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Abstract

This thesis is devoted to the numerical and theoretical analysis of ensemble opti-
mal control problems governed by kinetic models. The formulation and study of
these problems have been put forward in recent years by R.W. Brockett with the
motivation that ensemble control may provide a more general and robust control
framework for dynamical systems. Following this formulation, a Liouville (or conti-
nuity) equation with an unbounded drift function is considered together with a class
of cost functionals that include tracking of ensembles of trajectories of dynamical sys-
tems and different control costs. Specifically, L2, H1 and L1 control costs are taken
into account which leads to non–smooth optimization problems. For the theoretical
investigation of the resulting optimal control problems, a well–posedness theory in
weighted Sobolev spaces is presented for Liouville and related transport equations.
Specifically, existence and uniqueness results for these equations and energy estimates
in suitable norms are provided; in particular norms in weighted Sobolev spaces. Then,
non–smooth optimal control problems governed by the Liouville equation are formu-
lated with a control mechanism in the drift function. Further, box–constraints on
the control are imposed. The control–to–state map is introduced, that associates to
any control the unique solution of the corresponding Liouville equation. Important
properties of this map are investigated, specifically, that it is well–defined, continuous
and Fréchet differentiable. Using the first two properties, the existence of solutions
to the optimal control problems is shown. While proving the differentiability, a loss
of regularity is encountered, that is natural to hyperbolic equations. This leads to
the need of the investigation of the control–to–state map in the topology of weighted
Sobolev spaces. Exploiting the Fréchet differentiability, it is possible to characterize
solutions to the optimal control problem as solutions to an optimality system. This
system consists of the Liouville equation, its optimization adjoint in the form of a
transport equation, and a gradient inequality.
Numerical methodologies for solving Liouville and transport equations are presented
that are based on a non–smooth Lagrange optimization framework. For this purpose,
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6 Abstract

approximation and solution schemes for such equations are developed and analyzed.
For the approximation of the Liouville model and its optimization adjoint, a combina-
tion of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting
method are discussed. Stability and second–order accuracy of these resulting schemes
are proven in the discrete L1 norm. In addition, conservation of mass and positivity
preservation are confirmed for the solution method of the Liouville model. As nu-
merical optimization strategy, an adapted Krylow–Newton method is applied. Since
the control is considered to be an element of H1 and to obey certain box–constraints,
a method for calculating a H1 projection is presented. Since the optimal control
problem is non-smooth, a semi-smooth adaption of Newton’s method is taken into
account. Results of numerical experiments are presented that successfully validate
the proposed deterministic framework.
After the discussion of deterministic schemes, the linear space–homogeneous Keilson–
Storer master equation is investigated. This equation was originally developed for the
modelling of Brownian motion of particles immersed in a fluid and is a representative
model of the class of linear Boltzmann equations. The well–posedness of the Keilson–
Storer master equation is investigated and energy estimates in different topologies
are derived. To solve this equation numerically, Monte Carlo methods are considered.
Such methods take advantage of the kinetic formulation of the Liouville equation
and directly implement the behaviour of the system of particles under consideration.
This includes the probabilistic behaviour of the collisions between particles. Optimal
control problems are formulated with an objective that is constituted of certain ex-
pected values in velocity space and the L2 and H1 costs of the control. The problems
are governed by the Keilson–Storer master equation and the control mechanism is
considered to be within the collision kernel. The objective of the optimal control of
this model is to drive an ensemble of particles to acquire a desired mean velocity and
to achieve a desired final velocity configuration. Existence of solutions of the opti-
mal control problem is proven and a Keilson–Storer optimality system characterizing
the solution of the proposed optimal control problem is obtained. The optimality
system is used to construct a gradient–based optimization strategy in the framework
of Monte–Carlo methods. This task requires to accommodate the resulting adjoint
Keilson–Storer model in a form that is consistent with the kinetic formulation. For
this reason, we derive an adjoint Keilson–Storer collision kernel and an additional
source term.
A similar approach is presented in the case of a linear space–inhomogeneous kinetic
model with external forces and with Keilson–Storer collision term. In this framework,
a control mechanism in the form of an external space–dependent force is investigated.
The purpose of this control is to steer the multi–particle system to follow a desired
mean velocity and position and to reach a desired final configuration in phase space.
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An optimal control problem using the formulation of ensemble controls is stated with
an objective that is constituted of expected values in phase space and H1 costs of the
control. For solving the optimal control problems, a gradient–based computational
strategy in the framework of Monte Carlo methods is developed. Part of this is the
denoising of the distribution functions calculated by Monte Carlo algorithms using
methods of the realm of partial differential equations. A standalone C++ code is
presented that implements the developed non–linear conjugated gradient strategy.
Results of numerical experiments confirm the ability of the designed probabilistic
control framework to operate as desired. An outlook section about optimal control
problems governed by non–linear space–inhomogeneous kinetic models completes this
thesis.





Zusammenfassung

Diese Arbeit widmet sich der numerischen und theoretischen Analyse von Proble-
men der optimalen Kontrolle von Ensembles, die durch kinetische Modelle gesteuert
werden. Die Formulierung und Untersuchung von Ensemble–Kontrollproblemen wur-
den in den letzten Jahren von R.W. Brockett vorgeschlagen und vorangetrieben, mit
der Motivation, dass Ensemblekontrolle einen allgemeineren und robusteren Rahmen
für die Kontrolle von dynamischen Systemen bieten kann. In Anlehnung an diese
Formulierung der Ensemble–Steuerung werden eine Liouville– (oder Kontinuitäts–
) Gleichung mit unbeschränkter Driftfunktion und eine Klasse von Kostenfunk-
tionalen miteinbezogen, die das Nachverfolgen der Ensembles und verschiedener Kon-
trollkosten berücksichtigen. Insbesondere werden L2, H1 und L1 Kontrollkosten be-
trachtet. Für die theoretische Untersuchung der resultierenden Optimalsteuerungs-
problemen wird eine Gutgestelltheitstheorie in gewichteten Sobolev–Räumen für die
Liouville– und Transportgleichungen vorgestellt. Insbesondere werden Existenz– und
Eindeutigkeitsresultate sowie Energieabschätzungen in geeigneten Normen präsen-
tiert; insbesondere in gewichteten Sobolev–Räumen. Dann wird eine Klasse von
nicht–glatten Optimalsteuerungsproblemen formuliert mit der Liouville–Gleichung
als Nebenbedingung und einem Kontrollmechanismus in der Driftfunktion. Weiter-
hin werden Box–Einschränkungen angenommen. Die Kontrolle–zu–Zustand Abbil-
dung wird definiert, die zu jeder Kontrolle einen dazugehörigen Zustand als eindeutige
Lösung der Liouville Gleichung zuweist. Wichtige Eigenschaften der Kontrolle–zu–
Zustand Abbildung werden untersucht; unter anderem deren Wohldefiniertheit, Ste-
tigkeit und Fréchet–Differenzierbarkeit. Die ersten beiden Eigenschaften werden be-
nutzt, um die Existenz von Lösungen zum Optimierungsproblem zu zeigen. Um die
Differenzierbarkeit zu beweisen, wird ein Regularitätsverlust erkannt, der bei hyper-
bolischen Gleichungen zu erwarten ist. Daher muss die Kontrolle–zu–Zustand Ab-
bildung in gewichteten Sobolevräumen untersucht werden. Unter Verwendung der
Differenzierbarkeit ist es möglich, die Lösungen des Optimalsteuerungsproblem als
Lösungen eines Optimalitätssystem zu charakterisieren. Dieses System besteht aus
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10 Zusammenfassung

der Liouville Gleichung, einer adjungierten Gleichung in Form einer Transportglei-
chung und einer Gradient Ungleichung.
Weiterhin wird eine numerische Methode zur Lösung der Liouville und Transport–
Gleichungen vorgestellt. Zu diesem Zweck werden Approximations– und Lösungs-
schemata entwickelt und analysiert. Im Speziellen werden für die Approximation des
Liouville–Modells und seiner Adjungierten eine Kombination aus einer Kurganov–
Tadmor–Methode, einem Runge–Kutta–Schema und einem Strang–Splitting Verfahren
diskutiert. Für die zwei entstehenden Verfahren zum Lösen der Gleichungen wird Sta-
bilität und Genauigkeit zweiter Ordnung bezüglich der diskreten L1–Norm bewiesen.
Zusätzlich werden die Wahrscheinlichkeitserhaltung und der Erhalt der Positivität
durch die Lösungsmethode der Liouville Gleichung gezeigt. Das resultierende Op-
timalitätssystem wird durch ein angepasstes halb–glattes Krylov–Newton–Verfahren.
Da angenommen wird, dass die Kontrolle in H1 liegt und weiterhin Box– Beschränku-
ngen erfüllen muss, wird eine Methode zur Berechnung derH1 Projektion präsentiert.
Ergebnisse numerischer Experimente werden vorgestellt, die das vorgeschlagene de-
terministische Vorgehen erfolgreich validieren.
Nach der Diskussion der deterministischen Verfahren, werden Optimalsteuerungs-
probleme mit der linearen, im Raum homogenen Keilson–Storer Master–Gleichung
als Nebenbedingung formuliert. Diese Gleichung wurde ursprünglich als Model für
Brownsche Bewegung von Partikeln in Fluiden entwickelt und ist ein repräsentatives
Model für lineare Boltzmann Gleichungen. Die Gutgestelltheitstheorie der Keilson–
Storer Gleichung wird untersucht und Energieabschätzungen in verschiedenen Normen
hergeleitet. Um die Gleichungen numerisch zu lösen, wird auf Monte Carlo Methoden
zurückgegriffen. Optimalsteuerungsprobleme werden formuliert mit einem Zielfunk-
tional, das aus bestimmten Erwartungswerten im Geschwindigkeitsraum sowie den
Kontrollkosten besteht. Das Ziel der optimalen Steuerung im Kollisionskern dieses
Modells ist es, ein Ensemble von Teilchen dazu zu bringen, eine gewünschte mittlere
Geschwindigkeit zu erreichen und eine gewünschte Endgeschwindigkeitskonfiguration
zu erreichen. Zu diesem Zweck wird ein Keilson–Storer Optimalitätssystem, das die
Lösung des vorgeschlagenen optimalen Kontrollproblems charakterisiert, abgeleitet
und zur Konstruktion einer gradientenbasierten Strategie im Rahmen von Monte–
Carlo–Methoden benutzt. Diese Aufgabe erfordert die Anpassung des resultieren-
den adjungierten Keilson–Storer–Modells an eine Form, die mit der kinetischen For-
mulierung konsistent ist.
Darüber hinaus wird ein Monte–Carlo–Framework für die Lösung optimaler Kon-
trollprobleme vorgestellt, die durch räumlich inhomogene kinetische Modelle mit ex-
ternen Kräften gesteuert werden. Der Schwerpunkt liegt dabei auf einem linea-
ren kinetischen Modell mit dem Keilson–Storer–Kollisionsterm und einer externen
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raumabhängigen Kraft als Kontrollmechanismus. Der Zweck dieser Steuerung ist
es, ein Ensemble von Trajektorien von Teilchen so zu beeinflussen, dass deren mit-
tlere Geschwindigkeit und Position einer vorgegebenen Trajektorie folgen und eine
gewünschte Endkonfiguration im Phasenraum erreichen. Zu diesem Zweck wird eine
gradientenbasierte Optimierungsstrategie im Rahmen von Monte–Carlo–Methoden
entwickelt. Ein eigenständiges C++ Programm wird beschrieben, welches das nicht–
lineare konjugierte Gradienten Verfahren implementiert. Ergebnisse von numerischen
Experimenten zeigen die Fähigkeit des vorgeschlagenen probabilistischen Ansatzes
zum Lösen der Optimierungsprobleme. Ein Abschnitt über Optimalsteuerungspro-
bleme von nicht–linearen kinetischen Modellen rundet diese Arbeit ab.
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Chapter 1
Introduction

“Contineat cavitas corpuscula minima motu rapidissimo hinc inde agitata” 1. In the
kinetic theory of gases, it is assumed that matter consists of spherical particles of very
small but finite volume [18, 79]. These particles are considered moving in straight
lines with constant velocity for a certain period of time before colliding with other
particles [53].
In the free streaming part, the motion of a single particle can be described using
Newton’s law of motion

ξ̈(t) = F (ξ(t), t)
M

,(1.1)

where ξ(t) represents the position of the particle at time t, further F the force on the
particle, and M its mass. The second-order ordinary differential equation (1.1) can
equivalently be written as a system of first-order differential equations for position ξ
and velocity η of a particle as follows

ξ̇(t) = η, η̇(t) = F (ξ(t), t)
M

.(1.2)

Upon collision, the particles instantaneously change their velocity according to some
collision law. When aspire to simulate the behaviour of multi-particle systems, a high-
dimensional problem is encountered. This is due to the fact that the system (1.2)
has to be solved for every particle. However, it is possible to model the dynamics
of the particles as a partial differential equation. For this purpose, a distribution
function f = f(x, v, t) can be defined in the phase space spanned by the position
x ∈ Ω ⊂ Rd and velocity v ∈ Rd, where d ≥ 1 and Ω is a bounded convex domain
with piecewise smooth boundary. In the statistical framework of kinetic theory, a
frequently used model that governs the time evolution of f is the Boltzmann equation
1[18], Chapter 10, §2. Translated from Latin: The cavity contains very small particles in very fast
motion, which move rapidly from this side to the other.
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[25]. This equation and, more in general, different variants of kinetic models have
been widely investigated as they provide the intermediate (mesoscopic) scale in the
transition between atomistic and continuous description of gas dynamics; see the
recent works [9, 24, 107] and the references therein. Furthermore, kinetic models play
an important role in applications, ranging from aerodynamics and space propulsion
[83], to microscale electronic devices and materials [111], ionized dilute gases [134],
and high-temperature plasma [84].
While great effort has been put in the modelling and numerical solution of kinetic
equations, much less is known concerning the related problems of calibration and
control, which can be framed as infinite-dimensional optimization problems with
integro-differential constraints. Nevertheless, many present and envisioned applica-
tions require the development of control strategies that seem unexplored in those
regimes where kinetic models have to be implemented in a kinetic framework; see,
e.g., [68, 98, 101].
For this reason, we follow a research programme that considers a hierarchy of Boltz-
mann – like equations and different control mechanisms. Specifically, it is the goal of
our work to contribute to this development effort considering optimal control prob-
lems governed by the following kinetic model

∂tf(x, v, t) + div(a(x, v, t;u) f(x, v, t)) = C[f ](x, v, t).(1.3)

In this model, we consider the function u = u(x, t) as the control and C[f ] as an
integral modelling collisions between particles of the same or different species. In
some cases, a control may also be included in C[f ]. Moreover, the divergence operator
div acts on x and v. In a 2d-dimensional setting, we refer to a = (a1, a2), a1, a2 ∈ Rd

as a drift function, which defines the evolution of ζ = (ξ, η) in our controlled model
as

ζ̇(t) = a(ζ(t), t;u).(1.4)

The formulation of an optimal control problem governed by (1.3) requires the defi-
nition of the purpose of the control and its cost. The objective of the acting control
is modelled as the minimisation of a cost functional J(f, u) subject to the constraint
given by (1.3) with prescribed initial and boundary conditions. Once the existence of
an optimal control is stated, its computation can be based on the related first-order
optimality conditions. In the Lagrange framework, these conditions result in an opti-
mality system including the governing model, the related optimization adjoint model,
and a gradient equation or inequality; see, e.g., [28].
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Notice that if we neglect collisions such that C[f ] ≡ 0 in (1.3), the evolution of f is
modelled by the hyperbolic Liouville (or continuity) equation

∂tf(x, v, t) + div(a(x, v, t;u) f(x, v, t)) = 0.(1.5)

This equation can be derived considering conservation principles on infinitesimal
phase-space volumes [133].
Using (1.5), we formulate optimal control problems following the idea of ensemble
control that was initially proposed by R.W. Brockett in [32, 33, 34]. This formula-
tion is motivated by the intention of designing efficient and robust control strategies
for steering ensembles of trajectories of dynamical systems in a desired way. For
this purpose, the adequate model governing the evolution of the ensembles expressed
in terms of a density is the Liouville equation (1.5). In application, this ensemble
may represent the probability density of trajectories of multiple trials of a dynamical
system with the initial conditions specified by a distribution function, or the phys-
ical density of multiple non-interacting systems (e.g., particles). In both cases, the
function that determines the dynamics of these systems appears as the drift coeffi-
cient of the Liouville equation. Therefore, the Liouville framework allows to lift the
problem of controlling a single trajectory of a finite-dimensional dynamical system
to the optimal control problem governed by a partial differential equation (PDE) for
a continuum (ensemble) of dynamical systems subject to the same control strategy
[12].
One of the purposes of the Chapters 2 and 3 is to present a theoretical and numer-
ical optimization framework devoted to ensemble optimal control problems that can
involve continuity equations; see, e.g., [8, 47, 61, 74, 106] for different classes of
these equations. We investigate the existence and uniqueness together with a well-
posedness theory of the Liouville equation and the transport equation in different
function spaces. We start with the classical theory in L2 spaces and present its exten-
sion for Hm spaces in Theorem 2.2. Then, we extend this theory to certain weighted
Sobolev spaces in view of our need of higher integrability resulting from the inves-
tigation of solutions to the ensemble optimal control problem. We assume that the
density function decays sufficiently fast at infinity and consider a class of drifts that
are unbounded but at most linearly increasing at infinity. In this setting, we prove
existence and uniqueness of solutions of the Liouville equation in weighted Sobolev
spaces in Theorem 2.4.
The challenges of the numerical investigation for the Liouville optimal control prob-
lems are manifold. One of these challenges is that we are considering a non-linear
control mechanism in the Liouville model where the controls multiply the density
function, and this product is subject to spatial differentiation. A further challenge



18 1. Introduction

posed by our problems is that the numerical approximation of the Liouville equa-
tion must guarantee non-negativity and conservation of probability of the computed
density in addition to the required properties of accuracy and stability.
We present a novel formulation and analysis of discretization of the Liouville equation
and its optimization adjoint model; the latter is called the adjoint Liouville equation
and has the form of a transport equation. For the former, we consider the well-
known second-order finite-volume Kurganov-Tadmor (KT) discretization scheme for
the spatial flux derivatives that results in a generalized monotone upwind scheme for
conservation laws (MUSCL). For the temporal discretization, we use the second-order
strong stability preserving Runge-Kutta (SSPRK2) discretization scheme. We show
that such schemes possess several important properties that are inherent to exact
solutions of the Liouville equation, such as conservation of mass and preservation of
positivity. These results appear in Lemma 2.7 and Lemma 2.8. With the help of a
discrete stability result stated in Lemma 2.10, we show second-order accuracy of our
combined method in Theorem 2.5. For discretizing the adjoint Liouville equation, we
choose a second-order Strang operator splitting. This leads to solving an equation
having the structure of a Liouville equation and an inhomogeneous linear equation.
To solve the former, we are able to apply the same strategy as for the Liouville
equation. For the latter one it is possible to derive an exact integration formula. For
the resulting splitting scheme, we prove a discrete stability result in Lemma 2.12 and
second-order accuracy in Theorem 2.6. By virtue of a suitable test-case, we validate
the correctness of our implementation.
In Chapter 3, we illustrate our formulation of ensemble optimal control strategy so as
to address many possible requirements in applications of this framework. Moreover,
turning to the functional structure of the controls’ objectives, we notice that ensemble
cost functionals are a much less investigated topic, especially in combination with
non-smooth costs of the controls. In addition of Brockett’s original formulation, we
take not only H1 control costs into account but also L2 and L1 control costs. The
presence of L1 costs and box constraints on the values of the controls require further
numerical analysis effort due to the resulting lack of Fréchet differentiability of the
resulting optimization problem. To prove existence of optimal controls, we introduce
the control-to-state map and investigate its properties in Lemma 3.1 and Theorem 3.1.
Specifically, we prove the Lipschitz-continuity and Fréchet differentiability of this
map. With this preparation, we are able to conclude existence of solutions to our
ensemble control problem in Theorem 3.2. Moreover, we derive a uniqueness result
under certain smallness assumptions of the data; see Theorem 3.4.
An important step in solving our ensemble optimal control problems is the derivation
of the corresponding first-order optimality conditions that consist of the controlled
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Liouville equation, its optimization adjoint, and a variational inequality that we may
also call (with some abuse of wording) the optimality condition equation.
The numerical solution of the optimality system proceeds along two main steps that
are the numerical approximation of the equations involved and their solution by a
numerical optimization scheme. For the latter, we apply a semi-smooth Krylov-
Newton method to solve the optimal control problem. Since we have L1 control costs,
we cannot apply any technique from the realm of smooth optimization and also have
to take sub-differential calculus into account. Furthermore, due to the fact that we
also consider the control to obey some box constraints and to be in H1, we have to
perform a suitable projection within every optimization iteration.
Notice that a specific advantage of Brockett’s formulation is that the adjoint equation
derived using Lagrange framework does not depend on the solution of the model
equation since the functional does only depend linearly on the state. Therefore, the
two equations can be solved in parallel. This reasoning applies to all our problems
and algorithms.
Starting with Chapter 4, we consider the presence of collision and develop probabilistic
methods for solving related optimal control problems.
In Chapter 4, we choose a representative linear collision term with a kernel as proposed
by J. Keilson and J.E. Storer [86]. This collision kernel was originally proposed for a
more realistic kinetic modelling of Brownian motion, and later on it has been success-
fully used in a range of applications including the estimation of transport coefficients
[17], laser spectroscopy [16], and molecular dynamics simulations [125], reorientation
of molecules in liquid water [73], and quantum transport [88]. Further, notice that
this term allows to mimic strong and weak collision limits [121] and that a microscopic
derivation of the Keilson-Storer collision term is possible [72]. We remark that again
much less is known concerning methods for calibration, control, and optimization of
these models, especially in those mesoscopic regimes where probabilistic aspects of
the evolution of the particles play an essential role. This is the case in the simulation
of rarefied gases with high Knudsen number Kn, where simulation by macroscopic
equations suffer inaccuracies; see, e.g., [22, 50, 95, 96]. The Knudsen number is the
ratio of the mean-free path and the characteristic length of the problem. Furthermore,
the mesoscopic setting allows to accommodate the case where the coefficients of the
model are prescribed probabilistically by some distribution functions [55]. Therefore,
although formally the Boltzmann equation is a partial-integro differential equation,
methods developed in a deterministic context [28, 71] cannot be applied in a truly
mesoscopic regime where statistical simulation by Monte Carlo methods is required.
Another advantage of Monte Carlo methods is the avoidance of the so-called curse
of dimensionality. While the error of deterministic integration techniques depends
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exponentially on the dimensions, this is not the case for the Monte Carlo techniques.
These techniques suffer from inherent noise and slow convergence but their error is
independent of the dimension. We have that the solution error is of O(1/

√
N) where

N is the number of samples within the Monte Carlo method, see [37, 90, 116].
However, when applying our Lagrange optimization framework to the Keilson-Storer
master equation, one immediately recognizes that the resulting adjoint model has a
complicated structure that does not belong to the realm of kinetic models, which
makes the use of Monte Carlo methods for its solution a challenge.
Our main goal in Chapter 4 and 5 is to develop a Monte Carlo simulation and op-
timization framework that accommodates our Keilson-Storer optimality system in a
way that is consistent with the kinetic description of gases [13]. In this framework,
a well-known Monte Carlo method in the realm of Boltzmann models is the direct
simulation Monte Carlo (DSMC) scheme. Notably, the formulation of the DSMC
scheme mimics the derivation of the Boltzmann equation [43], and it is one of the
most important and frequently used methods for determining the behaviour of dilute
gases [100]. Its application ranges from vacuum technologies to micro-devices where
the Knudsen number is large such that the continuum assumption is no longer valid
[23, 70, 110]. In the case of a linear kinetic model, it is possible to apply a simplified
version of the DSMC technique as discussed in [68, 101].
We explore two different kinds of control mechanisms. First, we consider the homoge-
neous Keilson-Storer master equation and a control within the Keilson-Storer collision
kernel that shifts the mean velocity of the particles. Therefore, this mechanism may
be interpreted as a change in temperature such that the velocity of the particles is
influenced by the resulting temperature gradient [105]. In Theorem 4.1, we state the
existence of optimal solutions for this case.
Subsequently, we turn to the physical more relevant case of the control mechanism
being in the external force. Moreover, we discard the assumptions that the distri-
bution function is homogeneous in space. As a collision model, we again use the
Keilson-Storer collision term. In comparison to the homogeneous case, one has to
take care of the behaviour of the particles at the boundary and the implementation
of a suitable numerical scheme for applying the external force and the change in posi-
tion due to velocity. In Chapter 4, we elaborate on equations for the moments of the
linear kinetic equation with the Keilson-Storer collision term. Further, we investigate
the well-posedness of such linear kinetic models and state existence of solutions in
Theorem 4.2.
For the optimization strategy, we adapt the well-known non-linear conjugate gra-
dient scheme in the Monte Carlo framework. We implement our scheme in a code
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called MOCOKI and provide pseudocodes that explain all the details of the imple-
mentation. A comparison with well–known deterministic schemes and MOCOKI is
performed that show the comparability of the two approaches. Furthermore, numer-
ical experiments are executed that demonstrate the ability of MOCOKI to calculate
optimal controls to a given optimization problem.
In Chapter 5, we present preliminary results of our investigation of optimal control
problems governed by the Boltzmann equation with the non-linear collision kernel
introduced by Boltzmann. That is, we consider binary inter-species collisions. Specif-
ically, we assume fully elastic collisions to ensure the conservation of momentum and
energy. Notice that the Boltzmann collision kernel is widely used to describe col-
lisions in rarefied gases. In this case, the adjoint collision kernel is linear and can
be written as a collision term that has a gain-loss structure without introducing an
additional source term. Further, we consider another control mechanism with a linear
drift function in which our control is in the coefficients of this function. We present
results of numerical experiments in the seven dimensional phase-space-time domain.
The results of numerical experiments successfully validate our framework in physical
relevant dimensions.
The results presented in this thesis are partially based on the following publications:
J. Bartsch, A. Borzì, F. Fanelli, and S. Roy, A theoretical investigation of Brockett’s
ensemble optimal control problems, Calc. Var. Partial Differential Equations, 58
(2019), p. Paper No. 162, https://doi.org/10.1007/s00526-019-1604-2,
J. Bartsch, G. Nastasi, and A. Borzì, Optimal control of the Keilson-Storer master
equation in a Monte Carlo framework, J. Comput. Theor. Transp., (2021), https:
//doi.org/10.1080/23324309.2021.1896552,
J. Bartsch and A. Borzì, MOCOKI: A Monte Carlo approach for optimal control
in the force of a linear kinetic model, Comput. Phys. Commun., (2021), https:
//doi.org/10.1016/j.cpc.2021.108030, and
J. Bartsch, A. Borzì, F. Fanelli, and S. Roy, A numerical investigation of Brockett’s
ensemble optimal control problems, submitted to Numerische Mathematik.

1.1. Notation

The notation used throughout this thesis is given below.
Given a domain Ω ⊂ Rd, the symbol C∞c (Ω) denotes the space of infinitely often
differentiable functions with compact support in Ω. Given m ∈ N, we denote by
Cm(Ω) the space of allm-times continuously differentiable functions defined on Ω, and
by Cm

b (Ω) the subspace of Cm(Ω) formed by functions which are uniformly bounded

https://doi.org/10.1007/s00526-019-1604-2
https://doi.org/10.1080/23324309.2021.1896552
https://doi.org/10.1080/23324309.2021.1896552
https://doi.org/10.1016/j.cpc.2021.108030
https://doi.org/10.1016/j.cpc.2021.108030
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together with all their derivatives up to the order m. We equip Cm
b (Ω) with the

Wm,∞-norm as follows

‖v‖Cm
b

:=
∑
|α|≤m

‖Dαv‖L∞ .

where α ∈ Nd is a multi-index, with |α| := ∑d
i=1 αi and

Dαf := ∂|α|f

∂xα1
1 · · · ∂xαdd

,

denoting the weak α-th derivative.
For ε ∈ ]0, 1] , we denote with C0,ε(Ω) the classical Hölder space (Lipschitz space if
ε = 1), endowed with the norm

‖Φ‖C0,ε := sup
x∈Ω
|Φ(x)| + sup

x,y∈Ω
0<|x−y|≤1

|Φ(x)− Φ(y)|
|x− y|ε

.

In particular, C0,1(Ω) ≡ W 1,∞(Ω).
For m ∈ N and 1 ≤ p ≤ +∞, we denote with Wm,p(Ω) the usual Sobolev space of Lp-
functions with all the derivatives up to the order m in Lp; we also set
Hm(Ω) := Wm,2(Ω). Moreover, we denote Hm

T := Hm
0 (0, T ).

For 1 ≤ p < +∞, let W−m,p(Ω) denote the dual space of Wm,p(Ω). For any p ∈
[1,+∞], the space Lploc(Ω) is the set formed by all functions which belong to Lp(Ω0),
for any compact subset Ω0 of Ω.
Furthermore, we make use of the so-called Bochner spaces. Given a Banach space
(X, ‖·‖X) and a fixed time T > 0, we define for 1 ≤ p < ∞, and a generic represen-
tative function φ = φ(x, t), the spaces

LpT (X) := Lp
(
[0, T ];X

)
with norm ‖φ‖LpT (X) :=

(∫ T

0
‖φ(·, t)‖pX dt

) 1
p

,

and

L∞T (X) := L∞([0, T ];X) with norm ‖φ‖L∞T (X) := ess sup
t∈[0,T ]

‖φ(·, t)‖X .

Further, for m ∈ N and a function φ = φ(t), we define

Cm
T (X) := Cm([0, T ];X) with the norm ‖φ‖CmT (X) :=

m∑
i=0

max
t∈[0,T ]

∥∥∥∥∥ d
i

dtiφ(t)
∥∥∥∥∥
X

.

Given a sequence
(
Φn

)
n
, we use the notation

(
Φn

)
n
≺ X meaning that Φn ∈ X for

all n ∈ N and that this sequence is uniformly bounded in X. This means there exists
some constant M > 0 such that ‖Φn‖X ≤M for all n ∈ N.
Given two Banach spaces X and Y , the space X ∩ Y , endowed with the norm
‖ · ‖X∩Y := ‖ · ‖X + ‖ · ‖Y , is still a Banach space.
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For every p ∈ [1,+∞], we use the notation LpT (Rd) := LpT (Rd)×LpT (Rd). Analogously,
H1
T (Rd) := H1

T (Rd)×H1
T (Rd). In addition, given two vectors u and v in Rd, we write

u ≤ v if the inequality is satisfied component by component by the two vectors:
namely, ui ≤ vi for all 1 ≤ i ≤ d.
Given two operators A and B, we use the standard symbol [A,B] to denote their
commutator: [A,B] := AB −BA.





Chapter 2
Liouville equation

The purpose of this chapter is to present a theoretical and numerical investigation
of the Liouville equation. This is performed in view of the formulation of optimal
control problems governed by this equation. We present a rigorous investigation of a
class of Liouville problems with unbounded drift functions.
In Section 2.1, we introduce the Liouville equation and some important properties of
it. Further, we formulate our control mechanism and the controlled Liouville equation.
The first step of our analysis, carried out in Section, 2.2 consists in investigating the
well-posedness of continuity and transport equations with unbounded drift function,
which presents the structure (2.5). We refer to Chapter 3 of [10] for the case of
bounded drifts, and to the cornerstone paper [62] for the case of unbounded drifts
having at most linear growth at infinity; see also [6, 7, 8, 59] and references therein
for recent advances.
However, in order to give full rigorous justification to our formulation of ensemble con-
trol problems introduced in Chapter 3, we need to extend (in Section 2.2.2) the classi-
cal well-posedness theory to a class of weighted Sobolev spaces Hm

k , see Definition 2.1
below. Roughly speaking, a tempered distribution f ∈ Hm belongs to Hm

k if f and all
its derivatives up to order m belong to the measurable space

(
L2(Rd), (1 + |x|)k dx

)
.

We point out that existence, uniqueness and regularity properties are derived in this
context by standard arguments. The key of the analysis reduces to show suitable a
priori estimates on the solutions in weighted norms. In passing, we mention that the
well-posedness theory in weighted spaces can be adapted to Lp-based spaces, for any
1 ≤ p < +∞.
In Section 2.3.1, we investigate the approximation of the Liouville equation. We con-
sider the well-known second-order finite-volume Kurganov-Tadmor (KT) discretiza-
tion scheme for the spatial flux derivatives that results in a generalized monotonic
upwind scheme for conservation laws (MUSCL). For the temporal discretization, we

25
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use the second-order strong stability preserving Runge-Kutta (SSPRK2) discretiza-
tion scheme. We prove that our SSPRK2-KT scheme is stable and positive preserving
subject to a restriction on the time-step size. Further, we prove that our scheme is
second-order convergent in the L1 norm, see Theorem 2.5. This result is less-known
in the context of generic finite-volume schemes for linear conservation laws.
For the adjoint Liouville equation, which corresponds to a transport equation with a
source term, we use a second-order Strang time-splitting scheme together with the KT
spatial discretization scheme. In Section 2.3.2, we prove stability and second-order
accuracy for the resulting combined approximation strategy, see Theorem 2.6.
In Section 2.3.3, we verify our implementation and obtain the desired order of accuracy
in the test-cases.

2.1. Preliminaries

The Liouville equation is a hyperbolic-type PDE, which arises in diverse areas of
sciences as biology, finances, mechanics, and physics; see e.g., [41, 54, 57, 67, 109].
It is often used to model the evolution of density functions representing the probability
density of multiple trials of a single evolving system, or the physical density of multiple
non-interacting systems. In both cases, the function of the dynamics of the ordinary
differential equation (ODE) model appears as the drift coefficient of the Liouville
equation.
Given some time T > 0, consider a smooth vector field a(x, t) over Rd, where
(x, t) ∈ Rd × [0, T ]. We refer to a as the drift function. It is well-known that, if
a scalar function f defined on Rd × [0, T ] satisfies the Liouville equation

(2.1) ∂tf(x, t) + div
(
a(x, t) f(x, t)

)
= 0,

with some (say) smooth initial datum f|t=0 = f0, then we can represent f by the
formula

f(x, t) = 1
det J

(
t,Λ−1

t (x)
) f0

(
Λ−1
t (x)

)
,

where Λt(x) = Λ(x, t) denotes the flow map associated to a, J(x, t) = ∇xΛt(x) is
its Jacobian matrix, and Λ−1

t (x) means the inverse with respect to the space variable,
at t fixed. Notice that (2.1) is (1.3) with C[f ] ≡ 0, only one phase-space variable is
considered, and no control mechanism is introduced up to now. By definition of flow
map, Λ verifies the following system of ODEs:

(2.2) ∂tΛ(x, t) = a
(
Λ(x, t), t

)
, Λ(x, 0) = x ,
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Further, we denote with F the flux associated to (2.1) as follows

(2.3) F(x, t) = a(x, t) f(x, t).

In view of physical considerations, it is generally natural to assume an initial condition
f0 verifying f0 ≥ 0, together with the normalization

∫
Rd f0(x) dx = 1. By equation

(2.1), if a is sufficiently smooth and satisfies certain growth conditions (see e.g. [62]),
it is standard to deduce that

f(x, t) ≥ 0 and
∫
Rd
f(x, t) dx =

∫
Rd
f0(x) dx = 1, t ≥ 0.(2.4)

The first property can be proved by the vanishing viscosity method and the maximum
principle or solving along characteristics; see, e.g., [67, 76]. The second property
follows from an application of the divergence theorem. Nonetheless, we remark that
most of our results do not require the latter two assumptions on f0.

Next, let us introduce the control mechanism we consider throughout this chapter.
Motivated by the fact that frequently used control mechanisms are the linear and
bilinear ones, we define the drift function as follows

(2.5) a(x, t;u) = a0(x, t) + a1 u1(t) + x ◦ a2u2(t) .

In (2.5), a0 is a given smooth vector field, a1, a2 ∈ Rd are given constants, and
u = (u1, u2) is the control, which we assume to be smooth for the scope of the present
discussion. The control u1 represents a linear control mechanism and u2 multiplying
the state variable x represents the bilinear control term. Both functions u1 and u2 are
defined on the time interval [0, T ] with values in Rd. The symbol ◦ : Rd × Rd → Rd

denotes the Hadamard product of two vectors, this is the multiplication component
by component.
Corresponding to the drift function (2.5), we define the controlled Liouville equation

(2.6) ∂tf(x, t) + div
(
a(x, t;u) f(x, t)

)
= 0.

The Liouville equation offers a convenient framework to accommodate any control
mechanism and any possible initial distribution including multi-modal ones. More
in detail, let us consider the simple case where a0 ≡ 0, a1 = a2 = 1 in (2.5) and
f0 is a normal Gaussian uni-modal distribution. Then, the Liouville dynamics can
be completely described by the first- and second-moment equations that include the
controls u1 and u2. To illustrate this fact, consider the following average operator
applied to an integrable function φ

E[φ](t) =
∫
Rd
φ(x) f(x, t) dx .



28 2. Liouville equation

In particular, we have the mean m̄(t) = E[x](t) and the variance
σ̄(t) = E

[(
x− m̄(·)

)2]
(t). Then, by taking the average of our controlled dynamical

system (2.6), we obtain
˙̄m(t) = u1(t) + m̄(t)u2(t), m̄(0) = m̄0 ,

˙̄σ(t) = 2 σ̄(t)u2(t), σ̄(0) = σ̄0 .
(2.7)

Observe that the control u1 appears as the main driving force of the mean value of the
density, and u2 determines the evolution of the variance of the density. See [34] for
more details on this construction. However, the validity of this setting is very limited
by the assumptions above whereas the Liouville framework allows to accommodate
a more general drift and density functions. We remark that also related to this
interpretation is the work in [39], in which, the authors deal with a time-optimal
control problem in the space of Borel measures.

As a final comment, we point out that for the characterization of the solution to our
Liouville optimal control problems, we have to deal with an adjoint Liouville problem.
This has the structure of a transport problem, specifically it is given by

(2.8) ∂tq(x, t) + a
(
x, t;u

)
· ∇q(x, t) = g(x, t) , with q|t=0 = q0 ,

where g and q0 depend on the optimization data. See Chapter 3 for details.

2.2. Theory of Liouville and transport equations with unbounded drifts

In this section, we present results concerning the well-posedness theory of Liouville
and transport equations in the class of Sobolev spaces. In view of formula (2.5), we
are especially interested in the case when the drift function a may be unbounded, but
has at most a linear growth at infinity.
In Section 2.2.1, we review the well-posedness theory in classical Hm spaces, for
m ∈ N. We do not present all the proofs and refer to [6, 59, 62] for the details
and more general results. Motivated by the study of our ensemble optimal control
problem, we extend these results to weighted Sobolev spaces in Section 2.2.2.

2.2.1. Classical theory of Liouville and transport equations

We start our discussion by considering the Liouville equation. Notice that our state-
ments can be repeated in a very similar way with just slight modifications also for
the adjoint Liouville problem.
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Consider the following Liouville initial-value problem

(2.9)

∂tf(x, t) + div
(
a(x, t) f(x, t)

)
= g(x, t) in Rd × (0, T ]

f|t=0 = f0 on Rd .

Whenever attempting to solve equation (2.9), we search for weak solutions. Namely,
for all φ ∈ C∞c

(
Rd × [0, T [

)
, we want to verify the equality

(2.10) −
∫ T

0

∫
Rd
f ∂tφ dx dt −

∫ T

0

∫
Rd
f a · ∇φ dx dt

=
∫ T

0

∫
Rd
g φ dx dt +

∫
Rd
f0 φ(0) dx .

The theory for this equation is classical, at least in the case of a bounded drift function
a. The following well-posedness result is adapted to our needs from Theorem 3.19 in
[10].

Theorem 2.1. Let us fix T > 0 and m ∈ N, and let a ∈ L1
(
[0, T ];Cm+1

b (Rd)
)
,

f0 ∈ Hm(Rd) and g ∈ L1
(
[0, T ];Hm(Rd)

)
. Then there exists a unique weak solution

f to (2.9), with f ∈ C
(
[0, T ];Hm(Rd)

)
. Moreover, there exists a “universal” constant

C > 0, independent of f0, a, g, f and T , such that the following estimate holds true
for any t ∈ [0, T ]

‖f(t)‖Hm ≤ C
(
‖f0‖Hm +

∫ t

0
‖g(τ)‖Hm dτ

)
exp

(
C
∫ t

0
‖∇a(τ)‖Cm

b
dτ
)
.

Remark 2.1. In the case m = 0, one can replace ‖∇a‖C0
b
with ‖ div a‖L∞ inside the

integral in the exponential term.

Motivated by the study of our optimal control problem with the control mechanism
specified in (2.5), we are interested in the case when a may be unbounded, with at
most a linear growth at infinity. For the data and the drift in (2.9), we assume the
following for given m ∈ Ng ∈ L1

(
[0, T ];Hm(Rd)

)
and f0 ∈ Hm(Rd)

a ∈ L1
(
[0, T ];Cm+1(Rd)

)
with ∇a ∈ L1

(
[0, T ];Cm

b (Rd)
)
.

(2.11)

Remark 2.2. Notice that hypotheses (2.11) imply, that a(·, t) has at most linear
growth in space at infinity. Specifically, there exists a constant C > 0, such that for
almost every (x, t) ∈ Rd × [0, T ], one has

|a(x, t)| ≤ C c(t) (1 + |x|) for c(t) = ‖∇a(·, t)‖L∞ ∈ L1
(
[0, T ]

)
.

The condition of at most linear growth at infinity can be proved to be somehow sharp
for well-posedness; see, e.g., [59, 62] and the references therein.
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We use an important statement proved by DiPerna and Lions in [62] for the case
m = 0. However, we give a self-contained presentation of its proof, since parts of its
proof are adapted in Section 2.2.2 in the context of weighted Sobolev spaces.

Theorem 2.2. Let T > 0 and m ∈ N fixed, and let a, f0 and g satisfy hypotheses
(2.11). Then there exists a unique solution f ∈ C

(
[0, T ];Hm(Rd)

)
to problem (2.9).

Moreover, there exists a “universal” constant C > 0, independent of f0, a, g, f and
T , such that the following estimate holds true for any t ∈ [0, T ]

‖f(t)‖Hm ≤ C
(
‖f0‖Hm +

∫ t

0
‖g(τ)‖Hm dτ

)
exp

(
C
∫ t

0
‖∇a(τ)‖Cm

b
dτ
)
.(2.12)

We derive the existence of solutions by an application of Theorem 2.1. The first step
is to construct a suitable truncation of the drift function. For this purpose, let us
introduce a smooth cut-off function χ ∈ C∞c (Rd) such that χ is radially decreasing,
χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. For all real M > 0, we define

aM(x, t) := χ
(
x

M

)
a(x, t) .(2.13)

Notice that, by assumptions (2.11), we immediately get that aM ∈ L1
T (Cm+1

b ) for all
M > 0. Moreover, in view of Remark 2.2 it holds that

(2.14)
(
∇aM

)
M
≺ L1

T (Cm
b ) , with ‖∇aM‖L1

T (L∞) ≤ C ,

for a constant C > 0 independent of M . Indeed, denoting by 1S the characteristic
function of a set S ⊂ Rd and by B%(x) the ball in Rd with center x and radius % > 0,
we can compute with a generic constant C > 0

‖∇aM‖L∞ =
∥∥∥∥ 1
M
∇χ

(
x

M

)
a + χ

(
x

M

)
∇a

∥∥∥∥
L∞

≤ C
1
M

∥∥∥a1B2M (0)

∥∥∥
L∞

+ ‖∇a‖L∞ ≤ C .

The bounds for higher order derivatives follow by analogue arguments after noticing
that we gain a factor 1/M in front of a at each order of differentiation.
At this point, for each fixed M > 0, we can consider the truncated problem∂tf + div (aM f) = g in Rd × (0, T ]

f|t=0 = f0 on Rd,
(2.15)

which possesses a unique weak solution fM ∈ C
(
[0, T ];Hm(Rd)

)
, by virtue of Theo-

rem 2.1. Moreover, each fM satisfies the energy estimate (2.12), up to replacing a by
aM . Thus, we have

‖fM(t)‖Hm ≤ C
(
‖f0‖Hm +

∫ t

0
‖g(τ)‖Hm dτ

)
exp

(
C
∫ t

0
‖∇aM(τ)‖Cm

b
dτ
)
.

(2.16)
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Thanks to property (2.14), we deduce the uniform bounds(
fM
)
M
≺ L∞

(
[0, T ];Hm(Rd)

)
.

As a consequence, we obtain the existence of a f ∈ L∞T (Hm) such that one has
fM

∗
⇀ f in L∞T (Hm) up to the extraction of a subsequence.

Our next goal is to show that f actually solves problem (2.9) in the weak form given
by (2.10). For this purpose, we need to pass to the limit for M → +∞, in the weak
formulation of (2.15). For any φ ∈ C∞c

(
Rd × [0, T [

)
we have

(2.17) −
∫ T

0

∫
Rd
fM ∂tφ dx dt −

∫ T

0

∫
Rd
fM aM · ∇φ dx dt

=
∫ T

0

∫
Rd
g φ dx dt +

∫
Rd
f0 φ(0) dx .

It is enough to prove the convergence in the case of minimal regularity. Thus, we
restrict to the case m = 0 in the next argument.
The only term which presents some difficulties is (2.17) is the term fM aM . Its con-
vergence is based on the next lemma, whose proof is elementary and hence omitted.

Lemma 2.1. For all compact set K ⊂ Rd, it holds that

‖aM − a‖L1
T (L∞(K)) −→ 0 as M → +∞ .

Let now K denote the support in x of φ, where φ is the test function appearing
in (2.17). Thanks to the uniform bounds, to the strong convergence of aM to a in
L1
T

(
L∞(K)

)
(given by Lemma 2.1) and the weak-∗ convergence of fM to f in L∞T (L2),

we deduce that
(
fM aM

)
M

is uniformly bounded in L1
T

(
L2(K)

)
, and fM aM

∗
⇀ f a

in that space in the limit when M → +∞.
In the end, we have proved that the limit function f is a weak solution to (2.9).
Thanks to (2.16), the uniform bounds (2.14), and lower semi-continuity of the norm,
we also deduce that f verifies the energy estimate (2.12).

It remains to prove uniqueness of solutions and their time regularity. They are both
consequences of the next proposition.

Proposition 2.1. Let T > 0 and take m ∈ N. Let f ∈ L∞T (Hm) be a weak solution
to equation (2.9) under hypotheses (2.11).
Then f ∈ C

(
[0, T ];Hm(Rd)

)
and it verifies the energy estimate (2.12).

We present the proof of the previous claim in the minimal regularity case, namely
for m = 0. The general case follows by the same token. To start with, let us state a
classical lemma whose proof is hence omitted; see, e.g., [6, 62] for details.
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Let us fix a function s ∈ C∞c (Rd), with s ≡ 1 for |x| ≤ 1 and s ≡ 0 for |x| ≥ 2, s
radially decreasing and such that

∫
Rd s = 1. For all n ∈ N, we then define sn(x) :=

nd s(nx). We refer to the family (sn)n as a family of standard mollifiers.

Lemma 2.2. Let (sn)n be a family of standard mollifiers, as constructed here above.
For all n ∈ N, define the operator Sn, acting on tempered distributions over R+×Rd,
by the formula

Snf := sn ∗x f ,

where the symbol ∗x means that the convolution is taken only with respect to the space
variable. For given f ∈ L∞T (L2) and a ∈ L1

T (C1) such that ∇a ∈ L1
T (Cb), we set,

for all n ∈ N and 1 ≤ j ≤ d,

rjn(f) := ∂j
([
a, Sn

]
f
)
.

Then, for all j fixed, we have
(
rjn
)
n
≺ L1

T (L2). Moreover, for n→ +∞, we have the
strong convergence rjn → 0 in L1

T (L2).

Let us also recall the following standard notation. For X a Banach space and X∗ its
pre-dual, we denote by Cw

(
[0, T ];X

)
the set of measurable functions f : [0, T ] → X

which are continuous with respect to the weak topology. Namely, for any φ ∈ X∗,
the function t 7→ (φ, f(t))X∗×X is continuous over [0, T ].

With this preparation, we are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. With the same notations as in Lemma 2.2, we
define fn := Snf . Notice that (fn)n ⊂ L∞T (L2). Moreover, fn satisfies the equation

(2.18) ∂tfn + div
(
a f
)

= gn + rn , with
(
fn
)
|t=0

= Snf0 ,

where we have set rn := div
([
a, Sn

]
f
)
. Notice that one has ‖Snf0‖L2 ≤ C ‖f0‖L2

and ‖gn‖L1
T (L2) ≤ C ‖g‖L1

T (L2). Furthermore, when n → +∞, we have the strong
convergences gn → g in L1

T (L2) and Snf0 → f0 in L2. In addition, by Lemma 2.2,
we know that ‖rn‖L1

T (L2) ≤ C and rn → 0 in L1
T (L2).

Next, an inspection of (2.18) shows that
(
∂tfn

)
n
≺ L1

T (H−1
loc ), which in turn gives us

the uniform embedding
(
fn
)
n
≺ CT (H−1

loc ). From this latter property, combined with
a density argument and the uniform boundedness of

(
fn
)
n
in L∞T (L2), we deduce that(

fn
)
n
is uniformly bounded in Cw

(
[0, T ];L2(Rd)

)
.

Now, let us take the L2 scalar product of equation (2.18) by fn. We get using
integration by parts that

(2.19) 1
2

d
dt ‖fn‖

2
L2 + 1

2

∫
div a |fn|2 dx =

∫
gn fn dx ,
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which implies that ‖fn(t)‖L2 ∈ C
(
[0, T ]

)
for all n ∈ N. Thanks to this property,

together with the fact that fn ∈ Cw
(
[0, T ];L2(Rd)

)
, after writing

‖fn(t+ h) − fn(t)‖2
L2 = ‖fn(t+ h)‖2

L2 − 2 (fn(t+ h), fn(t))L2×L2 + ‖fn(t)‖2
L2 ,

one deduces that fn belongs to CT (L2) for all n ∈ N, since the right-hand side goes
to zero as h tends to zero.
Further, relation (2.19) also yields

‖fn(t)‖L2 ≤ C exp
(
C
∫ t

0
‖div a(τ)‖L∞ dτ

)
×

×
(
‖Snf0‖L2 +

∫ t

0
(‖gn(τ)‖L2 + ‖rn(τ)‖L2) dτ

)
≤ C exp

(
C
∫ t

0
‖div a(τ)‖L∞ dτ

) (
‖f0‖L2 +

∫ t

0
‖g(τ)‖L2 dτ

)
,

(2.20)

for all t ∈ [0, T ], using Grönwall’s lemma and the previous properties on
(
Snf0

)
n
,(

gn
)
n
and

(
rn
)
n
. In view of this energy estimate, we deduce that

(
fn
)
n
is uniformly

bounded in CT (L2).
By a similar argument, using the fact that

(
Snf0

)
n
,
(
gn
)
n
and

(
rn
)
n
are strongly

convergent in the respective functional spaces, we can moreover deduce that
(
fn
)
n

is a Cauchy sequence in CT (L2). To prove this, we take m < n and consider the
difference δnmf := fn − fm. Then, δnmf fulfils

∂tδ
n
mf + div

(
a δnmf

)
= δnmg + δnmr , with δnmf|t=0 = δnmf0 := fn0 − fm0 ,

where we have defined also δnmg := gn − gm and δnmr := rn − rm. To this equation
we can also apply the energy estimates, and obtain

‖δnmf‖L∞T (L2) ≤ C exp
(
C ‖div a‖L1

T (L∞)

) (
‖δnmf0‖L2 + ‖δnmg‖L1

T (L2) + ‖δnmr‖L1
T (L2)

)
.

Since
(
Snf0

)
n
,
(
gn
)
n
and

(
rn
)
n
are strongly convergent in the respective functional

spaces, they are Cauchy sequences. This implies that the limit f of the sequence(
fn
)
n
belongs to CT (L2), and the convergence fn → f is strong in this space. Finally,

passing to the limit in the left-hand side of (2.20) we see that f verifies the energy
estimate (2.12). �

Now, stability and uniqueness follow from Corollary 2.1.

Corollary 2.1. Fix T > 0 and m ∈ N, and let a satisfy the assumptions given
in (2.11). For i = 1, 2, take an initial datum f i0 ∈ Hm(Rd) and an external source
gi ∈ L1

(
[0, T ];Hm(Rd)

)
, and let f i ∈ L∞T (Hm) be a corresponding solution to (2.9),

whose existence is guaranteed by the previous arguments.
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Then, after defining δf0 := f 1
0−f 2

0 , δg := g1−g2 and δf := f 1−f 2, for all t ∈ [0, T ],
for some constant C > 0 independent of the data and the respective solutions it holds
that

‖δf(t)‖Hm ≤ C
(
‖δf0‖Hm +

∫ t

0
‖δg(τ)‖Hm dτ

)
exp

(
C
∫ t

0
‖∇a(τ)‖Cm

b
dτ
)
.

Proof. By taking the difference of the equations satisfied by f 1 and f 2, one
deduces that δf ∈ L∞T (L2) is a weak solution to the initial-value problem∂tδf + div

(
a δf

)
= δg in Rd × (0, T ]

δf|t=0 = δf0 on Rd.

To this problem, we can apply Proposition 2.1 and gain the desired estimate. �

The characterisation of controls in our framework requires the solution of an adjoint
Liouville problem, which is given by a linear transport problem (2.8). Therefore,
we consider the following transport problem to complete the analysis of the present
section ∂tq + a · ∇q + a q = g in Rd × (0, T ]

q|t=0 = q0 on Rd .
(2.21)

We assume that the data q0, a and g verify the assumptions in (2.11), where f0

is replaced by q0. Moreover, we assume that a has the same regularity as div a,
specifically a ∈ L1

(
[0, T ];Cm

b (Rd)
)
.

The weak formulation of (2.21) now reads

(2.22) −
∫ T

0

∫
Rd
q ∂tφ −

∫ T

0

∫
Rd
q a · ∇φ −

∫ T

0

∫
Rd
q div a φ +

∫ T

0

∫
Rd
q aφ

=
∫ T

0

∫
Rd
g φ +

∫
Rd
q0 φ(0) ,

for all φ ∈ C∞c
(
Rd× [0, T [

)
. For (2.21), we have the following well-posedness result,

analogous to Theorem 2.2 for the Liouville equation.
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Theorem 2.3. Fix T > 0 and m ∈ N, and let a, a, q0 and g satisfy the assumptions
stated above. Then there exists a unique solution q ∈ C

(
[0, T ];Hm(Rd)

)
to equation

(2.21). Moreover, there exists a “universal” constant C > 0, independent of q0, a, a,
g, q and T , such that the following estimate holds true for any t ∈ [0, T ]:

(2.23) ‖q(t)‖Hm ≤ C
(
‖q0‖Hm +

∫ t

0
‖g(τ)‖Hm dτ

)
×

× exp
(
C
∫ t

0

(
‖∇a(τ)‖Cm

b
+ ‖a(τ)‖Cm

b

)
dτ
)
.

The proof is analogous to the one given for Theorem 2.1. Notice that while passing
to the limit in the weak formulation (2.22), at step n of the regularization procedure,
one has to deal with the terms div an and an. One can use Proposition 4.21 and
Theorem 4.22 of [31] to deduce that both terms converge to div a and a, respectively,
in L1

T

(
L∞(K)

)
for n→ +∞.

2.2.2. Well-posedness theory in weighted spaces

In this section, we extend the previous theory to Sobolev spaces with weights. This
analysis is especially important for the investigation of the Liouville control-to-state
map and of the Liouville ensemble optimal control problem carried out in the next
sections. We only present the case of the Liouville equation. However, the statements
that follow hold also for the transport problem, with minor modifications in the proofs.
For the analysis of the Liouville control-to-state map, we need to prove weighted
integrability of f , due to the growth of the drift function. For this purpose, we
introduce the following definition.

Definition 2.1. Fix (m, k) ∈ N2. We define the space Hm
k (Rd) in the following way:

H0
k(Rd) = L2

k(Rd) :=
{
f ∈ L2(Rd)

∣∣∣ |x|k f ∈ L2(Rd)
}
,

and, for m ≥ 1, we set

Hm
k (Rd) :=

{
f ∈ Hm(Rd) ∩Hm−1

k (Rd)
∣∣∣ |x|kDαf ∈ L2(Rd) ∀ |α| = m

}
.

The space Hm
k is endowed with the following norm

‖f‖Hm
k

:=
∑
|α|≤m

∥∥∥(1 + |x|k
)
Dαf

∥∥∥
L2
.

Sometimes, given m ∈ N, we use the notation ‖∇mf‖L2 = ∑
|α|=m ‖Dαf‖L2 , and

analogous writing for weighted norms.
Notice that, for all m and k in N, one has Hm

k ⊂ Hm and Hm = Hm
0 . Furthermore,

since we want to avoid too singular behaviours close to 0, we often focus on the
special case m ≤ k, which is enough for our scopes. In that case, we have a simple
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characterization of the spaces Hm
k , which will be useful especially in Section 3.2, when

studying the control-to-state map related to our optimal control problem.

Proposition 2.2. (1) Given k ∈ N, one has f ∈ L2
k if and only if

(1 + |x|k) f ∈ L2.
(2) For k ∈ N \ {0} and 1 ≤ m ≤ k, let f ∈ Hm ∩Hm−1

k . Then f ∈ Hm
k if and

only if |x|k f ∈ Hm.
In particular, a tempered distribution f belongs to H1

1 if and only if both f
and |x| f belong to H1; it belongs to H2

2 if and only if both f and |x|2 f belong
to H2 and ∇f belongs to L2

2.

Proposition 2.2 relies on the next lemma, whose proof is elementary and hence omit-
ted.

Lemma 2.3. Let (m, k) ∈ N2, with m ≤ k. If f ∈ Hm
k , then (1 + |x|k) f ∈ Hm.

Thanks to Lemma 2.3, we can prove Proposition 2.2.

Proof of Proposition 2.2. Assertion (i) is trivial. So, let us focus on the
proof of (ii).
Suppose that f ∈ Hm ∩ Hm−1

k . Then, by Lemma 2.3 above, we have that
|x|k f ∈ Hm−1

k . At this point, for |α| = m, we write, using Leibniz rule,

Dα
(
|x|k f

)
= |x|kDαf +

∑
β

Dβ|x|kDα−βf ,

where the sum is performed for all β ≤ α such that |β| ≥ 1. By the previous
arguments, and the fact that m ≤ k, we have that all the terms in the sum belong to
L2. Then, the term on the left-hand side belongs to L2 if and only if the first term
on the right-hand side does.
The last sentences follow by straightforward computations, using the equality
∂j
(
|x| f

)
= ∂j|x| f + |x| ∂jf , where 1 ≤ j ≤ d, and the relation

∇2
(
|x|2 f

)
∼ ∇

(
|x| f + |x|2∇f

)
∼ ∇|x| f +

(
|x|+ |x|2

)
∇f + |x|2∇2f .

The equivalence between the two assertions is then apparent. Indeed, we have that
if f ∈ H2

2 , then |x|j Dαf ∈ L2 for all 0 ≤ j ≤ 2 and |α| = 0, 1. Hence, all the terms
in the right-hand side belong to L2, and then so does the one on the left-hand side.
On the contrary, if both f and |x|2 f belong to H2 and ∇f belongs to L2

2, then
f ∈ H2 ∩H1

2 ; finally, by the previous equality, we also discover that |x|2∇2f be-
longs to L2, completing the proof of the reverse implication, and then of the whole
proposition. �
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After the above preliminaries, we are ready to state the main result of this section,
which shows well-posedness of the Liouville equation in Hm

k spaces.

Theorem 2.4. Let T > 0 and (m, k) ∈ N2 fixed, and let a be a vector field satisfying
hypotheses (2.11). Assume also that f0 ∈ Hm

k (Rd) and g ∈ L1
(
[0, T ];Hm

k (Rd)
)
.

Then there exists a unique solution f ∈ C
(
[0, T ];Hm

k (Rd)
)
to problem (2.9). More-

over, there exists a “universal” constant C > 0, independent of f0, a, g, f and T ,
such that the following estimate holds true for any t ∈ [0, T ]:

‖f(t)‖Hm
k
≤ C exp

(
C
∫ t

0
‖∇a(τ)‖Cm

b
dτ
) (
‖f0‖Hm

k
+
∫ t

0
‖g(τ)‖Hm

k
dτ
)
.(2.24)

Most of the claims of the previous statement follow from Theorem 2.2. What remains
is to prove the propagation of higher integrability for k ≥ 1. Before proving Theorem
2.4 in its full generality, let us consider its version for simpler cases, which are needed
in the proof of the general case. Moreover, their precise form is important, in view of
their application in Section 3.2.
We start with the case m = 0.

Lemma 2.4. Assume that the hypotheses of Theorem 2.4 hold true with m = 0.
Then there exists a unique solution f ∈ C

(
[0, T ];L2

k(Rd)
)
to problem (2.9). More-

over, there exists a “universal” constant C > 0 such that the following estimate holds
true for any t ∈ [0, T ]

‖f(t)‖L2
k
≤ C exp

(
C
∫ t

0
‖∇a(τ)‖L∞ dτ

) (
‖f0‖L2

k
+
∫ t

0
‖g(τ)‖L2

k
dτ
)
.

Proof of Lemma 2.4. Recall that, in the case k = 0, taking the L2 scalar
product of equation (2.9) by f leads to

1
2

d
dt ‖f‖

2
L2 + 1

2

∫
div a |f |2 dx =

∫
g f dx ,

which readily implies

(2.25) d
dt ‖f‖L2 ≤ ‖ div a‖L∞ ‖f‖L2 + ‖g‖L2 .

Analogously, multiplying equation (2.9) by |x|k, we get that fk := |x|k f satisfies

∂tfk + div
(
a fk

)
= |x|k g + f a · ∇|x|k .

Taking now the L2 scalar product by fk and repeating the same computations as
above, we find

(2.26) d
dt ‖fk‖L2 ≤ ‖ div a‖L∞ ‖fk‖L2 +

∥∥∥|x|k g∥∥∥
L2

+
∥∥∥f a · ∇|x|k∥∥∥

L2
.

We need to control the last term on the right-hand side of the previous estimate. To
achieve this, we use the fact that ∇|x|k ∼ |x|k−1 for all k ≥ 1 and Remark 2.2 to
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obtain ∥∥∥f a · ∇|x|k∥∥∥
L2
≤ C ‖∇a‖L∞

∥∥∥(1 + |x|k
)
f
∥∥∥
L2
.

Inserting this bound into (2.26) and summing up the resulting expression to (2.25),
we have

(2.27) d
dt
∥∥∥(1 + |x|k

)
f
∥∥∥
L2
≤ C ‖∇a‖L∞

∥∥∥(1 + |x|k
)
f
∥∥∥
L2

+
∥∥∥(1 + |x|k

)
g
∥∥∥
L2
.

Hence, an application of Grönwall’s lemma gives the desired estimate. �

Next, we present the result for m = 1. For notational convenience, let us set

[x]k := 1 + |x|k .

Lemma 2.5. Assume that the hypotheses of Theorem 2.4 hold true with m = 1.
Then there exists a unique weak solution f ∈ C

(
[0, T ];H1

k(Rd)
)
to (2.9). Moreover,

there exists a “universal” constant C > 0 such that the estimate

‖f(t)‖H1
k
≤ C exp

(
C
∫ t

0
‖∇a(τ)‖C1

b
dτ
) (
‖f0‖H1

k
+
∫ t

0
‖g(τ)‖H1

k
dτ
)
,

is satisfied for all t ∈ [0, T ].

Proof of Lemma 2.5. We start by differentiating equation (2.9) with respect
to xj, for some 1 ≤ j ≤ d, getting

∂t∂jf + div
(
a ∂jf

)
= ∂jg − ∂j div a f − ∂ja · ∇f .

Applying estimate (2.27) to this equation gives

d
dt ‖[x]k ∂jf‖L2 ≤ C ‖∇a‖L∞ ‖[x]k ∂jf‖L2 + ‖[x]k ∂jg‖L2

+ ‖[x]k ∂j div a f‖L2 + ‖[x]k ∂ja · ∇f‖L2 ,

from which we obtain, for another constant C > 0, the bound

(2.28) d
dt ‖[x]k∇f‖L2 ≤ C ‖∇a‖L∞ ‖[x]k∇f‖L2 + ‖[x]k∇g‖L2

+
∥∥∥∇2a

∥∥∥
L∞
‖[x]k f‖L2 .

We can now sum up (2.27) and (2.28) to get

(2.29) d
dt ‖f‖H1

k
≤ C ‖∇a‖C1

b
‖f‖H1

k
+ ‖g‖H1

k
.

An application of Grönwall’s lemma allows us to get the result. �

Now, we can address the proof of the general case given in Theorem 2.4.

Proof of Theorem 2.4. We argue by induction on the order of derivatives.
The cases m = 0 and m = 1 are given by Lemma 2.4 and Lemma 2.5, respectively.
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Let m ≥ 2, and let us assume that, for any 0 ≤ ` ≤ m − 1, the following inequality
holds true

(2.30) d
dt
∥∥∥[x]k∇`f

∥∥∥
L2
≤ C‖∇a‖L∞

∥∥∥[x]k∇`f
∥∥∥
L2

+
∥∥∥[x]k∇`g

∥∥∥
L2

+
∑

0≤p≤`−1

∥∥∥∇p+1a
∥∥∥
L∞
‖[x]k∇pf‖L2 .

Our goal is to prove an analogous estimate also for ‖[x]k∇mf‖L2 .
For this purpose, let us take an α ∈ Nd such that |α| = m. Applying the operator
Dα to (2.9), we deduce

(2.31) ∂tDαf + div
(
aDαf

)
= Dαg−

∑
0<β≤α

Dβ div a Dα−βf −
∑

0<β≤α
Dβa·∇Dα−βf ,

where the notation 0 < β means that β ∈ Nd has at least one non-zero component.
Following the computations of Lemma 2.5, we need to estimate the L2

k norm of the
last two terms in the right-hand side of the previous equation. For the first one, we
have ∥∥∥[x]kDβ div a Dα−βf

∥∥∥
L2
≤
∥∥∥∇|β|+1a

∥∥∥
L∞

∥∥∥[x]kDα−βf
∥∥∥
L2
.

Notice that, since β > 0, the terms Dα−βf are of lower order. It holds for the terms∥∥∥[x]kDβa · ∇Dα−βf
∥∥∥
L2
≤
∥∥∥∇|β|a∥∥∥

L∞

∥∥∥[x]k∇Dα−βf
∥∥∥
L2
,

whenever |β| ≥ 2; on the contrary, when |β| = 1, the terms ∇Dα−βf contain exactly
m derivatives.
Therefore, applying estimate (2.27) to equation (2.31), and using the previous con-
trols, we infer

d
dt ‖[x]k∇mf‖L2 ≤ C‖∇a‖L∞ ‖[x]k∇mf‖L2 + ‖[x]k∇mg‖L2

+
∑

0<β≤α

∥∥∥∇|β|+1a
∥∥∥
L∞

∥∥∥[x]kDα−βf
∥∥∥
L2

≤ C‖∇a‖L∞ ‖[x]k∇mf‖L2 + ‖[x]k∇mg‖L2

+
∑

0≤`≤m−1

∥∥∥∇`+1a
∥∥∥
L∞

∥∥∥[x]k∇`f
∥∥∥
L2
,

which proves formula (2.30) at the level m. Now, it is a matter of summing up
inequality (2.28) for ` = 0 to m to get, for some constant also depending on m, the
following bound:

d
dt ‖f‖Hm

k
≤ C ‖∇a‖Cm

b
‖f‖Hm

k
+ ‖g‖Hm

k
,

which immediately implies the claimed estimate. Theorem 2.4 is now proved. �
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2.3. Numerical analysis of the Liouville equation

In this section, we present our strategy and analysis of the discretization of the con-
trolled Liouville equation (2.6) and its optimization adjoint model (2.8). In the
adjoint model, we fix the initial condition q(x, 0) = −ϕ(x) and the source term
g(x, t) = −θ(x, t) for (x, t) ∈ Ω × [0, T ], where θ and ϕ are Gaussian functions; cf.
(3.32).
We begin with discussing the spatial and temporal discretization of the Liouville
equation and its adjoint. For simplicity of notation, we focus on a two-dimensional
problem, i.e. d = 2. Then a = (a1, a2) ∈ R2. For the numerical analysis of the
Liouville equation, we fix the drift function as in (2.5). Moreover, we fix the controls
to belong to

(2.32) Uad :=
{
u ∈ L∞T (Rd)

∣∣∣ ua ≤ u(t) ≤ ub for a.e. t ∈ [0, T ]
}
,

where the inequalities are meant component-wise, and we choose ua =
(
ua1, u

a
2

)
and

ub =
(
ub1, u

b
2

)
in R2d, with ua < ub.

Our aim is to develop an approximation framework that is second-order accurate and
preserves the two essential properties of the continuous Liouville model given in (2.4),
namely positivity and conservation of mass of its solution.
In view of applications to the numerical study of our optimal control problem, we con-
sider a large but bounded convex domain Ω ⊂ R2. Specifically, we choose
Ω = (−B,B)× (−B,B), for some large B > 0. We also fix an initial density f0

that is (by machine precision) compactly supported in Ω. For θ and ϕ we take Gauss-
ian functions having sufficiently small variance and centred sufficiently far from the
boundary of Ω, so that (by machine precision) we can assume that also those functions
are compactly supported in Ω. Then, we solve problems (2.6) and (2.8) in Ω× [0, T ],
supplemented with homogeneous Dirichlet boundary conditions on ∂Ω. Notice that,
in this setting, it is possible to use the results of the current chapter to prove existence
and uniqueness of smooth enough solutions to (2.6) and (2.8). For this purpose, one
extends the functions f0, θ and ϕ to be zero outside the domain Ω, and the drift
function a to a smooth function, which is bounded on Rd together with all its space
derivatives. We remark that this is always possible, for instance by multiplying a
with a smooth compactly supported function χ of the space variable only, such that
χ ≡ 1 on a neighbourhood of Ω.
We consider our solutions on a time interval [0, T ], where T > 0 is chosen such that
the corresponding solution f to (2.6) is still compactly supported in Ω, far away from
its boundary ∂Ω. Observe that this property is true by finite propagation speed, since
the (extended) drift is bounded on Rd. Also notice that, in our analysis, we do not
need the solution q to the adjoint problem to be compactly supported in Ω.
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For Ω = (−B,B) × (−B,B) fixed above, we set a numerical grid that provides a
partitioning of Ω in Nx ×Nx, Nx > 1, equally-spaced non-overlapping square cells of
side length h = 2B/Nx. On this partitioning, we consider a cell-centred finite-volume
setting, where the nodal points at which the density and adjoint variables are defined
are placed at the centres of the square volumes. These nodal points are given by

xi1 :=
(
i− 1

2

)
h−B, xj2 :=

(
j − 1

2

)
h−B.(2.33)

Therefore, the elementary cell is defined as

ωijh :=
{

(x1, x2) ∈ Ω
∣∣∣∣ x1 ∈

[
xi1 −

h

2 , x
i
1 + h

2

]
, x2 ∈

[
xj2 −

h

2 , x
j
2 + h

2

]}
,(2.34)

and the computational domain is given by

Ωh =
Nx⋃
i,j=1

ωijh .(2.35)

Analogously, the time interval [0, T ] is divided in Nt > 1 subintervals of length ∆t
and the points tk are given by

tk := k∆t, k = 0, . . . , Nt, ∆t := T

Nt

.

This defines the time mesh Γ∆t := {tk ∈ [0, T ], k = 0, . . . , Nt}. Therefore, corre-
sponding to the space-time cylinder Z := Ω× [0, T ] we have its discrete counterpart
Zh,∆t := Ωh × Γ∆t.
In this setting, the cell average of the density f (and so of any integrable function),
on the cell with centre (xi1, x

j
2) at time tk, is given by

f̄ki,j = 1
h2

∫ x
i+1/2
1

x
i−1/2
1

∫ x
j+1/2
2

x
j−1/2
2

f(x1, x2, t
k) dx2 dx1.(2.36)

In particular,

f̄ 0
i,j = f 0

i,j = 1
h2

∫ x
i+1/2
1

x
i−1/2
1

∫ x
j+1/2
2

x
j−1/2
2

f0(x1, x2) dx2 dx1.

Notice that, in our numerical setting, function values are identified with their cell-
based average located at the cell centres. For this reason, our numerical framework
aims at determining approximation of theses averages. Specifically, we discuss a
discretization scheme that results in values fki,j that approximate f̄ki,j. Similarly, we
denote with qki,j the numerical approximation of q̄ki,j that is computed as in (2.36).
We also consider a piecewise constant approximation to the time-dependent control
functions, where we denote with uk+1/2 the value of the control in the time interval
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[tk, tk+1). Further, for the projection of a continuous u to the corresponding approxi-
mation space, we set uk+1/2 = u(tk). For a function f defined on Zh,∆t, we define the
discrete norms ‖ · ‖1,h and ‖ · ‖∞,h as follows:

‖f(·, ·, tk)‖1,h = h2
Nx∑
i,j

∣∣∣fki,j∣∣∣ , ‖f(·, ·, tk)‖∞,h = max
i,j=1,...,Nx

∣∣∣fki,j∣∣∣ ,
where fki,j = f(xi1, x

j
2, t

k), and (xi1, x
j
2, t

k) denotes a grid point in Ω× [0, T ].

2.3.1. A Runge-Kutta Kurganov-Tadmor scheme for the Liouville equation

In this section, we discuss a suitable approximation of our controlled Liouville equa-
tion in Ω × [0, T ]. Supposing that f0 has compact support, and because of finite
propagation speed, we can choose Ω such that the solution f at the boundary ∂Ω is
zero for all times t ∈ [0, T ].
For our purpose, we focus on the finite-volume scheme proposed by Kurganov-Tadmor
(KT) in [92] that involves a generalized MUSCL flux. To describe this scheme, we de-
note the flux in the Liouville equation as a variable of f with
H(f) = a f = a(x, t) f(x, t). Thus, the KT scheme for the Liouville equation in
semi-discretized form is given by

(2.37) d
dtfi,j(t) = −

Hx1
i+1/2,j(f+, f−; t)−Hx1

i−1/2,j(f+, f−; t)
h

−
Hx2
i,j+1/2(f+, f−; t)−Hx2

i,j−1/2(f+, f−; t)
h

, i, j = 1, . . . , Nx − 1,

where the Hxr
·,· (f+, f−; t) are the fluxes in r-direction, r = 1, 2. Specifically, for

Hx1
·,· (f+, f−; t) we have

(2.38) Hx1
i+1/2,j(f

+, f−; t) :=
H1(f+

i+1/2,j(t)) +H1(f−i+1/2,j(t))
2

−
Vx1
i+1/2,j(t)

2

[
f+
i+1/2,j(t)− f

−
i+1/2,j(t))

]
,

where H = (H1,H2) = (a1f, a2f), and similarly for Hx2
i,j±1/2(f+, f−; t). In this for-

mula, the so-called local speeds Vxr(t) are given by

(2.39) Vxri+1/2,j(t) =
∣∣∣ ar(xi+1/2

1 , xj2, t;u(t))
∣∣∣ , r = 1, 2,

since H(f) = a f is linear in f .
Further in (2.38), the approximation of f at the cell edges is given by intermediate
values that approximate the function value from above respectively from below as
follows

(2.40) f+
i+1/2,j(t) := fi+1,j(t)−

h

2 (fx1)i+1,j(t), f−i+1/2,j(t) := fi,j(t) + h

2 (fx1)i,j(t).
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We approximate the partial derivatives of f using the minmod function. In direction
x1, this approximation is given by

(fx1)i,j(t) = minmod
(
fi,j(t)− fi−1,j(t)

h
,
fi+1,j(t)− fi−1,j(t)

2h ,
fi+1,j(t)− fi,j(t)

h

)
.

(2.41)

An analogous expression holds in the direction x2. The multivariable minmod function
for vectors x ∈ Rd is given by

minmod(x1, x2, . . . , xd) :=


minj{xj} if xj > 0, ∀j ∈ [1, d]
maxj{xj} if xj < 0, ∀j ∈ [1, d]
0 otherwise.

Next, we discuss the local truncation error of the semi-discrete KT scheme (2.37)–
(2.39).

Lemma 2.6. The KT scheme given in (2.37)–(2.40) is at least second-order accurate
for smooth f , except possibly at the points of extrema of f .

Proof. The flux H, given in (2.38), is a first-order Rusanov flux [113] that is
C2 with Lipschitz continuous partial derivatives with respect to f+, f−, in a neigh-
bourhood of fi,j. Further, by using a Taylor series expansion, we have the following
approximation

h
(fx1)i+1,j

fi+1,j − fi,j
= 1 +O(h), h

(fx1)i,j
fi+1,j − fi,j

= 1 +O(h),

and a similar result holds in the x2 direction, except at the points of extrema, which
are characterized by (fx1)i,j = 0 (see [104, Th. 3.2]). Using the result in [103, Lemma
2.1], we have that the semi-discrete scheme (2.37)–(2.40) is second-order accurate in
space except possibly at points of extrema. �

For the time discretization of the Liouville equation (3.6), we use a second-order
strong stability preserving Runge-Kutta (SSPRK2) method [114] (also known as the
Huen’s method). The combination of this scheme with the KT discretization of the
flux H, given in (2.37), results in a new approximation method that we call the
SSPRK2-KT-scheme. This scheme is implemented by the Algorithm 2.1 given below
using the following definition

(2.42) F (fki,j) = −
Hx1,k
i+1/2,j −H

x1,k
i−1/2,j

h
−
Hx2,k
i,j+1/2 −H

x2,k
i,j−1/2

h
.

where Hxj ,k
·,· denotes Hxj

·,· , j = 1, 2, given in (2.38) corresponding to the time-step tk.
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Algorithm 2.1 SSPRK2-KT scheme
Require: f 0

·,·, F
Ensure: Solve the Liouville equation in f as follows
1: Set k = 0
2: while 0 ≤ k < Nt do
3: for 1 < i, j < Nx − 1 do
4: In (tk, tk+1), compute f (1)

i,j = fki,j +∆t F (fki,j) with initial condition fki,j, where
F (fki,j) is computed using (2.42).

5: In (tk, tk+1), compute f (2)
i,j = f

(1)
i,j + ∆t F (f (1)

i,j ) with initial condition f
(1)
i,j ,

where F (f (1)
i,j ) is computed using (2.42).

6: Time-step update: fk+1
i,j = 1

2f
k
i,j + 1

2f
(2)
i,j .

7: end for
8: k = k + 1
9: end while

10: return fk·,·

Now, we study the properties of the SSPRK2-KT scheme given in Algorithm 2.1.
This method has the following strong stability property [77, Lemma 2.1]

‖fk+1‖∞,h ≤ ‖fk‖∞,h, k = 0, . . . , Nt − 1.

Further, we have conservation of the total probability (or mass) as a consequence of
the finite-volume formulation:

Lemma 2.7 (Conservation). The SSPRK2-KT scheme is conservative, in the sense
that

Nx∑
i,j=1

fki,j =
Nx∑
i,j=1

f 0
i,j, k = 1, . . . , Nt.

Proof. Fix k ∈ {0, . . . , Nt}. From the first step of the SSPRK2-KT scheme,
given in Algorithm 2.1, summing up over all indices i, j ∈ {1, . . . , Nx} and using the
zero flux boundary condition (??), we have

Nx∑
i,j=1

f
(1)
i,j =

Nx∑
i,j=1

fki,j.

In a similar way, we have
Nx∑
i,j=1

f
(2)
i,j =

Nx∑
i,j=1

f
(1)
i,j =

Nx∑
i,j=1

fki,j.

Thus,
Nx∑
i,j=1

fk+1
i,j = 1

2

Nx∑
i,j=1

fki,j + 1
2

Nx∑
i,j=1

f
(2)
i,j =

Nx∑
i,j=1

fki,j.
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Iterating over k, we have
Nx∑
i,j=1

fki,j =
Nx∑
i,j=1

f 0
i,j, k = 1, . . . , Nt.

�

Next, we show that, starting from a non-negative initial density, the solution obtained
with the SSPRK2-KT scheme remains non-negative. For this purpose, we define the
CFL-number

(2.43) λ := ∆t
h
,

and require the conditions on the components of the drift a given in (2.5) given by

λ
∥∥∥a1

∥∥∥
L∞T (L∞(Ω))

≤ 1
4 , λ

∥∥∥a2
∥∥∥
L∞T (L∞(Ω))

≤ 1
4 .

Notice that the control u belongs to the set Uad defined in (3.23). Then, for j = 1, 2,
we see that∥∥∥aj∥∥∥

L∞T (L∞(Ω))
≤
∥∥∥aj0∥∥∥L∞T (L∞(Ω))

+
(
b + cB

)
max

{
|ua|, |ub|

}
,

so that the aforementioned conditions on the components of the drift a are satisfied
under the following CFL condition.

(2.44) λ
( ∥∥∥aj0∥∥∥L∞T (L∞(Ω))

+
(
b + cB

)
max

{
|ua|, |ub|

})
≤ 1

4 , j = 1, 2 .

This CFL condition only depends on the components of the vector a0, and it does
not rest on the unknowns of the problem.

With the conditions (2.44), we can prove the following lemma on the positivity of the
SSPRK2-KT scheme.

Lemma 2.8 (Positivity). Under the CFL-condition (2.44), with u ∈ Uad and f 0
i,j ≥ 0,

i, j = 1, . . . , Nx, the solution to the Liouville problem computed with the SSPRK2-KT
scheme given in Algorithm 2.1 is non-negative, that is,

fki,j ≥ 0, i, j = 1, . . . , Nx, k = 1, . . . , Nt.(2.45)

Proof. The SSPRK2-KT scheme, given in Algorithm 2.1, comprises of a two-step
Euler scheme that results in the computation of f (1) and f (2) and a final averaging
step. To prove positivity of the SSPRK2-KT scheme, it is enough to show that the
solutions obtained in each of the two Euler steps is positive. Without loss of generality,
we prove that the solution obtained in the first step of the SSPRK2-KT scheme is
positive. A similar analysis holds true for the second step.
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Let fki,j ≥ 0 for fixed 0 ≤ k < Nt. We will show that fk+1
i,j ≥ 0 for all i, j = 1, . . . , Nx.

For this purpose, notice that the SSPRK2-KT scheme can be written as follows

fk+1
i,j = λ

2
(
|a1
i+1/2,j| − a1

i+1/2,j

)
f+
i+1/2,j + λ

2
(
|a1
i−1/2,j|+ a1

i−1/2,j

)
f−i−1/2,j

+λ2
(
|a2
i,j+1/2| − a2

i,j+1/2

)
f+
i,j+1/2 + λ

2
(
|a2
i,j−1/2|+ a2

i,j−1/2

)
f−i,j−1/2

+
[1
4 −

λ

2
(
|a1
i+1/2,j|+ a1

i+1/2,j

)]
f−i+1/2,j +

[1
4 −

λ

2
(
|a1
i−1/2,j| − a1

i−1/2,j

)]
f+
i−1/2,j

+
[1
4 −

λ

2
(
|a2
i,j+1/2|+ a2

i,j+1/2

)]
f−i,j+1/2 +

[1
4 −

λ

2
(
|a2
i,j−1/2| − a2

i,j−1/2

)]
f+
i,j−1/2,

(2.46)

where all discrete quantities on the right-hand side are considered at the time-step
tk. We see that the first four terms on the right hand side in (2.46) are always non-
negative, provided that f±i±1/2,j, f

±
i,j±1/2 ≥ 0. The remaining terms are non-negative

under the CFL-condition (2.44).
Thus, it remains to show that f±i+1/2,j, f

±
i,j+1/2 ≥ 0 for all i, j = 1, . . . , Nx, where f±i,j

is given as in (2.40).
We consider each of the expressions for (fx1)ki,j in the direction of x1 given as in
(2.41). First, assume that (fx1)ki,j = fki,j−f

k
i−1,j
h

, which is one of the possible values of
the minmod limiter in (2.41).
Then it follows that

f+
i+1/2,j =

(
1− 1

2

)
fki+1,j + 1

2f
k
i,j.

This is non-negative, since fki,j ≥ 0 for all i, j = 1, . . . , Nx by the inductive as-
sumption. Further, f−i+1/2,j = fki,j + h

2

[
fki,j−f

k
i−1,j
h

]
. If fki,j−f

k
i−1,j
h

> 0, then it implies

f−i+1/2,j > 0. If fki,j−f
k
i−1,j
h

< 0, then by the definition of the minmod limiter, we have
fki,j−f

k
i−1,j
h

≥ fki+1,j−f
k
i,j

h
and therefore

f−i+1/2,j ≥ fki,j + h

2

[
fki+1,j − fki,j

h

]
=
fki+1,j + fki,j

2 ≥ 0.

The other cases for the value of (fx)ki,j 6= 0 follow analogously. If (fx)ki,j = 0, then
f±i+1/2,j = fi+1,j ≥ 0 and f±i,j+1/2 = fi,j+1 ≥ 0. This proves the lemma. �

Remark 2.3. The proof of the above lemma follows similar arguments as in [91,
Theorem 2.1]. However, a primary difference is that in [91], the positivity result is
proved using one-sided local speeds, exploiting the structure of the hyperbolic equation.
In our case, the proof relies on conversion of the intermediate values f± to the cell-
average values fki,j and then showing that fki,j ≥ 0 implies fk+1

i,j ≥ 0, which seems a
much simpler approach.
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Remark 2.4. Under the same CFL-like condition (2.44), the proof of Lemma 2.8 can
be extended to the case of a SSPRK-KT scheme with a Runge-Kutta method of p-th
order, p ∈ N, that is given as an average of p Euler steps.

Remark 2.5. For the case where (fx1)ki,j = 0, the approximations of f at the cell-
edges, given by (2.40), are piecewise constant in the cell ωijh . Thus, the KT scheme
given by (2.37)–(2.40), reduces to a linear upwind scheme that is locally first-order
accurate, TVD and positive. This is consistent with the Godunov’s barrier theorem.

Next, we prove discrete L1 stability of the SSPRK2-KT scheme.

Lemma 2.9 (Stability). The solution fki,j obtained with the SSPRK2-KT-scheme in
Algorithm 2.1 is discrete L1 stable in the sense that∥∥∥fk·,·∥∥∥1,h

=
∥∥∥f 0
·,·

∥∥∥
1,h
, k = 1, . . . , Nt,

under the CFL condition (2.44).

Proof. Using Lemma 2.7, we have
Nx∑
i,j=0

fki,j =
Nx∑
i,j=0

f 0
i,j, k = 1, . . . , Nt.

Again, from Lemma 2.8, we have that the solution obtained with the SSPRK2-KT
scheme is positive under the CFL condition (2.44). This gives us the following relation

Nx∑
i,j=0
|fki,j| =

Nx∑
i,j=0
|f 0
i,j|, k = 1, . . . , Nt,

which proves the result. �

Next, we aim at proving the L1 convergence of the SSPRK2-KT scheme. For this
purpose, we prove the following stability estimate for the discrete solution of the
Liouville equation (3.6) with a right-hand side function g(x, t).

Lemma 2.10. Let fki,j be the SSPRK2-KT solution to the Liouville equation (3.6)
with a Lipschitz continuous right-hand side g(x, t) and let the CFL condition (2.44)
be fulfilled. Then this solution satisfies the following stability estimate∥∥∥fk+1

·,·

∥∥∥
1,h
≤
∥∥∥f 0
·,·

∥∥∥
1,h

+ ∆t
k∑

m=0

∥∥∥gm·,·∥∥∥1,h
,

for k = 1, . . . , Nt − 1 where gmi,j = g(xi1, x
j
2, t

m).
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Proof. The SSPRK2-KT scheme, given in Algorithm 2.1, for the Liouville equa-
tion (3.6) with a right-hand side g(x, t) can be written as

(2.47)

f
(1)
i,j − fki,j

∆t = − 1
2h(Lki + Lkj )(f) + gki,j,

fk+1
i,j − fki,j

∆t = − 1
4h(Lki + Lkj + L

(1)
i + L

(1)
j )(f) + gki,j,

where

Lni (f) =
(
|a1
i+1/2,j| − a1

i+1/2,j

)
fn+
i+1/2,j −

(
|a1
i+1/2,j|+ a1

i+1/2,j

)
fn−i+1/2,j

+
(
|a1
i−1/2,j|+ a1

i−1/2,j

)
fn−i−1/2,j −

(
|a1
i−1/2,j| − a1

i−1/2,j

)
fn+
i−1/2,j,

Lnj (f) =
(
|a2
i,j+1/2| − a2

i,j+1/2

)
fn+
i,j+1/2 −

(
|a2
i,j+1/2|+ a2

i,j+1/2

)
fn−i,j+1/2

+
(
|a2
i,j−1/2|+ a2

i,j−1/2

)
fn−i,j−1/2 −

(
|a2
i,j−1/2| − a2

i,j−1/2

)
fn+
i,j−1/2,

with n = (1) and n = k correspond to the solution f (1) and fk, respectively, at the
time-step tk and analogously for fn±. Moreover, also the drift is always considered
at the time-step tk. The equations in (2.47) can be rewritten in a compact form with
a suitable function H as follows

(2.48) fk+1
i,j = H(fk, f (1)) + ∆t gki,j.

Now, the KT flux H, given in (2.38), is a combination of the monotonicity preserving
Rusanov flux and the monotonicity preserving MUSCL reconstruction. This leads to
the SSPRK2-KT scheme to be monotone preserving [89]. Thus, H is a monotone non-
decreasing function of its arguments. Then the following discrete entropy inequality
holds for the specific Kruzkov entropy pair (|f |, sgn(f)) (see [123, Lemma 2.4])

(2.49) |fk+1
i,j | ≤ |fki,j|−λ

(
Ψ1,k
i+1/2,j −Ψ1,k

i−1/2,j + Ψ2,k
i,j+1/2 −Ψ2,k

i,j−1/2

)
+sgn(fk+1)∆t gki,j,

where Ψ1,k
·,· , Ψ2,k

·,· are the conservative entropy fluxes defined for i, j = 1, . . . , Nx as
follows

Ψ1,k
i+1/2,j =

Hx1,k
i+1/2,j(max(f+, 0),max(f−, 0))−Hx1,k

i+1/2,j(min(f+, 0),min(f−, 0))
2

+
Hx1,k
i+1/2,j(max(f (1)+, 0),max(f (1)−, 0))−Hx1,k

i+1/2,j(min(f (1)+, 0),min(f (1)−, 0))
2 ,

Ψ2,k
i,j+1/2 =

Hx2,k
i,j+1/2(max(f+, 0),max(f−, 0))−Hx2,k

i,j+1/2(min(f+, 0),min(f−, 0))
2

+
Hx2,k
i,j+1/2(max(f (1)+, 0),max(f (1)−, 0))−Hx2,k

i,j+1/2(min(f (1)+, 0),min(f (1)−, 0))
2 .

Therefore, we have for k = 0, . . . , Nt − 1

|fk+1
i,j | ≤ |fki,j| − λ

(
Ψ1,k
i+1/2,j −Ψ1,k

i−1/2,j + Ψ2,k
i,j+1/2 −Ψ2,k

i,j−1/2

)
+ ∆t |gki,j|.
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Summing up over all i, j and because of our assumption on f being zero on the
boundary, we have ∥∥∥fk+1

·,·

∥∥∥
1,h
≤
∥∥∥fk·,·∥∥∥1,h

+ ∆t
∥∥∥gk·,·∥∥∥1,h

,

which iteratively gives us∥∥∥fk+1
·,·

∥∥∥
1,h
≤
∥∥∥f 0
·,·

∥∥∥
1,h

+ ∆t
k∑

m=0

∥∥∥gm·,·∥∥∥1,h
.

�

Next, we consider the local consistency error of our SSPRK2-KT at the point
(xi1, x

j
2, t

k) defined as

T ki,j = f(xi1, x
j
2, t

k+1)− f(xi1, x
j
2, t

k)
∆t + 1

4h(Lki + Lkj + L
(1)
i + L

(1)
j )(f(xi1, x

j
2, t

k))− gki,j.

The accuracy result for the KT scheme, given by Lemma 2.6, the MUSCL reconstruc-
tion error given in Equation (60) in [102, Section 4.4] for the case when κ = 0 (in
this reference), and the accuracy result for the SSPRK2 scheme from [77, Proposition
3.1], give us the following result

Lemma 2.11. Let f ∈ C3 be the exact solution of the Liouville equation (2.1). Un-
der the CFL condition (2.44), the consistency error T ki,j satisfies the following error
estimate

|T ki,j| = O(h2)

except possibly at the points of extrema of f where the consistency error can be first-
order in h.

Define the error at the point (xi1, x
j
2, t

k) as

eki,j = fki,j − f(xi1, x
j
2, t

k).

Then eki,j satisfies (2.47), with the source term given by −T ki,j. Thus, from Lemma
2.10, we obtain ∥∥∥ek+1

·,·

∥∥∥
1,h
≤
∥∥∥e0
·,·

∥∥∥
1,h

+ ∆t
k∑

m=0

∥∥∥Tm·,· ∥∥∥1,h
.

This leads to the following result on the L1 convergence of the solution obtained using
the SSPRK2-KT scheme.
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Theorem 2.5. Let f ∈ C3 be the exact solution of the Liouville equation (2.1), with
finitely many extrema, and let

∥∥∥f 0
·,· − f0(·, ·)

∥∥∥
1,h

= O(h2). Under the CFL condition
(2.44), the solution fki,j obtained with the SSPRK2-KT scheme, given by Algorithm
2.1, is second-order accurate in the discrete L1-norm as follows∥∥∥fk·,· − f(·, ·, tk)

∥∥∥
1,h
≤ D(T,Ω, λ)h2, k = 1, . . . , Nt.

The constant D > 0 is just depending on its arguments.

2.3.2. Numerical analysis of the Strang splitting scheme

In this section, we deal with the numerical solution of the adjoint equation (2.8) in its
form as in (3.32). In this case, we have a terminal condition, and the adjoint problem
requires evolution backward in time. For this reason, it is convenient to perform a
change of the time variable as follows:

s(t) = T − t, ∂s

∂t
= −1.

With this transformation, we can rewrite (3.32) in the following way

∂sq(x, s)− a(x, s;u(s)) · ∇q(x, s) = −θ(x, s), with q(x, 0) = −ϕ(x) .(2.50)

Notice that this is (2.8) with g(x, t) = −θ(x, t) and q(x, 0) = −ϕ(x). To solve (2.50),
we apply the Strang splitting method [120] by first rewriting it as follows

∂sq(x, s)− div
(
a(x, s;u(s)) q(x, s)

)
+
(

div a(x, s;u(s))
)
q(x, s) = −θ(x, s),

with q(x, 0) = −ϕ(x) ,
(2.51)

The initial-value problem (2.51) is defined in Ω× [0, T ]. Furthermore, we assume that
ϕ and θ have (by machine precision) compact support for all times inside the interval
[0, T ]. See the numerical experiments section for the specific choices for θ and ϕ.
Then, we solve the problem (2.51) with homogeneous Dirichlet boundary conditions.
We can conveniently illustrate the Strang splitting method applied to (2.51) remaining
at the continuous level within one time interval. Let us consider the solution of the
adjoint equation (2.51) at time sk given by qk(x), x ∈ Ω. Then, the first step of our
solution scheme is to solve the following equation

∂sq(x, s)− div
(
a(x, s;u(s)) q(x, s)

)
= 0,

q(x, sk) = qk(x), s ∈ [sk, sk+1/2].
(2.52)

For this purpose, we use the SSPRK2-KT scheme given in Algorithm 2.1. We denote
the solution to this problem with q1.
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In the second step, for each x fixed, we solve the following linear ordinary differential
equation

∂sq(x, s) = −
(

div(a(x, s;u(s))
)
q(x, s)− θ(x, s),

q(x, sk) = q1(x, sk+1/2), s ∈ [sk, sk+1].
(2.53)

Let the solution obtained in this step be denoted with q2.
The last step is to solve (2.52) with the SSPRK2-KT scheme with the initial condition
q2(·, sk+1/2) in the time interval [sk+1/2, sk+1]. This problem is formulated as follows

∂sq(x, s)− div
(
a(x, τ ;u(s)) q(x, s)

)
= 0,

q(x, sk+1/2) = q2(x, sk+1), s ∈ [sk+1/2, sk+1].
(2.54)

In a numerical setting, the solution obtained in this step is the desired solution of the
adjoint equation (2.51), and qk+1 denotes the adjoint variable at time sk+1. Notice
that the value of u in [sk, sk+1) is constant by our numerical approximation strategy
for u.
The steps of the Strang splitting scheme are outlined in Algorithm 2.2 below.

Algorithm 2.2 Kurganov-Tadmor-Strang (KTS) scheme
Require: q0 = −ϕ, F
Ensure: Solve adjoint equation in q
1: Set k = 0
2: while 0 ≤ k < Nt do
3: for 1 < i, j < Nx − 1 do
4: Apply one temporal step of Algorithm 2.1 in (sk, sk+1/2), with inputs qki,j,

−F , (sk, sk+1/2). Denote the solution qk+1/2
1,i,j .

5: In (sk, sk+1), solve (2.53) using exact integration as given in (2.57)
6: Apply one temporal step of Algorithm 2.1 in (sk+1/2, sk+1), with inputs qk+1

2,i,j ,
−F , (sk+1/2, sk+1). Denote the solution with qk+1

i,j .
7: end for
8: k = k + 1
9: end while
10: return qk

Now, we discuss some properties of the Strang-splitting scheme described in Algorithm
2.2. For this purpose, we denote with qki,j the numerical solution of (2.51) with the
generic right-hand side G, at the grid point (x1

i , x
2
j , s

k).
We have the following discrete L1 stability estimate.

Lemma 2.12 (Stability of adjoint equation). Let q be the numerical solution of (2.51),
obtained using the KTS scheme, in the interval [sk, sk+1]. Then the following estimate
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holds ∥∥∥qk+1
·,·

∥∥∥
1,h
≤ exp(3LT )

(∥∥∥q0
·,·

∥∥∥
1,h

+ TM
)
,(2.55)

where L = ‖ div a‖L∞(Ω×[0,T ]), M = ‖G‖L∞T (L1(Ω)).

Proof. Let qk+1/2
1,·,· be the numerical solution obtained from (2.52). Since (2.52)

is solved using the SSPRK2-KT scheme, using the entropy inequality computations
as in Lemma 2.10, we have

(2.56)
∥∥∥qk+1/2

1,·,·

∥∥∥
1,h
≤
∥∥∥qk·,·∥∥∥1,h

.

Next, denoting the numerical solution as qk+1
2,i,j obtained from (2.53), using an inte-

grating factor approach in [sk, sk+1], we obtain

(2.57)
qk+1

2,i,j = exp
(
R(sk)−R(sk+1)

)
q
k+1/2
1,i,j − exp

(
−R(sk+1)

) ∫ sk+1

sk
exp (R(s))G ds

= Λ(q1,G),

where R =
∫

div a ds.
This equation can be solved exactly, because the drift and G are given explicitly
and the control u is constant in the sub-interval of integration. We exemplify this
calculation considering G being constant in [sk, sk+1) and equal to its value at sk.
Notice that in our case it holds that R(sk) =

(
(u1

2)k+1/2 + (u2
2)k+1/2

)
sk.

In general, without any assumptions on the approximation strategy for u and G, but
considering the bilinear structure of our drift function (cf. (2.5)) and the assumption
on a0, we can state that there exists an L > 0 such that

| div(a(x, s, u))| ≤ L, ∀(x, s) ∈ Ω× [0, T ].

Thus, we have

|R(s)| ≤ LT, R(sk)−R(sk+1) ≤ L∆t.

Hence, by integration we obtain

qk+1
2,i,j ≤ exp(L∆t)qk+1/2

1,i,j + exp(2LT )
∫ sk+1

sk
|G| ds,

Further, by using (2.56), we have

(2.58)

∥∥∥qk+1
2,·,·

∥∥∥
1,h
≤ exp(L∆t)

∥∥∥qk+1/2
1,·,·

∥∥∥
1,h

+ exp(2LT )∆tM

≤ exp(L∆t)
∥∥∥qk·,·∥∥∥1,h

+ exp(2LT )∆tM,
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where M = maxs∈[0,T ] h
2∑

i,j |G(x1
i , x

2
j , s)|. Again, since (2.54) is solved using the

SSPRK2-KT scheme, we have∥∥∥qk+1
·,·

∥∥∥
1,h
≤
∥∥∥qk+1

2,·,·

∥∥∥
1,h

≤ exp(L∆t)
∥∥∥qk·,·∥∥∥1,h

+ exp(2LT )∆tM

≤ exp(L∆t(k + 1))
∥∥∥q0
·,·

∥∥∥
1,h

+ ∆tM
k∑

m=0
exp(L∆tm+ 2LT )

≤ exp(L∆tNt)
∥∥∥q0
·,·

∥∥∥
1,h

+Nt∆tM exp(L∆tNt + 2LT )

≤ exp(3LT )
(∥∥∥q0

·,·

∥∥∥
1,h

+ TM
)
,

which gives the desired result. �

Next, we consider the local truncation error of our KTS scheme at the point (xi1, x
j
2, s

k)
defined as [128]

Zk
i,j = q(x1

i , x
2
j , s

k+1)−
[
H(q2, q

(1)
2 ) ◦ Λ(q1,G) ◦ H(qk, q(1))

]
(q(x1

i , x
2
j , s

k)),

where H is the SSPRK2-KT operator given in (2.48) and Λ is the exact integration
operator for (2.53) at time sk, defined in (2.57). We have the following temporal error
estimate for the continuous Strang splitting scheme (for its proof see [120, Page 510],
[118, Eq. (1.7)],[45, Eq. (2.13)]).

Lemma 2.13 (Time error Strang-splitting). Let S = S(∆t) be the exact solution op-
erator of (2.51) in [sk, sk+1], i.e., S qk = qk+1. Denote with qSP the solution of (2.51)
with the Strang splitting scheme, given by (2.52)–(2.54), applied at the continuous
level (no discretization of the spatial and the temporal operators) in the time interval
[sk, sk+1] and with a smooth initial condition q̄(·, sk). This solution can be written as
follows

qSP (·, sk+1) =
(
S2 ◦ Λ ◦ S1

)
q̄(·, sk),

where S1 = S1(∆t) denotes the exact integration of ∂sq−div(aq) = 0 in time interval
[sk, sk+1/2], and S2 = S2(∆t) the same operator for [sk+1/2, sk]. Then the following
error estimate holds

max
x∈Ω

∣∣∣∣qSP (x, sk+1)− S q̄(x, sk+1)
∣∣∣∣ = O(∆t3).(2.59)

With this result and the truncation error estimate of the SSPRK2-KT scheme given
in (2.11), we have the following result

Lemma 2.14. Let q ∈ C3 be the exact solution of the adjoint equation (2.51) Under the
CFL condition (2.44), the truncation error Zk

i,j satisfies the following error estimate

|Zk
i,j| = O(h3)



54 2. Liouville equation

except possibly at the points of extrema of the exact solution q(x, t).

Define the error at the point (xi1, x
j
2, s

k) as

eki,j = qki,j − q(xi1, x
j
2, s

k).

Then eki,j satisfies (2.51), with the right-hand side being
Zk
i,j

∆t . Thus, from Lemma 2.12
we obtain ∥∥∥ek+1

·,·

∥∥∥
1,h
≤ exp(LT )

(∥∥∥e0
·,·

∥∥∥
1,h

+ MT

∆t

)
,

where M = maxk∈{0,...,Nt} h2∑
i,j |Zk

i,j|. This leads to the following result on the L1

convergence of the solution obtained using the KTS scheme.

Theorem 2.6. Let q ∈ C3 be the exact solution of the adjoint equation (2.51), with
countably many extrema, and let

∥∥∥q0
·,· + ϕ(·, ·)

∥∥∥
1,h

= O(h2). Under the CFL condition
(2.44), the solution qki,j obtained with the KTS scheme, given by Algorithm 2.2, is
second-order accurate in the discrete L1-norm as follows∥∥∥qk·,· − q(·, ·, tk)∥∥∥1,h

≤ E(T,Ω, λ)h2 k = 1, . . . , Nt.

The constant E > 0 is just depending on its arguments.

Remark 2.6. We remark that results similar to Theorem 2.6 have been obtained in
[45, 46]. However, in these papers the equation that has been considered is the con-
vection diffusion equation, which is parabolic, whereas we have a hyperbolic transport
(adjoint) equation with a source term. Furthermore, we employ a different analysis
using an entropy inequality technique for proving the discrete stability estimate that
is subsequently used for proving the convergence error estimate.

2.3.3. Verification of the implementation

In this section, we present results of numerical experiments to validate the accuracy of
our numerical framework. We have proved second-order accuracy of our SSPRK2-KT
scheme for the Liouville equation in Theorem 2.5. In order to validate this estimate,
we define a setting that admits a known exact solution. For this purpose, we choose
the following control function

u(t) =

0.05 t 0.002

0.5 −0.001

 ,
which results in the following drift

(2.60) a(x, t) =
(

0.05 t
0.5

)
+
(

0.002x1

−0.001x2

)
.
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Further, we take the initial condition

(2.61) f0(x) = 1
2πσ̄0

exp
(
−1

2

[
x2

1
σ̄0

+ x2
2
σ̄0

])
,

where σ̄0 = 1
4 .

With this setting, the Liouville problem

∂tf + div(a f) = 0, with f|t=0 = f0,

admits the solution

f̄(x, t) = 1
2π
√
σ̄1(t)σ̄2(t)

exp
(
−1

2

[
(x1 − m̄1(t))2

σ̄1(t) + (x2 − m̄2(t))2

σ̄2(t)

])
,(2.62)

In (2.62) the mean m̄(t) = (m̄1(t), m̄2(t)) and the variance σ̄ = (σ̄1(t), σ̄2(t)) are the
solutions to (2.7) with the initial conditions m̄0 = (0, 0) and σ̄0 = (1, 1). Now, we
use this setting to determine the solution error of our algorithm. For this purpose,
we solve the corresponding Liouville problem and report the values of the discrete L1

norm of the solution error given by

eKT (fh) :=
∥∥∥fh(·, T )− f̄(·, T )

∥∥∥
1,h
.

In Table 2.1, the values of eKT corresponding to different grids are presented, and
in Figure 2.1, we compare the rate of change of these values with that of first- and
second-order accuracies. We see that the obtained numerical accuracy lies between
these reference rates, becoming closer to second-order by refining the mesh size.
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Figure 2.1. Logarithmic plot
of accuracy test
for the SSPRK2-KT scheme.

Nx Nt eKT (fh)

5 20 0.9399

2 · 5 2 · 20 0.4897

22 · 5 22 · 20 0.1417

23 · 5 23 · 20 0.0433

24 · 5 24 · 20 0.0117

25 · 5 25 · 20 0.0031
Table 2.1. L1-norm of solu-
tion error for the SSPRK2-
KT scheme.

Next, we validate our estimate for the KTS scheme in solving a transport problem
with source term (the adjoint problem) as given in Theorem 2.6. We proceed in a
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similar way as for the Liouville problem. In fact, since (2.62) solves the Liouville
problem with the drift (2.60) and the initial condition (2.61), it is easy to verify that
this solution satisfies the problem

∂tq − ã(x, t) · ∇q = −θ, q(0) = −ϕ,

where ã(x, t) = −a(x, t), θ = f̄∇a and −ϕ = f0. Thus, we have the solution q̄ = f̄ .
However, notice that the KTS scheme uses the Strang splitting in order to accommo-
date the source term −θ. Therefore, the solution q̄ = f̄ is appropriate to indepen-
dently test the KTS scheme. Thus, we define

eKTS(qh) = ‖qh(·, T )− q̄(T )‖1,h .

Hence, we perform a second series of experiments where we compute the values of
this norm in correspondence to solutions obtained on different grids. These values are
reported in Table 2.2, and in Figure 2.2, we compare the rate of change of eKTS with
that of first- and second-order accuracies. Also in this case, we see that the resulting
rate of convergence is approximately of second-order.
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Figure 2.2. Logarithmic plot
of accuracy test
for the KTS scheme.

Nx Nt eKTS(qh)

5 20 0.9414

2 · 5 2 · 20 0.4884

22 · 5 22 · 20 0.1385

23 · 5 23 · 20 0.0425

24 · 5 24 · 20 0.0116

25 · 5 25 · 20 0.0035
Table 2.2. L1-norm of so-
lution error for the KTS
scheme.

After analyzing both the theory and the implementation of our solvers for the Liou-
ville equation and its adjoint, we demonstrate in detail how to solve optimal control
problems governed by the Liouville equation in the next chapter.



Chapter 3
Ensemble control problems

The notion of ensemble control was proposed by R.W. Brockett in [32], and further
in [33, 34], while considering the problem of a trade-off between the complexity of
implementing a control strategy and the performance of the control system. For the
former, Brockett discusses the concept of minimum attention control that results in
costs of the control that involve a time derivative of the control function. For the
latter, he emphasizes the advantage of considering an ensemble of trajectories, which
stem from a distribution of initial conditions, rather than individual trajectories. By
these two considerations, Brockett concludes that the natural setting for investigat-
ing both aspects of the resulting control problem is by means of the Liouville (or
continuity) equation that governs the evolution of the ensemble of trajectories.
Therefore, the problem of controlling a trajectory of a finite-dimensional dynamical
system is lifted to the problem of controlling a continuum of dynamical systems with
the same control strategy. Specifically, this setting results in the problem of deter-
mining a single closed- or open-loop controller, which applies to a particular system
over an infinite number of repeated trials, or to steer a family of finite-dimensional
dynamical systems. As discussed by Brockett, this approach represents a new con-
trol framework that is able to address a number of issues as uncertainty in initial
conditions and the trade-off mentioned above.
We follow a standard scheme. First, in Section 3.2 we define the Liouville control-to-
state map G, namely the map that associates to any control u the unique solution
f = G(u), called state, to the corresponding Liouville equation, and study its main
properties. A fundamental issue in this part is to show Fréchet differentiability of G in
a suitable topology. Our method to prove this property relies on performing stability
estimates on the Liouville equation (see Section 3.2.2). Now, dealing with the growth
in space of our drift function at +∞ requires the use of weighted norms; moreover,
due to the hyperbolicity of transport and continuity equations, a loss of regularity

57
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occurs, which requires to consider both higher smoothness and higher integrability
on the initial data. Namely, the initial data is assumed to be an element of Hm

k with
both m ≥ 2 and k ≥ 2.
In Section 3.3, we complete the investigation of the ensemble optimal control problem
in the case of attracting L2-integrable potentials; the adaptations needed to treat the
case of quadratic potentials are mentioned in Section 3.3.4. The first step consists
in establishing the existence of optimal controls (see Theorem 3.2). Then, we char-
acterize these optimal controls as solutions of a first-order optimality system. This
system can be interpreted in terms of the Fréchet differential of the reduced functional
Jr(u) := J

(
G(u), u

)
set to zero; the reduced functional is defined below. We remark

that the differentiability properties of J (and Jr) change radically depending on the
choice of the optimization weights. For instance, if we only consider L2 control costs,
then the optimization space is L2(0, T ) and we have Fréchet differentiability of the cost
functional. This is the standard case. If we additionally include L1 control costs, then
we have a semi-smooth optimal control problem and we have to resort to the use of
sub-differentials. Finally, if we additionally consider H1 control costs, then H1(0, T )
is the appropriate control space, and the optimality condition accounts for this fact.
If all weights are positive and taking into account control constraints, we have an
optimal control problem whose structure (to the best of our knowledge) has never
been investigated in PDE optimization. For this general case, we prove existence of
Lagrange multipliers (see Theorem 3.3) and derive the optimality system.
In Section 3.3.3, we address the uniqueness of optimal ensemble controls, in the special
case of only L2 control costs. More precisely, in Theorem 3.4 we show uniqueness of
optimal controls for the control-constrained problem, provided a smallness condition
is satisfied; such a condition requires the time T and the size of the data f0, g, θ and
ϕ to be small enough, or the coefficient of the L2 control cost to be sufficiently large.
This part of the analysis exploits in a fundamental way the optimality system that
we derive in Section 3.3.2, and the characterisation of optimal controls as solutions
to it.
In Section 3.4, we illustrate our numerical strategy to solve the optimal control prob-
lems governed by the Liouville equation. For this goal, we use a projected semi-smooth
Krylov-Newton method. Notice that, despite Newton methods are well-known and
also their expansion to semi-smooth functions is used frequently, the version includ-
ing a H1-projection is not prevailing. We validate our implementation and perform
several experiments that demonstrate the ability of our optimal control to achieve
the given tasks. Moreover, we elucidate that our framework can be extended to more
general problems.
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Now, let us recall the control mechanism. The focus of ensemble control is the devel-
opment of a control strategy for the differential model (2.2) augmented with a control
mechanism, as follows:

(3.1) ξ̇(t) = a(ξ(t), t;u),

where u denotes the control function. We refer to [33, 34] for a discussion on the
choice of u as a function of time only, which corresponds to a so-called open-loop
control, or as a function of time and of the state variable, which may represent a
feedback law. In this work, while considering the controlled Liouville (2.6) model in a
general setting that accommodates both choices, we focus our attention on open-loop
optimal control problems. This is motivated by the fact that the most used control
mechanisms for (3.1) are the linear and bilinear ones. We choose

a(x, t;u) = a0(x, t) + a1u1(t) + x ◦ a2u2(t) ,

where a0 is a given smooth vector field and a1, a2 ∈ R are given constants and
u = (u1, u2) is the control.
In the next section, we illustrate the formulation of Liouville ensemble optimal control
problems and discuss the chosen control mechanism and the constitutive terms of an
ensemble cost functional.

3.1. Formulation of ensemble optimal control problems

In order to discuss Brockett’s formulation of ensemble control, consider the following
ODE optimal control problem:

min j(ξ, u) :=
∫ T

0

(
θ
(
ξ(t)

)
+ κ

(
u(t)

))
dt + ϕ

(
ξ(T )

)
(3.2)

s.t. ξ̇(t) = a
(
ξ(t), t;u(t)

)
, ξ(0) = ξ0 ,(3.3)

The functions θ, κ and ϕ are usually taken to be continuous convex functions of their
arguments; we will better specify their properties later on.
The optimal control function u is sought in the following set of admissible controls

Uad :=
{
u ∈ L∞T (Rd)

∣∣∣ ua ≤ u(t) ≤ ub for a.e. t ∈ [0, T ]
}
.(3.4)

In particular, in the case of (2.5), we have two box constraints ua = (ua1, ua2) and
ub = (ub1, ub2), where uaι < ubι , ι = 1, 2, are given vectors in Rd. We remark that,
if we include H1 control costs, the resulting u is continuous because of the compact
embedding H1(0, T ) ⊂⊂ C([0, T ]). Clearly, the optimal control function u that solves
(3.2)–(3.3) with u ∈ Uad depends on the fixed initial condition ξ0. Furthermore, it
represents a control strategy that is determined once and for all times for the given ξ0
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and the given optimization setting. Therefore, no uncertainty on the initial condition
is taken into account in the formulation (3.2)–(3.3). Hence, from this point of view,
the resulting control is not robust. On the other hand, a closed loop control, say,
u = u(x, t), would appropriately control the system based on the actual state of the
system. However, as pointed out in [33], the cost of implementing such a control
mechanism is often prohibitive and may be not justified by real applications.
With the purpose to strike a balance between the desired performance of the system
and the cost of implementing an effective control, the ensemble control strategy con-
siders instead a density of initial conditions, and therefore ensemble of trajectories. In
this way, it aims at achieving robustness, while choosing control costs which promote
controls allowing for easier implementation.
Thus, one is led to the formulation of the following ensemble optimal control problem:

min
u∈Uad

J(f, u) :=
∫ T

0

∫
Rd
θ(x) f(x, t) dx dt +

∫
Rd
ϕ(x) f(x, T ) dx +

∫ T

0
κ
(
u(t)

)
dt

(3.5)

s.t. ∂tf + div
(
a(x, t;u) f

)
= 0 , f|t=0 = f0 .

(3.6)

This problem is defined on the space-time cylinder Rd × [0, T ], for some T > 0 fixed.
In this formulation, the initial density f0 represents the probability distribution of
the initial condition ξ0 in (3.2)–(3.3), and thus it models the known uncertainty on
the initial data.

Next, we discuss some specific choices of the optimization components in (3.2)–(3.3),
and correspondingly in (3.5)–(3.6).
For example, if ξ = 0 is a critical point for (3.3), which requires a(0, t;u) = 0, then
the choice θ(x) = x2 appears standard for stabilization purposes. Usually, in this
context, the so-called L2 cost of the control is considered, which corresponds to the
choice κ(u) = γ u2, where γ > 0 is the weight of the cost of the control. On the
other hand, if the purpose of the control in (3.2)–(3.3) is to track a desired and
even non-attainable trajectory ξD ∈ L2(0, T ;Rd), and to come close to a given final
configuration ξT ∈ Rd at the final time (possibly with ξD(T ) 6= ξT ), then a natural
choice appears to be θ

(
x(t)

)
= α

(
x(t) − ξD(t)

)2
and ϕ

(
x(T )

)
= β

(
x(T ) − ξT

)2
,

with appropriately chosen weights α, β > 0. However, in the context of ensemble
control, as in (3.5), the choice of θ and ϕ as convex functions is problematic because
of integrability issues. On the other hand, we remark that the role of these functions
is to define attracting potentials, that is, to define a well or sink centred at a minimum
point such that the minus gradient of the potential is directed towards this minimum.
For this purpose, a possible choice is also θ(x) = 1 − exp(−x2), with the minimum
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at x = 0. In our analysis, we are able to address both cases in the framework of
weighted Sobolev spaces. Specifically, the case of attracting potentials θ and ϕ which
are both L2 integrable, and the case of θ and ϕ which are quadratic functions. Notice
that, in any case, the modelling choice for (3.2)–(3.3) translates without changes to
(3.5)–(3.6).
As discussed in [34, 33, 32], the choice of the cost function κ should be such that
the effort of implementing the control strategy is as small as possible. In this sense,
the cost of a slowly varying control function, and a control that does not act for
all times, should be smaller than the cost corresponding to a control that has large
variations and acts for all times. From this perspective, a constant input that controls
the system is the cheapest choice, and the next possible choice is a control that slowly
changes in time. This requirement leads naturally to a cost of the form

ν
∫ T

0

(
du

dt
(t)
)2

dt,

with ν ≥ 0. In fact, as ν is taken larger, the resulting optimal control will have
smaller values of its time derivative, that is, a slowly varying control, which is called
“minimum attention control” in [32].
More recently, there has been a surge of interest in L1-costs, originating from signal
reconstruction and magnetic resonance imaging [38]. This cost is given by

δ
∫ T

0
|u(t)| dt,

where δ ≥ 0. The effect of this cost is that it promotes sparsity of the control
function, in the sense that, as δ > 0 is increased, the u resulting from the minimisation
procedure will be zero on open intervals in ]0, T [ , and these intervals become larger
and eventually cover all of ]0, T [ as δ → +∞. In the present chapter, we introduce
the L1-cost in the context of ensemble control and call the resulting sparse control a
“minimum action control”.
All together, we specify the term

∫ T
0 κ

(
u(t)

)
dt in (3.2) and in (3.5) as follows:

(3.7) κ
(
u(t)

)
:= γ

2
(
u(t)

)2
+ δ |u(t)| + ν

2

(
du

dt
(t)
)2

,

where γ + δ + ν > 0, γ, δ, ν ≥ 0 and the factor 1/2 is chosen for convenience of
later calculations. Notice that different choices of the value of the positive coefficients
γ, δ, ν will result in different features of the resulting optimal control function.
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3.2. The Liouville control-to-state map

In this section, we define the Liouville control-to-state map and investigate its con-
tinuity and differentiability properties. For reasons which will appear clear in the
following analysis, we need to resort to weighted spaces Hm

k , as introduced in Section
2.2.2. We start by making a remark.

Remark 3.1. Throughout this section, the data of the Liouville equation has to be
thought as fixed. Specifically, for m ∈ N and k ∈ N, we take an initial datum
f0 ∈ Hm

k , a source term g ∈ L1
T (Hm

k ), and a drift function a0 ∈ L1
T (Cm+1), with

∇a0 ∈ L1
T (Cm

b ).
We are then interested in the dependence of the solution f to the Liouville equation
(2.9), with drift a given by (2.5), on the control state u ∈ Uad, where Uad has been
defined in (3.4).

3.2.1. Definition and continuity properties

We remark that the statements of Theorems 2.2 and 2.4 cover the case of the Liou-
ville equation with the controlled drift function given by (2.5), where u ∈ Uad. In
particular, the next proposition-definition immediately follows.

Proposition 3.1. For fixed data f0, g and a0 as in Remark 3.1, let us consider drift
functions a of the form (2.5), with u ∈ Uad. We introduce the Liouville control-to-
state map G, defined by

G : Uad → L∞
(
[0, T ];L2(Rd)

)
, u 7→ f := G(u) ,

where f is the unique solution to the Liouville equation with the given data.
Then G is well-defined.

Let us make an important comment about the previous definition.

Remark 3.2. The theory developed in Sections 2.2.1 and 2.2.2 entails that the solu-
tion f actually belongs to CT (Hm

k ). However, due to a loss of regularity, both in m

and k, when proving Fréchet differentiability of G, it is convenient to look at G as a
map with values in the space with the weakest topology.
Finally, we consider L∞ regularity with respect to time, because it will be convenient
also to look at weak continuity properties of G, see Proposition 3.2 below.

Next, we study some properties of the map G that are relevant for the analysis of
ensemble optimal control problems. We start by establishing that G is weak-weak
continuous from Uad into L∞T (L2). Notice that we do not need any restriction on m
and k in this case.
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Proposition 3.2. Take m ≥ 0 and k ≥ 0 and initial data f0, g and a0 as in Remark
3.1. Let u ∈ Uad and

(
ul
)
l
⊂ Uad be a sequence of controls, and assume that ul ∗

⇀ u

in L∞T .
Then G(ul) ∗

⇀ G(u) in the weak-∗ topology of L∞T (L2).

Proof. Of course, it is enough to prove the previous proposition in the case of
minimal regularity and integrability, namely for m = k = 0.
By definition of the set Uad, we infer that (ul)l is uniformly bounded in L∞T . On
the other hand, by hypotheses and Theorem 2.2, for all l ∈ N there exists a unique
f l := G(ul) ∈ CT (L2) which solves the Liouville equation (2.9). In addition, by
inequality (2.12), we deduce that

(
f l
)
l
is uniformly bounded in CT (L2). Then there

exists f ∈ L∞T (L2) such that, up to extraction of a subsequence, f l ∗
⇀ f in L∞T (L2).

So, the proof reduces to showing that f is a weak solution to the Liouville equation

(3.8) ∂tf + div
(
a(t, x;u) f

)
= g , with f|t=0 = f0 .

Indeed, if this is the case, by uniqueness we get f = G(u) and that the whole sequence(
f l
)
l
converges.

The previous property follows by passing to the limit in the weak formulation of the
equation for f l. This can be easily obtained Notice that, in order to treat the products
between f l and ul, one also needs to establish strong convergence for f l in suitable
spaces (as done in the proof to Proposition 2.1).
In order to prove our claim, we need to pass to the limit in the weak formulation of
the Liouville equation for f l, when l → +∞. Recalling also our special choice (2.5),
it is easy to see that the only term which presents some difficulty is the non-linear
term

(3.9)
∫ T

0

∫
Rd
f l
(
ul1(t) + x ◦ ul2(t)

)
·∇φ dx dt , for any fixed φ ∈ C∞c

(
Rd× [0, T [

)
.

Therefore, let us focus on the convergence of this integral. First, by inspection of the
equation ∂tf l = − div

(
a(x, t;ul) f l

)
+ g, we discover that

(
∂tf

l
)
l
⊂ L1

T (H−1
loc ), which

implies that
(
f l
)
l
⊂ W 1,1

T (H−1
loc ). Then, by the Rellich-Kondrachov theorem and

Cantor’s diagonal procedure, we discover that, up to an extraction of a subsequence
that we do not relabel,

(
f l
)
l
is compact, and then strongly convergent, in L1

T (H−2
loc ).

Interpolating this compactness result with the uniform boundedness in L∞T (L2
loc), we

discover that f l → f in L1
T (H−sloc), for any s ∈ (0, 2); see [124]. In view of the uniform

boundedness of
(
ul1
)
l
and

(
ul2
)
l
in L∞T , the previous property is enough to pass to the

limit in the integral (3.9), and prove that it converges to∫ T

0

∫
Rd
f (u1(t) + x ◦ u2(t)) · ∇φ dx dt ,
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for all given φ ∈ C∞c
(
Rd × [0, T [

)
. Thus, we get that (3.8) is satisfied, and then we

can conclude the proof as already mentioned above. �

For the analysis of our optimal control problem, we need stronger regularity properties
for G. We start by showing Lipschitz continuity, which will be the basis to prove
Gâteaux differentiability of G. The key here is to perform careful estimates in order
to identify the correct topology. The reason is that, due to hyperbolicity of the
Liouville equation, stability estimates involve a loss of regularity.

Lemma 3.1. Let the data f0, g and a0 be fixed as in Remark 3.1 above, with m ≥ 1
and k ≥ 1. Let u and v be in Uad, and denote by G(u) and G(v) the corresponding
CT (Hm

k ) solutions to (2.9), with drift a given by (2.5). Set δG := G(u)−G(v).
Then there exists a constant C > 0, independent of the data and respective solutions,
such that, for all 1 ≤ ` ≤ k, if we set
(3.10)

K
(`)
0 := C exp

(
C
(
‖∇a0‖L1

T (C1
b

) + ‖u‖L1
T

+ ‖v‖L1
T

) ) (
‖f0‖H1

`
+ ‖g‖L1

T (H1
`

)

)
,

then, for all t ∈ [0, T ], one has

‖δG(t)‖L2
`−1
≤ K

(`)
0

∫ t

0
|u(s)− v(s)| ds .

If moreover m ≥ 2 and we set
(3.11)

K
(`)
1 := C exp

(
C
(
‖∇a0‖L1

T (C2
b

) + ‖u‖L1
T

+ ‖v‖L1
T

) ) (
‖f0‖H2

`
+ ‖g‖L1

T (H2
`

)

)
,

we also have

‖δG(t)‖H1
`−1
≤ K

(`)
1

∫ t

0
|u(s)− v(s)| ds .

Proof. By linearity of the Liouville equation, we find that δG satisfies

(3.12) ∂tδG + div
(
a(t, x;u) δG

)
= − div

(
a(x, t;u− v)G(v)

)
, δG|t=0 = 0 ,

where we have set a(t, x;u− v) := a(t, x;u)− a(t, x; v) = (u1 − v1) + x ◦ (u2 − v2).
Applying L2

`−1 estimates of Theorem 2.2 to equation (3.12), we immediately get

‖δG(t)‖L2
`−1
≤ C exp

(
C
∫ t

0
‖∇a(s, x;u)‖L∞ ds

) ∫ t

0

∥∥∥div
(
a(s, x;u− v)G(v)

)∥∥∥
L2
`−1
ds .

By explicit computations and using the Leibniz rule, we deduce that

∥∥∥div
(
a(s, x;u− v)G(v)

)∥∥∥
L2
`−1
≤ |u(s)− v(s)|

(
‖G(v)‖L2

`−1
+ ‖∇G(v)‖L2

`

)
≤ C |u(s)− v(s)| exp

(
C
∫ s

0
‖∇a(s, x; v)‖C1

b
ds
) (
‖f0‖H1

`
+
∫ s

0
‖g(s)‖H1

`
ds
)
,

(3.13)
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where the second inequality holds true in view of the bound
‖G(v)‖L2

`−1
+ ‖∇G(v)‖L2

`
≤ ‖G(v)‖H1

`
and Lemma 2.5. This estimate completes the

proof of the first inequality.
Now, we focus on H1

`−1 bounds for δG. Thanks to Lemma 2.5, we have
(3.14)
‖δG(t)‖H1

`−1
≤ C exp

(
C
∫ t

0
‖∇a(s, x;u)‖C1

b
ds
) ∫ t

0

∥∥∥div
(
a(s, x;u− v)G(v)

)∥∥∥
H1
`−1
ds .

By definition, we have that ‖f‖H1
`−1

= ‖f‖L2
`−1

+ ‖∇f‖L2
`−1

. Concerning the first
term, we have

∥∥∥div
(
a(s, x;u− v)G(v)

)∥∥∥
L2
`−1

= ‖div a G(v)‖L2
`−1

+ ‖a · ∇G(v)‖L2
`−1

≤ C |u(s)− v(s)|
(
‖G(v)‖L2

`−1
+ ‖∇G(v)‖L2

`

)
≤ C |u(s)− v(s)| ‖G(v)‖H1

`
.

(3.15)

Next, we need to bound in L2
`−1 the quantity ∇ div

(
a(s, x;u − v)G(v)

)
. For this

purpose, we have to control four terms. Notice that ∇ div a ≡ 0. Moreover, we can
write

‖div a ∇G(v)‖L2
`−1
≤ |u(s)− v(s)| ‖∇G(v)‖L2

`−1
,(3.16)

and the same estimate holds true also for the term ∇a · ∇G(v). Finally, we have∥∥∥a · ∇2G(v)
∥∥∥
L2
`−1
≤ C |u(s)− v(s)|

∥∥∥∇2G(v)
∥∥∥
L2
`

.(3.17)

Putting (3.15), (3.16) and (3.17) together, we infer the control∥∥∥div
(
a(s, x;u− v)G(v)

)∥∥∥
H1
`−1
≤ C |u(s) − v(s)| ‖G(v)‖H2

`
.

Inserting this last inequality into (3.14) and using the bounds of Theorem 2.4, we
finally get the claimed estimate for the H1-type norms of δG. �

3.2.2. Differentiability of the control-to-state map

In this section, we investigate differentiability properties of the control-to-state map
G.
With Lemma 3.1 at hand, we can establish Gâteaux differentiability of G. For any
given u in an open set U0 ⊂ Uad, letG(u) be the corresponding solution to the Liouville
equation, as defined in Proposition 3.1, and let δu = (δu1, δu2) be an admissible
variation of u, such that u + εδu ∈ Uad for ε ∈ R \ {0} sufficiently small. Then the
Gâteaux derivative of G with respect to the variation δu at u is defined as the limit
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(whenever such a limit exists)

(3.18) δδuG(u) := lim
ε→0

G(u+ εδu) − G(u)
ε

.

The next proposition holds true.

Proposition 3.3. Let m ≥ 2 and k ≥ 2. Let the data f0, g and a0 be fixed as in
Remark 3.1 above. Let u belong to intUad, where intUad denotes the interior part of
the set Uad.
Then, for any admissible variation δu of u, the limit (3.18) exists in L∞T (L2). In
particular, the control-to-state map G is Gâteaux differentiable at u. Moreover, δδuG
satisfies the Liouville problem

(3.19) ∂tδδuG + div
(
a(t, x;u) δδuG

)
= − div

(
a(t, x; δu)G(u)

)
, δδuG|t=0 = 0 ,

where we have defined a(t, x; δu) := δu1 + x ◦ δu2.

Proof. For any 0 < |ε| < 1 small enough, let us define

δGε := 1
ε

(
G(u+ εδu) − G(u)

)
.

It is easy to see that δGε solves the equation

(3.20) ∂tδG
ε + div

(
a(t, x;u) δGε

)
= − div

(
a(t, x; δu)G(u+ εδu)

)
,

with initial datum δGε
|t=0 = 0.

Notice that, by uniform bounds provided by Lemma 3.1 (which holds for m ≥ 1 and
k ≥ 1) and weak compactness methods, we can prove that δGε converges (up to
extraction of a suitable subsequence) to some f ∈ L∞T (L2) in the weak-∗ topology of
that space. Furthermore, this f satisfies the same equation as (3.20), with right-hand
side equal to − div

(
a(t, x; δu)G(u)

)
∈ L1

T (L2). Now, by uniqueness we deduce that
f has to coincide with δδuG, and in addition the whole sequence

(
δGε

)
ε
converges to

it.
Unfortunately, the previous argument does not yield the Gâteaux differentiability of
G, because we need that the limit exists in the strong topology, namely in the L∞T (L2)
norm. In order to get this property, let us write the equation for f ε := δGε−f , since
G(u+ εδu)−G(u) = ε δGε, we find

∂tf
ε + div

(
a(x, t;u) fε

)
= − ε div

(
a(x, t; δu) δGε

)
,
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with zero initial datum. To formulate this equation, we need m ≥ 2, k ≥ 2. Then,
an energy estimate immediately gives

‖f ε(t)‖L2 ≤ C ε exp
(
C
∫ t

0
‖ div a(s, x;u)‖L∞

) ∫ t

0

∥∥∥div
(
a(s, x; δu) δGε

)∥∥∥
L2
ds

≤ C ε exp
(
C
∫ t

0
‖ div a(s, x;u)‖L∞

) ∫ t

0
|δu(s)| ‖δGε‖H1

1
ds ,

where we have argued as in the first line of (3.13) in order to pass from the first
inequality to the second one. At this point, applying the second estimate of Lemma
3.1 to equation (3.20) yields

(3.21) ‖δGε(s)‖H1
1
≤ C0

∫ s

0
|δu(s)| ds ,

for any s ∈ [0, t], t ≤ T , for a fixed constant C0 (depending on T , ua, ub, and
‖∇a0‖L1

T (C2
b

), ‖f0‖H2
2
and ‖g‖L1

T (H2
2 )). Putting this bound in the previous estimate

entails

‖f ε(t)‖L2 ≤ C C0 ε exp
(
C
∫ t

0
‖ div a(s, x;u)‖L∞

) (∫ t

0
|δu(s)| ds

)2

≤ εC ‖δu‖2
L∞T

exp
(
C‖ div a(t, x;u)‖L1

T (L∞)

)
,

from which we deduce that f ε → 0 in L∞T (L2) for ε → 0. The proposition is now
proved. �

Next, we tackle the proof of the Fréchet differentiability of G.

Theorem 3.1. Let m ≥ 2 and k ≥ 2. Let the data f0, g and a0 be fixed as in Remark
3.1 above, and let u ∈ intUad. Define DG(u)[δu] to be the unique solution to equation
(3.19).
Then there exists a constant C > 0 (depending only on T , ua, ub, and ‖∇a0‖L1

T (C2
b

),
‖f0‖H2

2
and ‖g‖L1

T (H2
2 )) such that∥∥∥∥G(u+ δu) − G(u) − DG(u)[δu]

∥∥∥∥
L∞T (L2)

≤ C ‖δu‖2
L∞T

.

In particular, the map G is Fréchet differentiable from intUad into L∞T (L2), and its
Fréchet differential at any point u ∈ intUad is given by DG(u).

Proof. In order to prove that G is Fréchet differentiable, with Fréchet differential
given by DG(u)[δu], we have to show that

lim
‖δu‖L∞

T
→0

∥∥∥∥G(u+ δu)−G(u)−DG(u)[δu]
∥∥∥∥
L∞T (L2)

‖δu‖L∞T
= 0 .

We recall also that, if G is Fréchet differentiable at u, then it is also Gâteaux differ-
entiable at the same point, and one has δδuG = DG(u)[δu].
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For simplicity, let us introduce the notation Gu(δu) := G(u+δu)−G(u)−DG(u)[δu].
The same computations performed on f ε, in the proof of Proposition 3.3 above, lead
us to the following equation for Gu(δu)

∂tGu(δu) + div
(
a(t, x;u)Gu(δu)

)
= − div

(
a(t, x; δu)

(
G(u+ δu)−G(u)

))
,

with initial datum Gu(δu)|t=0 = 0. Now, it is just a matter of repeating the estimates
performed on f ε: we easily find, for every t ∈ [0, T ], the inequality

‖Gu(δu)(t)‖L2 ≤ C exp
(
C
∫ t

0
‖ div a(s, x;u)‖L∞

)
×

×
∫ t

0
|δu(s)| ‖G(u+ δu)−G(u)‖H1

1
ds .

Observe that an inequality analogous to (3.21) holds also for G(u + δu) − G(u):
inserting this relation in the previous estimate, we find

‖Gu(δu)(t)‖L2 ≤ C C0 exp
(
C
∫ t

0
‖ div a(s, x;u)‖L∞

) (∫ t

0
|δu(s)| ds

)2

≤ K ‖δu‖2
L∞T

,

for a new positive constant K. From this last inequality, the claims of the theorem
follow. �

3.3. Analysis of Liouville ensemble optimal control problems

In this section, we investigate our Liouville ensemble optimal control problem. In the
first part, we prove the existence of optimal controls by means of classical arguments.
However, notice that one has to carefully justify that the reduced functional Jr (see
its definition below) is weakly lower semi-continuous. In fact, this property is not
obvious, since f = G(u) depends non-linearly on u. After that, in Section 3.3.2, we
characterize optimal controls as solutions of a related first-order optimality system.
In Section 3.3.3 we discuss uniqueness of optimal controls under certain assumptions.

3.3.1. Existence of optimal controls

In this section, we deal with existence of optimal solutions to an ensemble optimal
control problem. Our analysis is based on the following assumptions.

(A.1) We fix (m, k) ∈ N2, and we take an initial datum f0 ∈ Hm
k (Rd).

(A.2) We fix parameters (γ, δ, ν) ∈ R3 such that γ > 0, δ ≥ 0 and ν ≥ 0.



3.3. Analysis of Liouville ensemble optimal control problems 69

(A.3) Chosen ua =
(
ua1, u

a
2

)
and ub =

(
ub1, u

b
2

)
in R2d, with ua ≤ ub, we define the

set of admissible controls to be

Uad :=
{
u ∈ L∞T (Rd)

∣∣∣ ua ≤ u(t) ≤ ub for a.e. t ∈ [0, T ]
}

if ν = 0(3.22)

Uad :=
{
u ∈ H1

T (Rd)
∣∣∣ ua ≤ u(t) ≤ ub for all t ∈ [0, T ]

}
if ν > 0 .(3.23)

(A.4) We take two attracting potentials θ and ϕ in L2(Rd), in the sense specified
in Section 3.1.

Remark 3.3. We point out that assumption (A.4) (which will be strengthened in Sec-
tion 3.3.3 for getting uniqueness, see condition (A.4)* there) is taken for simplicity
of presentation, since more general θ and ϕ can be considered in our framework. For
instance, we can allow for θ to depend on time: θ ∈ L1

T (L2), or θ ∈ L1
T (H1

1 ) in
(A.4)* below. The case θ(x) = |x|2 and ϕ(x) = |x|2 is more delicate, and will be
matter of further discussions in Section 3.3.4.

Now, consider our cost functional given by

(3.24) J(f, u) :=
∫ T

0

∫
Rd
θ(x) f(x, t) dx dt +

∫
Rd
ϕ(x) f(x, T ) dx

+ γ

2

∫ T

0

∣∣∣u(t)
∣∣∣2 dt + δ

∫ T

0

∣∣∣u(t)
∣∣∣ dt + ν

2

∫ T

0

∣∣∣∣∣ ddtu(t)
∣∣∣∣∣
2

dt .

We remark that J is well-defined whenever u ∈ L2
T if ν = 0, or u ∈ H1

T if ν > 0, and
f ∈ C

(
[0, T ];L2(Rd)

)
.

Our ensemble optimal control problem requires to find

(3.25) min
u∈Uad

J(f, u) ,

subject to the differential constraint

(3.26)


∂tf + div

(
a(x, t;u) f

)
= g in Rd × (0, T ]

f|t=0 = f0 on Rd ,

where the drift function a(x, t;u) is defined as

(3.27) a(x, t;u) := a0(x, t) + u1(t) + x ◦ u2(t) .

That is taking a1 = a2 = 1 in (2.5).
Under our assumptions, Theorem 2.4 applies. Thus, for every u ∈ Uad, there exists a
unique corresponding solution f ∈ C

(
[0, T ];Hm

k (Rd)
)
to the problem (3.26). There-

fore, resorting to the control-to-state map G defined in Section 3.2, we can introduce
the so-called reduced cost functional, given by

(3.28) Jr(u) := J
(
G(u), u

)
.
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Hence, the ensemble optimal control problem (3.25)–(3.26) can be rephrased as follows

(3.29) min
u∈Uad

Jr(u) .

Remark 3.4. Recall that we have defined G with values in L∞T (L2). However, under
our assumptions, we know that the solution to the Liouville equation actually belongs
to CT (L2), so that the ϕ-term in (3.24) is well-defined, and so is Jr.

In the following, we prove existence of a minimizer to (3.29).

Theorem 3.2. Under assumptions (A.1)-(A.2)-(A.3)-(A.4), the ensemble opti-
mal control problem (3.29) admits at least one solution u∗ ∈ Uad. The corresponding
state f ∗ := G(u∗) belongs to the space C

(
[0, T ];Hm

k (Rd)
)
.

Proof. Let us focus on the case ν = 0 for simplicity; the case ν > 0 follows from
the same argument.
The functional J given in (3.24) is well-defined for (f, u) ∈ CT (L2) × L∞T , and Uad
is a bounded subset of L∞T . On the other hand, owing to estimate (2.24) in Theorem
2.4, and the embedding CT (Hm

k ) ↪→ L∞T (L2), the map G takes its values in a bounded
set of L∞T (L2). It follows that Jr is bounded; in particular, Jr is a proper map, i.e.,
infUad Jr > −∞, and Jr is not identically equal to +∞.
Next, we claim that Jr is weakly lower semi-continuous. To prove this fact, it is
enough to use the weak-weak continuity of G, as stated in Proposition 3.2, and to
remark that J is weakly lower semi-continuous. Indeed, the last three terms in (3.24)
are norms, so they are weakly lower semi-continuous. On the other hand, the first two
terms are linear in f , and then they are weakly continuous with respect to the L∞T (L2)
and L2 topologies, respectively. Thus, we immediately get that, if

(
un
)
n
⊂ Uad is a

sequence which converges weakly-∗ to a u ∈ Uad in L∞T , we have

lim inf
n→+∞

Jr(un) = lim inf
n→+∞

J
(
G(un), un

)
≥ J

(
G(u), u

)
= Jr(u) .

At this point, proving the existence of a minimizer for Jr is standard. Let us take a
minimizing sequence

(
un
)
n
⊂ Uad. Since Uad is a bounded set in L∞T , we can extract

a weakly-∗ convergent subsequence, which we do not relabel for simplicity. Let us
call u∗ ∈ Uad its limit-point. Then, by the weak-lower semi-continuity of Jr, we can
conclude that u∗ is a minimizer for Jr. �

We discuss uniqueness of the minimizers in Section 3.3.3 below. For this purpose, we
use characterization of minimizers as solutions to a suitable optimality system, which
we derive in the next section.
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3.3.2. Liouville optimality systems

This section is devoted to the characterization of ensemble optimal controls as so-
lutions of the related first-order optimality system. For this purpose, in addition to
hypotheses (A.1)–(A.2)–(A.3)–(A.4) stated above, from now on we take

m ≥ 1 and k ≥ 1 .

In correspondence to (3.24)–(3.25)–(3.26), we consider the Lagrange multipliers frame-
work, see e.g. [94, 126], and introduce the Lagrange functional L as follows:

L(f, u, q) := J(f, u) +
∫ T

0

∫
Rd

(
∂tf(x, t) + div

(
a(x, t;u)f(x, t)

)
− g(x, t)

)
q(x, t) dx dt

+
∫
Rd

(
f(0, x)− f0(x)

)
q0(x) dx ,

(3.30)

where, for the sake of generality, we have included a right-hand side g. The variable
q represents the Lagrange multiplier. Notice that L is well-defined whenever u ∈ L∞T
if ν = 0, u ∈ H1

T if ν > 0, q ∈ L∞T (L2), q0 ∈ L2 and f ∈ CT (L2) such that
both ∂tf and div

(
a(x, t;u) f

)
belong to L1

T (L2). In particular, it is enough to have
f ∈ W 1,1

T (L2) ∩ L∞T (H1
1 ), recall also Proposition 2.2. Notice that, a posteriori, we

will find q ∈ CT (L2) and q0 = q(0); see the discussion below for details.
For clarity, in order to derive the optimality system, we first discuss the case with L2

costs only, then the case with L2 −H1 costs, and finally the case with L2 − L1 −H1

costs.
The case δ = ν = 0. If δ = 0, then J is Fréchet differentiable over

CT (L2)× intUad, since it is linear in f and the control costs with γ > 0, ν ≥ 0
are given by differentiable norms. It follows then that L is Fréchet differentiable over
the space

XT :=
(
W 1,1
T (L2) ∩ L∞T (H1

1 )
)
× L2

T × CT (L2) ,

where L2
T has to be replaced by H1

T in the case when ν > 0. The Fréchet differential
of L at (f, u, q) is given by the linearization of each of its terms at that point.
Now, consider in addition ν = 0. The optimality system is obtained by putting to zero
the Fréchet derivatives of L(f, u, q) with respect to each of its arguments separately.
We obtain

∂tf + div
(
a(x, t;u) f

)
= g , with f|t=0 = f0(3.31)

− ∂tq − a(x, t;u) · ∇q = − θ, with q|t=T = −ϕ(3.32) (
γ ujι +

∫
Rd

div
(
∂a

∂ujι
f

)
q dx, vjι − ujι

)
L2(0,T )
≥ 0 ∀v ∈ Uad, ι = 1, 2, j = 1 . . . d .(3.33)
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We remark that, denoting by ej the j-th unit vector of the canonical basis of Rd and by
xj the j-th component of the vector x ∈ Rd, we have ∂a/∂uj1 = ej and ∂a/∂uj2 = xj ej

by Definition 3.27. Then, equation (3.33) can be equivalently written in the following
form. For any 1 ≤ j ≤ d, we have

(
γ uj1 +

∫
Rd
∂jf q dx , v

j
1 − uj1

)
L2(0,T )

≥ 0(
γ uj2 +

∫
Rd
∂j
(
xj f

)
q dx , vj2 − uj2

)
L2(0,T )

≥ 0 .

Further, if we sum up equations (3.33) for all ι and all j, we can write

(3.34)
(
γ u +

∫
Rd

div
(
(e+ x) f

)
q dx , v − u

)
L2
T

≥ 0 for all v ∈ Uad ,

where we have defined the vector e = (1, . . . , 1)T .
Equation (3.31) is our Liouville model and is also called the forward equation in this
context. The results of Section 2.2.2 guarantee that, under our assumptions, there
exists a unique solution f ∈ CT (H1

1 ). Moreover, since u ∈ Uad, an inspection of
(3.31) reveals that ∂tf ∈ L1

T (L2).
Equation (3.32) is the adjoint Liouville equation. It is obtained by taking the Fréchet
derivative of (3.30) with respect to f . This is a transport equation that evolves
backwards in time. By setting q̃(t, x) = q(T − t,−x), we obtain a transport problem
for q̃, as in (2.21), with source term −θ and initial condition q̃|t=0 = −ϕ. Thus, the
results in Section 2.2 guarantee the existence and uniqueness of a Lagrange multiplier
q ∈ CT (L2), provided that θ and ϕ are in L2.
From the discussion above, we get that any solution to the optimality system (3.31)–
(3.32)–(3.33), with u ∈ Uad, belongs indeed to the space XT .

Equation (3.33) represents the optimality condition. To better illustrate this fact, we
suppose from now on that

m ≥ 2 and k ≥ 2 .

Then, the reduced cost functional Jr, defined in (3.28), is Fréchet differentiable. In
terms of the reduced minimization problem (3.29), the optimal solution u∗ in the
convex, closed and bounded set Uad is characterized by the optimality condition given
by

(∇uJr(u∗) , v − u∗)L2
T
≥ 0, for all v ∈ Uad ,

where ∇uJr denotes the L2-gradient of Jr with respect to u. In fact, a direct com-
putation of ∇uJ

(
G(u), u

)
, with the introduction of the auxiliary adjoint variable q,
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gives the optimality system above, and the following relation

∇ujι
Jr(u) = γ ujι +

∫
Rd

div
(
∂a

∂ujι
f

)
q dx .

The case δ = 0, ν > 0. Next, assume that δ = 0 and γ, ν > 0. Recall that, in
this case, the set Uad is defined by (3.23). Then, the natural Hilbert space where u∗

is sought is H̃1
T (Rd) := H̃1

T (Rd) × H̃1
T (Rd), where H̃1

T corresponds to the H1
T space,

endowed with the weighted H1-product given by

(u, v)
H̃1
T

:= γ
∫ T

0
u(t) · v(t) dt + ν

∫ T

0
u′(t) · v′(t) dt .

The notation ′ = d/dt stands for the weak time derivative.
Now, let µ be the H̃1-Riesz representative of the continuous linear functional

v 7→
(∫

Rd
div

(
∂a

∂u
f

)
q dx , v

)
L2
T

.

Assuming that u ∈ Uad ∩ H1
0

(
[0, T ];R2d

)
, then µ can be computed by solving the

boundary-value problem

(3.35)
(
− ν d2

dt2
+ γ

)
µ =

∫
Rd

div
(
∂a

∂u
f

)
q dx , µ(0) = µ(T ) = 0 ,

which is understood in a weak sense. Notice that the choice u ∈ H1
0

(
[0, T ];R2d

)
corresponds to the modelling requirement that the control is switched on at t = 0
and switched off at t = T . Other initial and final time conditions on u may be
required and encoded as boundary conditions in (3.35).
With the setting above, the H̃1-gradient is given, for ι = 1, 2 and j = 1 . . . d, by

(3.36) ∇̃ujι
Jr(u) = ujι + µjι .

The optimality condition (3.33) then becomes

(3.37)
(
ujι + µjι , v

j
ι − ujι

)
H̃1
T

≥ 0,

for all v ∈ Uad, ι = 1, 2 and 1 ≤ j ≤ d.
The case δ > 0. In this case, a L1 norm of the control appears in the cost

functional. This term is not Gâteaux differentiable and the discussion becomes more
involved. Using the control-to-state map, we start by defining

j1(u) :=
∫ T

0

∫
Rd
θ(x)G(u)(x, t) dx dt +

∫
Rd
ϕ(x)G(u)(x, T ) dx

+ γ

2

∫ T

0

∣∣∣u(t)
∣∣∣2 dt + ν

2

∫ T

0

∣∣∣∣∣ ddtu(t)
∣∣∣∣∣
2

dt,

j2(u) := δ ‖u‖L1
T
.
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The L1-cost, represented by j2, admits a subdifferential ∂j2(u) = δ ∂
(
‖u‖L1

)
; see,

e.g., Section 2.3 of [11]. If we denote by L∗T :=
(
L∞T (Rd)

)∗
and by 〈·, ·〉 the duality

product in L∗T × L∞T , the following formula holds true:

∂
(
‖u‖L1

)
=
{
φ ∈ L∗T

∣∣∣ ‖v‖L1 − ‖u‖L1 ≥
〈
φ , v − u

〉
∀ v ∈ Uad

}

=


{
φ ∈ L∗T

∣∣∣ ‖φ‖L∗T = 1 , 〈φ, u〉 = ‖u‖L∞T
}

if u 6≡ 0

unit ball in L∗T if u ≡ 0 .

(3.38)

Now, the reduced functional can be written as Jr(u) = j1(u) + j2(u). In this case,
the equations (3.31) and (3.32) in the corresponding optimality system are the same.
However, we have a different optimality condition (3.33). In the case ν = 0, as in
Theorem 2.2 in [49], we have the following Theorem 3.3. For its proof, we refer to
[49] and [119]. Notice that, as for equations (3.31)–(3.32)–(3.33), equation (3.39)
below can be written even when G, and hence Jr, are not Fréchet differentiable.

Theorem 3.3. Under assumptions (A.1)–(A.2)–(A.3)–(A.4), where we take
m ≥ 1 and k ≥ 1, we suppose that the pair (f, u) ∈ CT (Hm

k ) × Uad is a minimizer
for (3.29).
Then there exists a unique q ∈ CT (L2) which solves (3.32), and a λ̂ ∈ ∂g(u) such
that the following inequality condition is satisfied:

(
γ ujι + λ̂jι +

∫
Rd

div
(
∂a

∂ujι
f

)
q dx, vjι − ujι

)
L2(0,T )
≥ 0 ∀ v ∈ Uad , ι = 1, 2, j = 1 . . . d .

(3.39)

Moreover, there exist λ+ and λ−, belonging to L∞T (Rd), such that (3.39) is equivalent
to the equations

γ ujι +
∫
Rd

div
(
∂a

∂ujι
f

)
q dx + (λ+)jι − (λ−)jι + λ̂jι = 0

(λ+)jι ≥ 0 , ub − ujι ≥ 0 , (λ+)jι (ub − ujι ) = 0

(λ−)jι ≥ 0 , ujι − ua ≥ 0 , (λ−)jι (ujι − ua) = 0

λ̂jι = δ a.e. in
{
t ∈ [0, T ]

∣∣∣ ujι (t) > 0
}

∣∣∣λ̂jι ∣∣∣ ≤ δ a.e. in
{
t ∈ [0, T ]

∣∣∣ ujι (t) = 0
}

λ̂jι = δ a.e. in
{
t ∈ [0, T ]

∣∣∣ ujι (t) < 0
}
,

(3.40)

for ι = 1, 2 and all 1 ≤ j ≤ d.
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In (3.40), one usually refers to the first equation as the optimality condition equation;
the conditions given in the second and third line are the complementarity conditions
for the inequality constraints in Uad. Moreover, the last three lines give an equivalent
expression for λ̂ ∈ ∂g(u); see [119]. In our case, λ̂rm can be understood to be
δ sgn(urm), where sgn(x) is the sign function.
Finally, the case δ > 0 and ν > 0 can be treated as done before. After resorting
once again to the space H̃1

T , let µ be the H̃1-Riesz representative of the continuous
linear functional

v 7→
(
λ̂ +

∫
Rd

div
(
∂a

∂u
f

)
q dx , v

)
L2
T

.

Then, assuming that u ∈ Uad ∩ H1
0

(
[0, T ];R2d

)
, we can compute µ as above, by

solving the boundary-value problem(
− ν d2

dt2
+ γ

)
µ = λ̂ +

∫
Rd

div
(
∂a

∂u
f

)
q dx , µ(0) = µ(T ) = 0 .(3.41)

With this definition, relation (3.36) still holds true, and the optimality condition
(3.33) can be expressed once again by equations (3.37).

3.3.3. Uniqueness of optimal controls

In this section, we prove uniqueness of optimal controls in the situation when δ = 0
and ν = 0 in (3.24). Our proof relies on the characterization of optimal controls as
solutions to the corresponding optimality system. The cases δ > 0 or ν > 0 read
more complicated and are left aside in our discussion.
To begin with, we need additional regularity on the cost functions θ and ϕ in order to
prove uniqueness. We formulate the following assumption, which strengthens (A.4):

(A.4)* Suppose that both θ and ϕ belong to H1
1 (Rd).

In the constrained-control case, the characterization of optimal controls is given by
an inequality, see (3.33). This is a very weak information. This is the reason why we
are able to prove uniqueness only under a smallness condition, either on the time T
or on the size of the data f0, g, ∇a0, θ and ϕ in their respective functional spaces.
Let us recall that existence of an optimal control has been proved in Theorem 3.2
above.

Theorem 3.4. Under assumptions (A.1)–(A.2)–(A.3)–(A.4)*, suppose that both
m ≥ 2 and k ≥ 2. Take moreover δ = ν = 0 in (3.24). Finally, define

K̃ := C exp
(
C
(
‖∇a0‖L1

T (C2
b

) + T max
{∣∣∣ua∣∣∣ , ∣∣∣ub∣∣∣}) )

×
(
‖f0‖H2

2
+ ‖g‖L1

T (H2
2 )

) (
‖ϕ‖H1

1
+ T ‖θ‖H1

1

)
,
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where the constant C > 0 can be taken as the maximum of the constants C appearing
in (3.43), (3.45), (3.46) and in the definition (3.11) of K(2)

1 .
If the condition K̃ T/γ < 1 holds true, then there exists at most one optimal control
u∗ in intUad.

Proof. The previous result being classical in optimal control problems, let us
just give a sketch of the proof. Let (u, f1, q1) and (v, f2, q2) be two optimal triplets
solving the minimization problem (3.29). From (3.34) we deduce that, for all w ∈ Uad,(

γu+
∫
Rd

div
(
(e+ x)f1

)
q1 , u− w

)
L2
T

≤ 0

and(
γv +

∫
Rd

div
(
(e+ x)f2

)
q2 , w − v

)
L2
T

≥ 0 .

Take w = v in the former inequality, w = u in the latter and compute the differ-
ence of the resulting expressions. After setting δf := f1 − f2 and δq := q1 − q2,
straightforward computations lead to

(3.42) γ
∫ T

0
|u(t)− v(t)|2 dt ≤

∫ T

0

[ ∫
Rd

∣∣∣div
(
(e+ x) δf

)
q1

∣∣∣
+
∫
Rd

∣∣∣div
(
(e+ x) f2

)
δq
∣∣∣ ] |u(t)− v(t)| dt .

Now we estimate the two space integrals, at any time t ∈ [0, T ]. We start with the
former term, for which we obtain∫

Rd

∣∣∣div
(
(e+ x) δf(t)

)
q1(t)

∣∣∣ dx ≤ ‖q1(t)‖L2

∥∥∥div
(
(e+ x) δf(t)

)∥∥∥
L2

≤ C1
(
‖δf(t)‖L2 +

∥∥∥(1 + |x|
)
∇δf(t)

∥∥∥
L2

)
≤ C1 ‖δf(t)‖H1

1
,

where we have also used Theorem 2.3 applied to the transport equation (3.32) for
treating the q1 term. Notice that the constant C1 can be expressed as

(3.43) C1 := C exp
(
C
(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

))(
‖ϕ‖L2 + T ‖θ‖L2

)
,

for a “universal” constant C > 0 that depends on the space dimension d. At this
point, we recall that both f1 and f2 satisfy equation (3.31), with controls u1 and u2,
respectively. Then, taking their difference and applying Lemma 3.1 finally yields,
for a new constant C̃1 = C1K

(2)
1 just depending on the data of the problem, the

following bound:

(3.44)
∫
Rd

∣∣∣div
(
(e+ x) δf(t)

)
q1(t)

∣∣∣ dx ≤ C̃1

∫ t

0

∣∣∣u(s)− v(s)
∣∣∣ ds .
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Next, consider the second integral in (3.42). The computations are similar to the
previous ones. We can estimate∫

Rd

∣∣∣div
(
(e+ x)f2(t)

)
δq(t)

∣∣∣ dx ≤ ‖δq(t)‖L2 ‖f2(t)‖H1
1
≤ C2 ‖δq(t)‖L2 ,

where we have applied Theorem 2.4 to equation (3.31) for f2 to control its H1
1 norm.

In particular, it follows from that theorem that

(3.45) C2 := C exp
(
C
(
‖∇a0‖L1

T (C1
b

) + ‖u2‖L1
T

)) (
‖f0‖H1

1
+ ‖g‖L1

T (H1
1 )

)
,

for a “universal” constant C > 0.
Now, we use the fact that q1 and q2 are both solutions of (3.32), related to the
controls u1 and u2 respectively. Hence, taking the difference of the corresponding
equations and arguing as in the proof of Lemma 3.1, one easily infers the existence
of a “universal” constant C > 0 such that

‖δq(t)‖L2 ≤ C exp
(
C
(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

) )
×

×
∫ T

t
|u(s)− v(s)|

∥∥∥(1 + |x|
)
∇q2(s)

∥∥∥
L2
ds

≤ C exp
(
C
(
‖∇a0‖L1

T (C1
b

) + ‖u1‖L1
T

+ ‖u2‖L1
T

))
×

×
(
‖ϕ‖H1

1
+ T ‖θ‖H1

1

) ∫ T

t

∣∣∣u(s)− v(s)
∣∣∣ ds .

Notice that the integral is from t to T , because (3.32) is a backward transport equa-
tion. After defining the constants

(3.46) K̃
(1)
1 := C exp

(
C
(
‖∇a0‖L1

T (C1
b

) + ‖u1‖L1
T

+ ‖u2‖L1
T

) ) (
‖ϕ‖H1

1
+ T ‖θ‖H1

1

)
and C̃2 := C2 K̃

(1)
1 , we obtain

(3.47)
∫
Rd

∣∣∣div
(
(e+ x) f2(t)

)
δq(t)

∣∣∣ dx ≤ C̃2

∫ T

t

∣∣∣u(s)− v(s)
∣∣∣ ds .

At this point, we can insert estimates (3.44) and (3.47) into (3.42), and get, for a new
constant K = C̃1 + C̃2, the relation

γ
∫ T

0

(
σ(t)

)2
dt ≤ K

∫ T

0
σ(t)

(∫ T

0
σ(t) ds

)
dt = K

(∫ T

0
σ(t) dt

)2

,

where, for simplicity of notation, we have defined σ(t) :=
∣∣∣u(t) − v(t)

∣∣∣. Hence, by
Cauchy-Schwarz inequality we easily deduce

γ
∫ T

0

(
σ(t)

)2
dt ≤ K T

∫ T

0

(
σ(t)

)2
dt ,

which obviously implies σ ≡ 0 almost everywhere on [0, T ] whenever K T/γ < 1.
Then, we conclude the proof remarking that K ≤ K̃. �
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3.3.4. The case of confining θ and ϕ as quadratic functions

As pointed out in Remark 3.3, from the applications viewpoint, it may be desirable
to consider the case when both θ and ϕ are quadratic potentials. In this section, we
discuss the necessary adaptations to be implemented in our arguments in order to
address this case.
Therefore, from now on we choose

θ(x) = |x|2 and ϕ(x) = |x|2 ,

although the discussion can be further adapted, in order to treat more general poly-
nomial growths. In order to simplify the presentation, we also assume that δ = ν = 0.

We notice that, in view of (3.24), for J to be well-defined it is necessary that |x|2 f
belongs to L1. Then, we have to assume higher integrability on f , namely that

f ∈ C
(
[0, T ];L2

k(Rd)
)
, for some k > 2 + d

2 .

This of course entails that, in (A.1), one has to take f0 ∈ Hm
k and g ∈ L1

T (Hm
k ),

with the same restriction k > 2 + d/2. However, Theorem 3.2 still holds true.
The main changes pertain Section 3.3.2, starting from the Definition 3.30 of the
functional L. To begin with, let us focus on the Lagrangian multiplier q. On the
one hand, we need it to be in some duality pairing with f . Then, keeping in mind
Definition 2.1, we introduce, for (m, k) ∈ N2, the spaces

Hm
−k(Rd) :=

{
f ∈ Hm

loc(Rd)
∣∣∣ (

1 + |x|
)−k

Dαf ∈ L2(Rd) ∀ 0 ≤ |α| ≤ m
}
.

This space is endowed with the natural norm

‖f‖Hm
−k

=
∑

0≤|α|≤m

∥∥∥∥(1 + |x|
)−k

Dαf

∥∥∥∥
L2
.

On the other hand, we still expect q to solve (3.32) to an extent, although the meaning
of that equation is now no more clear, owing to the fact that θ and ϕ do not belong
anymore to L2. To deal with both issues, we need the following lemma, whose proof
can be performed arguing as in the proof of Theorem 2.4 above, using this time the
weight

(
1 + |x|

)−k
. We omit to give the details here.

Lemma 3.2. Let T > 0 and (m, k) ∈ N2 fixed, and let a be a vector field satisfying
hypotheses (2.11). Moreover, assume that q0 ∈ Hm

−k(Rd) and g ∈ L1
(
[0, T ];Hm

−k(Rd)
)
.

Then there exists a unique solution q ∈ C
(
[0, T ];Hm

−k(Rd)
)
to the problem

∂tq + a · ∇q = g , with q|t=0 = q0 .
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Moreover, there exists a constant C > 0 such that the following estimate holds true
for any t ∈ [0, T ]:

‖q(t)‖Hm
−k
≤ C exp

(
C
∫ t

0
‖∇a(s)‖Cm

b
ds
) (
‖q0‖Hm

−k
+
∫ t

0
‖g(s)‖Hm

−k
ds
)
.(3.48)

Let us come back to our optimal control problem. In view of Lemma 3.2, we can
solve equation (3.32) with θ and ϕ equal to |x|2, getting a unique solution in the
space CT (L2

−k) for any k > 2 + d/2. Let us fix the choice

k0 = 3 +
[
d

2

]
,

where given z ∈ R, we denote by [z] its entire part. Then, it is easy to see that the
functional L is well-defined on the space

X̃T :=
(
W 1,1
T (L2

k0) ∩ L∞T (H1
k0+1)

)
× L2

T × CT (L2
−k0) .

Of course, we also need to take f0 and g as in assumption (A.1), with m ≥ 1 and
k ≥ k0 + 1.
Thereafter, we can write the optimality system (3.31)–(3.32)–(3.33), as done above. In
order to characterize equation (3.33) in terms of the gradient of the reduced functional
Jr, we need to further assume that m ≥ 2 and k ≥ k0 + 2.

Finally, also the analysis in Section 3.3.3 works similarly as above. Of course, as-
sumption (A.4)* is now too strong, and we have to dismiss it.
However, it is still possible to get a result analogous to Theorem 3.4. More precisely,
we have the following statement for the unconstrained problem.

Proposition 3.4. Under assumptions (A.1)-(A.2)-(A.3), suppose also that both
m ≥ 2 and k ≥ k0+2. In addition, take δ = ν = 0 in (3.24), and θ(x) = ϕ(x) = |x|2.
Finally, define

K̃ := C (1+T )
∥∥∥∥(1 + |x|

)−k0+2
∥∥∥∥
L2

exp
(
C
(
‖∇a0‖L1

T (C2
b

) + T max
{∣∣∣ua∣∣∣ , ∣∣∣ub∣∣∣}) )×

×
(
‖f0‖H2

k0+2
+ ‖g‖L1

T (H2
k0+2)

)
,

where the constant C > 0 is a suitable positive constant.
If the condition K̃ T/γ < 1 holds true, then there exists at most one optimal control
u∗ in intUad.

Proof. The proof is very similar to the one to Theorem 3.4, therefore we limit
ourselves to put in evidence the main changes to be adopted, and to treat the most
delicate points of the analysis.



80 3. Ensemble control problems

As before, let (u1, f1, q1) and (u2, f2, q2) be two optimal controls with corresponding
state and adjoint state. Arguing as above, we find that δu = u1 − u2 fulfils estimate
(3.42). Let us now focus on the estimate of each integral appearing in that relation.
As for the former integral term, also by use of Lemma 3.2, we can write∫

Rd

∣∣∣div
(
(e+ x) δf(t)

)
q1(t)

∣∣∣ dx ≤ ‖q1(t)‖L2
−k0

∥∥∥div
(
(e+ x) δf(t)

)∥∥∥
L2
k0

≤ C3 ‖δf(t)‖H1
k0+1

.

Notice that the constant C3 can be expressed as follows

(3.49) C3 := C (1 + T )
∥∥∥∥|x|2 (1 + |x|

)−k0
∥∥∥∥
L2

exp
(
C
(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

))
,

for a “universal” constant C > 0. At this point, the estimate for δf works as before,
finally leading to

(3.50)
∫
Rd

∣∣∣div
(
(e+ x) δf(t)

)
q1(t)

∣∣∣ dx ≤ C̃3

∫ t

0

∣∣∣δu(s)
∣∣∣ ds ,

where we have defined C̃3 = C3K
(k0+2)
1 , just depending on the data of the problem.

Next, consider the second integral in (3.42): we can estimate∫
Rd

∣∣∣div
(
(e+ x) f2(t)

)
δq(t)

∣∣∣ dx ≤ ‖δq(t)‖L2
−k0
‖f2(t)‖H1

k0+1
≤ C4 ‖δq(t)‖L2

−k0
,

where, by Theorem 2.4 applied to equation (3.31) for f2, we obtain that

(3.51) C4 := C exp
(
C
(
‖∇a0‖L1

T (C1
b

) + ‖u2‖L1
T

)) (
‖f0‖H1

k0+1
+ ‖g‖L1

T (H1
k0+1)

)
,

for a “universal” constant C > 0. On the other hand, Lemma 3.2 applied to the
equation for δq gives, for a new constant C > 0, the estimate

‖δq(t)‖L2
−k0
≤ C exp

(
C
(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

) )
×

×
∫ T

t
|δu(s)|

∥∥∥(1 + |x|
)
∇q2(s)

∥∥∥
L2
−k0

ds .

Notice that
∥∥∥(1 + |x|

)
∇q2(s)

∥∥∥
L2
−k0

≤ ‖∇q2(s)‖L2
−k0+1

. In order to bound this quan-

tity, we can differentiate the equation for q2 with respect to xj, for 1 ≤ j ≤ d, and
get (notice that ∂j|x|2 = 2 xj)

∂t

((
1 + |x|

)−k0+1
∂jq2

)
+ a(t, x;u2) · ∇

((
1 + |x|

)−k0+1
∂jq2

)
=

= 2 xj
(
1 + |x|

)−k0+1
−
(
1 + |x|

)−k0+1
∂ja(t, x;u2) · ∇q2 ,

with initial datum equal to 2xj
(
1+ |x|

)−k0+1
. Obviously, the latter term in the right-

hand side can be absorbed by a Grönwall argument; in addition, an easy computation
shows that the former is in L2. Therefore, by applying an L2 estimate of Theorem
2.3 to the previous equation implies, for a “universal” constant C > 0, the following
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bound:

‖∇q2(s)‖L2
−k0+1

≤ C exp
(
C
(
‖∇a0‖L1

T (L∞) + ‖u2‖L1
T

))
(1+T )

∥∥∥|x| (1 + |x|)−k0+1
∥∥∥
L2
.

By use of this latter estimate, we finally obtain

(3.52)
∫
Rd

∣∣∣div
(
(e+ x) f2(t)

)
δq(t)

∣∣∣ dx ≤ C̃4

∫ T

t

∣∣∣δu(s)
∣∣∣ ds ,

where we have defined C̃4 := C4 K̃(1)
1 and

(3.53)
K̃(1)

1 := C exp
(
C
(
‖∇a0‖L1

T (C1
b

) + ‖u1‖L1
T

+ ‖u2‖L1
T

) )
(1+T )

∥∥∥|x| (1 + |x|)−k0+1
∥∥∥
L2
.

We can now insert (3.50) and (3.52) into (3.42), and conclude as done in the proof to
Theorem 3.4. �

3.4. Numerical analysis of ensemble control problems

The last fundamental step in solving our ensemble optimal control problems is the
design of a numerical optimization procedure. For this purpose, one recognizes that
the optimality condition equation (3.37) provides the semi-smooth gradient of the
ensemble-cost functional along the constraint given by the Liouville model. However,
because of the presence of control constraints and the combination of L2-, L1- and
H1-costs, the assembling of our gradient is challenging. In particular, by imposing
constraints on the value of the control, we are required to implement a H1 projection
of the control update. At this point, we remark that the combination of L1- and
H1-costs and the H1 projection are less investigated in the literature.
However, this effort is very well justified by our purpose of implementing a state-of-
the-art semi-smooth Krylov-Newton methodology for our new class of PDE optimal
control problems. In doing this, we also rely on the results in [48, 49], and the
resulting Newton scheme is used to validate our optimal control framework.
Further, we notice that the optimality condition equation is a variational inequality
involving an integral for which we use second-order accurate quadratures, and we
implement a projection step in the optimization procedure.
Notice that, while second-order accuracy for the above three components of the op-
timality system (3.31)–(3.33) is separately guaranteed by suitable approximation, we
are not able to prove this order of accuracy of the coupled system; this is an issue
that remains widely open in the scientific literature, apart of the case of much simpler
problems with linear control mechanisms; see, e.g., [27].
Section 3.4.1 is devoted to the implementation of our semi-smooth Krylov-Newton
method that requires the numerical solution of the Liouville equation and its adjoint
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and the implementation of the gradient together with a H1-projection procedure for
the controls.
In Section 3.4.2, we present results of numerical experiments with our solution method-
ology that validate our optimal control framework in terms of the ability of the
controls to perform the given tasks. For this purpose, we consider the tracking of
non-differentiable trajectories and also the case of bimodal distributions.

3.4.1. A projected semi-smooth Krylov-Newton method

In this section, we illustrate a semi-smooth Krylov-Newton (SSKN) method for solving
the ensemble optimal control problem (3.5)–(3.6) with the drift given by (2.5) and
the cost functional setting specified in Section 3.1. We remark that our SSKN scheme
belongs to the class of projected semi-smooth Newton schemes discussed in [127].
In general, a Newton method is an iterative procedure aiming at finding roots of a
given function. Its peculiarity is that it may generate a sequence that can converge
superlinearly or even quadratically to the sought solution.
In order to explain the Newton method in simple terms, consider the problem to find
a root ζ? ∈ RN of a mapM : RN → RN , as follows

(3.54) M(ζ?) = 0,

where, for the moment, we assume that ζ 7→ M(ζ) is continuously differentiable.
Now, denote with J (ζ) the Jacobian of M at ζ. The Newton method generates a
sequence (ζ`)` by means of the following two steps

s1 : ∆ζ` = −(J (ζ`))−1M(ζ`)

s2 : ζ`+1 = ζ` + ∆ ζ`.
(3.55)

The steps s1–s2 are performed for ` = 0, 1, 2, . . ., starting with a given initial guess
ζ0.
Clearly, the Newton sequence is well defined if the Jacobian is invertible at each
iterate, and we assume that this is the case in a neighbourhood N of the solution ζ?,
where also the inverse is uniformly bounded. With these assumptions and requiring
that the initial guess ζ0 ∈ N is sufficiently close to ζ?, one can prove that the sequence
(ζ`) converges quadratically to the root ζ?, that is, ‖ζ`+1−ζ?‖2 ≤ c ‖ζ`−ζ?‖2

2, for some
constant c > 0, and ‖ · ‖2 denotes the Euclidean norm of a vector in RN . However, in
the case whereM is only differentiable and provided that the following holds

(3.56) ‖M(ζ + δζ)−M(ζ)− J (ζ)(δζ)‖2 = o(‖δζ‖2) as δζ → 0,

then the Newton sequence converges at least superlinearly, i.e., faster than linearly.
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The same Newton procedure (3.55) can be applied to find an extremal of the min-
imization problem minζ∈RN f(ζ), by considering M(ζ) := ∇f(ζ), where ∇ denotes
the gradient in RN , and assuming that f : RN → R is twice differentiable. In this
case, we have that J (ζ) = ∇2f(ζ).
Now, in the case of a constrained optimization problem minζ∈K f(ζ), where K ⊂ RN

is closed and convex, an extremal ζ? of this problem is characterized by the inequality
∇f(ζ?) · (ζ − ζ?) ≥ 0. However, this inequality can be equivalently written as follows

(3.57) F(ζ?) := ζ? − PK (ζ? − s∇f(ζ?)) = 0,

where PK is the projection of RN onto K, and s > 0 is arbitrary but fixed. Therefore,
the solution of the optimality condition in the form of an inequality can be refor-
mulated as a root problem. However, even if f is continuously differentiable, the
function F is not. On the other hand, if ∇f is locally Lipschitz, then also F is locally
Lipschitz continuous.
We see that a lack of differentiability of ∇f(ζ) or the presence of constraints as
above hinder the application of the Newton scheme to solve optimization problems.
This situation has motivated a great effort towards the generalization of the notion
of differentiability that makes possible to pursue the Newton approach also in non-
differentiable cases; see [52, 51, 127] for details and further references.
The main assumption for this generalization is the Lipschitz continuity of the map
ζ 7→ F(ζ), in which case Rademacher’s theorem [127] states that this map is almost
everywhere differentiable. Based on this result, the notion of differentiability has been
extended as follows; see [127] for a detailed discussion.

Definition 3.1. Assuming F : RN → RN be locally Lipschitz continuous, we have
the following generalized Jacobians of F at ζ:

(a) the Bouligand subdifferential given by

∂BF(ζ) :=
{
S ∈ RN×N : ∃{ζ`}` ⊂ RN \ Und : ζ` → ζ , J (ζ`)→ S

}
,

where Und is the set of points where F fails to be Fréchet differentiable and
J (ζ) denotes the Jacobian of F at ζ;

(b) the Clarke’s subdifferential is the convex hull of ∂BF(ζ), denoted with
∂F(ζ) := co ∂BF(ζ).

With this construction, we can apply (3.55) by choosing a generalized Jacobian
J̃ ` ∈ ∂F(ζ`). However, in order to guarantee superlinear convergence of the re-
sulting Newton sequence, the following property of semi-smoothness is required; see
[108, 127].
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Definition 3.2. A locally Lipschitz continuous function F : RN → RN is said to
be semi-smooth at ζ ∈ RN if and only if F is directionally differentiable at ζ, and it
satisfies the condition

(3.58) max
J̃ ∈∂F(ζ+δζ)

‖F(ζ + δζ)−F(ζ)− J̃ (δζ)‖2 = o(‖δζ‖2) as δζ → 0.

Notice that the discussion above has focused on finite dimensional spaces, which is also
the case of our numerical optimization problem. However, the subdifferential frame-
work given above has been extended also to maps acting between infinite-dimensional
Banach spaces [52, 51, 127]. In particular, we can apply it to our ensemble optimal
control problem (3.29), that is, minu∈Uad Jr(u) := J

(
G(u), u

)
. One can recognize that

Jr(u) is not Fréchet differentiable due to the presence of the L1-cost, which however
is Lipschitz in u. In fact, in Section 3.3, we have used sub-differential calculus [127]
to determine the gradient ∇̃Jr(u), and formulated the first-order optimality condi-
tion (∇̃Jr(u), v − u)U ≥ 0 for all v ∈ Uad. Therefore, we can proceed as in (3.57)
and consider the application of the Newton scheme with generalized Jacobian to the
equation

u− PUad (u− s ∇̃Jr(u)) = 0.

However, although this procedure is standard with control problems with L2-L1 costs
[49, 48, 127], it becomes very cumbersome in our case with H1 costs. For this reason,
we consider a projected semi-smooth Newton (pSSN) scheme with the following steps

s1 : ∆u` = −(J̃ (u`))−1 ∇̃Jr(u`)

s2 : u`+1 = PUad
(
u` + s∆u`

)
.

(3.59)

with ` = 0, 1, 2, . . ., and starting with a given initial guess u0 ∈ Uad. In the following,
we discuss the step s1 and thereafter s2.
Concerning the step s1, we see that the main computational effort in the procedure
(3.59) would be the assembly and inversion of the Jacobian J̃ (u`), but this is not
possible because of the size of the problem. In fact, in PDE optimization, one im-
plements the action of the Jacobian (reduced Hessian) on a vector and uses a Krylov
approach. Thus, we replace the step s1 in this procedure with the step: Solve

J̃ (u`) ∆u` = −∇̃Jr(u`)

by a Krylov method (e.g., minres) to a given tolerance. In this way, we have a
projected SSKN scheme.
Next, we illustrate how the action of the Jacobian on the increment ∆u` is constructed.
For this purpose, we determine the second-order directional derivative of our Lagrange
functional (3.30) with respect to u, and this requires to consider the linearizations of
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the forward and adjoint equations with respect to u. We have the following

(3.60) J̃ (u) ∆u =
(
∇uuL

)
(∆u) +

(
∇ufL

)
(f̂) +

(
∇uL

)∗
(q̂),

where L(f, u) := ∂tf + div(a(u) f) represents the Liouville operator, and ∗ means
adjoint. In (3.60), the function f̂ is the solution of the following linearized Liouville
problem

∂tf̂ + div(a f̂) = − div(â f), with f̂|t=0 = 0,(3.61)

where â = ∂a
∂u

∆u.
Equation (3.61) is obtained in the following way. First, define a small variation f̂ of f
such that (f + f̂) ∈ CT (L2(Rd)) and (f̂)|t=0 = 0. Then, insert f + f̂ for f in equation
(3.6), use the linearity of (2.1) with respect to f and take into account that f itself
solves (2.1).
To complete the discussion of (3.60), we explain how to compute q̂. It is obtained solv-
ing the following linearized adjoint problem, resulting from a linearization procedure
similar to that for f̂ . We have

−∂tq̂ − a · ∇q̂ = â · ∇q, with q̂|t=T = 0.(3.62)

We solve (3.61) and (3.62) with our KTS scheme. For further details on the imple-
mentation of the action of the Jacobian on a vector, we refer to, e.g., [26], Chapter
6.3.5.
Specifically, for our case one can verify that (3.60) is explicitly given component-wise
by (

J̃ (u)(∆u)
)
m,r

:= (∆u)rm + Φm,r, m = 1, 2, r = 1, 2,

where the components of Φ are solutions to the following boundary-value problem(
− ν d

2

dt2
+ γ

)
Φm,r = −

∫
R2

∂a

∂urm
f̂ · ∇q dx+

∫
R2

div
(
∂a

∂urm
f
)
q̂ dx

Φm,r(0) = 0, Φm,r(T ) = 0.

We approximate this problem by finite differences for the time derivative, which re-
sults in a tridiagonal linear system, and solve it with the Thomas algorithm. Compare
this boundary-value problem with (3.41).
Notice that, in general in optimal control problems, the reduced Hessian has a
favourable spectral structure, in the sense that it is spectrally equivalent to a second-
kind Fredholm integral operator, and in this case Krylov solvers can converge in a
mesh-independent number of iterations [3]. This is supported by our estimate of the
condition number of the Jacobian. For this purpose, we use the power method to
estimate the largest eigenvalue of J̃ (u), and the inverse power method to estimate
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its smallest eigenvalue, and obtain an approximation to the condition number of the
Jacobian; here we assume, that we can approximate the condition number by the
ratio of the approximation of the maximal and the minimal eigenvalue of J̃ (u). No-
tice that these methods also do not require the assembly of J̃ (u). We compute this
condition number in correspondence to different mesh sizes and report these values in
Table 3.1. A plot of these values for different mesh sizes is shown in Figure 3.1, where
we see that the condition number is of the same order of magnitude for different mesh
sizes.
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Figure 3.1. Approx. condi-
tion number of J̃

Nt c(J̃ )

20 116.70

40 52.27

80 50.51

160 42.47

320 57.94

640 74.18
Table 3.1. Approx. condi-
tion number c(J̃ )

Next, we discuss step s2 of (3.59). This step is required to ensure that any control
update results in a control function in Uad. To implement the H1 projection, denoted
with PUad , we solve the following optimization problem

min
ũ∈Uad

1
2 ‖ũ− u‖

2
H̃1
T
.(3.63)

Since H̃1
T is a Hilbert space and Uad is non-empty, closed and convex, we know that

there exists a unique projection (see [112], Theorem 4.11). The problem (3.63) can
equivalently be written as follows

minũ∈H1
T
JP (u) := 1

2 ‖ũ− u‖
2
L2
T

+ 1
2

∥∥∥ d
dt

(ũ− u)
∥∥∥2

L2
T

s.t. max(ua − ũ) = 0, max(ũ− ub) = 0.
(3.64)

Notice that, corresponding to this optimization problem, we have the following La-
grange functional with Lagrange multipliers qa, qb,

l(u, qa, qb) := JP (u) +
∫ T

0
max(u− ub, 0) qb dt+

∫ T

0
max(ua − u, 0) qa dt
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To solve this optimization problem to implement the projection PUad , we use a gradient
descent scheme; see, e.g., [19], Section 2.8.
Next, we summarize the Newton procedure to solve our Liouville ensemble optimal
control problem in the following algorithm that determines the reduced gradient at a
given u.

Algorithm 3.1 Computation of the gradient ∇̃Jr(u)
Require: u
1: Solve the Liouville equation (3.31) with Algorithm 2.1
2: Solve the adjoint Liouville equation (3.32) with Algorithm 2.2
3: Assemble the L2 gradient in (3.39)
4: Assemble the H1 gradient given by ∇̃Jr(u) in (3.36)
5: return ∇̃Jr(u)

With this algorithm, we can define our projected semi-smooth Krylov-Newton algo-
rithm as follows.

Algorithm 3.2 Projected semi-smooth Krylov-Newton method
Require: u0

1: Set ` = 0, E > tol
2: while E > tol and ` < `max do
3: Compute ∇̃Jr(u`) with Algorithm 3.1
4: Solve J̃ (u`) ∆u = −∇̃Jr(u`) (we use minres; here we need to solve (3.61) and

(3.62))
5: Set u`+1 = PUad

(
u` + s∆u

)
, where s is determined by the Armijo linesearch-

backtracking scheme.
6: Set E =

∥∥∥u`+1 − u`
∥∥∥

1,h
7: ` = `+ 1
8: end while
9: Solve the Liouville equation (3.31) with Algorithm 2.1
10: return (f(u`), u`)

In this algorithm, we use the difference between consecutive iterations of the control
as termination criterion, specifically to stop the algorithm, if the difference is less then
a threshold tol > 0. Moreover, we define a maximum number of iterations `max ∈ N.

3.4.2. Numerical experiments

Next, we validate the ability of our optimization framework to construct controls that
steer the ensemble density in order to follow a desired path. For this purpose, we start
considering the tracking of a piecewise smooth trajectory with an initial density given
by a unimodal distribution. Thereafter, we demonstrate that our approach allows to
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construct control functions that are able to drive the evolution of the density with a
bimodal structure.
In our first experiment on tracking, we choose Ω = [−1, 1] × [−1, 1], and the initial
density on this domain is given by

f0(x) := C0

2πσ2 exp
(
−|x− ξ0|2

2σ2

)
.

This is a unimodal Gaussian distribution centred in ξ0 = (−0.5, 0.5), with variance
σ = 1

4 , and we take C0 = 1
10 . Notice that, by this choice, the value of f0 at the

boundary of Ω is of the order of machine precision, and further it holds that f0 ∈
C∞(Ω).
In this experiment, the purpose of the control is to drive the ensemble of trajectories
along the following piecewise smooth desired trajectory

ξD(t) :=



(
3t
T
− 1

2 ,
1
2

)
0 ≤ t ≤ T

3(
1
2 ,

3
2 −

3t
T

)
T
3 < t ≤ 2T

3(
5
2 −

3t
T
,−1

2

)
2T
3 < t ≤ T.

(3.65)

A plot of this trajectory in Ω is given in Figure 3.2a. Correspondingly, our potentials
in the objective functional are chosen as follows

θ(x, t) = − Cθ
2πσ2

θ

exp
(
−|x− ξD(t)|2

2σ2
θ

)
, ϕ(x) = − Cϕ

2πσ2
ϕ

exp
(
−|x− ξD(T )|2

2σ2
ϕ

)
,

where x ∈ Ω and t ∈ [0, T ], and the values of Cθ, Cϕ, σθ and σϕ are given in Table
3.2.
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(a) Parametric plot of ξD over time.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

(b) Parametric plot of the mean E[x] over
time.

Figure 3.2. Setting and results of the first experiment.
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Param. Value Param. Value

γ 5 · 10−4 δ 10−4

ν 5 · 10−4 Nx 26

Nt 80 T 3

umax 1.5 umin −1.5

Cθ 10 σθ 0.45

Cϕ Cθ
T

Nt−1 σϕ 0.45
Table 3.2. Parameters’ set-
ting for the first experi-
ment.

Param. Value Param. Value

γ 10−4 δ 10−5

ν 10−4 Nx 51

Nt 150 T 3

umax 1 umin −1

Cθ 10 σϕ 0.45

Cϕ Cθ
T

Nt−1 σϕ 0.45
Table 3.3. Parameters’ set-
ting for the second experi-
ment.

Now, we specify a setting that facilitates a comparison of our results of ensemble
control with a simple dynamic for the trajectory. Specifically, suppose that our desired
trajectory is the result of the following dynamics

(3.66) ξ̇D(t) = u1(t), ξD(0) = ξ0.

Then we can immediately compute the control u1 in this equation such that the
solution to (3.66) is given by (3.65). This control is plotted in Figure 3.3b, and we
refer to it as the single-trajectory control, specifically taken u2 ≡ 0, which corresponds
to no change in the variance. Notice that this control is not in our control space
Uad (recall its definition (3.23) above) since it is not continuous. Moreover, in its
construction, we do not require to satisfy the conditions of its value being zero at
initial and final times.
In our drift (2.5), we choose a0 = 0, a1 = 1 and a2 = 0, and with this setting we
solve our Liouville control problem, taking the numerical values given in Table 3.2.
The resulting control function is depicted in Figure 3.3a, which appears similar to the
single-trajectory control in Figure 3.3b. We see that the former is in H1

T and is zero
at t = 0 and t = T as required, we refer to it as the Liouville control.
Corresponding to the Liouville control, we obtain an evolution of the density with
which we compute the function E[x](t) =

∫
x f(x, t) dx. This function is shown in

Figure 3.2b. Notice that it closely resembles the desired trajectory.
In our second experiment, we consider the setting a0 = 0, a1 = 1 and a2 = 1, and we
take a smooth initial f0 that is given by a bimodal Gaussian distribution as follows

(3.67) f0(x) = C0

2πσ2 exp
(
−|x− ξ

1
0 |2

2σ2

)
+ C0

2πσ2 exp
(
−|x− ξ

2
0 |2

2σ2

)
,
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Figure 3.3. Comparison of controls for the first experiment.

where

ξ1
0 =

(
−3

4 ,
3
4

)
, ξ2

0 =
(
−3

4 ,−
3
4

)
, σ = 1

4 , C0 = 1
10 .

The values of the other parameters are specified in Table 3.3.
In this case, we choose the following desired trajectory

ξD(t) =
(
−3

4 + 3t
2T , sin

(
πt

T

))
.

We have that ξD(0) corresponds to the midpoint between the centres of the two
Gaussians defining the initial density; see Figure 3.4a, where we plot circles around
the centres of the two Gaussians with radius of their standard deviation.
With this setting, we solve our Liouville optimal control problem and obtain the
controls shown in Figure 3.4b. The values of Cθ, Cϕ, σθ and σϕ together with the
values of the numerical parameters are given in Table 3.3.
Corresponding to these controls, we obtain the evolution of the density depicted in
Figure 3.5a. Specifically, we plot the shape of the density f at all times. One can see
that the bimodal density is driven towards the desired trajectory becoming unimodal.
The same result is visualized in Figure 3.5b from a different perspective.
We would like to conclude this section considering a setting that generalizes our
framework. Our purpose is to demonstrate that our control framework is also able



3.4. Numerical analysis of ensemble control problems 91

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Desired trajectory ( ) and circles cen-
tred at ξ1

0 and ξ2
0 with radius σ identifying

the Gaussians ( )

0 1 2 3
−1

−0.5

0

0.5

1

0 1 2 3
−1

−0.5

0

0.5

1

0 1 2 3
−1

−0.5

0

0.5

1

0 1 2 3
−1

−0.5

0

0.5

1

(b) Optimal controls; top left: u1
1, top right:

u2
1, bottom right: u1

2, bottom left: u2
2

Figure 3.4. Setting and results of the second experiment.

(a) Evolution of f over time;
top view.

(b) Evolution of f over time;
side view.

Figure 3.5. Evolution of the density in the second experiment.

to drive a smooth bimodal distribution to follow two trajectories. In this case, we
choose a potential θ that resembles a double well, so that it provides two basins of
attraction corresponding to the two trajectories.
In this experiment, we consider the initial bimodal f0 given in (3.67), and consider
the following two desired trajectories

ξD1(t) =
(
−3

4 + 3t
2T ,

3
4 −

3t
4T

)T
, ξD2(t) =

(
−3

4 + 3t
2T ,−

3
4 + 3t

4T

)T
In correspondence to these trajectories, we define θ as follows

θ(x, t) = − Cθ
2πσ2

θ

[
exp

(
−|x− ξD1(t)|2

2σ2
θ

)
+ exp

(
−|x− ξD2(t)|2

2σ2
θ

)]
.

Similarly, we define ϕ(x) = θ(x, T ).
We solve the resulting ensemble control problem with Algorithm 3.2 and obtain the
controls depicted in Figure 3.6. In correspondence to these controls, we obtain the
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Figure 3.6. Optimal controls in the third experiment; top left: u1
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(a) Desired trajectories ξD1 (solid line) and
ξD2 (dashed line).

(b) Evolution of the density over time.

Figure 3.7. Results of the third experiment.

evolution of the initial bimodal density shown in Figure 3.7b. We see that the two
initial Gaussians are driven along the desired trajectories ξD1 and ξD2 shown in Figure
3.7a and merge at the final time.

These experiments finish the investigation of kinetic models without collisions. In the
next chapter, we turn to linear kinetic models and include the modelling of collisions.



Chapter 4
Linear kinetic models

In this chapter, we investigate linear kinetic models including collisions. The para-
mount concept of kinetic theory is that of a distribution function f of a sufficiently
rarefied gas consisting of hard spherical particles defined in the phase space spanned
by the position x ∈ R3 and velocity v ∈ R3. In this statistical framework, the
fundamental model that governs the time evolution of f is the Boltzmann equation
[25]. Since its appearance, this framework has been widely investigated because it
also provides the intermediate (mesoscopic) step in the transition between atomistic
and continuous models for gas dynamics; see the recent works [9, 24, 107] and the
references therein.
On the other hand, the Boltzmann equation is a fundamental simulation tool in
applications where the mesoscopic scale is predominant. In fact, it is employed in
a wide class of problems, ranging from aerodynamics and space propulsion [83] to
microscale electronic devices and materials [56, 111], ionized dilute gases [134] and
high-temperature plasma [84], and other applications in multi-particle systems [5].
Indeed, this is a very short and incomplete list of references concerning present and
envisioned application problems that often go much beyond the setting of the original
formulation of the Boltzmann equation.
In this chapter, we focus on a representative model for linear kinetic theory proposed
by J. Keilson and J.E. Storer [86], and we consider a control mechanism in the
collision kernel that models the average speed of the postulated background particles.
This mechanism could theoretically be realised by a temperature gradient in the fluid
background [65, 105].
In Section 4.1, we consider the space-homogeneous case as originally proposed by
Keilson and Storer and assume that the time-dependent control is within the colli-
sion kernel. We formulate an optimal control problem in this setting and derive a
corresponding optimality system. Moreover, we manage to reformulate the adjoint

93
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equation in such a way, that enables us to use a fully kinetic optimization framework
to solve the optimal control problem.
In Section 4.2, we extend our model to the space-inhomogeneous case and include
also external forces. We formulate an optimal control problem governed by the inho-
mogeneous Keilson-Storer equation and consider the control mechanism as a space-
dependent external force. Also for this case, we formulate a numerical optimization
strategy that considers the kinetic interpretation of the arising equations. We validate
our implementation by performing different numerical experiments.

4.1. The controlled Keilson-Storer collision term

We choose the so-called Keilson-Storer (KS) master equation for a multitude of rea-
sons. Since its appearance in 1952, the KS model has been successfully utilized in a
range of applications including the estimation of transport coefficients [17], laser spec-
troscopy [16], and molecular dynamics simulations [125], reorientation of molecules
in liquid water [73], and quantum transport [88]. Further, the KS model is speci-
fied through a single parameter that allows to mimic strong and weak collision limits
[121]. Moreover, recently a microscopic derivation of the KS master equation has
been achieved [72].
The Keilson-Storer master equation was proposed in [86] as a variant of a linear
Boltzmann equation [42] to model Brownian motion [97, 99]. This is the motion of a
particle of massM immersed in a viscous fluid that determines dynamical fluctuations,
which are due to interaction of the much smaller particles of mass m � M of the
fluid with the heavier particle (the particle, in the following). If A(w, v) dv is the
probability per unit time that this particle with velocity w will undergo a transition
to a ball of volume dv centred in v, then the master equation describing its motion
can be written as follows [86, 117]

(4.1) ∂tf(v, t) = Γ
∫
Rd
A(w, v) f(w, t) dw − Γ f(v, t)

∫
Rd
A(v, w) dw,

where f(v, t) represents the probability density of the particle to have velocity v at
time t, and Γ represents the relaxation rate 1/τ , the inverse of the mean free time
between collisions of the particle of mass M with the fluid particles. In [86], this
rate is assumed constant. Further, in (4.1), the integrals are taken over the entire
Euclidean velocity space, which we assume to be two dimensional.
Now, in order to locate the KS optimal control problems considered in this chapter in
the larger context of (1.3), we remark that our KS model (4.1) is a special case of (1.3).
Specifically, assuming that for the drift function it holds
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a(x, v, t;u) = (a1(v, t;u), a2(x, t;u)), which is the case in the most physical appli-
cations, we can write (1.3) as

∂tf(x, v, t) + a1 · ∇xf(x, v, t) + a2 · ∇vf(x, v, t) = C[f ](x, v, t).

Notice that the space coordinate x does not appear in the KS model because it is
assumed that f is uniformly (and infinitely) distributed along the x–coordinate. This
is also why the term a1 · ∇xf does not appear in our model; see, e.g., [43, Chapter
6] for an analysis of this case. On the other hand, the term a2 · ∇vf denotes the
action of an external force on the particles, which can obviously play the role of a
control force that we investigate in Section 4.2. In the current section, we assume
a2 ≡ 0. The (nonlinear) collision term C[f ] is the main focus of most theoretical
and application works. However, already in the linear KS case, where C[f ] is given
by the right-hand side of (4.1), we are confronted with the problem that the adjoint
of C[f ] no longer has the structure of a master equation term. This is conceptually
and practically unsatisfactory, since many simulation schemes exploit the possibility
to split the transport and collision parts of the Boltzmann equation, implementing
the latter based on its physical interpretation. Moreover, this physical significance
may be instrumental to have more insight into a control mechanism that is included
in the collision term, and in the case where a parameter identification problem for
the collision is considered. In Section 4.1, we focus on a class of control problems
where the control mechanism is included in the KS kernel through a control function
u that is specified below. More generally, our functional setting and our optimal
control formulation are similar to that discussed in the previous Chapters in the
case of ensemble control problems governed by the Liouville equation. Similarly, we
discuss existence of an optimal control and, subject to appropriate differentiability
conditions, we derive the KS optimality system that is central in our investigation.
One can also use (4.1) to model the motion of multiple massive particles immersed in
the fluid that do not interact with each other. In this case, f represents the material
density that can be conveniently normalized to 1. This assumption requires that
the number density of the particles is much smaller than the number density of the
particles that constitute the background. In both pictures, it is required that the
fluid particles are in thermal equilibrium; see, e.g., [99].
In this setting, Keilson and Storer suggest a structure of the kernel A that reasonably
models the microscopic scattering process as a damping scheme as follows

A(v, w) = a(w − γ v),

where a(·) is a function and 0 < γ / 1 is a damping parameter. The other require-
ment considered in [86] is the so-called detailed balance that requires
A(w, v) f eq(w) = A(v, w) f eq(v), where f eq denotes the equilibrium distribution that
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the particles will asymptotically assume. These two requirements result in the fol-
lowing explicit kernel

A(v, w) = A0 exp
(
−β |w − γv|2

)
,(4.2)

where | · | denotes the Euclidean norm in the velocity space, and A0, β are positive
constants, which are related by requiring that f eq has the Maxwellian distribution
and 1

Γ
∫
Rd A(v, w) dw = 1.

Thus, we set Γ = A0 (π/β)d/2, and β (1− γ2) = M
2kBTp , where Tp denotes the temper-

ature. Therefore, γ ∈ (−1, 1) and A0 are the parameters that define the KS kernel.
Furthermore, we have f eq(v) = f̄0 exp (−β (1− γ2) |v|2), where f̄0 is a normalization
constant. Notice that, with γ = 0, we have A(v, w) = f eq(w), and the KS master
equation takes the well-known BGK structure as follows [21]

∂tf(v, t) = Γ (f eq(v)− f(v, t)) .

This corresponds to the case of strong collisions: each collision restores the equilibrium
configuration [35]. On the other hand, if γ = 1 then (4.2) corresponds to a Dirac
delta, and (4.1) becomes ∂tf = 0, that is, no relaxation occurs [117].
One can verify that 1

Γ
∫
Rd A(v, w) f eq(x, v) dv = f eq(x,w), which means that scattering

does not change the equilibrium configuration. At any instant of time t, we also have
the following change in average velocity due to collision

〈w〉after =
∫
Rd

∫
Rd
wA(v, w) f(v, t) dv dw = γ

∫
Rd
v f(v, t) dv = γ 〈w〉before .

This result very well explains that with γ close to 1, weak collisions are modelled,
and in this regime the Fokker-Planck equation can be derived from the KS model by
means of the Kramers-Moyal expansion; see [86]. This is the regime that we consider
in this chapter.
We remark that the case of negative γ corresponds to the tendency of reversal of the
momentum upon collision, and γ close to −1 is appropriate to model reorientation of
molecules in liquid water [73], and with γ = −1 the resulting KS models is closely
related to the master equation for quantum transport with stochastic telegraph noise
[88]. For further discussion and additional references see, e.g., [72].
Our focus is the solution of a KS optimality system where a Monte Carlo (MC)
scheme is used to solve the KS model and the corresponding KS adjoint problem in
order to determine a sufficiently accurate gradient that is needed in a gradient-based
optimization procedure. This development work requires the implementation of the
different components of the optimality system in the statistical MC framework, and
this requirement leads to the reformulation of the KS adjoint problem that we propose
in this chapter and illustrate in detail.
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In the next section, we formulate our KS optimal control problem in the framework
of ensemble control problems as in [12, 32, 33, 34]. The corresponding first-order
optimality conditions are discussed in Section 4.1.2. In this section, we show how
the structure of the KS adjoint equation differs from that of a kinetic model, and
discuss a reformulation and an approximation of the adjoint KS master equation by a
kinetic model that can be solved with a MC scheme. In Section 4.1.3, we illustrate our
numerical setting and give a detailed account of our implementation of the MC scheme
for the KS model and its adjoint, and discuss our optimization method. For clarity, all
components of our solution strategy are also summarized in pseudo algorithms that
closely resemble our simulation and optimization code. In Section 4.1.4, we present
results of numerical experiments to validate the ability of our framework to construct
control functions that drive the evolution of the ensemble of particles to follow a
given trajectory and to attain a final configuration. We also give a comparison with
a deterministic approach in the one-dimensional case.

4.1.1. Formulation of a Keilson-Storer optimal control problem

In this section, we discuss the formulation of an optimal control problem governed
by the KS master equation. This is a modelling process that requires the definition
of the control mechanism and the purpose and cost of the control by means of a cost
functional. We consider our control problem defined in the time horizon [0, T ] and in
a two-dimensional velocity space.
We assume a control mechanism in the KS kernel as follows

A(v, w;u) = A0 exp
(
−β |w − γv + u|2

)
,(4.3)

where the control u : [0, T ]→ R2 is a time-dependent function representing a velocity
field acting on the particles. Clearly, if u = −(1 − γ)µ is a constant velocity vector,
then the setting above results in a shift of the mean velocity to a desired value
µ ∈ R2. As mentioned in the introduction of this chapter, this control mechanism
could correspond to a change in temperature gradient of the background fluid.
Notice that, as in [86], it holds that

∫
R2 A(v, w) dw = Γ. Hence, to be consistent with

[86], we write our controlled KS master equation as follows

(4.4) ∂tf(v, t) = Cu[f ](v, t),

where the controlled collision term is given by

Cu[f ](v, t) =
∫
R2
A(w, v;u) f(w, t) dw − f(v, t)

∫
R2
A(v, w;u) dw.(4.5)
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Assuming a given initial distribution f0 ∈ Hm
k (R2) with (m, k) ∈ N2, f0 ≥ 0, and

u ∈ U , where
U := H1

T

is the control space, we can write the resulting Cauchy problem as follows

(4.6) f(v, t) = f0(v) +
∫ t

0
Cu[f ](v, s) ds.

Notice that Cu[·] is linear and bounded with respect to the L∞ space and therefore
continuous. Moreover, it defines a compact Schatten-von-Neumann-integral operator;
see [60].
With these properties, one can prove existence of a non-negative unique solution
f ∗ ∈ CT ∗ (Hm

k (R2)) to our Cauchy problem in a time interval [0, T ∗], 0 < T ∗ ≤ T .
See also the energy estimate (4.36) and Remark 4.6 below.

Lemma 4.1 (Conservation). The controlled Keilson-Storer term (4.5) is mass con-
serving. Specifically, it holds for all times t ∈ [0, T ]∫

Rd
Cu[f ](v, t) dv = 0

Proof. Since all integrals in the following converge as the solution of the KS
Master equation is in CT (Hm

k (Rd)), it holds that∫
Rd

(∫
Rd
f(x,w, t)A(w, v) dw −

∫
Rd
f(x, v, t)A(v, w) dw

)
dv

=
∫
Rd

∫
Rd
f(x,w, t)A(w, v) dw dv −

∫
Rd

∫
Rd
f(x, v, t)A(v, w) dw dv = 0,

where we interchanged the variable names in the last term. �

As a direct consequence, we have that the KS Master equation preserves mass. Since
the Master equation provides positivity of the solution [129, page 106] , it holds that∫

Rd
|f(v, t)| dv =

∫
Rd

(
f0(v) +

∫ t

0
Cu[f ](v, s) ds

)
dv

=
∫
Rd
f0(v) dv +

∫ t

0

∫
Rd
Cu[f ](v, s) dv ds.

Now, we can apply Lemma 4.1 to obtain that the last term vanishes. Hence, we get

‖f(·, t)‖L1(Rd) = ‖f0‖L1(Rd) ∀t ∈ [0, T ∗].

Let us turn again to the case d = 2. We assume that T = T ∗ and remark that,
for a fixed initial condition f0, the solution to (4.4)–(4.5) for a given u defines a
control-to-state map

G : U → C1
T (L2(R2)), u 7→ f = G(u),
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that is well defined and continuous. Notice that our control is not in a parametrized
form. In fact, since our control space is infinite dimensional, we are dealing with an
infinite dimensional optimization problem.
Next, we discuss the following cost functional that models the objective of the control
and its cost

J(f, u) =
∫ T

0

∫
R2
θ(v, t) f(v, t) dv dt+

∫
R2
ϕ(v)f(v, T ) dv + ν

2 ‖u‖
2
U .(4.7)

This functional results from the notion of ensemble and minimum attention control
proposed in [32, 33, 34]. For the former, the density of the ensemble of trajectories
is involved, for the latter a H1

T cost aims at controls that are slow-varying in time,
which would make them easier to implement in a physical device.
Recall, that we call the first term in (4.7) the tracking term, the second term represents
the final observation, and the last term denotes the cost of the control with a control
weight ν > 0. The tracking term includes a function θ that represents an attracting
potential for the velocities of the particles. Specifically, let us denote with ηD(t)
a (time-dependent) desired mean velocity profile for the ensemble of our particles.
Then, we may choose θ(v, t) = Θ (|v − ηD(t)|) such that the global minimum of the
tracking part is achieved when all particles have velocity ηD. Similarly, the final
observation term can be defined as ϕ(v) = Φ (|v − ηT |), which corresponds to the
requirement that the mean velocity of the particles at final time is close to ηT . In
general, we require that θ and ϕ are bounded from below and locally convex in the
neighbourhood of ηD and ηT , respectively. We consolidate these requirements in the
following assumption:

Assumption 4.1. We take θ ∈ L1
T (L2(R2)) and ϕ ∈ L2(R2), bounded from below and

attracting, in the sense that the negative gradients of ϕ(·) and θ(·, t) are pointing to
the unique global minimum of ϕ(·), respectively θ(·, t), for all t ∈ [0, T ].

Remark 4.1. Notice that Assumption 4.1 is a global one. However, in fact it is
enough to require that θ and ϕ are locally convex in a neighbour hood of ηD and ηT
instead of being attractive.

The cost of the control should guarantee bounded controls that continuously change
in time. For this purpose, we choose

‖u‖2
U = ‖u‖2

H1
T

=
∫ T

0
|u(t)|2 dt+

∫ T

0
|u′(t)|2 dt,

where u′ = d
dtu. This norm guarantees that u is bounded and, by Sobolev embedding,

continuous. The value of the weight ν > 0 establishes the relative importance of
achieving the given target with respect to the cost of the corresponding control.
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Notice that increasing the value of ν gives more importance to the cost of the control
rather than on its tracking ability.
Now, we can formulate our KS optimal control problem

min J(f, u) :=
∫ T

0

∫
R2
θ(v, t) f(v, t) dv dt+

∫
R2
ϕ(v)f(v, T ) dv + ν

2 ‖u‖
2
H1
T

s.t.

∂tf(v, t) = Cu[f ](v, t), in R2 × (0, T ]
f(v, 0) = f0(v) in R2

u ∈ U.

(4.8)

We remark that, by means of the control-to-state map, this constrained optimization
problem can be reformulated as the following unconstrained minimization problem

(4.9) min
u∈U

Jr(u),

where Jr(u) = J(G(u), u) defines the so-called reduced cost functional.
In this setting, we can state existence of a minimizer, which is an optimal control, to
(4.9) as follows.

Theorem 4.1. Let θ and ϕ fulfil Assumption 4.1 and f0 ∈ Hm
k (R2), (m, k) ∈ N2.

Then the KS optimal control problem (4.8) has at least one solution u∗ ∈ U with
corresponding optimal state f ∗ ∈ CT (Hm

k (R2)).

Proof. The functional J given in (4.7) is well-defined for
(f, u) ∈ CT (Hk

m(R2))×H1
T . It is bounded from below and coercive in u. Since

the map G takes its values in a bounded set of L∞T (Hk
m(R2)), it follows that Jr is

bounded. Furthermore, Jr is weakly lower semi-continuous since G is continuous, the
last term is a norm, so it is weakly lower semi-continuous, and the first two terms are
linear in f , and then they are weakly continuous with respect to the L∞T (L2) and L2

topologies. Thus, we have that, if
(
un
)
n
⊂ U is a sequence which converges weakly

to a u ∈ U , we have

lim inf
n→+∞

Jr(un) = lim inf
n→+∞

J
(
G(un), un

)
≥ J

(
G(u), u

)
= Jr(u) .

At this point, proving the existence of a minimizer for Jr is standard: Let us take
a minimizing sequence

(
un
)
n
⊂ U . This sequence is bounded by the coerciveness

of the cost functional in u. Since U is a Hilbert space, we can extract a weakly
convergent subsequence, which we do not relabel for simplicity; let us call u∗ ∈ U its
limit-point. Then, by the weak-lower semi-continuity of Jr, we can conclude that u∗

is a minimizer. �
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4.1.2. Keilson-Storer optimality system

In this section, we discuss the optimality system for (4.8) using the Lagrange frame-
work. Since (4.8) and (4.9) are equivalent, assuming Fréchet differentiability of G and
J , the first-order necessary condition for a solution to (4.9) is given by

∇uJr(u) = 0,

where∇u denotes the gradient with respect to u. This fact allows the characterization
of an optimal control and makes it possible to develop gradient-based schemes for its
computation.
The computation of ∇uJr(u), that is, of ∇uJ(G(u), u) involves the Fréchet differ-
entiability of G and J , which we assume in this chapter; however, see the previous
chapters.

Remark 4.2. Notice that to transfer the results of the previous chapters, one needs
to carefully deal with the regularity of the control that is now depending on x. To be
able to apply the last chapters, the drift should fulfill the corresponding assumptions
(2.11) and therefore the control should be at least one time differentiable. This can
be achieved using large enough m and k (depending on the dimension d) and certain
Sobolev embeddings.

A convenient way to obtain ∇uJr(u) is to introduce the Lagrange function corre-
sponding to (4.8) as follows

L(f, u, q, q0) := J(f, u) +
∫ T

0

∫
R2

(
∂tf(v, t)− Cu[f ](v, t)

)
q(v, t) dv dt

+
∫
R2

(
f(v, 0)− f0(v)

)
q0(v) dv,

where q and q0 represent Lagrange multipliers. In this framework, the so-called opti-
mality system is obtained by requiring that the Fréchet derivatives of L with respect
to each of its arguments are zero. This optimality system consists of three parts: 1)
the KS model with its initial condition; 2) an adjoint KS master equation that evolves
backward in time starting from a terminal condition and having a non-homogeneity
related to the cost functional and a linear reaction term related to the collision kernel;
3) the optimality condition ∇uJr(u) = 0, which is expressed in terms of the solutions
to the two equations discussed in 1) and 2).
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We obtain the following adjoint KS (AKS) kinetic model

−∂tq(v, t) =
∫
R2
A(v, w;u) q(w, t) dw

−q(v, t)
∫
R2
A(v, w;u) dw − θ(v, t), in R2 × [0, T )

q(v, T ) = −ϕ(v), in R2.

(4.10)

Notice that the minus sign in front of the time derivative and the terminal condition
at t = T result by integration by parts required in the process of derivation of this
equation. Making the transformation s = T − t, the sign mentioned above is reversed
and the equation evolves forward in the new time variable s. This fact is used in the
numerical integration of the AKS problem.
However, we are confronted with the problem that (4.10) does not have the structure
of a kinetic equation, that is, the right-hand side of the the AKS equation cannot
be interpreted as a gain-loss term. The required structure can be partially recovered
with the following procedure.
We define

C∗0 =
∫
R2

(
A(w, v;u)− A(v, w;u)

)
dw,(4.11)

and, by transformation of the integration variable, we obtain that C∗0 = Γ 1−γ
γ
. Fur-

ther, we define

C∗u[q](v, t) =
∫
R2
A∗(w, v;u) q(w, t) dw − q(v, t)

∫
R2
A∗(v, w;u) dw,(4.12)

where A∗(w, v;u) = 1
γ
A(v, w;u), which gives an ‘adjoint’ mean free time τq = γ τ .

Then, we can write the adjoint KS equation as follows

−∂tq(v, t) = C∗u[q](v, t) + C∗0 q(v, t)− θ(v, t).(4.13)

Therefore, we need to augment the MC simulation procedure to accommodate the
presence of reaction and source terms in (4.13); see the discussion below.
To conclude the formulation of the optimality system, we illustrate the optimality
condition. For this purpose, we compute the derivative of the KS collision term with
respect to u. In our two-dimensional setting, we have

∂uιCu[f ](v, t) =
∫
R2
f(w, t)A(w, v;u) (−2β(vι − γwι + uι)) dw

− f(v, t)
∫
R2
A(v, w;u) (−2β(wι − γvι + uι)) dw, ι = 1, 2.

(4.14)
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Now, we can write the optimality condition given by the gradient of the Lagrange
function with respect to u set equal to zero. We have

ν u(t)− ν u′′(t)−
∫
R2
q(v, t) ∂uCu[f ](v, t) dv = 0,(4.15)

where u′′ = d2

dt2
u. This equation should be understood in the weak sense, and for its

solution initial and terminal conditions for u are required. Choosing homogeneous
Dirichlet boundary conditions corresponds to the case where the control is switched
on at t = 0, and switched off at t = T . Notice that the left-hand side of (4.15)
represents the reduced gradient in the L2

T (R2) space. We discuss the construction of
∇uJr(u) in Section 4.2.5.
Summarizing, the KS optimality system is given by

∂tf(v, t) = Cu[f ](v, t), f(v, 0) = f0(v)

− ∂tq(v, t) = C∗u[q](v, t) + C∗0 q(v, t)− θ(v, t), q(v, T ) = −ϕ(v)

− u′′(t) + u(t) = 1
ν

∫
R2
q(v, t) ∂uCu[f ](v, t) dv, u(0) = 0, u(T ) = 0.

(4.16)

Our aim is to solve this system using a MC methodology and a gradient-based opti-
mization scheme. For the former task, we investigate a kinetic reformulation of the
AKS equation. For this reason, we interpret q as a distribution function and, corre-
spondingly, we refer to adjoint particles. We remark that the main purpose of the
adjoint variable q is to allow the computation of the reduced gradient. Therefore,
also a suitable approximation of q that results in an effective gradient is appropriate
for our goal.
The main differences between the KS and AKS equations are the presence of a linear
reaction term C∗0q(v, t) and of a source term θ(v, t) in the latter equation. For this
reason, we propose the following augmentation of the MC framework.
We have already mentioned that we can reverse the time in the evolution modelled
by the AKS equation with the transformation s = T − t. Thus, the AKS equation
takes the form

∂sq(v, s) = C∗u[q](v, s) + C∗0q(v, s)− θ(v, s), q(v, 0) = −ϕ(v).(4.17)

Next, to accommodate the source term, we choose it given by a negative Gaussian
distribution, which is consistent with our Assumption 4.1, as follows

θ(v, s) = − Cθ
2πσ2

θ

exp
(
−|v − ηD(s)|2

2σ2
θ

)
, Cθ > 0, σθ > 0,

where Cθ represents a weight of the tracking part of the cost functional, and σθ has
the significance of a standard deviation. This choice is motivated by the fact that
we can implement this term in a MC framework by adding adjoint particles to the
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distribution q in every time-step based on the given Gaussian distribution. Thus, at
each time-step, we add a certain number of particles Nfrac obeying N2(ηD(s), σ2

θI2),
where I2 is the two-dimensional identity matrix, N2(µ,Σ) is the bivariate normal
Gaussian distribution with mean µ ∈ R2 and covariance matrix Σ ∈ R2×2 .
Similarly, we choose

ϕ(v) = − Cϕ
2πσ2

ϕ

exp
(
−|v − ηT |

2

2σ2
ϕ

)
, Cϕ > 0, σϕ > 0.

Now, concerning the linear reaction term, we have that

∂sq(s, v) = C∗0 q(v, s),

which can be approximated by Euler’s method by

q(v, s+ δs) = q(v, s) + δsC∗0 q(v, s),

for small δs > 0. Therefore, we can implement the contribution of the linear reaction
term as an increase of the distribution of the adjoint particles at every point according
to the factor (1 + δsC∗0) for each time-step δs. This means that one particle with
velocity v at time s is replaced by (1 + δsC∗0) particles with the same velocity v at
the time s+ δs. Notice that in our numerical experiments we have (1 + δsC∗0) ≈ 2.
It is clear that the value of C∗0 results from the specification of the KS kernel. On the
other hand, the time-step δs is chosen in relation to the collision frequency.

4.1.3. A Monte Carlo scheme and numerical optimization

In this section, we illustrate our implementation of the Monte Carlo scheme for our
KS problem; see [70] for more details. We remark that this is a mesh-less scheme
where the particles are represented by labelled pointers to structures that contain
all information as velocity, time of collision, etc.. Essentially, a time-step in a MC
procedure consists of changing the content of this structure, e.g., velocity, and adding
or subtracting pointers, that is, particles, if required. Now, the content of each
structure may change for two reasons. If we have a streaming phenomenon, which is
the case of an inhomogeneous model and/or presence of external forces, then position
and velocity are changed according to the underlying dynamical system. This is
the so-called free flow part. On the other hand, the velocity of each particle may
change due to collisions with other similar particles or with much smaller particles
that constitute the background, which is the case of KS framework; see our discussion
in the Introduction. We remark that this type of dynamics resembles a piecewise-
deterministic Markov-process, since for the change of the velocity only the current
state is considered, see [131].
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In this evolution process, the time-step size ∆t is chosen to be one order of magnitude
bigger than the mean time between two collisions. This is in order to retain the
statistical significance of the occurrence of collisions. On the other hand, the time-
step size cannot be too large since in this case transient phenomena would be filtered
out.
To determine when a particle undergoes a velocity transition, we follow the procedure
described in [85]. If τ−1 is the collision frequency, then τ−1dt is the probability that
a particle has a collision during the time dt. Now, assuming that a particle has a
collision at time t, the probability that it will be subject to another collision at time
t+ δt is computed according to a Poisson distribution given by

exp
(
−
∫ t+δt

t
τ−1 dt′

)
= exp(−δt/τ).

Thus, following a standard approach, and using a uniformly distributed random num-
ber r between 0 and 1, one obtains the following

(4.18) δt = −τ log(r).

The same formula can be used in the simulation of the AKS evolution by replacing τ
with τq.
Now, assuming that a collision occurs, we need to determine the new velocity after
the collision. Clearly, this output depends on the KS kernel that models collision,
which can be written as a multivariate normal distribution as follows

A(v, w;u) = Γβ
π

exp
(
−β|w − γv + u|2

)
= Γβ

π
exp

(
−1

2(w − γv + u)T2βI2(w − γv + u)
)

= Γ 1
2π
√

1
(2β)2

exp
(
−1

2(w − γv + u)T2βI2(w − γv + u)
)

= ΓN2

(
γv − u, 1

2β I2

)
.

(4.19)
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Similarly, for the MC simulation of the AKS model, we can write the transition
probability

A∗(v, w;u) = 1
γ
A(w, v;u) = Γ

γ

β

π
exp

(
−β|v − γw + u|2

)

= Γ
γ

β

π
exp

−βγ2
∣∣∣∣∣w −

(
v

γ
+ u

γ

)∣∣∣∣∣
2


= Γ
γ

1
2π
√

1
(2βγ2)2

exp
−1

2

(
w −

(
v

γ
+ u

γ

))T
2βγ2I2

(
w −

(
v

γ
+ u

γ

))
= ΓN2

(
v

γ
+ u

γ
,

1
2βγ2 I2

)
.

In the case of the KS model, the velocity of a given particle changes according to the
normal distribution (4.19), and since the covariance matrix is diagonal, it is possible
to generate the new velocity component-wise according to the corresponding one-
dimensional distributions. To achieve this goal, we need to have a standard Gaussian
random number generator. If r1 and r2 are two independent uniformly distributed
random numbers between 0 and 1 then, by means of the Box-Muller formula [30], we
have that

z1 =
√
−2 log(r1) cos r2, z2 =

√
−2 log(r1) sin r2,

are two random numbers distributed according to N (0, 1). Thus,

wx = γvx − ux + z1/
√

2β, wy = γvy − uy + z2/
√

2β

are two random numbers distributed according to (4.19). Therefore, (wx, wy) repre-
sents the new velocity of the particle under consideration with velocity (vx, vy) before
the collision and subject to the control field (ux, uy).
At this point, we can illustrate our MC KS solver with the following algorithm, where
the initial condition f0 is used to initialize the list of particles (pointers) in the sense
that it provides the density of the initial distribution of the velocities of the particles.
In the initialization, we choose a number of particles Nf . Further, we consider a
partition of the time interval [0, T ] in Nt subintervals of size ∆t = T/Nt such that
∆t � δt. With this setting, we have tk = k∆t, for the time of the k-th time-step,
k = 0, . . . , Nt.
In our implementation, we define F as the list of labelled pointers to structures that
resemble particles. We denote with F k[p] the pointer to the p-th particle at the k-th
time-step. We have p = 1, . . . , Nf and k = 0, . . . , Nt. Furthermore, let F k[p].v be the
velocity of the p-th particle at the k-th time-step, and let F k[p].t′ be the time that
is elapsed for the p-th particle starting from tk. This quantity is used to determine
if the particle will undergo another collision in the current time-step, assuming that
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0 ≤ F k[p].t′ < ∆t. Analogously, we denote with Q the list of labelled pointers to
structures representing adjoint particles.
To initialize F 0 using the distribution f0, we apply Algorithm 4.1 given below. A
similar algorithm applies to initialize QNt with the distribution −ϕ.

Algorithm 4.1 MC KS initialization
Require: f0(v)
1: for p = 1 to Nf do
2: Compute F 0[p].v ∼ f0(v)
3: Set F 0[p].t′ = 0
4: end for

Our MC KS solver is implemented as presented in Algorithm 4.2.

Algorithm 4.2 MC KS equation
Require: f0(v), u(t)
1: Initialize Nf particles using Algorithm 4.1 and f0(v)
2: for k = 0 to Nt − 1 do
3: for p = 1 to Nf do
4: while F k[p].t′ < ∆t do
5: Compute δt according to (4.18)
6: Determine F k[p].v ∼ N2

(
γv − u(tk), 1

2β I2
)

7: F k[p].t′ = F k[p].t′ + δt
8: end while
9: if F k[p].t′ > ∆t then
10: F k+1[p].t′ = F k[p].t′ mod ∆t
11: end if
12: end for
13: end for

Next, we present a similar scheme for solving the AKS problem. In this case, we need
to implement the contribution to the evolution of the adjoint particles due to the
presence of the source term θ and of the linear reaction term. This implementation
is illustrated with the following two Algorithms 4.3 and 4.4.

Algorithm 4.3 Implementation of the source term θ at time tk

Require: ηD(tk), σθ, Nfrac

1: Generate Nfrac new particles with velocity components having the normal distri-
bution with mean ηD(tk) and variance σθ: v ∼ N

(
ηD(tk), σ2

θ

)
2: Add these particles to the existing ones in Qk
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Algorithm 4.4 Implementation of the linear reaction term at time tk

Require: Qk, Nk
q , ∆t

1: for p = 1 to Nk
q do

2: Generate b∆t C∗0c particles with the velocity Qk[p].v
3: end for
4: Add these particles to the existing ones in Qk

Notice that, since in the implementation of the AKS model we vary the number of
adjoint particles depending on the linear reaction term and the source term, we index
this number with k and write Nk

q . In Algorithm 4.3, we choose Nfrac � Nf .
With these two procedures, we can implement the time evolution of the adjoint vari-
able starting from the terminal condition given by −ϕ(v). This function is used to
initialize the list of adjoint particles (pointers) in the sense that it provides the density
of the initial distribution of the velocities of these particles.

Algorithm 4.5 MC adjoint KS equation
Require: θ(v, t), ϕ(v), u(t).
1: Initialize QNt with NNt

q = Nfrac particles using Algorithm 4.1 and −ϕ
2: for k = Nt to 1 do
3: Use Algorithm 4.3 to implement the source term
4: Use Algorithm 4.4 to implement the linear reaction term
5: for p = 1 to Nk

q do
6: while Qk[p].t′ < ∆t do
7: Generate δt according to (4.18) using τq instead of τ
8: Determine v ∼ N2

(
v
γ

+ u(tk)
γ
, 1

2βγ2 I2
)

9: Qk[p].t′ = Qk[p].t′ + δt
10: end while
11: if Qk[p].t′ > ∆t then
12: Qk−1[p].t′ = Qk[p].t′ mod ∆t
13: end if
14: end for
15: end for

Although a computational mesh to solve the KS and AKS problems is not required, we
need this mesh to evaluate the optimization gradient. For this purpose, we consider
a bounded domain of velocities Υ := [−vmax, vmax]2 ⊂ R2, where vmax is a working
parameter that represents a maximum value of each component of the velocities of
the particles. The setting of this parameter is possible since we choose f0 as Gaussian
function that rapidly decays to zero.
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Now, we define a partition of Υ in equally-spaced, non-overlapping square cells with
side ∆v = 2b/Nv where Nv ≥ 2. On this partition, we consider a cell-centred repre-
sentation of the velocities as follows

Υ∆v :=
{

(vi1, v
j
2) ∈ Υ, i, j = 1, . . . , Nv

}
,

where

vi1 =
(
i− 1

2

)
∆v − vmax, vj2 =

(
j − 1

2

)
∆v − vmax.

On the other hand, we recall that on the time interval [0, T ], we have the time-steps
tk = k∆t, k = 0, . . . , Nt, and define

Γ∆t :=
{

tk := k∆t ∈ [0, T ], k = 0, . . . , Nt

}
.

Now, we denoted with fkij the occupation number of the cell centred in (vi1, v
j
2) in the

velocity domain. To construct this function, we count the particles at time-step k

that have velocity in the cell centred at v = (vi1, v
j
2). Thus, we define

fkij =
Nf∑
p=1

1ij

(
F k[p].v1, F

k[p].v2
)
,(4.20)

where 1ij(·, ·) denotes the indicator function, specifically 1ij(v1, v2) = 1 if and only
if (v1, v2) is located in a cell of Υ∆v centred at (vi1, v

j
2) and zero otherwise.

It results that, if a particle with velocity v within a cell centred at (vi1, v
j
2) is subject

to collision and acquires a new velocity v′ within a cell centred at (vk1 , vl2), then the
value of fij is reduced by 1 and, on the other hand, the value of fkl is increased by 1.
Notice that choosing vmax large enough, the probability that the velocity of a particle
exceeds the boundary of Υ after collision is very low but possibly not zero. If this
rare event happens, we generate again a new velocity for the particle using the same
pre-collision velocity as before.
In the case of the AKS evolution, we have to deal with the possibility that the velocity
bound vmax will be exceeded in a different way. Because of the structure of the adjoint
collision and the high variances of θ and ϕ, the occurrence of exceeding the bound of
vmax by the post-collision velocity of an adjoint particle is not a rare event. However,
notice that the purpose of the adjoint distribution is its contribution to the calculation
of the gradient given in (4.15). In this formula, it appears inside the integral multiplied
with ∂uCu[f ], and this latter term is vanishing while approaching the computational
boundary. Therefore, we only need to consider the adjoint particles that have velocity
inside Υ. Specifically, we calculate

qkij =
Nk
q∑

p=1
1ij

(
Qk[p].v1, Q

k[p].v2
)
.(4.21)
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Now, we focus on (4.14) and assemble the L2 optimization gradient (4.15) in the
vector g ∈ R(Nt−1)×R(Nt−1). We denote the numerical approximation to ∂uCu[f ](v, t)
at v = (vi1, v

j
2) and t = tk with Gk

ij, where i, j = 0, . . . , Nv, k = 1, . . . , Nt. We use a
rectangular quadrature rule to approximate the integrals in (4.14) and obtain
(
Gkij

)
1

= (∆v)2
[ Nv∑
m,n=0

fkmnAmnij(−2β(vi1 − γvm1 + uk1))− fkijAkijmn(−2β(vm1 − γvi1 + uk1))
]
,

(
Gkij

)
2

= (∆v)2
[ Nv∑
m,n=0

fkmnAmnij(−2β(vj2 − γvn2 + uk2))− fkijAkijmn(−2β(vn2 − γv
j
2 + uk2))

]
,

where Akijmn is given by

Akijmn := exp
(
−β[(vm1 − γvi1 + uk1)2 + (vn2 − γv

j
2 + uk2)2]

)
.

This formula is obtained by inserting v = (vi1, v
j
2) and w = (vm1 , vn2 ) in A(v, w;u).

We can now construct the discrete version of (4.15) using finite differences. The two
components of the gradient are given by

gk` := νuk` −
ν

∆t2
(
uk+1
` − 2uk` + uk−1

`

)
+ (∆v)2

Nv∑
i,j=0

qkij
(
Gk
ij

)
`

k = 1, . . . , Nt − 1, ` = 1, 2.

Notice that this formula provides the numerical approximation to the L2 gradient
while our control field is required in H1

T . For this purpose, we present the following
reasoning that illustrates how to arrive at the formulation of the H1 gradient.
Consider a Taylor expansion of the reduced cost functional Jr(u) in the Hilbert space
X for small ε > 0 and δu ∈ U as follows

Jr(u+ ε δu) = Jr(u) + ε (∇Jr(u), δu)X + ε2

2
(
[∇2Jr(u)]δu, δu

)
X

+O(ε3)

The actual gradient depends on the choice of which inner product space we use. If we
choose the space X = L2(0, T ;R2), we have the inner product (u, v) =

∫ T
0 u(t) ·v(t) dt

and the gradient is given by

(4.22) ∇Jr(u)|L2 = ν u(t)− ν u′′(t)−
∫
R2
q(v, t) ∂uCu[f ](v, t) dv.

In the case of X = H1(0, T ;R2), we can determine the H1 gradient based on the fact
that the Taylor series must be identical term-by-term regardless of the choice of X.
Therefore, we have

(∇Jr(u)|H1 , δu)H1 = (∇Jr(u)|L2 , δu)L2 .
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Using the definition of the H1 inner product (u, v)H1 = (u, v)L2 + (u′, v′)L2 , we obtain
the relation∫ T

0

(
∇Jr(u)|H1(t) δu(t) + d

dt∇Jr(u)|H1(t) δu′(t)
)
dt =

∫ T

0
∇Jr(u)|L2(t) δu(t) dt,

which must hold for all test functions δu. Integrating by parts the second term in the
integral on the left-hand side, with the assumption that the control is zero at t = 0
and t = T , we obtain the following equation for the H1 gradient.

(4.23) − d2

dt2 [∇Jr(u)|H1(t)] + [∇Jr(u)|H1(t)] = ∇Jr(u)|L2(t),

with the conditions Jr(u)|H1(0) = 0 and Jr(u)|H1(T ) = 0. Notice that this is a
vector problem for the two components of the gradient Jr(u)|H1(t). We approximate
this problem by a standard finite difference approximation, which results in a block-
tridiagonal system. The solution of this system is obtained efficiently by the Thomas
method; see [58], Algorithm 4.3.
With this preparation, we can formulate the algorithm that provides the Jr(u)|H1(t)
gradient that is required in our optimization scheme.

Algorithm 4.6 Calculate the gradient ∇Jr(u)|H1(t)
Require: control u(t), f0(v), ϕ(v), θ(v, t)
1: Solve the KS problem using Algorithm 4.2 with inputs f0(v), u(t)
2: Solve AKS problem using Algorithm 4.5 with inputs −ϕ(v), θ(v, t), u(t)
3: Determine the distributions (4.20) and (4.21)
4: Assemble ∇Jr(u)|L2 according to (4.22)
5: Compute ∇Jr(u)|H1(t) solving (4.23)

We remark that, with this algorithm, we can implement many different gradient-based
optimization schemes [28]. In our case, we choose the non-linear conjugate gradient
(NCG) method. This is an iterative method that constructs a minimizing sequence
of control functions (uκ)κ as illustrated by the following algorithm.
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Algorithm 4.7 NCG scheme
Require: u0(t), f0(v), ϕ(v), θ(v, t)
1: κ = 0, E > tol
2: Compute h0 = −∇Jr(u0)|H1 using Algorithm 4.6
3: while E > tol and κ < κmax do
4: Use a line-search scheme to determine the step-size ακ along hκ
5: Update control: uκ+1 = uκ + ακ h

κ

6: Compute dκ+1 = ∇Jr(uκ+1)|H1 using Algorithm 4.6
7: Compute βκ
8: Set hκ+1 = −dκ+1 + βκ h

κ

9: E = ‖uκ+1 − uκ‖
10: Set κ = κ+ 1
11: end while
12: return (uκ, fκ)

In this algorithm, the tolerance tol > 0 and the maximum number of iterations
κmax ∈ N are used as termination criteria. We use backtracking line-search with the
Armijo condition. The factor βκ is based on the Hager and Zhang formula; see [28]
for more details and references.
An estimate of the computational cost of one iteration in Algorithm 4.7 can be de-
rived as follows: The cost for solving the KS equation is O(NtNf ), since we calculate
for every particle in every time-step a new velocity, similarly O(NtNf ) for solving the
AKS equation. Furthermore, we have O(Nf ) operations for assembling the distribu-
tions on the reference velocity grid for integration, O(Nv × Nv) for the integration
required for calculating the L2 gradient in two-dimensions, O(Nt) to compute the H1

gradient using the Thomas algorithm. Therefore, the computational complexity of
one optimization iteration is O(NtNf + N2

v ). This estimate is without considering
line-search, for which O(NtN

2
v ) operations are required for calculating the functional

and O(NtNf ) for solving the KS equation for this purpose.

4.1.4. Numerical experiments

In this section, we perform numerical experiments to validate our KS optimal control
framework. We assume that initially the particles are at thermal equilibrium obeying
the Maxwell-Boltzmann distribution corresponding to the temperature Tp > 0 of a
gas with particles of mass M > 0. This distribution is given by

f0 = N2

(
0, kBTp

M
I2

)
,
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where kB is the Boltzmann constant. All quantities are given in SI units if nothing
else is specified. For the mean collision frequency, we have [70]

Γ = 1
τ

= nmπd
2
p〈vrs〉,

where nm is the number density of background particles, dp the effective diameter of
the particle and 〈vrs〉 the average relative speed between particles. By the assumptions
of the KS kernel, the collision frequency and therefore 〈vrs〉 are constant over time
and space.
Notice that comparing the equations for the mean collision frequency, the conjunction
between the parameter A0 of the KS kernel and the background particles is evident.
Specifically, A0 is proportional to the density of the background particles.
We consider the optimal control problem (4.8) in two dimensions with the following
setting

ηD(t) =
(
vA sin

(2π
T
t
)
,
vmax

2T t
)T

, u0(t) := (0, 0)T

θ(v, t) = − Cθ
2πσ2

θ

exp
(
−|v − ηD(t)|2

2σ2
θ

)
, Cθ = 1020,

ϕ(v) = − Cϕ
2πσ2

ϕ

exp
(
−|v − ηD(T )|2

2σ2
ϕ

)
, Cϕ = 103,

with vA = 250 m/s and σθ = σϕ = 10σ = 10
√

1/(2β). Notice that these parameters
determine the ‘width’ of the potentials, that is, their effective basin of attraction.
Further, they appear as the variance of the distribution with which particles are
created in every time-step, thus their values should be reasonably small.
In our simulation, we make the choice of values of the physical and numerical param-
eters as given in Table 4.1. With the parameter ωf , we define how many physical
particles are combined in a single simulation particle.
After this preparation, we present results of numerical experiments. In Figure 4.1a,
we plot the convergence history of the cost functional corresponding to the sequence
generated by the NCG scheme. Notice that the randomness in the MC KS solution is
responsible for the small fluctuations of the value of J along the minimization process.
In Figure 4.1b, we show the resulting optimal control field obtained with the NCG
scheme starting from an initial guess u0 = 0. The ordinate axis shows the time and
for every discrete point in time, the optimal control vector is plotted. Notice that this
vector is zero at the initial and terminal times, consistently with our requirement in
the H1

0 setting.
Next, we plot the action of the optimal control on the evolution of the density f .
For this purpose, in Figure 4.2, we plot the value of the mean velocity with time
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Symbol Value Symbol Value

Tp [K] 700 M [kg] 6.63 · 10−26

β [ s2

m2 ] m
2kBT kB [m2 kg

s2 K
] 1.38 · 10−23

γ [-] 0.9 d [m] 0.4 · 10−3

ωf [-] 10 Nf [-] 5 · 104

Nt [-] 40 ∆t [s] 1.5 · 10−3

Nv [-] 20× 20 vmax [m
s

] 103

ν [ s2

m2 ] 10−10 ∆v [m
s

] 105.26

Nfrac [-] 0.1 ·Nf T [s] 6 · 10−2

Table 4.1. Physical and numerical parameters.
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(b) Optimal control field. The ordinate axis
shows the time.

Figure 4.1. Results of numerical experiment in the H1 case.

computed using the resulting distribution as follows

〈v〉 (t) =
∫
v f(v, t) dv.

In Figure 4.2a, we show the x component of the mean velocity and compare it to
the desired velocity. Similarly, in Figure 4.2b, we plot the y component of the mean
velocity. Notice that, since we require that the control is zero at final time, the y
component of the desired velocity is not attainable, which explains the behaviour
depicted in Figure 4.2b.
However, our choice of having the control field equal to zero at t = 0 and t = T is
arbitrary and can be replaced by other conditions to define different control spaces.
Moreover, boundary conditions are not required if our control space is chosen as
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(a) Comparison between mean velocity ( )
and desired one ( ) (x component).
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(b) Comparison between mean velocity ( )
and desired one ( ) (y component).

Figure 4.2. Results of numerical experiment using H1 control: evolu-
tion of the mean velocity. The axis of ordinates shows the velocity and
the axis of abscissas shows the time, both in SI units.

U = L2(0, T ;R2). In this case, we use the L2 gradient given by

∇Jr(u)|L2 = ν u(t)−
∫
R2
q(v, t) ∂uCu[f ](v, t) dv,

which results in a NCG scheme where ∇Jr(u)|H1 is replaced by ∇Jr(u)|L2 .
With this version of Algorithm 4.7, we also obtain a sequence of controls that min-
imizes the objective functional as shown in Figure 4.3a, and determine the optimal
controls depicted in Figure 4.3b. Comparing this latter result with that shown in Fig-
ure 4.3b, we see that the optimal control is less regular in the L2 case, as expected.
On the other hand, with this setting, the desired velocity profile is attainable and our
control framework can track the desired velocity for all times as shown in Figure 4.4.
The last part of this section presents a comparison of our MC framework with a sim-
ilar optimal control approach where finite differences approximation, explicit Euler
time-stepping scheme, and second-order quadrature are used. For this purpose, we
consider a one-dimensional setting and L2 control costs. In the deterministic coun-
terpart of our scheme, we consider a uniform mesh in the velocity space. For stability
of the forward Euler time-stepping procedure, we need to choose a time-step-size
that is one order of magnitude smaller than in the MC method. Notice that the
latter is inherently numerically stable [132]. In both cases, we use a gradient-descent
scheme with fixed step-size for updating the control. As termination criterion, we
stop both algorithms when the reduction of the value of the cost functional between
two consecutive optimization steps is less than 10−4.
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(b) Optimal control field in the L2 case. The
ordinate axis shows the time.

Figure 4.3. Results of numerical experiments in the L2 case.
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(a) Comparison between mean velocity ( )
and desired one ( ) (x component).
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(b) Comparison between mean velocity ( )
and desired one ( ) (y component).

Figure 4.4. Results of numerical experiment using L2 controls: evolu-
tion of the mean velocity. The axis of ordinates shows the velocity and
the axis of abscissas shows the time, both in SI units.

In this experiment, we choose the following desired velocity profile

ηD(t) = v1

(
t

T

)2
+ v2

t

T
,

where v1 = −800 m/s, v2 = 900 m/s and T = 1.25 s.
In Figure 4.5a, we compare the optimal controls obtained with these two methods.
We see that they match very well. In Figure 4.5b, we plot the corresponding velocity
profiles, compared with ηD(t), showing comparable results.
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(a) Control calculated with deterministic
( ) and MC ( ) scheme in the L2 case.
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(b) Resulting trajectory of the mean velocity
calculated with deterministic ( ) and MC
( ) and the desired mean velocity ( ).

Figure 4.5. Comparison of results obtained with a deterministic scheme
and with the MC scheme. The axis of ordinates shows the value of the
control (left) and the mean velocity (right) and the axis of abscissas
shows the time, all in SI units.

4.2. Controlled linear kinetic models

It is the purpose of this section to investigate an optimal control problem governed
by the following kinetic model

(4.24) ∂tf(x, v, t) + v · ∇xf(x, v, t) + u(x) · ∇vf(x, v, t)

=
∫
Rd
A(w, v) f(x,w, t) dw − f(x, v, t)

∫
Rd
A(v, w) dw.

In this model, we consider the function u(x) : Rd → Rd as the control force, and we
choose again the representative Keilson-Storer collision term given as the right-hand
side of (4.1) . Notice that, as in [86], it holds

∫
Rd A(v, w) dw = Γ. Hence, to be

consistent with [86], we omit to write Γ on the right-hand side of (4.24); cf. (4.4).
Moreover, we assume u ∈ U with control space U ⊆ L2(Ω).
In Section 4.2.1, we derive the equations for the important moments of the linear
kinetic model (4.24). These moments are of importance since they can be interpreted
as macroscopic properties of the system of particles they describe. In Section 4.2.2,
techniques of Chapter 2 are exploited to gain well-posedness results for linear kinetic
models using the Keilson-Storer collision term.
In the Section 4.2.3, we formulate our kinetic optimal control-in-the-force problem in
the framework of ensemble control problems [12, 32]. In particular, we illustrate the
construction of our cost functional with ensemble trajectory- and final-configuration
terms and a cost of the control. For this setting, we prove existence of solutions in
the given control space.
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In Section 4.2.4, we discuss the first-order optimality conditions that must be satisfied
by an optimal control. Thus, we derive the corresponding optimality system and
analyse the structure of the resulting adjoint equation. Through this analysis, we
elaborate on this equation to obtain an equivalent adjoint problem with gain-loss
structure, a linear reaction term and a source term. In this process, we identify this
source term and the terminal condition for the adjoint problem as constitutive parts
of the cost functional. Specifically, we notice that these terms must, on the one hand,
play the role of attractive potentials for the ensamble of particles and, on the other
hand, have the properties of a probability density function in order to accommodate
them in the MC scheme.
In Section 4.2.5, we present our optimization strategy. We give a detailed account
of our implementation of the MC scheme for solving (4.24) and our adjoint model in
order to assemble the optimization gradient. This gradient is then used to implement a
non-linear conjugate gradient scheme; see, e.g., [28]. For clarity, all components of our
solution strategy are also summarized in pseudo algorithms that closely resemble our
simulation and optimization codes. In Section 4.2.6, we present results of numerical
experiments and verifications that approves the ability of our framework to construct
optimal control forces that drive the evolution of the ensemble of particles to follow
a desired trajectory in phase space and to attain a final configuration.

4.2.1. Moments of linear kinetic models

We start with giving details for the calculation of the moments in one dimension in
space and velocity of the controlled linear model given in (4.24). Notice that in this
case the operator ∇x can be identified with ∂x. Further, the investigation in higher
dimensions can be performed analogously since the Keilson-Storer collision kernel
assumes no correlation between the different dimensions in velocity space.
We assume that f and ∇f approach 0 for |v| → ∞ sufficiently fast, such that the
following calculations hold true. In particular, it is sufficient to assume that f0 is an
element in the weighted Sobolev-space f ∈ H1

n+1((0, T ); Ω×R) for the n−th moment
and the drift increases at most linearly.
We define the following moment of the collision kernel (4.2) as

A0 :=
∫
A(v, w) dv = A0

√
π

β
,

A1(w) :=
∫
v A(v, w) dv = A0

√
π

β
γ v = A0γ w,

A2(w) :=
∫
v2A(w, v) dv = A0

2β − A
0w2γ2.

(4.25)



4.2. Controlled linear kinetic models 119

Notice that in (4.25), the zeroth-moment is in fact the collision frequency and does
not depend on the velocity. The moments that are worth to investigate, arise if
we multiply (4.24) with collision invariants of the Boltzmann equation and integrate
over v afterwards, see [110]. These collision invariants are 1, v, |v|2 since for these
functions the term corresponding to the collision in the Boltzmann equation vanishes
in the moment equation. The resulting moments can be used to calculate important
macroscopic properties of the system of particles.
We define the zeroth, first and second moment nf , m̄ and σ̄ of f as

nf (x, t) :=
∫
R
f(x, v, t) dv, m̄(x, t) :=

∫
R
v f(x, v, t) dv,

σ̄(x, t) :=
∫
R
v2 f(x, v, t) dv

(4.26)

and present how to derive evolution equations for them.

We start with the zeroth moment. Integration of (4.24) over v leads to∫
R
∂tf(x, v, t) dv +

∫
R
v · ∇xf(x, v, t) dv +

∫
R
u(x) · ∇vf(x, v, t) dv

=
∫
R

(∫
A(w, v) f(x,w, t) dw − f(x, v, t)

∫
A(v, w) dw

)
dv.

Since we have choose d = 1 in this section, the operators ∇x and ∇v could be replaced
by ∂x and ∂v. The third term on the left-hand side of (4.24) vanishes by integration
by parts, since u does not depend on v. The term on the right-hand side vanishes by
virtue of Lemma 4.1. Therefore, we can write

∂tnf (x, t) + ∂xm̄(x, t) = 0.(4.27)

This is precisely what can be calculated for the Boltzmann equation, see [110]. Since
the constant function 1 is an invariant of the the KS collision term and the Boltzmann
collision term, this is what one expects.

Now we turn to the first moment. Applying E[v] to (4.24) leads to

(4.28)
∫
R
v
(
∂tf(x, v, t) + v · ∇xf(x, v, t) + u(x) · ∇vf(x, v, t)

)
dv

=
∫
R

∫
R
vA(w, v) f(w, x, t) dw dv −

∫
R
v f(x, v, t)

∫
R
A(v, w) dw dv.

We calculate the integral for each term. It holds for the first term and second term
on the left-hand side of (4.28) with interchanging differentiation and integration∫

R
v ∂tf(x, v, t) dv = ∂t

∫
R
v f(x, v, t) dv = ∂tm̄(x, t),∫

R
v2 · ∇xf(x, v, t) dv = ∂x

∫
R
v2 f(x, v, t) dv = ∂xσ̄(x, t) = ∂x

(
2nf (x, t)Esp

)
,

where nf is the is the number density and Esp is the specific energy, see [122].
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Further, it holds for the third term on the left-hand side of (4.28), with integration
by parts, assuming that the boundary term vanishes since f , ∇f decay sufficiently
fast with respect to velocity at infinity∫

R
v (u(x) · ∇vf(x, v, t)) dv = −u(x)

∫
R

1 f(x, v, t) dv = −u(x)nf (x, t),

It holds for the first term on the right-hand side of (4.28) with Fubini’s theorem and
(4.25) that∫

R

∫
R
vA(w, v) f(w, x, t) dw dv =

∫
R
f(x,w, t)

∫
R
v A(w, v) dv dw

=
∫
R
A1(w) f(x,w, t) dw

= A0γ m̄(x, t).

Similarly, it holds for the second term on the right-hand side∫
R
v f(x, v, t)

∫
R
A(v, w) dw dv = A0m̄(x, t).(4.29)

With the calculations above, we can write down the equation of the evolution of the
first momentum m̄(x, t) of (4.24)

∂tm̄(x, t) + ∂xσ̄(x, t) = u(x)nf (x, t)− A0(1− γ)m̄(x, t).(4.30)

The last part on the right-hand side of the equation is due to the collision term.
Notice that without a force, that is u ≡ 0, and assuming that the specific energy
is uniformly distributed over space (and hence not depending on x), the mean ap-
proaches zero eventually, since A0(1 − γ) > 0 for γ ∈ (0, 1). Further, m̄ has the
physical interpretation of being proportional to the macroscopic velocity.
We finish this section with the derivation of the second moment. For this goal, we
apply E[v2] to (4.24). Notice that this is not the centralized moment. However, up
to a constant it can be interpreted as the energy density of the system. It follows∫

R
v2 ∂tf(x, v, t) dv +

∫
R
v3∇xf(x, v, t) dv +

∫
R
u(x) v2∇vf(x, v, t) dv

=
∫
R
v2
∫
R
A(w, v) f(x,w, t) dw dv −

∫
R
v2 f(x, v, t)

∫
R
A(v, w) dw dv.

We perform calculations as above and omit to present all the details here. Notice
that ∫

R
v3∇xf(x, v, t) dv = ∂x

∫
R
v|v|2f(x, v, t) dv.

The integrand on the right-hand side is connected to the heat flux, see [122, 110].
We define the quantity h̄(x, t) as

h̄(x, t) :=
∫
R
v|v|2f(x, v, t) dv.
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Specifically, h̄ is the heat flux, if in v|v|2, v is replaced by the difference of the v and
the macroscopic velocity and can moreover be interpreted as the third non-centralized
moment.
Further, by integration by parts,

u(x)
∫
R
v2∇vf(x, v, t) dv = −2u(x)

∫
R
v f(x, v, t) dv = −2u(x) m̄(x, t).

For the first term on the right-hand side, we obtain with the moments of the kernel
given in (4.25)∫

R
v2
∫
R
A(w, v) f(w, v, t) dw dv =

∫
R
f(x,w, t)

∫
v2A(w, v) dv dw

=
∫
R
f(x,w, t)A2(w) dw

=
∫
R
f(x,w, t)

(
A0

2β + A0γ2w2
)
dw

=
(
A0

2β nf (x, t) + A0γ2σ̄(x, t)
)
.

For the second term it holds that∫
R
v2 f(x, v, t)

∫
R
A(w, v) dw dv = A0σ̄(x, t).

Summarizing, we can write an ordinary differential equation for the second moment
σ̄

∂tσ̄(x, t) + ∂xh̄(x, t) = 2u(x)m̄(x, t) + A0

2β nf (x, t)− A
0(1− γ2)σ̄(x, t).(4.31)

Remark 4.3. From these non-centralized moments, the centralized ones can be cal-
culated. Moreover, the same calculations can be performed components-wise in higher
dimensions see, [110]. Notice that the equation for a moment involves the derivative
of a higher moment.

Remark 4.4. Moreover, since v, |v|2 are not collision invariants for the Keilson-
Storer collision term, we gain additional terms compared to the moments of the Boltz-
mann equation. This is expected since the velocity and energy of the particles under
consideration is influenced by the velocity and energy of the background species via
collision and therefore not conserved.

4.2.2. Well-posedness of linear kinetic models

The aim of this section is to show the well-posedness of (4.24) by deriving energy
estimates as in Chapter 2.



122 4. Linear kinetic models

We can write a generalized form of (4.24) with the general drift function a = a(x, v, t)
as

(4.32) ∂tf(x, v, t) + a(x, v) · ∇f(x, v, t) + (div a(x, v, t)) f(x, v, t) + 1
τ
f(x, v, t)

=
∫
Rd
A(w, v) f(x,w, t) dw,

where ∇ is defined as ∇ = (∇x,∇v) and the divergence operator is considered to act
on the x and v variable. Moreover, we assume that a = (a1(v, t), a2(x, t)) with a1 and
a2 having at most linear growth. Notice that in (4.32) we consider the phase space,
and therefore have in fact two variables with which we have to deal fundamentally
different. On the one hand, the position-variable x attains only finite values since
x ∈ Ω. On the other hand, the velocity-variable v is unbounded since v ∈ Rd. For
the scope of this section, we supplement (4.32) with absorbing boundary conditions;
this taking f(x, v, t) = 0 for all x ∈ ∂Ω.
We can treat the left-hand side of (4.32) analogously to Section 2.2 in Chapter 2.
The only change is that the term div a is replaced by div a+ 1

τ
. Recall that 1

τ
is the

mean collision frequency and given by
1
τ

=
∫
Rd
A(v, w) dv.

Therefore, 1
τ
is constant and only depending on the parameters of collision kernel.

Hence, what is left is to investigate the term on the right-hand side of (4.32).
Before we consider the full equation (4.32), we perform estimates for the case of
Section 4.1, specifically equation (4.1). Notice that this is taking a = (v, 0) in (4.32)
and assuming that f is space-homogeneous for all t, that is f(x, v, t) = f(v, t). Hence,
we can rewrite (4.1) as

∂tf(v, t) + 1
τ
f(v, t) =

∫
Rd
A(w, v) f(w, t) dw.(4.33)

Taking the inner product of (4.33) with f(v, t) and performing standard computations
leads to

1
2
d
dt ‖f(t)‖2

L2(Rd) −
1
τ
‖f(t)‖2

L(Rd) =
∫
Rd

∫
Rd
A(w, v) f(w, t) f(v, t) dw dv,

where the right-hand side is by means of Hölder’s inequality less or equal to∫
Rd

(∫
Rd
|A(w, v)|2 dv

)1/2 (∫
Rd
|f(v, t)|2 dv

)1/2
f(w, t) dw.

Therefore, it holds that

1
2
d
dt ‖f(t)‖2

L2(Rd) ≤
1
τ
‖f(t)‖2

L2(Rd) + A0

(
π

2β

)d/4
‖f(t)‖L2(Rd) ‖f(t)‖L1(Rd) .
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Since f ∈ C([0, T ];L2(Rd)), an application of Grönwall’s lemma leads to the existence
of a constant c > 0 such that

‖f(t)‖L2(Rd) ≤ c

‖f0‖L2(Rd) + A0

(
π

2β

)d/4 ∫ t

0
‖f(s)‖L1(Rd) ds

 exp
(∫ t

0

1
τ
ds
)

≤ ceT/τ

‖f0‖L2(Rd) + A0

(
π

2β

)d/4
t

 ,

(4.34)

where in the last inequality we used the conservation of mass and the non-negativity
of f that lead to

‖f(t)‖L1(Rd) = ‖f0‖L1(Rd) = 1, t ∈ [0, T ].

Remark 4.5. Notice that the same computations hold true if we exchange (4.1) with
(4.4) since the additional shift in the kernel of A does not change the integral. More
in detail, it holds that∫

Rd
A(w, v;u) dv =

∫
Rd
A(w, v) dv =

(
π

β

)d/2
.

Now, we turn to energy estimates in H1
k spaces of the equation (4.33) Taking the

derivative with respect to vl, l = 1, . . . , d, and multiplying afterwards with |v|k gives
the equation with

∂t
(
|v|k∂vlf(v, t)

)
− |v|k 1

τ
∂vlfk(v, t) =

∫
Rd
f(w, t)|v|k ∂vlA(w, v) dw.

Taking the inner-product of this equation with ∂vlf(v, t) |v|k k, l ∈ N, and following
the same procedure as above, we can estimate the right-hand side as
∫
Rd

(∫
Rd

∣∣∣|v|k∂vlA(w, v)
∣∣∣2 dv)1/2 (∫

Rd

∣∣∣|v|k∂vlf(v, t)
∣∣∣2 dv)1/2

f(w, t) dw

= ‖f(t)‖L2(Rd)

∫
Rd
λkl (w) f(w, t) dw.

In the last equality, λkl (w) denotes a polynomial which is for all l of order k at most
and defined as

λkl (w) :=
(∫

Rd

∣∣∣|v|k∂vlA(w, v)
∣∣∣2 dv)1/2

.(4.35)

Therefore, it is determined by the parameters of A which are β and γ. Notice that
∂vlA(w, v) = −2β(vl−γwl)e−β|v−γw|

2 and further that the quantity
∫
Rd λ

k
l (w) f(w, t) dw

can be estimated using the moments of f . We can conclude by summing up over
l = 1, . . . , d that

‖f(t)‖H1
k

(Rd) ≤ ceT/τ
(
‖f0‖H1

k
(Rd) +

k∑
κ=0

∫ t

0
‖f(t)‖L1

κ(Rd) ds

)
,(4.36)
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where L1
k(Rd) is defined analogously to L2

k(Rd) in Definition 2.1.

Remark 4.6. This procedure can also be executed for Hm
k (Rd) spaces. Notice that

also in this case the polynomials λkl,m(w) are of order at most k, but differ in their
coefficients, and are defined as

λkl,m(w) :=
(∫

Rd

∣∣∣|v|k∂mvlA(w, v)
∣∣∣2 dv)1/2

.(4.37)

After these preliminary results, we consider again (4.32). Recall, that the Keilson-
Storer collision term is equivalent to the BGK model for γ = 0; see Section 4.1.
Hence, (4.32) takes the form

∂tf(x, v, t) + a(x, v, t) · ∇f(x, v, t) +
(

div a(x, v, t)
)
f(x, v, t) + 1

τ
f(x, v, t) = 1

τ
feq(x, v),

where f eq is a given Maxwell-Boltzmann distribution in velocity and a smooth pre-
scribed distribution in space and independent of time since it is assumed to be a
steady state. Notice that f eq is rapidly decaying for |v| → ∞ and bounded with
respect to x since we are in a bounded domain Ω. Therefore, we can directly apply
the theorems of Chapter 2. In particular, by virtue of Theorem 2.2, we can conclude
that

‖f(t)‖Hm(Ω×Rd) ≤ C
(
‖f0‖Hm(Ω×Rd) + 1

τ

∫ t

0
‖f eq(s)‖Hm(Ω×Rd) ds

)
×

× exp
(
C
∫ t

0
‖∇a(s)‖Cm

b
(Ω×Rd) + 1

τ
ds
)
.

Now, we consider again the KS kernel with arbitrary γ ∈ (−1, 1).
As in (2.19), we consider the L2 scalar product in Ω × Rd of the right-hand side of
(4.33) with f and perform the following estimates, during which we apply Young’s
convolution inequality. For this notice that the KS collision term can be written as a
convolution after a variable change w̃ = γw as

A(w, v) = Ã(v − w̃) :=
∫
Rd

exp
(
−β|v − w̃|2

)
dv.

Then it holds that∫∫
Ω×Rd

∫
Rd
A(w, v) f(x,w, t) dw f(x, v, t) dv dx

≤ 1
γ

∫
Ω

∫∫
Rd×Rd

Ã(v − w̃) f̃(x, w̃, t) f(x, v, t) dw̃ dv dx

≤ 1
γ

∫
Ω

∥∥∥Ã∥∥∥
L1(Rd)

∥∥∥f̃(x, ·, t)
∥∥∥
L2(Rd)

‖f(x, ·, t)‖L2(Rd) ,
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where we used Young’s convolution inequality in the last step and moreover defined
f̃(x, w̃, t) = f(x, w̃

γ
, t). Notice that

∥∥∥f̃(x, ·, t)
∥∥∥
L2(Rd)

= √γ ‖f(x, ·, t)‖L2(Rd) and

∥∥∥Ã∥∥∥
L1(Rd)

= A0

∫
Rd
e−β|ṽ|

2
dṽ = A0

(
π

β

)d/2
.

Hence, we can conclude with Theorem 2.2 that there exist constants C, c > 0, such
that

‖f(t)‖L2(Ω×Rd) ≤ c
(
‖f0‖L2(Ω×Rd)

)
exp

C ∫ t

0
‖∇a(s)‖C0

b
+ 1
τ

+ 1
√
γ

(
π

β

)d/2
ds


≤ c

(
‖f0‖L2(Ω×Rd)

)
exp

(
C
∫ t

0
‖∇a(s)‖C0

b
ds
)
e

T
τ
√
γ eT (π/β)d/2

.

(4.38)

In the next step, we investigate derivatives of f . For this purpose, we introduce the
notation ∂j = ∂zj , j = 1, . . . , 2d, where z = (x1, . . . , xd, v1, . . . , vd). In particular,
∂j = ∂xj for j = 1, . . . , d and ∂j = ∂vj−d for j = d+ 1, . . . , 2d.
Taking the derivative ∂j and taking L2 inner product in Ω×Rd with ∂jf leads on the
right-hand side of (4.32) with an application of Young’s convolution inequality to∫∫

Ω×Rd

∫
Rd
∂j
(
A(w, v)f(x,w, t)

)
dw ∂jf(x, v, t) dx dv

=
∫∫

Ω×Rd

∫
Rd
f(x,w, t) ∂jA(w, v) dw ∂jf(x, v, t) dx dv

+
∫∫

Ω×Rd

∫
Rd
A(w, v) ∂jf(x,w, t) dw ∂jf(x, v, t) dx dv

≤ 1
γ

∫
Ω

∥∥∥∂jÃ∥∥∥
L1(Rd)

∥∥∥f̃(x, ·, t)
∥∥∥
L2(Rd)

‖∂jf(x, ·, t)‖L2(Rd) dx

+
∫

Ω

1
γ

∥∥∥Ã∥∥∥
L1(Rd)

∥∥∥∂j f̃(x, ·, t)
∥∥∥
L2(Rd)

‖∂jf(x, ·, t)‖L2(Rd) dx

≤ 1
√
γ

(∥∥∥∂jÃ∥∥∥
L1(Rd)

+
∥∥∥Ã∥∥∥

L1(Rd)

)(∥∥∥f̃(·, ·, t)
∥∥∥
L2(Ω×Rd)

+
∥∥∥∂j f̃(·, ·, t)

∥∥∥
L2(Ω×Rd)

)
×

×
(
‖∂jf(·, ·, t)‖L2(Ω×Rd) + ‖f(·, ·, t)‖L2(Ω×Rd)

)
≤ 1
√
γ

(∥∥∥Ã∥∥∥
W 1,1(Rd)

)
‖f(t)‖2H1(Ω×Rd) .

where we summed over all j = 1, . . . , 2d in the last inequality
Notice that f(x,w, t) does not depend on v and therefore ∂jf(x,w, t) = 0 for
j = d+ 1, . . . , 2d. Further, it holds that

∥∥∥∂jÃ∥∥∥
L1(Rd)

is a real number for all d and j.
Hence, we conclude that there exists a constant c > 0 such that

‖f(t)‖H1(Ω×Rd) ≤ c eT/τ
(
‖f0‖H1(Ω×Rd)

)
exp

(
C
∫ t

0
‖∇a(s)‖C1

b
ds
)
KA,

where KA is a constant depending on the KS kernel.
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Remark 4.7. The structure A(v, w) = Ã(v−w) is preserved for arbitrary derivatives
with respect to v. Specifically, one can write ∂mj A(v, w) = ∂mj Ã(v − w). Therefore,
the strategy above for the H1 case can be extended for Hm, m ∈ N.

4.2.3. A kinetic optimal control problem

In this section, we formulate our KS kinetic optimal control problem. We consider
a finite time horizon [0, T ] and the phase space Ω × Rd, where the spatial domain
Ω ⊂ Rd is bounded and convex with piecewise smooth boundary ∂Ω. On this space,
we consider the evolution of the density governed by (4.24). The Keilson-Storer
collision kernel A(v, w) is discussed in Section 4.1.
In order to ease notation, we denote with C[f ](x, v, t) the gain-loss collision term that
appears on the right-hand side of (4.24). Further, we introduce the free-streaming
operator Lu given by

Lu = v · ∇x + u(x) · ∇v.

Hence, our controlled kinetic model can be written as follows

∂tf(x, v, t) + Lu f(x, v, t) = C[f ](x, v, t).

Next, we specify the boundary conditions. We have inflow boundary conditions for
all t ∈ (0, T ], at x ∈ ∂Ω, for all v for which it holds

v ∈ Rd
< := {v ∈ Rd | v · n(x) < 0},

where n(x) is the unit outward normal vector at x ∈ ∂Ω. Then, choosing specular
reflection, the boundary conditions at inflow are given by

f(x, v, t) = f(x, v − 2n (n · v), t).

Moreover, we specify an initial density f0(x, v) ≥ 0 for all (x, v) ∈ Ω × Rd at time
t = 0 such that

lim
|v|→∞

f0(x, v)→ 0 ∀x ∈ Ω.(4.39)

Therefore, we have the following kinetic initial- and boundary-value problem

∂tf(x, v, t) + Lu f(x, v, t) = C[f ](x, v, t) in Ω× Rd × (0, T ]

f(x, v, 0) = f0(x, v) on Ω× Rd(4.40)

f(x, v, t) = f(x, v − 2n (n · v), t) on ∂Ω× Rd
< × (0, T ]

Although a complete theoretical treatment of our kinetic control problem requires a
separate work, for the present purpose we claim that for T > 0 fixed and m ∈ N,
assuming that u ∈ H1

0 (Ω) ∩ C0,1(Ω) and choosing f0 ∈ Hm(Ω×Rd) as specified above,
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then the problem (4.40) admits a unique weak solution f ∈ C
(
[0, T ];Hm(Ω× Rd)

)
.

Moreover, supposing f0 ≥ 0, it holds that f is non-negative, and the property (4.39)
is preserved along evolution since the control is assumed to be Lipschitz-continuous.
Our claim for the case m = 0 follows from [14], Theorem 8. This claim for the case
m ∈ N is underpinned by results of [29] for initial conditions in the space of tempered
distributions and Remark 4.7.
Specifically, we claim that for the solution f it holds

lim
|v|→∞

f0(x, v, t)→ 0 for all (x, t) ∈ Ω× [0, T ].(4.41)

We see that, choosing a fixed initial condition f0, for a given control u the solution
to (4.40) defines a control-to-state map G : H1

0 (Ω) → C
(
[0, T ];Hm(Ω × Rd)

)
given

by u 7→ f = G(u) that is well defined and continuous; see Chapter 2 for a proof in
the case without collision and Remark 4.7 for arbitrary m ∈ N including collision
following the strategies of Chapter 2.
Now, we discuss the formulation of our cost functional. As in [12, 13], we focus on
a functional that appears in the framework of ensemble control problems [12, 32,
33, 34]. This choice is consistent with the significance of the density and kinetic
equations in statistical mechanics. We have

J(f, u) =
∫ T

0

∫
Ω×Rd

θ(z, t) f(z, t) dz dt+
∫

Ω×Rd
ϕ(z)f(z, T ) dz + ν

2 ‖u‖
2
U .(4.42)

where z = (x, v) ∈ Ω × Rd. Notice that the first and second terms in (4.42), can be
understood as expected values by defining〈∫ T

0
θ(·, t) dt

〉
=
∫ T

0

∫
Ω×Rd

θ(z, t) f(z, t) dz dt

and
〈ϕ(·)〉 =

∫
Ω×Rd

ϕ(z) f(z, T ) dz.

We refer to the first term as the tracking term (also called integrated cost) and to
the second term as the final observation (also called terminal cost). In addition, we
have the cost of the control with weight ν > 0. With U we denote the Hilbert space
where the control is sought, and ‖·‖U is the corresponding norm.
In order to illustrate the role and name of θ in the cost functional, suppose that ζD(t)
represents a desired mean position-velocity profile for the ensemble of our particles.
Then, the choice θ(z, t) = |z − ζD(t)|2 results in a tracking term that achieves its
minimum if all particles exactly follow the desired trajectory ζD such that the density
is concentrated on it. Similarly, the final observation term can be defined as ϕ(z) =
|z − ζT |2, which corresponds to the requirement that at final time the particles get
close to ζT . In general, we make the following
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Assumption 4.2. We suppose that θ and ϕ are integrable smooth functions, bounded
from below and locally convex in a neighbourhood of ζD and ζT , so that the minus
gradient of θ(·, t), resp. ϕ(·), is always pointing to the unique global minimum of the
respective functions for all t ∈ [0, T ].

Concerning the third term in (4.42), we choose U = H1
0 (Ω) as our control space.

Therefore,

‖u‖2
U =

∫
Ω
|u(x)|2 dx+

∫
Ω
|∇u(x)|2 dx.

This choice is motivated by the requirement of a minimal degree of regularity of
our control force such that it could be implemented in laboratory. As a modelling
choice, we require that the force is zero at the boundary of the space domain (other
choices are possible). Notice that the value of the weight ν > 0 establishes the relative
importance of achieving the given target with respect to the cost of the corresponding
control.
Now, we can formulate our kinetic optimal control problem

min J(f, u) :=
∫ T

0

∫
Ω×Rd

θ(x, v, t) f(x, v, t) dx dv dt

+
∫

Ω×Rd
ϕ(x, v)f(x, v, T ) dx dv + ν

2 ‖u‖
2
U

s.t.


∂tf(x, v, t) + Lu f(x, v, t) = C[f ](x, v, t), in Ω× Rd × (0, T ]
f(x, v, 0) = f0(x, v) on Ω× Rd

f(x, v, t) = f(x, v − 2n(n · v), t) on ∂Ω× Rd
< × (0, T ]

u ∈ U.

(4.43)

By means of the control-to-state map, this constrained optimization problem can be
reformulated as the following unconstrained minimization problem

(4.44) min
u∈U

Jr(u),

where Jr(u) := J(G(u), u) defines the so-called reduced cost functional.
In this setting, we can state existence of a minimizer (i.e. an optimal control) to
(4.44) as follows.

Theorem 4.2. Let θ and ϕ fulfil Assumption 4.2 and let f0 ∈ Hm(Ω × Rd),
m ∈ N. Then the linear kinetic optimal control problem (4.43) has at least one solution
u∗ ∈ U = H1

0 (Ω) with corresponding optimal state f ∈ C
(
[0, T ];Hm(Ω× Rd)

)
.

Proof. The functional J given in (4.42) is well-defined for
(f, u) ∈ C

(
[0, T ];Hm

)
×H1

0 (Ω). It is bounded from below and coercive in u; con-
sequently, Jr is bounded. Further, Jr is weakly lower semi-continuous since G is
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continuous, the last term is a norm, so it is weakly lower semi-continuous, and the
first two terms are linear in f , and then they are weakly continuous. Thus, we have
that, if

(
uκ
)
κ
⊂ U is a sequence which converges weakly to a u ∈ U , we have

lim inf
κ→+∞

Jr(uκ) = lim inf
κ→+∞

J
(
G(uκ), uκ

)
≥ J

(
G(u), u

)
= Jr(u) .

At this point, proving the existence of a minimizer for Jr is standard: Let us take
a minimizing sequence

(
uκ
)
κ
⊂ U . This sequence is bounded by the coerciveness

of the cost functional in u. Since U is a Hilbert space, we can extract a weakly
convergent subsequence, which we do not relabel for simplicity; let us call u∗ ∈ U its
limit-point. Then, by the weak lower semi-continuity of Jr, we can conclude that u∗

is a minimizer. �

We remark that in our kinetic model (4.24) the control force u multiplies ∇vf , and
this bilinear structure makes our optimization problem non-convex and nonlinear.
For this reason, in general, it is not possible to establish uniqueness of the minimizer
u∗.

4.2.4. Kinetic optimality system

In this section, we discuss the optimality system characterizing a solution to (4.43).
Since (4.43) and (4.44) are equivalent, and assuming Fréchet differentiability of G and
J , in the absence of control constraints, the first-order necessary optimality condition
for a solution to (4.44) is given by

∇uJr(u) = 0.

Notice that the computation of∇uJr(u), that is, of∇uJ(G(u), u), involves the Fréchet
differentiability of G and J , which we assume in this chapter; however, see Chapter
2, where we prove Fréchet differentiability for a similar problem, and Remark 4.2.
A convenient way to derive∇uJr(u) is to introduce the Lagrange function correspond-
ing to (4.43) as follows

L(f, u, q, q0, qσ) := J(f, u) +
∫ T

0

∫
Ω×Rd

(
∂tf(z, t) + Luf(z, t)− C[f ](z, t)

)
q(z, t) dz dt

+
∫

Ω×Rd

(
f(z, 0)− f0(z)

)
q0(z) dz

+
∫
L2(∂Ω×Rd<×[0,T ])

(f(x, v, t)− f(x, v − 2n(n · v), t)) qσ(x, v, t) dσ dv dt,

where z = (x, v), q, q0 and qσ represent Lagrange multipliers and dσ is a surface
element. In this framework, the so-called optimality system is obtained by requiring
that the Fréchet derivatives of L with respect to each of its arguments are zero.
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The resulting optimality system consists of three parts: 1) the kinetic model; 2) the
adjoint kinetic problem; 3) the optimality condition that corresponds to ∇uJr(u) = 0,
and is expressed in terms of the solutions to the two problems in 1) and 2).
For the adjoint model, we obtain

−∂tq(x, v, t) + L∗u q(x, v, t) =
∫
Rd
A(v, w) q(x,w, t) dw

−q(x, v, t)
∫
Rd
A(v, w) dw − θ(x, v, t) in Ω× Rd × (0, T ],

q(x, v, T ) = −ϕ(x, v) in Ω× Rd,

q(x, v, t) = q(x, v − 2n(n · v), t) in ∂Ω× Rd
> × [0, T ] ,

(4.45)

where Rd
> := {v ∈ Rd | v · n(x) > 0}. Specifically, the adjoint free-streaming operator

L∗u is derived through integration by parts and is given by

L∗u := −v · ∇x − u(x) · ∇v = −Lu.

Now, as in the last section, we are confronted with the problem that (4.45) has not
the structure of a kinetic equation, that is, the right-hand side of the adjoint equation
cannot be interpreted as a gain-loss term. We recover the required structure as done in
Section 4.1.2, in which C∗0 has been defined. Analogously, we define the uncontrolled
adjoint collision term

C∗[q](x, v, t) =
∫
Rd
A∗(w, v) q(x,w, t) dw − q(x, v, t)

∫
Rd
A∗(v, w) dw,

where A∗(w, v) = 1
γ
A(v, w), which gives an ‘adjoint’ mean free time τq = γ τ .

Summarizing, we can write the adjoint equation as follows

−∂tq(x, v, t) + L∗uq(x, v, t) = C∗[q](x, v, t) + C∗0 q(x, v, t)− θ(x, v, t).

This is a linear kinetic equation with, in addition, a linear reaction term and a source
term. For this equation, a terminal condition is given and therefore we consider the
adjoint variable evolving backwards in time.
Next, to conclude the formulation of the optimality system, we discuss the optimality
condition. From the Lagrange function, we obtain

−ν ∆u(x) + ν u(x) +
∫ T

0

∫
Rd
q(x, v, t) (e · ∇vf(x, v, t)) dv dt = 0,(4.46)

where we have defined the vector e = (1, . . . , 1)T ∈ Rd and ∆u = ∑n
i=1 ∂

2
xixi

u. This
equation defines an elliptic problem for u where homogeneous Dirichlet boundary
conditions are required. Notice that the left-hand side of (4.46) represents the L2

gradient ∇uJr(u).
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Summarizing, our kinetic optimality system is given by

∂tf(x, v, t) + Luf(x, v, t) = C[f ](x, v, t)

f(x, v, 0) = f0(x, v)

f |∂Ω×Rd< = f(x, v − 2n(n · v), t)

− ∂tq(x, v, t) + L∗uq(x, v, t) = C∗[q](x, v, t) + C∗0 q(x, v, t)− θ(x, v, t)

q(x, v, T ) = −ϕ(x, v)

q|∂Ω×Rd> = q(x, v − 2n(n · v), t)

−∆u(x) + u(x) = −1
ν

∫ T

0

∫
Rd
q(x, v, t) (e · ∇vf(x, v, t)) dv dt

u|∂Ω = 0.

Our aim is to solve this system using a Monte Carlo methodology and a gradient-
based optimization scheme. For this reason, we would like to interpret q as a density
function and, correspondingly, we refer to adjoint particles. We remark that the main
purpose of the adjoint variable q is to allow the computation of the reduced gradient.
Therefore, also a suitable approximation of q that results in an effective gradient is
appropriate for our goal.
For convenience of implementation, we consider the following transformation for the
velocity field v̄ = −v, which leads to

− ∂tq(x, v̄, t)− L∗uq(x, v̄, t) = C∗u[q](x, v̄, t) + C∗0q(x, v̄, t)− θ(x, v̄, t),

q(x, v̄, T ) = −ϕ(x, v̄)

q|∂Ω×Rd< = q(x, v̄ − 2n(n · v̄), t).

(4.47)

Notice that the boundary condition is now formulated on ∂Ω×Rd
< × [0, T ]. Also for

this adjoint problem, we claim existence and uniqueness of a non-negative solution,
assuming the following choice of the functions θ and ϕ. We have

θ(z, t) = − Cθ√
(2π)2d det(Σθ)

exp
(
−1

2(z − ζD(t))TΣ−1
θ (z − ζD(t))

)
, Cθ > 0,

where Cθ represents a weight of the tracking part of the cost functional, and
Σθ ∈ R2d×2d has the significance of a co-variance matrix that we assume to be a
diagonal matrix.
This choice for θ is motivated by the fact that we can implement the correspond-
ing source term in (4.47) in a MC framework by adding adjoint particles to the
distribution q in every time-step based on the Gaussian distribution given by −θ.
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Thus, at each time-step, we add a certain number of particles Nfrac obeying the 2d-
dimensional multi-variate Gaussian distribution N2d(ζD(t),Σ) with mean ζD(t) and
co-variance matrix Σ.
Similarly, we choose

ϕ(z) = − Cϕ√
(2π)2d det(Σϕ)

exp
(
−1

2(z − ζT )TΣ−1
ϕ (z − ζT )

)
, Cϕ > 0.

Notice that the choice of θ and ϕ given above satisfy the requirements of Assumption
4.2.
We conclude this section with some theoretical consideration for the case d = 1 and
Ω ⊂ R. Assume that for the initial guess of the control it holds u0 ∈ C1(Ω) with
homogeneous Dirichlet boundary condition, assume that f0 ∈ H1(Ω × R) and let
θ and ϕ fulfil Assumption 4.2. Then it follows that any gradient based numerical
optimization scheme provides a sequence of controls (uκ)κ such that uκ ∈ C1(Ω) for
all κ ∈ N. Indeed, this is proven by induction over κ ∈ N0.
By assumption it holds that u0 ∈ C1(Ω). Assume now uκ ∈ C1(Ω) for an arbitrary
but fixed κ ∈ N. Then there exists a unique solution with H1-regularity for the
forward and backward models with the control u = uκ. Since uκ+1 is obtained by
solving the second-order elliptic partial differential equation (4.46), we can apply
certain regularity theorems. Specifically, since the integral in equation (4.46) is in
L2(Ω), we can conclude that for the solution holds uκ+1 ∈ H2(Ω), see [66]. In one
dimension, we further have the Sobolev embedding H2 ↪→ C1; see [1, 66].

4.2.5. A Monte Carlo scheme in phase space and numerical optimization

In this section, we illustrate a MC scheme for solving our kinetic control problem.
We show how to adjust the methods of Section 4.1.3. We focus on the case d = 1 and
choose Ω = (0, L), L > 0; however, our methodology applies analogously in higher
dimension. Keep in mind, that for d ≥ 2, one has more degrees of freedom for the
reflecting boundary and has to assume higher regularity of the initial condition and
of the initial guess for the control.
Next, we discuss our implementation of the free-streaming operator Lu. The free
streaming time is given by δt, calculated using (4.18). Within this time lapse, the
microscopic equations of motion have to be integrated, and for this purpose we apply
the (velocity) Verlet algorithm; see, e.g., [82, 115, 130]. An important property
of this method is that it is symplectic which means that it is volume-preserving in
phase-space.
While updating the position, one has to take the boundedness of the physical domain
and the boundary condition into account. For this purpose, the distance between
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the updated position and the boundary of Ω is important. Since the particles are
considered in the mean inside Ω, this distance is connected to the physical property
that the particle can cross the domain several times. To implement the boundary
condition, we present Algorithm 4.8.

Algorithm 4.8 Kinetic model, boundary condition
Require: Updated position x̃ according to Verlet method
1: if x̃ ∈ Ω = [0, L] then
2: return x̃
3: else if x̃ < 0 then
4: ω = bx̃/Lc mod 2
5: set velocity v = (−1)ω−1v
6: return x = ωL+ (−1)ω(−x̃ mod L)
7: else if x̃ > L then
8: ω = bx̃/Lc mod 2
9: set velocity v = (−1)ω−1v
10: return x = (1− ω)L+ (ω − 1)(x̃ mod L)
11: end if

At this point, we can illustrate our MC kinetic model solver with the following algo-
rithm, where the initial condition f0 is used to initialize the list of particles (pointers)
in the sense that it provides the density of the initial distribution of the velocities of
the particles. In the initialization, we choose a number of particles Nf . Further, we
consider a partition of the time interval [0, T ] in Nt subintervals of size ∆t = T/Nt

such that ∆t � δt. With this setting, we have tk = k∆t, for the time of the k-th
time-step, k = 0, . . . , Nt.
In our implementation, we define F as the list of labelled pointers to structures that
resemble particles. We denote with F k[p] the pointer to the p-th particle at the k-th
time-step. We have p = 1, . . . , Nf and k = 0, . . . , Nt. Further, let F k[p].v be the
velocity of the p-th particle at the k-th time-step, and let F k[p].x be the position of
the p-th particle at the k-th time-step.
Moreover, let F k[p].t′ be the time that is elapsed for the p-th particle starting from
tk. This quantity is used to determine if the particle will undergo another collision in
the current time-step, assuming that 0 ≤ F k[p].t′ < ∆t. Analogously, we denote with
Q the list of labelled pointers to structures representing adjoint particles.
To initialize F 0 using the distribution f0, we apply Algorithm 4.9 given below, which
is analogue to 4.1 except from the dependence on the position. A similar algorithm
applies to initialize QNt with the distribution −ϕ.
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Algorithm 4.9 Generation of initial condition
Require: f0(x, v)
1: for p = 1 to Nf do
2: Compute (F 0[p].v, F 0[p].x) ∼ f0(x, v)
3: Set F 0[p].t′ = 0
4: end for

Our Monte Carlo kinetic model solver is implemented as follows.

Algorithm 4.10 Monte Carlo kinetic model solver
Require: f0(x, v), u(x)
1: Initialise Nf particles using Algorithm 4.9 and f0(x, v), set δt2 = 0
2: for k = 0 to Nt − 1 do
3: for p = 1 to Nf do
4: while F k[p].t′ < ∆t do
5: Compute δt1 according to (4.18)
6: Determine F k[p].v ∼ N

(
γv, 1

2β

)
7: update F k[p].x and F k[p].v according to the Verlet-Algorithm:

F k[p].x = F k[p].x+ F k[p].v δt1 + u(F k[p].x) δt1+δt2
2 δt1,

F k[p].v = F k[p].v + u(F k[p].x) δt1
and taking the boundary condition into account using Algorithm 4.8

8: F k[p].t′ = F k[p].t′ + δt1
9: δt2 = δt1
10: end while
11: if F k[p].t′ > ∆t then
12: F k+1[p].t′ = F k[p].t′ mod ∆t
13: end if
14: end for
15: end for

Analogous to the treatment of the source and linear reaction term in Section 4.1, we
present the following two algorithms. They are analogous to 4.3 and 4.4, respectively.

Algorithm 4.11 Implementation of the source term θ at time tk

Require: ζD(tk), Σθ, Nfrac

1: Generate Nfrac new particles with velocity and position components having the
normal distribution with mean ζD(tk) and variance Σθ: (x, v) ∼ N

(
ζD(tk),Σθ

)
2: Add these particles to the existing ones in Qk
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Algorithm 4.12 Implementation of the linear reaction term at time tk

Require: Qk, Nk
q

1: Set N ∈ N, ε ∈ [0, 1) such that ∆t C∗0 = N + ε
2: for p = 1 to Nk

q do
3: Generate N particles with the velocity and position (Qk[p].x,Qk[p].v)
4: Generate uniform random number r ∈ [0, 1]
5: if r > 1− ε then
6: Generate a particle with the velocity and position (Qk[p].x,Qk[p].v)
7: end if
8: end for
9: Add generated particles to the existing ones in Qk

Notice that, since in the implementation of the adjoint kinetic model we vary the
number of adjoint particles depending on the linear reaction term and the source
term, we index this number with k and write Nk

q . In Algorithm 4.11, we choose
Nfrac � Nf .
With these two procedures, we can implement the time evolution of the adjoint vari-
able starting from the terminal condition given by −ϕ(x, v). This function is used
to initialize the list of adjoint particles (pointers) in the sense that it provides the
density of the initial distribution of the velocities of these particles.

Algorithm 4.13 Monte Carlo adjoint kinetic model solver
Require: θ(x, v, t), ϕ(x, v), u(x).
1: Initialize QNt with NNt

q = Nfrac particles using Algorithm 4.9 and −ϕ, set δt2 = 0

2: for k = Nt to 1 do
3: Use Algorithm 4.11 to implement the source term
4: Use Algorithm 4.12 to implement the linear reaction term
5: for p = 1 to Nk

q do
6: while Qk[p].t′ < ∆t do
7: Generate δt1 according to (4.18) using τq instead of τ
8: Determine v ∼ N

(
v
γ
, 1

2βγ2

)
9: update Qk[p].x and Qk[p].v according the adjoint Verlet-Algorithm:
10: Qk[p].x = Qk[p].x+Qk[p].v δt1 − u(Qk[p].x) δt1+δt2

2 δt1,
11: Qk[p].v = Qk[p].v − u(Qk[p].x) δt1, and taking the adjoint boundary con-

dition into account using Algorithm 4.8
12: Qk[p].t′ = Qk[p].t′ + δt
13: δt2 = δt1
14: end while
15: if Qk[p].t′ > ∆t then
16: Qk−1[p].t′ = Qk[p].t′ mod ∆t
17: end if
18: end for
19: end for
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Now, analogue to Section 4.1.3, we define

Υ∆v := { vj ∈ Υ, j = 1, . . . , Nv } , vj :=
(
j − 1

2

)
∆v − vmax

and analogously the spatial domain

Ω∆x := { xi ∈ Ω, i = 1, . . . , Nx } , xi :=
(
i− 1

2

)
∆x.

Hence, we have the discretized phase space Ω∆x×Υ∆v. On the other hand, we recall
that on the time interval [0, T ], we have the time-steps tk := k∆t, k = 0, . . . , Nt, and
define

Γ∆t :=
{

tk ∈ [0, T ], k = 0, . . . , Nt

}
.

Now, we denoted with fkij the occupation number of the cell centred in (xi, vj) in the
phase space. To construct this function, we count the particles at time-step k that
have position and velocity in the cell centred at (xi, vj). Thus, we define analogue to
(4.20)

fkij :=
Nf∑
p=1

1ij

(
F k[p].x, F k[p].v

)
.(4.48)

It results that, if a particle with position x and velocity v within a cell centred at
(xi, vj) ∈ Ω × R is subject to collision and acquires a new velocity v′ within a cell
centred at (xi, vk) ∈ Ω × R, then the value of fij is reduced by 1 and, on the other
hand, the value of fik is increased by 1. Notice that choosing vmax large enough, the
probability that the velocity of a particle exceeds the boundary of Υ after collision is
very low but possibly not zero. If this rare event happens, we generate again a new
velocity for the particle using the same pre-collision velocity as before.
Therefore, we only need to consider the adjoint particles discrete distribution analogue
to 4.21

qkij =
Nk
q∑

p=1
1ij

(
Qk[p].x,Qk[p].v

)
.(4.49)

Since we have a finite number of particles, the data that we obtain from the MC
procedure method appears subject to noise. For this reason and to facilitate the
construction of the gradient, we introduce a denoising procedure that can be put in
the framework of Tikhonov (resp. Sobolev) regularization techniques, see also [93].
Thus, denoising can be interpreted as solving the minimization problem

min
f∈H1(Ω×Υ×[0,T ])

cs
2

∫
Υ
|∇f |2 dv + 1

2

∫
Υ

(
f − f̃

)2
dv,(4.50)

where f̃ is the original noisy data obtained by assembling and cs > 0 is a regularization
parameter that is usually small compared to the maximum value of f̃ .
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The Euler-Lagrange equation corresponding to the optimization problem (4.50) is
given by

−cs∆f + (f − f̃) = 0,(4.51)

where ∆ = ∂2
vv, and we impose homogeneous Neumann boundary conditions. In this

way, our denoising technique conserves the total mass. To show this fact, consider
the integration of (4.51). We have

−cs
∫

Υ
∆f dv +

∫
Υ
f dv =

∫
Υ
f̃ dv.

Further, by the divergence theorem and the given boundary conditions, we get that
the resulting surface integral over ∂Υ vanishes. Thus, we obtain∫

Υ
f dv =

∫
Υ
f̃ dv.

The linear elliptic problem given by (4.51) and homogeneous Neumann boundary
conditions can be solved numerically. For this purpose, we put it in the form(

I − csD±2
)
f = f̃ ,

where D±2 is the standard discretized second-order derivative in velocity space. The
solution of this algebraic problem can be computed by standard methods of numerical
linear algebra.
Next, we focus on the gradient equation (4.46) and assemble the L2 optimization
gradient corresponding to the left-hand side of (4.46) in the vector g ∈ R(Nx−2). We
use a rectangular quadrature rule to approximate the integrals in (4.46) and obtain

Gi := (∆v)(∆t)
 Nt∑
k=1

Nv−1∑
j=0

fki,j+1 − fkij
∆v qkij

 i = 2, . . . , Nx − 1,

Further, to formulate the discrete version of (4.46) we use finite differences. Therefore,
our L2 gradient is given by

gi := νui −
ν

∆x2 (ui+1 − 2ui + ui−1) +Gi i = 2, . . . , Nx − 1.

Since our control field is required in H1
0 (Ω), we need to develop the H1 representation

of our gradient. For this purpose, we present the following reasoning that illustrates
how to arrive at this representation.
Consider a Taylor expansion of the reduced cost functional Jr(u) in a Hilbert space
X as follows

Jr(u+ ε δu) = Jr(u) + ε (∇Jr(u), δu)X + ε2

2
(
[∇2Jr(u)]δu, δu

)
X

+O(ε3)(4.52)

The actual gradient depends on the choice of which inner product space we use. If
we choose the space X = L2(Ω), we have the inner product (u, v)X =

∫
Ω u(x) ·v(x) dx
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and the gradient is given by

(4.53) ∇Jr(u)|L2 = ν u(x)− ν u′′(x)−
∫ T

0

∫
R
q(x, v, t)∇vf(x, v, t) dv dt.

In the case of X = H1(Ω), we can determine the H1 gradient based on the fact
that the Taylor series must be identical term-by-term regardless of the choice of X.
Therefore, we have

(∇Jr(u)|H1 , δu)H1 = (∇Jr(u)|L2 , δu)L2 .

Using the definition of the H1 inner product (u, v)H1 = (u, v)L2 + (u′, v′)L2 , we obtain
the relation∫

Ω

(
∇Jr(u)|H1(x) δu(x) + d

dx∇Jr(u)|H1(x) δu′(x)
)
dt =

∫
Ω
∇Jr(u)|L2(x) δu(x) dx,

which must hold for all test functions δu. Integrating by parts the second term in the
integral on the left-hand side, with the assumption that the control is zero at x = 0
and x = L, we obtain the following equation for the H1 gradient.

(4.54) − d2

dx2 [∇Jr(u)|H1(x)] + [∇Jr(u)|H1(x)] = ∇Jr(u)|L2(x),

with the conditions Jr(u)|H1(0) = 0 and Jr(u)|H1(L) = 0. We approximate this prob-
lem by standard finite difference approximation, which results in a block-tridiagonal
system. The solution of this system is efficiently obtained by the Thomas method.
With this preparation, we can formulate the algorithm that provides the Jr(u)|H1(x)
gradient that is required in our optimization scheme.

Algorithm 4.14 Calculate the gradient ∇Jr(u)|H1(x)
Require: control u(x), f0(x, v), ϕ(x, v), θ(x, v, t)
1: Solve the kinetic problem using Algorithm 4.10 with inputs f0(x, v), u(x)
2: Solve adjoint kinetic problem using Algorithm 4.13 with inputs ϕ(x, v), θ(x, v, t),
u(x)

3: Determine the distributions f and q according to (4.48) and (4.49)
4: Smoothing of the distributions f and q
5: Assemble ∇Jr(u)|L2(x) according to (4.53)
6: Compute ∇Jr(u)|H1(x) solving (4.54)

We remark that, with this algorithm, we can implement many different gradient-based
optimization schemes [28]. In our case, we choose the non-linear conjugate gradient
(NCG) method. This is an iterative method that constructs a minimizing sequence
of control functions (un) as illustrated by the following algorithm, analogue to 4.7.
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Algorithm 4.15 NCG scheme
Require: u0(x), f0(x, v), ϕ(x, v), θ(x, v, t)
1: n = 0, E > tol
2: Compute h0 = −∇Jr(u0)|H1 using Algorithm 4.14
3: while E > tol and n < nmax do
4: Use a line-search scheme to determine the step-size αn along hn
5: Update control: un+1 = un + αn h

n

6: Compute dn+1 = ∇Jr(un+1)|H1 using Algorithm 4.14
7: Compute βn using the Fletcher-Reeves formula
8: Set hn+1 = −dn+1 + βn h

n

9: E = ‖un+1 − un‖
10: Set n = n+ 1
11: end while
12: return (un, fn)

In this algorithm, the tolerance tol > 0 and the maximum number of iterations
nmax ∈ N are used as termination criteria. We use backtracking line-search with
Armijo condition. The factor βn is based on the Fletcher and Reeves formula; see
[28] for more details and references.

4.2.6. Numerical experiments

In this section, we perform numerical experiments in an one-dimensional position
domain and one-dimensional velocity domain.
We implement a MOCOKI (Monte Carlo approach for optimal control in the force
of a linear kinetic model) code. The MOCOKI code is a standalone C++ package
that realizes the Algorithm 4.15. The numerical and optimization parameters can be
specified in the file globalparameters.h. The most important constants are given in
Table 4.2. In globalparameters.h the purpose of each parameter is explained. The
file optimization/optimization_algorithms.cpp is the core of the optimization process
and mirrors Algorithm 4.15 of this section. In this file, the initial condition for the
kinetic model and the optimization functions can be specified. After coding all the
required parameters and functions, the code should be compiled using cmake and
can be run using the command ./MOCOKI in the console. During execution, the code
generates several csv and txt files containing information on all particles, the value
of the objective, the norm of the gradient, and the control at every optimization
iteration.
After completion, it is possible to execute the python file
solution_kinetic_model.py in the folder post_processing, which will result in dis-
playing six plots. These figures show the evolution of the mean position and velocity
in phase space, these values plus and minus the corresponding variance, the evolution



140 4. Linear kinetic models

of position and velocity over the time interval, the control together with the force
used to generate the desired trajectory as a single particle dynamical system, and the
development of the relative value of the functional during the calculation.
For a first experiment, we use the the evolution equations of the moments of linear
kinetic models with the Keilson-Storer collision kernel derived in Section 4.2.1 to
validate our MOCOKI code. Afterwards, we present a verification strategy for our
MOCOKI implementation for a simple test-case. Specifically, we want to gather all
the particles in the centre of the position domain. The last part of this section is
to validate our implementation with standard, more evolved test-case of a harmonic
oscillator. Also for this test-case the optimization procedure finds a control that is
close to the well-known theoretical force of an ideal harmonic oscillator.

We now validate our code using the equations that were found for the evolution of the
moments for the linear kinetic model (4.24); specifically, the equations (4.27), (4.30),
(4.31). For the discrete versions of the moments we use a second-order trapezoidal
quadrature rule for numerical integration. For discretizing the phase-space-time cylin-
der, we use the following parameters

∆t = T

Nt

= 1.25 · 10−3, ∆x = L

Nx

= 10
200 = 0.05,

∆v = 2vmax

Nv

= 8
400 = 0.02.

To calculate the moments, we compute the solution of (4.24) using Algorithm 4.10.
To start it, we use an initial distribution f0(x, v) that is uniform in position and
Gaussian in velocity. Specifically,

f0(x, v) = 1
L

1√
2πσ2

exp
(
v2

2σ2

)
.

Where σ = 1/
√

2β where β is the parameter within the Keilson-Storer collision kernel.
As control, we use

u(x) = 25 sin
(2π
L
x
)
.

After the execution of Algorithm 4.10 with this inputs, we calculate the moments and
the corresponding discrete error functions as follows. Recall, that the moments are
functions of space and time. We define the discretized versions of the number density
as (nf )ki := nf (xi, tk) and analogue for the higher moments. For the zeroth moment,
we have

ei,knf := 1
∆t

(
(nf )k+1

i − (nf )ki
)

+ 1
2∆x

(
m̄k
i+1 − m̄k

i−1

)
,
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Figure 4.6. Error ei,knf of zeroth moment.

for the first moment

ei,km̄ := 1
∆t

(
m̄k+1
i − m̄k

i

)
−
(
ui(nf )ki + 1

2∆x
(
σ̄ki+1 − σ̄ki−1

)
− ΓA0(1− γ2)m̄k

i .
)

and analogously ei,kσ̄ for the second moment.
In Figure 4.6 - 4.8, the values of the previously defined error functions are shown in
the discrete position-time domain with a bicubic interpolation between the discrete
cells. On the abscissa there is always the discretized position domain and, on the
ordinate, the discretized time interval plotted.
Notice that in these errors, two essential different kinds of errors occur. On the one
hand, there is the error induced by the probabilistic nature of Monte-Carlo methods
and the resulting noisy data. On the other hand, there is a truncation error caused
by the discretization of the derivatives in space and time. We use always a first-order
method and time and second-order method in space.
In all plots it can be observed that the error increases within time but is everywhere
quite small. That the order of the error in Figure 4.6 is of two orders of magnitude
smaller than in Figures 4.7 and 4.8 can be explained by the fact that in this case, the
stochastic behaviour of the Keilson-Storer kernel has no influence since it cancels out
by means of Lemma 4.1.

To validate the behaviour of our method, we perform experiments in which we increase
the number of simulation particles. For this goal, we consider a simple example in
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Figure 4.7. Error ei,km̄ of first moment.
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Figure 4.8. Error ei,kσ̄ of second moment.

which the code should find a control that leads to centring the particles in the middle
of the domain.
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Figure 4.9. Verification of control with respect to number of particles.

Therefore, we expect a force that is similar to the one corresponding to a single
charged particle inside the domain, that is

u(x) ∼ 1
x− L

.

For the purpose of the verification, we introduce the well-known notation of a potential
corresponding to a force. Specifically, to a control u, we define the potential ψu as

ψu(x) = −
∫ x

0
u(ξ) dξ.

Hence, in the present case, we expect a potential as

ψu(x) ∼ − 1
(x− L)2 .

However, by the choice of our space in which we search for controls, we need that the
control is zero at the boundary at the domain and further continuous. Further, we
expect, that our control is symmetric with respect to the position domain and has a
minimum located at its centre. To perform the verification, we proceed as follows.
We take the same parameters as in the next experiment. Specifically, as they are
presented below in Table 4.2 and just alter the numbers of simulation particles Nf .
This is due to the fact, that the accuracy of Monte Carlo methods is O(1/

√
Nf ) as a

consequence of the central limit theorem; see, e.g., [37].
Therefore, it is a sensible approach to increase the numbers of simulation particles Nf

and expect a better behaviour of the result. We started with Nf = 103 and increased
the number of particles with the factor five several times. The resulting controls and
corresponding potentials are plotted in Figure 4.9.
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Notice that the structure of the obtained controls is close to what we expect from the
reasoning above. In particular, we see that actually

ψu(x) ∼ − exp
(
−(x− L)2

)
, u(x) ∼ −ψ′(x).

Therefore, the expected fundamental structure of the potential is recovered, specifi-
cally it has a unique minimum, is radially decreasing to this minimum and is sym-
metric with respect to the position domain.
Notice that the property of the potential to have a single minimum in the centre
of the domain is already obtained for less particles and in the control picture, the
control appears to be symmetric. However, in the potential plot it is evident that the
symmetry of obtain only for higher numbers of simulation particles.

Next, we show results of numerical experiments to validate the ability of our optimal
control scheme to drive the kinetic model to follow a given trajectory that corresponds
to the dynamics of an harmonic oscillator in the phase space.
We test our optimization framework in a one dimensional domain [0, L], L = 10m in
position for Argon, and we take the physical particles with mass M = 6.63 · 10−26kg;
further, we combine ωf particles in one simulation particle. The total number of
simulation particles is denoted with Nf . We assume that initially the particles are
normally distributed in space and velocity as follows

f0 = N2 (z0,Σ0) , z0 =
(
x0

v0

)
=
(

5.0
0.0

)
, Σ0 =

0.15 0

0 5.0

 .
We consider the optimal control problem (4.43) with d = 1 and the following setting.
We have

ζD(t) =
(

1.5 cos(ωt) + x0

−1.5ω sin(ωt)− v0

)
, u0(t) := (0, 0)T

θ(z, t) = − Cθ
2πσxσv

exp
(
−|x− ξD(t)|2

2σ2
x

− |v − ηD(t)|2
2σ2

v

)
,

ϕ(z) = 10−16θ(z, T ), Cθ = 1015.

We take σx = 1.5 and σv = 30; these parameters determine the ‘width’ of the po-
tentials, that is, their effective basin of attraction. On the other hand, they enter
as the variance of the distribution with which adjoint particles are created in every
time-step.
In our optimization procedure, we initialize with u0 ≡ 0. Further, we choose the
values of the physical and numerical parameters as given in Table 4.2.
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Symbol Value Symbol Value

Tp [K] 103 γ [-] 0.9999

ωf [-] 9 · 108 Nf [-] 5 · 103

T [s] 0.125 Nfrac [-] 2 · 102

Nt [-] 50 ∆t [s] 2.5 · 10−3

Nx ×Nv [-] 50× 25 vmax [m/s] 102

ν [ s2

m2 ] 10−6 ∆v [m/s] 8
Table 4.2. Physical and numerical parameters.
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Figure 4.10. Results of numerical experiment in the H1
0 case (includ-

ing collision). The bottom axis represents the position in both pictures.
The left axis in (a) represents the value of the control, and in (b) the
velocity. We use SI - units.

In Figure 4.10a (left), we depict the resulting optimal control (force) obtained with
Algorithm 4.15 with our choice of Nf particles. This result is compared with those
obtained with larger numbers of simulation particles, showing that the resulting op-
timal force does not significantly change. The axis of abscissa corresponds to the
position-coordinate. For comparison, we also plot the force F (x) for the harmonic os-
cillator whose dynamics corresponds to the desired trajectory. Specifically, this force
is given by

F (x) = −ω2(x− µ), ω = 2π
T
, µ = L

2 .
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Figure 4.11. Mean and variance of the optimal trajectory in phase
space. The bottom axis represents the position and the right axis the
velocity in both pictures.

In Figure 4.10b (right), we plot the evolution of the mean position and mean velocity
computed as follows

(4.55) 〈v〉 (t) =
∫∫

v f(x, v, t) dx dv, 〈x〉 (t) =
∫∫

x f(x, v, t) dv dx.

We see that the optimal control force obtained with our procedure effectively drives
the ensemble of particles to accurately follow the given trajectory.
In Figure 4.11, we plot the mean values of position and velocity together with these
values plus and minus the corresponding variances in phase space, σx and σv, respec-
tively. These variances are calculated as follows

σ2
x(t) =

〈
x2
〉

(t)− 〈x〉2 (t), σ2
v(t) =

〈
v2
〉

(t)− 〈v〉2 (t).

The experiments in this Chapter no show that MOCOKI is able to calculate an
optimal control to our ensemble optimal control problem. With these experiments
our investigation of ensemble optimal control problems governed by kinetic models
with linear collision kernel is finished. Using our approach, it is possible to define
control mechanisms within the collision kernel or the external force and calculate an
optimal control, such that the mean of the ensemble of particles follows a desired
trajectory.



Chapter 5
Towards the control of non-linear kinetic
models

In the previous chapters, we have investigated optimal control problems governed
by kinetic equations with linear collision kernels. This chapter gives an outline of
preliminary work on non-linear collision models. The physical interpretation of such
models is that of a gas consisting of particles of a single species in which only binary
collisions between particles occur. This is the case of dilute gases [43]. We fix the
dimension d = 3 and consider a bounded domain Ω ⊂ R3 with at least piece-wise
smooth boundary ∂Ω. For our theoretical investigations, we need in fact a boundary
∂Ω ∈ C2. In this case with n(x), we denote the outward unit normal vector of ∂Ω
at x ∈ ∂Ω. To ease the implementation for our numerical experiments, we perform
them in domains having only piece-wise smooth boundary.
The collisions are assumed to be fully elastic to ensure conservation of linear momen-
tum and energy. In this case, we have the following relation between the post-collision
velocities v′, w′ and pre-collision velocities v, w

v′ = v − n (n, v − w) , w′ = w − n (n, v − w) ,

where n is the unit vector directed along the line joining the centres of the two
particles. We introduce the following standard notation to shorten the presentation
of the forthcoming equations. For fixed x and t, we define

f = f(x, v, t), f∗ = f(x,w, t),

and analogous f ′ and f ′∗ in correspondence to v′ and w′, respectively. The Boltzmann
collision term CB then reads

CB[f, f ] =
∫
R3

∫
S2
c(|v − w|, ϑ)(f ′f ′∗ − ff∗) dϑ dw.(5.1)

147
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In (5.1), ϑ denotes a unit vector, S2 the two-dimensional unit sphere, and c the
collision kernel for the scattering from (v, w) to (v′, w′), see [110]. We further assume
that the so-called detailed balance holds, this is,

c(|v − w|, ϑ) = c(|v′ − w′|, ϑ).

5.1. Formulation of the non-linear kinetic optimal control problem

We consider the control mechanism to be within the external force F in the following
way. For a differentiable vector field a0 : R3 → R3 and parameters a1, a2 ∈ R, we
define the force as

F(x, v;u) :=
(
a0(x) + a1u1(x) + a2 v × u2(x)

)
,(5.2)

where × denotes the standard cross product for two vectors in three dimensions. In
(5.2), we consider the functions uι(x) : R3 → R3, ι = 1, 2 as the controls. Notice that
by this structure, the control u1 acts like an electric force and u2 acts like a magnetic
force. We define u : R6 → R6, u(x) = (u1(x), u2(x)).
Using F , we introduce the controlled free streaming operator as follows,

Lu := v · ∇x + F(x, v;u) · ∇v ,(5.3)

where we set the mass of the particles to M = 1. For the control space, we choose
U = H2

0 (Ω)×H2
0 (Ω). This choice is motivated by our numerical experiments that show

almost smooth controls in this case. This property could not be obtained considering
controls in H1

0 (Ω). The theoretical explanation for this may be that the control is at
least Hölder continuous with Hölder index 1/2 for u ∈ U . This follows from Sobolev
embeddings in three dimensions [1, 66]. We endow the control space U with its
natural norm

‖u‖U =
( 2∑
ι=1

∫
Ω
|uι(x)|2 dx+

∫
Ω
|∇uι(x)|2 dx+

∫
Ω
|∇2uι(x)|2 dx

)1/2

.

Now, we can write a non-linear kinetic equation of the form

∂tf(x, v, t) + Luf(x, v, t) = CB[f, f ](x, v, t),

for (x, v, t) ∈ Ω×R3×[0, T ]. On the boundary ∂Ω of the domain, we consider specular
reflection at inflow. We can express this fact using the operator Rv = v− 2(n · v)n as

f(x, v, t) = f(x,Rv, t) on ∂Ω× R3
< × [0, T ].
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Moreover, we define an initial condition f0(x, v) ∈ Hm
k (Ω×R3). Now, we can formu-

late the non-linear kinetic model as follows
∂tf(x, v, t) + Luf(x, v, t) = CB[f, f ](x, v, t) in Ω× R3 × (0, T ]
f(x, v, t) = f(x,Rv, t) on ∂Ω× R3

< × (0, T ]
f(x, v, 0) = f0(x, v) on Ω× R3.

(5.4)

Notice that very recently, a similar problem has been discussed in detail in [87]. Let
us introduce the control-to-state map G that maps a given control u ∈ U for a fixed
initial condition f0 to the solution of (5.4):

G : U −→ L∞T
(
L2(Ω× R3)

)
, u 7→ f = G(u).

We assume that G is well-defined and continuous, as underpinned by the results of
[87, Theorem 1.1]. In this paper, the authors derive an existence and uniqueness
result under further regularity assumptions on the boundary, the integrability of the
initial condition, and regularity and smallness assumption on the force and the initial
condition. Further, existence and uniqueness results are presented for the unbounded
space or periodic boundary condition in [75, Theorem 3.2] using a cut-off and in
[4, Theorem 1.1], [63, Theorem 1.1] without such an assumption. In the last two
references, it is assumed that the initial condition is close enough in a certain sense
to the equilibrium solution.
To formulate the optimal control problem, we consider the following objective. We
define θ(·, t) and ϕ(·) as negative Gaussian functions in phase-space and the functional

J(f, u) :=
∫ T

0

∫
Ω×R3

θ(z, t) f(z, t) dz dt+
∫

Ω×R3
ϕ(z) f(z, T ) dz + ν

2 ‖u‖
2
U .(5.5)

The parameter ν > 0 describes the weight of the cost of the control.
With this preparation, we can state our optimal control problem as

min J(f, u)

s.t.


∂tf(x, v, t) + Luf(x, v, t) = CB[f, f ](x, v, t) in Ω× R3 × (0, T ]
f(x, v, t) = f(x,Rv, t) on ∂Ω× R3

< × (0, T ]
f(x, v, 0) = f0(x, v) on Ω× R3

u ∈ U.

(5.6)

5.2. Non-linear kinetic optimality system

To characterize optimal controls to (5.6), we derive the corresponding optimality
system. This system consists of the kinetic model (5.4), an adjoint kinetic model and
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the reduced gradient. The latter one is formulated using the solutions of the former
two models. Following the Lagrange approach, we define the Lagrange functional
with the Lagrange multipliers q, q0, qσ as follows

L(f, u, q, q0, qσ) := J(f, u) +
∫ T

0

∫
Ω×R3

(
∂tf(z, t) + Luf(z, t) − CB[f, f ](z, t)

)
q(z, t) dz dt

+
∫

Ω×R3

(
f(z, 0)− f0(z)

)
q0(z) dz

+
∫
L2(∂Ω×R3

<×[0,T ])

(
f(x, v, t)− f(x,Rv, t)

)
qσ(x, v, t) dσ dv dt,

To derive the adjoint equation, we have to consider the derivative of L with respect
to f . The most challenging part in this calculation is to obtain the derivative of the
collision kernel CB that leads to an adjoint collision kernel C∗B. Let δf be an arbitrary,
small variation of f , such that f +α δf ∈ L∞T Hm

k for small α > 0 and δf|t=0 = 0. The
derivative of the collision part is then given as the limit for α → 0 of the following
expression divided by α∫

R3
dv q(x, v, t)

∫
R3
dw

∫
S2
dϑ c(|v − w|, ϑ)

(
(f ′ + α δf ′)(f ′∗ + α δf ′∗)− (f + α δf)(f∗ + α δf∗)

)
−∫

R3
dv q(x, v, t)

∫
R3
dw

∫
S2
dϑ c(|v − w|, ϑ)

(
f ′f ′∗ − ff∗

)
.

This expression is after a division by α and passing to the limit α→ 0 equivalent to∫
R3
dv q(x, v, t)

∫
R3
dw

∫
S2
dϑ c(|v − w|, ϑ)

(
f ′ δf ′∗ + f ′∗ δf

′ − f δf∗ − f∗ δf
)
.(5.7)

For the collision kernel, it holds by the symmetry of absolute value and detailed
balance that

c(|v − w|, ϑ) = c(|v′ − w′|, ϑ) = c(|w − v|, ϑ) = c(|w′ − v′|, ϑ).

Therefore, renaming w, v, w′, v′ we see that (5.7) equals∫
R3
dv δf

∫
R3
dw

∫
S2
dϑ c(|v − w|, ϑ)f∗(q′ + q′∗ − q − q∗).

Since δf is considered to be arbitrary, we define the adjoint collision kernel as

C∗B[q](v, t) =
∫
R3

∫
S2
c(|v − w|, ϑ)f∗(q′ + q′∗ − q − q∗) dϑ dw.(5.8)

Hence, C∗B[q] is linear in q and depending on f∗. Using a cut-off of the interaction
potential, it is possible to rewrite the equation (5.8) and split the collision operator
in a gain and a loss term, see the result of Grad, specifically (3.15) and (3.16) in
[78]. Notice that an equivalent adjoint collision kernel can also be derived using the
linearized Boltzmann equation [36]. For further information and the connection of
the linear and linearized Boltzmann equations see [40] and [64].
Recall that the adjoint equation does not need to have a physical interpretation and
its solely purpose is to be used in the calculation of the gradient. Hence, a sufficiently
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good approximation of it is enough for our purpose. In particular, assuming that
we can approximate f∗ by a Maxwell distribution f eq(w) we can define our adjoint
collision kernel as follows

A∗B(w, v) = f eq(w)
∫
S2
c(|v − w|, ϑ) dϑ.(5.9)

Such approximation is in particular sensible in the regime of dense gases [44, Section
15.51]. This may be not the case for the forward equation, however, recall that the
main purpose of the adjoint equation is to constitute the gradient. Using (5.9), the
approximated adjoint collision term can be written in the form

C∗B[q] =
∫
R3
A∗B(w, v)q(w) dw − q(v)

∫
R3
A∗B(v, w) dw

=
∫
R3
A∗B(w, v)q(w) dw − q(v) 1

τ ∗(v) .

The quantity 1
τ∗(v) is the adjoint collision frequency given by

1
τ ∗(v) =

∫
R3
A∗B(w, v) dw.

This collision frequency depends on the velocity. However, although the adjoint equa-
tion has a linear collision kernel, it has not the structure of a standard linear approx-
imation, as for example the BGK approximation. In fact, the dependence of the
frequency on the velocity leads to theoretical and computational issues with deter-
ministic models, which have been recently investigated [81].
Bringing together all the pieces for the adjoint model, we obtain the following

−∂tq(x, v, t) + L∗uq(x, v, t) = C∗B[q](x, v, t)− θ(x, v, t) on Ω× R3 × [0, T )
q(x, v, t) = q(x,Rv, t) in Ω× R3

> × [0, T )
q(x, v, T ) = −ϕ(x, v) in Ω× R3,

(5.10)

where we introduce the adjoint free-streaming operator

L∗u = −Lu.

Observe that in (5.10) there is no constant source term proportional to q appearing.
This is due to the symmetry of the collision kernel and hence no reformulation is
needed to interpret the adjoint model as a kinetic model.
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The next step is to compute the derivative of L with respect to the control. Recall
that the control is included within the force F . The derivatives of F are given by

∂u1F(x, v;u) = a1I3, ∂u2F(x, v;u) = a2


0 −v3 v2

v3 0 −v1

−v2 v1 0

 ,

where I3 is the three-dimensional identity matrix. We define the differential operator

Dφ = φ−∆φ+ ∆2φ,

where ∆ denotes the Laplace operator with respect to position.
With this definition, the L2 gradient of our optimal control problem (5.6) is given by

∇uιJr(u)|L2(x) = νDuι(x) +
∫ T

0

∫
R3
q(x, v, t) ∂uιF(x, v;u) · ∇vf(x, v, t) dv dt

x ∈ Ω, ι = 1, 2.
(5.11)

Notice that we require control field to be an element of H2
0 × H2

0 . Thus, we have
to derive a formula for ∇uιJr(u)|H2(x). To shorten the presentation, we define
ψ(x) = ∇uJr(u)|H2(x), where ∇uJr(u)|H2 = (∇u1Jr(u)|H2 ,∇u2Jr(u)|H2). Recall that
the Taylor series expansion in a Hilbert space X must be identical term by term
regardless of the choice of X; see [28]. In other words, we need to calculate the Riesz
representant of the derivative of the reduced functional in the correct Hilbert space.
Therefore, we have

(ψ, δu)H2 = (∇uJr(u)|L2 , δu)L2 .

Using the definition of the H2
0 inner product (u, v)H2 = (u, v)L2 + (∇u,∇v)L2 +

(∆u,∆v)L2 for functions that have compact support, we obtain the relation∫
Ω

(
ψ(x) δu(x) +∇ψ(x) ·∇δu(x) + ∆ψ(x) ∆δu(x)

)
dx =

∫
Ω
∇uJr(u)|L2(x) δu(x) dx,

which must hold for all test functions δu ∈ U . To shift the derivative of ψ in the
second and third term, we use Green’s first and second identity in three dimensions.
With the assumption that ψ and its directional derivative with respect to n are zero
at the boundary ∂Ω, we obtain the following boundary value problem for the H2

gradient

(5.12)

ψ(x)−∆ψ(x) + ∆2 ψ(x) = ∇uJr(u)|L2(x) in Ω
ψ(x) = 0, ∂nψ(x) = 0 on ∂Ω.

With ∂n, we denote the derivative with respect to the outward unit normal n. We
remark that the assumption that the control is zero at the boundary can be replaced
by the hypothesis that the value of the control at the boundary is any given value.
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The structure of (5.12) will not be altered by changing the value of the control at the
boundary.
Summarizing, we have the non-linear kinetic optimality system in Ω× R3 × [0, T ]

∂tf(x, v, t) + Luf(z, t) = CB[f, f ](x, v, t),

f(x, v, 0) = f0(x, v),

f |∂Ω×R3
<

= f(x, v − 2n(n · v), t),

− ∂tq(z, t) + L∗uq(z, t) = C∗B[q](z, t)− θ(z, t),

q(z, T ) = −ϕ(z),

q|∂Ω×R3
>

= q(x, v − 2n(n · v), t),

Dψι(x) = νDuι(x) +
∫ T

0

∫
R3
q(x, v, t) (∂uιF(x, v, t;u)∇vf(x, v, t)) dv dt,

ψι|∂Ω = 0, ∂nψι|∂Ω = 0, ι = 1, 2.

(5.13)

5.3. Results of numerical experiments

For solving the kinetic model and the adjoint kinetic model, we develop a new module
within the C++ codes of our industrial partner. Notice that (5.12) is a vector problem
for the two components of the gradient ∇uJr(u)|H1(x). We approximate the differ-
ential operator D in this problem by standard finite difference approximation for the
second and fourth order derivative. Specifically, we use second-order central finite
difference approximation for the derivatives; for the coefficients of the discrete deriva-
tives see [69]. The problem (5.12) then results in a block-penta-diagonal system. The
solution of this system is obtained efficiently by an adapted Thomas method; see [15].
In principle, also higher order of approximations of derivatives can be used, which
then will need information of more cells near the cell under consideration. This will
lead to more complicated and less sparse matrices. For approximating the integral,
we use the second-order trapezoidal rule.
Now, we present results of numerical experiments in order to validate the ability
of our control framework to calculate solutions of our optimization problem (5.13)
in the six-dimensional phase-space. As Ω ⊆ R3 we consider a cube and assume
specular reflection as the boundary condition. We assume that the control acts on the
particles as electric or magnetic force. No further interactions between the particles
are considered, in particular no electrostatic forces.
In the first test-case, we choose a0 ≡ 0, a1 = 1 and a2 = 0 in the control mechanism
(5.2). The initial distribution is taken to be uniform in position and in thermal
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(a) Initial condition f0 and −ϕ

(b) State and adjoint state at the final time

Figure 5.1. Distribution of forward (black) and adjoint (red) particles
in the domain Ω. The axis xi, i = 1, 2, 3 are labelled in their physical
more common notation x, y, z.

equilibrium in velocity. The desired state is a Gaussian distribution in both position
and velocity with the mean at position being the centre of the box. This desired state
is encoded in θ and ϕ.
In Figure 5.1, it is shown that our calculated control accomplishes the task to drive
the particle distribution close to the desired state. Specifically, the model particles
are gathered in the centre of the domain Ω. Notice that the edges in the Figure
5.1b are due to the fact that we start with homogeneously distributed particles in
the position domain, but the desired state is Gaussian, that is a ball with respect to
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Figure 5.2. Calculated force from different perspectives.

position. Therefore, by the expected spherical symmetry of the control, particles at
the edges of the box need more time to be pushed in the centre. Thus, the behaviour
shown in Figure 5.1b is to be expected.
In Figure 5.2, the control is plotted from different perspectives. Notice that the control
is not perfectly symmetric which we would expect from a control that fits perfectly to
the desired state. However, while increasing the number of the simulation particles,
we see convergence of the control to an entirely symmetric one in our numerical
experiments.

In the next test case, we consider a1 = 0 and a2 = 1 in (5.2). We consider an inflow
from one side of the boundary and aim to decrease the area occupied by particles
during their movement to the other side of the box.
In Figure 5.3, the state corresponding to the calculated control is shown at different
time-steps. Specifically at the initial and the terminal time. Notice that the area
in which particles exist is clearly decreased compared to the area they cover at the
inflow.
In Figure 5.4, the calculated control in the magnetic test-case is plotted from two
perspectives. In Figure 5.4a the control is shown from the same perspective as the
plots in Figure 5.3. Notice that the intensity |u(x)| is decreasing in x1-direction. This
due to the fact that the number density is higher for smaller values of x1 and hence
the gradient for such values for x1 is greater in absolute value. In Figure 5.4b the
control is plotted with the x2 axis at the bottom. In this picture, it is observable that
the calculated control is close to a divergence-free function.
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(a) Initial time

(b) Final time

Figure 5.3. Particle distributions at different time-steps.

(a) View x1-Axis (b) View x2-Axis

Figure 5.4. Calculated magnetic force.

It is desirable to have a divergence-free function in view of the interpretation of
the control as an external magnetic force. Since no magnetic monopoles exists, the
divergence of the control should vanish. We can include this in our framework, by
applying a projection in the update of our control. This is achievable due to the



5.4. Outlook 157

fact that is possible to decompose vector-fields in a divergence free and a rotation-
free component [20]. This decomposition is the so-called Helmholtz-decomposition.
Further, several algorithms have been developed to calculate such a decomposition in
different dimensions; see, e.g., [2, 80]. Another possibility is to include the norm of
the divergence as additional term in the cost functional.

5.4. Outlook

We finish this work with some final remarks and some further outlooks. In the
present work, only models that resemble single species gas were considered and it
was assumed that the particles do only interact via collisions. In particular, no
self-induced interaction forces were considered. However, these physical assumptions
can be discarded. Specifically, it is possible to investigate multi-species systems,
in particular plasma including inter-particle forces. In this case, a model equation
must be stated for each of the species and a term for each species will occur in the
definition of the objective. Moreover, for each species an adjoint equation must be
derived. However, notice that in the assembling of the gradient only the species enter
on which the control is applied directly. Hence, depending on the specific control
mechanism, it may be not required to solve all adjoint equations.
Further, also inter-species interactions beyond collisions could be considered. For
example, electro-static forces that are modelled with Poisson’s equation. Since the
adjoint equation of each species is the linearization of the model equation with respect
to this species, a linear correlation of the adjoint and the model variable is to be
expected.
Similar to the inclusion of electro-static forces, one may consider additional Maxwell’s
equations describing electro-magnetic fields. In particular, if the control should be
interpreted as an external magnetic force, it must fulfil the corresponding equations.
In particular, it must be divergence free. These and similar restrictions can be taken
into account using a projected optimization algorithm.
Until now, it is also assumed that the control acts on the whole position domain.
However, there are two different possibilities to reject this assumption. On the one
hand, the domain in which the control acts may be restricted using a the characteristic
function smoothed by mollifiers on the domain. Outside this domain the control is
set to zero. On the other hand, it is possible to define a control mechanism located at
the boundary of the domain and calculate the resulting force inside with appropriate
equations and numerical solvers. In this case, the control should consist of the value
at the boundary and the directional derivative with respect to the unit normal vector
of the domain. The advantage in such a setting is that a physical device that realizes
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the control mechanism may be easier obtained than in the case where the control
itself is defined in the whole domain.
Moreover, one may include erosion of other chemical reactions between the particles
or between particles and the physical boundary of the domain. This will lead to
more realistic models. Further, using our ensemble control problems, it is possible to
minimize various macroscopic properties of the density function using the structure of
the objective. This is realizable by virtue of the definition of the tracking and terminal
cost part in the functional as weighted mean values. Therefore, all physical quantities
that can be expressed using expected values respectively moments of density functions
can in principle be considered in the objective.



Appendix A
Code documentation

A.1. RESOLVE: Optimal control problems governed by the Liouville equa-
tion

The code used in the Chapters 2 and 3 is called RESOLVE. Please find on the attached
Compact Disc (CD) the codes for the three experiments presented in this thesis. We
now shortly explain the structure of the program.

A.1.1. Structure of the program

The code is a standalone Matlab program that requires no further Matlab pack-
ages. It is written using Matlab R2020b.
The auxiliary directory of the code is structured in four categories

• Better control: contains several files used in the update process as projec-
tions and a line-search algorithm
• Kurganov-Tadmor: contains subroutines executing the SSPRK2-KT
scheme
• Semi-smooth Newton: contains files for the calculation for the next con-
trol using a semi-smooth Krylow-Newton scheme; in particular, a file for
calculating the reduced Hessian, and solving the arising linear equations and
dealing with the non-smoothness if the L1 cost is included in the functional
• Strang splitting: contains subroutines executing the KTS scheme

A.1.2. Using the program

The main file of the program is called
DRIVER_OptLiouv_Brockett.m and represents Algorithm 3.2. In this file, the ini-
tial guess of the control is loaded, if the file OCP_Liouville.mat with the correct
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structure can be found in the directory. Otherwise, the default value for the initial
guess is the function that is constant zero everywhere.
All the parameters for discretization and optimization are defined in the file
globalParameters.m. In particular, the mesh in time and space is defined in this
file. The parameters will be accessed during the program where needed.
The initial condition for the density function should be defined in the file
initialConditions_Brockett.m. Recall that it should be zero near the bound-
ary. In this file, also the potentials θ and ϕ that are important for the calculation of
the objective and solving the adjoint problem are defined as global variables.
The objective is implemented in the file objectiveJ_Brockett.m. It makes use of
the potentials defined in the initialConditions_Brockett.m file.

A.1.3. Output and post-processing

The program terminates if the difference between the controls of two consecutive
optimization iterations is smaller than a given threshold or the maximal iteration
depth is reached. After a successful iteration of the algorithm, the current control,
the history of the value of the functional and the norm of the gradient as well as
the solutions to the forward and backward problem are saved in a file called OCP_-
Liouville.mat. In particular, the obtained control and corresponding states are
saved after the termination of the program. With this file, it is possible to restart the
program with the values of the last iteration if needed.
During the execution of the code there are several output-figures displaying the cur-
rent state of the optimization. In particular, the current value of the functional, the
norm of the gradient and the current control are plotted. These figures are saved in
the pictures/ folder. Besides this, some less important figures as the process of the
H1 projection are shown.

A.2. MOCOKI: A Monte Carlo approach for optimal control in the force
of a linear kinetic model

The MOCOKI code solves optimal control problems governed by linear kinetic equa-
tions including external forces and a collision term in a Monte Carlo framework.
Please find on the attached CD the sources files for MOCOKI.
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A.2.1. Dependencies and required libraries

The code was optimized for Ubuntu 18.04 LTS. Before downloading the dependencies,
make sure that Ubuntu is up-to-date using

sudo apt-get update

and

sudo apt-get upgrade.

Before compiling the code the following dependencies and libraries must be installed:
openMP (for parallelizing) that can be installed using

sudo apt install libomp-dev

and cmake that can be installed using

sudo apt install cmake.

For optional postprocessing python3 should be installed including the packages
argparse, pyplot from matplotlib, numpy, math, pandas. These packages can be
installed using the following commands

sudo apt install python3-pip -y
pip3 install matplotlib pandas numpy

A.2.2. Problem specifications

In the file globalparameters.h it is possible to specify the parameters used in the
code. View the comments in the file to get information about the purpose of each pa-
rameter. The file
optimization/optimization_algorithms.cpp is the core of the optimization scheme
and mirrors Algorithm 4.15; in this file the initial condition of the kinetic model and
the adjoint kinetic model can be specified.

A.2.3. Structure of the code

The code is structured in four categories:

• auxiliary: contains auxiliary subroutines like generating of probability den-
sity functions (pdf) and controller for input/output
• mcc: contains methods for solving the linear kinetic and adjoint linear kinetic
problem
• monitoring: contains methods for keeping track of numbers important for
optimization like value of functional
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• optimization: core of optimization methods; contains NCG subroutines and
armijo-linesearch as well as functions providing the value of the functional
and the building of the gradient
• post_processing: contains python files for visualizing the results of the
simulation

A.2.4. Compiling and running the program

After specifying the parameters, it is possible to compile the code and start the
program with the following commands inside the MOCOKI folder, that contains all the
source files.

cd build-MOCOKI
cmake ../
make
./MOCOKI

The output files will be written in the folder output-MOCOKI.

A.2.5. Post-processing

There is a python file to produce pictures of the results of the MOCOKI code. For
this purpose, change to directory post-processing and execute

python3 solution_kinetic_model.py ../output-MOCOKI/

The resulting plots show: the desired and obtained trajectories in phase space, the
corresponding optimal control and the optimization history of the objective func-
tional. These figures are saved in figures-MOCOKI, in the file solution_kinetic_-
model.png, together with the control’s profile stored in the ascii file calculated_-
control.txt .
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