

 C
O

R
FU

 –
 A

n
Ex

te
nd

ed
 M

od
el

-D
ri

ve
n

Fr
am

ew
or

k
fo

r S
m

al
l S

at
el

lit
e

S
of

tw
ar

e

Würz

Research in Aerospace
Information Technology

This monograph series is published by the Chair
of Aerospace Information Technology (Informatik
VIII) of the University of Würzburg and presents
innovative research regarding avionic systems for
aerospace and terrestrial applications as well as
the technology transfer between both fi elds.
The main research focus is on the development of
reliable soft- and hardware for embedded appli-
cations that allow the autonomous operation of
unmanned systems in challenging environments.
This includes the development of new technolo-
gies such as wireless communication methods,
distributed sensing and control strategies, sensor
fusion algorithms, novel navigation methods and
concepts for dependable software targeting the
irreducible complexity.
Another research focus is on cooperative tasks
of multi-agent systems, including homogeneous
swarms and arbitrary heterogeneous constella-
tions.
The developed technologies are deployed in nu-
merous real-world applications such as small sa-
tellite systems, distributed sensor networks, un-
manned aerial vehicles for extreme environments
and other experimental platforms.

Herausgeber:
Prof. Dr. Sergio Montenegro

Frank Flederer

CORFU
An Extended Model-Driven
Framework for Small Satellite
Software with Code Feedback

R
A

IT
 2

Research in Aerospace
Information Technology

Institut für Informatik
Lehrstuhl für Informationstechnik
für Luft- und Raumfahrt
Prof. Dr. Sergio Montenegro

© Lehrstuhl für Informatik VIII
Informationstechnik für Luft- und Raumfahrt
Julius-Maximilians-Universität Würzburg
Institut für Informatik
Josef-Martin-Weg 52/2
97074 Würzburg

Tel.: +49 931 - 31-81400

L-info8@informatik.uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/
aerospaceinfo/
Alle Rechte vorbehalten.
Würzburg 2021.

Dieses Dokument wird bereitgestellt durch den
Publikationsservice der Universitätsbibliothek
Würzburg.

Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg

Tel.: +49 931 - 31-85906

opus@bibliothek.uni-wuerzburg.de
https://opus.bibliothek.uni-wuerzburg.de

Foto oben: Lehrstuhl für Informatik VIII
der JMU Würzburg
Foto unten: Frank Flederer

ISSN: 2747-4828

Zitiervorschlag:
Flederer, Frank (2021): CORFU – An Extended Model-Driven Framework
for Small Satellite Software with Code Feedback. Research in Aerospace
Technology, 2. DOI: 10.25972/OPUS-24981

R
A

IT
 2

 F

ra
nk

 F
le

de
re

r

CORFU — An Extended Model-Driven Framework for

Small Satellite Software with Code Feedback

Frank Flederer

October 18th, 2021

Julius-Maximilians-Universität Würzburg

Fakultät für Mathematik und Informatik
Informatik VIII: Aerospace Information Technology

Dissertation

Corfu — An Extended Model-Driven Framework
for Small Satellite Software with Code Feedback

Frank Flederer

1. Reviewer Prof. Dr-Ing. Sergio Montenegro
Julius-Maximilians-Universität Würzburg

2. Reviewer Prof. Dr. Reiner Kolla
Julius-Maximilians-Universität Würzburg

Supervisor Prof. Dr-Ing. Sergio Montenegro

October 18th, 2021

Frank Flederer

CORFU — An Extended Model-Driven Framework for Small Satellite Software with Code

Feedback

Dissertation, October 18th, 2021

Reviewers: Prof. Dr-Ing. Sergio Montenegro and Prof. Dr. Reiner Kolla

Supervisor: Prof. Dr-Ing. Sergio Montenegro

Julius-Maximilians-Universität Würzburg

Informatik VIII: Aerospace Information Technology

Institut für Informatik

Fakultät für Mathematik und Informatik

Emil-Fischer-Straße 70

97074 Würzburg

Abstract

NOTE: For better readability, I use we instead of I in this document.

Corfu is a framework for satellite software, not only for the onboard part but also
for the ground. Developing software with Corfu follows an iterative model-driven
approach. The basis of the process is an engineering model. Engineers formally
describe the basic structure of the onboard software in configuration files, which
build the engineering model. In the first step, Corfu verifies the model at different
levels. Not only syntactically and semantically but also on a higher level such as the
scheduling.

Based on the model, Corfu generates a software scaffold, which follows an application-
centric approach. Software images onboard consist of a list of applications connected
through communication channels called topics. Corfu’s generic and generated code
covers this fundamental communication, telecommand, and telemetry handling. All
users have to do is inheriting from a generated class and implement the behavior in
overridden methods. For each application, the generator creates an abstract class
with pure virtual methods. Those methods are callback functions, e.g., for handling
telecommands or executing code in threads.

However, from the model, one can not foresee the software implementation by
users. Therefore, as an innovation compared to other frameworks, Corfu introduces
feedback from the user code back to the model. In this way, we extend the engineer-
ing model with information about functions/methods, their invocations, their stack
usage, and information about events and telemetry emission. Indeed, it would be
possible to add further information extraction for additional use cases. We extract
the information in two ways: assembly and source code analysis. The assembly
analysis collects information about the stack usage of functions and methods.

On the one side, Corfu uses the gathered information to accomplished additional
verification steps, e.g., checking if stack usages exceed stack sizes of threads. On the
other side, we use the gathered information to improve the performance of onboard
software. In a use case, we show how the compiled binary and bandwidth towards
the ground is reducible by exploiting source code information at run-time.

v

Zusammenfassung

Corfu ist ein Framework für Satelliten-Software für beide Seiten: Space und Boden.
Mit Corfu folgt die Softwareentwicklung einem iterativen modellgetriebenen Ansatz.
Grundlage der Software-Entwicklung ist ein technisches Modell, das formell die
grundlegende Struktur der Onboard-Software beschreibt. EntwicklerInnen beschrei-
ben dieses Modell in Konfigurationsdateien, die von Corfu in verschiedenen Aspekten
automatisch verifiziert werden, z.B. im Bereich des Scheduling.

Anhand des definierten Modells erstellt Corfu ein Quellcode-Gerüst. Die Onboard-
Software ist in einzelne Applikationen aufgeteilt, die durch Kommunikationskanäle
miteinander kommunizieren (Topics genannt). Generischer Code und der gene-
rierte Code implementieren bereits die Behandlung und Verwaltung der Topic-
Kommunikation, Telekommandos, Telemetrie und Threads. Der generierte Code
definiert pur-virtuelle Callback-Methoden, die BenutzerInnen in erbenden Klassen
implementieren.

Das vordefinierte Modell kann allerdings nicht alle Implementierungsdetails der Be-
nutzerInnen enthalten. Daher führt Corfu als Neuerung ein Code-Feedback ein. Hier-
bei werden anhand von statischer Analyse Informationen aus dem BenutzerInnen-
Quellcode extrahiert und in einem zusätzlichen Modell gespeichert. Dieses extra-
hierte Modell enthält u.a. Informationen zu Funktionsaufrufen, Anomalien, Events
und Stackspeicherverbrauch von Funktionen. Corfu extrahiert diese Informationen
durch Quellcode- und Assembler-Analyse. Das extrahierte Modell erweitert das
vordefinierte Modell, da es Elemente aus dem vordefinierten Modell referenziert.

Auf der einen Seite nutzt Corfu die gesammelten Informationen, um weitere Ve-
rifikationsschritte durchführen zu können, z.B. Überprüfen der Stack-Größen von
Threads. Auf der anderen Seite kann die Nutzung von Quellcode-Informationen
auch die Leistung verbessern. In einem Anwendungsfall zeigen wir, wie die Größe
des kompilierten Programms sowie die genutzte Bandbreite für die Übertragung von
Log-Event-Nachrichten durch das erweiterte Modell verringert werden kann.

vii

Contents

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Approach of Corfu . 7

1.3 Original Contributions . 9

1.4 Delimitation of the Work . 10

1.5 Partial Publications . 11

1.6 Document Organization . 12

1.7 Color Conventions Used in the Document 13

II Fundamentals 15

2 Characteristics of Satellite Missions 17

2.1 Hierarchical Composition of Components 17

2.2 Phases of Satellite Projects . 20

2.3 Small Satellites . 21

3 Basics of Model-Driven Software Development 23

3.1 Process of Model-Driven Development 23

3.2 Increasing Abstraction Level . 24

3.3 Elements of Model-Driven Development 25

4 Structure of On-Board Software for Small Satellites 31

4.1 Basic Software Structure . 31

4.2 Operating Systems for Satellite Software 32

4.3 Communication Middleware for Satellite Software 38

4.4 General Entity Types of On-board Software 39

4.5 Classification of Applications . 40

4.6 Common Topics . 41

4.7 Common Applications . 42

4.8 Telemetry . 46

ix

4.9 Communication with Ground . 47

5 Safety-Critical Software 49

5.1 Standards and Code Conventions for Reliable Source Code 49

5.2 Lessons Learned from Software Faults in Space Missions 51

6 State of the Art 55

6.1 NASA’s core Flight System (cFS) . 55

6.2 F’ . 58

6.3 Cordet-2 . 60

6.4 NanoSat Mission Operations Framework (NanoSat MO Framework) . 60

6.5 OBS framework . 61

6.6 Ziemke, Kuwahara, Kossev . 61

6.7 Prochazka et al. 62

6.8 Other Related Work . 62

III Design of Corfu 65

7 Methodology 67

7.1 Development Process . 67

7.2 Goals . 67

7.3 Requirements . 68

7.4 Testing . 69

8 Basic Concepts and Design of Corfu 71

8.1 Use Cases . 71

8.2 Development Process . 73

8.3 Static Structure of Onboard Software 75

8.4 Concepts . 77

8.5 Reporting Programming Errors at Compile-Time 90

9 The Engineering Model of Onboard Software 91

9.1 Structural Part of the Engineering Model 91

9.2 Behavioral Part of the Engineering Model 100

10 Tools and Libraries of Corfu 103

IV Implementation of Corfu 109

11 Configuration Files and Generated Code 111

x

11.1 Directory Structure for Satellite Projects 111

11.2 Project Configuration File . 112

11.3 Application Configuration File . 114

11.4 Node Configuration File . 121

11.5 Code Generation Process . 122

12 Feedback from User Code to the Model 127

12.1 The Extended Model . 127

12.2 Assembly Analysis . 128

12.3 Source Code Analysis . 131

13 Model Verification 137

13.1 Simple Configuration Verifications 137

13.2 Scheduling Analysis . 138

13.3 Stack Usage Analysis of Threads . 143

14 Automatic Testing 147

14.1 Unit Tests . 147

14.2 Integration Tests . 150

V Evaluation 153

15 Case Study: Log Event System 155

15.1 A Classical Implementation of Event Messaging as Reference 156

15.2 Comparison of the Bandwith Usage 157

15.3 Comparison of Binary Memory Usage 158

16 Comparison with Our Classical Onboard Software Implementation 163

16.1 Software Elements . 163

16.2 Comparison of Both Implementations 169

17 Development Process Evaluation 173

17.1 Avoided Bugs . 173

17.2 Potential New Bugs . 178

17.3 The InnoCube Cubesat Project . 178

VI Conclusions 181

18 Summary 183

xi

19 Future Work 185

VII Appendix 187

A Communication Middleware 189
A.1 Existing Middleware . 189
A.2 Implementation Aspects of Communication Middleware 193

B Software Requirements 205
B.1 Requirements of Satellite Software 205
B.2 Requirements of Safety-Critical Software 210
B.3 Requirements of Applying Model-Driven Development 210
B.4 Requirements of Model Feedback Features 211
B.5 Requirements of Embedded Software 212

C Detailed Comparison of Static Memory Usage 213

Bibliography e

xii

List of Figures

2.1 Hierarchical composition of satellite components and their communica-
tion interfaces . 18

3.1 Information flow in model-driven development 24

3.2 Abstraction in software development (adapted from [64]) 24

3.3 Representation types of models . 27

3.4 Examples of graphical and textual model representations 28

3.5 Example of model transformations in a software project 29

4.1 A common software composition for satellites 32

4.2 The environment of the mode manager within the software 44

6.1 The onboard software structure of the core flight system 55

6.2 Structure of the software bus of the cFS 58

6.3 Structure of software following the Cordet architecture (adapted from [72,
97]) . 60

7.1 Development process for creating Corfu 67

8.1 Use case diagram of satellite systems 72

8.2 Activity diagram of the development process 74

8.3 Corfu’s compilation process . 75

8.4 Configurable application elements in the model 76

8.5 Configurable node elements in the model 76

8.6 The hierarchy of application classes in the Onboard Software 78

8.7 The hierarchy of node classes in the onboard software 79

8.8 The sequence diagram of telecommand distribution in applications. . . 80

8.9 The class diagram of collecting standard telemetry. 82

8.10 Corfu’s approach to implement periodic threads (class diagram) 84

8.11 Corfu’s approach to implement periodic threads (sequence diagram) . 85

8.12 Example class diagram of local anomaly handling 86

8.13 Example sequence diagram of local anomaly handling 87

xiii

9.1 The entity relationship diagram of the structural part of the onboard
software in Corfu . 92

9.2 The entity relationship diagram of behavioral aspects of the user code . 101

10.1 Basic structure of Corfu’s libraries and tools 104

11.1 Directory structure of a OBSW project using Corfu 112

11.2 The activity diagram of the source code generation process 124

11.3 Example of generated documentation with a topic diagram 126

11.4 Example of generated documentation with a telecommand 126

12.1 The relations of engineering, extracted, and extended models 127

12.2 The extended model . 129

12.3 Example of an abstract syntax tree from Clang with semantic references134

12.4 The pattern within the abstract syntax tree to match events in the
source code . 135

12.5 Class diagram of the abstract syntax tree visitor for extracting function
information . 136

13.1 Notation for Real-Time Scheduling Algorithms and Analysis Methods
(adapted from [7]) . 140

13.2 Example of information about topic publications 145

14.1 Class hierarchy for unit testing of applications 149

14.2 Schema of integration tests . 151

15.1 code size of sendEvent functions with homogeneous parameter types . 159

15.2 Code size of serialize functions with homogeneous parameter types . 160

16.1 Comparison in static memory usage of different software elements . . 171

16.2 Comparison in code size of different software elements 172

A.1 Sequence of services using a message pool for messages 194

A.2 Sequence of services using the stack for messages 195

A.3 Sequence of services using an intermediate FIFO 196

A.4 Structure of decentral local routing . 199

A.5 Structure of central local routing . 200

C.1 Comparison of static memory usage of applications between a classical
implementation and Corfu . 213

C.2 Comparison of static memory usage of synchronous telecommand han-
dling between a classical implementation and Corfu a

xiv

C.3 Comparison of static memory usage of synchronous telecommand han-
dling between a classical implementation and Corfu a

C.4 Comparison of static memory usage of periodic threads between a
classical implementation and Corfu . b

C.5 Comparison of static memory usage of topic subscription between a
classical implementation and Corfu . b

C.6 Comparison of static memory usage of topic publication between a
classical implementation and Corfu . c

xv

List of Tables

1.1 The specification of microcontrollers in projects for which Corfu was
developed . 10

2.1 Classification of satellites based on mass[62] 21

4.1 Classification of common applications into responsibility layers 43

13.1 Notation for real-time scheduling algorithms and analysis methods
(adapted from [7]) . 139

16.1 Comparison of logical line of code between our classical implementation
and Corfu . 170

xvii

List of Listings

8.1 Classical approach to implement periodic threads in rodos 83

8.2 Example events being reported in the source code 87

8.3 Event macros . 88

8.4 Template functions for serializing event messages with their parameters 88

11.1 Example project configuration in YAML 113

11.2 Example generated code for the project’s name 113

11.3 Example generated code for a topic with custom data type structure . . 113

11.4 Example app configuration in YAML 114

11.5 Example generated code for an app . 115

11.6 Example generated code for the application’s name 116

11.7 Example generated code for the application’s ID 116

11.8 Example generated code for the application’s compile-time parameter . 116

11.9 Example generated code for the application’s run-time parameter . . . 117

11.10 Example generated code for the application’s telecommand handling . 117

11.11 Example generated code for the application’s standard telemetry . . . 118

11.12 Example generated code for the application’s extended telemetry . . . 118

11.13 Example generated code for the application’s periodic threads 119

11.14 Example generated code for the application’s synchronous topic sub-
scriptions . 120

11.15 Example generated code for the application’s asynchronous topic sub-
scriptions . 120

11.16 Example generated code for the application’s topic publication 120

11.17 Example node configuration in YAML 121

11.18 Example generated code for a node . 121

11.19 Example generated code for the node’s name 121

11.20 Example generated code for the node’s ID 122

11.21 Example generated code for the node’s list of applications 122

11.22 Example template for generating a struct 123

11.23 Example template for generating a struct 125

12.1 Example function for binary analysis 130

xix

12.2 x86 Assembly of the example function for binary analysis 130
12.3 Regular expressions for analyzing x86 assembly code 130
12.4 Example source code for abstract syntax tree demonstration 132

14.1 Example unit test for updating timeout values in the watchdog application150
14.2 Example integration test that sends a telecommand and receives a

telemetry . 150

15.1 A classical implementation for sending log event messages 157

16.1 Example of our classical application implemenation 164
16.2 Example of Corfu’s application implemenation 164
16.3 Example of our classical telecommand handling 164
16.4 Example of telecommand handling in the user code of corfu 166
16.5 Example of our classical standard telemetry handling 167
16.6 Example of standard telemetry handling in corfu 167
16.7 Example of our classical thread implementation 168
16.8 Example of thread user code in corfu 168
16.9 Example of our classical topic subscription 169
16.10 Example topic subscription in corfu . 169

17.1 Implementation of a semaphore guard 174
17.2 Usage of ThreadSafeData . 174
17.3 Example of protecting a variable of a base class 177
17.4 Example for using constant methods 177

xx

List of Abbreviations

ABI Application Binary Interface
AOCS Attitude and Orbit Control System
API Application Programming Interface
AST Abstract Syntax Tree
AUTOSAR Automotive Open System Architecture
BSP Board Support Package
CCSDS Consultative Committee for Space Data Systems
CI Continuous Integration
CNES Centre National d’Études Spatiales (National Centre for Space Studies)
CORFU Configurable Software Framework for you
CPU Central Processing Unit
DAG Directed Acyclic Graph
DSR Design Science Research
COTS Components Off-The-Shelf
CPU Central Processing Unit
DRE Distributed, Real-time, and Embedded
DSL Domain-Specific Language
DSML Domain-Specific Modeling Language
ECSS European Cooperation for Space Standardization
ESA European Space Agency
FDIR Fault Detection, Isolation, and Recovery
FIFO First In First Out
GUI Graphical User Interface
IDE Integrated Development Engine
IPC Inter Process Communication
JPL Jet Propulsion Laboratory
JSF Joint Strike Fighter (Air Vehicle C++ Coding Standards)
KISS Keep It Short and Simple (or: Keep It Simple, Stupid)
LCM Least Common Multiple
LEO Low Earth Orbit
LEOP Launch and Early Orbit Phase
LLOC Logical Lines Of Code
MBD Model-Based Development

xxi

MDD Model-Driven Development
MISRA Motor Industry Software Reliability Association
MIT Massachusetts Institute of Technology
MMU Memory Management Unit
NASA National Aeronautics and Space Administration
OBSW On-Board Software
OS Operating System
OSI Open Systems Interconnection
POSIX Portable Operating System Interface
PROMELA Process Meta Language
PUS Packet Utilization Standard
RODOS Real-time On-board Dependable Operating System
RTE Round-Trip Engineering
RTEMS Real-Time Executive for Multiprocessor Systems
SOFA Software Appliances
SRI Inertial Reference System
TC Telecommand
TDD Test-Driven Development
TM Telemetry
TM/TC Telemetry and Telecommands
UML Unified Modeling Language
XSD XML Schema Definition
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations
YAML YAML Ain’t Markup Language

xxii

to my family

xxiii

Part I

Introduction

Introduction 1
This chapter gives a short introduction of the motivation for creating the software
framework Corfu. It highlights the contribution and lists all the journal and confer-
ence publications of this work.

1.1 Motivation

Model-driven software frameworks improve software quality and shorten the devel-
opment time. In the field of satellite software, there are already some approaches
that go in the direction of model-driven development (MDD). However, there are
limitations in current (model-driven) approaches, which we try to address in our
framework Corfu.

1.1.1 Vision

Our vision is to have a unified software structure for satellite software, which takes
all the burden of writing boilerplate code off users. Users describe the desired
software structure and behavior concisely and abstractly: the (engineering) model.
The framework generates most of the boilerplate code so that users can concentrate
on implementing the mission-specific code.

By introducing information feedback from the source code into the model, we gain
details about user implementations, which might influence the model, e.g., events,
telemetry emission, or stack usage. Extracting this implementation information
automatically and using it in the model can make the software more robust and
performant.

1.1.2 Software Frameworks Support Reusability

The implementations of satellite software missions differ. They differ because of
the type of mission, the used hardware, and the time epoch in which they are

3

developed. However, all implementations of satellite software are subject to some
same conditions and requirements — independent of the specific mission and
payload. For example, onboard software in satellites always has to collect data
from its subsystems and periodically send them down to the ground to overview
the overall vital state. In addition, they often have to provide a certain degree of
autonomy because active ground contact is not available at any time. (Refer to B.1
for a list of general requirements of satellite software.)

Therefore, there is significant potential for reusing software components of satellite
software. Even if the subsystems are different for distinct satellites, developers can
pertain to the basic principle and the rough structure of onboard software. However,
there must be a well-defined interface between the components, e.g., between the
housekeeper, which collects the standard telemetry, and other subsystems. Software
frameworks usually provide ways to define communication interfaces formally.

Software frameworks already come with a predefined rough structure and straight-
forward interface at which the user-defined code docks. However, for some satellite
projects, simple frameworks might be too rigid. Frameworks should be flexible
enough so that users can tailor them to the specific needs of space missions.

1.1.3 Model-Driven Development

The field of safety-critical software applies model-driven development more and
more. It is also visibly arriving in the development of satellite software[5, 78].

Model-Driven Development vs. Model-Based Development The literature distin-
guishes between model-based (MBD) and model-driven development approaches
(MDD). Both approaches require engineers to define software models in advance,
i.e., before developers write code. Nyßen[71] differentiates model-based and model-
driven engineering in his Ph.D. thesis as follows.

Model-driven software engineering uses tools (e.g., generators) for automati-
cally processing the model to create software artifacts.

Model-based software engineering also creates software artifacts based on the
model. In contrast to model-driven engineering, it is not necessary to achieve
this with automatic tools. Instead, developers could transform the model into
software by manually writing code.

4 Chapter 1 Introduction

Model-driven development is an approach that, on the one hand, gives developers
freedom about configuring the framework and the final satellite software. On the
other hand, it enables engineers to define the structure of the software before begin-
ning with coding. Model-driven Development enforces engineers to early formalize
the software structure, including the required components and the communication
flow. Instead of defining models just for documentation, model-based frameworks
can generate artifacts directly from the models, e.g., source code or documenta-
tion files. In addition, tools can use the information of the software’s structure to
accomplish early verification of the design.

For a detailed look into model-driven development, please have a look at chapter 3.

Problems of Classical Model-Driven Development As it is applied so far for satellite
software, the classical model-driven development only knows one direction of
information flow; from the model to the source code and documentation. However,
models are just an abstraction of the final software, which does not contain all the
information for generating the entire software. If we generate code from the model,
it still needs to be refined manually by developers. In theory, developers extend the
original model with additional information, which is the source code.

On the other side, it might be helpful to include source code information into the
model. Using both types of information allows generators to access more accurate
information about the software system and makes implementation details available
to companion software like the ground software. As a consequence, the framework
can improve the usage of resources, e.g., by determining the used stack size (see
section 13.3) or by omitting constant strings from the software image and on the
transmission path (see section 8.4.5). In addition, it allows extending the verification
not only on the model but also to the user-written source code.

1.1.4 Agile Software Development

Usually, the development process for satellites still follows a traditional way. The
classical (non-agile) way follows one direction, from the requirements and spec-
ifications to implementation, testing, and verification. However, there are some
reports that agile software development is also making its way into satellite devel-
opment[14, 98]. For example, Lill et al.[55, 56] have successfully applied agile
development for satellite software. Even the ECSS recently released a handbook for
agile software development in space engineering[31].

1.1 Motivation 5

Agile software development bases on the "Manifesto for Agile Software Develop-
ment," which has been established by several renowned software developers and
engineers[6]. The manifest describes four values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

ECSS’ handbook for agile software development in space engineering[31] states:

Agile is an iterative, time-boxed approach to software development
in which a software product is built through an evolutionary process
characterised by early and frequent deliveries of product increments,
intensive customer collaboration and adaptive planning and goals, with
the aim of responding to change in a rapid and flexible manner.

The central goal of agile software development is to have a working version of the
software available at any time. Even if it is not finished — especially at the beginning
of the development — early versions can already be tested and evaluated. Du to the
non-strict plan, the development teams can quickly react to (requirement) changes
or problems in the development process. Agile software development comes with
additional requirements on model-driven frameworks, e.g., they also have to support
an iterative way. That means the model is usually not fully defined when the software
development begins. Instead, it evolves iteratively according to the agile process.
Therefore, the software framework must ensure that modifying the model works
seamlessly and that model changes do not impair the user code. Corfu achieves this
by keeping the generated code and the user-written code in separate files. The user
does not modify generated code and vice versa. Both parts, the generated and the
user code, are only semantically connected via class inheritance.

Sweeting identifies in [93] several aspects of teams developing small satellites and
their projects:

1. highly innovative staff

2. small, motivated teams

3. devolved responsibility, rigor, and quality

4. good team communications, close proximity

6 Chapter 1 Introduction

5. well-defined mission objectives and constraints

6. knowledgeable use of modern components

7. layered, failure-resilient system architecture

8. subsystem burn-in rather than component screening

9. short timescale (to prevent possible escalation of objectives)

10. design to cost

11. run by well-informed and responsive management personell

1.2 Approach of Corfu

This dissertation comprehensively describes the software framework Corfu. Corfu
is a framework for developing satellite software in a model-driven way. It comes
with a configuration format covering characteristics of small satellite software. The
configuration files rely on the YAML syntax, which comprises nested elements of
associations (key/value pairs), scalar data, and lists[79]. On top of this, we define a
semantic schema in which developers describe satellite software.

Corfu organizes onboard software in separate reusable components, which we call
applications. Each application implements a distinct functionality, which software
images can incorporate. Applications consist of various elements; they can define
threads, telecommands, telemetry, and so on, with their properties. Applications
communicate via the pub/sub-communication middleware of Rodos. Therefore,
applications define which topic types they subscribe to and to which they publish.

Nodes aggregate all the applications that should run on a processor. In modern
satellites, several computers on board have to collaborate in order to accomplish
the mission. Therefore, developers can define multiple nodes in the model, which
combine different applications. Some applications might be part of every node, e.g.,
a housekeeping data collector, but some applications might be part only of particular
nodes, for example, applications for payload.

Corfu uses information from the model in two different ways: First, it verifies the
model, including a semantic check and more elaborated verification steps, such
as scheduling analysis for threads in the system and analysis of (stack) memory
usage. Second, it uses information from the model to generate parts of the source
code. For example, the generated code contains the general structure of applications,

1.2 Approach of Corfu 7

including the local distribution of telecommands and structs of telecommand and
telemetry messages. The generated code leaves pure virtual methods, which have to
be implemented by developers with the application’s intended behavior. The set of
pure virtual methods includes reactions on topic messages, telecommands, and code
that is executed (periodically) in the context of threads.

Apart from the applications, the code generator of Corfu also creates code of nodes,
which represent software images on processors. Such node code instantiates all
configured applications and topics and configures them. The generated node code
also includes the wiring of the applications through the topics. The model configu-
ration already contains all the required information for nodes; it is unnecessary to
contribute manual code.

Based on the user source code, which users contribute to the project, Corfu performs
feedback back to the model. By applying static analysis on the source code, Corfu
extracts information from the user implementation. Among other information, it
includes stack requirements of functions, static values such as string literals, and
behavioral aspects such as information about which reacting methods emit telemetry
data.

Corfu gathers the extracted information in a model, which we call extracted model.
The extracted model references elements from the engineering model, such as
applications, threads, or telecommands. Therefore, the extracted model extends the
engineering model by information from the source code. We call the combination of
both the formal and the extracted model extended model.

In several use cases, we demonstrate how satellites can benefit from exploiting
information from the extended model. By implementing a logging system, we show
that we can improve the performance of the software. Here, the analyzer saves the
message strings from the logging system into the extracted model. In this way, the
message strings are also available at run-time, e.g., to the ground software. Thus, it
is not necessary to store the entire string into the executable and transmit it. Instead,
it is sufficient to store and transmit an identifier for the string.

By checking the user source code for data emission, like telemetry or topic publica-
tion, Corfu can verify whether the user used the correct reaction types. It does this
by comparing the expected response types with the user source code. However, it
does not check whether the user implemented everything right because the model
does not contain complete information about what applications do.

By using information from the source code, Corfu can verify software parameters.
One example is the stack size of threads. Corfu’s analyzer determines the stack usage

8 Chapter 1 Introduction

of the user methods and functions and calculates the expected stack usage. Based
on the result, Corfu can verify the stack sizes of threads, which engineers define at
compile time.

Satellite software is not limited to the part on board. On the ground side, satellite
missions need to implement corresponding ground software, which can also exploit
information from the extended model. Therefore, Corfu comes with a ground
software library and a reference implementation of ground software.

1.3 Original Contributions

In sum, Corfu enhances the state of the art and recent research with the following
contributions:

• Corfu specifies a model specifically for small satellites, which relies on the
YAML syntax. In contrast to the format of other frameworks, YAML requires
less boilerplate code, which makes it easier to read and write for humans.
Users can parse the YAML files with established parsers to process the model
information in new ways by avoiding to introduce an utterly new syntax.

• To date, there is no full model for onboard software that covers all configu-
ration parameters. Other model-based frameworks such as FPrime[10] still
require configuration information in the source code. Having all configuration
parameters directly available in the model in an easy parsable way like YAML
facilitates the verification and further processing.

• In current approaches, the model for satellite software do not cover timing
parameters. Corfu does include timing information for (periodic) thread
execution, which allows early estimations of CPU usages and scheduling
analyses. The same goes for memory usage.

• Introducing feedback from the user source code back to the model is a novelty
in the field of the model-driven development for satellite software. Having
information available from the source code enables improvements regarding
performance and safety.

• Exploiting information from the (extended) model of the software at satellite
operations is new. As a use case, we have implemented an event logging
system to show positive effects. On the one side, executable files have to

1.3 Original Contributions 9

store less constant data, and on the other side, log event messages require less
bandwidth for transmission.

• With information from both models, engineered and extracted, we show that
verification can be improved, e.g., checking stack sizes of threads.

1.4 Delimitation of the Work

The area of software frameworks for satellites is vast; therefore, we have some
exclusions.

1.4.1 Small (Academic) Satellites

This work has been developed in the context of creating satellite software for small
satellites, namely Cubesats. In those satellite projects, we relied on COTS, as most
academic space missions do. Specifically, we had three types of microcontrollers
in use in the projects running Corfu. Table 1.1 lists their specifications. As one
can see, those microcontrollers are not very powerful. It is not possible to run
extensive operating systems such as Linux on them. Therefore, we had to design the
framework to run with minimal resources.

Microcontroller Clock Frequency RAM
Silabs EFR32FG12 40 MHz 256 KiB
STM32L4+ 120 MHz 640 KiB
STM32F4 168 MHz 192 KiB

Table 1.1.: The specification of microcontrollers in projects for which Corfu was developed

The focus of our framework is to provide fast development of software for experi-
mental satellites. Thus, we do not cover characteristics of bigger and commercial
satellites, which come with additional requirements.

1.4.2 Extended Modeling-Driven Development

In the engineering field, there exists the term round-trip engineering (RTE), which
synchronizes models with the source code[89]. In the one direction, that means
if the model changes, the code will be re-generated. In the other direction, if the
source code changes, the model will adapt to it. The primary goal of round-trip

10 Chapter 1 Introduction

engineering is to ensure that the model — and thus part of the documentation — is
always consistent with the source code.

Our approach of extended model-driven development differs from round-trip engi-
neering. Instead of keeping the same information up to date in both representations
(model and code), Corfu combines information of both representations and uses
them together. Another difference is that we use the (extended) model at compile-
time and the software’s run-time. Classical round-trip engineering only uses it at
development time.

1.5 Partial Publications

Some results of the dissertation have already been published in journal and confer-
ence papers:

1. Frank Flederer, Sergio Montenegro: Model-Based Framework for On-Board-
Software, Small Satellite Conference, 2021.

2. Frank Flederer, Sergio Montenegro: A Configurable Framework for Satellite
Software, IEEE International Conference on Software Engineering and Service
Science, 2021.

3. Accepted1: Frank Flederer, Sergio Montenegro: Communication Middleware for
Onboard Software in Space: A Survey of Techniques and Implementation Aspects,
4S Symposium, 2020.

4. Frank Flederer, Sergio Montenegro: A model-driven framework for small satellite
software with feedback through static analysis of user code, Pico and Nano
Satellite Workshop, 2021.

5. Frank Flederer, Sergio Montenegro: CORFU - Ein modellgestütztes Framework
für On-Board-Software mit statischer Quellcode-Analyse, Deutscher Luft- und
Raumfahrtkongress, 2021.

6. Frank Flederer, Ludwig Ostermayer, Dietmar Seipel, Sergio Montenegro:
Source Code Verification for Embedded Systems using Prolog, Workshop on
Logic Programming, 2017.

1but not presented because the organizers canceled the symposium due to the COVID-19 pandemic.

1.5 Partial Publications 11

7. Benjamin Grzesik, Tom Baumann, Thomas Walter, Frank Flederer, Felix Sittner,
Erik Dilger, Simon Gläsner, Jan-Luca Kirchler, Marvyn Tedsen, Sergio Mon-
tenegro, Enrico Stoll: InnoCube - A Wireless Satellite Platform to Demonstrate
Innovative Technologies, Aerospace, 2021.

Several parts of this dissertation have been adapted from those published papers
(mostly in modified form). The overview of existing middleware systems (section 4.3)
is adapted from the paper 3. The chapter 6 contains information of the related work
sections from the papers 1, 2, 4, and 5. The figures 8.3 of development process and its
description is adapted from the papers 2, 4, and 5. The figures 8.4, and 8.5 and their
description texts are adapted from the paper 2. The figures 8.6, 8.7, 8.8, 8.9, 14.1
about the generated code and their description texts are adapted from the paper 1.
The configuration examples from the sections 11.3 and 11.4 and their descriptions
are also adapted from the paper 1. The description about Clang’s abstract syntax tree
in section 12.3.1 is adapted from the paper 6. The implementation and evaluation
of the logging event use case (section 8.4.5) are adapted from the papers 2 and
5. The aspects of middleware implementations (appendix A) are adapted from
the paper 4. The description about innocube (section 17.3) is adapted from the
paper 1. The description of Corfu’s tools and libraries in chapter 10 is adapted from
the papers 1 and 2. The description of Corfu’s test environment in chapter 14 is
also adapted from the paper 1. Some information of the chapter 9 is adapted from
paper 5 Implementation and evaluation details of the source code feedback for the
log events system (sections 12.3.2, 15, and figures 15.1, 15.2) are also adapted from
paper 5.

1.6 Document Organization

This dissertation consists of six main parts:

1. The introduction gives a short overview of the topic. It presents the motivation
and a summary of the work.

2. The fundamentals part provides the necessary knowledge for this work. The
fundamental part includes the characteristic of satellite missions and onboard
software, its structure and development, and aspects of safety-critical software.
In addition, the part gives an overview of model-driven development, which is
the core development concept for Corfu. Finally, the part closes with the state
of the art and presents other satellite software frameworks.

12 Chapter 1 Introduction

3. The third part presents the design of Corfu. First, it describes the development
methodology and the fundamental conception with requirements, use cases,
and the development process. In addition, this part describes the engineer-
ing model for onboard software, which Corfu uses. Finally, it outlines the
organization of Corfu’s software suite.

4. The fourth part presents realization aspects of Corfu. It shows the structure
of configuration files and the generated code. In addition, the part presents
verification steps and how Corfu accomplishes the feedback from user code to
the model. The part ends with a description of automatic code testing.

5. The fifth part evaluates the implementation in regards of resource usage and
process improvements. It describes how the usage of code feedback influences
the software and the development process.

6. The conclusion part gives a summary of the whole project and an outlook on
future work.

1.7 Color Conventions Used in the Document

For the source code in the listings, we have used different background colors. They
indicate whether the displayed code is

1 user code ,

1 generated code , or

1 ready code coming with Corfu.

1.7 Color Conventions Used in the Document 13

Part II

Fundamentals

Characteristics of Satellite
Missions

2
Commonly, space missions usually follow the same organization and procedure,
which this chapter describes. Those common characteristics lead to requirements
that are specific to satellite missions and thus also to software frameworks.

2.1 Hierarchical Composition of Components

Developers and engineers never create satellites only on their own. Instead, they
develop the onboard and the ground segments in parallel. Both share the same
communication interface for commanding the satellite and receiving telemetry
from the satellite. On the software level, this communication interface defines the
structure and identifier of telecommands and telemetry packets. A telecommand
represents an instruction for the satellite, for example, enabling a payload device.
Therefore, telecommands come from the ground to the spacecraft. However, there
might be some telecommands that the satellite triggers, such as timed telecommands
that are due. Telemetry works in the opposite direction: it provides information
about the current status of the satellite or payload data down from the satellite
down to the ground.

Space missions can be described hierarchically in several layers, as figure 2.1 shows.
They consist of two main parts, the ground segment and the space segment. The
communication between the ground segment and the satellites(s) uses radio links,
such as s-band or ham radio. Most satellite missions only use one spacecraft.
However, some missions include several spacecraft combinations of landers and
rovers or companion satellites. Those multiple spacecrafts communicate via radio as
well.

Each satellite consists of different subsystems, which accomplish different tasks. For
example, there are subsystems for power management and attitude control. All of
those subsystems come with computers, which are connected by bussers. We call
such computers nodes. Nodes execute several applications in parallel. Applications

17

Mission

Ground
Segment

Space
Segment

S-Band /

Ham Radio

Satellite Satellite
...

Radio
 Radio

Node Node
...

Bus
 Bus

Application Application
...

Topic
 Topic

Thread Subscriber

...

FIFO
 Buffer

Subsystem Subsystem
...

Figure 2.1.: Hierarchical composition of satellite components and their communication
interfaces

18 Chapter 2 Characteristics of Satellite Missions

are software modules that implement distinct features, such as managing timed
commands or uploading and downloading data. In order to fulfill its task, applica-
tions execute threads and provide subscribers, which react to data and signals from
other applications or to telecommands. Such primitives from the operating systems
share memory directly and synchronize using synchronization primitives such as
semaphores, FIFOs.

Let us formalize such satellite missions. They consist of the entities from figure 2.1
and their relations. Let Sat be the set of satellites in a mission and U be the set of
subsystems. We define satellite configurations as

SC ⊆ Sat× U (2.1)

The subsystems consist of a number of computing nodes. A node represents comput-
ing nodes in a satellite; in other words, a satellite consists of a set of nodes. Nodes
stand for the hardware (e.g., microcontroller) that executes the onboard software.
Let Ns be the set of (computing) nodes on a satellite s ∈ Sat and A be the set of
applications. We define subsystem configurations as

UCs ⊆ Ns ×A (2.2)

Nodes need to communicate with each other using busses and networks that connect
nodes. However, not every node can directly communicate with each other node.
Let Bs be the set of busses on a satellite s ∈ Sat. We define bus configurations as
the set of node sets being connected via a bus.

BCs ⊆ P(Ns)× N (2.3)

The last element contains the number of physical busses. If a bus connection is
redundant, its value is greater than one. On those bus connections, the software
communicates with high-level concepts, such as virtual communication channels
(also referred to topics). Applications can publish data on topics and subscribe to
topics. Let To be the set of topics. Therefore, we define a topic configuration as

ToC ⊆ To× P(A)× P(A) (2.4)

= {(t, P, S)|t ∈ To ∧ P = {a|publishes(t, a)} ∧ S = {a|subscribes(t, a)}} (2.5)

Finally, applications consist of different elements. On the one side, we have active
elements, which drive application execution. Those are threads, which come with
own execution paths. In their execution, active elements make use of passive
elements. For example, publishing data to topics, i.e., sending data, invokes passive

2.1 Hierarchical Composition of Components 19

elements such as topics and subscribers. Let Th be the set of threads. We define
application configurations as

AC ⊆ A× Th (2.6)

These are the basic concepts of satellite missions. Indeed, it is common to implement
more advanced concepts on top of those, e.g., telecommands, their distribution, and
handling.

2.2 Phases of Satellite Projects

Not only the actual flight but also the whole project of a space mission consists
of different phases. The ECSS defined different phases that space missions shall
follow[29].

• Phase 0: Mission Analysis / Need Identification

• Phase A: Feasibility

• Phase B: Preliminary Definition

• Phase C: Detailed Definition

• Phase D: Production / Ground Qualification Testing

• Phase E: Utilization

• Phase F: Disposal Phase

This approach usually knows only one direction forward through all the phases,
following the waterfall approach. Small teams might handle projects better in agile
approaches. The ECSS also provides a document for employ agile development for
space software[31]. See section 1.1.4 for more information about agile development
in satellite projects.

As one can see, the actual mission flight takes place in the last two phases, E
and F. These are also the phases in which require the software to work reliably.
The flight time can also be divided further, defining different requirements for the
spacecraft and, hence, for the onboard software. Jens Eickhoff summarized those
phases[32]:

• Pre-launch Phase: final checks, configuration of the software

20 Chapter 2 Characteristics of Satellite Missions

• Launch and Early Orbit Phase (LEOP): disconnecting from the launcher, initi-
ating attitude control, orbit correction maneuvers

• Commissioning Phase: performing operations tests, preparing payloads for
operation

• Nominal Operations Phase: performing payload operations, daily work (orbit
correction)

• End-of-life Disposal Phase: controlled de-orbiting

Onboard software has to cover all these in-flight phases. Every phase has different
requirements for the spacecraft. In the commissioning and LEOP, only a limited en-
ergy budget is available because the solar panels are not deployed and calibrated yet.
During those phases, there is no or only late communication with the ground station
possible. Therefore, the software has to accomplish those phases autonomously. Not
all processes in the software should run in every phase. Most payload processes
should not run before the commissioning or nominal operation phase.

2.3 Small Satellites

We can classify satellites in different ways. Sweeting divides satellites based on their
mass[92]. Mauro et al. refined his classification and extended it by medium, pico,
and femto satellites[62]. Tab. 2.1 shows the classification. We can see that the small
satellite includes every class with less mass. That means mini, micro, nano, pico,
and femto satellites also belong to the class of small satellites.

A particular class of satellites is CubeSat. Their base is a cube with the size of
100×100×100 mm3[40] and a mass of maximum 1.33 kg[16]. These values represent

Satellite Class Mass in kg
large ≥ 1, 000
medium ≥ 500 and < 1, 000
small < 500
mini ≥ 100 and < 500
micro ≥ 10 and < 100
nano ≥ 1 and < 10
pico ≥ 0.1 and < 1
femto < 0.1

Table 2.1.: Classification of satellites based on mass[62]

2.3 Small Satellites 21

the values for 1U. Cubesats can be bigger than just 1U; 3U and 6U are also common,
which have proportional greater dimensions. For example, 3U satellites have a
dimension of 300× 100× 100 mm3 and a mass up to 4 kg.

In recent decades, satellites have become more and more accessible[93]. Due to the
improved performance and quality of COTS, such components have arrived in space.
Components-off-the-shelf are small and cheap, enabling low-cost satellites, which
can be built even by amateur radio groups and universities. Davoli et al. estimate
costs of $100,000 to $200,000 for building and launching a small low earth orbit
satellite[27].

Not only differ small satellites in the selection of components but also the manage-
ment approach is different[93]. The development of small satellites (especially in
the academic field) follows a more agile approach than classical satellite project
management. Engineers have to select the components wisely. Most components-off-
the-shelf are not primarily designed for use in space; therefore, engineers have to
evaluate thoroughly. Such evaluation includes tests that cover specific requirements
such as radiation robustness. Producers might change and modify components-off-
the-shelf during their production time, e.g., introducing new revisions or changing
material or production processes. Therefore, it is crucial to work with components
of the same lot. On the other side, components-off-the-shelf have proven to provide
high reliability due to their massive use[93].

In contrast to the classical development of big satellites, developing with components-
off-the-shelf requires more agility. If some components do not work in the project or
different properties in different lots are detected, the team has to adapt the project
and the process to such new information.

Such agile development approaches have to be supported by the tools used. The
same is true for software development, which supports and welcomes changes and
iterative approaches — as Corfu does.

22 Chapter 2 Characteristics of Satellite Missions

Basics of Model-Driven
Software Development

3

Model-driven development is an engineering approach, which has existed since the
1980s[82]. In classical development, the software is created based on documents.
Those documents could be lists of requirements or — in agile developments —
user stories. However, there can be a lot of documents, which partly also contain
redundant information. Consequently, every time something changes, people have
to make sure to update all involved documents manually. This approach can be
very cumbersome and become expensive[36]. Model-based and model-driven de-
velopment tackle such problems. Instead of having a lot of informal documents,
MDD comes with a formal way to define a (software) system: models. Such models
do not contain redundant information. Due to their formal style, it is possible to
automatically process information from the model to accomplish verification tasks
and auto-generate other artifacts, e.g., source code.

3.1 Process of Model-Driven Development

As Section 1.1.3 outlines, MDD sets itself apart from MBD by requiring automatic
conversion from the model(s) to the code. Therefore, software structure and
behavior information know one direction from the abstract representation to the
software implementation. Figure 3.1 depicts the information flow. The basis is
requirements, a textual description of features, behavior, and constraints of systems
and software[102]. Engineers have to translate those requirements into a formal
description. They can either describe them directly in the code, i.e., implement the
code according to the requirements, or formalize requirements in another formal way,
such as models. Model-driven development uses models to generate code eventually.
Therefore, creating models does not only help for documentation, verification, and
communication between stakeholders; it also directly expedites the development
process.

23

Requirements

Model(s)

Code

Code Generator

Figure 3.1.: Information flow in model-driven development

3.2 Increasing Abstraction Level

In the history of software development, designing and implementing software
has become more and more abstract, and on the other side, reusability has been
improved[64]. Figure 3.2 shows how the abstraction of software development has
evolved. Each step introduces more abstract concepts and translates them into more
primitive constructs.

Model Model

Compiler Source Code Source Code

Compiler
Assembly

Code Assembler Machine

Code

1950s1960s1980s

Abstraction

Figure 3.2.: Abstraction in software development (adapted from [64])

In machine code, developers must write their code directly as numerical values
(e.g., hexadecimal code). The machine code encodes instructions and data together,
which makes it hard to handle. In 1949, the first assembler code was developed and
was established in the 1960s. It introduces commands for processor instructions,
consisting of a short command and the parameters for instructions. 1

The next step was high-level languages. Their development began with Fortran,
which Backues released in 1957[4]. With the emergence of high-level languages,
new programming concepts became easily accessible, which developers would have
to encode into assembly code manually. For example, high-level programming
languages come with loops. In order to implement loop behavior in assembly,
developers have to combine conditional and unconditional jumps.

In high-level programming languages, different programming paradigms have
emerged, which comes with further abstractions. Very well known is the object-
oriented programming paradigm, which ties data to functions and comes with inher-

1Even if assembly code looks primitive nowadays, the apollo mission shows that complexity was still
manageable. The MIT Instrumentation Laboratory implemented a dynamic real-time scheduler to
execute multiple tasks quasi-parallel in assembler code.[39]

24 Chapter 3 Basics of Model-Driven Software Development

itance. Besides, there are the programming paradigms of functional programming
and logic programming, which approach development differently. Depending on the
problem domain, one paradigm might be better suitable than another. Therefore,
some programming languages support multiple programming paradigms.

Another development of high-level programming languages is domain-specific lan-
guages (DSLs). They come with keywords and concepts tailored to problem domains,
distinguishing them from general-purpose programming languages. Models are the
last step in our diagram. Similar to high-level programming languages, they describe
the structure and behavior of the software. However, they are abstract in order to
keep the focus on specific aspects of the software. Also here, there exist general-
purpose and domain-specific models (e.g., domain-specific modeling languages).
Technically, models are not the end of the line. Models can also be described in
another language: the metamodels.

3.3 Elements of Model-Driven Development

There are different artifacts and tools are used for MDD. This section gives a short
introduction to those elements.

3.3.1 Systems

Favre identified three types of systems[35]:

• physical systems,

• digital systems, and

• abstract systems.

Models can describe all of those system types.

Physical models reflect the behavior of physical objects. For example, the satellite
structure is a physical object. For satellite missions, engineers use physical models to
investigate the behavior of satellites, e.g., the thermal flow and its movement. Hence,
physical models are an integral part of satellite development because engineers
can not fully replicate the orbit’s physical environment on the ground. Therefore,
engineers often have to develop against a physical model of the satellite and the
target orbit for satellite development. For example, this includes the development
and tuning of the attitude control system.

3.3 Elements of Model-Driven Development 25

Favre characterizes digital systems as the content of digital memory, basically soft-
ware. Such digital models are those that software engineers build. In satellite
missions, digital systems are all software artifacts that run on the satellite and the
ground. The structure of digital models depends on the software architecture and
the domain in which the software runs.

Finally, abstract systems are neither physical objects nor digital systems — they are
concepts and approaches, which have (not) materialized into the real world. These
could be business rules, which define processes, which humans perform. In satellite
missions, manuals for the operating staff are an example of an abstract system.

3.3.2 Models

The word "model" is used in many disciplines and, therefore, comes with many
definitions and descriptions[8, 12, 49, 85]. In model-driven development, models
help to describe a system clearly and concisely. For the field of model-driven
development, we define models as follows.

Definition 3.1. A model M in the context of model-driven development is a collec-
tion of information describing the structure and behavior of real or abstract systems
or both. It does not incorporate every detail of a system because models focus on
specific parts of the system.

The literature knows two categories of models: descriptive and specification mod-
els[85]. They differ in the source of construction. Descriptive models are created
from existing systems. For example, such models can describe a physical system
or existing software. Specification models are created from the specification or
requirements. In this case, the system to be modeled does not exist yet. Instead, the
system will be built based on specification models. Hence, specification models are
such models that model-driven development uses because they first require defining
models and create the system from those models.

In [64], Mellor et al. establish four points that make good models:

• Good models contain only such information that is needed in order to describe
a problem domain. All other information should be omitted in order to keep
focus on the issue.2

2Indeed, it is good practice to have several models describing different problems, which contain
different types of information.

26 Chapter 3 Basics of Model-Driven Software Development

Model Representation Types

Graphical Textual

General Purpose Language Domain-Specific Language

Figure 3.3.: Representation types of models

• Good models contain all types of information that are required to describe the
problem domain accurately. It should approximate the behavior or structure
of the real or abstract object as close as possible.

• Good models facilitate the development. They should be easier to create than
the final artifact. By operating verification and tests already on the model
improves the quality of the final product.

• Good models are easy to grasp. This improves the communication between
the stakeholders and reveals misunderstandings earlier.

One can treat any entity or artifact as a model. If we have a look back at figure 3.2,
not only the model left is a model in the broader sense, also source, assembly, and
machine code are representations of the same software.

There is no limit to the number of models that might describe the same system.
Models can concentrate on specific aspects of the software. In order to concentrate
on specific aspects of the system, models can leave out unnecessary information for
the focus. Omitting unnecessary details allows developers to concentrate on specific
aspects of the software. For example, some models describe the static structures of
software, and some describe the software’s dynamic behavior.

Apart from the type of information that models contain, models also use different
representation forms, which figure 3.3 shows. For example, UML uses graphical
representations to describe different types of models. UML is a collection of several
types of diagrams. Version 2.3 of UML knows 14 different diagrams. Those diagrams
can be divided into structural and behavioral diagrams. Class, component, and
deployment diagrams are examples for structural diagrams and activity, use-case
and sequence diagrams are examples for behavioral diagrams.

3.3 Elements of Model-Driven Development 27

State1

State2

State3

eventA

eventA

eventAeventB

eventB

eventB

(a) Example: Graphical Model Representa-
tion (UML)

1 byte state = 1;
2
3 proctype eventA () {
4 state = 2
5 }
6
7 proctype eventB () {
8 if
9 :: (state == 2) -> state = 3

10 :: (state != 2) -> state = 1
11 fi
12 }

(b) Example: Textual Model Representation
(PROMELA)

Figure 3.4.: Examples of graphical and textual model representations

Another format is textual representations of models. There are two types of textual
representations: 1. applying a standard markup language (e.g. XML, YAML) and
2. defining a domain specific modeling language (DSML). In comparison, both have
advantages and disadvantages. Using general markup languages facilitates process-
ing model data in other tools because parsers usually exist for many programming
languages. DSMLs, on the other hand, come with their own syntax and semantics,
which perfectly cover the problem domain. By providing appropriate concepts and
syntactic constructs, DSMLs facilitate expressing domain-specific solutions concisely
and efficiently. They exploit that domains already have given nomenclature and
concepts, which they incorporate.

Figure 3.4 shows two examples of model representations. The left one is a UML state
machine diagram, the right one is PROMELA[41], which both describe behavioral
aspects of the software.

As we have mentioned earlier, many models, which cover different aspects, might
map a system. For example, such aspects could be the class structure and their
relations or the behavior of function calls. We call those different aspects model
classes.

28 Chapter 3 Basics of Model-Driven Software Development

Ma tac

Mb tbc

Mc tce Me

Figure 3.5.: Example of model transformations in a software project

Definition 3.2. A model class C represents a type of model, which restricts its
content to a given part of a system. Model classes are independent of a system’s
implementation details; instead, users can use them for similar systems.

For example, class diagrams are model classes that engineers can use for all software
systems. Each model M is part of a model class.

M ∈ C (3.1)

There are two types of model classes: abstract and executable[64] model classes.
Executable model classes contain all the information that is required to run the
system. In the field of software engineering, this is usually the source code, which is
the special model class Ce.

3.3.3 Model Transformation

When implementing software in model-based development, using models for refer-
ence suffices. However, in model-driven development, this is not enough because
model-driven development requires automatic transformation from models toward
software implementation. Transformability does not mean that each model should
directly be translatable into source code; it is also possible to transform models into
intermediate models, which finally are the basis to generate code (see figure 3.5).
The figure has two initial models, Ma and Mb, which are transformed into one com-
mon model Mc. Hence, such intermediate models can consolidate information from
several models into one. The output of the overall process, Me (e.g., executable),
transitively depends on the two input models, but the direct transformation into Me

has the intermediate model Mc as the source.

3.3 Elements of Model-Driven Development 29

Let Ca, Cb be two model classes; we express model transformations of Ca models to
Cb models as follows.

tab : Ca → Cb (3.2)

Model classes might come with their own information independent of the given
system. For example, a model covering sensor and actuator drivers (i.e., the interface
towards the physical world) might also comprise physical laws. However, this
additional information might be irrelevant for other model classes. Hence, two
models might share information, but they are not necessarily sub-/supersets in one
direction.. Let Ma and Mb two different models in the two different model classes
Ca and Cb.

Ma ∈ Ca, Mb ∈ Cb : Ma ⊆Mb ∧Ma ⊇Mb (3.3)

30 Chapter 3 Basics of Model-Driven Software Development

Structure of On-Board
Software for Small Satellites

4

This chapter gives an overview of the general structure of satellite software. It
addresses common parts of onboard software such as operating systems, communi-
cation middleware, common applications, and telemetry.

4.1 Basic Software Structure

The basic software stack for spacecraft is similar for most projects – see figure 4.1. At
the low part, there is an operating system1. Its purpose is to abstract the hardware
from the upper parts of the software stack. Additionally, it usually provides real-
time scheduling for threads. The board support package (BSP) is the part of the
operating system that contains hardware-specific code. For each new hardware
device supported by the operating system, developers have to implement such a
board support package.

The operating system itself just provides basic features, such as thread management
and some inter-thread communication primitives. In order to use more advanced
mechanisms, satellite projects usually integrate a framework, which has been devel-
oped specifically for spacecraft software. For an overview of existing software, see
section 6.

The next part is the communication middleware. In most cases, the communication
middleware is not an extra software; instead, it is often part of the framework.
Compared to primitive communication mechanisms provided by the operating
system, a communication middleware usually comes with more complex and more
flexible ways of communication between different applications — not only within one
computing node but also across different nodes. See section 4.3 for an overview of
different aspects and techniques of communication middleware implementations.

1Even in the very early stages of astronautics, NASA developed several priority-based operating
systems, such as EXEX, which they developed in the Apollo program[32].

31

BSP

User Applications

Operating System

Framework

Communication
Middleware

Figure 4.1.: A common software composition for satellites

The most up-level part of onboard software is the user applications. There, users
implement the mission-specific logic. The user code uses the lower-level parts: the
communication middleware for flexible communication between applications, the
framework for generic spacecraft software features, and the operating system for
hardware access.

4.2 Operating Systems for Satellite Software

Developers might implement some small microcontrollers on bare-metal, but most
computing nodes in spacecrafts use an operating system for hardware abstraction
and task scheduling. In the context of satellite software, operating systems have two
primary purposes: abstraction of the hardware and process management[24], which
this chapter shows. Additionally, we present different available operating systems
for space usage.

4.2.1 Hardware Abstraction

Operating systems come with an application programming interface (API) indepen-
dent of the underlying hardware. Some of them follow established interfaces, such
as the Portable Operating System Interface (POSIX)[44]. The implementation of
the API is often hardware-dependent. Hence, there exist different implementations
depending on the hardware devices that the OS supports.

32 Chapter 4 Structure of On-Board Software for Small Satellites

4.2.2 Process Management

Usually, computing nodes in spacecrafts have to several accomplished tasks simulta-
neously. Operating systems provide different mechanisms to achieve such behavior.
This section provides definitions of different terms and concepts.

Processes and Threads

Processes represent independent programs that run (quasi) parallel. Each process
has its own memory space, which requires a memory management unit (MMU).
Additionally, processes have their own register set, which the operating system’s
scheduler saves and restores every time it preempts a thread. Some definitions of
threads call them "lightweight processes" [95]. Each thread also has its own set of
registers, which the scheduler manages. However, multiple threads may belong to a
process; thus, they can access the same memory area. Some operating systems, e.g.,
RTEMS, do not support MMUs. Consequently, they provide only one global process;
threads execute the parallel computing paths.

Co-Routines

Usually, developers do not have to care about preemption when designing processes
and threads. They are programmed just like they do not have to share the processor
with other threads. Usually, they have an endless loop for their program flow. The
scheduler takes care of revoking the processor of a running thread and reassigning
it to other threads.

Co-routines, on the other hand, are aware of the other threads. They deliberately
give control to the scheduler in order to give other threads a chance to run[51]. This
behavior enables co-routines to run with non-preemptive (cooperative) schedulers.
Another difference between processes and threads is that all co-routines share one
stack.

Synchronization

The different threads and processes running on an operating system usually do
not perform their work independently. Often, they need to share data between
them or to synchronize with each other. The OS usually provides some standard
mechanisms[86]:

4.2 Operating Systems for Satellite Software 33

Mutex There might be portions of code, which the scheduler shall not execute in
parallel. One example is code that accesses a hardware device, e.g., writing
data to a UART. The software creates a mutex object or handler to access such
devices, which every piece of code uses that accesses the device (critical sec-
tion). Before the device is accessed, the code must enter the mutex and leave
it afterward by calling appropriate methods or functions. When developers
apply object-orientated programming, it is sensible to use a guard object here
(see 17.1.1).

Semaphore Software uses semaphores to send signals between threads or pro-
cesses. Both threads hold the same semaphore object or handler. A thread
might call a method or function to suspend until the semaphore forwards a
signal. Other threads can signal the waiting threads to resume, also by calling
a method or a function. In contrast to mutexes, semaphores also could have
a counter, which counts up each time a thread waits for a semaphore and
counts down each time a thread sends a signal. Consequently, it is possible to
implement a limitation on the number of threads for specific code sections.

FIFO When threads exchange data locally, they can use semaphores and shared
memory addresses. However, this limits the number of data packets to one.
The FIFO provides a fixed number of data packets, which can be filled and
retrieved by invoking methods or functions. For the synchronization of threads
or processes, there usually exist blocking FIFOs. A blocking FIFO suspends a
thread that wants to read from an empty FIFO until new data is available (or
the reading reaches a timeout). On the other end, if a thread inserts data into
a FIFO that is already full, the thread is suspended as well.

More advanced synchronization and communication strategies exist on some operat-
ing systems, e.g., some provide a communication middleware. For more information
about this, see section 4.3.

4.2.3 Process Scheduling

Real-time systems use two types of scheduling in real-time systems: the a priori
static scheduler and the a posteriori dynamic scheduler.

34 Chapter 4 Structure of On-Board Software for Small Satellites

Static Scheduling

Static scheduling provides maximal predictability about the execution times of tasks.
Engineers specify time slots in which the tasks run already before compilation.
They assign each task to specific time slots, which will not vary at run-time. For
handing (unplanned) interrupt tasks, a certain amount of time slots must be reserved,
according to the maximal occurrence rate. Due to the rigid scheduling, it is not
possible to adapt reaction times based on actual inputs.

Dynamic Scheduling

In dynamic scheduling, there are no time slots with predetermined allocation.
Instead, at run-time, a scheduler selects the next task to run (continue). The
selection process follows a known algorithm. For many real-time operating systems,
the scheduling mechanism uses fixed priorities. Not changing the priority of tasks
all the time increases the predictability of the reaction behavior. Usually, real-time
systems always select the task that is ready with the highest priority. When two
tasks have the same priority assigned, some operating systems, e.g., Rodos and
RTEMS, apply a round-robin scheduling, i.e., schedule the tasks alternatively with
identical time slots. Round-robin scheduling is only possible when the scheduling is
preemptive, i.e., the scheduler can suspend running tasks in order to resume them
at a later time point. Preemption is very suitable for dynamic real-time scheduling.
If a task with high priority becomes ready, the scheduler can suspend lower priority
tasks to finish the high priority one first.

4.2.4 Resource Management

Apart from processor time management in the scheduler, operating systems usually
also manage other resources on a system. Memory is another resource that oper-
ating systems manage. They assign the required memory to the different software
components. In safety-critical systems, the software shall not use dynamic memory
(cf. section 5.1.1); therefore, such operating systems allocate the memory only in
the start-up phase.

Another part of the management is the protection of resources. For the memory, oper-
ating systems might implement memory protection to prevent software components
from accessing other memory sections.

4.2 Operating Systems for Satellite Software 35

The same also goes for other resources in a system, such as hardware devices.
Operating systems can manage those devices and assign them to the different
software components on request. In some cases, they ensure that such devices
are not accessed simultaneously by applying synchronization mechanisms (see
section 4.2.2.

4.2.5 Overview of Existing Operating Systems

Several real-time operating systems have already been used in satellites projects,
which we shortly introduce in this section.

Rodos

In the strict sense, Rodos (Real-time On-board Dependable Operating System)
is more than an open-source operating system; it provides extended, high-level
features, such as a communication middleware[69]. Its development started at DLR
and continued the development and maintenance at the University of Würzburg. It
is available under open source conditions2.

Rodos comes with a fixed priority scheduler for running bare-metal on the different
ported hardware, including several ARM boards (Raspberry Pi, STM32, Smartfu-
sion2). Additionally, Rodos can run as a guest on other operating systems, such
as Linux, Posix, and MacOSX. In this case, it reuses the tasking/threading mecha-
nisms of the underlying operating system. Developers program satellite software
against a hardware abstraction layer, which makes the software agnostic of the
hardware. Having an abstraction layer is beneficial for development and testing, i.e.,
the software can be developed and tested on a desktop computer running Linux,
and afterward, it can run on the actual hardware. Indeed, further testing of the
hardware functionality and timing measurements have to be done on the actual
hardware because both might differ from the desktop hardware.

The communication middleware provides a loosely coupled communication between
applications in the software. It follows the publish/subscribe principle, i.e., applica-
tions might subscribe to a topic and get notified every time an application publishes
new data to the topic. This data exchange is not limited to the software on one
computing node. Rodos comes with a gateway service, which enables to forward
topic messages across several computing nodes. In this case, the involved computing

2https://gitlab.com/rodos/rodos

36 Chapter 4 Structure of On-Board Software for Small Satellites

nodes have to be connected via a network or bus. The nodes could also be connected
indirectly; if two nodes have no direct connection but a common neighbor, the
middleware can route topic messages through the common neighbor node.

In contrast to other approaches, e.g., those that follow the POSIX standard, Rodos
forbids creating and destroying threads dynamically. Instead, it is common practice
to instantiate all threads and topics statically. The set of threads is always constat;
this highly improves timing predictability because the set of threads is always
constant.

RTEMS

RTEMS (Real-Time Executive for Multiprocessor Systems) is an open source3 operat-
ing system developed by the OAR Corporation. Towards the spacecraft software, it
provides a POSIX 1003b API. It also implements a fixed-priority scheduling mech-
anism with a configurable round-robin procedure. In contrast to other POSIX
operating systems, RTEMS does not provide multiple processes; instead, each soft-
ware runs in one global process but in different threads. The difference is that the
memory context is the same for all threads; there is no memory protection across the
different threads. Like other operating systems, RTEMS comes with simple thread
synchronization features such as mutexes, semaphores, and signals.

Salvo

Pumpkin Inc. provides a CubeSat Kit, which delivers the base structure for cube
sat missions — this includes a hardware and software foundation. The core of the
software, which comes with the kit, is the real-time operating system Salvo. Pumpkin
Inc. did not primarily develop Salvo for space application, but several space projects
had already applied it.

In contrast to many other real-time operating systems, Salvo does not provide
preemption. Instead, it relies on cooperation between the tasks. That means that
every task should step back from occupying the CPU to give other tasks the chance to
progress. One advantage of this approach is that it is not required to hold a separate
stack for each task. Instead, all tasks share one stack.

However, task synchronization, for example, via semaphores, is still required because
tasks might release the CPU while holding exclusive access to some device. Moreover,

3https://www.rtems.org/

4.2 Operating Systems for Satellite Software 37

it provides communication concepts such as message queues, which threads can use
to exchange data. The developers have written Salvo in pure C and, therefore, also
provides a structural API for flight software.

FreeRTOS

This open source4 real-time operating system dates from embedded devices, such
as IoT. However, several satellite projects use it. Like Salvo, it uses C as the
programming language and, hence, FreeRTOS’ API towards user software follows
the structural programming paradigm. It supports both preemptive task scheduling
and co-routines, cooperative tasks voluntarily releasing the CPU. Co-routines share
the same stack. FreeRTOS provides standard communication primitives such as
semaphores and queues. In its plus packet, which is not freely available, FreeRTOS
comes with some already implemented features, such as TCP and UDP stacks or an
SSL implementation.

VxWorks

VxWorks is a real-time operating system from Wind River Systems[83]. Interplan-
etary missions such as NASA’s Pathfinder mars mission rely on VxWorks as OS.
VxWorks is proprietary and not freely available. It comes with a real-time kernel
and many features like dynamic linking, execution of containers for virtualization.
VxWorks implements a priority-based and preemptive microkernel[54]. Towards
applications, VxWorks provides a POSIX interface, which also entails synchroniza-
tion mechanisms and IPC. Many different embedded systems use VxWorks, such as
robotics, cameras, and also satellites. In the latest version, VxWorks also comes with
a stack for graphical user interfaces[106].

4.3 Communication Middleware for Satellite Software

Operating systems already come with primitive communication features for ex-
changing data between different software components. However, they have their
limitation. For example, it is not possible to send data between different computing
nodes. Communication middlewares provide advanced technologies for exchanging
data between software components and even between nodes.

4https://freertos.org/

38 Chapter 4 Structure of On-Board Software for Small Satellites

4.3.1 Services Concept

There are several approaches to standardize communication between space and
ground segments and for onboard communication and data exchange between
different spacecrafts. Often, the communication standard influences the design
of the software. For example, the Packet Utilization Standard addresses services
in the onboard software, suggesting a software design dividing into predefined
applications.

4.3.2 Publish/Subscribe Principle

The publish/subscribe principle is a typical communication pattern used in many
middleware implementations. It provides a loosely coupled message exchange be-
tween applications. The software instantiates one or more communication channels,
also called topics, which publishing and subscribing applications use for exchanging
messages.

4.3.3 Existing Middleware

Several concepts for communication middleware for both intra-node and inter-
node communication are available. Some of them are also freely available under
open-source conditions. We present a selection in the appendix A.1.

4.4 General Entity Types of On-board Software

Onboard software consists of different components, which perform different tasks.
We have identified three component types, which this section presents: applications,
shared resources, and communication channels (topics).

4.4.1 Applications

Applications are the active drivers of spacecraft software. These are the only items
that contain threads, i.e., active code execution paths. They might work indepen-
dently, but they communicate with other parts of the software in most cases. For
this, they define a straightforward communication interface, which constitutes how

4.4 General Entity Types of On-board Software 39

data can be passed to the applications and what data the application is ought to
send to the outside.

4.4.2 Shared Resources

Shared Resources are the only elements in the source code that several applications
might share. Hence, each module is a single instance of a class. They are instan-
tiated at the node level and passed accordingly via dependency injection into the
applications. The main difference between shared resources and application is that
applications have active execution paths, i.e., threads, whereas shared resources are
passive objects whose methods are called by applications. Due to their nature of
being used by several applications, semaphores have to protect their access. This
can be ensured e.g. by the ThreadSafe design pattern (see section 17.1.1).

4.4.3 Communication Channels (Topics)

Most frameworks provide middleware for communication between separate software
parts, e.g., applications. In contrast to pure method calls, such systems provide
a loosely coupled message exchange. Additionally, communication middlewares
come with flexible communication paths with dynamic entrance and exit of applica-
tions. They provide different communication patterns, such as the publish/subscribe
principle.

4.5 Classification of Applications

The set of all software applications that are part of a satellite system could be
classified differently. This section presents those various ways of set partition.

4.5.1 Responsibility for the System

The software applications’ responsibilities cover different parts of the space mis-
sions.

Node external communication (network, bus, sensor, actuator), communication
middleware

40 Chapter 4 Structure of On-Board Software for Small Satellites

Satellite guidance and navigation, payload/scientific, mode manager

Mission path planning

Every computing node on the satellite requires the applications on the node level.
Those applications are necessary to make the software work together with other
nodes. Consequently, those applications must be instantiated on each node there.

The satellite applications are required for the satellite to work in general, but it
might not be important on which computing node the application runs. Thus, it
suffices that they run on only one of the nodes in the satellite. The applications on
the node level ensure that the spacecraft (and mission) applications can interact
with each other (transparently). In addition, those higher-level applications might
communicate with node-level applications, but only with the local ones. The node
applications of other nodes are not directly accessible. However, this should not be
a problem because all instances of those applications provide the same service.

The third group is the set of applications required once within the whole mission,
i.e., one instance is required for the whole mission, either on the ground or in space.
This type of application also uses the services of node-level applications.

4.6 Common Topics

Before looking at the typical onboard software applications in the next section, we
briefly overview common topics that such applications use. Those topics are common
for almost all satellites, independent of the mission and payload.

TelecommandUplink Some satellites may use the Rodos middleware for onboard
communication and the packet exchange between ground and space. In the latter
case, the software uses the TelecommandUplink topic for sending telecommands
up to the satellite. Usually, only the Uplink application subscribes to this topic to
process and forward the telecommand messages to other nodes and applications.

TelemetryDownlink This is the counterpart to the TelecommandUplink. If the
satellite uses Rodos topics for ground/space communication, the software uses this
telecommand. Usually, only the Downlink application publishes data on this topic,
and the ground station subscribes to it.

4.6 Common Topics 41

Telecommand The telecommand topic distributes telecommands from the uplink
application to all applications. Every application checks the destination address and
executes the telecommand if applicable.

Telemetry Applications publish their telemetry data on this topic. The downlink
application subscribes to it, transforming it into the downlink packet format and
sending it down to the ground. The topic’s data structure already represents generic
topic packages, which do not distinguish between the standard and extended teleme-
try.

Anomaly All applications that report anomalies use this topic to report anomalies.
Usually, there is an application subscribing to this topic to store reported anomalies
and provide more information to the operations crew.

ModeChange The onboard software goes through several modes depending on
different factors, such as sensor values and mission phases. Whenever a software
component (ModeManager application) decides to switch the mode, it announces
the new mode on this topic. All applications that have to react to mode changes
subscribe to this topic.

ThreadIsAlive Every periodic thread shall send an alive message for each itera-
tion. They publish the alive message to this topic, which the Watchdog application
subscribes.

4.7 Common Applications

This section presents some applications that are common to most satellite missions.
They are either part of the node or spacecraft responsibility layer. Therefore, Corfu
comes with reusable reference implementations of those applications. User can
import them into their satellite projects and adapt them if necessary. The table 4.1
shows the classification of the standard applications into the responsibility layers.

This section does not list subscriptions of the Telecommand topic and the publication
of the Anomaly, Telemetry, and ThreadIsAlive topics. They are obligatory for all
applications listed in the following.

42 Chapter 4 Structure of On-Board Software for Small Satellites

Node Satellite
Anomaly Collector Downlink
Boot Manager Mode Manager
Housekeeper Uplink
Redundancy Manager
Timed Commands Manager
Watchdog

Table 4.1.: Classification of common applications into responsibility layers

4.7.1 Uplink

Usually, one or two (redundant) modems receive telecommands from the ground
segment. The Uplink application accesses the receiving hardware and forwards it
further to the local Router. Any integrity checks are usually already done at this level.
If a message’s data is not valid, the application immediately discards the message
and reports an error to the FDIR application. On satellites with multiple computing
nodes, it is common that only one of them provides an uplink. Consequently, the
software needs to distribute telecommands to the other computing nodes.

Configuration Access to the modem / driver

Input Topics -/-

Output Topics TelecommandUplink

4.7.2 Downlink

The Downlink application is the counterpart of the Uplink. The onboard software
forwards every telecommand packet that applications generate on the satellite to
the Downlink. The Downlink mainly has two responsibilities. On the one hand, it
manages the sending modem, and on the other hand, it transforms the telemetry
packets into the protocol used on the radio link. Converting telemetry packets to
the radio protocol includes combination and segmentation of telemetry packets.
On a satellite with multiple computing nodes, it is common that only one of them
provides a downlink. Therefore, every computing node that generates telemetry
for the ground segment must forward it to the computing node with the Downlink

application.

Combining the Uplink and the Downlink into one app is not uncommon.

4.7 Common Applications 43

Configuration Access to the modem / driver

Input Topics TelemetryDownlink

Output Topics -/-

4.7.3 Mode Manager

As already described in 2.2, a space flight undergoes different phases, also called
modes. The onboard software is the driving force for applying and transforming
between modes. Following our modular approach, the ModeManager is responsible for
handling modes. Different events may lead to switching the operation mode, for ex-
ample, reaching a particular point in time or location or reporting an anomaly. Those
events are usually generated by other applications, for example, the TimeManager

or the LocationManager. The events are shared via the middleware communication
system with other applications, as can be seen in the figure 4.2.

Mode
Manager

Applications

Event BEvent A Mode Change

Figure 4.2.: The environment of the mode manager within the software

Every time the ModeManager receives an event, it checks whether the condition for
a mode transition is fulfilled. If this is the case, it notifies all other applications
about the new mode. In turn, every application is then responsible for changing
its behavior according to the new mode. Changing the mode in the applications
may include different behaviors: enabling/disabling threads or topic subscriptions,
changing periodic interval times, or scheduling/canceling of timers. Consequently,
every application has to know about all possible modes the software might enter.
Alternatively, it could implement default behavior and implement only actions for
those modes that require different behavior.

Configuration Event/mode mapping

Input Topics All the events

Output Topics ModeChange

44 Chapter 4 Structure of On-Board Software for Small Satellites

4.7.4 Anomaly Collector

The AnomalyReporter is a part of the FDIR concept. Its purpose is to inform the
ground segment about onboard errors (anomalies). Whenever an application encoun-
ters unexpected situations, e.g., wrong commanding, it generates an anomaly report
and forwards it to the AnomalyReporter. The AnaomalyReporter may also implement
some cross-application recovery mechanisms to react to reported anomalies.

Configuration -/-

Input Topics Anomaly

Output Topics -/-

4.7.5 Boot Manager

The onboard software is not always set in stone (read-only). Often, the software
provides a mechanism to update over the air. For safety reasons, the onboard
software installs new versions in parallel to the current version. The BootManagers

task is to manage the parallel installation of multiple software versions. Additionally,
it configures the boot loader to load a new version on the next start. Having multiple
software images in the memory and a configurable bootloader enables to switch
between different software versions. The boot loader usually provides some safety
features, such as falling back to a working software version if a new version does
not start correctly. However, this is not the scope of the BootManager.

Configuration Hardware booting information

Input Topics -/-

Output Topics -/-

4.7.6 Timed Commands Manager

Some commands are already scheduled in advance, i.e., they shall be executed at
specific time points. This is what the TimedCommandsManager is for. Via telecommands,
the ground segment can schedule telecommands and even sequences of commands
to be executed in the future. Of course, the TimedCommandsManager also provides
features to manage (e.g., delay) or remove scheduled telecommands.

4.7 Common Applications 45

Configuration -/-

Input Topics Telecommand

Output Topics Telecommand

4.7.7 Watchdog

Every application should work separately. Consequently, blocking applications
should not impede other applications. Therefore, each application is encouraged to
regularly send a heartbeat to show that it is still alive. The Watchdog ’s purpose is to
listen to those signals and report if an application does not respond anymore. As a
consequence, the watchdog could reset the stalled application.

Configuration -/-

Input Topics threadAmAlive

Output Topics -/-

4.7.8 Housekeeper

In order to provide a quick overview of the current status of the spacecraft, every
application should regularly report their most vital variables, which suffice to tell
what is going on at each application. The purpose of the Housekeeper is to collect
that variable information from each application and combine them into one (or a
very few) telemetry packet(s). Finally, it sends that telemetry down to the ground
segment.

Configuration Layout of the standard telemetry

Input Topics -/-

Output Topics Telemetry

4.8 Telemetry

To gain information about the spacecraft’s current state, the ground operator relies
on different types of telemetry, real-time and additional telemetry.

46 Chapter 4 Structure of On-Board Software for Small Satellites

4.8.1 Standard Telemetry

Without explicit requests by the operator, standard telemetry is autonomously sent
by the spacecraft periodically. This is accomplished by the Housekeeper application
(see 4.7.8). The Housekeeper periodically requests all the other applications for vital
information, primarily central variables from the application. Selecting suitable
values to be reported via standard telemetry is very important. On the one hand, the
size of telemetry packets is limited. Depending on the number of applications on a
system, applications might contribute only a few variables to the standard telemetry.
On the other hand, the purpose of standard telemetry is a quick overview of the state
and healthiness of the spacecraft. Therefore, essential variables are those, which
immediately show when something goes wrong in a subsystem.

4.8.2 Extended Telemetry

Unlike standard telemetry, extended telemetry is not being collected and sent au-
tonomously; instead, the ground has to request them explicitly. Requesting extended
telemetry is usually achieved via predefined telecommands. The content of ad-
ditional telemetry is of varying nature. Most applications provide telemetry that
exposes more variable values than are provided by standard telemetry. Having more
information allows the ground operator to investigate further issues that he or she
discovered while observing standard telemetry.

4.9 Communication with Ground

In contrast to the communication onboard or between satellites flying in formation,
the link between the space and the ground segment comes with special require-
ments.

The selected communication protocol has to meet those requirements. It is possible
to develop a proprietary protocol. However, if third-party equipment, e.g., ground
link antennas, is used, the communication usually has to be compliant with an
established protocol standard, such as CCSDS Space Packet Protocol[18] or ECSS
Packet Utilization Standard[30].

4.9 Communication with Ground 47

Safety-Critical Software 5
Onboard software is a safety-critical part of satellites because it takes control of the
most vital parts of the satellites. The safety-critical part includes telemetry generation
and telecommand handling, thermal and power management, and attitude control.
A failure in such components might lead to a loss of the satellite. Therefore, system
engineers have high expectations of fault detection, isolation, and recovery (FDIR)
and the quality of the software.

The history shows that software bugs arise — even in safety-critical applications,
as section 5.2 shows. There are common software constructs or features that are
error-prone. Therefore, some coding standards have been established that provide
rules to improve software dependability. This section presents several programming
standards and coding conventions.

5.1 Standards and Code Conventions for Reliable
Source Code

Developing safety-critical software is not new, and it is also not limited to satellite
software. There are many areas where safety using safety-critical software. Conse-
quently, standards and conventions for writing reliable software (also in C++) have
been established.

5.1.1 The Power of 10

Holzmann from the Jet Propulsion Laboratory proposes ten rules for safety-critical
software[42]. He mainly focuses on rules that tools can automatically test.

No abstrusive control structures The control flow should be easily visible. Hence,
developers shall not use hard-to-follow control constructs such as arbitrary
jumps (goto) and function pointer.

49

Fix iteration limits for loops It is necessary to let loops not run for an arbitrary
amount of time to guarantee real-time properties. Instead, cap the number of
iteration for each loop. The same goes for recursion, which might be called
directly or indirectly for an unknown number of times.

No heap allocation after initialization The memory usage should remain constant
after initialization. No memory shall be newly allocated or freed after initializa-
tion. Omitting dynamic memory avoids certain types of programming errors,
such as memory leaks. Additionally, not using dynamic memory minimizes
memory fragmentation.

Keep functions short To make functions as lean and testable as possible, they
should not exceed 60 lines of code.

Use assertions It is common practice to check values by assertions, even situations
which should not fail. Holzmann suggests that every function should contain
at least two assertions.

Keep data locally When declaring a variable, its scope defines the amount of code
that can access its data. To avoid unintended access, developers shall declare
variables in the smallest possible and suitable scope.

Check input and output A function usually operates on a specific domain of its
input parameters (incl. the return value). Hence, each function should check
the validness of its received parameters. Additionally, each caller should check
the return values of called functions. This information often contains hints of
erroneous executions.

Use the preprocessor only for includes Instead of defining constant values, use
static constexpr. In most cases, real macros are not necessary; better use
(inline) functions instead. Inline functions improve debug-ability and avoid
pitfalls when using macros, e.g., forgetting parenthesis for a macro’s parameter.

Limit pointer usage Do not hide the pointer property behind some typedef. Ad-
ditionally, developers should not use more than one pointer level, i.e., they
should not use pointers to a pointer and so forth. Finally, developers should
not use function pointers because it prohibits static analysis and might cause
inadvertent recursion.

Enable all compiler warnings Use pedantic compiler settings for warnings. Con-
sider every warning to be an error, i.e., avoid having compilation warnings at
all.

50 Chapter 5 Safety-Critical Software

5.1.2 Industry C++ Coding Standards

The aerospace and automotive industries produce much safety-critical software. In
those sectors, there are usually collaborations between many different companies.
Several coding standards for source code have emerged to achieve the same high
level of safety in software products. Most cover the C programming language, but
there are also standards for C++:

MISRA-C++ MISRA stands for Motor Industry Software Reliability Association.
They had already published several coding standards for C before they also
created MISRA-C++[67] — coding directives for C++[65, 66]. The most
important things to know is that they allow RTTI and exceptions in source
code but no dynamic memory.

AUTOSAR Guidelines for C++14 While MISRA C++:2008 bases the C++03[45]
standard, AUTOSAR provides an update of the MISRA C++ covers the new
features of C++ up to version 14[46].

Joint Strike Fighter Coding Standards In 2005, Lockheed Martin released a C++
coding standard[59]. Hence, Lockheed Martin created this standard before
MISRA stated its C++ standard.

5.2 Lessons Learned from Software Faults in Space
Missions

Even with modern equipment, space missions failed and still keep failing. There
are many causes for crashing or losing rockets or satellites. One of them is software
failures. When starting with new onboard software, developers should learn from
previous failures to avoid running into the same problems and errors. This section
gives an overview of several failed space missions that are the results of software
failures. Be aware that the list is not complete.

5.2.1 Explosion of the Ariane 501

In 1997, the first flight of Ariane 5 (with the serial number 501) should bring four
satellites into space. However, about 40 seconds after the start, the rocket exploded.

5.2 Lessons Learned from Software Faults in Space Missions 51

The convened inquiry board investigated the issue[28, 53, 60] and found out that a
software failure led to the loss of the rocket.

The inertial reference system (SRI), responsible for determining the attitude and
movement, was directly taken from Ariane 4. However, the trajectory of Ariane 5
was different from Ariane 4; Ariane 5’s initial acceleration is higher than the one of
Ariane 4. The different trajectories of Ariane 5 provided higher horizontal velocities
than Ariane 4 (about five times). Consequently, the sensors reported greater values
than in Ariane 4 before. However, the software was not prepared for such great
values and, thus, suffered from an overflow. The overflow led to an interrupt of the
SRI. As a consequence, the system switched to the hot redundant SRI. However, the
redundant SRI ran the same software and, thus, suffered from the same bug. Hence,
the rocket did not have any attitude and position information anymore and initiated
self-destruction. In the investigation, the board found that there have not been any
tests done with Ariane 5’s trajectory.

Lessons learned Always test the software with the consequences of the real envi-
ronment and the planned maneuvers. In addition, test specifications and test the
software’s behavior with greater and smaller values than expected.

5.2.2 Crash of the Mars Climate Orbiter

In 1999, the Mars Climate Orbiter traveled to mars and started descending into
a stable orbit. During the maneuver, the orbiter disappeared behind the mars 49
seconds earlier than expected. However, it did not come back; it has crashed to the
surface.

Also here, a software failure led to this crash. However, the problem was not on board
but the ground. The ground software consisted of different modules, which different
partners have contributed. Even if there was a Software Interface Specification (SIS)
document, one partner did not correctly adhere to the specification. Instead of using
SI units, one software module used imperial units. As a consequence, the module
miscalculated the trajectory by a factor of 4.45. The result was that the orbiter came
too close to Mars and crashed into its surface.

Lessons learned Ground software is safety-critical as well. Develop and imple-
ment ground software with the same care as onboard software. Double-check the
compliance with the interface specification, especially the physical units.

52 Chapter 5 Safety-Critical Software

One could also use features of programming languages in order to keep values with
different units incompatible, for example, different typedefs or special classes. We
have created the requirement REQ-SAT-19 from these lessons learned.

5.2.3 Crash of the Mars Polar Lander

The Mars Polar Lander was a mission of NASA for investigating some climate
parameters on Mars. However, the landing was not successful; it crashed on Mars’
surface[48]. There were sensors at the landing legs, which shall report touching
the surface of the planet. However, those sensors also trigger transiently when the
legs are deployed. The software considers a touchdown only if the sensor reports
the value twice in succession. However, this was still the case when deploying the
landing legs. As soon as the software registers a touchdown signal, it disables the
descent engine. In the accident, the software did this about 40 meters above the
ground, letting the lander crash onto the surface. However, the most significant
software issue was that the touchdown sensing was active at a phase where it should
be disabled.

Lessons learned The software must adhere to specifications. In this case, the
software did not correctly implement software phases, in which the touchdown
sensing should be disabled.

5.2 Lessons Learned from Software Faults in Space Missions 53

State of the Art 6
Indeed, Corfu is not the first framework for onboard software. There already are
frameworks for satellite software available, some even under open-source conditions.
This chapter gives an overview of the different frameworks.

6.1 NASA’s core Flight System (cFS)

With the cFS, NASA provides an open-source framework that can be reused for
different space missions [105]. In order to provide decent portability, they organized
cFS’ architecture in layers, which this section presents.

Figure 6.1 gives an overview of the different layers of cFS. All components are
part of one of three software layers: the component layer. Another layer is the
execution platform (EP), which is the basis of the overall software. It provides
primarily non-functional services, such as timing, pre-emptive scheduling, and thread
synchronization. Additionally, the EP already implements pseudo components, which
are an integral feature of the software, such as PUS.

The final software layer is the interaction layer (IL). This tier glues instantiated
components and the EP together by creating suitable connectors. The authors expect

HW

OSAL

PSP

OS

cFE

... Apps ...

Figure 6.1.: The onboard software structure of the core flight system

55

to generate code (Ada) for the interaction layer from configuration files; however,
this has not been done in their early implementation yet.

Besides that, they started to implement a tool-set that enables graphical configura-
tions of the onboard software. By providing different views for distinct concerns, for
example, a data view, a component view, or a hardware view, software architects can
concentrate on specific aspects without being confronted with too much information
on the screen.

6.1.1 Operating System Abstraction Layer (OSAL)

The OSAL provides a generic interface for accessing and usage of operating system
mechanisms and resources. Technically, it could be used independently from the
cFE, also for other projects. The interface enables the usage of queues, semaphores,
tasks, dynamic loader, timer, network, file systems, and interrupts. To date, there
are official implementations for the portable operating system interface (POSIX),
the real-time executive for multiprocessor systems (RTEMS)1, and VxWorks2.

6.1.2 Platform Support Package (PSP)

Commonly, operating systems are already capable of running on different hardware
platforms. Most satellite missions have custom hardware devices, which require
additional hardware abstractions. The PSP contains those hardware abstractions.
There already exist official implementations for GR-UT699 with VxWorks, MCP750
with VxWorks, PC with Linux, PC with RTEMS, and SP0 with VxWorks.

6.1.3 Core Flight Execution (cFE)

The cFE brings several core services for building up the final spacecraft software.
Those services include:

Execution services This is the central part of the framework, which contains the
startup and run-time code.

Event services Events represent small messages that the software sends to the
ground. Users can use them for reporting debugging information or errors.

1https://www.rtems.org/
2https://www.windriver.com/products/vxworks/

56 Chapter 6 State of the Art

File services Other than the name suggests, this service provides access to file
headers, not to the content of the files.

Software bus This is the primary mechanism for inter-application communication,
telecommands from the ground, and telemetry to the ground. We describe the
software bus more detailed the following section.

Table services This service manages configuration tables, which applications use.

Time services This service comes with several functions for accessing and convert-
ing time values.

6.1.4 Software Bus

The core Flight System’s software bus implements the publish/subscribe commu-
nication principle. All the routes between the publishers and the subscribers are
established dynamically during run-time. Information, such as the routing table and
utilization statistics, can be determined by invoking certain API functions.

The software bus uses a single fixed message format at a time. The current imple-
mentation only supports one format: CCSDS. The documentation states that it is
relatively easy to implement support for other message formats. Subscriptions are
created at run-time and connect a message (ID) with a pipe (FIFO). Due to the
nature of dynamic subscription creation, it is possible to unsubscribe from messages
as well.

Routing tables internally encode subscriptions, the connections between message
IDs and the pipes. The software bus implements routing tables using a map with the
message IDs as the key and a pointer to the first element of a double-linked list as
the value. The list contains all destination pipes for the given message ID.

Every time the software bus receives a message, it retrieves the appropriate pipe
list by accessing the corresponding field in the message ID map. The message body
is copied and placed into the destination pipe for every entry in the pipes list. The
context of the destination application does not execute any receiving code. Instead,
the destination applications are responsible for reading the message data from their
pipes within their run-time.

Currently, the software bus only supports CCSDS packets for all types of communica-
tion, internal and with the ground. Implementing other message formats requires
changing the original code of the software bus.

6.1 NASA’s core Flight System (cFS) 57

...

...

Message
ID Map

Linked List

Pipe

...

Pipe

Figure 6.2.: Structure of the software bus of the cFS

Software Bus Spanning Multiple Instances

The pure software bus, implemented within the core Flight Executive, only supports
local message delivery because it only directly accesses local memory structures.
In order to communicate with other nodes, e.g., with computers connected to a
network, there is another application, the Software Bus Network (SBN). It provides
transparent communication for the users of the software bus, i.e., the applications
do not have to know any information about the communication paths; the SBN takes
care of it.

The current implementation requires an IP-Stack to be present on the operating
system. A configuration file contains all information about addressing other nodes,
which the software loads at startup. The connecting nodes exchange information
about which messages the local software subscribes. Whenever there is a change in
the subscription status, e.g., a message is freshly subscribed or unsubscribed, the
SBN notifies all neighbor nodes. Based on this information, every node is capable of
deciding where to forward messages. Additionally, periodic heartbeat packets show
that a node is still alive.

6.2 F’

F’ – also called F Prime – is a framework for onboard software[10]. The JPL (Jet
Propulsion Laboratory) developed F’ and made it available under open source

58 Chapter 6 State of the Art

conditions3. This software framework resembles Corfu the most. Here, the user also
defines the software formally in configuration files. In contrast to Corfu, F’ goes for
XML as the configuration file format. Although XML offers more elaborated tools
and languages for schema validation (e.g., XSD), it is more fluent to write for users.
For schema validation, Corfu comes with its own validator.

F’ uses the configuration file for code generation. Similar to Corfu, F’ generates
base classes, which users inherit. The generated base classes define the interface
only, i.e., the task interface and the communication ports. On the other side, Corfu
also includes thread configurations, which means that even timing information is
formally defined in Corfu.

For communication between applications, F’ comes with the concept of a port. Every
application defines the output and input ports it provides respectively requires. F’
provides different types of ports, such as synchronous ports by direct function calls,
asynchronous ports by message queues, or guarded ports, which are thread-safe.
Differently to Corfu, F’s ports use return values, which allow a direct response. In
Corfu, developers must report the result explicitly on different topics.

F’ is written in C++, and therefore comes with an object-oriented programming
interface.

Also similar to Corfu, F’ software uses a two-level hierarchy. In the lower level, it
defines applications. Those applications consist of input and output ports of different
types. In the upper level, topologies connect the applications. Topologies describe
how the ports of applications are connected. They are used to compile deployments,
e.g., for flashing them on a device.

At Corfu, we name those topologies nodes because they describe the communication
topology between applications and check the set of applications for cooperation.
Applications do not only influence each other by communication; they run on the
same platform and, therefore, have to share limited resources. Such limited resources
are devices that applications may and resources in CPU time and memory. In Corfu,
we intend to see the whole picture by formally verifying that all applications safely
use the resources across all applications and that threads can meet the timings.

F’ comes with several reusable software components (applications) that are common
for most onboard software. It ranges from commander components over logger and
memory components to ground interfaces. Apart from generating source code used
in the flight software, F’ generates test classes for unit and integration testing.

3https://nasa.github.io/fprime/

6.2 F’ 59

6.3 Cordet-2

In two steps, Cordet and Cordet-2, an ESA project developed a component-based
reference architecture for onboard software[72, 80, 97]. Their idea is the separation
of concern into individual components. Containers embed such components, which
define the communication interface to other components, more precisely to other
containers. The interfaces specify in- and outgoing connections linked by connectors,
e.g., a communication middleware channel/topic.

Execution Platform

Container 1

Component 1

Container 1

Component 1
Connector

Connector

Figure 6.3.: Structure of software following the Cordet architecture (adapted from [72, 97])

6.4 NanoSat Mission Operations Framework (NanoSat
MO Framework)

With OPS-SAT, the ESA is working on a cube sat[22] project, which has the aim
to test new technologies[33]. One part of the development is the implementation
of a new software framework called NanoSat MO Framework. In the name, the
MO stands for mission operation, which also depicts its conceptional heritage: it
implements the CCSDS Mission Operation (CCSDS MO) standard.

They base their structure also on the concepts of applications like smartphone
systems do. Such applications can be stopped, started, and even updated during the
run of the onboard software. This dynamic reconfiguration is made possible by the
flexible definition of communication interfaces and the discovery mechanism, which
loosely couples and enables applications to find each other.

The NanoSat MO Framework uses Java as the programming language. Hence, it
needs an entire Java virtual machine to run on the target platform. Therefore, this
implementation of the CCSDS MO is not suitable for bare-metal development. In
the reference implementation for OPS-SAT, they run Linux as the base operating
system which executes the framework.

60 Chapter 6 State of the Art

6.5 OBS framework

The OBS framework from Cechticky et al. follows a generative approach[19]. It
seems to be a continuation respective generalization of the AOCS framework because
the OBS framework reuses many ideas from the AOCS framework, which is described
in detail by Pasetti in [73, 74]. In their paper [20] they describe three technical
approaches they use in the OBS framework to accomplish re-usability of software by
architecture[75]: feature modeling, object-oriented framework, and aspect-oriented
adaptability. Additionally, they describe on their homepage4 several design patterns,
particularly for onboard software. The frameworks further come with already
implemented components, such as telecommand and telemetry managers.

Aspect-Oriented Adaptability

In [9], Birrer et al. describe their implementation of aspect-oriented adaptability in
the AOCS framework. With their tool named XWeaver5 they apply aspect weaving,
i.e., compiling aspect code into some existing code. The OBS framework also uses
XWeaver. It transforms the base C++ code into srcML, an XML representation of
the abstract syntax tree. The aspect code, to be interwoven, is written in a self-
developed language called AspectX, which is XML-based. By using rules, it describes
how XWeaver modifies the base code in order to import the aspect there.

XWeaver first compiles the AspectX rules into an XSLT program and applies it to
the srcML representation of the base code. The result is again an XML-base srcML
representation of the modified code. After that, XWeaver transforms the srcML
information back into C++ code.

6.6 Ziemke, Kuwahara, Kossev

Those three authors present in [108] a generic onboard software framework they
have created. It is an object- and service-oriented framework built on a real-time
operating system, with RTEMS being the primary target. They divide software using
the framework into four layers: the operating system, the device handler layer, the
data pool, and the controller layer. Each of the layers has its own FDIR plugin that,
on the one hand, deals with failures, which the software can handle locally, and on

4https://www.pnp-software.com/ObsFramework/doc/Home.html
5https://www.pnp-software.com/XWeaver/

6.5 OBS framework 61

the other hand, reports failures to the upper software layer. The central part is the
data pool; it is one method for data exchange between different applications, e.g.,
device handlers and controllers. In a transaction-based manner, applications can
write into variables of the data pool respectively read from them. All actions onto
the data pool are thread-safe.

Device handlers are the interface between device drivers, e.g., sensors, actuators,
busses, and the data pool. Commands to hardware devices are saved by controllers
in the data pool and executed by the device driver. Receiving data from the device
works the other way around; the device handler reads data from the hardware and
puts it into the data pool.

However, there are additional communication types between applications, such
as messages queues for telecommands, telemetry, and telecommand verification
and acknowledgment. Another type of communication is events to indicate mode
changes within the software. Finally, there are also signals for FDIR, which leads to
preemption of the current process to execute failure handling there.

Users can define the initialization aspects of the software via XML. An XSLT program
generates corresponding C++ code. Unfortunately, the authors did not publish
follow-up papers.

6.7 Prochazka et al.

In [77], Prochazka et al. present a component-oriented framework for onboard soft-
ware. They extend SOFA 2, a component definition system, to describe components
and their interfaces. Components can be connected when the providing component’s
interface is a superset of the required interface. Additionally, a component might
contain multiple controllers, which bring non-functional aspects to the component.

6.8 Other Related Work

Code feedback for model-driven development has also been used in other environ-
ments. For example, Büchner has applied this approach in his Ph.D. thesis for web
development[15]. In his work, he calls this approach "introspective model-driven
development." Büchner distinguishes between white-box and black-box introspective
approaches: "Introspective black-box frameworks realize domain-specific languages

62 Chapter 6 State of the Art

through external model representations, which, however, are integrated at any time
with the framework’s extension capabilities. In introspective white-box frameworks,
models are internally represented by the source code of the base programming
language. Through introspection, these models can be extracted and represented
and edited at a high level of abstraction."[15] In his work, he created tools integrated
into the IDE eclipse for creating introspective white-box frameworks. He evaluates
his approach by implementing a web platform. His tools rely on features of the
Java programming language, such as annotations. Most embedded satellite software
makes use of C or C++, which makes them not directly applicable for the satellite
software domain.

6.8 Other Related Work 63

Part III

Design of Corfu

Methodology 7
The subject of this work is the theory and implementation of a technical system.
Consequently, we apply the Design Science Method[13, 103]. In this methodology,
we build a framework for satellite software.

7.1 Development Process

Figure 7.1 shows the development process for Corfu. In the first step, we formulate
the goals of the framework (see section 7.2). From there, we have derived several
requirements for different aspects (see section 7.3). Based on those requirements,
we accomplished two steps in parallel. Following the test-driven development[52]
approach, we define unit tests for the intended software features (see section 7.4)
before implementing the features in order to fulfill the defined test code. After the
tests ran successfully, we also had a manual code review.

Goals\Determination Requirements\Determination

Unit Test\Implementation

Implementation

Test Verifcation

Figure 7.1.: Development process for creating Corfu

7.2 Goals

With our framework, we pursue different goals, which we describe in this section.

Improve Reliability For safety-critical applications, reliability is essential for both
hardware and software. Reliability defines the probability that failures occur during
operation. IEEE states in [43] that the software reliability depends on the develop-
ment and maintenance process of the software. Therefore, our framework has to
come with a robust guide for developing reliable satellite software.

67

Facilitate the Development Process Following development approaches like model-
driven development (MDD) already provides a clear development path. Having only
one way of how to introduce new features and changes avoids dangerous quick fixes.
Providing appropriate tools and a high level of automation takes much work off the
developers’ shoulders. Indeed, such automatic tools have to be well validated and
verified because they produce safety-critical software.

Reduce Development Time Having fewer lines of code to write manually often
comes with less development time for the software. Corfu shall aim to generate
as much boilerplate code as possible to disburden manual coding from developers.
Instead of bothering with boilerplate code, they can concentrate on developing the
essential features of the onboard satellite.

Another way to reduce development time is to make it easy to understand the
software structure. Corfu’s model shall describe the software structure concisely
and lucidly (REQ-MDD-03). Representing the model additionally in a graphical way
helps developers find their way around the model configuration (REQ-MDD-05).
Having a graphical overview also reduces training time for new developers.

Improve Ground Segment Satellite Communication The ground software is a com-
panion of the onboard software. Both have to interact with each other. Therefore,
another goal shall be the good integration between the space and the ground soft-
ware. Hence, the framework shall come with both onboard and ground software
support (REQ-GND-03). However, the framework should be flexible enough to
integrate into custom ground software easily (REQ-GND-04).

Extend the Model-Based Development Approach Just following the MDD approach
in one direction does not exploit the full potential. We show that introducing
feedback improves performance and enables the implementation of new software
features into OBSW.

7.3 Requirements

We have collected more than 30 requirements in those different categories:

• Satellite Software

68 Chapter 7 Methodology

• Safety-Critical Software

• Applying Model-Driven Development

• Model Feedback

• Embedded Software

Appendix B list all of those requirements. These requirements are the foundation for
developing Corfu.

7.4 Testing

These unit tests cover the source code of Corfu itself, not of the user code. We use
google test1 as the driver for Corfu’s (internal) unit tests. Each application and library
of Corfu comes with its tests that aim to cover the highest possible coverage. For the
user code, Corfu comes with its own testing framework as chapter 14 describes.

1https://github.com/google/googletest

7.4 Testing 69

Basic Concepts and Design
of Corfu

8
This chapter describes the basic concept of Corfu. It starts with the use cases, which
we have identified from the goals and requirements. After that, the chapter gives
an overview of the development process and its tools. In the end, it describes
the structure of the onboard software and different software concepts, such as
telecommand handling and standard telemetry.

8.1 Use Cases

We divide the users into three different groups: engineers, developers, and operators
— see the use case diagram in figure 8.1. Engineers design the software structures.
In model-driven development, their main work is to define one or more models
of the software manually. Defining models includes all model aspects, such as
defining apps, nodes, and communication structures. They usually design the model
based on given requirements. Engineers can directly check several model aspects by
applying verification tools, such as a consistency check and scheduling analysis. The
consistency check verifies whether required parameters are present in the model,
whether they contain correct types, and whether all referenced objects exist.

Developers write source code. The first step generates code from the model(s),
which engineers have defined. The framework and the generated code provide
attachment points, such as virtual functions, where developers can implement their
code. Finally, developers can compile the onboard software and test their code.

Up to this point, all actions take place at compile time. Operators, on the other hand,
work at run-time, i.e., when the satellite is launched and in orbit. They monitor and
control the satellite with telemetry and telecommands. Telecommands that they
send to the satellite might generate extended telemetry or report anomalies. The
onboard system executes threads, which also might generate extended telemetry
or report anomalies. There is at least one thread that also periodically generates
standard telemetry.

71

Development System

Ground System

Onboard System

Model
the OBSW

Model
Applications

Model
Nodes

Model
Topics

Model
TM/TC

Verify
Model

Consistency

Check

Scheduling
Analysis

Generate

Code

Implement
User Code

Compile

Test Code

Stack
Analysis

Code
Feedback

Send
Telecommand

View

Telemetry

View
Log Messages

Execute

Telecommand

Generate

Extended
Telemetry

Run Thread

Generate

Standard
Telemetry

Report

Anomaly

Engineer

Developer

Operator

«includes»

«includes»

«includes»

«includes»

«includes»

«includes»

«includes»

«includes»

«extends»

«extends»

«includes»

«extends»

«extends»

«extends»

Figure 8.1.: Use case diagram of satellite systems

72 Chapter 8 Basic Concepts and Design of Corfu

8.2 Development Process

Corfu provides an iterative development approach. Iterative means that the first
version of the model does not have to be the final one. It is always possible to
refine the model and re-generate code. Figure 8.2 shows an activity diagram of the
development process in a project’s lifecycle. The figure covers the iterative character
of software development. There are two loops in the development process. The
outer one describes the iterative refinement of the process. Whenever engineers
modify the model, they re-create the generated code, which is the input for the
developers. The inner loop describes the iterative development of the user code.

Figure 8.3 shows the technical process of Corfu. It displays how documents (artifacts)
and tools work together. The arrows show the information flow between documents
and tools. We have graphically highlighted two parts in the figure. The blue part
covers the classical model-driven development. Outgoing from a model, a generator
creates code, which is finally compiled together with the user code and additional
libraries. The orange part is the feedback, which we introduce in this work. It adds
further information to the existing model, which verification and code generation
also use.

When executing the compilation process for the first time, the orange step is not
applied because no user code exists at this moment. In this step, the code analyzer
extracts information from the manually written source code of the developers (see
chapter 12). The extracted information represents the extracted model, which the
code analyzer stores into a SQLite database (see section 12.1). The extracted model
is optional for the generator and model verification. However, those tools always
require the engineering model. Therefore, at least a first draft of the engineering
model is mandatory when starting the development.

The generator takes information from both models, the formal and extracted one,
and generates source code files from source code templates. See section 11.5 for a
detailed explanation of the code generation process. Finally, the compilation and
linking step combine the generated, the user source code, and Corfu’s libraries (see
chapter 10) to create the binary file(s).

8.2 Development Process 73

Define first draft
of OBSW model

Generate code from model

Implement
User Code

Compile

Test

yes
Development Finished?

no

Refine
OBSW Model

Figure 8.2.: Activity diagram of the development process

74 Chapter 8 Basic Concepts and Design of Corfu

code analyzer

extracted model [.db]

software binary

compiler/linker

engineering model [.yml]

model verifier generator

generated source code [.cpp/.h] Corfu libraries [.a]

user source code [.cpp/.h]

source code template

Figure 8.3.: Corfu’s compilation process

8.3 Static Structure of Onboard Software

Most frameworks promote the reusability of software parts; so does Corfu. It
allows partitioning the software into separate units with independent features. A
communication interface allows the applications to communicate with each other.

In Corfu, we have two different software components: applications and shared
resources. Applications represent active parts of the onboard software. They may
contain threads, which actively drive the execution of code. In addition, they take
part in onboard and ground communication. That means they can subscribe to topics
and provide telecommands to the ground software. Figure 8.4 shows a schema of
app components. Both upper topics, telecommand, and telemetry are common for all
applications. The lower blue boxes stand for application-specific topic usages. The
green boxes contain user code, and the orange boxes contain data (e.g., variables).

Shared resources are passive elements. They do not have any threads or pro-
vide telecommands. Instead, they are just there to be accessed from applications.
ThreadSafeDatas wraps shared resource, which ensures thread-safe access (see 17.1.1
for more details).

8.3 Static Structure of Onboard Software 75

ThreadFIFO

Subscription Handler

Subscribed Topics ➤

Subscription Handler

FIFO Thread

Parameter

➤ Telemetry

➤ Published Topics

Telecommand ➤ Subscription HandlerTelecommand Handler

Standard Telemetry

Application

Figure 8.4.: Configurable application elements in the model

Node

App
▲ ▼

App
▲ ▼

App
▲ ▼

Figure 8.5.: Configurable node elements in the model

Applications and shared resources stand for their own. In order to instantiate a
full executable software, we have to select some and connect them, which nodes
do. Nodes represent software images running on a computer. For the onboard
communication, we use the publish/subscriber communication middleware provided
by Rodos. Nodes connect apps via topics (communication channels) with each other.
Figure 8.5 shows a schema of node components. It depicts topics as communication
channels, which applications subscribe (arrow towards the application) or publish
(arrow towards the topic).

Corfu divides the overall source code of onboard software into three different layers:
generic, generated, and user code, which figure 8.6 shows. The diagram shows
only a simple application that only implements two telecommands and standard
telemetry. It does not subscribe to any topic or uses additional telemetry.

76 Chapter 8 Basic Concepts and Design of Corfu

The abstract class corfu::App is common for all applications. This class contains
generic telecommand handling and provides helper functions for sending telemetry.
See section 8.4 for an overview of those concepts.

The next level of application classes is a generated abstract class (generated::MyApp

in the figure 8.6). The generator creates it for each application in the software
configuration. That means it contains the specific code for handling telecommands,
telemetry, topics, and threads. The generated class also defines abstract handler
methods, which the developers have to implement, e.g., a telecommand handling
method.

Finally, developers write their user class (MyApp in the figure). This class only has
to inherit from the generated class. Developers have to implement the abstract
handler methods with the desired behavior. The generated class preprocesses all
messages that arrive at the application and calls the appropriate handler methods.
See section 8.4.1 for more details about how applications handle telecommands.

Figure 8.7 shows the hierarchy of generated nodes. For brevity, the diagram only
shows those classes and methods that are part of the general node hierarchy. Other
classes, e.g., those that are part of the telemetry handling, are shown in the sec-
tion 8.4.

Figure 8.7 shows the hierarchy of node classes. Similar to the classes for applications,
nodes also use inheritance. However, for nodes, we have only two classes: the base
class and the generated class. Creating a user-written class is unnecessary because
the generated class already contains everything a node needs. The generated class
instantiates and configures all the defined applications according to the software
configuration. The class corfu::Node is the generic base class that all nodes use. It
contains code that is independent of the software configuration.

8.4 Concepts

Apart from the static definition of nodes and applications, Corfu comes with concepts
of dynamic processing information. This section gives an overview of how telecom-
mands and the standard telemetry are processed and how the software watchdog
works.

8.4 Concepts 77

R
O

D
O

S

corfu

gen
erated

C
Topic

TopicD
ataType

publish()

A
App

handleTelecom
m

and(Telecom
m

and)
:

Error
getN

ode()
:

N
ode

&
sendTelem

etry(Telem
etry

&
)

sendA
live(Tim

e
tim

eout)

A
M

yApp

handleTelecom
m

and(Telecom
m

and
&

)
:

Error
handleTelecom

m
andA(Telecom

m
andAPayload

&
)

:
Error

handleTelecom
m

andB(Telecom
m

andBPayload
&

)
:

Error

C
M

yA
ppStandardTelem

etry

fieldA
fieldB

serialize(Slice<
uint8

&
)

deserialize(Slice<
uint8

&
)

C
M

yA
pp

handleM
yFirstTelecom

m
and(M

yFirstTelecom
m

and
&

)
:

Error
handleM

ySecondTelecom
m

and(M
ySecondTelecom

m
and

&
)

:
Error

telecom
m

andTopic

Figure
8.6.:

The
hierarchy

ofapplication
classes

in
the

O
nboard

Softw
are

78 Chapter 8 Basic Concepts and Design of Corfu

corfu

generated

C Node

nodeId: uint8

init()

C MyNode C MyApps

Figure 8.7.: The hierarchy of node classes in the onboard software

8.4.1 Telecommand Handling

On board, topics distribute telecommands. How they arrive at the space segment is
mission-specific. For example, a modem driver (application) receives telecommands
from the ground, decodes them, and publishes them to the telecommandTopic, which
applications subscribe to. The data type of this topic is the generic telecommand class
corfu::Telecommand. Apart from a checksum and the parameters, the telecommand
class contains information utilized for routing. The nodeId identifies the node to be
addressed; the same goes for the appId. Finally, the commandId identifies the type of
telecommand for the application.

Besides the application class, the generator also creates telecommand classes for
each type of telecommand. The generated telecommand classes contain not only the
parameter values but also methods for serialization and deserialization.

The sequence diagram in figure 8.8 shows how applications distribute the messages
internally. As soon as the application receives a telecommand via the telecommandTopic

, the corfu::App class forwards the message to the handleTelecommand method. Only
the generated application classes implement this handling method. First, the method
checks whether the telecommand addresses the application. If that is the case,
it deserializes the telecommand parameters into the telecommand-specific object.
Then, the method passes the deserialized object to a telecommand-specific han-

8.4 Concepts 79

telecom
m

andTopic
m

yA
pp

publish(Telecom
m

and
&

)

put(Telecom
m

and
&

)

handleTelecom
m

and(const
Telecom

m
and

&
)

handleTelecom
m

andA
(const

Telecom
m

andA
Payload

&
)

Figure
8.8.:

The
sequence

diagram
oftelecom

m
and

distribution
in

applications.

80 Chapter 8 Basic Concepts and Design of Corfu

dling method. Such telecommand-specific methods are abstract in the generated
application class but implemented in the user-written application class.

8.4.2 Standard Telemetry

The idea behind standard telemetry is to provide brief information about the satel-
lite’s state to the ground operators. Each application contributes its own structure
with a few fields that indicate the state of the application. The information of the
applications should not go into much detail. If the operation crew needs extended
information, they shall request extra telemetry, which applications provide. Finally,
the satellite periodically sends the resulting telemetry structure with the information
of all applications down.

Figure 8.9 shows all classes involved in collecting information for standard teleme-
try. The generator creates a specific struct equipped with serialize and deserialize
methods for each application that contributes data to standard telemetry. The gen-
erated application class already contains an instance of the telemetry structure as
a member variable. The applications directly fill this structure’s data. Applications
like the housekeeper invoke serializeStandardTelemetry to collect the node-specific
standard telemetry data into a slice/array. The node traverses all applications and
calls their serializing methods. The node calls the updateStandardTelmetry method
right before serializing the data to ensure that the data in the member instances of
the telemetry structure is current. Overriding updateStandardTelmetry gives applica-
tions the chance to update the structure with current data if they are not already up
to date.

8.4.3 Periodic Thread

Listing 8.1 shows how we can create periodic threads in plain Rodos. We have
three different parts of user code and, most notably, a time loop macro, which
controls suspending and resuming the threads at the given times. The first part
is initialization before the scheduler runs in the init method. Here, we can only
apply initialization, which relies not on the scheduler, e.g., no suspension. The run

method is the entry point for the thread. As soon as the scheduler is ready (and
the thread has the highest priority among all other active threads), it calls the run

method. Therefore, the code has access to all features here. Hence, initialization
which requires scheduling features, such as suspension, can be implemented here.

8.4 Concepts 81

corfu

gen
erated

C
N

ode

serializeStandardTelem
etry(Slice

&
payload):

R
esult<

uint32_t>

C
A

pp

serializeStandardTelem
etry(Slice

&
payload):

Result<
uint32_t>

updateStandardTelem
etry()

C
M

yA
pp

serializeStandardTelem
etry(Slice

&
payload):

R
esult<

uint32_t>

C
M

yA
ppStandardTelem

etry

m
yFieldA

:uint8_t
m

yFieldB
:float

serialize(Slice
&

slice):
R

esult<
uint32_T>

deserialize(Slice
&

slice):
R

esult<
uint32_T>

C
M

yA
pp

updateStandardTelem
etry()

Figure
8.9.:

The
class

diagram
ofcollecting

standard
telem

etry.

82 Chapter 8 Basic Concepts and Design of Corfu

The run method also contains the time loop, which runs infinitely. It executes its
body according to the timing parameters.

1 constexpr int64_t FIRST_RUN = 1_s;
2 constexpr int64_t PERIOD = 500 _ms;
3
4 class MyThread : public RODOS :: StaticThread <> {
5 public :
6 void init () override {
7 // initialization before the scheduler runs
8 }
9

10 void run () override {
11 // initialization while scheduler runs
12 TIME_LOOP (FIRST_RUN , PERIOD) {
13 // periodic code
14 }
15 }
16 }

Listing 8.1: Classical approach to implement periodic threads in rodos

In order to keep this structure consistent for all periodic threads in the onboard
software, Corfu introduces its own class for periodic threads, corfu::PeriodicThread.
It inherits from RODOS::StaticThread and directly passes the template parameter for
the stack size, see also figure 8.10. The part with the time loop is implemented
in corfu::PeriodicThread’s run method. The loop’s body does nothing else than
invoking the virtual method runIteration, which the user class implements. Both
initialization methods are also called by corfu::PeriodicThread (see figure 8.11).
Their name make clear, when they are called. unscheduledInitialization is invoked
by corfu::PeriodicThread::init and unscheduledInitialization is called in corfu

::PeriodicThread::run before the time loop is entered.

For each thread defined in the model, the generated app class contains virtual
methods for the user code. Only the runIteration method is purely virtual, i.e.,
mandatory for the user to implement. Both initialization methods have a default
implementation, i.e., they are optional for the user to implement. Each application
instantiates an appropriate subclass of corfu::PeriodicThread, which does nothing
else than invoking the associated user methods.

8.4 Concepts 83

RODOS

corfu

generated

C StaticThread
STACK_SIZE

void init()
void run()

C PeriodicThread
STACK_SIZE

int64_t firstRun
int64_t period

void init()
void run()
void unscheduledInitialization()
void scheduledInitialization()
void runIteration()

C ThreadA

void initUnscheduled()
void initScheduled()
void runIteration()

C MyApp

void initThreadAUnscheduled()
void initThreadAScheduled()
void runThreadAIteration()

C MyPeriodicThread

Figure 8.10.: Corfu’s approach to implement periodic threads (class diagram)

84 Chapter 8 Basic Concepts and Design of Corfu

R
od

os
In

it
ia

liz
at

io
n

R
od

os
Sc

he
du

le
r

Pe
ri

od
ic

Th
re

ad
U

se
rT

hr
ea

d

in
it

()

un
sc

he
du

le
dI

ni
ti

al
iz

at
io

n(
)

St
ar

t
Sc

he
du

le
r

ru
n(

)

sc
he

du
le

dI
ni

ti
al

iz
at

io
n(

)

su
sp

en
dU

nt
il(

FI
R

ST
_R

U
N

)

ru
nI

te
ra

ti
on

()

su
sp

en
dU

nt
il(

FI
R

ST
_R

U
N

+
PE

R
IO

D
*

1)

ru
nI

te
ra

ti
on

()

su
sp

en
dU

nt
il(

FI
R

ST
_R

U
N

+
PE

R
IO

D
*

2)

ru
nI

te
ra

ti
on

()

Fi
gu

re
8.

11
.:

C
or

fu
’s

ap
pr

oa
ch

to
im

pl
em

en
t

pe
ri

od
ic

th
re

ad
s

(s
eq

ue
nc

e
di

ag
ra

m
)

8.4 Concepts 85

corfu

generated

C App

reportAnomaly(const Anomaly &)

C MyApp

handleAnomalyA(const Anomaly &)

C MyApp

handleAnomalyA(const Anomaly &)

Figure 8.12.: Example class diagram of local anomaly handling

8.4.4 Local Anomaly Handling

Whenever something unexpected happens, applications report anomalies. The
generic class that all applications inherit provides methods for the user for reporting
anomalies. Applications publish every anomaly being reported to a topic, which will
be distributed on the node (e.g. for collecting them in an application). However, as
requirement REQ-SAT-08 states: anomalies shall be handled in the lowest possible
level. That means, anomalies shall be handled within the application if possible. In
order to unify in-application anomaly handling, Corfu generates handle functions
for all the anomalies that applications reference in their configuration.

Figure 8.12 shows an example of an application (MyApp) that reports one type
of anomaly (MyAnomaly). This class diagramm focuses on the anomaly handling
and, therefore, omits all other methods and member variables. The user code
invokes corfu::App::reportAnomaly as soon as the software detects an anomaly.
Corfu’s generic app class first calls the appropriate virtual handle function, before
it publishes the anomaly to the topic — as the sequence diagram in figure 8.13
shows.

86 Chapter 8 Basic Concepts and Design of Corfu

MyApp anomalyTopic:Topic

reportAnomaly(myAnomaly)

handleMyAnomaly(myAnomaly)

put(myAnomaly)

Figure 8.13.: Example sequence diagram of local anomaly handling

8.4.5 Event System

Satellite missions are limited in resources, including the bandwidth of the radio
connection between ground and space. On the other side, it is desirable to have
a verbose logging system. However, it is undesirable to transmit the same strings
repeatedly. To address this issue, we have implemented an event system that
uses information from the extended model to reduce the required capacity for
transmitting event messages.

Indeed, it would be possible to pre-define all messages in the engineering model.
However, our experience shows that engineers seldom know all event messages in
advance. Often, the events depend on the actual implementation, e.g., on control
structures and defined variables.

Onboard Code

In the source code, developers report event messages by calling a macro in C++.
Listing 8.2 shows two example event messages in the onboard software.

1 EVENT0 (INFO , " Message ");
2 EVENT(INFO , " Message ", varA , varB);

Listing 8.2: Example events being reported in the source code

8.4 Concepts 87

For each event, developers must pass a string (the message text) and zero or more
parameters. To provide an easy programming interface with a flexible number and
types of parameters, we have created two macros, which listing 8.3 shows.

1 # define EVENT0 (severity , msg) \
2 sendEvent ((severity), appId , RODOS :: hash(msg))
3
4 # define EVENT(severity , msg , ...) \
5 sendEvent ((severity), appId , RODOS :: hash(msg), __VA_ARGS__)

Listing 8.3: Event macros

The first macro, EVENT0, sends events without parameters; the second macro, EVENT,
takes variadic parameters (but at least one). All events are triggered within the code
of applications. Therefore an application ID is available when calling EVENT, which
is bound to the event. The hash function converts the passed string into an integer
hash value. The crucial point here is that we defined hash function as constexpr.
Defining it as constexpr gives the compiler the possibility to convert the string into
the hash value already at compile-time. Therefore, we can transfer the small hash
value via radio instead of the big event message. In addition, the string does not
end up in the binary file.

In order to transmit the event data, the software has to serialize all parameters. As
the parameter values change at the run-time, we cannot move this part to compile-
time. However, the number and types of parameters are fixed at compile-time. We
use this fact to let the compiler generate the serializing code by providing template
functions, which figure 8.4 shows.

1 template <typename Arg >
2 uint32_t serialize (uint8_t *buf , Arg &arg) {
3 return BasicSerializers :: serialize (arg , buf);
4 }
5
6 template <typename Arg , typename ... Args >
7 uint32_t serialize (uint8_t *buf , Arg &arg , Args ... args) {
8 uint32_t bytes = serialize (buf , arg);
9 bytes += serialize (buf + bytes , args ...);

10 return bytes;
11 }
12
13 template <typename ... Args >
14 void sendEvent (Severity severity , uint8_t appId , uint16_t

hash , Args ... args) {
15 Event event{ severity , appId , hash , NOW () };

88 Chapter 8 Basic Concepts and Design of Corfu

16 serialize (event.parameters , args ...);
17 eventTopic . publish (event);
18 }
19
20 void sendEvent (Severity severity , uint8_t appId , uint16_t

hash) {
21 Event event{ severity , appId , hash , NOW () };
22 eventTopic . publish (event);
23 }

Listing 8.4: Template functions for serializing event messages with their parameters

By applying template metaprogramming[1], we generate a series of serialize

functions that serialize the parameters one by one. From the viewpoint of the
template function, this looks like recursive calls, but the generated code does not call
itself recursively. Each serialize function cuts one parameter from the parameter list
and serializes it into the buffer. The function then passes the rest of the parameters
to another serialize function until there is no parameter left. For each combination
of parameters, the compiler generates a serialize function and all subsequent
functions, with the first parameter removed in each case.

Whenever a serialize function serializes a parameter, it returns the number of bytes
that the serialized parameters occupy in the buffer. This value includes the number
of bytes for the serialized parameter and the return value of calling the subsequent
serialize function. Finally, the sendEvent function stores the hash value of the
message into a Event struct and publishes it to the eventTopic.

Dannemann described in his dissertation[26] a monitoring framework, which also
managed to reduce the binary size and transmission bandwidth. However, he used a
preprocessor in his approach, which replaced the messages with alternative C++
code. The alternative code does not contain the string message and instead of an
ID. Replacing the string message with an ID is similar to our approach; however,
we do not need an extra preprocessor. Thanks to the constexpr keyword, which
has been introduced to C++, we do not need to change the user’s source code at
compile time. Therefore, the user code is compiled as it is, just following the C++
standard. Our approach does not require further (special) processing. Not having
extra processing tools avoids introducing new potential bugs and problems which
are not foreseen.

8.4 Concepts 89

8.5 Reporting Programming Errors at Compile-Time

There are different ways to detect programming errors already at compile-time.
Having error reports at compile-time is excellent for reporting faults before they
become failures at run-time.

One approach for avoiding faults is to prefer references over pointers. The code must
initializes references with a value; otherwise, the compiler raises an error. Hence,
there is no null pointer that the code has to test. However, developers can not
reassign references with different addresses, making them not a general replacement
for pointers.

Another aspect, which the power of ten (see 5.1.1) mentions, is to consider compiler
warnings as errors. Consequently, developers shall fix every warning that the
compiler reports. Most compilers provide a flag that aborts the compilation when a
warning occurs; in GCC and Clang, this is -Werror.

90 Chapter 8 Basic Concepts and Design of Corfu

The Engineering Model of
Onboard Software

9
The engineering model is the starting point for the model-driven approach of Corfu.
It lets engineers define structural and behavioral aspects of the onboard software.
This chapter describes the integral elements of the engineering model.

9.1 Structural Part of the Engineering Model

Corfu allows developers to define the onboard software’s structure in a engineering
model. Figure 9.1 presents the structural part of the engineering model as an entity
relationship model. The grey Project node is the top-level entity, which represents the
onboard software project. It contains a list of nodes that are part of the project. The
yellow nodes belong to the node hierarchy level. Nodes have a list of AppInstances,
which reference an application and zero or more AppCompileTimeParameters, whose
values the AppInstance may override. All the blue entities define the different aspects
of apps. In addition to the actual App entity, there are entities containing information
about run-time parameters, threads, shared resources, telecommands, and telemetry.
The green entities represent complex data structures used by applications topics,
telecommands, and telemetry. In the following, we describe the entities in more
detail.

9.1.1 App

Application entities are quite simple; they have only two direct parameters:

ID An integer number that identifies the application in a node. Indeed, this value
must be unique among all the other applications (the config parser checks this
fact).

Name Each application has a name; represented as a string. The name is used for
debugging purposes and in the ground software. In addition, it is also the
basis for the generated class names.

91

1

1

n

1

ProjectName

nNode

Node ID

Name

Platform

n

1

part of

m

n

AppInstance

1

App

App ID

Name

App Parmeter
Values

AppCompile

TimeParameter Data Type

Default Value

Name

n
has

1
overrides

AppRunTime

Parameter

Data Type

Default Value

Name

nhas

PeriodicThread

First Run

Period

Name

nhas Priority

(Max) Stack Size

SharedResource Namenuses

1

n

Topic

Topic ID

Name

n subscribes

synchronously

subscribes

synchronously

1

Telemetry

1

Telecommand

Telemetry ID

Name

Telecommand ID

Name

n

provides

n

provides

1

Struct

1

payload is
payload is

1

payload is

Name

n

uses

n

n

Field

1

n

consists of

1

is data type of

Array

n

is data type of

Name

Length

PlainDataType

1

is data typeis data type

Asynchronous
Subscription

Anomalynmay report

Name

Severity

1

Min Value

Max Value

publishes

m

FIFO Size

Synchronous
Subscription

nhas

Max Execution

Time

Telecommand IDMin Value

Max Value

Figure 9.1.: The entity relationship diagram of the structural part of the onboard software
in Corfu

92 Chapter 9 The Engineering Model of Onboard Software

Apart from those two direct parameters, Applications reference a lot of other entities
as well: SharedResources, SynchronousSubscriptions and AsynchronousSubscrip-
tions, Publications, AppCompileTimeParameters, AppRunTimeParameters, Periodic-
Threads, Anomalies, Telecommands, and Telemetry.

9.1.2 Node

Nodes have three direct parameters:

ID An integer number that identifies the node in a satellite. Indeed, this value has
to be unique among all the other nodes (the config parser checks this fact).

Name Each node has a name; represented as a string. The name is used for
debugging purposes and in the ground software. In addition, it is also the
basis for the generated class names.

Platform Each node runs on different hardware, which might require different
toolchains to build the software. To use the correct building environment
when compiling a node, engineers can specify the platform for each node.

In addition to those direct parameters, nodes reference applications. However, they
do not reference them directly; instead, they reference the entity of AppInstance,
which in turn references applications.

9.1.3 AppInstance

An AppInstance represents the instantiation of an application on a node. Through
AppCompileTimeParameters, it is possible to customize applications on the nodes.
Each application instance can define custom values for the AppCompileTimePa-
rameters. Hence, AppInstance contains fields for overriding the default values of
AppCompileTimeParameters.

9.1.4 AppCompileTimeParameter

Developers shall design applications to be reusable. However, platforms and satellite
requirements differ. Therefore, applications might behave differently on different
satellites or even on different nodes on the same satellite. Corfu makes it possible
to define parameters whose values are fixed at compile time to make applications

9.1 Structural Part of the Engineering Model 93

configurable. For example, engineers can use those parameters to specify the length
of arrays, which is not possible with dynamic variables that change their value at
run-time. AppCompileTimeParameters come with the following parameters in the
model.

Name The parameter name identifies the parameter, represented as a string. Ap-
pInstance uses it for overriding the parameter’s default value and for access in
the source code.

Data Type The Data Type defines the basic C++ data type of the parameter used
in the generated code.

Default Value Engineers can override the value of parameters in the model. How-
ever, if AppInstances do not explicitly override the value, the default value is
used, which is defined here.

9.1.5 AppRunTimeParameter

The values of AppCompileTimeParameters are fixed at the compile-time and, there-
fore, cannot be modified at run-time. However, it can be desirable to reconfigure
applications in orbit, which AppRunTimeParameters cover. In the model, engineers
can define run-time parameters similar to compile-time parameters. In contrast
to compile-time parameters, the code generator creates non-const variables from
run-time parameters, which the operations crew can change via telecommands.
The AppRunTimeParameter comes with similar parameters in the model as the
AppCompileTimeParameter.

Name The parameter name identifies the parameter; represented as a string. Ap-
pInstance uses it for overriding the parameter’s default value and for access in
the source code.

Data Type The Data Type defines the basic C++ data type of the parameter used
in the generated code.

Initial Value This is the initial value when the software starts.

Min Value This is the minimum value of the valid range. If this parameter is set,
the onboard software automatically checks the value before writing it.

Min Value This is the maximum value of the valid range. If this parameter is set,
the onboard software automatically checks the value before writing it.

94 Chapter 9 The Engineering Model of Onboard Software

Telecommand ID If this parameter contains a value, Corfu generates a telecom-
mand for setting this parameter. The auto-generated code does not provide
any checks. If users desire value checks, they have to implement appropriate
telecommands manually.

9.1.6 PeriodicThread

Threads provide active execution paths, which are activated and executed by the
operating system’s scheduler. Each thread belongs to an application. There are two
types of threads: PeriodicThreads and AperiodicThreads. PeriodicThreads execute
their code periodically, at fixed intervals. They come with several parameters in the
model.

Name Gives the thread a name. It is not only used for debugging purposes and in
the ground software. The name is also the basis for the generated class and
variable names.

FirstRun This is a time value that defines the first time point the scheduler executes
the thread’s code for the first time. The time value is relative to the boot time
of the software.

Period This is also a time value. It defines the interval between two code executions.

Priority Real-time operating systems like Rodos often come with a priority-based
scheduler; this is also the case for Rodos. The priority value of the thread
decides which threads the scheduler executes first. Engineers can define the
priority of threads here. The generated code directly passes the priority value
to the operating system (Rodos).

Maximum Execution Time This time value defines the maximum execution time
the thread might take. Corfu uses this value mainly for the scheduling analysis.

Maximum Stack Size Each thread has stack memory used for the code execution.
The required stack size depends on the code that threads execute. Therefore,
Corfu gives engineers the possibility to define the stack size for the thread.

9.1 Structural Part of the Engineering Model 95

9.1.7 Anomaly

The world is not perfect. And so will never a technical system be perfect, including
satellites. We must always expect faults. That means we have to detect, isolate, and
recover from faults. The onboard software should handle faults as locally as possible.
In addition, the software should report faults externally so that the system and the
operations crew can respond to faults. Therefore, Corfu enables defining anomalies
in the engineering model. Anomalies contain three parameters in the model.

ID An integer number that identifies the anomaly in an application. Indeed, this
value must be unique among all the other anomalies in the application (the
config parser checks this fact).

Name A descriptive name of the anomaly. The generator creates constexpr variables
in the code with this name, which developers can use to report or treat
Anomalies.

Severity Different anomalies have a different impact on a satellite. Some anomalies
are just minor ones, which the onboard software can handle locally, e.g., by
resetting a bus. Other ones are critical for the whole satellite, e.g., thermal
Anomalies. Such critical anomalies might put the whole mission in danger. In
order to categorize anomalies, Corfu provides this field that allows engineers
to rate the severity of anomalies in advance. The software can react to the
severity, eventually.

9.1.8 Telecommand

Telecommands are fixed commands, which the operation crew fires to achieve a
stable operation and accomplish the mission goals. Engineers can define such
Telecommands and their structure in the engineering model.

ID An integer number that identifies the telecommand in an Application. Indeed,
this value must be unique among all the other telecommands in the application
(the config parser checks this fact).

Name Each telecommand has a name; represented as a string. The name is not
only used for debugging purposes and in the ground software; it is also the
basis for the generated struct and method names.

96 Chapter 9 The Engineering Model of Onboard Software

Asynchronous This flag indicates whether the application shall handle the telecom-
mand asynchronously. For all telecommands that have this flag set to true, the
application invokes handling methods in the context of an extra command
handling thread instead of the context of the communication middleware.
Asynchronous handling is useful for telecommands that require some time for
processing.

Most Telecommands carry some parameter values. The engineering model calls
them Fields, which are referenced by Telecommands, taking their sequence into
account.

9.1.9 Topic

A topic represents a communication channel between different applications. They
have two elements in the engineering model

ID An integer number that identifies the telecommand in an Application. This value
must be unique among all the other topics in the project (the config parser
checks this fact).

Name Each topic has a name; represented as a string. The name is not only used
for debugging purposes and in the ground software; it is also the basis for the
generated struct, variable and method names.

Each topic is equipped with a data data type for the communication messages.
Therefore, it references the struct entity.

9.1.10 Field

A Field represents a parameter or field in Telecommands, Telemetry, or other Structs.
The green entities in figure 9.1 are those entities that build-up structure fields. A
Field itself does not contain more than one parameter in the engineering model.

Name Each Field has a name; represented as a string. It has to be unique among
the other fields of a Struct, Telecommand, or Telemetry (the config parser
checks this fact). The name is not only used for debugging purposes and in
the ground software; it is also the basis for the generated struct and method
names.

9.1 Structural Part of the Engineering Model 97

Min Value This is the minimum value of the valid range. If this parameter is set,
the onboard software automatically checks the value before writing it.

Min Value This is the maximum value of the valid range. If this parameter is set,
the onboard software automatically checks the value before writing it.

A field can have different types. The references decide which types a field has. It
can be either a plain PlainDataType, an Array, a BitArray, or a Struct.

9.1.11 PlainDataType

PlainDataType is the simplest data type for Fields and Arrays. It is a plain data
structure that is available in C++, such as uin32_t or float. Its name just identifies
the plain data type.

Name This is the C++ name of the plain data type.

9.1.12 Array

Arrays are a collection of the same data type with a fixed number of elements.
Similar to Fields, the data type of array elements can be either a plain PlainDataType,
an Array, a BitArray, or a Struct. The reference to a type decides which type the array
elements have. In addition, Arrays have one parameter in the engineering model.

Length The number of elements the Array should hold.

9.1.13 Struct

In contrast to Arrays, Structs can hold fields with different data types. The Struct
entity itself defines only one parameter in the engineering model.

Name This is the name of the struct, which the generator uses for the source code.

The struct references all the Fields that are part of its structure.

98 Chapter 9 The Engineering Model of Onboard Software

9.1.14 Telemetry

In the context of the engineering model definition, telemetry is very simple to
telecommand. It also references fields that build up their payload structure.

ID An integer number that identifies the telemetry in an Application. Indeed, this
value must be unique among all the other telemetry in the application (the
config parser checks this fact).

Name Each Telemetry has a name; represented as a string. The name is not only
used for debugging purposes and in the ground software; it is also the basis
for the generated struct and method names.

9.1.15 SynchronousSubscription

In Corfu’s engineering model, there are two types of subscriptions, DirectSubscrip-
tion and AsynchronousSubscription. Both subscribe to topics, but they do it in
different ways. DirectSubscriptions handle topic messages synchronously. That
means they directly invoke a handling method executed in the context (thread) of
the communication middleware. AsynchronousSubscriptions do not call a handling
method; instead, it stores topic messages into a FIFO. The application has to read
the FIFO to handle the messages eventually (in a thread). In the engineering model,
DirectSubscriptions need no parameters; they only reference a topic they want to
subscribe to.

9.1.16 AsynchronousSubscription

An AsynchronousSubscription connects a topic with a local FIFO in the application.
For each AsynchronousSubscription, the generator creates an appropriate FIFO for
the application. For this, the engineering model needs information about the length
of the FIFO.

FIFO Length The number of elements that the FIFO shall be able to store.

Like for the DirectSubscription, the AsynchronousSubscription references the Topic
that it shall subscribe to.

9.1 Structural Part of the Engineering Model 99

9.1.17 Publication

Defining Publications is very easy in Corfu’s engineering model. It belongs to an
Application and references a Topic for publishing. There is no parameter else in the
engineering model.

9.1.18 SharedResource

Apart from the inter-application communication via topics, there are also cases
in which applications share the same code and objects. The engineering model
represents such objects as SharedResource. It just requires one parameter in the
engineering model.

Name This value is the name of the class that the node shall instantiate.

The instantiated class is encapsulated into a ThreadSafeData class (see Section 17.1.1)
to ensure thread-safety.

9.2 Behavioral Part of the Engineering Model

Apart from the software structure (described in the previous section), engineers can
also define some behavioral aspects to describe some requirements of the user code.
Figure 9.2 shows the configuration elements as entity relationship diagram. The
elements on the left side define code elements, which the user has to implement.
They all call a handler method whenever data arrives, or a thread iteration executes.
Engineers can specify which response they expect from the user code. There are
three response types: topic publications, anomaly reports, and telemetry emission.
The static analyzer extracts information about these responses from the source code.
Therefore, the framework can check whether the users actually implemented those
responses.

100 Chapter 9 The Engineering Model of Onboard Software

Synchronous
Subscription

Telecommand

PeriodicThread

Topic

Anomaly

Telemetry

expect

publication

expect

report

expect

emission

n

n

n m

m

m

Figure 9.2.: The entity relationship diagram of behavioral aspects of the user code

9.2 Behavioral Part of the Engineering Model 101

Tools and Libraries of Corfu 10
Corfu comes with several libraries and tools. The following sections give introduc-
tions to them on a descriptive level; the part IV describes implementation details.

All the tools and libraries build on each other. Figure 10.1 shows the dependencies
of the different tools and libraries to each other. For better clarity, the diagram
does not show transitive usage; for example, corfu-ground-software uses parts of
libcorfu-basic, which is not displayed there.

libcorfu-basic

The C++ standard library comes with a lot of valuable functions and classes[47, 91].
However, the standard implementation uses some features of C++, which are not
desirable in safety-critical applications. For example, the JSF coding standard, as
well as the coding directive of Rodos, forbid using exceptions. However, the classes
and functions of the C++ standard library heavily rely on exceptions to notify
applications of failures. Disabling exceptions and still using the standard library is
not a good deal because of the missing error reporting. Our libcorfu-basic uses the
error reporting approach of Rodos, which is a Result class, which either contains
the return value or an error code (like in Rust[70]).

Another problem is the container classes of the C++ standard library. They use
dynamic memory, which coding standards for safety-critical software prohibit. For
that reason, we have created our own library like the standard library, which we call
libcorfu-basic. The container classes use static memory. Hence, it directly allocates
the required memory as a class member (e.g., directly on the stack) without a pointer
to some allocated memory on the heap. It is not compatible with the standard library
of C++ because of the different error reporting systems and template parameters
for the container classes. Our library also does not implement all classes from the
standard library.

103

G
rou

n
d

B
u

ild
Tools

G
rou

n
d

Tools

G
rou

n
d

Libraries
O

n
-B

oard

Platform
-In

depen
den

t

corfu-code-generator
corfu-code-extractor

corfu-assem
bly-extractor

corfu-ground

libcorfu-config-parser
libcorfu-ground

libcorfu-on-board
libcorfu-test

libcorfu-basic

libcorfu-tele

Figure
10.1.:

B
asic

structure
ofC

orfu’s
libraries

and
tools

104 Chapter 10 Tools and Libraries of Corfu

libcorfu-tele

This library covers the communication between the ground and the space. Indeed,
the physical layer of the communication, the radio technology, depends on the
mission. For example, some use S-Band, and others use HAM radio. The selection of
radio technology sometimes also influences the second OSI layer, the data link layer.
For example, HAM radio often requires an open protocol here, the AX.25 protocol.

However, the encoding above the second layer is always the same — this is what
libcorfu-tele defines. This library comes with the structure definitions of telecom-
mands and telemetry and serializing functions, which both share, onboard, and
ground software.

libcorfu-on-board

This library contains generic code for the onboard software. It is part of all on-
board software created with Corfu. That means it is independent of the software’s
configuration. It contains generic base classes for applications and nodes, declara-
tions of common topics and data structures, and helper functions, e.g., for thread
synchronization.

libcorfu-ground

Corfu provides does not only support developing onboard software. Furthermore, it
is a complete software suite, which also covers the ground part. The ground library
is the counterpart to the onboard software. For the communication between the
ground and the space, this library encodes and decodes telecommand and telemetry
packets. This library is useful for developing custom ground software that perfectly
integrates into our framework. Corfu comes with a reference implementation of
ground software, which relies on this library (see below).

corfu-code-generator

This tool generates C++ source code based on the model of the software. It combines
information from the model with template files for the source code. The generator
creates an abstract class for each application, which handles local telecommand
distribution, topic subscription, and thread handling. For each action, it creates a

105

pure virtual function for the user to implement in a subclass. Those actions include
the execution code of threads, handling functions for telecommands, and direct topic
subscriptions. See section 11.5 for implementation details of the code generator.

libcorfu-config-parser

This library is responsible for parsing the model from configuration files. It checks
the configuration code syntactically and semantically. For the user, it provides the
model in c++ data structures with easy access. Every tool that has to process the
model uses this library.

corfu-ground

This tool is the reference implementation of ground software using Corfu. It relies on
Corfu’s ground library to access the onboard software model and the communication
interface. Based on the model, it dynamically creates a graphical user interface based
on Qt1. The graphical interface displays the current values of standard telemetry and
provides an easy way to send telecommands and display information from extended
telemetry.

corfu-assembly-extractor

We have two different tools for extracting information from the final software: the
corfu-assembly-extractor and the Corfu-code-extractor. The corfu-assembly-extractor
works on the assembly level in order to extract information such as stack usage. See
section 12.2 for implementation details of the assembly extractor.

corfu-code-extractor

The Corfu-code-extractor extracts information on the source code level. It parses the
source code, builds the abstract syntax tree (AST), and extracts information from it.
The library saves the resulting extended model along with the engineering model.
See section 12.3 for implementation details of the code extractor.

1https://www.qt.io/

106 Chapter 10 Tools and Libraries of Corfu

libcorfu-test

This library provides a test environment for unit and integration tests. Developers
have to write unit tests to cover their manually written code. They only test the
manual code, no other code of the software stack. In order to test the complete code,
developers have to create integration tests. Those tests use the ground-space com-
munication interface, namely telecommands and telemetry, for testing. Developers
define telecommands to send and which telemetry data to expect. Integration tests
can also be executed directly on the target platform. Chapter 14 goes into more
detail about testing the onboard software.

107

Part IV

Implementation of Corfu

Configuration Files and
Generated Code

11

Chapter 9 has introduced the engineering model in a theoretical way. This chapter
shows how we practically encode the engineering model into configuration files.

In the field of modeling, there are different ways to encode engineering models —
see also chapter 3. We have decided to use YAML as the file format for defining the
engineering model of onboard software. It is a format with straightforward syntax.
YAML lets users define a nested data structure of three element types: associative
lists, arrays, and scalar types. In contrast to XML, YAML has nearly no boilerplate
code, making it easier to write manually.

11.1 Directory Structure for Satellite Projects

Similar to the hierarchical division of space missions, Corfu configures onboard
software hierarchically. Figure 11.1 shows an exemplary folder structure of a Corfu
project. All the configuration files have the yml suffix in their filename. They contain
the description of the engineering model in the YAML file format. At the top-level
directory, there is the project.yml file, which contains configuration about the whole
project. There are three folders: apps, nodes, and generated. The apps folder
contains a subfolder for each application containing the configuration and user
code of the applications in the project. Each application has its configuration file
describing its structure and communication interface. Along with the configuration
file, there are two folders for each application: the source folder containing the
application code and the test folder containing corresponding unit tests. Those
applications can be part of nodes, which engineers define in the nodes folder. In
contrast to applications, nodes do not require user code. Therefore, there is only a
configuration file for each node and no source code.

Finally, there is a generated folder, which contains the code that Corfu generates.
This folder is read-only for users. This folder’s content will be re-generated several

111

my-project
project.yml
apps

my-first-app
app.yml
src

my-first-app.cpp
...

test
my-first-app-test.cpp
...

my-second-app
app.yml
src

my-second-app.cpp
...

test
my-second-app-test.cpp
...

...
nodes

my-first-node.yml
my-second-node.yml
...

generated
...

Figure 11.1.: Directory structure of a OBSW project using Corfu

times because of the iterative approach. The following sections present the different
elements of configuration files.

11.2 Project Configuration File

The global configuration file at the root folder of the user source code defines
common topics. Several applications can use those topics in order to exchange
data. Consequently, such topics do not "belong" to a particular application and,
therefore, they have to be defined globally. Topics are the only items defined in the
global configuration file. The listing 11.1 shows an example configuration file for a
project.

112 Chapter 11 Configuration Files and Generated Code

1 ---
2 name: myProject
3 topics :
4 topicA : uint8_t
5 topicB : uint16_t
6 topicC :
7 fields :
8 fieldA : uint8_t
9 fieldB : float

Listing 11.1: Example project configuration in YAML

The project does not have its own classes or structures in the source code. It defines
only the project’s name that either become available in the onboard code.

11.2.1 Name

The name parameter is just a string containing the project’s name to have it available,
e.g., for generating documentation files. Its value is globally available in the project,
e.g., for debugging purposes. However, in orbit, this value is rarely of use. Hence,
we rely on compiler/linker optimizations to remove the value if it is unused. The
listing 11.2 shows that the generated source code is just a constant string in the
Corfu namespace.

1 namespace corfu :: project {
2 const char * const NAME = " myProject ";
3 }

Listing 11.2: Example generated code for the project’s name

11.2.2 Topics

Even if engineers define topics at the project level, the generator creates code on the
node level. There, it generates only those topics that the node’s applications use. If
the topic’s data type is a custom struct, the generator will create a corresponding
C++ struct. In addition, the node receives an instance of the topic for usage in the
applications. The listing 11.3 shows exemplary generated topic code.

1 struct TopicCPayload {
2 uint8_t fieldA ;
3 float fieldB ;

11.2 Project Configuration File 113

4 };
5
6 // in the node classes
7 Topic < TopicCPayload > topicC ;

Listing 11.3: Example generated code for a topic with custom data type structure

11.3 Application Configuration File

Each application has its own configuration file that describes different aspects of the
application. The listing 11.4 shows an example configuration of applications.

1 ---
2 name: MyApp
3 id: 137
4 compileTimeParameters :
5 ParamA :
6 type: int32_t
7 defaultValue : 1337
8 runTimeParameters :
9 paramB :

10 type: int32_t
11 defaultValue : 1338
12 telecommandId : 64
13 valueRange :
14 min: 100
15 max: 2000
16 mySecondRunTimeParameter :
17 type: int16_t
18 defaultValue : 1339
19 telecommands :
20 telecommandA :
21 id: 2
22 telecommandB :
23 id: 3
24 fields :
25 myField : uint8_t
26 extendedTelemetry :
27 myTelemetry :
28 id: 1
29 fields :
30 fieldA : uint8_t

114 Chapter 11 Configuration Files and Generated Code

31 fieldB : float
32 standardTelemetry :
33 myIntField : uint16_t
34 myFloatField : float
35 threads :
36 myPeriodicThread :
37 firstRun : 2_s
38 period : 1_s
39 priority : 100
40 maxStackSize : 1_kB
41 subscribe :
42 topicA :
43 fifo: 8
44 topicB : synchonous
45 publish :
46 - myThirdTopic

Listing 11.4: Example app configuration in YAML

As already described in the conception section 8.3, the code generator creates specific
classes based on the applications’ configurations. Those classes inherit from the
generic corfu::App as the listing 11.5 shows.

The generated code represents the compile-time parameters as template parameters.
This allows the nodes to pass custom values, which are usable at compile-time in the
application user code. The generator creates all the application components within
the class body, like the rest of this section presents.

1 namespace generated {
2 class MyApp <ParamA > : public corfu :: App {
3 // ...
4 }
5 }

Listing 11.5: Example generated code for an app

11.3.1 Name

The name parameter is just a string containing the application’s name to have it
available, e.g., for generating documentation files. Its value is globally available in
the application, e.g., for debugging purposes. However, in orbit, this value is rarely
of use. Hence, we rely on compiler/linker optimizations to remove the value if it is

11.3 Application Configuration File 115

unused. The listing 11.6 shows that the generated source code is a constant string
in the generated application class.

1 const char *const NAME = "MyApp";

Listing 11.6: Example generated code for the application’s name

11.3.2 ID

Each application contains an ID used on board to address the application for telecom-
mand destinations and telemetry sources. The generic corfu::App class performs
the generic telecommand handling. Therefore, the ID value is passed to the generic
class in the constructor, as the listing 11.7 shows.

1 MyApp () : corfu :: App (137) {}

Listing 11.7: Example generated code for the application’s ID

11.3.3 Compile Time Parameters

Compile-time parameters describe constant values in the source code, which the
code cannot at run-time. Consequently, the generated code consists of constexprs as
the listing 11.8 shows. The value in the generated code depends on the instantiation
in the nodes. In the node configuration, such compile time parameter values can be
overridden (see section 11.4). If there is no overriding value, the generator uses the
default value from the application configuration.

To enable the overriding, we have to split the declaration from the definition.
Therefore, the header file of the generated application code contains the declaration.
There are separate source code files for the nodes, which define the value of the
parameters eventually.

1 // header
2 extern constexpr int32_t paramA ;
3
4 // node - dependent source
5 constexpr int32_t generated :: my_app :: paramA = 1337;

Listing 11.8: Example generated code for the application’s compile-time parameter

116 Chapter 11 Configuration Files and Generated Code

11.3.4 Run Time Parameters

In contrast to compile-time parameters, run-time parameters can be changed at
run-time, i.e., in orbit. The telecommand ID is optional. If it has a value, the code
generator automatically creates an appropriate telecommand for changing the value.
It does nothing more than setting the value and checking the range if set.

Run-Time parameters can have a range with a minimum and maximum value. If
this is the case, the generated code encapsulates the variable in a RangedValue class
in the generated code. The listing 11.9 shows exemplary generated code.

1 int32_t ProtectedVariable < RangedValue <int16_t >> paramB {1338};
2
3 ErrorCode handleParamBUpdate (const int32_t & newValue) {
4 return paramB ->lock () ->updateValue (newValue);
5 }

Listing 11.9: Example generated code for the application’s run-time parameter

11.3.5 Telecommands

Telecommands represent interaction points for the ground software. On the satellite
side, the handleTelecommand method deserializes the telecommand payload and
invokes a particular method. The specific handling method is declared pure virtual;
it has to be implemented by the user in the subclass. The listing 11.10 shows
exemplary generated code for handling telecommands in applications.

1 virtual Error handleTelecommandA () = 0;
2 virtual Error handleTelecommandB (TelecommandBPayload & payload

) = 0;
3
4 Error handleTelecommand (Telecommand & telecommand) {
5 if(telecommand .appId != appId) { return NOT_FOR_ME ; }
6
7 switch (telecommand . telecommandId) {
8 case 2:
9 return handleTelecommandA ();

10
11 case 3:
12 TelecommandBPayload payload ;
13 TelecommandBPayload . deserialize (telecommand .

getSerializedPayload ());
14 return handleTelecommandB (payload);

11.3 Application Configuration File 117

15 }
16 }

Listing 11.10: Example generated code for the application’s telecommand handling

11.3.6 Standard Telemetry

Applications contribute some fields to the standard telemetry of the nodes. For each
application, the code generator creates its own struct. In the generated application
class, there is an instance of the struct used when collecting the standard telemetry
from each application. In best practice, users keep this instance up to date to have it
always available for standard telemetry. For a detailed description of how standard
telemetry works, have a look at section 8.4.2. The listing 11.11 shows exemplary
generated code for standard telemetry in apps.

1 struct StandardTelemetry : Serializable {
2 uint16_t fieldA ;
3 float fieldB ;
4
5 Result <size_t > serialize (Slice <uint8_t >& slice) override ;
6 Result <size_t > deserialize (Slice <uint8_t >& slice) override ;
7 };
8
9 corfu :: ProtectedVariable < StandardTelemetry > stdTM;

Listing 11.11: Example generated code for the application’s standard telemetry

11.3.7 Extended Telemetry

Applications can define other telemetry types called extended telemetry. In contrast
to standard telemetry, extended telemetry is usually not automatically sent but
often used to respond to telecommands. They provide a way to report additional
information to the ground.

Also, here, the code generator creates a struct with the telemetry payload, as the
listing 11.12 shows.

1 struct MyExtendedTelelemetry : TelemetryPayload {
2 uint8_t fieldA ;
3 float fieldB ;
4

118 Chapter 11 Configuration Files and Generated Code

5 Result <size_t > serialize (Slice <uint8_t > &slice) override ;
6 Result <size_t > serialize (Slice <uint8_t > &slice) override ;
7 };

Listing 11.12: Example generated code for the application’s extended telemetry

11.3.8 Threads

Applications can define threads, which represent active execution paths that the
operating system schedules. There are two different types of thread: periodic and
aperiodic threads. In the configuration, periodic threads require timing parameters.
If those values are not defined, the generator creates an aperiodic thread.

1 virtual void runMyPeriodicThread () = 0;
2
3 class MyPeriodicThread : public PeriodicThread <1_kB > {
4 MyApp& app;
5
6 public :
7 explicit MyPeriodicThread (ExampleApp & app)
8 : PeriodicThread <1_kB >(1_s , 1_s , " myThread ", 100) ,
9 app(app) {}

10
11 protected :
12 void runIteration () override { app. runMyThread (); }
13 } myPeriodicThread { *this };

Listing 11.13: Example generated code for the application’s periodic threads

For each periodic thread, the code generator creates an own subclass of corfu::

PeriodicThread, which invokes a specific pure virtual function periodically according
to the timing parameters. The listing 11.13 shows exemplary generated code for
periodic threads.

11.3.9 Topic Subscription

The software uses topics for inter-application communication. Hence, applications
can subscribe and publish to topics. In the subscription part of the configuration file,
applications define which topics they want to subscribe to. There are two ways of
subscribing to topics: synchronously and asynchronously. The first directly calls a
handling function upon receipt of a topic message as the listing 11.14 shows.

11.3 Application Configuration File 119

1 virtual void handleTopicA (const uint8_t & message) = 0;
2
3 class TopicAReceiver : public SubscriberReceiver <uint8_t > {
4 MyApp& app;
5
6 public :
7 explicit TopicAReceiver (MyApp& app)
8 : SubscriberReceiver <uint8_t >(topicA , "MyApp"),
9 app(app) {}

10
11 void put(uint8_t & message) override {
12 app. handleTopicA (message);
13 }
14 } topicAReceiverSubscriber { *this };

Listing 11.14: Example generated code for the application’s synchronous topic subscriptions

The handling function is defined to be purely virtual. Hence, developers have to
implement the message consumption in the subclass. The asynchronous way directly
saves topic messages into a FIFO as the listing 11.15 shows.

1 SyncFifo <uint16_t > topicBFifo ;
2 Subscriber topicBSubscriber (topicB , topicBFifo);

Listing 11.15: Example generated code for the application’s asynchronous topic
subscriptions

Developers have to make sure that all the values saved in the FIFO have to be
processed (by a thread) eventually.

11.3.10 Topic Publication

In the configuration file, topic publications are just a list of topics the application
intends to publish. Each topic in an application’s publication list is made available
to the application’s source code, as the listing 11.16 shows.

1 extern Topic <float > topicC ;

Listing 11.16: Example generated code for the application’s topic publication

120 Chapter 11 Configuration Files and Generated Code

11.4 Node Configuration File

In the nodes directory, each node has its own configuration file. The listing 11.17
shows an example configuration of a node.

1 --
2 name: MyNode
3 id: 200
4 apps:
5 myApp:
6 myCompileTimeParameter : 2669
7 myOtherApp : default

Listing 11.17: Example node configuration in YAML

Like applications, the code generator creates a specific class according to the con-
figuration, which inherits from a generic class from Corfu — like the listing 11.18
shows.

1 class MyNode : public corfu :: Node {
2 // ...
3 }

Listing 11.18: Example generated code for a node

Nodes do not need any manual code; all information required for nodes is already
available in the configuration of nodes and applications.

11.4.1 Name

The name parameter is just a string containing the node’s name to have it available,
e.g., for generating documentation files. Its value is globally available in the node,
e.g., for debugging purposes. However, in orbit, this value is rarely of use. Hence,
we rely on compiler/linker optimizations to remove the value if it is unused. The
listing 11.19 shows that the generated source code is a constant string in the
generated node class.

1 const char * const NAME = " MyNode ";

Listing 11.19: Example generated code for the node’s name

11.4 Node Configuration File 121

11.4.2 ID

Each node contains an ID, which the onboard software uses to address the application
for telecommand destinations and telemetry sources. Therefore, the ID value is
passed to the generic class in the constructor, as the listing 11.20 shows.

1 MyNode () : corfu :: Node (200) {}

Listing 11.20: Example generated code for the node’s ID

11.4.3 Apps

In the configuration, apps contains a list of applications that the node shall instantiate.
Here, nodes can override the values of compile-time parameters by providing a new
value. If no parameter values shall be overridden for an application, developers
must define default to keep the default values. The node class instantiates all the
defined applications as member variables as the listing 11.21 shows. If applications
have compile-time parameters, the node passes their (overwritten) value as template
parameter.

1 :: MyApp myApp <2669 >;
2 :: MyOtherApp myOtherApp ;

Listing 11.21: Example generated code for the node’s list of applications

11.5 Code Generation Process

Based on the model, a generator creates various artifacts, e.g., software images or
documentation documents. This chapter presents implementation details of the
automatic generation process.

The source code generator uses two libraries to produce source code and documen-
tation:

libcorfu-config-parser This library parses and validates the configuration files, i.e.,
the model. It provides the model as a C++ representation to the generator.

inja1 This is an external library. It is a templating engine similar to Python’s
Jinja2[2].

2https://palletsprojects.com/p/jinja/

122 Chapter 11 Configuration Files and Generated Code

Figure 11.2 shows the process of generating source code. The config parser library
delivers a ready C++ representation of the entire model. If the config files are valid,
the generator converts their information is parsed into representation that serves as
input to inja.

11.5.1 The Template Files

Inja’s template files are extensions of the desired output. Listing 11.22 shows an
example template file for creating struct in C++ based on information from the
model / configuration files. Developers can write placeholders into template files,
which inja handles. Those placeholders implement different features. The simplest
one is just replacing the placeholder with a variable’s value — see the first line in the
example. There, the name is passed to a function named CamelCase, which Corfu’s
generator defines. Its purpose is to reformat the passed string into an upper camel
case format, e.g., my-struct to MyStruct. The resulting value between {{ and }} is
directly printed into the generated file.

1 struct {{ CamelCase (name) }} {
2 {% for field in fields %}
3 {% if field.type. isArray %}
4 {{ field.type.array.type.name }} {{ field.name }}[{{

field.type.array. length }}];
5 {% else %}
6 {{ field.type.name }} {{ field.name }}{};
7 {% endif %}
8 {% endfor %}
9 };

Listing 11.22: Example template for generating a struct

More complex placeholders provide control structures such as if/else and loops.
They are enclosed into {% and %}. Like in line 2, loops repeat their body and inja
prints the outputs of all iterations consecutively. In the example, inja iterates through
all the fields to print them into the generated file. For each field, inja checks whether
it is an array or not. If it is an array, inja prints the member variable as an array, i.e.,
with square brackets defining the array’s length. Otherwise, inja creates a standard
non-array member variable. Listing 11.23 shows an example struct that had been
generated with the template from listing 11.22.

11.5 Code Generation Process 123

Parse
configuration

files
[.ym

l]

C
onvert

m
odelinto

inja
representation

Load
tem

plate
code

files
[inja

.cpp
.h]

G
enerate

code
files

[.cpp
.h]

Save
code

files
[.cpp

.h]

Load
tem

plate
docum

entation
files

[inja
.htm

l.dot]

G
enerate

docum
entation

files
[.htm

l.dot]

R
ender

diagram
s

[.png]

Save
docum

entation
files

[.htm
l]

yes
A

re
configuration

files
valid?

no

Figure
11.2.:

The
activity

diagram
ofthe

source
code

generation
process

124 Chapter 11 Configuration Files and Generated Code

1 struct MyStruct {
2 int32_t myFirstField ;
3 int16_t mySecondField [8];
4 };

Listing 11.23: Example template for generating a struct

11.5.2 Documentation Generation

Apart from the obligatory generation of code, Corfu also generates documentation
files. Those documentation files contain information from the (extended) model
and display it vividly and interactively in the browser. The generator creates pages
for each application, node, and topic, which contain all the information from the
model. In addition, the generator creates diagrams displaying relationships of
different components. For example, there is a diagram about the publishing and
subscribing applications on topic pages. Figure 11.3 and 11.4 show screenshots
of generated documentation. The first one contains a diagram that shows which
topics the example application subscribes. The second one shows the structure of an
example telecommand.

11.5 Code Generation Process 125

Figure 11.3.: Example of generated documentation with a topic diagram

Figure 11.4.: Example of generated documentation with a telecommand

126 Chapter 11 Configuration Files and Generated Code

Feedback from User Code to
the Model

12
The classical model-driven approach knows only one direction of information: from
the requirements into the model and from the model into the source code. However,
models are abstract; therefore, code generators can only create a part of the source
code from the model. Hence, models do not contain every detail of the final source
code. Developers manually write the other part. Implementation details influence
the total system, e.g., memory and CPU usage. Therefore, it is helpful to extract
information from the user-written source code and extend the engineering model.
Extracting information and extending the model is our feedback approach, which
this chapter presents.

12.1 The Extended Model

Chapter 9 described the structure of the engineering model. Developers and en-
gineers manually define the engineering model in configuration files (see chap-
ter 11).

Our feedback approach extracts information from the code in two ways: binary
analysis and user-written source code analysis. The analyzing tools collect the
extracted information in a new model, which we name extracted model. The
extracted model introduces new entities towards the engineering model. Hence,
elements of the extracted model directly reference elements of the engineering
model. In total, we call the combination of both models (predefined and extracted
model) the extended model — see figure 12.1.

Engineering

Model

Extracted

Model

from C++

Extended Model

Figure 12.1.: The relations of engineering, extracted, and extended models

127

The extracted model contains different types of information, which it links with
entities of the engineering model. Figure 12.2 shows an entity relationship diagram
of the extracted model. All the yellow entities are entities from the engineering
model. The new entities from the extracted model reference those entities from the
engineering model. Apart from the yellow entities, we have nodes with two different
colors, blue and green. The colors represent two independent sets of data, which we
use to implement different features in the software.

The green entities contain information about the source code. It contains all the
functions (or methods) defined in the source code and their relation to calls and
overrides. In addition, the extracted model comprises information about which
functions publish data to topics or emit extended telemetry. For example, section 13.3
describes how this information is used for stack usage analysis.

The blue entities contain information about events in the code. Those events consist
of a message string, a severity, and optional parameters. Section 15 describes how
this information is used.

Corfu extracts all the information (blue and green) from the compiled binary file and
the source code. It saves the extracted model into a SQLite database. The following
two sections describe how Corfu extracts the information.

12.2 Assembly Analysis

Some information can be easier extracted from the assembly than from the source
code. One example is the stack usage of functions. The stack utilization highly
depends on compiler optimizations. For example, unused local variables might be
removed, which, hence, do not land on the stack. Hence, we extract stack usage
information from the assembly. For the analysis of stack usage of functions, Corfu
uses the same approach as the checkstack.pl script from the linux kernel1.

The basis is an assembly of the compiled file. Listing 12.2 shows an example assembly
that has been generated from the function of listing 12.1. We have used clang 11.1.0
with disabled optimizations (-O0). The example function (listing 12.1) does nothing
else than just using some stack memory. The assembly code shows that the stack
pointer is decremented once in line 4 and incremented once in line 13. Hence, we
parse those lines in order to determine the maximum stack usage of the function.

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/checkstack.pl

128 Chapter 12 Feedback from User Code to the Model

E
A

pp

A
pp

ID

N
am

e

E
Ev

en
t

H
as

h

Se
ve

ri
ty

A
pp

Id
M

es
sa

ge

E
Ev

en
tP

ar
am

et
er

O
rd

er
In

de
x

Ty
pe

E
A

pe
ri

od
ic

Th
re

ad

N
am

e
Pr

io
ri

ty
M

ax
im

um
St

ac
k

Si
ze

E
Fu

nc
ti

on

N
am

e
St

ac
k

U
sa

ge
Li

ne
in

C
od

e

E
Pe

ri
od

ic
Th

re
ad

N
am

e
Fi

rs
t

R
un

Pe
ri

od
Pr

io
ri

ty
M

ax
im

um
St

ac
k

Si
ze

E
To

pi
c

To
pi

c
ID

N
am

e
Is

B
ui

lt
-I

n

E
Te

le
m

et
ry

Te
le

m
et

ry
ID

N
am

e

E
So

ur
ce

Fi
le

Pa
th

E
Te

le
m

et
ry

Em
is

si
on

In
C

od
e

Li
ne

in
C

od
e

E
To

pi
cP

ub
lic

at
io

nI
nC

od
e

Li
ne

in
C

od
e

R
un

M
et

ho
d

C
al

ls

O
ve

rr
id

es

D
efi

ne
d

in

R
un

M
et

ho
d

Em
it

s

D
efi

ne
d

in

Pu
bl

is
he

s

D
efi

ne
d

in

In
fo

rm
at

io
n

in
th

e
En

gi
ne

er
in

g
M

od
el

In
fo

rm
at

io
n

ab
ou

t
So

ur
ce

C
od

e
Lo

gg
in

g
Ev

en
t

In
fo

rm
at

io
n

Fi
gu

re
12

.2
.:

Th
e

ex
te

nd
ed

m
od

el

12.2 Assembly Analysis 129

1 void myFunction () {
2 char arr [8];
3 }

Listing 12.1: Example function for binary analysis

1 0000000000401190 <_Z10myFunctionv >:
2 401190: 55 push %rbp
3 401191: 48 89 e5 mov %rsp ,% rbp
4 401194: 48 83 ec 10 sub $0x10 ,% rsp
5 401198: 64 48 8b 04 25 28 00 mov %fs:0x28 ,% rax
6 40119f: 00 00
7 4011 a1: 48 89 45 f8 mov %rax ,-0x8(% rbp)
8 4011 a5: 64 48 8b 04 25 28 00 mov %fs:0x28 ,% rax
9 4011 ac: 00 00

10 4011 ae: 48 8b 4d f8 mov -0x8(% rbp) ,%rcx
11 4011 b2: 48 39 c8 cmp %rcx ,% rax
12 4011 b5: 0f 85 06 00 00 00 jne 4011 c1 <

_Z10myFunctionv +0x31 >
13 4011 bb: 48 83 c4 10 add $0x10 ,% rsp
14 4011 bf: 5d pop %rbp
15 4011 c0: c3 retq
16 4011 c1: e8 6a fe ff ff callq 401030 <

__stack_chk_fail@plt >
17 4011 c6: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax ,%rax ,1)

Listing 12.2: x86 Assembly of the example function for binary analysis

By applying regular expression, the assembly analyzer detects three different lines
in the assembly file: function labels, increasing, and decreasing the stack pointer’s
value. Our tool detects those lines by applying regular expressions (like the tool
from the linux kernel). Listing 12.3 shows those three regular expressions. These
regular expressions are directly used in an algorithm that adds up the maximum
stack usage for each function — see algorithm 1.

1 static const std :: regex functionRegex {"^[0 -9a-f]+ <(.+) >:$"};
2
3 static const std :: regex stackIncreaseRegex
4 {"^.* sub \\$(0x[0-9a-f]{1 ,8}) ,\\%(e|r)sp$"};
5
6 static const std :: regex stackDecreaseRegex
7 {"^.* add \\$(0x[0-9a-f]{1 ,8}) ,\\%(e|r)sp$"};

Listing 12.3: Regular expressions for analyzing x86 assembly code

130 Chapter 12 Feedback from User Code to the Model

Algorithm 1 Determining maximum stack usage of functions

functionMap←{}
for line ∈ file do

if line matches functionRegex then
if functionName is not empty then

functionMap[functionName]←maximumStackSize
end if
functionName← functionRegex(1)
stackSize←0
maximumStackSize←0

else if line matches stackIncreaseRegex then
stackSize←stackSize + stackIncreaseRegex(1)
if stackSize > maximumStackSize then

maximumStackSize← stackSize
end if

else if line matches stackDecreaseRegex then
stackSize←stackSize - stackDecreaseRegex(1)

end if
end for
if functionName is not empty then

functionMap[functionName]←maximumStackSize
end if

The biggest drawback of analyzing assembly instead of source code is that it is not
independent of the hardware. For each compilation platform, the analyzer has to
come with its own assembly analyzer module. However, relying on the source code
comes with more inaccurate results because the compiler applies code optimization,
such as removing unnecessary variables or function inlining. In addition, the selected
ABI and variable sizes differ along with the compiler and the target hardware, which
analyzers cannot read from the source code.

12.3 Source Code Analysis

Some information can be better extracted from the source code. In some cases, it is
also necessary to read the information from the source code. With enabled optimiza-
tion, the compiler may inline functions that do not exist as separate functions in the
assembly and binary.

However, parsing C++ is very complex. The C++ standard is 1.815 pages long
in the current standard[47]. Writing a completely new parser from scratch is a
monumental task. Therefore, we rely on an existing parser: Clang.

12.3 Source Code Analysis 131

Originally, Clang was an input frontend for the compiler LLVM. It enables LLVM to
process the C programming language group, including C and C++[57]. Clang first
generates the abstract syntax tree (AST) from the source code and further processes
it for optimization and compilation. Fortunately, Clang provides a rich programming
interface to access intermediate representations of the source code, including the
AST. This is used by several tools[94, 99, 101]. There are different ways to access the
internals of Clang. For example, one could create plugins that LLVM executes when
compiling source code. Another access option is LibTooling[58], a standalone library,
which allows arbitrary projects to parse C++ code and access the AST. Corfu’s code
analyzer uses the latter, LibTooling, investigating the user source code.

Clang provides different types of introspecting the AST. One can manually or au-
tomatically traverse the AST from top to bottom. Another approach, which Clang
provides, is ASTMatchers. Here, users define patterns within the AST and pass them
to clang. Whenever Clang finds the pattern, it invokes a callback function with the
found subtree as a parameter.

12.3.1 Clang’s AST Representation

Apart from the source code’s syntactical structure, Clang also includes references
that describe semantic links between nodes of the AST. Figure 12.3 shows an AST
for the file test.cpp representing the following source code of listing 12.4.

1 class Test {
2 public :
3 bool var;
4 void methodA ();
5 void methodB ();
6 void methodC ();
7 };
8
9 void Test :: methodA () {

10 methodC ();
11 if(var) { methodB (); }
12 }
13 void Test :: methodB () {
14 methodC ();
15 }
16 void Test :: methodC () { }

Listing 12.4: Example source code for abstract syntax tree demonstration

132 Chapter 12 Feedback from User Code to the Model

The type of the root node is always TranslationUnitDecl. Due to #include state-
ments in the source file, Clang adds nodes from additional files, usually header
files, to the AST. In the example, the AST contains nodes from a source and a
header file; figure 12.3 separates the nodes by their origin (dashed boxes). The
header file declares the class Test (node CXXRecordDecl2), the member variable var
(node FieldDecl) and the three methods methodA, methodB, and methodC (nodes
CXXMethodDecl). The implementations (definitions) of the methods are written in
the source file and not the header file. Therefore, the method declaration nodes
CXXMethodDecl from the header file lack syntactic children (black edges). Instead,
they have semantic children (blue edges) that describe their implementations (defi-
nitions). The implementations (definitions) of the methods are syntactical children
of the root node (TranslationUnitDecl).

Curly braces always enclose a method’s body; the CompoundStmt stands for this
enclosed compound of statements. Consequently, the children of CompoundStmt
describe the method’s body. Three subsequent nodes define a method call. There,
CXXMemberCallExpr specifies the return type, MemberExpr describes the member
name (method or variable), and CXXThisExpr defines the variable (object) on which
the call is executed. Additionally, Clang references the declaration of the called
method to the MemberExpr nodes (green edges). Moreover, if a method is already
declared before, Clang references the CxxMethodDecl to the previous declaration
node (also CxxMethodDecl, red edges). The methodA calls one or two other methods;
methodC is always called, whereas the call of methodB depends on the evaluation
result of the if statement. The left child of the node IfStmt defines the condition
part, and the right child defines the then part. Thus, the call of methodB is only
executed if the value of var is true.

The resulting structure is not a tree regarding the extra (colored) edges; instead, it
is a directed acyclic graph (DAC).

12.3.2 Extracting with ASTMatchers (Example: Events)

The analyzer extracts the information for the extended model through the AST
(abstract syntax tree) generated by clang. The libtooling interface of clang comes
with ASTMatchers, which allow defining filters over the AST to find specific patterns.
We depict the pattern of finding an event within the source code in figure 12.4.
The string on the right side contains the string message used for the event. To
retrieve the types of the event parameters, the analyzer iterates over the remaining

2The prefix CXX in the types of the nodes stands for C++.

12.3 Source Code Analysis 133

D
efinition, cpp file

D
eclaration, header file

T
ranslationU

nitD
ecl

C
X

X
R

ecordD
ecl:

class Test definition

C
X

X
R

ecordD
ecl:

class Test

A
ccessS

pecD
ecl:

public

C
X

X
M

ethodD
ecl:

m
ethodA

C
X

X
M

ethodD
ecl:

m
ethodB

C
X

X
M

ethodD
ecl:

m
ethodA

C
om

poundS
tm

t

C
X

X
M

em
berC

allE
xpr:

void

M
em

berE
xpr:

->
m

ethodC

C
X

X
T

hisE
xpr:

this

C
X

X
M

ethodD
ecl:

m
ethodB

C
om

poundS
tm

t

M
em

berE
xpr:

->
var

C
X

X
T

hisE
xpr:

this

C
X

X
M

em
berC

allE
xpr:

void

M
em

berE
xpr:

->
m

ethodC

C
X

X
T

hisE
xpr:

this

C
X

X
M

ethodD
ecl:

m
ethodC

C
om

poundS
tm

t

C
X

X
M

ethodD
ecl:

m
ethodC

S
em

antic P
arent

P
revious D

eclaration

C
all

S
yntactic P

arent

F
ieldD

ecl:
var

IfS
tm

tC
X

X
M

em
berC

allE
xpr:

void

M
em

berE
xpr:

->
m

ethodB

C
X

X
T

hisE
xpr:

this

Figure
12.3.:

Exam
ple

ofan
abstract

syntax
tree

from
C

lang
w

ith
sem

antic
references

134 Chapter 12 Feedback from User Code to the Model

CallExpr

FunctionCall

callee

CallExpr

argument(1)

name = 'event' FunctionCall

callee

String

argument(0)

name = 'hash'

Figure 12.4.: The pattern within the abstract syntax tree to match events in the source code

arguments of the hash call. Finally, we save the event’s complete information — the
string, its hash, and the parameter’s data types — into a SQLite database containing
the information of the extracted model. In the next run, the model parser uses the
resulting SQLite database, which contains all events of the source code, to extend
the engineering model.

12.3.3 Extraction with Traversal (Example: Function Relations)

If we want to execute code on each node type with no further restrictions, we can
use Clang’s RecursiveASTVisitor. The visitor provides methods for each node type
in the AST. Users inherit from the RecursiveASTVisitor class and override those
methods they want to process. Extracting with the visitor class is what the analyzer
does for extracting information about functions (and methods) in the source code.
Figure 12.5 shows the class diagram for extracting function information.

For each FunctionDecl, the analyzer creates an entry with the function name and
the location in the source code in the extended model. In addition, for each
CXXMethodDecl, the source analyzer stores all the overridden methods into the ex-
tended model. Last but not least, it stores every function call into the extended
model.

12.3 Source Code Analysis 135

clang

C RecursiveASTVisitor
Derived

C FunctionsVisitor

visitCXXMethodDecl(const clang::CXXMethodDecl *methodDecl) : bool
visitFunctionDecl(const clang::visitFunctionDecl *functionDecl) : bool
visitCallExpr(const clang::CXXMethodDecl *methodDecl) : bool

Figure 12.5.: Class diagram of the abstract syntax tree visitor for extracting function infor-
mation

136 Chapter 12 Feedback from User Code to the Model

Model Verification 13
This chapter shows that we can perform various verification steps based on the
configuration files and the model.

13.1 Simple Configuration Verifications

Every tool that works with information from the model, uses the config parser library
libcorfu-config-parser. Theoretically, libcorfu-config-parser is a model transformator,
from the model that is manually written by the user in yaml files into a working
memory (WM) representation.

CY AML
libcorfu−config−parser−−−−−−−−−−−−−−−→ CW M (13.1)

Both differ in the type of representation (YAML files and binary in RAM) and the
content. The parsed model CW M builds the model for easy usage in tools, e.g., it
introduces additional pointers to access elements quickly. When parsing YAML files,
the parser goes through a series of verification steps: syntax, reference, ID, and
asynchronous telecommands check.

Syntax Check For parsing YAML files, the libcorfu-config-parser uses yamlcpp1, a
popular YAML parsing library for C++. The yamlcpp library already accomplishes
the syntax check. If there are syntax errors, it throws exceptions, which describe the
problem. Hence, we did not have to implement syntax checking on our own.

Reference Check In the configuration files, some elements reference other ele-
ments, such as topics and applications. When parsing those, the config parser places
them into maps with the elements’ names as key. If an element references another
one, the config parser retrieves it from the map. If a referenced object is not avail-
able in the appropriate map, there is an error, and, therefore, the parser throws an
exception.

1https://github.com/jbeder/yaml-cpp

137

ID Check There are different entities in the model that contain an ID, e.g., appli-
cations and nodes. Indeed, IDs have to be unique. In an extra validation step, the
parser iterates through the lists of those entities and checks their IDs for unique-
ness. The IDs of telecommands and telemetry have to be unique on the application
level. That means that several apps can have telecommands with the same ID, but
telecommands within the same application might not use the same ID.

The implemented uniqueness check for IDs creates temporary maps with IDs as keys
and a flag of whether it is already assigned or not. When iterating the list IDs, the
algorithm checks the flag’s status. If there is already a positive entry, it throws an
exception. In total, this algorithm has a run-time complexity of O(n).

Asynchronous Telecommand Check A telecommand handling thread must be
present if there is at least one asynchronous telecommand in the configuration
file. Otherwise, there is no thread to process telecommands asynchronously. The
other way is just a warning; a configuration that defines a thread to handle telecom-
mands asynchronously without having asynchronous telecommands is useless.

13.2 Scheduling Analysis

The engineering model for the onboard software already contains thread and their
timing information. That allows Corfu to examine scheduling properties already at
the design phase.

13.2.1 Formal Verification

Thread configurations come with scheduling information like priority or timing
properties for periodic threads. Hence, this information is available early and,
therefore, can be investigated early. In this section, we only regard scheduling on
single processor, i.e. no multi-core or multi-processor scheduling. When using Rodos
in multi-processor systems, there is an own instance for every processing core, which
work and schedule independently.

138 Chapter 13 Model Verification

Basic Thread Formalization

Before we start to analyze the scheduling, we first introduce the basic notation,
which we take from [7]. Table 13.1 lists the primary symbols, which we use in
this chapter, and figure 13.1 depicts them on a short example of scheduling. In
this example, there are two threads, τ1 and τ2, scheduled preemptively with fixed
priorities. The second one has a higher priority than the second one. In addition,
thread τ2 has a quite big period and, therefore, is executed only once in the example
schedule. Due to the greater priority, the second execution of τ1 is suspended
and finished after executing τ2. As a consequence, the response time f1,2 > f1,1.
However, the execution time always stays the same, C1 = C ′

1 + C ′′
1 . The worst case

response time of thread τ1 is R1 = max{f1,1, f1,2} = f1,2.

For periodic threads, the relase time is always an absolute time, which does not
depend on other threads. Their values are already kown at compile-time.

ri = {ri,0 + jTi|j ∈ N} (13.2)

Based on the first release time ri,0, we can derive the consecutive release times of
threads. The value of the first release is available from the engineering model of the
onboard software.

Generally, scheduling runs infinitely. However, when examining periodic thread
scheduling, it suffices to use the major cycle. The major cycle contains all relative
thread release combinations. The configuration of the major cycle runs iteratively.

Symbol Meaning

τi The i-th thread
τi,j The j-th instance of the i-th thread
Ti The period of thread τi

Di The relative deadline of thread τi

Ci The worst-case execution time of thread τi

Ri The worst-case response time of thread τi

ri,j The release time of τi,j

fi,j The response time of τi,j

di,j The absolute deadline of τi,j

Table 13.1.: Notation for real-time scheduling algorithms and analysis methods (adapted
from [7])

13.2 Scheduling Analysis 139

Time

Figure 13.1.: Notation for Real-Time Scheduling Algorithms and Analysis Methods (adapted
from [7])

The length of the major cycle is defined as the least common multiple (lcm) of all
thread periods. Therefore, for a given node n ∈ N , the major cycle is

ĉn = lcm{Pi|i ∈ Thn} (13.3)

Utilization

Let An be the applications on the node n ∈ N and Tha be the periodic threads in an
application a ∈ A, then we can define the set of threads the node n as

Thn =
⋃

a∈An

Tha (13.4)

Let us assume context switching takes a constant amount of time S. Then, we can
define the utilization of all periodic threads of a node n as

un :=
∑

i∈T hn

Ct + S

Ti
(13.5)

(cf. [96])

As soon as Corfu detects a utilization of

un > 1 (13.6)

for a processor, it can immediately report an overloaded thread configuration.

140 Chapter 13 Model Verification

Overlapping Periodic Threads

Periodic threads are defined by two timing properties: the first execution time and
the period. Threads influence other threads running on the same node. For example,
several threads can be active at the same time. However, only one can run at a time;
consequently, all other threads have to wait for other ones to finish. We define the
set of simultaneously active periodic threads on a node n ∈ N at a given time t as

AT n
t := {i ∈ Thn|ri,j < t < ri,j + fi,j} (13.7)

The priorities of simultaneously active threads define the order in which the sched-
uler will execute them. If at least two threads share the highest priority, the scheduler
applies round-robin scheduling. Therefore, all threads will have an increased re-
sponse time compared to a scheduling configuration with no simultaneously active
threads. If a thread has the highest priority solely, this will be the only thread without
increased response time unless the scheduler does not release a thread with a higher
priority at the thread’s active time. In any case, at least |AP n

t | − 1 threads will have
an increased response time compared to a scheduling configuration, which has no
simultaneously active threads. However, the processor utilization stays almost2 the
same.

In order to minimize the response times of all threads, the scheduling should have
minimal overlappings of thread executions. Ôn is the maximum number of active
thread overlapping over the major cycle:

Ôn := max{AT n
t |0 ≤ t < ĉn} (13.8)

It is desirable to minimize the number of simultaneously active threads in order to
keep response times small:

min Ôn (13.9)

Corfu calculates the overlapping values and gives engineers a report about over-
lapping threads. This allows engineers to adjust the timing properties in order to
achieve a scheduling with minimal overlapping of thread executions.

2The costs of context switch may be higher than consecutive running.

13.2 Scheduling Analysis 141

13.2.2 Timing Observations

We extend the software to measure timing properties in testing environments. With
the recorded information, we can see whether the software complies with the given
values in the configuration file or whether the source code, software structure, or
values must be adjusted.

Timing Observation of Periodic Threads

For periodic thread, the model defines the values for the first execution and the
period; the generated code directly passes them to the operating system. Hence, the
operating system manages to start the execution periodically. Therefore, we do not
have to observe these two timing parameters in the software.

However, the framework does not pass the values of maximum execution durations
to the operating system. The maximum execution durations represent estimated
requirements. We use these values for the scheduling analysis. Therefore, we have
to check whether the threads exceed those timings at run-time. To achieve this,
we extended corfu::PeriodicThread (see section 8.4.3) and RODOS::StaticThread

to record the timing behavior.

In RODOS::StaticThread, we add the variable executionTime for adding up the exe-
cution time of a thread. Every time the scheduler continues executing the thread,
it saves the activation time. Whenever the thread gets suspended, it adds the time
interval to executionTime.

In corfu::PeriodicThread, every time an iteration starts to execute, it resets the
executionTime variable to zero. After a thread iteration finishes the execution, the
rest of the time is added to executionTime, which results in the total execution time of
an iteration. The verification compares the resulting value with the maximum value
given in the model. If it exceeds the maximum value, the framework increments an
exceedance counter variable and saves the maximum execution time.

Timing Observation of Aperiodic Threads

Aperiodic threads contain utilization values in the configuration. Also, the framework
does not pass this value to the operating system and, therefore, has no direct
influence on the scheduling. Like for the periodic thread, we measure the utilization
in the software and record it.

142 Chapter 13 Model Verification

To achieve this, we have extended RODOS::StaticThread to register the executed
time before and after switching the context. The framework stores three utilization
values into the thread class: one for the utilization over one minute, one over five
minutes, and one over 15 minutes. If one value exceeds the utilization value from
the configuration file, the framework increments an exceedance counter. The next
incrementation happens after one minute at the earliest.

13.3 Stack Usage Analysis of Threads

Corfu’s analysis tools extract different information from the software’s code. The
information includes stack usage of individual functions, function calls, and method
overriding. With this information, we can estimate the stack usage of threads.
Algorithm 2 shows the pseudo-code of our approach that exploits information from
both the engineering and extracted models. Outgoing from a given method, the
algorithm recursively traverses through the call graph via depth search.

One requirement for safety-critical software is not having recursive function calls,
neither directly nor indirectly. This restriction to the code ensures that our algorithm
finishes eventually. Another requirement for safety-critical software facilitates es-
timating stack usage: function pointers are not allowed in the code. Determining
which function is actually called by static analysis is hard or even not possible.
However, the code uses virtual methods, which technically are function pointers. For
example, applications use virtual methods to call the actual user code. The algorithm
determines the stack usage for all overriding methods and takes the largest one. At
least for Coru, this is not a problem because there is usually only one user method
that overrides the virtual one in the generated class.

Topics are a special case. For the communication between applications, the onboard
software uses the Topic class of Rodos. Topics contain a list of subscribers, which
the software builds up at run-time. Therefore, it is not easy to determine by static
analysis which subscriber methods the software will invoke. Luckily, we have this
information available in the engineering model. There, engineers define which
applications subscribe to the topics. Therefore, when the traversal comes across a
topic publication, the algorithm looks up the subscribers from the engineering model
and continues the traversal only in the defined subscribers.

The figure 13.2 shows an exemplary graph of information. There, we have two
subscribers (blue) in total, not only for the used topic. With the information from
the extended model, we see that only the second subscriber on the right subscribes

13.3 Stack Usage Analysis of Threads 143

Algorithm 2 Stack usage determination

1: function MAXSTACKUSAGE(method)
2: myStackUsage← stackUsage(method)
3: maxCalled← myStackUsage + MAXCALLEDSTACKUSAGE(method)
4: maxOverridden← MAXOVERRIDDENSTACKUSAGE(method)
5: return max(maxCalled, maxOverridden)
6: end function

7: function MAXCALLEDSTACKUSAGE(method)
8: maxStackUsage← 0
9: for all calledMethod ∈ callingMethods(startMethod) do

10: calledStackUsage← MAXSTACKUSAGE(calledMethod)
11: if maxStackUsage < calledStackUsage then
12: maxStackUsage← calledStackUsage
13: end if
14: end for
15: return maxStackUsage
16: end function

17: function MAXPUBLISHEDSTACKUSAGE(method)
18: if method is TopicInterface::publish then
19: return MAXPUBLISHEDSTACKUSAGE(method)
20: else
21: return MAXOVERRIDDENSTACKUSAGETOPIC(method)
22: end if
23: end function

24: function MAXPUBLISHEDSTACKUSAGE(method)
25: maxStackUsage← 0
26: for all topic ∈ publications(method) do
27: for all subscriberMethod ∈ subscribers(topic) do
28: subscriberStackUsage MAXSTACKUSAGE(subscriberMethod)
29: if maxStackUsage < subscriberStackUsage then
30: maxStackUsage← subscriberStackUsage
31: end if
32: end for
33: end for
34: return maxStackUsage + stackUsage(TopicInterface::publish)
35: end function

36: function MAXOVERRIDDENSTACKUSAGE(method)
37: maxStackUsage← 0
38: for all overridingMethod ∈ overridingMethods(startMethods) do
39: overriderStackUsage← MAXSTACKUSAGE(overridingMethod)
40: if maxStackUsage < overriderStackUsage then
41: maxStackUsage← overriderStackUsage
42: end if
43: end for
44: return maxStackUsage
45: end function

144 Chapter 13 Model Verification

user code

Topic::publish

call

MySecondAppSubscriber::put

subscribes called topic

Subscriber::put

call

MyFirstAppSubscriber::put

override override

Figure 13.2.: Example of information about topic publications

the used topic. Therefore, it suffices to examine only this subscriber. Considering
the model’s subscription information improves the output quality because it limits
the exploration space for topic subscriptions.

After all, Corfu’s stack analysis overestimates the stack usages. As mentioned before,
Corfu takes the maximum stack usage of all overriding methods unless it is the topic
publish method. In addition, there might be compiler optimization which leads to
different stack usages within a function. Corfu always takes the maximum value and
assumes that the next call occurs on top of the maximum stack usage. However, the
code might call a function on a lower stack level. We are convinced that the stack
analysis can be further improved (also with extended feedback).

13.3 Stack Usage Analysis of Threads 145

Automatic Testing 14
Automatic testing is a very fundamental part of creating robust and dependable
software. Therefore, we tried our best to cover all parts of Corfu to achieve a high
coverage rate with unit tests. Indeed, this does cover not only the onboard part
but also the generating and ground parts. Projects that use can rely on a tested
framework. However, there will be a code that is specific for each satellite mission.
Developers manually write this code, and, therefore, our existing automatic tests
do not cover it. Therefore, it is the developer’s responsibility to test their code.
Fortunately, Corfu comes with some features that support testing user code. There
are two types of tests for which Corfu supports writing tests: unit and integration
tests, which we present in this chapter.

14.1 Unit Tests

In contrast to other tests (e.g., integration tests), each unit test covers only a tiny
part of the software. The idea is to have a simple test to cover code on a low
level, isolated from other code[50]. Later, in the integration test, more extensive
parts of the code are tested. Integration tests test the combination of already (unit)
altogether.

In the onboard software, users provide their code in subclasses of a generated
class. The generated class integrates Rodos features, e.g., Rodos threads, which the
scheduler immediately executes. Having different threads running in parallel makes
unit testing very hard. Therefore, we have to avoid running threads when executing
unit tests.

Corfu’s approach is to generate different (base) classes than for the onboard software.
As stated earlier, we only want to test the user code. Therefore, having a different
superclass does nothing change in the user code. On the contrary, it even simplifies
testing by providing methods for checking the application output. The user code
does not only have the return value as an output; there are several actions that the
code can actively trigger: emitting telemetry, publishing topic messages, anomalies,
or events. The regular onboard code transmits those values to topics. As we generate

147

test-specific classes, we can omit the transmission part and cache the messages
locally instead. The unit test code can check the content of the messages after calling
the method to test.

For the user-defined (sub)class, the generated base class provides several features:

• Member variables such as references to topics for publication,

• Methods, e.g., for reporting anomalies,

• Invoking of (callback) user code methods such as calling thread code or
handling telecommands.

The generated testing (base) classes have to provide the same interface towards the
user code. The functionality, however, does not have to be implemented in the base
class because the test code invokes the user methods manually.

The regular compilation target for the onboard software includes the generated code
for onboard software. For unit testing, users do not have to change the user code at
all. Instead, Corfu applies another compilation configuration for the tests. Instead
of including the generated code of the onboard software, the compilation process
includes the generated code for unit tests. The name of the generated test class is
the same as the one from the onboard software. Therefore, the user-defined class
still inherits the same-named class; however, the user class inherits a different base
class implementation when compiling the test executable.

If we compare figure 8.6, which contains the classes for applications in the onboard
software, and figure 14.1, we can see that the class at the bottom does not change,
only the classes at the top. The top class does not subscribe to a topic anymore
because, for unit tests, we do not need telecommand distribution. Instead, the test
code directly calls the handler methods to test them. The class for the standard
telemetry is still there because this is part of the accessible interface towards the
user class (at the bottom).

Listing 14.1 shows an example unit test. It contains testing code for handling
ThreadIsAlive topic messages. Its task is to save incoming timeouts into a map
within the watchdog application. The test accomplishes three steps: It inserts a
timeout value, checks whether the application has inserted the correct value into
the map, and checks that this is the only element in the map.

148 Chapter 14 Automatic Testing

co
rf

u
.u

n
it

_t
es

t

ge
n

er
at

ed

A
Ap

p

ge
tN

od
e(

)
:

N
od

e
&

se
nd

Te
le

m
et

ry
(T

el
em

et
ry

&
)

se
nd

A
liv

e(
Ti

m
e

ti
m

eo
ut

)

A
M

yA
pp

ha
nd

le
Te

le
co

m
m

an
dA

()
ha

nd
le

Te
le

co
m

m
an

dB
(T

el
ec

om
m

an
dB

Pa
yl

oa
d

&
)

C
M

yA
pp

St
an

da
rd

Te
le

m
et

ry

m
yF

ir
st

Fi
el

d
m

yS
ec

on
dF

ie
ld

se
ri

al
iz

e(
Sl

ic
e<

ui
nt

8>
&

)
de

se
ri

al
iz

e(
Sl

ic
e<

ui
nt

8>
&

)

C
M

yA
pp

ha
nd

le
Te

le
co

m
m

an
dA

()
ha

nd
le

Te
le

co
m

m
an

dB
(T

el
ec

om
m

an
dB

Pa
yl

oa
d

&
)

Fi
gu

re
14

.1
.:

C
la

ss
hi

er
ar

ch
y

fo
r

un
it

te
st

in
g

of
ap

pl
ic

at
io

ns

14.1 Unit Tests 149

1 TEST(WatchdogTest , handleThreadIsAliveTopic) {
2 constexpr uint32_t THREAD_ID = 1337;
3 const int64_t firstThreadtimeout = NOW () + 1_s;
4
5 Watchdog watchdog ;
6
7 // insert timeout for the first thread
8 EXPECT_TRUE (watchdog . handleThreadIsAliveTopic ({ THREAD_ID ,

firstThreadtimeout }));
9

10 Result <int64_t > getResult = watchdog . threadTimeoutMap .lock
().get(THREAD_ID);

11 ASSERT_TRUE (getResult .isOk ());
12 EXPECT_EQ (timeout , getResult .val);
13
14
15 Result <int64_t > getResult = watchdog . threadTimeoutMap .lock

().size ();
16 ASSERT_TRUE (getResult .isOk ());
17 EXPECT_EQ (1, getResult .val);
18 }

Listing 14.1: Example unit test for updating timeout values in the watchdog application

14.2 Integration Tests

In contrast to unit tests, which only test the user code, integration tests use the
entire onboard software, which includes the operating system, Corfu, the nodes, and
the applications. The interface of the testing code towards the onboard software
is the external interface of the applications, namely telecommands, telemetry, and
events. Figure 14.2 shows the concept. The framework buffers all the data the test
code receives from the onboard software. The test code checks the buffer for the
data and compares it with the expected values.

Corfu provides an interface for writing integration tests, which bases on the ground
library. This interface provides functions to send telecommands with required
parameter values. The listing 14.2 shows an exemplary integration test.

1 sendTelecommand (
2 Telecommand {nodeId , appId , telecommandId , ParameterList {
3 Parameter {" parameterA ", 123} ,
4 Parameter {" parameterB ", 1.23}

150 Chapter 14 Automatic Testing

OBSW

Downlink Topic Uplink Topic

Test Code

Buffer

Figure 14.2.: Schema of integration tests

5 }}
6
7 const auto telemetry
8 = telemetryCache .getNext < MyTelemetry >(3 _s);
9 ASSERT_EQ (456 , telemetry . resultA);

10);

Listing 14.2: Example integration test that sends a telecommand and receives a telemetry

For checking the result, the testing framework caches every response that it receives
from the onboard software, e.g., every telemetry. In the test code, users can check
for the responses, e.g. for specific telemetry types. All the methods for retrieving a
response have a timeout parameter to avoid blocking the automatic tests if responses
are absent. In the example above, the method waits a maximum of three seconds.

Integration tests can run in a distributed way. That means the test code runs on
a desktop computer or a CI server and the onboard software runs on the target
platform. For communication, they use the ground/space interface. The good side
effect of this is: if users do not find a way to trigger a specific behavior (code),
they know that one or more telecommands are missing in the configuration and
implementation.

14.2 Integration Tests 151

Part V

Evaluation

Case Study: Log Event
System

15
The presented events approach (see sections 8.4.5 and 12.3.2) enables sending event
messages and any numbers of parameters, e.g. as telemetry. When invoking the
event method, the software passes the following information:

1. the severity

2. the ID of the triggering application,

3. the message string,

4. the time of the event triggering, and

5. parameter values.

The message string does never change; it is a constant string literal in the source
code. Every time the code triggers the same event, the message stays the same.
Therefore, it is unnecessary to transmit them repeatedly. Storing and transmitting
constant values is what we avoid with our approach in order to achieve better
performance.

The macros EVENT and EVENT0 pass the message string to the hash function. We
declared the hash function as being constexpr[90]. Whenever there is a constexpr

function, the compiler might execute it already at compile-time under particular
requirements. For example, all the parameter types and the return type must be
simple data types (i.e., scalar, reference, an array of literal type, or an appropriate
class type). Therefore, the compiler calculates the hash value for the passed string
already at compile-time. Thus, the software does not call the hash function at
run-time; instead, the compiler replaces its invocation with the hash value. As a
result, the string does not end up in the binary; instead, a smaller hash value does.
Replacing the string with the hash value saves memory onboard and capacity on the
transmission path. Especially the last advantage can be significant for small satellites,
which have only a little or expensive bandwidth. In sum, with our approach, the
software transmits only the following information:

1. the severity,

155

2. the ID of the triggering application,

3. the hash value of the message string,

4. the time of the event triggering, and

5. parameter values.

In contrast to a classical implementation without the extracted model with infor-
mation from the source code, we do not need to transfer the string every time
the software triggers an event. However, the compiler generates more code than
the classical approach because of the template functions that serialize the events
parameters.

15.1 A Classical Implementation of Event Messaging as
Reference

To compare the performance of our approach, we present a comparable imple-
mentation that does not use the extracted model. There are different ways for
classical implementation. For example, we could keep the template functions for
sendEvent and serialize. This approach, however, would not avoid the extra tem-
plate functions. In addition, it would require storing the message strings in the
binary file.

Incorporating the parameters into the event message with sprintf is a candidate
with better performance. This approach of classical event messaging does not require
any additional functions for serializing parameters because sprintf handles this. If
sprintf is not already available in the binary file, we must consider these additional
bytes.

The listing 15.1 shows how developers can realize such a classical implementation.
This function provides variadic parameters, which the software evaluates at run-time.
The function passes the variadic parameters to sprintf and saves the message string
into the event structure. Finally, it publishes the event to a topic, just as in our
approach.

156 Chapter 15 Case Study: Log Event System

1 void sendEvent (Severity severity , uint8_t appId , const char*
msg ...) {

2 StringEvent event{ severity , appId };
3 va_list args;
4 va_start (args , msg);
5 sprintf (event.string , msg , args);
6 stringEventTopic . publish (event);
7 }

Listing 15.1: A classical implementation for sending log event messages

15.2 Comparison of the Bandwith Usage

Both approaches require the parameters severity, application ID, and trigger time
because those parameters carry relevant information. Thus, we define c to be the
number of bytes that these fields require.

c = |severity|+ |appId|+ |time| (15.1)

This number is fixed already at compile-time.

The difference between our approach and the classical implementation is that our
approach only transmits a hash value that the compiler calculates from the message
text. In contrast, the classic approach transmits the full message text. Consequently,
we calculate the required data length as follows.

Lnew = c + |parameters|+ |hash| (15.2)

Lclassical = c + |stringified(parameters)|+ |message| (15.3)

While our approach serializes the parameters in their binary form, the classical
approach converts them into a human-readable format (stringified parameters).
Thus,

Lclassical > Lnew (15.4)

|stringified(parameters)|+ |message|

> |parameters|+ |hash| (15.5)

must be true that our implementation is more efficient than the classical approach
regarding transmission data size. In our implementation, we used uint32 for the
hash value. Therefore, if the message is bigger than four bytes, our approach uses

15.2 Comparison of the Bandwith Usage 157

less memory for the transmission. In the usual case, text messages contain more
than four bytes.

Depending on the parameter value, the human-readable format requires less memory
if it contains fewer digits in readable format than bytes in binary format. However,
we expect this to be not very common.

15.3 Comparison of Binary Memory Usage

Applying our approach saves bandwidth on the transmission part, and it also influ-
ences the memory footprint of the compiled binary file. The influence manifests
itself in two areas: the string literals in the binary file and the generated code size.
In our approach, no string message ends up in the compiled program; instead, the
compiler replaces the messages with a hash value. Therefore, our approach saves
the same amount of memory here as on the transmission path.

We assume that the classical approach reuses the function sprintf, already available
in the binary file. The size of the sprintfs code has to be added to the calculation
if the function is not already available in the binary file. In Rodos, for example,
sprintf requires 392 bytes in the .text section on x86.

15.3.1 Determining Code Size of Our Approach

Our approach requires for each event a generated sendEvent functions and zero or
more serialize functions — depending on the number of parameters. However,
this does not mean that the compiler freshly generates every function for each event.
If several events require identical function signatures, they are reused, i.e., the
compiler generates them only once. Thus, the required code size depends on the
actual content used in the events.

Even if it is possible to pass nested structures as parameters to the event, we assume
developers use only basic data types, i.e., signed and unsigned integers with the sizes
of 8, 16, 32, and 64 bits, as well as float, double, and bool. To assess the impact of the
two template functions, sendEvent and serializeto the code size in our approach,
we have measured the functions code size for different parameters. Since an infinite
number of parameter type combinations exist, we have limited our measurements to
homogeneous parameter combinations, i.e., to function instances that only take one

158 Chapter 15 Case Study: Log Event System

2 4 6 8

200

250

300

Number of (Homogeneous) Parameters

C
od

e
Si

ze
in

B
yt

es
(f

or
x8

6)

int8
int16
int32
int64
float

double
bool

Figure 15.1.: code size of sendEvent functions with homogeneous parameter types

type of data. The code size of other functions, which take heterogeneous parameters,
lies between the values for homogeneous parameters.

Figure 15.1 and figure 15.2 show the memory that sendEvent resp. serialize

functions take up. We have compiled the code from figure 8.4 with the g++
compiler (version 9.3.0) and enabled optimization (-O2) for the x86 instruction set
architecture. For measuring, we have instantiated each of the template functions
for one to eight parameters with the same data type. We have done this for seven
different data types: integer with 8, 16, 32, and 64 bits as well as float, double and
bool.

The values for sendEvent in figure 15.1 show a linear increase of the size in three
different slopes. For the parameter types double and int64, which require 64 bits,
the function size increases with a slope of about 15.5 bytes per parameter. The code
sizes with int8, int16, and bool parameters lie between the others, with a slope of
about 10.5 bytes per parameter. The boolean data type requires 1 byte, just as int8.
All three parameter types lead to the same slope of about 7.5 bytes per parameter.
The data types that make sendEvent take up the least amount of memory are int32
and float, which both require 4 bytes because those values fit into the registers of
x86, which are 32 bits wide. Therefore, they do not require additional instructions
like smaller or bigger data types.

To determine the additional memory that invoking sendEvent causes, we have to
consider both functions sendEvent and serialize. Invoking sendEvent creates one

15.3 Comparison of Binary Memory Usage 159

2 4 6 8
0

50

100

150

200

Number of (Homogeneous) Parameters

C
od

e
Si

ze
in

B
yt

es
(f

or
x8

6)

int8
int16
int32
int64
float

double
bool

Figure 15.2.: Code size of serialize functions with homogeneous parameter types

instance for sendEvent with the required parameters and n− 1 serialize functions
for n passed parameters to sendEvent.

If we describe the list of parameters for one event as a sequence, this is the set of
parameters that the generated serialize functions use:

Pe = {< p1, p2, . . . , pn >, < p2, . . . , pn >, . . . , < pn >} (15.6)

Here, the pi ∈ Pe elements stand for single parameters required for an event e.
Thus, the number of serialize functions for an event e is |Pe|, because the compiler
creates a function for each sequence.

F serialize
e = {fserialize(p)|p ∈ Pe} (15.7)

In this equation, fserialize(p) describes a serialize function for the given parameters
p. However, the compiler must not generate all serialize functions for each event.
If there are serialize instances with the same sequence of parameters (i.e., the
same signature of the function), they are reused and not generated multiple times.
Therefore, the final set of serialize functions that the compiler generates is the
union of the serialize functions for all events.

F serialize =
⋃

e∈E

F serialize
e (15.8)

Here, the set E contains all the events in the system. This step removes all multiple
existing functions because sets do not contain the same element multiple times.

160 Chapter 15 Case Study: Log Event System

Thus, |F serialize| gives the total number of serialize functions that the compiler
generates from the template. Based on F serialize we determine the actual size for
the code of serialize functions.

bserialize =
∑

f∈F serialize

|encode(f)| (15.9)

The function encode(f) represents what the compiler does: encoding the serialize

function into binary code. Summing up the length of all generated serialize

functions in the system results in the total size required for serializing all parameters
of events.

For the size requirement of the sendEvent functions, we also sum up the number of
bytes.

bsendEvent =
∑

f∈FsendEvent

|encode(f)| (15.10)

In our approach, the message string does not end up in the binary file; instead, the
compiler replaces it with the corresponding hash value. Also here, we add up the
number of bytes required to save the hash values in the binary file:

bmessage = 4|M | (15.11)

Here, the set M contains the event messages of the system. Since we use four bytes
for the hash value, we multiply it with the number of messages in the system.

Finally, we determine the total sum of additional code size for our approach by
adding the size values for both types of functions and the hash values:

bnew = bserialize + bsendEvent + bmessage (15.12)

The result, bnew, represents the number of bytes that our approach additional
requires in the onboard software to send events.

15.3.2 Determining the Code Size of the Classical Approach

For the classical approach, the additional memory comprises the message strings. M
denotes the set of message strings that the source code contains. Thus, the number
of bytes for the classical approach is the sum of the length of each message string.

bclassical =
∑

m∈M
|m| (15.13)

15.3 Comparison of Binary Memory Usage 161

As mentioned earlier in this section, we assume that the binary code already contains
a sprintf function. If this is not the case, it adds up to a few hundred bytes. For
example, the implementation of sprintf requires 392 bytes in Rodos.

162 Chapter 15 Case Study: Log Event System

Comparison with Our
Classical Onboard Software
Implementation

16

The basic principle of Corfu follows the maxim of Rodos: to keep it "as simple as
possible" 1. Hence, we do not want to introduce much complexity into onboard
software. Therefore, we tried to keep the generated code as simple as possible; so
that the generated code is still easily reviewable. Simple generated code also means
that it is very lightweight; it does not introduce unexpected things like threads that
do not show up in the configuration. Hence, the overhead resource consumption of
Corfu is not unnecessarily significant.

This chapter compares our classical implementation approach of onboard software,
which the chair of aerospace information technology has used in other missions,
with the one of Corfu. We compare different properties for the different parts: the
number of logical lines of boilerplate code, which users have to write manually, the
static memory consumption, and the (binary) code sizes.

16.1 Software Elements

This section has a look at the different components of applications. It gives an
overview of our classical implementation of onboard software, which we have used
in recent projects, and compares them with Corfu’s approach.

16.1.1 Application Structure

Similar to Corfu, our classical implementation divides the software into different
applications. Our classical implementation does not come with generic classes for
applications. Instead, our classical approach statically instantiates everything glob-
ally in the source files. Listing 16.1 shows the components of classical applications.

1https://gitlab.com/rodos/rodos/-/blob/master/README.md

163

There is a namespace for each application, containing the application-specific classes,
which we present in the following sections. In addition, an instance of Application

is created representing the application.

1 namespace MyApp {
2 Application myApp("myApp", MYAPP_ID);
3
4 // specific structures and variables / instances
5
6 // classes for handling telecommands , standard telemetry ,
7 // topic subscribtions , and threads
8 }

Listing 16.1: Example of our classical application implemenation

In Corfu, users create their own (sub)class for each application instead of having a
namespace. Having a class allows users to encapsulate their data.

1 class MyApp : public generated :: my_app :: MyApp {
2 // specific structures and variables / instances
3
4 // classes for handling telecommands , standard telemetry ,
5 // topic subscribtions , and threads
6 }

Listing 16.2: Example of Corfu’s application implemenation

16.1.2 Symmetric Telecommand Handling

In our classical approach, developers have to create a custom class that handles
telecommands. Listing 16.3 shows an example class for handling telecommands. In
this code, there are several lines, which every application repeats. In the beginning,
in lines 6 to 8, the put method checks whether the incoming telecommand addresses
the application. If the telecommand addresses the present application, the method
deserializes the parameter values into a struct.

1 MyAppCommandIF : public SubscriberReceiver < Telecommand > {
2 public :
3 MyAppCommandIF ()
4 : SubscriberReceiver < Telecommand >(telecommands , "MyApp")

{}
5
6 void put(Telecommand & telecommand) override {
7 if(telecommand .appId != myApp.getID ()) {

164 Chapter 16 Comparison with Our Classical Onboard Software
Implementation

8 return ;
9 }

10
11 TelecommandParameter parameter ;
12 parameters . deserialize (telecommand . serializedPayload);
13
14 bool validParameter = true;
15
16 executedTelecommandsCount ++;
17
18 switch (telecommand . telecommandId) {
19 case TelecommandIds :: MYAPP_NOP :
20 // process telecommand
21 break;
22
23 case TelecommandIds :: MYAPP_TELECOMMAND_A :
24 if(parameter . parameterA >= PARAMETER_A_MIN &&

parameter . parameterA <= PARAMETER_A_MAX) {
25 // process telecommand
26 } else {
27 validParameter = false ;
28 }
29 break;
30
31 default :
32 anomalyTopic . publish (AnomalyId :: BAD_TC);
33 rejectedTelecommandsCount ++;
34 executedTelecommandsCount --;
35 }
36
37 if (! validParameter) {
38 anomalyTopic . publish (AnomalyId :: BAD_TC_PARAM);
39 rejectedTelecommandsCount ++;
40 executedTelecommandsCount --;
41 }
42 }
43 }

Listing 16.3: Example of our classical telecommand handling

Our classical implementation tracks the number of successfully and erroneous
telecommand executions in two global variables accessed by all applications on a
node: executedTelecommandsCount and rejectedTelecommandsCount. Consequently,
those variables have to be incremented accordingly in every application. The

16.1 Software Elements 165

example code does this in lines 16, 33, and 34. However, having to write such lines
in every application manually is error-prone. Corfu encapsulates this in base classes.
The same goes for handling undefined telecommand ids in the default part of the
switch construct. These lines are also almost the same for all applications — just
the anomaly ID is different.

In general, Corfu’s approach of handling telecommands in applications is limited
to just implementing the telecommands handling code. The generic and generated
application classes take care of typical work from the user’s source code, includes
checking telecommand addressing, invoking telecommand handling functions, tak-
ing care of telecommand execution counting. Listing 16.4 shows what users have
to implement for handling the same telecommands as before. The generated code
checks even the parameter range if defined in the configuration. Users can fully
concentrate on implementing the actions for telecommands.

1 Error handleNopTelecommand () override {
2 // process telecommand
3 return NO_ERROR ;
4 }
5
6 Error handleTelecommandA (TelecommandAPayload & payload)

override {
7 // process telecommand
8 return NO_ERROR ;
9 }

Listing 16.4: Example of telecommand handling in the user code of corfu

16.1.3 Standard Telemetry Handling

For standard telemetry, Corfu follows a different approach than our classical im-
plementation. Our classical approach uses topic messages to request data for the
standard telemetry from each application. The data type of the topic is the full stan-
dard telemetry of the node. Hence, all applications have direct access to the entire
standard telemetry structure. They might damage the values of other applications,
even unintended. Corfu’s approach avoids this because applications only have access
to their part of standard telemetry.

In the Rodos communication middleware, the communication middleware passes
data as a non-const reference. Therefore, subscribers can modify the passed data.
The changes are also available for the next subscribers that process the data. Our

166 Chapter 16 Comparison with Our Classical Onboard Software Implementa-
tion

classical implementation of standard telemetry exploits this fact. Every application
subscribes the standardTelemetryRequest topic and places information into their
fields. After all subscribing applications have done that, the housekeeper retrieves
a filled packet of standard telemetry, which all applications have filled with infor-
mation. Listing 16.5 shows how our classical implementation realizes real-time
handling in applications.

1 class StdTMIF : public SubscriberReceiver < StandardTelemetry >
{

2 public :
3 StdTMIF ()
4 : SubscriberReceiver < StandardTelemetry >(stdTMRequest , "

MyApp") {}
5
6 void put(StandardTelemetry & telemetry) override {
7 // fill fields of telemetry paramter
8 }
9 }

Listing 16.5: Example of our classical standard telemetry handling

In our classical implementation of standard telemetry, users have to manually
implement a handling function for putting data into the node’s standard telemetry
structure. In most cases, the handling method copies data from some variable into
the telemetry structure.

In Corfu, updating standard telemetry is decentralized. Apps have an instance of
their part of standard telemetry. They update this member variable as soon as new
data arrives. There is no need for intermediate variables. The values are directly
stored in the structure that the housekeeper retrieves periodically.

However, some values for the standard telemetry might not be available for free;
instead, some might require calculation or retrieval. It might be more efficient to
update such values right before the housekeeper collects the data. Corfu supports this
by providing the virtual updateStandardTelemetry method in the generic application
base class. Users can override this method in order to update vacant data in the
standard telemetry structure, as can be seen in listing 16.6.

1 void updateStandardTelemetry () override {
2 // fill fields of telemetry member variable
3 }

Listing 16.6: Example of standard telemetry handling in corfu

16.1 Software Elements 167

16.1.4 Periodic Threads

In our classical implementation, users have to create subclasses for each thread
they want to create manually — see listing 16.7. Users must make sure that they
pass the correct configuration values for the stack size and timing parameters.
Corfu generates the subclass automatically. The user does not have to care about
configuring the threads accordingly. Instead, the generated code takes care of
configuring the threads. Users only have to implement their code for initialization
and periodic code, as can be seen in listing 16.8.

1 class MyAppThread : public StaticThread <STACK_SIZE > {
2 void init () override {
3 // initialization (without scheduler)
4 }
5
6 void run () override {
7 // initialization (with scheduler)
8
9 TIME_LOOP (FIRST_RUN , PERIOD) {

10 // periodic code
11 }
12 }
13 } myAppThread ;

Listing 16.7: Example of our classical thread implementation

1 Error MyThread :: initializeBeforeScheduler () {
2 // initialization (without scheduler)
3 }
4
5 Error MyThread :: initializeWithScheduler () {
6 // initialization (with scheduler)
7 }
8
9 Error MyThread :: runIteration () {

10 // periodic code
11 }

Listing 16.8: Example of thread user code in corfu

168 Chapter 16 Comparison with Our Classical Onboard Software Implementa-
tion

16.1.5 Topic Subscription

Our classical implementation does not provide any convenience code for implement-
ing topic subscriptions. Instead, users have to do this manually by using Rodos
classes. Listing 16.9 shows an exemplary classical topic subscription.

1 class MyTopicSubscriber : public SubscriberReceiver <
MyTopicType > {

2 public :
3 MyTopicSubscriber ()
4 : SubscriberReceiver < MyTopicType >(myTopic) {}
5
6 void put(MyTopicType & message) override {
7 // handle topic message
8 }
9 }

Listing 16.9: Example of our classical topic subscription

In Corfu, the generated code already handles creating receiver subclasses, and
manually registering the topic is not required. Users only have to override and
implement one method for handling message data from the topic. Listing 16.10
shows an exemplary implementation of a topic subscription in Corfu.

1 void handleMyTopic (MyTopicType & message) override {
2 // handle topic message
3 }

Listing 16.10: Example topic subscription in corfu

16.2 Comparison of Both Implementations

This section contrasts the two implementation approaches in several aspects.

16.2.1 Logical Lines of Manual Code

One goal of Corfu is to minimize the number of lines of code that users have to write
manually. Table 16.1 contains the number of logical lines users have to write in order
to implement certain aspects in the source code. In sum, users only have to write
more lines than our classical approach for the coarse application structure. All other
elements require fewer manual lines of code. The number of lines in telecommand

16.2 Comparison of Both Implementations 169

App
Telecommand Providing Real- Topic Periodic
Handling Time Telemetry Subscriber Thread

Classical 1 17 + 2 per TC 5 5 8 to 9
Corfu 2 2 per TC 0 to 1 1 1 to 2

Table 16.1.: Comparison of logical line of code between our classical implementation and
Corfu

handling in both cases depends on the number of telecommands that the application
should handle.

For handling standard telemetry, our classical implementation requires users to
implement a topic subscriber for the standardTelemetryRequest topics. That leads
to five logical lines of code users have to implement. In Corfu, users do not have to
write additional manual code for copying values to the standard telemetry because
the values are already available in the standard telemetry member variable. However,
if values have to be calculated just for the standard telemetry, users have to override
a method, which takes one logical line of code.

Our classical approach requires users to implement a subclass for each thread and
pass parameters manually when implementing periodic threads. This results in eight
to nine logical lines of code. For Corfu, users have to override only one or two
methods; therefore, it requires only one or two logical lines of code.

16.2.2 Static Memory Usage

We define static memory usage as the amount of data that software allocates statically.
Hence, it does not include memory on thread stacks. Figure 16.1 shows the usage of
static memory for different software elements in the two implementation approaches:
our classical one and Corfu. To determine those values, we have measured the sizes
with C++’s sizeof. Chapter C in the appendix shows data diagrams of the different
software elements. Those diagrams further divide the required static memory size
into separate elements.

For the base application structure, Corfu requires less memory because the Application

class in Rodos implements a linked list, which inflates the static memory. Corfu has
the list of applications moved into the node class, where this memory emerges.

170 Chapter 16 Comparison with Our Classical Onboard Software Implementa-
tion

App Struc-
ture

Syn-
chronous
Telecom-
mand Han-
dling

Periodic
Threads

Syn-
chronous
Topic Sub-
scription

Topic Publi-
cation

0

10

20

30

40

50

60

70

80

90

100

110

M
em

or
y

in
B

yt
es

Classical
Corfu

Figure 16.1.: Comparison in static memory usage of different software elements

Synchronous telecommand handling uses the same amount of memory for both
implementations; all other features require more static memory for Corfu than our
classical implementation.

16.2.3 Code Size

When programming software, there are usually tradeoffs between different aspects.
The most known is the space-time tradeoff, which says that algorithms can be faster
but require more memory, or they are more frugal with memory but require more
time to finish[37]. Another tradeoff is between static (run-time) memory and code
size. For example, maps can be encoded into the code by using switch constructs or
into working memory (static and stack memory) in map objects. Therefore, the two

16.2 Comparison of Both Implementations 171

App Struc-
ture

Syn-
chronous
Telecom-
mand Han-
dling

Periodic
Threads

Syn-
chronous
Topic Sub-
scription

0

20

40

60

80

100

120

140

160

180

200

220

240

260
Classical
Corfu

Figure 16.2.: Comparison in code size of different software elements

diagrams of static memory, 16.1 from the section before, and of code size, 16.2 can
be considered together to see their tradeoff.

The diagram of the code size shows the total code size, including generic, generated,
and user-written code. There, we see a split picture. While the app structure
and the synchronous telecommand handling require more code in Corfu, periodic
threads and synchronous topic subscriptions require less code than our classical
implementation of onboard software.

172 Chapter 16 Comparison with Our Classical Onboard Software Implementa-
tion

Development Process
Evaluation

17
Several aspects contribute to fulfilling non-functional software requirements and
their metrics. Such metrics are the number of bugs in the source code and the time
in development and testing. In this chapter, we have a look at Corfu regarding such
different aspects.

17.1 Avoided Bugs

When designing Corfu, avoid programming errors was one of the focuses we had.
To achieve this, Corfu introduces several software constructs, making it nearly
impossible to introduce specific bugs in the source code, which this section shows.

17.1.1 Forgetting to Use Semaphores

Semaphores are a common source for run-time faults. The most delicate issue is
that such errors often occur only at specific interactions between threads, making
them particularly hard to debug. There are some common errors when working with
semaphores and resources For example, not locking corresponding semaphores when
accessing resources is such an error. Extending the source code might introduce
another type of error: when developers introduce a new condition branch, they
might forget to unlock semaphores in new branches.

Implementing and using guard semaphores in combination with hidden data can
avoid such errors. Listing 17.1 shows such an implementation. The idea is this:
instead of having open access to the protected resource, it is encapsulated into
the class ThreadSafeData. The same class also contains a semaphore for protecting
the shared resource. Whenever users intend to access the resource, they have to
request an instance of SemaphoreGuard from the ThreadSafeData. The instance of
SemaphoreGuard is created on the stack and automatically locks the semaphore in
the constructor. It allows developers to access the variable while the corresponding

173

semaphore is locked. As soon as the scope is left, the SemaphoreGuard instance
is destroyed, which revokes the variable’s access and automatically leaves the
semaphore.

1 template < typename Type >
2 class SemaphoreGuard {
3 Semaphore & semaphore ;
4 Type &data;
5
6 public :
7 SemaphoreGuard (Type &data , Semaphore &sema)
8 : data(data), semaphore (sema) {
9 this -> semaphore .enter ();

10 }
11
12 ~ SemaphoreGuard () { semaphore .leave (); }
13 };
14
15 template < typename Type >
16 class ThreadSafeData {
17 Type data;
18 Semaphore semaphore ;
19
20 public :
21 ThreadSafeData () = default ;
22
23 ThreadSafeData (const Type &data) : data(data) {}
24
25 SemaphoreGuard <Type > lock () {
26 return SemaphoreGuard <Type >(data , semaphore);
27 }
28 };

Listing 17.1: Implementation of a semaphore guard

Figure 17.2 shows the usage of ThreadSafeData. This mechanism provides a good
hint that developers must access the values in a thread-safe way. However, be
aware that it could still be misused if a reference of the protected variable is stored
externally.

1 ThreadSafeData <int > safeData ;
2 {
3 SemaphoreGuard guard = safeData .lock ();
4 if(something) {
5 guard.data = 123;

174 Chapter 17 Development Process Evaluation

6 } else {
7 guard.data = 456;
8 }
9 }

Listing 17.2: Usage of ThreadSafeData

It is possible to implement a more efficient variant of ThreadSafeData. There would
be two access methods, one returning a const semaphore guard and one returning
a mutable semaphore guard. Hence, users can select whether they need to modify
the data or whether they intend just to read it. As long as there is no writing access,
parallel reading accesses do not block each other.

17.1.2 Copy/Paste Errors in the Applications

Chapter 16 presents how our classical onboard software implementation lookes like.
It shows that there is boilerplate code which is the same for all applications. For
example, such boilerplate code covers error reporting for telecommands. Having the
same or similar code at different places in the source code has several drawbacks:

• Changes to the code have to be manually transfered to all copies, which is
error-prone.

• It might be inteded Developers might not notice small discrepancies in the
copied code. As a consequence, they might expect the code to behave dif-
ferently than it actually does. Developers might implement their code in the
wrong knowledge and therefore introduce bugs.

Corfu encapsulates all generic application code either in the generated superclasses.
Basically, it outsources manual copying to the code generator.

17.1.3 Accidentally Set Other Application’s Standard Telemetry

Our classical approach (see chapter 16) has only one structure for standard telemetry
per node. For collecting standard telemetry values, it passes one variable to all the
applications in the node. Hence, applications can also access and overwrite fields of
other applications.

Corfu, instead, has separate standard telemetry structures for each application.
Therefore, it is not possible to (accidentally) write to other application’s fields.

17.1 Avoided Bugs 175

See section 8.4.2 for information about how Corfu implements standard telemetry
handling.

17.1.4 Detecting Stack Excess only at Run-Time

Threads execute user code. Therefore, the actual stack usage depends on the user
code implementation. Corfu introduces a static analysis of the user code. In this way,
it is able to already calculate stack usage of the threads already at compile-time and
compare it with the configuration from the model. Corfu’s stack analysis examines
all execution paths, event those that will execute rarely, which might be hard to find
by testing. Even if the calculated stack usage is not exact, it is able to report early
warnings for developers allowing them to modify the configuration in the model.

17.1.5 Forgetting Checking for Anomalies

In Corfu’s engineering model engineers can define which anomalies telecommand
and thread handlers must report. Due to static analysis, it can be checked, whether
the source code actually emits those anomalies or not. If this is not the case, we can
assume that the code does not check for the anomaly.

17.1.6 Unintended Modification of Constant Variables

There are often variables, which are assigned a value only once. After that, the
software does not modify their values anymore; they are just read. This intention is
made clear by using the keyword const as often as possible. Additionally, it lets the
compiler complain about misusing the variable.

Another similar keyword is constexpr, which already has a known value at compile-
time. Developers should always clarify this characteristic by using constexpr and
not by preprocessor (#define).

There are cases where only a superclass should modify a member variable; subclasses
should only read the variable. Making a variable modifiable only by a superclass
can be enforced by hiding the variable from the subclass and providing an accessing
method that references the value. Listing 17.3 shows an example. The node variable
can always be called by the subclasses as long as the superclass makes sure that it is

176 Chapter 17 Development Process Evaluation

no invalid (null) pointer. The good thing: the superclass can be sure that no other
class in the inheritance hierarchy changes the pointer.

1 class App {
2 private :
3 Node *node = & myNode ;
4
5 protected :
6 Node & getNode () { return *node; }
7 };
8
9 class MyApp : public App {

10 void myFunc () {
11 node = nullptr ; // ERROR
12 getNode . someMethod (); // OK
13 }
14 }

Listing 17.3: Example of protecting a variable of a base class

According to the requirement to make variables constant when possible leads to
constant object whenever possible. For constant objects, users can only call constant
methods. Thus, making const is not limited to variables; also, methods should
always be declared as constant when possible.

1 class Result {
2 ErrorCode error = NO_ERROR ;
3
4 public :
5 bool isOk () const {
6 return error == NO_ERROR ;
7 }
8
9 ErrorCode getError () { return error; }

10 };
11
12 const Result result = someFunction ();
13 if(result .isOk ()) { // OK
14 result . getError (); // ERROR
15 }

Listing 17.4: Example for using constant methods

Listing 17.4 shows an example. The returned result from the function should be
constant because it represents the result of the function called and should not be

17.1 Avoided Bugs 177

changed afterward. However, if one forgets to set a method to be constant, this is
not possible, as one can see in the example above. The method getError can simply
be attributed with const without any problem. Having such methods as const makes
the Result class usable in a constant environment.

17.2 Potential New Bugs

The previous section showed that Corfu avoids several potential programming errors
that users can introduce. However, as most approaches, Corfu also comes with some
drawbacks regarding bugs. Even if Corfu’s non-onboard libraries and tools are not
safety-critical, their output is. It is essential that the config parser and the generator
provide correct generated code. By providing unit tests with a high code coverage
we try to mitigate this issue, but it is still there.

17.3 The InnoCube Cubesat Project

Innocube is the first satellite, which uses Corfu as the framework for its onboard and
ground software[38]. It is a joint project of the Technische Universität Berlin and
the Julius-Maximilians-Universität Würzburg.

17.3.1 Introduction

The InnoCube satellite demonstrates two innovative technologies in space: SKITH
and Wall#E. SKITH stands for "Skip The Harness" and is a technology for wireless
communication between the computing nodes on a satellite. SKITH aims to replace
the wired bus between the computing nodes with a wireless connection between all
participants. A wireless connection between the components overcomes integrating
a bus system on the backplane and avoids faulty connections between the computing
nodes. The satellite has six different types of computing nodes. That also means six
different types of onboard software configuration running on the satellite. However,
different node types reuse apps, making this satellite a perfect candidate for a
software framework like Corfu. Thus, in this project, we have apps that run on
several (or even all) nodes and some that run only on one type of node, e.g., scientific
software on payload computers. The satellite launch is scheduled for 2023.

178 Chapter 17 Development Process Evaluation

17.3.2 Development Experiences

When developing the software for InnoCube, we had some experiences regarding
different aspects.

Reduced Development Time As mentioned before, Innocube is the first real satellite
mission relying on Corfu. Developing Innocube’s onboard software showed that
configuring and implementing applications is faster and less erroneous than the
former approaches. Developers could directly transform some requirements into the
software configuration. The generator directly creates the software structure from it
without manual coding.

In previous satellite projects, developers have created new apps by copying a source
code template and modifying it accordingly. On the one side, this is error-prone
due to the manual work; on the other side, later changes to the structure of all
applications require manual modification of all applications. With Corfu, Innocube
developers did not have to copy any source code manually. Instead, Corfu encap-
sulates the basic structure of apps in generic and generated code. Writing only
the configuration file and not copying and manually modifying a template avoids
inadvertent mistakes and saves time implementing the apps.

Better Maintenance In addition, developers could easily apply changes to the
general structure of all apps. They can modify the generic code or template files for
the generator. Corfu ensures that re-generation does not modify the user code.

Corfu’s configuration files for onboard software allow defining software components
concisely and clearly. Users can be confident that such software components are
implemented the same in the generated code. If they had to implement such
components by hand, it could be possible that they behave differently in different
applications.

Another helpful tool when developing the onboard software with Corfu was the
generating of documentation. They also help developers interactively navigating
across the software configuration. When source code is generated, the generator
also creates linked HTML documentation files containing tables and diagrams that
give a good overview of the software’s structure.

17.3 The InnoCube Cubesat Project 179

Better Testability In our classical approach, the source code directly used operating
system resources, such as threads. This makes unit testing difficult. Usually, unit
tests only cover single functions or methods. However, if the user code is tangled
with the operating system, starting the full operating system is necessary. Having
the operating system running introduces behavior that testers might not desire. For
example, there should not run other threads which might get in the way.

Corfu compiles the user code against different code for testing, which uncouples the
user code from the operating system. In this way, it is possible to test only single
functions or methods. This allows test-driven development for the user code.

Better Resource Analysis In contrast to our classical approach, Corfu encapsulates
applications into its own classes. On the one hand, this clarifies responsibilities
within the software; on the other hand, this eases analyzing the software. For
example, we can determine applications’ memory usage by applying sizeof on
them.

Simplified Ground Software Integration Corfu comes with a library for interfacing
the onboard software. It shares source code with the onboard software for the
telecommand and telemetry interface. When developers create their specific ground
software, they can program against Corfu’s ground library to communicate with the
onboard software.

People at our chair have developed a virtual control room[87]. For the communica-
tion link to the onboard software, they have incorporated Corfu’s ground library. The
integration worked seamlessly. By using the ground library, the virtual control room
can interact with each Corfu-based satellite. The same applies to a web interface for
satellite communication, which we have implemented.

In addition to the ground library, Corfu comes with ground software, which dynami-
cally builds a graphical user interface for commanding the onboard software. It is
immediately available when starting the development, which makes it perfect for
rapid development. Developers do not have to implement any code to get started,
which also reduces the development time.

180 Chapter 17 Development Process Evaluation

Part VI

Conclusions

Summary 18
Corfu is a framework for satellite software, not only for the onboard part but
also for the ground. Developing software with Corfu follows an iterative model-
driven approach. The basis of the process is the engineering model. Engineers
formally describe the basic structure of the onboard software in configuration files,
which build the engineering model. In the first step, Corfu verifies the engineering
model. Not only syntactically and semantically but also on a higher level such as
scheduling.

Based on the model, Corfu generates a software scaffold, which follows an application-
centric approach. Software images onboard consist of a list of applications connected
through communication channels called topics. Corfu’s generic and generated code
covers topic communication, as well as telecommand and telemetry handling. All
users have to do is inheriting from a generated class and implement the behavior
in overridden methods. For each app, the generator creates an abstract class with
pure virtual methods. Those methods are callback functions, e.g., for handling
telecommands or executing code in threads.

However, from the model, one can not foresee the software implementation by
users. As an innovation compared to other frameworks, Corfu introduces feedback
from the user code back to the model. In this way, we extend the engineering
model with information about functions/methods, their invocations, their stack
usage, and information about events and telemetry emission. Indeed, it would be
possible to add further information extraction for additional use cases. We extract
the information in two ways: assembly and source code analysis. The assembly
analysis collects information about the stack usage of functions and methods. Corfu’s
source code analysis relies on Clang to identify patterns in the abstract syntax tree
containing the extracted information.

On the one side, we use the gathered information to accomplished additional
verification steps, e.g., checking if stack usages exceed stack sizes of threads. On the
other side, we use the gathered information to improve the performance of onboard
software. In the event logging use case, we have shown how using the extended
model at run-time can reduce binary sizes and bandwidth usage towards the ground
can.

183

Future Work 19
The presented approach of an extended model-driven development still has much
potential, which we have not fully implemented yet. We have several ideas for ex-
ploiting static analysis and the model-driven approach for small satellite software.

Introducing hardware devices into the engineering model The software usually
relies on device drivers for commanding hardware devices such as sensors, actuators,
and busses. Such drivers configure the hardware and provide a programming
interface for the applications. Moving the hardware configuration to the engineering
model allows engineers to provide configuration parameters formally. On the one
hand, the generated code could instantiate the device drivers with the correct
configuration. On the other hand, defining devices already in the engineering model
allows more extensive testing. For executing stacks, the framework could instantiate
dummy device drivers instead. The test code could simulate sensors to check the
behavior of the software from external stimulation. For actuators, the test code can
check the outputs that the software has set.

Automatic Stack Size Adjustment If Corfu’s stack analysis detects an overrun, the
user will receive a report at compile-time in the current implementation. The analysis
process only extends the engineering model and does not modify it. It is conceivable
to extend the process also to adjust specific parameters of the engineering model.
For the stack size, this means that the stack analysis tool might auto-generate the
stack size parameters of the threads.

Automatic Thread Timing Adjustment Like the idea in the previous paragraph, it
involves overriding configuration values from the engineering model. Our current
implementation of scheduling analysis only detects overlapping periodic threads
based on the given timing parameters from the model. Engineers define the period
and execution times, which cannot be changed automatically. They must be consid-
ered fixed. The first execution time, however, has only minor importance. Usually,
engineers can choose it freely as long as the period is respected. Therefore, we could
extend the scheduling analysis to determine suitable combinations of first execution

185

times to achieve overlappings of thread activations. The analysis tool can do this for
each node separately.

Checking Static Memory Usage at Compile-Time Thanks to the application encap-
sulation in the source code, it should be possible to gain detailed information about
the applications’ memory usage and their components. Having information about
the memory consumptions of individual software parts can be helpful for developers
when investigating issues. In the next step, we could also introduce new parameters
in the engineering model, allowing engineers to fill their estimated memory usages.
Corfu can then compare the estimated with the actual values and report warnings
early in the development phase.

Static Access Rights Checking When separating the software into different appli-
cations, engineers know which application is responsible for which devices or tasks.
However, the developers who implement the applications might misunderstand the
informal knowledge of the engineer. After introducing devices into the engineering
model (see the previous paragraph), we could also introduce a simple form of rights
checking. By static analysis, the code analyzer can extract information about which
app accesses which device. Based on the method calls, it could also distinguish
between reading and writing access. With both information, the implementation
details from the extracted model, and the intended device access from the engi-
neering model, the framework can check whether apps are not correctly accessing
devices.

186 Chapter 19 Future Work

Part VII

Appendix

Communication Middleware A
This appendix chapter presents different communication middleware implementa-
tions that are freely available and it describes different implementation aspects of
communication middleware.

A.1 Existing Middleware

Several concepts for communication middleware for both intra-node and inter-node
communication are available. Some of them are also freely available under open-
source conditions. This section presents a selection of available communication
middleware.

A.1.1 Core Flight System’s Software Bus

The Software Bus is part of the software framework for space applications named
core Flight System (cFS)[104, 105]. NASA’s Jet Propulsion Laboratory (JPL) devel-
oped the cFS, which is available under open source licenses1. The cFS uses C as the
programming language; hence, it provides a procedural programming interface. The
Software Bus uses the same packet format for data exchange between all onboard
applications. Currently, it comes only with the implementation of the CCSDS Space
Packet. However, the Software Bus is extensible to support other packet formats by
extending the code. The Software bus labels each packet with an ID, which it uses
to identify the packet content type and the route to its destinations. Following the
publish-subscribe principle, onboard applications can register for those packet type
IDs to receive all messages containing that ID.

The Software Bus itself only provides message passing within one computing node.
There is a different application for communication across multiple partitions or
computing nodes: the Software Bus Network. This application acts as a gateway
between the local Software Bus and some communication hardware, e.g., a network
connector, to exchange messages remotely.

1https://github.com/nasa/cFS

189

A.1.2 Rodos Middleware

Rodos[34, 68] is a full software stack for embedded systems with focus on aerospace
applications, which is available under Apache License2. It comes with a communi-
cation middleware for exchanging messages between applications, which follows
the publish-subscribe principle. The software instantiates topic objects, connecting
the data producers (publishers) with the data consumers (subscribers). A topic is
equipped with an ID and has a fixed data type defined at compile time. A gateway
service converts the messages for topics into network/bus messages and sends them
via hardware communication channels to the other node(s) for communication with
other computing nodes. The gateway service reads the message on the destination
node and delivers the message to the local topic subscribers.

The gateway’s job is to forward local messages to remote nodes that are reachable
directly and vice versa. To enable communication between nodes that are not
directly connected, Rodos provides a separate router class, which forwards messages
between several gateways.

A.1.3 Outpost’s Simple Message Passing Channel

Outpost is a software platform for spacecrafts developed by the German Aerospace
Center (DLR). It comes with a communication library called Simple Message Passing
Channel (SMPC). Like Rodos, communication channels are created by instancing
topic objects, which define the type of transmitted data at compile time. The Outpost
framework consists of two main parts, the core, and the satellite repository. Just
the core is available under open source conditions3, while the satellite part is not
publicly available. According to publications, the closed-source part of Outpost
contains additional libraries, a stack for CCSDS and PUS protocols[25].

A.1.4 NanoSat MO Framework’s MAL

The Consultative Committee for Space Data Systems (CCSDS) published a concept
for a service-oriented structure of software in both parts, the space, and the ground
segment. They call this standard CCSDS Mission Operation (MO). A fundamental
part of the standard is the message abstraction layer (MAL), which enables appli-
cation services to define their communication interfaces. By applying the MAL,

2https://gitlab.com/rodos/rodos
3https://github.com/DLR-RY/outpost-core

190 Appendix A Communication Middleware

developers define the communication endpoints of service providers on the one side.
On the other side, service consumers can use those communication endpoints for
data exchange. The endpoints can select from a variety of communication strategies.
It ranges from simple message passing, with and without acknowledgment and
response, to the publish-subscribe principle.

The NanoSat MO Framework (NMF) is a reference implementation of the CCSDS
Mission Operations (CCSDS MO) standard created by ESA and the Graz University
of Technology[23]. It is available under ESA Public License4. They have written
NMF in Java; therefore, it requires an operating system that provides a Java Virtual
Machine to run. OPS-Sat, one of the satellites that use NMF, runs a "lightweight
version of Linux" [22] as the operating system. The base concept of NMF is to
provide an application-like structure of the onboard software. It lets the developer
describe the individual applications as services. Other (consumer) services access
those services.

A.1.5 MAL C API

Another implementation of the MAL of the CCSDS MO standard (see the section
about NanoSat MO Framework above) is the MAL C API. CNES developed it and
made it available under MIT license5. The MAL C API comes with support for two
underlying transport protocols: ZeroMQ and TCP connections. The project provides
several APIs as adaption points for extensions. For example, the MAL C API allows
developers to implement custom transport protocols or adapters. In addition, it
encapsulates the encoding/decoding of messages with a well-documented API to
enable custom encoding and decoding mechanisms for the MAL.

A.1.6 Cordet

The Cordet framework results from the Component-Oriented Development Tech-
niques project[21]. It is a service-oriented framework for space software written
in C6. A key implementation concept of Cordet is the hierarchical structure of com-
ponents. Every element in the framework inherits directly or indirectly from a
generic Component, representing a base state machine. Each inheriting component
extends this state machine by introducing new states and transitions. The diverse

4https://github.com/esa/nanosat-mo-framework
5https://github.com/CNES/ccsdsmo-malc
6https://github.com/pnp-software/cordetfw

A.1 Existing Middleware 191

types of components embody elements with unequal responsibilities. A message is
a descendant of the base Component the same as a component serving as a commu-
nication adapter that forwards messages. The selected programming language C,
however, does not support inheritance directly. Consequently, the source code does
not formally represent the component structure and, thus, there is no inherent type
safety for the inheritance at compile time.

Cordet uses the PUS standard to communicate between the space and the ground
segment and the communication within the spacecraft. However, they designed it
flexible enough to support different types of exchange messages. Each message sent,
either a command or a report traverses different state machine states that check
whether the content is valid. The software passes a valid message to one of the
transmitting components, forwarding the message to the destination node. At the
receiving node, the software traverses the message component’s state machine again,
checking for the validness of the message before passing it to the user application’s
input component. Cordet supports some high-level routing, i.e., when a message
with another destination address is received, the component forwards the packet
to the next node or the destination node if it is directly reachable. Hence, it does
not require any routing in the communication layers below its communication
middleware.

A.1.7 KubOS

KubOS[76] is a project that provides a complete platform for developing and running
space software7. KubOS comes with a customized Linux distribution as the operating
system. On top of that, KubOS provides several libraries that the user applications
can use with different functionality, i.a. communication between applications. The
applications define a service interface that other applications can use to communicate
with each other. KubOS uses web technology for the communication interface: they
define the service interfaces with GraphQL, and the data connection uses HTTP as
the communication protocol between the applications.

Investigating the implementation details of the communication middleware imple-
mentations presented in section A.1, we extract specific approaches and technical
concepts. Those aspects are may be familiar to multiple implementations or unique
to one framework. This section examines them and compares them with each
other.

7https://github.com/kubos/kubos

192 Appendix A Communication Middleware

A.2 Implementation Aspects of Communication
Middleware

There are different aspcects of communication middleware that influence the timing
behavior, memory footprint, and programming approach. This sections presents and
compares some implementation details.

A.2.1 Memory Management for Messages

The software has to store the messages between applications in the memory for
processing. That applies to both local and remote communication. In the set of
communication middleware frameworks used in space, we found three types of
memory management, which we present in this section. The approach affects the
reliability and resources part of the middleware.

Dynamic Memory

The two middleware implementations NMF and MAL C, use dynamic memory as the
programming language provides it. For every new message, they allocate memory
(e.g., by calling calloc or new) and — if the programming language does not come
with a garbage collector — the memory is manually freed after processing the
message. However, developers have to free the memory eventually. Otherwise, there
is a risk for memory leaks, which is the reason why some programming guidelines
for safety-critical software, e.g., the power of ten[42], propose not to use dynamic
memory. If an application allocates much space, for example, by allocating big
or many message buffers, it might impede other applications from allocating new
message buffers. As a result, other applications might not be able to communicate
with other applications or with the ground segment. Thus, dynamic memory should
be very error-prone and requires disciplined programming.

Message Pool

In this variant of memory management for message packets, the framework allocates
memory used for message allocation at run-time at the initialization stage. Whenever
an application or the framework generates a message, it allocates a message buffer
from the message pool. When the destination application consumes the message,

A.2 Implementation Aspects of Communication Middleware 193

Service
Consumer

Service
Consumer

Message

Pool

Message

Pool

Channel /
Broker

Channel /
Broker

Subscriber
FIFO

Subscriber
FIFO

Service

Provider

Service

Provider

allocateBuffer

send

incrementBufferCount

pushBufferPointer

popBufferPointer

releaseBuffer

Figure A.1.: Sequence of services using a message pool for messages

or the framework sends the message to the network, they free the memory buffer.
The message pool has a fixed size already at compile time. Therefore, the message
allocation does not affect other parts of the software because the maximal size of
memory is reserved.

Figure A.1 shows how two applications — sender and receiver — use the message
pool to allocate and destroy a suitable message buffer. The sending application
allocates a message buffer for the message with a suitable size. Similar to heap
memory, the allocate function marks allocated memory buffers as "in use"; it reuses
(re-allocates) the message buffer only after the software has freed the message buffer.
During the entire process of data passing, the message buffer stays "in use."

This concept even works in communication middleware implementations that sup-
port more than one receiver. In this case, software should use reference counting,
for example, shared pointers. Calling freeBuffer on the message pool does not
always immediately free the message buffer. Instead, it decrements an associated
usage counter variable on each call. If the counter falls to zero, it actually frees the
message buffer, i.e., made available for other messages. To make this work, every
time a pointer is created or copied, the software increases the associated counter.

The message pool approach does not influence other parts of the memory and, thus,
does not affect other applications. However, it suffers the most disadvantages of
dynamic memory. If the software allocates and frees message buffers of different
sizes, the memory pool might become fragmented. However, by applying appropriate

194 Appendix A Communication Middleware

Sender

Sender

Channel /
Broker

Channel /
Broker

Receiver

Receiver

send

deliver

Figure A.2.: Sequence of services using the stack for messages

mechanisms, the level of fragmentation could be reduced. For example, keeping the
size of the allocated message buffers fixed ensures that there are no free message
buffers with unmatched lengths. However, keeping the message lengths the same is
only possible for specific situations, e.g., when all allocated messages have identical
sizes. Otherwise, always allocating the maximal size a message can take might lead
to a waste of memory.

Using the Stack

In contrast to the two approaches described earlier, the stack usage method does not
use dynamic memory. Instead, senders store the messages directly on the stack for
passing them to the senders.

After the sender calls the function on the broker, the broker calls a receiver function
to pass the message, as figure A.2 shows. Depending on the implementation, the
message is either passed by value or by reference. There is no need to count
any references because the calling functions pass the messages (e.g., reference to
memory) on the stack as a function parameter; after the function call is left, the
software reduces the stack, and the copy of the value or the is gone. The purpose of
the called function on the receiver’s side is to handle or save the required information
from the message to a local memory location within the receiving application.

A.2 Implementation Aspects of Communication Middleware 195

Sender

Sender

Channel /
Broker

Channel /
Broker

Receiver
FIFO

Receiver
FIFO

receiver

receiver

allocateBuffer

pushBufferPointer

popBufferPointer

Figure A.3.: Sequence of services using an intermediate FIFO

This approach requires that each thread is equipped with enough stack memory to
handle the transmitted messages. As threads do not share their stacks, this leads to
more reserved memory.

Buffer for Each Channel

Another approach, which is one option in Rodos, is to store the received messages
directly into a FIFO that is part of the receiver application. The difference to the
message pool technique is that there is no pool for allocating message buffers.
Instead, the FIFO already statically contains the required memory, which is big
enough to hold a given number of messages. Every time an application sends a
message, it copies the message’s content into the FIFOs of each receiver application;
see figure A.3. Consequently, every receiver has to provide a FIFO buffer with a
fixed size, which should be big enough to handle the expected amount of received
messages. In contrast to the message pool, the FIFOs do not share their memory;
thus, the FIFO approach, in total, requires more reserved memory.

In contrast to the stack usage approach, the receiver is responsible for reading the
message data from the FIFO. In order to avoid congestion in delivery, the receiving
function must read the FIFO in a frequency that is equal or higher than the frequency
of filling the FIFO. Another approach — if there is no thread to invoke the receiving
function periodically — is to use a dedicated thread for the receiving function, which
sleeps until new data arrives at the FIFO. The thread might be woken up directly by
the FIFO.

196 Appendix A Communication Middleware

A.2.2 Execution Context

The various approaches of memory management outlined in section A.2.1 lead to
another classification of the different implementations: the execution contexts of
the receiver function. The selected approach affects the real-time properties of the
software because different execution contexts use different priority parameters.

Execute Code of the Receiver in the Sender’s Context

The sequence diagram in figure A.2 shows that the "stack usage" memory man-
agement passes messages between applications via function calls. As a result,
the sending application’s execution context (thread) runs the code responsible for
consuming the message at the receiving application. Consequently, there is less
predictability of 1. the execution time of a sending thread, and 2. the required stack
size of a sending thread. The thread of the sending application will execute the
(unknown) code of other applications. Disciplined coding of receiving functions is
sensible to reduce uncertainties, e.g., writing only short code that does not need
much space on the stack. The receiver application cannot control when the com-
munication middleware invokes the receiving code and which thread will execute
it. Thus, synchronization is mandatory here if the subscription code accesses the
resources of the receiving applications.

Execute Code of the Receiver in the Receiver’s Context

Another approach is to invoke the receiver code in a thread that belongs to the
receiving application. A consequence of not using function calls for message passing
is that the stack is not usable. Instead, the communication mechanism must buffer
the message data between sending and receiving times, as the figure A.3 shows.
Here, a thread of the receiving application has to process the data of the messages.
If applications introduce new threads for data receptions, it increases the complexity
of scheduling analysis. This approach also increases the memory demands because
of the extra stack space required for the extra threads.

A.2 Implementation Aspects of Communication Middleware 197

A.2.3 Type Safety of Message Data

Communication middlewares can apply different degrees of type-safety. This sec-
tion presents different approaches from existing middlewares, which impact the
robustness of the software.

Strongly Typed Message Data

This implementation detail exploits the type mechanism of the programming lan-
guage (e.g., C or C++). For example, the communication middleware implementa-
tions of Rodos and Outpost provide a template class for channels (named topics).
This template parameter defines the type of the message data at compile time. Thus,
sending messages whose type does not fit is impossible because passing a wrong
data type leads to compilation errors.

Run-time Type Information

In contrast to the strongly typed message type, NMF uses run-time type information
to detect message types. The most significant difference is that the message types
are unknown to the compiler; thus, message typing errors cannot be detected and
reported when compiling. However, run-time type information is often disabled to
save memory and run-time, which inhibits this approach.

Binary Message Data

Other implementations, e.g., the message passing of cFS, do not exploit the typing
mechanism of the programming language for passing messages. Instead, they store
and forward plain binary data to the receiving applications, which is formatted. The
common format comes with meta-information for identifying the message’s data
type. An advantage of this approach is that only one routing infrastructure suffices
because no extra classes or objects are necessary for distinct message types.

A.2.4 Local Routing

The communication middleware frameworks organize local routing by different
approaches. This section presents the decentralized and central approaches.

198 Appendix A Communication Middleware

Sender 1 Channel 1 Receiver 1

Sender 2 Channel 2 Receiver 2

Figure A.4.: Structure of decentral local routing

Decentralized

When using the decentralized approach, there are distinct channel objects for
each message type. Those channels forward messages to the destinations. For
example, in implementing Outpost’s and Rodos’ communication middleware, the
user instantiates an object for each message channel. In order to send messages
of a particular type, the software uses the corresponding channel object to send
the data to the receivers. All senders and receivers access the same channel object.
The channel objects are independent, i.e., they do not have any interconnection.
Therefore, even if one channel ceases to function, the other channels keep working.

Centralized

Another approach is handling the distribution of messages in a centralized way.
Centralized message distribution is suitable if a framework uses the same binary
packet format for all virtual communication channels between applications. The
packet format contains all the necessary information to apply routing to the receiver
applications. Here, we found two addressing methods: point-to-point routing and
channel routing.

Point to Point Routing In point-to-point routing (P2P), the (source) applications
address destination applications when sending messages. Therefore, the packet
format must contain the address of the receiving application, which the sending
application has to know. The routing mechanism forwards the message according to

A.2 Implementation Aspects of Communication Middleware 199

Sender A

Broker / Router

Receiver X

Sender B Receiver Y

Figure A.5.: Structure of central local routing

the destination address, either 1. to the application if it is local, or 2. to the remote
node that runs the application. Dependent on the complexity of the spacecraft
architecture, this concept might require elaborated routing algorithms.

Channel Routing In this routing approach, the message metadata does not contain
a specific receiver. Instead, senders tag the messages with channel identifiers, which
allows the routing algorithm to determine the receivers. There are many ways to
implement the routing algorithm. One of them is the principle of publish-subscribe,
where applications can register at the routing module to subscribe for specific
message channel identifiers.

A.2.5 Remote Communication

The previous section presented routing techniques for local communication, i.e.,
information exchange between applications running on the same node. Some
investigated middleware frameworks, such as NMF, MAL C, Cordet, and KubOS, do
not differentiate between local and remote communication. They use the identical
mechanism for delivering messages locally and remotely. Other implementations,
however, use some local routing that is not usable remotely, e.g., because they use
local memory for data exchange. However, most such middleware implementations
come with an extension that enables remote communication, i.e., that forwards local
messages to remote nodes. One approach is to provide an application to forward
messages remotely: the gateway. The gateway docks onto the local routing and
converts the messages for remote delivery. Every time it receives a message with

200 Appendix A Communication Middleware

a destination that resides on a remote node, it serializes and transmits the data
via a network or a hardware bus. The software runs a gateway application on the
remote node that de-serializes the received message and passes it to the local router.
Rodos and cFS implement this mechanism. An exception is Outpost, which does not
provide remote communication in its open-source part.

A.2.6 High-Level Routing

Remote communication only exchanges messages between nodes that share the
same network or bus. If communication is across different networks, common nodes
have to implement message routing. Most frameworks support different underlying
communication protocols, which usually already provide different routing features.
However, only a few, like NMF, MAL C, and KubOS, rely on such protocol features.
Other middleware implementations, such as Rodos and Cordet, implement custom
routing at a higher networking layer independent of underlying protocols. According
to the metadata given in the header of the packages, the middleware decides whether
the current node is a destination node. If this is not the case, the middleware
forwards the message to one or more nodes. Depending on the topology of the
spacecraft network, several hops might be necessary to e For this feature, Rodos
comes with its custom configurable routing class. Cordet, on the other side, has no
extra routing object. Instead, it immediately checks whether the destination node
arriving packets is the current one in the input object. If this is not the case, Cordet
forwards the packet to the appropriate output object.

A.2.7 Communication Patterns

For communication between applications, simple message passing in one direction
sometimes is not sufficient. In order to ensure command executions, the commu-
nication framework should send acknowledgment and messages containing result
values. The communication middleware frameworks Outpost, Rodos, and cFS do
not implement responses directly. If the users desire such behavior, they have to
implement it on the application level. They could implement existing standards
here, such as the Packet Utilization Standard (PUS) defined by ESA. Cordet already
implements the PUS protocol for on-board communication and, therefore, comes
with an acknowledgment mechanism.

A.2 Implementation Aspects of Communication Middleware 201

While Outpost, Rodos, and cFS only implement message passing via publish-subscribe,
NMF and MAL C provide plenty ofă communication schemes for application inter-
faces:

Send This scheme sends a message to the service provider without acknowledg-
ment.

Submit This scheme sends a message to the service provider. The receiver returns
an acknowledgment message to the service consumer.

Request This scheme sends a message to the service provider. The receiver returns
a response message with a payload to the service consumer.

Invoke This scheme sends a message to the service provider. The receiver imme-
diately returns an acknowledgment message to the service consumer. After
the service provider has fully processed the invocation, it sends a message
containing the return value back to the service consumer.

Progress This scheme sends a message to the service provider. The receiver
immediately returns an acknowledgment message to the service consumer.
Periodically, the service provider sends information about the processing status
to the service consumer. After the service provider has fully processed the
invocation, it sends a message containing the return value back to the service
consumer.

Publish-subscribe The service consumers register themselves at a broker service
for a message ID. Whenever the service provider has new data, the provider
sends a message to the broker service, which forwards the message to each
registered service consumer. The service provider does not provide acknowl-
edgments or responses to the service customer.

A.2.8 Communication protocol

Regarding the communication protocol for remote communication, we divide our
set of communication middleware frameworks into two types: those that implement
open protocol standards and those that use their custom protocols.

There are widely used protocol standards for on-board communication and com-
munication with the ground station. The middleware frameworks of cFS (using
CCSDS Space Packets), NMF, MAL C (both using CCSDS MO), and Cordet (using
PUS) support such standards. KubOS applies GraphQL via HTTP for communication

202 Appendix A Communication Middleware

between applications. Initially, these protocols are web protocols and do not origin
from space agencies. Other middlewares do not follow broad standards. Instead,
they come with their custom protocol for inter-app communication, for example,
Rodos. Depending on the hardware and operating system, they use established
protocols on the lower level, e.g., UDP, but they do not rely on them.

A.2 Implementation Aspects of Communication Middleware 203

Software Requirements B
The software development process of Corfu followed the classical approach of
defining a list of requirements; we have designed and developed Corfu based on
predefined requirements. In this section, we list and describe requirements in
different categories.

B.1 Requirements of Satellite Software

Corfu will run on board of satellites and, therefore, must comply with all require-
ments common for satellite software. This list is a very generic one; it does not
commit to specific requirements of individual satellite missions. For concrete mis-
sions, it is necessary to extend the list of requirements, e.g., for hardware limitations,
interfaces, and mission goals.

ID: REQ-SAT-01
Text: The software architecture shall support multiple computing nodes.
Justification: Satellites usually consist of more than just one onboard computer.
Fullfilled: Yes. Corfu’s engineering model knows the concept of nodes.

ID: REQ-SAT-02
Text: Applications shall be reusable across multiple computing nodes.
Justification: Some applications should run on several computers in a satellite.
Fullfilled: Yes. Corfu’s engineering model knows the concept of nodes. In addition,
it comes with configuration (compile-time and run-time) parameters for applications,
which improves usability.

ID: REQ-SAT-03
Text: The satellite shall process telecommands.
Justification: Satellites should be commandable.
Fullfilled: Yes. Corfu directly supports telecommands.

ID: REQ-SAT-04
Text: The satellite shall check telecommand parameters for reasonableness.

205

Justification: Unexepected parameter values could lead to unintended behavior.
Fullfilled: Partly. Corfu’s model lets engineers define parameter ranges. However,
users have to check interrelated restrictions in their code.

ID: REQ-SAT-05
Text: If a command packet is damaged, the satellite shall discard it.
Justification: Executing manipulated commands can be dangerous.
Fullfilled: Yes. Corfu handles this in its onboard library.

ID: REQ-SAT-06
Text: The satellite shall notify the operations crew about each executed telecom-
mand or discarded.
Justification: Some commands should only be executed if the previous one suc-
ceeded.
Fullfilled: Yes. Corfu collects this information.

ID: REQ-SAT-07
Text: Telecommands shall be distributed in the satellite to reach the destination
computer.
Justification: Usually, telecommands are addressed to specific onboard computers.
Fullfilled: Yes. Corfu uses a Rodos topic for distributing telecommands. Via gate-
ways, it is possible to distribute them on board easily.

ID: REQ-SAT-08
Text: The software shall handle anomalies shall in the possible lowest level.
Justification: For example, if there is a problem at the level of software drivers, it
should be recovered there.
Fullfilled: Partly. Handling anomalies at different levels is a task of the users.

ID: REQ-SAT-09
Text: The software shall propagate unrecovered anomalies to the upper level.
Justification: If the software cannot solve failures at a lower level, recovery mecha-
nisms in a higher level might be necessary.
Fullfilled: Yes. In Corfu’s model, engineers can define anomalies for reporting via
topic.

ID: REQ-SAT-10
Text: The satellite shall inform the operations crew about emerging anomalies.
Justification: The operations crew should not miss any problem that occurs in the

206 Appendix B Software Requirements

satellite.
Fullfilled: Yes. The supplied reference implementation of the anomaly collector
provides anomaly information in the standard and extended telemetry.

ID: REQ-SAT-11
Text: Satellites shall define different modes of operation.
Justification: The modes define which components are turned on/off.
Fullfilled: Not directly. Implementing the operation mode is a task of the users.

ID: REQ-SAT-12
Text: Satellites shall define a safe mode, which ensures survival.
Justification: We have to save the mission, even when serious failures occur.
Fullfilled: Not directly. Implementing the safe mode is a task of the users.

ID: REQ-SAT-13
Text: If a critical failure occurs that cannot be recovered automatically, the satellite
shall automatically switch into safe mode.
Justification: Try to save our mission.
Fullfilled: Not directly. Implementing the safe mode is a task of the users.

ID: REQ-SAT-14
Text: The satellite should not automatically leave the safe mode.
Justification: The problem should be investigated by the operations team before
the safe mode is left manually.
Fullfilled: Not directly. Implementing the safe mode is a task of the users.

ID: REQ-SAT-15
Text: When switching to the safe mode, the satellite shall execute a sequence of
commands that set all parts of the satellite into the safe mode.
Justification: Entering the safe mode should be fully automatic.
Fullfilled: Partly. The reference implementation of the timed commander comes
with telecommand lists; implementing the safe mode is a task of the users.

ID: REQ-SAT-16
Text: The sequence of commands for entering the safe mode shall be modifiable
from the ground.
Justification: If the operations crew detects faults in the command sequence, they
should be able to fix them.
Fullfilled: Partly. The reference implementation of the timed commander comes

B.1 Requirements of Satellite Software 207

with telecommand lists; implementing the safe mode is a task of the users.

ID: REQ-SAT-17
Text: The satellite shall periodically send a short overview of its components’ states
(standard telemetry).
Justification: The operations crew should always be aware of the satellite’s current
status.
Fullfilled: Yes. Corfu comes with the concept of standard telemetry in the model.

ID: REQ-SAT-18
Text: All components shall use uniform physical units (SI), internally and in inter-
faces.
Justification: Using unambiguous units dimishes the chance of use wrong values.
Fullfilled: Partly. It mainly depends on the user implementation. However, Corfu
supports developers by providing own data types for the different SI units.

ID: REQ-GND-01
Text: If a telemetry packet is damaged, the ground software shall discard it.
Justification: Evaluating damaged telemetry data could lead to wrong conclusions.
Fullfilled: Yes. Corfu’s ground library checks the integrity of telemetry data.

ID: REQ-GND-02
Text: The framework shall come with a ground software for developing purposes.
Justification: Developers can immediately start and test their code.
Fullfilled: Yes. Corfu comes with a dynamic ground software using the model.

ID: REQ-GND-03
Text: The framework shall come with a library for connecting custom ground soft-
ware with the TC/TM system.
Justification: High flexible integration into existing or custom ground systems.
Fullfilled: Yes. Corfu comes with library for ground software.

ID: REQ-APP-01
Text: Applications shall be able to contain threads.
Justification: Applications should be equipped with active execution paths.
Fullfilled: Yes. Corfu’s model allows users to define threads.

ID: REQ-APP-02
Text: Telecommands shall be addressed to applications.

208 Appendix B Software Requirements

Justification: Most applications react on application-specific telecommands.
Fullfilled: Yes. Corfu’s telecommand structure addresses nodes, applications, and
telecommand types.

ID: REQ-APP-03
Text: Applications should contribute some fields to the standard telemetry.
Justification: This provides an overview of application-internal states to the opera-
tions crew.
Fullfilled: Yes. In Corfu’s model, applications can define a list of fields they con-
tribute to the standard telemetry.

ID: REQ-APP-04
Text: Applications shall define a set of parameters.
Justification: Parameters influence the behavior of applications. Making applica-
tions configurable also facilitates their reusability.
Fullfilled: Yes. Corfu’s model supports defining configuration parameters of applica-
tions.

ID: REQ-APP-05
Text: Configuration parameters shall be modifiable via telecommand.
Justification: The operations crew can change the behavior of applications in orbit.
Fullfilled: Yes. Corfu can generate such commands automatically.

ID: REQ-APP-06
Text: Applications shall report event messages.
Justification: Events give hints to the operations crew about what is happening in
the satellite.
Fullfilled: Yes. Corfu comes with a log event system.

ID: REQ-SAT-19
Text: The satellite shall be able to execute telecommands at given time points
automatically.
Justification: Most academic satellite missions do not have 24/7 contact with the
satellite. Therefore, the software should provide a way to execute commands in
non-contact situations.
Fullfilled: Yes. Corfu comes with a reference implementation of a timed commander.

ID: REQ-SAT-20
Text: The satellite shall be able to store a sequence of commands that it executes

B.1 Requirements of Satellite Software 209

consecutively at once.
Justification: This allows planing a list of actions first and execute them later at
once.
Fullfilled: Yes. Corfu comes with a reference implementation of a timed commander.

B.2 Requirements of Safety-Critical Software

ID: REQ-SAFE-01
Text: Safety-critical software shall guarantee timing properties.
Justification: Due to the interaction with the physical world, reactions should
happen in given time boundaries.
Fullfilled: Yes. Corfu relies on the real-time operating system Rodos.

ID: REQ-SAFE-02
Text: Safety-critical software shall be designed to prevent undefined behavior.
Justification: Undefined behavior may lead to serious problems.
Fullfilled: -/-. Depending on the user implementation.

ID: REQ-SAFE-03
Text: The software shall use a real-time operating system.
Justification: To meet timing requirements.
Fullfilled: Yes. Corfu relies on the real-time operating system Rodos.

B.3 Requirements of Applying Model-Driven
Development

ID: REQ-MDD-01
Text: The software framework shall provide a way to define the structure of the
software formally.
Justification: The model is the source of truth in the development process.
Fullfilled: Yes. Corfu comes with a model that allows engineers to define the struc-
ture of onboard software.

ID: REQ-MDD-02
Text: A generator shall create source code with the information from the model(s)

210 Appendix B Software Requirements

Justification: This puts the "-driven" into MDD.
Fullfilled: Yes. Corfu comes with a code generator.

ID: REQ-MDD-03
Text: The model definition shall have a concise and easy format for users.
Justification: Users should quickly find their way around the format.
Fullfilled: Yes. Corfu uses YAML.

ID: REQ-MDD-04
Text: The model definition shall use a format that can easily processed with auto-
matic tools.
Justification: Users might implement their own tools for specific model verification.
Fullfilled: Yes. Corfu uses YAML, which is supported by many libraries for most
programming languages.

ID: REQ-MDD-05
Text: The model information shall be presented graphically.
Justification: Graphical model representations help developers find their way
around the software structure.
Fullfilled: Yes. Corfu generates HTML files and diagrams for interactively navigating
through the software configuration.

B.4 Requirements of Model Feedback Features

ID: REQ-MF-01
Text: The feedback process shall create machine-readable files that contain informa-
tion from software artifacts
Justification: The information must be processable by automatic tools.
Fullfilled: Yes. Corfu stores the information into an SQLite database for easy access
for other tools.

ID: REQ-MF-02
Text: The process shall extract the call graph from the source code.
Justification: For example, this is useful for determining maximum stack sizes.
Fullfilled: Yes. Corfu’s code analyzer does this.

B.4 Requirements of Model Feedback Features 211

ID: REQ-MF-03
Text: The process shall extract the maximum stack sizes of functions.
Justification: Useful for the determination of maximum stack sizes.
Fullfilled: Yes. Corfu’s code analyzer does this.

ID: REQ-MF-04
Text: The process shall extract the parameters and location of event messages.
Justification: Necessary for moving logging messages out of the code (see 8.4.5).
Fullfilled: Yes. Corfu’s code analyzer does this.

ID: REQ-MF-05
Text: The process shall be designed to work iteratively.
Justification: After modifying the model, the framework has to re-generate code .
Fullfilled: Yes. Corfu’s process does this.

ID: REQ-MF-06
Text: Creating generated code shall be non-destructive towards user-written code.
Justification: This is necessary for an iterative process.
Fullfilled: Yes. The generated code is stored separately from the user implementa-
tion.

B.5 Requirements of Embedded Software

ID: REQ-EMB-01
Text: Embedded software shall consume only little resources in memory and compu-
tation power.
Justification: Embedded software often runs on microcontrollers with minimal
resources.
Fullfilled: Yes. Corfu does not introduce much resource footprint.

212 Appendix B Software Requirements

Detailed Comparison of Static
Memory Usage

C
This chapter contains some diagrams about memory usage of different software
aspects. They compare the memory usage for our classical implementation and
Corfu’s approach.

Classical Corfu
0

10

20

30

R
A

M
U

sa
ge

in
B

yt
es

User Application
Generated Application
Generic Application1

Figure C.1.: Comparison of static memory usage of applications between a classical imple-
mentation and Corfu

1without telecommand handling

213

Classical Corfu
0

10

20

30

40

50

R
A

M
U

sa
ge

in
B

yt
es

Telecommand Subscriber

Figure C.2.: Comparison of static memory usage of synchronous telecommand handling
between a classical implementation and Corfu

Classical Corfu
0

10

20

30

40

50

R
A

M
U

sa
ge

in
B

yt
es

Variable Protection2 for standard telemetry Data
Subscriber for standard telemetry Topic
standard telemetry Variable (Size Depends on Configuration)

Figure C.3.: Comparison of static memory usage of synchronous telecommand handling
between a classical implementation and Corfu

2for thread-safety

a

Classical Corfu
0

20

40

60

80

100

120

R
A

M
U

sa
ge

in
B

yt
es

Rodos Thread
Generated Thread
Generic Thread
Stack Size (Depends on Configuration)

Figure C.4.: Comparison of static memory usage of periodic threads between a classical
implementation and Corfu

Classical Corfu

0

20

40

60

R
A

M
U

sa
ge

in
B

yt
es

Reference to Topic
Rodos Subscriber
Generated Subscriber

Figure C.5.: Comparison of static memory usage of topic subscription between a classical
implementation and Corfu

b Appendix C Detailed Comparison of Static Memory Usage

Classical Corfu

0

1

2

3

4

R
A

M
U

sa
ge

in
B

yt
es

Reference to Topic

Figure C.6.: Comparison of static memory usage of topic publication between a classical
implementation and Corfu

c

Bibliography

[1] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond, Addison-Wesley, 2004

[2] D. Ashley: Foundation Dynamic Web Pages with Python, Apress, 2020.

[3] Automotive Open System Architecture: Guidelines for the use of the C++14
language in critical and safety-related systems, 2017.

[4] J. Backus, R. Beeper, S. Best, R. Goldberg, L. Haibt, H. Herrick, R. Nelson,
D. Sayre, P. Sheridan, H. Stern, I. Ziller, R. Hughes, and R. Nutt: The
FORTRAN Automatic Coding System, International Workshop on Managing
Requirements Knowledge, 1957.

[5] K. Balasubramanian, A. Krishna, E. Turkay, J. Parsons, A. Gokhale, and
D. Schmidt Applying model-driven development to distributed real-time and
embedded avionics systems, International Journal of Embedded Systems,
Vol. 2, 2006.

[6] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hung, R. Jeffries, J. Kern, B. Marick,
R. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas: Manifesto
for Agile Software Development, https://agilemanifesto.org/, 2001.

[7] I. Bertolotti and G. Manduchi: Real-Time Embedded Systems: Open-source
Operating Systems Perspecitve, CRC Press, 2012.

[8] J. Bézivin and O. Gerbé: Towards a precise definition of the OMG/MDA
framework, Annual International Conference on Automated Software Engi-
neering, 2001.

[9] I. Birrer, V. Cechticky, A. Pasetti, and O. Rohlik: Implementing Adaptability
in Embedded Software through Aspect Oriented Programming, IEEE Mecha-
tronics & Robotics, 2004.

[10] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison: F Prime:
An Open-Source Framework for Small-Scale Flight Software Systems, Small
Satellite Conference, 2018.

[11] G. Box and N. Draper: Empirical Model-Building and Response Surfaces,
Wiley, 1987.

e

[12] M. Brambilla, J. Cabot, and M. Wimmer: Model-Driven Software Engineer-
ing in Practice, Second Edition, Morgan & Claypool, 2017.

[13] J. vom Brocke, A. Hevner, and A. Maedche: Design Science Research. Cases,
Springer, 2020.

[14] S. Brüggemann, C. Prause: Status Quo of Agile Software Development
in the European Institutional Space Flight, Deutscher Luft- und Raum-
fahrtkongress, 2018.

[15] T. Büchner: Introspektive modellgetriebene Softwareentwicklung, Ph.D. The-
sis, 2007.

[16] California Polytechnic State University: CubeSat Design Specification Revi-
sion 13, 2014.

[17] Consultative Committee for Space Data Systems: Overview of Space Link
Protocols, CCSDS 130.0-G-1, 2001.

[18] Consultative Committee for Space Data Systems: Space Packet Protocol,
CCSDS 133.0-B-2, 2020.

[19] V. Cechticky, P. Chevalley, A. Pasetti, and W. Schaufelberger: A Genera-
tive Approach to Framework Instantiation, Generative Programming and
Component Engineering, 2003

[20] V. Cechticky, A. Pasetti, and W. Schaufelberger: The Adaptability Challenge
for Embedded Control System Software, IFAC Proceedings Volume 38, Issue
1, 2005.

[21] V. Cechticky, R. Ottensamer, and A. Pasetti: Flight software development
for the cheops instrument with the cordet framework, Data Systems in
Aerospace, 2015.

[22] C. Coelho, O. Koudelka, and M. Merri: NanoSat MO Framework: Achieving
On-board Software Portability, SpaceOps Conference, 2016.

[23] C. Coelho, O. Koudelka, and M. Merri: NanoSat MO framework: When
OBSW turns into apps, IEEE Aerospace Conference, 2017.

[24] D. Comer: Operating System Design, CRC Press, 2011.

[25] F. Dannemann and F. Greif: Software Platform of the DLR Compact Satellite
Series, 4S Symposium, 2014.

[26] F. Dannemann: Unified Monitoring for Spacecrafts Dissertation, 2015.

f Bibliography

[27] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulus, and F. Patrone:
Small satellites and CubeSats: Survey of structures, architectures, and proto-
cols, International Journal of Satellite Communications and Networking,
2018.

[28] M. Dowson: The ARIANE 5 Software Failure, ACM SIGSOFT Software
Engineering Notes, 1997.

[29] European Cooperation for Space Standardization: Space Project Manage-
ment, ECSS-M-ST-10C, 2009.

[30] European Cooperation for Space Standardization: Telemetry and telecom-
mand packet utilization, ECSS-E-ST-70-41C, 2016.

[31] European Cooperation for Space Standardization: Agile software develop-
ment handbook, ECSS-E-HB-40-01A, 2020.

[32] J. Eickhoff: Onboard Computers, Onboard Software and Satellite Operations:
An Introduction, Springer, 2012.

[33] D. Evans and M. Merri: OPS-SAT: A ESA nanosatellite for accelerating
innovation in satellite control, SpaceOps, 2014.

[34] M. Faisal and S. Montenegro: Porting a Real-Time Objected Oriented De-
pendable Operating System (RODOS) on a customizable system-on-chip,
International Scientific and Technical Conference on Computer Sciences
and Information Technologies, 2017.

[35] J. Favre: Foundations of Model (Driven) (Reverse) Engineering: Models,
Language Engineering for Model-Driven Software Development, 2004.

[36] J. Fernandez and C. Hernandez: Practical Model-Based Systems Engineering,
Artech House, 2019.

[37] I. Goldstein, T. Kopelowitz, M. Lwenstein, and E. Porat: Conditional Lower
Bounds for Space/Time Tradeoffs Workshop on Algorithms and Data Struc-
tures, 2017.

[38] B. Grzesik, T. Baumann, T. Walter, F. Flederer, F. Sittner, E. Dilger, S. Gläs-
ner, J. Kirchler, M. Tedsen, S. Montenegro, and E. Stoll: InnoCube A Wire-
less Satellite Platform to Demonstrate Innovative Technologies, Aerospace,
2021.

[39] M. Hamilton and the MIT Instrumentation Laboratory: Source Code of the
Apollo Guidance Computer, 1969.

Bibliography g

[40] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs: CubeSat: A
new Generation of Picosatellite for Education and Industry Low-Cost Space
Experimentation, Small Satellite Conference, 2000.

[41] G. Holzmann: The SPIN Model Checker, Addison-Wesley, 2003.

[42] G. Holzmann: The Power of 10: Rules for Developing Safety-Critical Code,
Computer Volume 39 Issue 6, 2006

[43] IEEE Standards Board: IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software, IEEE Std 982.2-1988, 1988

[44] IEEE and the Open Group: POSIX.1-2017, The Open Group Base Specifica-
tion Issue 7, 2018.

[45] ISO/IEC JTC 1/SC 22: ISO/IEC 14882:2003 Programming Languages —
C++, ISO, 2003.

[46] ISO/IEC JTC 1/SC 22: ISO/IEC 14882:2014 Programming Languages —
C++, ISO, 2014.

[47] ISO/IEC JTC 1/SC 22: ISO/IEC 14882:2020 Programming Languages —
C++, ISO, 2020.

[48] JPL Special Review Board: Report on the Loss of the Mars Polar Lander and
Deep Space 2 Missions, 2000.

[49] A. Kleppe, J. Warner, and W. Bast: MDA explained, Addison-Wesley, 2003.

[50] V. Khorikov: Unit Testing, Manning, 2020.

[51] D. Knuth: The Art of Computer Programming, Third Edition, Addison-
Wesley, 1997.

[52] J. Langr: Modern C++ Programming with Test-Driven Development, Prag-
matic Bookshelf, 2013.

[53] G. Le Lann: An Analysis of the Ariane 5 Flight 501 FAilure — A System Engi-
neering Perspective, International Conference and Workshop on Engineering
of Computer-Based Systems, 1997.

[54] M. Li, Z. Shang, Q. Hu, G. Yang, Y. Li, and F. Sun: Anaylysis and Testing of
Key Performance Indexes of Vxworks in Real-Time System,

2018.

[55] A. Lill, D. Messmann, M. Langer: Agile Software Development for Space
Applications, Deutscher Luft- und Raumfahrtkongress, 2017.

h Bibliography

[56] A. Lill, T. Zwickl, C. Costescu, L. Patzwahl, C. Soare, and M. Langer: Agile
Mission Operations in the CubeSat Project MOVE-II, SpaceOps Conference,
2018.

[57] The LLVM Team: Clang: a C language family frontend for LLVM, https://-
clang.llvm.org/, retrieved September 6th, 2021.

[58] The LLVM Team: Clang 13 documentation: LibTooling, https://-
clang.llvm.org/docs/LibTooling.html, retrieved September 6th, 2021.

[59] Lockheed Martin Corporation: Joint Strike Fighter Air Vehicle C++ Coding
Standards for the System Development and Demonstration Program, 2005.

[60] J. Lyons: Ariane 5: Flight 501 Failure Report By The Inquiry Board, 1996.

[61] D. Mathur, B. Edwards, J. Goldstein, H. Nguyen, J. Pine, B. Plante, and
J. Thacker: An Approach for Designing Reusable, Embedded Software Com-
ponents for Spacecraft Flight Instruments, IEEE Real Time and Embedded
Technology and Applications Symposium, 2005.

[62] G. Di Mauro, M. Lawn, and R. Bevilacqua: Survey on Guidance Navigation
and Control Requirements for Spacecraft Formation-Flying Missions, Journal
of Guidance, Control, and Dynamics, 2018.

[63] D. McComas, S. Strege, J. Wilmot: Core Flight System (cFS) Community:
Providing Low Cost Solutions for Small Spacecraft, Engineering, 2015.

[64] S. Mellor, K. Scott, A. Uhl, and D. Weise: MDA Distilled, Addison-Wesley,
2004.

[65] The Motor Industry Software Reliability Association: MISRA C:1998 Guide-
lines for the use of the C language in critical systems, 1998.

[66] The Motor Industry Software Reliability Association: MISRA C:2004 Guide-
lines for the use of the C language in critical systems, 2004.

[67] The Motor Industry Software Reliability Association: MISRA C++:2008
Guidelines for the use of the C++ language in critical systems, 2008.

[68] S. Montenegro and F. Dannemann: RODOS - Real Time Kernel Design for
Dependability, Data Systems in Aerospace, 2009.

[69] S. Montenegro, V. Petrovic, and G. Schoof: Network Centric Systems for
Space Applications, International Conference on Advances in Satellite and
Space Communications, 2010.

[70] C. Nichols: The Rust Programming Language, No Starch Press, 2019.

Bibliography i

[71] A. Nyßen: Model-Based Construction of Embedded & Real-Time Software —
A Methodology of Small Devices, Ph.D. Thesis, 2009.

[72] M. Panunzio and T. Vardanega: A Component Model for On-board Soft-
ware Applications, Conference on Software Engineering and Advanced
Applications (EUROMICRO), 2010

[73] A. Pasetti, W. Pree, J. Terraillon, and T. van Oberbeek: An Object-Oriented
Component-Based Framework for On-Board Software, Data Systems in
Aerospace, 2001.

[74] A. Pasetti: Software Frameworks and Embedded Control Systems, Springer,
2002.

[75] A. Pasetti and W. Pree: A Component Framework for Satellite On-Board
Software, Digital Avionics Systems Conference, 1999.

[76] R. Plauché: Building Modern Cross-Platform Flight Software for Small Satel-
lites, Small Satellites Conference, 2017.

[77] M. Prochazka, R. Ward, P. Tuma, P. Hnetynka, and J. Adamek: A
Component-Oriented Framework for Spacecraft On-Board Software Data
Systems in Aerospace, 2008.

[78] J. Qin, N. Yang, Y. Wang, J. Yang, and J. Du: A Model-Driven Development
Framework for Satellite On-Board Software, International Conference on
Wireless and Satellite Systems, 2020.

[79] S. Rasheed, J. Dietrich, and A. Tahir: Laughter in the Wild: A Study into
DoS Vulnerabilities in YAML Libraries, IEEE International Conference On
Trust, Security And Privacy In Computing And Communications, 2019.

[80] A. Rodríguez, F. Ferrero, E. Alaña, A. Jung, M. Panunzio, T. Vardanega,
and A. Grenham: The Component Layer of COrDET On-Board Software
Architecture Data Systems in Aerospace, 2012.

[81] J. Rothenberg: The Nature of Modeling, Artificial Intelligence, Simulation
and Modeling, 1989.

[82] D. Schmidt: Model-Driven Engineering, IEEE Computer, 2006.

[83] P. Scholz: Softwareentwicklung eingebetteter Systeme, Springer, 2005.

[84] G. Sebestyen, S. Fujikawa, N. Galassi, and A. Chuchra: Low Earth Orbit
Satellite Design, Springer, 2018.

[85] E. Seidewitz: What Models Mean, IEEE Software, 2003.

j Bibliography

[86] A. Silberschatz, P. Galvin, and G. Gagne: Operating System Concepts Essen-
tials, Wiley, 2010.

[87] F. Sittner, C. Liman, G. Schulze, H. Schülein, J. Schmieder, J. Tischhöfer,
M. Busch, and S. Montenegro: Creating a Setup to Assess the Use of Virtual
Reality for Mission Control, Small Satellite Conference, 2021.

[88] T. Stahl, M. Völter, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, and B. von
Stockfleth: Model-Driven Software Development, Wiley, 2006.

[89] T. Stahl, M. Völter, S. Efftinge, and A. Haase: Modellgetriebene Softwa-
reentwicklung : Techniken, Engineering, Management, dpunkt.verlag, 2.,
aktualisierte und erweiterte Auflage, 2007.

[90] B. Stroustrup: The C++ Programming Language, Addison-Wesley, 4th
Edition, 2013

[91] B. Stroustrup: A Tour of C++, Addison-Wesley, 2018.

[92] M. Sweeting: UoSAT microsatellite missions, Electronics & Communication
Engineering Journal, 1992.

[93] M. Sweeting: Modern Small Satellites — Changing the Economics of Space,
Proceedings of the IEEE Vol. 106, 2018.

[94] P. Szécsi, G. Horváth, and Z. Porkoláb: Improved Loop Execution Modeling
in the Clang Static Analyzer, Acta Cybernetica, 2020.

[95] A. Tanenbaum: Modern Operating Systems, Prentice Hall, 2007.

[96] J. Teich and C. Haubelt: Digitale Hardware/Software-Systeme, Springer,
2007.

[97] J. Terraillon, A. Jung, P. Arberet, S. Montenegro, A. Rossignol, G. Garcia, J.
Li, A. Rodriguez, S. Mazzini, P. Hougaard, S. Fowell, M. Ferraguto, and M.
Panunzio: Space On-board Software Reference Architecture, Data Systems In
Aerospace, 2010.

[98] J. Trimble: Agile: From Software to Mission System, SpaceOps Conference,
2016.

[99] K. Umann and Z. Porkoláb: Detecting Uninitialized Variables in C++, Acta
Cybernetica, 2020.

[100] C. Walls: Embedded RTOS Design, Newnes, 2020.

[101] F. Wende: C++ Data Layout Abstractions through Proxy Types, International
Conference on Engineering of Complex Computer Systems, 2019.

Bibliography k

[102] K. Wiegers and J. Beatty: Software Requirements, Third Edition, Microsoft
Press, 2013.

[103] R. Wieringa: Design Science Methodology, Springer, 2014.

[104] J. Wilmot: A core flight software system, International Conference on
Hardware/Software Codesign and System Synthesis, 2005.

[105] J. Wilmot: A core plug and play architecture for reusable flight software
systems, IEEE International Conference on Space Mission Challenges for
Information Technology, 2006.

[106] Wind River Systems Inc: VxWorks 7 Datasheet, 2019.

[107] F. Xiaocong: Real-Time Embedded Systems, Newnes, 2015.

[108] C. Ziemke, T. Kuwahara, and I. Kossev: An integrated development frame-
work for rapid development of platform-independent and reusable satellite
on-board software, Acta Astronautica 69, 2011.

l Bibliography

Acknowledgement

A big thank you goes out to everyone who supported me to realize this work. First, I
want to thank my supervisor Sergio Montenegro. With his experience, he showed me
the right track for developing Corfu. His hints and comments were always beneficial.
He managed to create a great chair with a fantastic working atmosphere, which
helped me work efficiently.

Thank you to my colleagues at the InnoCube project, Erik Dilger, Felix Sittner,
Thomas Walter, and Tom Baumann, for their trust in my framework. It will be Corfu’s
first orbit experience. At this point, special thanks to Felix and Tom for testing and
driving for new features of Corfu. Without Ludwig Ostermayer, I probably would
have never started my academic career.

My dearest Kerstin, thank you for keeping my back free and having so much patience;
I love you. Also, thank you, Marlene; your smile always helped me to recreate.
Recreational were also all the Sunday afternoons at my parents; thank you for
always the warm welcome. You have made it possible to grow to my full potential;
this is also your result.

m

 C
O

R
FU

 –
 A

n
Ex

te
nd

ed
 M

od
el

-D
ri

ve
n

Fr
am

ew
or

k
fo

r S
m

al
l S

at
el

lit
e

S
of

tw
ar

e

Würz

Research in Aerospace
Information Technology

This monograph series is published by the Chair
of Aerospace Information Technology (Informatik
VIII) of the University of Würzburg and presents
innovative research regarding avionic systems for
aerospace and terrestrial applications as well as
the technology transfer between both fi elds.
The main research focus is on the development of
reliable soft- and hardware for embedded appli-
cations that allow the autonomous operation of
unmanned systems in challenging environments.
This includes the development of new technolo-
gies such as wireless communication methods,
distributed sensing and control strategies, sensor
fusion algorithms, novel navigation methods and
concepts for dependable software targeting the
irreducible complexity.
Another research focus is on cooperative tasks
of multi-agent systems, including homogeneous
swarms and arbitrary heterogeneous constella-
tions.
The developed technologies are deployed in nu-
merous real-world applications such as small sa-
tellite systems, distributed sensor networks, un-
manned aerial vehicles for extreme environments
and other experimental platforms.

Herausgeber:
Prof. Dr. Sergio Montenegro

Frank Flederer

CORFU
An Extended Model-Driven
Framework for Small Satellite
Software with Code Feedback

R
A

IT
 2

Research in Aerospace
Information Technology

Institut für Informatik
Lehrstuhl für Informationstechnik
für Luft- und Raumfahrt
Prof. Dr. Sergio Montenegro

© Lehrstuhl für Informatik VIII
Informationstechnik für Luft- und Raumfahrt
Julius-Maximilians-Universität Würzburg
Institut für Informatik
Josef-Martin-Weg 52/2
97074 Würzburg

Tel.: +49 931 - 31-81400

L-info8@informatik.uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/
aerospaceinfo/
Alle Rechte vorbehalten.
Würzburg 2021.

Dieses Dokument wird bereitgestellt durch den
Publikationsservice der Universitätsbibliothek
Würzburg.

Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg

Tel.: +49 931 - 31-85906

opus@bibliothek.uni-wuerzburg.de
https://opus.bibliothek.uni-wuerzburg.de

Foto oben: Lehrstuhl für Informatik VIII
der JMU Würzburg
Foto unten: Frank Flederer

ISSN: 2747-4828

Zitiervorschlag:
Flederer, Frank (2021): CORFU – An Extended Model-Driven Framework
for Small Satellite Software with Code Feedback. Research in Aerospace
Technology, 2. DOI: 10.25972/OPUS-24981

R
A

IT
 2

 F

ra
nk

 F
le

de
re

r

	Cover
	Titlepage
	Abstract
	Contents
	List of Abbreviations
	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Approach of Corfu
	1.3 Original Contributions
	1.4 Delimitation of the Work
	1.5 Partial Publications
	1.6 Document Organization
	1.7 Color Conventions Used in the Document

	II Fundamentals
	2 Characteristics of Satellite Missions
	2.1 Hierarchical Composition of Components
	2.2 Phases of Satellite Projects
	2.3 Small Satellites

	3 Basics of Model-Driven Software Development
	3.1 Process of Model-Driven Development
	3.2 Increasing Abstraction Level
	3.3 Elements of Model-Driven Development

	4 Structure of On-Board Software for Small Satellites
	4.1 Basic Software Structure
	4.2 Operating Systems for Satellite Software
	4.3 Communication Middleware for Satellite Software
	4.4 General Entity Types of On-board Software
	4.5 Classification of Applications
	4.6 Common Topics
	4.7 Common Applications
	4.8 Telemetry
	4.9 Communication with Ground

	5 Safety-Critical Software
	5.1 Standards and Code Conventions for Reliable Source Code
	5.2 Lessons Learned from Software Faults in Space Missions

	6 State of the Art
	6.1 NASA's core Flight System (cFS)
	6.2 F'
	6.3 Cordet-2
	6.4 NanoSat Mission Operations Framework (NanoSat MO Framework)
	6.5 OBS framework
	6.6 Ziemke, Kuwahara, Kossev
	6.7 Prochazka et al.
	6.8 Other Related Work

	III Design of Corfu
	7 Methodology
	7.1 Development Process
	7.2 Goals
	7.3 Requirements
	7.4 Testing

	8 Basic Concepts and Design of Corfu
	8.1 Use Cases
	8.2 Development Process
	8.3 Static Structure of Onboard Software
	8.4 Concepts
	8.5 Reporting Programming Errors at Compile-Time

	9 The Engineering Model of Onboard Software
	9.1 Structural Part of the Engineering Model
	9.2 Behavioral Part of the Engineering Model

	10 Tools and Libraries of Corfu

	IV Implementation of Corfu
	11 Configuration Files and Generated Code
	11.1 Directory Structure for Satellite Projects
	11.2 Project Configuration File
	11.3 Application Configuration File
	11.4 Node Configuration File
	11.5 Code Generation Process

	12 Feedback from User Code to the Model
	12.1 The Extended Model
	12.2 Assembly Analysis
	12.3 Source Code Analysis

	13 Model Verification
	13.1 Simple Configuration Verifications
	13.2 Scheduling Analysis
	13.3 Stack Usage Analysis of Threads

	14 Automatic Testing
	14.1 Unit Tests
	14.2 Integration Tests

	V Evaluation
	15 Case Study: Log Event System
	15.1 A Classical Implementation of Event Messaging as Reference
	15.2 Comparison of the Bandwith Usage
	15.3 Comparison of Binary Memory Usage

	16 Comparison with Our Classical Onboard Software Implementation
	16.1 Software Elements
	16.2 Comparison of Both Implementations

	17 Development Process Evaluation
	17.1 Avoided Bugs
	17.2 Potential New Bugs
	17.3 The InnoCube Cubesat Project

	VI Conclusions
	18 Summary
	19 Future Work

	VII Appendix
	A Communication Middleware
	A.1 Existing Middleware
	A.2 Implementation Aspects of Communication Middleware

	B Software Requirements
	B.1 Requirements of Satellite Software
	B.2 Requirements of Safety-Critical Software
	B.3 Requirements of Applying Model-Driven Development
	B.4 Requirements of Model Feedback Features
	B.5 Requirements of Embedded Software

	C Detailed Comparison of Static Memory Usage
	Bibliography
	Acknowledgement

