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Abstract: Farmland tree cultivation is considered an important option for enhancing wood produc-
tion. In South India, the native leaf-deciduous tree species Melia dubia is popular for short-rotation
plantations. Across a rainfall gradient from 420 to 2170 mm year–1, we studied 186 farmland woodlots
between one and nine years in age. The objectives were to identify the main factors controlling
aboveground biomass (AGB) and growth rates. A power-law growth model predicts an average
stand-level AGB of 93.8 Mg ha–1 for nine-year-old woodlots. The resulting average annual AGB
increment over the length of the rotation cycle is 10.4 Mg ha–1 year–1, which falls within the range
reported for other tropical tree plantations. When expressing the parameters of the growth model
as functions of management, climate and soil variables, it explains 65% of the variance in AGB. The
results indicate that water availability is the main driver of the growth of M. dubia. Compared to the
effects of water availability, the effects of soil nutrients are 26% to 60% smaller. We conclude that
because of its high biomass accumulation rates in farm forestry, M. dubia is a promising candidate for
short-rotation plantations in South India and beyond.

Keywords: aboveground biomass; climatological water deficit; farm forestry; farmland woodlots;
rainfall gradient; soil; wood production

1. Introduction

Increasing landscape tree cover and carbon sequestration is considered a cost-effective
climate change mitigation tool. While natural secondary succession of native forest tree
species is likely the preferred option from an ecological point of view, agroforests, farm
woodlots and tree plantations are land-use options that can balance ecological and socio-
economic needs [1–4]. They are considered particularly important regarding the extent and
further expansion of global drylands [5–7]. Fast-growing short-rotation plantations consti-
tute one potentially important component of future climate-smart ‘designer landscapes’
(see, e.g., [8]), particularly in tropical regions with climatically favorable conditions for
fast growth. They can shift pressure from remaining forests and help to meet the booming
wood demand in fast-emerging economies [9].

A prime example is India, which houses nearly 18% of the global human population
on 2.4% of the world’s land area [10]. Its economic growth and increasing population
are associated with an increasing demand for wood and wood-based products [11,12].
In 2019, India imported 8.7 billion USD worth of wood products (Figure S1) [13]. The
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further projected high economic growth rate [14], continued population growth [12] and
forest policy reforms are expected to create substantial additional demand for wood-based
products in the coming years [15]. An additional, intrinsic value of landscape tree cover
may further arise from future ecosystem service payment schemes for carbon storage or
other protective purposes.

Tree plantations in India and elsewhere in the tropics are often established from a very
limited number of ‘classic’, highly productive plantation species [16–19]. Within relatively
short rotation cycles, which vary among species but are often around ten years, substantial
aboveground biomass (AGB) is accumulated. For example, an AGB of about 140 Mg ha−1

was reported for nine-year-old Eucalyptus tereticornis plantations in India [20]. There are,
however, controversies about potential negative impacts of some introduced plantation
species on soil, water and biodiversity [21–23]. This has led to a ban of Eucalyptus and
Acacia plantations in some southern states of India [24].

Among the tree species commonly used for plantation establishment in India, the
native Melia dubia Cav. (Meliaceae) is gaining popularity due to its fast growth, straight
boles and self-pruning, and its ability to cope with different edaphic and climate condi-
tions [25,26]. It occurs naturally in the moist tropical forests of peninsular and northeastern
India and can also be found, either naturally or introduced, in Sri Lanka, Malaysia, Indone-
sia, the Philippines, Australia and Ghana [27,28]. M. dubia is a light-demanding, deciduous
tree species [29,30] and its wood is suitable for plywood, paper and engineered-wood
industries [27,31,32]. However, studies on AGB and the growth of M. dubia are rare so
far, and with exception of one study on the effects of varying stand densities [33], its
growth potential has not yet been assessed comprehensively across gradients in water and
nutrient availability.

For tropical trees, several studies reported that biomass and growth are often largely
controlled by climate and specifically by water availability, while factors such as soil
or disturbance history are secondary [34–38]. Therein, higher precipitation and shorter
and less intense dry periods were associated with significantly higher tree growth rates,
while weak or no relationships with soil nitrogen or plant available phosphorus were
found [34]. The climatic variable mean annual precipitation often explains a large part
of the observed variation in AGB or growth [35,38]; however, the variable climatological
water deficit is deemed even more suitable for studying the effects of water availability
on growth because it reflects both the duration and severity of water-limited conditions
over the course of a year [39,40]. Indications that water availability often is a crucial factor
controlling tree growth are further strengthened by previous reports of vastly increased
growth in irrigated compared to non-irrigated plantations, particularly in water-limited
tropical regions [41–45]. To our knowledge, no previous studies investigating effects of
natural or artificial water supply or their interaction on the growth of M. dubia are available.
However, such information is essential for further improving its management, e.g., with
regard to optimized site selection or drought-adapted irrigation schemes.

M. dubia is particularly popular in South India, a region characterized by a tropical
monsoon climate with a distinct seasonality and steep gradients in annual rainfall. On
South Indian farms, we studied 186 M. dubia farmland woodlots between one and nine
years in age and covering a rainfall gradient from 420 to 2170 mm year−1. The objectives
were to quantify aboveground biomass and growth rates of M. dubia and to identify their
main controlling factors, with a focus on the role of natural and artificial water supply and
their interaction.

2. Materials and Methods
2.1. Study Region

The studied woodlots were located in the South Indian states of Andhra Pradesh,
Karnataka and Tamil Nadu (Figure 1). Tropical monsoon climate prevails in the region,
with a rainy season from May to October and a dry season from November to April.
Mean annual precipitation (MAP) increases from the interiors with around 400 mm year−1
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towards the Western Ghats with more than 3000 mm year−1 (Figure 1). Mean annual
temperature (MAT) ranges from 29.5 ◦C in the inland lowlands to 21.6 ◦C in the highlands
(Ghats) [46]. The soils in the region are variable [47] and accommodate diverse vegetation
formations ranging from open thorn scrub over wooded grasslands to closed forests [48,49].
The region has a long-standing history of diverse land-use practices; coffee, coconut, areca
nut and rubber plantations dominate in the moist, humid and sub-humid zones, whereas
rainfed and irrigated agriculture dominates in the dry lowland plains [50]. Today, forest
cover in the region is about 14% [51].

Forests 2021, 12, 1675 3 of 16 
 

 

with a rainy season from May to October and a dry season from November to April. Mean 

annual precipitation (MAP) increases from the interiors with around 400 mm year−1 to-

wards the Western Ghats with more than 3000 mm year−1 (Figure 1). Mean annual tem-

perature (MAT) ranges from 29.5 °C in the inland lowlands to 21.6 °C in the highlands 

(Ghats) [46]. The soils in the region are variable [47] and accommodate diverse vegetation 

formations ranging from open thorn scrub over wooded grasslands to closed forests 

[48,49]. The region has a long-standing history of diverse land-use practices; coffee, coco-

nut, areca nut and rubber plantations dominate in the moist, humid and sub-humid zones, 

whereas rainfed and irrigated agriculture dominates in the dry lowland plains [50]. To-

day, forest cover in the region is about 14% [51]. 

 

Figure 1. Study region in South India and location of the 186 M. dubia woodlots. The sites span 

across a gradient in mean annual precipitation (MAP) ranging from 420 to 2170 mm year–1. 

2.2. Study Sites and Plot Design 

The woodlots ranged from approx. one to nine years in age; older stands were not 

found in the region. The woodlots covered a gradient in MAP from 420 to 2170 mm year−1 

(Figure 2); M. dubia is commonly not grown at higher rainfall levels. The gradient encom-

passes four climatic zones (arid, semi-arid, dry-sub-humid and humid; zonation accord-

ing to Trabucco and Zomer 2019 [52]). The plots were identified and located based on 

information from the Karnataka Forest Department, forestry colleges and research insti-

tutes, NGOs, nursery enterprises, media and farmers.  

Figure 1. Study region in South India and location of the 186 M. dubia woodlots. The sites span across
a gradient in mean annual precipitation (MAP) ranging from 420 to 2170 mm year–1.

2.2. Study Sites and Plot Design

The woodlots ranged from approx. one to nine years in age; older stands were not
found in the region. The woodlots covered a gradient in MAP from 420 to 2170 mm year−1

(Figure 2); M. dubia is commonly not grown at higher rainfall levels. The gradient encom-
passes four climatic zones (arid, semi-arid, dry-sub-humid and humid; zonation according
to Trabucco and Zomer 2019 [52]). The plots were identified and located based on infor-
mation from the Karnataka Forest Department, forestry colleges and research institutes,
NGOs, nursery enterprises, media and farmers.
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Figure 2. Key characteristics of the studied M. dubia woodlots. Histograms and kernel densities of
selected key sites and management (a–c), climate (d–f) and soil variables (g–i) along the studied
gradients. MAP: Mean annual precipitation; CWD: climatological water deficit; Nsoil: soil nitrogen
content; Psoil: soil phosphorous content.

General land-use history and management information on each woodlot were raised
through interviewing farmers with semi-structured questionnaires. All studied M. dubia
woodlots were established on former agricultural land. To avoid early-stage failures of the
woodlots, all interviewed farmers irrigated the seedlings for at least one growing season.
Most farmers (66%) continued supplemental irrigation for more than one growing season,
but with reduced irrigation frequencies (hereafter referred to as ‘irrigated’). A total of 34%
moved to exclusively rainfed cultivation after the initial irrigation period (hereafter referred
to as ‘non-irrigated’); MAP at all non-irrigated woodlots was higher than 670 mm year−1.
In each woodlot, biometric data were collected within a 20 m × 20 m plot. The plots were
established near the center of the woodlots to avoid edge effects, at locations typical for the
average growth conditions (based on visual assessment and discussion with the owner).

2.3. Tree Observations

Trees with a diameter at breast height (DBH, cm) equal to or larger than 2 cm whose
center-points lay within the plot boundaries were recorded as sample trees. Stand density
(trees ha−1) was estimated from the number of recorded trees per 400 m2 plot. For each
sample tree, DBH was measured with a diameter tape and height (m) was measured using a
marked PVC pipe for smaller trees and a Vertex IV hypsometer (Haglöf, Langsele, Sweden)
for trees higher than approx. 8 m. A total of 6898 M. dubia trees were recorded across the
studied woodlots.

2.4. Wood Density

On a subset of 31 woodlots covering a MAP gradient from 420 to 1530 mm year−1

and a plantation age gradient from four to seven years, stem wood density (WD; g cm−3)
was additionally measured. In these plots, one wood core each was extracted at breast
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height (1.3 m) from the six trees that were closest to the plot center, adding up to 186 cores.
Volumes (cm3) of the cores were determined by Newton’s volume equation:

v = [(Ao + 4Am + Ai) ÷ 6] × l (1)

where v is the volume of the core, Ao, Am and Ai are the cross sectional areas obtained by
A = πD2/4, using diameter (D, cm) measured at outer, middle and inner end of the core,
and l is the core length (cm). WD was calculated as the ratio of oven-dry mass (105 ◦C for
72 h) to fresh volume of each core.

The average WD derived from the 31-plot subsample was 0.349 ± 0.003 g cm−3

(mean ± SE, n = 186 trees), with a range from 0.253 to 0.435 g cm−3. This falls into the range
of WD estimates previously reported for M. dubia [53–55]. WD showed no or only weak
correlations (R < 0.22) with the available stand, management, climate and soil variables
(see overview in Table S1), and linear regressions between WD and selected key variables
show either no significant influence on WD (P > 0.05) or did not explain a sufficiently large
fraction of the variance in the variable (R2 < 0.05) to use them to predict WD (Figure S2a–f).
We therefore decided to use the overall average of WD for the aboveground biomass
estimates at all woodlots in our study.

2.5. Aboveground Biomass Estimation

For estimating tree-level aboveground biomass (AGB, kg tree−1), no allometric equa-
tion specifically calibrated for M. dubia was available from existing literature. We thus used
an improved pan-tropical allometric model [39], which predicts AGB (kg) based on WD
(g cm−3), DBH (cm) and tree height, H (m):

AGB = 0.0673 × (WD × DBH2 × H)0.976 (2)

The model is widely applied for estimating the AGB of tropical trees including plan-
tation species such as Eucalyptus, Gmelina arborea and Tectona grandis [56–58]. Its pantrop-
ical predecessor [59], which yields slightly lower but highly correlated estimates (R = 1,
Figure S3a), was previously applied for AGB estimation in a Melia azedarach plantation [60].
The AGB values derived with the improved pan-tropical model for M. dubia correspond
very closely to values derived with an approach using a reported species-specific form
factor of 0.7 [61], along with mean WD as established in our study, with only marginal
divergences from the 1:1 line and close correlation (R = 1, Figure S3b). Other potentially
suitable equations for tropical trees also produce comparable absolute estimates and close
correlations (n = 6898 trees, R > 0.9, Figure S3c–e). A species-specific model calibration in
future studies would most likely improve the accuracy of predictions, foremost by a more
precise estimation of the wood volume for given age classes, as WD did not vary across
gradients of key management, climate and soil variables in our study (Figure S2).

The target variable, stand-level AGB (Mg ha−1) was determined by multiplying the
mean tree level AGB of a given plot by the respective stand density (trees ha−1).

2.6. Bioclimatic Variables

We used the point sampling tool of QGIS software [62] for extracting bioclimatic data
for each woodlot from available global grids. We extracted variables related to precipitation
and temperature from the WorldClim database (Version 2, http://worldclim.org, accessed
on 20 June 2021). The data are provided as monthly long-term averages (1970–2000)
at a spatial resolution of 30 arc seconds [46]. We further extracted monthly potential
evapotranspiration (PET, mm) and aridity index estimates from 30 arc seconds resolution
global raster grids [52]. We derived the number of dry months per year at each site by
combining the extracted monthly precipitation (WorldClim) and PET (CGIAR-CSI) data
series following an approach by Guan et al. [38], where dry months are defined as months
in which PET exceeds precipitation. We further calculated the climatological water deficit
(CWD, mm year−1) following Chave et al. [39], where the annual CWD is the sum of the

http://worldclim.org
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differences between monthly precipitation (WorldClim) and monthly PET (CGIAR-CSI),
taking into consideration only months with negative values. For the modeling in our study,
we chose the annual CWD as the climatic variable as it integrates both the duration and
severity of water-limited conditions over the course of a given year [39,40].

Calculating climate variables specifically for the growing season of M. dubia was not
possible due to a lack of information on the expected substantial changes in the phenology
of M. dubia as a drought-deciduous species along the steep climatic gradient. A list of all
available climate variables is presented in Table S1.

2.7. Soil Variables

Soil texture was assessed by the ‘finger probe’ field method [63], as modified by
www.nrcs.usda.gov. Near the center of each plot, soil pH was recorded using a handheld
pH/ORP meter (GMH 5530, Greislinger, Regenstauf, Germany) by dissolving 20 g of soil
in 50 mL of distilled water. Similarly, soil electrical conductivity (dS m−1) was measured
using the Fieldscout EC 110 Meter (Spectrum Technologies Inc., Aurora, CO, USA). In each
plot, a composite soil sample was extracted at 0–15 cm depth and air-dried. Samples were
passed through a 2 mm sieve to determine available soil nutrient contents in the laboratory
of the Indian Institute of Soil and Water conservation, Ballari, India. The content of organic
carbon (OCsoil) was estimated by rapid titration method using 1 g of sample sieved through
0.2 mm mesh [64]. Available soil nitrogen (Nsoil, mg kg−1) was determined by the alkaline
permanganate method [65], available phosphorus (Psoil, mg kg−1) by Olsen’s method using
ascorbic acid [66] and available potassium (Ksoil, mg kg−1) was determined with the flame
photometer method using ammonium acetate extracts [67]. Soil depth was approximated
by measuring the distance from the top of the soil to the bedrock in existing pits, trenches
or channels dug in the plots for planting or other purposes. A list of all available soil
variables is compiled in Table S1.

2.8. Statistical Analyses

To identify relationships between our target variable stand-level AGB and potential
explanatory variables, we computed a correlation matrix with the R package ggcorrplot
(Version 0.1.3, [68]). Out of the list of more than 40 available stand, management, climate
and soil variables (Table S1, Figure S4), we chose a limited set of weakly correlated predictor
variables based on a priori knowledge about their association with plant growth.

To model the stand-level AGB increment in M. dubia in the studied woodlots, we
first fitted a simple regression model between AGB (Mg ha−1) and stand age. We found a
power-law relationship between the AGB of plot i and its age (months since planting) to fit
the data best:

AGBi = a × agei
b (3)

This model can be linearized by natural log-transforming AGB and stand age:

log (AGBi) = log(a) + b × log(agei) + εi (4)

On the scale of the raw data, fitting a log-log linear model as in (4) with a simple linear
model corresponds to a power-law relationship of AGB with age, and a lognormal error
distribution.

To examine the effects of management, climate and soil on AGB and AGB growth, we
further fitted an extended version of model (3) that expresses the baseline ai and growth
rate bi for observation i as functions of stem density, water availability and soil nutrients:

ai = a0 × exp (a1 × densityi) (5)

bi = b0 + b1 × densityi + b2 × irrigationi + b3 × CWDi + b4 × Nsoil[i] + b5 × Psoil[i] + b6 × CWDi × irrigationi (6)

We therein assumed that the baseline biomass a only depends on the initial planting
density, while the effects of water availability, soil nutrients and potential negative density-

www.nrcs.usda.gov
www.nrcs.usda.gov
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dependent effects on growth manifest their influence on biomass via the growth rate b. As
the effect of irrigation is likely more pronounced on sites that have a more negative water
balance, we further allowed for an interaction between climatological water deficit and the
categorical management variable irrigation. On the log-log scale, the model implied by (3),
(5) and (6) can be expressed as a multiple linear regression model:

log(AGBi) = log(a0) + a1 × log(densityi) + b0 × log(agei) + b1 × densityi × log(agei) +
b2 × irrigationi × log(agei) + b3 × CWDi × log(agei) + b4 × Nsoil[i] × log(agei) + b5 ×

Psoil[i] × log (agei) + b6 × CWDi × irrigationi × log(agei) + εi

(7)

To fit model (7), all numeric predictor variables except the (negative) CWD were
natural log-transformed in order to accommodate the skew of the data. Except for age, all
numeric predictors were then scaled by their standard deviations and centered around
zero to ease the interpretation of model coefficients. To visualize the results of the multiple
regression model, we computed partial predictions for the key variables CWD, stand
density, Nsoil and Psoil along their respective observed ranges (rescaled to original units)
for both irrigated and non-irrigated woodlots while keeping all other variables at their
average values (see Table S1).

All statistical analyses and plotting were performed using R (Version 4.0, [69]). We used
the open source software Inkscape (Version 1.0, [70]) for aesthetic adjustments on figures.

3. Results

The studied woodlots were vastly heterogeneous with regard to management, climate
and soil conditions (Figure 2). A total of 66% of the woodlots were irrigated (vs. 34%
non-irrigated). Stand densities varied 26-fold, from 116 to over 3000 trees ha−1. MAP
ranged from 420 to 2170 mm year−1 and the CWD from –1823 to –832 mm year–1. Nsoil and
Psoil varied by three- and forty-fold, respectively.

Across all woodlots, stand-level AGB varied from 0.3 to 110.4 Mg ha−1. Variables that
could potentially explain the high observed variance in AGB were plotted in a correlation
matrix; stand age had the highest independent correlation with AGB (R = 0.55, Figure S4).
A log-log linear regression model using age as a predictor explained 55% of the variance
in AGB (F-statistic: 225.4 on 1 and 184 DF, p < 0.001) (Figure 3). It predicted an AGB of
94 Mg ha−1 for nine-year-old M. dubia stands, which corresponded to an average annual
AGB increment of 10.4 Mg ha−1 year−1.
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Figure 3. Stand-level aboveground biomass (AGB, Mg ha–1) vs. stand age (months) across the
186 studied woodlots. The line shows the predictions of a log-log linear regression (R2 = 0.55,
F-statistic: 225.4 on 1 and 184 DF, p < 0.001). Prediction model: AGB = 0.12 × age1.42, valid for an age
range from 1 to 108 months.

The updated growth model taking into account the effects of management, climate
and soil explained 65% of the observed variance in AGB (F-statistic: 41.6 on 8 and 177
DF, p < 0.001) (Table 1). Stand density had a marginally significant positive effect on
initial AGB (p = 0.068) and an non-significant negative effect on aboveground biomass
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increment (AGBI). Water availability had a much stronger positive effect on AGBI than
nutrient availability, as indicated by the larger standardized effect sizes of irrigation (0.061,
p = 0.096) and CWD (0.078, p < 0.01) compared to Nsoil (0.031, p = 0.107) and Psoil (0.045,
p < 0.01). The three-way interaction term between stand age, CWD and irrigation indicates
a slight but non-significant reduction in the irrigation effect at wetter sites (p = 0.173).

Table 1. Results of the multiple regression model for stand-level aboveground biomass (AGB) using
stand age and preselected key management, climate and soil variables and their interactions as
predictors. AGB and predictors (except irrigation, CWD) were natural log-transformed. Except for
the main predictor, age, numeric variables were scaled by their standard deviations and centered
around zero. The model explains 65% of the variance in AGB across the studied woodlots (F-statistic
41.6 on 8 and 177 DF, p < 0.001). CWD: climatological water deficit; Nsoil: soil nitrogen content; Psoil:
soil phosphorus content.

Parameters Estimate SE t Statistic p-Value

Intercept 4.52 0.32 14.27 <0.001
Age 1.45 0.09 16.28 <0.001

Stand density 0.54 0.29 1.84 0.06
Age: Stand density −0.07 0.09 −0.83 0.40

Age: Irrigation (irrigated) 0.06 0.04 1.67 0.09
Age: CWD 0.08 0.03 2.62 <0.01
Age: Nsoil 0.03 0.02 1.62 0.10
Age: Psoil 0.05 0.02 2.89 <0.01

Age: CWD: Irrigation (irrigated) −0.05 0.03 −1.37 0.17

Using the model to predict the stand-scale AGB of ‘mature’ (harvest-ready, nine-year
old) woodlots illustrates the important role of water availability. For non-irrigated mature
woodlots of otherwise average characteristics, AGB more than triples along the steep CWD
gradient, from 44.4 Mg ha–1 to 150.3 Mg ha–1. The relationship is non-linear, with smaller
increases in AGB per unit of CWD at the dry end of the gradient (Figure 4a). Along the
same CWD range, AGB in irrigated woodlots increases by only 60% and almost linearly.
While an almost twice as high AGB is predicted for irrigated woodlots at very negative
CWD, AGB predictions for irrigated and non-irrigated woodlots are similar at the wet end
of the gradient past approx. −1000 mm year–1. Along the observed gradients in stand
density, Nsoil and Psoil, AGB increases of 90% to 147% are predicted for non-irrigated mature
woodlots of otherwise average characteristics; the model predicts 31% higher AGB at a
given stand density, Nsoil or Psoil when the woodlots are irrigated (Figure 4b–d). However,
all described trends for irrigated woodlots are associated with substantial additional
uncertainties due to the large standard errors of the two interaction terms involving
irrigation (Table 1).
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Figure 4. Partial predictions of stand-level aboveground biomass (AGB, Mg ha–1) of harvest-ready,
nine-year-old woodlots as influenced by key management, climate, and soil variables. Along the
observed gradients in climatological water deficit (CWD) (a), stand density (b) and soil nitrogen
(Nsoil) (c) and phosphorus (Psoil) (d), AGB is predicted separately for irrigated (blue lines) and non-
irrigated woodlots (black lines) from the multiple model. All variables other than tree age (kept at
nine years) and the respective displayed variable were kept at their average values (dashed vertical
lines). Predictions were computed for the observed ranges of CWD, stand density, Nsoil and Psoil in
the irrigated and non-irrigated woodlots, respectively.

4. Discussion
4.1. Aboveground Biomass of M. dubia

In South India, the native M. dubia is a popular plantation species due to its versatile
use, fast growth, straight boles and its ability to cope with different edaphic and climate
conditions [25,26] (Figure 5). On farmland woodlots across large gradients in management,
climate and soil conditions, our regression model predicts an average stand-level AGB of
93.8 Mg ha–1 for nine-year-old M. dubia stands. At this age, trees are commonly harvested,
and we did not observe any older stands across the studied woodlots. Predictions from
our regression model for a hypothetic landscape with a homogeneous distribution of M.
dubia plantations across nine age classes (i.e., one to nine years in steps of one year, then
immediate harvest and replanting) yield an average AGB stock of 44.1 Mg ha–1. Assuming
a carbon content of AGB of approx. 50% [71], this corresponds to an average permanent
aboveground carbon stock of 22.1 Mg ha–1. In comparison, dry forests in South India were
reported to have aboveground carbon stocks of 37 to 116 Mg ha–1 [72–74]. Such carbon
stock quantifications may be of interest for life cycle analysis of M. dubia products, carbon
offset programs or other climate change mitigation mechanisms.
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Figure 5. Fully leafed one-year-old M. dubia woodlot with MAP over 700 mm (a) and a leaf-shed
four-year-old woodlot at MAP below 500 mm (b). M. dubia logs at an industrial yard for peeling
veneers (c) and extracted veneers (d).

4.2. Growth Potential of M. dubia

Of central interest for short-rotation plantation species is their growth, i.e., their
average annual AGBI over a typical rotation cycle. Based on the AGB estimate for an
average nine-year old woodlot from our simple regression model, the mean AGBI across
our study region is 10.4 Mg ha−1 year–1. This estimate falls within the range of values
reported for four-year-old M. dubia plantations in South India (9.6 to 12.7 Mg ha−1 year−1,
estimates derived in analogy to our study using DBH and height data; see Table S2 for
details on all cited studies) [33]. The AGBI rate of M. dubia is comparable to or higher than
those reported for several other popular plantation species across India. This includes
reports from teak (Tectona grandis) of varying ages (2.6 to 16 Mg ha−1 year−1, [75,76]),
five- to eleven-year-old Populus deltoides (6.3 to 16.4 Mg ha−1 year−1, [77,78]), four- to
six-year-old Gmelina arborea (0.6 to 8.5 Mg ha−1 year−1, [79,80]), three- to ten-year-old
Dalbergia sissoo (2.5 to 7.8 Mg ha−1 year−1, [41,77,81,82]) as well as from nine-year-old
plantations of Casuarina equisetifolia (10.9 Mg ha−1 year−1), Pterocarpus marsupium (7.5 Mg
ha−1 year−1), Ailanthus triphysa (4.6 Mg ha−1 year−1) and Leucaena leucocephala (2.6 Mg ha−1

year−1) [81]. Other studies on common plantation species reported higher AGBI (12.2 to
37.5 Mg ha−1 year−1, Table S2) than we found for M. dubia, both for India [20,44,81,83,84]
and other tropical countries [85–88]. However, these studies commonly examine only
one or few sites. In contrast, our average M. dubia AGBI estimate is based on studying
186 woodlots across steep environmental gradients. At single sites in our study, AGBI rates
of well over 20 Mg ha−1 year−1 were observed.

4.3. Controls of Biomass and Growth of M. dubia

A power-law growth curve represented the changes in AGB with increasing woodlot
age well for the studied stands between one and nine years of age (Figure 3). Our findings
are in line with several previous studies in monocultural short-rotation tree plantations
showing similar relationships (e.g., [44,78,89,90]).
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The multiple regression model (Table 1) explained 65% of the observed variance in
stand-scale AGB. It indicates a key role of water availability for the growth of M. dubia.
Therein, both natural (CWD) and artificial (irrigation) water supply have strong effects on
AGB, and the effects of irrigation vary strongly along the studied CWD gradient (Figure 4a).
The annual CWD was highly significant in the model (Table 1). Its standardized effect size
on growth was 28% larger than that of irrigation and 72–150% larger than the effect sizes
of Nsoil and Psoil. These results are in line with several previous studies reporting that
the natural water availability is closely related to the growth of tropical trees, while soil
conditions and further factors such as land-use history are often secondary [34–38].

Likewise, the observed strong positive influence of irrigation of AGB growth is in line
with several previous studies in tree plantations [41–44]. Our model goes a step further
in including an interaction between natural and artificial water supply, which showed
an expected decreasing benefit of irrigation as the natural water availability increases
(i.e., as CWD becomes less negative). This results in similar AGB predictions for mature
irrigated and non-irrigated woodlots at the wet end of the studied CWD gradient past
approx. –1000 mm year–1, while an almost twice as high AGB is predicted for irrigated
woodlots at the dry end at around –1800 mm year–1 (Figure 4a). Such information is
essential for further optimizing the growth of M. dubia through enhanced site selection and
water management schemes.

Notably, both interaction terms involving irrigation were associated with substantial
uncertainties and were thus only marginally significant and non-significant, respectively,
in the multiple model (Table 1). There are several potential reasons for this: Firstly, there
is uncertainty arising from a lack of information on irrigation frequency and volume,
as irrigation only appears as a categorical variable. Secondly, first- and second-order
interaction terms in general have much higher uncertainties than main effects. Thirdly,
irrigation is a conscious and complex management decision by the farmers likely already
taking into account local conditions and planting densities, which are not considered in
our relatively simplistic model. Finally, the irrigation effect refers to a woodlot of average
characteristics, i.e., at average CWD, while differences at the dry end of the gradient would
likely be more pronounced. Despite such limitations, our model does confirm a key role
of the water supply for the AGB growth of tropical trees, in our case for M. dubia in South
India: growth is strongly constrained at the dry end of the studied CWD gradient, but can
be increased considerably by irrigation.

Within the studied stand density range (116 to 3086 trees ha–1, 67% between 116 and
1000 trees ha–1), the model showed a marginally significant positive effect of stand density
on initial AGB and a negative effect of stand density on AGB growth; the latter was non-
significant in our model (Table 1). As for irrigation, a potential explanation for the lack of
significant growth effects is that stand density is a management decision by farmers that is
likely based on prior knowledge on recommended planting distances under the respective
site conditions. For mature, non-irrigated woodlots at average CWD (–1293 mm year–1)
and of average soil characteristics, increases in stand density lead to pronounced increases
in predicted AGB until a stand density of approx. 1000 trees ha–1; higher densities result
in under-proportional further increases in AGB (Figure 4b). Our results of increasing
stand-scale AGB with increasing stand densities up to over 3000 trees ha–1 somewhat
contrast the results from a previous experimental study on M. dubia in South India, which
showed slightly higher growth at lower stand densities (below 833 trees ha–1) compared to
higher stand densities (1000–2500 trees ha–1) [33]. However, the study was based on few
spatial replicates, the observed differences were not examined statistically and the stands
were only four years old at the time of study. Overall, the influence of the stand density
of AGB growth of M. dubia is still associated with too many uncertanties to derive clear
management recommendations and requires further experimental studies. Our results
do, however, suggest that M. dubia can achieve considerable stand-scale growth over a
relatively broad range of stand densities, which gives farmers flexibility with regard to
producing wood of variable, locally desired dimensions.
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The effect of nutrient availability on AGB growth was small compared to the effect
of water availability (Table 1). Our model contained Nsoil and Psoil as predictors for soil
nutrient effects, as these are the two macronutrients that are commonly found to limit
plant growth [91,92]. Nsoil varied three-fold across the studied woodlots, and Psoil varied
forty-fold. While the relatively small positive effect of Nsoil on AGB was non-significant
(p = 0.107), the stronger positive effect of Psoil was highly significant, indicating partially
pronounced soil phosphorus limitations in our study region. Our result of a rather moderate
influence of soil nutrient status on AGBI is in line with several previous studies on tropical
tree species; exceptions are typically only found on severely nutrient-limited sites with
drastically reduced growth [34,91–93]. This is also indicated by the distinctly non-linear
effect of Psoil on AGB of mature, non-irrigated woodlots: while increases in Psoil from near
zero to approx. 5 mg kg–1 result almost in a doubling of AGB, further increases in Psoil
are associated with relatively small increases in AGB (Figure 4d). This suggests that there
may be room for further growth optimization by enhanced site selection and by (moderate)
fertilizer application on nutrient-poor sites.

5. Conclusions

We conclude that due to its rapid growth rates in farmland forestry, M. dubia is a species
with considerable potential for short-rotation plantations in South India and beyond. Its
average growth rate across steep environmental and management gradients falls within
the range reported for popular tropical tree plantation species. Water availability is the
main driver of the growth of M. dubia, while the effects of soil nutrients are relatively
small. Growth is strongly constrained at sites with high climatological water deficit, but
can be increased considerably by irrigation. Generally, there remains large potential for
tree-based land use with mixed stands of native species to foster effects of complementarity
and optimize ecological benefits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12121675/s1: Figure S1: India’s annual import value of forest products (blank circles with
blue line) and gross domestic product (GDP) growth (black squares with orange line), from 1961 to
2019 [12,13]. Figure S2: The influence of the key variables stand age (a), irrigation (b), stand density
(c), climatological water deficit (CWD) (d), soil nitrogen (Nsoil) (e) and soil phosphorus (Psoil) content
(f) on wood density. Wood density was measured from cores extracted at breast height on 186 trees
across a subset of 31 woodlots. Linear regression models were fitted and regression lines (blue) and
standard error corridors (gray) are depicted for p < 0.05. The categorical variable irrigation was
tested for significant differences (p < 0.05) among groups with the Wilcoxon rank sum test (with
continuity correction). Figure S3: Comparison of tree-level aboveground biomass (AGB) estimates
derived from the pantropical model applied in our study [39] to other AGB models. Data from all
6898 studied trees are depicted (dots). The solid blue lines are the respective regression lines, the
dashed black lines represent 1:1 lines. Figure S4: Correlation matrix of available growth, climate, soil
and management variables. Units and descriptions for all variables are presented in Table S1. Table S1:
List of available growth, climate, soil and management variables. Given are the measurement units,
means, standard deviations, standard errors, minimum and maximum values among the 186 studied
woodlots. Table S2: Aboveground biomass (AGB), average annual AGB increment (AGBI), key
characteristics (age, stand density, mean annual precipitation MAP, soil conditions) and further
information on tropical tree plantations as cited for comparison to our study. NA: no data available.
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