].

Multiple sequence alignment (MSA) further confirmed the high conservation of the
putative PknB phosphorylation site of GlmR. GlmR from B. subtilis is known to be phos-
phorylated at Thr-304, as directly measured [16]. In S. aureus, Thr-304 could also be the
target phosphorylation site, as shown in Figure 6B (in MSA, the counting is different and
shifts the threonine to position 338 in MSA).

The predicted ligands of GlmR were further analysed by 3D structure analysis.
The GlmR/YvcK structure of B. halodurans was directly determined by X-ray crystal-
lography at 2.6-angstrom resolution (PDB ID: 2O2Z) [30]. The the GlmR protein struc-
ture of B. subtilis was recently modelled and its phosphorylation by PrkC studied [18].
To model the GlmR structure in S. aureus, we used the template crystal structure from S.
epidermidis ATCC 12228 (PDB ID:2PPV; at a high resolution of 2.0 angstroms) and the B.
subtilis crystal structure as a template and calculated homology models (see the Materials
and Methods section) using the strain-specific S. aureus Newman, NCTC 8325 and COL
sequences (Figure 6A). S. aureus and B. subtilis were predicted to be homodimers just like
the template (high homology found), and the L. monocytogenes structure could possibly be
a monomer (data not shown) [31]. Figure 6A shows that the identified residues could be
involved in binding to UDP sugars, and we verified that these residues are conserved in
many Gram-positive bacteria.

2.7. General Regulation of the glmR/yvcK Regulon

In addition to GlmR, the biosynthesis of peptidoglycan is tightly regulated by the
participation of the cdaA-cdaR-glmM-glmS region of the chromosome. This module encodes
the major cyclic-di-AMP synthase (CdaA) and a regulator of CdaA, CdaR. GlmS encodes an
aminotransferase that catalyses the first reaction of peptidoglycan synthesis. The reaction
involves conversion of fructose-6-phosphate (F6P) into glucosamine-6-phosphate (GlcN6P)
using glutamine as an amino group donor. Upon stimulation by GlmR, GlmS allows
the organism to use a non-preferred carbon source. The switch between the pathways
can be regulated by cooperative activity of the ccpA regulon and the cdaA operon [29].
This involves repression of CcpA, thereby increasing the concentration of GlmR and
the ribozyme action of GlmS. The GlmS ribozyme has been shown to be present first in
B. subtilis [17] and then in S. aureus [32]. Including these data, we calculated the conserved
secondary structure of the GlmS ribozyme and show it in Figure 5 (top-right corner).
GlcN6P has been shown to induce the riboswitch in S. aureus. However, the overall rate of
the riboswitch is slow in S. aureus as compared to other bacteria [32].

The cdaA operon centres around the diadenylate cyclase CdaA and controls pepti-
doglycan biosynthesis in Lactococcus lactis [33]. The modulatory effect was reported to
come from GlmM. We complement these data here by adding that the whole module
(cdaA, cdaR, glmM, mannitol-specific enzymes and glmS) is involved in the metabolism of
cell wall synthesis in S. aureus and tightly interacts metabolically with PknB and GlmR
according to our metabolic model and reported protein interactions from the literature and
databases (Figure 4). A glmR/yvcK sequence homology analysis of a broad range of differ-
ent microorganisms was used to classify the bacteria into the major clades of their phylum,



Microorganisms 2021, 9, 2148 19 of 30

i.e., Firmicutes (clade 1), Proteobacteria (clade 2) and Actinobacteria (clade 3) (Figure 6C).
The analysis included the genera Streptococcus, Staphylococcus, Bacillus, Listeria, Streptomyces,
Salmonella, Aggregatibacteria, Escherichia, Corynebacterium, Pseudomonas, Nocardia, Micrococ-
cus, Streptomyces and Mycobacterium. This demonstrates that GlmR/YvcK has evolved into
a broad range of bacterial species living in highly diverse habitats. Moreover, they are
characterised by different cell wall compositions, shapes and processes of elongation and
cell division. Our phylogenetic tree relies directly on the original data, as established by
sequencing. For the highest resolution, three S. aureus strains were considered, as well as
the S. aureus consensus sequence. Furthermore, several other staphylococcal species were
also considered.

Interestingly, we observed several bacteria lacking glmR/yvcK in their genomes, such
as Neisseria, Haemophilus, Helicobacter and Chlamydia trachomatis. This suggests that there
are possibly other alternative regulatory mechanisms present at least in some rod-shaped
Gram-negative bacteria.

2.8. The pknB Operon Is a Regulatory Operon in Many Bacteria

The pknB operon involves six genes in S. aureus, but the only two genes present in the
four microorganisms S. aureus, B. subtilis, L. monocytogenes and M. tuberculosis are pknB and
stp (shown in Figure 7B). The protein kinase gene is indicated as pknB, and the downstream
gene stp encodes the corresponding phosphatase. The pknB operon from M. tuberculosis
is considerably different from the other three according to the operon composition. It has
unique genes that do not appear in the operons of the three other pathogens: a second
Ser/Thr kinase (this is absent from the other microorganisms) and two genes responsible for
the rod shape of the bacterium. Genes related to protein translation are present in the other
three microorganisms, which have a gene rpe encoding ribulose-phosphate 3-epimerase
from the pentose phosphate pathway, another for starting DNA replication (priA) and one
gene for coenzyme A biosynthesis, involved in fatty acid and pyruvate metabolism. In ad-
dition, the L. monocytogenes operon includes a gene for thiamine diphosphate synthesis,
a vitamin B1 derivative that catalyses several reactions of the catabolism of sugars and
amino acids (it is present in enzymes such as pyruvate dehydrogenase and decarboxylase,
α-ketoglutarate dehydrogenase and transketolase). A detailed view compares the oper-
ons from B. subtilis 168 and S. aureus NewHG and NCTC 8325 (both strains) (Figure 7C).
This shows in detail similarities to B. subtilis, such as the glmS ribozyme, an RNA structure
for the glucosamine-6-phosphate riboswitch ribozyme (glmS ribozyme) in the 5′untranslated
region of the glmS gene mRNA, but close by, there is a clear difference of five genes con-
served only in S. aureus. These data on the impact of the preferred carbon source and pknB
in directing metabolism towards central metabolism or towards cell wall biosynthesis have
major implications for understanding cell wall biosynthesis and methicillin resistance

2.9. Virulence Gene Expression and Metabolic Flux Changes Are Tightly Connected in S. aureus

Concerted action of the kinase PknB and its corresponding phosphatase Stp, together
with proteins encoded by the glmR/yvcK regulon, may be important for optimal growth
under harsh environmental conditions, e.g., glucose limitation or infection in the host.
Besides its impact on metabolic functions, PknB/Stp is also involved in the regulation of
virulence factor expression, which might play an important role in infection. Regarding
virulence factor expression, we made several interesting observations (Tables S1 and S2 in
Supplementary File S1). Many virulence-associated genes are upregulated in the double
mutant and pknB mutant. In contrast, the stp mutant illustrates the effect of downregulation
in many virulence genes.

Toxins, including α-hemolysin (hla), β-hemolysin (hlb), γ-hemolysin components
(hlgA, hlgB, hlgC), leucocidin toxin subunits (lukD, lukE, lukF, lukS), serine proteases (splA-
F) and cysteine proteases (sspB, sspC), are upregulated in mutants lacking functional
PknB. Thus, the expression of PknB downregulates the transcription of these well-known
virulence factors.
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In contrast, many virulence factors and their regulators (agr, sae) appear downregu-
lated in the stp mutant compared to the WT. Most strikingly, genes encoding proteases,
such as serine proteases (splB-F), cysteine protease sspB, hemolysins (hlg, hla), leucocidins
(lukD, lukE, lukF, lukS) and immunomodulatory proteins (chp, scn, sbi), are strongly down-
regulated in the stp deletion strain. As stated above, many of these factors are upregulated
in the pknB mutant but also in the double-knockout mutant. These results strongly suggest
the involvement of serine/threonine phosphorylation in the transcriptional regulation of
virulence factors in opposite ways: the action of PknB might downregulate the expres-
sion of virulence factors, while Stp-dependent dephosphorylation leads to upregulation.
Moreover, several regulators related to virulence factor expression are negatively affected
by pknB or stp deletion, including ArlS (two-component sensor histidine kinase), SaeRS
(two-component system response regulator, sensor histidine kinase regulator), Mgr (MarR
family regulatory protein) and Sar (staphylococcal accessory regulator T, S, Y and R).
This observation is in line with previous findings reporting that phosphorylation of
SarA and MgrA modulates virulence and antibiotic resistance in S. aureus [34,35].

2.10. qRT-PCR Validation of Gene Expression Data

To confirm the microarray results further, qRT-PCR experiments of selected genes
were performed. We chose representative virulence genes for qRT-PCR analysis based on
the high level of deregulation seen by us in the microarray study. We hence compared the
expression of sspB, splB, hla and lip in the wild-type strain NewHG with the pknB and stp
mutant strains. In the pknB mutant, expression was upregulated for sspB by 1.7-fold, splB
by 1.3-fold, hla by 1.8-fold and lip by 2.1-fold. These data confirm the microarray results
(see Supplementary Material Overview.doc, Table S15). Moreover, in the stp mutant, there
was corresponding downregulation: sspB by 5.1-fold, sspB 3.9-fold, hla 1.5-fold and lip
2.3-fold.

3. Discussion

In this study, we assessed the metabolic phenotypes and the effect of regulation on
physiological functions in S. aureus, controlled by pknB/stp during S. aureus adaptation
to infection. To achieve that, we used direct transcriptome data (strong in identifying
direct regulatory effects and adaptations) as well as metabolic modelling based on ex-
treme pathway calculations from these pknB/stp mutants’ transcriptomics (revealing more
subtle changes mirrored in changes in pathways and inferred enzyme fluxes). No direct
metabolite measurements were performed. Overall, we observed differences in the glycol-
ysis/gluconeogenesis pathways leading to nucleotide, aromatic amino acid and peptido-
glycan synthesis. Based on these results that match with those of previous studies [6,9–11],
we proposed two regulatory modules that might be interacting with PknB/Stp in S. aureus:
the glmR/yvcK regulon and the cdaA-cdaR-glmM-glmS module. Furthermore, we analysed
the sequence, structure and phosphorylation site conservation of the glmR/yvcK regulon
among different microorganisms and suggested the complex interactome of PknB/Stp, in-
cluding the previous regulatory modules. Finally, we used transcriptomic data to evaluate
the virulence factors controlled by PknB and Stp.

The bioinformatics approach used in this study to infer different metabolic flux ac-
tivities and to compare different conditions and strains in silico has proven reliable and
efficient in former studies [13,15,36]. Nevertheless, validation preferably with direct mea-
surements of metabolites and enzyme activities should be included to predict cellular
functions. However, such data are difficult to obtain, and the use of large datasets, e.g.,
from transcriptomics or proteomics, is valuable to draw reliable conclusions on the role of
individual proteins in cellular functions. In general, the actual enzyme activity within the
bacterial cell underlies regulation on a transcriptional, translational and post-translational
level. Moreover, it can be further modulated by allosteric effectors. However, all these
different effects of the inherently complex regulation must be sufficiently balanced for
different enzymes acting in a network or pathway context to avoid shortage or accumula-
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tion of different metabolites. This network-balancing condition allows inferring metabolic
fluxes with reasonable accuracy (about 5–10% for individual enzymes, as calculated in
studies with direct metabolite measurements or metabolomics) [13].

Here, we hence modelled the metabolic difference in cellular pathways, as estimated
by flux balance computation based on transcriptome data of S. aureus wild-type strains and
strains lacking the Ser/Thr kinase PknB, the corresponding phosphatase Stp or both pro-
teins. The differences observed in the strains imply that the carbon source diversion may be
governed by GlmR/YvcK expression. Furthermore, the data suggest that regulation occurs
together with CcpA and PknB under a growth condition of low glucose concentration.
To strengthen this hypothesis, we applied a secondary dataset of previously published data
from a different S. aureus strain (NCTC 8325). The metabolic flux estimation results confirm
that the metabolic effects caused by the pknB mutation are highly similar also in this strain.
Since strain NCTC8325 does not express the alternative sigma factor SigB, we concluded
the regulatory role of PknB and GlmR on both carbon source diversion and peptidoglycan
synthesis independent of the expression of SigB. However, we noticed that the regulation
caused by stp mutation shows more differences, which remain to be investigated further.
Possibly, other so far unknown phosphatases are also involved in this regulatory network.

Regarding metabolic adaptation mediated by pknB in S. aureus and implications
for virulence, in the first study using S. aureus strain NCTC 8325, several transcriptional
changes were observed in a pknB mutant of this strain, which affected genes involved
in purine and pyrimidine biosynthesis, cell wall metabolism, autolysis and glutamine
synthesis [10]. Most of these pathways were also affected in the present study using
strain NewHG, a genetically modified version of strain Newman to obtain a more virulent
strain. It shares virulence features with highly virulent clinical isolates (see Herbert et al.,
2010 [15]). The inclusion of strains lacking the phosphatase Stp and a strain lacking both
activities allowed now a more comprehensive analysis to model growth dependent on
the availability of different substrates, which may reflect infection conditions where more
specific virulence factors are activated. The metabolic model is made fully available and
provides by its extreme pathways (and their flux combinations) all pathways accessible to
S. aureus for the strain NewHG.

The comparison of each pathway activity between the wild-type strain and the three
mutants suggests that Ser/Thr phosphorylation regulates somehow the switch between
glycolysis and gluconeogenesis to provide the cell with enough cell wall components,
nucleotides and aromatic amino acids. Ser/Thr phosphorylation/dephosporylation in S.
aureus is complex. There must be other mechanisms active other than Ser/Thr phosphoryla-
tion by the Ser/Thr kinase PknB and the Ser kinases HprK and RsbW. Moreover, cross-talk
with two-component regulatory systems has been described [21]. This highly complex
network leads to fast adaptation to different environmental conditions, and the PknB/Stp
system is not an on/off Boolean system but rather fine-tunes several different pathways.
Therefore, we could observe clear opposite effects in the kinase and phosphatase mutants,
as expected, but also unexpected similar up- or downregulation in all mutant strains.
Thus, using flux balance analysis, we see that the flux of EPM57, which is the connection be-
tween glutamate to α-ketoglutrate, changes significantly for both the pknB mutant and the
stp mutant; however, we do not know the exact phosphorylated substrate yet. In this study,
we reported this change and how they are correlated clearly to the mutants. We believe the
topic needs to be further investigated in the future.

The altered pathways are also directly related to the catabolism of different amino
acids, including aspartate/glutamate, glutamine and threonine catabolism. It is known
that S. aureus survives through the catabolism of a secondary source and it encodes path-
ways to catabolise multiple amino acids, including those that generate α-ketoglutarate and
oxaloacetate [37]. Moreover, previous studies have proved that preventing the biosynthesis
of oxaloacetate in the TCA cycle and its later conversion to phosphoenolpyruvate that is
used in gluconeogenesis stops the synthesis of capsule precursors affecting S. aureus viru-
lence [38]. In another study, the most virulence-attenuated S. aureus mutants identified in a
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murine model of systemic infections mainly corresponded to defects in metabolism, such
as aspartate and pyrimidine biosynthesis and the α-ketoglutarate/malate symporter [39].
Expression of virulence genes, such as hemolysins and proteases, is modulated by PknB
expression, as shown in Table S3 in Supplementary File S3. Probably, this is due to rather
affecting global regulatory systems, such as the agr and sar regulators, than direct phos-
phorylation/dephosphorylation of the virulence proteins. Although both datasets support
the main conclusions described above, differences also became clear comparing both ex-
periments and datasets: other EPM activities including secondary metabolites appear
relatively different in the comparison of NewHG and NCTC 8325. This may be caused
by the different sampling time points or action of the alternative sigma factor SigB, which
is not expressed in NCTC 8325. In NCTC 8325, the sample was obtained at the middle
exponential phase [10], and in NewHG, it was obtained at the late exponential phase.
However, the carbon usage preference governed by PknB remains the same in both strains.
It may seem surprising that the carbon use was the same in a comparison of the mid- and
late exponential phase. However, we did not compare full medium growth but rather we
used a glucose-poor medium (B-medium; see the Materials and Methods section), where
the bacteria have to use amino acids to support carbon metabolism [37] S. aureus encodes
pathways to catabolise multiple amino acids, including those that generate pyruvate, 2-
oxoglutarate and oxaloacetate. Obviously, there was no limitation regarding recycling
amino acids in the late exponential phase compared to the mid-log phase for these path-
ways. This is also evident from the unimpaired growth curve (Supplementary Material
Overview.doc, Figure S1).

In addition, we applied different levels of constraints for the two strains: there are
more enzyme activities derived from the gene expression values of NewHG, than NCTC
8325, due to the older design of the NCTC 8325 microarray (2009 study). Hence, there is no
peptidoglycan flux prediction for NCTC 8325 due to a lack of input enzyme activities. How-
ever, we have two independent experimental datasets to validate the positive metabolic
effects of PknB for peptidoglycan synthesis, and our NewHG microarray data support
these flux predictions as well as the interactome data (Tables 1–3) [9]. One limitation of
the study is that the proposed role of GlmR is based on theoretical predictions from this
study and published data from other Gram-positive bacteria. However, phosphoryla-
tion of GlmR by PknB in vivo has not been proven yet and remains to be validated in
future work.

4. Conclusions

Transcriptome data and comprehensive metabolic modelling show that serine/
threonine phosphorylation is involved in the virulence capacity of S. aureus, as well as
regulating its metabolism by allowing growth under a wide range of different substrates.
We inferred by bioinformatics a detailed metabolic model for this metabolic adaptation that
was quantitatively confirmed by an independent experimental transcriptome dataset from
a different S. aureus strain. This model suggests that S. aureus uses all available metabolic
pathways, including combinations of basic pathways to achieve concerted up- or downreg-
ulation of biosynthesis and central metabolic pathways. PknB and its intimate connection
to the glmR regulon and the cdaA operon achieve a stable glucose flux, improved aromatic
amino acid and nucleotide synthesis and, importantly, peptidoglycan synthesis with cell
wall homeostasis, activating central virulence regulators (AgrABCD, ArlS, SaeRS, SarA and
MgrA) with implications for virulence and antibiotic resistance. There is no doubt that the
activity of kinase PknB versus phosphatase Stp has an important impact on S. aureus cell
physiology and also virulence. However, the exact role has to be defined depending on
growth conditions. Moreover, the characterisation of individual mutants allows predictions
of their physiological role. Their regulation is complex (not just antagonistic, sometimes
also synergistic) and may differ depending on the activity state of both partners.
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5. Materials and Methods
5.1. Experimental Methods
5.1.1. Generation of Mutant Strains and Phenotype Analysis

The S. aureus NewHG mutant strains lacking pknB/stk, stp or both pknB and stp
genes were constructed, as recently described [9].: Briefly, fragments upstream and down-
stream of pknB, stp and pknB/stk were amplified by PCR and cloned together with an ery-
thromycin resistance cassette (ermB) into the temperature-sensitive shuttle pBT2. The vector
was electroporated into S. aureus RN4220, transduced to S. aureus NCTC 8325 via phage
Φ85 and chromosomally integrated after a temperature shift. Following verification of
the correct deletion of the target genes, the gene knockouts were subsequently trans-
duced into strain NewHG via phage Φ85, and deletions were verified by PCR using gene-
specific primers.

5.1.2. Media and Growth Conditions for the Bacterial Strains Used in
Transcriptome Analysis

We used B-medium, a modified LB medium, which was developed for cultivation of
staphylococci [40]. by adding potassium phosphate. As no glucose was added, the bacteria
used amino acids for carbon metabolism. S. aureus encodes pathways to catabolise multiple
amino acids, including those that generate pyruvate, 2-oxoglutarate and oxaloacetate
(Halsey et al. 2017 [37]). The authors of this publication found ‘glutamate and amino
acids that serve as substrates for glutamate synthesis, particularly proline, function as
major carbon sources during growth, whereas other amino acids that generate pyruvate are
important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway’.
Such a condition would be typical in a low-glucose environment, e.g., in abscesses typically
formed by S. aureus. Hence, both S. aureus strains and all their mutants (S. aureus NewHG
wt, ∆pknB/∆stk, ∆stp and ∆stk∆stp; S. aureus NCTC 8325 and ∆pknB/∆stk) were cultivated
overnight at 37 ◦C in B-medium (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 1 g/L
K2HPO4) [10] in a shaking incubator at 200 rpm.

The next day, the strains were diluted in 100 mL B-medium (optical density was
adjusted at OD600 = 0.05) and again incubated until the cells reached the late exponential
growth phase (OD600 = 5.0). Afterwards, RNA was isolated from 7 mL of the bacterial
cultures, which were harvested by centrifugation for 10 min at 10,600× g, and the bacterial
pellet was resuspended in 800 µL of RLT buffer (Qiagen, Hilden, Germany) and mechan-
ically disrupted with glass beads (2 mL Lysing Matrix tubes; MP Biochemicals GmbH,
Eschwege, Germany) in Fastprep®-24 (MP Biochemicals, Woburn, MA, USA). The cell
lysate was centrifuged for 2 min at 18,000× g, and the supernatant was used for RNA isola-
tion. RNA was isolated with a RNeasy Mini kit (QIAGEN, Hilden, Germany) according to
the instructions of the manufacturer. To remove the DNA template, RNA was treated with
RNase-free DNase I (New England, Biolabs® Inc., Frankfurt, Maine, Germany). In contrast
to our previous publication, in which we analysed the gene expression of a pknB mutant
compared to its corresponding wild-type strain NCTC 8325 during mid-logarithmic growth
(OD600: 1.0), we now determined the gene expression of ∆pknB, ∆stp and ∆stk∆stp and the
wild type in the strain NewHG background.

5.1.3. Microarray Analysis of Transcriptome

The microarray was manufactured by in situ synthesis of 60-base-long oligonucleotide
probes (Agilent, Palo Alto, CA, USA), selected as previously described [41]. The array cov-
ers >95% of all open reading frames (ORFs) annotated in strains NCTC 8325, UAMS-1 and
SA564, as well as Newman, including their respective plasmids. Total RNA was purified
from strain NewHG and its mutants grown in B-medium with 10 g of tryptone, 5 g of yeast
extract, 5 g of sodium chloride, 1 g of di-potassium hydrogen phosphate and 1 L of aqua
dest. to an OD600 of 5, as previously described [10]. For each strain, RNA of three inde-
pendently grown cultures was analysed. After additional DNase treatment, the absence of
remaining DNA traces was confirmed by quantitative PCR (SDS 7700; Applied Biosystems,
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Framingham, MA, USA) with assays specific for 16S rRNA [42]. Batches of 5 µg of total S.
aureus RNA were labelled by Cy3-dCTP using SuperScript II (Invitrogen, Basel, Switzer-
land) following the manufacturer’s instructions. Labelled products were then purified onto
QiaQuick columns (Qiagen, Hilden, Germany). Purified genomic DNA from the different
sequenced strains used for the design of the microarray was extracted (DNeasy; Qiagen),
labelled with Cy5 dCTP using the Klenow fragment of DNA polymerase I (BioPrime;
Invitrogen, Carlsbad, CA, USA) and used for the normalisation process [43]. Cy5-labeled
DNA (500 ng) and a Cy3-labelled cDNA mixture were diluted in 50 µL of Agilent hybridis-
ation buffer and hybridised at a temperature of 60 ◦C for 17 h in a dedicated hybridisation
oven (Robbins Scientific, Sunnyvale, CA, USA). Slides were washed, dried under a nitrogen
flow and scanned (Agilent, Palo Alto, CA, USA) using 100% photon multiplier tube power
for both wavelengths. Fluorescence intensities were extracted using Feature Extraction soft-
ware, version 9 (Agilent). Local background-subtracted signals were corrected for unequal
dye incorporation or unequal load of the labelled product. The algorithm consisted of a
rank consistency filter and a curve fit using the default locally weighted linear regression
(LOWESS) method. Data consisting of three independent biological experiments were
expressed as log 10 ratios and analysed using GeneSpring, version 8.0 (Silicon Genetics,
Redwood City, CA, USA). A filter was applied to select oligonucleotides mapping ORFs
in the Newman genome, yielding approximately 95% coverage. Statistical significance of
differentially expressed genes was calculated by analysis of variance [44] using GeneSpring,
including the Benjamini and Hochberg false discovery rate correction of 5% (p-value cutoff:
0.05) and an arbitrary cutoff of twofold for expression ratios. Microarray data have been
posted on the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo;
accession nos. GPL10537 for the platform and GSE122362 for the original dataset; see also
analysis in Tables S5–S7 in Supplementary File S5).

5.1.4. Quantitative Real-Time PCR

To validate the transcriptome data obtained with DNA microarrays, a qRT-PCR ap-
proach was applied. NewHG ∆stp and NewHG ∆pknB were inoculated from separate
overnight cultures (1:200) into 15 mL of fresh B-medium each. We incubated three inde-
pendent cultures of each strain at 37 ◦C until the respective OD600 reached 5 ± 0.1, as
previously described [10].

Immediately, the bacterial pellets were lysed, and the total RNA was extracted and
purified using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the
manufacturer’s instructions. Using the RapidOut DNA Removal Kit from Thermo Fisher
Scientific (Waltham, MA, USA), the DNA was digested from total RNAs. For confirming
the absence of DNA traces, qPCRs were performed with assays specific for 16S rRNA.

cDNA synthesis was performed with SuperScript IV from Thermo Fisher Scientific
and random primers. We used the SsoAdvanced Universal SYBR Green Supermix (BioRad,
Feldkirchen, Germany) for qRT-PCR according to the manufacturer’s instructions. Five sets
of primers (Table 4) were designed for the optimal annealing temperature and specificity
and tested for efficiencies (all in the range between 90% and 110%) to quantify four genes
and the housekeeping gene. For each strain, 3 independent cDNAs were generated from 3
independent cultures. Relative abundances were calculated using gyrB as a housekeeping
gene with the method of Pfaffl [24] to correct for primers efficiencies. Non-template controls
verified the absence of any contaminating templates.

Table 4. Primer sequences for qRT-PCR.

Gene Name Nucleotide Sequence (5′ to 3′)

16s rRNA Control
16rRNAup TTGCTTCTCTGATGTTAGCG

16rRNAdown TCTAATCCTGTTTGATCCCC

splB SplB1 GCGTGCAATAGAACGTGGACC
splB2 GCTCACCAGCTTTAGCCCCT

http://www.ncbi.nlm.nih.gov/geo
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Table 4. Cont.

Gene Name Nucleotide Sequence (5′ to 3′)

sspB SspB1 TGGCAGTTGTTGGGAACGCT
SspB2 ATGGTCGCCATTGGATACTGG

hla
Hla1 CGAAAGGTACCATTGCTGGT
Hla2 GGTAGTTGCAACTGTACC

lip Lip1 TGGTGGACAAGCACAAGCAG
Lip2 GTTGCTGTTCGTCAACACCG

gyrB GyrB1 GGTGGTTTACATGGTGTTGG
GyrB2 CCTGTGTTATCAGTTGTGCC

5.2. Bioinformatics Methods
5.2.1. Transcriptome, Proteome, and Protein Interaction Data Retrieval

Transcriptome data of S. aureus analysis were generated, as described above, and
retrieved from the NCBI Gene Expression Omnibus (GEO) dataset (GEO accession no.
GSE15346) [10].

Proteome data and inferred metabolic adaptations by flux modelling of changes after
diauxic shift [20] were used for comparison of the predicted metabolic changes to this
different condition.

Protein interaction data were generated before [9], as described briefly in the exper-
imental section, and used for interaction prediction validation. The new transcriptome
data on the NewHG strain from the experiments for transcriptome analysis are given in
Table S4.

5.2.2. Metabolic Model Reconstruction and Extension

S. aureus metabolic network models were previously reconstructed using annotations
of KEGG and TIGR [20]. The first bioinformatics model was established for S. aureus COL,
as it is one of the most referenced and investigated strains. The second network model
was based on S. aureus NewHG [14], a highly virulent strain. This second metabolic model
was achieved by adaptation of the COL metabolic model, and the enzymes were present
if they could be mapped by the ortholog gene pairs. The missing enzymes from KEGG
were added to close the gaps after careful re-annotations and comparisons, considering all
available evidence, including biochemical analysis proof, potential moonlighting catalytic
domains and other published observations. Here, the peptidoglycan synthesis pathway
was added to the S. aureus COL model developed previously, as mentioned before [20].
The reactions comprising the whole pathway were grouped into 5 sets to keep the model
as condensed as possible (Table 1).

5.2.3. Extreme Pathway Computation Using YANAsquare

Extreme pathways are defined as a unique, minimal set of enzymes and enzyme
complexes (participating reactions) to support the steady-state operation of a metabolic
network with irreversible reactions to proceed in appropriate directions (that balances all
involved internal metabolites). Together these extreme pathways limit the solution space
of metabolic possibilities for the metabolism of the organism modelled [45]. These pure
(extreme) pathways combine in vivo to provide their joint metabolic fluxes in all metabolic
situations. This includes the well-known textbook pathways, such as glycolysis. In the
results, all the extreme pathways that provide major contributions to one of these textbook
pathways are given as contributing to that textbook pathway (the initial figures in results
show this also in detail).

Extreme pathway analysis was performed using YANAsquare software [45].
To calculate the relative flux through all the necessary reactions involved in the biochemi-
cal reaction regulated by Ser/Thr phosphorylation, information from previous metabolic
models was considered, too. After applying YANAsquare software to this new S. aureus
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extended model, a list of extreme pathways and their mathematical representations (the
null space) were obtained for further analysis.

5.2.4. Pathway Activity Estimation and Comparison Using YANAvergence

To calculate each pathway activity based on expression data of the WT and mutants,
the YANAvergence routine protocol was applied [20]. This is a convergence routine
that minimises the difference between experimental data and calculations. It iterates
until it cannot significantly improve the convergence from the previous iterations. The R
script was run with different transcriptomic data each time, so one activity per extreme
pathway and WT or mutant was obtained. After that, the mutant activities of each pathway
were compared individually to WT activity using the ratios ∆pknB/WT, ∆stp/WT and
∆pknB∆stp/WT. Transcriptional data were measured, and the statistical analysis is given
accurately in the GEO data (accession nos. GPL10537 for the platform and GSE122362).
However, regarding the metabolic flux inference, these results are mathematical flux
calculations. There is no statistical error, and it is a mathematical calculation. We tested
the accuracy of flux calculations from gene expression data measuring directly metabolite
concentrations. We found the limit of sensitivity is at least a 10% difference, as proven by
direct metabolite measurements (Cecil et al., 2015 [13]).

Each pathway is a subset of enzymes or reactions that transform specific substrates
into products with no accumulation of internal metabolites. The activity associated with
each pathway is based on the best fit of transcriptomic data, and it was used in this study
to discover the differences in metabolic fluxes between the WT and three mutants of S.
aureus. Zeroes as entries indicated no known fluxes or flux not detectable; 50 was the
starting value, and the maximum value was 100. Convergence criteria were successfully
met for all the simulations with different numbers, i.e., result values are as follows: for
the WT: iter 310, final value 55.847131; for ∆pknB: iter 280, final value 55.141834; for ∆stp:
iter 300, final value 53.315411; and for ∆pknB∆stp: iter 330, final value 55.627214 (“iter”
denotes the iteration number in the optimisation using YANAvergence; the final value
for this study is the sum of absolute values of the deviations instead of the standard
deviation). Convergence is achieved for values below 100, as validated by metabolite
measurements [13]. The convergences are further examined and plotted in Supplementary
Material (Figure S2).

5.2.5. Protein Interaction Network Analysis

The S. aureus protein–protein interactions (PPIs) were studied using the STRING
database tool, version 9.1 [46]. This approach was used to take into consideration the
broad collection of datasets, including text mining and homology determination, adding
together with experimentally validated PPIs. Finally, all available data regarding interaction
were analysed.

The interaction network of Stk, Stp and FemX/A/B proteins among cell wall synthesis
and cell division proteins relied on experimental data by bacterial two-hybrid analysis [9].
Phosphorylation was also determined [9]: Stk phosphorylated FemX but did not phospho-
rylate FemA or FemB in the in vitro kinase assay. Stp dephosphorylated Stk-dependent
phosphopeptides of FemX.

5.2.6. Comparative Sequence Analysis and Phylogenetic Analysis

The protein sequence BLAST was performed online using the default parameters and
certain species or phyla desired to look for yvcK/glmR homologues. Multiple sequence
alignment (MSA) was then performed using MUSCLE [47], and resulted profiles were
analysed with MEGAX [48]. The evolutionary history was inferred by using the maximum
likelihood method based on the JTT matrix-based model. The initial tree for the heuristic
search was obtained automatically by applying Neighbor-Join and BioNJ algorithms to a
matrix of pairwise distances estimated using a JTT model and then selecting the topology
with a superior log-likelihood value. The phylogenetic analysis involved 42 putative
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YvcK/GlmR protein sequences. The bootstrap test was carried out with 1000 iterations
using the highly conserved region of the YvcK/GlmR protein.

5.2.7. RNA Folding

The sequence-based identification of the metabolite-dependent glmS element was pre-
dicted using the Riboswitch finder (http://riboswitch.bioapps.biozentrum.uni-wuerzburg.
de) accessed on July, 2020 and the RNAfold web server (http://rna.tbi.univie.ac.at) based
on the latest ViennaRNA package (version 2.4.11).

5.2.8. Phylogenetic Analysis of GlmR

Because glmR/yvcK of B. subtilis is involved in survival under different gluconeogenic
conditions, it might be more similar between microorganisms that share specific niches,
and thus, they are adapted to use the same substrates for energy production and cell
components synthesis. For that reason, a phylogenetic tree of different bacterial species
was created with MEGAX using the maximum likelihood method based on the sequence
homology of the GlmR/YvcK protein.

5.2.9. 3D Structure Prediction Using Swiss-Model

To validate the residues of binding sites, 3D structure prediction was performed using
the online platform SWISS-MODEL [49]. Relative protein sequence alignment was profiled
to determine the closest related template, and the coordinate data were obtained from the
PDB. Using a linear function, the server calculates a score that represents the likelihood of
each atom to bind a ligand atom. In the case of S. aureus, an attempt was made to build a 3D
structure model using available sequences of the proteins and by structurally comparing it
with alternative bacterial templates and the binding residues.5.

Supplementary Materials: The following files and data are available online at https://www.mdpi.
com/article/10.3390/microorganisms9102148/s1. A doc file provides the Supplementary Material
overview. It contains Figure S1: Growth curve of S. aureus strains NewHG WT and its isogenic pknB,
stp and pknB/stp mutant strains. Figure S2: Convergence plots of (A) WT, (B) pknB, (C) stp and
(D) pknBstp. Conservation of glmR including Figure S3: The complete sequence alignment profile:
identification of residues involved in UDP sugar binding. Table S14. Flux activities comparing WT
and PknB mutant in S.aureus strains NewHG and NCTC8325. Table S15: qRT-PCR confirmation of
microarray data. Moreover, we provide 10 Supplementary Files that are not Word files (most are
in Excel): Supplementary File S1 contains Table S1 (Genes whose transcription was significantly
higher or lower expressed) and Table S2 (Expression of virulence factors). Supplementary File S2
shows the SBML metabolic model. Supplementary File S3 has Table S3 (Enzyme activities of each
mutant compared to the WT). Supplementary File S4 has Table S4 (NewHG gene expression raw
data). Supplementary File S5 contains Table S5 (Gene expression of WT versus double mutant), Table
S6 (Gene expression of WT versus pknB knockout) and Table S7 (Gene expression of WT versus stp
knockout). Supplementary File S6 contains three tables on genome annotation: Table S8 (Genomic
comparison between S. aureus NCTC 8325 and Newman), Table S9 (Genomic comparison between S.
aureus NCTC 8325 and COL) and Table S10 (Genomic comparison between S. aureus NCTC 8325 and
COL). Supplementary File S7. Stochiometric matrix and reactions involved in the condensed model
of S. aureus NewHG—model file in cvs format. Supplementary 8 contains Table S11 (Stochiometric
matrix and reactions involved in the condensed model of S. aureus NewHG)—model file in Excel
format. Supplementary 9 contains Table S12 (Extreme pathway modes of S. aureus NewHG)—solution
space. Supplementary File S10 contains Table S13 (Gene identifiers of two microarray design mapping
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Abbreviations

TCS Two-component system
PknB (Stk or Stk1) Ser/Thr kinase
Stp Phosphatase of PknB
CA-MRSA Community acquired methicillin-resistant Staphylococcus aureus
qPCR Quantitative polymerase chain reaction
cDNA Complementary deoxyribonucleic acid
GEO Gene Expression Omnibus
ATCC® American Type Culture Collection
GlcK Glucokinase enzyme
PTS Phosphotransferase system
AST/GOT Aspartate transaminase
MSA Multiple sequence alignment
NAD Nicotinamide adenine dinucleotide
UDP-Glc Uridine diphosphate glucose
UDP-GlcNAc Uridine diphosphate N-acetylglucosamine
GlcN6P Glucosamine-6-phosphate
PPI Protein–protein interaction
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