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A B S T R A C T

The safety of future spaceflight depends on space surveillance and
space traffic management, as the density of objects in Earth orbit
has reached a level that requires collision avoidance maneuvers to
be performed on a regular basis to avoid a mission or, in the context
of human space flight, life-endangering threat. Driven by enhanced
sensor systems capable of detecting centimeter-sized debris, mega-
constellations and satellite miniaturization, the space debris problem
has revealed many parallels to the plastic waste in our oceans, how-
ever with much less visibility to the eye. Future catalog sizes are
expected to increase drastically, making it even more important to
detect potentially dangerous encounters as early as possible.

Due to the limited number of monitoring sensors, continuous ob-
servation of all objects is impossible, resulting in the need to predict
the orbital paths and their uncertainty via models to perform collision
risk assessment and space object catalog maintenance. For many years
the uncertainty models used for orbit determination neglected any
uncertainty in the astrodynamic force models, thereby implicitly as-
suming them to be flawless descriptions of the true space environment.
This assumption is known to result in overly optimistic uncertainty
estimates, which in turn complicate collision risk analysis.

The keynote of this doctoral thesis is to establish uncertainty realism
for low Earth orbiting satellites via a physically connected quantifica-
tion of the dominant force model uncertainties, particularly multiple
sources of atmospheric density uncertainty and orbital gravity uncer-
tainty. The resulting process noise models are subsequently integrated
into classical and state of the art orbit determination algorithms. Their
positive impact is demonstrated via numerical orbit determination sim-
ulations and a collision risk assessment study using all non-restricted
objects in the official United States space catalogs. It is shown that the
consideration of atmospheric density uncertainty and gravity uncer-
tainty significantly improves the quality of the orbit determination
and thus makes a contribution to future spaceflight safety by increas-
ing the reliability of the uncertainty estimates used for collision risk
assessment.
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Z U S A M M E N FA S S U N G

Die Sicherheit der künftigen Raumfahrt hängt von der Weltraumüber-
wachung und dem Weltraumobjektmanagement ab, da inzwischen die
Dichte an Objekten im Erdorbit ein Niveau erreicht hat, welches regel-
mäßige Kollisionsvermeidungsmanöver erfordert um eine missions-
oder, im Kontext der bemannten Raumfahrt, lebensgefährdende Situa-
tion zu vermeiden. Durch verbesserte Sensorsysteme, die in der Lage
sind, zentimetergroße Objekte zu erkennen, Megakonstellationen und
die Satellitenminiaturisierung hat das Weltraummüllproblem viele
Parallelen zu den Plastikabfällen in unseren Weltmeeren offenbart,
jedoch mit deutlich geringerer Sichtbarkeit für das Auge. Es ist zu
erwarten, dass die Größe der Weltraumobjektkataloge in Zukunft
drastisch ansteigen wird, was es umso wichtiger macht, potenziell
gefährliche Begegnungen so früh wie möglich zu erkennen.

Durch die begrenzte Anzahl an Überwachungssensoren ist eine kon-
tinuierliche Beobachtung aller Objekte unmöglich, sodass die Umlauf-
bahnen und deren Unsicherheiten über Modelle vorausberechnet wer-
den müssen, um die Bewertung von Kollisionsrisiken vorzunehmen
und die Wartung der Objektkataloge sicherzustellen. Viele Jahre haben
die zur Bahnbestimmung verwendeten Unsicherheitsmodelle jegliche
Unsicherheit in den astrodynamischen Kräftemodellen vernachlässigt
und somit implizit angenommen, dass diese fehlerfreie Beschreibun-
gen der wahren Weltraumumgebung darstellen. Diese Annahme ist
jedoch dafür bekannt, zu übermäßig optimistischen Unsicherheitsab-
schätzungen zu führen, was die Kollisionsrisikobewertung erschwert.

Das Leitthema dieser Doktorarbeit ist die Berechnung realistischer
Unsicherheiten von Objekten in einer niedrigen Erdumlaufbahn an-
hand einer Unsicherheitsquantifizierung mit physikalischem Bezug
zu den Kräftemodellen, welche die größten Anteile an der Propagati-
onsunsicherheit aufweisen. Dies sind insbesondere mehrere Quellen
von atmosphärischer Dichteunsicherheit, sowie Gravitationsunsicher-
heit. Die resultierenden Prozessrauschmodelle werden anschließend
in klassische und moderne Algorithmen zur Umlaufbahnbestimmung
integriert. Die positiven Auswirkungen dieser Technik werden durch
numerische Simulationen zur Orbitbestimmung, sowie durch eine
Risikobewertungsstudie anhand aller nicht-sensitiven Objekte in den
amerikanischen Weltraumkatalogen belegt. Es wird gezeigt, dass die
Berücksichtigung von Unsicherheiten in der atmosphärischen Dichte
und dem Gravitationsmodell die Qualität der Umlaufbahnbestim-
mung signifikant verbessert und somit durch zuverlässigere Unsicher-
heitsschätzungen bei der Kollisionsrisikobewertung einen Beitrag zur
künftigen Sicherheit im Weltraum leistet.
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Now is the time to understand more,
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The following is a summary of conventions followed in this work and
frequently encountered, exclusively allocated symbols.
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ερ = ρ−ρ̂
ρ̂
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tion matrices) are typeset using subscript letters in
the order destination, origin

Tb,a

(from a to b)

Matrix determinants are expressed by vertical bars |P|

A superscript T denotes the matrix transpose PT

A subscript 0 is used to indicate initial
(e.g. epoch or baseline) quantities

P0, T0
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I N T R O D U C T I O N

Ever has the view into our sky fascinated people all around the world.
Be it the desire to find an answer to the question of what other than
humankind is out there, the apparently infinite open spaces, the quest
of understanding the fundamental physics of the universe or simply
the desire to reach the "unreachable" - space has always been and will
always be a source of inspiration and the ultimate benchmark for our
technological capabilities.

Our understanding of the Earth, the solar system and the universe
has increased rapidly since the launch of the first artificial satellites in
the middle of the twentieth century. With the political interest in space
and the advent of increasingly powerful digital computers, the condi-
tions for the development of a commercial market centered around our
near-Earth environment were quickly met. In 2017, 60 years after the
first man-made satellite was launched, a million people were employed
in the space economy, which grew to 414.75 billion US dollar per fiscal
year in 2018. As of January 2020, 81 nations are operating in space (The
Space Foundation, 2020). Today, humanity has become dependent on
satellite technology without most people noticing. Space-based ser-
vices, such as global telecommunications, Earth observation or global
positioning are the building blocks that, besides the numerous scien-
tific and military applications, drive what many of us take as granted:
precise weather forecasts, Google Maps, satellite TV, banking or even
full shelves of fruits and vegetables in our supermarkets1. Also the
future trend is clear: technologies currently being developed, includ-
ing safety-critical ones like autonomous driving or urban air mobility,
are impossible without constellations of satellites in Earth orbit.

Despite this crucial role of our space assets, satellite operators have
long trusted in the “big sky theory”, which states that the space
around Earth is too large for collisions between active satellites and
resident space objects2 (RSOs) to take place (Newman et al., 2009).
While this assumption was certainly valid for the early days of space-
flight, a first warning about the accumulation of space debris3 was
published already two decades after Sputnik 1 was brought into orbit,
at a time where the total number of tracked objects was about 4000
(Kessler and Cour-Palais, 1978). Furthermore Kessler and Cour-Palais
also predicted the first collision between cataloged RSOs to take place

1 Satellite data is used in many places to increase farming efficiency
2 A resident space object is defined as any natural or artificial object in a permanent

orbit around another body
3 Space debris is defined as any anthropogenic space object which no longer serves a

useful purpose

3
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Known and
suspected

unintentional
collisions involving

at least one artificial
space object

between 1989 and 1997. In 1990 Kessler continued the study on cas-
cading collisions and postulated the existence of a critical population
density, which once reached, causes the rate of accidental collisions
to exceed the object removal rate due to atmospheric drag, such that
the overall debris population increases without further satellites being
placed into orbit (Kessler, 1991). Such a self-sustained growth could
potentially render certain altitude shells unusable for many years due
to the debris environment being too hostile for operational use. This
assessment later became known as “Kessler Syndrome”.

1.1 population of resident space objects in earth orbit

Today, collisions in space are a reality and their effect can be any-
thing from negligible to catastrophic. The first recorded unintentional
collision of an operational spacecraft with a cataloged object in orbit
around Earth happened on July 24

th, 1996, when the gravity gradient
boom of CERISE, a French reconnaissance spacecraft, was severed by
a piece of Ariane 1 rocket stage debris (Johnson, 1996; Anz-Meador
et al., 2018). If collisions of non-functional RSOs are included, the
first event even dates back to December 23

rd, 1991, when a piece of
debris from Cosmos 926 collided with the non-functional Cosmos 1934

satellite (Liou, 2005; Anz-Meador et al., 2018). Both incidents fall into
the timeframe predicted by Kessler and Cour-Palais.

A list of known and suspected unintentional collisions is given in
table 1.1. Other events that are well-known for their creation of large
amounts of debris are the intentional destructions of Fengyun-1C and
Microsat-R during the 2007 Chinese and 2019 Indian anti satellite tests.

1991 Inactive Cosmos 1934 satellite hit by cataloged Cosmos 296 debris

1996 Active Cerise satellite hit by cataloged Ariane 1 rocket stage debris

1997 Inactive NOAA 7 satellite hit by uncataloged debris

2002 Inactive Cosmos 539 satellite hit by uncataloged debris

2005 US rocket body hit by cataloged Chinese rocket stage debris

2007 Active Meteosat 8 satellite hit by uncataloged debris

2007 Inactive NASA UARS satellite believed hit by uncataloged debris

2009 Active Iridium satellite hit by inactive Cosmos 2251

2013 Active BLITS satellite hit by cataloged debris belonging to the
Chinese anti satellite weapon test

2013 CubeSats NEE-01 Pegaso and CubeBug-1 hit by debris belonging to
a Tsyklon-3 upper stage

2016 Solar array of Sentinel 1A hit by micrometeoroid

Table 1.1: Known and suspected unintentional collisions involving at least
one artificial space object. Collisions involving active satellites are colored
gray. Sources: Wright (2009), Anz-Meador et al. (2018), Kelso et al. (2013) and

Nader and Kelso (2014)
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Figure 1.1: Visualization of public two-line elements catalog from May 4
th,

2020. 19094 objects are contained in the source file. The heavily populated
low Earth orbit shell, as well as the geostationary belt can be clearly depicted

On May 4
th, 2020 the public catalog available through www.space-

track.org contained 19094 RSOs. In total the US Combined Space
Operations Center (CSpOC) currently tracks ∼23 000 objects, of which
about 8% (∼1800) are operational spacecraft (Liou, 2020). A visualiza-
tion of this dataset is depicted in figure 1.1. The historical evolution of
the population is shown in figure 1.2. Most of the cataloged objects
are located in a low Earth orbit (LEO), which may be defined as the
altitude shell between 200 and 2000 km altitude. Within LEO altitudes,
two peaks can be identified at about 780 km and 850 km. The increased
spatial density at these altitudes can be attributed to the destruction of
Fengyun-1C and the collision between Cosmos 2251 and Iridium 33.

Active debris removal (ADR) is the subject of current research
projects (e.g. ESA’s ADRIOS program), but not yet practically feasible.
It is furthermore questionable if this technology is the genuine solution
to the space debris problem, or whether ADR will essentially be used
to remove only critical RSOs. The focus must therefore continue to be
placed on preventing further debris in orbit. Stringent requirements to
limit the generation of mission-related debris and enforce post-mission
disposal have been put in place by all major space agencies in the past
25 years, however non-compliances are regularly observed (Esteva
et al., 2020). While these requirements have helped to slow down the
growth of debris since their implementation, single events, such as the
Chinese anti satellite (ASAT) test in 2007, have destroyed the efforts of
decades.

www.space-track.org
www.space-track.org
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Figure 1.2: Evolution of cataloged population in Earth orbit (Liou et al.,
2020). The jumps in 2007 and 2009 relate to the Chinese ASAT test and
the Cosmos/Iridium collision. Currently about 1800 of the spacecraft are

operational, the remaining ones derelict

Limiting mission-related debris does not only refer to spacecraft en-
gineering (e.g. the minimization of pyro mechanisms), but also implies
the avoidance of accidental collisions. Spacecraft operators are there-
fore required to establish operational conjunction assessment (CA)
and, if necessary, to execute collision avoidance maneuvers (CAMs).

The execution of a CAM is a decision to be well-considered. Maneu-
vers cost valuable fuel, reduce the operational lifetime and usually re-
quire a mission interruption. Hence, unnecessary maneuvers have to be
avoided. The answer to the question of when to maneuver implies the
application of CA, followed by a thorough risk analysis. Only if the risk
metric (commonly a collision probability) is (ideally multiple times)
above the owner/operator (O/O) threshold, a CAM is executed. The
combined process is known as conjunction assessment and risk anal-
ysis (CARA)4 and requires the approaching RSO to be cataloged.

The current US space catalogs contain objects of ∼10 cm diameter
and larger. Due to the high average impact speeds of ∼10 km/s all
particles larger than 1 cm can be considered to pose a mission-ending
threat in LEO. So far there was no means to cover the blind spot
between the centimeter-level and 10 cm. The gap is however expected
to be narrowed in the near future, as the next generation US space
surveillance system, the Space Fence radar, has been declared opera-
tional on March 27

th, 2020 by the US Space Force (USSF, 2020). The
reduction of the minimum detectable size to ∼5 cm is expected to grow
the catalog dimension by a factor of three to ten (Hejduk et al., 2019).

4 The distinction between CA and CARA is fuzzy in the literature. In this work CA is
defined as the identification of close encounters, whereas CARA is used to designate
CA followed by a conjunction risk evaluation
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A second driver of future catalog growth is the construction of mega-
constellations with thousands of satellites, such as Starlink.

This heavy increase of the catalog size has direct consequences for
future satellite operations. First, the number of conjunction warnings is
going to increase drastically, which is likely to lead to a higher number
of CAMs. Second, the expected increase of conjunction warnings
underlines the need for automatization in the CARA process.

1.2 the space surveillance and tracking segment

Successful collision avoidance (COLA) requires knowledge of the kine-
matic state (i.e. position and velocity coordinates) and its uncertainty
for all potential conjunction partners in space. The establishment and
maintenance of this knowledge in the form of a space object catalog is
realized by a system of systems which forms the space surveillance and
tracking (SST) segment of a space situational awareness (SSA) program.

For a resident space object to be cataloged, it first needs to be
observed and measurements of its orbital path need to be taken. Mea-
surements are acquired by radars or telescopes either from ground or
via space-based satellites. In some cases also high-precision laser-based
measurements are possible, however these typically5 require the target
to be equipped with retro reflectors, which is only the case for some of
the active satellites. Once measurements have been acquired, the mea-
surement data needs to undergo data association. The purpose of this
stage is to determine if the observed tracks belong to an object which
is already known and cataloged, or if a new RSO has been detected.

Following the data association, the next step is to perform an initial
orbit determination (IOD) in case of a new object or orbit determina-
tion (OD) in case of a cataloged object. The purpose of IOD is to derive
an initial estimate of the object’s state6 and its uncertainty without
any prior knowledge, using only the measurement data. In case of
a cataloged object, an estimate of the object state and its uncertainty
are already available, hence the task of OD is to update the prior
estimate using the new measurement data. Both IOD and OD require
the abilities of orbit and uncertainty propagation. The task of orbit
propagation is to predict an object’s state at a future (or past) time,
given its last known state and possibly further parameters required
for propagation. Similarly, the purpose of uncertainty propagation
is to propagate the object’s uncertainty to a future (or past) epoch.
Orbit propagation can be subdivided into two main classes7: analytical
propagation, also known as General Perturbations (GP) theory, which

5 Efforts are also underway to establish operational satellite laser ranging (SLR) for
non-cooperative (and thus reflector-less) targets (Flohrer et al., 2016)

6 The term state is henceforth used to refer to the state vector of a system, which
typically contains the kinematic state errors and optionally additional parameters

7 Also semi-analytical theories exist (e.g. the Draper Semi-analytical Satellite Theory),
but they are uncommon for CARA, as official catalogs are only available for the GP
and SP theories
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is based on Two-Line Elements (TLE) data and numerical propagation,
also known as Special Perturbations (SP) theory, which numerically
integrates the equations of motion including the accelerations of all
perturbations that shall be considered in the propagation. The choice
of the propagation method essentially depends on three factors: data
availability, required accuracy and computing speed. Common data
sources have been studied in Schiemenz et al. (2019a). The analytical
theory has an accuracy limit in the order of 1 km, whereas the numer-
ical theory is capable of meter-level accuracy (Vallado, 2013). If the
1 km accuracy is sufficient for the requirements of the user, the GP the-
ory has some great advantages over other propagation methods: first,
due to its analytical nature, the computational load of the orbit propa-
gation is independent of the propagation duration and only requires
a few floating point operations. Second, no further data other than
the TLE is required for propagation8. A third advantage is the pub-
lic availability of the TLE catalog through https://space-track.org,
resulting in easily repeatable and fast computations.

Besides these positive aspects of the GP theory, the increase in ac-
curacy promised by using SP theory is desirable for CARA. SP-based
propagation is not linked to a specific file format or perturbation
model. Any combination of perturbing accelerations can be integrated
to obtain the desired solution. Therefore the exact setup consisting
of the satellite properties (ballistic coefficient, solar radiation pres-
sure coefficient), perturbation models, space weather input files, Earth
orientation parameter (EOP) data, coordinate frame realizations, nu-
merical integrator, integration accuracy, etc. needs to be specified to
obtain repeatable results. The overall runtime is significantly influ-
enced by the fidelity of the models (e.g. the degree and order with
which the aspherical gravity field of the Earth is computed) and the
numerical integration accuracy. Furthermore, the SP catalog is not
publicly available, but access needs to be requested and approved (also
at SpaceTrack). For SP-based propagation it is important to maintain
the highest degree of consistency possible with respect to the system
that is used to maintain the catalog. An example that serves as a
warning by demonstrating a higher fidelity model resulting in lower
accuracy due to model inconsistency is given in Kaya et al. (2004).

Uncertainty propagation is a complex field of its own. Its algorithms
can be broadly divided into four categories: linear methods, nonlinear
methods, Monte-Carlo (MC) propagation and others (e.g. hybrids).
Among these four categories linear uncertainty propagation is the most
common in catalog maintenance, OD and CARA. Modern sigma-point
approaches on the other hand have shown superior accuracy and are
enjoying increasing popularity. An excellent overview of probabilistic
uncertainty propagation techniques is given in Luo and Yang (2017).

8 Only the conversion of the GP-propagated state to an inertial frame requires addi-
tional files containing information about the Earth orientation

https://space-track.org
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Nearly all of the existing theories for uncertainty propagation are
restricted to the SP theory and incompatible with the GP theory. Satel-
lite Os/Os have therefore started to mix theories by using GP for orbit
propagation and SP for uncertainty propagation. This inconsistency
between the state and uncertainty propagation is discouraged and
leads to similar effects as those described in Kaya et al. (2004). In
defense of the Os/Os one may discern that the GP theory never was
invented for uncertainty propagation. A workaround to this problem
has been presented in Escobar et al. (2011) and was also successfully
applied to the work presented in this thesis.

Once orbit and uncertainty propagation have been established, OD
and IOD can be performed. For both tasks multiple algorithms are
available. Common choices for IOD are the methods of Laplace, Gauss,
Gooding and Escobal’s “Double-r” integration. The techniques are
described in Vallado (2013). Also modern Gaussian sum algorithms
have been developed (DeMars and Jah, 2013). The OD algorithms can
be grouped into two categories: batch algorithms that perform “differ-
ential correction” and process multiple measurements from different
times as a batch to derive an updated estimate of the state and its
uncertainty, as well as filters, which operate sequentially in a predictor-
corrector fashion. Examples of batch algorithms are Weighted Least
Squares (WLS) and Sequential Batch Weighted Least Squares (SBWLS).
Also a myriad of Kalman filters have been developed. Well-known
realizations are the Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF), Schmidt-Kalman filter (SKF) and Unscented Schmidt-
Kalman filter (USKF).

All of these OD algorithms assume the state uncertainty to be
properly described by a Gaussian probability distribution. If this as-
sumption is deemed inadequate, also modern probabilistic approaches
exist that do not assume the overall probability density function (pdf)
to be Gaussian. Examples of this category are Gaussian sum filters
(which also exist in multiple variants), the Gauss von Mises filter and
particle filters. If computations are not required in real-time, filters
may be followed by a smoother which uses future data to improve
the filtered solutions. After the orbits and uncertainties of all objects
in the catalog have been updated, the data may be used for CARA
or other subtasks of catalog maintenance, such as advanced sensor
management. The building blocks of space surveillance and therefore
prerequisites for conjunction analysis are, together with a number of
common and modern approaches, summarized in figure 1.3.

Due to the huge amount of objects in Earth orbit and the different
orbital characteristics, a single sensor is not enough to maintain a
comprehensive and up to date catalog. A space surveillance system
like the US Space Surveillance Network (SSN), consisting of multiple
sensors all over the world, is required to guarantee timely updates of
all objects. Catalog establishment and maintenance is therefore a very
costly task which traditionally has been limited to company, agency
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Figure 1.3: Building blocks of space surveillance (prerequisites for conjunction
analysis). Each block is accompanied with a list of methods to complete the

task. Operational state of the art approaches are colored green

or governmental scales9. Currently, the US-led CSpOC maintains the
most comprehensive and up to date single source catalog. Additionally
it performs routine conjunction screening and automatically sends
standardized SP-based conjunction data messages (CDMs) to all reg-
istered satellite Os/Os. Further details about the duties of CSpOC,
including applied algorithms and methodologies, may be found in
Schiemenz et al. (2019a).

9 Recently, AstriaGraph, a crowdsourced and open source project which aims to break
this legacy has been launched (Esteva et al., 2020)

http://astria.tacc.utexas.edu/AstriaGraph
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Please note:
Section 1.3 gives a com-
prehensive overview on
the importance of realis-
tic uncertainty quantifi-
cation for space security,
which has substantially
influenced the scope of
this dissertation.
Readers who would like
to get a direct overview
of the scientific objectives
pursued within the the-
sis may first read section
1.4 before returning to
this point

The maintenance of a space catalog and the provisioning of the
data to the spacecraft Os/Os allows to decouple most of the building
blocks listed in figure 1.3 from the CARA process. Besides a catalog
snapshot, only orbit and uncertainty propagation is required at the
O/O-side to facilitate collision risk analysis, given the initial state
and uncertainty information provided in a CDM. Also without a
CDM the Os/Os can use their own information about the operated
spacecraft and screen the orbital path(s) against the catalog. The only
missing piece of information is then an estimate of the uncertainty of
the catalog information, as the publicly available GP catalog contains
no information about its uncertainty. The uncertainty information
is also removed from the restricted SP catalog, which is accessible
by approved users, to prevent possible conclusions about the sensor
accuracy of the SSN.

1.3 uncertainty quantification in space surveillance

Space situational awareness (SSA) refers to acquiring as much in-
formation as possible about our space environment. Obviously it is
impossible to be aware of everything at all times, but this is also not
necessary. Instead, events that require to take action on ground or
in space are of particular interest and should not be missed. Space
surveillance and space weather monitoring are therefore integral com-
ponents of SSA. The success of preventive measures depends on how
early knowledge about an event is obtained. Neither the orbit observa-
tions nor the force models used for propagation are perfect. For this
reason, estimates of the kinematic state vector are always connected
to a measure of uncertainty. Consequently, uncertainty quantification
(UQ)10 and propagation are critical steps to evaluate the risk of close
encounters.

When discussing uncertainty, it is important to properly define the
terminology upfront, especially since the terms are often mixed in
common language (which is not a problem if the context is clear). In
the most general setting, uncertainty refers to incomplete information.
Randomness on the other hand relates to an intrinsic property of a
system. It cannot be reduced, as the variability is of physical origin.
Probability theory models random events using random variables.
Their outcome cannot be predicted, however the frequency of the
possible outcomes can (cf. section 1.3.2). Variability is often considered
synonymous to randomness, however also other uses are frequently
encountered (e.g. as an alternative expression for the variance or
simply as a way of indicating that the state of a system changes,
without specifying the cause more precisely). In the spoken language,

10 For uncertainties caused by randomness, UQ and uncertainty characterization (UC)
are treated as synonyms. In the more general case of random and nonrandom
uncertainties, UC is typically not possible due to missing information, however a
more general quantification of the overall uncertainty is feasible using an uncertainty
measure capable of describing both components
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Remember:
Randomness⇒ Uncertainty

but
Uncertainty ; Randomness

(the equality only holds for
purely random uncertainty)

While in theory randomness
is an intrinsic property, in

practice, randomness is
incomplete information

— Nassim Nicholas Taleb

possibility indicates that a certain state cannot be excluded from hap-
pening. Similarly, in a statistical context the term relates to possibility
theory, which also aims at describing uncertainty, however does not
restrict itself to randomness. It is always correct to infer uncertainty
from randomness, however the opposite is generally false and only
applies under certain assumptions (uncertainty does not always imply
randomness).

1.3.1 Classification of uncertainty

Uncertainty can be categorized based on its nature. If there is an
element of chance associated with its origin, it is said to be aleatoric or
aleatory. Without a random component it is of systematic nature and
therefore classified as epistemic. Also mixed contributions are possible
(and in fact typical for real world systems).

Epistemic uncertainty contains all types of uncertainty where in
principle it is possible to know better, however further data/research
or effort would be required to obtain this improved knowledge. Epis-
temic uncertainty is therefore sometimes also referred to as “reducible
uncertainty”. A simple example of this category is the precision im-
posed by TLE-files. The TLE file format limits the accuracy of the mean
orbital elements to a few decimal places. Consequently the uncertainty
of each orbit propagation has an epistemic component caused by a
limited knowledge of the initial state. Since in principle it is possible
to obtain better information (although this would require changing
the well-established file format), the resulting uncertainty component
is epistemic.

Aleatoric uncertainty on the other hand refers to the natural vari-
ability in a system, i.e. its randomness. Mathematically it can therefore
be treated with all tools available through probability theory.

Operational SST algorithms require statistical inference tools that
enable sequential data processing. Since these have not been avail-
able for non-probabilistic approaches, alternative theories such as
fuzzy logic, imprecise probabilities, possibility theory, fuzzy random
sets, plausibility measures or the Dempster-Shafer theory have not
gained operational relevance (Delande et al., 2019). For this rea-
son, the operational state of the art in SST is to treat uncertainty
as pure randomness. Probabilistic formulations however require
to treat all uncertainty as randomness, which is modeled via ran-
dom variables and probability density functions (pdfs). In many
places it is therefore common to approximate epistemic uncertainty
using the tools for aleatoric uncertainty. The treatment of gravity
uncertainty due to errors of omission (potential field truncation),
which is discussed in chapter 3, is an example of this approach.

Very recently, however, a new generalization of probability measures
has emerged, which may change this operational practice, since it
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allows the joint modeling of epistemic and aleatoric uncertainties while
supporting sequential data processing (i.e. filtering). Based on the
available information, outer probability measures (OPMs) formulate
probability bounds which tighten if more knowledge about a system is
acquired and loosen if less information is available. The bounds reflect
the level of available information to support or reject certain probability
distributions as candidates to describe the aleatoric uncertainty com-
ponent of a system. The smaller the epistemic uncertainty in a system,
the narrower the bounds. OPMs quantify a system’s uncertainty but
do not characterize it, since in general arbitrarily many probability dis-
tributions fit between the bounds. However, if all epistemic uncertainty
is removed, the bounds collapse to a single probability function, which
then fully quantifies and characterizes the aleatoric uncertainty of the
system. OPMs use possibility functions to establish upper bounds
on residual errors, which allows to incorporate negative evidence
by excluding certain areas of the state space as possible solutions.

Each hypothesis which is not known to be impossible is considered
as potentially true, which leads to an expansion of the overall OPM
probability bounds if less is known about a system. In contrast, proba-
bility theory is founded on the Kolmogorov axioms, of which the third
(σ-additivity) is responsible for excluding any hypothesis for which
the pdf has no support as possible state (i.e. for which no evidence has
been collected). OPMs replace σ-additivity for the looser concept of
subadditivity and random variables by uncertain variables to achieve
the less descriptive (i.e. more general) uncertainty formulation. What
distinguishes OPMs from the other nonprobabilistic uncertainty mod-
els is that they are compatible with the statistical inference rules of
probability theory, which supports the formulation of sequential filters.
In fact, operations for OPMs are similar to pdfs, as essentially only
integrals are replaced by suprema. The full mathematical details may
be found in Houssineau and Bishop (2018).

Since their introduction, the application of OPMs has been demon-
strated for a number of SST tasks, like state updates with TLE-files
(Delande et al., 2018a,b), multi-fidelity credibilistic filtering (Jones et
al., 2019), admissible region initial orbit determination (Cai et al., 2020)
or two-dimensional collision probability computations in Delande
et al. (2019). However, there are still many open questions, such as
the modeling and definition of possibility functions (single functions
vs. distributions, collection of particles vs. Gaussian max mixtures,
Gaussian vs. box shape, etc.), which can have a significant impact
on the outcomes. First results, for example, suggest that Gaussian
possibility functions are not an optimal choice for the determination
of OPM collision probability limits (Delande et al., 2019). Further re-
search in this field is therefore necessary, but in the long run OPMs
have the necessary properties to change the established state of the
art, provided that they find broad acceptance in the community.
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A secondary option to categorize uncertainty is based on context.
Slightly different categories exist throughout literature. The most
common ones, including one class specific to SSA, are:

• Structural uncertainty. The estimation process requires models
for state and uncertainty propagation. Models are always ap-
proximations of the truth. Structural uncertainty hence refers
to model discrepancy. Mathematically this may be written as
∂
∂tx(t) = f(x(t),p, t) = f̂(x(t),p, t) + δf(x(t),p, t), where the true
evolution of the state x over time t is described via f(x(t),p, t)
using the parameter set p. Since the true form of f is generally
unknown, it is approximated by a model of the form f̂(x(t),p, t).
The resulting difference, δf(x(t),p, t), is the model deficiency that
results in structural uncertainty

• Model parameter uncertainty. Despite the uncertainty of a model
itself, also parameters that are used by the models are only known
to a certain extent (e.g. the value of the solar constant)

• Input parameter uncertainty. Not only the parameters that are used
by the models, but also its inputs are affected by uncertainty. This
is true especially in case of real-time SSA applications, where fully
processed space weather data is not yet available and forecasted
data needs to be used

• Observation uncertainty. This type of uncertainty relates to all errors
introduced by the measurement system, such as measurement
bias, measurement noise, scale factor errors and asymmetries. The
observation uncertainty in space surveillance systems is commonly
assumed to be Gaussian and white. Often also biases are consid-
ered negligible, as the sensors are believed to be correctly calibrated.
Under these (debatable) assumptions, observation uncertainty
may be quantified using only a measurement covariance matrix

• Algorithmic uncertainty. It is not always possible to exactly repro-
duce a model in computer code. Often approximations need to
be applied, such as the truncation of infinite sums or numerical
integration of a differential equation. A reduction of algorithmic un-
certainty is often possible via increased runtime, e.g. by raising the
number of summation terms, lowering numerical integration toler-
ances or increasing the floating-point accuracy (e.g. using quadru-
ple precision instead of double precision). Algorithmic uncertainty
should always be kept well below all other sources of uncertainty

• Uncertainty due to misassociation. This type of uncertainty is also
known as cross-tagging uncertainty and very specific to SSA. It
describes the uncertainty that is introduced into the space surveil-
lance loop due to erroneous data association, i.e. attributing infor-
mation of one object to another
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Also other origins, such as hardware faults (e.g. a malfunctioning
sensor) or further application-specific points may be added to the list.
Not all types of uncertainty are always included in the estimation
process. Hardware faults for example are expected to be detected and
taken care of on site.

1.3.2 Uncertainty characterization via probability distributions

Probabilistic uncertainty is fully characterized/quantified by probabil-
ity distributions, which can be defined either via a cumulative distri-
bution function (cdf), or its derivative, the probability density function
(pdf). Every cdf is a real-valued, non-decreasing, right-continuous
function which assigns a value between 0 and 1 to the entire space
of possible outcomes (“probability space”). The sum/integral of the
pdf over the entire probability space equals unity, indicating that each
possible outcome is part of it.

Additionally, a definition (or in some cases approximation) is pos-
sible using parameters that describe the location, scale and shape of
a distribution. Two families of parameters are common for this pur-
pose: moments and cumulants. Distributions with equal moments are
also guaranteed to possess identical cumulants. Different variants of
these parameters may be defined using centralization and normaliza-
tion. The purpose of centralization is to formulate location-invariant
parameters, whereas normalization results in parameters that are
independent of the scale. Standardization refers to both operations.

Each defining parameter is always connected to an order. The first
order parameter, the first (raw) moment and cumulant, refers to lo-
cation and is commonly known as the mean µ of a distribution. If
the location is taken with respect to the mean, then the centralized
location may be defined as zero. Second order parameters describe
the scale of a distribution. The most common scale-defining parameter
is expressed in the centralized form and known as the variance of a
distribution. Due to its second order dependency, it is defined in a
quadratic manner as the square of the standard deviation (σ2). The
variance equals the second central moment and the second cumulant.
If standardization is applied, then the scale parameter becomes unity
due to division by σ2.

Any higher order parameter defines a part of the shape and is also
commonly given in centralized and normalized form. The standard-
ized third order parameter is the skewness of a distribution, which
can be formalized using the third standardized moment and the third
cumulant. Typical choices of the fourth order shape parameter are
the fourth standardized moment, better known as kurtosis and the
fourth cumulant, known as excess kurtosis. Excess kurtosis relates to
the kurtosis above a normal distribution and is hence obtained via
excess kurtosis = kurtosis− 3. Any parameter above the 4

th order is
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The normal
distribution is fully
characterized by its
mean and standard

deviation (or
variance)

called a higher-order parameter. A moment or cumulant generating
function can be defined in most cases to easily obtain any order of
interest using differentiation and evaluation at zero. The cumulant gen-
erating function is specified as the natural logarithm of the moment
generating function. Depending on the type of probability distribution,
only some orders may be nonzero.

appealing properties of a normal distribution

The pdf of a univariate normal (or Gaussian) distribution in the scalar
variable x is defined by equation 1.1, where µ is the mean and σ2 the
variance.

f(x) =
1√
2πσ

e
−

(x−µ)2

2σ2 (1.1)

The moment generating function of the univariate Gaussian is given
by M(t) = eµt+

1
2σ
2t2 and the cumulant generating function by g(t) =

lnM(t) = µt+ 1
2σ
2t2. As the cumulant generating function is a sec-

ond order polynomial in t, any cumulant above second order is zero.
Similarly, all moments above order two are only combinations of the
mean and standard deviation (see also table A.1 in appendix A). Con-
sequently no shape parameters exist (or they are merely combinations
of the location and scale parameters), such that the normal distribu-
tion is fully characterized via its mean and standard deviation (or
variance). This property of the normal distribution is the reason for the
assumption of Gaussianity being found in lots of places throughout
the space surveillance loop depicted in figure 1.3.

In the general case of a multivariate normal distribution the mean be-
comes a vector and the variance a matrix, which is known as variance-
covariance matrix or simply covariance matrix. The mean and the
covariance suffice to fully characterize the pdf, which in its multivari-
ate form, is given by equation 1.2 with µ denoting the mean vector,
P the covariance matrix, (·)T the matrix transpose, | · | the matrix
determinant and (·)−1 the matrix inverse.

f(x1, . . . , xn) =
exp

(
−12(x− µ)

TP−1(x− µ)
)√

(2π)n|P|
(1.2)

Customary abbreviations of the multivariate normal pdf are N (x;µ,P),
N (x− µ,P) or simply N (µ,P). Given a purely probabilistic descrip-
tion of the uncertainty, the assumption of Gaussianity allows to treat
the terms uncertainty and covariance as synonyms (it should however
be kept in mind that despite the popularity of these assumptions, this
formally implies epistemic uncertainties to be negligible and that it is
appropriate to express the randomness via a Gaussian pdf).

The covariance matrix of an n-dimensional multivariate normal dis-
tribution is best thought of as a hyper-ellipsoid in n-dimensional space.
Geometrically this is easiest depicted for two and three dimensions,
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Covariance realism
is a necessary, but
not a sufficient
condition for
uncertainty realism

where the representations are ellipses and ellipsoids. The ellipsoid is
of special importance to any space surveillance task that works with
Cartesian coordinates, as then the upper and lower 3× 3 sub-matrices
of the six-dimensional covariance matrix correspond to the position
and velocity covariance ellipsoids. The main axes of an n-dimensional
hyper-ellipsoid are given by the eigenvectors of its covariance matrix.
As the square roots of the eigenvalues that correspond to the eigen-
vectors equal the standard deviation along that direction, the axes
lengths of an m-sigma, n-dimensional hyper-ellipsoid are computed
via m

√
EV(i), with i = 1 . . . n. The eigenvectors and eigenvalues may

be conveniently found using spectral decomposition.
For a one-dimensional Gaussian pdf 99.7% of the probability mass is

located within three sigma of its mean. For higher dimensions the cor-
responding m-sigma rules are computed as the cdf of the chi-squared
distribution with n degrees of freedom, evaluated at x=m2. This may
be compactly written using the generalized regularized incomplete
gamma function Q, via Q(n2 , 0, m

2

2 ). Using n= 2 and m= 3 one finds
that 98.9% of the probability mass of a two-dimensional Gaussian is
contained within a three-sigma ellipse around the mean. Similarly for
n= 3 and m= 3 the ellipsoidal three-sigma limit is computed as 97.1%.

covariance vs . uncertainty realism

Whenever the statistical uncertainty in a system is assumed to be
aleatoric and Gaussian, it can be described using a mean and covari-
ance. In this light, covariance realism requires the mean and covariance
obtained by an estimator to equal the true mean and covariance, such
that the overall uncertainty (the location and the scale of the pdf in
the Gaussian case) is properly characterized.

If the uncertainty cannot be described by a Gaussian pdf, covariance
realism still only refers to the consistency of the first two statistical
moments and therefore does not imply that the overall uncertainty is
correctly estimated. Instead, uncertainty realism is required, which for
aleatoric uncertainties implies the correct estimation of the pdf. Co-
variance realism is therefore a necessary, but not a sufficient condition
for the more general uncertainty realism. If the uncertainty is in fact
Gaussian, both properties coincide.

To achieve uncertainty realism in a system, the prevalent origins
of uncertainty must be identified and properly quantified for the
estimator to consider the uncertainty in the estimation process. It
must also be decided if an estimator is used that assumes Gaussianity
or estimates the entire pdf. While the first type is simpler to imple-
ment and executes faster, it cannot maintain uncertainty realism if
the pdf becomes non-Gaussian. If epistemic uncertainties cannot be
neglected, uncertainty realism cannot be achieved using probability
density functions and more generalized concepts of uncertainty, which
also support sequential data processing, need to be applied.
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1.3.3 Principal error sources and origins of uncertainty

Before origins of uncertainty may be discussed, it is worthwhile to
provide an overview of prevailing perturbations considered for orbit
propagation and related models. Perturbations are all accelerations
other than the gravitational two-body acceleration. Dominant near-
Earth forces and associated models are collected in table 1.2.

Perturbation Modern/well-established models

Aspherical gravity field Analytic (low precision, e.g. GP), EGM-96,
GGM02(S/C), TEG-4, GGM05(S/C), EGM-08

Third body perturbations Analytic. Numerical instability resolved via
Taylor expansion or Legendre polynomials.
Position of third body estimated analytically
or obtained via Jet Propulsion Laboratory
(JPL) development ephemerides (DE)

Solar Radiation Pressure Analytic. Constant or piecewise constant SRP
coefficient. Macro-models for high precision
applications. Different shadow models (cylin-
drical vs. umbra/penumbra). Most important
third bodies to be considered: sun and moon

Atmospheric drag Analytic (low precision, e.g. GP), Jacchia-
70, Jacchia-Bowman-2008, JBH09

†, MSISE-90,
NRLMSISE-00, DTM-2012, DTM-2013

Table 1.2: Overview of dominant disturbing forces and modern/well-
established models used for space surveillance

The perturbations listed in table 1.2 are sufficient for accurate OD
and form a good compromise between precision and runtime. Their rel-
ative influence depends on the orbital altitude. A comparison is given
in Montenbruck and Gill (2000, Section 3.1). In case of high-precision
requirements also further perturbations, such as additional third bod-
ies (Jupiter, Venus), Earth radiation pressure (albedo and Earth infrared
radiation), tides (solid Earth, ocean and polar), relativistic effects and
thermospheric winds may be accounted for. Models of these perturba-
tions are also explained in Montenbruck and Gill (2000, Section 3.7).

In contrast to the aforementioned perturbations, satellite thrusting
is a planned perturbation. If maneuver plans are shared (e.g. sent
from a spacecraft O/O to CSpOC or via a coordinating institution
like the Space Data Association (SDA)), maneuvers can be included
in the orbit propagation. Without knowledge of a maneuver, only
posterior maneuver-detection is possible, which gives rise to increased
uncertainties in the orbital paths of the objects capable of thrusting.
Maneuver detection is especially challenging for satellites that use
electric propulsion due to very low thrust levels.

† JBH09 = Jacchia-Bowman-2008 + High Accuracy Satellite Drag Model (HASDM) +
Anemomilos solar storm prediction model
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Referring to figure 1.3, different types of uncertainty (structural, pa-
rameter, input, algorithmic, observation or misassociation uncertainty)
may be associated to each space surveillance task. In the following, the
origins of uncertainty in these blocks are introduced and summarized
in figure 1.7.

astrodynamic force model uncertainties

Earth Gravity Model
Earth’s aspherical gravity field is by far the most dominant perturb-

ing force up to geostationary altitudes. Modern Earth gravity models
on the other hand are highly precise and range up to degree and order
2159 in case of EGM-08. This is well above the level required for orbit
determination, such that gravity uncertainty can in principle be kept
small. However, this level of accuracy has to be paid with significant
computing time, such that greater uncertainty is often accepted for
performance reasons. The International Earth Rotation and Reference
Systems Service (IERS) 2010 conventions recommend a potential field
truncation at degree/order 90 for LEO satellites, degree and order
20 at an orbit radius of 12 270 km and degree/order 12 for medium
Earth orbit (MEO) GPS altitudes, based on expected accuracy levels of
better than 0.5mm (Petit and Luzum, 2010). At geostationary Earth
orbit (GEO) altitudes even smaller fields are sufficient.

The computational complexity of the aspherical gravity acceleration
is quadratic. For each degree/order combination the sums of the
spherical harmonics components need to be computed, which also
requires the associated Legendre function of each degree/order pair
(see section 8.6.1 in Vallado, 2013 for the details). For a 90× 90 field
this requires approximately 8000 iterations to compute the spherical
harmonics and, depending on the implementation, another ∼8000

for the associated Legendre functions – at every single time-step
of the orbit propagation. In LEO, gravity fields are therefore often
truncated to a lower degree/order than recommended by the IERS
2010 conventions (e.g. 36× 36), in favor of greater computing speed.
Gravity uncertainty is therefore of dominant importance for low Earth
orbits.

The mismodeling due to potential field truncation is of epistemic
nature and called error of omission. All coefficients considered in the
computation of the perturbation also possess an associated aleatoric
uncertainty. Errors due to this model parameter uncertainty are re-
ferred to as errors of commission.

Work on gravity field uncertainty quantification dates back to Kaula
(1959). Other researchers, such as Gersten, Heiskanen, Moritz or
Pechenick have addressed further parts of the topic. James Wright
worked on it for ∼30 years and authored multiple papers on different
aspects of gravity uncertainty, including an algorithm suitable for se-
quential filtering. An improved and extended version of his algorithm
was derived as part of this thesis. The topic is discussed in chapter 3.
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Third body perturbations
Third body perturbations are computed analytically by applying

Newton’s second law to determine the total gravitational acceleration
experienced by a satellite and Earth. Subsequent subtraction then
yields the overall acceleration, which in case of n additional bodies is
given by equation 1.3,

a⊕,÷ = −
G(m÷ +m⊕)

r3÷,⊕
rr÷,⊕︸ ︷︷ ︸

Two-body

+G

 n∑
j=1

mj

(
rrj,÷

r3j,÷
−
rrj,⊕

r3j,⊕

)
︸ ︷︷ ︸

Perturbation

(1.3)

where G denotes Earth’s gravitational constant, m÷ the mass of the
satellite, m⊕ the mass of Earth, r÷,⊕ the vector from Earth to the satel-
lite, rj,÷ the vector from the satellite to the jth body and rj,⊕ the vector
from Earth to the jth body. The first term is the two-body accelera-
tion. The second represents the perturbation due to additional bodies.

Error sources which introduce uncertainty into the acceleration are
dominantly caused by inaccurate knowledge of the inertial position
vectors. These errors are therefore of epistemic nature. A recommen-
dation is hence to use the precise JPL planetary ephemerides instead
of analytic approximations to reduce uncertainty.

Equation 1.3 is not always numerically stable, since the cubed dis-
tances between the satellite and the third body, as well as the Earth
and the third body are very similar, such that both fractions in the
perturbing term are very small and highly alike. The subtraction of
these similar values isn’t robust and introduces additional numerical
errors. Computer implementations therefore sometimes make use of
alternate representations which approximate the perturbing term us-
ing Taylor series expansion or Legendre polynomials. In both cases
algorithmic uncertainty is introduced due to infinite sum truncation.

Additional comparatively small sources of uncertainties are model
parameter uncertainty for Earth’s gravitational constant G and the
neglect of the satellite mass in the two-body component of the acceler-
ation.

Solar radiation pressure
The SRP perturbation is caused by photons ejected from the Sun

striking the RSO, which leads to a slight acceleration or deceleration
depending on the current direction of travel. Also a torque is generated,
especially in case of asymmetric shapes. The resulting effects on the
orbital state vector are periodic variations in all elements, as well as
secular changes of the ascending node, argument of perigee and mean
anomaly (Vallado, 2013).

Since the perturbation is caused by photons, its altitude dependence
is coupled to the photon density and therefore to the solar flux, which
has a quadratic dependence on the distance from the Sun. As for
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Earth orbiting objects the distance is mostly influenced by the orbit
of Earth around the Sun and not satellite altitude, it is often set to
the semi-major axis of Earth with respect to the Sun, such that the
average solar flux constant of 1367W/m2 may be used to estimate the
incident solar pressure via pSRP ∼=

1367W/m2

3 · 10−8m/s . From LEO to GEO its
magnitude is therefore nearly constant.

The incoming solar radiation pressure may be translated to acceler-
ation via equation 1.4, where cR is an effective constant of reflectivity,
r�,÷ the vector from the satellite to the sun andA� the exposed surface
perpendicular to r�,÷. The multiplicatively coupled term cSRP

..= cRA�
m

is also known as solar radiation pressure coefficient.

aSRP = −pSRP
cRA�
m

rr�,÷

r�,÷
(1.4)

The overall effect of solar radiation pressure depends strongly on cSRP.
For most objects it is not a dominant perturbation, however for GEO
objects and those with a high area to mass ratio (HAMR) it may be of
greatest influence. Also it is a significant contributor to propagation
uncertainty.

Equation 1.4, while being the baseline in many OD applications,
is only a very simplified model and therefore suffers from structural
uncertainty. A very general model may be found in Wetterer et al.
(2014). Precise models need to evaluate the acceleration on every
part of the object’s surface, instead of forming an average over the
entire body, such that both macro-models of the object shape and
attitude information become necessary. Similarly, a single coefficient
of reflectivity also represents a simplification. A more precise model
requires a reflectance distribution function that takes both specular
and diffuse reflection into account. This in turn necessitates knowledge
about the material properties of an object.

This structural uncertainty is directly followed by input model un-
certainty, considering that also the constituents of the solar radiation
pressure coefficient in equation 1.4 are very difficult to obtain, since
they can neither be measured from ground nor are they constant.
As the necessary degree of information required for high precision
computations is unavailable for almost all objects and due to the entire
input uncertainty being multiplicatively coupled into a single param-
eter cSRP, the solar radiation pressure coefficient is often estimated
along with the satellite state as part of the orbit determination.

This approach works, but it also introduces additional difficulties.
Loosely constrained solve-for parameters are likely to experience ob-
servability issues, which causes the uncertainties to remain unrealisti-
cally large. Solve-for parameters are only sensitive to the models used.
Any error in the force models will be compensated to the maximum
possible extent by the solve-for parameters. This effect is known as
“error aliasing”. The accuracy of the solve-for parameters can thus be
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increased by improving their models, as well as more accurate model-
ing of other forces. Consequently, estimates of a constant solar radiation
pressure coefficient and its uncertainty, even though they often mini-
mize the residuals with respect to the observations, are often suffering
from considerable error aliasing. Hence, if a solar radiation pressure co-
efficient is estimated, it should be modeled at least piecewise constant,
such that the variability of the parameter can be partially captured.
This is the current practice applied at CSpOC (Schiemenz et al., 2019a).

A second difficulty due to multiple solve-for parameters with dif-
ferent units is an increase of the matrix conditioning numbers, which
complicates the matrix inversion required for OD. Advanced inversion
algorithms, such as presented in Rump (2009), are recommended to
avoid additional algorithmic uncertainty.

Despite circumventing some of the uncertainty in cSRP via estima-
tion, additional sources of epistemic and aleatoric uncertainty exist.
The use of a solar constant results in structural uncertainty. Its adopted
value furthermore suffers from model parameter uncertainty, which
has not been properly quantified (Cook, 2001). Another source of epis-
temic input uncertainty is the vector from the satellite to the sun. A
standing recommendation is therefore to use the JPL DE ephemerides
to obtain this direction.

Last but not least, solar radiation pressure can only exert a force
on a resident space object if it is exposed to sunlight. Earth shadow
models are therefore required to determine the exact times of shadow
entry and exit. Typical shadow models are the simple cylindrical
model and the accurate conic umbra/penumbra model. The cylin-
drical model introduces structural uncertainty due to its simplifying
shadow assumptions, whereas the conic model gives rise to struc-
tural uncertainties during penumbral force modeling. Both models
are furthermore susceptible to algorithmic uncertainty, if the orbit
propagation is not integrated to the exact times of eclipse entry and
exit. Precise shadow models also need to check the position of the
Moon (again best via JPL ephemerides) to determine if it is causing
partial or full solar eclipsing.

Atmospheric drag
Atmospheric drag is a well known phenomenon, since it is not

restricted to space, but can be experienced on a daily basis. Four
factors influence the personal experience of air resistance: velocity,
winds, the area exposed to the environment and the object mass. When
stationary, atmospheric drag is only perceived in case of strong winds.
This is also when the effect of mass can be experienced, as lightweight
people are more affected by gusts than heavy ones. Once an object
starts moving, winds still have an impact, but personal experience
indicates that the air resistance increases at higher speed. Therefore
racing cyclists make sure to ride in a crouched posture to present as
little area to the environment as possible.
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The same concepts also apply in space. Atmospheric drag is caused
by momentum transfer from molecules and atoms in the atmosphere
to the RSO. On ground the air density is about 1.225 kg/m3 according
to the international standard atmosphere. For space surveillance the
upper part of our atmosphere, which starts at ∼90 km, covers the
thermosphere (90-600 km), exosphere (>600 km) and extends until
upper LEO altitudes, is of greatest interest. Since atmospheric density
decreases exponentially with altitude, the total mass density at 400 km
is only ∼2 g/m3 (Emmert, 2015). However, due to the extremely fast
motion of the RSOs (& 7 km/s in LEO), this residual atmosphere is
sufficient to significantly influence the orbital paths of objects in low
Earth orbit – especially at altitudes below ∼1200 km.

The basic aerodynamic formula is given in equation 1.5. A certain
analogy to the solar radiation pressure equation may be identified as
a result of the similar concepts.

adrag = −
1

2

cDA

m
ρv2rel

vvrel
vrel

(1.5)

The effect of thermospheric winds is contained in vrel, the velocity
vector relative to the atmosphere. Thermospheric winds typically
range from a few meters per second up to 2-3% of LEO velocities
(Liu et al., 2016), however also momentarily stronger gusts may occur.
Thermospheric winds can be estimated and included into the drag
acceleration computation using empirical models, such as HWM-14

(Drob et al., 2015).
The susceptibility to drag is described via the “ballistic coefficient”11,

commonly denoted BC or B and defined as BC ..= cDA
m . The same kinds

of uncertainties apply to the ballistic and the solar radiation pressure
coefficient. Due to its input uncertainty, the ballistic coefficient is also
often appended to the solve-for state vector during orbit determination,
thereby causing error aliasing and increasing susceptibility to a lack
of observability.

The most critical parameter however is not the ballistic coefficient,
but the thermospheric12 mass density at the location of the RSO, which
is denoted by ρ (Schiemenz et al., 2020a). To understand the challenges
in obtaining accurate density estimates and the corresponding uncer-
tainties, an overview of the fundamental processes that influence local
thermospheric density is required. These are temperature, species
composition and horizontal variations (dynamics).

The composition of the thermosphere is defined by the concepts of
hydrostatic balance (canceling gravitational force and vertical pressure
gradient) and “molecular diffusion”, which describes the separation

11 Some authors also define BC as the inverse ballistic coefficient. The exact definition
should therefore always be checked to avoid confusion

12 In this work the terms “atmospheric”, “thermospheric” and “exospheric” are treated
as synonyms when discussing density uncertainty
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of the well-mixed fluid found at its bottom into individual gases ac-
cording to the molecular masses of its constituents. Heavier gases
fall off more quickly than lighter ones and hence do not reach as
high altitudes. The dominant gas between ∼200 km and 600 km (solar
minimum)/900 km (solar maximum) altitude is atomic oxygen, which
is created from the decomposition of molecular oxygen upon exposure
to EUV and FUV radiation. It is hence causing most of the drag for
satellites orbiting in this regime. Above 600-900 km the mass densities
of the light species, especially helium, start to dominate over atomic
oxygen (Emmert, 2015). The energy of the incoming radiation deter-
mines how deep it enters the atmosphere. The shorter the wavelength,
the higher its energy and the earlier it gets absorbed. Consequently,
the portion of the overall mass density which may be attributed to
ionized gases (plasma) increases with altitude.

Temperature variations cause the atmosphere to expand and con-
tract, thereby changing its density. The alternation of expansion and
contraction is sometimes referred to as “atmospheric breathing”. The
thermosphere is a highly driven environment for which the forcing
processes that determine its temperature need to be captured within a
model to derive density estimates. Thermospheric heating is largely
caused by radiative heat transfer, i.e. near, middle, far and extreme
ultraviolet (UV) radiation. The dominant wavelengths are within the
EUV and FUV bands. Secondary sources of heating include molecular
thermal conduction (collisional heat exchange) from highly energetic
particles (e.g. within the magnetosphere), chemical reactions, frictional
heating between ions and neutral species, the dissipation of electric
currents and upward propagating waves (Emmert, 2015). Cooling is
achieved via infrared radiation. Since the dominant species in the
upper thermosphere (atomic oxygen, molecular oxygen and molecular
nitrogen) do not radiate effectively in infrared wavelengths, any heat
absorbed in the upper thermospheric altitudes needs to be transported
downwards via collisions until sufficient concentrations of carbon
dioxide and nitric oxide are encountered (at ∼120 to 150 km altitude),
which are capable of effective IR radiation (Roble, 1995). It has also
been found that breaking atmospheric gravity waves generate turbu-
lence that transports heat downwards to the mesosphere. Therefore
these so-called “buoyancy waves” represent an additional source of
thermospheric cooling (Apruzese et al., 1984). As cooling is only effec-
tive in the lower thermosphere, its temperature increases quickly with
altitude (hence its name) and reaches an asymptotic boundary value
of 600K to 1400K near the exosphere. The temperature gradient at
the lower boundary, the current local temperature and the asymptotic
exospheric temperature are key parameters of any semi-empirical
model in the computation of a density estimate.

A graphical summary of the atmospheric temperature (including
heating/cooling mechanisms) and composition is given in figure 1.4.
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Figure 1.4: Atmospheric structure, dominant species number density, tem-
perature ranges and heating/cooling processes. Source: Emmert (2008).

Reprinted with permission

The dynamics of the thermosphere, i.e. horizontal (latitude/longi-
tude) changes in density, is predominantly influenced by the spatial
heat distribution. Local density variations are therefore closely linked
to solar periodicities and the Earth’s rotation. Atmospheric density
models need to account for diurnal variations caused by Earth’s rota-
tion, the 27-day solar rotation cycle, seasonal variations caused by the
eccentric orbit of Earth around the Sun and the ∼11 year solar cycle.

Temperature gradients are accompanied by density gradients, which
furthermore lead to wind systems that interact with the natural circu-
lation of the atmosphere caused by the rotation of Earth. Winds also
change the distribution of energetic particles, thereby giving rise to
current systems (Emmert, 2008).

A second source of horizontal thermospheric density variability is
the Earth’s magnetosphere. The magnetosphere acts as a shield against
the influence of the solar wind, deflecting its charged particles along
the magnetic field lines, thereby causing atmospheric compression
on the dayside and expansion on the nightside. A fraction of the
solar wind reaches Earth’s polar cusp, where the charged particles
precipitate along the magnetic field lines into the high latitude region
of the thermosphere, causing much of their energy to be absorbed
near the magnetic poles. Some reference changes of density due to
the different dynamic drivers are found in Emmert (2015) and listed
hereafter. At an altitude of 400 km, atmospheric density:

1. varies by a factor of 10 between solar minimum and maximum
2. is about 3.5 times larger at the dayside than the nightside
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3. is 50% larger in the summer season than in the winter season
4. increases by 40% during a geomagnetic storm classified via a Kp

index of 5

5. varies by 19% due to seasonal oscillations
6. varies by 13% due to annual oscillations

These variations give an impression of the importance to faithfully
account for the solar and geomagnetic energy input, as well as the
uncertainties associated with imperfect knowledge. Information about
solar (especially EUV) and geomagnetic activity is hence vital to any
atmospheric model, as otherwise no meaningful estimates of density
can be computed.

Atmospheric models differ in their nature. Some are empirically
dominated, meaning that only fundamental physical relationships
are implemented in a model and that the critical model parameters
are constructed from optimal averaging of measurements taken by
various sensors over different periods of time. These semi-empirical
models hence represent the average behavior during the measure-
ment intervals and do not contain features that were not observable
in the underlying measurement database. The static nature of these
models is one of their main drawbacks. Methods to improve density
“nowcasting”, i.e. adapting semi-empirical model parameters to bet-
ter reflect the current situation, have been developed. A prominent
example is the High Accuracy Satellite Drag Model (HASDM) (Storz
et al., 2005). The method makes use of drag-derived density data from
calibration-satellites with known area to mass ratio in order to debias
the underlying atmospheric model. These techniques however have so
far only been deployed against selected density models. Furthermore,
the need of the calibration satellite measurements restricts the applica-
tion of this technique to a very limited community that has access to
the required data.

Another class of models is physically dominated and aims to solve
the fluid and photo-chemical equations that govern the atmosphere.
Operational satellite orbit determination and propagation exclusively
make use of semi-empirical models for their fast and pointwise gener-
ation of density estimates, however there is a possibility of a paradigm
shift in the distant future. Semi-empirical models currently feature
similar accuracies as physical ones and are far less computationally
demanding (National Research Council, 2012).

Applying this information to density uncertainty, different types
may be identified. The semi-empirical models suffer from structural
uncertainty due to their static nature and limited physics, both at
at spatial scales within and below the model resolution. This uncer-
tainty is known as grid-scale and subgrid-scale density uncertainty.
Grid-scale density uncertainty is also referred to as average density
uncertainty and a significant contributor to the overall uncertainty
realism, since it is applicable at all times.
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Another source of structural uncertainty is caused by the choice
of the parameters that are used to represent the solar and geomag-
netic forcing of the atmosphere. Since these parameters are only par-
tially capable of describing the true solar and geomagnetic energy
input, they are referred to as “proxies”. A very common choice for
the solar forcing is the F10.7 proxy, which is a measure of the so-
lar radio flux at 10.7 cm wavelength and correlates well with the
EUV irradiance. The index is given in solar flux units (sfu), where
1 sfu = 10−22Wm−2Hz−1.

Models typically use two F10.7 inputs: a daily flux input of the
previous day and some form of 81-day average which corresponds to
three solar rotations. The reason for the two parameters is a separation
of faster and slower variations in the solar flux input. Both types
have different impacts on the thermosphere. The slow variations are
represented by the running 81-day average and fast variations via the
difference between the daily value and the 81-day average (Dudok
de Wit and Bruinsma, 2017). Caution is required for the long-term
average, because some models use the average of the past 81 days,
whereas others were constructed using a centered 81 day average
value.

F10.7 is not the only proxy available and it has been recognized that
the choice of the proxy/proxies itself has a profound impact on the
overall density uncertainty (Marcos, 2006; Dudok de Wit and Bruinsma,
2011). Hence, in the development of the JB2008 model, significant
focus has been put on the inclusion of heating-processes at other
wavelengths. It therefore requires multiple solar proxies (F10.7, S10

(He-2), M10 (MG-2) and Y10 (X-ray flux)) (Bowman et al., 2008). While
the incorporation of multiple proxies generally improves data fitting
residuals, Bruinsma and Dudok de Wit mention that this approach
has its limit in terms of statistical significance (Dudok de Wit and
Bruinsma, 2017). Also Emmert reports that it is “virtually guaranteed”
that a combination of proxies is able to reduce the fit errors during
model construction, however that “the statistical significance of the
additional terms has not yet been demonstrated” (Emmert, 2015).

The proxies used to model the solar and geomagnetic forcing are
further subject to input parameter uncertainty. This is true not only
for real-time operations and orbit forecasting, where predicted proxy
values are used due to lack of final proxy data, but also for pub-
lished proxy information, due to the accuracy of the measurements
themselves, the spatial distribution of the measurement stations and
temporal undersampling (Xu, 2008; Tapping, 2013). Furthermore dif-
ferent data sources often report slightly different values, which literally
also classifies as input uncertainty.

An excellent overview of the F10.7 solar proxy generation is collected
in Tapping (2013). A comprehensive survey of geomagnetic indices
may be found in Menvielle et al. (2011).
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In addition to input parameter uncertainty, further algorithmic un-
certainties result from improper proxy handling. Examples are proxy
interpolation (some models require the proxies to be interpolated with
respect to time, whereas others like NRLMSISE-00 do not document
the expected procedure at all), improper selection of proxy data (ad-
justed F10.7 vs. observed F10.7, last vs. central 81-day average), proxy
conversion (e.g. between geomagnetic Ap and Kp) and different algo-
rithms used for these operations (interpolation/conversion). Also the
choice of a model itself represents a significant source of variability to
the orbit propagation and calls for proper uncertainty quantification.
A critical assessment of these factors, including experimental tests, is
compiled in Vallado and Finkleman (2014).

Overall, atmospheric drag is the perturbation with the largest asso-
ciated uncertainty (Poore et al., 2016). Due to its exponential altitude
dependence, only LEO RSOs are affected, however this still accounts
for 78.2% of the TLE catalog at the time of writing (May, 2020). Since
drag is a non-conservative force, its errors (and therefore the associ-
ated uncertainty) accumulate over time, such that the entire evolution
of the density errors determines the effect on the orbit and uncertainty
propagation, giving rise to overly optimistic uncertainty estimates if
density uncertainty is neglected during OD of LEO RSOs.

In this thesis for the first time complete physics-based analytic
covariance matrices are derived, which are able to quantify the propa-
gation uncertainty due to three origins of density uncertainty: solar
flux input errors, magnetic index input errors and structural model
errors. These contributions utilize the seminal work of Emmert et al.
(2017) to translate the relative density uncertainty to mean motion
and mean anomaly uncertainty and extend it towards a combined
density uncertainty quantification framework for orbit determination.
The developments are derived and presented in chapter 2.

uncertainty model , uncertainty propagation, orbit de-
termination

Given a proper force model uncertainty quantification, the remaining
building blocks of the space surveillance loop need to make sure that
this uncertainty is faithfully translated into state vector uncertainty.

The uncertainty model is a critical factor for the reliability and mean-
ingfulness of the SST computations. The first choice to be made is the
mathematical treatment of uncertainties. As explained in section 1.3.1,
currently a probabilistic uncertainty model is the state of the art (often
in combination with the assumption of Gaussianity in operational
environments), although this might change in future with the advent
of OPMs. A disadvantage of probabilistic uncertainty descriptions is
that they are only well suited for aleatoric uncertainties. Consequently,
epistemic uncertainties need to be neglected or approximated with
pdfs, which can be problematic at times, since epistemic uncertain-
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ties cannot be characterized by stochastic moments, resulting in their
ambiguous interpretation as error bounds.

A fundamental requirement of any operationally relevant uncer-
tainty model is the ability to perform sequential updates once new
evidence13 is available. All algorithms relevant for SST rely on Bayesian
inference, which is based on Bayes’ theorem, for this purpose. The
sequential updates lead to the classical recursive predictor-corrector
nature of the Bayes estimator. The working principle for a probabilistic
uncertainty modeling is depicted in figure 1.5, where the random
variables xk and zk denote the state vector and evidence provided
at time tk, p(x0|z0) is the initial probability density, p(xk|zk−1) the
predicted pdf and p(xk|zk) the updated posterior pdf. The prediction
error p(zk|zk−1) normalizes the corrected probability density.
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Figure 1.5: Recursive predictor-corrector nature of the Bayes estimator
(adapted from Horwood et al., 2011)

The prediction step, i.e. the time evolution of the pdf, is governed
either by the Chapman-Kolmogorov (discrete time steps, shown in
figure 1.5) or the Fokker-Planck equation14 (continuous time evolution).
Whenever new evidence is available, Bayes’ theorem is used to obtain
the corrected (a posteriori) pdf from the predicted (a priori) probability
density, the measurement model and the measurements.

Within a probabilistic setup, the uncertainty model further deter-
mines if the assumption of Gaussianity is enforced in the uncertainty
propagation, such that either covariance propagation/estimation is per-
formed or the full pdf is propagated/estimated. Any initially Gaussian
pdf will eventually become non-Gaussian under nonlinear transfor-
mations, such as long-term orbit propagation. This on the other hand
does not imply that advanced estimation techniques like Gaussian
Mixture Model (GMM)15 filtering are necessary for practical oper-
ations. If measurement update times can be kept sufficiently short,

13 In most cases evidence refers to measurements/observations, however in principle
state and uncertainty updates can also be performed using other data sources, e.g.
TLE files (Delande et al., 2018b)

14 The Fokker-Planck equation is also known as Kolmogorov forward equation, which is
why it is often collectively referred to as Fokker-Planck-Kolmogorov equation (FPKE)

15 GMM is a synonym to Gaussian sum
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the assumption of purely Gaussian uncertainties can be maintained.
Furthermore, it has been recognized that the choice of the coordinate
frame for the state vector (Cartesian position and velocity vs. polar
coordinates or equinoctial orbital elements) has a significant impact on
covariance realism. Orbital element space (e.g. equinoctial coordinates)
often allows for covariance consistency up to three times longer than
Cartesian state vectors. Relevant publications on this topic include
Junkins et al. (1996), Sabol et al. (2010), Alfriend and Park (2016),
Woodburn and Coppola (2013) and Ghrist and Plakalovic (2012).

Once an uncertainty model sufficient for uncertainty realism has
been selected, algorithms must be picked that meet these requirements.
This applies to uncertainty propagation, where a common choice is the
use of linear or nonlinear (e.g. sigma point) uncertainty propagators
and orbit determination (filters, batch estimators, mixture models). In
some cases also linear covariance propagation techniques can be used
for pdf propagation (e.g. for GMM filtering via classical linearized
Kalman filters). If it cannot be guaranteed upfront that the pdf remains
Gaussian during all encountered propagation periods, a nonlinearity
check must be implemented to treat nonlinearities when they occur. Al-
ternatively, one may also always use filters that estimate the entire pdf,
however this is somewhat like using a sledgehammer to crack a nut.

Despite the ability to meet the uncertainty model, the algorithm used
for orbit determination should also be capable of handling process noise
to properly account for the astrodynamic force model uncertainty. This
precludes some of the classic implementations of the batch estimators,
where process noise is commonly neglected. A process noise extension
of the classical batch estimators has been worked out as part of this
thesis and is presented in chapter 4.

An improper choice of the uncertainty model and/or the algorithms
used can lead to corruption of uncertainty realism or waste valuable
computing time. Some applications however may also tolerate a certain
degree of unrealistic uncertainties, such that a sensitivity study with
respect to covariance/uncertainty realism is advised.

measurement generation and data association

Measurement data is used in the orbit determination process to re-
duce the orbital uncertainty that accumulates during the propagation
phases. An optimal weighting of the measurement uncertainty and
the propagation uncertainty allows to compute minimum variance
estimates of the chosen state vector. If one of these two sources of
information suffers from degraded uncertainty quantification, this
results in the OD algorithm to carry out an inferior weighting, lead-
ing to suboptimal estimates of the state and its uncertainty. Correct
characterization of sensor-level uncertainties is therefore an important
cornerstone to achieving overall uncertainty realism.
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Measurement uncertainty quantification requires a deep under-
standing of the sensor functional principle, intrinsic observables (“non-
metric” measurements), temporal behavior and conversions performed
to generate the reported quantities (“metric” measurements). Typical
sensors used for space surveillance applications include optical tele-
scopes (ground-based or space-based) and radars (phased-array, dish
or hybrids, currently all ground-based). Satellite laser ranging and
GPS are common sources of high-precision ephemerides in the sensor
calibration process.

Radars
Several types of radar sensors are used for space surveillance. Depend-
ing on the actual sensor, different quantities may be reported. Among
the typical ones are range, azimuth, elevation and range-rate. Some
radars only report range, others may report all four quantities or even
the rates of the angles. Range-rate (if available) is derived either via
usage of Doppler waveforms or from differentiating the range mea-
surements. In the latter case the measurements are not independent
observables but correlated with the range measurements.

The intrinsic observables depend on the type of radar. Dish radars
measure range, bearing (azimuth) and elevation (RAE). Phased ar-
ray radars also measure range, however azimuth and elevation are
replaced by the direction cosines U and V. The RUV coordinate system
is non-orthogonal and referenced to the transmit-receive modules of
the antenna (Li and Jilkov, 2001b).

Radars send out electromagnetic waves and evaluate the signal
turnaround time and returned energy. For space surveillance appli-
cations they are usually operated in tracking mode, which requires
knowledge of the object trajectory for proper pointing. Consequently,
the orbital path must be estimated in advance to generate a pointing
profile or a tracking filter must be used.

Tracking filters essentially perform a simplified orbit determination
to facilitate pointing and noise reduction. Since tracking takes place
in real-time, simplified dynamics models are used. An overview of
ballistic target dynamics models for tracking filters can be found
in Li and Jilkov (2001a). Tracking filters usually assume that their
inputs have been corrected for atmospheric effects and correspond
to zero-mean Gaussian random variables. Therefore, corrections to
compensate the effects of ionospheric refraction and detection level
(electronic) biases are performed prior to supplying measurements to
a tracking filter (Poore et al., 2016). Besides being required for proper
instrument pointing, tracking filters are also important to reduce
measurement noise. In fact, some sensors of the US SSN would not
meet the angular accuracy requirements without the noise reduction
provided by a tracking filter (Poore et al., 2016).
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Despite these positive effects, tracking filters also have a significant
impact on data errors and their associated statistical properties. The
computed state vectors and covariances highly depend on the tracking
filter implementation and models used. In practice however, radar
sensor noise is driven by factors such as wavelength, waveform, signal
to noise ratio, beamwidth, aperture size, temperature and waveform
processing (Poore et al., 2016). Tracking filters on the other hand intro-
duce correlation into the reported measurements, as the tracking filter
solution at time tn depends on all prior states and non-metric mea-
surements. At each time-step the tracking filter computes the reported
measurements based on the state vector solution. This conversion is
in many cases highly nonlinear. While covariance information may
be transformed from state space to the metric observable space via
linearization or nonlinear methods, it is rarely reported with the
measurements (CSpOC, for example, is not receiving any covariance
information from the radar sites), thus forcing the user to conduct
additional calibration campaigns based only on the reported measure-
ments, which degrades the realism of the measurement uncertainty
quantification.

Radar biases are driven by environmental effects (e.g. ionospheric
refraction or temperature gradients), electronic components (e.g. phase
errors or scale factor errors) and pointing. Electronic biases originate
from limited knowledge and stability of radar performance parame-
ters and may be constant or vary between tracks. Correlation times
are long in comparison to target observation timescales, such that
they can be treated as constant during data acquisition. Neverthe-
less, electronic errors exist that cannot be effectively treated as biases.
An example is temperature-induced expansion/contradiction, which
causes changes to the transmit/receive module grid of phased array
radars and thereby errors that scale with the magnitude of the direc-
tion cosines. If only biases are modeled in the calibration process, the
extent to which these scale factor errors can be compensated by a bias
depends on the variation of the intrinsic observables during target
tracking and leads to a reporting of covariances with varying realism.

Other electronic biases are for example constant phase errors (small
oscillator frequency offsets with respect to the nominal value). Gener-
ally this type of error is accounted for in the commissioning phase of a
sensor via extensive calibration campaigns. The degree to which they
are resolved depends on how much effort has been spent on doing so.
In practice, many sensors are only calibrated close to their boresight
(in favor of high signal to noise ratios) and not over the entire field of
view (FOV). Nevertheless, the obtained calibration parameters are ap-
plied for the full FOV, creating pointing-dependent residual electronic
biases due to the boresight-dominated characteristics. Additionally
also drifts in electronic biases, caused by aging of components, repre-
sent a source of uncertainty that is not explicitly taken into account
and leads to the need for repeated calibration campaigns.
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Optical measurements
Optical sensors report angles only measurements, commonly ex-
pressed in right ascension and declination. Their angular accuracy is
by far better than the azimuth/elevation information of radars, how-
ever range information is not provided. Telescopes and space-based
space surveillance (SBSS) satellites collect incident light and report
the amount of accumulated electrical charge for each pixel of the
sensor array. The images formed from the pixel charges represent the
intrinsic observables. Optical sensors do not need to actively radiate
energy and may be operated in two different modes: surveillance and
tracking. In surveillance mode the sensor is pointing into a constant
direction. Hence the stars appear as bright points and the RSOs as
streaks. This is a simple operation mode, however it only allows for
objects to be detected that cross the field of view. In case of SBSS
sensors the surveillance mode may require active attitude control or
gimbal bearings.

In tracking mode the sensor follows the object either via a precom-
puted pointing profile or via autotracking based on the received visual
magnitude. If the information about the expected orbital motion is suf-
ficiently accurate, tracking turns the path of an object into a bright dot
and the stars into streaks. Velocity errors may result in object smearing,
giving rise to inaccurate results and degraded statistical properties.
The purpose of the tracking mode is to extend measurement tracks
and enable longer light integration times, such that also fainter objects
can be tracked.

Optical measurements are processed differently than radar measure-
ments to obtain the raw metric observables, which are then corrected
for environmental effects to generate the reported measurements. Re-
quired processing-steps and corresponding sources of uncertainty are:

• Star/background identification→ usage of different star catalogs
• Track identification via removal of background, end-point de-

termination and pixel-centering → algorithmic uncertainties,
uncertainty in centroid determination, presence of stars close to
tracks

• Generation of raw metric observables using relative geometry of
identified scenery, ground station location and tracks→ accuracy
of sensor location (lat./lon./alt. on ground or state vector in
space), performed corrections

Once the raw observables have been computed, corrections are applied
to compensate for the finite speed of light. These include light-time
delay corrections that account for the motion of the observation target
and aberration corrections that account for the motion of the observer.
The exact aberration corrections which need to be performed depend
on the coordinate system of the final reported measurements (the Inter-
national Celestial Reference System (ICRS) does not account for annual
aberration, whereas the Geocentric Celestial Reference System (GCRS)
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does). Once light-time delay and aberration have been corrected, the
last step is to perform a system delay compensation, also called “time
bias” correction. In principle the time bias should be an actual bias,
as it is meant to compensate for the constant delay between the light
reception time and the image registration time. In practice, however, it
is often computed as an overall optimization to minimize the residuals
generated from the external precision ephemerides, thereby causing it
to compensate for all kinds of remaining errors. Strong variations in
the time “bias” are therefore often a sign of sub-optimal or erroneous
prior corrections. A practical difficulty in the process is to make sure
that each required correction is only applied once, as some corrections
are already applied in the image processing software, whereas others
are left to the user. Consequently missing or double corrections need
to be avoided. A small side-task of the present thesis was to derive a
relativistic aberration correction algorithm capable of adding and re-
moving the effect of aberration to/from measurements. The algorithm
may be found in appendix B.6.

The uncertainty in the fully processed metric observables is com-
monly determined in a calibration campaign against high precision
(GPS or laser-based) ephemerides. If it is assumed to be Gaussian, then
each calibration run results in a bias/standard deviation estimate for
each metric observable. The results obtained for right ascension and
declination are commonly considered independent, such that the final
covariance has diagonal shape. Each of these bias/standard deviation
tuples represents an uncertainty estimate for the time during which
the respective observations were taken. The biases and standard devia-
tions are therefore themselves subject to variation and uncertainty. For
this reason, multiple calibration runs are performed under different
conditions during calibration campaigns, resulting in multiple means
and variances. The realism of the finally reported measurement uncer-
tainty strongly depends on how the large number of bias/standard
deviation pairs is used to generate the final uncertainty estimate. Often
a simple averaging over the means and sigmas is carried out, thereby
losing any information about the variability in the uncertainty with
respect to the underlying dependencies. A better option is to catego-
rize the uncertainty parameters based on their dependencies and to
report the parameter set that most closely matches the current con-
ditions. Both approaches however cannot avoid further recalibration
campaigns, as typically no model is available to predict the drift in
the calibration based on a change in the environmental parameters.

Once the calibration runs have been finished, a final test must show
if the computed residuals in the metric observables actually follow a
Gaussian pdf of the reported mean and standard deviation. This is
true for both optical and radar based sensors. Possible test criteria for
the evaluation of Gaussianity are the QQ-Plot with Royston-Michael or
Kolmogorov-Smirnov acceptance boundaries (Michael, 1983; Royston,
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1993; Wright, 2011; Johnson, 2015) or some other goodness of fit (GOF)
test, such as the Cramér-von Mises criterion (Darling, 1957) or the
Anderson-Darling metric (Anderson and Darling, 1954).

Summarizing measurement uncertainty quantification, it can be
noted that there is still much room for improvement. Many assump-
tions are made (e.g. with regard to the independence of measurements
and measurement variables), whose justification seems to be based
more on simplicity than physics. The empirical calibrations are affected
by epistemic and aleatoric uncertainty. Nevertheless, only aleatoric
uncertainty is reported alongside the measurement data, which in
many cases only represents an average value, such that the actual
uncertainty can sometimes differ considerably from the reported one.
In practice, this structural uncertainty is attempted to be compensated
via regular calibration campaigns, however the reported results are
always only as good as the assumptions and models they are based
on. A circumstance that complicates advancements in this area and
limits them to larger institutions is the actual availability of a sensor,
such that calibration procedures can be tested against real world data.
Some recommendations for future high-precision sensor systems may
be found in Poore et al. (2016).

Measurement correlation
Once measurement data has been acquired, it needs to be matched to
an object in the catalog. This task is in many cases not obvious due to
the dense population of resident space objects. Incorrect association
of measurement data leads to cross-tagging uncertainty. This type
of uncertainty is very specific to space surveillance but easily under-
stood. If measurements are attributed to a different object, then the
(initial or regular) orbit determination of this object is performed with
measurements that do not describe the true path of the object under
consideration. Instead of reducing uncertainty, uncertainty realism
is corrupted by trusting into false information. Once cross-tagging
uncertainty has been introduced into a system, it can only be removed
by further, correctly associated measurement data or by restoring the
catalog state and uncertainty of the object prior to the misassociation
and repeating the OD with new information regarding the correlation.

A standing recommendation is hence to use algorithms for mea-
surement correlation that maintain multiple hypothesis at the same
time and only decide upon association once enough evidence has been
obtained. These types of algorithms are called multiple hypothesis
trackers (MHTs). A description of the theory, including an applica-
tion to real world data, may be found in Rodriguez Fernandez et al.
(2019a).

As cross-tagging uncertainty is of epistemic nature and OPM-based
MHTs have not yet been presented, there is currently no proper means
for its quantification. Instead, since most correlation algorithms are
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based on probability distributions or covariance information, the state
of the art is to minimize cross-tagging by achieving uncertainty realism
in the other parts of the space-surveillance loop and using MHTs for
track correlation. The principle of cross-tagging is sketched in figure
1.6.

Real Orbit 
Predicted Orbit 

Figure 1.6: Principle of measurement cross-tagging. Left: successful cor-
relation, right: erroneous association of measurements and uncorrelated

observations due to bad OD

summary

Perfect uncertainty quantification would require all origins of uncer-
tainty to be quantified. Obviously this is not possible in practice, how-
ever performing uncertainty quantification for the dominant sources of
uncertainty would already be a substantial improvement with respect
to the current operational state of the art.

A further source of uncertainty that is common to all blocks and
has not yet been mentioned is related to coordinate frame differences.
Examples of this kind are deviations in the definition of inertial frames
(EME2000 vs. GCRF) and differences in the inertial to Earth fixed
conversions caused by EOP data, which may vary depending on its
source, processing (interpolation vs. nearest neighbor) and age (in
case of predicted Earth orientation parameters).

Also the GP theory, which uses its own analytical models, is defined
in the True Equator Mean Equinox (TEME)-frame, which has no clear
scientific realization. The probably closest public implementation with
respect to the USSF codes used to generate the TLEs is presented in
Vallado et al. (2006).

A graphical summary of the major uncertainty contributors is given
in figure 1.7, which follows the building block structure introduced in
flowchart 1.3.

1.3.4 Impact of uncertainty realism on space surveillance

Besides aiming for maximum uncertainty realism, also an understand-
ing of its relevance for the various tasks that make use of the OD
results is required. This allows to identify where simplifications may
be justified. Four main subjects make use of the estimated state and its
uncertainty: maneuver detection, data association, sensor management
and CARA.



1.3 uncertainty quantification in space surveillance 37

·
 

S
tr

u
ct

u
ra

l 
u

n
ce

rt
ai

n
ty

 i
n

 c
al

ib
ra

ti
o

n
 p

ro
ce

ss
·
 

S
en

so
r 

le
v

el
 e

rr
o

rs
 (

b
ia

s,
 s

ca
le

 f
ac

to
r 

er
ro

rs
, 

m
is

p
o

in
ti

n
g

) 
an

d
 n

o
is

e 
·
 

A
ss

u
m

p
ti

o
n

 o
f 

in
d

ep
en

d
en

ce
 o

f 
m

ea
su

re
m

en
ts

/u
n

ce
rt

ai
n

ty
 f

o
r 

d
er

iv
ed

 m
et

ri
c 

o
b

se
rv

ab
le

s
·
 

A
p

p
li

ed
 c

o
rr

ec
ti

o
n

s 
(i

o
n

o
sp

h
er

ic
/a

b
er

ra
ti

o
n

/
li

g
h

t-
ti

m
e 

d
el

ay
/…

)
·
 

C
o

n
v

er
si

o
n

 o
f 

in
tr

in
si

c 
o

b
se

rv
ab

le
s 

to
 s

en
so

r 
re

p
o

rt
s

·
 

U
sa

g
e 

o
f 

tr
ac

k
in

g
 f

il
te

rs
·
 

C
o

n
st

ru
ct

io
n

 o
f 

re
p

o
rt

ed
 u

n
ce

rt
ai

n
ty

 b
as

ed
 o

n
 

in
d

iv
id

u
al

 c
al

ib
ra

ti
o

n
 r

u
n

s
·
 

T
em

p
o

ra
l 

st
ab

il
it

y
 o

f 
ca

li
b

ra
ti

o
n

 r
es

u
lt

s
·
 

C
h

o
ic

e 
o

f 
d

at
a 

ex
ch

an
g

e 
fo

rm
at

 m
ay

 i
n

tr
o

d
u

ce
 

ro
u

n
d

-o
ff

 e
rr

o
rs

 o
r 

p
ro

h
ib

it
 e

x
ch

an
g

e 
o

f 
co

v
ar

ia
n

ce
 i

n
fo

rm
at

io
n

·
 

T
re

at
m

en
t 

o
f 

ti
m

e 
b

ia
s

·
 

C
ro

ss
-t

ag
g

in
g

 u
n

ce
rt

ai
n

ty

   
   

  F
o

rc
e 

m
o

d
el

P
ro

ce
ss

S
o

u
rc

es
 o

f 
U

n
ce

rt
ai

n
ty

  P
ro

p
ag

at
io

n
 

  (
st

at
e 

an
d

 u
n

ce
rt

ai
n

ty
)

·
 

A
b

il
it

y
 t

o
 p

ro
p

ag
at

e 
th

e 
u

n
ce

rt
ai

n
ty

 
ac

co
rd

in
g

 t
o

 t
h

e 
u

n
ce

rt
ai

n
ty

 m
o

d
el

·
 

L
in

ea
r 

v
s.

 n
o

n
li

n
ea

r 
p

ro
p

ag
at

io
n

·
 

A
lg

o
ri

th
m

ic
 u

n
ce

rt
ai

n
ti

es
: n

u
m

er
ic

 
in

te
g

ra
ti

o
n

 t
o

le
ra

n
ce

s,
 i

n
fi

n
it

e 
su

m
 

tr
u

n
ca

ti
o

n
s

·
 

A
b

il
it

y
 t

o
 i

n
co

rp
o

ra
te

 p
ro

ce
ss

 n
o

is
e 

in
to

 
es

ti
m

at
io

n
 p

ro
ce

ss
·
 

L
in

ea
ri

za
ti

o
n

/n
o

n
li

n
ea

r 
m

ea
su

re
m

en
t 

u
p

d
at

es
/n

o
n

-G
au

ss
ia

n
 e

st
im

at
o

rs
·
 

C
o

o
rd

in
at

e 
fr

am
e 

fo
r 

m
ea

su
re

m
en

t 
u

p
d

at
es

·
 

A
d

d
it

io
n

al
 s

o
lv

e-
fo

r 
p

ar
am

et
er

s:
 n

o
n

e/
co

n
st

an
t/

p
ie

ce
w

is
e 

co
n

st
an

t

E
st

im
at

e 
o

f 
st

at
e 

an
d

 u
n

ce
rt

ai
n

ty

·
 

R
ea

l 
u

n
ce

rt
ai

n
ty

: p
d

f 
b

as
ed

 o
n

 a
ll

 a
le

at
o

ri
c 

u
n

ce
rt

ai
n

ti
es

 +
 e

p
is

te
m

ic
 u

n
ce

rt
ai

n
ty

·
 

R
ep

o
rt

ed
: m

ea
n

 a
n

d
 c

o
v

ar
ia

n
ce

 o
r 

 p
d

f 
ac

co
u

n
ti

n
g

 f
o

r 
th

e 
co

n
si

d
er

ed
 u

n
ce

rt
ai

n
ti

es
  

(m
ix

tu
re

 o
f 

al
ea

to
ri

c 
an

d
 e

p
is

te
m

ic
 u

n
ce

rt
ai

n
ti

es
 v

ia
 p

ro
b

ab
il

is
ti

c 
m

et
h

o
d

s)

·
 

S
tr

u
ct

u
ra

l 
u

n
ce

rt
ai

n
ty

 o
f 

m
o

d
el

s 
at

 g
ri

d
 a

n
d

 s
u

b
-g

ri
d

 s
ca

le
s

·
 

S
tr

u
ct

u
ra

l 
u

n
ce

rt
ai

n
ty

 d
u

e 
to

 
u

sa
g

e 
o

f 
p

ro
x

ie
s 

fo
r 

so
la

r 
an

d
 

m
ag

n
et

o
sp

h
er

ic
 e

n
er

g
y

 i
n

p
u

ts

·
 

M
o

d
el

 p
ar

am
et

er
 u

n
ce

rt
ai

n
ty

: 
   

   
 u

n
ce

rt
ai

n
ty

 o
f 

fi
t 

co
ef

fi
ci

en
ts

·
 

In
p

u
t 

p
ar

am
et

er
 u

n
ce

rt
ai

n
ty

: 

   
   

 p
ro

x
y

 v
al

u
es

 (
→

 n
o

w
ca

st
in

g
 a

n
d

 
   

   
 f

o
re

ca
st

in
g

 u
n

ce
rt

ai
n

ty
)

·
 

A
lg

o
ri

th
m

ic
 u

n
ce

rt
ai

n
ti

es
: 

p
ro

x
y

 h
an

d
li

n
g

 (
in

te
rp

o
la

ti
o

n
/

co
n

v
er

si
o

n
, c

en
tr

al
 v

s.
 p

as
t 

av
er

ag
e)

   
   

  U
n

ce
rt

ai
n

ty
 m

o
d

el

   
M

ea
su

re
m

en
t 

G
en

er
at

io
n

It
er

at
e

   
   

O
rb

it
 D

et
er

m
in

at
io

n
n
o
n
lin
ea
r

tr
an
sf
o
rm

at
io
n

  A
tm

o
sp

h
er

e 
an

d
 

  E
n

v
ir

o
n

m
en

t 
m

o
d

el

·
 

S
tr

u
ct

u
ra

l 
u

n
ce

rt
ai

n
ty

: a
ss

u
m

p
ti

o
n

 o
f 

G
au

ss
ia

n
it

y
 

v
s.

 e
st

im
at

io
n

 o
f 

p
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n
·
 

C
h

o
ic

e 
o

f 
co

o
rd

in
at

e 
fr

am
e 

 (
o

rb
it

al
 e

le
m

en
ts

 v
s.

 
C

ar
te

si
an

)

·
 

G
ra

v
it

y
: 

   
   

 -
 E

p
is

te
m

ic
: e

rr
o

rs
 o

f 
o

m
is

si
o

n
 (

m
o

d
el

 t
ru

n
ca

ti
o

n
) 

   
   

 -
 A

le
at

o
ri

c:
  e

rr
o

rs
 o

f 
co

m
m

is
si

o
n

 (
u

n
ce

rt
ai

n
ty

 o
f 

   
   

   
   

   
   

   
   

   
  p

o
te

n
ti

al
 f

ie
ld

 c
o

ef
fi

ci
en

ts
)

·
 

T
h

ir
d

 b
o

d
y

 p
er

tu
rb

at
io

n
s:

   
   

  E
p

is
te

m
ic

: u
sa

g
e 

o
f 

JP
L

 e
p

h
em

er
id

es
   

   
  A

lg
o

ri
th

m
ic

 u
n

ce
rt

ai
n

ty
: t

re
at

m
en

t 
o

f 
n

u
m

er
ic

al
 

   
   

  s
ta

b
il

it
y

 v
ia

 T
ay

lo
r 

ex
p

an
si

o
n

/L
eg

en
d

re
 

   
   

  p
o

ly
n

o
m

ia
ls

·
 

S
o

la
r 

ra
d

ia
ti

o
n

 p
re

ss
u

re
:

   
   

  -
 S

tr
u

ct
u

ra
l 

u
n

ce
rt

ai
n

ty
: e

q
u

at
io

n
 f

o
r 

S
R

P
   

   
  -

 P
ar

am
et

er
 u

n
ce

rt
ai

n
ty

: s
o

la
r 

fl
u

x
, S

R
P

 c
o

ef
fi

ci
en

t 
   

   
   

 h
an

d
li

n
g

 (
av

ai
la

b
il

it
y

 o
f 

at
ti

tu
d

e 
d

at
a/

m
at

er
ia

l 
   

   
   

 p
ro

p
er

ti
es

) 
v

s.
 e

st
im

at
io

n
 (
→

 e
rr

o
r 

al
ia

si
n

g
)

   
   

  -
 S

h
ad

o
w

 m
o

d
el

: s
tr

u
ct

u
ra

l 
u

n
ce

rt
ai

n
ty

 f
o

r 
sh

ad
o

w
 

   
   

   
 s

h
ap

e 
o

r 
p

en
u

m
b

ra
l 

S
R

P
   

   
  -

 A
lg

o
ri

th
m

ic
 u

n
ce

rt
ai

n
ty

: n
o

t 
in

te
g

ra
ti

n
g

 t
o

 t
h

e 
   

   
   

 e
x

ac
t 

p
o

in
ts

 o
f 

sh
ad

o
w

 a
rr

iv
al

 a
n

d
 d

ep
ar

tu
re

·
 

D
ra

g
:

   
   

  -
 A

ll
 a

tm
o

sp
h

er
ic

 a
n

d
 s

p
ac

e 
w

ea
th

er
 u

n
ce

rt
ai

n
ti

es
   

   
  -

 B
al

li
st

ic
 c

o
ef

fi
ci

en
t 

h
an

d
li

n
g

 (
av

ai
la

b
il

it
y

 o
f 

   
   

   
 a

tt
it

u
d

e 
d

at
a/

m
at

er
ia

l 
p

ro
p

er
ti

es
) 

v
s.

 e
st

im
at

io
n

 
   

   
   

 (
→

 e
rr

o
r 

al
ia

si
n

g
)

   
   

  -
 T

h
er

m
o

sp
h

er
ic

 w
in

d
s

·
 

O
th

er
s:

   
   

  -
 S

tr
u

ct
u

ra
l 

u
n

ce
rt

ai
n

ty
: o

th
er

 p
er

tu
rb

at
io

n
s 

   
   

   
 c

o
n

si
d

er
ed

/n
eg

le
ct

ed

D
at

a 
A

ss
o

ci
at

io
n

Figure 1.7: Dominant sources of uncertainty in the building blocks of space
surveillance

maneuver detection and data association

Maneuvers are part of orbit maintenance, orbit raising and deorbiting.
Maneuver detection is closely linked with data association, as observa-
tions of objects that have maneuvered can only be correctly correlated
if the maneuver has been detected. Two kinds of approaches exist:
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those that aim to determine that a maneuver has occurred (maneuver
identification) and those that also attempt maneuver characterization.
Obviously the results of the latter type depend on assumptions regard-
ing maneuver properties (e.g. maximum/minimum thrust), strategies
(fuel-optimal/minimum duration) and type (impulsive/continuous).

Different algorithms have been proposed in the literature (cf. figure
1.3). Very promising results have been reported for the optimal control
distance metric approach in Singh et al. (2012), which builds upon
Holzinger et al. (2012). Common to all approaches is that a maneuver is
considered as some sort of statistically rare event. Hence the success of
measurement correlation is directly tied to the uncertainty information
of an object, as reported by the OD and stored in the space object
catalog.

Overly optimistic pdfs may result in false alarms as they increase the
likelihood of reporting mismodeled dynamics as maneuvers. Correla-
tion can also be obstructed by considering the maneuver required for
the association of the observations with the object under consideration
as too unlikely. Overly pessimistic pdfs on the other hand can lead
to the opposite effects, such that maneuvers are not detected because
they are still within the realm of the dynamics or incorrect correlations
are still considered sufficiently likely. Large initial uncertainties can
also lead to pdf overlap between closely spaced RSOs, thereby ob-
structing data association in that no clear decision is possible based on
single measurements. Further observations and multi-measurement
(“multiple frame”) algorithms are required in these cases.

sensor management

The generation of the required observations (sensor tasking) and the
distribution of these tasks to the available sensors (sensor scheduling)
is collectively referred to as sensor management. It is treated as an
optimization problem under uncertainty with the goal of obtaining
as much information as possible about the space environment. Algo-
rithms applied operationally and modern solutions that have shown
promising improvements on a smaller scale are collected in figure 1.3.

Sensor task generation needs to make sure that fundamental con-
straints, such as sensor operability, line of sight between the sensor
and the object and sufficient sensor performance (tracking capability)
are fulfilled. For sensor tasking, uncertainty realism is key to finding
an optimum between the average catalog accuracy and the number of
cataloged objects.

Overly optimistic pdfs will result in less observation requests to be
generated, thereby risking objects to “get lost” and result in future
uncorrelated tracks (UCTs). Similarly, overly pessimistic pdfs result in
an overall degradation of the catalog accuracy, since either more obser-
vation requests are generated than can be fulfilled by the available sen-
sors or too much sensor time is spent to track objects with pessimistic
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Frequentists vs.
Bayesians or
collision probability
= collision risk ?

uncertainty information, thereby leading to less frequent updates of
the other objects in the catalog. Further details on the coupling between
nonlinear estimation and the performance of sensor tasking can be
found in Williams (2012). The tasking algorithms available at CSpOC
are outlined in Miller (2004, 2007). A possible future genetic algorithm
solution has been compared to CSpOC’s SP Tasker solution in Greve
et al. (2018). If multiple sensors are available to execute an observation,
sensor scheduling should maximize the overall information about the
object via intelligent distribution of the sensor tasks.

S1

S2

Cataloged 
uncertainty volume

Predicted uncertainty 
volume after observation

Figure 1.8: Impact of covariance shape
on sensor scheduling. Adapted from

Zhao et al. (2002, figure 3)

Consider figure 1.8 as an ex-
ample. Both available angles-
only sensors, S1 and S2, are of
similar accuracy, meaning that
they result in a comparable re-
duction of the uncertainty vol-
ume. However, due to its head-
on location, sensor S1 lacks ob-
servability of the dominant in-
track component of the uncer-
tainty volume, whereas sensor S2 has observability of this direction
and is therefore able to significantly reduce the maximum encountered
uncertainty, which is a desirable outcome since it minimizes the aspect
ratio of the covariance. Uncertainty realism hence also aids sensor
scheduling and therefore the quality of the subsequent OD.

collision probability

Last but not least, the sensitivity of the collision probability to changes
in the pdf is of great interest to CARA.

Before going into the details, a review of the centuries old frequen-
tists vs. Bayesians debate from the perspective of RSO collision risk
is in order. Both schools are concerned with the definition and in-
terpretation of probabilities. Frequentists only assign probabilities to
repeatable events and consider them as limiting case of long-term
frequencies. Bayesians on the other hand see probabilities as a more
general tool which also covers degrees of certainty. Recommended
references on the discussion include: Barnett (1999) and Vallverdú
(2015). A quick introduction is found in VanderPlas (2014).

Frequentists only consider probabilities as meaningful to describe
inherent randomness, i.e. aleatoric uncertainty. For many years the
differences between both methodologies have been restricted to philo-
sophical aspects or the justification of (unavailable) prior probability
functions (Balch et al., 2019), however it just happens to be the topic of
collision risk mitigation, which pours new oil into the fire. Orthodox
frequentists would refrain from assigning collision probabilities to
close encounters, since they see neither randomness nor repeatability
in them. In fact, also less stringent frequentists would raise concerns
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Unlikely vs. uncertain
close encounters

about collision probabilities as the main risk assessment metric, since
they consider the contribution of aleatoric errors to be below that of
systematic errors16.

While it cannot be determined with certainty if encounters in space
are deterministic or not (there is no randomness in purely determin-
istic processes), it is unquestionable that essentially the trajectory
estimates suffer from uncertainties and not, or to a much lesser extent,
the true trajectories. For Bayesians it makes no difference whether the
uncertainty is attributed to the event itself, or if other circumstances
introduce it into the system. For them, the definition of a collision
probability is correct and natural. This is also the predominant posi-
tion within the space community, which over the last two decades has
adopted the use of collision probabilities over miss distances as the
primary risk metric.

A critical work which examines the topic of collision probabili-
ties from a frequentists’ perspective is Balch et al. (2019). In prac-
tice, neither school can avoid using ideas of the other to construct a
comprehensive sequential estimation theory. This dualism is partic-
ularly evident in case of OPMs, which are using Bayesian inference
to construct a sequential filtering algorithm, but only assign proba-
bility densities to purely aleatoric uncertainties, whereas the overall
uncertainty is described using the more general outer probability
measures.

Returning to the problem of collision probability sensitivity, fun-
damental relationships can be obtained by computing the collision
probability of short-term encounters within parameter limits that rep-
resent operationally relevant bounds. Assuming a Gaussian pdf and
using Chan’s analytic equation for the collision probability (Chan,
2008, chapter 5), a miss distance xm of 1 km, symmetric standard
deviations of 100m to 100 km and combined hard body radii between
10 cm (debris) and 50m (space station), figure 1.9 can be obtained.
The combined hard body radius (HBR) determines the domain of
integration, such that the collision probabilities increase with greater
objects.

To avoid drawing false conclusions from the collision probability
risk metric, it is prudent to distinguish between unlikely and uncertain
encounters, where unlikely expresses confidence, i.e. that given the
available knowledge about the system a collision can be excluded
with a high degree of certainty. Uncertain collision probabilities on
the other hand simply do not allow to infer if the risk is high or not17.
They do not allow decision-making with confidence. Unlikely collision
probabilities are therefore desirable, whereas uncertain ones are not.

16 The proportion of aleatoric and epistemic uncertainties within the kinematic state
vector uncertainty is unknown and varies from conjunction to conjunction

17 A low Pc results, since for probabilistic risk metrics the probability is always low,
except if evidence has been collected which allows to infer that it is high
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Figure 1.9: Log-log plot of collision probability sensitivity with respect to
covariance size

Two domains, known respectively as the as the robust and dilution re-
gion, can be identified in figure 1.9. If the miss distance is much larger
than the standard deviation (robust region), the collision probability
is low, because the nominal point of closest approach lies in the tails
of the combined uncertainty pdf. Low Pc computations in the robust
region are therefore unlikely. However, collision probabilities in this
domain are strongly affected by the size of the covariance ellipsoid,
such that small changes in its length can result in multiple orders of
magnitude (OOM) increases or decreases of the risk metric. Covari-
ance realism is therefore of extreme importance for decision-making in
the robust region. The maximum Pc separates the robust and dilution
regions. It is attained when Sigma/Miss Distance = 1/

√
2, i.e. when

the standard deviation approximately equals the miss distance.
The dilution region has first been analyzed by Alfano (2003) and

follows the domain of near-maximum collision probabilities when
further increasing the covariance size. It is characterized by declining
collision probabilities, which can generate a false sense of confidence
if low Pc results are blanketly considered unlikely. The dilution region
has been discussed in various research papers, however recently it
has become the central point of a scientific discourse that not only
questions the current operational practice of probabilistic uncertainty
modeling, but also reopens the Bayesians vs. frequentists debate.

From a purely mathematical perspective, the presence of a dilution
region is a logical consequence of a probabilistic risk measure. Since
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probabilities must integrate to unity over the state space, large covari-
ances result in less probability density within the state space region
that bounds the close encounter. Therefore, collision probabilities have
to decrease after reaching a maximum.

For frequentists this is an absurd property of the collision probability
risk metric, since the introduction of greater uncertainties into a system
cannot reduce the true collision risk18. Strict frequentists therefore
consider the sole existence of the dilution region as an argument
for their belief that it makes no sense to associate a probability with
non-repeatable events. Dilution region encounters can be anything
from uncertain (no data is available to infer a high risk) to unlikely
(the major part of the uncertainty is caused by irreducible aleatoric
uncertainties, cf. note 18).

Real encounters typically follow figure 1.9 from the right to the
left. When encounters are first discovered, the screening duration is
in the order of multiple days up to a week, which results in diluted
collision probabilities due to extended covariance propagation. With
advancing time, the covariance propagation duration is reduced and
further observations are acquired, which results in the encounters to
progress towards the maximum collision probability. Most encounters
then evolve in such a way that the collision probability decreases
rapidly, as a consequence of the conjunction entering the robust region.
However, in 40-45% of the cases requiring mitigation, the encounters
are still within the dilution region when a maneuvering decision is to
be made (Hejduk et al., 2019). In practice, dilution region encounters
are treated no differently from those ranging in the robust region.
The residual risk is simply accepted as part of the satellite operations
background risk.

The debate about the “correct” operational treatment of dilution re-
gion encounters is highly charged, as can be realized when comparing
Hejduk et al. (2019) and Balch et al. (2019) who arrive at fundamentally
different conclusions and comment on each other’s points of view.
While the former authors reason for the current operational practice,
the latter support the position of frequentists. Both works provide
convincing arguments for their positions and recognize that the results
of collision probability calculations are linked to the quality of the
observations. The implications of future sensor developments and
launch frequencies are however not fully elaborated.

18 Actually, this reasoning of frequentists is somewhat short-sighted. While it is certainly
true that the recalculation of a collision probability based on poorer sensors has
no influence on the true collision risk, an increase of the covariances can also be
caused by aleatoric environmental uncertainties (e.g. certain types of atmospheric
density uncertainty), which are not reducible and thus can lead to dilution region
conjunctions even in the case of highly accurate sensors and nearly perfect force
models. Under these circumstances it is correct to infer that conjunctions in the
dilution region are unlikely and not uncertain, since then it is the irreducible natural
randomness of the trajectories which makes the evolution of the relative position
unlikely to result in a collision
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Collision probability
sensitivity with
respect to covariance
orientation

In the long term, there will be a growing number of sophisticated
sensors capable of tracking also cm-level objects with small covari-
ances. This will minimize the accepted background risk criticized in
Balch et al. (2019) and also ensure that many conjunctions are going to
fall within the robust region, where the use of collision probabilities is
far less disputed. On the other hand, current megaconstellation-driven
launch rates are expected to put many tens of thousands of satellites
into orbit over the course of the next few years. In the absence of
binding political laws, it is therefore conceivable that the background
risk, which currently appears to be acceptable, will increase swiftly.
It is hence debatable whether the reasoning applied in Hejduk et al.
(2019) can also be sustained under these circumstances.

The waves of collision risk assessment could be smoothed in the
long term through the application of more generalized uncertainty
models like OPMs. Based on the proportion of epistemic and aleatoric
uncertainties, OPMs allow for probability dilution as a consequence
of dominating irreducible aleatoric uncertainties, or for the probability
bounds to increase as a consequence of dominating epistemic uncer-
tainties. Although larger probability bounds do not imply that these
conjunctions should operationally be treated differently than in case
of diluted collision probabilities, they are likely easier to interpret for
space analysts. Examples of these concepts can be found in (Delande
et al., 2019).

At present, the operational success of CARA justifies risk assess-
ment on the basis of collision probabilities, including the treatment
of dilution region encounters. This however does not imply that the
current state of the art is sustainable in the long term. Further re-
search is necessary to quantify the impact of aleatoric and epistemic
uncertainties and thereby improve operational risk assessment.

Following the discussion about the criticism regarding collision
probabilities and their sensitivity to the covariance size, also the sensi-
tivity with respect to covariance orientation is required to be analyzed.
Using the same ratios of the hard body radii versus the miss distance
as in figure 1.9 (except for the 0.3% case which has been removed for
better readability), the collision probability can be studied by either
rotating the covariance and holding the miss vector constant or vice
versa (fixing the covariance and rotating the miss vector). Different ra-
tios of the semi-major to semi-minor axis are required to demonstrate
that the sensitivity with respect to covariance orientation depends on
covariance eccentricity. The results obtained using Chan’s analytical
short-term encounter collision probability equation are compiled in
figure 1.10 for a covariance semi-major axis standard-deviation of
1 km and varying semi-minor axis standard deviations. The curves
demonstrate that there is negligible effect of the collision probability
on the orientation until an eccentricity of approximately 0.8. Very
pronounced effects on the other hand come to light for eccentricities
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Figure 1.10: Collision probability sensitivity regarding covariance orientation

larger than 0.95. For such elongated ellipses small orientation changes
result in multiple OOM difference. Orientation covariance realism is
therefore important once the in-track component of the covariance
significantly dominates the overall covariance shape. To suppress this
sensitivity, it is therefore important to keep the covariance aspect
ratios reasonably small, which can be achieved via advanced sensor
management capable of optimum sensor selection (cf. figure 1.8) and
propagation duration minimization. Smaller aspect ratios are also
beneficial for algorithms that compute the collision probability via
numerical integration19.

Another interesting property is the sensitivity of Chan’s maximum
collision probability, which depends only on the covariance orientation
and HBR/xm. Figure 1.11 shows that the maximum collision proba-
bility has its largest sensitivity for a small neighborhood around the
alignment of the semi-major covariance axis with the miss vector. The
overall orientation related sensitivity is about one to two OOM.

Finally, also the sensitivity with respect to the shape of the pdf, i.e.
covariance realism vs. uncertainty realism is of significant interest,
as any pdf which is initially Gaussian will eventually become non-
Gaussian during extended propagation under nonlinear dynamics.
An excellent study on this topic, including multiple simulation re-
sults and figures, is Ghrist and Plakalovic (2012). Their finding is that
non-Gaussian error volumes have negligible impact on the collision

19 Chan’s analytical formulation is not reliable in case of very large aspect ratios, cf.
section 6.1.2, such that alternative algorithms based on numerical integration are used
in practice
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Figure 1.11: Sensitivity of Chan’s maximum collision probability regarding
covariance orientation

probability (less than 15%, i.e. significantly less than one OOM) in
case of high interest events (HIEs), which are defined by collision
probabilities larger than 1 in 10 000. These findings can be explained
by the overlap of the probability distributions in the area of greatest
density (cf. figure 1.12), thereby resulting in similar collision probabil-
ities despite the disagreement in the overall pdf shape (Poore et al.,
2016; Hejduk, 2017). The study also notes that non-HIEs were out of
scope, such that for lower collision probabilities “a possibility exists
that a conjunction event that is considered to have a low collision
risk might have a significantly higher Pc than expected because of
non-Gaussian deviations in the error volume” (Ghrist and Plakalovic,
2012).

Figure 1.12: Example case of violated uncertainty realism from Ghrist and
Plakalovic (2012), demonstrating the difference between the true probability
density (banana/crescent-shaped) and the predicted covariance under the

assumption of Gaussianity (red ellipse)
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1.4 scientific objectives

The accuracy of the space catalog determines the success of CARA
and therefore also the contribution to spaceflight safety. This link
was elaborated thoroughly in section 1.3. The topic of “covariance
realism”, or the more general “uncertainty realism”, has hence gained
considerable momentum in recent years and became the keynote for
the thesis at hand.

1.4.1 Scope

Space is a data-starved environment. Due to the limited number of
space surveillance sensors and the vast population of resident space
objects (RSOs), propagation times of multiple days are not uncommon
for cataloged objects. Although further work on measurement uncer-
tainty quantification was found to be beneficial for increasing overall
uncertainty realism, advances in this field have their strongest contri-
bution for short tracks with few measurements and to a lesser extent
for long-term propagation phases after measurement updates with
well-conditioned tracks. A likely substantial improvement for uncer-
tainty realism is hence to tackle the uncertainty quantification during
extended propagation phases. This is of special importance for all LEO
satellites, as the near Earth environment is the altitude shell with the
most complex dynamics, greatest force model uncertainties and largest
number of close conjunctions due to the dense population of RSOs.

As outlined in section 1.3.3, atmospheric density uncertainty and
gravity uncertainty are the dominant drivers of force model uncer-
tainty in LEO altitudes. A significant improvement in uncertainty
realism is therefore expected from the development of a density and
gravity error uncertainty quantification framework that is based on
the same physical models used for orbit propagation and compatible
with classical and modern orbit estimation methods. The derivation,
validation and evaluation of this framework hence became the scope
of this doctoral thesis. The developments are carried out based on
the uncertainty classification introduced in section 1.3.1 and the fun-
damental stochastic principles outlined in section 1.3.2. Numerical
Monte-Carlo simulations serve as state of the art validation technique.
The operational impact of the research contributions is evaluated using
an extensive study based on real world catalog data.

Potential users and beneficiaries of the developments are space
industry companies developing SST software, satellite owners/op-
erators, as well as space monitoring centers such as CSpOC or the
German space situational awareness center (“Weltraumlagezentrum”).
The developments enable a significant increase in confidence for prob-
abilistic LEO uncertainty volumes, which in turn entails the positive
effects of increased uncertainty realism discussed in section 1.3.4.
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Concrete examples are calculations of collision probabilities with
improved reliability, such that the rate of unnecessary maneuvers
can be lowered. This in turn not only contributes to space security,
but also allows to save fuel and reduce mission interruptions. Fur-
thermore, the uncertainty quantification framework also enhances
the accuracy of the cataloged orbits, since covariance matrices with
increased realism improve the weighting process of the propagation
and measurement uncertainties during orbit determination, which
in turn decreases the risks of divergence and filter smugness. Since
SST is conducted in a cyclic loop, the improved OD further results in
benefits for sensor tasking, measurement correlation and maneuver
detection/identification.

1.4.2 State of the art

Uncertainty growth during orbit propagation is dominated by two
factors: the initial semi-major axis (radial) uncertainty at the start of
a propagation phase and the uncertainties in the dynamics errors
(Schiemenz et al., 2020d). While in a probabilistic20 uncertainty model
the first source is naturally modeled via covariance or pdf propaga-
tion, it has been customary to neglect force model uncertainties for
many years (Horwood et al., 2011, p. 1841), resulting in degraded
uncertainty realism. This has been noted especially in the context of
CARA, where it is a known fact that the covariance information of
the secondary objects (“chasers”) which come close to the protected
spacecraft (“targets”) is overly optimistic, i.e. too small (Laporte, 2014;
Poore et al., 2016, section 3.1.3).

Different approaches have been established by spacecraft owners
and operators as workarounds. A simple method is using a single
scaling parameter for the combined (target plus chaser) covariance,
until it passes a χ2 goodness of fit (GOF) test (Newman et al., 2016;
Alfano and Oltrogge, 2018). CNES however decided to base CARA
on a maximum collision probability obtained by individually scaling
the target and chaser covariances within empirical bounds (Laporte,
2014). CSpOC’s Astrodynamics Support Workstation (ASW) on the
other hand uses the differential correction weighted root mean square
(WRMS) error to scale the covariance information prior propagation,
if the WRMS is greater than unity (Poore et al., 2016, section 3.1.3).
Other references promote the use of individual scaling factors for each
covariance axis (Hejduk et al., 2013) or correction matrices instead of
scale factors (Cerven, 2011, 2013). A further approach that has been
widely employed are ballistic and solar radiation pressure coefficient
solve-for parameters. In addition to the WRMS-scaling and the usage
of solve-for parameters, CSpOC also includes a consider parameter for

20 A probabilistic uncertainty model is the current state of the art in SST, however also
more general uncertainty descriptions, such as OPMs (cf. section 1.3.1 for further
details and references), are emerging



48 introduction

atmospheric density, which is implemented as an additive adjustment
to the ballistic coefficient covariance (Poore et al., 2016).

While covariance tuning/scaling can mitigate the problem of overly
optimistic covariances, it is not an optimal solution, since it neither
tackles the underlying cause (the neglect of force model uncertainties)
nor is there any statistical foundation in the number of scaling pa-
rameters and their applied bounds. Similarly, the consider parameter
solution applied at CSpOC suffers from structural uncertainty, since its
design as an additive adjustment of the ballistic coefficient covariance
cannot reproduce the correct accumulation of atmospheric density
uncertainty (Emmert et al., 2017).

The treatment of force model uncertainty quantification has received
little attention in the literature prior to the efforts carried out in
the context of this thesis. In recent years, the derivation of orbital
gravity covariance estimation has solely been discussed in Wright
et al. (2008a,b,c). Likewise, only two studies make use of physical
relationships to propagate density errors caused by solar flux input
uncertainty to satellite orbits (Emmert et al., 2014; Emmert et al., 2017).

Orbital variability due to density errors, however, has been analyzed
at various levels, mostly at grid and subgrid spatial scales. Different
strategies are used for these studies, but with a few exceptions almost
all papers can be grouped into three categories. The first group is
based on the extension of the state vector by one or more density
parameters, which are then estimated together with the kinematic
state (position and velocity vectors), as well as optionally also the
ballistic and solar radiation pressure coefficients. Representatives of
this approach are Rauch (1965), Wilkins and Alfriend (2000), as well
as Gondelach and Linares (2020), of which the latter is to be high-
lighted for its additional assessment regarding the impact on collision
probabilities. While the expansion of the state vector can often lead
to promising results, this technique is subject to the concerns raised
in section 1.3.3 (observability, model quality, error aliasing, matrix
conditioning) and usually lacks a physical foundation. The realism of
the orbit and density uncertainty estimates thus depends heavily on
the model adopted for the density parameter propagation.

The second group of studies analyzes the effect of density variability
predominantly by means of numerical orbital propagations. Popular
references are Forbes (1972), Anderson et al. (2009), Leonard et al.
(2012), Anderson et al. (2013), Vallado and Finkleman (2014), Sagnières
and Sharf (2017) and Bussy-Virat et al. (2018). Although this technique
allows the identification of important relationships, it cannot be used
to establish a real-time capable uncertainty quantification framework,
since a significant amount of computing time is required to calculate
the results, which are always tied to the simulated scenario, such that
a different scenario requires an individual, time-consuming analysis.
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The third category is linked to the first in that the state vector
is also extended by density parameters. However, the emphasis in
this group lies on obtaining improved density estimates by using
so-called “calibration satellites”, which often have special properties,
such as well known ballistic and solar radiation pressure coefficients
or a spherical design. High precision observations of these objects
can then be used to improve key parameters of the semi-empirical
density models. These “nowcasted” model parametrizations can then
also be used for all other RSOs of interest, leading to significantly
reduced orbit prediction errors by means of classical orbit determi-
nation methods. This technique, on the other hand, is always tied to
a specific semi-empirical density model and only available to a very
small community with access to the calibration satellite data. Some
researchers have therefore also attempted to apply the atmospheric
calibration approach to the publicly accessible TLE catalog, albeit with
limited practical acceptance. Examples that fall into this third category
are: Marcos (1998), Nazarenko et al. (1998), Doornbos et al. (2008),
Hinks and Psiaki (2010), as well as Storz et al. (2005), which is particu-
larly well known for its long-term successful application at CSpOC.

A recent study also analyzes the effect of neutral density estimation
errors on satellite conjunction serious event rates using CSpOC’s
JBH09/WRMS/consider parameter approach (Hejduk and Snow,
2018). The paper is of special interest, since information on the CSpOC
system performance is rarely made publicly available.

1.4.3 Outline and research contributions

Following the literary and operational state of the art analysis (see
also section 1.3, figure 1.3 and Schiemenz et al., 2019a), the objective of
this doctoral thesis became the quantification of dominant LEO force
model uncertainties using process noise matrices that derive from the
physics of the astrodynamic models used for orbit propagation.

This approach requires no expansion of the state space, has a di-
rect physical relationship with respect to the underlying uncertainty
drivers, is interleaved with the models used for the orbit propaga-
tion, compatible with all uncertainty descriptions capable of including
pdfs for modeling randomness and supports real-time computations.

A particular goal is the development of an uncertainty quantification
framework for atmospheric density, compatible with classical and
modern OD algorithms, which comprises the following research tasks:

• Quantification of relative density uncertainty due to solar flux
input uncertainty

• Quantification of relative density uncertainty due to magnetic
index input uncertainty

• Extension of the work presented in Emmert et al. (2017) concern-
ing the cross-correlation coefficients of the covariance elements
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• Quantification of structural grid-scale density model uncertainty
• Formulation of a holistic density uncertainty covariance matrix
• Analysis of force model uncertainty propagation alongside tra-

ditional covariance propagation techniques

The results of these topics are the content of chapter 2 and led to
the publication of the following papers: Schiemenz et al. (2019b),
Schiemenz et al. (2019c), Schiemenz et al. (2020a) and Schiemenz et
al. (2020b). A secondary task, motivated by the common practice of
early potential field truncation, is the derivation of improved gravity
uncertainty covariance matrices based on Wright et al. (2008a). The
findings are reported in chapter 3 and have led to the research article
Schiemenz et al. (2020c).

Following the dominant force model uncertainty quantification
(UQ), the incorporation of the resulting covariance matrices into classi-
cal and modern orbit determination (OD) algorithms is analyzed. This
includes the extension of the classical WLS and SBWLS algorithms
to incorporate process noise as part of chapter 4 and Schiemenz et al.
(2019c), as well as an experimental application of the force model un-
certainty framework towards the General Perturbations (GP) theory.

The Gaussian uncertainty assumption is relaxed in chapter 5, which
addresses the development of a novel Gaussian mixture filter capable
of achieving uncertainty realism by considering the nonlinear orbital
dynamics, as well as force model uncertainty during the propagation
phases. The corresponding paper is Schiemenz et al. (2020d).

Another research contribution of this doctoral research project is a
study on the impact of covariance propagation including force model
uncertainty regarding the risk assessment of close encounters identi-
fied in real world space object catalogs. The work package comprises
the development of a complete conjunction assessment and risk analy-
sis (CARA) software bundle, including the force model uncertainty
quantification framework, a conjunction screener, the implementation
of state of the art collision probability algorithms and a conjunction
risk analysis tool. The developments and the impact assessment are
presented in chapter 6. Further contributions that originate from this
work package are an extension of Alfano’s adjoining tube long-term en-
counter collision probability algorithm that does not require covariance
symmetrization, as well as an algorithm for GP-based Monte-Carlo
computations of the collision probability.

Topics that are not addressed but represent interesting candidates
for future research are collected in chapter 7. The thesis ends with
concluding remarks in chapter 8.
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AT M O S P H E R I C D E N S I T Y U N C E RTA I N T Y

Atmospheric drag is the main contributor to orbital uncertainty in low
Earth orbits (Emmert et al., 2014). Knowledge of the acceleration due
to drag is limited mainly by two factors: knowledge of the ballistic
coefficient and knowledge of atmospheric density. Both parameters
vary with time, however the uncertainty in the atmospheric density
is generally greater than the uncertainty in the ballistic coefficient
(Hejduk, 2017).

When performing orbit estimation, the atmospheric density esti-
mate is obtained from semi-empirical atmospheric models, such as
NRLMSISE-00 (Picone et al., 2002), JB2008 (Bowman et al., 2008), DTM-
2012 (Bruinsma, 2013) or DTM-2013 (Bruinsma, 2015). If data of cali-
bration satellites is available, also atmospheric calibration techniques,
such as HASDM can be used to debias the underlying atmospheric
model1, which removes its static nature and leads to a significant
improvement in the accuracy of the density estimate (Storz et al.,
2005).

Density uncertainty arises at spatial scales below and within the
model algorithm resolution, which is in the order of ∼4000 km for
NRLMSISE-00, DTM-2012 and DTM-2013. Submodel-scale spatial
density uncertainty (“subgrid-scale density uncertainty”) has been
analyzed for example by Bruinsma and Forbes (2008) and Anderson
et al. (2009). Grid-scale density uncertainty is also known as average
model uncertainty. Average model accuracy is commonly discussed
in the respective model reports (e.g. Picone et al., 2002 or Bruinsma,
2015). The corresponding grid-scale density uncertainty quantification
is the topic of section 2.6 and Schiemenz et al. (2020b).

Despite model-uncertainty at grid and subgrid-scales, also errors
in the inputs to the atmospheric models cause an additional input-
uncertainty component. Prior to the publications associated with this
thesis, this type of uncertainty has only received little treatment in the
literature. Semi-empirical models typically make use of a spherical
harmonics function to model periodic and non-periodic variations in
the species number densities, exospheric temperature and, in the case
of NRLMSISE-00, also in the baseline altitude temperature (Bruinsma,
2015). This function is commonly denoted G(L), where L is the vector
of the environmental parameters which are supplied to the model and
contain the required information about latitude, longitude, local solar
time, solar activity and geomagnetic activity. For further information
on this model-specific function, see for example Bruinsma (2015).

1 Currently HASDM is only deployed against JB2008
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Among the environmental parameters that are required to com-
pute a density estimate with a semi-empirical atmospheric model,
the solar flux and geomagnetic activity information are worthy of
an input-sensitivity analysis. Any uncertainty in these parameters
will propagate to an uncertainty in atmospheric density, which subse-
quently propagates to an uncertainty in the orbital mean motion and
mean anomaly. Atmospheric density input uncertainty quantification
is based on the fundamental physical relationship that models the
evolution of the gas density with respect to altitude. This relationship
is derived in section 2.1 and extends the presentation in Schiemenz
et al. (2019b).

Subsequently, section 2.2 outlines how to use the equation governing
the species number density to derive an expression that relates abso-
lute input errors to relative errors in atmospheric density. By making
use of the function G(L), section 2.2 presents a rigorous derivation of
the covariance propagation that relates Gaussian input errors (δG(L))
to Gaussian relative atmospheric mass density errors (ερ).

The sequence in which absolute errors in the solar flux or geo-
magnetic index proxies propagate to relative density errors and its
uncertainty is summarized in figure 2.1. Essentially, any input error
propagates into a corresponding error in the function of the spherical
harmonic variations. This error is different for every gas constituent
and influences the species number density and hence also the overall
gas number density and the gas mean mass. The errors and uncertain-
ties in these quantities then determine the overall error/uncertainty
propagation to the atmospheric mass density.
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Figure 2.1: Propagation of absolute input errors to relative density errors

After the generic derivation of relative density errors and their uncer-
tainties in section 2.2, the subsequent sections 2.3 and 2.4 are devoted
to the explicit cases of solar flux input uncertainty and geomagnetic
index uncertainty. Each of these sections starts with an overview of ori-
gins responsible for the respective type of input uncertainty, followed
by a discussion on aleatoric uncertainty models and their practical
application. After the derivations, the sections end with Monte-Carlo
simulation results used for validation of the developments.

2.1 semi-empirical derivation of atmospheric density

This section is devoted to the derivation of the fundamental equa-
tion that allows to obtain the relative number density of a gas con-
stituent (ni), given the fundamental properties listed in section 1.3.3,
i.e. the atmospheric temperature near the lower boundary of the
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thermosphere (“baseline altitude”, T0), the temperature at the al-
titude of interest (T ), the asymptotic exospheric temperature (Tex)
and the temperature/altitude gradient at the baseline altitude (T ′0).
The derivation is valid for all models assuming hydrostatic balance,
i.e. that the pressure gradient and gravitational forces cancel out
(e.g. MSISE-90/NRLMSISE-00, DTM-2012 and DTM-2013, but not
JB2008/JBH2009). As a starting point, consider the column of infinites-
imal height dz shown in figure 2.2. Hydrostatic balance is expressed as:

dz

Ground



   g dz
dP

Figure 2.2: Hydrostatic balance:
pressure gradient and gravity cancel

dP

dz
= −ρg (2.1)

where g is the local gravitational ac-
celeration, z represents geometric
height and P is atmospheric pres-
sure. It makes sense to transform
equation 2.1 into a form in which
the gravitational acceleration does
not decrease with height. This is
achieved by transitioning to geopo-
tential, which is defined by:

φ(z) =

z∫
0

gdh⇒ dφ = gdz (2.2)

Substituting eq. 2.2 into equation 2.1 yields:

dP = −ρdφ (2.3)

Geopotential height is the geopotential divided by a reference gravity.
The geopotential distance above reference altitude z0 is thus given by:

ζ(z) =
φ(z) −φ(z0)

g(z0)
⇒ dφ = g0 dζ (2.4)

Inserting equation 2.4 into eq. 2.3 results in the desired form of the
hydrostatic balance equation:

dP = −ρg0 dζ (2.5)

A typical baseline altitude that is used by all models considered in
this thesis is z0 = 120 km. At this height, g0 = 9.807 ms2 · (6371/(6371+
120))2 ∼= 9.45 m

s2
. Next, the ideal gas law allows to replace the depen-

dency on pressure with one on temperature:

P = nkT = ρ
kT

M
(2.6)

where n = ρ
M is the mean particle density, M the mean particle mass,

k the Boltzmann constant and T denotes temperature. Equation 2.6
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represents an expression for P, whereas eq. 2.5 is written in terms of
dP. The next step is hence to determine dP from equation 2.6. Also
it should not be forgotten that the atmosphere consists of a mixture
of different gases, each with different ρ, T and M. Consequently,
atmospheric pressure varies with density, temperature and mean
mass, where the latter is computed according to equation 2.7.

M =

nspecies∑
i=1

niMi

nspecies∑
i=1

ni

=

nspecies∑
i=1

niMi

n
(2.7)

To determine dP from P, it is necessary to apply the total differential,
which using eq. 2.5, results in:

dP =
∂P

∂n
dn+

∂P

∂T
dT =

∂P

∂ρ
dρ+

∂P

∂T
dT +

∂P

∂M
dM

= kT dn+nkdT =
kT

M
dρ+

ρk

M
dT −

ρkT

M2
dM = −ρg0 dζ (2.8)

Division by P furthermore yields:

−
g0Mdζ

kT
=
dn

n
+
dT

T
=
dρ

ρ
−
dM

M
+
dT

T
(2.9)

Realizing that dxx = d
∫
dx
x = d ln(x), allows to write equation 2.9

either in terms of the average mass density ρ (eq. 2.10), or the average
number density n (eq. 2.11).

d ln(ρ) = −
Mg0
kT

dζ− d ln(
T

M
) (2.10)

d ln(n) = −
Mg0
kT

dζ− d ln(T) (2.11)

Integrating formulae 2.10 and 2.11 with respect to geopotential height
from ζ0 to ζ yields:

ln(ρ(ζ)) = ln(ρ(ζ0)) − ln
T(ζ)

T(ζ0)
+ ln

M(ζ)

M(ζ0)
−
g0
k

ζ∫
ζ0

M

T
dζ ′ (2.12)

ln(n(ζ)) = ln(n(ζ0)) − ln
T(ζ)

T(ζ0)
−
g0
k

ζ∫
ζ0

M

T
dζ ′ (2.13)

Equations 2.12 and 2.13 describe the profile of a fully mixed atmo-
sphere. This is true up to approximately 100 km altitude. Between
100 km and 120 km the mixture of the gases transitions into an at-
mosphere that becomes dominated by molecular diffusion (Emmert,
2015). In the LEO-altitudes of interest (>200 km) molecular diffusion



2.1 semi-empirical derivation of atmospheric density 57

and gravity cause the constituent species to separate according to their
mass and follow individual hydrostatic balance constraints. Therefore
the concept of “diffusive equilibrium” is typically applied to equation
2.12 when working with the upper atmosphere.

Diffusive equilibrium is introduced into the mixed profile equa-
tions by adding a thermal diffusion coefficient and evaluating the
equation of interest (mass density or number density) separately for
each species. The species number density equation will be the base-
line for the following considerations. Written per species, it holds
that M = Mi = constant. Defining the thermal diffusion coefficient
of species i as αi and realizing that ζ0 = ζ(z0) = 0, equation 2.13

becomes:

ln(ni) = ln(ni0) − (1+αi)︸ ︷︷ ︸
thermal diffusion

ln
(
T(ζ)

T0

)
−
g0Mi

k

ζ∫
0

1

T(ζ ′)
dζ ′ (2.14)

Next, an expression for the temperature profile T(ζ) needs to be
defined. JB2008 and JBH2009 make use of an arctangent profile.
Its description may be found in Emmert (2015). The more popular
choice, which represents the baseline of MSISE-90/NRLMSISE-00,
DTM-2012 and DTM-2013 and has the advantage of being analyti-
cally integrable, is the Bates temperature profile, as introduced in
Bates (1959):

T(ζ) = Tex − (Tex − T0) exp
(
−

T ′0
Tex − T0

ζ

)
(2.15)

⇔ T(ζ) = Tex − (Tex − T0) exp (−σζ) (2.16)

where σ =
T ′0

Tex−T0
can be considered as an inverse scale height and

is also known as “shape factor” (Emmert, 2015). The quantity T ′0
represents the temperature gradient at the baseline altitude (commonly
in units of [K/km]).

To obtain a description of the number density vs. altitude, it is
required to solve the integral of the inverse temperature profile with
respect to geopotential height. For a Bates temperature profile this can
be done analytically, as shown in the following.

Inserting the Bates temperature profile into the integral in equation
2.14 results in:

ζ∫
0

1

T(ζ ′)
dζ ′ =

ζ∫
0

1

Tex − (Tex − T0) exp(−σζ ′)
dζ ′ (2.17)

After substituting u = −σζ⇒ dζ ′ = − 1σ du
′, the integral becomes:

ζ∫
0

1

T(ζ ′)
dζ ′ = −

1

σ

−σζ∫
0

1

Tex − (Tex − T0) exp(u ′)
du ′ (2.18)
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Next, substituting exp(u) = v⇒ dv
du = v yields:

ζ∫
0

1

T(ζ ′)
dζ ′ = −

1

σ

exp(−σζ)∫
1

1

(Tex − (Tex − T0)v ′)v ′
dv ′ (2.19)

Now the integrand needs to be replaced with its partial fraction
expansion:

ζ∫
0

1

T(ζ ′)
dζ ′ = −

1

σ

exp(−σζ)∫
1

1

Texv ′
+

T0 − Tex
Texv ′(Tex − T0) − T2ex

dv ′

= −
1

Texσ

exp(−σζ)∫
1

1

v ′
dv ′ −

Tex − T0
σTex

exp(−σζ)∫
1

1

Tex − v ′(Tex − T0)
dv ′ (2.20)

Finally, substitutingw = Tex−v(Tex−T0)⇒ dw
dv = −(Tex−T0) allows

to obtain:

ζ∫
0

1

T(ζ ′)
dζ ′ = −

1

Texσ
(−σζ− ln(1)) +

Tex − T0
σTex(Tex − T0)

Tex−(Tex−T0) exp(−σζ)∫
T0

1

w ′
dw ′

=
ζ

Tex
+

1

σTex

T(ζ)∫
T0

1

w ′
dw ′ =

ζ

Tex
+

1

σTex
(ln(T(ζ) − ln(T0)) (2.21)

Therefore, the solution to the integral of the inverse Bates temperature
profile with respect to geopotential height is:

ζ∫
0

1

T(ζ ′)
dζ ′ =

ζ

Tex
−

ln
(
T0
T(ζ)

)
σTex

(2.22)

Introducing equation 2.22 to eq. 2.14 then yields the desired descrip-
tion of ni(ζ), as for example published in Chamberlain and Hunten
(1990) or Picone et al. (2013):

ni = ni0

(
T0
T(ζ)

)1+αi+γi
exp

(
−
g0Mi

kTex
ζ

)
(2.23)

⇔ ni = ni0

(
T0
T(ζ)

)1+αi+γi
exp(−γiσζ) (2.24)

where

γi =
g0Mi

kTexσ
(2.25)

Equation 2.24 is valid for all models assuming hydrostatic equilibrium
and a Bates temperature profile. In all other cases (e.g. JB2008), its
usage to derive relative density error estimates introduces undesired
model uncertainty, however is still more accurate than the assumption
of a constant thermospheric temperature, as applied in Schiemenz
et al. (2019b).
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2.2 estimation of atmospheric density input covariance

Equation 2.24 is the fundamental equation used by many semi-
empirical models to compute density estimates. Model dynamics, i.e.
horizontal variations and forcings, result in changes of ni0 , T0 and
Tex, which then lead to the corresponding species number density
changes and overall density variations. In the following it is used to
derive an equation for the relative exospheric density error and its
variance by performing an input sensitivity analysis of atmospheric
density with respect to ni0 , Tex and T0.

2.2.1 Relative exospheric mass density error

In a mixture of gases, mass density is described as the product of the
mean mass, as defined in equation 2.7, and the overall number density
of the species contained in the gas:

ρ = nM (2.26)

For the remainder of this work the term density is used to refer to mass
density, if not noted otherwise. The relative exospheric density error
is defined in equation 2.27 according to the error convention listed in
the beginning of this thesis. Recall that a hat-sign is used to indicate
estimated quantities, i.e. the output obtained from a semi-empirical
model.

ερ =
ρ− ρ̂

ρ̂
=
δρ

ρ̂
=
ρ

ρ̂
− 1 (2.27)

Similarly, the relative errors in the number density and the mean mass
can be defined according to eqs. 2.28 and 2.29.

εn =
n

n̂
− 1 =

ρ/M

ρ̂/M̂
− 1 =

M̂

M
(ερ + 1) − 1 =

M̂

M
ερ +

M̂

M
− 1 (2.28)

εM =
M

M̂
− 1⇔ M̂

M
=

1

εM + 1
(2.29)

Inserting equation 2.29 into eq. 2.28 yields:

εn =
ερ

εM + 1
+

1

εM + 1
− 1 (2.30)

⇔ ερ = εn + εM + εnεM (2.31)

Equation 2.31 allows to compute the relative density error based on the
underlying relative errors in the mean mass and number density. Since
the masses of the individual species considered in a semi-empirical
density model are known, only equation 2.24, the fundamental de-
scription of the number density per species and its sensitivity with
respect to the three quantities ni0 , T0 and Tex is needed to evaluate
equation 2.31. The six required derivatives are therefore:
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• number density and mean mass with respect to exospheric tem-
perature

• number density and mean mass with respect to the temperature
at the baseline altitude

• number density and mean mass with respect to the number
density at the baseline altitude

relative exospheric number density error

The relative number density error is given to first order by:

εn ∼=

nspecies∑
i=1

∂ni
∂ni0

δni0

n̂
+

nspecies∑
i=1

∂ni
∂Tex

δTex

n̂
+

nspecies∑
i=1

∂ni
∂T0
δT0

n̂
(2.32)

Equation 2.32 expresses the relative number density error as the sum
of the individual error contributors. Each of the terms needs to be
formulated to derive an expression for εn.

Sensitivity of number density with respect to number density at the baseline
altitude
The MSIS and DTM-class models evaluate the number density at the
baseline altitude according to equation 2.33:

n0 =

nspecies∑
i=1

ni00 exp(Gi(L)) (2.33)

where i denotes the ith species (helium, hydrogen, atomic oxygen,
atomic nitrogen, molecular oxygen and molecular nitrogen for the
DTM-models and additionally argon, as well as ionized oxygen for
NRLMSISE-00) and ni00 the global and temporal average number
density of the species at the baseline altitude, prior to modification
via the exponential of the spherical harmonics function. ni00 is a
model-dependent coefficient. An error in the environmental parame-
ters results in an error in n0 according to:

δni0 = ni00

(
exp(Gi(L̂+ δL)) − exp(Gi(L̂))

)
= ni00 exp(Gi(L̂))︸ ︷︷ ︸

..=ni0

(exp (δGi) − 1) (2.34)

From equation 2.24 it follows that:

∂ni
∂ni0

=
ni
ni0

(2.35)

The absolute error is then given by the introduction of eq. 2.35 and
summation over the species:

δn0 =

nspecies∑
i=1

ni(exp (δGi) − 1) (2.36)
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Inserting equation 2.36 with the model-estimated number density
into the first summand of eq. 2.32 results in equation 2.37, which
describes the sensitivity of the number density at the altitude of
interest with respect to the number density at the baseline altitude,
divided by the absolute number density estimate.

εn0
..=

nspecies∑
i=1

n̂i(exp (δGi) − 1)

n̂
=

nspecies∑
i=1

n̂i exp (δGi)

n̂
− 1 (2.37)

Sensitivity of number density with respect to exospheric temperature
The sensitivity of the number density with respect to exospheric
temperature requires the computation of the derivative ∂ni/∂Tex:

∂

∂Tex
ni =

∂

∂Tex
ni0

(
T0
T(ζ)

)1+αi+ g0Mi
kTexσ

exp
(
−
g0Mi

kTex
ζ

)
(2.38)

which can be written as d
dxaf(x)

g(x) exp(c(x)). The corresponding
rule for the differentiation is derived in appendix A.2 and reads:

d

dx
af(x)g(x) exp(c(x))

= af(x)g(x) exp(c(x))

[
d

dx
c(x) + ln(f(x))

d

dx
g(x) + g(x)

d
dxf(x)

f(x)

]
(2.39)

Using

x = Tex ,

a = ni0 ,

f(Tex) =
T0
T(ζ)

=
T0

Tex − (Tex − T0) exp
(
−

T ′0ζ
Tex−T0

) ,

g(Tex) = 1+αi +
Mig0(Tex − T0)

kTexT
′
0

= 1+αi + γi ,

and

c(Tex) = −
Mig0ζ

kTex
,

the derivative is computed as:

∂ni
∂Tex

=ni0

(
T0
T(ζ)

)1+αi+γi
exp

(
−
Mig0ζ

kTex

)
︸ ︷︷ ︸

niMig0ζ

kT2ex
+
Mig0T0
kT ′0T

2
ex

ln
(
T0
T(ζ)

)
− (1+αi + γi)

T0[1−exp(−σζ)(1+σζ)]
T(ζ)2

T0
T(ζ)


= ni

[
Mig0
kT2ex

(
ζ+

T0
T ′0

ln
(
T0
T(ζ)

))
−
1+αi + γi
T(ζ)

(1− exp(−σζ)[1+ σζ])

]
(2.40)
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From the definition of the Bates temperature profile (cf. equation 2.16),
it follows that:

exp(−σζ) =
Tex − T(ζ)

Tex − T0
(2.41)

Hence, equation 2.40 can be written as:

∂

∂Tex
ni = ni

[
Mig0
kT2ex

(
ζ+

T0
T ′0

ln
(
T0
T(ζ)

))
−
1+αi + γi
T(ζ)

(
1−

Tex − T(ζ)

Tex − T0
(1+ σζ)

)]
(2.42)

Defining the second summand of equation 2.32 as εNTex , the contribu-
tion of an absolute exospheric temperature error to the overall relative
number density error is given by:

εNTex =

∑nspecies
i=1

∂ni
∂Tex

δTex

n̂

= δTex
g0
kT2ex

(
ζ+

T0
T ′0

ln
(
T0
T(ζ)

))∑nspecies
i=1 niMi

n̂

−
δTex

(
1−

Tex−T(ζ)
Tex−T0

(1+ σζ)
)

T(ζ)

nspecies∑
i=1

ni(1+αi + γi)

n̂
(2.43)

Making use of the definition of mean mass (eq. 2.7) and analogously
defining the (number density weighted) mean thermal diffusion coef-
ficient as

α =

nspecies∑
i=1

niαi

n
, (2.44)

and the (number density weighted) mean ratio of temperature and
species scale heights as

γ =

nspecies∑
i=1

niγi

n
, (2.45)

yields the desired description of εNTex upon evaluation with the esti-
mated quantities:

εNTex =

[
g0M̂

kT̂2ex

(
ζ+

T̂0

T̂ ′0
ln
(
T̂0

T̂(ζ)

))
−
1+ α̂+ γ̂

T̂(ζ)

(
1−

T̂ex − T̂(ζ)

T̂ex − T̂0
(1+ σ̂ζ)

)]
δTex (2.46)

Sensitivity of number density with respect to baseline temperature
Similarly as for the exospheric temperature, equation 2.39 can be
used to derive the sensitivity with respect to the baseline temperature.
Using the definitions:

x = T0 ,
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a = ni0 ,

f(T0) =
T0
T(ζ)

=
T0

Tex − (Tex − T0) exp
(
−

T ′0ζ
Tex−T0

) ,

g(T0) = 1+αi +
Mig0(Tex − T0)

kTexT
′
0

= 1+αi + γi ,

and

c(T0) = 0 ,

the derivative of the number density profile with respect to the baseline
temperature is given by:

∂

∂T0
ni =ni0

(
T0
T(ζ)

)1+αi+γi
exp

(
−
Mig0ζ

kTex

)
︸ ︷︷ ︸

ni− Mig0
kT ′0Tex

ln
(
T0
T(ζ)

)
+ (1+αi + γi)

T(ζ)−T0 exp(−σζ)[1+σζ]
T(ζ)2

T0
T(ζ)

 (2.47)

which can be simplified to:

∂ni
∂T0

= ni

[
−
Mig0
kT ′0Tex

ln
(
T0
T(ζ)

)
+
1+αi + γi
T(ζ)

T(ζ) − T0
Tex−T(ζ)
Tex−T0

[1+ σζ]

T0

]
(2.48)

With the help of equation 2.48 it is now possible to compute the third
term of equation 2.32:

εNT0 =

∑nspecies
i=1

∂ni
∂T0
δT0

n̂

= δT0
g0

kTexT
′
0

ln
(
T(ζ)

T0

)∑nspecies
i=1 Mini

n̂

+
δT0
T(ζ)

T(ζ) − T0
Tex−T(ζ)
Tex−T0

(1+ σζ)

T0

nspecies∑
i=1

ni(1+αi + γi)

n̂
(2.49)

The evaluation of eq. 2.49 with estimated quantities from an atmo-
spheric model and equations 2.7, as well as 2.44 and 2.45 with the
estimated number density, results in:

εNT0 =

[
g0M̂

kT̂exT̂
′
0

ln
(
T̂(ζ)

T̂0

)
−
1+ α̂+ γ̂

T̂(ζ)

(
T̂ex − T̂(ζ)

T̂ex − T̂0
(1+ σ̂ζ) −

T̂(ζ)

T̂0

)]
δT0 (2.50)

Inserting equations 2.37, 2.46 and 2.50 into eq. 2.32 yields a first-order
estimate of the relative error in the total number density, caused by
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an absolute error in the function of the environmental parameters
(δGi(L)):

εn ∼=

[
g0M̂

kT̂2ex

(
ζ+

T̂0

T̂ ′0
ln
(
T̂0

T̂(ζ)

))
−
1+ α̂+ γ̂

T̂(ζ)

(
1−

T̂ex − T̂(ζ)

T̂ex − T̂0
(1+ σ̂ζ)

)]
δTex(δGTex(L))

+

[
g0M̂

kT̂exT̂
′
0

ln
(
T̂(ζ)

T̂0

)
−
1+ α̂+ γ̂

T̂(ζ)

(
T̂ex − T̂(ζ)

T̂ex − T̂0
(1+ σ̂ζ) −

T̂(ζ)

T̂0

)]
δT0(δGT0(L))

+

∑nspecies
i=1 n̂i(exp (δGi))

n̂
− 1 (2.51)

Equation 2.51 only depends on the outputs of the atmospheric model
and model-dependent coefficients (e.g. the thermal diffusion coeffi-
cients). It can be evaluated with a single model call, once δGi(L) is
available and δTex and δT0 are computed as shown in appendix A.3.

relative exospheric mean mass error

To complete the estimation of the relative density error, also the sen-
sitivities of the mean mass with respect to Tex, T0 and n0 need to be
derived. The relative error in the mean mass is given to first order by
equation 2.52.

εM ∼=

nspecies∑
i=1

∂M
∂ni0

δni0

M̂
+
∂M
∂Tex

δTex

M̂
+

∂M
∂T0
δT0

M̂
(2.52)

Sensitivity of mean mass with respect to number density at the baseline
altitude
Using the definition of mean mass (eq. 2.7), the partial derivative with
respect to the species number density at the baseline altitude can be
computed:

∂M

∂ni0
=

∂

∂ni0

∑nspecies
j=1 Mjnj

n

=

∂
∂ni0

(nspecies∑
j=1

Mjnj

)
n−

(nspecies∑
j=1

Mjnj

)
∂
∂ni0

n

n2

=

nspecies∑
j=1

Mj
∂
∂ni0

nj

n
−
M

n

nspecies∑
j=1

∂

∂ni0
nj (2.53)
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The derivative with respect to the ith species is only nonzero if j = i,
otherwise it is zero. The sum can therefore be dropped and the index
set equal to i:

∂M

∂ni0
=
Mi

∂
∂ni0

ni

n
−
M

n

∂

∂ni0
ni (2.54)

Introducing equation 2.35 yields:

∂M

∂ni0
=
Mi

ni
ni0

n
−
M

n

ni
ni0

(2.55)

The contribution of an error in the number density at the baseline
altitude therefore becomes:

εMn0
=

nspecies∑
i=1

[
Mi

ni
ni0

n
−
M

n

ni
ni0

]
δni0

M̂
=

nspecies∑
i=1

[
Mi

ni
ni0

−M
ni
ni0

]
δni0

nM̂
(2.56)

Introducing the definition of the absolute error in the species number
density from equation 2.34, results in:

εMn0
=

nspecies∑
i=1

[
Mi

ni
ni0

−M ni
ni0

]
ni0(exp(δGi) − 1)

nM̂

=

nspecies∑
i=1

Mini exp(δGi) −Mini −Mni exp(δGi) +Mni

nM̂
(2.57)

Using estimated quantities and the definition of mean mass, equation
2.57 becomes:

εMn0
..=

nspecies∑
i=1

Min̂i exp(δGi)

n̂M̂
−

nspecies∑
i=1

n̂i exp(δGi)

n̂
(2.58)

Sensitivity of mean mass with respect to exospheric temperature
To obtain the contribution of an error in exospheric temperature to a
relative error in mean mass, it is necessary to compute the derivative
∂M
∂Tex

:

∂

∂Tex
M =

(
∂
∂Tex

nspecies∑
i=1

Mini

)
n−

( nspecies∑
i=1

Mini

)
∂
∂Tex

n

n2

=

nspecies∑
i=1

Mi
∂
∂Tex

ni

n
−
M

n

nspecies∑
i=1

∂

∂Tex
ni (2.59)
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The derivative of the number density with respect to exospheric tem-
perature is already available (equation 2.42) and needs to be inserted.
Hence:
∂M

∂Tex
=

1

n

nspecies∑
i=1

Mini

[
Mig0
kT2ex

(
ζ+

T0
T ′0

ln
(
T0
T(ζ)

))
−
1+αi + γi
T(ζ)

(
1−

Tex − T(ζ)

Tex − T0
(1+ σζ)

)]

− M

n

nspecies∑
i=1

ni

[
Mig0
kT2ex

(
ζ+

T0
T ′0

ln
(
T0
T(ζ)

))
−
1+αi + γi
T(ζ)

(
1−

Tex − T(ζ)

Tex − T0
(1+ σζ)

)]
(2.60)

which can be simplified to:

∂M

∂Tex
=
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ζ+

T0
T ′0

ln
(
T0
T(ζ)

))
g0
kT2ex

(∑nspecies
i=1 M2

ini

n
−M2

)

+

(
1−

Tex−T(ζ)
Tex−T0

(1+ σζ)
)

T(ζ)

(
Mα+Mγ−

nspecies∑
i=1

Miniαi

n
−

nspecies∑
i=1

Miniγi

n

)
(2.61)

The contribution of the absolute exospheric temperature error to the
relative mean mass error is given by εMTex

..=
(∂M/∂Tex)δTex

M̂
, which

upon evaluation with the estimated quantities, results in equation
2.62.

εMTex
=

[(
ζ+

T̂0

T̂ ′0
ln
(
T̂0

T̂(ζ)

))
g0

kT̂2ex

(∑nspecies
i=1 M2
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i=1 Min̂i

− M̂

)

+

(
1−

T̂ex−T̂(ζ)

T̂ex−T̂0
(1+ σ̂ζ)

)
T̂(ζ)

(
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Min̂iαi

n̂M̂
−
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i=1

Min̂iγi

n̂M̂

)]
δTex (2.62)

Sensitivity of mean mass with respect to baseline temperature
Finally, the derivative of the mean mass with respect to the baseline
temperature needs to be computed:

∂

∂T0
M =

nspecies∑
i=1

Mi
∂
∂T0
ni

n
−
M

n

nspecies∑
i=1

∂

∂T0
ni

Introducing the derivative of the number density with respect to the
baseline temperature from eq. 2.48, leads to:

∂M

∂T0
=
nspecies∑
i=1

Mini
n

[
−
Mig0
kT ′0Tex
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(
T0
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)
+
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T(ζ)
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(1+ σζ)
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]
(2.63)

Simplification yields:
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∂T0
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n

 (2.64)
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The contribution of an absolute error in the baseline temperature
to a relative error in the mean mass is to first order given by
εMT0

..=
(∂M/∂T0)δT0

M̂
, which upon evaluation with estimated quanti-

ties, yields:

εMT0
=
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)]
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Inserting equations 2.58, 2.62 and 2.65 into eq. 2.52, allows to obtain a
single expression for the relative error in the mean mass caused by an
absolute error in the spherical harmonics function of the environmen-
tal parameters:
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(2.66)

Equations 2.51 and 2.66 can now be inserted into equation 2.31 to
obtain eq. 2.67, a single expression for the overall relative density
error.

Note that the product of the relative errors in equation 2.67 is by far
smaller than the individual contributions of the number density and
the mean mass errors (typically ∼|10−6| vs. ∼|10−3|). It should however
not be neglected when computing the relative density error, as it is
important in cases where εn and εM are of similar magnitude but
opposite sign.
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ερ ∼=
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 δT0

+
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i=1 Min̂i exp(δGi)

n̂M̂
− 1

+ εnεM (2.67)

2.2.2 Variance of relative exospheric mass density error

This section is devoted to the approximation of the variance of equa-
tion 2.67. In the following, δGi is assumed to follow a zero-mean
Gaussian distribution. Under this assumption the uncertainty in the
relative density error is fully described by its variance. Var(δTex) and
Var(δT0) are linearly related to Var(δGi), as shown in appendix A.3
and are therefore also zero-mean Gaussian.

Since variances are always positive, the product of the relative errors
in the number density and mean mass can be safely dropped. Masking
the prefactors with scalars a and b, equation 2.67 can be written as:

ερ ∼= aδTex + bδT0 +

∑nspecies
i=1 Min̂i exp(δGi)

n̂M̂
− 1 (2.68)

Using fundamental variance properties (cf. appendix A.1), the relative
density error variance can be computed according to equation 2.69.

Var(ερ) = a
2 Var(δTex) + b

2 Var(δT0) +

Var

(nspecies∑
i=1

Min̂i exp(δGi)
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(n̂M̂)2

+ 2abCov(δTex, δT0) + 2
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n̂M̂
Cov

(
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nspecies∑
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Min̂i exp(δGi)

)

+ 2
b

n̂M̂
Cov

(
δT0,

nspecies∑
i=1

Min̂i exp(δGi)
)

(2.69)
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Var(δTex) and Var(δT0) are given by equations A.19 and A.20 of ap-
pendix A.2 and derive from δGTex(L), as well as δG0(L). The remaining
components that need to be computed are therefore:

• Cov(δTex, δT0)
• Var

(∑nspecies
i=1 Min̂i exp(δGi)

)
• Cov

(
δTex,

∑nspecies
i=1 Min̂i exp(δGi)

)
• Cov

(
δT0,

∑nspecies
i=1 Min̂i exp(δGi)

)
Covariance of exospheric temperature error and baseline temperature error
The definition of covariance (eq. A.8) implies that:

Cov(δTex, δT0) = E[δTexδT0] − E[δTex]E[δT0] (2.70)

As δTex and δT0 are assumed to follow zero-mean Gaussian distribu-
tions, the covariance is equal to the expected value of the product of
the absolute errors in the baseline and exospheric temperatures. Using
equations A.17 and A.18 leads to:

Cov(δTex, δT0) = E[δTexδT0] = T00Tex0E[δGT0δGTex ]

= T00Tex0 Cov(δGT0 , δGTex) (2.71)

Variance of the error in the particle density at the baseline altitude
The variance of the sum over all considered species is defined as:

Var

(nspecies∑
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Min̂i exp(δGi)
)

=

nspecies∑
i=1

M2
i n̂
2
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+ 2
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i=1
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j=1,
j6=i

MiniMjnjCov
(
exp(δGi), exp(δGj)

)
(2.72)

Since δGi is assumed to follow a zero-mean normal distribution,
exp(δGi) is lognormal with:

Var(exp(δGi)) = eVar(δGi)
(
eVar(δGi) − 1

)
(2.73)

Applying the definition of covariance (eq. A.8) results in:

Cov
(
exp(δGi), exp(δGj)

)
= E

[
exp(δGi) exp(δGj)

]
− E
[
exp(δGi)

]
E
[
exp(δGj)

]
= E

[
exp(δGi + δGj)

]
− E
[
exp(δGi)

]
E
[
exp(δGj)

]
(2.74)

Each expectation may be computed from the first moment of the
lognormal distribution. The addition of two correlated zero-mean
Gaussians in the first term results in:

δGi + δGj ∼ N
(
µδGi + µδGj ,σ

2
δGi

+ σ2δGj + 2Cov
(
δGi, δGj

))
∼= N

(
0.0,Var(δGi) + Var(δGj) + 2Cov(δGi, δGj)

)
(2.75)
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Using equation 2.75 to complete eq. 2.74 yields:

Cov(exp(δGi), exp(δGj)) ∼= e
1
2(Var(δGi)+Var(δGj))+Cov(δGi,δGj)

− e
1
2Var(δGi)e

1
2Var(δGj) (2.76)

Evaluating equation 2.72 using eqs. 2.73 and 2.76 then results in the
desired expression for the variance of the error in the particle density:
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e
1
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(
eCov(δGi,δGj) − 1

)) (2.77)

Covariance of exospheric temperature error and species number density errors
at the baseline altitude
From the zero-mean assumption of δTex it follows that the covariance
is equal to the expectation of the product:

Cov

(
δTex,

nspecies∑
i=1

Min̂i exp(δGi)
)

= E

[ nspecies∑
i=1

Min̂iδTex exp(δGi)

]

=

nspecies∑
i=1

Min̂iTex0E
[
δGT exp(δGi)

]
(2.78)

Equation 2.78 requires the expected value of the product of a normal
and lognormal distribution. This type of distribution is sometimes
denoted “Normal Lognormal Mixture” (NLNM), however it has only
received little treatment in the literature. One of the very few papers
on this type of distribution is Yang (2008). In his work, Yang states
the first two moments of the NLNM created from a standard nor-
mal distribution with unit variance and a generic normal distribution
without giving a derivation. Both are connected via an arbitrary cor-
relation coefficient ρ. Equation 2.78 requires the first moment of the
NLNM which is created from two correlated normal distributions
with non-unit variance. The computation of the required first moment
is given in appendix A.4 and extends the work of Yang for the case of
non-standard normal Gaussians. Applying the final result, equation
A.30, yields:

E
[
δGT exp(δGi)

]
= σδGTσδGiρe

1
2σ
2
δGi (2.79)

Introducing the definition of the correlation coefficient (eq. A.10), it
follows that:

E[δGT exp(δGi)] = σδGTσδGi
Cov(δGT , δGi)√

Var(δGT )
√
Var(δGi)

e
1
2Var(δGi)

= Cov(δGT , δGi)e
1
2Var(δGi) (2.80)
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Inserting eq. 2.80 into equation 2.78 allows the computation of the
covariance as the sum of the individual covariances of the species:

Cov

(
δTex,

nspecies∑
i=1

Min̂i exp(δGi)

)
=

nspecies∑
i=1

Min̂iTex0Cov(δGT , δGi) e
1
2Var(δGi) (2.81)

Equation 2.81 is also valid for the last term to be computed, i.e.
Cov(δT0,

∑nspecies
i=1 Min̂i exp(δGi)), as δTex and δT0 only differ by scalar

coefficients. It therefore holds that:
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1
2Var(δGi) (2.82)

This completes the equations to evaluate the variance of the relative
density error. Inserting eqs. 2.71, 2.77 and 2.82 into eq. 2.69 leads to:
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1
2Var(δGi) (2.83)

Equation 2.83 yields an approximate description of the relative density
error variance. It only depends on outputs of a single atmospheric
model call and model-dependent coefficients. The variances and co-
variances of the errors in the function of the environmental parameters
are model and origin dependent. The computation for the cases of
solar flux and magnetic index uncertainty is the subject of sections 2.3
and 2.4.

Reduced versions of equations 2.67 and 2.83 can be formulated if
simplifying assumptions are introduced. In Schiemenz et al. (2019b)
the dependencies on the baseline altitude quantities n0 and T0 have
been dropped. Furthermore, the thermal diffusion coefficients have
been set to zero and the assumption T(ζ) = Tex has been introduced
instead of considering the Bates profile. Under these assumptions
the relative density error may be expressed by equation 2.84 and its
variance by eq. 2.85.

ερ ∼=

(
g0M(z)

kT2ex

R⊕ + z0
R⊕ + z

(z− z0) −
1

Tex

)
δTex (2.84)

Var(ερ) ∼= T2ex0

(
g0M(z)

kT2ex

R⊕ + z0
R⊕ + z

(z− z0) −
1

Tex

)2
Var(δGTex(L)) (2.85)
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“The F10.7 values
are deemed to be

accurate to one solar
flux unit or 1% of

the flux value,
whichever is the

larger.”
(Tapping, 2013)

It has however been shown that the amount of simplifications degrade
the error and variance estimates, such that a tuning-function was
required to obtain appropriate estimates of Var(ερ). Consequently,
eqs. 2.67 and 2.83 should be favored over eqs. 2.84 and 2.85 for practical
operations.

2.3 quantification of propagated solar flux uncer-
tainty

As depicted in figure 2.1, errors in the solar flux proxies propagate to
errors in the function of the spherical harmonics. The MSIS and DTM-
class models considered in this thesis all make use of the F10.7 index
to describe the solar forcing of the atmosphere. In section 1.3.3 it was
outlined that two parameters for the solar flux input are commonly
used: a daily flux input of the previous day and an 81-day flux-average.
If not stated otherwise, the term “solar flux” is henceforth used to
refer to the daily flux input argument (denoted E) and not the 81-day-
average (denoted E), as this is the parameter with the largest error
in orbit propagation/estimation (the average flux parameter is much
more stable).

The nature of solar flux input errors highly depends on the opera-
tional scenario. Simulations of past orbits can use fully processed solar
flux data, whereas real-time applications or even predictions into the
future (orbit forecasting) suffer from significantly larger uncertainties,
as the uncertainty of the solar flux prediction increases with propaga-
tion time. Consequently different process noise models are required
for these use-cases. Emmert et al. (2017) suggest a simple white noise
process for orbit determination with published solar flux data and a
Brownian motion process for orbit forecasting.

Published solar flux proxy values suffer from measurement un-
certainty and temporal undersampling. Tapping (2013) mentions an
accuracy in the order of 1-1.4% and notes the dependence on the flux
monitor calibration process, as well as epistemic and aleatoric contribu-
tions. Further information about the F10.7 generation process, overall
data accuracy and other flux issues such as temporal undersampling,
may be found in Tapping (2013).

To predict the resulting relative atmospheric density error and
variance using equations 2.67 and 2.83, an analytic mapping for the
transition δE → δGi is required. This mapping, its variance and the
inter-species covariance are the subject of section 2.3.1.

2.3.1 Absolute error, variance and covariance in Gi(L) due to uncertain
solar flux information

As shown in Schiemenz et al. (2019b), an error in the solar flux input
propagates to an error in the function of the spherical harmonics
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according to equation 2.86, where ai and bi are model-dependent
scalars that may depend on the 81-day solar flux component E.

δGi = aiδE+ biδE
2 (2.86)

For the MSIS-class models equation 2.86 takes the form:

δGi =
(
c1i + 2c2i(Ê− E)(1+ cci) + c1ic3i(E− 150)

)︸ ︷︷ ︸
ai

δE

+ c2i(1+ cci)︸ ︷︷ ︸
bi

δE2 (2.87)

with i denoting the species under consideration. c1i , c2i and c3i are
model and species-dependent coefficients. Some values are given in
Schiemenz et al. (2019b). The remaining coefficients can be derived
from the source codes of the models. cci is a scalar that accounts for
cross-coupling terms. It describes the influence of the asymmetrical
annual, diurnal, semidiurnal and terdiurnal variations in G(L) which
are coupled to the solar flux input. Any change in δE hence also causes
a different response in these components and therefore a change in
cci. Its exact form is very lengthy and tied to the model-specific im-
plementation of G(L). It can be derived from a sensitivity analysis of
G(L) for each model under consideration. General building blocks of
cci are model-coefficients and Legendre polynomials in latitude/lon-
gitude. So far, the MSIS and DTM-class models each allow for unified
descriptions that only differ in the model-coefficients.

For the DTM-class models the full form of equation 2.86 reads:

δGi =
((
c1i + 2c2i(Ê− E)

)
δE+ c2iδE

2
)
(1+ cci)

=
(
(1+ cci)(c1i + 2c2i(Ê− E)

)︸ ︷︷ ︸
ai

δE+ c2i(1+ cci)︸ ︷︷ ︸
bi

δE2 (2.88)

The DTM-models do not contain a dependency of δGi on the term
(E− 150). Also periodic cross-couplings are modeled differently. The
exact equation for cci is given by the parameter fp of the DTM-internal
function gldtm_XX. Equations 2.87 and 2.88 assume similar shape.
Therefore also the species variances and covariances only differ by the
scalars ai and bi, which allows to derive them in a common fashion.

Variance of absolute error in Gi(L)
Applying the definition of variance (eq. A.3) and the linear combina-
tion property (eq. A.6) to equation 2.86, results in:

Var(δGi) = a
2
i Var(δE) + 2b

2
i Var(δE)

2 + 2aibiCov
(
δE, δE2

)
(2.89)

Due to the Gaussian zero-mean assumption of δE, it holds that
Cov(δE, δE2) = 0, such that eq. 2.89 becomes:

Var(δGi) = a
2
i Var(δE) + 2b

2
i Var(δE)

2 (2.90)
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Inter-species covariance
Next, a description of Cov(δGi, δGj) is required. Since E

[
δE2

]
=

Var(δE) the expected value of equation 2.86 is not formally zero-mean.
Therefore, the covariance is computed as:

Cov(δGi, δGj) = E[δGiδGj] − E[δGi]E[δGj]

= E
[
(aiδE+ biδE

2)(ajδE+ bjδE
2)
]

− biVar(δE)bjVar(δE)

= aiajE[δE
2] + (aibj + ajbi)E[δE

3] +

bibjE[δE
4] − bibjVar(δE)

2 (2.91)

The third moment of a zero-mean normal distribution is zero
(E[δE3] = 0) and the fourth central moment equates to 3Var(δE)2

(cf. table A.1), which results in:

Cov(δGi, δGj) = aiajVar(δE) + 2bibjVar(δE)2 (2.92)

Only equations 2.90 and 2.92 are required to evaluate eq. 2.83 for solar
flux uncertainty. Since δGi is not formally zero-mean for a zero-mean
absolute solar flux error input, also the relative exospheric density
error will not formally be zero-mean. However, since bi is generally
small, δGi can be approximated as effectively zero-mean. Consequently
also the relative density error is expected to be effectively zero-mean.
The uncertainty quantification equations allow for the white noise and
Brownian motion models suggested in Emmert et al. (2017) to be used.

2.3.2 Simulation results

To validate equations 2.67, 2.83 and 2.86-2.92, the estimated error is
compared against a model propagation and the variance against a
Monte-Carlo simulation.

error propagation (equations 2 .86 and 2 .67)
If equation 2.67 agrees with the output of the semi-empirical model for
a given δGi(δE) from equation 2.86, then the ratio ερ

ε̂ρ
is equal to unity.

Variations from the ideal value of 1.0 indicate that the error propaga-
tion equations are struggling to model the true error propagation path
for a certain altitude/solar flux combination.

To show the general validity of equations 2.86 and 2.67, various
models and solar flux/altitude combinations have been tested. From
the MSIS-class models NRLMSISE-00 and from the DTM-class models
DTM-2012 and DTM-2013 were selected. DTM-2013 operates using
the F30 proxy instead of the F10.7 values. However, since the F30 data
is scaled linearly to F10.7 flux units prior to being supplied to the
model, there is no change in the error propagation equations (δE then
corresponds to the scaled proxy). The altitude/flux-grid corresponds
to the entire possible flux scale (67 sfu to 300 sfu). The altitude domain
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was limited to the most populated LEO shell between 300 and 1200 km.
The results are presented in figure 2.3 and demonstrate that the path
shown in figure 2.1 has been modeled correctly.

variance propagation (equations 2 .83 , 2 .90 and 2 .92)
To validate the atmospheric density input uncertainty quantifica-
tion, 300 Monte-Carlo iterations were computed for four selected
altitude/flux combinations, covering low to high LEO altitudes and
quiet to stormy solar conditions. To demonstrate compatibility with
both process noise models suggested by Emmert, solar flux errors
were simulated in two cases as Gaussian white noise and in the re-
maining cases as a Brownian motion process. The standard deviation
of the white noise process (and therefore also the standard deviation
at the first time-step of the Brownian motion model) was chosen as
∼1.23 sfu, corresponding to a double-sided power spectral density of
130 000 sfu2s at daily sampling.

The results for NRLMSISE-00 are depicted in figure 2.4. In all cases
the upper left plot contains the solar flux errors (daily sampling).
The upper right plot shows the resulting errors and uncertainty in
the baseline temperature and the lower left plot depicts the result-
ing exospheric temperature errors and their covariance. The corre-
sponding relative density error is depicted in the lower right plot.
The true variance of the Monte-Carlo iterations is colored red and
the estimated variance blue. Monte-Carlo iterations are depicted in
green. A thin black line illustrates the mean of the MC-iterations to
validate the zero-mean assumption at the intermediate stages. All vari-
ances are correctly estimated using equations 2.83, 2.90 and 2.92, for
both the white noise and Brownian motion error process models.

The DTM-2012 results are shown in figure 2.5. As the DTM-
models formulate the baseline temperature independently of solar
flux changes, the T0 subplot has been dropped. All cases match the
Monte-Carlo three sigma bounds. Case 2.5c is known to result in
non-Gaussian relative density errors for DTM-2012 (Schiemenz et al.,
2019b). A comparison with DTM-2013 (figure 2.6c) shows that the
behavior is unique to DTM-2012 and therefore relates to the DTM-2012

model coefficients. As has been outlined in Schiemenz et al. (2019b),
the behavior is caused by the parametrization of c2i , which causes
the nonlinear part of equation 2.86 to dominate over the linear part,
thereby corrupting Gaussianity for the chosen set of parameters.
Despite the non-Gaussian nature of the errors and the slightly violated
zero-mean assumption, the variance is still correctly estimated.

The uncertainty quantification for the error propagation from solar
flux errors to relative density errors also yields correct estimates for
DTM-2013 (cf. figure 2.6), justifying the Gaussian and zero-mean
approximations. Comparing absolute error levels, DTM-2013 shows
the strongest response in relative density to the input solar flux errors.
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Figure 2.3: Plots of the ratio ερ
ε̂ρ

for NRLMSISE-00, DTM-2012 and DTM-2013

with respect to altitude and daily F10.7 index. The estimated relative density
error (equation 2.67 evaluated with eq. 2.87 for NRLMSISE-00 and eq. 2.88 for
DTM-2012 and DTM-2013) matches the true value for all models, resulting

in perfectly horizontal planes
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NRLMSISE-00

(a) z = 300 km, E = 80 sfu, Ê = 80 sfu, Brownian motion

(b) z = 500 km, E = 130 sfu, Ê = 100 sfu, white Gaussian noise

(c) z = 700 km, E = 130 sfu, Ê = 200 sfu, Brownian motion
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(d) z = 1100 km, E = 170 sfu, Ê = 170 sfu, white Gaussian noise

Figure 2.4: Uncertainty quantification of propagated solar flux errors using
NRLMSISE-00

DTM-2012

(a) z = 300 km, E = 80 sfu, Ê = 80 sfu, Brownian motion

(b) z = 500 km, E = 130 sfu, Ê = 100 sfu, white Gaussian noise
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(c) z = 700 km, E = 130 sfu, Ê = 200 sfu, Brownian motion

(d) z = 1100 km, E = 170 sfu, Ê = 170 sfu, white Gaussian noise

Figure 2.5: Uncertainty quantification of propagated solar flux errors using
DTM-2012

DTM-2013

(a) z = 300 km, E = 80 sfu, Ê = 80 sfu, Brownian motion
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(b) z = 500 km, E = 130 sfu, Ê = 100 sfu, white Gaussian noise

(c) z = 700 km, E = 130 sfu, Ê = 200 sfu, Brownian motion

(d) z = 1100 km, E = 170 sfu, Ê = 170 sfu, white Gaussian noise

Figure 2.6: Uncertainty quantification of propagated solar flux errors using
DTM-2013
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2.4 quantification of propagated magnetic index uncer-
tainty

Geomagnetic activity parameters are used in semi-empirical density
models as indicators of the global state or specific parts of the mag-
netosphere, given the current forcing by the interplanetary magnetic
field (IMF). Many different geomagnetic indices exist, which can be
grouped into letter-prefixed classes. Some examples are:

• C-class indices: Ci, Cp, C9
• K-class indices: kp/ap, km/am (kn/an, ks/as), aa
• Polar and auroral indices: PC, AE (AL, AO, AU)
• Storm indices: DST , SYM/ASY
• Newly proposed indices: IHV/IDV
• Pulsation indices: Wp, ULF, PC3

For the K-class indices a capitalized first letter typically implies a daily
average value, whereas lowercase letters refer to shorter timescales
(e.g. three hours). Not all authors follow this convention, however
it is applied in this thesis. An excellent description of the various
geomagnetic activity parameters and their derivation can be found in
Mandea and Korte (2010, Section 8).

Geomagnetic indices can be broadly grouped into two classes: those
that consider a planetary disturbance level and others that focus
on disturbances in special regions (e.g. the Disturbance Storm Time
(DST) index for the equatorial ring current or PC for the polar cap).
Both types are suitable for orbit propagation and estimation, however
long-term and continuously measured indices are preferred for their
availability, relative accuracy and continuity. The most common ge-
omagnetic proxies for orbit determination and propagation are the
planetary K-class indices (e.g. kp and Ap), which have been intro-
duced in Bartels et al. (1939), Bartels (1949), as well as Bartels and
Veldkamp (1953), however also other geomagnetic proxies (e.g. DST
in case of JB2008) are sometimes used.

MSISE-90 and NRLMSISE-00 are based on the daily Ap index, if
this dependency is not disabled via the internal switch SW(9). The
DTM-class models preferably use the interpolated 3h-delayed kp and
the average Kp of the last 24 hours, however also the corresponding
km and Km are supported.

Geomagnetic indices are regularly published online. Common data
sources at the time of writing are:

• https://celestrak.com/SpaceData

• https://www.gfz-potsdam.de/kp-index

• https://www.swpc.noaa.gov/products-and-data

• http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

• http://isgi.unistra.fr

https://celestrak.com/SpaceData
https://www.gfz-potsdam.de/kp-index
https://www.swpc.noaa.gov/products-and-data
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
http://isgi.unistra.fr
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Geomagnetic indices
are subject to station

uncertainty, data
uncertainty and

physical uncertainty
(Xu, 2008)

The computation of the definitive indices traditionally takes place on a
monthly scale with a delay (typically a few days) depending on when
the final indices are made available by all observatories (Menvielle,
1998). Therefore, real-time or near real-time orbit estimation is per-
formed with nowcasts (also called quicklooks) and forecasts of the
geomagnetic indices.

All indices are subject to various types of uncertainty, such as
“station uncertainty”, “data uncertainty” and “physical uncertainty”
(Xu, 2008). Data uncertainty relates to inadequate data processing.
This does not only refer to the inherent uncertainty of the quicklook
and forecast data, but also describes limitations in the derivation of an
index. A common example of data uncertainty is the removal of the
solar regular (SR) and solar quiet (Sq) variations in the computation
of the ap/kp indices. The effect of day-to-day variations in Sq on
the resulting K-class indices has been analyzed in Xu (2008), who
found that the common process of removing the average Sq of five
international quite days for each month gives rise to variations in kp
as large as δkp = 3.

Another example of data uncertainty is the publication of discrete
K-class values, especially for the logarithmically scaled kp index. At-
mospheric models commonly treat magnetic indices as continuous
variables, which are sometimes additionally interpolated to a certain
point in time. The kp/Kp and corresponding ap/Ap values on the
other hand are typically published according to the discrete conver-
sion table, which may be found in Mandea and Korte (2010). Also
the quicklooks may vary depending on the data source. The NOAA
SWPC index for example only uses 10 planetary K-values (0 to 9),
whereas the GFZ indices are expressed in a scale of 1/3 and hence
consist of 28 values.

The planetary K-class indices also suffer from station uncertainty,
as all observatories, except for two which fall into the same longitude
group (Canberra and Eyrewell), are located in the northern hemisphere
(Mandea and Korte, 2010). This degrades the planetary validity of the
index, as no complete picture of the southern sub-auroral stations is
available in the derivation of the kp index.

Obviously also other indices are subject to various sources of uncer-
tainty. The DST index for example suffers from physical uncertainty
due to the co-existence of multiple current systems that contribute to
the equatorial ring current without a unique separation. Hence, the
DST index might increase without a corresponding decrease of the
symmetric equatorial ring current due to its dependence on other en-
vironmental factors (Mandea and Korte, 2010). Furthermore, multiple
ring current configurations may produce the same magnetic field on
Earth (Xu, 2008).

Xu (2008) seems to be the only published study which both discusses
magnetic index uncertainty and gives quantitative indications of the
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resulting magnitude. Motivated by this work, magnetic index errors
are subsequently assumed to follow a Gaussian distribution with a
standard deviation of 0.5 ap units in geomagnetic amplitude2. Also
slightly different choices would make sense, however further dedicated
research is required to determine a higher-fidelity distribution of the
geomagnetic index errors.

2.4.1 Absolute error, variance and covariance in Gi(L) due to uncertain
magnetic index information

To determine the effect of uncertain geomagnetic indices on orbit
propagation/estimation, the quantities Var(δGi) and Cov(δGi, δGj)
need to be computed, given a standard deviation in geomagnetic
amplitude. Due to the different geomagnetic proxies in the MSIS and
DTM-class models, each class is treated separately in the following.

MSIS-class models: error/variance propagation from Ap to Gi(L)
In MSISE-90 and NRLMSISE-00 the relationship between a change in
Gi(L) and a change in the daily magnetic amplitude is given by:

δGi = (c1i + c2ip40 + c3ip20 + cci) δA(δAp) (2.93)

where A(Ap) is given by equation 2.94.

A(Ap) = (Ap− 4) + (c5i − 1)

[
Ap− 4+

exp(−c4i(Ap− 4)) − 1
c4i

]
= Ap+ (c5i − 1)Ap− 4c5i −

c5i − 1

c4i
+
c5i − 1

c4i
exp(−c4iAp+ 4c4i)

= c5iAp+ exp (−c4iAp)
c5i − 1

c4i
exp (4c4i)︸ ︷︷ ︸

..=di

−4c5i −
c5i − 1

c4i

= c5iAp+ di exp (−c4iAp) − 4c5i −
c5i − 1

c4i
(2.94)

p20 and p40 represent Legendre-polynomials and cci additional geo-
magnetic cross-correlation terms in latitude and longitude. c1i , c2i ,
c3i , c4i and c5i are model and species-dependent coefficients (which
should not be confused with the solar flux coefficients introduced in
section 2.3.1). The index i still denotes the species under consideration,
which in a broader sense can be a chemical species (i.e. a gas con-
stituent) or a “temperature species” (i.e. the exospheric temperature
or the baseline temperature). The latter case is required to compute
δGTex and δGT0 , as well as the corresponding variances.

The parametrization of the coefficients for all species can be ob-
tained from the model code. An exemplary set for cross-referencing is
given in the following for exospheric temperature in NRLMSISE-00:

2 1 ap unit approximately corresponds to 2nT
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c1Tex = 4.93933E−03, c2Tex = 2.50802E−03, c3Tex = 5.72562E−03,
c4Tex = 8.47001E−02 and c5Tex = 1.70147E−01.

To complete equation 2.93, an expression for δA(δAp) is required.
Following the error definition applied in this thesis (Ap = Âp+ δAp),
equation 2.94 can be used to obtain:

δA(δAp) = c5iAp− c5iÂp+ di exp (−c4iAp) − di exp (−c4iÂp)

= c5iδAp+ di exp (−c4iÂp)︸ ︷︷ ︸
..=fi

exp (−c4iδAp) − di exp (−c4iÂp)

= c5iδAp+ fi exp (−c4iδAp) − fi (2.95)

Inserting eq. 2.95 into eq. 2.93, results in:

δGi = (c1i + c2ip40 + c3ip20 + cci)︸ ︷︷ ︸
ci

(c5iδAp+ fi exp (−c4iδAp) − fi)

= cic5iδAp+ cifi exp (−c4iδAp) − cifi (2.96)

Equation 2.96 relates an absolute error in Ap to an absolute error
in the spherical harmonics function Gi(L). It can now be used to
derive the mean and variance of the distribution in δGi(L). Since the
relationship between δAp and δGi is not linear, the third and higher
moments are nonzero. Nevertheless, the assumption of Gaussianity
will be maintained, as Âp is expected to be sufficiently close to Ap for
the propagated errors to be near-Gaussian. For this moment-matching
Gaussian to be a realistic description of the overall uncertainty, δAp
needs to be confined to a small neighborhood around Âp, i.e. σδAp is
expected to be small in comparison to Âp.

Applying fundamental variance properties (cf. appendix A.1) to
equation 2.96, it follows that:

Var(δGi) = ci
2c25i Var(δAp) + ci

2fi
2 Var(exp(−c4iδAp))

+ 2ci
2c5ifiCov(δAp, exp(−c4iδAp)) (2.97)

Since δAp is assumed to be zero-mean Gaussian, exp (−c4iδAp) fol-
lows a lognormal distribution. The covariance therefore matches the
first moment of the resulting NLNM with a correlation coefficient of
-1.0. Using equation A.30 results in:

Cov(δAp, exp(−c4iδAp)) = E
[
δAp e−c4iδAp

]
= −c4iVar(δAp) e

1
2c4i

2Var(δAp) (2.98)

After application of the second moment of the lognormal distribution,
Var(δGi) is found according to equation 2.99.

Var(δGi) = ci
2c5i

2 Var(δAp)

+ ci
2f2i e

(c4i
2Var(δAp))(ec4i2Var(δAp) − 1)

− 2ci
2c5ic4i fiVar(δAp) e

1
2c4i

2Var(δAp) (2.99)
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The first moment of equation 2.96 evaluates to:

E[δGi] = cifi
(
e
1
2c4i

2Var(δAp) − 1
)

(2.100)

which is nonzero. Since however c4i is small (8.47001E−02 for the
exospheric temperature in NRLMSISE-00) and taken to the square,
the resulting mean is generally very close to zero, such that the as-
sumption of δGi being zero-mean Gaussian can be justified in the
close neighborhood around Âp. The correctness of this claim can be
verified with the aid of the simulation results presented in section
2.4.2.

With the help of equation 2.96, it is now also possible to compute an
expression for the inter-species covariance Cov(δGi, δGj), as required
by equation 2.83. Continuing with the assumption of δGi being zero-
mean, the covariance is approximated as the expected value of the
product of the random variables:

Cov(δGi, δGj) ∼= E
[
δGiδGj

]
= cic5icjc5j E[δAp2]︸ ︷︷ ︸

Var. of Guassian

+ cic5icjfj E
[
δAp exp(−c4jδAp)

]︸ ︷︷ ︸
Normal Lognormal Mixture

+ cificjc5j E
[
δAp exp(−c4iδAp)

]︸ ︷︷ ︸
Normal Lognormal Mixture

− cificjfj E
[
exp(−c4iδAp)

]︸ ︷︷ ︸
Lognormal

− cificjfj E
[
exp(−c4jδAp)

]︸ ︷︷ ︸
Lognormal

+ cificjfj E
[
exp(−c4iδAp) exp(−c4jδAp)

]︸ ︷︷ ︸
Lognormal

+ cificjfj (2.101)

Inserting the corresponding moments of the lognormal distribution
and the NLNM (eq. A.30), equation 2.101 can be evaluated to:

Cov(δGi, δGj) ∼= Var(δAp)
[
cicjc5ic5j − cicjc5ifjc4je

1
2c
2
4j
Var(δAp)

− cicjc5jfic4ie
1
2c
2
4i
Var(δAp)

]
+ cicjfifj

[
e
1
2 (c4ic4j)

2Var(δAp)
− e

1
2c
2
4i
Var(δAp)

− e
1
2 (c4j)

2Var(δAp)
+ 1
]

(2.102)

Equations 2.99 and 2.102 finally allow to evaluate eq. 2.83 for uncertain
daily magnetic amplitudes in case of the MSIS-class models.
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DTM-class models: 3h-delayed kp
The DTM-class models make use of two K-class indices. This section
treats the faster index, i.e. the 3h-delayed kp, as the longer index is
more stable. Furthermore, the DTM-models require proxy interpo-
lation, such that published kp (or km) data cannot be used directly,
but the corresponding published ap data needs to be interpolated
and then converted to kp. Consequently, the error propagation pro-
cess similarly starts with a zero-mean Gaussian in the (3h-delayed)
magnetic amplitude.

As the relationship between ap and kp is not linear, the resulting
error process in kp cannot be Gaussian, meaning that also higher mo-
ments have nonzero contribution. If the following conditions however
are met, it is possible to estimate a near-Gaussian error process by
only considering the resulting first and second moments (moment-
matching Gaussian), as the propagation can be considered linear in
the neighborhood of âp:

• σδap must be small in comparison to µδap
• Due to the logarithmic mapping it must be ensured that âp > 0,

as the logarithm is only defined for positive arguments

First of all, a continuous function is required to map ap to kp (or simi-
larly Ap to Kp). The exact mapping of the linear magnetic amplitude
to the quasi-logarithmic kp/Kp index is only available for discrete val-
ues of ap/Ap via conversion tables introduced by Bartels (1949) and
Bartels and Veldkamp (1953). Wertz defines the following mapping,
which is reported to be accurate to within ∼10% (Wertz, 2012):

kp = 1.75 lnap− 1.6 (2.103)
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Figure 2.7: Differences of the ap to
kp cubic splining algorithm given
in Vallado (2013) and the postulated
clamped cubic spline (appendix
B.1). The Vallado-algorithm shows
undesired strong changes in the

slope at the outer two ap knots

Equation 2.103 is not suitable
for error propagation, as its con-
version results are too inaccu-
rate for small values of ap. Max-
imum conversion accuracy at
small ap values is however es-
pecially important, as errors in
kp are more pronounced for
small geomagnetic amplitudes,
since the knot size of the dis-
crete ap to kp conversion table
increases with increasing mag-
netic activity. Vallado postulates
a cubic splining approach for its
accuracy and consistency (Val-
lado, 2013). His algorithm is
however also not suitable, as it
results in undesired bumps at
ap = 2 and ap = 300, which are
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the consequence of the undefined additional two degrees of freedom
in the outer knots when performing the cubic splining (cf. figure 2.7).
Vallado’s cubic splining approach can be improved by transitioning
to a clamped cubic spline with empirically chosen outer bounds to
make sure that the transitions at ap = 2 and ap = 300 remain smooth.
The respective coefficients of the third-order polynomials are given in
appendix B.1.

Independently of the boundary conditions, a cubic splining ap-
proach generally results in a table of third-order coefficients that allow
to obtain the matching cubic polynomial for the current value of ap:

kp = a3ap
3 + a2ap

2 + a1ap+ a0 (2.104)

An absolute error in ap is defined as δap = ap− âp. Using equation
2.104, the corresponding error in kp is found via:

δkp = a3δap
3 + (3a3âp+ a2)δap

2 + (3a3âp
2 + 2a2âp+ a1)δap (2.105)

The associated mean and variance in δkp then allow to formulate a
Gaussian approximation of the resulting distribution.

Denoting c3 = a3, c2 = 3a3âp+a2 and c1 = 3a3âp2+ 2a2âp+a1,
the variance in δkp is defined as:

Var(δkp) = c23 Var(δap
3) + c22 Var(δap

2) + c21 Var(δap)

+ 2c3c2Cov(δap
2, δap3) + 2c3c1Cov(δap3, δap)

+ 2c2c2Cov(δap
2, δap) (2.106)

Since δap is assumed to follow a zero-mean Gaussian distribution, the
variances and covariances can be evaluated using appendix A.1 and
result in:

Var(δap3) = E[δap6] − E[δap3]2 = 15 Var(δap)3 (2.107)

Var(δap2) = E[δap4] − E
[
δap2

]2
= 2 Var(δap)2 (2.108)

Cov(δap3, δap) = E[δap4] − E[δap3]E[δap] = 3 Var(δap)2 (2.109)

Cov(δap3, δap2) = E[δap5] − E[δap3]E[δap2] = 0.0 (2.110)

Cov(δap2, δap) = E[δap3] − E[δap2]E[δap] = 0.0 (2.111)

Inserting equations 2.107 to 2.111 into eq. 2.106, the variance in δkp is
evaluated as:

Var(δkp) = 15a23 Var(δap)
3

+
(
6a3[3a3âp

2 + 2a2âp+ a1] + 2[3a3âp+ a2]
2
)

Var(δap)2 + (3a3âp
2 + 2a2âp+ a1)

2 Var(δap) (2.112)

Due to the linearity of expectation, the mean is computed from equa-
tion 2.105 as:

E[δkp] = (3a3âp+ a2)E[δap
2] = (3a3âp+ a2)σ

2
δap (2.113)
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which is nonzero. A little consideration with the coefficients of table B.1
however shows that for an assumed standard deviation of σδap = 0.5
the mean in kp remains below |0.05| and can therefore be neglected in
almost all cases. Summarizing:

N
(
0.0,σ2δap

) ≈−→ N
(
(3a3âp+ a2)σ

2
δap, 15a23 Var(δap)

3

+ (6a3[3a3âp
2 + 2a2âp+ a1] +

2[3a3âp+ a2]
2)Var(δap)2

+ (3a3âp
2 + 2a2âp+ a1)

2 Var(δap)
)

(2.114)

where the coefficients a3, a2 and a1 are to be taken from the row of
table B.1 that belongs to âp.

Now that the approximate Gaussian in the kp error has been de-
termined, the next step is to relate the error and its uncertainty to an
error and its variance in the spherical harmonics of the environmental
parameters, i.e. δGi(δkp). Both DTM-2012 and DTM-2013 contain the
same description of G(L), however use different parametrizations. 15

terms model the effects of the magnetic index inputs to the models.
Only six of the terms however change if the 3h-delayed kp index
input changes. The dependency reads:

δGi(δkp) = (c1i + c2ip20 + c5ip40)δkp

+ (c3i + c4ip20)(kp
2 − k̂p2) + c6i(kp

4 − k̂p4) (2.115)

The cxi-coefficients are model and species-dependent, meaning that
the appropriate values that match the species under study need to
be loaded from the matching model coefficients file. p20 and p40
are Legendre polynomials and represent cross-couplings in geomag-
netic activity/latitude and longitude. Resolving the differences in the
powers results in:

δGi(δkp) = (c1i + c2ip20 + c5ip40 + 2k̂p(c3i + c4ip20) + 4k̂p
3
c6i) δkp

+ (c3i + c4ip20 + 6c6i k̂p
2
) δkp2 + 4c6i k̂pδkp

3 + c6iδkp
4 (2.116)

Based on equation 2.116, it is now possible to compute Var(δGi) and
Cov(δGi, δGj), which are needed by equation 2.83. To simplify nota-
tion, define b1i = c1i + c2ip20 + c5ip40 + 2k̂p(c3i + c4ip20) + 4k̂p

3
c6i ,

b2i = c3i + c4ip20 + 6c6i k̂p
2
, b3i = 4c6i k̂p and b4i = c6i . Applying

fundamental variance properties (cf. appendix A.1) to equation 2.116

leads to:

Var(δGi) = b
2
4i
Var(δkp4) + b23iVar(δkp

3)

+ b22iVar(δkp
2) + b21iVar(δkp)

+ 2b4ib3iCov(δkp
4, δkp3) + 2b4ib2iCov(δkp

4, δkp2)

+ 2b4ib1iCov(δkp
4, δkp) + 2b3ib2iCov(δkp

3, δkp2)

+ 2b3ib1iCov(δkp
3, δkp) + 2b2ib1iCov(δkp

3, δkp) (2.117)
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For the variance terms it holds that:

Var(δkp4) = E[δkp8] − E[δkp4]2 = 105Var(δkp)4 − 9Var(δkp)2

= 96Var(δkp)4 (2.118)

Var(δkp3) = 15Var(δkp)3 (2.119)

Var(δkp2) = 2Var(δkp)2 (2.120)

Similarly, the definition of covariance leads to:

Cov(δkp4, δkp3) = 0.0 (2.121)

Cov(δkp4, δkp2) = 15Var(δkp)3 − 3Var(δkp)3 = 12Var(δkp)3 (2.122)

Cov(δkp4, δkp) = 0.0 (2.123)

Cov(δkp3, δkp2) = 0.0 (2.124)

Cov(δkp3, δkp) = 3Var(δkp)2 (2.125)

Cov(δkp2, δkp) = 0.0 (2.126)

Inserting equations 2.118 to 2.126 into eq. 2.117 allows to obtain a
compact description of the variance in δGi(δkp):

Var(δGi) = 96b
2
4i
Var(δkp)4 + (15b23i + 24b4ib2i)Var(δkp)

3

+ (2b22i + 6b3ib1i)Var(δkp)
2 + b21iVar(δkp) (2.127)

Similarly, the mean of equation 2.116 is found to result in equation
2.128 under the assumption of δkp being effectively zero-mean:

E[δGi] = b4iE
[
δkp4

]
+ b2iE

[
δkp2

]
= 3b4iVar(δkp)

2 + b2iVar(δkp) (2.128)

Combining equations 2.127 and 2.128 now allows to formulate the
approximate Gaussian in the spherical harmonics function error:

N(0.0,σ2δkp)
≈−→ N

(
3b4iVar(δkp)

2 + b2iVar(δkp),

96b24iVar(δkp)
4 + (15b23i + 24b4ib2i)Var(δkp)

3

+ (2b22i + 6b3ib1i)Var(δkp)
2

+ b21iVar(δkp)
)

(2.129)

Coefficient DTM-2012 DTM-2013

c1Tex 0.128036E−01 0.124511E−01
c2Tex 0.154477E−01 0.163993E−01
c3Tex 0.792957E−03 0.184118E−02
c4Tex 0.0 0.0
c5Tex 0.0 0.0
c6Tex 0.457116E−04 0.234802E−04

Table 2.1: Exospheric temperature coefficients
for DTM-2012 and DTM-2013

The model-coefficients
cxi for DTM-2012 and
DTM-2013 in the case of
exospheric temperature
are given in table 2.1.
The coefficients of the
other species can be in-
ferred form the respec-
tive model-coefficients
file.
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The mean in δGi is formally nonzero. To test its magnitude/rel-
evance, a short numerical consideration of a prevailing species is
required. For the case of exospheric temperature and a couple of rep-
resentative scenarios the magnitude of the resulting E[δTex] is given
in table 2.2.

σδap = 0.5 σδap = 1.0

âp DTM-2012 DTM-2013 DTM-2012 DTM-2013

2.0 0.01762 0.03371 0.14341 0.31673

15.0 0.01073 0.01023 0.08867 0.08449

300.0 0.00006 0.00004 0.00057 0.00033

Table 2.2: Expected value of exospheric temperature error due to geomagnetic
amplitude uncertainty (DTM-class models)

Table 2.2 indicates that the mean decreases with increasing âp and
decreasing σδap. Only for large σδap and small âp it exceeds 0.1K.
Hence, the Gaussian approximation of δTex is also approximately
zero-mean.

The last step is to determine the inter-species covariance. As rea-
soned above, it is assumed that the mean in δGi can be neglected.
Under this assumption the covariance is equal to the expected value
of the product of the random variables, which results in:

Cov(δGi, δGj) ∼= E
[
(b4iδkp

4 + b3iδkp
3 + b2iδkp

2 + b1iδkp)

(b4jδkp
4 + b3jδkp

3 + b2jδkp
2 + b1jδkp)

]
(2.130)

Equation 2.130 is a polynomial in δkp of order eight. Due to the zero-
mean assumption the resulting expectations are given by the central
moments of the normal distribution (cf. table A.1). These are nonzero
in case of even powers of δkp and zero otherwise. Consequently the
inter-species covariance for geomagnetic index uncertainties in case of
the DTM-class models may be approximated by equation 2.131.

Cov(δGi, δGj) ∼= 105b4ib4jVar(δkp)
4

+ 15(b4ib2j + b3ib3j + b2ib4j)Var(δkp)
3

+ 3(b3ib1j + b2ib2j + b1ib3j)Var(δkp)
2

+ b1ib1jVar(δkp) (2.131)

Equations 2.127 and 2.131, together with eq. 2.112, finally allow to
evaluate eq. 2.83 in case of geomagnetic index uncertainty for the
DTM-class models.

2.4.2 Simulation results

The error and uncertainty propagation equations 2.67 and 2.83 have
already been validated, so they can be used to show that the complete
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path from δap/δAp to ερ is correctly propagated for geomagnetic
index uncertainties.

Similar to section 2.3, a geomagnetic activity/altitude grid covering
the full ap scale and dominant LEO altitudes (300 6 z 6 1200 km) has
been established. The variance estimation is evaluated using Var(δGi)
and Cov(δGi, δGj) of the respective atmospheric model and validated
with the help of a Monte-Carlo analysis.

error propagation (equations 2 .67 , 2 .96 , 2 .105 and 2 .115)

Figure 2.8 depicts the ratios ερε̂ρ over the magnetic amplitude/altitude-
grid for MSISE-90, NRLMSISE-00, DTM-2012 and DTM-2013. A value
of 1.0 indicates a perfect match of estimation and truth. As a value of
1.0 is obtained basically over the entire grid, no additional tuning is
needed.
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Figure 2.8: Uncertainty quantification of propagated magnetic index errors:
MSISE-90, NRLMSISE-00, DTM-2012 and DTM-2013

For the MSIS-class models each grid-point resides at a value of
1.0, which indicates a perfect estimation of the relative density error
via equations 2.96 and 2.67. The same also holds true for the DTM-
models, except for âp = 2. For this very low magnetic amplitude,
the components of ε̂ρ, i.e. ε̂n and ε̂M, are of equal magnitude but
opposite signs. In the computation of figure 2.8 the product of the
relative number and relative mass density errors, as found in equation
2.67, was explicitly taken into account. Nevertheless, small errors in
the estimation of ε̂n and ε̂M can cause relative errors in ε̂ρ of multiple
10%, despite the absolute error in the density being small. For practical
applications the outliers are not of much concern, as the dominating
orbital in-track errors depend on the double integral of the relative
density error, which averages out fluctuations over the course of an
orbit (Emmert et al., 2017).
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variance propagation (equations 2 .83 , 2 .99 , 2 .102 , 2 .112 ,
2 .127 and 2 .131)
Each point of the grid in figure 2.8 corresponds to a unique alti-
tude/magnetic amplitude combination for which the corresponding
variance is estimated via equation 2.83. In the following, the complete
variance propagation from geomagnetic amplitude to relative exo-
spheric density is validated for each model using the representative
scenarios:

• Altitude: 300 km (low LEO), geomagnetic amplitude: 9 (low)
• Altitude: 500 km (medium LEO), geomag. ampl.: 300 (very high)
• Altitude: 700 km (high LEO), geomag. ampl.: 2 (very low)
• Altitude: 1100 km (very high LEO), geomag. ampl.: 50 (medium)

For each model and case 300 samples are computed. δAp and δap
are treated as zero-mean Gaussian random variables. The resulting
variance in the relative density error is subsequently compared to the
actual spread of the Monte-Carlo iterations. The subplots depict the
magnetic amplitude error (upper left), absolute exospheric temper-
ature error (lower left) and the relative exospheric density error in
the lower right. The upper right plot depicts the absolute baseline
temperature error for the MSIS-class models. In case of DTM-2012

and DTM-2013 the baseline temperature is modeled constant. The
upper right subplot thus depicts the variance propagation from the
3h-delayed magnetic amplitude to the quasi-logarithmic kp index for
these models. In each case the blue lines depict the estimated ±3σ
bounds, whereas the red lines give the Monte-Carlo ±3σ intervals. The
MC iterations are plotted in green color and a thin black line depicts
the mean of the samples per time-step.

MSISE-90

(a) z = 300 km, Âp = 9
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(b) z = 500 km, Âp = 300

(c) z = 700 km, Âp = 2

(d) z = 1100 km, Âp = 50

Figure 2.9: Uncertainty quantification of propagated magnetic index errors
using MSISE-90
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NRLMSISE-00

(a) z = 300 km, Âp = 9

(b) z = 500 km, Âp = 300

(c) z = 700 km, Âp = 2
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(d) z = 1100 km, Âp = 50

Figure 2.10: Uncertainty quantification of propagated magnetic index errors
using NRLMSISE-00

DTM-2012

(a) z = 300 km, âp = 9

(b) z = 500 km, âp = 300
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(c) z = 700 km, âp = 2

(d) z = 1100 km, âp = 50

Figure 2.11: Uncertainty quantification of propagated magnetic index errors
using DTM-2012

DTM-2013

(a) z = 300 km, âp = 9
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(b) z = 500 km, âp = 300

(c) z = 700 km, âp = 2

(d) z = 1100 km, âp = 50

Figure 2.12: Uncertainty quantification of propagated magnetic index errors
using DTM-2013

For both MSISE-90 and NRLMSISE-00 the uncertainty is correctly
estimated in all figures, which validates equations 2.99 and 2.102. Also
the zero-mean assumptions hold in any case. The resulting relative
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density error is largest for small magnetic amplitudes (up to 5% in
figure 2.10c).

The DTM-class models show the same behavior, except for the case
at 700 km altitude and a 3h delayed âp of 2. As can be observed
from figures 2.11c and 2.12c, the error propagation from magnetic
amplitude to quasi-logarithmic kp introduces a slight positive bias
and starts to degrade Gaussianity. These properties then propagate
to the relative density error. The subsequent variance estimation via
equation 2.83 is still accurate, even though it assumes δGi(L) to be
zero-mean. The final relative density errors are again largest for small
magnetic amplitudes and reach up to 4% in case of figure 2.12c.

Conclusion
With the help of the uncertainty estimation framework presented
in sections 2.2-2.4 it is now possible to analytically account for the
input uncertainty of the environmental parameters that need to be
supplied to semi-empirical atmospheric models when performing
orbit propagation/estimation. The need for a tuning-function, as it
was necessary in Schiemenz et al. (2019b), has been removed.

For the propagation of geomagnetic index errors it has to be noted
that the presented propagation from geomagnetic activity to relative
density errors is in its current form most likely only directly applicable
to the measurement uncertainty of the geomagnetic activity informa-
tion. The more challenging case, i.e. geomagnetic forecast uncertainty,
is expected to be too large to justify the assumption of a near-linear
uncertainty propagation. For this case, nonlinear error/uncertainty
propagations need to be considered to capture all moments of the re-
sulting distribution. Modern techniques however exist that build upon
Gaussian uncertainty quantification (e.g. Gaussian mixture models),
such that the presented equations may be extended to geomagnetic
forecast uncertainty.

2.5 propagation of relative density error to satellite

orbits

Atmospheric density errors predominantly affect the mean motion
and mean anomaly of a resident space object. To assess the impact of
relative density errors on the state vectors of resident space objects, an
error and uncertainty propagation from ερ to the state x is required.
The derivations are naturally expressed in orbital elements.

2.5.1 Change of mean motion due to atmospheric drag

To obtain the differential equation that expresses the secular change
of the orbital mean motion due to atmospheric drag, consider the
well-known description for the orbital period of elliptical orbits, where
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µ is the standard gravitational parameter of Earth, a the semi-major
axis of the orbit and T the orbital period:

T = 2π

√
a3

µ
⇔ 2π

T
=

√
µ

a3
(2.132)

The term 2π
T is the average angular velocity of the orbit and corre-

sponds to the osculating mean motion, as it describes the constant
angular speed that a satellite would possess on the circular orbit os-
culating the elliptical orbit. Denoting mean motion with n, it holds
that:

n =

√
µ

a3
⇔ n2 =

µ

a3
⇔ n2a3 = µ (2.133)

Under the influence of drag, both n and a vary with time. The vari-
ability is found by differentiating equation 2.133 with respect to time:(

d

dt
n2
)
a3 +n2

(
d

dt
a3
)

= 0

⇔ 2n
dn

dt
a3 +n23a2

da

dt
= 0

⇔ dn

dt
= −

3

2

n

a

da

dt
(2.134)

Formula 2.134 represents a differential equation for the orbital mean
motion. Once an expression for the semi-major axis change is found,
it can be evaluated.

To derive an expression for ȧ consider the orbital energy, which
consists of both potential and kinetic energy and is also known as
specific mechanical energy when remaining independent of mass:

E =
mv2

2
−
mµ

r
= const. (2.135)

Additionally the angular momentum is conserved:

h = r× v (2.136)

Denoting the perigee with a subscript p, equation 2.136 leads to:

hp = rpvp ⇔ v2p =
h2p

r2p
(2.137)

Evaluating equation 2.135 at the perigee and inserting eq. 2.137 results
in:

E =
mv2p

2
−
mµ

rp
= m

(
h2

2r2p
−
µ

rp

)
(2.138)

Since rp = a(1− e), with e denoting orbital eccentricity, this equates
to:

E = m

(
h2

2a2(1− e)2
−

µ

a(1− e)

)
(2.139)
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To obtain an expression of the squared angular momentum, eq.
2.136 is next evaluated at the perigee, with the orbital velocity being
formulated using the vis-viva equation:

h2 = v2pr
2
p =

(
2µ

rp
−
µ

a

)
a2(1− e)2

=

[
2µ

a(1− e)
−
µ(1− e)

a(1− e)

]
a2(1− e)2 = µa(1− e2) (2.140)

Introducing equation 2.140 into eq. 2.139 yields:

E = m

(
µ(1− e)(1+ e)

2a(1− e)2
−

2µ

2a(1− e)

)
= −

mµ

2a
(2.141)

The orbital energy is constant as long as no perturbations occur. Con-
sidering the semi-major axis to be time-varying and differentiating
equation 2.141 with respect to time, yields the work done on the body
per unit of time:

dE

dt
= −

mµ

2

d

dt

[
a(t)−1

]
=
mµ

2a2
da

dt
(2.142)

Assuming next that the only force responsible for the work performed
is the drag force, it is possible to state:

dE = FD · dr⇔
dE

dt
= FD · v = v FD · ev (2.143)

where ev is a unit vector pointing in the direction of the speed relative
to the atmosphere. Using Newton’s second law to transition from
force to acceleration yields:

dE

dt
= FD · v = vmaD · ev (2.144)

Inserting equation 2.144 into eq. 2.142 then leads to the time-change
of the semi-major axis:

vmaD · ev =
mµ

2a2
da

dt

⇔ da

dt
=
2a2

µ
vaD · ev (2.145)

The drag force always opposes the relative velocity vector. In reality
there is also a small lift force perpendicular to the velocity vector,
as well as a small turning moment accompanying drag. See King-
Hele (1987, section 2.2) for a definition of the lift force, the associated
turning moment and its effects on satellite orbits.

For the purpose of propagating uncertainty from relative density
errors to orbital state vectors, the lift force has a negligible effect as it
is much smaller than the drag-force opposing the velocity vector.
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Hence, the dot product can be resolved by introducing a minus sign:

da

dt
= −

2a2

µ
vaD (2.146)

Inserting the magnitude of the drag acceleration from equation 1.5
results in:

da

dt
= −

2a2

µ
v
1

2
ρcD

A

m
v2 = −

a2

µ
ρBv3 (2.147)

where B = cD
A
m is the ballistic coefficient and v denotes the velocity

relative to the atmosphere. Inserting equation 2.147 into eq. 2.134 yields
an expression for the impact of drag on the orbital mean motion:

dn

dt
=
3

2
n
a

µ
ρBv3 (2.148)

Converting the dependency on the semi-major axis into one on mean
motion via eq. 2.133 yields:

dn

dt
=
3

2
n1/3µ−2/3ρBv3 (2.149)

To treat v as the absolute speed of a resident space object instead of the
speed relative to the atmosphere, the relative speed may be expressed
as the product of the actual orbital speed and a dimensionless wind-
factor F, which models the motion of the atmosphere (e.g. a co-rotating
atmosphere). This finally yields:

dn

dt
=
3

2
n1/3µ−2/3ρBv3F (2.150)

where v now denotes the orbital speed. For a definition of F in terms
of the satellite and atmospheric velocity, see Emmert et al. (2017).

Equation 2.150 represents a separable ordinary differential equation
(ODE) describing the secular change in the orbital mean motion due to
atmospheric drag. As the change is positive, drag constantly increases
the osculating mean motion of an elliptical orbit. The equation serves
as the starting point for the work presented in Emmert et al. (2017),
which is outlined in the next section.

2.5.2 State vector error due to relative density error

The problem of estimating mean motion and mean anomaly errors
due to relative density errors has first been solved in Emmert et al.
(2017). Based on equation 2.150, the study derives the resulting mean
motion and mean anomaly errors and analyzes the corresponding
variances for a white noise and Brownian motion error process.
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The fundamental principles published in Emmert et al. (2017) are
key to the subsequent developments achieved in this thesis. Due to the
importance of the final equations and the relevance of the methodology
used for deriving the associated white noise and Brownian motion
variances, the original derivations given in Emmert et al. (2017) are
outlined in this section with respect to the error propagation and
section 2.5.3 regarding the variance propagation. Intermediate steps
are introduced for ease of understanding.

The following derivations assume a constant ballistic coefficient
and a perfectly known wind factor, such that atmospheric density is
considered to be the only uncertain variable.

Mean motion error
Since equation 2.150 is separable, it can be solved by integrating from
time t0 to t:

t∫
t0

n−1/3 dn =
3

2
µ−2/3B

t∫
t0

ρv3F dt ′

⇔
[
1

2/3
n2/3

]t
t0

=
3

2
µ−2/3B

t∫
t0

ρv3F dt ′

⇔ n(t)2/3 = n(t0)
2/3 + µ−2/3B

t∫
t0

ρv3F dt ′

⇔ n(t)2/3 = n
2/3
0

1+ (n0µ)
−2/3B

t∫
t0

ρv3F dt ′



⇔ n(t) = n0

1+ (n0µ)
−2/3B

t∫
t0

ρv3F dt ′

3/2 (2.151)

Emmert et al. next perform a Taylor linearization to drop terms of
greater than first order. Note that equation 2.151 can be written as:

n(y) = n0[1+ y]
3/2 (2.152)

The zeroth and first derivatives of equation 2.152 with respect to y
read:

n(0)(y) = n0[1+ y]
3/2 (2.153)

n(1)(y) =
3

2
n0[1+ y]

1/2 (2.154)
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Since n(t) only deviates slowly from n0, it makes sense to evaluate
the Taylor series at y = 0, which results in:

n(y) ∼= n0 +
3

2
n0y = n0

[
1+

3

2
y

]
(2.155)

Consequently the first order Taylor approximation becomes:

n(t) ∼= n0

1+ 3
2
(n0µ)

−2/3B

t∫
t0

ρv3F dt ′

 (2.156)

From the definition of absolute and relative errors, it follows that:

δn0 = n0 − n̂0 = εn0n̂0

⇔ n0 = n̂0(1+ εn0) (2.157)

Inserting equation 2.157 into eq. 2.156 yields:

n(t) ∼= n̂0(1+ εn0)

1+ 3
2
n̂
−2/3
0 (1+ εn0)

−2/3µ−2/3B

t∫
t0

ρv3F dt ′

 (2.158)

The Taylor linearization of (1 + εn0)
−2/3 at zero error is 1− 2

3εn0 ,
which results in:

n(t) ∼= n̂0(1+ εn0)

1+ 3
2
n̂
−2/3
0

(
1−

2

3
εn0

)
µ−2/3B

t∫
t0

ρv3F dt ′

 (2.159)

Applying equation 2.157 to express the atmospheric density ρ via its
estimate and relative error, leads to:

n(t) ∼= n̂0(1+ εn0)

1+ 3
2
n̂
−2/3
0

(
1−

2

3
εn0

)
µ−2/3B

t∫
t0

ρ̂(1+ ερ)v
3F dt ′

 (2.160)

Emmert et al. next define the drag estimate-weighted integral func-
tional D(x):

D(x) ..= µ−2/3B

t∫
t0

ρ̂v3F xdt ′ (2.161)

Applying equation 2.161 to eq. 2.160 simplifies the notation:

n(t) ∼= n̂0(1+ εn0)

[
1+

3

2
n̂
−2/3
0

(
1−

2

3
εn0

)
(D(1) +D(ερ))

]
(2.162)
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Next, the products are factored out and double-error terms are
dropped:

n(t) ∼= n̂0 +
3

2
n̂
1/3
0 (1−

2

3
εn0)(D(1) +D(ερ))

+ n̂0εn0 +
3

2
n̂
1/3
0 εn0

(
1−

2

3
εn0

)
(D(1) +D(ερ))

Double-error product

Dbl.-err.

∼= n̂0 +
3

2
n̂
1/3
0 (D(1) +D(ερ)) −

3

2
n̂
1/3
0

2

3
εn0D(1)

+ n̂0εn0 +
3

2
n̂
1/3
0 εn0D(1)

= n̂0

[
1+

3

2
n̂
−2/3
0 D(1)

]
+
3

2
n̂
1/3
0 D(ερ)

− n̂
1/3
0 εn0D(1) + n̂0εn0 +

3

2
n̂
1/3
0 εn0D(1) (2.163)

All terms that contain εn0 are error terms. Grouping accordingly
results in:

n(t) ∼= n̂0

[
1+

3

2
n̂
−2/3
0 D(1)

]
+
1

2
n̂
1/3
0 εn0D(1) + n̂0εn0 +

3

2
n̂
1/3
0 D(ερ) (2.164)

From equation 2.157 it follows that δn0 = n̂0εn0 . Consequently it is
possible to express the error term via the absolute error definition:

n(t) ∼= n̂0

[
1+

3

2
n̂
−2/3
0 D(1)

]
︸ ︷︷ ︸

n̂(t)

+ δn0

(
1+

1

2
n̂
−2/3
0 D(1)

)
+
3

2
n̂
1/3
0 D(ερ)︸ ︷︷ ︸

δn(t)

(2.165)

The first term in formula 2.165 represents the mean motion estimate
with respect to time. The second and third terms describe the evo-
lution of the absolute mean motion error. δn(t) contains one term
proportional to the initial error in the mean motion and another which
is proportional to the integral of the relative density error. Uncertainty
quantification focuses on the propagation of errors, hence the second
term of equation 2.165 is considered further. Writing it as a separate
formula, the absolute mean motion error reads:

δn(t) ∼= δn0

(
1+

1

2
n̂
−2/3
0 D(1)

)
+
3

2
n̂
1/3
0 D(ερ) (2.166)

Defining the quantity ∆n̂ as the estimate of the change of mean motion
from its initial value:

∆n̂(t) = n̂(t) − n̂0

first part of
eq. 2.165︷︸︸︷

=
3

2
n̂
1/3
0 D(1) (2.167)
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and introducing equation 2.167 into eq. 2.166 yields the following
alternative expression of the absolute mean motion error with respect
to time:

δn(t) ∼= δn0

(
1+

1

3

n̂
1/3
0

n̂0

3

2
D(1)

)
+
3

2
n̂
1/3
0 D(ερ)

∼= δn0

(
1+

1

3

∆n̂

n̂0

)
+∆n̂

D(ερ)

D(1)

∼= δn0

(
1+

1

3

∆n̂

n̂0

)
+∆n̂

t∫
t0

ρ̂v3F ερ dt
′

t∫
t0

ρ̂v3F dt ′

∼= δn0

(
1+

1

3

∆n̂

n̂0

)
+∆n̂Eρ (2.168)

While equation 2.168 is already quite concise, it still does not separate
the density error process from the orbital characteristics. This sepa-
ration however is desired as it allows for the relative density errors
to be quantified independently of the orbit propagation. Obviously
the plan of taking the weighting factor ρ̂v3F out of the numerator of
equation 2.168 requires justified approximations. The weighting factor
in Eρ is largest at perigee, since at this location the orbital speed and
the atmospheric density are greatest.

To perform the separation, Emmert et al. introduce the following
assumptions:

• ερ is a bias-free stochastic process, meaning that any bias in the
density model estimate has been removed for the propagation
duration of interest

• Variations in ερ are uncorrelated with variations in the weighting
factor

The approximation proceeds by evaluating the components of the
numerator of Eρ at the altitude/location of the dominant weighting
factor, i.e. at perigee. Let ()p denote the evaluation at perigee. Then
ρ̂v3F→ (ρ̂v3F)p. The relative density error remains along the orbital
track, however for consistency it is also evaluated at the perigee alti-
tude ερ → ερp :

t∫
t0

ρ̂v3Fερ dt
′ →

t∫
t0

(ρ̂v3F)p ερp dt
′

These replacements overestimate the actual numerator, consequently
a prefactor needs to be introduced that accounts for the actual perigee
contribution along the track. This prefactor is taken as the time average
of the weighting factor along the track with respect to its evaluation
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at perigee. The resulting scalar scales down the overestimated integral
approximately by the actual perigee contribution. Denoting the time-
average as 〈x〉 = 1

t−t0

∫t
t0
x(t)dt ′, the numerator of Eρ is approximated

as follows:

t∫
t0

ρ̂v3Fερ dt
′ ∼=

〈ρ̂v3F〉
〈(ρ̂v3F)p〉

t∫
t0

(ρ̂v3F)p ερp dt
′ (2.169)

Next, the weighting factor at perigee in the integral is replaced with
its time-average, which allows to reduce the prefactor:

t∫
t0

ρ̂v3Fερ dt
′ ∼=

〈ρ̂v3F〉
〈(ρ̂v3F)p〉

t∫
t0

〈(ρ̂v3F)p〉ερp dt ′

= 〈ρ̂v3F〉
t∫
t0

ερp dt
′ (2.170)

Inserting equation 2.170 into eq. 2.168 then results in the desired
separation:

δn(t) ∼= δn0

(
1+

1

3

∆n̂

n̂0

)
+

∆n̂

t− t0

t∫
t0

ρ̂v3F dt ′
t∫
t0

ερp dt
′

t∫
t0

ρ̂v3F dt ′

⇔ δn(t) ∼= δn0

(
1+

1

3

∆n̂

n̂0

)
+
∆n̂

∆t

t∫
t0

ερp(t
′)dt ′ (2.171)

The absolute mean motion error is hence proportional to the average
rate of change of the mean motion and the time-integral of the relative
density error at perigee altitude. Emmert et al. note that “for sufficiently
elliptical orbits, only orbit-to-orbit variations in ερp are relevant; that is,
variations on shorter time scales should be filtered out” (Emmert et al.,
2017). This statement will become important later, as the input density
uncertainty obtained from equation 2.83 yields varying estimates of
Var(ερp) throughout the course of an orbit, such that some sort of
filtering is recommended for the orbital uncertainty quantification
process.

Mean anomaly error
Mean anomaly is defined as the time-integral of mean motion:

M(t) =M0 +

t∫
t0

n(t ′)dt ′ (2.172)
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Mean motion errors
depend on the

time-integral of
relative density

errors. Mean
anomaly errors add

another layer of
integration, such

that they are
proportional to the

twice time-integrated
relative density error

Introducing the absolute error definition, equation 2.172 may be writ-
ten as:

M(t) =M0 +

t∫
t0

n̂(t ′) + δn(t ′)dt ′

= M̂0 + δM0 +

t∫
t0

n̂(t ′)dt ′ +

t∫
t0

δn(t ′)dt ′

= M̂0 +

t∫
t0

n̂(t ′)dt ′

︸ ︷︷ ︸
M̂(t)

+ δM0 +

t∫
t0

δn(t ′)dt ′

︸ ︷︷ ︸
δM(t)

(2.173)

Equation 2.173 expresses the mean anomaly over time via the mean
anomaly estimate (e.g. obtained from an orbit propagator) and the
absolute mean anomaly error, which itself consists of an initial mean
anomaly error and a drag-induced component. Inserting equation
2.171 into the second term of equation 2.173 yields:

δM(t) ∼= δM0 +

t∫
t0

[
δn0

(
1+

1

3

∆n̂(t ′)

n̂0

)
+
∆n̂(t ′)

∆t ′

t ′∫
t0

ερp(t
′′)dt ′′

]
dt ′

= δM0 +

t∫
t0

δn0

(
1+

1

3

∆n̂(t ′)

n̂0

)
dt ′ +

t∫
t0

∆n̂(t ′)

∆t ′

t ′∫
t0

ερp(t
′′)dt ′′ dt ′ (2.174)

Emmert et al. next assume the rate of change in the mean motion to
be approximately constant over time, such that it can be taken out of
the integral. Under this assumption equation 2.174 may be written as:

δM(t) ∼= δM0 + δn0

(
∆t+

1

3

1

n̂0

t∫
t0

∆n̂dt ′

)
+
∆n̂

∆t

t∫
t0

t ′∫
t0

ερp(t
′′)dt ′′ dt ′ (2.175)

The assumption of ∆n̂∆t being constant can also be used to simplify the
integral of the mean motion difference:

t∫
t0

∆n̂dt ′ =

t∫
t0

∆n̂

∆t
∆tdt ′ ∼=

∆n̂

∆t

t∫
t0

∆tdt ′ =
∆n̂

∆t

[
1

2
∆t2

]
(2.176)

Inserting formula 2.176 into eq. 2.175 then leads to the desired descrip-
tion of the mean anomaly error:

δM(t) ∼= δM0 + δn0∆t

(
1+

1

6

∆n̂

n̂0

)
+
∆n̂

∆t

t∫
t0

t ′∫
t0

ερp(t
′′)dt ′′ dt ′ (2.177)
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Equation 2.177 expresses the absolute mean anomaly error via three
terms, of which the first is the initial mean anomaly error, the second
relates to initial errors in the mean motion which grow linearly with
time and the third is due to atmospheric drag.

Emmert et al. note that the mean anomaly error, which linearly
relates to the along-track error, is also accompanied by a radial error
which needs to be derived in order to obtain error ellipses. This part is
not covered by Emmert et al. (2017) but has received initial treatment
in Schiemenz et al. (2019c). An optimized derivation based on orbital
element to Cartesian frame conversions is presented in Schiemenz
et al. (2020d) and section 2.7.

Equations 2.171 and 2.177 are the fundamental relationships that
bridge the gap between relative density errors (as e.g. derived in
sections 2.2-2.4) and the resulting impact on the orbital path. In their
present form they are not yet directly applicable to orbit determination,
however the missing steps are presented in section 2.7.

2.5.3 State vector uncertainty due to relative density uncertainty

Emmert et al. (2017, section 2.3) is concerned with uncertainty quan-
tification of equations 2.171 and 2.177. The actual derivations are not
given in the paper, but discussed in the accompanying electronic sup-
plement. While leading to the correct results, the original approach
does not differentiate between the ideal continuous density error
process and its sampled discrete representation, which gives rise to
confusion, as the same symbol σ2 is used for both the continuous
double-sided power spectral density (PSD) and the discrete observed
variance. The derivation presented in the following corrects for this
inaccuracy by clearly differentiating between the quantities.

As argued in the paper, density input uncertainties may be fruitfully
treated via white noise and Brownian motion process models. Both
derivations are presented in the following. In reality, both models are
expected to represent boundary cases of the true experienced density
errors.

Preliminaries for the upcoming derivations are the fundamental
variance, covariance and expected value properties listed in appendix
A.1, as well as equations 2.171 and 2.177. Assuming errors in the
relative density error to be independent of initial errors in the orbital
elements, it is possible to obtain the mean motion and mean anomaly
variances via:

Var(δn(t)) = Var

(
δn0

(
1+

1

3

∆n̂

n̂0

)
+
∆n̂

∆t

t∫
t0

ερp(t
′)dt ′

)

=

(
1+

1

3

∆n̂

n̂0

)2
Var(δn0) +

(
∆n̂

∆t

)2
Var

( t∫
t0

ερp(t
′)dt ′

)
(2.178)
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Var(δM(t)) = Var

δM0 + δn0∆t

(
1+

1

6

∆n̂

n̂0

)
+
∆n̂

∆t

t∫
t0

t ′∫
t0

ερp(t
′′)dt ′′ dt ′


= Var(δM0) +

(
∆t

(
1+

1

6

∆n̂

n̂0

))2
Var(δn0)

+ 2∆t

(
1+

1

6

∆n̂

n̂0

)
Cov(δn0, δM0)

+

(
∆n̂

∆t

)2
Var

 t∫
t0

t ′∫
t0

ερp(t
′′)dt ′′ dt ′

 (2.179)

The covariance term in equation 2.179 has to be considered if the
initial errors in the mean motion and mean anomaly are not inde-
pendent. If they are, it can be dropped. For practical operations all
non-density error related terms are usually not of particular rele-
vance, as they are implicitly treated by covariance propagation tech-
niques listed in figure 1.3. Of dominant interest are therefore the
variance contributions of the time-integrated (eq. 2.178) and twice time-
integrated (eq. 2.179) density error processes, i.e. Var

(∫t
t0
ερp(t

′)dt ′
)

and Var
(∫t
t0

∫t ′
t0
ερp(t

′′)dt ′′ dt ′
)

for both a white noise and Brownian
motion error process model. All four cases are treated in a common
manner below, based on the following process model definition intro-
duced in Emmert et al. (2017), which sets t0 = 0:

X0(t) = δt
dX1(t)

dt
⇒ dimensionless white noise process(

δt
dX1(t)
dt = δt

δt
d
dt

∫t
0 X0(s)ds = X0(t)

) (2.180)

X1(t) =W(t) =
1

δt

t∫
0

X0(s)ds⇒ dimensionless Wiener
process (Brownian motion)

(2.181)

X2(t) =

t∫
0

X1(s)ds⇒ time-dimensional integral
of Wiener process

(2.182)

X3(t) =

t∫
0

X2(s)ds⇒ time squared-dimensional
double integral of Wiener process

(2.183)

δt is a characteristic time scale and corresponds to the sampling time
of the physically continuous processes. Above process model allows
to treat both, the white noise and Brownian motion cases in a similar
fashion if δt is set to unity, as explained in the following. For the
white noise case X1(t) shall have the dimension of time and has to be
modeled as X1(t) =

∫t
0 X0(s)ds. X0(t) is required to be dimensionless.

For the Brownian motion case X1(t) shall be dimensionless, i.e. X1(t) =
1
δt

∫t
t0
X0(s)ds. Each integration increases the time-dimensionality by

one and the original relative density error process is dimensionless.
By setting δt = 1 both formulations become identical and the cases
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may be treated in a similar manner. In a later step the assumption
of δt = 1 is relaxed and the differences are elaborated. For Gaussian
process models also the integrated processes are zero-mean, such that
the expected value of any process is zero.

It should be noted that above process model defines continuous
white noise as the derivative of a Brownian motion process. This is a
common and accepted mathematical construct to describe white noise
(as Brownian motion may itself be modeled as the time-integral of
white noise), however it is not rigorous, since formally continuous
Brownian motion is nowhere differentiable and requires an extended
derivative interpretation. By defining the Wiener process as the in-
tegral of the idealized continuous white noise process, the model is
nevertheless applicable and serves the purpose of determining the
variances of the integrated density error processes. Also it should
be noted that continuous-time white noise (CTWN) is an idealized
theoretical construct with infinite variance which practically does not
exist. Consequently X0 is to be understood as band-limited white
noise (BLWN).

For BLWN the covariance is given by (Jekeli, 2000, section 6.4):

E
[
X0(t)X0(u)

]
= Cov(X0(t),X0(u)) = PX0δ(t− u) = PX0δ(u− t) (2.184)

where PX0 is the constant double-sided PSD and δ is the Dirac delta-
function. Using the definition of covariance, the process model for
X1(t) and equation 2.184, the covariance of X1 may be derived as
follows:

Cov(X1(t),X1(u)) = E

 t∫
0

X0(s)ds

u∫
0

X0(s
′)ds ′


=

t∫
0

u∫
0

E
[
X0(s)X0(s

′)
]
ds ′ ds (2.185)

=

u∫
0

t∫
0

E
[
X0(s)X0(s

′)
]
dsds ′ (2.186)

Equations 2.185 and 2.186 are equal, as can be seen by substituting
s ′ → s, s→ s ′, t→ u and u→ t. It is hence possible to continue with
eq. 2.185 without loss of generality. Inserting equation 2.184 yields:

Cov(X1(t),X1(u)) =

t∫
0

u∫
0

PX0δ(s
′ − s)ds ′ ds (2.187)

Note that an integral over the Dirac-delta equates to unity if the
domain of integration includes the location of the impulse. Otherwise
the integral is zero.
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It is easiest to think of the double-integral as a double sum with
infinitesimal steps. At each time-step the Dirac impulse is at s,
which is bound within [0, t]. If at each iteration of the outer sum
the inner sum fulfills s ′ > s, then in the continuous case u > t and
Cov(X1(t),X1(u)) =

∫t
0 PX0 ds. Therefore Cov(X1(t),X1(u)) = PX0t, if

u > t. However, if u 6 t, then there is no contribution for the domain
u 6 s 6 t, as only the “sum iterations” where s ′ > s contribute to the
integral. Consequently the contribution is only from 0 6 s 6 u and
Cov(X1(t),X1(u)) = PX0u, if u 6 t. Combining both cases yields:

Cov(X1(t),X1(u)) = PX0 min(t,u) (2.188)

From equation 2.188 the variance is found by setting u = t:

Var(X1(t)) = PX0t (2.189)

Due to the zero-mean property of the Gaussians, the covariance
of the Brownian motion processes equals the expected value of their
product. Hence the next level of integration, Cov(X2(t),X2(u)), is
found as:

Cov(X2(t),X2(u)) = E

 t∫
0

X1(s)ds

u∫
0

X1(s
′)ds ′


=

t∫
0

u∫
0

E
[
X1(s)X1(s

′)
]
ds ′ ds (2.190)

eq. 2.188︷︸︸︷
=

t∫
0

u∫
0

PX0 min(s, s ′)ds ′ ds (2.191)

Again both cases, u > t and u 6 t, need to be analyzed separately
to evaluate the minimum. As before it helps to think of the double
integral as a double sum in ds ′ and ds.

Case 1: u > t
While the outer sum/integral is at a certain s, the inner sum (which
ranges from 0 6 s ′ 6 u) is first in a domain where s ′ 6 s and then in a
section where s ′ > s. This latter case extends up to s ′ = u. To properly
account for the minimum in these parts the inner integral has to be
split at s ′ = s:

Cov(X2(t),X2(u)) =

t∫
0

 s∫
0

PX0s
′ ds ′ +

u∫
s

PX0

s︷ ︸︸ ︷
min(s ′, s)ds ′

ds
= PX0

t∫
0

 s∫
0

s ′ ds ′ +

u∫
s

s ds ′

ds = PX0
 t∫
0

1

2
s2 + s(u− s)ds


= PX0

(
1

6
t3 −

1

3
t3 +

1

2
t2u

)
= PX0

(
1

2
t2u−

1

6
t3
)

(2.192)
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Case 2: u 6 t
Again, while the outer sum/integral is at a certain s, the inner sum
ranges from 0 6 s ′ 6 u. However, since u 6 t, s ′ does not reach the
values of s where s > u. Consequently min(s, s ′) always equals s ′

in this domain and also the outer integral needs to be split into the
sections [0,u] and [u, t]:

Cov(X2(t),X2(u)) =

u∫
0

u∫
0

PX0 min(s, s ′)ds ′ ds+

t∫
u

u∫
0

PX0 min(s, s ′)ds ′ ds (2.193)

Next, also the inner integral of the first term needs to be split to
properly evaluate the minimum. The inner integral of the second term
does not require splitting, as the lower boundary of the outer integral
is equal to the upper boundary of the inner integral and therefore
0 6 s ′ 6 u 6 s:

Cov(X2(t), X2(u)) = PX0

[ u∫
0

(s∫
0

s ′ ds ′ ds

︸ ︷︷ ︸
06s ′6s

+

u∫
s

s ds ′

︸ ︷︷ ︸
s6s ′6u

)
ds+

t∫
u

u∫
0

PX0s
′ ds ′

︸ ︷︷ ︸
06s ′6u6s

ds

]

= PX0

 u∫
0

1

2
s2 + s(u− s)ds+

t∫
u

1

2
u2 ds


= PX0

(
1

6
u3 −

1

3
u3 +

1

2
u3 +

1

2
u2(t− u)

)
= PX0

(
1

3
u3 +

1

2
u2(t− u)

)
= PX0

(
1

2
u2t−

1

6
u3
)

(2.194)

Combining both cases yields:

Cov(X2(t),X2(u)) = PX0

(
1

2
min(t,u)2max(t,u) −

1

6
min(t,u)3

)
(2.195)

And hence:

Var(X2(t)) = PX0

(
1

2
t3 −

1

6
t3
)

=
1

3
PX0t

3 (2.196)

The Brownian motion case requires a third integration step:

Cov(X3(t),X3(u)) =

t∫
0

u∫
0

E
[
X2(s)X2(s

′)
]
ds ′ ds

=

t∫
0

u∫
0

PX0

(
1

2
min(s ′, s)2max(s ′, s) −

1

6
min(s ′, s)3

)
ds ′ ds (2.197)

Both time relationships need to be considered separately again.
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Case 1: u > t
As the upper limit of the inner integral is greater than that of the
outer, it suffices to split only the inner integral. The splitting has to be
performed at s ′ = s. Hence:

Cov(X3(t),X3(u))

= PX0

t∫
0

[ s∫
0

1

2
s ′2s−

1

6
s ′3 ds ′

︸ ︷︷ ︸
06s ′6s

+

u∫
s

1

2
s2s ′ −

1

6
s3 ds ′

︸ ︷︷ ︸
s6s ′6u

]
ds

= PX0

t∫
0

1

6
s3s−

1

24
s4 +

1

4
s2u2 −

1

6
s3u−

1

4
s4 +

1

6
s3s ds

=
PX0
24

t∫
0

s4 − 4s3u+ 6s2u2 ds

=
PX0
24

[
1

5
t5 − t4u+ 2t3u2

]
(2.198)

Case 2: u 6 t
For u 6 t the upper limit of the outer integral is greater than the upper
limit of the inner integral. Hence it needs to be split at s = u in order
to correctly resolve all min /max domains:

Cov(X3(t),X3(u))

= PX0

[ u∫
0

s∫
0

1

2
s ′2s−

1

6
s ′3 ds ′

︸ ︷︷ ︸
0 6 s ′ 6 s

+

u∫
s

1

2
s2s ′ −

1

6
s3 ds ′

︸ ︷︷ ︸
s 6 s ′ 6 u

ds+

t∫
u

u∫
0

1

2
s ′2s−

1

6
s ′3 ds ′

︸ ︷︷ ︸
0 6 s ′ 6 u 6 s

ds

]

= PX0

 u∫
0

1

6
s3s−

1

6

1

4
s4 +

1

4
s2u2 −

1

6
s3u−

1

4
s4 +

1

6
s4 ds+

t∫
u

1

6
u3s−

1

6

1

4
u4 ds



=
PX0
24

 u∫
0

4s4 − s4 − 6s4 + 4s4 + 6s2u2 − 4s3uds+

t∫
u

4u3s− u4 ds


=
PX0
24

[
6

5
u5 + 2u3t2 − u4t− 2u5 + u5

]
=
PX0
24

[
1

5
u5 − u4t+ 2u3t2

]
(2.199)

Combining both cases leads to the generic result:

Cov(X3(t),X3(u)) =
PX0
24

[1
5

min(t,u)5 − min(t,u)4max(t,u)

+ 2min(t,u)3max(t,u)2
]

(2.200)

Setting t = u then yields:

Var(X3(t)) =
PX0
24

[
1

5
t5 − t5 + 2t5

]
=
PX0
20
t5 (2.201)
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Equation 2.201 describes the variance of the dimensionless Brownian
motion process in the mean anomaly-case at time t (with δt = 1).
Table 2.3 summarizes the findings so far. The results are not yet final,
as it remains to relax the constraint δt = 1 and to account for the
dimensionality of the processes.

Error Mean motion Mean anomaly

White
noise

Var
(∫t
0 X0(t

′)dt ′
)
= PX0t Var

(∫t
0

∫t ′
0 X0(t

′′)dt ′′ dt ′
)
= 1
3PX0t

3

Brownian
motion

Var
(∫t
0 X1(t

′)dt ′
)
= 1
3PX0t

3 Var
(∫t
0

∫t ′
0 X1(t

′′)dt ′′ dt ′
)
=
PX0
20 t

5

Table 2.3: Summary of dimensionless variance computations
(mean motion error and mean anomaly error)

In reality the continuous density error process can only be observed
at discrete times. Hence it is only possible to estimate the properties of
the continuous process using discrete observations, which are assumed
to take place at a constant sampling time δt (e.g. daily for daily solar
flux input errors or 3h in case of magnetic index errors).

White noise
The covariance of idealized CTWN is given by Cov(X0(t),X0(u)) =

PX0δ(u− t). The double-sided PSD has units of Signal2

Hz and is constant
for all frequencies. Due to the observations taking place at δt, a band-
limited version of the idealized CTWN is observed. For Gaussian
BLWN the relationship between the variance and the sampling is
(Jekeli, 2000, eq. 6.61):

σ2 =
Double-sided PSD

δt
(2.202)

The PSD is therefore replaced by PX0 = σ
2
ρp
δt in equation 2.184:

Cov(X0(t),X0(u)) ∼= σ2ρpδt δ(t− u) = σ
2
ρp
δt δ(u− t) (2.203)

Consequently equation 2.188 becomes:

Cov(X1(t),X1(u)) ∼=

t∫
0

u∫
0

σ2ρpδt δ(s
′ − s)ds ′ ds

= σ2ρpδtmin(t,u) (2.204)

Comparing equations 2.204 and 2.188 it turns out that for the white
noise case the PSD can be replaced by Var(ερp)δt in the subse-
quent integrations to X2 and X3. The white noise variances therefore
become:
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Var

( t∫
0

ερp(t
′)dt ′

)
= σ2ρpδt t (2.205)

Var

( t∫
0

t ′∫
0

ερp(t
′′)dt ′′ dt ′

)
=
1

3
σ2ρpδt t

3 (2.206)

Brownian motion
In the Brownian motion case X1(t) needs to be dimensionless, as it
corresponds to the relative density error process. Hence the factor
1
δt needs to be accounted for when computing Cov(X1(t),X1(u)).
Inserting Cov(X0(t),X0(u)) ∼= σ2ρpδt δ(u− t) into eq. 2.181 results in:

Cov(X1(t),X1(u)) = E

[
1

δt

( t∫
0

X0(s)ds

)
1

δt

( u∫
0

X0(s
′)ds ′

)]

=
1

δt2

t∫
0

u∫
0

σ2ρpδt δ(s
′ − s)ds ′ ds

=
σ2ρp
δt

min(t− u) (2.207)

Comparing equations 2.207 and 2.188 then demonstrates that PX0 may
be replaced with σ2ρp/δt in equations 2.189, 2.196 and 2.201 to account
for the dimensionality of ερp and its sampling. It should be noted that
σ2ρp is the constant variance of the fictitious white noise process that
drives the Brownian motion. It resembles the variance of the Brownian
motion density error process after the first characteristic time interval,
which may be obtained as the instantaneous variance divided by the
number of sampling steps: σ2ρp = σ2(nδt)/n.

Extending table 2.3 with the proper dimensionality and sampling
rate leads to the final results published in Emmert et al. (2017):

Error Mean motion Mean anomaly

White
noise

Var
(∫t
0 X0(t

′)dt ′
)
= σ2ρptδt Var

(∫t
0

∫t ′
0 X0(t

′′)dt ′′ dt ′
)
= 1
3σ
2
ρp
t3δt

Brownian
motion

Var
(∫t
0 X1(t

′)dt ′
)
= 1
3

σ2ρp
δt t

3 Var
(∫t
0

∫t ′
0 X1(t

′′)dt ′′ dt ′
)
= 1
20

σ2ρp
δt t

5

Table 2.4: Summary of variance computations accounting for dimensionality
and sampling (mean motion error and mean anomaly error)

Combining the results of table 2.4 with equations 2.178 and 2.179

yields the full expressions of the mean motion variance and mean
anomaly variance in case of a white noise or Brownian motion input
error process:
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Error Mean motion Mean anomaly

White
noise

Var(δn(t)) =(
1+ 1

3
∆n̂
n̂0

)2
Var(δn0) +(

∆n̂
∆t

)2
σ2ρptδt (2.208)

Var(δM(t)) =
[
Var(δM0) +(

∆t
(
1+ 1

6
∆n̂
n̂0

))2
Var(δn0) +

2∆t
(
1+ 1

6
∆n̂
n̂0

)
Cov(δn0, δM0) +

1
3

(
∆n̂
∆t

)2
σ2ρpt

3δt
]

(2.209)

Brownian
motion

Var(δn(t)) =(
1+ 1

3
∆n̂
n̂0

)2
Var(δn0) +

1
3

(
∆n̂
∆t

)2 σ2ρp
δt t

3 (2.210)

Var(δM(t)) =
[
Var(δM0) +(

∆t
(
1+ 1

6
∆n̂
n̂0

))2
Var(δn0) +

2∆t
(
1+ 1

6
∆n̂
n̂0

)
Cov(δn0, δM0) +

1
20

(
∆n̂
∆t

)2 σ2ρp
δt t

5
]

(2.211)

Table 2.5: Variance of mean motion and mean anomaly error due to a relative
density error process following a white noise or random walk process

The symbols reflect the following quantities:

• n̂: estimated mean motion
• δn: absolute mean motion error
• n̂0: estimated mean motion at

the epoch when the density
error process is considered to
start

• δM: absolute mean anomaly er-
ror

• M̂0: estimated mean anomaly
at the start of the density error
process

• t: time since the start of the
density error process

• δt: interval at which the
ideal continuous error pro-
cess is sampled

• ∆t: time since the start of
the analysis (∆t 6 t)

• ∆n̂: estimated absolute
change in mean motion
since the start of the
analysis

If only the portion of the uncertainty which is attributed to the relative
density error is considered, the relationships simplify as follows:

Error Mean motion Mean anomaly

White
noise

Var(δn(t)) =
(
∆n̂
∆t

)2
σ2ρpt δt (2.212) Var(δM(t)) = 1

3

(
∆n̂
∆t

)2
σ2ρpt

3δt (2.213)

Brownian
motion

Var(δn(t)) = 1
3

(
∆n̂
∆t

)2 σ2ρp
δt t

3 (2.214) Var(δM(t)) = 1
20

(
∆n̂
∆t

)2 σ2ρp
δt t

5 (2.215)

Table 2.6: Mean motion and mean anomaly variance growth due to a white
noise or random walk relative density error process

The final variance results of tables 2.5 and 2.6 can be used together
with the derivations of sections 2.2-2.4 to establish an analytic covari-
ance matrix that describes Gaussian zero-mean atmospheric input
uncertainty. The original error variance equations (2.178 and 2.179)
are furthermore also applicable to other zero-mean Gaussian error
processes, such as the Ornstein-Uhlenbeck error process used in the
next section to model grid-scale density errors.
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2.6 grid-scale density model uncertainty

While semi-empirical models are able to compute an estimate for any
possible location around Earth, their internal resolution is limited
to spatial scales of approximately 4000 km (Schiemenz et al., 2020b).
Density variability with wave-lengths below this horizontal scale is
therefore below the resolution of semi-empirical models and hence
classified as subgrid-scale uncertainty. Bruinsma and Forbes (2008)
showed that short-term fluctuations can yield one sigma standard
deviations in neutral atmospheric density of >30%. As has been de-
termined by Anderson et al. (2009) however, their integrated effect
on the orbit turns out to be in the meter-level for near-circular low
Earth orbits. Therefore subgrid-scale uncertainty is negligible in most
practical applications.

Grid-scale density uncertainty on the other hand is typically the
dominant source of thermospheric density uncertainty. Exceptions to
this claim are situations in which a model-debiasing technique like
HASDM (Storz et al., 2005) is available and the orbit forecasting re-
quires an extrapolation of the space-weather parameters over multiple
days (in this case input uncertainty is dominating).

Modern semi-empirical atmospheric models are constructed from
least-squares fits of observational and drag-derived density data. The
average one sigma accuracy of recent models is believed to be between
10% and 15%, given perfect knowledge of the model inputs (Vallado
and Finkleman, 2014). As an example, the JB2008 model claims to have
a mean one sigma accuracy of 10% at 400 km altitude and the recent
releases of the DTM model series (DTM-2012 and DTM-2013) both
claim to be overall more accurate than JB2008 (Bruinsma, 2013, 2015).
Nevertheless the one sigma interval given by Vallado and Finkleman
still represents a reasonable uncertainty perimeter for low Earth orbits,
where depending on the model and altitude, the value may be closer
to 10% or 15%.

Model-scale density variability has been studied by a variety of
authors since the 1960s. In 1962 Kenneth Moe analyzed the effect of
drag on artificial satellites by separating the effect of orbital drag into
a sinusoidal and random component (Moe, 1962). Three years later
H.E. Rauch worked on the estimation of satellite trajectories including
random drag fluctuations which have been modeled as a first-order
Gauss-Markov process, also known as Ornstein-Uhlenbeck Process
(OUP) (Rauch, 1965). Rauch noted that the OUP can be fruitfully
applied to the analysis of stochastic density variability, however he
also pointed out that the stochastic model may be improved to increase
accuracy. Also Wilkins and Alfriend stated that grid-scale density
perturbations can be modeled by stationary, first-order Gauss-Markov
stochastic processes (Wilkins and Alfriend, 2000). In their work they
compared the results of a batch estimator with that of a Kalman Filter
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which considered the time-correlated relative density error as seventh
state vector element.

Recently Sagnières and Sharf made use of the Ornstein-Uhlenbeck
process to study the effect of inter-model variability. In Sagnières and
Sharf (2017) they present a modified version of the classical OUP
which is expressed directly in atmospheric density (in contrast to
Wilkins and Alfriend, who formulated the OUP in the relative density
error). Sagnières and Sharf explicitly note that their modified Ornstein-
Uhlenbeck process can be used to study both inter-model variability,
as well as (grid-scale) model-inherent uncertainty (Sagnières and Sharf,
2017). Their modified OUP for atmospheric density is also used in this
thesis to simulate truth samples of neutral atmospheric density in a
Monte-Carlo analysis.

An important aspect of the Sagnières and Sharf modification is
that it maintains the stochastic property of the classical OUP variance
to converge towards a long-term variance (s2t = σ2t

2θ). When studying
atmospheric model density uncertainty, the long-term variance (s2t ) is
to be set to the claimed model accuracy (∼10%−15%). θ is a parameter
of the OUP and model-independent. It can hence be kept constant.
Consequently, increasing θ also increases the instantaneous volatility
σ, whereas smaller θ result in longer deviations from the model
estimates and therefore represent worst-case scenarios. The influence
of this parameter is further discussed in section 2.6.1, when the orbital
uncertainty approximations are derived and validated.

The stochastic differential equation of the Ornstein-Uhlenbeck pro-
cess (eq. 2.216) needs to be solved concurrently with the orbit prop-
agation to generate truth samples of density. A simple, yet effective
approach using the Milstein algorithm is presented in Sagnières and
Sharf (2017). Caution is required in the implementation of this tech-
nique when using solvers with variable step size, as this class of
solvers adaptively controls the integration-step of the numerical inte-
gration. This results in iterations where the posterior step-size check
requires a reevaluation of the previous iteration, as the step-size has
been too large to maintain the required relative integration accuracy.
Consequently time is reset and the step is recomputed with a smaller
step-size. These situations must be detected and treated accordingly
for the Milstein-algorithm to work with modern variable step-size
integrators.

As demonstrated in Emmert et al. (2017) and section 2.5, relative den-
sity uncertainty needs to be integrated twice to estimate its effect on
the satellite state vector. The first integration yields the impact on the
orbital (mean) mean motion and the second integration on the orbital
mean anomaly. Consequently any consideration of grid-scale density
uncertainty that builds upon realistic covariance matrices to model
the resulting uncertainty in the state vector, instead of appending
elements to it, requires expressions for the variance and covariance of
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the time-integrated and twice time-integrated OUP. These derivations
are the subject of section 2.6.1.

2.6.1 Variance and covariance of the time-integrated Ornstein-Uhlenbeck
process

The numerical simulations which are used to validate the derivations
of this section utilize the modified Ornstein-Uhlenbeck process by
Sagnières and Sharf. Their atmospheric density-adjustment of the
classical time-dependent OUP stochastic differential equation (SDE) is
given in equation 2.216.

dρt = θ(µt − ρt)dt+ σt dWt + dµt +
ρt − µt
st

dst (2.216)

The symbols have the following meaning:

• ρt is the time-dependent true density as computed by the OUP
• µt is the time-dependent density estimate as computed by the

atmospheric model
• θ is the rate of mean reversion of the OUP
• σt is the time-dependent instantaneous standard deviation
• st is the long-term standard-deviation of the OUP and corre-

sponds to the claimed model accuracy
• Wt is the Wiener process

The third and fourth term of the right-hand side represent the Sag-
nières and Sharf extensions to the classical Ornstein-Uhlenbeck process
for an improved description of atmospheric density. These changes
introduce a tendency to follow the time-varying mean of the density
process (third term) and scale the strength of the density fluctuations
about the mean to be in agreement with the long-term standard devia-
tion of the classical OUP (fourth term). The effect of each modification
is visualized in Sagnières and Sharf (2017, figure 3).

covariance of time-integrated oup

The following computations consider a standard (Wiener-driven) OUP
in the relative density error in order to be compatible with the orbital
error approximations of section 2.5. In Sagnières and Sharf (2017) the
authors note that the initial value of the OUP is to be drawn from a
Gaussian distribution with the current density estimate as the mean
and the square root of the long-term OUP variance as the standard
deviation. Transferring this concept to an OUP in the relative density
error, the initial state is to be drawn from a Gaussian distribution
with mean zero and the square root of the long-term OUP variance as
standard deviation.

The following uncertainty propagation equations model the OUP
in the relative density error, which allows to set µ = 0. This corre-
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sponds to the case of an unbiased atmospheric model, as has also been
assumed in the derivations of equations 2.178 and 2.179. The random-
ization of the initial state impacts the orbital error approximations,
however it leaves the expected value of the OUP at zero. As shown
later, it is in fact possible to first consider a standard OUP without
randomization of the initial state (the initial value is set to zero) and
to correct for the initial randomization afterwards.

In the following the covariances and variances of the time-integrated
and twice time-integrated Ornstein-Uhlenbeck processes are derived
to complete equations 2.178 and 2.179 for the case of grid-scale model
uncertainty. The methodology is similar to section 2.5.3.

Let Yt =
∫t
0 Xs ds, where Xs is the Ornstein-Uhlenbeck process. The

autocovariance of Yt is then computed as:

Cov(Yt, Yu) = Cov

( t∫
0

Xs ds,

u∫
0

Xs ′ ds
′

)
(2.217)

As reasoned earlier, E[Xt] = 0. Hence the covariance equals the expec-
tation of the product of the stochastic processes:

Cov(Yt, Yu) = E

[ t∫
0

u∫
0

XsXs ′ ds
′ ds

]
(2.218)

Using Fubini’s theorem, the expectation operator can be put into the
integral, whereupon it becomes apparent that the autocovariance of
Yt equals the double-integrated autocovariance of Xt:

Cov(Yt, Yu) =

t∫
0

u∫
0

E
[
XsXs ′

]
ds ′ ds

=

t∫
0

u∫
0

Cov(Xs,Xs ′)ds ′ ds (2.219)

The autocovariance of the standard OUP is known to be given by
equation 2.220 (Åkesson and Lehoczky, 1998):

Cov(Xt,Xu) =
σ2

2θ

(
e2θmin(u,t)−θ(u+t) − e−θ(u+t)

)
(2.220)

After inserting equation 2.220 into eq. 2.219, it becomes obvious that
the domains of integration need to be split to correctly evaluate the
min-expression. In general, two cases need to be considered: u > t
and t > u. Both match for t = u.
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Case 1: u > t
If u > t the inner integral needs to be split at s ′ = s. Then s ′<s in
the first term and s ′>s in the second, which allows to evaluate the
minimum when introducing equation 2.220:

Cov(Yt, Yu) =
σ2

2θ

t∫
0

 s∫
0

e−θ(s−s
′) − e−θ(s+s

′) ds ′

+

 u∫
s

e−θ(s−s
′) − e−θ(s

′+s) ds ′

ds

=
σ2

2θ2

t∫
0

2− 2e−θs − e−θueθs + e−θue−θs ds

=
σ2

2θ3

(
−e−θ(t+u) + 2e−θt + 2e−θu − e−θ(u−t) + 2tθ− 2

)
(2.221)

Case 2: t > u
If t>u, also the outer integral needs to be split at s=u, since after-
wards it holds that s> s ′. Prior to this point the situation is identical
to case 1. Hence:

Cov(Yt, Yu) =
σ2

2θ

[ u∫
0

( s∫
0

e−θ(s−s
′) − e−θ(s+s

′) ds ′

+

u∫
s

e−θ(s−s
′) − e−θ(s

′+s) ds ′

)
ds

+

t∫
u

u∫
0

e−θ(s−s
′) − e−θ(s+s

′) ds ′ ds

]

=
σ2

2θ2

[ u∫
0

2− 2e−θs − e−θ(u−s) + e−θ(s+u) ds

+

t∫
u

e−θ(s−u) + e−θ(s+u) − 2e−θs ds

]

=
σ2

2θ3

(
−e−θ(t+u) + 2e−θt + 2e−θu − e−θ(t−u) + 2uθ− 2

)
(2.222)

Combining both cases then yields a universal description of the auto-
covariance of the time-integrated Ornstein-Uhlenbeck process:

Cov(Yt, Yu) =
σ2

2θ3

(
− e−θ(t+u) + 2e−θt + 2e−θu

− e−θ(max(t,u)−min(t,u)) + 2θmin(t,u) − 2
)

(2.223)

Setting t = u in equation 2.223 results in the variance given by eq. 2.224.

Var(Yt) =
σ2

2θ3

(
−e−2θt + 4e−θt + 2θt− 3

)
(2.224)
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To estimate the mean anomaly or in-track orbital uncertainty the
covariance of the twice time-integrated Ornstein-Uhlenbeck process
is required. Let Zt =

∫t
0 Ys ds. Then the autocovariance of the twice

time-integrated Ornstein-Uhlenbeck process can be computed via
equation 2.225, which makes use of Fubini’s theorem and the fact that
the integration does not change the expected value of zero.

Cov(Zt,Zu) =

t∫
0

u∫
0

E
[
YsYs ′

]
ds ′ ds =

t∫
0

u∫
0

Cov(Ys, Ys ′)ds ′ ds (2.225)

The cases u > t and t > u need to be treated separately again to
evaluate the min and max-expressions when inserting equation 2.223.

Case 1: u > t
Splitting the inner integral at s ′ = s results in:

Cov(Zt,Zu) =
σ2

2θ3

t∫
0

[ s∫
0

−e−θ(s+s
′) + 2e−θs + 2e−θs

′
− e−θ(s−s

′) + 2θs ′ − 2 ds ′

+

u∫
s

−e−θ(s+s
′) + 2e−θs + 2e−θs

′
− e−θ(s

′−s) + 2θs− 2 ds ′

]
ds

=
σ2

2θ4

[ t∫
0

e−θ(u+s) + e−θ(u−s) + 2θue−θs − 2e−θu

− θ2s2 + 2θ2su− 2θu ds
]

=
σ2

2θ5

[
− e−θ(u+t) + e−θ(u−t) − 2θue−θt − 2θte−θu

−
1

3
θ3t3 + θ3t2u− 2θ2ut+ 2θu

]
(2.226)

Case 2: t > u
A universal description of the covariance also requires an analysis of
the second case. Similar to the first time-integration also the outer
integral needs to be split at s = u to properly evaluate Cov(Yt, Yu).
Hence:

Cov(Zt,Zu) =
σ2

2θ3

[ u∫
0

( s∫
0

−e−θ(s+s
′) + 2e−θs + 2e−θs

′
− e−θ(s−s

′) + 2θs ′ − 2 ds ′

+

u∫
s

−e−θ(s+s
′) + 2e−θs + 2e−θs

′
− e−θ(s

′−s) + 2θs− 2 ds ′

)
ds

+

t∫
u

u∫
0

−e−θ(s+s
′) + 2e−θs + 2e−θs

′
− e−θ(s−s

′) + 2θs ′ − 2 ds ′ ds

]
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=
σ2

2θ4

[ u∫
0

e−θ(s+u) + e−θ(u−s) + 2uθe−θs − 2e−θu − θ2s2 + 2θ2su− 2θuds

+

t∫
u

e−θ(s+u) − e−θ(s−u) + 2uθe−θs − 2e−θu + θ2u2 − 2θu+ 2 ds

]

=
σ2

2θ5

[
− e−θ(u+t) + e−θ(t−u) − 2uθe−θt − 2tθe−θu

−
1

3
θ3u3 + θ3u2t− 2θ2ut+ 2θt

]
(2.227)

Combining both cases (equations 2.226 and 2.227) allows to formulate
a generic description of the autocovariance of the twice time-integrated
OUP:

Cov(Zt,Zu) =
σ2

2θ5

[
− e−θ(u+t) + e−θ(max(t,u)−min(t,u)) − 2uθe−θt

− 2tθe−θu −
1

3
θ3min(t,u)3 − 2θ2ut

+ θ3min(t,u)2max(t,u) + 2θmax(t,u)
]

(2.228)

Setting t = u in equation 2.228 finally yields a description of Var(Zt):

Var(Zt) =
σ2

2θ5

[
2

3
θ3t3 − 2θ2t2 + 2θt− 4θte−θt − e2θt + 1

]
(2.229)

Before making use of equations 2.224 and 2.229 to express the orbital
uncertainties, the randomization of the initial state has yet to be
accounted for, as model-derived densities are uncertain from the first
estimate onwards.

effect of randomizing the initial oup density solution

Drawing the initial OUP density solution from a Gaussian distribution
with mean zero and a variance that corresponds to the long-term
variance of the relative density error Ornstein-Uhlenbeck process,
results in a superposition of the OUP with constant initial value zero
and the function of the mean of the OUP with µ = 0 (cf. equation 2.230

where A denotes the random process that models the randomization
of the initial state).

At = A0e
−θt (2.230)

Equation 2.230 has an expected value of 0, as E[A0] = 0. Its variance is
hence given by:

Var(At) = Var
(
A0e

−θt
)
= Var(A0)e

−2θt =
σ2

2θ
e−2θt (2.231)
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Next, a formulation of the autocovariance of equation 2.230 needs
to be derived. Since it is zero-mean, it holds that the covariance is
equal to the expected value of the product of the function with a
time-delayed copy of itself:

Cov(At,Au) = E[AtAu] = e−θte−θuE
[
A0tA0u

]
(2.232)

Since A0 is always drawn from the same distribution and independent
of the lag, it holds that E[A0tA0u ] = E[A0A0] =

σ2

2θ . Consequently the
desired covariance is given by equation 2.233.

Cov(At,Au) =
σ2

2θ
e−θ(t+u) (2.233)

Equation 2.233 describes an additional autocovariance term of the
Ornstein-Uhlenbeck process, in case of a randomization of the initial
state. It can either be added directly to the known expression of the
classical OUP covariance or, since it does not contain any min/max-
expressions, it is also possible to first integrate it with respect to time
and then add the result to the respective integrated OUP stochastic
process.

Adding equation 2.233 to the covariance expression of the Ornstein-
Uhlenbeck process results in:

Cov(Xt,Xu) =
σ2

2θ

(
e2θmin(u,t)−θ(u+t) − e−θ(u+t) + e−θ(t+u)

)
=
σ2

2θ
e2θmin(u,t)−θ(u+t) (2.234)

To demonstrate both paths, equation 2.233 is in the following first
integrated with respect to time and the result is then added to equation
2.223. The resulting expression is finally integrated as a whole to
compute the new equation of Cov(Zt,Zu).

As equation 2.233 contains no min/max-expressions, the domain of
integration does not need to be split. Integration with respect to time
yields:

Cov(Bt,Bs) =
σ2

2θ

t∫
0

u∫
0

e−θ(s+s
′) ds ′ ds = −

σ2

2θ2

t∫
0

e−θ(s+u) − e−θs ds

=
σ2

2θ2

(
e−θ(t+u) − e−θu − e−θt + 1

)
(2.235)

Adding equation 2.235 to eq. 2.223 results in:

Cov(Yt, Yu) =
σ2

2θ3

(
e−θt + e−θu − e−θ(max(t,u)−min(t,u))

+ 2θmin(t,u) − 1
)

(2.236)
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Equation 2.236 represents the required covariance expression of the
time-integrated OUP in the relative density error and allows to com-
pute the mean motion variance after setting t = u, which results in an
updated version equation 2.224:

Var(Yt) =
σ2

2θ3

(
2θt+ 2e−θt − 2

)
(2.237)

An additional integration of equation 2.235 with respect to time results
in:

Cov(Ct,Cu) =
σ2

2θ3

t∫
0

u∫
0

e−θ(s+s
′) − e−θs

′
− e−θs + 1 ds ′ ds

=
σ2

2θ4

t∫
0

e−θs − e−θ(s+u) + e−θu − θue−θs + θu− 1 ds

=
σ2

2θ5

(
e−θ(t+u) − e−θt − e−θu + tθe−θu

+ uθe−θt − tθ− uθ+ θ2ut+ 1
)

(2.238)

Equation 2.238 represents the expected difference of the following
computation of Cov(Zt,Zu) including the randomization of the initial
state and equation 2.228.

To obtain an updated expression of eq. 2.228, a second time-
integration needs to be performed. In the following, eq. 2.236 is
chosen as the baseline for Cov(Yt, Yu). Since it already models the
effect of the initial state randomization, no posterior summation of an
additional covariance component is required.

Case 1: u > t

Cov(Zt,Zu) =
σ2

2θ3

t∫
0

[ s∫
0

e−θs + e−θs
′
− e−θ(s−s

′) + 2θs ′ − 1 ds ′

u∫
s

e−θs + e−θs
′
− e−θ(s

′−s) + 2θs− 1 ds ′

]
ds

=
σ2

2θ4

[ t∫
0

uθe−θs − e−θu + e−θs + e−θ(u−s)

+ 2θ2su− θ2s2 − uθ− 1 ds

]
=
σ2

2θ5

[
e−θ(u−t) − e−θt − e−θu − tθe−θu − uθe−θt

−
1

3
θ3t3 + θ3t2u− θ2ut+ uθ− tθ+ 1

]
(2.239)

Comparing equation 2.239 with eq. 2.226, it becomes apparent that
equation 2.239 = eq. 2.226 + eq. 2.238, which demonstrates that the
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separate integration of equation 2.233 leads to the same result, as its
incorporation into the covariance expressions of the standard OUP
with mean zero (X0 = 0).

Case 2: t > u
Following the argument that equation 2.238 can be added to the
results of the time-integrated standard OUP, Cov(Zt,Zu) is found by
summing equations 2.227 and 2.238, which yields:

Cov(Zt,Zu) =
σ2

2θ5

[
e−θ(t−u) − e−θt − e−θu − uθe−θt − tθe−θu

−
1

3
θ3u3 + θ3u2t− θ2ut+ tθ− uθ+ 1

]
(2.240)

Similarly, the generic result which includes the min and max terms is
found by adding equations 2.228 and 2.238 or simply by comparing
equations 2.239 and 2.240:

Cov(Zt,Zu) =
σ2

2θ5

[
e−θ(max(t,u)−min(t,u)) − eθt − e−θu

− tθe−θu − uθe−θt −
1

3
θ3min(t,u)3

+ θ3min(t,u)2max(t,u) − θ2ut

+ θmax(t,u) − θmin(t,u) + 1
]

(2.241)

Setting t = u allows to formulate an updated expression of the corre-
sponding variance:

Var(Zt) =
σ2

2θ5

[
2

3
θ3t3 − θ2t2 − 2e−θt − 2θte−θt + 2

]
(2.242)

Since s2Model =
σ2

2θ , it holds that:

σ2

2θ3
=
s2Model
θ2

(2.243)

and

σ2

2θ5
=
s2Model
θ4

(2.244)

Inserting equations 2.237 and 2.242 into eqs. 2.178 and 2.179, while
accounting for eqs. 2.243 and 2.244, allows to formulate the final
relationships governing the mean motion and mean anomaly variances,
as given by equations 2.245 and 2.246.

Mean motion variance

Var(δn(t)) =

(
1+

1

3

∆n̂

n̂0

)2
Var(δn0) +

(
∆n̂

∆t

)2 s2Model
θ2

(
2θt+ 2e−θt − 2

)
(2.245)
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Mean anomaly variance

Var(δM(t)) = Var(δM0) +

(
∆t

(
1+

1

6

∆n̂

n̂0

))2
Var(δn0) + 2∆t

(
1+

1

6

∆n̂

n̂

)
Cov(δM0, δn0)

+

(
∆n̂

∆t

)2 s2Model
θ4

(
2

3
θ3t3 − θ2t2 − 2e−θt − 2θte−θt + 2

)
(2.246)

Extracting only the portion of the variance that is attributed to the
density error and not to initial errors in the state vector, equations
2.245 and 2.246 can be simplified to:

Var(δn(t)) =

(
∆n̂

∆t

)2 s2Model
θ2

(
2θt+ 2e−θt − 2

)
(2.247)

and

Var(δM(t)) =

[(
∆n̂

∆t

)2 s2Model
θ4

(
2

3
θ3t3 − θ2t2 − 2θte−θt − 2e−θt + 2

)]
(2.248)

Since errors in mean anomaly are to first order proportional to in-
track errors via ∂X||/∂M = (∂X||/∂t)/(∂M/∂t) = v/n, equation 2.248

can also be used to formulate an expression of the estimated in-track
position error variance:

Var(δX||(t)) =

(
v̂

n̂

)2 [(
∆n̂

∆t

)2 s2Model
θ4

(
2

3
θ3t3 − θ2t2 − 2θte−θt − 2e−θt + 2

)]
(2.249)

Observing equations 2.247-2.249 closely, reveals that with growing
time the mean motion variance growth will be dominated by the term
t
θ , whereas the mean anomaly/in-track error growth will become
dominated by t3

θ . This consideration demonstrates the importance of
the OUP θ-parameter, as it is inversely proportional to the expected
orbital uncertainties. Larger values of θ will lead to smaller expected
orbital uncertainties, whereas smaller values of θ result in larger orbital
uncertainties.

An evaluation of this parameter can be found in section 2.6.2 along-
side the numerical simulations used to validate above relationships.

2.6.2 Simulation results

In the following the results obtained with the newest of the MSIS and
DTM-class models (NRLMSISE-00 and DTM-2013) are presented. The
chosen satellite is TerraSAR-X, which has been launched in 2007 and
orbits Earth sun-synchronously at a mean altitude of ∼511 km (Pitz
and Miller, 2010). The coefficient of drag has been fixed at 2.2 (flat
plate model), which is also the value used in the on-board satellite
propagator. The ballistic coefficient is modeled constant with a value of
0.006m2/kg to avoid the inclusion of attitude information. The chosen
epoch was set to February 18

th, 2015, 09:00:00 UTC. The simulation
was performed with the Special Perturbations Orbit determination
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and Orbit analysis toolKit (SPOOK) of Airbus, which has been ex-
tended with the capability of grid-scale density-uncertainty driven
orbit uncertainty propagation. More information about SPOOK can
be found in (Rodriguez Fernandez et al., 2019b).

The simulation scenario is as follows: prior to the Monte-Carlo
(MC) iterations an initial state vector is required for the subsequent
propagation phases. This state vector was selected from the Position
Velocity Time (PVT) telemetry of the active MOSAIC GNSS Receiver of
TerraSAR-X and subsequently converted from EME2000 to GCRF. This
initial orbit solution can be considered to be error-free for the purpose
of this analysis, which allows to make use of equations 2.247 and
2.249 for the computation of the mean motion and in-track position
uncertainties.

In each MC orbit propagation the density SDE (equation 2.216) is
solved concurrently with the orbital state vector using a first-order Mil-
stein algorithm that corresponds to the modified Ornstein-Uhlenbeck
process. As suggested by Sagnières and Sharf (2017), the initial value
of the density OUP is drawn from a Gaussian distribution with a stan-
dard deviation that corresponds to the assumed model uncertainty,
centered at the model density estimate.

Knowledge of the model inputs is assumed to be perfect to avoid
mixing grid-scale density uncertainty (described by equations 2.247

and 2.249) with input density uncertainty during the validation. Con-
sequently also no unforeseen storms or measurement uncertainties
are simulated and the same set of published space-weather data3 is
used in the truth computation and orbit/uncertainty estimations. The
computation of a universal covariance matrix that accounts for both
input and grid-scale uncertainty is described in section 2.7.

The validation is considered successful if the spread of the 300 MC
propagations agrees with the three-sigma expected uncertainty as
derived from equations 2.247 and 2.249.

As SPOOK uses a variable step-size Shampine-Gordon integrator,
it is necessary to detect and treat step repetitions due to step size
reductions. For this purpose also the quantities of the previous step
are stored in each iteration, which allows to restore a prior state in
case of a possible recomputation of a step due to a too-large step size.

In case of NRLMSISE-00 (figure 2.13), atmospheric drag is the only
perturbation that has been enabled to show that the expected variances
in the mean motion and in-track position agree with the Monte-Carlo
iterations. For DTM-2013 also other perturbations than orbital drag
(solar radiation pressure, solar and lunar gravity, as well as a 30× 30
GGM02C non-spherical gravitational field) have been considered to
demonstrate that the uncertainty predictions also remain valid in
operationally relevant scenarios with all perturbations enabled. This
desirable property is the result of the periodic mean motion varia-

3 Insofar as the models agree on the choice of solar and geomagnetic proxies
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tions introduced by the additional perturbations to compensate in the
subsequent integration step towards in-track position. In general the
mean motion uncertainty of equations 2.245 and 2.247 hence describes
mean mean motion uncertainty.

The color coding of figures 2.13 to 2.16 is as follows: MC iterations
are plotted in green. The three sigma standard-deviation of the MC
iterations is plotted in red. The blue lines represent the estimated three
sigma uncertainties at each stage. The estimated orbital uncertainties
are computed as three times the square root of equation 2.247 for
the mean motion and three times the square root of equation 2.249

for the in-track position error. For NRLMSISE-00 a one sigma model
uncertainty of sModel = 15% was assumed, as it is a comparatively old
model. For DTM-2013 the assumed model uncertainty was set to 10%.

NRLMSISE-00: Speed of mean reversion: θ = 10−4, Long-term stan-
dard deviation = assumed one sigma model uncertainty: sModel = 15%

Figure 2.13: Propagation of initial state using NRLMSISE-00 as driver of
the modified Ornstein-Uhlenbeck error process by Sagnières and Sharf.

Atmospheric drag is the only perturbation which has been enabled

Figure 2.13 depicts the results obtained with NRLMSISE-00 as baseline
density model. The estimated uncertainty in the mean motion closely
follows the actual spread of the Monte-Carlo iterations. The same holds
true after the additional integration to the in-track position. Therefore
the estimated in-track position error uncertainty matches the actual
Monte-Carlo uncertainty. With increasing values of θ, both the speed
of mean reversion (the OUP attraction towards the mean) and the
strength of the short-term density fluctuations increase. Consequently
for θ = 10−4, relative density error samples quickly return to near-
mean values, which results in comparatively small mean motion and
in-track position errors. The maximum in-track error after 4.5days of
propagation is ∼1.7 km.
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In the following the simulation results for DTM-2013 are presented.
Three cases with different values of θ have been computed. In addi-
tion to orbital drag also solar radiation pressure, a 30× 30 GGM02C
aspherical gravity field, thermospheric winds, as well as solar and
lunar gravity perturbations have been enabled to demonstrate the
compatibility of the derived equations with operational scenarios. The
effect of particular values of θ is discussed afterwards.

Figure 2.14 displays the results obtained with θ set to 10−4 for
comparison with figure 2.13. It is clearly visible that the additional
perturbations introduce periodic variations in the mean motion errors.
Consequently the mean motion uncertainty estimates of equation 2.247

match the actual mean motion uncertainty only for the first ∼30 hours
and represent the average mean motion uncertainty afterwards. The
additional integration to the in-track error is able to compensate these
periodic variations, resulting in consistent in-track uncertainty predic-
tions. DTM-2013 agrees with the case of NRLMSISE-00 in that both
models result in an in-track position error of ∼1.6 km after 4.5days of
propagation.

DTM-2013: Speed of mean reversion: θ = 10−4, Long-term standard deviation
= assumed one sigma model uncertainty: sModel = 10%

Figure 2.14: Propagation of initial state using DTM-2013 as driver of the
modified Ornstein-Uhlenbeck error process by Sagnières and Sharf. Besides
atmospheric drag also perturbations due to the Earth’s aspherical gravita-
tional field, solar radiation pressure and third body (solar and lunar) gravity

have been activated

The simulation results of figure 2.15 confirm all expected effects for a
smaller value of θ: first of all, the lower speed of mean reversion results
in longer departures of the relative density errors from the mean.
The intensity of the random fluctuations is decreased with respect to
figure 2.14. As the mean motion and in-track uncertainties are inversely
proportional to θ, the three sigma bounds show a notable growth when



132 atmospheric density uncertainty

compared to figure 2.14. Also for θ = 10−5 the uncertainty predictions
follow the actual uncertainty of the Monte-Carlo iterations closely. The
expected three sigma in-track position uncertainty is ∼4.0 km after
4.5days of propagation.

DTM-2013: Speed of mean reversion: θ = 10−5, Long-term standard deviation
= assumed one sigma model uncertainty: sModel = 10%

Figure 2.15: Orbital variations due to OUP density fluctuations. The simula-
tion setup is identical to figure 2.14, however θ has been set to 10−5

DTM-2013: Speed of mean reversion: θ = 10−6, Long-term standard deviation
= assumed one sigma model uncertainty: sModel = 10%

Figure 2.16: Orbital variations due to OUP density fluctuations. The simula-
tion setup is identical to figures 2.14 and 2.15, with θ set to 10−6

As θ is lowered further in figure 2.16, the discussed effects are even
more pronounced. The parametrization of θ allows for density fluc-
tuations to depart from the mean for multiple days, which can be
well observed in the outer regions of the relative density error plot.
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These long-time departures result in mean motion and in-track distri-
butions with notably increased magnitude. The expected three sigma
in-track position uncertainty is ∼6.0 km after 4.5days of propagation.
As is the case for figures 2.14 and 2.15, the estimated mean motion
uncertainty matches for the first ∼30h and then represents the average
mean motion uncertainty.

The results depicted in figures 2.13 to 2.16 both validate the vari-
ance estimations (equations 2.245 to 2.249) and demonstrate that the
(mean) mean motion and in-track position error uncertainty due to
the modified OUP by Sagnières and Sharf can be approximated with
the help of a standard OUP in the relative density error.

selection of θ

Figures 2.13 to 2.16 highlight the importance of the OUP θ-parameter,
which represents the speed of mean reversion and therefore deter-
mines the duration of the periods in which the OUP results deviate
from the model-estimates. The influence of θ on the density fluctua-
tions is demonstrated in figure 2.17.

Relative atmospheric density error

(a) θ = 10−4 (b) θ = 10−5

(c) θ = 10−6

Figure 2.17: Zoom on the timeframe 4h to
8h in figures 2.14, 2.15 and 2.16. With de-
creasing θ, the speed of mean reversion and
the strength of the instantaneous density fluc-
tuations decrease. Consequently stronger de-
viations from the mean persist for longer
times in case of small θ

The expected uncertainty growth is inversely proportional to θ. While
the derived uncertainty estimation equations (eqs. 2.245 to 2.249) work
with any value of θ and are therefore universal, it must be the goal
to set up the OUP in a way to represent natural grid-scale density
deviations as closely as possible. Consequently a perimeter of realistic
θ-values is required. These bounds can be inferred from the intensity
of the density fluctuations and the magnitude of the resulting in-track
errors.

Grid-scale density errors are the result of residuals in the least
squares fitting process of semi-empirical density models. This type
of density error is therefore expected to be comparatively smooth
with correlation times in the order of orbital and daily scales. Judging
from figure 2.17, these timeframes may be associated with the cases
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θ = 10−5 and θ = 10−6. The case of θ = 10−4 depicts both unnaturally
large density fluctuations and unrealistically small error growth.

The choices θ = 10−5 and θ = 10−6 are also supported by the cor-
responding in-track errors of figures 2.15 and 2.16, which indicate
realistic maximum deviations of ∼4 km to ∼6 km after 4.5days of prop-
agation for the geometry of TerraSAR-X and the chosen epoch.

To further narrow down the perimeter of θ, an inter-model variabil-
ity analysis was performed for the chosen epoch. Equations 2.247 and
2.249 are also expected to result in valid error bounds when comput-
ing the reference orbit with one density model and the propagation
for comparison with another. For this case sModel was set to the com-
bined model uncertainty of

√
(10%)2 + (15%)2 = 18%. A combination

of two models and the values θ = 10−5, as well as θ = 10−6 results
in four scenarios. No error bound should be violated for a proper
parametrization of θ.

Based on the results depicted in figure 2.18, a value of θ = 10−5

results in a violation of the error bounds in one of two cases. Setting
θ = 10−6 does not lead to any violation. Therefore a realistic choice
of θ is expected to be close to 10−6. Sagnières and Sharf (2017) also
performed an analysis of θ using Monte-Carlo propagated ensembles
of Envisat, which orbits Earth ∼250 km higher than TerraSAR-X and is
about 6.5 times as heavy. Using a coefficient of variation-analysis they
concluded that a value of θ = 10−6 is the most realistic parametriza-
tion, which is consistent with the inter-model variability analysis.

Allowing for some margin, realistic values for the speed of mean
reversion are expected to lie in the range θ ∈ [5 · 10−6, 5 · 10−7]. The
following list summarizes the main findings about grid-scale density
uncertainty:

• grid-scale density uncertainty can be fruitfully treated using a
classical Ornstein-Uhlenbeck process in the relative density error
or a modified OUP in atmospheric density

• the long-term mean motion variance due to OUP density uncer-
tainty grows proportionally with time (∼t/θ)

• the long-term in-track position error variance due to OUP density
uncertainty grows proportionally to the third power of time
(∼t3/θ)

• the OUP rate of mean reversion (θ) is inversely proportional to
the long-term error growth and a key parameter of the uncer-
tainty estimation. It influences both the instantaneous fluctua-
tions, as well as the expected error growth. Realistic values of
θ are expected to lie within the interval θ ∈ [5 · 10−6, 5 · 10−7],
which is in agreement with the results of Sagnières and Sharf
(2017)
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Figure 2.18: Inter-model variability. The first case violates the three sigma
error bounds, which indicates that a value of θ = 10−5 is too large. Using

θ = 10−6 does not result in any violation

2.7 combined density uncertainty covariance

Sections 2.2 to 2.6 treated the quantification of atmospheric density
uncertainty due to solar flux and magnetic index input uncertainty,
as well as grid-scale density uncertainty. To finalize the density un-
certainty framework, some further considerations are required. These
include the derivations of the mean motion and mean anomaly covari-
ance cross-correlations for the respective error processes (white noise,
Brownian motion and Ornstein-Uhlenbeck). Furthermore, a robust
method of covariance conversion to Cartesian coordinates is desirable,
since many operational programs are operating in GCRF coordinates.
Additionally, density uncertainty consideration for orbit determina-
tion requires a special treatment of the uncertainty propagation to
properly model the time-evolution of the pdf. Finally, the different
origins of density uncertainty need to be combined into a common co-
variance matrix. These topics shall be discussed in the current section.
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2.7.1 Mean motion and mean anomaly correlation coefficients

As density uncertainty dominantly acts in the orbital plane, it can
be quantified using a sparse 6×6 covariance matrix. Using orbital
elements, only the mean motion and mean anomaly components are
nonzero. To formulate the resulting covariance matrices for input un-
certainty, the mean motion and mean anomaly correlation coefficient
needs to be derived for a white noise and Brownian motion error pro-
cess model. Grid-scale density uncertainty requires the corresponding
correlation coefficient for an Ornstein-Uhlenbeck process. The deriva-
tion of these coefficients uses similar techniques as the corresponding
variances and is shown in the following.

The correlation coefficient of two random variables is defined as

ρXY =
E
[
(X−X)(Y − Y)

]
σXσY

=
Cov(X, Y)
σXσY

(2.250)

By definition it is a quantity that ranges between −1 6 ρXY 6 1. For
input and grid-scale density uncertainty the random processes are
the time-integrated and twice time-integrated relative density error
processes, such that the term

Cov(X, Y)→ Cov

 t∫
0

t ′∫
0

ερ(t
′′)dt ′′ dt ′,

t∫
0

ερ(t
′)dt ′

 (2.251)

needs to be found.

input uncertainty : white noise and brownian motion

Considering the error process model given in equations 2.180-2.183,
equation 2.251 corresponds to Cov(X2(t),X1(u)) (with the time-
dimensionality still to be accounted for), if the relative density error
process is treated as white noise. Similarly Cov(X3(t),X2(u)) (with the
time-dimensionality still to be accounted for) needs to be computed if
the relative density error process is considered as Brownian motion.
Due to the zero-mean property the covariance may be obtained from
the expected value of the random variable product:

Cov(X2(t),X1(u)) = E

 t∫
0

X1(s)ds

u∫
0

1

δt
X0(s

′)ds ′


=
1

δt
E

 t∫
0

u∫
0

X1(s)X0(s
′)ds ′ ds


=
1

δt

t∫
0

u∫
0

E
[
X1(s)X0(s

′)
]
ds ′ ds (2.252)
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Since E
[
X1(s)X0(s

′)
]
= Cov(X1(s),X0(s ′)), a description of the covari-

ance one integration-level earlier is required to continue with equation
2.252. Inserting the definition of X1 results in:

E
[
X1(s)X0(s

′)
]
= E

 1
δt

t∫
0

X0(s)dsX0(s
′)


⇔ E

[
X1(s)X0(s

′)
]
=
1

δt

t∫
0

E
[
X0(s)X0(s

′)
]
ds (2.253)

From equation 2.184 it follows that:

E
[
X1(s)X0(s

′)
]
=
1

δt

t∫
0

PX0δ(s− s
′)ds =

PX0
δt

t∫
0

δ(s− s ′)ds (2.254)

where δ is the Dirac-delta. If s > s ′ then the integral is 1, else it is zero.
Since 06 s6 t and 06 s ′6u, s > s ′ also implies t > u. Summarizing:

E
[
X1(s)X0(s

′)
]
=


PX0
δt if s > s ′

0 otherwise
(2.255)

Since equation 2.255 contains a case-differentiation, eq. 2.252 needs to
be analyzed separately for both options.

Case 1: s < s ′

If s< s ′, then E
[
X1(s)X0(s

′)
]
= 0. Consequently also equation 2.252

becomes zero and there is no correlation.

Case 2: s > s ′

The interesting case is s > s ′, for which E
[
X1(s)X0(s

′)
]
=
PX0
δt . Next,

inserting equation 2.255 into eq. 2.252 and requiring s > s ′ results in:

Cov(X2(t),X1(u)) =
PX0
(δt)2

t∫
0

u∫
0

1 ds ′ ds, subject to s > s ′ (2.256)

While the outer integral is at a certain s, the inner integral ranges
from 0 6 s ′ 6 u. As equation 2.256 is only defined for s > s ′, the inner
integral must be split at s ′ = s to account for the domain of definition:

Cov(X2(t),X1(u)) =
PX0
(δt)2

t∫
0

 s∫
0

1 ds ′ +

u∫
s

1 ds ′

ds (2.257)
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In equation 2.257 the second inner integral is zero, as s ′ > s. Conse-
quently, requiring s > s ′ is identical to setting the upper integration
boundary of the inner integral to s ′ = s, which yields:

Cov(X2(t),X1(u)) =
PX0
(δt)2

t∫
0

s∫
0

1 ds ′ ds =
PX0
(δt)2

t∫
0

s ds

=
1

2

PX0
(δt)2

t2 (2.258)

Combining both cases results in:

E
[
X2(t)X1(u)

]
=

 1
2

PX0
(δt)2

t2 if s > s ′, i.e. t > u

0 otherwise
(2.259)

In the final step of the variance/covariance definitions, the time vari-
ables are set equal. Consequently the first case holds, which yields
E
[
X2(t)X1(u)

]
= 1
2

PX0
(δt)2

.
So far, X0 and X1 were considered to be dimensionless. If ερ follows

a white noise process, then X0 needs to be dimensionless and X1
shall be time-dimensional. Hence, the model for X1 changes from
X1 =

1
δt

∫t
0 X0(s)ds to X1 =

∫t
0 X0(s)ds. Consequently equation 2.252

becomes:

Cov(X2(t),X1(u)) = E

 t∫
0

X1(s)ds

u∫
0

X0(s
′)ds ′


=

t∫
0

u∫
0

E
[
X1(s)X0(s

′)
]
ds ′ ds (2.260)

and equation 2.255 changes to:

E
[
X1(s)X0(s

′)
]
=

 PX0 if s > s ′

0 otherwise
(2.261)

As equations 2.260 and 2.261 both lack the factor 1
δt in comparison

to the derivation where X1 was treated dimensionless, equation 2.259

becomes:

E
[
X2(t)X1(u)

]
=

 1
2PX0t

2 if s > s ′, i.e. t > u

0 otherwise
(2.262)

The double-sided PSD, PX0 , may be computed as σ2ρpδt within the
Nyquist frequency for band-limited white noise. Therefore the desired
expression for the white noise case is given by equation 2.263:

Cov(X2(t),X1(t)) =
1

2
σ2ρpδt t

2 (2.263)
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For the Brownian motion case X0 and X1 are dimensionless. Hence
Cov(X3(t),X2(u)) needs to be computed using the error process model
given by equations 2.180-2.183 without any posterior considerations of
the time-dimensionality. Due to the zero-mean property, the covariance
may be computed as the expected value of the product of the random
variables, which yields:

Cov(X3(t),X2(u)) = E

 t∫
0

X2(s)ds

u∫
0

X1(s
′)ds ′


⇔ Cov(X3(t),X2(u)) =

t∫
0

u∫
0

E
[
X2(s)X1(s

′)
]
ds ′ ds (2.264)

Inserting eq. 2.259 into eq. 2.264 results in:

Cov(X3(t),X2(u)) =


t∫
0

u∫
0

1

2

PX0
(δt)2

s2 ds ′ ds if s > s ′

0 otherwise

(2.265)

Again, the covariance is only nonzero if s > s ′, which leads to:

Cov(X3(t),X2(u)) =
1

2

PX0
(δt)2

t∫
0

u∫
0

s2 ds ′ ds (2.266)

The requirement of s > s ′ results in splitting the inner integral at
s ′ = s. This in turn is equal to setting the upper boundary of the
inner integral to s ′ = s, as the second integral, in which s ′>s, is zero.
Therefore the covariance is found via:

Cov(X3(t),X2(u)) =
1

2

PX0
(δt)2

t∫
0

s2
s∫
0

1 ds ′ ds =
1

2

PX0
(δt)2

t∫
0

s3 ds

=
1

8

PX0
(δt)2

t4 if t > u (2.267)

Using PX0 = σ
2
ρp
δt and setting u = t, the desired Brownian motion

covariance is given by equation 2.268:

Cov(X3(t),X2(t)) =
1

8

σ2ρp
δt
t4 (2.268)

Next, the covariance of the integrated relative density error processes
must be used to derive an expression of the mean motion/mean
anomaly cross-correlation. Considering only the part of the mean
motion and mean anomaly errors which depends on the density
error (last summand of eqs. 2.171 and 2.177 with t0 → 0), it becomes
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apparent, that the mean motion and mean anomaly errors both depend
linearly on the time-integrated and twice time-integrated relative
density error processes. Since in orbital elements the prefactors are
equal, they can be reduced such that the desired correlation coefficient
is found via:

ρδnM =
Cov(δn, δM)√

Var(δn)
√
Var(δM)

=

(
∆n̂
∆t

)2
E
[ ∫t
0 ερp(t

′)dt ′
∫t
0

∫t ′
0 ερp(t

′′)dt ′′ dt ′
]

(
∆n̂
∆t

)2√
Var

(∫t
0 ερp(t

′)dt ′
)√

Var
(∫t
0

∫t ′
0 ερp(t

′′)dt ′′ dt ′
)

=
Cov

(∫t
0 ερp(t

′)dt ′,
∫t
0

∫t ′
0 ερp(t

′′)dt ′′ dt ′
)

√
Var

(∫t
0 ερp(t

′)dt ′
)√

Var
(∫t
0

∫t ′
0 ερp(t

′′)dt ′′ dt ′
) (2.269)

Equation 2.269 demonstrates that the absolute mean motion er-
ror/mean anomaly error correlation coefficient is equal to the time-
integrated and twice time-integrated relative density error correlation.
Inserting the variance expressions from eqs. 2.212-2.215 and the co-
variances given by equations 2.263 and 2.268 yields for the white noise
case:

ρδnM =

1
2σ
2
ρp
δt t2√

σ2ρptδt
1
3σ
2
ρp
t3δt

=

√
3

2
=

√
12

4
(2.270)

and for the Brownian motion case:

ρδnM =
1
8

σ2ρp
δt t

4√
1
3

σ2ρp
δt t

3 1
20

σ2ρp
δt t

5

=

√
60

8
=

√
15

4
(2.271)

Equations 2.270 and 2.271 result in constant correlation coefficients for
the white noise and Brownian motion error processes. If computations
are done in orbital elements, the correlation is positive. In Schiemenz
et al. (2019c) the covariances are directly expressed in Cartesian coor-
dinates. In this case the prefactors cancel except for the sign, such that
the correlation coefficients become negative. After the publication of
Schiemenz et al. (2019c), however, it has been found that it is preferable
to first formulate the entire covariance matrix in orbital elements and
then to convert it to Cartesian coordinates using the approach shown
in section 2.7.2.

Using equations 2.270 and 2.271 the mean motion error/mean
anomaly error covariance is finally found by rearranging equation
2.250 for the covariance, i.e. via equation 2.273.

Cov(δn(t), δM(t)) = ρδnM
√
Var(δn(t))

√
Var(δM(t)) (2.272)

=


1
2

(
∆n̂
∆t

)2
σ2ρpδt t

2 White noise (2.273a)

1
8

(
∆n̂
∆t

)2 σ2ρp
δt t

4 Brownian
motion (2.273b)
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grid-scale model uncertainty : ornstein-uhlenbeck

In case of average model uncertainty, the error process is best cho-
sen as an Ornstein-Uhlenbeck process. Let Yt =

∫t
0 Xs ds, where Xs

is the Ornstein-Uhlenbeck process including initial state randomiza-
tion. Also let Zt =

∫t
0 Ys ds denote the twice time-integrated OUP

with initial state randomization. Using this notation, it holds that
Cov(

∫t
0

∫t ′
0 ερ(t

′′)dt ′′ dt ′,
∫t
0 ερ(t

′)dt ′) = Cov(Zt, Yt), which due to
the zero-mean property of Zt and Yt is equal to the double integral of
the unintegrated OUP and the single time-integrated OUP processes:

Cov(Zt, Yu) =

t∫
0

u∫
0

Cov(Ys,Xs ′)ds ′ ds (2.274)

Hence the description of the covariance one integration-level earlier is
needed:

Cov(Yt,Xu) = E[YtXu] = E

 t∫
0

Xs dsXu

 (2.275)

=

t∫
0

E[XsXu]ds =

t∫
0

Cov(Xs,Xu)ds (2.276)

Equation 2.276 now allows to insert the expression for the classical
OUP covariance (eq. 2.220), which results in:

Cov(Yt,Xu) =
σ2

2θ

t∫
0

e2θmin(s,u)−θ(s+u) −e−θ(s+u)︸ ︷︷ ︸
Only in case of no
randomization of

the initial state

ds (2.277)

To evaluate the minimum, the cases of u > t and t > u need to be
analyzed separately.

Case 1: u > t
If u > t, there is no need to split the integral, as it always holds that
s 6 u.

Cov(Yt,Xu) =
σ2

2θ

t∫
0

e2θs−θ(s+u) ds =
σ2

2θ

t∫
0

e−θ(u−s) ds

=
σ2

2θ

[
1

θ

(
e−θ(u−t) − e−θu

)]
=
σ2

2θ2

(
e−θ(u−t) − e−θu

)
(2.278)
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Case 2: t > u
Since t > u it is necessary to split the integral at s = u to evaluate the
minimum.

Cov(Yt,Xu) =
σ2

2θ

 u∫
0

e2θs−θ(s+u) ds+

t∫
u

e2θu−θ(s+u) ds


=
σ2

2θ

 u∫
0

e−θ(u−s) ds+

t∫
u

e−θ(s−u) ds


=
σ2

2θ2

(
−e−θ(t−u) − e−θu + 2

)
(2.279)

Combining both cases yields a universal description of Cov(Yt,Xu):

Cov(Yt,Xu) =

 σ2

2θ2

(
e−θ(u−t) − e−θu

)
if t 6 u

σ2

2θ2

(
−e−θ(t−u) − e−θu + 2

)
if u 6 t

(2.280)

Equation 2.280 does not allow for a common description using
min/max-expressions. Nevertheless it is valid regardless of the rela-
tionship between t and u, as long as the corresponding equation is
used. This is also important in the next step, when equation 2.280

is inserted into equation 2.274 to evaluate the desired covariance. In
principle two cases are possible again: u > t and t > u. Since however
this is the final integration and the last step will be to set u = t, it is
theoretically sufficient to compute only one of the two cases, as they
must yield the same result for u = t. Nevertheless, computing both
cases is advised to use this property for validation.

Case 1: u > t
If u > t, only a single split of the inner integral is required at s = u:

Cov(Zt, Yu) =

t∫
0

 s∫
0

Cov(Ys,Xs ′)︸ ︷︷ ︸
s ′<s

ds ′ +

u∫
s

Cov(Ys,Xs ′)︸ ︷︷ ︸
s ′>s

ds ′

ds
=
σ2

2θ2

[ t∫
0

( s∫
0

−e−θ(s−s
′) − e−θs

′
+ 2 ds ′

+

u∫
s

e−θ(s
′−s) − e−θs

′
ds ′

)
ds

]

=
σ2

2θ2

[ t∫
0

1

θ

(
−1+ e−θs

)
+
1

θ

(
e−θs − 1

)
+ 2s

−
1

θ

(
e−θ(u−s) − 1

)
+
1

θ

(
e−θu − e−θs

)
ds

]
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=
σ2

2θ3

t∫
0

e−θs + e−θu − e−θ(u−s) + 2sθ− 1 ds

=
σ2

2θ4

(
t2θ2 + e−θu(tθ+ 1) − e−θt − e−θ(u−t) − tθ+ 1

)
(2.281)

Setting u = t in equation 2.281 now allows to obtain the desired
description of the time-integrated and twice time-integrated relative
density error OUP:

Cov(Zt, Yt) =
σ2

2θ4

(
t2θ2 + tθe−θt − tθ

)
(2.282)

For the sake of completeness, Cov(Zt, Yu) is calculated in the fol-
lowing also for the second case, where t > u. When setting t = u also
this solution has to yield the same expression as equation 2.282.

Case 2: t > u
If t > u, both the outer and inner integrals need to be split:

Cov(Zt, Yu) =

u∫
0

[ s∫
0

Cov(Ys,Xs ′)︸ ︷︷ ︸
s ′<s

ds ′ +

u∫
s

Cov(Ys,Xs ′)︸ ︷︷ ︸
s ′>s

ds ′

]
ds

+

t∫
u

u∫
0

Cov(Ys,Xs ′)︸ ︷︷ ︸
s ′<s

ds ′ ds

=
σ2

2θ2

[ u∫
0

( s∫
0

−eθ(s−s
′) − e−θs

′
+ 2 ds ′ +

u∫
s

e−θ(s
′−s) − e−θs

′
ds ′

)
ds

+

t∫
u

u∫
0

−eθ(s−s
′) − e−θs

′
+ 2 ds ′ ds

]

=
σ2

2θ3

[ u∫
0

e−θs + e−θu − e−θ(u−s) + 2sθ− 1 ds

+

t∫
u

e−θs + e−θu − e−θ(s−u) + 2uθ− 1 ds

]

= σ2

2θ4

(
−u2θ2 + e−θu(tθ+ 1) − e−θt + e−θ(t−u) − tθ+ 2uθ2t− 1

)
(2.283)

Setting u = t yields:

Cov(Zt, Yt) =
σ2

2θ4

(
t2θ2 + tθe−θt − tθ

)
(2.284)

which equals the case of u > t (eq. 2.282). Hence, the generic form of
the covariance is given by equation 2.285.

Cov(Zt, Yu) = σ2

2θ4

(
t2θ2 + e−θu(tθ+ 1) − e−θt − e−θ(u−t) − tθ+ 1

)
if u > t

σ2

2θ4

(
−u2θ2 + e−θu(tθ+ 1) − e−θt + e−θ(t−u) − tθ+ 2uθ2t− 1

)
if t > u

(2.285)
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The corresponding correlation coefficient is found using equation
2.269 together with eqs. 2.282, 2.237 and 2.242, which yields:

ρδnM =
σ2

2θ4

(
t2θ2 + tθe−θt − tθ

)√
σ2

2θ3
(2θt+ 2e−θt − 2)

√
σ2

2θ5

(
2
3θ
3t3 − θ2t2 − 2e−θt − 2θte−θt + 2

)
=

t2θ2 − tθ
(
1− e−θt

)√(
2
3θ
3t3 − θ2t2 − 2e−θt − 2θte−θt + 2

)
(2θt+ 2e−θt − 2)

(2.286)

The cross-correlation coefficient given by eq. 2.286 cannot be reduced
further. It is therefore time-dependent (in contrast to the constant
values of ρδnM =

√
12/4 for a white noise error process and ρδnM =√

15/4 for a Brownian motion error process). For large t, the upper
limit can be approximated using only the dominant terms, which
results in:

ρ∗δnM =
t2θ2√
4
3θ
4t4

=

√
12

4
(2.287)

The result of equation 2.287 equals the value obtained for a white
noise error process. For t → 0, the correlation coefficient converges
against 1.0, as can be quickly verified using a computer algebra system
like Mathematica®:

In[1]:= Limit
2 t2 - t 1 - - t

2
3

3 t3 - 2 t2 - 2 - t - 2 t - t + 2 2 t + 2 - t - 2

, t 0, Direction "FromAbove", Assumptions >= 0

Out[1]= 1

Figure 2.19: Limit of correlation coefficient for positive values of θ as t
approaches zero from above

The evaluation of equation 2.286 on a computer leads to disconti-
nuities due to floating point arithmetics for small t. Hence, the result
of the expression should be bound to 1.0 for short propagation times
when programmatically evaluated in the context of density uncertainty.
A plot of equation 2.286 for different t and θ is given in figure 2.20.
The discontinuities for small t can be clearly identified as spikes on
the left boundary of the plot. The larger θ, the faster the value of ρδnM
approaches the white noise limit. For θ = 10−6 the cross-correlation
is effectively 1.0 for all simulation periods within a couple of days.
In case of θ = 10−4 however, the cross-correlation reaches the white
noise limit after ∼1.2days.

Inserting equation 2.286 together with eqs. 2.237 and 2.242 into
equation 2.272 yields the final mean motion error/mean anomaly
error covariance for grid-scale OUP model uncertainty:

Cov(δn(t), δM(t)) =
σ2

2θ4

(
∆n̂

∆t

)2 (
t2θ2 + tθe−θt − tθ

)
(2.288)
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Figure 2.20: Time-dependent correlation coefficient of the time-integrated
and twice time-integrated Ornstein-Uhlenbeck error processes with random-

ization of the initial state

2.7.2 Conversion of density uncertainty to Cartesian coordinates

Taking mean motion as the first and mean anomaly as the sixth orbital
element, density uncertainty can be described via the sparse 6×6
covariance matrix depicted in equation 2.289.

QOE =



Var(δn) 0 0 0 0 Cov(δn, δM)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Cov(δn, δM) 0 0 0 0 Var(δM)


(2.289)

Since only the mean motion and mean anomaly uncertainty is nonzero,
the uncertainty in mean anomaly equals the uncertainty in mean
longitude, such that the matrix computed via eq. 2.289 is valid for both
classical orbital elements (COE) and equinoctial orbital elements (EOE).

Orbit determination is often conducted in inertial Cartesian coor-
dinates using the Geocentric Celestial Reference Frame (GCRF). Con-
sequently a method for converting the orbital element uncertainties
to Cartesian coordinates is required. In Schiemenz et al. (2019c) sim-
plified expressions are derived which approximately map the covari-
ance matrix in classical orbital elements to GCRF coordinates. These
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transformations however are not recommended anymore, as it is more
precise to perform the conversion from COE/EOE to GCRF using
unscented transformation (UT) or via the analytic Jacobians of the
frame conversions. Both methods are briefly explained in the following.

unscented transformation

Unscented Transformation is the first step of the Unscented Kalman
Filter (UKF). UT is a sampling based covariance transformation/propa-
gation scheme. The details are presented in Julier and Uhlmann (2004).
In principle, UT consists of three steps. First, special sampling points
(so-called “sigma points”) are selected. The second step is to transform
each of these sigma points using the full nonlinear transformation
function f(x). The spread of the transformed sigma points and their
weights are then used to construct an estimate of the transformed
mean and covariance matrix. The principle is illustrated in figure
2.21. A major advantage of the UT is that it is free of derivatives.
Consequently also very complex nonlinear transformations can be
computed with the same algorithm as simple test cases. In contrast
to a Monte-Carlo propagation, only few sampling points are needed.
Different strategies have been developed, however the most common
is the symmetric sigma point set that consists of 2n+1 sigma points,
where n denotes the state vector dimension. For a classical orbit deter-
mination n = 6, such that 13 sigma points are required. This directly
leads to the downside of the method. If the nonlinear transformation
is not analytic but represents a time-consuming numerical orbit prop-
agation, the calculation of 13 propagations is computationally much
more expensive than covariance transformation using Jacobi matrices.
For analytic coordinate frame conversions however the performance
difference is negligible.

To use UT for covariance conversion, the orbital elements covariance
is first sampled to obtain the set of sigma points. Each point is then
transformed using the state vector at time t and the full nonlinear
transformation from COE/EOE to GCRF. Finally, an estimate of the
transformed covariance is computed from the transformed sigma
points. The process is mathematically summarized as:

QGCRF = UT
(
QOE

)
(2.290)

The UT transformation solution is not unique. Despite different
options for the overall number of sigma points and their weighting,
also the spread of the sigma points is not uniquely defined, but subject
to a degree of freedom and can therefore be selected by the user.
The choice of this spread-parameter α determines the quality of the
transformation. In many cases the selection of α is not critical, however
some cases exist for which additional testing is required to obtain
a robust parametrization. This is also true for the orbital elements
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Initial 
Covariance Transformed/

Propagated 
Covariance

UT: nonlinear 
transformation: f(x)

Sigma 
Point

JacobianTransformation via

Figure 2.21: Jacobian and sigma-point based covariance transformation

to GCRF covariance conversion, as the mean motion covariance is
typically multiple orders of magnitude smaller than the mean anomaly
uncertainty and adopts values in the order of 10−20–10−18 rad2/s2

after a few orbital revolutions, leading to UT covariance conversion
results which critically depend on the spread of the sigma points and
the numerical stability of the transformations.

jacobi matrices

The transformation of equation 2.289 via Jacobians is more robust than
the UT approach4, however 36 analytic partial derivatives are required
for the transformation. Over the past two decades David Vallado has
authored two papers devoted to a summary of Jacobian coordinate
frame conversions (Vallado, 2004; Vallado and Alfano, 2015). Both
papers contain a couple of typographical errors, the second revision
of Vallado and Alfano (2015) however is nevertheless a recommended
reference to study the conversions and obtain further literature.

Kinematic state vector and covariance transformation routines be-
tween COE, EOE and GCRF were needed in many places throughout
the work conducted as part of this thesis. Some examples are the
conversion of equation 2.289 to GCRF, the developments presented in
chapter 5, the extension of the Airbus-tool SPOOK to orbit estimation
in EOE coordinates or the study of the coordinate frame relevance
for the validity of the Gaussian pdf assumption described in section
1.3. Consequently the transformation routines between Cartesian and
orbital element coordinates outlined in Vallado and Alfano (2015) have
been implemented in computer code. Typographical errors have been
corrected and transformations missing in Vallado and Alfano (2015)
have been derived. The Fortran source code of the transformations
may be found in appendix B.2.

4 Note that this statement is only appropriate for the transformation of equation 2.289.
In general there are many examples where UT-based transformations show superior
performance over the usage of Jacobians
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It should be stressed that a Gaussian covariance in orbital elements
only yields an approximate Gaussian in Cartesian GCRF coordinates
if the covariance is sufficiently small. With increasing magnitude of
the eigenvalues, a Gaussian probability density function in orbital
elements results in non-Gaussian Cartesian pdfs, such that more ad-
vanced conversion techniques (e.g. Gaussian mixture models) are
required. This case is further elaborated in chapter 5.

Given a complete 6×6 Jacobian J, the orbital elements covariance
can be transformed via:

QGCRF = J QOE J
T (2.291)

where the superscript T denotes the matrix transpose. After conversion
to Cartesian coordinates, the covariance matrix is no longer sparse.

2.7.3 Covariance propagation and inclusion of additional perturbations

The linear state error covariance propagation from time tj to tk, in-
cluding process noise, is given by equation 2.292:

P̂k =Φ(tk, tj)P̂jΦ(tk, tj)T +dQk (2.292)

where P̂ denotes the estimated state vector covariance matrix,Φ(tk, tj)
denotes the State error Transition Matrix (STM) that models the linear
covariance propagation from time tj to time tk and dQk describes
the process noise increment of the propagation step (e.g. due to force-
model uncertainty). Equation 2.292 is independent of the selected
coordinate frame. Formally the covariances refer to the kinematic state
error. However, since OD methods internally use the state error as
state vector and not the overall kinematic state, it is common to omit
the error designation and use the terms “state vector covariance” and
“state transition matrix”. Special caution is required for the STM, as
there are different formulations for the satellite state vector and its
error. Both are treated in Vallado (2013), together with background
information on the calculation. For OD however, the STM is almost
always referring to the state error.

So far descriptions of QOE and QGCRF have been derived. Equa-
tions 2.289, 2.290 and 2.291 are special in nature, as they represent
analytic descriptions of the state vector covariance with respect to time
and therefore do not require STMs to facilitate the time propagation.
This allows for fast and efficient computations of the density process
noise covariance, however it complicates the sequential propagation
scheme of Kalman filters. To perform incremental covariance propa-
gation, a description of dQk is required that only makes use of Qk,
Qj and Φ(tk, tj). Starting from time t0, the propagation to time tk is
computed using:

P̂k =Φ(tk, t0)P̂0(tk, t0)T +Q(tk) (2.293)



2.7 combined density uncertainty covariance 149

Similarly the propagation to time tk+1 is expressed as:

P̂k+1 =Φ(tk+1, t0)P̂0Φ(tk+1, t0)T +Q(tk+1) (2.294)

Equation 2.293 allows to state:

Φ(tk, t0)P̂0Φ(tk, t0)T = P̂k −Q(tk) (2.295)

The linearity of the STM yields:

Φ(tk+1, t0) =Φ(tk+1, tk)Φ(tk, t0) (2.296)

Multiplying equation 2.295 with Φ(tk+1, tk) from the left and with
Φ(tk+1, tk)T from the right, results in:

Φ(tk+1, tk)Φ(tk, t0)P̂0Φ(tk, t0)TΦ(tk+1, tk)T

=Φ(tk+1, tk)
[
P̂k −Q(tk)

]
Φ(tk+1, tk)T (2.297)

which can also be written as:

Φ(tk+1, t0)P̂0Φ(tk+1, t0)T =Φ(tk+1, tk)
[
P̂k −Q(tk)

]
Φ(tk+1, tk)T (2.298)

by making use of eq. 2.296. Equation 2.294 on the other hand also
allows to obtain an expression for Φ(tk+1, t0)P̂0Φ(tk+1, t0)T :

Φ(tk+1, t0)P̂0Φ(tk+1, t0)T = P̂k+1 −Q(tk+1) (2.299)

Setting equation 2.299 equal to eq. 2.298 yields:

P̂k+1 −Q(tk+1) =Φ(tk+1, tk)
[
P̂k −Q(tk)

]
Φ(tk+1, tk)T

⇔ P̂k+1 =Φ(tk+1, tk)
[
P̂k −Q(tk)

]
Φ(tk+1, tk)T

+ Q(tk+1) (2.300)

⇔ P̂k+1 =Φ(tk+1, tk)P̂kΦ(tk+1, tk)T

−Φ(tk+1, tk)Q(tk)Φ(tk+1, tk)T

+ Q(tk+1) (2.301)

which can also be written as:

P̂k+1 =Φ(tk+1, tk)P̂kΦ(tk+1, tk)T +dQk+1 (2.302)

where dQk+1 is given by equation 2.303:

dQk+1 = Q(tk+1) −Φ(tk+1, tk)Q(tk)Φ(tk+1, tk)T (2.303)

Equations 2.302 and 2.303 allow to facilitate incremental covariance
propagation using the analytical density uncertainty framework. Alter-
natively also eq. 2.300 can be used. In contrast to equation 2.294 both
descriptions have the advantage that the covariance can be propagated
in small time steps, instead of enforcing t = t0 as starting time, which
would be a lot more time-consuming.
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Taking a closer look at equations 2.300 and 2.303, it turns out that
dQk+1 essentially removes any prior influence of the process noise on
the state vector and then adds the new contribution for the time tk+1.
Since Φ(tk+1, tk) has to be computed in any case when using linear
covariance propagation, the only additional computation required at
time tk+1 is Q(tk+1), which is evaluated analytically. Some caution is
required when thinking of dQk+1 as the process noise from time tk
to time tk+1, since dQk+1 represents a delta-covariance matrix which,
unlike regular covariance matrices, is not required to be positive
semidefinite (PSD).

inclusion of additional perturbations

The density uncertainty framework has been derived under the as-
sumption of drag being the only perturbation acting on the satellite
state. Operational applications however generally model also further
kinds of disturbances, e.g. solar radiation pressure or a non-spherical
gravity field. The formulation of density uncertainty however is also
compatible with this operationally relevant case, given the proper
perturbation settings when evaluating equation 2.302.

When performing the covariance propagation using arbitrary per-
turbations, it is important to compute Φ(tk+1, tk) using the entire
set of activated perturbations and not only drag. Q(tk+1) on the
other hand needs to be computed using drag as the only perturba-
tion, such that n̂(t) in the prefactor n̂(t)−n̂0∆t , which is found in all
nonzero components of equation 2.289, requires a separate drag-only
propagation.

unscented transformation

STMs are only used in case of linear covariance propagation via
Jacobians. For sigma-point based propagation schemes, equation 2.303

cannot be used, however the general concept of adding Q(tk+1) to
the version of P̂k which is free of any process-noise contributions can
be easily generalized.

For the unscented Kalman Filter this operation principle is actu-
ally beneficial. Once the cloud of sigma-points is generated, it is to
be propagated until the desired propagation end. This is efficiently
implemented by saving the sigma-point cloud after every intermediate
propagation step and then using this saved cloud to continue the
propagation in the next step (“cloud-saving”), instead of recomput-
ing the cloud from the reconstructed propagated covariance matrix
every propagation step. Using cloud-saving with posterior addition
of Qk+1 there is no need to subtract any prior additions of Qk, since
the saved cloud never experiences any contribution of process noise.
Consequently, using UT it is possible to propagate the covariance
matrix according to equation 2.304:
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P̂k+1 = UT(f(χk),wk) +Qk+1 (2.304)

whereχk denotes the set of sigma points at the start of the propagation
phase and wk the corresponding weights vector.

Further details about covariance propagation in the framework of
orbit determination are outlined in part III, when the force model
uncertainty framework is incorporated into classical and modern orbit
determination algorithms.

2.7.4 Unified input and grid-scale density uncertainty

Equation 2.289 allows to formulate a density uncertainty covariance
matrix for each type of origin: solar flux input uncertainty, magnetic
index input uncertainty and grid-scale model uncertainty. In the fol-
lowing the respective covariance matrices are denoted as Qf, Qm and
Qg with the subscript indicating the origin. Considering the different
origins of density uncertainty to be independent, the overall density
uncertainty covariance can be obtained via summation:

Q = Qf +Qm +Qg (2.305)

In orbital elements (classical or equinoctial)Q has the structure shown
in equation 2.306:

Q(t) =



∑
x∈f,m,g Var(δnx(t)) 0 0 0 0

∑
x∈f,m,gCov(δnx(t), δMx(t))

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0∑

x∈f,m,gCov(δnx(t), δMx(t)) 0 0 0 0
∑
x∈f,m,g Var(δMx(t))

 (2.306)

A final point that has been noted on page 107 applies to the compu-
tation of Qf and Qm, i.e. input density uncertainty. Both covariances
rely on equation 2.83 to obtain an expression of σ2ρp , as required by
equations 2.212-2.215. The white noise process model expects σ2ρp
to be constant. Similarly, σ2ρp is also expected to be constant for the
Brownian motion error process, as it represents the variance of the
density uncertainty of the underlying white noise process (i.e. the
observed density uncertainty after the first characteristic sampling
step). Equation 2.83 on the other hand can be used to obtain varying
estimates of the relative density error variance at the perigee altitude
throughout the course of the propagation duration. As noted on page
107, variations in σ2ρp should be filtered on time scales shorter than
an orbital revolution to obtain a constant value used for the next
propagation phase during orbit determination.

A myriad of options exist to perform this filtering. Some examples
are averaging over the propagation duration, averaging per orbital
revolution, taking the minimum/maximum/median value of σ2ρp , and
so forth. Also deciding for different strategies depending on the origin
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(solar flux/magnetic index) or error process model (white noise/Brow-
nian motion) is possible, giving rise to empirical optimization. The
work conducted in this thesis makes use of an empirical strategy to
perform the σ2ρp filtering, however averaging over the propagation
duration also turned out to yield accurate results in most cases.

2.8 summary of density uncertainty quantification

equations

Table 2.7 lists the most important equations that have been derived
throughout this chapter. Orbit determination simulation results are
presented in part III of this thesis, when the force model uncertainty
framework is integrated into classical and modern OD algorithms.

Input uncertainty
Grid-scale

model uncertainty
Solar
flux

Var(δGi): eq. 2.90

Cov(δGi, δGj): eq. 2.92

Geom.
index

Class: Var(δGi): eq. 2.99

MSIS Cov(δGi, δGj): eq. 2.102

Class: Var(δkp): eq. 2.112

DTM Var(δGi): eq. 2.127

Cov(δGi, δGj): eq. 2.131

sModel = 10% − 15%

R
el

at
iv

e
de

ns
it

y
un

ce
rt

ai
nt

y

Var(ερ): eq. 2.83,
needs to be evaluated at the

perigee altitude along the
track to obtain Var(ερp)

Error process

White noise Brownian motion Ornstein-Uhlenbeck
Var(δn(t)):

eq. 2.212

Var(δn(t)):
eq. 2.214

Var(δn(t)):
eq. 2.247

Var(δM(t)):
eq. 2.213

Var(δM(t)):
eq. 2.215

Var(δM(t)):
eq. 2.248

O
rb

it
al

un
ce

rt
ai

nt
y

Cov(δn(t), δM(t)):
eq. 2.273a

Cov(δn(t), δM(t)):
eq. 2.273b

Cov(δn(t), δM(t)):
eq. 2.288

Covariance combination Eq. 2.306

Covariance propagation
Linear: eq. 2.300 or
eqs. 2.302 and 2.303

UT: eq. 2.304

U
ni

fie
d

co
va

ri
an

ce

Covariance frame conversion
Linear: eq. 2.291,

appendix B.2
UT: eq. 2.290

Table 2.7: Summary of essential density uncertainty equations
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G R AV I T Y U N C E RTA I N T Y

Besides density uncertainty also Earth’s non-spherical gravity field
may act as a notable source of uncertainty in low Earth orbits. As
outlined in section 1.3.3, gravity fields are nowadays highly precise.
Accurate field modeling on the other hand requires large amounts of
computation time, such that it is customary to perform orbit determi-
nation with truncated potential fields, especially in case of real-time
applications. For LEO satellites the IERS recommends 90× 90 gravity
fields. Practical applications however often treat the additional accu-
racy for improved runtime by setting a lower truncation degree/order,
e.g. 36× 36 or 30× 30. Gravity uncertainty is therefore predominantly
caused by potential field truncation (errors of omission) and to a
much lesser extent by the uncertainty of the field coefficients (errors
of commission).

Errors of omission are of epistemic nature, since it is possible to
acquire better knowledge of the potential field by increasing the trunca-
tion point, whereas errors of commission are aleatoric. In the following,
epistemic errors of omission are treated by stochastic, i.e. aleatoric,
means. This decision is rooted in the existence of fundamental prior
work, including the availability of the complete orbit gravity accel-
eration error autocovariance matrix. In particular, gravity errors of
omission and commission will be treated by a unified process noise
matrix. Using process noise theory allows for an efficient algorithm
capable of running in real-time and faster than real-time applications.
Alternatively, uncertain gravitational coefficients could be added to
the estimation state space or their effects could be accounted for as
consider parameters. These solutions however require a large amount
of additional computations and increased computer memory due to
the extensive number of gravitational coefficients involved. The choice
to use a stochastic process noise representation of the gravitation accel-
eration errors is therefore an engineering decision that can be justified
through the validation of the resulting model.

The chapter is structured as follows: after a brief overview of prior
work on gravity uncertainty in section 3.1, section 3.2 is devoted to
a presentation of the theory that leads to the only state of the art
algorithm capable of running in real-time (Wright et al., 2008a,b,c).
Subsequently, section 3.3 is devoted to the development of an improved
gravity uncertainty covariance estimation algorithm that builds upon
the derivations presented in section 3.2, but is more robust and yields
superior performance. The computed orbital gravity error covariances
seamlessly integrate with orbit determination algorithms capable of
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incorporating process noise. Numerical validation results, including
techniques for a proper validation of errors of omission, are presented
in section 3.5.

3.1 prior research on orbital gravity uncertainty

The theory of statistical gravity error covariance dates back to 1959,
when William Kaula published his “Statistical and harmonic anal-
ysis of gravity”, in which he studied gravity errors of omission on
the Earth’s surface (Kaula, 1959). In his work, Professor Kaula pub-
lished expressions for the gravity acceleration errors in the Radial/In-
track/Cross-Track (RIC) frame1 due to errors of omission, i.e. potential
function truncation. The corresponding theory on statistical geodesy
has been worked out later in detail by authors such as Heiskanen and
Moritz (1967) or Moritz (1980).

In 1967 Gersten et al. transferred Kaula’s theory to orbital altitudes
and derived approximations of the resulting orbital element covari-
ances via full sphere averaging (Gersten et al., 1967). Some years
later, in 1978, James Wright attempted to numerically integrate the
double integral which describes the propagation of the acceleration
error covariance function to the orbital state vector (Wright et al.,
2008a). However, long runtimes and matrix asymmetries showed that
direct numerical integration of the acceleration error covariance is not
suitable for operational applications, such as orbit determination.

To solve these problems, Wright recognized the need to separate
the inner from the outer integration to efficiently compute the dou-
ble integral. In 1981 he published the theory behind this separation
together with a first sequential orbit determination algorithm capable
of considering autocorrelated gravity modeling errors (Wright, 1981).
Wright also defined the degree variance due to errors of commission,
i.e. the potential field coefficient uncertainty, in his work of 1981. Over
a decade later, Wright finally published the details of a key step in his
1981-derivation in Wright (1994).

More than two decades after the presentation of the original se-
quential estimation algorithm, Wright et al. published an improved
algorithm architecture in a three-paper series (Wright et al., 2008a,b,c).
Reference Wright et al. (2008a) explains the main theory of the im-
proved algorithm and outlines the steps towards obtaining the orbit
gravity error covariance matrix. Wright et al. (2008b) is devoted to
the validation of the filter covariance matrix and Wright et al. (2008c)
focuses on the computation of the inner integral (I1) approximation
using polynomials or splining functions.

1 The term “in-track” does not apply correctly for nonzero eccentricity and always
refers to transverse. For consistency with Wright et al. (2008a,b,c) the terminology is
used nonetheless. The frame is also known as Radial/Transverse/Normal (RTN)
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This three-paper algorithm (henceforth called “WK algorithm” for
Wright-Kaula algorithm) has proven to be beneficial for long-term
filter stability (Vallado, 2013, p.777), however Wright et al. (2008b) also
showed that the double integrated gravity acceleration error covariance
matrices are only realistic for a limited time (a couple of orbits) and
that there is room for further improvements.

Primarily, the WK algorithm suffers from an underestimation of
the in-track error component of the position covariance. Also the
radial and normal position components only agree in some cases with
the observed (numerically propagated) covariance. In Wright et al.
(2008b) only the plots of the position error covariances for errors of
commission are given, however these deficiencies were found to gain
momentum when also errors of omission are applicable, i.e. if the
gravity field potential function is truncated for the purpose of orbit
propagation (Schiemenz et al., 2020c).

Before improvements to the WK algorithm may be developed, its
theory first needs to be studied to identify the root causes of these
shortcomings.

3.2 theoretical background : the wk algorithm

The orbit error covariance matrix Pk+1,k is defined by equation 3.1,

Pk+1,k = E
[
δx(tk+1|tk)δx(tk+1|tk)

T
]
= E

[
δxk+1,kδx

T
k+1,k

]
(3.1)

where δx is the state vector error that represents the difference between
the true and the estimated state vectors. The WK algorithm considers a
Cartesian representation (position and velocity vectors) of the satellite
state. Therefore δx denotes the vector of the position and velocity
errors. Equation 3.2 describes the linear model for propagating δx
with time (Wright et al., 2008a):

δx(tk+1|tk) =Φ(tk+1, tk)δx(tk|tk) +

tk+1∫
tk

Φ(tk+1, τ)G(τ)δg(τ)dτ (3.2)

where

• Φ(tk+1, tk) is the 6 × 6 State error Transition Matrix (STM)
which linearly propagates δx from time tk to time tk+1

• δg(τ) is the 3× 1 vector describing the gravity acceleration error
at time τ

• G(τ) is the 6× 3 matrix which translates the gravity acceleration
error from its frame of definition to the inertial frame used for
computing Pk+1,k. The upper 3× 3 part of G(t) is known to be
zero from theory (Wright et al., 2008a). The lower 3× 3 part is
the transformation matrix, which performs the Radial/Trans-
verse/Normal (RTN) to inertial transformation2

2 See Vallado (2013, Eq. 3.20) or Wright et al. (2008c) for the required steps to obtain
this frame transformation matrix
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Inserting equation 3.2 into eq. 3.1 gives:

Pk+1,k =Φ(tk+1, tk)Pk,kΦ(tk+1, tk)T +P
Q
k+1,k (3.3)

where

PQk+1,k = ICk+1,k + I
L
k+1,k + I

R
k+1,k (3.4)

is formed from three covariance components:

ICk+1,k =
(
ICk+1,k

)T
=

tk+1∫
tk

tk+1∫
tk

Φ(tk+1, τ) G(τ)E
[
δg(τ)δg(t)T

]
G(t)TΦ(tk+1, t)T dτdt (3.5)

ILk+1,k =Φ(tk+1, tk)

tk+1∫
tk

E
[
δx(tk|tk)δg(t)

T
]
G(t)TΦ(tk+1, t)T dt (3.6)

IRk+1,k =

tk+1∫
tk

Φ(tk+1, τ) G(τ)E
[
δg(τ)δx(tk|tk)

T
]
dτΦ(tk+1, tk)T (3.7)

The evolution of the orbit error δx is formally non-Markov, since ILk+1,k
depends on a time-integral containing E

[
δx(tk|tk)δg(t)

T
]

(with tk 6
t 6 tk+1), where δx(tk|tk) itself depends on prior gravity acceleration
errors (cf. eq. 3.11) and therefore introduces unlimited history. Kalman
filters however are constructed using Markov chains as underlying
dynamics model, meaning that the probability at each time step is as-
sumed to only depend on the probability of the previous step. This al-
lows swift calculations and leads to computational tractability, as prop-
agations are minimized. Hence, making orbit gravity errors compatible
with sequential orbit estimation requires an approximately Markovian
formulation of PQk+1,k. If to this end an approximation of ILk+1,k+I

R
k+1,k

was available which does not require past gravity acceleration errors,
the orbital gravity error process would be approximately Markovian.
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Figure 3.1: Orbit gravity error co-
variance: initial integration domain

To ease understanding of the
subsequent assumptions and
simplifications, it makes sense
to graphically depict the inte-
gration domains, as has been
done in figure 3.1. The first
term of equation 3.3 propa-
gates the uncertainty at time
tk to time tk+1 and hence
encapsulates the entire uncer-
tainty between time t0 and
time tk. ICk+1,k is the part
of the propagated covariance
that accounts for the contribu-
tion of gravity errors that oc-
cur between tk and tk+1. The Markov-boundary is depicted in figure
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3.1 by continuous red lines. As IRk+1,k and ILk+1,k depend on prior
gravity error information, they reach beyond this boundary, which
makes orbital gravity errors formally non-Markov and is indicated
graphically by the hatched integration domains.

The well-known white noise approximation would be to assume
IRk+1,k=

(
ILk+1,k

)T
= 0 and set E

[
δg(τ)δg(t)

]
=Q δ(τ− t) where δ de-

notes the Dirac delta function. The integration over δ(τ− t) would
then reduce the two-dimensional time integral in equation 3.5 into a
one-dimensional integral, which can graphically be depicted as the
diagonal gray dashed line at t = τ in figure 3.1. As the autocorrelation
function of gravity errors however is not close to white noise (see
e.g. figure 3.2b), the white noise hypothesis needs to be rejected and
autocorrelated gravity errors need to be considered.

The next step in the derivation was undocumented between 1981

and 1994, since Wright (1981), after introducing two assumptions (eqs.
3.24 and 3.25) that allow to make the process Markovian, directly
states that “with the aid of the assumptions of integral symmetries it
is straightforward” to arrive at equation 3.30. The fact that 13 years
later Wright devoted a 20 page conference paper, reference Wright
(1994), to the justification of this “step” however indicates that it is
probably not too straightforward.

The key idea of Wright (1994) to transform the orbital gravity error
process into a Markov process is to first convert ILk+1,k and IRk+1,k
into descriptions that depend on the gravity acceleration error auto-
covariance instead of E

[
δx(tk)δg(t)

T
]

and then switching the inner
integration from the time domain into the Earth central angle, such
that the integration over prior gravity acceleration errors then corre-
sponds to an integration over prior Earth central angles.

The derivation proceeds according to Wright (1994). The state vector
error at time tk is formulated according to the absolute error definition:

δx(tk|tk) = δxk|k = xk|k − x̂k|k (3.8)

(a) Autocovariances (b) Autocorrelations

Figure 3.2: Typical shapes of gravity acceleration error autocovariances and
corresponding autocorrelations
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The estimated state at time tk, x̂k|k, is the a priori state x̂k|0 corrected
by a measurement update (if available):

x̂k|k = x̂k|0 +Kk(zk − h(x̂k|0)) (3.9)

where Kk represents the Kalman gain, zk the measurement vector
and h(x̂k|0) denotes the estimated observation based on the nonlinear
measurement function h and the estimated initial state vector. Inserting
equation 3.9 into eq. 3.8 and defining the a priori error at time tk as
δxk|0 = xk|k − x̂k|0, as well as δzk|0 = zk − h(x̂k|0), yields:

δxk|k = δxk|0 −Kkδzk|0 (3.10)

Inserting equation 3.2 for δxk|0 with t0 as initial time and tk as target
time into eq. 3.10 results in:

δxk|k =Φk,0δx0|0 +

tk∫
t0

Φk,ωG(ω)δg(ω)dω−Kkδzk|0 (3.11)

Equation 3.11 allows to relate the a priori error at time tk to the predic-
tion of an initial error, the contribution of gravity acceleration errors
between t0 and tk and a measurement update at tk. The expected
value E

[
δx(tk)δg(t)

T
]

can hence be written as:

E
[
δx(tk)δg(t)

T
]
=Φk,0E

[
δx0|0δg(t)

T
]
+

tk∫
t0

Φk,ωG(ω)E
[
δg(ω)g(t)T

]
dω (3.12)

since E
[
δzk|0δg(t)

T
]
= 0 (Wright, 1994). Wright reasons next that the

second term of equation 3.12 dominates the first. This claim is rooted
in the property of the gravity acceleration autocorrelation function to
level off rapidly around any value of t (cf. figure 3.2b). Due to the time
gap between t0 and t (t0<tk and tk 6 t 6 tk+1), the expected value
E
[
δx0|0δg(t)

T
]

in the first term of equation 3.12 is hence assumed to
be dominated by the second term. Consequently, E

[
δx(tk)δg(t)

T
]
∼=∫tk

t0
Φk,ω G(ω)E

[
δg(ω)g(t)T

]
dω which, upon insertion into eq. 3.6,

leads to:

ILk+1,k
∼=

tk+1∫
tk

tk∫
t0

Φ(tk+1,ω) G(ω)E
[
δg(ω)δg(t)T

]
G(t)TΦ(tk+1, t)T dωdt (3.13)

Similarly it follows for IRk+1,k:

IRk+1,k
∼=

tk+1∫
tk

tk∫
t0

Φ(tk+1, τ)G(τ)E
[
δg(τ)δg(ω)T

]
G(ω)TΦ(tk+1,ω)T dτdω (3.14)

Eqs. 3.5, 3.13 and 3.14 now contain the same integrand and only differ
in the integration boundaries, which motivates further approxima-
tions of equation 3.4 that are based on the modification of integral
boundaries. Equations 3.13 and 3.14 are not yet Markovian, as they
still depend on information prior tk.
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Figure 3.3: Orbit gravity error covari-
ance: intermediate integration domain

As a first step, the lower in-
tegral bounds of IRk+1,k and
ILk+1,k are changed from t0
to a constant offset T with re-
spect to the integration vari-
able. The constant offsets cut
off the total integration do-
main parallel to the Kalman
line in a distance of t− T and
τ− T . This also influences the
shape of Φk+1,kPk,kΦ

T
k+1,k,

as depicted in figure 3.3. Math-
ematically the inner integral
limits are changed as follows:

ILk+1,k
∼=

tk+1∫
tk

tk∫
t−T

K(τ, t)dτdt (3.15)

and:

IRk+1,k
∼=

tk+1∫
tk

tk∫
τ−T

K(t, τ)dtdτ (3.16)

where K denotes the common integrand of eqs. 3.5, 3.13 and 3.14.
Splitting ICk+1,k at t = τ and assigning the resulting triangles to the

domains ILk+1,k and IRk+1,k allows to formulate the purple (ĨLk+1,k)
and blue (ĨRk+1,k) shaded integration domains:

ĨLk+1,k
∼=

tk+1∫
tk

t∫
t−T

K(τ, t)dτdt (3.17)

ĨRk+1,k
∼=

tk+1∫
tk

τ∫
τ−T

K(t, τ)dtdτ (3.18)

Next, introducing a change of variables that replaces the absolute
integration times with the time difference

γ = t− τ⇔ t = τ+ γ⇒ dγ = dt (3.19)

allows to transform the integration bounds with respect to the time
difference γ:

ĨRk+1,k
∼=

tk+1∫
tk

0∫
−T

K(τ+ γ, τ)dγdτ (3.20)
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For orbital motion, time differences are directly linked to changes in
the orbital mean anomaly. However, for gravity acceleration errors it
is more typical to express the angular difference as a change in the
Earth central angle Ψ than in mean anomaly. Regardless of the naming,
angular changes are connected to time differences via the orbital mean
motion n:

Ψ = nγ (3.21)

Transferring the integration domain of the inner integral from time to
Earth central angle results in:

ĨRk+1,k
∼=

tk+1∫
tk

 1
n

0∫
−T ·n

K

(
τ+

Ψ

n
, τ
)
dΨ

dτ (3.22)

Considering only the direct time dependence, equation 3.22 is now
Markovian, since it only depends on time information between tk
and tk+1. Prior time information is converted to prior positional
information via the Earth central angle and the orbital mean motion.
As prior position information is linked to the current time tk via orbit
propagation, this conceptually solves the problem of satisfying the
Markov property.

As can be inferred from figure 3.2a, E
[
δg(τ)δg(t)T

]
consists only

of even and odd functions in the Earth central angle. Wright (1994)
stresses that ĨLk+1,k 6=

(
ĨRk+1,k

)T due to the presence of odd functions
in the integrand K, which are integrated to zero in ICk+1,k, however
nonzero for each of the triangles building ICk+1,k. Consequently, it must
be made sure that the computation of the inner integral guarantees that
the odd functions integrate to zero. This is achieved by transitioning
to the final integration domain depicted in figure 3.4
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Figure 3.4: Orbit gravity er-
ror covariance: final integra-

tion domain

(Wright, 1994). The computation of the
final integral according to figure 3.4 is
realized by expanding the upper bound
in equation 3.20 to T ·n:

PQk+1,k
∼=

tk+1∫
tk

 1
n

T ·n∫
−T ·n

K

(
τ+

Ψ

n
, τ
)
dΨ

dτ (3.23)

Despite guaranteeing proper handling
of odd functions, equation 3.23 is only
an approximation of the intermediate
integration domain depicted in figure
3.3. The corresponding assumptions for
their equivalence are (Wright, 1981):

IRk+1,k
∼=
(
ILk+1,k

)T (3.24)

and

ILk+1,k
∼= ILk+2,k+1 (3.25)
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A point that has not been discussed so far is the choice of the time
constant T . An upper limit for orbital motion is half the orbital period
(T <P/2) to keep the inner integral limits of equation 3.23 within
one orbital revolution. To avoid transients when the integration is
close to completing a full revolution, Wright (1981) suggests to choose
2/9 6 T/P 6 4/9, which corresponds to 80-160 degrees difference in
Earth central angle. A discussion of this limit is part of section 3.3.

The derivation presented so far builds upon Wright (1981, 1994) and
demonstrates the need to a) modify integral boundaries and b) transi-
tion from time to space to make the solution conceptually Markovian.
Finally, the choice of T introduces some additional variability. A signifi-
cantly faster derivation is possible, if formal rigidity is slightly relaxed.
This path is explained in the following and applied in Schiemenz et al.
(2020c) to swiftly obtain equation 3.30. The following three properties
are key to the subsequent reasoning:

• The dependence on prior gravity acceleration errors in equation
3.4 is limited to at most half of the orbital period

• The constituents of equation 3.4 (eqs. 3.5, 3.13 and 3.14) share
the same integrand

• The autocorrelation integrals tend to form constant plateaus
after integrating over differences in the Earth central angle that
correspond to a fraction of the orbital revolution (typically less
than a quarter of an orbit3)

These characteristics motivate the general idea to first approximate
ILk+1,k + I

R
k+1,k as being close to zero and then to compensate for the

significant part around t = τ by adding sufficient margin to the inner
integration boundaries of ICk+1,k.

Dropping ILk+1,k + I
R
k+1,k results in:

PQk+1,k
∼=

tk+1∫
tk

tk+1∫
tk

Φ(tk+1, τ)G(τ)E
[
δg(τ)δg(t)T

]
G(t)TΦ(tk+1, t)T dτdt

∼=

tk+1∫
tk

Φ(tk+1, τ) G(τ)

tk+1∫
tk

E
[
δg(τ)δg(t)T

]
G(t)TΦ(tk+1, t)T dt

dτ (3.26)

Using equation 3.19 to transition the inner integral from absolute times
to the time difference γ, results in:

PQk+1,k
∼=

tk+1∫
tk

Φ(tk+1, τ) G(τ)

tk+1−τ∫
tk−τ

E
[
δg(τ)δg(τ+ γ)T

]
G(τ+ γ)TΦ(tk+1, τ+ γ)T dγ

dτ (3.27)

3 Wright (1981) suggests stability after two ninth of an orbital revolution, i.e. 80 degrees
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To ease notation, defineH(tk+1, t) =Φ(tk+1, t)G(t) and R(τ, τ+γ) =
E[δg(τ)δg(τ+ γ)T ]. Then:

PQk+1,k
∼=

tk+1∫
tk

H(tk+1, τ)

tk+1−τ∫
tk−τ

R(τ, τ+ γ)H(tk+1, τ+ γ)T dγ

dτ (3.28)

It is a happy fact that for near-circular orbits H(tk+1, t) is only slowly
varying (Wright, 1981). Thus, H(tk+1, τ+ γ)T is next assumed to be
constant with respect to γ, which leads to:

PQk+1,k
∼=

tk+1∫
tk

H(tk+1, τ)

tk+1−τ∫
tk−τ

R(τ, τ+ γ)dγ

H(tk+1, τ)T dτ (3.29)

Spherically averaged gravity acceleration error autocovariance ma-
trices are only sensitive to changes in the Earth central angle. Conse-
quently R does not depend on absolute times or absolute positions
and is therefore stationary. Hence R(τ, τ+ γ) = R(0,γ) = R(γ). In
equation 3.29 the inner integral bounds depend on τ, which presently
ranges from tk to tk+1. To complete the decoupling of the inner from
the outer integral, this link has to be broken. For low Earth orbits
Gravity acceleration error autocorrelation integrals tend to converge
to a near constant value after a fraction of the orbital period. When re-
formulating the inner integral bounds it hence makes sense to choose
a timeframe that corresponds to a difference in the Earth central angle
which is sufficiently large to capture this plateau. As increasing the
inner integral domain beyond the value of Ψ for which it stabilizes
does not change the result of the integral, the bounds can be safely
expanded until the value of T suggested in the Wright (1981, 1994)
derivation. Hence gravity errors may be approximated via:

PQk+1,k =

tk+1∫
tk

H(tk+1, t)

 T∫
−T

R(γ)dγ

H(tk+1, t)T dt (3.30)

Graphically depicted, the reasoning that was applied to arrive at
equation 3.30 starting from eq. 3.29 essentially broadens the integration
domain of ICk+1,k in figure 3.1 to arrive at figure 3.4. The reasoning
behind this integral bounds expansion is not as rigorous as Wright’s
derivation, however it makes use of practical experience to arrive at the
same result. A similar integral bounds modification was also applied
in Gersten et al. (1967) and motivated by the fact that the integral limits
should be chosen based on the maximum possible angular separation
between orbital positions, which corresponds to half of the orbital
period.

Apart from the separation of H and the inner integral (which is also
the subsequent step in the original derivation after obtaining eq. 3.23),
equations 3.30 and 3.23 represent two sides of the same coin. The
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only visual difference is that equation 3.23 explicitly formulates the
inner integral in the angular domain and then uses 1/n as prefactor
to convert back to time, whereas equation 3.30 contains the equivalent
expression of the inner integral in the time domain.

The WK algorithm assumes R(γ) to be diagonal, i.e. free of cross-
correlations (this assumption is relaxed in section 3.3). In this case the
gravity acceleration error autocovariance can be decomposed into a
product of the instantaneous autocovariance R(0) and the 3× 3 gravity
acceleration error autocorrelation function ρ(γ):

R(γ) = R(0)ρ(γ) (3.31)

Inserting equation 3.31 into eq. 3.30 leads to:

PQk+1,k =

tk+1∫
tk

H(tk+1, t)R(0, t) I1 H(tk+1, t)T dt (3.32)

where I1 =
∫T
−T ρ(γ)dγ. To avoid the computationally expensive

numerical evaluation of the outer integral in equation 3.29, Wright
et al. (2008a) use a mean value theorem to approximate the integrand
as an iterated sum (“Riemann partitioning”). The time granularity
for the Riemann partitioning is chosen as ∆ 6 P/36 with P denoting
the orbital period (Wright, 1981), which for LEO objects leads to the
recommendation of ∆= 2min found in Wright et al. (2008a). In its final
form, the WK algorithm therefore uses equation 3.33 to approximate
the orbit gravity error covariance matrix I2 = PQk+1,k:

I2 = ∆

n−1∑
j=0

K(tk+1, τj +∆/2) (3.33)

where

K(tk+1, τj +∆/2) =Φ(tk+1, τj +∆/2) G(τj +∆/2)

R(0, τj +∆/2) I1(τj +∆/2)

G(τj +∆/2)
T Φ(tk+1, τj +∆/2)T (3.34)

together with τ0 = tk and τj+1 = τj +∆.
The inner integral I1 is separated from the outer integral I2 in

equations 3.32 and 3.33. This allows to precompute I1 with respect
to altitude for a certain gravity model, which results in a matrix of
time constants4. Since the matrices are sensitive to the orbital altitude,
the position part of the state vector, r(t), is required for evaluation.
The computation of the inner and outer integrals is outlined in the
following.

4 The inner integral computations are performed in the angular domain, which concep-
tually satisfies the Markov property. The results are then converted from the angular
domain to time using the orbital mean motion as indicated by equation 3.23
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inner integral computation

Both R(Ψ = 0, r(t)) and I1(r(t)) derive from the Kaula-Gersten-
Pechenick theory, which defines the RIC/RTN gravity acceleration
error variances by averaging E

[
δg(r(τ))δg(r(t))T

]
over all possible

products separated by the arc distance Ψ (Gersten et al., 1967; Wright
et al., 2008a). This makes R(Ψ = 0, r(t)) only sensitive to angular/time
differences but not to absolute position/time information.

Acceleration error variances
The RIC acceleration error variances for orbital altitudes have been
given in Gersten et al. (1967):

σ2RR(Ψ)=

Nmax∑
n=2

[
n+ 1

n− 1

]2 (aE
r

)2n+4
Pn0(cosΨ) σ2n (3.35)

σ2II(Ψ)=
1

2

Nmax∑
n=2

[
n(n+ 1)

(n− 1)2

](aE
r

)2n+4 [
Pn0(cosΨ)−

Pn2(cosΨ)

n(n+ 1)

]
σ2n (3.36)

σ2CC(Ψ)=
1

2

Nmax∑
n=2

[
n(n+ 1)

(n− 1)2

](aE
r

)2n+4 [
P(n−1)0(cosΨ)+

P(n−1)2(cosΨ)

n(n+ 1)

]
σ2n (3.37)

where

• Pn0 is the associated Legendre function5 of degree n and order 0.
Note that Pnm = 0 if m>n by definition, which occurs for n = 2

in σ2CC
• Ψ is the Earth central angle
• aE is the Earth’s mean equatorial radius
• Nmax is the maximum considered model degree (full-field de-

gree)
• σ2n is the degree variance valid for the current value of the

running index n

Degree variances
Degree variances define the contribution of a certain potential field
degree to the acceleration error covariances. Degree variances are ei-
ther due to errors of omission (potential field truncation) or errors of
commission (uncertainty of the considered coefficients). The uncer-
tainty of truncated degrees is generally not considered (no errors of
commission on truncated degrees). For a certain n=m, σ2n is therefore
defined as (Wright et al., 2008a):

σ2n =

 σ2T , if n > NT

σ2C, otherwise
(3.38)

5 Geodesy typically uses the definition of the associated Legendre functions without
the Condon-Shortley phase (−1)m. Since however only even orders are included in
the autocovariances, it makes no difference if the Condon-Shortley phase is included
or not
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where NT is the truncation degree (NT 6 Nmax) and equals the de-
gree/order used for the orbit propagation. The variances σ2T and σ2C
are defined as:

σ2T (n) =

[
µ(n− 1)

a2E

]2 n∑
m=0

(C2nm + S2nm) (3.39)

σ2C(n) =

[
µ(n− 1)

a2E

]2 n∑
m=0

(E
[
δC2nm

]
+ E
[
δS2nm

]
) (3.40)

C2nm and S2nm denote fully normalized coefficients, as typically found
in the gravity potential field coefficient files. The constant µ represents
the product of the universal gravitational constant and the mass of
Earth.

Equations 3.35, 3.36 and 3.37 define the diagonal components of
the gravity acceleration error covariance matrix and require equations
3.38, 3.39 and 3.40 for evaluation. The derivation of equation 3.35

is shown in Gersten et al. (1967). Work on the derivation of the off-
diagonal components started in the 1980’s, first by Kay Pechenick
and later by Eric Delaye. As noted by Pechenick (1988), most of her
research was performed in 1982, however not published before 1988.
Delaye’s work on the analysis of the effect of gravity model errors on
the state error covariance was published in 1986 (Delaye, 1986). Delaye
and Pechenick used different approaches for the derivations, however
their results agree up to the sign of the radial-/in-track covariance.
Pechenick pointed out that both solutions are correct and that the
sign depends on the definition of the in-track direction when deriving
σ2RI (Pechenick, 1988). The proper selection of the sign is discussed in
section 3.3.

The symmetric off-diagonal components, where the minus-sign
corresponds to the Pechenick solution and the plus-sign to the Delaye
solution, read as follows:

σ2RI(Ψ) = ±
1

2

Nmax∑
n=2

[
n(n+ 1)2

(n− 1)2

](aE
r

)2n+4
[
P(n−1)0(cosΨ) +

P(n−1)2(cosΨ)
n(n+ 1)

]
sin(Ψ) σ2n (3.41)

σ2IR = σ2RI (3.42)

Delaye and Pechenick also showed that any other off-diagonal compo-
nent has zero contribution (Delaye, 1986; Pechenick, 1988). This is by
no means an obvious result and the respective derivations are lengthy.
Hence:

σ2CR = σ2RC = 0 (3.43)

σ2CI = σ
2
IC = 0 (3.44)
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Summarizing the results, the 3×3 gravity acceleration error covariance
matrix is computed according to equation 3.45:

R(Ψ) =

σ
2
RR(Ψ) σ2RI(Ψ) 0

σ2RI(Ψ) σ2II(Ψ) 0

0 0 σ2CC(Ψ)

 (3.45)

Wright (1981) already noticed that it is beneficial to decompose the
autocovariance matrix into an instantaneous component (R(Ψ = 0))
and an autocorrelation matrix (ρ(Ψ)). The generic decomposition
equations are given in Wright et al. (2008a):

ρ(Ψ) = R(0)−1/2R(Ψ)R(0)−1/2 (3.46)

and

R(Ψ) = R(0)1/2ρ(Ψ)R(0)1/2 (3.47)

As reasoned in Wright et al. (2008a) and shown in section 3.3, R(0)
is highly dependent on the current Earth central distance r, whereas
the changes in ρ(Ψ) with respect to r are comparatively small. For
R(Ψ = 0) the off-diagonal components in equation 3.45 vanish, which
yields:

R(0) = diag

(
Nmax∑
n=2

[
n+ 1

n− 1

]2 (aE
r

)2n+4
σ2n ,

1

2

Nmax∑
n=2

[
n(n+ 1)

(n− 1)2

](aE
r

)2n+4
σ2n ,

1

2

Nmax∑
n=2

[
n(n+ 1)

(n− 1)2

](aE
r

)2n+4
σ2n

)
(3.48)

To compute I1, it is necessary to evaluate:

I1 =
1

n

T ·n∫
−T ·n

ρ(Ψ)dΨ

︸ ︷︷ ︸
Evaluation in

angular domain
(radians)

⇔ 1

n

2π

360deg

T ·n∫
−T ·n

ρ(Ψ)dΨ

︸ ︷︷ ︸
Evaluation in

angular domain
(degrees)

⇔
T∫

−T

ρ(γ)dγ

︸ ︷︷ ︸
Evaluation in
time domain

(3.49)

One of the central parts of the WK algorithm is the approximation of
the diagonal components of I1 by time constants. These values are
found by detecting plateaus in the autocorrelation integrals and a sub-
sequent transformation from angle to time. In the WK algorithm, I1 is
only computed for positive values of Ψ. The result is then multiplied
by two due to the symmetry of the diagonal components of I1 with
respect to the ordinate. This computation is performed for a range of
r values, e.g. r ∈ (1.0, 2.0)aE. The resulting curves are then approxi-
mated by techniques of curve fitting (e.g. polynomial interpolation,
Fourier series interpolation or cubic splining). The curve coefficients
are finally stored together with the degree variances to compute I1
and R(0) as part of the OD algorithm.
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outer integral i2 computation

The covariance matrix I2 = QF(tk+1,k) needs to be computed as part
of the OD covariance propagation phase. Given times tk and tk+1, it is
therefore required to evaluate equation 3.33 to obtain the correspond-
ing orbit gravity error covariance matrix. This involves the computa-
tion of Φ(tk+1, r(t)), G(r(t)), R(0, r(t)) (based on the precomputed
degree variances) and I1(r(t)) (based on the curve-fit coefficients) for
each discontinuous circular arc of duration ∆ between tk and tk+1.

3.3 improved orbit gravity error covariance

In the past, the WK algorithm has proven its positive effects on the
long-term filter stability, together with its real-time capability, which
is why it has been integrated into the software product ODTK of Ana-
lytical Graphics Inc. (AGI). Nevertheless, the primary shortcomings of
the WK algorithm remain its underestimation of the in-track position
covariance, along with a lack of robustness in the radial and normal
direction components for increased propagation durations.

These shortcomings shall now be fixed by revisiting the theory of
the I1 computation. Essentially, two steps are required to solve these
main issues and improve covariance realism.

3.3.1 Underestimation of in-track position error covariance and radial ve-
locity error covariance

In the WK algorithm I1 is a diagonal matrix of the following shape:

I1WK = diag(TRR, 0.0*, TCC) (3.50)

where TRR and TCC denote the correlation times from the evaluation
of the curve fits of the respective autocorrelation integrals. The value
of 0.0 for the in-track direction arises from the fact that the in-track
acceleration error components annihilate themselves after integration,
as explained in Wright et al. (2008a).

Using this form of I1 leads to an underestimation of the in-track
position error covariance, which is coupled to the radial velocity
error covariance. This is depicted in figure 3.5 that shows the case
of an artificial LEO reference satellite at an altitude of 511 km and a
propagation duration of 4.2days (instead of only a couple of orbits
as shown in Wright et al., 2008b). GGM02C is used as geopotential
model and truncated at degree/order: NT = 30. Similar to Wright
et al. (2008b), 1000 numerical propagations are performed to validate
the covariance bounds. In each Monte-Carlo iteration the orientation
orbit parameters are changed to validate the errors of omission. This
validation strategy is explained in section 3.5.

* The WK algorithm recommends a value of 10−10 deg scaled to time for numerical
stability. 0.0 is the value to be known correct from theory (Wright et al., 2008a)
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Figure 3.5: Underestimation of the WK algorithm: the actual errors (green)
are not contained within the predicted 3σ bounds

While the diagonal components given in equation 3.50 can success-
fully be used to approximate the respective components of the inner
integral, the WK algorithm completely neglects the RI acceleration
error cross-correlation terms (equations 3.41 and 3.42).

In fact, Wright et al. (2008a) quote the results derived by Pechenick
and the corresponding generic decomposition of R(Ψ) into R(0) and
ρ(Ψ) (equations 3.46 and 3.47), however it is explicitly stated that
this decomposition “enables the definition of a diagonal 3×3 matrix
autocorrelation function”, whereas equation 3.46 does not result in a
diagonal matrix if σ2RI = σ

2
IR is taken into account.

Numerical simulations revealed the root-cause of these underesti-
mations to be the neglect of the RI cross-correlations in I1 (Schiemenz
et al., 2020c). These cross-correlations are required for an accurate
estimation of the in-track position error and radial velocity error co-
variances, despite the fact that the in-track acceleration errors cancel
during integration. The neglected RI cross-correlations need to be
treated in a similar, but slightly different manner as the diagonal
terms in order to solve the covariance underestimations, which is
shown in the following.
σ2RR, σ2II and σ2CC are symmetric with respect to the ordinate, how-

ever σ2RI is pointwise symmetric with respect to the origin due to the
dependency of equation 3.41 on the sine-function. This is depicted in
figure 3.6, in which each curve represents σ2RI for an altitude between
1.0 aE and 2.0 aE, spaced in equal distances of 20 km.

The symmetry of σ2RR, σ2II and σ2CC with respect to the ordinate
make the cumulative integration of the corresponding autocorre-
lation functions independent of the integration direction (Ψ from
−π to π or vice versa). For σ2RI however this is not the case due
to its different symmetry properties. This is also the reason why
the (inaccurate) WK integration strategy (Ψ from 0 to π) would
not hold for ρRI, as obtained from equation 3.46. Instead, it is re-
quired to choose the integration bounds such that the RI plateaus
are revealed. For ρRI the bounds are shifted by π from [−π,π] to
[0, 2π]. The sign of the integral needs to be chosen according to the
definition of σ2RI in equation 3.41 (− for the Pechenick form and
+ for the Delaye form). The minus sign in the Pechenick-form es-
sentially changes the integration bounds to [2π, 0], which reflects the
opposite definition of the in-track direction with respect to Delaye.
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Figure 3.6: σ2RI versus altitude for NT = 50 and GGM02C as obtained using
the Pechenick form of equation 3.41

Consequently, the RI cross-correlation integral is obtained according
to equation 3.51,

IRI = ±
2π∫
0

ρRI(Ψ)dΨ (3.51)

which leads to graphs similar to figure 3.7a for each altitude and
truncation degree (in figure 3.7a the result of the integration for IRI has
been shifted by −π to facilitate the comparison). The plot containing
the altitude range 1.0aE to 2.0aE is given in figure 3.7b.

A key finding that has been uncovered after the publication of
Schiemenz et al. (2020c) is the physical relationship of the sign choice
with respect to the propagation direction when computing IRI. For-
ward propagation requires positive cross correlation time constants,
whereas backward propagation requires negative time constants and
hence a change of the sign. The precomputation of the inner integral
curve coefficients can hence be performed using either the Pechenick
or Delaye formulation with subsequent integration according to equa-
tion 3.51, which leads to positive correlation times. The real-time
part of the orbit gravity error covariance estimation algorithm then
needs to check the propagation direction and reverse the sign of TRI if
necessary.

With the inclusion of the radial/in-track cross-correlation, the mul-
tiplicative decomposition of the instantaneous autocovariance and the
inner integral matrix I1 takes the form given in equation 3.52.

R(0, r)1/2I1(r)R(0, r)1/2 = diag
(
R(0, r)1/2RR ,R(0, r)1/2

II/CC
,R(0, r)1/2

II/CC

)

·

TRR(r) TRI(r) 0

TRI(r) 0 0

0 0 TCC(r)

 ·
diag

(
R(0, r)1/2RR ,R(0, r)1/2

II/CC
,R(0, r)1/2

II/CC

)
(3.52)

Equation 3.52 is to be used instead of eq. 3.31, with time implicitly
defined by r(t) in equation 3.32, if the RI cross-correlation is taken into
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(a) Plot of equation 3.51 for r = 1.1aE, NT = 50 and GGM02C (purple) along with
the results for IRR, III, ICC. Detected plateaus are highlighted in red
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(b) Plot of equation 3.51 for GGM02C and NT = 50. Each curve corresponds to the
cumulative integration for a certain altitude within the range 1.0aE and 2.0aE

Figure 3.7: RI cross-correlation integral evaluation and approximation using
time constants, similar to IRR and ICC in the WK algorithm

account, as eq. 3.31 only holds for R(0, t) and I1(t) being diagonal.
Also note that R(0, r)CC and R(0, r)II are equal from theory, as shown
in equation 3.48. The updated definition of equation 3.34 therefore
reads:

K(tk+1, τj +∆/2) =Φ(tk+1, τj +∆/2) G(τj +∆/2)

R(0, τj +∆/2)1/2 I1(τj +∆/2) R(0, τj +∆/2)1/2

G(τj +∆/2)
T Φ(tk+1, τj +∆/2)T (3.53)

with I1(1, 2) = I1(2, 1) 6= 0 due to the RI acceleration error covariances.
The explicit consideration of the RI acceleration error cross-correlation
is the single measure required to fix the underestimation of the WK
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algorithm in the in-track position error and the radial velocity error
components, as shown in section 3.5.

An example of the inner integral curve fits via cubic splining is given
in figure 3.8. Due to the splining technique, the original data-points
are exactly met, which results in zero root mean square error (RMSE)
and is why the evaluated splines cannot be distinguished from the
original data (this is not the case for polynomial curve fits). The lower
subplot of figure 3.8 demonstrates a splining of the R(0) diagonal
elements, which may be used to increase the algorithm performance,
as explained in section 3.4.

Figure 3.8: Inner integral I1 curves (upper subplot) and R(0) diagonal ele-
ments (lower subplot) together with the cubic splining fits for GGM02C and

NT = 30

impact of in-track uncertainty underestimation on

orbit determination

The underestimation of the in-track position error and radial velocity
error variances is rooted in the omission of the radial/in-track cross-
correlation terms, as can be validated by comparing the results of
section 3.5.1 with figure 3.5. The practical relevance of this neglect for
orbit determination purposes however deserves a separate discussion.

Figure 3.9 depicts a zoom on the first 10 hours of figure 3.5. When
performing orbit determination, the measurement update times de-
pend on the availability of sensors for taking observations. Given a
filter-based OD process and sufficient resources to keep the prop-
agation times within a couple of orbits, the neglect of ρRI may be
acceptable for practical operations. However, in case of limited sensor
resources or if the orbit determination is performed using batch estima-
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tors, the propagation times are longer than a couple of orbits. In these
cases ρRI should not be neglected. The reason for this soft wording is
twofold. First, in orbit determination it is often possible to compen-
sate for small energy errors via small adjustments of the semi-major
axis - a phenomenon sometimes referred to as “favorable aliasing”
(Woodburn, 2019). The second point is the dichotomy identified in
Wright et al. (2008b), when a case of apparent in-track overestimation is
discussed. This dichotomy (theoretical underestimation vs. practical
overestimation) traces back to the full-sphere averaging in the defi-
nition of the stochastic gravity error process. Recall that due to this
averaging property all orbits shown in figure 3.5 result in the same
covariance estimates. Depending on the orbit under consideration
however, the actual gravity error process may be dominated more by
the local geographic properties, which in turn can lead to a practical
overestimation of uncertainty, whereas from a theoretical perspective
the transverse error is clearly underestimated. The domination of local
effects is increasing with orbital altitude, as the theoretical foundation
of the gravity error covariance is based on the extrapolation of Kaula’s
work to near-Earth altitudes. A further example of this dichotomy is
given in section 3.5 as part of the numerical validation of the improved
algorithm.

Figure 3.9: Zoom on the first 10 hours of figure 3.5. As shown, the ne-
glect of ρRI may be acceptable for a couple of orbits propagation duration

3.3.2 Robustness of radial and normal position error covariance components

To ensure computational tractability, the WK algorithm approximates
the inner autocorrelation integrals by representative time constants.
Figure 3.10 depicts the autocorrelation functions of the radial direction
(similar results are obtained for the normal direction) versus central
angle Ψ. All curves for the altitudes between r = 1.0 aE and r = 2.0 aE
in steps of 20 km are combined into the graphs. The autocorrelation
functions are symmetric about the ordinate, which is the justification of
the WK algorithm for only evaluating the positive range of Ψ (Wright
et al., 2008a). However, when performing the integration over the
Earth central angle, it makes a difference if the integration is started
at Ψ = −π or at Ψ = 0, as depicted in figure 3.11 and reasoned in the
following.
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Figure 3.10: Radial autocorrelations for NT = 30 and GGM02C. Each curve
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(b) Cumulative integration of ρRR(Ψ)
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(c) Cut of figure 3.11a on the posi-
tive part of the abscissa

Figure 3.11: Difference in radial autocorrelation integrals depending on
integration strategy

Multiple interesting properties can be inferred from figure 3.11:

• For altitudes below a certain boundary rb (≈ 1.3aE for NT = 30

and GGM02C) the autocorrelation integrals form true plateaus
once the domain of integration is sufficiently large. The values
of these plateaus are taken as the constants to approximate the
autocorrelation integrals in the WK algorithm
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• Above rb the plateaus vanish and the autocorrelation integrals
become sinusoidal

• If true plateaus are reached, their plateau values are only ap-
proximately equal between both approaches (

∫π
−π ρ(Ψ)dΨ and

2
∫π
0 ρ(Ψ)dΨ). A reference plateau value is highlighted in figure

3.11 for comparison
• As there are no true plateaus above rb, fictive plateaus have to

be created, which are less reliable than true plateaus (“badly
conditioned”). In these situations the plateau forming algorithm
has a strong influence on the resulting scalar constants

Since the WK algorithm starts the integration from Ψ= 0, its integrated
autocorrelations rise from zero, whereas this is not the case if the in-
tegration is started from Ψ= − π. The relationship

∫π
−π ρ(Ψ)dΨ =

2
∫π
0 ρ(Ψ)dΨ only holds if the integration is performed over the full

range of Ψ. Therefore only the endpoints (Ψ = π) match exactly in
the lower graphs of figure 3.11. All other points differ from each
other, with increasing magnitude the further Ψ is away from π. Since
transients are not to be taken into account in the plateau detection,
the plateau values in each direction are obtained by integrating over
a sufficiently large part of the orbit, but never the full orbit. As the
plateau values are subsequently converted to time using the inverse
orbital mean motion, even small differences can scale to notably dif-
ferent I1 curve fits for low altitudes. The partial lack of robustness of
the WK algorithm in the normal and radial position error covariance
components can therefore be explained by its simplified integration
strategy and the selection of the averaging domain (40-160 degrees in
case of the original implementation in ODTK).

For altitudes above rb the plateaus vanish and the autocorrelation
integrals become sinusoidal. In the absence of true plateaus other
strategies are required to obtain representative time constants. One
option is to average over the entire integration domain. So far this has
been the strategy of ODTK, however this approach requires switching
the integration bounds back to 2

∫π
0 ρ(Ψ)dΨ, which may lead to sharp

transitions around rb, when combined with
∫π
−π ρ(Ψ)dΨ for altitudes

below rb.
Another approach that does not require a change of the integration

bounds is to average over the domain of Ψ which is free of transient
behavior. This domain depends on the truncation degree NT , but is
constant with altitude (the sinusoids are stacked on top of each other
in figure 3.11). Transient behavior can be identified in many ways. A
local standard deviation filter identified transients above Ψ = 122 deg

and below Ψ = 52 deg for altitudes above rb in figure 3.11. Each fictive
plateau may hence be created as the mean autocorrelation integral
between the sinusoid peaks (max and min). Local standard deviation
filtering is also able to detect the true plateau boundaries. As such the
method can be used for both r 6 rb and r > rb. It allows to obtain
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Figure 3.12: Difference in autocorrelation integrals between the WK algorithm
(I1 integration strategy: 2

∫π
0 ρ(Ψ)dΨ, red) and the theoretical integral to be

considered for the I1 computation (
∫π
−π ρ(Ψ)dΨ, blue)

figure 3.12 after posterior conversion from central angle to correlation
time and curve-fitting, as outlined in eq. 3.49 and detailed in Wright
et al. (2008a,c).

Figure 3.12a reveals the differences in the autocorrelation integrals
versus altitude for r > rb between the WK algorithm (red) and the
integration starting from Ψ = −π (blue). However, a zoom on the
domain r 6 rb shows that the slight angular differences in the plateaus
also lead to considerable changes of the autocorrelation time curve-fits
in the most populated LEO altitudes (cf. figure 3.12b).

It is this difference in the true and fictive plateaus, which explains
the partial lack of robustness in the radial and normal position di-
rections of the WK algorithm. That the improved version (domain of
integration: Ψ ∈ [−π,π]) is indeed able to yield accurate state vector
error covariances is demonstrated in section 3.5.

3.3.3 Inclusion of additional perturbations

The WK algorithm uses a two-body STM in equation 3.34 to propagate
the orbital error covariance over time. The rationale behind this deci-
sion is to “enable a fast-running filter, sufficiently accurate to capture
the essence of the potential function covariance matrix” (Wright et al.,
2008a).

Using a two-body STM, Φ2B, is appropriate as long as no addi-
tional perturbations are modeled or only short propagation times are
considered. For practical operations however, all possible perturbation
models are typically enabled. Only the gravity field is recommended
to be truncated for the purpose of execution speed (Petit and Luzum,
2010). Consequently, these perturbations also need to be reflected in
the state error transition matrices, as otherwise the accumulation of the
orbit error covariance diverges rather quickly. This is shown in figure
3.13, in which the covariance breaks down between 13h and 17h of
simulation time, since Φ2B is not accurate enough for the summing of
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Figure 3.13: Breakdown of normal position and velocity orbit error covari-
ances using a two-body STM as suggested by the WK algorithm

the covariances as also perturbations other than an aspherical gravity
field are modeled. Modern special perturbations (SP) orbit analysis
applications, such as AGI’s ODTK or Airbus’ SPOOK compute the
STMs numerically. It is therefore straightforward to include the full
set of perturbations in the STM computations.

Depending on the implementation of the propagation steps in be-
tween measurement updates, it may be necessary to perform an addi-
tional propagation (or interpolation) in order to obtain precise state
vector data at all covariance evaluation times (τj+∆/2) to evaluate the
lower part of the frame conversion matrixG(τj+∆/2). If an additional
propagation is required (for example because there is no sufficiently
small propagation grid in the absence of measurement updates), it is
important to stress that G(τj +∆/2) must always be computed with
the maximum precision possible. This avoids errors in the frame con-
versions to accumulate additionally to possible errors in the STMs due
to floating-point arithmetic or measures of reducing the runtime.

3.4 runtime considerations and implementation

Equation 3.33 requires the evaluation of K(tk+1, τj + ∆/2) for each
time granularity step between tk and tk+1 (p steps). This involves one
(special perturbations) orbit propagation to compute G(τj+∆/2) with
p output times and p (numerical) computations of Φ(tk+1, τj +∆/2).

Also, as noted above, G(τj +∆/2) needs to be computed with the
full accuracy available and Φ(tk+1, τj +∆/2) with all considered per-
turbations. These parts of K(tk+1, τj + ∆/2) are the main runtime
drivers when computing QF(tk, tk+1). If a non-sequential batch al-
gorithm capable of incorporating process noise is used for orbit de-
termination (e.g. the extended weighted least squares algorithm pre-
sented in Schiemenz et al., 2019c), this load is even squared, since
QF(t0, tk+1) is required for each individual measurement time (t0
denotes the reference epoch of a batch estimator).

The additional computational burden due to the gravity process
noise computation depends on the orbit determination algorithm and
its implementation. In some cases, for example for filters using a
small propagation-grid in the absence of measurements, full accuracy
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integrated quantities may be available and can be harnessed to obtain
the required matrices for the evaluation of QF via interpolation. If
the availability of quantities ready for interpolation is not assumed
(for example because the time grid of propagations in the absence of
measurements is too wide for interpolation, or if batch estimators are
considered), the computation of QF(tk, tk+1) can quickly become the
most costly component of the covariance propagation. The following
discussion is concerned with this latter scenario.

In the light of the accuracy requirements formulated during the
discussion of the inclusion of additional perturbations, it becomes
clear that the main options to reduce the computational runtime are
Φ and the integration accuracy of the numerical integrator. ∆ should
not be increased, as otherwise the constraint ∆ 6 P/36 gets violated,
which leads to erroneous orbit gravity error covariance results.

The following means were found to reduce the time needed to com-
pute QF for a typical low Earth orbit at an average altitude of 511 km
over 4.2days of propagation with covariance outputs computed every
15 minutes by approximately 50%; while still maintaining qualitatively
equal covariance data compared to the case of evaluating QF with the
full accuracy available (gravity field up to the truncation degree/order
and relative/absolute integrator accuracy of 10−12):

• The gravity field degree is reduced to n = 4

in the computation of Φ(tk+1, τj +∆/2)
• The gravity field order is reduced to m = 0

in the computation of Φ(tk+1, τj +∆/2)

 J4 gravity

• The absolute and relative numerical integration accuracy of the
numerical integrator used to compute Φ(tk+1, τj + ∆/2) can
be significantly decreased based on the orbital altitude. For
511 km altitude, an accuracy of 10−12 allowed for ∼5days of
covariance propagation without breakdown using a Shampine-
Gordon integrator. The higher the orbital altitude, the further
the integration accuracy can be lowered

In addition to above runtime improvements, two further tricks need
to be heeded when implementing equation 3.33 in software for the
case of multiple output times (i.e. for batch estimators):

• When computing Φ(tki , τj +∆/2) for each measurement time
i, the integrator-internal state-variables shall be saved in order
to continue the integration from the current time τj +∆/2 to the
next measurement time tki+1

• Since Φ(tki+1 , τj +∆/2) =Φ(tki+1 , τj−1 +∆/2)Φ(τj−1 +∆/2, τj +∆/2),
it suffices to compute only the STMs for the first output/measure-
ment time and the delta STMs between the output times. This
strategy is exemplified in figure 3.14, which illustrates that in-
stead of numerically computing the paths in red, it is equivalent
to compute the blue paths once (with integrator state backups)
and then to propagate them via the delta STMs (black)
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Figure 3.14: Efficient STM computation strategy. The red paths are computed
using the blue and black ones, which requires a minimum amount of runtime

numerical robustness

As noted in Wright et al. (2008a), the numerical computations some-
times lead to non positive semidefinite (PSD) covariance estimates (e.g.
due to a negative element on the main diagonal of the orbit gravity
error variances or via correlation coefficients with a magnitude > 1.0,
or due to matrix asymmetries).

The occurrence of indefinite orbit error covariance estimates could
be replicated independently of the value selected for III, for which
the WK algorithm suggests to put 10−10 for the purpose of numerical
stability (Wright et al., 2008a). Consequently, III has been reverted to
its theoretical value of 0.0 and a more powerful technique to correct
indefinite covariance estimates has been sought. A suitable algorithm
for this posterior checking has been published in Higham (1988).
Higham’s method is able to estimate a nearest (in the sense of Frobe-
nius norm minimization) PSD covariance matrix to an arbitrary real
matrix. Therefore it can be used to correct indefinite covariance esti-
mates. The covariance correction is especially successful in Cartesian
(e.g. GCRF) coordinates due to the inherent magnitude differences
between the position and velocity sub-covariances.

algorithm summary

The complete real-time part of the QF computation algorithm is sum-
marized in algorithm 3.1. The improved I1 integral components are
assumed to be available from offline computations. The listed pseudo-
code can be used for filters as well as batch estimators and supports
the efficient computation of QF at multiple output times (required
for batch estimation). The availability of integrated trajectories and
STMs to be used for interpolation is not assumed, which is why these
computations are listed as separate steps.
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Comments:
1: tEnd is an array of

output times

3: teval = τj +∆/2

5: Use all perturbations
and full integration
accuracy

7: Initialize the output
covariance matrix
array

13: Compute r as the
magnitude of the
position part

15: Evaluate the
precomputed
(according to section
3.3) I1 curve-fits

17: Swap IRI sign for
backward propagation

21: Compute R0 via the
stored degree
variances or R(0)
curve-fits

26: Use prepared/stored
integrator state and
reduced gravity
field/integrator
accuracy

28: Compute
Riemann-partitioned
integral

33: Propagate each STM
via multiplication
with δΦ. Use reduced
gravity field
degree/order and
integrator accuracy

39: nearPSD implements
the Higham algorithm
and checks if fixing is
necessary

41: Return the array of
covariance matrices
(one for each element
in tEnd)

The reduced form of the algorithm, which is suitable only for filters
performing the propagation phase in sufficiently small time increments
for the state and STM computations to be interpolated, is given as
algorithm 3.2 for the sake of completeness.

Algorithm 3.1: Generic computation of orbit gravity error covariance
(filters and batch estimators)

1: function computeQFMatrixGeneric(x(tStart), tStart, tEnd)
2: nOut ← length(tEnd)

3: teval, tdir ← computeEvalTimesAndTimeDir (tStart, tEnd(nOut))

4: neval ← length(teval)

5: xeval ← propagate (x(tStart), teval)

6: idx← 1

7: QF ← 0.0

8: for i← 1,neval do

9: if ((tdir = 1 and teval(i) > tEnd(idx)) or

(tdir = −1 and teval(i) < tEnd(idx))) then
10: idx← idx+ 1

11: end if
12: G← buildG(xeval(ti))

13: r← |xevalpos(ti)|/aE

14: if i = 1 then
15: I1← evaluateI1(r)
16: if tdir = −1 then
17: I1(2, 1)← −I1(2, 1)
18: I1(1, 2)← −I1(1, 2)
19: end if
20: end if
21: R0← computeR0(r)
22: F ← G ∗ R(0)1/2
23: C ← F ∗ I1 ∗ FT

24: if i = 1 then

25: for j← idx,nOut do
26: Φj ← computeSTM(x(ti), ti, tEnd(j))

27: storeIntegratorState()
28: QF(j)← QF(j) +∆ · (Φj ∗C ∗ΦTj )
29: end for
30: else
31: δΦ← computeSTM(x(ti), ti, ti−1)

32: for j← idx,nOut do
33: Φj ← Φj ∗ δΦ
34: QF(j)← QF(j) +∆ · (Φj ∗C ∗ΦTj )
35: end for
36: end if
37: end for

38: for j← 1,nOut do
39: QF(j)←nearPSD(QF(j))

40: end for

41: return QF
42: end function
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Comments:
2: ∆ needs to fulfill

∆ 6 P/36

3: Select sign
depending on

propagation
direction

7: Negate IRI for
backward

propagation

Algorithm 3.2: Computation of filter orbit gravity error covariance
using interpolation

1: function computeQFMatrixFilter(x(tStart), tStart, x(tEnd), tEnd)
2: ∆← tEnd − tStart

3: teval ← tStart ±∆/2
4: xeval,Φ← interpolate(x(tStart), tStart, x(tEnd), tEnd, teval)

5: G← buildG(xeval)

6: r← |xevalpos |/aE

7: I1← evaluateI1(r)
8: R0← computeR0(r)

9: F← G ∗ R(0)1/2
10: C← F ∗ I1 ∗ FT
11: QF ← ∆(Φ ∗C ∗ΦT )
12: QF ← nearPSD(QF)

13: return QF
14: end function

3.5 simulation results

The orbit gravity error covariance validation is performed at two
stages: propagation only and orbit determination. Using orbit and
covariance propagation only allows to verify that the errors between
the reference orbit (truth) and the propagated Monte-Carlo (MC)
orbits remain within the 3σ error bounds for each of the state vector
components.

The type of gravity errors considered also determines the validation
strategy: errors of commission can be validated by randomizing the
model potential field coefficients in accordance with its covariance
matrix. This procedure is further explained in Wright et al. (2008b).
Consequently a reference orbit (with the nominal potential field co-
efficients) is computed first and then the nominal coefficients are
perturbed in a Gaussian fashion in each of the Monte-Carlo iterations.

Error bounds on the errors of omission are more difficult to validate.
When truncating the potential field, there is no randomness in the
resulting path (the errors are epistemic in nature). The (simulated)
space environment leads to a single and distinct orbit, which differs
from the full-field reference orbit. Therefore one would not expect the
errors to fill the error bounds as in the case of errors of commission.
In fact, the zero-mean property of the stochastic gravity error process
is achieved only due to a) the full-sphere averaging of gravity acceler-
ation errors and b) the fact that there are no zero-degree harmonics in
the disturbing potential.

To validate the orbit gravity error of omission covariance estimates, it
is however possible to explicitly make use of the averaging property in
the definition of the stochastic gravity error process. Recall that “grav-
ity covariance is defined as the average of all possible products of [...]
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gravity components separated by the arc distance Ψ” (Gersten et al.,
1967). The same sequence of orbit error covariance matrices can thus
be expected when changing orbit parameters that only influence the
orientation of the orbit but not its shape. This allows the error bounds
for gravity errors of omission to be validated by first computing the
expected uncertainty for the nominal orbit and then performing two
numerical orbit propagations for each Monte-Carlo iteration. The first
of these propagations is the reference propagation and uses the full
potential field, whereas the second uses the truncated potential field.

In each MC iteration one of the orbit plane orientation parameters
is varied according to a uniform distribution6 in the parameter ranges
given in table 3.1, which cover the typical LEO parameters. If errors
of commission are to be simulated additionally, the potential field
coefficients are randomized for the second propagation.

Orbit plane orientation parameter Range

Argument of Perigee 0− 2π

Right ascension of ascending node 0− 2π

True anomaly 0− 2π

Inclination 65 deg− 105 deg

Table 3.1: Bounds on orbit parameter changes to validate
errors of omission

In the following cases the full potential field is considered to be of
degree/order equal to 85 (Nmax = 85 in the I1 computations), which is
of typical magnitude for LEO applications. The presented framework
also holds for higher altitudes, however it has already been mentioned
in section 3.3 that the I1 computation becomes increasingly ill condi-
tioned above the LEO regime. Furthermore, the influence of potential
field errors and their associated uncertainty decreases rapidly with
altitude, which is why the validation is limited to the LEO regime.

The simulations have been performed with the Airbus tool SPOOK
(Rodriguez Fernandez et al., 2019b), which has been extended with
the improved orbit gravity error covariance capabilities. The reference
orbit (prior to any changes when validating errors of omission) is
similar to that of the Airbus satellite TerraSAR-X (Pitz and Miller, 2010),
which orbits Earth at a mean altitude of 511 km with an eccentricity of
≈ 0.0001476. Errors of omission are simulated using a 30× 30 potential
field. The truncation level was selected as a reference for operational
choices dominated by runtime considerations.

6 The uniform distribution shall ensure that the orbit plane orientation parameters
are drawn equally likely from their domain of definition. A Gaussian distribution
would artificially bias the observed state vector errors with respect to the mean of the
orbit plane orientation parameter range, which is undesired. After all, the aleatoric
treatment of epistemic omission uncertainty is able to quantify the resulting state
vector error distribution, but does not allow to characterize it (UC only applies for
pure errors of commission; see section 1.3.1 for the terminology)
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3.5.1 Propagation only

The results for errors of omission and commission are depicted in
figure 3.15 for EGM-96 and figure 3.16 for GGM02C. Despite the as-
pherical gravity field, also atmospheric drag including thermospheric
winds (using DTM-2013 (Bruinsma, 2015) and HWM-93 (Hedin et al.,
1996)), as well as solar radiation pressure and solar/lunar third body
gravity fields were enabled to demonstrate that additional perturba-
tions can be handled as explained in section 3.3.3.

The results are similar in both cases: during the propagation time
of 4.2days the radial and in-track orbit errors are consistent with the
3σ boundaries as computed by algorithm 3.1. The normal direction
uncertainty is consistently estimated up to ∼40h of simulation time,
which is when some samples begin to exceed the error bounds. The
in-track position error is dominating the radial and normal position
errors due to the radial/in-track cross-coupling. The obtained results
justify the stochastic model approach.

Errors of commission only (no potential field truncation) are pre-
sented in figure 3.17 for GGM02C. The performance is similar to
figures 3.15 and 3.16. The orbit errors remain in the predicted bounds
for the entire propagation time in the radial and in-track directions.
The normal directions again contain samples which start to exceed the
error bounds after ∼40h of propagation time. In contrast to the cases
of omission and commission, the error magnitudes have decreased
by a factor of ∼300 (5 meter transverse position uncertainty vs. 1.5 km
and 0.1m radial/cross-track vs. 30m in figure 3.16).

Figure 3.15: Errors of omission and commission for EGM-96 obtained after
1000 Monte-Carlo iterations, corresponding to 2001 numerical propagations
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Figure 3.16: Errors of omission and commission for GGM02C obtained after
1000 Monte-Carlo iterations, corresponding to 2001 numerical propagations

Figure 3.17: Errors of commission for GGM02C obtained after 1000 Monte-
Carlo iterations, corresponding to 2001 numerical propagations

3.5.2 Orbit determination

The covariance propagation results of section 3.5.1 qualify the orbit
gravity error covariance matrices for their application in orbit deter-
mination algorithms. Naturally the usage of process noise falls into
the domain of the sequential filters. However, also batch estimators
can be enabled to consider physics-based process noise, as for exam-
ple demonstrated in section 4.2 and Schiemenz et al. (2019c). Since
the gravity process noise matrix is computed incrementally, it can be
added directly to the propagated covariance of sequential estimators
without further considerations.

The technique of orbit orientation parameter variation cannot be
applied in case of orbit determination applications, as different orbits
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result in different target observation times. Consequently, to validate
the physical process noise matrices as part of an OD algorithm, the
orbit state vector errors are expected to remain within the 3σ error
bounds without filling them, given that errors of omission are appli-
cable. If only errors of commission are simulated, it is expected that
the error bounds are filled and match the 3σ bounds of the Monte-
Carlo iterations. The following simulation results were obtained using
SPOOK with the same orbit configuration as in section 3.5.1 and a
single simulated optical observer located in central Germany. Only
the position parts of the state vector errors are shown for brevity.

Figures 3.18, 3.19 and 3.21 depict the results obtained using an
Extended Kalman Filter (EKF)7 with orbit gravity error process noise.
For comparison, the results of a classical EKF without process noise
are shown in figure 3.20.

While the oscillatory motion in the radial and normal directions
in figure 3.18 is perfectly contained within the expected uncer-
tainty bounds, the in-track direction in figure 3.18 exemplifies the
dichotomy discussed in section 3.3: the in-track uncertainty estimates
appear pessimistic due to the definition of the stochastic gravity
error process. A change of the simulated orbit orientation parameters
from (t,a, e, i,Ω,ω,ν) = (2011/10/01−20:00h, 6887.0 km, 0.000 147 6,
97.1 deg, 141.578 deg, 56.55 deg, 80.2 deg) to (t,a, e, i,Ω,ω,ν) =

(2015/02/18−09:00h, 6887.0 km, 0.000 147 6, 76.389 deg, 84.771 deg,
108.631 deg, 162.348 deg), however, demonstrates that for this pa-
rameter combination the errors propagate exactly along the bounds.
Without the explicit consideration of the RI cross-correlation this case
would be a perfect example of the in-track underestimation of the WK
algorithm, as shown in figure 3.19.

In both cases featuring orbital gravity error consideration (figures
3.18 and 3.19) the measurement updates of the simulated optical ob-
server are able to significantly reduce the orbital uncertainty. The
performance of a classical EKF without process noise consideration
is depicted in figure 3.20. The position orbit errors are not contained
within the error bounds, leading to suboptimal and inconsistent esti-
mates. Since process noise is neglected, there is no increase of the esti-
mated root variances between the measurement times. The estimated
uncertainties also remain inconsistent after measurement updates of
the optical observer. These examples demonstrate the need to account
for physics-based process noise in low Earth orbits.

Errors of commission only are depicted in figure 3.21. Since the full
potential field is used in the orbit determination, the orbit errors and
their actual/estimated uncertainties are small compared to the case
of errors of omission. In all axes the three sigma root variances of the

7 Strictly speaking, the filter is not a classical EKF, as gravity noise is not white. The
terminology is used nonetheless, since this property does not alter the remaining
filter equations (Wright, 1981)
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Figure 3.18: OD including errors of omission and commission obtained using
an EKF. Measurement updates can be identified via the dips in the estimated

root variances. Model: GGM02C

Figure 3.19: Same scenario as in figure 3.18, except for modified orbit orienta-
tion parameters to demonstrate the need to consider the RI cross-correlation

MC iterations (red) match the estimated three sigma root variances
(blue) once the filter is settled (cf. zoom on the timeframe 80h to 98h).

Gravity acceleration errors are a perfect example for the treatment
of epistemic uncertainties by aleatoric means. The simulation results
both demonstrate the need for physics-based process noise matrices
and validate the extension of the original WK algorithm. The im-
proved formulation, as given in listing 3.1, not only provides more
realistic in-track uncertainty estimates, but also increases the stabil-
ity of the radial and normal uncertainty components. For the first
time, also the physical connection of the RI cross-correlation sign with
respect to the direction of the propagation phases was recognized
and implemented. The inclusion of arbitrary perturbations into the
STM furthermore permits significantly longer propagation times in
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Figure 3.20: Performance of a classical EKF. As process noise is not consid-
ered, the filter is not able to produce consistent estimates

Figure 3.21: Orbit determination results for gravity errors of commission.
Model: GGM02C

Zoom on timeframe 80h
to 98h in figure 3.21:

the order of days compared to a couple of orbits for the original WK
description. Numerical stability during the evaluation of the outer
integral was achieved by using Higham’s nearest covariance matrix
algorithm. To ensure the highest practical success of this step, it is
important to express the state vector uncertainty in Cartesian coordi-
nates before a correction is made. This is due to the different units
of the position and velocity subcovariances favoring the existence of
a Frobenius norm closest covariance which is practically represen-
tative of the original covariance. For orbital elements (COE or EOE)
however only the size variable differs significantly in magnitude from
the other orbital elements, which tends to result in corrections less
representative of the algorithm input.
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I N T E G R AT I O N O F F O R C E M O D E L U N C E RTA I N T I E S
I N T O C L A S S I C O R B I T E S T I M AT O R S

This chapter is dedicated to the integration of the covariance quantifi-
cation framework developed in chapters 2 and 3 into operationally
proven methods for orbit determination.

Several objectives are pursued. First, the simulation architecture is
described to facilitate the understanding of the data flow, as well as
the required processing stages. Subsequently, the classic OD batch
estimators are extended for the incorporation of process noise. This
is an important step, because it closes the gap between the force
model uncertainty framework and this widely used class of orbit
determination methods, which traditionally were designed without
the possibility to account for uncertainties other than of measurement
origin.

Further, operational considerations that apply to the application of
the uncertainty framework with the respective OD algorithms will be
discussed. Simulation results complete the respective sections.

Finally, the extensibility of the force model uncertainty quantifica-
tion framework is discussed with respect to the GP orbital theory. In
some ways, this section broadens the scope of the GP theory. This may
be controversial, as the analytic GP theory was published without a
complementary uncertainty modeling theory. However, workarounds
are presented that allow to obtain an approximate quantification of
force model uncertainties also with the GP propagation model.

4.1 simulation architecture

All simulations carried out in the scope of this thesis were performed
with the Airbus SST-tool SPOOK, which has been enhanced by the
presented features. Further information about SPOOK from its early
design phase is provided by Rodriguez Fernandez et al. (2019b). Today,
SPOOK has evolved to a powerful tool suite with work in progress on
all building blocks of the SST loop identified in figure 1.3, including
catalog maintenance and sensor management1.

A high-level abstraction of the simulation architecture including the
sequential filter OD-layer is depicted in figure 4.1. All computations
are performed in Fortran, using OpenMP® for parallelization where
possible.

1 Airbus operates an optical telescope in Extremadura, Spain, which is tasked using
SPOOK. See Utzmann et al. (2019) for further information on the Airbus Robotic
Telescope (ART)
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Figure 4.1: High-level architecture of the SPOOK processing core-subset used
for the numerical Monte-Carlo simulations

Modules added for the evaluation of force model uncertainties are
highlighted in orange. The blocks evaluate the unified density covari-
ance according to table 2.7 and orbital gravity uncertainty according
to algorithm 3.1. To properly validate the force model uncertainties,
stochastic perturbations are applied in each Monte-Carlo iteration
for density errors and gravity errors of commission. Gravity errors
of omission are taken into account by using different potential field
granularities for the OD layer and the postprocessing layer when
computing the orbit errors. The batch estimation OD implementation
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presented in section 4.2 makes use of the same force model uncertainty
quantification routines as the sequential filters, however the data flow
is slightly different.

Prior to starting an orbit determination, the object population (n
RSOs), as well as m sensors (ground/space based, optical/radar, . . . )
need to be defined. Also scenario properties like the force model
selection, the uncertainty model/propagation method, the type of
numerical integrator and its accuracy, the stochastic properties of the
space environment variability, the coordinate frame to be used for
measurement updates, the OD method, the number of MC iterations,
etc. need to be specified. Default values are applied for options with
no explicit user choice.

Using this information, it is possible to generate measurements for
the observer(s) when the object(s) pass their field of view (FOV), given
the space environment modification (solar flux deltas/magnetic in-
dex deltas/OUP atmospheric density realization/perturbed potential
field coefficients) that is applicable within each Monte-Carlo iteration.
Additional processing is required to limit the visibility timeframes
to the closest common subset for each sensor, as the changes in the
environmental parameters throughout the Monte-Carlo iterations in-
fluence the FOV entry and exit times. These measurements can then
be used to perform measurement updates that reduce the accumu-
lated uncertainty during the propagation phases. If no measurements
are available, only orbit and uncertainty propagation is performed in
configurable time-steps.

4.2 batch estimators

As noted in section 1.2, OD algorithms can be grouped into batch
estimators and sequential filters. Even today, batch estimation is still
the most widely used technique for orbit determination, which is
primarily due to its robustness. Furthermore, these methods do not
require initial covariance estimates, which on the other hand are
particularly important for sequential filters to maximize their capture
domain (i.e. the maximum range of errors for which the filters are still
able to converge on a solution during their initialization phase) and
minimize their convergence time.

It is therefore not surprising that the WLS technique is still the
standard OD method at CSpOC, where it is used thousands of times
a day. Traditionally, however, batch estimators for orbit determination
have been developed neglecting process noise (see e.g. section 4.3
in Schutz et al., 2004) and are therefore only able to include the
measurement noise in their solution. The astrodynamic force models
are implicitly assumed to be perfect. Without an extension of the batch
procedures it is thus not possible to make use of the developments
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derived in chapters 2 and 3 for this class of orbit estimators. This
extension is derived in sections 4.2.1 and 4.2.2.

4.2.1 Weighted Least Squares

Classical WLS estimators compute the a priori covariance according
to equation 4.1,

Pk = (ATkRAk)
−1 (4.1)

where Ak is the sensitivity of the observations at time tk with respect
to the state at epoch t0 and R is a weighting matrix. It is well-known
that the result obtained in this way is also the minimum variance
estimate, if R = W−1, i.e. the weighting matrix is built from the
inverse matrix of the measurement variances (Schutz et al., 2004).
Equation 4.1 contains no variable relating to model uncertainty and
hence needs to be updated. The presented derivation of this extended
WLS-algorithm closely follows the classical derivation of the minimum
variance estimator, which for example is given in Schutz et al. (2004,
section 4.4).

Given a linear (either by the nature of the problem or due to lin-
earization) system of state and observation equations, the task is to
find the minimum variance estimate of the state and the corresponding
minimum variance.

Each state vector of dimension n× 1 may be propagated in time via
equation 4.2,

xi =Φ(ti, tk) xk + νi (4.2)

and each p× 1 observation vector relates to the state vector according
to equation 4.3,

yi = Hixi + εi (4.3)

where

• Φ(ti, tk) is the STM from time tk to ti
• νi is the propagation error associated with the transition from
tk to ti

• Hi is the observation matrix at time ti and
• εi is the measurement error at time ti

Letting the time index i range from 1 to l, it is possible to define:

y =


y1
...

yl

, H = diag(H1, . . . ,Hl), ε =


ε1
...

εl

, ν =


ν1
...

νl

, Φ =


Φ(t1, tk)

...

Φ(tl, tk)

 (4.4)
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Then

x =Φxk + ν (4.5)

and

y = Hx+ ε (4.6)

where xk is n× 1, x is l ·n× 1, ν is l ·n× 1,Φ is l ·n×n,H ism×n · l
and y is m× 1, with m = l ·n being equal to the total number of
observations. Next, define

A = HΦ (4.7)

which is m×n. Since H relates the ith measurement set to the ith state
and Φ relates the state at time ti to the state at time tk, A relates the
state at time tk to the measurement at time ti. Inserting equation 4.5
into eq. 4.6 and applying 4.7, yields:

y = Axk +Hν+ ε (4.8)

The measurement error covariance is given by

E[εεT ] = R (4.9)

and the propagation error covariance by

E[ννT ] = Q (4.10)

Assuming the propagation error to be zero-mean, the variance associ-
ated with d = Hv is:

Var(Hν) = E[ddT ] = E[HννTHT ] = HQHT (4.11)

The task is to find the linear, unbiased, minimum variance estimate
x̂k of the state xk. The requirement of a linear estimate can be trans-
lated into the estimate being a linear combination of the observations,
i.e.

x̂k =My =M(Axk +Hν+ ε) (4.12)

M needs to be found and is n×m, since x̂k is n× 1 and y is m× 1.
The requirement of the estimate being unbiased is expressed as:

E[x̂k] = xk (4.13)

Inserting equation 4.12 into eq. 4.13 yields:

xk = E[My] = E
[
M(Axk +Hν+ ε)

]
= E[MAxk] + E[MHν] + E[Mε] (4.14)
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Since ν and ε are zero-mean, the last two terms equate to zero, which
results in:

MA = I (4.15)

Equation 4.15 is the mathematical result of the estimate being linear
and unbiased. Since A is m× n, the classical inverse is not defined
and equation 4.15 is to be treated as a constraint to be fulfilled by
the solution of M, which needs to make sure to yield the minimum
variance estimate.

The definition of the estimation error covariance matrix reads:

Pk = E
[(
(x̂k − xk) − E[x̂k − xk]

)(
(x̂k − xk) − E[x̂k − xk]

)T ] (4.16)

Since E[x̂k − xk] = E[x̂k] − E[xk] = xk − xk = 0, the covariance expres-
sion becomes:

Pk = E
[
(x̂k − xk)(x̂k − xk)

T
]

(4.17)

Inserting equation 4.12 into eq. 4.17 yields:

Pk = E
[
(My− xk)(My− xk)

T
]

(4.18)

Next, inserting equation 4.8 into eq. 4.18 leads to:

Pk = E
[
(MAxk +MHν+Mε− xk)(MAxk +MHν+Mε− xk)

T
]

(4.19)

In order to simplify equation 4.19, the products and transposes need
to be resolved, which results in:

Pk = E
[(
MAxk +MHν+Mε− xk

)(
xTkA

TMT + νTHTMT + εTMT − xTk
)]

=E
[
MAxkx

T
kA

TMT +MAxkν
THTMT +MAxkε

TMT

−MAxkx
T
k +MHνx

T
kA

TMT+MHννTHTMT+MHνεTMT

−MHνxTk +Mεx
T
kA

TMT +MενTHTMT +MεεTMT

−MεxTk − xkx
T
kA

TMT− xkν
THTMT− xkε

TMT+ xkx
T
k

]
(4.20)

Applying the linearity of expectation and recognizing that E[ν] =
E[ε] = 0, results in the simplification:

Pk =MAE[xkxTk ]A
TMT −MAE[xkx

T
k ] +MHE[νν

T ]HTMT +MHE[νεT ]MT

+ME[ενT ]HTMT +ME[εεT ]MT − E[xkx
T
k ]A

TMT + E[xkx
T
k ] (4.21)

Assuming further that there is no correlation between the observation
error and the propagation error, equation 4.21 reduces to:

Pk =MAxkx
T
kA

TMT −MAxkx
T
k +MHE[νν

T ]HTMT

+ME[εεT ]MT − xkx
T
kA

TMT + xkx
T
k (4.22)
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The third and fourth terms can be resolved by making use of equations
4.9 and 4.10. Applying further equation 4.15 yields:

Pk = xkx
T
k − xkx

T
k +MHQH

TMT +MRMT − xkx
T
k + xkx

T
k

=MHQHTMT +MRMT

=M(HQHT +R)MT (4.23)

The central term of equation 4.23 describes the sum of the obser-
vation error covariance R and the observation-matrix transformed
propagation error covariance HQHT . The matrix reduces to the clas-
sical covariance description (Pk = MRMT ) if no propagation error
covariance is included.

The next step is to determine M, such that equation 4.15 is fulfilled
and equation 4.23 is minimized.

Computation of M
The derivation of M can be treated as the optimization problem
of finding a minimum value of Pk under the imposed condition of
MA = I. A suitable solution technique to this class of problems is
the Lagrange-multiplier method. This technique defines a Lagrange-
function, which incorporates the original function, the constraint, and
a Lagrange-multiplier λ. Finding the minimum of this function then
results in the desired solution of M. The Lagrange-function for Pk
also has to make sure, that Pk remains symmetric, as it is a covariance
matrix. Hence, any modification of the original function needs to be
symmetric as well.

For any square matrix C it holds that C+CT is symmetric. A suit-
able Lagrange-function is thus given by equation 4.23 + C(λ) +C(λ)T ,
where C(λ) = (I−MA)λ:

Pk =M(HQHT +R)MT + (I−MA)λ+ λT (I−MA)T (4.24)

M is to minimize equation 4.24 and fulfill eq. 4.15. An intuitive ap-
proach for this would be to set the derivative of eq. 4.24 with respect
to M equal to zero. Since Pk and M are matrices however, this would
yield a tensor. A more elegant way is to require that a change in M
results in zero change in Pk. For this purpose, small matrix increments
(δM and δPk) may be added to equation 4.24 whenever M and Pk
are encountered. Using R̃ = HQHT +R then results in:

Pk + δPk = (M+ δM)R̃(M+ δM)T + λ− (M+ δM)Aλ

+ λT − λTAT (M+ δM)T

=MR̃MT +MR̃δMT + δMR̃MT + δMR̃δMT + λ

−MAλ− δMAλ+ λT− λTATMT− λTATδMT (4.25)

δPk is then found by subtraction of equations 4.25 and 4.24:

δPk =MR̃δMT + δMR̃MT + δMR̃δMT − δMAλ− λTATδMT

= (MR̃− λTAT )δMT + δM(R̃MT −Aλ) + δMR̃δMT (4.26)
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Neglecting terms quadratic in the change to maintain a first-order
relationship, results in:

δPk = (MR̃− λTAT )δMT + δM(R̃MT −Aλ)
!
= 0 (4.27)

One way to fulfill equation 4.27 is to require

MR̃− λTAT
!
= 0 (4.28)

It should be noted that a zero change of Pk for a nonzero change of
M could also apply to a maximum of Pk. The proof that in fact a
minimum value is found, is given in appendix A.5.

Equations 4.15 and 4.28 now yield two constraints for M. Solving
eq. 4.28 for M results in:

M = λTAT (R̃−1)T (4.29)

Since R̃ is regular, its inverse and the transpose commute. Furthermore,
due to R̃−1 being symmetric, the transpose vanishes, which allows to
write:

M = λTAT R̃−1 (4.30)

Inserting equation 4.30 into eq. 4.15 leads to:

λTAT R̃−1A = I (4.31)

Assuming that AT R̃−1A is invertible, an expression for λT can be
found:

λT = (AT R̃−1A)−1 (4.32)

Equation 4.32 can now be inserted into eq. 4.30, which yields the
desired expression for M that satisfies the unbiased, linear and
minimum-variance requirements:

M = (AT R̃−1A)−1AT R̃−1 (4.33)

Inserting equation 4.33 into eq. 4.23 yields the corresponding expres-
sion for Pk:

Pk =MR̃MT=(AT R̃−1A)−1AT R̃−1R̃
[
(AT R̃−1A)−1AT R̃−1

]T
= (AT R̃−1A)−1AT R̃−1A(AT R̃−1A)−1

= (AT R̃−1A)−1 = (AT (HQHT +R)−1A)−1 (4.34)

An updated expression of the state estimate can be obtained by insert-
ing equation 4.33 into eq. 4.12:

x̂k = (AT R̃−1A)−1AT R̃−1y = PkA
T R̃−1y (4.35)

= [AT (HQHT +R)−1A]−1AT (HQHT +R)−1y (4.36)
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Equations 4.34 and 4.36 represent the desired extension of the WLS
algorithm for the case of process noise; however, they are not recom-
mended for implementation in computer code, as HQHT +R is of
dimension m×m. Since m represents the number of observations
and m� n, computing the inverse of (HQHT +R) is extremely time-
consuming. The classical weighted least squares algorithm also needs
to compute R−1, however since R is a diagonal matrix (and in practice
constant for a certain instrument calibration), the computation of the
inverse is very efficient. (HQHT +R) on the other hand is not diag-
onal. Hence an optimized expression of Pk which splits the inverse
and reduces the computational burden is required. Also an equation
of the form Pk = P̃k + δPk, where P̃k is the covariance of the classical
weighted least squares algorithm, is desirable as it splits the updated
covariance into the classical formulation and a delta covariance that
contains the additional contribution due to the consideration of model
uncertainties.

This can be achieved either by making use of the considerations
in appendix A.6 or via direct application of the Sherman-Morrison-
Woodbury identity (Golub and Van Loan, 1996, Section 2.1.3), which
reads:

(R−UHT )−1 = R−1 +R−1U(I−HTR−1U)−1HTR−1 (4.37)

Defining U = −HQ then results in:

(R+HQHT )−1 = R−1 −R−1HQ(I+HTR−1HQ)−1HTR−1 (4.38)

Compatibility with the derivation in appendix A.6 is obtained by
applying the identity

Q(I+BQ)−1 = (I+QB)−1Q (4.39)

which is derived in appendix A.6 and yields the alternative form:

(HQHT +R)−1 = R−1 −R−1H(I+QHTR−1H)−1QHTR−1 (4.40)

This step is not strictly required, however, as equation 4.38 already
possesses the desired properties. QHTR−1H in equation 4.40 is
(n×n)× (n×m)× (m×m)× (m×n) = (n×n). Therefore the or-
der of the inverse significantly reduced to n× n instead of m×m.
To get an impression of the difference between m and n, consider 10

observations of 3 observables each. Then m = 30, while n is still the
dimension of the state vector, i.e. 6. In this case, equation 4.40 reduces
the order of the inverse from 30 to 6 – a substantial performance
improvement. Equations 4.40 and 4.34 lead to:

Pk = (ATR−1A−ATR−1H(I+QHTR−1H)−1QHTR−1A)−1 (4.41)

The first term in equation 4.41, ATR−1A, is the inverse of the classical
weighted least squares covariance matrix, which does not include any
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propagation error. Therefore it is possible to define ATR−1A = P̃−1
k ,

which allows to write:

Pk =
(
P̃−1
k −ATR−1H(I+QHTR−1H)−1QHTR−1A

)−1
(4.42)

Equation 4.42 represents the optimized description of the state vector
error covariance that is suitable for implementation in computer code.
It only contains inverses of order n×n, except for R−1, which, albeit
being m×m, is easily evaluated since R is typically diagonal and
constant.

Also an alternative form of equation 4.42 that allows to be written
as Pk = P̃k + δPk can be obtained. To this end, define S ..= ATR−1H,
which yields:

P−1
k = P̃−1

k −S(I+QHTR−1H)−1QST (4.43)

Applying identity 4.39 results in:

P−1
k = P̃−1

k −SQ(I+HTR−1HQ)−1ST (4.44)

Defining N = −Q(I+HTR−1HQ)−1, which is n×n, then leads to:

P−1
k = P̃−1

k +SNST (4.45)

Applying the matrix inverse leads to an expression compatible with
the Sherman-Morrison-Woodbury identity:

Pk =
[
P̃−1
k +SNST

]−1 (4.46)

Equation 4.40 using R→ P̃−1
k , H→ S and Q→ N yields:

Pk = P̃k − P̃kS(I+NS
T P̃kS)

−1NST P̃k (4.47)

Another application of identity 4.39 leads to the alternative form

Pk = P̃k − P̃kSN(I+ST P̃kSN)−1ST P̃k (4.48)

which after full expansion reads:

Pk = P̃k+ P̃kA
TR−1H︸ ︷︷ ︸
S

Q(I+HTR−1HQ)−1︸ ︷︷ ︸
−N︸[

I−HTR−1A︸ ︷︷ ︸
ST

P̃kA
TR−1H︸ ︷︷ ︸
S

Q(I+HTR−1HQ)−1︸ ︷︷ ︸
−N

]−1
︷︷
δPk

HTR−1A︸ ︷︷ ︸
ST

P̃k

︸
(4.49)
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Equation 4.49 expresses the covariance of the propagation error
considering weighted least squares algorithm as the sum of the clas-
sical non-propagation error WLS covariance and δPk. It requires the
computation of three inverses, of which one is R−1 and the other two
are of order n×n. Despite nicely resolving the additional contribution
of the propagation error to the state vector error covariance, equation
4.49 has no computational advantage with respect to eq. 4.42. Further-
more, since equation 4.42 expresses the covariance as the sum of P̃−1

k

and a secondary matrix, it can directly use the result of P̃−1
k , which

is computed in the classical WLS for the calculation of P̃k. For this
reason, and the fact that equation 4.42 contains less matrix multipli-
cations than eq. 4.49, the preferred description of the covariance for
implementation is formula 4.42.

4.2.2 Sequential Batch Weighted Least Squares

In case of the batch weighted least squares algorithm, all measure-
ments are evaluated together in order to determine an estimate of
the state and corresponding uncertainty at the time of a reference
epoch, typically called t0. Sequential batch weighted least squares orbit
estimation is concerned with the update of a previously computed
state and covariance. A practical example is the initial computation
of a state and covariance using the WLS algorithm. Then, some time
later, another batch of measurements (e.g. a new measurement track)
arrives and shall be used to compute an updated state and covariance
for the chosen epoch t0. Obviously the success of such an update
depends on the amount of previous measurements used to compute
the epoch state estimate and the number of new measurements sup-
plied to generate the update. The method typically works well only
for two to three measurement batches and tends to diverge afterwards
(Vallado, 2013, p. 774).

The basic solution to the state and covariance update problem is
to consider the a priori information as an independent “observation”
of the state at epoch, which is described by equation 4.50. The new
measurement model is formulated in accordance with eq. 4.8 via
equation 4.51:

x0 = x0 +ηk (4.50)

yk = Hk(Φ(tk, t0) x0 + νk) + εk = Akx0 +Hkνk + εk (4.51)

where εk represents the measurement noise vector and νk is the vec-
tor of the propagation errors from the epoch to the time of the new
measurements. ηk in equation 4.50 is the error in the prior estimate.
Therefore its covariance matrix is the one obtained from the previous
run of the force model uncertainty considering WLS algorithm pre-
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sented in section 4.2.1, i.e. E[ηkηTk ] = P0. Combining equations 4.50

and 4.51 in a vectorized form yields:[
yk

x0

]
︸ ︷︷ ︸
=..y∗

=

[
Ak

I

]
︸ ︷︷ ︸
=..A∗

x0 +

[
Hkνk + εk

ηk

]
︸ ︷︷ ︸

=..ε∗

(4.52)

Invoking the assumption that the propagation and observation errors
are independent of the error in the a priori information, the covariance
of the error can be formulated as:

E[ε∗ε∗
T

] = E

[
(Hkνk + εk)(ν

T
kH

T
k + ε

T
k) (Hkνk + εk)ηk

ηk(ν
T
kH

T
k + ε

T
k) ηkη

T
k

]

=

[
HQHT +R 0

0 P0

]
=

[
R̃ 0

0 P0

]
= R∗ (4.53)

Equation 4.52 conforms to the classical WLS problem. It is therefore
possible to directly apply its solution to eq. 4.52 in order to obtain
expressions for the updated x̂0 and P0:

x̂0 =
(
A∗

T

R∗
−1
A∗
)−1
A∗

T

R∗
−1
y∗

=

[(
ATk I

)[R̃−1 0

0 P−1
0

](
Ak

I

)]−1 (
ATk I

)[R̃−1 0

0 P−1
0

](
yk

x0

)
=
(
ATkR̃

−1Ak +P
−1
0

)−1
(ATkR̃

−1yk +P
−1
0 x0) (4.54)

The final equations can now directly be inferred from equation 4.54,
considering that:

P−1
0 = ATprevR̃

−1
prevAprev (4.55)

and

x0 = (ATprevR̃
−1
prevAprev)

−1AT R̃−1
prev yprev (4.56)

according to equations 4.35 and 4.34. Using eqs. 4.55 and 4.56, the
term P−1

0 x0 in equation 4.54 can be simplified to:

P−1
0 x0 = A

T
prevR̃

−1
prevAprev(A

T
prevR̃

−1
prevAprev)

−1ATprevR̃
−1
prevyprev

= ATprevR̃
−1yprev (4.57)

Inserting equations 4.55 and 4.57 into eq. 4.54 leads to:

x̂0 =
(
ATkR̃

−1Ak +A
T
prevR̃

−1
prevAprev

)−1
(ATkR̃

−1yk +A
T
prevR̃

−1
prevyprev)

= P0(A
T
kR̃

−1yk +A
T
prevR̃

−1
prevyprev) (4.58)

where:

P0 = (ATkR̃
−1Ak +A

T
prevR̃

−1
prevAprev)

−1 = (ATkR̃
−1Ak +P

−1
0 )−1 (4.59)
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Equations 4.58 and 4.59 represent the desired tools to update the
state and covariance with propagation uncertainty consideration. The
derivation shows that the algorithm reduces to the classical SBWLS, if
R̃ = HQHT +R is replaced by R. It is hence enough to store AT R̃−1A

and AT R̃−1y after each weighted least squares computation of the
current batch of data. Once a new batch of measurements arrives, it
can be updated with this prior knowledge via equations 4.58 and 4.59,
where R̃−1 is computed according to equation 4.40. The framework
therefore also fits the sequential batch processing seamlessly.

4.2.3 Practical considerations

The algorithms derived in sections 4.2.1 and 4.2.2 achieve their im-
proved accuracy and more realistic covariances through additional
calculations. They are therefore more time-consuming than their clas-
sical counterparts.

First of all, the combined process noise matrix Q has to be com-
puted, which is achieved from the evaluation of equation 2.306 for
the combined density covariance matrix, algorithm 3.1 for the orbital
gravity error covariance and subsequent summing. This assumes that
there is no or negligible correlation between density errors and gravity
errors, which seems to be a justifiable assumption for potential field
coefficient uncertainty (gravity errors of commission). The uncertainty
attributed to gravity errors of omission is derived based on a glob-
ally averaged stochastic process model. Density errors predominantly
influence the in-track position which, under the hypothesis of the ap-
plicability of the stochastic gravity error model, does not influence the
gravity errors. This is by no means a rigorous proof, but taken together
with the sequential filter simulation results presented in section 4.3, it
provides an indication why no correlation analysis was pursued.

An additional effort is the evaluation of the n×n matrix inverse in
equation 4.40, which needs to be computed for every measurement.
Any means of reducing the operational duration is therefore desirable.
As demonstrated in Woodburn and Coppola (2013), the selection of the
coordinate frame used for the orbit estimation process, does not affect
the final SBWLS solution, however the path of convergence. A sec-
ondary finding of Woodburn and Coppola (2013) is that it is equivalent
to perform all operations or only the state updates in equinoctial ele-
ments. In fact, the realization of state updates in equinoctial elements
can significantly reduce the number of SBWLS iterations required until
convergence is achieved (Woodburn and Coppola, 2013). For practical
applications this means that a single Jacobi matrix calculation (Carte-
sian to EOE), as well as a two state conversions (EOE to Cartesian and
vice versa) are performed additionally in each iteration to increase the
chance of saving some WLS/SBWLS iterations. This is generally a very
attractive deal, since the extra workload of these calculations is small,



202

integration of force model uncertainties into

classic orbit estimators

but the potential savings are large. It is hence strongly recommended
to perform the least squares state updates according to the following
strategy:

1. Compute the state correction according to equation 4.36 (WLS)
or 4.58 (SBWLS), where eq. 4.40 is used to calculate R̃−1

2. Compute the Cartesian to equinoctial Jacobi matrix JEOE,Cart

using the current estimate of the epoch state and algorithm B.6
3. Convert the state correction to EOE via ∆xEOE = JEOE,Cart∆xCart

4. Convert the state from Cartesian to EOE
5. Perform the state update (x̂0,EOE = x̂0,EOE +∆xEOE)
6. Convert the updated state back to inertial Cartesian coordinates

The extended least squares algorithms perform well for the different
kinds of density errors, as well as gravity errors of commission. The
global WLS linearization however does not harmonize with gravity
errors of omission, which are epistemic in nature. While formally
the global averaging results in the assumed stochastic model to be
zero-mean, this does not necessarily apply to any particular trajectory,
which in practice exhibits a certain bias.

The updated estimators (eqs. 4.36, 4.40 and 4.42 for WLS, as well
as 4.58, 4.59 and 4.40 for SBWLS) were derived under the assump-
tion of the process noise being zero-mean. Since the least squares
OD methods perform global linearization, the increasing violation of
this requirement leads to inconsistent estimates when attempting to
consider gravity errors of omission.

4.2.4 Simulation results

This section is devoted to the presentation of orbit determination
results using the force model uncertainty quantification framework
in combination with the process noise extension of the classical least
squares estimators. Density uncertainty is first considered separately
for solar flux input uncertainty (based on white noise or random walk
error process models) and geomagnetic activity uncertainty (white
noise error process model). In a second step, the full combination
of grid-scale model uncertainty (Ornstein-Uhlenbeck error process),
geomagnetic index uncertainty, solar flux uncertainty and gravity un-
certainty due to errors of commission is presented. Semi-empirical
models considered are DTM-2013, DTM-2012 and NRLMSISE-00. Also
results of the classical least squares algorithms are depicted to demon-
strate the improvement achieved through the physical process noise
consideration.

Key simulation parameters or their changes (object, observer and
scenario properties) are listed alongside the simulation results. Monte-
Carlo simulations are used as state of the art validation technique.
Due to the extensive number of possible combinations (epochs, er-
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Scenario parameters:

MC iterations: 200
t0: 2015/Oct/02-00:00:00
Duration: 4.5days
Propagation step: 15min

Perturbations:
30× 30 aspherical potential
field (GGM02C)
Atmospheric drag
Solar radiation pressure
Third body gravity
(soli-lunar)

Solar flux errors:
Double-sided PSD of white
noise process: 130 000 sfu2s
Sampling: daily

Observer:
Type: Optical
Latitude: 49.7813deg
Longitude: 9.973 94deg
RaDec accuracy: 10−3 deg

Object:

x0 :



1409.381 740 km

−3738.321 296 km

−5619.112 527 km

0.552 548 km/s

−6.241 291 km/s

4.293 374 km/s


Frame: GCRF
Semi-major axis: 6880.2 km
BC: 0.06m2/kg

ror process models, uncertainty origins, density/gravity models) the
presentation is limited to the position error components of the state
vector. Further simulation results for the solar flux error case can be
found in Schiemenz et al. (2019c), which also details the less accurate
frame conversion techniques used to obtain the Cartesian covariance
results in the early stages of the uncertainty quantification framework
development.

solar flux errors

Error process model: White noise, density model: NRLMSISE-00

Figure 4.2: Extended WLS OD using NRLMSISE-00: Monte-Carlo position
errors, 3σ bounds and estimated 3σ uncertainty due to solar flux errors

Error process model: White noise, density model: DTM-2012

Figure 4.3: Extended WLS OD using DTM-2012: Monte-Carlo position errors,
3σ bounds and estimated 3σ uncertainty due to solar flux errors
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Zoom on first hours of the
transverse position error

Error process model: Random Walk, density model: DTM-2012

Figure 4.4: Extended WLS OD using DTM-2012: Monte-Carlo position errors,
3σ bounds and estimated 3σ uncertainty due to solar flux errors

Figures 4.2 to 4.4 represent exemplary simulation results obtained for
white noise and Brownian motion error process models. In all cases the
three sigma uncertainty (blue) is correctly estimated throughout the
entire simulation time. The uncertainty predictions are alike for NRL-
MSISE-00 and DTM-2012 in case of the white noise F10.7 measurement
error process.

In contrast to the Brownian motion case in figure 4.4, it becomes
apparent, that despite the differences in the error growth (t3 for the
white noise process and t5 for the random walk model) the initial error
growth is faster for the white noise process. Comparing equations 2.213

and 2.215, the origin of this observation is found in the dependence
on the error process sampling time δt, which is reciprocal for the
Brownian motion case. Therefore it takes the random walk case about
2.5days to overtake the white noise error process model.

The results of a traditional WLS estimator (see e.g. algorithm 67

in Vallado, 2013) which only considers measurement uncertainty is
depicted in figure 4.5 for the same scenario as in figure 4.4. In the case
of the classical estimator it is at no point in time possible to attribute
any realism to the estimated uncertainties. Likewise, the estimated
uncertainties do not grow after the WLS computation of the initial
state vector, since the estimated initial radial position variance is small
and no propagation uncertainty is considered.

In summary, the solar flux uncertainty consideration makes a non-
negligible contribution to improving the realism of the estimated
uncertainty. The extension of the classical WLS estimator is able to
process the physics-based analytic process noise matrices.
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Changes with respect to
solar flux scenario:

t0: 2011/Jun/18-00:00:00
Gravity model: GGM05C

Geomagnetic index errors:

NRLMSISE-00:
Double-sided PSD of
white noise process:
21 600AP units2s

Sampling: daily

DTM:
Double-sided PSD of
white noise process:
2700AP units2s

Sampling: 3h

Object:

x0 :



3980.760 745 km

−2950.088 078 km

4655.608 963 km

3.994 088 km/s

−3.416 397 km/s

−5.568 957 km/s


Semi-major axis: 6800 km

Traditional WLS estimator - no propagation error consideration
Error process model: Random Walk, density model: DTM-2012

Figure 4.5: Traditional WLS OD using DTM-2012: Monte-Carlo position
errors, 3σ bounds and estimated 3σ uncertainty due to solar flux errors

geomagnetic index errors

OD results using the extended least squares estimators and geomag-
netic index uncertainty are presented in figures 4.6 to 4.10. In contrast
to the solar flux scenario, the epochs are chosen based on periods of
low geomagnetic activity.

Extended WLS, density model: NRLMSISE-00

Figure 4.6: Extended WLS OD using NRLMSISE-00: Monte-Carlo position
errors, 3σ bounds and estimated 3σ uncertainty during low geomagnetic

activity
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Zoom on first hours of the
transverse position error

Extended WLS, density model: DTM-2013

Figure 4.7: Extended WLS OD using DTM-13: Monte-Carlo position errors,
3σ bounds and estimated 3σ uncertainty due to geomagnetic index errors

Traditional WLS estimator - no propagation error consideration
Density model: DTM-2013

Figure 4.8: Traditional WLS OD using DTM-13: Monte-Carlo position errors,
3σ bounds and estimated 3σ uncertainty due to geomagnetic index errors

Figures 4.7 and 4.8 depict the same scenario, once using magnetic
index uncertainty propagation quantification and once using a clas-
sical WLS estimator. The differences between the simulation results
are qualitatively similar to the solar flux scenario insofar as the tradi-
tional WLS estimator is not able to generate a consistent state vector
estimate at the epoch t0. Likewise, the uncertainty-growth in the fol-
lowing propagation phase is not covered in the classical case, which is
particularly noticeable in the dominant transverse direction.
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Changes with respect to
figure 4.6:

t0: 2014/Nov/18-00:00:00

Zoom on first hours of the
transverse position error

Changes with respect to
solar flux scenario:

t0: 2011/Oct/01-20:00:00

Geomagnetic index errors:

NRLMSISE-00:
Double-sided PSD of
white noise process:
21 600AP units2s

Sampling: daily

Another example using NRLMSISE-00 is shown in figure 4.9 for a
period of very low geomagnetic activity, which is when the strongest
orbital variability due to uncertain geomagnetic activity information
can be expected. Indeed, the transverse 3σ boundary reaches 10 km
after 4.5days, which is twice as much as in figure 4.6.

Extended WLS, density model: NRLMSISE-00

Figure 4.9: Extended WLS OD using NRLMSISE-00 (very low geomagnetic ac-
tivity): Monte-Carlo position errors, 3σ bounds and expected 3σ uncertainty

Extended SBWLS, Density model: NRLMSISE-00

Figure 4.10: Extended SBWLS OD using NRLMSISE-00 for geomagnetic index
errors: Monte-Carlo position errors, 3σ bounds and estimated 3σ uncertainty

Finally, also an example of the sequential batch weighted least
squares algorithm is presented in figure 4.10. The SBWLS estimate is
sensitive to the number of batches used for state updates. The process
starts to diverge as soon as the new observations no longer contribute
to reducing the uncertainty of the epoch estimate. This is the case
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Changes with respect to
solar flux scenario:

t0: 2015/Feb/18-09:00:00

Additional error process
model parameters:

Geomagnetic index errors:
Double-sided PSD of

white noise process:
2700AP units2s

Sampling: 3h

Average model uncertainty:
OUP with θ = 10−6 and

sModel = 10%

for short tracks and, especially considering propagation uncertainties,
also for increasing periods between the epoch and the observation
timestamps. To obtain consistent results, the simulation corresponding
to figure 4.10 generates measurements only during the object visibility
periods in the first 36h after t0 and groups them into three batches.
These constraints complicate the practical application of the SBWLS
estimator. It should therefore be used with caution.

solar flux/geomagnetic index/grid-scale density errors

and gravity errors of commission

The complete part of the force model uncertainty quantification frame-
work that is compatible with WLS orbit determination is applied in
the simulations presented hereafter. Different model combinations are
tested to demonstrate the applicability and importance of the physics-
based process noise matrices for different altitudes and eccentricities
within the LEO shell.

Figures 4.11 to 4.13 depict simulation results for increasing semi-
major axes. A comparison of the graphs shows that the magnitude of
the force model uncertainties decreases rapidly with orbital altitude.
While in the first case (a = 6880.2 km, e = 0.000145) transverse errors
of more than 30 km are anticipated after 4.5days of propagation, only
3.75 km (with a slight overestimation of the transverse position un-
certainty after ∼60h of propagation time) are expected for the third
case (a = 7100 km, e = 0.004). Despite the circumstance that the error
propagation theories assume circular orbits, also the covariances of
the second scenario (a = 7000 km, e = 0.01) are correctly estimated.

Extended WLS, density model: DTM-2013, gravity model: GGM02C, solar
flux proxy error process model: random walk

Figure 4.11: Extended WLS OD using the uncertainty quantification frame-
work for DTM-2013 and GGM02C: Monte-Carlo position errors, 3σ bounds

and estimated 3σ uncertainty
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Changes with respect to
solar flux scenario:
t0: 2014/May/02-00:00:00

Additional error process
model parameters:

Geomagnetic index errors:
Double-sided PSD of
white noise process:
2700AP units2s

Sampling: 3h

Average model uncertainty:
OUP with θ = 10−6 and
sModel = 10%

Object:

x0 :



−397.388 958 km

−1167.026 235 km

6854.493 431 km

−3.778 004 km/s

−6.456 264 km/s

−1.251 852 km/s


Changes with respect to
solar flux scenario:
t0: 2014/May/02-00:00:00

Additional error process
model parameters:

Geomagnetic index errors:
Double-sided PSD of
white noise process:
21 600AP units2s

Sampling: daily

Average model uncertainty:
OUP with θ = 10−6 and
sModel = 15%

Object:

x0 :



−5600.663 580 km

277.964 773 km

4346.851 744 km

−4.014 563 km/s

−4.053 795 km/s

−4.865 098 km/s



Extended WLS, density model: DTM-2012, gravity model: EGM96, solar
flux proxy error process model: white noise

Figure 4.12: Extended WLS OD using the uncertainty quantification frame-
work for DTM-2012 and EGM-96: Monte-Carlo position errors, 3σ bounds

and estimated 3σ uncertainty

Extended WLS, density model: NRLMSISE-00, gravity model: GGM05C,
solar flux proxy error process model: white noise

Figure 4.13: Extended WLS OD using the uncertainty quantification frame-
work for NRLMSISE-00 and GGM05C: Monte-Carlo position errors, 3σ

bounds and estimated 3σ uncertainty

The radial position errors of figure 4.11 demonstrate a loss of the
zero-mean Gaussian error property after ∼2days of propagation, indi-
cating that for this type of low Earth orbit non-Gaussian estimation
techniques may be beneficial. It has to be noted though that the radial
position errors are two orders of magnitude smaller than the dominant
transverse errors. Thus, no practical impact is expected in this case.
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model uncertainties

4.3 kalman filters

In contrast to the least squares estimators, Kalman filters are not
formulated as an optimization problem. Instead they make use of
the Bayesian recursion relations, which build the heart of Bayesian
dynamic state estimation. The working principle is depicted in figure
1.5, section 1.3.3. Whenever new observations are made available,
a correction step is computed according to Bayes’ theorem, which
allows to compute the a posteriori (corrected) pdf from the a priori
(predicted) pdf, the measurement model and the measurements. Since
the integral in the prediction step usually cannot be solved in closed-
form, analytical solutions to the time-evolution of the pdf are not
available – with the exception of a linear system under the influence
of Gaussian noise. In this case the Bayes estimator reduces to the
well-known Kalman filter.

To apply the Kalman filter equations also for nonlinear problems,
local linearization is applied at each step in the system and observa-
tion models to solve the inverse2 uncertainty quantification problem.
The measurements are processed sequentially to update the current
estimate of the state, which then serves as the new baseline for the
subsequent linearized propagation phase.

Unscented Kalman filters follow the same pattern, however they
apply the technique of unscented transformation instead of local lin-
earization via Jacobi matrices (cf. figure 2.21) to obtain an approximate
solution of the Chapman-Kolmogorov prediction integral. Once a filter
has reached convergence, it is a powerful recursive tool to solve the
inverse uncertainty quantification problem within the boundaries of its
assumptions (linear evolution of the state and Gaussian uncertainties).

In the absence of observations, the orbital state uncertainty increases
as a consequence of the initial radial position uncertainty component3

and additional uncertainties in the models used for propagation. Their
interplay determines the shape and growth rate of the uncertainty
volume. Measurement updates on the other hand reduce the state un-
certainty, leading to characteristic “trumpet-like” uncertainty contours
when depicting the estimated parameters versus time (cf. figure 3.19).

A downside of the Kalman filters is their dependence on an initial
pdf estimate (covariance matrix in case of zero-mean Gaussian uncer-
tainties), which crucially determines the evolution of the state and
covariance during the filter initialization phase, the time required until
steady-state and the tendency for divergence.

2 The forward direction is the relationship between the motion in state space and the
corresponding observations. The inverse problem is hence to determine the (unknown)
state parameters from noisy observations. Orbit determination is therefore an example
of inverse uncertainty quantification

3 The orbital speed decreases with increasing altitude (distance from the center of the
Earth). The radial position uncertainty at the beginning of a propagation phase is
therefore associated with an in-track velocity uncertainty, which in turn drives the
natural growth rate of the in-track position uncertainty
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4.3.1 Practical considerations

The predictor-corrector working principle also has an influence on the
incorporation of the force model uncertainty matrices. While covari-
ance components that are formed incrementally between two arbitrary
points in time (e.g. gravity uncertainty) do not require separate con-
sideration, some additional effort is needed to integrate the density
uncertainty framework with the sequential working principle. The
necessary mathematical tools have been outlined in section 2.7.3.

The density uncertainty framework is of analytical nature and de-
scribes the development of the state uncertainties since the commence-
ment of a density error process. Propagation steps of fixed time incre-
ments are realized differently for extended and unscented Kalman fil-
ters. In case of the EKF covariance propagation is achieved by making
use of equation 2.300, which first removes the entire density uncer-
tainty process noise accumulated up to time tk from the a posteriori
covariance P̂k and then propagates this difference linearly to tk+1 via
the same STM which is also used for the classical covariance propaga-
tion. Finally, a new density error process noise matrix is added which
describes the entire accumulated uncertainty since the start of the
density error process. In case of the UKF no prior process noise sub-
traction is needed when using cloud-saving (cf. section 2.7.3). These
techniques are able to incorporate the density uncertainty framework
into the propagation phase of the filter. However, a look at figure 1.5
raises the question of how to proceed after the state estimate has been
updated with new measurements.

The basic idea is to assume that measurement updates lead to a
reduction in uncertainty sufficiently large to consider each measure-
ment update as the starting time of a new “virtual” density error
process. Due to the accuracy of modern sensors, a few observations
are sufficient to meet this requirement, which is hence fulfilled for all
sensor tracks encountered in practice. The overall principle is depicted
in figure 4.14.

Special consideration is required for the random walk solar flux
error process model, which represents the proxy error characteristics
in case of orbit forecasting (Emmert et al., 2017). While in practice no
measurement updates are expected when propagating into the future,
there is nevertheless a theoretical interest in treating this case as well.
The main difficulty with the random walk solar flux error process
is a progressing mismatch of the solar flux error variability between
the virtual density error processes and the actual random walk input
error process. Following a measurement update that takes place after
the first sampling step of the flux error process (e.g. after two days of
orbit forecasting in case of daily F10.7 sampling) a new virtual density
error process would assume a lower solar flux error variability than
representative for the actual input error process at that time.
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Measurement updates
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„Virtual“ density 
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Fixed-inverval propagation steps (reduced step size prior measurements)
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Physical density error process

Figure 4.14: Density covariance modeling following a measurement update

In order to enable a uniform consideration of all density uncertainty
sources between measurement updates, a workaround is proposed in
the form that σρp due to solar flux uncertainty is adjusted according
to the time elapsed since the beginning of the physical density error
process. This is not a mathematically rigorous approach, but an engi-
neering decision rooted in the desire to avoid additional covariance
propagations while maintaining a uniform treatment of the various
density error sources – at the cost of a slight growth rate mismodeling
for the solar flux uncertainty component. The impact of this approach
is demonstrated in section 4.3.2 by means of numerical simulations for
the scenarios of pure random walk solar flux errors, as well as for the
combination of all considered density uncertainty drivers. Especially
in the latter case the blending of the solar flux uncertainty with the
other density uncertainty drivers masks the effect of the random walk
error treatment, resulting in no noticeable impairment of the combined
covariance estimates.

Also the Kalman filters benefit from measurement updates in
equinoctial orbital elements. In contrast to the least squares estimators,
this has no positive impact on the algorithm runtime, however it
greatly extends the validity of the Gaussian assumption and therefore
the quality of the estimates (Junkins et al., 1996; Sabol et al., 2010;
Woodburn and Coppola, 2013; Alfriend and Park, 2016). Furthermore,
the stability of the filter initialization phase in case of poor initial
covariance estimates is improved, as will be demonstrated later.

The emulation of a Kalman filter operating natively in equinoctial
elements works in a similar manner for the EKF and UKF by applying
the following changes to the filters:

1. Convert the a priori state to equinoctial elements
2. UKF only: convert the propagated sigma points to EOE
3. UKF only: compute the matrix Pxz using the difference of the a

priori state and the propagated sigma points in EOE
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4. UKF only: obtain the Kalman gain for the measurement updates
in equinoctial elements using Pxz from step 3

5. Define ∆xk as the correction between the a priori and the a
posteriori state (EKF: Cartesian, UKF: EOE via the equinoctial
Kalman Gain from step 4). This equals the Kalman gain matrix
times the measurement residual vector

6. Define ∆Pk as the correction between the a priori and the a pos-
teriori covariance (EKF: Cartesian, UKF: EOE via the equinoctial
Kalman Gain)

7. EKF only: obtain the Jacobian for the Cartesian to EOE conver-
sion using the a priori state and algorithm B.6

8. EKF only: convert ∆xk and ∆Pk to EOE via the a priori Jacobian
9. Perform the state and covariance updates in equinoctial elements

10. Convert the updated state back to Cartesian coordinates
11. EKF only: obtain the a posteriori Jacobian from EOE to Cartesian

coordinates and use it to convert the state error covariance back
to Cartesian coordinates

12. UKF only: use unscented transformation to convert the updated
covariance back to Cartesian coordinates. Alternatively perform
the back-conversion via step 11 if the use of a Jacobian in an
otherwise linearization-free estimator is considered acceptable

In view of the superior estimation performance and the significantly
prolonged validity of the Gaussian error assumption, the above com-
putations represent only a minor additional effort. Further examples
of the benefits of equinoctial measurement updates may be found in
Woodburn and Coppola (2013).

4.3.2 Simulation results

In the following, orbit determination results obtained by applying
the force model uncertainty framework in conjunction with the ex-
tended/unscented Kalman filter are presented. First, the effect of the
random walk solar flux treatment outlined in section 4.3.1 is illustrated
and its impact on the case where all modeled density error sources are
considered is assessed. Subsequently, the altitude dependency of the
force model uncertainties is analyzed in order to deduce conclusions
about their importance and the applicability of a classical EKF.

Following the EKF results, the performance of the linearization-free
UKF is presented. Cloud-saving and gravity uncertainty accumulation
are used to account for the total force model uncertainty since the
last measurement update. The influence of the ballistic coefficient
on the magnitude of the density errors is highlighted. Finally, the
complete force model uncertainty quantification framework (solar
flux/magnetic index/average density model errors, as well as gravity
errors of omission and commission) is applied and the importance of
the initial covariance estimate is addressed.
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Scenario parameters:

MC iterations: 200
t0: 2011/Oct/01-20:00:00

Duration: 5.5days
Propagation step: 10min

Perturbations:
30× 30 aspherical potential

field (GGM02C)
Atmospheric drag

(DTM-2012)
Solar radiation pressure

Third body gravity
(soli-lunar)

Solar flux errors:
Random walk

Double-sided PSD of
underlying white noise
process: 130 000 sfu2s

Sampling: daily

Observer:
Type: Optical

Latitude: 49.7813deg
Longitude: 9.973 94deg

RaDec accuracy: 10−3 deg

Object:

x0 :



−307.504 742 km

−3068.587 070 km

−6158.385 177 km

7.565 267 km/s

−0.797 834 km/s

0.020 935 km/s


Frame: GCRF

Semi-major axis: 6887.0 km
BC: 0.06m2/kg

Scenario 1: EKF, solar flux random walk density errors only

Figure 4.15: Expected and Monte-Carlo orbital uncertainty due to solar flux
random walk errors

Figure 4.15 depicts the OD performance obtained using the orbital
uncertainty quantification model for solar flux random walk errors as
EKF process noise matrix. In contrast to previous cases, the simulation
time has been extended by one day to evaluate the measurement
update treatment in case of solar flux random walk errors for extended
durations of the actual input error process.

As reported in section 4.3.1, the plot depicts slight uncertainty
growth errors in the transverse direction for the propagation phases
after 24h of simulation time. Nevertheless, the essence of the trans-
verse uncertainty growth during the propagation phases is captured
and also the final and strongest transverse position error increase is
correctly estimated. The radial and normal position errors do not show
any deficiencies in the uncertainty modeling. In fact, the normal errors
do not exhibit any growth at all, since density errors predominantly
lead to in-plane kinematic state vector errors. The growth rate of the
radial position error is almost insignificant, because the measurement
updates are sufficiently frequent to keep the position errors in this
direction small.

The extended scenario, in which also the uncertainty resulting from
geomagnetic index input errors and grid-scale density model errors
is considered in addition to the random walk solar flux input errors
when computing the filter process noise, is depicted in figure 4.16.
The blending of the individual density uncertainty drivers masks the
random walk solar flux error treatment without any visual impact on
the final covariance estimates, as already mentioned in section 4.3.1.
The estimated three sigma standard deviations match the Monte-Carlo
generated 3σ bounds in all axes throughout the entire simulation after
the filter completed its initialization phase.
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Scenario 2: EKF, all density error sources (solar flux input errors modeled as
random walk)

Figure 4.16: EKF OD using the complete density uncertainty quantifica-
tion framework: Monte-Carlo position errors, 3σ bounds and estimated 3σ

uncertainty

In the following, the semi-major axis is gradually increased in order
to evaluate the impact of the density errors on the orbit. Since neutral
thermospheric density is decreasing approximately exponentially with
altitude, a rapid decline of the transverse position error bounds is ex-
pected (cf. figures 4.11-4.13). The question to be answered is therefore
as of which altitude a classical EKF or UKF yields the same uncertainty
consistency as its density uncertainty considering counterpart.

Scenario 3: EKF, all density error sources, semi-major axis: 7000 km

Figure 4.17: Expected and Monte-Carlo orbital uncertainty due solar flux,
magnetic index and grid-scale model errors at a = 7000 km
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Scenario 4: classical EKF,
process noise neglected,

all density error sources,
semi-major axis: 7000 km

Scenario 5: EKF,
all density error sources,

semi-major axis: 7100 km

Scenario 6: classical EKF
process noise neglected,

all density error sources,
semi-major axis: 7100 km

Figure 4.18: Expected and Monte-Carlo orbital uncertainty due solar flux,
magnetic index and grid-scale model errors ata=7000 km using a classical EKF

Figure 4.19: Expected and Monte-Carlo orbital uncertainty due solar flux,
magnetic index and grid-scale model errors at a = 7100 km

Figure 4.20: Expected and Monte-Carlo orbital uncertainty due solar flux,
magnetic index and grid-scale model errors ata=7100 km using a classical EKF
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Scenario 7: EKF,
all density error sources,
semi-major axis: 7300 km

Scenario 8: classical EKF,
process noise neglected,
all density error sources,
semi-major axis: 7300 km

Figure 4.21: Expected and Monte-Carlo orbital uncertainty due solar flux,
magnetic index and grid-scale model errors at a = 7300 km

Figure 4.22: Expected and Monte-Carlo orbital uncertainty due solar flux,
magnetic index and grid-scale model errors ata=7300 km using a classical EKF

Figures 4.17 to 4.22 confirm the expectation of position error covari-
ances that swiftly decline with orbital altitude due to the exponentially
decreasing neutral atmospheric density and the associated reduction
in density errors. However, the observed position errors are much
smaller than in the least squares case, as the frequent measurement
updates are able to keep the duration of the virtual density error
processes short.

While for BC = 0.06 m
2

kg and a semi-major axis of a = 7000 km

the classical EKF breaks down after 50h of simulation time and fails
to estimate correct position error covariances starting from the first
propagation phase, the situation is much different for a = 7100 km.
While a slight transverse propagation error covariance underestimation
can be identified in figure 4.20 after 50h of simulation time, the first
noticeable underestimation takes place at t = 70h. Filter smugness
starts to develop at t = 85h. If the semi-major axis is increased by
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Scenario parameters:

MC iterations: 200
t0: 2015/02/18-09:00:00

Duration: 5.0days

Perturbations:
Reference: 85× 85

GGM02C potential field
OD: 30× 30 GGM02C

Drag: DTM-2012
SRP, Third body gravity

Density errors:
Sol. flux: white noise,
PSD: 130 000 sfu2s

Geomag. ind.: white noise,
PSD: 21 600AP units2s

Model OUP:
θ = 10−6, sModel = 10%

Object:

x0 :



1624.727 042 km

−30.426 939 km

−6693.537 803 km

0.662 754 km/s

7.576 662 km/s

0.126 079 km/s


Frame: GCRF

Semi-major axis: 6887.0 km
BC: 0.006m2/kg

another 200 km, a classical EKF shows equal performance to its density
uncertainty considering counterpart until 105h of simulation time.

Without physics-based process noise matrices EKFs are unable to
account for the covariance growth due to density errors. Hence, more
frequent measurement updates are required to keep the orbit errors
small and avoid filter smugness. For the current example, density
errors can be judged to have an impact on operational orbit covariance
consistency up to an altitude of approximately 800-850 km. However,
as the boundary depends on the current thermospheric conditions
and the ballistic coefficient of the satellite, it is impossible to specify a
universal range.

So far only the density covariances of the force model uncertainty
framework were applied, however also gravity errors should be taken
into account. This is demonstrated in figure 4.23, where only den-
sity errors are considered, however also gravity errors of omission
are simulated by using a 85 × 85 GGM02C potential field for the
Monte-Carlo iterations and measurement generation, whereas only
a 30× 30 GGM02C field is used for the EKF-based orbit determina-
tion. The Monte-Carlo 3σ bounds have been removed in figure 4.23,
because the aleatoric treatment of epistemic gravitational errors quan-
tifies the expected uncertainty, but prevents its full characterization.
The stochastic 3σ limits should thus be understood as error bounds.

Scenario 9: EKF, density and gravity errors simulated, only density uncer-
tainty consideration, BC = 0.006 m

2

kg

Figure 4.23: Monte-Carlo position errors and expected 3σ uncertainty. Density
and gravity errors simulated, only density errors considered

The impact of gravity errors can be clearly identified in figure 4.23.
The radial and normal position errors depict an oscillatory motion,
while the dominant transverse position errors exhibit a bias. All axes
exceed the expected error limits. Figure 4.24 illustrates the results
when gravity errors are considered additionally to density errors using
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algorithm 3.1 or 3.2. The radial and transverse errors remain within
the error bounds. Also the normal error bounds improve, however a
slight underestimation can be observed at t=70h and 90h.

Scenario 10: EKF, density and gravity errors, a = 6887 km, BC = 0.006 m
2

kg

Figure 4.24: Monte-Carlo position errors and expected 3σ uncertainty. Density
and gravity errors simulated and considered for the process noise generation

The consideration of both error sources is especially important
below ∼600 km. At higher altitudes or in case of larger ballistic coef-
ficients it may be possible that the density uncertainty compensates
the dominating transverse position errors of gravity modeling origin,
however also in this case it is recommended to include the gravity
error covariance in the filter process noise matrix, since the radial and
normal components are not captured by the density error covariance
(cf. figures 4.25 and 4.26).

Scenario 11: EKF, density and gravity errors simulated, only density uncer-
tainty consideration, semi-major axis: 6887 km,BC = 0.06 m

2

kg

Figure 4.25: Monte-Carlo position errors and expected 3σ uncertainty. Density
and gravity errors simulated, only density errors considered, increased BC
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Scenario 12: EKF, density and gravity errors simulated, only density uncer-
tainty consideration, semi-major axis: 7000 km, BC = 0.06 m

2

kg

Figure 4.26: Monte-Carlo position errors and expected 3σ uncertainty. Density
and gravity errors simulated, only density errors considered, increased BC

Figure 4.27 shows the result of the same scenario as depicted in fig.
4.25, however both density and gravity errors are considered in the
filter process noise matrix. The improvement in the radial and normal
components is evident.

Scenario 13: EKF, density and gravity errors, a = 6887 km, BC = 0.06 m
2

kg

Figure 4.27: Monte-Carlo position errors and expected 3σ uncertainty, density
and gravity errors considered, increased BC

Comparing figures 4.24 and 4.27 allows to infer the impact of the
ballistic coefficient on the density uncertainty. Both scenarios are equal
except for a ten times smaller ballistic coefficient in figure 4.24. At
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each end of the four extended propagation phases, the 3σ uncertainty
bounds differ by a factor of three to four. Also the slope of the expected
uncertainty is significantly larger in figure 4.27, demonstrating the
need for physics-based process noise matrices that are able to take the
ballistic coefficient into account via its integrated effect on the fraction
∆n̂
∆t which is central to the density covariance estimates.

The performance of a classical process noise neglecting EKF for
BC = 0.006 m

2

kg and BC = 0.06 m
2

kg is contrasted in figures 4.28 and 4.29.
It does not take a lot of words to assess the fundamental performance
difference between figures 4.28 and 4.24, as well as 4.29 and 4.27.

Scenario 14: Classical EKF, density and gravity errors, BC = 0.006 m
2

kg

Figure 4.28: Monte-Carlo position errors and expected 3σ uncertainty. Density
and gravity errors simulated but not considered

Scenario 15: Classical EKF, density and gravity errors, BC = 0.06 m
2

kg

Figure 4.29: Monte-Carlo position errors and expected 3σ uncertainty. Density
and gravity errors simulated but not considered
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Finally, also the compatibility with the unscented Kalman filter shall
be demonstrated. The impact of the initial process noise estimate, as
well as the choice of the coordinate frame on the filter performance is
analyzed as an example of practical relevance.

Scenario 16: UKF, density and gravity errors, poor choice of P̂0. Coordinate
frame: Cartesian

Figure 4.30: UKF OD with highly optimistic P̂0 in GCRF coordinates using
the complete force model uncertainty framework

Scenario 17: UKF, density and gravity errors, poor choice of P̂0, Coordinate
frame: EOE

Figure 4.31: UKF OD with highly optimistic P̂0 in EOE using the complete
force model uncertainty framework

Figures 4.30 and 4.31 represent the same scenario as figure 4.27,
except that the initial covariance estimate was chosen overly optimistic
(and an UKF is used for the OD). The highly optimistic choice of P̂0
has a tremendous impact on the OD estimates in figure 4.30. While
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the dominant transverse position errors recover to a large extent after
30h, they still regularly violate the error bounds after measurement
updates. Also the radial and normal position errors are never within
their expected limits throughout the simulation.

Using equinoctial orbit elements for the OD drastically improves
the filter performance. The dominant transverse errors remain within
their estimated bounds after the first extended propagation phase. The
radial errors are correctly estimated after the second propagation
phase. Only the normal errors remain out of limits, however they signif-
icantly improved in comparison to figure 4.30. Even though the initial
covariance estimates are not expected to be of such bad quality in prac-
tice, performing the OD or at least the measurement updates in EOE is
highly recommended, since orbital elements also maximize the valid-
ity of the Gaussian error assumption during propagation. The step by
step conversion procedure on page 212 may be used for this purpose.

4.4 approximate uncertainty quantification using gp

propagation theory

What is nowadays collectively known as the analytical GP propagation
theory has been released 40 years ago by the United States Depart-
ment of Defense (DOD) in SpaceTrack Report number 3 as Simplified
General Perturbations Model 4 (SGP4) and Simplified Deep Space Per-
turbations Model 4 (SDP4) (Hoots and Roehrich, 1980). The report also
contains further analytical propagation models, but the combination
of SGP4 (orbital period less than 225min) and SDP4 (orbital period
greater than 225min) became the centerpiece of the document, as they
are the ones used most frequently to propagate the Two-Line Element
(TLE) sets issued by NORAD.

For compatibility with the publicly available TLE catalog, it is im-
portant to use an implementation of the theory which is identical to
the DOD version, or at least highly compatible with it. Also a seamless
transition between the SGP4 and SDP4 models is desirable. Unfortu-
nately, up to date source code is not available from DOD, such that
an alternative, yet central source is required. The work of Vallado
et al. (2006) is nowadays a widely accepted source which combines
numerous corrections to the original implementation of SpaceTrack
Report #3 in an up to date software package designed for maximum
compatibility with the code presumably used by DOD today.

The GP theory has been developed without a counterpart for co-
variance propagation. Also the TLE file format contains no fields to
indicate uncertainty information. A substantial amount of work has
been performed to derive uncertainty estimates for the TLE catalog
using various methods. The strategy used at the ESA’s Space Debris
Office (SDO) is outlined in Flohrer et al. (2008) and uses differential
correction to estimate an epoch uncertainty. The main issue however
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is to propagate the uncertainty, since no analytic counterpart for co-
variance propagation exists. It therefore became common practice to
propagate the estimated epoch TLE covariances using SP methods,
thereby accepting that different force models are used to perform
the numerical propagation. It is however a known fact that different
models lead to inconsistencies (Kaya et al., 2004; Escobar et al., 2011).
The lack of an appropriate GP covariance propagation technique is
therefore an unfortunate circumstance.

A presumably elegant solution lies in the usage of modern sampling-
based sigma point algorithms (e.g. unscented transformation), since
they use the state propagation model for uncertainty propagation.
Despite its elegance, this approach does not solve the covariance prop-
agation issue because the generation of sigma points is not possible.
The orbital elements in TLE files represent a form of mean elements
and must not be confused with the momentary osculating orbital
elements (Vallado, 2013, section 9.9.1). However, initial covariance ma-
trices (as e.g. obtained by the ESA Space Debris Office (SDO) method)
cannot be reliably converted into a covariance for these mean ele-
ments (a discussion about the difficulties of the osculating to mean
conversion may be found in section 9.9.1 of Vallado, 2013).

The TLE file format poses an additional obstacle for the sampling
based algorithms. The GP state propagation codes internally use
so-called “satellite records” which are generated from the two TLE
character lines for propagation. The TLE file format limits the number
of decimal places available for the orbital elements, such that even if
there would be a suitable mean covariance for the sigma point genera-
tion, the corresponding sigma point mean elements would have to be
truncated, thereby altering their statistical properties. Small changes
due to small covariances could even get lost as a consequence of insuf-
ficient decimal places. Satellite records on the other hand contain over
100 data fields, of which most are required for propagation. Many of
these would need to be manually updated for each sigma point to
maintain all significant digits.

A third requirement for practical applications lies in the need to
propagate covariances that correspond to a time different than the TLE
epoch. A GP covariance propagation theory thus has to be capable of
propagating Pi to Pj, given a TLE with epoch t0, where t0, ti and tj
may be in any chronological order.

gp covariance propagation

The solution to GP covariance propagation is based on the numerical
approximation of the STM required for linear covariance propagation.
The process has been briefly outlined in Escobar et al. (2011) and is
supplemented with the necessary details for implementation in the
following. The STM from time ti to time tj is defined by equation
4.60.
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φ(tj, ti) =
∂xj

∂xi
(4.60)

Given an initial covariance matrix Pi, the linear covariance propagation
to time tj is achieved according to equation 4.61:

Pj = φ(tj, ti)Pi φ(tj, ti)T =

(
∂xj

∂xi

)
Pi

(
∂xj

∂xi

)T
(4.61)

The GP theory is developed in the TEME pseudo-frame. The final step
is a conversion to inertial Cartesian coordinates. Each propagation is
always started from the two line character arrays or the corresponding
set of satellite record vectors and returns a propagated Cartesian
inertial state vector.

The propagation process from mean TLE orbital elements to prop-
agated Cartesian kinematic states is a one-way street, meaning that
it is not possible to use the result of a propagation as input for a
subsequent propagation, as the process cannot be initialized using
inertial Cartesian states or osculating orbital elements. However, since
the GP theory is analytic, there is no impact on algorithm runtimes
when using the TLE epoch data to initialize propagations.

The objective is to numerically compute ∂xj/∂xi. Assuming that
the GP propagation from mean orbital elements to inertial Cartesian
coordinates can be expressed as some function GP(t0, ti, x0,m), where
t0 is the TLE epoch time, ti the final propagation time and x0,m the
epoch state vector constructed from the mean orbital elements of the
second TLE line, it is possible to state:

xi,Cart = GP(t0, ti, x0,m) (4.62)

The chain rule allows to split equation 4.60 as follows:

∂xj

∂xi
=

∂xj

∂x0,m

∂x0,m

∂xi
=

∂xj

∂x0,m

(
∂xi
∂x0,m

)−1

(4.63)

Equation 4.63 boils down to the numerical evaluation of ∂xk/∂x0,m,
where k is an arbitrary target time for the propagation. Using central
differencing, two analytic GP propagations are required to obtain esti-
mates of the Jacobian. Also higher order methods (e.g. the five point
stencil method) are possible, however they require further propaga-
tions. Numerical experiments have not shown significant differences
between both approaches, such that in practice the faster central dif-
ferencing approach is preferable.

An important point for the success of this method lies in the choice
of the deviations applied to the TLE mean elements. Four of the six
mean orbital elements in x0,m are angular quantities, such that the
deviation added to the variables for the central differencing should
be chosen independently of their actual value. The mean motion and
the eccentricity on the other hand showed best results using relative
differences.
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Also this numerical approach to GP covariance propagation is con-
strained by the number of significant digits available through the
TLE file format. In contrast to sampling-based approaches however
the perturbations do not need to fulfill statistical properties and can
therefore be chosen in accordance with the number of decimal places
available. The pseudocode of the numerical Jacobi matrix derivation
is given in algorithm 4.1. The algorithm needs to be invoked twice to
compute the STM according to equation 4.63.

Algorithm 4.1: Computation of GP Jacobian via central differencing

1: function numJacGP(line1, line2, tEnd, numJac)

2: . State vector definition:
3: . 1: mean motion, 2: eccentricity, 3: inclination
4: . 4: RAAN, 5: argument of perigee, 6: mean anomaly

5: . Define the delta vector h
6: h← [1e-6, 1e-2, 1e-3, 1e-3, 1e-3, 1e-3]

7: . Get the mean elements from the second line of the TLE
8: call line2ToxCoe(line2, xCoeMeanBck)
9: for i ∈ [1, 6] do

10: . Restore the original TLE data
11: line2tmp← line2

12: xCoeMean← xCoeMeanBck

13: . Obtain the delta for the numerical differentiation
14: if i 6 2 then
15: . h(i) is relative for mean motion and eccentricity
16: δ← xCoeMean(i) · h(i)
17: else
18: δ← h(i)

19: end if
20: . Addition of the ith component
21: xCoeMean(i)← xCoeMeanBck(i) + δ

22: . Update the second line of the TLE
23: call xCoeToLine2(xCoeMean, line2tmp)

24: . Propagate
25: call GP(line1, line2tmp, tEnd, xp)

26: . Same operations when subtracting delta
27: xCoeMean(i)← xCoeMeanBck(i) − δ
28: call xCoeToLine2(xCoeMean, line2tmp)
29: call GP(line1, line2tmp, tEnd, xm)

30: . Store the gradient as the ith column of the Jacobian
31: numJac(:,i)← (xp − xm)/(2δ)

32: end for

33: return numJac

34: end function
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Validation
Algorithm 4.1 has been validated via the following strategy:

• Randomly download a TLE from SpaceTrack
• Perform a zero time propagation to obtain the osculating epoch

GCRF state from the TLE
• Define an initial GCRF covariance matrix (e.g. by definition in

EOE with subsequent conversion to GCRF via algorithm B.5)
• Perform GP covariance propagation using algorithm 4.1
• Perform SP covariance propagation using the initial GCRF state

and covariance
• Transform the SP covariance into the RTN frame
• Transform the GP covariance into the RTN frame of the SP

propagation

Exemplary results for a LEO, MEO and GEO TLE are presented in
figures 4.32-4.34. Each figure depicts the SP propagation in the top
left subplot, the GP propagation in the top right subplot and the
difference of the standard deviations in the lower subplot. The models
used for the SP propagation are chosen to approximately match the
GP theory: 4×4 EGM-96 potential field, MSISE-90 atmospheric drag
and soli-lunar third body perturbations (using JPL ephemerides). The
ballistic coefficient is extracted from the TLE4 via the conversion factor
BC = 2

6378.135·2.461·10−5B
∗ ∼= 0.078482951B∗ (Vallado, 2013, p. 106).

The input TLE, as well as the initial EOE epoch covariance are given
below the title of each figure.
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Figure 4.32: SP vs. GP covariance propagation for a randomly picked LEO RSO

4 The estimation of a ballistic coefficient from B∗ for LEO RSOs can only represent
an approximate guess, since B∗ is a solve-for parameter in the TLE generation and
therefore susceptible to error aliasing. In fact, some TLEs clearly reveal error aliasing
in the form of negative B∗ values, which are not representative for the physical
ballistic coefficient, however minimize the residuals during TLE generation
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Figure 4.33: SP vs. GP covariance propagation for a randomly picked MEO RSO
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Figure 4.34: SP vs. GP covariance propagation for a randomly picked GEO RSO

All cases cover a propagation duration of five days. In figures 4.32

and 4.33 pure forward propagation is applied, whereas backward5

5 The ability to perform backward propagation is less relevant for real-time applications,
however commonly used to detect close conjunctions between state vectors/TLE sets
of differing epochs. Also some long-term encounter collision probability algorithms
make use of backward propagation to accumulate the total collision risk over time
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Zoom on the first 10h:

and forward propagation are simulated in figure 4.34. In all three
examples the RTN covariances rise quickly up to multiple hundreds
of kilometers, which in most cases is more than can be truthfully
represented using a Gaussian uncertainty assumption. Therefore the
initial covariance estimates allow to validate the covariance propaga-
tion for the full range of practically relevant covariance scales, up to
worst-case conditions. After all, initial covariance estimates of TLE
files are inaccurate, such that quick growth rates should be expected
when using empirical approaches such as Flohrer et al. (2008).

The MEO and GEO standard deviations in figures 4.33 and 4.34

show differences of 30m to 50m after five days of propagation, which
can be attributed to the model mismatch between the SP and GP theory
and is negligible in case of one sigma standard deviations of 175 km
and 70 km, respectively. Not surprisingly, the differences between
the GP and SP propagations are greatest in LEO. The maximum
standard deviation difference of 600m is less than one tenth of a
percent of the absolute standard deviation levels at this time, which is
clearly negligible and in fact indicates very similar astrodynamic force
modeling. The results presented in figures 4.32 to 4.34 demonstrate
the effectiveness of the semi-analytic6 GP covariance propagation and
thus allow to avoid SP covariance propagation when using TLEs.

An additional question of interest is the standard deviation dif-
ference between GP and SP covariance propagation when all force
models are taken into account for the SP propagation instead of aim-
ing to match the TLE perturbations. Such results allow assessing to
which extent (i.e. up to which propagation duration) SP covariance
propagations can be approximated using the semi-analytic GP method.
For this purpose, the scenario of figure 4.32 was recalculated, however
this time using a 85× 85 EGM-96 gravity field, additional HWM-93

thermospheric winds and solar radiation pressure. Figure 4.35 illus-
trates standard deviation differences of up to 4 km after 5 days of
propagation, which is remarkable considering overall standard devia-
tion levels of multiple hundreds of kilometers and the vast difference
in the underlying force modeling theories.
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Figure 4.35: GP vs. SP covariance propagation difference for a randomly
picked LEO object when considering all available force models for the SP

propagation

6 Analytic GP theory and numeric STM computation
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A limit on the propagation duration for which linear SP covariance
propagations can be approximated using algorithm 4.1 depends on
the maximum acceptable errors. A zoom on the first 10h is depicted
alongside figure 4.35 and reveals that the standard deviation errors
remain below 10m during the first 7h of covariance propagation.
Differences within 1m are observed throughout the first 2.5h. Similar
results are also obtained for other LEO RSOs, with increasing errors
for lower altitudes.

The ability to propagate covariances within the framework of GP
theory is compelling, as it opens new doors for the applicability of the
analytic theory. Major advantages of the method are the avoidance of
model inconsistencies, while at the same time a tremendous runtime
improvement over the SP theory is achieved by virtue of the analytical
nature of the TLE propagation. The potential use of GP covariance
propagation within the context of the force model uncertainty quan-
tification framework is therefore an intriguing idea that is examined
in the following.

force model uncertainty framework evaluation using

the gp theory

The near Earth part of the GP theory, i.e. SGP4, has its root in the
works of Brouwer and Kozai, who independently studied the motion
of near Earth objects and published their results in the same month
and journal (Brouwer, 1959; Kozai, 1959).

TLE sets contain eight variables required for orbit propagation,
which include the epoch time, an atmospheric drag coefficient and six
mean orbital elements. All orbital elements, except for the (mean) mean
motion follow the Brouwer theory, whereas the latter is taken from
Kozai. The development of the SGP4 model, including commonalities
with alternative analytical models such as PPT3, is presented in Hoots
et al. (2004) along with the equations that describe the initialization of
the algorithm and the orbit propagation.

The SGP4 theory retains only the long and short periodic terms of
the Brouwer theory that do not contain eccentricity (Hoots et al., 2004).
In contrast to PPT3, which assumes a semi-empirical drag model, the
treatment of atmospheric drag is based on the power function model
proposed by Lane and Cranford (1969), with the difference that only
the dominant terms for the secular effect of drag are included (Hoots
et al., 2004). Secular Earth zonal gravity effects are included from
Brouwer up to J4.

In view of these fundamental model differences compared to the
SP theory, it must be clear that the developments of chapters 2 and 3

cannot be transferred 1:1 to the GP theory. This is also not the objective
of this section. The basic idea is rather to reassess the force model
uncertainty framework regarding the extent to which the concepts
can be related to the GP theory and which parts of the computations
can be performed using SGP4 orbit propagation and semi-analytic
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SGP4 covariance propagation. As only a subset of the considered SP
force model uncertainty origins is conceptually transferable to the
GP theory and since individual quantities of the transferable compo-
nents cannot be obtained using pure SGP4, the extension of the force
model covariances towards the GP theory is considered experimental.
Nevertheless, it is believed that the resulting covariance estimates are
more accurate than the operational techniques of empirical covariance
scaling discussed in section 1.4.2.

Results of the GP force model uncertainty framework evaluation
are presented in section 6.2, where the force model quantification is
applied to the covariance propagation between the RSOs epoch times
and the time of closest approach in order to assess its impact on the
collision probabilities determined from space catalog snapshots7.

Atmospheric density uncertainty
The atmospheric density uncertainty quantification framework is sum-
marized in table 2.7. The GP model does not use solar flux or geomag-
netic activity space weather files as input. Although the solar energy
input and the current forcing of the magnetosphere also contribute
to TLE accuracy, there is no connection between these model-specific
density uncertainty drivers and the analytic GP force model. The
meaningfulness of considering input density uncertainty is therefore
questionable. Average model uncertainty however also applies to
the GP theory. The parametrization of the Ornstein-Uhlenbeck error
process model only requires an assumption for the average model
accuracy (sModel) and an estimate of ∆n̂∆t .

Literature reports no estimates for the average accuracy of the SGP4

power law density model, however assuming the standard deviation
to be at least twice that of modern semi-empirical density models,
a broad range of 20% 6 sModel 6 40% may be guessed. The fraction
∆n̂
∆t needs to be evaluated with density-only perturbations. The most
consistent option to compute the fraction would be to separate the
SGP4 force model into its components in order to consider only the
drag contribution. However, since the power law density model is
inherently coupled with the gravity model (Lane and Cranford, 1969),
this would be an unreasonably complex approach.

A better solution is to use the analytical estimation for the term
derived in Emmert et al. (2017, appendix A) which doesn’t require
an orbit propagator and assumes a spherically symmetric exponential
atmosphere. Alternatively also an SP propagator may be used (ideally
with averaged space weather input files for the time period of interest).

Sequential covariance propagation with density process noise con-
sideration is based on equation 2.300, where Φ(tk+1, tk) is to be com-

7 In fact, the idea of evaluating the force model covariances using the GP theory
and comparing results to the SP case emerged after investigating the possibility of
GP covariance propagation as part of the work carried out for the space catalog
conjunction assessment impact analysis presented in chapter 6
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puted with the full force model used for state propagation. Thus, equa-
tion 2.300 needs to be evaluated using algorithm 4.1 for Φ(tk+1, tk).

If the decision is made to additionally compute the SP input density
uncertainty despite its missing connection to the GP theory, the estima-
tion of σρp for these components via equation 2.83 is only possible by
means of a semi-empirical density model, which inevitably deviates
from the SGP4 density model.

In summary, it can be concluded that grid-scale density uncertainties
are compatible with the GP propagation theory once the ability of GP
covariance propagation according to algorithm 4.1 is implemented
and the analytical estimation of ∆n̂∆t from Emmert et al. (2017) or
alternatively drag-only averaged space weather SP propagation is
used to calculate the corresponding covariance matrix according to
equations 2.247, 2.248 and 2.288.

Gravity uncertainty
The core of the gravity uncertainty algorithm is the evaluation of
equation 3.53 using precomputed inner integral data. Algorithm 4.1
allows to compute Φ(tk+1, τj +∆/2) using the GP theory. Similarly,
the nonzero components of the matrix G(τj +∆/2) consist of the RTN
to GCRF frame conversion, which can be evaluated with the help of
a single GP state vector propagation. This leaves the evaluation of
the matrix product R(0, τj + ∆/2)1/2 I1(τj + ∆/2) R(0, τj + ∆/2)1/2

according to equation 3.52. Both components of the matrix product
require an estimate of the Earth central distance at time τj +∆/2 for
their evaluation. This estimate can be obtained using the same GP
propagation performed for the evaluation ofG(τj+∆/2). Both parts of
the matrix product however also depend on precomputed model data
(inner integral coefficients and degree variances). The SGP4 theory
accounts for the secular effects of Earth zonal harmonics up to and
including J4.

Modern gravity models agree fairly well within the potential field
coefficient range required for LEO orbit determination. Thus, any
gravity model may be used to approximate the orbital impact of
GP gravity errors of omission by setting the full field degree/order
truncation point as recommended by the IERS. Gravity errors of
commission only apply up to J4. As the standard deviation of the first
potential field coefficients reported by modern gravity models is very
similar, an arbitrary model can also be used to estimate the orbital
impact of gravity errors of commission.

In summary, it can be concluded that the orbital uncertainty due to
gravity errors can also be approximated by means of the GP theory.
Similar to the density uncertainty case, the GP framework only has to
be abandoned for the evaluation of a single quantity, which however
is not expected to have a significant impact on the overall uncertainty
estimates.
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A D A P T I V E G AU S S I A N M I X T U R E B A S E D O R B I T
D E T E R M I N AT I O N

Large initial uncertainties in the semi-major axis or force model uncer-
tainties are key drivers of the along-track uncertainty growth. Long
propagation times may therefore result in the need to use filtering
algorithms for orbit determination that do not reside to the assump-
tion of Gaussianity for state errors but estimate the entire probability
density function (pdf). Adaptive Gaussian mixture based filters have
demonstrated the capability of realistic pdf estimation in the past.
Previous research in the field of orbit determination using Gaussian
mixture filters however restricted its attention to initial uncertainties in
the semi-major axis direction and neglected force model uncertainties.

Chapter 4 assumed the orbit errors to be Gaussian, such that classic
orbit estimation algorithms were suitable for the OD when addition-
ally including force model uncertainties. The Gaussian assumption
shall be relaxed in this chapter, which presents the development of a
novel Gaussian Mixture Model (GMM) orbit estimator capable of con-
sidering atmospheric density uncertainty. In principle, the additional
consideration of gravity uncertainty would also be possible, however
the aleatoric treatment of the epistemic gravity errors complicates the
validation of the overall algorithm, as the global averaging renders the
stochastic gravity model zero-mean, whereas the actually considered
orbit errors are not (cf. chapter 3).

It is shown that the neglect of process noise, as has been custom-
ary for many years, can lead to undesired characteristics of the pdf
estimates and that the inclusion of atmospheric density uncertainty
process noise, even in cases where it is not the dominant driver of
along-track uncertainty growth, is able to correct these deficiencies.
For LEO satellites with increased ballistic coefficients or small initial
uncertainties in the semi-major axis direction, density uncertainty is
the dominant driver of the along-track uncertainty increase. Due to its
growth that evolves at least cubic in time, situations may arise which
require the usage of Gaussian mixtures also for the process noise when
working in Cartesian coordinates. The theoretical foundation for this
case is elaborated and an algorithm capable of dynamically switching
between a single Gaussian and a Gaussian mixture for the density
uncertainty process noise is presented.

5.1 introduction to non-gaussian orbit determination

A common and justified practice is to assume that the initial orbit
determination (IOD) of an object conditioned on multiple days of
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measurement tracks results in a Gaussian probability density function
(Horwood and Poore, 2011, section VIII). The Gaussian assumption
has the very appealing property that only the first and second mo-
ment of the pdf (the mean and the covariance) are required to fully
describe the orbital uncertainty. The nonlinear dynamics however re-
sult in any initially Gaussian pdf to eventually become non-Gaussian
(e.g. crescent or banana-shaped). The point in time when this hap-
pens depends on two factors: the error volume of the initial Gaussian
and the degree of nonlinearity experienced in the transformation. It is
therefore possible to maintain the Gaussian assumption for highly non-
linear transformations, given that the Gaussian volume is sufficiently
small. Similarly also a weakly nonlinear transformation may render
the Gaussian approximation invalid, if the volume of the Gaussian is
sufficiently large.

A widely accepted technique to handle non-Gaussian error volumes
are Gaussian Mixture Models (GMMs), also known as Gaussian sums1.
GMMs are weighted additions of individual Gaussians that have been
shown to converge to any pdf arbitrarily closely in the L1-norm (Soren-
son and Alspach, 1971). The theory of Gaussian mixture filtering dates
back to 1972 when Alspach and Sorenson published the corresponding
filtering equations and techniques (Alspach and Sorenson, 1972).

The main principle behind GMMs in the context of SSA is to split
an initial Gaussian into a Gaussian mixture whenever the nonlinearity
is sufficiently large for the transformation to result in a non-Gaussian
error volume. Since a split decreases the variances of the components
(also called kernels) along the splitting direction, the resulting ker-
nel covariances are assumed to be sufficiently small to be truthfully
propagated via the well-established propagation techniques, such as
first order Taylor linearization, Gauss-Hermite (GH) quadrature (Genz
and Keister, 1996) or unscented transformation (Julier and Uhlmann,
1997, 2004). Since nonlinearity acts upon the resulting kernels inde-
pendently, the filter cycles can be perfectly parallelized on modern
CPUs or GPUs, allowing for efficient implementation.

Successful application of Gaussian mixtures in orbit determination
requires the mixtures to be adaptive. Some researchers have focused
on making the kernel weights adaptive. While it can be shown that any
linear transformation leaves the weights unchanged, any nonlinear
transformation gives room to kernel weight optimization. Examples of
this class of adaptivity are Terejanu et al. (2008a,b, 2011) and Vishwa-
jeet et al. (2014). Others have focused on making the number of Gaus-
sian mixture components adaptive, for example DeMars et al. (2013),
Horwood and Poore (2011) or Horwood et al. (2012). While updating
weights with the Fokker-Planck-Kolmogorov Equation (FPKE)-error as
feedback is reported to improve the quality of the pdf estimates (at the
cost of increased operational runtimes) when using first order Taylor-

1 Gaussian mixture model and Gaussian sum are synonyms
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series based propagation (Terejanu et al., 2008b), Horwood et al. (2011)
determined that when using higher-order nonlinear methods such
as UT (or GH quadrature) no pdf quality improvement is observed
(Vittaldev and Russell, 2016).

This chapter follows the second approach in that the orbit deter-
mination is started with a single Gaussian. Refinement is performed
using a nonlinearity index, where the one developed in Vittaldev
(2015) is recommended for this purpose, since in contrast to entropy-
based approaches (e.g. DeMars et al., 2013) it is not only able to tell
when to split, but also provides a means to choose the most promising
splitting direction(s).

GMM-related studies generally assume that the uncertainty is suf-
ficiently large to justify the use of Gaussian mixtures. In the past
decades however also some research has been performed that investi-
gated the operational impact of non-Gaussian error volumes and the
question of when Gaussian error volumes become non-Gaussian. This
type of research allows to evaluate the need for higher order filtering
techniques. Relevant publications of this topic are Junkins et al. (1996),
Sabol et al. (2010), Alfriend and Park (2016) and Ghrist and Plakalovic
(2012), as already noted in section 1.3.3. Based on these investigations
the following statements can be made:

• Orbit determination in orbital element space (e.g. COE or EOE)
significantly increases the validity of the Gaussian error volume
assumption. 10 days and more are not uncommon for well-
cataloged LEO RSOs

• The primary reason for Cartesian representations of the orbit
error distribution to become non-Gaussian much quicker than
in orbit element space is the limitation of the linear reference
frame and not the potential usage of linearized dynamics for
covariance propagation

• Nonlinearity is easiest detected in the radial/transverse plane
(Cartesian coordinates) or in the size-variable2/fast-variable3

plane (orbital elements)
• Non-Gaussian error volumes have no operational impact on high

interest events (HIEs) in spacecraft conjunction assessment
• Non-Gaussian error volumes are required for larger initial un-

certainties in the radial position direction (a couple of hundred
meters), which are common to the uncorrelated track (UCT)
problem

As previously noted, a key aspect that has not been taken into account
in all of the recent GMM-based studies is the force-model uncertainty
encountered when performing orbit propagation. Grid-scale density

2 The semi-major axis or mean motion are typical size-variable choices in COE and EOE
3 Common fast variables are: mean anomaly (COE), true anomaly (COE), mean longi-

tude (EOE) or true longitude (EOE), however also the eccentric anomaly/longitude
are possible
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uncertainty grows with time cubed (t3), as has been shown in section
2.6. If only propagated model input data is available (which is the case
for real-time applications), a Brownian motion error process model
must be assumed for the density uncertainty caused by the uncertainty
of the solar flux index/indices. In this case the error may even grow
with t5, as shown in Emmert et al. (2017) and section 2.5.3.

It is known that the growth of the along-track standard deviation
depends linearly on the initial standard deviation in the radial posi-
tion (semi-major axis) direction (Horwood et al., 2011). Force model
uncertainty caused by atmospheric density uncertainty may hence
become the dominant mechanism of uncertainty growth if either the
initial uncertainty in the semi-major axis direction is small, or if the
ballistic coefficient of the satellite is sufficiently large.

In the following Gaussian mixture-based orbit determination with
the explicit consideration of atmospheric density uncertainty is inves-
tigated for the first time. Key questions to be answered are:

1. How can atmospheric density process noise be incorporated
into Gaussian mixtures which undergo component splitting and
merging?

2. Can process noise be safely neglected when performing orbit de-
termination/uncertainty propagation using Gaussian mixtures,
as claimed in Horwood and Poore (2011)? Or is the contrary the
case, i.e. that it is also beneficial to be considered even if it is not
the dominant process of the uncertainty growth?

3. What are remaining challenges and operational implications?

5.2 gaussian mixtures , coarsening and refinement

Prior to the discussion of the GMM design required to make the spe-
cial nature of the atmospheric density process noise compatible with
Gaussian mixtures, the relevant theory behind the GMM pdf repre-
sentation, GMM splitting and GMM merging (also called refinement
and coarsening/reduction) needs to be introduced.

5.2.1 Gaussian mixture probability densities

In the context of Gaussian mixture models the true pdf is approxi-
mated by a finite sum of weighted Gaussian kernels:

p̂(t, x(t)|zk) =
N∑
i=1

wi N(x− µi,Pi) (5.1)

where:

• p̂(t, x(t)|zk) denotes the pdf estimate at time t conditioned on
the first k measurements zk

• N denotes the total number of Gaussian kernels in the mixture
• wi is the kernel weight with the constraints of normalization(∑N

i=1wi = 1
)

and positivity (wi > 0) for i = 1, . . . ,N
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Some authors also write N(x;µi,Pi) or simply N(µi,Pi) to express
the normal distribution in the state x conditioned on the mean µi and
covariance matrix Pi. The simplest GMM is the degenerate case of
one component with weight w1 = 1, which equals the assumption of
Gaussianity. In this case the terms uncertainty and covariance can be
used interchangeably.

After a measurement update the kernel weights are updated accord-
ing to equation 5.2:

wi,k =
w ′i,kβi,k∑N
i=1w

′
i,kβi,k

(5.2)

where βi,k denotes the evaluation of the innovation normal distri-
bution at the estimated a priori kernel mean µ ′i,k, Rk the sensor
covariance matrix, h the measurement function and H its Jacobian:

βi,k = N(zk − h(tk,µ ′i,k),Pzz) (5.3)

In case of the EKF it holds that Pzz=Hi,kP ′i,kH
T
i,k +Rk. For the UKF

the innovation covariance is obtained from the kernel sigma point set
(index j) via Pzz=

[∑2nsigma
j=0 wj

(
zk−h(tk,µ ′i,k,j)

)(
zk−h(tk,µ ′i,k,j)

)T]
+Rk.

A non-adaptive Gaussian mixture estimator can be obtained by split-
ting an initial covariance into a Gaussian mixture and then running
a bank of nonlinear estimators in parallel on each component. This
static Gaussian mixture however quickly degenerates to the case of
a standard extended or unscented Kalman Filter, since initially the
uncertainty is still Gaussian and therefore all kernels but one will
obtain zero weight within a couple of filter cycles. A better approach is
to start with one initial kernel, i.e. the common Gaussian assumption,
which is then refined into a Gaussian mixture whenever a nonlinearity
index recommends a split.

5.2.2 Splitting of a multivariate Gaussian

The splitting of multivariate Gaussians is achieved by applying a uni-
variate splitting library along a certain splitting direction. Establishing
a univariate splitting library requires solving a complicated nonlinear
optimization problem (Horwood et al., 2011; Vittaldev and Russell,
2016). The most extensive univariate splitting library published to date
has been worked out in Vittaldev and Russell (2016) and is publicly
available for download. The Vittaldev-libraries, as well as the three
to five component libraries given in Huber et al. (2008) and DeMars
et al. (2013) are all homoscedastic, meaning that the kernels have the
same finite variance. As has been shown in Horwood et al. (2011), ho-
moscedasticity is by no means a restriction but an interesting property
of the optimal solution. For the following developments the splitting
library by Vittaldev which supports up to N = 39 kernels per splitting
action was used.
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The methodology behind splitting a Gaussian kernel along an eigen-
vector of the covariance has been elaborated in Huber et al. (2008). A
first generalization of multivariate Gaussian splitting which allows an
arbitrary splitting direction can be found in Aristoff et al. (2014). An
optimized algorithm which does not involve Gram-Schmidt orthog-
onalization has been presented later in Vittaldev and Russell (2016).
The respective generic splitting equations are:

µi = µ+ µiSâ
? (5.4)

for the kernel means and

Pi = S
(
I+ (σ2i − 1)â

?â?T
)
ST (5.5)

for the kernel covariance matrices, where

â? =
S−1u

‖S−1u‖2
(5.6)

The scalar variables wi, µi and σi are obtained from the chosen uni-
variate standard Gaussian splitting library. S can be computed either
as the principal matrix square root obtained e.g. via spectral decompo-
sition or as the lower triangular Cholesky factor. For a homoscedastic
splitting library it holds that σi = σ and therefore Pi = P. Splitting in
multiple directions is realized in a recursive manner. As long as the
splitting directions are orthogonal their order has no influence on the
result (Vittaldev and Russell, 2016).

Once the splitting routines are implemented, the next task is to de-
velop the ability of choosing a suitable splitting direction u. Two main
factors influence the splitting decision: the error volume described by
the covariance and the nonlinearity experienced in the transformation.
Consequently it makes sense to think about an index which takes both
arguments into consideration and translates them into a single number
per splitting direction, such that at any time it is possible to decide
in which direction(s) to split with how many kernels. Entropy-based
splitting criteria don’t fulfill this purpose, as they do not differentiate
between splitting directions.

Probably the first published index for this purpose has been pre-
sented in Junkins et al. (1996) and reads:

ϕi =
‖Φi(t, t0) −Φ(t, t0)||2

||Φ(t, t0)‖2
(5.7)

where Φ denotes the STM from time t0 to t, evaluated at the kernel
mean and Φi the STM evaluated at any point on the initial three-
sigma envelope. ϕi can then be computed for an arbitrary splitting
direction ui by computing the STM for the propagation from t0 to t for
the initial state µi = µ̄± 3‖S−1ui‖−12 ui. In his original work Junkins
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used 12 different points4 for the evaluation of ϕi and then chose the
supremum for plotting the overall nonlinearity index.

The nonlinearity measure defined by equation 5.7 has two distinct
downsides. First, it works with linearized state error transition matri-
ces, which are not required in case of the modern unscented Kalman
filter. Second, the evaluation of an STM is computationally more ex-
pensive than the propagation of a satellite state vector. Due to this
second argument the Junkins index is also not too suitable for an EKF,
as 12 additional STMs would need to be evaluated for each GMM
kernel.

Vittaldev (2015) proposed a different nonlinearity measure, which
instead operates on the set of sigma points:

ϕi =

∥∥∥∥f(µ̄+ h‖S−1ui‖−12 ui) + f(µ̄− h‖S−1ui‖−12 ui) − 2f(µ̄)
2h2

∥∥∥∥
p

(5.8)

where h is a scalar chosen in such a way that the nonlinear function
evaluations correspond to the propagated kernel mean (f(µ̄)) and the
symmetric sigma-points along ui. The p-norm may be taken as the
2-norm without restrictions. If the state vector elements have different
units, the sigma point set first needs to be converted to canonical
units via the respective canonical distance, time and velocity scales(
DU = REarth, TU =

√
R3Earth/(GM) and VU = DU/TU =

√
(GM)/REarth

)
prior to the evaluation of equation 5.8 (Vittaldev and Russell, 2016).
For orbit elements (COE/EOE) only the size variable is dimensional
and needs to be converted (multiplication with TU for mean motion or
division by DU for semi-major axis).

In case of sigma point Gaussian uncertainty propagators (such
as e.g. UT) the evaluation of this nonlinearity measure is a simple
algebraic operation which essentially boils down to the comparison
of the combined deviation of the symmetric sigma point pairs per
considered direction with respect to the propagated kernel mean. If
the matrix root is realized using Cholesky decomposition, then the
considered splitting directions are those parallel to the columns of the
lower triangular Cholesky factor. For spectral decomposition they are
parallel to the eigenvectors of the kernel covariance matrix.

Since propagating sigma points is computationally less expensive
than propagating STMs, equation 5.8 is to be preferred over the Junk-
ins nonlinearity measure also for adaptive Gaussian mixture based
filters that use the EKF as workhorse. It has to be mentioned, however,
that in this case the evaluation of equation 5.8 requires the uncertainty
propagation to be performed twice: once using an STM for the ker-
nel state and once using unscented transformation to evaluate the
nonlinearity measure.

4 Junkins work dates back to a time prior to the UT, which makes the equality between
his choice of 12 evaluation points to the commonly adopted set of 12 symmetric
sigma points when performing UT even more interesting
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Finally, it makes sense to translate the nonlinearity measure into a
recommendation for the number of Gaussian kernels to be used for
a split. There is no universal function for this purpose, however the
selected one should make sure that small values of the nonlinearity
index result in no splits, whereas for increasing values of ϕi the rec-
ommended splitting number should increase and stay in line with the
maximum component number supported by the underlying splitting
library. For a typical LEO satellite using Cartesian coordinates the
Vittaldev-index was found to start at values in the order of 10−12,
which then increased with propagation time to orders of 10−4 and
larger if no split was performed. Motivated by numerical experiments,
an equation of the form ni = a · ln(ϕi) + b was chosen to translate be-
tween nonlinearity index and kernel splitting recommendation. Since
the Vittaldev splitting libraries only support splits with uneven kernel
numbers, the final function selected reads:

ni = odd(0.404 ln(ϕi) + 7.0) (5.9)

with odd(x) = 2 ceil(x/2) − 1. Equation 5.9 results in the mapping
presented in table 5.1.

ϕi 10−6 10−5 10−4 10−3 10−2 10−1 100

ni 1 3 3 5 5 7 7

Table 5.1: Translation between nonlinearity index and kernel splitting recom-
mendation as provided by equation 5.9

For practical operations any value of n smaller than the minimum sup-
ported split of the splitting library (nmin = 3 for the Vittaldev-libraries)
is set to zero. The mapping function can be made more aggressive by
increasing b. Decreasing b results in splits being executed later, i.e. for
larger values of the nonlinearity index.

5.2.3 GMM coarsening

After a measurement update Gaussian kernels can become sufficiently
close to be replaced by fewer mixture components. Consequently
the ability of Gaussian mixture reduction, also referred to as GMM
coarsening or GMM merging is required to keep the number of kernels
under control. Gaussian mixture reduction can be defined as the task of
replacing a Gaussian mixture in N components with another Gaussian
mixture in M components where M < N, while keeping the distance
between the resulting pdf from the original probability density as
small as possible for the distance metric under consideration.
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Most of the merging algorithms found in literature make use of the
moment-preserving merge, which is defined by equations 5.10 to 5.12,
as their basic instrument.

w =

N∑
i=1

wi (5.10)

µ =

N∑
i=1

wiµi (5.11)

P =

N∑
i=1

wi
[
Pi + (µi − µ)(µi − µ)

T
]

(5.12)

If the moment-preserving merge is computed for a subset of the
Gaussian mixture (N < NGMM), then the weights in equation 5.11 and
5.12 need to be normalized with the weight obtained from equation
5.10. In the special case of the two-component moment-preserving
merge, the equations reduce to:

wij = wi +wj (5.13)

µij = wi|ijµi +wj|ijµj (5.14)

Pij = wi|ijPi +wj|ijPj +wi|ijwj|ij(µi − µj)(µi − µj)
T (5.15)

where wi|ij =
wi
wij

and wj|ij =
wj
wij

.

In 1988 Salmond proposed two distance criteria to determine pairs of
GMM kernels which are suitable candidates for merging (Salmond et
al., 1988). Some time later Jason Williams worked on Gaussian mixture
reduction using the integral squared difference (ISD) of two pdfs
(Williams, 2003; Williams and Maybeck, 2003). His ISD metrics have
the appealing property of being solvable in closed-form for Gaussian
distributions. A comparison of Salmond’s and Williams’ distance
metrics is presented in Runnalls (2007) alongside the presentation
of a novel metric based on the Kullback-Leibler (KL) distance. The
KL-metric not only shows superior results for the example considered
in Runnalls (2007), but can also be computed orders of magnitude
faster than Salmond’s and Williams’ metrics, since neither matrix
inversions nor double sums of multivariate Gaussian pdf evaluations
are required to obtain the KL distance. The simplicity and performance
of Runnalls’ KL-distance has helped to attract a number of researchers
to its application in the past decade. Given two kernel components,
the KL-distance can be computed using equation 5.15 for Pij and eq.
5.16 for the resulting distance measure:

B
(
(wi,µi,Pi), (wj,µj,Pj)

)
=
1

2

[
(wi +wj) log

(
det(Pij)

)
− wi log

(
det(Pi)

)
−wj log

(
det(Pj)

)]
(5.16)
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All merging strategies that have just been reviewed work by merging
pairs of Gaussian components until either a desired target size or a
maximum distance threshold between the kernels is reached. As will
be discussed in section 5.4, the performance of the merging algorithm
is crucial for operational GMM-based orbit determination. The reason
is that the computational burden of obtaining the distance metric
grows with the square of the number of mixture components. Under
certain circumstances (e.g. those discussed in section 5.4), the number
of Gaussian kernels can easily go into the thousands. In this case it
becomes very costly to repeatedly compute the distance metric for
every possible combination of kernel pairs and to keep track of the
minimum distances encountered.

5.3 gaussian mixture model design for atmospheric den-
sity uncertainty consideration

A design for a GMM-based OD algorithm which shall be adaptive in
the number of kernels needs to accommodate the steps of nonlinearity
detection, splitting of a Gaussian into a Gaussian mixture and merg-
ing of Gaussians. When process noise shall be considered, also the
computation of the process noise matrices needs to be well thought
of. Important points in the design are discussed topic by topic below
after a short recap on covariance propagation with density uncertainty
process noise.

density uncertainty covariance propagation

The content of sections 2.7.2 and 2.7.3 is imperative for the successful
design of a GMM filter capable of density uncertainty consideration.
This includes the computation of the overall density uncertainty co-
variance, the frame conversions between orbital elements and inertial
GCRF coordinates, as well as the particularities of the stepwise propa-
gation of the filter covariance matrices.

Atmospheric density uncertainty has the unique advantage that it
can be formulated analytically. A difficulty however is that the theory
develops from the start of a density error process, i.e. the time of the
last measurement update. As such the combined covariance matrix
cannot be simply evaluated in incremental steps of δt, which is typical
for sequential orbit determination. For an EKF, covariance propagation
including density uncertainty process noise can be achieved using
equation 2.300 or alternatively equations 2.302 and 2.303. Both options
operate in the same way: to propagate the covariance in time, any
prior process noise contribution since the last measurement update
needs to be removed from the covariance matrix of the state before
this process-noise free covariance can be propagated forward in time
using the STM. Finally, the process noise matrix which belongs to the
time tk+1 is added to the result. Due to the analytic nature of the
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density uncertainty framework, increased values of t do not lead to
longer computation times.

If one wishes to account for additional sources of process noise,
equation 2.300 must be used as well. In this case Qk represents the
total accumulated process noise since the last measurement update
until time tk. The propagation is then performed in a similar manner
by first subtracting the so far accumulated process noise prior to
propagation and a subsequent addition of the total process noise for
time tk+1. To avoid long computation times, the accumulated process
noise contribution of sources formulated in a non-analytical manner
should be stored in memory at any time-step. In case of an unscented
Kalman filter the covariance propagation is performed using equation
2.304 and sigma point cloud-saving.

The general concept of obtaining a process noise free covariance
prior propagation with subsequent addition of the updated propaga-
tion error covariance is essential for the extension of the concepts to
Gaussian mixture models.

computation of nonlinearity index and kernel splitting

recommendation

Equation 5.8 operates on the set of the propagated sigma points used
for covariance propagation. Consequently the function needs to be
evaluated directly after the covariance propagation step of every kernel
filter cycle. This results in aN× 6matrix of splitting recommendations,
since every kernel may be split in up to six directions. In practice
however typically one or two components of the nonlinearity index
vector dominate the others by orders of magnitude, such that equation
5.9 will only recommend splitting in one or two dimensions - even for
Cartesian coordinates.

Covariance propagation (CP) is usually performed in equally spaced
time intervals in the absence of measurements. If this time interval
is sufficiently short, it can be justified to apply the splitting recom-
mendations computed using the covariance propagation up to the
current time prior to the next iteration of the CP-loop. If covariance
propagation is implemented without interruption during measure-
ment updates, it becomes necessary to partition the propagation into
small intervals to allow for nonlinearity to be detected.

kernel merging

Reduction of the Gaussian mixture components is crucial to keep
the overall number of kernels under control, as otherwise repeated
splitting operations quickly lead to kernel numbers growing without
bound. An intuitive point of time for merging is directly after a
measurement update, since then the volume of the pdf is significantly
reduced, such that less kernels are needed for propagation. However,
even in the absence of measurements merging is required. It may
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Figure 5.1: Kernel merging for
adaptive GMM filtering

either be performed at the
end of a filter cycle (after the
CP) or at the beginning of
the next iteration. In the lat-
ter case the simulation output
data directly reflects the re-
sults of the individual kernel
covariance propagation, with-
out kernel merging and there-
fore data reduction.

In both cases it is important
to be aware of the fact that
the merge of two kernels re-
sults in the combined covari-
ance to grow. Therefore the
saved cloud of sigma-points
must be recomputed from
the merged covariance after
a merge has taken place. The
cloud of the removed kernel
needs to be deleted. Similarly
also the GMM data struc-
tures containing the weights,
means and covariances need
to be adapted accordingly to
reflect the merge.

The steps required for ker-
nel merging are summarized
in figure 5.1 and form a build-
ing block of the overall filter
design in figure 5.2.

kernel splitting

As discussed above, it is possible to apply the splitting recommen-
dations prior to the next iteration of the covariance propagation. In
the meantime however a merging process has taken place and may
have changed the kernel covariance or even deleted the kernel. It
is therefore a design decision to treat the case where the merging
algorithm suggests that a kernel can be merged which has a nonzero
entry in the N× 6 matrix of splitting recommendations. A conserva-
tive choice would be to take the greater splitting recommendation
of every possible splitting direction for the two kernels contained in
the merge. This however quickly leads to an unbalanced filter, since
the merged kernel would be split shortly after. A better choice is to
clear the splitting recommendation in this case to avoid unnecessary
merging with subsequent splitting. Eventually, this situation should
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not arise too often, as it is a sign of unfavorably chosen splitting and
merging thresholds (e.g. overly aggressive splitting and merging).

Since a split replaces the original kernel with multiple smaller ones,
the saved sigma-point cloud of the original kernel needs to be deleted
whenever a split is detected. The cloud of the new “children” is then
to be computed from the reduced covariance and subsequently saved
for propagation until the next merge or split.

inclusion of process noise

Finally, the incorporation of atmospheric density uncertainty into a
Gaussian mixture filter for orbit determination shall be described.

From a theoretical viewpoint the incorporation of process noise
into a Gaussian mixture filter has already been treated in the original
work by Alspach and Sorenson (1972). Having the EKF as workhorse
in mind, they showed that the classical linearized covariance prop-
agation equation is valid for each kernel (index i) individually, i.e.
P̂k+1,i =Φi(tk+1, tk)P̂k,iΦi(tk+1, tk)T +Qk. In Alspach and Soren-
son (1972) the process noise5 is assumed to be equal for each kernel. In
fact, it would not even be possible to evaluate equation 2.306 for every
kernel, since due to the merging and splitting a kernel is not guar-
anteed to “survive” the entire time between measurement updates.
Even if the kernels existed for this duration, it would be unnecessarily
time-consuming to evaluate equation 2.306 for every kernel of the
mixture, since the mixture components are known to grow into the
hundreds for Cartesian coordinates (Aristoff et al., 2014). Nevertheless
it is also not possible to use the same Cartesian form of the process
noise for every kernel, since the transformation from orbital elements
(OE) to Cartesian coordinates is state vector dependent.

The solution to this dichotomy lies in the usage of the moment-
preserving merge given by equations 5.10 to 5.12. The fully merged
Gaussian can be defined independently of the number of mixture
kernels and provides sufficient continuity to be suitable for the density
uncertainty computations. Consequently, a GMM-based filter for OD
can be designed which computes the process noise only once (using
the merged Gaussian) and then performs the conversion to GCRF
coordinates separately for each kernel:

Fully merged
Gaussian

QkOE

Kernel
stateµi,k

−→

Kernel
process noise

Qk,iGCRF (5.17)

Furthermore it should be noted that due to the non-sequential nature
of equation 2.306 there is no contribution of density uncertainty in the
sigma points. Hence the splitting recommendation is based solely on
the process-noise free covariance of the kernels and their experienced
nonlinearity. This might sound like a deficiency at first, but for the

5 Alspach and Sorenson used the term “plant noise” for process noise
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case of density uncertainty it is in fact a desirable property, since
no contribution of the process noise actually enters the linear or UT-
based covariance propagation. Instead, the propagation of the orbital
uncertainty is an intrinsic part of the process noise matrix, which
neither uses STMs nor unscented transformation for the propagation
but models their time-dependence via equations 2.178 and 2.179.

Conversely the addition of a constantly growing density uncertainty
process noise matrix to each kernel after the covariance propagation
also gives rise to the situation where the density uncertainty becomes
sufficiently large for the probability density function to show ragged
outer contours due to an increasing overlap of the density uncertainty
Gaussians. At some point it may therefore become necessary to split
Qk into a Gaussian mixture of its own, since otherwise the conversion
from orbital elements to Cartesian coordinates cannot be truthfully
performed via local linearization or unscented transformation. This
case is discussed further in section 5.4.

Last but not least, special attention needs to be paid to the covari-
ance propagation including density uncertainty. As reasoned earlier,
the classical EKF requires any prior uncertainty to be subtracted from
the covariance prior propagation. Consider the case where a kernel co-
variance is propagated using either equation 2.300 or eqs. 2.302/2.303.
Also assume that the propagation takes place in orbital elements, so
that each kernel receives the same process noise contribution QkOE .
As long as there is no kernel split, the kernel covariance could be
fruitfully propagated using these equations. With atmospheric density
uncertainty included, component merging is uncritical as long as both
kernels which are part of a merge contain the same process noise
contribution6. However, once a split takes place, the process fails as
the attempt to subtract the covariance contribution from the reduced
covariance after the split may render the result indefinite. The situation
gets even more complicated in Cartesian coordinates, since then every
kernel contains a different process noise contribution, which would
need to be removed at the beginning of the next iteration.

Consequently, subtracting prior contributions is not feasible for
GMM-based filters. Instead the technique already used for the UKF
must be extended to the Gaussian mixture case. It is therefore required
to save the Gaussian mixture parameters of each kernel after the
covariance propagation and prior to the addition of the process noise.
If no measurement update is available, this state of the GMM is then
restored in the next iteration, such that the merging and splitting
operations can be executed prior to the next kernel filter cycles.

6 This can be quickly verified by setting Pi → Pi +Q in equation 5.12, which results in
an additional term of the form 1

wm

∑N
i=1wiQ. Since Q is considered equal for both

kernels, it can be taken out of the sum, which shows that it is possible to subtract
the prior process noise to make the resulting merged kernel free of any process noise
contribution
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The requirements discussed above have led to the filter design
summarized in figure 5.2.
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Figure 5.2: Flowchart of the GMM-based filter for orbit determination includ-
ing combined atmospheric density uncertainty consideration. The design

meets all requirements discussed in section 5.3
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5.4 process noise as secondary gaussian mixture

Non-Gaussian uncertainties are best identified in the radial/transverse
plane in Cartesian coordinates (Alfriend and Park, 2016), where each
evaluation of equation 2.306 (after subsequent conversion to GCRF
coordinates via Jacobians or unscented transformation) corresponds
to an ellipse with the principal direction in the transverse direction of
the kernel.

If density uncertainty is the dominant driver of the uncertainty
growth, then the situation may arise where the principal axes of the
ellipses become sufficiently long to deviate from the orbital path.
This can be imagined as a tangent starting to deviate from a curve
with a large radius of curvature. Density uncertainty is developed
in orbital elements, where nonlinearities arise much later than in
Cartesian coordinates. As such the Gaussian assumption in orbital
elements is valid for larger uncertainties than in Cartesian coordinates.
Consequently it might be the case that after the transformation to
GCRF the resulting Gaussian is no longer realistic.

An example of this case is the combined density uncertainty co-
variance given in equation 5.18 (classical/equinoctial orbital elements
using mean motion as size-variable):

Q =



1.097744633925843 · 10−15 0 0 0 0 −5.568858527881267 · 10−10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−5.568858527881267 · 10−10 0 0 0 0 3.001800530676636 · 10−4


(5.18)

Transforming this matrix to GCRF coordinates via Jacobians or UT
results in a single Gaussian which is not representative of the actual
uncertainty in Cartesian coordinates. Instead it is necessary to perform
the covariance conversion via a Gaussian mixture of its own.

For this purpose the covariance first needs to be split into a Gaussian
mixture in orbital elements. The splitting needs to be performed in the
direction of the eigenvector with the maximum associated eigenvalue,
which is equal to the eigenvector with the maximum sixth component
in absolute magnitude (Aristoff et al., 2014). Obviously this choice can
also be verified using Vivek’s nonlinearity index, which takes both
the size of the covariance and the nonlinearity of the transformation
into account, however computing the index would be an unnecessary
overhead to the transformation since the optimum splitting direction
is known a priori. Once the split is performed, each component can be
converted to Cartesian coordinates using Jacobians or UT, since after
the split the kernel covariance is assumed to be small enough for both
techniques to be valid.
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Figure 5.3: Conversion of the covariance given in eq. 5.18 to Cartesian co-
ordinates via Gaussian mixtures of N = 3, 5, 11 and 29 components. The

Cartesian pdfs are shown in the NTW-frame7 of the merged mean

Figure 5.3 shows the result of this process for the matrix given
in equation 5.18 when performing splits with N = 3, 5, 11 and 29

components. It can be clearly seen how for small numbers of N, the
individual Gaussian kernels act as tangents to the orbital path. Once
enough kernels are contained in the mixture, the ellipses become small
enough to recreate the orbital curvature.

In the framework of the GMM filter the conversion steps are exe-
cuted at different points in time, since the propagated kernel mean is
only available within a kernel filter cycle, whereas the Gaussian mix-
ture in orbital elements needs to be computed prior to the filter cycles
for it to be made available to all kernels. Modeling the process noise
as a secondary Gaussian mixture therefore works as follows: after the
computation of equation 2.306 first a process noise splitting recom-
mendation nQ is derived based on the magnitude of its dominating
eigenvalue, which can be quickly estimated using the power method
(von Mises and Pollaczek-Geiringer, 1929) since the uncertainty in
the in-track direction by far dominates the other directions. If nQ is
larger than the minimum splitting number supported by the underly-
ing splitting library, the result of equation 2.306 is subsequently split

7 The NTW-frame is similar to the Radial/Transverse/Normal frame, however the
T-direction is in fact the in-track direction and not the transverse, at the expense of
the N-direction only being approximately radial. The exact definition of the frame
may be found in Vallado (2013, p. 157)
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using a zero-vector as the mean. This process noise Gaussian mixture
(still in orbital elements) is then passed to the kernels filter cycles to
perform the fusion process.

For each kernel the filter cycle starts with the state and covariance
propagation. The result of this propagation phase is first backed up
prior to the GMM fusion. This is because the predicted (process noise-
free) GMM is needed for initialization purposes at the next time-step
if no measurement update is performed. After the propagation phase
the two Gaussian mixtures are fused.

The fusion of two Gaussian mixtures has first been discussed in
the original work by Alspach and Sorenson (1972). The reference also
provides the mathematical fusion equations. Put into simple words,
the process can be summarized as follows: for each kernel in the
first Gaussian mixture nQ new kernels are spawned. This results in
a total of N = nprior · nQ kernels. The parameters of the resulting
GMM are based on the combinations of the weights, means and co-
variances of the original two GMMs via the following rules: the fused
kernel weights are computed as the product of the original weights
(wfused = wi ·wj). The fused means and covariances are constructed
via summation (µfused = µi + µj and Pfused = Pi +Qj).

The addition of the means and covariances needs to take place in
the same coordinate frame. Since the process noise Gaussian mixture
is created in orbital elements, the predicted Cartesian state is first
converted to orbital elements as well. Then the mean vector of the jth

process noise kernel is added. This fused state vector is then used to
convert the reduced process noise of the jth process noise kernel from
orbital elements to Cartesian coordinates. After this conversion the
fused process noise is obtained via direct addition. Finally, the fused
kernel state vector is converted to Cartesian coordinates to complete
the fusion process.

Note that the fusion of two Gaussian mixtures results in a new
GMM with a significantly increased kernel number. If the original
GMM had 200 kernels and the process noise sum contained 10 kernels,
then the resulting mixture would consist of 2000 Gaussian components.
Therefore caution is required for implementation. In the proposed
layout (figure 5.2), the kernels are spawned within the parallel zone
after propagation. The fusion step is executed prior to a possible
measurement update, which would need to be executed for every
kernel of the fused mixture. Consequently both tasks are put into a
single loop with nQ iterations. Each iteration ends after the GMM
fusion if no measurement update is available. For this to work in
parallel, the memory for the resulting Gaussian mixture must be
shared between the threads and each kernel must know where in the
shared memory area it is allowed to write.
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The implementation in the Airbus tool SPOOK uses OpenMP® to fa-
cilitate the parallelization, memory management and thread handling.
Since performing GMM fusion and measurement updates are compu-
tationally inexpensive tasks, there is no significant performance loss
due to the kernel spawning. Also, if a measurement update takes place,
the resulting pdf can be expressed with a significantly lower number
of mixture components after the update, such that the next call to
the merging routine reduces the mixture to a manageable number of
kernels again. If no measurement update is performed, the predicted
GMM prior to the addition of the process noise can be restored in the
next overall filter cycle, as explained in section 5.3.

Therefore in practice the computationally expensive propagation
step is not needed to be executed on an increased number of kernels
with respect to the case of treating the process noise as a single Gaus-
sian. The output GMMs on the other hand contain the fused mixtures
at any time, such that an optional merging stage has been added as the
last step of the design in figure 5.2. Merging the output GMMs is pos-
sible without significantly changing the pdf results, since some kernel
weights become very small after fusion such that they can be replaced
by fewer components (Alspach and Sorenson, 1972). Also potential
covariance overlap allows for some of the kernels to be merged. In
effect the output merge is often able to compress the kernel numbers
by up to 80%. This significantly reduces the size of the simulation
output files containing the time-evolution of the fused GMM pdf and
the orbit estimation errors, which eases the analysis of the results.

These benefits of posterior mixture reduction however also come
with a significant cost in runtime. As mentioned in section 5.2.3, merg-
ing is computationally expensive. Even using the KL-distance metric,
which can be evaluated orders of magnitude faster than Salmond’s
and William’s criteria, merging a Gaussian mixture of more than
2000 components down according to a distance threshold is very
time-consuming, since

∑N−1
k=1 k = 1

2(N
2 −N), i.e. approximately two

million distance computations are required to be performed at every
time-step where such high kernel numbers were required in the OD.

The output merging stage may be implemented using parallelization
for the distance computation and minimum distance search. This
tremendously speeds up the process, however once the kernel numbers
increase above a critical threshold, say 500, the final merging process
notably slows down the overall performance and can even take longer
than the orbit determination itself for very large kernel counts (& 1000).
The only way to reduce the required runtime is hence to properly tune
the merging and splitting thresholds, such that the components of the
original sum do not grow too fast but are just about large enough to
properly map the nonlinearity encountered in the propagation phases.
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5.5 simulation results

To demonstrate all aspects discussed in the previous sections, two
simulation scenarios which only differ by the accuracy of the radar
measurements were created and are presented hereafter. Since un-
scented transformation allows to directly evaluate equation 5.8 on
the propagated sigma-points, an UKF was chosen as the baseline of
the adaptive Gaussian mixture filter. An EKF would also have been
possible, but its linear covariance propagation results in the need to
perform an additional UT to compute the nonlinearity index, which
slows down the OD process.

In both scenarios range-only measurements of a single simulated
radar observer are used to initialize the Adaptive Gaussian Mixture
Unscented Kalman Filter (AGMUKF) with two tracks of measurement
data (each of approximately 7min duration). After filter initializa-
tion, subsequent measurement updates are suppressed for 10days,
resulting in an uncertainty propagation phase long enough for the
developments to be validated.

In the first scenario the one sigma standard deviation of the radar
measurements is set to 800m. This measurement uncertainty results
in sufficient initial semi-major axis uncertainty after filter initializa-
tion for it to dominate the along-track uncertainty growth over the
entire simulation time. Scenario 1 therefore allows to demonstrate the
positive effects of density uncertainty consideration even for scenar-
ios where it is not the dominating driver of the overall uncertainty
growth. For the second scenario the one sigma measurement accu-
racy is set to a tenth of the value of scenario 1, i.e. 80m. In this case,
density uncertainty is initially inferior but, due to its growth with t3,
eventually dominates over the uncertainty growth due to the initial
semi-major axis uncertainty. Scenario 2 serves to demonstrate the
importance of treating the process noise as a Gaussian mixture of
its own, if it is dominating the along-track uncertainty growth. The
states and covariances of both scenarios after the last measurement
update prior to the 10days propagation phase are given in Schiemenz
et al. (2020d, appendix B). All cases were computed using a fictive low
Earth orbiting satellite of the following characteristic parameters:

• Semi-major axis: 6887.0 km
• Eccentricity: 1.476 · 10−4

• Ballistic coefficient: A·cDm = 0.06 m
2

kg

In each Monte-Carlo iteration the true density is calculated using
stochastic solar flux and magnetic index inputs. The output of the semi-
empirical density model is then used to drive the Ornstein-Uhlenbeck
process simulating the model uncertainty. The true density and density
uncertainty computation processes are characterized according to the
following assumptions on the input and model uncertainty:
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• Density model: DTM-2013 (Bruinsma, 2015)
• Solar flux input uncertainty: white noise error process centered

on published F10.7 data, characterized by a double-sided power
spectral density of 130000 sfu2s and daily sampling

• Magnetic index uncertainty: white noise error process centered
on published global geomagnetic amplitude data, characterized
by a double-sided power spectral density of 2700 AP units2s and
three hour sampling cadence8

• 10% relative model uncertainty
• OUP rate of mean reversion: θ = 10−6

The Kullback-Leibler distance for kernel merging is set to 5.0 · 10−4.
The translation of the Vittaldev nonlinearity index into a splitting
recommendation is performed via equation 5.9.

For all scenarios 200 Monte-Carlo iterations are computed to test
the consistency of the pdf with the MC samples. This agreement may
be evaluated using either the log likelihood (LL) metric (Vittaldev and
Russell, 2016) or the likelihood agreement measure (LAM) (DeMars
et al., 2013). Both statistics have been computed for each scenario, how-
ever the LL turned out to be more convenient, as the non-logarithmic
nature of the LAM makes it difficult to be visualized over the entire
simulation time. The following pdf plots have been chosen to facilitate
the discussion of the effect of process noise consideration when per-
forming orbit determination using adaptive Gaussian mixture filters.
Therefore they depict the state of the pdf at selected instants of time.
To ease the analysis of the simulation results, also videos of each
presented case showing the entire course of the simulation period
have been created. They are published as supplementary material to
Schiemenz et al. (2020d).

Scenario 1

Classical computation (density uncertainty not accounted for via process
noise)
Figures 5.4, 5.5 and 5.6 depict the results obtained with the AGMUKF
if process noise is neglected. As designed, the filter starts with a
single Gaussian (figure 5.4a). At roughly 37h of simulation time the
assumption of Gaussianity is abandoned and the first kernel splits
take place (figure 5.4b). Shortly after the filter reaches a maximum
in the kernel number of approximately 100 kernels. The effect of
kernel splitting and merging can be clearly identified by the noise-
like behavior of the kernel numbers in figure 5.6. Figure 5.4 reveals
that with progressing time the pdf starts to become multi-modal (it
develops gaps of increasing magnitude). The gaps arise due to the
highly nonlinear space-environment, which results in the kernels

8 Recall that DTM-2013 uses the planetary kp index as magnetic parameter, however
the theory of computing the uncertainty in the kp index develops from an uncertainty
in the planetary magnetic amplitude (cf. section 2.4.1)
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to experience different propagation paths. Since density uncertainty
is not considered, the gaps are not closed, which makes it difficult
to infer the mode of the pdf (in fact it shows multiple modes) and
its dimensions. Density uncertainty is not the dominant driver of
along-track uncertainty growth in scenario 1, which can be verified by
comparing the distribution of the MC samples with the spread of the
pdf blobs.
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Figure 5.4: Evolution of estimated pdf and Monte-Carlo samples for the
classical case of neglected process noise

The LL, LAM and kernel numbers are depicted in figures 5.5 and
5.6. As mentioned earlier, the LAM spans over multiple orders of
magnitude and therefore cannot be visualized properly (cf. figure
5.5a). It is probably better suited for relative comparisons. The LL on
the other hand reveals a significant reduction in the pdf agreement
with the MC samples once the gaps become too broad.
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Figure 5.5: LAM and LL of scenario 1 using the classical approach
without process noise consideration
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Figure 5.6: Number of Gaussian kernels in GMM versus simulation time
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Density uncertainty consideration using a single Gaussian for the process
noise
Once combined density uncertainty process noise is integrated into the
kernel covariance propagations, the resulting pdf changes significantly
as demonstrated in figures 5.7 and 5.8. While initially the pdf and
LL remain similar to figures 5.4b and 5.5b, the realistic growth of
each kernel’s covariance is able to result in a gap-free, single mode
estimated probability density function. Consequently, the MC samples
match the estimated pdf better, which leads to a substantial increase
of the log likelihood computations.

The kernel numbers are comparable to the case without process
noise, however the initial growth is slightly slower than without pro-
cess noise consideration (in contrast to figure 5.6 there is no kernel
overshoot in figure 5.8b).
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Figure 5.7: Evolution of estimated pdf and Monte-Carlo samples with process
noise consideration as a single Gaussian
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Treating the process noise as a single Gaussian seems appropriate
until approximately 160h of simulation time. At this point, two effects
begin to become apparent. First, the pdf begins to develop the antici-
pated ragged outer contours (cf. figure 5.7c). Second, it can be seen
that the curvature of the MC samples can no longer be reproduced
on the inside of the pdf, which is due to the modeling of the process
noise as single Gaussians (cf. figure 5.7d).
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(a) Log likelihood of AGMUKF with process noise modeled as a Gaussian
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(b) Number of Gaussian kernels in GMM versus simulation time

Figure 5.8: LL and kernel number of scenario 1 when modeling the
process noise as single Gaussian

Density uncertainty consideration using a secondary GMM for the process
noise if required
To further improve the agreement of the pdf with the MC samples, the
restriction of treating the process noise as a single Gaussian is removed.
As a result, the filter increases the kernels in the secondary process
noise Gaussian mixture with progressing simulation time to keep the
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Cartesian representation of the uncertainty in agreement with the
original Gaussian in orbital elements. The fusion of the two Gaussian
mixtures results in up to ∼1500 kernels, however, as explained in
section 5.4, the output merging step is able to reduce the final kernel
numbers to levels below 300.

Figures 5.9 and 5.10 clearly demonstrate that treating the process
noise as a secondary Gaussian mixture is the single means required
to avoid ragged outer pdf contours while at the same time correctly
representing the curvature of the MC samples. Using this approach the
pdf estimates remain realistic over the entire 10days of propagation
time.
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Figure 5.9: Evolution of estimated pdf and Monte-Carlo samples with
process noise consideration as a secondary Gaussian mixture
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(a) Log likelihood of AGMUKF with process noise modeled as a secondary
Gaussian mixture
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(b) Number of Gaussian kernels in GMM (after a posterior merging step) versus
simulation time

Figure 5.10: LL and kernel number of scenario 1 when modeling the
process noise as a secondary Gaussian mixture

Scenario 2
Next the results of scenario 2, for which density uncertainty is initially
inferior but then evolves to dominate the along-track uncertainty
growth, are presented. The scenario is computed once without process
noise consideration and once with the process noise modeled as a
Gaussian mixture.

Figure 5.11a shows that the neglect of process noise is appropriate
for the first 50h of simulation time. After this point the growth of the
pdf is not realistic anymore, since density uncertainty is dictating the
along-track uncertainty growth (figures 5.11b to 5.11d). The need to
model the process noise as a Gaussian mixture of its own is evident
from the curvature of the MC samples. Since process noise is neglected,
the filter never performs a splitting operation and operates with the
assumption of Gaussianity over the entire simulation period.
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Figure 5.11: Evolution of estimated pdf and Monte-Carlo samples for the
classical case of neglected process noise

Using the combined density uncertainty consideration of chapter 2

with subsequent transformation into a Gaussian mixture, realistic pdf
estimates can be obtained (figures 5.12a to 5.12c). The distribution of
the MC samples is identical to figure 5.11. The Gaussian mixture is
able to properly model the transformation from orbital elements to
Cartesian coordinates. Up to 13 kernels are used for the process noise
Gaussian mixture, however the output merging stage starts to merge
two process noise kernels towards the end of the simulation (cf. figure
5.12d).

The results of scenario 2 clearly demonstrate the need for density
uncertainty consideration of low Earth orbiting satellites. The effect
increases with growing ballistic coefficients and decreasing orbital
altitudes. Smaller ballistic coefficients and higher orbital altitudes on
the other hand decrease its impact.
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Figure 5.12: Evolution of estimated
pdf and Monte-Carlo samples when
modeling density uncertainty as a

Gaussian Mixture

Conclusion
The research presented in this
chapter resulted in a highly
adaptive Gaussian mixture fil-
ter framework which starts the
orbit determination process us-
ing a classical UKF or EKF
and splits the Gaussians in the
state covariance and the pro-
cess noise whenever the need
to do so is detected. This ap-
proach is of great advantage for
practical applications, since the
algorithm runtime remains sim-
ilar to the classical Kalman fil-
ters until the Gaussian uncer-
tainty assumption is deemed
inadequate. Therefore, runtime
increases only occur if there is
an actual need for higher order
methods.

Numerical Monte-Carlo sim-
ulations have been conducted
to validate the developments
and find the answers to the re-
search questions posed in sec-
tion 5.1. Cartesian coordinates
were used to exacerbate the
effect of nonlinearities and to
demonstrate that the curse of dimensionality can be counteracted by
splitting in up to two dimensions per step, given that the splitting
directions are evaluated dynamically using a nonlinearity index.
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As demonstrated, the neglect of process noise may cause undesired
gaps in the pdf estimates. The inclusion of process noise, also when it
is not the dominating driver of the overall uncertainty growth, leads
to an increased size of the kernel covariances. Since the process noise
is propagated analytically using its own theory, the increased covari-
ances do not enter subsequent propagation cycles, thereby avoiding
situations in which the Gaussian assumption for each kernel may
be violated. Instead, the increased covariances help to either bridge
gaps in the pdf or they result in covariance overlap for closely spaced
kernels, which then allows the merging process to reduce the overall
kernel number in the mixture further than without process noise.

The numerical simulations also confirmed the occurrence of ragged
outer pdf contours when modeling the process noise as a single Gaus-
sian for extended propagation durations. In this regard the abilities
of treating the process noise as a secondary Gaussian mixture and
subsequent Gaussian mixture fusion have proven essential to obtain-
ing realistic pdf contours over 10days of simulation time. This also
applies to small initial uncertainties, since in this case the curvature of
the pdf is dominated by atmospheric density uncertainty, which is not
captured at all if process noise is neglected and underrepresented if it
is modeled as a single Gaussian. In the latter case the curvature of the
pdf depends on the location of the kernel means, which may be too
closely spaced in case of small initial radial uncertainties (and there-
fore few mixture components) for the tangential kernel covariance
increase to result in a banana-shape of the pdf.

A subtask of this research was to study if process noise can be
safely neglected when performing OD/uncertainty propagation using
Gaussian mixtures, as claimed in Horwood and Poore (2011). Judging
by the extensive simulation results and the preceding discussion, Hor-
wood’s claim has to be contradicted. Only for the UCT problem with
significant initial uncertainties in the semi-major axis direction (&1 km)
and RSOs with perigees above ∼800 km the neglect of atmospheric
density uncertainty is acceptable. This however does not answer if
process noise can generally be neglected under these circumstances, as
at these altitudes other forces are dominating over atmospheric drag.
Their uncertainty must first be quantified and propagated to satellite
orbits before the neglect of process noise can be justified.

Finally, a need for increased efficiency in GMM reduction has been
identified. When process noise is modeled as a secondary GMM, the
total kernel number may increase significantly, such that a post-OD
merging process becomes necessary. Despite a high degree of paral-
lelization, this step has shown a certain potential for becoming the
runtime bottleneck due to the quadratic dependence of the merging
pairs on the kernel number. More advanced reduction algorithms are
therefore desirable to reduce also GMMs with over a thousand compo-
nents to manageable scales without notably decreasing the runtime.
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Finally, the influence of force model uncertainties on the collision
probability shall be evaluated. The analysis is intended to permit first
statements on the extent to which a catalog collision risk distribu-
tion changes by taking physics-based propagation uncertainties into
account.

The sensitivity of the collision probability with respect to covariance
shape and size changes was examined in section 1.3.4 with the result
of a strong dependence on the covariance size if the miss distance is
significantly larger than the covariance ellipsoid. The orientational de-
pendence was found to be of relevance only in case of high covariance
aspect ratios. Literature also reports the assumption of Gaussianity
to have little impact on high interest events (HIEs) collision proba-
bilities greater than 10−4(Ghrist and Plakalovic, 2012). Based on this
information, the following framework has been chosen for this study:

• Perturbation theory: SP and GP
• Assumption of Gaussian uncertainty volumes
• Linear (two-dimensional) and nonlinear (three-dimensional) Pc

computation based on the position covariance
• Assumption of spherical RSO shapes

The SP analysis is performed using the restricted SP catalog of Febru-
ary 25

th, 2020 and the developments of chapters 2 and 3. The GP
analysis is based on the public TLE catalog of the same day and the
developments of section 4.4.

All catalog data was obtained from https://space-track.org. The
GP catalog snapshot consists of a single TLE file of ∼2.5MB. The SP
ephemerides on the other hand require ∼5.5GB, since they contain the
state vector solutions of each non-military object in time-steps of some
seconds over multiple days. The files are delivered in the itc-format,
which is also known as 18 SPCS SP ephemeris format. A file format
description is available at SpaceTrack.

The itc-format contains neither covariance information nor addi-
tional information on the RSOs. Truthful covariance propagation in
special perturbations however also requires information on the models
used, as well as the ballistic and solar radiation pressure coefficients.
For this purpose also the SP vectors of February 25

th, 2020 were ob-
tained from SpaceTrack. The SP vectors are delivered in the VCM file
format, however any covariance information is removed to avoid con-
clusions being drawn about the capabilities of the SSN. An example
of a special perturbations vector file in the VCM format is given in

265
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Figure 6.1: Example of a special perturbations vector file in the VCM format.
Source: Lidtke (2016)

figure 6.1. The line numbers are not part of the actual messages. The
files made available to Airbus only contain lines 4, 6, 9-10 and 13-24.

This study assumes that the information provided in the SP vectors
also applies to the itc ephemerides, however there is no official con-
firmation if the perturbation models and coefficients actually match
for both SP datasets1. While in principle also the vector files contain a
state vector solution that could be used for CA (lines 9 and 10 in figure
6.1), a single SP snapshot is not suitable for conjunction assessment,
since it requires propagation using the full SP force models, whereas
the itc files can be interpolated2, which reduces the risk of model
mismatch and speeds up the computations. For a single RSO there

1 SPOOK reads the models from the vector files and performs the subsequent propa-
gations and collision probability computations using the same algorithms to avoid
model mismatch. If a model is detected in the vector files which is not available in
SPOOK, the subsequent processing is conducted with the “closest” available one,
which is selected based on the model family and age

2 Given that the encounter region lies within the available data
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is little difference between propagation and interpolation, however
for the entire non-military catalog of nearly 20 000 objects the runtime
impact is tremendous.

Any method for the computation of the collision probability of two
objects requires information about their shape. ESA’s Database and
Information System Characterising Objects in Space (DISCOS) is a well-
known and trusted source for obtaining RSO properties. Unfortunately,
a direct export of the object radii is not available, however a snapshot
can be generated by the SDO in a file format compatible with ESA’s
PROOF tool3. The effective hard body radius (HBR) generation logic
for the RSO population is based on the following procedure:

• take the diameter of the object – if not available,
• calculate the diameter from the mean cross-sectional area (which

is calculated in DISCOS for all objects of different geometries, e.g.
box, cylinder, etc. under the assumption of a randomly tumbling
object) – if not available,

• calculate the diameter from the radar cross-section (RCS) infor-
mation in DISCOS – if not available,

• take the data from the PROOF-2009 file – if not available,
• take the size based on the Satellite Situation Report (SSR), which

contains the categories small, medium and large for the RCS
instead of a numerical value. The diameter is then set to 0.35m,
1.13m or 3.57m, respectively.

A crucial, yet missing piece of information are the RSO epoch covari-
ance matrices. Rough estimates in tabulated form are provided by
Flohrer et al. (2008) for TLE data based on the perigee altitude, inclina-
tion and orbital eccentricity. No covariance source is available for the
itc files, which is why scaled variants of the lookup table in Flohrer
et al. (2008) are used for the RTN epoch covariances. The assessment
concerning the impact of the force model uncertainty consideration is
therefore linked to the (scale of the) initial covariance matrix used. A
schematic high-level representation of the simulation setup is shown
in figure 6.2. Tasks marked by a dashed orange frame benefit greatly
from parallelization and should be implemented accordingly.

The algorithms and techniques that were chosen to perform the
computations are discussed in section 6.1 alongside alternative choices.
The section also contains the derivation of an extension to Alfano’s
adjoining tube 3D collision probability algorithm (Alfano, 2006), which
was developed during this doctoral research, however not published so
far. In contrast to the original algorithm the extension does not require
covariance symmetrization to decouple the relative velocity direction
from the conjunction coordinate frame, which removes the need for
additional frame transformations, simplifies the implementation and
speeds up the computations. The results of the force model impact

3 For further information on PROOF, see https://sdup.esoc.esa.int/proof (free
Space Debris User Portal account required)

https://sdup.esoc.esa.int/proof
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analysis are presented in section 6.2 after a short description of the
tool that was developed as part of this thesis to perform CARA.
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Figure 6.2: High level simulation setup of the space catalog study
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6.1 prerequisites

Figure 6.2 identifies the logical flow of the steps required to compute
space catalog collision probabilities. The theory and design of the
most important building blocks is discussed in sections 6.1.1 and 6.1.2.
Covariance information is required only in the third processing stage
(red background) after the conjunctions have been identified. Thus,
the effort needed for extending existing CA solutions to account for
force model uncertainties is minimal.

6.1.1 Conjunction screening

TargetChaser

Screening
Volume

Figure 6.3: Identifica-
tion of close conjunc-
tions using screen-

ing volumes

Conjunction screening algorithms aim to detect
when a safety (or screening) volume4, which
is flown with a protected target RSO, is pene-
trated by a secondary chaser object (cf. figure
6.3). If all potentially dangerous conjunctions
shall be found, then each catalog RSO serves as
target and chaser. This is known as the all vs.
all or n:n scenario. If only a subset of a catalog
is to be tested for conjunctions, the problem
reduces to m:n screening (m<n).

The identification of possibly dangerous con-
junctions is a straightforward task in case of
two objects. Simple orbit propagation can be
used to determine if the objects come closer to
each other than acceptable. For an entire space
catalog however this brute-force approach is
impractical due to the amount of orbit propa-
gations and distance checks required. Instead, smarter methods are
needed to reduce the computational complexity.

Practice-proven conjunction screening algorithms can be divided
into filter-based and sieving-based strategies. The filter concept dates
back to Hoots et al. (1984) who define two geometrical prefilters (the
apogee-perigee filter and an orbital path filter), as well as a time
prefilter with the objective of ruling out pairs of objects that cannot
come close enough to pose an actual risk. The geometrical prefilters
discard pairs of objects based only on the geometry of their orbits,
whereas the time filter makes use of known orbital characteristics
to determine time ranges in which two objects may come close to
each other. Hoots et al. (1984) first formulate the filter equations for
two-body Keplarian orbits and then present extensions to account for
the secular changes caused by perturbations.

Despite considering secular changes, it was repeatedly observed in
the literature that the original filters lack a certain kind of robustness

4 An ellipsoidal shape is common and at times called “warning football” (Alfano, 1994)
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(Alarcon Rodriguez et al., 2002; Woodburn et al., 2009; George and
Harvey, 2011). Improvements to the original filters are presented in
Woodburn et al. (2009), who recommend the addition of buffers (also
called “pads”) to the apogee-perigee prefilter and a “trust but verify”
strategy for the time filter in order to increase their robustness. The
orbit path filter however was found to be unstable and is therefore not
recommended for practical applications (Woodburn et al., 2009). An
improved toroidal path filter has been worked out in Alfano (2012b)
and relaxes some of the original path filter assumptions, however still
requires padding. A practical guide to the selection of filter parameters
is available in Alfano and Finkleman (2014).

The second class of conjunction screeners comprises the so-called
sieve-algorithms. These methods are sampling based and sift out pairs
of objects for the current sampling step based on simple relative dis-
tance tests. The concept dates back to Healy (1995), who recognized
the advantage of this method for parallel processing on modern com-
puters and emphasized its robustness which arises from the fact that
no assumptions regarding the orbital motion have to be made.

A modern, reliable and efficient sieve approach is presented in Alar-
con Rodriguez et al. (2002), Klinkrad (2006, section 8.2) and Escobar
et al. (2011). The proposed “smart sieve” method combines the sieving
concept with Hoots’ apogee-perigee prefilter (which is known to be
reliable using pads). Multiple sieves based on simple flight dynamics
principles are used in order of increasing computational complexity
to rule out pairs of objects. All conjunctions that make it through the
sieves are passed to a numerical root finder to determine the nominal
time of closest approach (TCA) and the associated relative distance.

Alternative concepts for close encounter identification using genetic
algorithms have been presented in Faulds and Spencer (2003). Highly
performant results are reported in Novak et al. (2013) who use the
initial steps of the smart sieve method and then apply a spatial binning
algorithm to further minimize the number of object pairs that are
analyzed with the numerical root finder. A technique for choosing the
screening volume distance thresholds based on a maximum probability
metric is worked out in Alfano (2013).

smart sieve conjunction screening

For the catalog study in section 6.2 the smart sieve method was selected
due to its robustness and parallelizability. Details regarding each
individual sieve can be found in Alarcon Rodriguez et al. (2002) and
Klinkrad (2006, section 8.2). The following discussion concentrates on
aspects which are not addressed in the original publications.

Epoch filter
TLE catalogs sometimes contain RSOs which are older than 30days
and thus unsuitable for CA. Hence, an epoch filter should be applied
prior to the sieves to discard TLEs older than a threshold.
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Sieving
Due to the huge amount of sieving operations (several hundred billion
in case of multiple days of n:n screenings), even small changes to the
code can result in runtime differences in the order of minutes.

To obtain the maximum performance, it is preferable to implement
the sieves using squared instead of metric distances to avoid the
computation of square roots. The squared version of the sieves is
given in Alarcon Rodriguez et al. (2002), whereas Klinkrad (2006,
section 8.2) presents the metric distance equivalents.

The apogee-perigee filter is listed as the first “sieve” of the algorithm.
It is the only filter which operates purely on the geometry of the
orbits and does not necessarily require sampling. The apogee-perigee
filter can be implemented in two ways. One possibility is to calculate
the apogees and perigees of all objects only once. In this case large
pads are required to make sure that conjunctions are not erroneously
discarded. Alternatively, very small pads can be used if the apogees
and perigees are calculated at each sampling step. Due to the large
number of sampling steps between t0 and tend, the first approach is
almost always more efficient.

TLE catalog snapshots sometimes contain objects of identical orbit
parameters but differing identifiers (e.g. in case of vehicles that are
docked to the ISS). If any of these objects is part of a close encounter,
the conjunction is reported twice in the output files. Although this
is technically correct, it does not provide any added value. Hence,
one of the two objects may be put into an exclusion list if this kind
of situation is detected. Since equal TLEs lead to equal propagations,
identical orbit parameters can be identified in the first sampling step of
the algorithm by checking for zero relative distance and zero relative
velocity.

Propagation vs. Interpolation
The ability to propagate the trajectories of all objects is required at two
locations in the algorithm: the initial sampling of all objects in steps of
δt1 between t0 and tEnd, as well as the numerical root finder used for
the fine conjunction detection process. Since the sieves are amenable to
parallelization, thread-safe orbit propagators (GP and SP) are required.
If the SP screening is based on itc-files, the ephemerides should be
interpolated instead of using propagation. Only if the ephemerides do
not cover the screening period, propagation needs to be applied. To
avoid unnecessary propagations and repeated failing interpolations, it
is recommended to save the last successful technique for each object
to ensure that it will be the method of first choice in the subsequent
sampling step.
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Fine conjunction detection
After the initial sampling phase state vector arrays (xi,k) are available
for each object (index i) and sampling time (index k). All conjunctions
that pass the sieves are processed in a two-stage fine conjunction
detection process consisting of a linear search algorithm and a nu-
merical root finder. The purpose of the linear search algorithm is to
perform additional sampling steps in order to detect points in time
for which the relative velocity has opposite signs, thus indicating that
a conjunction must take place. The linear search algorithm is operated
in steps of δt2 (δt2 < δt1). It is computationally less efficient than the
numerical root finder, however it ensures that also multiple conjunc-
tions within δt1 are detected and supports the convergence of the root
finder towards the local distance minimum.

For the algorithm to produce correct results, it is pertinent to center
the fine conjunction detection on each sampling step

([
tk −

δt1
2 , tk +

δt1
2

])
, instead of only looking for zero relative velocity between tk and

tk+1. The correct way for conducting the fine conjunction detection is
depicted in figure 6.4.
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Figure 6.4: Smart sieve: centered fine conjunction detection
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Figure 6.5: Exemplary case that requires
centered fine conjunction detection

An example that yields
incorrect results by look-
ing for zero relative veloc-
ity between tk and tk+1 is
given in figure 6.5. At t0
the absolute distance be-
tween the target and the
chaser is 1020 km, which
is larger than Rc,1. The
conjunction is therefore
discarded by the absolute
(squared) distance sieve at
t0. At t1 the conjunction
is passing the r2 sieve,
since r1 < Rc,1. Also all
other sieves are passed.
Thus the pair is handed over to the fine conjunction detection. If
this step were to only look ahead, i.e. from t1 to t2, the pair would be
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erroneously filtered out. Due to the centered fine conjunction detection
however, the search is performed over

[
tk −

δt1
2 , tk + δt1

2

]
, which eval-

uates to [60 s, 180 s]. Looking forward and backward therefore makes
sure that the close conjunction at t = 86 s is detected.

Escobar et al. (2011) recommend a regula falsi (“false position”) root
finder to determine the TCA by searching for zero relative velocity.
The standard version of the algorithm (Hamming, 1971, section 2.5) is
not suitable for determining the TCAs. Instead, several improvements
must be considered to create a robust and efficient algorithm.

The problem with the standard regula falsi method is addressed in
Hamming (1971, section 2.6) as its “one-sided approach to zero”. Each
iteration of the numerical root finder requires two orbit propagations
(or interpolations). Thus, fast convergence is desirable. Hamming’s
improved method accelerates convergence by reducing the function
value that is retained for the subsequent iteration. This results in a two-
sided approach towards the root. Hamming (1971, section 2.6) notes
that his decision of halving the function values is arbitrary. As a matter
of fact, a too rapid reduction of the retained function value can lead
to unfavorably many iterations being performed from the direction of
the artificially reduced values, which in turn slows down convergence
and may lead to the maximum number of allowed iterations being
exceeded. In extreme cases (e.g. for GEO conjunctions with encounters
of multiple hours duration and very small relative velocity slopes)
it is also possible for an overly aggressive reduction of the retained
function value to create artificial roots which are then considered as
being sufficiently close to zero to stop the algorithm, thereby leading
to incorrect results (see also the discussion about exit criteria below).

Numerical experiments have shown fastest convergence when mul-
tiplying the retained function value by 0.8, which is more conservative
than Hamming’s multiplication with 0.5 and therefore recommended
for practical applications.

Another point to be considered is the representation of time. Most
astrodynamic programs use Julian dates (JD) for their continuity. In
double precision representation the floating point relative accuracy is
limited to approximately 2−52 ∼= 2.2 · 10−16 (machine epsilon). Con-
sidering an arbitrary TCA of tJD = 2 458 880.5days, the machine
epsilon amounts to an algorithmic time uncertainty in the order of
45µs, which when multiplied with a relative velocity of e.g. 15 km/s
results in a position uncertainty of ∼0.7m. This is certainly appropriate
for the GP theory and also acceptable for SP conjunction screening,
however the absolute time uncertainty can be reduced at no effort by
transitioning to modified Julian dates for which the machine epsilon
corresponds to merely ∼1µs of time uncertainty (or ∼1.5 cm in position
uncertainty) for a relative velocity of 15 km/s.

Finally also the exit criteria of the algorithm need to be adapted. The
original regula falsi method and also Hamming’s improved version use
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a simple zero-value test to stop the algorithm. However, an exact zero
value can never be found in computer implementations of the problem,
considering the limited absolute time accuracy. Thus, a two-stage
test should be implemented, which checks absolute changes in time
additionally to the relative velocity for effectively zero values using
different thresholds. The time change test is particularly important
in case of conjunctions for which the root finder cannot locate a
point in time at which the relative velocity is less than the specified
zero relative velocity tolerance. To avoid the algorithm stopping only
after the maximum number of permitted iterations, a simple test of
the previous iterations’ time deltas can be used. If there is evidence
of stagnation (e.g. because the Julian date accuracy limit has been
reached), the algorithm should be ended.

All vs. all or some versus all?
Most papers focus on the all vs. all problem, which is common to
space surveillance centers. Practical applications however also include
the m:n case. Prominent examples are screenings of all active satellites
against the space catalog or the screening of a single satellite or a
satellite fleet against the catalog.

If both n:n and m:n screening shall be supported, it is worthwhile
to take a closer look at how the data can be partitioned to avoid
passing many pairs of objects to the sieves, which are then immediately
discarded because they do not belong to the target set. To reduce the
conjunction screening runtime, it is thus in both cases important to
examine only non-redundant pairs of targets and chasers.

At each time-step of the n:n case there are n(n− 1) possible pairs
of targets and chasers. However, half of this set consists of redundant
combinations, resulting in n(n− 1)/2 pairs of objects to be checked
for close conjunctions. For a moderate catalog size of 20 000 objects,
this amounts to 199 990 000, i.e. roughly 200 million instead of 400
million checks at each sampling time, which is tremendous considering
that thousands of sampling times are required for multiple days of
conjunction screening.

One way to make sure that the sieves are only invoked for non-
redundant pairs of objects, is to formulate the checks in a single
loop with n(n− 1)/2 elements that uses 1D to upper-triangular 2D
index unwrapping. The conversion from a linear index iconj to upper-
triangular indices (i, j) which can be used for the target and chaser
data is achieved via equations 6.1 and 6.2 when indexing from zero.

i = nconj − 2−

⌊√
−8iconj + 4nconj · (nconj − 1) − 7

2
− 0.5

⌋
(6.1)

j = iconj + i+ 1−
nconj(nconj − 1)

2
+

(nconj − i)((nconj − i) − 1)

2
(6.2)
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If indexing is started from one, optimized equations can be found
by considering that iconj → iconj − 1 and i→ i+ 1 in eq. 6.1, as well as
i→ i− 1 and j→ j+ 1 in equation 6.2. An additional advantage of
a single-loop formulation is that all iterations are easily parallelized
without resorting to nested parallelism or inner loop only paralleliza-
tion.

There are multiple approaches to enable m:n screening. Considering
that in practice m is usually much smaller than n (e.g. 3000 vs. 20 000
or even 10 vs. 20 000), the following data partitioning was adopted for
SPOOK: first an m:(n-m) screening is performed, i.e. all targets are
removed from the chasers. For these sets all possible combinations are
guaranteed to be unique. The remaining m:m screening is carried out
subsequently and also uses upper-triangular indices to make sure that
redundant combinations are only checked once. The data partitioning
approach is well suited for recursive implementation.

SP sieving using GP as prefilter
SP orbit propagation requires significantly more computing time than
its analytical GP counterpart. For direct SP screenings to be solved
in a reasonable timeframe, a major part of the ephemerides needs
to support interpolation. A significant acceleration of the problem is
however possible by first conducting a complete GP conjunction cycle
and then using the identified conjunctions for SP refinement. This
ensures that time-consuming SP computations are only applied to
conjunctions of interest. To avoid boundary cases being missed, the
GP screening volume should be enlarged with respect to the SP safety
volume.

A seven-day all vs. all GP conjunction screening run of the complete
TLE catalog requires something between a few minutes and an hour of
runtime, depending on the implementation, degree of parallelization
and hardware. This is a very small investment, considering that it
reduces the number of conjunctions to be analyzed in SP from a few
hundred billion to a few hundred thousand.

If this “GP prefilter” is combined with the maximum supported
degree of interpolation and information about the last successfully
used propagation method, the time required for complete catalog SP
conjunction screening is reduced to something in the order of two
hours, which is well in line with the eight-hour catalog update cycle
at CSpOC.

Mixed theory propagation
Depending on the data sources used, situations may arise where mixed
theory screenings become necessary. As a real world example, consider
a satellite operator who possesses exact ephemerides (e.g. GPS-based)
of his satellites and wants to use the public TLE catalog to perform
conjunction screening. Another example arises from the application
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of the GP prefilter for SP screenings. In contrast to the SP catalog,
SpaceTrack’s TLE catalog also contains so-called “Analyst Objects”
(satellite numbers 80 000-89 999), which are of unknown origin (they
cannot be associated with a specific launch). Hence, conjunctions
between SP catalog RSOs and analyst objects are also of SP vs. GP
nature. To support the conjunction assessment and collision probability
computation for the aforementioned scenarios, conjunction screeners
need to be capable of mixed theory orbit and covariance propagation.

A performance recommendation for GP vs. GP screenings is to
conduct the sieving and the fine conjunction detection in the TEME
frame (Escobar et al., 2011), which is possible because the conversion
between TEME and GCRF depends only on time, such that state vector
differences and the orbital shape remain unchanged. For CA using
TLEs, the conversion to GCRF is therefore only required to evaluate a
post–root finder RTN ellipsoid criteria (cf. Klinkrad, 2006, section 8.2)
or to output the screening results in inertial coordinates.

In contrast to pure GP conjunction screening, a crucial point for
mixed theory propagation is the consistent application of GCRF co-
ordinates, which is the natural frame for SP propagations. The GP
propagations therefore directly need to be converted to GCRF when
sampling the orbits. Only then it is made sure that the quantities of
interest (apogee/perigee altitudes and relative distances/velocities)
are evaluated in a common coordinate frame.

Finally, operational software should be universal and maintainable
at low cost. It is therefore advisable to develop “unified propagation”
routines which accept the information required for orbit/covariance
propagation of both theories (e.g. via optional arguments), respect
the aforementioned frame recommendations, and decide whether to
perform GP propagation, SP propagation or interpolation based on
the available inputs. Since CARA always requires pairs of objects to
be propagated, it is also recommended to create wrapper routines
which receive target and chaser data, propagate both using the unified
propagation routines and optionally also return the position difference
and the combined covariance.

Validation
Before using identified close encounters to calculate a collision proba-
bility, it is necessary to validate the screening results against practice-
proven solutions. A publicly available source that lists upcoming
conjunctions is the Satellite Orbital Conjunction Reports Assessing
Threatening Encounters in Space (SOCRATES) service of the Center
for Space Standards & Innovation (CSSI) (Kelso and Alfano, 2005),
which is available at https://celestrak.com/SOCRATES/. SOCRATES
uses the commercial AGI STK Advanced CAT add-on module to
screen all payloads against the entire TLE catalog using a 5 km spheri-
cal safety volume. STK Advanced CAT employs the Hoots prefilters

https://celestrak.com/SOCRATES/
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for conjunction screening. For SOCRATES 30 km pads, as well as an
epoch filter with a maximum age of 30days are applied. The top 10

conjunctions (with respect to a sorting criterion such as minimum
range) of the next seven days are uploaded twice a day. SOCRATES is
a great source to test the basic functionality of a conjunction screener,
however 10 conjunctions are not sufficient for validation. Thus, the
complete 7-day screening results of a SOCRATES run were requested
from CSSI. Thanks to the provided dataset, a detailed validation of
the smart sieve implementation could be carried out.

The screening results are compared with respect to conjunction de-
tection, the time difference at TCA and the associated position/velocity
differences. Table 6.1 summarizes the key figures. Exemplary results
of the first 10 conjunctions are reported in table 6.2 and demonstrate
the millisecond-level agreement.

Total conjunctions SOCRATES 29 872

Total conjunctions SPOOK 30 920

Matched conjunctions 29 705

Missed conjunctions SOCRATES 1215

Missed conjunctions SPOOK 167

Missed conjunctions < 4.75 km SOCRATES 1119

Missed conjunctions < 4.75 km SPOOK 9

Average TCA difference 8.0972ms

Average TCA difference without outliers5 −0.8064ms

Maximum TCA difference 70.3780 s

Average position difference at TCA 0.1117m

Average position difference at TCA without outliers 0.1069m

Maximum position difference at TCA −3.348 km

Average speed difference at TCA 0.0020m/s

Average speed difference at TCA without outliers 0.0019m/s

Maximum speed difference at TCA 0.6372m/s

Table 6.1: Validation of SPOOK smart sieve conjunction screener versus
SOCRATES dataset

Multiple interesting points can be inferred from table 6.1. Considering
the different implementations and conjunction screening approaches,
an average TCA difference of less than a millisecond (neglecting
outliers) is remarkable. To minimize boundary effects, the focus has
been set on conjunctions with distances smaller than 4.75 km at TCA.

SPOOK detected 1119 conjunctions that were not part of the
SOCRATES outputs. On the contrary, SOCRATES reported 9 conjunc-

5 When sorting both datasets with respect to TCA, outliers are defined as matched
conjunctions which do not share the same index, i.e. sorting order. This situation
sometimes arises for GEO conjunctions with very small relative velocities



278

space catalog conjunction assessment

including force model process noise

Conjunction

Target

Chaser

TCA
SOCRATES
(UTC)

TCA
SPOOK
(UTC)

Relative distance
at TCA
SOCRATES [km]

Relative distance
at TCA
SPOOK [km]

Relative speed
at TCA
SOCRATES [km]

Relative speed
at TCA
SPOOK [km]

TCA difference
[ms]

Rel. distance
difference at
TCA [m]

Rel. speed
difference at
TCA [m/s]

1
2
8
2
8

1
4
4
5
8

2
0
2
0-

0
2-

0
8

1
2:

0
0:

0
9.

8
7

5

2
0
2
0-

0
2-

0
8

1
2:

0
0:

0
9.

8
7

2

4.
0
8
7

4.
0
8
4

3.
7
8
8

3.
7
8
8

3
2.

5
1
1

0.
3
6
3

2
5
5
5
3

7
0
5
7

2
0
2
0-

0
2-

0
8

1
2:

0
0:

4
5.

2
9

7

2
0
2
0-

0
2-

0
8

1
2:

0
0:

4
5.

2
9

9

2.
8
2
2

2.
8
2
0

1
2.

7
5
2

1
2.

7
5
2

-
2

1.
9
0
8

0.
4
8
7

3
3
5
7
8
2

4
3
8
8
6

2
0
2
0-

0
2-

0
8

1
2:

0
0:

4
5.

2
9

7

2
0
2
0-

0
2-

0
8

1
2:

0
0:

4
5.

3
0

0

4.
1
9
0

4.
2
0
0

1
4.

9
9
0

1
4.

9
9
0

-
3

-
1
0.

3
3
5

0.
2
5
8

4
2
0
2
3
2

3
9
0
7
4

2
0
2
0-

0
2-

0
8

1
2:

0
1:

0
6.

8
0

9

2
0
2
0-

0
2-

0
8

1
2:

0
1:

0
6.

8
0

9

4.
9
4
9

4.
9
1
9

1
2.

3
6
5

1
2.

3
6
5

0
3
0.

4
0
7

-
0.

1
0
4

5
3
4
0
0
5

4
3
2
5
7

2
0
2
0-

0
2-

0
8

1
2:

0
1:

4
0.

3
9

3

2
0
2
0-

0
2-

0
8

1
2:

0
1:

4
0.

3
8

9

2.
6
5
6

2.
6
5
3

1.
9
3
7

1.
9
3
7

4
2.

7
6
9

-
0.

0
3
1

6
1
5
1
2

1
3
5
0
2

2
0
2
0-

0
2-

0
8

1
2:

0
1:

4
0.

7
8

9

2
0
2
0-

0
2-

0
8

1
2:

0
1:

4
0.

7
8

8

4.
3
0
6

4.
3
0
2

6.
6
3
6

6.
6
3
6

1
3.

5
3
9

-
0.

4
2
0

7
4
3
6
6
9

4
4
0
9
7

2
0
2
0-

0
2-

0
8

1
2:

0
2:

0
0.

6
5

5

2
0
2
0-

0
2-

0
8

1
2:

0
2:

0
0.

6
5

6

1.
8
4
9

1.
8
5
0

4.
7
1
3

4.
7
1
3

-
1

-
0.

9
1
9

-
0.

4
1
5

8
3
9
4
4
1

4
1
0
9
3

2
0
2
0-

0
2-

0
8

1
2:

0
2:

1
8.

6
4

1

2
0
2
0-

0
2-

0
8

1
2:

0
2:

1
8.

6
4

3

0.
0
4
7

0.
0
4
8

1
4.

2
5
8

1
4.

2
5
8

-
2

-
1.

1
1
8

0.
3
7
2

9
3
3
4
9
2

4
4
3
4
2

2
0
2
0-

0
2-

0
8

1
2:

0
2:

2
0.

3
8

0

2
0
2
0-

0
2-

0
8

1
2:

0
2:

2
0.

3
7

9

4.
4
3
5

4.
4
4
8

9.
4
1
6

9.
4
1
6

1
-
1
2.

5
3
4

-
0.

0
7
6

1
0

7
2
0
9

3
5
2
1
1

2
0
2
0-

0
2-

0
8

1
2:

0
2:

2
1.

1
1

3

2
0
2
0-

0
2-

0
8

1
2:

0
2:

2
1.

1
1

6

3.
2
9
5

3.
2
9
4

1
2.

9
7
7

1
2.

9
7
7

-
3

0.
6
5
1

0.
2
8
5

Table 6.2: SOCRATES and SPOOK screening results of the first 10

conjunctions starting from 2020-02-08 12:00:00.000 UTC

tions that were not in the SPOOK results. It is believed that many of
the conjunctions missed by SOCRATES are caused by the application
of the path filter, which is known to erroneously exclude some con-
junctions (Woodburn et al., 2009; George and Harvey, 2011; Alfano
and Finkleman, 2014). T.S. Kelso from CSSI furthermore pointed out
that STK’s method for conjunction identification is searching for the
closest point within a distance threshold for which only a single
conjunction is reported in case of multiple close approaches.

The nine conjunctions not reported by SPOOK were investigated
in detail. It was found that four of the conjunctions involved RSOs
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of over 24days age, which cannot be truthfully propagated over such
long timeframes and are thus not reliable for conjunction assessment.
The remaining five conjunctions were not reported by SPOOK, since
they were slightly above the 5 km safety volume.

TCA solutions of matched conjunctions can vary for several reasons,
such as propagator differences6, numerical root finder convergence
criteria or differing conjunction definitions7. In summary, the smart
sieve conjunction screener which has been integrated into SPOOK
can be considered validated, since all differences to SOCRATES were
found to be either numerical boundary cases or caused by TLE data
of multiple weeks age. In addition, over 1100 conjunctions could be
detected which were not recognized by SOCRATES.

6.1.2 Computation of a collision probability

Once conjunctions between RSOs have been identified, their risk as-
sessment is the next logical step. In earlier times only the expected
minimum distance was used for this purpose. It however turned out
that a purely distance-based assessment is not representative of the
actual risk, but that knowledge of the orbit uncertainties must be in-
cluded as well. If the orbits of both objects are known very accurately,
even small relative distances do not pose a risk. Conversely, also large
relative distances can be critical if they are about the size of the com-
bined uncertainty. For this reason, a transition from minimum distance
to collision probabilities took place in the 1990s and early 2000s.

The meaningfulness of the probability concept in this context can
certainly be disputed and is closely linked to the Bayesians vs. frequen-
tists debate (see section 1.3.4 for a detailed discussion on these topics).
The Bayesian school represents the current state of the art, in which
the collision probability is defined as the integral of the pdf describing
the uncertainty in the relative state. However, also the Monte-Carlo
technique, in which the target and chaser epoch trajectories are first
sampled according to their pdfs and subsequently propagated to test
for collisions, is regularly used as a reference and contains features of
both positions. MC collision probabilities also show the dilution effect,
an artifact of pdfs and the Bayesian school, however the frequentists
long-term frequency definition is applied to determine the collision
probability as the ratio of detected collisions over repetitions.

Several assumptions have been introduced in the past to simplify
non-MC collision probability computations. Modeling the objects as

6 It is believed that SPOOK and STK share the same baseline SGP4 implementation,
however different programming languages, compiler optimization flags, paralleliza-
tion instructions, etc. still lead to diverse results

7 SGP4 produces position and velocity, however the velocity solution deviates from the
result of a numerical differentiation of neighboring position solutions, which leads
to slightly different TCA results when searching for zero crossings in the relative
velocity or a minimum in the relative position
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spheres eliminates the need for attitude information of the conjunc-
tion partners, which in most cases is not available. A typical but not
mandatory assumption is that uncertainties in relative velocity can
be neglected. This enables the calculation of a collision probability
only on the basis of the relative position pdf. Furthermore, the target
and chaser position errors are commonly assumed to be zero-mean,
Gaussian and uncorrelated, which allows to compute the collision
probability according to equation 6.3:

Pc =

∫∫∫
V

1√
(2π)3|C|

e−
1
2r
TC−1r dxdydz (6.3)

where r = rT − rC is the relative distance vector (target minus chaser)
and V defines the limits of integration as the encounter region (or
“encounter shell”) in which the conjunction is taking place. Chan (2008,
section 2.1) has shown that under the assumption of uncorrelated
position errors the covariance of r is found as the addition of the
individual position error covariances8, i.e. C = CT +CC.

Research in the field of collision probability algorithms is broad and
excellent, which has led to several publications detailing techniques to
relax some of the constraints underlying equation 6.3. The application
of GMMs for example allows to extend the concept of Gaussian errors
to arbitrary pdf shapes (Vittaldev, 2015, chapter 5). The inclusion of
velocity error uncertainties has been demonstrated by Coppola (2012).
Arbitrary object shapes have been elaborated for example in Patera
(2005), Chan (2008, chapter 6), Alfano (2012a) or Krier (2017). Error
correlation was addressed in Coppola et al. (2004), Chan (2008, section
2.6), Casali et al. (2019) and Gondelach and Linares (2020).

However, many of these modern techniques have not been imple-
mented in operational environments as the necessary additional infor-
mation for their application is not available or because their impact is
assumed negligible (Schiemenz et al., 2019a).

Ultimately, collision probabilities are calculated to compare their
values against predefined thresholds, thus aiding the decision-making
process for future actions, such as the execution of CAMs or requesting
further observations. Only changes of at least an order of magnitude
(OOM) in Pc are considered operationally relevant to CARA (Ghrist
and Plakalovic, 2012). For this reason, a number of simplifying assump-
tions can be justified operationally, whereas some modern algorithms
may not meet the OOM criterion and are thus not of operational sig-
nificance (the improved Pc estimates do not alter the decision making
process but require further data and/or computing time). This in turn
leads to a proliferation of equation 6.3 and the corresponding collision
probability algorithms.

8 In the context of collision probabilities, covariances are typically denoted using a
capital C to avoid confusion between the collision probability Pc and the capital P
used to express covariance matrices in the context of orbit determination
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encounter categorization

Close encounters in space can be divided into two categories based on
their duration: short-term encounters (STE) and long-term encounters
(LTE). In contrast to long-term encounters, the encounter shell of
STEs is traversed very quickly, which justifies a rectilinear motion
assumption and thus a reduction of the problem from 3D to 2D. Short-
term encounters are therefore characterized by substantially simpler
and less computationally demanding Pc calculation algorithms.

Two completely different approaches for STE detection have been
published in the literature. Chan (2008, sections 3.3-3.4) uses purely
geometric considerations to test the deviation of the orbital paths from
straight lines and the time to transverse the encounter region. The test
starts by defining a minimum rectilinear path length requirement S,
which is based on maximum differences between the 3D and reduced
2D collision probability integrals. The distance S is then used together
with the target/chaser approach angle φ to approximate the deviation
of the orbital paths from straight lines in terms of a deflection angle
α and the ratio of the encounter region transit time over the orbital
period. Boundary thresholds on both quantities are used to assess if a
conjunction qualifies for the linear motion approximation.

Alfano (2007a) defines a two-stage propagation-based test, which
aims to find the minimum velocity required at TCA such that a user-
specified probability ratio f = |Pc,2D − Pc,3D|/Pc,2D is not exceeded by
the two-dimensional short-term encounter computation of the collision
probability. Alfano first performs a two-body coarse assessment to
approximate the limits of linear motion based on the specified value
for f. The coarse evaluation is followed by a refined assessment which
uses the complete force models and the coarse evaluation data to
determine the minimum relative velocity vmin for the conjunction. If
vconj > vmin, the 2D computation is justified.

Alfano’s test is potentially more accurate, however significantly
more complex and time-consuming. It involves quadratic curve fitting,
state vector and covariance propagation, whereas Chan’s geometric
considerations only require square root and trigonometric function
evaluations. Unfortunately, Chan does not describe his test in full
detail. Instead, examples are formulated in an inverse manner by spec-
ifying deflections from rectilinear paths and comparing the resulting
values for S against the rectilinear path requirements, whereas in prac-
tice a requirement for S is given and φ needs to be computed to find
the deflections from the rectilinear paths. Chan suggests interpolation
of table data to tackle the operational direction of the problem, how-
ever also notes that closed-form equations for the operational problem
can be derived from those of the inverse direction. Strict boundary
values for the deflection angle and ratio of the encounter shell transit
time over the orbital period are not provided, however two examples
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are presented together with an assessment of their results regarding
the validity of the rectilinear motion approximation.

Based on the fragmented information in Chan (2008), an encounter
classification subroutine was developed for usage in the force model
uncertainty catalog study. The code has shown very robust perfor-
mance for the categorization of millions of conjunctions. The Fortran
sources are given in listing B.7, found in appendix B.3.

review and selection of conjunction probability algo-
rithms

Equation 6.3 requires the relative position vector and the combined
covariance of the target and chaser RSOs. The computation of conjunc-
tion collision probabilities is not performed in GCRF coordinates, but
in the “encounter frame”, which is aligned with the relative velocity
vector and depicted in figure 6.6. Literature does not always agree
on the axes labeling. Works by Patera typically associate the relative
velocity direction with the z-axis of the encounter frame. Chan on the
other hand assigns the y-axis to the relative velocity direction and
Alfano sometimes uses the z or the x-axis to denote the relative veloc-
ity direction in the encounter frame (which he calls velocity normal
co-normal (VNC) frame). In this work, Chan’s convention is applied,
i.e. the relative velocity direction is taken as the encounter frame y-axis.

At precisely the time of closest approach, the relative position vector
has to be perpendicular to the relative velocity vector. In practice how-
ever the relative position and velocity vectors at TCA do not yield an
exact zero dot-product9 – a fact, which is usually ignored in textbooks
(e.g. Klinkrad, 2006, eq. 8.25). The omission of this information is criti-
cal however, as the inaccurate frame definition which directly uses the
relative position vector to define the encounter frame x-axis can only
be tolerated in case of 2D collision probability calculations, but even
then this results in the character of the 2D transformation as a special
case of the 3D transformation to be lost. Thus, the fully orthogonal
encounter frame definition should also be used for two-dimensional
collision probabilities.

Computations of the 3D collision probability require to calculate the
encounter frame at many different points in time prior and after the
TCA for which the angle between the relative position and relative
velocity vectors is far from orthogonal. For this reason it is essential
to formulate the GCRF to encounter frame transformation in a uni-
versally applicable manner that ensures the encounter frame axes to
be orthogonal to each other. The 2D encounter plane (sometimes also
called “b-plane”) is at every instant defined as the plane perpendicular
to the relative velocity direction.

9 Recall the discussion about the conjunction definition as minimum position or zero
relative velocity, as well as the convergence criteria of the numerical root finder and
the time accuracy of Julian date representations
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Generic transformation
equations to convert the
relative GCRF state and
combined position
covariance into the
encounter frame.
The opposite
transformation is
achieved by taking the
transpose of equation 6.7
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Figure 6.6: Encounter frame definition. The encounter plane is defined per-
pendicular to the relative velocity direction (shaded gray). At TCA the
y-coordinate of the miss vector is zero (in practice close to zero), at any other

instant it is nonzero

Equations 6.4-6.10 summarize the generic transformation:

yb =
vrel

|vrel|
(6.4)

zb =
rrel × vrel

|rrel × vrel|
(6.5)

xb = yb × zb (6.6)

TEnc, GCRF =

x
T
b

yTb

zTb

 (6.7)

rEnc = TEnc, GCRF rGCRF (6.8)

vEnc = TEnc, GCRF vGCRF (6.9)

CEnc = TEnc, GCRF CGCRF T
T
Enc, GCRF (6.10)

The transformation into the encounter plane is achieved either
by performing the 3D transformation and subsequently dropping
the y-components of the position/velocity vectors and the posi-
tion covariance, or by applying the 2 × 3 transformation matrix
TEnc, GCRF = [xb zb]

T instead of equation 6.7.
Within the encounter plane, the lines of constant probability density

are ellipses and the hard body sphere reduces to a hard body circle,
which is defined by the hard body radius (rHB = rp + rs). The integral
in equation 6.3 can be split into an integration within the encounter
plane and an integral over the relative velocity direction. For STEs the
encounter duration is sufficiently short to approximate the combined
covariance with its value at TCA. Furthermore, the curvature effect
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of gravity is neglected, resulting in the volume being swept out by
the primary on its passage through the encounter region to form a
“collision tube” (cf. figure 6.6).

Taken together, these conditions allow to decouple the integration
along the relative velocity direction y from the encounter plane integra-
tion in x/z. Many authors restrict themselves to this consideration of
STEs and directly provide the reduced 2D collision probability formula,
without correctly motivating its origin. The only valid mathematical
derivation of the reduced 2D collision formula is the integration of
equation 6.3 with respect to the relative velocity direction y. The cal-
culations are published in Chan (2008, section 3.5). The reduced 2D
collision probability integral (which does not contain a dependency on
the relative velocity direction) is given in equation 6.11 or alternatively
eq. 6.12:

Pc,2D =
1

2πσxσz
√
1− ρ2xz

∫∫
A

e
−

[(
x
σx

)2
−2ρxz

(
x
σx

)(
z
σz

)
+

(
z
σz

)2]
2(1−ρ

2
xz) dxdz (6.11)

=
1

2π
√

|C2|

∫∫
A

e
− 1
2

[
(xz)

T
C−1
2 (xz)

]
dxdz (6.12)

where C2 denotes the 2D encounter plane covariance matrix. The
expression in the square brackets of the exponential function argument
in equation 6.12 represents the squared encounter plane Mahalanobis
miss distance. The 3D equivalent, i.e. the squared actual Mahalanobis
miss distance, can also be identified in equation 6.3.

The cross-correlation term in equation 6.11 can be avoided by rotat-
ing the encounter frame about the relative velocity direction to align
the covariance principal axes with the encounter plane axes. In this
principal axis encounter plane, equation 6.11 becomes:

Pc,2D =
1

2πσ′xσ
′
z

∫∫
A′

e
− 1
2

[(
x′
σ′x

)2
+
(
z′
σ′z

)2]
dx′ dz′ (6.13)

Authors omitting the correlation term are implicitly assuming princi-
pal axis encounter plane coordinates.

Short-term encounter collision probability algorithms
Equations 6.11-6.13 are typically not used directly to compute the
two-dimensional encounter plane collision probability. Instead, they
serve as the baseline for more optimized algorithms.

Four classes of 2D algorithms with broad acceptance have emerged
over the past 30 years. These are founded on Foster and Estes (1992),
Patera (2001, 2005), Alfano (2002, 2005) and Chan (1997, 2003). Chan’s
method is a well-known analytical algorithm, whereas Foster, Patera
and Alfano rely on numerical integration.
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Foster’s technical report started the transition from miss ranges as
risk metric to collision probabilities. His method transforms equation
6.11 into polar coordinates, which rephrases the Cartesian double
integral into an angular and a radial integration. Patera’s algorithms on
the other hand express eq. 6.11 as a one-dimensional contour integral,
which in Patera (2001) is centered at the origin of the encounter
plane, whereas in Patera (2005) the origin is changed to the center
of the hard body contour, which requires less integration steps and
allows to convert the contour integral into a standard definite integral.
Motivated by earlier results of Chan (1997) and Alfriend et al. (1999),
Alfano develops an error function series expression of equation 6.13,
which exploits the intrinsic availability of the error function in many
programming languages.

A relative accuracy review of the methods is available in Chan (2008,
section 5.5). An excellent extended analysis that evaluates the absolute
accuracies by comparison against a direct numerical evaluation of
equation 6.13 is presented in Alfano (2007b).

In order to establish a library of 2D collision probability methods, all
algorithms, including different variants, were implemented in Fortran
and integrated into SPOOK. Such a library allows to perform own
comparisons and helps gaining a deeper understanding of runtime
and accuracy differences, which eventually lays the foundation for the
choice of a baseline algorithm for catalog conjunctions that fulfill the
STE criteria. The following lessons have been learned:

• Chan’s analytical formula is by far the fastest, however a num-
ber of catalog conjunctions have been observed for which the
equivalent area approximation leads to errors of multiple orders
of magnitude in comparison to the numerical methods

• Alfano (2007b) and Chan (2008, section 5.5) recommend integra-
tion steps of 0.5deg and rHB/12 for Foster’s method, however
some conjunctions were found that required a finer angular
resolution (0.25deg) to agree with the Alfano and Patera results

• Patera recommends 400 steps for his contour integral approach.
For high aspect ratios of the combined covariance, some conjunc-
tions were found that required further integration steps, which
is in line with findings reported by Alfano (2007b)

• Patera uses 200 integration steps for his optimized object-
centered integral formulation. Alfano (2007b) found that already
50 iterations are sufficient to avoid errors within operational
decision-making thresholds. Catalog tests with the SPOOK
implementation generally confirm Alfano’s results, however
some high aspect-ratio conjunctions were found for which only
> 200 steps yielded results that matched Alfano’s error function
method. This is in line with Balch et al. (2019), who propose
10max(σ′x/σ′z,σ′z/σ′x) iterations for Patera’s method
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• The formulation of Alfano’s method which separates even and
odd parts of the argument yields accurate results with only 10

to 50 integration steps
• A direct formulation of Alfano’s method which does not separate

even and odd terms (Chan, 2008, eq. 5.35) requires approximately
as many integration steps as Patera’s updated method

• Simpson’s 1
3 -rule (Hoffman and Frankel, 2001, section 6.8.2)

yields slightly superior numerical integration performance in
comparison to the trapezoidal integration rule

• Integrals over angular quantities (as found in the algorithms of
Foster and Patera) can be accelerated by calculating sin(dφ) and
cos(dφ) only once and then using Chebyshev polynomials to
obtain sin(ndφ) and cos(ndφ)

Based on above findings, the following usage recommendations can
be established:

Algorithm Performance Accuracy Application

Chan Very high Low to
Medium

Trend analysis,
dependency testing

Foster Low Medium
to High

Validation of other algo-
rithms

Patera
(Contour)

Medium High Operational application,
validation of other algo-
rithms, non-spherical ob-
jects

Alfano
(direct)

Medium to
High

High Operational application,
validation of other algo-
rithms

Patera
(Updated)

Medium to
High

High Operational application,
validation of other algo-
rithms, non-spherical ob-
jects

Alfano
(even/odd
separation)

High High Operational application,
validation of other algo-
rithms

Table 6.3: Assessment of classical encounter plane collision probability
algorithms

As the catalog study presented in section 6.2 was conducted using
the HBR file provided by the ESA SDO, the capability to consider non-
spherical object shapes (as provided by Patera’s algorithms) was not
required. Hence, Alfano’s method was selected as the baseline for two-
dimensional collision probabilities. The algorithm demonstrated accu-
rate results for a wide range of catalog conjunctions and requires the
fewest number of integration steps among the numerical approaches.
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Long-term encounter collision probability algorithms
For long-term encounters it is not sufficient to consider the conjunction
geometry only at the time of closest approach. Since the target and
chaser are in the encounter region for a considerable amount of time
(possibly many hours), the collision probability must be accumulated
over this period to calculate the total Pc. In addition to the actual
algorithms used to calculate the collision probability, also the limits of
integration are important to be chosen appropriately. If the integration
is done only in the vicinity of the TCA, the probability of collision
may be too small, because not all parts of the motion through the
encounter-shell are taken into account. However, if the range is chosen
too large, significantly more runtime is required without actually
accumulating any collision probability. The maximum accumulation
limit should be set to one orbital revolution (Alfano, 2006).

In principle, the encounter region can be limited by time or relative
position Mahalanobis distance. Both checks should be implemented
in software routines. Patera suggests a three sigma Mahalanobis limit,
but Alfano points out that this may not be sufficient and suggests ten
sigma instead (Alfano, 2006). If only a time limit shall be considered
(e.g. for testing purposes), the Mahalanobis limit can be raised to a
very large number (3000 is used in Alfano, 2009). The inverse however
is not always true, since for some conjunctions the Mahalanobis limit
may never be exceeded (e.g. in case of traveling partners).

Field-tested Gaussian approaches for the calculation of the 3D colli-
sion probability can be classified into three categories according to the
granularity applied in partitioning the path swept out by the primary
on its way through the encounter region. The first group is formed by
the “adjoining tube” or “adjacent cylinder” algorithms. Representa-
tives of this class are Patera (2003), McKinley (2006) and Alfano (2006).
These algorithms model the path of the primary through the encounter
shell via many short adjacent tubes (cf. figure 6.7). The assumptions of
a constant combined covariance and rectilinear motion are applied to
each cylinder section. The final collision probability is calculated as the
sum of the individual tube collision probabilities. Patera and Alfano
calculate the tube Pc contribution as the product of a 1D sectional col-
lision probability and a 2D cross sectional Pc. The 2D face-component
of the tube Pc can in principle be calculated using any STE collision
probability method (a discussion on this point ensues), although Pa-
tera (2003) naturally limits the discussion to his 2D contour integral
method. In essence however Alfano’s and Patera’s methods differ
only slightly in the calculation of the sectional 1D tube Pc component.

Consider the single tube section in figure 6.8. The 1D sectional
collision probability is computed as the integral of the one-dimensional
Gaussian pdf in the y-direction from the initial to the final tube face:

P1D =
1√
2πσ

yf∫
yi

exp
(
−
y2

2σ2

)
dy (6.14)
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Assuming a constant pdf, the integrand can
be taken out of the integral, which results in:

P1D =
yf − yi√
2πσ

exp
(
−
y2

2σ2

)
=

∆y√
2πσ

exp
(
−
y2

2σ2

)
(6.15)

Defining the one-dimensional Mahalanobis
distances as Mf and Mi, it is possible to rewrite equation 6.15 in the
form of eq. 6.16 by considering that the tube section value of y is
evaluated at the beginning of the tube.

P1D =
Mf −Mi√

2π
exp

(
−0.5M2

i

)
(6.16)

In contrast, Alfano’s one-dimensional collision probability equation
is obtained by splitting equation 6.14 and exploiting the symmetry of
the problem and using the error function for each part of the integral:

P1D =
1√
2πσ

 0∫
yi

exp
(
−
y2

2σ2

)
dy+

yf∫
0

exp
(
−
y2

2σ2

)
dy


=

1√
2πσ

√
π

2
σ

(
erf
(
yf√
2σ

)
− erf

(
yi√
2σ

))
=
1

2

(
erf
(
Mf√
2

)
− erf

(
Mi√
2

))
(6.17)

To obtain positive sectional collision probabilities, independently of
the propagation direction, it is recommended to take the absolute
value of equation 6.17, which yields:

P1D =
∣∣∣1
2

(
erf
(Mf√

2

)
− erf

(Mi√
2

))∣∣∣ (6.18)
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Equations 6.15 and 6.18 are the expressions used by Patera and Al-
fano to obtain the decoupled one-dimensional collision probability
component. To obtain correct results, it is important to evaluate all
components of the equations in the same tube–encounter frame. It is
therefore not possible to take the Mf of the previous iteration as the
Mi of the current iteration, since it is required to be evaluated in the
encounter frame of the next tube section.

In order to decouple the x/z cross-sectional Pc from the sectional Pc
in the relative velocity direction, Patera and Alfano apply a transforma-
tion which symmetrizes the combined covariance in three dimensions.
In this way Patera reduces the covariance to a single standard devia-
tion σ. Alfano on the other hand scales the covariance in all axes to
obtain an identity matrix pdf. This causes metric distances to match
Mahalanobis distances, which is why he also refers to the target frame
of the transformation as “Mahalanobis space”. The operations re-
quired for this transformation involve rotations and scaling. For this
reason, the relative path of the RSOs and the hard body volume are
rotated/stretched/compressed accordingly. This is indicated in the
lower part of figure 6.7 by a corresponding distortion of the spherical
hard body x/z contour.

Interestingly, the complete transformation of the covariance and the
hard body volume has not been published in full detail yet. Patera
(2003) specifies a transformation of the combined covariance, how-
ever only a pointwise transformation of each infinitesimal hard body
volume element is given, which is not very helpful to determine Mi

and Mf. Alfano (2006) notes that an eigendecomposition of the com-
bined covariance is necessary to determine the rotational and scaling
components, however does not describe the hard body transformation
process. The complete transformation for arbitrary covariances and
spherical hard body volumes has been derived as part of this work.
The Fortran sources can be found in listing B.8, appendix B.5.

Since the pdf is isotropic after the transformation (it contains no
cross-correlations and equal standard deviations in all axes) each
direction can easily be decoupled form the others. Thus, equations
6.15 and 6.18 do not depend on quantities in x or z. To evaluate the
cross-sectional 2D collision probability directly in the Mahalanobis
space, adapted formulations of the 2D collision probability are nec-
essary. Such Mahalanobis space formulations of Chan’s and Patera’s
object-centered approaches have been worked out in Alfano (2007a).

McKinley (2006) does not require covariance symmetrization, since
in his method the tube Pc is not decoupled into 2D and 1D collision
probabilities. In fact, this separation is neither possible nor desired
in his algorithm, which aims at obtaining more accurate results by
reducing the problem of gaps and overlaps. To this end, McKinley
calculates the in-plane alignment angles of adjacent cylinder elements
and adapts the 3D integration limits to connect the cylinders seam-
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lessly in the orbital plane. Out-of-plane nonlinearity is not considered.
The adaptation of the integral limits necessitates a time-consuming
three-dimensional numeric integration. McKinley’s algorithm is more
accurate than Alfano’s and Patera’s, but it also requires substantially
more runtime. The difference in the collision probability estimates is
only significant if the gaps and overlaps are non-compensating and
located in areas of high probability density.

In the context of this work, a novel extension of the adjoining tube
algorithm was developed, which does not require covariance sym-
metrization. The extension solves a problem of practical relevance, i.e.
the application of the original STE encounter plane collision probabil-
ity algorithms in the adjoining tube methods.

Since the classical two-dimensional collision probability algorithms
are formulated in the encounter plane, but not in the Mahalanobis
frame, the algorithms either need to be recast into Mahalanobis space,
or the transformation only serves the purpose of decoupling the y-
component, such that the one-dimensional sectional tube collision
probability can be computed according to equation 6.15 or 6.18. Ob-
viously, the transformation into Mahalanobis space just to compute
one component of the collision probability is not an efficient solution.
However, if it were possible to compute Mf and Mi without explicitly
decoupling the y and x/z-components, Mahalanobis formulations of
the encounter plane algorithms would become obsolete and at the
same time the algorithm would be accelerated, since frame transfor-
mations would no longer be necessary. This is exactly what is achieved
with the new extension of the algorithm. All calculations take place
in the encounter frame, which means that all encounter plane formu-
lations for the calculation of the cross-sectional collision probability
are directly applicable without changing frames. The derivation is
presented after the introduction of the remaining nonlinear collision
probability algorithms.

Alfano’s adjoining parallelepiped algorithm (Alfano, 2007a) forms
the second granularity category of the three-dimensional collision
probability algorithms. By dividing the tube into bundles of abutting
parallelepipeds, the problem of gaps and overlaps can be solved in
the in-plane and out-of-plane directions. Each parallelepiped end is
adjusted to create a smooth transition layer, which further increases
the accuracy with respect to McKinley (2006) who only accounts for
the in-plane adaption. The calculation of each parallelepiped collision
probability contribution no longer uses the classic 2D formulae, but
the product of equation 6.18 for each spatial direction (Pelem = P1D,x ·
P1D,z · P1D,y). The total collision probability is obtained as the sum of
all individual parallelepiped collision probabilities during the passage
of the primary through the encounter region. At each sampling time,
the (arbitrary) hard-body x/z cross-section is assembled via the face
sides of the parallelepipeds. The accuracy of the collision probability
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computations increases if more parallelepipeds are used and if the
parallelepiped length (analogous to the length of the tubes in the
case of the adjoining tube algorithms) is not chosen too long for the
constant covariance assumption to become violated (a mechanism for
selecting the tube length is described in Alfano, 2006). Further details
can be found in Alfano (2007a).

The third granularity category is obtained by shortening the paral-
lelepipeds to small volume elements (voxels). The path of the primary
through the encounter region is no longer modeled by tubes or paral-
lelepipeds, but sampled in Mahalanobis space using voxels. At each
sampling instant the Pc contribution of any new voxel is determined
using the same equation as for the parallelepiped approach. The subse-
quent sampling instant starts by assessing which voxel Pc contribution
was already considered in the previous sampling step. These are ex-
cluded from further consideration. The additional Pc contribution
due to all new voxels is added to the so-far accumulated overall Pc.
Increased sampling frequencies lead to a higher number of voxels
to be part of successive sampling steps. This prolongs the runtime,
but also enhances the accuracy of the results. Sampling too seldom
on the other hand leads to an underestimation of the collision prob-
ability, since not all volume elements which have been swept out by
the primary are guaranteed to have been taken into account for the
collision probability accumulation. The algorithm supports arbitrary
object shapes. Further details are explained in Alfano (2006, 2012a).

Usage recommendations for the nonlinear collision probability algo-
rithms are collected in table 6.4.

Algorithm Performance Accuracy Application

Adjoining tube
(Patera/Alfano)

High Medium Operational application

Adjoining tube
(McKinley)

Medium Medium+ Operational application

Parallelepipeds Low Medium to
High

Numerical studies

Voxels Very Low High Numerical studies,
Validation of other
algorithms

Monte-Carlo10 Ultra Low
(runtime de-
pends on Pc)

Extremely
high (simu-
lated truth)

Validation of other
algorithms

Table 6.4: Assessment of nonlinear collision probability algorithms

10 An auxiliary development of this doctoral research project was the development of a
GP Monte-Carlo collision probability algorithm, which represents a new approach for
the validation of pure GP collision probability computations. So far, no comparable
technique has been published. The developments are summarized in appendix B.5
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Alfano’s/Patera’s adjoining tube algorithm (with and without the
option to perform the Pc computation in Mahalanobis space), McKin-
ley’s method, and the most accurate Pc computation according to the
Monte-Carlo approach (Alfano, 2009) were implemented as options
for nonlinear collision probability computations in SPOOK. As for
any new software implementation, it is essential to perform a final
validation of the algorithms. A unique and comprehensive source for
nonlinear collision probability algorithm validation is Alfano (2009),
which not only examines the MC method from the perspective of
statistically significant repetition numbers, but also provides 12 two-
body test cases against which own implementations/algorithms can
be tested11.

adjoining tube three-dimensional collision probability

without covariance symmetrization

In the following the extension of the adjoining tube algorithm is
presented which does not require a transformation into Mahalanobis
space for the computation of the sectional P1D. To this end, the y-
direction in Mahalanobis space is transformed into an encounter frame
direction η which, besides y and σy, also depends on x, z, σx and σz.

The first step matches eq. 3.25 in Chan (2008), which is part of the
derivation of the reduced two-dimensional STE collision probability
by integrating the three-dimensional collision probability with respect
to the y-direction:

Pc =

∞∫
−∞

e−
a
2R(y−

b
a)
2

dy

︸ ︷︷ ︸
B∞

∫∫
Axz

Ae
−

x2

σ2x
−
2ρxzxz
σxσz

+ z
2

σ2z

2(1−ρ
2
xz) dxdz
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P2Dr

(6.19)

where according to Chan (2008, eq. 3.21):

A = 1/
(
σxσyσz

√
(2π)3R

)
(6.20)

R = 1+ 2ρxyρyzρxz − ρ
2
xy − ρ

2
yz − ρ

2
xz (6.21)

a = (1− ρ2xz)/σ
2
y (6.22)

b =
(ρxy − ρxzρyz) x

σxσy
+

(ρyz − ρxyρxz) z

σyσz
(6.23)

11 During the validation campaign a couple of unresolved issues were identified in
some of the reference cases reported in Alfano (2009). For example, only 5 columns
are given for the TCA covariances of scenarios 5, 6, 7, 8 and 11. Likewise, cases 1 and
2 are reported to have equal orbital motion and covariances in the introduction of
case 2, however different epoch and TCA state vectors/covariances are given for both
cases. Furthermore, the MC result of case 4 could not be validated. In this scenario a
significantly smaller MC Pc was determined after 106 iterations. Finally, a general
slight mismatch was observed for the two-body covariance propagation. An analytic
equinoctial two-body covariance propagator and a numeric Shampine-Gordon inte-
grator implementation agreed on the computed Cartesian TCA covariances when
starting from the given epoch data, however the results showed numerical differences
with respect to those reported by Alfano for the times of closest approach
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To rephrase the pdf in B∞ in the form of a classical Gaussian, it is
necessary to define:

η =

√
a

R
σy

(
y−

b

a

)
(6.24)

from which it follows that:

dy =

√
R

a

dη

σy
(6.25)

Equations 6.24 and 6.25 allow to rewrite B∞ as:

B∞ =

√
2πR

a

 1√
2πσy

∞∫
−∞

e−η
2/(2σ2y) dη

 (6.26)

The first part of equation 6.26 (before the brackets) completes P2Dr
in equation 6.19 to result in the two-dimensional encounter plane
collision probability. Thus, the three-dimensional collision probability
can be written as:

Pc = Pc,2D

 1√
2πσy

∞∫
−∞

e−η
2/(2σ2y) dη

 (6.27)

In the context of the adjoining tube algorithm, the integration over the
relative velocity direction is not performed from −∞ to ∞, but from
the beginning to the end of a tube section. Hence:

P1D =
1√
2πσy

ηf∫
ηi

e
− 1
2

(
η
σy

)2
dη (6.28)

which in analogy to equation 6.14 results in:

P1D =
1

2

(
erf

(
ηf√
2σy

)
− erf

(
ηi√
2σy

))
(6.29)

Defining Mf = ηf/σy and Mi = ηi/σy, equation 6.29 reduces to eq.
6.17, which is therefore also valid in the encounter frame, given the
different definitions of Mf and Mi in the encounter and Mahalanobis
frames.

To complete the evaluation of the sectional one-dimensional colli-
sion probability in the relative velocity direction, a comprehensive
description of η shall be derived. To this end, ba can be computed from
equations 6.22 and 6.23:

b

a
=

(
(ρxy − ρxzρyz) x

σxσy
+

(ρyz − ρxyρxz) z
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)
σ2y
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1− ρ2xz
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)
x

σx︸︷︷︸
Mx
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(
ρyz − ρxyρxz
1− ρ2xz

σy

)
z

σz︸︷︷︸
Mz

(6.30)
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Furthermore, equations 6.21 and 6.22 yield:√
a

R
=

√
1− ρ2xz

1+ 2ρxyρyzρxz − ρ2xy − ρ
2
yz − ρ

2
xz

1

σy
(6.31)

Inserting equations 6.30 and 6.31 into eq. 6.24 and definingMy=y/σy,
the complete form of η is obtained:

η =

√
1− ρ2xz

1+ 2ρxyρyzρxz − ρ2xy − ρ
2
yz − ρ

2
xz

σy(
My −

ρxy − ρxzρyz
1− ρ2xz

Mx −
ρyz − ρxyρxz
1− ρ2xz
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)
(6.32)

Equation 6.32 can be evaluated using the encounter frame relative
position and combined covariance information. If all cross-correlation
coefficients are set to zero, eq. 6.32 reduces to η = σyMy = y. The
variable η can thus be understood as a generalized relative velocity
integration direction.

In the context of the adjoining tube algorithm, Mi can thus be com-
puted by evaluating equation 6.32 with the encounter frame quantities
of the tube start and dividing by σy. The tube end Mf is found by con-
verting the propagated state and covariance into the encounter frame
of the tube start and performing the same calculations. The sequential
P1D follows from eq. 6.17 or 6.29. The propagated relative GCRF state
and combined covariance must also be used to compute the new Mi

which, despite corresponding to the same time instant, differs from
the previously computed Mf due to the updated encounter frame
definition of the new tube section.

The updated algorithm yields results that are numerically consistent
with the Mahalanobis frame approach (which uses equation 6.18 to
evaluate the sectional collision probability in the Mahalanobis space
and either the two-dimensional Mahalanobis formulations of Chan’s
and Patera’s algorithms found in Alfano (2007a) or any other en-
counter frame STE collision probability algorithm to compute the face
contribution of each tube). Since Mahalanobis space transformations
are no longer necessary, less time is required to compute the collision
probability estimates.

integration of force model uncertainties

Finally, the integration of the force model uncertainties into the colli-
sion probability algorithm needs to be discussed. The process starts
by determining if an object is actually a LEO RSO. Only if the mean
motion is found to be larger than 11.25 orbital revolutions per day
and the eccentricity smaller than 0.25 (criteria used by SpaceTrack),
the LEO flag is activated, which enables the computation of the den-
sity and gravity uncertainty for each conjunction partner between the
respective epoch time and the determined TCA.
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If the nonlinear motion check determines that the conjunction is
a long-term encounter, a target and chaser drag-only propagation is
performed between TCA± δtmax prior to starting the desired adjoin-
ing tube algorithm. The data is used to compute ∆n̂/∆t, which is
required for the combined density uncertainty computation within
the nonlinear collision probability algorithms.

Different propagation sequences are used by McKinley and Alfano
to transverse the encounter shell when accumulating the tube collision
probabilities. While the adjustment of the integration limits for the
gap/overlap minimization causes McKinley to propagate only forward
in time, Alfano suggests to propagate from the TCA to the positive and
negative time limits of the encounter shell. Alfano’s approach has the
advantage of a guaranteed start within the encounter region, whereas
McKinley’s pure forward propagation has to be started at the earliest
possible point of the encounter shell, since this is when the Pc rates
may be starting to rise from zero. However, if in these early iterations
only the time limit is met but not the accompanying sigma-criterion,
the tube will not generate an appreciable Pc contribution, such that it
is required to directly proceed to the next tube. The approach often
leads to many initial propagation steps which exceed the sigma limit,
are therefore not necessary and result in prolonged runtimes.

Force model uncertainties can be respected for both strategies in the
same manner. A few considerations are however necessary to minimize
the workload of the force model consideration. Both encounter region
transit strategies require covariance information at many sampling
times, which may be shortly before an epoch state or many days
after. For this reason, the same process noise calculation strategy
as has been used for the Kalman filters has to be applied, i.e. it
must be ensured that all force model covariance contributions are
removed from the state error covariance before performing covariance
propagation. The propagation endpoint force model covariance is
evaluated subsequently and the final covariance is determined as the
sum of both contributions.

At each time-step the initial drag-only propagation is interpolated
to enable a fast determination of ∆n̂/∆t for the combined density
uncertainty covariance. The total gravity covariance is formed via
accumulation (QGrvAcc = CovProp(QGrvAcc) +QGrv), whereby the re-
sult of the Higham algorithm is stored in a copy of the accumulated
uncertainty (QGrvUsed = nearPSD(QGrvAcc)) to ensure that always at
most one nearPSD-iteration is contained within QGrvUsed.

GP covariances are computed as described in section 4.4. The only
difference to the SP force model process noise calculation is that due
to the analytical nature of the GP theory, the accumulation of the
gravity process noise to reduce the workload is no longer necessary.
Instead, the gravity process noise can directly be calculated from the
RSO epoch states without a negative runtime impact.
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6.2 real world catalog study

This section presents the results of the real world catalog force model
uncertainty impact study. The uncertainty quantification methodology
using physics-based process noise/covariance matrices is a new and
unique approach to assess the impact on collision probabilities, how-
ever a hand full of publications which use different methodologies
to analyze several aspects of the density uncertainty impact on close
encounters already exist. These are briefly reviewed in the following.

Emmert et al. (2014) were the first to study the effect of solar EUV
proxy uncertainties on LEO RSO conjunction rates. The work uses
a precursor of equation 2.211 to estimate the in-track position error
standard deviations of the LEO TLE catalog, which were found to
range between a couple of centimeters up to more than a thousand
kilometers after seven days of propagation when considering Brow-
nian motion F10.7 input errors. Perigee altitudes above 800 km were
found to result in meter-level standard deviations after seven days
of propagation, which is in accordance with the altitude dependency
analysis conducted in section 4.3.2. Many simplifying assumptions
(unperturbed orbits for identifying collisions, estimation of ballistic
coefficients, arbitrary choice of radial position error, neglecting the
mean motion uncertainty of the primary object, etc.) are made to
approximate the corresponding impact on the average conjunction
rates. It is demonstrated that the conjunction frequencies increase
approximately quadratically with the F10.7 solar background activity.
Also an equation for the inverse problem was derived and allows
to assess the maximum EUV forecast uncertainty for a given target
conjunction frequency and solar background activity.

A computationally very intensive analysis was performed by Bussy-
Virat et al. (2018) who use pure Monte-Carlo techniques to analyze
the effect of uncertainties in the solar flux and magnetic index model
input data on the final collision probability estimates. The study is
a good example for the possibility to perform completely numerical
analyses of complex relationships due to the availability of increas-
ing computing power. Also Bussy-Virat et al. (2018) validated their
MC collision probability algorithm against the Alfano test cases and
subsequently investigate 49 conjunctions for changes in the associated
collision probability. The input uncertainty pdfs were derived empiri-
cally from the comparison of F10.7/Ap forecasts and final data. They
turned out to be uncorrelated and bias-free, which justifies the inde-
pendent perturbation of both parameters with respect to the nominal
values obtained from space weather predictions (the same approach
is also chosen for SPOOK). While there is nothing to be criticized in
terms of the applied methodology, a few points in the study deserve
further discussion. It is claimed that analytical uncertainty estimates
lack the accuracy required to conduct CARA. This statement must
be contradicted. The results from chapters 2-5 demonstrate clearly
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that even highly non-Gaussian pdfs can be determined accurately and
considerably faster than with MC techniques. It is noted further that
Emmert et al. (2017) consider drag as the only perturbation, which is
deemed non-representative of real world orbits. Section 2.7.3 however
has shown that the consideration of analytical density uncertainties
can be extended to arbitrary disturbances by minimal adjustments to
the covariance propagation. Finally, the study uses overly optimistic
epoch covariances (less than 10m position error standard deviation),
which is not representative of actual conditions and emphasizes the
relative impact of the density uncertainties (cf. chapter 5).

The key result of Bussy-Virat et al. (2018) is that for the 49 cases
examined, the changes in the collision probability were approximately
within an order of magnitude and thus, in contrast to the interpretation
in the paper, just above the operational relevance threshold. The role of
solar bursts was also investigated. The maximum Pc change was found
to be 30.4%, which is significantly below an OOM. The operational
impact of the storms on the presented cases is therefore not of prac-
tical relevance, despite the fact that for one of the cases the collision
probability decreases just below the conventional HIE threshold12.

A very interesting study which examines the density error treatment
of the CSpOC system was authored by Hejduk and Snow (2018) who
reexamine archived records of actual collisions by artificially injecting
density errors into the events and subsequently recalculating the
collision probability.

Category NASA SPOOK

Red (HIE) > 4.4 · 10−4 > 10−4

Yellow
(Potential HIE)

> 10−7 > 10−7

Green
(Low Risk)

< 10−7 > 10−10

Gray (Very
Low Risk)

N/A < 10−10

Table 6.5: Encounter risk classification

Their main finding is
that the quantification of
density errors greatly in-
creases the stability and
durability of the CARA
results. It was also con-
cluded that more accurate
density models help to im-
prove CA, although they
do not eliminate the need
for uncertainty quantifica-
tion. The study uses the NASA three-stage encounter classification
scheme (cf. table 6.5) to assess the collision risk which, in a slightly
modified form, is also used in SPOOK.

The most recent study on the topic was conducted by Gondelach
and Linares (2020). It deals with the effect of grid-scale density model-
ing errors on the collision probability (space weather input errors are
not considered). An interesting claim of the paper relates to the impor-
tance of target/chaser covariance correlation in case of similar ballistic
coefficients. Previous studies have so far attributed little importance

12 The 10−4 threshold is not a hard operational limit which directly triggers the ma-
neuvering decision. Some missions at NASA also use 4.4 · 10−4 to consider a CAM
(Newman et al., 2014)
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to this aspect (cf. section 2.6 in Chan, 2008 or the 7% Pc change in
Coppola et al., 2004). However, the latter study also emphasizes that
further research may reveal very different results. Recently, Casali
et al. (2019) examined hundreds of archived NASA conjunctions for
the effect of cross-correlation. The study confirms the findings of the
earlier works in that the consideration of cross-correlations leads to
covariance deflation, which in general can result in smaller or larger
collision probabilities (changes by a factor of 0.5 to 2.0 were found in
one third of the studied cases). Another important result of Casali et al.
(2019) is that the collision probabilities typically decrease and rarely ex-
perience a more than twofold increase due to cross-correlation, which
is operationally insignificant. Neglecting cross-correlations is therefore
conservative in terms of the risk metric. However, the study also men-
tions that special geometries can be identified or constructed for which
the effect is greater. Scenario S0 in Gondelach and Linares (2020) seems
to be such a case, as it demonstrates a Pc increase above one OOM.

While it is undisputed that cross-correlation is negligible for near
head-on geometries (Chan, 2008; Casali et al., 2019), the influence of
drag-sensitivity has not yet been fully understood. Gondelach and
Linares (2020) highlight the importance of equal ballistic coefficients
for the impact of cross-correlation and show negligible contribution for
differing ballistic coefficients, whereas Casali et al. (2019) found that “if
the drag sensitivities are comparable or identical for the two satellites,
through some combination of energy dissipation rate and propagation
time, the effect again vanishes, even for significant drag cases”.

Shelton and Junkins (2019) do not specifically address density uncer-
tainty, but are interested in the impact of parametric model uncertainty
on the collision probability. Instead of using process noise, they extend
the state vector with the uncertain parameters of interest and model
their impact on the propagation. The study is limited to temporally
and spatially constant parameter uncertainty, which restricts the prac-
tical applicability. The Pc calculation is carried out using a modern
approach that has its roots in Coppola (2012) and can take velocity
uncertainty and non-Gaussian uncertainty volumes into account. A
fundamental result of the work is that the consideration of the model
uncertainties does not affect the Pc integral, but is only relevant for
covariance propagation. Depending on the considered ballistic coeffi-
cient uncertainty, a Pc variability of up to two OOM is demonstrated
for a HIE case with a Monte-Carlo collision probability larger than 1%.
Further tests would be desirable to examine if this Pc sensitivity also
applies to non-HIE conjunctions. The presented 15 test cases do not
contain any HIE for which the difference between the non-Gaussian
and single Gaussian Pc computations differ by more than an order of
magnitude, which is in line with Ghrist and Plakalovic (2012). Some
of the presented non-HIE cases however show differences of many
OOM, which suggests a non-negligible impact of non-Gaussian Pc
computations for medium to low risk conjunctions.
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Force model uncertainties can both increase or mitigate the proba-
bility of collision. This can be understood by considering the possible
effects on the time of closest approach and the associated distance
at closest approach (DCA) or in terms of the covariance inflation,
which increases the probability of collision if both RSOs are rather
distant, or lowers it if both conjunction partners are close (cf. also
figure 1.9).

6.2.1 Conjunction analysis risk assessment

Based on the processing of the catalogs, SPOOK generates output
files similar to the one shown in figure 6.9. Descriptive information
is contained in the file header (e.g. the selection of the smart sieve
filters and the screening volume or the chosen algorithms to compute
the STE and LTE collision probabilities). Following the header, each
row contains the desired information of the conjunctions, such as the
conjuncting RSOs, the data set record age at TCA or the perturbation
theories used.

 CONJUNCTION SCREENING RESULTS
 ----------------------------------------------
 GENERATED BY:  AIRBUS DEFENCE AND SPACE
 CREATED VIA:   SPOOK
 CREATION DATE: 2020-04-22T07:14:29 +0200

 SCREENING PARAMETERS:
 Apogee/Perigee Filter: YES (Pad: 250.0km)
 X-Sieve: YES
 Y-Sieve: YES
 Z-Sieve: YES
 Rel. Distance-Sieve: YES
 Min. Distance-Sieve: YES
 Fine Distance-Sieve: YES
 Ellipsoid-Sieve: YES (N2.0 x T5.0 x W2.0km)
 Pc computation (Short-Term Encounters): YES -> ALFANO (M-SERIES)
 Pc computation (Long-Term Encounters):  YES -> ALFANO ADJOINING TUBES (COV SYMMETRIZATION)

 Screening start: 2020-02-25T03:00:00.000
 Screening duration: 4.500 days
 Theory used for computation: SP + ITC
 Objects loaded from target catalog: 18846
 Objects loaded from chaser catalog: 18846
 ----------------------------------------------
 Detected conjunctions: 11854
 ----------------------------------------------

   NORAD_T    NORAD_C                SAT_NAME_T              SAT_NAME_C       PERT_T     PERT_C   REC_AGE_AT_TCA_T [d] REC_AGE_AT_TCA_C [d] 
      3743      19174                  SL-8 DEB               SL-14 DEB           SP         SP          0.03393900394        0.12473959429 
     35954      41066         DMSP 5D-3 F18 DEB             NOAA 16 DEB           SP         SP          0.08202196285       -0.05793418270 
     18958      33909               COSMOS 1933         COSMOS 2251 DEB           SP         SP          0.12531375419        0.09137096489 
     17624      38483           COSMOS 1275 DEB         COSMOS 2251 DEB           SP         SP          0.12616741098        0.12616498070 
     21358      38361               DELTA 1 DEB            OPS 4682 DEB           SP         SP         -0.01814446039        0.12584895408 
     37460      82500            FENGYUN 1C DEB   *NAME_NOT_IN_CATALOG*           SP         GP          0.12675206782        2.36107867630 
     41973      42023                FLOCK 3P-9             FLOCK 3P-32           SP         SP         -0.02091154549        0.12702113995 
     30972      35243            FENGYUN 1C DEB          FENGYUN 1C DEB           SP         SP          0.01889516972        0.12747603795 
     28654      30572                   NOAA 18          FENGYUN 1C DEB           SP         SP          0.01231086254        0.08263206622 
      6148      39300                COSMOS 514               SL-16 DEB           SP         SP          0.02417591913        0.12885716930 
     21544      37788               DELTA 1 DEB                  EDUSAT           SP         SP         -0.02878353372        0.12988072587

             TCA (JD)                  TCA (UTC)       DAYS_SINCE_EPOCH      DELTA_R_TCA_I [km]      DELTA_R_TCA_J [km]  DELTA_R_TCA_K [km]  
  2458904.62502851803    2020/02/25T03:00:02.464          0.00002851803              1.47766660             -0.52337348         -0.99523201  
  2458904.62507128017    2020/02/25T03:00:06.159          0.00007128017              0.54301211             -2.11334419         -0.99985904  
  2458904.62546033971    2020/02/25T03:00:39.773          0.00046033971             -0.23447132             -1.10284498         -1.29796464  
  2458904.62633457547    2020/02/25T03:01:55.307          0.00133457547             -1.86778390              0.15739721          1.03547209  
  2458904.62641963689    2020/02/25T03:02:02.657          0.00141963689             -1.32140614             -0.21546657         -0.95633975  
  2458904.62679058639    2020/02/25T03:02:34.707          0.00179058639              0.02956572             -0.47470542         -0.49378737  
  2458904.62723067682    2020/02/25T03:03:12.730          0.00223067682              0.10973307             -0.11069401          0.95641247  
  2458904.62753018131    2020/02/25T03:03:38.608          0.00253018131              0.73245332              0.83207244         -0.35481715  
  2458904.62768070027    2020/02/25T03:03:51.612          0.00268070027              0.49932309             -2.87033731         -0.24923520  
  2458904.62906933343    2020/02/25T03:05:51.590          0.00406933343             -1.27079488              0.66283296         -0.24510822  
  2458904.62998327194    2020/02/25T03:07:10.555          0.00498327194              0.20960299              0.51373520          1.37021294 

 DELTA_V_TCA_I [km/s]       DELTA_V_TCA_J [km/s]   DELTA_V_TCA_K [km/s]   ABS_REL_DIST_TCA [km]  ABS_REL_VEL_TCA [km/s]    K_Sq_Ellipse [1]  
           2.66543547                -8.66977593             8.51354066              1.85685356             12.43985271          0.71932676  
          -6.96895783                -2.41072522             1.31054108              2.40016748              7.48969206          0.70172433  
         -10.07082713                -6.34809623             7.20956742              1.71928940             13.91753380          0.72423332  
          -0.59838469                -3.24729508            -0.58549099              2.14139978              3.35347421          0.75265745  
          -7.17605347                 9.56430638             7.75854458              1.64533454             14.25365616          0.66985032  
           1.78076856                10.69126940           -10.17981548              0.68559852             14.86953333          0.11747275  
          -0.00116710                -0.00007500             0.00012523              0.96903010              0.00117619          0.23393376  
           6.42365545                -9.38991462            -8.74340012              1.16392767             14.34855016          0.32294517  
           2.63575984                 0.49708658            -0.44495335              2.92408584              2.71888001          0.41279151  
           2.80913900                 0.18126748           -14.07079292              1.45407882             14.34961090          0.51044891  
           1.60614114                -1.96938687             0.49279148              1.47828981              2.58863235          0.47452981

               Pc [1]      Pc_max (Alfriend) [1]      Pc_max (Chan) [1]
           4.2070E-13                 2.5343E-09             6.2365E-09
           9.0559E-10                 3.8458E-09             4.9857E-09
           2.4553E-11                 6.8215E-08             3.1069E-07
           2.0720E-11                 1.9630E-10             9.7072E-10
           1.2610E-09                 9.3113E-09             6.4708E-05
           9.7442E-07                 1.0055E-06             2.0117E-05
           1.7885E-08            N/A (long enc.)        N/A (long enc.)
           1.2016E-09                 1.4193E-09             1.5583E-09
           5.9547E-07                 7.1681E-07             3.3597E-04
           2.7949E-07                 3.7336E-07             3.6277E-04
           7.7331E-11                 1.4877E-09             1.1380E-08

Figure 6.9: Exemplary SPOOK output for an all vs. all catalog screening run.
For better readability the columns have been positioned below each other
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To conduct a comprehensive operational risk assessment, not only
the actual collision probability is calculated, but also the maximum
collision probabilities according to Alfriend et al. (1999) and Chan
(2008, chapter 11), which allows to evaluate the impact of the force
model uncertainties on these risk indicators.

Alfriend’s maximum collision probability scales the entire combined
covariance with a scalar k2 to obtain the corresponding maximum Pc.
Chan on the other hand does not explicitly use scaling parameters, but
derives an expression of the maximum collision probability which is
independent of the covariance size and only based on the covariance
orientation angle. Assuming that the combined covariance orientation
of the estimated covariance is appropriate, Chan’s approach is equiva-
lent to using individual scaling parameters for each of the encounter
plane x/z covariance components. Chan’s Pc,max results are thus usu-
ally some orders of magnitude above those of Alfriend. Hence, if even
Chan’s maximum collision probability does not classify a conjunction
as HIE, it can be excluded from further analysis with a high degree of
confidence.

A Python tool was developed for the collision assessment risk anal-
ysis. It allows to import a single or multiple collision screening output
files and supports the following analyses:

• Temporal evolution of conjunction
• Encounter classification according to table 6.5 (Pc, Alfriend’s
Pc,max, Chan’s Pc,max)

• Absolute comparison of collision probability histograms
• In-depth histogram delta analysis (conjunction risk classification

changes)

These instruments support the risk analysis and allow interesting
comparisons, such as SP vs. SP against GP vs. GP catalog screenings,
or examining the impact of the force model uncertainties on the
catalog scenarios. The tool also supports the generation of CDMs for
all conjunctions or a desired subset, which can then be sent to the
respective Os/Os (where at least one active spacecraft is involved).

Two practical applications of the CARA tool are illustrated in fig-
ures 6.10 and 6.11, which depict the CDM export functionality of the
data browser13 and the in-depth risk classification changes functional-
ity. The results shown in figure 6.11 are to be interpreted as follows:
due to the consideration of the force model uncertainties 419 out of
14754 conjunctions changed their risk classification. Five conjunctions
which were considered as low risk prior to accounting for force model
uncertainties became very low risk conjunctions (gray color code)
afterwards. On the contrary, 241 formerly gray conjunctions and 26

formerly yellow conjunctions are classified as low risk (green cate-
gory) after taking density and gravity uncertainties into account. The

13 SPOOK uses the pandastable library (Farrell, 2016) as baseline for individual conjunc-
tion analyses and data browsing
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figure also depicts the rare case of a non-neighboring category change
for 82 formerly gray conjunctions, which experienced changes of at
least three OOM to be classified as potential HIEs when including
force model uncertainties. Similarly, 43 green and 20 red conjunctions
switched their color to yellow. The results correspond to a pure GP
all vs. all category screening (not limited to LEOs, for which the pos-
sibility of category changes arises) using the methodology explained
in section 4.4 and the epoch covariance lookup tables (LUTs) from
Flohrer et al. (2008), scaled by a factor of k2 = 0.12 to assess the force
model uncertainty impact if precise epoch covariances were available.

Figure 6.10: CDM generation capability of the conjunction risk analysis tool

Figure 6.11: Risk category changes when considering force model uncertainty
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Further interesting analyses can be performed using the temporal
conjunction evolution feature of the conjunction analyzer tool. An
example is depicted in figure 6.12 and demonstrates the evolution of
the collision risk for the twin 1.5U CubeSats AeroCube 10A (JimSat)
and 10B (DougSat), which have been developed by the Aerospace
Corporation of El Segundo as technology demonstrators. Repeated
conjunctions were identified as part of the SP catalog screenings
(purple markers) and the GP screenings using the public TLE catalog
(cyan markers). The tooltips highlight the differences for a conjunction
which has been identified using SP and GP perturbations. The TCA
difference is only 11ms, however the more accurate SP dataset yields
an over four times larger collision probability than the GP conjunction
analysis. The Pc results converge towards the gray classification (very
low risk) with progressing time.

Figure 6.12: SP vs. GP screening: temporal evolution of conjunction between
AeroCube 10A and AeroCube 10B

6.2.2 Impact of force model uncertainties on the catalog collision probability
distribution

The force model uncertainty impact on the SP and GP catalogs of
February 25

th, 2020 was examined in relation to the size of the epoch
covariance matrix P̂0, which allows an assessment of the operational
impact in terms of the quality of the available data, as well as poten-
tially more accurate future catalog information.

The epoch covariance P̂0 is taken as a scaled version of table 6.6
(P̂0 = k2Pini). A change of the collision probability is only possible for
LEO RSOs, nevertheless the screening was always conducted using the
entire catalog as possible chasers. The following subsets of operational
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e < 0.1 i < 30deg 30deg < 60deg i < 60deg

hp < 800 km

R 67 107 115

T 118 308 517

N 75 169 137

800 km < hp

< 25 000 km

R 191 71 91

T 256 228 428

N 203 95 114

hp > 25 000 km

R 357 - -

T 432 - -

N 83 - -

e > 0.1 i < 30deg 30deg < 60deg i < 60deg

hp < 800 km

R 2252 629 494

T 4270 909 814

N 1421 2057 1337

800 km < hp

< 25 000 km

R 1748 1832 529

T 3119 1878 817

N 971 1454 1570

hp > 25 000 km

R 402 4712 -

T 418 6223 -

N 83 1208 -

Table 6.6: Prior scaling Pini RTN epoch position covariance standard deviation
[m] lookup table according to Flohrer et al. (2008, table 2). The velocity
variances are chosen as: σ2vR ,σ2vN = 10−3m2/s2 and σ2vT = 5 · 10−3m2/s2

interest were analyzed over a screening period of 4.5days: all vs. all,
LEO vs. all and payload vs. all. The results are presented in tables
6.7-6.48 and grouped according to perturbation theory and the type
of collision probability (Pc, Alfriend Pc,max, Chan Pc,max). Each table
displays the information produced by a category change analysis of
the CARA tool (cf. figure 6.11).

all vs . all screening

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.012 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 343 Reclassification ratio: 2.89%

Risk Histogram Gray Green Yellow Red

Process noise neglected 11792 30 28 4

Combined density and
gravity covariance

11463 271 117 3

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

250 79 0 0 11 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 2 0 0 0 1

Table 6.7: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.012
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Perturbation theory: SP Initial covariance: k2 = 0.1 · 0.12 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 337 Reclassification ratio: 2.84%

Risk Histogram Gray Green Yellow Red

Process noise neglected 11342 266 241 5

Combined density and
gravity covariance

11042 506 301 5

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

263 37 0 0 30 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 7 0 0 0 0

Table 6.8: Impact of force model uncertainties on SP catalog Pc: k2 = 0.1 · 0.12

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.12 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 235 Reclassification ratio: 1.98%

Risk Histogram Gray Green Yellow Red

Process noise neglected 10712 768 368 6

Combined density and
gravity covariance

10519 941 389 5

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

178 15 0 0 23 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 18 0 0 0 1

Table 6.9: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.12

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.52 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 238 Reclassification ratio: 2.01%

Risk Histogram Gray Green Yellow Red

Process noise neglected 7499 3534 820 1

Combined density and
gravity covariance

7311 3740 802 1

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

181 8 0 1 11 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 37 0 0 0 0

Table 6.10: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.52

Perturbation theory: SP Initial covariance: k2 = 0.1 · 1.02 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 218 Reclassification ratio: 1.84%

Risk Histogram Gray Green Yellow Red

Process noise neglected 7666 3300 888 0

Combined density and
gravity covariance

7494 3494 866 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

170 4 0 2 8 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 34 0 0 0 0

Table 6.11: Impact of force model uncertainties on SP catalog Pc: k2 = 0.1 · 1.02
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Perturbation theory: SP Initial covariance: k2 = 0.5 · 1.02 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 165 Reclassification ratio: 1.39%

Risk Histogram Gray Green Yellow Red

Process noise neglected 5014 5975 865 0

Combined density and
gravity covariance

4909 6104 841 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

110 2 0 7 10 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 36 0 0 0 0

Table 6.12: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 1.02

Perturbation theory: SP Initial covariance: k2 = 1.0 · 1.02 Collision probability: Pc

#Conjunctions: 11854 #Category changes: 53 Reclassification ratio: 0.45%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3607 7593 654 0

Combined density and
gravity covariance

3599 7614 641 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

22 0 0 14 2 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 15 0 0 0 0

Table 6.13: Impact of force model uncertainties on SP catalog Pc: k2 = 1.0 · 1.02

The results of the SP all vs. all screening are summarized by as-
cending covariance scaling factors in tables 6.7-6.13. To ensure that
the initial covariance of SP RSOs is smaller than for GP RSOs in case
of mixed SP vs. GP conjunctions, the value of k2 is always chosen as
a · k2GP, where a represents the SP vs. GP reduction factor.

The majority of the results agree with intuitive expectations. The
force model uncertainty consideration causes category changes to-
wards more and less critical risk classifications. For small initial covari-
ances most conjunctions are of very low risk (gray category) since the
miss distances are significantly larger than the standard deviations.
The impact of the physics-based process noise consideration increases
for decreasing epoch state error covariances, as the dominant covari-
ance growth factor is shifting from the initial radial uncertainty to the
force model uncertainty consideration.

The current epoch SP catalog data is probably close to the case of
table 6.10, which depicts a moderate overall impact, since most cate-
gory changes are from very low risk to low risk (+206 low risk events,
-188 very low risk events, -18 potential HIEs, unchanged number of
HIEs). There was no reclassification from potential HIE (yellow) to
HIE (red) for the SP catalog of February 25

th, 2020. Both observations
are not fully in line with initial expectations, as a larger HIE impact
was suspected. Nevertheless, non-neighboring category changes (Pc
changes larger than three OOM) became apparent in all cases except
for table 6.13.
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In the following, the GP screening results are presented for com-
parison. The absolute number of identified conjunctions is about 25%
larger, however the reclassification ratios are almost identical to the
SP screening from k2 = 0.52 onwards. Reclassifications as HIE are
observed for k2 6 0.12. A significant increase of category changes
can be observed for k2 = 0.012 (table 6.14), which in comparison
to table 6.7, even displays 25 conjunctions that are reclassified from
very low risk to HIE (Pc change of at least six OOM). Table 6.15 cor-
responds to figure 6.11, which depicts a graphical visualization of
the category changes. Tables 6.14 to 6.18 clearly highlight the criti-
cality of the initial epoch covariances when interpreting studies that
aim to assess the impact of force model uncertainties on the collision
probabilities.

Perturbation theory: GP Initial covariance: k2 = 0.012 Collision probability: Pc

#Conjunctions: 14754 #Category changes: 1115 Reclassification ratio: 7.56%

Risk Histogram Gray Green Yellow Red

Process noise neglected 14528 102 106 18

Combined density and
gravity covariance

13499 567 616 72

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

510 494 25 0 40 10

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 5 25 0 0 6

Table 6.14: Impact of force model uncertainties on GP catalog Pc: k2 = 0.012

Perturbation theory: GP Initial covariance: k2 = 0.12 Collision probability: Pc

#Conjunctions: 14754 #Category changes: 419 Reclassification ratio: 2.84%

Risk Histogram Gray Green Yellow Red

Process noise neglected 12142 1501 1018 93

Combined density and
gravity covariance

11823 1720 1136 75

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

241 82 1 5 43 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 26 1 0 0 20

Table 6.15: Impact of force model uncertainties on GP catalog Pc: k2 = 0.12

Perturbation theory: GP Initial covariance: k2 = 0.52 Collision probability: Pc

#Conjunctions: 14754 #Category changes: 296 Reclassification ratio: 2.01%

Risk Histogram Gray Green Yellow Red

Process noise neglected 7303 5817 1614 20

Combined density and
gravity covariance

7127 5993 1614 20

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

196 4 0 24 34 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 38 0 0 0 0

Table 6.16: Impact of force model uncertainties on GP catalog Pc: k2 = 0.52
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Perturbation theory: GP Initial covariance: k2 = 1.02 Collision probability: Pc

#Conjunctions: 14754 #Category changes: 126 Reclassification ratio: 0.85%

Risk Histogram Gray Green Yellow Red

Process noise neglected 4921 8259 1574 0

Combined density and
gravity covariance

4899 8293 1592 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

57 0 0 35 11 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 23 0 0 0 0

Table 6.17: Impact of force model uncertainties on GP catalog Pc: k2 = 1.02

Perturbation theory: GP Initial covariance: k2 = 2.02 Collision probability: Pc

#Conjunctions: 14754 #Category changes: 69 Reclassification ratio: 0.47%

Risk Histogram Gray Green Yellow Red

Process noise neglected 5180 8484 1090 0

Combined density and
gravity covariance

5207 8465 1082 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

11 0 0 38 6 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 14 0 0 0 0

Table 6.18: Impact of force model uncertainties on GP catalog Pc: k2 = 2.02

Next, the scenarios are analyzed for the impact of the force model
consideration on the maximum collision probability according to
Alfriend et al. (1999), who determine the Pc,max when scaling the
covariance using an arbitrary scalar k2. Since the same dependency
is also used to study the importance of the epoch covariances, the
risk classification without process noise consideration is identical for
all cases of a perturbation theory. Likewise, most conjunctions are
classified as low risk instead of very low risk when examining the
maximum single scalar-scaling collision probability.

The overall impact of the physics-based covariance matrices on this
metric is reduced, since the k2 scaling invariance is able to reflect the
dominant in-track covariance growth due to force modeling errors.
Different risk classifications thus arise mainly in cases that are poorly
represented by a single scaling parameter, i.e. when the covariance
growth is strongly dominated by the force model uncertainty consider-
ation, as then the different radial and transverse position error growth
rates are significant (cf. table 6.19). Nevertheless also individual HIE
reclassifications are possible (cf. table 6.22). Overall, the GP results are
very similar to the respective SP screenings.

Since maximum collision calculations are not directly transferable
to long-term encounters (Alfano, 2006, section 2.C), the absolute con-
junction number is reduced by the amount of identified LTEs (358

conjunctions).



308

space catalog conjunction assessment

including force model process noise

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.012 Collision probability: Alfriend Pc,max

#Conjunctions: 11496 #Category changes: 1174 Reclassification ratio: 10.21%

Risk Histogram Gray Green Yellow Red

Process noise neglected 2264 7726 1493 13

Combined density and
gravity covariance

1604 8163 1709 20

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

722 0 0 62 303 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 80 7 0 0 0

Table 6.19: Impact of force model uncertainties on SP Alfriend Pc,max: k2 = 0.5 · 0.012

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.12 Collision probability: Alfriend Pc,max

#Conjunctions: 11496 #Category changes: 185 Reclassification ratio: 1.61%

Risk Histogram Gray Green Yellow Red

Process noise neglected 2264 7726 1493 13

Combined density and
gravity covariance

2239 7780 1463 14

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

67 0 0 42 23 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 52 1 0 0 0

Table 6.20: Impact of force model uncertainties on SP Alfriend Pc,max: k2 = 0.5 · 0.12

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.52 Collision probability: Alfriend Pc,max

#Conjunctions: 11496 #Category changes: 60 Reclassification ratio: 0.52%

Risk Histogram Gray Green Yellow Red

Process noise neglected 2264 7726 1493 13

Combined density and
gravity covariance

2275 7721 1486 14

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

4 0 0 15 17 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 23 1 0 0 0

Table 6.21: Impact of force model uncertainties on SP Alfriend Pc,max: k2 = 0.5 · 0.52

Perturbation theory: SP Initial covariance: k2 = 0.5 · 1.02 Collision probability: Alfriend Pc,max

#Conjunctions: 11496 #Category changes: 38 Reclassification ratio: 0.38%

Risk Histogram Gray Green Yellow Red

Process noise neglected 2264 7726 1493 13

Combined density and
gravity covariance

2264 7721 1497 14

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

5 0 0 5 16 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 11 1 0 0 0

Table 6.22: Impact of force model uncertainties on SP Alfriend Pc,max: k2 = 0.5 · 1.02
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Perturbation theory: SP Initial covariance: k2 = 0.5 · 2.02 Collision probability: Alfriend Pc,max

#Conjunctions: 11496 #Category changes: 24 Reclassification ratio: 0.21%

Risk Histogram Gray Green Yellow Red

Process noise neglected 2264 7726 1493 13

Combined density and
gravity covariance

2263 7718 1502 13

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

3 0 0 2 14 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 5 0 0 0 0

Table 6.23: Impact of force model uncertainties on SP Alfriend Pc,max: k2 = 0.5 · 2.02

Perturbation theory: GP Initial covariance: k2 = 0.012 Collision probability: Alfriend Pc,max

#Conjunctions: 13401 #Category changes: 1161 Reclassification ratio: 8.66%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3098 8719 1567 15

Combined density and
gravity covariance

2502 9082 1804 13

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

686 0 0 90 307 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 74 1 0 0 3

Table 6.24: Impact of force model uncertainties on GP Alfriend Pc,max: k2 = 0.012

Perturbation theory: GP Initial covariance: k2 = 0.12 Collision probability: Alfriend Pc,max

#Conjunctions: 13401 #Category changes: 175 Reclassification ratio: 1.31%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3098 8719 1567 15

Combined density and
gravity covariance

3102 8747 1538 14

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

49 0 0 53 20 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 52 0 0 0 1

Table 6.25: Impact of force model uncertainties on GP Alfriend Pc,max: k2 = 0.12

Perturbation theory: GP Initial covariance: k2 = 0.52 Collision probability: Alfriend Pc,max

#Conjunctions: 13401 #Category changes: 68 Reclassification ratio: 0.51%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3098 8719 1567 15

Combined density and
gravity covariance

3110 8721 1555 15

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

12 0 0 24 9 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 23 0 0 0 0

Table 6.26: Impact of force model uncertainties on GP Alfriend Pc,max: k2 = 0.52
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Perturbation theory: GP Initial covariance: k2 = 1.02 Collision probability: Alfriend Pc,max

#Conjunctions: 13401 #Category changes: 45 Reclassification ratio: 0.34%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3098 8719 1567 15

Combined density and
gravity covariance

3104 8714 1568 15

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

6 0 0 12 13 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 14 0 0 0 0

Table 6.27: Impact of force model uncertainties on GP Alfriend Pc,max: k2 = 1.02

Perturbation theory: GP Initial covariance: k2 = 2.02 Collision probability: Alfriend Pc,max

#Conjunctions: 13401 #Category changes: 21 Reclassification ratio: 0.16%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3098 8719 1567 15

Combined density and
gravity covariance

3098 8712 1576 15

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

3 0 0 3 11 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 4 0 0 0 0

Table 6.28: Impact of force model uncertainties on GP Alfriend Pc,max: k2 = 2.02

General properties of the Chan Pc,max are depicted in figure 1.11. It is
insensitive to the covariance size and only depends on the covariance
orientation. Thus, force model uncertainties are expected to have very
little impact on this absolute maximum collision probability. Category
changes only arise if the force model consideration results in an
appreciable covariance orientation change. The GP results are again
very similar to the respective SP screenings.

There are thousands of potential high risk events and hundreds
of HIEs for Chan’s maximum collision probability. It is therefore not
advisable to base the general risk assessment on this metric, however,
conjunctions with a low risk Chan Pc,max can be excluded from a
detailed analysis with a high confidence level.

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.012 Collision probability: Chan Pc,max

#Conjunctions: 11496 #Category changes: 109 Reclassification ratio: 0.95%

Risk Histogram Gray Green Yellow Red

Process noise neglected 0 6834 4170 492

Combined density and
gravity covariance

0 6828 4185 483

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 32 1

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 24 21 0 3 8

Table 6.29: Impact of force model uncertainties on SP Chan Pc,max: k2 = 0.5 · 0.012
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Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.12 Collision probability: Chan Pc,max

#Conjunctions: 11496 #Category changes: 31 Reclassification ratio: 0.27%

Risk Histogram Gray Green Yellow Red

Process noise neglected 0 6834 4170 492

Combined density and
gravity covariance

0 6838 4166 492

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 2 1

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 5 11 0 2 10

Table 6.30: Impact of force model uncertainties on SP Chan Pc,max: k2 = 0.5 · 0.12

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.52 Collision probability: Chan Pc,max

#Conjunctions: 11496 #Category changes: 20 Reclassification ratio: 0.17%

Risk Histogram Gray Green Yellow Red

Process noise neglected 0 6834 4170 492

Combined density and
gravity covariance

0 6836 4168 492

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 1 1

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 3 7 0 1 7

Table 6.31: Impact of force model uncertainties on SP Chan Pc,max: k2 = 0.5 · 0.52

Perturbation theory: SP Initial covariance: k2 = 0.5 · 1.02 Collision probability: Chan Pc,max

#Conjunctions: 11496 #Category changes: 15 Reclassification ratio: 0.13%

Risk Histogram Gray Green Yellow Red

Process noise neglected 0 6834 4170 492

Combined density and
gravity covariance

0 6832 4169 495

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 2 1

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 0 7 0 1 4

Table 6.32: Impact of force model uncertainties on SP Chan Pc,max: k2 = 0.5 · 1.02

Perturbation theory: SP Initial covariance: k2 = 0.5 · 2.02 Collision probability: Chan Pc,max

#Conjunctions: 11496 #Category changes: 8 Reclassification ratio: 0.07%

Risk Histogram Gray Green Yellow Red

Process noise neglected 0 6834 4170 492

Combined density and
gravity covariance

0 6833 4168 495

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 1 1

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 0 4 0 1 1

Table 6.33: Impact of force model uncertainties on SP Chan Pc,max: k2 = 0.5 · 2.02
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Perturbation theory: GP Initial covariance: k2 = 0.012 Collision probability: Chan Pc,max

#Conjunctions: 13401 #Category changes: 101 Reclassification ratio: 0.75%

Risk Histogram Gray Green Yellow Red

Process noise neglected 1 8015 4813 572

Combined density and
gravity covariance

1 8023 4799 587

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 23 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 30 27 0 1 20

Table 6.34: Impact of force model uncertainties on GP Chan Pc,max: k2 = 0.012

Perturbation theory: GP Initial covariance: k2 = 0.12 Collision probability: Chan Pc,max

#Conjunctions: 13401 #Category changes: 28 Reclassification ratio: 0.21%

Risk Histogram Gray Green Yellow Red

Process noise neglected 1 8015 4813 572

Combined density and
gravity covariance

1 8023 4796 581

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 0 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 7 15 0 1 5

Table 6.35: Impact of force model uncertainties on GP Chan Pc,max: k2 = 0.12

Perturbation theory: GP Initial covariance: k2 = 0.52 Collision probability: Chan Pc,max

#Conjunctions: 13401 #Category changes: 19 Reclassification ratio: 0.14%

Risk Histogram Gray Green Yellow Red

Process noise neglected 1 8015 4813 572

Combined density and
gravity covariance

1 8020 4803 577

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 0 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 4 10 0 1 4

Table 6.36: Impact of force model uncertainties on GP Chan Pc,max: k2 = 0.52

Perturbation theory: GP Initial covariance: k2 = 1.02 Collision probability: Chan Pc,max

#Conjunctions: 13401 #Category changes: 13 Reclassification ratio: 0.10%

Risk Histogram Gray Green Yellow Red

Process noise neglected 1 8015 4813 572

Combined density and
gravity covariance

1 8019 4805 576

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 0 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 3 7 0 1 2

Table 6.37: Impact of force model uncertainties on GP Chan Pc,max: k2 = 1.02
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Perturbation theory: GP Initial covariance: k2 = 2.02 Collision probability: Chan Pc,max

#Conjunctions: 13401 #Category changes: 9 Reclassification ratio: 0.07%

Risk Histogram Gray Green Yellow Red

Process noise neglected 1 8015 4813 572

Combined density and
gravity covariance

1 8017 4810 573

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

0 0 0 0 1 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 3 3 0 0 2

Table 6.38: Impact of force model uncertainties on GP Chan Pc,max: k2 = 2.02

The complete catalog screening results indicate a moderate oper-
ational impact of the force model uncertainty consideration when
taking the presumably applicable dimensions of the epoch covari-
ances into account. However, once these become more precise, also
the operational relevance of physics-based process noise will increase.
Especially the GP cases show that for precise epoch information there
may be hundreds of potential HIEs and dozens of HIEs not being
recognized as such when neglecting process noise. The SP screenings
appear to be more robust with regard to the HIE classification, which
opposes initial expectations and indicates the need for further investi-
gations using catalogs of different days to gain a better understanding
about the nature of this observation (special feature of the respective
SP catalog vs. general tendency). Collision probability changes of sev-
eral OOM can be observed for all but one of the SP cases, especially
for gray to yellow risk reclassifications.

The maximum collision probabilities have demonstrated their oper-
ationally conservative character, however they are not able to replace
the force model uncertainty consideration. Comparing e.g. cases 6.14

and 6.24 shows the possibility of actual HIEs not being recognized as
such when using the Alfriend Pc,max instead of accounting for force
model uncertainties. In contrast, there is no risk of underestimation for
Chan’s Pc,max (cf. tables 6.14 and 6.34). However, due to its indepen-
dence on the covariance size, it is unsuitable for regular risk assessment
but rather serves to evaluate the worst case risk. The consideration
of force model errors therefore classifies as operationally relevant.

The LEO vs. all screenings essentially lead to the same conclusions.
Pure GEO conjunctions (unaffected by force model uncertainty consid-
eration) are excluded from this analysis. However, it turned out that
non-LEO conjunctions only amount to less than 1% of the total identi-
fied conjunctions (11815 vs. 11854 conjunctions for the SP catalog and
14639 vs. 14754 conjunctions for the GP catalog). Hence, the influence
on the all vs. all screening statistics is negligible. The counterparts to
tables 6.10 and 6.17 are listed hereafter as examples. All other results
are omitted for the sake of brevity, as they do not lead to new findings
compared to the respective all vs. all screenings.
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Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.52 Collision probability: Pc

#Conjunctions: 11815 #Category changes: 238 Reclassification ratio: 2.01%

Risk Histogram Gray Green Yellow Red

Process noise neglected 7484 3512 818 1

Combined density and
gravity covariance

7296 3718 800 1

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

181 8 0 1 11 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 37 0 0 0 0

Table 6.39: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.52,
LEO vs. all

Perturbation theory: GP Initial covariance: k2 = 1.02 Collision probability: Pc

#Conjunctions: 14639 #Category changes: 126 Reclassification ratio: 0.86%

Risk Histogram Gray Green Yellow Red

Process noise neglected 4887 8188 1564 0

Combined density and
gravity covariance

4865 8222 1552 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

57 0 0 35 11 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 23 0 0 0 0

Table 6.40: Impact of force model uncertainties on GP catalog Pc: k2 = 1.02,
LEO vs. all

SpaceTrack uses a simple taxonomy to categorize RSOs into three
classes: payloads, rocket bodies and debris. The payload subset is
often used as catalog for the targets (e.g. in case of SOCRATES), since
it includes all active satellites and is only approximately one quarter
of the full catalog size (5000 vs. 20 000 objects, cf. figure 1.2), which
results in faster conjunction screenings.

SP screenings of this subset can easily be realized using the GP
payload catalog as conjunction prefilter. The reclassification ratios of
this screening type are expected to be larger than for the respective
all vs. all cases, since payloads typically feature greater hard body
radii, leading to a more pronounced effect of atmospheric drag and
therefore increased density uncertainties.

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.012 Collision probability: Pc

#Conjunctions: 3556 #Category changes: 185 Reclassification ratio: 5.20%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3539 8 7 2

Combined density and
gravity covariance

3360 127 68 1

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

124 55 0 0 5 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 2 0 0 0 1

Table 6.41: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.012,
payload vs. all
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Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.12 Collision probability: Pc

#Conjunctions: 3556 #Category changes: 117 Reclassification ratio: 3.29%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3092 277 185 2

Combined density and
gravity covariance

3003 346 206 1

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

82 7 0 0 20 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 7 0 0 0 1

Table 6.42: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.12,
payload vs. all

Perturbation theory: SP Initial covariance: k2 = 0.5 · 0.52 Collision probability: Pc

#Conjunctions: 3556 #Category changes: 115 Reclassification ratio: 3.23%

Risk Histogram Gray Green Yellow Red

Process noise neglected 2011 1076 469 0

Combined density and
gravity covariance

1923 1173 460 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

84 4 0 0 7 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 20 0 0 0 0

Table 6.43: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 0.52,
payload vs. all

Perturbation theory: SP Initial covariance: k2 = 0.5 · 1.02 Collision probability: Pc

#Conjunctions: 3556 #Category changes: 72 Reclassification ratio: 2.02%

Risk Histogram Gray Green Yellow Red

Process noise neglected 1093 2016 447 0

Combined density and
gravity covariance

1046 2074 436 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

45 2 0 0 6 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 19 0 0 0 0

Table 6.44: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 1.02,
payload vs. all

Perturbation theory: SP Initial covariance: k2 = 0.5 · 2.02 Collision probability: Pc

#Conjunctions: 3556 #Category changes: 72 Reclassification ratio: 2.02%

Risk Histogram Gray Green Yellow Red

Process noise neglected 459 2758 339 0

Combined density and
gravity covariance

447 2775 334 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red

12 0 0 0 2 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow

0 7 0 0 0 0

Table 6.45: Impact of force model uncertainties on SP catalog Pc: k2 = 0.5 · 2.02,
payload vs. all
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Perturbation theory: GP Initial covariance: k2 = 0.012 Collision probability: Pc

#Conjunctions: 4641 #Category changes: 499 Reclassification ratio: 10.75%

Risk Histogram Gray Green Yellow Red

Process noise neglected 4553 33 45 10

Combined density and
gravity covariance

4089 276 250 26

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red
259 204 1 0 17 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow
0 1 16 0 0 1

Table 6.46: Impact of force model uncertainties on GP catalog Pc: k2 = 0.012,
payload vs. all

Perturbation theory: GP Initial covariance: k2 = 0.12 Collision probability: Pc

#Conjunctions: 4641 #Category changes: 141 Reclassification ratio: 3.04%

Risk Histogram Gray Green Yellow Red

Process noise neglected 3624 530 447 40

Combined density and
gravity covariance

3520 612 469 40

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red
89 15 0 0 22 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow
0 15 0 0 0 0

Table 6.47: Impact of force model uncertainties on GP catalog Pc: k2 = 0.12,
payload vs. all

Perturbation theory: GP Initial covariance: k2 = 1.02 Collision probability: Pc

#Conjunctions: 4641 #Category changes: 40 Reclassification ratio: 2.67%

Risk Histogram Gray Green Yellow Red

Process noise neglected 745 3259 637 0

Combined density and
gravity covariance

722 3295 624 0

Category changes due to process noise consideration

Gray to Green Gray to Yellow Gray to Red Green to Gray Green to Yellow Green to Red
24 0 0 1 1 0

Yellow to Gray Yellow to Green Yellow to Red Red to Gray Red to Green Red to Yellow
0 14 0 0 0 0

Table 6.48: Impact of force model uncertainties on GP catalog Pc: k2 = 1.02,
payload vs. all

Using only the payload subsets as targets, the screenings confirm
an increase of the reclassification ratios (cf. e.g. tables 6.7 and 6.41,
6.10 and 6.43 or 6.17 and 6.48). The screening results for k2 = 0.52

and k2 = 2.02 when using GP perturbations, as well as the maximum
collision probability tables have been omitted for brevity, since they do
not lead to new insights in comparison to the respective all vs. all cases.
All in all, the main results of this chapter can be summarized as follows:

• Overall operational significance:
moderate (increased for smaller
epoch covariances)

• Reclassification towards greater
and reduced risk possible

• Multiple OOM Pc changes reg-
ularly observed

• Pc,max metrics more robust regard-
ing force model errors, however they
do not remedy their consideration

• HIEs less affected than expected
(further studies required)

• Similar reclassification ratios for SP
and GP catalogs



Part V

R E T R O S P E C T I O N A N D O U T L O O K





7
F U T U R E W O R K

Despite the very thorough analysis and quantification of the domi-
nant force model uncertainties in low Earth altitudes, as well as their
propagation to satellite orbits and collision probabilities, a number of
aspects have been identified which call for further research. Most of
them represent extensions of the presented techniques and concepts,
however also opportunities for enhancement have been located. The
items proposed for further investigation are discussed below in order
of the thesis’ main parts.

Quantification of dominant force model uncertainties in low Earth orbits

The atmospheric density model input uncertainty theory is rigorous
up to the derivation of the relative density error at the perigee altitude
(ερp) and its variance (σ2ρp). Similarly, also the propagation from
relative density errors to satellite orbits is derived thoroughly.

The interface of both steps however leaves room for improvement,
since the propagation from density errors to satellite orbits is based on
the assumption of the relative density errors to follow a certain stochas-
tic process. This is mostly appropriate in practice, however the aver-
age stochastic properties are superimposed by inter-orbit variations,
which is why Emmert et al. (2017) propose the application of a filter
mechanism for reducing σ2ρp(t) to a single value for an uncertainty
propagation phase. The method has shown adequate performance in
the simulation studies carried out within this doctoral research, how-
ever an extended formulation of the propagation from relative density
errors to orbital mean motion and mean anomaly, which is capable of
considering inter-orbit relative density error variance fluctuations is
desirable to further enhance the accuracy of long-term propagations.

Concerning geomagnetic index uncertainty, the nonlinear propa-
gation of geomagnetic amplitude variances to quasi-logarithmic kp
index variances was realized by Gaussian moment matching and as-
suming near-linear error propagation. As suggested in section 2.4.2,
the assumption of near-linear uncertainty propagation can be relaxed
when considering GMMs for this step. A dedicated investigation on
possible benefits is recommended.

Eventually, also the question arises if the density and gravitational
uncertainty quantification can be transferred to other celestial bodies.
Such extensions are possible. A first application of the orbit gravity
error covariance theory for the moon was previously considered in
Wright et al. (2008a,b,c). To transfer the atmospheric density uncer-
tainty quantification to another central body, the planet must possess
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an atmosphere that can be modeled using the concept of hydrostatic
balance and a Bates temperature profile. In our solar system Venus
seems to be a possible candidate for this endeavor. The development
of a semi-empirical global thermospheric density model for Venus
based on data supplied by the Pioneer Venus Orbiter Neutral Gas
Mass Spectrometer (PVONMS) is described in Hedin et al. (1983). As
Hedin is also the principal developer of MSIS-86, the predecessor of
the terrestrial semi-empirical density models MSIS-90 and NRLMSISE-
00, his VTS3 Venus model exhibits many parallels to the MSIS-class
models. VTS3 also uses the F10.7 index to model solar EUV heating. A
(slightly modified) Bates profile describes the altitude dependence of
the thermospheric temperature. Furthermore, the concept of “diffuse
equilibrium” is used and thermal diffusion coefficients are introduced
to express the distribution of neutral species density profiles. The
VTS3 model is therefore a suitable candidate to transfer the analytical
density uncertainty theory to Venus.

Orbit determination with physics-based process noise

The approximate uncertainty quantification using the GP propagation
theory was developed based on the desire to avoid SP covariance
propagation when performing GP collision probability studies (cf.
section 4.4, note 7). Therefore, these developments are currently only
available within SPOOK in the context of covariance propagation. An
extension of the respective program codes for the purpose of orbit
determination is therefore a logical next step towards GP OD with
approximate force model uncertainty quantification.

In the scope of the novel force-model uncertainty considering Gaus-
sian mixture orbit determination algorithm, a need for increased
efficiency in GMM reduction was identified. This particularly applies
to the case where the process noise is modeled as secondary Gaussian
mixture that is subsequently fused with the state error GMM and thus
leads to very large output GMMs. Due to the quadratic nature of state
of the art merging algorithms, also high levels of parallelization do
not represent an optimal solution. Further research with respect to
more advanced Gaussian mixture reduction is therefore desirable.

Influence of force model uncertainties on the collision probability

The analyses presented in chapter 6 should be carried out for further
dates/catalog snapshots in order to maximize the information gain.
In particular, the force model uncertainty impact on HIEs, which
has been smaller than expected, calls for further studies. It would
also be worthwhile to compare the results of catalog encounters that
classify as high risk when considering density and gravity uncertainty
against Monte-Carlo Pc computations. Furthermore, the assumption of
Gaussianity was utilized to compute the catalog collision probabilities.
Future analyses should consider an extension towards the GMM
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framework, which has been implemented in SPOOK as part of the
research presented in chapter 5. The methodology behind GMM Pc
calculations is described in Vittaldev (2015). Ideally, the correlation
between the target and chaser covariances should also be taken into
account when forming the combined covariance.

ESA recently expressed interest in machine learning based compu-
tations of the collision probability. The results of ESA’s 2019 Kelvins
collision avoidance challenge1 demonstrate that approaches based
purely on artificial intelligence (AI) are not yet mature enough to
become the new baseline, however hybrid solutions of classical and AI
algorithms could form an innovative concept for additional improve-
ments of collision probability calculations.

Further studies and research tasks

Future work involving SPOOK and the force model uncertainty framework

At the time of writing, the Airbus robotic telescope (ART) in Ex-
tremadura, Spain, is fully calibrated and features 1σ accuracies of less
than one arcsecond in right ascension and declination. Observation
planning can be performed based on user inputs or is conducted
independently to maintain a space catalog. LEO, MEO and GEO
measurements are derived from the optical observations.

The availability of a robotic telescope capable of generating LEO
measurements, as well as a software framework capable of processing
in-house and externally provided measurements to conduct various
space surveillance tasks, provides the possibility for further future
studies featuring the force model uncertainty framework, such as:

• OD with force model uncertainty consideration and ART track-
ing data

• Usage of proprietary space catalog and independently generated
OD results for conjunction screening and CARA

• Impact analysis with respect to the MHT measurement correla-
tion algorithm performance

• Impact analysis on the ART tasking algorithm performance

Solar radiation pressure uncertainty

Future research should also address physics-based process noise for-
mulations for the solar radiation pressure perturbation. The avail-
ability of attitude information should not be assumed in order to
maximize the practical applicability. As in near-Earth orbits solar
radiation pressure is approximately constant with altitude, SRP un-
certainty is expected to be significant in particular for MEO and GEO
RSOs, however also upper LEO objects may potentially benefit from
such developments.

1 Available at https://web.archive.org/web/20200814112938/https://kelvins.esa.
int/collision-avoidance-challenge

https://web.archive.org/web/20200814112938/https://kelvins.esa.int/collision-avoidance-challenge
https://web.archive.org/web/20200814112938/https://kelvins.esa.int/collision-avoidance-challenge
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Today’s operational orbit determination and space catalog mainte-
nance systems suffer from overly optimistic covariance estimates. In
practice, empirical covariance scaling and other proprietary correction
approaches are therefore often used to mitigate the issue and improve
covariance realism.

With regard to current commercial space activities, which have long
refuted the “big sky” theory and are progressing much faster than the
corresponding laws and political regulations, an immediate need for
increased uncertainty realism emerges, since satellites are currently
being brought into orbit more quickly than scientists are able to predict
the long-term consequences of this commercially-driven race to space.

Space is a data-starved environment. The number of available sen-
sors for taking measurements of resident space objects is limited. As
a result of the associated costs, the sensors are usually in military
possession. The maintenance of the space catalog is therefore often
a secondary task. This circumstance contradicts the increased space
activities, which makes the ability to realistically predict uncertainty
volumes over several days even more important. In recent years, many
advanced uncertainty propagation methods have been developed
which efficiently propagate also non-Gaussian uncertainty volumes.
These advancements however always disregarded the fact that the
models used for propagation are themselves subject to errors and
thus contribute significantly to the size and shape of the propagated
uncertainty volumes.

In the state of the art analysis of this work, the fundamental ori-
gins of space surveillance and tracking uncertainties were analyzed
and classified according to their nature (aleatoric vs. epistemic) or
type (structural, parametric, input, observation, algorithmic or cross-
tagging uncertainty). It turned out that atmospheric density uncer-
tainty is the main contributor to LEO force model uncertainties, with
potential field truncation uncertainty following in second place. So
far, the consideration of force model errors has been limited to the
extension of the state vector by some model input parameters of un-
certain nature. In rare cases also a consider parameter for atmospheric
density uncertainty was implemented as an adjustment to the ballistic
coefficient covariance (e.g. at CSpOC). This technique is however not
able to predict the actual growth of orbital uncertainty, as the entire
time history of density errors determines the resulting orbit error and
the corresponding evolution of the state uncertainty volume.
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Under these aspects, the main theme of this work was defined as
the improvement of LEO uncertainty realism via the quantification of
dominant force model uncertainties. All actors in space, from space
surveillance centers and satellite builders, over companies that estab-
lish their own catalogs or develop SST software, to the space agencies
which operate large fleets of spacecraft, may benefit directly or indi-
rectly from the contributions of this work, whose principal research
tasks included the development of:

• physics-based uncertainty quantification algorithms for density
uncertainty and gravity uncertainty

• the framework for integrating the resulting process noise matri-
ces into classical orbit estimators

• a novel GMM orbit determination algorithm which extends
the state of the art by considering force model uncertainties in
addition to non-Gaussian uncertainty volumes

• a software suite to perform CARA and real world catalog impact
analyses

These objectives have been broken down into smaller building blocks
and were in most cases published in advance as journal research pa-
pers after their completion. All results, including those that go beyond
the scope of the publications, have been presented in chapters 2-6.

Three types of density uncertainty root-causes were considered:
solar flux model inputs (of measurement error and forecasting error
origin), geomagnetic index inputs and grid-scale average model un-
certainty. The integration into classical OD methods was designed
and elaborated for batch estimators (WLS and SBWLS), as well as
Kalman filters (EKF and UKF). The importance of the force model
uncertainties in relation to the orbit altitude was investigated, as was
the impact of the coordinate system and the role of the initial (prior)
probability density function (pdf).

The novel GMM orbit determination algorithm presented in chap-
ter 5 represents a special achievement, as for the first time it is now
possible to model not only the non-Gaussian uncertainty growth due
to initial radial uncertainties, but also the contribution of the second
growth factor, i.e. force model errors, on the evolution of the pdf. An
additional scientific novelty of the algorithm is its capability to au-
tonomously model the process noise as a secondary Gaussian mixture
which is subsequently merged with the state error GMM, should this
become necessary to preserve the pdf realism. The Gaussian mixture
orbit estimator is designed to start with a single kernel. Hence, it yields
the same performance as a classical EKF/UKF with physics-based
process noise consideration up to the point where further Gaussian
mixture components are required to maintain a realistic pdf. This
technique is particularly important for operational applications, since
additional runtime is only invested when necessary.
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The impact of the physics-based covariance formulations on oper-
ational CARA risk levels has been examined by means of complete
space catalog studies using prior epoch covariance estimates of vari-
ous sizes in combination with the US restricted SP and the public GP
catalogs of February 25

th, 2020.

Overall, the following scientific contributions were achieved:

• Analytical framework for the quantification of density uncertain-
ties due to arbitrary model input uncertainties

• Instantiation of the generic density uncertainty framework for
EUV solar flux and geomagnetic index uncertainties

• Analytical description of grid-scale density model uncertainties
based on an Ornstein-Uhlenbeck error process model

• Derivation of the associated complete time-dependent orbit error
covariance matrix in orbital elements, including the associated
correlation coefficients (transformation to GCRF via Jacobians or
unscented transformation)

• Improvement of an existing real-time capable algorithm for orbit
gravity error covariance quantification with respect to:

÷ in-track position error variance underestimation
÷ radial/normal position error variance robustness
÷ support for arbitrary perturbations
÷ support for arbitrary temporal propagation directions
÷ compatibility with batch estimators
÷ overall algorithm performance

• WLS/SBWLS algorithms with support for process noise matrices
• Approximate GP density/gravity force model uncertainty quan-

tification based on semi-analytical GP covariance propagation
• State of the art GMM Kalman filter, which for the first time allows

the combined consideration of non-Gaussian error volumes and
physics-based force model uncertainties

• Optimization of nonlinear collision probability calculations:

÷ formulation of the encounter frame → Mahalanobis space
transformation which also covers the closed-form conversion
of spherical hard body volumes

÷ algorithm for the realization of Monte-Carlo collision proba-
bilities using the GP theory

÷ extension of the nonlinear adjoining tube collision probability
algorithm, such that it no longer requires a transformation into
Mahalanobis space to separate sectional from cross-sectional
collision probability components

• Realization of first studies applying force model uncertainty
consideration to the full GP and SP catalogs to evaluate the
operational impact of the developments

• Derivation of the first moment of the generic NLNM distribution
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Based on these contributions, the following scientific findings were
obtained:

• Force model uncertainties can dominate radial uncertainties as
the main driver of uncertainty growth, given accurate knowl-
edge of the pdfs at the start of a propagation phase and/or a
sufficiently large ballistic coefficient

• Below ∼800 km uncertainty realism can only be achieved by
explicitly taking force model uncertainties into account

• Maximum uncertainty realism requires a physics-based model of
the uncertainty growth caused by astrodynamic force modeling
errors

• Density and gravity force model uncertainties can be neglected
for most RSOs and applications above ∼800 km orbital altitude

• If carefully designed, it is also possible to incorporate force
model uncertainties into modern non-Gaussian error volume
Kalman filters. The proper choice of the coordinate system (orbit
elements vs. Cartesian GCRF) and the modeling of the process
noise based on the merged Gaussian state are of particular im-
portance in this context

• The possibility of fusing two GMMs permits realistic uncertainty
propagations of more than 10 days even in Cartesian coordinates,
which covers all operational needs

• When using GMM Kalman filters for orbit determination, force
model uncertainties also need to be taken into account if they are
not the dominant driver of the uncertainty growth to keep the
state error pdf unimodal and reduce the overall kernel counts

• The consideration of force model uncertainties can lead to colli-
sion probability changes of more than six orders of magnitude.
However, in practice the greatest changes have been observed
for very low risk, low risk and potential HIE conjunctions. Only
few reclassifications were observed above the HIE collision prob-
ability threshold

• Maximum collision probability metrics, which are sometimes
used operationally, cannot replace the need to consider force
model uncertainties, since their effect on the overall state vector
error covariance is only insufficiently represented by a scalar
scaling operation

Further studies are needed to gain a deeper understanding of the
implications for operational CARA. Drawing conclusions is however
hampered by the fact that the final results depend heavily on the
initial epoch covariance information, which unfortunately is not made
publicly available due to its militarily sensitive nature. Additional
recommendations for future research are collected in chapter 7.

Finally, it can be concluded that the work at hand has made sig-
nificant contributions and provided important insights into the un-
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derstanding of physics-based process noise formulations and their
relevance for the realism of orbital uncertainty volumes. However, in
the end the developments are only as good as their underlying assump-
tions match reality (e.g. the eligibility of the stochastic noise processes),
which can only be explored through broad and long-term operational
use. The state of the art analysis and consideration of potential field
truncation errors have shown that many uncertainties are of epistemic
nature and can therefore only insufficiently be handled aleatorically.
Further pioneering research is needed to harmonize the treatment
of both types of uncertainty, without rendering recent achievements
in aleatoric uncertainty modeling obsolete. The recently introduced
OPMs seem promising in this regard.

This work can therefore be nicely closed with a quote from Frank
Knight, which will also in future continue to be a wise guide for
maintaining security in space:

You cannot be certain about uncertainty.

— Frank Knight
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AU X I L I A RY C A L C U L AT I O N S A N D M AT H E M AT I C A L
O P E R AT I O N S

Appendix A contains auxiliary calculations referenced throughout the
main body of this thesis.

a.1 stochastic moments of a normal distribution

definition of expected value

The expected value or mean of a probability distribution is its
probability-weighted long-term average. In the discrete, real-valued
case, the expected value of a random variable X can be computed as
the sum of the event-probability products for each possible outcome
xi:

E[X] = µ =

n∑
i=1

xi p(X = xi) =

n∑
i=1

xipi (A.1)

In the continuous case the sum turns into an integral and the discrete
probabilities are replaced by evaluations of the pdf:

E[X] =

∫
R

x f(x)dx (A.2)

An important property of the expected value is linearity: E[X+Y] =
E[X] + E[Y] and E[a ·X] = a · E[X]. For the product of two random vari-
ables it holds that: E[X · Y] = E[X] · E[Y] +Cov(X, Y), where Cov(X, Y)
is defined in equation A.8 and represents a measure of inter-variable
dependence. In case of two independent random variables the covari-
ance is zero. For two fully correlated variables the absolute value of
the covariance equals the variance. In case of a normal distribution
the expected value coincides with the mode and the median.

definition of variance

The variance is the second order moment/cumulant of a probability
distribution. It also has an integral definition for continuous random
variables, however in many cases the definition in terms of the ex-
pected value is of greater avail:

Var(X) = E
[
(X− E[X])2

]
= E

[
X2
]
− E[X]2 (A.3)

Important properties of the variance are:

Var(X+ a) = Var(X) (A.4)

Var(aX) = a2Var(X) (A.5)

Var(aX± bY) = a2Var(X) + b2Var(Y)± 2ab Cov(X, Y) (A.6)

331
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definition of covariance

The covariance of two random variables is defined similarly to each
variables’ variance:

Cov(X, Y) = E
[
(X− E[X])(Y − E[Y])

]
(A.7)

= E[XY] − E[X]E[Y] (A.8)

If X or Y is zero-mean, the covariance equals the expected value of the
random variable product:

Cov(X, Y) = E[XY] (A.9)

If a correlation coefficient is available, the covariance may also be
computed according to eq. A.11.

ρXY =
Cov(X, Y)√

Var(X)
√
Var(Y)

(A.10)

⇔ Cov(X, Y) = ρXY
√
Var(X)

√
Var(Y) (A.11)

The correlation coefficient is bound by −1 6 ρXY 6 1. Positive correla-
tions indicate similar growth tendency, whereas a negative correlation
coefficient specifies opposite tendencies.

moments of normal distribution

The central moments of the normal distribution are used repeatedly
in chapter 2. They are therefore gathered in table A.1 alongside the
non-central moments for quick lookup.

Order Non-central moment Central moment

1 µ 0

2 µ2 + σ2 σ2

3 µ3 + 3µσ2 0

4 µ4 + 6µ2σ2 + 3σ4 3σ4

5 µ5 + 10µ3σ2 + 15µσ4 0

6 µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6 15σ6

7 µ7 + 21µ5σ2 + 105µ3σ4 + 105µσ6 0

8 µ8 + 28µ6σ2 + 210µ4σ4 + 420µ2σ6 + 105σ8 105σ8

Table A.1: Moments of normal distribution
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a.2 derivative of a f(x)g(x) exp(c(x)) with respect to x

The derivative in equation 2.38 belongs to the class d
dxaf(x)

g(x) exp(c(x)).
Hence it is necessary to derive the appropriate rule for the differentia-
tion. First, define y(x) = f(x)g(x) and apply the natural logarithm to
both sides:

ln(y(x)) = g(x) ln(f(x))

⇔ d

dx
ln(y(x)) =

d

dx
g(x) ln(f(x)) + g(x)

d
dxf(x)

f(x)

⇔
d
dxy(x)

y(x)
=
d

dx
g(x) ln(f(x)) + g(x)

d
dxf(x)

f(x)

⇔ d

dx
f(x)g(x) = f(x)g(x)

(
d
dxg(x) ln(f(x)) + g(x)

d
dxf(x)

f(x)

)
(A.12)

The desired derivative can now be evaluated by a simple application
of the product rule:

d
dxaf(x)

g(x) exp(c(x)) = a ddx
(
f(x)g(x)

)
exp(c(x)) + af(x)g(x) ddx exp(c(x)) (A.13)

Introducing equation A.12 results in:

d

dx
af(x)g(x) exp(c(x))

= a
[
f(x)g(x)

(
d
dxg(x) ln(f(x)) + g(x)

d
dxf(x)

f(x)

)
exp(c(x)) + f(x)g(x) ddx exp(c(x))

]
= af(x)g(x)

[(
d
dxg(x) ln(f(x)) + g(x)

d
dxf(x)

f(x)

)
exp(c(x)) +

(
d
dxc(x)

)
exp(c(x))

]
(A.14)

Hence, the required equation of the derivative is:

d

dx
af(x)g(x) exp(c(x))

= af(x)g(x) exp(c(x))
[
d
dxc(x) + ln(f(x)) ddxg(x) + g(x)

d
dxf(x)

f(x)

]
(A.15)

a.3 dependence of exospheric and baseline temperature

errors/variances on absolute errors in the spheri-
cal harmonics function

The MSIS and DTM-models express exospheric temperature according
to equation A.16,

Tex = Tex0 + Tex0GTex(L) (A.16)

where Tex0 is a model-coefficient parameter and represents the global
and temporal average exospheric temperature if all dependencies are
neglected. An error in G(L) is therefore linearly related to an error in
exospheric temperature:

δTex = Tex0δGTex(L) (A.17)
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In the MSIS-class models the same dependency is also used to compute
the temperature at the baseline altitude:

δT0 = T00δG0(L) (A.18)

Equations A.17 and A.18 are of identical form. The only difference
is the scaling factor (T00 vs. Tex0). The relationships of the variances
read:

Var(δTex) = T
2
ex0
Var(δGi(L)) (A.19)

and

Var(δT0) = T
2
00
Var(δGi(L)) (A.20)

where the index i is used to denote the “temperature species” and
determines the relevant model-coefficients to be used.

For NRLMSISE-00, T00 = 364.7105K and Tex0 = 1027.318K. The
DTM-models assume T0 to be fixed at T0 = T00 = 380.0K, indepen-
dently of the value of G0(L). Hence, the variance of the baseline
temperature is only nonzero for NRLMSISE-00. The parametrization
of Tex0 for DTM-2012 and DTM-2013 is Tex0 = 1029.77K.

a.4 first moment of generic normal lognormal mixture

Define the distributions X and Y as:(
X

Y

)
∼ N

([
0.0

0.0

]
,

[
σ2X ρσXσY

ρσXσY σ2Y

])
(A.21)

and the resulting mixture as:

U = XeY = XZ (A.22)

To derive the expected value of U, the following tools are required:

• Conditional distribution function of bivariate correlated Gaus-
sians: Y|X = N

(
µY +

σY
σX
ρ(X− µX), (1− ρ2)σ2Y

)
• First moment of the lognormal distribution: E[eZ] = eµZ+σ

2
Z/2

• Law of total expectation: E[XY] = E[X E[Y|X]]

Applying the conditional distribution function results in:

Y|X = N

(
σY
σX
ρX, (1− ρ2)σ2Y

)
(A.23)

The law of total expectation then yields:

E[XZ] = E[X E[Z|X]] = E
[
X E[eY |X]

]
= E

[
X E
[
eY|X

]]
(A.24)
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Applying the first moment of the lognormal distribution for Y|X leads
to:

E[U] = E
[
X e

σY
σX
ρX
e
1
2 (1−ρ

2)σ2Y
]
= e

1
2 (1−ρ

2)σ2Y E
[
X e

σY
σX
ρX] (A.25)

Since

d

dσY
e
σY
σX
ρX

=
ρ

σX
Xe

σY
σX
ρX (A.26)

it holds that:

Xe
σY
σX
ρX

=
σX
ρ

d

dσY
e
σY
σX
ρX (A.27)

Inserting equation A.27 into eq. A.25 it follows that:

E[U] =
σX
ρ
e
1
2 (1−ρ

2)σ2Y
d

dσY
E
[
e
σY
σX
ρX] (A.28)

σY
σX
ρX is normal with mean zero and variance

(
σY
σX
ρ
)2
σ2X = σ2Yρ

2.
Applying the first moment of the lognormal distribution a second
time yields:

E[U] =
σX
ρ
e
1
2 (1−ρ

2)σ2Y
d

dσY
e
1
2σ
2
Yρ
2

(A.29)

Therefore:

E[XeY ] = σXσYρe
1
2σ
2
Y (A.30)

Equation A.30 describes the first moment of the generic NLNM.

a.5 minimum variance wls process noise extension

The extension of the classical WLS algorithm for the case of prop-
agation error uncertainty is shown in section 4.2.1. The derivation
assumes that the requirement enforced in equation 4.28 results in
minimum variance estimates, however in principle also maximum
variance estimates may be found via equation 4.28. Consequently, it
remains to be shown that the results of section 4.2.1 indeed lead to
minimum variance estimates.

A sufficient approach for this purpose is to show that P∗k obtained
by any other estimator x∗k is greater or equal to Pk in the sense of the
matrix trace1, meaning that tr(P∗k) > tr(Pk). The following steps are
similar to those of the classical minimum variance algorithm which,
for example, are shown in Schutz et al. (2004, Section 4.4).

1 The trace corresponds to the sum of all covariance eigenvalues. The condition
tr(P∗k) > tr(Pk) is therefore equal to showing that P∗k −Pk is positive semidefinite



336 auxiliary calculations and mathematical operations

The estimator to be analyzed is given by equation 4.12. Any other
linear, unbiased estimator can be written as:

x∗k = Ny = (M+B)y = x̂k +By = x̂k +B(Axk +Hν+ ε) (A.31)

The expected value of equation A.31 needs to match xk for the estima-
tor to be unbiased which, using eq. 4.6, results in:

E[x∗k] = E[x̂k +By]

= xk + E
[
B(Axk +Hν+ ε)

]
= xk +BAxk (A.32)

⇔ BA = 0 (A.33)

Ignoring the trivial solution B = 0, which corresponds to the estimator
of section 4.2.1, it is found that B cannot have full rank to satisfy eq.
A.33. Hence:

rank(B) < n (A.34)

which will be needed in the discussion following eq. A.44. Based on
the definition of the covariance matrix it can be deduced that:

P∗k = E
[[
x∗ − E(x∗)

][
x∗ − E(x∗)

]T] (A.35)

Inserting equation A.32 results in:

P∗k = E
[[
x∗ − (xk +BAxk)

][
x∗ − (xk +BAxk)

]T] (A.36)

Using equation A.31 for x∗ leads to:

P∗k = E
[[
x̂k +B(Axk +Hν+ ε) − (xk +BAxk)

]
[
x̂k +B(Axk +Hν+ ε) − (xk +BAxk)

]T]
= E

[[
(x̂k − xk) +BHν+Bε

][
(x̂k − xk) +BHν+Bε

]T]
= E

[
(x̂k − xk)(x̂k − xk)

T + (x̂k − xk)ν
THTBT + (x̂k − xk)ε

TBT

+BHννTHTBT +BHνεTBT +BHν(x̂k − xk)
T

+Bε(x̂k − xk)
T +BενTHTBT +BεεTBT

]
(A.37)

After applying the linearity of expectation, the first term equates to
Pk. The term BHE[νεT ]BT and its transpose equate to zero, since
the propagation errors and measurement errors are assumed to be
uncorrelated. Therefore, equation A.37 reduces to:

P∗k = Pk +BHQH
TBT +BRBT

+BHE
[
ν(x̂k − xk)

T
]
+ E
[
(x̂k − xk)ν

T
]
HTBT

+BE
[
ε(x̂k − xk)

T
]
+ E
[
(x̂k − xk)ε

T
]
BT (A.38)

All terms of equation A.38 that still contain expected values require
further analysis.
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The expression for BHE[ν(x̂k − xk)T ] is found using equations 4.35

and 4.8:

BH E[ν(x̂k − xk)
T ] = BH E

[
ν
(
(Axk +Hν+ ε)T R̃−1APk − x

T
k

)]
= BH E[ν] xTAT R̃−1APk +BH E

[
νεT

]
R̃−1APk

+ BH E
[
ννT

]
HT R̃−1APk −BH E[ν] x

T
k (A.39)

The first, second and fourth term in equation A.39 vanishes, since
E[ν] = 0 and E

[
νεT

]
= 0. Therefore:

BH E[ν(x̂k − xk)
T ] = BHQHT R̃−1APk (A.40)

Similarly,

B E
[
ε(x̂k − xk)

T
]
= E

[
Bε(PkA

T R̃−1(Axk +Hν+ ε) − xk)
T
]

= B E[ε]xTkA
T R̃−1APk +B E

[
ενT

]
HT R̃−1APk

+ B E
[
εεT

]
R̃−1APk −B E[ε]x

T
k

]
(A.41)

where the first, second and fourth term vanishes as a consequence of
E[ε] = 0 and E

[
ενT

]
= 0. Therefore:

B E
[
ε(x̂k − xk)

T
]
= BRR̃−1APk (A.42)

Summing equations A.40 and A.42 yields:

E
[
BHν(x̂k − xk)

T +Bε(x̂k − xk)
T
]
= B

[
HQHT +R

]
R̃−1APk

= BR̃R̃−1APk = BAPk

= 0 (A.43)

which is the central part of equation A.38. The last step follows from
equation A.33. Consequently, equation A.38 reduces to:

P∗k = Pk +BHQH
TBT +BRBT = Pk +BR̃B

T

⇔ P∗k −Pk = BR̃BT (A.44)

For equation 4.35 to represent a minimum variance estimator, BR̃BT

must be positive semidefinite. Since R̃ is assumed to be an invertible
covariance matrix, it has to be positive definite, which implies that
zT R̃z > 0 for any nonzero z∈Rm. Setting z = BTw implies 0 = BTw
for some nonzerow ∈ Rn due to the rank deficiency of B (cf. equation
A.34). In total, it hence holds that wTBR̃BTw > 0 for any w ∈ Rn,
which is the definition of being PSD and therefore fulfills the minimum
variance requirement of the estimators derived in sections 4.2.1 and
4.2.2.

a.6 manual separation of perturbed matrix inverse

Equation 4.37 makes use of the Sherman-Morrison-Woodbury identity
to reduce the order of the matrix inverse. An intuitive alternative
derivation is given in the following.
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The task is to simplify (R+HQHT )−1 and express it as:

(R+HQHT )−1 = R−1 +X (A.45)

X in equation A.45 can be derived via regular matrix operations. First,
defineHQHT = B, noting that B has nothing to do with the definition
used in section A.5. From eq. A.45 it follows that:

(R−1 +X)(R+B) = I

⇔ I+R−1B+XR+XB = I

⇔ X(R+B) = −R−1B

⇔ X = −R−1B(R+B)−1 (A.46)

Equation A.46 contains the same inverse that shall be expressed using
eq. A.45. Therefore, equation A.45 can be inserted into eq. A.46 to
obtain:

X = −R−1B(R−1 +X)

⇔ X+R−1BX = −R−1BR−1

⇔ (I+R−1B)X = −R−1BR−1

⇔ X = −(I+R−1B)−1R−1BR−1 (A.47)

Inserting equation A.47 into eq. A.45 yields:

(R+B)−1 = R−1 − (I+R−1B)−1R−1BR−1 (A.48)

The inverse (I+ R−1B)−1 in equation A.48 is still of order m×m.
Therefore the goal of having only inverses of order n×n, except for
R−1, is not yet fulfilled. It also remains to be shown that (I+R−1B)−1

actually exists.
For these purposes, a helpful identity needs to be derived first.

Consider the following equality, where A and D are non-singular:

V −VA−1UD−1V = V −VA−1UD−1V (A.49)

Both sides of equation A.49 are equal, hence the statement is true.
Multiplying A−1A to the first element on the left-hand side and
DD−1 to the first element on the right-hand side yields:

VA−1A−VA−1UD−1V = DD−1V −VA−1UD−1V

⇔ VA−1(A−UD−1V) = (D−VA−1U)D−1V

⇔ (D−VA−1U)−1VA−1 = D−1V(A−UD−1V)−1 (A.50)

A special form of identity A.50 is obtained by setting A = D = I and
U = −P:

(I+VP)−1V = V(I+PV)−1 (A.51)
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Equation A.51 is the identity required to obtain the reduced order
inverse. For this purpose, equation A.47 is first expressed in its fully
expanded form:

X = −(I+R−1HQHT )−1R−1HQHTR−1 (A.52)

Applying identity A.51 to eq. A.52 using V → R−1 and P→ HQHT

yields:

X = −R−1(I+HQHTR−1)−1HQHTR−1 (A.53)

The inverse in equation A.53 is still of order m×m, however identity
A.51 can be applied a second time using V → H and P→ QHTR−1:

X = −R−1H(I+QHTR−1H)−1QHTR−1 (A.54)

The matrix productQHTR−1H is n×n. Hence the order of the inverse
is also n×n.

If the existence of (I + R−1HQHT )−1 in equation A.52 can be
proven, then (I +QHTR−1H)−1 in equation A.54 is guaranteed
to exist by equality of equations A.52 and A.54. The existence of
(I+R−1HQHT )−1 can be shown by computing the determinant of
I+R−1HQHT , which needs to be nonzero for the inverse is to exist.
It holds that:

|I+R−1HQHT | = |R−1(R+HQHT )| (A.55)

Using the identity det(AB) = det(A)det(B), results in:

|I+R−1HQHT | = |R−1| · |(R+HQHT )| (A.56)

The observation error covariance matrix R is invertible, hence its de-
terminant is nonzero and also |R−1| 6= 0. Thus, for (I+R−1HQHT )−1

to exist, it must hold that |(R+HQHT )| 6= 0. Since |(R+HQHT )| =
|R̃|, the inverse exists if R̃−1 exists. The existence of R̃−1 however is re-
quired from the very beginning, as it is the expression that was sought
to be simplified (eq. A.45). Equation A.54 is therefore well-defined.
Inserting equation A.54 into eq. A.45 yields equation 4.40.
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b.1 ap to kp polynomial coefficients

Geomagnetic index conversion from magnetic amplitude to quasi-
logarithmic kp is only defined for discrete values of ap. Uncertainty
quantification on the other hand requires continuous functions.

In section 2.4.1 a clamped cubic splining approach is postulated as
an improvement to Vallado’s cubic splining conversion algorithm. The
ap to kp third-order polynomial coefficients are given in table B.1.

a3 a2 a1 a0

0 6 ap < 2 0.012821285570668300 0.007690762191996690 0.10000000000000000 0.0000000000000000

2 6 ap < 3 -0.035903617898679900 0.300040183008086000 -0.4846988416321790 0.3897992277547860

3 6 ap < 4 0.010281138261386200 -0.115622622432509000 0.76228957468960600 -0.857189188566999

4 6 ap < 5 -0.005220935146865060 0.070402258466506300 0.01819005109354530 0.1349435095610820

5 6 ap < 6 0.010602602326074200 -0.166950803627583000 1.20495536156399000 -1.842998674556330

6 6 ap < 7 -0.037189474157432600 0.693306573075540000 -3.9565888986547500 8.4800898458811500

7 6 ap < 9 0.014790252966883600 -0.398267696535099000 3.68443098861973000 -9.348956557759290

9 6 ap < 12 -0.000193356837978427 0.006289768196174410 0.04341380603826460 1.5740949899851000

12 6 ap < 15 0.000254028476054232 -0.009816103109001310 0.23668426170037300 0.8010131673366630

15 6 ap < 18 -0.000822757066238519 0.038639246294172500 -0.4901459793472340 4.4351643725747000

18 6 ap < 22 0.000334053475314261 -0.023828522949677600 0.63427386704206800 -2.311354705761110

22 6 ap < 27 0.000188285245951570 -0.014207819811740100 0.42261839800744200 -0.759214599507187

27 6 ap < 32 -0.000229028798183291 0.019594617763183700 -0.4900474165154990 7.4547777311992800

32 6 ap < 39 8.02535376886814e-05 -0.010096486480525600 0.46006791928319800 -2.679785850653490

39 6 ap < 48 5.75256037028785e-05 -0.007437318204186690 0.35636035650598000 -1.331587534549650

48 6 ap < 56 -7.96728884985953e-05 0.012319264672825500 -0.5919556215906070 13.841468114995700

56 6 ap < 67 3.12985956717728e-05 -0.006323944667796300 0.45206410148421600 -5.646900049067620

67 6 ap < 80 -5.00757865332135e-07 6.77253931617976e-05 0.02382220740002320 3.9171689188126900

80 6 ap < 94 -2.55002325897578e-06 0.000559549087636273 -0.0155236881579348 4.9663928003582400

94 6 ap < 111 8.47046305237753e-07 -0.000398424529471943 0.07452583185023730 2.1448411734355200

111 6 ap < 132 2.11242016197263e-06 -0.000819794023764658 0.12129784571672900 0.4142766603753310

132 6 ap < 154 -1.05179943442250e-06 0.000433236936407817 -0.0441022410260379 7.6918804770570600

154 6 ap < 179 2.39014661504994e-07 -0.000163119175910688 0.04773660027101190 2.9774866238085100

179 6 ap < 207 7.18791807451520e-07 -0.000420759503283973 0.09385421887082980 0.2258020473527070

207 6 ap < 236 -1.55381471501983e-06 0.000990529147170736 -0.1982825317732950 20.383237841797300

236 6 ap < 300 6.34152268878335e-07 -0.000558551477429165 0.16730049563228200 -8.375960314108050

300 6 ap < 400+ -1.27594489473349e-07 0.000127020605087351 -0.0383711291226729 12.191202161387400

Table B.1: ap to kp coefficients obtained by performing a clamped cubic
splining of the discrete Bartels ap to kp grid

The coefficients are to be used with equation 2.104 in order to
perform the conversion from magnetic amplitude to the kp-index.
The resulting curve closely follows Vallado’s algorithm (Vallado, 2013,
algorithm 63), however it is free of abrupt slope changes at the outer
ap-knots.
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b.2 covariance coordinate frame conversion

Covariance frame conversions are required throughout various parts
of the work conducted within this thesis. One possibility is to use
unscented transformation for the nonlinear transformations, however
also conversions using Jacobi matrices are possible. Defining the six-
dimensional GCRF Cartesian state vector as xGCRF = [x,y, z, vx, vy, vz],
the six-dimensional classical orbital elements state vector as xCOE =

[a|n, e, i,Ω,ω,ν|M] and the six-dimensional equinoctial elements state
vector as xEOE = [a|n,h,k,p,q, λν|λM] allows to formulate the corre-
sponding sets of partial derivatives. The first component of the orbital
elements vectors is also known as “size variable”, since it refers to
the size of the orbit (semi-major axis a or mean motion n). The sixth
variable is also known as “fast variable” (mean or true anomaly/lon-
gitude1), as it is the only variable in xCOE and xEOE that changes
quickly throughout the course of an orbit.

This appendix is devoted to the Fortran codes that facilitate the co-
variance frame conversions. It builds upon the equations listed in Val-
lado (2004), Vallado and Alfano (2015), as well as the references therein.
Multiple typographical errors are corrected and new conversions be-
tween mean and true fast variables have been derived. Only the covari-
ance conversion routines are listed in the following. The parametriza-
tion of constants, as well as the implementation of the state vector
transformations is left to the interested reader. Additional invoked
functions whose implementation is not specified can be obtained from
https://celestrak.com/software/vallado/fortran.zip.

Listing B.1: covCoe2Eoe
!===============================================================!

Subroutine covCoe2Eoe(Pcoe, xcoe, elemType, fr, xeoe, Peoe, Jac)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 09/2019

!---------------------------------------------------------------!

!! Covariance conversion: COE to EOE

!!

!! References:

!! Vallado and Alfano 2015: Updated Analytical Partials for

!! Covariance Transformations and Optimization (Rev 2)

!---------------------------------------------------------------!

!> Keplarian covariance

real(dp), dimension(6,6), intent(in) :: Pcoe

!> Input element set

real(dp), dimension(6), intent(in) :: xcoe

!> Element set description type

! 0=Peoe sizevar: mean motion, Pcoe fastvar: mean anomaly

! 1=Peoe sizevar: semi-major axis, Pcoe fastvar: mean anomaly

1 In principle it is also possible to derive the partial derivatives with respect to the
eccentric anomaly/longitude, however their usage is uncommon in this context

https://celestrak.com/software/vallado/fortran.zip
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! 2=Peoe sizevar: mean motion, Pcoe fastvar: true anomaly

! 3=Peoe sizevar: semi-major axis, Pcoe fastvar: true anomaly

! 4=Peoe sizevar: semi-major axis, Pcoe: mean motion/mean anomaly

integer(i4), intent(in) :: elemType

!> Type of equinoctial element set (-1 =retrograde, 1=direct)

! If the input is 1 or -1, the specific setting is taken,

! otherwise it is automatically determined

integer(i4), intent(inout) :: fr

!> Cartesian covariance

real(dp), dimension(6,6), intent(out) :: Peoe

!> Converted state vector

real(dp), dimension(6), intent(out), optional :: xeoe

!> Optional output: Jacobian of the transformation

real(dp), dimension(6,6), intent(out), optional :: Jac

!---------------------------------------------------------------!

!Locals:

real(dp) :: aUsed, nUsed

real(dp) :: mu, muSi

real(dp) :: e, i, omega, argp

real(dp) :: trueAnom, meanAnom, eccAnom

real(dp) :: k, h, p, q, trueLon, meanLon

real(dp) :: omegaBar, sinOb, cosOb, cosOmega

real(dp) :: sinOmega, iHalf, taniHalf

real(dp), dimension(6,6) :: Jacobian

!---------------------------------------------------------------!

!Set local gravitational constant mu

mu = muEarth

muSi = mu * 1.0E9_dp

!Extract the input state vector

e = xcoe(2)

i = xcoe(3)

omega = xcoe(4)

argp = xcoe(5)

SELECT CASE(elemType)

CASE (0,1,4)

!Extract the mean anomaly

meanAnom = xcoe(6)

!Compute the true anomaly from the mean anomaly

call NewtonM(xcoe(2), xcoe(6), eccAnom, trueAnom)

CASE(2,3)

!Extract the true anomaly

trueAnom = xcoe(6)

!Compute the mean anomaly from the true anomaly

call NewtonNu(e, trueAnom, eccAnom, meanAnom)

END SELECT
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if (elemType == 4) then

!Compute the semi-major axis from the mean motion

aUsed = (mu**(1.0_dp/3.0_dp))/(xcoe(1)**(2.0_dp/3.0_dp))

else

!Semi-major axis is already given

aUsed = xcoe(1)

end if

!Step 1: convert the state vector from COE to EOE and get mean

! and true fast variables (km-units)

call coe2eoe(ac=aUsed, Ecc=e, Incl=i, Omega=omega, Argp=argp, &

meanAnom=meanAnom, trueAnom=trueAnom, a=aUsed, &

n=nUsed, k=k, h=h, p=p, q=q, meanLon=meanLon, &

trueLon=trueLon, fr=fr)

!Return the converted state vector

if (present(xeoe)) then

SELECT CASE(elemType)

CASE(0,2)

!First element = mean motion in EOE

xeoe(1) = nUsed

CASE(1,3,4)

!First element = semi-major axis

xeoe(1) = aUsed

END SELECT

xeoe(2) = h

xeoe(3) = k

xeoe(4) = p

xeoe(5) = q

!Fast variable type

SELECT CASE(elemType)

CASE (0,1,4)

xeoe(6) = meanLon

CASE(2,3)

xeoe(6) = trueLon

END SELECT

end if

!Auxiliary variables

omegaBar = fr*omega + argp

sinOb = sin(omegaBar)

cosOb = cos(omegaBar)

!Transition to SI units

aUsed = aUsed * kilo

!Fill the Jacobian

!Init with zero and then only fill the nonzero elements

Jacobian = 0.0_dp
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!First row: sensitivity with respect to a/n

if (elemType .NE. 4) then

!Size variable remains equal

Jacobian(1,1) = 1.0_dp

else

!Semi-major axis to mean motion sensitivity

!nUsed=sqrt(muSi/aUsed**3.0_dp)

Jacobian(1,1) = (-3.0_dp/(2.0_dp*aUsed))*nUsed

end if

!Second row: sensitivity with respect to h

Jacobian(2,2) = sinOb

Jacobian(2,4) = e*fr*cosOb

Jacobian(2,5) = e*cosOb

!Third row: sensitivity with respekt to k

Jacobian(3,2) = cosOb

Jacobian(3,4) = -e*fr*sinOb

Jacobian(3,5) = -e*sinOb

!Fourth row: sensitivity with respect to p

iHalf = i/2.0_dp

cosOmega = cos(omega)

sinOmega = sin(omega)

taniHalf = tan(iHalf)

Jacobian(4,3) = fr * taniHalf**(fr - 1.0_dp) * sinOmega * &

(0.5_dp*taniHalf*taniHalf + 0.5_dp)

Jacobian(4,4) = taniHalf**fr * cosOmega

!Fifth row: sensitivity with respect to q

Jacobian(5,3) = fr * taniHalf**(fr - 1.0_dp) * cosOmega * &

(0.5_dp*taniHalf*taniHalf + 0.5_dp)

Jacobian(5,4) = -taniHalf**fr * sinOmega

!Sixth row: sensitivity with respect to fast variable

Jacobian(6,4) = fr

Jacobian(6,5) = 1.0_dp

!No sizevar-changes, hence always 1.0

Jacobian(6,6) = 1.0_dp

!Assign optional output

if (present(Jac)) Jac = Jacobian

!Compute the transformed matrix via the similarity transformation

Peoe = Matmul(Jacobian, Matmul(Pcoe, transpose(Jacobian)))

!Symmetrize the result to compensate for numerical differences

Peoe = (Peoe + transpose(Peoe))/2.0_dp

End Subroutine covCoe2Eoe

!===============================================================!
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Listing B.2: covEoe2Coe
!===============================================================!

Subroutine covEoe2Coe(Peoe, xeoe, elemType, fr, xcoe, Pcoe, Jac)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 09/2019

!---------------------------------------------------------------!

!! Covariance conversion: EOE to COE

!!

!! References:

!! Vallado and Alfano 2015: Updated Analytical Partials for

!! Covariance Transformations and Optimization (Rev 2)

!---------------------------------------------------------------!

!> Keplarian covariance

real(dp), dimension(6,6), intent(in) :: Peoe

!> Input element set

real(dp), dimension(6), intent(in) :: xeoe

!> Indicate type of equinoctial elements

integer(i4), intent(in) :: elemType

!> Indicate equinoctial element set (direct=1 vs. retrograde=-1)

integer(i4), intent(in) :: fr

!> Cartesian covariance

real(dp), dimension(6,6), intent(out) :: Pcoe

!> Converted state vector

real(dp), dimension(6), intent(out), optional :: xcoe

!> Optional output: Jacobian of the transformation

real(dp), dimension(6,6), intent(out), optional :: Jac

!---------------------------------------------------------------!

!Locals:

real(dp), dimension(3) :: r, v

real(dp) :: aUsed, nUsed, mu, muSi

real(dp) :: e, i, omega, argp, trueAnom

real(dp) :: meanAnom, eccAnom, kh2, pq2

real(dp) :: k, h, p, q, meanLon, trueLon

real(dp), dimension(6,6) :: Jacobian

!---------------------------------------------------------------!

!Set local gravitational constant mu

mu = muEarth

muSi = mu * 1.0E9_dp

!Extract the state vector

SELECT CASE(elemType)

CASE(0,2)

!Mean motion as first element

nUsed = xeoe(1)

aUsed = (mu**(1.0_dp/3.0_dp))/(nUsed**(2.0_dp/3.0_dp))

CASE(1,3)

!Semi-major axis as first element

aUsed = xeoe(1)

nUsed = sqrt(mu/aUsed**3.0_dp)

END SELECT
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h = xeoe(2)

k = xeoe(3)

p = xeoe(4)

q = xeoe(5)

SELECT CASE(elemType)

CASE(0,1)

!Mean longitude as fast variable

meanLon = xeoe(6)

!Convert the state vector to COE

call eoe2coe(a=aUsed, n=nUsed, k=k, h=h, p=p, q=q, fr=fr, &

meanLon=meanLon, ac=aUsed, Ecc=e, Incl=i, &

Omega=omega, Argp=argp, meanAnom=meanAnom)

if (present(xcoe)) xcoe(6) = meanAnom

CASE(2,3)

!True longitude as fast variable

trueLon = xeoe(6)

!Convert the state vector to COE

call eoe2coe(a=aUsed, n=nUsed, k=k, h=h, p=p, q=q, fr=fr, &

trueLon=trueLon, ac=aUsed, Ecc=e, Incl=i, &

Omega=omega, Argp=argp, trueAnom=trueAnom)

if (present(xcoe)) xcoe(6) = trueAnom

END SELECT

if (present(xcoe)) then

xcoe(1) = aUsed

xcoe(2) = e

xcoe(3) = i

xcoe(4) = omega

xcoe(5) = argp

end if

!Transition to SI units

aUsed = aUsed * kilo

!Auxiliary variables

kh2 = k*k + h*h

pq2 = p*p + q*q

!Fill the Jacobian

!Init with zero and then only fill the nonzero elements

Jacobian = 0.0_dp

!First row: sensitivity with respect to a/n

!If the sizevar is kept, the partial is always 1.0

Jacobian(1,1) = 1.0_dp

!Second row: sensitivity with respect to eccentricity

Jacobian(2,2) = h/sqrt(kh2)

Jacobian(2,3) = k/sqrt(kh2)
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!Third row: sensitivity with respect to inclination

Jacobian(3,4) = (2.0_dp * fr * p)/((1.0_dp + pq2)*sqrt(pq2))

Jacobian(3,5) = (2.0_dp * fr * q)/((1.0_dp + pq2)*sqrt(pq2))

!Fourth row: sensitivity with respect to RAAN

Jacobian(4,4) = q/pq2

Jacobian(4,5) = -p/pq2

!Fifth row: sensitivity with respect to argument of perigee

Jacobian(5,2) = k/kh2

Jacobian(5,3) = -h/kh2

Jacobian(5,4) = -fr*q/pq2

Jacobian(5,5) = fr*p/pq2

!Sixth row: sensitivity with respect to fast variable

Jacobian(6,2) = -k/kh2

Jacobian(6,3) = h/kh2

Jacobian(6,6) = 1.0_dp !No change in type of fast variable

!Assign optional output

if (present(Jac)) Jac = Jacobian

!Compute the transformed matrix via the similarity transformation

Pcoe = Matmul(Jacobian, Matmul(Peoe, transpose(Jacobian)))

!Symmetrize the result

Pcoe = (Pcoe + transpose(Pcoe))/2.0_dp

End Subroutine covEoe2Coe

!===============================================================!

Listing B.3: covCoe2RV
!===============================================================!

Subroutine covCoe2RV(Pcoe, xcoe, elemType, xcart, Pcart, Jac)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 09/2019

!---------------------------------------------------------------!

!! Covariance conversion: COE to GCRF

!!

!! Attention: The transition is considerably nonlinear, hence a

!! Gaussian in COE does not result in a pure Gaussian in GCRF.

!! A precise uncertainty characterization in GCRF might need

!! Gaussian sums or the like, depending on the size of the

!! uncertainty.

!!

!! References:

!! Vallado and Alfano 2015: Updated Analytical Partials for

!! Covariance Transformations and Optimization (Rev 2)

!---------------------------------------------------------------!

!> Keplarian covariance

real(dp), dimension(6,6), intent(in) :: Pcoe
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!> Input element set

real(dp), dimension(6), intent(in) :: xcoe

!> Element set:

! 0 = Semi-major axis, mean anomaly

! 1 = Semi-major axis, true anomaly

! 2 = Mean motion, mean anomaly

! 3 = Mean motion, true anomaly

integer(i4), intent(in) :: elemType

!> Cartesian covariance

real(dp), dimension(6,6), intent(out) :: Pcart

!> Converted state vector

real(dp), dimension(6), intent(out), optional :: xcart

!> Optional output: Jacobian of the transformation

real(dp), dimension(6,6), intent(out), optional :: Jac

!---------------------------------------------------------------!

!Locals:

real(dp), dimension(3) :: r, v, dontCare

real(dp) :: Pl, aUsed, nUsed, e, i, omega

real(dp) :: argp, trueAnom, eccAnom, meanAnom

real(dp) :: sinInc, cosInc, sinOmega, cosOmega

real(dp) :: sinArgp, cosArgp, sinNu, cosNu

real(dp) :: mu, muSi, e2, dMdv, dMdE

real(dp) :: c1, c2, c3, c4, c5, c6, c7

real(dp), dimension(6,6) :: Jacobian

real(dp), dimension(3,3) :: p

!---------------------------------------------------------------!

!Set local gravitational constant mu

mu = muEarth

muSi = mu * 1.0E9_dp

!Get the mean/true anomalies

if (elemType == 0 .OR. elemType == 2) then

!Compute the true anomaly from the mean anomaly

call NewtonM(xcoe(2), xcoe(6), eccAnom, trueAnom)

else

!True anomaly

trueAnom = xcoe(6)

end if

!Split the vector

aUsed = xcoe(1)

nUsed = sqrt(mu/aUsed**3.0_dp)

e = xcoe(2)

i = xcoe(3)

omega = xcoe(4)

argp = xcoe(5)

!Semi-parameter

e2 = e*e

Pl = aUsed*(1.0_dp-e2)
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!Convert to GCRF

call coe2rv(P=Pl, Ecc=e, Incl=i, Omega=omega, Argp=argp, &

Nu=trueAnom, ArgLat=dontCare(1), &

TrueLon=dontCare(2), LonPer=dontCare(3), R=r, V=v)

if (present(xcart)) then

xcart(1:3) = r

xcart(4:6) = v

end if

!Transition to SI units (m and m/s)

r = r*kilo

v = v*kilo

aUsed = aUsed*kilo

!Store trigonometric values

sinInc = sin(i)

cosInc = cos(i)

sinOmega = sin(omega)

cosOmega = cos(omega)

sinArgp = sin(argp)

cosArgp = cos(argp)

sinNu = sin(trueAnom)

cosNu = cos(trueAnom)

!Store the elements of the PQW to ECI transition matrix

!(eq. 14 of Vallado’s paper)

p(1,1) = cosOmega*cosArgp - sinOmega*sinArgp*cosInc

p(1,2) = -cosOmega*sinArgp - sinOmega*cosArgp*cosInc

p(1,3) = sinOmega*sinInc

p(2,1) = sinOmega*cosArgp + cosOmega*sinArgp*cosInc

p(2,2) = -sinOmega*sinArgp + cosOmega*cosArgp*cosInc

p(2,3) = -cosOmega*sinInc

p(3,1) = sinArgp*sinInc

p(3,2) = cosArgp*sinInc

p(3,3) = cosInc

!Define constants

c1 = (1.0_dp - e2)/(1.0_dp + e*cosNu)

c2 = sqrt(muSi/(aUsed*(1.0_dp - e2)))

c3 = (2.0_dp * aUsed * e + aUsed*cosNu + aUsed*cosNu*e2)/ &

((1.0_dp+e*cosNu)**2.0_dp)

c4 = e/(1.0_dp - e2)

c5 = aUsed*c1

c6 = c5/(1.0_dp + e*cosNu)

!Fill the Jacobian

Jacobian = 0.0_dp

!First column = sensitivity with respect to a

!The following is equal to: c1*(cosNu*p(1:3,1) + sinNu*p(1:3,2))

Jacobian(1:3,1) = r/aUsed
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!The following is equal to:

!1.0_dp/(2.0_dp * aUsed)*c2*(sinNu*p(1:3,1) - (e+cosNu)*p(1:3,2))

Jacobian(4:6,1) = -v/(2.0_dp * aUsed)

if (elemType == 2 .OR. elemType == 3) then

!Update partials to mean motion

Jacobian(:,1) = Jacobian(:,1)*(-2.0_dp/3.0_dp)*aUsed/nUsed

end if

!Second column = sensitivity with respect to eccentricity

Jacobian(1:3,2) = -c3* (cosNu*p(1:3,1) + sinNu*p(1:3,2))

Jacobian(4:6,2) = -c4*c2*(sinNu*p(1:3,1) - (e+cosNu)*p(1:3,2)) &

+p(1:3,2)*c2

!Third column = sensitivity with respect to inclination

Jacobian(1:3,3) = c5*p(1:3,3)*(cosNu*sinArgp + sinNu*cosArgp)

Jacobian(4,3) =-c2*sinOmega*(sinNu*p(3,1) - (e+cosNu)*p(3,2))

Jacobian(5,3) = c2*cosOmega*(sinNu*p(3,1) - (e+cosNu)*p(3,2))

Jacobian(6,3) = c2*p(3,3)* (-sinNu*sinArgp + (e+cosNu)*cosArgp)

!Fourth column = sensitivity with respect to RAAN

Jacobian(1,4) = -c5*(cosNu*p(2,1)+sinNu*p(2,2))

Jacobian(2,4) = c5*(cosNu*p(1,1)+sinNu*p(1,2))

Jacobian(3,4) = 0.0_dp

Jacobian(4,4) = c2*(sinNu*p(2,1)-(e+cosNu)*p(2,2))

Jacobian(5,4) = -c2*(sinNu*p(1,1)-(e+cosNu)*p(1,2))

Jacobian(6,4) = 0.0_dp

!Fifth column = sensitivity with respect to argument of perigee

Jacobian(1:3,5) = c5*(cosNu*p(1:3,2) - sinNu*p(1:3,1))

Jacobian(4:6,5) = -c2*(sinNu*p(1:3,2) + (e+cosNu)*p(1:3,1))

!Sixth column = sensitivity with respect to fast variable

!Note that in the paper the true and mean anomaly

!sensitivities are switched

!True anomaly in COE covariance

Jacobian(1:3,6) = c6*(-sinNu*p(1:3,1) + (e+cosNu)*p(1:3,2))

Jacobian(4:6,6) = c2*(-cosNu*p(1:3,1) - sinNu*p(1:3,2))

if (elemType == 0 .OR. elemType == 2) then

!Update the true anomaly sensitivities to the

!mean anomaly sensitivities

!Note: the equations in Vallado have been derived using

!MathCad. Hence many parts can possibly be simplified.

!Indeed, this is also the case with the following equations.

!The long sine/cosine expressions are nothing else

!than a different form of the true anomaly sensitivities.

!There is no need to recompute the mean anomaly sensitivities

!from scratch, since the true anomaly sensitivities can be

!simply updated.
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!For the sake of completeness the block below contains

!the alternate form of the true anomaly sensitivities

!c7 = aUsed * (e**2.0_dp - 1.0_dp)/(e*cosNu + 1.0_dp)**2.0_dp

!Jacobian(1,6) = c7 * (e*cosOmega*sinArgp + &

! cosOmega*cosArgp*sinNu + &

! cosOmega*sinArgp*cosNu + &

! e*cosInc*sinOmega*cosArgp + &

! cosInc*sinOmega*cosArgp*cosNu - &

! cosInc*sinOmega*sinArgp*sinNu)

!Jacobian(2,6) = c7 * (e*sinOmega*sinArgp + &

! sinOmega*cosArgp*sinNu + &

! sinOmega*sinArgp*cosNu - &

! e*cosInc*cosOmega*cosArgp - &

! cosInc*cosOmega*cosArgp*cosNu + &

! cosInc*cosOmega*sinArgp*sinNu)

!Jacobian(3,6) = -c7 * sinInc*(cos(argp+trueAnom) &

! + e*cosArgp)

!Jacobian(4,6) = c2 * (cosOmega*sinArgp*sinNu &

! - cosOmega*cosArgp*cosNu &

! + cosInc*sinOmega*cosArgp*sinNu

! + cosInc*sinOmega*sinArgp*cosNu)

!Jacobian(5,6) = -c2 * (sinOmega*cosArgp*cosNu &

! -sinOmega*sinArgp*sinNu &

! +cosInc*cosOmega*cosArgp*sinNu &

! +cosInc*cosOmega*sinArgp*cosNu)

!Jacobian(6,6) = -c2 * (-sin(argp+trueAnom)*sinInc)

dMdv = (1.0_dp - e2)**1.5_dp / ((1.0_dp + e*cosNu)**2.0_dp)

dMdE = -sinNu*((1.0_dp + e*cosNu)*sign(1.0_dp, e + cosNu) &

+ 1.0_dp - 2.0_dp*e2 - e*e2*cosNu) / &

((1.0_dp + e*cosNu)**2.0_dp * sqrt(1.0_dp - e2))

!Update the true anomaly sensitivities to mean anomaly in

!the reverse direction

Jacobian(1:6,6) = Jacobian(1:6,6)/dMdv

Jacobian(1:6,2) = Jacobian(1:6,2) - dMdE*Jacobian(1:6,6)

end if

!Assign optional output

if (present(Jac)) Jac = Jacobian

!Compute the transformed matrix via the similarity transformation

Pcart = Matmul(Jacobian, Matmul(Pcoe, transpose(Jacobian)))

!Symmetrize the result

Pcart = (Pcart + transpose(Pcart))/2.0_dp

End Subroutine covCoe2RV

!===============================================================!
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Listing B.4: covRV2Coe
!===============================================================!

Subroutine covRV2Coe(Pcart, xcart, xcoe, elemType, Pcoe, Jac)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 09/2019

!---------------------------------------------------------------!

!! Covariance conversion: GCRF to COE

!!

!! References:

!! Danielsson, 1995: Semianalytical Satellite Theory

!! Vallado and Alfano 2015: Updated Analytical Partials for

!! Covariance Transformations and Optimization (Rev 2)

!---------------------------------------------------------------!

!> Cartesian covariance

real(dp), dimension(6,6), intent(in) :: Pcart

!> Cartesian state

real(dp), dimension(6), intent(in) :: xcart

!> Element type

! 0 = Semi-major axis, mean anomaly

! 1 = Semi-major axis, true anomaly

! 2 = Mean motion, mean anomaly

! 3 = Mean motion, true anomaly

integer(i4), intent(in) :: elemType

!> Equinoctial covariance

real(dp), dimension(6,6), intent(out) :: Pcoe

!> Converted state vector in equinoctial elements

real(dp), dimension(6), intent(out), optional :: xcoe

!> Optional output: Jacobian of the transformation

real(dp), dimension(6,6), intent(out), optional :: Jac

!---------------------------------------------------------------!

!Locals:

real(dp), dimension(3) :: r, v, hvec, nvec, Kvec, eccVec

real(dp), dimension(3) :: v_cross_h, h_cross_r

real(dp) :: aUsed, nUsed, e, i, omega, argp

real(dp) :: trueAnom, meanAnom

real(dp) :: mu, muSi, rMag, rMag2, rMag3, e2

real(dp) :: vMag, vMag2, nMag, nMag3, hMag, hMag2

real(dp) :: c1, c2, c3, c4, c5, r_dot_v, n_dot_e

real(dp), dimension(4) :: dontCare

real(dp) :: wScale, sgn, dMdv, dMdE, cosNu

real(dp) :: cosArgp, nMage, muenMag

real(dp), dimension(6,6) :: Jacobian

!---------------------------------------------------------------!

!Set local gravitational constant mu

mu = muEarth

muSi = mu * 1.0E9_dp

!Define k

kVec = (/0.0_dp, 0.0_dp, 1.0_dp/)
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!Split vector and convert to SI units

r = xcart(1:3)*kilo

v = xcart(4:6)*kilo

!Compute specific angular momentum vector

call cross(r, v, hvec)

!Compute the node vector

call cross(Kvec, hvec, nVec)

!Compute magnitudes and powers

rMag = MAG(r)

rMag2 = rMag * rMag

rMag3 = rMag2 * rMag

vMag = MAG(v)

vMag2 = vMag * vMag

nMag = MAG(nVec)

nMag3 = nMag * nMag * nMag

hMag = MAG(hVec)

hMag2 = hMag * hMag

!Compute the eccentricity vector

eccVec = ((vMag2 - muSi/rMag) * r - DOT(r, v) * v)/muSi

!First, convert the state vector to obtain the

!COE elements (kilometer-units)

call rv2coe(R=xcart(1:3), V=xcart(4:6), mu=mu, P=dontCare(1), &

A=aUsed, Ecc=e, Incl=i, Omega=omega, Argp=argp, &

Nu=trueAnom, M=meanAnom, ArgLat=dontCare(2), &

TrueLon=dontCare(3), LonPer=dontCare(4))

nUsed = sqrt(mu/aUsed**3.0_dp)

if (present(xcoe)) then

!Return the output vector

xcoe(1) = aUsed

xcoe(2) = e

xcoe(3) = i

xcoe(4) = omega

xcoe(5) = argp

if (elemType == 0) then

xcoe(6) = meanAnom

else

xcoe(6) = trueAnom

end if

end if

!Convert to m

aUsed = aUsed*kilo

!From here on everything in SI (m and m/s)
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!Auxiliary scalars

c1 = -1.0_dp/(muSi*e)

c2 = -1.0_dp/nMag

c3 = 1.0_dp/(nMag*nMag)

!Initialize the Jacobian

Jacobian = 0.0_dp

!First row: sensitivity with respect to semi-major axis

Jacobian(1,1:3) = ((2.0_dp * aUsed**2.0_dp) / rMag3) * r

!Vallado’s paper is wrong in the next line

Jacobian(1,4:6) = (2.0_dp/(nUsed**2.0 * aUsed)) * v

if (elemType == 2 .OR. elemType == 3) then

!Adapt to mean motion

Jacobian(1,:) = Jacobian(1,:)*(-3.0_dp/2.0_dp)*(nUsed/aUsed)

end if

!Second row: sensitivity with respect to eccentricity

Jacobian(2,1)=c1*((v(1)*v(2)-(muSi*r(1)*r(2))/rMag3)*eccVec(2) &

+ (v(1)*v(3)-(muSi*r(1)*r(3))/rMag3)*eccVec(3) &

- (v(2)**2.0_dp+v(3)**2.0_dp - muSi/rMag &

+ (muSi*r(1)**2.0_dp)/rMag3)*eccVec(1))

Jacobian(2,2)=c1*((v(1)*v(2)-(muSi*r(1)*r(2))/rMag3)*eccVec(1) &

+ (v(2)*v(3)-(muSi*r(2)*r(3))/rMag3)*eccVec(3) &

- (v(1)**2.0_dp + v(3)**2.0_dp - muSi/rMag &

+ (muSi*r(2)**2.0_dp)/rMag3)*eccVec(2))

Jacobian(2,3)=c1*((v(1)*v(3)-(muSi*r(1)*r(3))/rMag3)*eccVec(1) &

+ (v(2)*v(3)-(muSi*r(2)*r(3))/rMag3)*eccVec(2) &

- (v(2)**2.0_dp + v(1)**2.0_dp - muSi/rMag &

+ (muSi*r(3)**2.0_dp)/rMag3)*eccVec(3))

Jacobian(2,4)=c1*((r(1)*v(2) - 2.0_dp*r(2)*v(1))*eccVec(2) &

+ (r(2)*v(2) + r(3)*v(3))*eccVec(1) &

+ (r(1)*v(3) - 2.0_dp*r(3)*v(1))*eccVec(3))

!Vallado’s paper has a minus in the middle term!

Jacobian(2,5)=c1*((r(2)*v(1) - 2.0_dp*r(1)*v(2))*eccVec(1) &

+ (r(1)*v(1) + r(3)*v(3))*eccVec(2) &

+ (r(2)*v(3) - 2.0_dp*r(3)*v(2))*eccVec(3))

!Vallado’s paper has a minus in the middle term!

Jacobian(2,6)=c1*((r(1)*v(1) + r(2)*v(2))*eccVec(3) &

+ (r(3)*v(1) - 2.0_dp*r(1)*v(3))*eccVec(1) &

+ (r(3)*v(2) - 2.0_dp*r(2)*v(3))*eccVec(2))

!Third row: sensitivity with respect to inclination

Jacobian(3,1) = c2*(v(2)-(hVec(3)*(v(2)*hVec(3)-v(3)*hVec(2))/ &

hMag2))

Jacobian(3,2) = -c2*(v(1)-(hVec(3)*(v(1)*hVec(3)-v(3)*hVec(1))/ &

hMag2))

Jacobian(3,3) = c2*( (hVec(3)*(v(2)*hVec(1)-v(1)*hVec(2))/ &

hMag2))

Jacobian(3,4) = -c2*(r(2)-(hVec(3)*(r(2)*hVec(3)-r(3)*hVec(2))/ &

hMag2))
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Jacobian(3,5) = c2*(r(1)-(hVec(3)*(r(1)*hVec(3)-r(3)*hVec(1))/ &

hMag2))

Jacobian(3,6) = -c2*( (hVec(3)*(r(2)*hVec(1)-r(1)*hVec(2))/ &

hMag2)) !Vallado’s paper is wrong here!

!Fourth row: sensitivity with respect to RAAN

Jacobian(4,1) = -v(3)*nVec(2)*c3

Jacobian(4,2) = v(3)*nVec(1)*c3

Jacobian(4,3) = (v(1)*nVec(2) - v(2)*nVec(1))*c3

Jacobian(4,4) = r(3)*nVec(2)*c3

Jacobian(4,5) = -r(3)*nVec(1)*c3

Jacobian(4,6) = (r(2)*nVec(1) - r(1)*nVec(2))*c3

!Fifth row: sensitivity with respect to argument of perigee

!These sensitivities are incorrect in Vallado’s paper!

n_dot_e = DOT(nVec, eccVec)

nMage = nMag*e

cosArgp = n_dot_e/nMage

sgn = sign(1.0_dp, eccVec(3)*muSi)

wScale = -sgn/abs(sin(argp))

muenMag = muSi*nMage

Jacobian(5,1) = wScale * ( (-hVec(2)*(v(2)*v(2) &

+ v(3)*v(3) - muSi/rMag + muSi*r(1)*r(1)/rMag3) &

- hVec(1)*(v(1)*v(2) - muSi*r(1)*r(2)/rMag3) &

+ v(3)*muSi*eccVec(1))/muenMag + n_dot_e/e * &

( v(3)*hVec(2)/nMag3 - Jacobian(2,1)/nMage))

Jacobian(5,2) = wScale * ( ( hVec(1)*(v(1)*v(1) &

+ v(3)*v(3) - muSi/rMag + muSi*r(2)*r(2)/rMag3) &

+ hVec(2)*(v(1)*v(2) - muSi*r(1)*r(2)/rMag3) &

+ v(3)*muSi*eccVec(2))/muenMag + n_dot_e/e * &

(-v(3)*hVec(1)/nMag3 - Jacobian(2,2)/nMage))

Jacobian(5,3) = wScale * (-(-hVec(2)*(v(1)*v(3) &

- muSi*r(1)*r(3)/rMag3)+ hVec(1)*(v(2)*v(3) &

- muSi*r(2)*r(3)/rMag3) + v(1)*muSi*eccVec(1) &

+ v(2)*muSi*eccVec(2))/muenMag + n_dot_e/e * &

((v(2)*hVec(1)-v(1)*hVec(2))/nMag3 &

- Jacobian(2,3)/nMage))

Jacobian(5,4) = wScale*(-( hVec(1)*(r(1)*v(2)-2.0_dp*r(2)*v(1)) &

- hVec(2)*(r(2)*v(2) + r(3)*v(3)) &

+ r(3)*muSi*eccVec(1))/muenMag + n_dot_e/e * &

(-r(3)*hVec(2)/nMag3 - Jacobian(2,4)/nMage))

Jacobian(5,5) = wScale*(-(-hVec(2)*(r(2)*v(1)-2.0_dp*r(1)*v(2)) &

+ hVec(1)*(r(1)*v(1) + r(3)*v(3)) &

+ r(3)*muSi*eccVec(2))/muenMag + n_dot_e/e * &

( r(3)*hVec(1)/nMag3 - Jacobian(2,5)/nMage))

Jacobian(5,6) = wScale*(-(-hVec(2)*(r(3)*v(1)-2.0_dp*r(1)*v(3)) &

+ hVec(1)*(r(3)*v(2) - 2.0_dp*r(2)*v(3)) - &

r(1)*muSi*eccVec(1)-r(2)*muSi*eccVec(2))/muenMag &

+ n_dot_e/e * ((r(1)*hVec(2)-r(2)*hVec(1))/nMag3 &

- Jacobian(2,6)/nMage))
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!Sixth row: sensitivity with respect to fast variable

!Formulate first for true anomaly and update later to

!mean anomaly, if necessary

r_dot_v = DOT(r, v)

c4 = rMag2 * vMag2 - muSi*rMag - r_dot_v*r_dot_v

c5 = 1.0_dp / (c4*c4 + r_dot_v*r_dot_v * hMag2)

call CROSS(v, hVec, v_cross_h)

call CROSS(hVec, r, h_cross_r)

Jacobian(6,1:3) = c5 * (c4*(hMag*v + (r_dot_v/hMag)*v_cross_h)

- r_dot_v*hMag*(2.0_dp * vMag2 * r

- (muSi*r)/rMag - 2.0_dp*r_dot_v*v))

Jacobian(6,4:6) = c5 * (c4*(hMag*r + (r_dot_v/hMag)*h_cross_r)

- r_dot_v*hMag*(2.0_dp * rMag2 * v

- 2.0_dp*r_dot_v*r))

if (elemType == 0 .OR. elemType == 2) then

!Adapt fast variable partials to mean anomaly

cosNu = cos(trueAnom)

e2 = e*e

!Vallado misses the power of two in the denominator

dMdv = (1.0_dp - e2)**1.5_dp / ((1.0_dp + e*cosNu)**2.0_dp)

!Error in paper for dMdE

dMdE = -sin(trueAnom)*((1.0_dp + e*cosNu)*sign(1.0_dp, &

e+cosNu) + 1.0_dp - 2.0_dp*e2 - e*e2*cosNu) &

/((1.0_dp + e*cosNu)**2.0_dp * sqrt(1.0_dp - e2))

!Multiply the sensitivities to the respective terms

Jacobian(6,:) = dMdv*Jacobian(6,:) + dMdE*Jacobian(2,:)

end if

!Assign optional output

if (present(Jac)) Jac = Jacobian

!Compute the transformed matrix via the similarity transformation

Pcoe = Matmul(Jacobian, Matmul(Pcart, transpose(Jacobian)))

!Symmetrize the result

Pcoe = (Pcoe + transpose(Pcoe))/2.0_dp

End Subroutine covRV2Coe

!===============================================================!

Listing B.5: covEoe2RV
!===============================================================!

Subroutine covEoe2RV(fr,xeoe,elemSwitch,xcart,Peoe,Pcart,Jac)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 09/2019

!---------------------------------------------------------------!

!! Covariance conversion: EOE to GCRF
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!! Attention: The transition is considerably nonlinear, hence a

!! Gaussian in EOE does not result in a pure Gaussian in GCRF.

!! A precise uncertainty characterization in GCRF might need

!! Gaussian sums or the like, depending on the size of the

!! uncertainty.

!!

!! References:

!! Danielsson, 1995: Semianalytical Satellite Theory

!! (contains a typo in dq/dr, page 12)

!! Vallado and Alfano 2015: Updated Analytical Partials for

!! Covariance Transformations and Optimization (Rev 2)

!---------------------------------------------------------------!

! Inputs

!> Type of element set of components (1=direct, -1=retrograde)

integer(i4), intent(inout) :: fr

!> Equinoctial element set

real(dp), dimension(6), intent(in) :: xeoe

!> Equinoctial covariance matrix

real(dp), dimension(6,6), intent(in) :: Peoe

!> ElementType-switch

integer(i4), intent(in), optional :: elemSwitch

! Outputs

!> Converted Cartesian covariance

real(dp), dimension(6,6), intent(out) :: Pcart

!> Optional output: converted element set

real(dp), dimension(6), intent(out), optional :: xcart

!> Optional output: Jacobian of the transformation

real(dp), dimension(6,6), intent(out), optional :: Jac

!---------------------------------------------------------------!

!Locals:

real(dp), dimension(6) :: z

real(dp), dimension(3) :: fVec, gVec, wVec, r, v, dhkVec

real(dp) :: X, Y, XDot, YDot, rMag, mu

real(dp) :: L, ch, ck, cosL, sinL

real(dp) :: k, h, p, q, A, bcap, b, C

real(dp) :: nUsed, aUsed, sensh, sensk

real(dp) :: dXdh, dYdh, dXdk, dYdk

real(dp) :: dXdotdh, dYdotdh, dXdotdk, dYdotdk

integer(i4) :: eleSwitchUsed

real(dp), dimension(6,6) :: Jacobian

real(dp) :: vMag, e, e2, dMdv, dMde

real(dp) :: r_dot_e, muSi, sqrtE2, oneEcosNu

real(dp), dimension(3) :: eccVec

!---------------------------------------------------------------!

!Set local gravitational constant mu

mu = muEarth

if (present(elemSwitch)) then

eleSwitchUsed = elemSwitch

else

!Default: direct set with mean motion and mean longitude
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eleSwitchUsed = 0

end if

!Split the vector

h = xeoe(2)

k = xeoe(3)

p = xeoe(4)

q = xeoe(5)

!Step 1: Convert the EOE vector into the corresponding Cartesian

! vector using the full nonlinear relationship and get

! auxiliary variables which are also needed to convert the

! covariance (X, Y, XDot, YDot, ...)

SELECT CASE(eleSwitchUsed)

CASE(0)

!Mean motion and mean longitude

call eoe2rv(fr = fr, n = xeoe(1), h = h, k = k, &

p = p, q = q, meanLon = xeoe(6), &

r = z(1:3), v = z(4:6), &

X = X, Y = Y, XDot = XDot, YDot = YDot, &

fv = fVec, gv = gVec, wv = wVec, radDist=rMag)

nUsed = xeoe(1)

aUsed = mu**(1.0_dp/3.0_dp)/nUsed**(2.0_dp/3.0_dp)

CASE(1)

!Semi-major axis and mean longitude

call eoe2rv(fr = fr, a = xeoe(1), h = h, k = k, &

p = p, q = q, meanLon = xeoe(6), &

r = z(1:3), v = z(4:6), &

X = X, Y = Y, XDot = XDot, YDot = YDot, &

fv = fVec, gv = gVec, wv = wVec, radDist=rMag)

aUsed = xeoe(1)

nUsed = sqrt(mu/aUsed**3.0_dp)

CASE(2)

!Mean motion and true longitude

call eoe2rv(fr = fr, n = xeoe(1), h = h, k = k, &

p = p, q = q, trueLon = xeoe(6), &

r = z(1:3), v = z(4:6), &

X = X, Y = Y, XDot = XDot, YDot = YDot, &

fv = fVec, gv = gVec, wv = wVec, radDist=rMag)

nUsed = xeoe(1)

aUsed = mu**(1.0_dp/3.0_dp)/nUsed**(2.0_dp/3.0_dp)

CASE(3)

!Semi-major axis and true longitude

call eoe2rv(fr = fr, a = xeoe(1), h = h, k = k, &

p = p, q = q, trueLon = xeoe(6), &

r = z(1:3), v = z(4:6), &

X = X, Y = Y, XDot = XDot, YDot = YDot, &

fv = fVec, gv = gVec, wv = wVec, radDist=rMag)

aUsed = xeoe(1)

nUsed = sqrt(mu/aUsed**3.0_dp)

END SELECT
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!Assign optional output

if (present(xcart)) xcart = z

!Transition to SI units

aUsed = aUsed * kilo

rMag = rMag * kilo

r = z(1:3) * kilo

v = z(4:6) * kilo

X = X * kilo

Y = Y * kilo

XDot = XDot * kilo

YDot = YDot * kilo

!Define auxiliary parameters for the Jacobian

A = nUsed * aUsed**2.0_dp

bcap = sqrt(1.0_dp - h**2.0_dp - k**2.0_dp)

b = 1.0_dp/(1.0_dp + bcap)

C = 1.0_dp + p**2.0_dp + q**2.0_dp

dXdh = -(k*Xdot)/(nUsed*(1.0_dp+bcap)) &

+ (aUsed * Y * YDot)/(A * bcap)

dXdk = (h*Xdot)/(nUsed*(1.0_dp+bcap)) &

+ (aUsed * Y * XDot)/(A * bcap) - aUsed

dYdh = -(k*Ydot)/(nUsed*(1.0_dp+bcap)) &

- (aUsed * X * YDot)/(A * bcap) - aUsed

dYdk = (h*Ydot)/(nUsed*(1.0_dp+bcap)) &

- (aUsed * X * XDot)/(A * bcap)

dXDotdh = (aUsed*YDot*YDot)/(A*bcap) + (A/rMag**3.0_dp) &

* ((aUsed*k*X)/(1.0_dp + bcap) - (Y*Y)/bcap)

dYDotdh = -(aUsed*XDot*YDot)/(A*bcap) + (A/rMag**3.0_dp) &

* ((aUsed*k*Y)/(1.0_dp + bcap) + (X*Y)/bcap)

dXDotdk = (aUsed*XDot*YDot)/(A*bcap) - (A/rMag**3.0_dp) &

* ((aUsed*h*X)/(1.0_dp + bcap) + (X*Y)/bcap)

dYDotdk = -(aUsed*XDot*XDot)/(A*bcap) - (A/rMag**3.0_dp) &

* ((aUsed*h*Y)/(1.0_dp + bcap) - (X*X)/bcap)

if (eleSwitchUsed == 2 .OR. eleSwitchUsed == 3) then

cosL = cos(xeoe(6))

sinL = sin(xeoe(6))

ch = aUsed*(2.0_dp*k*h*cosL+2.0_dp*h+(h*h-k*k+1.0_dp)*sinL) &

/(C*(1.0_dp + k*cosL + h*sinL)**2.0_dp)

ck = aUsed*(2.0_dp*k*h*sinL+2.0_dp*k+(k*k-h*h+1.0_dp)*cosL) &

/(C*(1.0_dp + k*cosL + h*sinL)**2.0_dp)

dhkVec(1) = (p*p-q*q-1.0_dp)*cosL - 2.0_dp*p*q*fr*sinL

!The following are not needed, but complete dhkVec

!dhkVec(2) = (p*p-q*q+1.0_dp)*fr*sinL + 2.0_dp*p*q*cosL

!dhkVec(3) = 2.0_dp*(p*fr*cosL - q*sinL)

end if
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!Compute the 6x6 Jacobi matrix

Jacobian = 0.0_dp

!First column: mean motion sensitivity or semi-major axis

!sensitivity

SELECT CASE(eleSwitchUsed)

CASE(0,2)

!Mean motion

Jacobian(1:3,1) = -(2.0_dp/(3.0_dp*nUsed))*r

Jacobian(4:6,1) = v/(3.0_dp * nUsed)

CASE(1,3)

!Semi-major axis

Jacobian(1:3,1) = r/aUsed

Jacobian(4:6,1) = -v/(2.0_dp * aUsed)

END SELECT

!Compute the sixth column prior to the second and third, as it

!might be needed for their adaption in case that

!eleSwitchUsed == 2 .OR. eleSwitchUsed == 3.

!Sixth column: sensitivity with respect to fast variable

!Mean longitude

Jacobian(1:3,6) = v/nUsed

Jacobian(4:6,6) = -((nUsed*aUsed**3.0_dp)/(rMag**3.0_dp))*r

if (eleSwitchUsed == 2 .OR. eleSwitchUsed == 3) then

vMag = MAG(v)

muSi = mu * 1.0E09_dp

eccVec = ((vMag*vMag - muSi/rMag)*r - DOT(r, v)*v)/muSi

e = MAG(eccVec)

oneEcosNu = 1.0_dp + DOT(r, eccVec)/rMag

dMdv = (1.0_dp - e*e)**1.5_dp / (oneEcosNu*oneEcosNu)

!Note that all sensitivities where the eccentricity or

!fast variable are included need to be updated.

!These are columns 2,3 (h and k), which are updated below

!and column 6 (mean longitude -> true longitude)

!dM/dv is equal to dLambda/dL -> direct update of dependency

Jacobian(:,6) = dMdv*Jacobian(:,6)

end if

!Second column: h-sensitivity

Jacobian(1:3,2) = dXdh * fVec + dYdh * gVec

Jacobian(4:6,2) = dXdotdh * fVec + dYdotdh * gVec

if (eleSwitchUsed == 2 .OR. eleSwitchUsed == 3) then

!To update the h-sensitivity, i.e. column 2, the true

!longitude sensitivity needs to be added with a new

!sensitivity multiplied. This sensitivity is applicable

!for the entire column. Hence it can be found from an

!arbitrary component of the vector. Easiest for this

!operation is the position part, as its math is simpler.
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!Based on the position part of the state vector,

!the desired sensitivity can be computed via

!sensh = (ch*dhkVec(X) - Jacobian(X,2))/Jacobian(X,6)

!where X can be selected as 1,2 or 3.

!This sensitivity can then be multiplied to the entire column

!to update also the velocity part at the same time.

!The same procedure also holds for the k component.

!Compute sensitivity based on first component

sensh = (ch*dhkVec(1) - Jacobian(1,2))/Jacobian(1,6)

!Update the column

Jacobian(:,2) = Jacobian(:,2) + Jacobian(:,6)*sensh

end if

!Third column: k-sensitivity

Jacobian(1:3,3) = dXdk * fVec + dYdk * gVec

Jacobian(4:6,3) = dXdotdk * fVec + dYdotdk * gVec

if(eleSwitchUsed == 2 .OR. eleSwitchUsed == 3) then

!Compute sensitivity based on first component

sensk = (ck * dhkVec(1) - Jacobian(1,3))/Jacobian(1,6)

!Update the column

Jacobian(:,3) = Jacobian(:,3) + Jacobian(:,6)*sensk

end if

!Fourth column: p-sensitivity

Jacobian(1:3,4) = 2.0_dp*(fr*q*(Y*fVec-X*gVec)-X*wVec)/C

Jacobian(4:6,4) = 2.0_dp*(fr*q*(YDot*fVec-XDot*gVec)-XDot*wVec)/C

!Fifth column: q-sensitivity

!(Vallado has a typo here: fr must be outside the parenthesis)

Jacobian(1:3,5) = 2.0_dp*fr*(p*(X*gVec-Y*fVec)+Y*wVec)/C

Jacobian(4:6,5) = 2.0_dp*fr*(p*(XDot*gVec-YDot*fVec)+YDot*wVec)/C

!Assign optional output

if (present(Jac)) Jac = Jacobian

!Compute the transformed matrix via the similarity transformation

Pcart = Matmul(Jacobian, Matmul(Peoe, transpose(Jacobian)))

!Symmetrize the result

Pcart = (Pcart + transpose(Pcart))/2.0_dp

End Subroutine covEoe2RV

!===============================================================!
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Listing B.6: covRV2Eoe
!===============================================================!

Subroutine covRV2Eoe(Pcart,xcart,xeoe,elemSwitch,fr,Peoe,Jac)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 09/2019

!---------------------------------------------------------------!

!! Covariance conversion: GCRF to EOE

!!

!! References:

!! Danielsson, 1995: Semianalytical Satellite Theory

!! Vallado and Alfano 2015: Updated Analytical Partials for

!! Covariance Transformations and Optimization (Rev 2)

!---------------------------------------------------------------!

!> Cartesian covariance

real(dp), dimension(6,6), intent(in) :: Pcart

!> Converted element set

real(dp), dimension(6), intent(in) :: xcart

!> Optional: element switch

integer(i4), intent(in), optional :: elemSwitch

!> Type of equinoctial element set (1=direct, -1=retrograde)

integer(i4), intent(inout) :: fr

!> Equinoctial covariance

real(dp), dimension(6,6), intent(out) :: Peoe

!> Converted state vector to equinoctial elements

real(dp), dimension(6), intent(out), optional :: xeoe

!> Optional output: Jacobian of the transformation

real(dp), dimension(6,6), intent(out), optional :: Jac

!---------------------------------------------------------------!

!Locals:

real(dp), dimension(3) :: fVec, gVec, wVec, dhkVec, eccVec

real(dp) :: X, Y, XDot, YDot, rMag, ch, ck

real(dp) :: sensh, sensk, cosL, sinL

real(dp) :: k, h, p, q, A, bcap, b, C

real(dp) :: nUsed, aUsed, L, lambda

real(dp) :: dXdh, dYdh, dXdk, dYdk

real(dp) :: dXdotdh, dYdotdh, dXdotdk, dYdotdk

real(dp), dimension(3) :: dvdh, dvdk, r, v

integer(i4) :: elemSwitchUsed

real(dp), dimension(6,6) :: Jacobian

real(dp) :: mu, muSi, e, oneEcosNu, e2

real(dp) :: vMag, dMdv, fVec1, gVec1

!---------------------------------------------------------------!

!Set local gravitational constant mu

mu = muEarth

muSi = mu * 1.0E9_dp

!Step 1: Convert the Cartesian vector to equinoctial elements

! and also fetch the auxiliary variables

call rv2eoe(r=xcart(1:3), v=xcart(4:6), n=nUsed, a=aUsed, &

k=k, h=h, p=p, q=q, meanLon=lambda, trueLon=L, &
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fr=fr, X=X, Y=Y, XDot=XDot, YDot=YDot, radDist=rMag,&

fv=fVec, gv=gVec, wv=wVec)

if (present(elemSwitch)) then

elemSwitchUsed = elemSwitch

else

!Default: mean motion as sizevar and

!mean longitude as fastvar

elemSwitchUsed = 0

end if

if (present(xeoe)) then

SELECT CASE(elemSwitchUsed)

CASE(0)

!Mean motion, mean longitude

xeoe(1) = nUsed

xeoe(6) = lambda

CASE(1)

!Semi-major axis, mean longitude

xeoe(1) = aUsed

xeoe(6) = lambda

CASE(2)

!Mean motion, true longitude

xeoe(1) = nUsed

xeoe(6) = L

CASE(3)

!Semi-major axis, true longitude

xeoe(1) = aUsed

xeoe(6) = L

END SELECT

xeoe(2) = h

xeoe(3) = k

xeoe(4) = p

xeoe(5) = q

end if

!Transition to SI units for the Jacobian

aUsed = aUsed * kilo

rMag = rMag * kilo

r = xcart(1:3) * kilo

v = xcart(4:6) * kilo

X = X * kilo

Y = Y * kilo

XDot = XDot * kilo

YDot = YDot * kilo

!Define auxiliary variables

A = nUsed * aUsed**2.0_dp

bcap = sqrt(1.0_dp - h**2.0_dp - k**2.0_dp)

b = 1.0_dp/(1.0_dp + bcap)

C = 1.0_dp + p**2.0_dp + q**2.0_dp
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dXdh = -(k*Xdot)/(nUsed*(1.0_dp+bcap)) &

+ (aUsed * Y * YDot)/(A * bcap)

dXdk = (h*Xdot)/(nUsed*(1.0_dp+bcap)) &

+ (aUsed * Y * XDot)/(A * bcap) - aUsed

dYdh = -(k*Ydot)/(nUsed*(1.0_dp+bcap)) &

- (aUsed * X * YDot)/(A * bcap) - aUsed

dYdk = (h*Ydot)/(nUsed*(1.0_dp+bcap)) &

- (aUsed * X * XDot)/(A * bcap)

dXDotdh = (aUsed*YDot*YDot)/(A*bcap) + (A/rMag**3.0_dp) &

* ((aUsed*k*X)/(1.0_dp + bcap) - (Y*Y)/bcap)

dYDotdh = -(aUsed*XDot*YDot)/(A*bcap) + (A/rMag**3.0_dp) &

* ((aUsed*k*Y)/(1.0_dp + bcap) + (X*Y)/bcap)

dXDotdk = (aUsed*XDot*YDot)/(A*bcap) - (A/rMag**3.0_dp) &

* ((aUsed*h*X)/(1.0_dp + bcap) + (X*Y)/bcap)

dYDotdk = -(aUsed*XDot*XDot)/(A*bcap) - (A/rMag**3.0_dp) &

* ((aUsed*h*Y)/(1.0_dp + bcap) - (X*X)/bcap)

dvdh = dXDotdh * fVec + dYDotdh * gVec

dvdk = dXDotdk * fVec + dYDotdk * gVec

!Compute the 6x6 Jacobi matrix

Jacobian = 0.0_dp

!First row: mean motion or semi-major axis sensitivity

SELECT CASE(elemSwitchUsed)

CASE(0,2)

!Mean motion

Jacobian(1,1:3)=((-3.0_dp*nUsed*aUsed) / rMag**3.0_dp) * r

Jacobian(1,4:6)=-3.0_dp/(nUsed * aUsed**2.0_dp) * v

CASE(1,3)

!Semi-major axis

Jacobian(1,1:3)=((2.0_dp * aUsed**2.0_dp) / rMag**3.0_dp) * r

Jacobian(1,4:6)=2.0_dp/(nUsed**2.0_dp * aUsed) * v

END SELECT

!Second row: sensitivity with respect to h

Jacobian(2,1:3)=-((aUsed*b*h*bcap)/(rMag**3.0_dp)) * r &

+ (k*(p*XDot - fr*q*YDot)/(A*bcap)) * wVec &

- (bcap/A) * dvdk

Jacobian(2,4:6)=((2.0_dp*XDot*Y-X*YDot)*fVec-X*XDot*gVec)/muSi &

+ k*(fr*q*Y - p*X)/(A*bcap) * wVec

!Third row: sensitivity with respect to k

Jacobian(3,1:3)=-((aUsed*b*k*bcap)/(rMag**3.0_dp)) * r &

- (h*(p*XDot - fr*q*YDot)/(A*bcap)) * wVec &

+ (bcap/A) * dvdh

Jacobian(3,4:6)=((2.0_dp*X*YDot-XDot*Y)*gVec-Y*YDot*fVec)/muSi &

- h*(fr*q*Y - p*X)/(A*bcap) * wVec

!Fourth row: sensitivity with respect to p

Jacobian(4,1:3) = -((C*YDot)/(2*A*bcap)) * wVec
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Jacobian(4,4:6) = ((C*Y)/(2*A*bcap)) * wVec

!Fifth row: sensitivity with respect to q

!Danielsson misses the fr in Jacobian(5,1:3), but Vallado has it

Jacobian(5,1:3) = -(fr*(C*XDot)/(2*A*bcap)) * wVec

Jacobian(5,4:6) = (fr*(C*X)/(2*A*bcap)) * wVec

!Sixth row: sensitivity with respect to the fast variable

!Mean longitude

Jacobian(6,1:3) = -v/A + ((p*Xdot - fr*q*YDot)/(A*bcap))*wVec &

- ((b*bcap)/A)*(h*dvdh + k*dvdk)

Jacobian(6,4:6) = -(2.0_dp/A)*r + (k*Jacobian(2,4:6) &

- h*Jacobian(3,4:6))/(1.0_dp + bcap) &

+ ((fr*q*Y - p*X)/A) * wVec

if (elemSwitchUsed == 2 .OR. elemSwitchUsed == 3) then

!Adapt mean to true longitude sensitivity

vMag = MAG(v)

muSi = mu * 1.0E09_dp

eccVec = ((vMag*vMag - muSi/rMag)*r - DOT(r, v)*v)/muSi

e = MAG(eccVec)

!oneEcosNu equals 1.0 + h*sin(L) + k*cos(L)

oneEcosNu = 1.0_dp + DOT(r, eccVec)/rMag

dMdv = (1.0_dp - e*e)**1.5_dp / (oneEcosNu*oneEcosNu)

cosL = cos(L)

sinL = sin(L)

ch = aUsed*(2.0_dp*k*h*cosL+2.0_dp*h + &

(h*h-k*k+1.0_dp)*sinL)/ &

(C*(1.0_dp + k*cosL + h*sinL)**2.0_dp)

ck = aUsed*(2.0_dp*k*h*sinL+2.0_dp*k+ &

(k*k-h*h+1.0_dp)*cosL)/ &

(C*(1.0_dp + k*cosL + h*sinL)**2.0_dp)

dhkVec(1) = (p*p-q*q-1.0_dp)*cosL - 2.0_dp*p*q*fr*sinL

!dhkVec(2) = (p*p-q*q+1.0_dp)*fr*sinL + 2.0_dp*p*q*cosL

!dhkVec(3) = 2.0_dp*(p*fr*cosL - q*sinL)

!Update the sixth row with dMdv, dMde and the info of

!rows 2 and 3, which are based on eccentricity

fVec1 = (1.0_dp - p*p + q*q)/C

gVec1 = (2.0_dp*fr*p*q)/C

sensh = (ch*dhkVec(1) - (dXdh*fVec1 + dYdh*gVec1))/ &

(dMdv*v(1)/nUsed)

sensk = (ck*dhkVec(1) - (dXdk*fVec1 + dYdk*gVec1))/ &

(dMdv*v(1)/nUsed)

Jacobian(6,:) = Jacobian(6,:)/dMdv &

- (sensh*Jacobian(2,:)+sensk*Jacobian(3,:))

end if

!Assign optional output

if (present(Jac)) Jac = Jacobian
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!Compute the transformed matrix via the similarity transformation

Peoe = Matmul(Jacobian, Matmul(Pcart, transpose(Jacobian)))

!Symmetrize the result

Peoe = (Peoe + transpose(Peoe))/2.0_dp

End Subroutine covRV2Eoe

!===============================================================!

b.3 short-term encounter identification

Listing B.7 is a complete implementation of Chan’s geometric rectilin-
ear motion test. The boundary conditions are taken from the examples
presented in Chan (2008, section 3.4).

Listing B.7: isShortTermEncounter
!===============================================================!

Subroutine isShortTermEncounter(conjunction, isLeoT, isLeoC, &

highConfidence, resultCode)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 03/2020

!---------------------------------------------------------------!

!! Test if a conjunction is a short-term encounter, which

!! qualifies for the 2D approximation of the 3D Pc integral.

!

!! Exit codes for resultCode:

!! 0: Fulfills both STE-criteria -> safely STE

!! 1: Only one criteria fulfilled, the other in boundary range

!! -> sufficiently safe STE

!! 2: One criteria fulfilled, the other violated

!! -> not safely STE

!! 3: Both in boundary range

!! -> not safely STE

!! 4: Everything else (one in boundary range and the other

!! violated or both violated) -> not STE

!!

!! The user can decide which exit code to consider as safely STE.

!! The default recommendation is resultCode <= 1 for considering

!! the conjunction to be a short-term encounter.

!!

!! Remarks:

!! - dp is short for REAL64 and i4 for INT32 from iso_fortran_env

!! - MAG computes the magnitude of a vector and

!! - DOT_PRODUCT evaluates the dot product of two vectors

!! - rad2deg equals 180.0_dp/pi

!! - muEarth is Earth’s gravitational constant in km^3/s^2

!---------------------------------------------------------------!

!> Conjunction object to be tested

!> (contains the target and chaser states)

type(tConjunction), intent(inout) :: conjunction
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!> LEO flag for the target

logical, intent(in) :: isLEOT

!> LEO flag for the chaser

logical, intent(in) :: isLEOC

!> Optional flag for 17sigma certainty of the result

!> (default is 6 sigma)

logical, intent(in), optional :: highConfidence

!> The result code which categorizes the conjunction

integer(i4), intent(out) :: resultCode

!---------------------------------------------------------------!

!Constants:

real(dp), parameter :: alphaGood = 3.0_dp !deg

real(dp), parameter :: alphaBound = 3.5_dp !deg

real(dp), parameter :: TGood = 0.02_dp !2%

real(dp), parameter :: TBound = 0.03_dp !3%

!---------------------------------------------------------------!

!Locals:

logical :: use17sigma

real(dp) :: rp, vp, rs, vs

real(dp) :: phi

real(dp) :: Sp, Ss, Lp, Ls, DT, Ds

real(dp) :: alphap, alphas, tep, tes

real(dp) :: ap, as, tRatp, tRats

!---------------------------------------------------------------!

!Check optional arguments

if (present(highConfidence)) then

use17sigma = highConfidence

else

use17sigma = .FALSE.

end if

!Get the target and the chaser radial distances and speeds at TCA

rp = MAG(conjunction%x_prim(1:3))

vp = MAG(conjunction%x_prim(4:6))

rs = MAG(conjunction%x_sec(1:3))

vs = MAG(conjunction%x_sec(4:6))

!First, compute the approach angle phi

phi = acos(DOT_PRODUCT(conjunction%x_prim(4:6), &

conjunction%x_sec(4:6))/(vp*vs))

!Initialize the required rectilinear motion length S, which is

!30km for 6sigma in LEO, 85km for 17sigma in LEO and

!90km for 6sigma in GEO, 255km for 17sigma in GEO.

!By default this routine uses the 6 sigma boundaries.

if (use17sigma) then

if (isLEOT) then

Sp = 85.0_dp

else

Sp = 255.0_dp

end if
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if (isLEOC) then

Ss = 85.0_dp

else

Ss = 255.0_dp

end if

else

if (isLEOT) then

Sp = 30.0_dp

else

Sp = 90.0_dp

end if

if (isLEOC) then

Ss = 30.0_dp

else

Ss = 90.0_dp

end if

end if

!Step three is to compute the encounter region length

Lp = Sp/(2.0*sin(phi/2.0_dp))

Ls = Ss/(2.0*sin(phi/2.0_dp))

!Next, compute the radial error D by

!inverting the relationship L^2 = (D+R)^2 - R^2

DT = sqrt(rp*rp+Lp*Lp) - rp

Ds = sqrt(rs*rs+Ls*Ls) - rs

!Evaluate the deflection angle alpha

alphap = atan(DT/Lp)*rad2deg

alphas = atan(Ds/Ls)*rad2deg

!Finally, compute the time to transverse the encounter region

tep = Lp/vp

tes = Ls/vs

!Compute the orbital periods

ap = -muEarth / ((vp*vp) - 2.0E0_dp*(muEarth/rp))

conjunction%Tp = twoPi * sqrt(ap**3.0_dp / muEarth)

as = -muEarth / ((vs*vs) - 2.0E0_dp*(muEarth/rs))

conjunction%Ts = twoPi * sqrt(as**3.0_dp / muEarth)

!Calculate the ratio of the encounter shell transit time

!with respect to the orbital period

tRatp = tep/conjunction%Tp

tRats = tes/conjunction%Ts

!Set the return value

!Initialize with worst case, update accordingly

resultCode = 4

if (alphap < alphaGood .AND. alphas < alphaGood) then

if (tRatp < TGood .AND. tRats < TGood) then

resultCode = 0
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else if (tRatp < TBound .AND. tRats < TBound) then

resultCode = 1

else

resultCode = 2

end if

else if (alphap < alphaBound .AND. alphas < alphaBound) then

if (tRatp < TGood .AND. tRats < TGood) then

resultCode = 1

else if (tRatp < TBound .AND. tRats < TBound) then

resultCode = 3

end if

else

if (tRatp < TGood .AND. tRats < TGood) then

resultCode = 2

end if

end if

End Subroutine

!===============================================================!

b.4 inertial to mahalanobis space transformation

Nonlinear collision probability algorithms typically perform a tran-
sition from inertial space to Mahalanobis space in order to decouple
the three-dimensional collision probability integral (equation 6.3). A
complete routine to perform the transition to Mahalanobis space has
been worked out as part of this thesis. The Fortran sources are given in
the following and contain detailed descriptions of the steps required to
transform the combined covariance and spherical hard body volumes.

Listing B.8: GCRF2MahalanobisSpace
!===============================================================!

Subroutine GCRFtoMahaEncFrame(xT, xC, Pt, Pc, rA, U, &

deltaStateMahaenc, rho_Maha_enc)

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 03/2020

!---------------------------------------------------------------!

!! This subroutine transforms the objects, relative positions,

!! relative velocities and the combined covariance into the fully

!! normalized Mahalanobis encounter frame.

!! After the transformation the covariance equals the identity

!! matrix (it resembles a sphere) and the combined object becomes

!! an ellipsoid.

!! Once the probability density function has equal properties in

!! all directions, the relative velocity direction can easily be

!! decoupled from the other directions.

!!

!! The transformation is a four-step process:

!! 1) Obtain the matrix to perform the covariance diagonalization
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!! 2) Formulate the scaling matrix S, which scales the

!! diagonalized covariance to the identity matrix

!! 3) Obtain the transformation matrix W from the GCRF frame to

!! the encounter frame (y-axis in relative velocity direction)

!! 4) Formulate an initial version of the overall transformation

!! and update

!!

!! Remarks:

!! - dp is short for REAL64 from iso_fortran_env

!! - get_eigenvalues computes the eigenvalues and eigenvectors

!! - transformVector performs the Matrix vector multiplication

!! - deltaCov3Encounter performs the transformation into the

!! encounter frame (see equations 6.4-6.10)

!! - eye creates an identity matrix

!---------------------------------------------------------------!

!> Target state in GCRF

real(dp), dimension(6), intent(in) :: xT

!> Chaser state in GCRF

real(dp), dimension(6), intent(in) :: xC

!> Target covariance in GCRF

real(dp), dimension(6,6), intent(in) :: Pt

!> Chaser covariance in GCRF

real(dp), dimension(6,6), intent(in) :: Pc

!> Circumscribing radius of both objects

real(dp), intent(in) :: rA

!> Relative distance in Mahalanobis space

real(dp), dimension(3), intent(out) :: deltaStateMahaenc

!> Converted hard body principal axes lengths

real(dp), dimension(3), intent(out) :: rho_Maha_enc

!> Overall transformation matrix from GCRF to the

!> encounter Mahalanobis frame

real(dp), dimension(3,3), intent(out) :: U

!---------------------------------------------------------------!

!Locals:

real(dp), dimension(6) :: deltaState

real(dp), dimension(6,6) :: Pcomb

real(dp), dimension(:), allocatable :: eigValReal

real(dp), dimension(:,:), allocatable :: EigVec

real(dp), dimension(3,3) :: Penc, HBRmat

real(dp), dimension(3,3) :: Q, S, SQ, I, W

real(dp), dimension(3) :: sigmaAxes

real(dp), dimension(6) :: deltaStateSQ

real(dp), dimension(6) :: deltaStateMahaencIni

real(dp), dimension(2,2) :: HBellipse

real(dp), dimension(2,3) :: U2

real(dp), dimension(3,3) :: P_SQ, ROT2

real(dp) :: phi

!---------------------------------------------------------------!

!Define the delta state in GCRF

deltaState = xT - xC

Pcomb = PT + PC
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!Get the eigenvectors and eigenvalues of the covariance ellipsoid

allocate(eigvalReal(3), eigValImag(3), EigVec(3,3))

call get_eigenvalues(matrix = Pcomb(1:3,1:3), &

eigenvalues_real = eigvalReal, &

eigenvectors = EigVec)

!Define the transformation matrix from GCRF to the diagonal frame

Q = transpose(EigVec)

!Define the scaling transformation from the inverse of the

!critical values, which equals the square root of the inverse of

!the eigenvalues

sigmaAxes = sqrt(1.0_dp/eigvalReal(1:3))

S = 0.0_dp

S(1,1) = sigmaAxes(1)

S(2,2) = sigmaAxes(2)

S(3,3) = sigmaAxes(3)

!Define the matrix combining both operations

SQ = Matmul(S, Q)

!Next, transform the state vector of the primary to the

!scaled frame via SQ

call transformVector(deltaState(1:3), deltaStateSQ(1:3), SQ)

call transformVector(deltaState(4:6), deltaStateSQ(4:6), SQ)

!The covariance has to become the identity matrix in the

!scaled frame (after this P_SQ must numerically match eye(3))

P_SQ = Matmul(SQ, Matmul(Pcomb(1:3,1:3), transpose(SQ)))

!Next, transform deltaStateSQ and the combined covariance

!P_SQ from the diagonal frame into the encounter frame.

!The covariance remains a unit sphere, as this is only a rotation

call deltaCov3Encounter(deltaStateSQ, P_SQ, &

deltaStateMahaencIni, Penc, W)

!Next, define the matrix U, which describes the combined sequence

!GCRF -> Mahalanobis encounter

U = Matmul(W, SQ)

!Transformation of the Hard body volume

!The original hard body sphere undergoes the same sequence of

!transformations as the covariance ellipsoid.

!A sphere can also be modeled via a matrix in the same way as

!a covariance (one simply pretends that the hard-body sphere

!is also a covariance).

!The transformation sequence is described by U. The last

!operation of U is the transformation to the encounter frame.

!To include the projection onto the xz-encounter plane, it is

!necessary to cut out the row belonging to the relative motion

!direction (second row for y).
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!Hence, it is possible to define a matrix U2 to transform the

!sphere via the appropriate rotations, stretching and the

!projection on the encounter plane.

!Define the hard body in the same matrix-way as covariances

!(mind to square rA, as (co-)variances are squared quantities)

call eye(3, I)

HBRmat = rA * rA * I

!Define the matrix U2, which includes the projection on the

!xz-plane of the encounter frame

U2(1,:) = U(1,:)

U2(2,:) = U(3,:)

!Perform the transformation

HBellipse = Matmul(U2, Matmul(HBRmat, transpose(U2)))

!To compute the principal axes lengths of the ellipse in the

!encounter plane, the eigenvalues of HBellipse are required

deallocate(eigvalReal, eigValImag, EigVec)

allocate(eigvalReal(2), eigValImag(2), EigVec(2,2))

call get_eigenvalues(matrix = HBellipse, &

eigenvalues_real = eigvalReal, &

eigenvectors = EigVec)

!The lengths of the main axes are given by the roots of the

!eigenvalues. The second component of the output vector,

!rho_Maha_enc(2), is a dummy component and set to zero to

!maintain the xz nature of the projection.

rho_Maha_enc(1) = sqrt(eigvalReal(1))

rho_Maha_enc(2) = 0.0_dp

rho_Maha_enc(3) = sqrt(eigvalReal(2))

!The axes lengths obtained from the critical values are with

!respect to the orientation given in the eigenvectors. To ensure

!that this orientation is consistent with the encounter frame,

!the angular difference of the major eigenvector and the

!encounter-plane x-axis needs to be computed.

!This angle is then used to rotate the relative state, thereby

!making sure that the relative state and the orientation of the

!encounter plane projection of the hard-body ellipsoid are in the

!same frame.

phi = atan(EigVec(2,1)/EigVec(1,1))

!Formulate ROT2 (rotation about y) using phi

ROT2(1,:) = [cos(phi), 0.0_dp, -sin(phi)]

ROT2(2,:) = [0.0_dp, 1.0_dp, 0.0_dp]

ROT2(3,:) = [sin(phi), 0.0_dp, cos(phi)]

!Transform the encounter frame vector to the proper alignment

call transformVector(deltaStateMahaencIni(1:3), &

deltaStateMahaenc, ROT2)
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!Also account for the final rotation in the overall

!transformation matrix U.

!The matrix U is required to express the propagated GCRF state

!difference in an earlier Mahalanobis frame (e.g. GCRF tube end

!position difference in tube start Mahalanobis frame in case of

!the adjoining tube method)

U = Matmul(ROT2, U)

End Subroutine

!===============================================================!

b.5 general perturbations monte-carlo collision prob-
ability

The Monte-Carlo technique is a popular method for validating colli-
sion probability calculations. It is easy to implement and essentially
requires only three steps to obtain accurate collision probabilities:

1. Sampling
2. Propagation
3. Collision detection

The sampling step requires the six-dimensional epoch covariances to
perturb the target and chaser epoch states according to their pdfs. In
the second step the perturbed epoch state vectors are propagated in
a timeframe corresponding to the expected extent of the encounter
region. The final step then checks if at any time the target and chaser
objects come closer to each other than their combined hard body
radius. In this case a collision is logged. The final collision probability
is the ratio of collisions over the absolute number of trials.

The realization of these steps needs to be carefully implemented.
First of all, statistically sound sampling bounds are required. The
Monte-Carlo method relies on the law of large numbers. Given suffi-
cient trials, the collision probability is guaranteed to converge against
the true collision probability. Some early (and unfortunately also
recent) works did not consider the minimum required number of
iterations for statistically meaningful results and simply used e.g. 103

(Chao and Park, 2002) or 106 (Gondelach and Linares, 2020) trials,
whereas the actually required number depends on the true collision
probability. The larger it is, the fewer samples are needed. For most
practically relevant conjunctions the required trials range between 108

and >1020. For this reason, the MC method is only used to validate
other collision probability algorithms, given specially designed HIE
conjunctions that can be verified using 106-108 trials. An excellent
discussion on the subject may be found in Alfano (2009).

The final collision detection step requires finding all minimum dis-
tances between the target and chaser in order to check if any of the
minima is smaller than the combined HBR. There are many algorithms
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for this purpose. A prominent approach is the Alfano Negron Close
Approach Software (ANCAS) method (Alfano and Negron, 1993; Al-
fano, 1994), which is based on localized cubic polynomial root finding,
however also the fine conjunction detection search of the smart sieve
algorithm can be used. Recently, also promising results have been
reported using Chebyshev proxy polynomial root finding (Denenberg,
2020).

So far, Monte-Carlo Pc calculations were limited to the SP perturba-
tion theory. The underlying issue is the incompatibility of the sampling
step with the Kozai/Brouwer TLE mean orbital elements definition.
There is simply no statistically consistent and formally correct tech-
nique to sample the TLE orbital elements according to GCRF epoch
covariances (see also the discussion in section 4.4). With the help of
the numerical GP covariance propagation introduced and validated
in section 4.4, it is however possible to formulate a workaround that
bridges the gap between Monte-Carlo collision probabilities and the
GP theory, as is demonstrated in the following.

Prerequisites (tf = propagation end time, t0 = target/chaser epoch times):
• Target and chaser TLE epoch sets: xt0,T ,m and xt0,C,m

• GP propagator (equation 4.62)
• Algorithm 4.1: xt0,m, tf →Φ(tf, t0)
• Target and chaser GCRF covariance matrices (e.g. derived in a

manner similar to Flohrer et al., 2008)

At each time-step it is possible to express the perturbed state (denoted
by a superscript asterisk) as the nominal state and a GCRF perturbation
vector:

x∗ti,T/C,GCRF = xti,T/C,GCRF + δxti,T/C,GCRF (B.1)

The GCRF epoch state vectors can be obtained from the TLE sets using
ti = t0 in equation 4.62:

xt0,T/C,GCRF = GP(t0, t0, xt0,T/C,m) (B.2)

The epoch state GCRF perturbations are derived from the epoch
covariance matrices (or pdfs), as described in Chao and Park (2002),
which allows to evaluate equation B.1 independently for the target
and chaser at their respective epoch times:

x∗t0,T/C,GCRF = xt0,T/C,GCRF + δxt0,T/C,GCRF

⇔ δxt0,T/C,GCRF = x∗t0,T/C,GCRF − xt0,T/C,GCRF (B.3)

It is not possible to rephrase x∗0,T ,GCRF as a perturbed TLE, however
the STM obtained from algorithm 4.1 allows to linearly propagate the
GCRF epoch state perturbation independently of the nominal state:

δxtf,T/C,GCRF =Φ(tf, T/C, t0) δxt0,T/C,GCRF (B.4)
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The perturbed and propagated state vector is then found as:

x∗tf,T/C,GCRF
∼= GP(t0, tf, xt0,T/C,m) +

Φ(tf, T/C, t0) δxt0,T/C,GCRF (B.5)

Equation B.5 needs to be evaluated for the target and chaser RSOs
at all times of interest within the encounter region. It only requires
analytical GP propagations for its evaluation and is therefore fully
compliant with the GP theory. The only weak spot is the usage of
linear error propagation in order to obtain the perturbed state at the
final propagation time. The algorithm is therefore subject to the same
restrictions as linear covariance propagation, such that its application
needs to be limited to scenarios for which the linearity assumption is
justified.

As a proof of concept, the MC collision probability computation
results were compared against the Alfano and McKinley adjoining
tube algorithms (cf. section 6.1.2) using the following encounter:

Target: INTELSAT 901 (IS-901)

1 26824U 01024A 20055.87828646 -.00000304 +00000-0 +00000-0 0 9998

2 26824 001.6396 091.3706 0002107 345.7158 167.9664 00.99201678068575

Chaser: MEV-1

1 44625U 19067B 20055.77389073 -.00000305 00000-0 00000+0 0 9998

2 44625 1.6363 91.3103 0002012 351.6056 124.8523 0.99201881 1262

Time of closest approach (JD): 2458905.55735990

Encounter region time limit: TCA± 0.25 days

Epoch RTN covariance (km2 and km2/s2) : diag(10-6,10-6,10-6,10-10,4·10-10,10-12)

To artificially increase the collision probability and reduce the number
of required Monte-Carlo iterations, the hard body radii of both ob-
jects have been increased to 50m each, resulting in a combined HBR
of 100m. Table B.2 depicts the collision probability results. Dagum
bounds with 5% error and 95% confidence were used to compute the
number of required trials (3 998 185).

GP MC Adj. tube (Alfano) Adj. tube (no CovSym) Adj. tube (McKinley)

1.1210 · 10−3 1.0592 · 10−3 1.0592 · 10−3 1.0603 · 10−3

Table B.2: Evaluation of GP Monte-Carlo collision probability

Further testing of the method is recommended, but the possibility of
GP collision probability validation by means of MC calculations is
a very attractive new feature. The analytic nature of the GP theory
makes its evaluation significantly faster than typical for SP evaluations.
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b.6 relativistic aberration correction

Aberration is an effect that belongs to the class of the apparent dis-
placements of celestial objects. The apparent direction in the sky at
which a celestial object appears is not the actual direction from which
the light was emitted. Several corrections are required to determine
the true origin from the observations.

The correction for aberration is one of several steps that must be
applied to optical measurements before they can be used for orbit
determination. As Airbus had just installed a robotic telescope in
Extremadura, Spain, when this work was started, an auxiliary devel-
opment of this thesis was the derivation of a universal relativistic
aberration correction algorithm.

Classical textbook references like Seidelmann (2006, section 3.25)
only consider the forward direction of the problem, i.e. the computa-
tion of the apparent direction of a light source, given its true direction,
however for orbit determination the inverse problem, i.e. finding the
true direction when the observations are given, is of concern. The
relativistic treatment of both problems (addition and removal of aber-
ration) is considered in the following. Further information on the
topic, such as the different types of aberration (stellar, annual, orbital,
diurnal) can be found in textbooks like Barbieri (2006, chapter 7) or
Seidelmann (2006, section 3.25).

The derivation starts from the generalized vectorial form of the
Lorentz transformation, which is derived in Fock (1964, section 1.§10)
and represents a set of equations for transforming the space and time
coordinates of one inertial frame into those of another that moves
with constant velocity relative to the first (moving frame quantities
are indicated by a superscript prime):

r′ = r− γvt+ (γ− 1)v(v · r)/v2 (B.6)

t′ = γ
[
t− (v · r)/c2

]
(B.7)

where γ = 1√
1−(v/c)2

= β−1 and c denotes the speed of light. The

inverse relationship describes the transformation of the space and time
coordinates of the inertial frame with respect to the moving frame
(Fock, 1964, section 1.§10):

r = r′ + γvt′ + (γ− 1)v(v · r′)/v2 (B.8)

t = γ
[
t′ + (v · r′)/c2

]
(B.9)

Equations B.6 and B.8, as well as B.7 and B.9 only differ by the sign
of v. This set of equations describes the generalized vectorial Lorentz
transformation for space and time. In the present form, equations
B.6-B.9 cannot be used to correct for the effect of aberration due to
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their inherent time dependence. To this end, the derivative of r′ with
respect to t′ needs to be computed from equations B.6 and B.7:

dr′

dt′
=
dr

dt

dt

dt′
− γv

dt

dt ′
+ (γ− 1)v

(
v · dr
dt

dt

dt ′

)
/v2 (B.10)

To further simplify equation B.10, a description of dt/dt′ is required.
Differentiating equation B.7 with respect to dt yields:

dt′

dt
= γ

[
dt

dt
−
(
v · dr
dt

)
/c2
]
= γ

[
1−

(
v · dr
dt

)
/c2
]

(B.11)

Letting u = dr/dt, u′ = dr′/dt′ and inserting equation B.11 into eq.
B.10 yields:

u′ = u
1

γ[1− (v ·u)/c2]
− γv

1

γ[1− (v ·u)/c2]

+ (γ− 1)v
(
v ·u 1

γ[1− (v ·u)/c2]

)
/v2

⇔ u′ =
u− γv+ (γ− 1)v(v ·u)/v2

γ[1− (v ·u)/c2]
(B.12)

The inverse transformation starts by computing the derivative of
equation B.8 with respect to dt:

dr

dt
=
dr′

dt′
dt′

dt
+ γv

dt′

dt
+ (γ− 1)v

(
v · dr

′

dt′
dt′

dt

)
/v2 (B.13)

The derivative of eq. B.9 with respect to t′ results in:

dt

dt′
= γ

[
dt′

dt′
+

(
v · dr

′

dt′

)
/c2
]
= γ

[
1+ (v ·u′)/c2

]
(B.14)

which upon insertion into equation B.13 leads to:

u = u′
1

γ[1+ (v ·u′)/c2]
+ γv

1

γ[1+ (v ·u′)/c2]

+ (γ− 1)v
(
v ·u′ 1

γ[1+ (v ·u′)/c2]

)
/v2

⇔ u =
u′ + γv+ (γ− 1)v(v ·u′)/v2

γ[1+ (v ·u′)/c2]
(B.15)

Equations B.12 and B.15 are independent of time and only differ by
the sign of the relative velocity v. Formula B.12 expresses the velocity
in the dashed (moving) system, given the relative observer velocity
vector v and the light velocity vector u. This case corresponds to the
addition of aberration, whereas equation B.15 represents the inverse
relationship and is required to remove the effect of aberration from an
apparent target position.

Denoting the true direction vector from the observer to the light
source as p and the direction vector from the observer to the apparent
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position as p′, the velocity vectors of the incoming light correspond to
u = −cp, as well as u′ = −cp′. The vector v corresponds to the inertial
observer velocity. Using these relations, the addition of aberration is
obtained from equation B.12 as:

−cp′ =
−cp− γv− (γ− 1)v(v · cp)/v2

γ[1+ (v · cp)/c2]

⇔ cp′ =
cp+ γv+ (γ− 1)v(v · cp)/v2

γ[1+ (v · cp)/c2]
(B.16)

Removing aberration requires obtaining u from u′. Using equation
B.15 with u′ = −cp′ yields:

−cp =
−cp′ + γv− (γ− 1)v(v · cp′)/v2

γ[1− (v · cp′)/c2]

cp =
cp′ − γv+ (γ− 1)v(v · cp′)/v2

γ[1− (v · cp′)/c2]
(B.17)

Both cases may be combined into a single equation. To this end, the
notation is changed slightly by indicating the direction vector prior
correction as p and the corrected (with the addition or removal of
aberration) direction as pc:

cpc =
cp± γv+ (γ− 1)v(v · cp)/v2

γ[1± (v ·p)/c]
(B.18)

Dividing by c results in:

pc =

1
γp± v/c+

(
γ−1
γ

)
v(v ·p)/v2

1± (v ·p)/c
(B.19)

Since γ = β−1 and thus (γ − 1)/γ = 1 − β, equation B.19 can be
written as:

pc =
βp± v/c+ (1−β)c

2

v2
(v/c)(v/c) ·p

1± (v ·p)/c
(B.20)

Since β =
√
1− (v/c)2 ⇔ 1− β2 = (v/c)2 ⇔ (v/c)2 = (1+ β)(1− β)

⇔ (c/v)2 = 1/((1+β)(1−β)), it follows that:

pc =
βp± v/c+ (p · v/c)(v/c)/(1+β)

1±p · v/c
(B.21)

Equation B.21 is quoted in many textbooks, e.g. Barbieri (2006, eq.
7.5) or Seidelmann (2006, eq. 3.252-3), however always featuring only
the plus sign. The general derivation starting from the Lorentz trans-
formation demonstrates that the inverse problem, i.e. the removal
of aberration from optical measurements, is achieved by using the
minus sign in two places of the equation. A Fortran implementation
of the correction, which is able to add or remove aberration, is given
in algorithm B.9.



380 auxiliary developments

Listing B.9: relativisticAberrationCorrection
!===============================================================!

Subroutine aberration(vrel, p, add)

!! Perform aberration correction

!

!! To add aberration set add=.TRUE., else it is removed.

!---------------------------------------------------------------!

!! Author: Fabian Schiemenz

!! Date: 02/2018

!---------------------------------------------------------------!

! In/Out:

!> Position unit vector in GCRF inertial frame

!> The corrected vector will be returned

real(dp), dimension(3), Intent(inout) :: p

! Input only:

!> To add aberration, set add=.TRUE.

!> In all other cases it will be removed

logical, Intent(in), optional :: add

!> Velocity of the observer in the inertial frame

real(dp), dimension(3), Intent(in) :: vrel

!---------------------------------------------------------------!

!Locals:

real(dp) :: beta, pv

real(dp), dimension(3) :: pc

logical :: addMode

!---------------------------------------------------------------!

!Fortran does not support short-circuit boolean evaluation, hence

!check if add is present AND true

addMode = present(add)

if (addMode) addMode = add

! Define beta

beta = sqrt(1-(MAG(vrel)/c)**2)

pv = DOT(p, vrel)

if (addMode) then

!Add aberration

pc = (beta*p + vrel/c+((pv/c)*vrel/c)/(1+beta))/(1 + pv/c)

else

!Remove aberration

pc = (beta*p - vrel/c+((pv/c)*vrel/c)/(1+beta))/(1 - pv/c)

end if

!Update the input direction vector

p = pc

End Subroutine

!===============================================================!
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